surveillance/0000755000175100001440000000000013231726607012773 5ustar hornikuserssurveillance/inst/0000755000175100001440000000000013231650467013750 5ustar hornikuserssurveillance/inst/jags/0000755000175100001440000000000012625315364014674 5ustar hornikuserssurveillance/inst/jags/bhpm.bugs0000644000175100001440000000736012625315364016512 0ustar hornikusers###################################################################### # Bayesian hierarchical Poisson model for performing nowcasting stated # in the BUGS/JAGS modelling language. This is a template file - # based on the control options, the nowcasttrunc function removes # tags or inserts extra code - i.e. this file can not run with JAGS # without extra modification # # Author: Michael Höhle ###################################################################### model { ################################################## #Prior for the TPS ################################################## # #Priors for the regression coefficients. A joint distribution # #forces the updated to be MV metropolis hastings (might not be better as slice sampler) # beta ~ dmnorm( beta.mu, beta.prec) # #Random effects with automatic smoothing # for (k in 1:nknots){ # b[k]~dnorm(0,tau.b) # } # tau.b ~ dgamma(0.001, 0.001) # #1st order random walk prior for lambda[t] # logLambda[1] ~ dnorm(-10, tau.logLambda) # for (t in 2:T) { # logLambda[t] ~ dnorm( logLambda[t-1], tau.logLambda) # } # tau.logLambda ~ dgamma(0.001,0.001) # #2nd order random walk prior for lambda[t] # logLambda[1] ~ dnorm(-10, tau.logLambda) # logLambda[2] ~ dnorm(-10, tau.logLambda) # for (t in 3:T) { # logLambda[t] ~ dnorm( 2*logLambda[t-1] - logLambda[t-2], tau.logLambda) # } # tau.logLambda ~ dgamma(0.001,0.001) # #iid lambda, which are Ga-distributed # for (t in 1:T) { # lambda[t] ~ dgamma( alpha.lambda, beta.lambda) # logLambda[t] <- log(lambda[t]) # } ###################################### #Priors for discrete time hazard model ###################################### #for (d in 1:(maxDelay)) { } for (d in 1:(round( (maxDelay-1)/2-0.4)+1)) { #coefs for logit @ delay 0,..,maxDelay-1 gamma[d] ~ dnorm( mu.gamma[d], tau.gamma[d]) } # #Prior for change point effects (now as vector) eta ~ dmnorm( eta.mu, eta.prec) # #Alternative: Separate random walks for each baseline # for (d in 1:(maxDelay)) { # tau.gamma[d] ~ dgamma(0.001,0.001) # gamma[1,d] ~ dnorm( ifelse(maxDelay < 3/4*maxDelay, -3,-0.1), tau.gamma[d]) # } # for (t in 2:T) { # for (d in 1:(maxDelay)) { # #coefs for logit @ delay 0,..,maxDelay-1 # gamma[t,d] ~ dnorm( gamma[t-1,d], tau.gamma[d]) # } # } #################################################### #Loop over all time points in the reporting triangle #################################################### for (t in max(1,T-m):T) { #Time dependent delay distribution logit(p[t,1]) <- gamma[1] + eta %*% W[t,,1] for (d in 1:(maxDelay-1)) { # logit(haz[t,d+1]) <- gamma[d+1] + eta %*% W[t,,d+1] logit(haz[t,d+1]) <- gamma[ round(d/2-0.4)+1] + eta %*% W[t,,d+1] p[t,d+1] <- (1-sum(p[t,1:d]))*haz[t,d+1] } p[t,maxDelay+1] <- (1-sum(p[t,1:maxDelay]))*1 #since haz[maxDelay+1]=1 #Observations -- loop over all delays. for (d in 0:maxDelay) { mu[t,d+1] <- exp(logLambda[t])*p[t,d+1] rT[t,d+1] ~ dpois(mu[t,d+1]) } } #Loop over entire triangle not just the moving window for (t in 1:T) { #Curve for the expected number \lambda_t of cases #Spline model for the curve # logLambda[t] <- inprod(beta[],X[t,]) + inprod(b[],Z[t,]) #count the total number of observations at time t. NtInf[t] <- sum(rT[t,]) } } surveillance/inst/CITATION0000644000175100001440000000221213124737545015106 0ustar hornikusersbibentry( bibtype = "Article", header = "As a general software reference for the _monitoring_ functionality, please cite:", author = c(person("Maëlle", "Salmon"), person("Dirk", "Schumacher"), person("Michael", "Höhle")), title = "Monitoring Count Time Series in {R}: Aberration Detection in Public Health Surveillance", journal = "Journal of Statistical Software", year = "2016", volume = "70", number = "10", pages = "1--35", doi = "10.18637/jss.v070.i10" ) bibentry( bibtype = "Article", header = "As a general reference for the spatio-temporal _modeling_ frameworks, please cite:", author = c(person("Sebastian", "Meyer"), person("Leonhard", "Held"), person("Michael", "Höhle")), title = "Spatio-Temporal Analysis of Epidemic Phenomena Using the {R} Package {surveillance}", journal = "Journal of Statistical Software", year = "2017", volume = "77", number = "11", pages = "1--55", doi = "10.18637/jss.v077.i11" ) citFooter("References to the underlying methodological papers can be found via", "'surveillance:::REFERENCES' and on the help pages of the functions.") surveillance/inst/NEWS.Rd0000644000175100001440000027367313231566036015033 0ustar hornikusers%% Some pre-defined commands: \R, \code, \acronym, \url, \file, \pkg %% Since R 3.2.0, additional system Rd macros are available, %% e.g., \CRANpkg and \doi. See the definitions in the file %% file.path(R.home("share"), "Rd", "macros", "system.Rd") \name{NEWS} \title{News for Package 'surveillance'} \encoding{latin1} \section{Changes in surveillance version 1.16.0 (2018-01-24)}{ \subsection{NEW FEATURES}{ \itemize{ \item The \code{as.data.frame()} method for \code{"sts"} objects gained a \code{tidy} argument, which enables conversion to the long data format and is also available as function \code{tidy.sts()}. \item A \CRANpkg{ggplot2} variant of \code{stsplot_time()} is now available via \code{autoplot.sts()}. \item \code{as.epidata.data.frame()} gained an argument \code{max.time} to specify the end of the observation period (which by default coincides with the last observed event). \item The now exported function \code{fanplot()} wraps \CRANpkg{fanplot}\code{::fan()}. It is used by \code{plot.oneStepAhead()} and \code{plot.hhh4sims()}, which now have an option to add the point forecasts to the fan as well. \item \code{plotHHH4_fitted()} (and \code{plotHHH4_fitted1()}) gained an option \code{total} to sum the fitted components over all units. } } \subsection{SIGNIFICANT CHANGES}{ \itemize{ \item Package \CRANpkg{polyCub} is no longer automatically attached (only imported). \item \code{scores.oneStepAhead()} no longer reverses the ordering of the time points by default, as announced in 1.15.0. } } \subsection{MINOR CHANGES}{ \itemize{ \item Some code in \code{vignette("monitoringCounts")} has been adjusted to work with the new version of \CRANpkg{MGLM} (0.0.9). \item Added a \code{[}-method for the \code{"hhh4sims"} class to retain the attributes when subsetting simulations. } } \subsection{BUG FIXES}{ \itemize{ \item \code{aggregate(stsObj, by = "unit")} no longer results in empty colnames (set to \code{"overall"}). The obsolete map is dropped. \item The \code{subset} argument of \code{twinSIR()} was partially ignored: \itemize{ \item If \code{nIntervals = 1}, the model \code{summary()} reported the total number of events. \item Automatic \code{knots}, model \code{residuals()}, as well as the rug in \code{intensityplot()} were computed from the whole set of event times. } \item The \code{as.epidata.data.frame()} converter did not actually allow for latent periods (via \code{tE.col}). This is now possible but considered experimental (methods for \code{"epidata"} currently ignore latent periods). \item The \code{all.equal()} methods for \code{"hhh4"} and \code{"twinstim"} objects now first check for the correct classes. } } } \section{Changes in surveillance version 1.15.0 (2017-10-06)}{ \subsection{NEW FEATURES}{ \itemize{ \item \code{siaf.gaussian()} now also employs a \code{polyCub.iso()} integration routine by default (similar to the powerlaw-type kernels), instead of adaptive midpoint cubature. This increases precision and considerably accelerates estimation of \code{twinstim()} models with a Gaussian spatial interaction function. Models fitted with the new default (\code{F.adaptive=FALSE, F.method="iso"}) will likely differ from previous fits (\code{F.adaptive=TRUE}), and the numerical difference depends on the adaptive bandwidth used before (the default \code{adapt=0.1} yielded a rather rough approximation of the integral). \item Added \code{quantile()}, \code{confint()}, and \code{plot()} methods for \code{"oneStepAhead"} predictions. \item Exported the function \code{simEndemicEvents()} to simulate a spatio-temporal point pattern from an endemic-only \code{"twinstim"}; faster than via the general \code{simulate.twinstim()} method. } } \subsection{MINOR CHANGES}{ \itemize{ \item \code{twinstim(..., siaf = siaf.gaussian())} uses a larger default initial value for the kernel's standard deviation (based on the size of the observation region). \item Non-default parametrizations of \code{siaf.gaussian()} are deprecated, i.e., always use \code{logsd=TRUE} and \code{density=FALSE}. \item \code{twinstim()} uses a smaller default initial value for the epidemic intercept, which usually allows for faster convergence. \item \code{update.hhh4()} now allows \code{subset.upper} values beyond the originally fitted time range (but still within the time range of the underlying \code{"sts"} object). \item \code{scores.oneStepAhead()} by default reverses the ordering of the time points. This awkward behaviour will change in the next version, so the method now warns if the default \code{reverse=TRUE} is used without explicit specification. \item Minor improvements in the documentation and some vignettes: corrected typos, simplified example code, documented some methods. } } \subsection{BUG FIXES}{ \itemize{ \item The C-routines introduced in version 1.14.0 used \code{==} comparisons on parameter values to choose among case-specific formulae (e.g., for \eqn{d==2} in \code{siaf.powerlaw()}). We now employ an absolute tolerance of 1e-7 (which should fix the failing tests on Solaris). \item Interaction functions for \code{twinstim()}, such as \code{siaf.powerlaw()} or \code{tiaf.exponential()}, no longer live in the global environment as this risks using masked base functions. } } } \section{Changes in surveillance version 1.14.0 (2017-06-29)}{ \subsection{DOCUMENTATION}{ \itemize{ \item The replication code from Meyer et al. (2017, JSS) is now included as \code{demo("v77i11")}. It exemplifies the spatio-temporal endemic-epidemic modelling frameworks \code{twinstim}, \code{twinSIR}, and \code{hhh4} (see also the corresponding vignettes). } } \subsection{NEW FEATURES}{ \itemize{ \item Pure C-implementations of integration routines for spatial interaction functions considerably accelerate the estimation of \code{twinstim()} models containing \code{siaf.powerlaw()}, \code{siaf.powerlawL()}, or \code{siaf.student()}. \item The color palette generating function used by \code{sts} plots, \code{hcl.colors}, is now exported. \item The utility function \code{clapply} (\emph{c}onditional \code{lapply}) is now exported. \item Some utility functions for \code{hhh4} fits are now exported (\code{update.hhh4}, \code{getNEweights}, \code{coefW}), as well as several internal functions for use by \code{hhh4} add-on packages (\code{meanHHH}, \code{sizeHHH}, \code{decompose.hhh4}). \item The \code{"fan"}-type plot function for \code{"hhh4sims"} gained a \code{key.args} argument for an automatic color key. \item New auxiliary function \code{makeControl()}, which may be used to specify a \code{hhh4()} model. } } \subsection{MINOR CHANGES}{ \itemize{ \item \code{twinstim()} now throws an informative error message when trying to fit a purely epidemic model to data containing endemic events (i.e., events without ancestors). The \code{help("twinstim")} exemplifies such a model. } } \subsection{BUG FIXES}{ \itemize{ \item \code{siaf.powerlaw()$deriv} returned \code{NaN} for the partial derivative wrt the decay parameter \eqn{d}, if \eqn{d} was large enough for \eqn{f} to be numerically equal to 0. It will now return 0 in this case. \item \code{twinstim()} could fail (with an error from \code{duplicated.default}) if the fitted time range was substantially reduced via the \code{T} argument. \item The \code{"simEpidataCSlist"} generated by \code{simulate.twinstim(..., simplify = TRUE)} was missing the elements \code{bbox} and \code{control.siaf}. } } } \section{Changes in surveillance version 1.13.1 (2017-04-28)}{ \subsection{DOCUMENTATION}{ \itemize{ \item The paper on \dQuote{Spatio-Temporal Analysis of Epidemic Phenomena Using the \R Package \pkg{surveillance}} (by Sebastian Meyer, Leonhard Held, and Michael \enc{Höhle}{Hoehle}) will appear in the upcoming volume of the \emph{Journal of Statistical Software}. The main sections 3 to 5 of the paper are contained in the package as \code{vignette("twinstim")}, \code{vignette("twinSIR")}, and \code{vignette("hhh4_spacetime")}, respectively. } } \subsection{NEW FEATURES}{ \itemize{ \item The \code{calibrationTest()} and \code{pit()} methods for \code{"oneStepAhead"} forecasts gained an argument \code{units} to allow for unit-specific assessments. \item A default \code{scores}-method is now available to compute a set of proper scoring rules for Poisson or NegBin predictions. \item New plot \code{type = "fan"} for simulations from \code{"hhh4"} models to produce a fan chart using the \CRANpkg{fanplot} package. } } \subsection{MINOR CHANGES}{ \itemize{ \item \code{scores.hhh4()} sets rownames for consistency with \code{scores.oneStepAhead()}. } } \subsection{BUG FIXES}{ \itemize{ \item The \code{"Lambda.const"} matrix returned by \code{getMaxEV_season()} was wrong for models with asymmetric neighbourhood weights. [spotted by Johannes Bracher]\cr Dominant eigenvalues (\code{"maxEV"}) were not affected by this bug. } } } \section{Changes in surveillance version 1.13.0 (2016-12-20)}{ \subsection{NEW FEATURES}{ \itemize{ \item \code{earsC} now has two new arguments thanks to Howard Burkom: the number of past time units to be used in calculation is now not always 7, it can be chosen in the \code{baseline} parameter. Furthermore, the \code{minSigma} parameter allows to get a threshold in the case of sparse data. When one doesn't give any value for those two parameters, the algorithm works like it used to. \item \code{animate.sts()} gained support for date labels in the bottom \code{timeplot}. \item \code{stsplot_space()} and \code{animate.sts()} can now generate incidence maps based on the population information stored in the supplied \code{"sts"} object. Furthermore, \code{animate.sts()} now supports time-varying population numbers. } } \subsection{MINOR CHANGES}{ \itemize{ \item \code{hhh4()} guards against the misuse of \code{family = factor("Poisson")} for univariate time series. Previously, this resulted in a negative binomial model by definition, but is now interpreted as \code{family = "Poisson"} (with a warning). } } \subsection{BUG FIXES}{ \itemize{ \item \code{animate.sts()} now supports objects with missing values (with a warning). Furthermore, the automatic color breaks have been improved for incidence maps, also in \code{stsplot_space()}. \item The \code{as.data.frame}-method for the \code{"sts"} class, applied to classical time-index-based \code{"sts"} objects (\code{epochAsDate=FALSE}), ignored a \code{start} epoch different from 1 when computing the \code{epochInPeriod} indexes. Furthermore, the returned \code{epochInPeriod} now is a fraction of \code{freq}, for consistency with the result for objects with \code{epochAsDate=TRUE}. \item \code{simulate.hhh4()} did not handle shared overdispersion parameters correctly. The different parameters were simply recycled to the number of units, ignoring the factor specification from the model's \code{family}. [spotted by Johannes Bracher] \item Simulations from \emph{endemic-only} \code{"hhh4"} models with unit-specific overdispersion parameters used wrong variances. [spotted by Johannes Bracher] \item \code{oneStepAhead()} predictions of \code{type} \code{"rolling"} (or \code{"first"}) were incorrect for time points \code{tp} (\code{tp[1]}) beyond the originally fitted time range (in that they were based on the original time range only). This usage of \code{oneStepAhead()} was never really supported and is now catched when checking the \code{tp} argument. \item \code{plot.hhh4simslist()} ignored its \code{par.settings} argument if \code{groups=NULL} (default). } } } \section{Changes in surveillance version 1.12.2 (2016-11-14)}{ \subsection{NEW FEATURES}{ \itemize{ \item The internal auxiliary function, which determines the sets of potential source events in \code{"epidataCS"} has been implemented in \samp{C++}, which accelerates \code{as.epidataCS()}, \code{permute.epidataCS()}, and therefore \code{epitest()}. This is only really relevant for \code{"epidataCS"} with a large number of events (>1000, say). \item Negative-binomial \code{hhh4()} models may not converge for non-overdispersed data (try, e.g., \code{set.seed(1); hhh4(sts(rpois(104, 10)), list(family="NegBin1"))}). The resulting non-convergence warning message now mentions low overdispersion if this is detected. [suggested by Johannes Bracher] \item An additional \code{type="delay"} option was added to the \code{plot} method of \code{stsNC} objects. Furthermore, an \code{animate_nowcasts} function allows one to animate a sequence of nowcasts. } } \subsection{MINOR CHANGES}{ \itemize{ \item In the \code{animate}-method for \code{"sts"} objects, the default top padding of \pkg{lattice} plots is now disabled for the bottom \code{timeplot} to reduce the space between the panels. Furthermore, the new option \code{fill} can be used to make the panel of the \code{timeplot} as large as possible. } } \subsection{BUG FIXES}{ \itemize{ \item \code{bodaDelay()}: fixed spurious warnings from \code{rnbinom()}. \item \code{vignette("monitoringCounts")}: fixed \code{boda}-related code and cache to obtain same results as in corresponding JSS paper. } } } \section{Changes in surveillance version 1.12.1 (2016-05-18)}{ \subsection{DOCUMENTATION}{ \itemize{ \item The new \code{vignette("monitoringCounts")} illustrates the monitoring of count time series in \R with a particular focus on aberration detection in public health surveillance. This vignette corresponds to a recently accepted manuscript for the \emph{Journal of Statistical Software} (Salmon, Schumacher, and \enc{Höhle}{Hoehle}, 2016). } } \subsection{MINOR CHANGES}{ \itemize{ \item Non-convergent \code{hhh4()} fits now obey the structure of standard \code{"hhh4"} objects. In particular, such fits now also contain the \code{control} and \code{stsObj} elements, allowing for model \code{update()}s of non-convergent fits. \item \code{knox()} warns about symmetric input matrices. } } \subsection{BUG FIXES}{ \itemize{ \item The code of \code{boda()} (with \code{samplingMethod="joint"}) and \code{bodaDelay()} (with \code{inferenceMethod="INLA"}) has been adjusted to a change of arguments of \pkg{INLA}'s \code{inla.posterior.sample} function. Accordingly, the minimum \pkg{INLA} version required to run \code{boda()} and \code{bodaDelay()} is 0.0-1458166556. \item The functions returned by \code{W_powerlaw()} now have the package namespace as their environment to support situations where the package is not attached. \item Attaching package \CRANpkg{nlme} after \pkg{surveillance} no longer masks \code{"hhh4"}'s \code{ranef}-method. (We now import the \code{fixef} and \code{ranef} generics from \pkg{nlme}.) } } } \section{Changes in surveillance version 1.12.0 (2016-04-02)}{ \subsection{DOCUMENTATION}{ \itemize{ \item Several new vignettes illustrate \emph{endemic-epidemic} modeling frameworks for spatio-temporal surveillance data: \describe{ \item{\code{vignette("twinstim")}}{describes a spatio-temporal point process regression model.} \item{\code{vignette("twinSIR")}}{describes a multivariate temporal point process regression model.} \item{\code{vignette("hhh4_spacetime")}}{describes an areal time-series model for infectious disease counts.} } These vignettes are based on a recently accepted manuscript for the \emph{Journal of Statistical Software} (Meyer, Held, and \enc{Höhle}{Hoehle}, 2016). \item Improved the documentation on various help pages. \item The \code{hhh4()}-based analysis of \code{data("fluBYBW")} has been moved to a separate demo script \file{fluBYBW.R}. Due to the abundance of models and the relatively long runtime, we recommend to open the script in an editor rather than running all the code at once using \code{demo("fluBYBW")}. } } \subsection{NEW FEATURES}{ \itemize{ \item Overhaul of the \code{"sts"} implementation. This mostly affects package-internal code, which is simpler, cleaner and better tested now, but requires \R >= 3.2.0 (due to \code{callNextMethod()} bugs in older versions of \R). Beyond that, the user-level constructor function \code{sts()} now has explicit arguments for clarity and convenience. For instance, its first argument sets the \code{observed} slot and no longer needs to be named, i.e., \code{sts(mycounts, start=c(2016,3), frequency=12)} works just like for the classical \code{ts()} function. \item \code{stsplot_time(..., as.one=TRUE)} is now implemented (yielding a simple \code{matplot} of multiple time series). } } \subsection{MINOR CHANGES}{ \itemize{ \item \code{plotHHH4_season()} now by default draws a horizontal reference line at unity if the multiplicative effect of component seasonality is shown (i.e., if \code{intercept=FALSE}). \item Since \pkg{surveillance} 1.8-0, \code{hhh4()} results are of class \code{"hhh4"} instead of \code{"ah4"} (renamed). Legacy methods for the old class name \code{"ah4"} have been removed. \item The internal model preparation in \code{twinstim()} is more efficient (the distance matrix of the events is only computed if event sources actually need to be updated). } } \subsection{BUG FIXES}{ \itemize{ \item \code{stsplot_spacetime()} now recognizes its \code{opts.col} argument. \item Conversion from \code{"ts"} to \code{"sts"} using \code{as(ts, "sts")} could set a wrong start time. For instance, \code{as(ts(1:10, start=c(1959,2), frequency=4), "sts")@start} was \code{c(1959,1)}. \item \code{algo.twins()} now also accepts \code{"sts"} input and the automatic legend in the first plot of \code{plot.atwins()} works again. \item The experimental \code{profile}-method for \code{"twinstim"} objects did not work if embedded \code{twinstim()} fits issued warnings. } } } \section{Changes in surveillance version 1.11.0 (2016-02-08)}{ \subsection{NEW FEATURES}{ \itemize{ \item \code{update.epidata()} can now handle a distance matrix \code{D} in the form of a classed \code{"Matrix"}. [suggested by George Wood] \item \code{glrnb()} can now handle \code{ret="cases"} for the generalized likelihood ratio detector based on the negative binomial distribution. It's based on a brute-force search and hence might be slow in some situations. \item \code{boda()} and \code{bodaDelay()} now support an alternative method (\code{quantileMethod="MM"}) to compute quantiles based on the posterior distribution. The new method samples parameters from the posterior distribution and then computes the quantile of the mixture distribution using bisectionning, which is faster and yields similar results compared to the original method (\code{quantileMethod="MC"}, still the default). } } \subsection{MINOR CHANGES}{ \itemize{ \item Revised \code{vignette("hhh4")}, updated the package description as well as some references in the documentation. Also updated (the cache of) the slightly outdated \code{vignette("surveillance")} to account for the corrected version of \code{algo.bayes()} implemented since \pkg{surveillance} 1.10-0. } } \subsection{BUG FIXES}{ \itemize{ \item Fixed bug in \code{categoricalCUSUM()}, which ignored alarms generated for the last time point in \code{range}. Furthermore, the exact computation in case of returns of the type \code{"value"} for the binomial are now checked through an attribute. \item Fixed bug in the \code{estimateGLRNbHook} function of \code{algo.glrnb}, which ignored potential fixed \code{alpha} values. If \code{alpha} is fixed this is now taken into consideration while fitting the negative binomial function. See revised help files for the details. \item Made a hot-fix such that the \code{algo.quality} function now also works for \code{sts} objects and if the \code{state} or \code{alarm} slots consists of TRUE/FALSE instead of 0/1. \item \code{intensity.twinstim()} did not work for non-endemic models. \item A parallelized \code{epitest()} could fail with a strange error message if some replications were left unassigned. This seems to happen if forking is used (\code{mclapply}) with insufficient memory. Incomplete replications are now ignored with a warning. } } } \section{Changes in surveillance version 1.10-0 (2015-11-04)}{ \subsection{NEW FEATURES}{ \itemize{ \item Calibration tests for count data (Wei and Held, 2014, Test) are now implemented and available as \code{calibrationTest()}. In addition to a default method taking pure counts and predictive means and dispersion parameters, there are convenient methods for \code{"hhh4"} and \code{"oneStepAhead"} objects. \item Shared overdispersion across units in negative binomial \code{hhh4()} time series models (by specifying a factor variable as the \code{family} argument). \item \code{scores()} and \code{pit()} are now generic and have convenient methods for \code{"oneStepAhead"} predictions and \code{"hhh4"} fits. \item The initial values used for model updates during the \code{oneStepAhead()} procedure can now be specified directly through the \code{which.start} argument (as an alternative to the previous options \code{"current"} and \code{"final"}). \item \code{plotHHH4_fitted()} (and \code{plotHHH4_fitted1()}) gained an option \code{decompose} to plot the contributions from each single unit (and the endemic part) instead of the default endemic + AR + neighbours decomposition. Furthermore, a formatted time axis similar to \code{stsplot_time1()} can now be enabled via the new argument \code{xaxis}. \item The new \code{plot} \code{type} \code{"maps"} for \code{"hhh4"} fits shows maps of the fitted mean components averaged over time. \item New \code{plot}-method for simulations from \code{"hhh4"} models (using \code{simulate.hhh4(..., simplify = TRUE)}, which now has a dedicated class: \code{"hhh4sims"}) to show the final size distribution or the simulated time series (possibly stratified by groups of units). There is also a new \code{scores}-method to compute proper scoring rules based on such simulations. \item The argument \code{idx2Exp} of \code{coef.hhh4()} may now be conveniently set to \code{TRUE} to exp-transform all coefficients. \item Added a \code{coeflist()}-method for \code{"hhh4"} fits. \item The generator function \code{sts()} can now be used to initialize objects of class \code{"sts"} (instead of writing \code{new("sts", ...)}). \item Additional arguments of \code{layout.scalebar()} now allow to change the style of the labels. \item A pre-computed distance matrix \code{D} can now be used as input for the \code{as.epidata()} converter -- offering an alternative to the default Euclidean distance based on the individuals coordinates. (Request of George Wood to support \code{twinSIR} models on networks.) } } \subsection{MINOR CHANGES}{ \itemize{ \item The first argument of \code{scores()} is now called \code{x} instead of \code{object} (for consistency with \code{calibrationTest()}). \item The result of \code{oneStepAhead()} now has the dedicated class attribute \code{"oneStepAhead"} (previously was just a list). \item Changed interpretation of the \code{col} argument of \code{plotHHH4_fitted()} and \code{plotHHH4_fitted1()} (moved color of \dQuote{observed} to separate argument \code{pt.col} and reversed remaining colors). The old \code{col} specification as a vector of length 4 still works (catched internally) but is undocumented. \item The \code{epoch} slot of class \code{"sts"} is now initialized to \code{1:nrow(observed)} by default and thus no longer needs to be explicitly set when creating a \code{new("sts", ...)} for this standard case. \item Initialization of \code{new("sts", ...)} now supports the argument \code{frequency} (for consistency with \code{ts()}). Note that \code{freq} still works (via partial argument matching) and that the corresponding \code{"sts"} slot is still called \code{freq}. \item If \code{missing(legend.opts)} in \code{stsplot_time1()}, the default legend will only be produced if the \code{"sts"} object contains information on outbreaks, alarms, or upperbounds. \item The default \code{summary()} of a \code{"twinstim"} fit is more concise since it no longer includes the number of log-likelihood and score function evaluations and the elapsed time during model fitting. Set the new \code{runtime} argument of \code{summary.twinstim()} to \code{TRUE} to add this information to the summary as before. \item The \code{animate}-method for \code{"sts"} objects gained an argument \code{draw} (to disable the default instantaneous plotting) and now invisibly returns the sequential plot objects (of class \code{"gtable"} or \code{"trellis"}) in a list for post-processing. \item The flexible time axis configurations for \code{"sts"} plots introduced in version 1.8-0 now also work for classical \code{"sts"} objects with integer epochs and standard frequencies (try \code{plot(..., epochsAsDate = TRUE)}). \item \code{stsplot_time()} initiates \code{par} settings only if the \code{par.list} argument is a list. \item The new \code{all.equal()} method for class \code{"hhh4"} compares two fits ignoring their \code{"runtime"} and \code{"call"} elements (at least). } } \subsection{BUG FIXES}{ \itemize{ \item Fixed a bug in \code{algo.bayes}, where an alarm was already sounded if the current observation was equal to the quantile of the predictive posterior. This was changed in order to get \eqn{alarm_t = I(obs_t > quantile_t)} which is consistent with the use in \code{boda} and \code{bodaDelay}. \item Fixed bug in \code{algo.outbreakP} causing a halt in the computations of \code{value="cases"} when \code{calc.outbreakP.statistic} returned \code{NaN}. Now, a \code{NaN} is returned. \item \code{wrap.algo} argument \code{control.hook} used \code{control} argument defined outside it's scope (and not the one provided to the function). It is now added as additional 2nd argument to the \code{control.hook} function. \item \code{stsplot_time()} did not account for the optional \code{units} argument for multivariate \code{"sts"} objects when choosing a suitable value for \code{par("mfrow")}. \item \code{hhh4()} could have used a function \code{dpois()} or \code{dnbinom()} from the global environment instead of the respective function from package \pkg{stats}. \item The default time variable \code{t} created as part of the \code{data} argument in \code{hhh4()} was incompatible with \code{"sts"} objects having \code{epochAsDate=TRUE}. \item A consistency check in \code{as.epidata.default()} failed for SI-type data (and, more generally, for all data which ended with an I-event in the last time block). [spotted by George Wood] } } } \section{Changes in surveillance version 1.9-1 (2015-06-12)}{ \itemize{ \item This is a quick patch release to make the test suite run smoothly on CRAN's Windows and Solaris Sparc systems. \item The new \code{hhh4()} option to scale neighbourhood weights did not work for parametric weights with more than one parameter if \code{normalize=FALSE}. } } \section{Changes in surveillance version 1.9-0 (2015-06-09)}{ \subsection{NEW FEATURES}{ \itemize{ \item New functions and data for Bayesian outbreak detection in the presence of reporting delays (Salmon et al., 2015): \code{bodaDelay()}, \code{sts_observation()}, and \code{sts_creation()}. \item New functions implementing tests for space-time interaction: \itemize{ \item \code{knox()} supports both the Poisson approximation and a Monte Carlo permutation approach to determine the p-value, \item \code{stKtest()} wraps space-time K-function methods from package \CRANpkg{splancs} for use with \code{"epidataCS"}, \item and \code{epitest()} for \code{twinstim} models (makes use of the new auxiliary function \code{simpleR0()}). } \item New function \code{plapply()}: a parallel and verbose version of \code{lapply()} wrapping around both \code{mclapply()} and \code{parLapply()} of package \pkg{parallel}. \item New converter \code{as.xts.sts()} to transform \code{"sts"} objects to the quasi standard \code{"xts"} class, e.g., to make use of package \CRANpkg{dygraphs} for interactive time series plots. \item New options for scaling and normalization of neighbourhood weights in \code{hhh4()} models. \item New auxiliary function \code{layout.scalebar()} for use as part of \code{sp.layout} in \code{spplot()} or in the traditional graphics system. } \subsection{New features for \code{"epidataCS"}}{ \itemize{ \item New argument \code{by} for \code{plot.epidataCS()}, which defines a stratifying variable for the events (default is the event type as before). It can also be set to \code{NULL} to make the plot not distinguish between event types. \item The spatial plot of \code{"epidataCS"} gained the arguments \code{tiles}, \code{pop} and \code{sp.layout}, and can now produce an \code{spplot()} with the tile-specific population levels behind the point pattern. \item New function \code{permute.epidataCS()} to randomly permute time points or locations of the events (holding other marks fixed). } } \subsection{New features for \code{twinstim()}}{ \itemize{ \item New S3-generic \code{coeflist()} to list model coefficients by component. It currently has a default method and one for \code{"twinstim"} and \code{"simEpidataCS"}. \item New argument \code{newcoef} for \code{simulate.twinstim()} to customize the model parameters used for the simulation. \item New argument \code{epilink} for \code{twinstim()}, offering experimental support for an identity link for the epidemic predictor. The default remains \code{epilink = "log"}. \item Simulation from \code{"twinstim"} models and generation of \code{"epidataCS"} is slightly faster now (faster \pkg{spatstat} functions are used to determine the distance of events to the border). \item New option \code{scaled = "standardized"} in \code{iafplot()} to plot \eqn{f(x) / f(0)} or \eqn{g(t) / g(0)}, respectively. } } } \subsection{MINOR CHANGES}{ \itemize{ \item Initial data processing in \code{twinstim()} is faster since event sources are only re-determined if there is effective need for an update (due to subsetting or a change of \code{qmatrix}). \item \code{formatPval()} disables \code{scientific} notation by default. \item The \code{"time"} plot for \code{"epidataCS"} uses the temporal grid points as the default histogram \code{breaks}. \item The special \code{fe()} function which sets up fixed effects in \code{hhh4()} models gained an argument \code{unitSpecific} as a convenient shortcut for \code{which = rep(TRUE, nUnits)}. \item The convenient \code{plot} option of \code{permutationTest()} uses \CRANpkg{MASS}::\code{truehist()} instead of \code{hist()} and accepts graphical parameters to customize the histogram. } } \subsection{BUG FIXES}{ \itemize{ \item The \code{bodaFit} function did not draw samples from the joint posterior. Instead draws were from the respective posterior marginals. A new argument \code{samplingMethod} is now introduced defaulting to the proper 'joint'. For backwards compatibility use the value 'marginal'. \item The functions \code{as.epidataCS()} and \code{simEpidataCS()} could throw inappropriate warnings when checking polygon areas (only if \code{W} or \code{tiles}, respectively, contained holes). \item Non-convergent endemic-only \code{twinstim} models produced an error. [spotted by Bing Zhang] \item The \code{"owin"}-method of \code{intersectPolyCircle} could have returned a rectangle-type \code{"owin"} instead of a polygon. \item An error occurred in \code{twinstim()} if \code{finetune=TRUE} or choosing \code{optim()} instead of the default \code{nlminb()} optimizer without supplying a \code{control} list in \code{optim.args}. \item The \code{"time"} plot for \code{"epidataCS"} did not necessarily use the same histogram \code{breaks} for all strata. \item Specifying a step function of interaction via a numeric vector of knots did not work in \code{twinstim()}. \item \code{plot.hhh4()} did not support an unnamed \code{type} argument such as \code{plot(x, "season")}. \item \code{simEpidataCS()} did not work if \code{t0} was in the last block of \code{stgrid} (thus it did not work for single-cell grids), and mislabeled the \code{start} column copied to \code{events} if there were no covariates in \code{stgrid}. \item Evaluating \code{intensity.twinstim()$hFUN()} at time points before \code{t0} was an error. The function now returns \code{NA_real_} as for time points beyond \code{T}. \item Truncated, normalized power-law weights for \code{hhh4()} models, i.e., \code{W_powerlaw(maxlag = M, normalize = TRUE)} with \code{M < max(neighbourhood(stsObj))}, had wrong derivatives and thus failed to converge. \item \code{update.hhh4(..., use.estimates = TRUE)} did not use the estimated weight function parameters as initial values for the new fit. It does so now iff the weight function \code{ne$weights} is left unchanged. } } } \section{Changes in surveillance version 1.8-3 (2015-01-05)}{ \itemize{ \item Accommodate a new note given by R-devel checks, and set the new INLA additional repository in the \file{DESCRIPTION} file. \item Made \code{linelist2sts()} work for quarters by adding extra \code{"\%q"} formatting in \code{formatDate()}. } } \section{Changes in surveillance version 1.8-2 (2014-12-16)}{ \subsection{MINOR CHANGES related to \code{hhh4}}{ \itemize{ \item In the coefficient vector resulting from a \code{hhh4} fit, random intercepts are now named. \item Parameter \code{start} values in \code{hhh4()} are now matched by name but need not be complete in that case (default initial values are used for unspecified parameters). \item The \code{update.hhh4()}-method now by default does \code{use.estimates} from the previous fit. This reduces the number of iterations during model fitting but may lead to slightly different parameter estimates (within a tolerance of \code{1e-5}). Setting \code{use.estimates = FALSE} means to re-use the previous start specification. } } \subsection{MINOR CHANGES related to the \code{"sts"}-class}{ \itemize{ \item For univariate \code{"sts"} objects, the (meaningless) \dQuote{head of neighbourhood} is no longer \code{show}n. \item The \code{"sts"} class now has a \code{dimnames}-method instead of a \code{colnames}-method. Furthermore, the redundant \code{nrow} and \code{ncol} methods have been removed (the \code{dim}-method is sufficient). \item If a \code{map} is provided when \code{initialize()}ing an \code{"sts"} object, it is now verified that all \code{observed} regions are part of the \code{map} (matched by \code{row.names}). \item In \code{stsplot_space()}, extra (unobserved) regions of the \code{map} are no longer dropped but shown with a dashed border by default. } } } \section{Changes in surveillance version 1.8-1 (2014-10-29)}{ \subsection{NEW FEATURES}{ \itemize{ \item The \code{R0}-method for \code{"twinstim"} gained an argument \code{newcoef} to simplify computation of reproduction numbers with a different parameter vector (also used for Monte Carlo CI's). \item New plot \code{type="neweights"} for \code{"hhh4"} fits. \item The \code{scores()} function allows the selection of multiple \code{units} (by index or name) for which to compute (averaged) proper scores. Furthermore, one can now select \code{which} scores to compute. \item Added a \code{formula}-method for \code{"hhh4"} fits to extract the \code{f} specifications of the three components from the control list. \item The \code{update()}-method for fitted \code{"hhh4"} models gained an argument \code{S} for convenient modification of component seasonality using \code{addSeason2formula()}. \item The new auxiliary function \code{layout.labels()} generates an \code{sp.layout} item for \code{spplot()} in order to draw labels. \item When generating the \code{pit()} histogram with a single predictive CDF \code{pdistr}, the \code{\dots} arguments can now be \code{x}-specific and are recycled if necessary using \code{mapply()}. If \code{pdistr} is a list of CDFs, \code{pit()} no longer requires the functions to be vectorized. \item New method \code{as.epidata.data.frame()}, which constructs the start/stop SIR event history format from a simple individual-based data frame (e.g., \code{hagelloch.df}). \item New argument \code{w} in \code{as.epidata.default()} to generate covariate-based weights for the force of infection in \code{twinSIR}. The \code{f} argument is for distance-based weights. \item The result of \code{profile.twinSIR()} gained a class and an associated \code{plot}-method. } } \subsection{MAJOR CHANGES}{ \itemize{ \item For multivariate \code{oneStepAhead()} predictions, \code{scores(..., individual=TRUE)} now returns a 3d array instead of a collapsed matrix. Furthermore, the scores computed by default are \code{c("logs","rps","dss","ses")}, excluding the normalized squared error score \code{"nses"} which is improper. \item The plot-\code{type="season"} for \code{"hhh4"} fits now by default plots the multiplicative effect of seasonality on the respective component (new argument \code{intercept=FALSE}). The default set of components to plot has also changed. \item When \code{as.epidata()} and \code{simEpidata()} calculate distance-based epidemic weights from the \code{f} functions, they no longer set the distance of an infectious individual to itself artificially to \code{Inf}. This changes the corresponding columns in the \code{"epidata"} in rows of currently infectious individuals, but the \code{twinSIR} model itself is invariant, since only rows with \code{atRiskY=1} contribute to the likelihood. \item Several modifications and corrections in \code{data("hagelloch")}. } } \subsection{MINOR CHANGES}{ \itemize{ \item Better plotting of \code{stsNC} objects by writing an own plot method for them. Prediction intervals are now shown jointly with the point estimate. \item Reduced package size by applying \code{tools::resaveRdaFiles} to some large datasets and by building the package with \code{--compact-vignettes=both}, i.e., using additional GhostScript compression with ebook quality, see \code{?tools::compactPDF}. \item Added \code{units} argument to \code{stsplot_time} to select only a subset of the multivariate time series for plotting. \item The \code{untie}-method for class \code{"epidataCS"} gained an argument \code{verbose} which is now \code{FALSE} by default. \item \code{"epidataCS"} objects store the \code{clipper} used during generation as attribute of \code{$events$.influenceRegion}. \item In \code{plotHHH4_fitted()}, the argument \code{legend.observed} now defaults to \code{FALSE}. \item The default weights for the spatio-temporal component in \code{hhh4} models now are \code{neighbourhood(stsObj) == 1}. The previous default \code{neighbourhood(stsObj)} does not make sense for the newly supported \code{nbOrder} neighbourhood matrices (shortest-path distances). The new default makes no difference for (old) models with binary adjacency matrices in the neighbourhood slot of the \code{stsObj}. \item The default for nonparametric weights \code{W_np()} in \code{hhh4()} is now to assume zero weight for neighbourhood orders above \code{maxlag}, i.e., \code{W_np()}'s argument \code{to0} now defaults to \code{TRUE}. \item Added a \code{verbose} argument to \code{permutationTest()}, which defaults to \code{FALSE}. The previous behaviour corresponds to \code{verbose=TRUE}. \item \code{simulate.twinstim()} now by default uses the original \code{data$W} as observation region. \item The \code{data("measlesWeserEms")} contain two additional variables in the \code{@map@data} slot: \code{"vaccdoc.2004"} and \code{"vacc1.2004"}. \item The plot-method for \code{"epidata"} objects now uses colored lines by default. \item The \pkg{surveillance} package now depends on \R >= 3.0.2, which, effectively, is the minimum version required since \pkg{surveillance} 1.7-0 (see the corresponding NEWS below). \item The two diagnostic plots of \code{checkResidualProcess()} are now by default plotted side by side (\code{mfrow=c(1,2)}) instead of one below the other. } } \subsection{BUG FIXES}{ \itemize{ \item In \code{farringtonFlexible} alarms are now for \code{observed>upperbound} and not for \code{observed>=upperbound} which was not correct. \item Fixed duplicate \code{"functions"} element resulting from \code{update.twinstim(*,model=TRUE)} and ensured that \code{"twinstim"} objects always have the same components (some may be \code{NULL}). \item \code{animate.epidata} works again with the \CRANpkg{animation} package (\code{ani.options("outdir")} was removed in version 2.3) \item For \code{hhh4} models with random effects, \code{confint()} only worked if argument \code{parm} was specified. \item Computing one-sided AIC weights by simulation for \code{twinSIR} models with more than 2 epidemic covariates now is more robust (by rescaling the objective function for the quadratic programming solver) and twice as fast (due to code optimization). \item \code{simulate.twinstim(..., rmarks=NULL)} can now handle the case where \code{data} has no events within the simulation period (by sampling marks from all of \code{data$events}). \item The \code{lambda.h} values of simulated events in \code{"simEpidataCS"} objects were wrong if the model contained an endemic intercept (which is usually the case). \item Automatic choice of color breaks in the \code{animate}-method for class \code{"sts"} now also works for incidence maps (i.e., with a \code{population} argument). \item \code{hhh4()} did not allow the use of nonparametric neighbourhood weights \code{W_np()} with \code{maxlag=2}. \item \code{scores()} did not work for multivariate \code{oneStepAhead()} predictions if both \code{individual=TRUE} and \code{sign=TRUE}, and it could not handle a \code{oneStepAhead()} prediction of only one time point. Furthermore, the \code{"sign"} column of \code{scores(..., sign=TRUE)} was wrong (reversed). \item For \code{"epidataCS"} with only one event, \code{epidataCSplot_space()} did not draw the point. \item The trivial (identity) call \code{aggregate(stsObj, nfreq=stsObj@freq)} did not work. } } } \section{Changes in surveillance version 1.8-0 (2014-06-16)}{ \subsection{PACKAGE INFRASTRUCTURE}{ \itemize{ \item Package \pkg{surveillance} now depends on newer versions of packages \CRANpkg{sp} (>= 1.0-15), \CRANpkg{polyCub} (>= 0.4-2), and \CRANpkg{spatstat} (>= 1.36-0). The \R packages \pkg{INLA} and \CRANpkg{runjags} are now suggested to support a new outbreak detection algorithm (\code{boda()}) and the new \code{nowcast()}ing procedure, respectively. The \R packages for \CRANpkg{lattice}, \CRANpkg{grid}, \CRANpkg{gridExtra}, and \CRANpkg{scales} are suggested for added visualization facilities. \item More tests have been implemented to ensure package integrity. We now use \CRANpkg{testthat} instead of the outdated package \CRANpkg{RUnit}. \item \code{hhh4()} fits now have class \code{"hhh4"} instead of \code{"ah4"}, for consistency with \code{twinstim()}, \code{twinSIR()}, and to follow the common convention (cp. \code{lm()}). Standard S3-methods for the old \code{"ah4"} name are still available for backwards compatibility but may be removed in the future. \item Plot variants for \code{"sts"} objects have been cleaned up: The functions implementing the various plot types (\code{stsplot_*}, previously named \code{plot.sts.*}) are now exported and documented separately. } } \subsection{NEW FEATURES}{ \itemize{ \item The \code{nowcast} procedure has been completely re-written to handle the inherit right-truncation of reporting data (best visualized as a reporting triangle). The new code implements the generalized-Dirichlet and the hierarchical Bayesian approach described in \enc{Höhle}{Hoehle} and an der Heiden (2014). No backwards compatibility to the old nowcasting procedure is given. \item The package contains a new monitoring function \code{boda}. This is a first experimental surveillance implementation of the Bayesian Outbreak Detection Algorithm (BODA) proposed in Manitz and \enc{Höhle}{Hoehle} (2012). The function relies on the non-CRAN package \pkg{INLA}, which has to be installed first in order to use this function. Expect initial problems. \item New \code{toLatex}-method for \code{"sts"} objects. \item The new function \code{stsplot_space()} provides an improved map plot of disease incidence for \code{"sts"} objects aggregated over time. It corresponds to the new \code{type = observed ~ unit} of the \code{stsplot}-method, and supersedes \code{type = observed ~ 1|unit} (except for alarm shading). \item An \code{animate()}-method for the \code{"sts"} class provides a new implementation for animated maps (superseding the \code{plot} \code{type=observed ~ 1 | unit * time}) with an optional evolving time series plot below the map. \item The \code{plot()} method for \code{"sts"} objects with epochs as dates is now made more flexible by introducing the arguments \code{xaxis.tickFreq}, \code{xaxis.labelFreq} and \code{xaxis.labelFormat}. These allow the specification of tick-marks and labelling based on \code{strftime} compatible conversion codes -- independently if data are daily, weekly, monthly, etc. As a consequence, the old argument \code{xaxis.years} is removed. See \code{stsplot_time()} for more information. \item Inference for neighbourhood weights in \code{hhh4()} models: \code{W_powerlaw()} and \code{W_np()} both implement weights depending on the order of neighbourhood between regions, a power-law decay and nonparametric weights, i.e., unconstrained estimation of individual weights for each neighbourhood order. \item \code{hhh4()} now allows the inclusion of multiplicative offsets also in the epidemic components \code{"ar"} and \code{"ne"}. \item \code{hhh4()} now has support for \code{lag != 1} in the autoregressive and neighbor-driven components. The applied lags are stored as component \code{"lags"} of the return value (previously there was an unused component \code{"lag"} which was always 1 and has been removed now). \item \code{oneStepAhead()}: \itemize{ \item Added support for parallel computation of predictions using \code{mclapply()} from package \pkg{parallel}. \item New argument \code{type} with a new \code{type} \code{"first"} to base all subsequent one-step-ahead predictions on a single initial fit. \item Nicer interpretation of \code{verbose} levels, and \code{txtProgressBar()}. } \item The \code{plot()}-method for fitted \code{hhh4()} objects now offers three additional types of plots: component seasonality, seasonal or time course of the dominant eigenvalue, and maps of estimated random intercepts. It is documented and more customizable. Note that argument order and some names have changed: \code{i} -> \code{units}, \code{title} -> \code{names}. \item (Deviance) \code{residuals()}-method for fitted \code{hhh4()} models. \item Added methods of \code{vcov()} and \code{nobs()} for the \code{"hhh4"} class. For \code{AIC()} and \code{BIC()}, the default methods work smoothly now (due to changes to \code{logLik.hhh4()} documented below). \item New predefined interaction functions for \code{twinstim()}: \code{siaf.student()} implements a \eqn{t}-kernel for the distance decay, and \code{siaf.step()} and \code{tiaf.step()} provide step function kernels (which may also be invoked by specifying the vector of knots as the \code{siaf} or \code{tiaf} argument in \code{twinstim}). \item Numerical integration over polygonal domains in the \code{F} and \code{Deriv} components of \code{siaf.powerlaw()} and \code{siaf.powerlawL()} is much faster and more accurate now since we use the new \code{polyCub.iso()} instead of \code{polyCub.SV()} from package \CRANpkg{polyCub}. \item New \code{as.stepfun()}-method for \code{"epidataCS"} objects. \item \code{plot.epidataCS()}: \itemize{ \item The spatial plot has new arguments to automatically add legends to the plot: \code{legend.types} and \code{legend.counts}. It also gained an \code{add} argument. \item The temporal plot now supports type-specific sub-histograms, additional lines for the cumulative number of events, and an automatic legend. } \item The new function \code{glm_epidataCS()} can be used to fit an endemic-only \code{twinstim()} via \code{glm()}. This is mainly provided for testing purposes since wrapping into \code{glm} usually takes longer. } } \subsection{MAJOR CHANGES}{ \itemize{ \item Fitted \code{hhh4()} objects no longer contain the associated \code{"sts"} data twice: it is now only stored as \code{$stsObj} component, the hidden duplicate in \code{$control$data$.sts} was dropped, which makes fitted objects substantially smaller. \item \code{logLik.hhh4()} always returns an object of class \code{"logLik"} now; for random effects models, its \code{"df"} attribute is \code{NA_real_}. Furthermore, for non-convergent fits, \code{logLik.hhh4()} gives a warning and returns \code{NA_real_}; previously, an error was thrown in this case. \item \code{oneStepAhead()}: \itemize{ \item Default of \code{tp[2]} is now the penultimate time point of the fitted subset (not of the whole \code{stsObj}). \item \code{+1} on rownames of \code{$pred} (now the same as for \code{$observed}). } \item The optional \code{"twinstim"} result components \code{fisherinfo}, \code{tau}, and \code{functions} are always included. They are set to \code{NULL} if they are not applicable instead of missing completely (as before), such that all \code{"twinstim"} objects have the same list structure. \item \code{iafplot()} ... \itemize{ \item invisibly returns a matrix containing the plotted values of the (scaled) interaction function (and the confidence interval as an attribute). Previously, nothing (\code{NULL}) was returned. \item detects a type-specific interaction function and by default uses \code{types=1} if it is not type-specific. \item has better default axis ranges. \item adapts to the new step function kernels (with new arguments \code{verticals} and \code{do.points}). \item supports logarithmic axes (via new \code{log} argument passed on to \code{plot.default}). \item optionally respects \code{eps.s} and \code{eps.t}, respectively (by the new argument \code{truncated}). \item now uses \code{scaled=TRUE} by default. } \item The argument \code{colTypes} of \code{plot.epidataCS(,aggregate="space")} is deprecated (use \code{points.args$col} instead). \item The events in an \code{"epidataCS"} object no longer have a reserved \code{"ID"} column. } } \subsection{MINOR CHANGES}{ \itemize{ \item \code{hhh4()} now stores the runtime just like \code{twinstim()}. \item Take \code{verbose=FALSE} in \code{hhh4()} more seriously. \item \code{hhh4()} issues a \code{warning()} if non-convergent. \item The following components of a \code{hhh4()} fit now have names: \code{"se"}, \code{"cov"}, \code{"Sigma"}. \item The new default for \code{pit()} is to produce the plot. \item The \code{twinstim()} argument \code{cumCIF} now defaults to \code{FALSE}. \item \code{update.twinstim()} no longer uses recursive \code{modifyList()} for the \code{control.siaf} argument. Instead, the supplied new list elements (\code{"F"}, \code{"Deriv"}) completely replace the respective elements from the original \code{control.siaf} specification. \item \code{siaf.lomax()} is now defunct (it has been deprecated since version 1.5-2); use \code{siaf.powerlaw()} instead. \item Allow the default \code{adapt}ive bandwidth to be specified via the \code{F.adaptive} argument in \code{siaf.gaussian()}. \item Unsupported options (\code{logpars=FALSE}, \code{effRangeProb}) have been dropped from \code{siaf.powerlaw()} and \code{siaf.powerlawL()}. \item More rigorous checking of \code{tiles} in \code{simulate.twinstim()} and \code{intensityplot.twinstim}. \item \code{as.epidataCS()} gained a \code{verbose} argument. \item \code{animate.epidataCS()} now by default does not draw influence regions (\code{col.influence=NULL}), is \code{verbose} if \code{interactive()}, and ignores \code{sleep} on non-interactive devices. \item The \code{multiplicity}-generic and its default method have been integrated into \CRANpkg{spatstat} and are imported from there. } } \subsection{DATA}{ \itemize{ \item The polygon representation of Germany's districts ( \code{system.file("shapes", "districtsD.RData", package="surveillance")} ) has been simplified further. The union of \code{districtsD} is used as observation window \code{W} in \code{data("imdepi")}. The exemplary \code{twinstim()} fit \code{data("imdepifit")} has been updated as well. Furthermore, \code{row.names(imdepi$events)} have been reset (chronological index), and numerical differences in \code{imdepi$events$.influenceRegion} are due to changes in \CRANpkg{polyclip} 1.3-0. \item The Campylobacteriosis data set \code{campyDE}, where absolute humidity is used as concurrent covariate to adjust the outbreak detection is added to the package to exemplify \code{boda()}. \item New \code{data("measlesWeserEms")} (of class \code{"sts"}), a corrected version of \code{data("measles.weser")} (of the old \code{"disProg"} class). } } \subsection{BUG FIXES}{ \itemize{ \item Fixed a bug in \code{LRCUSUM.runlength} where computations were erroneously always done under the in-control parameter \code{mu0} instead of \code{mu}. \item Fixed a bug during alarm plots (\code{stsplot_alarm()}), where the use of \code{alarm.symbol} was ignored. \item Fixed a bug in \code{algo.glrnb} where the overdispersion parameter \code{alpha} from the automatically fitted \code{glm.nb} model (fitted by \code{estimateGLRNbHook}) was incorrectly taken as \code{mod[[1]]$theta} instead of \code{1/mod[[1]]$theta}. The error is due to a different parametrization of the negative binomial distribution compared to the parametrization in \enc{Höhle}{Hoehle} and Paul (2008). \item The score function of \code{hhh4()} was wrong when fitting endemic-only models to a \code{subset} including the first time point. This led to \dQuote{false convergence}. \item \code{twinstim()} did not work without an endemic offset if \code{is.null(optim.args$par)}. } } } \section{Changes in surveillance version 1.7-0 (2013-11-19)}{ \subsection{SYNOPSIS}{ \itemize{ \item Package \CRANpkg{gpclib} is no longer necessary for the construction of \code{"epidataCS"}-objects. Instead, we make use of the new dedicated package \CRANpkg{polyclip} (licensed under the BSL) for polygon clipping operations (via \code{spatstat::intersect.owin()}). This results in a slightly different \code{$events$.influenceRegion} component of \code{"epidataCS"} objects, one reason being that \pkg{polyclip} uses integer arithmetic. Change of \code{twinstim()} estimates for a newly created \code{"epidataCS"} compared with the same data prepared in earlier versions should be very small (e.g., for \code{data("imdepifit")} the mean relative difference of coefficients is 3.7e-08, while the \code{logLik()} is \code{all.equal()}). As an alternative, \pkg{rgeos} can still be chosen to do the polygon operations. \item The \pkg{surveillance}-internal code now depends on \R >= 2.15.2 (for \code{nlminb()} \code{NA} fix of PR#15052, consistent \code{rownames(model.matrix)} of PR#14992, \code{paste0()}, \code{parallel::mcmapply()}). However, the required recent version of \pkg{spatstat} (1.34-0, for \pkg{polyclip}) actually needs \R >= 3.0.2, which therefore also applies to \pkg{surveillance}. \item Some minor new features and changes are documented below. } } \subsection{NEW FEATURES}{ \itemize{ \item Functions \code{unionSpatialPolygons()} and \code{intersectPolyCircle()} are now exported. Both are wrappers around functionality from different packages supporting polygon operations: for determining the union of all subpolygons of a \code{"SpatialPolygons"} object, and the intersection of a polygonal and a circular domain, respectively. \item \code{discpoly()} moved back from \CRANpkg{polyCub} to \pkg{surveillance}. } } \subsection{MINOR CHANGES}{ \itemize{ \item \pkg{surveillance} now Depends on \CRANpkg{polyCub} (>= 0.4-0) and not only Imports it (which avoids \code{::}-references in .GlobalEnv-made functions). \item Nicer default axis labels for \code{iafplot()}. \item For \code{twinstim()}, the default is now to \code{trace} every iteration instead of every fifth only. \item Slightly changed default arguments for \code{plot.epidata()}: \code{lwd} (1->2), \code{rug.opts} (\code{col} is set according to \code{which.rug}) \item \code{twinstim()} saves the vector of \code{fixed} coefficients as part of the returned \code{optim.args} component, such that these will again be held fixed upon \code{update()}. \item The \code{plot}-method for \code{hhh4()}-fits allows for region selection by name. } } } \section{Changes in surveillance version 1.6-0 (2013-09-03)}{ \subsection{SYNOPSIS}{ \itemize{ \item The \code{polyCub}-methods for cubature over polygonal domains have been moved to the new dedicated package \CRANpkg{polyCub}, since they are of a rather general use. The \code{discpoly()} function has also been moved to that package. \item As a replacement for the license-restricted \pkg{gpclib} package, the \pkg{rgeos} package is now used by default (\code{surveillance.options(gpclib=FALSE)}) in generating \code{"epidataCS"} (polygon intersections, slightly slower). Therefore, when installing \pkg{surveillance} version 1.6-0, the system requirements for \CRANpkg{rgeos} have to be met, i.e., GEOS must be available on the system. On Linux variants this means installing \file{libgeos} (\file{libgeos-dev}). \item The improved Farrington method described in Noufaily et al. (2012) is now available as function \code{farringtonFlexible()}. \item New handling of reference dates in \code{algo.farrington()} for \code{"sts"} objects with \code{epochAsDate=TRUE}. Instead of always going back in time to the next Date in the \code{"epoch"} slot, the function now determines the \emph{closest} Date. Note that this might lead to slightly different results for the upperbound compared to previously. Furthermore, the functionality is only tested for weekly data (monthly data are experimental). The same functionality applies to \code{farringtonFlexible()}. \item To make the different retrospective modelling frameworks of the \pkg{surveillance} package jointly applicable, it is now possible to convert (aggregate) \code{"epidataCS"} (continuous-time continuous-space data) into an \code{"sts"} object (multivariate time series of counts) by the new function \code{epidataCS2sts}. \item Simulation from \code{hhh4} models has been re-implemented, which fixes a bug and makes it more flexible and compatible with a wider class of models. \item The \code{map}-slot of the \code{"sts"} class now requires \code{"SpatialPolygons"} (only) instead of \code{"SpatialPolygonsDataFrame"}. \item Re-implementation of \code{oneStepAhead()} for \code{hhh4}-models with a bug fix, some speed-up and more options. \item Slight speed-up for \code{hhh4()} fits, e.g., by more use of \code{.rowSums()} and \code{.colSums()}. \item Crucial speed-up for \code{twinstim()} fits by more efficient code: \code{mapply}, dropped clumsy \code{for}-loop in \code{fisherinfo}, new argument \code{cores} for parallel computing via forking (not available on Windows). \item Some further new features, minor changes, and bug fixes are described in the following subsections. } } \subsection{NEW FEATURES}{ \itemize{ \item Using \code{tiaf.exponential()} in a \code{twinstim()} now works with \code{nTypes=1} for multi-type data. \item A legend can be added automatically in \code{iafplot()}. \item The \code{untie} methods are now able to produce jittered points with a required minimum separation (\code{minsep}). \item \code{simulate.ah4} gained a \code{simplify} argument. \item New \code{update}-method for fitted \code{hhh4}-models (class \code{"ah4"}). \item \code{oneStepAhead()} has more options: specify time range (not only start), choose type of start values, \code{verbose} argument. \item \code{pit()} allows for a list of predictive distributions (\code{pdistr}), one for each observation \code{x}. \item New spatial auxiliary function \code{polyAtBorder()} indicating polygons at the border (for a \code{"SpatialPolygons"} object). \item \code{animate.epidataCS()} allows for a \code{main} title and can show a progress bar. } } \subsection{MINOR CHANGES}{ \itemize{ \item Changed parametrization of \code{zetaweights()} and completed its documentation (now no longer marked as experimental). \item \code{twinstim(...)$converged} is \code{TRUE} if the optimization routine converged (as before) but contains the failure message otherwise. \item Increased default \code{maxit} for the Nelder-Mead optimizer in \code{hhh4} from 50 to 300, and removed default artificial lower bound (-20) on intercepts of epidemic components. \item Renamed returned list from \code{oneStepAhead} (mean->pred, x->observed, params->coefficients, variances->Sigma.orig) for consistency, and \code{oneStepAhead()$psi} is only non-\code{NULL} if we have a NegBin model. \item Argument order of \code{pit()} has changed, which is also faster now and got additional arguments \code{relative} and \code{plot}. \item \code{twinstim(...)$runtime} now contains the complete information from \code{proc.time()}. } } \subsection{BUG FIXES}{ \itemize{ \item Fixed a bug in function \code{refvalIdxByDate()} which produced empty reference values (i.e. \code{NA}s) in case the Date entries of \code{epoch} were not mondays. Note: The function works by subtracting \code{1:b} years from the date of the range value and then takes the span \code{-w:w} around this value. For each value in this set it is determined whether the closest date in the epoch slot is obtained by going forward or backward. Note that this behaviour is now slightly changed compared to previously, where we \emph{always} went back in time. \item \code{algo.farrington()}: Reference values too far back in time and hence not being in the \code{"epoch"} slot of the \code{"sts"} object are now ignored (previously the resulting \code{NA}s caused the function to halt). A warning is displayed in this case. \item \code{hhh4}: The entry \eqn{(5,6)} of the marginal Fisher information matrix in models with random intercepts in all three components was incorrect. If \code{nlminb} was used as optimizer for the variance parameters (using the negative marginal Fisher information as Hessian), this could have caused false convergence (with warning) or minimally biased convergence (without warning). As a consequence, the \code{"Sigma.cov"} component of the \code{hhh4()} result, which is the inverse of the marginal Fisher information matrix at the MLE, was also wrong. \item \code{untie.matrix()} could have produced jittering greater than the specified \code{amount}. \item \code{hhh4}: if there are no random intercepts, the redundant \code{updateVariance} steps are no longer evaluated. \item \code{update.twinstim()} did not work with \code{optim.args=..1} (e.g., if updating a list of models with lapply). Furthermore, if adding the \code{model} component only, the \code{control.siaf} and \code{optim.args} components were lost. \item \code{earsC} should now also work with multivariate \code{sts} time-series objects. \item The last week in \code{data(fluBYBW)} (row index 417) has been removed. It corresponded to week 1 in year 2009 and was wrong (an artifact, filled with zero counts only). Furthermore, the regions in \code{@map} are now ordered the same as in \code{@observed}. \item Fixed start value of the overdispersion parameter in \code{oneStepAhead} (must be on internal log-scale, not reparametrized as returned by \code{coef()} by default). \item When subsetting \code{"sts"} objects in time, \code{@start} was updated but not \code{@epoch}. \item \code{pit} gave \code{NA} results if any \code{x[-1]==0}. \item The returned \code{optim.args$par} vector in \code{twinstim()} was missing any fixed parameters. \item \code{hhh4()} did not work with time-varying neighbourhood weights due to an error in the internal \code{checkWeightsArray()} function. } } } \section{Changes in surveillance version 1.5-4 (2013-04-21)}{ \subsection{SYNOPSIS}{ \itemize{ \item Fixed obsolete \code{.path.package()} calls. \item Small corrections in the documentation. \item \code{update.twinstim()} performs better in preserving the original initial values of the parameters. \item New pre-defined spatial interaction function \code{siaf.powerlawL()}, which implements a _L_agged power-law kernel, i.e. accounts for uniform short-range dispersal. } } } \section{Changes in surveillance version 1.5-2 (2013-03-15)}{ \subsection{SYNOPSIS}{ \itemize{ \item New method for outbreak detection: \code{earsC} (CUSUM-method described in the CDC Early Aberration Reporting System, see Hutwagner et al, 2003). \item New features and minor bug fixes for the "\code{twinstim}" part of the package (see below). \item Yet another p-value formatting function \code{formatPval()} is now also part of the \pkg{surveillance} package. \item \code{polyCub.SV()} now also accepts objects of classes \code{"Polygon"} and \code{"Polygons"} for convenience. \item \code{siaf.lomax} is deprecated and replaced by \code{siaf.powerlaw} (re-parametrization). } } \subsection{NEW FEATURES (\code{twinstim()}-related)}{ \itemize{ \item The temporal \code{plot}-method for class \code{"epidataCS"} now understands the \code{add} parameter to add the histogram to an existing plot window, and auto-transforms the \code{t0.Date} argument using \code{as.Date()} if necessary. \item \code{nobs()} methods for classes \code{"epidataCS"} and \code{"twinstim"}. \item New argument \code{verbose} for \code{twinstim()} which, if set to \code{FALSE}, disables the printing of information messages during execution. \item New argument \code{start} for \code{twinstim()}, where (some) initial parameter values may be provided, which overwrite those in \code{optim.args$par}, which is no longer required (as a naive default, a crude estimate for the endemic intercept and zeroes for the other parameters are used). \item Implemented a wrapper \code{stepComponent()} for \code{step()} to perform algorithmic component-specific model selection in \code{"twinstim"} models. This also required the implementation of suitable \code{terms()} and \code{extractAIC()} methods. The single-step methods \code{add1()} and \code{drop1()} are also available. \item The \code{update.twinstim()} method now by default uses the parameter estimates from the previous model as initial values for the new fit (new argument \code{use.estimates = TRUE}). \item \code{as.epidataCS()} checks for consistency of the area of \code{W} and the (now really obligatory) area column in \code{stgrid}. \item \code{simulate.twinstim()} now by default uses the previous \code{nCircle2Poly} from the \code{data} argument. \item \code{direction} argument for \code{untie.epidataCS()}. \item The \code{toLatex}-method for \code{"summary.twinstim"} got different defaults and a new argument \code{eps.Pvalue}. \item New \code{xtable}-method for \code{"summary.twinstim"} for printing the covariate effects as risk ratios (with CI's and p-values). } } \subsection{NEW FEATURES (\code{hhh4()}-related)}{ \itemize{ \item New argument \code{hide0s} in the \code{plot}-method for class \code{"ah4"}. \item New argument \code{timevar} for \code{addSeason2formula()}, which now also works for long formulae. } } } \section{Changes in surveillance version 1.5-1 (2012-12-14)}{ \subsection{SYNOPSIS}{ \itemize{ \item The \pkg{surveillance} package is again backward-compatible with \R version 2.14.0, which is now declared as the minimum required version. } } } \section{Changes in surveillance version 1.5-0 (2012-12-12)}{ \subsection{SYNOPSIS}{ \itemize{ \item This new version mainly improves upon the \code{twinstim()} and \code{hhh4()} implementations (see below). \item As requested by the CRAN team, examples now run faster. Some are conditioned on the value of the new package option \code{"allExamples"}, which usually defaults to \code{TRUE} (but is set to \code{FALSE} for CRAN checking, if timings are active). \item Moved some rarely used package dependencies to \dQuote{Suggests:}, and also removed some unused packages from there. \item Dropped strict dependence on \CRANpkg{gpclib}, which has a restricted license, for the \pkg{surveillance} package to be clearly GPL-2. Generation of \code{"epidataCS"} objects, which makes use of \pkg{gpclib}'s polygon intersection capabilities, now requires prior explicit acceptance of the \pkg{gpclib} license via setting \code{surveillance.options(gpclib = TRUE)}. Otherwise, \code{as.epidataCS()} and \code{simEpidataCS()} may not be used. } } \subsection{NEW FEATURES (\code{twinstim()}-related)}{ \itemize{ \item Speed-up by memoisation of the \code{siaf} cubature (using the \CRANpkg{memoise} package). \item Allow for \code{nlm}-optimizer (really not recommended). \item Allow for \code{nlminb}-specific control arguments. \item Use of the expected Fisher information matrix can be disabled for \code{nlminb} optimization. \item Use of the \code{effRange}-trick can be disabled in \code{siaf.gaussian()} and \code{siaf.lomax()}. The default \code{effRangeProb} argument for the latter has been changed from 0.99 to 0.999. \item The \code{twinstim()} argument \code{nCub} has been replaced by the new \code{control.siaf} argument list. The old \code{nCub.adaptive} indicator became a feature of the \code{siaf.gaussian()} generator (named \code{F.adaptive} there) and does no longer depend on the \code{effRange} specification, but uses the bandwidth \code{adapt*sd}, where the \code{adapt} parameter may be specified in the \code{control.siaf} list in the \code{twinstim()} call. Accordingly, the components \code{"nCub"} and \code{"nCub.adaptive"} have been removed from the result of \code{twinstim()}, and are replaced by \code{"control.siaf"}. \item The \code{"method"} component of the \code{twinstim()} result has been replaced by the whole \code{"optim.args"}. \item The new \code{"Deriv"} component of \code{siaf} specifications integrates the \dQuote{siaf$deriv} function over a polygonal domain. \code{siaf.gaussian()} and \code{siaf.lomax()} use \code{polyCub.SV()} (with intelligent \code{alpha} parameters) for this task (previously: midpoint-rule with naive bandwidth) \item \code{scaled} \code{iafplot()} (default \code{FALSE}). The \code{ngrid} parameter has been renamed to \code{xgrid} and is more general. \item The \code{"simulate"} component of \code{siaf}'s takes an argument \code{ub} (upperbound for distance from the source). \item Numerical integration of spatial interaction functions with an \code{Fcircle} trick is more precise now; this slightly changes previous results. \item New \acronym{S3}-generic \code{untie()} with a method for the \code{"epidataCS"} class (to randomly break tied event times and/or locations). \item Renamed \code{N} argument of \code{polyCub.SV()} to \code{nGQ}, and \code{a} to \code{alpha}, which both have new default values. The optional polygon rotation proposed by Sommariva & Vianello is now also implemented (based on the corresponding MATLAB code) and available as the new \code{rotation} argument. \item The \code{scale.poly()} method for \code{"gpc.poly"} is now available as \code{scale.gpc.poly()}. The default return class of \code{discpoly()} was changed from \code{"gpc.poly"} to \code{"Polygon"}. \item An \code{intensityplot()}-method is now also implemented for \code{"simEpidataCS"}. } } \subsection{NEW FEATURES (\code{hhh4()}-related)}{ \itemize{ \item Significant speed-up (runs about 6 times faster now, amongst others by many code optimizations and by using sparse \CRANpkg{Matrix} operations). \item \code{hhh4()} optimization routines can now be customized for the updates of regression and variance parameters seperately, which for instance enables the use of Nelder-Mead for the variance updates, which seems to be more stable/robust as it does not depend on the inverse Fisher info and is usually faster. \item The \code{ranef()} extraction function for \code{"ah4"} objects gained a useful \code{tomatrix} argument, which re-arranges random effects in a unit x effect matrix (also transforming CAR effects appropriately). \item Generalized \code{hhh4()} to also capture parametric neighbourhood weights (like a power-law decay). The new function \code{nbOrder()} determines the neighbourhood order matrix from a binary adjacency matrix (depends on package \CRANpkg{spdep}). \item New argument \code{check.analyticals} (default \code{FALSE}) mainly for development purposes. } } \subsection{BUG FIXES}{ \itemize{ \item Fixed sign of observed Fisher information matrix in \code{twinstim}. \item Simulation from the Lomax kernel is now correct (via polar coordinates). \item Fixed \code{modifyListcall()} to also work with updated \code{NULL} arguments. \item Fixed wrong Fisher information entry for the overdispersion parameter in \code{hhh4}-models. \item Fixed wrong entries in penalized Fisher information wrt the combination fixed effects x CAR intercept. \item Fixed indexing bug in penalized Fisher calculation in the case of multiple overdispersion parameters and random intercepts. \item Fixed bug in Fisher matrix calculation concerning the relation of unit-specific and random effects (did not work previously). \item Improved handling of non-convergent / degenerate solutions during \code{hhh4} optimization. This involves using \code{ginv()} from package \CRANpkg{MASS}, if the penalized Fisher info is singular. \item Correct labeling of overdispersion parameter in \code{"ah4"}-objects. \item Some control arguments of \code{hhh4()} have more clear defaults. \item The result of \code{algo.farrington.fitGLM.fast()} now additionally inherits from the \code{"lm"} class to avoid warnings from \code{predict.lm()} about fake object. \item Improved \file{NAMESPACE} imports. \item Some additional tiny bug fixes, see the subversion log on R-Forge for details. } } } \section{Changes in surveillance version 1.4-2 (2012-08-17)}{ \subsection{SYNOPSIS}{ \itemize{ \item This is mainly a patch release for the \code{twinstim}-related functionality of the package. \item Apart from that, the package is now again compatible with older releases of \R (< 2.15.0) as intended (by defining \code{paste0()} in the package namespace if it is not found in \R \pkg{base} at installation of the \pkg{surveillance} package). } } \subsection{NEW FEATURES}{ \itemize{ \item Important new \code{twinstim()}-feature: fix parameters during optimization. \item Useful \code{update}-method for \code{"twinstim"}-objects. \item New \code{[[}- and \code{plot}-methods for \code{"simEpidataCSlist"}-objects. \item \code{simEpidataCS()} received tiny bug fixes and is now able to simulate from epidemic-only models. \item \code{R0}-method for \code{"simEpidataCS"}-objects (actually a wrapper for \code{R0.twinstim()}). \item Removed \code{dimyx} and \code{eps} arguments from \code{R0.twinstim()}; now uses \code{nCub} and \code{nCub.adaptive} from the fitted model and applies the same (numerical) integration method. \item \code{animate.epidata} is now compatible with the \CRANpkg{animation} package. \item More thorough documentation of \code{"twinstim"}-related functions \emph{including many examples}. } } \subsection{BUG FIXES (\code{"twinstim"}-related)}{ \itemize{ \item \code{nlminb} (instead of \code{optim}'s \code{"BFGS"}) is now the default optimizer (as already documented). \item The \code{twinstim}-argument \code{nCub} can now be omitted when using \code{siaf.constant()} (as documented) and is internally set to \code{NA_real_} in this case. Furthermore, \code{nCub} and \code{nCub.adaptive} are set to \code{NULL} if there is no epidemic component in the model. \item \code{toLatex.summary.twinstim} now again works for \code{summary(*, test.iaf=FALSE)}. \item \code{print}- and \code{summary}-methods for \code{"epidataCS"} no longer assume that the \code{BLOCK} index starts at 1, which may not be the case when using a subset in \code{simulate.twinstim()}. \item The \code{"counter"} step function returned by \code{summary.epidataCS()} does no longer produce false numbers of infectives (they were lagged by one timepoint). \item \code{plot.epidataCS()} now resolves \dots correctly and the argument \code{colTypes} takes care of a possible \code{subset}. \item \code{simEpidataCS()} now also works for endemic-only models and is synchronised with \code{twinstim()} regarding the way how \code{siaf} is numerically integrated (including the argument \code{nCub.adaptive}). \item Fixed problem with \code{simEpidataCS()} related to missing \file{NAMESPACE} imports (and re-exports) of \code{marks.ppp} and \code{markformat.default} from \CRANpkg{spatstat}, which are required for \code{spatstat::runifpoint()} to work, probably because \pkg{spatstat} currently does not register its S3-methods. \item Improved error handling in \code{simEpidataCS()}. Removed a \code{browser()}-call and avoid potentially infinite loop. } } \subsection{BUG FIXES (\code{"twinSIR"}-related)}{ \itemize{ \item The \code{.allocate} argument of \code{simEpidata()} has now a fail-save default. \item Simulation without endemic \code{cox()}-terms now works. } } \subsection{MINOR CHANGES}{ \itemize{ \item Simplified \code{imdepi} data to monthly instead of weekly intervals in \code{stgrid} for faster examples and reduced package size. \item The environment of all predefined interaction functions for \code{twinstim()} is now set to the \code{.GlobalEnv}. The previous behaviour of defining them in the \code{parent.frame()} could have led to huge \code{save()}'s of \code{"twinstim"} objects even with \code{model=FALSE}. \item \code{simulate.twinSIR} only returns a list of epidemics if \code{nsim > 1}. \item \code{simulate.twinstim} uses \code{nCub} and \code{nCub.adaptive} from fitted object as defaults. \item Removed the \dots-argument from \code{simEpidataCS()}. \item The coefficients returned by \code{simEpidataCS()} are now stored in a vector rather than a list for compatibility with \code{"twinstim"}-methods. \item Argument \code{cex.fun} of \code{intensityplot.twinstim()} now defaults to the \code{sqrt} function (as in \code{plot.epidataCS()}. } } } \section{Changes in surveillance version 1.4 (2012-07-26)}{ \subsection{SYNOPSIS}{ \itemize{ \item Besides minor bug fixes, additional functionality has entered the package and a new attempt is made to finally release a new version on CRAN (version 1.3 has not appeared on CRAN), including a proper \file{NAMESPACE}. } } \subsection{NEW FEATURES}{ \itemize{ \item Support for non-parametric back-projection using the function \code{backprojNP()} which returns an object of the new \code{"stsBP"} class which inherits from \code{"sts"}. \item Bayesian nowcasting for discrete time count data is implemented in the function \code{nowcast()}. \item Methods for cubature over polygonal domains can now also visualize what they do. There is also a new quasi-exact method for cubature of the bivariate normal density over polygonal domains. The function \code{polyCub()} is a wrapper for the different methods. \item \code{residuals.twinstim()} and \code{residuals.twinSIR()}: extract the \dQuote{residual process}, see \cite{Ogata (1988)}. The residuals of \code{"twinSIR"} and \code{"twinstim"} models may be checked graphically by the new function \code{checkResidualProcess()}. \item Many new features for the \code{"twinstim"} class of self-exciting spatio-temporal point process models (see below). } } \subsection{NEW FEATURES AND SIGNIFICANT CHANGES FOR \code{"twinstim"}}{ \itemize{ \item Modified arguments of \code{twinstim()}: new ordering, new argument \code{nCub.adaptive}, removed argument \code{typeSpecificEndemicIntercept} (which is now specified as part of the \code{endemic} formula as \code{(1|type)}). \item Completely rewrote the \code{R0}-method (calculate \dQuote{trimmed} and \dQuote{untrimmed} \eqn{R_0} values) \item The \dQuote{trimmed} \code{R0} values are now part of the result of the model fit, as well as \code{bbox(W)}. The model evaluation environment is now set as attribute of the result if \code{model=TRUE}. \item New predefined spatial kernel: the Lomax power law kernel \code{siaf.lomax()} \item \code{plot}-methods for \code{"twinstim"} (\code{intensityplot()} and \code{iafplot()}) \item \code{as.epidataCS()} now auto-generates the stop-column if this is missing \item \code{print}-method for class \code{"summary.epidataCS"} \item \code{[}- and subset-method for \code{"epidataCS"} (subsetting \code{...$events}) \item \code{plot}-method for \code{"epidataCS"} } } \subsection{MINOR CHANGES}{ \itemize{ \item Improved documentation for the new functionalities. \item Updated references. \item \code{twinSIR}'s \code{intensityPlot} is now a method of the new S3-generic function \code{intensityplot}. } } } \section{Changes in surveillance version 1.3 (2011-04-25)}{ \subsection{SYNOPSIS}{ \itemize{ \item This is a major realease integrating plenty of new code (unfortunately not all documented as good as it could be). This includes code for the \code{"twinstim"} and the \code{"hhh4"} model. The \code{"twinSIR"} class of models has been migrated from package \pkg{RLadyBug} to \pkg{surveillance}. It may take a while before this version will become available from CRAN. For further details see below. } } \subsection{SIGNIFICANT CHANGES}{ \itemize{ \item Renamed the \code{"week"} slot of the \code{"sts"} S4 class to \code{"epoch"}. All saved data objects have accordingly be renamed, but some hazzle is to be expected if one you have old \code{"sts"} objects stored in binary form. The function \code{convertSTS()} can be used to convert such \dQuote{old school} \code{"sts"} objects. \item Removed the functions \code{algo.cdc()} and \code{algo.rki()}. } } \subsection{NEW FEATURES}{ \itemize{ \item Support for \code{"twinSIR"} models (with associated \code{"epidata"} objects) as described in \enc{Höhle}{Hoehle} (2009) has been moved from package \pkg{RLadyBug} to \pkg{surveillance}. That means continuous-time discrete-space \acronym{SIR} models. \item Support for \code{"twinstim"} models as described in \cite{Meyer et al (2012)}. That means continuous-time continuous-space infectious disease models. \item Added functionality for non-parametric back projection (\code{backprojNP()}) and now-casting (\code{nowcast()}) based on \code{"sts"} objects. } } } \section{Changes in surveillance version 1.2-2}{ \itemize{ \item Replaced the deprecated getSpPPolygonsLabptSlots method with calls to the coordinates method when plotting the map slot. \item Minor proof-reading of the documentation. \item Added an argument \code{"extraMSMargs"} to the algo.hmm function. \item Fixed bug in \code{outbreakP()} when having observations equal to zero in the beginning. Here, \eqn{\hat{\mu}^{C1}} in (5) of \cite{Frisen et al (2008)} is zero and hence the log-based summation in the code failed. Changed to product as in the original code, which however might be less numerically stable. \item Fixed bug in stcd which added one to the calculated index of idxFA and idxCC. Thanks to Thais Rotsen Correa for pointing this out. } } \section{Changes in surveillance version 1.2-1 (2010-06-10)}{ \itemize{ \item Added \code{algo.outbreakP()} (\cite{Frisen & Andersson, 2009}) providing a semiparametric approach for outbreak detection for Poisson distributed variables. \item Added a pure \R function for extracting ISO week and year from Date objects. This function (isoWeekYear) is only called if "\%G" and "\%V" format strings are used on Windows (\code{sessionInfo()[[1]]$os == "mingw32"}) as this is not implemented for \code{"format.Date"} on Windows. Thanks to Ashley Ford, University of Warwick, UK for identifying this Windows specific bug. \item For \code{algo.farrington()} a faster fit routine \code{"algo.farrington.fitGLM.fast"} has been provided by Mikko Virtanen, National Institute for Health and Welfare, Finland. The new function calls \code{glm.fit()} directly, which gives a doubling of speed for long series. However, if one wants to process the fitted model output some of the GLM routines might not work on this output. For backwards compability the argument \code{control$fitFun = "algo.farrington.fitGLM"} provides the old (and slow) behaviour. } } \section{Changes in surveillance version 1.1-6 (2010-05-25)}{ \itemize{ \item A few minor bug fixes \item Small improvements in the C-implementation of the \code{twins()} function by Daniel Saban\enc{é}{e}s Bov\enc{é}{e} fixing the segmentation fault issue on 64-bit architectures. } } \section{Changes in surveillance version 1.1-2 (2009-10-15)}{ \itemize{ \item Added the functions categoricalCUSUM and LRCUSUM.runlength for the CUSUM monitoring of general categorical time series (binomial, beta-binomial, multinomial, ordered response, Bradley-Terry models). \item Added the functions pairedbinCUSUM and pairedbinCUSUM.runlength implementing the CUSUM monitoring and run-length computations for a paired binary outcome as described in Steiner et al. (1999). \item Experimental implementation of the prospective space-time cluster detection described in Assuncao and Correa (2009). \item Added a \code{demo("biosurvbook")} containing the code of an upcoming book chapter on how to use the surveillance package. This contains the description of ISO date use, negative binomial CUSUM, run-length computation, etc. From an applicational point of view the methods are illustrated by Danish mortality monitoring. \item Fixed a small bug in algo.cdc found by Marian Talbert Allen which resulted in the control$m argument being ignored. \item The constructor of the sts class now uses the argument \code{"epoch"} instead of weeks to make clearer that also daily, monthly or other data can be handled. \item Added additional epochAsDate slot to sts class. Modified plot functions so they can handle ISO weeks. \item algo.farrington now also computes quantile and median of the predictive distribution. Furthermore has the computation of reference values been modified so its a) a little bit faster and b) it is also able to handle ISO weeks now. The reference values for date t0 are calculated as follows: For i, i=1,..., b look at date t0 - i*year. From this date on move w months/weeks/days to the left and right. In case of weeks: For each of these determined time points go back in time to the closest Monday \item Renamed the functions obsinyear to epochInYear, which now also handles objects of class Date. } } \section{Changes in surveillance version 1.0-2 (2009-03-06)}{ \itemize{ \item Negative Binomial CUSUM or the more general NegBin likelihood ratio detector is now implemented as part of algo.glrnb. This includes the back calculation of the required number of cases before an alarm. \item Time varying proportion binomial CUSUM. } } \section{Changes in surveillance version 0.9-10}{ \itemize{ \item Current status: Development version available from \url{http://surveillance.r-forge.r-project.org/} \item Rewriting of the plot.sts.time.one function to use polygons instead of lines for the number of observed cases. Due cause a number of problems were fixed in the plotting of the legend. Plotting routine now also handles binomial data, where the number of observed cases y are stored in \code{"observed"} and the denominator data n are stored in \code{"populationFrac"}. \item Problems with the aggregate function not operating correctly for the populationFrac were fixed. \item The \code{"rogerson"} wrapper function for algo.rogerson was modified so it now works better for distribution \code{"binomial"}. Thus a time varying binomial cusum can be run by calling \code{rogerson( x, control(..., distribution="binomial"))} \item An experimental implementation of the twins model documented in Held, L., Hofmann, M., \enc{Höhle}{Hoehle}, M. and Schmid V. (2006). A two-component model for counts of infectious diseases, Biostatistics, 7, pp. 422--437 is now available as algo.twins. } } \section{Changes in surveillance version 0.9-9 (2008-01-21)}{ \itemize{ \item Fixed a few small problems which gave warnings in the CRAN distribution } } \section{Changes in surveillance version 0.9-8 (2008-01-19)}{ \itemize{ \item The algo_glrpois function now has an additional \code{"ret"} arguments, where one specifies the return type. The arguments of the underlying c functions have been changed to include an additional direction and return type value arguments. \item added restart argument to the algo.glrpois control object, which allows the user to control what happens after the first alarm has been generated \item experimental algo.glrnb function is added to the package. All calls to algo.glrpois are now just alpha=0 calls to this function. However, the underlying C functions differentiate between poisson and negative case } } surveillance/inst/shapes/0000755000175100001440000000000012625315364015233 5ustar hornikuserssurveillance/inst/shapes/berlin.dbf0000644000175100001440000000161612625315364017167 0ustar hornikusersj AWIdNBEZIRKC2SNAMEC 0Steglitz-Zehlendorf zehl 0Tempelhof-Schöneberg scho 0Spandau span 0Charlottenburg-Wilmersdorf chwi 0Mitte mitt 0Neukölln neuk 0Friedrichshain-Kreuzberg frkr 0Treptow-Köpenick trko 0Marzahn-Hellersdorf mahe 0Lichtenberg lich 0Pankow pank 0Reinickendorf rein surveillance/inst/shapes/berlin.shx0000644000175100001440000000030412625315364017227 0ustar hornikusers' bèZC ê08Ažâ³ešõ@`©/ ´d=A^i(àTA2XŽ’0ÆØ¢è–ØràVø R V8 ’ˆ 0surveillance/inst/shapes/berlin.sbx0000644000175100001440000000020412625315364017220 0ustar hornikusers' ÿÿþpB A80ê CZ@õše³âžA=d´ /©`ATà(i^2 BV fsurveillance/inst/shapes/berlin.shp0000644000175100001440000001624412625315364017231 0ustar hornikusers' RèZC ê08Ažâ³ešõ@`©/ ´d=A^i(àTAXZC ê08Arÿ6n@ý@ê¯í d:An7KÉæëA(&ÏpßÇ68AÂoqß:AZC ê08A§ÆñªA¤¬ËtrE8A›úœœÿ”A¶µ%ÚéQ8A›úœœÿ”A ˆat8A8{šòÚRAM/ð´>¦8AÆÃj–¶AïÿØÍ8ApX‘ÈÿAÚÐZÚµÞ8A<äèúA¸e  ñ8AÙdæóÕÂAOßÖï_E9AÙdæóÕÂA/î/ù‚9A²g_SA)‘Y…£½9An7KÉæëA¶2Īö9AtÁßs<±A ¹  + :Aâ3ÅsÖjAøj|e :A ÙŽø¼A;£4 ø=:A‘.|ó=©Aê¯í d:A¢¨5Ê)Aئ“¥¢W:ATè6rÜJAÉâƒÖ-:A§ÆñªAÐlÀ+ó9AËÄà7Ñ–ÿ@úa5pÑ9A9œàñfAëDQ¥£§9AÁ6œ5Ac–Z}9AñevñxLA*/>U u9A\“h#A…úäÆj9AüXYGîÃAï'€JµA9A0Ír¾Ad$úô¤À8Ajf$âgÿ@d$úô¤À8AÇ[’Œ±äý@”SXJØ8AºGi7Zþ@z5 Û8AÍå&7ªý@Ý¥¯`Á8A )®á)Lý@²í$¥Ÿ8Aþ…Œ~Áý@oš>zé“8Arÿ6n@ý@–ñ<ƒ8Añ\7Ó6þ@ž"7Ê€8AÍå&7ªý@³pÛ?o8A}âŒã·þ@¡gŸÇb8AvzMâòþ@^':PV8AºFŠAEõtÏÇA8A+d³Æð A&ÏpßÇ68AÂoqß:A¶2Īö9Awx&'ŸŸû@’ ô× Ý:A^¾{<ª AoêþòÆÆ:A›AàYCJA’ ô× Ý:A+ÈnEw€ý@zyeèÑ:A{EHb=Ãû@ê6LšY‘:Awx&'ŸŸû@IýçÒåŒ:A6/ÔöQëý@E0Æ—Gi:A:üõ1ðþ@®>Ÿ‰dj:AQÊÀ”¥äþ@(‹ì0÷4:Aˆ@72,˜AÉâƒÖ-:A§ÆñªAئ“¥¢W:ATè6rÜJAê¯í d:A¢¨5Ê)A;£4 ø=:A‘.|ó=©Aøj|e :A ÙŽø¼A ¹  + :Aâ3ÅsÖjA¶2Īö9AtÁßs<±A$f¨³Ð÷9AèÃA)ß$+:AŒæ¦ÒAç É:A^¾{<ª ASóÏÊP:A‹µ1ç3 AÕÙ¯ì™b:A½ôr‰¢ˆ A4 K%&^:AªóÉa‹ÖAcÕŸþ—:AªóÉa‹ÖA­¥F¬:A—ò :t$A^Z„€¥»:At½ð%äãAÜ%ªÅ:AŸbîQA WAœ§:A¹©î25gAÆ ¢:Abh[A˜ˆA¾ ¹1·:Ae5}|6¬AoêþòÆÆ:A›AàYCJA0 -Ë S8A8{šòÚRA7ª8î"™9Aj5 ³`ØA# ˆat8A8{šòÚRA­f/èuW8A®lÿßôPA -Ë S8AVUâLòÆAVèÐhza8A¹ýÚïiAØÎa†Is8A½Êü*4A”0Òܽ8A(¶ÝŠ AÊ OÆ‹8A/Ñò“` A呺½ÌZ8AçÃæo A—[™÷aj8AVýºÆ[AúîVkŒ‰8AÌ|æ2PÀA£pøë“8Aäl+¦xA2â@ãŒ8AôwÁÃùAÿiré~k8AŒ@ÅhVÄAVèÐhza8A˜§*1/AÂÃË•5†8AÜçä¶[AÇ—>š8Aj5 ³`ØAFÉ„«Ný8AZ„ÆçIA`¡<×9A}!y«*`A¡fè9AŒ@ÅhVÄAÄ4úJ+-9AŸ,3a LAÝìA.ƒ(9A ÃQ!A_‡Òd9AR0™‹½õAEm‘%¦€9AR0™‹½õA7ª8î"™9Açí\r e A%½³Ïv‡9A¢ÖˆgÉ AÙ‘–øê[9AJlß¶æY A»ì¼‘š'9AJlß¶æY AƒÁ1¼C$9AçÃæo AeXUóï8A½ôr‰¢ˆ A¸e  ñ8AÙdæóÕÂA,Ehšå8A CŒ.…ŸAÚÐZÚµÞ8A<äèúAïÿØÍ8ApX‘ÈÿAM/ð´>¦8AÆÃj–¶A ˆat8A8{šòÚRAØeXUóï8A²g_SAç É:AÔ*©ŒA§RUV|á9AÔ*©ŒA1#-Üø9A;bÎ( Až ëÛ9AèE¬ Awo:¶ã9A„EdÏ‘ AÁ* ‚.ò9AR#-#¡ Aì’? :AtÝâ A«w‘:Aï]*Š«W AãJgq:A k,Ò Aç É:A^¾{<ª A)ß$+:AŒæ¦ÒA$f¨³Ð÷9AèÃA¶2Īö9AtÁßs<±A)‘Y…£½9An7KÉæëA/î/ù‚9A²g_SAOßÖï_E9AÙdæóÕÂA¸e  ñ8AÙdæóÕÂAeXUóï8A½ôr‰¢ˆ AƒÁ1¼C$9AçÃæo A»ì¼‘š'9AJlß¶æY AÙ‘–øê[9AJlß¶æY A%½³Ïv‡9A¢ÖˆgÉ A7ª8î"™9Açí\r e AEm‘%¦€9AR0™‹½õA§RUV|á9AÔ*©ŒAè̸¬ÌeÃ9A‹µ1ç3 A7¿spÃ:Aè9?fDœAÝ!í¥*h:Aè9?fDœA/%0§3|:AÙ_·{YAê6LšY‘:Aëº~­§ˆ Aʎ骺:A%zv«®# A7¿spÃ:A“yë» ª AŽ=Òœk¹:AxÞþ·° A7¿spÃ:AëO 4 A­¥F¬:A$jg¸õ Aê6LšY‘:A,ÑÝô< Aœ®$C_:Aª@À%+ ASóÏÊP:A‹µ1ç3 Aç É:A^¾{<ª AãJgq:A k,Ò A«w‘:Aï]*Š«W Aì’? :AtÝâ AÁ* ‚.ò9AR#-#¡ Awo:¶ã9A„EdÏ‘ Až ëÛ9AèE¬ A1#-Üø9A;bÎ( A§RUV|á9AÔ*©ŒA̸¬ÌeÃ9Aš%A½]ëFÎ9A÷X‹#pA.Pƒ7:A!Ä~ï]A‹ª¤!T:A^¹jÒ8CAó,ƒ–>U:AÅJ†AÝ!í¥*h:Aè9?fDœAÝ!í¥*h:Aè9?fDœAØcÕŸþ—:A|_” ¯A]*ðä—;An[éëÔ A•$“jD;A|_” ¯A”©À0";AAsÞ"‘AoêþòÆÆ:A›AàYCJA¾ ¹1·:Ae5}|6¬AÆ ¢:Abh[A˜ˆA WAœ§:A¹©î25gAÜ%ªÅ:AŸbîQA^Z„€¥»:At½ð%äãA­¥F¬:A—ò :t$AcÕŸþ—:AªóÉa‹ÖA { "¤:AÍã44Í> A5Äü×YÁ:A{àñ2Ä* AŒB[WU·:An[éëÔ A Ÿ÷æ:A=ŽàƒY A…§£;A ŠÛ‡$ AÆÞ]SZ!;Aù»%aNAà¶ 2;A߆àÑ A¡•œ‰*;AÂÂÞ±6tA {ò1Ð ;ARlȉmA\~53Ù;AÛ=õ UA3°ý™‰Š;A¯:#~Å>A]*ðä—;A‰¼mP:A3°ý™‰Š;Aë&ÙSÄA•$“jD;A|_” ¯AàSóÏÊP:AªóÉa‹ÖA› –H;A©ÝzÅ  A4 K%&^:AªóÉa‹ÖAÕÙ¯ì™b:A½ôr‰¢ˆ ASóÏÊP:A‹µ1ç3 Aœ®$C_:Aª@À%+ Aê6LšY‘:A,ÑÝô< A­¥F¬:A$jg¸õ A7¿spÃ:AëO 4 AŽ=Òœk¹:AxÞþ·° A7¿spÃ:A“yë» ª Aʎ骺:A%zv«®# AöV„Ü:A©ÝzÅ  Aä¶^ðÄñ:A´“wªd A#Ø×PHù:AFÌÏ· Aë'ˆ+;A—ÏË AX»ø² ;AŽQ)œR A]¼ÒU;AÈÅ‘ž¸Œ A› –H;Añ@9ñŽ Aâ Tc5;AÍã44Í> Añ¢:ú:A•"GTk Aõ/še»ß:A~­"r AŒB[WU·:An[éëÔ A5Äü×YÁ:A{àñ2Ä* A { "¤:AÍã44Í> AcÕŸþ—:AªóÉa‹ÖA4 K%&^:AªóÉa‹ÖAøõ/še»ß:Ažâ³ešõ@`©/ ´d=A•"GTk A<3°ý™‰Š;Aë&ÙSÄA]*ðä—;A‰¼mP:A3°ý™‰Š;A¯:#~Å>A\~53Ù;AÛ=õ UA {ò1Ð ;ARlȉmA¡•œ‰*;AÂÂÞ±6tAà¶ 2;A߆àÑ AÆÞ]SZ!;Aù»%aNA…§£;A ŠÛ‡$ A Ÿ÷æ:A=ŽàƒY Aõ/še»ß:A~­"r Añ¢:ú:A•"GTk Aâ Tc5;AÍã44Í> A› –H;Añ@9ñŽ A#SaìÉ[;A˜†˜†  A HËûµn;A Ò<‰(A-hÀàø„;AÍ+–²?CA¥g©u;AD~¨÷¢A/5â—¨;AŸ^A'LAº0Ò-•ã;A…ï^ö]AìàA…ù èA½¢© ¢<=AîÔ®~ŃAæ¥=ž(=A™YË(uAqM`LíæþA*L+ƒ»;A^z5©r A—C» ´©;A1 ¿iGÍ A¶–Ž·Xœ;A9=FVÀ[ A‡³@›’ž;A˜H*Ž( Aíô÷Q|;AÆñ¡ÖDC AµFt;AåÁ¾ˆ(}Až¾Ö‹¦‹;Aë($:èA]Ký¾‚;AAoqÏ@A/5â—¨;Aë©!`Z÷A1W5Ì;AO #:A÷mf!ß;A/·-e~GA“•ÁÊ_ë;AÎ#pñS(A¬myöü;Aþ.*§IAA~Èü>`ïÀ›Xžg¨;A‡ˆ„:õðAµÆ†çèÊ;A„!‰†A1W5Ì;A¹j)/¤<A/5â—¨;AU J€ÛùA]Ký¾‚;A«Ï<‘PCAž¾Ö‹¦‹;A¿étzíAµFt;A¹‚É*‚Aíô÷Q|;Aš²òGH A‡³@›’ž;AØX™j- A¶–Ž·Xœ;A þ––Â` A—C» ´©;AʪIÒ A*L+ƒ»;A2;†éw AàþÀU,¸;Aë`X©@ AòÏ•í5Á;AH{“>˜XA/5â—¨;Aâ_¯)QA¥g©u;AÒÎèù§A-hÀàø„;A¡ìæòAHA HËûµn;Aà’F‹-A#SaìÉ[;AlGéÆ A› –H;A籑yó“ A]¼ÒU;Aœ†âÞº‘ AX»ø² ;AbzÜT Aë'ˆ+;A—ÏË Aà¨+Ü—;A@ãž Aïk„þ:Aáœ(Å` A 5cM° ;A,ä—Ÿ wAé½ŠÐÆ?;A¸Ås5AÑåÒ¤/;AÜLÎ#SˆAi×ù²÷-;A~ vaÔAˆ*Í\œ ;AÀ``+‰A¸ yb;A£tò2¿xA9ô«–10;A'ÂèiõAš‡i \O;A©B½•tNAB ‹`Y;A<7“b&A ˆ â³hí:AFÌÏ· A"¶7á»f;A^i(àTA.ãï¿mj:AÙ,,ÄAd£rÆ~Ÿ:A¥¥"³5A…Ãg«Áµ:A‹6@‚GA%ýËr5º:Aò¸7*é­Aò5‚!Í:AôR{ %õA§°~Ë¢ï:A´ß²>ìA÷³ÁÌ«;AwÓO41NAþ.ÝJžå:A—óDtdA®+šI•Ñ:Aym“ªm•Aö柑 à:Aœ'ÌíòA?¢¥Ù…î:A[´wêA—í%”;A^i(àTA_š¾È;Aœ'ÌíòA€â£ ;A\%²£ AH·δ;Ax qoÏqA Þµ V;ASLõÍA"¶7á»f;ATÙ±ðA‚|ÓHb;Aî„°=pAY¡{tF;A,^5VáAáuM6:;ADblÚAš‡i \O;A?â”uóKA9ô«–10;A½aÀáçòA¸ yb;A9Ê>vAˆ*Í\œ ;AV8 þAi×ù²÷-;AÀMA‚ÑAÑåÒ¤/;Arì¥Ò…Aé½ŠÐÆ?;ANeKm´A 5cM° ;AX#G_rAïk„þ:AI LèÂ[ Aà¨+Ü—;A@ãž Aë'ˆ+;A—ÏË A#Ø×PHù:AFÌÏ· Aä¶^ðÄñ:A´“wªd AöV„Ü:A©ÝzÅ  Aʎ骺:A%zv«®# Aê6LšY‘:Aëº~­§ˆ A/%0§3|:AÙ_·{YAÝ!í¥*h:Aè9?fDœA â³hí:A\á2°AÁ©M00:Aýg51ØA‚\úæJ:A£–_Z²A1Y¿øÝ6:AJʼnƒŒAN)ÊI:A‹W¯S ¹AêjÛëL:A޾ä#Aš4º%™[:A.øxÌW(Aãï¿mj:AÙ,,ÄA 0œÀ=“ð8AR0™‹½õAÝ!í¥*h:A@’À/A#’þõ&»9AêP)Q÷Aì0ë^ø9Ahvø‰[A1Y¿øÝ6:AJʼnƒŒA‚\úæJ:A£–_Z²AÁ©M00:Aýg51ØA â³hí:A\á2°AÚÞ8X:AÕß{ÔAÝ!í¥*h:Aè9?fDœAó,ƒ–>U:AÅJ†A‹ª¤!T:A^¹jÒ8CA.Pƒ7:A!Ä~ï]A½]ëFÎ9A÷X‹#pA̸¬ÌeÃ9Aš%AEm‘%¦€9AR0™‹½õA_‡Òd9AR0™‹½õAÝìA.ƒ(9A ÃQ!AÄ4úJ+-9AŸ,3a LA¡fè9AŒ@ÅhVÄA`¡<×9A}!y«*`AHmÓ a9Aäã&©ÅAœÀ=“ð8A`5h˜>A5†N9A‰½kÝÌqA‡VHª(d9AØá¹Õ€A~¹ab9ANKLvüA°„?d-Š9A¥¥"³5A“VJ‹9A³‘ÖŸÈApwÕE9A³‘ÖŸÈA¨<«œ„9A@’À/AжP<–µ9A@’À/AÊ)Ë}¾9A5“ej«!Aá4¯»‘«9AÓ2†»âÞAb@Ù`½9Aðô³¬fAº™žX\³9AlÑýäêA:€/v+Å9A¬w¤8LÏA’þõ&»9AêP)Q÷Asurveillance/inst/shapes/berlin.sbn0000644000175100001440000000037412625315364017216 0ustar hornikusers' ÿÿþp~ A80ê CZ@õše³âžA=d´ /©`ATà(i^ ]†žÿ hi˜Žv'§sVƒx ‰`±Ã Ÿd׳ ƒÿv$—mî Mr©$V^™@E¼l\surveillance/inst/shapes/districtsD.RData0000644000175100001440000024341412316304065020265 0ustar hornikusersý7zXZi"Þ6!ÏXÌãÆïþ])TW"änRÊŸ’Ù›:¨á)ØðÿËðõSåÊ28{'%´çœQG¯BÛËç™8Á±÷ñut~«b]º.‡NhôºÍÔ@q6Ê‹J SòˆçP[-Usx¦~õd&tÄ›*…Eú´¼¤v@i'±\ÏÀÙÊÂè –pÝ<áVžé¤ÙÎK}´ó·Â+ºy4ýZ:½œâkË*‡M‚ÒØddiKh¾ÇŽb°¡Š6Yì×'—\ ¶:fíPÎm¾Ö‡R’ŽöÄçw=4Dö½}BÜævÞšô¤Ÿ¯‘á»Ù_ëCA iüŽÃ)xðz€‰¤F´ûlø\ÎþýÁx fi@êˆPÔ_±;-r 1Û‰EØéœŽ,;DÄì)Z G¼äŠRÉ®Ä „ùñâÕdóñþV|–QdÀcëp‰ÀsÍTM»D÷Û4컹Jo`̺“Ì¥BqCq§‚ëx"gtåáo€sTRÆç­½ÄåÐÒë ýèŽÑì®PË?ÿÛv—æ´µúyD¼u·˜Å7Fæ$óG¥ªDÖ¯c¹ÀŒ©×¸.±!=ÂvÖà%˜ÊQÔœ¬G†»“ ¬£ã?Ÿ",MÓMW4˜±Þç«ÐÜS¶ÓNxzÛBÔáɇÙ6ΚwW¢à×¹R”)·q!³ó]äiñüD"7ýˆý)D†aPSõ¦þa'€T”;ůÏÜŒ•Â&4ù`¯F>Bõ`@øO‹Û]›•¬ %‰øB¦Åµ}È·À ÝfÀÞ"¼ÀÕµ°U|fÔ…Û3E¦¸è¯ún]ËÎc_\åS‹¨Ç)…‚§”²óOå4á*7¶ËÈ· êT„œÔ¯Í,Â\¡*¨ k$Êó0 ¸ÕJÓ¡Ãn x‘IÍt˜«Dª%¿2úÚ•?[Àc'Š«–Œ·ÖÈ@!”€¬nÇe-5;Œ<nÜ.<ÙKÁ…Ïf¼wÍA4g#Ô)¥×iü»ÚÑ&ÀiE88o#éñ)EÖVºÞñÈ þ¼Á›†¿ÁH'Ǧ*¯Ô‰ÇlF2í®Lºñý~o#€å))>Ò!e#\Qï³×¬|„,„S²OUµÇço½$,36Iˆðã—#qÝâÝ{ıÅŠçr(Òjg¡÷©D@þ=ïlC÷—Ms¬ú´’NÕ#¤õM[ÈÅgœVÂÐî,a»Ž›Ç'¿ +ç4Øp| „˜Êúõ’°‹œ*ùëªÌç"a&MlDîec§E©HÐÃÁPB:|îÀØð$Éf˜ÀâAŽ™ÉA˜lxÄÎI+UàSë7r-ÛÃM0ÎÔI-Ýa&\]æ;{cÆ<¬´~Ã1ǰ[5òÆÐÝ©ãÅ^Yìþ"J¯üßÈ#n`ío Uà‡€ƒ€­Þ,M}{hqËÔ–Mr—­zÝÍ#^Ì)¼y”¬NCr~5>õ‘ U#|EöŠi M“1K‡W!xv˜}\дàÖÓÁ}†Ã®“=nçö °2å¯` ?†b|Ü ÉÀM?*T¾NÈkتG8†t7Dð>¢tŒQÔ)©Š/õ¢PûØÈÊèºÑº0Í.ŒÝŠE€¡ÿyŒv)À™[3wœÈýï´}Œ–„¦Õy뙹ògô°°Ï1=L>[Á9…óê󿦋 ¹ÉH'@÷’{ü²=PÒW´Ú²*UµZ Í6~›5µ>>©¡8š{®Nó’”ÂÌ$/¯wwoNKǤ´ ‰Žë“ÀªöÏýÒÄ–wfkp:¦ý Vî Ù Z YOhò¦£ï3õ°íÖ&¾àœ«lH9å?Яª>‡­-K1ùtJEûìG«\ÿ°ZÏí'êb.žýûª‹¶fu[äa…Æž÷BÌüZ& lQ`2å 7}Èá‡ðÐô«<›Á¯+Vn8mÂHÉfAÈcHN< fㆿ˜_û €ur³žxŽàÙÅœãâ«»L}ÃUéä[:Æißñ®Õw¸aApæI3êKôê–-¾óèE¥Ê® öTsˆ”»æÄèpZ„/âž³Á²›£• zÉÆ^Ù;&nbŸRçW•L1dÍî™Ëâ!¥È0''6è{o+ƒ œm§+¸Ðȸo/c­~ÿÃæž ,¨.j¥uºÙ¹‹‚Qœ ©„î¬Ïñ}lÔM: >ë›õø³q-«}Ÿ#­v·ŒÅÌiZU—õdË@ІYêÖ»žÊöXȺ5"[˜ÿ¤ã¶eçîU%VIk™|˜¦@KK…hÊ,³Íì%ÔÊÚ®uzóy¸1¶ËþúA÷Ê»û #Ð_Z« ÿaN{óË—WðÞ@-)¯ 37?ˆ°öJ2 ¢ r¹¤-mßN-⣅–j8ü4Þâ „›}r%Å€t5Ý ñUþÒvã™Ïö±qCXK$f²à¸J–8ˆU3Û‘ s æwK·BéX´±ÐVqÈHO¢ùï|ÃÕùÖ쳤¡T†Ï´¯„¸ïøS„ÅöE±^ð‡BŠWj¶¢Vܘ š*üÜ{y@D ü^‹?ÓUJéP aæ¼Ø1^{®RòV©¿¨¹Rímâ@ôž_é14ú-<ùÒzÛ·ˆ­IN ´³›– üz1V®u”ü¡™}µØ•.HíéxüŠb ÿeº4,“&"ÚS–ïÆüªPþµ£U¡±Úé%w¼ËèÁuç½’wŸn\«':,ðþgKÖýú–jé[3yÌzû‚™3ßsª1t3õožw\CÏÓ²¸ÛÇ·ßÀx° Må&[ו©†—ôi8Úé0郥¦]£š?‹]WâšË½åZ"Þ3‰²1 EQãQ (:Ê”MCn8Ìn¯Ü—Žý Æ`ÀžR“>ï†H—J²î˜Tܬ® ¯K{-nSäT…š;’m¸Õ£Z€ä½³¤zÄ`Q‚´¹€­ûÚz8ìW¶~£2êË?ò*@™“rÅùלömQâŒMUA bSÆ™i|(£/Ö8A3 µKmc@HBxgIÓɳnÅ’¹g¼èy“·yH»3r}t½ÉÑdrÕ`´ÁÎyÊ6"oß/ØÜ"»5¤¬ŒAE‡ŽÄ´¬¹g&ž<¶çXÚj‚ñ<Ë ú36O~ +/¿×b$;[§5¶-h{®Jƒ®kºçM.öQì"¼a 3UVÈ"|Dcõƒb÷n\Ͼ€©>4³éLæ©fÛ™=Ò«àv&¶mó8>H ×M]r|Öól*ú ±–tBMJŽc^)4Ž÷½°99ûÿðñ±S¬Òðu#Ðôãî\v3—,]wš"¦¹…ó# Yå&-þ¬ÙJ1#ö¹A‘Ê7Ú"`%øØ ªªçj¬ µjVÚ+´›ˆß%F»‚üå¨@ˆxÛ6ðŒ2f½éÀÏÜNÔtOy4J¼TN眕ô_àè+j\ ”÷I›Àû 8#ã°³4(0ƒA965™&Ø.BØ0b’õëüMkòÆŸ?ðô<[:"ïwQ©™+›tÿ:½´Eœûó)Žfïݧª·Ï3ʱdØ4¿êû|l¬™!ª‡`-ʨçñgÔñ0¦þ*x“Àw^¼Oõ2ò.X™¥éqÝdL{ŠRÞùÉo \®ˆÑ½2:J[¤^ÄèH”ˆ«¯ ,ÉTüÙÙrA;·ž±pËß©)Y ¿Ø÷0}ƒ¹æÚöspøˆ)²‰`õMÁ ' ¨04ß’æ0Z³˜èY[ìê“®ÔP±"‚!Qâ=ûM¼ç};²6à´a€5Èt’ÛG±‹IwZyþåkø–“# ;’Ðá×õKWMÚ )š?‚ÏAüÊ zk×$Õ¸¾ $r3ïö£QaA”¸ÉáÁ MQNÚìÖ†tP£¡˜s¤3TϨ¾À­l*nô˜‹Ó{¿ÃÉ›¤ªò'¼R}*tWIù‹ÆüFÔÝløæ„ÉamA=aªFx³GùШñ:6î÷¤ "eû¿»†§j˜5ó˜ól$"Öª.ƒ,!ì—ñLbâô`‘àÕeø €…N YÔ6ö§ïb+”@ûÑаß ¡¬nÑ%‡ûLý1%ÕE x˜ÙÞÑÉ–¶#ŠÈ]•d ö’Îç&ãvóÞí#9õÌ=ÈG–i9˜‡xk׈G@ß›[íhóõr¥‚­êÚ¹âñÁb|û ½ÀíX’&K“Šà>)‘àHp@†Åç ƒ•tʇË%=°4¾ÆT>ùxè˜V Rt e¢;(m:c[RÌœ¼l»BaºÌ5ŒV†›§¬¼¨OÊZ¶3{f>½Ö>UÉHÒÓîƒm´Í¤“ÁWrš–vÄf‰L/ÁrÛ&=³ +mý³¦u}(¡÷úä1AäéðàŽˆúŽ[þ.˃“aÔ}+H¶òÍçYƒD§·± µ”Ò˜8qúkÈ‚›ÂXÞ%óh?´ o¹ÏíXþêcŸºHÇ,䟫aø­ÐH`b £LؼúÛx†ém ƒGCÎS=¥öG˜µ…Ï‘ãrKZ™[…"ÁµQ¨¢£ïK…í6ª¤´åO|—¡`Ç'VS¿ :*F° –¾Áç0pˆï§ÒJÛ)Yh§Ô†òçœ0X&îž%4½‡ÓŠj›¹¢*z“{ý} oÝ_>àSîƒÇýN.Ãö‰^Ǽ¬)*E¥[Zn¹ÝýHˆÙ1ò¼ó_xû{ßJ ÊAjÑ Û3¹Ü2€¡Ú*Y¢ªq¬Uúþ’2"þ6¶NÖxïAÓ*ŠËÎk@w`W&|B¤å©"éQFƒ•ÕœëÝ"¾}âà¹çÕ·¶ÎÒ“-1 hcmôp¡á¹X_°üÒ¼>-Y®k’Xá‡kM£Û=¡[3@ŒNw—ß׉€qDNy—êØG݆i©1ÙÖrìOºã¥rúÅßñ¾¡¸Yw»ÝX‡2a¿È*Âsþïò8Pµi1•º@ÞA±¼«Åéæòç€òÞ 8D­9TùxSœ=ƒKúuåÙ²tî\£Ë¨p¿!ÂôÀ‡™(C>¢î¡õó‚Ë£q'å󙌾Uç[#þ™«o\$JÌnÁ6p>ÅÎUF¶Ò°êì1€:żŽÁ\¦”­îïÖ®áZ0Ñ+5ׄj Lûncå×(2ô6šªÚ×™v™lU´|n<°þ9õ ‡ÿeÊqš.ˆœ„DÔØÐäf:î1%x ’’Bø×§ðO¾i×+'7sÈsɵˆ]s€a-5•ÜçÑsË×Tî,§ÔÇ ù–èÁ)¸ðÕÑoçLŒUØj¼y+hR/¨C·;³#¥@_®gß$_8á*‰m$G9MU†Â¢ oUk[éG%ªafª<3)-¸ J§²Âåüí¯Ž¿û…@Fçƒöl(AÍâ0-f® g†2­_¬*I"£%rÇufÉuæ(poe› Ƀ–R´Éz"_youY Nº‚Qüï$h¥‡”aÔ? ŽŠ £ªíPP¼Àg?Á¯ëòû ’1¬rѦµ¥µ×ìR¡_u*OØÀz”_¬…º«PáE-{ÕšÂ!vÓ·ÞEZáw9æV·Ì~tŒn>ÐúߟCŒ¡V¶q³Zìõ#[ l[Æÿ(8犤ª˜–¬ë–¥šô|ìtÄOîe0¾ìðOó\/jqg‚C³é3Ü<V)ÆQNVn¿¤ýLµp¦…‘õ}«9¾– àÉ“øaùƿۋ!ô0UÊbvWÑ»P]L±r±Æ‚ôÙåå8¨ë –†‰©±®êp) +$ì¼P­lg³»:²š-ð̨…×@ïLš2…£W$½¢"ª¦8=W}¼ïã<Ï=颪Âq‰ÈÎÅ'x¯)pÒ -£é”Da¥Ï`çUX9Џ`®qü=—c»QÇOËLÊü@̤¶HyÉóÿâ‹,嶯^ðÙzâW× Sþ+dDÐÔf¸EH7ë3ïááYBcº’ÌÌÖz G•À­O'pÅX©! L=tržk!*½>ÁäîŽÊÅhX'æ\D‹¼þ¡B¸2®Á ÖÅñÆ2,. ^ˆÛla|%¼OÊÿä­Šöj¯y6Í^XĆ¿3ëi>2ÉpÛðK5£ÌÙÈúÄ{ªÐþƒ@H˜Su!"Chzü¡`%‚L\æùýÎA¢àYµósí¶[Ï£Y½ ·7‚dLõp‡<’ æm#IQ<ˆÛÙÅ¿~œ¶H¥°£ O,"à:–Ú/´×é8½My¯’V"bï…úŽ/át“©|µºÜL©—å§\‡NMâÉ‚fž13©úH¤öÒõ Šbb×7_Aº¤¬> ŒÇRÅ+ÑáûÙ6 JvÐÆ€7·®ÞÖk$6@ÖX qz·‹Ÿ˜=ZaåR¤\µ‰L`)4Ó“g-BÕ€w³°§hp†­¢šnAÖnôêúQdhD» ±*^jž£ñóÕ%ßàµzÈÀÝRòÄ\i¹ Z‹\3 ŒŒŸÖä©48´FY&(1™R!L(Ö€àuArÞ|_Ìòø L¡¨Œl°SçqxýWàÖVÚ cddc(ö±¹±Ž4'Ãàiÿv8ÂL˜‚Ž]R¶®®õ_£ÉYyˆ.  ÛÔ]‘à‹oD”豫$Æ×OoKôÕ9ðc4Æ´ç²ÊÌrFõÎ×JƒÒê*û'‚q÷úÞP¢•áÁpÐ}£g7M¶ž¤(*‰f&éÜ0~†÷Á·9«QX^亾'ð1„Íå¸y›ÉA9‚0XqŶèÙÊ+ík8\Ñk&³5,…¬åÍ)À>£)hyÄÁÂËCpýÞ•T!A2fõóîHxÀ,µ3G¶{™fÉÝ ÊCùÇêÛ}Ifæ³+ŒŠrjÓ’ß>Ö•¯Ô€«œ™ÉaI—w3GuÎ 'Ò¤c"ìÞ-­GKIŠÄ¨úIlÆØìÖßÅoÆ„õm‹‘XÆ-‡~ E2ýv*þ…ùz? ˆµ±8 FýR\üЂˆæ)^äX£ÜŠRjû‹Ô¡\¡o‘€nùÁ•2€PzBaþ oDãÒs%’\ã_qõ µÅ[*AÍ“2)Õ¾ßi³LM"ƒŠ ÑÙƒ‚8Œd®Q y+jÇ¥Ñ£ÚÆÈ¦ßˆÏƒN†nA¯Ö|ŸÒG:oÞͪ S&ùÎïs«“¢Û÷±“œd¢f¾rÀo6Çží Ù©Ò¥ÂöG››¨±†µ¤YpÃ`it:]TC‘5ΪƒØ3‘6ÆPÛ”W“Ñ?ur‡²Zž>_Þ&¢œyþIñÄ66n‡ r$(°bæá5K0µxœ„/ì{œ4ŽD›õ¸ä‹dPFµŒÇåË|à¿HmF :…‡)抠ù™Q¹I>.‹ž¸hhá`P¹ø¦É}ue#š/N øÎ†ÝdéÚ¿N3_qÿ&gðИK¸ÈÐ’Â\gž’QGÑÅsI`E†ªx,Š’p’ùÿ:E?­ëQt›¹›7y’øBwNKVZò[rPü´ªçé'ê¬*KÜ„_RÀ:î.ný…ö¯©—x… ÃtÖ«°ëËëLPüp»rùèÏ€>ôªhî&àæ;Qô >À´©¢ö[ ˆÓðdï䈈ÐOê¯Ó!£zšæÿ×àÌu1*‰¬{é“Ê2‹…¦Ê™cäö6%$¯ÅÄ ˆ/,ß¿—’žzl¨H7ù ‹ÈQTOR˜t?$rLòr~ìÀR( ÆâÕŠFoé­Ï2äxl!÷Á|ÝÒéL³él& ý¶=~9j‹xuâ˜Ñ\ä-S÷F3Üšéé5-¼õ¾Õç€ÓŸ€oO¾da"çüÁÈê#¨}×q\ã`™S/Ó ð¤t¦ D,±më( dü’åÆœI &èD‹[RT›ÚYå?°ÉÂÏŠzW¶–a3i>±¶"¬–aÌ_„Ëb掑“Ä®2iYá6†ú¥ Cla%ü:‡Œg!éØ( [ãoıjQb÷BJ°¸œÙ â(«–RNîóìÐÙf]—À´˜y9¯i—{Q(Ìq‹"îrëéÿ7Ú„³äú߇‘Ì’­^¿4Ž<k¯yyßÿÿ²É³õÜþaP›fjé›wÏoyË'\XPµÙc€V*ÆÙæý_ êHåŽæŸ™ Ð͘ºvHrQAYûáøÐ_y?ÿ «ÃF"«ác0!´èD¦ Í ©D_¯y„ý¤¢Ü]cú’ÏÞu,õÀrL=¹Ïr"šÃ~Ïe„gV°ýÿœsRž¿Ñ÷AÈȼÀ­ÕKÏ—6+=Zb5C­Ùìe¡èÛ ¡]ÓT䇊ØN¹yçé ðà òÎY¼-àmoÞÇ|  eíÏ®ímÏ–R¥«PïåÎNß·¿ðv;ƒÞ¯s7º9Ó˜pv„%Öc‘޹÷t§“9yÙÃéÞ4³§) ò6(ãCYYêÔîn[Á^ÇôýÛpæ¸ ö‹Ý÷2¬X÷”ZºÁéä*§ßp™+hó+¦‹ËbÂA×Àô¨Ô3„±šä[Š-ñ’¿Ê²ú4>Ù//3cwáyê<è-ÛöRØh‘¬ÝÌF(+ÓÕdU¡ °c²£ò*=Bî,Ø9½æîÂKƒ3Â!sê{T/>Wu eÈ¡¹L¬ßgr Äx9*¢%í)¢<Úíÿ•¡tÍ~õõ¸z6•ó5`SAhÄý²ñ ÙsI(¥jáÞva»Å!jˆº”Oº˜á~w"i…&˜KÚNäõt¦²v@™‘öÈÊrÄF|²1%5rȼˆ@U“´-¥ö(–lJ¡JC™©L©x“×l&~O”66ȮŸ±Ä.NSCEBžk¤ædîÁ&Hf¯»uãŠ!µ¤Ëó¤¾ôÐ8íd–Uõ–o9„n†‘ kõÔË%ØÐ½¾b>ÐÅ$gõ‘8r‰ž¨´7ö€6Iù²žùÙÈpo£Ðû @ROÕ  V-XpœÅÔ7ÐAtqáú2×ÏHþo¥×ýhµ´aáa˾ÝT…K³ õÁâD÷t’¸¢å: Uùeõ+‹Pø³£ÇÍ(e~‹ˆ¶&´«‹Ù™‚m#0ÿgŸëµ¢zºú6õf¹,²/µ§é¼%îúM=zÖkç¤ ë.ÎØ¿&Js&&Š;M<”¡ f˜óçL8(<ºc”²­vÀsýä° öY›~†v*Úµï.ÕGnÔøÛ£´;€+j߫٩ÒkSƒ‡!º¿¯ ‰ Wüª©¼$ ¼o2'ïM|EÏÀ¯6’ÕÐØ–}ä,LMó^easº¼n¨úcHOÔMwÌLˆÌ7éïí1 }O2g–ô4Ãô°5çŸý8Œ„ÆGŸÂ›—­ŸÑz›É‹À‹†­ª1…¸ó‰?P¦ÅáÊ‘ÀÁåYÁ gj­q¢X°Ò.9˜Ç¡Z~n yþ&­ S¾gÛåwÐ%µÏ$uk50‘< \9Ûí s‘嬇ۺ`–³) ªó]<øñË8¶­Ðô ‚´áåºÒÁ»"/%i*T ×<¥[5.`)”;Ò†GȺñDIBïj›ÙbëÙy6‘>¡7+A µUd‚(±ä=L²“ÿèÌm HëXÏbŠ%c:„%ûs6~Ý­jTà÷ƒ°¢‹æ“Êá&·Ÿ‹íwµ&!·ryh Ð'å8§4‚`ûRI¤i€Èƒl€šV§rDèìºÇ™*©¬Òfä~§÷Úd'~H‚ëùI¶«¾Øê¯¹btû`VüÆnä–-Çð)DoÚLï†ï®Ñ–Ø+=´)_iU+ØLÉæì,8ß×ô¶hZ·•©Áf¤ ‚õŒ%Âë—Á›Ö‘kïûl.'INªt â•Ì ñÝ÷ ‡ãÉ’4ârH¹4vÉwòVÆþ0}²Êâja^\/ƒ£uSð33$NHÀªg^Ò¼Ô—¥é\ßV‡$4!C¹P’+ËÌe}9ÕµtÏF¸«¡™;x1lÉaݹ þ D;‹Ð¸Šw?òÅЖ¯óŸ&B{÷À3É=×ßg &atèc\Õ×®˜ ó%RØ(¿ÌDìU;.;“§Ø’DÚoëïVÊ¢’Êc†QI—6ÞSj…¸ÔéŒXmà5œ©óYÑö^?7YßÎTþ­·Š­|߆$mÊ0BpËHâi{šN§©xwanfL­6锬 VËks'ó{ð]ôís^*W[ q=Õèmg o©_7kq«§U Tø¢ûm^hE’Ž[t}­•ƒ…-Ä›ø ?3V6mK.tÅ…Þê·p[ wg,~M꿆”Ž‹Rõ†C öq…¡ø‘eŸÝ²{g`ݳpHd~ch¨z¤±x3QŠzÅ<Ža¯ŒSÔ†MžQ( 0°p©!&ÄOÅgó8Èõt¤o =Z°ÛOµS{áës*fè2Ôn—Y>ªBï'.‰Ã¬ß†XQf³)½v†d&MQÅ#ÜTÔ첉(Aâqî%ãï³³J{³Ë'x¼œòõI´©Ã·þ¿cÜ|öÄ„Î!e”29Æ…)º·‡<£LQ²™«šý½ê<Ì?­šåù% Œ#¯I‡Çã{S`b1£ˆYrIÑrÖÍg¶´«F+ëBùZ»ÖO²\;$ ãŠi†v-7^ÍäZÚÑÏ‚·Ök›KáNP–Ùt°1(lÔ^´à"„jNÉœ„oOIZq„1©Oë ¥q®ž²cMhÇŸøž|äo?ðÛ¾ô’ÇâjiQuo“[BÁ#'‡:nÐth&2ga{åUúäA9oþýNVþm'­ßÝqˆ;yçÕL7QtGcg«>Õ…v£ µdD>ò v¦‘epàóÙ&]„Îd”ê4Ð \¡/бc.LìÆˆV‹Ï\ ‘,*¢“ÿ»0H•ƒÁ kÿ²3ªÝ.u£»þ` ²Aà§Â0‘À—ñÉb£Ó¢Ô9ü°’õÚÐâbfëà .qÈXœ({Ñ(LiÙ×çÜî.÷,àïòÜ…?ŠütÞ#ßT†BÕ¤tX– çã³['ï_¸—ï÷³¥´|c¯M>(óŸ-³ö¥Ë4Õ˯ì~羚ÅËÄaœ"³¥úhY§¤UYŸ³o%¿ÛªÕY±nT ÅÌÙÅÄÅÍ-U0I,ðÃLAµ9Tµ+Çt$áóxŸÀ,«dj0îâ©6@™xã-ñ Î'v¼+Ë/Nó°¹KzXÍZ;…:£u‚å%‰be~mÜÓnYQòfSˆ-¾Då0éât`¥~T!à{÷ ¨f¶í¬0+Y ì“(º“O01±7LjÜ(?˜ßÿºN«@%—šÙ¤”f‹²«°/ cï§ð8{ÅPËwí_•À?÷‚‚AK¸×ÌþYÕu‹fm¾N v¤;kq÷ÅräM~F€Á|µhlÅ.0 /¿}®æmâªOÐàT½’å½–o×´×mw(ÉçšßàœÆ/ Ãb‘m¤‚ ð¤ëþeJà¥\f<Ì×VÚ,]f¢îbÅ—ûƒrë9ä™ÐnhΦ­b: —<®tËM8‚Ýr?N'\•ú¯Œ‘áP|þZêI>ļÉñã”bþ@z–ˆ<ÚíiÝ,ÈVý;q#¦Ý*g,8áѸòˆ8ÀÐÌÁR+ðŽó˜<à _v£¸5ó×m¢çr³Ã Êþ2‚Ÿ³…ŠË®î{îÔ†¡eÈÖ”-óöytY¿¶'ˆÖ1N²/”ú=Ëš/4åÏ$YJ]Âì¤>_EÔÈò”LPóÿ\U`L„^)mìý‡Z§ƒÖÌçŠÏ8äðV޶$ñÚ“GÜ=4¥í ^Óªú·«!Ø$Ex&‡²KÂžèŠæZ»ükÞqsDmMC‰4GÊŸÅïTIÌRcÔžL×_LÓñ’9¯ iºJÒ†I.Zß]m)¯3o Ê9=ÎY¸’ÜýâQ¦9¸æãl@·èÐøéÎ)´ø5È”(µ^^ͱþï¹Z¥3•œ‚iåïål%´˜ÕÀ'²áK| Ë#$]½¨ÕºWh9,Éûn:¯Pò–B¡—­% Åd½°Hê‘­|ÑkQ@µæƒ-S¢Í>í/ùvjÕXU&Ãÿoc˜&J£>çªU¥Á†é{báfYзùC£œËåtÇóàŠ]w¼íiÌË÷JD0¼'N—~ß³u‚‰µRÑl@ï(λuwÐíyóYÖZ™,žœÙs>ùÈ߃a©µÎüõ'ÛÝfýéõݼµ–°æc‘g–u†\wR³] Y©‡D·Ð¯ÜsA‚=Tê±´$>_ÀH¬*¹yx,W:Übµ¥qª„*KBðÖÇá×Ôé±ÂÁê¹îádƒq)`žu¨œ}ã4µí©‘Åvb'Êf¼Z¦‘^b¸ÊDS‡gªÃÜô\PS‚†»QŒÒ±… ìKŸûô —iö£h¸VÒ/E¤{–T:Ͱ«–Ø––6l[ k?ðMBÎ5Í­êH‘º=j|¾ÝÐ_mêßF æÜèµ}3^ÐнpT02ï`([ݤÝv™ålôÂÑXֳ怖¸h!s襇”)¿b%O¾ŸªQZdoªà­ò6ï´PüÂÕˆ*AhPàXÅ.^×¶ìWö=±µv&àQÿK$#üòø];‚ äl9K¶Y›3 ß, ó€DŒžÒ>J0ël>/@WÞR(É+|y°åÛM³pÚ=‡€2üJÕq ‡Ê¦äM—&UÄùg¨Ã`MBwØõ15‹ñ¦üÍ­ø®€•6^\¢4îÈÅ¡·ÍþwÓb/¨EŒÜuƒzЦ~ldè&`’Ó%#m«¿‹K¢\ÐJÔ÷ Yœ,õÉíJhïÀM×Úi£dæq@8/¦àÔY·’ÚÜvS<(2.|rMšóî/Y\®¹PØñø.0úP|¥¦| „‡5÷E3=Êøxs±¡é:$4Pb)W^Oo­“ðÿྼMã •—ÛäÿÂð$%¡µÃ$Æ?2Yšz³b–š§"Ê­0•S›îÌ ð° ºC^ ÎÃú5Ј0ñòõkò‘ï¼—â,ikŠúJ·ƒpW–>f”Ì´*,÷è8ùÜzŒ¨ËŠd/Vž -‡4 yYÑ\;ú4 ¾¦¿*…½iš" }Ñà ü¦Ø °¨pñôB±Ý-â~ûîóYB=whã·4Õ’‡±¸,<9è5Ù*ÌÅöîÕ V¡ü@õðü­pㆠ´(= ¬¡ŠÏJ]/r gø%a9¨óeñ¤•úÙ¹á÷Å ÖeýЖ{^Ôõ—‚ÿ¤È“L$³ãã›WYZH˵sÕˆrvp2!7ãû¦Õ9`´<ì!Mæ/–`y$¢ËP·$rà ¯þìZ«—Ôëò‚—ÇoMÊmBÖªÄÖÑîJ!*`ijý*èwS)_ù^IICIJçK<¶MLD£‡î+r؆…5O­X4œ7€_‹[r¬–Ä‚c-Ÿ8i:'\‘¥XÕ\·’â>_–åR`š`ûé­tGfh&·EÝ:¼õgKÐim4½;ÎþÂUëOñ…‰Ïuh§Gü²`}R\%(2Óã±V_ Æð^ |ˆ¯C3R#Îÿ“ÝX~‡eæ¤Ô{ÞÆsRÄìCðùoI‰:N ýŸ>ƒDÔk<DQ¾â½è$ÍE˿Ĩ:}ß‘ë¶Qf¦ð¼¿¨Íg¿"²Ý°4®GöË[.äÛÆ Œ;ƒ<܃C¹j“›Uþo¾ Ž.¹ÙøS{’fJU p˪Ü~]äAlN  ÁS1Ü_~¨ ®œ8Úˆªa%6Êû¢&Í1ãgÝœ/¾v¶Rºåd3öig˜.8Rê绲ÅÖ¢è|NBÔÑç?#Η¹öËè¯g8 Õ¸£Q¸V¤H‹bgE¤?Úð¯Å“[üž l9ÿïÈ\9`B@ç‹ëËs©¶©÷¢ð¡®`ïJ8ÿ4A…ÇìvÕ>²Â96|kðNù¶çx3“ é mæf¾ñϔٵ¹¼=®V8ù]5ŠTæ‰M»­×xÇ$î“ÚŒDy׬ æÓÖ@Ä5NÏgŠ“ÇáÉOššè§£Ùäï‡Nqö¶òÇvé°ÏæÊJ/Ú”gMŸÝ[fòt<»`΀ÂFøBŠ Qæ³øKacëBÁ anâ±ê)ä‰c‚+p¬WŽ“ð®Òê…_43’°Žv•%" 9ŒÑÿxD9H¬ý¥Û9&-ü Ôì3Ã]±«v%ë”è!™d² Úþñj"¨²F’××!„^8äþMQ˜á~™†ñ퉯¸¯ŽÇÂ[,’r[u8_­[W.©ü/ܶH†ù:‰+æºÐ(Ûé¶„Œ·`„6Í7dJ0Žx%+çLùT§ÁiØ .Þ#,Ö„Ús$¯³èáH³iy¦RÖøóQ•‡[ÒLYÐc2“AäšD³”PX†ô*ïx׉äPV¤¾mmϾ³¡§R>iU[hB!þ:þÈxKŸa/îÍÏ‹X;ÓKÞfšå5xÚc)v ”ÃrŽm'¬0£Î7{º4+˜ídItR¢öž—B5/ƒ0us{õØJM0‘~ëŒeúÛ¨²œÜMjk9ˆfìe)0ËXdŸâï=-‰ŒzºÔÏñhß!Ÿî¿Æ8xµØ½*”/Ê}âWóØÔõN×ùê4ô~N&)£õb,$ [SÅ"ÌcíÓK=™¸ºÓº¶–é¥MACß#щkÒ¬Íø0šŸèD+{úꙬ˜‹~»/ÖŠšGÁ và÷ZÓøy(FX_ÈË àþzfLtyŠb?.4?PÊ¿fJ@­Õ9(Ll„$õ—ªlZ¾ÐÙÆšmt/6ê"_Fà÷ÜÂ8ÓK4åÜ4 àbOÑùGƒ×ë&—PÚ{”Zo޼ M½¥È¾O߯eWt¤½‘(7Bû}žÃ–·Gç™/+2NÚ3uN’£òè"±È;Ø™ŠÉçê¶‚^Û¥:u"’ׄ1õ=s‹ ,‡à`OhÂåCÜÏbÄ "ËOÖ8wó /9‡]}]^ž”o1¹œì•`À¬¦òó†Â|£y'|üÒß ‘¦@³àB7>ßvPß…„»²ìo´s ºE»ÑõªÇ¾ t#H¢¥AÍÒEÊ X3¤· ë‹DþM˜k¶¾'æÖ[šï(´vÈ ôx —ž6­É5=ü‘²6 (5oB8'ƒê”¶³[ö@^igªæ&Rj¿†ƒãº8D³½!~$©=FC°^OÜù‘Ñ2\›e@øDÈf2…!¬C#³ÕfºU+`ÙN¹OÇÑBpÈï¿Ïß«Gh¸Þ+ÿ¾…´: 3´¹ÔÇb „¶ˆ«Õ Òðº¶Õëå·uxýñáš,°“‹‰(z·™$ wž°ÉÒw—\Å7-¦0ÌÉ©Ñð!¨üä3Uæˆ*R‚æä£ ûo)KõöD"_¨¬4%ñbÔJéØÖè—ö}ß~Ò>€®¹#AœUþûÝ4å³µþikåô: W‡Šq3þÞ75®f¡{…o¦ÑSÔu¹³á“\QJØj%õ5³ÁlÅ9:1­%€"‰´·7sÚ—þ„/ˆ«T—ç¢N>utÅŒ*Žs£TÜiÙr‘"ôÿÆVå88ü•6Õ'4I»Ý̯²þì™Jÿprª>8¢NÀ4{*3&_³®A›…&w_ ¾ ¥ö,h+£|á5“—W• uÔ aÛ±Í?]î|ZÃÁ÷;­J}f-CùÉ™:ÝíR¢Áþ ùŠtº›ºSeЏXr–$éåäZHàY IÒÝOôû%>â«–Q7(PíVÂÁ»vÅÒ°CKˆ}”hܘ;uò$Á#1;ïÌSÅݳõÙ2´úØ+0dï|¤8ÃDcRÔ…',…ˆ ,«h`%Ðaƒ­|§AöÔ´S˜×™äíäÓ¬ð(” Zm¤Euá¼Ê%ÌA†aTµN[fsZ¡."_“„EŸÅŠXà96À7Œ«¥ƒfä÷wá¹ý›%ÇNî' dÖÇ\âû‹9:Ö¡åArê3ñdê_GÍ$ž?n¨¶0$=±0”¥§ó—¬œQ§úýKXÛIc.~áV¼|@Ib9XHZ€ñq·ÄÊÓݱÊ^«ev𮥔TŽ–ÈÃ|RRãF[ÂWÛòïoõ!úš×nÙ5Tð!°ÅWU‰J ²J´snû¥éþ”+Y‚;Ñ<•_l²Y=”i^Ù&Z~º½BM”ÐÀ!)½n¥‹ÛÂ…¢‚Yž IÛœ ê´1iÐ&Àþr¤ó1nǵÞÒ󢽯 ëj' h«ƒdí¥?$uØÔvoóâÜJ»ªó·îHóts×pR àYu'U41X…L¹{̾õòÈÍ&Ÿê#áB»Í$]ðAe2)^Œ¬{¥‹uÞÌÙ@Î;P€6KÛR¨üÊú>Aêß‹ Hï»]qw(!¬ ’ô#Û¼1ȨmfU×.š-a8='Å$ñ²ä£‰C„w]Ëø amäAõâi;ÃÅõ:W §}cáC(¢\Pm–E–BÑ)NÕNcpÑoøp\ÓO*ÑðÝBúbݵ[w $òϦöNEjËj#,ó~@xˆä»¥šfuÔÑì™Ø<`¶ˆçÓk#ï¶1ÿ0ñÿDO’)q*©ÿ•³a>R¤?ä¶&Ôy±§q,1Û ê†B‡Fc¤'þÆž¡סyEmd€óçHy_½Ó¥D €"ãž${b£¢žØ—aqîߺ­ ¸S£m}{ñdÖ÷±¹ÿ곫ß[jùDšÎ%„ýuÕLàÏÄX/}×1Äì°½Òý Ò÷iy‡¢B!À8„…uÐ=ž[að¾öŒ¡U]ƒcR4'ŽZÎiˆ7.ö³FìÃÓ §Ê-= &ÁÉÂuÆN&‹ aõ¹;·pÕ ï^ºõ©t^VŽÖ¤íW(í"³$‘pI)š@öª ßYîw»t¨ œ«¼ÑG‰RO¬G•øw÷…~—åoW9†—ˆÝî]—Mº3æ“—Ayð±-ï:™Ó޶ŸA$ÔAl2·8Ì ƒ)ÊúUã‰wžÈKîKxi¶ëjY,ùß7WŸÈ>€†íO„r%6ù¼0úúŒíÄòrÂ~ÿxŸ2ã wK¶ÿ`«?ÚåH¥QzlPï+í©JRldµòÁ|78va…×cºKIàç)ML4ÄýŒdÊÛ8,ÀoqëR+Ó©›1E´}°"žÄÓ8g®Q°#ë%+¹½ôÜäû¼$°ùÚû¾.»¶|Qzëvd‚(OCõWŸñõRéÏö\0¤mŽ×¥ýMÖ_Ì H]I83uï5–ñTýÏqpB²Æ_Ôh(1t:^xIÖPùºh²Üè€[~~½L³hîÍrlLÎêó:š”%qÉ"±JàÂMk”†Gê/8³k£gFPòZ. ÞêãÒåbU õHüÂI¸uîöéÍ®ºôz0¢íÓ* ›Øqp­ É×ÿßÑ cýåÍ¢ªÏ·/)²ð1+´ö"–V%ò<ÞAjYŽ6‰c·4àQzô?5ЄÛÖbGJ¢f(sñ°• íXÍ“i˜)¹¦>9›*n'ÄÃÈóB¾§™Â㇎ˆ1YeX/ ž6eÛÇÊÁñâ^íüÛYæðDUEÿÑDH¾±t »á©R^75Bº¹oÔ×ç5ØôðU.^»ò0½«%nýù•ùpÑ8‡¦í NE0¸l×Ò&õ %6ªÎ$³á4Ç¢;1ù޼½¾/ÀÌDr¸wôÖ×g¨Ã+ú¾:À ™ÿ¢rm˸êÞÆIŸ_IÁýD fÞ¨vÊD%9,I'ÖÆ…§UEÀR"¼MÛéµ{žœÃì냴êÖ=wô2Ú×ß,ʼnQÿÑëJZ–^ÈsÞ_€Ây|æil <çV\€j£‰”™2ääçêÿ›X@O_›ƒzõƒAeÜïCâ×¼´¶hg-Iრ×aÁe¯Y¸¯Ü&ÑÈCu'écðBWc÷ˆÄÅP¦{6w™æ^pÎÝ2r…åã5Ú·3e€2®Ó¬ÜøŽáÕï$w쩪µÜ9aLãšè1†6˜ºY bçß&ö41#“¹i+<° ” žÁe’˜:w:Óýÿžïe†Gq= ~ž?¦~m:3swÕÒÊEÕ5°îÄ?ƒfäT‚BY™\»|'bîÀ' hØrAëû[¸ëe×-´;Ô )¨¿?e/¯6rÉØ– “§tT£wljM½ O«-«L±€§8ÓìõÀ·Ù"îÿ‡Ú|¼‡¨j2A²ñq(Ý´›ÓÂÈ£Ó,±´ý‚yš~›ÿ§» tèýÚP“¼?KväÏÀØAÄ÷Þ²)<̃/Hã <ýµdœÙÊ '峟{® [%ÝD¹§XjÀ6xgॉÈKTT¸!R$:6œ,â¥(á(_ºw!? ñ¬Àcv1¨Yû!¸°ÐÐÓ…âLY;ÐÐØuôAŸkÝãœÛ«X uØå¦^T}ÇûdpÛS´R s ½×ЈKW5@R*ÌŒŽ#Q¾X Qñ Ã&Œ«•Ý!­jlf¥•Ímu'‘Yg:}ÌEÕz—ñÞX=ÌGÚª’·ÿLä[›ùWY–‹òü›V4þÅY”Q·]Sçå¸ÆÌ•¨_ 9˱рޏmý*\µíaG Wó•íî‹Y/…XJw9ØËLjaÎço(Éd!뿞'ÁP´³“åäëCæëÔk™ÀK¶íÿÇõîÁ`’û¯%8Í@äÖ8¶²ÿZuwŠ{œoß"rrÜøGƒÔ0 qÊ`°a0ø€öý\û_­ž_: ¦ý¥Å:™m8˜ÆÒ¹ Í/*BÄ&— C÷d§òO¼¯í1b™1#Q•3#•Ð,Ê¿ùÉåÓ_­»' ÒQ­™Î²ãç;¦´ ñ…;'¿t(Ý‹V¶ês‰üÊâÖtŸmCh 95}dfÉm“äÇ~0L®d2fNÇ‘rQ‘#ôÅ=W‹|¬ê…³+Û3èÅæS-75B®§=Â(qÔ$™ùÙ¿azïnŽ‹‘ý”E ú{¡•åÇj‘r'{Á? J€¹Íɱ°øŠbƒRî28,Ü”c Vˆ÷JXSÁ-û¸û}Þ3ü– 1—›x)Ÿ¹o§UR¤¹áV¶]Þ –‘ÀÓ=L„±2Ñv¢„Œdø"4ƒ±Þ6ÀJQ>Šhô.““)EDi¤7<Â>OÆ^5‚8½bŠR‘‚gd%@6>‡!k“ö§pÒaˆˆÐón>¨’˜.ÓÆ‡›wðù½ÓuXKÛ]ºµœüÚ vôf›}&Â:`ùáþÉ[Nh§O|é vwcèÕj¢xʈà'dnî8Bzùê.ëI;€ï‘<Èî±åНg‚NV‡ØNsJ1Ã(?ÖÖé_à`¡£6P_ºj«À€4L—™¥ŒSü—ýéÏ(a«gÆ A¤á`5®þº[Aíc„¸L´þðûC¾Ù羃ƒ½áAæŽU¢½³ßs7Zìu‘â \ £Ÿ&~KaàÓÅ4.xÕ<þ&/…)éï"…1ì?Õäß P™ž þU¾QîîW.9˜SUvF‘|‰l_À`žV ߀|Cú0žM»8N&Èã]¥N4h#`Ô¥EjM7’Ó K¿*C€UѬg„ƒ°€5ì[˯wë•i°sj–rN­>ijoy¯\°VØ5,“õ+çkàÿDÿãŠ6^öªð£Ô ç0, È)7¯ƒš‚íØ’‡â<Å.‰íJB-»Jy wDþbÁg)B˜½ÆF#‡dC†gŽ:~¦[Àè”BTŠlèÏ`ÖÝ1“¦ž½®û ùd\PØÏôsFÕ!sùðÞ}#.M8ò/•]ÆübÔCú9?Õûm‡p"ÊS/ˆ¿ã¦Ú-ýžnSÍÛÝT$ ‹«êwïäL\å¤ü‡Ö=nƦ8 :ˆS÷€o†u %llSéFg&ëí$˃§·ß|+ºl?6Ñ7Ý^þ=S~µ»Â<¾tC5çÖèÎêî쨡zÅnçjöÙ@`ª®èޤ´Ž C Æ!}“ão-§úæÑøEÃ;ÃKÑå´y{ÄútçÛßa(üõo€Ý(þ ‘ãð·ºyƒqÈFwê|yKiLŸöù8bñEëï}—>e2¶N­¬anåÝÁ·Dk¢£ÕÛ‡&Kðš“DbTBÁqöZ§ ÒɧnéªÝª°A‰É‚ÀÇÞð7Dz3PA‰>[¡"Õ‰‰{XÛW 饻8[ƒG<žŸ¸4½GyÕ†ªÛƒeí¼IaŽ$&´MšIª×Ù×ÝŠ½D\}uµAùÝ H'i_?6Í*h¯K)?Ú§³Mh“±’×Üx&HüeóŽõ`Lê=¬jyÛ!°a|dÇTFU“/³f€ÛÑm5Íç S‡ZH¬B3À¬šØ<·h{ò{f·g‘›—MŸßôe+u(Þ”²k-iKZŸƒ°Ú—ÂDG® ̶ßGMÖïZ…Î[ Æþ¯Ó}»S´à^ûÌ=Éu°ôß{`£Î–KBe ?qÉX îØ/hxû§ÃK†¹Q¨õâþa(›‚Ç8É.Úƒ"ÑW2‡þ{ غTûïì>x8ÄácPÇhU—:X² ]n6ÚîKùLFPò­Òqò‚«àŽXì§mê>Ïs2œÐvˆôúÖóœ…S\üdñr>Ìîï›^p6G$â(YUÈ1ÏóZo%Mÿo¢‰JéEèÃ×Kº8þ–h3T&Ó=:ðôÔ¶øýgç¸ÂÔ‰HeÀ¥Jz´ ýUü»ú±3¤«0¸.Û<™™ÝèOZfä¶uÔÄ›ºcø†áô†U¨~H±Ú?µÌ´1M·”ÌóOŠO ™6éíúZÃÈI¿«žO/9=Mô… ÞaŠýžÄµÒK™àá÷A ]ÂÏ>Å’–¿òwÂòdØ0íds(~å`Ñ6ý¢ìëÀlŒÂÁ¬˜Ng,¦áúÕêáX¨]”$Ïð•™V3’öJ›#²Ñ;ñ®7ŠÍ|rC†äiÁ"6¨Ÿñ.ËYÆV7Z0‘ˆuf?»G'ù…õ´ÈÛm»ç÷Ù{L”Æ>¸t9‘¥¬Œ4’äj㡉ˆ!,˜ahoâÜVØ”ïhÕ•Z™Ñ‘.°Á?'j?ä…޽fÐåh#ˆêÞæ:9}KˆÍ¹¢•}ÊEèËÃtTo¡›f?0+ߌ-3Ôo]íÕáõ6ó5í‡Ô]Mµ¢]mã>;áE“OˆìÂ]º9=Ñ\¶+’Ù„—k;Kx¹Koã5>ø­¢DNµÁ` Ê›‚·'23ÆÂ©,àÓaéI©k¬4qf}+(çäÍ®›@k­; Oì¦úHsB x. Û©3‘§ƒkâctbŸ¢ä¤{ŽE·¨ä]"éîz¨LǵÏ_hymó˜@¾^ˆãF³ì¤q¡#’Û’99Ù¡×·_¦ö\¾‰È2;Žtæóð%uÊ`ë:âDͬtãŸY¿Ì!… RdühbåþŠa]T‰[εHÂÊ J+ØœÀº8%ö‚ü¯ü’†MÈ#ECœâ-Ó¡½[^7éi}ݩ޲ç”@„ \$KÔBºz€CDú6‰žÇúCgƒÈ®’UÀÄxÛ·OÍX D“û-wŠò€¬ È@A†Ì'4ÿ}]‰F |=]Ñ EžCÀžaÇÂ7r¬µ­Òh³+DÔ*=kƺÍrw£YÝâÅÞ‡sÃFÔnŒ¤«”vá?J‰ðnNYƒ¯>#Iwêªw×¾ Ï¥ðN<…ÿO±©U€_yne+­B Õ3¯³¶e­Â'Ë[8”F™¹,Vð³ðu§ÔùÆ:B_2 öžeînð€}<ðÞêzî=ÝÜ^}Q¼  ò¢$ÔÎ<³ÜpÂDÚ×ùɱ§‰ÞäüH:©a?PzÌt'm *w—VÑâ‹ÈA-L.œö¡‚+-6‰—ñ$nÖžár4R7¯¬(Š.¼QØ.ïcùK•W./ Q¦R÷‹~üà"@‰œVÄÃnÏíî¦^-{G"ýœ†Ï••{+"&kkŸhI8ZnžÚzn…ÃAÅ>ˆe¢£ AHô™Jžç7H/ˆ*œy Œ‹V]x%“ö%/Å$WÐÈÑ:¬^´ä2ô_ÌF'ÛûT¹l/&Î7—‰†•ebDWÌA,&|>Åc SBÆX„z´-Ê®û’S'5Níâ$ ùW6îýG‰rKˆ^#¦dÿÖ2ü·sJ¼‹w\}o èJ'³dþ£Ymîy>r ÆÕ޵ô ‘ƒGÄûÔ7ˆÌ™AÃK|ævЉ 3"Ü2Q‘àÉ@éÿ´7¿4æƒäRôîAéªùsw ½à®(ä ›Ñ¤¡÷ñ õM¦iAB ˆtãQØ$CÄ,u.œŠ ®7eªôDú¿cjãéÞ»â/m‚­=L-/‹¯1ÉIk±×pà8ÿ¥:ie6a¡ö yi1¿ ×¶¸æÿŹ#ÁÑô¾ X:h•I`1È/yûú~[,K4Ö˜¡5V¦*ÍþR…úJå‡]—9¯©®J‘/¡¶7,—“nàJP¯L]k™D¢)6n ᥄0³W ›¾xV;ÔWÐõeù<ël—G¨Û](^t³*CßÄ£VÓUÿÏÒ™‘”(é2ëÛÃÅ}J¨ßŠ®ÍW`5:޽&±'¼—öÆ>Ç´…³ÓÂD%;ÕãWÛä¹Ëi"&ó·ER»Ùð†ßn þîÁ`½ùº!“Gä.¬çí_´+L ‹Ýþc{_ßÞ×Ï è+*ñ†c0k·›ç½O¬…‘A•ZKÎT%?sЊLÒ0¥<Ûµ¯Ü`1šÃ¸ èkZ_žN}{|RØ•?úeyÒ—yíñ[¼ôغⱲšcîû!jhQ'£û¬c úè¢ÍjJ‚Qi!îÎÁåks@¿ÊË{ó0OéW øC›¦ïâœ.ž\ð"’T$¼®;æÅuu=éÑyˈ$p ¹œ§Ž&²ð½ú«ÁEëÚ´ïstVjOdYœƒ  ,©ÙD_Ëäf,m\ùÆNTäŸÇU£ç_¿±PLFášN¶6„X«øü¸Â=?{ÆæßŽXØIe7ñ£C¹øi$ôj¤Ö¿×v‡lã(9}³TÇÒ¯gÊ?ò¢Å°Ô„C‹¶Ó±hý%¢óyôwªÌ^ùõ0r[wÑL¹YÓ^Mj ÂmèºÛyy˜îb0ÒáÙ3¦%K%ìæüQؼ5âºÙܯøüÉz’•ù @ûî€IÂæ3ätQ®F›JíÆ1ÊÅnÝò÷6Â6ZP·sL±Ìv!gºnñ.°k) ÂXï« ŠèÃ0¢M&SC¿J±Ú·é¶®—à'8So€køÇ ˜ºÓ[ì:a¤ÿPˆÕ?g”Øe¬;xø‡è‡ü3F[1gî³Ð‡(æ«„1n&2’Þ]ÒŠ‚â½g©ûÖà +'¼€¬j”ÇNü†áÉæÑŠÂ—ƒ©ý7ˆ×7,³gZ_d`û©t0v{Í95¡™ŸV¬¾ú†sˆ—NQÕk* 8mÁM…¾j蜛5Ù”Mâ§YƒN‚rª}ÓË·.µT;Ö…¥IbŽŠaÑÜÅò“Éw<Îoët 1=Χ‰'V%6dûc´-CAß“}¨?uCmŠä¢ ‚•‰·9§'jüËÆ†+m±Q2ʲ®åä/ [ïvôÒá““x޵),dÙ¾uãÚ‚75«!ÛìT\€–’f¶v˜dO/2¯Ýƒ6ëtQØj5£6·D@óï„ûÀ=§[‚¾kWã0Æg¥å¦ìOR‘ˆ*‰6!r!8½ª£¾…H÷ž­fQ¦$XOí4ÿ,=„\L Î n¤ŒR“ŽE° þB*ÄðߢÒI©x²8mñ-7Ý@³2˜FÖ£hÉ{Ãmøì¸|<|›ë²CLü*à-ðh!¼îS¢Û¯Y»mRÒ7a]êEJÙÿÿ VÌ•‚ŽF>vÊjµ;ÖH Gv4=ñÝ3Ö bÞRwh3ü^< N '­‘>­%]BA;)ûúm6M‘’ö¢ÅQèGbŠþ1’³ÀUQÈã¾[í˜)på©&]+Ý–4NL0Ý5YÛ—EÍ“åpñÎQBˆÚ9䇿 -Ï.LÚ@¸Ø'WV„û¥Of_^‰”v4#Ößë"ûFþ¨“v~?Diœ‘Áª‰8zj`Öõ’})¹|ÃWîk9`£/Ôí^ÇÂHéPrTÉš¦oà ³ë²L¼˜DËÆH Y^·÷Òð´q) vëï!.ÑÃuÎé±]àP:w±¦¥9 …‰²–«û~ý‡>ûÛèÓtñxsý™Cü}ÅÇÑB{Ô·$g—s~už]W‚Ýxh}·÷-Ëe9,XPÅL'@î07Š"ûö "»ê ½-y]¹ÒXÖ—Çë̪—ÌéõBqS´½²MÔnEø’g¶—©ÙnÓÚb†Të½ä ¿Ý}õ2æFr]m§±àæäÁýÏWêp™a~Ù…EÑb*he¹LRã)m­Ì¢…!ä1‰žU6ò"ûÈÏüñdMž¹§¾cB'm…Ñö-¶,’%ÐøS‰ðÆ}*ÂTçÇ`¿RèÓÆ¨<ªcžŒŠ=Ev´-Û\—O‚T"hÃ(¹k~b/qxžéWɶ/S<&r Û¾XFcióŽ›_¡¹µÖ^2WÅüg”K/\úëùšè¼à ;ªOy­,6”‰­¨Ÿ7$³ÿÓŸºáÅ/!Æ%3slªÀÛÏ癢±…–.A0©@þá g žÓJ0—ÓÿÂñKø)…ôËJuTˆ1ùÞ]S§k /úcñŸã¦S`<“¹)G¡ ¥o?¡–ÝC˜¿äf¡©™&_×0*_nPI›BÁ­eF¥ÙF ùƒ’Í—­×5&móæ•«ÊGÊV­ÇŒ/çK‘Ž4Œ¢˜Xéò<îQ@™·m¸ªümóðçXÛoãC­3Ô.cxB¢T;Djø•ÇMÊ6§‹í4…¹ –OÿIÓn|­ºtþ¿0Öª{`1ŒéÕxÞ-M— lvã Q†hÍŽ¤ùäã ; ¾§„¨b“ÞIÁA% ÞÑñý•¿óÌ0C–ë|ùl+3Ø]q©æ-jÁ]‚ñJÀºÏ®Tí~¥íî'©ðl•”˹îæˆï;ÚØYž£Ûü]Ý” ¥TOá0i÷ý™‘‰‚´^Èñ?“àÕoY¿Cuf²£¢w‚qôñdiv x0ŠîMŽïý¶R„3îqð¤ªWßÚŠå ã1ö1ÖÍóx¾›Q4èÏ«ðkýò¸¹]™|É|ê„"A^ _Œxs{BB¾Äd é—FÆÒ¯QÁ ¹&®8K2žØ=¨\¢AeË×kXyw¸ŒÕÚŸè‚°Œ‘ÒE,ªÍ";«é+ó=qÌ.½ƒvÉåEkCc½˜­§¬ žç–MÉ …º®‰A6I§—° ¯üKxp@R]3ßÕ³Fø•Éb–N³P«PÓ Ý"ÏzƒÇ”6Bòcè˜Myommˆ¥µ# Šòè–ÿv§’vMø±„‡P¹¨` ´Š 2µØ)+–s(LÙP^çP©)õÂMTæ‡qºõÁ åNþˆ/ر&Cª¡}A($þ•ͨH9÷`pʪÿ4wv4Ìä'>5N©£¾­ë—«ÎÓüÑˈ½¡$løé¿ev|¤Îä@𺚻?sP¹ÌYìnÔta#Ç 2ÍÜàÏSG=ßjê—£0ýrAŸ–„UDa&hùrw,Ò‰ÕO"%”˜êidªbÆ1¥®ÐU–Ä„ÐÌ?Ýôú^­%n@@^Dø‰(—ïÚkJ3ÞTqƒÞÏçx_J¤u?Žã£@œÂ¡œsÛÈ6¶!CîMqI¼ÏfEz ›ÉgBhÝÑá;Mpû>n’®[ðàɾ²8Ä[Å”ú´ Ø‚ ·Ü½õ4=¿¢‰M” ݶØH͈L‡ÔhnÛѲµ;.Öµ<³ÄA_vMñ=Ä—2´uzOŠËeza}-ÃJ›*C<™Bý/\ð» gwQ+å qyéÂ/s,ú4Ì}!e“隟€r§RJMÂNYÝó¿PcÝõU†—·5sÜÖN°<Ö©†/ìWáŠwù³€º6ᤃMvpe‘pKbŒ+%ƒŠÀ’vô2«¦íʽÖ«»µç"œ†5¾n†F¯$€Õ^ÔŒ!ñíw낞 p0¼M!×0ÓiNUyo¯cV9AÈ}rC‰‹Z9ë_W›rg.ªfG~(yÜø±D°Úðg!VvWXËóz O}u@‰ Õ˜ÞÜGt˜sÑ\7•B-€‹y¥´PÍý‘Ã}³ÄQ£ñFƒ™P„-ǯ7“³ŸÙŒÞ÷UµöÈeýöÎÝø öÁ@¢äl‹ònlOدà†Ó´t¹M›—Ø=²A[›‡Ù@‡À"Ãk˜Cì²ùñܻܜRÒ±F:ã^‰ÅXáN\5OoÀïD+”Þ:è` ^Ko?!èðŸ3ùw qÊNË&ˆŠßè8‚ÄéO£l$nÉDqƒÝÈ‚¯Æ: ?ÝSb}Zî$l\Ô¶õׯ¦RŸìD÷Üóø»bl 9 éLýॠ\š<DÛ²ÁPO]ñ\dê¼Âö¦ªìŸôÊÄ 9äEWhu¤N¡ÒÅý>{}®-TÖ&‡M¤É¹ÒA%ßU¯ÉäÏ£sªÍ+k {²«™A÷lŠçGý±ò¶ÎQVB‡UVûãªCŠ3ñh\Î.i™Ã"YF¢¿÷`$Njfϸ/ðšÍžd#Ýjmk +‹Ôà§ß¯)ic/Òs>‹î)˜Ÿ\òÙ´‹þÁ‹M0y]T•_ÁKD–¡uBê§§®ÝWÐÎ!'ßrºvuA°¥ÚUÕÍ€gJ_ŒeHLNÅhÎd.t-nm5=;8Ê_·Ööáó. OeCPÔsãNh†ðäœW jaE”X8gØ þl!4·©]`Rk&o‘ö%® -y¤ÇªµàÒÆ²Ð}ÌúÎô@v†ŽÑóä Õ,µþz¼ge[ã‚èÐûÎqÀØŽ¿ùeÂÚ[Ï,hR]åîMÎ,äŠVj»lœ¦s3xÐ’ÂéèA £uá• ¤¸§È€yߎÀ1Þ;K¢.ÑäÏÕ»u‘o^ð+áRÖÑdzº¬ ˆjKºZ2`MuÞÜÔˆŽZ( ¹‚Ôáý$.Ê¥ZëÈAÞu2’3TèXý=:ƒÝ KŸÇî‹ËyçˆxM®½Ã†[U™Ž£øˆJ¬Ìå>¡U‰þ2 :V‡-ðúU ìäû- >0~°ò¸:Áç·ƒýËŸõGRÎÓ¶%âÉyžA—H’˜¢^¡Á{†´ÒGŒÎ Ü_ÆÌÔj `ÞiìÝ»Ax÷nMcµ6¸…¨Î¦Ñ°ÕD š;ä –ŠË,þe‘mÿ*îe¼Ðw¾0"Ã~Ð?k ªɸ&+0d0Ó1}þ1?ÛPð¯d‘úG[ F´û«±$çê°d“ŽÍŠržN^é}&óULfw˜ö=>¦šÀ¡Š*rh}އä%vF†)swž÷ÈZ|ý‘xà,féM SŸÒ.qr.->ÃÃ]µ—¦€–Ùž8³}N÷D¨í"âÂÚ«òµ *aÅ@‹Ôít\Kx$J:’T¯>¹ŸõYDNyšÄ’ØIAš~w-¯¯{ƒ´ âŒÜ˜ùk¤à3yù'B×UÎÉëŽÒÆ»kȬã¦gÀ<˜-5¨zËÔÖ?òRq–²åá/$£ÿdãœ!Nçµ>çl´ìÌ­Ä2õÜ›ñÁqF**ÑȌöÕJ3¸©¥²ôÿz –JrÀ =®Ô…²²\&(œ+§àdrkÄîKãïM*Ò[ð¢wR>,»º®©¼*"èŽÉìÅ rXŸde?5'÷U!HPR+„Ý=ù•Ú\V®‚»¼J]á^ÅAê¹I± ‘~sC`Aá=#èP¡ØÝï©c?^0•ºD–—fð’NMI‚lÉ7Q sLœž l<‹/ùi3Áû™qDùŠn5?³_í]nÞdïÐfÿu~›ÚþÎëµóX·âJ“#g¸´)üu‚ä ]b¯Ñ8tY×gŽHÇ"4¶1h—2á`~¬£ž´A q˜ñÉɲýÂE½¬ä_e_ň#ºìò÷Ç\Í65,Õƒ¾¶<…ƒQž]¥"¬·2äøä÷žÆ¥»æYov¿¤ØiaI9*b Ó‰„ýÁ‹· Î[ØK’ sFñ3„l?¼h\rz Ḭ3Œ°¸ÆâEü,&,Õ>~dBªÖd÷BRÜÖè&àØ—”?Œ«fäÙü@Å&äª|±’ô=¦“ê¿›a¸Eyí«Ý^ƒµ7—ÁŽÑ£-ªUB¶ »´B¶ˆ Æ`³`ŒB÷\c‚ –É‚5¸”+PHn]„¿koÿ’!8ÂËà>áÛ½£tZ‚s³lΗyÝüøO9_ 4QÌè~vMvö$$`b²N4çi4ÞûtÖØäN&² *z£¯¤ è5Þêð£ã>שiNdªj'n›¤ NY“0:u„">>-"Ä^”׎ßPÉ¢&š’I7ÐÃ\RžyÑ=ÕžüšÍX‡%hÊ÷#yEð2T¦n ÚÒ<@/ÙãWÔó R–R²riò×ÏY?Æ[Ò'_Ú—mš® c$vcû> Š¯Çe+þYÔ/q¹oÀAå˜þD›ãë´¿½p¤Oh7bAph±¨OãXƒc;ÒÃ3ÝäQÆ@íg‡È#+¤}$œ-­m}šl;©4vãèSˆIƒ¨@ôÓ*’ø¤p(jfõ…*.Š]gà„"b–lÂã½@³F‘5lžÿ Ý#Y6àž³RÄ©^é'GŸ'Ä ’‡ÃNê5½ñ!sÚÍæ:ÿ¥Ê—ôQ%G¨dR­ƒ=ûð×–SÂd/?qœ©oÈ-¢U¬¶º¢ÓE%Éæ)½àÑD…X§"±Úâû,h/áÓ·ÿnüUOK65[y¬·vX¤(ë9Ë÷bJ?A® TU LÙÖ]~*AÊš*'F«\ivo.õ‰ñL6#/Ý!øÙ¤m‘Wo#ô»j­Q·ØòÑðiõî»Øð˜ø²cK~Θ¡|/î»Ëë~p¦î*ØÓ9í~«.+çg>UÑ¿ŽìUQð3xTõólRþ'@EÂÝób•d1¥½®ã-Ö¹ ž$b £/^"*¸;ì JüöSnŽxÎSZH b/6¿Œ£?Ù{vl‰>“߉Œ‘íÂpÿòýÕ¡þs7s½L¯â„4Ù§b(Xâé•D;Z‰cX}½ÂìŒã MçI4nË¥ÞÉÓâHx ½å â€g‘¦]µ±-]è ¸°;¤íæô>öc³*í×Ò¼¦D5.RsŸd¶;º›íd¯±ëG•5÷D<¹þ§=bbð=®S&yux9Éý3ªÎ†ÜNÅör¾ v‰ï+D{qæ£Ñ¼+äéB:ô¸AžÑQñý|h[þf €1͇Å}¤[Z^æÅS¸‹ÀÃå<ìxbÿ9†¼K6©îTÆ‹o/{U9N8£b[ÈÄŠ)®¿ÅUÍåeGûönŸÔÝr½&*E\§óTe0d£tâØ´·-»¬"°Ý5¢|*ß<ƒ4EÌÆ!©˜e…ÒÃ6“oë«IçÍ¡s[1WiwÙŒój~Ð0#èÝùZR%ë»wFI!®…¦ì³¦T“ÚÂ^ª4Ê@+,;TÖG¸BÎÜ ‹fÌ„ø–®ÝÿaG'Õ[æc{*?Æñ´Â¶•¨§žG…U…á§Ô˜–QtÆnTÊ¢Ts%h¾¡ÌUÜ èýìßÁ€"èFíF)<ÕxÄYn;=B²ýÖ! VÞ½V{ÈïoеAŽþ0[J•¾¹ÐÐ…Î(ΆЛ,ÄÕL7Úru¼Ñ>«}Ø3äèßµnÈBºwxW¡XÿÊVª#òùG8øñž]¨EwÃÜÛð±)Õ™ü”(¸\(ñrqâ'¨Â©‹3’»gš Ï{º÷‡6Ì3|Lßó´rµ|×¼*ÑɃâ{L5ž9ù( „KÕ®¸—ïá‡Ñ\h"ŸK-Nì1)–¤ß /—O dGl®zSâ;¡E£«Ró1I4^´ª×˜™C3Ë(Ý;ÇS²U )Œw¸/Úö7…mÛ).‘|ùdÁ%=ýi…-U´ã^y™V¡„!±8ÃÞÏÒUÜ<¶I*†>/uÃ’ |Òš‘é+”Á¢¼ÏÍ=®ˆ”…]ûAtŠÍ>Ž@E™•¼<¹Ùm°J½zÛØ™úA[®Uªâ”[ÒÍæ0 ˆOuƒûøâ)lTEMVå4F¹³‹Í!µÓ2Îÿ¨]/REÃÓ[iï…”tŠ:îû–H¯õ!dƒŒÈä¾Sm¸¸5ÊÿdžüeÑÖ ëõ1ú7ô)‘aìgž¦äóz¶ä°§ÿÔ ]Ö‰X z´ªùa…çuy%v¿éCW‘ÚV2ˆæê’<šÂ¿Ð– ,iHáÞ(¾Nª“*¶É­¾|€ªzXìlì¹ÁEJ¦Qû ¨_õ›°¼Fo´s½ç•‘nü=<çªKQŽœ!žë‹ßž5Ó4èg‰CÄ¡° LT/¦ˆh{tL@¹ÈŸªœU)Ìó"—ï®ø"Ô0ˆQÂ2UÒD£O‡­¹DŸÜô—ÄÅ<"ƒŸœ´'­ÔÜ÷û–Éœ~"ó3ˆ¥B N5™csZªvw—^ÆÌ€G†ïà;ü¸(¦Ô¨¡Óz<è÷Ÿm«Sxµëá¦dôÂ×¼£ˆ—ç±×¢I¯'vmT¢•J'`0•ºU“,°å¿c™0`©ÁJí]û/ÀSúÄìU;öE=•-Ëu„æÖÂ.R.£h}¥Ô¾ùf[déRÝâÏ ö¶½Ëù«ì³KËq¸jåvºw8T–|‚ΓF¸a°ŒÙ•YÎ˜ŠÆìŽ“®‡Ë3VÂà†+Ù®¶u!çzõ³m ÑÕ‡ýÖô‹–­â' OÈ>𤬛îħ¤»–Hq¹> ÛÓr;_€M<AV˜`VС*Úg°yË 7 ÎB¬Å2.õŠBoì¸Ð]c¸íÅ)¦‘}ÿa›ˆõ(Û>pé½—ßd"Å58 Ù2ýkª4µÜZz%âúõ707xŠÝ`ýÇÙx¡ì¢3êŽ2X‡rBÏž*%–𪀕?‹Ntß̄˃×Þhÿ{MMi±ÎrDõÄ‘‘Ô XZñ·‘K™$Ï„­ø$PÎVeÒ4-êBЀ;·×«´wsˆ`¡w¼#Þ¤–Ea[b$Ó;QgÐ G‰*ú5cj¢ÚiÐó”låÍ„½ÐxGËÔkÆ~ ×7xÝ(h;Њâ¯ß 舕é0Œ…t mD¦š¥ƒ [`ÒŠÊ-Š?MFHuCµC|ùgœ¶–’Õ…‰½×m*Qµ-ÃÐ÷Ä„ÀßÀvsb{¦­þÂò)?šÚ!…ñF‘Ò5¿âˆÐÝo.pF, |¦/A~î†ÌY†!í%Ȳ¦Ä7S ç¼í®WÖè79n|\BuõRЈŒTFb±žáÐe b鋲 ï×õT6 ³xð5AS’=£ëxæò×PÓo×ÇÚY}ÕÛpaDËì«‹iÏWø ÝîÃÖßïð¶¶1é _¢ÔÅsöœ•3u5rôjœNÄþKaÎ/“ö¸üz5ë t:¦=Ä%2±Eò GADÝ u)ªXO‡Yˆ]ñPTÏN¨àî)ˆxq¦èq&ä&BžeS(2;?0QYðº(¤Ä^/u1P®)")·T ”×òn•P[]¸wI›_nô}6r–œRG¶…ö ±qç/ñ)¨óœ÷70ºÇ¸­”|ëåE\,‰ŽÈAfF?­Ö7UÓž??¿âj£%‚¼†­ô*²Nexï`i2>¼Ðs]·,eêՆ˗Öù]¤(dã o8~\ËïÃ@ƯÊB-,TN/¦0”‰'aà*ä§pmµ*hùòY)[kTbO‘~áÎýnoÒCV}—Ò„.sl'0ÎtŸÛ/X¦‚ gKù|šjž8y—ž¤8„ @ý=ú >¸ Ðâ½’a8«þ ¢í3ƒ¤¤ØÓãZÃë}½ð)Ù\kÌÊtŸ©Aظ®N£‡t,Ä¿7ÇØ4¨ð«jiYèÀxæc¿a+PPÄQ×ñŸQ.æ²LÊGòO‰ãö*‘÷;*6¬UÁÊ>ø>’Ö¬†&ïìõd+ÜÕ…‹•7Ö˜gîM¸Aã ,–O ™s‡RoöžN~éa~—Ó‡­—Ž:£’gÁÀ­Cùh}|þ†l LÔƒ–¦ Ta kvL¬ºNõ£;A—GýQ]Ñ»Ø#ÏÂ6˜-l4Î)ÔÖÇqåWŠÙ§‡Àv뿸ó˜âšÏá¹f€%— SÁ¶*·ÌÀ®UÍ6I|9Ý• -5ÎÓÔ<Çå¬Ï!”ÚLÈÛVü"´$u]>ð‰þ]Ækc÷6ƒ”O@¡¿HÀWÏ$•}*ÄÈõëÝ~wÙæRbQKp¨°Ô bÑ1ª}ùUu`ü=â¥}Ô³8Sj}s/kCé€ Å•Òã”f°Å§¥÷» òæG…WÛ47mŸR…½+7Cö²Þ—ã£ èø´{Ç‘}G/{ˆ½C¾XT³ã½Iâó´¸þ@G•ê‘Y|þSoJ!ÅòÁƒîFGÆžõ{ù•Wç¹Ð]Ÿ S“ŠŒœ ŒI±Æ-’lÿݸå©Q(BÅ’¢áÆaƒ¡¨zùj×/¨t)Ý¥}ô(0ÉØÇÎQÓnÙ0ýX?G »ÏއdeŠ]%¤^Fªdˆ×Nxè”"S'WÏÛ©ÞbM‘#mQl‡¦#p7#æYÑøç~° ¶-¤´ÎîyT³HhJÃÿ<¿i>&}˾kÖ=Ò9öm&™ì– y™Ÿ‚âóÀ5©” áS7Z&ö(…*.bN€š¬Öa[¡¬Aù)R’=heÌSg`†ÚIÅj]/Tr²u4Öv»`1SO1ý‡ãµœqJëÞæ·bÃLÉ—ÎÍÌÌ`…š”é€}Çö0H$&›;Ý+41m¿smyR…±{9ù€Ó•„oË^?uˆúu<ü°–ZÚ`†8rVù¦âfºÂÂ뙡PȤÓêsç^P ¼k ©ôMx„"Ù(>r­ÞF¸iñ¶Dk;â…*1Ò² _9»]×ý¡dx}Á¿s<\PÂsœ_„SB4gmòå=ÐÂyh©ÿèÃEšëÁ)ý›6q–2XñfÙ–Ôm±SÍ’ p'T‹³"·l½.V ´Pÿ©Zû$šfžBÍz…£jpª ²¢š^X$ù{¢ÅJbPÑDª¡;ÌU jwV²æÜ•KŸ8¯ã߯÷‡8­(67µg­›Õöžiº@MAQK*üL.yS͇^œíçL£üû›NÙw#iàQ”+h¸ÄÓˆ³økŠfÖýq-b`r¬‘y>Mñ[<¿’³Ý‰¿r÷ÖW¹Â6X>i @ø+!ðnÅ«ÁŠP¿$_-ËûN.¦‡¿ˆ|>0Í¡Ã!â~¸óÆnS|FåRfFä,Yž}ùI#ßûì¬Ðå‰DvÃÑxøi7]ñ¨4 òÿV"Áyn´$lÄ—È›Æ:ÑÅ/×Ãlƒ”!ÆÊÌc°Jª&éž2W]x5ºß<6÷] yãë§üÚóðš‚.šûªƒì?Ÿb[×SäKÈ8…Z8ÆTˬØÔm¥¸×ìÜ«BÌ`‚-ds†ø$Þ“# ãl²ÈÎ÷Y‘ó˜Î˜È{ƒi!ˆ.g‰¨VŒþÕ|r„8vp“ ýq઱þ {éQÝŸ dÞñÞ#{‡‘1·`“ûÏÕ_#ÚV$„N¤Øªbð:‡¢‡„°yà§¿Ъæqeuá!==CͽÀå_}ÖW='+fnreqf§A¨”Ä =÷~kak©¿€¦‚6®õîqŽ-~?3rpvüW¿Õ„"7U?1ž§Zªc‡ܤwÆzÆo^çã’רÃg鯆sÀ‡×œ,A UD†ÉqÝšmøi˜äÊP~ŠNVËâ Ý-?ßHê^ÞÈœzZÔXŠ*”ήÖ=½áqÅûìðÞò)ô.ð󿙉\›ËO0‡ßhþꉮÍa®¶Íç›0! àw­|SÔR,Ÿ$-ìµ7BÉ/ëEÛ»où¨5"wMÀsÏ;3Ä:7ã÷WDB®Þ¬,Y_rnQýÙþenvxŠá‰(cê â j²E,&úÕ‹Šì“GO§…¢¸#ö¹<$VòùŸÞGùj‚Ð,rWƒQ!ÍÑÄôÕ®)T©ÿ+›º3c Ñ™éÄWšöBž„Û¨’ej8¨Êoj_gŽ ®ý3áíöÚSÈçx\gáT„ËžI{«Žhp')îÍ'Õ®¡sªÊi‹5«>€f’ã„t„„lþñ¾ðÞæ¹ lËk7³¯‹V£:æ˜t‘€zŒ~ÀÀK7¹¢;m¬Æ©@¨§k¶P=Y|¢ÂX\BÚ¶øÕœgš+3ZQŽöª}TÞÈ*û õ׋ëÉ@êU¤sºÅª„|äJz°–×;Ã$§¢Ã‹Ó‡>õÐí6X_SÚÐ"ŸÇ«¤`0©v+Mf:D?À#`³‡JäÈŒ,D¸³»d¡æáÃ3€»#±¬ñ‚€9W fïOu¯I;ˆàŠˆ×;q#Pm«Çdƒ$‹lò¡:zó[(;Æ}JüzG\Ù×éy4ä·‚ÆiçÕܧûÚqZ'÷ÉU| ÈM”B§ªúž×+J÷h¿«VOW›Ù<ú¤ƒ×?¡Ç ‹éÁ;ç À¬`+µ¶½!†%†O ç¡‚"b›†6µŽç­Ïôq›‹fü{bW CrOþ-¤:í»ÅÌ'çxÐ×4Š¢JGw8Nß>£ìñ,Ä'¸¤eõò&äµEÚ“ç¦i\©A#5Ë?Þ?¸FÍ«§óxÿD?/s^JLÓuN`—k™iÕ*™1 øXßTÔ«fßVޤM 8Û¸%&([Û þ‰$1wí'«–Ö{ŸÀ}tzÀ¿@Ú‰ê(cÀ =A´À‡Î±{¯~•Ã_•CPˆ³½= ?¨uÁáSÅjæªÃ÷Àµ`fÿI¬ÿÑÝö!޹Ŀ­©^Þ95Lwí©¨“¤ÿT…@ØDçˆ`uç´Çñ9¤åúT‡T™þuy=(`<è&dhïw¨;,d–wRï éÊj¥Fò¨4€½PÿØä «uf‚aNß@ñ¾!7C%‰PœB&©¡³¼:•‹ÇƒÅ6ª»º@ç¡È4ƒE~0ÙÖQçÿAy‚Ö¹D>dõIaA;y c6¯aœ^sm+sÒŸ#}î :‘X‡_ì‹:dùôŠ’RPù>i-O˜tX[¨R¡{ï,  F+Ü‘TíùRŠcÿÐ4./Ò´>‰1Bs¨ÇÓ¥‚‚ºR¦®ä÷«e2³Kœ¿ÇÎ¥Î~¥šdé{¬ü5²°Ö>í»[AϨ˜“€Õ* îíT áv›çF†9µK…ÂLá['béQH÷Fð;Ô5¥¿¾óî5˜ß5³u|äA)×Ã|ËË…‰›€ þ©MLѯ˜Ù/MÿEê!öNÞWʲ*|Î.ŠxÁ€þP¢ÅKnî>ÑJ‚‹l{%œœÝ& uþ79줿?ØUä´ŽØVÿ9${ÄòÄô͆êe‘|³°ty®q‘·–Éwù.Z¦¿àbÔ;£øòã§ *¡¼>P™Àq?ãJóÆ—ÁO˽Žû•’ „GZ4t4ÁeµZ×Vµ=5Á`#•ßð¹l®× "^.@P· „Acl*!=œ¨‚^nÂãF‚cœZUC&ŽÕPäjéò_Æz”¬éj%h½âB Öö”ìÞ²ÛÃ~L`ýO]u6$ûGïèõ)žXÅuV3ñçJ„½` áþ"ŸI󕢿CãA¼<·ŸÎ(dM¢Hƹï…tÜþ…cPkÚ> ì‡aº²;ÝpÚ˜ª'ç$L¦Ÿ4G¥¨„¹©4ùõˆ³ù¸“O$hKÊ!ò‘v?<ÒÑÙûi(âS÷ªy··ñ‡ü ¶5} ã¨PÞ‡œ(ãÈå²›ûmÛ}”UHþsÛj;[ØZIÍ1^R…E¤8fÓÎ4Ât;„³´v¸kÿÄðæ÷þ8ŒB2ÝÆnÌlB¸|Ç ·çìþ6†›zUÊ©â­?bnœ¡o¦Î Û­]hœõÑe°'!ùrmgÖmXu8éwØvN?ï¾|ÃéiF*Yu~«ffXè BÑÏ*nx§°•jŽfªôìz,pðö(KÍD:­­U-¡y³aã9]ü9‰åÞ’ó%ÒšxÑ\˜z¸ŸIq!ïê‰dpFÍDë£$€•[uùÍ>E Œ×^/´®/f쌛‰ˆNÍ$CŸ"«ø¼ÐÈz^g^¸“·¹OÎ*kHó˜Õ4d¶FÃ`§fúbpP‚Vß›Œð‰®+Û«›éwþ€|§´ÅÔéwÔ¡ñgµN¼s¢'#ÆÁÑ01®›bÕØÇ£úè\j=E™4ê¾Agd/Ð qU6M}/[´çŠ;Æ*hŸ0'ÌÒ³ü¬¸ý'u÷ZöV©â€_Õ²÷¬Ç7 7ŒóñL¹¿¡Yx½vßOß–nº°¥¶áä& pÐúx4Á­«z{o~¼îBÍPé_%p‰i“¦^HW9ÃÐ2>&}Uòæm(l=x¡3 VA1¨ü³ 4§Õ#¨!‰µ<ɹùö °­µ©çOÀX~Ñe*4pÖÿ¢^Cå%Ö;òêÐõ¢@¾e6Ÿ«ÈŸë逸SDõF, fÔádš‚Z4Db’êvýu‡_ÊõdJ8¸$¥¡Rsä ýƒÕ÷„IoZ™”" ã;•ÀVzβ=â·³%IÑ+"mÝà ù‰ _…”+¨T³s ÍŸñ×éyŽï÷;d§ Ì_†|ÿÊ Ýð÷w%´DlW”óöæùéëóê¦rY¾ÉÁóokIøùÉMcÌó+œ1´ßÓ’µ“ ÆGzÌÑ¢s¤GÝdôG;ô•ýTcLÿ,Î22`çiÎ}Å^øOA=ìÚ,«âl>ÏfÕà_Lä©çôE™¹÷~-1† }6õJlˆÛgÅä£ä T6—I@ŒA²07Š©l€§ÿî'ÊòFûKuå´Ýú¾Ýs ŸóMÜ{Qܦ(!DIŸr€ñ€wü%¶ò ¿0^DÃðúPn•l˜€¬¹æ«/ÿá9|%¦ª?ënøÚä‹ZV®î®ë;,£9lntÞ³ÒÇ—˜œ¨zjvõßúÀ”(+hJƒiÅ<ûƒÃ¾1 ­xÞgÔÚèJ+†Eø4ÝŽž›&yÓU€ž!M'B}Öùf×wigsÛôšŽ«¯%‚p&¢JÕVÔX\·A‚‘êŸ3u-ýÉapæêLùšÃÐ Ï‚` í$Ò2™aÎ92 ®Þh3W‹¾:ŠHÉ ¹å…Õ“« °r"aMâ$7'È<§kî8•Ôd$e}»×ŽÃqãôm™#jÑ7¼leI²ÁÅÄ«e9• ?CÅb»¨Ç×ý<™R®š¶K²F#M2e#’Ù’kû¯F礊Wü5@™²W/Õ;{aýPzÅk‚ű=–M ÓÈ:%„ÚÙp"Ç)šTKúŽüæž±œœh%Cü$ÿ`É2³·ý8+…ºÜK½µó< l³§Ð)ñ„®±¼fGp*^â–ï »…i;G(Ja½£ÀÚƒ%ŸšÇXèóJ«ÞÝLC¬™M‚íteüã ¼ŒyHñžÎe0ªqÞ§$õ;$Fär ëCïpøöÄÎΑS/"‰ÍQt¦79½»vöþÕýë9/ªõ€Á( Ûúj©"ÑÄ‘m3®ã*@Ò²œfdÌ06 |{MD::.½Ÿob»U/)8a 1„eBøð™JwháøRç#pé¯ÁËgzšëâÅ®ªáÔ¯ÁŠb½ÆíA$Ö5?‰#ï9‡=Ë®\‡=8‚j®{€VPbX‘§« ûs<ŸbÖAò¸E‹›¦6=Øyäâm(™r^ñCV¶4zÔÐH–“ù^ ì­ä…­Ÿ)æˆ °ÓëàYX±fáøœÆk ,ÏÌ™0s¥À´g ˜-† ñ<Öþ‡9¶:L[Q—°¶1°¯c=2¥Å_³óÂ]# q 15‹„Çk0¨@»¬Úz2c9 þ1GŸþ´›Öý[!*$§£eë {HŽ £Ò€Xø¥'ìÏ›óé3eŠóâ´¶‘ô‘áYs‚O~3qíIÿ”½VU?T‘}^žxÇb% M„|ƒúiÕ@i€ Vòx^Ë Ç/óàc‰’¯¥ÌÖú„pu™4Ór†üÆ9ë$VÙ²Ò€ïfÝÙÿ‘⦃Ԟ`þèÃlI‚î*41Z1˜V©¶¯PZø¨túL¡ŠLl²XSm’A NØRV½#¼¦Ýɧ@ u§›nA3‹ó§Î.øîéÎF¾+Çm‚ÕŽúÓÊú$´»€Wx"ó5Ú“¾¨P½mÞ©&û.´Mg’àZ{FXz_–êZÃð³›òE_¦QLò>–Ó„ëSÓûX©|¿1•X­Gá¡Ã éŽ6˜2DõÎØQÌDó׬T¡váT'q!Eͽƒ§4/×½xµ4bp(%[;ñ™úÑ7x¢¿iÒâcz™Ý*Ûd&NŸ_øÉÃ;ßJ”±˜í¾ñyzvÍ>w±HÆe؇ˆá LСm<ø9мÈ\ÈD`×=øã…øW1hnÕv!ÍE8ÄÈÇQ‚§q ›¦Í–bTá>z1&»H㥢,¡#Š­È1rvåÐù¤×¸Sœvlc̈ÔÒ}\ù Aå¦kàyyЫc„) £ voö¹[Ñr'|ŸÇU_n“>K3òý³ï3 ±F<]ÿ©tíö_[²eÌé(<þÓ¾&Á~ŒõuIѲs»†h¢[ÊÛnM•vĶYh©¦e^¥^Í˼î$Ó{†áóDÚyÔ\— ,RÍK4Í„0mp‹s6±„’ÂÅÓç¢bm3‡€ @Y€óeæ©qG^5–?W«;¦ùLàcYìº7~:œI»2*ÿpžƒ–‚y…=Up“O)já®T,¬üËuöîµ#ôåxv`ü$ãdZ©\ÊÁ›Û£C²MîâÇ—Ê ‹!·|–œm@y"š‡„vïéÜ/‡·²°e`Ùï…îcŽIѯ´`õ0èÑd&H©)¢íQŸõVÊŠïçì)xÞUgñÞ_Øðž¦ª3¯‰5¼ *øGyþYG/ë= ÃùÆC´*6Þ)„ÒtïrÃYÈç/ŠŸBaJr Ž…êHšœU +²hºOf§‚\Nƒ»Ä”¼üýŽà*3/K'åÌ£ xâ :ü¶Ue…Ýâ¾j|æZ|‡ÙÌsÏÉùDÎ5¤8Ï1túÌc$.>¹–Ou{#Þ.ÁõÑ|+·!MæñH.‡ì—úeÙÓÂm®>'[U!uüæ ,ÿi±óÒVïÏS¶bõd‰Coiæ÷ò¾©¹Œ‡}é¼®³kJ_ª)Æ£É\œTµ;Þ†>ÚÛ@ߎWŸœm•¨’‡ƒBLì äµu¬*(ë¬1˜\ùÓK›á+„E£€q¶Vf;‹)Ê{!k9%ÿ2È="üû%{?÷ÅfQùJ5›¡m¾2hm¯WÁÄ ÈúÖ¡6Cm£†NžË³i̦Î(¢†Î³1õ7íö°‰;e“¯-s™ÅÕÏÔkÀH¹6¶Gø;C¢a(ù0\ðÅD¬Ž_u zÏ#è´E3—=.rúÈox)›PÿP}Â<BõÃXÐ?ÝI€ú'™Žt,Š;a!BÒŸGòjRGƒâͨ-Ñ'o? Ã×h&p8ÔŠ·‰ýŸoCºtm¢7´@ãÑ!Óœ-`êó„sK‰£'|:,9‰)‘<ûÛ®žX<æ-«L‹—pq6Ç#}ËL‰$áÒ%uáåØ=×ãí=¯ƒ`ì‰ÙoÑm˵4UéØŒŒ¢ðˆÆT“ ‘âX.ˆÇ‰’ ‡‹ÖDØêYlh*WtŽÞîøÁa 6ß¹äÂYoÏ´¾A¬ê?IøY¢BÄ™TJ´‡(ëà¯JÜÑŽ“Ææ Ié# ™,•¿ I×lM©îI“2¯í>6ßÿÃÚoÿxÕ›û,Þ‰E[%Ù»^Ðg¦©)gdL¥Ù²ÏÄ£iÆ×ï˱·«¦àîgS7#ZøÛ’¹à®TB5F5.¼^щWó¯Bµê0ÛO“Ùá6¦0@F^9:tÝ‹–8¦¿'ì£t†§k`D'ÖŸ~ÊP\<-§€;lšÝ©ék0úÔ”Ù{`[¾~&7YíÝ(ç`oRõÑpzæiw¦¼"²îú£ qÞüL% ¿sýñžUdÂòm.aIg)ã<Í6<ùŽ{Ôá‹Û=|ÚwÉ&ˆJEN¿Žu8òŽ—&-ž½Êšá{¸˜Î³†õ†qh‚µ°oNþ 'o8‰M×WsM°ïþC—²U½ÝïowÊ„üËVˆ‚Döñ´Ê,–Q¶À,[À§¯’¿ƒçg)Õ„ëeRb+é§6«òVw÷Ì™P‰²Ž,•+Ö°þýÖ® JN”µ¿éO ˜;åHJÝbZš˜.W¼Ý ‰)‹ŒIÏç†i?WýÈŸĽۇlm‹`ä>…[Ü·ˆðv.€v¯®ÎT|ݶÕ ö܈SêL‹¾zÍóSj'Çà ‚Cž‚ýòÕÏñÔ"?Cß{‘{›a“÷Çl¡…­ãìc¾†óƒ}È@u¬‹1à_ùûñ8ú1ýägb}àq›uúK¾ò¹Ö,|û5<’ЙèÄ0úò’¬fµ”Å3­•×Sܪâ¿Å[ñ9GE —7±íy-éâ¿¡ôžbs?4Ó*9ÞvóÜW¨ñ âˆ×oc¬DŒgIÝÏ^CqÖ@ppTüÞš^½î¯Œº ßµ½­Nªp6¹„ÜeøF¼›y¨µ64&ÙáµÖ³¨ÞC*èj•žP<½ZOÓ]‚ôšö3¼N×\«ƒÊëþwïެg¨žÜfÇ—Õ æ›fÆCj8m9šK˜ÈJÝ.·@Œ?NªÒþ8ŽsŽÿ{ÍNЗëû'´šhojsò*]w˜Dâyº—̘§ÉÝPSK¼gÔ ˜e\ ÓZ9zI¢nS­F½k¹x3ú—Eÿ|½ï@%ùq+,Ÿ“3°¨È÷þÓçíˆå‚ÂÇÀ™Wgʦ1ÅÈÿÊ€ë©!=¶‡Ñ\\Ö=»  ö†!ÐÆåŽtm9Ö²Y8oèhrÍÀöÀ¤œœ'ñ?&D•`zë/Á9Iše†:/ÒÓŸÒ`bûi…£uésL8N@!k Ë=¹]½_5ïæê~äÆu×ð^1dRÎEå) ä×NÔìqxÞá3Û¿ç«Äê=‡`ìÔ¡_~½$«À\ýß ±)Ÿó Ì+6Ùh›¯21¦…jå†n¸ ö0à ¯¼`³?ÿØ!\¸(Ô½U³wsØ}`¸-ÿá3¨§j VÐÔkPÆCkL5Õ~Çû­ +¤U&”œ‰KIàâ Wl3´(”èÜåÓmZÛ4ÆtK7«D[“pM>X’ºo·ÝŽÔ…8îQË%ý‚®¯‚ÅAdßL'Ûíç—ê#¬`˜ë|#8P¦À£Þ±h”. 眦dý¶;£ªˆH‹<ç{Lw¦™qå.j×Çôµ"›.U¼ÈL²4Õ* ]à…4v‰4AȺ0L¨?Nœ±ð¡ICb¨¨”þgCH“eèÖ̱ M£‘”ß]1+Uvxèë,8–zaœçÁæ@bðeÁ/¡H°fÆ<Ÿ¨:¼uÅÖÜ 6ùrkã!©ÆTÄyœàÆȦìt"Gmûìå;蟙8ˆŽ±Ù¼#†åÖ‡P©|…éxxÿEÈ6™²÷xѲEEý˧œÛà'ï·h’¨ÝW†«|„âÔ®ú×5xb¢uOù>]¨ àsR£§Åê©èîx¡%÷ -³AV3ŽRëäß°?Ÿ´Ñˆ¿ ´§þô>¬Ø)~­¨§ë ŸÕ!òÿe,¨–ÿnJ2§Á¤U…ضh{ˆ#5°³Káoôªk®e\f± =÷ȇÝڙʇŠoìïºkâ6çL6ÚÞϽ—nÇåM"¥+ç²Ít/±®îÀɧìäCº>TY¿k4p‚é°áâž|ÎØyCš«osF‘Y²h3䕨ð°‚2¸51à«ÙIì÷^g´æ Ñ—nµñZ…&Ðã+õþSC¢™ŠÔÔ.àÒ¾=ïæý¦¹Ò+n^îÜWwƈ,4°ÎZ-Ü uÛ"˜,«W[†LŽß"OØD¼ˆ£%2ú¨°vó·K¿¤(GZOýiDǰ¿å;;Dè½®eóEÒ4 gV¯µV×-hµE´6:øs'¬«qí¥?eív8QÛ³=1QÌdÁ2iêb9¨ì*Yò èªçÕýB$ß‘h¹I–4¬ÐªènÁÿ$/£ù`E Ô‘ ˆ® >±¿wïÂáH`þ#ÌüW@1ã ÂÀÛM±…+N…¼ÔRV¿<ŠÅ·D»£žp,1¶eôY b$ùnú¼ ¿¯H¶AùÕ#r×§qÛ¥gÒms´nÆ]Ÿd¥´ óß®õ&•Á¯t›£•Ö¡ý{Þ‰‚ P®¦Ó(öµ‘þWq)k§™fÔ ¿´9ù/ä2÷Lñï® uŸ¦ K ÑÞö,Û¿_N§.1jEá„ëLlÓ•l éÝðÜ{Gဠ"˜³¥»÷zù•+å1ü“¾è±èºá$ˆÝþÔS¾ì¹^ ½Àtµ[\0ÏgC'•»s(8÷{ñVb_(i^æTzË£1ZU×FE•‹¶­…btä–SKÌŒ‘7!5÷®ÛíR"’’½ÕW_ø5Úc$ [ø’ât /¯ Ý½¥3-oÎEæ‘6{<¶æÀkb¤iÉh±ÒoX ÇóDáÇž.–ø€¡Àü“­ð¡ö76†ØÉÍ1CZµ¥÷5Á°ž…¶Ÿ[ï@ޤߓß:q ”ÙR,€¡òÁÙ?æ‘7–„‚ñaW…ŒÃÛ6kÔɾùA Üh+Z8þïÈq0#C°³z@ÅóÚ`vš¾îÌsaÐsÔr\@‚´üGÆæØ}µ9:ïà2pÞ!['`i÷(~!(†c÷Ÿ5?þ­jåVíošÿÔoð§ºÚ¶yïuÛQ9&ýù”¯ ýhJ;š Á‚ª2ª·¿±ŸôwÜ¿#óJsnSRÑWoyÁvZß¼¾‘*ôÒâÙôÜKÄE¶°:ra“<­X0V¤Ró¶ C [j<«ìIÒä¿y™…ÃQ9ZºE.TI]Ý»@ÌB;ÄÓžk7Eq=¿pÉÆ¨$›¯JéúZÙµÖ7°ÅÖ.Ñc‡‡·Ì¶3x*;,˜«ãà}¶î¸èíÓ@ ìå ¼eÇËü–2l¡)b¹ùò4N¿S-ÀWÕÊÍñ/ROGI{–}øƒpÀ :+k×O#imäCüŸŸk§YNUòšŠÀ_•vp~ßÐng;LÚ—­ºÈ%ÖNë¶¶ÕÞ–Uó ѣƈBÛ*°b‰;à†á´öŸ4¥šÂeïKŸSõ¦¬òŽh­ª 7qóæIήÄ7‹ Ɔ=[>`ÃÊ Ž˜ø7³ÈcZƒ†»Ñàj ʺr&‹ÿ×'•s9:¸=—• ÑKé‘ý˜“šöiAÊ\<¦q9ƒ&+¬J¯àÏi¸$K"ºŒ’"Œü¬¥Èu‘F˜ºS“òÕ‰XíÛ´4ð¦Bß|Øóç’ÞºXÏFG/ô”õ’«9͉x.E¯Q)ÌœÏ;[E€8|ðñkå»Ç÷?-T“^XvNînãÓÝ…óèr²RG¨’TÌjúÜÖõ";]ûCjÙÓfµýb\¨>Zw¹‚h@“ÂCÿƒ>„™®‡½4Œþ±ãœ³ßÔÑ@“8Hº g¼ïÅ2LPí“ÀÑ`3Ý™ç)fînÁ´'E”µ?gx™4†°g Ü/Ýßå*6Se¡5ý:ÇšT»ÞæDÐÈ1YéX›L6Ôk˜ÛŒå=ÍܸVö˜T0ÇÃŽ?bLµÄïQ&eY‚ü=9Ûc†Ê)ÇÊßS¨Šo/jŽˆ“‡vx–f`ú‚IEŧ~»ÜvëTaÂw¤v½!•öúnr71kF=Ú×âÅ8Ü=’¶²cíhƒªe©çEÑbã™i™a£ÊsÏè é,;Å1óIêK9­Ì9YN_Ê’W† õ%'’Ñ„_Að†*YÃÿL¹a¨hàŠDÐSÒó+uŽÑŸçVµÇ»Ìß5í‡ê#°!»:¨Ÿ¥E Ö îL™ÄïÊ?ÇÚ=oEÝZÜ Š}\o‰=Þ¿¢ â_B‘r8òkZvÆjÜŽqMAAʤºBy[³]=Äp §~Ò“èËÝ@œlWÖ¥ÔizN}Q4†ÏùCG k S‚wú8Nü˜ ÿ>¶&Bt05{iF¦sqÅòf‡Ö&”Å:ÉH­XÜ;žS·ª€ƒ~üTrùv×Xn9ê“6\ÿ˦ Xü6D Ž? e‰ztú³’ ¸æ†”UOûáå?”_Äyš!§ž¡cVè!>½òÈöËd(ÇÔÐ’ÍÇÞè|Œw!šËg|¢¼bs`g*ÿ*à8ùdkìÐÉ+ˆ²É‘½tQ_'–çÇѸ­È0;T_šá™­ëûÿNÿá[Ï cýŽYÁ`;8Ý÷O”:ã^{ë³èåOO (e¤‰ò¾á¦p´&Äõä7lù„²‘"™C~ª(Û…Þ(qrþâöñån|ÅY£ŽË“r¥ºiq25ºÛ¸ÐÎ\×2Û ï´o–G.ÔœtÃÝÚzªÌ hÌäÄzW¬QƒÓÃðZW%ÏûØ‘Yÿr¶sñ½I„,˃™‹bࡘ¸éÃ9qùYmÜÇ̆\—Ï·”*¢ã‡žZA±&<ê¹CÎ ÄÍ}Û(‘9 Õu¹¬¸Û| Ögªî¹…±Ç÷¡lþÞ Ë£á…\pGY‡™ˆËÞ+|8Ú\ßÝX£èC ¥ÔË™CÓ‘¡ä>‰x7;W_èšHÍ \¼€¨¾=DY›‘7ø©Ï5G(オݞ_0 D™0†×¿æÅq"ïÛôÀ§òϘ0&‹Õ€fšZ»#3:ôHé)ÝŠ»c‘¡Í˜P"^€Lý‡"ÜÚ…tÑ‘âãTŽ´“4%ƒÁ9ÊuMEg¢szÜ+^w3¥² sSU¶J¬×œˆRkQ~*ëxÆ¢‘è¾Æ*p¸–“ÒžndäVtN€|ûj¼×VÂä”B[ ¹C3úæü¢xé€?Ô?1•˜*þ4RwŽ@¼ùvêÐò un•õ¾0ÓW¢½(/B ìõkùR6ÛQÂTù­¸C á·Ê |Ôט€9!à¢Íá¿õ˜ZôFÿœjT£ ÜvM ‹úIƒ6Í¥ }2:Ñ[sÝA¬«XÃ7q­¹ðeõý÷gE©«Ñy³ÜÌËŸ…  AË®#ÝÇ"dûyÀ×M÷>÷DíígÕ>+`Jøx¸¼Ë/E!x¨ !³:hk10GÒv›I$¯UNX ˜êk~1ÅOÍrÅÀÅcg(¨gளÄOo¾“+yÅý,™äÈ9tÝ—«ˆ‹à¸Ì*"ô€.yà̓¡×Û v{–^°u’Ùò¿5Óù]n$_aã‚âtƒÏókØÈ.¡v9—Ø ÔºAý9¹Ù®yB§‰!e¬áQžv7>TW°ÜaÈË*j³ž[Ñ—8ãšey¼LìxÆC¦9"T³J~Mð[§¬øÙÄ-ê¨sËi¤äRÑ ¡TŒÎR|ó”Ú2€Ëæk}ya!(ÁÙøx¼€rl>·T ƒtàEÆNÈc°ÈÑæmy”AÃX± 5߸gÐv³Ü[=)›!¦02·ñüÇ[¸ò[‘ÀÚz߸,¢ÆÅC”xä+z$/êåmÚ ¨ÓÂtN íU5˜”§tkb¤v›0«v”x-Þ .Â…þ¼ÔZ3xps_5à„½Ã*V½¾Ó²Á&nÓayví¦|qíGXNŸ½doÆRP©ÐÓŒ­ºL༮Ǧ.dšµjùfEÆ‘"ˆoÌEYkèóö]Í|h_Ì­,ÝÀ^(œ97EºxC{\*Z£-\U­ž/]eµ¢¨Ù¸TaÅ:ƒÖ7Š(Ôð¢Ú<ÃÖÙ%qꬠêcûÎØþªÖð ü–æ¯öG ”:²g5*Rï/*Á-ù@­g²3–ú•ŽóeÞ?•ôlí6šDYTä åàzÕ ‰cV"„ˆ2åßúߺº J™„ݵ5@¥'mF ¨YÞüø¡?™úrg•ÃÞlÁ¥ŒfI‚+d^&ÓÐ!w` Lêˆa> ún+Öè[V‚¥Ö$w“S_|Ç4Ätœ®ÿW¬3ÿ7@zT›+VM~¯à;=íR*±*Å·y +*m«¦ÜÈ­Ö“®¤<ÊT‘¼‚þ 6Ÿ»=;xp¤²`í~ëŽ×LëBÌv¹®`O³3aV,¼Ðo³Ü² $%ö¼ÈUI°ß%nh,–Ý[ÑN•«í˜½Œƒ¼v.±úé9’\Ÿ-D2ò¨â±5å]0H-’{ÄPž¿oƒ‰Q;âug€Ú~Ô€ÆV]ÖxyÀ÷ ¥Ô–J%jžh†Øü}EA©;¨¢ZÐÂJ?ïÊÔXÛßx¬ÙE(?QоÛÈ’Oßµÿ¼òG{éú2ù»ˆƒU { ŽN,§£ JåÀ…á ²×'fáçi/#Éwâ\5 Ó'F‘퉸òÖ+k2 $~ š}¹AHš'"äýUñl-´1¸ˆ„†ÓÈv{̘DÞC¼½ÿ¹éÍ˜ÏØ¨Æ;¸?76FAë«*( ´þnÕ©HÀš­Þ½Öygj$B< ¢ˆ$CwàJ¿—·™“´¤ŸÝNEñšo¬ÙÈü¨dBž’“ŽkHÒL˽ GgÒ ²nhÌ"2yZ¤O<’ÃhïÂòÔ>¯­O/ ù™É úy&˜Â’éNg.ëîs3Úæ;æ±²³Sý;¡B€ÈçK-H3lÿ“„r™ýx‡ÚO=祸Tœ‘¾à0•àˆ( jÊ ”4™¶ñæ¤Rë3®$''ùSQïØ0o;Yó Ã(!®í⛪ԄzÐî/%ýxê7îÊGkKpŽƒz¨¶Æ/hMÕl.å! Bê8€³(Í×}éš<î±üô}DR…°è‹¬ÊèÉ–_¼v•ÊeiÐ)}béufñÖˬmï+On~MWJ¤û5tÇCø‘¾¼¯ΘWÏõ]5ŸÒ¨eVtN©-¯“ŠFq°Ah§²‚H³ÿ+¥Xd ÄL£œMÖ$™óq-CvÔé¸È]eÝ¿ Ÿåø9¨žˆ¢g“ŽÕð5¥ðf0dh\*¿0áõWU”íñòÀU§—c¶n”Ñd™²Q’Nñ¼f-ŸGÆó•'¹‚C uPF‰b€¹wbá2’8fŽ~íªèíûÒâWx­¨y_Ækz}^œ†&¤üzðŒ÷ªþîýÕ¿ôϳ«Õ$¶- ÝŽâS|Ý"Ã1ø*¾5N–{WÌËÜ-`ßÑ‘ÙÞœ*« v±TÆHusöMOT~¯âÖUAç|ä:ÿ@8Kzgú!) ŒŸ%üH_.v¬›I?àv)\}TA\اzTTàÃþçk˜O™FøÓQ6enî?_'%f‹† » iÙø¹&{æaõ½#p{î#Ý´·,žˆZË‹ÃbCô @ó ’=QÇ;fX<ûRœº·™·>HG¶zFËÜ·ôP®æôZウôâ†v#C¡$­Ì5¾Ô[û‘¼»Ú çNYÎo·/ù›Kuñù‘ë‹!a=µ=•C¨I(¨ŸßÐAwO·óH9u½ø9–N4·¢âŒTt“}°|ÿd€îgμ$k$ -yûŽ–W ÖïKþÛÙÝFÁ6 ŸKѰ/[†Í½ë¦ßm’ì÷à„Ôá³Å­àÙ\çÈÁ d½.U—D–ñàPtø€ ìç/”çáXizU,¾xDf£ªËاƯÊfDzßíâf¬+,%RvÑa"†8†Å¢h žð°Ó…* ‰{ê–’­•rnâ-Ù¿/5ì¨U‡[§.``DY· {Ý{þÄéš‹ªÕNï:×rèy¨8°ó£ñ“éÔ §€Üš–ˆ¡ˆ¡ègù^MÉtbL:ø•³§¤ž/OJ)Ç_¢åŸdËöUÞî3à Öñ šóºþÆÏÛlÀÏQ¬¬ÆŠ0ÍÇã,YI?žŽ®©åÝåZB»³˜ùA.µª3B-D2–œÞMмEñ h_³1H¨-ÜRƒ¾ŠQaûÆ0´ûÂF¯`ñЗøâ ¶âŽ¢5G¾Ì‡q‡Å½Ìg{ûí*ý¢ÓàŒsc°27=ù]3¹çâ˜Ëõ»÷ÉÎSß@d…ø9õåঈY=¼–‘–ŸÁ™@¹o{C;.­?Éã-õ£ªŠuë1Í5Kõ>µ­‰#S€¾'U ¬¢ìNŠŽö4LùL0AÔI£HÈ0YϘ•zÖ6ûÒ°/ç?}tБ}ˆôZß,Wù > Uø'ȶo;¾LyŽ1Ôö—à ´EºmDß?s­]'çÛ¿)zžSÈûçæÕéU<æ{ëF5XÎjÒ’"Â'ý=x¿Ëÿ.3êPVða†QŸPôjy½Ô)=•æü%lî4žh'’i1ýµÁ· ióN¥e‡=…ÄŒ»•‹úEi«a´¥[Ô,ˆ¤ ÕXúVY+‰Ì£å Ž`<ð’Žb}ãö1$ùx8âRfà8éZž|ÅlÁ!-ôÅŠO€©É™Ÿ;)€¹/aÃ>·8†od¬¬D‹M€j¿@s4@~züi°e›ÙF¨rep6ê‘8ómžO±U3X ¸¿ÙpH‹W/jÝ ˜BUï ,»iÏ,T™PÄ;åë·~Ç*§ÄÈïE\#2oP¶×@m0êëÓÊÏ/©%Œû«¸ºýÞ©Vº(.w<¾™†"¯¾ xU˜+#…|‰D(\ƒ|·GtYàÝa'SmלrzÌ/Fë‘BæâÖ,"Á'Öa_^o§e˜ "ÔO}ϱ™±½¿‰Û!Ê3Å3#ÐD F¹ƒè²§A„ ^E3Éý{XU¹NˆëÔ ÙæYMnˆç=Xß ñ‹€Ï.üC?ååTæÌK½û=±9ŽÔ‘Äsoõ7.’Á˱SGIÎ8qèdièµ5S ‘÷ÿÆð¤¢É|éVLÒ..¨‚Å ƒ}î}{&)Vá¶½Œ…hYñƒ¦ßXë˜ü‘l'6b+R}u ™œŽeûªoËà[nžË÷ZŒf[3ÆÿiìøÂ‚m2ηtá6h®ÁÇ„äKUùJ±åM·]/ØffóƒõHš'üßbTÏ'`xK1Ÿu2 áº0UºcD˜‹ÑÆ¿ Ü_g„äC‰¶4­àHIßÅŠo‰¤,ÕÒ®ô­ùLI§ÓW³£1Šþ]:çÉ#©‰JÌB3:4 ÑÚT­Å>è$f´f"®¦séÃPª?¶¹èhQ'°u²5kÈEÊ 3ÉÚ îM€ƒø:Ç¥*¨o>žBå+­ ÿ5µ¼¸š«âgÜš1R“.W;Ê:òæïCÙI$^?9£gȺgYÙlbí²}~ìa…{L[¤Vêó—F€#ââ‰OGp£ÜQíBÕ9ä²à®C:ž€áùd׈vUØÄÉ&Vº0ë¾s:-Ô«§-¸ç³1 ôüx¶x>» ŽŽ³Êú39!7¢b„Î:¦p+È`±mƒDˆoCFMâo]i`ïË;—ÅGˆºÅ)Ü25À?RµQ°¤ Óî5±¹'¤˜YÈF)ùöd査 ë)­\¢ò7ú#7…©A3ãáéÛ¢«ZÇú÷MÅŸÅóMž=ËXb’»ß9„tÅÉ{‡ñjJ2—˜‚Ø}Éxð)©[8‰”ö€üÛà娾BòÀv¨8H'dž^ñ!@š) ÃîÔ#rDoñQCé_ÌêÂkßô;.ÐÖ "†@˜¶"ȾFöfxA”:9çJÀ“ƒÖ‡ÄÙ]ïN7´PÑîNŠZäkßíŠáþtž“á$†ày£OI: †Ë-÷¹´Ò.ÓËl0ŸËq„¤³§h’­Óù>LÚ#„é¢ÉØ:“Úà O«Æ.d?íËïû‹ú¶‹*‘WKÔtÓï{È)̶(.¤¥+¦ ò)ëQûSG¾Ñòcްŵ,qÈwåú×2¬ÐÜ}Ü@NÃø®[Äÿ„º¦AöÁY"(úbùêªþ†¼hGë»{:0kØï:̃ó”øASì‚°CâóÛiºå‡Ç INTÑ_?m ÙØ|²Q}Ç0¥Ð?¤±™`¹ôFCæ¨lxTL zª0#¹Õ*M,#-äú%[" s¸Ÿð‡æhŸL´zà#ÓמvŽJýàуAÏhH§Vt·Œ–o$2D\Â$~{¦ÏÙ ŒùÑ‹pÜÌÑv„hx£í .dkLÖ©UÃù£‡ºôÈ ¼ó¹áÏ\¤îÄiAn¯ëSÎ> }þÄä[’6˜E7ð£&¶™ô·G'ÕœÿG|ûL É1§‹ä‚[hj΢$û0Sò© Òfà;ì`ÍsjšôðëÆµçôÆzAHüi™dÈpŽR4Ït-­·ß]é0W)'¼r¥(1y\Ý)‘Z0§‘­­{œok÷5¯^M¶{K úOOÙ.sû¸¡ÝpåÅÞ²zlúòŽÓ¡;ÞŽ‘ÎAìn¡F<«ðýÑuqs(翪põ‹Kqê9ÜL”Ó‡à€/ç4Õ~€¯<Õ¥t¥EuøYóŒ‘l/ļ cîVH•þ Xn ÆC  PþÉùÙ ,™¼v:P}¾¤lÆ&k-6—E®.G2µùJ¾èoº ”§lª–§ª/V²`–ANWgl*æë<ë>dæqÁ†JªMíåÿMö % ûYû»­×iîî³›%@“‚/Iöov|ŒFæø¼&»FC bƒ¥žº0®Îƒ“%Çi6+öM{$!äð].Ü´IÊ+u jL¸<š­®$ªâ¶Š­—=‰ZÉð…‡WÅnb•gU¿/æß‰F¥A“ÿÐû¼‰móŒÈ÷¼a"–ᦊˆŠ&¼ UÚÈQ³·Ãîã}šv½6S»…" JT±:0?A…ÝÜÿPÆ5xž‹"i‚ž§<#1DVÌ‹ŠÇ{áÔk•6|¹ @–Ou‘\¥†À~1$ƒÙUeÈe5.u«‹O„UpäY=vdôô Ô™dXŸ˜dÉÖvÿI‡QÔ¼¬8à;º/õªôSlPM“c\®‰ù þ¨ä>ßÜÖ·<%£¨eJ(ʼÆ"wäX/Å“­н¾ÝžJ£Ø£iÀu6„,êÔ=U²t|ŽB×’ë8 êeZ%(4WÈãWê$ûÁÞúû¤¹ì—˜G+U}1ø(´ÿ"»CÖÓ¾XhüïØ=m[S€y40;‹ö9åÎŒ¬©Kõ ùN´¿Adz@Îòîdq†l8¦Ð+Ís²Ø"—êÕ÷.¹œÙ„¤mÂ& ¾"ö S›w0iï-ƒ¯Ò%-òbÙž˜ Ù'ÊÅe˜‚j5§P«÷ñU_脌dêÜoSU4säîCåGÌÒ¬U4—évDq8ñÊY3¤½%×>†»"þ…áИ«°Zö'<†«1¾ÞØ“(‚XåEºc®uWõÛ+ÂÏk$K©5~;)áQƒj×¥xì1¡Ù§æ-9X€ËÉá»nvšÌIKÌŒÍà|y_nFòb( -x8£l1‘)Jüw†§8mÒ1£Øõ`LwÐÛ>ùhû ÀÛ U+4±Œ Þ¾j®Þ ¢ZÝ´òUYXÒyý3õêÆËè5âÌ*ÖëÇÐ~¢ú×Ïå% l-+«mwŠ MÜQ¦“ÖuÒ”ŒwŒnÁW\x®ToQ(»˜‘Wh…è[¦ÉŸ²S®“seäÄü±Ñε‹0÷uxI%T&~‰½3¿{;Ga‡Â R(fs +srÉ•Áúw^c/3y¡âÊŸõmSŒ,¤§¡mëïMïæ™œ-–.Fqĺ}Õ6³ÌÑÀ9<¥rÁ™4éqAÅÁ°™Ô†6"®²vnÍMå;MdMl«·>N©Ø¯‡‰š‘w8×UJ±€s 쑦$34Ýçåßú[ÖfžlYtâ:ƒÝ{ìwuCåÑdykØ«ž8¼)3•q?’ ê~_Ž8Íßš^”Å=–â»´y¥ëµ@,Ø® Î{±‹£ߎ_´ G£²*XÜHO³*aâ5´›’Ö0ÛÛUD|7®4Ú« ‘SªˆÁaå–wûE˜óåI®Ü­ ö×7Èy÷m#Ü7~§ #' hÔ§IQ| 5F83—gtzìï•úã?§@$¢0î÷¦í<«*o¦¦Dš¥7O$Õ …äªÖ£ìI.„ÉçAHf/OJÝnõ-Q©ÀþÜ þž ‚-ÔŠk碆AxÔÃOœÌ©€¯A9¸žÜ®×n”˜š`†yø—ÖÒÝÕÇi/7•ÀYï¹% %BÖ‡sÞoR¼²ê +DÁœââŒÍ¥šä•Üß$0(Ýy}¤ûÌUkÖ®M%ïcm_x…Ñ3bä&*óLu$sŒ´Ü§àA&Tl”óÆîihh‰V¡_²i©{µXx‚îù­ÎIŸŸud€½Ô{ÏK”«ê4·F„ËtM\—3†/zYèyfr/y÷S'Æq—qs°¿®Ÿ¾ ›œ0ß{Iú/ìvÓµ`ä§šnŽKØ^ä’A—¯}†©ÓÔ ÖèÔÙ _ë%èÍjÕ§ÎDŽÛyÔþh%„Ïó‹7HêN«x!&ƒKº» [»6’ôt[„\9€Är ÿ´¼ æ¯-%j¶Œ§Hê9¨sE©Ô(ª¸V˜a“ÞQ—|†îI£ut§ã5ü?‰hQ[@ðÎ rÔóÈžµöe[ÔüÏ$ „eÿSª3¡ütÇÂ}ÿÿóZÉi¼â6W³r}yë3Ðôã½I¿-憢ÒG}m¾Ì½ÌÞK\Mï„J)^¹°‹TÊ6\žr¡™Ë;è­ ½÷zyÞýü÷P€HçžÎqIã&h×3G玶÷øKd|]s¹ù½ÞŸÐ¢Ûÿt‡wxuAìúDŸù¨výÂÚÙÓsüþÛ«èôÒëo EµSn2` q”ϰhÐD†›è˜$AYtªNŽÝ ¹‘Go~©±ô(׉}‰'”­¯n¸‚07¹S'.ál|Ê7zéæ'ÂahöFöÀ¿bþ u#Ùè9bCËø»ÒúÉÅ€¼E¼-Kó#z¹x–*„*MdòXŒ4I Tº+½9´Ÿ ÷L ·Fé#þ•έÕ]Ê_Þâœþ€ü‡Œ"ÿ«RŒ#ÅìÖwÔõÑl{Ð>“$I­ŒÑù¡Æ9®·c-ÏãøEmªÔÿþÛ›#úÄtî]«s5(k&JKB¤¥ÚAî÷=jJMÏÃŒ›tŸ75µàÂýļ?Œå„ÓS&·{ öYm׎ޫïKl¶^>ÿ‚ЍµÎßÛ!F-÷Ý«P`#gÓd*õá†6´°‹L{¤ŸÕ°ý:ñà 3ž´(V飣??8‡)þ•îæ³x*ÂÄ™WWSd—lO!e{÷ŠË!ÓÊîéÕò~QYß’2‰QasåÞH4í%,¸yšƒÔ !Ò})¿»‘}sMÆõ^¦K.Ÿžò]¯P%= ²™f20ŸS$ý"óêáøÃm<4!èOçg9„t¸¾KÌññ A–)Þ”jáÞĺ˜ÆÓ=¦ÆØ's¨yµÎ3m-Úk+ì=­²È¹Ý@‘è;cE±‰Xäý¿pê§=ÿ°¼ÌÀH¨çäøðш­¬æSƒÁ wâÐ½ÒÆØnßÑøZW£í0nÁAzÁGvà(TÅA! qßüDlº¡a©¼¦ª"‘S™F-ªˆÕIâXÛ±àIt”wAD:‘nò:râÃ÷j‹“F¼•ùÁ¬$àc Rlö†>àÅ/ŒÔÊöîCÃ7•wã[œwñä*»u}ÃQpÕFýÏÃiuJ¿È ë½(¦„HR¶wºÅ9êaµ-Ïü_=«FBáTg87ó_jþ³¤ó¸>¢¬=Úì§ .FP/ª1¸Õ޳Ëá#=GøÐ±½S±B…Oü\yX7§óÔgP¤DÐÎHLj|&mÊSñ7qìö™Â=nýwÂ}3Ä)›ŒªýÅ6‰T¥sB¬ûhĦfÍ$”UUþìÞÑGE‘Ó²ÓE*]¿7ì~ Ø—ëÄT09BmHt ̺ÁÙ=ÄšÉÓ´˜ÛjÖ<ˆéÔ%ª›"ô¡"ô^ÒV-9D­nUÑ™”üE-Dó£õîÊcÀ ™¬bàÈ›Î<Í©üÒɹ5@Ò]U%æÕ`écñd{’'üD1Ý?U¨¯Ï¹mÐF]±*ù*76»ï¤~ЉrA©7UE\¹š„}‡/©fzɲùL»ÿ’Uí”üb]_3jV{1¬†zðI„ßL½gÞ¥†£p/Þ2º–E®ÍçÚ‰$?ž´Ù*Ä–TM÷Ý’S”0%CFqk¾z%z«pË/d-Q¤¬Ñ²ñOT^ý\Ô[X*ôöC N ¤[1A‘…ëK€â.å¡ Ñ#h¸‰uËÚfV6$9ÏE~E7S¤À~Ìÿ8좥Þ;rsX㨇Ö9%1~Ÿh›¡û }êÁ‚éþÆ+ÙŒ‰êXè®È›}ŽÚ¤ûtˆ¶í£ULŸ\\›Â–ãnÈP¿‡&Z«thoGrs5m‰]–[ao"N’öéäžÀµ)Ô3F¼SV™‡ö— ô¶x‡{P·Xò“â>P-Q³æÆrbX5õån!˜ójxe?¹5õ_û¨xžôЊ` ÙÅ…EÚ;¬Ùû"DjûÏç¬nåfÖSkp(3н øäIç ò¦¿8 !fú¡ÉïÝ_ak­—ßúÜøß £ò)ß,ÚQã¶ÜŸ¢¸¨DÜd L;¡:³¹jÂS«¨pÿÈ>$$—uŽ[ñô²õÏýOÔ†TÚ}šäœf¢CHKÐoái†¢‘Õl.üŸÃðZ|© #xoŸË=,2.ÇÛcAªD2“oò÷5L(Iµµt‡k"Öå1%ðÞéø³©˜ûÝ÷‡ŠKëÃÄn Ý÷~göÀ3·¼Ã¢Æšø= ì „!?W¡WSRž;ÄZÕζ¸žÅyþLËâ«zú¿î[LŽÄŠzc£!äNë âõ%¼Ó5ücæÜ/÷çCŠd' úŒlúd›ˆÎ 3{a]orU]šNzÉÓeuõ¶oMpfý§™Àb[ƒÍꇃB J+‰K¡ û)I¯tfÁ\|û†ü{G{Ètóߦ¦‹F‡æ5˜@èÞ¨Tê ¤]”%Ø}äuËÔ4É ¦BƒÖŸuòHEP#Ò'/IÞ)oÐl€7Í2?b-L”HàÈåŸ³Þø„f÷D¶ìM‘W%31 bùƒ\Kn—mϤe>²ƒ¦E2~éBµŠxö\Äɵֳ&.rÔÈ­åÈ2À22Í*4ÂML ï¡ÅÍÊ6„ÌÂò1¸kî'ÊÍí¶—‰â¸g*ñ¹’àSSÌ$ɤÿ¸ôC=5œ6ÛÆ“Íæ`£PJ•žûÃêòç–Èó·c¢ £ rÊãd{¡¦SóÏšw""´’iÈÈ y{t~U ÄßQ¯¹Zeð9DY„°ê§7T³B.²•ö«‰²¸+b}K€Ë„¦(\¡jÕ•¤“ɪª×S<|±´îAN¡ y&uµ™¡=vƒfh<ªlA#yînÉù#ƒß7ÀHtñu—)?–툗~tp¸J­Ë ø¥ÚìrªçQlf]£Wb8’m]ÆñÛ"eu*DÕäyõ(1!àå­n/ôß¼ }—Tã{ç@åNNmJBìüû|”•[e.\-ÿ@ËÒps|9Ü;|»3 FÖWÎñ†õ@y‚yå5Ï[XEÆ9XܦçPš«[ãŒÈ|ëæ±U0:‹´,©HÞ¦¼<¶°‹Ò08¡Páv¿>«fÞàÔàU÷½úb[Ì|WÜ VÓ±õÅŸ®øGyÍ·ß*aS˸¬ûÆ”ºîz™¹õBðÉö½ÄΉéÐ3JþLcäô¸ Sd9µJkÀÃ:²kú ÆÁ¬±4÷j7˜-êÿ‹=RvD´´˜HSȽp½*¹ P¾É\²tÓ§þiÈÒäé±Ú‘äZ„Œ(Ø^@ÉìÙðcì|r±v¾†²O­l²6÷ª-€_¨«›õe¶bbo}n÷¼ub·ò.ýó%¿OµÃC1ÇÞá¡Ëº‚rT•Û(8Ò%­å3‚‚Jl·DÚ5bÃÁÝ>1æ ~=ÑšN0áS~¦Õãà“ÑIŒÖŠ’È6º:’ÔHbÁD•œôTˆ ¿ì A óv$Ѹ™. ‹ÏTt%ï2HH*î©äøˆíë/u1b|3¯bCí3¸/¥Ý)€hð?ö-9SÆŸ‡£t_»$kZS·nãBt9êĘ•4å£ÇÇøÖ/qV„»MVI\TÄ ç»ËÚÕýa·*ä&`Œ³"ÞöS÷J²%Ý-7ëV1Pleïcðÿ¾;É)¥&¤—‘œcª;_8Ñd˜ÿw¯ŠöÚuR†"Nuý0q¥êö•{ÞÃÒvVtQœòü³Ñÿ‡"%`)ŒûNC&É* ´ö 1)]R$§ø ³g1P¾„U?r=eŸ•ˆÚR¥ôç^±ô©NúnÛü6Œ~kMfµXOãÁrkÄ×g‰½£'=‘$1†#³Er-'6°àoEãÔT·¼jÆàÜ÷c·rŸyåJœîhj¹$95þ°}e”Þ9éißlÄe£µo¦“Rú€#nÖÑ01¨G·^JÞY~Xl‹X!ÁÁ¢]:ßìõŽPLÓ#VÁê/¦¸Ô…”ën…ñãçº!(Hi©lĨmg_^YpœI&1|‘U6ð¥µJMâ·{ºÉíôÈ·÷Òiq"r‘ ZÁ>ë,§ÞG÷Ý¥áx,@Pæ£=_«¥Ž¿õeæ^«ÞHÄ—9zÁ?Ë[š ú%‚£Ø¹Šqú‹BraÆ.x°T¡çoéʤd¨˜3cÌÍR’ÕÈŠw;N°®á™›øë\£ÔE0L!ý@TU9H"z–G†ƒÄpmº±UƒG˜hè¤ Ü÷.™Ú½&ðTb¾szëš¶Hì€è6f$²ÜY§: ­OùâþufÓñ°æ÷¬cëÕã ¾š?,ÿ¡T›á6Ä8TnI)aº>…¼Š¯ÑHI›Ça òsÚq‘Á£¥AÄÔ¬Ÿ•hýËUeA"±?¡Zh‚{l ̾r—¨bì0-½Õ#Ê’q?¸ÂºQ,±±µFÚ&$*=}v*]Á3Ê;p~Æ3vÔµëžÔ½ga“Os³Òó]Ü¢J°sJ¹h{©£þ‰ý: ƒ&›XE“f-œXËŒ}ôƒ5…Õy!ÌðÝÃâü ²lÐ ò›i hÂ|ìÐþ÷cAmukĹ. )Îx;jG ô*” A‰<æDfeÒ…ÎáV-Û5'Ú.É¥R×köJÁPhìýð¹³[<ÓR«ºŸdJ¼˜ágQIU—Ü_k̵Wë|½ä/ÒT/¼cˆ¨¬×C½=oò»ÏÕ JJí“‚¦nò.×±Íà_¡0h“@ñÔ¯áUJÙ`<*[ñ òÆå.e÷> È.‚J]žä5ØÉ ©òAc×Mú÷íäöÛúWÏŒi?¥ ”æÔ[qíNdwl IxG’ÅôuíèrKšÔÊ»“!¯OÚL-TñÏ‘‚ghÉ‘wc˜=ÌàË’½ÔsÂ#_ 7k’>¶tÚ?züî¨fhyoð‹È¢zükøQ(UqÊLUmé;8÷7ÚÕ^¡‰i}@c; ¨|³ºK*þÛÖ©O߯$?e½l³|"b½ÔC·è*öÆ‚a5ãŸÛÿó¹I õÿ{vàäÁÌ”]óW4îˆÄ^:nëëÓ™io~Õvçéý¿oÖÐŽ¹x{hʤȘîȆɶô¼ 'áqÑRšµ×¾êë` ÝÍ‘spÒÛŽ•«ÞŽŸhÝ’qAðÕ€ƒ¥$–Ä™@ÀfCá§žá¶böèm³<ã@rd¨È£0¨ÚÒïàÚŠŒ¯ô[·) ƒx—Õo³òî®—vûGˆeEf¾¢ð,^µbÝKÔ~ÓŸ?Y~ˆ<é/ã˜PMEÁn”úf—@DwêÑþ/^û-¥KìQ½F†BrÍdž`b›H"Ï®ço‘àúG>¬WoCØWeg(ØÀjŒdŠþßÛ­/Æ3*+á®ðÒäm³;\]¯Þ¡\t0ÁŽp¯{P“×]£.=ð¡Èœ”L•ŠÔ ¤å5>µw*q,±½ã=$ßñä·!úu}p õáÐSaŠx¯Ä]¢o茆Çt¨¼¡>ñÖï$|(¬©Á43¾Ýß:Á½:Vu]¦(ÂA'M4%ëkt(­÷Ç!cpÔh*ϯ0'Ÿ™L@Ä[ ªë–ÿqÙË>¨ Ä´°ÇüKŒÝ_ï,'âÊÆ•§ýÅ…•Â×½KÍ·~EÀ¾’5ĽJ‘}%‹ –þ>®sÊ,"RN« Ä~ð‹«ÑpÈܲóaµ˜ÿ §Î­ vÄ^Õßcæ÷€g­)5>#Ø®Ög"c˜…-gçcˆÈ¬Vû’WŒSþê:DŠŒHp >Ua’5á–îögÄ™ŽTs§3kzòÎ×)Tl$õèØBlô¹a»„?Ìm-Á†çs›1Ðeè׺?u‘~ØgB#Æ´³ÚuVÞØâ Qç#­š’®©¢ ?G§)fõf>¸¸š+:ÓÏh7þÅUXSÂAÈkƒ,6¹”ûw¿z…„¨IŠvô7oöyö³Ptm:dÆ?¼:ü£Ñ ýv‚G‰óéRv.»Óö5.áÛQò@—×1NõN4*èšY3óÛ-ßÁà5.|¼äÂZCÝ£j#W‹FeNl/r?°IS=s¶g4Ž‘Feôý7›†)3÷ü»ÿb‡ ):—ö3gË[[¾cŽ¢VAv]¨\äG5åŶ¹ðê”Ó~HÎŒV–ÂE!(àþávf=ïŒÎýû­Ïýü–÷(¨)íAGQú“ë%e!öʘ&p¼3Áf [L«ð3ÒÆiþ0ùßK‡ƒv® Þ£{SÂ!»®k¹UZ#È›^K¼Mý®†’Ù.JmnjPÊÉ1G~³¶üÅSà Ngò61ß ®â³Ç SÜê,÷ŒË'²n÷¥<ãçD"æeRžªE‘ˆÀÿ¦…s ·Ð”í¥|sšŠeèõI÷Z¶se~ ¿Çcq÷"}½å‡¸{5%ö1BÝÿ“œ!«é´äkS¼ôÕÀ¡§¼•tì Ÿ-Õ¾n¤Ò—³êÝüç.ÄH¹m’ζ2÷ß[êòg0ÖÜÏJ—yM^c ïc Œêíi^3dWðôˆÞJÿ˜ i¹ÅŽgÝz7¤|^¤Ë:¶ö§oñaÓÄkv¶°Câø9C˜nÞù.(ó'ƒ(öM¨ux‹Çô³¥LäqqÀ#Ê€Æþ(kh­ž’0;6 ĸžªú ØÆ®á ˆÑ˜b}˜ÂRWÖ ö¾ÈXÁ‹„Z–‹!G£©Ô7Ä@Ÿ­¾ÂñÑ ÈžQh%•Ee㳊¥`¦ ù?³ßÊÅ×dC…îk=Ĭ¬Xâ%ðfª10„›N ×)‚Ø mØX>:”sXR”Köxäí\b³$7¡œš&Д%ð˜]HÉ?àBàéq¬Ô ÚaèÜ©¹ÌÕm"Ýä‚løô·®¦#:Ñ‹ª¥j‡(xUeÀÒÞ<r³g~zeõÜÅï†þ‘² b+vسR{3à”§ˆ\mqÆp¥ *Á$uÚ wà4  ®¬úNm^d ½·”Â\ø«F³[!雺;3ÄHš6Mï?.r—8’_)H»ñ÷?4ÛRÅ&ð<.ß23aŽãÅò¦¶KzÝb?É<67Á°L‘T´ÆÎ;thÑ2"àˆà™ä¡(çåS¿ÿ\¦Æ¤ÑØû`¤ng˜±‹˜ZÖ«µì5×V˜BH4" xåi ¼Ö6:Žßæx¢™>@`—ËMÑ ÎÉ8dNXÒö{Ë@€4±„µ¥<"ë {ׯZð‹÷ÂÉ»Þy¾`í6¥X&}¬!…ž…kçè‘ÏGã~µá°Wt¤­š”ò)änÀK×µ†Iˆ¢ a=Ü$sD^Ìí¨Â±Ÿž‰;f±6Xø1fO¬ Ò(3²ZÆ a€èSc:åŠd«"ËÓ*œoŶÄ>îc‚ÇÊÿ‰6"Ý”Ûå9´ $†v@mâG-„û§y"^¥•±U×#€e‹ŒŒ¼2 ¹¨Œ¬³jlÿrŠvùìü´(\’PY»D¡Œr2ÆCéH~®¥(Ù$WœßyVÖ B)€ö/fÖ(5ö²öÚU¾ÅxXá'$ôl 0Áqÿ@ì’ÚOѱ»û»ŠZu ²—·¦LÊ«¾cEUz*ÇzŠ˜|­Hë²Ùäs}axX߀aü§Üë†0%©,¬Ü¨Ÿé||T#[²\ð7'mö@â,ËE BjáGÈkÁ"2‘ ÖÌšŠLÙç£qºúÄÎJµóÁo2¹X¼&<Ö@[pæôÊ“F0aŒþ?M1YÊЄ*³ú¹;û gfà ëxe5ˆÈÍq‘àÅÿvUŒ Óä{9Á€yÜyÌQr~)ŠßS¶cy6˜3K?Ä&‚®T¿ÉT} i[“˜>jçŽ=% Ž}Î4D:­¨ZD«ÀÞ‘Èê(çe5·Œ1³~nTüiˆ¸*);¨;ÍÏÊÂ?j»ÔGw„&mxôÔ˜ÊÇŽƒÂ9ƒ„†:Ô-+×@`ÌÚQžà^}w ÆëÒ]=‰5õ?N F¤ˆ ’Ý8PË_œ¾Ì_pRæ`¯j#(O—±‹i³§êÀF­w[UŒÕ0|Ä O'ÒAªF½\0èp¬”H0KD°_ÞH^轕Sâ„hÖãÌAØ%GxÄä"ùñOYëÕ=^ SÎ:ßç±Tí»Åå^c·pôyƒ¤«ˆ÷õZf·SL«øè™ü%BwÒ)X8GxðžËOâî~B“r™ù´×Þ~ãO²oòrL¦s0PL݈›=9ËØvê*7¯'4Óµ4ÝÝ”°ØFœæd6MYØß¸‹(¿y߇_Wg3æx´Æ õºäƒàaÆ@ªŸ#4^à­ëE—΀Ì\W³rÕc¦JT¨¶´tø§@d<ÌDRR+j Œ$]cåÃgÝ¢)_W ÇÏéä"VVSóëPW¡¯7nÀÍu’ð×v “ñ¦ëñ‘^ëÐ}<2€•Ü6( êPÀpKv'ÃÒúS´äž+.Ã/‡L.—Y^wûC¼ÌÝYv<ŒFu?Î#ÌDÐMKt¤wÂðOÿèí¦Ÿð`gÆq¯4Q˜y×!tñÙ#jÐ#%yÉêר¸§!þ’ôCY)Ë,ÁÍ·ÚéÐö¶t˜Û-XJÚorüáîMYÞ[f‚ZGÏ瞪H«†ÝI¿BÀã™8?¸Åâ‡Ìœ—òÖ=5Öø—ÅMø,1:ˆØÒ;S_†NVôX#/Š C–3”Lú¹øîµ&±òÚ¡¸¬afi4—ü°¯$†IäßÝz§|§1Um!ÉÞ³ÑËiÓ’‘&~¤án4±+Yx»TÐ#EŠiØ*ÒÒú,ûa j¥ò+È•µ²ˆeÜ?WÎe´íYÏ@ã§ð(ù¶¶Èsƒ?£ð¯Ïp¶oß²W¤üCa¿é>Ëø€ —äHb; šNç?’B^`Ã$t.œ%¬É«û îê–´ôM…c-~ä&g*)¡ o]æô´ãáã‹?sZÜóGlÈÔ"-ŸW÷®ú3«ân(¯>µ©ŒÚÅ•Ÿ¡¢Q­í¤6–™û)Lß©:fl€ÙÿM7ÆS=0VÝÂ"»@ãÖ׺;-®'¯,¾ðñ `¥Ép¹‰§•pbH~Çcqך”—û%­p­úÔ¬CÜè·’í·¡:â'€ˆÝ Š'J“z60J2fà+92<2ÍÝ}?›UÖch)=§ÖÊÄ|Æ[Ô ¾€»”ZÃÆ±z÷Ö‰°4u¬i Ybª0A¬Õrˆ3ÜVœê:xO.#Ô?×Àij)¸xfÀ9ñÙ\qMyÚç+íK³#>xírͶ¶¬;}Chãhó¦'ÉÏp‘Á?4È| hÔ«›BŒŽ˜pi¡.3Ñäo±ÔI3.ÿ¤J§› ä5v?û»™'€ìXÎä‰ÕÞË<­È} gÎÃÇÓËÕê81ós˜`}OrE’­vˆ}íHE,³_.›&¹å'rÄ ÕIB¼¿l_ˆô°ì”W=Pù´ôè)ƒÛÐ ©ØÃ¥Ò#¤È¯Ýl(L­·Ác Íg}Ôù/‡ÊÉܯ]üvoò‡>¦þ)lw§KDjß1-XãäøÇ'ò EÛÃtëÝñh5ô"HY‰o68÷i¯|áê·à½ÞOó0Ë[ZœûÛ´qïZ÷Yù¶Ý§m ÇÉ$1;¸ÒKÿÁÚMš}ýšCåÕÏ´º?’@úƒ;} Ï®ú#ƒP#à#Äã:^³~Pš¾ÍÎCÝ m\_ó“´fæ:Ì`*íO*ǧhÆÈÕWãÓ‰ÎÌ Áá­&x-Lƒ¾fv¢Fa/‚KÁ!«¿¾¡ÁIZ?AO ô}ÌÑpt— §Œýu fÅ=,Óbiß!%Ýk´‡ ¡’nÑó½×täq,¤›½”‘Á"£†DBÞŽ(ð1´~4´ Q¹Jº°µ)ÁÑÞŽOGê ·ùÓU#\£ztš™ Kj¯~º¦{Lõ!Í s÷×Þq“_oUŠ2l‹Z«˜sÜØ… <}ý°=<|ÿA3ls¯ºŸ…:²eÒ˜Û€™¯FZÒg :†bîÆ…ËÔŒ¸Ìð§Ü–°X»ý’oÒþ]ú<ÈW:ô¬€º›93%Ÿ^Zn‘`¹žá€\Õ¡XÒ½ œË·kµ|™ia€_‘ŒÍx†ô Eü‚•B¤ jŸ—KöNmÉ™Í$špW§Þ£ ì ú—r¿¤* çVéPgŽ`¥ÍWFj‚ŸiÑ0§AìLgŽ/~ÅÐû-øÏâvP%š‚7IJpÊ„‘í í0[Ê;ç¬&ÞËæë·ü^ÄéEJ¿"—]tcL=ÍÆG#|üð`Nï7­ô2‡(ºts„\ŸÂø!३[¼i¼ñ¨WX ¤N Ù\Òk]|’Ú¯=®vÌ•e_Ÿd°`‚ë]]ÇΧM–!ùQz™0·Á·œÔÝYšàð\<¼ ¹ey ñÖ¨#»¡²BÎÆ¹%­Rœƒ\ãÀ€•NRx’†]ÕãYVª~qLÆ‚%¡áU€›±»!‰ø$*8œ9~øSó\®ù ÿ¡áUÞ'O)¿³DèÃZ|»‡àW Ø€}è?‡¼»O¨çnÏ"„´ò¹ì¢A°µýòÈAfë#€Kë—<®4o]ªýÈóñŽî¥-餵¹ÍÏû,¼P¥^NOt­õ'Þ|'s¥×ZðÁ«vGyâà u/:Ê~ˆ:¢©~¤ïÎdòäùå«È·öØVËž&#Êþ½nö:±Ïw l‹HÙöŸ嚦³+î® ë*r²yⲈòÌ31Ýr¿È܇ÕîæM“õŒb…¶ J·¢MPü[gnÐ(}*æê¯W+;/ ¹`RX†Zí°zä¯tï"¹cˆÐ*Ð ¾šØVgæªÊópþ¤²âõa„’–vB0gŒWœ5;²O“6}J«UÊ9E¿ À`ìr]¥ôÅ¢ÐqŠˆ½p«Z®C:y ÑT: êÜD‹æ©!ù,ñ²4.ä§%˜{Z˜Ê/Û¶Ž2›ÿ¾œaÂE~GVݶ»¨(×L—‡Áš«²êC-}0òËmGËC@Ðøëã(ÁÇ=Ì^¨Ýªð¨§À Ïe’ÃÆ×„Eï*œ4ÈøO{%”yÓ[mW»_g¿Kìµêðì⃵¡‘ê-à H?ÓP]Uº°€½ ó®2è kãΑ¸ sþop¡é¼d®{¤`§ë÷xþo;gp¶ý€euÉ7Sh43…9 çk\Æ­&éņUàqàªVÙ~C^hìƒ CŸªk‹ìÓ"wg…¹%/RãŒ|pô³_cüÛéÇï´öèv†6» Ó|÷™‰]BW¦Zÿ%Õè¶dzýTwžàY'–Ýýÿ¼aùE(û®‘äŠëÉ“ßq^·™ä$/%-¶T^ùÙGºo¸B8MA–Ýì·sò>ÙÍ–×﹋zˆdŒl”ýµ^ „åòLI)øþ…V4ãg%ý¤…š$ý¬[À§æ°.ã·±GïϨŸáUÝ[’ZG·eý%)1[E„­ÉÈšëÇ·Ðæ]£9Áè¡,—ftý¶¬6HĽX$¡%Nô@]K´9ÃÒ 2ßà¬Ø­ªc­G…2wÑŒ,jf—»ÙÏÕ¾ÖR'ɯ€„ äÜ[G†EEEú7Á»»·Òfj÷JÉñ 6CbN‰“ø ¥°I›òðÞ`u®Kòg€‹: Ë\}bµT©W^ê²Ö¯M+6>ıÿ˽îWŽt Q\¡N9rúHà_¤i¸ãC¬˜=V¢'Õ_«S¶_ƒ&L¨OXÅ |%aïL¯¸wÐì"–’a" I*ßÝ!I{B¿uð<£™tgÖ\›àL©·‡:Qr)þe :J †½¤ÜB<óNFÝ0hH(ÇŠ¢ Lõê05–‰‹Oûý‰Šrôý¸Úšäð‚çCÂÇzÔ»j^$‰ Mòzüi~¦@è˜6µÍ%iW$‹ÅYy.!éÞ¸Ö̸€·qÙøª¯KNÏ- ƒŠå¬#ؽÄ®«œÝчfÇ|j«àßI%Õ¶@T”?ÖŇÛM bípèaãCìë«Iºƒ'TF lM“v–9Êÿ;×B¹µaÚæÐÈ£Dì‹oâ$E»&ϯUo[³€‚¾sd|]‹H#m—&ßv¦%ÙÕh"§Û«€d-JÁ²ç.€·ák¢ÿÚV³´ÃDòÒˆ=áàä²+i8g©„î—¿Œ©% N“@ºÔ2~`-ÔÀ…®gÒk°x«i%ÉÊ{†ÁÆõ|9Í|:Ègº•õÁ4²ý…{NoEÖ%Í-ì7‡©–o gŠoä”]ß©×ÊœïöT2ì]/X±9š™ê²ÕF›UåNø6Ÿ‹B‚ w>cç1E ‡¼«šã}bæ²×YZŠ‹‹ÿ%?&þv“Ñ;Ê÷×hC Dv(£:Ê®ül²B¢ôæÇÏg½V|›:Ÿt WþHƒzÄ;/œ.â†UÂ`å‹b‹lê5ü–vâÜw ”ª(fLµíÿæ n²^_µPæÞØm^Œ«bW*Ž-LÙÇ3_·É"MJ²eáú%oVa·V{ !rãkú¼¨W«1ò÷=‹ØuVö¼¬ÝñoÝ.Í]³[|—MÁÃ.Ž-æ+&2³%ᄞðÚË[!Áïí«û¯©Ç†¯IØÆÈ)‹§ú-V Nñ¼J¨’Lè-óƒ ކâê=I¬oi4©Ì0¨Ù°\¦*œáÚÜÿÈg‡RÈó»^¾.õÀËt͉Çoï²PH§Y™nçJÉǶKVõKäëîýÊh³M]Ñ ØÖ¡4ÒŠÉ»jÐuR›ÒÈ/ÿåÌ3”`ç; ~È¿fæ¾ì;ôÖ·Ê~'œ~M¥ñ b×YÖ42àdÜêo}8¾¶€ïDÑÛ Ûë8BÛo+lé"fà4å* z²¼Š­_ËQúBÓ#Û7w-¨¬müüóM trØKCôÈM )}Þ‰Ò£ƒŸ‚‚ÃẍX€Y¾†€Ælë¸K–ûYûC´ Ì‚ ø fšOŒ6ºìúðžapsÁ-6 †j¡²t"2νDAõò/ƒÞ5TnL[U…-–´nþ±i€ÔµJ¯8ÿÊ$´‹”äa™ŠFNï\ sÅáÕG´,Êt&(ož©ÕøP;¢-ŽAÑbcªqŠÕÁ•,4Ã!iO n§¾…am-pÈv&ÊÂL6Ñ2LÅ ¡‡ñOD0à*èaN~,RÒÕ^‡:S6Y€L˜æ"¥ò\@ÖåLþ¡_°ÌV]KK˜•[Éõ±h-ZeªrÆD"í:÷›Oò[óNÓorÂ7ýw×§¡é\Ïü1zgEFŠ€xmS¼*™YøÍÂfer 楮ò½‹HW ­ÝЮùèè8× @jTÇ­,5Ñ%»T›•ãÔó¬"üÌsJÏ ð'ºË3:íTPº Y)7z®wS·ÍfTƒã¥Ca’ÖÉbœkkD•È3¥DH[äv:Ð>³kF",H~âË5OF‘V¤yùÞ¶t‰ ³7†ÌØj%Œ”¯ Ö+!‚°÷Ce•)-¤ ÁJcmÕ5P Ftý þsWo½”¹¾Mµx·•¦m›×¹Ð6fˆc2R¹ú/ÄÌ^o¸„R> ÌUqd‹Jå”»òµ“Gx­®vJú TüàvKµ-~,gGO8<é4å4 ‡—t ºÚÎñ/JT“SÆ2Œ“Z¶*[b’8Mj½y«¥+ŠGDßIF•5¥Ô ð&÷Ù ÀšCžê‚Zÿý%ŸOw·y›’2Öé-áŒ2î" (³'…&1Ds%pn'T‹b›¯ôyö Oj•4 ’G´”ç ìVª`2! ÚÅò½ÅæyŠ6 ‹,H¸<ΖÙD`œl+ñyFVÌñÃØ¡¸ ê#úiy_ÉŽúìÉ}¬w{6H„•·©OÖaK’ËRQZwVq‘ŒzÃÇëRÐ3D}¦äŒv¯}~Èß\QK@óNJ±i™.^€ÿïUkÆ” OjYo2s±c½,LÀYüÉb"|Õ/7g—9 C{*Ó!Ì劯/a­¯ qàra ;¥Æ»« ¬šÖ]{W^)̵ڴšqÌždàîÈðj’*ÛX }ˆ¾—Î6VÝ·ªƒÙ¯©…ÙÏ^;Ú £JÖ˾æ—YÁå-É”jH¿2`TÅåòKUæÁo%€'\bŽG˜ ¿æÁ€¯ÓïM"YÒ,ïØa]ÍNªxm&ã­ ˆ£°Ø±xŒHòÞrƒ? H <=OlÑ5“³Ä%äè3–efCšãíi$ì@6åÿ›¶ÑƒýRêÆ 77ÃÖ÷ڇׅ­åä½”ä$çĽ¿¼ÙVÇ›çlÄÓˆmà©õŒù[ç#ðOÓ}F)–ŠÈŸÁX΃{–ToBׄ+Úƒ²ÊRnd—1„Ôõú¬¿¼ˆúQ/U«=±¤ÝÏËÛb®oÕ­ùŸ»Wkœ±wÿ/Æé{f¤žøï_³ÚæÌ¸ ~W’ú}‡ŠM§`$ÌîgýT?¾ÀíÈj máí"å9]ÿ ßqûjd/΄5‰§ÁI~2-wy–À9Óè¹ ®:|X³Ðƒ??µè(ÔÃgÒ¶ŒãKúõÕ«Ió^ìÀÞ$T¬&I’Vµ}Njè X'!ˆÅëD¯’½ô.Ö°¬±9&ŽÆÞk*TjÇ“`î.Gª ¦j&z“.¢4M§Ò7ØTorY›zŸÅ^aÛ"PÓÅv{‹·žk e'³+2_ÔgG‹À7‘]ò÷•IrPo ˜²™ 4{ÿ¨êYà$Ûµis>Í!äÚiûZ©e+ÂÒÇd#â÷•a©°C£-\–ƒÔAjg…T ¤äšÉKìtrÓâ‹›U»ézQˆžxÔìš‘µ§Øo6iµœp¤AO2YÈÂìã²½ÎY˜E‰ÀšÝ/L&W‰¥ÿ ô'?S%=ŽklÍkæE÷ÂP{£r& c0„¦³L«‚7(sÞÜý¬ÚU«£­¸#ñfP.óèÓÐw—À ›è®B× 'Òþ’ãÿgR„ï&u4ø|Z½£« ãš³â Ô|.¢©^¡8Ó*cøáº‰£ÌèRR'pNÙyåñ&_ÿ]0½åÉe×}²_„¨Éô³‘Bxm¥ò®¨H mÍ³È 2QHûnæ5Ä™y÷»ÚõCÚÝ>ŠN”6,P$N–%µ +3=Ÿs=-NæÎÇgDí'zèH„Ù&¦:߀•1Ò Sݸ5!l$T¯MêÝF°¦Z²Ù|HÊ-¿‹ª&­+*E¶üðsÍW›jî>gŒûì!«ûËRýý‚a+4›z¸‹`^Ë;q²ô`%µÒÉâ&ä5Zf'ßÑÙÉ`'ŸµHúÍ‘Ý"ßÕAÀeżM¾!ÌÜo ‘Ìm¿l©èaÕ$†Wnï z–´a…ð/ c¦öB¢\ç%ÃßPf*ãYä…ºÈß» ÑbjášE €Çµ€ƒt˜F6, [ŘŒÌBèÊj²ÜIÿ$-özåGP‚MH»¼¬P^«Ú±&Æà A"TÝÜÉ1hý‚ˇt»F‹¶¦#c:Ìl~?¿ñUº“WÓ)òŠsn…‘f»sgAEoÏU¾º6z)!!…CºÚæ QY“7EÝ$?ž Oämre&Æ`ì»™Þ~9W—šEƒ«>U„’ü®âŸ`¢}ðoFbäüu¸‹oÚ9Ö!õ Ÿ½¤(!Y„±G$èüÏÅ 8OãaU¾ïÏxÝRv*àKÁç£BõüBž£UQao,-{I4Êc‘pþ*`ÑÛ³¯`/¶`ý®êÔ·žœš±ga¥à±ª¬SÓ¶X Ú+çgÿ …1ðïg<=œºÇV M%k‘‰¨hƒµ’ ˜`íCpÁ¹–üÉï£á1¸aGÖÖÄb¼¸ÿ¹h§rê1WÔ-í€ö õ~15W53ÔþÔ’ô½èhÐUë†ÝÕQ¶jÂ+ùª§1xv ÿfso/Aè~h¥UÂÂCÆNÔLŒ4‡mŒ̛cSyõÑè=Š%1€5¡Bã øýß#šrEGZZŒ›—[¤KŸmûÒSãXU9Z}û|AtqÔÙêj:ƒÚŠRg…Ä'… kqñqG±2G øA’ZFÄÞß„TêMêòÜ:ð!êæ˜ä#…-m§©Ù5:=C:ûtÅ^b@2Gú8:Õ`<‹t´­ÇÑ,Î( q¾µ–µÄHTsÞ6þ.êfm§¥çù匡X62Ì÷óŽšßy"*ÿÚ‰û•¸äå¸ ç¤EtslBöÜq2 JÔX;.ã]Pºäðà•Óÿ:ˆ‘¢$ŒZœØ<ðÐÕkl<¹ç”±ƒkÀN¶gü±(å±òC› K܇§_zVÇÐÂÿ½ä¼¾ÇÐaF`›_4ŽL‚å–¦¶Ó6ÙÏÛoUKOW|²'’ M…-rÉGÎó (BQù’_¼NÖÖ·ækÓY»K÷ä`ÈI~pëËÀ…B=µ›ÇPÑHaªX>E6„lÁ¶úâúbÜZ¢\_àáls­àzë9•£›Gh’b—5ýèN8Ï}à^@”£¢bb/¥M°Àí·ò 7@õ™óµ¾åä8Côå$ A5Ý®­å¬ñpÖ߉*=õ‡èe¯·l¹Š®x”yµ,¨ª«¹Ü{þþÞÇ.Ffʦ¦_¿_µ•±ÛŠ™—ëœ'8Yzò"ïHó|¨"EGÕZñbi4¦iã¹ËB=þë>$)*ƒ½ åßÿ£ñ±ÌL&s@(JYåºêþÍ*bú®Ìyy"Àre¯Ö›êÅ¡¨[Õ‚×tÞ¢g,Ä* K„ru£Í­/sC3êtoá:utÉZè”0yð·ë °#›£E x=w[ây¶µg{£é€òÑ-Å-›í‡~,~Q¯üWüfÀlir¬©Ñ¥ÃhÇm"¿;ù¦¢Yvbù:ót*æ¢[ãk­~-~£§!ÿŸ8”?sq†lÒSæÓC«?bäÖYç9E>J뎎¥±¤b@Þlf2)Ûh&#K“ŠÇí,üÀ;ÛÃ=A*Yx¾Þa°+Äi¡wäN@9Xl†©âtÆÎs¿7_¾1±õpiÂvøØŒ`~Ìø1êŠÂ7*¾mÁ¯™,7œoò¯ä«£¡Hßpfb°·Ï¶‘ì²5ö#mjÉŸu?]ØÛAiD˜—cø­¶·×,q¹/´M»¹”ˆ WL:¸‘·dꊴø êM›Š`y&cQ’<õ‹.ÍA­úQ‰ß;HSP*?ÁæÆ§4o<"Ü¶Õ¯× fnòð‹¥ëñ¯iÒ9“eè îŠ9þäæüÈsè½»¡Ÿ¯ö¤÷£ø|]IT ËKS\¡^AÆŠÔ=<ý'¶'±±]¤8¿ÜˆS ´¤2ç…6f&ÿ›¸ø!·~FyoÅXLªf1ÂýŸ¡ÑZ´íåyp¿“DÉQ9¥Œ¤.\DÌK­¨±q~É#X‰¨•^R¶;oï.ÉÀu4×°L¢i ’ tê1.ì%qsžá©®Éì¤8À÷ÑP¸üú~«¬õa{o°îgö'ܰ ‘ª´ÕaéD¶`bÓf¬—M1q´yºkZXùÃÕÒglNÅ=·Ü'"jÕùŽ$ è}g– Ý¡÷ ‡Ïò„µÎìú„‚©¢£UÆaÇ RTˤo¢ó:9/ÎñPòƒ{O¼•L˶pœ=¾g¸Øß‘z±T²cC¬¸ˆ¶òÈç¿ä5cB)åØq«„+½­?®­ë,lUÑJÖ+Sê^Z4À_~ O¶lÖר-JQGM=Õ¤–™Hç|­<ïxhu_ ug±%<Ö`¿…ŸíÚt”…‚¯¶¥‡Lz.DZcï¯>‚˜³.nb“/¤»:fâ1Á‰6rJߤH€2vó§Lûn0Èi“ðàºý‹Bø…N¾è&¬WTòÕ½<Ç(ÙÆÒž¤ý·³.vÉS¯7í‘-SmÞ.²î—ÔÅí|súv2}±Ô™*Áßñ®.{õl(¤ã +Wݯm¢…Î=ë\ƒvMuGܹذļá9Ào»Z½u»Ì9Ÿ©7iüÍ6µ‡韛ð³@Îf6Tß\éì[f/£ê´Š»tàgçÁ=¼ fò5ò7&ä7ÚT_qð[ξó®™2P¾àe;N·÷møÂ¢¥õ‘šûë½~sØnB3zbŠÿR&:SÈ"î×ÛÊ;½ ¯Ÿn¶B¦øà΋~g¦&;í|”_;D‚èãÿø93{0è .ïãáÇ?±vvFbkGjb l|0ëï>ÏÀÄPTÓÕO1´•Ýáj1i³sèˆäf5?Ìø¨Ãû/Ù9GKlÙÂŒ·UܵÏÍÀ³À­+u—V¾¡yp/&._9»D‘Ä-4¥¿‚Íþ“·†À£˜1–½¦dÚú’äÞx„K½ï õ­á»KÉ2¿~`® ×5 KY*%‘"3Óƒèað뚣ðªú 3¥†lñħ0_îö*­ilþ¸‰"´hètj…Z_O–vlP"Uo’õ œ4*ešÿ†I€9'q«‚ .AýÇ•’¯|È=tSÒ‹¿èÏb^z(ëžÊ©r ³+fàŒ{ÈKÔÐGñ`¦]7!Ϙ¢©Ê•#+8¶ sÚ׉zÄü¦ãA50bɇºÌ*vo«§öü§`ŒÖ—U[h.o-&¿Â©]¤13M|X‹ K0Øço:ŒrÑNÈëÉî6þ\¬è#Õ ˆ¸É{MaÀoõ1ž‰ë‚V‰½³— P£ÑÀÇ/&\a4Èí›;¹ªs`Pš”Ó@èiƘäÔ·’¾¯²œ† Í–¯÷v/*Ÿ`@šÄl•C¯Åј·–HõòË¡Ízê­¼=Þç᣶ç'¥ Gùõ…Z”ŸŒ~7Õ$3»&´£Í¸× {˜JQÁdwéP4pØõßA·Äp¡Y@{Ÿè"ȯéŠÁ¿ €ïŠ’«oÅÃE1u(èèÍ1 üag&Exù<š÷x…fÝN½ªù-¾ÞÖ¦®ƒ†ILJP\aÔ^=QE¼ ùºKey©¶âÂ_fëF)ަŒýöûRõU£E w3ô¸ÝÆ·1±&ÞûÀÿp‘BÜ«¢¢mˆ€K3w¢§IÛ[Tܤý]¥#§CÚUÀlÔÓCT™4)ªzª‡Å3ƒP.Zi鯰—Û†Š0eŒ5]q†ä;,g ÃìSLìÈ­‹¼Q">SÓÀ]( óñè{xÒàû_k†¢«Ô|3tÚ•ÁäŸ,ˆY ¬/ QŒ•láÌј%ÄÝôÃä°Õs°Ä‡¾ Ô&´’¥âcÅfËs+÷fMbßoo‡¨Ñ’;zÏZß”@WÙॺÕÂÈ0#ø\ÀÄ­tHçÑ{–‹çÚµÄ<) ‰^Eh“~?úNíšMÝäÕdz£"È!̇êíPøm›)ί¥fWÜ&ê!ó„pœµŸwÅ5ÈOÚF26ws¦d à’oqyÅ~ªDy‰ýf} >ñRL÷i±ƒ«]!‹e¥0Ó|D×Z!oªá P=yaÀ‹Øk®N.SÂ×È$Æpê‹ý àV‚D3g9qì¬)«ÇË´cpëëÆ=­ìx¾q€%z#Áª|LÛJ[@,ÞC‹t)0«pÐÅ ÁÌðÙ® 4¾OsÜš-§c„Ä':µÂ[±ŒÖ:.U«šÇÝøô»u'º«ZÑlãCƒm7WŽ?W¬ÂÏ`¯˜È8]óS+Ë:ª¡]ç›ú‚èLß]×ÞIëCË`!oÌ€X³á&ë­(Á=•ífÂé¸>mŸ‘‚G_àpêý†Âõ}VPÌñ§D2é6Ôå'_.“êöüêËt‡_Õv›Hð'ÇÔ¦X9¸Çª»VY8D§ô3hFåÕÔ±7ÝnæÅï{÷Ò3Ø·;X¹Â3ŽÒ@.Ëñ)03”»œZÎp¢WàæÆ‰OfNáWÑ.ŠëŠ@ƒ-Z2ƒ•IÁ '_¡]²¼¼¼¶Wa†3¥Žýû±Rå‚ö´©-Eë7Ô/…BÓ&xøLŒ$ÌÄJ¬ H"QºŸÐÝ#aËø7ƒ.‰à¦Cñ䳤 õùá÷ØxE¹øÜE2It<âe ÛÛ×Ö7)óØG¢ïU¹Þð_Ð˺kŸ £Êÿ_!€îÀ˜ÁP€J¯ïÞÛ–Ô¸¼1×›ŸÔ)?ÀNØŸwŒiôürœ=YNº›l5ÝT|ý­ä¯¹ûavø»Ÿ3¥Â:„w&îKþ,g’ÇryÀ¾L„Ñù߼ã³dyýÅúŠJm§Ó¥UÖÀš„W¹ž}¶Ð —2'›ƒ#âemÉvº\oµ  ûÜ’bº;WLAä">½ò9có)_KL5šæá9 p9 êj§iškÄ:ýËËðÀÛ °FA®1­œƒñŠo"¥^F¹¨¤…ê__ |H3˜7{éÜúZÍöµ‹1õCCP+v&‘WÁtŒÝR¦Q´Ã–öëÀ‡$÷¤¼VøeøAÿîUâu=L¶5‹ÚÑՄص‚[ ±môc†¿†¨$ÔØ¾%Ù„:éžÓ%ç•óÉöÕhÜ,às6÷fÁ fÞM‘6|q.o;Œ”èCJºõÌWä«“€žSTAåÇXXòpÛ>8ó({»ï‹{1îuÈ0Ý£J°!៨¿ë~ö>[­ÀÎþAôx6zAmssü!J^›Z Þ$ˆÝ2“3ªsÞy6 nÊ¢­€fƒž1›úˆÝý€¨ÊžAÛ°…Z~£‰úf‰A‚Wõž7¢U®IUðvPˆ!±Z˜{£í^û*Q ÅÙCûq9—·:ö ΋D.Ÿ9¼Àm¦|¡÷`ؽ–Ì%®âZà9¢2Ï•c¸Q#ŸöKÓüÝì¬zôó~â^™7ÜÎì…•Aœ‘zJ.TÀú§L°W÷™;%ÁöM~„Ž× ޳y¡Çbæ0$Ä:’ÝéØí¶Ú÷ /ú—Øþ•ÀÛHUª­œù’Ç}rº£€(J^¿æ·ÀýH•ð§YW~ö:Μ­&V¼4#V7Ãìåݘr1uÞ‡‹þá,óEhWöÃ~c§÷97R¿ÃëO½œ ÿYÃoáýè»åKÜ1¦[•²áÿ¸gú)-0‚…ÿÓ|"òjæÖK)onâ ‰£/È1Uæùq@ÑOG¸Ø˜âÚþ@?JqJ‡ œ‚ÉøD¤›ÊcˆT×ø#ÊZÉuÀ4ÍþÞ„P‚L/,R²ÖF‘hR0«æ¶¢Ð—û©¦ˆ®ÎÂK =ˆ± ƸvÙ!&† ®èxeÌ1CÁ"_uâÒÆT¢Þ³n¶œ÷«Ä½TrîÈžùÃC.×as0Á§(Ý{Iƒ]:ÕYo `ž[ƒ 5~Ã_öçFü†‰gh,&ǶRHä{jˆ»ô¼“`¾•÷¶ˆñ¿áeß.Y,Ì ˜q„r|?;o[h ‚ªGral¬“Ó3]DÂÑÝ!Xn#É3Kö$ú\m€*ÔùdiÎö5ösò—Ïú”µÂ£Dy˜ì¯¦½¤$ªBùcÎ{²Z‰QŠÒ®ÆP:>,oõ;m1°™ì”mßP¼‹hÐ÷mñçË-˜÷éѾǂ ‘Q[,ÄHßlä|ßËC<%Ré¬3é†3NØ›r”.ôõ¾ñýYëuDòŸú(huƒN»]›rÒ>üŸ”®Ö^X7F;ÎaÑóT”A«> äfÏ ªÌpÁÄ1(˜ 34õWÏoO× Àö<‹ŽXY¨Äµ_8 Oò‹¹›k|Pðæ…ív_,ÀS@±}kÍûÕ¤¸®ñÐçù1â0 çM 1Ó+@&ù -!ÝŒøhû½^V*Z"=©&~‡©Kh´?Î)] n×úÍ«íºTTBxŒ…Èæ¥ ˆrCÓuàç”&­½œmuð¤Ìg¯4Üìq û!a»FÂÌ,QôB§G¼Çdseù^˜E`^ûù!¯¨ÚcôÂùÛSoÃ6ù‹2¢ˆ©§né-”œÐ„µ7IK v+[3F@ЯV.²G K–Ri )·)ì3ê(²òÂg"fI¢‡0Z+BîçE]+äÆÔáéêóQûû:;d=jFòøJ \5Îí!ýsüàËæÓŸg(Ø”W˜w‹VÇm-–!ø #¨ºÝ½È·¤éIÿŒxî lKµ¨%hÚÔ’Q+Ôó¶Ú¹•ÛµS­þq?ñ v ´;ž‹æÎ }6ó•.yõtPwo÷eÎæA^äI§M¹Æ=ï@mšÄÑÂ*Î!3ï;6òƒqÏ é/®ØùÞ·ˆF óK£W!Z! GF”×®?7ó < À]á}vrŽš ›êFžâ$’^»÷/L±¼†Çc– °úÙ"?Ùèz¥¥ÀsRf–úÝ;8:s÷¼ˆœA³Wø¿÷2§>ðÀŸù²|“•­Ú9$3XOceçñá0!Ñ/Õ6/J擵8˜Ums#etùßGj¹[%Dd¦ žŠóä¼H˜ÊR ˜°ÃŸ:‚ÄÊK| €‡ÚÚẮeMñVOFÕÜÓÉñ™uæ ÇDx@ˆÇ˜pyu]ÄvayX–0ßN`ç3½’LJ€ü£®ÿˆ}î–ŸÊ"pÙ#dWºí«À5ƒÆžWžQz‹³ oi8úJ4eYRÿü2 ÒÞ_'ÉwÀèÖR ùüî¹–7¿¥òÂyHªF¾RùÐÜÌ—¾à·Í‡*ˆ—!lº î­Nç;tƒ…Í™›š|eÒa©ƒÜ‚·î8Dÿèi×0‡}³OS²W\eÇ˲AèD-¥-|PkCI(ïåõ·8LK]óz«›³|ýô}!ñë†ÓMûŽ7úÝ‚Y˜HÿŠ÷¢¡Ðëká9]—ôãŠÚ@Èü 33º&¬ñåW>—]è2ßöªq D¸Î":·I`ľÌü š÷h•@?~9vÞ•Åè<Å~k‚ ^Ve¤ƒ¡eŽãlü½níà'C²Ž ŠñºéöÏá áZä9vL×Á©z8´ ™/!µëÀæ©~Ko~ ĬTàFùSyΜêŠË{Z‡ÏK Ähub!üÅÖ¶5ÓÞ "íb™’®`?ØÆAŸ¥”N —¤ö£ —°º.­ÅΉ)˜¶\P,ÿfƒ¨¢_ìB}64÷ÐTÑD~ç{˜L¹¥]‰j^Ò M’€Í" "`IZñÖˆ:æK¼¦•å.‘e³b ñ–3ú+¹¹õñ`Ñ?¯2M5¤cEM¢¶‹ÂÚíÔAˆ & °¯µo:„•™Þù2Å9ë2yýë‚´´ ‰Aò¹nßš¬© Ã„9Ý~ÔáN>….ÚJTúñw‡—͇{Éy<ÛpœŸ)¤‰L:«‹Lº-zËÝMÿIyÆ$Õ‹j›§4ÝN*GÐWì…ÏÕÎèî¼Þêš [ÚȆ4¬«Ö BƒBV ”š‰*Ü‘¼1´ŠøiÞ1ð¿1pa'Úœfâ4ôé׊DÐ*ýئ­,Œ´xN*=Ð_19k,F]lh¨‚o]FNLoÓ-æ|3ñþ,9‚ÝGïzU3E1~Cë_™9ñ8Š|!ü[Aáßš?w”ëIÝÁwޏ ñQiGlpÝ^ñcóg_[3ù•«XŒb`9µU P¥_}¦Úþö·ø†‘H_ŒR"(wû8I^‹k¥±ñ¨Ðwg¾¸Ö!Þ‹OÃp-0$Ð<pºxóõ~Äç{ŽÊÐÓ¥õ¡‚g·ˆä£CÑ`ÌžðkõÆÞïF0i^¨Ché›K¾ÓiœöjÈŒ²ûB®u¦v1,óÍøÆÿîdóôî-Þ€…ª˜H³\‰nÆTó#M¡ÏÒCfUèž<“ï&Ëá Õ%ïý†ðC^w*üµðØ_íú áæ•¸úÁâ¡JvŒÂ2þ•ÆšöaÞùç¼öቌD3‹Î]’uX1Y4÷Ú•V[3犈\È‹(šr#U#,ˈW¤Á" ÝƒK›˜Ž!ŠÇ[ó°*ï÷F-°ÈÓ §—Hè&#Ç?rÁd9¹Û‘‡E.*„'¼²I•ÙYŠP,ƒmoKÊ¿‚l"!!ÞRûP§ ‘T©xy‡ãëh¶3"ãgÙ‡¡%Ñê—$lü¦1–uÁT&Ñ® ¦yzë4í´ãMGÄ õ_§Ó?ȵÀŸŽÊ–r@<³\A7r0S!ªDú¨þ>•[¢ë)?û9Ï9ÆÇ¾*¦C&‡O&Eƒ3al°ù¥Ü°nËÀ¢xÖß2†¡ëgâæÒÒ¯ܯLWm{ Ý ðvMwüî† ‰Ça•&¯ýºÁ|¤ý޳v:±µ%S'ŠÞs÷è¯ÜÓWô1dN±ð=|sÐ §þî2&X³Ñ§ˆÓ#_`¤ iá÷Æ5|Ô’‘‘º2ÂǤlÝȤÆãñÃ&û´úõ 3,PI<2‘cIuãð u2è &ÇV•€=õ±ÊZPìÎ9”#|”ýâäÍ;!2º%g&ô“RVk¶;ˆonaTÉz7k¦[E82ã‘%Jiþ÷àtç'Â{xnéÓrÚ S­ 4³¥_Êt{l›ÜèS¨u4i$}Ì|‚íÓ*7;nªC^N+ŸÇ Й=hïëùb´Y@OqÄ##Êâœ2¥Óëmjdבá‰Þ$ ôl&.vëÜ­/O€}øÆeïàV¥û£ÈßÕÍó‚=ëª1 ‹Ád% žbJpPÌ5w‹Ê¸. EÕ ¦î&vLIø%èªl{8ý^d` ±$’à÷ÓÔ )r:øSP‚>c‹¤ÅD•uÔf[ª¾ª3æPŒ@ùݳӹäÆs<•«Wš5ùQ¹¦K !ämWB.4hër–ðT¯Ó€­-£Û°e÷È—°1œqŸ½¢0É0i&m Êþö^QIT¯yY]Ïk‰_R(£y8Ã6™E[ã†úæ\Eÿ-m}ÔMñôÏ7—÷ã:¡uP½v¯ÐÈ5Ýl½vÛymà p„"‚DõýÑ\ô.3:ê| ÄÅܦs±™T1gá·«ÔMë6Aë¯ÇàÊ`LúIöŠÐÁ9Àd‰äMZp<² ù¦hSq|´û[ÄpöÞc,3B€*W}/)½ÔPXаY=Ø} (µìÎlŠ'ut MŠtχ¼‚öŠÅ8½+¥ô•ØH ê2â&ÿÖ7j/e]t§SÕ…³ö&ºzónð0w]Ïxjø=TÖ&)›ççh’0'â[·G"á­óCw hÊY¡•7’qÿOièSIXM7%ì¡×ßÒÒl@"aWA«MÉ=t>v´/Ì)Ó¦„âBtÛ/¼o‰ÊxC¼ Wùš"’)»oûíÊyQø8~l iNòö¥–@l¯¦¶àf¾šй-¨³×x‡ßªJ„è:®2m¹YzŒ÷jã®ZÓðva²­0N­¡Ø4Ðêö+eÈ¥šù³ ÕºžþQÞ$ÝØ^åDÛY0i$‡3³&äÐð=s¦P¼³½nàŒÉí ãñì¹Q×-ÙÓÇr=úù4°z„¾§Dù&¢ìŸX•h×qý)O—©¤»Û¦YŠdgXb4q>ÒjàêB¤¹¬«,· ÷~ëoÐ ôì´Ï±©“.·s[ÙÊe'¹‡€ëd³Š;¼?„Oãò ܪãÆô-³ñÕ$—Ói¤Zð(2x‹pFϘ£yLŸ^Œá%Â8²¯ÆŠ øl=öZ´ð#–†~ñ;é™H“›ð+¹Ñ²*M„.úñ¥8 %åÝu~Ÿn“¶sÞ‹ÈÓ%7bõ¯2êAU}†ÆíY!ÅS«òQø»@ç¾r µÉ¥ÐJÑ+@¶D™™}/ÈÕÀ4ÆBÂ~³¬tË+ŒƒÉY“PøŠÍÓh·î^¤PÕßkøß‚–ÍõjàãTshbq8•‘Pë‚bu9ÞqBÜ»¨ú·ý+Yáx‚4 á$j‘íÃÙœê&~~—?ÍÁ¥]œd*öј4Úƒ@-ÏŒŠ+ð×'eçR…c^·!dXÞD‘˜löXãÿ;ªìfO^MŽÑ%+ÅjÐ^ÚÀŠ( Õ)˜Ÿb\aŠ'ËD˜²X” õ`Éøg¡ÙIþ¨Š½DIh J~çÀ—­ B H>ý$¤“œÎWl1õ(iÐ[’ætÅyn5Rœ‘=¾¥q (Û5_¹—&Ôl—òáL»é¶½Îcz†§dÒ]BëG!>à,¼åµõO‰Äß.YyK +ÀÍ·êf§$U‹ä¦ÍŽ•Kb¤aš´Î.;Ë#¥#^åé« ¯˜fÍzM3&±/ׄªV+†€Uøl‹ùL Ñ|ž½júad›< RAÅΔò|í†5o¾¼ =idµÔSâvúÓ¡šrF¥¯Îþ? ”aEQGS~ù>?˜‘*Çó&ùZ'MŒ5 Ûaz{Ê÷Í*ãqº‘ucL&@¯´¡Öh­ð„QÞ8²B'J” ö=ÒS)÷f2»¦FÏ„7+&›¡¿î‚3ÝñïEŸÝÃŒ6OæùìÚ·„{KûÅb:Z®s«ƒx39‘¯Ô,i£9ÑXsÚë6ëÕ¿ ‘Ó6º ¬›Œõ|EÎü òf |Ì3øÀˆ‡Cɹ:ÊöìÒ„J E í'¹×‹q»¢\ŸçFð)IN< U9¨ Àsb•)q ÎžŠ Ó¾inúžRÏà:¤† ·…6E\$W–´k ‡ë©Þ<šƒa–Cþ÷YyÏ dk7úomxÿ»:!y‚¿£øP´ÝæÆ†vëiF$Œÿ< {L÷yuÆ&ï¨ãƒÍ²A5yþú_"G<„Ò‰DŸ›H}¤#Hd_«Ǫ}ÕÁÍëvøN_Ûòmr'BóJÓ[º…¦ÝG\DðL~1Õçü΢´­3lbô…ƒˆO;‹Ó®*+3ÿ…™4W¹7×-j·7 Ÿ3¿LÚ|Ä +Ûj!ˆ{Ý'zƒ/â >žê$ šCÍÚn†x‘$Ë/©w„QBàõ±\%üØî©ó‹™—¨ÕM\™0+¸10ÚÆ$¹nqÊvnÄ›;‰±à¡‚š¼Øg4¢yðT€§ €úP¡fÎs— ŸÛ³É°ÉÁ—S~¸ë˜?«¬r˜k0¾ÇDæa²ãÆÞ¹²Á5­q}Äá'ƒq–K]I¥3edu‰˜;À2'vÇU„U￵OçGpÙ3X*C¦^ $íg«óY5´g8¸Õbí¸ÿ:í»Êg„PZé:DC™u3H4PÔ’1úÖéÿ¦³‰›ñ€¦xgïÙXý¦í¦,õ°íŒaKq€m¦ÏªÿÁÊ±Ô Ü¦3@W|€,“0gæd˜ßä³ÍiaCK1JâZ§­,áUEZŒP%lî¬wà··ºÄqñx·„½äi’I¤š› =‰xøÞ¬@ˆÅ9 ³40ã1‚èðÜ5 “Ƙž:S=Vè¾y•¸¶Èo¤Œ¶ â%@¢a}!Ûìç#Z&§Õ"æ7}ϲRÝÜ*«¬›&¿VŽØågp{¢9Dæ·b1™2ŒÃ£5 ØŽ7ò u#;0ZÝ Êr¦ÈØG¦½®D3¨ŽJ¼‹ýS^êV”¤BÛßóÅ›¡­J×R&ÌÚ˜ñœÅT?Ðä;ëêaiQ©‡C­ÚŽ;râ1ìÉ=î³é¾}عÌÏf~sõWuXÎ?}žUrŸ{Ķ_€Û뙄6u§Œä5 e;‚•›`äÛ=†%úl,y ÏÜìÝiò!Ÿ&¸aFaÕêè,)Äç8S¶ø³îÓ8KÏ?âÁÙ†Ï?Ç%|—h] ´ÎGd%@÷ÉqÇÄÍ%î«»­ˆ·‹³]ÎBõ…§‰’*‰‰¯ûXk ÆAz»ºØT'…&—è–âœo!T„éÞI£î.ßñ ÕÇëïÀi~qy¸²kÔN¨ÄLú³9Y–¸ú:1š‰HBúé㦀oL;:ªãɘ“:S×H]™úU; ðæHnì›ã76s,Ö”æj™YKÍ”×Ï)yÑâ]¡Øa«O®RÆ«¡Å r™¯t¬E^Vj·Ëôóvã±Nʳ÷’Mfêÿ›çUý‰†#)¿Î†& à›‹,@ãƒÕ{VrïPêæ™‘K¸Äê |=Øèì?ÚPL['+­&xbIÝ,0Øš¬ýãj¢±ÉØ]¦%þfŠõËlj –wºžžg›'¥)cÈà8Eéó"=X…ÇÁvyï“Q_bka²ì¼^hIf¢ošñ<žóÅ£ü2 _>GeÁoE-X»êÍŽ®×Á<7ª6Ó}´M. ÜÿÅ¢ôƒ†Ä¹®Z—ïL²bqÄ›À¥¾˜³Mš›ø'TGX$6¥ÊÖ_Ǽû€íx4ʤ])-±Ü0ïľȮÁY4йxˆöîa_ÈÊ‘ËC©;£ƒPŸÉòrcGœ„gjÓ˜ªs”ǩü¢Zî½4ÎuŽváÄ@˜¤&‚Ë›ÿUXš®·L®K3†½Ý„OÀNç°Ö ­§Ê²NÈعš‘ŽÊ£ÅSˆ¯ñô.¢7%  sƒý†tøÇnr»¾eÛg³4<ïÓô7ŠmBúíÚq H1qUÍBóý‚o pÈîHÿ_›ã¿$I ñc-ü‘…‘Ã8ÕÏUK†£½š§!³K°¨$˜$ò\èÅS)x¿o‘N{Išê"¡Ø×•¬f’pŽÑíâk;O¹}×ãˆ(f'mL_wò-± íZí¨/Ú¦v†«ƒ‚æNšŒ›*%õ¶ìl@Ú¾H¤'sn‚ôxW½ÿ¤¾ý´ÿ<¿÷m³ÃGWCR#’‘Tv]ítq—b—"±}¸ÏgOo±ÀÉhzaÈñÒÖÌçƒ^Ó§“›¬\˜ÆÜƹòŽ ÕgÐ Ÿ·¸wž _¬˜‡0Õ©VJ+"•Ø(‹« äN?DFIW=t…|Àc:rç+@:‡¹â‹[üie@£ÛýàŒÇh·J¼¡†Ä*±¡Õ ã0í¯‡.Pfò–|jË: Vz¦-:Ç2êv^‹ÓDúµ MVã¿¥„L½o0V˜ã-™üŽúN—ûÎíê×Î ˜UJ dÛV˜—E5ªÞ‡^G¿ù`ŒHϪ|šQóþ>§î™«ÿØë•<prü!{]8}j/€¾Ïª:g#êà^´Í‚ ¶i‘t¬ðôæJrJŸA;Hz[‡¥ \ðÑç¹c|à Ï/Êß¶ÕÐbC wø-߈ÇïÏ»Êßýéí1¬€š+?…¤šÚKöf 1 ”ÃÓ–Ô]_©†_<Êuÿk,TÑ"_x¦Ó~].NÍñE·‰‹¨ ¯î¥ÈÎìŸÍèôZëϸ¾…Wm‰N0ýW'×Ìêlé—ÀÞ ^çjIñ o¹ÃD؇‚{ƒã¸O\Zƒ?³;þ©ÃÅ'ypÛÜ|úéë€è¶:A.ßEKdP‰ÏúP±äºqŽ$ç¨"#º§ "ãÉù–˜E22aKr§ùw‰”Xîhr‡«d¾âáfoA~y&ôD$Œö-·ä)æOãæÕ ®FŒ¶ VííëWÕJôM÷vè–¨ üÃù˜â(ǧUÛÀ\ ´ÊGúѯAYø:P=P78-øHð4Im²ÞòŽJrµ3ÊjÝM}`òUƒ%Û~ ³ˆÐ‘ëTÇ6ˆ:ÒÕÂLlî HÉ“{•˜]5kÜwžª:—>•BŠUÙ´Ô ìÈx}¿ôóR) ¬ ‰˜ÐË[QæßÖ1,Ü¿þ»Ñ× åO•»Ñ ËŒ’‚DÍrT'‹¥CÉ–ÄJ˜ôzl¼ÉÂXª–¡—$ª–â¼X":ÉŠînìli®'@n01šÙ`ýÁ3j%¤":NtL@ )H¿Fê.»îr E¶ù¨HUp'w*ÿâ¸2îcÚø—Ê©ÚÛÜ%½`j±zͳ¼22õÊLSÀègŠÇ•ÙžtÕ’¨}Ú”uVG³W8WÁ]“Ó˜ßJé*±•Á³°—Çq^ú¿ožÞ¤ð[/:žHPþK‘l·Šàë–<9›#kÁcoÙ„Î+ÿ±„ÄE3àíMÁ®žåËùȨ†Û¨ôVµ_ ®/P1ߌÓVŠ¡¦×"©kÔº‹ð[GìW!UN2®0B”òLpLК-l;6{GžþÝ~ø$ï?à›Ú.{Œ¨ñÎ8f¡*T¹!Ø:äÄ…€>2ÉEÝ4YµEö‘…ÔÄj¯j¾šÌ}phÉ:T@ QÖ–l™ýéƒÕ4'd1¾·< —°¨øWD#‰&(ìžóB{@¨¦ŒídUî6¿ ·çG$vÏ*ÌÂ?8ÁÑS¶Üž°×'S”ˆûD©ZGñzËSˆ:À¯tŽ ÍÌ%ã‹|•*د´ébš\P} “€étÙ³pÀ+;|v ÒZ¨N‹x·’´ôZÖþ”ħ"(C8`¬ý|DŒPà¯ã~•Ï…Ì8ê* Ó†Ï.Mé*"pœK厴ãs¯ˆ<®ì[/2»`á~JºÍUÖŠþ{*·ë¥dˆ:”²õCÿa¤e›èæ6Ä{™âúèÖ˜àãÄi¸Þoâ×à3 #¦üqas‘ÐV‘B,ý÷Õ‚ qž"r–­Á«#·S:Kè¾eØ3”¼öŒt_òÓ§;Ì£Òu¹—³f)?f䨵$Ã6Ùp¨%ûé&ªB¢„?ö²™îäuH>@óBüoÞf#È z³—T@huÕáÛ}åÀñrÛΑ2cN]6FóŒ¡d· !”á“Ãì’û–\A¾õã—qÁWÀ¿:uá¸Ir¦çè ²]S¡‘\Å] žåƒ`éÑWt%=X~ÈÓ[éÙRë†ö„èKÏŸg±¦19¨ÓÁcPb÷¡÷dÁ¹Í#¾úâe¶¿¯ ¥lTû[…œê@ˆBsVùŽ=1àVõˆ¤ô37:Ž>ÔûÒmï1OÆGÉÎsÇrד@#1àaqÉ_úfăàÚ'+¹c*|={ž¦,¢AëN:¯7Ó´U[šJÒ°R٨ב£ê(׬ñÞû[é ¬“ãÞÈêôkQmRCãŽJ$Q†hèt÷œ:s¦Á¦ôcÅí@<9 éáÁÞ{EqÔNàó–׈N¸ü:X ¼Pôƒ„÷ìÛáÛÑ êß$…ׯ:q,êc1ùttØæ¨ræìžÆÎ6(Q¥y¤URmEó'eîSÒjÎN³ñ@[·CF[*µC.Ó绯±–s÷?ëQ1iR!¢… Å…&(Ô†A ôõÝô’B6†‰9yl½µ´å]¢ª+•2£SÒ NËUñøçÓëÂÞZCnšª‡±¼ÉŒ_ÕrWZQ6Ut)¬à5¾x&Úº„ùA!ä6ŸÔ›dŸ‡Ñ³®e+ÙjÇygÜM½ f¦‹—OÿêdÒ8wïCâÅo.IÔØµ,r»Î#vsýÄýd€Gh½êܤ;Öò²yõõƒ?1`êªYÚ±ŠÙMàý~„ã”f¬• 5£.'•{”" Ð5(ŽÚ2úâРÙoâÄÄâÉçqë±4RÔ‹Š±G­P¨fËz+ÔVÑ=Í–“ ¤|…çküe8OW†8Ø(–`èÁÃγPаï-¬â¿È¢˜t÷1>·C(éš­µ¬™ÄvK¼~(<gô{>c:wt|Ú#Qg’<ö¤3íÁ‡& ?‘ÌéK"H\;£.m yÌÈÎÍÏ÷3¹Zë³9Ó:¼Š·{ø jac°è>ßH@Â÷Xæ7=&mº2ùDO GážE\ xŒ§\µñuˆ-9#$µñ†2# ýÚÅvnçrè}¨Í†#õnoðPæ2Šk]x·/Ä—U?ø†ó-r€[ed4­Ì„@“Ú4ÿ‘fqjéó͇mK‡/´ê¾Ù¦Ìj9äj–KÕ±þìàõÖ4¯¼ Œ¨c”ëïÖ Ú ÙðnC¨fGV¤Yã@èK1SZÆ‚x™MóƒaÓöBjò -I=gèAòëkxf} }A¸=Í++¿ôGEÝ›æcÉ;ãcÓâ§C÷&š£Œ Ë(à3¤Ê{'…îÇ4Ú¶¢(ÅÂ<=n`®kØv’Ç=ɯ³j<íbÉ2#ä]ŒWÅPWŸ5:]gɧ’iÌð æ¤p;oÿK½ÕÐ8†ùRàAy&eð èП2ü|ÐZ†\ú˜ÌÜaPWg—° 1è¼ã_ˆS¾§š{] 5u,q£OÙH±vO±+˜«‹½bE½ÓJðY€(«£*ñ3H[í}ñ÷=¹¿6ÚD Foù¸~ŒoØ””œ»¥ä°d‰#3ŒÅ#Ë–ܔ쎀¹Ä¯4!{F¯î¹…å ñÕè¹ÏEu µ­MBc¤ªáL í8»m:•x9÷ä+‡Gã¥QÍ”Ô `mO*ƒ˜»¶£Á«Ô_;‘@ ¼Žþ«ÚÌKB@_©-”œA2rÅ„}¯°s¾Ëɉeg‘ŽÂzΉ ðÏÁ®k ¸¥]öÜ[?J·f§ŒÞp¤ &¶0Ó”¼p‚KÝÒxýKG¤Îíø’ÈѬ!-rЕk§?†bßm°¤0Dý·÷¶$ ,]_1pô¨BcfW†¢ o™¢ˆø8+*ÙÌ“¡­ž ã铖ϨhP4Õ `y]G‘±Zrk°Sôv=¢ñ‚ü°S^DMêL]ØöçakΖ§E•xô.T´—T9õåŠâÖ£'–G«âlÏUÀÕ0õØvZvÞ1Šr4蕳À¹Ê©gœÃåÇG„Cç~C¥„·¼+‚Šl”™HÝ•œ#j'…v­±B7Éδ¸âì½gº‰§©"-Íþ™Â(Ú®€ÛÑëÚD¤V&\%©æ°Ð+S¹2úΰx¹Ñ…"Qà­h.ÜÍönkóéÌk_ ÆÉA:ÞÏä=NC`sâÇ?‰P ¸e•Ù ã‘gºð£úb³ª}~ûeö ñ‰ï{ ŒÁ¢~ÂM§Í‹¡Ý„]ÐBtõ+¨ å/#zsxò¤ñ! ê**WÃm8­dqê¥P ÎÛ°üF6Ü©ÕYs<¼ÉzEX>×:rÚ¸ƒÅ0 ¿¦».ä53Údózm‚MVþ£É‘„*K{Þx¥Íq7€b[ ®4<ˆVoíKÅ0VvkJÍ`›¼Þƒøg]æÖ3g/¿8ø—A~\þà>ñ¨H»ˆ>+¢ç[Zý:u|Ç,'Wìy~€ ^àÁxß ¨ÌD`kÖ(I*h°·u³'Ë¥L?¿)^ÔS .rn­™ˆ°*g Ö¤¹S·ïêڶʶï Å鵎6&86êM´+Jð` IÞø—Xè)dhâë£vA€2$a¨Rlª´b±>ª·ùÍÏ(Ùáö@«ÚV ©f³‚¯ .h¸ëüfæYœtZdÅv¥q“wL(™, ‡ýJàݵEpE¼§žé‚v BÊqNãß 1g€‚Ä](Ÿ žñv!s#üF^È­UÔ§ý·Z ^S…I³Ì¶Àgš”«6€™¼÷ßðn½3{Þ`¯v{óy˜j¨H£>.Wý‡-ÿy‡—öæŒõÌ÷2i‘\ÍÅþÆŷsðouB˜jÒ¯5€ÝH¡ÅÌ‚ðÀýšFÉögHðK“išÏ4W^ Iøæ`Óþe0˜Ã¾I]è<¸Âj[/ ²Ú®E„oŽ ’­GþWÄ‚F:ûT4>8``¤ÞàßJSÙL°¡AmF$߿çRr‘Á5f´@óãtU7þha3\c…Âncb„oºwÜžrØsCvm¥( fûó`Œ0ã$Pêw¹•E O¥°s™Š§ ­´ËÐÜjÚÜ‹þ'×Ï$þ¡˜~Xu1ЧZ$Ò£]F~­½?ï*©­h!fd$qÏOc‰÷f0´TC'Ÿxä<­S*ƒ7ÿËôy9éè°cCª¨e¼ôjÌhïsí•SE6"+å\EÅþË+ŽMé±þ'e0ú!¼²Ku¾±ºÃ\¬¼¦2.mºˆø"%Í—Œì¹Ó¾ÈÔZ+ª ÉÌ3‹Ä gŒì}*¿èÞjal6‡˜gfà£[tð“;þU¶è‰/‘lèw/—q(î¶¾¸+uE¤–ùjë¸ÆèöKóÍ’䀱ƒ4PÈd>Š#±Õª ©¶Y]h} {› ‚)ö}’‰Q‰ ½AD¶<ñÉ®]¹Pk>™ºñ‹`É-§)£šÀÕ*Ö’Éöï4Ÿ¥ é:f†’Û#àvGÞ>:¼\èô|Ò…€h¿þØÝþ ø¥ìŽEüîCÞŠ?¥aH­K%À ™Ž5æ¾`$ezÜÃ1¼OÇÚÉKpÕÕãÄwAJþNz̼%‘ª˜?sG¨B:VÂ…ô¶±Â&ò;…ªÐtî¢úH,JÙÜw„ÅoKýÊŽa9µR ´~•â$ª‡r;{×|„¦¬Ð[í6j ·w¾6ã6ŒYÕ¦¦&ÖëÀHÃ&HºË|qs[Tõ¾xÎ857î…Š/þa‹MÂùIޝQçŽo•ƒ!Ý@Þú×ÌŸ‘K1ç‘Û¢´K4'ÊgDyÉhÚI?TAë[ˆ¥±¡©?ÚbUÜ•‹ÔPÁ£ÐžJÕ]Sx‘äþœ¹Ü—^ÀæV3”¡‰ÕÁKíTêB8¾ ”þ™zAÁ„+£V ³Á?|Ç"’}ü=HúÂAÿ'12ð¶ €5¦²ß_ ./éù#ö¹z¨µþ~c8«²výÝ…âS¡Í6¸õLžÏûX ¨Zmiûµäà ïÖ(Š/Ža BÛH]¢¹‹MÑïÈþJ|8͸ˆ/ë9óúÉ‚@BÄ^=“Ñ|¬Ì•Ž÷úR¹ù¯>Õ^ •¶^G-a Ò¬s˜‚; ‰³ë ¹Ï­¨Ñ' ™ÊÉ”;{÷³Gò ëkÜ×=ÜóË2o· ^ âHØÁ]`"vRp\TÞàƒ¹xJ®DLM;÷}°9À‰}‡•T!‰¶.¥šµ³å‘äÌi}‹°~øužöøˆpFmu¯Fl;ô ‡eÙ™/»É Ûål³…Þ$×ÛfP¤-ö7µ"~AkñÊðZÕ¾é‰ÒRC¿æÑwÀÔ‹i^@ùûq.Khm¤³Ì휮SSG†Öµ…Û¹Ä\I{àÂDʯ¼ÍýÜ?¥xÜÓnbthuPæ|Ï‹VÎ{&]‰TvP«{6¸Š+áƒ'÷,ÿå¦gÜé¾Ä*æç˜Výe]®­È™´uÈ©3óÏöq6#S“'vH§ŸˆŒ›-`ÇÜç”ÍÕ•ÛïüXçñ²õfgÁ|ÕÑŠù;œs¯û[j<)Xn±bò1EÄ•;ºü‹¥¼!¾/6\™êlš)Ë<Š®E< xc®W2¯™€!Ã5}pÆÖ? »rþéµ­Ðà{sÒ¦ã(© Éáø š&‚:«35šd]J”I¹}ö Gü ]kGr À#¢Ÿ»ôóS¶Ã–ñfˆ}4y%r7?虺]D>0 ‹YZsurveillance/inst/THANKS0000644000175100001440000000062213203037764014661 0ustar hornikusers## The authors would like to thank the following people ## for ideas, discussions, testing and feedback: Doris Altmann Johannes Bracher Caterina De Bacco Johannes Dreesman Johannes Elias Marc Geilhufe Jim Hester Kurt Hornik Mayeul Kauffmann Marcos Prates Brian D. Ripley Barry Rowlingson Christopher W. Ryan Klaus Stark Yann Le Strat André Michael Toschke Wei Wei George Wood Achim Zeileis Bing Zhang surveillance/inst/extdata/0000755000175100001440000000000012655404667015412 5ustar hornikuserssurveillance/inst/extdata/h1_nrwrp.txt0000644000175100001440000000344612003613027017675 0ustar hornikusers"week" "observed" "state" 1 0 0 2 0 0 3 1 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 1 0 10 1 0 11 1 0 12 0 0 13 1 0 14 1 0 15 1 0 16 0 0 17 0 0 18 1 0 19 0 0 20 0 0 21 0 0 22 3 0 23 0 0 24 0 0 25 3 0 26 5 0 27 0 0 28 1 0 29 1 0 30 0 0 31 1 0 32 1 0 33 0 0 34 0 0 35 1 0 36 0 0 37 5 0 38 2 0 39 4 0 40 2 0 41 0 0 42 5 0 43 2 0 44 0 0 45 1 0 46 0 0 47 1 0 48 1 0 49 0 0 50 5 0 51 5 0 52 0 0 53 0 0 54 1 0 55 4 0 56 1 0 57 0 0 58 1 0 59 0 0 60 0 0 61 1 0 62 0 0 63 0 0 64 1 0 65 2 0 66 0 0 67 0 0 68 2 0 69 0 0 70 0 0 71 1 0 72 0 0 73 0 0 74 0 0 75 0 0 76 1 0 77 0 0 78 0 0 79 0 0 80 0 0 81 1 0 82 0 0 83 0 0 84 0 0 85 0 0 86 0 0 87 0 0 88 0 0 89 1 0 90 0 0 91 0 0 92 1 0 93 0 0 94 0 0 95 0 0 96 2 0 97 2 0 98 0 0 99 0 0 100 0 0 101 0 0 102 0 0 103 0 0 104 0 0 105 0 0 106 0 0 107 0 0 108 0 0 109 0 0 110 0 0 111 0 0 112 0 0 113 0 0 114 0 0 115 0 0 116 0 0 117 0 0 118 0 0 119 0 0 120 0 0 121 0 0 122 0 0 123 1 0 124 0 0 125 0 0 126 0 0 127 1 0 128 1 0 129 1 0 130 0 0 131 0 0 132 0 0 133 1 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 0 0 140 0 0 141 0 0 142 0 0 143 0 0 144 0 0 145 2 0 146 0 0 147 1 0 148 0 0 149 0 0 150 1 0 151 0 0 152 0 0 153 1 0 154 0 0 155 0 0 156 0 0 157 1 0 158 0 0 159 0 0 160 0 0 161 0 0 162 0 1 163 0 1 164 0 1 165 1 1 166 1 1 167 0 1 168 1 1 169 3 1 170 1 1 171 0 1 172 0 1 173 29 1 174 17 1 175 11 1 176 2 1 177 5 1 178 5 1 179 6 1 180 3 1 181 6 0 182 2 0 183 0 0 184 2 0 185 0 0 186 1 0 187 0 0 188 0 0 189 1 0 190 0 0 191 0 0 192 0 0 193 2 0 194 2 0 195 0 0 196 0 0 197 0 0 198 0 0 199 0 0 200 0 0 201 0 0 202 0 0 203 0 0 204 0 0 205 0 0 206 0 0 207 0 0 208 0 0 209 0 0 210 0 0 211 0 0 212 0 0 surveillance/inst/extdata/n1.txt0000644000175100001440000000347112003613027016451 0ustar hornikusers"week" "observed" "state" 1 0 1 2 0 1 3 0 1 4 5 1 5 52 1 6 0 1 7 4 1 8 1 1 9 5 0 10 2 0 11 0 0 12 1 0 13 20 0 14 5 0 15 18 0 16 52 0 17 0 0 18 0 0 19 0 0 20 0 0 21 0 0 22 0 0 23 0 0 24 0 0 25 0 0 26 0 0 27 0 0 28 2 0 29 0 0 30 0 0 31 0 0 32 0 0 33 0 0 34 1 0 35 0 0 36 0 0 37 1 0 38 0 0 39 0 0 40 0 0 41 0 0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 49 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 2 0 55 94 0 56 34 0 57 3 0 58 0 0 59 1 0 60 32 0 61 0 0 62 39 0 63 15 0 64 25 0 65 1 0 66 0 0 67 0 0 68 5 0 69 0 0 70 0 0 71 0 0 72 0 0 73 0 0 74 0 0 75 0 0 76 0 0 77 0 0 78 0 0 79 0 0 80 0 0 81 0 0 82 0 0 83 0 0 84 0 0 85 0 0 86 0 0 87 0 0 88 0 0 89 0 0 90 0 0 91 0 0 92 5 0 93 3 0 94 1 0 95 1 0 96 39 0 97 34 0 98 52 0 99 36 0 100 11 0 101 2 0 102 50 0 103 2 0 104 2 0 105 0 0 106 0 0 107 9 0 108 7 0 109 7 0 110 13 0 111 31 0 112 3 0 113 2 0 114 7 0 115 25 0 116 27 0 117 1 0 118 5 0 119 13 0 120 2 0 121 0 0 122 0 0 123 1 0 124 1 0 125 0 0 126 2 0 127 8 0 128 2 0 129 2 0 130 0 0 131 1 0 132 2 0 133 1 0 134 0 0 135 0 0 136 2 0 137 1 0 138 0 0 139 0 0 140 0 0 141 0 0 142 0 0 143 0 0 144 0 0 145 0 0 146 1 0 147 4 0 148 14 0 149 0 0 150 0 0 151 0 0 152 1 0 153 0 0 154 0 0 155 0 0 156 3 0 157 1 0 158 0 0 159 0 0 160 0 0 161 0 0 162 1 0 163 1 0 164 3 0 165 0 0 166 0 0 167 0 0 168 2 0 169 1 0 170 2 0 171 0 0 172 1 0 173 4 0 174 4 0 175 1 0 176 3 0 177 1 0 178 0 0 179 1 0 180 0 0 181 1 0 182 0 0 183 1 0 184 0 0 185 4 0 186 2 0 187 1 0 188 2 0 189 1 0 190 1 0 191 1 0 192 1 0 193 3 0 194 1 0 195 2 0 196 1 0 197 0 0 198 0 0 199 0 0 200 0 0 201 0 0 202 0 0 203 0 0 204 0 0 205 0 0 206 0 0 207 0 0 208 0 0 209 0 0 210 0 0 211 0 0 212 0 0 surveillance/inst/extdata/salmonella.agona.txt0000644000175100001440000001046012003613027021342 0ustar hornikusersweek observed state 199001 1 0 199002 0 0 199003 5 0 199004 2 0 199005 1 0 199006 2 0 199007 0 0 199008 4 0 199009 0 0 199010 0 0 199011 0 0 199012 3 0 199013 1 0 199014 1 0 199015 0 0 199016 0 0 199017 2 0 199018 2 0 199019 0 0 199020 2 0 199021 6 0 199022 3 0 199023 2 0 199024 1 0 199025 2 0 199026 0 0 199027 1 0 199028 1 0 199029 3 0 199030 5 0 199031 3 0 199032 4 0 199033 3 0 199034 6 0 199035 5 0 199036 8 0 199037 6 0 199038 3 0 199039 6 0 199040 2 0 199041 5 0 199042 2 0 199043 1 0 199044 5 0 199045 7 0 199046 1 0 199047 10 0 199048 3 0 199049 4 0 199050 0 0 199051 0 0 199052 1 0 199101 6 0 199102 0 0 199103 2 0 199104 2 0 199105 0 0 199106 0 0 199107 2 0 199108 2 0 199109 0 0 199110 6 0 199111 7 0 199112 1 0 199113 0 0 199114 0 0 199115 0 0 199116 1 0 199117 1 0 199118 4 0 199119 3 0 199120 1 0 199121 3 0 199122 2 0 199123 6 0 199124 3 0 199125 4 0 199126 4 0 199127 8 0 199128 12 0 199129 9 0 199130 17 0 199131 16 0 199132 8 0 199133 6 0 199134 13 0 199135 4 0 199136 7 0 199137 10 0 199138 3 0 199139 11 0 199140 4 0 199141 6 0 199142 4 0 199143 7 0 199144 6 0 199145 2 0 199146 9 0 199147 2 0 199148 3 0 199149 4 0 199150 1 0 199151 2 0 199152 2 0 199201 0 0 199202 0 0 199203 1 0 199204 2 0 199205 2 0 199206 2 0 199207 5 0 199208 0 0 199209 0 0 199210 4 0 199211 2 0 199212 1 0 199213 3 0 199214 2 0 199215 0 0 199216 1 0 199217 1 0 199218 3 0 199219 0 0 199220 1 0 199221 3 0 199222 2 0 199223 3 0 199224 6 0 199225 2 0 199226 1 0 199227 3 0 199228 3 0 199229 2 0 199230 2 0 199231 2 0 199232 1 0 199233 3 0 199234 3 0 199235 2 0 199236 3 0 199237 0 0 199238 2 0 199239 4 0 199240 6 0 199241 7 0 199242 3 0 199243 1 0 199244 4 0 199245 1 0 199246 2 0 199247 5 0 199248 1 0 199249 3 0 199250 1 0 199251 0 0 199252 1 0 199301 3 0 199302 3 0 199303 0 0 199304 0 0 199305 1 0 199306 1 0 199307 0 0 199308 1 0 199309 4 0 199310 1 0 199311 1 0 199312 0 0 199313 0 0 199314 1 0 199315 1 0 199316 4 0 199317 1 0 199318 0 0 199319 1 0 199320 2 0 199321 1 0 199322 4 0 199323 3 0 199324 3 0 199325 0 0 199326 3 0 199327 5 0 199328 3 0 199329 3 0 199330 4 0 199331 3 0 199332 3 0 199333 3 0 199334 4 0 199335 5 0 199336 7 0 199337 6 0 199338 5 0 199339 3 0 199340 2 0 199341 1 0 199342 3 0 199343 2 0 199344 1 0 199345 2 0 199346 1 0 199347 1 0 199348 0 0 199349 0 0 199350 1 0 199351 1 0 199352 0 0 199401 1 0 199402 4 0 199403 3 0 199404 2 0 199405 0 0 199406 1 0 199407 0 0 199408 3 0 199409 1 0 199410 1 0 199411 4 0 199412 4 0 199413 0 0 199414 1 0 199415 4 0 199416 2 0 199417 0 0 199418 1 0 199419 1 0 199420 0 0 199421 1 0 199422 1 0 199423 2 0 199424 5 0 199425 4 0 199426 0 0 199427 2 0 199428 1 0 199429 1 0 199430 3 0 199431 6 0 199432 1 0 199433 7 0 199434 6 0 199435 2 0 199436 5 0 199437 7 0 199438 5 0 199439 4 0 199440 5 0 199441 6 0 199442 6 0 199443 1 0 199444 2 0 199445 2 0 199446 5 0 199447 4 0 199448 1 0 199449 6 0 199450 2 0 199451 5 0 199452 3 0 199501 4 0 199502 7 0 199503 6 0 199504 10 0 199505 2 0 199506 4 0 199507 0 0 199508 3 0 199509 0 0 199510 1 0 199511 3 0 199512 0 0 199513 1 0 199514 1 0 199515 0 0 199516 1 0 199517 0 0 199518 1 0 199519 0 0 199520 1 0 199521 2 0 199522 2 0 199523 4 0 199524 7 0 199525 6 0 199526 1 0 199527 4 0 199528 6 0 199529 4 0 199530 2 0 199531 4 0 199532 5 0 199533 5 0 199534 9 0 199535 8 0 199536 6 0 199537 3 0 199538 2 0 199539 3 0 199540 4 0 199541 3 0 199542 3 0 199543 4 0 199544 4 0 199545 2 0 199546 1 0 199547 2 0 199548 3 0 199549 2 0 199550 2 0 199551 0 0 199552 4 0 surveillance/inst/extdata/m5.txt0000644000175100001440000000344712003613027016457 0ustar hornikusers"week" "observed" "state" 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 10 0 0 11 0 0 12 0 0 13 0 0 14 0 0 15 0 0 16 0 0 17 0 0 18 0 0 19 0 0 20 0 0 21 1 0 22 0 0 23 0 0 24 0 0 25 0 0 26 0 0 27 0 0 28 0 0 29 0 0 30 0 0 31 0 0 32 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 38 0 0 39 0 0 40 0 0 41 0 0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 49 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 58 0 0 59 0 0 60 0 0 61 0 0 62 0 0 63 0 0 64 0 0 65 0 0 66 0 0 67 0 0 68 0 0 69 0 0 70 0 0 71 0 0 72 0 0 73 0 0 74 0 0 75 0 0 76 0 0 77 0 0 78 0 0 79 0 0 80 0 0 81 0 0 82 0 0 83 0 0 84 0 0 85 0 0 86 0 0 87 0 0 88 0 0 89 0 0 90 0 0 91 0 0 92 0 0 93 0 0 94 0 0 95 0 0 96 0 0 97 0 0 98 1 0 99 0 0 100 0 0 101 0 0 102 1 1 103 2 1 104 1 1 105 1 1 106 0 1 107 1 1 108 11 1 109 65 0 110 3 0 111 16 0 112 3 0 113 10 0 114 2 0 115 7 0 116 2 0 117 0 0 118 0 0 119 0 0 120 0 0 121 1 0 122 0 0 123 0 0 124 0 0 125 3 0 126 0 0 127 0 0 128 0 0 129 0 0 130 0 0 131 0 0 132 0 0 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 0 0 140 0 0 141 0 0 142 0 0 143 0 0 144 0 0 145 0 0 146 0 0 147 0 0 148 0 0 149 0 0 150 0 0 151 0 0 152 0 0 153 0 0 154 0 0 155 0 0 156 0 0 157 0 0 158 0 0 159 0 0 160 0 0 161 0 0 162 0 0 163 0 0 164 0 0 165 0 0 166 0 0 167 0 0 168 0 0 169 0 0 170 0 0 171 0 0 172 0 0 173 0 0 174 0 0 175 0 0 176 0 0 177 0 0 178 0 0 179 0 0 180 0 0 181 0 0 182 0 0 183 0 0 184 0 0 185 0 0 186 0 0 187 0 0 188 0 0 189 0 0 190 0 0 191 0 0 192 0 0 193 0 0 194 0 0 195 0 0 196 0 0 197 0 0 198 0 0 199 0 0 200 0 0 201 0 0 202 0 0 203 0 0 204 0 0 205 0 0 206 0 0 207 0 0 208 0 0 209 0 0 210 0 0 211 0 0 212 0 0 surveillance/inst/extdata/m2.txt0000644000175100001440000000345212003613027016450 0ustar hornikusers"week" "observed" "state" 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 10 0 0 11 0 0 12 0 0 13 0 0 14 0 0 15 0 0 16 0 0 17 0 0 18 0 0 19 0 0 20 0 0 21 0 0 22 0 0 23 0 0 24 0 0 25 0 0 26 0 0 27 0 0 28 0 0 29 0 0 30 0 0 31 0 0 32 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 38 0 0 39 0 0 40 0 0 41 0 0 42 0 0 43 0 0 44 0 0 45 0 0 46 10 1 47 12 1 48 21 1 49 18 1 50 31 1 51 26 1 52 27 1 53 0 1 54 0 1 55 0 1 56 0 1 57 0 1 58 0 1 59 0 1 60 0 1 61 0 1 62 0 1 63 0 1 64 0 1 65 0 1 66 0 1 67 0 1 68 0 1 69 0 0 70 0 0 71 0 0 72 0 0 73 0 0 74 0 0 75 0 0 76 0 0 77 0 0 78 0 0 79 0 0 80 0 0 81 0 0 82 0 0 83 0 0 84 0 0 85 0 0 86 0 0 87 0 0 88 0 0 89 0 0 90 0 0 91 0 0 92 0 0 93 0 0 94 0 0 95 0 0 96 0 0 97 0 0 98 0 0 99 0 0 100 0 0 101 0 0 102 0 0 103 0 0 104 0 0 105 0 0 106 0 0 107 0 0 108 0 0 109 0 0 110 0 0 111 0 0 112 0 0 113 0 0 114 0 0 115 0 0 116 0 0 117 0 0 118 0 0 119 0 0 120 0 0 121 0 0 122 0 0 123 0 0 124 0 0 125 0 0 126 0 0 127 0 0 128 0 0 129 0 0 130 0 0 131 0 0 132 0 0 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 0 0 140 0 0 141 0 0 142 0 0 143 0 0 144 0 0 145 0 0 146 0 0 147 0 0 148 0 0 149 0 0 150 0 0 151 0 0 152 0 0 153 0 0 154 0 0 155 0 0 156 0 0 157 0 0 158 0 0 159 0 0 160 0 0 161 0 0 162 0 0 163 0 0 164 0 0 165 0 0 166 0 0 167 0 0 168 0 0 169 0 0 170 0 0 171 0 0 172 0 0 173 0 0 174 0 0 175 0 0 176 0 0 177 0 0 178 0 0 179 0 0 180 0 0 181 0 0 182 0 0 183 0 0 184 0 0 185 0 0 186 0 0 187 0 0 188 0 0 189 0 0 190 0 0 191 0 0 192 0 0 193 0 0 194 0 0 195 0 0 196 0 0 197 0 0 198 0 0 199 0 0 200 0 0 201 0 0 202 0 0 203 0 0 204 0 0 205 0 0 206 0 0 207 0 0 208 0 0 209 0 0 210 0 0 211 0 0 212 0 0 surveillance/inst/extdata/m3.txt0000644000175100001440000000346612003613027016456 0ustar hornikusers"week" "observed" "state" 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 10 2 0 11 0 0 12 0 0 13 0 0 14 0 0 15 11 0 16 3 0 17 1 0 18 0 0 19 2 0 20 0 0 21 2 0 22 4 0 23 3 0 24 3 0 25 8 0 26 3 0 27 4 0 28 2 0 29 0 0 30 2 0 31 0 0 32 0 0 33 0 0 34 2 0 35 0 0 36 1 0 37 0 0 38 0 0 39 0 0 40 1 0 41 0 0 42 0 0 43 0 0 44 1 0 45 1 0 46 0 1 47 3 1 48 2 1 49 4 1 50 12 1 51 38 1 52 25 1 53 0 1 54 22 1 55 30 1 56 33 1 57 29 1 58 31 1 59 24 1 60 10 1 61 51 1 62 33 1 63 41 0 64 18 0 65 10 0 66 9 0 67 10 0 68 12 0 69 19 0 70 6 0 71 3 0 72 3 0 73 5 0 74 5 0 75 6 0 76 2 0 77 3 0 78 2 0 79 4 0 80 3 0 81 7 0 82 4 0 83 1 0 84 0 0 85 0 0 86 0 0 87 1 0 88 1 0 89 0 0 90 0 0 91 0 0 92 0 0 93 0 0 94 0 0 95 0 0 96 0 0 97 0 0 98 0 0 99 0 0 100 0 0 101 0 0 102 0 0 103 0 0 104 0 0 105 0 0 106 0 0 107 0 0 108 0 0 109 0 0 110 0 0 111 0 0 112 0 0 113 0 0 114 0 0 115 0 0 116 0 0 117 0 0 118 0 0 119 0 0 120 0 0 121 0 0 122 0 0 123 0 0 124 0 0 125 0 0 126 0 0 127 0 0 128 0 0 129 0 0 130 0 0 131 0 0 132 0 0 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 0 0 140 0 0 141 0 0 142 0 0 143 0 0 144 0 0 145 0 0 146 0 0 147 0 0 148 0 0 149 0 0 150 0 0 151 0 0 152 0 0 153 0 0 154 0 0 155 0 0 156 0 0 157 0 0 158 0 0 159 0 0 160 0 0 161 0 0 162 0 0 163 0 0 164 0 0 165 0 0 166 0 0 167 0 0 168 0 0 169 0 0 170 0 0 171 0 0 172 0 0 173 0 0 174 0 0 175 0 0 176 1 0 177 0 0 178 0 0 179 0 0 180 0 0 181 0 0 182 0 0 183 0 0 184 0 0 185 0 0 186 0 0 187 0 0 188 0 0 189 0 0 190 0 0 191 0 0 192 0 0 193 0 0 194 0 0 195 0 0 196 0 0 197 0 0 198 0 0 199 0 0 200 0 0 201 0 0 202 0 0 203 0 0 204 0 0 205 0 0 206 0 0 207 0 0 208 0 0 209 0 0 210 0 0 211 0 0 212 0 0 surveillance/inst/extdata/neighbourhood_BYBW.txt0000644000175100001440000012031011736057020021611 0ustar hornikusers"8336" "8337" "8315" "8311" "9262" "9172" "9163" "9776" "9763" "8435" "8335" "8327" "8326" "8316" "8325" "9275" "9189" "9171" "9187" "9182" "9173" "9175" "9764" "8436" "9780" "9762" "9180" "9190" "9188" "9162" "9775" "8421" "8437" "8426" "8417" "8317" "8237" "8211" "9272" "9271" "9263" "9279" "9277" "9261" "9183" "9184" "9177" "9778" "9777" "9761" "9181" "9179" "9174" "9774" "8425" "8416" "8415" "8231" "8115" "8235" "8216" "8212" "9276" "9362" "9278" "9274" "9178" "9186" "9161" "9773" "9772" "9771" "9185" "8135" "8117" "8116" "8111" "8236" "8121" "8118" "8221" "8215" "9565" "9372" "9375" "9273" "9176" "9563" "9562" "9779" "9577" "9573" "9561" "8136" "8119" "8125" "8226" "8222" "9576" "9564" "9363" "9376" "9373" "9361" "9572" "9461" "9663" "9575" "9571" "8127" "8126" "8225" "9675" "9662" "9574" "9474" "9462" "9377" "9374" "9371" "9471" "9463" "9679" "8128" "9676" "9661" "9678" "9479" "9472" "9464" "9478" "9477" "9674" "9473" "9677" "9671" "9673" "9672" "9475" "9476" "8336" 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8337" 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8315" 1 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8311" 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9262" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9172" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9163" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9776" 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9763" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8435" 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8335" 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8327" 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8326" 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8316" 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8325" 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9275" 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9189" 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9171" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9187" 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9182" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9173" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9175" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9764" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8436" 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9780" 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9762" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9180" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9190" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9188" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9162" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9775" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8421" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8437" 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8426" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8417" 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8317" 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8237" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8211" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9272" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9271" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9263" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9279" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9277" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9261" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9183" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9184" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9177" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9778" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9777" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9761" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9181" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9179" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9174" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9774" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8425" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8416" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8415" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8231" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8115" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8235" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8216" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8212" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9276" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9362" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9278" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9274" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9178" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9186" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9161" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9773" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9772" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9771" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9185" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8135" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8117" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8116" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8111" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8236" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8121" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8118" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8221" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8215" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9565" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9372" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9375" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9273" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9176" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9563" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9562" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9779" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9577" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9573" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9561" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8136" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8119" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8125" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8226" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8222" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9576" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9564" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9363" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9376" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9373" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9361" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9572" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9461" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9663" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9575" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9571" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8127" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8126" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "8225" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "9675" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 "9662" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 "9574" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 "9474" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 "9462" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 "9377" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 "9374" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 "9371" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 "9471" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 "9463" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 "9679" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 "8128" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 "9676" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 "9661" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 "9678" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 "9479" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 "9472" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 "9464" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 "9478" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 "9477" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 "9674" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 "9473" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 "9677" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 "9671" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 "9673" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 "9672" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 "9475" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 1 "9476" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 surveillance/inst/extdata/s3.txt0000644000175100001440000000344512003613027016461 0ustar hornikusers"week" "observed" "state" 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 10 0 0 11 0 0 12 0 0 13 3 0 14 0 0 15 0 0 16 0 0 17 0 0 18 0 0 19 1 0 20 1 0 21 1 0 22 0 0 23 1 0 24 0 0 25 1 0 26 0 0 27 1 0 28 2 0 29 1 0 30 0 0 31 2 0 32 3 0 33 0 0 34 3 0 35 2 0 36 1 0 37 3 0 38 2 0 39 1 0 40 1 0 41 3 0 42 2 0 43 3 0 44 0 0 45 2 0 46 4 0 47 1 0 48 1 0 49 2 0 50 1 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 1 0 57 1 0 58 0 0 59 0 0 60 1 0 61 0 0 62 0 0 63 1 0 64 0 0 65 0 0 66 0 0 67 1 0 68 2 0 69 0 0 70 0 0 71 1 0 72 0 0 73 1 0 74 1 0 75 0 0 76 3 0 77 1 0 78 1 0 79 1 0 80 2 0 81 3 0 82 3 0 83 1 0 84 3 0 85 4 0 86 1 0 87 2 0 88 6 0 89 1 0 90 1 0 91 3 0 92 2 0 93 2 0 94 3 0 95 4 0 96 1 0 97 0 0 98 2 0 99 1 0 100 2 0 101 2 0 102 1 0 103 0 0 104 1 0 105 0 0 106 0 0 107 0 0 108 0 0 109 0 0 110 0 0 111 0 0 112 0 0 113 1 0 114 1 0 115 0 0 116 2 0 117 2 0 118 0 0 119 1 0 120 0 0 121 3 0 122 1 0 123 0 0 124 0 0 125 2 0 126 0 0 127 3 1 128 0 1 129 4 1 130 2 1 131 2 1 132 9 1 133 7 1 134 3 1 135 2 1 136 12 1 137 5 1 138 3 1 139 7 1 140 9 1 141 6 1 142 10 1 143 6 1 144 5 1 145 3 1 146 3 1 147 8 1 148 4 1 149 3 1 150 2 1 151 3 1 152 2 1 153 1 1 154 2 1 155 5 1 156 2 1 157 2 0 158 1 0 159 0 0 160 0 0 161 0 0 162 0 0 163 0 0 164 1 0 165 1 0 166 1 0 167 0 0 168 0 0 169 0 0 170 0 0 171 1 0 172 1 0 173 3 0 174 0 0 175 0 0 176 0 0 177 1 0 178 1 0 179 0 0 180 1 0 181 1 0 182 3 0 183 2 0 184 1 0 185 3 0 186 1 0 187 1 0 188 1 0 189 1 0 190 3 0 191 6 0 192 7 0 193 4 0 194 4 0 195 2 0 196 3 0 197 0 0 198 0 0 199 0 0 200 0 0 201 0 0 202 0 0 203 0 0 204 0 0 205 0 0 206 0 0 207 0 0 208 0 0 209 0 0 210 0 0 211 0 0 212 0 0 surveillance/inst/extdata/s1.txt0000644000175100001440000000346112003613027016455 0ustar hornikusers"week" "observed" "state" 1 0 0 2 0 0 3 0 0 4 0 0 5 1 0 6 0 0 7 1 0 8 1 0 9 1 0 10 0 0 11 2 0 12 5 0 13 1 0 14 2 0 15 2 0 16 1 0 17 2 0 18 1 0 19 1 0 20 2 0 21 0 0 22 0 0 23 0 0 24 1 0 25 0 0 26 0 0 27 2 0 28 3 0 29 3 0 30 0 0 31 1 0 32 0 0 33 0 0 34 1 0 35 0 0 36 2 0 37 1 0 38 0 0 39 1 0 40 3 0 41 3 0 42 14 1 43 19 1 44 31 1 45 46 1 46 40 1 47 45 1 48 33 1 49 47 1 50 27 1 51 24 1 52 8 1 53 0 1 54 16 1 55 13 0 56 7 0 57 13 0 58 7 0 59 2 0 60 1 0 61 2 0 62 10 0 63 3 0 64 3 0 65 4 0 66 1 0 67 1 0 68 2 0 69 3 0 70 2 0 71 1 0 72 3 0 73 0 0 74 1 0 75 0 0 76 0 0 77 4 0 78 1 0 79 3 0 80 0 0 81 1 0 82 0 0 83 1 0 84 3 0 85 3 0 86 3 0 87 0 0 88 0 0 89 1 0 90 2 0 91 0 0 92 0 0 93 0 0 94 2 0 95 1 0 96 1 0 97 0 0 98 0 0 99 1 0 100 1 0 101 0 0 102 1 0 103 1 0 104 3 0 105 0 0 106 0 0 107 0 0 108 0 0 109 1 0 110 0 0 111 2 0 112 0 0 113 1 0 114 0 0 115 0 0 116 3 0 117 3 0 118 0 0 119 1 0 120 0 0 121 1 0 122 2 0 123 0 0 124 0 0 125 0 0 126 2 0 127 1 0 128 2 0 129 1 0 130 1 0 131 1 0 132 0 0 133 0 0 134 0 0 135 0 0 136 1 0 137 0 0 138 0 0 139 0 0 140 3 0 141 1 0 142 1 0 143 0 0 144 0 0 145 2 0 146 2 0 147 0 0 148 1 0 149 1 0 150 0 0 151 1 0 152 1 0 153 1 0 154 0 0 155 0 0 156 1 0 157 0 0 158 0 0 159 0 0 160 0 0 161 0 0 162 1 0 163 0 0 164 0 0 165 1 0 166 0 0 167 0 0 168 0 0 169 0 0 170 0 0 171 0 0 172 0 0 173 3 0 174 1 0 175 0 0 176 0 0 177 2 0 178 3 0 179 1 0 180 1 0 181 0 0 182 2 0 183 2 0 184 2 0 185 0 0 186 0 0 187 0 0 188 1 0 189 0 0 190 0 0 191 0 0 192 0 0 193 3 0 194 0 0 195 1 0 196 0 0 197 0 0 198 0 0 199 0 0 200 0 0 201 0 0 202 0 0 203 0 0 204 0 0 205 0 0 206 0 0 207 0 0 208 0 0 209 0 0 210 0 0 211 0 0 212 0 0 surveillance/inst/extdata/q1_nrwh.txt0000644000175100001440000000344512003613027017513 0ustar hornikusers"week" "observed" "state" 1 0 1 2 0 1 3 0 1 4 0 1 5 5 1 6 0 1 7 11 1 8 5 1 9 16 1 10 7 1 11 5 1 12 6 1 13 1 1 14 6 1 15 5 1 16 6 1 17 5 1 18 4 1 19 2 1 20 1 1 21 2 1 22 5 1 23 2 1 24 2 1 25 2 0 26 3 0 27 0 0 28 2 0 29 1 0 30 1 0 31 0 0 32 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 38 0 0 39 0 0 40 1 0 41 1 0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 49 0 0 50 1 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 58 0 0 59 0 0 60 0 0 61 0 0 62 0 0 63 0 0 64 0 0 65 0 0 66 1 0 67 0 0 68 0 0 69 0 0 70 0 0 71 0 0 72 4 0 73 1 0 74 8 0 75 3 0 76 1 0 77 3 0 78 2 0 79 1 0 80 0 0 81 0 0 82 0 0 83 0 0 84 0 0 85 0 0 86 0 0 87 0 0 88 0 0 89 0 0 90 1 0 91 1 0 92 0 0 93 0 0 94 0 0 95 1 0 96 0 0 97 0 0 98 0 0 99 0 0 100 0 0 101 0 0 102 0 0 103 0 0 104 0 0 105 0 0 106 0 0 107 0 0 108 0 0 109 0 0 110 0 0 111 0 0 112 0 0 113 0 0 114 0 0 115 0 0 116 0 0 117 0 0 118 0 0 119 0 0 120 0 0 121 0 0 122 0 0 123 0 0 124 0 0 125 0 0 126 0 0 127 0 0 128 0 0 129 2 0 130 3 0 131 5 0 132 8 0 133 4 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 0 0 140 0 0 141 0 0 142 0 0 143 0 0 144 0 0 145 0 0 146 0 0 147 0 0 148 0 0 149 0 0 150 0 0 151 0 0 152 0 0 153 0 0 154 0 0 155 0 0 156 0 0 157 0 0 158 0 0 159 0 0 160 0 0 161 0 0 162 0 0 163 0 0 164 0 0 165 0 0 166 0 0 167 1 0 168 0 0 169 0 0 170 0 0 171 1 0 172 0 0 173 0 0 174 0 0 175 0 0 176 1 0 177 0 0 178 0 0 179 0 0 180 0 0 181 0 0 182 0 0 183 0 0 184 0 0 185 0 0 186 0 0 187 0 0 188 0 0 189 0 0 190 0 0 191 0 0 192 0 0 193 0 0 194 0 0 195 0 0 196 0 0 197 0 0 198 0 0 199 0 0 200 0 0 201 0 0 202 0 0 203 0 0 204 0 0 205 0 0 206 0 0 207 0 0 208 0 0 209 0 0 210 0 0 211 0 0 212 0 0 surveillance/inst/extdata/k1.txt0000644000175100001440000000346012003613027016444 0ustar hornikusers"week" "observed" "state" 1 0 0 2 0 0 3 1 0 4 1 0 5 2 0 6 1 0 7 0 0 8 2 0 9 4 0 10 1 0 11 6 0 12 1 0 13 2 0 14 1 0 15 0 0 16 1 0 17 2 0 18 0 0 19 2 0 20 3 0 21 1 0 22 1 0 23 0 0 24 1 0 25 1 0 26 1 0 27 4 0 28 2 0 29 2 0 30 1 0 31 7 0 32 1 0 33 3 0 34 10 1 35 200 1 36 10 0 37 16 0 38 22 0 39 9 0 40 8 0 41 12 0 42 7 0 43 12 0 44 11 0 45 5 0 46 5 0 47 1 0 48 1 0 49 1 0 50 2 0 51 3 0 52 0 0 53 0 0 54 1 0 55 2 0 56 1 0 57 0 0 58 1 0 59 1 0 60 0 0 61 0 0 62 2 0 63 3 0 64 1 0 65 0 0 66 1 0 67 1 0 68 4 0 69 1 0 70 0 0 71 2 0 72 1 0 73 2 0 74 0 0 75 2 0 76 0 0 77 1 0 78 0 0 79 1 0 80 1 0 81 3 0 82 3 0 83 2 0 84 1 0 85 3 0 86 1 0 87 2 0 88 1 0 89 6 0 90 3 0 91 4 0 92 1 0 93 2 0 94 2 0 95 1 0 96 3 0 97 2 0 98 1 0 99 5 0 100 4 0 101 4 0 102 0 0 103 2 0 104 1 0 105 1 0 106 0 0 107 0 0 108 1 0 109 0 0 110 0 0 111 1 0 112 1 0 113 0 0 114 0 0 115 2 0 116 0 0 117 0 0 118 0 0 119 2 0 120 0 0 121 1 0 122 0 0 123 0 0 124 0 0 125 0 0 126 2 0 127 0 0 128 0 0 129 3 0 130 2 0 131 1 0 132 2 0 133 3 0 134 6 0 135 1 0 136 4 0 137 4 0 138 3 0 139 0 0 140 2 0 141 12 0 142 12 0 143 17 0 144 11 0 145 6 0 146 5 0 147 4 0 148 5 0 149 5 0 150 1 0 151 1 0 152 0 0 153 1 0 154 1 0 155 1 0 156 0 0 157 1 0 158 0 0 159 0 0 160 0 0 161 1 0 162 0 0 163 0 0 164 0 0 165 1 0 166 0 0 167 0 0 168 0 0 169 2 0 170 2 0 171 0 0 172 0 0 173 1 0 174 0 0 175 0 0 176 1 0 177 1 0 178 1 0 179 1 0 180 1 0 181 1 0 182 0 0 183 0 0 184 1 0 185 1 0 186 3 0 187 0 0 188 3 0 189 2 0 190 1 0 191 0 0 192 2 0 193 1 0 194 5 0 195 2 0 196 3 0 197 0 0 198 0 0 199 0 0 200 0 0 201 0 0 202 0 0 203 0 0 204 0 0 205 0 0 206 0 0 207 0 0 208 0 0 209 0 0 210 0 0 211 0 0 212 0 0 surveillance/inst/extdata/m4.txt0000644000175100001440000000346012003613027016451 0ustar hornikusers"week" "observed" "state" 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 10 0 0 11 1 0 12 0 0 13 0 0 14 0 0 15 0 0 16 0 0 17 0 0 18 0 0 19 1 0 20 1 0 21 1 0 22 0 0 23 1 0 24 0 0 25 1 0 26 1 0 27 1 0 28 0 0 29 0 0 30 0 0 31 1 0 32 3 0 33 3 0 34 0 0 35 1 0 36 1 0 37 3 0 38 0 0 39 0 0 40 0 0 41 0 0 42 1 0 43 0 0 44 1 0 45 0 0 46 0 0 47 0 0 48 0 0 49 1 0 50 11 0 51 0 0 52 1 0 53 0 0 54 1 1 55 2 1 56 25 1 57 15 1 58 21 1 59 26 1 60 56 1 61 68 1 62 26 1 63 25 0 64 25 0 65 31 0 66 18 0 67 7 0 68 15 0 69 9 0 70 1 0 71 1 0 72 0 0 73 5 0 74 2 0 75 0 0 76 3 0 77 0 0 78 2 0 79 0 0 80 0 0 81 0 0 82 1 0 83 0 0 84 0 0 85 0 0 86 0 0 87 0 0 88 0 0 89 0 0 90 0 0 91 0 0 92 0 0 93 0 0 94 0 0 95 0 0 96 0 0 97 0 0 98 1 0 99 0 0 100 0 0 101 0 0 102 0 0 103 0 0 104 0 0 105 0 0 106 0 0 107 0 0 108 0 0 109 0 0 110 0 0 111 0 0 112 0 0 113 0 0 114 0 0 115 0 0 116 1 0 117 0 0 118 2 0 119 0 0 120 0 0 121 0 0 122 0 0 123 0 0 124 0 0 125 0 0 126 0 0 127 0 0 128 0 0 129 0 0 130 0 0 131 0 0 132 0 0 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 0 0 140 0 0 141 0 0 142 0 0 143 0 0 144 0 0 145 0 0 146 0 0 147 0 0 148 0 0 149 0 0 150 0 0 151 0 0 152 0 0 153 0 0 154 0 0 155 0 0 156 0 0 157 0 0 158 0 0 159 0 0 160 0 0 161 0 0 162 0 0 163 0 0 164 0 0 165 0 0 166 0 0 167 0 0 168 0 0 169 0 0 170 0 0 171 0 0 172 0 0 173 0 0 174 0 0 175 0 0 176 0 0 177 0 0 178 0 0 179 0 0 180 0 0 181 0 0 182 0 0 183 0 0 184 0 0 185 0 0 186 0 0 187 0 0 188 0 0 189 0 0 190 0 0 191 0 0 192 0 0 193 0 0 194 0 0 195 0 0 196 0 0 197 0 0 198 0 0 199 0 0 200 0 0 201 0 0 202 0 0 203 0 0 204 0 0 205 0 0 206 0 0 207 0 0 208 0 0 209 0 0 210 0 0 211 0 0 212 0 0 surveillance/inst/extdata/s2.txt0000644000175100001440000000344312003613027016456 0ustar hornikusers"week" "observed" "state" 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 10 0 0 11 0 0 12 0 0 13 0 0 14 0 0 15 0 0 16 0 0 17 0 0 18 0 0 19 0 0 20 0 0 21 0 0 22 0 0 23 0 0 24 0 0 25 0 0 26 0 0 27 0 0 28 0 0 29 0 0 30 0 0 31 0 0 32 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 1 0 38 0 0 39 0 0 40 0 0 41 0 0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 49 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 58 0 0 59 0 0 60 0 0 61 0 0 62 0 0 63 0 0 64 1 0 65 0 0 66 0 0 67 0 0 68 0 0 69 0 0 70 0 0 71 1 0 72 0 0 73 0 0 74 0 0 75 0 0 76 0 0 77 0 0 78 0 0 79 0 0 80 0 0 81 0 0 82 0 0 83 0 0 84 0 0 85 0 0 86 0 0 87 0 0 88 0 0 89 0 1 90 0 1 91 0 1 92 0 1 93 0 1 94 0 1 95 1 1 96 0 1 97 2 1 98 1 1 99 1 1 100 1 1 101 0 1 102 0 1 103 0 1 104 1 1 105 1 1 106 0 1 107 0 1 108 1 1 109 3 1 110 2 1 111 3 1 112 2 1 113 0 1 114 1 1 115 1 1 116 1 1 117 0 1 118 4 1 119 0 1 120 0 1 121 1 1 122 1 1 123 0 1 124 0 1 125 1 1 126 1 1 127 0 1 128 0 1 129 0 1 130 0 1 131 0 1 132 0 1 133 0 1 134 1 1 135 0 1 136 1 1 137 0 1 138 0 1 139 0 1 140 0 1 141 0 1 142 0 1 143 0 0 144 0 0 145 0 0 146 1 0 147 0 0 148 0 0 149 0 0 150 0 0 151 0 0 152 0 0 153 0 0 154 1 0 155 0 0 156 0 0 157 0 0 158 0 0 159 0 0 160 0 0 161 0 0 162 0 0 163 0 0 164 0 0 165 0 0 166 0 0 167 0 0 168 0 0 169 0 0 170 0 0 171 0 0 172 0 0 173 0 0 174 0 0 175 0 0 176 0 0 177 0 0 178 0 0 179 0 0 180 0 0 181 0 0 182 0 0 183 0 0 184 0 0 185 0 0 186 0 0 187 0 0 188 0 0 189 0 0 190 0 0 191 0 0 192 0 0 193 0 0 194 0 0 195 0 0 196 0 0 197 0 0 198 0 0 199 0 0 200 0 0 201 0 0 202 0 0 203 0 0 204 0 0 205 0 0 206 0 0 207 0 0 208 0 0 209 0 0 210 0 0 211 0 0 212 0 0 surveillance/inst/extdata/counts_flu_BYBW.txt0000644000175100001440000035307012655404667021167 0ustar hornikusers"8336" "8337" "8315" "8311" "9262" "9172" "9163" "9776" "9763" "8435" "8335" "8327" "8326" "8316" "8325" "9275" "9189" "9171" "9187" "9182" "9173" "9175" "9764" "8436" "9780" "9762" "9180" "9190" "9188" "9162" "9775" "8421" "8437" "8426" "8417" "8317" "8237" "8211" "9272" "9271" "9263" "9279" "9277" "9261" "9183" "9184" "9177" "9778" "9777" "9761" "9181" "9179" "9174" "9774" "8425" "8416" "8415" "8231" "8115" "8235" "8216" "8212" "9276" "9362" "9278" "9274" "9178" "9186" "9161" "9773" "9772" "9771" "9185" "8135" "8117" "8116" "8111" "8236" "8121" "8118" "8221" "8215" "9565" "9372" "9375" "9273" "9176" "9563" "9562" "9779" "9577" "9573" "9561" "8136" "8119" "8125" "8226" "8222" "9576" "9564" "9363" "9376" "9373" "9361" "9572" "9461" "9663" "9575" "9571" "8127" "8126" "8225" "9675" "9662" "9574" "9474" "9462" "9377" "9374" "9371" "9471" "9463" "9679" "8128" "9676" "9661" "9678" "9479" "9472" "9464" "9478" "9477" "9674" "9473" "9677" "9671" "9673" "9672" "9475" "9476" "1" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "2" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "3" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "4" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 6 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "5" 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 5 0 0 0 0 4 0 4 0 1 0 6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 12 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 2 0 4 4 0 0 2 0 3 0 0 0 0 0 0 0 3 0 0 0 0 6 0 0 1 0 3 0 0 0 0 0 0 0 0 1 2 2 8 0 0 0 0 0 0 8 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "6" 0 0 1 6 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 3 0 0 0 0 10 0 6 0 5 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 6 0 4 0 1 0 0 5 0 0 0 0 0 0 1 0 0 0 0 1 2 4 8 0 0 3 0 3 0 0 0 0 0 1 0 1 0 0 0 0 7 1 0 0 0 5 0 0 0 0 0 0 0 0 0 11 1 0 0 0 0 0 0 0 4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "7" 0 0 1 1 0 0 0 0 0 0 0 4 0 3 0 0 0 0 1 2 1 6 0 3 0 0 0 0 0 6 0 3 0 0 0 2 0 0 0 0 1 0 0 0 2 7 0 0 0 0 0 0 0 0 2 0 3 0 1 0 0 9 0 0 0 0 0 0 0 1 0 1 1 2 1 0 9 0 0 3 0 0 0 2 0 0 0 0 0 2 0 0 0 0 3 3 0 0 0 7 1 0 0 0 0 0 0 0 0 6 1 0 0 3 0 1 0 2 11 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 "8" 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 11 1 1 0 6 0 0 1 0 0 0 0 3 0 3 0 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 3 0 6 0 0 0 0 2 0 0 0 0 0 0 1 1 0 0 1 0 3 1 6 0 0 1 0 1 0 0 0 0 1 0 1 4 0 0 0 0 2 2 0 0 0 1 0 8 0 0 0 0 0 0 0 4 1 0 1 0 0 1 0 0 8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 "9" 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 4 0 0 2 0 0 0 0 0 0 0 6 0 0 0 1 0 1 0 0 0 3 0 1 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 2 0 0 1 0 0 3 0 0 4 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 3 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 "10" 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 2 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "11" 0 0 2 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 "12" 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "13" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 "14" 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 "15" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "16" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 "17" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "18" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "19" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "20" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "21" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "22" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "23" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "24" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "25" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "26" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "27" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "28" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "29" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "30" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "31" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "32" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "33" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "34" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "35" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "36" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "37" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "38" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "39" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "40" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "41" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "42" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "43" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "44" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "45" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "46" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "47" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "48" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "49" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "50" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "51" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "52" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "53" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "54" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "55" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "56" 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 1 0 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "57" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 6 4 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "58" 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 5 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 "59" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 3 3 0 1 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 5 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 1 0 0 0 0 0 0 0 0 5 3 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 "60" 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 10 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 1 1 0 1 0 3 1 0 0 0 3 0 0 0 0 0 0 0 1 0 1 6 0 0 1 0 2 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 3 1 6 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 "61" 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 7 0 1 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 5 0 3 0 1 1 1 0 0 2 0 0 4 0 0 0 0 1 0 1 6 0 0 1 0 0 0 4 0 0 0 0 1 0 0 0 0 0 1 2 2 0 1 5 1 3 0 0 2 0 0 0 0 8 1 0 1 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 "62" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 2 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 7 0 0 2 0 1 0 1 0 0 0 0 2 0 0 0 0 0 0 3 0 2 0 2 1 5 0 0 0 0 0 0 0 3 1 0 1 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 2 0 3 "63" 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 7 0 4 0 5 0 5 1 0 0 0 5 0 0 0 0 0 0 0 0 0 1 7 0 0 3 0 3 0 3 0 0 0 0 0 2 0 0 0 0 0 5 2 0 0 11 4 0 4 0 0 0 0 1 1 12 1 0 0 0 0 0 0 0 7 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 5 0 0 "64" 0 0 1 2 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 4 3 1 0 0 0 0 0 0 0 0 1 2 4 0 2 0 0 0 0 0 1 2 0 0 1 0 0 0 0 0 1 0 8 0 0 4 0 2 0 2 0 0 0 0 3 0 0 0 0 0 2 1 1 0 0 6 1 0 0 0 1 4 0 0 0 4 1 0 1 0 1 1 0 3 14 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 10 "65" 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 6 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 10 3 0 0 0 0 0 0 0 0 11 0 0 0 0 0 1 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 4 "66" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 5 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 "67" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 "68" 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 1 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 3 "69" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 "70" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "71" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 "72" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "73" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 "74" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "75" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "76" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "77" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "78" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "79" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "80" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "81" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "82" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "83" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "84" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "85" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "86" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "87" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "88" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "89" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "90" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "91" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "92" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "93" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "94" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "95" 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "96" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "97" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "98" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "99" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "100" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "101" 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "102" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "103" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "104" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "105" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "106" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "107" 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "108" 0 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 5 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "109" 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 29 3 0 0 4 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 1 0 0 0 0 2 6 0 0 0 0 3 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 "110" 0 0 1 5 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 9 0 0 0 4 0 1 0 0 0 0 0 0 0 0 0 24 2 0 0 7 0 0 2 0 2 0 0 0 15 0 1 1 2 1 0 0 1 0 1 0 1 9 0 0 0 12 7 0 0 1 1 0 0 8 0 0 0 0 1 2 0 0 0 0 4 0 1 0 0 5 3 2 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "111" 0 0 0 2 0 0 0 0 0 0 0 9 0 2 0 0 0 0 0 4 0 1 0 2 0 0 2 0 0 19 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 14 0 0 0 3 0 0 2 0 3 0 2 0 3 0 3 1 3 1 1 1 0 0 4 0 2 7 0 0 0 8 16 0 0 13 0 0 0 12 1 0 0 2 0 1 0 0 0 0 2 1 3 0 1 5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 1 "112" 0 0 5 1 0 0 0 0 0 1 1 10 1 0 3 0 0 5 2 11 0 5 0 2 0 0 0 0 0 26 0 0 1 1 1 1 1 0 0 0 0 0 0 0 2 45 2 0 0 11 0 0 6 0 5 4 1 0 7 0 9 21 3 6 2 0 0 0 5 0 6 6 0 0 1 22 51 0 0 12 1 1 0 30 2 0 0 1 3 1 0 0 0 1 5 14 1 0 0 9 6 10 0 0 0 0 1 15 1 0 1 0 5 2 0 0 0 4 13 0 0 0 9 0 0 0 5 0 0 0 0 1 0 0 0 0 0 3 0 0 "113" 1 0 11 3 0 1 0 0 0 6 0 9 0 2 2 0 4 5 2 8 0 10 0 0 0 0 1 0 0 37 0 2 0 1 0 0 0 0 0 0 0 0 0 0 2 47 2 0 0 11 1 1 3 0 11 7 5 0 8 0 16 0 1 7 5 3 0 1 5 0 3 10 0 0 4 21 57 0 0 7 1 0 0 14 6 0 1 0 0 4 0 1 0 3 4 8 5 2 0 16 18 13 0 0 0 0 3 0 0 0 0 0 2 5 0 1 0 2 9 2 1 0 14 0 0 0 2 0 0 0 0 3 0 0 1 1 1 0 0 3 "114" 0 2 7 9 0 1 0 0 0 8 2 10 0 4 0 0 0 1 0 6 0 7 0 2 0 0 2 0 0 32 0 0 0 2 0 2 0 0 0 0 0 0 0 0 4 23 0 1 0 8 0 3 4 0 4 2 5 0 26 0 4 2 1 9 2 1 0 0 0 1 1 6 0 0 1 12 12 1 0 3 0 0 2 15 16 0 0 1 1 1 0 4 0 0 13 4 3 0 0 12 20 9 1 0 1 0 1 20 4 0 0 0 2 14 0 7 0 9 34 1 4 3 7 0 0 0 0 1 0 0 0 3 1 1 2 0 2 3 0 0 "115" 0 0 1 6 0 2 0 0 0 0 0 4 0 0 0 0 1 1 0 4 1 3 0 0 0 0 2 0 0 30 0 4 0 0 0 0 0 0 0 0 0 0 0 0 4 10 2 0 0 0 1 1 0 0 3 0 1 0 12 1 2 0 1 8 1 1 0 12 2 1 1 6 0 0 0 3 15 0 0 3 0 0 1 6 2 0 1 0 3 0 0 0 0 1 0 1 0 0 0 4 7 12 1 0 0 1 1 3 2 1 0 0 0 2 4 3 0 5 8 1 4 2 4 1 0 0 0 3 1 0 0 5 0 1 0 0 2 0 0 25 "116" 0 0 0 4 0 0 1 0 0 1 0 0 1 5 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 6 0 4 0 0 0 2 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 1 1 0 3 0 0 0 4 6 2 1 0 0 0 0 0 2 0 0 0 3 0 0 1 6 7 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 4 0 0 0 1 5 3 1 0 0 1 0 4 2 0 0 0 0 1 0 0 0 3 4 2 3 0 5 0 0 0 1 0 0 0 1 10 0 1 0 1 0 0 0 0 "117" 0 0 7 5 0 1 0 0 0 2 0 0 0 1 0 0 3 3 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3 2 0 1 0 0 0 2 0 0 0 4 0 0 0 1 3 0 0 4 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 2 0 1 0 0 0 3 0 0 0 0 0 1 1 0 0 0 4 0 1 1 0 0 0 0 0 0 0 0 0 2 0 1 2 0 0 0 0 3 "118" 0 2 2 2 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 7 2 0 0 1 3 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 10 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 3 0 0 0 0 0 "119" 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 2 0 0 5 0 3 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 "120" 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 "121" 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "122" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "123" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "124" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "125" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "126" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "127" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "128" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "129" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "130" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "131" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "132" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "133" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "134" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "135" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "136" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "137" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "138" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "139" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "140" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "141" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "142" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "143" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "144" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "145" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "146" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "147" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "148" 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "149" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "150" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "151" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "152" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "153" 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "154" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 "155" 1 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 "156" 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "157" 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "158" 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 "159" 3 3 5 2 0 0 0 0 0 1 1 1 0 3 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 7 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 "160" 1 0 5 10 0 0 0 0 0 1 0 1 0 2 0 0 1 2 3 1 0 0 0 0 0 0 2 0 0 4 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 2 1 0 0 4 0 0 2 0 0 2 0 3 7 0 3 0 0 0 1 1 0 0 1 0 0 2 0 0 1 0 2 0 0 3 0 1 0 2 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 2 3 0 0 0 0 0 2 0 4 0 0 1 0 0 0 0 0 0 0 1 0 4 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 "161" 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 6 0 0 0 2 0 2 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 3 0 1 1 1 0 1 0 1 2 1 0 0 1 0 5 0 0 0 1 0 0 1 1 3 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0 3 0 0 2 0 0 0 0 0 0 1 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 "162" 1 0 1 0 0 0 0 0 0 1 1 4 2 2 0 0 2 2 1 0 0 0 0 1 0 0 0 1 0 10 0 2 0 1 0 1 0 1 0 0 0 0 0 0 2 3 0 0 0 1 0 0 1 0 2 1 1 0 4 0 1 4 0 0 0 0 0 1 2 0 0 0 0 0 1 3 3 0 0 3 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 3 0 0 1 0 0 5 2 1 0 0 3 1 0 0 0 1 1 0 1 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "163" 1 0 0 2 0 0 0 0 0 1 1 1 0 0 0 0 0 4 0 0 0 1 0 1 2 0 0 0 0 8 0 1 0 0 0 6 0 0 0 0 0 0 0 0 1 4 1 0 0 1 0 0 5 1 0 3 0 0 5 0 0 0 1 0 0 1 0 11 0 0 0 0 0 2 3 4 9 0 0 2 0 2 0 2 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 1 3 0 0 0 1 0 1 9 6 0 0 10 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 "164" 0 0 0 2 0 0 2 0 0 3 1 0 0 0 0 0 2 0 2 0 0 2 0 1 0 0 0 0 0 7 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 4 0 0 0 1 0 0 0 0 0 0 0 0 4 1 0 4 0 0 0 1 0 12 1 0 0 1 0 0 2 2 4 0 0 5 0 0 0 2 0 0 0 0 0 0 0 0 4 0 1 2 0 0 0 0 0 1 0 0 0 1 0 1 0 2 0 0 4 0 0 1 0 0 0 0 5 1 0 0 1 0 0 0 0 0 3 5 0 1 0 1 1 0 0 0 "165" 0 1 1 5 0 1 0 0 0 2 2 6 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3 0 1 0 2 0 4 0 0 0 0 0 0 0 5 0 2 0 1 0 1 0 0 2 0 0 0 0 0 3 0 0 0 0 1 0 3 0 3 1 0 1 0 0 0 0 0 3 0 0 2 0 0 0 2 1 0 0 0 0 0 0 0 1 0 2 0 0 0 0 2 0 0 0 0 0 1 0 0 2 2 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 6 0 0 0 0 0 0 0 0 "166" 1 0 1 1 0 0 0 0 0 1 2 2 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 2 0 0 0 1 0 0 0 1 0 5 0 0 0 0 0 1 0 0 0 0 2 0 4 0 0 1 1 0 0 1 0 8 0 0 1 1 2 0 3 1 7 0 0 1 0 0 0 0 1 0 0 0 0 2 0 0 2 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 6 1 1 0 1 0 1 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 "167" 1 0 5 3 0 0 0 0 0 2 0 5 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 4 0 0 0 3 0 3 0 0 0 2 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 2 1 0 0 0 0 0 0 0 2 0 2 0 0 1 1 0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "168" 0 2 2 2 0 0 0 0 0 0 0 10 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 1 0 0 0 4 0 0 1 0 0 0 0 0 0 0 0 3 0 0 0 0 0 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 "169" 0 0 0 2 0 0 0 0 0 1 0 3 0 1 3 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 3 0 0 0 3 0 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 2 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 "170" 0 0 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "171" 0 0 0 2 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 "172" 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "173" 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "174" 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "175" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "176" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "177" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "178" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "179" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "180" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "181" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "182" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "183" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "184" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "185" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "186" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "187" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "188" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "189" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "190" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "191" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "192" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "193" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "194" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "195" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "196" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "197" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "198" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "199" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "200" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "201" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "202" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "203" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "204" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "205" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "206" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "207" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "208" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "209" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3 0 1 6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "210" 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 "211" 2 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 1 0 0 1 0 3 0 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "212" 1 0 0 1 0 0 0 1 0 0 0 2 0 0 0 0 3 0 0 1 0 0 0 2 0 0 0 0 3 14 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 7 0 0 0 2 0 0 0 0 0 4 0 0 3 3 0 0 0 1 1 0 3 0 1 0 2 1 1 0 0 4 8 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 "213" 1 0 0 6 0 0 0 0 0 3 0 2 0 0 0 0 0 2 2 4 0 3 0 2 0 0 0 4 5 12 0 2 0 2 2 1 1 0 0 5 0 0 0 5 0 6 1 0 0 3 0 0 1 0 3 13 1 0 15 0 3 4 0 0 1 3 1 0 1 0 0 2 1 0 2 10 15 0 0 10 0 3 0 0 0 0 1 0 0 0 0 0 0 0 1 2 0 0 0 1 1 1 0 1 0 2 0 0 0 9 4 0 0 0 0 0 0 0 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "214" 9 2 1 1 0 1 0 0 0 4 2 5 0 1 0 0 3 1 2 2 0 1 0 3 0 0 0 5 7 26 0 1 2 0 1 4 6 0 0 11 0 1 0 1 1 10 2 0 0 1 2 0 0 0 0 10 1 0 27 9 1 2 0 0 2 1 5 4 2 0 1 4 0 1 0 12 24 0 0 6 0 4 0 0 3 0 0 2 1 0 0 1 0 5 2 1 1 0 0 1 3 1 0 0 1 0 1 1 0 9 3 0 0 0 0 0 0 0 1 0 2 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 "215" 10 0 4 4 0 0 0 0 0 4 4 11 0 0 4 0 7 0 3 0 0 2 0 1 0 0 0 3 0 16 0 0 0 1 4 4 7 0 0 14 1 3 0 5 1 1 5 0 0 2 0 1 0 0 0 20 5 1 38 1 5 3 3 0 3 5 4 1 0 1 0 0 0 1 9 8 32 0 0 21 1 1 0 0 2 0 3 1 0 0 4 1 2 7 4 0 3 0 0 4 2 4 1 0 0 0 0 1 0 4 1 0 1 0 0 0 1 0 5 1 10 0 3 1 0 1 0 0 1 0 0 0 1 1 1 0 1 0 0 0 "216" 5 1 8 9 1 3 1 0 0 4 3 5 0 0 6 0 8 2 15 1 0 8 0 1 0 0 0 7 6 38 1 0 1 2 0 7 2 0 0 4 0 3 0 4 2 20 7 0 0 8 1 3 0 0 4 8 11 0 19 0 5 2 6 7 2 6 9 2 1 0 3 7 1 1 19 10 33 2 1 21 2 1 0 2 1 1 4 2 1 0 0 2 2 3 8 3 6 2 0 4 5 3 2 0 0 4 0 0 2 22 1 0 3 0 0 4 0 3 7 1 10 0 4 2 0 0 1 0 1 1 0 1 1 3 2 0 2 0 0 0 "217" 10 2 2 6 0 1 3 0 0 5 7 6 2 1 33 0 5 0 11 0 0 3 0 3 0 0 2 7 1 37 0 2 1 0 1 4 2 1 2 6 2 2 0 3 0 17 7 0 0 22 2 0 2 0 5 5 8 0 18 0 9 6 3 2 3 3 5 5 1 1 9 3 1 1 28 9 35 1 0 21 3 7 0 9 11 2 4 3 0 0 0 1 2 4 13 5 19 2 0 6 15 10 6 0 2 2 0 3 6 16 1 0 6 0 0 5 2 6 18 1 10 0 4 2 0 0 1 1 1 0 0 2 4 7 2 0 0 1 0 0 "218" 4 6 1 3 0 0 0 2 0 2 4 4 2 2 0 1 3 0 11 2 0 4 0 3 1 0 0 14 0 35 0 0 0 1 0 3 3 1 2 1 0 8 0 2 1 13 1 0 0 11 3 0 0 0 2 0 7 0 28 1 11 6 7 2 5 1 5 8 0 3 10 6 2 0 25 12 40 0 0 15 2 14 0 12 7 3 1 1 3 0 1 2 0 5 5 5 12 1 0 7 30 8 5 3 0 6 1 4 1 7 3 1 5 7 0 3 0 7 26 4 13 1 4 5 1 0 11 0 0 0 0 2 3 7 3 0 1 3 1 0 "219" 6 2 3 4 0 0 3 0 0 1 3 7 0 2 7 0 0 1 2 6 1 7 0 3 0 0 0 21 0 60 1 0 1 1 2 5 3 0 0 0 1 5 0 0 2 11 1 0 0 16 0 2 0 1 2 5 14 0 17 1 14 4 3 7 1 3 3 0 0 8 6 11 4 0 24 6 29 1 2 12 4 9 1 7 5 3 1 2 0 0 0 0 6 2 17 4 13 0 0 4 9 0 5 2 0 0 0 4 10 9 3 0 8 3 0 2 4 0 12 2 3 0 4 6 2 0 2 0 0 0 0 3 2 2 2 0 0 1 0 1 "220" 2 0 2 3 0 0 1 1 0 0 4 4 0 0 0 0 1 0 3 2 2 1 0 1 0 0 0 2 0 22 2 0 0 2 0 1 0 0 0 0 2 3 0 0 0 4 2 0 0 4 0 0 0 0 1 2 2 0 2 0 7 0 3 2 2 0 2 0 0 0 1 1 2 0 13 7 10 0 0 4 1 2 0 3 2 1 0 0 1 0 0 1 3 2 4 0 2 0 0 1 6 2 0 1 0 1 0 2 6 15 0 0 1 7 1 0 0 0 10 2 5 0 0 5 2 0 2 1 0 0 0 0 4 0 2 1 0 1 0 0 "221" 2 2 1 2 0 0 0 0 0 1 6 1 1 1 0 0 0 0 2 0 1 0 0 0 0 0 0 6 0 17 0 1 0 1 1 0 0 0 0 1 1 0 0 0 0 4 1 0 0 1 0 0 0 0 0 0 1 0 0 0 2 0 1 1 3 0 3 2 0 4 0 0 0 0 3 1 2 0 0 1 0 0 0 0 2 0 0 0 1 0 2 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 2 0 1 0 0 0 0 1 0 0 0 1 0 1 1 0 "222" 0 0 2 3 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 2 1 0 3 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 "223" 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "224" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 "225" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "226" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "227" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "228" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "229" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "230" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "231" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "232" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "233" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "234" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "235" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "236" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "237" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "238" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "239" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "240" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "241" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "242" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "243" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "244" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "245" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "246" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "247" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "248" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "249" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "250" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "251" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "252" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "253" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 "254" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "255" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 "256" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 "257" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "258" 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "259" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "260" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "261" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "262" 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "263" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 "264" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 "265" 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 "266" 0 0 0 0 0 0 0 0 0 1 0 6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "267" 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "268" 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 3 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 5 2 0 0 0 0 1 0 0 1 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 3 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 "269" 2 0 1 0 0 0 0 0 0 0 2 0 0 2 0 1 0 2 0 0 0 2 0 0 0 0 0 0 2 9 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 3 0 0 3 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "270" 0 0 0 1 1 0 0 0 0 3 1 0 0 2 0 0 1 3 0 0 0 0 0 1 0 0 0 0 2 4 1 3 1 0 0 0 0 0 0 0 0 0 0 1 0 5 0 1 0 0 0 1 0 1 4 0 0 0 0 0 1 1 0 0 0 4 0 0 1 0 0 0 2 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 "271" 0 0 0 5 8 0 0 4 0 2 2 1 0 2 0 5 2 6 1 3 0 1 0 0 1 0 1 4 4 14 0 1 0 0 0 2 0 0 0 1 0 0 0 0 0 4 2 0 0 0 0 3 0 0 1 0 0 0 0 0 1 0 0 0 0 4 0 0 0 0 0 2 2 0 0 2 1 0 0 3 1 0 0 1 0 2 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 "272" 0 1 0 1 3 0 0 1 0 4 2 0 0 2 0 10 0 0 0 0 0 1 0 1 0 0 0 0 10 14 0 0 0 1 0 5 0 0 0 4 0 0 1 1 3 4 3 0 0 0 0 5 0 2 3 0 0 1 1 5 0 0 0 0 0 1 0 2 0 0 1 1 1 0 1 4 2 0 0 3 0 0 0 3 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 3 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 1 0 0 0 0 "273" 3 2 0 4 3 1 0 0 0 10 0 1 0 4 0 7 2 3 3 0 0 1 0 2 2 1 1 0 8 30 0 0 0 0 0 0 0 0 0 13 0 4 2 3 6 9 3 0 0 1 1 1 1 2 1 2 2 0 3 6 1 0 3 1 0 2 4 22 0 0 2 0 0 1 1 3 4 1 0 2 0 2 0 20 2 1 3 1 0 0 0 0 0 0 6 1 0 0 3 2 0 2 0 0 0 0 0 0 0 7 1 0 1 0 0 1 0 0 3 1 0 0 0 3 0 0 0 0 0 0 0 3 4 2 0 0 0 0 0 0 "274" 0 0 0 0 11 0 0 0 0 4 3 1 0 1 0 23 1 6 2 1 0 0 0 3 1 0 2 1 10 29 0 1 0 1 0 0 0 0 0 10 1 3 1 1 2 12 2 0 0 2 0 0 2 0 0 3 1 0 4 0 6 0 16 0 1 3 0 1 1 0 3 5 4 0 1 2 4 0 0 2 0 0 0 13 2 1 0 0 0 2 0 0 0 0 3 0 2 0 0 7 0 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 1 0 0 0 0 0 1 7 0 0 0 0 1 0 1 0 "275" 1 0 0 0 4 0 0 0 0 1 1 0 1 1 0 8 0 4 4 0 0 1 0 1 1 0 1 0 0 15 0 0 0 0 0 0 0 0 0 2 0 0 2 0 2 6 3 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 7 0 1 1 2 1 1 0 0 1 1 0 2 0 4 0 0 1 0 0 0 4 3 0 1 0 0 0 0 0 0 1 3 0 1 1 0 2 2 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 2 0 0 0 0 1 0 0 0 0 0 0 0 7 0 1 1 0 2 0 0 0 "276" 0 1 1 0 2 0 0 0 0 0 1 0 0 1 0 4 0 3 3 0 0 0 0 0 1 0 1 0 3 5 0 1 0 0 0 0 0 0 0 3 2 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 3 0 3 0 4 0 1 0 0 6 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 3 1 0 0 1 0 1 0 1 1 1 2 0 0 0 0 2 3 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 "277" 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 3 0 1 1 0 1 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "278" 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "279" 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "280" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 "281" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "282" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "283" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "284" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "285" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "286" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "287" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "288" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "289" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "290" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "291" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "292" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "293" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 "294" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "295" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "296" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "297" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "298" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "299" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "300" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "301" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "302" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "303" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "304" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "305" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "306" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "307" 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "308" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "309" 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "310" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "311" 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 "312" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "313" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "314" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 "315" 1 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 8 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 "316" 1 0 2 2 0 0 1 0 0 1 0 0 0 0 0 0 2 0 4 0 0 0 0 0 0 0 0 1 3 5 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 3 4 0 0 11 1 0 0 0 0 0 0 1 0 0 0 0 0 0 2 2 0 4 0 1 0 0 0 0 0 1 1 0 0 2 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 "317" 3 2 2 4 0 0 0 0 0 0 0 0 0 10 1 0 1 0 4 0 0 0 0 1 1 0 2 6 2 11 0 0 2 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 2 0 10 1 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 1 10 0 0 11 0 1 3 0 0 0 2 0 0 0 0 0 0 0 8 0 6 4 0 0 0 0 2 1 1 3 1 0 0 6 0 0 1 0 1 0 0 1 0 5 1 0 5 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 0 2 "318" 11 3 3 14 1 1 0 0 0 9 10 2 3 4 0 0 1 0 11 1 1 2 0 0 4 0 0 17 0 43 0 0 3 3 2 16 17 0 0 1 0 0 0 0 3 6 1 0 4 24 0 0 10 2 1 2 2 0 26 0 6 1 1 0 1 5 1 1 0 1 6 7 0 2 1 8 17 0 0 29 6 2 8 8 1 1 1 0 0 1 0 0 0 0 8 4 5 4 4 3 1 0 3 0 0 5 1 1 0 1 1 0 3 1 6 0 2 1 2 1 7 1 4 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 1 "319" 9 8 14 7 2 2 0 0 0 6 17 4 0 3 1 1 11 1 7 0 2 6 0 10 6 0 8 13 17 84 0 0 5 6 1 28 16 0 0 0 0 0 1 1 5 15 3 0 4 15 3 13 5 3 4 2 23 6 20 3 1 3 5 2 3 1 0 2 0 4 3 6 1 0 1 13 36 0 0 37 3 7 7 10 2 1 0 2 2 1 0 0 1 8 30 5 7 5 3 4 0 0 3 0 1 14 1 2 2 18 5 0 3 0 48 2 0 1 3 0 11 0 13 0 0 0 0 0 0 0 0 0 2 0 1 0 1 0 0 0 "320" 6 9 8 17 1 2 3 1 1 2 27 8 1 3 1 6 12 3 5 5 4 19 0 19 9 0 9 17 5 109 0 0 1 13 10 32 9 0 1 3 0 0 0 3 17 39 7 0 4 17 3 8 5 6 0 2 18 2 13 3 10 0 2 4 0 1 1 0 3 8 13 4 4 2 7 21 33 0 8 12 5 23 4 13 4 1 3 8 2 0 0 5 1 7 15 4 7 7 5 12 4 5 5 2 3 5 9 7 2 9 2 0 9 1 0 6 2 1 7 2 17 0 15 2 0 1 0 0 4 0 0 1 6 0 7 0 4 2 0 0 "321" 11 10 8 14 0 1 3 3 0 8 15 17 4 5 2 3 12 5 12 7 7 8 0 11 7 0 2 41 3 52 0 1 1 14 10 29 13 1 0 3 3 3 0 1 9 21 57 1 9 15 3 7 6 7 1 18 14 0 22 1 10 1 6 5 5 6 12 20 4 11 12 34 12 1 27 19 26 0 10 17 2 13 2 25 9 1 7 3 0 1 0 2 7 9 6 10 19 14 4 21 2 10 17 0 9 10 9 0 38 6 6 0 10 0 1 3 0 4 5 1 31 1 18 5 0 0 1 0 0 5 3 1 6 0 8 0 5 9 0 0 "322" 6 6 3 14 14 3 0 3 0 10 10 5 0 2 0 15 12 6 7 8 5 10 0 23 13 1 8 3 10 29 0 2 9 8 14 12 0 0 2 6 0 3 0 3 10 37 8 0 4 15 3 13 4 7 4 8 17 0 11 9 6 1 5 11 2 7 13 9 0 10 9 3 5 0 24 31 19 2 5 20 3 0 0 17 8 1 4 3 2 2 1 4 3 13 18 11 13 5 1 7 4 14 18 1 3 3 13 25 35 17 0 0 8 0 2 5 6 4 8 4 18 0 14 1 0 0 0 0 0 4 0 3 14 2 5 0 1 8 3 5 "323" 9 9 6 1 10 0 0 1 0 5 4 3 1 0 1 10 6 8 0 4 3 8 0 11 6 0 15 6 13 14 1 0 1 9 2 39 0 0 0 3 0 2 0 1 14 20 17 0 1 1 4 3 7 8 4 8 5 0 4 2 8 1 4 5 2 3 5 3 0 16 8 14 4 0 5 12 14 1 5 4 0 2 3 16 6 1 8 4 3 1 1 1 0 6 9 15 10 6 1 4 3 9 24 1 4 2 3 0 16 5 7 0 7 0 2 6 0 0 8 1 8 2 5 1 0 0 0 0 0 0 2 2 8 0 0 2 0 5 0 3 "324" 9 2 5 4 6 0 1 0 0 1 1 0 1 1 0 5 2 4 1 2 0 2 0 8 3 0 0 3 3 5 1 0 4 2 15 26 0 0 0 1 0 5 4 0 2 11 2 0 0 2 2 3 0 4 1 4 5 0 3 0 6 3 2 2 2 2 5 16 1 3 6 3 5 1 1 16 9 0 0 4 1 0 7 7 6 0 6 4 4 0 2 1 0 3 5 19 2 5 1 4 2 17 17 0 2 2 1 3 2 6 2 0 8 0 0 3 0 0 2 0 6 0 4 1 0 0 1 0 0 1 1 7 4 2 4 0 0 4 1 8 "325" 5 1 2 2 1 0 1 0 0 0 7 0 0 3 0 1 1 1 0 0 0 2 0 2 3 0 2 0 3 16 0 0 2 2 1 8 0 0 0 0 0 1 0 1 3 2 1 0 0 0 2 4 0 3 2 11 5 0 1 0 6 0 0 0 0 3 17 2 0 3 1 2 1 0 1 4 1 0 4 3 0 2 0 3 3 0 1 0 1 0 0 0 0 2 2 8 0 2 1 0 0 4 14 0 0 1 0 8 2 6 1 1 3 0 0 3 0 0 0 0 6 0 2 1 0 0 0 0 0 1 0 0 7 1 3 0 0 3 1 1 "326" 0 0 2 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 2 1 0 0 0 0 1 0 1 0 0 6 0 1 0 1 1 4 1 0 0 0 0 0 0 0 1 2 1 0 1 0 0 0 0 0 0 0 1 0 3 0 1 0 1 0 0 0 1 0 0 4 1 0 1 1 0 3 2 0 1 1 1 0 0 4 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 1 0 3 1 0 0 0 0 2 0 3 1 0 0 0 1 2 0 0 1 0 4 0 0 0 0 0 0 0 0 0 2 1 0 0 2 0 0 1 0 2 "327" 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 14 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 2 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 "328" 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "329" 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "330" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "331" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "332" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "333" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 "334" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 "335" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "336" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "337" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "338" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "339" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "340" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "341" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "342" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "343" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "344" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "345" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "346" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "347" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "348" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "349" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "350" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "351" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "352" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "353" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "354" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "355" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "356" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "357" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 "358" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "359" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "360" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "361" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "362" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 "363" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 3 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "364" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "365" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 3 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 3 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "366" 2 0 0 1 0 0 1 0 0 2 0 3 0 0 0 0 0 0 2 0 1 1 0 0 0 1 0 2 0 2 0 0 1 0 6 1 0 0 0 0 0 0 0 0 2 4 7 0 0 1 0 2 0 0 0 0 1 0 2 1 1 0 0 1 0 1 0 4 0 0 0 0 2 0 1 6 6 0 0 1 0 0 0 6 0 0 1 0 2 0 0 0 1 0 3 2 0 0 0 4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 "367" 3 2 0 0 1 0 0 0 0 1 0 2 0 1 0 9 0 1 2 2 2 2 0 0 1 1 0 1 3 47 0 0 1 1 4 2 4 0 0 0 2 1 2 1 1 9 4 0 0 2 1 14 0 0 0 1 1 0 13 2 12 0 3 1 4 1 4 3 0 2 0 3 12 0 1 15 13 0 0 3 0 2 1 19 1 0 0 1 1 0 0 0 1 0 0 4 0 3 0 3 0 2 0 2 0 0 0 0 2 1 3 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 8 0 0 2 0 0 "368" 5 8 0 2 6 3 1 4 0 4 4 0 0 0 0 28 7 6 12 5 1 4 0 1 1 1 0 7 9 58 0 0 0 1 3 5 1 0 0 9 0 4 5 3 4 7 34 0 1 6 1 27 0 1 0 9 11 0 22 15 5 2 7 1 2 2 6 6 2 2 3 12 21 0 1 17 27 0 0 19 0 3 3 22 1 0 0 1 1 0 0 0 1 2 7 8 1 6 0 7 0 4 4 1 1 1 1 2 6 0 2 0 1 0 0 2 1 0 0 4 5 0 1 0 0 0 0 0 2 0 0 2 0 1 1 1 0 2 0 2 "369" 10 2 0 2 6 1 3 5 0 7 8 5 0 0 0 13 5 1 14 8 4 4 0 4 2 1 4 7 7 76 0 0 2 0 2 5 1 1 0 10 2 4 10 7 2 21 40 1 0 2 0 28 2 1 4 8 7 0 16 9 6 1 8 0 3 8 13 17 4 11 4 23 31 0 4 29 23 1 1 11 0 1 3 28 2 0 0 4 0 2 0 2 4 4 12 5 0 7 1 9 1 10 11 0 0 0 1 0 8 7 1 1 5 0 0 1 1 0 2 0 6 0 0 0 2 0 0 0 0 0 0 1 0 1 3 0 0 2 0 1 "370" 6 8 5 4 1 1 0 1 0 6 5 6 0 0 0 4 11 4 19 5 6 5 0 3 0 5 0 9 8 28 1 0 2 2 2 4 1 1 1 5 0 0 2 6 10 25 7 0 3 3 1 12 1 2 0 2 6 1 28 11 11 0 3 0 4 3 5 11 1 8 3 8 6 2 0 20 48 1 4 6 2 2 1 8 2 0 0 1 0 5 1 2 1 8 12 15 6 4 1 2 9 7 1 2 0 1 0 0 9 7 1 0 2 0 2 2 0 1 2 2 2 0 2 0 0 0 0 0 0 0 1 10 3 1 1 0 1 2 1 3 "371" 16 9 8 10 4 0 0 3 0 6 10 4 0 0 2 5 1 4 9 6 8 6 0 1 4 0 2 6 4 69 0 3 1 3 10 9 3 0 0 2 0 0 1 4 6 10 9 0 4 3 0 4 4 0 4 2 5 0 24 14 11 2 8 0 13 3 5 0 1 3 3 12 10 1 19 12 35 1 5 8 0 1 0 9 4 0 0 8 0 0 4 5 1 9 11 12 5 3 1 7 6 2 7 2 2 3 0 0 11 8 4 0 0 0 6 0 0 0 6 3 9 0 0 0 0 0 0 0 0 0 0 0 8 2 0 0 5 3 0 0 "372" 14 7 5 2 4 1 10 2 0 4 6 5 3 0 15 9 7 0 17 9 2 6 0 11 4 1 0 3 13 46 0 1 2 1 8 3 1 0 1 7 0 0 2 4 4 6 10 0 3 2 0 11 0 0 4 3 2 0 13 9 2 2 6 0 5 9 8 10 2 9 1 1 7 0 17 10 31 3 5 18 1 2 0 5 2 0 0 2 5 2 3 4 2 3 17 7 3 3 10 11 1 3 10 1 0 6 0 1 7 6 2 0 11 3 4 1 0 1 4 1 12 1 6 0 0 0 0 1 2 1 0 1 1 1 3 0 3 2 0 0 "373" 16 7 10 7 6 0 1 2 0 1 2 3 2 2 8 11 2 1 19 3 1 9 0 7 6 1 3 5 10 93 1 2 0 5 6 3 1 1 2 13 1 1 1 3 7 31 5 1 2 3 1 6 1 7 3 11 0 1 15 14 3 12 4 2 6 11 13 6 0 3 0 6 12 3 20 17 37 3 1 13 3 5 0 5 4 0 4 5 2 3 4 4 2 4 13 12 19 0 4 4 1 15 8 0 4 5 1 2 10 2 1 0 1 0 5 11 0 2 1 2 20 3 2 1 0 0 1 0 0 0 0 3 3 1 4 0 3 6 0 1 "374" 12 1 3 2 10 0 0 0 0 2 2 4 0 1 1 5 2 2 4 7 4 4 0 6 1 1 1 1 5 42 0 6 1 1 18 1 1 0 0 13 2 6 0 2 4 18 6 0 5 2 3 2 0 5 1 6 2 0 9 1 1 1 3 0 4 3 8 11 3 10 0 3 3 0 2 3 8 4 2 9 1 2 1 6 5 0 0 5 0 0 1 3 1 1 9 10 6 3 3 4 9 5 20 0 2 2 2 2 7 8 1 0 2 0 4 3 0 3 4 3 11 2 1 0 0 0 0 1 6 1 2 6 4 1 5 0 3 10 0 0 "375" 2 2 2 2 6 0 3 1 0 0 2 1 0 1 0 2 0 3 1 3 3 4 0 5 0 1 3 0 4 31 0 9 1 0 2 8 1 1 5 8 0 0 1 2 6 14 8 0 1 0 0 2 0 0 2 5 2 0 8 2 6 0 5 1 3 4 0 1 0 2 1 0 1 2 16 19 16 1 6 9 4 0 0 5 0 0 3 1 0 0 0 0 0 1 14 4 3 1 1 1 4 14 5 0 0 5 2 4 4 4 1 0 3 0 5 0 6 4 3 3 13 0 5 0 1 0 0 0 1 0 0 1 1 0 3 0 0 1 2 1 "376" 6 1 7 7 1 0 2 0 0 1 2 2 1 1 0 2 1 2 0 1 0 2 0 2 2 0 3 1 4 21 0 1 1 2 3 2 0 0 4 1 0 1 3 0 1 8 8 0 0 1 0 0 0 0 1 2 1 0 2 0 3 2 1 2 1 0 2 9 0 0 0 1 1 0 4 5 7 0 0 5 2 2 0 3 0 0 0 1 0 1 0 0 0 0 4 1 2 2 1 4 5 2 1 0 0 0 1 0 1 5 1 0 1 0 0 1 0 1 1 0 4 0 3 0 1 0 0 0 0 1 0 1 0 0 4 0 0 1 0 0 "377" 4 0 1 3 2 0 0 0 0 1 1 1 0 0 0 0 0 1 2 2 1 0 0 0 1 0 1 0 1 4 0 0 0 2 0 0 0 0 1 2 0 0 0 0 2 1 3 0 0 0 1 1 0 0 0 2 0 0 0 0 0 0 0 0 0 1 1 3 0 1 0 0 0 0 2 9 4 0 3 1 2 1 0 2 0 0 1 0 0 1 0 0 0 0 3 0 0 0 0 1 0 0 4 0 0 0 0 0 1 2 1 0 0 0 1 0 0 0 0 1 6 0 0 0 6 0 1 0 0 0 2 0 1 0 2 0 0 1 0 0 "378" 3 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 2 0 2 0 0 0 0 1 0 0 1 1 0 5 1 1 0 2 0 1 0 0 1 0 0 0 1 0 0 1 3 0 0 0 0 1 0 0 0 3 0 0 0 0 0 1 0 0 0 1 2 3 1 0 0 0 1 1 3 3 2 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 2 0 2 1 0 0 1 0 0 1 2 0 0 2 0 0 0 0 1 0 1 6 0 2 0 0 0 1 1 0 0 0 2 1 0 0 0 0 6 0 0 "379" 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 4 1 0 0 0 0 0 0 0 0 3 0 0 0 1 0 3 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 2 0 0 0 1 1 0 "380" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 1 5 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 5 0 0 1 0 0 0 0 0 2 0 2 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 "381" 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 "382" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "383" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "384" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "385" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "386" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "387" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "388" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "389" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "390" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "391" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "392" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "393" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "394" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "395" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "396" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "397" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "398" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "399" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "400" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 "401" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "402" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "403" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "404" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "405" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "406" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "407" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "408" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "409" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "410" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "411" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "412" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "413" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 35 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 3 0 0 0 0 0 2 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "414" 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 1 1 5 1 0 0 0 0 0 0 1 0 0 1 0 0 0 2 0 1 0 0 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 "415" 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 1 0 0 0 0 37 1 0 0 1 0 0 0 0 0 0 2 1 1 1 0 4 3 0 0 0 0 2 1 0 1 0 1 0 2 3 0 0 0 1 2 3 0 2 0 0 0 0 1 0 0 2 5 0 0 6 0 0 0 6 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "416" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 15 0 0 0 1 0 0 0 0 0 2 0 0 3 1 0 2 5 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 0 0 0 4 0 0 1 2 0 0 0 0 0 0 4 1 0 0 0 1 0 0 0 1 0 3 1 0 0 0 5 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 surveillance/inst/extdata/n2.txt0000644000175100001440000000347212003613027016453 0ustar hornikusers"week" "observed" "state" 1 1 0 2 0 0 3 15 0 4 0 0 5 0 0 6 2 0 7 1 0 8 0 0 9 0 0 10 0 0 11 0 0 12 0 0 13 0 0 14 0 0 15 0 0 16 0 0 17 0 0 18 0 0 19 0 0 20 0 0 21 0 0 22 0 0 23 0 0 24 0 0 25 0 0 26 0 0 27 0 0 28 0 0 29 0 0 30 0 0 31 0 0 32 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 38 0 0 39 0 0 40 0 0 41 6 0 42 25 0 43 0 0 44 0 0 45 0 0 46 3 0 47 0 0 48 0 0 49 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 1 0 57 1 0 58 0 0 59 0 0 60 0 0 61 0 0 62 0 0 63 0 0 64 0 0 65 4 0 66 84 0 67 0 0 68 0 0 69 0 0 70 4 0 71 1 0 72 0 0 73 0 0 74 0 0 75 0 0 76 0 0 77 0 0 78 0 0 79 0 0 80 0 0 81 0 0 82 0 0 83 0 0 84 0 0 85 0 0 86 0 0 87 0 0 88 15 0 89 0 0 90 0 0 91 0 0 92 0 0 93 0 0 94 0 0 95 0 0 96 0 0 97 12 0 98 32 0 99 89 0 100 1 0 101 7 0 102 160 0 103 4 0 104 0 0 105 2 0 106 0 0 107 15 0 108 17 0 109 43 0 110 2 0 111 0 0 112 1 0 113 1 0 114 45 0 115 1 0 116 0 0 117 2 0 118 1 0 119 0 0 120 0 0 121 2 0 122 0 0 123 1 0 124 1 0 125 19 0 126 0 0 127 2 0 128 1 0 129 0 0 130 0 0 131 3 0 132 2 0 133 1 0 134 4 0 135 0 0 136 2 0 137 1 0 138 5 0 139 2 0 140 1 0 141 1 0 142 1 0 143 0 0 144 4 0 145 19 0 146 0 1 147 2 1 148 7 0 149 5 0 150 0 0 151 85 0 152 6 0 153 0 0 154 0 0 155 0 0 156 0 0 157 0 0 158 0 0 159 0 0 160 0 0 161 3 0 162 40 0 163 2 0 164 12 0 165 0 0 166 0 0 167 6 0 168 1 0 169 3 0 170 6 0 171 4 0 172 11 0 173 0 0 174 1 0 175 18 0 176 40 0 177 2 0 178 2 0 179 12 0 180 3 0 181 5 0 182 1 0 183 4 0 184 1 0 185 0 0 186 1 0 187 0 0 188 1 0 189 3 0 190 3 0 191 0 0 192 4 0 193 11 0 194 0 0 195 0 0 196 0 0 197 0 0 198 0 0 199 0 0 200 0 0 201 0 0 202 0 0 203 0 0 204 0 0 205 0 0 206 0 0 207 0 0 208 0 0 209 0 0 210 0 0 211 0 0 212 0 0 surveillance/inst/extdata/q2.txt0000644000175100001440000000344312003613027016454 0ustar hornikusers"week" "observed" "state" 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 10 0 0 11 0 0 12 0 0 13 0 0 14 0 0 15 0 0 16 0 0 17 0 0 18 0 0 19 0 0 20 0 0 21 0 0 22 0 0 23 0 0 24 0 0 25 0 0 26 0 0 27 0 0 28 0 0 29 0 0 30 0 0 31 0 0 32 0 0 33 0 0 34 0 0 35 0 0 36 1 0 37 0 0 38 1 1 39 1 1 40 2 1 41 1 1 42 3 1 43 1 0 44 1 0 45 0 0 46 0 0 47 0 0 48 0 0 49 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 58 0 0 59 0 0 60 0 0 61 0 0 62 0 0 63 0 0 64 0 0 65 0 0 66 0 0 67 0 0 68 0 0 69 0 0 70 0 0 71 0 0 72 1 0 73 0 0 74 1 0 75 0 0 76 0 0 77 0 0 78 0 0 79 0 0 80 0 0 81 0 0 82 0 0 83 0 0 84 0 0 85 0 0 86 0 0 87 0 0 88 0 0 89 0 0 90 0 0 91 0 0 92 0 0 93 0 0 94 0 0 95 0 0 96 0 0 97 0 0 98 0 0 99 0 0 100 0 0 101 0 0 102 0 0 103 0 0 104 0 0 105 0 0 106 0 0 107 0 0 108 0 0 109 0 0 110 0 0 111 0 0 112 0 0 113 0 0 114 0 0 115 0 0 116 0 0 117 0 0 118 0 0 119 0 0 120 0 0 121 0 0 122 0 0 123 0 0 124 0 0 125 0 0 126 0 0 127 0 0 128 0 0 129 0 0 130 0 0 131 0 0 132 0 0 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 0 0 140 0 0 141 0 0 142 0 0 143 0 0 144 0 0 145 0 0 146 0 0 147 0 0 148 0 0 149 0 0 150 0 0 151 0 0 152 0 0 153 0 0 154 0 0 155 0 0 156 0 0 157 0 0 158 0 0 159 0 0 160 0 0 161 0 0 162 0 0 163 0 0 164 0 0 165 0 0 166 0 0 167 0 0 168 0 0 169 0 0 170 0 0 171 0 0 172 0 0 173 0 0 174 0 0 175 0 0 176 0 0 177 0 0 178 0 0 179 0 0 180 0 0 181 0 0 182 0 0 183 0 0 184 0 0 185 0 0 186 0 0 187 0 0 188 0 0 189 0 0 190 0 0 191 0 0 192 0 0 193 0 0 194 0 0 195 0 0 196 0 0 197 0 0 198 0 0 199 0 0 200 0 0 201 0 0 202 0 0 203 0 0 204 0 0 205 0 0 206 0 0 207 0 0 208 0 0 209 0 0 210 0 0 211 0 0 212 0 0 surveillance/inst/extdata/m1.txt0000644000175100001440000000345312003613027016450 0ustar hornikusers"week" "observed" "state" 1 0 0 2 3 0 3 1 0 4 0 0 5 5 0 6 1 0 7 6 0 8 15 1 9 11 1 10 9 1 11 10 1 12 8 1 13 6 1 14 13 1 15 11 1 16 13 1 17 17 1 18 12 0 19 5 0 20 0 0 21 1 0 22 0 0 23 0 0 24 1 0 25 0 0 26 0 0 27 0 0 28 0 0 29 0 0 30 0 0 31 0 0 32 0 0 33 0 0 34 0 0 35 0 0 36 0 0 37 0 0 38 0 0 39 0 0 40 0 0 41 0 0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 49 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 58 0 0 59 0 0 60 0 0 61 1 0 62 0 0 63 0 0 64 0 0 65 0 0 66 0 0 67 0 0 68 0 0 69 0 0 70 0 0 71 0 0 72 0 0 73 1 0 74 1 0 75 1 0 76 1 0 77 0 0 78 0 0 79 0 0 80 0 0 81 0 0 82 0 0 83 0 0 84 0 0 85 1 0 86 0 0 87 0 0 88 0 0 89 0 0 90 0 0 91 0 0 92 0 0 93 0 0 94 0 0 95 0 0 96 0 0 97 0 0 98 0 0 99 0 0 100 0 0 101 0 0 102 0 0 103 0 0 104 0 0 105 0 0 106 0 0 107 0 0 108 0 0 109 0 0 110 0 0 111 0 0 112 0 0 113 0 0 114 0 0 115 0 0 116 0 0 117 0 0 118 0 0 119 0 0 120 0 0 121 0 0 122 0 0 123 0 0 124 0 0 125 0 0 126 0 0 127 0 0 128 0 0 129 0 0 130 0 0 131 0 0 132 0 0 133 0 0 134 0 0 135 0 0 136 0 0 137 0 0 138 0 0 139 0 0 140 0 0 141 0 0 142 0 0 143 0 0 144 0 0 145 0 0 146 0 0 147 0 0 148 0 0 149 0 0 150 0 0 151 0 0 152 0 0 153 0 0 154 0 0 155 0 0 156 0 0 157 0 0 158 0 0 159 0 0 160 0 0 161 1 0 162 0 0 163 0 0 164 0 0 165 0 0 166 0 0 167 0 0 168 0 0 169 0 0 170 0 0 171 0 0 172 0 0 173 0 0 174 0 0 175 0 0 176 0 0 177 0 0 178 0 0 179 0 0 180 0 0 181 0 0 182 0 0 183 0 0 184 0 0 185 0 0 186 0 0 187 0 0 188 0 0 189 0 0 190 0 0 191 0 0 192 0 0 193 0 0 194 0 0 195 0 0 196 0 0 197 0 0 198 0 0 199 0 0 200 0 0 201 0 0 202 0 0 203 0 0 204 0 0 205 0 0 206 0 0 207 0 0 208 0 0 209 0 0 210 0 0 211 0 0 212 0 0 surveillance/inst/extdata/population_2001-12-31_BYBW.txt0000644000175100001440000001527511736057020022267 0ustar hornikusers"name" "id" "popFrac" "pop31.12.2001" "LK Loerrach" 8336 0.00955704642962118 219149 "LK Waldshut" 8337 0.00724420011321107 166114 "LK Breisgau Hochschwarzwald" 8315 0.0105990592491612 243043 "SK Freiburg i. Breisgau" 8311 0.0090836619332578 208294 "SK Passau" 9262 0.00220966550402911 50669 "LK Berchtesgadener Land" 9172 0.00438828082276013 100626 "SK Rosenheim" 9163 0.0025864978792549 59310 "LK Lindau" 9776 0.00339502377170787 77850 "SK Kempten" 9763 0.00268222141398706 61505 "LK Bodenseekreis" 8435 0.00876330426303345 200948 "LK Konstanz" 8335 0.0117248901250817 268859 "LK Tuttlingen" 8327 0.00583787093414831 133866 "LK Schwarzwald Baar Kreis" 8326 0.00921566883058548 211321 "LK Emmendingen" 8316 0.0066702513931154 152953 "LK Rottweil" 8325 0.00618217039050841 141761 "LK Passau" 9275 0.00817051610466703 187355 "LK Traunstein" 9189 0.0073625135299438 168827 "LK Altoetting" 9171 0.00475447240414782 109023 "LK Rosenheim" 9187 0.0104709772348066 240106 "LK Miesbach" 9182 0.0040435016584811 92720 "LK Bad Toelz Wolfratshausen" 9173 0.00512048954629225 117416 "LK Ebersberg" 9175 0.00525131897872801 120416 "SK Memmingen" 9764 0.00179240683418067 41101 "LK Ravensburg" 8436 0.0117995937310025 270572 "LK Oberallgaeu" 9780 0.00646798909056973 148315 "SK Kaufbeuren" 9762 0.00184234006756032 42246 "LK Garmisch Partenkirchen" 9180 0.00381184634344819 87408 "LK Weilheim Schongau" 9190 0.00560573591119647 128543 "LK Starnberg" 9188 0.00552047873105917 126588 "SK Muenchen" 9162 0.0535510160649821 1227958 "LK Neu Ulm" 9775 0.00702597661990823 161110 "SK Ulm" 8421 0.00516109028015815 118347 "LK Sigmaringen" 8437 0.00582936702103999 133671 "LK Biberach" 8426 0.00804810336571798 184548 "LK Zollernalbkreis" 8417 0.00842524100961945 193196 "LK Ortenaukreis" 8317 0.0179450446608073 411491 "LK Freudenstadt" 8237 0.0053065289992159 121682 "SK Baden Baden" 8211 0.00231498319713989 53084 "LK Freyung Grafenau" 9272 0.00360012071195633 82553 "LK Deggendorf" 9271 0.00508307232861562 116558 "SK Straubing" 9263 0.00193261237594099 44316 "LK Dingolfing Landau" 9279 0.0039779997226416 91218 "LK Rottal Inn" 9277 0.0051942337363752 119107 "SK Landshut" 9261 0.00259535067084972 59513 "LK Muehldorf a. Inn" 9183 0.00478543536982428 109733 "LK Muenchen" 9184 0.0130778408957106 299883 "LK Erding" 9177 0.005143733575455 117949 "LK Unterallgaeu" 9778 0.00588383567474408 134920 "LK Ostallgaeu" 9777 0.00577345924357911 132389 "SK Augsburg" 9761 0.0112441791805019 257836 "LK Landsberg a. Lech" 9181 0.00469280813165976 107609 "LK Fuerstenfeldbruck" 9179 0.00854181003391971 195869 "LK Dachau" 9174 0.00572793060109147 131345 "LK Guenzburg" 9774 0.00532536843748664 122114 "LK Alb Donau Kreis" 8425 0.0081550346218288 187000 "LK Tuebingen" 8416 0.00920419945034194 211058 "LK Reutlingen" 8415 0.012174856153039 279177 "SK Pforzheim" 8231 0.00514604489542803 118002 "LK Boeblingen" 8115 0.0160409967109481 367830 "LK Calw" 8235 0.00698258485815037 160115 "LK Rastatt" 8216 0.00978207305341068 224309 "SK Karlsruhe" 8212 0.0121923436871746 279578 "LK Regen" 9276 0.00360744716017273 82721 "SK Regensburg" 9362 0.00554708071565444 127198 "LK Straubing Bogen" 9278 0.00418806818132262 96035 "LK Landshut" 9274 0.0063017921015655 144504 "LK Freising" 9178 0.00677679016092892 155396 "LK Pfaffenhofen.a.d.Ilm" 9186 0.00493274931074694 113111 "SK Ingolstadt" 9161 0.005115910516157 117311 "LK Dillingen a. d. Donau" 9773 0.00411829248402355 94435 "LK Augsburg" 9772 0.0104025098318318 238536 "LK Aichach Friedberg" 9771 0.0054294650558947 124501 "LK Neuburg Schrobenhausen" 9185 0.00393465157069456 90224 "LK Heidenheim" 8135 0.00597694262082752 137055 "LK Goeppingen" 8117 0.0112361113655017 257651 "LK Esslingen" 8116 0.022037781795695 505340 "SK Stuttgart" 8111 0.0256055876378397 587152 "LK Enzkreis" 8236 0.00845476485153912 193873 "SK Heilbronn" 8121 0.00524028569659259 120163 "LK Ludwigsburg" 8118 0.0219457214850711 503229 "SK Heidelberg" 8221 0.00617118071818381 141509 "LK Karlsruhe" 8215 0.0184448567025227 422952 "SK Schwabach" 9565 0.00167976269285349 38518 "LK Cham" 9372 0.00573102689765911 131416 "LK Regensburg" 9375 0.00776668925654867 178095 "LK Kelheim" 9273 0.0048371129956364 110918 "LK Eichstaett" 9176 0.00527813901237734 121031 "SK Fuerth" 9563 0.00485189672150164 111257 "SK Erlangen" 9562 0.00444436303946426 101912 "LK Donau Ries" 9779 0.00568388469217143 130335 "LK Weissenburg Gunzenhausen" 9577 0.00415060735383518 95176 "LK Fuerth" 9573 0.00495102182147713 113530 "SK Ansbach" 9561 0.00176235967453126 40412 "LK Ostalbkreis" 8136 0.0137521357904845 315345 "LK Rems Murr Kreis" 8119 0.0180090638630791 412959 "LK Heilbronn" 8125 0.0141314539249266 324043 "LK Rhein Neckar Kreis" 8226 0.0230170837072875 527796 "SK Mannheim" 8222 0.0134486115072336 308385 "LK Roth" 9576 0.0054496127884898 124963 "SK Nuernberg" 9564 0.0214258053205714 491307 "SK Weiden i. d. OPf." 9363 0.00187831816148015 43071 "LK Schwandorf" 9376 0.00629594838691671 144370 "LK Neumarkt i. d. OPf." 9373 0.005552052234087 127312 "SK Amberg" 9361 0.00192829500467061 44217 "LK Erlangen Hoechstadt" 9572 0.00565841656265727 129751 "SK Bamberg" 9461 0.00302634643110391 69396 "SK Wuerzburg" 9663 0.00566556857163042 129915 "LK Neustadt/Aisch Bad Windsheim" 9575 0.00432417440086661 99156 "LK Ansbach" 9571 0.00800972673220349 183668 "LK Schwaebisch Hall" 8127 0.00815359549807201 186967 "LK Hohenlohekreis" 8126 0.00474998059363419 108920 "LK Neckar Odenwald Kreis" 8225 0.0065454401145717 150091 "LK Kitzingen" 9675 0.00388580858258521 89104 "SK Schweinfurt" 9662 0.00237970015638478 54568 "LK Nuernberger Land" 9574 0.00735666981529501 168693 "LK Forchheim" 9474 0.00492084383239529 112838 "SK Bayreuth" 9462 0.00324975949189337 74519 "LK Tirschenreuth" 9377 0.00348023734203436 79804 "LK Neustadt a. d. Waldnaab" 9374 0.0044064661138687 101043 "LK Amberg Sulzbach" 9371 0.00475708899279653 109083 "LK Bamberg" 9471 0.00624086919586125 143107 "SK Coburg" 9463 0.0018664126831285 42798 "LK Wuerzburg" 9679 0.00694752257025759 159311 "LK Main Tauber Kreis" 8128 0.00599669786512532 137508 "LK Miltenberg" 9676 0.00572897723655095 131369 "SK Aschaffenburg" 9661 0.00298121027691358 68361 "LK Schweinfurt" 9678 0.00509685302883219 116874 "LK Wunsiedel i. Fichtelgebirge" 9479 0.00371895744641881 85278 "LK Bayreuth" 9472 0.00476432822139131 109249 "SK Hof" 9464 0.00220901135686693 50654 "LK Lichtenfels" 9478 0.00309080173148393 70874 "LK Kulmbach" 9477 0.00343095825581689 78674 "LK Hassberge" 9674 0.00385563059350336 88412 "LK Coburg" 9473 0.0040207809470481 92199 "LK Main Spessart" 9677 0.00576547864820053 132206 "LK Aschaffenburg" 9671 0.00761326994211234 174577 "LK Rhoen Grabfeld" 9673 0.00378171196417716 86717 "LK Bad Kissingen" 9672 0.00477518706428348 109498 "LK Hof" 9475 0.00474230526693129 108744 "LK Kronach" 9476 0.00329070910424576 75458 surveillance/inst/doc/0000755000175100001440000000000013231650467014515 5ustar hornikuserssurveillance/inst/doc/twinstim.Rnw0000644000175100001440000016200613174125727017072 0ustar hornikusers%\VignetteIndexEntry{twinstim: An endemic-epidemic modeling framework for spatio-temporal point patterns} %\VignetteEngine{knitr::knitr} %\VignetteDepends{surveillance, lattice, polyclip, memoise, maptools, spdep, colorspace, scales, rmapshaper} <>= ## purl=FALSE => not included in the tangle'd R script knitr::opts_chunk$set(echo = TRUE, tidy = FALSE, results = 'markup', fig.path='plots/twinstim-', fig.width = 8, fig.height = 4, fig.align = "center", fig.scap = NA, out.width = NULL, cache = FALSE, error = FALSE, warning = FALSE, message = FALSE) knitr::render_sweave() # use Sweave environments knitr::set_header(highlight = '') # no \usepackage{Sweave} (part of jss class) ## add a chunk option "strip.white.output" to remove leading and trailing white ## space (empty lines) from output chunks ('strip.white' has no effect) local({ default_output_hook <- knitr::knit_hooks$get("output") knitr::knit_hooks$set(output = function (x, options) { if (isTRUE(options[["strip.white.output"]])) { x <- sub("[[:space:]]+$", "\n", # set a single trailing \n sub("^[[:space:]]+", "", x)) # remove leading space } default_output_hook(x, options) }) }) ## R settings options(prompt = "R> ", continue = "+ ", useFancyQuotes = FALSE) # JSS options(width = 85, digits = 4) options(scipen = 1) # so that 1e-4 gets printed as 0.0001 ## xtable settings options(xtable.booktabs = TRUE, xtable.size = "small", xtable.sanitize.text.function = identity, xtable.comment = FALSE) @ <>= ## load the "cool" package library("surveillance") ## Compute everything or fetch cached results? message("Doing computations: ", COMPUTE <- !file.exists("twinstim-cache.RData")) if (!COMPUTE) load("twinstim-cache.RData", verbose = TRUE) @ \documentclass[nojss,nofooter,article]{jss} \title{% \vspace{-1.5cm} \fbox{\vbox{\normalfont\footnotesize This introduction to the \code{twinstim} modeling framework of the \proglang{R}~package \pkg{surveillance} is based on a publication in the \textit{Journal of Statistical Software} -- \citet[Section~3]{meyer.etal2014} -- which is the suggested reference if you use the \code{twinstim} implementation in your own work.}}\\[1cm] \code{twinstim}: An endemic-epidemic modeling framework for spatio-temporal point patterns} \Plaintitle{twinstim: An endemic-epidemic modeling framework for spatio-temporal point patterns} \Shorttitle{Endemic-epidemic modeling of spatio-temporal point patterns} \author{Sebastian Meyer\thanks{Author of correspondence: \email{seb.meyer@fau.de}}\\Friedrich-Alexander-Universit{\"a}t\\Erlangen-N{\"u}rnberg \And Leonhard Held\\University of Zurich \And Michael H\"ohle\\Stockholm University} \Plainauthor{Sebastian Meyer, Leonhard Held, Michael H\"ohle} %% Basic packages \usepackage{lmodern} % successor of CM -> searchable Umlauts (1 char) \usepackage[english]{babel} % language of the manuscript is American English %% Math packages \usepackage{amsmath,amsfonts} % amsfonts defines \mathbb \usepackage{mathtools} % tools for math typesetting + amsmath-bugfixes \usepackage{bm} % \bm: alternative to \boldsymbol from amsfonts \usepackage{bbm} % \mathbbm: alternative to \mathbb from amsfonts %% Packages for figures and tables \usepackage{booktabs} % make tables look nicer \usepackage{subcaption} % successor of subfig, which supersedes subfigure \newcommand{\subfloat}[2][need a sub-caption]{\subcaptionbox{#1}{#2}} % -> knitr %% Handy math commands \newcommand{\abs}[1]{\lvert#1\rvert} \newcommand{\norm}[1]{\lVert#1\rVert} \newcommand{\given}{\,\vert\,} \newcommand{\dif}{\,\mathrm{d}} \newcommand{\IR}{\mathbb{R}} \newcommand{\IN}{\mathbb{N}} \newcommand{\ind}{\mathbbm{1}} \DeclareMathOperator{\Po}{Po} \DeclareMathOperator{\NegBin}{NegBin} \DeclareMathOperator{\N}{N} %% Additional commands \newcommand{\class}[1]{\code{#1}} % could use quotes (JSS does not like them) \newcommand{\CRANpkg}[1]{\href{https://CRAN.R-project.org/package=#1}{\pkg{#1}}} %% Reduce the font size of code input and output \DefineVerbatimEnvironment{Sinput}{Verbatim}{fontshape=sl, fontsize=\small} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontsize=\small} %% Abstract \Abstract{ The availability of geocoded health data and the inherent temporal structure of communicable diseases have led to an increased interest in statistical models and software for spatio-temporal data with epidemic features. The \proglang{R}~package \pkg{surveillance} can handle various levels of aggregation at which infective events have been recorded. This vignette illustrates the analysis of \emph{point-referenced} surveillance data using the endemic-epidemic point process model ``\code{twinstim}'' proposed by \citet{meyer.etal2011} and extended in \citet{meyer.held2013}. %% (For other types of surveillance data, see %% \code{vignette("twinSIR")} and \code{vignette("hhh4\_spacetime")}.) We first describe the general modeling approach and then exemplify data handling, model fitting, visualization, and simulation methods for time-stamped geo-referenced case reports of invasive meningococcal disease (IMD) caused by the two most common bacterial finetypes of meningococci in Germany, 2002--2008. } \Keywords{% spatio-temporal point pattern, endemic-epidemic modeling, infectious disease epidemiology, self-exciting point process, spatial interaction function, branching process with immigration} \begin{document} %% \vfill %% { %% \renewcommand{\abstractname}{Outline} % local change %% \begin{abstract} %% We start by describing the general model class in %% Section~\ref{sec:twinstim:methods}. %% Section~\ref{sec:twinstim:data} introduces the example data and the %% associated class \class{epidataCS}, %% Section~\ref{sec:twinstim:fit} presents the core functionality of %% fitting and analyzing such data using \code{twinstim}, and %% Section~\ref{sec:twinstim:simulation} shows how to simulate realizations %% from a fitted model. %% \end{abstract} %% } %% \vfill %% \newpage \section[Model class]{Model class: \code{twinstim}} \label{sec:twinstim:methods} Infective events occur at specific points in continuous space and time, which gives rise to a spatio-temporal point pattern $\{(\bm{s}_i,t_i): i = 1,\dotsc,n\}$ from a region~$\bm{W}$ observed during a period~$(0,T]$. The locations~$\bm{s}_i$ and time points~$t_i$ of the $n$~events can be regarded as a realization of a self-exciting spatio-temporal point process, which can be characterized by its conditional intensity function (CIF, also termed intensity process) $\lambda(\bm{s},t)$. It represents the instantaneous event rate at location~$\bm{s}$ at time point~$t$ given all past events, and is often more verbosely denoted by~$\lambda^*$ or by explicit conditioning on the ``history''~$\mathcal{H}_t$ of the process. \citet[Chapter~7]{Daley.Vere-Jones2003} provide a rigorous mathematical definition of this concept, which is key to likelihood analysis and simulation of ``evolutionary'' point processes. \citet{meyer.etal2011} formulated the model class ``\code{twinstim}'' -- a \emph{two}-component \emph{s}patio-\emph{t}emporal \emph{i}ntensity \emph{m}odel -- by a superposition of an endemic and an epidemic component: \begin{equation} \label{eqn:twinstim} \lambda(\bm{s},t) = \nu_{[\bm{s}][t]} + \sum_{j \in I(\bm{s},t)} \eta_j \, f(\norm{\bm{s}-\bm{s}_j}) \, g(t-t_j) \:. \end{equation} This model constitutes a branching process with immigration. Part of the event rate is due to the first, endemic component, which reflects sporadic events caused by unobserved sources of infection. This background rate of new events is modeled by a log-linear predictor $\nu_{[\bm{s}][t]}$ incorporating regional and/or time-varying characteristics. Here, the space-time index $[\bm{s}][t]$ refers to the region covering $\bm{s}$ during the period containing $t$ and thus spans a whole spatio-temporal grid on which the involved covariates are measured, e.g., district $\times$ month. We will later see that the endemic component therefore simply equals an inhomogeneous Poisson process for the event counts by cell of that grid. The second, observation-driven epidemic component adds ``infection pressure'' from the set \begin{equation*} I(\bm{s},t) = \big\{ j : t_j < t \:\wedge\: t-t_j \le \tau_j \:\wedge\: \norm{\bm{s}-\bm{s}_j} \le \delta_j \big\} \end{equation*} of past events and hence makes the process ``self-exciting''. During its infectious period of length~$\tau_j$ and within its spatial interaction radius~$\delta_j$, the model assumes each event~$j$ to trigger further events, which are called offspring, secondary cases, or aftershocks, depending on the application. The triggering rate (or force of infection) is proportional to a log-linear predictor~$\eta_j$ associated with event-specific characteristics (``marks'') $\bm{m}_j$, which are usually attached to the point pattern of events. The decay of infection pressure with increasing spatial and temporal distance from the infective event is modeled by parametric interaction functions~$f$ and~$g$, respectively. A simple assumption for the time course of infectivity is $g(t) = 1$. Alternatives include exponential decay, a step function, or empirically derived functions such as Omori's law for aftershock intervals. With regard to spatial interaction, a Gaussian kernel $f(x) = \exp\left\{-x^2/(2 \sigma^2)\right\}$ could be chosen. However, in modeling the spread of human infectious diseases on larger scales, a heavy-tailed power-law kernel $f(x) = (x+\sigma)^{-d}$ was found to perform better \citep{meyer.held2013}. The (possibly infinite) upper bounds~$\tau_j$ and~$\delta_j$ provide a way of modeling event-specific interaction ranges. However, since these need to be pre-specified, a common assumption is $\tau_j \equiv \tau$ and $\delta_j \equiv \delta$, where the infectious period~$\tau$ and the spatial interaction radius~$\delta$ are determined by subject-matter considerations. \subsection{Model-based effective reproduction numbers} Similar to the simple SIR model \citep[see, e.g.,][Section 2.1]{Keeling.Rohani2008}, the above point process model~\eqref{eqn:twinstim} features a reproduction number derived from its branching process interpretation. As soon as an event occurs (individual becomes infected), it triggers offspring (secondary cases) around its origin $(\bm{s}_j, t_j)$ according to an inhomogeneous Poisson process with rate $\eta_j \, f(\norm{\bm{s}-\bm{s}_j}) \, g(t-t_j)$. Since this triggering process is independent of the event's parentage and of other events, the expected number $\mu_j$ of events triggered by event $j$ can be obtained by integrating the triggering rate over the observed interaction domain: \begin{gather} \label{eqn:R0:twinstim} \mu_j = \eta_j \cdot \left[ \int_0^{\min(T-t_j,\tau_j)} g(t) \,dt \right] \cdot \left[ \int_{\bm{R}_j} f(\norm{\bm{s}}) \,d\bm{s} \right] \:, \shortintertext{where} \label{eqn:twinstim:IR} \bm{R}_j = (b(\bm{s}_j,\delta_j) \cap \bm{W}) - \bm{s}_j \end{gather} is event $j$'s influence region centered at $\bm{s}_j$, and $b(\bm{s}_j, \delta_j)$ denotes the disc centered at $\bm{s}_j$ with radius $\delta_j$. Note that the above model-based reproduction number $\mu_j$ is event-specific since it depends on event marks through $\eta_j$, on the interaction ranges $\delta_j$ and $\tau_j$, as well as on the event location $\bm{s}_j$ and time point $t_j$. If the model assumes unique interaction ranges $\delta$ and $\tau$, a single reference number of secondary cases can be extrapolated from Equation~\ref{eqn:R0:twinstim} by imputing an unbounded domain $\bm{W} = \IR^2$ and $T = \infty$ \citep{meyer.etal2015}. Equation~\ref{eqn:R0:twinstim} can also be motivated by looking at a spatio-temporal version of the simple SIR model wrapped into the \class{twinstim} class~\eqref{eqn:twinstim}. This means: no endemic component, homogeneous force of infection ($\eta_j \equiv \beta$), homogeneous mixing in space ($f(x) = 1$, $\delta_j \equiv \infty$), and exponential decay of infectivity ($g(t) = e^{-\alpha t}$, $\tau_j \equiv \infty$). Then, for $T \rightarrow \infty$, \begin{equation*} \mu = \beta \cdot \left[ \int_0^\infty e^{-\alpha t} \,dt \right] \cdot \left[ \int_{\bm{W}-\bm{s}_j} 1 \,d\bm{s} \right] = \beta \cdot \abs{\bm{W}} / \alpha \:, \end{equation*} which corresponds to the basic reproduction number known from the simple SIR model by interpreting $\abs{\bm{W}}$ as the population size, $\beta$ as the transmission rate and $\alpha$ as the removal rate. If $\mu < 1$, the process is sub-critical, i.e., its eventual extinction is almost sure. However, it is crucial to understand that in a full model with an endemic component, new infections may always occur via ``immigration''. Hence, reproduction numbers in \class{twinstim} are adjusted for infections occurring independently of previous infections. This also means that a misspecified endemic component may distort model-based reproduction numbers \citep{meyer.etal2015}. Furthermore, under-reporting and implemented control measures imply that the estimates are to be thought of as \emph{effective} reproduction numbers. \subsection{Likelihood inference} The log-likelihood of the point process model~\eqref{eqn:twinstim} is a function of all parameters in the log-linear predictors $\nu_{[\bm{s}][t]}$ and $\eta_j$ and in the interaction functions $f$ and $g$. It has the form %% \begin{equation} \label{eqn:twinstim:marked:loglik} %% l(\bm{\theta}) = \left[ \sum_{i=1}^{n} \log\lambda(\bm{s}_i,t_i,k_i) \right] - %% \sum_{k\in\mathcal{K}} \int_0^T \int_{\bm{W}} \lambda(\bm{s},t,k) \dif\bm{s} %% \dif t \:, %% \end{equation} \begin{equation} \label{eqn:twinstim:loglik} \left[ \sum_{i=1}^{n} \log\lambda(\bm{s}_i,t_i) \right] - \int_0^T \int_{\bm{W}} \lambda(\bm{s},t) \dif\bm{s} \dif t \:. \end{equation} %\citep[Proposition~7.3.III]{Daley.Vere-Jones2003} To estimate the model parameters, we maximize the above log-likelihood numerically using the quasi-Newton algorithm available through the \proglang{R}~function \code{nlminb}. We thereby employ the analytical score function and an approximation of the expected Fisher information worked out by \citet[Web Appendices A and B]{meyer.etal2011}. The space-time integral in the log-likelihood \eqref{eqn:twinstim:loglik} poses no difficulties for the endemic component of $\lambda(\bm{s},t)$, since $\nu_{[\bm{s}][t]}$ is defined on a spatio-temporal grid. However, integration of the epidemic component involves two-dimensional integrals $\int_{\bm{R}_i} f(\norm{\bm{s}}) \dif\bm{s}$ over the influence regions~$\bm{R}_i$, which are represented by polygons (as is~$\bm{W}$). Similar integrals appear in the score function, where $f(\norm{\bm{s}})$ is replaced by partial derivatives with respect to kernel parameters. Calculation of these integrals is trivial for (piecewise) constant~$f$, but otherwise requires numerical integration. The \proglang{R}~package \CRANpkg{polyCub} \citep{R:polyCub} offers cubature methods for polygonal domains as described in \citet[Supplement~B, Section~2]{meyer.held2013}. % For Gaussian~$f$, we apply a midpoint rule with $\sigma$-adaptive bandwidth % %% combined with an analytical formula via the $\chi^2$ distribution % %% if the $6\sigma$-circle around $\bm{s}_i$ is contained in $\bm{R}_i$. % and use product Gauss cubature \citep{sommariva.vianello2007} % to approximate the integrals in the score function. % For the recently implemented power-law kernels, In particular, we established an efficient cubature method which takes advantage of the assumed isotropy of spatial interaction such that numerical integration remains in only one dimension. We \CRANpkg{memoise} \citep{R:memoise} the cubature function during log-likelihood maximization to avoid integration for unchanged parameters of~$f$. \subsection{Special cases: Single-component models} If the \emph{epidemic} component is omitted in Equation~\ref{eqn:twinstim}, the point process model becomes equivalent to a Poisson regression model for aggregated counts. This provides a link to ecological regression approaches in general and to the count data model \code{hhh4} illustrated in \code{vignette("hhh4")} and \code{vignette("hhh4\_spacetime")}. To see this, recall that the endemic component $\nu_{[\bm{s}][t]}$ is piecewise constant on the spatio-temporal grid with cells $([\bm{s}],[t])$. Hence the log-likelihood~\eqref{eqn:twinstim:loglik} of an endemic-only \code{twinstim} simplifies to a sum over all these cells, \begin{equation*} \sum_{[\bm{s}],[t]} \left\{ Y_{[\bm{s}][t]} \log\nu_{[\bm{s}][t]} - \abs{[\bm{s}]} \, \abs{[t]} \, \nu_{[\bm{s}][t]} \right\} \:, \end{equation*} where $Y_{[\bm{s}][t]}$ is the aggregated number of events observed in cell $([\bm{s}],[t])$, and $\abs{[\bm{s}]}$ and $\abs{[t]}$ denote cell area and length, respectively. Except for an additive constant, the above log-likelihood is equivalently obtained from the Poisson model $Y_{[\bm{s}][t]} \sim \Po( \abs{[\bm{s}]} \, \abs{[t]} \, \nu_{[\bm{s}][t]})$. This relation offers a means of code validation using the established \code{glm} function to fit an endemic-only \code{twinstim} model -- see the examples in \code{help("glm_epidataCS")}. %% The \code{help("glm_epidataCS")} also shows how to fit %% an equivalent endemic-only \code{hhh4} model. If, in contrast, the \emph{endemic} component is omitted, all events are necessarily triggered by other observed events. For such a model to be identifiable, a prehistory of events must exist to trigger the first event, and interaction typically needs to be unbounded such that each event can actually be linked to potential source events. \subsection[Extension: Event types]{Extension: \code{twinstim} with event types} To model the example data on invasive meningococcal disease in the remainder of this section, we actually need to use an extended version $\lambda(\bm{s},t,k)$ of Equation~\ref{eqn:twinstim}, which accounts for different event types~$k$ with own transmission dynamics. This introduces a further dimension in the point process, and the second log-likelihood component in Equation~\ref{eqn:twinstim:loglik} accordingly splits into a sum over all event types. We refer to \citet[Sections~2.4 and~3]{meyer.etal2011} for the technical details of this type-specific \code{twinstim} class. The basic idea is that the meningococcal finetypes share the same endemic pattern (e.g., seasonality), while infections of different finetypes are not associated via transmission. This means that the force of infection is restricted to previously infected individuals with the same bacterial finetype~$k$, i.e., the epidemic sum in Equation~\ref{eqn:twinstim} is over the set $I(\bm{s},t,k) = I(\bm{s},t) \cap \{j: k_j = k\}$. The implementation has limited support for type-dependent interaction functions $f_{k_j}$ and $g_{k_j}$ (not further considered here). \section[Data structure]{Data structure: \class{epidataCS}} \label{sec:twinstim:data} <>= ## extract components from imdepi to reconstruct data("imdepi") events <- SpatialPointsDataFrame( coords = coordinates(imdepi$events), data = marks(imdepi, coords=FALSE), proj4string = imdepi$events@proj4string # ETRS89 projection (+units=km) ) stgrid <- imdepi$stgrid[,-1] @ <>= load(system.file("shapes", "districtsD.RData", package = "surveillance")) @ The first step toward fitting a \code{twinstim} is to turn the relevant data into an object of the dedicated class \class{epidataCS}.\footnote{ The suffix ``CS'' indicates that the data-generating point process is indexed in continuous space. } The primary ingredients of this class are a spatio-temporal point pattern (\code{events}) and its underlying observation region (\code{W}). An additional spatio-temporal grid (\code{stgrid}) holds (time-varying) area-level covariates for the endemic regression part. We exemplify this data class by the \class{epidataCS} object for the \Sexpr{nobs(imdepi)} cases of invasive meningococcal disease in Germany originally analyzed by \citet{meyer.etal2011}. It is already contained in the \pkg{surveillance} package as \code{data("imdepi")} and has been constructed as follows: <>= imdepi <- as.epidataCS(events = events, W = stateD, stgrid = stgrid, qmatrix = diag(2), nCircle2Poly = 16) @ The function \code{as.epidataCS} checks the consistency of the three data ingredients described in detail below. It also pre-computes auxiliary variables for model fitting, e.g., the individual influence regions~\eqref{eqn:twinstim:IR}, which are intersections of the observation region with discs %of radius \code{eps.s} centered at the event location approximated by polygons with \code{nCircle2Poly = 16} edges. The intersections are computed using functionality of the package \CRANpkg{polyclip} \citep{R:polyclip}. For multitype epidemics as in our example, the additional indicator matrix \code{qmatrix} specifies transmissibility across event types. An identity matrix corresponds to an independent spread of the event types, i.e., cases of one type can not produce cases of another type. \subsection{Data ingredients} The core \code{events} data must be provided in the form of a \class{SpatialPointsDataFrame} as defined by the package \CRANpkg{sp} \citep{R:sp}: <>= summary(events) @ <>= oopt <- options(width=100) ## hack to reduce the 'print.gap' in the data summary but not for the bbox local({ print.summary.Spatial <- sp:::print.summary.Spatial environment(print.summary.Spatial) <- environment() print.table <- function (x, ..., print.gap = 0) { base::print.table(x, ..., print.gap = print.gap) } print.summary.Spatial(summary(events)) }) options(oopt) @ The associated event coordinates are residence postcode centroids, projected in the \emph{European Terrestrial Reference System 1989} (in kilometer units) to enable Euclidean geometry. See the \code{spTransform}-methods in package \CRANpkg{rgdal} \citep{R:rgdal} for how to project latitude and longitude coordinates into a planar coordinate reference system (CRS). The data frame associated with these spatial coordinates ($\bm{s}_i$) contains a number of required variables and additional event marks (in the notation of Section~\ref{sec:twinstim:methods}: $\{(t_i,[\bm{s}_i],k_i,\tau_i,\delta_i,\bm{m}_i): i = 1,\dotsc,n\}$). For the IMD data, the event \code{time} is measured in days since the beginning of the observation period 2002--2008 and is subject to a tie-breaking procedure (described later). The \code{tile} column refers to the region of the spatio-temporal grid where the event occurred and here contains the official key of the administrative district of the patient's residence. There are two \code{type}s of events labeled as \code{"B"} and \code{"C"}, which refer to the serogroups of the two meningococcal finetypes \emph{B:P1.7-2,4:F1-5} and \emph{C:P1.5,2:F3-3} contained in the data. The \code{eps.t} and \code{eps.s} columns specify upper limits for temporal and spatial interaction, respectively. Here, the infectious period is assumed to last a maximum of 30 days and spatial interaction is limited to a 200 km radius for all cases. The latter has numerical advantages for a Gaussian interaction function $f$ with a relatively small standard deviation. For a power-law kernel, however, this restriction will be dropped to enable occasional long-range transmission. The last two data attributes displayed in the above \code{event} summary are covariates from the case reports: the gender and age group of the patient. For the observation region \code{W}, we use a polygon representation of Germany's boundary. Since the observation region defines the integration domain in the point process log-likelihood~\eqref{eqn:twinstim:loglik}, the more detailed the polygons of \code{W} are the longer it will take to fit a \code{twinstim}. It is thus advisable to sacrifice some shape details for speed by reducing the polygon complexity, e.g., by applying \code{ms_simplify} from the \CRANpkg{rmapshaper} package \citep{R:rmapshaper}. Alternative tools in \proglang{R} are \CRANpkg{spatstat}'s \code{simplify.owin} procedure \citep{R:spatstat} and the function \code{thinnedSpatialPoly} in package \CRANpkg{maptools} \citep{R:maptools}, which implements the Douglas-Peucker reduction method. The \pkg{surveillance} package already contains a simplified representation of Germany's boundaries: <>= <> @ This file contains both the \class{SpatialPolygonsDataFrame} \code{districtsD} of Germany's \Sexpr{length(districtsD)} administrative districts as at January 1, 2009, as well as their union \code{stateD}. %obtained by the call \code{rgeos::gUnaryUnion(districtsD)} \citep{R:rgeos}. These boundaries are projected in the same CRS as the \code{events} data. The \code{stgrid} input for the endemic model component is a data frame with (time-varying) area-level covariates, e.g., socio-economic or ecological characteristics. In our example: <>= .stgrid.excerpt <- format(rbind(head(stgrid, 3), tail(stgrid, 3)), digits=3) rbind(.stgrid.excerpt[1:3,], "..."="...", .stgrid.excerpt[4:6,]) @ Numeric (\code{start},\code{stop}] columns index the time periods and the factor variable \code{tile} identifies the regions of the grid. Note that the given time intervals (here: months) also define the resolution of possible time trends and seasonality of the piecewise constant endemic intensity. We choose monthly intervals to reduce package size and computational cost compared to the weekly resolution originally used by \citet{meyer.etal2011} and \citet{meyer.held2013}. The above \code{stgrid} data frame thus consists of 7 (years) times 12 (months) blocks of \Sexpr{nlevels(stgrid[["tile"]])} (districts) rows each. The \code{area} column gives the area of the respective \code{tile} in square kilometers (compatible with the CRS used for \code{events} and \code{W}). A geographic representation of the regions in \code{stgrid} is not required for model estimation, and is thus not part of the \class{epidataCS} class. %It is, however, necessary for plots of the fitted intensity and for %simulation from the estimated model. In our example, the area-level data only consists of the population density \code{popdensity}, whereas \citet{meyer.etal2011} additionally incorporated (lagged) weekly influenza counts by district as a time-dependent covariate. %% In another application, \citet{meyer.etal2015} used a large number of socio-economic %% characteristics to model psychiatric hospital admissions. \subsection{Data handling and visualization} The generated \class{epidataCS} object \code{imdepi} is a simple list of the checked ingredients <>= cat(paste0('\\code{', names(imdepi), '}', collapse = ", "), ".", sep = "") @ Several methods for data handling and visualization are available for such objects as listed in Table~\ref{tab:methods:epidataCS} and briefly presented in the remainder of this section. <>= print(xtable( surveillance:::functionTable( class = "epidataCS", functions = list( Convert = c("epidataCS2sts"), Extract = c("getSourceDists"))), caption="Generic and \\textit{non-generic} functions applicable to \\class{epidataCS} objects.", label="tab:methods:epidataCS" ), include.rownames = FALSE) @ Printing an \class{epidataCS} object presents some metadata and the first \Sexpr{formals(surveillance:::print.epidataCS)[["n"]]} events by default: <>= imdepi @ During conversion to \class{epidataCS}, the last three columns \code{BLOCK} (time interval index), \code{start} and \code{popdensity} have been merged from the checked \code{stgrid} to the \code{events} data frame. The event marks including time and location can be extracted in a standard data frame by \code{marks(imdepi)} -- inspired by package \CRANpkg{spatstat} -- and this is summarized by \code{summary(imdepi)}. <>= (simdepi <- summary(imdepi)) @ The number of potential sources of infection per event (denoted \texttt{|.sources|} in the above output) is additionally summarized. It is determined by the events' maximum ranges of interaction \code{eps.t} and \code{eps.s}. The event-specific set of potential sources is stored in the (hidden) list \code{imdepi$events$.sources} (events are referenced by row index), and the event-specific numbers of potential sources are stored in the summarized object as \code{simdepi$nSources}. A simple plot of the number of infectives as a function of time (Figure~\ref{fig:imdepi_stepfun}) %determined by the event times and infectious periods can be obtained by the step function converter: <>= par(mar = c(5, 5, 1, 1), las = 1) plot(as.stepfun(imdepi), xlim = summary(imdepi)$timeRange, xaxs = "i", xlab = "Time [days]", ylab = "Current number of infectives", main = "") #axis(1, at = 2557, labels = "T", font = 2, tcl = -0.3, mgp = c(3, 0.3, 0)) @ \pagebreak[1] The \code{plot}-method for \class{epidataCS} offers aggregation of the events over time or space: <>= par(las = 1) plot(imdepi, "time", col = c("indianred", "darkblue"), ylim = c(0, 20)) par(mar = c(0, 0, 0, 0)) plot(imdepi, "space", lwd = 2, points.args = list(pch = c(1, 19), col = c("indianred", "darkblue"))) layout.scalebar(imdepi$W, scale = 100, labels = c("0", "100 km"), plot = TRUE) @ \pagebreak[1] The time-series plot (Figure~\ref{fig:imdepi_plot1}) shows the monthly aggregated number of cases by finetype in a stacked histogram as well as each type's cumulative number over time. The spatial plot (Figure~\ref{fig:imdepi_plot2}) shows the observation window \code{W} with the locations of all cases (by type), where the areas of the points are proportional to the number of cases at the respective location. Additional shading by the population is possible and exemplified in \code{help("plot.epidataCS")}. The above static plots do not capture the space-time dynamics of epidemic spread. An animation may provide additional insight and can be produced by the corresponding \code{animate}-method. For instance, to look at the first year of the B-type in a weekly sequence of snapshots in a web browser (using facilities of the \CRANpkg{animation} package of \citealp{R:animation}): <>= animation::saveHTML( animate(subset(imdepi, type == "B"), interval = c(0, 365), time.spacing = 7), nmax = Inf, interval = 0.2, loop = FALSE, title = "First year of type B") @ Selecting events from \class{epidataCS} as for the animation above is enabled by the \code{[}- and \code{subset}-methods, which return a new \class{epidataCS} object containing only the selected \code{events}. A limited data sampling resolution may lead to tied event times or locations, which are in conflict with a continuous spatio-temporal point process model. For instance, a temporal residual analysis would suggest model deficiencies \citep[Figure 4]{meyer.etal2011}, and a power-law kernel for spatial interaction may diverge if there are events with zero distance to potential source events \citep{meyer.held2013}. The function \code{untie} breaks ties by random shifts. This has already been applied to the event \emph{times} in the provided \code{imdepi} data by subtracting a U$(0,1)$-distributed random number from the original dates. The event \emph{coordinates} in the IMD data are subject to interval censoring at the level of Germany's postcode regions. A possible replacement for the given centroids would thus be a random location within the corresponding postcode area. Lacking a suitable shapefile, \citet{meyer.held2013} shifted all locations by a random vector with length up to half the observed minimum spatial separation: <>= eventDists <- dist(coordinates(imdepi$events)) minsep <- min(eventDists[eventDists > 0]) set.seed(321) imdepi_untied <- untie(imdepi, amount = list(s = minsep / 2)) @ Note that random tie-breaking requires sensitivity analyses as discussed by \citet{meyer.held2013}, but these are skipped here for the sake of brevity. The \code{update}-method is useful to change the values of the maximum interaction ranges \code{eps.t} and \code{eps.s}, since it takes care of the necessary updates of the hidden auxiliary variables in an \class{epidataCS} object. For unbounded spatial interaction: <>= imdepi_untied_infeps <- update(imdepi_untied, eps.s = Inf) @ Last but not least, \class{epidataCS} can be aggregated to \class{epidata} (from \code{vignette("twinSIR")}) or \class{sts} (from \code{vignette("hhh4_spacetime")}). The method \code{as.epidata.epidataCS} aggregates events by region (\code{tile}), and the function \code{epidataCS2sts} yields counts by region and time interval. The latter could be analyzed by an areal time-series model such as \code{hhh4} (see \code{vignette("hhh4\_spacetime")}). We can also use \class{sts} visualizations, e.g.\ (Figure~\ref{fig:imdsts_plot}): <>= imdsts <- epidataCS2sts(imdepi, freq = 12, start = c(2002, 1), tiles = districtsD) par(las = 1, lab = c(7,7,7), mar = c(5,5,1,1)) plot(imdsts, type = observed ~ time) plot(imdsts, type = observed ~ unit, population = districtsD$POPULATION / 100000) @ \section{Modeling and inference} \label{sec:twinstim:fit} Having prepared the data as an object of class \class{epidataCS}, the function \code{twinstim} can be used to perform likelihood inference for conditional intensity models of the form~\eqref{eqn:twinstim}. The main arguments for \code{twinstim} are the formulae of the \code{endemic} and \code{epidemic} linear predictors ($\nu_{[\bm{s}][t]} = \exp$(\code{endemic}) and $\eta_j = \exp$(\code{epidemic})), and the spatial and temporal interaction functions \code{siaf} ($f$) and \code{tiaf} ($g$), respectively. Both formulae are parsed internally using the standard \code{model.frame} toolbox from package \pkg{stats} and thus can handle factor variables and interaction terms. While the \code{endemic} linear predictor incorporates %time-dependent and/or area-level covariates from \code{stgrid}, %% and in the disease mapping context usually contains at least the population density as a multiplicative offset, i.e., %% \code{endemic = ~offset(log(popdensity))}. There can be additional effects of time, %% which are functions of the variable \code{start} from \code{stgrid}, %% or effects of, e.g., socio-demographic and ecological variables. the \code{epidemic} formula may use both \code{stgrid} variables and event marks to be associated with the force of infection. %% For instance, \code{epidemic = ~log(popdensity) + type} corresponds to %% $\eta_j = \rho_{[\bm{s}_j]}^{\gamma_{\rho}} \exp(\gamma_0 + \gamma_C \ind(k_j=C))$, %% which models different infectivity of the event types, and scales %% with population density (a grid-based covariate) to reflect higher %% contact rates and thus infectivity in more densly populated regions. For the interaction functions, several alternatives are predefined as listed in Table~\ref{tab:iafs}. They are applicable out-of-the-box and illustrated as part of the following modeling exercise for the IMD data. Own interaction functions can also be implemented following the structure described in \code{help("siaf")} and \code{help("tiaf")}, respectively. <>= twinstim_iafs <- suppressWarnings( cbind("Spatial (\\code{siaf.*})" = ls(pattern="^siaf\\.", pos="package:surveillance"), "Temporal (\\code{tiaf.*})" = ls(pattern="^tiaf\\.", pos="package:surveillance")) ) twinstim_iafs <- apply(twinstim_iafs, 2, function (x) { is.na(x) <- duplicated(x) x }) print(xtable(substring(twinstim_iafs, 6), label="tab:iafs", caption="Predefined spatial and temporal interaction functions."), include.rownames=FALSE, sanitize.text.function=function(x) paste0("\\code{", x, "}"), sanitize.colnames.function=identity, sanitize.rownames.function=identity) @ \subsection{Basic example} To illustrate statistical inference with \code{twinstim}, we will estimate several models for the simplified and ``untied'' IMD data presented in Section~\ref{sec:twinstim:data}. In the endemic component, we include the district-specific population density as a multiplicative offset, a (centered) time trend, and a sinusoidal wave of frequency $2\pi/365$ to capture seasonality, where the \code{start} variable from \code{stgrid} measures time: <>= (endemic <- addSeason2formula(~offset(log(popdensity)) + I(start / 365 - 3.5), period = 365, timevar = "start")) @ See \citet[Section~2.2]{held.paul2012} for how such sine/cosine terms reflect seasonality. Because of the aforementioned integrations in the log-likelihood~\eqref{eqn:twinstim:loglik}, it is advisable to first fit an endemic-only model to obtain reasonable start values for more complex epidemic models: <>= imdfit_endemic <- twinstim(endemic = endemic, epidemic = ~0, data = imdepi_untied, subset = !is.na(agegrp)) @ We exclude the single case with unknown age group from this analysis since we will later estimate an effect of the age group on the force of infection. Many of the standard functions to access model fits in \proglang{R} are also implemented for \class{twinstim} fits (see Table~\ref{tab:methods:twinstim}). For example, we can produce the usual model summary: <>= summary(imdfit_endemic) @ Because of the aforementioned equivalence of the endemic component with a Poisson regression model, the coefficients can be interpreted as log rate ratios in the usual way. For instance, the endemic rate is estimated to decrease by \code{1 - exp(coef(imdfit_endemic)[2])} $=$ \Sexpr{round(100*(1-exp(coef(imdfit_endemic)[2])),1)}\% per year. Coefficient correlations can be retrieved via the argument \code{correlation = TRUE} in the \code{summary} call just like for \code{summary.glm}, or via \code{cov2cor(vcov(imdfit_endemic))}. <>= print(xtable( surveillance:::functionTable( class = "twinstim", functions = list( Display = c("iafplot", "checkResidualProcess"), Extract = c("intensity.twinstim", "simpleR0"), Modify = c("stepComponent"), Other = c("epitest"))), caption="Generic and \\textit{non-generic} functions applicable to \\class{twinstim} objects. Note that there is no need for specific \\code{coef}, \\code{confint}, \\code{AIC} or \\code{BIC} methods, since the respective default methods from package \\pkg{stats} apply outright.", label="tab:methods:twinstim" ), include.rownames = FALSE) @ We now update the endemic model to take additional spatio-temporal dependence between events into account. Infectivity shall depend on the meningococcal finetype and the age group of the patient, and is assumed to be constant over time (default), $g(t)=\ind_{(0,30]}(t)$, with a Gaussian distance-decay $f(x) = \exp\left\{-x^2/(2 \sigma^2)\right\}$. This model was originally selected by \citet{meyer.etal2011} and can be fitted as follows: <>= imdfit_Gaussian <- update(imdfit_endemic, epidemic = ~type + agegrp, siaf = siaf.gaussian(), cores = 2 * (.Platform$OS.type == "unix")) @ On Unix-alikes, the numerical integrations of $f(\norm{\bm{s}})$ in the log-likelihood and $\frac{\partial f(\norm{\bm{s}})}{\partial \log\sigma}$ in the score function (note that $\sigma$ is estimated on the log-scale) can be performed in parallel via %the ``multicore'' functions \code{mclapply} \textit{et al.}\ from the base package \pkg{parallel}, here with \code{cores = 2} processes. Table~\ref{tab:imdfit_Gaussian} shows the output of \code{twinstim}'s \code{xtable} method \citep{R:xtable} applied to the above model fit, providing a table of estimated rate ratios for the endemic and epidemic effects. The alternative \code{toLatex} method simply translates the \code{summary} table of coefficients to \LaTeX\ without \code{exp}-transformation. On the subject-matter level, we can conclude from Table~\ref{tab:imdfit_Gaussian} that the meningococcal finetype of serogroup~C is less than half as infectious as the B-type, and that patients in the age group 3 to 18 years are estimated to cause twice as many secondary infections as infants aged 0 to 2 years. <>= print(xtable(imdfit_Gaussian, caption="Estimated rate ratios (RR) and associated Wald confidence intervals (CI) for endemic (\\code{h.}) and epidemic (\\code{e.}) terms. This table was generated by \\code{xtable(imdfit\\_Gaussian)}.", label="tab:imdfit_Gaussian"), sanitize.text.function=NULL, sanitize.colnames.function=NULL, sanitize.rownames.function=function(x) paste0("\\code{", x, "}")) @ \subsection{Model-based effective reproduction numbers} The event-specific reproduction numbers~\eqref{eqn:R0:twinstim} can be extracted from fitted \class{twinstim} objects via the \code{R0} method. For the above IMD model, we obtain the following mean numbers of secondary infections by finetype: <<>>= R0_events <- R0(imdfit_Gaussian) tapply(R0_events, marks(imdepi_untied)[names(R0_events), "type"], mean) @ Confidence intervals %for the estimated reproduction numbers $\hat\mu_j$ can be obtained via Monte Carlo simulation, where Equation~\ref{eqn:R0:twinstim} is repeatedly evaluated with parameters sampled from the asymptotic multivariate normal distribution of the maximum likelihood estimate. For this purpose, the \code{R0}-method takes an argument \code{newcoef}, which is exemplified in \code{help("R0")}. %% Note that except for (piecewise) constant $f$, computing confidence intervals for %% $\hat\mu_j$ takes a considerable amount of time since the integrals over the %% polygons $\bm{R}_j$ have to be solved numerically for each new set of parameters. \subsection{Interaction functions} <>= imdfit_powerlaw <- update(imdfit_Gaussian, data = imdepi_untied_infeps, siaf = siaf.powerlaw(), start = c("e.(Intercept)" = -6.2, "e.siaf.1" = 1.5, "e.siaf.2" = 0.9)) @ <>= imdfit_step4 <- update(imdfit_Gaussian, data = imdepi_untied_infeps, siaf = siaf.step(exp(1:4 * log(100) / 5), maxRange = 100)) @ <>= save(imdfit_Gaussian, imdfit_powerlaw, imdfit_step4, file = "twinstim-cache.RData", compress = "xz") @ Figure~\ref{fig:imdfit_siafs} shows several estimated spatial interaction functions, which can be plotted by, e.g., \code{plot(imdfit_Gaussian, which = "siaf")}. <>= par(mar = c(5,5,1,1)) set.seed(2) # Monte-Carlo confidence intervals plot(imdfit_Gaussian, "siaf", xlim=c(0,42), ylim=c(0,5e-5), lty=c(1,3), xlab = expression("Distance " * x * " from host [km]")) plot(imdfit_powerlaw, "siaf", add=TRUE, col.estimate=4, lty=c(2,3)) plot(imdfit_step4, "siaf", add=TRUE, col.estimate=3, lty=c(4,3)) legend("topright", legend=c("Power law", "Step (df=4)", "Gaussian"), col=c(4,3,2), lty=c(2,4,1), lwd=3, bty="n") @ The estimated standard deviation $\hat\sigma$ of the Gaussian kernel is: <<>>= exp(cbind("Estimate" = coef(imdfit_Gaussian)["e.siaf.1"], confint(imdfit_Gaussian, parm = "e.siaf.1"))) @ \citet{meyer.held2013} found that a power-law decay of spatial interaction more appropriately describes the spread of human infectious diseases. The power-law kernel concentrates on short-range interaction, but also exhibits a heavier tail reflecting occasional transmission over large distances. %This result is supported by the power-law distribution of short-time human %travel \citep{brockmann.etal2006}, which is an important driver of epidemic spread. To use the power-law kernel $f(x) = (x+\sigma)^{-d}$, we switch to the prepared \class{epidataCS} object with \code{eps.s = Inf} and update the previous Gaussian model as follows: <>= <> @ To reduce the runtime of this example, we specified convenient \code{start} values for some parameters. The estimated power-law parameters $(\hat\sigma, \hat d)$ are: <<>>= exp(cbind("Estimate" = coef(imdfit_powerlaw)[c("e.siaf.1", "e.siaf.2")], confint(imdfit_powerlaw, parm = c("e.siaf.1", "e.siaf.2")))) @ Table~\ref{tab:iafs} also lists the step function kernel as an alternative, which is particularly useful for two reasons. First, it is a more flexible approach since it estimates interaction between the given knots without assuming an overall functional form. Second, the spatial integrals in the log-likelihood can be computed analytically for the step function kernel, which therefore offers a quick estimate of spatial interaction. We update the Gaussian model to use four steps at log-equidistant knots up to an interaction range of 100 km: <>= <> @ Figure~\ref{fig:imdfit_siafs} suggests that the estimated step function is in line with the power law. Note that suitable knots for the step function could also be derived from quantiles of the observed distances between events and their potential source events, e.g.: <<>>= quantile(getSourceDists(imdepi_untied_infeps, "space"), c(1,2,4,8)/100) @ For the temporal interaction function $g(t)$, model updates and plots are similarly possible, e.g., using \code{update(imdfit_Gaussian, tiaf = tiaf.exponential())}. However, the events in the IMD data are too rare to infer the time-course of infectivity with confidence. <>= local({ nSources <- sapply(levels(imdepi$events$type), function (.type) { mean(summary(subset(imdepi_untied_infeps, type==.type))$nSources) }) structure( paste("Specifically, there are only", paste0(round(nSources,1), " (", names(nSources), ")", collapse=" and "), "cases on average within the preceding 30 days", "(potential sources of infection)."), class="Latex") }) @ \subsection{Model selection} <>= AIC(imdfit_endemic, imdfit_Gaussian, imdfit_powerlaw, imdfit_step4) @ Akaike's Information Criterion (AIC) suggests superiority of the power-law vs.\ the Gaussian model and the endemic-only model. The more flexible step function yields the best AIC value but its shape strongly depends on the chosen knots and is not guaranteed to be monotonically decreasing. The function \code{stepComponent} -- a wrapper around the \code{step} function from \pkg{stats} -- can be used to perform AIC-based stepwise selection within a given model component. <>= ## Example of AIC-based stepwise selection of the endemic model imdfit_endemic_sel <- stepComponent(imdfit_endemic, component = "endemic") ## -> none of the endemic predictors is removed from the model @ \subsection{Model diagnostics} The element \code{"fittedComponents"} of a \class{twinstim} object contains the endemic and epidemic values of the estimated intensity at each event occurrence. However, plots of the conditional intensity (and its components) as a function of location or time provide more insight into the fitted process. Evaluation of \code{intensity.twinstim} requires the model environment to be stored with the fit. By default, \code{model = FALSE} in \code{twinstim}, but if the data are still available, the model environment can also be added afterwards using the convenient \code{update} method: <>= imdfit_powerlaw <- update(imdfit_powerlaw, model = TRUE) @ Figure~\ref{fig:imdfit_powerlaw_intensityplot_time} shows an \code{intensityplot} of the fitted ``ground'' intensity $\sum_{k=1}^2 \int_{\bm{W}} \hat\lambda(\bm{s},t,k) \dif \bm{s}$: %aggregated over both event types: <>= intensityplot(imdfit_powerlaw, which = "total", aggregate = "time", types = 1:2) @ <>= par(mar = c(5,5,1,1), las = 1) intensity_endprop <- intensityplot(imdfit_powerlaw, aggregate="time", which="endemic proportion", plot=FALSE) intensity_total <- intensityplot(imdfit_powerlaw, aggregate="time", which="total", tgrid=501, lwd=2, xlab="Time [days]", ylab="Intensity") curve(intensity_endprop(x) * intensity_total(x), add=TRUE, col=2, lwd=2, n=501) #curve(intensity_endprop(x), add=TRUE, col=2, lty=2, n=501) text(2500, 0.36, labels="total", col=1, pos=2, font=2) text(2500, 0.08, labels="endemic", col=2, pos=2, font=2) @ %% Note that this represents a realization of a stochastic process, since it %% depends on the occurred events. The estimated endemic intensity component has also been added to the plot. It exhibits strong seasonality and a slow negative trend. The proportion of the endemic intensity is rather constant along time since no major outbreaks occurred. This proportion can be visualized separately by specifying \code{which = "endemic proportion"} in the above call. <>= meanepiprop <- integrate(intensityplot(imdfit_powerlaw, which="epidemic proportion"), 50, 2450, subdivisions=2000, rel.tol=1e-3)$value / 2400 @ Spatial \code{intensityplot}s as in Figure~\ref{fig:imdfit_powerlaw_intensityplot_space} can be produced via \code{aggregate = "space"} and require a geographic representation of \code{stgrid}. The epidemic proportion is naturally high around clusters of cases and even more so if the population density is low. %% The function \code{epitest} offers a model-based global test for epidemicity, %% while \code{knox} and \code{stKtest} implement related classical approaches %% \citep{meyer.etal2015}. <>= for (.type in 1:2) { print(intensityplot(imdfit_powerlaw, aggregate="space", which="epidemic proportion", types=.type, tiles=districtsD, sgrid=1000, col.regions = grey(seq(1,0,length.out=10)), at = seq(0,1,by=0.1))) grid::grid.text("Epidemic proportion", x=1, rot=90, vjust=-1) } @ Another diagnostic tool is the function \code{checkResidualProcess} (Figure~\ref{fig:imdfit_checkResidualProcess}), which transforms the temporal ``residual process'' in such a way that it exhibits a uniform distribution and lacks serial correlation if the fitted model describes the true CIF well \citep[see][Section~3.3]{ogata1988}. % more recent work: \citet{clements.etal2011} <>= par(mar = c(5, 5, 1, 1)) checkResidualProcess(imdfit_powerlaw) @ \section{Simulation} \label{sec:twinstim:simulation} %% Simulations from the fitted model are also useful to investigate the %% goodness of fit. To identify regions with unexpected IMD dynamics, \citet{meyer.etal2011} compared the observed numbers of cases by district to the respective 2.5\% and 97.5\% quantiles of 100 simulations from the selected model. Furthermore, simulations allow us to investigate the stochastic volatility of the endemic-epidemic process, to obtain probabilistic forecasts, and to perform parametric bootstrap of the spatio-temporal point pattern. The simulation algorithm we apply is described in \citet[Section 4]{meyer.etal2011}. It requires a geographic representation of the \code{stgrid}, as well as functionality for sampling locations from the spatial kernel $f_2(\bm{s}) := f(\norm{\bm{s}})$. This is implemented for all predefined spatial interaction functions listed in Table~\ref{tab:iafs}. %For instance for the %power-law kernel, we pass via polar coordinates (with density then proportional %to $rf(r)$) %, a function also involved in the efficient cubature of % %$f_2(\bm{s})$ via Green's theorem) %and the inverse transformation method with numerical root finding for the %quantiles. Event marks are by default sampled from their respective empirical distribution in the original data. %but a customized generator can be supplied as argument \code{rmarks}. The following code runs a single simulation over the last year based on the estimated power-law model: <>= imdsim <- simulate(imdfit_powerlaw, nsim = 1, seed = 1, t0 = 2191, T = 2555, data = imdepi_untied_infeps, tiles = districtsD) @ This yields an object of the class \class{simEpidataCS}, which extends \class{epidataCS}. It carries additional components from the generating model to enable an \code{R0}-method and \code{intensityplot}s for simulated data. %All methods for \class{epidataCS} are applicable. %% The result is simplified in that only the \code{events} instead of a full %% \class{epidataCS} object are retained from every run to save memory and %% computation time. All other components, which do not vary between simulations, %% e.g., the \code{stgrid}, are only stored from the first run. %% There is a \code{[[}-method for such \class{simEpidataCSlist}s in order to %% extract single simulations as full \class{simEpidataCS} objects from the %% simplified structure. %Extracting a single simulation (e.g., \code{imdsims[[1]]}) Figure~\ref{fig:imdsim_plot} shows the cumulative number of cases from the simulation appended to the first six years of data. <>= .t0 <- imdsim$timeRange[1] .cumoffset <- c(table(subset(imdepi, time < .t0)$events$type)) par(mar = c(5,5,1,1), las = 1) plot(imdepi, ylim = c(0, 20), col = c("indianred", "darkblue"), subset = time < .t0, cumulative = list(maxat = 336), xlab = "Time [days]") plot(imdsim, add = TRUE, legend.types = FALSE, col = scales::alpha(c("indianred", "darkblue"), 0.5), subset = !is.na(source), # exclude events of the prehistory cumulative = list(offset = .cumoffset, maxat = 336, axis = FALSE), border = NA, density = 0) # no histogram for simulations plot(imdepi, add = TRUE, legend.types = FALSE, col = 1, subset = time >= .t0, cumulative = list(offset = .cumoffset, maxat = 336, axis = FALSE), border = NA, density = 0) # no histogram for the last year's data abline(v = .t0, lty = 2, lwd = 2) @ %% Because we have started simulation at time \code{t0 = 0}, %% no events from \code{data} have been used as the prehistory, i.e., %% the first simulated event is necessarily driven by the endemic model component. A special feature of such simulated epidemics is that the source of each event is known: <>= table(imdsim$events$source > 0, exclude = NULL) @ The stored \code{source} value is 0 for endemic events, \code{NA} for events of the prehistory but still infective at \code{t0}, and otherwise corresponds to the row index of the infective source. %% Averaged over all 30 simulations, the proportion of events triggered by %% previous events is %% Sexpr{mean(sapply(imdsims$eventsList, function(x) mean(x$source > 0, na.rm = TRUE)))}. %-------------- % BIBLIOGRAPHY %-------------- <>= ## create automatic references for R packages Rbib0 <- knitr::write_bib( c("polyCub", "memoise", "sp", "rgdal", "polyclip", ## spatstat, # non-standard author entries "maptools", "animation", "rmapshaper", "xtable"), file = NULL, tweak = FALSE, prefix = "R:") ## package spatstat yields a bad automatic bib entry Rbib1 <- sapply(c("spatstat"), function (pkg) { bib <- citation(pkg, auto = TRUE) bib$key <- paste("R", pkg, sep=":") bib }, simplify=FALSE, USE.NAMES=TRUE) Rbib1$spatstat$author <- "Adrian Baddeley and Rolf Turner and Ege Rubak" ## write to bibfile .Rbibfile <- file("twinstim-R.bib", "w", encoding = "latin1") cat(unlist(c(Rbib0, lapply(Rbib1, toBibtex)), use.names = FALSE), file = .Rbibfile, sep = "\n") close(.Rbibfile) @ \bibliography{references,twinstim-R} \end{document} surveillance/inst/doc/twinstim.pdf0000644000175100001440000155704313231650476017105 0ustar hornikusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 4617 /Filter /FlateDecode /N 76 /First 635 >> stream xœÝ\[wÜ6’~ß_·qÎXÄrfsŽ|‹I¶G²;{ò@uSã¾(M¶-ÍŸçý û.©Û+ÛÙ Ó&A@¡ê«  L3—3Ãlî™e¹Ì1)´d9N¹fžI% LA·˜Ì% ’IïèSÒ¡¬™R  S> Ë´Òxß1íèœ3„A%f\ÀûY…ú¨b]h„9aјbNœA•E=e˜ F4…þ•‰60•³i+*O¤ògè¥öuà¤wR6h›¿~ò L(¯4úÓO‹üX¢AÕ¤nX?„>cd‰Ú¥7÷ðꓲnfâæï?üg°çRg^6š4ˆÔ¢Òf±MÝöð’ˆ"ÝÚš8ÞÖò´Ø="t²Þ ¨ç˜›IOuH§$Örçå}rÞˆÆù|Ÿ Ä$˜˜$J“:nnCZ¸›4Öì­pZô†T/¤z!Õ ©^h5²U!Ús§-­’ ³kê>¹†˜fmRø/àÛ#Xz˜ÀD‡ˆÔÆ‚L…š´ ›Vg¹¢hFdpž3t“¥Ž‚É4ô(7>3®*Ó!rp_Ò›0«M¤ã°}ìhŠò[fkCZÒZÖ€´ö£5­õhGk;ZÓÑZ—Zq©—Zq©—Zq©—ZÉÅ êû” nA‚º“çn<‚ö'C8þêõ$Çß°f2-»·çýuUàcüèõÉ//_þýðèx<,FRí=ú¨1êûäÈò°Ñöä#>æ€{9)ëªæãQÉ/9¢âjÜç^ó†7“²äÍç1ŸòOü3¿â×ü_?Dë‰ÜCˆ hŠó:º~`üQgâ38iÿ==}V J ¦Sºõãúø󄪷?:‡Žªº†vF-‚ËÆ—ïh ´¨g *º¦øo½=|qˆŽŽŠæâäzx:Ô~ï¸<Ÿ À  #qfĺþ·Fl¦ÿä˜ÖõüvT¡UX=Ù†:M‚WÉ$Øv|­J'%ü·¹–ë ·Ë ·K WÆúã’⧘žx9(‡¨É1ϪFUs͇ÕhZ/A’¹ ’4Yë©§H.8¤É;²54ŶÐüðî·Wÿœé€Ø„J»ŠJнK¿Kš’lç– üž‰¾/ŠlÉ"S*† ôózÅáIJÊ=Óè'XŽR¼ƒgt¦Ö¶ý©<4Ï; ’͹‚CC(ã0tPûÜÛøL#æ±°+Tƒ¼KyªCå8oÌu¢=¶`S‹°O~VpˆöRǹ¨¹®îLáKw?‘Ê* —XÙÔ>§ûñ3‘1Ý="ƒÎô31\ÿO;¶sè+ wv³ä GgøŒÿâ/ü :Å—ü]ãþ–¿ã¿ò÷üÿ ޲˜9½S~:)zKLÏšîzBý/­&½éðlP^µnµ7‹è\#)¼õ‹ú‚—N‹AëoÏ*ÿ'·;Øàyÿ˜ùÞQ‡»ÁS©‰W‰xebEç/ÓšÿÉÿœŽ›V1¾ÝR…XJ—äÊëòz¯«+^ˆâe×>‘0sòü_åd¼•YÝ3sÃ6Ö…¹Z2¬7Û¹­mªÜÖ¦>{÷æèéŠßlYÛ™Þmþ^ ¶£¿o-ñF[ÛÙǹÛ|äë¶pC pÿ.MÛâ•åÃ›Ûæ‹‡‹3 ·0Ÿ˜+w§àQÝM½Ÿób2NPFФªåLi[¨C«OÅ õÊy„“©uÌÊŽø ¬ë¤®ƒñyÕ+ŨŸb>œšêrpÝ*Ñ­èCk†°²KŒÌÆ#¬jÂ]èÜVÌÖúpüá—÷ÏÚSóèpeò ŒŽöGu5¿1× ¯ÖÕB­ªâÜíâ ?‹5žAß ²U4kµPÜ^:ï‘•Š3dÃ! ùRì(óN¬RKJd­ÈVÒ2P\Qq+²íLÃ\¶·qz[¹ú›äÊß·c2íÖ„|rôîÑãå®7NqºwLÊuá®æ8¤Ü:ÇáÕ2tà¥ÉïzëöC…¹‘²ný¹q›§S®Í„Ü|ؘ/µ2•´Ch¬)BI(uKÆ‘ÖÇÖ ©Á‚a‹Åü^ *)—Å,ª8kÃy~ZêWˆ(êêOá°‹éòÌÛÜàǧ9¤>W€Úù¹PoG˶P•[› ƒƒ_ŽŸ>YUŒ ðì‡[á¹6WâV—ܫ͈5„!Äçr“›Ð95š9LML’Û˜%µˆŒ^u{;áw! ¸9b6æŒz³p½ŽtW4¬"=ÀÜ%àùªJS[•긥žõLg,´s7‡M¸þÐ"ÑuÙÌÞ/(!xÆ¿g‹Ï ºßÆÄÅð´_Dÿ OLáñtíV­Ìb×bʯ¶ N¥NOs§6xdµ°î•”ápn­ æmøâÕ‡ 2+ÃÚꃒ™ö´5Âf´À¨BÈhK‡¶>sÒm·úpßDiA·õŒ(­L†ß7"ÊH“Ÿ¯qÊÛÌÐâlf­…Ù–Yà—s™±ù÷!I{æD‘gFØû Jv…–(?§).µæÚB~•"éMFIZëÂ1T&)¿aU„ß’¢™ÅùìðèñA7á;AÌÝl´ø·ÅƬé’ÖìK—_º¼Ôn¦Úµ6·³;m¦iÁ ߺ°³M2©s «‰$±”F𵍾}*÷¯rlœMŠå K,]´bB©¡ùjI—Ð9[NÓ¬/\¶k"×ËQ˜»Áñ„ô0iXñ;këw¨ÈÖA¿m¶ÿüÃþ£_»7MnÕÆõäˆnSÓ ¹mÖN¬,aÒ|nñ·.ýn½ú¶YL]=ÒÄaqú°Üûü½§Ëí–1Èû/&(oL1¦LÄù"Þ(¸)8Ï×Ý’™ÓjS6ÂÛ|SìÓ-%Ì0x#$¶EŸº }·OW^žíÿ³¹ž^5%@7¾aý£ Øæùˆu .ì=Úˆq‰Ãov ]®þFctKÝû8¤ˆ>`yº,Ó,åv§³xPŠŽ~«6K6Ký,Õö¨:ŸN»BÄ磥R÷¬=.•OÊ]íåñ JÜOh\_ŠëY¹)¯^Oa¹)¥×=Ý ÇKúl¸9[Gi'.yEAÖVïê–š¢ÄÖvúù‡§oÞ,MHÜŽÆZ’\U’°ª$bÛØÉš ¯O 3KÙ6·d1Ë»!}±Áhá¡¡5>gVe²¶˜p;¶”fJ·Šã8nûf ›iû[·ëð˜6hëîš¶fw×´uº½¦mÔ¡»ÎY—‡9Î릡Ç>n’O×ç©îÚ±n÷ãqð´á}”#+|FA½˜f¬md3³4æg9ÍFœÌ¼¤íä.KY®¯9E’>,íýœí®Ë3ÚOâ¬È5;•Yï#‰˜S}’ÐLÑ6ûD’O¾’¾XrRIðNcö¦éÛH—Ñ&âo?„†e"‡Ôè¥4—Ï3J­8@é;‰-ÈÌB猕QV©˜ qÒ†ïïBñ‰lžÎ3G_›!Ü4@–µß ÞRä™°aN“yÉÿ;M_&MYGùèÌ Únh²@Ù%ï2+¾vêF¾]㈰&ЦýÌÑ'S ŽÂm¨afÖß›cO{üböBúø#ÞzpÑ4—õœ?>Þ™ï]NÆôyF6žœóöë•ÿ¦O-ê¦h~ˆ›eo¦\Ê;ù,‡*8‡³ð3Up€c.¶Ý²üˆ"JßY›ÑgŠÐAN+GqK[w¤OÎûÅ`º)ÿHŸ|á™¶˜2H—Ž·Ð/m¶LŠÞåÃÎxPïD<Œ’ŽV2Z3L oàྥQ¸Ú¯šâ”¾Û.ÖÀ%‰ÈÊg !&NY®ï“rÞ¿Êúã*,œŠPü´þAîF !t¾“’ X¯`xɹ“¶™Afr4C s9\÷ÕåpÝÀÿç9âY2#j´ÊrwŸXéŸ?κïÐæ_áµáÕq(;AÆÜ %烣/^-<Œ!òßPM‰í§§_Àum` ÷iD[mlã×Å:þãP/rOÔy¸té¼É®v‚!w«}è†(DÏ\“¦óÿ“1´bPA»’A;Ä‚>á~‡PL®ªOqÅiÍeœ'ØÜˆÝo£…éÆ ?ûu^á¹’†K³·ÿjÿ$7z7—¤3Úo¤€nrZºFxH+)Ð߯ÌfâŒEç;ÙsÐ%œÞÙUz;ã_Ô(h­2hþš ðNçüºÎ>‰<Ï*)w³ .Eæ" ®Rs>ãL_Ùÿe o.¡…‚f„g­b€+Ì}úû ‘Št°|uÝ”dôпƴTí„np]Òß606ÆYF/¤¿H€8ëžá²jô$i–°;Üq‰¤?Y¨ŠþúÂD¹u® ñÅ-yØ'ÕÙY9¡-©uì?í6e+»LÙlû)e 7²Ò®ãù¶UÚ×íH¥ð…ݱôAïl×+Ã`–v¾Ò—½ {^ãçºód>[HÞ§Tð)¥OÓ^[bC÷lT_2tú€òììžóli%‚-/>Dž­,8°µÊ©®.S°µu úÛË‹ qìâbóž­-HZlu ƒþ* [ZOaËk(÷ÄÊ _Q-C¤û˜*mc¿WYÓÑůØòç ”ýn?žè`ÁÏ*üt]ÑêÄ ºóo1î‹Dw©E â3F;ËèSê´/€¾˜^ÜŠyïÇÝq,mƒciw\Ò~œ‰CiO™ÆGSZà—Õ¹¾³%3²Q5n•ÛLðÿHêÿendstream endobj 78 0 obj << /Subtype /XML /Type /Metadata /Length 1870 >> stream GPL Ghostscript 9.18 spatio-temporal point pattern, endemic-epidemic modeling, infectious disease epidemiology, self-exciting point process, spatial interaction function, branching process with immigration 2018-01-23T16:14:05+01:00 2018-01-23T16:14:05+01:00 LaTeX with hyperref package twinstim: An endemic-epidemic modeling framework for spatio-temporal point patternsSebastian Meyer, Leonhard Held, Michael Höhle endstream endobj 79 0 obj << /Type /ObjStm /Length 3482 /Filter /FlateDecode /N 76 /First 688 >> stream xœÝ[YsÛF~ß_1I¥„¹¯­lªl9v|Æ¡ìÄÉVh ’°¦† ;¿~¿<R&e:ÜÚRÑ æèééãëéqL° ™2Ŭ0,h&= “6z,“QJS2àÝ£µw,¦¼F}d*DÍ¢`ZŠÈ¢dÚ:¼+¦£ ŸŒ¡wƒá…cÑ2+­eÑ1«¾{f ¡ê#³žˆÀ7µBA2'@¤Š9å š9#©`˜s©`™óé“c.*jì™—Šj Æ1"Îkã™”‚yº$–åŽ((æ=­Xjæ£(€£»´àŒBw‰5kz$1EQ0Í9êÁ"µ!©  J,E*N ‡TÄ‚ÔÆ€\UX¬·˜£Ç(ˆïž–m1G"\iúi½Ä"KXâˆNëA2ñ'ÐhšÖ#@¶¤^ ýÀNm©#š°gR-JP£‰3Äe°cÒ¢‚ÚZEôhmÒŒÄCT(QMšÛ* ÍíÀÉÄcíi^b²Ž†FI#½†ê5í „½°-Ò¦^‘J4wZ‘¥1½Gb ŽJ4#øúo¿eüÞdRÎ+öï´¡‚ Ò~ÖOÙÁèZÕuüy~^ ï—0Íb£Íð)™AðÑãåp†¬žòª¼™òŠ¥ß˜?:›çy’‡Ôà!&HB‘Þ^ÎÊÑY>ÇØü僇Œ¿Ê?Ì1èwß¡øqšÓè—9^;ëVͺT³.Õ¬K5ëRͺš5¥§nø¤>é†OZoX<èúµ[]¿öwXÿýa•§îüÕO?¾ùæÙóAy=œÄ“A~y3Î0ádTž“Ë$;õ|ŬšŸ^á#6=Íþ ¯F³b:/gdêR£gæ‚ó³›·ó49‘ [Jê™)ÎçW´Ëô5W’„­ÿëzu‚QÿèO¡¿†J©4±ú[Y…õѼ§=ôFuj꿸R1ðůլÿ¥ÑÆX¿xê–¼7ôa*Ѻ¨¶ýJëQøÙ´.» Ë6¿m³þ¿ÿ~_èn5"-ñ0}üt8ý!/.¯ÚWéÀWü?å?ðçüŒ¿âCþ–ø¨—ü{}=äç<çùä|X]ñ ~qQðK~ů>N¯ò /ø;>æ×|ÂKÈgyUT¼œä|ʧ¤ ãüb^—f43Ÿæ³¢<çÜ”óüüí8}n_ê3^ñ*Áç|~5Ës>ÿ³ä7üOþäå³òkÆI—h]'pP‘ñð²‚%Hºr¿µéœbZíïõLJÅ8×L7ö(U½^ç·höãùp\ŒîM.Ç9úðçEUAÏ“:B*Qs6ϯN¾oEaWt½gDžœ ¾?{ÝNõ ¿.¤Ø`I ò“{“ªXV,MŠó}“R›â¥I!Ë¿›Iñês”…Œ‘…jxæôtdc-©$ÞàÒS+z˜{ªk¿¡/,:Ü5~uUukzvEد­ˆpýºáÓFpIXI>‹…XN“DÍ!AïùÇ5ѼkDþ¨+;ø &4MGvVj-;·o认¶ Ó,Ùô¤ééÏo^?}…ÉŸ—“Rª’ï @æn‚dιÝ6ÝÖ¢ýJÏeËõRý¶©%={BIJ*4éuEhÎxmߊ$,Ó$(® ‰R[„äDÖ_-À Û‘Õ•’­µ£€ òù”|C÷äcðúÇGož`Ú³á¤ÚÛÐÕ—Ø‘j³“x8€œ¾V›u­6«4XÙ Ñ¥}Åîƒ.êÝÙÝ݆­üØq¡ìhçß¼úáÞ‹…YÀTõ k`±1ÚK†«¾BFygËîR ²éO ¿VÖ6,ꬔ½ßzíjoúó“!1ÅQÞRD°M¨ó&}Óä#,xGº‚(6Rëã’ðýÖ©º¿Ñ‹1û qýÚ2ÑÒ¾§•$Ú¼ Æ4êr F`ŒI=­®û9gð4Éõ`a÷Ø”^W`Ó}˜ü{þ?€zÌŸð§ü€Ôü%$8õš¿Ù©Ú!DÅ/Š÷9¿@ü²­þÓø°IO±HS®5««´çår·ÐÝü›á˜çFãá5_×âËY>ÄëÚL¡Ò8¯ª J½%T"´?ßTüE°THµÆy6¯äЍмS¼¶nn&çù¬•³¼µ ü¯~@¥¶T'¦þHvsƒ£u]±Ukwu´Ÿ²å Ëi¼ ðNÓ‹¬_ÐŽwš“9þæ×ß@yæá|´Yð–MnÆcj9ÈG©¥™G £œÈ\Dä"tfáË”Ç3R<²4ÏŠÉ»–ºt:v;Q²}iˆŠKš‚ÌàÂ(ó±K‘&3B3eLFá–2C˜§¬ÏDR”º—ÎÃÎ=x¼h0š央úêj>ŸVÿäütpïE68™ÎÊÿ`ö¬œ]BGù¿¦åøãéÍÛ¯ÓñØv¶ËÒ•—™§ã_§²¡ÑÒdšS½Í¼þ^î²ÁÞg.È;•Ì4=·4Y•ùcÓdmfâ Ÿ „`þšT™•=±SÆe&бx̤R+“YD…D£ ò8Di-2Bó ¢,t‚rûue¸Î¯Ë¢Ê÷QÀŒŒöT„ÌQÚÄa ’’.2³ú°›,t¡ÆÅ„CI”^R¥-,¥mö¡j™0ÍÉ¿iNþMsòoë“¶µþöþ@'üv-Ãaï’á88wɶ¹Â]ï2G©µ½ö|€}øÛÙÓ³ožŸÝ.ÅÝCwÊQÞ1v§3Â2ƒ3ZEféõ.±»§´j°]Hº¢Ã†Û€1¶‘=·!‰å k±ik(ÜÎ?¨³£M,0€Ç­H:(ºnËÐè¶ ¥E}[¦mSö’²ÕM9eª›2¥ºÛ2l lË‘©v|J–·ãÓ‘iÛ7R.§-#ˆw« Ù „ñÚf”Üî9PØ`l“‹>£H^+ŸÐáœÖQ’ô"¹K§bfHÝàe)±íŒÊ´<(E;òÈ€G–ü}€c‡¨ð(z:á™öG`‘ãtLmqx™pd‘P/Ì—†=›±¶‚ :² ä{|F†›žµ¡9MÄ?cÝ‚¦à3åü!hº£(Áìd ÎM‘ïHW.LFWTˆi'I‘X’„­±t Jí]çàÐÀ ˆdKe²H1bL!Êq¤) ¸H·AdFW/´ÁN ºõa2!D”P•t/¨%Ê+ìÚ¾D-Àƒßž î?iÛÜžÇø)IÚÁJt°€Ù5ÍCwnzXÀ­c·†ÊI¾ÇI>]©r=4»h`+KvM¨|., KI ·M¹æÖ%¯BYp›à Døß‡V× å&ÍêZ*ß‚•9K‘"¬,&tÎï(ê‡:¨‹é^'Ò©;JK$b"òrL v¾¬ñ0ˆºTÔ=‹æ`4&´D‘³¦üÄQ‰Ò^f1ª%Qˆ×Bº¹Q‡Øæj¯ –ØP™î(„—0ÀJ+)ÿƒúø¥£ïm¾Ýë™[¢÷X}\¢г¦[± QZ@DØ‹¨Cìïìò|8ÞK‡¡.!ØÒý`µA¶’°Bþ³‚€”Å™÷¯úWC9Ô‚(ƒˆ„®•(`¤á„DA¤W‡ ªë;l7:‘Äþ9 Ц³Ë3Y# jbÏ3ÙHzôèáéogMÊál<œÌ÷¾ð°!m(uÿjÕ®·5·¥ÙŽ“ üT»~íç§?o½beîO%×ïöô“óËÄàiÁ¿%%¸BpS"ðn‰¿íi¿¸ÉO”­?;Ä}ýÄŸ]\~»®‚óyëÊm7mV.<©ÛÀ:]à_`à­Çv_‡‰Ââ ÖÛF•yáéÞŒ>pl§»úéÅɽnOìEólîè›æŽ¾iîü›æÎ¿iîü›æÎ¿kÚ»¦½kÚ»¦½kÚ»¶}“)pþïC3÷¡2n%f¤³B¶fà xæz8­®†Pß½@MY¤ ³Š"/Ä¿YÐ’Yg²è›„Û”Öˆ1³ÖôÜu C ×eèÕ›(eŠ>¢ZuØ‹¨Ã„%ÃyÁÛk“±#ð…Õ!££>Hxô´™ù¥B‰Ÿ ÏÞ&Ó5ÝÒDÑ@¤ÿ3wLš  BÐRï)¤A»¡»(Yp»&+‘ý•ãjŸ=¦d§–Ĭë@üžq³ñÉÍx¸ "Èrð„^z¼ï(G4ŸšNÍ™s1¥µMt0 _äYÕŽ‰˜#ÝP$(p»NÓ‘qŠÒè䨒Ÿ¿‘ñÃIq=¤.{oáÈQáQÐí| éOÿ‘6 »& 7 ¹]pZw!4¼%ì{P\\ä@(eÝKuDmMÞ¢Ó]F¦këÿ㉭ÿ—'”Íÿ°bø÷â¢8ÐÄt›üâb¹²zºcÿ´ÝÝendstream endobj 156 0 obj << /Type /ObjStm /Length 2819 /Filter /FlateDecode /N 76 /First 688 >> stream xœÅZÙr7}Ÿ¯ÀcR)c_§2©²¬8ñŒå¸¨Øñ$å‡6Õ–zL“²å8óõs.zas“µPf±$ »±àîP.0É”‹L%21ÉïÄIyVG³Ïè'ñsÉqÌ­â 5z¼,æèÀlÓzT.fWóq¹`4ãŸëŸNë¢.3æO1AfÄüôr>Ÿ–5Æ/Ÿ2ñkù¹Æ ?ü€ê_—%~^âq?žºÝ7q›}â&þYâ&&ºîÐâŽm™šRɶT[Öc÷ºe†ëQö^ëÑMwbÖ¦ômÙ®SÇ-ëq{]OðÃõt\v«õÍægå¼Å!3Úü š‡ãrAµ´oþý;TX£WšKè–éÕdB-Gå˜ZZ™¸©¶<Á8­y‚Æp&ðK€–§WïêŒãy5ýÐaÊûúP ¢äJÚš[EšÇðêFƒòa1Áúð»´† öŠÛl|OÔLaãtÖç<êtPF{NбeQ’¦ý* t’ÜÁj¬ƒ äZ‚‚…åÙœ”õŽû¸$ŸEi“>,ùZ>‡q䞬Ÿ&˜;¥wæ¡eo&e·L>qín‰iDÞQcîº7äm*Ó)Hç <Û:9—¡«Ã¹i­í‘dW‡CÓšø9!­ZÁ'3+ólß Õ=t»áÂr;¢âðѼçðqÖeâ•`„|ÀV‘ïf €àôE :Ýgg#pÊīѳ¾Á¸®fÓæÕ7u}¹ø»OF_ðÑ£Ëùì?˜Ïæçâ²€îÿÇⲨ0!ßf£°›âjE_ƒ“Ãíx '-%ö.ðï¥D7¶3صí àäÿv]Uà†‚`°ðD-z Ÿ_B¯‡›Ag¿W§/ê¡ÓÍ]Œs±(swñúø—7ÿ|õÝó““Ùt¦ä£gu1©Æ˜o:žUÓs&~«¦§‹jùâi5_ÔO.Š9tUƒÛ;žW—õlžã£ŒçyÑ6‚@¶‹°¨Rá·ê¬¾ ÏÇeqþ¿þGmv·[ŽsýX«í¶ýíþºùe8ÞÛ^´c"¬‡àŠ'ÅåÏeu~Ñ=b‹ˆl߈'âX¼#q* 1g¢ïʏ•ø &â£˜Š™¸—弚‰¹XˆZÔÎÄ•øSü%þWÎgßf>Ï3="'Q<ç Ò;y£:ÎËfo›O«IiÀ©ƒxâEñ±ÜÍMùxz>)ÑEœT‹˜#“’iÄ¿â´.?¾fA´ð‰xÓî‚5áÆÚ˜¢^ŠÄ·èf|0[ôô.ݼ©{‰ýüjôü軟Ëɧ²®ÆÅ@´éD¯nw‡"åE@çnø#5DM¤ùß´rÿwýÉAMö}›Ÿ÷žþ¨-˜ÇÎMßdûµ)½R+¸ôZŸ~v¹¬/qê<}£åaVÑÒ óWôèF! y4)7D‰R1Qj{Q:ÊÂô£øI</ T§âWÕ;ñn;UÖ“ò}ÝÕçÔ¿•·<–(ÿ{UL {ï«OA¨à ~¬¦W Hâ´š–ÇþC$Imç1s­±•ÓË Ú“°.ªÏÖq\’Ø^Ì˲ÞOßÏÛXõl7äß‚×yÕkò×åw“›¯•\l+¹ ñËvÑݘߋË÷ÇãŒÿŠ´´r°Áù³WÓ J š&a¸¹29åÖ=¥œnÛ¢®û;ú VKN¹Ãu?LE DJ2ûÚ(î±Æ€RÛ:ËŒR«Þ(3Ø”¡-c[6«W­Š#õØ”m*™¶lÇI®-ÛñR;^Ú’Qp-ñöä´¤´äÌœlÜWFáδRŠ¢?XÂÔÐFÍ ¬v–+ûæbZ},¨Ë­¼æ ¸‚ôž?<~ƒECj­ÛoH&ÍrG»|ˆ†c¬ífDí¹¤=íP%Ë%lðQgÔY‡Ê ùgê 6Cx ºÊ ÄvN3 ¬;xL—éî@Y銥¯jGBDQªÆÀº„‘\ë#oد 4.-19ͪ^“y‹Ø ™ñ ’G$”܆‡NEîL°YÁ?=¨9LóA1Yk98hâiú<²!åàÝa@E`"wòGN å´¤£ÖPŸñ^ j3£×Ìã®H€AñM®/I°zo£T`õ¨Ôç×0§¶¹~Ç=dx}ý4ãeÖïIÝ@7R,–ô}ϾLM‡Y>ÚzJéÓùQ.q:—Ž&ðfˆz¯ýäÕ¿žýòz<:šMÎVÜ÷–}¯ véLx-ØUþÎÁî +“Ù¢W‚Ù.ÜüR~è¶¿eàLÁîr†'•^/}†Ã&§›×TVÔüبÅJÄY­Ä–MX¹˜‹‹eĈXq#B4»DÃ"Ü Ð âCב´wpÁMƒDq]¸M¬ÄmtÊ©;Wîf):€Ó]Ì—Ïè¯U¨CžíT†\—O( Z7wPò1¹6g® T†Œax¸SígÚ£±%̱t[v/ÒØdG稔^OmïvÂ.F(×”†£éÓ^@­Ó.­‘Îx ›®J¢Ô>`+N—LX`H–y€t+_´ÀÊI®ÀÆVQÈòayQΧºi|Úß*PímÕÞ&hå‰rIMÙޚР¯¯æözk¥Éö¹}—Œ/:»´ÇÊÁÝý‹{§Z½Ë(º!†2ð8•A=( Èï»?¨/K€6‘[¿%E”t6Ü¡H~±‚j)NGƒh¹öÞ¸òAúC;Ûc2Ðptñí ˜(ª€Úa²Ê‚fz˜îL; ?:EÃÒEL›÷†B°—¿a*&R ),ݯ4­`=UÝ%—'“iÅ'¢ïоϗŸõ¼ÊzŒËΓëkoÞ, ´âÌš•üµkõÍöóLPcéÞòtKÛ˜ï5nqŒè\z›c´#f tßóÞêÌçiÀÄ׿ ½ÜÊ4Å1n¨&H”Ô`JÌÂU`³Ç7ûÅDç-ÂÉ5›œð€-Ý/Õ³úu/j^ц›© ÝÖ¸|3ˆèÆKŒù¬Œ§p¨ F{CÖ‚nË*ç¹£›Ô^çŒÆa2‡ð¿D¥]Îðß Ôqõþ} ·†ü˜?²:(šÃ¦m¯„ñõ5w'VG£{ä¢jOÃYÇš(òëŒ÷J+Ç“endstream endobj 233 0 obj << /Type /ObjStm /Length 3675 /Filter /FlateDecode /N 76 /First 679 >> stream xœÅZï“Û6’ý~>fkË$A4 µµµ¶'Îyc;9Íf7{[þ k8¶.iJÒøìûëï=ˆlý 4#ÇÞ¸\H<4ú½îX;1•©7¶öølL-5>ƒq!â3‰ŸÉ4Îâ·Ê‡¶X½Í}meyጵùBø$ÁéŸ×ë "ÁØ&‘}’±)bŸë·ó¡Î¢¯y' y çZ|h€ÚãÛ˜ïjŒ«µö€k#ïŠÆ9ÇÎÉ8 ÉÔØ55:7SâèMm\âdg¤Jx|#F„SÇx*ŒÓ4˜wÃo‚ñU¨&á"Ÿ*ãkššÖ 5¬1hp¦i,û.øäàM1` M¢ CÀ§ ;‡*à†lýH+'<cÆxN¬qÁ)c1B~ Ì—&zÖ§Æüca ünˆŽF¦è~ÂC£§U·Ã²˜(r&FZ>‰‰)÷ñ&Y k¤Æ$Z«Æ#’XKÑ$c×)™ÔàWU¸Àš»Êâ_»ª6)äo.0˦˜îÆ©º Î/\Á;à_ü.ò swU¢35á?þô'S^´«µù—‰ðב)ùç›h bqE…'Ïïf3óÚ”¯ÚëìйÛOãe;_›°iýmºžµæ›—‹«vöèÍxÕ^™öúº¬§ï[³lo—‹«;4s<íæM»\ýÁüùÏ»ƒ§ƒÁÅÖœûpðæØà?-Û÷øMö ¼˜þÚΦï‹+3_·è?i…;ì \ð`ÔpϨ~oÔËÛv2ÏÌ&X}k.§ó·³öÑdqs»˜óÞh0ùq±€ÿô0ŽÜì ü݇u;_ÁÀßšïÞ³óúãm»èéâß=ªO‰Y;36]®ÖYžr·c¶¤»icHÕ®Yštû^q1^Íj½„Ü-‡‹`ø E±ö¡»:Ö^¶WSü>0±õáµ>|pgæ4æÝx~5ÃXŸæýtu7žMÿoLï>´·ßÿ^â|!;Óì,îîZ<îZÜW'-~hÌÄãIXÈ»ã @Ú3~¿ôÝ`OÆ«éÄ´Æ7·³áÍy,9>Æfz½Y>[h†p|ÝaèoͽpÜœçóu»oƽ¾›ç‹íÈçóÅz…±‘x?_ÓQp+üÕ8ß)ÉKxðøÉâú)"!yÅÀ¸õÓÎZ£vµ¸[NÚ•áHPï/×ãu›C]îðlAôQÑ/&—-íPþtñ ø9×׊KŸþ¶=°Ž­€Åh‚‹Å{-&Ã4«vÖNöˆ³µUܬ8óæÓwŸM÷ŽØ°ù²6Œ{6LŸcÃCùiü~€;aµæˆÕ0··óÅj=ó±ÔÙ-uvKÒ}vöKýÒ1û…/i?æ'[û17¹Ï~å/?¾ùxCÎfØñƒ>¤\ÇDò@·.§7w³}á~²X^µËnÞU¶NnØM£‘˜å]êÀUØf›-8•!!E…LIfœyM(jð©pÈoÑóòîÍ:OóÅtþk?弞÷ƒ²}£Õ™÷Ùt½3~]ù" ©lê ŸH9«€OxšHº?cø3lâ`“ˆýÐ&ÖÃ&ÉH‹€D]j`DÉ iëWÁ$®.*Ô7Š ÝÁ˜ßª‡ÂÛtˆÉR"X0y(Љ}á‘pö¿ ¨ÚUE1WPÞ(T~'P‰±øË¥Š¬y«BÐë"Zûůƒ~ÃÚÉFJ|z)X‡ÅTXùw»Ó HHöŠ¢ËRôû€:Á»ÞNûÔ5>ÑÛ:îk r_“õŒsõT€>¡~þ$Ps0¼4åÏ£çÚa“!毾¹OgëÅ·«öMqÓ~l—¹ßW9}¾oJvOÜ™¹rë €Ïs뢨ÖmÅ#g9tŽÏååÅ_ÿþtôÇ/_.æ‹ôhÔ¾Ep\" Ï'‹+–å?¦óÇ(2·_äšåé;ô‚ÿä0cO–ÓÛõb™w´”Élmw Œí1m üczµ~Ç,Æ×¾›ú}ÿÎëõð36Ïé¯ú§nŸ¾ûí~¿í›¿¯uùW“œ}XØåéøö?ÛéÛw}¦`þóM9.ÇëòMyU¶åu9-oÊyyÛ.§‹«rY®ÊuyWþoùñÙƒóÓÕpÚòÙlü¹Z½1Ú“Mšö¨ÙüJÅæ(¯7¿>›ÎZ‡¼n'‘}5¾iO/öó5ŠÙÉcn[à–òåtµÂJçuÉ5Ey¹noþn ; ·³èå/ÝT•óÀÅ^ýôã?cÔËñ|õ©.ë#.Ö¸;åaTÂÁj!AÚ]­ÜÔÕí¬DÕ/Cã}÷V‚.ÒT1ß}° épNÙãÌUHöÄ* ?úáñã¿Ç@£ÅÍxžm8Óð’¡áã!·áxgr;ï©°0„y.¡îþ"Ìß÷ŸÜyÞ<£g©8ä“5z ã÷žÊßÄz°Þ%ÉÎzošºÞ-/ÁÐIGÎȹØòr•¼oãÖY[É>3)wa\ãûNÑoGlâÔZééêCÜ”úˆ‹\¼øçw?÷ÃÚêÑ“Åìê\õOC ÕÀCšs=$d=Åßcÿ½#6CúÄày “ žöÞ~ ªL¬ÕüP;â¾vÄ]_z OzC_âåõô=œ 5s¹˜·Ù§Víûv^®¦à]ëw˶Ýõ/ :í^Uþ=Ö!yà[và[Çù\תåA×B­;p­^ýד‹ ›ñúÝåÇ›7‹Ùª9¢þ< èjØÞ³ÜÇÚÙ!íûœ'ù. –'a;˶inôjx¼úõ¸©ÿáRÀ•(<Í€äõáB<`’sÃpº?Œx ¸[¿I¦ÛY+G<$k\ßpù˜®kxûÝòi]×Àí]ÌÁ½lwܽ¿öH™ûëöºnîVx¬IUíLê1à¶ïA¯mPzv×<6ìãQ[°»SÜÉh³]÷¬{ô=þrÚtÜ:¶ý1ÓÈ2Ó=TÖÁ‚eö&}brH!\ß­“½yžµ+4ý–£Žßj.ÉŽá~TíŠÚnÖÂwÄUß°ÎUüwokØô¨† * Ö“6˜"s§ ÅÏr©ÏÀãàß|—¡Ã6$ºû§`úT•æÛ)•F¼ wŽœŽŽ+6®£éNìïA¾‡Õ&øOnw_N cëÞaqP= ¸Íûâ.!Zàö€EcÑûuöî¡YÜâèAI ‹\ã«‚r–B­Ð@ (¥ R§Æ5Pί´ÛŠ@^ÔUPP´\…@ú@ý漃‹†¤ÔG@5ó¦=˜“ƒû¢yÇðÌP$e :ŒvÈ}Ì$ˆv åÏ»ë>D»¦:Ós³^Þ1Óï>/Ñk9ž¯nÔ&û{¾_.înu/Mùj±¼ÏúŸ·a®¯[ž_šëñl…ßž>6ÈÙзœŒ»ŸŽÞeßaûÞƒž_!ôN×O1îò5µô_¬*mÕù…µ¾åò[k]k |ŒÙ®ß-ñÛi%Âsl×oóxší´á™¶ëw¢F<ÙvZkð|Ûõ{#¾W炊)ߢëËÈQ»à´Å×E[5™«-` ¶Èê -Ÿßìì[À¢RÎWð\ÿBƈU®SagIâ´"s|ã/*0Ûiˆr°š‹ŠáÊi)æ,°DÅ‚‚Ãi¥Å·>]T,N+/ò»¤X²8 &ŽûgI± ô¹¤Xj¾ë©X ]R,µðØ[[ÌßK͘¡X T¢>ã˜óªÏ¸:QŸqdÕÀí  R)—+mñåSÅâ(rŠ…‡§•bA@–J± å˜} X¬bq‰/$ö-á뉊E€Å*á¿b`±Š…‚«aÛ °XÅñ­{Jî^ö-`ÑÄÃAĤV,¾b²©-¦+VJš˜8ÏQÅB5« 2!V}+‡Pm¦¯Ú§Xxˆ¯é·2™Tö-¦½Šz N±ða§Xø–°S,|UØ);Åæ‹(0_D±€ù"Š%PÜ ˜/¢XÀ|ÅÂ7D±„Íî^ßQ,`¾ˆbóÅ+0_¼bóÅ+–Xåm±¾eób߯Xr¬X"w ˜/^±D¾ X"c•bó¥Q,‘/Z(0_tˇÌÕ]2_TwÉ|QÝ%óEu—ÌÕ]2_TwÉ|QÝ%óEu—ÌÕ]2_TwÉ|QÝ%óEu—ÌÕ]2_TwÉ|QÝ%óEu—ÌÕ]2_TwÉ|QÝ%óEu—ÌÕÝüÚŽê.™/ª»d¾¨î’ù¢ºKæ‹ê.™/ª»d¾¨î’ù¢ºKæ‹ê.™/ª»d¾¨î’ù¢ºKæ‹ê.™/ª»d¾lc5 ·±Ì÷ÛX æûm¬ó½ê.™ïUwÉ|¯ºKæ{Õ]2ß«î’ù^u—Ì÷ª»d¾WÝ%ó½ê®ä=yÅæ{Õ]2ß«î’ù^u—Ì÷ª»d¾WÝ%ó½ê.™ïUwÉ|¯ºKæ{Õ]2ß«î’ù^u—Ì÷ª»d¾WÝ%ó½ê.™ïUwÉ|¯ºKæ{Õ]2ß«î’ù^u—Ì÷ª»d¾ït÷œ"ød©û‰;²goTÉøNaØÛ.>hXåŽWí=çTÓëîýgž8³·­Ïd¾Ëpû~ËS-HR¾ßÜŒa oÊ«ÅúôÓÿº­6endstream endobj 310 0 obj << /Filter /FlateDecode /Length 5582 >> stream xœ­\K“ä¶‘>ì­OÒA7êÈÚ˜¢‰7 ‡#,?%­µÖô®#vä§«º†;UÅv‘­Vû÷îoðɇÍL$À"{ºgdExªX@"‘ÈüòößWUÉVþþ½9^ýò{iWûîJ”ή®ªÕŸ®,«VÆðªÔju¼RÜšÒ¨áÉáê5Œ`0Ü®ŒP®TF O ³¥Ö4ªZí¯þ~ÅhÁUøçæ¸úí5.êV¶tZËÕõí•g†ÁU.VFóRWnu}¼zS\¿kºõFHQVÌÍiÍ~2En×üR SlïoÖUéœbÎ}Óžp ‡0® Ó+Vôïvë¿] (–2PÁ\!€‰ëíUÑ?4§®oŽëëÿr*«ÒˆŠùoŠ#¬Y™Ê8a‹À /¶»CsÚ㚌ֿ=×~œPL›b÷°æÆU¦hÏïÇaímdÓ¤lŠ”M²¬d`óûþ€)„ŽüÝÕ7$.ÎMñ¾ÞDU2EÈÒ2mã”îþü#1XVìšÃ¡>ÝÄy¹(€®‘<Îó‡„×ÅÛºÛmýתR…? 5‘Ú-JíÌjÃ@ð @žÛû·‡æ¦Ž§‡ …çíÉZJÅ$Œ êÉF¾mïϧúÓ´AÝð‚Õ–>¿îë~Í@*f€å¾¹Y+\ǹ"òº½íê³ÿ FÎ €qYº¸nñžÆ®¯þrå L­Î/Ô~îT) h?¬ vFÊÿÝîÃ9Ýîü*Ú*¾Þ¶¯¢ˆyQŸ¶ñ·âë¾;x†;/äC8YJ``䣸¡øäÝ '¿$T9BB÷…%Ó%@W*­W#N¼ÞÝŒ(B?¬G%ü"ª—+Þ = U¼£á™*GÛpS•‚«\c»ûý~×õ»Aø²8ïP¿*iDz9«4(̲ÜIР^šÛ¸˜(üY[æŠö>>uÅ}·Qb À„)]4ƃզÈtwØ¥€¶ P Òì£ôø4Z¥Í˜>ÇÇ€†4Wêâ!Îc¼xXG¼è+G£ÈÇ þdx’øòKB™R§nÉ?Àß—Ô2Sr¦rgÃuÉLµ«JÉ id.8ÍÒypþV;%÷åz£ªªø &”T 0Ü(€‘s(»íîØÜlvw }À_A˽z*.¢§ ý²¸MîVͬ_ä©«JH ŠUÁu¯è:¦d~˜tZ(@»säB]òüpÓïŽwa}Å`,q¦ üUW袅¦Apô4§÷»ó‰(*ðÓBy-DÃJq”ˆH:Î` Z‰`&¯wàüV*Á9øçzUñÝz¿h#Hà×Õˆ¹çÃ>:€³t|s ©•.ƒ3¢ þÅ3þ·gA@ zå2z–—B:i*íQçkë õÜìh/Ê2«m±¥ Ã*ü Pø­”Ÿo¾:„9NÀ¼â' ~“€.£ ;oþë”üÖx͸*2Î]Óÿ_Ob»³N2€/Q*8#0H;²µ÷Ù‚éj›ÿüWº³­­ /ÞBdðð&Ìî×sºÂ$ØL©\Ð÷?ïÚÓ»ú¼ Ê>ý\œžÉV€Vvd… åàÉ“rñ¿høµS  à,Á–ÿç~æô¤`ééÍîJA ¨’1TæsY-$SïÑxâ²/¶i¯¹e“m¾N¸Ãø¹CD ZŽâ}ªfíá¶'{¡:ó½$"`ïq´DÄ`8k@|A ÌǯOA°6+šÁufÀÞò•™IŠö‹¯Þvý¹¾é«dÖ†)] Ø–Ò¨ ‰k¿OŒD ÓZA ÉmñãZ)ôïÆ•SRu_ö€Ó`¢þ—HW) 蹆¸š Ržštüââgÿ PMKQƒvýäÅác6}xO¤¢¡Àpz÷É*™¨ú{ŒŒŒŠ$Ò&ä=d]É7Þ32°IÐEfÆbê…s,l7]ð”(CȪX\zúº^ÚLÖù¡ä :ùét»”VG³3yÖž8 Äœb _2Ùnñ9 —ði©>ÊDwHÏáì³#»™9¦)Oƒ’5OOט;æð­ëÚŽÔ$¬›Ã`ri.-+(GÊ5 …Ó>’ö/+þ¡ócÁ/47Š¡k}t…‡ rQgÜ¢"øãœøóÕõ¿ÇØÈÓ£ G ¢»»Ìx(èù€òJJwg¬Ôã¡!ÃDâÒäÛKj…à£?˜iÀí¢ù÷©OªiYÜ\»KÁu¸/¹@\)Á÷3ˆ Ÿ†BAºuïD ¥ö5ƒQ}‡êÁH1vȽ»lÁû†*BªÕ‰¯I) Þ`¬­äZw g xnv¹VåŽ|ƒ—“Η„+a!&ˆ ×´)û¡è„)Î!³þ¿q¡ì4Á/‚‰p¸§,°BÓÚŸ) „x\ås÷I~…p^÷‘äLé~C ¢4óɪÀ $‡Œ\Ç0Y-&PŒn_c@ŒPzf&<ÅÀÀx*RA¸…¾Á`ˆ(Š>&É–_!øC1a¤ÂC5Ƈ~¡‰óñ»§”»†óv}1ŸNt€!ªÃ1¡Õ<[™›MÓ²ý±ÙŸ–L²ïçˆE­¾OÜ .ýÔMç5¨Ÿ.ÖX0æÊô·> XÁgä7êcxâì†r¬NB <©ƒmòôt&§õ±Éy,",ÚÍLd3VJh}5)¸QÙƒcË06ÏÂV8È¿=c~B¬OÇè³H‹#¡8™JÝ…J1–Ì"yÈö‹|=ô±÷e‹º §Ùó›”aDnt@¬¨M-eþ¡øæ»ß£sÅÎb^4äfu>O3³T†4ò ¥as™¦P Ë—e0Ð…¿¼€VÖÆº¹ãóu3Ã|¿H\”òŽ”Ýâ* û‰MåyiŽ£ Á'F,Un±ËI›g,é1*6›¸â.0:üA²ŸxÖAy–Ϻ‰Ë:ß= Ëþ)ßñ±ª¯Þá¶½ŠdÁËVü ø?[®‡Œ0íÀŽ9Dõ®Jãb—ç?Ö¨ÖiS¦Åœ°Øv³M©J©ùP‰ù ´È ‹Å5ß"ÊŠkžì'J•a_ é€B±7¾Œ` i¡³?»¤-QÙ·oG¤m”÷ÎlPÚטiùÉcÞFs6…”…f†„å+zÜÇÇhéYػ䂇œKཛÁg¡=1ïËÙ¾ilµ E\kŽ…›6mLuQz:Ûðˆ DÄókŠåý†(<~ÞpÚ&çI 9ŽM{h÷Ôµœ“4TD0È«Æá6!±É~úé&ýÖôMÖˆôNÞ9>ɤ w>“–t¿ ÝÏ9$ÐâìÈ3 tc‚§‡ÒqPA‚Ÿ¤‹è7$|œ¨fQþ\ú6âmBð>Qáôä/§¿sbú}ÕùäØðKû}A€žä>4•y‰|‚Âùƒ ï@¥ð±™*bÇc³?ד=”y÷Ph øb÷0~}²{ 'Kj™å LArÃW¢‚œ!ôâYI×20L MW€m0µáÒ…ÅKñÎćz¼Ò ã… ¼¨ÊÝ.[¶¬…]ª’dX, €0a±”ÁŒ¾I5;7I)91ù`}Êm\P[ Þ±VëÇ„’ôèêbמš¡àfú.Ħà~b )t¾Pöå>áóÃlF…iOG¡µlbW|Ž}ÿ¥ùE®êDI/ûƒ„QêJágbnÔÖÖ4õÑ*u‘Ââ#}TÎ&ö=UzâL™Sð#†Ï4mSãu&;Ôè½ñ›¤V…Ÿ (µÇè.(ò¹7ñž¥o×36†“¯a}„3–¡Ë=#| QsFTúÙÎ8D!ùmRq&ØÈíœq€I¨XC   b² ¤ä’G*o¢iòxñ,k¼ïƒÑÊhÃÀ8^ô²§j³I”ÂòJ¬’oŠ_­7LëpÝi†¼-Õfž|¾¯YòT ’t:¢JÎÓ¥1±Ú>OÙ–ª²n(÷ÿ:­fó$-dønˆá’-~‰©éå?&OýÇ_Në¹(5® ·ŒÁ¿Ì° û·™ã9¢ž`êlÇ®§÷Z™ \d bð*ãÐzü«Ÿœ^ÌQy@^G·©Gí2»fõmÓ’g±V~O( õâUgˆMìôžRbÆ1ªI¼EVç&\9aÌ/Žz ÖR͸’¥Å«w—~=ä3â3Ãø¿yH‡qxQè:…¶]àò«CÌz´Ë=ÇÔýÇ#?< .•)Æó­Û0ö”‘Tj•Œzs æñ 9mÆè¥À²›´eþ>Jv¥ SìãcÆœT†ÛBýDöƒ2αi2Ç[Qž­Ó¬Q²’33˜L¦Þ±«Í¦9UBeèÜÃÓå• Ö¬œ¥;1ìú¼˜Y 6¦!i!à •,™“û‹9å¤>翇¦:fH`µþ¢‘/¶×á1Öä>1Kñý>dX¨ð“,"¹€âÓÇ¡#¨0 ǰTh†lÜÄb¦3—,¿ Óàö±W8°PÄÅ.ϘxùS]@‰…4¤Ž¹QÌ^s  §¾N!òñ–Âá/jr_˜m‚i¢2¨ݤàÙ.Ý£m&ðäo@kJs¼ ÏâÅAm‰%šËŠToRŸò1‰ëI9±ŽÁåÅï¾ùã«ðÝâ5«®›Ä_G¯Cˆ )œ#¨P…¢’ʼ”ý™Ì™Š—üI}‚¸fˆðªØHþbˆð"§ˆåøÙ%1ñ}à!tuéûôÏMa×Xc‡ñ¾Ñd8Iâ›>HÔÉ ¾d2ʳäÌD'Ó¤f°ÜO­O[27 ²:H×‡Ú D˜EŸÝÕÎ`ªMS7d ²t¹â… c˜¦à¯µà·Jû›IDÑø€.ûÈ Zô Þ˜^ •¥KN Õ¨Žíy[l8ÞŠ£Ër©>†& ŸªÁ%|(7…Ã#¾©é:Ó¢×O7Òæ),vœ¢‹¢‰˜Íw*Qæ/ãMÞ AÌá`óxÃÎúü» —‡íœ6ÉÈ7tÅ”Xq<ôN$ÓEØ–C²-ý”žø!/9JwÝ.°§>kyDjèPè3V+&x¾Œ ø,sü]ßž?ŸÍñ8hœoè×3Q®ƒ`’SbSboD,›d·Ör»Jú@—˜•f†YMýý»±¢~Ž`cô“åÊò¥÷ˆf^ó‘N–àVÌö3ãK‹¿¯ÙR¡\ŽBµ40ðLµ=2NMhôßØÔøÍæ¸{ξm¾mѽ{Þ‹óûÂ7(Ч2ƒ70>òNÑ]]•šÞ–ér3?áM+fy)KIú÷;§bÁï²8ó.±‡I¬d!•¡W@ñ‹cÓxÇw ±ã¿MHí> stream xœ½]Ý$·qwò”ìƒ!Nò $î‰5íæ7iY bDNbÄ–P=ížöF»ssšž»Óþ÷©*’Ý$›=3»·îag¦Ùü(ëãWU¼]Ëþ ¯·¿þZÚÅmÑ-n/~¼`ôtþ\oÿz -´‚_Z×9¶¸üþ¿Ê–-Œ2­jq¹½høòòhëdÚÖ˜ÚXhysqÕünÙµ’–;×¼N>ßÐgaXçš—Ë~q¢S¶Ùn®Ó¯«ðÐ2«mó†ÞRNZÛl*]ø'Ô…¢í o¶»åŠÃœ­ÒµA}¿÷›×É£Ûð6kvßûN²¦“4Y6»Õ!ëcûƤ´jvûõ=¾ÉqÜ&<ÐÐŒÃ-ÎË5‡8 oòžón÷éÌúåŸ/ÿH‘œ;ØÃ+éZcGÊ7ç7'ßHÝ -;í7§yÑø6ƤmdË%g.n`ÃKÇ…ª ­Z㔉m?_®˜Ö­sVç›çã[˜Ÿås¼X"e,Rú‹êʾ`Â\šü¦@MÓ… ë`E+Þ¤_ûÕ°®±!‡†Kï+]ÁÂ…parÍŸc'.kb’&‡J'7ŽÇ>j{ ZnÔ"î¯B?v©¹Ž+— ~€~™ñäúŸÀ– ã©•MneZ+x'€¼ÅI`ß?„)ˆlŽÖŽ«à•uªVKØóÐâ÷ubÏ©)'¥Ã@QP¼ 'Òöi>¯ÑSµ’ulàØ¥oR2!ƒÃRˆÃÂ:G-?®®J2m+Öj’"¥OÞ¡nù"mô}ý,)¦;^R@Íž¥æ®vÜ`RJuvâüpfªÿ¬ÖŸÿ8Û]Nã4´­¤\‡°ÈYiû:s'«™Ù.Â}ØõÛz70Š+i›w“ÓöP›v.î~Vë%%×Ð‰Ë¸Ø 0"é)‘°÷¤á´Yç7µÎœFQî 0ßÓJ‚&ÁÙ £à q—/_%šuÓƒbQ IóʲeU”_hš3S½»T_÷‡Íámòý)íaHÓ¬ýG8³ÍwɈûuªÇ®—¨ÌêUòëD køÚÉL=î£:7.ÎÖ¯"[RO²´¦÷›Ã«0=ešÍv»¹Ý£úNk—+BÓÁÂþH Z8Ѭ÷‡0f¼%€= Þ^夤6:ŸÁ;Z!¼üg¯þµðêŸúf@¤&QMZ¿ôDe{övfÿð`3ѾØÅå]\þËUs"‰‰çâdý®á0ƒaLóiJÔþð>ñªû%›Í?ÎM3c–CÞ·í:â()Úm7ù€žŽJNvO•QÕÝÕœ 7™ÈG^§ÛØgoßøW€Hpr°#ÐVÍC˜(ðcúfʼ»ï¦]‚¡¦ûÀ†åùˆC Ñô»´ßýuúz~¦ÈBCö¢³`’,žYÏ^ßç¬62@Æ ÃÙó áìi Òe¶Ó}¶:]ÝÚs€„w·ûÝEnâül<[†Sl-Ùó o'\ø>4fÕã\þìyV í7{vrœ½Õgº“ÍÁž´@>ðgâÁ÷ã¯#ešûÝí*:.© ›·Þ‡¥t6— Å`9»'gd·¯ÚäLS¡ÄsÙähV|¸MÎO˜äƲc6ùJ Û2‰¦kÅ W3æŽÄ16f·Þ@Ô'ÝÅHî³sp›³>9‰ÐÄõœwüëÝÞ+r«6ÛlûVï–J¢tà°ß•ĮÚõ~ovîsn@ÝgÏ{ÒÈÞ¼ù*s¶svBÑ­Q–d-Ù oò='oV~­Bsð—enÜÌ1ýOa£á‚É›{· æŸ3K+Ô$Vhd¾Ò”cLq‘³_Þ YV¦üü†ü ì7Î&'e¦Üt£ò!ÞÛ£xAaG A˜hyü]ºûÁ3€¥Š&IÆÈ;R=—¹ß¼U£- ù™ÄupöÑJç,r\¿2 É„½hÅ:[ –FAŒPØ>7 2.ßyŒÞÖÙÀÕÕž„ìZf1‚ihÝÁÕ[—*‹öÅâÊ¢ úvÔQ}ÜlUœ  ôá¤'¨=˨Ý}$–ªaZ´409$¼iz ~5 bÈwI%Þ…LÝuª¹Ýonü7§Ù{’8ÃÖÍ98ܯbóé¾R§ ®7^×JسÀ¢`4ìîç Sæ—gó N„Ò 7ëCaêà°ð€ÆG¼–›µX÷oÏR© ¥æ$6³6ímKYv™îûB/kP€0]«]tÿºÆo°y|ç¶‘»Ê‰ ¢Q]°-¾]ZD,8`s„6 ‰õ~s*¬Cn‘Íý:÷ Qouðšåƒ¥ë¼  ®õT|‰úæñžÉµŸŒ[°AÖ¾žëàõpaž0h"c*ò;ºý° °¸7ÛǾd*zû1å°õ}éL¦‚˱իeºÄÝm¦gW™™ÑqØ…?ÒY1³Í’ÌÝôDx R´O }ƒ7ÉÎÕ|u9vФȜ:dö‚N¶ŽÊÁã"¹NÀ¹äyGA°âçÄ)Ã%éËë‘“v^È‚ÉÍyhŒŽ×a˜ÏÝ1ßÅðŽ!ûÁáÀ^„Íg'Eòrdˆ–Î;Ó­Åcì=úËòD`ÿªøGBú+bœ‰ûNN8=£½!£([€{òGÆ ½%1•ù¢ùVÕEkeÄ|æåˆçPó(óyЄ|‹é±Rx¬Î„ر9š Xú`ñ+ &ä–œJ6h"i]µÃ°¼+4Ø(üùr¦f…úp_3Ò <õªD ”fÔ¿»2Ôþ…7~Øono'¸D<ˆe®Uf†ßJjMQ®Á/ÂwUGÈcÅ/z Uª8ÀÙ!”…f©t+»ŸFðÝì>éßÌK+^Û׬öYÿ(bãa WN(ï®1å½U|ÇB©(,_Ÿùè^²y×-Ræ.ož—C0U:9¯¾nrù‘Èþå0F\ÏËKò_·SìE£Í:UΩܹÏöj¡uÕåá=êÖ¬Ÿð¬^N‘fhjÈ]¡¼ðâ OrM`u¦áwD+„V|¢YãÛä—ã‚uM‰åð ÑE¡‰°½wÄû¹ºp©Á=ø@+ëkë¯ã ÕѾ*“)ÂÈwm6ØgZÍ£/8›SÕñª•XzUŽZf&*ã(½ “«ÄdIõËQ=Â7…Ûwf˜6ʦU ÷ ««;ì¿lÒôˆk <>ólÑ´°`¥ÍGÛõþ®ÿ˜¨æ|p‚yãl+;¾×  Nï@ÕIøÌ#嫬Êj8D‘ØBH¾`ô Nä`åýƒ# ‘ÓEa}8„@¾ÐrÞÇ7t&¤a¨¾Kù„M¼m=I²e1@A«;‘dëû÷†¥·D®N3FI-Æ+A"•æyÌBÉ5Í2úq2ÌŒ¡›õd©–fSÑÜAj†ƒ‡=ðB­d³'l3Å[÷›·5Ñ`·÷™è Z¡|*Pi, E:°©gaQ)zŸñ2ȲžýËðŽfa=‡ƒZ5…âðLÞzʶU%CÛDz½rÿ<½ž˜y¢ô4‰~t9v 2/‰ù°n\t?h®C¦¨jîG—@ E*ÛÔlõñÙÌŒB³Ö½KlÈ*©f÷bs®ˆÕN²3ª.¥šG‹ýt~«—Á„‰ò"`?ä¦Y“[Û =XQ„ †­ÏjÄŸVd©~‰xWçSߊHÔKÿÅÔ:—Ûtëƒ ÁN¤,â\¡6="ô;žWJë’‘HÉMò·+€¥œ¼C’Çìi Ã»Íø‘d~ ¾ð¬ÔvoeM+ÈTÖ3')Iñx·ê< ¿€™R–"o®‡)¥ˆVV*Êîüò¾ ¹bÚ‘wA»Ž ‚Y9!ã)2Dæ¥ù}Ê7ÞÐfŒ\däÚNzò§haâ>+@ãq‹x¼~´èê€ÿ,\€5öçÅ~Ÿë‡7aÅ*î)ö5KˆB´ ãIÏ÷ÚËÝR%Z'ö£ÍŽv’_¸Uó ßÇãm&R&‡c)“Š>\€RÞ3ZPýÛìÚcP³¯¢Ö@ï5‚ƒÿ½Ýí7¿ìGy¿˜ð}læ&âëkè qªNtx)8Ñ 3FëünTZIâHÑp"¬³¾§7fšoC¶¸&'7Œn×ûÔîØEʸ*õð“4¡O¤DÈõàÙýû:ÝÁ¾ßP&€´dÐÝÍ$n¥=¹¯Ê?ãZ1Ô̾È!ŸíˆÜs1ôôS½Xg¬ìñr/¦X|?3þéM©y³@„0­•Ú‡ÑkMB¦Ü–1Ã}(0¶¬¿l+í0ɸŽ,»4.ÓcBͯSĦåb•4üb®„FŠºÕÎø„›ñ>©N ×5Té_1–4Œ%+EŒ‡Kf3ÊVC<01Š¥”½ª)ùݘ윔fÆáÞE n*±[Ô™œäÕW»Á°~¿Œ2¢Û–yü{BàxÔ‹~†ÜŽ&µ8‚ÎÝ/C~Lðu”šB(Ô <¥ï€KÕš¿Ïщ¨³ÀŠ`¥¨1’ÆqÖjŸ8®2¬w‹ò‚š!*vÔ™û© À" %&Êk“'’” )½Dˆ#½¬0ol›Ó?̤w_ –kŸºý¹#ˆ( Øó‡Õa½™8>žrŽ0h]àžB¯ïW¹6ãÊWòÞC92×Ñ\í×ÚÏAuŒ)Ïj(Uý0<Øž³2x(ÀLs-8Êàøº¯ú9°dÁÄñþ]2Í_ÕEKjá>©÷2bQ:e­QÛ ;9a³Ø»Ë„"UÄßÌTè–I é™Vu6@VA~HíMœNÀ›¥«M‹QF¨¢S'ùº,ooOÂA]ç)pÛ8'ñHVV¡à(+ÄBÂÎÆ}ûÝåÅŸ.üj±lÍ?GwÖØJ)‰´Ý9þqñC؇¹ƒ$ž¤:w„Ýæ•÷ñR 0ücg-€9…`ù¬_,Q9IÕ$ SUWˆ;žÓl¬´þÈçj*ê “ŸŸ&~h–7ž›|ÞÈÑ)HùåMö¹ÝÙ¯ŽšòH Ô) „YB¤ tÏd¢œè¦¤)wœÁéç.PÈrMâõ˜rkøP <SÆJƒÓÓÁœ{”pYL¹ÈÈÙïÊ|DŽgC5­<Ä Aàmprè±×¿–‚hCÝ­sYf6¹p‚SÑ™NÛ¼Ktɳ3h-Z<2EÀ/•¼¹âF/Jroæ|ríaáïS€3³¾j5²h}4')ÙÏÃÃþL rÇ×ÇVRÍ'@go”–æ*á E)IrïèFÁlBb»%Ȫ†¯‡+Mâ®)£[Ù®eÍÊdÞ(ì|ü°¨¼ÝRl·ó¨îiTzQzãH…îÙó01²´ádz‰ŠÏŽ?IºQÖÍÜ®äD91€¸Í«¤=æ žGVÓã “ÛCÆÄÓ«°ýd‚¿?Z—@Õº¸@vÕÕÀÅãS¹hvn ÖQúc~šÔzV;M”VA–å)…Ò )Úfšã€éð P«á§ÉZX&ÕÍ>—[¸ÇçS1¬Òm«,`[;:ÿW!†êæÒÂFÜf 3“‘IçÕÇ8@gó@ïwc&þçźVÛIèuÌo¯¤çx0¬¯ Z‰W¶1«èÊИäÄ!̰Öv ǘÁJ9ÎZÖF—7ð=á°èù%*°ÎËûÕwëªÛ:h^"™ òœj^~˜Ó?¹F´ßDÄ·Æ`ÜáLùtWùíuàêÕ:¾coÞn—ØÊß áç€Å>¿v8%À¸8û&aåÍvsOåà±vòŒÊÑ!6,ßøŒóo’ßÿuìê܈ãr¨c|Q¤ge_¨J¥«TÍ=ƒKcu+œZpeZ2œƒÿ¬M%8&õT>[ÁùõÎËŠ Í_‡³ô!þ….AµfKø,ÌÀe;tT€¿ö‹Aø·Ë¡È‹½Xzú§WˆŒ:CÐ×f,¡+Ñž{ÇâÌt`oJqE“Î…tTF®Góe;Æ_H›R´Ç/TSfñ;ÿ+R´ãÃXŒYÕj»àR´FÐey Eùw›9SB%ݼ<hŠÞ…\ºõ!Kê.8ÿ¾"ë @˜åmj”GÄk®Z»â6ƒ¦gRX— >•^Š º1ªã}§ÈâðÓDâŽOM¨Î/iU¹°È'®&‡9MÇ» Ö6œJžôS¼5>sG;{ÑöÀ°¸@À¼—q(«öûPTö÷eRåÙ'Ûº KÌåkâÒzÓsàó<-%ÄtÓïºbø/YâÑPñjàLV®{ð.+žÌóÐâð6.ÌŒ¾ÛN½]Í98iêÌy•—­¬#²lbÉs’,›~œýïH3“Ñ;äQ•š5¿»dî¦J|–Êë:‡ó{<ÐÈãzû, P¨CÀ<_³ÐI2òv°P*hÀïÒŒàrYteZk?ü»¯TT*³î© ÑÖ»?£€!Ò‹áIšgýÝ>eãIù R ¡w‘’ªQA–%$yYÄl(¯ ”ßMês:/4ÂÅh,û~·PÕµÄLYS!î°z„‹2e!ÞØ&(ÓqŸß*0“¥läp%ÑÿÏÕã¥/G®~"à³W? Ç2OªhËÊB¡uQ¨Y¼_ÇÌöVž%Ø™7?bØú¹n~Lªf瓪Øc’ fêZGª×µ"¹tqsÏ|aëS>¹–’`ào¦fÃ\ê)ÞQ\3áó:}¥É9Ê+î§^œè]}?è¹7/%Uù³rf֋ϯE¤Ù«på"B•+‘Jrz+߉;Í,èVN@Ý ýÉ+'‚†·8¬oÉV”ï;IJæéóSç’¦¾«]2–gq/سß'%VÓLsòõüu;Ó›¡â³IyóФ䂦–aj¾úe;DÀg¬«zM W¬Mnÿ{Rí32œc#Ï ô8Ž÷dGpÜQe•÷ù!!±œwj›ÍÑ)O›Î÷ö“Rʹ˜«Ó ×ÜÍØèñ¶Û"é†LxœŽ˜3…é\Èεv’Bo !µ¸«LìPU°C=¡ÞŽè…*Ý€ ºéu;é4g‰Aáë&BáX¸2åTáIÿæÜàµ+7£“ýn迊«ÊÇÆÝü[™ìÜmóMøMeÀ¸‚_`ß[Æì™‡MĈƉÃ6^ä~1ÑЧ ³®~ÀK•nAöå–È_URÕBþC`LP«ÂVCΟh%Ubã“ÿ­dÎ9 ý[lÈÈ¢¡Â«ÍëÁÌËŠ¯€à —•ÔݲnÌå™KJî;‰vëºhc|bcëo°"qʧI‰TX,”’“¶ûüÓZ—xo!Þ«^벸=ÓuHÈ´]¸‹å8mk%ÞêºêÕ+†nh_ØÖJÖ=CJýx­ülJ½Õæ¤-ÊÆ\ C…“0™Lî„“þ¹Æ˜3@ÏŠ Ÿ‰1³ÛR8”iŠ×ûk¼Ë~]ß\´î…ß\tT޹;t¡<¢h °Ë3Ü€øá—Ýç×o>“ÓqSŸ–†ã5{qe±‹~VS®˜\›âÙe\ñy5e>ŽÙ¾Å5ï ²;Á/.B5 8õ ßPu`G7:´Á×Ç´f`Ìš;ª bô>4¼:#)Çÿ+㻺_¥“ ‚çï¢bó,5 KšІ%%@ÑÏk@fekkÏ X¥û{K­§µ’8_¼¨Q ŽHð­ç…$´>¹RëòÔ˜Žzlèžv‹ÑQ²0é@Qèœ,ðs¤ØÉŸ.þ,»Þ|endstream endobj 312 0 obj << /Filter /FlateDecode /Length 7373 >> stream xœÅ]Í$·u—¯+#ˆ€X9X :É!ÕºRü&íè` 6¤@2àÕ 2ò¡wgwTÚîi©«µ»“?ܧòÞ#YE²X=3š ÔÓÍb‘ïûý÷ÇUײU‡ÿ…ÿ?ß?ù÷§Ò®®‡'ÝêúÉOýº ÿ{¾_}z#œ„oZ×9¶ºxùÄ?ÊVÌê¶Ó+£Lë„Z]ìŸ\6_¯»¶S°Î5/ÖüÃÂ8ÛÁñc|@´]g›/³_7ÉÜߥï9^Å—èæóðŒrÒÚfwµžþ ™%Ì,š¯úçkŽûÑ2Ÿ*{ã..E4Ÿÿ%¶óÃ4ך›?_ü'ÐN«”vB¨¨Ù­.®ž4b}ñý“”lµ¯­ÖøíeÓ0=w0½I`¤ÍkZšc<~íüÔÜà׆=žÖþ–eït­Ö6¼ó{|g¹*Õ2¦;î‡\6ÿš, O‰ûÉçŸè³´Ü¹r9Ó çé/¬Z7Çì‰ëþpãƒãˆÏxJ¿€Éœ2VʰMášSÎÙ_xàÜÂ<¬ÙFj“q¯T­V"îuÀÕJÇ… ƒÝ hlº@ãtçVÖj¼²LAÙ Ë4ˆÉ4ð’ø 7åD³M©r5}®lÓ8V‚S}¶¼‹C¾mü˜|£²å’ÙGï3_î_œíó·ë Ó ³Î6³®Lüç´µ÷$ãlúo×žŽœÉ”t¹zHé{È9däfÛœ¾ËŸ§ï¥Î¦í‡ç(Þô|ÉŒ“p#;ZÔ ‘Ã× ì(–ÙQ¶’ë{“2÷ #>’•“ñMŸî§ßHæZC#ZoõÛ«D¶ûTЇº‚­TA{x^L.[+-¬çž €³§+o×Í,ÉÑél…cH¥xœ~m@`ø·ùñmší³õ†Ô»ÕÍ´©5õ*%>÷"L¡X³?ÀP4DOV¨¹à^I“ÞmžÑ÷`A›6;x‡?Ê‚#~H8íxð«qþ4× þá“W”8±šôa:|O[aÚ5a§šf´z‚@r˜J…#ü°r„ºUÄRw¡EõÊx~„dÓpÝÖæëyí­½3¥8ã>4jûÍðÃthÙ ç©àõ­³_<˜fè+i.Ï$B ¬Ê  ~íÈX’¡åm®æV/ž+­QuUkèHÏé!‘YUCg*ÑK‘¿8ëˆ2ffè‘(š7ãŠL³ß_ Ó3 w<¤¼qýÝy»Ã kÅè(|PaÕJì„aì~ö0 ôöP ä÷dÏj®”‘. 8½ß¯ ,Lþ¶&H Í13µ×…%¨îu=wè/Çù=ömÁ“’¶Ø÷ƒŒ?œXâ`>¢Õ/ÙÙ žÂ=Cð…ÓW)p#jØ7^ªBNw»‰Ç¶ ¿¤åXd!\ ¼& cSspK¿7ò½A¾çF6;¯8»ìjæbn‰F‰«\†¤ð‹è>¹dp» H·®zîQøaÉ@b ßï_à_‚|áFE}o¸[påaÛñœzªp*œ§pVÞ“%¢«5®,­ä­bóÅK¿D'fçJ+Ýûe•^vÌva íé Ttúª,d¾÷¶P*sMA¯¶ªjŠ`Mêš‚ Ö*UhŠRpÉÙ(Àý&W˲Ÿ¿HcøéX ÒÌ­òx®½s¾­ì‚¼©Àí}Ê’×®ŠN’k”‡d/—¢»ã¢u›Åz41{°ŸÞ&©x‰‘E3Tì- rãöxëçrà?<Ÿü7Ôbð‡Sà¿¥~ÝG/ Œ®Cñ|Ñ´N#r¶{:nƒdKÎæn›sæUœÌZG‹½?¸æ÷É÷ÀùäkJ0À¨åp¹NhXJºo<÷ß_<ùÓŸãQ«ãrN'禘ӑJ&S+P¶­5“: G>Ó>x>-[&t:ß%Pì:Ó ŒNÖM¿O]ã”WN™wí¹ìMœ»jcV ´S·„ xøÓÉòuæ™N'sØoû;ŒƒÏbJ°|ãgåÊ1W“m¦1bš ùÄëÆ‹)[ÅÔ8åSœ’e3ÖÏètbøžC†³Žˆåu®¾„w)’‘v`8ãA/5µ—àGÞ™|{F-î®aÕY$¼Ž/ò9Ç1?wà¾Áž5x*BbÖYr’<”2ªJ’“߬-zR wRª½^ö`L=Bðô/ð[˜u–@òŒzòóÜØ^ù'Xdo['áÁ¢k òhJæÛuës–¦ß6 ãBüÙÄ+,ÉM'›S骸e;)Ää ິF±G«)ó@è–ÎwYx–äçj¢ìv7ð/CÒg>O ¬ôÁ :"|£Sÿz­Èꨦ¢ü¥¢¹žEëxg´“{« PzUh¿0Jú|® Õ6~ÔͪQ$ü&÷>Fª°¬Ãq»›žÌÒ !¾Òä5‘9ÆÏÂT"7d nQ™Oöj·†Pœ1¥'ɬRðÅS¯Ô•¦SÈuúäež ¿qFS@ü ï4,aYdͯÂ*óqžyi|4(x‘ë+×Z=ÃÓ›þf/¿êw; zG½¹;ð㪴ÇK ev´Xi.[ÞyƒÎ!)ÜÂ1“ÎwIja£hÙ²¹H™‚ò>ÙŠþ~¦Ð†ßÀó ÑÐÈ2¹ñi[¦‡Îšk_ÖÙ÷˜2høeá+fBp3› Kñ¢ŸrBMl­ï»Ìôò ÃÆ32§©”Ǻ7î¥7KÓ ƒ1ä÷Ì ?K[rÌT’@ÒJæÕšE>›ÈÇD~yn–"Ÿ­Œ¶v)5¤CŠ_žÆ¹e"rŸ™ŽÃ>¨€p Áþ¿¬I’nxvŒä¿]Ã!Â9sHº“\æÜ“W«çnÿ¶ÔÂD|_óÃ@¿ ©ÒÛR¨¡”î´?,AÑÐÁOFwËo÷e}»j*Ò5Ÿ²<“DŸÍÛú4T°™¨†k£`<1ø¨@=À.€i,Ø„ë ¤Œ¯¹3cö0~¸†—ÄÖ5ÿtO'Q=ùs¾êF2L¯©(—º’ƒz³ÍJ4‡ŠÄ¦©Xf¢ßŽåà3±CîLŒ¥‡ÛXzvÞ°R±Úü<9~ÝŸ¼“ º6λÌp`k]$!0tµ* z”ɻΩ¢ä)©N§ ÇQ§3à·êÊlk€4aÊaJ‘éšÎ‚IÈ¢™÷ê5 ‹©-?ÓûÕÕa6tð×W¶ 1™NŠä!=£ÁåXHÍ:òpZˆeþ7 8cæ0 $ ð4âKÀ[Ð(‰îk' ¸˜§a+f3=¤ ˆC½@¤!~æÌ£:3‹ê Kú'ÜÆJnYˆ­Œê»Nò /Y ð1—åD(&}¸Î)¯ …§4–Ï?©—,ºüe]-13†¨¿ð#€;Fÿ:<%Á °Êë·¿ÃaªåÊÀë€ìÒÝøÓWؘ悓ÖcJ„!ÔÍ¢÷ –ˆ li^¦ÄD>Žìª;S}»•EsÝñs"Dkƒº‹¯¾¿ïìZ‹ïܤ“]*4ƒ£¡úÍ—U— MUàM2ðܘ–ã´8ìŸýXÆ µ4*=0|)”› ÜÅ1 î'ø¦~RVŒÖù½ÊT9†±éºDyÆè *N²Á‰´g*¨`¢™õA_6å‹¢ûFsæßzUC¨V7ŽZ«Ää4¤ SzþK]iZr36éÈeI“ö.IcSÉë 7ПrˆSË¥YÄ ¹´$U¨%z;G?Þ r4'aÂOÞÇ(,J7¿­j®àèæßX*˜zxE.Öª¾ÃÈAQÒ0³×‡cžJ§*7†ÕÌý>PB( LÖaH‚±"ð˜™Ãp „Ë9èŽÂ!|Âð»@ Éñap‹" ™ˆJð+ÃDYÿE‡æ ½DR2O˜[\cußÓAœÏGEfùÿ2˧ôƒ8ƒ>ÚÅ5È,¹Ì3æ2¾|rño—cQåSæw³Cx‘»vYÕf]csåP(¿\p >Ÿ'¡+‚cx>c©¨˜ƒ´Kª¨pKÕŒ%9FÏŠ§ÕÎ¥|ÿnêt8†UýÿÌQ#t³êBv ¡l¡uJ/Á: P–—>UiéÍ)¯û~¦u ¬'žâh©”3gœË‘Ôï/äÌÉtÎÖ«Ö[ö“,½^+Xß.Œ„­Q :ÓÙ2QÙ†b‹4à“«"ñE˜ÔO?ÆüAXØÔýAÖ20{q<óÉï¹nC§UóªÎGlV†L4ì’ã@³>|î|Ÿ¦ªS•¹Éݱ?õyApóóL6}›îãø.Þô§!Dv¶À4¿®WœO*1Ît%XêíiãÔsAOÛ60Ýþ0œÂ”V4Ymþ˜%Â"pˆÕ Yoö/›Ï#b$`G¤Î 0^¶øË’j¼Âc¬\G™>Z¤u„BÈNó˜TöKO\8O$zXé§’c Ї(áE•N2ê Â\“`ggUœ½HlÓ­ÜŒc¶q-™ùòË ˜ôqé2Gž3:ŽRÅ„íôñP«ÀϪþÅÄBÒÓgM}ñ²¦tÀŽ#[Ôâ­`§ã}™Ô’–)y]‰0$ÒR¼ßzugæB¸t¾Š¶Cù×ÜÆ'@âøIèüÙ™Œà³†Äñu¿^ý·ý~ß_§¢—þÁš ‡~¡l˜¦œxÞ•pRqªr-ÉC~çØRÚÐË~œÁ¤Ëü8”¥©y¥YžÁªL0/oc¶à|ÁĶऌ†/ÓLè¢!>Î.ÂLüó}Â"šy^•£^Q$Þñ{;ÛÕCòë‹Òd˜¸?Ïp~QÃgµ@å“Dý‘ £Š/q&-´XMñE2…ÓÝm p>e-‰j…IÎ V¬c…ù)Q¿ƒšÞ«eŸ1¹´ŸUgˆñÎÅ fŠN £˜¥¢ú¼…kÅŠ©¯áÒQ°³¥©¸W>SóQqm1_í¨%­=îœíp,LâlˆŒ½’8DÚ›£ hä]Ú;ó=(±& ÊI T¦þÛ<ê‡ÓáHO8R÷÷²_›g‰õ›è‰ úÎXõáJNRA˜ßKÉM•ýÄ5Ââ€Jï¤H .58Tn%/ÀÕ2ðKU8¿Éó¦XçÀ ¬-z&œy,æ.a§¶î£¼«˜Ó"8É#ÀLà­À„ØX7–‚‘¯ô›ÉOïXÁGopÈÃdt¹;ò¤i×_NÇMÉeSŸÈ± m¸µZ}XŽeËA=ûЏ‘³T²?M¦Ø åH /9»°Pt…;ãÌajÐäÅ:o§éf-wÞ;ñ[ ‡\6Pdy4óc”³”xëNž î;…Mº\â`Éóаlu 2|Š•0žTØBUÉa¢P>f4^üúÅZ¡å2 MOýëUA‘¼åc7ÞåÿCÃ!Åy}%ÅÌ)#8ëq¥vŠU~¬V`m¥­ ÞÓ·¢9Ör4Ÿ]Gîé—ý«µ '0F»þ;<Ò– B¥¦¼0è‚ éÌàæÂ*Ž/nž×IÆ;ÔÎ=omð¬`‰ñ”…• ´]_x·…xAšŽ6¾œÓÍœ§<`8ëÝV¶b¬dü}¥N¨Zˆú;¬g‘>ò…¸ËJµŠÃÀÎÆ©†ÊT±XåGüù²R”­I†œ*“€–¦Rh˜d¡SÕZnWÉŠg}3EYÀyk°øø.šÖ\«˜süló–?Z­øó¾'iXK>þƒØh6±œ:/,iÀRñ–ɘb®ŒÀ8`çæi?ôÂÝhê4²ø‘ùâ†åw. ”lÞ¸Mßë¨Y‚otܯ+UÍ '^*&;¼la,Œ‹•XÆ:v,²ßTªÎð;|r å ³šÆïè¿Â™X&jˆ!S í-béŒG„ô©á­Š*Í'uì;¾•û¢µ°Óe¿ªWq‚¯ œÏü2¤­éá· ôõÊ«×CK· Œ-óéô²õéKä‘°Œgmðh­æ'QLTÎiÝÛuoÛ$ß«Ì*`1 ¶q¤øW@(?€È0ðb ‚Uü$3p‚)¢a ú@`„ ô¡„~¶T5L%‹l$#Îë9³ÄFù›#¡[ä‹•`È–$@3¦=F¦¾ŠöŽ0[ZVi²4Ååò.͈Wä@äGŸº¼ßT7HÛŽOT”ža)gA¦]·¦ ’´¸6Yò;é5e¶k è…dZÞ±Çô0òŽ·ˆMi04±%µP!cbñw?$Jq^¾:_%ì—+Õ1± >Çï&<ÌR+ë§X ÕƒNn%š”IBÉ]Þ5¤í~ÛLmdL´ñ÷nÐcZ,Gç×Ô)™¿…}ü¬æÚ™¦R“;D.½$jæL"w&èúeýT‹¾=Öò­´Ä[òQY¿‚ ‘Îú†˜ïMNò¦Cyþ´³ÂÔ"usˆiÿ‹•ïÝ©¯O, =Åæ… VUDÌRå;EÄ„£.11GˆÅ-%2B$JçƒYòj+S$*‡;pu ¸B˜êå>†BˆÅ’‹p‹ažuh \®ÞÈ5—×¥«,E¼"e1ŠAà½r ÓŠÝ¨0*Ï€öC`v&öúhæ8U ›¤\¤O£ßx6¦Ë1Ã×/>¼a<>y}ìÓ‚*^Ó‡€RV–AÖëºOB@!É?úYuå‹Zå×ák;YÀ°aà+Í ×uŽ’Çnu‘‰Ô–ô‹¤÷ 9¼ Aê%˜…’÷ëŒÐ÷¬}ŠZ»×£ï>3®ˆ9G0y´èõNÁôa“éÖ²ìœÆœa™`‹xPjʺ.Þ«D&2:¥C-ëŠÐbÌ7ã= <$ÝŸVÄ$âD8)°ø¾•"Ë»g°Ä©ªåLñ,}Zª* '°µ‰Ãþ–óÝššÀf—¨ªE%Ù¼ªwØH•\Ä4KªRŽ.kœ¯L”gói,öN³X!O¾óB¾$‘ÌÀïlîy9Òµ«‚ç–¼€Š.Äßó`T©ÖVTáò˜øºDÚÕˆ$YÍÇ}?%"YÆtõÞZßqý³2Íä|KÂ–ÊØ4:ÌIsÄV#å<ôÿèŒ*j…˸º¡âM(Ã+'—”hÉò’ëêü°»½ÎTÁVºý[_ÁYÑ^§-Ç ’(o9Jøµ`Á¤3+` ïÈú:S]ýŽjªH›Nœµ »!¶ŽÛ2@ÛĶ›(sŒ{d¡•‹DóØ?çF1!Wå½¹CÔnõóòÓ8‚6ù ¹ß,¥Êr¦©7dˆ9£Â[ԉ؛x—NBÿ•u"’–Yî!¡‡–7»írJ7±yPPq1™ TÂS襋÷®…¾‚·Ÿé ;&ÈWßwƒ÷EÐÌ ãB€GžÿR%rH®•«¤œ‚0œâdÜã¨:½òž‚5n{ wX`_|zžçZ¡Q`›ÇË¢Ž.ºÜ†6b'YóÙv·®ŸšÀ%´01‡wÏ`”¹x3éCZÏÆ÷Ô>åïQê‡ðL¤:ö¯{ßå;+‹ÖxÿÃ@=¥G_9‡«½és…Mw!Pß žÁü ÛNF˜`ýB.ZnÏV÷3Éö÷E:ÜcÖñ”]»×Ë)+'>;ú=]Œ.X5»¯³?z–('Þ¯I÷¯ûl§À9앳 «¿ÏÎùXÉ:S“:{ì ŽôÔ¹¥yU+@àmaZǶëz‚µÆL‘™ðxó/áã«mv1Í”úiå^Τ~T=hxk”XapN8¿}’‰`há?K$9úGdHbíá«ä¥ï$E*8ÄèB曹ßu|@ÇpâǤñú)ÁX¾J~¿éæðë96\øJìb:+ëË>•P] €ñæò¢‚:¯JH½¸T\†Û‹´˜w[œ¡½änKš¨š<ÀMEÀ|+Þ™+/ý?±ÀÁK;òÔbî)ûX¸e• 7©ÕÞ$UÌwzß)æ4!\\1E©Ì‡ñ­ÍVîfDŠûgÃxîý™ün„ Œ·À&™dçQyc˜Šáõ)méßDdC¿ž«Tæu»@À;aôöƒ ëÓWŧÉÃNñø$ox¸U§#àû7áÀ•,|¡˜6œ¶[¸?cy„üŸÔ¤ATó±Oó¡Ízg…gßW"ƒ•Ùcñ°Òqå§O’zA¥Ë²çÉö¾BN),‘ÓùÞÉ{k3óKÉšòˆáp:~é|ú` ÷ù9ÊlÆåÀO¢ËíÉÑá.ÍÞ]J0þ¢Ë;ý·®ü¡ç­ø¦'ëy'8’cÙ7uf±S2—¨Ê[ ¶ýMaà¦íûg@n3wyw9>ës£å˜<§~&5º[ü†™ç(-#ÐEQ[ƒïÇ9rŒà^zÅ~§¨] H½? ³ýˆ&,~°lÖwRÌ6t«`:ïeóM”UP{¯R÷z»§zÂU ‹Ž\ºYú`ñ«ÿMϸrQ25WŒq¸h÷³D¹^­ý]µÀ™w%½²½S‚Bêú¿9E—䪚>…ùsÞ!=®mæà-µ»ÕŒ’CæÞ\öŠÚeëØü…{LôŸÝšZžÇšÕÐ~ÛôÞ ZÁèVüm%S}è“èï\Ñ"í§šÅö¾×Ìœ¡&ÝÏ*,ÓËÿÜÌx_<{p§J¸££¬lÍâ~D~uw^:eôÚQØÿôäÿ\ÔÍendstream endobj 313 0 obj << /Filter /FlateDecode /Length 4196 >> stream xœ­[ÍwÛ6¿û”=ä®[¡}M|yoùèn’:iêx·Û—ì¶d‡‰dª"¼ç€ K¶c»=D$Á˜ùÍo🣲à£ÿÿž,öö•µ{åèlïÏ=N_GñŸ“Åèé´0Þ¾ô|ttººò‘ã#«má¥-öwã£OÐØ«´±“…àÂC‡£éÞ{öó¸,J­œðž'¿§ô[Z^z6OðÁËR;¶¨O£ãÎ86™¥OK꥽rŽÕ[D„/$BJY”V°E3žPÚi³mÐ w^Ÿ'ŸÎboΚÓðÓ+ÎÚeÒ¤êêfÒe2Ë06š5«jŽ=ŽËâò`áP/Ϻ~ÁrɹØUªY;þßÑ+Ü>âªÊ\rï -”M¤.œ1aáIˆUÎ:Éf§$„ƒÅf«Ùùɬ]¿‰2³=Ÿp' +-5…Äw(ôi5½Éγ§ïã‰V°'ð·Á¥=ƒ¥”¥2ì"“Í6“²ŠR¼d‡ƒÓÄõä¥Èħ ú9¶.%Xc[ñ‰’Ûã".©åéôE ¼ì­ö^ÃG¯`{Ú®ê'FÂ\³wð‰“p° Üu¥`×¥coI{c¹„‰ÃÆwø §lóO¸á0íЬå % ø ˆ[Â÷¶nqâF"޽n¨óšMgód¾šÐ„{]p§F. ­¼ùgÝuõùÈÑ\ýëÅÅ<ÙT´ìóäûÑØX0kÙ¬íûËñ–tpùbySN@ ´A¥ØrÕ|štÁ|&Â[r½°ÚÎáJ œí/«œâ?Úe°„Ì æÃ/Ú¤Òjd´+´#.PÜ×?L`¯¶ÑUë/cmÈܪx'BxB4ô#f ûðKæl`%ý'°€¾¬ôa;ľnàe‹»CRµ`OãO0Ì«}Œ{ k¦z³Y{¶’M«Ô ÁÙ0¼‚IOÁ|[ tJvÚ¬ð>—!Et¿3|ÏIŸþ5 N ê5mpXnTôØõH?­å>¯ºj-xí“Çm·þ}%ºÀ¥×zÃÝêã8-Xµjõ}«ûHUXÁyâ>€è:ÀúJ·¡øaLï6Bm@fp `F‚Ûˆ 7èÅ=¹Œp,LRppu•Ë€w÷.“úÅŠ6{­É{â”ƒà—¨ÝBÁÂâ—›º…„Íö˜Ñ-d´œƒlA¿ff?ù%,;XEó1v×ìͺó5æ¯}aø`þ‹jÙ¤GH-²}ŒHŒ&i‰-Ò Á‚¹ßh C»€ÚäÒ)´ 0%²^ÏYt€ã ýhݤ:ŸRgö" Mø–ÌôJcQì+ Ù/E@êÁà=þ¢qÎNva]!µ ËÐï˜y 'EÓ÷Á#ÄÖ`b0âÊô A<4™ˆGÑK¼¸/ÇiðHãRw Ç {hæí]|Cáè.Ó¢_áRÒ—Ì7žWƒG[*†iñÓçO£y"£6»Œð L°ì[W§äbFæŒî§‹­-íÛr`3`¹ˆwÁ¢!*$Öß‹Œ$‘¬ÞPtÂßì 6“³ ºA î3ûotëXðŽÀ 3‹?¢ `d¯¶l mtךx¾"Å+Ý5°1ÆÛ1ÈåìV¶C .¶]0PË îÇ@=ÇW#Ø—‚cñÃöI[;»‹uJX!tªC´N¡ }Ù°Îy¶LVHQz=…ëÃ=ñçÿ`bÛá6Ü>{š¼jRôϾµQ0€Öó^¬!»/ån0×…]Sà„åɋ^â€@ ¤fç] ìo æÓ‹@(BˆP)ŸizA`æÈmú‡#xX».Š ¹å®$HoËEB3“"ji­Nº[€Ñ¶íqµÂ éî†äkFßÌÓ m1‹« )úËÇCIë ®äìÿœbR^*ÈžBf-`2­ r\‡£»²þ&4CŒ”—I2âð°×Y—.†•G³œæQ8È4¸Ãû­V™†(«ÙÜŠÈ›ã`+@áªã:žºÃýæ’2„pŽ(ÍáKÛÁŒRZ ÈKˬûÉš áíÈî”-Li¼“M‰” %+–-Ø4S·nÒ>Åz¥Þ%¯—dõÒcв“í•H9ÒŒ#̘ò¢«:“0Ô4@pb æÕÙ£žO°79Ëëß{öÇлY}.Ö üËTß§oúRe% &-©L:;”@q“ZÕkÚ _ôs± vxŽ›è åg¨!$–-ßb gðw‘ê<¶€Üèuì»I1Z VMŒ )òƒ×h­qÂþHÌfMª6ÛÃj^wÞœõɤ‚ÆíŠóp•³¬¼—‰žt5Á‚w%¡é8§»T>I+]=ØKs‘˜QÛ/“Ì rsj³Ø£@V–ú2”™²õ|^¥ZeŒ0FäA·¿ßýÄ:Ój$œÅ˜KO€ý·­QŒÌ&µÕ§u³˜u«èÆ\> =`‰Viöª¹Xõ$ZmÎíÁ“})"û~ ºÆ¦MLa pÇÐB«Ød£x­½>0à‡½w´:¡:ðœû¨Ñ”ºÐÖdȦMýšq`ûÇõâS†_ìÛ;Z”V…rv$i%½ Þkd˜ë«æã¥ wŒÉ–Z¨î)=ü[×P¡? yèÍ ’KdPqG–ÛÆï'Y8X";Øž†¬Ï•âx¨=Ë,11Ü^"4…Õ. "†²Ú@š}Iw5iÆFV_S"¤E‚Å 3áX-Å<àè^I³ªàþ6ÕŽe3‡5¯—w¢ÍZ›iÑÓfð|ü’Ç—_²ø’›:%=gŽ)cf¯‘P g©Ò|˜™x†wu Y¸Âoc‡È”ÝNË„õqk ‹el$Ây;”¸¦¤<¥Î§ë"Òå ":†=G0§bƒ%$oûÞ1A“,Ó»XTç¡+eU‘=¥¥¾óz‘àwP_MuƒŒ9¢]oÓR_YŒ1£g2°ž‹,VtCÕBA˜íÂ"åf">Ñ…¸å8!Fˆò¯·3O‹Ú¶è".Àu)GÀ† éB }\æëׯŢm‡½®a_ÃvNa#qÿÈqî‚☊+— ‘OžàK–^¾Î<ã{à4—Ï ¤RÄßáO,øÙkØqˆkŽ¿ ‰CÝF‡­z–>\cýÛzòËgÇC•¼ê.VdðàQlÌ5k¾ÌPOc¯qâ Æ`Õš=oU½ƒÿ‹Ò֥Э,rJBn2 rã’Áš^ƒÜ@¼6¬,LÈ©«Jw¯È-añ´»M¹‘WÿNÀö"R%àæôå6©9§êBš‘Ðñèìø}^Wml¦ôªo¿_ü•"<2j¥&¡‘N“ oKJ<¡–?JðI"Ì)kØäÙäî¬í6L‚mJÉì2͈XÌP|(õ}‡‹R]‘aý;Ô•N“PЬÂ,Ð@£ºDnBG °*yJù‡C¡6à5 òxj_ªf¤¡0MÊ¢ÚØû$íÑçwFåï³: FgpêÚLˆÓª/sp;ÙŽ`V[§ ¹–õ®(eç\9yMü‹”íÈ~°ð 3‘!ùi·e$àPà8þª¼Æ 1¾gÜA‰–%åÙ¦´ ˆ{(¥xK0šµ&Knà¿ýO1t)ŸXT_"ãXdÀóq ï–ã–˜Ñ)§SÅ·» –à®P¥…Ì d »F­»ÒSø”Š´ Z}«¿øVÇí>×%z—Uå]¸¤´º›“˜H!èË­¸÷”Âl@¯äŽŠÇ/ò|n¾xð¨ƒøÓEò U¾ò’=xK€b$VûÒÊ×±Ø<&˜Ì«€#ÊPÍŠî~³ OmTCZZ¡ƒ‘¨Ú­ê/MZ6i{­üõeTÆæ‘d•Az•Š@œ@-ù®J ±_®&¤þ|ƒÓ#=‰µrµ»R:ŠàÓÈÐÉÙòó~ö®«ººív`’¢›qüjL2% @l²’Ðm¸³kH’’x8↋‡lç>@ Ëú>#¼¡´©G%ÁÕ>W mzòë“wVÉ;Q$ôà-ð>ÀK7ø*»l$€M dÀÛ¹ù…Xd}â\ÖqgS(åíAçh³ Bñõ²2€ÐÐJn!€ôEqª*ÛPô^ç9M÷b{×í’¶û~¤'Š÷#-×ó’B5Ç‹nñ£W0Qe¹AÒá¶Ý£Ò]PšL®áÎS¡T™f±óSÕ/ŒÏn¶ôK,°Ù]ºâ³”Ù‡€¯»2GíÁ0Úô8 ¯Só;ÛëÔ; íív`åF'}}‘9¦oý©£¢“·‡û!}C€ÚwÍi÷5 ýªÙŽs(¬…¨«àÓZB ŠM¬ÝIéÖøÀ8ÅjrþPëû!t2ÀŸè6JF蜑v?8> fð–mF>µmñ¥´¶¨9¿ Ü ˜J3âx?˜§¤Çzø ý­ð†rUw)ßáNûNÌÀ^Wiiñs0KMÆFMÁ^>ê¥ivøWÛη …þõ;5$¿Ç³À7φv­‘T‘4Ï“;*Y†ë§ç_Cº2Ã$2s óÉ1½Á^V²¶Î~ iYk`ßgfA u‰W‰PèÜš-o92ê³eš9`f’gæ¹î*ϸût™Ê¥;á'Ev³ ,K¬én»·ÎÜ29fd­§Öç)çF1ÄÚ&SÀ?9ã9ÖrG\™çPÅûÔÍ…û?¤;§È´Çí÷žZd¨_WtvfÈ›í·ÙŸt„\$ÙåDtQ·m^Ÿh×-ë^7¬ô¿U0VÙ]õ¾‘ÔàA9ýÈ Ñz2S©ø`ïèïï·ÜÉbƒ‰B¨s—žÈbÖ ãõ"»†5\èûžßÚZÖÓÙ¢Î*‹ÍúïöÛ®Üqì‚qÜ_ ä»aÜ Í!|pýPÜ ‚K@p®Åˆ]ã›çÜ@JÞ¶Ý m˜2q°Öóm6Ö=ßXöä¢ W%ÙxÁÚ—ú.S€ôŠ®¡§£Å êÎ]¾ þëY¸b­•Ñþˆ?éú‡7¾9ý‘HO4B ´"E‚9öDõÆ0uàÛ:ÜuÌÓÔUvùçÏÔ‰«à„øfA xÉ7ëfÉC«,¸ÝŒ°…iäz¦†—PV!À¯hlо© µjtI(Ì&4ïWÁl§ç8æfE´ï°ëïv£eJaoGb=Œg;8Í*¸XÓV¼,äh«v„…áz¦­K*‹Y¸i@ûÁm§¸ñƺoÛ6ᨋ¶u5üÙÀ¥³´s56&·1œ¼QÑR•‘âÊp'Ï?„^äo{ÿåMußendstream endobj 314 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4471 >> stream xœ­X TTW¶}EQõž‚/Åâ+pŠQŒv;tgIPTTÐT•Š C)H!¨LCÕ¡@fA¦ C! T9¥‘˜Äþ‰13üüD3ر韘„àyx韾01Ãúÿ¯¿þº Vq¹ïÝ{÷ÙgŸ}JÆ8:02™lÔZÿõú(môÌg}–è#wJS“DO™ø”ƒ8VdÛâ¾8ËÁÙñ•§T/»à­1˜0 ׌fä2YЮè¥ú½ 1á»Ãö{=ëë;ËLJþžç¥KðZ2ÝkµvG„>>6"ÜK½Ókõtÿé^Ïëãéd¸×d}´—nW˜62ÔKêµa×f¯Ë×z­XÿÂÆ€À)Óy¨ŸþbfÚâè%ú½Ë–ÇÄî_·Ê¯= [›°Ã?qç®ÐÝaëÃ#"£æ?ð™>óÙY³ÿàÉ0㘘ñL³Ž™ÈLb™ ÌFf ³‰™Ê1›™%Ìf)ãÃle–1Ó™`f9ãǬ`V2«˜YÌjf6³–ñgžg<™˜‘Ì(Æ…á™'ã*ÎøPðG&é‘í’u:,p(“3òPGG­ã{ŠÙŠ}Š[ʽÊ^ÖÈþÈý‰»fñ›‹Îå<÷„ZGþ(_gbÀ޾vq{¼¬¯ÃÕ>%E}#妣±à¦ cÉîàn<&}VLV&Ä— Q¾dù+ÔC¼Õ&ÎÎÆÁ.Ðç‚Å’Û‰®îX©|“ø*|4Ê&K7œ…&øjM¹Ž*rX‰Ã°]1²OA·®³·Úc¬.(GnG™_(v»Úý°ŒýR÷2qXê¶(\0£ƒ’ÿYpD¡aßȇjòŽŸ†­¶¼ §è<ƒ†³ü{È|ÜyíLeìBÔýz ½®ú5麱bµ]†q~ŽOÉûâÐ__νIF℺Swà"×5çc2[蟯éíïöÖˆ›•8ïö_©É\üDµ|çR2L S°W)¿¯\°E}ŠÜV­ ŸOX¬Å¿`0½à ÂlWüÑáÙ&½E|Ò*kDg,Ag¹X‡zzÎø†Ì$sf'®Ä­Ëg✻ߠ‹@œ‹TspDE\‡Ý¹©hªÚΗÛá5hÙ{Br7A0GÑ#›ì8Ñ*rv}‹K…/ÝøÑâ'«BaúÄ3`s|Äá2Ëw“Å?A×_ð;Ðm`kãÎÅü8ûàœ¤&ήdâÒÍk4šª‹‘æ³ü—Ît–µz¾u5€¸Ó{É·/£HŠÝÆ È‹OI0¶á=È4E„þyCÐÍSâœL¡Þ£&Oe«€ ;¶måž™À‘©b7NUÞ…wÂÏÕë*¶QÑ89Ü’âd³c™Ý…nàŽól8Õ–bsãömÂj•Vi SB%ô¾h»ªüªH·PmírQªö!ËÐWÉ·£XW—ÒwڔјªèÿªË[Ó§PŽüQv-EÚD”è×Óó=rn¼—¸PdUA§‚ÿî§=Ly'Wò7ÉÜ_óî ]=܆ Þl\Íò“­ù8 ‡ ‡SŒ‰À鬉µµÖíÝåR'“nÅ'plÃ[ ²³7ðà ¹8Õ*¸´Ï_®kÏÛX´¦ø…b¸Ä½õT¢Ü¶ Ùó•#Å9CœO/"º¹Ú‰#寣Ýmz´t< »é‘ѱ¿›8jØË}°ÑqZ$õqX×ɔĩv™x]œ¨’ž2þ`q×°uUF r›ª&ÃHQa³âŠ]¹ß´öB4¬ƒ}ôµo²¸¬ß¥ð€%£<Ê ÀRxçá?ÝóKs ÞIÞ¦¥ mÐW?°A´)‰â¨ƒ¤c±…/ÓO`ÊLU#Ç‹g¯Ù•±¦ºÇzˆ«lΑ£I¹i9éE±‘™ì¾¬# VH«ö›VÐU QôMWYô铟k¬bÊÓ‚“½XîÞKÊ ã¤?=ª '/¿œ*ìC÷ü9ù¯K§s÷Í„½uâX«K=ŽNŠÍyñl•ª2  k³¡ ª9Œd»–¼A¼ÉðŒ9Ú¦„º†úʳÆòÄbÁZXÀÝhß5O½ƒ%Ï’Y/¹/rñ7?|Ùvß šo…eeT©ISùÌIˆØª³^ø;2_c@9ùÆà=Wûr–,@ rèQ|¬°àð°³3LÑ ½ÅCÃVTÒ˜d¤™LêÙS&ã…í Q°‘®à4·Xô%ë©‚?|Øhœ ô™XêiÀO™è›ŽæXò Ô÷Qrâ©Ðj”5–·©v4@']3ÈW‘ëØcÅTƒ°XRp¯AësŒøÛr@Áá%öqÿÖÆž¨8QQv²cÓ•”6ªÛBï§8‘ê6UØí°>6428$5V@è¥ÃUœ$à.¾\nóÄÑ@øUReªùúg§iÉ ÈªÑï v%p^”Øv% 4…QÒLôÒó×ÙAIˆU|Ë.«B™|ˆÎá¦ÌGt†K”••nÎ’è|”< c)zzJç€:_cÑ¿bFòáèŒdÃö¿å É’gÉn(³œ5¶2*2ÖrNû×;¯¼á¢6ïxnÁ5ð)fQ¥rk‘¥eu—‹a4Ü%)zÐlNÎŒö®œA‹ƒ7à´óW³Ñ Ýò¯š2Àl2™ÕYYI‡ †Ó6'ÖVž=vñaó6¿å´ê²ä©/gàÓ8³¹|JÇgÆ=éé‹bÝçaÑ|‘pÖif ÆþÓîÄ(žN£<6€ §H½­„8³y_f‚)ÞœÜ~²Úò%÷£’»ŸÝ &ˆÍ‰Î5gC'^Éf±¶ÿÁÑ”¼ÔàqòŠŽcCŸƒ{¶º²ÎÒÍtô@¥˜-¢µâ<¹¸·Ò¸ñŽ $.Àù*±ATƒò<*Rá€@þK™B)lʼ/«Î¡¸{JÒØÏ¦¥Ðýñ…pR”CÒ)§T”ÔS‚5OJÐÕâç?‰§ÈòöÇHH¶³q/ÖûQ˜ÇMšE¼ÈøoþˆW.VX[ÕA,¿è#_÷¼vsÒnO2¿N½LÕYuã«Wóª¡Î%X_”TAö­9XÏY]$4© ºÜøÅ8ÏÒC~М•”.ì[½ÊL7šhFÏWÕøŠ’ÿ¡:jŒl»¨ÖÚ­“œÀ'âõ½/>ƒÏœï=¡ž*’¦´´g·V¶T4®²ÓBQH“d ÝY4$k•¡¢ç ääâ|ñŸªöݶe¾D¾‹pÂÄÅš÷ÉÃß©ùQi'Nß³=×ˬų)O8”š–nGSÂKU-¥ç„AïG¶5á³]4ab“¾Ù¥ñÎú^\Ò›wÇçÑ&NPÕ$4i5:C‚Aà]˜ÝÎÂÍžDØðÜòÈ"-\x !Œ ¸¦:´ò Ç›î¿ý“o­Äµ8ÿÓW>øÛºú˜!¸f Ì‚x2²5ùÉg©Hd—»´ïU(•¤áʇïtD·$©ëËjrOX²2¨Oâ ǼôÒñŠJ욪Ú~³¾€™ 7/\€›wï‚ß65­c£Taa눻À/K!î»_={íM(U£RùÞ;IAêA_f¿1DšŸKî—¿0ñ“¶.‹’ÌÔ×Ê_ð§ÿõß5ñÿƒ…_áÅ$[ vâ>Xú&QÇyó·´|©þtÅ…êÔæ|ÁÖ~ò€ûü¢¢2·EèÔûÂ÷™v™’ÍñæLSz!“KÌ£.á’a|ðvð&ŒaUNs°Ú^XÚ \{t½Nà‹´ÑÑÚ÷7ÒVÞG¿¯~/­”Ò·K’ß/”Ìb«}**»íSÅÅl­97&Á‡’ÒÝÿ‚Bƒgˆ’È$5þ†jq3|#ù¢£úF@‰€· ¸…cÖ¶á‚¶=ÖoQ1ÎÚï‚ÌÔ£»ï’Bc°M…#çÞ%cw‰Ð8…å™#ÍuPêÉË™J¶·Û+.Ÿ§ÇQ(I¦Š‘*ð×;nۚ蹂‹CN-Y–,à’!5QMÎQK9YdÉ.*JŽ·œûŒ† |þ¼Æ“Q¡k¿®æ½˜ÎcmUj¾“iÙWµ'!döGsÐIà½áôî/p´ÉÑE?›êøwØŽ¾ð!Û¹!3j«°£yЖ '“v'õ¤ŸMÈcZC“ü!îü?šÒѪJɈO¤­LBÞÁã)’ó ¿OK綾O×É*F&—ˆ…øâÉ¢¥}8Êœ„áŽôÎÃÀÙ©>';''Û’]_ü³³-÷BÉQKa~Ž¥0×yÃü }±nendstream endobj 315 0 obj << /Filter /FlateDecode /Length 183 >> stream xœ]A E÷œ‚´P]4lê¦ Q/@ahX¥ o/L­1.þ$™?ü©úá<8›hu‹^= Qcްø5* #LÖÆ©¶*}«še U‘áù @ó˜¯r†ê~lZ|b›Iy K ¢t®®EgŒ àô_ë°Fó3YÄ9ã"c#PO&P¡ (Îë—ïkÊ?%ñª5Fp ÏÂØ%­uð½<øP\4‹¼­\\zendstream endobj 316 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 768 >> stream xœm‘]H“QÇÏñu›éš}”ìÝ[8±Ô¥ZE ~d~aw±åæÆ¾b{m޶l‘-;ï6År©é,G•u»‹è2ð›@Â.’î´‚x¶Ñ^û ‚àá<¿ßÅùŸó`”š‚0ÆÛkëê´¼±ÉmÕÙ-ÎEúö‹Ö±®Ôñ8ž“ßÉLv%®Hˆœ!òÔç‰;[`h3L¸º É0nµ^ô‡FŽÛÏ»¦v#Ï•ï/*σœÎÍÓpÕÚsf»Ëi6qZ[W­©Óp§ì.š¸|»ÓéZ‹³¸fý®¥éDcWÕXßrºiæÿùþ¥Z'¯w˜œf«Èô½UoãM6ƒÉfâÝ:­£MgAISZbFh ßÀ 8€¤â TTˆžáøNÀÅsÈ€Àà ‚ÊHñ²+sRoáù 2¬ŠÏI‡'HD¥XKÙz ŵP¢$£]}¾UÏdAîÌ`èVËîë¹kd©:? ‘ë;Év¯'èMóÉ´*/ t¿H».z:ouúU[Ksk|þKݤ3»;àxÈ‚zÉC‹%×dþ«ü$™"¡‰ž/d¬âž;@úIöèÍÛáõ(/Ï šô¬ޝê~Ŧ‡¥t7¡Še/¨Óâ?s¯ ÕŠ8ƒ˰›¤Áá¿‚VJéQº—æÐ“ô$ˆŽª òσSó.#ßtÏ.½SÍVä¾óÕÙ·/Ä› € ]e”yGŽ—•Ö̃¤„}üæÃwÈ-~¥.W­¸x¥¡þà.*о.|y?÷ñÓL•,þ^A⊠CN Ũ¦fe²L6LÆyž8=ìªFæ!ÎH„Œ³` )“Y˜LŠî‚—]-“yÉÑM†Y…oðiobKôÉ„4–Ë`Ó™Öm•ò Dž zû…¾Ð+ ÉåÑ 0F‡BýA¾¡Vd7endstream endobj 317 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 8294 >> stream xœµzXWÛö¬ ;cWÖ•EÍ,önì-{/(ˆ½R¤÷"KYvÙ‡]z¯ Kq@@{/±'jŒ±D£cŠ%11gððåûÎ,hLâ›÷ý¿ÿÿ/¸¸®™=sžû)÷ý<eÖŽ‰DK—Ùúx9x=ÒÖÙ5ÈÓÁ_¸:ˆï-âû´ã?;aýkUsŒ9tC'³“}†/µàíº£Ê®he7J,­qó›ããæ¿ÝÕ-ÐzìèÑãFŽ$§X;†YÏe½ØÁÉÃ'$Àc»µƒ÷6ëÅ£–²^îB.n·âãmíèìæàébíãb½Êy­µ½Ý<[;ë¶6ö+솎úÛ¾Þ^ (Ê~–÷ÚÙ>ëæø®Ÿë7Ï~À‚À…A‹‚‡8, u\æ´lǶåÎ6.+\Ýl·Û¹¯ò°÷\íµfÒä)Sþ¶yúànC†¶4mÞgÄ›FÊF}8zÌØqã'tŸØ›¥¨~” 5…êO­ ¦R¨•ÔGÔ@Ê–DÙQƒ©UÔÊžJ­¦†Qk¨áÔZj65‚ZGÍ¡FR멹Ô(j5úšO¦Pc¨…Ô"jµ˜O-¡&PK©‰Ô2jµœšLÉ)+ªÕ›’Pw¨HŠ¥j;Õžê@= .RÓ¨N”Õ™ò¦>¦ºP>TWªÕ² ¤TJFõ¤B(KQQGj5ñeF…Q¯D5í¦µ+ç› 2‹6{iî`~W²Xrcº0NíEí·µßßaX‡âŽ+:~Ó)¹óšÎºÌêòe×É]¯uÞí`÷ÉÝK»# ‹;ÒK=Ë:È\{ö멵Yå¬|½ü²Ux¯é½Œ½Gô>ׇêsëï’?¸ËdËbÅVÅkëÓÖM}'ôý´_§~ùýŽöû¢ßý;ö_ØÿÔ€NâÊúš6èÐàyCDCî¡ê.Í1À¡u¿)DÔìГ £m "UY=›ÍåñÙ ©áU|vjùA¶Öi§½–ñ¤Ö#ZcÎÑëüeúÄŒDâ ²4G 9G&ªu*P[yÙ/ëI×ê¯Á`p”.ÃAd†n›wùïvÃõp¼9§4X vW‘óUKi%_Õ“£×€?hw1ÈŽ†‡ÀyÖFä»­„Ù°q«Ï2æWZz÷Uš{Ò×ÒâÖ+p1½Y É[¹™ Z¨„ ´”–Vþrýô¥‹™ö¶,Žxç)s“ÁÍ"NTÚl+nvïÉ…’W'sØ}.G M†ªÝUM‰VÅ'ØNz+Oz¯Ö§Ä<]ŽeÈ>AŸIVeÈß—Èp´›f68î©—{Ò§ 0®Ð-ÅœOÆñ!^›Y ‰õup j5ä ›w”C¤ë“R3Q?ä"Gcq¬N­WƒÆ ¢‚vl°®Ñß$ ±' ¡+TÏY Å}töéì–ÒÍ ´D¦ÜÄ⬧…W/ÁÌ£ïážlK;ÏRÉ-ÒUÑRJ»&(?f<ù>i ²zÜô½wC_Ë–¬Ÿ„Å,ˆ´’j]ê!u“Ho=­™¸ZQŠïËæ®™2€ÅÝ%R«¨ ­ ¥fÏG-Ttá5J#?Ú ª¸vÝóÈ]†z ~…;ãîðwDz_†£ö¨óOÏ”œ&W°Ú´y‹÷:Ø [Š}úï‡óP õp²tùÁCÅ{a?ì *ÛZ¶V‚3óÖQèë‡âæàfkG{&8i}Ó`º!/4D©ŠT«x .Æ‹ÐḠÐA²U±1éËÑ®ÄÛZQ@iʤ*ÕjˆŠe×Ír©]{t8Xa<Ã[±šˆÇ åhÒ3¤@Œ¢5Eðj0ðV\„ÑâÕU”wßRÚ/@ž2$ö›MwØÂ^¡¥Oñ!)®§ª¶(ZÜÞ†»™™ÿ‘Óèt:9¼ÑþK`PÇ_ž!™brOÜyÞ¤YNÎE ¾lD1$Bƒhic•G*õ¾q~6vâÔ‡‚Ýüï>QÌŸAE2I,V„ŽÄËHfO–ðrþuj&ùzªUž BØ–U%27JR‘ù®¯ÐdòÂ1’«§-ÄZíH†b–w¥ñ7T›—Ù‡G^ Èâæ5¨I†lqo4Ïx·“ iˆECÐ Åàž€Å¡6®ëC|mWfPk¨ò{hS4¿\€«AÇæî[‘>¦ 9ÔõÜT‡E»ï£¼«b¾¯–µ¡ÄŸ ¢GGV8^üˆ8‡é7 ÷ÄÝŸB̵†}•^ð¸æžè® <Â|‚"#<|73{y¢QÇk÷¿¸Û8~µ]¥PçÐ9î!‡&#û4¡õF4ܨ7Š›­Q&ÁÑ œg­Ú²¬è1ý4Óc¢Âˆ ü%”žÃØ1(®-9e4ÊWåac”ø  ó–soñ)~‹ÏY‘š{[a_]yõÐRjÍS|wY•gåÖÙ® ·F°¨PM﫦ý^8{I‰ ¦g%dÖ*Ð(Z:äycÓ—©:ÐêX6$ üŸâ†cVK M<'zˆCImêÓäÔt§É߈ú-¥uüoü™i³ÿ¾Y‰4Q_sê{7À·¦4t§¥¶# »F´é3Þ1)Ú}8;¥H¤C[¡è$AÃÀh—‡YâV‘ÖRt…|ßB‹êÃÈñpàaKédÔ‚zÈà„×®¨,÷ªmiiv™ ³á,SSÖðµKã©cc2€É†äBÅO¦O€¨HV£ŽŽQkœ+a'qMç…vny>åAŠ*¿ ÕçŒô†A}/|N¯µnNÓ'¹žyÊj²µIÑÀDB\˜Ëé—™œ˜XXÈêt +(Üïp@[Lò€>øéç$.ÄÝ‘¢‚"8~ ©®Ll7 x…¸ !‰àJH§Š~¬Wº(–ÐØ Kc|ãõ5¦³®úÜoߎÁƒ‹Ø¨/Uö'‡^Ž'â±Ø; ñx²½q·ì“ÝŠì ½N™À¤CZ®ͦ듒/Šâ¾¡”FôQŠåÐÒ‹_®ö"| n²3þ«èY^Î. áÛ|q¨?‡û L;Þ_¢âe=TÍÑRî®”à®ßEÕ^¯¸~‰m•8´»5ø;·öäè…¨âKéZ]æ-¶”“¸ifêt†™à¦g‹¼1éͳ•Q¤ªÓG!K“å,ðoòä}¬€ˆ.%9ç'T+ÿ×%)…KVÙ Pj¾’å²kJDvp(ïñaƒEÕ-ätõIžH>¤IvÚߎ^é¯Rº«$³h# PïZ·­~]Þ`¦Ì߸ȫhGYEAQYV|õ¦DEyÍ‘Ì*`ŽœÙ6VáB¯ÕÌÓ,õš¹Ý la¤Ê©Oý/^9¸÷P!+í”Tîp¨wñùœ¯ø£c2iâˆ9Û7¯w¬9zªñ>š’B ·?÷Nø5’°¶‡à$¯ý8}'G Ѭ´´Ǿô®ŸÆ|‰N³…í$ ‰äM „ŽŽÃWðq9ºþ™ŠshÄ vh.N‰I„(+¯mD- ÷Z›Âí*lÖD˜ÀYdñ‰–R ŸM¶,]aaºÀJÜ Í’ïÚ³çHiWÛ{HPÝ~ ^Z?ð‚ÕºÈD²m©uqBZdx/²ñÈxÕ²éòé?ÅÂ0Å rsÓ‹i6ñ4¥ †‰¾BX\ƒDí!›çX&ßh m7¬\‘ d¥2—X?hääý3ƒôqÙ¹½ÀPY}þó/ËÓ”Ùá$êbbvúj©†p&¥/‡zí®«7Uå|#úÄ€\ ý.ºtD»jÓnCŸcÉô­ÃÂYtn•n¦ÒÒò‘®½Ø¸î °z£Ñeà’`ã½9ØÓÙÝ©Ëfp- ¨#rM r¤¡3óêOŸJ+…PëWê\樷G¢ Í ”!!üØ6JFµ$/ówLÂC90‚¨ô¹$ü$ÒÑ­¢i½r~`«9‰tˆÆu48öÞÓÛ<,½ñWV i“S†‚¯ÁÀoá, ¿&íÈßë§ÍÛAÚºhmB|Ô ¬•c12¨3’Hæ•ÕAá_êÑabPŽÖ"’û¯Zå3 XIoÅ“î+´€KJ3@Sšéµ¹Ñõèņ3gJY4—ŸQvñXbž ÙEGü"«~Rg’xkžˆùq¨£,#4¤&ªXïQ‹£\€Y=nš€&Ýk<‘~QëZ£pÔ¨¼ ’ñ+©(+ÊßõÙŒúq÷1…»áχØíU…:eI•νI*ë ”[¢¿¿¿‡×ðt‰€6. û´œ“c/þLŒAC,±ÂÓßJ! í ²«½µôú8T®àki¤ú¯vÉ‘É$~­2AŸ–”‰´Íå‰-×%o­Nÿ™©…ùêf,#߃ôe|{1?ÙOÇàÁ[0CtL âøN陦¢— a,¾A¤ú"ÕS~.¬CíˆB‘HpUKç%$@¼UD*qº/ùƒ)Osè‰j, ´…W,¥Î|é®ä¡¥yï4ö¤½k·–Ù ¯î7˰ôÙ$¹t`w•Q±ˆ$’™A$(w0Òú ^›ƒ¶ö&Á]°Ç¯As Nw®ò@1·§ú$Ô@ãNns沫°wZÃ>ü” ")Zù§½·ê÷KØè«h™AãW|^L–61”àý±g¥$Š´¹ÚM¢B™–Â{>Ÿ¨MRñ#ZžÊÓ£µ©Àä@j¡‚?B—á—ìÛó*F³MpÌ•¶‹ÕÅÇ$¨bX·c ÖÓ®À:¯ÃpjT%1è¡ø¹ýS’ẇÈß^¿#ýB—H\¨X„¬d8Z’‚†~mÜ ÌË Ü{›¢µ~•5O6 2qËKq³3z"C[ñpÒ/.Æ ðH<;u7 FóÑb4C›Ù92\€?˜ôápÜ딃²Ð Ïî?BýçâtaûcÚ¦/hü×i2»òä‘57w•Õ¹T¯ž7qu_ÓÓ<ïà[ÿÐÜD·G ýÍáÃûõ¹—ËF©Ã"ÁŸ Ì )¯Ì-*eßö?{ÊÐE΢æ%<Ô¿Dv/-¥¿5›ñ*Ù³!ßàXüêï-Þ¿ 4FõÕ Å€ždæ8VêŽYTÒÚ5IÐ8è»^˜N`Çd{ö@I^ ‚’¨ 4î&Y즥”VòaüY~TÕ¶-*GVŠ•Õú Þ£æÏÿx‹ÁÙ¬ˆÜænà™íÌ…ØìðØ NÌœç«PÔá—c·k"Ž­­`WW¬„夨m…¸D¤`ªˆ¾*É/ª÷iÐóÝÕ«·êÂëüKµ»k“ HݶT¤‚^«TÇ+!ŠÙ‘•—Q˜ZÂ⹘’¯Öc§lT 0ãáEIybU®Q!½¤ÌJ+©ØÛû T v-eös× 4ÿ؉ƒ{êöëÙO$‘LP¼¨Yµåæ!{ã†j“`‹M¸+£E?IÞLZi(ÿ_ŽÕþÕPí¿Û=è#èC0 ã­®âçÂfßod)©„˜8-«šëæë!öXÄw‘wåa—ÖW¯*|Zzû<Üf~Ä’¯ñ`úN4H½ß?ªy)ˆ¦óˆ–ªÙ¾Ç²š]yRsI[«ÍˆÍ›>u£©OMMÔe¦²ú¤êÜöK®M„Úß}†Ú)ZK!ø¼oø0NOŽý¶ˆ@órY'ã•4!@r+]kzsÌ„%ñíÇæ&å@9SVäãâ·æ´Ï™›.}ËJ{4÷3{DDéü—£Õœ¨ÖˆÒšPšQÜ<‹_+ &Hjš(å  ¹Õh8@d$«A ‰”íÑuò”4膃äç%48q¢ûAÎn‰³s ’2uåD\¯çºçà o§P ý„¬yuåæ•zbÝ}>8Þ‚Àù–¢r­.>…è­¤ëç2Ò.kÔ ÂÓ[ >D//ÓE³P›¡„H‰ˆ"z¹/î"çiiÍûóJ¤GíÞæÕKúÒ©[}í Ì*t‡:”5‰ÉJ¨ÔV1ÙÄñ¸C­ý󔦗Ü[ºë ÁßÒ~Aã~Ã>±w0"[–ïþo´zg÷E &«"úñwH’Ïê‹ ö2è] L,'kk„z"&°Ô!–Ö9ÙïÂðè½¶‰MCvmpóDÒŸ6o7{¿Ýú–‚ð¸¶Ø¨ X*A…—´˱¯Så˜:ÔÊ3`4oç ³t©ðøeA:£-¯å©¡ÉšlÈ]rr àÈsêÊ+?:Tñ,û¿)˜ à‘æ“ÿXw8G<š•¹ù†¯þÆ#ï/†ÿaÁ4Ÿ£´Áü3Ο«å, ^XJ×¾V™òJðÔzñ-1ýSm‘;iåUšX‚Ô°G9ÏGj“RH‡»ë,”™Z ÕEx\:ù C–«až+Zfá ¼R«'FÿÞ‡OÜ„¤ø,´±¥Y®ÑGgCèR“²Ñ>Yަ¶¤´^´j½ÊH'#;þë‚3û2ê‰Êæ5dûoU…ˆÐ\"°Ãšå2¬–à.­.dü%îØ‘ä«>/ýbvVjÊmÒC3ÈI‚ÍðØ1¸·;VÀ@«hØ|ð È`ÑpJ*ídRIÎÃýPod+O:ób¡§ªhîj5->Š4GÅü&4MµÊΡÅáKö~^wä8\ažŒ=3zðÔY£Ât›7²™QuþÆ+½'ØÁ¦ïÏ Eæ?Üÿ‹~–í¶ 6n¸Û]ù¦]êÝÏœ¿ÜxýÆ¥5sØâ™lÖÌ5S&̹pÿlÕ¥‡XÔuzEè!/XneÚG퓯K.á cÜc´h|\üu{l)}q‚lêž 0ýÙØUëÃ6oe7:ÀLwÿf(2;ßÐx¶„õ qdÿM+wØëvû²ûÓ*ó¹€Ü p¯˜m O:>@2".ú ŇOd“·#ªÆR›ÀóbX…#pוÝ“]CŠ[õöüÍŒ”¡²<’–nêÕ–¨¯Ï+ÑÃWb´Šï"« (õöðö. ¨¬,-­dñm³¿]kÍ;Â0 ½á‘Áâô…óÆ_ŒhêdKZÅã'š5{Ë2cÒ•Ññqq*vÝ‚…¾³a,3®:šœëÌŒ¹“p{Üùó©7oœiBf9p(ø¸â²ËÑøZøŽq)I‰Zy‹ý‰!ŒC²[™“‘¡KÊLcy}³*%]§'ùý‚½âÑÜ¿,ƶ¸¥†©5sÖ„,ÊFSÑG—³‹O›ÕåmZ¿sƒ•ΜùÇÍ7gSHôƒEÅ}ÝÓ¯ži¾¯ÿ8£’ŽÀóy©¬4¸Ä×3Ì?È¿8°œ+0–°h~Ï¿]#»âw£¹!"~_.Ã#ˆ€'fG ¢Sæ­bYíE£öŠN7´þ YQ(D°-?J"B!$¤rü÷’ÜB(RàÕfäÞN¶å{ÉÎÖ{9 þGIŽp¯5&øñÁÈþ•-5ˆ‘#ÿPv.àÀV·0_?¿|ßÚ¢œŒ¢.tºDtj¸9K—)¢¢H‡¥aâ’ÕÉ™÷¿Dȶ=yö²}n@3 BxÙÉÊv”»†DD«T¬6!A+,“T•úùÅ Š,!oõLj|R¼rò ÜÁ¦t󾚂ò2­îù¿ùZëX‡¿Þ"z~VŒ¾Æq2Bźù¸;²ð@+4{šº¢îÙmë¨õªè1 °t»·‹ÂbRë§gâΧ°ù9Üõáâ `R’ô©Š?­ŽÂÉòH/ƒÛJÔy2·A]'\ŽF¥V«4P¦x6ä ˜TÐ.D¸wÑ­€©’Ô)?CÒOØc¨]Ã×/#úšœIDújZ8óÏSæú™ÿjÌÜæÌõÔ? š¥æJ<’oùcñí¤RÈ’ª[IdOsLóÊàÿ¯–Ô;Ë™3ÿ:²ŒSþef)íHõåEÿ¡!¦8Çú½¯Gì¡{Å( ëe{‡½ñt/þà÷tkN- FWö¢+$õÌ÷ Y¥oÍ*\…ª%9P¡äS5®¦#Þd"Ÿ$ZT…9,ªFUt[f½ýß$mª×ÐÀ+@ÔÑ)Ó¤U‰il®‚Ü*A›Â™K¤-Ïî½°«6:°ˆuLPù@8ã^YXR’·ë“U³FáŽk±ˆÅ’?7ßb=ÿ!*n¡±ôÁÔHG.ù“æj…bfkÊ/"™º%Qv) ÁéMÆçæ¤dd²ºi>Ë·lT©´ZP›Ò<ëÎD³ï𥿂Lf¹£ž¾cÔï´«J ÚDµÎÊ#Ç‘(o¦ÙõWü»íºþéž¹;?S†Ý0º}÷åÁ/Xé¶t(‡Š˜ux4øAXÚÎ|ógÇv$ŽGûz'þÀééï#†9 +Ëì)dsV”‰ ĨÙÈÎâ‚•4 m”f¯š«4™¡ED¿¡ÈV~<ñwz­Eà4o)æmÚX/B­añ÷¿ÏŽ„x¾Òc2s’22ô,úþõìdÒ•I šåQý}”v_ÌoE7dp7þ®Û›~œ’ç60ÛÏq”ÇüøéðÌLÓ0cßÔ!§Y¼ÿ‡ª«É·á39KFúå’#l½6Ã6Xa ûQyžÀ'p ®¤,Do¦¡®„ɰƒ°TPGÄeuÜ%R¼|¿ó“zrôMf‚?K—‚.]¶dxÃì"²Îñ2¦%—HÀ¨1¬‡0by{ÉÏ#Ó¡YéÖÓ[hþ¯?qG}ö+|k)}ÍÛ£Ù2I¼WÜ–èq±‹HCÄà…’W/ÑhÄž; /¬dÌ]Ü›Ïúp¬ÝQÐç×d5”…•¹Å&€VÖ\>Yw˜o÷M¢^†ÖM[µ ¯Âîr¥0] `xZbÒU׃” ?]0ŠÐ¨'Äæ'‚Λ!ƒ{Ko÷/¾W~öAèÞ¸ÓÃͰ™án­äŠ •G7òãŽ\É®¦áTИ¨„•~[^¶küµ±Ú€„8ˆÕÆi!šQ¦B>»_r¯nÁPÜg¾÷–­3ó?qSÔÄsØÃÔúyxDlýÝ"$B]¾ýögÖ„*êÅñAÖ×…n™"ãóˆ)á1ဟkÙnî‰ Ç «Yl°Ðy'E²N˜:϶)Ù#z.'à ÒðíÍM¶¢vφßGë Èòþ¼g>Á}ˆÅÑçÁMŸ#Y“¥´G7‚ù&ê8å¦6l wseÑZÊ«Šªãªz£®×¾ÍNÑ$Ç)¤í) |¼&$f}ÈB`¤í('Ø”º±8V¯N´¥{†DCl¸¡Ã 6'U§OIb3óêN~ÇÁ¸)-,ÏE· ÖØ8lsñÛDZ Û;>aHÖêõÚÌÞÕùÆÒÒF÷·¸M i±|ÂÕaÈ 1?ÿHÔ’ ˜¤…IüoÕÿ;QBäû•Üÿv¯ ÃѬÇ>D‡·˜Ù*CÒ±?bñ—µBØR¥ nµÇJUÛ ìN'ØìYºÓ·+½þܖÓqÜ˰.BÌÜïÒSHüÃ÷H®“(ƒ °n‡«—ͦø@X ^çT¹a‡à.0·«^<Î;Ë8¶ÀÖÂzä´5ž(Ù BzÂpEÜÌ4w•Õºí¶[±ÅYÏz×Ù%û33k0õo ¦Ë¿¼Ò!†n:|èÀû¯8ªR® ƪDÿòM$Ä@ƒi¼™ÓOï5^>R ì;M3’>©6ˆLEŸüŠ›¼CeÛ4ýb[IÌÊDbÿHaãlv†±5E뀉Û>û?$ˆÿ€ëðæÞ²m 1AYáñ î)P ýâQý'¥5ñ>ål— ?'yg¦$\‡«Ùf«VméÔ:u4$ê„KÕéôç;u26èSt)z½>9%©SgŠúKêLendstream endobj 318 0 obj << /Filter /FlateDecode /Length 246 >> stream xœ]‘Ánà †ï<opÒd•"_ºK›¦m/@À©r(A4=ìíg;ë4íð!¾`ù§9ŸÏyÙlóV×øA›—œ*ÝÖ{d'º,Ùx°i‰Û鯡˜æôÊçW!Ë4ïþ®Ô¼Z§ŸüÞ×D·"Õ/dFçpœg4”Ó¿#ßíÓü§Tð€¬wÜ4ˆî¸$êùDè½h‡ k'ú„ @YA •£ÜÜò¶Õ^O¬ ÎñjÆCDŽ¢„ «ü·ïQqn˜DTX“h@…5êÌád| ò‘›÷Z)oš¶¦)!.™~¤¬Eº,c¾ÔL}žendstream endobj 319 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1792 >> stream xœuTkp×Þµlic»Îc¢VnÈJ¨Õô´ÊŽÎ^ÙúµkŸY½š7ÈZ ²ÍÕ²mò¶.^×¥”ÉÕdÛªwTËvjô¼Q)[¥QËZrU»LÓ.{Y±WÖ°§n÷Ù »_jصçÉêÿƒòf¹V«ÑßK®8ا엫ê6…RÝ®T+{ *…NÇ›å*•¦CÙ&Wñ”ê^…V§hëUjÔ:e·’Ø*×hUaöàV oÿuGÑÒ‡×=ÚÒ,é°'± L‹5cû°l÷â€ûp÷ã ÀƒØC¼œX1.÷â]ExÑš¢K‚Ÿ F‹‹‹GKÊJö—– Ðo*¾Ôa¯^DÙ‹èìE<úŠ8èö;(£Ãf"¬æAÍãò:ÝNÓ Vo×8FO¯Å?ž™BKÞEKΣÇ|!í LN£x2[ܶUÊ*õ7&ùld&>¼Vé?Þ“Q@(]JªÑ¸W#oÕjõ³Êkó{‚…CÁTäp$g"ѱDzd˜ˆÅRáT ÊÐã…ÃýžGe‹a‹])éÚÀÈgÓ[L&°.Æ$¿ª—u.o[áµ/Æ ¤"ÃÑD‚ ¿}ëè­‰ˆ†!Î$‚ÆÃfËfÇfW{V{’ŽC‚NúÒþñàxô­ÄäðØD8Œûã¯Íaèõžß†üâÑ0“…ÓBóèõ#”²§…É•V|‡‹?ÄЫ³ø—³ô2ÿé¤.£VëtjuF79™ÉL’¬›3ô³Æ kÖãHõ©€ÝÄÙÅåeóÕÚÏØŽ¹c@ÃÛzJoÁ9Otð“íoˆ¡Ò)¸YmÁ ¤3o g®2Ã@ˆÙÁ²rýÞZÉmÁj0Ô˜Í==õ.bhÈKQ¼ ^é;î¿öÃJ‚{M¿åùöwºo?D< ±Eà<°9ª,'@ÏpÝâ¹¢$Œèõ0`&¿Ý(2ÃÀè(Œ$ïsõ³áûxª öû>w Äg¹SÇ÷OntAQ`]€qÃy¼%Òá·‚: Ž'Ù {i*ñ╃'­\©¶€†àx’µÐ§Ó ½º:—Óërƒ°F!z÷湚D<ÉÛpèÍl291q™!B!_TºP¤|é¤ÂÚãšP³ñO,FÓ®ŒÙ"V»Ëe³‘\3ö¡fkÌCÛ¡’¢lV;ãŠØ¤¨‰w4qMåv€£ÒµEÃ4‹‘¨yþpÍQ*èBe<á5›3Eû‘#‡züzÿ\¹^0W;/CÀŸ|²5·P±7àdœ@„§Ó.=´æü†?5ÿòÍCE…¨¤4ï>×иÁ¸†°œArX€ã Œ â·¾9ÁÌW7°Ø~Çr¨zþây»k±ïÜïÁ””½-LÍ÷`ARÌûLdá¶ÐôŸþ¼³ÐŸè•âü÷½§c=ÊVŧÓù/Òó\Tb$¨C"®Œ[±ž[Õ7Hný‹××7Ò5±ët ±‰Ã¹RNp•¡2´â&Z•NH?Ýèó¦Žö| ¿"®#•Jû~¼²®æûZÇÛBjŽ´\ÖLøÃõ¢ fß_¾NZhî+^Ø´Œã K¾þûÝ«7¾xïTïkg¤YÕ™ú¬r‘?÷øüø}.†øß,¤‘OÂŽ#:Ê„HÜ«®Û+Y¸À¥(§Íƒ•`‰:#.ö<—’Ä40@Ä"|å¸W%Ê Íúÿá¢ÔÌÛŸÇôø4{NÀ~ãƒhGœ£Ù%®¨3:6r:Ì]øHâ°ðì&¬[,¦‡Hda'‘¥ X[*ï%¼”ý<‡OçXu޳Bªâª®q?áOU-÷Y~?d¬@„*ÑÒ³w¾BËöq?% ‚ÿÀ…}T9*¦ñé,;›äèoâ1gÌF¹”—t®¨mÚ õÐzìùO¶ÿîW#Í@,ß±ôi]ÈŠùGýÒ"þ|â\†S|ñÊîwÎñõdz_IfûÞäÐ~<Ç©Ås5ü&æ7A¿‰üöY‘ úy ÃI52â¹gE)ã}~KÔð ¼o,EVPÑ\ ÿHödZ˜+Í•‘¥‚ÆG7•?åei0â§£¾ Ÿ~£¼<í÷‡&KÒtþùòaØ¿ŸÅendstream endobj 320 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1071 >> stream xœmSkL[e>¥…XÁË$¡ŠçœdÀ.&øÇæ‚¢lr“1¤+…–K[Xé Ê(t´ô=§÷–Ò m¡…‚`‰ŽŒ8âe&ƨ$þ˜—ŸF£‰!.Ù¾²ƒ™gbLüóæË“ïyž÷}Ÿ¼ó /Sœ•y–†bÁÃÚlòA(Ø{ðý“Höêz µ?Žñy¼¶>ÝY¥J?,ï•©©++O——sõe겞ª­ êÅ’~¥öJ¿œ+º©úІ ê¼RËrªT© .KeâJÙCµH/R­Íçšš©º¦ ­o5—UüOcÿ…0 \ilðì4v«Æ²¹‘0æçY²€ßÖ f¬Á¦Ò (ü=žæ}ŠòQç~¦UºaIX’ºe®_·6p€;HMÏh—ˆ¾ñÉA0âC±±øâFtgïí÷ªÍ3²¢S>ÚÃ08§Œë—GÂÖ¯ÇW¦?Ÿ€NÜ•lÙ¥_h„X÷ÅR°‚§>­\ªl¯ß—ÿt€j€(xÈ—µc†4ºF«Û¼Ì‡¨”Ø”Ù+°”µµ%€³xΗ(à˜c‘‹¹ ÀþªITwÔQÑÃ5ƒuzÌBŒKz¥RÀU:ÿn~ ™Yû©Ø¼Í#ÙSG_YFm6ýŒÈ`ÓÂ( Á Xf®š¹§ZK$HßÒ¨Üê8Ý"§“ à#¨4:šÖß T6ÊÏIí›kŒ“½æaÒ$¶ŒÁ(~ ==uëÞÆAˆX€÷pdŠÒ¼ÃíûüTZ87“œÑ¸…ècù­¦QÀÍ&ˆ-ø¾º~åÂ'ø/¯,žUŸ—jkÀ¼*õÆÚa4P ¯ž1î¶$[¡”š‘ÞaÉx+LãÆ xýp: niŒ+ý.Oô˜T˨IBŽTõ²”Õ8­³HR¯Þš½¹â&–‘ÀHÜeì"Úµ¼µ¶´_ ož\4]R›–1²“}íÚð„øRxÕ»$<±-Ôè»n2ÎØrr}{gÿ£©‹ÍÕµ“*« xãgýßÛEÅÑãœbÍásÛ¼ã[ª,ôNyMªA+( )Hì=€Oé¸l"àv|I’Ý<긑Ì;Vé ˆb!HD4$[b}ƒÎVH ÍZîBÁ¨Í %`…™© ;ÄÞý—¸4ítºœL„ íX`KTÝœÂߎ!?RøñO]˘97ðºgçÑf¦«èöÑ;vµÝÌqðxü‘Lnæ§¢ÙùÙÈ4>Y`g.Òh8m§sÒy÷OyYÚ«Â\žH34mwxœé97-nÏ­ú´“qÑ~¿0Ãþ¡]Ûendstream endobj 321 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2172 >> stream xœ}U{PSW¿—@¼"jë6]²µ÷FíZqë£nÛmëv·V©[©ˆ¢b‹A#@!ä}óåAÉMDo ‚°Rë*Ukë£Z»í¶uÛu¬£«u;Ûz.sév/j;»3;;gæþqÎÜóý¾ßã;8–˜€á8þ𺌠©ªð•´D¾óÙEY²‚Ê©ròd>ûÎÎN`è¹ãúñ¼$H@Jâ±ÙS©Y¨ëADÏDÕ`Sp<§¤Ú@»|+eÕJyA¡J²léÒ_/ZÄŸ“äWK^Z,Y#ÝY¬¨ª(–K¤¥»$kg,–¬WTñ›rÉE©$_V(-Ù-Qì–d˶H6mLÏÚ(Y•¹éÕi‹ÿ'¾ÿÚ”–”JˤJ•\Z²K¾{·JZY!/Ø#Å0lF©ê•]»åEÙÅ˧½8û ËÄ6a ±tl5¶[‹=­Ã¦ãNpîÆfò„`‰Ø ü|,A'x\p8ñ÷‰·“N$}/d¦,œSn¡øŒ,X]7KuãìÏ.Ô_°,š' ˜=#m©sÏIwɀК±˜¿-ÐAEBSàâ㜕Ïçl“•’–±¼}[ ”*mIÅöºÂÔ`÷‡\ÞÎ’9ÒrjˆNŸ²²Ú¦1Qêçws í:«ìbUÔj‰0Léñùûë[c_¥z"žHø8¸bñø‘ÑCçhUoÏ–rBÍ6ÊPV0Y£Š‘ÛCH"gü€ïâ Ž6Wáè>hr[kv…¬Êݺj=jc8õ=!ê#4’t[e 6@ µT8€æz#à·j5rKÙëµd 7#éWB4ú4Sׄ™œÅª4‚^œyD~ìÎi4‡™,|vƒ8û}g}ãOŠÀÖêJh§–äH¡ÞUàÖa×òw0°÷}°,v-ʼn'ºLŽº ®¨ÍkbÂq·+B!JvÐa |aÔ:+¸k¨·ÙA¨w'Œ~Áö§6îw>"Æ÷@ñêͺ§’½‰|*`{y|ö£‘¶*­¤>[“³ •)Ú}D±Ç\nO˜o¸ÞÞh´—8h¹Ñ^I×9¡Z¬óXMVs‘­ŠÜÆå˜šKGÖƒ˜›Æýœ£¸óÎgþùÌØÑ½-TËËÐ †ØóÞðIðœ¬P´õåu1¯©†ÿ8Úu§íÕsúÈða ÎF_2Ú•iÖrʰèºOß¿J0nGwä*[Gs¯Fºñ±[èó[öÃñé¢ÑÜö\ù:í’bÒ¤ºŒ“/ «Œ÷ùP¸r"U3_÷Ìf;@ æpFx×ŪÕe¥*™tDñöéá3!rà\ =èœDgSo÷þ(û2^ölo³'aÄ¡ ß„49BfmuØ5&c5Tª}[OWÇþI¥åGï“,ºŽ_½¿(@GÇEmÚ&UyiÅžÊ&m¬³§½—ŒNTþGrTËóówa4Öwµ7´„ú¨¾Ë}—cL4‹ßÞ¹ËB)'1Ü Š/à!»oîê"°)êœúº=TÙËe¯ð½§‹m:›jˆm Ž}ý£éû'Éc¯Ü…¤»‰T|pŸä1EuÑŠ=åŠrMDÓÞÛÙÝIJ¹³"ãöC„Ë;¸aNÆý¢A—'Ò@ö^8zôm Z}‘ÞÁ/jÑD²ný¶5¼æZÐyiW_ÄÛD{uH]Z¦,’ *OœF PJ/"¡(8™€;oàãùl©¨ ½šÄ·šœ¸"T õznE*ms˜ÁJ˜¬þ »¾ÙGž@Oõ0è  {]N³Ã^å´S\êD›Iæ¨ââ:Ðè›)4Ó“ôW!šåHòGxåj¡¬Â îrªØc÷B¼.¯'€ÄlOjã€Ë=Ä'Â2E[•ÖNE×:kyG¾ ×õL¢M{‘W\‹Ü ÛòÓœ³VÛIÃöò?l¢ÜÚÖr1õ1Êåõ6ñÁûËc-[Ûúû™ÐØñ7ßâ 3Ý& äò÷W6ëÚºzÛ†ú+¶nÈÉËÊ"7d)kµ–¿³óRïÅŒø?1sm«&¹¹çì:°ð‘¬ ë£ýþ}a/9Š²Æ¬ç5%Øè:‡ÖƒxõÐŽ“Ã}ÑÙ>Øô.ø&sôøc Ž2»¨Ø#:Sq(¯°JQ¦ˆ*Û#X£ÏÊÈ íšæÿ7û­ ÌŸ¡©“|ôÝü‡.£÷?Œ'¿+bŒà¨¥©•ÊièA v4ãÆ?âèaðV¯Éà´«­¤â—™/8€º£‰¢Ñ*N8°n?$åæ,¸°â»‹ê8õÕöÛ“¶ NÄF).gT´jío”€Èy½÷óýMߎž§ÞxçxûŒAß®ÐúÈjórß¾¥„%£˜º—}¶û½ëŸvâÃ_ÞDÁËöoìfzfþ·œ˜[ü÷PIE‹¡u_{OgÈÛé"ß8{.Ä›àÚ™tŽÈ6nÖm¡ôÇe§–™—›?ÿ)à0oqÓÐ_|5týòܵ#h|CpqKD¿KçdÜ.ÑzsïÁžïdç©÷>¹Ä—kÓù9‹âÀÕìôs8;Ì>.êVB É Õ ƒm¹Š×ÀÂ?zÀíñûÈ#—NA ˆ+§¹^‹Ê6±ªÕÌ úöG<ä{èó$´Z8i®€Ÿá‡ò]ò–Lºó›søÐE{û§N!·˜Kæ–qÓÓ.®½f¡GÑt”v\³¯6J¡Da 4ã6zÃÐ@p;9±è±U\—¼5/þÑpÊEO +Ôä u+»2 ¢²Vawò¥idrb¶"e*¤Lët»]nƵ·Þr§¤ôÕb.·«ÞvÕ§Lǰqt×endstream endobj 322 0 obj << /Filter /FlateDecode /Length 280 >> stream xœ]‘Mnƒ0…÷>…oÀ8ü8‘ÐlÒM­ª¶3D,b!‹Þ¾o&¥‹.>KïÙ€§8_^.yÚ|ñ¾ÎéS6?NyXå>?Ö$¾—ë”]8øaJÛ¯ÙšnÝâŠók·|}/âQñéoÝMŠº*íQxnJó ÷¥K²vù*®%âvÙIþEáôÜÑ{µç–”}`׆À4ªÖl@{Õ† ¢¾Vl TOlP™H'‡dZBK¨BtHªHB¬:°ßÝV8F!ÂêÚºbƒ+Imi­is`ƒ+Å&šj¹A±±÷6VÆ¿*PF”£µl@v}û=éMêLöøôXWÉ› Σó˜²üÍv™Ýåûoàœendstream endobj 323 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4037 >> stream xœW tSõžÎ%4^M4Ò(Ü[Ež3ÃâSAe—}_Ó=¥M›6ÍÒ¦Mš=ù%7ÛÍÖ´MÓ–tß(K¡ ¢ŠÈøôÛÓ'OŸúÞsÆù_¼=8ÿ úžgÆsæäœœ“›äÞïÿý¾ß÷ý~„`ìAÓÖ¬]+Uæ¯TJ eYOÍŸ»1'¯¼PZšúêQîA‚›>†›!¬æ™›ÌMcL„±g¦O2}uꟌüS b[Q¥Áì`|áh¬¡yYq‰¶T–—¯ÌøçùóÌ‹ßfdj3–ÎËX%Í:P¬.; Ëʳ3VÍ[;/ãåb5¾(˘],ÏÈÌÉ—æfçflÎÙž±eÓ‹7e,߸nËúMÏû¿aþòª´°$_𙣔fç*¥yÒ¢")þP(-ÊÌ–ÊËKdJiy™,¯H*fÈw(Wj2³sród›,YüÌýwO˜4ññ4Éô ë‹[Ov– ^¼$X.X!X%X-xZ°F0C0Q0E!œ.ÂM0„‡ð>ÂO“¦U0Vpšp·Æ” Ÿž+ûqšMô„èô]/’BòÓq ÆéÆŸ3þû ÷O¸5Q?éñIÑI?LNþfʶ)Ô5é‡1Û— nn‚@ßÔ¾!äÞD3ÅA#ØkÀ®³Rêå›vYa6µ°Íl‚n>‚ÆÀ9òÊþeOí\­¬ ¬¯fvì= É®ÑVʪփ¬ ]®„ª{;>Ô dv¹÷ª¡Â¹½Ù#@~{‰[0p¢û‰Ûå!NŒ Ã5!·õˆ?ßúÖâ=™òÂ"ê::“ªV.59”Éipb¾õ,Ô¹Í5f£Ìª¢òïëwØ*!_2gxíu4MF£G(~2¿D\°bO^6²‚äõhˆ½N'nøàfC’“—kÙ›,Z½¾€¿K›“â‘ÔýÎÀÛBÎúS×:mUvªb•v}&%öƒñ5ƒáþý6:Ý£££³X¡úgt”]½Ž¯ÑöÉ“{AÂã§ðñÎ=»ò½ø)ÏÛ#t@ÚS0=ÐÔë¬ë¼@òè9ñ~»U ]…dßæÌÊb wT=tªMn:Nw\ìòRt¡Åâ°8­) ¯6b̨$'ˆã×P]—[úßbŸÅo±:& µd6O€ÈgŒu†]µéaQ\wŸj¼Úî½QòXÎá—x!ÿäü²Y–|f~ô]˜Ú…ñLþ7IeŠ¡9ߦ¸:‘”ËROü"$ॉ†O¹’4ë³ú1|½‰wòæññ=M™²5ÚÙE”Ee¯)ã§’/‰4Ü1XÒôeÑs£´ö‰ŠùÛ@bƒRÐÔgØ^¨%›´aB^ž³÷XÙá³úë©Î×›ÐD—]Mÿä§®¬ ÿM:ït„Î{£oûÂlC]m#xà 4h÷ÙjòAG*ëõ Ûý©Fü.3üñ' îáñÎ5!]!FBn½Ëçö‚_’jìšsžÒöåÌÂô‹p2øGf_\퉡 írðé6£löC Ñ@«˜mgC¡ŽŒJÊh³2ûÔF÷\{o¤–jãîïâ7YÊÒrD¥-Ôâ®Ù¡;=0Ô†Æ'_¡“'òrt‘ÕŠkgK1¹ÝtGo÷Fü~äèˆõÝLÇ«bÊ’E‰&ZÑÜÔÞÔN±£ªíš‚—·ß _´é"}è¿Âmà&%¸7 äà¾ssøYÆÃóRÉ/Úq»êà€Ê¬²ÕÐ&Å^ž¬Ü_£¨.¹»;ûÿ,6Å[ìJŠ·à8æ6®êHþº{k¨ª+S)‹ÔÑʦdò`’’ò—ÄØ$±ï“ç¤=;fm¼óPÖåjP-_< d´Þ&UÚ ¶ zîè8ͳ»6nÂa:вí~,«øm2K媼¬ò¡«þ¦%•B+öcåø>âæ¿rÅâ$Zêò¸‚ÀHR: FO‹ÊÀé4kÖñ/¤;ÖJÜ<¯Õtyc>ê ú§ƒõh6‡D­`3Yìz§æíÀ.jÈIžë1¾d«’ôÇ®mÐîhI0•5&P”Vƒ[AË1ðyj‘„kM÷·z|a†uwA#´=£³eÛ´ÓæÀIGZ3rjÝ)ôdmª)Gþ¾m%èè•órÕ¿põRåö}@jªC½už&OŒöÔa-áÒš¶ uÔwv65 ?z|à·3ìpAÀâv‚ÓíØe7fƒþ¶Wc±jWví-ÞcZ¼Œ’ådgåèþ“[”þ«ž‰]‰Ÿ5úŽ­ `‘(ãV6Rˆ}”—Dk}-Ýö*a%˜Áf¯qè©á`ý@Öéöd¬/Aµ ÃLOúA8î¢àC o®R‹!döê}£ äJçð[Øç÷BH2²»ÌÕÔè+|Ô`5YA/}À²røBzÄìÆÃbÙPªÄ#þ9ÚòV&„hŸK|¹ôPvº´¸$®è Gè¡[‘€© ö{j%Þ¦`?ê«XUá”™¨Ýü:Å,§u×üE ÙQÖu¦Íßêo¥ %ÞFüK¯äïãÿÈè»v=Øðóu!}]c¸žqS6rºÍë,´Åá*lne÷öûeP`¼ú;æáëBßÂXÌv»ÙNiwæ`Ñ’…ð^s#¶…0ý߈ƥ¨s ØC´·=äÙÝëÉ×îBOÍ;ùñΙ† ¿~Ú3¹°ÏfÔÓþyZ@·‘&ämšÊÉ^«~uÚ½c¹8zYìM0 ˆÃ@MŸºC_WU[ úð+0ÐÞ~84HÞû=q‡Ã@‡¡M›(é”Öï~ÌçgÈøéü¼Q>Ýä±a¥Š¼àa\ž7Q2½nÃñ¬7á\l8Ý?ÔÛ÷Jt˜\éë÷”ïÎÎÏ)Ø­Á ¶,óìÛ1w Çõ²v¢©ï!1µ%ÝÐZS°:¦Ï–•Ž k…1G›S(7™f£UPzË ¤`.q:RÂ!ËCOK‹‡m¡"5Áj%yïo‚*²ô(¶™åäZ”/ÖYuö*(‡Bpy¶ V;BöÔ0zR vs~qôâ_’ß¼%äÄh•˜íöö@ÄœµŽZã Õ@qϾskÞ‡Að¹|Œ×ËXÖò]!t´è¯$=N“Á†[Ëú#ŒÏíÃî1«™\VÌ#&g•]g«2V› zsiÔÙS'ÜÚ±º}S¦1K•_´c¿lcÕ‹Ê¡5ä²²yRzBñ*| ×¾lþš\¥k–æ-Y™PÔ¤ë6ÕÛ!Irät|xàHóÁŽxËXÓãyõ9©§ÒU °›KRÂLð[UÜ×t«EÈ p ÅA=€ÝX›Ûæd=–õ¨³ÃùnöWe³N¾„S÷žù9…5,i÷º ø´ôdˆ_¶äek…YM—/-âIP¯9 $úCTÓGÁsžwÄñD:¿y=>ð¾?N€'Eô_í©N¾9%Ap/àÍK‡ÚÅÞz&IòRÖ‘ç–lÛ–_FYÏIÛ÷ÞÞ®ŒZ­¬z¶‘ÿµ]ÕEM9ÿïíÊí tá’±¯v'±Ž†£@ Éò¬ ­É¢yÑèþèô[ˆI¥Äò-‚€ê&^N†9£tŠq¸ížš¥Öç÷s—ÓUç·Dv‰½Ë`b@wá±®eùW|K:߯'õz‹ª%Q},Ɔ‚ YPßᇇø¹1¥$V„$ >”4fæk^ nÒ‚käˆSNdRÚä&j5¯æçðcyQî×Üÿfýns õ2ï0ìMÃ ŠŠ®†qèÛ?£t49‰¦›À"‘ ¨âî;O ÏN ¹7¸'ÅÍ*ÐPü§¢rÈ}»ó³{ÀJÔ„nOÀGüÝyì ä9Ñ~â~¢t¾I‡ÝLjb¦H{ µ/LEƒ;rêU¤HGi¢~¶q?¬ÀDI@܇É›pc}ÜnK”–_ƒKÐ Ãþ3¡Ó$‰"½ÐJ˜# X'>OpŸu‰ÔäïË/Keü‡¢Çùë6½E6‰Á_™èò¶Ö2ÔôeZòÓÇ,–¥¢þÖy¢ÿ5ÔúÆÏÖR¼FÄ?‰ë…üÝ .¼ø9^L$h"šWC…Çh4æÇð›ùibØ­^(Ûž½~‹ï*;³z¯µ‡?è¹@yk$Ї¶+ ïd$|G|òm·•5ËåeerysY[[ss5©'W(AE QbüÈÝÔø±›7ï›0&Üp¹<¶Ä¢®Zׄ -®n¤>¬_Ÿ{ÂDàB×÷Oendstream endobj 324 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3230 >> stream xœµW TSgž¿!äzUDå6%·Ìv°u»:­u}U+Z[•*Ä¥¼ÃËðŠ " ùçI @x@aÀGAF­ ÖvZ§Ó:v¬tÚ3Çéô´Ó~—¹ìv¿(:º»íÙÝsöœœœœï~¹ßÿûÿßïãþ~Ç Þµ{_NVbv”41;Åòeû$iri¢Ì÷è96„ÇþÌý'~9—ôwù”X|ðýÙ¿ tj!*™|ï@ÖÑ­9¹E²Œ´ôüЕ˗¯Z¶ ¯ M* ÝújbòáœÂ#‡3B³SB_ Ûº'§f„.ÉÉM’¤'JSCsRC£%CÅQÛöE…îØ)~=jiØ_Üã£A<•“»Mv$?"1iWQòîIjZzF”4ëû–D$ñ:±—xŽˆ"¢ 1±”ØBl%–1Ä+D±ØNì "ˆÄ«Ä‹Änbñ11$BpoÂ@|óù=ï×ÍOä_õ· Ö.’KÈñY;f!Ê>{Þì®9ÌMœ{-Àpmž-ps 6°uþà÷¼‰/+ð*ÝAhþuü ¦]lç“ïùÓ‰¢Žß¶ze=Œ¢1»i/lqBÊnÇßDôuîY¥FúT©Êc˜xÎU§„`4RDš_gñF€lCÌ ´K@w|ëøäâxÈU0ŠË÷¥pÇD÷gk¤"<[Èê”v¹›ÇšQ¦Ð…žX÷7¸…ÀÍâxÜB9'¼ó<š h 9q!šZgªÓÊÅÙñYq1Ù‡ ’]o)¬¹bí©ê«õž<ó¶ë4 BŸÜ™àL(Û«–P÷wËí÷¢Ü,ã=æ º}=òúk·Ðà­`z;ФxizÃWœ?l„Cñùrû„ˆ~†{N) k¤ïƒU]ÏкÓ骇[õ7!ÁÌV«†:ª½d¬6íÿ4Œ«RkŸ,äæ­YÉÞTØ_惩©í†à̪·8¯Àè²÷¶­ñ±³&Áãô EžBO0ý1õ² eäA.,} ·(Ž!cA_eíDM¢ÏÉ»`=|ì_)ú{¥‡DŒ<¶ú¨ô@­ O#•¥ËTuW%$Ñ2pD«¸ŸS²ÉÓ—ITÐB~ T§½8í©Ó´ÊM@ñ³’?ð´Þ‡4éº “·ƒéPv3»PhéÌëHÀ¬ˆ'8‘ŸˆŽà=F ]WÛ‚»5ËtÎBŸŽ±x$ýB8€ÝÚÓŠÂD _MþªÀF½N/Whò´9Ž78 ­ÖÚ‰;ÃÓçJ·ÑÉ.ròЛç>9Çg¢'„Õd'Êjs;%¶$›Øþj]Í%ëÉ®þÛ€ü l…VJ•Ûê §é鯝M†*%F *¡D¡Õ*Ë5ºÌö$(.b"Ê¢Ôéµ9Íòö¼6õõcníÇG[+&&oj äŽiÿ¨¯Ó›Ë ô*]‘œ‰tÅz•,`04;¸n—³7qHï4 Æ®ÕþÖW³ê¡ô  …¨Â‹v¡—¯Û=#ž£ËpôZ ¬ÃÑÃåÑŠðTI*0Ðð'cãYä¡gIÜ#îYÿÏ)Y÷Fè­N.ú#ù&×QÀÍÿ“¢˜÷áôûöq*pªsæ/êö¡¥“úI”†¿‚iÕTÖ±à¹é^›):óÛbí1Û?¦¿>M`$°2LX‰Â•Џ²•þ&Sô«¦[î†ñ¦Çô!œæÜ€n¬ уåQ½ñ\ýM¦|6à.ö¢†ÏϹƒè\V3)¬¾ˆw_U¶7O¡ËóÁÒ…bEUÖ¾ìÞ̾؆7`lŠUîÔd5·B;¸š,­ÆZèzÓÐurØÞ ça8¥d%¥N= Û¦Û‘ŬÏÈ8 Š§håúc_Ê®†LÀ…Ómg)zs²®)ñlˆ ®?~“âV iå %3âBb ý¤ííê_]¼…Ö[gLDé¾2€~íF©<”x í¹Å`ë¿âHlcß*º€Þa÷x(†%Ó_ <ä™wjó»}ø˜=„êTEdZ\®4!S qp¸¥¨›„ÉäèFI"³ u ç/^´µÀtæ5Jš’TûTIx¾°]é塲IÔæáO î9DÎ?§s ¹W€Z7c“ì ‘¥ÛtüÏ@ua4SuË! ˜\échb(¿‹ßoþe‚Kt;>7ï ªüTói0ÝÏþ–],´xó+³ôùÀ¬Æoñê늵2¦²L_©RpÏpzQrWÖèÍ`f,­½àLÎO— )†,#vÏsxÈ–ÎLNóÒ_—F'o :BùpÔÑi®u,­Å ùPGJ5YöUOÚÛø y{¬{ û²¨÷ê°¡|J;ŸçSZ×½ž ÷n¡ð[É_Ó,»ÍkÊ@å ÓêÔqaŠTØ~ÙŠV·£5“ ÞÑw`¿’¤SfU–jòê Û¡š-'(zè]ûö¾M!¾“È# ¸ÜX‚(@OÁ 0ÖàµùÕ>oœâa V¶³Î›ÇoòÿÎTxXu¢ûJ¢Zî©z#™ /+â&¦/‹¸ì˜Æ­Ã»fðƒGŒxí´N¤É­ˆ]|cB–Ób°µ´1“lÀ@¢§ÿÍÏTj*¯Æf›ÕŽþ65Od ŸŸ~ÿ2½ }ÀôÁ5èÑ=ä¯Ò{Ñ‹~…ì•øZ¶ýÖ»øLQ²-¸ôm ªª>Ï|Í~+ ”r8“æ÷HZŸØ9Ø7—pÂ޾¹‘0ÃÝ':•;Eôf„B]‘¾²´˜¢OoHbä !˜Ö­Å§ û«Æªú­½µ—{†Ú¼¿ì…“pº¤9ÎV •º¢@™åB[p™àÏ XaÔøPTë*ö/^epÒO핟³O`kC¤L`r5~%¹ëC‹Ž·'‡|î©É_`GF0Žø&'!W†muéO7| .D•â[vÅLB/~jsuOì™hšPLìü ù}LGlòÔ|¡µWÚµ¶Á²ýE‹Þâf‰^"é†ìc’ÖbDë‰ÿrØ…Ïxp81Šny³Izù'¢êï\<7Œ êḪT[Xª•ióë Û MæŸ1rIÍhߥ¡æ†fÍŠæ ú‘q7ŽÄ¸7rG`$˜ö÷cϳK„¦Fug –Mœ:&‰¢g]©I&yH¬ß^º‰¢ŸQªâ$®‚’’#™êt´JÒ^¸«89AŒMqËVÅçÑ(0Íä?\÷{ëIÍpl;Eç‹Úߨ {Bd8j© RóQ¯¥Ó`6775uçôëœð%|r½î#koy¯¼y »×âÀ§¹IO)´*e¥BWlW4@ ¸ªLÍ·Ÿ#„Ú\õáBY™"7'(šG¼ 57S´^gi³v:=5µíí§á3(þm>unz®°\¼áÐRx"‡«/`»Þ\uf¨wЄ-þ5‰Ï{8¶šz˜g™b?ˆ´×*Ò®q¤<Ò“—Ð×úî£t_=Ýø±Öñ-δÀüX¨ý'¼|ŸSÒÄû.èf”öû`Úƒ³t–ª>æ ËпážÁkþlêŠ&ŽsÿcM¾é$tWvë:è ûµÐÜVÔš ËÑÊ4¹Î¼Ð žv³gfçr/ÚæE/{¯xÑúvÞçã|¶ í6þuÿ64qó½¢Èú¬ÑšKµï_ù=   áÖVÆQj½Ú~?"u£7F_FRA¥¾\¿O$ëÈè_ –¬*Ztlmÿ–sk´ç׊[U*wjCž%S©|e÷Ö5 /[âÏS1£Uã–CMvÝûa)ƒ‹ K8ßmö3c"OÆ¥´IÀ‰þî_ÈzÐ*l¢>ÐLÓ½ÈöäÃ^Ãþ»ß7~ _³ùáâÿt“iœ¹ÎLþ4öG$†Ï¶Úãþ¯W›“?uµùß1fæ„xB™woÞ ¦/ü¿ÞˆèµÉÒBsKqs.HA.Óʵ²Æü6ð‚ÛƒÕˆ¶?ù£ÏîcÆm.@âïxh§›â Bûxq?¾ã@~®6O›W›Ûƒ­ÞZW£xI²ç@¬J­×ƒ¶ReÑZ ¾øØ‰fù^³[L ÈKAÈÁÙ†.£HaÍ%ç é e{r7»µeÛ­nÒ;grîÓsü££ãfCÀ\—Á`4†j£éJ@€§¾Õdµ™L&‹Õ0 þ:Å7endstream endobj 325 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1817 >> stream xœ” PSWÇ_$Œ.É3|¨}yKUp«ufwk­ZÜ"¢  ÒF (_ò„À‰ÙØ@ÀI¢EVÔTT´–je¶îJ‹vwì:ÛVG[{^?öe”v?ggöÝ7wæÝsî9çÝó»áîFðx<ñúÈõN…ê׋bv¤åg)4®Åùìl;Ç}…Ø0ywr·ˆø ršCzKP¥mûŠò&ø<^|šzµ:»H“‘–žÇ, Yºh7¿Á$1¡ÁL„"%S]˜›™Á(TÛ™ˆàÈ`&J]È-f0Aj“¼#]‘•ʨS™¸ ̦Øwbb™516EÇ.þײ¦¾ ‚ð~[¥NËÈÚùVЂwå!‹—,%ˆbM„D$EЄ'áE,'VbBBPÄLBÌý+áNèx^¼l7…ÛEþtþ%÷™îYßñyÔyüI(xŠ3žóg_#ÀlB!o|ÅÂõPÙ¤íÅåì3¿šf]S1®ª¦ ç>¹éW™]°í •Â^À^8ƒ:Ò!LÒçX `¯Ñô!û¡ƒ‚pQ {üwƃšV Q€á#nÏÇ:lEf)òF×=fá:-œ”¡|á_vœ Úº:WK×ßP7ð¼ ¥ð³ÆêDnnÕÂ:.þqà °sE ÀqWI/¶®Rƒ×/^4o[Oã¢ÿèËU@­"*{ØŸwñÝB'oñYÊ"ñ\D`?ì7XŒÅ?,@3‘ôÑ]$¦—4IA^§Vd§l-J‚M èÌ?¢9¦„Óp>é9ÞydÀò!œ…ã[º]¡ß)/³`E7 Qu#y÷¾nÉ¡aÍpôøÍqËøáa_jÁšØyÒ¶òÃIÅïÖ*ä´æÀö¶÷€ {ë½Îtk¡,_S• ¹lÉj/&©?fÇ—%o—ÏZý ù!1r;3~.s@ÙFG÷$ cY>€Ž}M Mšþš ï^ùâhqon§¬Åä°êku55PB5—hik²Ñx#…ÔšœÒÂ|ufu”Þ wÚûŒf‹¬ÍÖe²ù ¼–/COÒM+äA4ê¸ÒyÎÚ:ü¥ìŽÀŽ|áMÙŒç¼À¹\cáu(ORWð‚qyÒ<…€+vXàô»àçïü BÏ1¤r½†“wÿÃé0ïuùzU ]t5Æ¿yXy6ùÿ@9>øéÈû qÿ ÊŸ|ÿ—'Wû²TMw¢eNÞðd<²±R[.”ÒO=¥¹—g³lR,0[À&Ãéî¶B—M,(-äl.›§ÀÜÁÙ¸³<°”ÀEK yFøèÞ-…ßÖëË›ñ+Hš¢½èš†fŸq¶4ëõ`$µ •%[vWÑxfÔ8°pÞ·8Íyl4éŸã"ø2Háv D"¯Ä¯Cnp˜Uêªkj¡Î¤•!û÷âu€ƒÿOÃsäååõõPCÖª÷·ž>ÓÔH£YˆéBá€Dä °Áù˜qò·“:°Aêœÿ˜ùÞ‰Ÿ• ÿÝaçð¸Ê¿ÆÌ— _ÜÍ‚®I¯.Þ±[ÈÆ)@º*…*F”—“þº¬=°ä‹ÊÔi¡uAk óO½é|ûó]Cp nšOßë»j¸#ä“¢a±6¶ ¬L ÖZ0Qq¾å´à üáýóÖû_ì?‡áJ±%Ä«`ÍKaàØëu\æNG;Îgc}éÂ…:SŸŒ=+´×é³éä”͹ ]Âkç€ýØN>Ù/LÕiÒéJÁ1ÃM8É¯àØ”–Á—軉»ÉÐDäí¤ äsÛ—²³9h4K +¬Ú¢Ýµ§j%”‰Ãh6šÑjp´¶ø_º0|þF¢i×°˜¦¢±hyÈ’Äþêkù¨ŒRžÝZº{ô÷¹ûjù¯^ ]‰½ðt–`ªA[ušY¬Lðò4">:ú`3âC§äóû+&>Ôß·>ô¥¼ ¶­”Ÿ׎Íkïþ ®“ÔŠë‹/¼Ê,Û¸2õ`Ig¥½»/³%_Oœ¿f8Àid¨s¬jî;*EY‰lgV^]Tí®úªz('Ëš >-?½1@Fã”ú7©›ãVY†ÒéÚ2êüªÞ<[f¶º8eáýH$@þß|ý=£ÀÊ®6#õþF«Àá56örS‹> stream xœu”{PTuÇïe—½×ÄWãNh×Ýõ1™– e¡iŽE£ø5X@ÔÌEXXvaYpaqyÃî=ûrÙåe K«"ŠšLZ€"h£[Z9YãØ¤Õ”9c–ú»ø[´»$åô¸üf¾ç|¿ßçœsï% aA’äÔØ¸8…>s™A¯Ôä«´š"çÅ+3 Ô ]0;›{šä˜nš˜;yLhvW(„ LØÏP!Or‰“¸W'p‰ üYD2‘K”v¢…ØO|Hœ#.ß·ùC&’ 9ç mn‘N•‘©—½9Þ<~}E–Z$‹Ž­RlÍÖnËÏVÉš4Ùªˆ¸Ùí6>¨’=«ÕÈR•™ uºL›.“+×Ë–Å'Èbâ×&®K˜ñ¿ðÿJ¤ê[•#©ªŒ ÈVêÕÊô ‘ÊGâQjÔù¸5úo9’Ž~|kôŸ[•£™ü‚œ…ž¿:M•Ÿ«V©4ze†N¡þ‡Ô+ ú¿¬AADؘɴxÆLvý†øuÉ’@ZIi'¤“ÜAºÈ:ÒMzˆqÁž ÑMÆ‘d ùQˆVÀÚ„QÂc¡3ÑÁñCb Û áám$ò\pªÀi1¸«l˜9ýp†F픥ÿícý–öme@—›k*+œ—EŠÂS hl¡@1(jŽJ„7!n$’ IxòÆÒšZ*èJ{ÐßùnÉ®vðÂ{4j à øÑä“N€‡æi&œ#˜{þ†¾=@"û€€óðR<€ÓøJÀ;™{^ê?©\#·ÅZâÔÔ/é0ž37€ ŽÐˆçèƒ/ñ‚n´à Âé‘Èô!æ„ËnÚmv”WáéÙ+3%ƨ€-4æÉ–e*ŸÙZc1×B5TÚÌuf45ƒµ¶SÖÜæôã9½YW Ý@{ì·ôŸèºÚDgƼwÊQƒ&à4ù(úú n§>_W’¹þ„âzþ 2¡cŸK.£ Ÿ¢/úÑ¥#HumêDâ†^~9 à38j³,Å £³|ƶw}͇$ã’—~ñ¶]ºu¥'ºÊ=uUÀÝ](îI9´öù´¹K‹%¥ò |¨3`[¸ /ÌØ&ȱ¶´;êÚ ‰n/h4l+0ål<‘yöFϵ¼’ƾÃèx´"[xŠíô}è°x šÚJ=l§5^Së.oã~þ~¡ÔA<(¸?­‹¼o®äÇ¢{mÅš(±fy>žÍOe‰Ýâ^w¹ù©8¦€ƒµV»ñ×\|8'! âª‹x-?‹—‘)tø¢(—eÕRŽäÛ‡«+ËY Ôþ9¡‹¢ñån–““zìVQׯJžʵac l¬w§ÍeÝauØ]MGºìŽ:ÿ45¹Ñ½°qñ61Kendstream endobj 327 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 553 >> stream xœcd`ab`ddóñõM,Éð,IÌÉL6Ó JM/ÍI,ɨþfü!ÃôC–¹ûw”Ÿ:¬Ý<ÌÝ<,~Lúž*ø=ÿ{Œ3#cxN¥s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kêauŠ Sfƒƒ73Ð? , Õ¿¯áûϸw&Cãêâ«¿k–½*gü.qcÙuæï~²ˆ.®œ]RW˜W4·fáê%+—È­ÿS"ÚÝ5³²¶«­¢U®:"É?¢›£²iúâùgÍX%ü»VÿÔ)‹û§HöMéŸÚ=‡ãpäªHըߥmýM3göMœÒ'·üÍEË»9æOª+)o­él‘ÿ-RŸ×ÝY—)Y—ÛV×]ű3ýЇ½ß%ÊÝöÃï„Õ?nB7ý 30|YDWO­Î.Ê).›]±déÊ%+å’~ŸíÚ7¥{&ÐÒÍÞ¿Y]KW´ö7ÏœÙÓ?s’ÜŠ3‡÷êæX9©¨¨®³¶«C^÷g…C@D`·dG~O¿|_ÿ¬é“fwÏ’\]8©¶ ·4-ìTý–sßy6~çY)ÇW¶à‡óÔiÓ¾,`[͵[Ž‹%$Ÿ‡³›‡{eoOoO߬9S{&÷óðl˜µ¨§§gÊÄþž¾)<¼ -±í¸endstream endobj 328 0 obj << /Filter /FlateDecode /Length 6518 >> stream xœÕ\ݹqÏó>%Fœ,î©7¸i7¿›gøÁq.Î û\É0Æ»£UßÍîÈÓ#锿>UE²›ÅfÏîÞêâzÐì ›dë»~Å?_v­¸ìð_üÿúîâ¿×ýåíxÑ]Þ^üùBЯ—ñ¿ë»Ë|#¬oZßyqùâõExT\öâÒ×ze._Ü]4úêÅw0Öë|¬s-Œéaü‹›‹—ÍWW]ÛÝKï›ûìó }VNt¾Ù]mð¯:Ó7wÃuþç&þØ‹ÞöÍ[zÊxÝ÷ÍP™"üBS(¥ÚÎÉæîpµ‘°çÞØÚ¢aÞýpŸýtŸÍáuøèµhÆ·Ùíi8lNlŽ»·a!cMs8n÷ø¤Äu›øƒ…ù`Ùã¾|sJ«È†Ï̧=æ;¯þðâ_ñxÄ¥°”‘HòM¢ùF™¶·6P^´ª½Ú˜žîdó lBÁ)õN5»ë¶ç üä›ëíˆKhß !šý))›/¯6Ú{xªo¾îo÷»ÍõßS |1ßîw÷Wð–І^ˆ¦´Dtãà¤wû0¥€·qÿŒ½¤hE¯àUþíâÅ?¼l¾F¢wˆ.›Ó›Œgr> ó8Áæñ-¬áë5»·ÃÍY˜”¯¨MkœT‰IǦƒ4^peý&¤òŠÞ»³@Ñ cøŒ§~¸ð(aQ#„Þ ¿(Ó„´2ÊGàÛ?¿+8,;z|߯^\üî"³¹<>UxY“8àˆ¾·$Á‰§}ú|¶ÅSËæ{Ù|çŽüЧ£›¤hdú3ÒÐ9d$& G”^¢§L§Ä‚ÉȘÈîû ïøDן‘÷4^7 ÃM¯ù°š•ÖJgÉ×K›qÁVï=ŒCU²ÞoHT7X ©´ª6êÃm÷i>§­Š¼daº œ!‰=ð³&±_ÃÇÿ˜øî0Œ#° ò hÅøó–ÿ9ŽÃ4Ö˜™Jê,‘¢}ó:s8¦ïM³½– ÏÜn¹öºÁ± ?•æÇwÈY=¥T–‡¿¼wÍ‹œP²5rP¢óñJ±œõá*ñÉûše˜޶³O$U…öÿž~ÈÈoÎ1F8f:\?i°ýáv`¯‹êV÷Àÿ~Ü1õ T³}›i.Ûë+”"­DóæÜÛâDpÈCšDí– º_{ú6 Ï€2ÊGÝįq‰H=°°)ïô¾ ågÏ„HYGlÃAúo˜܆µ:agC®ô9ž†Aå*KißöIÝ7oÞ¼Ñ5£l'E'“Qöû|³ãéXám:'Û …¦.7†9\15Œz{¿ñªù÷ôù««Ú¶€I…Ÿü©íŠU[íªrÉ«ýq|»½Þ†»ÝʺBƒvÓ ˜Z R±/®zð[:°dhæ%²µjÆ]¡ž.¨šc´(î VÇu¹Úî÷ijÇgØžÂà[,M >à –à¬[òM\ïŽÉkÐÜÖ´Rëxd(Ü™«ôöpÂ9õÌo1`"´ˆÇô·Ñ©¶—0¯ë€Võ¾³— êÃVš—a sÙ@ ;°Åaª±2•n¥2"øCšÄ³!N(íçT™D!dš£Æ<ü+ òe¶á—Á;Ò‚Ø%×f£sÆØ/d2š¼X®W˜—|Ú’kPÈ.6*5+}VKÎÁIÁ߃mÑÀênrò“ —N[ Ÿ<|z Z|¸‰sƒú0Àôá/­jnKdºý>>¿‚óŒ2ì¸O æjVJÑS‡3¬9Ò¦u9• ç58:5sÈ/«Î1pcß™8äåÊ,ýÌE§Ú,hô‘gãÆÿðê 5ˆòyÙü ô |¾Ÿ­ùõìLíJqTÜMPG$Ž&LZFO£€ýÝì‡ïɼ€'|4ÐíèåU‘4ÓGeÉSÇÈ Lë«æêùŽ·ppÂÞ_ZØÐsäü#ýná,D{:›îeö|ųâþZ‹ðøðŒRÜ$”‚ȯԈ͆IØþcÕΊN€Müwú0Ü``ª<æ[m”ŸØz¸ËCûýðó3> ½xîè|PpîÑ™KÁö˜í»ÈÜ?$ÝЉ‚$Ç'ëDYÎØrú8Ò×½vç=$ì_D¢5÷Èñ–\ {ëÐÌô­ö"ÿçéÁ€Ç‡r †@YpŠÀ"ÈUñó ‚JþEÒÌÀF*ÍU›ƒF8Å5F9Gbö€Mq“Õ‰û`”Ò­°hK$|p&¸P÷5íd[«ÁìIQð´§‘ÿUYÓ¶ŠÞýÙÕŒŒkvuòãìªn­uÞåvµ] ¼ o“÷÷ÿÕ­p…“ðs*þ ·ÄŒCóÝUÍ& 2D¢àMWZ3 _=ÚÆÚΟÛ%ÙØÙsþîj#lHNÔ·èÚÞõå—wÁ; ƒ«»)ÈYÛ˜œYâ»ÚBhüý¤Â׸¶û8®‘úK Ó²í à56{¨Š f±tÔF­»G!õ#•à2*ì•DeX€_sÿ*ÿKPT8\ÃÓ½¨¨þO¬³´úä_èí’¿ùœ‹`@‹à>—~œD<½³%•\ËÒÌ?w$%Õjžï˜¶<'šÎJ>æ=åZ|'J'ŠÒv0ú”^–?ü)EXaâ&êËuz 5øYû3 OôOp”g"+Á`>A«="r˜Møjäà¬}H‘=9røÞVueªÌ}ðI0ùtpRuå:™š^· ÓnCCãmê›r ¦:¯‹tÏ£^­ ±òɯ¼< É>â€Ößtf–ê^àHQ‹™ñ›55šgW¨ðñNÛ3ù’Õ“loy² óŠÊRa«È¨…mòÙ9œùnYö™ÓJ kùcLh_H/“ëÓ•‚*ÄX=Në1õ挡òrÑëú!¦N‘Â,ÓøHÂŽH^bðíMãšvŠQH^äw—yLñúæ”ÈÔ/“/´= Ûˆ:bð•h-¬©(À¯&Þ1èÇ-Ú‚{RÜù'f’}ö{C JTù×d\+ta žJkmKf!À– N1LÛ;nNÛ˜4§TÚzF vdÇÃ]Ü—0Ë ~¯©>ä°¤f¦úMÜõ¸Jx5C){Lr&WîÿF(5{.vK\¡j;Úi¾ã¿«fÂek³dE¬À9Ñb~¨œYب©ÔĽý¤ÆgaÀ–Øç…%?‘±X†%³gñì`v^í' Kð‹10Âq¿øÕž³uBõ5¿%…_TC))ª;Óc ÊÍÐ> @ôƒ£|øŒéªã¢,štÁ¾cc˜‰ã(ÐAè0ãgp{ 3«ËΔš†u¨Ö ø÷û—ûæjÇüø±è„.Õ`˜¿0¥`ˆrÕ»ÆÕšéC%5Ÿxðv_MlÊ®j.×åêû]¦îó·a…¯ü¬¥8Ûº&O‰žæ¯·÷ñ äóë^M-(P`B³T{ªnÁÎôZúW†ÄÓÓ¿“eÒ ~É-SÌü6?KÙ^]©:bÜU ©À7»ýÛWÍçÀDüÑö´ýÍ7kõU`éµZ ŠVY,»4CT _¿ÎÄï‹T”E}tAfñ‹¦àvpšNÇíH¾W¿ ³‹¬S;á¦jx³»_ÇRéV 7U¨¸` ¸U¨ÃRicÉ)¥  €ˆ¥ªËi ‰ @òù sÝžÛw@ J³è3 &·i{Ðó û‡Cno™ÜnEØr“7q ”¯ˆžsµÐ¢Òq¡¬hÌ:¥²§JngÔÞ\ù/áû›P—ô…ûi($ÿ:§!ùÈ£nþ9Å/‡cª”J^ž euó&.ˆFa.«>Òc ヶ ö”î (³TÝ…í­ƒÂ+Äý°Ú·ì2hIþÓ6|D0%Cé°ñorìêx:?N§’]•iå¢zGǰjŒKcy: †ß9neæ®ü`ÄZ8ñ¡cfÜšåÈåÙ-™Z!i5³NÇñèÌ‚(è¶« ôE_±áþ,©=Jõa$Y –ŠÈš Tè?:UöÍG;( Z$°Dƒu™¯è p¢c$‘`¤d\HÑ¥×­S¯Ü=ckÕR¥5šôˆgqš”Ýîý "ž÷ýñŽs9øû4!Â?†]𻉰q:º p^‹<7ˆ=SÂ@0‡ÐðèEØ™¶;s–$ìÑ®#wKȈÌR¡*~!Ó~ O¤‰AJ(Óâ –k(ˆsP›I0cÈôˆieð/î ÆÈ‹ybLåå2ÔŠƾ_àOi½=pÿy;Nû’¥îH,½i¢š.,ÜÝvx”º:ÎÇA–?kUÓŽ-CZLð‹JÜ2ÁAd&}Zšz>„œ¢¦cÇ`ã¨fé!Û0{PA²AãGµ!f˜ÓÚ@GÒ„"`I¹‘.Óã¬Íe¢¹EU—{Žã¢±`‘îƒ˜ÆøT'þYànÛ”ÖyÕÔXº•Zôkù«™—Õ_6¿œkæ§øÑöß×Kü¾µfz”°P@W‰µ¸×‰®ÿ‹”–‘þRõ¾˜Öyf£…@ý|¾ØhÑ>0¹ v[I>5Ðî–Å*!ñÉð‘r}ÊAÇáǘ"Ð,gáH^»>ã"_³¯)±ÁÈ/Å"ùÁäÙ…@³ߎՄ6]­ÒVÀ_bjÕñ ê'`Rߢ_”@X|Ú‰Bá¿^«tÒŽ;r  Ïg b³ÄFGpô¿³?Ö²ãU- X»Þ$°Còø€3—zfˆ6ßú“)-yò=Gê™ýžVc’Í+Á><§å³·Ê N^ôDzAm‚ßœO•æy™Ì$–³luâ·Hÿ(*4ÉF‘ƒGòbJ×dz¸ÔÈ“Œ‘ì ½70“«Mé‹àGaàšÛš\ÿóFu ±¤ í QO- YïÁi;`Ãê„Ó§L•4¨'.ã¾M)=‚˜XÊo­Ó›%4Ë6§E9«ÍÔ>WÃé[«f·›-¹ßŽäÁ ‡ÚS''ÂOÒ<øvÉ“«_Ï¿¬gj·‘j0í¨Ù©eV+ ZØf| „ݰ%i±H’µ Ôcn½tKU º§¶Ø ñÒŒ€Ÿ¯pcÂSPVàÙœño1¯#ç"ªa¨NRµu‘õèÐA¿o{—FÙ'•ÙM ø¸6Ýb@n%ð0(7öS{Û~ú©T&$˜ªØî‡Ó úH¸@Õ¡ßSÄ@ûôŠVð}}^Aå5X® ðË(žDjKÇýÛϸ¼–MœgÊerÕ›ÓfJjŽÕ0s„âLC‘›"›˜@hb‚|™Ã)|Œ2ŽÉ“´š;ÂÃnK3kp>†-ˆ«1On#­ÉàÖ„.r`Û’úô6?øÔ¢#Á©5œ(ÁñneøC£°qóuœ ßxÉ-•Ä¥bO`q"½U§J8àéÈc¼ã™xPÛãý&ï çèè÷Ã!ǧ䥺 ‚+/VéTå9°òìi.Ó¬&ùÞyŸã¶dùèL ¥ñ/+– º'¢DÝ$ªkÍMEŒ“‡•{C©{zŒïÏg¿*n§ Þ¸âöVÑûtØÉ`V3 ;JÕM^$Æ“½§\úÐ2hÓO} Øâ)UÈvÌÊY«&“´4=o–ýqô½XÀ6JÂß²/¬ÖWYB•!ç,ýý º&±_»Kdçûggѧ¡­ÍçKÉáˆ<®"̰æ²qLC—Ö¿6º¨­×{½!رfò¯¾®±‹§!ë©Ulqû äV¥¸é_U߯Ë.]ÿô—¿ê;õ­£¦¸«&{l§·~…=fž,êëú[ì+«ÊE•qS7Ô—õ¾E‰âÇU ƒé’¹ä{ës}–tN>ðWÕ¾'Ñ:ðº‹EúKÊqº­Ÿ©6ÚNG€&ßM¾?SK$,àg We¶pêåA¥59!̘DëÁwÃ*\(øä õ°•G€c®ÑøÝ+›TI?O©‚¬˜!=§väóéÍêÝg1š3²ÈAYGJÄIíóàrÚO¥ò§á$Ò5gG,®…óõŠ2wâþ×UÖêvxQRëœõ&gGÑu—FºØ¬»¡æ¢•B÷g„ À´Å%¢tRgõùŽšb׸‚œñ‹]ËNüIwýjé½Su@­ž×1:Å!/™NÏÐÙZFš”l3Vœ‰jl3!+Öo!:²Çñˆî áÐm¸ÃN8̵ùËûìR[¥L ÑüS,·SÐ2ß(§!yw}zwÜå ‡yb¡Pi&Λ@™ÕŽ$iL+¨«^µ½WvPkNt5ÄN…œJ¡ÖVzôâÉǰ.+Ao©ýÏò°ðtb"·q9jêÆàM"É|œKݘ®•^M•ÙЊÙÍ·Ž‰fEpŒài}¹¼Ú-ôk–ýO\§¿¿2xOTh¸šàkéÌX‘v4Õ¼7×Ñæ¶i?J Âq“ÐJß­•¦¸ÒŠc ÐÔõù@ÖPBàoœ*lÆjë†r4gŒ¬zª×³ð shÕsA±ÓuAgÂh8¢}JN™õ2LÙu ™ùžúÝží“KA­J—b¼‹|òÒaíuüÆ ãp·Eü$ö%ѽ‹,kWª¨,F z\“YÌ1."B‚'F‘UÒ N.Sé§>$\ÂŽ¥*qƒh×.M8üÅå¡aF»z]b¨”*KäAZî¹Ôq:"Mæî%Æ_30}÷~w«= d­d±6 'óX4á@–C£´¡÷<̱V,Ú,Û@жo¸¦=/Rs íÄ”€„ÛøvVÈ"|Oˆ‡@–oë^°“ÖÏq]y$µ¿žWg{,‹„'=ôtö ñråfñª*,†šµW'Ô98`<Ñ3ãšØKæö¹.œ.ÃÖõÓÀ;6áÀ;AÀùiÓôº››™FݔƆ¬kÙ5Ÿ¶W^Fy•¡+éXæ=Çô _´Ð↲+ ²0'\(öcsê8­+¯È+4[—ÐÖÊüûñDHüÐ>ñ-!ñ!æ]d³6–î ÇÃÌØ쯻\·ì‡<þùtÝÌ´(gõ!µ²0ò²ïÉ‹å–rx½ÀJÀþaé+tž‘ÂG`uŠ £ hÍ­{KÛeFukû9¿°ô6Ö+žS v M™’ŽË~%zQ­«, *ðœcÉŸiþ`ÀfSˆ•‡ÀØcêà—VÑà‹>; žQ ë°±¨4YÌYªRñrZž03‰Ýn¿åÆá.6›Û^ SàuÇhŠÇávà:u¦k`ùOÿ»(ðPW6ºìÍy&dÜ θmÚ+»‚Yˆ@ŸÇYG,àÅoó­„XбËÿÓ!ü'e¾åOY€ÀDàOټυ, j¬6£n0Ì*_Ÿfn |0~¦’Eacx/1XY΂ކ.Š=—T„YKQ»”’…×Áªïfæ$H,…uŒâŽŒ3ì÷Œ×¯wÕܨA`¤nFg6%^9 ¿ßbƒ¥HB«^ªÍ.e Q»¾j>în@Õ®tD‚»Ò‹ò¦ÛÿA"ý2é§Â­Ð¬3dE†§†“Òà×VWQ“Ëz(M'çt–ƒRöûÃt¿Ç‡ñËYì°tyùXú·½@n†  ÷îBB‰£¤oö߬2½Ð*Ë1%¦÷ªÕŠôL ̧ýâ÷ bÙÍê$–Rôîr£ðjMß§„Ç.¶¶¡Í}÷÷ø6N oùCê6뛿þÍ7“†iàâ›á¼¦¬íô†J´4Ñ)"7˜as»»ßÁ—½¿½šé¢ë0­—ìBs‰ýgo µI˜éwã˜fµ±˜#ckìÍî‡]jcôÂöa6J)L»Š‹`´öîðnœ·H·#gJòwÿ˜»Øšendstream endobj 329 0 obj << /Filter /FlateDecode /Length 4711 >> stream xœ­[IsÜF–¾ó0·¹y&*|1jÄBçŽLzÔ-Ùžvw«Û–91ÊÑ‘Å2¤ZhZøÇçÜï½Ì,d(J¶Š«€\^¾å{[Ö¯ VòÃáïõîìÏ•]lº3¶ØœýzÆéí"ü¹Þ-ž\§àIé˜ã‹ËÛ3?•/¸5%3‹JW¥“zq¹;»*~Z²’iYqæŠõr…_,Œ³ÅËäEÝõM½_®¤0Óϲ‘÷KaJg+/ОãY2f‹¿eoûdí_Ò}Ú›¸‰)þæh§¬-¶7Ëá ­¬`eY[8}y¤_Ž‡Û°£:½cö¼ÍŒ.Žª@Ú©mõuXÆ4)›6£0ÔŒh¸»UEOL©H?oNñ°ËÎ×6/AEaŠFŽ6ôkižÑ…b_qiJãÌ>” )Ö ð&×3ZªRÈ–ºAÔpùö3<Žñʵ=l­ÒÅ»r¹2ÁH¾ïÃD¦ŠzÛð›ÀaÅÝ «ýR«\ð»»îREÏU ó9«‹:õ¾Ù6ðÕɉ `õ>Œsªx»Ôà˜0ð¸©_N±0]Zà`tðÂÀÙm|®ŠÝÁ³ÅêD™ÐûEzŽ>W…’³2Ÿ^nÊø s¢Ã¼@UåJèIñÓ›·MJYÊ£zëÁµÁ§I‘ä?&h£DBýz‘Â(¾Œ);’õ&b’_¹ÃqÁðñEA4}{yöã™wûzÑžvó94ݼçÄFÛR‚»7_H„²°êo^®Ò¥„WÉzW¡¾‚@uü]*•àE…þØL¢gÜÐ$-´~²ÎÕ¹íFÈ™|É|`ZE GŸÁ Ç B[BhpH½Ë@®‹o`ÃMüb`ë9˜m’w`ïM<^Žs9V%tÖ©õgHpð”`¸K€ÃÁ¢V¤ +Ðpˆm¬‡-íA ¼òö#J^"ó0üÁÙY[E𯼙¨óÔÑt”\ðÒFGy5çëYðõ>€áfÖÓsذÒGzÒalr8B|Õi18„Ì_€cŸK¯ˆ#Ae‘‡zì–ww¦ :J­@+`[ø,ŒæÒ CYÁN—ãž²²4œ|Ó4Øñð3쟕Ÿ¥Þ6=q„ èé– ªŽˆ:ZÃažég}Mú)¯¯ëL,XP!\<Vz]7¥åraÀH«<ºd{½mîrÅü@&®¬­Ò­pdüx+Œ(Ç'øËÁó•«JÄèÔÃM‡(â¹_Ô¹ÛòAŽOê›dvšùä®5Ã10wG Æ«å'p ݪe£#½X‚ *åM𻥥üËú€é†dGÐïL²l{TÃðâþ. ¥H#ÕèX©ê5'ãŠ]s¤n`·dH )_Ý:RÁ $¿èbd¿Åч7‰ò·qÌ(È{_gæžGIç. Dœ’õKŠ/sk¨¹xæè]“Ý랸§Á4+äjsÐ-ábÈqbV7“Þ(ð6¼:‚s¤…ÙËim¾8%¤nàißfÚÞíš®kR¯Ül½š€Ë2¤Ìx,¦}9·‡.ˆZ@ŠqIŽ™Y ÿÖ««òÇ!ù0¡ø0!ì$Œs+DÕ$HÄvH‡é,¨åŽV 3ªð›)þ´kH5«­^‰ü–Ú‹ SzÿŒ”‹rƒï£<îÐæI2mD$ ´…gÒÅ…MÑhQÊIêH¦y@»Ffè¹`ôéxwf²WôÀbž±¸›I‚Xë›0LXÏág=ÏáqÔ(ëÃ'J‘' ¹º‘Б]œ‚¡„Åç³IA™éOyªT£€¿î2™w±JåäëZU‘`ëP˜2H§°#Ýóó!¬Í·‰•8àO*ŒCO‹CKŸ¢U¹°R|Ît.¤F1OÝM {r6›;´ÃXxI@èÆvŸµÉ·Œq$$#TªT™c¥@wd>¬RcÝŠ‰â_£¨4%(Í~Ó®ošõ~)™³ûÎ;X NÌ–£Øƒå()3#¹²,o†f«* k,øÍ °¬JìŒ(<©½ƒúÝ­2y€Ùú¸Íë8 Žˆ LD}B€ÈÁùÖþ,¡4¯€½Nç4ÿ@Ü•Næ.5è6þsØÝÕ]°*6ްAhOšP«N Ú~R PÙMΣåÅl A@àŽcWr>ÓFèÞìvu{»Ç":Xϰ äÝŽ©#"þãå«õu?´Ðúâz×ÛºëbY^Ÿ2´Qs xz8´7;î×ÝÅò«3®Kã0i¥!.Ô&!WÅ»ÚÇ£«|(÷CßÍHáÝP9PÆhš‡Ç¸F Ñ0J‡ã¨ï»ápwíO¾¾¹ˆÏªâòùÿ~{ŒTQ×~3T..’ãºÈëG;é¯ïºÍ…„4zèdžöïov/×í¼Ü‘Ä/†‘æ8Ñ;ÑÈ½|C²ÇÂÃK.Ò¾µYéÛG}ƒÙž èïï v ﺲ÷Ÿq~Å UàÐôµo7ÑÀÄM{âý¹ýž5{ðú\Wx!~ÔÞ ƒ`ÚZù¯ÅÅ ?Ÿ=¹pfø¬0y¯(Ù°Òè•`,N³ÅízWo×” ã¯Ø¹K%šðûwjNÉx×GˆâÇ7åÅÀt-]©¡ˆQlzQ…gOX6$YUÒªéQ&/Ãa<Ûñ(ÃBÀ7|»’çÜÑ©ÂR¢rsêù ". U£Ú]p®a¿aîµ}î<ªz´€Ébü2“Æßÿ\©å§|Õ%‡>êäPÜ¿¿xæFõÿÙw8Ê›sÈ8«~T,;¥ŸË#ýÙôœúìÑ^IOK ÝY&„#Úc76¡‰”íM®<ÜbË.Õ<Ó”LÈL˜êÉä¥XDü©ßgö •(mÆûÐÆ£éF+‡M­, V S €¸ãý/ëd§9Ÿ‹ WÇi/„ ú´¿Œ9¤É]3¦Qr×LkîË»ÚäáG¨9p1W€˜óQÚÉQúpÜœl‰gÙz=íÿÑZÜ—«ý1Ô¨sÑŽìOöãbÆIZvðEø dö×C¶Ä‡mt'ÕŠ¬”ùjj2^³ó»_À;Š'dYXÓ§Ýž±—ÂqÊDÇ1+ŠÉ$/¶Y«f×J«àÕ)\käxíïdµYCçÞèÏ[Û‡@àU?æW‹¶™ªÔme?QD‡v£ÀâöôåÅýƒ ï—…î xòûÑ5·ÝÀ…ÅÓç)ÜbKòX®G×yâò ´T­Þa“¾1‘6Ú©ðá§(ñãA‰h®†Ð°ÎÓEðŽöqce­ªÅ„`½Ï£HÒ;ÚpÃüJ•Õ»-+ÕP@¥ê8x(©Ã`·€é£±0NK,æ”F‚Ö“+jfëØ¥„dÄ,’3<5cuô-…ƒº]Êð3i<ñ%ÆŠ›àó)8ZГ;{IëÁ3Öw.PfcÅþ55ï&׿äz™¯KXWãF^= ¾¬’kv^Á¶`aåƒs qÇØƒ½.dbyŠ[sdÅ•Æ ² 3s—0}N‚‘«»º}Ý…Í­‹A‘b§í8Ü Ì$oûÄkT8 b%êçqÐé`é;9Ÿ~#N‚/2Ú.8x0ê¿çŸp%N1Ur.³õBa·Ê&8xÍ!ÌðáÚíœèRiébDç£?<·Y’¡J¡ Rcú°Sj“Ûo¦šµÉ|-´IÁdj“Å׳WJ«, Ñq6­òµ˜ÕÜ|4j u|jŒ)üyþ(L‚áÄí¿^®P è_/g(€™ZTË#.tŽ[Éò_øDêÄI¸±¿OÙ6ÿ6w ‡—˜íÇ.?:E”t.Æ\Ò»õ„‚€Ü} ä+¦ ò/¡rZWJ¸RfIðüú¦„øïè§cî¢ ·øìº” º©ŠX*¦ík‡£§þã×À}D~T* wóAÛŽ7¨´£öàw”KbþuôHr¦gˆÑ‘.¾öMˆI¸‡1ç~ÞÅŸ\ÆÕoö³‰§¥Œ·6}™æÀ”G4hºÁÓæ…‚ºKÝëø'>*SÚ×d(ŠÊ/NÕÇ,â¾ ,bzt¯rz§KLÓhÌsH 6Ù¢ûSáÖ& G ³…@—æI¿ÀrÐwH#…ü: ÞS¦n‘Ž÷”Ee(v™Üe šX“†òE.äLü;ügö@õ$µ¬0e´$C?F™Ð^—ƒ^}À¥û¼¨ 1ŸÀЀu\~6{õ2ɪr©_¹OG³ÕÉ«/3ÅÇiƒ¿k¥ øä“¥£¿K‘j¤G‘û*mcl/´¥IŒ>• ‰‰½ásH÷æ®ÖÓ|éo‰Ðg-OÎçK‡Õ(iLn¯Zʦ*ÿÃ+ÿ‹8<“ÿta’ÂúÝfP#<ŸV!'ÀZáM8IåÜÖñÅåñ\5³«Ž™:žüaŒÏîÇ÷ÇcBA—Æ1¡@ü¦>xf…M:=Jv¡F×éêì'2]˜ÁÌÓüJfýg~[”Ò­B FµG>bÚ}˜Í}’F£¥š¦´ƒˆRÐÞ š®oA?ÞzŸa†i£ß´á¸ürm?Pùarè©#– ”©‹¾Šü‚¬u¾I3ƒ29¶áËG•BŽ8âem¹çŸÿ"¨wD÷ßy¹É‡Ùp Ò¥à*?ÔÜŸƒ‡ô€6ÄŸxC-£ëž a9¥ 3-õ"ÞòñÎÆèKSðwHÝ|tÃE)Žð—O¾½ÈGª u @ŽW¯7í!¥Tå£X|Y% (Éþñì_¤Oë2endstream endobj 330 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4721 >> stream xœ­W XTåº^ÃȬ¥ËÈZÃ61ï™î2-/Ijb&*ÞPDîÃe@†Û03ßÌpq¸+×a¢X‚Ц ” ;íX´M;í´,+we–ÿ¢ßžÎ?V{Ûî9ç9³æ™yfÍ÷_Ö÷¿ïû½Ÿˆå@‰D"×WÖø+bCâÌò‹H–‡(í7§EÂcÂãbÀÆŸ& æ8‚“œFõ<æ¾Ñ ¸¢Ý.èÕq”X$Ú¡ðQħ)£""“¼æÎ™3oÖ,ò¹ÀkGš×²Ù^¾!¡1 UbL”WHÜN/ßÙkf{½ªP‘›Q^Sq^;Â"Cäá^Šp¯À° ¯uËý¼Vú¯]ç0mö¿nkä7EQ3_ŒSøÄ+“^NV…¤îH ]³3,<"2* 0F;áÝqS§Íœ%=çé¹ó\9ŠšD­¥ü¨ÉÔkTH­£¦Që© jµ‘ò¡6Q/Q³©åÔ j%õ2µŠò¥þJ=C½B­¡^¥<¨‰Ô*ŠM¡¡œ)åB¹RnK§T¢±Ô,’?j•#r%оrHuøTl1J;êSÇjÉÓ’A:a™ÄÑ®£›Ç°ctcãÇþâ´ýïGÊœç8'»,wiuùb\¦ë8×X×>7ÚMæ6ßm“ÛeÖ›-¿d|¯´ íwþEìÀSÀ£Í¼°Y%LšÀï¢×€ÚœmêAÚCS¡Ý“é ËÏOÇ1÷>÷ÈŠNŠ\¬gäô!“Ú9j=xÚß°‹‡0‹ŒE]HêÊ%=xFa¶A ÏØHàäôQÓ)8 ö@eR¬– 1誣³px²øç|†Å @áî¬Z82§ÙÀ P‚žgP C³â@’-¬b#̆í+2Œþ–„mÆÞjG9}Ñœ·I†ké­jXEÖé2ÖŽÃq¨Ðwëž^¥†c2äK³æ?8Õ÷vŦµNh¬ó/¢ë”Ú&L·ˆš¯¡ƒ×ÄB*Š’"÷'î`ÌNñÂã±ë©È±ß}‡\¸gÌR‡×”Û[·ªB`#„X’^OèÐw“Çl‡^Ëá–“oV„^8SÕb‚ûŸ¯¤’ùÁY¼¨÷¶ ±Š—¢ÝÒR0gdB^ŽžËÅ3±Ó‹“y¯êFûQ+òíþø›–âgeÆLƒ¦˜j(ª“¡Lz/˜³ò´Úœ|.hi ïf xâõø9ü Æ;ÐB<¢…ߣÇÑhÉ3^Ï£™tÃVÇï²¹Ý@õ×ÜÙ©Â~$—"·ißâ1ë6&ïãúhö.žjOë¥âüí²{‘ÿ1­ 覄¶èw€Ac‘Ã×È]öÌ,Y9oapXÓD.³ŒPàxšóVÛéÚŽ‰ž}Sd7SÈ™Ÿí¨åånw/ÝýÔõF 㤭±-ÁkCBÖ$qú;öžôãí6VNb ìTô2mY» M§—¡'‘„ÓÓ:}z$2ñu»êªZ8ç_D¥á”Ú‚$ÔT/j;‰2OŠ /…£*krCÔþˆ’+Š–U@/ÓÚÐñ9¢JžS9Cä“TWBIìëû™Öè +“Óérrò5òzyq”ÊÑË‚b*’emòCy'sNfïÕÖï*͵¤B3o dx'|Ò“ÅiKõÅYÀd@nš §wANy±ÁP³+,.«(*êØqLk!)té|l¸°ÝB–G¯¨Ü~PØÎ€Íý }…ÆI{ëèå/çû8Ô‚¼yì^QÐúù‘“§k%;7K𨒺9ÖáÂþK²?Ï£6^„¼n ¾âÁø |½XG(ÔÓíÆ²Ë\/ ÖÀVr@°‰‘7ЗêpÎÀ}(ã?ÇÜ«§ÃuêÅ\’\rÔt†0àœ£Zfd T‰úpåÃc:Õ‚c‡hHÄ÷ù¿2§ä„ !ÏøËé¹Wû<§éìáÐ?†ÿ¹ Ú¹2<_9Ù¬:œ÷œ‚ ÍgÃs’!¾•¦Oñ¢Á0a²”§Cµ:ˆ†0È€P²}ºS_*ÈÖåkóžÂ&)ÈJHf“golâxz«vÑ?9ÄAŒ=¾jõefuE(h5 pòLT‘_E^èi}jÈ,ÒF“ð(“§œ&„Ñ•G!)þÑ£(Ë”]UPXVXzí÷øï/Ì.TWg˜J K ‡>ô¨?w¸°Î0¢EÕaAs-n}7Ñóï ùŸIÏ(i5lŒˆ€ãÕò¡‰È´ß¿¹j#0󗇬–×íj²ÖÔ6uÌÚtÜÜ ÌÉÞ°y²hzn©æåŸÈä ʰê·â/||è´­’c—…5GtN´ôU]•áe§¤¬eúÒØm[¶µ½ùNï¡YÅ„MœÂޤs| /,ä˜B!’mØ-ôÈ3“$ׇ·öìáÛÚψNÄiãI* m(ÛUºŠ\’íôµ&õ ‹¾É3ëŒPâ åeå öø0]‚>˜Lâ;íñï‚QwÌï{,õ˜ŽGo\ë¯K’ÔfRzš¡Zõ­v-Rš´{¡”œYeÕ¾F¾©ÅÒreŠGM2è ÔÙ™‰öjÕal4t’y߆ׇgA_ZÚ-(¼Ct÷²­¿¯„®S¿ÃN+·DÆ'rè=$„÷±wï¦n?Ço{SÑžÔÎ …-ùëB“cvÈ×C0„5&¶gÔÁ®zÛhR eÕmÇNT‚Nx#±)¤i»Ñb˜¡<âK//¨y·ÚOr?qg›…½÷ñ£•C&(@nPÉÆé  @]];çxàQ¨*Ÿè€gSÔÙá&ÖjÁŸä‹dæ(ÔèÊãÑÜ{´‡Ò/y}ÜJ_ðT® ­‘a¿Ûc°íi{´)µ:I™–Ü~êoonäÐ*áù²¦}‡ûžD~Î'òƒ~Þlµ]CÛnŠ…%h¬´\ Z5èvåsI+‚€Y½àšŠæ\í:[Ñ£S¶ËR TÇ$Ôªššêöòç—š‡ÇÏð®Xzg)ö²Vôˆ™sþiðƒ"¢BÞü%^Xõ‘ø§ Ñ!ü‚$ò / 'Ýë÷ÀIÂÙÜZ½1ž¸ä ’!ÁÑÐñ°Ù›T„ÓÆJà R™ªô=v4xÃq«Lh¥ ¤ÿ™*Ê,Ì)Ï2(2š‘iÐÉàw¼wá5] ”,†èÆ…²CÎ×[ åXÚ>ì5Šä¡ôÚK—ÜY¯"¡}D›„;4»Áï7ÁQ´¦8¸{) .^Ó°»~;}ÿhgÝ>ÙjšJ!÷Q„ÚÝ) kÚ,ßš:q;„6&t$têÞ&pî*înz£¾õ0ß ðFŠ5¬<ôJà":?Ó~(‘hñ}o¢½8t*%šâœlm^ž‹òž«Û ›a‡5©-ú„þ,t0褾ê¾øŠ§YOàqØý‡'‘3r>q·A¶=*Å3š}£Ú§álˆ·/µp a¸àÈ£^IL™ã%ø¬ð3wv²à0è,=¶?cÏ-Zà÷¤ Ó/ȯà¿ÿ‡Â<€EŽ4;þóG;9vR)”êJ ”I•V2 5i뾚&nHíð+z¥ïªåYÝšÏ$^Î<ƒ»ÜvÆO “Қ >4.XÉÅ×ï¬ f¦ÏÊ‚Z"ªwËt:E$©HQÕV⇿V¥‡†oyô¥oüÑxäòC÷åéG¹€¯ÁL¢>1kŒ+Nµ’”WU™+,éünâL¿zïâ•жÌJÙ» 4Ú\ ¤1ê’Ô†ÊêÒ:ûbJšÓŸæØRj.ü³ÞjlÛÛ(«ªµVÙ€¹Ó“dH|‘ú/žÅ±¾êi/v®.}çšì I+rÑ/”¸]4 «1¼Ñ7¼/æHy£G_KØÎß*RõŸ8Þ?÷»¢ÇÕCg-︋(·Ï5Ÿ€Ü‚ŠÉv| Š^— bšíÅ“íkö›ó ÄëFf:j¬3jÔZ†õ¾•¶$6ÆÆ&&ÆÆ6&¶´46ó%\L¶)xäoCi6°¡6·ÞþûÑÜ~wÖJÑ)ô¦IlÙ~:¸Ì·j^Çóµ ýp„¹ÐÓÿ$=5cJ%gJ5hÊï1ây×ѵ°'+O¯ÏÊã2ÓJ+¢7ìªÝðæ,`Ø5=Ž÷¢®ÍEÙÑmû4h¬â£T³nÂüVnZ:g1&´ W¦'tϼïÆT26G×Ñ*È-/1ÊK¸Š}Ù™ûO_{%û1dÎ}{W6ä H–0­+Ä7 ARJvü™–¨p²£MR‰Ô6£éDí› º÷² ¶‰Š‚Ý“¸rÉAr úß äë qD;éIPÕfW;h2˜k KVØd‚Ú¸J¼€)²v & 9d$¾ä`r„:r0Ñhˆ8ΰ[ð$´îŸŸ{ý¢É“§#‰« ì`ò EV_žG,KjzfN.þ ë!$Ð,ÿPè ± ‰µŽÃ ùŽîï¹…Ý«“÷dA†g¶6Kn¡LöZÛ¬õ Ño;zÉ–ÚQå„áÁÂÏ4ûîâótÁ^ý ;êÄAiÔp×§´ ÷}ö·;[08`g†ß0á:Ø¢ÛÖ¥1%´|ëDØ¢XŸõvèÁùð|óìé};—ÿ5~ þÓÐ!íÒ§_mU‰/©—ƒRl”`7ÐVhk…$‡œ6ì9SQ^R|* ¸Â%3°;ž€Wfáùà渚àc]p¤‚;Az²1Ýï!/àa.#¦ªn„«ˆB1ˆ}Š(1 y@¹¸F%¡œ¥™ÃÕœh!÷”q¿Òð×¾öî-·ækE·>ºe"Íߥÿÿö–‰W nRkJ]||rJ||}²ÕZWoåЊ ÿv<Òë”ðy¦u*·䜊œ•ÈÙ}—<š¿ÔšjÌÌ,ÈQ“žK§`@Wl~§åÜñ£2£Ñd‚"¦(¿$c벟]ŠV7…t¨±ZehË„ÉúýÁXíïÇõ^85å§t•è»>1úçH¡HkÊ/ÁR4f'z §Zú z´°ÐhŸªDS˜—õ´­ã6ÏHœ x,ø˜±ä4ó6v¹¹ŒˆWIQaÉï'GYdö“¨P ÿ…6 ±r™ý>é³u¹ZQ[’'{krÀ>ø‰¼{ã‰:mAh­1·´üÆ{HÔÃÿºñ{@NÃðÀKSÐ:äk£P£ôÝ„ö‘©ñññ5ñ,UÕ¤ëY°Ä‡+Ѐ†$ESœWRöÑe4Æ~ëË)´æ¼¨ YÅè‘åóØº† *±ˆ@(¹.‘Zî•*éXÆaô —lt³ˆÞ¸†*‰½ŽEïKá‚öZäÛ¾\Òø¬…%‰ÛfĬÐ,„%àkœÞùB׳¦ƒ¿Á€­ã‹– ÅÀUæ™r)¬ùÙ~)Xòb¶’ô>•©È1ûm¸F€w®”Ÿ®ý¬_‚>UÍì²@X¯ S’(h;ßOr­º,^šÀÇгµåÄdž¡-z£’[³ú)ÒÔƒ]ç §‰¹GšSmÖl.Æ.ØŸÁarݰËõðdWÑí;·yÑÉ;(æ ±°-—*$ºÌ\¿ÌôüœÄS0x…ä›/ÑshÒ¹n¸í‰è™W «èEsælìÔ˜ë[ª¶¤ÔË5ZÐp—ú[{€¹}`æ ïÅÏmÞ Ã«ñ&5q×ä)°’áäÙ®fLjJ°!æÛó·N$ C¢x$ê»íÎ:©…h´X ×W ̨»yàÈûð.sùÙ³O<±ÈoIt}jss]]3Ç>NH¬Šâš:ÎÕ’röqõª-±ù›•a2yp¤.Nǰ׻uJäNÌÑçêAÍdî½\—äú¡å3ñø•A©Ó‹‚e56 ´1û•uqÊØÝ!so®@ r½yãöçƒn­ùÜE ŸHû:BF€WQQh.ãŒF£ÁÎac~ΪØW7ÇFšÍ}–~òrâqÿ/ÃFʉ½Zº~Õl±wsÑö·xð•ÉÆrÒõv1ðÔéu¤õg°3rÜùò@oáüD ·³ _YLlã®k]­7ðèókýv…oâT-¡~ÀLÁ£ÿ"ÃŽ¿s¼¿«k#%ãï(úO#ž¡»Š3wÈpýCãîýu“kHÓ\éæÔš\†ô±ÈþñËý§Ë;ôq<çœ\/øìEqeÅõ~̱ܘQÛœFƒÓØFƒ‘\…ÅCÉ[NN6“eO‰©¼ÐTXTìôEýx\;Áendstream endobj 331 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2227 >> stream xœ}–kTSWÇoHȽ*BåAqnbÕê,…ªÔÑiçQEÔ¢Š(•€å%ÈKDwvyÉ€D¢^«cm ØÒ–²:ÖYufœ¥u|õ5ËÕ}ÚÎZ«µ«_òឬ}öÿ·÷ï#¡dN”D"™º.h£a{´~¥f{⢅>5Ú]ÉÑ)Ž“—o‰0ÃIøH䃱AÎà"Ù;3&.wdž)htÃÈ(©D²%9Óß°#3%Q›ªZ¼p¡Ÿøû{UL¦j…¯*0:VgH7êUÑú8U o¯j½!]ü˜¨šgЫb4 ÑÉñ*C¼j“&\°1TµzcpXHèo}1·g>Rå¡7øïH1¦îJ‹ŽÉŒÓh“·ST0Bͦ6P¡Ô&*ŒÚLm¡VPþÔVj%@­¢ÖPoPTµžRˆ(¥¥>”„HÆœ;ýU:Oj–Þ–m—ÝpŽv–‡ÈÏÒèqf“3av»þà4ßJu|o°¹ßB9.E¹'û™pn*¿ ëèËÆˆÔ?<&XÏ™¾•³·ÈëùÎjúRÄ)É¥UjÝ­è^â,þWC³•(½ÂŸ«o.òãÈá@ñÐÍêì*”ÚÖ&9‚ŒRA‡Îô»E¦ÅË‹É2ûö«È¢×—×PÅ*¨aK^b^\|ªâAÓš{*¿†¡x8[ÙUÕ{¢í @·¾RW™Ɉ2Æ–Q¹¼ð_Þý]ôõü÷d¯<ðÁtEs9+gd™8â5kÝ’•Ãñ\Â`áÜ„á.?rnôJí\…µ—,»+ ˜³¥C‰:º *3÷•–äs6GÚÃ[߀iìQN^&$q>ñÄH\z=¿W>bI6ó8Ó&HxÝýšHs zx²/MhTà\ß/ˆ,*z>ž Ù{$À² š¡º´©ò!/i}ÌØ³·œøÝßp¾’xL%ª-›·nK>z,ƒÃFšõèl?Þ~Úû¼}-q3t 9ª9bG5¯!u ]=Ùa¶ S¼Òm\³‹3Ý”‹*^}®½"[É4þ\-F¾\‡Î7 #KÓ•~ôhW‹ã›vR…6¬íúºKÒ=öíXí˜ÇQ©€ÁäÎ=µIÝÚŠ˜ꪰ*x›þÔÜt}ÿÚ4 gζ7sö·)¿xˆ4?=· ‡Ëª2Ðãï—2sëá5{•]ºÞü3ûìùÃ{!ˆ ‰ÊŽò×óeqÅMÖ `ŒP˜ª$:ö5VX ¦‘Û_v°r¿Õn8 u""·ÞO/;­¦ í8+ x Mwÿ;ÊÕü—b;|ÿBWÅEu¶;A#MvádžLÆP5mZj ò—Š-Ív~@Ë u5mäó£Ÿ qêZhÛÎ÷Ù°ƒW_üÉ%I—ÐAЧ(š­&kbFû'¬_»ÎÔzc]ð+šíú4‡žû±á^Ç;ðI/g^-ïp¢Ò„9¼D°3 ¢;$7g8ʶ­}l’6œ€‹Q.R) 9Ï’kV[¡ZL¦ï,Ÿ¸%ÏÒEÛz2wvµœìJm®¥ì€å0C«•ZšÌ.!žð"³ì¶îòpÏé. 6ßäNÊ›kà’¢\±$p—>&µ¿Ы¦Ãò¢àaà %!}‘¢@Ÿy—‰$".{G"‡}ô#[<Ä4~ï,}–o5Úõƒ0 '}çŠ0+DÓoÍÖd'&ãÅ¡kÞÙÇ` Ý=Ðw°lpÌX£©I‚Pˆeq%j›ð>/iBZú3¸‘–\ø ìUåüޤÌGp~÷²¾ã3ów÷¦M3Dhó³ JÍÅæºòÖ:8Ît%ôqêÞ¨‹ŸŸå9 "+,À4‘ûÛ¢]ì‚›]Ò-¿‰8E*øáÅÁ=—]lÚ[̤ïZ»´ÜšÙ—Ùg: g™K€/Üj¬.-©çöåçî†TæÇR|´¼ãÄkÉB¢"óî½&†›Ñ‰²ê§úStþg"^G‹Š÷]E98šte®`{Ò¥÷i¶žzŠ0 ¡£zb¬F`Ȥ¹¯‘ydÁWFi_í‘ãÊš}úFÆöåjSã QÞñ oÏéÍ=ƒâ(¶Ã…šž:{w{?t‚-û°ÆÑfcë­ëÆWmîâ¸ÿ÷¸ãÉÞEÍP”UZ´§ˆ3®ß+Þ'œ2¨D«¼½Â|ä†'ˆSU±ÈOT7ç›%è‰ÓO×¢\€Ó$XÎ&œ7[‘¾î}ȬT¥¸SH¤ Ü…»)6\vWkÓö»w K¤(E¥ž¬%dŠ•nËî‰ÉÖ–$j8V–{$öÍ2ƒ7™ðÇ·šb¦*“cKâ!r-oöé¶•Ú]¸)uãô­gþ„¸èãáQô%/a¸ ò–­p‚i«¬ŽõºPPkËôF×÷Ç®œßÑ“W­¬9P]v°ÌTRZyLJCfGGCÓ!Žl^ ‡õ«VÁ¥sûÞëçaxt‚ÞäîŽOVÄ%…Ïš«9sfè4p·åW²¢”OÖñÈEx\È'³¦í™Ì±kVBD¬!œ1áu9;ð´iÎýl-ÿÒRþA¢x¸)¾︊ ݇pqEÊ“mÇÆ©|0—fß#+1Ú®VgÖkTøâd‚í-µNÝ£à»zn†‡ñ„Žœï8Àv1ßÞ4;ú\r3.ûñå!îÊÇ:iýǃ±§´®ŒˆÛ²ƒË¸þšUþ£fO‘¯í)ò¼fœò+8r«…JŒj©ª–óñÅIÜDÙ&ƒËp™Ôm-3[Ê̵#õ..|¹¹¿¶üàýæê2—Éõ€€ÜOendstream endobj 332 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1576 >> stream xœ}T PSW¾!áæÚF‘ÜÍj—öÜtÚ¢Ö‘Zi©ìØ­#µAcÝBK‚`˜„HH*„þ„‡B# ˆ E‹¶:bUzÛÕ¦ƒÕ>vVÛê¶î¨m÷Ñ×¹Ó™íÕÄWgÚ™;wî9sþûýßw¾ï—P²J"‘D¯NK3ŒO.Y”Y¸ÑRª1ߨŒb$ƒÂCÒ&bÚ~’F‚B Ù‰åK•Øs£ðšÙ”T"Y·Ñ˜d4ÙÍúºrõ’Å‹ã-߉j­]½"Nª)(1Z7—èÕÃuj\ZœzÑ*nêÕóµ¶P§)-R‹ÔÙ…/©s²Vff©“3Ós2²Äýº­[kŠ¢†$Óær«fC¡>kE¥SRk©l*‡z‰ZA­¤^ R©§¨5ÔL‘%£¶QXRa‘ΔdHæ”]l¦ñè¬ÿGDtPÀãi~¯ü*ˆ³ƒsØ7çj¨ ª‘×ÒßäIL~µÐV‰Ø³ãÐY€Rèê20ö@'7A¦µwVxݹ†nTrZœB³C_O>É{‹3©ÒÊ}Ž ×òB7/y=ˆßJ~V5\µÕU •¨ŽDÇÖW—€%x!^xSÿ:ùNþ\³¥Ýáfvû8ü˜¼úö†­õN䪫³»êµûóº4À•š ’LVვxÆÅ«_„Q‰™ÇKxüQ˜v‹H{®P†KU8ê™oY‘÷ê¶íˆýzºîåûóØoò-¦ý¦qÃ0?\½ŽY.õ ““Ÿ_^tiýCÎþáí©©ày~Å“(ïàñg¼ò«y?‡5 9x¶ ¾#³û^Þߕއ˜Áá‘k×[^)ó u·Ë&ûÉM®››øóÀ*’|ƲT¯õÇl܈}¨áÓ†:X¡&ûOEz]Ü*Mà|jèt½f¦lVîQyXözÛa¢ )|Ë5 N¬èàn·ö£¬¢âA/ÞÉj¥òAq X*PSzæ¶r`ž…I?‡'Èo+@>¥wÃ@I1”ÛQb‚¼Ú–é2i¥ãÞÓŸ?ùïÁÿ…éwW³xI—`“ N!V5d½FdôÍ’A±ä(½žð‘M´sOÕÔ¶{Ðå-†pÖÚWY“ë .;ÓD¯Ã|äQºsPD7Ý@WÀϽK®¶éº]ðÀAðìômß×}ªyqÓîšVcß_|/z¶€ðÁŽñwñµ¹þÀm/:D;à§øxåñ ¶‰žÈÚBQ(³zÚª6È?ɼ@b4à ¦Þ-ým£žCn­nwŸÇëÞ^€15ï7‚ kiÖõ•«6B2Ãn}þLúÕ‘Ó­ûßBìòbßdã¿_D&‰ßª *´6†­Ôå‚+&#dâÇðÌ»Û/…á•ã!¯n¹Q¡vtèïåŸéªníØ`~b!Qrl=‰º¼àÛàáƒý½"ºj^Gï‡BHbñÓ*v4+/qyÒÚ¯|5=}.x4cÝmŸ^:§p ¯œšÆ½ïÏa/ ¹X¢jkì/µ9ê·8ymjƒ –BÊ™­gðº¯ÆñŒ”k$š0qóÈ,¢üï…UG¿ÜÃ¥`¤b—‘^z×¥àäøô%´¬gîA®(±îJªÈïoBZ˜ß||)Ä̽CðG2Mè;vÁÃ!.ìb ~UÀê3›­V³Ùg |¾º{Ð?'NK…¼Tä¿áj)˜°µÄúWöÌÕvïƒ7™“ÇÎ~|¼ aj¶yjöÞ2ÜÍàU4ÖijÑ_gîЉÚ>÷\|ƾ mî¦Çù½ùãÊgÀ¸ÛÒa#““Ÿ¾ìé¤ñ/PSWSϦpøº™¾>ÏÎC^t*ÿlý„˜¾Èsÿü’»wŸ˜ÂÌg{Lh•(‡R„åý€eñ:}U‘ 9º,^†W ÔP·a/Ž4U€=fSH¢æÈ´¼Ä–ëóМÂáÕröØçûO¼±w§.‘:yå-?¼çÐïáfÕz…$/^ÖÙì¦ùû‚÷£ûdÙFÅ PÜ?ÔÞãö¸Ýîf·¯U¡?Ålx^ó´+fRÔ/NhÛendstream endobj 333 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 324 >> stream xœcd`ab`ddôñ NÌ+64Ð JM/ÍI, ªÿfü!ÃôC–¹»ûÇß^¬=<ŒÝ<ÌÝ<,¿¯ú*ø=ˆÿ»¿3#cxz¾s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kê¡» Æg``` b`0f`bdd ù¾†ï?SëU†eß/žø>ã0ãë‡ßoÝaþñWìwÔ÷[ŸVž»Ô}GòÝoÆG¿•å~·þõzøýâw#¶ï¿/²–ÿ˜ êâð›Kî·Ê÷ßUؾsœ p‘ç+]ø#`Î÷ð…³²àºÉ-ÇÅÏÃÙÍýyVôöÑTž#3zûú@| —‡—ЂVendstream endobj 334 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7093 >> stream xœµY xSeº>!4AHzNAda”U­–Eh¡Ô²Ù}O›î{“&Ív’/{št_Ò½)--”Ҳˮ€((.€Žë8ã½:ΟÜÓ{½Ú¢ŒÎ0wyú´O›æœüÿ÷½ïû½ï8ÄèQ‡Ãyì•í»’“ÂEÏ-^¸%#<1>Òóâ× Žë‰Q®'¹qløHÜa^0 F¿ñÄÓÛ&£ÿ| i'!ÿG .‡›²19%7->6.ÃgÉâÅK.Ä?WúDäúlXä³5A¾»}üvùÎ_ôëeýü7A+׋ölHÞ˜²É7íåt¿ŒÍ™[²¶f‡oˉx%7r{T´L@lÜ®øÀ„ÝA‰IËW¬\5÷Ù…‹ž[²ôùfÄ,ŸXI•€NüiÔ—A8Ñ>§ë@6çœû®{s¿TùÁŒµQC…¹yZ‡Ö‚|P+”RöîàÇÞa/…©ã4R­6€dtEö†4RNhcZ4•Bµ]r­ÔÅêÁ Ŧ’âÊh²7ÊáÙÙU^Ùé…aÒBÈ),CçtQpˆiÒ\U4» ©øl4í@záõ-YAH®…ŽkÊÙª \×'è)¾M h Ô”<%eþN ³´åe ¶Fk=]s¦†òãÝŽ}+÷ûçH(ÅÉøÖ0ˆ…ìŒü¤œHɼf™ L¥:ÃDU]¯>é²DÒ|&GO¯cÏh”Z0©µ ¦¤ÒRm¡Ž çMs­É!(í]eKY}ïÍ[@Ó‡dmeÇ‹#iIá¡Yh óˆ>å/[û4Ë£XoÞEd(>dƒ @ãxwl~‰ôNö=þ3«ŸbGQ주D0XÌ›ÎL_Gí^hï+ó ©x…œŸžÁu•\çºÌÈÉÿ&àÚóì£,ŸÅΙ}iû'èQÄÇŸ:—ò=̇°ÌÙBÑî=!û€ŒŠqÞ8Õˆ¸m¯ÓN´òdsh€gç— D¦Ó½ÐÉAÏ|Êu÷»×ðuFŒ$hm2P€´ˆze}ص{AÀF°B6“-dWüm6¢P0â „ø]*¥·œÞîaÛ¶ÈåKÏ¢YÐs¢QôÕ/¿ì{È-x>U%†ö ÚnÐU©ám±¯:ѳÃÔñ›ë² Ãü¿ùŸôß/¢ BJÒ‚JÈW$Ó,o0Dž(g¢´‚" I…Ieiœo¦Û Áï4cΗÈ@¼Ì6³¥ÑXABs,y §q;8h<š‡æÓì$v3¿0-Ìw;ew­Ao¥£Öö‹·ßA¯m—0<…/ÚFOt«‡¹ãÞü ×]áÚÊGO­úw–O±W&çyh' Dñ(“^ÑŇë¿lî¾]›ÂW9û8 Êuª¸Ã¢ÃÀù–÷Ñívš§{MCªxÞyω–;9Ý/qÝðí…À`òdQ;Y*n+»Hvâ7»†š½>å]µä§(´r 9ƒIh¶ôUFú ”‚·Œ™.()µ˜,%•³)'s«xÖzphè1"’6¥h$L:­Ui‹€! í`,Ó«ôTò54*! ƒ±¼<äJ,P3ò"¹º€f§üu1\é¼Ðé,åDÉÞ:½/Äit¶,ôùírŒùw¸.±kÿôV{Â˱{3ó)陨ê„ÿ¡n¶ZZ¬zê *×zÿLÐ 5â8)#))Îi¬r–ö¨¤nÀSèãNÔç)óR®;Ø•Ê`‹ûb‹v09j€#tgz,.Áh,‚|ZÆÛÖR#èåô%dòú„w¥¸ %OŒ¥K=RWLšjåéŽQg¬Æ¸Ë-“«¢r7å§aÞ­á]F%÷»3–÷7GâËéL“Akó½~i ®hégXLÞü-ºz Ê¢³hò›\דè9>|º¦*¢8Ùk…²¾öê‡M²(;%TËS@FJÍyõ•%=}‡·°c#¯½"nVRÇd½2"…)«ggî4õçSý&8†ÛP-)ÍÊHÎ Ù1ûz¦ MìßÍõ*ƒÄN×Ó#šSŒJùVµ©(1ž!!†0 åÈ–Ú¡œ¶òJ¡R[ª­e¬ZƒC59s‰F𔵻0ÈgW¾…õhéGˆûÄæR+›à)Û ?ÌD³¾|·¯³….NwÄÚÁz³Á~z›ëô¶c@–Ú‡Fç•¡/p¢àl¬ç¹È52ñ A›+§r÷G®Ûd 4TX ÂÒL¿‡NyÝåUÚGz¾š×‰æË@Y›g’¥É²°Oˆb—z-ãåÝ'ć¼ì­ZbÁÞƒ‘§ÿ­ÿÁ¡.:Q»ŽN®ÛÏmdïk1€ÕXN¡®.k›Õz µÅP54w#Õ Äþ/ùkdÇIOhû´éeª0—?d —eûÃrñeÑ9ôbúÏFj¢Ë‘é¸òg—ØÉùú{®{”{)¿Xi'Ä2O…À.·gº„W ˜?‡‡Í6«Å,9ã³n—ïnˆ€¸y·^«Ç´#»í Ù¥YL¬õ{=òò×_ÞüÂA£±®DK³ÅÚ ‚r»gß?*M½ç.”ž½{mü#×½ýw6‘ÂYy™Áˆ׀ܛß}´XWo?FE/š¶#X<¨)R0jv±9Šdmæž4qÅ«¾ð^éëï9?¦,Õ¦‡-×^ö Hņ8ÞߘޖÜËTBt”¶ö—ÇI9çáhwë;­W£Ep†|Ðåýù*×åøÇ@¿ŠÐ¡"^¥¥rz„B<ì¹ì8öYvβ>ß›‡ŽÕž@Wœ3wÐ)ì: ~éF¾ŠJyaoT8Ù)%§ëí=Övº=Yvºéã 0@Tˆ#e‹|ßCôï,íNØ—#£2Ïﳦ97ˆ–1„ÐU˜è¦{§c*·TgD¦î+Š¡3çoÍZíÒ!¯¬ÕZÜådc–Y’––•u4£ïÄÁ®ÖJªf×Ii#ß÷£é5?‹Š9ÊAcÞD)ØO‡Žøéèø,at/ûÅ]&Ðé-:Úi*i‚ ²6ßžKM1F)ƒ»ãßøá‹ïÿÒ0ÜIÔu»w8ð…ßåºâ~à›äv¹Z«•É©õ —¨ó€ Jë8Óôׯô¡+§:z±¶öjÊ#ö*! c/ßž_×Tïè:Ö¹í~JœwnËghê'ß•{¬˜Ô9Ò™·þãE®ûÃb!JåG³Sy™À€4—ýjð¢w k@ãÐ`€ XÁož©ƒ%âÀèÂ@.Õæ™Kk»œ8Žu Å1LÔ…®Þ¥×4B9Àl¬@W³·Žwað{}(ÊAP &‹Ùîëæà—Ù™ƒ—~ÅýNÌß.º s¿ógÓð³1ÀbÚöûbZn®§ÑS®«IŒ¬¤À™ÒŽ7ýP2»9‹/Oܱú·dÖ uÚªd[¾M9ÀhÕ%9ÜøZ;Ï»†T]¿Ýù­ÒwwÙz-Môa^+¼m8Q}» ®€…ì‹9¼mûÔÖ÷¹˾îu²òg²+!Êâõ ßãdE©K‰÷Ðó¿œDf£{EÍûÜ}—ënqðÑŠ§¿e'³ál$+c Ø_û 'Ѓ2‘’Zv”KcYÁ«‹·²Ü%ë€\ø1ßW†|®£‰ô™¯¿x÷S ?¸áÏN÷´b‰ÓC»ê]9N´ðƒZ'íºˆu{ ¿'¢.b~ûx¼‚ÊbGymñ€(W»œ¾ÈÛ08¶p»,B™%ÇK‚cA9iy«©¬jHG®-?--;.¤'«ó‡nsÈ‚¥õú˜WiAê^Zfí´Ÿ9+ÔjJó“TâtÈ&3«d 5ÔÏù¹«]Âþñϸn‘«Çoè¤çÌCDøîu/ úMF3þ¥—6ñ!»`~th\ÔÞŒŽÉ¼«¨iäDèïzê6÷=:µÍášåa?ï¸WøˆãÚj,ÇãÞ84î 3ä"5%nIiÆa‰ÍŽaç±3—÷»ÙßÓ]RBg-/Ü«ÌJŽDˆÄ>K‰b¯±–ÔâÑ\ZTš›(ŽŠì̽ó×[oݪ¦òQ0v;Ö`ˆinÙO´¢±µÇé†×õâ-/^.§±×¯Iuw蘳íá97ÇÅ%%Rï¢Þ‡ä;oðS­F+Åo•T×–VÚ TZ?rÆY|H§¯j«ië¹týŸžq~Jd:p£Ï8ÐiçdW.â´>mJ¥;öK¾Ec–H´ªB†Ê L&™Ä4µ5ê ´¡Ît jálÜÑ=UhÖ¡«ŸÂ»äí—®±Qlåï`ÃkJ\¼ÃcÆÏèðœ6Ò‡WP…"xGOço3Eâ@Zz@-†rJ÷ú ÂKwZ´RϺbø T/ JíÍðr_eiµê-zEßÕ@^þ3,¡ÚPƒ~üq2šzöøÓ¦¼îü}‡D) p‡äb]ScéÁÒNú2zÉ֢Ǽݳ0ž¯úeªlüjhª©2Ò¥"E´"fž8ZI*ˆª8ýõAôŒ‘šâÓäŠã×8’„ÂDafEVK[›³>Ïtº7sÐþ«(¹ñ¡EÑÚ–æ,4<ÛœcJ,VéãËóÚ ›üøý?ÞýºÙo}ªV¡Î¤´b¯_Âûiù@xWiµ8¼‡F½½I—exËÁßc‚¯¤ÐfÆ¡,WŸ{Ÿ.°2•¹v±=bÉÅkæ.Y·îÐu¦&ƒ{/{( 5ž’³Ñ…–Á®PiR›-:½ÍJÙKÛl¥A— N‰¹ËEÓÑä_ÄÌõ§ÄqwPÜyO‰Ówó¿rÓŒP&8žÔ8ïUv®â¾¹3S —Ž\Ä÷iÐgæŸB-äk•‰ì#@ ‚<ȵuØu‡ð¬ðP3[”Ò/>ôɵ›7«qmÑ ÷¢ß,îeÖ.ëä îñžÓÇ$~+òÓÁ„Ëä9c m¼l<¬•¹¬Ÿ·J‚ãÒ0`0Pz½Ngk<Žf6×">í¼:P+š"ìùÙéƒíEqE²¥Xæ†O#JÀÔÆýôixé:»ª±Ë €.àåC¢ždƒÊex„cX£é®oB­:«¾ *ü¡N¼g@Y­‘-Câ)ŽÞPe9ÍÀ0™†wr“ëþʽdè<()DJ ÌJÕp|(¦Ok¬Ù8ÅiùÖå-dù3/2xwûS›ÉAçšó¯å‰ƒË… 2;áŽß×h n÷ãhTõ…kTÅ峆ÀP¢«Äí'~2`‚¹ùG9_Ÿç¢ƒ#ÌR)AÅPŠ´<ßœðdüLûØ žÿªl(¼z(æDWMSC)UÙQv 8rŸ;?’ ÝCO—ÜùtéÎΚ¾{CC“(ùµàêð‡} ñ¯ýŸ>i: ú’Ú–S=×€ìƒ=) ‘¦ˆÞÊ–þ+ý¾t{fŽ6ËÕç8~ƒf»2¹n/÷lÏÖ•*50jª ;&(&2Ø•–3íê.ukÎÛûä;w×ÂhÒó|BªÕŠÔ6L‰“î†Ì »Ng1R7ÑÓ_ÖÂjRT&Wˆ*T•PåÆ2Ëv•V“°e1»5ÇÔØ4H+·µ[)'špM@žF£û®5÷—‚qøà/5³Ù=©óí©Ko µçÊ{¹®"Ҷ¢¶ì&¥%ª=£æ/'Þ‚÷È[ÛŽú²£æÎž[–l“Pf¹NÛÉ®}1g>„˯¿zkéyzD•£oø³ØÇü”8·ZÔK—sËe¨¼uó­÷ÏNØI­œÊ_½tõ¶…ö\~÷Üg9N}ürCf]„óÃ?9\³±Ã[y¯p]§\ü&@ ØÇÙiì æ…4°£Ñ˜óÇŽwR©3ÓüC³R÷o‡dˆ·HZN GÀD–É«RãsE±¯ö¥\üÓÞ>N}‡f–!_8Fn½È߆­â“›àݲ®V4£ùUâè¹úýûÃF”~DÉx2y!N2âL›r¥]â;òk“… I ©Uyí΃­ÔGè~]~M25% >Q˜˜Q‘ÝÜîlsŽÜÂõ| ú‘ƒJ‘G‚ñüZÕѰȴ8‘°NV[YUl³QRÿèM[‚$Øèã¾1…¥=ŠÆ£±Ôˆ|¯¾ƒârQÆqþAq£ðþ j*ìFU°vï¶‘…¿Ü  MB ñžDŸ'ÿYÎ=dæâɺŸ¯7›`$‡ä– Ær«µD£TåxžX¡ŠB»y\`(!ï×ÀóÑîoî}¸a8“MÊæ¸^¨æ—Èðmå< äé$ºLƒR‡Ö¬/Ö=Êâ=,-¤UiT*µÚ‚Bjíl_…ˆQyä%Ïó¬ÓX~ÒÜqœbÇ ŠäB¹l äÃjncO¯zècÐÇ»‚8Œ–ë*q ÃØz®lEè©w¸®´üçÃl;#¢6oÆØˆ²æc­Qʼn Å‚¬Ñžº÷n·³ -úô‹‹€ø¿k^_ÃÎ[ɆlÍ6‡õÞ>Š&tUuH”*¬˜ Öi(s¡Q…¤(fæŽB™©ùÊM€&vOYÁ>ýüòyTHJxzx°ïré¦*Ñë± ´6Wj…6hÎnÈkÌufÁ3zLÚ`¿¿ºá¼ˆmªc2Úßzò|¦ãú žÔyRW åCµúÝ—:~èøn‘w·ž\ÃŽŸ3kY\µ¨³³¯ãTµÔYèY!£Ó”XÅñÂdQ¶²ºêö_Ûy"wc¾Œ `WÒ¼)D,¬&•t3¯z@³*·h^°?ÿZZì…½­š÷zÔ¥PNVH+2öhüsýNø{¸=ù¯hÂýǟ볟³ÆéúS6ç˜k×%*ã›”PjP˨\EN{ ü‡Jw ½ì= dcºŽIR¦æ©©pvÕ†Æn‰È&ˆ±çá!Vˆ(Ñ¢:d@ïãªy‚H™‘¢ ØÇBÙ ›XòEvê_5£`„yOª-«¹¼Äj§Š­Å–sP5Ð!=—áÃÎW{NËÔ‚¬J•­ºÔ^g¦:Ñ³Ö f4_)­¸_îfDÞC»ˆºåĸ]{ƒëR¡*þíÐ[Ï¿‘'Š¡úÐ+»^‡…°$Û˜jE¦÷lÔgŸ”[”z†Qk5*:$;D¡eU( j½o[£d¤/±ozk­ÌìÖ-zƒÅBõŸ£¸È Ý¢YY‘t誀Ì<ÔvÔh¿5hõ˜rd{uK]¤,#X Üг嚊]Ü ô¬'õF=Jßw …ÒwÐ3wМ;\·ÖMCëÂÂÓbr¨¬E,Ψ$+æD›Š+¬–²¶ÖSP-Lu”@âPªlªs´® dŸÎß ¦²gã@›'9òÚq’Í’`µX LÇ@*Hª~hËé¸Û‡¦¡?´RÐ /$æù±ß‹×çm“¦ T²Ø{ ²eu¦êjhº.%#S¸g ¿ëÚÀ¹nÕp¢üŒíÌ5ôƒ÷GçgXDèµ¼Ê;*iÕÛ1{ÿÜ„F¨ÈÍPåä@ÚÐÊë«Q3®v”®¯pðãÎŽ§ÆÞ½;tÂX˜0ÞaÀö®4š'LèªÄ¿[ôe:Sµ«vÂ#ñß“«Œôendstream endobj 335 0 obj << /Filter /FlateDecode /Length 257 >> stream xœ]‘=nÃ0 …wB7ðOd+-É’¡EÑö²D" Š3ôö}d’Hðù$’jŽçÓ9/›n>ê¿hÓó’S¥Ûz¯‘ôD—%«®×i‰Û“ÄÇk(ª9¾…òýSH£€æ¿‡+5ŸC?ÊQ÷Å5Ñ­„H5ä )×¶ÞͳW”Ó¿TgŠi~–öw}ï!A4ÀAÐ0î½ÛÁ=pĈH9­±Œ†µæàÅ€ÆÉ»A®B¤Ü€ÂAŠáœ%›¼01Î^ ˆ1܈‡¬´1òCm°µ­å6,:²Ò<ÏüŽÇçE¾ö¦ã½VÊ›l[¶ÉK\2ý}HY «4Lýüîoendstream endobj 336 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6883 >> stream xœyXTG÷þ]ÊÝkW®W@Í]b-ö¨±aAA± Š¢‚¢ô²ô¥-½ÏÒ{ï *v¬X5q­Ñ$&Q1š¦ñû’ÿ¹fÈóügwi)_žRœ»³3gÎyÏûž3+¢ôt(‘H4j“¥¥ÔK:wÎ,+Gç¾ê‡S„q"a¼Žðžn¿³ÐGCuÑP½‹ã'ÚGA˰Ié‰D6ÎÒð5Rï`_Wg“ysæÌŸ5‹ü^bâl²z¶‰ÅƒîR™Ÿ»«É¯C&³-g›l–ÊÈCW“iR/G—N&R'kÇ]&;¶¯³Ún²ÞjËŽ­Û?˜ýW»zÇ>RG?W/gÇÙþ~s)ŠÚlêµZºÆ{­Ï:_3¿õþ沃6´ 9´Ùq‹ÓVçm.V®ÛݬÝwxxÚ|ôþâ K–Nš¼lùŠiLß3cæ¾Y³í?œ37lÞüð M¥¨ Ôj"µ•šDm£&SVÔj;5•²¦¦Q;¨ÔtʆÚE­¦fR»©5Ô,Ê–ZKͦöPë¨)3jµžšKm æQæÔ|Ê‚Z@m¤R›¨E”%µ™ZLQ:”1¥K¥ÆQúM½Gñ”„D ¦†P˨¡Ô0j5œA­¢FR£(jÅR£){Š£ÆP†¢dj ‰¥G…S‚(HtZgºNƒ®HWªûVÏNï¶¾þKz}J¬#vetÅ qƒN ?ØsÈè!®C' M¦;,xØÃ?^9BgYŸv0Šf}[aé&)ÇG9ÛC[ð˜…@àiVïÛ†Õvêýã”ðH)º¢‚j•®à Œšýëa½ÙÓð(Ìþ0t@ç‡Á€7Ëäf[®25µ|øê»[·îÞ»i1‡' D*…,¥è˜ ®‘‚`×ì‡"£ý‘WûÁR?ÄÌYøL‡žýÖuýò¾¥’Ô”ÐÄ´ ò2 HÄE¨Ú38>*6žOJ@Iá¾nuûÊv!sÄŠ±ØoòÆó´ë…Úbì«„•p[¯“*0!N3ÂÔ¶˜÷óû{ì‚=\yöu}RãŸBÕ]÷?Cå@·8Ý„ýô°³13ÖY¬[îòü,_Ì\»zñƃ««𚀠r¥è‰ JÈyƒá ÂtlÌc‡ÞÕ %Ýò€þY Ÿƒ ,$ ãAÛðÍ‚üGô;°1fëÆ—•díÃØškô#´.Ñ¥¨ÂÕ…8òÞõ5VÄ;z“gbü~:èÜ>ÝZY.Áî¶â0_*ø˜.¬VÃ|ž0†³²]²ÄÔâ΋—wT_><µÂ\{ P‚½ñ†ªSª½Ä‡¿ Ém\—X»U Œ7Ãe†bÚrU”ò¯z^ uà±!ØÓl$í¤ƒPÀau,‰§ãrHV¢ÃÔ0UŸ¼¡[îÙïAB³:Í™ÙM’)³T «Bß²s„PaWq|ñ®Á›¬ùÃbö‘fE¬C÷ì+ܹ´t¡:Š>(L‚uÕxŸôýµa¯ð+–U#¦¢¬¨¶g37õ·è­ Æ“ãê áB×kð¨~›»ån7[ãFu$6àãéôÅxòRêGô¥Õ=%”(u{Å¡ÿb®Ü=}}ž‘WÚúwi„û2ÔÜÄC¥øï3²é*¿ûmm9u­<»×]QŽJÆÝ§‹ªµÒÒ‘ÓXÍÐø”ä@ æ‘þ„ª[Ž©ã#šyꕊ…ÁJQì~»u…Da’6ûñ þÕÑX„b<Ô¯ëG&™ê×ã‘ÄøUžk*GÆ¥¨å6ƒ¾7jÐòÙ&ás8¯Ážïa®.LæüP0Åt°Ù¦•JÚéÝø¼~2P~:¢-øFb® Š"PŒ HŒ=ˆù“LÛÀyýv­Ðú£ IïÛËÉ&×qWšjØ1d| ¥f—(«Ÿ+ R+nÓŠ¥Åä…” <ÔŠR‹Ò*®C—QCy/6Hôî* Ω ”ÐQPD"ç‹ÂD¥§Æðà!¾»ã…Ø SÔ‚-¶Û‹äÏ&°5d ±=x;HãѰh˜¦Œ.¨íE]n*P­ÄtÊÊ_ôkÈÙÕîÔ¼Òkð1ãix$^¨f«ûžÃ -¾‘‡ä)ŒèÂ#ô¥=#¯©wéIçJÐWŠˆŒdø‹ƒÅßó©;ƒ–¡@B eÕü¿ˆîß%D*ˆSï¡)‚oB²@"Rq‚¼CÜìEýÉÐÚ-wê Cé^íÁAÊÍ``¯ö( j`7ÞðÌ`·!;ö¥ÝìîëaœLÇ—F—ǖΆX£êÎÁF&àwiQ(!c„|? ÷eØX/k礰d¥gçKØUÕÁ%¾<{Â;$ØçÀáƒíoNQnš>öè÷§ªVDî«À¯KWpWç…âB£’d±|\xÐ^SÄ,Zs绳u$ÃÇ•EÑ…K©¼ 1UåÅõ÷'";¼j ?ý~2€äðÏÅ=hZ¢„"¥Á•Žý_vÀxòÇ­Òš‘;/ÈÅMê„dªÁÂo'’— öÙ€íŒ"œ£½â¼HòG™yIQU¾HŽ˜íOIØz’ýM|·\ì®F ›®vÿD{ö3íâ> qî¾›Ø:-<Ë?ß1=6#&/6壂¬¬‚ÔŒo!#ï"£èö¡ÕKhœÉF=éó‡&Dí*h#0¶qWûkG\!†[Ð^^¦HEÅÆ‡P_Ñn11n’}â>e®1¾…Ûeɉ(ÄØµ•òº"•¡B¦—ƒn«!=PDÂûEDÈø™G»Õ;í'2(šAÊ2 ›ŠG¾˜þ[ÇñÚú:žÝìŒäÇøÉÀ³á#ŽmÙn·xÅÚ-w»~¼sëÎÍöíÖý0ÕD¡…GZ ¾ß¬êni27 ‰Ía©ÞÈx}?D«»å¾ý£ßúé+H4lêNÌw)J®AÆ y©G$BFµ¸dèúç×a´Ò€õõ€,8&1(–ص#ZŠV¡UçBŸ2pž./E­@oüÁCfLÅ#$l+þËàÀèÌ‹j~-Làp)]pÿÚå;ˆ´-¾Ù“˜¾¡Cµ$j.p•ƒãuØ[zãøx¹7X¦ŠZ8ΛesȭܹÝ'pš|Ë#ÎEœGÏÐeÔ‰nçžÎ¿Ö˜÷=D-Ñ…Öy{‰e›™^XÀ(›T?=ÓÌ…KÜõQèÇ+ö-àwNí/~ÁSHoU¿DON> ›‡Ÿ¡†ø„ìC-e•Eu=%ó&%$j¸.‰Å_XŽ2}Å<öÿ_/pý{xÂ&R sÿÅ+Bu;÷›Íà߇ÄßèO˜íÔRðu0½rù:¬¼îyÝ þjÊJT>WTÛ®²#)!C0â*ƒwDÚ&»îãÙÁTn¨Ké¾q³Ö®Z´¿Ø­0HЍÈÐèϱȥÀ7;‚°ÎHS;´>rìÂ_7Ãhýkç·C§3‡°£L¶ç™Qta²B†˜HZŒ‚≩ñ’ÓóôÝé¹HVu)ú<º.¡ô(çlþ劲—¨ Õ…äZdïBëÑŽ€ÝîU9kbá?_Àæ;ù¿Üü_î4]‹Á3˜«¨ÊHUôƒPúŠk"-6©•=“ù˜$§):}ñÊŠ®ä#êýËå¹ ûë§­¥Ê¶±OW>Áƒy¼n ƒšèÁ<nI‘Ý€š¤ û{E 80Y ÏR÷bϺÐȹQõéÒOÂ8[»msø5àvf»^žÜº§š¼1×7«‰•DY{Š“ ½U7ž0 õôq'6 MÎj‹vž TpuRi@€TZPWWQQ×wÍ`pá–…êŒ $*Ç[†¬‡àK9tÓùxD¾Ã1ïÌå%KKŒä9¶ 3Ìùö³wapá, >5 7®¬·u1ÒöWñ!ž1¼CËŽ<;ÂÙº«–-ÚpÚük? ˆ½õÙº¸¯e ÆÚìߺLj›V{?P›p<¹$¹8¹Ä½§ÕÂFš^«"£ )›?æ© ½IŠæÞó®žâ‚0¹·Úg»ÀèÍ:â7AϞ̴!rÑGI0¦{B£‹·£©J½PDJX ±”ÉÔùú„xñlôÊŸQLþ†ÞäÙÑ áÇt’VA>S½$ÿt…ø-î8­®î—‹`Ü-·pe`: ×% ŒÑŸZ-É!$»ölïØ®izbìAã`'Œ±~Ë€¶gö€JŒÆ‹ðL}øUkŽE¿TµwËmôónÛ¯è/Àü¡öòNã­Á}E1Á¡â‡*ˆ$'-÷´³Ü&ÆßÓ&æ66;-.ü?¾oP×ä Ëþ4ë5G<ûðÍ›g/a¯ÄÿÐÚ97ôT…czõ¿7ˆšÄCš:nÀø/%‹µÒàb Q²íB¾¦Òræ!ž”±@Ïót?$åÃKKÜ;ò”û0ìW I2<Î]kh9úD‚;ÅÎ=ñ\ëe²ˆÖ‹Ùö®¶3m•!<–‹ƒz‰äáŸ&ý˵1ß^Jƒ\X a!ûJÈQW j§.À´=~³9Ö&YJ*ḛ{Á69#ºÒE“Q†¢Hƒ¸ï·$5"JO.½d#˜ ,“—i;:”-QÐ÷ºËôÙG.éU(o\6)ÀrÊR3/AxÚ1Ò*¦Ù]ÂÁФLß”IšÅ*”ÞrO(3Êíé;r…«JÑIÕ÷TJøk:®(Å ÆIô`½´Ž‡b›âM®ØaFŽÜZŠ‹sëùth…Y°Zy­¬$%h¨þP*ïWºpKèä.:¤EG;$ìä3qx*¦ð©!µªñ'(5+åX˜).¤]F™î<½æ,HQÂ>¥ÁI•µúNO}µÿ‰_ Ç8+KûÕ<Û¼ÚòTÇ…Ž³_<¾²ÇFR€rfæÛó¬Õbó•òêï^^Ù´Yí"ø Έ‰p“K=ãšNÚw¯ÈTû|lo¤K ¬CÕ(½DQÌàŰÿßgh²¤Z ŒUPõxí]CöWÁnq‡uU3±î”Åx¦ŸÏ ŠÛNñQxäòi3(œEié騘© .óñ•…xº—¬%¥ˆa‹Q`Ë/ÄYï°Z¼tçgžÝí¸w¢Î_VijLÓ¡ì µcÕñ ³Ìa”öÂ(]x,èq­ž5N >MGªy|MïoÏÈ;¯Þ%ˆnª;§•j—¾Æ“k8$nN8'/ÚÂB°µåUy­¬ïáÁ9|«FÔ±ÇÖqÛªåG·Ÿm?rõ!A¯¹’°b™_lPD-'%e_èþ{àtm÷n§­¦¦­[Ïk½ö€Ç]Bg$ˆª;ÙVÒŸ_âéÀCs·ú©7yZ{òdim^^©·½Ú›‚Ëw* ÏŠÌÄÇÀÜȯÜÌü,Tj\”˜-çñ|0:.<#23'žbG£‚èÔälÄ•æUj`isçÉ‘"p-N¤¡"ô+wB..Í(O¿ÓyͨE‚g굸¡ÿNG¸‘×ZÕœúš.h%¯ilkÊÉÊÄOÁÑHž¨ˆFLhP„y+cØ“ŸÈX1þ¥EÙ©ŠìžÀÁì ÙjSL {˜ïàPalZpùÍ>0F ‡Þ Œý®(734…Yñe>^x?6ÂÙxÈé¹-»ù‹«n']vMzY–æDŸ¨táWµI0dß —s;ï¯êðCŒoœ,&,76=Q‹±¨/$ÕÔT',Áãæ„ð¡0&&CV]ûI.d«] ÁŸê {ÁCÅÙI ßâõÍ>@]3ÊËÌÏD¥Lª?Èã‘kRjŸ¢zãlÔìæ†Ü¢½æ)><¦nȳ“P,2–…‡åÆå7ˆ¶bjkDlx’' ¯c<Œ¼—ä“l޼Œ£‘[s3jήOþ4©†Wº:•Ý9Pš‚²S–_R¨>×b廉Dþ|‰“d;{v滉0s@ŸdN»ÅF»KþØ(öȈ:̃yŸðAÕÈîè !Ä3-.êhN€‰tjqqA.d4OGÿº´¨#?O¤#KK jÉãa"Lçµh£´Ù?E^WsÊCGíú{º;Öû6gd*R2ù0˽¡ Q‰ÁñHÆ„†7½½:|¿ýr˸w{Š/óÕÆÌ?&â™Ææ}7Djó58Óš~—î7õ.ýÓÔÄÔùw^R—‚«WÁFÿºŠàônª&›bÃÂ㈊ýašŒPŒqpaHYEfa~_¿3Ë,R ”eÜ×0SÁQ/u»´y2b¬7Uó‰Ùæ·Øt@ï Œ Þ,—ÃÓ,ðàåË-`0Lƒ)ª×îßùOí©‡+a8‘¼x²Öæž2gŽPL«‰0(.‚ð‹ã"›È ¤ÐäÀ$$e|Kâ KÛ2Žœä»—Î÷·iý‘'Q‡sÎÜ»•â¾hÿ±RÜ]í®‰¤˜ï"àò"š˜(x´q5=—9ARGÓìÈkç|xâþºÑqúæ—ca蔇x8¼lÉ"§ºÈâòÊ⺼øüèL¾ðô™ÆËˆyòhßüu¶ÛÌ­%ØoŽŽ‰‹GrcõE*ϦÃKšez#«å›`KD¹kKW~ V$&xieùîÞkæ ŸÔ]A—˜«?Ãbª*¥ŠTŠ×Ï}þÕÅ ¦Þ~gdàù|姆ì~¸Nš‘¤ŠàRÄÄÓþÉ!!Iþ ›Ž6e[¤nTø%8EL]JK¹$GÌš¤\L½œ~Q‘¥ Ad†Gæ kraynZ.­¬ÂÖ³–„†9R”¡P¥—¥e ÚRž’–©(Uä\jÎ:Œ¢þ?ùØ€íendstream endobj 337 0 obj << /Filter /FlateDecode /Length 1215 >> stream xœ­VKoÛF¾ëWðæ!`®÷ýÐCâ¤1Ò¸MdmáôÀÊ´ÅX‘ ?ÞS™}P"ÛhmC-wçµ3ß7³Ÿ3JXFý/ýÏW“£©´ÙU;¡ÙÕäó„…Ó,ýÍWÙ‹J8‰;ÄQDzÙå$ª²ŒYM¨ÎŒ2Ä •ÍV“s8Ë)¡JFTyá?,ÊYø{pP¶]]®óBŽšNG’ßr®‰³F l½‚ ”Zx;:iÖÛ‹¡ŸíEïDÃIÒQNZ Ë‹|ÿ,K´,à´žçÜßG˱©‘ÇeŠ€“†bË(¦¹ÖÜü5{ƒ¹Ój˜;!ÁlÒlv1æòÙ§I!%Ë Ü·Zûísx—sK¨ÀÈz¯Fj),Bhj·ïžA»*1é“&áUˆFZî\¸WØæð¢þš+,5P®"ID9˜¦¥³ð8eöcNòxÃFõ—†aã%ΡÝ<Ë i%jJ8^ŽêÜV-Z54¤ª\{oÚ¡ Æšw‹&WŒP&9\´ý ‡Ëftàlν&âe™$0/Ë®ÌoË.s–ÍûȈ «ïT¼œÍ0ºTi«áº¼ª‚¡†Á×~ÊÄ ¶õiÞáËÉÐwÁQÒñè—^˜Ã=¦oC´¯f“÷JT Ïön¶q+Û¤%ÜðÌPKl[tݦ}vtt<}þ+™x]å“‹÷Ü6ŸªyGšíÕѦœûûýÔnQÜCö)Mî…¦D7péõè寅ƒ‚s¢XBð,·žRüe€¼˜}¬ýâ®–0àÚÕöÀŸê=Øw¢¯«ñMÜ:+8¢ßß yɸ:÷”aJƒgnKlöÞK‰®vK¤P³noe GÖhøœª*±8T÷À¶6fdÚcúG&iÏ$Ñ3É7G­{&q9nX‘IÑ”f@ J§îþdtáÂÓIN¤RàK_~Lâ#x#6vÁ†qô)f2œDâ¨Ô;~Oˆk׋_Êf9ëàÄgËùv.ws-Í‚nœé$‡dys˜ô‘§ÿgÖò&ë¢i$ÎNŽ˜§WÐ\ソÜ/ïçÇÑ"énh¬ªUS·òIÔOÃN€)Ö…E›Í¥_{ ?çÆÏ2Dþ—õün43”ÒÊ f€æ.ŒÆiG{œ "´U”Ú æ‚¼G3¾ 03ÿ ÍŒ°„fZÎÁ™‡wƒš÷0§|? É:<%1$ «ÂA²L½â³ÄQ–*ú%¾pÖÞláÌõÕ+×õ*@Â7^æ à,HcÁÂkß=(¤0lÇÕö[?;xÀPìÿu}öÜê ·I1¨×ýÚÀY‡§øL·½²ï—^àC|èæß]=]]õfÃ]Ók 8Ž ™i¡}k®úa¥nDXDÈ*¼9ãnôÌ€=à‡~.N26|I{·¼í$qùÿú¶Ï0¬öçâ©pŽÏ s™¦8¸~Òwy ÖöÍå0Œö`ïýä;÷Zendstream endobj 338 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 502 >> stream xœcd`ab`ddd÷ vò541ÕH3þaú!ËÜÝý3ø§#kc7s7ËŠÉBßÿó``fdÌ/­rÎ/¨,ÊLÏ(QÐHÖT0´´4×Q020°TpÌM-ÊLNÌSðM,ÉHÍM,rr‚ó“3SK*4l2JJ ¬ôõËËËõs‹õò‹Òí4uÊ3K2‚R‹S‹ÊRSÜòóJüsS ÎÓƒP®¥9©E ŒA Æ L@0°0²þèàû™Ö½îûêuß®cü²îźïë>®cþ¾àû9Ñõlßµ~×L­^œ2­FrR}_÷¢nŽïrlsguÏÜ:©©W>mrÔÙâÕ-S#Ïz|gx2ûáÆîïÜßå«ïþÍ%÷û[euweÕ¼îÉG&´DÊÿédlk j®è®ªœÝ=Wîû2°Isªº‚Ú'ï‘ÿú}±èò }º·wïn=½eKÓ»œnµn¯Ü• Žß¡ßkEt¯9ù`kÆo®ß¢9¿ä~Ëü>':yn÷òî)?zÙ»§v/kžËñ­®º»¼»†ãÏDöîÆî‚É•Ÿ¿¯ÔÓß3¹{V÷ÂÞY½³Š¿3üv»gÁ¡ÅÆW>ÿ§ã<¶ßIÓÙ7smæ–ãb1ŸÏùnó20³•ÍŽendstream endobj 339 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 323 >> stream xœcd`ab`ddôñ ÊÏMÌ3Ó JM/ÍI, ªÿfü!ÃôC–¹»ûGïO]ÖÆnæn–ßW }üÄÿÝ_€™‘1<=ß9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õÐÝã3000201012²~_Ã÷Ÿ)YŠ¡{Óù›N—3~_úùG¯Ø¦v•îkäìb_ÙÞ+çé­ÚÞ͑¾´ûl÷ñåzÙ³ºëTäRØõßì> „7»µsð•-øá<ë{þÔÉ Ø6qÝã–ãb Éçáìæá^ÝÓÛÓ×Ó;©§wòqž ½›û{ú'õôOéÊÃËÀ¿]w£endstream endobj 340 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7121 >> stream xœZ \SÇÖ¿ˆ¹^—ºp¹4¶RkÕºÕºÕµEêEAQQdG¶„-Bd@Ø÷EÖbµ›Z—º4j«qmmåu‘V_ûUÛ¾¶sûÆ÷}ßÜQèë{Õ þæÎ9sÎÿüÏÿLt¢¢œœœÆ®ññ‰‰õ‹ ŽI|iÖŒ !{“¢‚ã…'“x‰?nÿ´scfЋ³^š='cî¼ù5ZG=GùR©õÔóÔjåGM¦ü©)ÔFêj5•  6SžÔê5jµ•ZNͤVP/R+©YÔ*ê%j5åEÍ¡¼©¹Ô0xÕàû¢8Ú…î0äKæÍ¡¯­6vرáF ¡ŸøjäòQCF•~qtåjL…‹„Áž²N’¯ë?¬ü³2§6´î{´Î™Ïmç—h‹Fµ> Ò!œ¯ætäyQi‚CÔprHµ.S¥ËÐD7B0?Ñ•PÆc« ö¡ph>m|n/È@妉®‡JaN4’9 ‡6‹1G£aè¢Èn:gõ·ºüfCþ6Wv?_Ú"6¶Æ“ ™ úM”^ñcÐÛKÀm5lOJfX[›Q_¶[âI§Aµ}juâE‰kИWîáÁ |œ¦Hñ)f?›Žðqþ¾¹0« Äé3=<–Á2Øz£ìnÙ·Ÿ|t®Â ïôYÂb +_huúÖ†~±9óf´DljO(IÄU1 /ÌOس`Õ¯ hjzá—_{€ùððöEãóRsÓZ ô5†ê:4žÓ—¢!TYj•6t©ñ1ÍÁÕ›‹KðSÑØ;¿ÞƒŸBc1ðcOÙ7Âæ8ÞŠ^´¢K.ÛâmoØT¶_ˆ¯GS|ýt£<x!0eOÃN¤ö¡4ä8`s©Ùšÿ «¢Zöœ"ˆîD»:‚)ÛÀ 9}WƒXfåXÖ“š–¶È{…d)Èn±\ãØ1гEOœ—\‡÷<Óç:ÁË­Nw,PqW:)nBs×¢©Øk×cû—Sk‡ARÿA´‹F®$4Ƚ Í#Û&ã¡Kð(EÓèn^.úž&éÀn2Ì<æ ëV—OlHdk°i‰wT|>ö'ù’ |+}—?)bS«ô†ÚpIhSÕ!IûC7Ø11l:„¾9•âïj¨cØ{q¤h+.ØE0[/`-¦Ë ApÖ ~¬X¹aÍÂ…0›.—}Sv§Ûö90ì ÐöŠÂ«7A’¬(HÈ_â‰-¶hbÔÞtH\Ö£¯"f€[äHµ²Ì•®&N!WZµK›Ö `¨ÕW•ßåôUz21 tiª] v%Y$B:š=¬Ü¤MÎIê·N0Ôè«I Œ­9EáÀ<JLv¤™Ý•-vÿF÷÷/?žn³ÙØÆ¾´Õ90;èPwoý¡(ìÅá"öÝ—ÒdFJ–€©ÝØö.ª{È%˜½›Ó¦}”@¼yÞ.:Ô̰«#sj Rr.Œi}DÿHIœêÌu ‘²»Q¸á@¾"ÏçÙý‡ô¾&ìP!凑jŒ¶t£-Îü~âèá¡ýÔLã—ñ tCÔ< ’Cû;¿…>ƒïšÂ«¡ܪb+Ú‘ú;×ò˜s>AǬNCGÎüUþyâßRË<„NÖ"›ÖA0GéÉø˜(—†FÍ{šCÙçs‹Ã ‹d½ÃQ™Ëñ -涤McXÅJÅqïŸ$]p¾àx+ÃzDUÉ= i& N¶ÄÓks¤Á)dbêž-ñ°Ó›æ£wºÐó†¾ãÒ†¶â±h«‘ü5mue¯ñº>tì¦'¡yh<š":HôHÓcøxÒZ2>kçûc£}g7ÇÙ3â©Ôƒô]<OÃóD»iv¿Ghh ¤¿¡QÜ%<*’rÜ‘‡C{ è%þëV$"pî° Òïz«yÿi¶Ì`ÒÊr¤àÖújcƒCO=.§Ò¦-}Zªè,R0@H¹ á$“~²WÄ_øl»|¨6Ô8äƒL+äƒÚžZ§h–ïï»ùýQÞeO­ÐþƒüˆÇ´N¶®E.AV>ÐêrmÁþäg>ùY×½¶;¿È¿¦£-Dyúþ—¬£Za¨äPeJf”€÷*MM©c¨MHEh•}’êÏêc(² ;˜r˜Æ°.T´†˜'a'Zénü»>+W à°çåÔøÿP]z.@9¿„À‘j0¤WÆKØwÝ÷,%'NÜ´û(܇‹ˆ3£4>ä1K~œ.íå܉49‰Í1 &Vdé²ìŒ}Û–Á|Xw¹ìÛÂ#‡Ñ$!™õ&ä*5aòz’°uÆýŒåÚs°°,ÄãÒçÈðˆOŸG.€ÆÃû?è+z¿ÐŠÊÉ.GOùMºëRˆ*®Íž®½ö£wq ›Œwp){å1ŠÁc‡w K®I]/p¸_Ÿ‡k  H¹HR•ûbØý¬#ás>ŽË£õÛÛ°~†!± Ä 2d«,Pe…Å¥b‘©æa“Åâë¸ X¨H. èw¹jû‡í6Á_z¿²ò%oú³²²ÏŽÝR¾ܰ‘Ø‚¾&ì€GK¯OýUr 7µígXϽjüà£ÚYô²˜íôSú.xE²¯”õ”ë£ËpÞôSú?ª-?ŸBVâÑoøOBðÙþ˜n —<ˆ%<‰×ªÚåú}à¶j`åvTà~ƒ¿,ÀŸñ±¢<úÇÚ‚°òÜFpk½é96×ÐÏOðá'¢' åîã¥}xJ¥6+9z³Ÿ2<Àë}ÝW :F× aêªBtàx,àáÄ9“¥xÃvᑲ/&!±qpî"¶¡ b\E7^»ôÁe8gâ³'>êDùrtF|½•ÖŒ}€|âöâ·ñ[åû 5ÐÔD2«Ìâ,ŸÌå²2¿hél˜Òšœ÷µÇJ¿6P|®øRÕ{ugÛ-ÝpÚ•&öLÅÚ>¶Fcól²¥ÚV~ýŠ ûÚ•ÝÅ7ñ'ÅE.&ÎY ó·Ëç*7q“H®Õ?Ò¬Qh & ¨ßõýËþ$š]}¡‘ä'I³Ï.¹y‘TA·ÜýžN¨††rcs¯mk¬Hku²7U‰$ƒðâò»¾ßà!„‰ÿBóƒÄýM‰¦[Ñán´Ü·¿)»Kx9{“ÿÊiª!­èWú{h]©ÜdçÇ”ѲÓ|ˆ^ý0úC—²3‡li¶MDA¾cƒ3ëmÒ3ö¦ü ω uòÖ €­¹á {qO±<²j»d¼ì!Ÿ¯Úi‰(NÎHËHÒD«ÃŠâ 2îP¬Ò)äó¾[‹žá3ä\é—¦.åûÛšEÁžÚ—€YAgC¨òÓ ´²J•¥úZ Þr¢ò †RSúkuù‰G%wàË«Dæ²³}-9û3›ë,õ†Ò¼¼}µª"¨€ !/ˆIó!ü°ùÃ~<útѱwŽKNBÇ6rÒ#‹UA wN†É°êí‚wô•emÕÍåf¸F6¥÷éózbç'û-•ó¼£jEkÿ´X ú+·Tå÷o8nùŽÊÑX JѶÕ6£-„ðX‚ï¼+6¶ w8Y­]tn¶24b¡ð=Á˜*:Ÿ_¨©ËÞŸ\“Y|µk¿µàPéW>ÝxÁØŠ\ó—ļÐ^Þ¤«¦›b«¤9Iª`ÒŸP oMti$Ã~§ˆ¶4¤uHÎCçǘÉègqöVÿõ³€yÍþæUšýŠº¾Ù}zý¾ ÒÛ26~gŸšð˜ÚÇ$¡ÈÞ­ã'$Ä‘‡Ú𲑝šSjc‰/â’rb5±•IÍÐ µŽü³ÓËç¶›°­-]ˆyKYv0®À£ri%·ÛÙYxØ|ìô‘+€†A¨Ü¤"uuo?\‹¸Þ¦2²S3¢Ã:,¤:Ü%éó«;½>K@Îû¸&õg2Â/›|—C aM [Ò¤+¿2¿"¿2²·9NÂ\ow̰ÆZ0—–¶uFŸI» Üž}}ûa·gQN6%‘P£ˆå¾üÍ~7 :”Ùꆽ—éÙïbÅ|‚Cnö è¿– ¼f°w7=àfæ¡·º4¢@¼€ü¸Ÿ¸–ü#€ü°§\Ù|Q_£hÌ Mh"ê싌‡¢ÕHžJðÌídG}ñô³è—Þãx÷·ô¨Ýü­4¡&Ç8Ãj©( y&é»+!îëmWYµ•.½u纈URwñ‹"6‹rÜW?„ö°Ç:1ÂÅh± )Hîÿ‹¿Ùwï ÈÄðßSÜ=Àmø¯üítoÕhBòÒz|O†G]yñ>¸Ý‡ŸïT£QgÐ=òÚ¿é6ù¨¾î}LœàÙhe¬£Ã~\û<¼; >®ìQ¾Ò!àöÂ!¤áôÕ¤†Ï†hØ™¶GÙ_A„W¤<6‰aoµèe"‰ì;K ¼$︽½’ÍÎS·ûаd ZűG{ÊŽ>$©ƒâT…÷,ç’'¶x¡¬‡L‡ÿ2]8Mö| I Í=憡¹®ìjþ7»x²»} ýPuÿèÝ ¤ƒý*emZ€&Ö-—6\£­`ÒÔ%‚’°¥ HÝR-ÆÛÒ}ˆLÍ3æWåŸ,åݹw%Kúš²fÒQ­™þ :7¬žt­nfRÏKª wQFñA¡§ÝQŽSòtúøF( Ï롸Íá«9–)îkÄŠ¤ü"{®?’|øo´¶<²!r’´Éª`Αw ¯"\…*h¼¯YŽ÷¥àA:¹:¢“”¿ªbãþ㨠y#Ï+gë*óóõ¥öhßç«dNüTþœØ|b·AIΜ£Ü‰3¸Tü„6®‘(g·7ÀPh>ØŽ–qæã%*1ï…H½‡T©‰Íé£JC/U¢|+Únu¹fS ùFˆg*oBžâ’~gWÔ|Ñtò¨ùti÷k78¦.‘/RnèÚr#Ža¯-‘zúfx¤M½9ÒZüv»ü˜0tPœµae'IûVOØø®ù”ùø…#ŸÁM8¨ `Âñ›bÅÊWýçþ ÀïT±­Èj;ÿ-Ü÷ÖdÙµº…;ñüqÑáÈ H†(ENqºt6“V*H¡ÿy†ã€ Ï¡.’}£lm7/’ ¬F‰"õÛtÒñ2üD2¦¯ÍFƒˆ„ý âø¡(/ûV¬¯Rfà"äÅ¡ËÈËRPV¨¯r3Ô¥ZÒȆÚÜ4%þ?¼›ËR§gk“u&…Y…Žá®D™Ÿk&Õ¢Æb¨³»"àr÷e'þ0ï"6u† ý¾GË!Ôaê°v’¥ ú'mv0u2qx:™™dÒ?éLˆ “4a]vR½GÔX;íö•£³âüu±²C!\¦Y›§$©,ÍÌIÔ&g©Pöâðeì•©ìsËI¬È,'ôaÈ+3óÚÍ™JÉyì Úßc£8¿LmH³àA_$ ·*4¸â¾G/|[Y\hÈ/Ë+Ì%Њ,ÅÜNl–áá­/5m9äù‘_=0`®Î+´¯õ5Yk21® úfßû»®yŸJ dš%ËÍÖ¥›UF-š„2ñ<…wêäux<ž:+5K©Ñ¥çfçË€ÙHЏ·‘Ù¾˜áãì]Y^"Äú …Y——TáÓžPІåJ J ôUyãþ݀ǽƙ-÷ç™Mí‚Û"r•š˜,/]Ü ç‰wt "l›–¢M×&©-ª{¾曡’«µ2Òibw•cê¸L/ML®RÑ.D¤=ÏlÜ_ôq~ã©ððêóÁõiùPH(·¼R_&¸Àúûs„Jc6õ1ét úý9š>à’ÔKEJM$fþõ:§‰2duˆz=V&Qýe”wyûåõäÇ•5òĉ¦Î0;&Ð,SžË·naºL¢3ðs"ò,ÂìXê°ÄÖ 2Ûƒ<ÒejÈÑNÆÎ| ' ˆÈ3 ¡uSgo¦;¡ŸÄEÖÈ7ƒ`7ÄÊP…4Ä“sCA^a~œÏ–´Ì…6Y£•éÒ-©ÐÈùd%ôèìèH°1¿¿þP x vÓi<è_ÄÊéƽ»)#Gw²úáq¯ô?º2ÐèÛçþ#ùàÅdÁ ˜ûK ò×~Ÿ,ÖWfI‚¬ôìŒëÿµ’ËJË…ÜlmŠ%µj¡¨¬°„_ÿûJ®¨<@ï½<¨EgĤ[Œ\ñ û £ìß=GᵟcWá;ñÁ€F¡§Z7³ºX§ÌÇÖÂR؆5 )õhÒW÷®“NðÄ xr¯iE#e.èõÞ/îüú¤Ø,úk¾ÂAnÉ©Ê ˜¿Q!Ó1¬--Wª#e3¾BSUð–éØåq³tR†~²L›| IׄCbCcß÷¨$ܱ VÒ—Ž!êÆû¯ž:}¡äój4bÎ <H×6s¡|¾:´QQ!0w…¡9ߢ+É.¨}ïDëÀtƒm{úÅ ßõþ؈×rŠlµF+ïý èÎcQjú´Õêr±'¯m²m#§°×t˕гk[νÑuÚ|²äºÏE51="I›¢K³¤‘ýŠ¡€¬ÝÙÜ\^ EP ,Î,Î(—v ÖZÞXQ[Ö^«¯ìÕÆ”•šDû‹S!§¶ŸÒuÊ7 À‡!_J“^ÄÔ®.$¡‰¥I,sSeø þ'§ÈÈÕieêˆBU«pU„Œ4kLÁ”Èg@ÈW÷ç!šõ®DiŸ{‘€—¶Šq<:ÐO"GPZ­hÆ*Œ<´A\ñãÚHÔÃ`‡jGRÚÀ!Õj«í¥¶ \ÅiSrÛ ŒFsQ{Û;•g Ú=ÞòŋֽLÄOaò&£¹@_mÜ/+—“‘Jõù‚«+„L!úŒþ¦ 9÷âcÐ94øZH¬YI¬´QL:Ï’iàŸ°ëzQÝ·¡JZ£V“ýÊdľº cKáÑ}'§ Ÿ<?ŽwìÆY÷=ïÙ¿7üÁ4³r¬|Þ«^oˆ>šeU×›êóK‹ÎÙÞÿnÁ[«3–1#ÅükÅhi±¡˜¶³ fØ`ÿØCaÄðå¦<á—±Ú`1âT~qž¥ ¯è¤©©hÄõÿùNÒendstream endobj 341 0 obj << /Filter /FlateDecode /Length 5597 >> stream xœ­ld¬©öC·Å•÷­âàÁ>Ò#^muH»ÈŠCæ`‡³ñâŸW^°g“h¾Q¦öÖÊ~ÎÈ •A‚ØWúêÐh´­öôKµcLÈ÷䤉Ôl¥ªŸ•[þ5û@4A,„­¾È€Þc  Š{–3 Ù‰ N0y5¾v­M2øÕ«ïiuBy[‰Úmä¥~õ­Ø˜UzzY ;Ip—£—IÐÚÆRÔZšié×寿R¾úVmÔê¶NÖ^LH¿Í¹bc`_×/ée¥µÒv@_9­káYµI¦Ad_ß³ç`($‡9Ä}[öh×­ªò öCÜ¡ÑÕºÒ ÏÁ…÷d)Ã.HFiÓÂÜÓ¡°F»·¢Jk„ª†îm.r`sØ—A†„е6&Ê÷WÝ„­wÜ0>úd¼6ü­íã0¨|ɈŠêìç}º¡oP(ýÂ,ÊÖ‚2p+÷×¶V*ä;/·mÀR´[j™ £+4jÜš \އcFÕ ×q#-ǰû®0Æ$zhqTõím±&I0!­sü³5˜ 0û1HFp&m¶̓—xˆßÂ][ü÷€ÔWöèé¥kt‡_¢E€“ÿ}0CÞeq+³ÁG´Bò¯'ÉØ1»OÅË`Ø’ñ”'—"xYõúÀ3Anù§ÜÔ<Ã4ìWü~é®#@ðÚdÀxAóœ­ÝOÙ‡mÚ™8‡ðÉ‚+BaŸ¸té<@Ý-ûåv30‘¼M[¡â?»~Ká[±ÿe©LC˜7FŸšÕ E·¤JEÄ€ÐLèÐçtùm”lL°cÚˆ+YÏ<ض»HiÎc@”¨ämnDˆµñY©•XOhi\å>(ˆÊÇUЫ/€±Â¥€÷ãÍÝzD-!ì’.Y«‘¹ˆ]7<&RņŒþ<Ù ¬D#sÿ0€u)ÝB ~Ëܰß%ú.‰1­&›A–Ï&ãmn(È—R’ 1×Ó¨KJ O>Œ¯ÀÔiECa“w†-¬—ÕíJ†ûD-bˆ9éãòuèú-™5i‹JVB<å¿ë[Ø¥1Á·€Ê2”‰<±-Áiè@‰=e ¨L;æ“·Ãtâ"\‹¾N‡b’·”hô‡¸DÄð•ÎŒ‰Þû)ÔOPa%Æ á ÉTó¾ÆÜzý”–ìK8åá¡¿ýní°ÚÔÀštV°lm£©Þö§l“>Ôv7ºWç¢Ù2“D ¸+0†y G1 FT¶Š™}øþc?.‚f¥‘ˆ’Ž‹Ï¸¼c :ô_d0Xbš­÷»ô ‚Œ‘<«×Eþ~lÖ=n"Žú ‰#Paˆ€®(ª“S’¹ Sñ Î'U#à܇âí2‚^É«ûÜHßF4±YšËH¡‡Œ©"êÜÝšûµ?dáxÊd/×2 –hÖ·5ÄsSoðüe†J´J‡¼á>c1Cà±ÏCÄÛU‰IUv*CïÆÿûÝý¶÷¸&ô›4jÒðwÌGì%KÍ • yvâÁæÖ†lé SnVM/åyÒžpßÎ+4½?b°’|\.ò <ãÍ;“Oµú ¢sã[¾5‹xß‹5<¾§ šèa>SmS +ùîWA’”á“f'ЯcL!C9·¨²SLQ½žò)^cÙe|2Ù÷Z“‡Uì´àaëÙÃ*YxØßo‹rl.û]ªÁ·¡ì"m‹ê‹h¡°2ÆŠZzltµ¬¦¦Áñ»Ø—ò¬–ÝZßø©Ö ŸYJËΖµ„ăä¡(aî¿„ £upúÙÕïb›ªpœ 8¸&%÷ɆÔ{ð k´q®VSwíÇe°]úJ°ù„•síçR;HJ½áTþ*zæD]/âý¤ìS0úÝ^Î…»+ʯ˜^ ËîhÒÔií2ÇcCB|DW󨂦Ð&mž-O¦‚âþöȶ¥¸È`ÆìM ×› ð—­¤„¾h‘Â÷"OTæ® ³§Kæ+qÍZÉœË*@ð¦ ïçþîîæú‡{êø|þ}5¶…n*³ÿR,<‘ò§=À;\á•’JNYî÷&kf[²f/Ð|ÝXð6"ß õiŒß¨N¾Óæ§øªU:·¬Q‘WjWñû¿2{`-ÐÍ_¦âÿþg.%[Â#÷!ŸMö…©…²Iö/¶X"}È]pdòRðÌåZŠpû]ÎñrÇ>Ý¥X»ìÊ7D¿E‹ßƒ}Ê5·ÛnÜ|zãB>'vx¿^A"â ÿ†(tÃ!…>>îAÆECà [UG¡<H—Pûûë›»±?MˆhÛ6i'#íLf T˜?A€ìÌÌ-!À Àge‘ ò5É`Šg´ñ=…ôxJŒmFþiËgvñ=c[àeìE½~7¢ˆ¨ÿ–» ~‡„b8Õ„Zq,'–þ‹:Síì¿PÐWÜÖ;€€ñµËµ*Ø Õ¤9Í #k€$>&?øÏˆ_™ž¼ DC±dÿ„c‹ m±Ìè{k£w„’ÏœçÅ ež¦¥±—cç¬0ŠdOQ.+Û¨,)_„'i•j…h©Öxbké圥e ð±[<éNñh멜ôÄ ªŽ–áx@ãJÏ9Í6MižŽZ9=[¹TÓˆ$Åb¬ÞâDHCþ¶?¤ÍmÁÌh4^ŸñËk;[ hÅvLY׿‹HaÂÙOGÚ¥¥N¼žC’m<'ÞÒzs¢ïU83Yhöâ·ŒQùòKÙ„ Žn1h £¶':á'®‰Ñ™Ìéâ9\[’¢Ç€7ú¶tŠîFø0Ó™5°Ç±Ïç¢hú¶ Q_Ðcúä@«‡‚5³E)Ô—vñ+- üÞè¢&ÔÅô.¶ÆãxÑcܾÉÑ_ê?½cø”¯öo=ôcväãáM³§qƒCÂëÄPóRbQ‚â„rŸÝƒco±½Ó´l1O Ìžü4+é[êû*!)IŒÑ" XÖNã`ù~œÞŽ2Že6SLY‿a€û¹ÊF@E¸½BÏM9ªø¬‚0¡ú>'»*´…F2ý{m¹^éàT{j^#†å=ŠÊEhaq4õÉuzÊ{²kŽ¥@³Ÿœ´ÈøÅåF1R¿GjAÝÆòjÀš½Ð„^‡éo{~èIRêPÎ­æ¼ /ÑÎt^Þ|•¦ÅaðsÑBhDè¨ü/Ûû1èIS«—j1ñ‘rª3Ý §R"D[æè^2&‚¤BÒŸ¥u†%1S\ ¨¿ c…T Ñœ¾äâHÕÉ‹Ã/< d¾ÑO°½‚3%kIÚÖZà$…`ÛþÈl×ÿäÖ¥•µÖâ³óU[H½.ùú’ùT0¬µidÉWˆß,ˆuÕi^Ñ4|^±‹}üˆ÷«¼NõšùzÙ™ÕZpS+ežQçsµž¯,JWÒ‡I¸¼ JW’Z4W‰}Që¸Å W„ÐIpùýx »‚XB‹HCmY[<Çë4\&»"Àœ^T˲ÍA_¦H¿™°Ô+&½'›ÝئÒ"DE±Üºêý˜ðsÚ:4=ÂÖ˜ÀiQ¤{ÐãTºsµ³R”wŸ÷q‚±­hrXÑa™ƒéÖÇÍ@ò|&ÌžhÕÓ‰äפô‹JCë¹µðzJ¿NgÂo‰æ t¶ẻëàc1ÈEuVâ‰)A_x«\ //Ë}òÓ=è§(&¬ÈOÃ-ÇV¤˜™æ¯úD ~ùP†-„;HÓû~»ç·t‹ 0e®ZÔÎ…ß7ü^T–9 J-d!ý4øî­6t‹qq_‡w¨7B lÚÓ!KRíb4yµ]bq^M=Ý.AÛeUŸø«Ûj;ÍοadÛ :™ódU~ŸŒ–™îˆEóv;°¡b%0ötwêÍÏ£áÙ…Žy¥KwÞõsC´Hàˆ] º2ÚšâV*ƒHЄ/mQÞ•]嘨½uÏò6Bµsåí¨Q”Ø„9 ú ûCúº¼Ã÷KN÷eÊÙeûIóì&Qظ¬‹)sœ ÄjêS™ˆc²Öc>ß)?iè¾KHbMžÙ‡C\Є‘Ú鉒ÆBø[0GéœT7÷ý5¸ú¯XU]+)Ê¿‡’n¬ÔêÔ–ÅVS9ˆjD­my3'vAÂMnºXî–níd„nhÛHÓÂ(Ñ_Š*¡”·Ú9Q¸Ëeû +PJ.¥À»µ`( 01ôi ð¡Žw(‚®:ºå¶ÔUO%Ƭ†t,oÞ&€ NÔÄÖjèÝWͯRmíÚ$YKhM@ð¦Í”ákBMïá©2`úKãgH\ño4@.¢Œ)ò}!gõ‹›ºGRV¡ç?„)«²šòÏ—² -q$6Çù³¤6Bãý8Çà¾0eÖ×çùròÒ€1Ý,5|`޼‹’Uº´ ª+|pµæ?v´ºånl0šßNëî–_eËñ˜õvº<\Vrð]ÌņÿÁpC‘Œ5:ùÉü׿goÝ¥#—ÆÔ¢5eŠÉR|[”7¯B*tlä)†­éœ:)ÕÌ‚Äx¾˜ H£‰&ËœâßÎ;z±=1ÅGãY·â㌘ H*½:Z@vÄ™-GÌ´îïgÿ†(åendstream endobj 342 0 obj << /Filter /FlateDecode /Length 3856 >> stream xœµZKÜÆ¾ï=·, ˜“ì0ìw·€ˆeÇvbñµ@»:pwfW´g†c’#­ ÿîœSÕ²›äŒd –Ë!ûQ]ϯªúçE‘“EÿýßûÝÅ_àzñØ^‹Ç‹Ÿ/ˆýºðîw‹Ï®a„áð&7…!‹ë‡ 7•,ˆ–y!J¨Ü0±¸Þ]Üd/–E^¦Ha²Ír…?4ŒÓÙ]ô¡l»ªÜ/WŒQ˜©³o“‘o—TæF+‘.Ð\á–…ξI¾ÔûhíWñ>Í:l"³¯üa¸ÖÙv½~Ø•9¬Ì²o«û%ÅóHž.•ì¸ ¤°ì«ÿÅön˜¤RRõòú_À;)bÞ1&ràf±¸^_djyý#ŽV’ÜAqÄŠs²XÁ0-%ŽºÉhNóåJ°pA³ÏË®„í•€_@c¹_o«ý#¾á¹12ƒþ3É^;¢ G³ª]?Žå¶ú¥ì*àÝ™”à^lqýÍÅõŸo²kwF®©±beÊÀ!Eöè¹bp&Û§ƒ†MÙ%¿×ÇÜæŠÅ›+–‹gÒæP­áÈÏ_xf%t ‘K]7ô&«ï–++=-³Oiâ}¬ÝrŽ-¥ÊPíÖ@ÃÜîLçÜè°9ð£A,+ãÊÚjwˆtmØÇ³mÕv~œ6YýàŸɺW)ñŽßHGÓ °Á«Ó§CpF²Ÿ–Tƒ K¬Ã6*«bÃylFÆOUòeoוšg];Ë=Z€i€2{ù½Þìaàûxfæ…Fh‡¤K­8ƒÓ¨Åа\pc "k»Ç¦ZàŠ*—Îä‡üwV©rE¥çWá ‘òó®ìšêin-|3½~‚KŽdrÒQ¾F…½n`¼1Bƒ¦”à~8ðØhší’A‰ÞÔ` (BE"ÌÖM. ™=Ä£|®Òd¸õ6n·‘GŒ•'ž±MÕjØn4íJáÄU{ŒÏyÑÌy)GœÓB=µK XÒj»VØ&DVVÛònäŽíPðæî°>b4VqWFäâCP/ê¤ä©qŽ,ÖéÆŸ‘øhÀÏ­à¼%œpƒBb _½—q¯kC„’í3³Ö?òŠn}°ÿj‰þVÊöæ×KmCs|Æþdxª/®/¾¿pA^,šÓA=UÔÔ)—…/l¤Æ¨žÔl¿ìo^ŸÀIFëÝL4ÁQ’$4©×ùSôé­ê žC<#™ÐÎ9-f²nâ qs®æ™>ñÄöÁu¦{íÊê”5ŒŒØî¼½Ýä{Ø(âׯh"h”·ô*A=ù²—¼ÎÁU½I}yA8Q9Þ ƒnh±»à’ÐðFx³½xqNž¤Be‚ù¸Ê‘ ‰ð ïóªõr0„Êl[Zf¦¬¤ˆFÏžqŒžïíMÄ 1S!4ñ¦~a‡K&!ª=uMy?'xa·øÖº¼À~»zõýje–³çµÓî<®Î’½›nà§È¹~ö¼ä„ç4f¥{qŽ“ 3œ¤âqœ<4Õ1¦ætvcÊNÖw  <;ÖPŠ‚GÉ=H²T;,Ivk»]Ù¼E`¤ì¢¯6%h=¥ÂN†o?áÂ…±|9î;°;Õ Xò@7…H¬y€®=*£mîÉ)WaøÊ’Õs­‡m Çãà7‘’üõì^¤P¹€hïözÜt/êcs¿=›ß,Œ_õg_[/Sí,£ÂÉÛã]»q¢E¦ÿ=<÷ËOà ‚Jb–4Ú¿x‡ÉÌåI° f1"'H1JÚ{s.ƒ7wáf| xCò XÅ.ÈìË‘7›8´!}q‘Fœ в‘„Ô‚çRà´¯÷«ÇÍ~ƒ«Íá#à<*€šE#¤oÎwµÞ”2vçñó¶JVð,¢)˺z‘Ð ï™Q€Ã2§3 GÁÏÜ:g¼bRç çkýRþÇ ›*HÀØ­R”SF¨ÉòÄô¨ÉªÇÜÙƵ‚¾÷Ùèäh€mÞ7Yòi¯ø¸älxÖÖ» 4NƶœÀO;Г°áTþcL¤Íµ|–/}ŒÕb{CG)ÓÜ!(.@ˆtxÄU&N†þØJÊîn»gÁÊ"qjJ)pб@iã¤öÃß!Þá Àg¦½VDÎTÏô!à;p{Ík£Æ ôæ]¯Ÿ…2+üÂU¬†G*„Šdg×|Sí×õ›@ Èn³»ú¸_Ûú„[â}ýt»|~³ì:¹ sdÆ¥¢/‡ÏOá‘d7`B4’ Q¼hÃãh{q@ºVÝfw¨Ì–,}$³i£ÿÁ€¸=£ð³}U¿Ù{ÊC4{¡y¢–†±wÛú£f $"’VÀYÛË‘måía&æ! ’tIr´÷åg—Ã2—Ï/ûE¾{½#m‡‘ûãînÓ ÿ]hÄä¼§•%´ò„¯ÔÙÓ*~‘"¢ÕÀžïÇ× äGmP‹b®¾Þ?z«ž`o“Ì’Aö1ÉZ=É¿“¬)¡F²ûHÏ28<)Aƒ{rÅHt¢¹Ôjnp”"ΑÇNµ÷÷шA{É™àeeBzaŠ˜t¢tB:GÍcÒ-ó_Ò¹à¹çDÙMÿ^ꟽ!ÓX„wçûü8‚j)<“H-Ië<>©„tÓ&•XCç#€ÞÚ€ÉC s¯'êý0É,€º+KÙI‹â 5·0w)%£ŠsPoãFÂMÑm½!þ.ÅñóÐ[!*ñGq¾~®rKs!i_(½õ¡ÇÒÍm¥Ú2g—@ïë~¡¥-‹©Ì”cfp;‘«üÇLÍ3ÕG¤¢W`°XpöõC­CÞ)Îú5©Î»ÍREŠëˆ.ïœÔ…q)aÏîÉ⶯'}Û쀸¾³"§Âv ÌÈ? ÜÙÃ:÷¬Žƒà…dVH·> „X8 i "CÿéÀ†‘U¤âñå[§>U“¨Ö !mÆFM’ñba#y\ (½ýÂãO¥w²à”G‰\زؙƄ˜o$€k;YPˆíâ]­Mvï@&Qåö·7+XAòÂŒöè™6í`YÆ>­àÛ $îYXjm£HC4‹M‹³Õ/¶oȤWKí…–ð~^+Hg}Ñ7Ò¯¤>ú9ŽÚ­ØÜ’jÞ¹p¢ÒxÇ$íÑ$ÃÝ9'Ãå©°ƒ}FJúTÕ> ý躛qO6òW¶ói'gm}Œj€Íý¼Dõ¨ñ~ØFÔ©þ?œŽGqùËõ!-Á*"xÜâ ÛÍ•– 2[ZrÎ×Òf°2q²Œ´ÐW=vYgC##:gýÕ“_óÖ–ÔÛ_g¡–Ku¯ªpìq³*(ƒ²%Ù¾PZG]YjÛ*9…dŒ‰i «cÐÝÅÖ7e; ü±¡ÊÚ˜reÉ2‚[i4ËíÖ¶D¨E,IÇ×[dÄÙ6; äx~W¦ýºóT`´ì;‰íðò¤HƒÝ’Í®ŠeòÄŠNáüÆŸnìRÞ­‡í§Ÿ˜s=U΢5D¿Äoùõt6‰[|Œ1“cµ•´>K¾gðüÊåk!Æa"ÖÇiÅ%uf5把>yÂÂÔ|ÆA¥éu<.³¿Ë”À [¥Ñ³¨N(Ù€úrßÍ t=)Xs›ž¹û÷«–ËiÕ“›óZîGWÁï}¥ZÊô}eŸùδ»˜7ã”c2§Êß¿Å+»ª>÷o;Û®n6C0 5~н*Üz¾ÞDÞ&‰E[Ü;ªû^ÅÕ Ï5Þ‹Ò:w[kæ*¨P°Ð:sñö— |œìœvPȨ!ã1St¡'ÍÔû^‹77ÎAã=—´ópÊ—4'¹pÆõÁ.E€#£ºw ƒMÝ·OÞø€¡å\*>#›Šƒ}¸‹“›B'ƒœYÉYw¦‰ó.Ëñ¾È[Îô‹SÀˆz½<"¢$‰VÖB&«3mHèIU(´•tdêýA‘³¿¹›Ó¢ ’ˆrÚãZfÞþ"£.ÐVáZ :á·vÚžÑ&»4,÷!÷6ûVd9_xbÔä²èKÞ0÷/N[¤!‘¿€}½uˆˆ•ï”ükŒÌv6ÂíÎá2#.µMÞc§ÉMáN„ZÙwöµö•Æ\[ç‘fŠ­‡ûE¸pP#òX×—’Æ…¢ÖшÉÞd#®ZzÒA§ï`’OKA} ó =qŠ“í+¸¬DPüÏê1æFâÁ>þâG|Ì䂸%Ì|ôÅ7† ^EëÝ`„ñš«]àNGµ ü:¾×¥÷͵ö Yw“V Ü«2dT®œ¨ µetêr!{»ñ±@b•^t"¶Ñû\Á\¼bg¡€PšCX›ï’ÛÞ¸é»ÒqwïÝF÷|†døjh/>mßö]Ì¿ }ÜIý ªãåþqs54¼ŸÊ§6LñôËêòj®iò—¡Ññ„wU§[ÓìòÚ7›]ïäf]¾m_^^ û¼Ÿ »>?6Ífß CÓî°ŒºÃ8í6÷`è›¶_œº«Œ³'ºôðÈÚÃ÷ÿsô@vendstream endobj 343 0 obj << /Filter /FlateDecode /Length 54021 >> stream xœì½M¯$Ë‘¸¿¢–ůüûc+@@‹4—À,¤Y-V“ƒÊ¦ÔÍÁ`þýø9Ç,22<ï›"›õs„a¿kåéáîánÇŽý/á-~ øöÿáöÓ¿û?ÊøòÿòSøò?ýŸ"ÿõ‹ýŸ¸}ù÷¿Y-Z]’·füò›o?é§ñˈ_zío3×/¿¹ýô5†_ýæÿ^g97ù-Å4×~óß~úÏ_ÿïÂ[¨e¤9¿þÓé¿ÿÿ;÷æ×ßþê×øcæPÇ×ÛïÿAŽ8ÚøúëßžÿúïüUeŒ¯¿Ò…þ…]äœßBO_oøÕ¯ÓzèQÛ³AÕï÷ßÿÓéŸþÑ~¿þá›þs–øõ_þû©Éýãïÿðë?>ôqû喝úõÿü_¿ã— ã~µh«¿5Nx®ùõ>JúúØóc·ÿ|~²ùÕÿõ›ÿøÓøÍOÿi-ÝX=Åñ¥ÆTßRÿ’R¨úŸþí—ÿóË?}ºÀqö/ý y_Þò[o«Ã”ßbŒ\ã?þþö[¬2þý×h8Ç[[³ñ¥¥øZB£ÿüõÿïJÀ›Ô¯o_~ÿOß~•æÛœ¥|ýí?üñ·ÿíþÌxê˜Úäc×Öðرõú6üÿØ£—·µzýòÿ®‡ûëÿÇüo?Åœã[Ê_jé-Õ/·CÒbokÿ}_’2ßzz"ñ_}ßúùþÓûÖêv社À­Óöç¹×ë8ï[«Û½›ó[nüÝho­=‘œû¾Žö¾µº=ë©„úŸIÎ}_G{ßZÝî=­Ïü-&ö´öIO$§¾·ÑÞ·V·{O©´·ÎŸ•ôžÎ=_ÇzßZÝîåTÞŠž±…·šžHÎ}_G{ßZÝžöÔç[x&9÷}í}ku»÷tšÛÙ9Ú&9÷}í}ku»÷tÊë:žžHÎ}_G{ßZÝî=ÙGRóê°^ÿ<õºó¾µºÝ»¹ïâZÓÛ˜O$羯£½o­n÷žZ®o•{­öø–ŸIÎ}_G{ßZÝî=Û¸ŽÉÁ®‚sÏ×±Þ·V·C².…„“lý®…ñ–Óɹïëhï[«Û!¹?dKím<œzÞÆzßZÝîÝÏæV*þm—œû¾Žö¾µºÝ{ Øzÿ¶î³g’sß×ÑÞ·V·»dbGèw#½ÅùLrêû:ÚûÖêvHî“ÛCXWì.8÷|ë}ku»wtÿyõî’SßÛhï[«Û½§ ×­çþÖÒɹïëhï[«Û½§ûI×kÃí’sß×ÑÞ·V·{O÷Éí ¸ Î=_ÇzßZÝîÝO>—v÷Lrîû:ÚûÖêvïé>·#F޶IÎ}_G{ßZÝÉéÜÐÞÆÉ©ïm´÷­ÕíÜ'w”ñVžÎ=_ÇzßZÝîÝo¬±ÔÉ™žHÎ}_G{ßZÝî=ævTô¹KÎ}_G{ßZÝî=ÝÏ»¹´îõ_»äÜ÷u´÷­ÕíiO)AÇß%§¾·ÑÞ·V·»d,û¯ó¾KãO%§¾¯£½o­n‡äü”u¾-r—œû¾Žö¾µºÝ{ºïŠÙ×óŽ'’sß×ÑÞ·V·{OÇfž³Qµ¿ Î=_ÇzßZÝîïŸB,o=>‘œû¾Žö¾µº’G€®ˆž2Lö'’{Oûhï[«Û!1uo™¢ñ­ÕëŸç^¯ã¼o­n÷n*vÚäïzx‹å‰äÜ÷u´÷­ÕíiOc¼ÕñDrîû:ÚûÖêvï鸵R ý-<“œû¾Žö¾µºÝ{ò­–à¨O§ž·±Þ·V·{G§g,åÑqɹïëhï[«Û]rhMi)wo5>“œú¾Žö¾µº’»n“°Ÿg}"9÷}í}ku»÷tœi}l´H6ɹïëhï[«Û½§û—b›å‰äÜ÷u´÷­ÕíÞS_+¸—Snoy<‘œúÞF{ßZÝî=.Õò6žÎ=_ÇzßZÝÉ铜ú¾Žö¾µº’Ó©Qõ_»äÜ÷u´÷­ÕíÞÓýû«£¿åòDrîû:ÚûÖêvïéþ”-Ô·ñLrîû:ÚûÖêvïé®;­“a]rê{í}ku{ÚSIoý™äÜ÷u´÷­Õí.¹ïŠÖ"·KN}_G{ßZÝÉÝw›–:Bëf“œû¾Žö¾µº=íiŽ·´ Î=_Çz¿6ºÝ¾œÔc{kå‰äÜóe¨÷­ÑíÞÑ}³õÕe|&9u½ ö¾µºÝ%÷Eë5ów»äÔ÷u´÷­Õíœ6[ïé-ô'’sß×ÑÞ·V·»äp.¤>¦ù‰äÔ÷u´÷­Õíœfw„yýóÜëuœ÷Ç&·½ƒÔßê.8õ9.Ñ¥K‹ÛÑÇ¡&R©Ê_çN/£¼onÏúië¾z"8w|ê}ku»wtzí‘Þf~"9÷}íýOŠm .¾ÒdçS-Õ½Ý%ê½´ºKë÷VK½À¥wjå’s«Þy}Z¹äÜjV^D§V.9µ*±ðJ¹·:$çV9ñr8µrɹU×¾\rnÕ&ìS+—œ[Á£÷ÔÊ%§V54£÷V‡äÜ úØÊ%çV%¿= è‚s›eºÇ‡7<$çVËdl­\rnµÌéð8 KN­Ú2ŒëC«CrnµŒÜǾɹÕ2WëC#œÛôüЂžÿ}³åáÝÉ©U“ßܽÕ!9·Z\~xêCrnµ‰ñØÊ%çVËȺôå’s«‘ß>BœÚŒu*<<º ÎmR !zjä’s«eˆ¤Ç®\rn…Û展Kέ–‰Þïœ[-e°ŠS+—œZÍ¥—<|.8·Yê÷CG.8·©áÒ ÎmÖ9\Þîœ[-Å6<¶rɽU KE-燺KέRfxÿÔÊ%çVKm,LpnÓÂÛ|hc‚s›¥ÈåÇF.9·šýmä‡V.9µŠK¿Ê­ɹU.çç]rnµtžô0 ‡äܪGh6çV.9·ZÚHzhd‚S›ÆÃéyÎm–²Þïœ[­›¿=¶rɹպÃÃÓ’s«u÷×ÇV.9µÊ!^ú:$çVq>œž‡àÜ&÷·ù°ɹUmoåá ɹU/gè]rn5óµ/—œZ•߯Ã’s«`¯œ[¹äܪ )έ\rnÕ:ÃY§V.9·õÚ—KN­j(çè]rn•¡p§V.9·*‘à°S+—œ[ÕùxŽÞ%çVø×‡§?$çV³4vjå’S«륯Crnµþ»>¼ã!9·ª‰Á‹S+—œ[õp9MɹÕÒºæÃ¶?$§V=t†î­ɹÕÒºÆÃ;’s«R.'ê!9·Zz×xxÇCrn5"!B§V.9·Zz×¥/—œZ8èØ>éù.9·ZzWlå’s«Z ¦9µrɹգq¶,Îzþf\Vö_aüiúퟠEý‰wõŸv#üi'Ο´ŸÿµødØ‚ƒwë:ë»ðÉëMðÉKýÊëß¿üz)äpH|þ5â_òÚa)çX¿*Ö¯ÚŸõ«ñù¯þ_Þ:ؾÿéÖ9·úhëœÚ|²uέ>Þ:çVos«·ÎùÙD~¸\rG-=oµöÐ%~´2×Ò©Õálº·ró½ÕÝ}je.S«Ã rje±‚S«#zpj…PÅ©‰"§7ä©Éá“<µ²ˆï©Õ>µš…XðS+“œ[ùß[gý_õIÇ¥'bŸ,}dÍ6?é`ùðO.+ŽßÐIõå”s«AQÛÈ/ï×kŒQñYž~Ÿ ÓÞi,ûØñÉHqŸòú,­fYÞmiþs°´Òu)• —WTFÅùú_ÿ˯,ƒd~ý ²0ÖY!_ÿå·¿Z¦O*þõŸïÉ"#æþõ_,]eK]IîëíJ;i­|ýãï˜OÒrËñë÷ÿϳTÚ×8wô‡ÿGY's­ùWý¸ÌôõÿòvÎ@ÉamÀÿœ”µu7Tp(ž¦##þ¶vIOq™H÷SþßÅ/¿þ‚Ãôßi™Ž©^úº0¼eÀÿ— †cl˾/ñx’·>Æ—°ôì¾þ·­=ûÏÿøSÁÑuë$•`#x,ø¹–])•¾KJæ[´ŽÞÜ%)‚U¤{ÀÓ– ÐAZ7Àú4§¦Ž~¡?OI:ƒŠ}é2½Ô¥!1xQ šAƒ¿!H‚áyh8ÐLR0À$¢ h eÀvõ"S¢õl_í’$½ÀRÀŸY@”Ô¨3¿BÊ]Ó+ Rß5YAcÕÁ4\ñj²Ìôˆ§Yš*¡|…¾$#0‚©Y“0ë@Ió‰K«0§=`+<;–dà±(©“÷Ah$9²ç(&ºvæˆKÒõ+hoœŒËøþÓ·¼Ë¯ÝòÚ-ûnù4Ù·±¦aÊ)­ÿí«å:\òX§ˆ4joK²Œ`¾žOÿ’4Îm[g1yÇž! 0L¿ß…­Åy[’õèKP¦®æ 86`®­Ø•¾$kw@ˆoê6bÑ’A¨2ft½Ú:ð±K€éÃV@b^– Â_²ôiAÒ¨ÖµuÖÚȽ€r-sP7Xœ*, P;â8Ý$‘;£­­4PÍÜí!C•…[áÖµ•“ÆÉš÷¶nš®q–-‡/ ŸJÕÓ•ÄÄ|qÓ:®ð5ØÉÅ$“©f=dí J˜"—Š÷³Ö 1HšÍœók%;>wŸ«©O«h¾§Èkü]o ËÀ±9î8³Ö±´(‚ië:Qtr®çEs,Á:ÏqF¼ípÕIU×m£ówécƒSjöu¶xµwÿÑÒ¡Ñc]²Ú$åBâÔµûø|¢Ÿƒþ1áÐo•:!$Þ—59x’L\mð¹Õ–$tA V’õv“ÈïjwÁZm¢=àzfþ§6ëqA.³ÁWÉš]¤Ö@%(S\8EO¸¶1g´rÑ ‰4\&ó=T—kCa!›fÐÆn*ÖZìqš²&[ï@høÐ dº¹¸Ãû(úw¬%•)X¸¡¢õ*h!n±¨‡[Û/GµÑ7Ý“¸à‹š´¡]Ôüñ¶U–×N{í´ƒ¦S-è¡ÉõÌͶ&—Ô^)e¥š*·Žöa£\ZÔƒm° _ ÕÈcyy¨æóðôU(ÛÛ6…^ÝtÏ2ié‹Á‰ði˜µ(ºûšùì——,6‹žx>Ü¥›j\ÀHÀü½¦wç´É®ž®­¡*?%®•n“5©º3)ÑÝ|ô Û6J«ïæ BáÔ¯ÖKðүЉ<éâ¦@Q☹˽èZZ¿*„W·µÛŠI?r(A£¯OŸ ækvÿU/2lôxß-eA0š,ͺbý‘£Ì‚µ{ý‹éÒ[óÅzÜ(:¨^›çµyþ¬Í#Së™'u_ Ý&kO!¶ ³1Mèß!`¬AOÓ-•Öf@“õ(2tÓš#î Ü2œ¢5±Æ^7£;/-TX½,ƒÊØdÍß6}׿ ¶¬9ÛF,~ä#^­÷7•¾ W·s_ÛCÝ ¥Ýà®Êz>!©£n½Þ»ÊS­6SÜ€ÞIÜái™ä|Àµ“†~…8EÓÄêROirÅšþ}=®ïŽë›[Âjêº(â"`èÁlå83ïµ>æ›õ³nÜ©@P檞+_{,U$èyדÃq0bö±À•!)v©&zA±º„C²Ž|'°Œô-qPØÏÀWƹ!j¥ ¤3ä²Kx½vÎkçü;çC¯ÏõX½=;zŸÏU&q±Xß’ÈÀ„½®ežšÉ¶æXç5b4ná+j“¤CëÎbyËÐFs’¡ôA_³®›)wÆPZµ"‡0ôËõ/ö8ë®êÔZ›iÞ¹¦?£.”\ßÐ(lõ»fKjkò§‰|=J¢'•v~õk)èoÑý†v îM÷ŸbÃ7Þ¶Ùß;ˆh`™èκѭí÷TNJâ\ÿŸKñ_k]’y÷òÒŒIý2\c€ÀÙ>@Ú t ؇\h?é–Ô踛ñ„ÝïzÎ(úéÑ{¾Þ¿ß^›çµyþÜÍó±n½lÍZšÓ.8‚¹ÖY‡kƒB‹ÜµÀ›Ä$Gƒ‚¯™@"kpÑ5Ü1IV;$‰jZË?È{£¥M'9°û˜Ÿˆˆ¹åå5㾒뾊ë$cÎlì@ßÁ‘gX  ÂQ‰6/™b7ª°|¼6™¿°[†$‘·k^м>Ä¡’ò§•‡ÇÁ *ôŸül_Sü×b»m×G±^¥ãKÕm›r–i}s™!¹„ïúìn^’açZ4],5yËáæ’ó YØXHüà`H®öC9°ëȲsw;ö3k;Ö¶ƒo?ÁRS%ilj¬M·~é_Z+ÙýRüCu)AþÀRZà{S7À™bìp¼Ab¾À’Ût9µÃ{f‡Ïú9hA.7üÅô•ÞåÒÂy9Šlj’†æÙ´ æ#ø)Å YõTeæQküQ´EH§wXë=嵓zŒ¤^G˜xijETq cJ‹]"˜¿mÚ¯’ùÛ²yÆ.ÛH–Ákk½¶Ö_ak}|S#[„uÈ*êÔþb‡¾…n§g ¢ @kÇ®§8^‰†àjä-ŽËŽ+].ûf¿éòd7ÞJÖ 7|R ˆZ¸²ñ’üU°;Œ;#K’Ig…H‚|ö Ø V›2µ{Ö[ÉÖFå´­?%µ‘' øoÝH!ÓÄk¿æ§{·Z3”áô DîsÕ.ÈËjò¼x­ð/z…?öÀ!¯§/=dž ð×Dz;š5xpVÇ=„d’Cž‘dMìœÕTµ˜¤÷Ìá 8c`×Ì,œ£¬m¶ªXNÝÔa ÕÑ ›w§*$Š+EÈPÒLA®Ì™Š¹2ãzTts-´Ë°f~Ö,aY“òòÌ5çÖ¦éÈ„Dñ°àèEÏæÓ‰´ðftk2˜Ý‰V>¤®ÙQ&þªpCÏõkwê¨þ æBé:p(QÒ»âeA³²Ó;?WÒ´Ë( ëÒAQЗ å¡Z+\L«¿¬9€×>xí»ìÿüB u‹º .§É“g?“ösk;Û¶ãz­§à~žNËb»)4“90Ã6ÚkÙ Šuj0Ò\’j†mišcIBæfEÔ˜VkÏ~Uɰ fMŒN",4ÔA‹p¾ ¿+½®Ùø¸ËgæÛÛÍuž_ݾ¯)ÿ7rìó<§F'ð }m4óÄGó±5ÓnâyðÃSàp„óL”‚=„ ,Ë?“ÚiR¬ ÃÌ©98\’¤£uI”wÖ¥uAb,Ψ—C,DžÍàÞ˜Qý O Ò($) Kt3B2Î'Âo–¡Aå…’&h8ÌIÅ¦ÐØY‹ŠeŒÍLM‡`D{bà3%H)wâ€!l6öÐt¥l©hsýÔ¤Q’¦kýªh¨õ84‰VÇÊÉà —õ♣°RJÊ»¬s_ëù ZO~¡pSOs¸Ñ‰‘Qroß”µõýÞÆØ+!Q.³àyJíâ>ÌÜ VÖaéEY¿Bœý[p eó³ £€7È`.d¬+i’*s§D{Á'Á@fê–Û u@H‚`©ŸÐ<øÄž‰µžo2)ZN_¡Ú@o`3¼°*IUp±(àÁ¼ZåVÔP=‹¶V£ôJ HY†UÆRÒîËö’ƒäC_HÕç¼±I±-7z£DWÌÌÙŸo2—¬Ú…Þ×F—‡=qÊúYŸ%Ý?‰)N:͵ ·´Þ'™¿×Üà,Š$«è A´½fã<î>å7¿väkGþ8;òãðÝ%z{ž´ç(=Icºf:íÙP[ÆÔ–Uµg^=øî à(¼‰= $ïHöLƒ×´§}l©!{úÈža²'¡ì‰*{ˆx#ï¡æ=½…¬·°ö·×ÿÒ—ø“Ü¿GôßM á7EA£È*ª/8§'ƒƒLªDõìœN ŸaIŠFÜ9¨.œ¾Ñ·p2…ËF‘ýÚ¯Íñts|‚ã…"*Ý$˜<æ*£J^¨f)Òµ?ˆ›89LY tá2ð¤g¸tŒgàµ4ÔbêÁM× ŽG¸MM'BÀUœd÷K±®³Ÿ éìbÚ»v§·Ý)pwšÜ¨}¢ÊêWÇ…ÆjcºjQ½Õ±Ø¤m«r—Øšõj´ïCÆg Fjr€ÆêÚ”P‹Aei’(¯+by­ùí’-%ÿT¡vbÚ{ôk”ñ¾âÔ,¸˜ÐRýó©EÔºõÖ5}„£E{bL(·E~c?®¦Ô•×vzm§¿Ðvú„3#gyX"3²nâ('ç8¢É}0‹Ý•!9î¤fÑkT“3&ÀÁ +¾i6Öù‹KÃo#,m6­%™µ@k3]»'Uk e“Q($NlêãÀ‘j·À4Mñ‡yh8ÒGš…'D ;WÃÎç°s>l¼Ϲ#º|cR{ã/®^¾>.‚˜6^ ó.Ì'‰së˜hÒ¾d\"M_÷¬žª—“a$‚éH[bÞ³ä½=ÁoKÜ7¯g\_;ØÎ¶óŠ%F„2µD°ÆIÅcH #`¤WKÂó«Î[”ÅM¼ˆÚ ’Éè¶£Rb5цh·¨0Sa‡Z¯e†!6Z…ë´¨Â0xÏ™ýWð®Cý¤Ðæ^’ì³UQhº£$ì´‰àî_’b•hôbOÌjt•—ý'æk¯¿öúßÃ^ÿ„œVwÅ,4Æ ‘æ¾®‡:Áåà¤KØHu®ýéÛÄDWÞ-ÅïP”Ÿ†D„ »yýj,ÃZî0T8ư[Œw–þ¾ üœn:J¦`{Bí•’d¹Øé€§D_R„Cq Šß©Qš=KêÓŠ…>Ë5vö< Àx–`x>ƒP¦o #™A(›>£9öcâ"Ôé@?fý ,!ÀÉJž™‘¾ ¯¤'N Š}ëy3‰+]«z˵Èk7V~,1àzTTö‹‡ r_(3±Óô_HÍã&¬j§R¿ðU@MIæøè%y¼øÄõÙð‘“Û)—Žýxm”×FùŸn”Obבɲ DøY~º5@ÒÓÖk–1¯6+(ù]¾(ÄñÈÙc¡´Á°<,„¹GÝ·ÀüºbÊ\®ÞrÀÛ²"ößå~Ä­„§Éæc´72üŠX½€ ¾yî*A²¹N3Ê@¿k ¶Ž/ßJÈQ%¨Ù-Ø‘5Wk™-¶ †áÜ܆BX$à.²hCRQ8¶U›JÄ •66ËH-Á8Ð H.I;ê&TÁ·’ïw %è8Ú\W^àׂÿ-¸jÎ<ònºJ2  SUkÖ¬U Ñå2¥²üÛä Ðü”"ï¼÷H"Äy˜EŒg…Š;æ:L2{=\ EÙO'çÀNáµÓ|=¡ÛéÂvJ±ul÷”<ñ¦l«vˆÕÙË”.1&ÂŒz‘pV ¯»÷<*j!-fˆŽlr̃6‹;Ì5¡ù²"H3ÄÓÖ¾„e¯¡Ûo¯]ðÚ: <éѱBÊmغDŒK_Yãk}P3(Ý¥EÐÒ4PAhMQ¶è¸ Ôâ~0aT®LO‚ì:º¢‚d“dqBA• 9 æ#qÝêÿtG #• ç¥ &Ë>8ÑjÊ@›ÔÄHBŠŒÅIVNÆ÷”Çëšõf õ,ÙrOȼ&mî‰Ï’?£XÊÙ¬‡~ÉàØi8¤œVr>)SÏ9YM×4CÉGuÖaYýbE=Þ⺠ĸúÚ¯±mŒ}èŽxœÎE¼‰§¥êCËÎ »,£L·œWÆáú‘ˆØ M†Ÿü‘röb¨}0èÑÝW-0Iê0ˆçÚÝ8(žðTì\Oø.vNŒ6cgÖHÕxG²±ö\}yO¼}›?ð‰Ëps+î®ÇÝ=ùÄ…¹»9/®(Ž¥eð¥ÌëÕ=xqYq¯]ð÷¾ >ƒð”$]çdð ¾ün'öh9âq,–Mó¶N¥é‚«C'ëÌ¢ï\3Þž¦´¦â‰ÆMÉ?M6'OhUZoÁ˜´è'Ñ÷ îS.*ÞAF-õ+ub0Ts«ä2¡Hʰ}š>ý˜b Õ|ÜÓ se*ŽMDÚCɽ³[YÃ!ªFôéM£h†P²Èž9+»D.wneLÏ/ßTd¦Áï´’ÅeÔàç¥\äv».–B1¯ü/à'n¿Øí)Pl“=œ]OÐEðeµy©d÷ÖÀŽ3KåbBn&æn…î–ênÍîæä¼¡w°ô@uR!>l-KšHB8Í£ˆ0“&º ÆjùWôʬ·ž¤Åd4@PLÁ÷íµT?—¥úPQ^GÛ¤=‘‡qè*$ aŸþÁ·!/g·”¹Õ&Ë{Z«œø<ˆ\«ÙcŒ‰šF£»BGI²±à°Àn‘$G'É)âµ:{Çá‚ _{ž${  ®~àE?¡4"²'Pª«Iä áwÆRO2xƒð«©C³UyL“±'‘,#Ë-¬ºˆu·zvÆŠBªÐ%±òyta“X­K§ú`=Í\íôãÁï] ›sù>Éi²’˜½buØŸ!—®K§;ñµœ¿˜åüä†|Ì”#€ýÊݼó;ïÐIïÎBÝÑ%ƒIóÏ€ŠÁ¥@²ˆ‘àÉÍ’…™·¡¸5`Té@Ž,îeHpéõ-!cªáw ο‡v¶èÏ5ˆpÀçËZÈVý %²µ8îIFàž5¸gîÙ‡× Åo¯µøaÖBá¤ÇœM¦²my[îçžúä)÷7Ùßv›‘= ö$T¶‡Ó¶ˆÛ“ËJ²§«ÝBñ­ˆÿ’Œ M£ ¸-‹'‰Å¨MØ¢«CQðS*A–êFÇF+*ÉÈPCЉnJ”¸øN‰²u5áLY»&Ó~{-ÖÏg±ømŤbHI‚„j»­y±0—P¶¡ 1‹D©UÅ +WU<‘¯ Ø5,Ú­ðL²Á‹W §ó =çn) [¯gµ¾öz`{Ͱ"}¤d†ËB›·ì$ü[˜ÙuÜXY”•í ŠZóÔíÿ=(°öà€Øb{cu< ‡ yÔsv÷ÝTî衬$]¤#'ÅÜ–r.‚ÓÞè¥7‚¨µ_›ãµ9žnq=’˜–„3&ÎéùÐÖ‘/þ”ªlè8Ýò TñˆüS]˜í±Ö¹{¦fRˆì$9yxϳ'íþX pÞ?6'ug-ŒU“éq8{‘ L 7kUã°t–ŠØ&Žä¬-¼Tvì@g„‹’îW ^;:\iJ[IÑãeÞIršé"–gÐå¼e|Ø);# BTýHøÁ'¤:Ö–g§î¹Òû|{­î/xuÅQŒ€ëü²•l‚d„e%²ŠTI9ÖG'KBE<Þ¹H s©^ˆ! Á:“Ò´Ó)XQú$oÀh[S:nëD7×v%oõj“Œ~ydR7Õ6³9F"ÉBç¢`ñ¨N¸¯5VÐ!˜;\|žªMšÁ&½¾"9ÒˆnóŒ+è&åF*®PÁV=\1‡) ú\ƒ#Üžüiâz«>~JÆ´´¸L žoÞ÷:í"ç}-űæœYÆÂ+uýo^W¿W¸CèµP%AƒHHü?R¸€IÎÛt‰D'oòŒÿÉÒƒ”\ [Ö1Ž éP¬iéë|£r¯ÏáÕ@‚b¶¾•>˜ÉÉ ½<œuÝXݬÂI=,ª‡·Âz f&–`ÕT`v! õ;­˃$WÞ@€ÀœBlÅâ’‚!Ù €L‡¼Æ2ú§aIª)o¨ñÈždoV>à«ö7k"ÞUøâšÍ! ÓNà5°‡¦Ls T±Lt‡í!~ǼMdDérà-ÁN]°±lnû'žýÍû¿Gö(“HÃÆÄ³³õä*Ð@ î(z\á£èÞk{¿¶÷/q{ÓTy¬Ô* ,;)T“Y= i&l+N+‘’ÈìŠ=‡ET¶™ïÂÓéc5\®„ ÏH®¼ ;µC“·g}vÝ2›š8e[9lÂV'­2Ò^ë+]_=ªÉ±¾­’õi½ƒóº<©3¹×¢ÜëUn%-·¢—[]»½öÝ“úx—z¿Ãà²Æ•á¤GMgÇkü‘=¸º×|2'lI܆n“DBë[0Œ î‘äonöâÏŽÑ{\D&¯ÍóÚ<ÖæùË,”Òte†åYQ @ÉrS½î¨á`ÆeCFÒøµüCTÅJðjDËç–Ã,;dG9Ö©Y„…¨',r¢Ëû»r£±åÈ)mÉÛ‚‘SÚÂÄ Ð6Q[–³‚9‰v/“ŸØt«¤+êw[Í=J¼G’ŸD›·ˆôµÞ#Û{ô{?‰¢o‘öY,¸ÜvmÕš˜0¦¥9/®P«¯õþûYoyG ßnÒ()Ñér³õÀ4®Üµ8ŽàRN6ëÑóŸU†Áïîö"?ÂjÓí¥HEœÏôP‡¥hîì¤F` o†:ž³ˆÜ}³Ë»»³~+‘²]s;ïÞFÍ·±÷}{-ð/{?Ƙ?–Hº=­¢´WZÚ«1훞TuÚêEm%¥¶¢S{]ª½vURh­z‚ß*Ú¬^û œ+ª’¥ ¤ŽÒ4 DãÀé¸\dîâAº+ˆg^Aµ?“ŽÕNa”¤ál­9’¯z0ß©8:º›šÉOC=7ᜱ§›ù•þ·n°YbV¿Ù®Å¬¾½ïç»xëÒ—Ãæöô@Ú­í\ÛO¾X”E¼Ü3šýï!ip«BƒÀc¶æ#ÁQFHHIòœ¶yHpçyµ^€ï7¼‰ µÃµ£ß”¢øxžÓ÷T“xäèB½¢+Ì (‚B#ñàH{FÊ*úµC‚K¡º–V€#Û½ŽãïJ{fX;˜Seµ‰<‡[tÒf¬f‘4É£î +ü•@<ÝöMÀ†5LMº'@Ík9‹ÍçqDñ.wÒ·×Öym?oë|R¿ð”®pûéY>Öóð„àzãÀ~B“½Q8o4Ïô²è'„Òç4t/¢Jœ¢Á±«ƒD¤5JÒ±^¼œ˜Ökû)Xe;؇ÕÛ Ü¨ oc`xÂÒ°39ìl;#ÄCÉ·×2ý–Ifô…–j«Èô¤jÓ^Ùi¯þ´WˆªÉ=z˜ ÂSG³ö1C.WR&cøôeÒUÇ]î >ÉH×áéqV¢¤ôÀ;ÛüÈóLS´ó m D;IÑFdô„ìè !Ò•4éÊ«ôíµN?‹uú˜E?&"ëz,üö&ªº’–d½¬b·1Uµ‰VE}}äI(ÍI€ç@a*ö"\ K¨˜ ͇&FÚˆr©(f®MÁÇØ&[}—¤vÓ>B#eò’8erèt{V”u08f#&*K>è:ºÕSæ3I¾ƒuœX3q½§~’3YSs`:+ð2Ѝ‡€®d†v}8›Ó^(ÐÑæ%0ØZ oÕl®‹% Ÿäµd.«b Ü×Jý Vêc ±©ÆÝöD{@¯ ÝöŽ/@Lˆ÷êzk.å-kb®X’î1=Màð¬VÀ<ØÙ©8T ë$LÅÁ@AOÙùÀŸÔƒ¼–ŒÜ«J^«RÂ^¦€ý‘iS°ð8¤á1 »ù£ü½“ˆÑÓ8YS÷k¤¡f<&ÔõþÆ@ãdå—)çwôZ†¿ý2|¸ËñœXX)è¶$9 §[ÌêέÊUþ’¢´8"ػڬ`D¦'8Ã]Ã$ò;5›BdÐDÌð>c%Bó´Tþ mªyñ3¼P]‘@§œµ ‚=HR=EÀЕ†ÅDdÌ4ŠOÁDFì2BY2©¯ÙÃEµ‘zS4N²U,Avøf¸R³b/ô8sôz¾fó/6›ŸXþ<œ·Ÿ>àê¼(™W=4ƒÄ‹Z\° ÔSK>ô:&S´“…Ú‡å@«I™bP…R §Jq]õ Èsd„‡‰·ðz¼dF$JË3fšý^F=z&šf¸xE `¤ˆKŸQQùfP„Ÿ~÷’Âx›jÙÕ^¾é‘Yºúô|8…ô4™' I!ö[«ð1ê¤*I©{Á&«(].†-òÇàok1³ý‚ã œ¡n=çAy!Yý~“Þ`R˃¦6“p›ÑC6ÒC‚JRºè!1pÄkyıÌÝb”J ¼g÷^†’ ãµß^ûíßj¿Ñƒz8P Ze< äïE…,¡SX½™¬"•TäU"g-=ß#ØæIQ48¢§•Ñ*‚+Ô[œ")¼KR°B¹ë:ÑC#Ã(3àÖ\Oï4\ Óʱo1tMn5ÙÈÕ5¦ˆ$ô®¡DòeÁ“™I?‘‡˜h¹¢À4 :›~b^ èyf: NÀ«¬Ï!Ϊp·‚ðß·é½þkŠÿªS,BÇHÆÍ<;xõƒÿ6@ T…¹S¡´k-Ü*Ï ¬âÛøc"Ñ>$ˆ›â®ùáó;À(1÷¨õÉ–Žeø¶ØÉ„ùƒçX_¹™õ°øq^âÕAñ WÏEÞU,žŸ]ŒýRÒô¼UX0Hœ?˜$ \<« †É’kïÄpøÌ~~ žd òhþö@Ð,ÚJß^Kó£.ÍÇÑ÷8xyT.WŽx'•eEŽD?N ºš²×™Æèÿ9Èb#egåTS™ZÒos‡_½(”1Ð €S–§L$de¡uóÔd¹°²£¢b ta=^õ|gà¯éžJ–ê½{ÂvgÙîPk‡˜—Å`>óbì›ÌÇCiZëf~R„Nô8ŸªÛQð03Xý/NÂÓ^½Ô©N¥üà8EÆ®Œiî½y_«ös[5ñu<^ƒ·g7å~™^¯Û,óùÀÖpzyþDò1ÐûΠC8=c_Øv‡'LW6ˆ1â «De²†LÅQ6àÛkz>›žO<Òùcp…&ºÃU¾S¾;9Š˜øe‰{k«Ã %¸¿¯fâLn8âqX  s¯·..«. ƒ¿’ñú¾–w¢¬3ÔÖ½g¼3‰ë@/5ŠWpW)N=,÷*UÁ÷d®N݆㸯ŸüÞ‹‚ïuÃ÷Òâ[zÝ–‚·¥é}{Mýßjê?‰„>–þⲕÛ*ˆÁŠZ‚\lfQul Ó–½¾ÇJ¯F!µ+ªŠë­¶¢˜W‘~Ä)9 †q% S¶Ai²ÁÂkÜüň`†Š«…ìäÀH\ç¡ ®Olãï¤ÊX’f˜jJ§•£Ÿ5³£èEíÍ‘QÆ6¾b¤§wIüÆTÔ+ªXý²kyµo¯yÿ›Ìû' Ú"¥ɾC¬pJ3—ŒzWé3 ävêFx+Š„L¯f¯[ #ÜB&‚¯¢6¨¡‡ d™ÅÐCSmüa »@ýÐi† ÿîÃtŠÔy/|ÓHßYYÔÔlªH •2ëáñË(w7º›s…ÔÚë,hå~C°÷ÇC‚ø˜ê³™o‚ˆ"BmF–ñ54*š“M(ÌŒx&«®è /Ì£’ KâUϘå‰@G®ì‘`³J~³uWJ®B¤I$¼{·kÎØ䃇t}¼©K—_Pîµþî÷Á'ªc!û¸Æ$(F Áè‚(‚1ET”ÎìÍç¿’ðWTŠ™“N8x+TËãïµtðô D]K;ÔÏã®G†“ˆ"jÏÎÓÎJâÁ¹Ðt,BbñÂpwáÙA€§Én Ãì„u ä¤Q_©4Àz£A`ÄkÌà žw’šC•4‡“¿ªè;/+l‰šµB%26…µqÌÇhw`´¼ðGR½@JåkQ~°EùÔØOuÌ.Ѭu Hl žm/ ß:J>ŠÙI¨×œÕGzôã>ñõîþàÝg¼¹•¯žço¯•øAVâ'Ø£é}{f?1à7#÷쮂ݰ¹Ã×å˰~ qÙÆ2éè&¨˜‡žÈ;JôÄsÀ3欷´Ìà$€wO>à›Ð9W‘‰â˜>òKV(*ZT8!†² ÂÏÈ!_܈/¢¹}ªsû·v$ñw @~®%÷ų¦×±¤VkG~þÕEò;tD¸&´jéT¨6á4¿K’èvr{Ö7<$–&ýÐ>Û×®xíŠÇ]ñ±jz9ToO­ÊÝòÜ­S÷h’a‡|‘¤„íú•Ò¿ŸÆJÍw]dag |/° yÆø~¢šQ¾À~¥B*è¡òÏDXÛ/½ / þ‘q" „WÊú/¾…Å¥±ñWÙ"œD˯Ù~[T^-KÒŽä‘Ä[qÜw«2¿—¤YÒÌv/íwדûíz2XIw1Kh „4|Ô‹óð%Ï++…ê‰Ö“ðå[òLŸÇžuº¼6ÌkÃüÉÆŠåM‚‚P+ 5˜ýU§3øä’ª„Æe¼ó¤_ÍÉÀ›šÏÌpÕWXÎ3èΆîÙ@;Hè ¨Û ^Ÿ)'È—OggxE™i¦HTÖØ–½‘ž»¢bo4Ú‡¡žËÒèŠUÔŒÐÝ4'ô3á…W×`E!€bÜ DST[Öö²Æ‹ñZœsq>ÉIô¯Õ&ãë&€>ë¡Ô­ð{9+BYÜS6Tì 2¿lRoXØ•ŒãaÇFê±À×bþ2óc-…Ùá3ƒ¥#¥ I¤Ìá@°œn¯aQ¡·åLïiÕ[æõž›½¥oï)Þ{ø–*ž¬Rû´‚i0LÖ¨)U¶ -~’ íÏ*p+½"%‰Î§ — à€Ð&”Ü‘²ø¬¡ßHO;3¿½`h‡À©é>xò Ñ‘(uÕ”b3Vü@"û[ÖE©Ä¯µúy¬Õg‰9…ßY˜kZª~õ,ÀéàPš@zªÑîX`‹`‚f‹±=áÚy„ÖùŠ@HñÜ:aý@­¢Ge¡­½Âõ:øñäÇÍÒÛºW¥ß ×ïÅ퇸iî”—¹²ìš×üýÙó÷±Úö˜'}“õ8“j”÷;…ʘ{¶u‘ x‹ªºo¬¬®³§fÕJöl¤'äÛù´a×SnûàøQ²P3üfÙJÿŠY…yvú÷ÁLk:¹£KX ©'aÀÊ¢Mo¦-ƒÖ¡a”\—›£²T“Dµa ¦7Ií¨Ünο=ç|ÏK¿¤®{­ÒÏ`•>.2q!㿉V?Rb~ìuÝVõU  „5+еnµs@ØÏ[LtlÓ˜; Ÿ”¸³`…,uÄäsÃZ’¬jYúŠ-ßµ{ø$È1Ò ž/W¡àÇs¹¬ ¸Î ÚTTÕdc‘D/D”3Í“–¡0“òÀ甿ann4töúQ#Á±¯*@˜¡ÑP Ð  ?ÌŠø,ìe ¶Ò{ùƒk‰„o¯•ú™¬”¿<øXo²IBû÷.&S+!^XGx¸ç¦ þVì©À¯™tP1•âàן¬T±ÅŠÅ}¦úYGv´ £Žb>ryðÁöCiÈrá23ÂŽõ>õ„3±cVé« .7Fä§.ê7öïôŒ–§aIHJ^bçh âUÔ, ÿñ7Æ óZ½Ÿéê}lâ¤@"ÕÖ? ¼J´ Ps'%ÑÁÇ¢€mR"+E™•ýÏŒÙWî§'üPO8¤vž©Za§_@¶à4O³ >d<ÄŠÎ*T[MÀäá—<“ò2²ã_3ôÙ }R¨+ þ†’Š=euÀhÅž K¡­î¢4»Œ°€ÿ¸\›ÚàÖãtBf±cNw×}8&ý é:S?Â…¨‰Ô]Œjó“ÜÕn6Ä(ÉA§×zš.~ŽÒS“U QyDÉ¿¦F6î&x-uõÄÚÝ(ç*ÂÕ!oò‡X )ùI¹<Õ~Ô´ÌÃXŒ_ðÓ5T°Mê9¶Óú]'\·^‹ð7^„OŠ)‰©†–Bà8ÌD´ÌhQ‡dÍœ×ï¡ãU ÐÄ HhÈh‹¦ººDUÕǽ£g䳌f1_7ÔTHË!6ÊRœ“Ê)’èÔ†¾ðd>áÒÜé67Bβó «çnöî¦ñÕzÞìëÝß8çvZººn§·»,¥ô¥×òþb—÷óò”„Äá íQA>q8‰O›ú^F®Û9”êuJ)!H®˜&Í“'}×ÌPÀeDÅdž¦AC5³Ìpl÷¤ÁíxíIçê”\KÊJµ¢‡ž­ÀºÜÌJ-ÑnB뜧mIýìÖ!¥ƒu0†^0’ùåN÷¶$LX².KYœ¸ÂU¬À°&(#¿$mŠ|N41”âSg²Ç¡vN|[t7@ïë4Zý% jS­PÇ’°Š x*‘ÜgS(³Y¸óºÄGaËײÿ}-û'åå× â8žX&‡€Ulf³å£š Ð%q o@Kpì µP ®áÃA&¡ÁO’˜ÀgQQp»Í༠s æ±Ì`õÔd2¤’IÆB®q”;ïJ_¡§F|nZÇê~Õôž1yñ¥*co&Ãä/I”$›)”@Ç• Á\«ç¦é)Q,ÛÀw<{°~ø•p ­=3©S,Q÷<ÍÊËyÍüßbæ?+ËðÀxo8—j`[Á°˜¿ÕÔhüQQ¬ ™qB"mÁ’«X£“7»2“˜¾ Š ÝX AÊÃ’¸Ç*«ÆÇ–·)g†ÖóYhŽ,Ã}*)1Ä,ZÓ;´#ŠÁ\oǽ3Â2N âO¨õwúý¢cñ߉þ÷b[½€½¤À^v`+M°•/øöZà_ö|Ç%åÒ9Ç !ãð!i#¥Bx4XHt Öea­˜ê©r¥*Òm“AAøTñ½žTŠq-¤ÔEwR‚½2z–zàŒÍ—VçLmçX¾Ð?cÞÙ‡7‚âÃ^†©L a"à×I 9çÏ'Œ… ¹‡W€ãÃ^3]rqÿ:$“¸d_œ‘3 ä×å´K´2k;È4R–Ã\á‰ìg¹È6«)åÉÏ åݰzXáÐVÓªTe¬$þò+ùP_{åµWþ”½ò ŸÏcÊóMü*Äbæ Ó«¡•Ä;ì[Å—%ÒY´³|p®Õ0ÞIØ1¥Ež ‰ÕK´ÜnRJ[¾5ÕÉ%ñ´Íä¥DÁ+9w*±±bW¶°ó$_oà.M¦¢©qpÚ· E¬Zϲ§fUƒ0U <ƒŽ„ýÊÙ³PlÀáZJv•sŸ,íúM×ͬ|²ÔnU-‰ÐZ-ßZ(àô ‚{M"ßÓ̯©èß^kõ³Y«OòùjVºAc‚ÉŸÊ×݈3–Eø*â•)¨RÇb Ví*w-Nvîߢ²\.W I{±Þ>{Ex+xVa8I]óátLÚʼn©s~Po/ŪK£Œñ("ò³ÝP°wN‹Óoäg—û{›Ö m6â ×KDãc¸§”¯»‹Dˆ—XºjdŒ0…£¬½EàÀô`ñߌé¡y ÷qÖ- ÷µ?ÀJàSÉÈS›$‡µÈÈßÁ÷·º€Ä¢›Èr«& ê Á*2.ŒhUáfvÓ=Y1é5uS§O$k.1Ür¡á¨κÛ!_š¥•o®(VŒ¹,w¿[4ÜbiÉ«õ#ê%¶[€¨õ|ðß%…ä³@ÇzmËÔÈÈ´" 0 ÷nð@D¡¥exANP5ÓïÛôÉqúšÒ¿è”~¬AYñhÒÑTÕD±RNPÆ-yF4ëëcq Ìðvé`ŸD—XOt/%‘’ôñvã>Ÿœk€†e Éó8Él0bqHéßT)Xª]a~¸@½ÿ@GØõˆ]×xB—³Sêl´;;5Ïú-QŠóÀb‰PÎs¡†ˆnÖ>i–žø°Jßz­Îº:J>.¶g/à ¤Î‘ÿš²Ï4RØTË–™ DVˆÒª³ëV«=ÖcyHYÉ"¦$µ®ûó ±=‰lK3{’‰¶%«íùl{ÎÛž÷$wN°ÀY.k-ÂÃEgS –òÞÓ° ŽÅ M¾YªìCÛLßâÍv&QQV€ÛÚ‹7t?׃csв¯_™ú‹*+ÓVX $€ôyÅ+&$-‰s»!²Gõ\-Ur e‰V÷qOX×>yí“ÿÉ>ቂøÐ CeŪrP¥©ìyB0fs‘¤ Ÿ2Ò/ cq¨)–DdÕk3€,:h7¢( U—Ê‘R^“&L9¹áô–Q£†?ñˆ­òœbtºJ#D•iYŒ-Ÿ"…g}¯¨&kÊ8kÁ ›#à5Y¼+¹e=†P`©Èµ¿gQ¢ÆðyñÇÛÈL…; F2W$Ë1 Í¢'=_¸ÂÒ¾«ËºÈ£ñZ«ŸÇZ)ÏùO­ÂL#$ƒ&LȃþˆÁ[?”Á½ðмWê•ú ~d£NQ†s¦¥‘t©S½“¬Â_G±ºlE½`Ø$ ñt>8XLpˆâ»Љ2dAgÑ%¶/‰WnÌ:b—d dÄ/´Yª)mUqë’¾nZÑLÑaªM——ý²*.ü‘¥€û\‚<6˜Ì»$ÓñY³ê5›§v‘> OSœÂ¡USy& *EÓ{3ÆVÏÊà¼Vô´¢Ò¨yD;Õï¹)Z2Ϙ†ÚQâpZpDÖý0Œƒÿ¶¬{9k¸ÁX‘ߥ+j@âüД'µ6‹7À™ìöO$Õf©; WÔFŽÆäÅ3ÉâwR¸dš±/:9™Á/(» ¼« ¹Ñq.Î(n9³‰DWClIŠÇØÜÞÓCTÀŠa¯àÉõÄUQ`q­bP—ä¬o—I—ÊúZˆ`!Ìq³>Nàêâ]ùÞ˜#pü€y›™Ä-Šësi åp±–!f%#:ÜÙI7ÓlgÛÆv²© \1UÔJ~Ò¼-9›¬ÈUê’´îÙ¹AñTÔÙ”[5$â™ï dUáÜÍ–a\õâÉÊYsñ(î™ÜÅé³#þaB•­ýšã¿îV©å!¨ÝzŠû#¨BéwÙo¸¦ÃA`/ mm¦n¢p·ß"/ì?%X-Ë›…ÜÖ©`õ)CTÍ¸Ò 'ƒžÔ3·’ÝœpJY‰“FC‘µß¬ô’7)rÔB©µ`\³N»!éC„ŽªW’™GUƒ#ˬê=r¹G7÷è5Júí5ÉýI¦NãY ·ªsD8ÍÐËIådð¹çHSJ\žë°Õ-Ükîõ÷‰©ëýCq&ÞQuÅxp$Vctf<Ô½QýÁãhYë‡@ ªÞ5¬ËàgZœì´ K&ŽƒúA}Âö£¢7hNúÍÁ&µhº‰—ÄÓ@Â¥Z<ØÈVßPÛ5Úx­Ú¥Ñ(1¢ŸžÛxY*åÚ*Ãñ‹–/ZÌ¿ž6( Ø}ý±ï#3‹3cIÜÝtéÙB^›åµYþ”ÍòII. -9T©¸„Îr" ŸÏ^g˜sL¯\©±7¨/ÆÑ#ÕÈ<³‚²“\L§d‰—Øì$íSÓvÒÝš†)üæ¼]¿rC<€ð’akÞkU¬g•³¶âZ{ý­k.V˜€MžCC©åz8›ã‚ jGÁ‹Æ˜±³°H,Nòc°}„°`U’-RÂ= ”j¦Ïf“1ó9™“ýaÝtG¿Öò—±–ro Åó™lÔ…ˆŒ,{‡ƒ,æ*M´Av¿$‰˜„.²Á[ÒœŒ”©FUÊîJ€w2#˜=š¬Þ²ö ™¥)!†’OœiéóÌþ'Ùÿ;CÀi`Í|I–_®_eÝaèGç=@jy*+½7°¸£ºÈ¬¾[ý§Gyr~܉Yÿ¬¡ä¬YÞË ‡Çki~È¥ù»¢ú¨u²RÂMIþäj”'Q¼²~Hw-]ˆŸ‘%o„Ê;é2´€4Ô³ ëÐÍUE-Ï«Xõ•Zÿ¢óù ÙU$"£MÔÜR’J, 6Ì#pD²G>¶¨ÆøØƒ#{åêï_m„æãÙý†„ßi: éŸ`›òl²›ß2oJš– ÔXL–±K¡¦X?²zþ¹s!Ê9 ÆÀ\DžAPÀ‘øãek§1Ve% §täô0{‰aNù/“LS95ºÎ;N¨Ê;õ—átƒ^o™\]YÇÓ fÆúItHTj¬òÐAù®0Ë¥[¥š½Öø—½ÆâgÅòj°bäÀŠ´¥*°t#Y ù_«ÑY°É_¬M§L·ì&±WŠ-Ÿ¬Ÿ°w öæÞßih¬œ7»ž/'göPA0²àØX*mrbIˆÚÒß\°2Ê4̉¬àX¬a3(,þkVÿÒ³úaþôµým/Vÿ¬œý¥f곺ª{íÕ¥v"ß=4çs@@}ª‰ÈÐ<"/ AàÑ‘”–Oòj[*É3&Ãè ‡ŒQ[Dyöü|åiP…ÉyHx\Ô*°„99‡“ëÚ„œufõ7K¡{œ)nÕ×ìýÙ³÷Iy¹ÛhrÒÝ)^.”D²4c–løð,K¹”KÏú™qCp†_2J±818¨Æ€ÎˆÙ½+QоóŸB'ƒÑc2ç¦uБÙ=}q!<ñ2ˆ+výÈÈŸéÐÝCŸ^B1.#‹Os”Åé²ÝFê^c æÀŠäêàDIΤz(¸ýeQÁG&r£__Á‚¢É˜¬z$i?NùÁ8úZ†¿í2|Wx¤ô1Š!|¨pdóÐ×ΈævP&®KÆEr3†ŒÎ (>Ô£<©á&@ýúÒK»áãìâÄNCÛ3®9•BƒÑ4 ŸÅZÙ¼Ü!’ƒµbÍ«o[`dÍæôZÖÈalþñÈÓq„»3Ÿ¬r,Ë ]0+†rX$©ªXÅ|øÙ¹ŸËðpzRòΨæP!†˜à¬f¼IQ›·»é7&¥méÛk¹~NËõ ÙL°ò“ eÝî|CAœïb·¬¼)ZXÖ*ªúiÇ]‘«jîx8â*œ`Óz| èúp¸"” :Yzò2EL¤¡ÇÂNYø@†ü*@¢^eÕïk ¥»CC©^OÙ &ò9O.~òŽîi{=‰ã|vGÚtæ÷Œ#cG(‹¡6g éââÃ]Ó»fI¬—IBAÔ'íx˜»¦^kòC­‰ÂŽ9‹?6áGw»àaGYVªÇÃÚ GSR4‹¥`l(V1š¶“0’IÌÝÎÄKàóYpt f«4N6ˆBÅÖ0YUGCQá²Ó¹ ¢ý¨[xuÌŽ_•Ò( J»n¶·â3Ñ,H dqf¯æÉ:¼@K¾6ªÆk’ÿÊ“üYÅ‚,(N Û|ü‘Lj =•±8{9"aFHÇ¿wZuâ ÓQÎD†œƒ˜^@ œXµ€a£@’}Ê õè‘©¨[xëWáF`ÜáÅ!bnª•Û*›¥(6œß%.mç”yЖƒy‚4‚8„pTæÂ#•ÊbÒÓg'ùkJÿ’Sª$4øFÑy'¬ô&F¾Ä8òktå SÆŠ„Œx)¼cÌwúU¿€¯ p=#Ÿƒ}À˜qzŽRªYwrñQ¯þ+E9Ï?Bwa‘˳!A&J¨‚±Ô+sE&£_ãAoQ»k¦ƒW†ˆ`î@KÜÍálåó+H :î7=º -ÜkD3Í6à0/9Šb&ÎÁñú0ŽË×Zþ"ÖòcÞv-xyÞkr(ÖjLüÉÊb©Kl#å.ïøt8䄦'5\„ʲH©Ágèc„©„,=qqϪÚ0Yu+éüc}¾Üí¯Ìf'¼ÙHq6ÞœY'0°äâ"$ßš…ê=΋œ¯¯¹úÓæê@S±·t×Bƒ«^Ã?ÇØäD^ô¶há IfÐ]ÕP—×ì†ÞE‚¢h;%»›•z­ ‹²5XZÑX)UØ•z­±î6ø -§ .‘.ê €ªæéU*Æß·¨Ã÷òFG³QÖ<¡µÙ¨o6R–%áÔ`QÚX‘`ú÷ 3”˜š’ŽsMjÓôXÅó¨tvT³´t>+“º£rL!iˆEšra%—Rõ°Èud(¡‰1bÙ$±)?Ћ¸€^’ ì:” ÍÞgsÚ‹?`V=eda…âmN{ÇhG^û鵟þBû‰úkl¢Ž2 HQƒnSøÞ…òA…Ô™€;Ǫ÷MÕ‡€;GVoQæ:bóñN>zQ >$lâ²ò8®6o¬Œg¥7ŸÜk^‹çVâ¤oÉý¨¨˜ý`ˆH’梄 mòÎ *LI ]ª*È‚Ú0¼Qá¹4à-žŠLâq —ð­Y,ã2ŸÔqhVg9ÌT!¨1·žÏ—«ˆÑ£¢`†Ñ ·¦·‚dÏwîFˆ²×êý\Wï“dŸu” ]ÀT(Ä2à\">cz¦bà»´2¼â¬Ó Jë#b˜G&V<Õ¬Ülþ¨œv0‰¥‹8òK+ãFÝ7À!ÊÁñ²©|»VxÕ–¦g¢2¼ü‚w³4ããȤÂÀOzó"yÈ×6*â:!À‹F¡ÛªJÒ‚°B§ ¨¦ì 9ÈBÃl¦êO‡øÊØzJaš ¾ =.BL¯eùá–åͶ ¯£Êx)à“… ~3«äâÛ.4svídê;áúFʾñ¶?¡vßéßwŠølC…°˜ve‰¥r æ {îëõñÝuÁÜ~zÙS†ö´¢'©G{zҖ´§9E--_ï„1Q¿rîž‚•ÑŽ_Ñ.Iö`ùz‰Æ' gY'1Îõ^ŽèÌòßa;t`‡ÈæiˆP˜8²VÆ’x­·€Í±S&€ùû4³Ükïnœ]±9ß^ëõ³Z¯O¢eyôí<ɵ¿¦ã/ó?‰=@j6á…HàŸ‡-Z”ÒoðDT(™å16ó/kcàF¥;¦¯¡“'ᕈˆ†rÔ<ÕÈBÌÄžC<%9{2f$åM#W¨ >”ZÕ­8©À0X>ô§@7 ý°dMPìÌó/LM ª¢Æyh"?é^Ïi#.øf¯[œKžaͧU­ RÂðÙ;~£(Ýk)K)òWPÿ*S±ñ‰²Ä4‰˜Š¥§+8D^(#¼‘â|½ÓîòÐ!Óþii.‰“ïS)%^1ˆ_ªN›Q,,๊eØK÷âÙ¦®(P“UmT¹dµ Î1Z‡¬ïfX¶%éb·5–¬¼fvCBþ%é%BÃÀo?ÍÊ!¥w^ÕQ@N*7&™ƒ93jÕDŠ&‘ŽêSzŸu,ÃèwÉ»À8Ãâkžݳ#……ñ?#ßdù2ü›u2«G2’åøÚï»àã‘æ ™ô‰7H„±£å˜®‘GT©Ûb6¤TÇ>íÉÃMˆn¿ 'jAë=éC®¦sm€¤nTó¯fFɰêžæ h€»É=ó¬`:œ`­”¡L …ƒ;f^\­5 CŒë©^ÞJ‚¿æã˜*=>j°EC%ƒ‰ƒl%Ý,8PM<{ô:‘` ÂFïˆà ôŽïôPÅžÑ*ŸÃ“•¬îˆ<íðdV+éVZPVAHR螣‡dý(W•(Ö@΢¬×$Ü^øƒ“åzøìÔ~†]¹ë÷žáà |¢}¢ßDzäõ+t«íP£dZš|¥Ñ4Ë×Éä1üšà¿æ[ [:›j›Ìu½)šX,8E;Å`ÜŽ¬ðÛ ¸1âQÑYq€aŒÎC _]m¢øþ“Wþ¬-Ñl„y› ±RÄQ–´ëNI9Š¢'ÃQuJ1rdì»ÂÛÄA&+4žyMfI¬ ïE˜K^7=N+Š:³¦¡zMÔ1ô8½N7º²kÍíún³¸Wpò"¯Ü//*òŒM³õ¸æ"}-Ì·0[©¹3²F7WlÊv&…$cÃÒÅß–Ïê@Ež9³Ån®´2Á×ÕŒ‹˜AåÞ°ÆÛT¯n£KzI¼Ìªu ¯6™zŽ$¢áX–ñnõL£(KÌN‡J 6A¬sdH„j¬ ‚5Ugý¦ð¸%}üëàÅ[¦ <½Î[sÔUï–å–“]wI#M££J/3*Îk–ÿÚ³ü±¾3@iÃtÊ©#‰áŒ¯?ƒŽ‰©¤ž¨¹48K.V>nLBË`ik¼¡‰ßvÛO ­òñÆ©1úµk*§¨ø —dÀ'÷QäY®ŽÓ¦ä‹k :±Î,¥Á±`:ø×錮~ê‘Ù Kb5DŸáK6 ʲXý°ÆÏR:»Ü÷ë‘ù‚dä/ -"ÕäcÃ#E¨Šç`T–Z7gòQ§TxOL¢eèBGÂw¨×$¯"¥i±ÿÃúâµæWkþ¡•q)‹8j`ÖhéW†dî¤Ë€PÚ‘í€,ÑwNòfsq”¢Üºl,> ±€7ÔÀPLA;EEacÚÖÏw²BhŽð<É™#ÌU2U™ª€©ÄÍt¯®•[lb—hÉÛxáÔsÎôÓ$âY-k+ ïXgU‡!,I“=ªu £»ˆ3ªYÕ­9X,’K…äZ£úüˆnk:0íq-ä´z­Ï»>ŸÐˆ«PH«“ -7I hV!c©¼O‰©³V‘±Þë\/;0:œ¤0-KÀâ®üQE6gUq¢àð®–ÛœÁ6»¸æé¤ÖF¹]—½L“–™[“/â“„Ï=)¶7zöX-SVÙ±¡âøE–h‰v(“w‰¯M÷@ð≻ÔÎÂ]GtŽð¨ë©öéŠ~$ô™se€ç"¿×_Ãã"ˆ$çµ0?àÂ|'DAÜáÕåÉΈÛ9–žÆIîÄ$mâÉc<Ò8 ƒž”8Ó ó¿Ö¯ìV•Ç8^m,d£ÑBÏt;M/&U «¡Ü“eŪZ°£8\b¯Ï¼ÕpÞëk-ÃBñ`:¨ÚìaTôôd“/68!9‰]èÙJ—W&6"‡2×RŸÞ¦Ð {„S”ÊÙPLXàVlE:¤Ž©ÕAÝþs2eT$G}ðjyº—¸»2Õ}{Íê_aV?´/˜ýEf÷5€®ë> ˜æ(–'UÈöJe{5³˜ÅÍ”œ­ ^9èÆ÷:iH4SR€eįÁŸ¼äìAë.m¹DW à4ÌS=›ë/^ë­¯©Y‰SB2~=³GÁAI ‡óU¬_5aýBp—e'bu°zîÎ=|6½Äà *ÆÿšÕ¿ô¬2°¯€QEæiO‚>'R,UÏ_MX `ébÝ#\YôIU€F¦øWÀ 6ŒÄghQÕ+º¦É¼€ÕM²Š˜ ,¥Âéd˜è&PkÆüy¡V@>yefàÙaž‡$U£4Êbê¥Bõ~¨–MÆÖã{+høšŠ~ç%|êƒL ¤ef°†Û KÅ ™¡Ì0t؇3\ Þí5ñ|¸)¬59µÔOÖo³ˆÓ«46ѤCÁ‚&ÏncrM¾¨¤F:°ð‚P4ŒÞMˆ¨È6±’ X¦®Š–SbGFai¨–†§`JÖ£õÒÝKFv duc–Ì D˜ótÍP„³›oŽl¸x¦Ãz -Ï<âtYù _ ó.Ì'>ÈÇš17¹°&kÆ\T/ÌäˆqBQŒOàuV”NœUä%¹µÈ±*é‡sÁJ¦·H¯ N²Ý 5ÄîìƒÑdu¾sËe¾™£ŠÅZÎÆ"Y™ƒ»-—â.0+j81 H¯¬°#`C³7&ª%˜¼Ž¯¨ó,tæ¼c Š=ËV$g+¤³ÛyRçZ´çÛkQ~¼Eô0 ITŽðmY GÜÖ7ÓcuNäÖÒEìqq#¯iºld‹h"$[X™¼¢Wž™¶öê' \ΊrP»»hª.}ƒóX‡Î´È@ê9ñ^¦ß6ÌãWè´Êry-:{1k¾Ö¬ìËb©ÃªŽ]8Ì©@öq‚˜Æ±›üUõ´e+¿þJ‘õ=L©UO|Mò_w’?©HÒT¢ŽlJòïâphr¡?Sµª.Õ>(ää¹jLF9¨« ³XZ#n¿ò—‡·õÜyôÄÁ´9¡ž:ª.άÝᵓ?]Ø¡“¤×¬çJwÜš^[BÐÏá½]Å]’.GV±‚“kop(Æk<è¶J^s™Õx²;—陪*0ck.âV´²˜hd ^–ã± cœJ¹iÉ#žÈ‘ »c0ñ¯HÖ7v©\UzÊÆÉ kúm’¶ƒô»×ym‘O¶y™{Iøå"‰I’4íE&ÎÑ}jÀ³u [~” ÔÌ4ª¨h95ÁToÒ>úAµvMS²Žo–‰Lµ‰Êi‡õìП´Cˆv˜ÑEÚáJO MìiJƒ/%;/÷S͆ºL±eŸ¼¦ýßzÚ?ö¾N2*½f0ý|u俇^HIñú =RŠÂÈÑLÄÉÔ¡ZìbU_’*2Äuj¹pb¥¤Ìy¹éÎÏ"öÁÓQÆbZ;YâF¨XˆXc®½Ùñkª¶BX±Scô²W‘ú—²æÕ1P I™õ²_ÅaÅŠæçÙ*›ÈRÎjRuä…æÀ€”ªÎkƒ6m‡ï~>?àß^kôï‘êZZµ $ÖŠ®m‚X⽞ 3´ ¬a8çPZ ‚º°‘89›Î¹¬ÁO_,ã4(Gp6Ø¢[«0ëƒmUƒµÅ¨6_Øì¡sš½ëç±XëL„I‘£.‹Y’Žt’s0anùÈS#{-WÁðWYáx_Cb¶˜4³Ý3 B²&–¯2µ]Òd—ÎnÛ lOán€¸ 1wÕ}{Mñ_{Š?ñu‹Ðibú&lypÅeåî 0‘b„ù=nº7}Üð"émÅÞÊÚâ^¿¥+r1-4*˜5œÌu%YKªôt¼77ÊËÔy0=N„8tÄ¡j/߬7üâ¶ðvö+h‹¸-J6ĺªYU`k”Wr•体€²d(.GJ»G šææqþ2é FÔ)Ü<¡ùä_©cX½ÂŒóvXÄÁB|«1pa®Ž‡nô¼Vëç²ZÂê­©›‡C’óRSw¢ƒÁ8ô’¬ã†1‚7,Ž# ù#¢gTØÈ6J³k2”iu‡îùlB<£N[~ÀdqÕͼi«ºJÍFä;у5 ðKÕ.ò¸AâÏc. °†|1“µñGÕÏ¡$Û’¥&GòkÂþÆ=v)AÃÐEˆÐƒ*qÂXÀ/Y ÛŒ…& ßÀË]„ê…+ÉjGs¦‰÷•®}µyB,°‘ì;‰ÁNt°“!\sùñ 6©E Ø iìÅ6ö‚{ÑŽkao¯™þ7ši*ÝÀ¡A…é‘á$h„™ƒÖCsè˜Q]£T—ô½Ò­RWpðàlSU¸ÌU•õú`ÆL†M8ñXìÖ¨?@y~kAé Õ•®JÔ-WÏØö¼ZÍ=#XcÀŵ‰{; ¦Rn÷þˆ|Ã3r‘r{¢xÙåLÛ}VŸâ'ùYhžŸU…O¦;jhÉ=)‘oä.”Q¨ÙxÐQD2R"õAW­~ˆä̺ÐÖo´¯‰Ñbcï²Tg;q[M_Êfœ'Ã{úR‡(¸U“…²áêØý¬¸¡Ï~4mú½ðÇ`MÎWŽõDI²Ü¹Ø› Šæö•e.4çÌ"I«ï\üóR†jɀРÔ?­¤d°pNØ0”Ü.ÝôÍWÊäBñ]H䮑Ê7¸iõn‚ŸÜÂS«2{n©y ’*XèYì¡ùñ¿FôB†[´ ³ €puDîñ¨¸2›ÞÇðGá ÁÓ½Éå¼ú8W(ƒ}òÍ…GÆÌå‚ÐýЇÀ¼hK.F¡I+º€‰rä›Î«‘ìW+l.ÑœCÜNju+‘æT¸UxJðÕ½E¹¨ ‡žfÑ´Õ–M«hbX›3¡½W18s°r¢8šV$‰溉eî”\ï£úFõÖ6l'ùt9•…š”£ŽÚRs¬}Ï1»úÕ7”°×Äš¬#Cž§‰¶SÅ}3üZœÌ„ qšÎùÎPë[ÙRláEÖF–O‹é‡@® Rh¶-QdÁ±““Öã}¼~Ðx=/QQ:¤Z +&{8€U o/} Ç¡zÚÅrNËuc@`= ˆ<œ¸t ÕàEj´å—‚Ÿ Ï2‡®%[öâwˆÏÎxÒ±)ÏÛ!1b‹-#QXÛªDú‹/DÑ<‡»…t\(N¿ñ¤û*EûµlÞ.ÒׇzšA*)ŒË­GO¬ñûˆþ”#úüŒYº¤€ž£=CÆIºîVìC }ÇSÖÎ2CàfêÉS3% u Õ±n-ðg(X·Ì{4¯ÀMc$1Ø´Ær^%tZ¾®e\³C-‰]¨ÎTHõUCÚœìåæ-]¸“¨@˜6~R­xŠ3öºÚ§Ƴã}lž›çÕ¼iÕÅ•î\P°Åʆ-R·c^ÅDïÅön}1°QTr6ªXÝ[­j2FÌcª‘U+AOi;oÒy£Ù•c÷…[‹–!غs܃ "1 t|0v’…®q¯®{,5|Í4#áwÑÜQ5H4Í•y×ÙÖ²Ý8œ~›ó±¹!¸/|]Ίc'´¹È–ÌmÝ‚ìéHô÷÷Yj°ÅúD½Äà-=HS±oUƒ**äßtH‘e8³Îl˜ ('EÏȹX­¦P%‘ÊýJņâ¼*øx°6`7":æ’½ù."ƒ´³ç¦.*·¢jÔ¶}÷j^(Ò;ji¢J6íd&pE±›g┦Éf£\V1“Ss×?Ô¨Vú,¿Ú$wÆË³3ódÞœe¹R㪢&,,a×’tΔb-`ÒÖ9î !¤¬¨Õ$ì|hZ“†#Š‹.ý4š&W}Þ5¼7Èmû“ƒáß!zkYS «Dom›UÛ-Õ«^‰øÙ+y,&¬í—'€R=EcãjÖËRç^Ò$AøM+´­&7§•žÆL*›Pšyb–ä_µÔl+¡ Ý¿s è·`®óÄ4O^'Üq|¼áCŸæÈž× ™>&4™k”ÊQꦋRŠW=ùÒ¥.†(ÁÅ*j–î__Lˆ8c¿hvÓb³… ×o-ÕαVí,€Ÿƒüy#ð½6¿¾Û¼!Ü9â è%”…ªi¦ºj’‚iJÞ'¯ÙG%óTs_ܼ 3ÿ»CóR”'A]]õPÞ’n I ”ì$!AFKq‹A „ÄÙT)@Õ¶Òé ¾25,!M`t`åÓÆ|Ô8K³•܈¾µhxD8CW¹tËäR7~Üa7wLà Í‚y5‘…YK0¯øãÈ šyÍŸj4oí7àè5ÎÎ =@T­š+Dðé´sŸ4Z²å­6Ínžô\ŽX]\R¢›:`Y%D]S Q¸=½Åò°áJ”Al–¦Ä|ß\eP(ëñd1-çàta_åƒÔ5}l“L`4âÉmd'u¹ÆŒCV!2‰y8¶6ÃŽG]»6_¢¹ŽlаD9ýÑâ[Q„îØ~`Wï å A¢Ø.i®·±{0üþþ¬~ÏJ€çÆ:,åžE>v¯F(îˆF¼Ê¤wcÊi‹d¥ÀƒPX uò$À–®ç°žzdôßJ‡'>­Mf;§B6ÛXªªr‚D …·Q›huÆ‹›ò\”1¨«ÁÏLã;%‹’VñÌ_ à/Y<ÃöB'†!QéãœdÆ’› ûñ¢ôUªÜ¯³r·t9° ýRC4®j†4‰ÁL‰˜ñ#‡¨N£:Ðýé|®OGR#Hl¤ g¡ÎÎ+3º¥Xe·.>I™º|ÈÙu,Ìö$¸Î&cxòÓê‘°ˆË¬²·&M#]s-F{¬ÛË€ü!¶ÕÀ!‹-ç»ìeÍäà„ 5¦fRÕ‘"”9 Yêº'U•ìN½i «K@¢ÜîlKV.Š…žMØj‘²‰%»Óݳ°Ôîýù|¶ÏçyÄËAŽdßI=nV˜;ŠÐÍ:uØw²ê‘ÀP.¢™³šá¬–décED8«ÑE'­«¹ò^@ÈÆ+®:ìÔ {ˆc]·ŒQÛVËN±þÄÞØy+§Qúõ¢©Èä|Û¹3_Å«ë*’‡Íœ«=úÑ@ òdĨ&L ì‘´xr꨾÷x÷ŸeÜÅÞЗ³þlbèó\³­Ð@:3¯[¢g^ŒŽºA›Yq#E…O— g¦Z§á¡Joô©¤˜h¨qDzQb5­n9Þ2õIKôà·’eá/n¬–*@2­q IôÙ™b;Óp³ßã}ÜÞÐx³ö„(WPì9øu'³&Íôac:4˜°r#7C¥²Un4c¢  LÖDPQk×'Y¶(¶$[R¢qý² .b÷¶†i« òb¿\R ¼ÍQÐç ÕGykZ©Ïñf É, 2vl1JšE cαŒÅÒ\-ñZ¶Û¬U¬¨êÁïaø$øtÒŸtHo Z‘34ÈÒâ.õ"Õ˜Þñë]©~ü¤’Q ×à Xå±j_× ‚Ö%dõš[› bmaܘ 3ÊàXÏXúªu/lìÑHm”­úPfÒé»n-60Æ×âÊÄ_)`Ä‚™\^_7Ž"Y¿R]-U.%ûj7¢ ²ï£ü±GùVf´SÒyM–!R ¥™Ÿ-5°Ô•`²©ïN$å"óT¤Ÿëøs­ÆLDÖ™ë:óagkÁÙ~p¶(Ü[ü !U€¾®ÍôÔ÷g™ËûXþ$cé3òúÄy9}vv`¦q#°r¡¸ Erp‰Š9ÿ( “wsÚ ÅJ—Jµe¹ÂææFDͬá“éß&ÈS°À ¥L—!®³1l¾C´ d3ŸŸDÁÏŠ-­xh íšP-äC@..c/¡cR61Í,ݺñkÛ°‚UtžE$‘{Í_qÔ¥yÊá¡ZÞjÞq¹q»ëO?¬7°¹¤mKY,~+¥­ÆX^U]€X2ZŠÅL¥PmŠÇxU—Uþ=«jÇD, êUÝjÁ”›jp}°_A2+_«Ž—¬äîŠD¿]EÅ KH;OÒ“†›j Ev;ã·bÉ+EÊ+E¢yH0­«5;ŒuaêutÇQþøú7«œ&Æ}.¦n["e†ô¶¤¶[´Çjô—Ñ¥2«’¼sAJ¦©Ï8O´h±@" £3f;;€ ÚvŸôhØgÙX,ìYƒú´2n$—ã&Š—öÏSû#þU?bÕ¾”Ëç$PUÀþs‰S¡Y« N¦9#t[ÎdÕÅ»À® ¶YŒŠ³§™ž0Q1 óĈÔÀ°”žß–UmE~Þ݇½À…Ö­(‚T›¥©¬t‘”fE~N[¨Ãm²*‚‹pyhMX?*-@E X(Ó ‘«St†PE—Óèbª‡ó¨huÖŸ|XŸOДFGÎ “MUYRS´ï/+6HhÑÖjìt˜–,­8­¡FQ\ZóVS…ÌG·OX%e¶¿“Ç,QÉ älqfû©þ2YüGAE‡²6ÿî’â=,[Ë âº)1)½WÀ²¬ÇR>™Æ¦IöÀ·±y©(W7Bï¢Û¬ÑÉç‡ñÓìÓŸvLolF|º©UÖ…ÐëXW•¸H‚¢i¸HµŠ.,¬¾Yv~á·Kço%çC—`@4øç8$ªRŽ‘±Í–5l—’ë(*ÜQ-],íeíVr¨U¼3(ŠÞ^ (V.°Z |±´K¤£"dCwq›§´T# gC/C‡„¿Ê›oê~´ûßGðÇŒà œäÞ-årî¨rp]¡ë4àZ ,U ¸Ò«£ò:%g ¶[f¸Ü˜R-›ç»œ KÝ dðņ*2FÏÏ¡l·JâÆP„梅G7¥gTTðì$;)fôêˆÍ€…AöøÊ­‡IN¡»HûÑ;æñ>Be„¤j¹Ekªk&Øe„ù«;gÏgŸ{éÂWÀN•l6°4sˆ†l3¥Î‘KõhaÞª@sÓE„Ê+:¨4¥T(b@,“ôºÿ‡A9kR‡KºÄÏhiË•Ã+<ôùÙ ‘Ð JB©‚Î"îî¡$^ªXàCÐë"ýs7xzéîúè¦M}UE¼œVçjäT°œkšsÝS Ä%:”=@½Ò~d4ˆƒ»ä™¥¡ )-ÏÙå$ÙÒæ-Yd-Û³Ã<¥*Pa¥iýKE¢uCÍH Œ‹•ASgAçcÑõï_Ð?†G2y€ƒ‚m²Ô›q#F“b^Ä=B¦JÚfÔÞŸÎgùtž…0eáIþ Õ`Ðe!ß§´õ)®Ïú{µûCìO¦n€±"ôr¸²/LÇTù3©¡Í ["‹Tš˜$h©$1ÑÕ­[]5ª7Õm9Gsu«Jå̾uWºØ“ÈbðKàœéÂSlk¨öäË#e~`˜9뮫uv?,ª‡ß‡ê{ ÕÀž2t9§­º¯µù.M¹H^Ñ6µ9˰»A"ü‹ö`ª'ÍÃ>?™ééM·ÂGSdðÞ‹ú7–Tˆ‚ùMi¡™U1Ýü5†I°aÖt8ò©ïöÃLÉÒUf/ áæ,›x’ 4V”q΀TcÈB²ŠxŽ6Ï×3óÚ$ŽÜɉ¿h&‘ÆVò²‹À¥7M.‹¬¨jtök1ïMhÖÚŒD¨j_Z¾2ÑH0›|Vº"'Y®s’còu_Ã’YÆbK²™9˜üX6|>óªQ’ÔÖ’õµ•j~¶ðW9iÃΔD¡m«6æË(qéâš(%ÁC³T[”wCeñË}øþµÃ÷|ö è,Ú–ÉZø"/´DÛŽ'.fK4é Ê)!œëÒ:Ù5Ïëyï-ÇžF‰¬…48î.÷ =D¶¬OZË ,Ú¦¬lû|hÙ1µkm…jšed+»Q¹é?H×·hh´ãXÐ ªÍ4ÁÄâ!ùJjLµî œH3Ø¢)ùé‚ÑAÝúî$æñx÷O>î7´AöÎË‹•ãYyKžiOG: „×.ˆŽ¡&]‹í‹YcÖÐ˜Š²Çºíãs§J Ëvõ±L3ÃUâ3Œ7Ê òËxËš¬F²®Ô9,¬Er&_r‡Ç¼lÍ_WÊ S½S%U9ÅCS %{œgÉÉF¦P¨ T°Rå1«¯Ž¢ö³ê}м'%x  84ÏØù;`…³$l˦ÚÍfÒóêh±+¯d4ðÌvÌnø¬qÑŸpDõ–ÖU@‰@±§‹N^ˆº—è:n0SþxUB™ƒJA«~¹n2Rµy¦FQxmŽ¿ÈS&1ͬ Ó:Š5¹h6×/©mlwbø;›OÆÁ³¹ð‰ñdRÌ-Ù˜2ª÷f?:z ï#öCFìFô™$$™)ñEݦìuHnR±Èèk n1ÇÔ`ü«qr)`F~×âÂÛX¦WòDZ&̴ۤ,–kÙÄgyÓÇ{"N6 ˜Í"gùf| ¶üh÷·eÂù_Ä>omw÷ ͤ$oÃ(Ñ^ܓϦ­Ÿ,àÄÛFùýœÜ¹{!¸ ¦ÅÑþ¤b?½½;Ë¿3[ÀÙ:p¶œ,;" «è†¸¥ºèödv‹[&v}ôˆu[õ_r cc«C‡¹¢{kö¯u¡JEÞxÙmL'|(võ¬–èŠô8 rO¶ÝfGú+ûT—/ÛÖpõ\¬özV¿ˆg¥”í˜osÕÂϺaj–A@ñM˾nA‡bÚ±7±¸ÉAaI~äš—f ´tŒ.ÕaÃIÑöhYüÌ|é f _†+!#)øZJ4ʧ«ã¸$¼#èqõ†Ý=(‰û+¼­çk;àGîe]ØU_òâ°È{O.½£%["ÙŒ´)Dg^Û [®Wõ¥EÖlϯº˜Šh&z#Õn:@á%ƒ©d­ü^—RÞ‚À½è>>fë»´è)˜Üøªk]Ñ_Ë«q–î˜0Œ ûÝ'w„AšÍžÔɆî ö½Žk/âóÇä†--IM%Ö-õÒÍF{ñÒ*I‹ÍŽ{´t;s0Ôat,1v±0b¦’/&Å38bHúdò “%ÐQÊ£`$qË>ÅR‚&]•ÅP̪É\œˆ Ñi‚ãIŠ<õZÞˆ‹…àèÒž*™ò×˸iÛ(•Ä£iÃ+×6?ñº¶:&šêêA9Ic›Å_ëÙÕà÷CaòD÷áynxôþ@w9Êš°HÕ¬U <“k¤{¾C( ¶=df›™ÙŠf¶«™-mP˜Ñ*Þ7iÜ|ÍÄq TRêSFßrR› N-²´YŸLxv·©wã ½u>÷¬<uæ‚!èX²R­¦B1+LÌ*'JU5ZDBV,„í’«Ú¬èÅ^Ýt2R£RÅ»-1Ep¥É”]² ¯=MÍçì:wËz…Æ—éÜAÅ‚BÁˆ©Úá\ž‡fË)éZ=J¯¨nçé*íŽï[ ìÔ«H°©;×î3«NS£·P:šº o§QV1ó>ò?ÇÈß0XíúКJÔ€¤™!ÑgÙÔWM¹ÅDnäZ2£Of„Šö-Àî›Jd¢sÑhqð4 „øoFpƒ²Õb×î&æh‹D~Ú4ÝC¾A˪2Â,J‡”¨Þ¸Àq(´¼ϳÃsCg•gBD'{¹åU•¶™éoN ȉ$y£œ¹–b@“ŠoMØ¿¢¥?ùËMBý³ËÉì„’¥C—ÂêU½Lâݸ©nÑ Z˜$"GÕnj-«t6Ü¥ë08ZŒïãõýÇë£*кµV´Vi¥Kò˜–f›ÆŒXõÌ1ñ€a×M<™5lH ü/ €@« ¦rŒÝä/)ŒoT ŽÅ“Û5*o"Ø¥¯]g¶œ)›×ød²­cÐCßÒÉ'´æâw3¢Á9 Q¡ž±n‰>œW¾Qo§ÑQÂõ>b?dÄÌÎYµW`­¢¬à1 GÕ^ …ò{’m‡ {^š\êòs;è®*àüSwŸ›&¬35^MaSjÀÔ:±•mj>jΨTUy´¸ú>àÆ˜èQ·ƒö­ªZk- naO!üñ–­°t†U§Eö¡H£€d*¦òÒ+«QÀÔ•ôc qyl1RY¦Óq=†1·Œ =ªÆÌLšpmߢ¶ò\§›•iY™g˺Øš±¬¸{dnMÔ®™û5ñÃNPYrëÜuÄM¸¨Ãpš1Æ}„?â«ÂÓéGUHäîñ‡˼«9ÙùL»£,©¸ºÎ´€ âTè»”|‘›ªH2SC¨L½*¢Š~Ý^¸h›L~Å:Q{î›"fÜG®,ó¥wÓþ‡M°ZΦÅ'‹Àª­ÝÅ óL\XrÉàD90þÊõ€UÁ‰ÍÏ+Ò^¾ÂMÜô€µòŽU@7’nÁ¤}á„„þ´æ•`”OÐ`µüÃXIqâ>|ÿêá»A³l«ŠX D>n,³8 ŽáfqI´d‰ØŽoyq…‚"½¢Ú ±˜éˆÇ–` Ó0¥£ÊQõa‰¹ˆ²¬]ÐnPGÀiúV¦ºf5Ÿðžgn4ˆ¨”AŠV`Î%šöN´4×`“F³AƒyoKžß÷ÕØ¨y¯ï?^7„+‡¦Ä/MJ´àÇÈ^èfñ1¯ð—fâûXT8D R¶TÖ7vs†à*=gQ$l-‘˜R˜8Ö1Ir÷Wç¡A»£ÒÛR$[€ìꋌÝÊ*Çy´TÒ¯5ò·%,àr«Ï§5ðýË)Äÿ„@ ã¶UÇTó6¥]ÇØ ØD‚­™ÿz¾°ònÎâfÎ7a#L¥æ=7¤â\5)žHGcÀ¯ZÜ_R ïu¥ MÁ´qäVð“Uü‘Æðx›gÇæÆÜQéÕRKXüƒªTE©PÛd1­¬\ßi™¯îÒ±dí¶8k镎TÍã J¹œÓU0`iÚžºã*ž ½\kXKg=ŠÊÖÖB ¯Z ?Z]Ôˆ™¾K(•‹8¹·ì’Lª5y´ ÅiVºrð¯ôª¬c4-/žÃ`8ï8`š•îƒø#ñ†ýÉúÈHu¥b_аýˆÅtqx>T4¸àŽav8Hí[Ø)‡âíR“«Ô²«½«/`§]-ÒX6L%‘tÝ¹ÇØ{¬¬Ê0‚ÕfË}²dV5¸€“bÞÇ™–¬Dääg>¢5'DçŒú<CïöÃì”a¯'yyq*#:Ib%©nnEfCJÉÚY•¥JG•·шÊBÕðÙ’“ĸš—b“ÈÆØÜlî†1‚å[÷cv:•³”å,v9ÉaÎ’™GYÍÇûÐ<74'ìÉe—SÚ¡Ö•g„¼iÜp˜æ™Ü‘ ÐåjàF$ÇY•1i¹@¦PO€€t-ã£Å¤crqÄG¦¥2{g'ÜHm‡w4qì€M³açѵ‰æôö„T÷x‹m,XËߨXXVÉkÊ&Æ,µ¶DåKаØ#©Ä"ú…“V•=,’ê cQS0XQƒÛ¦„Еû[›Ó$qÆN²ßÈÚ£T»Óâ/}W*fIÙä­VižTì—l¿5qz†g £‡$8G·í>ܺ¢¦ûplÃñ|¡j•Ò”rüú‚„šBÞ,m¤Ó{gføÌ, ™)T%µ]"xû+«®è“`w:¾–ÚÓVæË@)ö½i ´f–NŽƒy´Q¤ÚºYN›br×§‡3‹„¾ à܇ç¹áy ò!…Ðö‹¾+ÌX`šØW4ÞVDÿð%û ‡ `¼î¯z#:¯X˜*¼#j·rW2¼?õ2xmHÁëËCˆ€k¯Í0jØfc^’ë¢`+ck€ €CëÇfüd '¶rD“ËеÁáö/SözRTÇî…0ÊÕïh?0š§îƒõ=ëù] &ÿú€ ªÔ’DfDï>AâgÔüŒ¬ŸÑ÷Átƒ£KgŸᎥ§œë`©ÞÁ%ˆ>×ÌcŠèÕ½Vï2±oEVƒËDz›Šu,xFbNŠ-qôô à\Þ 9Wã%,È} Ü>¯åe`Bx^ÖÐ.Æéu3´:öjîø|sÓ̃tRk¥s=u*¹ò)w/cÑ&Ãè_ œY6¨Ž±Ô—î4NÉ÷p ÕÿÃÀ¨¦}¬ï9X7Ê×û¢çEé D@_'+ŒFíiZÛ”ùó+î*ºÝ{ˆBRd?tÈn”o«‚ÓY¹+GQìα¤[˜å‚”!óXT0 àP¨@;~dn8Ô,ÆFä;ÃK¡œ‰tõâxç …œA{׉#­†£_9=J¯aÓ¹Z”?†ž‹Áœ('±–…<ù\¥ùEÄШк#–H*ï/~„m9[ÿ¹†Œ¯e*JV”p› CÆ“Çt/ØTÙÂåØ6$Ùn€U›ºú'ôàÏ=ŠuBª ÓˆÄzY‚¬A¤2i@Ô %‡ÐQnìk4ª–ˆïFƒ2Œ¯éB₎xÔVë7f²X;±a›!„3Ìp†"áŠ_òÍßÈõïÆLÕ ž’:ÃxxŒé*S.øñ>Vß{¬npdã3‚Û$mH°íTN®ÑFà;¥Ú濵£ŽŒ²‰>u5•f?pô‰ÆÄƒF n-mfbÈÐG²Øi¥@ RœìYÄžÌ5:DÆ Þ¶sÈœ%‹ØÕ?9›U PMÖi! ´B›'š€½JyÑ›r ¥fîƒóÌàÜ¢ç¬"ŸW-2 .ÁJ³¢tSØŠ\“)6òt(ìa¢™‰2.µy ÈܑÙ_h2g‹UzÌI1n·H(”Õ®µ1öé?†m1!ÀĽN\£OØZd*rh^¹¦LwEæÍ«ÑB5G#vs™‘ÎÊL•eÑ ²+ãî†Ç–åûý!{~6; /Ê"aÂÐ’Z ”ûk®I¤KønB‘‹AFLJA‹³ ¼@VK‘#7v݆ÊËÜTeÄðJNe†c¿¼^žƒå ‚UÛTñW–Ëꜟ€Ó‚§fຠµ¸Íhp›ÍÐâ lœÁ>ò¡|¼à@ƒ¥vÇÀ`#15O½R¿³UÄÚRz„0œÁŽP‚,0ߣ' T&ÅÈBºPzíç0… ¡™u‹ÚMé‰gåÅ"3<+qŠ4¥·1ÛߺÁRîÃáÃq£bÆäÛZå 5Ö_p£Fƒ“t¢d©ˆ86-KD}À‡îTÃEIÇ’Ì6;ÃIßaÉÍZàªW¶äbg+Uu+ô¹…1…^*òW¥zéb–D.oò .©UpkÙƒœ¶JèÈ­†¢®^ý»ƒÕ±ÌÅu)Ë€kåì¤øñ7øv”ý.®ÆÆÂ²û`}¿Áº/Ú¬ä•R|4x^xö<>Íó©èÞT±å@6{J—` ìjŽÏYÊÿe©Îj, ` eÇBï/M¿éý3DoÖ®õaã`šý3+ëñ}˜‘a"ªhWvÜ89R£fÙÔ»‡¶êaÄè>Ö+Q"Ø·pþÜçwãäý™ß±ù=<¼ª÷ñy<³oŠ"›ÁU鄵r–/HÇšæQ¥Š\ÎÒjÉÛj5ǺAšƒBeóÄÚŸ™©¥5+Ÿ2‰)ÕJ—uõÒÍZºñ›Ü gBé1‘¥Dí§‚¿Ø2˜XfsŠÿŒA)½¿DÇ‘‚»SÄ”t«yvc‘#àêD^Ê2Qô¤UÏ ­UR)ÍëkÈÒ~Y, 8 ‹+â­KÔMkÓâò|`Ù˜ôÔ~`,¯~4Ÿã£y>¦ DE€9©¬‹è–¨¡dx”TeRY01¥»qoüUénå+ïˆ i…dEÑ -à­¥ŽkJ ;$>ÂÜæn€¹ÍõÙ%†L]äqÕE@¤¦“‹R¥1_™6T°da5»Ä¸ :B‘ÛåÕ´œÇ™›ô•»×|£Áwú>B7Gè†á.`¿œÇôÖˆa¼ºqqÌfq—°þÜë}ö «îŽ/¹Ú1¶WÁh[iNbØ1µ%qu^Lócüû`vÏÔõ⪠ÅÅ-íÆ0BfÉ› ƒª³˜AœYÚ-Å3>¢YÆVF>noïøãðûwg‰s1:'¡qùŠÐNlßX¬”Ö]Pü¥ŒË³c³ZÙ²øÞ2UÓŒ©†Ï\‚¹úŽ_›M" ÅÊ«Ý&``šÚ²×ƒ;+þZRc¶è™m|N?_ÌÞÈ4î]Š./ΜŒfGdÉÈh©,`sJz..*Œ»­¦[©_Õ,q…˜™Pƒì‘EðaKá¥Jð¥Úët?Z¼¥KÆŽ„+]\é’Ò7Û-®ý¬ÑV ä'7¦Ç/øÞoP÷@ÄËXñÐ8ƒ c±Šôº'8C¹ÚÒ™²âª}“Î\¥ Q»—\?øòª;«»uuYC£Æ­´’©U)PmyÝ(ížbôÐ ·"¤ôQâÖòˆ·|üroýùdÞÄyqFôŸÅfÁ€Q)Ô•eóVî´ -tξp'¦Š[EöURæ¾ÑN˼xÚ£&_Ú1 ÂôÛì÷–A¡¼'Ïà·,ûnìü3¤Pú˜;-]j*£'ûêïU³†LHÈ©`ûëÏá@Ñé8D”ߣ»=À¨óö¶‘Q''óƒ[7ÏÝ‚ ½àm¤‰Ê . x‰mé»Îéè¾[•3a”ç,w ¯`û’×ÜAAQÑ~a§ƒ¢êF-§þ5ªaÙl‚r“ø/Ôv”Ý/äÉU DJbÁ- (­ÇÒ ZôO­Œ]UFÝÌJ³w˜Xt8,~¡XÄsŽ ˆ‘¤svXÈ®ÑÈ“‹q£…êÊiµï.Ê3‹,ûº©Í^ —j3IˆpœgTW»¾ÂÜz”Ñˈøgt’ôᪧÞÍgùhžO®C>Oe¬"ÒIcÞ„&Æ&‚wºÙþù$P„-]M–*qëM©„Åб“œõ‰âõ,ŠåñÏ$þ»Xm)6£wƒ¯nÁH]¿¾Û’íÈÞ ßÊ„þ˜6·˜0¿jÌý&È?:Û³è"eWï‘aWÉ~‘”ä.|{Ÿô'õP$•º…§Iø*<i&ñθ8è}ä\Ì!Vu‰:#‘7‰ÄzµkܶŒÅ·Ug´Tóq“:q®ZªújP,8§1>]‹a#NL'Á£Õàã}Ð?ý ß¬”´´ÅŒ›ÑñBœC’¬*Ìç󨨊#«;©¦…û UD3ãíMEˆR¼Ü³Š5;}d;sò[‹j«Ȩ‰ 4fg³DÕ&ó÷º)=\݃ޱ_ã}Iw-sµ¡bµØ”±{ÝÀU¤ Ö´kúˆ}Ø·Á ¨ßë“‚€*­K@ƒZc•œrý= )êÿŒAje«‰±‚Ô©x^7ÊD´z0]òDÁhU”œ¥Y*1˜MÛîö66ÉtÇö±¾ÄšÒ˜Y·„cíO¸„lYŠ…÷5ÓP olµ†Äµàp]æÙ àV‘Ìæ"—NÆx‰¾ŠM¨s•â`nGÌûX0é…é‡ñ«d™8$YX´ÞJË¥‘ÊÍåæ lè#Ú­ˆÜ]WóÖ`£6“ÎÝ]«8†[nåáY9[TjR¬Ä—aÙûNôli«Ë´cVbµoÝ€¿²/”î 0+-,ÀeOu,Z!Á³6ÿ•rÆr¶˜œD“å0V¨’¸)nF¼Œñ¤>J±|›dÔ"MÕ|®NÎ̹Êy¨‡ÆPõ÷áú¾Ãu#3›à!yº$ÉiisSq+ÂÂ\µT’0 ²ú¥ùDHõÂòä‹© ‡FfILÀ0³í2:Ië˜b{Š.Úiw@滋˖®µ8D¢º»áþ.´òü:ïLyŸ=ÝìrFI;¡­MÌ6¤¸©¨Ñ†ŠZ~ájʼn²3ሖ…dí˜Úu“yYWÝH›e©Ä³…c6_ýÒ9J?#7OÈ2Wá­+"‚$× Gÿe:‚'d5–”ûw\ ÷Ñ L~ æ=ÞÇïGß ‰Š=øàr‚9C•œ OXÂc‹q¦R.«l £®­T]6`*ź)gµÁwÕÙuri\OÜ^gGØJgT×Þ:CYÌHŒ#Zãñ>ˆ?~oÕ6ªaWŒ›­FX¶½~ÌùžÌ6nGÊ3­ÊF|…÷b-bRÁ+C©/`jmqÓóÍŒ>)íPå(é/¾:†àåJ;ëî Nj¥©æD6›ÀñqLÔ¶ô/>T„n^á8Œ…Þ½ûøJ:î=?‘“ž|A#Ðï¨vçÅÀ3˜oi¦D«F°È‹˜n¾ÐÓ$ârX¶óVIŠS>¾Ó‹eãd Ü@„gΦk”1 žÄË·’4$R4TKÅ]L¿ˆ»¼‘V Z8¹T“\™ƒ8'‚¥öÜïÓÙýI¹ jb¤MtŸ%š3I'Õ¹$é ªF¯­W%çÓêvµ]ðp˜Û)¬ˆ(ãHyÙ\œ!á†wQô|&›~êÕëM¸F~♃øËY ²8Ù0$zcÂí]Øp$¤J—)—•…C“á–"óZjY-Û€|ö¡«NÒVÉ AJ0pd¬–º¿P•áSZ\/ P–Œ¢=&_[Š—´úÒiF´‡Ésªí’àZ7òf`zKEÛeõ!:ÑDò¨=Í«U`Îém\ŒN :/›ŠÛqçôxŸÇƒ¸¡X2ƃ<¨H\"‰j"Jõ¾ŠÙ½4 a{—sݺ‰@5~Ñl1–¹ ¹ïÆ´Ÿ7ùs"à¸ÍǰH¸²Æ2úÙõsÆZ–ïHÍþl«›e²÷àÄÄ}hN‡æF’j+;]]ϮغŽÁ"¤nŠÞU°±Û;¶¬ÉCÎÞƒÞñ°ú¤Ñ †4ý^ÂR~˦3ëžÍÚhqÑäƒÛüuŸÌÓä3OPó$6§¨æG}|ïãúQƕۄ¬Œ±eà’œÛÇBè–’ݘ9G¦pÇV1‡Ej¥ÕR½HE#R ½ŸZTD]]!Iù¯ «TjÕÔÕ]Ä~•Ž-ޝ÷SH­ãÐd1sÛ?hÉT(r#3µÇ£"äã}ì>ﹴ󿜻gµÔbvãa¡Cy6ÆÂ˜:¥’€ê¾OÓ´kBͱC6áÌó6ëEMÛ/ôÇ_Ý=ŸÚ>hò£Èj)ñÊè ostñ`VÅ+´]ì,&R¢›Ž)-›½%þ†c¢ap¹Iô&Ž@Ìt\'ôèŒ0=A¡ažã`?lÀnmβ裨*jÊ#`SÙ£ïÆ‡/‹ëÇDDIKÁw—²RëqÛáü)Ï<,gŸËÙ ó ›€c´lFŸÍµSÛ5ŒS~,j)¾Þ £Øeüv:ۓ݇ó§NmÅj„¬q{‡5`,ŸP¡DÃöµHoÅ5üsÎYB°ÅsÑY›ÓñÙ£3gH°â˜ä™¬áã£-ŽAÍâÿk™ýÈø«¦5öÅ*쨾sZqæY†vPf& Ÿ³iO³Î¡ó–(™¦ ïoRKßyãÛ ­\^œ:§Î«°aÔšÒ¯Ú" ¨'=ªͬƒúÕ™ŠÕ¬t5«aÍÂ/³8Ì, s™y¼Çn<ž· €%\ßw¸n”›÷>–¨°Æ"·@„uJkͼ‘™[‚˜¦½¨”c¯Zfæ!8¾Vl/Vs›Ì˜‹‰ZEm “cæìª99o>þ*îâÆ¼.V«ØTXaà‰ˆ¹™d[`8¿S“™›ß“éUšß6,²¸TrLøOM‡¬Öp'?œ¤*Ñ•íÂe•5 y4úX‚0;0KÈvZ&?é ¹½&Ž|M#ø³c ŸJEâÕŽÙæ…ûp}ïáºUÃÚØdÛcX¬Y‚iRi:rštÈnÆá%&¹ Ê& ¿W¤l»> ”m‡Õ•®UtF]ÅÞ¤ m—FZ‚9–¦W&–™Ù“P\…  ב ÓiyÃ9Y®m…‚PR‹ÉÏ *Í10àJ˜jh‚5ó^Ý;î0¶Š‘îãýéÆû†èWc ± ³)'s±iý òžT7 ×ü‚ÂIuHϵ¹(|ǨV‚k¦§ô†Î†y˜¹›s/0DƒÚÑPÕÒíT‹ Þv5ÄÕ^²llñmËL9!•h£Uú†v ІK–÷í4¦vr çè9ôˆ—(²Ð˜Ñ á©P̶8tQö x[¤©M¯LÄ{˜;[6©ÖE81äûâÆ+Aù¾%ø1¹k­­UY¥ ÉWEŒ¥wí…K±3ŸÖ&bÛL~«A k,žci‘'w¬]$¿¥lyÌjŠ¢f¶š%³¬ƒïÇPKý}\úq½ˆ®²”Ç:$:-<&…z[¬TUú&`£XСj*Sjü7=¯xD6-aƒt”íEâ«Çymí¨¡Ø…¢!:poDt4GPÔ$Í85"cŒc»!ÕΙ£¬› v„˜Š²í«:X›?ýëÝ»F¹fŸ­¦¼õå“=ã¶'h÷ŒþCÝVÕ웵¡Kt®XŒìgÜ.Eܤ«F¢*!0@uA—Ìä-¤ßHs¦¬þqÒg ¬Ä²âï} ¼$Á>ch<°Œ:†¢m¿ª*žbyºøO¼áÂç3%J–¸®T’#[Ɖb¬4­g+KP]µYš2Ãi£™ ‡!‡VÅ-U¡h‘ˆ?õ;ô€²æñ‚¼Œ„‹`A©¼á7`óª„EÚŽal¬¯U‚$ûZ°ªÜñ&øÊü:oL™õ=«ì".™^Å”¤\ú°%7rG²™é˜è†ðÀßà„k¶¤ƒ°i@ºäß­¢5ÜÈ?iU ›»e OÈi3m&¹ÍD¸#Yîñ˹U1Š÷Ü‹Ë)?c–F™ÔSºü•€»‰¦qV eãÂì*A(›Ó¤ZÏkZ™åËf‰³YíÈyü•Þ× H`V Žßà.‚œ!Vˆç-]ù–MÙ0Rh¼ŽWÕ½nãªäVórHÒùÒL3ŒP<&À– G#WÄ%¦—"ŸÝÔâkÄñŸ ÖPjGo1w€jåàÕ`”± ¹Ìf GxYÓÑ|: p CSQ܆aÇîôüݰ6³E¦qšÉj’üŽ!xR†¦–hYrÀà%O;$Ý^ñª} –nk„ËAîäµÀ«Í¼ºé¸x‰~& 4[•?(´Ék¥1nFiÊS!ã¢ïïAÙ”_ã}qFêI,–à~ïãXw’… 8y`d`k “@¸×- ‚‡¦šö3CU¥V CdynD3Å  ΀Ç$’9å#°¬Å ¸TšW™¡ô›¶No§›Ð#ûUÞ˜¢«@i 1)e"ƒ×‡LÊÍK%R%¶„ÞÙc…Nhzðtq4­àµy"´ÖìK[9Dü[»Y¶K•à^=:· -LÝ€™ml¥&½ÏÜEfwŠ¥~•7öü:L=¿ôÒ-Ñ.Ú´“¸—½ç÷E@÷Ä@©È>²T„ÃC‹¨|O†Rt‚.ÈÌ+óPƒöžK3A„š $XÞò ¹ndË*ÌIŽ9rL•ÌÉ”9árÌM$”i-U¢lÛalD¸×÷/"ØI]^Nå0—b¦&/ !@¹ª±lª‰Ö²xJñ1 Hä6‹?+űǗš7ZöbÛP'XKí¾-F럔8y]¾!tÓØ™±þ'dë.¦]AgÐbµ6¬Ûð‹NI@Œ²>àlÚŒ×e·±¸ܪÄâ“£'g!†Ò.t­ÿÑ_"”ñpšèÁ(NƒR4¬)ꆦŠ2ô´3ÑÎß¶kO¦òܧh9ãB®eU}A—ü?`²²-*;6IdÔõQëÅE ¥jžMcÖ²ÔÐ耔7uKÒÈ ¬sœwRøæõÖ| kâô¾Ø<Ö«bXNæàW§ÏeˆfZˆ3‚b€mظ)W·µñ¿„[UD£‘y=¼Á“ Þì”wâ¦79îí9Û'$ ™(tB&r×öd~ðºéÉW³o5sbKØâ…i…ÍJ}—úv¿Ì;¿“íÙ€—SÆàØô±Å=«R“HÄ•&i=ž—ì³U}®âL•ž©Ô–f¨ØìÚAß~e݉M!OÏöýL´ÇÇ/ùæoþ'Ù¥¥\HKHã6ƒ iâA‚9“'Äö˜) ?¬WÒF0c}À†Â¶&Hì"ÆUÓU[Ìôu•!ù v‚Ê6樈f 6Ötzý“5QªR:­©£ª[ ý†TЧê*¤Æ­a•LaÙ¸FIÿTVgàîKïÔ}üþõã÷|‘Ÿˆ¢”Y’¹ˆµL cÜ¢‰µ¾È»ò¡Éõ³²ªh<æ&ÄBmÞ‡ Ó’ý¨‰ˆ6fXŸŠ|†‹¯´-*Μ¸~YÔ$ÐzÏ<žù&ÆÇD½¿Q½S_ìÍߘ§öäwŽÉ™žå…¢Sø0Fîs=1Ò2å€ œÍ-EUebÊ$û¯iõîU|„vóÆ·ÇÏ›¿2²"R›˜ª•Kç'A´ãhÉö7¨þ™©|^R!Ä.”š ÙÑåšÚØ×SÓfŒžÝæÌú?*<Þì‡ ØóIÿƒÚå\lmd›EÛfŸ£Ù éh”ñRV®ºSP]¼zËîöS†æ¹@uaºP°1(ÆJœVp‡¿Iîñ˹ÕçÃãÃúy9Yb±R·ªÙ0¯ÏÌ'sh¡ìJç!70[ 65ùGïZT*3QçaæžÌ?ðŽ.g- ãQ‰`fÂÇ/çV•(Ü3j.rJa¢«µustÉ™Œt¦tÙIFM˜§§êIÑ«'¨N šT)l@P‰,/g2ÏÄ÷™8A¿Ê»ºì–‚Ëéb1­'ÓšÃ=–‹Å .j믬ÁiÊÇö5º#ǸíŒ|ͺytÌùó)Å>gáçLý”Í·¨iüÊ .§%ðñ>>Òš2¿ïT¹¿¾<…½iK´˜RÑØálñjK:¨VSW±Óa­!íj“†ÃæÊöv‡Í馧*®O§¡® »l6µˆ<éò4ÇÛ2»/ãVŸ×Ù€$ß’¶Üµ¹£_Êjù¼¶H㨞€1 <–­Ê:lp—’<ÏDzW‹åÔŽyÂc’µÚ…†\ÅE+McÝ OÓbH[kIZ­’i&œ ȾxÉw—V…ø"ïüyT÷~a{fí;òhO¸¶³cÝdj7ûÞÍÞx³Þì±wXŠ 7Á𠼦‡Æ›B"*—S.4ˆ¡)).ÕªFNBæ¢Z?@Y‹n¹ÊÅHâü¨,ŒQ ¸9"wÐM1lºÎb“Ò†üÝwŽÃþ‹êï <^˜´³†Å¦,ÐÙ=ÚÆ 0ä¡K.•A’&òÙu(È)G´80géÚ0ÿcÛ,|éÑ~%z݉¯üì=MÏÓ,àƒÕ.[š‹¢‡qãÐ,P¢SŸ#XxŒðôûêK½÷dé½á„-ȸµ°Aª;T*v[†ÌnTFƒš• ‹(½2›‚±Q¥ÀÛ [à¼iÙü&&KŠÙ¶b¶¶˜í/f‹Œ£Æãs§7’R;v‹Ñq¨Û‹Â¡vh©KÓ3›!ZÌâ; ´«“'(%‹ë†Ífú/V§ì€¢‡%C^Æç³²PR03³æ@¾yüÅõø†¨{àlRóÊØ‡’y‰â^¹¹5Í€×ç €°S­^ùFã…ÍÝÕð#¢A‚—÷W2èöÏvõêw«´!ñJ‹‹d13®Í¡-]PQ’­ «Ð£¸Èש֭z8”¾Ù>v…IÏÒd–,úàˆx,~]dÈÔZøW¢ø½HÝB¯µ,ÚüŽcº!£Xf!]õw`Š3À@ÊG/[Mÿ(ú= ƒŸˆ‡Ïã“ù~” ÆrùŸaäoà+öì†ËÉîöl\Y‹¥iÞ²©-ø'â„7qäV<~v=º±¦ÕU¹eü/[J‘´õæ+¸D±˜ÞÕ˜·Éì-Õ({1×½v'~vË#w¯ Š€ÓtC}Ѐ‰-­lu…]o´†}Þ=¼ÕÜ£/jKB1²]¦®°PÞÑÐ=dAš‘«Æ¦O·ˆÞ¦'Pã |<‚#?ÿ.>ÿÞæ1EFá ÷ð9³S€˜H~¬ú˜RwG“þ‡ƒ»žf_bœf±p(›D-ô¢Ä¸ÉcÇÕ`ÂÈ»KKðòóéÍ tÇvu9-ÑÎeܹÔ;Uƒ§zñ”D>AÐO(ûàu›bG0Ùãs§7¦ž"[3šÀw¡ÇS±ÖW=§çô✂œQ *Râ½Ù²vB”™É4V‡^\<çØcÓÅúÅßÅ ,4aÌ;ò²ÍdÿuSªË0ÔÅÂ^ ®Ä†B2ѧO³€Zà%Y}–‰äãy}MV?Ï•%‰h>?r²i?X«^Ù'>:`>h1öù¾7Ú Þ=T;Ò>Ü’‹ÂÀÍXðMÔ\VK¯3üvBèš›'ØùÙ~DñEîû¥·0šPF6dçÊhŽï†½ê¯‚œ_ô ÜŽŠš\±ÿOrŽw“§!ÔÚ"²:«ݘöj×øœf¹ú£ ý¤xŸ}9ËZ;èaOzÙ³¤öQvûñsîÜ Õ~7y9ÝqN»Ò™…xÆT<ûîv߉,Å,]1íw‘½æwPœ_ÌjüÓÑ"K«Ò[5{RÆw"„H   CÕø rmh€*%ršy¯e­ÅØ%›&Þªp ²®B÷ ¹‰>)ñz'Ù¾_V5ʰÃEB=›zƦ;*DÒ>ÀõÉ—JÝjɹgÙ„%» l¿²çî“ÿ¨(]f Fǖ‹¯*)»cjˆŸwo$ðöêç—GytÔ#åߣ¨O˜ó¹îFø2÷V_dæ~ühÝ’cÝõÇϪ7Ú»í³Æ² BoŽ¥3[0ÊRfØæX³˜ÞsàïLÊl&ˆÎ$Ò™h:!tgïèûø+¸‰7Z ÓïѼúX“Ý9.J´”jN¡^ƒ¡JY,Ú1}÷Ï%O6¾¼UP‘ý…l×õs]\÷¾WȽ¼8SÑE¨– L£:dãf¯¬)»/TÀVµ‡£Fy†»¯8!8Dé¤`“É (ç¸c=,Q8*C¬@-.Ù{Ôù}üÕÞÙ³oNIÖsÐj‘Šf¬LêNRŽ–÷ æG€O é¼C5"xä’½lf­A8|üʼYC5e™¨lááÊÂ'>½y¾~AÝe8zÍ2ú¸Èüc|#ÙvÜðlk4Vpà4 Y¯˜À.D×Ь.º?1ä“]ëùù+¸œøO(þ“áØlJ6û–M)ˆcšâñóêÎó¦Îȃ`£šÜå‹ æZ50̰ ¾ø &!5*<а:Z{–Eº‘çÐMðóÑ”©äžØº­Þr¸¸ èŸU‡nÐ,*å`sj¬«U`¨T¿HEèºz27' ¦Ð°˜£fê¤~EÃ`"A‹Uó¯±ëèhQ™ŽöÑè&~d“˾7š£>ïþ ¬Ø¬–»’*9¢—œ:!xÍ$°áõýaŸîúþ©®/.À›–Êa9˜•\Î MfÓ“sc”½y MδãRjefzGGÈ(…Çy05Y§<~ö=|>¸ ^«ªë•I?G¹q/.‹l5ƒÐb oM(AÙºb-úTбù÷'Ö÷©®¥}دx9Å4Î\Ä“ºÔ\»jr´ëÕŒ[áò„C@c3>å,ùø¹uè–9 ûPÀ›_ª€ù‹´ñ—äÆ1Ý#‹‚œè¹Ë+Y¥'eÎ6ÆDºLÁÁš|³’g‰(óIà]:"Ë€—‚ZÖ²ëàF&øeuúF†{WĹœÖyfWÈÙ9òÄ]ò`³8Õ‹Ö«ßJ9ɨÉ]Ižl0µ´‰gvYÀ@HÜ„1¹I&½oršG€úÄŽ|QåÖ¬]µðò¦žœùUqe;}¶dÕ¯à>nk r‰[Šéã#‰lÙjø¡ˆ #.6d.ÆŠ¶Z*Éy•E'¦E{̶€ÊÈB ±æ€ÈýÅ7}¿Ï§C7w •Z ç& Jë.&¸É¡Aê–ÓÀ²AÅÓb –ùÝÒ h 4c[’»»’0d?ÛÅol2PZ0,ñ*ãä&D¼f夈Ü& «P[¥mëTcÔP“¼L,¨g@ÛÜJàp)í ~ÆËßÈ,ÒÖqEJѰ^cbA™&ìŸ-.«K· Td«j½Zª4</¿r×m¨NüfàÉžõxq³·þœ:tƒŽfFT6à¢ÖƒXõk2—±„‹SùìInDl–ÑÒ<ôÁ¸2{fnb3uY½Öšµ$'7í/m”½Ï§;7\ĺ„jšƒP ÀL¹d<Áùg3ú¶®Rhü(x§0]S—euÇÊý‰u|²‹Ý°œK1x¼Ø6±|›éAYÝÕÙ(ÎéÍ%ÔQsOQóžÀTÉlÑY«¨šìçÊý•Løág»ú ‰¥u•[nŽ¥1BWÈQZ ÍPÀ!ÊT7ÁL—Xôؼ¼û*e7ÕÏ14šHdͦÇ+iõþù®~.± ;4¼H3ø²,›×ÆxF!”wÊ•íeoY¬ØÐ— äØ@j#¯m¦ÒûÞ(Èü¼{xC®`'Ä’ Y8Sï…(+Ik6õAJºÌ­kC\éinv|ÛEL™îS_Ôìݺ¢ŸÆd;>Ù1dd[ÃPd!ŽÇèëƒ ƉUæÕB/|³«·¬¤h;8 ”"pVqÖ,.ÎLÂØb÷–«îجòywñFz'IY•²%*›2ežçìôŽ[‘`ÿ† 3{"i6c—pÞ]Èx³?×Åo̼€wÕ赃ÍeÔÞV_{[eqV¨>ÜJš.XxíN¢yäcœ—ßÇRTvŠ5fjúuen¥ç¶ä"ËÎØM^nIŒjJÑ…«# žÆä®v'2âS]K–6]êA)i éVÂv©L*@)6ŠÐýÁ£òÒ0¬@¦ÿ´r‰)àÁx‹¤§MFjw!“Ÿú¹.~+g¾Ë_N3Ë9HV%o0G²Ì1'(zGº(%ìæTô㧺Я°ET;R×2¯EaiölJ3R –ÕÆ®ÝZ²;>Ätj™kíåiè8uT°ÉFØIþÄ0šÕ\ͧƒ¤¹ÄJ‡{:lqC°”pÞË?ŸuêB$×’³à} ÞZ+q“Å£A€Ê“%f\9/Ì,p<“aºäªd{g62è'»Ú`V€ˆ¦\ˆª&ÁŠÑæ·^`àT£ìIú$ôÅùxðê䯊GªÄº<÷—ÒVðg¼¼*õ;Vçåœ wdÌñ½œ1Tå5‚/ Âõ‰®à:ZM0ÃѰ¾,ÁÔëj¹—‰èúøó^^{·’ÜÁæÄéhrC:“O€ó&ýñg½ú Öü¾T{9/çä×ÎÚßÇwêç§³y%lÓÀÚ â %ªâb[«ýMƒÐ½G£°‘‚½^÷Â9EÀ ElÃw$—B³*d8”K­ñöWÕæóêÑ­©a÷%^Φž3òð¿{òý?ñÇOy±ÉôD ª‚²Ôº¾4ìn-ÉTs’h6É@—T»ili.ò…`º—&~³?í–ñý—zŽ~1Sf¹ÓƒähŽi•ꓘöhÑ2U:Ô’úý(ŸêêJÂì}Ý/çÞï{xè&eÇb)| cgeâÈG¿øÇOx­ç‘ä8ȾOêr|ã#6e3åiÔÔ…I¥x†•N[eë&Ïãbë‡3o7ü‰®¦‡©w\êFø@úšjóÉ…CâÏS‚HQÞ/–ÏJdâ•\,ò¢Füb ©Š«[®ŠgWv¡ºC_Löû34ãe‰|eÆ%uT1ÁÒE¤‘ÐèŸ7öL‹Ÿ •4c#“1ÎR-·¶ø1ÍTQÕ¥ý‰M€èS]ìFæpïuyqæ$5›MM‚³ËàÑ~êñS^ìÆž®)`ÆÿJõ dîB—\“çº*;[ó©2ÁÚÀ·óhzÿXç¾ÇZe0ÑE´D¹pep\ &3Fû‚Dä"&ràšîØŠ ª»cq gâÓ]íDŠL4=ÉÂ6¥*a€Òí³I9H⯄̓cY—ì)˜I1êìñ̆¤údW»!¹7v¼¼83œ "KWº'$³{š "?â¹oIâ—gzòsô,UsGçÜQ>?åŤUXXTqéb˜ÍZe¸™­²A©RØ“9c'l$/µîíO#4èÇ9óµaG-'×üà{¶GŸØæýÀXüdWº%Ÿ´º¼8³€¯¬f=}÷gBDG±¢ÇxîóÕ >ÅtÄ»äÕ'=¡>Õ4d·u@«tù¬¼=žÆªÇåÌ7’YÐlçDN¢ÿ ¢aàa”"HÂs#÷-¦w‰‚– .fsI’,AÙBPÖÙ•øtW{M¼¬ö2Ää‚O¹ÑÒ¼€j§Y-øñOæx•þ>Ö¹o¬×•Ëi—.È6)S£%8ˆ¸é݆3è³H×vÁ&Nc|ÒsjÕ-÷–3—›{ hmf9CûÄŠüLµrš!m‚ËAÏ>5G+›ÇOx-í3\ŠÖÅ÷åUœ°Wí±@4)€ÿè…È4Ø*T²Ð¾íê ÚËüħTM<ȉgÉ 6X¼eU-Jn¯+wjV4vø•^ûŸæLrP[¨¢^šÛûÁ'ŒN›ÍÅ¢3(ØoÒ‰áXBa.Máp11?Ö¹o¹µ_3ŸAo€\Ÿñ™ÁO"¬^?Ú™ŸÏ÷¤Bl+5ÓëF‰Éø¤}ÔUÅnîÁç ,;M|M3㼪4 Tà«RUêǹùëbR†‹6K}Ãò§a´tÈî489ÁkLƒ­³…ŽÁ„èe9!.^FÞÿÊ@/Ÿ{'oå±Yêf?™WEâgN`¢ Ñ8­dýÜdÙd×qgÍc sŒú±N¬¸çp)Ëmÿ|—× ¶g^N FgE¥ÙuèÈP|üˆç¶å÷Ú‚#7»”ÎBþG©ÿƒéãG:ïósríeÃÉ£a­˜ c7 ‰¼$F^ ½Ü*—Ì ‘¿’TÈþ4†âú(g¾ÁØ[F±bYXŸ Ù¨£‡Ôì35yQ=~Ê‹Ý*˜R]ª®c2‹.—w%øÛ)rõ£òìíMOq÷++tþ$gR «s=ĽZ i%"«¢ZlÔ¾LEÇÞß*ßxÌÝhɇ³(SòQN¬>ï¼pî’„N ®t²>Pv45VfVù:*=~Äs³çHp®Æ¬ÕUΨ«{6ˇe³’=üÊ’§?É™LAŠœ àYJK%7ÏN%¦VÇÍH˜ûßlä?ò,›d2J役ѣÓôZ€BŠ Œ¸o§_mZÇ?Á™4F0¬'álƒO¡>¢[`à@CpX0ñ@/!zÖoÚÇ8¯r‡ã^«nŒi0¾ ,†mõ ˜ˆÄ¢Ï·S¥}üÊBèÃiŒIþQÎ|£ô ú#–ÐÚfû;Í´èåS+Æ}k›¹F–H–++ïOc0ýsê †°ò–þá)ÔÅœnƆˆ…V\×pÿ›~üiÐÉÿúâÿ{‘àbŒÅ¯Ýè~߉þ¿wß¼üo/¿}‘_øY^þùExùŸÆÿû‡ËËÿãE*¨Ӗ—ðÁ±,ðYÆLùî›giÿa’w3€ˆ¿ŒTÈ?||f96”s´Bïk„~‡žª­Tºý0Ð<µx–ýìÔvÙ~çuþá,gµÖ€Ox»G0âðÃØX/ÆÿŸrÑÛŽòe|ú!s¶ÇÁ™ŠÍ¹ˆ]o¿¢Œø˜êw¿º~fÛ@ØCÛŽûÛÓã.O-\¥ñ>ýíô<.O-×GÿòÔr}Ôa¤/O-×G†õòÔruÔq /O-×GÆìòÔr}’Òû£¼åê¨ååLJ–—ø¿ö?¿¿¼ü÷¿yñ?ÿ¿õåW ÐoÇ×ÃC^¦  ñ9â´cFüÍåÅß=Œ¸gùêëù‰€¹üêkÀ j y÷·Ê¿EȎׇ•ŠÐÓZÓ±š_ý÷ßü§ÿûoÆ÷ý_Ÿí؈âGê˜í®û…b|;€¯Ô¯ß>üî+Ð×jBO~ûÕW_'V…ÂÃxóþ›¯¾ÆßÆî,µ‡×ø'ÿXËÛoù«´†X~}Ø›?\ýew‚gâçÍ£7w‹¢h8üøw¬?ŽÖØ;.ã ÿHd«®û^ýýWW}ÿÝÕÞ|xýíWØ;pôáÃûß~õŠCÊQÛíuìÖ0l_Ç@KÙ¯‰oÃoþ0Æë?¾ùã?é\-,ëÃ;ï{YÒÿòÕ×Pd\{|ø¿þ˰?,ÑovM£;Ƨ¾÷Ãʸùà™‘êß›¡ßÜ>øÍÿŠýá/6H5lczçÚß’^ÿñïvýãë»ÿAÇ®–ÿýðúÛ§[Ó´t=$ŒÇ|ÁX<¼ÿðþ«ßüÃ4n„]ŽðÑ€}÷;{¢½Úýiäv}±Òx’ßñ9ãá/hÌ‚Ëwzze-þÞ~ª»Îo77†èWÍoÞx÷æ÷×Wþ°=ü1Uæ1U×ȇ–›¯¡¡ìá§W_} ÍÛÑ‹ÿ“T¨aå‡ïÆÕÌÊcT¿yûæÛ?Žl=|ý-º&þx½ß|ûÈ΄џüðÍ»o¾ýý7çïäj//1tc! ºþÿùšwŽ÷æŸß\ßî1Æ!Ä÷³àËOq|2aÛ–þ°{ãþÄßåº>¼~·ûÓtšµ&ŒìÓaߨésÚæë¯ñ¬Gïÿ»ã¦íD£ßóùÃÅ9„„‡Ï_®íá»G;cÙ^ýöõû÷_¾Ÿ Ê­þ~~ó§7]üßþöì--XZ°¬kdÿæ©óvç[/uçááñªùŸ®>Ôo9âã¿Ö¨û/dlÞ|÷W¾&ä~û²Zo?üùÍ·ï?¼¹œu6wÄLÉ;» 5„ðÓÃï®çö»æ‡ëéÊæž±0ŒµÇž%Oƒþ}„{ñXŠÆàt{é?Œ·ààu,@>ñŒwy÷â¼{¼z[¾{wÁ/°ªµ‡·oþ‘ïl¨ëþ'oß\¿aßéÄÝÿ ÐìºXT®_öÇý›‰ûYÆæ©?øËìÏåé'»ûÆzW×Ý3ýîÝÓ}îŽÿn?±\Í&ûgüðú­y¼Ço4Iå>^éÝ«~ýƒ÷oÆ|ó1Áùo/¨8ì?·ÝiÞ¾: {ž³¿½‡;mv§vC|@A¯ûož ¯¬Þˆ,®^L-2ØV#pJ¤v„o²öŸJ\#4¾:ßUÆBý5üxÐíß¾RÞçx­.¯ß>»¯QìÅÉôZЙ¯õëw¶}¼Î—ÝËiñÁRG|0Î]—‡ý ~:û@”¹®ßç{FR)ù—ÿwš…¡=°iúÁP âÚ¿ª}Tcí¾þ¼ß¾öhöˆç꥘_£³Û@BbmÉ'ÑoÿðÍe,™g³RámÚ¦Ð×Ï|&§5rhk¸š¨Ÿ»ˆ†j»ÈÛÝL°›Í^¿³«îŸ!ÚuÔsõýî#ïÞiUù:U•ênÄwÂîÀùz ^Eä?íFþG2~Š„ú¢xižu¬ä¯ÆÆ;q%ø;8B©§‘ôxpur*h`c‹ª#þ»ŸdÝÒ®ùprĪ=ú9Ά|Ì<#jH/¯:üwÿ+¢˜È)}÷¥ü †zìÇFÖ§’ãÃNàÆïñ>¡,½=iƲ¡ Å_-ÍëÓ«µ"ð-‹>ŠÿÃÉÁ*¾.X寿«=8ëP•ÇXæ—W^ DÝOÈ6#ðŠ7"ÄïñÖÆúÓPüö«¿ñé>Ì.6æO!Ûöipôj|xý5¼þðËÓO‚f 1Füða÷i]lÝÏ­Ž¹gûýê«\¡úþï^ï¿-[(Çì› ¿1Ê_§v˜”¯gÙëÙùÛ«v?q˸çý |"O²Ï6ïß¼~<Ý·ŒÝ^ì>}?ÿ¹ûsy8= $JL»·8é»y}}m‚ÄbжïøV—×ôý»üÇÓ)ö0®ñ©ËÃ>&Î÷þ¬ýtïæúŸ¿b —ò!^ùËW(e;¥]2ö¨ÿþ;mà®RÓ ‡ÇüÂÑmh,•¯µûFxÞvSþëwÇ@—¿A˜õü»äÞþÅ~3¢ú]}Üwñ >}Û™ùºÈÔbÖë^4Ðï?œ¼¾/û+ïǘ ÚâËÎå»±ë|õøîõbÎ^Éúª­Ûd‚pž±Ã˜¼¿{k;†ˆí–\[þeÜUîœk®ŸÉ»ï.øCãæl7Ü¿çOóøÏ|ýÇë\]/û䦿ßÙ„gÒc/2ösÏDêÇ˜ÜÆ°ã=Iu ½·[Xê¼[âOËúpýÀž ^Þ~cgª»Ú¦7{w>`ï !+ÿüU+Ö»7žsÚNótü{ëDï7£¦¯a50‚ÐÆ̷k~ÚZp2Ü&]-Íœ¿–?C8ìBÞ]Þ#—Ë1½þ·ë­ØÞ2høžPä,Oéßc¥‡ÊBŠ·‚:çwÖ—1þ-¨Sx0u<Á~¹ßÞ½³™­D,ncœ8å çÄ‹çÃOøÎ-c5•OüÃô”1økÙ½:øŒÎ“0 +ÛwñÇwoþp6x ä¥m5ûòu‚c¿˜S8Û‹rúìú+Eß#4YG/·Ùä¸ï?ß•Œ•Û¶‹2X¡fôBÒ8i‹§\Æw×/áißYêí}äÚˆªâ6¥ìŸÝÉ×ê+:Õ®ѧYúÆeÿÊj\—CrÖ¶”˜²ì|Øu¾~÷ïí4Hg~g÷?Þ½].‡m„~ïß{¦¤^ã7'é]ö.?üùÍq¿Fq(†pLõÞ8--žòn’ñ£r׎3á’å¯%lìÇótõtà˜ž )ã?ÿ£‡LÑ$$VOöÉìk|>ñr’ZëäÞ3³Æ1ðüm¼‘Áz|ðÂ/ñáЛ·¼ú5ÝÜÅ!Œ§°Ž…ôp|)yÇ£]éX·ï¹ñÝMSÿÓÕ¾Ý'v¾"Ï‹7h›iþó‹ßü;Láïç×¾Ó™S¯þ{¬¹¿ùª#³?ZíƒÓÃ~{ýZüøtT€ÕŘáWVàâHGXéU[Ø«óýãØ®Lõ1õ4 ±[_ƒE«4ëšòôi]sØ=´·o®rÈcŒžŽzë?Çt=k~øú»ë×÷ëg×쇯÷ÃÂ=-±s”¥ÏãÍÛ·»yúû“ÙjnIµ$ž.bò>JNñ¿Óœœâ˺ÏX¾}«57Œ¥üχœUCÝØŸ+KØE×ûÉ1 ÏŒÌê!ͱOwï&.ÖI3¢¿ÒŽyB´ÏÓ*ŽmV$Ìye!óPXÁôR÷ˆÁÿï?k½Êí‡No uÿuµ ¾y%×¹†Átšƒi^!·û-V&]Ù/^šñ]v/ú®÷—“µe¿‡Yh·Šmk—æ ÝÐÛ ³öاF¥Áuz.^ȯ÷õÛ¾_¥ž«þ>›©¿³wo¼ÇýÁJ™9=SØSÀÓ ®X-àùûoÞþé·ÿyóÛ¯Î¨ÖøÜ^êæ¥ ™36áûK}xþRrœíª¬Æ{Z«Ñû«ŒÒI6Á÷U-›0þóÕSù‚2ç&Ê%‚¯†fhæÆ(QöµÛñƒàˆÏ—>þPÃb5‰¿ÕèWð§«ÿö4o>í‚Og†Dª[Æw ê«·éÕa™á«làW_‡¨*´–ÓžbM˜¯/mù:ÔΗþLGj~U¶÷ƒÙ¦ñlÓWÛ‚J µ??ù˜ú_Åë!Wíßuç8â†,£{ñß÷-'0*jᜀzq >'üñõ?½ûíÓÑßüËŸ¾ûö›où|ðõ§ïþüÍ»·¯ÿütÔˆfþÄ?oûÏ_ýÛjþ·v‘Mÿô‡qºÑzýúXä9K¾ où+ïßi•|ñUo†ß¹P «¢áR°Êü?WÇüµøÐþ0LJ»ƒ<)¯Iµ<“n&z¥=‹ÑØ/eþúæ1øë›˜-ùa«Ÿ!ýdõ›K±‡ygÜ¿ºÆ\ýÿVÒdendstream endobj 344 0 obj << /Filter /FlateDecode /Length 3719 >> stream xœ­ZÝoÜÆ×SûX¤-® í9&Íý$i$×A\ÄEb«èƒ´î$1¹…¤d+òg÷¹3³»ä.É“å8ðƒuäîììì|üæ·üi‘¥|‘á?÷ÿÙöèÑ U,.Ú£lqqôÓ§· ÷ßÙvñÅ Œ(:yðŠ, ÜŠ2l¿LTÉi‘z³¹öÕvMÕ­ñ5‰J­R#ÅÂpú™À,Ê:©ûÞò (W䡼W ²G®r röÌïX—_!Ë›ÑîÃ`\QØk))áO™¡/n1 )ÈXx´gÃó=¸yµ’<ÎÒQ|X'Ác‚ÐSº=K =8<jc8/i‹äÄÚºpz£?°\É6בŸÆš6ì Ñ;<=W±›BŽkê³Ð‰»¤uûeÇI4Î…SŸÏH:˜'C¥Ó…bûЧÃÄ»©Èá`Ž¢Ry07„ÖuÙÙà„z‰y¡”‚uTWK(l·N^i û¿Yå4ãlK%°„Š©ÒÕ¡–›:Š ÐÓå9˜jÊGq2¤3V˜ét°â©³˜D¾eÝlpŽHL3ŠèA¯Óå°;ÈËcï¡ÄWôůë‘³ìø )mPÓIÚ/”°{A a ºÌ“ËÈ€í¾^“)ý㮼·K´ •¼te3áÚ ÷çnIð«ó™&Å>&ÕûÃìD®ýâïÚ8Š4sä7IÔx£ƒ¦ÁTHd§ ÜoÉ ¯®j¿i|ŒZCSQ ŽÐÒ[‹ ¥_º×Jå'ƒ•Îöm°„>¼Ä T q.ñ$½"Pî :E^N!­Mùá‡s<ãiQ˜¬=Vná×WQpm°j8_­¦Õ$‘†}C©_ÂÆ«½l–‚ï­YAÀšAÜHó·î¸°ãH¬€DûV@¾0eÛc)³nø@ÝЃHü÷¡Ô<ác›0Õï xd9Ô {.ˆž£¼2n!ªýC…´{ä Nå z¶ÉH•c󘚕fÛúåÅ(ÿå Žíà¦CN‘ØýêeJ>—pÄp&IŸ0¨¾˜5?…U!,_ˆ åB#)G¨ î–k.LkÜ>Þu\©,ÒÒzÔ—±<´+ uÐLÅv¾hª^W¹ M³ ãÄ6õ/•šàÚW®0'›úÇÙ¶ÀrìZÔ5”P@ðOÍ*´,0.‡Î²ä)€§…ÆÆÌ™êC:Ë@`–@Þ+†%ÔÖ–ëéÜ £©É|p”!Œ¾©Û*$7Þ~Ê‚Bú@aØ05m 5|ÑYÏÄÅó ”"z,[Ê8ÃDø‘WmãF/Ù‡³6·(º(‰‡)KÑG¤¿Û‡VèªÚk ŽÜÜ j'ÖC`=‡m$ùIè$\ç;“ŠZ71+&©Ðjˆ„TÓ‹7qFÙo¯FZ ïÞz #Š,œQ´Ù ‘åú¾”Ø<è졦EM!ج·«óºû>DœÚôLaJ-ö@›{×C<ÍÖWõÃÃÍÞ%WÄqyIÐD½ëêõÊ®uè5€@¯s„&ÿV·éru±¾h®P9â€UÊóÜëñße¾Ô¶½ÂCçqH¼"""‡Wq·Ó‹R¥$‚¨(á‹ Oðºåhªí…9º~Ôù†«‡Â~ÜEYÖ{Ï›TJŽfqR¡Ô^4ûPÔ•[†E½54Yv>R a"¯[7£,<”óÅô¶^ÊÑž'œ6n7»sé9g *ƒ|P̃,{RSŸ=Í(áõä4ÝX@÷mo^$•Ãèˆ?UóžÏï\ó‰‰ëÜߨäÓêM ª°&¦Õ¨®ŽMl§!èô˜²ÖV×|”ÆvókX¥P¿ç}ÃYÈ–Œ ƒE<ùRz‹>¯¥#ˆ)Á- ´ CHË,Ïá'fæÝ`q÷S0ß𨭟úwLlÎ0Ѷ/ç©ÒÐßPÎj\\W\TŸwµ¹»®Ñ q±î¬Ñ)¸ìSFÙÇȵå'^ÌQð'8xéù‰Šªj¨ð~©u;¤«ª;ÊQÌO8ìa‘?¨££k•YŽGðTèò÷J‰,u ýQÄT‡w+Ö\ˆ´5`¾6ŠFPЀœ, dsÁ&¤P?þwh]5O¹Ð Å £^”€¹6PƒCqSäß,Oú%Òá4×£¢SÝq¶þ>8¸§£ßbRÑß4ƒ?GWGÞÏó ^ß‘©ír&_)T:¦{¯£‚0Ðf÷04O,g»­šÛ<[®S—žgãfʳµ×4ÿt„ÞÅ;±'ÕfóxylÑ‹é³â}’ø-HÉÑTò(âcPt!¥ˆ¡;€”I¢S»^÷É~}~^ŸÕëF­g±ôÀñr=hšàíg›÷;˜ýØ•lì™FÊ>틵7ÌËn•xÚ4ûfàã~ìqh=¼ù¦9eŸÿòó/~K³«]¦§ìÙ®[7gë«ÙS  Û—¦x9…Ë †à„—ØLTaR¡– Ït†>ôë„›€1|`ÉAô–ËtLEÒµS2ˆc"¥ô¡‰ÂkÁQ ‘e°¨ÎI«D¤B ð_ç!U9ƒ¶/ÓÑ´‡ò`X| Eø8"0ýÚD†t•u{YIä’Js¶QÈ)1¨Xë$3Á’‘Iþó’:+… >(dÀ’ƒB<Õ P9Uˆ%I1Žz½¬/võy:ïj 8ËÜsÁÙ1L>~"KŇC8^â;>xòñJvE!ˆ?vs nPù`X8*Åbˆ°%RöïJ×µ’¶Zâ±ÅØ…'øñ¸ê¶µ§N(¦.FwoÉ\»×Ó-´Æ½'-õ ªTc'x 9nƽÐQö×øC‡jVÉ‚`®Ð9™dͬޚ½¶+Þë -]ë½.¦Å¯W‰ÔÙ/S´2h…œjÕ:±Ý›ýÅ ‘ý²^™œ ì†â•@Ý«8ý^ÆZŠÇ¨< Ò1¤ñ™ úüj–qO3Ch~Ù?IJOjŒ?©µ—£Ï("¸ì]§¿Kœ¤CµŒŽqs7aj§kgPi8ý""ßðÝÐcá 1{è’‚…zXc¿u;èÆA;;¦M½ÐÓ½îÛ¾ÛÙ†Nð?Kð­fP¥’áÏõÛ«S¨ ëó)x~%¾;@²ñ"OE&½äÏì–„0äß-4SÀv8“øfÅåÞ±9ãG¡ ÞZ/*6kÕP‹%ˆ/âï†ß+p-Óg*…Pf|µ™»Aqtò´#³ß…ÅaO£tSG¿oìçIBNK]ȱ›ºò·˜¶j´9¨ÍEÔXÍds ÁÖͺŒÄæHj°gû¦YûOµ,f¶ÓÐD…Ÿ¼øÏÓyÉLjrååŒi“DaUÈÊÑåÆ8n{÷˜ÿ$%Í!ÁøoAl8û¬¾y5¢b7þ‹gˆ´UmOæ/ÂÜÇ`¶mãˆ9uó±u¬mz±™åWLY– 艟è³G—“Eígû‡wÊnà¯idCXÏQSÒ¸—ö É·Gÿi=£—endstream endobj 345 0 obj << /Filter /FlateDecode /Length 7436 >> stream xœ­\[d·qÎóü'@c#§cÍñá4âž-›×g=3ôëFþ÷òfó›çТxÌe)fóüÕ?j6&Çy‰›Ò\\Ø<¿9{1}½]æ%¸d–2]mÏñ íòô­úaw|Øïn·çÎYx2O_-?nmœKNaìàð>àæeÉÓŸ†_înUßoô{—õ%qúƒ<ŠÏyº¾Üö?¨g=»éËýË­ÅùD?v5¼ñºÅMø?Ýìš›E£Mß<ÿwÐ] ZwÎ…´¹lž_žMÆmŸÿ›€.Í\B°ØäÜ{³9‡v9Flöbr³·çaž;}ɯH®Àëï`$Ð{1~º¼º>ÿvwÄÑø²c¦+œ~òð3èògôXýååÃþÝŸ éÙ¥0/f:\ݰKÀÂ\¾…vw·µ—<ÝÒ39ØéíÍ[-&ÂÒòpÅêý§æo—Ùâüžÿéìù¿¼˜ž³ò|¶¥ð0` wÑvq ñé­H1+ñíÖfÐC´ÓÃùñ~{NË–ãØè¥þcÿj©^ÊÛÎZ·ºWCBe 5;]ªgߎýtèÚr°ÈVFèAEúœÎb¼CÅá #¬ü^ÀRmš@ƒÜAöÓÅ´E%~ñüì?ÏxÛ†Íáém:ªºnS›ýœ@”3gKût²hxÒíî¯àÝß‹éb+ê\kdWõÂ0_.É›üÃÃa7*tøù²ëö•ÒèáîF~(nÒkü°~¼ýĶ™Ü0AŸg{Ž7çÃûý-ø©Ù¢ƒ*|™sñ…[¾˜î¾íÖ÷—mŸv+;9Òžû%Í|è¹qsðÅrïö»í¹GÛÁ9¼Á‹‡hÛ>5—ç„Û‹§ðÕrjð&ÎÆæ6ø›Áøô†Dã‡Aë_”ÜBƒûÝ6{vwrÖ¡vÒP€¦Ü´Szº£MSÁí;,§Ö¬â_þ–ú›ndf7ŒatÇàÀ}p4¢÷´çtow}vû[þ ”úäXµ}Ý]_ßñ¦q³P?½Æ'p"±)²Û=½#~ r}÷…B¼£tV}÷ªÛYNðs†µgÃÉ™×ò8<_-.ùèF¼T‹¼;|„æöjôÍO8Ury½áQ°Ôàv¯ÓþXñ2Ûóö©}ØŠÓýxÏ«òÊQüjËæoâ²)¨ä(èâ—l+º|õo€šÖSO_-¾zwu E0Ù=×?_Lû›ËWû‡?ÿ~÷öx„ø\¾ƒÙ§S}>ìîï¯?^ô¾?ë¿ÝìߩϫûýŸßÞ>ì¯./¶/nw7WGõÄÅ–ž ¤°gﯞ}£$7Wm´ÕûT|ÌôÜÚ9-ÖñúÿôÉ?gS›µY`3ðß&D/¯E½Â¯v{±ýl ¼Zæÿy]m›/«É+ù”¹Ü>FKþá ílÅg4<Ü`>¤•Ë?¼Û†€[ N»ë#>ÀÐ8t„› {*žA¦[ŒEm@‹Ç ‡kˆ¡WøÈn˜ˆQ×0C#$y,Óç»Ãõ]m–§ãþ†[7ûõ®íØñà×>Cßio¿óÔ>8`X}Ò3ùB5þ«~E{àˆ ?=nð±Ì!nBv3l?1jð ݲWݽ˜ö´ž¡Å_<éÊù-%ãìÎÅ¢K¢ŽFÏw¥}¶Äkô=ðÎe>Š]¶í®G5Í.ùñâ x~ÄbØNd÷ÑØÞÿá‘#§1@À~ÜÝè'¯Å7™éÊãø†&‘ɽRõqèùáîaÿR~Ô-åü ?¹èäzÿƒi\¹žë½ÖÖ[ù'…i;>¤qóað׌=ÅŒ€Œ=aäƒú(øðîãÚ°u[Š îŸÐÑAŒÝ'ˆˆFô&úhŇ@`‚ú 6 ŸŽÍìC05<_ÙîZe¸qƒxF‹0ô;&骉Îú”wuš×ëaå†g8: ÀQ¶§f † ?Ý^½ywõêdpŽhÖ&ÇYƒÑÇ Ç‡U›ÞpdÞ†Ö‹¢“G#ú0üu£ùáµPÊÓ@B=ƒŠö[dÊÅY½¯N2“çì³,Þ›«ëû‹éÙWË3NL4¤Ù&#<Øæ©\‚…hßÌ'Ð0MM(8•Pøã-Sy€¬‡+à_šòqDàº,þ[úñÈ8±?€ãÿn?,þ@¶:Jfïì| 7O8åNØßÁéî ¬Iù0˜÷b0–þ¸Â&o#a›»ëúD9ákšýÄéx?Â|ïÆQà„Q6üs:»S™ | €õÕ#Ä/=ª©ÇûoÇš2çûž j„ðÇÖ­… Om­ÇüøÎ¬Q+h½¾«$^xôeïö[ŠÈ\~A4Ô©TÞŠKͯçÏN{^Ö`OÜÃ{1‚ÞÜ÷/ßÔøÙN¿®»›žAÃWÏZ̾Ú¸5—¬w,™)˜¨ ˜BÛ13„ó.ؼ1 ,ðpµùïÍíXeq)lÞƒ¥ªnþ¶ýû3“ì h$âc7gÞûû¨ ®Ï¾>ѨI,˜¹áVÌ}6IµjÕÊÁ@g§Un“ °uº§&Q­Ví#Wm>µ}MI›„¸ 7/™tæLš²ܽËö<MœÁ ü;en V–ÿþ~rêß~é97ˆ' ®ŠsþŸQs"ñ¸Þ°D¤ß­`*¹K†V ":ÝJ$C«ì ö¯Z‰D·òKLã«dheKßX%C+™‘j¥æøCVWà—„ÜMhf…Ó°WŒÙ6ä ¸ ^æ%CgPJÏF~â5·Â±¡®hpÓ0!ô¼àø û´ôþê,êä`¢`Æ'¡Ñÿöîz#»€Ç¿ôª÷Rf“Û Ðkir1ê\tmðáT² Œè]c³¶Œ•¶È,íÌ “ Z&›„ç…É ?Ò8÷Lý ý‘M<~E¨Lb)2Àœ› =S›ÃH"á¢ù‘I,`bdZh~¤­%Ι¦…æ·ˆ„T«éÙ*–0‡DP!)lñ<@‡æçDB~ß¡ù‘Y,¸wI‚“Ôé/I@…Q$Î’THf“úA$…å(†$>²], «Ð!‰F»%ý  ¢]8ð‰ÞŽ&hE²ÐÛž>ÓS`‘$ ÃDm"o4^J‘,ÔÚ ¥§ëС RŒT<ëÐyhEBÐáÐ =Ek‚Сó,1ÜthHbeîq‘X=½=‚£g‰ç6 C4 WÑ*š¡),¡á$Ü.ž ©0 i¢ö7) ­Ð–°zÐ IaTHmÐ ‘°Â2¨5'y9š!) $‘žB3t"!ÏäÐ zŠ%1³Â@I=¥Dž(zUÂl4C'OÑ=š!) —-“$2 Ç£‰Ác²ÂòÁÍÐËSK ¨gŠˆÖ% hàɲ(Ì“N=aeIòlH(p±<!ëËñâTò€K’ñ4|l¸Ñ$Ë‹—§@‚³ao‰È4$À†ó@lx«aƒv¬"Œ¹ÂacŒ‚1VÜ茆4>"Hp70VØè„±ÂF'ŒIãcÃN‹­ô°F0]m„±ˆ%+|4Bô:@.|*€\„´uÂ(ÜFF‰ŽaÌB<;cj¬£PcESe•2&A­N%îV”1ÎiH„2dcÆ1!v12iRø(éJ…q…ž½ŒÂG/ÈÛÒ³3øúSÉV΋ë$k<„ _³J/öÓY¥•X®³JÌ3ù3‹ìÒŽ™Iü§ÂÌ‚£×˜Iç f‚Ëwc’=s@<ª[%Y%m¢ò¬^’Ÿ=Ϻ°Gè i"oÓš¸pf‚«aÆÓ0s©l˜¹DÞL4A=Œá 4Ñiä4ÁG¤4 æ²TÔ¤„ÚÀ+Ñ#ð+j¢G ÏÒP“; F}y@«"i••SS…V…g¥Ðª’ÅŽV5ÉØÑJbE…V¥âWC+‰ZUŠÙÑJâI…VY(ogy•†vš—kò´!Zæ%VˆV©j§y…*KU!Íó˜eýÁ;ÊNø©¼¨Ç4UÒ7i¼u–ïQT’çÑO,,’W¢ØS#y9ÉùA#y “ßEceò’ûhX‹ШXƒl†•ÑŠöÃÃRÓxíðÞά¡‚žòp™&89ëg‡re£Aå"ˆÛ(^‘кS¼,WÎ:ÅÃ/¯Ñ½Ëê*M”EåEc=l‰QaÉ-½øÓŽ–Þ¬£P Y -Œmhéx·u°´b)/­Dí/ñ^‘ð²‘ä~›&I²²ß¦©÷túm/OõÛ4V¦¥oÓ0Œ5Äüó¢°4BùÚmšÈ·WÔmš ßoÓx¡ ý6ãŽûe+Õ/Ó˜z–Ø.Ó,rôÔø]ÖÆïJ‘ßU>ÞùDQCf‡’ÆïêYOçwE!Ôeš =÷Ë4õ‚K¿LãëÕ™v™¦¦ñúešŠ3Ý£Ë45±×AÓ í YQ¡ƒ¦ BÇL#‰äŽ™íVLÃL¡þ 3†»4fLÖS$EðÄå—iø(S_¦1cn´:øá2MZq¸ØH§ ]ûU2j?ÅÕ®>Ü_L/¿Ýß^^LϾå?«EDú‡ÿ4~|¢ŠÈ‹gW3~8,íÑJŠ„öì/¶çÑá·¸º¸}µ¿}úËCü”|w¸éŸª×÷×\lñ¿SUC<ž,9©âäkà/šIÕ²#ÀeêÇnúy}…ÑC÷Ï¥†‘ôÙfEõd,Ûs Þ˜z™ˆîծ„,"oÏ ìà B©þ•®ÐD© @F«+GU!>rU…üzß#›vºŒ ~ìî3}ìþ‡¡ýõªˆÔßú™q K@j¸òMÕOü:ÂÒ;ôkó“>ˆÆs27*«}‘Ö–8T ºÓÛwôC¬N·ªf°{ Ž¦]]…TËD£JD EÔÖ?̯e-Þ×!™§Ûd­ûõQÏ)h¤þ$–ò(Ý'êÕ`É’â"¸mAU©|AF…e­08 Þ°0–~“þ÷ánøk¿±îú#oA¯«í>UûkÜ{Ñ›éù–ª$yR§IÝ`Çúª‘(??¸ÒÜ{ì S‘Ó¿!Ð<"[KW†oªGˆ€Õø÷øMõØ Þ3µbćӽX]Ýï/w»Ï¿>Yñíf]‹4©Eú½+Y÷\áì“ãÃÔlý†¢üûã|> stream xœÔ½K¯-Gr¥9¿¡'‰v‹[áïºUP ¨¤4 ˜ÌU 2E2%èß·›?ÌÖ²}ÏÝ”( !(y÷wl¯mîááo7ÿçÇãüxÈÿ­ÿ~søË߯úñ?8>þñÃ?8Ç_?®ÿ|süÏ_u‹œ:y´£¿úÇùÕóc=?–T-¤_ÝÞê_ýS·mmKyt›Úí¿úý‡ß½ýÕÇãH±^­½ýÿþýøw(çÑÞ¾ýâKùБêÛýÝ7øñËõÇzÖ\ßþ4¾•Z¬õí»OHÌ¿ ‰Âã(×Ûýã_^Ýçšò§~tê~ÿÝð§?®oŸo?þaþ³Åóíç?É׿|÷ã—¿Æý§ùC)§·úú{ùæ%¿û¶þ»^ÿ«Š_íí—ý+×+³ìOèÙÏ_üýWý᯾úðßåÉ]©g{û˜RΫ~ ©ÿÏYrüøÓ·ÿöãâ£gbIÿµ?À¿îÿÿOý‘ÿ×gn§|-G‘¯Ýb¾z³’ï?üÍ'¬6I-‡Ç9­®«ÔG£Ȧæø(d´Z…˜ÎÇ™Àj´ŠG(”Ñ÷EÈÊ¥ÇRˆVŸ+þg+ËCйþ3—îNø˜j|ÔtÉð»·ã‹/síٟηtȇ#H&½‡|J%ÅG(ogZŸÂ#æ·‹þvÉßô©Z¶wÛ#B¶—£]ÐÜÃ1«XÕY…ózÔŒV‹U*—<°Z„¬j/Ó‰´A«í«Y¡÷ÿ®LO½h7)<×#÷’-ÕÎ!ÕÎññJý庤–yKB¾Œ£¦”æj9É8N–€-»kعG`¥§Òàýؤ\ñê¿Ú‰&ý‰à[õï-sá8WORêeï:W™ûê»ûÛ¿ûý×_\­' Ô·ûùïG ’o|)_=c¯ú‹ŸÏ^2c›_û/þé§oøåã_ô¯µzÆ·?ßÿðíOüÃÇï~øÃ¡×2Çy¾}ûÍ/ßýË=oŽ^ý¼} 5Ψs\¢zU^½Ö¹B)^Ô;«º¢¢}=®à ídç{¶UMJÔj°^>ÚªjO«’e5ÙuÔGoºUé.%ÃJYîþ]Ãêì…6*™V‹ÙËT®óq~™”õn[)ø›,«Å@«z¡JõV£]ΣÅ@¥·'R‡’ÐfæQ'Å9´(¥‘s¬4xÕËYö^-Z1i VÕD•ÜÆ;»È²šÌ²RzþnÈ”õÆ>M£ôè½Ú–ÍB $M¯´˜)Õé*Õ'ŸÚxZ¬4¤¯žX]ú­Úß»Ëim¦^Õ4*.ôj#PÊ£¦d¥ÅT©7§SZ¨…¼mÂx±'X6Nx„ìt2Z|œÙy´äSKãiR>mfeJZ _>7­ú(ÉkM†~µG>½_“¡V“ÍiMfZõ8GƒZ›™–ê´”ikïGNâBöÖ#õF!çÓb¨Ô‡ÌÁKM†ZUúHNk2Ôêï'·&C­öˆÉk-få “äjâÍ Du’£+R›Yéìý¢èKçf¦Õý9\­® ´Ò#¯µ˜iI—ærZ‹AepïÓ¸™åWïùœ¾l-yßI‰.ï­xŽú’´­Þ?J¾ nf%µ÷ÿúlZ ßÊeµ˜iõ~Ô•ÖbÚ“éãÞ>‚¥žÌF¨t=š¥0 )-´ûVµ¥Â„¾ÕFÖKR\¿Q™öA…ôQt3ëÏÖÞßrÝÙtQûÅA(3¥þ/ñ€¤¯Ê1æ)È«Å@«·û—×ÚÌüê-zvn-dJu– RZ ¼ªEJ&{µhõ`rc¤Í@«ÍÒAZ›Ù3l£ ¦G8‘•…Þ\—Âea!ÔIszƒ„Ny «Þ<½O‹©Vëm'¨«ÍÔ«v¤Ù³7¯í’Þz{øÙÈÞ™v´ÑKÄwF™¾Éíì6³FÔ÷j5˜Ö|MƳ×|Ê@k–3Öš üºòÃU0Y ¯Y‚(…‹Y^]õ)¯6Ò<ï@:¸˜ç™N]WÒ™< c>=ZÌ”z^+-„JùÑ‚WšÌ”z%º´m¤ië ñøv#(™±÷]Áœt S—ÉBæO‚aªÚØ`vÙÄø¤#ýI8–W«Lu]K½sµŠ2ÓJi¾hÁi-~I{Òœ_›iÏc¶r˜ÆÍ,¿ÎÞVp·|#T:ýœ‹2VŠéY*â¬Ù û-Æ@+YsÖš ýÊc†ýZLsëì­Ù鞢2Ðj²€é´&¿z;wdç×f–ÆN¢«×•Ö5¶}8¬[”i=%$»b3«‹/ÙÅUñFkí¼î;Ú­ h¯Á_2A!Ylkð†z/>ª‘ÔY‹¨Ugåèm×¶#»M–Õb{+àÕ»‚²_·3­ÞÇ;£Óš ýb‚Vÿ­kô3Xk0Ò’í‚^k0Òš+άµ˜æ|/œö(¦ÍF¦tõ?V§4z%‹›ój2Ô sÅ…´6S¯zG*;¯²rfsˆåj#+Ÿ²Ðõ6ƒ²ÒSÏJ™½7ˆ—ôÞ,ï ¸œÝ;¸™½Ï½ß–]Û·™Õ Bškû”i=sÅã©uØLk¿«wÛžOS´ëЫwÇ.šaWds Bܬ¸2Râ=mŠP)ù=mÆt®HÈåæ•Vþ„W‹V=;ÖšÌæC¯8׺p>t3Ð’µææ´63¿dØÍ‡nf¹•Æ.̬IP'OÏIg2ÓÉçè8 ÐB ”ç0RZÌ”z$UVZ”:iÉ)-fJý•ŠNi!P’ÅaŸK‹Ò5'-QéâyÌ«úu$C¦3 é$Ú[ÐAñ³ÏŠL§Ú:×2™ÄTÚèü“ÊBª"ë ÜÿÙÈò'~MZ‘–Çñ/^Ó2fJgÄ5—eµh‰3Nj"P*cÇ!+-JÅï*Pfo\¸f‰À7N™®f„+¸]Š@)Œ™}VZ ”ÒÜ{@R ÷#ˆU˜£EÒZ RØkZ·òcÌr+Ö‡{}72¥^{nV|3ð*Õ1¾#¯C­>†ðù¾hõ]>…›YnõqTª.·63-i£Ü*’2К# ÖZ ´Òûµ(åÑd¥ÅL©ÒÊÙ´Z r«¿qî(Š1{†íò+Êô}-øõˆP)±+M¦JñûŸAhÓ‰kO!ê(ÓÔÅ5S‰©ÛÌr*ö·ò(œSÊ4×…œs]™iõ^ßáV'•™V'§{ •ÖœÅg­ÅL+xºbZ-¦ç2:¹¤Ò„c¡Ò\ed¥ÅÌ+9æj¬Í ç¥?àú›¡Öœ±e­êŸbjp,bµµ1_xâcmfJyöFIj3Ð*O=*e Õüþ,c 5WÛX«á.8±*³ÏJZ›™V¯SŸÆÅìÝ)atññåÙh·ÎQ¶ÌóìÄFַ޽¯âöÓ~zì5Jq+%›YŸ?Êît7†ß ´ZxZuQf~µèOh(Ó&Ù"Æ«ºŠvN¥ƒ+«ùÙÆXž&±ïÏIv’˜Èž™äžÙf ô´+`#T*¸â¬V‰}jP–MÃR#FrNØ -¤%2ɺŒ{•R~êS)­Œ­ŽZñ¾Ž$=(×Ù µÚèѰÖbæWïÑD×CÛÌò*~¾S‘–‚PÝn1C¦Ó—“™DUâá{ÊT%^ó™… ]1a¯vYMJmL]“ÒD¨4Ï4±Òd¦Ô+ìàJøFš6ÙRÌs¯ŠL'ø}ŠLgíB@ܘ0lÊØ^N: ™Ž{í­á§46·`屑ÖCøÜíFV£%Ùkìj´Í@)_£d’Ôb¨uš‰µÓÙ•”îš_V‹™VïQ‰ŒiµøU’ß‹® µÚ\­'­æVðSs)ä×f¦%mÂé´6­äO°­‚§`–ÕdÆ>$ nO‡2+ø=BÊL«Ñ^ƒiÕhOÂýDØÊÒØæL ¥q3Ð ŸÐ nÇCêížo}•Y匕/ô‹Ù{ÓÊÓû·‘¾ð>kEV³dÙ'áš—ÍT)ŸL»L›…@©×ñÁÍlJc›•Úi˲YW¿6²\ê}ã1뉹´(åÙ¾¢ÒD¨$S·Nh"}rª+QÊ@©=í^RZs…žµîµ«ë|ÚM LK§DhàCgÙl°(n={3TJË+ „J w ©ìTºŸ[YúzÛ}¹ZT™i…s¬ãÖbàWˆxjvY-¦sç½`ŽZçÎ7³yx!…Ï *c­RžµJa­2”H«À"Ó0Ã7\ØHWr|ZûP¤ëYöÅ_¼^±¬}ä8Fu´ö¡LWr”È´è´lr0›fDkYÞûaU¤.ÙdY-ZEN :­ÉЫїsn-f)ì£ÛË­î,†¹ÕIv«;Ê4ß%ÚHâ|_Èž_Ñ=¿¬$ÈÙ*_63¥<*RZ”ª?×jÌ”F¢Xi!SZóg¤´™*ÉÆ §´)EŸºÍP©= á _Îóp æöFöÜòE!0/¨V ÇþhÆÍy+Ú媄µœgåJ‘ꄹåu62æDhוD|¹\_q3Ó°H<Ÿ¡H}連»BØžt¢óèò'øé\bÂó•Ë*ñ±Nª?¥Ì¼’ vjÐIÏ»·”™OÀÙJµâS BÊõ¬U(§zƒ[½S™gl$š_å™(E¦Óü޲À£ÜÞ¡…,m{¿ ¦÷«ói4¤ ´âÓ¸XhÅGòÏn3С¬œÖb Uð$”Ze¬Éï)Ò­ÄnZ¥ŽÜ#­Å@Kv»ÞŽ2Ë«žVø7ƒ|¯WA—Õbö kñû!²²PWÍea!Бˆ ®²™)5Ü(µlh?U7’~ít3UjÒ"¡E@§ƒææë”i.Itƒæz_Ê@«Íx¤Õ8F†'leZáÆI-dJ×õ´×n3+­E8ØÆF¨´v8íz«pŽÙ$rj3Ó’H9>}›V±'Xk2{~²låàF»¾“ n-g#kñ$Èë@m¤my‹Oˆ-£ˆ'ÉÄ*]Om¹2ÓJaîÀG­Ål´èY¡Öóé eàW|ê×)­6",²Öb¦µf-Hk1Ëwù÷éóË ‚'.w¢õZä¬"ÕéC{À.å©„§ÓǛΠ,HBËô2º²W*ø¦‰•œ|õïÞf¦UãØ#LZ‹™Wõ©'½*Õ§½CÊÀ«9ög¯&ƒ¡÷ãü8x3Ðj3Æim¶ý ÇAëëbelk ùÊRŠ@©úšXÙÎ+È”Î96"¥ÅL‰Û¬²$ÌA q!Óin¬<ºfüZòh1SºN8Ü´lN85lV\+ðh!})|’ÅØ® ‚D^ȼc ´²?£ ¼*s† ½š•*Æ [V•£þ…#̘¬äÕbZsâN†ÛsvÌx0g§Lçÿ:I>v£±=—$zO%n¤³’¸ÈÆÖLiÕEËT´gnÃA3î†öp'sæ€7³uOØj¯) Ò.ZS0Zc5ÉiÍ&ô+ûs,›‘V–¶Éi-~ίÉtÝdÊk0ÆöL8Ò1¿gk0ÆL‹ Y_i¬;±_‹¡V–zÐiM†ZcצÓZÌò+¨{œ_“aÞ§YóPÞo¦¥+_È…k+£9Ì©z(£YiÏiÌsPi_ Þ›N܉jcö潄ÞÁÅà}Î3ª½Ï™¢?ˆU™±òHk1Ð*36imfõ ¶"­žµj`­0zP¬5Ô2ÇÔ\ý·jÍZ…µ&C­âc¾³z™ç«Ìªb //p ¿(Õy"”63¯êSœ c uŽùFÖ:aZrù]CÚªÖËõ® ™Nx¸FuSqg~66¾÷Ù.×ÄOd*mN  ÌFê‹'IìÌB;²ËÅeÎBšÏk„§&7²r$1=Üþ e¨”0þ·Z…ÆZyì#f­Œ1j†UŴ˪âNÛa5gÑXk2Ð:OwM«Å@ë wYWœçÆ¥1ËwÙãÚe¦%18’ÓZ ü’ó–§ók1Ô ŸÐ OZÙï›R†ZsWkÑî­eÕ|~-†ZuÄxb­Å,¿â§k1Ó¹æ&1ÚHý¹ü:«!Õ‘³j‘udWEq-J‚—›QCàòJ›i9ºÖŽI,G›é aXîL½2Ôš÷-±Ö…gT‡U³¬µØ^Ó W ~}̘iõªÛw£ üÊÁŸ·Q†ZeÔܬµ˜ù•çì"ùµhµÑ×b­Æ§ïÂUž¢Î*­ZýŽ'cæW›ñȯÍL«Vјj…#Žzµ6ÓµÉAÇ4¶×L;)cÍÖLVõk¦ÊЯ¹žÀ~-¦i”“à§ËûÍ,ïÃ5WQ1ï7­µ÷ˆ´­H%nY-¦ï£×DlJÁŸ8U†^EzX)S­ü|w¥1Ð[Y*CÈaÓ\THE:gÉ€lLçL>Ú¨1S:ÇvRZ”ª?—¬ Òv¶§9Ye–O2{áž2Ó t—Ö´ÚÌ´ÂSdeeZrH.ò¬"PŠ39)-fJ1º›"¡Rñ÷¡*3¥tBÌi³(IÔ,W:•YNíÈ˘S‹Á”sUÑ=ÁÅ@kݰHZ›™_¹øÛ™–œ2uëe›_ÇÀ—¬ÅP+<ž¤øïOß ´âõ´–©Ìò¾·pÍÕÀ›Y™ÏoO|z{bzø±ø”ð¤åê•r}–â3:MZTÿ 7­æ£3­t<—‡Å ßÓåï×2få!U$˪â7Åjí-#­ÅÀ¯Nü¾e–Fß°7nÕ%âÁéë™ÍLEB!º^ËfVJtÑÿ i}\ÿG‘µBŠ›MR¦mŸêzä›Yï^b¸áËF:æh5û{A”ÙøeD4p»G•éèxD!È<:VfZ­&­Í¶V<úˆ&sôc[«“s”XÐR¦iŒ‡ì”Fc;·â±öYAv3­^³†â´63­>:¨ÑimfZ!ûÛO”Ae%çri\ ´â÷LR ™Wqf#§2ÙMê}ÚÌ”ò¼q˜¤63­?¹÷ÛEIQ¶k÷8ÂPŸ](õÖÚÍZ+¥˜–”2ΣɄ•8ºI” ±Cf¥…@)S4Ùi•1èì0Jî®E¨4£Ä²RæšA|–OO/W?ó¦ ”ÊÓN~cæÕ7“W›Ö<{ERõÁé[w‘Ru3oQN­¹™7eÂÞ>…‹–ÄltR ™W-ãsXF×0ªƒiÔi£ueÉTG›ñ “ŠLIΑ¹“Ê@©øR¾*=Ýe¥Ì”N¾J(s—)m¦ù}]ɯ*³g7nãuÞf èæ»i膼aŸê)eZãÉ/èÓL«Å¬F÷¹º*]™ö¬äÖrrÏJ™iIìÙè´¿ò<ÅG~-ZyôåYk1Ð’ž^k3Ë/9«š\~-y_æ]”÷›Y™Ø½h,‹Yé’ ¹æS´zÿq\Js†L'¸hj†L¯(RŠåþT·ûÆØÛD¹ûÔݤLG[ñ’Þ9 ¶6¥ýýëÊPiTa¥‰ö°ƒ4F¡0T¦{±:©H–Uå[¤;i~_¥1Õ’‹[ÞYnLµäÜÉ”éÞµ(çàÜ.8ck\ÍÝ¿®hïŒáEv Úû;9}&c¦tº» ‘’¼Û^i0SšÛHi!PŠãÔ6+-fJÉíÏ4JÙG¿2fJÅíÏTdù}úx\†ìÉ36,=¹ÍP)´'¥Ð¼’Û¿hÌ”ÚH)5—6yy+§m!Ó¹"\‰±l&ènUQ:s+ é,d)»fÝ@)[ Þ‰zº7e3{ëäÞšÓ½u‹Ym ÄuP†Ziìsc­ÅÀ¯äïPi\ÑG)‹¡ÖÜÑÌZ‹™_1<¼[A ¥í.…›iÍbÆ3RËj2«…CÄëœÔçô&à9Kc Tæ*I>?åì©‹8aÌ´ÖYÒÚÌ´ä^åê´6­0£ù“Vàÿƒï×bÚŽ†!Ö²‰ÐÝ\6»ÄŠL§@ðñeSx–>ÊÉZˆ•¸¬„T# G┥<×ÓHi3˧\0 ϲš JUž·¤Q©ÚÌJh90Ì´ÚÌ´äþéâ´¿Ê飿³4ÊM)§Kãf¦%{1|YØ ´"Îj/+>Qå­ëS)Ò² ¡®yœ¼‘õåöi7¨YÈtúgîâ-‚*Áߪ t²‹Æ­•š? ¬L•ä¨nã”mdJrR×í`TJþŽC;¯ðÉTC¦8Û&èO}šGØÌtÎänøTJëlRZÌ”.¿O*Õ1/ËJ‹é¸£7~—®1Óê-Ó鯢Ê@+ûøÊl<Ô_1¿wÊ˜Ž­bž‰2Èû’üÕB $qý|Îof^ÉøÆj•©V’í×.·”©–XP«L#÷qúªpn)ÓY€´VÊq@™i£þe­ÅÀ¯3ø» ŒYåü•+]›YÎK]ÞÜÈ]™¾ArúÈÏÈn¦ïµ,r#î@)<ÏžmfJ1»HöŠ@)¬W—Uá]ÄÔ9ˆé[ ò*úÝ÷Rºpçô4Z ”n£_F™gùåÜJòåj3S’þŠ/£›Ö‰¥C­ {%ë;Nj!S*3þ=)mJõášrªxoÆ4ÚÌžßš¡çG“6ÃÈï¾WJ-ùÆÌ«Þ¢7×Vlfé“3ÅÍwmfZùp!ÃÞÜñ÷ìïµU¦i˲‡{ÄŠv Ÿ×d´ðŠTç÷¡63%9\é”6R_®øàŽÏ"¦ðôÛ4ÚL{¾yZ±ç« ´š?×®Ì|Ї‹8£”âé÷(¥Ë§6B¥èe¨äô¯¹· ÝÒA†P?Ë&óy›NÚèkÐ3[Ì”äò §´‘z$—°Eöh#ÓÉîÖhC¦ÓÜ w†L-Ô¦R¿Pî÷,¾4.fJ²A¥±ÒB ÔGg‡ß3¥rºÛ iÚŠß׫ž|yº•N(ù}½†Ô#©J] ´¤­Ìª«]•YØ.¿g]™Õ®ÅuHN1‘ö‘‚LÓÜF £4˜ 2µ;eÄ:J§~I¸•C 4i§\‡°ƒmü*½£D›{”@O9ŠBK¤F,³:+øÝ@H«²PuÉuby´©ô îL$´ z$áÉ¡H)qPM%äU¯à2{µiE:bvA¯bäá¤+ŸgI ‹oZÎ;âu¨“iŸ´òh]’ -BJ•ê0èQ…#·x…ÏqÙ#5bÓYrä‰<#¨•#Ov!­1ÆB©`â锃A§§ŒØ$Vgó±Nu)ÛÎæÆ-ÖUÂZÄî§ï©UJ^+%šH>ånL Á &¥O¹ªòÀ©k#:‡ßQ¢õ¤D‹V7Tš½µÄ!¼Œ`™’ö‚Ëç&¤Ug(zК„ýjx½Ím„µ.¤ÜFP«®ÉAÓÚµ„UÒRi¬r$“¸¾rQhÂ=F fVp3±¬cê;¯×G¨©äøîèW@•ƒó+a†º»Öè¶\èÓù #¤”èN¼ ȧ3óÑ%¬Tøº)%¬Uy)K kÑñ„Ûk5LfËÁ¹1X9X„JTg9R‘ÚKç5CCéܵ®^´6!­4†Ò¨µj…€!ón#”Æ0@7Áü’éb.[‹PÞ·x¤„´âÉ›9”–\fÀu,©1âòÎ „´_fµzOêʤµôdªìM†Y¬tñ¡ %¤(b«ë[ÉùÁ sŒ °—&¬P¿Q ôA…UœT‚ýÙšpËömFµÿ‘6©A% •Hjòª¬óbëóoBZÍ… 7‚~ÉÅï4O± ¤PîµÐÄ7Ë©„ÃÖ'T£y˜Ÿñû‰Î^+Àg&Œ.¼RBJnWÀ¬TpÍù6BJîhW@Jrä„€™NÀ)e×§RBZÛÛÖr,¾PÿeÖjŒÖúu%Ϩó*<ß©JA¨´[Ìê4 ˆ¢ŸA%ÜV*ñ¢ó÷ (]1a¿ö6BJn±PÀJóT*M‚J½ÊTÂ7€´É¦bœ{U€:÷(@µ Átp[²)tzÛêÐkŸÜ¾\i‰Û«@=$¨a5´Öh* S¶ )ÉÅé´Æº k]£nB­E`v%å„ûæo ¨U"žÉ¸_%ñ^t%¬Õøv#èW=ùv#¨Ugð=ÐÚ„´Ÿ`3BZÏÁÜF(r%8íéP‚å¡3Þ#¤µí6¸_ÍïRP‚ils®Ò¸ i…'­ð´ãAîÞäÖW ¦QNYq¡_ß›VÜû·¼­Ð>kX³ÈÕ›‘š—M@)ŸÅP@J½Ž47² )]t Þ€¥M¢(¸úµæ’\ÐyЪÕ&¤4oü¥Œ×«Qb!Çn J%J )5·{I iÍ5zÔj¸ÓbZ]§ÛM J§yÀCgàl°(´ž½ +%Š ¸+%܃tñJáI*¸š/÷Öû¢ZT j…s¬ä€Ö"äWˆxnösçY®Ás­Jp^XÁ3ˆJ¼V)^«¯Uæ‚h{µ£J÷Þ+€U‰‰Ak `½BBbœ uZû }\kJ`ÕI®k¥E§F¸x°iÆn m„mYVEj“Ín ¤Uä¬ iMÂ^Þ¹µ¦0P-˜Âô¨v°L«;J ß%ÚbÂ|_Ÿ_G‘žßXRÄsÏ7TÊ£¥H©ò¹V#¨4…J  ÒšA¥M@I¶VÒN)V¯ë“RsB¼Â—ó<h¹½>·<ÏRÀsÛ•2¼B·òg«ægL—\Ý)]›€N»Mg}&s¬.¢Î$T§È~X®Sa­Žµ&a­9W‰Z‹`½Y²o¡:¸d¬—o XŸËÅ¿ÔÚ„Ú> £Iû”`;Z>a¢ÛöÚ(>„èm4·N¸õ[zï*ÒêÉ £xJpT,ÓÅ#F`æ.÷~X¤a% %1V(¨¿Ð*G¹Ïi¥Ñ§C­EH+S|3¤T9ܽT’= ´¢µÎy"hO&^¥—ºr£ŽÄ¡àiJ@§‘g¥XÊEÌi¨“yqöˆ®­¾@Í-WkÃÕU7Ô:ÝeVJЫÞ0à©L:¹çkK¨3ƒ šLôkSUb„Ñ,ù&¨#çîpþwRê#¹À¹´ æRhØÛ¸`[9.¡Æ¦rhu™ ®,Ö8/•°¥E%=î’8Òbiô8#¨•Ï1>­EÈ«ÝJì&¤UêÈ?ÐZ„´dÏ1õv”`^ÕàVø7¡|¯×Ao ø káý `Y¨ B¡ßHGb*PÿdTj¸Uê6€Jã€×N7¥&)ZŸI§£FóuJ —$¾A£Þ—Òj3"h5#óûé{ÓJbÜÔ¨t]n¯Ý&XZ‹`° Xiíp¥§«Á®&A™©ŽR‚Za]éeZ.ùZVyDŸ@­ AF—Q…pÎ7«ï$Ì­ål€-ž„9 ÔЖ˅À‘úOJPI®Ë¥¶\ j¥€W,ÜFp´èØýô½eåOg(!¿¢ë×)!-ºžù‚ZkÞ´Á|—bÿ@<¿Ü(*³БÈï8‚U:}pØõ™ÊS îôñ&¤3C ‚PÁ­FWf¥‚ïÙ´’³¯üîm‚Z5b€éÛzU]OzVªnïòjŽþÑ«I¨F›Ã¨eØ„´ÚŒ²Z›˜_á8"‡j6bZÚ £€”*×ÄJ,¯ºŸ¾5ÎÄ×Í*A%Bh£e3H ƒã ¨Óh¬€<êoRkäÑ"¨tp¼é]+®•z´¼¿ƒÁÕ;7« ¸2W`ŒVæS1JÈ«B·è(`¥Š‘Ãn èU˜QYÁ«Eð¢qat2Ô\Z~„ñ®6ßæÿ‚\÷L±Ø\bø8•¸ÌJD‘èLiG•¢e*°™Û0‚GÀŒ»›îì«Ùn%¸àZÙšÂ`í‚5#¤5Ö“Hk®0±_™Ï±lâ´²´N¤µù5öJ_“ÀºÉ`×`ŒØL8Ò1¿¹×`Œ 3°"¿ÒXyB¿a­qÑiMÂZcß&i-‚ù•FÜ=̯I8ïÓ¬{ ï7Ò•¯GÄÂ5?cÍaNÕkÝK{Nc¦Jû"ôÞtF'ªà;˜güx¡÷9ϸð>gŠý0­ÊŒ–Z‹V™Ñ±@k¬g˜ÝOßS«¼V ^k^…Z“Pý'³Lê¿EXkÖ+¨5 kŽùfëež±º` //` ¿)Õy&”6A¯ª‹Sa„´Î1ãˆZ§»Ñ"HœÑ5­j½¨weuæUW&㮾 rU<5ÍÕŸù rSüEMü¨ÒæÄ€Él¾È’„Î,@¹#û\(s€|—Òc6/€åH¢zÐþ %¬”0øm„µòØIŒZ#Ô,«Š{ho#¬5çÑPkÒ:OyÝFHë ÷ïðy&¾öR Ö-Ž¡ÔyÂrÅ:O‰Ó¢ÈJد:VyЯE0}ÜO;è”P~õžg×P²q/m(£§¸ c?¤æÅD ´ úÔ[ƒZ„Òæ¼2¤oÖ ³Î­IX+qŒK#˜ï²+†Ú%¨%Q8i-B~ɉ˓üZ„µÂ“Vø„Væ}SJXkîËB-Ú»¥V­z­æóKv—8¿ª¿Œr°–(¿6A­t`\‰ÛùÅ ­°|u–3•¯MH+à,Èm„üÊ.²²Lc®WBZ‰/ïVB~åò`·Àæy ¤pRj¸ÆuA­ÞâqÜ&ø^ËÔË…ïõ¬”ùj"#èUyªçË'êùRyW¬Òª'Gj2‚~Õ‹÷K(ÁÖðÀnÌþlm´ÆÀÈr °­?e¿-΄Y‰{p·„Ô’ C#imBZ3vj-BZ•â»né»$Ô>ö‡6@‰ù@×ï)!¥o–ß—tpf@ê:ÿatΓn6:½YÇÎÕúLé:£O×"¨sÍmb&´øsñ:«Ð í»Q@…‹g•R€¥àÛ)ŃWDŒ@9ºÖžI+G›À aht¦^ k]xñém„µ^äy±5­p¥ÀëcFP«Uißò+>o£„µ _îiýÊs~üÚ„´Úèm¡Vó§ïÂU\ÔY%¤U+ïx2‚~µ¡üÚµZ᳊F@+qÔ$¦µ ¬MF×½±5ÓÎÊXµÖ5S#¤UyÍT û5WЯE rü¤¼ßó>\sÕò~ÒZ»@kÒŠ_lÞGaÔDl@JOœ*a¯"ž+¿`n­Hh[› –œhe­EȯÔp…þ‚)ÌŸ‹6‚ZýÝ£UJ#¤åVJ”@=8þˆ5³«™åìyÂÁ¼Ð)™ç N¡;æ  ?»€Nïadl)6À¾‹\†Î}ªMH©Ð½À£© \Ÿ)§[äˆ"JH§Ò¼VjØ3ºÀó—kÌiç¢,—r9E‚PÂZ´6¿b¯qàtåmR(÷”S›ªÀr<öŸÁ38@§÷2ðÞt¨“èŽÔI°Áò€:¼æjtd‡Òµè\‰Çï`™W«ãNH#Ð7–¨o¾ öócïÑI:#0¾’'žÊ3‚ZÒ‹¢µ%¤ç hM‚s0r™{¡yg%0Ÿ#¬eœÏÙçÃåÊw:碄µêXeD­IXkŽàP«aÌ«iç]l µ ¦±·(p_Ù „´æ¥½¨µiå¹c´²ßÃßY}ò«>ûÕGëtË’ÔJÆä¼–;“eµòÁ界 Vg•Ó¸•/f÷Ó÷–Õ5on­IXëµË–{f÷Ó÷–UÄÓ®7ÒÊ|#˜Ò*x³× „´æÞQÔZûK±ž{(Õ›`Sæé-¨sÁÚ«u€Z°»Œwk@ÂcÊ Ø£Š+&·T’¥ ì+l@JOóñy~"Ö@±3°R˜sá žfÇcMn6T iU¾ïÓiÍhD¨5 •„:÷AIØKU;8Ž´ÔjófÐÚ„´ò½£Ö"¤•Ýì¸Ò*nS i¹[ŒÖŒï€Z“PíÐG 6µV:V½¢µÖ&ØbH¬“ZŒMXëÂ8Õ·Öºæ91кÜɱ ±EB…5â `¥YPÁ} `ÍZ¢}<˶ ­§ó?aý{Ö:çmq µ xuÎ ,æÕ¤4# ¡Ò"¨4k€Ò¤TÇ(*-ÂJÍ+äø5—,Ç7Àg'Þ_ôì6a%C÷Ó·–QÄ»eo#T¢duˆ6ÆlÂZ™o·5^…¹¤l^m€Já£9PZ„¼ o¼½Àû'Œ"ëqZÜ›Qâ´ZôZ͵¨©?Þ“V•@“õ o#X'KT—ƒzÞJ ~Vi•D i5\W¸–;7¢Z°ùfz¤$aâYiRšÇ0AiV*|šL_:Ç<¤oÔJï'R‚^¥L'ã°Rsmý&¨”ºm\)åÙ”!¥Ë¢÷ÜöÙúC)‡¹²³ûC P%óÞ ؟†ì6‚Jen 7¥H©DŽÝ­„”¢Wzº³¼³‚ì6‚Jõ€°;·Rª3*(-BJÁù´äwÃÐ]·œ§¸'4M±ép¼.¬Sùì˜;ɽ×3Ò7ÐÊþîJ#¤56?¢T†˦QTH0gÉèö_š6gâh£FPér@iRª|.Y ¥ílnNV æ“Ì_ÐÃS‚ZnÓº Vp‘••@IÈ!QäY¤g¦µ®¹¾ Z‹_küZ„´zÿø ¤µiÉÌ!­*ÁüŠ.R¬Ê{‰ZC«GJð9Ê.gÚ÷ µRu3þ›_yFæ¿6Á4JÜNã&¨U*Fµ½ Ví9hm‚ZõÂÇ7Òº…¥ §XgnxŠ‹ R•樤*¯„5zŠ›`ÎW‰ùIOqÖÊXJn#¬åW¾•@‰ϼ¸ Ôã¬2®“(°º¦ö¿aT #WœaÛµyt¹ÞJP)ðÍËÀ£ÞX¬E NæIG¡p%¤D÷£êgð'Îbaþ,€½á*«ÚÔ×ß„”.ºwÛø#SPÊ6@¾ÇH{”ñíÛ):Q¨€•šWm‚J /õ¾ RJ|"ÔŒ@å´w¥]zJPKF\´¼ z•3ÝO­€”úïVÚ½*ŽÁÞH)ι_Pš}*ózHói(®çä Nåùo¨Ó(ƃzOäF zMÀZ©¾×Ö)e·×oôI‚fR­´¤Ðí¿¤6Õɸbm‘#}+v¸:IùÓž5ØŸQå‚ãŽ7T‰ãE–¡¶¢>[Ú„” l4¿ °R娧F \·ó1/¬`o‚ólÂxåjÖ:ùw%¬ÕÜŠÚ&¤u]ü¾m€)¼‚[wWBJiFN©„±”–U>€Vý„WsojUÜ#¿¬š›•Ü„´Â…ñÖo#¤2ža¸Àl©°Œ1׌VÁÕ£ÛûåN¾+!­è÷§oBZñrk™J0ï{רÞË|ôoOüÄÛÓƒ ÄäS³67§”«—ògtš´©ü 7!­ÆQŒ V:|yX„ò=]|¿–,©"» ÖÚ]Z‹_ñ¾%˜FnØ›oÕ%æÁÉõÌ&¨"Á©×² –„)ú¿¨ëAñ`û ¬Ðl’hû„Uê‘o‚½{‰V@× `ÌÑjæ{A”àøeÄ4 Ý£J`t<âd+A­ÖFƒÖ&¦>¦É½ÇˆiuvŽ2«ZJ ñ]âÒhÄr+k§•f—Ôêuk(¤µ jõñA¤µ j…Ì·Ÿ(¡4ÊZÎEi\„´âø R  Wq„f§@ÙOÊ>m‚JyÞ9 R› VžûÒ@kÔ*3â h-%¾³ g‰n ööD9mK#>#¨%Ñâim‚Zõä}ˆFH+Ó¬ R*'T\o6Žã8S¢óêºI”+±CF¥H)S<ÙÛ*åDw…(`¥'•²_¡Œ³|zz¹òÌ›R*n'¿ôjœÁ«MHkž½©úðé[·R}šy‹rnfÞ”P {S|p !-‰ÚHR  W-㓸àó“ àøøægÖi£}EI@GŽ›á “ PIN’ÑÉ%¤T¸”oÀJî.+%¨tòù*¤tÎ}^ ´ ä÷u%^=T‚ÏnÜÇKÞ&¤èî»Ûi…èê)%PãÉ)/èÕÜF°F7ºR•®zVr k9±g¥µ$úl$­Eȯ<Ïñ_‹V}yÔZ„´d'km‚ù%§Uå×"”÷eÞFy¿ –‰Ý‹¶2±–.¹Âk>ÚûãrT˜û0€:¢©@¼¤è6ã‘(7¨Òî#6¶‰rû)ݤF[ñ’þ9 ¶6 ¥ùþu%¬4Žª Ò6ì(q¨Ž•À^¬Î*²ˆíëê¬ñ¾J# %W·¸³ÜhÉI¸#>(½kQNÂÑ.8#º ®£F÷¯+°Ý‚1œ£èênA¶ï°³“ã0A¥“îv0à”äíf¥APinl¥H)ŽsÛ¨´*%ÚŸi€”2G¿2‚J…ög*Àü>9—|rçŒ OnV Í)…ö¬Dû RI¥ö”6yy+¦mÔ¹"\Šq H·ª( ¹tÀ”]³v€”-BoŠD =éMÙß:¹¹æ¤·n¬ „ÑY%¬•ÆN7ÔZ„üJ|ï„JãŠ? i\„µæŽfÔZýŠáÁnM@)”Ö7R 7š3ÄŒ§¤n#X ‡ˆ:Ý eç,R™«T Uüù±(§O)â„ÔZ§y@kÔ’›•+imBZaÆó­à#üVدE  )B¬€µÇ‚v‰ Nðã·ö¨a´ÄÛ*I@RZ€”ò\Q¥M0ŸrÁ8<·*UyÞ“¥j,¡åÀX07Ô’¨ i-B~•“£æÁ4Ê])'¥qÔ’Ý\6!­ˆóÚ·Ìy‰ã…}*P$Ø5Ž“7ÀÞ¢Ü?MƒšP§ìâ­Ï¬øžP%¤“)·Vj|X (Éa݆)Û•ä¬.í`TBJ|G‡ËkAx2ÕêŒÅ¶?³?ÕÍ#l‚:g¢>Òº ”A¥‹÷ã)`¥:ffQiwô¦‚wéA­Þ64UBZ™ãs(ÁñPÉxï”[Åxàìì µ¤ £q­ÔJ™÷aA­ìöNA-‰ˆD3•›àøQN^4®Ý„´ÊŒCZ› _%r<%”÷%ñÕ¤$‘ý8ç7A¯d„C£Z% •d6å–Ðë·Ì­qþª`n)Y€´ÖÊm@ j£þE­Eȯ3ð]PF0r‹J×&˜óR—7¹+7HÎñŒì&ð^ËÑ"qo@JÁÏžm‚J1S${¤ Ö¬7L_¬s–ÍÒ·åUäÝ÷Rºpïôm„”n¤¿ àóË3²<¿MPIz,\F7!­ËÇ µd…‡¤@¥2#àƒÒ&¤TìÔ”SõÀ›3n øüÖ| °ã³>SšBÀóo7èùæ5nµž¯Òj|®] úŠ8£€”âÉû@”ÒÅã© X)²Œ+9}èkÞ §e¸J9½=3© ibT’ë3HiðH®a‹èѨ“éÖh¨Óè†;¨ƒË·JYÎxÊì6‚J²E¥¡Ò¤ÔÇg¿ï‹ R9é6¶ÂûzГ/îV:%¤Äûz €GR™R ´¥­Í*Õ®J°FlïYWµëÿðÏzõ$ÿ·þóÍýñ?õá/›ÓGéý5ÿêÎiòQîì(ᣜç=kÿËýáwoÿ×wüórò³vööÓ·_|ä½NííüO_|Ç}Â×ÛWßÝû/%¾}óÅ—ò•ŽTß~œßõjýû?«@yûñóß-´·_þ~l~øbì <óºq!ãœ3†·øâK9¬ÝÛ)ù–XÔ³æúö“HȬÜþÙWß¾ûTþÀ?i_^þ§k}ûå»>HZÈêçáåÛ×? lÝ…ÚÞ~&/é×þ¸¼hñ?æÅ(ýóÊ¡ózûSÏéˆ.¾û±ÿ¡J.•·ßâ«G Ží_#ó¯GâÏãzû·Ÿ_üýWýáË"Ť÷¾”M?ýýüøÕï{Iùêá9oWJ¯¹å;ùÛ^° È]Ö-Ô^ìúwßþôý¿|ñÕ?=ÌnÕÿ9~÷öåý-–«_ð÷VZ,ί§}®¬]?}ñ)GäTs8ÎåÈ·úî÷_ÿòõù›Oy#Õg=¯íÎÿ ç·>’·¯ÿøÇŸèoüº?¾V^Ç“Jä{ŸþEÊ{k‡{Æ?Œ× Wo¿ü¼ŸÞÕóBŒkiò5 €TEMâÙ„ë*úfý[öÖöWéÇŸv ÊÛÏÂ"0Kb¯ZòåûO+SÏ||”ÓöW–œúò”v¯ý¾¼zEÙ‹æÌ±ßþŸ_|)aÄIyä÷öÝýûžå!XVrëÛoÄ¥ßlÐ]üæÇï÷‡ðö¬ï×ó훿{ûÍw?üþ»¯øéÛ߯/¼ýæ÷_ÿô?þáû?û›¿ûDÿíûïîýÉ‹j—Þ®ãï¾ø»/FŠNYíMóWÿíÃWÿÛ¯óüç?}ý¹Þå¾ÿ×ßÒõë/à'Úþ‰ÿ½—`ÙÕŸñŸ~üî‡_~~|ýÓÞÕ®·ï¿û¹{ð§oþÑ~‹uþ…%÷lá?žŸ¿&k¾ÿúß~üó/Ÿ¿ùúûoÿáëŸv.ý¯ûÛ&¿?îß%zêÁÑï¿þ‡o¿ÿÙ¾ç|=~š¿é_µoþ{?~1ϳvùTN}õÛÿç¯V¢þê«ÑZÊ5’}à{Jž+|¼®^Ë]½MÿøÓ·ÿöã䲋ÐG'ÿÚÛÌžÿéÃññ¿~8¯8fŽOÙ‰|Œ+Æ“ì2½”HküleäkîÃjÄ„Éh¥¬ä<_w¬”˜Õ% ºµØÈªc‘°réÁšÕññïö8ÎÞÇG…¡¿qŽV kȘ¶‘F‡£?È+u«·$Oõ,ÈU ‡|X€­¾i}’˜ý½Å¿]ò7}¦ç)½§×!'J§kqJv­|ÂF¶­)@ ˆ—Ñf´©9ÌK|¶Í`®Zè·6@›å¢Ù€Ïÿ®|>äø‚‹f$MNìÉIÆ®©ú+ŒD©d)-þçN™Ü=ÓVzi$Jm÷£Þ¿‰^é¥QW’/ÇóÏEYCŒ[鵑(Ié|ú9 ·"ïáRzi$Jñ”C þçri}$ªJ/D©¿`ñ¥ÒK#QêCå£>9îò饑(µ2î…O/º’Ü-íéç¸d¾6%™*{Q0_ÚˆŽL]=ÛÈmêÏ QIc‘™¸$½6¥r‘ÑþµtÉìÆze#:µºÂvö­÷襑t‹Ž±yæ³uÔ¯0¥ë”@#þÁÊ.˜’âVzi$J¡È)þ\ÊýK)öjöÜJ/DI6g<Ùp6½´ [ú*i¯lD§ÊôÊSFöÎÃ#Xn¿4êJù§ýÃå÷ÿµ‘(ÍUóáR&½6%¹ó¹ù¢×í¥è$8ã«ÔŸQq¹ôÚH”òºøÙ÷í¥èÔ䪿O¼o¯d€Ñ»õÏ¥+Û—6¢sŽEB_Ü8^‰ÒÜd÷ù൑(ÉULå•ÒK#Q’{‘Ê“ãrÇQªôÒh è§ʛóé¥QW’p)G|z¼üè^‰Ò96ê}¾Zzm$Ja,÷|>u¯DIŽñr뚌‚¬.¡W6¢ÓËV|.(Üxm$Jr¸îùñ¶^¯1s0”^‰R¡¢üÏ9¥—F]©ãzñÏ÷º^‰Ò5@?_ë¾6¥>‹õ© 8Ÿ^‰RÏ…—ÛÝ×F¢4MxǹÁ|m$Js«ÿçߺ×F2isž®2|~W~…‘(ÍÝ»Ï]Ï:†%Ké¥Ñ˜H‹™þ•¢Rð+ŒD)+kž~_à_a$J%»B÷ܲü #Q’ß‹‘ů0êJrÆ4?©<ý #QºpêÓ…à¥èÌ€GŸ}…‘(¥ú©FšÞº_a$J%¹Êðù­ûF¢ÔÆq¬>½4êJr<¯>7>\^‰R¯«âó „Ëåk#QêCõ£ñ 5®ÿ Ÿ^‰ÒØõÙÆîµèȶçÇë½6zÄùôÒèÝu'ôÊæýu—¶—F﯃8—^½¿ÂJ¯d6vžù×G/Ãõcï¨yýïo× Á¨àƱùqì«Ì%ƒk\û½:»ø}Ðp–AdjC’ÐÓÙ)qvÜ$BÙD’uÄqÅÎ iÌ>È¢ý.eÎ%v‡ã2©u®“qÆ mŽ{ûÈ.Ma¹Nt²4{“Dqþ’xóy~K¢²ŠNÿöúR›MBWC‘Ð_"3d§dZ”X¦ƒÄ9r“Ø^C&#vÉ5"÷´IN9Ûç±²+ŒË€:Hsî/ÅyË/ÈUçbq i…HØ›žH “~MÙxô‡)d\v6ÈœØ;ãâ½EÆ·âÊ($@<½[wŒ”爆W$‰”"¤wÕ£|)ï…ªç…DÏS¸ÿKf‹ÏÞÒ”eSÇHᡘ©; Â]§°œf™3Ô3«œ³Y”Â’ó$£ÌWš‘j:˜%4÷&n¾½B$åc©Nák®xKQ¨ÓæÍß%ñŠfýWÂýd¹ «N2gj%:Ð1<Ìõî<Žë"·oÊ·¤Ö›Ê«•³H–4Ë’Äc5 ™í“«g†•4Ç’·³#7ïÊÈ'·sõad›¤¼1rKó¬K7\²ü2û0e\BÓA^]˜„ÈyóKýÍæJ®Bžßi³§!¹4»0¥ÉefÌ >½--Ò%92ß^¹wVÊu »µ;f¥?UúÛÕ–M©÷O‰3Øó¦¤kvaªt0åK² ½LF ÞR]ëý•e…$?•ËêÃÔî¨TE®ü˜6½“‡WäbîiæÔˆÜÛ;û0µ?ŒéV9k½¾”Gµ_%jIØDoÁH&¹r‰çó®iv—ä²Ös)0YÔÕ$ ‘Ê¢¦°:1B†²|{&=PÍvÜz¡“몕ôÆyvbdä¤î Ë#Tü%—t&µ)ƒÔÕ‰‘«PGÚ[X¹dTžq•“ùÓ¦Œ«w®v„UÊ¢2Øf¸ºï׉؜a5Êû\tÚY×K\å³þër=ã*–³¸dabvbj/Ý%gGV޵¹µF®œ%1®^Œ\³)].Ô›/±™ jò´Ó$óµn©­nŒ\¼ÙËS“lZ&sŸKË{"÷[J³,wËÍ^Œ$P2UVÒ²ÉR¹ËMo³Ó®c¦ª¶U,%ÅòŒ[‹«l#Ä‘¶òKâÉwÒÇqubäZÆ^EvÒV'FÒ—„H'dÚH#.ßê¿9;1rÅ_ÿ[«Ôf'F–Xd2ô{,Òòè¹"m•Ö³½?špô:xvbı,?Óh˜¯ã]©p¤5¹Ä¯ ºiµƒÈ YˆÓFHò­ÞÐìê$K—¢wAÑ‹é`Dõí ÍJ°9ƒ«pÔ5éd4Y¤Ù‹ÃRÑ•û^§IÏÑK’ ‹7Ó$Œò$„ÍèÄtR¥¾í$h‡qÃÖ4˜mP›²Î)G§+È­XgÛ$ŠÈŒºHO\›¬f^Åp¶ƒ<;1ŒJ+œq Cæ€ø’g'f ˆÇ·z×%M›þœÒ k2HÞÈå©, y6Ë—ÜÒÖ+‚Þ?g¦“q{t'k2H•oõ×¶Î/ã.¤Nò¬¯yeZéù6…Ûè‚wRVv ÓúO]òþÅIÆ"E ùÑ™#b!ç5»1ýq”¤>®œÝ˜1&wú¸mÖ×9›.‰5»1}0;KquÌfyùVXÃ.$wÃ5¢‚ RGÀÇ óiÚÔ±)\2ĘÊmLtRf?¦CGÏ&ôžÌìÈ\ré’<¿ÞO˜oð%×"É»(“ê£#sI ƒØ”2;2Œª%ÈäE[6£vµ(c¨*ÅI&"f±”4Ë—z|,“qB›TÎ),7« ¨«PÊF²Óè ³ ¨+·$O.!W˜˜Kò$Rg'æ’<•fýwÉ DR™ÈŒxšºiŒ.ƒ\¾æO§qãt'kÒS43tÜ0A¯¯lI,Ódt‘ƒÌB¬ÏcR:È Ã|{eRè”ï”ÕZ 2Tä¿Ó¦ÆiS׬ÕÆ^— ÑäG!– ‘çZœuß%9"¿ÜÖä c’ùcˆGœ]˜K¦aäÕŒRÁM›4ºÁ!žqU~!nN'mva.™c bsÍ{@&W›-ò R±Å9Ñ9H5q «­Ô,?ãªü‚ Ì)«k…ÜQê‹¡;\—_Jk2†šRÇgæ’ë§Ø”cö`ÆÈRLʃ\âè)ÎÈ-©×&ÙšfsÜÇš‡ÔŒ!ʵh×&—|«­1È öÌî™vÌÌ%ÑÖà iU+fzØq);:Y³V—Ì•ô¼ årVBzƒDÎÊS9ŽÎt/jÇìÀÌq­üVH³sIFI#”â±ê¿86êufÿå’œ“*2¥c¶Ç} ;¦Ê‚ Þç»+y)I—aÜ,‘c‚% Ù[Äc[¤‚DW^&sfƒäÙcæ$É’ðXÓF.dDÔ5cfÙ:˜Ú9û/Œ %ƒ„,Ó¦w/TçªÿÖ€8H¨áùË\„4Mòwt`ú+>j—|æÕ K>IæÞÂ̈u%É’!ý,”+úv]ÏUýÉ»0Ùƒ73,¥1’2‚¯Syu3$¦l›6yܘdt>«?ÝJfdùöT. °éÏ_—Ö8d€"JS7@•ù” ãìkZÔñDzurÍ&9Íòdð;ßà±Å·?N‰R:‹$ œ|©ÿwv_$k%ÝåXsVcˆ, p9Êì¾HÈæþúPH£±‘¿·]k®=­]æ:Ù.Í9͵§:—Ša®ýœSÙ6מgÿæÚóZê²¹v™Í»x²ý#œlOs¹&Ûëè©Ãd{ió×m²½¬M›0Ù~Ìír6Ùž'°ÉvéðÓ\{ž?síe&æÚçŽÿ·¶sÙ‘%9Òóþ<ƒg7u]¿»ÏrhA€5wC-ZbÏLcú†æ¡|{ù÷›G¦gUd‹Yé±aóDeFÆÅ/fŸýf6³vóÐgÖÄé&Øn2„™¶« òLÛûÒíó m÷ΰþ•¶ƒ"ni;÷¶uéš`;Å¢ã læSM°zo`{ÔF2Ãö¨Ua‚íQûÒ Û“L™¶§`¤ÿJÛ™$~¦íôqÙnh»:»Ì°à™fÖšñ¿+kG¹O âÊÚÀFWÖNϱí kg—…ÀL¬}óÆ­¯¬Ýy#ôWÖÒš@»“¥5ƒönÃ(8pí6—fÐ,`4ö` {í¡ ¬~íø ù´óîò h›}ë Úû͸[ÐÞ_ƒv"íQ`Fí˜7¤=©KÜLÚû´åF'ÒŽµoH{Þì[WÒ>(ÿÚ³Æè Ú‹Är3h¯JЙ@{ŸÙÿhÇìœ9{µejâì}Á-3fÉ:cvÑß4cöhÓÆì›ƒÙû2ëß`v9Áf÷ÚigÌd8Ìœvžo8;–s¸áìQ»ñÄÙ£e­Lœ=6£ÔWΞ4ð&ÎÎ~ÈB{åìÐ^–ç+gg‡„ñ^9{‚Z ÈNÌø²Óû †Ⱦ™êe‚ì¸`õ²oÁžÝ²o2ŸfÈN®Ý@vgûÄÙMï ²C›!»·Q4Aö ñ>CvÖÛpÙqÄo ;ÐÈù+dO†„'ʾãü+fÏ¢3fßÿ³c»ÕÌž‹÷+fÏš73fgÝ7˜½¯3 ታègÎŽå×fή6`næì!¬xåì*Ûîfή@ÀÌÙÅøóÌÙ©ÐÞÊÌÙ±s f'ýÍß`vDjþ³{ ð³{5Nš1ûŽë¯˜=Ý`v£33f·åjÆì¡ä¿böhcgÂì;ŠŸ0»MÅ ³Û§'Î^­¡ÉÄÙáÖyæì`k¡ø g³E_A;ÍÓ hÂD3hï+¬¿áìÉôÍgO¦R¸rv³fΞí=Lœ}-'Î>ìÄÙuÌœ½ZÈkâìÍpø•³›cÊ iϬ-m&íÙÜ…+i¦ÜÊÛêôǵá>…‹’o«Ú¿-b?}j*kÿ¶Šýô©©®ýÛ2ö×OÍ…íß^ëô© üX¿–ÑFY˜ßï‰PãûcÝÝ{ß¡/¾ï?ÙçýMÿÖ匭$mÚÍ7¶îC¼9íý}¤IT›bÝWû³—¯ûU(È,í¯¤¿E¢?M¯^þ‰¿ -Ü‚ºá¼üáË?L/å^ãµk›¤Ë/GœÀþâXÊúåk\üéå»?}Ù›:½üñ þf7È.í—ª åå§Ñü«ïM/¿üöÝ—ÏöMÝ/Ì/ß}ýzó¥ß~žþø:·¿ ŠA¤ûë Ý»!Ô7j úÖ«r ?} åE-ÈXù‘#f4µ´ÙNðC±¬[>âÛóüøéß?E‚A|Èkù‰‰Ý¶_}4[´OAÓ´4VѤ#ÑÜ <·-è8»Á%—í×?#Pp-eLô#ËDîåíH†îñ€\±xÛ¾k¿±hgÞÌ:E®';"Õ$²‹O/·'ÂXð­øXÆèÌ”W+@ÇbVÀ°_J1+&B€Ë ´S«- ?ܶÍV=§Ïd3 u)œ¦TÞ¯ßl`îz\¿W/à Çñ<ÆÑ‰›ýx3s ¿Wîsa&ˆVØ=“Œ4?|„ˆ^6óî€ væ›—©÷K¤¨Ø3oA]ÞM:P Úzð!ŸI±GdØÿÜ—vø¨”îË›ýæÄ6–šš[¸NUS芓Α8¸k¬EÁMv=Aè:¡ ÎÕ»©› t¼Ñ>ƒÊ*¦ æSG >µA Ã%2`ðO¡u²/úo+@(ª!ó12Gx£%fó5ûäâ$Øë¬bšm|åæ–¸ÍþÿM‹Þù ÙhÂ’îÅ%Ûz€¬Û†®x‹Øö4ü‹îbQø­àÇGl W…·%W–ÑÞIƦõEûŒ)Á]¶˜G0YÜgÉž½}Ë€ø.rîG€®*)u`8%u³ŽaªÐwßòûi,0«ç­ÃZ üíút(óþqƒ,ÞâÀŒ²×¹¤vráržaóÄgú×â¡Í‹â¬OÞ>c ƒ«Ñ›ÃhÞÌÊ Írö™&Ù²±9­oè-³Â Í3/ð™4-6¾´AjÖx™#^„ÖµÌQ  h+¡å„l~‡dyÎ~ é+qçdVhÐ QÀxX¡—‹wDrì@)RCSôl?+¾Ùe) =îº=¿œ4•æÆ}ÛŸ<âK¶Åve„Úö÷Àþòjï.ZðO<Ú— Ðì ã@OÝ ©!õ½L8] ÎKPl5ÙüGŒ&¶ª-%  QòÓ G!vê·¸Ÿf1PïmIÁB@݉æÓR¯x¨­49å¿…‘6¤E>`Dq—DÌíÍ!vrŠT¿-xÞ†læª÷oYÔ„1» Ò‘•„‡h,!´ÂQÂ>ïR$¦*öKn׸dgÁUBªb$š|úLÿ¬¼ ¹èÐçØ.èL$ŒÕìFƒ\…~rØoKÁªâm¥a`vŽøqëõĉãF g7Â`ý3I!ÄìË0‚7±–qgA¯ë~ž €:¹"ÑÏPÅ+5dÜ„IÕY ‚ÝgÐ]•m¼6‰âýa÷Ï4)ˆ/»óÍòÒJvcåRŠ#D?×1¥=GÎ\Ã~梭CGlv¢Ù“œ}³hG Å_œ¤dÔ"¤¾Æddãr¬9cÄmÍ4ðyÄÿ á÷4å«y?BFßü> D‰Ëž†`º ±\ù-ô‹³ÄhÛ¦” dnb¢ ɦ &8;^ É0þ=~Úä÷–íí§«\1Ùl“/˜8˜jÓ(&C›ÙšçU°€k#­šµ6uõ­¢[Gµ™_’1Ë0 !`š‡4-HÂ5ŠÛREÿvoq,g ,vÍiËÆÒâ ·ZœŒµÔޤm¼6f(W(rÖÒXo£¥|„•Éí¿Ž(Ù[öÙøõ"¼6Œ„@°·JÎ9‚{}5­2ZàE›ÝW2óƒÕ`œ')ìÕŸœí_¼¸J˜¶Jž$gœ#7“Ûõg\Ç/ ß]ÑF 8"Þa›‚yï© ¦ÙϬm4Œ0¸6Oã¹]í+o˜ w¶½¨ ‘™ßwlÓÒ åœv°&‘^Üí/O˜¾ ËG¦JÿÉ«ê‘äGOÀn/EÄ‘q˜ÍË FÇ£¶5¹Xü[ÛÔ¸œ¬…) ߦO6Í ¤yö%/ ¼BäÎŽ¡ ZÆ|-€IÔr¶pLêE{Ù¬ºh°#ŠÙõ#~÷£lA•vRÀ<¨ Y0¥d°#[µ—)«1T ™VçqZÔx›=‹¸™êµ¥±³FŒ„œš/Ã)VðŽÏ°‹WûRS¤¡Ö¢ãVŠ›4BÈ‘-‹õG#S¿M´NH!VÙ:¸ñÛp'•ÖqC&D‚SòS‘ "f¤êòdóCL}ûˆ7i/ƒ¸™¯=vhÐá𾫪m¡Êf>³”RbÃvc¹±W—(É·B¸€íÙé…™\LƒBÔ-XÜ(²h<†¡ÒÎgÁ)3þ"Ú,âOœÙèÏf¡IIŒp9ãJj bÌ(*^•ŽÏ¿“ø’¾cÃ<3¸–8æ˜IÔ¤ÙšQ‹óâjÙ–ãªnææDöŒM¯e¤$DôPŒ¢4L鈨HËy.;CLɾTÂÎþ ½k±ÏTaÉ€õ?¾5솹ÍBÞ×»åA‚XTy¹è¬tÌ#%äa3Å:,C\i? T0{(á\””H©C0IÞ´;™­1ú±œ±¦æŠdK +ÙôF’CyXíf7³AÓ\²#yä,ÄfÕ¿ƒª=E»>oÖä6Ô´ýȲ–}€Ö2±yèb5k4HâÚöëc¾(ìªûlqû¼{ü³hœvcwð†~D+©\¨qO#–Ç’cËßÂboy\‹jLâ Ô}°7aøãõ'$CÊE ãÚÒfA¾îþúS‘I³1„ÛÅŒ20Óp–#œÔ"~ˆ+9™Ä8Nb‰L$_hiÆGL ×ö?mƉ½êuÚ—H‰.¦’ù“Ÿ <…ÀêÙ¥­Èúõ¤þjKˆt”ÜÜ@¬ûyк•¶è^:»Ì™éGðpA>öË›œK_v/.!ÞÁQ.C©‡Y½©ãš½³¥<êÀvyoI²¶ºWˉð*»›í囲Âj3ȸòÌ<Û±xÙ&»AYI»|Ï>†Ê®ÿÀø)oòZ°§ÍnŒGe¼‡ÍD$.Éiv%AÄ ±’åuÌí(Wºl#„) Ge‚bìß6zÁ›¹¬Yµì+\2ï¾AD“ Æ:L Z14^IW†¡A•ߟÝ8b!öÔ®Ã%Ž8LIµ(üX2H RÄ–=êॠLõBñ7yýÈp/"j×!fê„X‡Ça²Ó¤‘Ô¯øµíi@EIˆG€=ò7?¨‘íÊR™KT|Ùž7|ø§-Ì'"½¶=ñE¨,^‘¢ÕGTïÚ¾=ð¢ÕÞÔI£¤¤°w—UÝÅ·1byQH-îû`±”,qSDûM‘oãŠz/»hßî€õ(”ÊF#ÞiU6ûL_„ëHiÐn)Ÿ‚džýE)Û£xsI"’`U)Ju,5Œ9^¯Ò™l$m2•Û‘ÇQ`ÒSmõ,£ÐÙ(Röéàðj\N´4—±‡õg›í.çÍj[ºX÷ ¡²¥îØY°ªjt]¶F³OtÄF(ŽMILÛØFL§¹åý6ùŒÒ˜ÂeFìd¥xmqŸºNu•tŽlaÔ¨Þ$igùŽÛƒ}kq,Ã(Èrd‹Ž tÜuÂÁ2'¨ª2þÒê?å,³©YµÂ9´¦¶ÁcÖôîjn»]“¥T¥‹1}+¹® ™éõê¾sÝ &I<=V:®´m<>dÙÈJ܇5rqâ1Šˆîï[žP÷¨B¹LLdÈÙ£ Æ+Г÷EŒ E¾8G¬GýÅ©<±>="—wA~?’-œäƶ§«sÛBµXLزtÄ•a(q’Žl>*ISÈû2=hvd³éŸõT‚µ¶°Äh÷vËBe¢8Ï6²2"0‹D‰ÒQpæmÃÈ)ØvK˜Ì'W-Ædg¦ä™^%šOÚ} •ESfƒ-ª(ÙøÍá€l òpÄv:è8+‡¡§Œ¤©m,Ã2CöÆpTüÇ|3sø­[ƒùxøE|É2Ý" ˆÄõØv/+pYªd{*å 3ç-{œqøŽÊ}°˜6zH_lTØË’ö2YDÎ*ÑÍ7G¶*@—cƃKªäHʰ×çL3é `¶ºHA8CVƒ‡üÄȳð#å+’ç“Ý—0pé.©­q3ý–2:l¡`Ñû,i¸“[TFHÿL‹(¢oý8æ¤ùù¾ØË²ìŽ èŠä4XÖªÜEC°!s¢ zQläºåàÐ;yl®ŒØí„j*H‡ÅÖ ’øu/¯$Æ&$ìJ´ÄIEîLrÞädM­<‚šµd‹ïúlV½|7…BÝyæ‘›ˆ#Yb§=®¤ smJÒZä6"MúHTô?ÿ™š»Hé¾t§Û×ýŠûÚ>kh/9 ?0œþøSÿËûôò#"É[ndF×ô_ý½Ÿ¢¼ÇVn„BªFÀ. ‚í7ÚË¿ý­£›{ðgȈ‹E¹šý©ù£[zô‹ôQDxû"sxÆçžK°Œ{õö Þ>–GOW¢D_²ê’3&¥k †®‡/îÑw„¢I{ýš6¿âŒd¥c»’üß­¹÷Œ/ΦíήAuSä/õµ"-\8ÇPåÂsù´»è«XQqÃF§†“ŽìUüÖÀÍ­8#U T+Ž?.Ò輫*xr8—nÎ\­.ª ëp5ü»×ѦC\½ îx:tÇ×ÜÁø¤ÜAïÍô8‰(š¸cÃÿá3‚LKëÿ]¿MSÚ-^Ü †7“.6T¶Õ¾®¡àíP Òå%¬‡'•®Eò½ŠFyE”QŒ. K@¢ òÀ«)´ÄÝÂk V¢$•‡w„ãîG­"CŽbkܱ¢Nªº|øÉ#Ýžhñy ñ!<@7G×”î3¼Yh)J–Xâ¥nYé²Ô¬hu=vÁ´WÍEažwLŒSÃAu <Í1) Gtó´›9ëÇŸ³öb*7¹Ä¸ŒÁ–KÔdé»<¼S¹„È8Ît³ž ˆŸ3(çy¢u¥Bº§±ä±(§> š–œÑć´_ k®°î9*ŒwÖ{#z‰ä–]qIt Å @™*þpÊ} ^V¬Ýk ‡»ÒSKQm5Š‘èå,ÒI&[UK÷°øÃ[ЫÛâÛõÑ5ìrÊÏëCo=÷æ³H(þ¿d!“W‡¼æÄhí›”a}„¬_Ý`ŠH½=nÓ’µƒ$O\‘¡»«°€ËO¡ƒ¼Ä¢UÙŒ¤ðC\³QJCõ³>#•o-7BCJYur¡—‡·H´%’ƒc·d,P²š #©ÉÖŒ…cÏ¡:Uí¿¶Âs>À5Ë´&HZƒWyœ’¾Öã Ëñ/™•–xÎà ؠ§{¾#Ô ¶…wø—¬3ª¯JÍÝ·Y>çh"êTœóyB"jVö£êÒú8¢ Ï ŽvknâpÇ•7+VõÜ!Ñ%Øîë§ ZE©‡Yþ6:îÌôL`uLÎW1‡¨yÛî ®-›U¨§HÀ’ÐÈaÓ$ry Š94Q•ÛÉæŽ)Çüc磱õ» ÕU-…Ú'.æw¥mEd36„¿¤XIE»à„ê Yý«‹KŒ¸VY·ÄÉ$ 9oy}`¿š‰ìÕ˜ä< COÚéOüx0<5œiâàÕ-²{*kÖ>¦ß[àT©¥ÏõõÛ=;Ä¢ýgŽEk¶û>47Õ0~Ía½Ó¨#N¯"†%,ùd.«·îšçò>ªKRà¦âè§hŸÉsæI\ÖV¶q•Cæ–0^êo–_ùzžkIÇ' ’À»æ‡;/%EÖáàœ ëTÁV¹{.„ãgh/@«4¿Ä|}/ë^ýXr´ižÖ¨ù©aSÍÞ>Oa@ 9©Q®Jͯ ¤—‘pJ¶êÖDH^ÛK·!–ÓΨ.2*qto›ù?õÊ>m÷Ä!›-iD‹ò&½w¿ä£rY“EÊŠkć-j£NÍÄØLRfŸ_Gë1©ê‹BmÉÕa•EYØQUI~…$PQU£“¢ÄËc²Ì7à<—²Æá'tº©7w_êÏsâHZ´žÝ$^ïñS=5[ô%ok\þÍ2TÄ%Ošb£ê1¢Lí³ö&V=P  Kw? rŠE Ì^—¨f¨yA 5+úyã ˜ E¶^Ö{(¯—ÔÑNåÚ—Ç ©<€¡F½%«>º]JP×õ#R¹ƒ¸vCÞö—\£ú©êk;^Óžõɰ5ÖÌz*ö9K°)~M褩Ä!¹íKÒ¡,»s}¨h½vœxŒŒ>¡ Ô ¢šñ±õðÛr–G}¼ž®SÀŒ>+TH[õ¢$JVÕ÷K&Õ» ÇÙÆÊq÷8‘'B]•ÀA–’·‡ÇÂMÀt$®®‡ƒ¤oAÒÕìì<Å’Šd«PxŸÜ«KHãðˆÃ± ÿ_$ߨ| †%·‘'íÒyð½aO§ÅüÒ‡TŠtÏfIØÇj³§ž´J©y&ì¹DŽ¡kÞoÖlñ…)I¶?1 ‰z kŸ¢xǹ”O=éª6µX>cÆ,`EšÁEÜŒ9­ô^>qy ¨yÂkK÷T}J«¥®ášIGYz£ìõÉÐÆ ®JŠÄ«JöTiÙ™¥^ÏKÂÝÕb£ÚEr×$“9Åo KåE:­;’X’œ–cÝ3³˜b9›°¯¡¯.J¡àéR³d½TR8é>j){bN4¾œ³pÚ1þ{ØØ¦H,œ¬½ÜB¹Tꆀ%D­7”©Ö&½B_S9“Î<ôî3Äc}î´À„´æ&}جX<nÒçú5^SŽª CU0ŸNÙI¼ ¶¦½`Ã9ù/ÍR(ÇV„)rU©—Jë÷ߟþMƒ2Äãɉ/NŽOz]ò #•Á•Aè”m¾|Dã”Ç”ÖäB“ѡԴ[b –¡ÓºHuÇ7sªWìe.#kpÔNCj¸h;T!]8@È'¨S¨BaVóšj´U—váõ8çüaëP…ÁÁbùÌTè"95Òâ VG±P šÝy‘yªûªÔ¿]#U_ù¢äëm «eQ£+vÆšÂh¤V1@TÑm}*4íNèÔBŸ‚ãä¾51— rK^=N’G•á.ÐøŸµ»¦M"cÔyíxµú€[ïÕÆKô~jý–-[3­‘Ö ¸¥"ò1 [#ª þå5^Êš„âÈ„9T[n o*~Hô/.‘ؤ(ëMI ë“›%b«Šx;M«IC¦0G¥/û’šmT/Vn;®÷Üîå5U2MÆUépòY¢š;žÆËÂþŒBZ"x¦5AÃ×ó¬Tjí“ÁAÿé²×ß'õ#$’©~Ý0ŽË‡-ÙlÈp V_tIt“j¹¨ŸÑ«wë÷à•A«l¡rb‚Ý»:~OÓTÌI'šËÃe‚³-ê–R…3R-}Ô/ñÕç%3VéÖQ:®tì(| ¦í‹eo®—µ !Q£»û5B`¢;¢EI}jOóÇ‚Šö‚ ïTÓý€X•ZîúH4£Ú³1Ðs‘…¦lk þà)Íæ"~_+U®JàEH’—(ÂX7ÑÑ’¯žÂšì¹MÉÜž.µËª?ÅjÞ_Ì'¦Õë®Ó\_(ŸÛCŽv(úƒªËf›8ËS¦c¯Š!n÷°ìS»H&d[,¦º¦è -«U^¤ªìÊ1M#Þ¬H†ßÎÃøD±éΨú(KŠ–hŒÀ†Ö'H™(8‚oO}³óh5Ý)jµ ÕÐÝk) Т–+D±}ƒ%Љ°{Â:\-/ÐQ®-,ÙlèŒhZ­Z—ìÙ}ñˆºÔ¤¬§è±¢ZR% ‘Ó|Û BE¬Qå„zH©O£hu÷ò’”9âHyl™Ç©^Ÿ°½ztÖ|¯cÈ*ˆ`}ª¬ Ê ƨ¦Q¸sƧVÀÅ£ègâq+¡(š4Ux<íI“¦г _¢5¡}¥ÖÑ~MÛ ¡Q/¡ÊΟ·ÙànyI³º?kðŽ2ûí„í«ôŽâ•V¹‹zÒ‹¨·JÊV–T<è#Щ„…š~Ÿ¬ß4-yvbnÈÉTÃ㎧´j,¤xóZ×”’dW©Vqk RW"zl4<Á%Í’9ò9oO÷}«ÁH[†ñAÁÅŒ„zBR1%;S•ò$—ÜZSÊ4Žñ^UÙ NK§èg\ŸŒˆ$:`·U%8¡7QøyügOèé@N(ðªÞƒ&N­kê侎NyÉ} “ÙA¤ ±uü΋^ÝÑ‚úW¤5½÷Z’¸—°{>1««1HÎ÷ÂîOm†35©ßŸ_R“ªë²ÿ/lj0_cUUyÊuÉ ß$ŸV''µ=—%·'Ä%¿JY)ÛÞb­eô6çå”åú^É)î^޽‡Hé>­Ùѵ®³¤IXß#Á\Rp¥?h2ð\#onMß8²Í‰_÷-jIe:bA-X©’´dŸ Æîéìî*åÖø¯Iý§‰´¸ãHËS£¡[YÔ”L'/aÈ[7¨ú?Þ­éhÿd\•dÉqù#‘AmÕz¯¿î’wçÜk Ö0.}[¯I¬ÔB±¼œK›¬)µ{\Xt'éUß,wÿê„\Š‚`nyAûCiËѺI }ï¼úé­²ßnóë>Ý^Þ±¼*¹Œ^Ïlv‹ªÌì½Û¶·å];éšJ+“€×TÞ¦Onÿ‹s{zÝÓƒ«ßF6£ë,<¬Úý-¯‹ÊñùÑ™±-JÍŽjp”Õ/ÇÅ5s´ ÍòÊyú‘¨ÚA=R×T/x—¬¸Öª¦žŒÉìÙQ€Ë¢l¨;רé,0U©@y½³Á`ij—ÔÚuÁœ¶x•<ͼ´Æ±:¸>]]mwŒ¥l'–‘ ”«ì,:D-Aöý© ù£ ÁúîcX(IZmš÷XBQŸþÛ’ *Dæ­Ù’èNðØ‰¬EÕh=Q«Teú«0û <Ò‘ÅU*-Ù×JÒ¾F¦€[”ý^}­ñ¢l¦õÝJ‚äcq,ç…”°Núø!ïŒ0ég‚u9±žQéþ³òðüšÚC _×›ázMªÊ‡ó[ßÅO,ŽÞTuÔŽ;9²ÏÏ~ñÍ&í™%]ÉœS öЧôúñÙgY#1ª/A‹<¦b½jÀ%gV•è°³^åIùèœi<ÜÌç8mÞfaGG†%I¢Š|/_¡ƒ@võ¯e͛ۻïÑ¥à#1ˆw}ëjŸi–ó^Ï3ý¨§ŸSûì2¥åO@7ý%’C·5ÈèO¶Y§ùr\µöÁì€=IôèøI`ÍWôˆ> Ç|u•q§‚9­­ê”DÔ¡6Ó×]{j½¤´§W¡Ÿ;SdU¢;*Ö@Aëõu§Pi í°Ö48¡A|_©0kp|{M£ÿíùϪ†cE%»GvBmçÄo©[:ÏrÒÅíCØ´6xC­à¢Èã’ª{ÝBP^RζD|•÷- ?ˆâ–8qïÛ/?}Ƭ¸’ªó¨î5èõº8@LŠw1#ׯ¨ÐnÌ[YÿKô¥¦ÜlÉ=Ý÷ššHžÔ¥‘±ãD—â%¾ðûü§§ÃĪ5 ÌËkbïû>…Hj•¨’Ç¥~ý^ XÁ[ù½Õ€²Á$êv7§,ªŸxO¸< 2ƒ‘§n‚‰T:!mcQ#ì;Tj+–3ÝÖsY&Œ#Õ®Kºdéè&š±qÖGꘘ?|ˆ“¼´;¥Š>€Ý3•)3gÖ3£j¶>u‰Öžn$€×|Í} ^'(¶¬IN±ä„'ô’.¢ÄÓR £4pnM|Ê!+í»Ü’Êæ˜Õõl£çüzsõk“Ä4^lµ/¿NNÿúVÅàÅî¡JÆVŽKöÖÔÊn  ½£åyöU˜3ôEd vµ‚¹„cÊ1™[åjª˜7èÜ rž¾u—:j]?^ö÷ŽÜ“ô¤õ¸_ã(åÂt~‰ö›äÄ/i„u ¡–ùqÍú¯érÝ€?7©|øI„×ê³µr]“Ý‹5£úî N çU7Þúéë‰[×{ýö™R¢åjë²&}¿ö¥2+q%¯/ƒ¯ÎDnsÜrSÕ²¿PÀnÉsb.V¬m½—&Ä”À®ÿñÐ{XõX6oš¿t¬¥ú€înKQy‘n}²VL{q¿°g>ŸoCMçvÀkƒ†ÝTëV tKR©¢˜2Ý à°‡æ ‡©lòŸýÊÿùSÚRVAûÒ—$+tAë€OÜͻ߾ÿôíñ“¤—Þ8Ñï]äûB¼‰P ½Y›Õ@~æ™þÎÙMîu4.>ÿÛ|.Ô…˜Ïˆö¸{VðãQòèåëß~ýžvS!¥¾‘}ƒe¯ÆòþôòOüE¥øxÿýÓ˾üÃþÓ‘„Æ*Yµ¶;e0~_{ñ.‚3nÅZ”ÇKò<ò­/}ì8 ¼<ÞÄ%wwbóoÎØw­¾h¸î„oÜnªps¾îMô L”†ykȼyë[bý³<=næÏý­ñY÷ö­úþV_"ÿSù—÷·ˆ] ‰oÞég)òÝýHŠªñß>§þuš†ÇÇ¿}÷¡Ÿ¦#\jýüã§n]¡Í84­Uh–‚Î-ï±ñyÙ¾|ãZð¯Á½¸mûü?}ù_üoöV﹜úˆk…Ñíþ—x›£Ê³Nÿ§—ÿýeëÛbî/ƽüéË—o¸ŠÍ¹—ou<4çó˯ÓÿÿîëßýÈÇÈ(oþôõû/ßðïZ](/¿ý<ýñU®ks N9.îQ¢¾Ó|ãÕZº2¼ÿåå¿þðoµï·µ—ß¾וڋÿÇ/ßD*Uÿò?þý\ ý'_nþa_Õ·þõß¾Ÿÿôótæ›ïì¿RòË/ÿ:n±ßÆ×Ÿ¾ ÏD]É×/¾¾ügÿ”)éå—ñš^þËô…Ÿo¿¬§Ó=¹Ê×û­7ÿò·_¿|ÃÿM5Þ~â/ã·¶ðò¸ùËøUn¿ðçq 1¼üð³ÝLËáàØ_¾Þ|ù'.£ Ã/¿üvyÇýv¾›ïaÿþ¼þòëtü2.úoÖÐ?výÓ?ÝüÐ|¶¿üðËÍ?_çáýÿŽáþ´endstream endobj 347 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3427 >> stream xœ¥WkTSgÖ>€Ä£"U˜Œ†¶ç`ëmt´ŽÚŽÎL—ã©VTD«U¹_%\Bî!!Ø I$·$ Š ­"^MÕ^ZÛé¬iµ³ZWkçûf¦í{¦oÌAZáëúúk’¬³Ö99ëÝû}žg?{¿AÄŒ`"((hÞ®¸8~ÿ7kVí¤äç¤M<[Ê<Ä<Ì<¸ìßáÿ…°›qé¹yK"PÛ|”û Ú5 :˜Y°•_(.ÎÉÊD¯]³fݪUìuctª8zËêè)iy|QI^NtJAzôÎÕq«£wóEìÜèåü‚èÔŒì”üÌh~fôþŒCÑbö%DÇîÛs`o¯Vÿ$«o ‚x®€¿µp[q‰@(J§¥gdîÍÊÞ—“—|õ𵱇ØK,&â‰%D±Ÿ8@¼A"¶‡‰mD ±ˆ%~C¼Fì Ö;‰õÄ."ŽØM™¡ Ý:Æq>™)œù/²Šüz–j6=ûöœ¤°gÂs—ͽ?— ßþò‡3-Úz/Ĭa†Ðb®¹ª-§P/ë(ùáÒ,!ZƒµÎYç­i¦m­(.‘73úw'§‰33)Ù@¦½²¡¨Tœ+Í—'€šÔ˜E]Õ_ UÝà ¸t%e•¾RCÇàn½*AϹnŸ¥ñ‚ƒjºßö û†çtïÅ! ›êܤ<[–BkÅ:”’‰]9ƒúP”‹zš)ŠGڱƄ¼ÜovŒüÏÁ³ñ"L¯‰ù‘h.ŠBK©X­Á36œF3>GAï_iÚwlbU€±‚þÅn÷3f+·ýÊXm²A5Ï®q ¥:­\E©•P©”åøÓ]G€Äð+8'áðÑ¥ìòË¡—•uB•J+è,Ëè«?Š2׃‰•i“¬^\PQ¨®¤2ñŠÐÕSøóî =t&ù& ¾ƒÂ}Ó@X7­¶ù¹@KéD²=e@Ê .ÇdÄQÔfn`˜yí"›‚_Á¯¨¤ŽáÍZA^òGàåh¼]]¶þshíè8É+™¾´Õ©˜[:ÁžÏìt™)÷õ6«Ò³V©Ô—k%tÆ"é8JnÎééqv ì¢vÁ)è‡vo}»§Ïq¬“Ð0¢ˆ/G`Ý~gAäLû·\gÏy´ÆI §‹ÅRQ…IkÒSµb($fcR'-Ý)HÍòÍŠS-5Vm Lö³îÑ…æÆÚ¨&ë•õR®”…êMœ¤åãyûCî5žšFºãž½Ëê†nÞ'»Lšüª\0…^e«ª«‚éUåêP[FFz4eÊœcQKî ÏžìrõwPÞÃ*Záô^m!§€&Y_ê ´ò¸†Ò—ÉD@ŠªZ­6û¥o¡ú'@Wóš¥N‰H)U¨¼“¹f– L,bk‰^y1~tä­suu´EÙšz† õŒÍÙ䯿6ÖŽÐ ?[ʸ,ð?˜H%Þ;¶ ò³SÁ}ÌDMçV[,ÓSe[ pX~q-ðUžkê®íë~H×u8üÐL^MíLYyÏ/~B-«m ÕpÑÛǦӬR•4åÅtæ2ùH"_º‘72ào1™©ÒeÛ_ÙRPZµ žh #íe BuŠawü@úu4ëùiË4Y>?ŽrYcèxë.k’ª*´=%çòq0 Øø}õõƒF·^î +tå(! ›ž.OûÉKGÎnÅ\ŸÅt¼'­;Ÿ:“6 ]Ð õ.Ëm¶ržÒ‚BÙXcÓKàÿeÍd’Œ“¬¼‰ª£~7åxœ ¼j’%ÞÍ›TT±¶ˆ¨qT1þslÖçŒÆ&ÚϹ ïÔžrÿ¹§æxÈk‡·àùìî#ñ’øæTo5xtNýß½oDî¶”/SÇ9½Þ=?dO«¤ˆžÔÓ@óAƒŸ¡ÇŸ…0cÌnŽãbEì5U‘kñ¨âÉ×&ÝßËîýOœ}øCžY¸âð” 3jLf«©È®’:IAiQAÒÿÖ{g?쬣\çêmƒ7Ðw rœOÝËâ«9cvZ;,îÓ@š½Uz½^Çþ!h”´v´yz&»Ú@¶W4ÝèÌùÜ)÷1AaÙT&­œ'(sZ'âNµ=ç-´+Íã g¿EaßÒ[ÅÜØm¿_B½À¹Ž ¡ßpþìO<üè÷f16ã "ÿ—yùU. a¦•¥X&멼þÔš¶,gâP©e×÷Þó÷9Ûzh>Õ+óþ€ƒ€'HLÆjc5K{³´¹¸P Ìý!  ¥×¾vRôwÑË8t+¹<¹tð" zÀÚó+!ž¦Ïôéx›‹eÚ¦(ÓQ²7 óØLYisÚÁäè¢#Õ¶¿¸W£î%öÆH-–K¨³è?£ÚAŽø¦\ÖÖv+u -¿€v#½VaIb~F™KGZ´R¼,ê°?ûí/Ï¢_6ÿ@JîÄ/‚‰oß~gAä×ÌÀc®¯4r”h(MB(R]i©o4Ùë‡éº³Õvh€á¬®JÓ}ïÂ(yÏÈ ïšJË=IcÞ±hΔZ$œË(7ôcέ†ü"¹*]/¥I 9¹é’ªŠ|t¯ç¡‡Þ΄pãbvüšÚʹľ}—ó—É)O}ïoH1îŸh%Š©‘V©§${Óò޳VVÓ\SÒæ¡»?j»îêgÑsó†<°dž•;ází–º Õöþ€»ÈFG¹D­WWè 8U§0T€ˆ÷Æ@ö¥Œ ÙÝTdt2³ŽÛÁ:]¡°XPV/ôy¼]S“&úí»¨d4„q¡#\¸sôüAײö…ÉuGp™¼~÷Ýÿ¤Ü ­ÔBUàƒšF»¹ÍJD‹§M¥­F¥¥´jm¹®º²pR´äÑNcF~*ÚF§£ÅJõ£õþʇHäEz¤ºª’¨¸¡œ _õ ÊAý˜x:ΚiÉ)ë”r=¥-ÅcÏ0‡«{,`4×ӈÞ^.øS¡?ãD¿Y/ hy1w ‡ÿñôàÑȬ3±°ýÝÏ…zµCbÒµMÐfkq 6]i¹Cäxª/%1³(§€Ò¹ËÎí‡48.’È íeÕZ‚NdP¥áW@¥ºP¸£s ‚䳇ŸÑz¥žjûò*>²Õ,æ 6éå´`ûÄ;šŸ{G‘”»Š–$V X¨7]s‡¥µîIÝ¢ùA(E† /îpÛÄ]yéücY>±÷´ÿdï4erî¢wؾxy…‹æÆÿu=^Ž×`!>öÂùå_¡Ùÿ8ʦbõ\¼“8õŸÂ{A±hÚþ÷‘“ñkŸ,4ʘXdL,ðch·Yb—•³g7ª4æpÊÈ…l‡°fk›Ò˜SýöÈõö³hö´ èYòŸïà`¼ö%}Hn“wØ]à©a½iæ?[úIÛºöÕLí£ã‹“{ãXõ°ÓYnŸ°7€ÇFÙ»[¡NÀI¹·ü´ô´â +äy·Ð¢:\egvXЫŽj#'0{|5{Æ~~Ø,›3Ø`œø˜v›%,ìªÑl1±·ÕFwMØ\‚øÑmMendstream endobj 348 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3437 >> stream xœUV TS×Ö¾×›+"VâM"  ÊÊ$“AEæJ"‚X±ZmµÖµV BµUE¬¢€ZꀕÁ€&Ò‘V«¶ûòNxï?¿¯«keÝœss²ÏÞßþöþ6MŒ¡hš6ôOÎÈMÎIOLÐïlxsšŸ6†Ÿ.@X1´w(_ˆŒÈÈ fšq¯ tL„õÀýJ@Ó^щ>ë3ó³ÒSÓr,l£ÂW̲·wøû³Ó\W‹µùýbᛜžª°°!‹ÜäŒõ™òdENHº|íÆl‹ˆE¶EExrêÆŒ„¬¼¤(ÊYá½Þ'ÓW–•í—³1 7/aÓÚüĤ䔰´ôˆÈuò =lgÏZi?Çi®³‹ë<7 Š ¥¬¨0ÊšZNͤl¨*’²¥¢¨hÊŽZA½OyS1”KùR2Ê‘ZFùQs©*r¥æQAT0BM¡¦Rj,u‚2¤SF”'5šH™PbjÅQ¦”ES.>Ê€i¢:ƒ¾5F4ÆqLú˜‡ WP+¸#øÍ`†Á9ƒçÂ¥Â]ÂûŒ#ËT3/DN¢LQ ;ug׳Ÿ°š±‰cû›áLÃù† ÃBÃÃ6çãÜÆ­wÉÈÕ(Ù¨qüÜñ®pÚ˜oDJ>¼#MiÒÞéÙ{{ÍÄ߷󥜮´jEâ–?¯·?½[›$Áÿíå-DêÀë6±“Š‘Ç{³‘ñ#RA± ¶¨LºµÐ­ Ñš‰ßv›‚ŠiCWÖÔVV+Ð ¤IlœSÉŠù{§Ï4>œŠšò~H>“t6öbq=£Å÷8Øþ¢trç·›Žç}-G‰(±@¾!/k“bç rÈ?å òDâ·ªú¸Å±q ¥ÄùœNÞ¡“®TC£Zßò•¶u±Ä¾X¦±‚Y`ûì-,…Ày¯±ƒ´Ð“{~Ý›âw–{:Î ï1ˆotj¥ÆC)9*~PE_Ö †ìxÄ)ÀÕ± »¢YhqFTh€Oª†UY·úÞX~?sÁ2ôòÅ1ˆbí™1ÛÓ·(ä¡ÁéÄÉ™ŽÀB „ªA–Í×6+NIOd’ïdõ®vñv]ç&=ÎWÕfâ–&¬àúà8SUŸÝŠX˜¦ÜÁwŒÁR©ØÉ…¯K f»EbOFÜ›ƒ¸ý´OÄãB99‡÷À˜p£ç™>¤âo©ègZ~šVðÌÎ0B@äbà`)>Ãh‡Í9þ,õ#;‚ƒ—Øakéh ÷ª @E÷kð<áø*Ý (àTº¢a9¯Té¼cxJ¨²Iù©Ò¤„`&¾Ùöÿ<ùVT& ×A´›}";ì(Ün…Ö®[éÁŠÃDÆüîÑ<]RÃÇjÈs{^ûýˆÇÌŒÙ-¬M‚wäÒ®M?”墔)1±x¯J>x,W²õÐ'‡>­b]˜b<¾u9L'(MîkyÕµú‚Õ·R÷£~ß(Ž¡ª)õNµÞ«TDIŒ‡Žæ¨`· N¨è:’Оãð…•Ç`SûÙxŠ—ÿ‰Kk$+jÔÏ‚ßï`s@Ð>[)`6€-6x‚Ý‘3òÉ s“Åa!Âf,ÎéØ b~ëªê¾/)³64Nçtðv­ô“^ì#@ÌëØÚ×ïgU©h9v¤èó I»è£ÝÛölFlêö’*)à§"=:bô@š´ôBqïÒ‡fâM|®)_º_‰/ZDÈ\ÎÝ–ð¢:[‘kKÄï±o'ª?Q߯z‹È½H9$SÒ/Ÿ zHÎÍ–?gÂ#¹¡¡ÚâùRálÛê<°ïA–¤+êI2r„¿j sFŽXé¬yáLæ]ƒY82à@N>g^ñŽè…#®òNt­ö øïê¹?Û…>E¬âÃCÇ¥pS¤õ»‚9ÏI©’ìÌíòÏV°}̾;Õ'»ûèüúéFÑžÔü­~cÃ-ù»Öm ÙüX‡»¡Üm,kj–|u<§ Aû‹*ö±Øü8´~Çæ¬œôŒµÆ"60ùtãµÊŠþƒÒgWdÿŽó"”sà _è#5ÁáØÂ… øàŒ•¦@<˜áxá 3R|‘J>¸ ä\£¢Ã$ý¤f¼ÁÓí-–ú¼Ÿ–$…“"°Á¥œv´ì‚ÿYvün¬P M"N&À3ux*Ñ™™®lÝ‚‚”ü‚44¥}T”_Ì.þøð®cè:ùÕ±oŽ=tì›Z(2žü¿ê8MJc¼âv]Ýö}ÞÉÔú “Þ¤>,°öÆý` »¤é|¦`þš_Ä:F>„wÀ¬©ë—öºµÞ%ÒFz\ ¤Ÿ×ó;H¨ p9“ÖQ¡ï¸Óœ1ݱì)¦Áòþ•-¥â-ˈðf>뿱›HÅßãñËÝ]Cƒ1ß|ü‹d„@zæ=Òð`h*1ê¢Ó2º‰¼Vh3,×ð†¯ÓßŽÞ þ­àÚIó%°•C=Ÿ\ÞR“þÔ½a¹Þf6`/ìÕo ¶`ÔÛ L) )gY\ª?ŠF«Ê××åÚyjO[ÔÊíl¾Ý‡Ø'ͳ¥#Üç‰YóZCÊn?AÝUÅœ=z¤fß^´ç¨¤M´©x[!©6ÏøÕK¥Î2¿v]\/§‘)%Ôªà+ý‹ž H¼ÅA>s]<\s¶îÜÑKè Óubk n–kÞܾ‚hѳƕîîÑ+¥i%–nï%R)h¡P/J½LVß±E))Ï/ÉB)ì¨\j‚®ÍôZ•ó^¬N‘ÒÍ!ïË·&wûÄhÁŽD°@WÚˈ_ É æ[ö1ÄS"G¯ºèv-Ok¼–?À¡+»¿þðLbŸ[ž@àsµ]ˆ';_Šx‘%…€•Úìó)(| JÊMÌØ¨È߆ÜQôÑ´ÚÌï>:[x‘´ÎBÿƒ«O&^YÖ—¤F?+/UÖלnA·QÄ]Ûø½úÉ.åë*ÐuöAKý¯À¶¬°/”ó@²-RÑð5Ñ„?‡Ì9ءҵ-„ÃæÚÿõVÒ?’LÌÐLÄæqÈp•ð5ƒ?€D „ ÎÂY‘ðõüií€ùÃüa¹>Þÿ@2õ3ñÙ¿f•H|ïѵ›­·Î&ûKð°þ…~{³2)@¿å§‹žG5Ì’%ä†ÅJ2®'”û!Vì$CqV±Fšm|÷²»Lªúûay˜‰ys~,×q±ü¬>鮤…LtñÀ‚€²ÔŽUñëEI‰aS±éà\˜¿ö'¢îÄæ…5,fa?÷ðòêe±«½–®¬»×z¹î¡Tü_1Ðü±À-,Òi^èÞÞæëÏFë»àV']ÝÕ/àÆÆì£e@¡nÔ^U{§®M©FÀ!—ÿ(ávÒàÓúQÂÜî],Å“ûçÀ¤{õå×~îÁ^ö6(­©)heaÿ§ºåçèâêÝ<ÐßÜ¢"×=Aûïí4þàt›dü&f¦Áè7‘ï¡%ÝñXÛøïb³ ˆð\„oãÀ—Då®1.` ‹¸"p© X²z“1ÄàyPrºB_ø—!ðy,Ðâ4î%˜Ý†@s8Aà»`ÆF2lU#2Ea—Xìႉ!8ÓîUß§ïÂì%.àÿxAÈ}ë¡êׄP·+!´†’vñ^ÉáDH”áDœ(òh²eþ¶&½‚2r;„üÛ ‡ø¼®¶ÖÿŠÞÐê7ˆxÃYY½aFõ««‹¾ÐUý¨ŠáP¨"%6>8ÇaDØwöåp; @²ñ_qw$)WÂ*üëa0pÉGàøøÙ³æÄý Ñ}i``´ Ðp@#€|§+Ò Å,e`:o ž¶™ Òs©ùZÒùö ø½jN7–ùêÇïªÔW_6Mþ­éj©Áæìk 5 UïñCs‘FRHVò¶ÕŸù°fïå/N(+»ðÃñFÄöü¾$⃕A©RÇØvþÿØi Ÿ1*hüƒN^Ú¿Œð¹ 6@·Ÿ©*^Yíæíhwùõ'R27…—¤^Wéמ6Hf'›çj˜ÚŸvÅí¤Tüäî‰ïëž Æ‹:°9¶ZâíwK4Lá…âòýÇ”5uå×ÛuiÕ’˜|yÒ‡Òìí»‚÷°#у]7 =€ðä°§<ßv[òkEø¡.\8G ÝÎb n G+@ÝŽjšw'€d’$èÆ0Ñ:Sácæ|ý™Ã×;Ðh93,ØÞ3®¦'—8}`yÉúÒ ç¢îgô§­^¾;°˜óO‹IÜ*_+­€X!\EnvÝVþIR<ÕÄú§¤mlvI¦’¥$¼·zYa!Gø#KkƒªÃoeáÌ_‚&ÏÕb±,2sE²´¼®¿x…n¡ I_û±DìçqOÜC- nýEóÓMµ^ŒsÊøÒC~ ²Œé5ÔŽ«-Þ÷å¾½{‹?ÿÒÈè|ñ—_žÏ?7OQÿ•‚“endstream endobj 349 0 obj << /Filter /FlateDecode /Length 160 >> stream xœ]O1ƒ0 Üó ÿ @E'ÄB—­ª¶Žƒ2àD! ý}I:œ¥óÝÉg9\/W¶ä#8|QcYZÜ`¤É²¨ÐãÎòÄYy!‡›òï'Ø d ¿«™ä³=•U]Bè4-^!ʼn®ªúΘ^ë?iŒfwž±ÏhZ,þCIÑT⸠¸†@sÓÜ$°L¿g¼ó)ÄnSúendstream endobj 350 0 obj << /Filter /FlateDecode /Length 5596 >> stream xœµ\ëoäFrÿ®¿Á„Åá$;<ö“¤“;`}>ÇÖ÷ðêpVƒ«iéÑÈCJ¶ò!v>§ªº›ìj’£}Åþ°ša³»ººž¿ªžŸÏ‹\œø¿ÿ÷jöÛtu~Óç7g?Ÿ zzîÿ¹ÚŸu#j ßäuQ‹ó‹ë3÷ª8•Í {^š2¯•9¿ØŸ½Î^­Š¼0ªEmWküPÁ¸*{=hº¾mnWk¥$¼Yeß³‘+ióº* Ÿàø_PyQTÙKöäpÍý6^ç¸ ‹Øì[ÿŽ©uUe»Íjü@3k˜Yeß·W+‰û±šOÅVÜRTöíÿÆÃvn˜•ÖÊòÿ ¼³&æR&n盳¬^]üt¶ÖZœ¯áëÊZüöuváfÔ•¬‰‰ÊÔy¡«¬o÷žŠZ%Ùºc-ûع‘Ù]Lá¡ÇUs_fß´7÷#Žñ.‘ü?^œýõÌ Œ9?. ßd)ê¼TÕy)%ð¤F Édƒ›öó~ð„ªÈ­.ã _g—+Ø-H0ºø0t’µTÙ/3tÖ¿å"JÜ5*ÛƒÉ þ,%³{ôó “577ŒGÙMÓ³ÏÏ\-276»fÛ#Q…Ð 4b‚n€&.èãr‡k?’ÙU<¦éØ+]à€„Yê~o…ξˆ¸]ÒОô®Ö2{¼›' %b-tMg°*7º–NfÛ[§Cµ]qÚ’×õÍM«`7B“:AÝøáÚ0k»þpslöøÔÀk%l:üm³_Ü\*1»"„îÔš jœŠk%`AGµ*qû•Û9<³‚¿òÏ~®º.ùA$G‹4þí®éÛZ°*À!}Ú.Ë|+lMò1CÊÑSgs¦}pK µ0ÖFÆÃ=ÊW`xðí:Ø›Q#@´ ±Ý€]4»p°jbRP4H ªêüâåÙÅ¿¼Ž­‹3eÇøØ?ݺ°.•(Ïm ;,…3ò͸`´ÄÏ­D®”às“¡Ñ¨½Áθ}y;£´³3Ú:†§Vß´Ù!"0ë˜O:>¬ŒÁÈííŸËÀ¼m¬µ±ë: 2÷ËÊù›R± ›«ºöçïh{Ó=×¹Y½Oz kõoÃÊõÔZâ.L gNÒ +ëÄ2åã;Ä‘ÒY2œS(‘–âD`±Ÿ2k4Lƒ09Ó’aóo÷ŽõvYs/WèÝuM’þËÛ%ãwL÷Z ›KtÍÌÎ¥§*+òDjpÓá#¤ÑÖéotá ¯ÄZgJ£;?ì:-à† ¦}ǃY—°Ö1a?ê,½…ÓQÕä\ÝÌ%%à,Ò‡Ú$šX<î¶~êl]Dæiº8{»hËìÁUtŠÙ`w•¦q%ÑõJsRtÑD’ŒÛìÅ0Ñ&°Ìž Foo;Ìç>7CØh¸iâI™ªß¸øµ(êıÓ43F¿7Nž¼?ÄÂ’:¦CˆÂ5:\¿˜Ð±PRMt¾×I”Ú„ýhÍM8~YX ç`tm%äÇàÙÁ¶nLÇœ„8%@`Î –#×Ní;2"6ãá8oîhÏa 1»éÓ²Ù`HÕe.á+§ôÍ-žõvÎ2h˜©~Üz0Êê$bêR{’—’ë 9ABôÍ Å ¢K¹ÌâĬ›‹9P¯ã …©h»Ë5 Ö}pCÁ>¥ôbrðà cvÉf]'@3•2’4xfK@2E Æœ™üL •T¹*K¾Zâ7)&…?ß57[ÏlÈW׳|dÚ 4 6Äéø¯6 Ë$HúêvªE•Év iÔ—ÎP‚P×h–,¾k–4v-aQz³øÃïWk#5)ª3³p _~Ù5Ûo/¾y™9-ÀhQ—A þÔI†6Þ4_fÝý›nÛ_ÂAn š{޳:ü§¼ÛúO`9~÷»°žÊž}õŒr>ú ¾²½í·Çô«n´ÉÂ`péW—Yñ|œGY½ë@“¼»k®ÚÛ?JƯ—8:„ý·ûæ×ˆºð‚̾»½Ž–;IZ‘Ëhèî€iÞdF‘}óâå«?’ÑÁ¶ýn;î>ùì›–,xù¸EcVFuOc®ÉŸ«9,[JDd8¿W§2à7G 5%vr–µÛƒ È=Á8ÖÁ'-ÃCÝ@X™íÆü\Ùp‰yÈ3ˆ‘"@æ²à1/cY°ö™o3n¸gÖcÏPs`Ì—ÕCD“ í]Y“6`’ðØ9o]£•:vœ»]Ãã77žäBKÈ„)ý¦eŒc¯¥o™»axµ<æ‹ C½ig" ÷„ç ý¶Šæê3ä:s ¥Î0Ú¥:“f‘9ãs S0{k]–ÁnÑ0 :<£™ w©:¼$Yò:t¡AÔøÎ¼©+’¢¡r:b›x”赫ha¢QL!xb¿39î쫸Ö#ƒ(¦øÑÑ•4ÖÈx$o= Ȱ]ã¸m›ðžÂ²~Éóc¬ìI„nÆq:EÏÚùÏ.ö„¾ê,©ÜWfÞPÊéæèD„à‚ÿá>0 ‘›^k]˜ ¹L›€PBÐ} Ô)Œ½1¼ }ÅN;Ðÿ=føa½+ÁOhþ{Ñø’‰¦½ Ž‹>a6¹µÃ iMVþégH4zòy›Ù1ÓvL¡J‰Îw$ý©ü.æG]zèê3aÐ3Ÿkꬒƒa)°œ×ãT¤‘C¨i,Üÿ5DN“þ2÷|*˜ ý)xŒ4"7¥åÔ^®I¦rݤÃ1Y±5g°äHoN†Î¥Í¤|ÞÞßbŒ89 jgó†öMbÊ¢xî];‰7;¿‘"-%P  3-edý8* ‘Yhx ú.°Dë‚÷9S(Ë*/mj YùÞÂײw<íc…ŸÇ0nZGgX~J6ÈšÇ6‘WPÓV*zE9øŸþ®¦Eu"”ïk”È2ëSEE@¾ŒïçS©"µ‰hÃæì!Ô=Qc›-Ÿ–Ý*·:T¢8K*œ7ž³'u’´¹#L°ú²¨"‘‹ýw¬}ðUC—B’ì…©ɭ¬#ì"ûÛeV8Ê+~e^É¿ÍV¶0y-,F\®Ö‰³8²rlÌûTÖ$uþŠ8­n’"W0úøv7Z¦æxÛqœzÚÒIßc­ðØÞ0îR,A/Ùä\¹åA› °EVOm«¡LéƒSàÙxþ.ÊÁL^­ 倧Ê(2 nÚ[ ³›M%ˆÕ‹¸6¬8æ˜ì»ï¿ö\™:©lÆvËaª #ÙÑMBÞT ‡ÔàxÞòfÌ9ZŠÓÌYIÇo pN8×åpÏuÊa[·kª)(ˆ_ÎLY bç3ˆ¯ÈÚ©\Ÿ¢ 4R·]zòÉR=TÃ}YýßÀ¾ñ97ðîÑu—ÔæwÞômSðÍðó ȬïA®-$7~P‰û©úñ¬²á'í~òG(„gæoÉbÛR°Dh5guÏæ¼G¦™o#­¦‹¬5(ïÄS|œµ®™µÖÚ]qü» ëâô{ê¸1 Ã`x×BQ-g«³Š. Ã1õ~¬W98•‡–M³k™ÄÍõ¸»è0é:Èoò”¾œëe”"`VBÆûÄ['V)Šԧ4À‚ÓB³ù/BΈc]k«Ù(6B¨9¢ÍŒoŠ%ƒ\·?Ï^­Ã<¼nÑ7Ç~6º½ºÌ$¤JÑåDá/ò\CLÌ è µÚ\õÝ×1^oÄ^¿fqé÷8Ü ¬Ò;ã-ÃÛn{|pº»Ã÷?ã¨N xüg]çþ¶í£k˜w‡»ûð‹#n½jž¿ùËŸÿò·—/.¾ûóŸfzQà~$|=û?>phendstream endobj 351 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1396 >> stream xœUSkPSGÞK^W `’¹‚ I¬#y–ª¨T¡XtŠˆ­¢ð0JBDQqm§vi@@¡F"`yIå娠­PˆvÚRëh§–:êX¬œ›.vz}þØÙݳgÎù¾ï|K!¾¢(ÊiubJf¢Q§ó IMI°…æ³n;ÛŽÃÃFë «^€Å<,æwÌÜ–BºÖ9ÁŠˆGQÁQš·SÓ²ÒuÉÛJèwc<½¼¼ÿ,òóPÆgýý¢ MÌÐ%”îÜ!31%5MŸh0Fêôñ»3”Qq† åZ¥ Áÿ"!‰!Õ§MHÔ¥è—ú,ôó_¤DhZ¢Q EaH…ÂQŠD³P-š$HŠdˆBRŽâ#5*DƒÔFªÎÎÉÎ`Wl×Ècx5¼NÞ0=?ßÏ¿ Ž,`3ë ö³t”° ”βζ…™há®#"ÙÈ`ÇK_ýŽ5rò€‹ü!qø¡CÞß©•Ë–~/âJAÏ@@5q &Pò —íbH ;¡HQ='–Aீ ÖxŒ“ E>0#—TsÝcÂV­Üdyñâ²å;…#<0¾„—£Ô½©g˜ ˜O”d¾Ê×B~.îŒûù\UAÑùSQö‘Ãç`:)¯ä¢ºmz8 þf6Ò³Šu0‡ãÁž®`2ª•ãZzD`·êq'î+#ˆ$OnBÓµªO-˜î­ÍJÎÊ;p O±7cUNT®‹2+f^@/¸þ¬¯·æÊ%¹lN-È-ÛOƒ·PVF‚@Ï,ÓÆ†n1Ô´]¨4Y*¿XÜbúähyѬ)(“r4r<ØSðˆÉ—€;d6¦Ébß¹d-Q΃p~t˜2qî KM‹ÂthÜÀË+Ç»+Î)ÊëÊÛð¸6­<”žxš™õƒi`–Öqürls:ÀzÎ¥UÏiT*ÜÞ[£æ:0ždYRÜ£åol¹¹ã¦Û0îªnê¥e)d:ëÀÜîVÏSÈ>óܬ Ûly&—¥<¿h¹%·‡×FÁiœbOC&“_Š ± ÷ºt°5ùiÀuBqåz>y‡ÿ2|Àáéðxƒ‚È…û4 é›°ï¬ØSÐüaõ‘ËôÑQ¦ø^S[?Ä­ÓrÚ8§}d 5d°–3QÚl&´êù wšÌ²†™ÿJ±ê¹”WzÛÃïÿµDÁ‰°jj9ËšúþcØ¡¡æó}Ýui9™˜ŒÜlnû÷ÎJE¿­é'Hµ%#*N¾ërtÝjLËü"°vOl=4å$1d?†HÎJ• $48A28p;×é ëÃÎdªËJL%Çëj+Úq <¯»Ä™¸x-#|õYÍ N. ܪ۸ĕ¸Žù‚'xŒ‚«\öß×õvÒÄv3ý퉢·%D®Õ´^ëmoPÈÆŽFÆÒ¬Þ¶U­ÖtÞúº½kXáÈÞå(ÚSìçÐÁLä{6ߦQ¶™‚ëV†Ä¿J !Þš"˜BΖpƳ9$Á&àëvf%ß©Y¿a¯?&rL¤åo4F_P[’îá<ÐÐq½íªù†Yf7¬jYÊÍYÀoÆu{*’Nè‹Þžxùá Ãþ8½Q‹“pê©}ÍÙõ‡¾Áñ}Ó%u'ÛªÛ0çÓÌáʳ5Îc³™‰lΜïùŠv/ ÑGLûÚÄÅ a³@H7ˆµýb0¤Wxªµòô‹oÁé§æü„†9Þ‰yýͲ@žnU¢;-]ƒý­šÐ²ˆðåD˜ñq¡ÙL› ŽÆ*¶¥V—j«„  û¯L……ÇL¦Âcbñ@áÉÇŠJK ÄùbG„þGóÙƒendstream endobj 352 0 obj << /Filter /FlateDecode /Length 4679 >> stream xœµ[ݹqÏc²ï÷äC00ÇÑô5¿É³8'çœ-oàZ#Íήú4_7=úØÿí®*’ÝdwÏhuJ õöÅbU±êWUìŸfuÅg5þ‹ÿ¯¶W_¿Pnvß^Õ³û«Ÿ®8ý:‹ÿ­¶³o¯a„Ñð¦òµç³ë»«0•ÏŸYm+/õìz{Ÿ˜_ÿƒ½Ê;Y .QúpZ¾Ú¬iªÂ©«ýúnÓ´À¥1Øíqà4õëŽj¿WYÛÊÕ2œX¶>4§5L¤£]Èd‘.ºmà ?lö( kiáÍþþûæÍä:B˜Š‹´N{Zží·‡ýn½›\- /WɯwmszË‚”Ipk2µÓ<6¹t&wÖ,ïhîW#sW 8,¿Ãq×€H‰³’Ú"ÌYc«×ë՛붹ýñ¸_­Ûvb_å*Ç8žF²Óú¸m±L¹ìEMœ^ØO’HuzßìÚS³… hv‡Íš&çî"m­« ÏŽHzóW14†kÃñ¸žC ¨keØòUðøÂÖŠ¡y F¢“ßÌ ü@ >í»ÂÝíÎÅ…#:u¡4Gp’gBIнå›5¯p¾Ûï÷ëÝÉ‘rÊ=i8jÖ˽î2nÞf±'ç²WJX®-[æN>Þ”/ÊŒ+ŒAf@@ïÜGÓEÛs$ú°½Î&öþH9ËÓÞö¯BX’ΰç=Aê`hFØÁæÚ ÔÆ®ÙíOI¡F0pÒy ?xçË ÒÇ´7ÍYÛBr[ÙÚÁÁ’h×NsecÔðh^¢x]ØPa7·al3j3Ò9â{ˆÏž";IB‰rê*ÿ£ùr¬súeJ)° ò&‚ rÆS ã '¯ÈF:–÷tvwMr–Ý;ž””Ov‚ŽrŠ£º’®c d4Aˆ×"Ñùö‘,m[h§°ˆtÎÚ'Ž'zj#6 'o5P4x  ?xá,˜SöþX¬ÝiÚšÒdV°„×RÒ~7‡1u-EOȞǎ¹X¾Íö)™˜|ŒkÄ!ÀHœñD@ÜÈüR°äã~¡¦W%’\Í!„‚áKöfyŸ3LV*3¶ ÌËS;©Tg·î´Z`¢phÙ‚Óßç9›û×$[%AcUØ!ÊÉ.¤ÿlõ¿Ì‚gO OZXâÉ®I+ö>è|tò±{»-œ$&’":BtŒ*ÝÀãÓš®ý#s¯IkàÚã3xÒåR›Ó"ßú2§“?7ƒC‰˜÷ÏHWˆƒó § ‚Øã¹ÑÙŸ ˜i‹@õU—&•‡eN¢´*GiO¸ûñB“Ó© 09ͳÊHFÇÜ{ˆÍÅë¡÷!3d˜¸¡Íh ÄñµdËÕDÀl¦ˆjnÐìJ@FÃ-{ž‹å®4Å3a¼S%¢)I&œ´¶ˆÀ›MäÑ»*TywI£Ž– Ì,<+1 ëÄ…V?—*3ìx@âŽB©šØž–‘=4éÈ…Gý¥Ãú޼<Aø b¾4’ƒ!o»•4»A¶²øÝ͸£×ZÜV]oæO""và—°°6)ϼŸ„ù  ®âÆ”dT%”èÓ$êBXék“"âÍE‹»fO#gB¹"„rX¸Ã…<ÖÏÌ ³§:Â4m ·³…¨„¨% Ö‰ùl¨­´0>%6¿ž &*©±jFÈú¯S›ÜÍÊõþ¯ —½oŸ‘Ù&[F°ïmå|„6:Ìø.ê8¤ŒmÛ€™-”¡t· {dÓˆ¼<ü‹ÛG9Öå<9ž‡I«âÄ”N&3‰çAw\wŽóBi‡!¦© ¢0*Ï '9¶îaÙôCu¿ q4‘^íë¶_4cGô¿êoXõÇÍòt·?nÿå‡?W‰eMgþišºøåÛ]óá—7s°„ ñAú>߸´‹PýÚc3ý÷Ž@šÒZÖ|X,7 8'À³0ÈfmyH©¸cP}ãüÛ‘°]r$S06«—9Í®‹M6Ò)íîþ¸ì²åP`Eó3ïï†A´ ,0¾:°ú<Šz‡Øaœ“¾+Ô¶È$±RGç6ˆ)ÖwÎ-ÑÇÍŒt•² EÔ¨ý¨„Fâ„ìh³¿_lš7ÓÉ÷¦Ö²"þ/ÊZÑT†‰Ö@ÞºåÁ fЩ‰§û·`¬!æèä‘݃'p]4ÉR~ˆÄæË„øû  )}‚hírÄ› ˆQŽ œ58=7{¥´‡}ͤՓ4uaDwÛ½¹Ø¨,Ä}:qÀR_qi(LüvüÈÌü@µ‰‡¼Œ´„PƒP"éÃr•5‚w½¹`4˜Zž+ûòW‹šº@þm™l)9Äôœ•‘²¨Ò¿I°VÓ13¾)§D+<¹ÿYžÎ8b)§9# 2×]e4¤âJËê3ä¼Ëä‘B9û6²©YàXP£b(=HUñO:‰íÀíä(Y@"ƒ*Û2W~˜ée+©d窒åc˜Û&æ¥ ÕÓzp›á³Ä•q pû®YN¶´À, ¦+^½ÙvµYXƒÁ–9„'÷H„7Šl˜‡vîñlm}¬dè}½Ê÷ÛvÈŠñXkƒÇ®oj%Ôd1žcY¤gi,ÑÍäF¤¦”¦= Øj|“r»M¨¡w†4¥­+îzÝÁM͸§=Ž“¼Ñt1µ£c5†µáÞnÚ2=ic÷e-9¤TÜ–U>¿Ð‚î¼Äçg(Î=ß™„@º$Ÿ«>— ^A¨ËȽLeÝÔü¤…u¡‹©5•FµÅÚÀ™Nõçðú” ¼ø!ŽÇ #4ì4s@€ê4c¢›¢ßWý-ˆÒebäH„p}eª¢ä@Äâ“[‰A8J ø|EK°H¡™ß-óÕ7QŽ\avf>'“DŸ*! «…Ú¢ÆSré*ÁÈ?G1P©·Çå`+ ðû®ýô.@>8ÒÃæ!ùDä±lÔ÷}/Î&ªn}™‚VPeŠˆ¥BÍÉg¼ƒ TC¼(*€ƒ+{Dü#>9ªwœâ᱿BR¨4OÝAý¨¤Á¡é'"®…’‰6..° •q·#\Mïí\î¢åÃø¨iAûуýä’œº0{]5¨,þâòm‰Ûõ0JB°§+;›Sî}Ó½Æ½š‘±½\a!Íê |§ý÷ ”ÉBª’•r „‚똰ƒ¶ñ Un?á'Ì0OÇBúífY&šm¤âÇ=¤â¼¢ïÖL×Ïì­ÇÉУHRW6\`ÅyzºÏ&ʳÍþ¹Uº“˜Uê‹Òuh†©(öýTN†P†;;ƒáB‡»'gª­T]ôã®q5Ô-õC¤rµÎow‘Š.&p3ËÆ°ÿÁÙ ~ CQé§:°ÃjqIa’ªR"—ÂÕúÃa2 °9ÄYtFViËëGÛ¾ì ûÂÒPU†Š+µì´ÊÚQo®èð½ê{ù?ž;ä«Ü“œÛÑEc¢Ýa¤ðOåÀ}? ÊÇÚk_fNŒ©a«6íäb7±øeóvä û«µ%³Ž]Aº¯0:¶Ý€£ü´e£#Q¼ÏÃÊKд›K.ìg?]ãa9½—£+u!sÆ›õð:иŒ¦–³ËÍxŸ-ÓèÍÙuYÞÄå8ŸèÅO4Ýb/4”zñÚÝLrƒÇ‚GðXmiŸûQ§= T’=KLXÖàmñsÒ6¾@QuÛÆ™nˆÈZñ€Aåu b ótJÖ&¤:ÍøÇGO^Sl¢cÅe„ÇQƒ„cÙ·‹S&Ë« ýjx>­¤ëP—Êm±ô‚ö°øN…Ñý„®ÎÛ•hOm¬æûXN”(À³Ù2%¿D`ç„F©/ ˜Œ„|ˆ0DŸq—8Øš§·q-@HÇ´ÔMÃv95¶ñ℈Cø°ùvÞUWÙŽ=s]i¾ÉÏÞ]–þNeV0ËBUÿiJÏú¤µG‹‰[‚ã¬APs¥¼tØw}4«ûc‚°%6"ŽuœWoÖ¥K—ÚðàÆ†%í°šŠwË•ïÞ|òç/’ûÊ@*.à•R°/àÀ¡ ½þ×tÃѰgÏç n8åù×1‹wsÑ=F iôCÚ~Ä2ú‚%î `Æç;‰o>ýã0õ˜ARŠ7ÛÃN^WÏoð Ïñô58œÔ*rlÑwÀ¤ò>PF ªMWg^2ºœ¡£ò/ÐãÝnëðÓŒ½DªòÏ("©E÷½Ã-1×6»›ÐÌ =¸¬™uhú~UöºÛË£xæ•P²çØõÀ³âð  &~kïæ?†iž˜^íÛÿg¦¥Õ9Ó­M_³î§bo´6)øM‡Uû¶²ª+«„íòÉp¤­”-?tYSñÙÕ‘m¨Zä¶!ÔueÜ@ÎörV6.«/åîÓ]ŒK,`6! UÛ/dådižüÑšî9àþÉóÝÝcx¨+ël.)¾À o‡#øÊÔç¼G܉Qï Ò›Ÿõ¥O¥ÄÇ?Ô‘á&³ú<×t·/ÿ”³ ý‡ÒP'1ÔI ÑÕIDÌnnÀ“b9‹F›‚ð^S^¶í¹ë Írt¡€¨A(þ n ¢d›ôZ^Ѝ_ž‰®å™3Ÿ à¾,ï®[mg¬ø ñë]^|Û´q{+“Ïž÷bˆñ4u¿â0wñfî×Ê/h ¢_ÓÛ¢)ýº:ÓäÊ{,Tį¸<{a¤°üs”¢Bŧâí[W§<ü<£JŽƒëÇ-}ÐDh©ñÝ«c&ª+ûÌàšöZîϪ«\yl¿´šäÃ;T£ ‘ã•ÕÝÅ;ª›ß ¯ºd^)Ÿ*ajW8«º|õOW£×¸2endstream endobj 353 0 obj << /Filter /FlateDecode /Length 168 >> stream xœ35ѳP0P°b 3C…C.=C aŒä\®Bc ° Pa ĺ@@`ddnRâäÉ¥ïé«PRTšÊ¥TÏ¥ïTÌ¥ïତ\¢fÇré»é;;»¹66úÞ º@çüœÒܼb ;;.Oµ1"bôÄ>k}R²h=ôlúä€ÿ„ÁïÅJ§û  \®ž \H+PAendstream endobj 354 0 obj << /Filter /FlateDecode /Length 163 >> stream xœ]O»ƒ0 ÜóþƒUb¡ C«ªíÇAp¢†þ}I€ÎÒùîä³l»kÇ6‚|‡/Š`,ë@“›ô4XeÚbÜXž8*/d{Sþýñ‹ÌÊïj$ù> stream xœÍZ[¯ÛÆ~?!) 0°Jhî•Ü´)Ð6—ºH $9@¬Ä %™$Ê$OlÿûÎÌî’»åØN ?˜gggçöÍÌžW‹<ã‹ÿùÿ7Ç›'?¨r±ïnòÅþæÕ §¯ ÿßæ¸øÛP ¿d6·|qwã–òEÉ….2+õâîxøZÞýˆ­Š‰K™ .,,¸ÛÞnïëþù¹y½kÕkü ñ|^4çmÕïÖö›ê¡ëêêtˆ5ƒïUx“ì ¿´ä¸dw®Ÿ?œúz·}^Ÿîwçî–Då¢Á1¾½¹ûìû#h‚ç9n ¼ïg˜ úI×l½tœ¦ËûªíÃ"¯ß¬Ù£]¶fOOý®ÝìÎýzù(œ’ÇR¯L&nëÄE´5¨Ë˜šgúv”7‹ØÄÄëåzé­•FØŸ¥ *¹[‚õò\†Žj5±j“ØFqóyÃ&&Úáj“åF²þe´ ü^°öé­.J¥˜óCÅ ëëc A')Tø¸Íê?䯉ƒ¾©Ž±ÿ’ 2™ãù {½Å OJò”aÿõ§×bv-Ò;š%û•žÐ^ÉÊ8¢êÉ(Wº€èt¶+db;k³Rûäæ}r`jbÉ! -9ð×¥†#ç°êðpí8ÓŒ“Ý/£Ó´ô;ëšÑJ*Mmu\‘´OxVˆr±â2ÓÊ ·}ئPèÉ[ÛeË•RŠ t÷2•MJ…)5MϸKÕOÜÓe:-ãL·¤¤kÑì¥óï4­­‘X…®á6ËË‹“%‹&™±óéšAð)ö³· Ul5®²@Ï›ã“%æIk Íþ4¡ =•K¾YYXI¦þÙ™9廂ä&AèÅ*¢ÜÎ9„ÎLQ€+y 3Pî—pŠªMõù|†`Yp ØÉdºT—~÷æ¼f›õi éï+o¥Gcv‹’Ó¦Ùݯ§°^>s‰ÓçÀ™Ä(­—?]KëFb^†ìÛœîëSÁàgعj³02/@™àþÁ9êHAäÂo2!êªÁ]†‰Lû—\²Ç#j@fÓ£P]<–t\UøpòŽX¤2cò‹ øðâ¹Î®Ìü ç—ŠLYž,Í-,ÕÁ3ø¡œõPL0ZòK ©^¸Ô/Š\ ©˜ÂÙ|uwóý+õ¢ýÐòÃa4—ÆÝ *:»çúÁìCéˆÝ3È  , < Te]1^‚î)¬@V—¦£³_a|u¹ä!ªO—êóK àáV+Ë~™G¤ K«È «bÕ 7DøÀSÀßQÝAQy± :  øë”7”C—ÙK¿‰pPMÊáS¤è}q !c" 9TíámнNêŒn/ŠÑ)¦:Œ–š˜‹% Kˆ¡›z‡àú#N „ “:¨êš¤ìÒEÁ¾®Û®ÇB£´¼5VÖEéžQ…!$ªF¾Ç9ã[nûÃ5ƒ¾©_L*â ÀQÅzŸÛ¦r6QðòÒïˆÝƒï0œ&^$Š+=­bØu<:ϼTÌwìÖ'¶j«9ÿF}Àf/°NAÖ!w1@·+.yÇN^ 1)c"B ´zY†ŒµGOG[˜2­OÇâ/îÊš³×u²WóöD¾ÒÅÎy¼hð¸S'7´a3œ„£Ø-&¡]]Ž¾Ä CþÎÉy?2ÑDéyaÒ‹y5íë3éüúÇkn:-G²¸áÅ”›ó CÑÖú²Ãĕ׾4å¤.¶¥t Ó'Tøïtô‚C³_ê_¦¢‹öCçûÐÅ»'ŠC-€ä|I/„FF"h§^Ž?bø&ÔÍ1+¸&Ije(˜ð9Çm·ž%t+Uj»·}:²¨˜H…Q”¯S{zÁñ¦Ê!úÍÂÄÃmkÄÇ™Sÿ8»EÕa:`â—£V®Z›¥nªèäÍ'é*7ìÀÄ¡CÚ .¨{}$Ñ/H’SXÎ7.Ä@¹N¤ Ù½ç;fÁóáv$uÔN²Á»bÁI[öïe öva† ' é&Î$VGAÍ¥§ÈßßT H“ßZ®ôqnãÕ ô8“ê0¯ ôÌÆïÁ‹‹2ÀÉ4iQc¢ÖóŠä“a‘ः•©(øvH ÉâWñÉäjÄÊ3”ª)RÌÀÛŠ©Ü€¯p禑]á`ŸA]U)߯qa›d‰ý.L$ ?Thum@$ñq¾û =ŸÓÍÌ\4}V¡{)ÿ§z(çÚµªüs5å>7˯Q+Ø" ŸŒŸ5އþíX½ù¡:í£ö.Ø!“÷›Á}]ïþ_÷MÚ:¹ÐcªÜPã¤~Wã¤3Qˆ˜ß3ÖÅép¿Ÿ¤>t~SP3tQU>—í•A§ÿí:tëYÈr»¤ÁZ«=j“›$ü~«3ÔÈQoJW\à^JMFöA^ã‹COvYƒ¸S]ª®—»­Û;Œ«àñ5ævEw ì_M?ì-ÓÝ|j[)…æ’¾óÁx;5XÝWÓNCa¦T¼Lc 3gêÿ¡ÅßùlŸLœ@¸Kë'£>¶²  µžÔŸIO¸õTX5Qo¯UmZ–‘„i¯¢SëÛ4ÓtLüUÚí·ÍÑŸÎê;ª¨Ž­—(KŸ­» Ë’rµÛà“è$P–5/&•0®(µ˜J=¬˜¿xÜïÐí ÃÈ?š@ÅÊËÆÎ‘ûÆÎ4ŠÇtú=y øtò»oÛ¸˜’cìÀ¡YZš‚¤½ˆç8Û)†q;bp£©çFÝ®«Ô?Yç]+¼^k7q’ ð«'?N>éããÜúó”…gûìCáúÕC`z8Þïú›‡v³ûg\ë+Xë®dºsµÙ=òàçÆ¨ÀÉ[q«nËõò‰CÌ™©¨€œ§cQþ˜úЉèYEÏ¥ŸxáUÆjÀ|d ³B‰hl™gR‡wˆ8n3°ÉøŽãv]Ì"ñ °ÌÍÐi¦)üõkW6ûÄ– D_$6¼YBÍÞÃ*-ý=¬[_¾G!çÅe·\zèú]ÍýÜ…aýᯑöó7° äG²fs÷€+Š.óQ8‡ñ½&'+ ch¦Hóýžwä^‘`Þ·ƒIS*-..’ýnÒKðƒº\Q=KW$dlìëcíg•ôçq¢€âv ¤£·Þ£­EW~×-Äö­KDØÂ'MPãñ~ö–PsÄù ôߨÀ¡é}Ñì‚勱~Æ”ËÍiwÂT‡·áW+Z“I3Xz¸ÖãìÍP×\©p§Ž¥žW…VO:×q™’<>. ™)«ã´ ðeDÜ&%æýÕâd¼Kå8Ìqwìã’Õõ’©íÂ:(Ìâ¿?y?aÔëë_ëžtÎAIoƒ¾ÊP#{8ž™BXHÍ>ºü-UðàTÝd‹èg#@¥›ñ×(ƒÃb+„‘'ü–æ:2SXSÓ‡`ß¹ªz<4‡l°íަŠTÝ‘lÐ (E» eÝ98ãK¡Äÿõé߇¸Ü¶»c½‰þÆc.`‡Îxön“' ù< —23ø' ïñÛûñÖ¤rÁ1&Ø›ÊKËpo¦Æf›[nLÔ©îäHxI©,.¶ÑâÒšb®Í¿öGD<5 ‹Õxß™Ž'ÂŒ€‹„^º+Nj†¿¿ù/Ë×endstream endobj 356 0 obj << /Filter /FlateDecode /Length 13724 >> stream xœµ}Ï“d7rÞ}NÒA79¢ƒU+¶K¿µåˆÕÆ®´ŽUXâŽCRvg†ÃZvOÏv59¢þpŸ_&€BfUs¹²<°ë›ïá‰DþÀÃ{ù‡›mïn6ü×ÿÿæáÕß|ëÍûÓ«íæý«?¼rü¯7ýonþî51Z$dß¶æn^ýJ.u7®æý–oJ*ûÒÍë‡W_ì~w»í·ŠÛÚîÝí~TâÕÝWË?NÏÇÇۻ<]Ywÿ¨˜?Üú¼oµ$ÝÀÓÏpAØo[ÝýVýË㇥íoÖû<½7É»èפkÝÝ¿½=ÿà–#µvÿx|së1žuSêŽ÷£+a÷ÿ{¥Ý -ûœ}ù××ÿd—Ó*»Òž¤¹Ý¼~ûjçÒíëß¿º‹ÑÝÜ^süÅîߎßÞúºß\,C -ÐÝwu¢[ó¿äÝoÖqÍÇê[Û=>=ž0Æ’Òî—OÇg-ÍåŸãîËÝ/~óË/o;ÐÊîôÝÒôû÷}T[ô±îNϧAôšøñöŽÌvêŽt–kã î—§Ýã×ýïìvÏßhÝáaÆÈ­’B¤w¢Éï>±x }§»ûƒÜÇâôûì¾?í{{4c×ïSwXÇr:AEéw¤¦¦Ò…}¢7¯ûêõ_±{x”ÑÖävoá[Eñ…fœú.­uÒÛŽ§Ùy±/…~f=íúÚ‹%&¤ÒÝåç]_]á@Ó2[ºž¯µÖ»N"‹>ñz{mDÆ ‘j><>_4'ÿ —·ìƒ'ýE+Ï—Ý¿¿b<…ÀqÔbcŠ µDÒ(uçC8µkµÜ÷»e4«æ¿Y¯µçËcÞýpÔCZ{’Ž“F^h„ (“ͺ뺩š9=÷;´Šusþñý--µÃýw/ˆJÍùj™Ìï–¿¹YúéÊîøÌÝÛv§U;}…À½Ì ò î<) øž§šþ ùÅékÕâkK⢟[Ù±„Ñþ5ÉÑÏâw݈:mOÊf‚Û}»Þö‘ÏÈcÙŒõ+êîÈœJœ°Ó)æÝûu&OÔõjËŽ3k«èç¸)ÏóãrÒšÀ ÖÛ£¾±úyTjy¸§IóÍZ”˜ÃÔdþñ¤ÖöátTsŒÅêÕÅ\äUõõ…š eµ%Ê`ðÚ™<ñ^%(Ïïݾ¸ÐÝ-Û¿||øøøá݇gx2ëìhy×R„ýÅî/z×Hƒç??=‘Vã¦äê|Æ>nÖ…ð4‰—C™ºÈDC›¬Vªx1&—ö¹¶eL׆B"s6†"¢•ž½ÔŸ7K$ÐÍ’ô/«ËŸn¥[IÝT{«ÅÍnhQ\ë… 1Þÿ…ÄK¤˜nîà±’ôX©ÖŒ½’Ñlj¢Wc:±õnÕùÒͺw/°[ˆ¼P¸¹š‡Y9›LQ­'žðÅ0žw:.Ts>nÃ¥‡`ŸwŸŽ§Ùm2ÌÚÚ+csÅKpãˆ%Ž]a„yÒ!u<Œ‘¥Ýûã÷3‚1³wsq¬$•—koÓx.ZHçðI™’5¦¤»ñÐɺ=ï»âd Å&Ós„¹íiî{B @–"m°b~÷ÒP  L&–VÕÛwèS‰ô‹~ï?<žøþ.yOÒzs’HhsÎ]‹j=ýéw}mBšáŒJÜ«_&ÜáA’™¾½¶f³'Ã’ûrÜ}öõñùùÝÛiŠNŸ][)nËûº¹±„9ò â¦Y¾v²u9DZŸ??PÚòp­éØöÉBM÷5h=üþ%-x³*çsï‹ÕÓG5¾{>(pêWP~ÏFÇ‹ø'¹u¥[@Êd¥ ÇË·‹ÎF‹Ç{QãG`zN‹î<Ý¥1Q$ÅOPC™AT$_µÞœúr«¥Ï!–ÞEÍù\öæRš¿Ã³‚F‚Hø±k]µá‘;I—|FÞ!£é9ÈçÔôðÜûddp(’{úæl:¥Û—ÍÙ©ÃmHr¢&4.ç±zG~øæŠZ]º¦§'e_  Õ­eDJÜîç`)õ*?©ãkƾ*Ê=x2’tžÄÐ.U™g1^,Š­§e]•?êø…tèöJÚ6f:£‚¯5,:él•Ò^ÎV¿¼Hâø_b“x?¶-ë êlÖ)ÏVÙ•IÌ>‹Ã­Q.ròèƒD§Ñ¸%¹Yù‘ ­Ð_ ÑøÌÆÄóq3äÞ {þ›ÆßUj«+ÿ°\@~øñi$…‰š‚Ñæ~ÇZ'øéqn^|o­_]BOùùqmÛŽï¿þyŒŸý2Â÷X"ŽL_,ü­rþriðùrÍo°ÏÞöZœw1q±¶!'½ÙNí~µÜÉO›ÉÇN õ !Âã2aWÃQ2¡×vüðüîiãûó?pm1M×ö¤4ëkgŽúßN]^.^.=–cøé!ÍÆëåªé¢•ýýQ'©ׂžnéP“¨²7z=G‚X ãINÏOvÎ}┕£=ùA!ãÅîKvÈE´ú`Æ8Û¿û¡_{}#F†½®Éú(ïŸv5Ô •²ifJ‘%^h~÷·ýOÊ[ý‹ßþîW·×B0ʵ|su4qüc™œƒ?%¸¡ ãÜîÏx·Cíæ®úõ<¤ãwǯ‡”/·Ü|ÞxºßžwŒχÎ'9ž©xíûûÑ.rDZHe»åxX{£v`w"n²k~ZVÑeÄzVß>¦ŸÃÛ¸ ”â½ ïj]ÄØv=Z שLÎa¦'ìÇfÖ}Ö™s]MáÜî°öýÅqŒð‡<¬Zk6‹?ñ¸¶’yKÝD¡Ü{•1ê­ŠÑÑrݽ'›cÞï%æpáåXöxM®ù…´–Ùˆ±ûþÝÇ·¯¨|˜ê®§Mõ‰ÀV‘ü¼ßÙåíöÆg´xZâ[Sà»Ô+nýóÿŠ•e¹<¼¥4æ}|üôîéþði,ùݹ;s¤Ç_ZîÏ9-G„ÅË?ÝîõçÿãWM\ÍÞÈoå:¤_Õ¶™2£¸úW¯_ýó+y†”nž^~fd\ÔxfäÒ>zw[ÝGñÐhÇOAz³r{4<Ê{—æ¾Ð{¦È‘÷út:/™5Ž»¦)‘jÝ’õÂ)t½ºÑ…ÍšVun)϶^Òù«ñ‰^”ä}ÿìýmxÿþó‘ÕŸ˜Æ¨W$@ý?+¬K~ï·zSöe+Õ±þI†Nv”®,[=öÉ‘a {—Bž^i üõ#CÉvßÞþ•m&î³wµ p÷·®ßIõˆnRÃVY„ÂÄÏûŠjªl‰z~GÄ”9ØýËÕ¨ÉïK¢¨)ï]Å@üŸB¤/Ä;ì¨Dß(]žCíÃü‹kRð–ã–û@¾Üͮʵ÷´ævÁI=e²7OûÒò6Éÿ™òÏÜŸZô¿)%‘^[سä4/E.árQy{#ç·òRõMÐÁÆ6ÉÏeÀÆú!zJäxÅúEÅü­Kìe ·ûôÍñÍ7W ÜgÏχûÏcxxÿþéÝ{Nø…”5Ÿò—I§´îýît•ê~î»éd+E*7ŠŸÚMp5ì³»!+R÷•Œ-îzóôîæ_n>¼j¤W%Ý|"[EYèÍïɺýý+W7øç›Ðvéo€T´·ˆ åæžéZBè..1B}ôE!aÛ×xi¢h²ò§ÒbpŒDêe 6„ H¿7¬!õƃA¯‚Ô=é S·Òn¦ÞP»ŽÔ"DAH±¨.Qo¤Bý£–½#ÝÌŒTêµì©çEÚ©×3âeœ"œâ?qF ^j™ÜeävÚ†Pƒü¤îA¾¤AXâK½‘½‡ rB´·ävòÞ âƒ<©9¹¤çi^BݹI 6 ØÝ¤ W¡yOÞ†‘rjÉ}L òK„à_äæ_Çïs„:H:Pˆ³ ù9…üÈ‚†B I:äG ËI—I|µBí7‡øèæ¥Ðäà)}À|ÐE "a„ú‡frÀè€@€¸whû"@ƒl€ÄçÐ8[ÇɤàÖ$P'w"ùy’D†EòŒ@~ žØ BÝ£†3IÝI;$A}ðrä‡Þ´ŠpH~dÏ I¡£;ôO®K" ñ¡á€§I‚Péª\#„ò#Q䨕€ê ´*X•¼ƒü WDèxö±M$ÚÁ“,t‡ÄV;Bæ=&¹– ƒ11äš; zé ÈËA‚t÷ºñ´IÕÃG BŽú†=¹Š$-­ Íu°H}œ„Éqlz=–5ãY^ 0¹7â·Ck dpéš +\˜ƒŠòZ”kH|lH~¬éžTv…ìKí:à!?Ø ˆ@È6OÑ;B݃m‹Qì”‡Í !4¤åI~lƒh‚p ?4d5xOâ#%%Їqb¤° ‚¬rÄãÆÏÛ¡ÂV$ Ìv6‰uöx>ŒÖ¯€zN.:zòQ!éÁ‘nuõ•ç0Xiâ#IàŒJoòƒÍÄ: >6™JÇ]™9™]~¨H*AùŸ˜}B¨ƒ°R ï¹R»uñÒƒ®eê4LÒ# _ˆv ç ² ¨Ö1„éÁhn¤GTŒ…¬_ÃbBv†-Òwéµ±: % @|i =6uqÜÒc;±õ• =×-GG°‚Õ˾™ñÈXŽ ðò#“„ŒH/ ‡ÍµG¬#Oa\×|Þ¤„ eèøèæyÛº$°#è`ÚH£´Câ˽;EîEâó|wl/0Bò+UL‡ëõ E€îYý'u6ªŒ5!>t¦DñÏžR¶?+BÝÃêh•Ä—ÑZ½¿I$»’—Ÿì©ÉÚ•5Arèz‚Eb ±uG×Å2JpGˆ˜ÅDRKpŸ‰*$?è.I6q¿¤–ÄVÉ´&HÍ‹bÊÒOZÔH…”ètûŸàÞ`([ãЇ€ÆšÙhÀ› <±*(ÙsrsÈ †2 »“pÄ1)¤±?2Ę&ŽV$Ý[d•7v]î®A*T“ìNì=Î4>¶;q›©½PWÂcCÙº$2äÃÓºwÏ›‡ÖýU†ø`'iµ…޶;.¸®¼âÓ@åàÒÅÙ ¤£Wâ&F›v¸¶~Ä;IaëÆ"Îõ†¦WW®l­#]ÝÇD=Gpé‘6J»kD >¸ô`Øáy:P9¶Ü¨Ãâx „Ç"gÎHƒ¦Ó\V¬ ŸSžŒC%xï_¦Zzÿ=$DäJåÎ]µ’u„ø,ÃJ†Ôãžáu}¥Å‘\tꦿdžŒP©+…U¯ìØi‡!ßB²ƒÕc/IZnÃ2H£»28lÖ·\!½(‹PºŒô‚CKpøªJâãÐ’R +ħ’BKX™Ë*ç È,;^%Zâ;ä[âQ{¤pl™ë(âb—+R9ºÌµv7]sèÑåX«ðA]ÎP­B„ÔŸDyTáåŒ#ÂDa&¤‡•Û²Q¥EƑغîYqlUFQøî "„as}5 çè2÷Â:qtIˆtÓè*#sÜ Â ˆjPºtZàˆ‡§XƉœÑ%"¾Ø‘ÂÑeå+F°T .‹ÓEÊàÃQ4 „–bèHÃD®ˆBñ°“Q‘C$Ä5j‘S ²õ°9G,²¬d1"çØ¸å"W$]òñ AªD—ѳ!¨~7 .I謶ùD .·,‘D@Î!ÑeÝK«83]%áåˆ/ åààûüÒ0Ä´õ°&°¥Ñl^â;lLqp`¥e’lP 5qÒÈ.*]“ÂFâãà²pâãà2†!>ô86±A)t´7ºÌ.(1' GBDE7’ á@p ÿ’…C£ãü–¼9ÌÁIü@œ$J°/ZØfYÒ '¸³4iòƒÑÜzrœäOßÛ‰Y¬PëZp¤î²•£K±ƒø é!tÙ á@tY(Ì–1@|¡roˆÆ7ʲ# qp‰ ©‹Ž–O†äÞ-‹ ";Å»  +ßÃö% ãàð’ÒÎhVƒÄ—ßä*0*tðÈŒ#ãàø’Œ—v @P\—2Ž/·$!(!l½ÉL5Α/]߃ H88¼Œ›ÄMÁç ᥧŒ4 /áé¥7$@/1å2N ‡— º3dŠœ#p¸»I°BHæð-shtp„I h-R Ž'¤q<™b×(Ç“H‹E±‘bx¶‘¡ï>”¼ìW¤¡oFÈ@ä·I˜b ªÄž˜( žâ ªlncp`é6Ù5 È18°t±ë$Ž·q`ISÓÈËK¨)ýƒ¸ ¶©ï$$ˆ+Ešì; ÉW"•’µ‡$ƒK )Xž~8 ӵɯG@–±qt—% 8H‘OASxXÈ2`s\OVv"°"¦ Š(ɼµ}2›¿õD) ǼÕU$ "¤pd¹¥<8™7<éÉT@šÁV=Ô¾Œ"Mù ;«€4CBËa#$ˆdšÓ#Íɾ%5, ÈÛÍ]‘h°Y'“èš  ‘5óâ«r ¶9ÝÁ䳨u¹Fjb…ªp¨[œÑ’“qÂÁ.‡fŠ$²É'ó–%†!„;FÉE‘* Ýœn¸.œ”x‡•Ô¶ô5ƒtƒsZ-wA°8ÉÇÈ|#ÙHœû…>™H6`r‹ÊrM•7éñ]‘løn:ÙâŒßH5`Ôq‰¨Q&áÕ&KSF+§¸>¢L®¤U±šS$-3E€b_l ´Ì!JžÃQ¬:’^ÞÑ È6ñ³TΫp @ÙhBÉU60‘ 0@âól¯7øFFš¤¶Ô/÷®Ivbw1”ao¬¤+’%»uCµ‘lÀÊãá0[Ĉ3ŸPRDáëÒX¡š»"¤îYzf‘~xƒð-H6y&‘~ð†ßƒÄq^€¼g-.Ý0 ûØØ¸õg{‘Ï5…øØ¥"æŽÊfÑÔ& C€I–½—þVñÅN!ý€O²1tÉb„ÆÃ©ѽÔ|—rÄ™ é¡Ù\û "v²Ø?Ná#rßm¤¨z„øn8šì¤‡[Ñ ÚäΑ‘ÃV’ØfO#žÅTAîHáH3Q„#cBò'Ã*V)B~Q!…snŽÿ’´ƒ…Û$å팈ä#Èæ;Û&‘æ‚d‰4s<˜#ÍVºò#ûàM̱#‘}ð&f‹bù“ãÍ/Î5Äâ ûpM#Mö0Û0wÈ>j<€–†#/'7iDl7ž—Æ ò´ï¶sPÛÉ¢ÇÈ>6¶Ty 0 &¡f¥µX;Ò$ÛÉÐïäh‹OlöhÉ{^‡‰úìȶŽc-H³ÂËçZú‰˜H‰¬à—¬3Bë) Ëcn~a‘…U«ágÖDÎ,ʙǓuF”¶’pæØñ¬#<³~ì£k8§†/e,ç±½]çm«þíö.ÃäÖ¸KýHHó]ÞQ°‰_px±í\ê¿°³¹óêß<þmXšÇ•àTÈlY–·ò’ÿŠ%ˆbñQ¾•$€âPŽ[õý:¢XINa-¬Žh–<ž\Y‚X–é{G«ðnßÊêˆbU~f²²:¢YÅøÅh–¤›+KÍâN±Q¬&»\ «#šÅK…E)§oK€>ËJɲR²¬¨Ãø‰hVÒó8ËRó8ÅòúvÞÞËóáBÅØÛ±ùj9õ‚’¶ÝÑ,#ñ‰(¶èôø;¢YYGQ,Dº­ŽhVД`ÿ=ª˜mšSu2Å¢Uä´œ:¢XÕøœ‰(VÛ¬Ì;¢Y¶ïí²ïM+R3Z„çA%©ѬÀ§jV– š%›\+KÅrN{·‰h–$«u6ÍŠÆŸD³²ñàѬb4b ŠåL¶6Í :#ˆfeïLD±lt;ËŠÁ²¢½£÷f¢YEGÝѬjf{ Š%G‚VVG+ÊY¬…ÕÅJ&&ˆféŒüéœd5°#šUµˆb္֭Ž(VÙŒˆfy9MIJ’·¬dÇX‚±¨±,³ IJò+_°¢ÕùŽhÎi)–Ó’%5«ËEκ­,A4«ê¼|"ŠU7c¢YÎÎOG4Ëë,l"šìëˆfE㯢X8}£ÛêˆfU deቧÚgšˆfñÅD³šÑ›(ì”ZѬhâÁhV²wìˆbQJ¯v'òãÜ•ÔÍj&Rˆb¥ÍH~ šåMD2ÍJ¬tÉ*EïøOD±ª3vp šUÌÚˆf5mw;°râf­ü@4+Ï?Åò›Þó™ˆb§gºšÃoå*’ š•ùðÇÊD±ðÚ¬Ò¿(^^WˆeµjYí¢->¾¡X‚(V‰Æg D±`t[Ѭjâ‘(ÞdR8••ô²HvM$çM|7Í êêÇo&ƒˆf“éIJtœ;ÍJ&»ˆfcý¢Y6"KW"²‚±YѬ¸šÄ€â$ó„`"š•ùlÝÊD³ªY©Q,<±QÚ>Í*Æ; D³š±‘Q¬­L;¢YüFóJb@qj±úÐÅjg-¬ŽhV1YÈ@4«]´Õ.Ú•¤æg še-È@,Kï‚æ+» ™²/-ùXV±¤b9M?Ûœˆeé8d Šåè€æ$í¿: 9ÙxÂ(V°Öa š}È€…o)èÎwD±R²íÈ«\°ì줤ŸuOD³ª™g4§™Œt Š•ùtØÊêˆeiO>Í fGj š•Œ=ˆfã/¢XÅé½øhŽõ<Ñ,ëS¢YòòðÊIJô^ü@4«Zïˆf5“e D±ª31Ô@,KïÃD³‚~š?ÍJú ÈD,ˬ؎(V‹f¿s šU.Xå «™È{ –U-Éô¯ êý¨hV4k šUÍ.Å@Ë9³2¢XòòÎÊêˆbá¶n«#šežwu@s²>2Í2O['¢X)šÈ{ š•Lô3ÍÊ&òˆbec); 8ÅëH¤šc­Ö@,«$˲Ï0€UgYÕŽ¯Z[3ËÒqÁ@4«™¨s ŠÕœy:8•UiDuÇh–7ëb š•LL6Í2«µŠãìÓ¿(–ÆšD±‚µ“Ñ,od:Íj&Έei½ˆbñ‰QÅêˆb¥dfq ŠUšyö<ŪÉö¾#+‹Ï㬤XŽŽr¢YÙD#ѬªÏbMD³š‰Y¢XÎ>ˆbõ×NVG4«š³Ñ,k)¢X1Ú¶:bYí‚eí)ÞøÒ;éѬdâ¤hV6žl Š•7óm –•¢e%;CÅ>mˆeéýÜh–7ÏL¢XxkM±#šÕÌŽÔ@‹býL~ šÕìh"š•u>Å¢DMÅ»Ñ,¯ò»hNÕú<ËR™ÔD+½MD³¢>Y1ÍÊæ%hVÑÑÔD4«ñËz+KÅŠfv"šåõžõD,+WËÊv®ñæ‡cG4«è§+±,ÛV¹ÒVÕYåD4«íÍÛÞŽP¾Ù²’:¢YÁö½#–¥l×D4ËìNIJb´¬xÑ/ó`"šU/ÆX/ǘÚ7€â 7Ô}ïˆbáíWÍêˆf»;¢Y•_º]Y‚XVµ$«¥xgK“:¢YÑ®×v±ðq׬U«#–Õ.X&6 8i¥ž«ND³Š™Ã(–sÚÿLD³ÌÓ‚‰hVÑQÐD4«éSQ,¿é(h"ÿV:fœˆf%cQ¢YYGþÑ,ë[¢YMïÎOD±ä+*+«#šÕô>øD+mÆÇD³œÞCˆf£ÑѬlg»#Š%ß|YYQ,ŠŒ¼¾cG4Ëë\i"šUŒÇˆf5«9—ÙFÀù(§5§#š•­¼:¢YZX6–™'íÇbYZ¢YæíЉ(–3§Æ&¢XÞd\Ñ,³Ë5ÅÂw~ÔˆbEkQ¢XÉœ/žˆbå ³–‰X–é}¾ŒòðŠCQ²ö豬”-Ëœ xN½6ÅrIgQ,ßô^ÿD !WÒˆfýìx"Š%_¶]YѬ¬eÚÅI›±!Ñ,óÀrtŒ4Å‹κçÑ,sri"šÕŒWˆbá3z„Q,|^W˽#šUõIÉ(VsÆŽ D³ôi×hN±÷ëˆf5}¦g"+ _NV{ø±,m·¢YMï LD±œy»o"šåF D³¢~¶0ÍÊ&ŠˆfýÔw"–UƒeÕ‹¶š~®3ÅòÑhê@4Ëœ,›ˆb§wd'¢YIïšMD±âf_­ïˆfù½ž 4'™˜r Š•’ëŽhV61ø@+oVSóÅNaÎdRÑ,o5µ#š•/Ü1 >Í*&Šˆbou°#šô~òD4Ëœ)˜ˆeé}XV‹–Õ¬$J1o šeÎLIJl¿Úe¿ªÙ3Ÿˆe¥`YÉÞ±&{Çzñl>ÄfNVMD³Ì9 ‰h–y;q"++Iq‰…5Íò&¾ˆfYÏ1ÅêߟYXÑ,ë³¢YæÙÇDËÛˆf5#û(VðúüùD4ËD±(‚Ò–p Š•£±8Q,¼Y¯HhN5;ŸQ¬MD?Ͳ9ÿ@4«ØÙéˆbÉçºVVGV>¥©ÎêOD³ªik Šå¢~¢>ÅòÖ¦D³ª‰7¢XøúžîWG4«šÒ(Vt¶_ñâ­,ù¦·,ûã ”~1ÅJÅì2 D±ªµ–Ѭh<Â@«9;ÛYYüzňf%³û1ÍÊf_c Šå‹>-8Å æK!Q¬Ìêˆb]DUåJTLGBQ¬ìì;bY:zˆf%}Ni"šUN D±ª7Öd š­TëÅ[x\°.ßæO§ê}Ùh–µ9Ѭh|ã@4+ÙÙîˆfÔ•ƒs:+ˆfé÷7 8ÎFzQ,ïŒÏˆf%ýuŒ‰(V°6b š•ŒµˆfUc»¢XäŸuÜ5ͪfßo šÕŒ/ˆb%ó†ÚD4+šõ3Ͳ™×@4«˜¬h–Ý#ˆbI%Š•ÕÅ*æø‰X–Žƒ®|i‡0›D±ª}ò4ÍŠfOe še¾U0Ë2²¯§NÓ™Ä@«Ùç-Ѭhöo¢YÙìdeá´Þ-ˆb§OFND±âfž® D³œÙňb]<nWž·lc¯(VÉÆ¦D±è_u¶4ͪf_o +n›ùº×D4+ëÿ‰X–mëbž¿Á­ò³‰(–7{ÆQ¬èôNÈD4Ëk6Í2§a&¢X9(¯0ËòÙ²ü•¶Z´¬f%‘‹•W¾8kÉßןÈf™÷'¢XRDaeuD³’ÞUˆf™'ÁYY(a£Þ.›ˆb9ófËD4KËiŠã½á@4ËDQ,ûÕ¾‰hVÔë"Š͉ú‰(žhVG«˜÷´&¢X5ÙÞwD±šù‚ÈD4ËJ¾]J¾UqLdeõj" k šåôY‘‰h–ß’·½ò½¬…&… –y`"šU/Úª—m9¯w%&bY%XV±w”‚¦Š/ôߢP'À&¢X~S»çЧ½ÔD4Ë|õj"šeîvq/³+;ͪú=€‰hVÓþ|"Š̳ð‰hV´Ò ß âO¨ozþ:bYÉ[V²ó/ÖD¼²&Òf×DG,+'ËÊV^ÉÏ3Å2j|¡Ã½2æJ 6Îå’›ae»ƒÅŠ÷ZžQ¬bžMD³Ì «xåËß(Zg:¢XuÓ'V'bY¥ZV±c¼ønï@VVØÌ—×&¢YÑøÕ(–Û,«#šåŒ?ˆf™‰hVQÏú 8!éÝä‰(V4g…'¢YÕDGQ¬lεND±ì“©‰XVŽ–•íí7æ&¢XÍd°YYøî¾z«e"šõ“ƒ‰h–9e>ͪÆD±¼ÕˆhV1ó8Å æ´ðD+šÓ¡Q¬ÔŒÅˆbeóʼn‰(Vñ–ÕͲó@4«˜p šÕôwp&¢X€=ÆŽhV»`µ žÛiï9Í2_¸™ˆfE½7ÍÊú‹Q,gNæMD³Š±ãѬj"ë(–Ïf¥ D±BÐqg'êwÔ 9YÀ€æ˜Ã‰(V2{ýQ¬¼™õ:ÍòÆD³ÌW&²°¸ „ùʼo¼Mì8¨• PsT‚ï˾TƒhJòGÑ3›ŽÜËйÌ_èñç†s1èiR z«R·Ç¡iTHCü†÷µ¸TˆÃÛVUò˜…_PäVî4"o³1ЖK…̪Ĩ†Ã¥B|èµíQ‘–ËÉ-Hæ ÏÔFaà-˃¿á÷²Ûz…fTfŒ+€ªLPÕOê#…-ÉRõ(õ"‰üIÇÍ ò@• ¥”1>ˆY8#H¬¸ å(qéQç4$K Ü‹Šãl1(Òk\GÄ#>âÚ³ã§|¨¶ÖQsŸƒâбg$Èr<¼É\»9$.4¿"9ÌzÓrSŒãbZ ÂѸn òÑK€¿ A>tˆê2Q$ÉÉ‚dù9ªKsQÈ{ç à9öj°³Úý‚ô‚÷(XU¡ú…êCê÷æW„¿­ŽÒõÒp¯ ¿"Ržë–ôŠíRÕ}E¤ª;›ã21£»BŠÍLÛ(¶Þ ©/H/¤Î/€³¢"è "EÐÏõºGñò‘âå©m7KÉññ³×O9KѧY'|Azp.d¤ê{¯H¯ïíGáúQ˜{A¤07êÞI±óQQ{A¤¢6×2ä²E³öŠÈÛ`(1+e¤¥†õH ë€/•KeØñÓŠp5j.û'5g{éée¤û°ûYzEzh—ìe™¥ró ÔYaÏ Ò)-H¯¹œPv@ÕJ^^+•R¥ë¨r¼"Rå³·IMã^xAFubÙT¹?×>½Îpn¡×]‚WDÞ®Â{ëRÌyTö]^Ù·–Ò+Pöм+"y¹ˆð¶ÖÒU×Òåê"0©»}³–_}¿YŠ×ž^»¥¥Æñ¨9»"Rs6ϊƳ\ìéåb T)Ú+½.H¯ôšÈÇJ±Ë^¡uä $i–µUÏH¯­Êi¥ºi¯‰º ½&*Š·J±Õ^Ýô ôâ¦%ç®Ù£é‚ô"¤\åäæ\†RUÑÌéE3SU†G±Ë‘b—)–^\^¤Ògñ³ºä‚ôò’rŽl) yú'TàÙŠfìÕWD^ˆÇǃ:2Ê0ž‘^†1FQêY>ñ Œú‰>õbk£îáŠÔ^`»JmÓQ°pE¤`!— k©Áé¥Kr²äg‰Àáow öÛZÚïü»Wöƒ‚ªÈ· £"_U6g1½éÅôhz)27ªà‘QÏçqU¯^· R½.I¥ÎQrnþ”'…¨™\z¡8ù2êŠHé8”à”&G…·‰üx¥(Šê.*EápxM(é ¹J¥¬çÇçÃý¹®3ŸþÄfñŽ"¬ž’/F³ï>¼}÷p|3þç[̉=øNõÂÛVd”}B±Ä(E­~}|ÿÝ-NçyÚÚîéÝí] ´oKm—~~{ù žhÏÏôO 68àÝ[ðhŠcØýÙû§ÇµËßo—¿ÿ¼_RÓîøáŸ¤ ØfÉh媮=ŸÁjðz·¶ºû¸v÷ñöŽw×KÛ½YÛQžNýÎÍïïß?©|Ð=x+wj±ìoGÛßßâM2Aºá§Þ+w§µ[éK¦€Ò—‹”ÜaŽ»ƒ–ôФù• #»Ýãó7C²i·Œÿãdè¡í¹ÙåW•Öî¸0'W\ûb÷ú¾[¬xá²É­ž…#yz>>.æ–Ö…÷šùaimWE‚‚ÊŠçiÆ®e lšQ–1zL3ß™TDMçãCÊi÷øáòæ£YÜŽ‚~’ܶШ§ß¬ór0MÅýé±ÿª…' c*¢nÑ4/ü@W¿}AÉ­.ñ™:ôØÅ²Ñ´~£/ˆüÒTš}ÿø¼¿½+\a7ï~ÓdzmFÿmmêøþ©Ñšuew¼Eí`—òîùÄ:‚ؘlÌo_½þë/hÖŸ”ßÓø£ÛÔ\Nëœîû‚ÄŠø/ ;Ô¡ÔC1Hñ®’Û@AÿÓîtÿÈSãhU}WæÝ‹I‹òø½(¿çóÉïžiñâ‹ädËæ([VS@rƒ‚­xm$ÍÍÐlhÒu+–¼{|z>Ò e $‚ǯû b»˜6àuãEÍ~+ÓQ+ÙéöÖj“%"Šc‰$¨Å»ÕjüÈá“øŽ§!a¿{:ôî­zÛ›zšóÉËu ë‹BΰSó|z>ôu*/$ ±!Lòi¸WÙ¨G"{ ½‡òà É›£1Þõ_$ÍÓqÅ›U·&Ë«‘Ò*Á£,ЇC·í¤Â¿_)OCVEù篌#;‹ãðí©Ãùø úËi#£~(§8K˜L«k8®½mEëÚñ$ã#q^êZfã>Ti´.Ôíid¤"_­¦_„–vßOkimþ»ñ9«šD(¯Eø¸®ò'ã î§ïMÔH.´³?Îð|²|¼öjº_/·øá¸ªÛ{Öοùœâè5hÁf·¯¸°+ûôÍñ 9ÆÄEýîoûŸä?aÑo/‘ÿHRá~Ö›6ñ¶®(ýíM?t‡K¶Kœý6…B‡>¡æ—¢ECzïF6AiÅŽ0"ɽ·ÈAMÂó‘VÛ5¹òïÔ#é<õ½ýHþ¡kÁkɱ"*‚øï(ÃF±Ø•`pŽeÖÊåP“2…‰h¯ÇŸž‹0×lºR:Ã1mžÑìÞ/´Ç•%ýÚÞWV-èU„jã[¼ %Qâ4ioòÝ¥S¡Á° Ô&¢ÆL+óp]£ñbÄThŽC%ö½­g¥v»ÏNoÞ½ ¾¨sÝæ”^„”èFBl «]6Ã܉:F| ®RÇáÐÖ¾[tðˆé ÑìËñ &þ½ZåïŸØ+`“dwø¸xeߌ¦ÊÔ*¹~Õzý/'ãWÙM’»x>t»‰#þ‘]´2or¯²ãÔWÌéùýÓñíµ¥‚Óm9N¹’eÇ®'Fl£–D4FvÕ¥ã‹áÃYùG!2D'Þ™ìêð¬–+Y›zï6#ÿ÷ßh!Ýa§ÁûÖ Ö®L#“ÔhƒIK¢¶ì÷kNÚufë²¾™0.^üPÛ§Co$ŒûðåíþÜ«~õU­‡¬endstream endobj 357 0 obj << /Filter /FlateDecode /Length 9723 >> stream xœ­}]\¹‘å»~Ã>ÔÃ,6kוsI¿ŒÌxa˜n ö¡mÕRIN»J%W•Z­?¾Ï'>î%3³äî•Ñ@++’ÉËà‰‡Læß.–}¸XðŸýûêîÅ?Eíâíã‹åâí‹¿½òî…ýóêîâß^r‰NlÙ÷¥‡‹—o^èGÃEhe¿”‹šë¾§|ñòîÅ7»¯/—ý’S KßÝ\^áÆåÚîÛáëǧÃõ»Ë«”"²í~7•üt˾·šç ~‚¤ý²´Ýo§wîß uÿy|ÎÃkHÙý‡}&wjmwûúrûCj&®9í~wxuÑŸBsUÓo½)i÷ÿw,v«ÅJ,%Ö?¾üßÕs¾ÙÝ®c6Ãn„·û;¼ÅO>Š+òÊrßÍx;ý5MõÓ±{IÍ™vw÷:ò-—i‚çP¶d «¿¾lêÙ¬*g¿»˜¢*ÒØ:¼w8~ø•öå1îSo4rÄ´` Û?#¦*>46úBÇž¸ÐTï—²Dñçñ•“žOV_ÉäsH ;wTÍYè—/5YüÍ“9e8â<9Ìõhµq>tm\’Ó34S¸$‡Q½·^c%~ðýÛ‡ëlFp”AôcÎ8§bã'æw¢Œp¤ÊØVfÊOií¯ùbšæ 3D03ÖL÷ñéíÍv焘ß»ûìOìÑ ø½½þ¨5i··Öºn¥‹ÝˆÖò2âØûœ4„k ÜU·Ô‚Ž7S¦Çë)¹¸b÷Ö›”v·†ú{³(uôìÇí3úL[ð÷t®BûÚ”xœ0 B¤ *,<=$0±îþj :äïæZòihÓ&´ieO[¢3üF'·— ž±ºH‰¼O8ö¾$ž)ÏyíkŠ ;ÐPPA…ýªÎ%#1sy”6³cÐ9$ïkÏ)xadˆ±cíÇÝOÿõl§"'ÀœRÌš+-ûÊb™øÖÊ|ÒÊ`^Íc}¦#yO9/mêg)Ûj:éÒŒ©¾ã¾Nõq_9=ÕRvÀ¬Z$3~9!¼¢ ˆ¾°±}vê™_L½[³É žNs²tðþÀµ¬^<½—‘{<\BÛªËÅ|6ˆÿ·IGºZ‘[#ø^ç­)'ìI—„õzH'È~¸>‹ël]ìbqG:ˆ)S¾CV8®³W#ÈŸBALˆþ;Pà“,oåˆVëëBƒ´gZ2%_N[xìk™ F Ô_¥9ÈsàÏCu߈Æ Èû«À¿[SÊc'DôCN…±r½»»~ø« 8 È>ò^NÐ@TxùäåÃóþõfhÀõÄbŸ|‚ÒI8^ :[iZ *¤"\Ê(M,Y×Õuþúœ°RË9aÅ|÷HX‘ÞR=Jþ¦ñaJmÁÕÇã"Ó4³”Q6áèÛ§·ÜOh- DQqZyûIô"ö$:œ¼=ÌaÙ>ÔgJýtÍþR¸W/Oàâùó\pòú«@]z”…\0¤s8;Þ;úALNØN z$Ý.9euI˜å˜‘?<êwç{ÿdrŽy¼Gw-{ÛvÈgÛ §Ëaõtöǘ‘\pêÔ÷SŽí‚c]<Ü\üŸ‹w/hÏݨùâ#»%Ó›‹¿°#ÿû‹P[ÇÇÈ ìîó»¼OeµÜ¾øúL©Õ²pÒ´TŒ¥Ã¿·R«e,U©íCK¹e(…-‡}ŒC©Õ2–ª8S1•rËPê¸GC‡RŸ[Öq¯îqºkÈÿ+Gº€”ÆeUƒzâœgCè”Uç'ã/”e'ÙþJ{j»8½ñÞ:¯¡ô OL#Þ,„-fî¨LÏ™RTÁVËTŠRØ·©”Y¦R5Ô}©c)³Œ¥8»â•6Öå–©”µu(5´þG :$¦NÜ/°9=D#Áu¹à¥”›.ú]Öˆµ_ØåvW=lv¦tȧ¶¸ü ¼?ׯØâ¾„r+4RsŒ—‡»›‹o^sBÖ‘´µÝ§Ç?Ê4ãWøh ^¿¼>E¢Ó˜óûwßÞ<\Ü¿¹xňú¸¶HÖû:çêÔ±P¹‘s¼æ+þ› †ÁÚxeEìÛ0ùû#?çõ9$ØW @ƒG¢$ªËßq¤µÔgi-õYGòRŸw¤µÔàHÿüUä¸ûË{yýEòä/²¿(þ¢ú‹æ/º¾HËâ/‚¿ˆþ"ù òÙ_QýEó^sðšƒ×¼æà5¯9xÍÁk^sðšƒ×½æè5G¯9zÍÑkŽ^sôš£×½æè5'¯9yÍÉkN^sòš“ל¼æä5'¯9yÍä5“×L^3yÍä5“×L^3yÍä5“ל½æì5g¯9{ÍÙkÎ^söš³×œ½æì5¯¹xÍÅk.^sñš‹×\¼æâ5¯¹xÍÕk®^sõš«×\¥æ/ ýG2.výë2ÉÝ–u)žXFÂð Ýðq©>.ÕÇ¥ú¸T—æãÒ|\šKóqi>âÍkn^sóš›×ܼæî5;‚$Gä’A’#HrIŽ É$9‚#9‚#9‚#9‚#9‚#9‚#9‚#9‚#9‚#9‚#9‚#9‚#9‚#9‚#9‚#9‚#9‚#9‚#9‚#9‚#9‚#9‚#9‚#9‚#9‚#9‚#9‚#9‚#9‚#9‚"ˆÇä1ú»:¯žýÿW æ}5MÈi¸“ Ü=+ÙÍQƒ,[ʾb…ÆvX'(Œ'léû"eøÓŠP Z«ÇJa){Šn)¨‡é:/±ô}eæô.jy:Óš¢erPZÝ¥lÁ,ÌlµL᯵bmn%iî_Ô2œG$̇JÅ‚)XøßìvFŽmÄw—1T MÛË–,3!*Š;—1ÜH†:±ð[è@nû¤†¼Gc¹ÑU 소ô †œ1‡ ߺÒѨ~ƒ£dMËT±f¥\qiUf‡F‹–imßðh&ÁAËp'¥Kœr‘–‘SXÚ¾Çɳ“¤Sgµˆ%c;äô¨§ó(jžÃ‚¯,ÑÚ #pÂ)ï®e0c£‰lÍgKˆx&,¶fØý1c°ØšaÄЊ¥Š—$Pé&ÿ&N8I-ötæøµª…{ˆ2œÀ-Ã#ΞÈN´LS?a.„ïĘ…×eB&¬LÇ3ØÂî¡ex¤Xò¢ ,[:ž‘ ŠÄE`‚ œ¨Vµ$¸(—=éß$5Ók0,ÒàÂÝUCÁ<2 X¬½X]òäju`t+Ž–ÉŸìz0&456«9,$K˜-•y‰Z¢8_¶hÊ™º,<±t,4¶TÑ0‘ØÉ Z¦Š#$œx+Z¦܇-UÁ/â¨4û'öÕû"Î=XH±/ÊXšb_d†'C‰ïš-Ãþͱ#É¡q)ÃáX _ÊìcK[“"¶TÁ,ŽlŠ}Üs$hŠ}5b® ƒ’ÝRÄ’û"a!ãSŒ ‚}lá.³Cƒ $$°%+ôE¨€âРPBìøÊ•B[¢ ì¦ÍÊT,[¶t…>¶4PâÑècú°lN×7U»bƒU”˜C8[¯†¢­áÀ -Î<Ò)vv3$}#´68S÷$†É¬†Š°¡öÁìËìëI C¾Ì½ÇSrX ú2{?†7Ë7Ù’% ¡­»Êq1Éž–dЗ¨‡C‚B_†€2i1èË< Q,É /· Ë)§jÐKF›y(ô厭XÈ ¯À},ÕÚ\S£fäZ†Ç;#xiC€sæ0­ÐW¸ep¶Ì¥ÐWØY¥…ìP }…jr©}…Ý š94(ô:É<°Þª[°3‡…¾Â¥ ,蟖©ˆOl C¾ÂYÅÒ ù –;ÎCP­L„Éùê‚`Ɇ¦ÀWþ<8±SKàˆq€%+òÕ¤hR–fí­ì˜ÏÂŽÝx);µ¹Ž"–®ê²”qÖ×$PxÁÊ@UîbVሠàW¹À–Â1GÁ¯ò’ƒ —dK«kxNê~m!-CÆüØR$èsNeà×|_c~±±“ˆ%ócKLj°Å˜_lìˆp¤ŽŠ~,¥c~ÌsPŠ1¿æ']¯ÆübÃS‚Ř_«[(µx›ÝÒŒù±%Ë /Ì­Íì` ¥ó œ¾¡è×À-ðônÌ-Ix¼EÁ0ãºóc OW‚Ř[ªpŒºócK“ѨÁ˜ŸXxöÙbÌ/‚AÒ(b‰þV£R¿J‰S£Q?¶Á•ú‰¡â3)x‹µíl1ê× (59õëA…#¯Q¿~R` koÇ#ÅbÔ¯ƒžðßÙ©_A‰ìܯóàK5;÷ëÒÖâįƒ¢?ʼn_g—Ââ¨Å‰ßj©Nü:X³:ñ%Fø«Õ‰_ŠâS͉_ÇžÞœøu< ;Š~QT&®;ñë¼Ðà´H‘ý:ÜïNüÀ­NØ/FüÒ†T`)Úff’<ñRƈ[Š8[ FüØRŵZ0â—ì*eŒøÉ¾ç³ÌŒø¥…ûEÆý˜×ˆ¤Âã~<»ŒD0õcN²€eБA[ ê'-ÎFýØBh[Œú±E`Œ–bÔOxK‹Q?å$hN1ê§€ Õ˜_‡>T£~„;^ú¥ªË‰–fÔƒ&Ÿ Æü8üzCPŠ“iéFý$²D4¦+õƒô õcK‚Þƒ/i(ôUHøÛ˜;»Vƒ¥ëŸì¹ü»º6•A*ëȬ¨/ëc¼Ã‡£Q¾¯í` ¶e\éxmJŸ0·IéC Z›”¾¨j× ôEaQ£ÒÇ¡EÔÀMéKQ0yPúØhVú4Ïœ•¾YæcИT¾,]U>,àMƒÊWèXå+ª$ *_KÇ*_“µ7©|îF•Oƒÿ¨òHÏ(ò) "ߢ™ã òâM=M_¬³ÆG¦[m}Ъñe傃Ƨ1wÕøðU FôHôÑ4>1 ö®ŸX¤ý¦ñ`eE>±H[6•Ú¨j›ÊÇT´mPù¸/¥M*T§<©|ÀŒIäËšk"_>ùŠJC›ÈNÔÊ(ò!ÀÚ6‘o‹“ȇoJLÖ-MÒº4i|Àî4i|8|&ó'/%•ª6/‘*ƒ›Æ—4g4>Äæ:i|Håë¤ña;&ÏôõAãË®è­$£ƒÆ‡o™…Iããaž%>^_ zƒÄÏ£IâS‚:I|Qõ²Uã‹]ÕÛAãc„ɳƷHþ=j|‹f›ƗmÔøÄ{F‰§ìAš6‰—¤¤QáK`aqTøpJülSøô<¾ÔUæß$¾dÊú&ñ%e:£Äõá›ÂM½Û>h@“À‡.ôQà“Î úÞoúeEUß#Ë€6}OOô úÊÂ6}à+uÐ÷ð’ŒMßÃ[8´ê{xki“ÄǘÒ$ñ™’8H|Iž9J|$8J|H|¤{rƒÄgjÉ ñ!\¦Iâ³|lø É•Qâƒ$ó(ñÁÒ&‰/ó´BEØ$>ˆ" ®ä6ˆü›Ä—ÁŸh”ø„dN »5ÈÅ ð!K “‡®çIá#œ·Ÿ>åYâ9j“ÄçŸ>=&;(|’iø Ò,ñ©¸)|¤Zàð¶QácT-nUøÀ»à´¦ðb¥Iák‡4(|Ø9>$ݹMàk¼ÒD|\¾]xÒ÷£yÒ÷p¼2Nú^WÙô½®»z›¼'âϨîõصÞU݃úqgS÷:îpJ£º‡,{›º×å £º×VÒ¨îu¸AÕ=X¤ÌªîõÌâê^ Ä=ÆeÒ)pq/!¥’ysq-]Àq÷D¥™Ä½b#2‹{i1XÅ=Ñ[Tî3ʇ/ŠO¯â^bÊ/z„‹{ LB$+÷Ä‚ÌÙÅ=ÎÈ­5.îÉé9‘ØLÜf¾Š{ÂÑ!¹¸§dzÐööü¤ÓöØPöeÐöT_¡AÛKÔuö˜ëžÄªî%œN5ÍÕ=¶dUÓ\ÝcK×qqu/a‡®´AÝú p\Õ=æ¦Q%MW÷Ø¢’ª•AÝF+³ë곯$¦‹{l Õ0]Üų²‰{°À÷7qO#çQÜ“íÁ<Š{ùwÅ='6q/6¡)›¶'·ŒÚN%Æ0j{ìû’ÀmÚ.%1lÕö’bØ&퓤AÙöZFe/AOŠƒ²—4Y”=œY—.¹²þ&iü9 I{B>ê(í%$}Ðö@#›¶ž‡À¼i{© wÄ=|³ÚH[¥=NË6ii ÉŽÊ‘®ÑMÙ%ꓲz#2ÙªìaKR,«²—™ †QÙË<5H²6e1½Ü”=DlQÉVeO"v•=lŠÀµ*{£K•½l¹ï¦ì!N·IÙ“ˆ˜Ge±rSöÊ"átö 3%ðýMØ+ =iö°{J° {…½[d;öJ,ª<®Ê6K”=Ù;L£²WŠj嫲‡xhÙ”=‰}PöjÐí÷MÙ«ˆ®}Pö£8}³){°ä<*{ÀÑF£²W5¿”½Ú$ã”=콩ÖçÊöÕD\[•=ª£²×’xø ìaQ‹r¶*{-É&Á íaY‹XµJ{=g©£´‡¥Ò í}ý%G>OsŸ?G}®#ø2Ÿ?>ó=”NŸùJ §ÀÏ|o¥ÆSàÇmJ ­ÿ±Çõ‘…‘Ä>û•‚F›mý2Aig¾9ã©‘!UvØŸ€¬AmíqFX¾#ð‹w—HYb°m¿»Ô+ Ëîæâ¼µPÛ})`ý®ÈH&Hšœ‡£ ½[ú·Š% h­qbÑZ‡8mñZœHÔ†0‘§a¢, ,k˜X8­Æ‚Û¾³!ôr h’„€-L  y ÈÁÛ&(kÍk˜Xƒq À!Äî-Lì Õ1LÀaû†„³e=Oa"(QĚℜ?ÛÀðëßpªÃ¼ óæÁΧ_’F¤’,)5=3Ü1`–í+–”ÿˆ+AZ¸ˆ$’¥¤~ëu&v]„\þßä¶öÓË+$ÔL4¦«zý^ŒzöRéíFŠ«ñ.:Üë—±èõzØ+×_¨gî©|þ§ ®åF‹E~ÛÁ~8 È]¹§¿‡€~¤ÿÏ[K¬‡^µ/¹¶Dúز5B^þ{÷– .Š=ú½íö|çæ3w=]ú-úŸ¶ËÛ¼?Y‹ç~J¢É}xÏÝQgUsì 8ý5½^¤ž^ag?Šñðˆ‹%Iï]9¾,Pn‰Ëyú¥¢Ûk½J w,þÕ¯&)G×üžŒœ\7wtÿ×½^jÅ®?ó÷Ç—Ô£CŮԗkÜO/Çñ‹á§+ô}:í’ éœÓëõØyžu®ç~ŒÄ|ëQïb”´íBøŸow®Ý‹Ÿ¹Yí°ÞSßÓt³Ò<O'P‘ô'Gô®½wðñÃt¿ª\èÎEþl£™ès¿MqvxâÑÿˆŸT8uŒ ÷ÖÉ•ûG“yíwñŸ¹H{Ê{¯-ÖÏxx5Nóè ë€]£ëÂ8"S‘ïÖ;™Î\õ[’ýdÉ­Fc_þ::ï½zÎwGógnWŒñÜíŠO×ßÞêõ‰2U6\Á5)AMúÏÿýÙJendstream endobj 358 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1835 >> stream xœ}TkPWîa §¤3‘„Ø=I6la)MÖ µŠï A‚02¼§™afQYÏð~(ofˆ / ¾xT fjW0±×@"!ºì¶VS›¸ÑlRu»êæÇö€ Ùlmw×­º]çÜïÜï;ß‘®.„D"ñ~+<œSs!Q‰Iºôølç?ÁO"¼à"¬”þë…Fá'7ð‚‡«ãªÈ™—£X/´Û›J$o«2¶q™†ì”¤d­bmpðºÀ@q Q$[ƒañÊ4N¯IKQÄ«*‚ƒ{8½ø3Eñ*§V$$&ǧ«œJ±?ñEô¾Qû»¢"¢#÷­ ú¯ªo ‚ðVgk´:}|‚áh¢*%#4ˆ "ˆ}Ä~"š8@¼Cl%¶‡ˆÄNbFì!^$¼ˆåâE WÂLÜ—KºÄ¹ü(5H¿r7W·D·?“Aä²hYê]&XG>‚÷ù犜ZA g{ä½™`bâžüîÐPHLl^j"COØO7%0›É|ÒR; Äޏ…ú-Yo‡g&‡¶t翦ûFFê5‘ Ö¤ÉòÕbœÝ·z.Ž]„ŒV‹¸Á‚Q ä-džވzK}˜é–ѽ'kRìJšæAÙ¿`ÇÆ…j&ë;EHN„ÄRäNÒŠG7gÁ”©ì…g²µ5Ù8Eü§˜B:‘…¡±×Y›Ñ”U¹ J’ÝŽ¸±þª¶Ú»+?`ìeÍPÔáÔ=,ÞX‚}c`Elžpf.:Ä˧´; ×o‡"BZÈQê)º7/é](ö‹Lè½4òè<ò¶øù°[ž]öû­ÛÎ\e&ecc#×'Æv½æëùf^ØËKDŒSN 8Èc0I执š+óŠÙŠÑJp¯öå^/H)Ò‹œvê¯fMjÇ 47à=¨,=[QU ”H’Á™mÌ=s¢æ”˜Ý)RŒVâ|-%åfíF“Z§Td—Tµø–ôe׀⠹™Êî#W'Ïv²h•°· ìPQú\ui}X©'²Œ99ñ9ïädmZèNÁò?ºs ©kQÚˆF”àå,]ˆ½î­FÄÐ@Óûï‹‚¤CÞæq3â×Ðz9Ýýî†Ð‘ŸþýüÍ[ã£oGÏ›Éo O^òÑmT;-Ž"‰¼ÍT£Ë7ƒî£‰Ú °ÖŸ×C¡!²Õ ö-–ãek^ÁîØû‡WÑ3èù¡{íìfô+9®%[þúÉÅ?Á$\Ž­ ¥žŒ9äÁKP˜¨Â›Â‡òCÀ´iÑß0Ìú;ü¬:šÞ9Ð’…銗 “·®[º˜²Ì6cP-çêÆéÔ÷>(ùûÍ"}×…#"}b>óÒsãW O7ìÀËÍoÇ Kc¡Mn×Ú8N«å8›Ön·ÙìÌ¢yýá8"ß zdN"ˆ {\fäºöøa8˜À””çG‹H=©Î¢è™Îb=üRç­k…>;dɺÇ÷¾G6tˆ7aÑv=r÷òð¥Ö³ùá ΓP?®î³ŸýŸys óÈ*.’Áñ¯ÄW*hÿ&ïÊ€ã†S`Îg4Ú¤<%P/üˆè׿{8Л¥ªgÍÕ95Ù@…ì^‡¥xéDÈôè·(ô #ÞŽWb/ì‹wâÈ?^¼w÷Z4ò qÑ ±Ê±/fbM‘¡s4!Z‚#ZŠî|"ïOïHSe¦§©º3{ú;º{˜eu¶:ô»ú2 É/rg–ºîç<–€‡û…ÆZ‹¥´´ÜÒTZíáÑo+-«(/m´Ô8ïáIÿØV(+endstream endobj 359 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 336 >> stream xœcd`ab`ddðñ NÌ+¶Ô JM/ÍI,‰©ÿfü!ÃôC–¹»ûÇ—Ÿ^¬=<ŒÝ<ÌÝ<,¿oú$øÝŸÿ»3#cxZ®s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kê¡9 Êe``` b`0f`bdd‰ú¾†ï?ÓÌÇ Ê¾Ÿ?ó}ò1¡7/¾w<ê~$.ÌñS@ìwÜ÷›¬Â_>.¿|ù®Ô§ß÷+Ëýžð×ëÅ÷óßMؾý>ÏZñ£_ÔËÏ÷7¿Üoõï“¿«³}ç8ì,ÏWºðGÀœï¡ ç.d;Ãõš[Ž‹%$$ž‡³›‡{Û쾞޾žžž S§òðïŸÚ××ÛÓÓÛ3±‡—fƒlendstream endobj 360 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2078 >> stream xœU{T“çÿB ~*ÔkÔlîKj‹®V‘iO{ªuQ9RŽËÔ*ÄpM¸…[Èry’ ! AnAV´jÑ):µºÙµUk·9{6íY·¾á|žÓ}‘zjwN·ýóó½ç=ïïò<Ïï¡aáaF[¸{O’°Wôæú]å¼Afèluð‡´àʰàè¥$o&m&5"éþÞʹå‹QÍ"”¶í^ˆÑi´}9EqÂbI© —_ÎÙ»iýzêû&'CÂÙÃIàeæ Åeù¯(‹“³'†óK¡˜:p~,,âddóy9a'%{?'5yGR2'>)1uoò+1ÿÆêÙ/†a Š„¥eå¢êìAr†%b{±d,KÅ~½ŠíǶaÛ±X<–€½†íÁR2±plœ¶ˆf [f¦¿E„7D¬ŒG|ɰÌY7ç+œú^ø:ìk±:op—’~¡mš|Œ^b¶Ê@-Õi*ê y®ps*àJ™¾§«õX³‡Ý~Òèp¿š9¼#î 7¿„PœÊéæA”Š%ÙÕ|i2¨q™šìÐè6î\ƒ½€;,Š‚ŠúšGúÕRÐBKÒ&·3¹ÏÚϧÇвF[ïé®.–ÝÞ×÷àC-yù¿:LΫJg׿ië¡Oú?DkÌE:räÒˆ~9oÒƒí¨—ùyâÈ%äròEruÌûÛ¢eh)ŠF/Û†˜À¯$é;óß9”ÏœÏíúxØýáivßùÉc£€Ïg¿ð5mðf©þœzwéÄ»CªƒQÌÑC©‰™¹‚2¢.À÷füŸRÛ\M¾fbµÌchÁ}`5A/tÔÊÊ Ûk]Ý%ŽÖu–‡üWÞ¥hlx-Ÿ¢× X&ôÊ»Å%Ýå¦ô–Bs®NàíŽ÷Ôò-DŽŠ¢¸¢©²ËÓá dúãȹܘ”­W¥GUÄ„< ‡}xQÙ’V’lž¨&&L0JÝï)oª«çjö&ŸÉø­F/BR£Bî.ó¡}bмL†¡—™Vhd:´žîॼ®Ê0Übô˜Üì›h"âS†Ó í69T³·0¨25¶YN™µº¸NT¥&²È؈×Uu ‘YÀÁþc;9 •5é¾´©/΢h U€°Õžö'Ó-éÁ[ßtcN]©&ªvIöå^©rxg‘¯¡#OL¬v©¥&_Y ÐÛÉUqÆîD`íWŸöžé¼ÖÿvKg£Üø»‚¾ôu9d´¢¶LmzSk#aîîùÛà«¶¤´®PUÉN#È3€‹¿rC<>:èò÷vî@uŒCÇH³³}ÐvŒ8ÅôÂDÞéÁ:íï¥ÏÌŸÙÈl®7)ór4 ¸f< ¸JF©µRj-Œvh·¶[cÔ%´j)‰?ÉY!‰KÚ‘ À³ËOáSÆÓF¯¸µRy@³ýíIîµ¾ußÃFó‚…Í}Mæq`µQ‡\ò­|æÒÆ+拜F“ô™´à\æ¹b[uEqE©ÜÐЬ ¬2—AVI¯Hó‹÷¾[sÑsÄÜkîa£X“Ç2MO½«–(‹TD )Ô5¨„PʱR\Y\UVY+<®;öÉá¯Ø–îFËÿhd:%Ï„Lœs_rr¤Ï}¢›èI™Rúà6ŒüÖ5îû`­‚søóÃüø:=8ôŸ ~u<×Y2‘RHe”»dààd8EF“¯FO¥\¹0v²ÃŶr—ú¿[82QÂTvÿ”Ê´Í-ûäQfbw_:yz ð‹-o¨@§‘‡¢àö–ç"†—¬ø‚©¶)šê¡´Z•"iÛfQà †®Œº\f™œ=­pBëÌâ6h³©p(êQ›]>{`âðp<¹”\F®"£7ÙúøÁg§~3D<Aù^ô…ƒß@:ÿ÷áÄ˼Ž9(Æïàtó@ÛõÞ–sвýñÑäÚõä.2üÒ®{³O¿ƒZ˜/“› G¯=2¶Q ×QX’µù:Fò¼ÎƒŠùÐ饕ÞA7¨ ãÎ,aÒ:²ö xrQ—ƈÈ9+âgG6ÔÄ—;ž`µoƒV²“¥*–¦òA":,F4áîêV‰¨¸*‡;*y8†Ö¢¥^âú(âîl2ÔQÉðã(Úh XÆ À Žê\¹¦êq±£¶ÝÓã$f>5þK„-FË.ø/._r=ü¾­älê´úØmƒ`pŽö?\ÑÒi= ®ÿÒŸe*qÕ!6?¦t§²BQbÖ·»e §#˜Ëì9Ê Â\¡§ºÓ×ß;@ÌîI‘o&¶—†Ò¦‘Z”HÆ;œøK|ÓfOŠC *C–M4@%óÝïö¨{{œP§Ñ”Z%eàTð™­z—‰˜D<½Qo#eƒµV¥ÓÉ•DZRÞÙT[°È…T+Ï'ñU÷ mj6ŠÊ먫€8Öº××müÙÖþvš1/<%…9"ç{½ÞШorZ"#Gô.Ê“Þ`1˜"£0ì_YTendstream endobj 361 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1893 >> stream xœU”{PWÆ{€énG˜f@쓈¨ŸÑ¸jðEtA塨c‡ ‹2 χ90Àò”qmb"¨1>vJù(“µˆš5Yw³É–uÚºV¹­©MUêVݪ{þ¸çü¾ïœ£ Ü\(…B1fÕ§a†1É3¦.1숚(SH~.ÒxWÈyóe¨Ü]ÁÝmÀq¨1Ë7ŽÁ•”«B±~kòRCŠqWâö„tÝÌéÓgÊ÷<]¬Q·$H·2&.É•–”¨‹IŽ×­ ú4HjÈ’ƒ‰ºC².vkBÌŽm:Ã6]ÄÖ(]dxHX¸nyØêÈ5ᓃþXÓï/Š¢T‹w¥¥ÇÄÆÍýpƬÙÌ¡¨w¨p*‚Ф–PK©e”7åC©)/JC¥´Ô™r£Ò©;ŠlÅ—p—›®¹žv›ã–« PfÓZú$žT½vÝšBˆþ¢ôY–âåͱâ†T¾Tæ˃Ýàc€…û¤äÕ¿½M{Ì…ÁÀfêiauÂE8mö˜ 5BÙ¡ó8Z‰Íôâ¯|_O;¬?A/tÃcè2³ä>î×liìPª^+Ô¿É÷Q?¨~ *UZ.@ •Ü4"ÛׇÄmX•Σ’á†ÈŸ •zæª ârõc=ƒj«®ƒ]N<—2·Ž¢êgÈÞÛ™ÕÞÞÙÜÍËß_®£LIvi\§Úqónk¹liê4ЛՕp<¾=©baÍ6ÛÊjÙ«Ï ñ®#9¢œ/ÙSRÔ l+”·™F¨4(†ìx>µ&¡"Ø$ˆ6®)¥i·Ðà0Ýßk7ÝÍ…5ì¢i1!u¨7/ª-‚½À¦)] & l¥p¸™çÌÇêÏ%} MàÓA€þ‚\ä—R¦n|-bx–úW¤õ"޵ÜsIš ú(fyRša-\oá±]v†øc¸ž±LÚ`f·Ëº|GÚhÝ÷·ï½4Ä«¤‹&ûNWŸÀ@»º G`<ÒZN/oÕ´äB.Z5ÐÂbódÙ 29Œ¨ÌŠîÊnëèl>s"»Þ\ʯè,9ìÝ®˜`!‘Yf&¶ Y.*z¿y(öœ9Âs‹vÀæÿòýtÓ!hÈfd4ÜÉ©ÓrwEÅuõ!…3kÏ[eý]rS&»äeǵoü¥½Ð½´\ŠôÓ4èø#™¸dCrVçò»Á¯ž‹L]c}C]#ËÝ(<øyä“q8ù×§(Äk,è!"5>9vs~„@üÀ¾Ã,–1m]ýíƒÀ¢ Èè7²¾ö“e•Æt«èèY‹ž3ÐSË=“váMí^Øg´çñ©«6eGKÀIç.ŽEMW½Ù\#pÆœâÌßÿ«3LØŠµ<×L–/& a‰ÏïcÎ9¬MPIwª2¥6ôìÌR`$zºJƒ/½5d dRùÞ²Ì2Keq«§ˆM)ÒU÷jjÊJ«+¾…z¹â…´1#;Ó˜1•¸-%〰!¡¢N,ÿ+Ž~k¿M¬ü[óW]=8 WxWUC)t±rÆü^œæ”|ŠþáÃ8mØUjÁÕ@j®¸ñø-{G\f™~–ÐDY05ºaÕƒh~î¶è0XÌ’ÑHE¡gû]xi`cjbt2™òÈ;§ÒP§Ø[OmÝÎÇ.ç›_ÒÌ Ì ›öŃz»šxÜ·ët&lò‘«Q2‰×eì<å*Œ‰NbŽ@Uj~1ì/à? {2ÍÒ7Ñu0XòU#ûª–z¦Ïú>—Ï è3ÿFÓ‰ÁNœâ¼ƒãNõCQˆÆñ€ãµ¿H†[¡Áäa2±ã›æ¡K0ÌÞ¾J&Q ?™¿¥#ÅqöhçéË‘ÕJø®ã};€ý»õ“¿äZˆö]“[\l)²ì³ïËyä« çT ˜¥‡‰ï¦®/;±I8Yyô(ô°Üu6©#:&!%jÆóÕ¨á9…ˇ~þAxKŒ QÚ #?BÚUrÊ[ÏÅ)Ò<¦­¸Üi±ìÉãÉ/¯þ¬ÔcQ7=ã°þðv~ÿvnÇh ¯)ß’~øžý)ztf©/¡o<ú>Áw´\¿T‹›5È,xF’×™“ô å *ç÷|Ì‹Á÷ÒnÉTÂ?¿C_ø•jüa±ÿúg]!ŸÓ CÐÀ¢ç€8ø,šÄ«ò«¥5•øYsU5-ŽDz?Ò-Âà>ÜG´ZKJJËJl¶SWÜÝÅŠ35ÕÖƒò¬YÝGSÔÿ6(²endstream endobj 362 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 423 >> stream xœcd`ab`dd÷ñõM,É®ÌMÊÏ)6Ó JM/ÍI,I©ÿfü!ÃôC–¹»ûÇÊ©¬=<ŒÝ<ÌÝ<,~ˆ }/ü^Èÿ=O€…‘1<·ºÝ9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õ°;U4±¸$µ(³8;(ÆÀÀÀÈÌÀØÅÀÄÈÈ2÷û¾ÿLu¾o:ËücåwCÑîu'üÖ;!ñ]óøì‰Ó'uÏ—\X1½®¥³«¹^î·ŠáÌ諾3XçǪ̂¬ª®«êèmèn—›ù[á·ÊÓúÉ=-Ý’uõ¥eÓÛfµÊ×òÿ­é_ÝZßÒ].Y:¯~ƤޞÉÓ徫> stream xœœ½Ë®,={6ßW±‡ŸZ)’E²8 `ð,Éd`d`ز[ÆnI–äöÃç=°»øpq5lÁø¿ÅÍfñðžÿó÷ñ~ø?ûßÿòüõ¿ý_çõû¿ÿÛ¯ã÷ÿõ?ù×ßö?ÿåùûÿ[ŸQrùjG ¿ÿöß~éOÃï+ü®¹~µ”ÿíùë¯Pþîoÿ£Onçûä+}Å[ÿÁßþë¯ÿô×ø»ãëÈç[ûëŸÞþû¿Ê§Žö×?üÝßã–Ž|ýõüÇÿ¢^á*×_ÿïý‹ü*·óºþúÇÅú/²DJéë¨ñ¯ç?ÿÝßǾé+—ÕGuÝ?ÿøOoÿôßí×á¯þoúŸí ýÛ¿¼MùÏÿþÿü÷ÿ~[ãù/ú¡\ò_ÿü¯ÿù~ñÝ¿ìJ_¯'^ØWûëßý+ñ¯ûÊ÷eÿõ}gÿöwÿïßþã¯ÿð·_ÿgºϯ>øûl!…ð;öe¿ê9þ÷_ÿá÷ÿóûŸ~_)\ñ÷ÿןñ?öÿÿ?úÃÿ¿Â™êW®¿K-í÷óõçu„¯rþþóëÿþJ _áSüÏ÷)×q~Õ6¦øŸïSÚu}¥sLñ?ߦÄPC¿6Ÿ2þ|Ÿ’r~ÛîøómŠœ*…ðÕ¡;§±×þ½X¯¯ë#²%ŸUsû:Ãû,yŸUB,øÖk–Üf-}Õô>ËFtoߣZhý_RyǵÐQ*§¾ïÒï|‹×qãŽß}°ÆÐ€a¥ã}4ôÛѸ=uTè r¨ýàç$äp–¯ëo“ÆÈk’½ýÛ¤1òšd¯ÿ6iŒŒIþþ¯I¯‘×$ƒ€·IcdLú_¹v½®ßùè‹”‚{ÿO¡_Ûß—š¿ŽëüëŒþWÿÒ_gÒ¿:*æö×y¾fÆ¿Î|û«ô¿úÆN¨¾b|Õ˜ãñuÕ¨ŽYTǬ7PõY/PõYï :f P³Þ@„e ˆ]nµ€ „|µ¯°_¥Ô~Å¡´ ô§”NûÃï³½³Åñ¿ÿú¿þ[Ÿ{¦†¹õ š½ÏÍ)Ìss–uëuvRùúµoü}gguçm2>0-ì›xMö]¼MN±Ýv±]ùºJŸcH HÛÉ¡tH ýó¹Õùóßìm2ÝÂ8Ð~EÝã8ÐnÅqUWç\Güpå«´¯V÷“»pPL?|^Oß1¿CYûéóº×qùŸ¬üº×|Û¶Ïúºß×d˜×½nV|Ýçn¥Û]î&¶ÐÿŒûOÆ£oþJû•b§lº·“ÆÓmïl~ºÍŠüt¼FŒ¹|•_߬Ӳ˜~z²×$~²ìVO¶›4žlóÉw­SŠë§eb‡æë‡ýû±™üˆÝ¤›Ã¼a·Ò€ÝJãá·§4ÏõõCž¥s½;0áÊýåb¾M^PgwF¾÷+Odf¿òDfv+‡w¾[uÀìv5‡Ùí$‡Ùá0»_Ñàu7iÀé~’Áév’ÃéîN·+9œî¯ÂH Ãë'0»VüU~ØbêæOAï„*ŽóÄÜÝoˆ›cÉk˜›…†€7°c³â.vlWž±c»²~`Èîðï”}¿ê$à|´…5Ÿn`Íî!Öl&½°f;ɱf7i`Íæ/¬ùàJ^س½’Ïö|´²aÏwý¢Ý];ö¤+~¥dÇ¢·¹ßcÑ~AGŒ;q¿àPPãö“'ŒÛíb`Ú~E}¦i]”cÛö¦ËöŸwÄ1,ÛȱkûYǮݤ]ûI†]ÛIŽ]ŸÜÛÀ²íÞ1ì£Uöû4ÌÚ/¨¢ÑÀ¬^n`Xj_©îWöšû=ŒLûdaÇ´í¶ãiÛÉ!Üm»‰É*²_Øv<n»ò¤¿ïV~!Üöó[Û}þ…pŸh ÞŸ!àfò w“nòB¼àã…|Þ ùv{täÛ.8áSl–Á8ÖÛÜï9Ö~Á;í|1!ãýd( ‘>:–#Ò~å ‘>ZÙ飕¡ö“'„úèš±>ºgG¬O¶1k7y Öv’#Ö'öÑÁ>ZÙ쳕Ñö OòãyÎóGWÌéë,·I/5x ìkëñŽª»…ªn"TÝ,ø²_8ªn'OŽ€íqŠnWœ\ûsÍ(úÉÊE·“'!ó£ë(úÉýÝL~¡æðBÑÝŠE?¸×Šn?ïZ›£èvåÉ’ûÉ‹ ýdËE?xݘ®üõãÜɨáŸýP Ì}Íýže þdaÇàÍÂ/ÌÝNrŒÝ|õ…±»•¦îVºaéöV¥K·“g,Ý^¡óFÇÒVv,ý`Ï/lÝL~aéîNùS·‡š1õƒC½0u»r7DÝ.¬Û@ÔOv<õ§{p$ý乜÷†R¿òO¼÷mÒ÷¬Å0y·àX“÷ »ñF1y»Ów>¼ß“ÃêÝVo?íX½]É1úÇC86tÇæí§‹·ŸvìÝÖÙ§aï'{X¼›<0ø@üÑ^ƒ÷+;û4þleEá¶ì(¼½CßýÇ4ôçWù‰C 4~M^óGáO(¼YtfÆ»…_è»äh»;Ê@ÛÝJmº”º»ÕÚn¯nFÛݧÚî>;Ðv3é…®»•n¨úÁ!^(»9Ä Uwû(º…¤É»_ÑPs»àdÝÚ„£èv®±­”ÏÎî~—ã _?‰Ì©Õ¯Îßæ~ïYyÐŒOVv¢ñɃjl¾¹Þ¶ ¿èÆv’ŒOŽ3(Æö'8ŸgPœí4šj‘£áæ÷Œw‘×äïåƒAD¶+-Dd»ò-dm»ð‹xl¼…þ°Ó»>²ÿú "Ÿ\Ô "»ñØ®x7AìWDc7éF46Ÿ~‹ÝjƒXl&½Åv’ŠÝ¤A(6ŠÝJƒ@ìVÄa»’‡ÝBƒ(ìH¾ˆ»µ!_¥Ì+¾QB Ëß&ÿ,*ìWžD…ýÊîíS,ß/<)mÙ°ý£…Ûw“¶ï¾>°|ÿÙ{&é~EÇòíÞË·“Þ±|…“h°?Ì=磓ìÿi¿ƒì& °;Ô Û•œlWr °?é$¾_1áÄkŠ9pñ5é{Í~·ãàfÅA · ß-?,|³÷ïÏ>po;ÉqoûÕ‰ÓîÏ3ãàîêîö8pp7iàßîsﶸGtÚÞ}ðÔ/ÜÛèÍî¿=Ô ÿ6«½ðï°uÔªÎ÷Ýaœ7нMþ^RtTÛ¯|÷£ý°òÝížPm¿ðÕ>ZØQn?ù ³ÝExG»ÝªÝ>:“£ÝvEG»í$G»á¨÷ÑÕ8êm?ýŽvŸ¬:ÐîÇUí>¼, ¨¾á¸I^“X ȱY‰‘c·¢#ÅvÁ{ªù~Áw„ødѻˈðÓ—"|òé›UÉ\´Ýç@ˆO>?ã§C ÄØ}z ÄfÒ ¶“ ¶‡˜ôžÒίöÆ8l¿Mú™ìV$ÿheƒõýÂØ/|gÛ;x‡õý&â¿ÛÁ æ?:—ÃüvU‡õýŠ÷l„Ïå0ÿã¡æ?[Õ`ÿ§ð¿›8à;ÉÀG€7$GÜëgÒÒÛäe»òŒ,›•’l¼‡ ÿ°Õ I6 ß‘d»ƒI¶;˜”“í‚lWôd9G”í^ï Ÿl Êî­nˆ²;Ô@>ýB’^ê…(›‰/DÙÞ§KJûGÛL6dÀþkò°¿Y9¼3‰í¢“@ôã¢ûŸ,:à;ùŽóÃ…yÒ¨Ãÿ'+<ØmÀÿfÅÜrú÷?]é€ûݧÜðéÜïV¼Áýfâ î7ŠùGWãÈ‘Kù:ÊoíÈñ6ù{:îȱ_ù.E힤¨ýÂwñÑÂŽ$ûÉ“Øíb ÇnÅÛ•)¶+9Rl'92l?çˆðѽ9B|ro!v“2lò®2ï3bûI·T}Uc¼O~Ó/ ô^sHã¹É&Û‰Üv_à¶Y‰hñvÅv»½ °Û~v¢ÅÛÏðûéîè}ðéèm&¿@ïƒ;|ßæ0¯hjÃõÅͪÃiñÑ¥;¼ž×ñ¾Ãyƒ×·9Œs«ÛIïäq÷EŠàÛ®êðº_q’¡w+’ ½Ÿ<Áïö*~?ú¼Ãðnò€ÝOö8`x?ÙÒ\†?y©Ã?½ÿ€áݪ†·'7×ûG€4à<Õ¯ø]~›ó=‘ð¾<‰Û¯ßà}»ê½äÃvU†ûO7àþ“à ¸ßnÀýfżo&½à};Éá|7iÀ÷÷÷‚ïîïã?¼÷ Îw×b"pjç×wz‚ƒ÷kÎ÷Z¯Aùf9òݧßá{ûù‰¤ò}‡ðͺï¹û5§ØÊŸÎä`ýÉ™ºwk:ppîãœg€úvîDÑ·gšþ“ý:¼ÿðNÜ· lО úŒppMúVºð¾[ð컉Ò7_~øf%r mWþÓ!tï&ÐþäúloWtàþa/ÈÞ^Í–ðÉ=¾`{s¨Pÿt…ÇõõC±ß·9ßJλeØ}?‡äˆÝ'ðíÖ›éë÷ë‘‹~w–}›9ø6g0·[ÇAîû9/hÛÝ…ÑÆl?¿Ã Ö6g¸ÑÐÍíܬeÐK†•mŽo“¾…ÇíBûI‰Û¯9(îV"XÜ­HÀ¸Ý£Cãv’ƒãö ïtp˜ÉE¸›< s?ÉÀr{ˆw˜Üdäö“‘û·õçŠfâoxÈÍð6ù{µf<Ûvò¤|ì¶ñzºÍŠ7£ÑnâëÙv“Æ~t=vbë"´|nNÖµ„ÎTõJ_Z‹Å€vZO}›ZúH¿œ€žF¡ö/ ÕV=êW¹d¤öÇ ú«Vdä¾ÎŸ_ì,Áß\ :¨i¯ªr¡”c)á@ñ‹þ»+_пK9ú-79¤¨Í™eä¬È\éëÔ¯`sä¿úÈ…/üÑoiG €×úC_—!ùèùÌpr£1ÖYe:€eÙQKé«¢cMì+VÉrþ2Ê-c$”¯½6:Ù=ôWAz;õ9§ÿ‰$áœ"ÃHß¶œÏ«:ç<³Ò)fü*IFîÛÓKìD–pîÏÛßþ©$-W€arÒ¾÷" U¿ÔÏŒßô¯ë@‡‚c^§6½š×•oÕ¾£ ÑáN;¶Užþ`!ëÓ’1Žç©§Žô«“µ#¹!ÒLÖŽMAèÐ-–®ªú”,mkä&1‚—À¦SÓ.Y}¤h³’S bF?ФHâG¸]¹çzDmÑ‚Æ] ¬ý±Ð¹t±M÷€V¹°s™sêþ®ãKws ?SþÎzîã 8e¶)ýý¹Íñ¤CÌqêõåô¾á’‚=ñtÅ •wøT&Û2£w¦¯$]Ų} t)J¼>GA¬?VÜKȆŒt:+­=úé27×:„9XJ¯ƒ|ì´ŽeÒØ StäøJYGŽäð/ ’Ãò¡] Ï8@7‰/¥jG¸j4>;ü*]í°&£Ž\ÚO¢CΡÈßRs^µ èÙúÝ2ÐpÑ-§%:¾Î8Ýß¡Ôô…çkB8ÐГ¬ïJúö‘ ¯}…ÚÒ?&ŒÈ‹ý™WQ¼Jž¨ÿK;^¡Ò4Èe‡»¦ÐÔQ6]ïK#¦-ÈJÙhHíŠGHèÔ6¦ï@Ðé®Ãv‡r¬Óÿß—‚v§ øxéi:e¤>žT® —¡› ƒ+º4–~ªC/£ƒbÖ)ç¸,ä£âÞdÊ©]â:Ì+=A›S¸ìJ1‚÷í@&cØÈé/ŠËHÉëÛÃåGQ÷[«‘†rÉÕl³Ú·«ðšDX‘ýUð¡¾M¿H´'¸Ÿ¦Xa¤ã îs‚…µÞ”ÿn‚QµïäÒ=›—ŠÊ§YçY)q‹TÓ×TÃN° Sòí ‹=cº€Ë&p%ÇC7m&Š»Ó7¹Ãžœ;çy.¹s°Îþ…S oöJ³®"Cf ‡«ÒÕrúˆùAi¯¦!L*MêXAÃ_d«SáMýÄÍ?……Kÿ‡¦›‰òÜèA§çlýyÓ“qí ”H+F %§V4Y£u’”TD8ôLµc!¾ÜNŸ’m`×W9gë¸+ü®ÿX¹Dá9÷r^òvÜz‹Š™‹SÕ®œY^ m Uj5Oé‚xú Bø\'§òè)øìDsZXņ$)…:Þzè¦RGSЮ³C¢+R‡è…èé/PeŠÉõ J AÞd  ‹êÕH+’âⳂäuÚM,^†uW-|%ƒ¶èNðšÒqì´·º’pညcW¿¤*D>¯ÿÐõ’o`ð\ ÃA$CíÕÑSdˆ1ÑDЈov(è´$µYè’¬Œè2,³Ô<˶¢(½.ب0à&¼ÀuJwR rtvŒ˜ÆäÍ`Ý@“І«Ë 'Hvq>t¥KÐæ¼lå ÂF²ó…<Î2ûB®'Ù¡Ðñ­²¸K1 ͱ|™Dzœ6Cëd¬œ8ë€É¾-(˜öuõi*œHºEr-ûNâ1‹Ð 1;‰Lˆ7W]/]§ÀÀ£ØÙkÏ àºX"€Ò÷`Ó‘. [l PèÅUb¹+xϥȊâ¬ÊAt„8¡\ìêÏé2†Zˆþ™ª™Ð€ ]*AË ®A¥»X\_)_;k@,,±@µºH.#ÑÅ;b"‹’Ë<¦µcš)Nýë"¥„¦ª&ëô"{ÏC_0ý…`p.  ft°0^t©t™ûõA;6aÅÄ7Ð!ÑŽUÊ”9QµlsÉ–\ƒ8 sæP*Òö‘Ëø0“ ¦(Dÿ™E0™YÍcþÖs¹Þ23Þ;gfÖÍܽŸE6Ó7`’7)嬷³nO$©$SR¢¶Dç7xL ö\ʱ“nHÊ#+˜+%”URfYáíMºëÕx{žŒ_)å¿ú»G(μy å D d!|"”›òA~~§ÅŸÒKr^ȬI®‹]Ü€$ôÖ!¼3œ]R6ÄÆ©Rù2œËàÐg2×,Œ.äU–i™ÐõÑóð;Ío P bb*±ïü,*l&a Ö#3D\`6¥ß6¨¤\{¬ WÂeˆ9ÙFŠvµd­‘A1åoúºÿmí§®}½j—ÛJ¨?Œ<ýÔbŒœƒNt †²›w/>Š0w@3±¾³‹h%áƒÎ©ºE¢kõ9À´þNv ¬Ý>€Ð|sxº ‡²-±™rªÆÚÞÛ?üQÃÞVs%®­óuÈñ±…YŠ:û,×m/~)Wèþ-3Ñ©¡ g”®±zôßU £ü®òö‘èF¦y¥Õ×xG¼k>Ùüø a ÂK˧ܨ‰‡–îÀšÓùP7öë5B—EÜŽ@±ü/±SãsM¬3 ëÿUј.dí[T¢šŽdŒxºÓá2â¥@úT:0;Êé˜xéÒÂAªS^0ÕN©‚òG#Îj*¤O2Ey‘#™P°L¨&wš”ytRU‡F€Ë8ú™*td­Ü²Ë¦Ÿ@:Ž`¯f¸9^"dGùÒ2;à=ñ)›²Ì£CJ0MÛê…vꪷ|Açd§¡ýr!SMÍY 5p»ÒìTYdlU ¤0¬>PߨÔ댲¼S Õ6Îh•7?E| Øñéo.eïSqøW= ‹×/n\¶CçÊz9Ⱥübs:ï† û f’n‚#‡r#ÃP¨£ƒt~ ¸¯Î.̺²Œ[F"¤CÌ4¡_¤Q¬Ëf4Çú …þx±:,AR ÃŒö+t®ŸÎHVi&¤ÃEЂªwá|³ è5EÿQ%ˆ|!èL‰gj=t¼°T?×áçRm#tŽ–ô ûÃÒãp|X©_‚ñ lºót.m…úåšñkÁóˆ81còÍÄ’ j§NГÅ1ª{.—uÌ9Mi½Cò‰@³õ¨[?Åøúý~ŒôÜžU¼•‡ÕOÏ)ˆ±ÂB/Æ@ÂÒÚeH G€dЍøZú—’éPPÀSG˜#¥Û£ÑáÚ7 Ø8ÚË-«:/Üåú%ÝÈ3BÓŠ¼VèdO!ãê@ œ‹Ñ Õ1CtÁ{ß„3ž<oŸÊí¤œòPÜQà ÜtÎÀP?}ä2K¤ÁÓ.ºÕÊ >Á¼„Þsñä„íL˜jÌ„…HÏ‚:1›©Üƒ¸ús)>²”Å’X»Epˆϩ˜šÛEaw{‰ýè&]÷ëÑîcqˆb>•yh““  –Çl‘äí…H>« µÉ,“b&×LÒ™ìϬ᡺`*VqŒá5’Ð „õœƒ&iø1§A¸5;5I“  @ d ˆrÇŒâ°×\öêfÈëÿ±:ÔàŽ0³mà*Bñ‘l—l¡j…é F Au¥½ßáÂ8¨î)œ«ú¯Š˜;ûŒä×®rf9å5l†—p4?´ˆÐi‡hZ(V_‚vŠNÎ1FN]¥#+ +Ñ8B'7òH¥9å¾?›šrµ$dIP¬EuíŽÊ’j©€Uj‚x<"¤W5¬Š|¡>t´cµp‡ l5^¢>ÿ±Ø \LWzÊCP¬oñpW)ÚaàWýFŠ9:MÃÈþ)8²¢ÍQº+ëz°~£:cfF§áÔƒÊ. ¦«t“gÉÕ±] —§»œ¢öˆ>2æduà˜eŒˆÜ/æ$V -ÅÄœA´›­âœ0H§ä–³RÕd„‡P†×7à:A°¼=–>à”‹ÇatP‰?ª`Jª®Ptšƒ’3Ü©a­S¦à8Ò%&ý•z[j:Ö™x#‡P¯~ÏŠö59UŽ.ªœÁÚ¦ Ãl­4&»qùÞ$ÎÜ=¿s­Zã7èÈ(Ëh=£þƒ(ÈsÉîˆ#2ÓdîB hÁ£˜‘äÏÚKX$„±œÓfÔ7~)7ÀXÁÎL*™œÎôv&ÈùKÏÕfV&ás–OY„]ˆ¹$ ³°\N™¢–Ü?j‚ -aO6 ìûÖïKF²Ó3FF"F4FÆéYj5“ üJ§;‹~Ú’£HUÛFÌD<‚ÙqfF̰’FŽÅØÌ]Õaõ4e¬:‡3Ðé¦a„鈒wß ÄýÅXMbêÏbÁE˜Ó03"~Å<í±¨œƒt%Qß`¸²_eÕ01â^¹Û»˜{ôF˜žKâÅމ Ê>"ºj=T x†¢€h%AO¼½ŽDu¼¾È*vÿþñd¤ îA¡nî#¯嚉Y¶?ˆ`ª¶‡k  '$û,Ä#¡&ºþ âsmg$[$ ˜,ƒ²œJ¢ì,6õ‘³Dÿöipz©··T×ñ¢z9R啾©¡°$§’ $'(I°œ2é¨ÚO*…áјM©}œ ƒ&jø "&àÌ e„ÜžB¼àrR¥*ÄÙWtW¶Šþp|X_¿øîÎz8m…9º¨Ó%†|pÝ”ó þ ²ŸðEÇ|ñEµ5¢Sã5‚Õ % yM?xn…·¼a$8Ê •8ÞÅGÄÛtš¢n›r梮. hLk6†è%Ëäì?ªê‰=«{a%÷UÝ:€O¹çH¡½!³o±áá$<¬ ’Aت†Åùº½Ÿ‚ûݱö\†ÐV%–gHCSU`<` ž‹Rp';õ¥Ž>fÈ1–ú^³E݃ˆ—T³ 6§~ %<Æ'‚˜ã7î°ävöiõÐt¯:¬Ñ§âC;(›Æ·¥Öt.õàžÁ7Ë7V>ßÂÃTFY `#³kœ‡ì_d$û)Ù—9û;a¸$3A TÓ7̧ 1} øˆÌIJÍúÂI†Õð›ú(:…1»R©ªŠ$XM•ÃÅ%°ÑiŠ{è⣌7ZT\ßDÅ#yTa2nYÏ7cB•›8܆ ”“'7‚Öú•À™ªûYî·g~Ó÷èñ§†¡]A±<ÙU¸8a°8Lõœ1tÁˆ{d…%óÀU;(Ä£kõõÕé |L¾Š®I2ÒŒÄÀj)@ÑÆýëY×i–SE@ÈIn–#ˆ´®`ÜÁãr®êþÓÒ4ˆ0Aˆ)N¶•Æ\oaÒàË8»Y–bâ"Äh˜¿"žö òõ\‘8&ƒWЫÇÁ<6M‰^ª#–¾iׯ”«•½±œ<,å›@I]¬h#€Gž" Š‹Ð±¤ÄÕœ"¢D1%"ª;¨·ööñ!<×öý#/€…ƒ…ðÀ !,¨Àj)L~Âådñ"‡;^³„¾vpªK$\Áæ‰ôÖ‡×ëQΆ¤|%E‡9âb•ŸKl'ñÄI€\H˜$…²¤JÒ, gK"i‘¬h²2:+F}N–9`4ÇÈ › !” ˜!ñ…qŠñn…›$ÆLrÉA,*MT\2éޣ䞿Vtk7ÇÚ/ (Dj•XœZˆ\Ï ò„Œ8Œ\Œ€Œ¤ŒÈ¬•,4ÒnXš¥ìUºà¼ø Þþ\ŠB,.±HÕUâCL uÈS|Ë*†âd8–f¡$!!ZCÂÇB>af–s„ÁÏ%–3%`3 ›ZØÃ&vUÌrÉïlI%kPŽá6’G˜1Ëc¶È¬s&p2ë?—¦ÿ¢ÙP\HÉzA5 ‡æ¢%&Í©09 ú×µ|ŠäRL“Ìxj ¸…þTa÷MFB¥ráÃHÉy)Ô(dSªž>¥‡Eœšž5a‡× ¾oœL .pÁH©g õŒ7‹:E8E–×Û‡ôèWUÓÎ!ÑÐ8:lF—†ƒ(¦"q?‹î4ɈV‚´™“›9„Ûiáie=iÇãÃŒYŽšaL;5 ÕXëá§š>QS"nÉ÷utí¨<Âø%XÖ­è”àS^]ÀâŠè­·èäÜŽzi‚0Am‡¹ÿ—8ªôê0R’)‡?|‡RÍÖŒL!1:´÷í!×F¢h§·ª9p²ÍÄrh˜2 Óîâ~n}ÕS2$6G¹‹œ4¤çÈŠ‘j¬QÙ2¢îåWHL°MK|FgPžô›õªîkbi>›„cbCú€¨ Œ¯™U›€~Œ<+Óà{äb«5 üMyÞ²‘‰´fBŒ®Á£ÁyšGHˆý~ ‰FÖÍ%¦öh°rªúÐG‚ÁÊy)—‹;(¬œUêkA9±Œ°F‚SG.Q\xü€Kl'¿ë Hßp¹@S‚1¢ôñ²99hUÑ“§dÌ*:©Ãu]*\-!åAtÍfº/¿Reòdø(þJ!$iM!T”)-cåÆï´ï *‰w¹ÇhFÓ´WlÇDPÙ²çÐçj'Pç 2d‹ˆóÍ.Jôáæ8t)*H(ƒê&tïæàÆ!ŽK½lÉAYާ •àX{zŠòYÜKê2Ë™l$'_8iV.nGƒlåٔªüHxô˜Yàs ;ÄëY`™É'QXÂ,F>BÐë§æ€Á¢ã%ËN"ñ‚«3çgé` $¶?×¢=GþptEq”G"%3zÄjwº`ØÌÔ™ñ/„ÈIfg¹žeÿS³JÓUœÄ¢ÆŠd¢/Šœ]q{TÏ%]èA2ÅS7 ›ÌVw±c(lE-â‚êêÓÆ¹NË®Ño©MÒ§d¿žE(Ù"ÚLüà‡]Î)µ¿:VF Ã&zÇ1 à¼4v ð²!2Gât­TˆîNJ­é—+ƒ9ýÔˆ…%BñLI¹ hmfú€,ÄUC nmD`Ľɷìò<†àt–œÓ˸ʤ-4'Ö®Xc- ©ð’½‹Ù¤P‘Pè[;—ǪÎIÁÞ$Fösº(ºvX b¡‰EQWg‘öAøø\Fr„á" ‘# L ’ ØWñÎ QÅù…ÈÏT†)ÑL­³¯þ¹tç/:äô©ªKÁ˜¥üza+a{ Ó¦EL¯ö RÄIWg©m!Ù5õÑ%3ïu:÷»(KÌÏíNã€Z6`‡Jf 6%I½ÄIÃJÙ1!iÅÕ3AÐðè‡{Ń$¹ç7ÒÞMdy‘eJ–;Y!EuyÖ÷Ù&ÀvƒYfyõAæÂçÚ¤8[É0Éá½+(%H^@;¹AÉUÊîTö¸ÎFPÃÇ·P‘^´¦ÔYÇDädVKf¼¤P§á›9,2~xþ –ŒŸ$ᩇçàÍQ›¾|½Æ¾£>P=,âL’˜QPI‰„W©®®ñ«ÛÇmCöy(§nHíãtuëLΉ s½ÒêkQ….Œè@PÎp¤Ã þØ ñ)=Eа`IùÔݶ§[.’`räj±ˆx<RG‡ÎU’?ô€óYkšá¦ÞŸž’ênYÔ” Ÿ^ÏsšlØ#­Nm×w㢼AÍö§Ð{ß°žá~ÏÕuiø`A°âEjž{{X¸GÒpGYFÉÄyhýC“{W×þÐve]hé:{µ²Q©‰ˆÒá'˜=&]R§¸†!0¦¥q0RE|î™ìûêPÓe‰ Pmš|ê2ƒ…%»õˆJI¦ÝèÝ_㹆B‚ÔÅû¬ÞðöÎzÅçr¥^LÀ)ÝªŠ 6øZ“w•Í‚H Ïh×jq­¯ jô‘À%éóPUI¦ì—føÓªfR¸ýìÉëjhÿÓ†N ’î?‰ OÐ!ùR1ü’$Ö>âdö'ÇɨÏ* ÕÏŧX”>Æ*’Üð‚  âAUì±·AÆà' [ÍJfA»íXQåR_Rè`S`èB¿2 „!‰s8ß“€,$;cS¯Ksë[¸#^iÉ~l:E*Ùt๾’¯ ù›*†Bå—ÜÚA[°¨Ñb|‹.£ªí1*£A"#:F!¨TqW-F$‹J‡b²ª}ƒžJ/ ¦€/é§ÎCwÜÜw›N-6‡\vH¦SEMðŸKÆÃe" D I0ˆ ¢!—ž¼äàý¾îú\>:Cü+ŠþªwoœRŠ®¸¡+] ʣijíg'îϬ• ß‚U;c–7#ÀƒØös)H°°Áò=^2¥D+ÒuBCèý²UÁ“0*,‹4 {c½þ#7,8s%æ\3? Ð’ìrhŒ×š»2žEš±×çŠ3›^|Œ6Ä›f>ɬ”¸m–8§>%øõh¡¹É$Uè° †1`‚ÁD…‰…K±Ô óA¢M“&&³ãªYùЬò5eVK¢" “$o’p´ Ÿ Kd˜(5Ór"÷ÄVlƒX‹; Ð•ÝMÖ¼ÿæáCÓ+×JR¤.#‹Z³ËÅõ†‘͚Ϊt/œÆX=@¥«y\-æt­/£¸€FºÛ!ÅJ$q’“x¼ÏÓjÛ üÒz(ÑCò¢¶QzÅ´œ^ˬƒƒá©¹ ¤ÒG)´Òšy›Wñw£×¯+æ÷>`òžÕ%¬éiVÞÞø¹”þj2'œ›‹V¦m ^+^ïFZð\jD6f’¤L†%´9ÉÅÚ\VA<[²819)¶Ž]`“_ùüt¼Lçûêû±Ê&èI–G´eÜiÚ‘RóÄb;5oÅO/u=F|ùAíQi8‹n¨¾" ’AT…<—LÓ˜î-h#™øûA‡ù±èAùÑ 0%õ\FRq´GdqÔGvqÌ…•qäٚƱkåPšR¼÷QØžÈ4Á(Ãñ‚60ýXИ9VxPO1÷–?G³=è.ž«X?Ž,‡0†—+ÑÇx?´e>Uµ›ô¿ô—=Œç[jQò‚‡^•S[żoÁ®‡: ®æ±v M q •¸ ÛË1³s\íCsK墑… ÁˆM W8,z`­?kë×Y½àâm(¬wúËáÁB¬™bRàÕn¬)Á×e¤q:–Õ–»²{þZ»£zxT1oYzªR›jÅ%hâ. #O<[ JózISŠäÅz<¿ûH®ÂbDœÙ§wöðÇyšQ¢I„)Ø8¬þ„ôë„›¬Y45W•ÕùЂÇU¼iUpGT¯•„ƒ+Wè­¤¥ ‹ïøÔ•qÇ–=U”N ·‚oxˆEõLª°IE8u:©T!퇷ÌÇ¢£Àýì€Ê‰Æ‚°IeT"l#„$è^UÃãŠy\Uo®¼'yÛ·â„Ï_‹†TãpQ‘*%R=*´Çµø¨\ôãš|t[L/4e™º0¥7Ì ”!A{¹¨/þËC>Üž+\a,c5cþLfòay$^F,¬„‡Ç½kGàCË?¼Ý´kÜZ¢JDÅÚbDtm„hŸßðKæ©ÌwgT|Ê$õ²Ä)Ù"šµÓH#úƒD)„”¬2¤ˆ‘²öP5¹ýVÔ ò YU±Àíi¬ô-Ã$þ%Qú^v‘2³¡˜¾ýÝ~Ðq7k`ÛÕ“¼:„wÓ,‚åð2+f‘“^1¦ïÒ©V_¿IÂÏWô9Ø¥ ¨¥˜îjÉ*—P.´0ÃûéM<œ†M,PO÷$‘?è9¿1Ä‘^ͺ÷ ºœçêþøŠ'ãüÂ~Ï6~aä(G#è'!Ÿû1SçZ>‰ŠVƒZ ¦„à óôUôLvì|@bÄœßÚ¥ÏjìmÆbгH\ß‹¬'ð£Üúr¦ªiAFÝË0PZŠüˆ[.LØÉ-Ç®;òî‘ÿ0„‘ˆHS»SÅÜ™[ŠâÃiMQè¡àÊA}/­ó=ÁC„@q‹‡hê;FyÇ#9XDÜÍÙœ¾¡ÆNµ +ä!Oþö°rY’[“ï˜ßߊߓޜ{3’<ÝD‹?@P%úà2qBbHû9ʽª~?•‘w YK¼J^¤Cø¹i÷wÙPБãpɵðr!ŠÒRÅ­óƒ‚öÃAæDOâ¾õ{5¯®oÖ»þ­hB 1B…ã1FèÁøQùá 8€@ÆÔˆ)Sµ™ò=È@ñ\ e,¸±pÇ ˈD²˜¬écò¸ ¡3îNâËdœ#ûÛøvÀÙºó˜å’çZt!ñfÚð|¦VLÑfÉk%²üÈ2&ûTØï¾ößLò™äÝ >å/³@¦a$ :x†¡ÖÁÆ0§ôÏŸÃŒÔ)Šè[ªç}á÷zdµþ-¼‘QÊÍŠtT¹‡ SC€µz¶a½¬âo‡É¢ P¯øZV6ü{ú{^ k­^rßåF Â6  Þ°V†™ökg ó,… /×å¤Ù },ÎÀ缯cÅ·¤¯l*,5Ì$b2בيô] À6cèyé{¡…ƒXYå,£ð‰‰Ëˆj}-Ã~“¡nY÷còÍm3ºAͲÏPº£µð»5ƒÔÅäâ Ƞг J|V+«~Kƒ+äWn ¸-< L ¨7æiZ&fUox^P>kï‡,+XÉm.0ï€á5TR2ò°]P+‘'N*%û;Ãx} ;;¤¬c%ú# ¢ÿbÖÔ$±ª}$½¥Ýã¦ËËqqâèÕ[]#KZ>} Ý2¶œÞX„¤ò÷‘‘X}¿K>% Dú²«Ð¯: Ò­–ªÆƒôW”!ôË…6w–&Ä2þ7ÇåÇVÒlè £”f8`ÿÈA.ÉiPê™B¬ˆÑ¦EL¯.ñïgôæ¸L¹‘½÷—qï×eRѪ<—{¦c-O>ÝÎôžI1­´a§ö0ap:d\é ZZc9ÑMcï#×0ö߉âL5ÅŸ£²é¥…äÌŠ?R¡¶:ýŽI«˜Aß&ÚÉôõ”6ŠY,óV¼A*Ïö_lIº×ö‘‘s*6‚ÅH8Ôìû95¼ E‰O¿Û)¬\hÖØÔQµ…%ü+œÊÂQï÷”7ê¢e.  ­2­øu84 õ°­â¯H·V£Õ7ñEÊ¡B@Ó²zÃÚLHø‰ÙÍ;Î!(ïÅ»ˆ½£\1Y‡’Ù,5×MÓµC´â½‚hšB€M¤:r)}8Ižˆô‚OÈõ ñ\R¦4Dˆ`-hËò̳˜¯1ï›9‹R…Qß^Ù•ÊÛ~px´`6´5¿puæ?,jâˆfÉ…w(m¢ò;ÉÔRʆcËhŸó’êªýW³¯4ù¾7‰Œ.Þ=^ü’Uʉa!£ŸžÏ¡íÌ;æC-ΗÈ 4Lñr9Ë“eˆ˜9"Øp²TùMÖXîð²m9ø;IAZš9.ß®eØY^æ+«-.”¥3ñN$2 7MÅxÌWfâš>Ì;£Íóùè ø–YÄVF)|˜LäEò0㙉ð*¯:Ô³ýme£#;Ûú&sàƒ¶ø\ÊsLN˜äYbÒâ*áó¯b‹—‹î?†Ùé,ºŸÃæ(aÇ•¥awRìðî™ìò^Ÿ·¸D¾h~ŒùÁŒ}¶¬AöÚí,/ábcöî,$­ãð¢Sâ„ǯдðrI¡ z3¹;¼/b\†l†~Ʋ³™¸DMbM^LÓª4½š@JªÎhƒ³ÂI Þ+Wý´B£•Œ_‚`êø£gH’ +˜¬„²žº€5†G‚Y†k‚}hµp;]¨Ý{ù%Ͳyp ¸»fL¶Ñÿ÷öÖ׸h=—Ô¼kfšée-NdŠ$^Uý/…T^ÌŽ–^}ž·HÇX 9“&ï°í­‡ö¬E—8ôñ«™W(YŸœ#©Ã'cÈxÃØÔM¤ö~BÁ5›_ËÛÍémš»rd©Â$¶ƒ”ð;²5'ïȈM©Z8GBe¼ç²—£ñ³«VˆÇÈIøK(Ž7¿ö1ºò4K¯^ôʈV»ÎÑqGÕµöz“ެ‡EI#>ÎÜsÕs@·N«;e[V–Ð÷“ø¥ª~!Di[ìEvrôç"B”¢H9ÒzHVÁõýùÞ›§û}<6 ª·‡[@ AÝ.gÀ½A5Sô…tAÈÌ|%ˆS}Ø^œqžâ.®p.ÞŽß—a€ád†¥½çsùæ  ;‹=ò9è¬|$°LÃR F,<±~á«§ð±Y„áP¨EópÀqàÐ"¸ˆ8ˆš­g”}(Ï÷. UhZº«y]vTˆVZÌÚÈçhP7ðªãœÕPþªlß²J6Vâ6j©aaA·OúCoiÚO ¯ut—CîÜh/Õ÷Ô&ƒùRÃÓM¬‹V¯"‚VZ"{Þá©ÆÀë)×ñ´ÅQvƒjcpý NÔædnNø¦œpÎGŸsÖÕò\F¾ptÌ"‚†¢lŠ•Ý¸‚«Ð9èëp]6«afÆóTÐ(#7?*×WDCQcF=M÷XäïsŽ?—zàr5‡üHüÜ©FEí—ôÔàxa¯Q?ò>LÝÑ ×'¡®¾bÛ¡ÆwˆëÖ¬ æ–‘vàIŽRl@œ^¤=r%ˑۆMïˆj> o w}ãÇ[8 ¾UcÝ…n§©Üok?Wß_íQq§ŒFˆ|Žê·D–Ô;PÜŽÈÌÅ ½åÒë(=¨YRÝ@AhZ¸V›¢d¶\ÇÈÎ)^ü£Ê{I’œÊ*Àˆæ5îšÔ0ï×sŒdêéšízšг…ð£l„G/³Á—ëèÔÒáÖê8Ò•åÁ’{ñ§~]jµ/£ºØ¥Î Cn+¬ã¿EŸjǃÕ(:ÕòuÕ¹(ÄáìUJ[›KRUSlG>Þ¼iÆtP#ëRº\L±I[¥K©ÖhÅLôxE³th?±‡$=zû½|,"—ÅÓÆê¨||eÚÑFü ß²fÌR˜ík±“b q&ïo‘è7ø\I&¤ b+‘ðÊŠÚòk‹­ê\…ʧ,*¬ÌTüAýÔhç¯gÍŠò¬ÇÈ%ï ²ÇF^Å)®¼úU¾!‰D6™´.è‘#dp=YÑVFfFx& D8VÄehúbÌÈó Kösiíf‹8[ÍÙ)ÈŽCv.²’__™!ÉQ–=-Xúݽ!·E-qvˆÙÐÿ yç¹ö|̆}6þ/ìD`Gï‘ϱ³‰ /ˆ6a’†æÁ.£””0E4Ûº Ǹ¬àÉ€ØjBå%y®©oÞ¶jzÁQ¼þY»4,?x*L9Ô_Š(–s|ýõ)SÉ}DPË¿$n7:9IîŒNa–wÕÐÖñǽû:ö™šq/Å‚\…@È›YHf’4猚Sh§>ËrŒf˜IªEÛü¡•ík·”‚ç¯eÚÁ=/A;öJ*ƒá½³AÛ0rŠ,½ÅÝV!£§‡6E /O{Ë)¿AL¼•‰·ÓŠkÊpöË;âIå¬ç2 Tõ×ã‚Üm;ú-¸^¨Ð}Oé¼e>®°1\êðŒDB!Ju˜\k±uÆY"g³žÔÕÊF~mƒGT¡6¸ÓïgËä)·,ƒíù¹~v“,qô<ª’èøT¦ è!︴@7FÉÚ.éÚDûrRÞ/À_gN0Ñëþ%UªÞXCUþŠþ‰edÛJnOªŽ×ôšôâùõžËf `@áÏ/¶¨Aƒ"s»*±8sÿ}‘笣¸™±ÉÒ=A a.>_ÞwÑ~à¦yÔ`Þ½@ÙGm7mƒTDŒoåÑQtiT–k*tƒ‘FR3 iô;*Ú¶3£†Zµ`D"·=Æ—£€ÎørËuÎZ6üÉŒU·ûz.ï”ï}ñ6b…,X°ðÁ 1,è0’œRø'•=´*\ÕSöÕ?üÊÒËbï?^6Ãb:q¿Ûj?1>¤gcS²Tá.b€…Jž%ˆ>HŸK@¦…è[¼èñBÈ£wƒ<Õy“Ÿ¬Œ"ù1È×Aî…Ç„½*ìbÒŒžzžK`f€'œX Í„YŒ|ŒŸEÀj`«yæY h‹À“Íu.†-†j›H@]{f$ë‘<¸ÆYÐfaœvÆßE$Sg8·ó¦ª¬Ô–¨YêfÉÜ"…å×k9o% .äE’)g2¸‚.»™ÅO"ÀBF 9‚e› ú ³²8j)÷…òc8‡æ›è›BB* 'ar¢&IY$ˆ±°¶èØ—ËÎ ö}6Â?ˆö¯È6ÂJÖGmìyâU ßC²^å‡ô§TôŠF‡xê5Iñ+IŸ•™MÜjÁΈã1SœçZ+dµBÖZ!¬Ôr©G0= !ãxäóU-.êÚg±­AJ~ô9É£:5ô/ãâ,aó¾²eÜ~÷\®¤ZF[ïW pý+´h`–Òѯ$EL9­“dKÄiÀéIä¡v¦cT[P§¤44°m÷(µ­--°ù—¼Œ‚†¾Áo•a~”#¸äŒÒ}M®Ð=Èø‡‡ƒÎ2gÅê—á{³œ]´°˜RGºÁtË µŒ²´Ü…¤H‚`†ÛA9(bcõ£G/^Z[¿,4ûÒÄ´”Tw‘tÃlQ›Y¼x-Cøæ%¯E/ÊU¤«gFmhÏX¾ËâU•²áwÉB51AF,NÍî¨æ­­á÷ðºhL!â·umïý§”lÑîÅ/?ÊÕìªø‘:t7ÿÂVÏ3صJÎ Ž1bíj“¾6r­–MxI‘æ|Ž.‚«Ç ãG/h¾½²"ÎŒ¬ÕQŸú† K¨eÑ®3^®p—ñ› “!¸À× ŠGUã&¼DAó_Iœ„—Ñã2µÛOe{$•Y¨ºKaÂ’°pòŽ(÷sZÀº:ÌÀ‹nÖæ¤(ÃgI }÷ANêEÚéWÍÐÊÍ·Ê7?mZŠÞ†…ÿ—¬‚#Iûn„-ž—ãiSƒ?¦Ôì#ªô&â¾ß…ÑÞ¬¿«ÉÍš$£\X£á÷™ô¢Ë+Yê6gpcËЉM™nö®½XGÞ½$Ït¸Ë@Sk‡A6…M-S•¡Ì†QUY~Þ¯wV›®OOWâ¡K[Üë|õ R vš½bÂÈ*“ÄQÊŽ èš§…<+^“ͧŒJ!6LtžêæMIgÌzÎW¢£qKåôZò‚MÉg”µM¢g¶£©¬“Š.Æ$ð’z—v¬ñÝ^ôR©­™,CáÒ ÇsDEø#"ÃůoX{‰Q ^|倞mDe œP,4ÉeŠšbœšO’MµÅ€h–fº¢‡‘ûU(|ß(À»JF—¦KÛ[eè¥ZƒiBÂìV+/>¾Ø EpÓY”'q!®‘HÇb“5"|DÄ“ìDƒÅ(&¬í»ÅnÅl€¶ˆf! &_Ö‘®~hAP¯›-æ¶Œ•1(ò±xZ:& Ž`$›_Q“Šax0—$ìDI&°œ–ž‡rsnqÐhÆÁ÷oí¼}]öcÀ¯À¨¿ XtójjE»l`-ÒŸaʶÊì¿á#ð1ç«xLR×s)—±ìVµ3+X›—hL"ð¥ÑN%G“ GéžérV÷GW¼x²‰²Ý”ýõY“½„cšyâ&l>îwþVÎÈj&FÕã`³ÚˆI2³ô”³:UZ1ÁŽÖ¯ ªv#‡CX¬y¸bšÀaóÁVi]“%`^Š&C¢¾z±Œ 5”{½~ï!$iþ©É§·­ì-q•ðp«„Ï+\ÍIÝ.j’•âÆRVPn­8¨E³MÛ{_Q¥(Éï(*™šò¾°}ìVÒ*) ‡MaT’œ??/´2÷³K€£©Øý°pQP‰Ê¹ŒåƒÄŸçR gQUV‹XubõŠ40íÐ-îËdGt 99ÏèsÔ‹âQ—b%‘+ó<ìE…5®Â–ÌõŽºÝ.Ÿa•’‡3Kp,ä± ¸I œ…N¯°úªæöüµªø¶(Ÿ:—Xå2¬‹J­TmŽï‹ï”ï}ù6ÓûÑ“>kê òº™"§cc£öý‰D0¯0}ª»¨"K•f¹-W¬‹üYéæ(4Uš'YíΦã O‘´¼ ""š@$Çä|?z>N?è}]“8nÒ„HZ=C\3Vægúú¼ÎÒ4Ïæ{2ñ“`á(`g‚Jƒ—1Õîgôº:€Œ¨æâs”ØÞ{º¦¸à½ÌŸ<|fó“è5ËfˆžK{tWFßÙ0<{?ø/EPÁÃÐ5CÃK¥ É•dk’òX$Y‘ÅÉYä|˜Hi-ŒyF÷ÁJrŠ0¼Y]£ÅŽQÅQ[ïeăRŸ¢Ó ”ÚáÆÀïö̤jB² DƒÄadÄ›×Zj÷èº&l™g$¶ÑóD%4ø8¬M ƒ ‘›ŸðƒQhF3kêÚwˆ| MN?…ðöä’hnzò42ôü~!G†SòúƒÖ‘=&å>ry\Çû—Öß^ü†Öåoóþø U:ƒõ‘Ó}¾—:˜‘Dâr°”²¯[ÒÎ#!¥èõ à“E¸hA‘œŽÃ%8ËH‹Íê(eÔüïû—·~€õû×éQU½&éðÒ¨Ö¡A–ñVÅépþ ƒ!t»tx[!ùÑá^ÿC9n¼œwz(TD´ŽGiÌP:^ ª¤RàÒ-»4HÁŒÛN"(92ˆB”ìÙ“‹÷F> >U.—G^„üj„%ôÍCH£|¿Ôâ5ùÅï__lOµ*WºF(’´‘ÈÈò¾=jTI¯æ'÷3)º£ôsöLˆ|0…A€G§A‡#=l¢¸­WùÊÃÄy‡«SÐAù.’†Á ¨DWøŽ$Å24ÐRHèKiÀ2%¹#I¥ËÂ8‚ Ë9‚¬IÓ%e˜ôe"£™ò?•òÃæŠ„/<ªÅ‚÷c„>+3MgöW8t²ÂÒ‹1ʼ ›÷rǃSÒ;¬Þjñœ÷g®Ãœ‰˜ó·‰>hÏåè˜||[YÓÐ ùC°€y&OE‡X}F¥›iÜ:lñUÃÔŽ2™ÇѶ± (/o¢¿f NT~A_4ˆéÔŒUôâRÜW )ó´£ô#bRŠF’Q’éŽV,ß ®È>)¸‡ê|qéðÞ_)žJþöÍ¥..ž‡Qåi’B†{w¥Ü@«™¾z;¨>J%ÝØ,ïH\œöÆîü–¢[ñ²M°6ÀŠëµI’°Ÿ#ê=耚æ£ÖzÿóºÑX†©µõ0’G%TdÇ7,<îOÿ­;A¾Q¾u~z=~aøË…¼†âÕìb±uê(6úv}ïå\*€K‰S•ôü€$Ì;ª–ðGCñÂq”Íxó>pV¯T¥ýYF×U‹ï UÖ¦ÔÆ/û q¾â¬óûů¤ ’@XJaI†„Yzò?—‚‰ˆ)wQ!ÂH˜K,^/Æ(ÕþTÏZ…ÜF@ªcö¦TøÖ)÷ì5[%là|z@»x>1¼Ä|5h~O.‘“ž£#h–¾T9j[±åûñ30¨,„LDYX%–d^"ËVyö-”KŒ–îuitÕ«fË:'¤QQQ`SóJîAOmD`T MõUÜW¼ˆö<ÿa¸Øb­nû<%$i=C¡4Q5kD¹ ÓsÔ‘öG-”"‡Ù¢K kÏà©Ò°©F³väoB29Vã 9æãçp¹Çü±çz?ó–ùTF¯Î#yF"ëÙ ]œÌ:lúáXSŠG¥Õù´ççòµøEÕ/#‡»M“¦„'Èȯ˜^¬S<×¼jíÍ>ÌLOì9䂉2£]ȧ³ñ‚î߆ÞOJþV½ÕÌ&x%3!Ù+/"NE¤Íf$âÒ¾‚"ô{‰ÄC8é=lá¾°9ÔoAO­Ï(v­èn<úÝbéÅ×i‡1ЯlDå¢2_qƒ#¢ @úR=MùƒK=ʯ®Ñ:H|SiÜD|Ð+•Q|´‰MÞ«ŽˆU «»#® òA©£<9Ñ"¦WLÓth#ÓO ©å°ÛEh.‡ïr¤GcpÄGupäÇò ÷2`ÇKÙ+*\E½É+Š&ø¦äæ}|<ªœoï™UÀˆ?µà] ÞšäBÞ¥Òp3xW–‰Ù.Pã*°Œ…C¶ j\ôêãð¾E3[)xÁ{©æ÷¾É'D¥0"{jÎC…a™%1×bhbˆ# $¸eØfðg a,š1ͪE`oRÅÕ¢îE(%Ý}‡±Ž¡#«PQœwH /È`çˆH¾´¼-„'£|Õ„“sômªÚ~’Ûëâ“JFæE_UÉÈ^K ‡};ŵÖTî¸" ÕI7‘þÒh¹1Ý„Áú *Ÿ%' ܃‰ø-áI‡» „xb¡`ee¤ò}Rq4ÙÔ—á9„ñLz¥†IÒ_Zèk³eF™ÚTÞe|~~*~Μϗ¥vÇלÓ쎮ë1bò1‚23š3)˜ÉÅcÆÇçw(;¡5£>Ÿ‚º¸ ¾/0‚ÁHY§d½“uÓ……b–nKI IŠ¥-’ÈH Ÿ¨âãWDaê,QtRLòÙG4+[ „"D¦–‘Ò4 ¢h¾HEeБ¡"rd”âÕêðò*Ÿ£¬ùãæoë~’fr¦NuŽ$û‰P›õwIŠiçä=ÃûJu܆n¹\f ´âLñ0e×t™ªxîvíþ£Có¥Ë63^%5ñôéS$ÛËzªû†å!ŠÓ?ªïºŸ!È*‡øô?ÑŒ@d@ l“EFnKȪ Öb«Ö±8Æt)*ãÆ$ASNm$J°ö'±*}D GÁä/¢DÿQ1D³8}$鯼«J©jйTqèQµ¨Ãœ²}Ä\k‡¥‹Ñš¡‰Œ)¿š¡³®GQ­¹8˜™²1ÙÁ_E©ë‚2ïà/ݼôØZ_(…R B;¬^gCT|òŠf2§ˆB~èî"˜ÝQu$虊¸rún“ï­j†# kÙæhÜ0L>B&c´ ó1™T%+cá¨Y™ýHú÷™Ç‰ÔöŒmÚ²÷‹R„)Ú\$iûA L•Œa1žÄêØP‚ò"=:@ï5•ZàØæ¨¡E¼¿2oBGEm‰ƒêõQY.匾Î)üÊ¡è*7x©u'¢»9¬ºšŽà%B48ÁN{ઇHM¥3DË*͹ÝèYµÕѤúS¹Ô_tD?ªF dTpkkòÁæ€aåE­i•hKWó9øôIEG´ÈAÕ°ÃN¡1æÐFŒ0ÝwlDK§'JAÐRи:ŠFM NÚGB¨ˆLtnc¹ÔÓ/ãQõK/ºã͇SÁK; ù?¢½à¾›±£´_—OY+š>’”ìØ^:Ç;²JΧíîv}ÈgÁÂ’ƒªäP…Ë0ð¨boÌH—6"œ›ê9Í*Ft~ Â}‚rUæ$ fCìˆ9ÖÌÕºe\U¿­rAÓHÙWP ´¢ «6ŽF z°àûQ•í!¾]Õ9Œ¤ªÑÄ:Њ—Zé>¦,qÞ–È'À„²‰HŠÑK>4¢N"e.=‚Ü$Ä×)å‘Mo9­–³@{ )œB¼=Œ‚`P3?JþKÍÑ^U£Â¥âa §À¦v©ÜG²¢–»CÀ2AÓq©‹¦ƒK‚z|Ù »I‚@ÔÎ<óvõZ>£ëÕR û©øpeÕ½/ƒÜCá-9Ù¥•è[¼›ÅŽ6]Ù©¦™ôiRLz*EMì(‡¬#aX§¶§¬’¬Ùlm¾æ›0IëF㾑´&áF@®6¥:—n(ˆ?U(“úüБDxïé—÷z³B Ç|ê2oc»,<¥zžÈšÀÞˆ0êñ¤ç’o1ocþ—šjp¡š,…•ñ„Ñ›F…N0»£¸¬´hRÇS?ÐEÔÉÃÉ[—¿aI’_éý]À²ƒ·No`E<ðnK­hUP}ªº¢ÇȧwvjUBIáHQ“¨D2H ª4G÷]ÉKþ˜Ÿç¹|Áù•ûóâƒG5a#j‡2$(–~rÒ†7ªS(5–#§tÃ|‰¾}¤©ïpØiѪ«~¬³¨í2yøkËIÉLö„ˆVŠª†UŸ€À£u…D‡3}¨i8.öl$-¨ =©.'ø¥ù•h”au†U¾f~ ~.~R~vûY5`õaV1DÄ@‹Ö?ñY}¤(º#œ@)‹E€ ™eÇQò… ¦ÅT°£¨ $IYØ›*"¡h²r¬–¬Ü©ZÖÔaÑUNÍ&œl#Ú÷üä(ßpæBĨˆ—1¿[Ð'¢a¤i.”QVX™ 0§ f2ó›µÁ jls»ÛäØà6QØçš “‚ml”(ÊõìDâÕ,h3 xË~®¬{l\Y É’ƒè­#‡Øe©jPÂÊì6ÙåØp7[öØô7Y½b<Ô™ ü05®™Ð˜›Ãþ¥å‡‹FpS\\ÕZd¬0‘“З1œ¨À‚R05!±‰E«Yüz0=-ìkl‚›E|VVªi®‚äËÂmÐËQLŸÙê.ˆŸÂ0…Rý^Ëó,ó³^0©„ +šñÌÌÂF’VŒ4;:™´dºÓÛvο’•ðea-åÐøÓˆ0‰úð|êr#¢& *: \’º¾§et“Úp(£­””§îЛµ2€3?€üY5çH ­áÒD½‘ð4/£¶õju^P/0‹mýÒÞܰ{)ÆÁ.\ôPžwn±² j ‰x1‘ÁN'§Å# ™†k=ªKº¦—Šäföu+5yzáŽÜJ-‘x}˜ÃBï^ $ÔqRE÷¥Ó§TR0[~ÒN§h Tìëb铳ÜguEKR†ŽÜoGßùP?šT¨mòÎ1iXrÓ€h™MsÂTí)M’.~q »LÀÓ—ÏJPEB‰‹$çHåóG„¾ÂˆJ¼*/žkÚsŸ¢Â¥Ô•(>"w˜Ü~=jpM‰D¹šæQv¸—B¹húŒ­+G*z‹.D…„olKKi“%R²ó²-x6KÊ:RDs`*t1¶¦àšÒ¥T­ ÌÚ4mX*jé–ÕÕŒ…›ÉNIÒtáùV’phöv0çø|YzpË–weÅ¥2àRT~a*FŒÇׂK=E“µ`–lŠÊWÐ@¢³jbÑÂW IE9뵬û²~Ì:4ÛuÙÊfR6¥2 0¬ÌàÄ7ßó|Ëß’u"âLèWdýŽ•OE\‰¦ƒ£OqûR_Âi ³â3±bz¶ y3]\a&i ²Ç¤‘I>³fQ]CR_{[Rh*dÁµ+„§F#<¸UÙšeÿ¨«XŠÕU ~—;<$ÙßRÞc´P_iF`BDÓ³g YïéÅžËW½¿ú*rº²–$BðZZ»ðn~XØÜ˜~1kÚ. !–ŠÃñТfÌ´„aZ@¥é7Ñ~•ÝôN&ˆ$<—‚ #,°PÓ¥`³K¸¥"TIX;½þ^ÿMµbU®:-X³—™8Šñ@¼×0Њ~€ 73‘&u$Æ`O¤Ó—à–qÀx ÏW´‡nn#°„P‚ÑfF­o„ÝY’]I»“@¼vï÷þ\ œ,”2l0ü0Œ2¬®x6ñuæý,,d‚'9K±jÃL”KÉjomQKéx/eãEK‚¨ÑãRû]Q÷×ZÆx´UE×B¦"^j”&°û@%©õPÌ0m°èv­ µ’õs˜W¶¯i[8ÔChs¥…L.çÑ0@I³’L‡¼ÿÈ„âS{/œ—¹EC r§Ë,MН\nH8’’¯)Â:W¡¨À¦/k¶ w‚ÈtGü¡åt``µí¿[Ïÿ¨¥]J¾k;Ô?jÓ—z,¹º¼5êíÇÍI”ëÒaõÄ0*<š3ÂCÛòh{>óC-SN©VŒ á²ÉO!ëK1îg—$6i˜‡Ùv3tòøÛ5‹ h‹ ®+Xl°¤qÅäš-6W,bZV¿ÙšWJnš*I‘ ˜-KsZ¥ªjbTÕ­í; €¤–$ˆ´2ùe mÝ‹QÕÁ'külΖ ÑG´Ž*ø›pwÄœz½Ť"qs õTR »Jñ‘¢•…ÌJ[5]BŠ,Â×[üÏ ºŸK ,aLrE-NÁ¬ERØôB}¾¬Á8Ô‹%çÊeÄ]v?Ç[ÔÆ¤_²ºŸ¡à Ì÷zd„ È:Þ;!ÖÇ‚¹æµ11ª½•áiz…¯oã¡,E°¦Eíw0Ø*à„âìÆäÑœ«³¦*+ŸVâDÄ©¶¥£€æ¶"™Ý¥çðŸ‡â~lqÆô5 ŠÁTeAy˜:1c*—µË8š›xh°JDŸ’ÁIW’ãf-–PÞÓhZ±î&§ó—дêl3ÇiˆÞ•}\{jZ2¬î¹?Ö7¼Œ9s·/»£ûsI˜leaéH’1I eAu¡é³Õe²Ë册; ûۈϙ0½`šBt‡ià_H·×Õ“«.C¸Æ°¤Ëkñ‰!–X b¡k%>ݰÿ©â£pD¯ºH}Eô™/ë`öÂ,ˆÙ__+_ý‚u ÆÂÉ{LÁ˜Ê!dZÉôt"¹kÚÍ$ƒÉ Q"NLÀD®« EûÃÖ¢Ûi]ɾ­4wt•WÄÖNFNE7dÙ´—\§œcø>´a¸¬ÖRÑ‘›í¥Ç¥ -kÇæP¬v\T‘CcñwE“¬êá¥î?aãÍŽ®)`Úk„×mŽŠT c0_P#ä¸]v,BAŸS]8¸¯l»¶Ó6©ú#ÛÖú³È/´hmâ–k³ØÞ>¢ê5R\5akZÇØ´IÊÚGdÐ~W…üUAŠ¥µ{v )â’Fyh]ù°Æé){hΡôÅ2 jeIM;ÿ¡$ ×o¡ÏZ˜UªpZ,¨U"Em<#õBGgX<˜ãÔŽYIë€ªðæ¾ŒMõ€Ú<„Rí‚iñZµRì9Xú› -h°[[DÀ§y/Õ÷PµëËvz1"#B¢GUXûrVÂX³AJ?Êøo¿ªÊwÙ<þ*ì!mËâï7þ=ÄOðÍ8°€øziûúr¸ùÒlÎz^_@èÏ‚‰KS,q-¤2ÒOÍQz´¦ÕFí×)¨X”—(ZÒEÒST´Q]‹G”‚4¶öŒ2O7ßGԮݶÁ †ËÄõ¢GyðM_Œ: šaôÒ¯ú\gõ8Ð"U]s-^ë;šÅÔ‡)Ô‚Š¥[Ѭ"9f"ë\ å*DòµÁ]¯`íÅ"ÔF|Øq(ͪ^•¶UŸ@úõ‘7€s5y£F¨ÒiÁ•Z¬º>0Uð©xˆ¦öóŒ.Ž»A_¥‡tà”# ä¿ÅT'í¸Ú¨ Ìüt9ÿ•OÁ  }'ŠQ°÷ëúŽì3Ig²Ï¬aEöï˜ðTSš-çW€¡jœÐ»,‡éò®Á#1r&#Ù‰æD‹™XÏhþ å- sgäî¦R:)$KéÐÂÖ€9ó+M¨Evµb4 Ä¢ú+‹L, ½äv-—Uku}Ó Ô†q;¨öªªþ¬Ðr…ºEÍÂøø5Â)¢¯£ýEdˆ“Bg‘íS©bŠÙqŽ™¹0=fñT5[F—kÁ—$W«YË!Eˆt¥•@EBÓ¦;D›˜~-hÜDÚyG ŒbRnFÖô«y [ÈÑIÌ’Ácü’ü¤8†ªÃ<ú ÷eõSÕ+ÂGÏ)BM«¦#5;÷ ÃHüH¸Øé½°DºýýÖƒLLº?Á“k°sû”}^íèˆUnÖú9päï¾Î;¬f£ÞÖá¾ðwGmRʽ$¯Ö€,9—ýJ21%D+™œN £Y¸¸uŽè¼·ª!«„Ã÷"6ÒÑ{ÞÝòËCÎ÷wÿöSFµÃ…w%hUZiI 2×rîû›ðPiJ¬Á1¨Z)h-zä¯w*V¤Ñ¢­ål}›“gXœÖ§¹&?z2ãynžf—lÑÓZ£”{Oƒ‚ ·/©ùÐæ„üei·¦¯B—Â* ´³ÐË‚±$ùˆòy^ŽŠwdñaEsˆ,1å2eCª [f£µ»ëLä0¥¥jŒâ½I† 6~°ä&µ?h;Ï5±%’Èäƒ( aë #}Äz’[l7ßÃ|W²<­¼Úìùfï8{ÐÙË>{ÕØï6ûæ–{AÓßi´$. dô`ÃÈl°¡pƹ½÷s+Ÿ.û}Ù7¼(ã@¥ær‚‰â¦+ÙÉ”4AÝÚoXä‚θ» & ƒY<‰,¦°(3cσvü¤Í'^ÝÊTGcQiƒ‹qpÁÈÞðæ< °âŠª&w<Ð`”rNÃ=‰,n°HÂbËün(Ÿv*”£*Ù¥¥g‘0™uÄ:MY'i´"³ªˆ·iÑZ©+\jÛ…¢oµDƒš'²K<0ö\·Ý-".UeÀ 0JÇg«K«Ñ!èïlµ2cV“š¦vO÷kÒ­„›dlÊ¥[µ²ãZäµÅ`¯àÍÎЧÞn¯ '€Ù! ïÓeÆ_ö*¦ o¾zz)~M~q† †œùôòxàÒ*YØJÕµ­ir³4#ö(L ÒŽ9Jƒ/í›Û×±xÚùVMb¹ÝÙS]̪uT‰a >[ùÉÀ¾v⑟]ä- FPPð5™`!â€Ñ£kebn“Xzm»ùîÙ Áà3ƒ˜ëpp>—’Í]ô!Ñh!=±„ÅRØBRÓ¼òR¼·:–RPrÔ‡:‚Õ4ÇÊGTÇÝ_ÿ½x.Oc!h嬧•O÷A”_ÊæRŸqîE¾jW~ý~o‡I 3¹§&âTqÆ<ªèFO´®´v”¡˜ÇÔ;‘/8 sfUÌÎf–÷˜éäsEJä–I2QíS Ó Žk6b!Â’°`EV!¿Å mÔ#%Ûàé"~Ðìà”R³E¿wî ÏïÉÜ~!ÌBÃÄa¥² ë 0§½¾V|çAèû\¡8“& rBg ` l táGá‡ã·y6³ufý$ë":·HYÚ$”eÖ•@ú~Ï%qaÄDjAȈرêzfk[j¹ Š YU`ãœÑmUNÄ},¼–øQUA«VVð'ae5{m`BFªân2¤Üai-â³üÎ2>©  )ÿvI:Œè~e$ž«ñU%û M¾<. jO´ÑÕšÛa©hçéâ€”Õ ax´Ê+áÌrS“5 ó"Ö­jפÄçíPw ÷Ò3¸Dd±2VÁÛö´$v)%mf¶û¯¬ÍƒÖZ¨MÝ÷}„¡·Î5L +À|£¦åXœmܱ*é·šèÏ_«jþTðŸ{LMªöûMÉ$¾Cj«7™ƒ¢m•‘æïöÕjé’®p]UêT#;Ñòh ¼õð;Dý€úûUîAý?Hù6Á&–ê·ùtªçúé‘V:1 ’Áì ~¯fµwJvvY¼bq r]Ò[­©®6íåÚ\¯½»©ã‘©YÏÜ·eùôVôžôæúÚsµ!Þ3Ÿ«4-¯™G#n#í¸}·Z4J¢ÞEó• »õäxª¤V†pöµ¤ž’ˆÓ7$âYÈzÑÁªi&/ƒti¿U©ºn·qH;)Ô®Ö;ꕲjäAÍ>¨u á¦"sã£oÕ“„BÌ–¸×iâRNT;–ëËfíøŽ"ñq íoéžÑ•ºRÉ›ßÀ+»KÕã!{RiWá6jå©|z` æ‡V»õHZ¼k4Æ».ur¿ì#¼B”9™»% ¬Q1PDªÄÓoFOTãþó²ã§ä-ÖüˆyÖ¢Ú,W¤¥ªµs%¬o$H’Y¦\Hw*÷\2Mf¬ æKBwÆ×:ß,Y’ð9 §ÜïjnˆEÔŽ)"sâÌUfÆcnÙ7/Ñó×Ê“DÎ&rG±ÇŠË‰.JŽRYRMIxe1†Eææ»gy€e†Cž%¬ª*$ÿ¢~:3TP” Gâp°ÇóÌŽºÇD¤žk2¦!õÁ«ŸAš†¡C7 oÎázÙI´Ë³å7ýQMË ᚬ¼s6-2Óhæ§l#gû†Õ1;ä6VÜêŠP°”Iñ‚\/Húè/\Ò^YÁ%˜\)¯$i+pPJrîQsHöwf‰Ã *ý[,l9WoZ­÷|E{o©JSÕY® ÷PKüÑ5žÖ>2äñÿ»%ÿ R4ALªA¤«æ·ßôuŽShO…Ì>♨D¢SÕs:·ÞEŠ–¨(~ÜEha’.2dCÑSÌï#Ò±¶gm†Ôl°Ê®¥‡”…kèA·–¸€ÓۤŰ$ãQi$8$ˆæb7ÍPΑøՠ‰ÙUŽ3IŸd‰S ¯×Ѹ;*\J˜ŠÓ éèzP:›†3KåDè(aG%²Z5VEß§*Ë)ò’°JÉY ²®®~õ<ü„V¬e)µÐË1[(f1@=Õ+¿~«Ûqsp¹ŸJOz_é¹üàw†pÔóN â}Ða"ÐW1àC Æ`¸UçùÝl(™\¦{Æy:,˜¶È]g+V$9z7-XŒwV CùœÝûCžo× €÷¾8íì£À—üÈ‹yè‹6GG;(Ó#¢XLÓP – Ú!u©FV4›ì¹Â 203Àócñƒ.葌S­e¥Z8ŠQ °Ë/’û:“:6•kMçÔšRMÔ³‚J.s¥k`ì#9y©OÍ*)q$ˆK ûÚGÒéu<«d%T‘ÑbîRhWF<ìËZm°õfUÊD)ë#žÁŽzÊý²²W;»ÀA‹ü‹–¡Ib`/¨~ç¿’f¡rÔðÓtk~VÐÕÜ[Ay-¨êg5 µ=}0`ÅH»ÈÞÿn£<›³¶Q÷vV8S”~9VÓ §Øp 6a%%²P†‚fiH®XÛÃp¥®IÆ:qZÆl›ÀWÊtJ!÷’r¶ïø¯®¶•”Ì“JÃ%i±ŒDl‹Ôb·RŠÒɼH¥MCÞf`o™šV…³»já˜&®hï"ÅC­^¥ÄΔ£×«u¡Î<Jº"uÂõWMˆx‘ŽÃzaM/ Í5-[Œ_Õä%‹a†À¯²WoOÓð-( :r¿d«Äy£dO[;)Ò%»f):ÒG¢eà¥(šJ¸,r(¢:@ Åþ8¤Ž=P®6söÀ.Q0§ZÜR„¼ Å+ÚB¸À§jQÌÍÚ;ÊœÓP#AE-¨¡Ͱv›¤€¢~]Íz}D;¼F(馌2 ¸*9D?º¡®†€ô‘Ëârk²LÊ£¨³¤Ó”Ñ*-I³‚…X™Í&ñª2ÇŠH^²ù"åH.Ÿƒk¯Ò¥ð¨ƒp€h1±*õ³ ’Ѭ¦Œèb«É*GÿÿY{—][vî<¬¿Ÿâ4Ú)/Uì0 ¸ëÒÓl9ÓÆ™¶,òöá÷1X³8¸¸–…‚ œÕæäuܯz…Û¦cNMw‡ºÇ™`UùOšJÛ—l`'õå˾E+“ê˜cr޾ÜYß³ûðw6¹×H´°âO¶/µ­¶µsHZ%Àà²}Ýe_î‚U¡7ÐDd¶‚/*ºaž½€<(nñWé0TÅ-¢±`Ñ’°´B¶eP†Î(ª¶ºUÂÞã&k!À ×)Ï`W'¶*a³ÌY|ÁÄ(¥å†3·QÐACr*÷L¹¦ ûY©B™È®¬ìв—ÔùIx²%cG[²J±mFÆ¥úeAo-t']Ò €âKyb*s r‰'þžA8&B–~Õ&BK¾"3KW³ i”æu-2&­œYk_%Bâ˜L|ÄQ|`.h)äê»yâ É:I¢„PåÑwmŒ¤Œ WÙ%Ъ\@àµÒ¾ÉAÖBÙY°ŒžZ¯5 Jì™ôØ P¬E¿c‰ º)Xá6¦HsÁK|9ÉŒŠÞ†Êéy©ç·žìø¶çížÿÓ—Ø`U Ã¾(²2é˦rqUu±˜–p*DÉÅUNDŸ©Æ4Zógïpžï]˜x ¦&ƒ»UÁ¼qbbÀôb³—¢g•vô) >¤œº/†7¸'ƒÌƒòpI2ÏåK>µ¢LÎq—/g×b8¤«®… §À¯j2’ÀðTFÆ$F ”ÔëÂ(‚‚U©‰Çv1YêBŠè|3ÍêQ³&ò6@Hñ%C§?ÚÌ3%ÕñÚ—ÓúSÝ'–Åö"ÉÁŒò‘:|A,‚âÓNɬ ›’>ÖF„µHA E~PãMfß_ûqù¦ñ!vqû¶°d! «Ê´ RÀ<^ñ¡K‚S› Bn´_E8ôGgï^)(D¯&áWঈ´¸š[CZDQ­¦sê•ÖÞåü¾ž¼DhÁ(É]bÎoAÐ…\×&J4Ϫ-ƒ˜Ä²i]!²ÖÂŽ^úeq‡ò‹Ïe´Ë•h˜T9„W B'îb7É” : ² ÃM/Õ_éXÒ¶ 62KÀ‚^Â*ZІ!;mŒuŒ€À–ð+DqhåÛ%ÿ¹ H‘öéÜ<\ëh6&ñ¤—6ôñzwB • mkHfÀ¦7Éeo5èkèö¨ýAF`눂è!µw9îý%ObòXþA÷È{˜¼jô@ÐRNòÙå ½„™O¹¥ç„ž[zŽê¹®çÌ#÷~9Eá ebP´fAÅaÅ¿$ -´wdC˜‚Ðxí³ë¥"/9•—¿&2šgˆ^ õB¯Œ'Â3+Ö”NÃõ´µ?s2H)òYÌ*þy`ZÄËŠÆiÚÍlgfA·Ñm3œ'ì&ÿ+_-âŒæZd5…7*ޱægVØÉÐ3>ç?a]Õ2³‰÷mÇôeñ5(Cï©P4œFá ?/hã¬Ú6d[ŒÐžä¨w›‹H˜¹—¹øTxG}xäcŽÕ͸¡ç˜Òÿ°­²[ƒuÝÞFIÚ¼Pz´º÷Y´´Å„Å길]T½ŠÔ€a »0ëêÏ—Sî…XOÚáº×‘EÒϽŠ]"éãÝäb%{¦ˆ{e}¢Ð «Ìe³v?wÅWƒ~©ÕVmÑx¦­ 6jøÚeâl¢(BlAÛª‘B5ñEÃ’O½ŠCÕe37¢ý¤¨!pK%¡ rLXáÄè%娾u$±y)߮¥sµXºÆ›µíÏÏ©:{3‹½g–3o\ó¸Ñ–Öƒ¥°˜GÅ=ã•’¹“5àdƒz‚*Êý™\Ö(üV=/M½>Tøïi!ˆ^…‹Ú…2F´5N‚^Õîåγ'|}Âû½|0QD²êZ¯ôzÅØ³ ÏJ<»ÉA”Wø‘äÃ`õ|9õžjˆw Òi˜^ õŠªçà.?FYÁE48_¤÷WN|šÞïéõ1¯³y½Îë~^?œèÎ,ê(¼g#›p|dd5Œ‡dôJAå1µO%!u(‹¯Ý·3Kñ6îп¥i.ãù“cS`GJFÚ{7i©^‹Qª*W)# }Ã0ŽÖ¼ŒJ}[NG±Wô¸QH•®wµZh"PµJ.5ä^ëa¬,³(\=w3BÑ|™QI#î'Æ¢;4¿§ï±âRù(±¥Ý£3 4²©ÙbŽ^'üèát;+ KÉ¡¬ýªôW×9Òu—tmÛ)úŒ¢,*œEÚ¢S‹ ‘šÏh𤦩°Œ“«\¹ïR#½Xt=\1ËM+J,å“QÃÍNÎ2®¨kf©M†Xq~a£C$ÀŸS"ò!î=Á~O &DÄOŒ<ÁòDÍïÙŸËÝßN¤*’Q&YÙ}+£>ÚP„Ãæ,~Mm: “T‰k[N,Mû}èG¿ã㈲/QšINÖf‚´Ù÷#W+I5¥s€òž¤áʺŞcЦ³g÷²ºNÍÖ°ª Ì’M2Ùˆò¹JPŸþˆx}Ë”ºïOw6ûdC¦,yèÔ r½REÐA^ˆÊVìW?BXJBxS'&çôw1îg–„âòT|*‹ct±Žc4$ĵÌôN¸¢DPîU™+SðËÞã.³ä¿l–Y–’ ÛÐhÔçç…Êß8qÉmÙ„ÌÑ¢­(v¯ knù´Xǃ¬xt¹A(¥tѸTˆS:é Ì¨û<äHéÔ KÚ/­Ä.œ´D,ÞBL)½¶1›j/Pñ6ÎSúáY9ìFë#Di™@¢_g‡ŸÝ¿CÏþ-ü{¹u°>JvŒ¤}¹,§÷= zäòè<1 jõ¿où•£ÐñL]%±PzA…Ã|¥`AY •¢àPèƒP?’Òå°÷ú2þ~Üú{öo1ÞCt*‘+uç¥øRѯPÅÚZe?ÉÚï6LÔΟzÛÇZx‰Ä/ûoËl¤þׯ±VÁû׬žÁ¤æ'6ž 9¢åt ¯†L6í6Þ_ÐäýEûÇð îÑÀƒ‚—=(=­' UÍ©W!PîV¬ý4Ø Žu¤—…½ÖWˆR”™=Íosö€xQ;>ÇŒõ(^¢*1á4EM¢®¤(ùŠr1H¾ÆMˆšŒÐS(ð…Œ¼fí¼Ùµusú..5(QbK…9_ z%û»d°²ŸãeÓZ¡IiM^w™¹3«MÊ{ CÓ@QehYk0ïH÷à½æ<ãWÖkûs)mV*ž"x[…Øn¬àV€çêw“®… % ‰Fž–~g)U”À˜ó"ï¼û%ÉpÑVöR^‘ ¢Þ×–ý$—.p”O©½-Ð^˜KgW¦’ŸÐKŸÔùEý’p‹5„©TÉòO‡ÅOÅC¢ø·^<5ò j[à“Æa…Þ Qz" µuoÑ”‰ S4iªº®7dÇàïܨŠýÚÅnWÊ´ƒ]½‡ü … B¿‡Êì×Q«Alò'ƒ>>ª lÒ —• ô-÷¬µ;6{¹Dï@Ar>ÜíMjïÙ•ï lÏàß¡ˆÇ"iË3* ÉŒo+p+©ÉÁSGœ<ý ’«¿•®âoIºIùf~‘lí°ìXM’$›iŸ^8bI›B龜æu]§ä«†Ô=bE²’vË_JoQò‹®‰%ßI êvÒÀô3ý"ÞÄsh «fvÂ>”x¹LØ1[ö%€Íriuo†2«FÄóÈ9C`ä#Ð1nCT7ô7IyeZ’ÒÂ,§‘•Ž,JBV¼;¸‘g.Ô­JÒ4>¨‘U; ¢½„Ñ9B5¡erçHâ„lJä2@óì,YwU­C@PI0,æ½ <$ŒD§†žì”n˜v&aõÔÔ´Þ-Çø«Þ{Z‰Ì«“ãI`@ã=A=d¨Y=~ñÝ€E+¥-§–¡HýW–ë¼[´É’4·ø&¢¾§b¬u£jYƒkq ¨R ÕÄè…4Cˆ‹É¾Ò¿ 1j0•â£ÔÚC«4gLOÆ 9­G4åeíª¬‘½D¨J)Ï4„P—:#ÂÔ¿¬v½‘åŒ{²^ÙÒ« 2£öÊŽ» Þ–Ë· ]ÍÖV;I²·­Çr—M=føÒ.EV„DÈ׈jéFÇÕu--˰ä[ÆeXMp©b ©GU”Ž—Í·†ÂC±ÐæZ% +Æ%‘o¢ýÍÉ%òuaàÕr^vZÛÉ„roÒܺlW¥özHý–bÝ¡‡Šùªe•¢‚æfMšrÛL\M°™cï= áv¸[ëáS$ƒsÛz=w¹AXеØü.áÚaï½õvÍ(ÖËLkóKµED rý¬°½„G†œ­_‚Çd‡ìžŒ4Ãӕׯ¡úÁû׬@‚«¡0)³àcRž‘M˜Ý!FT$Êê/­:Ö“sOò=[pœÃñéóHî£Ô ²ö>oK1 (Ä`1KaÓJsV8Í`óEÚ†¯ÞÂGPµ{ªÊ²Øñ®@òP>RJ·+–~3ˆÁÁ•…_ƒèpª~14®¡Ë¡]ï®ÚdRFD¡‹]ÚI.©Ýš¸+.±½GàP¡ VÌ–U±žFkàQËw-‚DîC+ì~u«’ìî-Vû•4&ç©”‹yœöxïiÃH?<™Ñ¡T½œàùþJ¹ö ø`Óñ$Ø‘iOÊ'äÞ³Ï6sAJr"dBK±mæ¼·^âŠ8°4‰™°”3•°•}*úå¸m±î6¦0¹2#ýZ;¼zzŶ†æë[‘1ÒÖ=̈>Õ:¡](cLêiíØ¥;b[ýôèÓê£í§u G$CþÔe´³X¡°$Û©*Zå¤-åë!R¸…7ØM¹ Ï{ªyÅÉ+W¹ê¦£e7¡‡t}·Ö¤³·˜½×ø¦Ã®Ù¦Nv…«ÆL1{ûh‰ÇW>¬]ýÄãÍ5£ú÷’wŒŠhÿF´8¥+"ô@} ääf¡¤ÖûOƒ?.Ú RFˆîoA’-Ñ“ˆÀZŒªèýW¿Â`=¬OôwÂKï:â«òÅZÞKgeÄ/J!Ãj•¶—ÌQ"‹úÀÙ±±ÝH&’yvV³#-Òæv1˘S9§4„eì´²Îãd ðÕ§Œ–{ÚåÓà'GΟ ÙìjŠa/+E;÷@f$Ä“G‰<±rôÌ“jF=‘ô„Ô[G_Îðž œm|Sûy-Ú µi}ø3˜a•1“[î>*¼rûw­À Ñ8‹‚ý øWò/éxÌ„öyúèi¨§³£¡ËÃf³Ñ¶òêw(e8´oë]ܘI$^j Y’G®ÆÁá”4l~ðMúÐûi݆7–&Îh_­|ñ”Ä3ö&ÞG!*£…ú„.Û9¥«+ÇÔþÀUÄΠ_Q7O=•ô”t µŽ#@RÖ–ÍpX!<ãpµËù¸teÁŸ(ýžIê^˜÷ÿD)ºo= a“$žZÌú?îg¶gw®y•çgžå dÉÓ-OÛò÷rdàýkæF]m4ÙÒ;X¬ªˆÈ ιò3S¼å_o$Ùž¦xºãHÓ@ºn„ÍS>O_NSQ¿}¤^¢U”ÚÂÒ´òLYQ×È_ÅÐd Õ«3Ãy„%j¤ÉߎµÚ—`âVT2°íÊ¢Y9-u·–í™Âj>€~ò£³§½ÔØ¢Ms§©R;‹ôsŒº¹`cúL²· ‡¾öz¡ŽMè”#ejçõ8§ëy}pÔµ¾9ØÎû-0 —1²QÔÅwІzJ¶=§Š\–ªRÀÉ“NÔ‘Ò{:ài…§'žæÜMÙ4eýæ×À2æ¡ekþ0Ñß½Ž?êæ´çÑž™\Þ›R<ŠOÈÀ@*fž{ïÝ#æÊ»×Ìòîõ{¯¼›½;Ÿ’¹É©3ÎÐ ƒ¶1°¦5™TRÙJ¡}‰FÏ*œ0\õÅh!c*š‚†GO"<A©|Ømš…B¤S eeÖ<‘ëȶãS)½¿½ò[¼K)Kö£šéã!)m½åªH)¥Œ´&1Gû£è&H„ëÅGˆ\h_íËÁTÙnF‚ùHÒû”ðŽ{öçšÝ]Ž¿¿ ©v¸ïéÃHCNx´y9SÜ{f®ƒY5 òëVÞm‘4bbÐúfI7Ì`ÂÁkÏ,ôçÑØ£º7Õysž7ùMÍ‚éñ‘;.¸ÇÇÿ¸!gËäÞr&ß¿fY•.ñÒ'gžA.,èîPoþ#éÎdCÁ Ûlð3`ˆ%ðÃ[rVA`Õ¥è{ì˜bЈeî1ýƒ;˜¨IEí¤Ñ]4؃_¢µ}lædÏ4䟾\x×[‚I‚Ú¥ëWÙ’>£r’uéòV}n«Ëu)²“S¸ƒNîÂ]—Dzg¦uo~-ôÞˆï£ãÆ:–f½¥ª¼MS»]º©OIõi«þ±&êbú&q.4ÐEúd—o3¦ä¼~ýïíö,íªÃÿáßýBí‹Ð$¤ÿ÷×ÿüÚ¿´ÿÓÿü§÷ÿæo¿þ·ÿÐÈñHÕËM"þÛùdÌèÝP9Ùdý­ üí_~ýù×ßýí¿ýú·ûõ¿ÿ¯Î¸#þ»åyê3"ZµÀnp<±GòÖЩ(¨7ê™="­’ Nã<€…ŒÑlЃ½¶ÿ>±ÇFd6æL7²ù "VI^fÀ#²:·…„ÕGÞuQ3cD Î?ñ2Ü*´'ÕGNa%¼ŽÏ@xAéCZš¥xäÔ¨ÄL‘©šÌØXjGLSqG4ܦøß8×3/ƒ¬?2eÿGv݃Ö:(kå‘wá2» =AÀ!Â6‰•2Ý336 Îm„»å§Xk`þñâ¤>h©þÝç!–PY4 ÚÜS3’«ßîñpDÁ!e{yaÐàúÜ>ár{Iƒ”=±R eëíÁ ^kêíeÙ#*<#än›ýŤé| Y@¦Pè9Ë#§>àÃH(|Ø´®§á!׸=&ó$–Ū0©>ñ.MÓ¥ÞÞe{ä]ÓBdàÁ ÞæCÑÖ{g<éÀ-‘ípó¤g0[}F$K¬Õƒ¶mˆó0Ž1[ñèÐÅÒ@&4”kxDØAàndçꆅÇ34G DÄÍÀè“Ë3“éEi ð3{Ä®PX429QùÌ`Ãn LzX¡‹|"¸!ˆ‘Ž‹º—§¬'û!"^­Ï 5Šž)Ã:Ÿ±Ç”†ÎY,<çS::ãAžâûÞTK„ÿïtÃ?tfæ õí)ØéBè3v[³ÛiŽÛ3Ï‚ì>?û]Ÿ‘uP9…q˜0?rh6ìXð;ÕgÀuÅ8x<ÂcPY÷d¯eä#=#ËC>i\ë@PØ#ĺ9ÒcXü)½­ü!Íp2Ïg1—gd„¶'LÑû]‘”Q˜µÊc|FQEgpúŸÏóŒìbXT£O ¶AØô–ž¡cI\¢ˆ°{Æ …ÄlDÓ  ì¢ƒŽkø7†õeÿÅ7"ð'Ó¢\Ÿáú9Jyz¸ãŸbÒÁψ|æÐxè(×øŒ5« u:‹®úX EãÊMΈ¨_–&ÊšàD%ìó‘="°‘BÌUxFÍB¦4‹ü.ç#ÐÃ~ÈÒE<Í3B#ªZ?³Cä%³,K“#žy*nï‚Tîü !CQ)³õ?¥¡'Æ‚>#×Â1D—ÿ³ªe8ŸQ-Ù÷pCæÉ#äyaCNÝ#gÞQ  .(ŠôPPÇF¥Æü |>„`¿g&Ì ÙC°úSbwÞ™Aðû²4v¶ÓzJ±„$Æ‚FèôøŒ_‘Œ2kìà«7âÄY›à÷±?eG?™i—š*ó £F×V6iÏS1Kó8›ò!ßè?ˆhC°þôŒÊÈì6cÊŒ†z†QïdYÕ1‚ÄîÏÄJ  <‰ º=cŠÉ(l†€´égˆ-úÖÈ©Ïô 4V*ÒŒüzÆ\”OjÒYuç3Jc¨»²ÿ®Ù€“†"äÇÔ˜$1¢ˆcy(p`#ÿË÷ža[Hö-bT~*j‡©‘¥™¤üû¾ŠªîAögâ•bö(©±¬G. HÍŒ¤§¼…Ò òÉžQú“6)û]ŸqŽÁŸX[©½ó3€ƒŠQEœ:o4-R\¤Î3 ÌxŒù!}#1ˆãIìxùICšÉ¢{ k‡á(ä':zxÄ2±3%ÿ ¾šŠFh§F\cIMùx‘shÔ×SÀsHÆ3j\cBJdÆ>fêØYi¦ ¡L¤ÜM§à#¡,;Á°8ÊØ<ÄýÑ MnØ“–QÕ¥'ócž~Éiûý”Ï[29%úŒ=”bs´·r»==èŠr0<“/pT©ºŽ ²§4#iýØÞå)Ö &C%c>%'1Ç<ÚÆªL>o:ð3¦êÕ/#ª_=¢¦)¥ˆb†Ï ¢ª:»}Â3ÿ Õiú~”Pà§ôUDa°¬{ÓÒ™ñ‡ :Øã#ùc;ªÈÁƃ ㇲ8 ZI½ë3!A(ÃM£me„ú3®Æ}3ðöH¨–ÄÇÔ'sŠPá†ÕmQ-âG¡Oäf¥üT*,Õ³Ðï‡-Ô–cwâ§\P*ŸƒÓé ë`<#.£p{Žjîxäe6 zCþïCJ ű‚68ϸÌ)Ö¼‡‚cQ00œå§Ö™Yp °ÒÛS‚ã ++ÊÙ>#ðÀTVX½¹½ÏcF£"6ÿ‡j¨ e·²‹aSßž¢ŽûÆFì¿bƒ…‚MË„"í2#®úŒ¿·‡ÂÞ¬ÏÃïüˆKkßvF&å+Y°m|ª* ’-›¬ŒTÓú”ž~©3åú‡4fTᥟ–QqQþ¹÷SÕD*Û8%²šgÜn tèMýL‚-lôhº†<ü‡Rª$É@ñ¡€DØ;ØLà÷3Ɖ̞yOOYóP0»BÌ«ô&s¨ŠHí·2Žþ!O ŒéjyÀôI”·>+¯qœZéBcÕNG~ñ3°Ãl"z>$£σ©œ <©j~È͘X›Ïj(#QÒãC\Ë4P/ª,Gþe0'–ÞA"ÂöL ˆæ~°BB[`¡ÛCÖŽ“ËR öLa°5"2èÇ<âü«å™:X0¬l^ßžú™C£ÿVe¬í!ÆzåÄ>“­ /GB³{t…{È”š€"} ¾¨Õ…9ÑÎ+4©#i£Ô};ØÚÕþû/ÿôÇÿñÇÿ•~k£¬ðÇ¿oÿÿß~mü»_!†Ành€‚¶T€y®ý&`ͦÞýË?ýú‡6øÿþµ“ –Ž8ˆŽ@mÜùµ±ÃÇØ™¬>‹r}cSeS´ÛØlcqŸc Fé—Û(½òQúås”]à5ʾÜFé}|ŒÒ/·Q(Iò1ä(2 nìkœ;þ S7Þ±˜qýM ASe"ñŸíðmû#Bñ@}÷ÿŒûõ‘¥îù1}~Lú±Ì>žŸsV~ ²ûû­×+xïðÇßcÿ{0²5ãÿü·ÿü_ÿó?½ÿëúãŸÿåüóÿø—¿û{D~6•âÏÿç¿þÿþwÿçßþýEHæ«5ðC=•Ýi H¬KG/LøþÇ?ÿ¯ÿøwm˜_êŸû»‚õŒûŸÿß?ÿÝßãÇ­üùOøw”Ž?þü7¿¯åÿ篸±îÈ¿ŠŠEd•dpÐÿ<7íý¿âÙ7݆؟ŸCШ&b~ Il:lHÿósÈ~4‚´!öç焤ò¶ýÏ!Gé—ÏQ% 6åñ1ʾÜF%Ø4ãç(ýò¯Äª¸7.ƒ¬(º§ÈÉþl˜fxE'¾à@Ü>¿†"è÷é×´}"Ì5»¾Àxƒ„AýË5HÿcPÿÒÙó_ƒ®/× €AýË5HAàcPÿÒýkî=Ú,[±¬ü3…vm_ŽÜ´ÃýÏ´ßþŠò+×?Sºý[¾ýUÚ_¬·{ý€Õ„øô¸û€Õ>ªÃjõ«6ê‚Uõ «}T‡Õ>êVIY C¾”qHYÀ†#n£Ô\91úeRÝûÉ^#šA‡ø9&Ç0Ž—!}3­•P8õ6‹]ƒlµA¶Úb¦÷m´×Ë…PaZ[úêpºñA_ßÒz&Ýøj&“*#Zânu=#=º·´˜vô£ýn ÌÕå›Av¯?:C¿ºL×Ûôíú®îݯYí³š`|]ãOfîW¹Œý¦ u½…ÄTÖõd &pÝåDöx«‰úã-Ï)—r=âòE I± ¡ê÷—r=b`Ÿë>â5Øãg¼åŒ¢Z]·|¼ÅÒ¶Ï´r~0kØP…p=k‰ÅdH¬&2XMÔAâïqÄòRäª/øæR"£†ázgõñ/ÈbAâü~ä ¬‘êåLFo–3˜®gRð\Îd๚ÉÑ–Õàš«eû+hþdùž«™ }Ë™šŠzéë™ }–ƒ }VË]˜¡h´š1|¢Ðò†>ËýÚ¬utùÉ!:Ú,g4tYÍhh²žHÑc9‘¢Çr"CÕ KªU4ùÑ…º,—7tYžÃPå[øèè+0ât¹-Ðe5SG—ÕL]ƒì‚/´Y,Ûe÷Ž6Ë™î³Qåú>ökæþ1xJ`:ö®vì]/=0ô匆ū;¯fêÚƒaózðÝ#÷³f{—†ÕËCF/¯Ç0z5¨côj¹ŽÑË™ £—3)F¯'RŒ^N¤½œÈ0z9È0z¹šaô€ÈPloÇø&óíB±kð„ïz-z-–½Ðj5SG«ÕL­3…J­–ì¨ô“;ë¨ôÝÒ•V騴Ú_G¥Å '#¯– ŸòñjÖ ­³u´ZNdhµšÈÐj5QG«Õ ŽVËÕð ŘãÄ~5v`Jƒ¿+Wƒ;欗7û’bÐzyÝ«aÒjæO¯ózŸ†IËA†I«%;­gRìY_Ë=‘~=£aÑjPÇžïî¬cÏr6ÞÕl†=ë‰{–)ö¬ac€y4Á¹ãÇÄpb0 þZ,é0¿|Áübù Ö—ËÞ®Ëï°¾Ú_‡õÕ ë«CtXÿÉ!:̯fì°þ“×è0ÿƒå/Øÿæ/Ø_ÌzÁþb¶ûˉ ö—°z‡ëRÛ¿¤â îpý1ø{Z¾ÜázµügôÐÏ–6Ø^ÍÚáz5ãM"ZÄ`{¹¤Áöa°½œÑ`{¹7ƒéÕ Ë«å:/g28^Τp¼žHáø;à0:þ£k5xÏ; 0ÍoµÃù5èk)=Èà{µ\‡íÕL¦W3u˜^Ìt‡éÅ@§8/—î°½œq„íÕŒ¶²Çã‹ÁŒ/–½`|5S‡ñÕLã?¸‘ Ö^¹V ï?¹êË[ý,/}æ~\Àób6O«W3v¸þn®—Kp½ZºÃõêþ:X_c¾“WóP/ÆÜ`ú'ëh¯Ö5ˆ^Ìw‹ZÌ5&ñ~w–Î?8K‡æÅœˆóì.§QÐ]M£»šÆ€ö»[0¸]-g`»„HƒÚP;~-y| úÚqÔáv5cÜÕ µ‹e/p]Îd𺚩ëb¦pƒÔÅÀ L—w6PÝåŒP3~F«®&sÅOž¶Ãïj—€¿»ÅyMø.,äóz¹˜¯ƒÝbL‡ºÕšƒ¨»˜ÏI‹y/\ì¯CßjÍAC[že„Á¯ç½@ðû÷èP¸Úæ„_OÛao5ݽŒ×–îtôf»7º¿jb` û1hÎ ^—³À.Ä®–ì ºžIat9“éj&ÇÕWƒ;˜®–íð¹^v°û®f!õg+¨®'¾û8~4±íOnµCí·@ÖtGc¶oßÇ ¯UŽÕ §r¬–½t1ãõ«™ìÝ„¦õmèAµÍÊb]û¦öä­{Né‘V€Ý'îà N4R í_Ðô%žD ÑÑÎVN~9ªÆòWµðË}ž¿~½°³ø{Ë´æ ÒÌç8ÐöŽmÔ ÚÎÄZTî/èÒ|V~É• fJ[?eùÒÀ-TöC•µ_•ßè>]öÞg|9¬Í šË—ÛêØQ{ÂÀ\èŒ&òl^³¡µa…I;J[»¹ãh_ö½Ÿ_Ïædñä—=£”KÉ oò«öDìƒì/´–Ê‘»Â—öäØqN˘Ìø—Ûš\`;8’S3zEî¼Àv9£€H“tçåZgŽìâÃóìguÚÓ6‰% T&/ãiŽ$€‘6[ÐÓg`)íI²Ì½WùR¹ELg# ;„”ßIFd´,ÃuUé Ô¾dé±×ß_hʘõƒ|ÙÑ`ƒÄ—¤óš œ¶w:qÐBÞÅ/õwæž¿³Ž‰ÜÞ œä,IÞÿd ¾l•9ù8dÖ1í²@m5i/‚\_ŽŸ;.1ÈW,y‡-@dÒ=o;"ä)Dÿ’j–ÕHŠ"Ûƒ¡#°|9¤ ýɱü‚H%5TÉ2KÆå¶ À $Yg>'´¡OXûÐ0€wÜà¸Ýä._¶h¿³{48ÒÒ­qÁºIýüxÈ bE´æiKFSKÏô~å<Û!µüAÏdÇ[ •IgÁ¯õ °§öëM¶g»­,÷î0ÑaêˆÍ øvk€¥Òh_eË·£ÝÞŽÞNõ”æpíËÁ“m&Ûã¶œð/7àUâ%”¤€ îÎt²—äÑ­ 85œE9‰kê3XnÚLYHÚvÍèlÕ‘¦í0ÐH®Á6úÓâŠô.‹ÅÇÚ$UƒÙ×Jïr¸¸=iYÚ©6¹˜ƒ1©ßO&ý eá˜(}¶ä%Ãjôí+ñÔK=Cå 70×W|ì°Ž9IôÚA|8O-£Sb¥X~«]ò®Dæ¨ìgÚ‚R 7XÀÏÚcÙõ@ Íà}ûi‡ g2"ˆŸö¿lžÄ«£mæ”ù‰9rTކ¶k¨ep4ÚUä ²&dÒ-ÚVn±èãd±…(Ó݈rA‡»ÐÖ¶M¶[ÄõÉ»ÜáOˆÎëyOy“ç_¡€¯$R *⡪õSσ֢¤aJoĶ!°@ÚQAò/;Ém'\(tˆÅÏó·|ho‰‰Ñé¾Ên¢¼7šB#ÿW­‡x^𪶢1³dFi§:åK£K( a“cì· »µŽËA9¢°Ï6ó)LïÂâ(3ó” UtM¯Ð¿Ù{Où¹çù¹`Ú Ù³±¢*fn[Œ†çy@Qñ „ˆúqÛURZDñ¨ñwž2…)ãpÌÅ3 Ç£v‘Rsz†/È…£(Žþ{1²Ïj^n­÷t?nËžóެyäÝŽ½Œ¹™½˜äíÔr¯¹{í~$#ôdtBj5_à5BÚ{*ÇÞµC¯=z s¢…šª×fgo;uiÜ¡²ö<¿ÚÔfUAœÚÌP¦0>A‡*6y„s8ùr;~¥Ç'v‡ë”÷ØåK4]¬6r’”€i]|kH1Ú‹·Ç!K48ðy9tÊ»q†AõÒªh=þ»ësõmšBÍ>  ûW‡/è%v,ÀÊÞHL‘nïùüè3 v+¼*ì䇠h56‹€«@•¶H©ðóK%qØŸMò>÷¥Ô@'F‚þ•;HöÆiwQöü²›‘iœi¶šß‘ßµ?Ùøö3øaˆï|rf3jâÙ:C2nÄÝÛN•Î% ۻȬà²×`&ÃMÔ“Ð*&œè@Ö6TÓš·(\x¼TõþP ò³Ê`ìTD¬2õÖ QÙÄ<ü(§ß»A0~K‡Ñæƒ;§”<:È¥˜í) Â(Ésk¬ïèê.ck”J¡&0`¥M. ´1p YûT“Ív‰ ™X겋˜µaK©$XÉ0qIªmZ¤²ÉžYUõC²ÑÏ6ÄI+TÃI u?›øQõL‰¦ ÀfWÊ ÛÁv|ñ¨ë ”®ÜhÆ[d>ÀÀ¥)S¿IDÊoå«1Hqõ\ þ1ýfð‹óÚJh³…l_ ¬ˆjª 4¾a;A€ ¶ Y*>€:mòä.o‚¤oG1£N{)Ì ‹‹Rž 뽇óЮ¦ÍŸ¤Hms›¾ „7È(¡[+¬I8Q6ÆQDŒ Ç6eÍbLÂ5»„5¾}Ȧ$˜D¹» 1G<iOÈñPMDíÛÑ}[¢cÈ r}½’#læZ(IˆòqíHYŠçPõË.=kª¹kÂêUò”Ë‘mO$=!mD Ú1] ²åãÐv,I”—„§‡¼³7z•ÕŠwB’l‡è‹ßoG)ÎíMArŠÈq[ÓÉs—>1b†4¯<êyôlkHÛŠQuüð›°Eo¢ÖôKèC¤ û®JÆYy亗#Vô\@÷¥W–¸ßÀoHË2_+4rU˜ªÄà=«·£ªbv“·'Ð="Àˆ#/‡°oar¬ãkºzƒæ“<ðª@uHOóx5*Im1Gú=wpÄ?§q‡éžŒãNQ&ÇÓ$O·FÚörœü=š¼`5‘½ŽLÇðAéN¤U ¡´³@B`v5ÒÔjïœ[»¸UçRÄ(ixiäåˆÜ{J¤-j’Z` %Aƒ@þÇ—bç šNÄ×¾­| ÇÚp‹9ŠÜ0asžŽ„y*…;-À) žÀz"ì µ'æŽÞ,á%š j?èÃ[$¡×IììDØ©^ƒŽSåYUÚùq€<98„ùÀ[Ôd kGÕg׉qQ¸S ¯ QbÍÀe„b_ŠÜ²Fà°høÅH.ÛÇm*€“ä’¯ö#(Œ€æ]©ýÙ(Rá)Ïn"¤ˆ¯Ç,ý  8ÂߢNá"ß®kSk)Î@…&îÊQáë†:F3•§‰ðÂàëFoaÈz··d¼2q«JIlT€‰7Àƒ£Þ€ƒ[ÙQK:^à Dh5e×ßQ~$Þ•³a÷ζ<Õ¾´­‘zAû‘%£Ê»‰)yÓ.s›h¿´SKë³lÖäÄ R¸Ð-Î$Mk‡!ÑqÿÆ:¤vˆÿ)È{ÊìÔdêÛ&Qm±Vž*®ÛúaÃØT̺.:qJ›2ç‰GÐ9 ½_Ñû½Òû0G?'hS•@£xîjö̸âR#°ZáC ªµC~ƒÇ?Âö ¡yI¢Pb>5š0DJˆZì ÇDu»„°ËKÀ°&?ÚÄ=шŒÚ—õŸÄÝb¥Á³DGQÏüïØL¨fB@\”²G†k×µQ‰„”a6œ0£…£v›‘KÖ7/ê'j ãV×\)&è/=鯜º_ö §AÞ]n'‰pº¨\wEƒ9ÇÇ^•ßStw ïBäDÈt‚¨V½@ë-†w“âD—ôú¦×IGõ¨‘p-ðš­ç… ð7‚¨‡â ¤{lðã±ÊcÞ;(ãÅ/y±i¤åL¥ûŒ’{ÿšÒ¹X»!ÖÞ‡?9qÈ‹LN¬ò¢×¬=è;ìðä‘Ìã¡CUÎN=ñ ŒÓq¼4ŠÛ³lÁ!rñåØû{*y™ÉËU5¡IáèbÂÞ2 ña2£èUÅ -É@&"Š—bFIçåPø=EsO ¼5Å[\¼UÆ[n¼×b´–7¦RD´Ö¿Ä‡3˜ÅÉ#žy–çÙ¢g#y{æý÷Ôp0+ƒ‰(IîæÝm hQ’<þònƒ¶Tã ØRD—l3žŠÖf§Ï' ÑHH‰»¨BBBràI°­ñ`ÐXDÇ<¬%GmàÄä¨)«üÚ…8džd9™\ŽHÒNêòÇ.ÁÎx±]†úg ɡÛBrvÈëQ‚=6R×£Q–€1j#>0Ô$hÞÈ4°¹R2fS·pMêf–“6Ì jFÈrTd* DÕÚ·+ìT’‘d\„zkÂß}™{† Qü$‚!k*%x‘ñÇ ˜\‘»DØöðM°’£–*ieÀ±– tW§Zì "¸Ž¾;2ªˆ¸"„”“®¶Ý1Ï• 'ýÖKM"^«%Hh2 Rïá~fyÑ,š’™wÞC[”JBêhŠ/§\¨pb$RðGHE!IÓX’fúò”ùM_rIK¦š’ÇCÒ†ðºªFmð¤ðˆ3C.‰·G¶“Ф½´cY¦ómž”Ê —!t{›÷ôùÜ{0@nǦôH­[»b$D ÚÆC qV‰/Æ/ƹ83ÍÈUµ xˆ[µÞ_’$³ì’8Ä÷Ê"Óž§z§.džÐâúÇ›î\ª(uÆ—U6Ž2sŽ‹z‚ËEJƒ»7ß~ÕhºÂOƒÀjŽU…Ÿ(–™ª9s'^îgïéÔ~y¿E ÔÉuø+ËrÑÇ¡Ta8áY!ü§÷nZ/²ã)öûª.Q³ûf.$$mÓ¿›æ^6É„¦?Hfˆ\ÐiR•Öú]¥l’2´— À’«p¸ý -¨´ -Q“Àrƒ†œ{Ãàäî0¹Ÿò©-Jaí…¢ÜÖv*e¢BÃbªJ2PYlÑ ™óîI¥ÉŒ(‚(û;ô‹¹HM\A&>¿äh'ÉÃÅíH$—óœç¡²£Ã£—ãï9tŒä9½—œÀàé§§±¹<þyà±=V ‘¶K’%â c÷Ìß £ñrbû{*Ùûð"äˆ|¨‘GJjïØ½ÕÓvŒÝ3ÿ‰€àäq'²{±Þ‹þ9©Ñ·™—RßIÕ²ê94KÔ«B¯Q®xËžaˆ€Áê&yt]íK\§ŠL3š³p§µ¡ Év9>˜lpvh\«,Yé«aö¦ÔlT;¶ à¤?4¥B0„±ºZD¶÷¿J¤xؾ$5_áÀ‰P,A’Á Öª&hA»†¹J¨D.Т =”ÄW®¥—g1ɸ>*e ”RÞ2èD½i¢[9ýËëhåu~oØ(†(T"$‰ÛSÉŠŒiJ<&ˆ ÷“Lõòމ¼Øä¥Q'±ŽBíË!ã{?èc }¢TtèÔÁ±u _àK—Ô'¼ø=}ñ4h¤S¯ÑMÿžzò'~çë9E‘‚K˜õÄHâ )žÂx*ä)ÕÄá4p§¤{™ÍËu(ÈÄWì Å|[¬øPRÿ¶9‹#jÿÐAš­ôèà A :FŠÒa±.vÎD—0>r¨ÔÞÈ"î/'Ƚ¿ö`é…ωâUu¯Î{•ßY¼á`Ô§½Äúr–Â÷Üšx³6:k¤ ïA©ƒä ´ÞOç øP½Ÿu´}*>~DÉPl‘R©tÒ6K±«Ôë£d| ¶r à7ˆ4o'E*‘/iÙ¨žÐèUF~\bNTç2vUÊm´²!kcR%BqäË¡"òý´0}Û¯n‹ë†dyhŒIö#B6’-’./‘œ¨”æÍ‹"lá‹|Ø…)lMxðF]h¯XJ`½¤9ž²ÐçîdÇd— h¥!æSž‹Å®ø«tS½r¨VÉL¸”™‹T0ÃZPDArPÍ‹: @þ-Yý¼ÍÆ[Œª]mÜ¢ IÐd˜k ¹GÖºoYŽq¿÷ì ÝbC[U¼È›fÛnšA‡ 0ya!y“j8{(Ó{I²&®dIJLTûBá$3æ‚‹6T¡i7¨½HC°!ÚlÆDÕ£v M°ä0£ãT9G˜Uº[äu:ƒÜz 6æö Ú·'}OŸÝƒ†ð¤Èò«RÌ©‘›“hA–{5Ÿ Çžpõ‘ñ{®êIÞ„I9Fæ™Ýˆ/DZßS‹QÄ>R çýTeýU~…›SXeÕ­öåTÓÀ_™U`ÂnKòlË1“ˆ­H¡×ê«ã½£<ór¬õ=g¿#‡ök¹í¸;9a¢ŽÏ†5µ!ÁصT[!ÑöB›æ,L¨§ŽªxÊㄎ—À%­3¢½…Ÿ’TÔz+¶d“ÑÛò ÔñX'#z)Ò š^(šœÁSØ;2=£ä#µ÷aÆ5g‘cÔ³R©%I¦µ0¡á‚…g%Êa…¢$¥<¡ ¾’ !z(RÜAHtV‹¢mªlû8µàð ÜB¦Qu 5ÏA±¥$ØH̦,â¶ŠJïO>ù  Èè¨qvÕŠ5Ñ0÷aö-¬—Ï+?~U­„)g憢ÝûI‡u›ßê‹«ús£^ïu/´gD,e$‰ý$˜R™m1N³o¶Ÿƒ/÷q˘gç½#U`´Q¿ôW&³AÉ%ÁDÈŒD­{AÐ!ª"N<~ApG¢ür»~OOæ︟í$V'ÑxDèýx²ƒ©‡ÄƒhŸ‘;»©,Â"(í‹ f<@æXR:ÐÚN*%eHi¤Xª˜NÃ=˜Ô'÷áå,/‹9òñrûÕ»A$¦+±ÚIrs5áñÄíC²øŒÄJœ1Xõûˆ¹ü¢dq«B§¥òÁ‚5d3L|ªmœT¹ù¥vZiÒ’'jfKQÇ6³xÁy7y<²;Ò³’­`Ùq‚ª£å|Œ,²”J­êNžDع ¼Êð•B=à|ÉÃäªá]ä­ìußÓ·÷ðÑd]Ž É Q†eþ,è³H¥µöÅ Ú=‹Z‹•¤MêEž––‚NK´uVO«†ÕQâfF,óìzJR¾¿¤ΠÆA–‡>¡î¶"º&°lÜiwj¼Üvq¡Òœ„õ-·œÿø¨a‹px’›l!.`_¼‡’L’±{F&TbFIǤ'džØMâhÇó(çÑÒ£®{(ÿ˜“â5†?½§R>ŠÊGZùh,±åbÁ\¸˜(BÎ|LâÒÕGÃŽ³/IåU#Å€ ˆQS ™Y“›;¬ž{ ÉN^ÇìN‚z]ܯ ®´ð°|«ÞX‚ƒ¯^·SiÕ¸[‰:œÔ—±ó¥î|9¼iué{êrŠÎPL,9n=ç[Þ½ ´R éñ‰V€ÇÒµQÒVÓÀcu²6Ö¬iȧ–—ÚE޵yvi¿É*âZÞl׺ۧÆi• T„9õWÒ$7¡U&æŽË2 F3–),¶ã,óâ†5Ëy¨ ȶž·:nx†IaL_<ÓØœÔt5݆ܖݡܹ©Û—l@ê‰'¢â(ªÇ"‡ilÏŠÜùBx¾XÞXP©Ø·šƒï_“º„¾v᤾¡+8ÖÆóÕó|…=_…ÏWêóÕüüe¸ ócBT¦9 CÞ‚KmðÙ®"¯/Úë ûŽ¥_èÞ3Àœ í±=ò;ለ&jÐkÖâ{Iz6‹m×>¿(ǾÝ2= á#zVM·Ë°­§nLO`¦®ª(·™?Šeü\ëH§³ LÐ:'£ò‘{3–ƒµ×ó!u“¹Õñ °^àŽÅr·µ!þêžåç²x[Ú *c!|8-@ f„b=kð¹]=“Š3¨ãyš"Èsf+å19‚?æ}E}ôŠÍH.>µ>S¥óq%®FÖeÈtÝr15Z4}ÅoRé•MÎ/½ '@rg$Û.ÛQçs/"WJ }.qW•åmo»){UÀ„ô"ˆQÏ¥E2EWYK:tðWjB¹ÏÜA, 8¾UÉĨ£·0ߘy”Ƀ÷>SÀLfz¡™ó¤Í”Õƒ=’3Ñ!;fåÏB½H}vs;DÌ£3q3HZTÅyվĴzÜt¹< G?¬{5…KŸ]µOÌVæÁµä…dë·/={ú~9š Ìb£4\,{»(&`¯Z&U”ñÁeý¼ÒÚ‹R¢f7>$Ë«—šm'SSÈàõV(ƒbL¦a\I†ÂrìÄz$S"â'Fž`U:W2˜´ÂE ÍHM·»ø¼.•Šndå=Ý´?ØôðÃù7M‚ptJ‡ œ"t~“.ew<®{r€üõŒ/g7üßIãH;éÝ,+ #x„JÓ–O-¸vT‹öÔÓXXØù¥K@‘ÒdûÕf½WëŸçãÊ.J«EÀâËÎÔlÛ‘€L3¥áíZ 4I\j¯8‰ÚÁŒþbÜ¿¤žob誙xk;·Ú«[W fݬƒ2D9»šñÎ"u^mz¨‘x+)ÁÏBïœm ’lGÐ~Ôô-fu!•f)=…$ü«œ‹:äÐ$ j1aéDÆ¢FtĸæO&6a´#Ëœ°>Ï= õäÝq€ “øÈë”oO]'Øé !÷,bB‘0èƉDæ¤6‡5³î¨÷r°óž—­&Ò×(¡!Lr|T‡ÂEDzª tZs{—–¿ê•t¨n‹ê¨¬ÿ’A6=ƒô ç~ q’þª`³“o‘8l"4zBÇÄz9òðž’Of<)räÊQ´‰<ï8–gjžñ|…‡Ä`ìJߨ~ËÇnpv´ûÒ= ï  FȳX9vµæÂDJ ò•?ÉE§”¬Ž-£}„8;Š«6àMÓ®$Ý~¸´Kœ±VYßOI­Èµ“"äÒæ3}ˆÛиg¬ÉÑýõø+D7Aì¸wÅA)¤¤é!j>v æÎQ=ð+f(fh¥Ž‘'ÿ¤)ÈFS7æýjºÑåÃŽ¥¥¡iëBùo•ó¨53&\™ÊŽ`ÉRc×°¸ßÝä›p·åÒ Dq—„›^ì¾Lî&=5¢[ÚÙƒµîƸ‰ÁÎÙôœÕo4 ¾ÜßS±Î“Ozuòl²w^u«‰æP—ÎQ¶³© mÎya±¡E¬}Áìu>—…íM®Ð_³Šñ¹^â@Þv‰´—Æî'º5âC¶îˆÉÈ5/ $p x. Ö«&Àl™Qí]£5FŸ Åº¶=ü{ñö`o3>‚¤°F«©•™®¤¦£]ûqÈÚI%?˜mu¸+•ö79&x»„šR¬(UÍš|jNÈÿà¢c½:2³-J²€"©³FBi —jž!ñ¥ÞŽâ&ÒÎÄ^/{bî þ„)82í(¹§ö&pâaÉÃ[>Å̽W½_»¶ÊŒRTú¬ž"]±Ì‚žâ3PEP±\Ø.9rõ4óÄĈ¬~Ï0±4³Iâ|:¥ý'}Ó«"S?™F¨ý¥\3q„oi6Þ™÷‰Å„M|ác¤`m¾©ÌñµQnbñgk!èÚ¢%ãQ´Ó£>ì óJ§SLî::˜#ð:øž¡ýR-$Äh‡ý1ë²ZàLñNòìÖþ÷öÚÔ8KM—X­Y&¼`E<0²Ÿœ%åh³’‚p9‘hl½í8õly¿E wTO&Tc€pë7„,r¤¶zÄSÐÌÍj7óqyÚöž¡eËdV¸PT.Áë/¸‘±}„­`߇ÄÐXÓe«IcIg±fÈçÔá°Có$OÅSìU4Aü°’çxUÐ/4³¶;AèÎõ* _ipÆB§Ž»Ãr‚H¿´þ”n9²?Ñö!·; ¿qÜçb?}|è@ê"LÇ TXˆèI+VÝhx¸Ï¶évo ‚Òaýà&pâ`ÉÛ"GAÚÓõ‰¬1Š##fŒ§x¶­0+e'&§š :y8ÿ¸8@z¹×|O_Ü…‡›Éý1ÜQýuŒr‹m¼ôã$/DMœóÞï‚j|àÍ$8Çð¸äB…|8Ñ$äȇ%ùk‡=âëKx.ý¾à¢"œR»«Z9v„ZìZ\L{È— @׫é<|Š£*^ãIfuµ¶˜›\O¶âçU*¾çj®aÚbàFÚŒÁR#£§ú;Â>¡ýí=ip”tBmƒ–·Òf¥l!‡€WÔ#³ºn }mo÷©ù؇ˆÿ¡Z»qfSQsdšK†qFÓ¯w åÜ’¶YbV¶Rì……!4Xè¶V¯Cô‘¶ý–À;jª½“²£à^»t`„Ù‘—Â:6©r²gK-„.EPׄÄ$ÆÁsëØM,—í½‡+”áji¸´mŸÙí³¿}†¸OOSØ_.Ôå= ‡ñ!3>¬Æ‡ÞZ‚ã ¦L—MÆh_ƒLC 5;æ( Qz®>4Ã"Dz8‡,F#©ú1Éçw)ÿ¾èƒ/ á"²Æ( —ÄÑÆ¸uy!âc§®×Î$uŸ5"3±Î^Fü–íQôèª]¡o·fù”ÅéÔ#éãÑïÉŽ8½±}1§‹›—|¼Ì^=F%‹Ýz ÝÕS»?f~OW÷; ‚7¥wåd‰C|äz­,uG7zH–¨ªC߆Vž:xÅ Å! BÔ±êØ‹!q2D(l9·žª¿lšš_+UJx(- €¨ ˜C5ÐÞXº<#£Ëò«‡KæõÀptdê/ KG™Uö`¦Ú‡ 9¯;­õYëòƒîð­¢¹õ¶^³ØïK¯.F—a †×Z] Ü]ƒ‚³ØIé‚ÐBEQ¬_ç1V‡ØŒ±‚†ìêûáêµ÷Rû8¦e‘SÀaR‡”AþˆPÊ+#ôF…g”ÚSsOñ=WHlÆ›Ñ[¤ô8fºcjîÅQȰòÑK\ÜÏ09ää"üeµË¦] ÐWäß³ÏF«ñìŽAv³K·®1é7ª÷žRFO==…MŒ‰þS§«Ív4a¢c}_CeRge¤Ý/÷Ìoù…üãQ3ª|×­§¨ëì)™î¼Cä)O=­ôôÔ‘O2Œ€Á¹¨¥Z=;\÷ô`B3&tåÍp÷(1¢ÍËY±ß3K··†{‹¹w N\‡Þ½è]îõü{ ðôÀÓ /mjÈôÙxƒç†(¦7=Ähä9 ç=÷yx¿Èhø÷ΉÁ;üý9üY=-väÚc»§žjxÙmî¼ô7Jˆ/©xFé ½ ¤°ç ú B§•E7€ŒŒî †AŠG–«Ø–ô‹‘šaf­4ã“ï)/õüv‚Ëß=Mp¢†G¼È’ƒD"ÖP ؉z„Òœì å°`vOú#fkŠ’ƒX©VíÎ$2 ÚžµØb ÏëW B¸JÛQH£/ܪô–!®ÈI/WÆï=+õ—·,/]Í༠}:-€>7Y7o§îÚïqrwVwIÊÀðÅ´p– {äð&áâ¹—Û@ø€*—ãC\’å£GeÞçÑ£²ÞyFcæ*ùº…Žß 1³ÜL4¹^Õˆn¿êïqݾfAa‚g¶ço†ï›{sò@þ~ qÉ ìp¡Ë° «Ý÷4°{šÂÜlóž8Ä©õø@°áÅ@™B•/+ƒP2¬ÖÿµHÆÁV,Øo;Ä0,9‚vˆ-h¹Äa-Ma¯òˆ š4~0„7÷úôWÆ^M¬l Å*óÝçÑÇ8)W”6Þ`Ê„'ÓàÌÄÄçŒ.Âv'ÞJè‹“ÄZÄ›ÿ—›YW»¥¼MSî¹ ¨˜$½ÁBq6¹´Náð%Óú?"p‰eG²§È¢{\ڢ‡œšw%B3KÄç[„³@\°Nx84.6kÃÚt:XÄq?&ÑݦѳßBíß¿¦áø. ÃoÛÍß_ÑÆ$½ ú¤–†µ+1ë$ý‹·Dކ=ÖÝ*Ju{!ˆxÌåqHó^Îsu½e¼Ü–ßó—gà$J–í=!²*å¸bË6%‹Ö rÀ¨Ö9ÌôØ;'n,»òmï±°ŽŒ„;‚é’_LâV KWéi¸ÌûidI/Ñ¿èøê/÷ˆïÙCà'ö‹O6xH!¹Y6.FšÝ›pø@ù¢G/ç,ÙÞÚ=ÂáëW§Ï§µDìÐ"÷ê ¼<|´™“@Ë:±>_ν±×Å—hè ï?–ÝÒ‚H"¹w>‚¼ƒ“åbfá¼[_=€úê;#ô3jHšq;—Ú¯n·öžÞ¬¿ý 90ó èå /‹xyÅË4ƒÐ3Á‡)ÐðáèÙ¥E`c;,›_¼ÄWþ‰íÛ‡!:l´úÔŸ(Z*2ìj”ŽŒï¦¨§`úr€úž³›È¯åöh8HÔ¬$*pJ?‡²ïÑpN‰_ÄûN¼Å9‰¼iÄЗÞSHöÐ>Á5³öy eZ4æIV‹ NG¹,]a²)üdu¡ƒ["Ú"Ú¹Éɪ3’ïÙ‚üœp8•̽Ôí%s/½Ï$óO‰RÅ,ûó¦¹Ì´/`;Ü‹é=Ìnñs¡o&N„G'`ŽtpaNŸ°z/LD†Qªð‚ÇM&}9‹óû×,1Æ%ÏLR gYÒwÅë0.CÓ'qz‘ˉe^t›ˆwεë|Þ+â,ïƒqþå¨ÿ\™œ £ÃX‡Óí£´û@û¹«xÖFqou™5ÚwAE‹u¨úÅr³D?‘ú'ŠÁynå9šczŽ-Žœó Ñi Ñi‘ •a•Ë[P ‘$íÒUN.ÊÔé°WxöÀ|ЦD#;w±l¢¯ŒæNÝ'Ö܃ÛïÞÓ¹›©eôõ¾"é`¤L½ž…–Ìè-yôÜEŽIÚÓîÜØ<¢}¸rÌ%R-Åí£üe)š_yü•ÇÄ»&ÅŸùÅ:K \©‡k±beF›qÅÇÊSšÿy€@{ØØ4–±-þ4‘wgèYF}yK>.ù%—˜çäM0ù ’.¥bÆHÇÊýíæZ¥ðÚºX±ä 9›¸,¤^4væI3Z¹ùÉ;LÞʽ§'>Ú—£'1žJcV… ¥Ó"x}èDQCÕô‚ŽÜõ%]€$¬ÜœÚÚ€!ô âÏ!g %ü(¸Ü~D¸@ƒîjK!n5¥`a¡AâïÒn×Þ8.US ÅñÙ¾ý‹{ ÿ\þI‡ûoG@ãÇF–ò©oyA`{èá®#JÎÐv‚Ú2=ôÂù‹/{^Þ˜ìHõÌR~%™2§ÐC3¥ùOî%}€Ø;é¹ `gþ’£5Iªñêâ?Ë"0ÄYZ”¢eæ©Qù×Á^Xqz‹þ¢'°êÀÙ_ª»÷qÇöå.4úÿH"0¢‹´í…ì0S¹‰íC4*tÛTã¬y¿¥ºI~'e.Hu™ÂC–¨¸w¹ær…"óž2Ü?š¦Oa¶Ù÷rþ*Z¢Ã}-…L©(Ɔ™’>›áä ½â2—K¯Ó|Êܨ”ç7â/mr¯îî=Dy¨óé¡WjáSÙ{u8,èÙé•÷ò!×ÑóBåæ‹å}íÒ´&WKÒÌ+ÖÜÏŸd6_Ur%±?3@HÆUíº(<\û îOèŸÙƒ‚RP`×±¬ò$êDÑ^p|Ù7"IÁxr¯÷‹xã˜?Á¥Š Ë›¾ a àâAj v·;b’ÃFcÇÞ)´ô‡ô$33©(ɘCÙÌí\rVÐoJVk‚µ Ó§UUÚD"ës©Ôo-¢É2ï£ì–1vJÔ:ÍˆŠ…²r[ú„r´ñÃs`«š÷D·” rÜ´„!d„ÕM‰ÇŒÀ8"4AK÷þ½&oêßÝÃÆxÏ "§ñdK¶gÁ&ˆ®;¼„¾Ž”õ€¹KâsPh’(à®×{Ñ J0Þìfš­æwäwí ÈCòî¨3¡øÆÙï_Òn52N‰*Ró¨ç¹ôÒõ‹ dê`šz$qbÐ5Åæ ‚§ËYÕ<5……,º‹¤Èü¥jÔ¥ù¡ˆ£ùÐ,Žº'ur%T52­¿ÑL›Ì÷lG)2bfÊáµð‚‰³!É5m&BËLH ¡¼ul&í†RÚ³’{Ä Ò»¾iÙí 5Uá”@ÈÔë¥"eÓD»æzЂ•¿!ÈS˜L._4DÒ8¡:h:(,!I´E'/|zUB ¨OhºEeh,’ñ2Äïd ÅW¸a£ý z}CøC²ÅÚJ Iøç8ægö«ÏvèOá$q/¬{Þ ýNhórýVTŸpôœ[ª*ð bîŠEOFlZÖ¹ÉtS]EØb÷…Ī\™lÏ•Wm°‘‚´,T±&ÝËÍsŽñ~w'àr«üíÃá†ÂaXZœËOg½Ž¶¸·×½ßã}#ï?9Ë{a‘ ÐmƒàC!a°ð5gŽÊC£æaR¾5MØX.²^óàlY.àÆ®]¨Ö²œgÄyCσƒÑ•ÖðTÖ7ÊÛëÛ î°jAX@­0W‡Cç§ÌO«›ùãâ˜ô‹ìÜqç±Äë!…ÊÝ‹ù³äŽ›?Ù‡Óo„?Ƨ“n0d8³‹ÖãÕ:L[þ'ÐÎäÇAЧ…êÙ˜²f°U Ý·é™”… (ŸŽLQùÒýÁrz·&HÌ1ŠS¥ ŽÝ>ÇçÑ{á?Ýø››ÀŸ ·AñMâ=DZ`wùÊQã¼P·Hófõš×kg¯À­Š7–—±Ì>5ô:G½|\÷ûÝãÃîÄ^œÉn¿iüÆr«ï7ˆ³HÍêjoÞyЛ‰Î”tææ§Û$AÍh™9j¶žD_ÖeV§îSÓ¼\ðŽÔo²,9PØ£É!®]#»ïÒ¨f£\–’ÆÂ!Œä§O–(‡P+f–\Žp æÍ8Ã5‡´pñv 3ýžöûÞŸ ~쓾¯° rx‹—)'µBQ›4 iÕ‹18ÿ4W_ÔÕ'®<†áŸ”®IÛ›¾xùáWîÉþín€þ:r˜'!ëïàÛå”Ò²€éLÒ»¶4PßøIQŒ£†<ž$É-ZR®éÅãµ8G p¬iìÚ‚*”@ÈšzÐùÒ$]Š•*½è)Ú!ƒ÷oºT«ÂŽO—.ŵ¥¼3úÕ¥×ýõlìª25 *ö°.¹9[(]ïΤNiº%¿ à~4——އDJZ@¤,1²Š)ýb#…‡^Æí‘_¼´Lee$à£1 Iͯ“_J¿Úæí§úHŒË•úJCâ%µÕÿ·sD%½ë÷¯â/Ýôë|ìhpÒÃËÆ¢NŒ?!,ð‹ÓÏ2ðìTÍ?t<|ÄáCýdP‡«9í«É™R>‘)¹äK]…ÁÄ“úÂÈeã¶€$‘#å Â-¯lkçäZ?Ø»ÊNŒ~:ÁÿbÁ˜kB¯(Æ JUûÍC]‘ÄÉE“\ å$Ñvz+Fš°ª¨n°xš—®t+qX¬Ó‚îkî´ŽWL^y9ýfUà§ßëø þ3ýTøéª\˜–Š@Õ¦=hu:Œê½"‡—Ué#×^Ÿ$ÿ×øb:Sî–Å/? ¸mã=!„ÁØizmÜÉÕ|(|bXÝ8¤ 7œI–W¯¿x+vi¢ËT°´•iƒ²mh¬äJ8QP>Γô ™ÒXWÚ”²PQ;cÎç® D™(ÞœÁm>?£~ÖýʸÕó+Ü£ˆÖPÌ.yN[ £÷é»·œS»€ò, 4ˆ&Pë"iïXûª! v„s6ˆ” _ðhR$™œ=Y%·7V~2Vt©K:z08Wš5ß3²/œ âíoËx{ÇÚDŸö迎ÒÁ që"$µ—ë&cUÈ8ÄžiG•ªŽ’¹OW ¤t,Ú¯Š‚Ï4Ï ÝŠ\W²³f³#6ßiæ“âÎWÞÍ÷êúμڅVêXU¨ƒîWëçרïƒÃ^ñv¦³E­¹ê-Zoô‘,à³·L.ŠVúl¯ÆÙU X£ÄÒUäBØ4×CoÏÓXùsBS[ ¿Üƒ}Š0-Äí(ç!s§iÔ“ÛAL» kž"²bpnû;»ª°DM)œ!>µj‘ÌR=·9hå4â©I"å«„LŸ,è }Ò¡OL´sŸîm¯óˆÜ¨ý—‰ÔÊÀ¨Z.»q´θ‹êøÈË5õù¨>eÕNâ§ôë¸d~YɸI¹4HñԹ=â-«–ª–ŸCï\D ¦wZð )½2õúö`¡ºð…›y¿:n?ù’®kb˜ P)ŽpÅ`„]Ž"'Fb@<þ’¼™ #q>FöçÊ…ú= à%8‰™BØþìðdÿr7¾Ê)ÿ©¯$ ©‘Èî«nÄ› ýRËâþp'ýª«¸‰|-•ð&%h€§*)€|SååjKl‘mØô:b\l%T-’=H$/µœd;I?+!½õyµ‡Ü[ŸŸësx}ª…OÇð)>­Ã§~˜ìO·^²W õRQ|êÂZÈNç?¹Î7% íãÝp‚`ìË‚rÇ&¢žx!ð»´g Ð>™%‹èA²ÑHl6ËüqVž"‰ s/’ƒœÐ%jÅÛ WG0|’xß½¡n…ÈØÂiáÃô’×]~7ùg7¥ß·‡½í÷¿?#þÙ³&ÙÕdµã"¾jæ=Y† Ú]‡ÛÊ ™M‹ªÊ`áa1kn ~EvWÖ\%2˜V;§Îi`¾éÌó¬Æw³òe6d½2UÏáTuj¼¿blr‚$f;U…7î"a¦Õ‡ÃÌ…ì÷mc¾8U޶s(+µ1³Vºô¢€¶<½>Ø (™ÍÒ$?JÔ? –,_AÐî<§r2W ¾½£ÁF¼ \A½Ûù~üJùÕ<¬¸‰D­èß™?4 %PÂFH+·>°Cþ'‹"#úÂçMãdú•öZ™”Êq™ÎþC&7qœ5Écä’íÀºœ¤[Ùšü«Ûð'I/¤È!]|\+œÙ˜ô“H<\‚&5.VàA¢9¶Ì´¨¥…|aáÌ÷'/#Îˆìø¤8gÄÓÈ3¿xtÁIð€Â¬8=Â’¯q•#lEx8{¡•9 Ú|LbYÑ“I‰D®Ìœß$„\Ö7QZXž»ÏŸ˜Æ}FG•N ¬ÃÈa~ŽCí¬øÛ±×á3Ed<Ë)žØØ[ž§¼ŠÒ’K…Iá’øRžŸXoÄÚ8zGÏ)¤´t§ã¼6 ›tIú ©H¼CP׈)êe›ÁÓÄ7þŠÜÙF‹E¥Îþí"Ñèª{ZøãA‘t {£+ê·VºŸZOÄ…“^Äê€J›ðË/;€ËÔ‡²àGð(ù,†ÄÅü9J:Ôü'Î4‡G"‚i¯ÈTƒV¸X~¤&R¦ÉùŒ‰«ƒ±gÉßÈo]¤o¤šzú„M´Tûà]Eô¥RppS¡åLJ僯íI ¬z‹4¥™.=NÚHb~a¡´8ÐY¸}/ÿ+ç5$ݬTQº€H#¥n\*†qT$¥‚§¾R Êíng]âµ×G^gy½vQC z7ù„/ø~ð…ôÄ&Ÿ<_së—Ái A~DB‡²ÜcW ’€ ¡Л4 D0ýh?Uª|‘º>ÚOÀSDu Or`X~Ê—éü ©s²XQaæ²QK˜çIaéX4áÍ. ïÂÈ!ÿÌUܤÅ*ç a±hŒ‘Õé«÷k½ïëÜcïA{/ÛÒVÝy…h•æ§³Ã^ÇÄ!NÁ]v3®˜%*A µ”ZªÊ¹ùPŽRd dÜT±3§NŬš"\|Gðþ• ãÉIÔ›l:¤î²”ã\¯¦¾$$3ÝéSv2­ué Pg¤~:›6÷ç%qúÂ"p6ƒ·*¼åá­ïÒx·ÇO²_¿X~Aý¢{Ãß;ΰ.ƧaùÑWšV†¾¤£ž'Cä(IÐA×ÑcšœÈØÄ ƒde†ˆ€rc/¥Î4©Zž•9ߦ6.*O ·Ã…¼êúÅë ¯¦œ&óÚÎ §ƒürΦ÷G½Ïêu€×N•XmóEÈ͆Ó7•;„ÜŒŒ}å°‹Vøˆ†zÄÁö TN?[O ËÛV |:µý:Æø|ÐÇ }<Ñç*#âè"<#J®9ºåão&@ç#x‡(Ÿ šèWF†Åëpk×U‰³95ô F"\—5tBŸ£6¾8}‡ê±?çNä…—)Îtræ•3Á>Ýnz};ÅÙ|,ÎÇëœ/àý…ƒO¡žHé;AXŠ‚õªÑ©7XLpF½7üo`½‡ÃñÇÈ5 g6I` AZ)/i)uuY»yÚ_Ñ“rd`Ö\/NJ͈P ˆ–Vg$‘Å ·… ´šTãÅÛÛ<†‰4Kĉ£Vgˆ/† PHi‘™‹x ‘¬—nÕOæ),º¿„ÄÅ®9 îÖð·^Äd¸X1ÀEj¬H9LƒtŠœÔ¬² HnÂ2 !¥ù;ÕÔ…ïÕÅv“8;CNfí+œ!H ÅmHSÞœdÞ©Õ†Hƒª_)gU:Œ¨ ýÌ­OK8Þ™"áûÊWÒ¨¾ŠLÙg†W8ðu€+ú NÔ»•@œX‚¡lˆêëÿ–K¦¢ñK#>yˆÇk^Y"P« š ªf ;QîÈ3âǸÌCÐ@NKeÆœ)·]fC÷àfº(OgKÍ|ÕÒ›ú ©‰ˆKaz™+MÍΊYDa,ˆ£*ήumî¯w‘½íc»‡¨‹“b©v#œ6‹ÛP~ÓÙ‰¶Óü¥Pw"Ü‹ù“PßO&Ž<€¥1#@ŽåóÝèJ!K9—à')ïבƒøH/«ÌR813H“¼Œœ¶,I˜ìÔ$É_å}ëH³Ô·FÔ”°ሉHg‹_΢¥1²IÎë’Ñ‹t/öfpºÃŠ,/Õ’ÏJÇ£(ö‚í ü¼€ô‚ß+¯@Œ‡îNÄÖŒ– t´&ZñbáÃS)“JãA^ ¿½q¬¹4Iˆ§)Ddraç$™¿À¸õquþö"$Gnìu\T·î‡­á·Ûb• ŠÌ–—ù§Û~Ÿà"oæÅ†RÂ%bx7U/Àfh’^)N”_½i:™'f¿ºð:Îñ‹·j¦0àØ„F+`¬ÆçD¾½Õ‘r1~¡:¼z±²‘d8^}i#Ø\Ò:+S!CáJú$<܉gK4N/ }”ó;ëƒ6n+ÁÄ lìÑ:»Æ=ÙºÖ>»ûÄ¿N§7JýÎð»Çï0· ýN=íf§Ø½òwöÁÁ„°[Åí&¿ãÜ®¤ø!÷ÔnJa5 ,}wåà PblŽypA¹d‰«m -øèŒlJfTõ¨ÓLH5Ù %ËMwX¡­‹Q’4w°O–·qÃ8`»M¼Â »jhŠAîH÷qÿXʼn1jr—{ÑmæCÌ#’œ…Zðò QÆS¿¿á#ÉÂ:—¶L(5çK•šù|\Æ—Á¸:ˆ±J–ÛótEã°BW;õWŽéc4s´õ°0¨<7ËdðCd”šz U¡±Þ¦Î}r q1l j‹ÅFgL¦EjàR„S¥Ø˜lkl2´„)+ì˜h€e%ˆl“üÅFô»ÌmD¿WO1†J+XV@¬2€~”<Ýy6.~O!½Fß”Tf¼P$Åh¯„±ÚÞTãmã+íï,oEx±êD¯“ÎQú£µ£¶Ú dFQ 'V¸˜•~Å¯Ñ á#ˆâ¡{…ž…Aˆ$žÚùâ´†®‘ÚΕ¶´²o“.ZÛö~Ž€?&‡£$ž€%UAbE„õpaç×Ü—Î…>t9^ìñþ¾>ÖÑÞDÆ'«:9#róÕÀ.[ÈÎYH«[W¦ˆ', à  „»•‡ª”³¨I ‘ŽyÝçÁ ,½hûI$8±áE‹—>^@y!æ]åFä(ÏÔaL¤ŠÒ¨.‚Ð5ãHû-®sŠ49ɪ`0Ç| ¹8EI0wm_ÓŽ) Çd½Ù×ê ]æU—Ón]¶Ÿö×Q"x©á‹· ½õè,Lo…zKÕ{ú‡°‹ÌøàïøÐ!LäOº—^bx©â$—N8$½dïŸHì&ñ*œh>[PÞòö’·©¼Ýu² v@j2ß½H?ˆý“j°ÚÃ+¯„¼¢ò3ægÕÏüAw8SÍ›sÞäó"Ì‹9/ ½¸ô"ՊݳüörÃË'~¼„rRÌ :$µ`ÑC^¾«b ÚE‰ŽN,wWçy:ÛÔ¢*_*#¸Ò±žp¬Ûpj@•/MTBU6½ë’ël(Ü[îé’>A¤µz³^b^UZ:3*ø‹ï©`+¶(°iDAUø¼†æWb£Pö }?×$¾ÒI«ª–êF;+Is@$ „L½ µj7Üž,ã–ï…ÅXyÜŒHÛ‘ôW¾ƒcŠfú^œE}ÉYJšçð— îܼÊÈy ÒÛ8z"]/*9ãðE%%ì T‘'p·Çð£ƒ4XOEÓt.ŠûÀ0‰`D ÔÎT& °¨ÂH~ C/`ƒ6I |ÒÑdG k{ÛJÓNZ5‚èìY/3'?/^n2Ó`Ç éÍ9Œfjy¾CA ‰¸E F,OጜŽ,™|„+éÖ–º†’aà’ßÐÅ”úÏ%©ˆlòß~Å t8DùpR5D“üà}ÖÿßlsN¿7nv_/½V\èI˜£é, ¼¸ðÅ[WÞóVšwYåæPµâè&nåW¹ËQ¨»15™”Ì^t\©,-$¹(²X$ð¢ñÅV=lg3ù“—ڀ좱ðîèbÀþöX–Ißy¡S 7e¯»ÀiZÐj!‚ö7˜Òª×f­¾\^y1ueNÜWcœJ?Fn‰Ð9¡_Ò¬•Ž7T- oe_ÜiP×J&ÁÕº& wN¦¸ÃUôlÐAmš”t8Q‡SÇx,@+ŠzTé@UÁ†˜rƒ)àlèá½xM³Á‚‘œ#V'ÿ”B:òÍÅ…Ö¹‰Å£dxF#èA63Y_J~'Õ’ßi‡“äßOÁ‹½OjÅ\Þù†ì~Â’o!í2‚fdIî;÷܈_Èb/¯LwbÿpÜü‘ôÇÖíO–G0P”›¤Äƒ!¯±çäŽ!rst@ ó ƒÛq_ãÈYHWjÂ3ÀbëæcœÈP[Ь+nõs:•§“[9FŒ—KYCÉr&¢>‡“ähÄr$YÈöx-yÉBUÄ•è BˆÊ{‘…ƒQºÙû\}a"8õï-oEM„Ìù¾xoA\ W>êš»Ïr_î''rskjizr3¡­SrIö/ív ¹.ÜW¡ä[³‹ô€7x—€`çöœÔ¿Š}%#ß?\*5·mð: y£¼šðªÄ«›ƒJ¢b8 {]å‹ùósì7©ÝÈŸnÞ_Çg»×ûzÅê,o,(¯¼ÞpºÅmžO#^âPÓsÊÇòEY“¤uká¼ïy¯é`NY“Ë /xÂÉ 0/äv1øÉ-y8ÜHÑês$ÁÆPei¬Ó[ší—)5yªªpÚ,šG¸?™ßÖ+>j•QçºÇª¿HA†–R"M–£.|“ÅÚž€4õ†*]Ô‰y—¼Ÿãè¦Y¸.ÊWo÷#ì´CµäöÜ/>"Šú.¤KbN|\?£­‰Ø8zR䦃š,h//Öâ‘ï ê*> þÛáÒÁ`&´i¶ÝñNé¦oõ‹ÓG¹ù…t+ óF1$·§Óðìø?Ù¢¢àp â\^ Ä7¹¤^K^¾¿û·MŽ,“Ö\†ûE¾ó²'öÃêÄIæx¹äe—ø D©v”nxó¿²›Jåîµ*ÅG7|ÄGI¬õþéFô:K\+½±BÆX»U&E:–k!¨›;YŸ.(ðúv¼ë¶×áîÂüp§îîÝÝ=›¿Šó×u‰í„º“ûf¯ùÍxˆi¸¸‡ØøÉ§Û7¯ãÞòûÏ/Y;¿¸VV8qr’8^*Ù^Œnš¶«+«¦ÉM1Ê1˜^‚ë’&™ÜéH¤1uÌAI"‹–KNƪ„ðÑB{æ>Ýz¿Ž{Â_óº›`Y|wp$Çnîªæ¡‚$-ö÷zÒ«R{v½ aL ¯ä!àìo˸ÓóéÆû:}’ûê|†ƒØp( æQ¹¤®\Ò¿U朑&ög— iîƒÂÙÞ,ñ¦‹]6À«.Øj11H¡ºBtƒ"m¨¤Ý4P™5qûê5µP§ŸÁ’\E lÄ:i÷ÎMšXv’”˜Ð *¹=Fš03ª½™Z¨!b¼ ’R¿_ºÙ’VãIlx*¥¸=F`3=¸Ó7·ˆ…3EFWGŽdæÐ¦ötc˜i . $bì±.ûÉÍÐaý%èn £È”©I8™ö²6Zlª~.NnÂþV/2²´*ÿE÷Ão»Ád«¾o:_GóÆš@+ÉRÖØ:dÖbc(rÊê’½4˜Òö˜Ô´RWØs<ö|… [§5¹ÁÌ¢GxK!ïw? l]׎ܷ,?¶57]3]cMß{xAdÙ/´ÝÄ›­¤ie,|yª-ËšÅk¯²¼Z³ªïÓ‰Ë×Q¤z±ëE³ß…qkРµÈ*S)cî5ƒfìôö¨à¦ôäÌK(æ~¤ª-i®3¼ïXR¯÷¶5Œ®%°d:³eµíŒ´Š é¨>Ý9~Ϻ—^fäŠ=fËûSq88~eüêVØêp¯æ½)`¬¯Å¼Ð;¨Þútª·aOê6¯£¤ñÒÈK,/ÕŒØóžlÉÒáTŠEè@ÐÞNQuh’Ø•J ŒSŠWŠ;ÎJÚÚò#œ;3þXù“çO§ß'f+ ~oÍ{‹ß9Þàç«o*A `~q@KjÒêBCu‚i¢@àjÚ|¸K ÕrVÀwBX7 Œ›£Æqàãrc±¶pܸÇHb@®_ÝyиCõ&îl8–é*E3Ë„'K ÓqÛ%!‰¡ ¹Ó¿.VK±i+›! "¢9,¬%ΫªóTßÔ_<ïS‡ßEÀ´èÜ8%9$ƒQXÂÐߨ°Ä\\›§² Ü?¿Y¡×·ÌG`µðað€Bè âìšžÖÝï ¿Pë‰=–ÞwKQ%óÂѰ8RjêGå!«,âÒ§{Ùë< 7h0‡Ç0Ý9õ³ê&ÞÃ÷eǤÜ5¿ðß©½ž„Iò¡Qƒ¨Î,%„H>Z)p‹Ô‘t±âÅ +\Š"Á?ª‡—Þ–tçC€Ÿ1kF¤ÿ)<\nÇ2tÀ…qonSŒ2òÎ+,On‘Á°J—d+·/>Ýï^Çgû÷û1úï 2÷¨½é!@*o9õA s’ÚíÉÂ=˜ !×*•Iï—:Z£‚Qœ¯Ðyã6­¯Æµçþ¯X™\ eÎø¥/ 87b8Ïà§ûª×qÝû}à¶ $ÝwêÖ!žÞ%ð<µ¨•W%¿&Œú±µ²®ú:w€MíexTF_1ÓÝÇ4z9®Ä¾Xf1ýjº½ŽƒñöÕ:#p–Õ5Â7ñ„|³!×èÐRÉõ9²³õùÍ6ïx±•%ì yYækJ|ƒ3¨È仸;¸™%iR¨b„ÀÙe6a`¢;Çò\_•S××dïâ;‹¸æ#¶?‰H†°I‡½äà™<„ÓæÉÁËzZîúGPòQÏ+Ùkõ³Îs¥á’Âãã³M–x„ÆË700Õüвnƒî«(¼+ç÷ÝZéÁ¹Hû&ùÈ@R)¹yŽ‘·d œ:À­~¿нFPÅÃÝ<¤%ûIyuu@¤õ¨µÙÖe}aC:‹Ñ[•Þ†4"îuT˜N§Ô®›?g~^ÝÔÛÕñ+xêÚã;ûøî?Þ¬ô¦§µM]ƒ,ÛAË öâîÓ ª×Y–ñdŽxÓ ©!jÆEõO©¶)á¶Ð¡µ¹Šà†_ßÅù¢þ£×J꡸ !„‹RdM B_h;¯}Ë+×ËA/h­0> ìƒPßåþÉÉ=9°ÖÉ=9Â'·TnÁW/ÁÁK¸q¥âü‘¤I•6I°bBþ ¨í*_¾0Ì(‰=pƒÎMúhëU¾áçιE2ÞWab®I 7IœkþŠßıׂP¤\šË¯R‘Kó !È’‹€$HÕEB!*çR5YSóå< LI©DöR¿y2lpà¶üR¸…Ê£\¾¨Õ ò…ƈ@*0OCÒ8xÎrc Κպö :_b7ÃU JR@U7~7¿ª%¬y½¸J ¨ëüKÒWÂZŽÕGý åSúŠH#ûí<sjå,§À»c°é‚Ô–ïXáž9‰…¨³êAª‡q•Ëè:@;õ§åñK(¨®±`EX !‘¤Ye«&)½MÒé´tîíÙ.ûGñ‡îOzßæGä7žßœ~»MU“)uD»¨gH‘ÈïbûÚo ¿ÉÑoV¿¡íÂOÊàlÉ$ƱŸi4ײY|µ¬-× )=ÄP#/3o±qÉ—kWIªÊn‚Ý›Š|ù£_)î¯qcuˆ!ùL'œÈ:H5· Ý>u;Ùíuw̬ðîâ ßz±X±{ð´Oý^öûݯÔa5ýQ÷âÀ‰Œ"û¤IŽ2‰h³W©=¢ù*|Ïɾ·ùNÆ«»èz¼­‰21&…ª*Z” ®¥Ö¸ÊÈ© qž”¤jpøs€ˆÞQK ÀPág±™A&^…c)XfäU(ô»<¿‚ž,øO uP©tœk2ÅD+ºIè¯hq*|C¥ÐÁª@¥âÀ‚4K«(f×Öh„š\Që/Îð<*L.Mv„À¸é‡¶± s·ˆMjŽI6 £È ³†Eaed|X® X޲îj\ù¹Ô›ω ‘à#“’ÂQì¯âE”¼[`Î×—‹ÄÓ<üú ®ùgÔú?RS‰)\ºVø’¦†K¿™§¡Rµ½’qn‰ ÔoÎ?3¯¦áµtþöH{ RŽ#tÁv€±q5þ0NÝÆÛ.,jÐP¹·B”Øž,`xÛöx·Ûf™ ]+l`Å Ÿ§„¤H€Ø•Â.÷F¢‰Vð´EJÕ£(pôgVˆm·w Ê“rxj*EÂ!@®œ»¶¦$—` ˜0\[pþ7¤”ð[¤Îç•0¿åàÊ4w)áT¨Î Äpžf·}[üp ÜIÁuF3®S*MM@¾+zÞ°™1z˜ƒ°˜8C‰^$Ákªšê‰˜ZÅsªl(ÂíøUKŠmÌkTÑÓDDSTx¾C°·Y°ÎM޽äÙ|Þ’L3á’TÂÛà!§vRB—<¢œ9[¢¢š‘wF®tC_á Ò*òÑÁÓ$‰)ÃTœß¨¦(Bé«„;y{SWâÉr("¼ÔŠ*Dö[^Ó𜬠—™#{ÙàüàN)º5,œP˜²ô ÈäsË© i½Y(?&•…ýL~[E~8GU2ãKÑùç m'á ÉA¹ùS"D)œ¾aA›â«ŽwdÂŽ»è.EËTÊÊ7ÌVúr™Áp O—€ IéÉ-(n?ýV@锪”Žc|%…QõºËé7§?ݧ¾NÓq˜2?­™îÎ+Ðå9òhÔ)§ý$΀=ÝrÝpyÍÇ•¥âx°1¯8tóÚ´)Xyin|~•ØfñâöF¤¹#‰b¤i5ÑåäP½ZvJƒßÕ¯¥ÝÉ+ª¸Ã”Y,TŸ_ªÕ´‰G_QKÍ…€å°b±Ëý5ÆŒiÀÌu¤¬”Åm²OÆ’ÌX³‘8##ÚÖ '.ÄBf¦«Àá%[¨Ë—¶ÄÁÞp6‰ü^38íø)©ò^„Ñ å;ÇÈ••v!kÔ±ƒž,ðX…p’ˆ'dµŒõaͪͭw‡ÎŽÏÌÚqRpЇG‰¢c[^.& Lmš­¦@Iqð‡8gA;5,ƒVÛ BTM«¸³’I¡dE/”X\«² ¨bšžÃ‡2öu¥¾/8HUÆô˜7V/ô¦VÀª÷}ò•ÉâŒÀ>Wšž¬ZºgY í~XïLËžUßÎÙè¼3ª(`go;•|PÛGÕnÔ¿7¼áM „×ðœØõ9>°bQ1ß… ­Îj¨ñ²+ŽS‰cV±ì#€BQµÿÏÙ|#=_¡÷#ŸÚB™É°Ù¢ &ØI$U&UØ< ÔÈhP`giœ¬o±X£Æ›=·ð~†—^Æx9äe•ݧÓOß°„ ì|jÂÆÏ‰ÏßPåU”X!Ä´S ÙE ñ:ð=Í¥Èö@}I&E@„;m\«•« ¨Û!q[F1t7«ƒ0ë©N¥¼±“(5c* í+™9m¬"ÿBv1‚íó9WÕ˜Üè-‰m™{©±ÊC2St¸âî¢|¥*Ô¨Y¯Š½º>¨tgMy‹ËZeŸN켎~‘÷¼ð‚\0 ¤éE¥úL)¹¦(ÏãÃ9Cí!ßS n|E»Ù „ñ…ÞkC\9kµzËÖ¿Þ>ö6´·³½-îíugÒ»è…pb Vl{ÉÓN‹r)-4Z¾Å…â•tvŠèøN*ùitc‡QwætwTÑ{ALfNÍAö'ÝŠ/+¬8ñÇK%'¹¼>hj§Ì½¾÷6·¼mév»"+P\©1i…Ï/ÍêÝuVôSä ÚQ5i&.AlOÑ’pÚR•õŽ˜CùbÝÙÞ@>™ß5Ê uƒ×;*;õ=¨he"ЗÛaE¹Û¯S€Â…0|”ÃGB|Pî¸á–Jì}’ÀQýNSßÐÓ‰¼ó¸qÄMë#W|H«Oœhv¶ú+•‹½FµäߊÁË-È*xdiø>öÎS‹ä¢ Õq±O!ró÷ÂX ïø•áFH¿_Ú¾Y`T*µ!\k8;ãÚ…í|dÏGÿ|„ÐÛñÞÖ÷þ€÷¼_á|çŸ|Ú}ù:oÝÓööGÀ”ÜqóGÒÛÀé_é*R¸Üº˜¼IÛÌ1d=YÛÒ³~‚¥)ÐA‰C&èù.ÕÍ¡sü¨ªéŒªø$ŸEG‰]µ! JIt6Å¢@Ã;L"6þ¨uG›³"$!pNܬ¶"0&@C0uˆ¢Íy/ŠoB±I—ZÆ3«Ð}Òc ÀÃÐ ñ»Ë˜O§ïaldÞ(èšÊ¢„òØ«dʞNJ<_6¾J¡¤…ŠriÂ-…¢ÙlĮ֩cp+ê¾B9 cÇi] ƒAm¶`ÕUé®Gñ0ü¨jáÿÁ8ô¤72½!êCd>Œf#m>wØù ž7¡¼™eM±c˜ßÇã}Ìþ×?Äþ÷Ëw{p ó›¨ÙëYsÑ7¡óQ<é;D]ÄÐG]àÑÇ&¡%~ò!*ÆJ²¦X[i;SÄÞKµEVˆI³Ô¼j;¨?¯"½õªÖ«c¯²V÷ŠßFF?9€Lo…¤þ‘eË%–ð±.Ÿ °õ*!à^ÙÉoYý#°?õ}àß_ø wÉp lá^ð!¦°>ð ‰R€ÀÃ-rÄ TÑ\‘V#Ý+bK_Í,9â„»{>J‘žUJ³Hªÿa'ß_pt†ÌëXmϷѼK”°elêõM{@ÏùQ˪.þRio9ô&ç— QšX¥î^B¹(ö’­}{t¼b¿É(\Ú“ÂÅSÕª!sÒŠ£í?’o`B d©Ze†`T„†ÐkIÚ>†&'EÚž"hö²‰*#ê>< j´@³ž)£¢-…Xð‰ *²>¤O$t-ÿfa'6~37ô IüfëTïY‘",\³Ua0 :O%9M½.÷‰'¼Ô –g¥“^ZW<Û’éE]\Bã¡ô²;í;ä°‰üF;lF¿aýžöÛ¾¬¥•ŽŸ‰I+0‰¤Sg¢ÌªŠ$Fy£EÑW¾}Ÿ÷ªñV«„²PavU  A«áˆ—‹+@©¹¶=ÎåøBxAIýVØ’b“@Ñà°Lñ(]$$Ê‘aTHó€DÖiî*¦©m5>BFG a’£šÜhnÒerÐñv¹"ô E[ˆ¼ÄWœó _ûSz6A[^>1I™™ÔÂQ¶„8W ³Gbíì8ÒÏÑ…( K+Í hGê!—W"%NĽZ*ú‹2ÜWFÚylŸñ:~ªŸ?enVýÄòk+Lq'Kdù‡dséÁf.D×õvÿëé‘"Ë?´æ“øõ’¥e/ï[²ÊÛGº¦_ޤñˆTúÞ–8ø \ˆº>ÍØ5Ôß­²:qÁ¬9áà凗1V 9Aå$™—u^:‘iާߵŸ»öxÕ‹WA^M%re*zÔŠ#ÍU!c¾Ì •ýVj[» „éÉAÑ"î·wѽï<} p‘J®V}aL˜ T+JÿÚB8 ‘-G­ÏPcTa&¥:´Ý&KÔ¬óÄ~nf,•_¹ìLi©š‹ŽWáÂDKTI‚ƒ % EÂ>EmTàÇ㘢'®ÔY¡Ð¬"Š/ƒ£ÛßJþù‚šbŽ)àZÃJòæi3T≠۽ŸN4¿Îvž·ù e_És+ó?ùb€6ùu­ ‹?|h‹ç½ñ“D‚¼Àä(Ãn½{ ÿàxOÁ{Þãð7sîVÀßDîmE÷ Ò•zTþ„0ÔŸ½"–U~—¸2…v«;gŸlçƒ}ímp«¡·Ê„³Ë/L(TÆ]+ª˜4|…BB)Pä½Z 7Šø•‹*C¹Û{×Èlô—¶ðLýX:žšÝÓ>øâÞ]?¸ô¬.K½´Ûñ€%¹—H}H¿n ?„ÊZBÄ5ð£‹ZU™‘°+ê4$[5²àEò›LE×YƒŽ(Ê`V&é'˜?Â3$øÅØSœÓ8öÕ%`ͺº Mƒ~¢Ãz)ijù*qq·ÙëEó‘6³qµ•$…·I ”îhÂq7€ýÆ”èäí÷¢^†sCˆ€ç„ÁÍq€uJƒ$IU™3Ò~LB¹(36ÖÌlšû Ý€·n©s]½{ë]`ï&{eqP(NéÔ‹]Y\”0Á„??œz}EëNzóà•zÏÕëòƒ¾÷63lBƒ»<ÜYú{Mw÷yrМç=ï z‡ñàTºø¨“ô^8}áUŠU;8Ó…0Ø+ðÆ$lUXè_n‹*ËUê¬G®ÛéRJ#î¨JLN4®*+ŠÂ’d –K&9 r0*5•€;û85ic9ˆˆR¨ al×Ðì8Ø šû¯Ai+ÌÆVaå.©ò+zQÑ.M¸ÛÂ…! âôÌP÷‰JXq«ŒŒ „––gÔagVt1»˜FØæ÷¯œ Z›€—ÐMÍyÓPüš¿ÞT"r6D˜¤Ä8¢ìdø\ø õžc[MÖO»”{ñýâ …í”K§.Wוö±®Kç<Àà¤+lɘn?»Þz×¶_Ïœ®pü5¿ ò×EþJÉ_;ù«)ï{yw¡On¶Õ-a5É'¯ P w“ø^Š1¦’+ËG¦é™<Úé Ùch¶0–Ãè€5‹â³PFÔìÄ­S …œ#tI 7Ñ(—ŸöFPRG„I këÕõŃnQÅAgЃ^“º sM‰P—ÛÌh®=¯B&4¢H²^.ŒxœÖDÑ ~µP=ñ©(ײT3\\5ýîä§”>b…š$3‰Z“ © Å´<¤ùYIíCåƒÒW zö÷¯25ìTÚMéc†v";, [c¿ìâàkò˜¸ÒÆ¢3.mƒ–:E4 P^åï *ÅB„g LŒ‹ýÖÁ-²ÆŠkÓÏd³ˆñÄÞ´N ô:Jóúñ]‡ñÆì¿Ë»ß¼~ƒûCà V û`$½MÇ^¡µÈŠ7¯X<ì]t Ú›`E$}0R]>Àt®•™€W@çHX†{ß¡ùib;dv7¡¢!¢Ê*#Á®í3 ùXѼ¶ÕãÀѾ™_ç ïEg¼|à”Kc´J%Ô“Tã2u!…·•S—½j!›eóWu¥¹º’¾Ï¤í¯8)""KæW¾¤ã†ößÌBxÏ½Ê "×uïøp±,S`Œôª™õ”—™"µD%1jzëÃ/î8Š ‡Pó,DP¨á!÷€9ÉO·ç^‡ãï%„"^ÎxYäåÕA¦ù1¾Ë}»ŸŸLè…°¢eV)h?¿ªk@…=œùåšÈ&áÞ,ÁAÊj/À ëÓ÷éNí'ûÏ$ :ûÅÒß3$&9Ô¤”n»¸Ü´ K¹A¨yË£®t¼´{/|BïŽOì“y´1ÑÀÉŠëW€d ,©¤ÜÈ9‰bD‘AEšZŒU,‚â¥ÞY´HeÒÕøý-¬ ¦Äâ§©[qøV7v@§*_©â«Y\R£O|ô¹‘ˆ©Pe§n;@oQB%Ì"þN@°%®,ÌÌ%0—–Qà›¥]’ºÍ)ÏóžÏùâßeú éH‘»„ÕIrœúØ©ø…>^*$FãšîƒŒ„H3¯jÏ!ÕĸF Hÿð‘º„Š aKÓ®—„Sdã¦ÌÝè)u}ûE  P:’ù˜¹s þqüöÓüø9ôóìׯ—[RŸë’fm^í§+tz·¡ßªþ|ù3èÎ)#©Ê*péVSž”©W¸¥Ì^áf­‹#¤F-}U§ìk™]½³¯‰v…aŸNFP!Ã̽ ]/ÊcšÐmÊB‚ULäÒõháòþÑø9±éZ41c‚âÌíÌófRè2jŠ~Éù9Ù†Æ|ô¦_»|I쥵—è^ê{ié$ª—ºN2ÓôVêׯý³PÃÖÐè•`m›7P´4C1"Qœ…ªE0> ¯ºWþ³É…ÙöbÉdÛ Ì×Ñufª3e½¹{0‰»Î²–’BБ?ÿ†'½ä»:²šG…ûÈ95Z‡Iå §ï05nöü »E°ÓE%.T:óºËä«U 6¹ïì<š¬M‰q{‡@ Nu¹»n·w%îóXÑ’BkÛŒåÿùÍb¼¾p ¼ 9È'‹¼¼r~†wEü æ>ÞMŸÄÃDûÅ0›Ûï~· %ˆxM«´'riEÑ’G\8’Z«Úˆ™<¤³òʓˬֺv$hÑb}ÕÒºô•ÏnÇÇbP|²§DIêgqD 'æËICÅX¢vÜ&ä|/£…ô÷(‚9»~u­pz⋵k ‰¤R8=pUIVŒ,œÏ}x<â@%°¤›CçÌáÀO^*0”k1I-V’^¨_gµ“LŒ_iËíí]r»ÀWEƒÇtuJpmÿ•¸Æ'¡uÞ–(GÐ<#_ªQé ¯3ªˆpBihŸ9‹ÒÎSÞ_. T‘?ViÆ9',Sß”J¥šO´_€5!W âËU¾ s:¨7Q亴³éM[T€ì;øgµî`QZÿµàR3aÑVk:”$g…Õ 3†2´Kø6yLŠ«‰{’*T¹Ä|)U(×&ªëÒ—§SJuQ.A D±5¹/ÑFMa]R m‹jv/þ“°¶oÀ!U®*ìŠË¢'†ì¸ÖÒ‘XÉ›ä7ß…7î^bùò»ûtÜñÇÈ5 !W€K†I¥ò¥IY/xœlòâ+r™>òÙÄé\W„ë÷&§ˆËvÐB®øGa˽UíÖÛ 3x'¬„O¾¤E²ŸÜb÷ÆU«!¯K±ÂJQËYpªWɃ‡”KeÑ]ªЄÂ÷!!¯2V©îD„TúrX[2ûÉ›€*r7ïpdü±rGÏÏÃöÇÜl:Êá(B‘­•¢fT¡$2¦óu Ãoꜧ€¹Î°êýeä„Èè’…B/®@ãñ\MªÔVÿ ܹbìrÆÐÖ:…ë¯kåvãv™-SÉ åô—›øŒÜÙ¼—ëAÀ!ôry•¿R‡Å­ŒƒÌW)wé—me­íÎÆ§Û—/I Âþd¤§Bü«ªnäŠBlOÙïäò–(k¾©eh ç‘J`Éfͬ´‚/ 薪Ƕ#G­VrV+bgê%úÅaí[dëÊúä´pæ!ͳDháªhpçD#(A˜O”ÂÓ,,I*K“†ŒŸ¨t„BçWÙ’–=§I†¢JâpˆýAwÂÀ 'T>¿Yüƒ×·F‚ÇQ8`-8ä””Wde× 8½¸:X«Þ¢õòÜË|§œâpªe4›ÑL¬xQ¨“¦KgiÄ¢™K0(ѧô™æ×<:›¢ø´§âÅʸ5â<ï¡ÐNªPä¢LZÑ bªT‘‰ƒ¶,aeÙàLdé·Ž©¡°šê 'ñ'³üäbŸ.-{'SçrnÕâå$¸˜q¥áO¼!9MÚ¸cÈI €õCØønQÅ¥ÞWRóBú“ÓG‰óçÚŸ}'¼ 9È/‹Œ¸útÆçë+ÿÚúà6žã¥°“Ô^š$¾× ^s8åâõ×Q^ùe÷[Ão¿Åü.4ÛÔod·×†º5æ½Áp ¼ã`‹³³ïtçÈ{gß|Ðàèìïâóuò'.‡õJNž‹÷nÜĺ¹÷¢È‹«“ž7¦€³œ=áMo.{“Ú›ÝÞ4÷æ»7ñ½>ò:ËêµÏoï›ÅCYà®,ÚæÓvžp=-ô§UREvPvV!zé6ïÓy¿Ï¹†.báƒ>ðáƒ#&zâÃ+>ã¢4.Ž“ºàVÄ%‘‡)òPFîÈA"î†*BwyÄ£“xrrôu ¿Øn}p×€}øÏñ1:„r}¸×‡„Qã=´åÆ<™*sˆ/É—ägdª2{qü¤Èm¶_ÈÝÙJª‚rBÃäzN±fõ÷€‡[»R²Üx‹É/*¾Tq$2é S¡úÌhÄRÙœg±T­‚i²u“¢ü:I6b9y’f¢ðº“[^¿r­£NÅ=•/÷“$G“ת"Š ‚ðeùR…TéÒ»ò êPÜ hjà«ÜÛ÷7q,óýgçòj_HIÎ¥—²›N ª*÷`’ ¾÷êÈuÊ?è=&* ™¿êºbû»¤@:È]¡ö Ó8Þ!fXâÎŒøX±7CÚ¢³÷çH«M™ÈUî´ÙùÚV*x¨gy/Ì!ýîUÕ4óâ=„‚4ÉÎ௸‚,³v¬iå ’$£nbôØT¤Ì>éeÆEQÈá› 4“'¼Ö*î ´V«p­å`j|N÷XRàÌØmÛYÀ0.I(máØÍD¡ìž¶ºŒ‘ÝI7½ÜR!¤Ó‡{¹ F&â‹Aæ´Á´®½Î¹3bEo±Ì?´´Øµýx‹l·ª?£ÅêÅXƒDûªdélyU¶ÅW‘™@‰ènNÏëèyçÉ;X¸Ì·LJË‘U0Ä_­Åi½Ì’šAS{:`•©’±}Ýzá‘“ÑÔ >Dd|ÔÆz€Ÿ¼ÌHŸäK¼xoDÎRO¿¨¯‰Q x΢¼ V¤DÒv^+Aò2 ýBD¡LÄ%G/-ÝãºÜ)žVßê+rŽçõA­ŽÑÇ íxOá JcäæAz¨!¤³dœØXåœzõQŠwËÚÊ5‘ÕK²HºÚåÌ<]'u„í”B-­]CÙ[Ü9“žL%„“Rµ j%ce~éø¨ÊréìT=4_l äÃI„X1ã$‘“UNšž“‰íbߨßK4¼÷Ì^7©CL¹1ùkcKTtR”3Ô¸QZjÔ\lVýfåTƒº€™›°ã#äÙíçö§ÝÃn›»: @/$­ õÂÖ äOxÃ.D$Œ>ªÆ585vR‚ÆX‘Ä‚·]e]XÑÒN…M…3Ò4ùá°~±ü‚zUãE “^”zqëb^>.vˆÙ@Ë'KÁ.ò¡IçVcuœ,o½ÄÌ¥$ïæÁÜP”²Ýå^œQTÇ‹ÔÒCWí88 •%ÚÇ;³)•ƒŠ‹Feò”^»J¤*‚g´%/…Sò•ˆóbЋJ+N½È=‰åØØº_Ó•)—¼Š…j¦]tñv¶_'“Ý[õÞò÷ÞAå‚5¶~1 Åü ÍÂt: ÚØA'9½åu›SF>yæ…œ„ŸN"¼¾.ÖÜÝÛEˆ¨ôèx‘Zèg/èà)¼)¿zNx{¹âe—ON†y9w…V^~:ßE.ô3y*Џ„ˆ]¤ãU$ïZÿQ`°hp÷ÅÛ·È(P‘›¿Áî*ÎgXWóMDãë{·šoÕÉ{/ ¼¼ð2Å˸0ŸÅŸº_˜KÂÕ§íqðçËo\uïá7—^ú»·èúI8ádŠ¿ò·i_ºòÆM?ºòÆÝ÷®¼Áçæ,Rà´À§O*»& B+m(ŒI¢$Åþ‚-#5c EFÖÕ§ÉÞðgßË/C¦¤‚TëY+XÃY>d©wÀb „ÖŠùöU"ô·u~ñS‰\)¡û\¹Ðm!6!NwÉÁ,}m Ê‡G*þí„Êã: /4X‹B´+¬ ¾ŠªþDîÚAŸ>Ì~»ŸžÃDµNHxAâÏ…;;Ÿ.6÷:Åï “¤nL ¤.ê¬<)e]5&Nd¿´A4Ïcúô§Ùx¾ó!><‡ wñãsz|ÞË òùC.¼‰i½—SÒœ«·´%™¾l×E4_AFWiAß娏1©túüIh$õW}?îPFås,–;þŒÏ‘=kn5ýŠ»]A ”d{g1$1ŸÚî˜|%p±sVDÚ½8õÓå~½8Ó$H°z|UHé‹-™®¨Õ¾úâXS>ë¿Á}æi&ülùsæÎâ!Þîcò.nïcû>yÎ&ØQAôVÂòúvªüöµ¨¾^Õ×´úåòKêSþ|Z Ï´¹…¾ÄÆ—áØRÏoûíú>æŠßÃ÷¿ù÷ߎzüþ¿¿ýÏoaþËü?ùÏß¿¾ÿ›Ÿ¿ýÕß„9 ”ð•©kþ‡oy¾'ºL¢“3÷Ìϯù?ÿñÛ_úù|û럿ýÇ¿üyHÏÀ-Z•µGžˆND LVžx"¬*a)4üÄ3rH/jÖ-ðÀá5@Fãº>ñD@÷¤LÀYsÛä'žˆp(5A1êO,d&X Ç=òÕbJ䇇¾:A&£æ>?²‘³Mñ9Ü6×'ž¬Ô#pYHFêC³?òÕÓɽ(k#O¬ Á“@'œñÈ‘ JPZSó=òÕ„"FØoý™CoauR˜È2‚Ó#T»i<2SˆuX›<"(Z˜Zž†p=#(`/SVÜTøÏhBô ‚ ÎèÇ:¥6=¥ ©Îžòáh£?1Æéñskº)&92‰œQ`É×gŽ R³)ºT¼g>ºRnSD# GÔ?B1¸j™+>ò#{'wNVÊÝ#:¦âµ±á8ž80˜ÅF-¤šÊл(]h:Oz-S²ã´ëŸ9‚pޑРé#â¶Z&€;žQþÐ1c-~<òºPÕûEqëg⬃ºt"hôÌæ™óHMÄ‘ƒýŒ‹ tY*Ì‚âƒ9R´GæjÏDP— gã)µÈ^F Ù3jkÁ!P”ù‰S Äjößž¹{ƒ‰’Ù€rÂgÄÅ‘™b÷íŸo—òØ?Ò¬h |Àµ>"Ê*òµ#˜öŒ(£Ö@”Sð? ¥2`ìS‚ý&(É&|„g"·€µ&–ñ1Ïá#¾ªE-ñ#»gô© 7ê£=bó$ä°\|dÒ3ñ jµÒùfâ±ÀÑ|qÛŸ¹¤OèÛÉ·þýzäÌdjÆY’«žÒZ ’§U2!Ÿ˜ÆðÑ(O0ÕlGB¶ïto;Ú3WFÓ¥K(à£=²0Àž¥Ll4&æzp*kÒ a ŠglG4xdPÔgB£ÈÃHÈÖE:ÿ3‚‚›÷D :r£‘gÙ‰òÔ×% è]<NGCR.*+Ç31™>Ý*Ÿ6é#+ÓÐ*o~5šr‘ÚÌ(ÿsŸº{£b%¤{?óÑ€+Âæ)|õŒ£‚,>ä†AÆ4LyF÷ã€ð~òiŸð:%JPNOù1hÌŠ† ¥Ðé~F#$L#H–gB[@M&Ô#óȶ-â¢(£{ä«G¥;z¤•g|„Bšö÷LÆ]ðÐGïìFî#S?íOkî\ÈÀ›‰Ï¨êJúððÈÝ2µAíÚ¡>sQ–§˜ •(¡ç?=Á,Cø3Yå\­yªïöLô ÕЈû£rú¡ìü¹"σ’yè£+Ò&ñÑhVh€@Ú>rS†Æ®…*ô§UñHpØ¢è“ZÚ'JÆ(d(-³äß§tV|ùÝ úS3sdN Oí¡ˆzR‚ÀEæW?¹°¿K¥ Ïg´`@)†Ÿq€åLÛ?â#2XË!sÂß3™AL|Çú…-’¨ÖŸ‰-¼‡òÉŸ‰6å97·ÀÏdñ°«±½•*dÛ™õÎóòJç×Ïuýz¹ÞËJ|Ôl±½&¡_ÔçO(¿NFe’%º1 åÎ$ó}cÊI'ïͤ”;“LÅI(w¦V·Ç´ÊÏÀ\}}ئõò‘lîÇw\d)$T“<ø1§'íúŽo?ú“¯~ü«ùO’wöÐkÿñ[ùqžûGš¦ÜÓço?ÿ§_þôSD{³üü6ÎÿÌhy°s_ýøûûs¶‡þÓ?É·†üã¿nlÛ÷‰~ÑøBõ×ÿ*£{¤Î%¾}ÑïÒqü/Þ!íƒø£ŒášŸüËK×±–¹“h*BåÄ‚æ¢Çù;ÝF5ìÏûxï蹟#:JMéLýËn6ú÷©ÚnÊ­°ŠÑ†¡¡©ÚÔœ™û½¾E´aºÞÈϵ(Â5*õ(ºq)åÆÃ(÷ç¿Þ”;Š÷q)åÎ…öÛåÎe¾èö7®ÿŸ¢.Ë7©€Îe€,Tå(âó7¡EtÒ$±)—øMúHLÞØú› bq­êÜ|Ô4)æÒ¹­“RrtëªÜô7eãªeáw.¡l\]‹¶g åÎ5÷oÞߨ”‹bîoTÊÆ%_tãº}㟳0K5À4¨Óñ&Wu+î+S¿\™p_™úÕʬ-EÏÇíØ(%É÷üzûVK¹¶Ói¦ƒ|?Íéns,áš»(1 ˜rm*à¿ú›X¦ÏòÑ æ2à5¦yü´€f)”õßý`V<uá“/~Dúç‹~9= ÕÓC–©"×3ü’etúšKV«”îýçÿöŸ_?Áä‹Sfÿó”»¿L±:åÄ5×âwßûË?ýiÊS`%«þøå¿ý„„ð9A?þù ëÍ,‡ˆØ¾þGftL‡bSÚ„MD®óÕ½J»¸1õ\š Xö1OÁBYhX9ðpWvPŸïû\ÚÌݺâlÁ#1ú…¦J“‚Ζ…(ÜE0"ÎH'kº4†c$¤þU¦ÎÆÑûÆ<…ß^š¾½W:ss‰27Qè‚7æœî‚Jç·ÖSµûŽH™æ;.êNQPKÍÞºÒâí5ëÛG¢];…±˜¸ap¹¹¾Ò%qÊ|@íLJÓ·«²Xò( “tÏèÜ.ŒN=Ýc òöx!kþ ˜ú„Ft\Çê4ôažÈooYÞ¯”iG4\Óó¯G9g£ÕÆ«¯ÂoG»ãÁ´ºÂ¯ƒ‚Ò“§_W'^ƒßÞƒ¾H±7¨C$ý ýã±:=‰L!VÚ=ëÛÑí{£QQóPƒ¼Øç®£½C•·w}û”V´7:7ûeî:¬ÎàÒ¯_ßêvIôˆî™Øh H{#¢5!öº†_ÌùíèÔ™™ùŠ_Q›)¢”H{c4i8ÅŽ¼½ëÛç”ÓÞ@¯ìÀ¿š»n~sº.iü>_ósR‚¾=–𤠠ý*Ej§˜.4¤ÙH‰Þ>­[}{ÊÔ|1]5ËÞ jðÌ]Ç«ƒÊfz{×·ã®Rúšö8ï €uÍOhÞÊ«ƒX=Þ¢tM„¨ ˜’ì 1XÞ:1RPо¨Ë¿ªMö¤Ìž6dur%¿4QãQ¦À#™¿ŠW½‘q›ÖÛç®ÃÞ(á’½)ƒÕ)Q,£H½¢AIúöŽžXøUβ7:ÅuqTeoôÌoš¿R{hX¼7ÐW«˜1^1šïvÙŸåyÌÕ‰'ǃê˜7—B(ˆëgu<¦-g™ªå¡‘nLB1\}X.¶’o\™zCß¹”²qQSàK(w.Hʾq)Åpµa¹šÕÊÎ%”+¹g¥Ã³*Yw.¡l\¸§Ù¹„rçª$ï\JÙ¸²q Åpõh¹ºÝX:;—Pî\Zzß¹”b¸j·\Õ®P‹ö•b¸†e²_øgñÐ?nLBÙ¸ŠS9ŒÉLûþ†ŽÚ; S6®)÷½§Ã5×°\ÜXýÎ¥”+Ú9PŠá*Ñr;úîÎj?œU`°ì£WÊÆE±äK(w®A!î;—R6.äVí\BÙ¸² ¥l\ÔœyãÊ Ú#m£_” .àÎ%ÃU‡åªÃr¡¯ÙÎ%”kìá™7Åpå`¹²}°éöÑ+eãÊdïÞ¹„²qM;©í\BÙ¸†o\B¹sE”Bm\JÙ¸€™½s eãšzk£Rî\€Øö×¢®]w.ÊÆ•Í^]õKùEÙ¸Š9‹²qusÒÅruÇeç+‘·q ÅpUËdçtjùýABØx2yrw&¡l\èZ³s Åpíú|Q6.”®í\B¹s•ýuž ö„aÊÆ5=ª}õ”²q¡’pçÊË<È=¥{²”²qu»ë”b¸Ì>WÊÆ5L˜{Qî\í²gY)W0ÖÌ¢ü ¸*E=î\B±\ÃqÙ™@³òl¹¬å€ÛÅý…°ñcÁ/ŠåêŽËžQx߆«ù“Ì^îK)îªv.¡l\ÙhéEÙ¸Èó߸„rã×ugá?÷ÿHÕ°0eãâÈÑK(W6zpQ W-–«ºq£9Œå²Vâ@LrgbÂÆÓ̉_”;×.¦†•Q1”bX˜b¸vÛ~Q6.+aeãêîÝ¿pû•b¸Ìõ—R6.4ݹ„²q¹«4¥l\ 9L—P6®n¬°E¹s¡H{ÿF¥Ü¹²Û£ù°G c¸²;§ í¾ö¢®Ý¯X”«9®vàêÆ¶]”;!n\JÙ¸Ð9lçÊÆ5ܳÆáYÞC¥Ü¹ÐÕhcÂ_Ì“>ú> JÙ¸p9½s ÅpíÖÜ¢l\Åøì‹²qUc±.Ê«QúÖK)†k÷eãBS¬K(†kט‹²qYrQ6®†tþK(W7–Ï¢l\c¿ƒ|Sî\=ͺ(W26ò¢l\Vt¯ zÿèûTÊ ñþ…JÙ¸¦G¼?K)†k·¸eãJ&þ·(—µieãêvw)eãfXÃx t{UîûáM1\Ûœ¾)W Û—;—P ×ý{S6®ˆdºK(W¢;¼;—P6®¼kâ7eã*†©|xR¶LɽoJë‰ wÔªl€_mò›²qõ=rô¦®Q,×°'±›æM¹s¡t_C¥l\Õî¥l\3wn\BÙ¸ÌmØ›rã (9Ûvó¢l\&Nú¦®-2ô¦l\…—P6.{®eã{ÌàMù˹Âeßœ/L´]Â-ÊÆeeÄ¢l\i÷Lß”«=¼(–k8.7z{ÒÅpÅf¹¢ý02uQî\ˆ'l'mQ6®¸{"oÊÆ•öØÁ›²q™‰7eãjF>/ÊÆÕL]ÃÕ‡åêöY yЗR W²Lö SÚ}À7eãÊv­“»‡û³¹Š±6eã{|áM¹sek .ÊÆ•íÙPÊÆUíÌ+eãêVâ(eãrR"¤DqR¢¤DÉÆvY”«XÙ«”ËÄÞ”×°ÒK)w®zm,õrÿ¾ÇYÞõ۱‹²qMûÐð¢l\&ÏôMÙ¸ª‰w.ÊÆ5Eµy–P6.k{/Ê+ãç/ŠáªÙrU»:Óšû蕲qe÷Æ|xc1gqQ6®öQúÎ%”«ï7J¸ó¤h,ïE1\£Y®aG•l yQ6®îÞØo4wÿoÊ+Ûû¸EÙ¸LNÓ›²qY±(W7ÑšE¹sÁßçK)†ËÈ$¥l\ñ£ì§Q)Wq\åÀÕMÄcQ6®ý­µ\ÔÝZY”+š"ôEÙ¸’=ÓJÙ¸Š±iÅp™ùTÊÆÕݸúa\ý£[&÷…Ök]”;üð}/(eãJVjùÊ¢iªõû‹²qe+i”²qc“-ÊÆU­œTÊ«;íÚÚõÏæÚo0eãrÚµ´+r*«å²7Q@±ßíŸEÙ¸†ñxÅpµb¹šUdOì\JÙ¸ªÝõJÙ¸º}£R6®ý­Õ‰ÊÍC ÉÊ}S6®l¼¹EÙ¸ÊÎRì¿wcƒ,ÊÆe=µì«ˆÖ¢å²’ˆ E÷7*åÎ5­„¸s)eãJFª-ŠáÚ—eQ6®lG¯”«ì^Šî<é21¯E1\{Vâl\ÑdH,ÊÆ•ŒÝ°(×Ôg;6ža¤Õ¢Ü¹ÐxlŸR ×Y”+_`Q6.Sñó¦ü ¸l*ûº†ˆÎô{„pQ6®nì”E¹sM½½Çƒeã²VÖ¢l\ÙžÅê2°'­}²(†kÅçC,>£F}gªnßLRí–ÉÆ'r F,ÊÆeòwß”ËÚù‹²qu;§J¹sÁ`ŸS¥l\ÖÒ_”ËÚ‹²qeã¯-ÊÆÕŒµ¹(w®qÙ]¯”«Úg)eãjF.ÊÆ5>Ì£†õ‹@êŽÉi±aožåÆU¶ ùsû÷`ìéEÙ¸Ò^oú¦l\Öû]õ[)‹b¸z·\îë×áÎ¥”ËZ‹²qÙ›§E1\öY>»£ 7@ݹ†»›.ðú÷ùRŠáÚ5õ¢®ý´.ÊÆŽZÃU-“{4š`Q6.·[”Ë䢿)†+uË•ìŽ^’ùÂê"@éÙQ†§TËdíÐvYº(W7VÆ¢l\ÃHïE1\­Y.«õ 06¹¼(w®ŒF\”+)¹(¡Cm\B¹ssŸ ¥l\ÙèàE1\Í2Ùy(ö.oQ6.k¥—Ã} h»»(w.dì\JÙ¸‚É X”Ëúï‹b¸†e²_ˆÈÆÎ“Ü\ÁÚÏ¡R ×p\NÒÔj¥iu5Ø“fo]ÊáÖ¥ m­™Ñá"@ÌÚïPÅp™óª”«íùGJ°<Õ1Yù@HÚ–Ëüf¬%s¢ÛáD·á¾o¾Ïfk_Ñnqp.ÊÆe=¨E¹sdnJeã²–‹²q“[°(W5>Ô¢l\ÍÊ#¥Ü¸Ðõf†,ŠáÚ¥Ö¢l\ÍhýEÙ¸º9ù‹b¸v¹µ(—ÁyS —ýFW1 Ìy—R6.ƒò¦l\Ùøñ‹²qµÝQÂÆ3Œm°(w®hwê¢l\yS(aã){åÒ›²qÙ<æEÙ¸Lä›rçJÿûÎ¥õkêEÙ¸¬¸(†+fËec1 í2bQ6.ƒMò¦l\ÅèÄE1\ÝqÙÛç <‰}o)eã&³(w®l³§ÅpíË¢l\¦:óMÙ¸Š¹ZõËÔEÙ¸ª‰Æ,ÊÆÕܸÚa\¦nùMÙ¸º‰|/ÊÆ5LÄ¢.#•òA*¹{ªz¸§B·ƒýziQ6.Ó^”;W5¶§þbžbµR —Óáv©"nd¸ªó:+âF“6{›Z9uZ2F(eã²ÙöõP×Rûe,’EÙ¸‚±¹eãr§§NO·µ‹²q5“‡´(w®±EYøÏíßó^5¦ÃcF­”Ëæ«-Ê«¡ÍÓöÂE1\ÍqY ©]ÁÄkeã²ÑÂE¹s!—cçRŠåŽkX.ëy/Ê ¸û•ò/àŠFb-ŠáÚó#ÅpíZQ6®djAeãÊæT,ŠáÚó(eã²þʢܹ`/ìãRÊ ÅŸ;—R ×7X”ËVB´C%DËö®~Q ×~ó°(— ,Ê«ØÌ§EÙ¸†ÝÑJ¹sÕjtÁ¢.³'”²qµ½þMÙ¸º©©\”;P’ög)eãÊvG7‡÷1iÕX•‹b¸vëmQ6®aw´Rî\SìуEٸ‡a ÖJáó\”+½²(W5±¾E1\f*Åpí5;‹²qÙÊžE¹s [Ù·(—Íæ^õßû/ÊÆÕìiTÊÆ5Œ…·(7®~Ù¼ÀEÙ¸‚‰ã-ÊÆ•Œu³(—AyS ×.%eãj{O O7tQ W®–Ëf•aqW,ÊÆw{Q O2å¢l\Õè©EÙ¸ºÑë‹rçŠïãM1\»wº(×°³¥”;üíýJÙ¸ö µ'ȊѲ8ùד-.ÊÆe3yåΕ7Û”ÿÜÿÝÔ.Šá2ãÎ>3ƒúËeåv϶ÚmQ6.Û"fQ6.{§¿(†«9.ké]{¿‡Z”«¹Ñ7?züïýJ±\ÍqÙ½^ Vó›²q£çeã²YK‹²q “iº(w®jï/eãʶQ‘R6.{Ð7Àk4;^)—ÍÌ]”ËÄv8‰“fäŒR6®êÆUã²6Ù¢l\6–¹(o®?»;ÊÝ£J)ضZ£,÷wë¡E«Ô²îõFqgÂb"Î× Ä)¤´ŒT´× Ä)‹‹i7¯ˆ;S˜kѨæuqgŠp)mÀ0yÝ@Ü™Â\J›$+YtDXY¯Û++WÞX-Ãw³S¡•´uøî`v*´’¶sý+0;·Ú‰=Ãýf§B+iMÞÌN…VÔΙk`Ù©ÐJšï0;ZIÛäýÎñÀ·Ú!ï f§B+i—¼'˜ ­¨]“¼'r ­¤ÍòþµòÆjÞ;˜ ­¤íòlvþè&.Xùùýf§"j+IÙ© +Óë~ÌN…VÒ 2w€Ù©ÐJÚ†r€ûÌN…VҎὃ٩ +׮ὃ٩ÐJZ“÷³Sq+j »Q÷ž`v*´’¶Ê{‚Ù©ÐJÚŽ˜úýf§2¬\;å=ÁìTh%íBR÷ýf§B+j³%‚Ý`v*n5´EÞÌNÅ­†¶É{‚Ù©ÐJÚÁ5¥ÀìT†•k§¼'˜Ê°r­É{‚٩ЊZßqîÍ­ÌN…VÒVz/0;³zh;½˜ ­¤ÙNêþ³S¡•´‹Þ ÌNÅ­¤õiÁ½˜ ­¤Ù Â}Ù) #“6ùN0;IÛå;ÁìT†•k'b{÷˜Š[ ­q])0;ZQÛfùN0;ZI[¹*˜ ­¤mòž`v*´’vÈ{‚Ù©¸ÕÐ.yïdv 4r s‚ÿ=‚Ù©ÐHÚ"ß f§B+i‰»?ÀìTÜjh6sÜ`v*´’vÊw‚Ù©ÐJZ“÷³Sq+iHOõ«…Ä$þHùídv ´ ´Ék‚Ù©ÐHÚÁõ¤ÀìT†•k×ðÚÁìT†•iç4¼v0;•aåÚ"¦µÎz«ü&’Š[ m—ßÎd§0ŒL:=Ós Ù© #ך¼v&;¹tÍnà‡Ëø‘¿–°à³Ý0v*´’¶Ég§±Sp#I‡|&Œ ¤báþ€±S¡µ6¹‰“Øñ#/a–×Îa§@#J«|&†Š m—×İSV®òšv*´’Ö<§v`Ø©ÐÊ´ÑíÓÿ¢cØ¥¸ÕЮىa—B+iÛÍ\§°S ¤«Úû€°K¡•´K¾;„] ­¤µá»AإЊÚ<ÓwBØ¥˜ÕC[Ýw2Ø)ÐFÒN߉`—2¬\;=ÃSv)Ãʵ‹¾Á.…VÔ–‰+^g°K ¥Åó;…`—ò02m¾7Ùöä:¥Cž;‚]Š ¶û °S6.5ùív)´¢¶ÎòÜìRh%m•ç`—B+iW¼°K¡•´ƒ¾;‚Û é’ïŽ_—2¬LÛ&ùîøu)´’f+íûÀ¯K¡•´U¾;~] ­¤íòÝèëh#éäj×éëhD©yNªàëRÜHÚ>Ës‡¯KV®-\ë¾.…VÒ6zîìu ´‘tÈsG¯K¡•´K¾;z]Š[Ië{8YâÚHšå¹ƒ×¥ÐJÚzó)‹àu)´’¶sKðº·Úé¯KV®5úî< ´¡ägë÷]—B+i‹|wìºZIÛ†ïmüHyíØu)n2´‹^;um$5yíÐu)´¢vÍž…*èºZI[åµc1¤ +×öáûå>¸B+i'fù»¨ë†‘I×ð½ùýê ¨a7é¾;t]Š[ lÅû`®S ¤Mž;r]ʰríçŽ\—2¬\;¹Æ%r] ­¤µá»%ØJ¡•kó4Ëw+ @I«gÐ ¥.Å­†¶Ë÷×Ê«C¾;p]ʰríòd] ¤]ô—u)´¢¶N\énvcù41añº1AÖ¥ÐDݱí•ýÈßK؇Çn”2¬\;½Úm!^]Š[ ­ÉcÇ«Kq+iÛ,¿¯.…VÒV®o‰W—2¬\Ûä½ãÕ¥ÐJÚ!ï¯.F”.ùîxu)n$­ÏAôÝñêR†•k‹|w¼ºZI[=kVxu)´’¶{ÍùêhDéô•9éêh"©yµ›àêRÜJÚ1s}K¸º”aåÚ"Ï®.…VÒ6yîØt)´’vÐ÷W›kønñ")´¢vNÃw;¯“B+i³çp ­.…VÒVùîhu)n5´+\¢Õ¥ÐJÚyã áhu)´’Ö佣եЊÚ5É{œKV®-^yE¶ºQÚ†ï†V—2Œ\;代ե¸ÕÐ.ùîhu)´’Ö代եЊZ›å»£Õ¥ÐJÚ*ï­.Å­†¶Ë{G«K¡•´ÓkÞ„V—B+i—ç¡ ­.…V®-} ÷ŽV—B+i ×èD«Kq«¡mž‡*´ºZI;ä½£Õ¥ÐJÚ)ï­.F”š|÷u”adZëå»KyX™¶ÒwÐÕõ£™PؽZLhu)4‘vx§ÐêRh%íòZ7¡Õ¥ÐŠÚ2q½H´º”aåÚâyœB«KV®mòÞÑêRÜjh»¼w´ºZI;å½£Õ¥ÐJZ“÷ŽV—2¬L[gyïhu)´’¶Ê{G«Kq«¡m\í­.eX¹vxŘÐêR†•k—¼w´ºZQÛ&yolu ÃȤÅëÅ„V—2Œ\[‡ïw£B+iûðÝRü¤ÐJÚÉÕ.ÑêR†•kmønhu)´¢¶ÏÃûÓ9hDiኗhu)Ãȵmøn²”aåÚ1|7´ºZI»˜EK´ºZQ;¦á»UHV®ÍòÞÑêRÜjh«×½ ­.Å­†¶s½N´ºZI;å½£Õ¥ÐJZóº7¡Õ¥¸•´sâj’hu)´’¶È{c«KF&mòÝÑêRh$í`>*ÑêRh%í¾ûjœÊ°r­ÉwG«Kq+i×ÌœT¢Õ¥ÐJÚ*ï­.…VÒvyolu ÃȤÓëÇÈV—@J×ðÜvðRhD ³â%«öP†•k‹W ­.…VÒ¶áùåcOÛž\—v ß-#W ­¤‘¸!´º·š2°‰V—2¬ !ÒNï­.F”VÏI%YÂÃĤ]ž;X]ʰrížÛ€(]̦%X]Ê02 1ícXCyX™¶ÈsK«¤0l\Ú¼þMXu)n54Ò6„U—B+i§|w¬º·Zó 8aեЊÚÂükRÕ)ÐFÒ*ߪ.…VÒ6ùîPu)´’vxV*™êÌæ!]ôœHu)ÃÊ´•´ !Õ¥ÐJÚB°‘êRh%Ì !Õ¥ +×vùnI¹h#éô 2Õ¥ +ך|÷ZY)n% gçî»Õ¥ÐJÚ"ߨ.…VÒ˜í@uþL*‡ÚH"gC(u)ÃÊ´s¾[O ­¤­ÃwC©K¡•4r6„R—âVC;™ÏI”º”aåÚ%ï¥.…VÔ0ž.ne0h)´’¶È{G©KV®mÃ{Ë8–B+iÇðþ¤Ç“÷ÒÎá½ÿHV®µá½qR¤ÐŠZ›½ŽŒ$u ´‘´ß9ò´õÉwi»|ç)·ÚÁ:2‚Ô¥ÐJÚÅlNVK¡•k*»ïIçÏn"…”7Âkå^£.…FÒvùͳ!*ÃʵS~;F] ­¤5úmuþì&TæY~{…ŒI[™?KˆºZIÛä¹×šH¡•´Cž;D]Š[ íb !êRhEm!kCu)´’¶È{‡¨KV®­7¾•1Ô)ÐFIFQ×nâÂ)¯¡.”š|v„º”adÚ:3û”u)´’¶¸Ï$¨S0›‡D†êR†•kkÈP—B+i$l .…VÔ€è4ß P—âVC›YEF€º”‡•i«¼w€ºZIÛ彣ѥ¸ÕМ³ñFxc£ŒkâӥЊÚ>ÉwǧKV®‘³!|º”aåÚ6|7|ºZI;äûæ·þ~<|—t1ó”ðt)Ãʵ6|÷ýZQ;fùîðt)n5´•5p„§Kq«¡í·a„ € ÃÆ¥S¾{]‚ZI»XGtºZQ;·!r:…aãÒ2<÷Ý=ZIÛXGpº·šr­ N—B+i§|wpº·Z£ïÎM§0lL꣟g›.…VÒVùîØt)´’¶3g–Øt)n5´ƒudĦK¡•´‹¾;5m(µI¾;4]ʰrma¡éRh%m“ïM—âVCÛå»QÓ%Јi‚¦K¡‘4åYš.…V®íNÊ»hºZI[™Jhº”aåÚ6|7hº”aåÚ1¼oÏ ­¤]Ìê$4]Š[IøëÞ;4] ­¤-òÞ¡éR†•k+kàM—B+i»¼whºZI;é=¡éRÌê¡5V‘š.…VÔYw#c¦S ¤…¾™.…VÒ6úNdº”aåÚ1|@(]Ãsû—Q[IÜ2]ʰrmf ‘éRÜjhdn™.F”v棙.…FÒNùîÈt)´’Öä»#ӥЊZ_)Ðw§OJq«¡-òÝ‘éR†•k›¼wdºZI;XAFdº·š¸—=¾ÛºA¡ÉoG¦K‘‰k»ˆD¦K¡•´•YD¦K¡•´]~oÓøÑM\mƒÈt)2¡vÉoG¦KV¦âm™.eX¹¶ÈoG¦K¡•´møm f)´’v ïý\ž ­¤ÌF%2]ʰr­ ï ™.…VÔÎyxº§®ÐJÚÊÊ7"Ó¥¸ÕÐDÝ 2]ÊÃÊ´CÞ;2]ʰríbå‘éRhE ³ÝåVžoD…VÒ–á½í9¤ÐJšÈD¦Kq«¡íòÞ‘éRh%í”÷ŒæS¡•´&ï™.Å­¤µ™µcD¦K¡•4Ñ7ˆL—B+isj‰L—2¬\;X;FdºZI»†÷'_w=yïÚá$¿û@¦K¡•48<Çw ¬ÞrÐï‚>¬ôû[ :m^qÐï‚>¬ž8è÷@Aw«×ô{  Óêý(ènõšƒ~KAFú=PÐiôŠƒ~tZ½â ßV¯8è÷@A§Õ+úý-Ý^qÐï‚N£Wô{  «'ú=PÐiõŠƒ~t·zÍA¿ ú°zâ ßV¯8è÷@AVúý¯CÏ=cžG2zdžG2z‚=ƒEϘ瑌ž1Ï#=cžG2zƾöÊúóÎq]ïÿùýôþ»wýbôµ÷¯ÞÍ E¡Æb0Ñ­úí|(xY=øê²zþ[ý=ûóô+PÎO§X.‚tcóc€]¦ë¶¥?ÔÚÓØÔáÝ=hkÜd‘Mm…f,â«‘j/2"ƒ4›ý8[ðbÁ%±#/CÕ¢ôØÅæ/Ù,ö« »ÿaÄOÑá4ĹÑ)Üiù óåK0#¥Mþ",õšÃÅlû>·É² ÆeîÓwlN¥²oqn•7ŽÓå/ÚÈÅZË0žªÎɲԇ–¼‡“¡A¾.ƒ¸xˆin „Arr7ªÓa„æÚ,ÓìL=»ª&,þ§qQ šC!N‚ã»Ã\ØýO¾ÀbéÛVãμ¹eBróôÍ„æ—Õî‡ ³†EÀuµÍž@²Øu5a±³î¥Mä…,ÈY´JÂ…™®Vޝ¥ÙòÓŠ›ñ‡qQ7‰Jw‚s–ù²£+^[Mhþ‡qQí~xÔŠ^Íï«­´\c\Ux°Ž‹:ù‹¶ÉSêqUýE»¿íªšp¬¬­8ü~° ,ˇÆUõ³=òä­d¨Y÷ä÷ƒU³¬Ìª¶ûaYöíªšÀ¸;rvý~X¶«ê/Ú­6Ö2Aí~@¨}·ÄIÜ,M[¢æA؇¥öZÒîé=Kµ?}±þkÙfcëX®–߉a\·ëjÂê—Õ_’½yZŒßŽ®Z´Ûæù~? )€å‚+ï‡Íy­ëâ_$6Gö‡¯ƒ÷6 – ƒ«j/ÁªÚŽÚ&ljڽâ¢òm°³ç9›ßXÇØi ®ª §ÿa\T¿py6?ÀðûGvr:ôËh´ãÞ~?¬ãÙœÉe±½âjWÕ„Í7]¸¨~? xmÁ‚•!î>Jîwµ«jÂézÛOÞÇeD¨Õ®ª¿¨]/ÁU…¸ýéF¥¼šo:ý~@PgÛ}óåÂæzì_Œ­e+„•5o“8¹Öµûá<ýOã²úý€ ¨mŒÏ…÷6b“-WdÛÍfeF#ú å¹Av]ýE«-o×à ¬lÙ†?Œ‹ê÷9¸ìªúKKš[íªšpùÆE=ÕA€3ÞÚo#vúà”‡Ìm‹=Ž)±åé|žò“µ8Ҙ󶾂m×óœ‡hžU^9ÏòC×çi‘ ‹Ãi¡“ã|žöОa~5ï!wm¿žç=Û£žÏóÞ ã‰Ìøëzžø°/°s—1ñ!÷ÂÖÌcæÃjÒ.ý˜ù°öÚÏç™gÝÓú<õáMƒV)¿]OÓ Õ—Û½¡i°ÏÛ“ßšÌc_Òï ̓ÓÌŒ÷1Zmèõ<NÈr8Ÿ'BðýÞÐLˆR<¿74‚Hç÷†fBÔrù½¡©ÕO~oh*Dßš Q;ã÷†æBÔø½¡¹pÞ&Þš çY}c:œÑ„àzžÁ/ñ{CÓ!òÄçWó!²ªýÞÐ|¸ˆc2æÃ‘§;&Dd°ú½¡ ¹œ~ohBDî£ßšQNï÷†fDÔ¢û½¡±¯yohJ\'r™Ç”¸ÎÌ¿SâºÖ5æÄuÝxohNDFˆßš‘Aá÷†&Edø½¡Igï~ohRÄQµßš7ì®çYg~ohVÜ–ƒ÷†¦Åm%‹rL‹8]ò{CÓ"ÚWù½¡yùý~oh^´Hþù«þòn~ÿ÷ýÿ¿ï¯ž§÷øÿóíýýýúÝßýzîï‡Á©Oõ_ÿÐ-ÍÓt¿QÐa¾õ‹ûþë>¿ÿúó»—Ÿ>|ýûwÿíksçß󆨸Ùl{¢òù·¿áj¨K°é7ÞVà!28m Fϯ½à ‘ ‡jD|á}±õ·¿!¾ ±gÔÉ”|)}ñ€š$LG…‡èGcé«·©?Æû"Ážð>„Lß2æ Ë¦‹Pÿíâ4t¦çR%—%c6¦õï¦à6´êo;7´+ù·¿X0Ö0d±Š'Ãñjö> –ÜÖȾ²ÈN¿„%Ëeó^+¾ÄŸm¬AVLňÿY¬_Ë‚ûzµekŽÓÇš’Û-|Œ7Ú—ß2<¼¼ÁYß•V2¬®ö(_%q9T56²Þ*vʧ7^žd_2Ò\­ç. qNkÍOÛ=Ö^(ùV1øƒ±ºZ!,‚"%Áp”º¡{=š:UÜ‚¨Ùµ`x_Ðoˆ‘kòKX G¥µXDG«’k„<ŽPPt(ƒh!&ТdÃåÖÐÙk<³(Þp°…ºÜšÑëÙFÿ«ä[F O :•<É€¢×;RK+B8ÄšÁÊ+KîkHq^[•Ø ä':~ATq؈dómóŠš‚4;E4G%ù•}Ù¿îž*μGxËÿŠûz3bÜQ^A4dÞ=(W’)‡µc³ø>ç•$Øckô¡[ʼn ÊgóO¼T쓱“G¾Àê|Á‚ 2§!€-Tð‰Aw±÷¢ãÐ äkRw«X¸Z7X+ ?wÉ'Êì²:νäǺ®6A%Yhƒ3ôÃ:˜—Äø,ׯ’e PŸ–'±Õäš{áu¾U<ÆÖ§bfÝMIÍ%†T#QZ1gI˜a¼’g«:Ü×Ùâ KÉþ= FÕ=¬ÈjÃ’µ/½l?ÑJ WQé¶Ú©ÛRSuyõç×ׇgÉ‘Qü/tBöOÉ7¸åF‡ê“IÅP87˶Æ@ÓJR†Ñ\ÕèoÖÚ¦ä¸cÞqT{Õ$I#üqx ò¾)zOŒ­Àö” 5ÓéyæÈSª©ãAN³Å çšmüeGO/©Nf?q,_KR&f§bQXRuƒZb$“ö¥ÍV’áuZ¿D«%.Ù"£Ÿ¼Ð%9Ö^׫ÓJÐ8ìÛ;¼ßRrƒ`5K0˜îv¤¢H­äP™ÿ \ýw%Qd9¡?”!¨JŽ‹g8[ùÜVòàg”ê­9EÞÚ¬…½ÁfJB?¨v°Ä¥dFžíÈw±RÄ’•fßkc•Ð]MIËn' ¨@™**ü0AYÆÐn%§1ÇbñŠuZj2ð‘;Ѽb‡wq{rçV¹¶ÍñbÌ᪚ÆÃx„Eõx+ `—Oò5£W3ø6<5 µìžîtUÇ£7NÍ­¨¥äeÞ¼oËlñ‚/Q\$ñ®Y‚»@=FCDq+öŒVˆí¬£Vr_﫯CИ«"oÑÍ“{ZRžlaaT "E¢$+Å¿VMŒJ£¢a;|°.YZ#à…ô®)áE»‰Ãؤ@@”L'}ˆ¦ô½ÄCÔ ¢•&2@KªÍC/,áE¡õʱËœ'v>©¡êcû´ ¼½lJø~ƒ9mûT‚HDÊÅÞ¬WÿÈ%'(V…í)ƒCï†Å0„Ee ÍZë …¶h]½bü`I¹ånÅ1XV/!W  ÷…¡%Q ›=w+N(˜ìú «L4å(Á£`ˆ¶én¶„§’ð^³¼¤Ãþ[r”l‰³è.U‘˜d`RÛ›lE™³è#jA ô.«'o-yÔÀB6K,tdÁU2´ö-ÄÑf»kŽŠÈ€+¨Ù¯¾O.Zùãfo¥¦¢ªOÇÖ;É¿êš(xs²ßUò‰§ÅNÚ, ^Óòe± -œž—ÀÖg–óYR …Å ïÆ€(9Vm– ‚ãý«&¡˜u‚šõü¬Í_I§NH<®©§òÚ}+*  qÊÛšÕ­xÇB kM KX¼¬vç¬Ê·Ø˜°¸V,Ó±ŸNÏ·(©³¼¼û÷©$­=Ú¬ü ÌJB«å!ìSRံH‹Ã…—¬÷j(k‹TMоÖjP0ÖÓgj¾¢)YfvÏ®eó…uI¾ânDÄ¥! ·f‘é#×\Ó›ËØ7›/2÷’Ìh4‘·:FÄTJÿËá7hS52Xþû\–»½[F†’üwÛo3::—Jãvf#¨­ä#£Ïž%iž–X_²£ÙÂúì•ô;Ej¡šuæy;0þê—L¡ý² CQ"Öâ“í¼•D„×ÍVÂXY×`L˶yEÚT26,Ø(nžËV3ØœÖ]ÄêskŠ6‹M­ÆÎ.I¶ÀòÃst®’)…üx:Õdbõa°ŽaÛ'dÀ£‹xEc¤m÷ºƒ:•%X‡ÞÝÖØ%Ká¾€CU®­ÙKJc0c-|"¢T9ú%¼,Ÿæ*I.éZíªö‡Ísð¯dBF~&6È}„EQÉ!ÂyúÉÓQ2V[Ó«Ýs°j*m¼™7jŒ*¨2Øs[šš<×d¡·ýì{îšÎ‡} Áyå>›€b¾9ÒãªIÜ=€[F1G³9ð—ÐѾd ™- ·õY’«h…c§eZO%#ƒu/bG‡’ z¿[ç‰ÿ–dYÁ4hIº—ÕÚ€¡iÇw($è[& ¸-5\±ÃÖ HÐ/ÉDÜѪ‹Ð+®,H+¯«ääd_G¢SEI²7€†²ú§’öŒh)h‘†©¦c&¦ø T”¾ ˜krÁ½º“üYr¢})xDeÕEH¥Á$ŠàJÉÁ4x¤(WÚP»Stx‚b4ã‘–àùA”k¾nX,Œ†³……ûDPÁˆµ-£•25°O$ž“#Î’Pýîe ˆ %4‚BšvP5'ZHsòåMoÁ> n[³`Í^6z!{©& ˆ4·ÅÑ2sÅGFZR[¼uGM9(’ÙpÖÝ'ÓV™åfn–R¹—Ô—ö}mÛ.'™”Äø.3®¶¯½JF›c³êMTÛ—¤p°s‡q KŠ7,°}ð*éÎà%ÓfKŽxŒ…åðÚgª’•Ò@·Tu¸D&= n)‰]L\6¬E_óìX6L[û Ø›Ó*Ëj.œÇokÍNÙâ5¬~:Kúòã@ 65œu|Yg©£/°!VZ!c å—°íÍŠÖ’6ý †„VƒÙ,ÞŠ7œK©Ëlt~k-[r_CPø|Zà¦`¬Aþ™w/%{(À(°^ÊòϘì´OEaC|â¹2Ù© ÈÑÁGÞK:œG’ñ(%ÉI }z/Å£än–ÿÔg µ×ò`ð¿Uõìû„I-¦dê'Pç«è0H±ƒåO5}À½¡8¶ÝG mÙ-Žt¬¢¥5jºOKtjb×éZ¬_QñkCUßuÚ—S’s7÷y qÒ«f•´Xè9ws ÆYú>%Ÿ5aHÏêE YIÇ ÿ‹Ak2¸1ÊXnM_ ×àš­Aæ/éoƒÅõŒšidd•tÅV¡àŽÞ,%÷!²š}ËGI¨½7QRµUeÿ såðé­biˆâ}ö¶Óz–,Cp¼z,E¥8^=|R±ìZÀô°޽ä–AÌÇ–­së9&ÍBI{u_;.Oîm5H§fDÖqº&ÌpZB¥Õ–Ö4¾õ‚HcT„…­ÝÐåMûΊÃ¬,ãz:kz¬â„ò%CIÆ5ÂÓîYõ5Ä@ Mm+Ò`pØÚH%£úFîvØq”ÌM³C9ÛKø·¾_DeÇ\tûW‹¾fÛnù©%{ üfŽ"NÙ²ÞNûÀ“m”KöwVÕ×—^GỈ®6wN5U}‰®%ÔFð‰dد¤Êþ´i ñÑš²}$êÀ ”mIü5y¡ÃuŘ1##,€útP¶Åg䚣xfׂøcÉ©åj-2ëV4º­$o[m`*õ®ÉÒœ½ 18V5«êÅÖƒF=«[ kÑZ]–CU²b°>™ÛURm´):¨`ÁP’ÀaT4C=Ï¢q97ïP“Rè9žkR- b»Ïþ—=÷[¤$ r;¬«¥uk-ZeZ•ÛRT‚m¨.ßn·Šˆµí10à€±¦ž– :lKâ™Ò4w[vÕ Õ‹7¬Ö!¨däš}Ý °]U‹_kCƒ»§¤òdrì’UžT5Ðú9‹%r¤Óv¯JÛKR‘³ˆ€ëѪ"¸ûíDF rKÎvŒlº×þ‘9…Ñ3ÞQ²!›½«62§Šº-Æ Å†ç()u8ÑåÝCgkÉ ©€“7ˆ(k¯:ŸÎlvZ^‰5®.‰«÷%:šg!Y’ócö~x²U´ÏÅ(ΑqÎ]’­ˆ¾¾‹€Öœ"÷oݪØJXFV<ìo)i| ìÉïÁ£$Ù®/µ9º k¥äÎÞ®3À^/D[[–ZÔ®[ˆÝjÜ®’”Ô ×ÎûIµ’6ÓË6€½GÉ5Ä!NÎÁä¯XÄ5Ï_‘ø_32xºlú G]ò(¯èBÖ××{ÉÞ¤?(WØ£\Óã ‰gK¥’B–Ý YÇQ²Æ¡ûÇê`¢’7´ZG_&•Tï#*¨Ó]Tå¾#—`@!µGù(ê ×gä §ª}]8—ìÈ06ì^žÛJøÖÍãH>6¤3¨½¥õ×mïçf;7ì¯÷3~Ÿ¿ÿOïÿðÑtžü¥¿üïûÿÿnzÿ«w}ŒE·—¾ŽE¼¯½¿¿ÛŽ à¬¡üôî«¡¬Ê:ÜêìÛŠå••”g«† ¶íÙJÊ“Õ6Û`ýì—”g+C«.ÏVRž­Þ|¢§Ïød5½ÿñ¯|3çûÓº<}/–­ëûQq_°ÿæ¥OX¾šOd%ý‡Å~è •¹ÿ°=ÿpð‡mï?\ßô‹ú៿þ{ÿ^Wk‘‡ÄOK»e=€Qßý‚&V³5ìòÊê¸PZüdäÂ+›6uùlDåÙjÑmãz²’òÊÊŽÖž½’òÊŠŸçÉêéþ[¾|%_á»±b›ß6JZâ÷òoúZì‡ÿÿ×ò¸Ÿú@w¶§gFÊzlhÑ•ÇG}«®E_ÍHõ÷пyùïüÓ´"XÏyj/Ÿ¿ÿðB°ÓùrþûÊÿî×}—ñôFýÛ›û*×ýøöwßû~ýýÏ¿ûÓ7?ý¯ÏŸ¾ýþçŸûòñþÝ¿üï?~úåûÏ?}óËo?ø§yíЂþ#?ðo^n¾B–Ô4]/_ÿîÉ!ùs¬/?õã×|×ËOF_¾z~É7xúá;¼~ÇTôòÇ'ù§O_üÓ´¾üüüêOmºÚùòËÏ|m;^¾¼ñ©ÿpôµàrf—hFþârð}ÿíw?¤iû¢ ðÉ?}8¼©]Ž¥ïA¿š-Aiq3:²]}‚µ‹Ó·oÝ•—/Ÿ_}ìŸx2ûôùþêÒᚬVDaß7~ÑÖþË—þ=>½ÇŸð«~áÎeù様^Ï ïíµµíå—ݳîÃ7üçu½´ý?Ò·éxùöùzvó?¼ú¦Þ^a¾Â_°·­¿ï«·²Ãúò/íûçgýôlôå›Ïï›^Ÿ½õ÷]F?/ÿÊ?6¯/ý•¦^ëËŸí__½Ãç/Ÿøñq-ÞÞHþýío®ÑçϯÞîç?vC|ˆm~}ýž¯ÿ¢¿âG{víÎÁÊø¾ûú?ýæå|À›´ý|ùôÓýÓŸ>2ïûíúòç¯þñé­î?ÿáõ#ŽÝË?ø ³—}ïqG,í:qC`»µö¿ýò+x /¿}yý&xéëËôgÞoÉwðüÒ·_º¹°¿>}ö? þâôçß|ùØ/ [®ë«wøüéÎ_´õåyL|våãO÷çêã—~ _þõ·úøµG»ÜÕååóÇ7n¥¿>\¹os®ô…îú:þÓÓ3þ㯟ä/ýKÁÞrš¶—oþž õº–ååçWvxz‹oŸñ=_~``úʶXëùæÅŸ?öaÁ×Ç‚¿zÿäþñ‰nõÄ?¼ûzûÍendstream endobj 364 0 obj << /BBox [ 1787.69 3143.73 1821.99 3491.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 109 >> stream xœ…˽ ÂP FÑÞS|8þ‹ý<¤`ˆDD(XŸHÐSÜÛél-X_ô$ÍV[Á2j<°]qÁƒ„‡„=õ÷m%­Ñ_Éb°æ’‚‡ïŒn<·×Œ7)Ž{wþ¨…Nô¶ÉRendstream endobj 365 0 obj << /BBox [ 1817.4 3143.73 1848.82 3719.97 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 113 >> stream xœË± A ÑÜUü |¶×ëµ+@"ƒ ¨N"@âhŸE¢‚™ì-g+Áö¢'i”ršŠ° Xx@­9'ö+.xpŠC¸…þ¾o¤©Åc2›ŒÓRчrø—Òœ{µÑñ&Åqv'Áá¹Ò‰>²Ö Úendstream endobj 366 0 obj << /BBox [ 1844.23 3143.73 1878.53 3891.47 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 114 >> stream xœË± A DÑÜUL>Ûëµ× ‘ÁT' q´Ï"QÁü‰Þr¶l/z’F)W¡©[ÂÂjÍy`¿â‚ q·Ð_÷txp·éæ‹ÁŠSéÕ¿”näÜ«eÇ›ǹ; È•Nô°ê Îendstream endobj 367 0 obj << /BBox [ 1873.93 3143.73 1907.25 3891.47 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 113 >> stream xœË½ ÂP FÑÞS|8þ‹ý<¤`ˆDD(XŸ 1ŽݙÎÖ‚õEOÒlån¸Š°,#¡æÁÛ> >> /Subtype /Form /Type /XObject /Length 113 >> stream xœË± Â@ FáÞSü8¶Ïö'@J)˜"Q  Öç  x¯û–‹•`Ó‹4K¹ MEØ:,=¡ÖœŽ®x’ð‡pKýýØIKœ+§ód1Xq—ÉGðˆ˜”îäÕzàCŠuö Áé¹Ñ™¾´ àendstream endobj 369 0 obj << /BBox [ 1932.37 3143.73 1965.69 3548.47 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 115 >> stream xœŒ± BA C{Oá B’ËÏ]&@¢ &€/Q ñ)XŸCb [²ôžw'/åú–eRÅfªâž‘4o!ƒÛ•> 24¨ÒÒ~½­°šHæô"E>¤ûÜ1o,¾.nYªõ…o3w(÷ÿ¨gñòS!,endstream endobj 370 0 obj << /BBox [ 1961.09 3143.73 1995.39 3605.68 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 112 >> stream xœË» ÂPÑ|«¸¬÷ÿ¼ ‘*KH˜€ö1Ìdg:[ Ö=I«•»á*Â6`5ž±]qÁƒ„g {éïÛJÚåì_Åb°æ!®ˆì™»¥gûH¼IqÜ»“àð]èDô !6endstream endobj 371 0 obj << /BBox [ 1990.8 3143.73 2025.1 3605.68 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 112 >> stream xœË» ÂPÑ|«¸¬÷ÿ¼ ‘*KH˜€ö1Ìdg:[ Ö=I«•»á*Â6`5ž±]qÁƒ„g {éïÛJÚí,_Åb°æ!‘ƒ=s§t£àl‰7)Ž{wþ è´ Üendstream endobj 372 0 obj << /BBox [ 2020.5 3143.73 2053.82 3434.18 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 113 >> stream xœ‹» Â@ó­âU°ÞÿÝU€ä PX"@´Ï@0o’7Ëņ`Ó‹´†òpak°Š‚šw7\ñ$á.a/ýí±“‰Ù¼¸F±¬s³ªéäž9SºSpo‰)ÖɃ§?ÊÎô®Ü Îendstream endobj 373 0 obj << /BBox [ 2049.29 3143.73 2083.59 3605.68 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 112 >> stream xœË» Q DÑÜULÆÿ·®‰ ¨V"@b hŸ‡Ds£9»“µ`}Ñ“´Z¹®"lVQPóàÛ¯P Êendstream endobj 374 0 obj << /BBox [ 2079 3143.73 2112.32 3719.97 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 113 >> stream xœË» A EÑÜU¼ ¼þg\l@°K@û Ü›ål%Ø^ô$ÍR®‚«[‡e$Ô> >> /Subtype /Form /Type /XObject /Length 112 >> stream xœË»  „áÞSÜŽ_±ã ÒE&€HH„‚õI$ ¸ÿªo¸X Ö7½H³•»á*ÂV°Œ„šOØnXð$áIžúë¶’© ‹í.òxk.)T8k”î<¶×ˆ)æ}œþW:Ӧ⠦endstream endobj 376 0 obj << /BBox [ 2137.43 3143.73 2171.73 3834.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 112 >> stream xœ…Ë» AƒáÜU¸‚a{³; ]T' q´Ïäþ%ßáì¥ÜÞxÁ²Lª¦*ÞéÙ’æÑdp¿ñÊ'T†6ªDÚ¯û·(é1]KQ§Ï§9r2ÜÑd©è ?0®s(Ô'|±•Bendstream endobj 377 0 obj << /BBox [ 2167.14 3143.73 2198.56 3548.47 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 113 >> stream xœÌ½ Â` „áÞSÜŽÿâ|ž‰R0D¢@"¬‘€âÞî¹él%Ø^ô$ÍR®‚«ÛËH¨yðÀ~ÅöÔ_÷¬!‡·‹d±v> >> /Subtype /Form /Type /XObject /Length 111 >> stream xœ…Ë1Â@ DÑÞ§˜8c¯ãO€”RpˆDD(¸>[ÐSüß½éâEìoy‰e™V¡©Þá óºà¸áЧP¨-í÷c·Jõ.RéðÒΣ×pr—йZŸñÃ:zqúÇ69Ëí”endstream endobj 379 0 obj << /BBox [ 2223.67 3143.73 2256.99 3548.47 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 114 >> stream xœÌ± A DÑ|ª˜ Œíõz× ‘ÀIHísH@0?{³;y)—ž°,“*6SôŒ¤y ™\¯¼ð•©A•–öëºÀÝ»ÔØ\¤¨Ó§ Ïdl7_‹BzµÑù†ñ°íåþzÆñ#!(endstream endobj 380 0 obj << /BBox [ 2252.4 3143.73 2286.7 3491.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœ…Ë» AQ¿£è†ùíîMHçÀIHé³>F•÷g/åöÆ ÖˤŠaªâƒÞ³Ó> >> /Subtype /Form /Type /XObject /Length 114 >> stream xœË± A DÑ|ª˜ Œíõy× ‘ÀIHí³H@0?éíN^Êõ…',ˤŠÍTÅ;=#iÞB·+/|@ehP¥¥ýº­p!1Y¤¨Ó‡tÏä¼%ãKqCÈR­/|Ãx˜»C¹ÿCžqİî Ôendstream endobj 382 0 obj << /BBox [ 2310.83 3143.73 2345.13 3319.82 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 111 >> stream xœ…Ë» A EÑÜU¼ Œc¯+@Ú ¨V"@b hŸ È îÍÎál-ØÞô"ÍV[Á2j¼`¿áŠ' /öÔß÷ÌÕY}ºHƒ5—´”Ç„t§àÑ^R¬³ ŽÝ…Nô&žÚendstream endobj 383 0 obj << /BBox [ 2340.54 3143.73 2374.84 3548.47 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 114 >> stream xœÌ± BA ÐÞSx‚äòs— 耂 àKH| Öç€Â®ü¼;y)מ°,“*6SïôŒ¤y Ü®¼ð•¡A•–öëmÅ\¸Œ6]¤¨ÓKºvÆ|±øRܲTë ß0fîPîÿgñ«n ²endstream endobj 384 0 obj << /BBox [ 2370.24 3143.73 2403.56 3376.97 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 114 >> stream xœË» A „áÜUL>¿Ö»®‰ . 8‰‰# }‰æ×$ßr¶l/z’f)WÁU„­Ã2j<°_qÁƒ„‡„=õ×}#ónÜbºHƒ î– ›'ãkéFÁ­¼7¼Iqœ»“àð]éDó€!:endstream endobj 385 0 obj << /BBox [ 2398.97 3143.73 2433.27 3662.82 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 112 >> stream xœ…‹± A sW±˜µÏç{W€DT/ ñ´Ï!‘Ìj‚ÝÉ‹X_òË2­B3R}À3æ-tÁvÅ¡. P[Úo·U> >> /Subtype /Form /Type /XObject /Length 114 >> stream xœË» A „áÜUL>¿Ö»®é2¸€ à$$Ž€öÙ€æŸè[.V‚ýM/Ò,å*¸Š°uXFB̓Ž®x’ð€°§þzìdáÂÕ§‹d1Øàn™óÖ¦¥;·òÞð!Å:÷ ÁéºÑ™¾õu!Dendstream endobj 387 0 obj << /BBox [ 2457.46 3143.73 2491.76 3548.47 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 114 >> stream xœÌ± BA ÐÞSx‚är¹Ÿ 耂 àKH| Öç€Â–\<ïN^Êõ…',ˤŠÍTÅ=#iÞBnW^ø€Ê¢A•–öëm…G/9]¤¨ÓçÒÁ˜/_ŠBzµÑù†ñ0s‡rÿ‡<㈰æ Èendstream endobj 388 0 obj << /BBox [ 2487.17 3143.73 2521.47 3834.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœ…‹± A ó­b+0¶Ïï;W€ôP¼D€ÄÐ>ÌD3‡³—r{ãË2©b3UñNÏHš·ÁýÆ+ŸPTii?ï> >> /Subtype /Form /Type /XObject /Length 114 >> stream xœ…˱ A ÀÜUl~Ûçó+@ú > x‰‰' }ìjƒåb)Øßô"TÎDS¶ ¨5ç‰ã†+ž$<Å!ÜB}ìd]“u”ó`1Ø¨× tuî%éN5²Ž)Öʃ§ÿp£3}n= `endstream endobj 390 0 obj << /BBox [ 2544.62 3143.73 2578.92 4177.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 111 >> stream xœ…˱ A DÑ|ª˜ ŒíõzÏ ]T' q´Ïäó'z‡³—r{ãË2©b3UñAÏHš·…ûW>¡²hP¥¥ýºoð)åÓÍW§— 4õšw„ôj£óã:÷€òø]pÂendstream endobj 391 0 obj << /BBox [ 2574.33 3143.73 2607.65 3548.47 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 114 >> stream xœÌ» A „áÜUL>¿Ö»®‰ . 8‰‰# }‰æÏ¾YÎV‚íEOÒ,å*¸Š°uXFB̓ö+.xð€°§þºod­'§OÉb°ÁÝ2óFãkéFÁ­¼7¼Iqœ»“àð]éDòc!,endstream endobj 392 0 obj << /BBox [ 2603.05 3143.73 2637.35 3605.68 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 114 >> stream xœË» Q DÑÜULÆÿ·®i3  X‰‰% }^@sƒ‘Îál-ØÞô"­VÛ€UÔ> >> /Subtype /Form /Type /XObject /Length 112 >> stream xœ…Ë» Â@„á|«˜ Öû¾» œ*KH˜€ö¹€œ`~Mò-‚ýM/ÒÊcÀU„­Á* jÜqÜpÅ“„»„½ô×c'+O–œ.ŠÅ`›U!58§¤;Í3¼%>¤Xç$8ý‡é li Xendstream endobj 394 0 obj << /BBox [ 2661.55 3143.73 2695.85 3491.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 111 >> stream xœ…Ë» Â@EÑ|ªx óóìNHÎl*À– aÚgr‚{³sY­û›^¤YÊUpak°Œ„šwœÜñ$á.aOýýÜÉ2{ Éb°â& >m<•· RÌ£ƒ×?êF }°‘6endstream endobj 395 0 obj << /BBox [ 2691.25 3143.73 2725.55 3491.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 111 >> stream xœ…Ë» Â@EÑ|ªx óÛYOHÎl*À– aÚgr‚{³sY­û›^¤YÊUpaë°Œ„šO8¸ãI“„=õ÷s'Ërnm¸HƒwéððÁh£àVÞ>¤˜G ®Ôú±8endstream endobj 396 0 obj << /BBox [ 2720.96 3143.73 2754.28 3262.68 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 114 >> stream xœË» A EÑÜU¼ ¼þg\Òf°ÀJH,í3Ü›åb%Øßô"ÍR®‚«[‡e$Ô> >> /Subtype /Form /Type /XObject /Length 111 >> stream xœ…Ë» A EÑÜU¼ ¼þg\Òf°ÀJH,í39Á½ÙY.V‚ýM/Ò,å*¸Š°uXFB̓Ž®x’ð€°§þ~ìd½M7¦‹d1XqWxøtt§àVÞ>¤Xgœþ±Îôï–endstream endobj 398 0 obj << /BBox [ 2779.39 3143.73 2812.71 3605.68 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 113 >> stream xœË» A EÑÜU¼ Œÿ3®‰ ¨V"@b hŸE¢‚{³³;Y –=I«•»á*Â6`5žX¯¸àAÂSÂ^úûº©\_Åb°Éê9Ø37K7 Îö‘x“â°u'Áþz¦#}øe!Lendstream endobj 399 0 obj << /BBox [ 2808.12 3143.73 2842.42 3548.47 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 114 >> stream xœÌ± A DÑÜULfìõy× ‘ÀIHí³H@0?{³;yëKžbY¦UhFªwxF¼…lW\ðê`€ÚÒ~ÝVñaÔ°é"•/íìˆùbñ¥r“Ð¥Z_ðÃaî.Äþy–£|¨˜ ¦endstream endobj 400 0 obj << /BBox [ 2837.82 3143.73 2872.13 3491.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœ…Ë» AQ¿£è†ùÝîNHçÀIHé³>F•÷g/åöÆ ÖʤŠaªâÞ²Ñ> >> /Subtype /Form /Type /XObject /Length 113 >> stream xœË» A EÑÜU¼ Œãµ+@Ú ¨V"@b hŸ (€àÞìÎÖ‚íM/Òlån¸Š°-°Œ„šö®x’pI@ØSß7²Êæòé"Yl:.+…J%똖î<Ú—)ÖÙƒÇè…Nôõê!:endstream endobj 402 0 obj << /BBox [ 2894.36 3143.73 2928.66 3719.97 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 114 >> stream xœË± A DÑ|ª˜ Œíõz× ‘ÀIHísH@ðöv'/åò–eRÅfªâƒž‘4o!“ë•> 25¨ÒÒ~_ø¬”ÌÍEŠ:½dh3öa’ñµ¸!¤Wo[w(÷ÿÐ3Žø÷Ô!Fendstream endobj 403 0 obj << /BBox [ 2924.07 3143.73 2957.38 3777.18 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 114 >> stream xœË± A DÑÜUL>Ûëõ®+@º . 8‰‰# }PÁŒ~ò–‹¥`Ó‹4R9MEØ,< Öœ'Ž®x’ð‡p ýý±“¥Eu9ƒMV>*fïeéNÎ=Ûèøb­=Hpú‡nt¦/öh!Fendstream endobj 404 0 obj << /BBox [ 2952.79 3143.73 2987.09 3777.18 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 113 >> stream xœË± A DÑÜULƒí]{× ‘ÀIHísH@ðöv'/Åò’§X–± ÍTéž=aÞ:'Ö+.xˆrj‡²¥ý¾.âAýºžT‡‡¤OΈÊM:£Ú¼Åpغ‹bÿ‡<ËQ>µ äendstream endobj 405 0 obj << /BBox [ 2982.5 3143.73 3015.82 3434.18 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 115 >> stream xœË± A DÑÜUL>Ûk{× ‘ÁT' q´Ï"QÁü‰Þr¶l/z’f)W¡©[‡¥'ÔšóÀ~Åân©¿îY çþuž,Ü-s~ðˆ˜–näÕzàMŠã܇èJ'úü¹!`endstream endobj 406 0 obj << /BBox [ 3011.29 3143.73 3045.59 3548.47 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 114 >> stream xœÌ» A „áÜUL>¿Ö»®‰ . 8‰‰# }‰æÏ¾YÎV‚íEOÒ,å*¸Š°uXFB̓ö+.xð€°§þºoä¢ÎmLÉb°â.1_4¾”nÜÊ{Ûǹ; È•NôªP ®endstream endobj 407 0 obj << /BBox [ 3040.93 3143.73 3075.23 3434.18 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 113 >> stream xœË» Â@EÑ|ªxŒç»»S’3p@`‰ Ð>PÁ½ÙY.V‚ýM/ÒVÊUpaë° j]4ƒw™|$ÌIéNÁYÞR¬³ NÈÎô­> Äendstream endobj 408 0 obj << /BBox [ 3070.64 3143.73 3103.96 3319.82 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 112 >> stream xœ…Ë» A EÑÜU¼ ¼þg\Òf°ÀJH,í39Á½ÙY.V‚ýM/Ò,å*¸Š°uXFB̓Ž®x’ð€°§þ~ìäÒ˧‹d1Øàn9iWnSÒ‚[yoøb=Hpú7:Ómk \endstream endobj 409 0 obj << /BBox [ 3099.42 3143.73 3133.72 3376.97 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 113 >> stream xœË± A DÑ|ª˜ Œíõy× ‘ÀIHí³H@0?š·;y)מ°,“*6SïôŒ¤y Ü®¼ð•¡A•–öë¶bþMºO)êô’®“ûŒ/Å !Kµ¾ð ãaîåþyÆ«š ¼endstream endobj 410 0 obj << /BBox [ 3129.13 3143.73 3162.45 3605.68 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 113 >> stream xœË» Â@EÑ|ªxŒç¿» 9T–0í³Ü›åbC°¿éEZCy ¸Š°5XEA̓;Ž®x’p—€°—þ~ìäêÊáÓE±¬s³*D6öÌiéNÁ9¼%>¤Xgœþ¡é ï?!(endstream endobj 411 0 obj << /BBox [ 3157.86 3143.73 3192.16 3491.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 111 >> stream xœ…Ë» Â@EÑ|ªx óÛYOHÎl*À– aÚgr‚{³sY­û›^¤YÊUpaë°Œ„šO8¸ãI“„=õ÷s'×Ö6\$‹ÁŠ»txø`´Qp+ï RÌ£ƒ×?êF }ªµendstream endobj 412 0 obj << /BBox [ 3187.56 3143.73 3221.86 3948.68 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 114 >> stream xœÌ» A „áÜUL>¿Ö»®é2¸€ à$$Ž€öÙ€æÏ¾Y.V‚ýM/Ò,å*¸Š°uXFB̓Ž®x’ð€°§þzìä:ŠGNÉb°â.c¾xk“Ò‚[yoøb{àô‡ÜèL_³L Ôendstream endobj 413 0 obj << /BBox [ 3217.27 3143.73 3248.69 3548.47 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 114 >> stream xœÌ» A „áÜUL>¿Ö»®‰ . 8‰‰# }‰æÏ¾YÎV‚íEOÒ,å*¸Š°uXFB̓ö+.xð€°§þºoä¦Å­OÉbÓñ°0Ä¼ÑøZºQp+ï oRçî$8üCW:Ñîš!endstream endobj 414 0 obj << /BBox [ 3244.1 3143.73 3278.39 4234.47 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 114 >> stream xœË» A „áÜUL>¿Ö»®‰ . 8‰‰# }‰æŸè[ÎV‚íEOÒ,å*¸Š°uXFB̓ö+.xð€°§þºoäÉþuóÅ`Å]\¡2’µMK7 nå½áMŠã܇èJ'úï^!endstream endobj 415 0 obj << /BBox [ 3273.8 3143.73 3307.12 3662.82 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 112 >> stream xœ…Ë» A „áÜUL>¿Ö»®é2¸€ à$$Ž€öÙ€œ`~Mò-+Áþ¦i–r\EØ:,#¡æÁÇ W> >> /Subtype /Form /Type /XObject /Length 113 >> stream xœË» Q DÑÜULÆÿ·®i3  X‰‰% }^@s£9‡³µ`{Ó‹´Z¹®"lVQPóàû W> >> /Subtype /Form /Type /XObject /Length 113 >> stream xœ‹» Q sW±ÿÎï¹$2  8‰‰# }ŒD;Ú`fw²¬/z’f)WÁU„mÀ2j<±]qÁƒ„§„=õÇm%÷Vï.’Å`“‡eÂúd|[ºQåcÁ›‡ÞûÒ3éò~!6endstream endobj 418 0 obj << /BBox [ 3360.96 3143.73 3395.26 3491.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœ…Ë» ÂPDÑ|ª˜ –ýyŸ·$g@@`‰ Ð>È îÍÎáì­\ßxÁªMº¦*>è•EóH™¹Ýxå*³&U¢ì÷mED…xí.KÔé-C#cg¸#eê?0.{(Ô'|­ß*endstream endobj 419 0 obj << /BBox [ 3390.67 3143.73 3424.96 3548.47 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 113 >> stream xœÌ» ÂPDÑ|ª˜ –ýyí­‰ ¨, aÚç!QÁÜìÌîä­\_xªMº¦*>Ó+‹æ‘²p»òÂTMªDÙ¯ÛŠˆvé.KÔé-³†1Çå×↔©cžø†ñ0v‡rÿ=ãˆð‡! endstream endobj 420 0 obj << /BBox [ 3420.38 3143.73 3453.69 3319.82 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 112 >> stream xœ…Ë» A EÑÜU¼ ¼þg\Òf°ÀJH,í39Á½ÙY.V‚ýM/Ò,å*¸Š°uXFB̓Ž®x’ð€°§þ~ìäaÆÙ§‹d1ØànÓkWnSÒ‚[yoøb=Hpú7:ÓlX Vendstream endobj 421 0 obj << /BBox [ 3449.16 3143.73 3483.46 3376.97 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 114 >> stream xœË» A „áÜUL>¿Ö»®‰ . 8‰‰# }‰ææ[ÎV‚íEOÒ,å*¸Š°uXFB̓ö+.xð€°§þºoäÑ”çÕ5’Å`Å]&·Á_J7 nå½áMŠã܇?äJ'ú°$ Îendstream endobj 422 0 obj << /BBox [ 3478.8 3143.73 3512.13 3319.82 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 112 >> stream xœ…Ë» A EÑÜU¼ ¼þg\Òf°ÀJH,í39Á½ÙY.V‚ýM/Ò,å*¸Š°uXFB̓Ž®x’ð€°§þ~ìä1”u²Hƒ î–Svå6!Ý)¸•÷†)ÖÙƒ§¿n£3}*ºîendstream endobj 423 0 obj << /BBox [ 3507.59 3143.73 3541.89 3605.68 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 112 >> stream xœË» A EÑÜU¼ Œÿ3®‰ ¨V"@b hŸE¢‚{³³;Y –=I«•»á*Â6`5žX¯¸àAÂSÂ^úûº§4ϯ‹b1XóÈÁž¹QºQp¶Ä›‡­; öÈ3éµT âendstream endobj 424 0 obj << /BBox [ 3537.3 3143.73 3571.6 3662.82 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 112 >> stream xœ…Ë» AƒáÜU¸‚a»³7 ]T' q´Ïäþåä;œ½”Û/X–IÃTÅ=[Ò<š,Üo¼ò •EU"í×}Cô(ÉÉZŠ:½dh»5éâŽy*FçÆuîåñ¯»à„/,2ðendstream endobj 425 0 obj << /BBox [ 3567 3143.73 3598.43 3605.68 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 112 >> stream xœË» A EÑÜU¼ Œÿ;®i3  X‰‰% }& ‚{³s8[ ¶7½H«•»á*¶À* j<°ßpÅ“„‡„½ô÷}#ÏjöÉ¢Xl26‘ {æ¤t§àl_R¬³ ŽÈ è ²^ Öendstream endobj 426 0 obj << /BBox [ 3593.83 3143.73 3628.13 3719.97 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 113 >> stream xœË½ ÂP FÑÞS|8þ{v<¤`ˆDD(XŸ 1ŽݙÎÖ‚õEOÒlån¸Š°,#¡æÁ3¶+.xð,aOý}[ÉG'«ï.’Å`Í%…QÊ_J7 í5ð&ÅqïN‚Ãr¡}²¸ Øendstream endobj 427 0 obj << /BBox [ 3623.54 3143.73 3656.86 3605.68 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 113 >> stream xœË» Â@EÑ|ªxŒç¿» 9T–0í³Ü›åbC°¿éEZCy ¸Š°5XEA̓;Ž®x’p—€°—þ~ìäeÉ=¦‹b1XçfUˆlì™ÓÒ‚sxK|H±Î$8ýC7:Óõâ!Bendstream endobj 428 0 obj << /BBox [ 3652.27 3143.73 3686.57 3319.82 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 112 >> stream xœ…Ë» Q DÑÜULÆ¿g¯+@Ú ¨V"@b hŸÌMFçp¶loz‘f+wÃU„­` 5^°ßpÅ“„ {ê¯ûFž#xät‘,k.)h) éNón¯)Ö¹ ŽÝ…Nô.6úendstream endobj 429 0 obj << /BBox [ 3681.97 3143.73 3715.29 3319.82 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 113 >> stream xœ…Ë» A „áÜUL>¿Ö»®‰ . 8‰‰# }‰œ`þh¾ål%Ø^ô$ÍR®‚«[‡e$Ô> >> /Subtype /Form /Type /XObject /Length 109 >> stream xœ}Ë» Â@EÑüUñ*ÏÏ»ž œ*KH˜€öÙ€˜àÞìL/åþÆ ÖʤŠaªâÞ²Ñ> >> /Subtype /Form /Type /XObject /Length 112 >> stream xœË½ ÂP FÑÞS|8þ‹ý<¤`ˆDD(XŸ 1ŽݙÎÖ‚õEOÒlån¸Š°,#¡æÁÛ¯4 Èendstream endobj 432 0 obj << /BBox [ 3770.11 3143.73 3803.43 3491.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœ…Ë» A EÑÜU¼ Œk+@Ú ¨V"@b hŸ È îÍÎál-ØÞô"ÍV[Á2j<°ßpÅ“„‡„=õ÷}#¯2.’Å`ƒË2ááÓÑ‚—öZð!Å:{àø]èD_î~˜endstream endobj 433 0 obj << /BBox [ 3798.84 3143.73 3833.14 3434.18 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 114 >> stream xœË» A EÑÜU¼ ¼þÌxì 6ƒ ¨V"@b hŸ (€àÞì,+Áþ¦i”r\EØ,Z@Í'Ž®x’pJƒ°‡þ~ìä)ÊêÓµ`1Xñɳsö>)Ý©q/R¬³ NÈÎô­Ú Æendstream endobj 434 0 obj << /BBox [ 3828.54 3143.73 3861.86 3434.18 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 114 >> stream xœË» Â@Ð|«˜ Öû¿» œ*KH˜€ö¹€fFé-‚ýM/ÒÊcÀU„­Á* jÜqÜpÅ“„»„½ô×ÇNÞ}þ1]‹Á:7«š›Ü3§¥;çð–øbyàôÝèL_ö$!Fendstream endobj 435 0 obj << /BBox [ 3857.33 3143.73 3891.63 3319.82 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 112 >> stream xœ…Ë» A EÑÜU¼ ¼þg\Òf°ÀJH,í39Á½ÙY.V‚ýM/Ò,å*¸Š°uXFB̓Ž®x’ð€°§þ~ì䣧OÉb°â.®Ð®Ü¦¤;·òÞð!Å:{àônt¦/ob ^endstream endobj 436 0 obj << /BBox [ 3887.04 3143.73 3921.34 3148.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœ}Ë» AQ¢è†žÏíîD€t`œ„Äa>k`cTyïpö"¶·¼ÄZ™V!ŒTïð– æ‘:°ßpÅS¨ƒ j4û}ß$Æ(˜.›ÒᥜHî’ºTô1¬³‡Ç¿æ"'ù63lendstream endobj 437 0 obj << /BBox [ 3916.68 3143.73 3949.08 3148.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 111 >> stream xœ}Ë» AƒáÜU¸‚a{³; ‘ÀIHí³HÄþ#»“—r}á Ë2©b˜ªx§gKšG“ÁíÊ PÚ¨i¿n+¢lHéZŠ:½_:nh²Tô…osw(÷ÿÑG|u9Úendstream endobj 438 0 obj << /BBox [ 3944.49 3143.73 3978.79 3148.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 109 >> stream xœ}˽ Â` „áÞSÜŽÿbÇ ÑA &€HH„‚õù¨)î½ê™ÎÖ‚íEOÒlån¸Š°,#¡æÁ ö+.xð"aOýußÈ;’ëëÆ‹ÁšK 2Ý(xn¯oRÇî$8ü5+è7³tendstream endobj 439 0 obj << /BBox [ 3974.2 3143.73 4007.52 3148.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœ}Ë1Â@ DÑ~N1'pl¯ã]Ÿ‰RpˆDD(¸>A¢¦ø¿{ÓÙK¹¾ð„e™T±™ªx§g$Í[Èàvå…¨ ª´´ß·­zJ|]¤¨Ó‡tϤî 7„ÌÕúÌ7ŒÇ½;”‡ÿhÁ vDàendstream endobj 440 0 obj << /BBox [ 4002.92 3143.73 4037.22 3148.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 109 >> stream xœ}˱ A DÑÜULfìõzÏ ]T' q´ÏÄÿgïpö"¶·¼Ä²L«ÐŒTðŒ„y ]°ßpÅS¨ Ô–öû¾I]ݧ‹T:¼tp€É]B{µÑñÃ:{qük.r’/- Bendstream endobj 441 0 obj << /BBox [ 4032.63 3143.73 4065.95 3148.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœ}˱ A DÑ|ª˜ Œíõy× ]T' q´ÏÄó£y‡³—r{ãË2©b3UñNÏHš·ÁýÆ+ŸPTii¿îBç¥Út‘¢NÒ=“:îYªõ…×¹”Çÿ肾oÂendstream endobj 442 0 obj << /BBox [ 4061.41 3143.73 4095.71 3148.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœ}Ë1Â@ DÑÞ§˜8c¯ãO€”RpˆDD(¸>[PSüß½éâEìoy‰e™V¡©Þá óºà¸áЧP¨-í÷c—`6í6\¤Òá¥Hî:Wë3>bXG!NÍ&gù0{Rendstream endobj 443 0 obj << /BBox [ 4091.12 3143.73 4125.42 3148.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 109 >> stream xœ}Ë» Â@EÑ|ªxŒß|¼ë©É8 °D€„ hŸ ˆ îÍÎtñ"ö·¼ÄZ™V!ŒTïð– æ‘ºà¸áЧP&¨Ñì÷c—d…¦—MéðÒÎ$wI+úŒÖÑCˆÓ_³ÉY¾0õTendstream endobj 444 0 obj << /BBox [ 4120.83 3143.73 4154.15 3148.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœ}Ë» AƒáÜU¸‚a^7»[Òe@@pG@ûl@Là?òw8ûPno¼`5LÆ`˜ªx£WÍ#¥s¿ñÊ'Tº&U¢ì×}CÎXL—%êô.Í«¨S᎔eD[øq{@yü.8á k¸°endstream endobj 445 0 obj << /BBox [ 4149.55 3143.73 4183.86 3148.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœ}Ë» A EÑÜU¼ ¼ÏÏÇ mP¬D€ÄÐ>Ü›åâIìoy‰µ4ÍD1R½Ã[4˜—Ðã†+žB PK³ß]ªé¨ÓES:<µ³ƒÉ]Bk–^ñÃ:{qúk69Ë1«Xendstream endobj 446 0 obj << /BBox [ 4179.26 3143.73 4212.58 3148.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 111 >> stream xœ}Ë11 DÑ~N1'ðÚŽã$'@Ú¶à°KÁõIAMñ÷–‹åþÆ –Ãd SoôŒ¤y é> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœ}Ë» Â@„á|ª˜ Öûò·$2p@`‰ Ð>‡DL0ýßtöRn/> >> /Subtype /Form /Type /XObject /Length 109 >> stream xœ…Œ± A sW±¯Ïw~W€ôP¼D€ÄÐ>'QZM6³‡³—a{ËK8ŠZ…F3õ„ ·Ðû W<Å0§=ˆ}æR??†šÃKÓLjŸÜ%´WËŽëä1Ž»‹œä :§„endstream endobj 449 0 obj << /BBox [ 1817.4 3143.73 1848.82 3491.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 107 >> stream xœ…Ë» ÂPDÑ|«˜ –ý½ÏV€DT–lnßÛMvîåa)XvZI{*gÂU„mÀzt¨yðÄöÆ ?Ô¸…b[H§&âÑY¬8O› /N né£á Å­þ­üú§zÒN¼¢endstream endobj 450 0 obj << /BBox [ 1844.23 3143.73 1878.53 3491.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 108 >> stream xœ…‹» Â@ó­âU°ÞßÝy+@"W–XÂnßÛz½dfzZ Ö}I{*gÂU„mÀzt¨yðŒã; jÜBq¬¤stnV~½,yÈ€‡—N né£á$ŽØ*¿ý©^ô  »|žendstream endobj 451 0 obj << /BBox [ 1873.93 3143.73 1907.25 3491.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 107 >> stream xœ…‹» A sWñ*0þ­w]PœD€ÄÐ>î&›9\¬Û‡Þ¤YÊUpa›°Œ„š/ìwÜð"AÃ#ûFºf²y÷‘,[<-Þ==(x”Ï/)Ní³ÿã¿íJgúøä endstream endobj 452 0 obj << /BBox [ 1902.66 3143.73 1936.96 3376.97 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 111 >> stream xœÌ± ÂP ÐÞSÜÆö÷÷'@J—P0‰”‰P°>ftºîÞ]VKÁþ¦i¤r&šŠ° Xx@­9O8¸ãI‚ wWœ;iŠsFí=X –<¤˜Mþ#´‘sÏ6:>¤˜«G]\ÿ7Zè ²¯Hendstream endobj 453 0 obj << /BBox [ 1932.37 3143.73 1965.69 3434.18 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 111 >> stream xœŒ± BA CûLá B’Kr— 耂 àKH| Ö'# Ë…e?.V‚íCoÒ,å* a›°ô„Úp^Øï¸áE‚‡+ö´ºÊì½'‹ÁOël+xE4CrŽ3ð%Å©ýìã?è•Îôôºendstream endobj 454 0 obj << /BBox [ 1961.09 3143.73 1995.39 3434.18 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 111 >> stream xœŒ» Â@ó­âU°ÞïÝmHÎÀ€%$L@û §ÉfÞr±ìoz‘¶R®‚«[‡µhPóàã†+ž$˜ã ű“VsöŸÅ`Å]\a#ydΆîœå=ñ!Å:yÌÓ?éFgúñÛ¬endstream endobj 455 0 obj << /BBox [ 1990.8 3143.73 2025.1 3205.47 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœŒ± A sW±,¶Ïw~W€ôP¼D€ÄÐ>Gh5ÙÌÎ^Ší-/±QÆ*4S¥'|Ä€y .Øo¸â)Š9ö0ì›XU£þüT‡S=i±ÄLä.Á^-;>bX'yqü£¼ÈI¾³ŸJendstream endobj 456 0 obj << /BBox [ 2020.5 3143.73 2053.82 3376.97 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 111 >> stream xœŒA A ïyE¿ &=™ÌæÂÞÔƒ/ЂëÁï;þ@š††¢úpf¶·¼Ä³\«ÐÜL9ÀŒ„³….Øo¸â)†íáØ7¡‘5T#¸è`&8GÆO‘»„öj£ã#Žuö1/Ž˜9É­k6endstream endobj 457 0 obj << /BBox [ 2049.29 3143.73 2083.59 3434.18 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœŒ± A sW±ømŸ}w®é3ø€ à%$ž€ö1 Õd3»\,û›^¤=•3ÑT„mÀºw¨5ç‰ã†+ž$¨q¸âØÉ$”ãç{g1XòÊfðŒ¨„îä%´øb-uqú£ÜèL_°+@endstream endobj 458 0 obj << /BBox [ 2079 3143.73 2112.32 3376.97 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 111 >> stream xœŒ± A sW±ømŸÏw®‰ ¾x‰‰' }ü ÕJÌìrµlz“F*g¢©Û€…ÔšóÄ~ÇŠ *Ü]±od2•[á,›<ìÐj„ =ȹg_Rœ«Ïº8ýaÞèB?¬o0endstream endobj 459 0 obj << /BBox [ 2107.72 3143.73 2142.02 3548.47 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœŒ± A ó­b+0¶Ïw‡+@ú ¨^"@â hhµÚdfOåúÁ6Ò$“ÍTÅ'}Ä y 9r»óÆ”éaÜV¸™Šzñ1öõ”©“Q¶Å®àžmv~a\ªÏº8ýa^qÆ£'endstream endobj 460 0 obj << /BBox [ 2137.43 3143.73 2171.73 3491.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 108 >> stream xœ…‹» Â@ó­âU°ÞßÝy+@rf; °D€„Ð>ÛzšàI3Óf)8.úöT΄«Û€õèPóàçw¼IPãŠó SO^~tƒÕ“/žÜÒG×Kñªüö§Úi¥ºâœendstream endobj 461 0 obj << /BBox [ 2167.14 3143.73 2198.56 3319.82 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 109 >> stream xœ…Œ» BA ó­b+0¶Ï÷qHd@@ð$$íãÐj²™=\<•ÛoØH“L6SŸôƒæ-dq¿óÆ”5éaÜ7x­ü¢^¾,_F›&½ <Ò³ÍÎ/Œ§âYÇÿágüoWÄendstream endobj 462 0 obj << /BBox [ 2193.96 3143.73 2228.27 3605.68 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœŒ» Q sW±øl?pH—ÁT' q´Ï+­&›Ùåj-Ø?ô&ÍVîÆP¶‚¥'Ô†ó Ç7¼H0ÇáŠc'ÓN¶œ¾'‹ÁšK Å#b&ô çèQ/)ÖÉs^œÿ(7ºÐ±@endstream endobj 463 0 obj << /BBox [ 2223.67 3143.73 2256.99 3319.82 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœ…̱ ÂP ÐÞSÜŽíoÇ ÑE&€HH„‚õñètݽ[®V‚ýCoÒYÊU*–°éjÃyÅqdž :®8v2³àÊÞûd1ØÊi³I*G zsÔÈÀ—çî³Nÿá.ôq‡Ðendstream endobj 464 0 obj << /BBox [ 2252.4 3143.73 2286.7 3262.68 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 109 >> stream xœŒ» Q sW±øü}W€t\@pG@û¸´šlf—«•`ÿЛt”r\EØ&lÄ€šŸpÜqË=ÎP;™eðl=‹ÁЧ¸B5Ø3;¡gùL|I±6Ͼ8ÿQnt¡©¹endstream endobj 465 0 obj << /BBox [ 2282.1 3143.73 2315.42 3376.97 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 111 >> stream xœŒ± A sW±ømŸÏw®é3ø€ à%$ž€ö1 Õ&«™].–‚ýM/ÒHåL4a°ð€Zsž8n¸âI‚ wW;™Mg/܃Å`“‡E fÿ)t'çžmt|H±VuqúÃÜèL_°Bendstream endobj 466 0 obj << /BBox [ 2310.83 3143.73 2345.13 3319.82 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 108 >> stream xœ…Œ» Q sW±øü{ϸ¤Ëà*€“8ÚÇ Õd3»\­û‡Þ¤³”«à*–°j|ÂqÇ /ôx„âØÉ\ÕÛÉb°â”„¦òè€<ÊsàKеyöÁùo·Ñ…~,‡Hendstream endobj 467 0 obj << /BBox [ 2340.54 3143.73 2374.84 3376.97 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 111 >> stream xœŒ± A sW±ømŸÏw®é3ø€ à%$ž€ö1 ÕF;³ËÅR°¿éE©œ‰¦"lPkÎÇ W> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœ…Œ± ÂP D{Oq8¶¿¿O€D™"Q  ÖÇ ÓIW¼wËÕJ°èM¥\…¡"l ¨ çÇ^$èðtű“´ÞÍ{°lå´h%•gô çY#'¾¤8wŸýpú/ÞèB?oÃÈendstream endobj 469 0 obj << /BBox [ 2398.97 3143.73 2433.27 3319.82 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 109 >> stream xœ…Œ± A sW±ø½>ßW€D_¼D€ÄÐ>Gh5ÙÌ./Ãö–—pµ fê 1@o¡ì7¬xŠaN{û&ÆŸ×CÍá¥i &µÏ@îÚ«eÇGˆÓä1Ž»«œå -ÛNendstream endobj 470 0 obj << /BBox [ 2428.68 3143.73 2462 3434.18 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 111 >> stream xœŒ± BA CûLá B’Kr— 耂 àKH| Ö'# Ëróž+Áö¡7i–r†Š°MXzBm8/ìwÜð"A‡ÃûFæC¸fóž,[<-³7xE´CrŽ3ð%Å©ûìã?ê•Îôñò²endstream endobj 471 0 obj << /BBox [ 2457.46 3143.73 2491.76 3319.82 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœ…Œ± ÂP D{Oq8¶¿ý'@J)˜"Q  ÖÇ Ó'½wËÕJ°èM:K¹ CEØ6}Bm8ŸpÜqËW;™GqÎæ}²¬—$4•£zsÔÈÀ—k÷Ùç¿ÞFú5ñpendstream endobj 472 0 obj << /BBox [ 2487.17 3143.73 2521.47 3376.97 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 111 >> stream xœÌ± A ÀÜUl~Ûçó+@ú > x‰‰' }LhµÙÎ.KÁþ¦i¤r&šŠ° Xx@­9O7\ñ$A…»+ŽÌgrMšz°,yH1›þ#t'çžmt|H±VuqúCnt¦/´ÅPendstream endobj 473 0 obj << /BBox [ 2516.88 3143.73 2549.28 3491.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 107 >> stream xœ…‹» A sWñ*0þ­w]PœD€ÄÐ>î&›9\¬Û‡Þ¤YÊUpa›°Œ„š/ìwÜð"AÃ#ûF6´Xg÷‘,›¼d%<¼{zPð(Ÿ_RœÚgÿÇÛ•Îô÷Èendstream endobj 474 0 obj << /BBox [ 2544.62 3143.73 2578.92 3605.68 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœŒ± ÂP D{Oq8¶¿ý'@J)˜"Q  ÖÇ# Óéš÷n¹Z ö½Ig)Wa¨[¦O¨ çŽ;nx‘ ÃáŠc' Ÿ\Ö|¯¬8%á‘<"Z¡9G |I±vŸ}qþÃÜèB?²Dendstream endobj 475 0 obj << /BBox [ 2574.33 3143.73 2607.65 3319.82 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœ…̽ ÂP àÞSÜŽí矼 è€"@$ $BÁúxtºî¾[®6û‡Þ¤9•çÄP¶‚¥'Ô†óŠãŽ /t8\qìdQÉ9zïÉb°•˲I)G zsÌQ/)ÎÝg?œþÃ]èr»Ôendstream endobj 476 0 obj << /BBox [ 2603.05 3143.73 2637.35 3262.68 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœŒ» Q sW±øü}W€t\@pG@û¸´Úd5³ËÕJ°èM:J¹ ®"l6b@̓O8î¸áE‚g(ŽlH²gó1X V<ŪÑs¶C Îò™ø’bí>ûãüºÑ…~è|endstream endobj 477 0 obj << /BBox [ 2632.76 3143.73 2666.08 3434.18 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 111 >> stream xœŒ± BA CûLá B’Kr— 耂 àKH| Ö'# Ëróž+Áö¡7i–r†Š°MXzBm8/ìwÜð"A‡ÃûF–#X¢yOƒ-ž–Ù¼"Ú¡9Gø’âÔ}öÇñõJgúðªendstream endobj 478 0 obj << /BBox [ 2661.55 3143.73 2695.85 3319.82 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 109 >> stream xœ…Œ± A sW±ømŸÏ~W€D_¼D€ÄÐ>î­&›Ùåj%Ø?ô&R®ÂP¶„…Ô†óŠãŽ /ôxºâØÉ"¯Þ¾‹ÁŠSšÊ³zó¬‘_Rœ›gœþv7ºÐ4hendstream endobj 479 0 obj << /BBox [ 2691.25 3143.73 2725.55 3205.47 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœŒ» Q sW±øl?Î ‘ÁU' q´Ï+­&›Ùåj-Ø?ô&ÍVîÆP¶‚¥'Ô†óŠãŽ /Ìq¸âØÉ²GLß“Å`Í%…(V_}&ô çèQ/)Γç¼8ýQÞèB?³Hendstream endobj 480 0 obj << /BBox [ 2720.96 3143.73 2754.28 3205.47 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœŒ± A sW±Ûç³Ï ‘ÀKH<íãÐj²™=\¬Û‡Þ¤QÊU*–°ð€Úp^Øï¸áE‚OWìYÚ`‹ö=X ¶8-3Y}y7ô çY#'¾¤85Ïþ8þ“^éL?ïK¤endstream endobj 481 0 obj << /BBox [ 2749.69 3143.73 2783.98 3205.47 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœŒ± A sW±ÛgŸÏ ‘ÀKH<íãÐj²™=\¬Û‡Þ¤³”«0T„-aÓ'Ô†óÂ~Ç /ô8\±odí¯ö}²¬8e("Y}y7ô 稑/)Nͳ?Žÿ¤W:Óðþ¦endstream endobj 482 0 obj << /BBox [ 2779.39 3143.73 2812.71 3205.47 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 111 >> stream xœŒ± A sW±ømŸÏ>W€ô|@ðO@û Õd3»\¬û›^¤QÊUh*–°ð€Zs8n¸âI‚9î®8v²Êñó=X 68-=Y}ølèNνZv|H±NóãôOºÑ™¾ôÖºendstream endobj 483 0 obj << /BBox [ 2808.12 3143.73 2842.42 3319.82 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœ…Œ± A sW±ø½>ßù]|ðO@û\h5Ò$³ËÕ˰ä-E­B£™zÂG Ð[èŠãŽ /1ÌiâØÅWšNmŒ¡æðÒ´“Úg  íÕ²ã+Äyòœ§¿ÝM.ò. Nendstream endobj 484 0 obj << /BBox [ 2837.82 3143.73 2872.13 3319.82 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœ…Œ1Â@ {¿b_àØ>ß9~Pä)E$B‘ïÇ?@«éfvzZ Ö}IG*g¢©[À†¨5çÇ vÔ¸»âXÉfV+ß‹Á’CʽúsÏ')îÅV·¿Ý‹t.Pendstream endobj 485 0 obj << /BBox [ 2867.53 3143.73 2898.95 3319.82 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 109 >> stream xœ…Œ± A sW±ÛçóÙ ‘ÀKH<íãÐj²™=\¬Û‡Þ¤QÊU*¶`áµáœØï¸áE‚OWìYFqŽö=X¬}NK….åÙ=ÈyÖX_Rœšg?ÿ‡W:ÓtÂÚendstream endobj 486 0 obj << /BBox [ 2894.36 3143.73 2928.66 3319.82 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœ…Œ1Â@ {¿b_àØ>Ÿ/~Pä)E$B‘ïÇ?@«éfvzZ Ö}I#•3ÑT„mÀÂjÍyÆñÆ‚5î®8V²9ƒ#Ê÷`1Xò¦Ð¡Ü« 9÷l£ã$ŽØêáö?|у.sŽÒendstream endobj 487 0 obj << /BBox [ 2924.07 3143.73 2957.38 3434.18 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 112 >> stream xœÌ± A ÀÜUl~ÛgûÎ }P¼D€ÄÐ>GhµÙÎ.+Áþ¦i–ršŠ°uXzB­97\ñ$Á ‡+ެ,¹åÜ{²lp·ŸÁ#bº“sTë)ÖÙÇü8ýC7:ÓòŒ²endstream endobj 488 0 obj << /BBox [ 2952.79 3143.73 2987.09 3376.97 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 111 >> stream xœÌ± ÂP ÐÞSÜÆö·ýã èH &€H)" ÖçgtºîÞ]f+Áú¡7i–ršŠ°uXzB­9O8žx`'Á‡+Ž•¬"Xν'‹ÁŠ» f§Ÿ„^äÕzàKŠÛè6.®È…îô³QJendstream endobj 489 0 obj << /BBox [ 2982.5 3143.73 3015.82 3262.68 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 112 >> stream xœÌ± A ÀÜUl~ÛgûÎ }P¼D€ÄÐ>GhµÙÎ.+Áþ¦i–ršŠ°uXzB­97\ñ$Á ‡+ެ†sÿí=Y 6¸[N¢Î-bº“sTë)ÖÙÇü8ýC7:Óô’²endstream endobj 490 0 obj << /BBox [ 3011.29 3143.73 3045.59 3376.97 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 111 >> stream xœÌ» A ÐÜUL>ÿÖ»®é2¸€ à$$Ž€öY:@£ÉæÍr±ìoz‘f)WÁU„­Ã2j> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœŒ» Q sW±øü{Ïç È€à*€“8ÚÇ% Õd3»\­û‡Þ¤³”«à*–°j¼â¸cË=¡8vr góöc²¬8%1’5Öè„<ÊsàKŠsóì‹Óå.ô«™*endstream endobj 492 0 obj << /BBox [ 3070.64 3143.73 3103.96 3262.68 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœÌ½ ÂP àÞSÜŽß‹'@¢ŠL‘(ëãÐéºûn¹Z ö½IG)WÁU„mÂF ¨yðŠãŽ /t8Cqìä2Ë{ƒÅ`+OM4Ø3ÛЃ‚³|&¾¤8wŸýqú‡ÞèB?ìá”endstream endobj 493 0 obj << /BBox [ 3099.42 3143.73 3133.72 3319.82 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 109 >> stream xœ…Œ1Â@ {¿b_àØ>ß9~Rº$/€HH$ßÇ?@«éfvÚ,ÇEÒ‘Ê™h*°ájÍyÆùÀoÔ¸»â<¨<å°ò}°,9$ ¡Ü+ '9÷lÑñ%ÅR¼êàö·Ûi¥,ëJendstream endobj 494 0 obj << /BBox [ 3129.13 3143.73 3162.45 3319.82 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 109 >> stream xœ…̽ ÂP àÞSÜŽÿž_<PdˆDD(Xo€N×ÝwËÕJ°èMš¥\W¶ ËH¨yðŠãŽ /tx„âØÉÕ•Ã{Éb°•§e“©> >> /Subtype /Form /Type /XObject /Length 109 >> stream xœŒ» ÂPó«b+8ßÿq 9T–0íóJ@«Éfv¹Z ö½I«•»á*Â6`5>á¸ã† æ8CqìäZšÓb1XóÕ`Ïœ =(8ÛGâKŠuòœç?Ê.ô¨Éendstream endobj 496 0 obj << /BBox [ 3187.56 3143.73 3221.86 3434.18 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœÌ± BA Ð>Sx‚ä’Üe$: `øŸ‚õÉÈrççÃÅJ°}èMš¥\…¡"l–žPÎ û7¼HÐápžÑÐU¼²÷ž,+žÒl¯ˆ&ô ç¨1_RœºÏ¾8þ!¯t¦¶ÁZendstream endobj 497 0 obj << /BBox [ 3217.27 3143.73 3248.69 3319.82 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœ…Œ1Â@ {¿b_àØ>û.~Pä)E$B‘ïÇ?@«éfvzZ Ö}I{*g¢©Û€uïPkÎ3Ž7ì$¨q¸âX©™&Ç(ß;‹•ϳ¹A‡rTArŽl#p’â^lõpû¾èAo(Âendstream endobj 498 0 obj << /BBox [ 3244.1 3143.73 3278.39 3834.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 108 >> stream xœ…‹» Q sW±ÿžß¹¤Ë€€ à$$Ž€ö1 Õh“™ÃÙJ°½éEš¥\W¶ ËH¨yð‚ý†+ž$èñž‘[$ûÏïƒOqE.Ù>Ý)x”Ï)ÖæÑýñ_v¡}ø»endstream endobj 499 0 obj << /BBox [ 3273.8 3143.73 3307.12 3605.68 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœŒ» Q sW±øž¿ï\\pG@û¸´šlf—«ÖÀþ¡7I–pLÆ`Ðô„¨9¯8îØð¢‡ ŽLg²´îÉC¡+OÍ„Çd‹è„äe3ð%Á¹yöÅéòFú¯÷>endstream endobj 500 0 obj << /BBox [ 3302.53 3143.73 3336.83 3434.18 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 109 >> stream xœŒ» BA sW±ïÎ ‘À“x´K@«vf+Áö¡7é(å*¸Š°M؈5^Øï¸áE‚g(öÜ¥'k>‹ÁЧ´¶’Wf+ô à,Ÿ‰/)NÝg_ÿ0¯t¦¯Q> >> /Subtype /Form /Type /XObject /Length 109 >> stream xœŒ» ÂPó«b+8ßÿùU€D®, aÚçJ@«vf—«MÁþ¡7iMå9á*Â6`5^qܱáE‚g(ŽÜ{Jo>ŠÅ`+«V4Ø3Û¡51}$¾¤8wŸýqúG½Ñ…~ëlŽendstream endobj 502 0 obj << /BBox [ 3360.96 3143.73 3395.26 3376.97 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœÌ½ Q à>Sx‚¿—w™é: `8‰‰£`}ÂÈrçχ³•`{Ó‹4K¹ ®"l–‘Póàû W> >> /Subtype /Form /Type /XObject /Length 109 >> stream xœŒ» BA sW±ÿï\P<‰‰G@û\ h5ÙÌ.Ö‚íCoÒjån¸Š° XEA̓'ö;nx‘`3ûFîmܵü(ƒ5q…Í䙹zPp¶Ä—§Ås}ÿI¯t¦òR®endstream endobj 504 0 obj << /BBox [ 3420.38 3143.73 3453.69 3262.68 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœÌ½ ÂPàþ¦ð—ûy ÑE&€HH„‚õ¹åΟ—«MÁþ¡7iMå9á*Â6`5^qܱáE‚g(Ž≮Fï£X ¶ò°vªÁžÙ†œÓGâKŠs÷Ù§è.ô뼎endstream endobj 505 0 obj << /BBox [ 3449.16 3143.73 3483.46 3262.68 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 109 >> stream xœŒ» Q sW±øü}W€t\@pG@û¸´šlf—«•`ÿЛt”r\EØ&lÄ€šŸpÜqË=ÎP;y¤r+®1X V> >> /Subtype /Form /Type /XObject /Length 107 >> stream xœ}‹± B1 {Oñ&0¶ã8ñH¿ &ø|‰‰P°>ž®»;]-LJޤ‘Ê™h*Â6`áµæ<±vÜñ"AÁÝë æSY+÷`1ØäaU¬äܳŽ/)¶òYóùïs£ ýC*Äendstream endobj 507 0 obj << /BBox [ 3507.59 3143.73 3541.89 3376.97 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 112 >> stream xœÌ± Ã0 ÀžSü4IQ”8A€tI Opa Náõ-o<¾ûûéi)X~ô%TÎDQ¶ ¨çŽý F¸ºb_¨TIî×ÞƒÅ`ÉM³Îá¡9×,­â Å}t·?ä‹tµRendstream endobj 508 0 obj << /BBox [ 3537.3 3143.73 3571.6 3319.82 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 108 >> stream xœ…Œ» ÂPó«b+8ßÿq 9T–0íó:@«Éfv¹Z ö½I«•»á*Â6`5>á¸ã† æ8CqìäéÍ5õ(ƒ5q…åœ=(8ÛGâKŠuòœç¿ÝFú1É\endstream endobj 509 0 obj << /BBox [ 3567 3143.73 3598.43 3376.97 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœŒ» Q sW±ÿžï¹¤Ë€€ à$$Ž€ö1 Õd3{8[ ¶7½H³”«à*¶À2j<±ßpÅ“=¡Ø7ò‘ÅÞz$‹µÎÓ¦ÂlrÆ/¡;òeàCеyôÅñòB'ú²'Fendstream endobj 510 0 obj << /BBox [ 3593.83 3143.73 3628.13 3491.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 106 >> stream xœ…‹½ ÂP {OñMàøïùá ÒA &€HH„‚õñètÝÝrµìz“f)WÁU„mÂ2j|ÂqÇ /4> >> /Subtype /Form /Type /XObject /Length 109 >> stream xœ…̱ BA Ð>Sx‚ä’Üe$: `øŸ‚õÉÈrççÃÅJ°}èMš¥\…¡"l–žPÎ û7¼HÐápžÑH ^Þ{Oƒ-ž–M¦r´ 9Gø’âÔ}öÃñ?¼Ò™~r0Òendstream endobj 512 0 obj << /BBox [ 3652.27 3143.73 3686.57 3262.68 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœŒ± A sW±ømŸíà }P¼D€ÄÐ>.­&›Ùåj%Ø?ô&ÍR®ÂP¶ KO¨ çŽ;nx‘ ÇáŠc§‘áÙ¾'‹ÁЧL¨:ˆNèA-Ô˜/)ÖæÙç?Ê.ô¯E2endstream endobj 513 0 obj << /BBox [ 3681.97 3143.73 3715.29 3205.47 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 111 >> stream xœŒ» A sWñ*ðù·ÞuH—ÁT' q´ÏÒzšlæ-+Áþ¦i–r\EØ:,#¡æÁÇ W¤X'ùqú'ÝèL_ók´endstream endobj 514 0 obj << /BBox [ 3710.7 3143.73 3745 3434.18 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 108 >> stream xœ…Œ» BA sW±ïÎ ‘À“x´;@«Éföp±lz“ŽR®‚«Û„Póà…ýŽ^$èq†bßȧzË1X V<Ŷ’Wfô à,Ÿ‰/)NͳŽ»+é2ßnendstream endobj 515 0 obj << /BBox [ 3740.41 3143.73 3774.7 3205.47 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœŒ» Q sW±øü{Ïç È€à*€“8ÚÇ% Õd3»\­û‡Þ¤³”«à*–°j¼â¸cË=¡8vò ãl=&‹ÁŠS\1’5Öè„<ÊsàKŠsóì‹Óå.ô®¡4endstream endobj 516 0 obj << /BBox [ 3770.11 3143.73 3803.43 3262.68 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 111 >> stream xœÌ½ ÂP àÞSÜŽŸó&@¢ŠL‘(ëãÐé¤k¾[®6û‡Þ¤c*Ï W¶‚PóàÇ^$èp†âØÉ«Œ{ºÆ`1ØÊe£‰{fzPpN¯Ä—çî³?NÿÐ]èí”endstream endobj 517 0 obj << /BBox [ 3798.84 3143.73 3833.14 3262.68 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 109 >> stream xœŒ» Q sW±øü}ï\\pG@û¸´šlf—«•`ÿЛt”r\EØ&lÄ€š¯8îØð"A3ÇN¾Š²zû1X V> >> /Subtype /Form /Type /XObject /Length 110 >> stream xœŒ» BAó­Â,û¿» È€€ àIH<ÚgK@–ådƇ‹-Áö¡7i-åµà*Â6`5žØï¸áE‚g(ö|ºðŒæ£X 6yXUoòÌl‡œËGâKŠS÷ÙÇÔ+éò¡´endstream endobj 519 0 obj << /BBox [ 3857.33 3143.73 3891.63 3205.47 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 109 >> stream xœŒ» BA sW±ÿï\P<‰‰G@û\ h5ÙÌ.Ö‚íCoÒjån¸Š° XEA̓'ö;nx‘`3ûF>³¹|ùQ,k⊬1c5ô àl‰/)N‹çú8þ“^éL?ò8ªendstream endobj 520 0 obj << /BBox [ 3887.04 3143.73 3921.34 3148.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 106 >> stream xœ}‹¹ Q sWñ*0¾þá 6*XV"@âÐ>®&›9]-LJޤ=•3á*Â6`=:Ôg²{õÑY –> >> /Subtype /Form /Type /XObject /Length 108 >> stream xœ}‹½ ÂP {OñM`l?¿O€”.¡`‚)E$ëã Ð麻Ûf!8>ô&m¡¢"lÖ¼A­8ÌO\$H¸ºbTBÇÈÞ‹Á:ñžÉÜéEÎ5J¯ø’bIϼïÿ§­ô„ŽHendstream endobj 522 0 obj << /BBox [ 3944.49 3143.73 3978.79 3148.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 107 >> stream xœ}‹± A sW±ømŸïŒ+@ú > ‚ç%$Ž€ö1  Õh“™åj)8Þô"©œ‰¦"l> ÖœO˜;nx’ ÆÝó –>8~~½,9$ʘ;Ýɹg‹Ž)ÖâQñùo³Ñ…¾J,âendstream endobj 523 0 obj << /BBox [ 3974.2 3143.73 4007.52 3148.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 108 >> stream xœ}‹± Ã0 {NñÐ$EQæÒ%)> >> /Subtype /Form /Type /XObject /Length 106 >> stream xœ}‹± B1 û7Å›ÀØŽ“à 耂 >_¢@"¬'@§ëîWOåþÁ6Ò$“ÍTÅ'}Ä y 9rm¼óe!=ŒkG¨vq¯>†¨ÓS¦Î*Ö†Bz¶Ùù…ñ\>k>ý}n¸à?†°endstream endobj 525 0 obj << /BBox [ 4032.63 3143.73 4065.95 3148.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 108 >> stream xœ}‹± A sW±ømŸÏ÷®é3ø€ ž—8ÚÇ ÕD;³Ü,ç‡Þ¤‘Ê™h*Â6`áµæ¼b¸ãE‚wWÌ“\êÊV¾‹ÁVQÊ<èAÎ=Ûèø’b+žU_þG;]é~ä0endstream endobj 526 0 obj << /BBox [ 4061.41 3143.73 4095.71 3148.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 106 >> stream xœ}‹± BA ÅúLñ&I.— 耂 >_¢@â(XŸL€,wöáj%Ø?ô&R®ÂP¶„…Ô†ókÃ/4<]±vr‰Á©Ý{°¬8%»X=ÈyÖȉ/)Îí³çÓßçFúBôÀendstream endobj 527 0 obj << /BBox [ 4091.12 3143.73 4125.42 3148.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 106 >> stream xœ}‹± B1 û7Å›ÀØŽ“à 耂 >_¢@"¬'@§ëîWOåþÁ6Ò$“ÍTÅ'}Ä y 9rm¼óe!=ŒkGh6 ¯>†¨ÓS¦Î*Ö†Bz¶Ùù…ñ\>k>ý}n¸àCnÂendstream endobj 528 0 obj << /BBox [ 4120.83 3143.73 4154.15 3148.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 108 >> stream xœ}‹± A sW±ømŸÏ÷®é3ø€ ž—8ÚÇ ÕD;³Ü,ç‡Þ¤‘Ê™h*Â6`áµæ¼b¸ãE‚wWÌ“¼>ÖV¾‹ÁVQÊ<èAÎ=Ûèø’b+žU_þG;]é{ endstream endobj 529 0 obj << /BBox [ 4149.55 3143.73 4183.86 3148.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 107 >> stream xœ}‹± Â@ E{Oñ'plŸ}O€”R0AˆDÄQ°>ž=½î½åf)8?ô&í©œ‰¦"lÖ½C­9¯˜îx‘ àpÅ<É5”רÞ;‹Á’‡Œ*æArŽl#ð%ÅV>k¾ü}vºÒD$Æendstream endobj 530 0 obj << /BBox [ 4179.26 3143.73 4212.58 3148.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 107 >> stream xœ}‹± B1 {Oñ&0¶ã8ñH¿ &ø|‰‰P°>ž®»;]-LJޤ‘Ê™h*Â6`áµæ<±vÜñ"AÁÝë שܣzƒMQÉÚéAÎ=Ûèø’b+ŸuŸÿO7ºÐÒ4endstream endobj 531 0 obj << /BBox [ 4207.99 3143.73 4242.29 3148.32 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 109 >> stream xœ}˱ Ã0 DÑžSÜ4IQR8Aw‰‹Làpa ráõÃ,®{zZ¶“>¤-”#PT„­Ãš7¨çÆŠ为blä¦é~Þ‹Á‚»M2Vz“sÒ+.RÌù=ëûÿh¡}zendstream endobj 532 0 obj << /BBox [ 1755.84 4134.32 1813.36 4183.02 ] /Filter /FlateDecode /FormType 1 /Group 298 0 R /Matrix [ 1 0 0 1 0 0 ] /Resources << /ExtGState << /R290 299 0 R >> >> /Subtype /Form /Type /XObject /Length 113 >> stream xœË» A EÑÜU¼ Œc+@Ú ¨V"@b hŸ (€àÞìÎÖ‚õM/Òlån¸Š°,#¡æÁÛ W> >> /Subtype /Form /Type /XObject /Length 109 >> stream xœŒ± B1 {Oñ&0¶óÇ ÑÀ—(ø¬OF@§+ï—(Ãö‘·ø(×*47ÓHÄà€G£NìwÜðÃB;û&ž}ª4Ne ‡–Oj•¹yµWËŽ¯8NËçZÿ(¯r–´%Pendstream endobj 534 0 obj << /Type /XRef /Length 471 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 535 /ID [<34c03142c44627b85e77f539580ae4b4>] >> stream xœí•=/Q†ïÁn±H–„Æ*Ñ’J¥`ÍÌÎÌ?@#D!QH”ˆZ!Ql+t "6›ð ˆD³:Õ˜óÎ0‡kô“ìONÞsîù¸çî®&è£I!rà»ÐH-&˜žèÞ®ùvê”vú<ÑÚiò鉱zÍßæÓVk›É§'&›´Í»rk›É§'f×é÷¶ÐGÛìÏ{‰]çÄî:ÑÿwõÙ¶L¹†2Cì\!¶ïÓÐ+Äü°O™ù ;µAìØG†bñŠØsÞâl1ðj'Ät"`O£JÞEðú8±P"æ¨7Ù€7û@Z"å°Avæú r¾âÔ(*Þ£‡¼ä&¼oˆ/ÒÙ©²Kó˜tuÏ0Ñ&ˆ)ü/‚y4³K¶ »Q[‹¼Ò‚â°xR¤äJpÖfÙL– ºt™×Qâ-fÿϽ6ëÜýîí«®éªöì0¯:?k+‘¼–Ãâm¦Xì¶«J|`¯²©-¥O–'Ì\‰^oÀpj^‹+¶âÕ£i«ÎoØüù‡bÆT7”xV=Œ7•ÞØ)Mí¼ò·7ì6nv‡e°•Nx|ÜMŠ—ççñ­³¥³ ºôSfùí˜üê¦XÎð&uE1”þ«aþOn)uJ endstream endobj startxref 449337 %%EOF surveillance/inst/doc/hhh4.Rnw0000644000175100001440000010310713100645120016023 0ustar hornikusers%\VignetteIndexEntry{hhh4: An endemic-epidemic modelling framework for infectious disease counts} %\VignetteDepends{surveillance, Matrix} \documentclass[a4paper,11pt]{article} \usepackage[T1]{fontenc} \usepackage[english]{babel} \usepackage{graphicx} \usepackage{color} \usepackage{natbib} \usepackage{lmodern} \usepackage{bm} \usepackage{amsmath} \usepackage{amsfonts,amssymb} \setlength{\parindent}{0pt} \setcounter{secnumdepth}{1} \newcommand{\Po}{\operatorname{Po}} \newcommand{\NegBin}{\operatorname{NegBin}} \newcommand{\N}{\mathcal{N}} \newcommand{\pkg}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\surveillance}{\pkg{surveillance}} \newcommand{\code}[1]{\texttt{#1}} \newcommand{\hhh}{\texttt{hhh4}} \newcommand{\R}{\textsf{R}} \newcommand{\sts}{\texttt{sts}} \newcommand{\example}[1]{\subsubsection*{Example: #1}} %%% Meta data \usepackage{hyperref} \hypersetup{ pdfauthor = {Michaela Paul and Sebastian Meyer}, pdftitle = {'hhh4': An endemic-epidemic modelling framework for infectious disease counts}, pdfsubject = {R package 'surveillance'} } \newcommand{\email}[1]{\href{mailto:#1}{\normalfont\texttt{#1}}} \title{\code{hhh4}: An endemic-epidemic modelling framework for infectious disease counts} \author{ Michaela Paul and Sebastian Meyer\thanks{Author of correspondence: \email{seb.meyer@fau.de} (new affiliation)}\\ Epidemiology, Biostatistics and Prevention Institute\\ University of Zurich, Zurich, Switzerland } \date{8 February 2016} %%% Sweave \usepackage{Sweave} \SweaveOpts{prefix.string=plots/hhh4, keep.source=T, strip.white=true} \definecolor{Sinput}{rgb}{0,0,0.56} \definecolor{Scode}{rgb}{0,0,0.56} \definecolor{Soutput}{rgb}{0,0,0} \DefineVerbatimEnvironment{Sinput}{Verbatim}{formatcom={\color{Sinput}},fontshape=sl,fontsize=\footnotesize} \DefineVerbatimEnvironment{Soutput}{Verbatim}{formatcom={\color{Soutput}},fontfamily=courier, fontshape=it,fontsize=\scriptsize} \DefineVerbatimEnvironment{Scode}{Verbatim}{formatcom={\color{Scode}},fontshape=sl,fontsize=\footnotesize} %%% Initial R code <>= library("surveillance") options(width=75) ## create directory for plots dir.create("plots", showWarnings=FALSE) ###################################################### ## Do we need to compute or can we just fetch results? ###################################################### compute <- !file.exists("hhh4-cache.RData") message("Doing computations: ", compute) if(!compute) load("hhh4-cache.RData") @ \begin{document} \maketitle \begin{abstract} \noindent The \R\ package \surveillance\ provides tools for the visualization, modelling and monitoring of epidemic phenomena. This vignette is concerned with the \hhh\ modelling framework for univariate and multivariate time series of infectious disease counts proposed by \citet{held-etal-2005}, and further extended by \citet{paul-etal-2008}, \citet{paul-held-2011}, \citet{held.paul2012}, and \citet{meyer.held2013}. The implementation is illustrated using several built-in surveillance data sets. The special case of \emph{spatio-temporal} \hhh\ models is also covered in \citet[Section~5]{meyer.etal2014}, which is available as the extra \verb+vignette("hhh4_spacetime")+. \end{abstract} \section{Introduction}\label{sec:intro} To meet the threats of infectious diseases, many countries have established surveillance systems for the reporting of various infectious diseases. The systematic and standardized reporting at a national and regional level aims to recognize all outbreaks quickly, even when aberrant cases are dispersed in space. Traditionally, notification data, i.e.\ counts of cases confirmed according to a specific definition and reported daily, weekly or monthly on a regional or national level, are used for surveillance purposes. The \R-package \surveillance\ provides functionality for the retrospective modelling and prospective aberration detection in the resulting surveillance time series. Overviews of the outbreak detection functionality of \surveillance\ are given by \citet{hoehle-mazick-2010} and \citet{salmon.etal2014}. This document illustrates the functionality of the function \hhh\ for the modelling of univariate and multivariate time series of infectious disease counts. It is part of the \surveillance\ package as of version 1.3. The remainder of this vignette unfolds as follows: Section~\ref{sec:data} introduces the S4 class data structure used to store surveillance time series data within the package. Access and visualization methods are outlined by means of built-in data sets. In Section~\ref{sec:model}, the statistical modelling approach by \citet{held-etal-2005} and further model extensions are described. After the general function call and arguments are shown, the detailed usage of \hhh\ is demonstrated in Section~\ref{sec:hhh} using data introduced in Section~\ref{sec:data}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Surveillance data}\label{sec:data} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Denote by $\{y_{it}; i=1,\ldots,I,t=1,\ldots,T\}$ the multivariate time series of disease counts for a specific partition of gender, age and location. Here, $T$ denotes the length of the time series and $I$ denotes the number of units (e.g\ geographical regions or age groups) being monitored. Such data are represented using objects of the S4 class \sts\ (surveillance time series). \subsection[The sts data class]{The \sts\ data class} The \sts\ class contains the $T\times I$ matrix of counts $y_{it}$ in a slot \code{observed}. An integer slot \code{epoch} denotes the time index $1\leq t \leq T$ of each row in \code{observed}. The number of observations per year, e.g.\ 52 for weekly or 12 for monthly data, is denoted by \code{freq}. Furthermore, \code{start} denotes a vector of length two containing the start of the time series as \code{c(year, epoch)}. For spatially stratified time series, the slot \code{neighbourhood} denotes an $I \times I$ adjacency matrix with elements 1 if two regions are neighbors and 0 otherwise. For map visualizations, the slot \code{map} links the multivariate time series to geographical regions stored in a \code{"SpatialPolygons"} object (package \pkg{sp}). Additionally, the slot \code{populationFrac} contains a $T\times I$ matrix representing population fractions in unit $i$ at time $t$. The \sts\ data class is also described in \citet[Section~2.1]{hoehle-mazick-2010}, \citet[Section~1.1]{salmon.etal2014}, \citet[Section~5.2]{meyer.etal2014}, and on the associated help page \code{help("sts")}. \subsection{Some example data sets} The package \surveillance\ contains a number of time series in the \code{data} directory. Most data sets originate from the SurvStat@RKI database\footnote{\url{https://survstat.rki.de}}, maintained by the Robert Koch Institute (RKI) in Germany. Selected data sets will be analyzed in Section~\ref{sec:hhh} and are introduced in the following. Note that many of the built-in datasets are stored in the S3 class data structure \mbox{\code{disProg}} used in ancient versions of the \surveillance\ package (until 2006). They can be easily converted into the new S4 \sts\ data structure using the function \code{disProg2sts}. The resulting \sts\ object can be accessed similar as standard \code{matrix} objects and allows easy temporal and spatial aggregation as will be shown in the remainder of this section. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \example{Influenza and meningococcal disease, Germany, 2001--2006} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% As a first example, the weekly number of influenza and meningococcal disease cases in Germany is considered. <>= # load data data("influMen") # convert to sts class and print basic information about the time series print(fluMen <- disProg2sts(influMen)) @ The univariate time series of meningococcal disease counts can be obtained with <>= meningo <- fluMen[, "meningococcus"] dim(meningo) @ The \code{plot} function provides ways to visualize the multivariate time series in time, space and space-time, as controlled by the \code{type} argument: \setkeys{Gin}{width=1\textwidth} <>= plot(fluMen, type = observed ~ time | unit, # type of plot (default) same.scale = FALSE, # unit-specific ylim? col = "grey") # color of bars @ See \code{help("stsplot")} for a detailed description of the plot routines. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \example{Influenza, Southern Germany, 2001--2008} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% The spatio-temporal spread of influenza in the 140 Kreise (districts) of Bavaria and Baden-W\"urttemberg is analyzed using the weekly number of cases reported to the RKI~\citep{survstat-fluByBw} in the years 2001--2008. An \sts\ object containing the data is created as follows: <>= # read in observed number of cases flu.counts <- as.matrix(read.table(system.file("extdata/counts_flu_BYBW.txt", package = "surveillance"), check.names = FALSE)) @ \begin{center} \setkeys{Gin}{width=.5\textwidth} <>= # read in 0/1 adjacency matrix (1 if regions share a common border) nhood <- as.matrix(read.table(system.file("extdata/neighbourhood_BYBW.txt", package = "surveillance"), check.names = FALSE)) library("Matrix") print(image(Matrix(nhood))) @ \end{center} <>= # read in population fractions popfracs <- read.table(system.file("extdata/population_2001-12-31_BYBW.txt", package = "surveillance"), header = TRUE)$popFrac # create sts object flu <- sts(flu.counts, start = c(2001, 1), frequency = 52, population = popfracs, neighbourhood = nhood) @ These data are already included as \code{data("fluBYBW")} in \surveillance. In addition to the \sts\ object created above, \code{fluBYBW} contains a map of the administrative districts of Bavaria and Baden-W\"urttemberg. This works by specifying a \code{"SpatialPolygons"} representation of the districts as an extra argument \code{map} in the above \sts\ call. Such a \code{"SpatialPolygons"} object can be obtained from, e.g, an external shapefile using the function \mbox{\code{readShapePoly}} from package \pkg{maptools}. A map enables plots and animations of the cumulative number of cases by region. For instance, a disease incidence map of the year 2001 can be obtained as follows: \setkeys{Gin}{width=.5\textwidth} \begin{center} <>= data("fluBYBW") plot(fluBYBW[year(fluBYBW) == 2001, ], # select year 2001 type = observed ~ unit, # total counts by region population = fluBYBW@map$X31_12_01 / 100000) # per 100000 inhabitants grid::grid.text("Incidence [per 100'000 inhabitants]", x = 0.5, y = 0.02) @ \end{center} <>= # consistency check local({ fluBYBW@map <- flu@map stopifnot(all.equal(fluBYBW, flu)) }) @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \example{Measles, Germany, 2005--2007} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% The following data set contains the weekly number of measles cases in the 16 German federal states, in the years 2005--2007. These data have been analyzed by \citet{herzog-etal-2010} after aggregation into bi-weekly periods. <>= data("measlesDE") measles2w <- aggregate(measlesDE, nfreq = 26) @ \setkeys{Gin}{width=.75\textwidth} \begin{center} <>= plot(measles2w, type = observed ~ time, # aggregate counts over all units main = "Bi-weekly number of measles cases in Germany") @ \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Model formulation}\label{sec:model} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Retrospective surveillance aims to identify outbreaks and (spatio-)temporal patterns through statistical modelling. Motivated by a branching process with immigration, \citet{held-etal-2005} suggest the following model for the analysis of univariate time series of infectious disease counts $\{y_{t}; t=1,\ldots,T\}$. The counts are assumed to be Poisson distributed with conditional mean \begin{align*} \mu_{t} = \lambda y_{t-1}+ \nu_{t}, \quad(\lambda,\nu_{t}>0) \end{align*} where $\lambda$ and $\nu_t$ are unknown quantities. The mean incidence is decomposed additively into two components: an epidemic or \emph{autoregressive} component $\lambda y_{t-1}$, and an \emph{endemic} component $\nu_t$. The former should be able to capture occasional outbreaks whereas the latter explains a baseline rate of cases with stable temporal pattern. \citet{held-etal-2005} suggest the following parametric model for the endemic component: \begin{align}\label{eq:nu_t} \log(\nu_t) =\alpha + \beta t + \left\{\sum_{s=1}^S \gamma_s \sin(\omega_s t) + \delta_s \cos(\omega_s t)\right\}, \end{align} where $\alpha$ is an intercept, $\beta$ is a trend parameter, and the terms in curly brackets are used to model seasonal variation. Here, $\gamma_s$ and $\delta_s$ are unknown parameters, $S$ denotes the number of harmonics to include, and $\omega_s=2\pi s/$\code{freq} are Fourier frequencies (e.g.\ \code{freq = 52} for weekly data). For ease of interpretation, the seasonal terms in \eqref{eq:nu_t} can be written equivalently as \begin{align*} \gamma_s \sin(\omega_s t) + \delta_s \cos(\omega_s t)= A_s \sin(\omega_s t +\varphi_s) \end{align*} with amplitude $A_s=\sqrt{\gamma_s^2+\delta_s^2}$ describing the magnitude, and phase difference $\tan(\varphi_s)=\delta_s/\gamma_s$ describing the onset of the sine wave. To account for overdispersion, the Poisson model may be replaced by a negative binomial model. Then, the conditional mean $\mu_t$ remains the same but the conditional variance increases to $\mu_t (1+\mu_t \psi)$ with additional unknown overdispersion parameter $\psi>0$. The model is extended to multivariate time series $\{y_{it}\}$ in \citet{held-etal-2005} and \citet{paul-etal-2008} by including an additional \emph{neighbor-driven} component, where past cases in other (neighboring) units also enter as explanatory covariates. The conditional mean $\mu_{it}$ is then given by \begin{align} \label{eq:mu_it} \mu_{it} = \lambda y_{i,t-1} + \phi \sum_{j\neq i} w_{ji} y_{j,t-1} +e_{it} \nu_{t}, \end{align} where the unknown parameter $\phi$ quantifies the influence of other units $j$ on unit $i$, $w_{ji}$ are weights reflecting between-unit transmission and $e_{it}$ corresponds to an offset (such as population fractions at time $t$ in region $i$). A simple choice for the weights is $w_{ji}=1$ if units $j$ and $i$ are adjacent and 0 otherwise. See \citet{paul-etal-2008} for a discussion of alternative weights, and \citet{meyer.held2013} for how to estimate these weights in the spatial setting using a parametric power-law formulation based on the order of adjacency. When analyzing a specific disease observed in, say, multiple regions or several pathogens (such as influenza and meningococcal disease), the assumption of equal incidence levels or disease transmission across units is questionable. To address such heterogeneity, the unknown quantities $\lambda$, $\phi$, and $\nu_t$ in \eqref{eq:mu_it} may also depend on unit $i$. This can be done via \begin{itemize} \item unit-specific fixed parameters, e.g.\ $\log(\lambda_i)=\alpha_i$ \citep{paul-etal-2008}; \item unit-specific random effects, e.g\ $\log(\lambda_i)=\alpha_0 +a_i$, $a_i \stackrel{\text{iid}}{\sim} \N(0,\sigma^2_\lambda)$ \citep{paul-held-2011}; \item linking parameters with known (possibly time-varying) explanatory variables, e.g.\ $\log(\lambda_i)=\alpha_0 +x_i\alpha_1$ with region-specific vaccination coverage $x_i$ \citep{herzog-etal-2010}. \end{itemize} In general, the parameters of all three model components may depend on both time and unit. A call to \hhh\ fits a Poisson or negative binomial model with conditional mean \begin{align*} \mu_{it} = \lambda_{it} y_{i,t-1} + \phi_{it} \sum_{j\neq i} w_{ji} y_{j,t-1} +e_{it} \nu_{it} \end{align*} to a (multivariate) time series of counts. Here, the three unknown quantities are modelled as log-linear predictors \begin{align} \log(\lambda_{it}) &= \alpha_0 + a_i +\bm{u}_{it}^\top \bm{\alpha} \tag{\code{ar}}\\ \log(\phi_{it}) &= \beta_0 + b_i +\bm{x}_{it}^\top \bm{\beta} \tag{\code{ne}}\\ \log(\nu_{it}) &= \gamma_0 + c_i +\bm{z}_{it}^\top \bm{\gamma}\tag{\code{end}} \end{align} where $\alpha_0,\beta_0,\gamma_0$ are intercepts, $\bm{\alpha},\bm{\beta},\bm{\gamma}$ are vectors of unknown parameters corresponding to covariate vectors $\bm{u}_{it},\bm{x}_{it},\bm{z}_{it}$, and $a_i,b_i,c_i$ are random effects. For instance, model~\eqref{eq:nu_t} with $S=1$ seasonal terms may be represented as $\bm{z}_{it}=(t,\sin(2\pi/\code{freq}\;t),\cos(2\pi/\code{freq}\;t))^\top$. The stacked vector of all random effects is assumed to follow a normal distribution with mean $\bm{0}$ and covariance matrix $\bm{\Sigma}$. In applications, each of the components \code{ar}, \code{ne}, and \code{end} may be omitted in parts or as a whole. If the model does not contain random effects, standard likelihood inference can be performed. Otherwise, inference is based on penalized quasi-likelihood as described in detail in \citet{paul-held-2011}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Function call and control settings}\label{sec:hhh} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% The estimation procedure is called with <>= hhh4(sts, control) @ where \code{sts} denotes a (multivariate) surveillance time series and the model is specified in the argument \code{control} in consistency with other algorithms in \surveillance. The \code{control} setting is a list of the following arguments (here with default values): <>= control = list( ar = list(f = ~ -1, # formula for log(lambda_it) offset = 1), # optional multiplicative offset ne = list(f = ~ -1, # formula for log(phi_it) offset = 1, # optional multiplicative offset weights = neighbourhood(stsObj) == 1), # (w_ji) matrix end = list(f = ~ 1, # formula for log(nu_it) offset = 1), # optional multiplicative offset e_it family = "Poisson", # Poisson or NegBin model subset = 2:nrow(stsObj), # subset of observations to be used optimizer = list(stop = list(tol = 1e-5, niter = 100), # stop rules regression = list(method = "nlminb"), # for penLogLik variance = list(method = "nlminb")), # for marLogLik verbose = FALSE, # level of progress reporting start = list(fixed = NULL, # list with initial values for fixed, random = NULL, # random, and sd.corr = NULL), # variance parameters data = list(t = epoch(stsObj)-1),# named list of covariates keep.terms = FALSE # whether to keep the model terms ) @ The first three arguments \code{ar}, \code{ne}, and \code{end} specify the model components using \code{formula} objects. By default, the counts $y_{it}$ are assumed to be Poisson distributed, but a negative binomial model can be chosen by setting \mbox{\code{family = "NegBin1"}}. By default, both the penalized and marginal log-likelihoods are maximized using the quasi-Newton algorithm available via the \R\ function \code{nlminb}. The methods from \code{optim} may also be used, e.g., \mbox{\code{optimizer = list(variance = list(method="Nelder-Mead")}} is a useful alternative for maximization of the marginal log-likelihood with respect to the variance parameters. Initial values for the fixed, random, and variance parameters can be specified in the \code{start} argument. If the model contains covariates, these have to be provided in the \code{data} argument. If a covariate does not vary across units, it may be given as a vector of length $T$. Otherwise, covariate values must be given in a matrix of size $T \times I$. In the following, the functionality of \hhh\ is demonstrated using the data sets introduced in Section~\ref{sec:data} and previously analyzed in \citet{paul-etal-2008}, \citet{paul-held-2011} and \citet{herzog-etal-2010}. Selected results are reproduced. For a thorough discussion we refer to these papers. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Univariate modelling} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% As a first example, consider the univariate time series of meningococcal infections in Germany, 01/2001--52/2006 \citep[cf.][Table~1]{paul-etal-2008}. A Poisson model without autoregression and $S=1$ seasonal term is specified as follows: <>= # specify a formula object for the endemic component ( f_S1 <- addSeason2formula(f = ~ 1, S = 1, period = 52) ) # fit the Poisson model result0 <- hhh4(meningo, control = list(end = list(f = f_S1), family = "Poisson")) summary(result0) @ To fit the corresponding negative binomial model, we can use the convenient \code{update} method: <>= result1 <- update(result0, family = "NegBin1") @ Note that the \code{update} method by default uses the parameter estimates from the original model as start values when fitting the updated model; see \code{help("update.hhh4")} for details. We can calculate Akaike's Information Criterion for the two models to check whether accounting for overdispersion is useful for these data: <<>>= AIC(result0, result1) @ Due to the default control settings with \verb|ar = list(f = ~ -1)|, the autoregressive component has been omitted in the above models. It can be included by the following model update: <>= # fit an autoregressive model result2 <- update(result1, ar = list(f = ~ 1)) @ To extract only the ML estimates and standard errors instead of a full model \code{summary}, the \code{coef} method can be used: <<>>= coef(result2, se = TRUE, # also return standard errors amplitudeShift = TRUE, # transform sine/cosine coefficients # to amplitude/shift parameters idx2Exp = TRUE) # exponentiate remaining parameters @ Here, \code{exp(ar.1)} is the autoregressive coefficient $\lambda$ and can be interpreted as the epidemic proportion of disease incidence \citep{held.paul2012}. Note that the above transformation arguments \code{amplitudeShift} and \code{idx2Exp} can also be used in the \code{summary} method. Many other standard methods are implemented for \code{"hhh4"} fits, see, e.g., \code{help("confint.hhh4")}. A plot of the fitted model components can be easily obtained: \begin{center} <>= plot(result2) @ \end{center} See the comprehensive \code{help("plot.hhh4")} for further options. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Bivariate modelling} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Now, the weekly numbers of both meningococcal disease (\textsc{MEN}) and influenza (\textsc{FLU}) cases are analyzed to investigate whether influenza infections predispose meningococcal disease \citep[cf.][Table~2]{paul-etal-2008}. This requires disease-specific parameters which are specified in the formula object with \code{fe(\ldots)}. In the following, a negative binomial model with mean \begin{align*} \binom{\mu_{\text{men},t}} {\mu_{\text{flu},t}}= \begin{pmatrix} \lambda_\text{men} & \phi \\ 0 & \lambda_\text{flu} \\ \end{pmatrix} \binom{\text{\sc men}_{t-1}}{\text{\sc flu}_{t-1}} + \binom{\nu_{\text{men},t}}{\nu_{\text{flu},t}}\,, \end{align*} where the endemic component includes $S=3$ seasonal terms for the \textsc{FLU} data and $S=1$ seasonal terms for the \textsc{MEN} data is considered. Here, $\phi$ quantifies the influence of past influenza cases on the meningococcal disease incidence. This model corresponds to the second model of Table~2 in \citet{paul-etal-2008} and is fitted as follows: <>= # no "transmission" from meningococcus to influenza neighbourhood(fluMen)["meningococcus","influenza"] <- 0 neighbourhood(fluMen) @ <>= # create formula for endemic component f.end <- addSeason2formula(f = ~ -1 + fe(1, unitSpecific = TRUE), # disease-specific intercepts S = c(3, 1), # S = 3 for flu, S = 1 for men period = 52) # specify model m <- list(ar = list(f = ~ -1 + fe(1, unitSpecific = TRUE)), ne = list(f = ~ 1, # phi, only relevant for meningococcus due to weights = neighbourhood(fluMen)), # the weight matrix end = list(f = f.end), family = "NegBinM") # disease-specific overdispersion # fit model result <- hhh4(fluMen, control = m) summary(result, idx2Exp=1:3) @ A plot of the estimated mean components can be obtained as follows: \setkeys{Gin}{width=1\textwidth} \begin{center} <>= plot(result, units = 1:2, legend = 2, legend.args = list( legend = c("influenza-driven", "autoregressive", "endemic"))) @ \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Multivariate modelling} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% For disease counts observed in a large number of regions, say, (i.e.\ highly multivariate time series of counts) the use of region-specific parameters to account for regional heterogeneity is no longer feasible as estimation and identifiability problems may occur. Here we illustrate two approaches: region-specific random effects and region-specific covariates. For a more detailed illustration of areal \code{hhh4} models, see \verb+vignette("hhh4_spacetime")+, which uses \verb+data("measlesWeserEms")+ as an example. \subsubsection*{Influenza, Southern Germany, 2001--2008} \citet{paul-held-2011} propose a random effects formulation to analyze the weekly number of influenza cases in \Sexpr{ncol(fluBYBW)} districts of Southern Germany. For example, consider a model with random intercepts in the endemic component: $c_i \stackrel{iid}{\sim} \N(0,\sigma^2_\nu), i=1,\ldots,I$. Such effects are specified as: <>= f.end <- ~ -1 + ri(type = "iid", corr = "all") @ The alternative \code{type = "car"} would assume spatially correlated random effects; see \citet{paul-held-2011} for details. The argument \code{corr = "all"} allows for correlation between region-specific random effects in different components, e.g., random incidence levels $c_i$ in the endemic component and random effects $b_i$ in the neighbor-driven component. The following call to \hhh\ fits such a random effects model with linear trend and $S=3$ seasonal terms in the endemic component, a fixed autoregressive parameter $\lambda$, and first-order transmission weights $w_{ji}=\mathbb{I}(j\sim i)$ -- normalized such that $\sum_i w_{ji} = 1$ for all rows $j$ -- to the influenza data \citep[cf.][Table~3, model~B2]{paul-held-2011}. <>= # endemic component: iid random effects, linear trend, S=3 seasonal terms f.end <- addSeason2formula(f = ~ -1 + ri(type="iid", corr="all") + I((t-208)/100), S = 3, period = 52) # model specification model.B2 <- list(ar = list(f = ~ 1), ne = list(f = ~ -1 + ri(type="iid", corr="all"), weights = neighbourhood(fluBYBW), normalize = TRUE), # all(rowSums(weights) == 1) end = list(f = f.end, offset = population(fluBYBW)), family = "NegBin1", verbose = TRUE, optimizer = list(variance = list(method = "Nelder-Mead"))) # default start values for random effects are sampled from a normal set.seed(42) @ <>= if(compute){ result.B2 <- hhh4(fluBYBW, model.B2) s.B2 <- summary(result.B2, maxEV = TRUE, idx2Exp = 1:3) #pred.B2 <- oneStepAhead(result.B2, tp = nrow(fluBYBW) - 2*52) predfinal.B2 <- oneStepAhead(result.B2, tp = nrow(fluBYBW) - 2*52, type = "final") meanSc.B2 <- colMeans(scores(predfinal.B2)) save(s.B2, meanSc.B2, file="hhh4-cache.RData") } @ <>= # fit the model (takes about 35 seconds) result.B2 <- hhh4(fluBYBW, model.B2) summary(result.B2, maxEV = TRUE, idx2Exp = 1:3) @ <>= s.B2 @ Model choice based on information criteria such as AIC or BIC is well explored and understood for models that correspond to fixed-effects likelihoods. However, in the presence of random effects their use can be problematic. For model selection in time series models, the comparison of successive one-step-ahead forecasts with the actually observed data provides a natural alternative. In this context, \citet{gneiting-raftery-2007} recommend the use of strictly proper scoring rules, such as the logarithmic score (logs) or the ranked probability score (rps). See \citet{czado-etal-2009} and \citet{paul-held-2011} for further details. One-step-ahead predictions for the last 2 years for model B2 could be obtained as follows: <>= pred.B2 <- oneStepAhead(result.B2, tp = nrow(fluBYBW) - 2*52) @ However, computing ``rolling'' one-step-ahead predictions from a random effects model is computationally expensive, since the model needs to be refitted at every time point. The above call would take approximately 45 minutes! So for the purpose of this vignette, we use the fitted model based on the whole time series to compute all (fake) predictions during the last two years: <>= predfinal.B2 <- oneStepAhead(result.B2, tp = nrow(fluBYBW) - 2*52, type = "final") @ The mean scores (logs and rps) corresponding to this set of predictions can then be computed as follows: <>= colMeans(scores(predfinal.B2, which = c("logs", "rps"))) @ <>= meanSc.B2[c("logs", "rps")] @ Using predictive model assessments, \citet{meyer.held2013} found that power-law transmission weights more appropriately reflect the spread of influenza than the previously used first-order weights (which actually allow the epidemic to spread only to directly adjacent districts within one week). These power-law weights can be constructed by the function \code{W\_powerlaw} and require the \code{neighbourhood} of the \sts\ object to contain adjacency orders. The latter can be easily obtained from the binary adjacency matrix using the function \code{nbOrder}. See the corresponding help pages or \citet[Section~5]{meyer.etal2014} for illustrations. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsubsection*{Measles, German federal states, 2005--2007} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <>= data(MMRcoverageDE) cardVac1 <- MMRcoverageDE[1:16,3:4] adjustVac <- function(cardVac, p=0.5,nrow=1){ card <- cardVac[,1] vac <- cardVac[,2] vacAdj <- vac*card + p*vac*(1-card) return(matrix(vacAdj,nrow=nrow, ncol=length(vacAdj), byrow=TRUE)) } vac0 <- 1-adjustVac(cardVac1,p=0.5,nrow=measles2w@freq*3) colnames(vac0) <- colnames(measles2w) @ As a last example, consider the number of measles cases in the 16 federal states of Germany, in the years 2005--2007. There is considerable regional variation in the incidence pattern which is most likely due to differences in vaccination coverage. In the following, information about vaccination coverage in each state, namely the log proportion of unvaccinated school starters, is included as explanatory variable in a model for the bi-weekly aggregated measles data. See \citet{herzog-etal-2010} for further details. Vaccination coverage levels for the year 2006 are available in the dataset \code{data(MMRcoverageDE)}. This dataset can be used to compute the $\Sexpr{nrow(vac0)}\times \Sexpr{ncol(vac0)}$ matrix \code{vac0} with adjusted proportions of unvaccinated school starters in each state $i$ used by \citet{herzog-etal-2010}. The first few entries of this matrix are shown below: <<>>= vac0[1:2, 1:6] @ We fit a Poisson model, which links the autoregressive parameter with this covariate and contains $S=1$ seasonal term in the endemic component \citep[cf.][Table~3, model~A0]{herzog-etal-2010}: <>= # endemic component: Intercept + sine/cosine terms f.end <- addSeason2formula(f = ~ 1, S = 1, period = 26) # autoregressive component: Intercept + vaccination coverage information model.A0 <- list(ar = list(f = ~ 1 + logVac0), end = list(f = f.end, offset = population(measles2w)), data = list(t = epoch(measles2w), logVac0 = log(vac0))) # fit the model result.A0 <- hhh4(measles2w, model.A0) summary(result.A0, amplitudeShift = TRUE) @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Conclusion} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% As part of the \R~package \surveillance, the function \hhh\ provides a flexible tool for the modelling of multivariate time series of infectious disease counts. The presented count data model is able to account for serial and spatio-temporal correlation, as well as heterogeneity in incidence levels and disease transmission. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \bibliographystyle{apalike} \renewcommand{\bibfont}{\small} \bibliography{references} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \end{document} surveillance/inst/doc/hhh4.R0000644000175100001440000003127613231650377015504 0ustar hornikusers### R code from vignette source 'hhh4.Rnw' ### Encoding: UTF-8 ################################################### ### code chunk number 1: setup ################################################### library("surveillance") options(width=75) ## create directory for plots dir.create("plots", showWarnings=FALSE) ###################################################### ## Do we need to compute or can we just fetch results? ###################################################### compute <- !file.exists("hhh4-cache.RData") message("Doing computations: ", compute) if(!compute) load("hhh4-cache.RData") ################################################### ### code chunk number 2: loadInfluMen ################################################### # load data data("influMen") # convert to sts class and print basic information about the time series print(fluMen <- disProg2sts(influMen)) ################################################### ### code chunk number 3: getMen ################################################### meningo <- fluMen[, "meningococcus"] dim(meningo) ################################################### ### code chunk number 4: plotfluMen ################################################### getOption("SweaveHooks")[["fig"]]() plot(fluMen, type = observed ~ time | unit, # type of plot (default) same.scale = FALSE, # unit-specific ylim? col = "grey") # color of bars ################################################### ### code chunk number 5: readInFlu ################################################### # read in observed number of cases flu.counts <- as.matrix(read.table(system.file("extdata/counts_flu_BYBW.txt", package = "surveillance"), check.names = FALSE)) ################################################### ### code chunk number 6: nhoodByBw ################################################### getOption("SweaveHooks")[["fig"]]() # read in 0/1 adjacency matrix (1 if regions share a common border) nhood <- as.matrix(read.table(system.file("extdata/neighbourhood_BYBW.txt", package = "surveillance"), check.names = FALSE)) library("Matrix") print(image(Matrix(nhood))) ################################################### ### code chunk number 7: fluAsSTS ################################################### # read in population fractions popfracs <- read.table(system.file("extdata/population_2001-12-31_BYBW.txt", package = "surveillance"), header = TRUE)$popFrac # create sts object flu <- sts(flu.counts, start = c(2001, 1), frequency = 52, population = popfracs, neighbourhood = nhood) ################################################### ### code chunk number 8: plot-flu-ByBw ################################################### getOption("SweaveHooks")[["fig"]]() data("fluBYBW") plot(fluBYBW[year(fluBYBW) == 2001, ], # select year 2001 type = observed ~ unit, # total counts by region population = fluBYBW@map$X31_12_01 / 100000) # per 100000 inhabitants grid::grid.text("Incidence [per 100'000 inhabitants]", x = 0.5, y = 0.02) ################################################### ### code chunk number 9: hhh4.Rnw:270-275 ################################################### # consistency check local({ fluBYBW@map <- flu@map stopifnot(all.equal(fluBYBW, flu)) }) ################################################### ### code chunk number 10: measles2w ################################################### data("measlesDE") measles2w <- aggregate(measlesDE, nfreq = 26) ################################################### ### code chunk number 11: plot-measles ################################################### getOption("SweaveHooks")[["fig"]]() plot(measles2w, type = observed ~ time, # aggregate counts over all units main = "Bi-weekly number of measles cases in Germany") ################################################### ### code chunk number 12: hhh4 (eval = FALSE) ################################################### ## hhh4(sts, control) ################################################### ### code chunk number 13: controlObj (eval = FALSE) ################################################### ## control = list( ## ar = list(f = ~ -1, # formula for log(lambda_it) ## offset = 1), # optional multiplicative offset ## ne = list(f = ~ -1, # formula for log(phi_it) ## offset = 1, # optional multiplicative offset ## weights = neighbourhood(stsObj) == 1), # (w_ji) matrix ## end = list(f = ~ 1, # formula for log(nu_it) ## offset = 1), # optional multiplicative offset e_it ## family = "Poisson", # Poisson or NegBin model ## subset = 2:nrow(stsObj), # subset of observations to be used ## optimizer = list(stop = list(tol = 1e-5, niter = 100), # stop rules ## regression = list(method = "nlminb"), # for penLogLik ## variance = list(method = "nlminb")), # for marLogLik ## verbose = FALSE, # level of progress reporting ## start = list(fixed = NULL, # list with initial values for fixed, ## random = NULL, # random, and ## sd.corr = NULL), # variance parameters ## data = list(t = epoch(stsObj)-1),# named list of covariates ## keep.terms = FALSE # whether to keep the model terms ## ) ################################################### ### code chunk number 14: fitMeningo0 ################################################### # specify a formula object for the endemic component ( f_S1 <- addSeason2formula(f = ~ 1, S = 1, period = 52) ) # fit the Poisson model result0 <- hhh4(meningo, control = list(end = list(f = f_S1), family = "Poisson")) summary(result0) ################################################### ### code chunk number 15: fitMeningo1 ################################################### result1 <- update(result0, family = "NegBin1") ################################################### ### code chunk number 16: hhh4.Rnw:500-501 ################################################### AIC(result0, result1) ################################################### ### code chunk number 17: fitMeningo2 ################################################### # fit an autoregressive model result2 <- update(result1, ar = list(f = ~ 1)) ################################################### ### code chunk number 18: hhh4.Rnw:514-518 ################################################### coef(result2, se = TRUE, # also return standard errors amplitudeShift = TRUE, # transform sine/cosine coefficients # to amplitude/shift parameters idx2Exp = TRUE) # exponentiate remaining parameters ################################################### ### code chunk number 19: plot_result2 ################################################### getOption("SweaveHooks")[["fig"]]() plot(result2) ################################################### ### code chunk number 20: neighbourhood_fluMen ################################################### # no "transmission" from meningococcus to influenza neighbourhood(fluMen)["meningococcus","influenza"] <- 0 neighbourhood(fluMen) ################################################### ### code chunk number 21: fitFluMen ################################################### # create formula for endemic component f.end <- addSeason2formula(f = ~ -1 + fe(1, unitSpecific = TRUE), # disease-specific intercepts S = c(3, 1), # S = 3 for flu, S = 1 for men period = 52) # specify model m <- list(ar = list(f = ~ -1 + fe(1, unitSpecific = TRUE)), ne = list(f = ~ 1, # phi, only relevant for meningococcus due to weights = neighbourhood(fluMen)), # the weight matrix end = list(f = f.end), family = "NegBinM") # disease-specific overdispersion # fit model result <- hhh4(fluMen, control = m) summary(result, idx2Exp=1:3) ################################################### ### code chunk number 22: plot-fit_men ################################################### getOption("SweaveHooks")[["fig"]]() plot(result, units = 1:2, legend = 2, legend.args = list( legend = c("influenza-driven", "autoregressive", "endemic"))) ################################################### ### code chunk number 23: ri (eval = FALSE) ################################################### ## f.end <- ~ -1 + ri(type = "iid", corr = "all") ################################################### ### code chunk number 24: modelFluBYBW ################################################### # endemic component: iid random effects, linear trend, S=3 seasonal terms f.end <- addSeason2formula(f = ~ -1 + ri(type="iid", corr="all") + I((t-208)/100), S = 3, period = 52) # model specification model.B2 <- list(ar = list(f = ~ 1), ne = list(f = ~ -1 + ri(type="iid", corr="all"), weights = neighbourhood(fluBYBW), normalize = TRUE), # all(rowSums(weights) == 1) end = list(f = f.end, offset = population(fluBYBW)), family = "NegBin1", verbose = TRUE, optimizer = list(variance = list(method = "Nelder-Mead"))) # default start values for random effects are sampled from a normal set.seed(42) ################################################### ### code chunk number 25: computeFluBYBW ################################################### if(compute){ result.B2 <- hhh4(fluBYBW, model.B2) s.B2 <- summary(result.B2, maxEV = TRUE, idx2Exp = 1:3) #pred.B2 <- oneStepAhead(result.B2, tp = nrow(fluBYBW) - 2*52) predfinal.B2 <- oneStepAhead(result.B2, tp = nrow(fluBYBW) - 2*52, type = "final") meanSc.B2 <- colMeans(scores(predfinal.B2)) save(s.B2, meanSc.B2, file="hhh4-cache.RData") } ################################################### ### code chunk number 26: fitFluBYBW (eval = FALSE) ################################################### ## # fit the model (takes about 35 seconds) ## result.B2 <- hhh4(fluBYBW, model.B2) ## summary(result.B2, maxEV = TRUE, idx2Exp = 1:3) ################################################### ### code chunk number 27: hhh4.Rnw:665-666 ################################################### s.B2 ################################################### ### code chunk number 28: oneStepAhead_rolling (eval = FALSE) ################################################### ## pred.B2 <- oneStepAhead(result.B2, tp = nrow(fluBYBW) - 2*52) ################################################### ### code chunk number 29: oneStepAhead_fake (eval = FALSE) ################################################### ## predfinal.B2 <- oneStepAhead(result.B2, tp = nrow(fluBYBW) - 2*52, ## type = "final") ################################################### ### code chunk number 30: scores (eval = FALSE) ################################################### ## colMeans(scores(predfinal.B2, which = c("logs", "rps"))) ################################################### ### code chunk number 31: hhh4.Rnw:698-699 ################################################### meanSc.B2[c("logs", "rps")] ################################################### ### code chunk number 32: createVacc ################################################### data(MMRcoverageDE) cardVac1 <- MMRcoverageDE[1:16,3:4] adjustVac <- function(cardVac, p=0.5,nrow=1){ card <- cardVac[,1] vac <- cardVac[,2] vacAdj <- vac*card + p*vac*(1-card) return(matrix(vacAdj,nrow=nrow, ncol=length(vacAdj), byrow=TRUE)) } vac0 <- 1-adjustVac(cardVac1,p=0.5,nrow=measles2w@freq*3) colnames(vac0) <- colnames(measles2w) ################################################### ### code chunk number 33: hhh4.Rnw:745-746 ################################################### vac0[1:2, 1:6] ################################################### ### code chunk number 34: fitMeasles ################################################### # endemic component: Intercept + sine/cosine terms f.end <- addSeason2formula(f = ~ 1, S = 1, period = 26) # autoregressive component: Intercept + vaccination coverage information model.A0 <- list(ar = list(f = ~ 1 + logVac0), end = list(f = f.end, offset = population(measles2w)), data = list(t = epoch(measles2w), logVac0 = log(vac0))) # fit the model result.A0 <- hhh4(measles2w, model.A0) summary(result.A0, amplitudeShift = TRUE) surveillance/inst/doc/twinstim.R0000644000175100001440000002537313231650451016521 0ustar hornikusers## ----include = FALSE--------------------------------------------------------------- ## load the "cool" package library("surveillance") ## Compute everything or fetch cached results? message("Doing computations: ", COMPUTE <- !file.exists("twinstim-cache.RData")) if (!COMPUTE) load("twinstim-cache.RData", verbose = TRUE) ## ----imdepi_components, echo=FALSE------------------------------------------------- ## extract components from imdepi to reconstruct data("imdepi") events <- SpatialPointsDataFrame( coords = coordinates(imdepi$events), data = marks(imdepi, coords=FALSE), proj4string = imdepi$events@proj4string # ETRS89 projection (+units=km) ) stgrid <- imdepi$stgrid[,-1] ## ----load_districtsD, echo=FALSE--------------------------------------------------- load(system.file("shapes", "districtsD.RData", package = "surveillance")) ## ----imdepi_construct, results="hide", eval=FALSE---------------------------------- # imdepi <- as.epidataCS(events = events, W = stateD, stgrid = stgrid, # qmatrix = diag(2), nCircle2Poly = 16) ## ----imdepi_events_echo, results="hide"-------------------------------------------- summary(events) ## ----imdepi_stgrid, echo=FALSE----------------------------------------------------- .stgrid.excerpt <- format(rbind(head(stgrid, 3), tail(stgrid, 3)), digits=3) rbind(.stgrid.excerpt[1:3,], "..."="...", .stgrid.excerpt[4:6,]) ## ----imdepi_print------------------------------------------------------------------ imdepi ## ----imdepi_summary, include = FALSE----------------------------------------------- (simdepi <- summary(imdepi)) ## ----imdepi_stepfun, echo=2, fig.cap="Time course of the number of infectives assuming infectious periods of 30 days."---- par(mar = c(5, 5, 1, 1), las = 1) plot(as.stepfun(imdepi), xlim = summary(imdepi)$timeRange, xaxs = "i", xlab = "Time [days]", ylab = "Current number of infectives", main = "") #axis(1, at = 2557, labels = "T", font = 2, tcl = -0.3, mgp = c(3, 0.3, 0)) ## ----imdepi_plot, fig.cap="Occurrence of the two finetypes viewed in the temporal and spatial dimensions.", fig.subcap=c("Temporal pattern.","Spatial pattern."), fig.width=5, fig.height=6, echo=c(2,4,5), out.width="0.5\\linewidth", fig.pos="!htb"---- par(las = 1) plot(imdepi, "time", col = c("indianred", "darkblue"), ylim = c(0, 20)) par(mar = c(0, 0, 0, 0)) plot(imdepi, "space", lwd = 2, points.args = list(pch = c(1, 19), col = c("indianred", "darkblue"))) layout.scalebar(imdepi$W, scale = 100, labels = c("0", "100 km"), plot = TRUE) ## ----imdepi_animate_saveHTML, eval=FALSE------------------------------------------- # animation::saveHTML( # animate(subset(imdepi, type == "B"), interval = c(0, 365), time.spacing = 7), # nmax = Inf, interval = 0.2, loop = FALSE, title = "First year of type B") ## ----imdepi_untied----------------------------------------------------------------- eventDists <- dist(coordinates(imdepi$events)) minsep <- min(eventDists[eventDists > 0]) set.seed(321) imdepi_untied <- untie(imdepi, amount = list(s = minsep / 2)) ## ----imdepi_untied_infeps---------------------------------------------------------- imdepi_untied_infeps <- update(imdepi_untied, eps.s = Inf) ## ----imdsts_plot, fig.cap="IMD cases (joint types) aggregated as an \\class{sts} object by month and district.", fig.subcap=c("Time series of monthly counts.", "Disease incidence (per 100\\,000 inhabitants)."), fig.width=5, fig.height=5, out.width="0.5\\linewidth", fig.pos="ht", echo=-2---- imdsts <- epidataCS2sts(imdepi, freq = 12, start = c(2002, 1), tiles = districtsD) par(las = 1, lab = c(7,7,7), mar = c(5,5,1,1)) plot(imdsts, type = observed ~ time) plot(imdsts, type = observed ~ unit, population = districtsD$POPULATION / 100000) ## ----endemic_formula--------------------------------------------------------------- (endemic <- addSeason2formula(~offset(log(popdensity)) + I(start / 365 - 3.5), period = 365, timevar = "start")) ## ----imdfit_endemic, results="hide"------------------------------------------------ imdfit_endemic <- twinstim(endemic = endemic, epidemic = ~0, data = imdepi_untied, subset = !is.na(agegrp)) ## ----strip.white.output=TRUE------------------------------------------------------- summary(imdfit_endemic) ## ----imdfit_Gaussian, results="hide", eval=COMPUTE--------------------------------- # imdfit_Gaussian <- update(imdfit_endemic, epidemic = ~type + agegrp, # siaf = siaf.gaussian(), cores = 2 * (.Platform$OS.type == "unix")) ## ----tab_imdfit_Gaussian, echo=FALSE, results="asis"------------------------------- print(xtable(imdfit_Gaussian, caption="Estimated rate ratios (RR) and associated Wald confidence intervals (CI) for endemic (\\code{h.}) and epidemic (\\code{e.}) terms. This table was generated by \\code{xtable(imdfit\\_Gaussian)}.", label="tab:imdfit_Gaussian"), sanitize.text.function=NULL, sanitize.colnames.function=NULL, sanitize.rownames.function=function(x) paste0("\\code{", x, "}")) ## ---------------------------------------------------------------------------------- R0_events <- R0(imdfit_Gaussian) tapply(R0_events, marks(imdepi_untied)[names(R0_events), "type"], mean) ## ----imdfit_powerlaw, results="hide", eval=COMPUTE, include=FALSE------------------ # imdfit_powerlaw <- update(imdfit_Gaussian, data = imdepi_untied_infeps, # siaf = siaf.powerlaw(), # start = c("e.(Intercept)" = -6.2, "e.siaf.1" = 1.5, "e.siaf.2" = 0.9)) ## ----imdfit_step4, results="hide", eval=COMPUTE, include=FALSE--------------------- # imdfit_step4 <- update(imdfit_Gaussian, data = imdepi_untied_infeps, # siaf = siaf.step(exp(1:4 * log(100) / 5), maxRange = 100)) ## ----imdfit_siafs, fig.cap="Various estimates of spatial interaction (scaled by the epidemic intercept $\\gamma_0$).", fig.pos="!ht", echo=FALSE---- par(mar = c(5,5,1,1)) set.seed(2) # Monte-Carlo confidence intervals plot(imdfit_Gaussian, "siaf", xlim=c(0,42), ylim=c(0,5e-5), lty=c(1,3), xlab = expression("Distance " * x * " from host [km]")) plot(imdfit_powerlaw, "siaf", add=TRUE, col.estimate=4, lty=c(2,3)) plot(imdfit_step4, "siaf", add=TRUE, col.estimate=3, lty=c(4,3)) legend("topright", legend=c("Power law", "Step (df=4)", "Gaussian"), col=c(4,3,2), lty=c(2,4,1), lwd=3, bty="n") ## ---------------------------------------------------------------------------------- exp(cbind("Estimate" = coef(imdfit_Gaussian)["e.siaf.1"], confint(imdfit_Gaussian, parm = "e.siaf.1"))) ## ---------------------------------------------------------------------------------- exp(cbind("Estimate" = coef(imdfit_powerlaw)[c("e.siaf.1", "e.siaf.2")], confint(imdfit_powerlaw, parm = c("e.siaf.1", "e.siaf.2")))) ## ---------------------------------------------------------------------------------- quantile(getSourceDists(imdepi_untied_infeps, "space"), c(1,2,4,8)/100) ## ----imdfits_AIC------------------------------------------------------------------- AIC(imdfit_endemic, imdfit_Gaussian, imdfit_powerlaw, imdfit_step4) ## ----imdfit_endemic_sel, results="hide", include=FALSE----------------------------- ## Example of AIC-based stepwise selection of the endemic model imdfit_endemic_sel <- stepComponent(imdfit_endemic, component = "endemic") ## -> none of the endemic predictors is removed from the model ## ----imdfit_powerlaw_model--------------------------------------------------------- imdfit_powerlaw <- update(imdfit_powerlaw, model = TRUE) ## ----imdfit_powerlaw_intensityplot_time, fig.cap="Fitted ``ground'' intensity process aggregated over space and both types.", fig.pos="ht", echo=FALSE---- par(mar = c(5,5,1,1), las = 1) intensity_endprop <- intensityplot(imdfit_powerlaw, aggregate="time", which="endemic proportion", plot=FALSE) intensity_total <- intensityplot(imdfit_powerlaw, aggregate="time", which="total", tgrid=501, lwd=2, xlab="Time [days]", ylab="Intensity") curve(intensity_endprop(x) * intensity_total(x), add=TRUE, col=2, lwd=2, n=501) #curve(intensity_endprop(x), add=TRUE, col=2, lty=2, n=501) text(2500, 0.36, labels="total", col=1, pos=2, font=2) text(2500, 0.08, labels="endemic", col=2, pos=2, font=2) ## ----echo=FALSE, eval=FALSE-------------------------------------------------------- # meanepiprop <- integrate(intensityplot(imdfit_powerlaw, which="epidemic proportion"), # 50, 2450, subdivisions=2000, rel.tol=1e-3)$value / 2400 ## ----imdfit_powerlaw_intensityplot_space, fig.cap="Epidemic proportion of the fitted intensity process accumulated over time by type.", fig.subcap=c("Type B.", "Type C."), fig.width=5, fig.height=5, out.width="0.47\\linewidth", fig.pos="p", echo=FALSE---- for (.type in 1:2) { print(intensityplot(imdfit_powerlaw, aggregate="space", which="epidemic proportion", types=.type, tiles=districtsD, sgrid=1000, col.regions = grey(seq(1,0,length.out=10)), at = seq(0,1,by=0.1))) grid::grid.text("Epidemic proportion", x=1, rot=90, vjust=-1) } ## ----imdfit_checkResidualProcess, fig.cap="\\code{checkResidualProcess(imdfit\\_powerlaw)}. The left-hand plot shows the \\code{ecdf} of the transformed residuals with a 95\\% confidence band obtained by inverting the corresponding Kolmogorov-Smirnov test (no evidence for deviation from uniformity). The right-hand plot suggests absence of serial correlation.", results="hide", fig.pos="p", echo=FALSE---- par(mar = c(5, 5, 1, 1)) checkResidualProcess(imdfit_powerlaw) ## ----imdsim, results="hide"-------------------------------------------------------- imdsim <- simulate(imdfit_powerlaw, nsim = 1, seed = 1, t0 = 2191, T = 2555, data = imdepi_untied_infeps, tiles = districtsD) ## ----imdsim_plot, fig.cap = "Simulation-based forecast of the cumulative number of cases by finetype in the last two years. The black lines correspond to the observed numbers.", fig.pos="bht", echo=FALSE---- .t0 <- imdsim$timeRange[1] .cumoffset <- c(table(subset(imdepi, time < .t0)$events$type)) par(mar = c(5,5,1,1), las = 1) plot(imdepi, ylim = c(0, 20), col = c("indianred", "darkblue"), subset = time < .t0, cumulative = list(maxat = 336), xlab = "Time [days]") plot(imdsim, add = TRUE, legend.types = FALSE, col = scales::alpha(c("indianred", "darkblue"), 0.5), subset = !is.na(source), # exclude events of the prehistory cumulative = list(offset = .cumoffset, maxat = 336, axis = FALSE), border = NA, density = 0) # no histogram for simulations plot(imdepi, add = TRUE, legend.types = FALSE, col = 1, subset = time >= .t0, cumulative = list(offset = .cumoffset, maxat = 336, axis = FALSE), border = NA, density = 0) # no histogram for the last year's data abline(v = .t0, lty = 2, lwd = 2) ## ----strip.white.output=TRUE------------------------------------------------------- table(imdsim$events$source > 0, exclude = NULL) surveillance/inst/doc/monitoringCounts.R0000644000175100001440000014057513231650411020222 0ustar hornikusers### R code from vignette source 'monitoringCounts.Rnw' ### Encoding: UTF-8 ################################################### ### code chunk number 1: SETUP ################################################### options(width=77) ## create directories for plots and cache dir.create("plots", showWarnings=FALSE) dir.create("monitoringCounts-cache", showWarnings=FALSE) ################################################### ### code chunk number 2: monitoringCounts.Rnw:144-145 (eval = FALSE) ################################################### ## all.equal(observed(salmNewport),observed(as(as(salmNewport,"ts"),"sts"))) ################################################### ### code chunk number 3: monitoringCounts.Rnw:151-154 ################################################### # Load packages library("surveillance") library('gamlss') ################################################### ### code chunk number 4: monitoringCounts.Rnw:156-162 ################################################### # This code is the one used for the Salmon et al. 2014 JSS article. # Using this code all examples from the article can be reproduced. # computeALL is FALSE to avoid the computationally intensive parts # of the code (use of simulations to find a threshold value for categoricalCUSUM, # use of boda) but one can set it to TRUE to have it run. computeALL <- FALSE ################################################### ### code chunk number 5: monitoringCounts.Rnw:164-192 ################################################### # Define plot parameters #Add lines using grid by a hook function. Use NULL to align with tick marks hookFunc <- function() { grid(NA,NULL,lwd=1) } cex.text <- 1.7 cex.axis <- cex.text cex.main <- cex.text cex.lab <- cex.text cex.leg <- cex.text line.lwd <- 2#1 stsPlotCol <- c("mediumblue","mediumblue","red2") alarm.symbol <- list(pch=17, col="red2", cex=2,lwd=3) #Define list with arguments to use with do.call("legend", legOpts) legOpts <- list(x="topleft",legend=c(expression(U[t])),bty="n",lty=1,lwd=line.lwd,col=alarm.symbol$col,horiz=TRUE,cex=cex.leg) #How should the par of each plot look? par.list <- list(mar=c(6,5,5,5),family="Times") #Do this once y.max <- 0 plotOpts <- list(col=stsPlotCol,ylim=c(0,y.max), main='',lwd=c(1,line.lwd,line.lwd), dx.upperbound=0, #otherwise the upperbound line is put 0.5 off cex.lab=cex.lab, cex.axis=cex.axis, cex.main=cex.main, ylab="No. of reports", xlab="Time (weeks)",lty=c(1,1,1), legend.opts=legOpts,alarm.symbol=alarm.symbol, xaxis.tickFreq=list("%V"=atChange,"%m"=atChange,"%G"=atChange), xaxis.labelFreq=list("%Y"=atMedian), xaxis.labelFormat="%Y", par.list=par.list,hookFunc=hookFunc) ################################################### ### code chunk number 6: stsLoad ################################################### # Load data data("salmNewport") ################################################### ### code chunk number 7: NewportPlot ################################################### # Plot y.max <- max(aggregate(salmNewport,by="unit")@observed,na.rm=TRUE) plotOpts2 <- modifyList(plotOpts,list(x=salmNewport,legend.opts=NULL,ylim=c(0,y.max),type = observed ~ time),keep.null=TRUE) plotOpts2$par.list <- list(mar=c(6,5,0,5),family="Times") plotOpts2$xaxis.tickFreq <- list("%m"=atChange,"%G"=atChange) do.call("plot",plotOpts2) ################################################### ### code chunk number 8: NewportPlot ################################################### getOption("SweaveHooks")[["fig"]]() # Plot y.max <- max(aggregate(salmNewport,by="unit")@observed,na.rm=TRUE) plotOpts2 <- modifyList(plotOpts,list(x=salmNewport,legend.opts=NULL,ylim=c(0,y.max),type = observed ~ time),keep.null=TRUE) plotOpts2$par.list <- list(mar=c(6,5,0,5),family="Times") plotOpts2$xaxis.tickFreq <- list("%m"=atChange,"%G"=atChange) do.call("plot",plotOpts2) ################################################### ### code chunk number 9: monitoringCounts.Rnw:223-226 (eval = FALSE) ################################################### ## plot(salmNewport, type = observed ~ time, ## xaxis.tickFreq = list("%V" = atChange, "%m" = atChange, "%G" = atChange), ## xaxis.labelFreq = list("%Y" = atMedian), xaxis.labelFormat = "%Y") ################################################### ### code chunk number 10: unitPlot1 ################################################### getOption("SweaveHooks")[["fig"]]() y.max <- max(observed(salmNewport[,2]),observed(salmNewport[,3]),na.rm=TRUE) plotOpts2 <- modifyList(plotOpts,list(x=salmNewport[,2],legend.opts=NULL,ylim=c(0,y.max)),keep.null=TRUE) plotOpts2$xaxis.tickFreq <- list("%G"=atChange) do.call("plot",plotOpts2) ################################################### ### code chunk number 11: unitPlot2 ################################################### getOption("SweaveHooks")[["fig"]]() # Plot with special function plotOpts2 <- modifyList(plotOpts,list(x=salmNewport[,3],legend.opts=NULL,ylim=c(0,y.max)),keep.null=TRUE) plotOpts2$xaxis.tickFreq <- list("%G"=atChange) do.call("plot",plotOpts2) ################################################### ### code chunk number 12: EARS ################################################### in2011 <- which(isoWeekYear(epoch(salmNewport))$ISOYear == 2011) salmNewportGermany <- aggregate(salmNewport, by = "unit") control <- list(range = in2011, method = "C1", alpha = 0.05) surv <- earsC(salmNewportGermany, control = control) plot(surv) ################################################### ### code chunk number 13: EARSPlot ################################################### # Range for the monitoring in2011 <- which(isoWeekYear(epoch(salmNewport))$ISOYear==2011) # Aggregate counts over Germany salmNewportGermany <- aggregate(salmNewport,by="unit") # Choose parameters control <- list(range = in2011, method="C1", alpha=0.05) # Apply earsC function surv <- earsC(salmNewportGermany, control=control) # Plot the results #plot(surv) # Plot y.max <- max(observed(surv),upperbound(surv),na.rm=TRUE) do.call("plot",modifyList(plotOpts,list(x=surv,ylim=c(0,y.max)),keep.null=TRUE)) ################################################### ### code chunk number 14: EARSPlot ################################################### getOption("SweaveHooks")[["fig"]]() # Range for the monitoring in2011 <- which(isoWeekYear(epoch(salmNewport))$ISOYear==2011) # Aggregate counts over Germany salmNewportGermany <- aggregate(salmNewport,by="unit") # Choose parameters control <- list(range = in2011, method="C1", alpha=0.05) # Apply earsC function surv <- earsC(salmNewportGermany, control=control) # Plot the results #plot(surv) # Plot y.max <- max(observed(surv),upperbound(surv),na.rm=TRUE) do.call("plot",modifyList(plotOpts,list(x=surv,ylim=c(0,y.max)),keep.null=TRUE)) ################################################### ### code chunk number 15: farHead ################################################### # Control slot for the original method control1 <- list(range=in2011,noPeriods=1, b=4,w=3,weightsThreshold=1,pastWeeksNotIncluded=3, pThresholdTrend=0.05,thresholdMethod="delta",alpha=0.05, limit54=c(0,50)) # Control slot for the improved method control2 <- list(range=in2011,noPeriods=10, b=4,w=3,weightsThreshold=2.58,pastWeeksNotIncluded=26, pThresholdTrend=1,thresholdMethod="nbPlugin",alpha=0.05, limit54=c(0,50)) ################################################### ### code chunk number 16: farHead (eval = FALSE) ################################################### ## control1 <- list(range = in2011, noPeriods = 1, ## b = 4, w = 3, weightsThreshold = 1, ## pastWeeksNotIncluded = 3, pThresholdTrend = 0.05, ## thresholdMethod = "delta") ## control2 <- list(range = in2011, noPeriods = 10, ## b = 4, w = 3, weightsThreshold = 2.58, ## pastWeeksNotIncluded = 26, pThresholdTrend = 1, ## thresholdMethod = "nbPlugin") ################################################### ### code chunk number 17: fPlot1 ################################################### getOption("SweaveHooks")[["fig"]]() library(ggplot2) library(grid) # for rectanges widthRectangles <- 10 # dimensions for the ticks heightTick <- 4 xTicks <- c(15,67,119) yTicksStart <- rep(0,3) yTicksEnd <- rep(0,3) yTicksEnd2 <- rep(-5,3) textTicks <- c("t-2*p","t-p","t[0]") xBigTicks <- c(xTicks[1:2]-widthRectangles/2,xTicks[1:2]+widthRectangles/2,xTicks[3]-widthRectangles/2,xTicks[3]) yTicksBigEnd <- rep(0,6) yTicksBigStart <- rep(heightTick,6) # to draw the horizontal line vectorDates <- rep(0,150) dates <- seq(1:150) data <- data.frame(dates,vectorDates) xPeriods <- c(15,67,117,15+26,67+26) ################################################################################ p <- ggplot() + # white theme_void() + geom_segment(aes(x = 0, y = -20, xend = 200, yend = 10), size=2, arrow = arrow(length = unit(0.5, "cm")), colour ='white') + # time arrow geom_segment(aes(x = 0, y = 0, xend = 150, yend = 0), size=1, arrow = arrow(length = unit(0.5, "cm"))) + # ticks geom_segment(aes(x = xTicks, y = yTicksEnd2, xend = xTicks, yend = yTicksStart ), arrow = arrow(length = unit(0.3, "cm")),size=1)+ # big ticks geom_segment(aes(x = xBigTicks, y = yTicksBigStart, xend = xBigTicks, yend = yTicksBigEnd*2), size=1)+ # time label annotate("text", label = "Time", x = 170, y = 0, size = 8, colour = "black", family="serif") + # ticks labels annotate('text',label=c("t[0]-2 %.% freq","t[0]-freq","t[0]"),x = xTicks, y = yTicksEnd - 10, size = 8,family="serif",parse=T) p+ # periods labels annotate('text',label=c("A","A","A","B","B"),x = xPeriods, y = rep(6,5), size = 8,family="serif",parse=T) ################################################### ### code chunk number 18: fPlot2 ################################################### getOption("SweaveHooks")[["fig"]]() yTicksBigEnd2 <- rep(0,4) yTicksBigStart2 <- rep(heightTick,4) newX <- c(xTicks[1:2]+widthRectangles/2+52-widthRectangles,xTicks[1:2]+52/2) xPeriods <- c(15,67,117,15+16,67+16,15+35,67+35) p + geom_segment(aes(x = newX, y = yTicksBigStart2, xend = newX, yend = yTicksBigEnd2), size=1)+ # periods labels annotate('text',label=c("A","A","A","B","B","C","C"),x = xPeriods, y = rep(6,7), size = 8,family="serif",parse=T) ################################################### ### code chunk number 19: oldVsNewprep ################################################### salm.farrington <- farringtonFlexible(salmNewportGermany, control1) salm.noufaily <- farringtonFlexible(salmNewportGermany, control2) ################################################### ### code chunk number 20: farPlot1 ################################################### getOption("SweaveHooks")[["fig"]]() # Plot y.max <- max(observed(salm.farrington),upperbound(salm.farrington),observed(salm.noufaily),upperbound(salm.noufaily),na.rm=TRUE) do.call("plot",modifyList(plotOpts,list(x=salm.farrington,ylim=c(0,y.max)))) ################################################### ### code chunk number 21: farPlot2 ################################################### getOption("SweaveHooks")[["fig"]]() # Plot do.call("plot",modifyList(plotOpts,list(x=salm.noufaily,ylim=c(0,y.max)))) ################################################### ### code chunk number 22: campyDE ################################################### # Load data and create \code{sts}-object data("campyDE") cam.sts <- sts(epoch=as.numeric(campyDE$date), epochAsDate=TRUE, observed=campyDE$case, state=campyDE$state) par(las=1) # Plot y.max <- max(observed(cam.sts),upperbound(cam.sts),na.rm=TRUE) plotOpts3 <- modifyList(plotOpts,list(x=cam.sts,ylab="",legend.opts=NULL,ylim=c(0,y.max),type = observed ~ time),keep.null=TRUE) plotOpts3$xaxis.tickFreq <- list("%m"=atChange,"%G"=atChange) do.call("plot",plotOpts3) par(las=0) #mtext(side=2,text="No. of reports", # las=0,line=3, cex=cex.text,family="Times") par(family="Times") text(-20, 2600, "No. of\n reports", pos = 3, xpd = T,cex=cex.text) text(510, 2900, "Absolute humidity", pos = 3, xpd = T,cex=cex.text) text(510, 2550, expression(paste("[",g/m^3,"]", sep='')), pos = 3, xpd = T,cex=cex.text) lines(campyDE$hum*50, col="white", lwd=2) axis(side=4, at=seq(0,2500,by=500),labels=seq(0,50,by=10),las=1,cex.lab=cex.text, cex=cex.text,cex.axis=cex.text,pos=length(epoch(cam.sts))+20) #mtext(side=4,text=expression(paste("Absolute humidity [ ",g/m^3,"]", sep='')), # las=0,line=1, cex=cex.text,family="Times") ################################################### ### code chunk number 23: campyDE ################################################### getOption("SweaveHooks")[["fig"]]() # Load data and create \code{sts}-object data("campyDE") cam.sts <- sts(epoch=as.numeric(campyDE$date), epochAsDate=TRUE, observed=campyDE$case, state=campyDE$state) par(las=1) # Plot y.max <- max(observed(cam.sts),upperbound(cam.sts),na.rm=TRUE) plotOpts3 <- modifyList(plotOpts,list(x=cam.sts,ylab="",legend.opts=NULL,ylim=c(0,y.max),type = observed ~ time),keep.null=TRUE) plotOpts3$xaxis.tickFreq <- list("%m"=atChange,"%G"=atChange) do.call("plot",plotOpts3) par(las=0) #mtext(side=2,text="No. of reports", # las=0,line=3, cex=cex.text,family="Times") par(family="Times") text(-20, 2600, "No. of\n reports", pos = 3, xpd = T,cex=cex.text) text(510, 2900, "Absolute humidity", pos = 3, xpd = T,cex=cex.text) text(510, 2550, expression(paste("[",g/m^3,"]", sep='')), pos = 3, xpd = T,cex=cex.text) lines(campyDE$hum*50, col="white", lwd=2) axis(side=4, at=seq(0,2500,by=500),labels=seq(0,50,by=10),las=1,cex.lab=cex.text, cex=cex.text,cex.axis=cex.text,pos=length(epoch(cam.sts))+20) #mtext(side=4,text=expression(paste("Absolute humidity [ ",g/m^3,"]", sep='')), # las=0,line=1, cex=cex.text,family="Times") ################################################### ### code chunk number 24: campyDElongVersion (eval = FALSE) ################################################### ## data("campyDE") ## cam.sts <- sts(epoch = as.numeric(campyDE$date), epochAsDate = TRUE, ## observed = campyDE$case, state = campyDE$state) ## plot(cam.sts, legend = NULL, xlab = "time [weeks]", ylab = "No. reported", ## col = "gray", cex = 2, cex.axis = 2, cex.lab = 2) ## lines(campyDE$hum * 50, col = "darkblue", lwd = 2) ################################################### ### code chunk number 25: NICELOOKINGboda (eval = FALSE) ################################################### ## ## rangeBoda <- which(epoch(cam.sts) >= as.Date("2007-01-01")) ## control.boda <- list(range = rangeBoda, X = NULL, trend = TRUE, ## season = TRUE, prior = "iid", alpha = 0.025, ## mc.munu = 10000, mc.y = 1000, ## samplingMethod = "marginals") ## boda <- boda(cam.sts, control = control.boda) ################################################### ### code chunk number 26: boda ################################################### rangeBoda <- which(epoch(cam.sts)>=as.Date("2007-01-01")) if (computeALL) { library("INLA") control.boda <- list(range=rangeBoda, X=NULL, trend=TRUE, season=TRUE, prior='rw1', alpha=0.025, mc.munu=10000, mc.y=1000, samplingMethod = "marginals") # boda without covariates: trend + spline + periodic spline boda <- boda(cam.sts, control=control.boda) save(boda, file = "monitoringCounts-cache/boda.RData") } else { load("monitoringCounts-cache/boda.RData") } ################################################### ### code chunk number 27: NICELOOKINGboda2 (eval = FALSE) ################################################### ## covarNames <- c("l1.hum", "l2.hum", "l3.hum", "l4.hum", ## "newyears", "christmas", "O104period") ## control.boda2 <- modifyList(control.boda, ## list(X = campyDE[, covarNames], season = FALSE)) ## boda.covars <- boda(cam.sts, control = control.boda2) ################################################### ### code chunk number 28: boda2 ################################################### if (computeALL) { # boda with covariates: trend + spline + lagged hum + indicator variables covarNames <- c(paste("l",1:4,".hum",sep=""),"newyears","christmas", "O104period") control.boda2 <- modifyList(control.boda, list(X=campyDE[,covarNames],season=FALSE)) boda.covars <- boda(cam.sts, control=control.boda2) save(boda.covars, file = "monitoringCounts-cache/boda.covars.RData") } else { load("monitoringCounts-cache/boda.covars.RData") } ################################################### ### code chunk number 29: alarmplot2 (eval = FALSE) ################################################### ## cam.surv <- combineSTS(list(boda.covars=boda.covars,boda=boda,bayes=bayes, ## farrington=far,farringtonFlexible=farflex)) ## plot(cam.surv,type = alarm ~ time) ################################################### ### code chunk number 30: bPlot ################################################### # Plot with special function y.max <- max(observed(boda.covars),upperbound(boda.covars),na.rm=TRUE) plotOpts2 <- modifyList(plotOpts,list(x=boda.covars,ylim=c(0,y.max)),keep.null=TRUE) plotOpts2$xaxis.tickFreq <- list("%m"=atChange,"%G"=atChange) do.call("plot",plotOpts2) ################################################### ### code chunk number 31: bPlot ################################################### getOption("SweaveHooks")[["fig"]]() # Plot with special function y.max <- max(observed(boda.covars),upperbound(boda.covars),na.rm=TRUE) plotOpts2 <- modifyList(plotOpts,list(x=boda.covars,ylim=c(0,y.max)),keep.null=TRUE) plotOpts2$xaxis.tickFreq <- list("%m"=atChange,"%G"=atChange) do.call("plot",plotOpts2) ################################################### ### code chunk number 32: boda3 ################################################### control.far <- list(range=rangeBoda,b=4,w=5,alpha=0.025*2) far <- farrington(cam.sts,control=control.far) #Both farringtonFlexible and algo.bayes uses a one-sided interval just as boda. control.far2 <-modifyList(control.far,list(alpha=0.025)) farflex <- farringtonFlexible(cam.sts,control=control.far2) bayes <- suppressWarnings(bayes(cam.sts,control=control.far2)) ################################################### ### code chunk number 33: boda4 ################################################### # Small helper function to combine several equally long univariate sts objects combineSTS <- function(stsList) { epoch <- as.numeric(epoch(stsList[[1]])) observed <- NULL alarm <- NULL for (i in 1:length(stsList)) { observed <- cbind(observed,observed(stsList[[i]])) alarm <- cbind(alarm,alarms(stsList[[i]])) } colnames(observed) <- colnames(alarm) <- names(stsList) res <- sts(epoch=as.numeric(epoch), epochAsDate=TRUE, observed=observed, alarm=alarm) return(res) } ################################################### ### code chunk number 34: alarmplot ################################################### # Make an artifical object containing two columns - one with the boda output # and one with the farrington output cam.surv <- combineSTS(list(boda.covars=boda.covars,boda=boda,bayes=bayes, farrington=far,farringtonFlexible=farflex)) par(mar=c(4,8,2.1,2),family="Times") plot(cam.surv,type = alarm ~ time,lvl=rep(1,ncol(cam.surv)), alarm.symbol=list(pch=17, col="red2", cex=1,lwd=3), cex.axis=1,xlab="Time (weeks)",cex.lab=1,xaxis.tickFreq=list("%m"=atChange,"%G"=atChange),xaxis.labelFreq=list("%G"=at2ndChange), xaxis.labelFormat="%G") ################################################### ### code chunk number 35: alarmplot ################################################### getOption("SweaveHooks")[["fig"]]() # Make an artifical object containing two columns - one with the boda output # and one with the farrington output cam.surv <- combineSTS(list(boda.covars=boda.covars,boda=boda,bayes=bayes, farrington=far,farringtonFlexible=farflex)) par(mar=c(4,8,2.1,2),family="Times") plot(cam.surv,type = alarm ~ time,lvl=rep(1,ncol(cam.surv)), alarm.symbol=list(pch=17, col="red2", cex=1,lwd=3), cex.axis=1,xlab="Time (weeks)",cex.lab=1,xaxis.tickFreq=list("%m"=atChange,"%G"=atChange),xaxis.labelFreq=list("%G"=at2ndChange), xaxis.labelFormat="%G") ################################################### ### code chunk number 36: glrnblongVersion (eval = FALSE) ################################################### ## phase1 <- which(isoWeekYear(epoch(salmNewportGermany))$ISOYear < 2011) ## phase2 <- in2011 ## control = list(range = phase2, c.ARL = 4, theta = log(2), ret = "cases", ## mu0 = list(S = 1, trend = TRUE, refit = FALSE)) ## salmGlrnb <- glrnb(salmNewportGermany, control = control) ################################################### ### code chunk number 37: glrnb ################################################### # Define phase1 (reference values) and phase2 (monitoring) phase1 <- which(isoWeekYear(epoch(salmNewportGermany))$ISOYear<2011) phase2 <- in2011 # Choose the options for monitoring control=list(range=phase2,mu0=list( S=1, trend=TRUE, refit=FALSE),c.ARL = 4, theta=log(2),ret="cases") # Perform monitoring with glrnb salmGlrnb <- glrnb(salmNewportGermany,control=control) ################################################### ### code chunk number 38: glrnbPlot ################################################### # Plot y.max <- max(observed(salmGlrnb),upperbound(salmGlrnb),na.rm=TRUE) do.call("plot",modifyList(plotOpts,list(x=salmGlrnb,ylim=c(0,y.max)))) ################################################### ### code chunk number 39: glrnbPlot ################################################### getOption("SweaveHooks")[["fig"]]() # Plot y.max <- max(observed(salmGlrnb),upperbound(salmGlrnb),na.rm=TRUE) do.call("plot",modifyList(plotOpts,list(x=salmGlrnb,ylim=c(0,y.max)))) ################################################### ### code chunk number 40: catlongVersion (eval = FALSE) ################################################### ## data("salmHospitalized") ## isoWeekYearData <- isoWeekYear(epoch(salmHospitalized)) ## ## dataBefore2013 <- which(isoWeekYearData$ISOYear < 2013) ## data2013 <- which(isoWeekYearData$ISOYear == 2013) ## dataEarly2014 <- which(isoWeekYearData$ISOYear == 2014 ## & isoWeekYearData$ISOWeek <= 4) ## ## phase1 <- dataBefore2013 ## phase2 <- c(data2013, dataEarly2014) ## ## weekNumbers <- isoWeekYearData$ISOWeek ## salmHospitalized.df <- cbind(as.data.frame(salmHospitalized), weekNumbers) ## colnames(salmHospitalized.df) <- c("y", "t", "state", "alarm", "upperbound","n", ## "freq", "epochInPeriod", "weekNumber") ################################################### ### code chunk number 41: cat ################################################### # Load data data("salmHospitalized") # Define reference data and data under monitoring phase1 <- which(isoWeekYear(epoch(salmHospitalized))$ISOYear<2013) phase2 <- c(which(isoWeekYear(epoch(salmHospitalized))$ISOYear==2013), which(isoWeekYear(epoch(salmHospitalized))$ISOYear==2014 &isoWeekYear(epoch(salmHospitalized))$ISOWeek<=4)) # Prepare data for fitting the model weekNumber <- isoWeekYear(epoch(salmHospitalized))$ISOWeek salmHospitalized.df <- cbind(as.data.frame(salmHospitalized),weekNumber) colnames(salmHospitalized.df) <- c("y","t","state","alarm","upperbound","n","freq", "epochInPeriod","weekNumber") ################################################### ### code chunk number 42: catbis ################################################### vars <- c( "y", "n", "t", "epochInPeriod", "weekNumber") m.bbin <- gamlss(cbind(y, n-y) ~ 1 + t + sin(2 * pi * epochInPeriod) + cos(2 * pi * epochInPeriod) + sin(4 * pi * epochInPeriod) + cos(4 * pi * epochInPeriod) + I(weekNumber == 1) + I(weekNumber == 2), sigma.formula =~ 1, family = BB(sigma.link = "log"), data = salmHospitalized.df[phase1, vars]) ################################################### ### code chunk number 43: cat2longVersion (eval = FALSE) ################################################### ## R <- 2 ## h <- 2 ## pi0 <- predict(m.bbin, newdata = salmHospitalized.df[phase2, vars], ## type = "response") ## pi1 <- plogis(qlogis(pi0) + log(R)) ## pi0m <- rbind(pi0, 1 - pi0) ## pi1m <- rbind(pi1, 1 - pi1) ################################################### ### code chunk number 44: cat2 ################################################### # CUSUM parameters R <- 2 #detect a doubling of the odds for a salmHospitalized being positive h <- 2 #threshold of the cusum # Compute \textit{in-control} and out of control mean pi0 <- predict(m.bbin,newdata=salmHospitalized.df[phase2,vars], type="response") pi1 <- plogis(qlogis(pi0) + log(R)) # Create matrix with in control and out of control proportions. # Categories are D=1 and D=0, where the latter is the reference category pi0m <- rbind(pi0, 1-pi0) pi1m <- rbind(pi1, 1-pi1) ################################################### ### code chunk number 45: cat2bislongVersion (eval = FALSE) ################################################### ## populationHosp <- cbind(population(salmHospitalized), ## population(salmHospitalized)) ## observedHosp <- cbind(observed(salmHospitalized), ## population(salmHospitalized) - ## observed(salmHospitalized)) ## nrowHosp <- nrow(salmHospitalized) ## salmHospitalized.multi <- sts(freq = 52, start = c(2004, 1), ## epoch = as.numeric(epoch(salmHospitalized)), ## epochAsDate = TRUE, ## observed = observedHosp, ## populationFrac = populationHosp, ## state = matrix(0, nrow = nrowHosp, ncol = 2), ## multinomialTS = TRUE) ################################################### ### code chunk number 46: cat2bis ################################################### # Create the \code{sts}-object with the counts for the 2 categories population <- population(salmHospitalized) observed <- observed(salmHospitalized) salmHospitalized.multi <- sts(freq=52, start=c(2004,1), epoch = as.numeric(epoch(salmHospitalized)), epochAsDate=TRUE, observed = cbind(observed, population-observed), populationFrac = cbind(population, population), state=matrix(0, nrow=nrow(salmHospitalized), ncol = 2), multinomialTS=TRUE) ################################################### ### code chunk number 47: cat2terdisplay (eval = FALSE) ################################################### ## dBB.cusum <- function(y, mu, sigma, size, log = FALSE) { ## return(dBB(if (is.matrix(y)) y[1,] else y, ## if (is.matrix(y)) mu[1,] else mu, ## sigma = sigma, bd = size, log = log)) ## } ################################################### ### code chunk number 48: cat2ter ################################################### # Function to use as dfun in the categoricalCUSUM dBB.cusum <- function(y, mu, sigma, size, log = FALSE) { return(dBB( if (is.matrix(y)) y[1,] else y, if (is.matrix(y)) mu[1,] else mu, sigma = sigma, bd = size, log = log)) } ################################################### ### code chunk number 49: cat3display (eval = FALSE) ################################################### ## controlCat <- list(range = phase2, h = 2, pi0 = pi0m, pi1 = pi1m, ## ret = "cases", dfun = dBB.cusum) ## salmHospitalizedCat <- categoricalCUSUM(salmHospitalized.multi, ## control = controlCat, ## sigma = exp(m.bbin$sigma.coef)) ################################################### ### code chunk number 50: cat3 ################################################### # Monitoring controlCat <- list(range = phase2,h = 2,pi0 = pi0m, pi1 = pi1m, ret = "cases", dfun = dBB.cusum) salmHospitalizedCat <- categoricalCUSUM(salmHospitalized.multi, control = controlCat, sigma = exp(m.bbin$sigma.coef)) ################################################### ### code chunk number 51: catPlot1 ################################################### y.max <- max(observed(salmHospitalized)/population(salmHospitalized),upperbound(salmHospitalized)/population(salmHospitalized),na.rm=TRUE) plotOpts2 <- modifyList(plotOpts,list(x=salmHospitalized,legend.opts=NULL,ylab="",ylim=c(0,y.max)),keep.null=TRUE) plotOpts2$xaxis.tickFreq <- list("%G"=atChange,"%m"=atChange) plotOpts2$par.list <- list(mar=c(6,5,5,5),family="Times",las=1) do.call("plot",plotOpts2) lines(salmHospitalized@populationFrac/4000,col="grey80",lwd=2) lines(campyDE$hum*50, col="white", lwd=2) axis(side=4, at=seq(0,2000,by=500)/4000,labels=as.character(seq(0,2000,by=500)),las=1, cex=2,cex.axis=1.5,pos=length(observed(salmHospitalized))+20) par(family="Times") text(-20, 0.6, "Proportion", pos = 3, xpd = T,cex=cex.text) text(520, 0.6, "Total number of \n reported cases", pos = 3, xpd = T,cex=cex.text) #mtext(side=4,text=expression(paste("Total number of reported cases (thousands)", sep='')), #las=0,line=1, cex=cex.text) ################################################### ### code chunk number 52: catPlot1 ################################################### getOption("SweaveHooks")[["fig"]]() y.max <- max(observed(salmHospitalized)/population(salmHospitalized),upperbound(salmHospitalized)/population(salmHospitalized),na.rm=TRUE) plotOpts2 <- modifyList(plotOpts,list(x=salmHospitalized,legend.opts=NULL,ylab="",ylim=c(0,y.max)),keep.null=TRUE) plotOpts2$xaxis.tickFreq <- list("%G"=atChange,"%m"=atChange) plotOpts2$par.list <- list(mar=c(6,5,5,5),family="Times",las=1) do.call("plot",plotOpts2) lines(salmHospitalized@populationFrac/4000,col="grey80",lwd=2) lines(campyDE$hum*50, col="white", lwd=2) axis(side=4, at=seq(0,2000,by=500)/4000,labels=as.character(seq(0,2000,by=500)),las=1, cex=2,cex.axis=1.5,pos=length(observed(salmHospitalized))+20) par(family="Times") text(-20, 0.6, "Proportion", pos = 3, xpd = T,cex=cex.text) text(520, 0.6, "Total number of \n reported cases", pos = 3, xpd = T,cex=cex.text) #mtext(side=4,text=expression(paste("Total number of reported cases (thousands)", sep='')), #las=0,line=1, cex=cex.text) ################################################### ### code chunk number 53: catPlot ################################################### ################################################### ### code chunk number 54: NICELOOKING (eval = FALSE) ################################################### ## h.grid <- seq(1, 10, by = 0.5) ## ## simone <- function(sts, h) { ## y <- rBB(length(phase2), mu = pi0m[1, , drop = FALSE], ## bd = population(sts)[phase2, ], ## sigma = exp(m.bbin$sigma.coef)) ## observed(sts)[phase2, ] <- cbind(y, sts@populationFrac[phase2, 1] - y) ## one.surv <- categoricalCUSUM(sts, modifyList(controlCat, list(h = h)), ## sigma = exp(m.bbin$sigma.coef)) ## return(any(alarms(one.surv)[, 1])) ## } ## set.seed(123) ## ## nSims <- 1000 ## ## pMC <- sapply(h.grid, function(h) { ## mean(replicate(nSims, simone(salmHospitalized.multi, h))) ## }) ## ## pMarkovChain <- sapply( h.grid, function(h) { ## TA <- LRCUSUM.runlength(mu = pi0m[1,, drop = FALSE], ## mu0 = pi0m[1,, drop = FALSE], ## mu1 = pi1m[1,, drop = FALSE], ## n = population(salmHospitalized.multi)[phase2, ], ## h = h, dfun = dBB.cusum, ## sigma = exp(m.bbin$sigma.coef)) ## return(tail(TA$cdf, n = 1)) ## }) ################################################### ### code chunk number 55: cath ################################################### # Values of the threshold to be investigated h.grid <- seq(1,10,by=0.5) # Prepare function for simulations simone <- function(sts, h) { # Draw observed values from the \textit{in-control} distribution y <- rBB(length(phase2), mu=pi0m[1,,drop=FALSE], bd=population(sts)[phase2,], sigma=exp(m.bbin$sigma.coef)) observed(sts)[phase2,] <- cbind(y,sts@populationFrac[phase2,1] - y) # Perform monitoring one.surv <- categoricalCUSUM(sts, control=modifyList(controlCat, list(h=h)), sigma=exp(m.bbin$sigma.coef)) # Return 1 if there was at least one alarm return(any(alarms(one.surv)[,1])) } # Set random seed for reproducibility set.seed(123) if (computeALL) { # Number of simulations nSims=1000 # Simulations over the possible h values pMC <- sapply(h.grid, function(h) { h <- h mean(replicate(nSims, simone(salmHospitalized.multi,h))) }) # Distribution function to be used by LRCUSUM.runlength dBB.rl <- function(y, mu, sigma, size, log = FALSE) { dBB(y, mu = mu, sigma = sigma, bd = size, log = log) } # Markov Chain approximation over h.grid pMarkovChain <- sapply( h.grid, function(h) { TA <- LRCUSUM.runlength(mu=pi0m[1,,drop=FALSE], mu0=pi0m[1,,drop=FALSE], mu1=pi1m[1,,drop=FALSE], n=population(salmHospitalized.multi)[phase2,], h=h, dfun=dBB.rl, sigma=exp(m.bbin$sigma.coef)) return(tail(TA$cdf,n=1)) }) save(pMC, file = "monitoringCounts-cache/pMC.RData") save(pMarkovChain, file = "monitoringCounts-cache/pMarkovChain.RData") } else { load("monitoringCounts-cache/pMC.RData") load("monitoringCounts-cache/pMarkovChain.RData") } ################################################### ### code chunk number 56: catF ################################################### getOption("SweaveHooks")[["fig"]]() y.max <- max(observed(salmHospitalizedCat[,1])/population(salmHospitalizedCat[,1]),upperbound(salmHospitalizedCat[,1])/population(salmHospitalizedCat[,1]),na.rm=TRUE) plotOpts3 <- modifyList(plotOpts,list(x=salmHospitalizedCat[,1],ylab="Proportion",ylim=c(0,y.max))) plotOpts3$legend.opts <- list(x="top",bty="n",legend=c(expression(U[t])),lty=1,lwd=line.lwd,col=alarm.symbol$col,horiz=TRUE,cex=cex.leg) do.call("plot",plotOpts3) ################################################### ### code chunk number 57: catARL ################################################### getOption("SweaveHooks")[["fig"]]() par(mar=c(6,5,5,5),family="Times") matplot(h.grid, cbind(pMC,pMarkovChain),type="l",ylab=expression(P(T[A] <= 56 * "|" * tau * "=" * infinity)),xlab="Threshold h",col=1,cex=cex.text, cex.axis =cex.text,cex.lab=cex.text) prob <- 0.1 lines(range(h.grid),rep(prob,2),lty=5,lwd=2) axis(2,at=prob,las=1,cex.axis=0.7,labels=FALSE) par(family="Times") legend(4,0.08,c("Monte Carlo","Markov chain"), lty=1:2,col=1,cex=cex.text,bty="n") ################################################### ### code chunk number 58: monitoringCounts.Rnw:1324-1328 ################################################### # data("rotaBB") data("rotaBB") ################################################### ### code chunk number 59: ROTAPLOT (eval = FALSE) ################################################### ## data("rotaBB") ## plot(rotaBB, xlab = "Time (months)", ## ylab = "Proportion of reported cases") ################################################### ### code chunk number 60: monitoringCounts.Rnw:1343-1351 ################################################### getOption("SweaveHooks")[["fig"]]() par(mar=c(5.1,20.1,4.1,0),family="Times") plot(rotaBB,xlab="Time (months)",ylab="", col="mediumblue",cex=cex.text,cex.lab=cex.text,cex.axis=cex.text,cex.main=cex.text, xaxis.tickFreq=list("%G"=atChange), xaxis.labelFreq=list("%G"=at2ndChange), xaxis.labelFormat="%G") par(las=0,family="Times") mtext("Proportion of reported cases", side=2, line=19, cex=1) ################################################### ### code chunk number 61: monitoringCounts.Rnw:1359-1386 ################################################### # Select a palette for drawing pal <- c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00") #= RColorBrewer::brewer.pal("Set1",n=ncol(rotaBB)) # Show time series of monthly proportions (matplot does not work with dates) plotTS <- function(prop=TRUE) { for (i in 1:ncol(rotaBB)) { fun <- if (i==1) plot else lines if (!prop) { fun(epoch(rotaBB),observed(rotaBB)[,i],type="l",xlab="Time (months)",ylab="Reported cases",ylim=c(0,max(observed(rotaBB))),col=pal[i],lwd=2) } else { fun(epoch(rotaBB),observed(rotaBB)[,i,drop=FALSE]/rowSums(observed(rotaBB)),type="l",xlab="Time (months)",ylab="Proportion of reported cases",ylim=c(0,max(observed(rotaBB)/rowSums(observed(rotaBB)))),col=pal[i],lwd=2) } } # Add legend axis(1,at=as.numeric(epoch(rotaBB)),label=NA,tck=-0.01) legend(x="left",colnames(rotaBB),col=pal,lty=1,lwd=2,bg="white") } # plotTS(prop=TRUE) # Show absolute cases plotTS(prop=FALSE) # Even easier rotaBB.copy <- rotaBB ; rotaBB.copy@multinomialTS <- FALSE plot(rotaBB.copy) ################################################### ### code chunk number 62: monitoringCounts.Rnw:1392-1406 (eval = FALSE) ################################################### ## rotaBB.df <- as.data.frame(rotaBB) ## ## X <- with(rotaBB.df, cbind(intercept = 1, epoch, ## sin1 = sin(2 * pi * epochInPeriod), ## cos1 = cos(2 * pi * epochInPeriod))) ## ## phase1 <- epoch(rotaBB) < as.Date("2009-01-01") ## phase2 <- !phase1 ## ## order <- c(2:5, 1); reorder <- c(5, 1:4) ## ## library("MGLM") ## m0 <- MGLMreg(as.matrix(rotaBB.df[phase1, order]) ~ -1 + X[phase1, ], ## dist = "MN") ################################################### ### code chunk number 63: monitoringCounts.Rnw:1408-1425 ################################################### # Convert sts object to data.frame useful for regression modelling rotaBB.df <- as.data.frame(rotaBB) # Create matrix X <- with(rotaBB.df,cbind(intercept=1,epoch, sin1=sin(2*pi*epochInPeriod),cos1=cos(2*pi*epochInPeriod))) # Fit model to 2002-2009 data phase1 <- epoch(rotaBB) < as.Date("2009-01-01") phase2 <- !phase1 # MGLMreg automatically takes the last class as ref so we reorder order <- c(2:5, 1); reorder <- c(5, 1:4) # Fit multinomial logit model (i.e. dist="MN") to phase1 data library("MGLM") m0 <- MGLMreg(as.matrix(rotaBB.df[phase1,order])~ -1 + X[phase1,], dist="MN") ################################################### ### code chunk number 64: monitoringCounts.Rnw:1427-1429 ################################################### # Set threshold and option object h <- 2 ################################################### ### code chunk number 65: monitoringCounts.Rnw:1434-1440 (eval = FALSE) ################################################### ## m1 <- m0 ## ## m1@coefficients[1, ] <- m0@coefficients[1, ] + log(7) ## ## pi0 <- t(predict(m0, newdata = X[phase2, ])[, reorder]) ## pi1 <- t(predict(m1, newdata = X[phase2,])[, reorder]) ################################################### ### code chunk number 66: monitoringCounts.Rnw:1442-1448 ################################################### m1 <- m0 # Out-of control model: shift in all intercept coeffs m1@coefficients[1,] <- m0@coefficients[1,] + log(2) # Proportion over time for phase2 based on fitted model (re-order back) pi0 <- t(predict(m0, newdata=X[phase2,])[,reorder]) pi1 <- t(predict(m1, newdata=X[phase2,])[,reorder]) ################################################### ### code chunk number 67: CATCUSUM ################################################### dfun <- function(y, size, mu, log = FALSE) { return(dmultinom(x = y, size = size, prob = mu, log = log)) } control <- list(range = seq(nrow(rotaBB))[phase2], h = h, pi0 = pi0, pi1 = pi1, ret = "value", dfun = dfun) surv <- categoricalCUSUM(rotaBB,control=control) ################################################### ### code chunk number 68: CATCUSUMMC ################################################### #Number of MC samples nSamples <- 1e4 #Do MC simone.stop <- function(sts, control) { phase2Times <- seq(nrow(sts))[phase2] #Generate new phase2 data from the fitted in control model y <- sapply(1:length(phase2Times), function(i) { rmultinom(n=1, prob=pi0[,i],size=population(sts)[phase2Times[i],1]) }) observed(sts)[phase2Times,] <- t(y) one.surv <- categoricalCUSUM(sts, control=control) #compute P(S<=length(phase2)) return(any(alarms(one.surv)[,1]>0)) } if (computeALL) { set.seed(1233) rlMN <- replicate(nSamples, simone.stop(rotaBB, control=control)) save(file="monitoringCounts-cache/rlsims-multinom.RData", list=c("rlMN")) } else { load(file="monitoringCounts-cache/rlsims-multinom.RData") } mean(rlMN) ################################################### ### code chunk number 69: monitoringCounts.Rnw:1490-1492 ################################################### alarmDates <- epoch(surv)[which(alarms(surv)[,1]==1)] format(alarmDates,"%b %Y") ################################################### ### code chunk number 70: monitoringCounts.Rnw:1497-1498 (eval = FALSE) ################################################### ## dfun <- function(y, size, mu, log = FALSE) { ## return(dmultinom(x = y, size = size, prob = mu, log = log)) ## } ## ## control <- list(range = seq(nrow(rotaBB))[phase2], h = h, pi0 = pi0, ## pi1 = pi1, ret = "value", dfun = dfun) ## surv <- categoricalCUSUM(rotaBB,control=control) ################################################### ### code chunk number 71: monitoringCounts.Rnw:1506-1510 ################################################### m0.dm <- MGLMreg(as.matrix(rotaBB.df[phase1, 1:5]) ~ -1 + X[phase1, ], dist = "DM") c(m0@AIC, m0.dm@AIC) ################################################### ### code chunk number 72: monitoringCounts.Rnw:1518-1536 (eval = FALSE) ################################################### ## delta <- 2 ## m1.dm <- m0.dm ## m1.dm$coefficients[1, ] <- m0.dm$coefficients[1, ] + ## c(-delta, rep(delta/4, 4)) ## ## alpha0 <- exp(X[phase2,] %*% m0.dm$coefficients) ## alpha1 <- exp(X[phase2,] %*% m1.dm$coefficients) ## ## dfun <- function(y, size, mu, log = FALSE) { ## dLog <- ddirmn(t(y), t(mu)) ## if (log) { return(dLog) } else { return(exp(dLog)) } ## } ## ## h <- 2 ## control <- list(range = seq(nrow(rotaBB))[phase2], h = h, ## pi0 = t(alpha0), pi1 = t(alpha1), ## ret = "value", dfun = dfun) ## surv.dm <- categoricalCUSUM(rotaBB, control = control) ################################################### ### code chunk number 73: monitoringCounts.Rnw:1538-1559 ################################################### # Change intercept in the first class (for DM all 5 classes are modeled) delta <- 2 m1.dm <- m0.dm m1.dm@coefficients[1,] <- m0.dm@coefficients[1,] + c(-delta,rep(delta/4,4)) # Calculate the alphas of the multinomial-Dirichlet in the two cases alpha0 <- exp(X[phase2,] %*% m0.dm@coefficients) alpha1 <- exp(X[phase2,] %*% m1.dm@coefficients) # Use alpha vector as mu magnitude # (not possible to compute it from mu and size) dfun <- function(y, size, mu, log=FALSE) { dLog <- ddirmn(t(y), t(mu)) if (log) { return(dLog) } else {return(exp(dLog))} } # Threshold h <- 2 control <- list(range=seq(nrow(rotaBB))[phase2],h=h,pi0=t(alpha0), pi1=t(alpha1), ret="value",dfun=dfun) surv.dm <- categoricalCUSUM(rotaBB,control=control) ################################################### ### code chunk number 74: monitoringCounts.Rnw:1561-1563 (eval = FALSE) ################################################### ## matplot(alpha0/rowSums(alpha0),type="l",lwd=3,lty=1,ylim=c(0,1)) ## matlines(alpha1/rowSums(alpha1),type="l",lwd=1,lty=2) ################################################### ### code chunk number 75: ctPlot1 ################################################### getOption("SweaveHooks")[["fig"]]() surv@observed[,1] <- 0 surv@multinomialTS <- FALSE surv.dm@observed[,1] <- 0 surv.dm@multinomialTS <- FALSE y.max <- max(observed(surv.dm[,1]),upperbound(surv.dm[,1]),observed(surv[,1]),upperbound(surv[,1]),na.rm=TRUE) plotOpts3 <- modifyList(plotOpts,list(x=surv[,1],ylim=c(0,y.max),ylab=expression(C[t]),xlab="")) plotOpts3$legend.opts <- list(x="topleft",bty="n",legend="R",lty=1,lwd=line.lwd,col=alarm.symbol$col,horiz=TRUE,cex=cex.leg) do.call("plot",plotOpts3) lines( c(0,1e99), rep(h,2),lwd=2,col="darkgray",lty=1) par(family="Times") mtext(side=1,text="Time (weeks)", las=0,line=3, cex=cex.text) ################################################### ### code chunk number 76: ctPlot2 ################################################### getOption("SweaveHooks")[["fig"]]() plotOpts3 <- modifyList(plotOpts,list(x=surv.dm[,1],ylim=c(0,y.max),ylab=expression(C[t]),xlab="")) plotOpts3$legend.opts <- list(x="topleft",bty="n",legend="R",lty=1,lwd=line.lwd,col=alarm.symbol$col,horiz=TRUE,cex=cex.text) y.max <- max(observed(surv.dm[,1]),upperbound(surv.dm[,1]),observed(surv[,1]),upperbound(surv[,1]),na.rm=TRUE) do.call("plot",plotOpts3) lines( c(0,1e99), rep(h,2),lwd=2,col="darkgray",lty=1) par(family="Times") mtext(side=1,text="Time (weeks)", las=0,line=3, cex=cex.text) ################################################### ### code chunk number 77: NICELOOKING (eval = FALSE) ################################################### ## data("salmNewport") ## today <- which(epoch(salmNewport) == as.Date("2013-12-23")) ## rangeAnalysis <- (today - 4):today ## in2013 <- which(isoWeekYear(epoch(salmNewport))$ISOYear == 2013) ## ## algoParameters <- list(range = rangeAnalysis, noPeriods = 10, ## populationBool = FALSE, ## b = 4, w = 3, weightsThreshold = 2.58, ## pastWeeksNotIncluded = 26, pThresholdTrend = 1, ## thresholdMethod = "nbPlugin", alpha = 0.05, ## limit54 = c(0, 50)) ## ## results <- farringtonFlexible(salmNewport[, c("Baden.Wuerttemberg", ## "North.Rhine.Westphalia")], ## control = algoParameters) ## ## start <- isoWeekYear(epoch(salmNewport)[range(range)[1]]) ## end <- isoWeekYear(epoch(salmNewport)[range(range)[2]]) ## caption <- paste("Results of the analysis of reported S. Newport ## counts in two German federal states for the weeks W-", ## start$ISOWeek, "-", start$ISOYear, " - W-", end$ISOWeek, ## "-", end$ISOYear, " performed on ", Sys.Date(), ## ". Bold upperbounds (UB) indicate weeks with alarms.", ## sep="") ## toLatex(results, caption = caption) ################################################### ### code chunk number 78: testLabel ################################################### # In this example the sts-object already exists. # Supply the code with the date of a Monday and look for the # corresponding index in the sts-object today <- which(epoch(salmNewport)==as.Date("2013-12-23")) # The analysis will be performed for the given week # and the 4 previous ones range <- (today-4):today in2013 <- which(isoWeekYear(epoch(salmNewport))$ISOYear==2013) # Control argument for using the improved method control2 <- list(range=range,noPeriods=10,populationBool=FALSE, b=4,w=3,weightsThreshold=2.58,pastWeeksNotIncluded=26, pThresholdTrend=1,thresholdMethod="nbPlugin",alpha=0.05, limit54=c(0,50)) # Run farringtonFlexible results <- farringtonFlexible(salmNewport[,c("Baden.Wuerttemberg", "North.Rhine.Westphalia")], control=control2) # Export the results as a tex table start <- isoWeekYear(epoch(salmNewport)[range(range)[1]]) end <- isoWeekYear(epoch(salmNewport)[range(range)[2]]) caption <- paste("Results of the analysis of reported S. Newport counts in two German federal states for the weeks W-", start$ISOWeek," ",start$ISOYear," - W-",end$ISOWeek, " ",end$ISOYear," performed on ",Sys.Date(), ". Bold upperbounds (thresholds) indicate weeks with alarms.", sep="") toLatex(results, table.placement="h", size = "normalsize", sanitize.text.function = identity, NA.string = "-",include.rownames=FALSE, columnLabels = c("Year","Week","Baden-Wuerttemberg","Threshold","North-Rhine-Westphalen","Threshold"), alarmPrefix = "\\textbf{\\textcolor{red}{", alarmSuffix = "}}", caption=caption,label="tableResults") surveillance/inst/doc/hhh4_spacetime.pdf0000644000175100001440000104622713231650472020105 0ustar hornikusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 4393 /Filter /FlateDecode /N 88 /First 733 >> stream xœÝ\[s7–~ß_·qjâFã¤fS%Ûñe"ÙÉIœLå¡M¶¤Ž)¶ÂnÙòüð}Þïh’%™T(Ù»¦©¾|8w )YɳŽi¦ƒd†Ù˜e¢,sØÁ<B˜Ð®0aq(Á(&$“e©™PLz‰{5SºÄ}†)/°µLƒhBZ{¦µÇ} †3cJÌe˜”Ì*Ü,Jã~©™µ &ÍYͤDjÌ1WZF™“%W4Z2g4@æ\ÀV2lSŠù=Tšy©CS^¡}e™7Ê1ü÷Ö[€fÞ㢠Ì®” ÍIt‚é:Á‚Fc Œ£Î°à†8äa:2¨5±O‚M-•-Ñ_b(î1`‡×¸ Þµ‘رhƒ8*<è°T–踯¥,3 ,•Ì€²¤¶ (Kg±ÊpZФΥРÊÊ€+”•ƒ¸, ËC”!*œe-Ñ"ô@hüc–iÑMKb÷à·+Iþ; l„Ã(xØÆ€a”CßÑGaB Ñ”è e a€Ž:’ v Zˆ;Ìw…+I0 ì$4Àƒ²ƒú0B8Õô ì¬ aÑÒƒ²sx–”Êô,¾Tú¿þñÆ÷ê¾W}Å ë’í3þ꬟4Óºƒ–Çã×Õt:xóé´fü1Gìûï#‰³þ¸±õ»ªë›jÊöêOõì[¶[·Óãj6fÏëÉø[¶×ŒŽ«zžÿÏñ¤þdfuÕ7íôIÕ×ìÁ“ï N_B„‚íâï¥ø[Yþm¸Ø­ÞÔoÙǦ?fÇ2›Õ‡ì´½BÜöcýéc;wìA…&¬oNjÖÕ³ðÛC6jϦ}÷-«§ãú¤=¬O›¸ÃNÚq}Ëšéa=¢³Ž›®®ºšå»Zt÷Ó·ìݬšŽŽq/;µ£ºë˜æä¤9šÅ¾Ç^;þ\^ÏÚñÙ¨F—ž½ÞeÏŽÛ®ïF³æ´g¡7œ½ûPØì¿iú ¨ëïØס§.¦~ÇŽ.÷þ›APãxþc>ýêã_¥‰[•ÎÂІÌ0m“ hR<†Î§ã|ŸÊd|:/Ípœž“6WRçm¾Ï¹¼ q«óc©U•6¿š—”qлé´í©éI9  HÞä­ÍÛܲ÷y›édK!Ó82½é…L/dzÁ `·Ó¾†¶Á‹&Ú0³qS=jÏ–¨›` xf¯EV§ŽÍðÀ`fûuמ͠`ŒúùÃyÿì '•RYü)À‘É& e<¨{Ðæ¯Ÿ<¯êóD¿ÿ~™m•@ƒF3ëz–0ó]X.8zžï|Rwý\IøÛ_ƒ*¤+(²MÏ&‚þ’Z“®ÜEìHvYw÷HIÙhRu eœKO ”6™¹™·™µƒ¤2£“nˆ¬Hi“Õ+kWz\¥ÇUz=÷üŒRqKôÖýÊül¢’ZqHCåhpP”Y[Ä uˆ#tMA ,•ž°ðW4>CÇ19•ðG &QDÎëç6ú’åÎG@x„’Ìa«0\ÎÇÒ±L€‰‘Mù:W”ÆSjO¹p>GhK_­¯ÉÿÝÏEõ¹ù®Å½ÄŸßçî©‘Q“dãž>¯›£ãáZO&û€ïðGü1ÂàOù3þœ¿àÿä?ò]ØÆÉ»qÅ÷øKþŠ¿æûü€¿á?ñŸù/ü-ÿ•ÿÆ+^›zVwMÇ«¤¯]5ów|ÄGÍltvr8©Ïù™æON*>æ58rÖª;æõŸgÕ„òCúßðøÿCÍqî‡ñc޼ø¸žò†ÿÁßó ?áS>E6Ï[ÞÎo鸛ÅS~JŽlRöioÛ8âm›vÌO'gÿ“ÿyÖöõøÝ$Þ=¤âQÚñŽw”šÆžtõÀéšsžìy<«kÞlù?›cúÀ?òsþ‰ÿ‡ÿ§žµßÄ…ñPûŸNª£.&-ð.’_~ˆ¯¦Á¸‰q®?m&µŠæ9÷½/+dÃ7xÃÐ4£é²4·×t|ctb1+â}}ò3 ì–ÝÜ’‡\ñ¼oÿöøéÞR[ÚÉxÙíæÄðF·›ãÅÜíb ¼¦Ûõ¥½;K£!úß‹Où|ÿR»H,23÷šW4ÆÙ‘W#c»lÛ6øeÛN‡K¶­¸Šv™Œ/ÙX²$|“Žš½¬Ó—µP¯TÞ2^¢BA¸¤¸ò²â^£Lëj-rêuµvçů¿PCÕ´»2]€ŠMw¦]³8±Ð` ¼VTxi|‘îQë&Ú^íÉ–¼s<œKn÷‚óû-hùË"  ˆ I4.‰@­ˆà:ά)Øûš2Øóüí³ŸÑÒ^;m¯NÙŠïЫœ—‡¼Êy´?MáªÇÈUí…Ï%i˜8 £¿io±ñÊm¾µr…îêWµ~óÝ«­üuÄ·ëåâïªWÒ½’¾>ãx\cH2þ•ÓŒ”dÀmu£¦é›É¸Æ.äî=Ù»jÆßͪÑûº¡;ï§p=º”rŒÛ ”m‘y )ÇÜ ñ£Yõ¡.úNÜœoàïzéÅ"³¸äX¯L¦Öv£vVß”3Èp]Î.RE›¸|ÉêÍe«¿Ö×µúr]«ß}ýâÕ¯O–\|jaÙêíV/ÅŠÕ¯;RÓå"¬ªÒ]ا:Öâ\ ÀÃðòÜ`Üí4UÅuô®ÎÐô„Oã'„gº¦¼ÆàbbàcõŒž³iFRB$ŒO%šPW¥„CÓô]ìšáx@&i$)|¤JççÏC¤R2ê³p†š¾ÀH×6 BWöVÆ0Ø> .eý‡W$ôɸZ²©³¹”~÷ÙVærÁ6J3؆+/„/ Ê®ŠƒÎÍãZ¥]6‡#_Ÿ›€¹W[›™«µ¼¹¨%†ƒÕ‚¥T¡N`ë =¸\ÔÒª0¤[# ‰Œ£‰" C±V^éõŠZ·®´™ŠÒëË „E)0¬/S…M:YðÐSP-ú‹€’N3v*¸ÂÁdï”S¦°0ÝK ”,‹ÒÁB½/¼¦8¤(È_|P˜JšÞLŒʃQ!bá®UêLBC¥`ÝsPVC¿íf vbqó€ñŸö_Ìo é²i:õà¸ïO»ï8¼¿ó²Øx:ki«hgG<ÏÒý÷ÞÎÁÁ7±Ðy}Å2p) ƒaœV¢P%Í£êBÒl¼Æ¶4Ûä¦ZŸ›¶,4M} ‚*¤Ò›š—Â]í¹4âp) wɇ¹äqó™K%ƒ“Õ~±C¯;'8,ޏiîlõ“–2¤õ ùL^ì°T‚37Í6®³¦!è®XÏP®¬fÈ4¥¿¡ÅÿßâÍJA’ªzKÉx8/HþÀŸÇYƒƒ<±¹\i¼²È¸X,pš+ŠgüÓÅ*¢½¦ÂÒŸ:¾–KˆÃÌÕ¼„ø3YwŠSnzm­ñݲŒk­‚«3+‹ánæh A†ò«˜`ºi_3ò®POÆçŸmbeAkçù»æäx`Z"/­Ü$žHÔ&FÀ¥¦ˆ äÊP¾zÍÔø–È‘îr¡(½|[š®/ƒo«MÀk¤‚´\ØÄmhÒðXë¾nì¤ÑàÍjð›Þ|À±D,ºDËîQcJå6® :m±uZ@&¿¬Óõëºpü  Zî=úQ" Щ»ÔÈ(ê< t¨Ö 2¤1bÝJÝ2?šà™u8ª7â=Õ·D¦ï ³Hð5’lz%è+GŸU^ƒ÷ô^”@é} ŒV‚زÞ|üø±^„X¼Ä‘ßáèb_6S ;¦…þœ0—š ¾å–­õ3Œ§w>FˆgÕ¨ïn£8ÊKÄ)5×TÜ~õȺ£\YøøF”(¬BFrå6ñ¯:)4\ýÃW;N«ÔãJZ¬¯Ðb®5U65\è¶|5;o>DÐÕ»Ž U’‹f#-qÐŽ°À;×’¯ï PnzÍMP‘Š^`¤Ö¬Þ6…Úv&6]ߌ:þþüciÄm¸-‘XÒ ¢órM·õÝêô6ðgîK2IIﵺ˜ÁH˜¤Úf$]Eï­rü®+>”ÎØ¶Ö6IÉ1h³”\Ü­Úü%࿃bÉ1»@Iê.ï~ŒÑ5'…n£\éea¹ëPx*¸)WÐë„ ‹ºc%0Ãy•›…Ê€½ Œ¡œE~« ¶ôV¯.´½Çâ`wº«5ÌÏa˜m ç[È…ƒÓ¥Û²3Üò„¾ÔT+¤ÊœaH™m\läŠrÝe$[°ÆÖ¸‘šèà£÷¶ìÔ"VZòæj›j²eàÃÀ3ÛL,PNcf}ŸŠ2©zžÚÛ‚Þ»RP»ðÜ6Zè× }àº@¾*iµTÀ ÚÐ/7Äy£{ƒ>;©N»ãê´žm–È‚ñ‚^ÁCh§Ùo[ÄŸ\ g£ï8Ó*ï„p:<,‘…—Ê—ým ÕXÄ"µÐãÔú /¾ø¬6F£.Äøi¼ _ z‹ýþbѨšÔ·°!¥/¤¤in-•,T!Å6¹þäGG§“¶ß¨&:¯²8SÐ,Ԣ̂ìÅÜ#×o}¨±Pø4³™¡c¬aì=B¯¦ÍIþý‹ Ü ÔiÓ~Å 6Y(&µ_ü~ú©¥_-ا—ätžgاŸw‘þfËõû6þòNÞ÷ô«;ißÅ_ÜY"Gz7ÌÕ=iëY=¥ÙDZËÄ–ÖbSäùý·"Êò[i„øÂK˜ìâ[˜´ø?¿*J¿˜ÀñmðÐ~s½d²xótë`·Cʼxßäjšÿ ê»ì;endstream endobj 90 0 obj << /Subtype /XML /Type /Metadata /Length 1784 >> stream GPL Ghostscript 9.18 areal time series of counts, endemic-epidemic modeling, infectious disease epidemiology, branching process with immigration 2018-01-23T16:14:01+01:00 2018-01-23T16:14:01+01:00 LaTeX with hyperref package hhh4: Endemic-epidemic modeling of areal count time seriesSebastian Meyer, Leonhard Held, Michael Höhle endstream endobj 91 0 obj << /Type /ObjStm /Length 4433 /Filter /FlateDecode /N 88 /First 825 >> stream xœå\ksÛ8²ý~?îÖVâ ÜÚ»U‰WmœÉØÉäq+h™¶9ÑkD:ãì¯ßÓ (‘¢dKY%¾Uw4Šø&ppºݰI–x™p/¯­\âuâ¤O¼I8—&ñ6áÒÚÄ»Dd…}"¤ó ϲDæO„7"‘Jà¹L&xDá@%Š[º¥¥ªÊL¢,§Çm¢¼£Â.ÑRRŸhéÙ,1™Äãœ'FjŽ‘!Qbœ£•XªŒsA…Mb%ÚáÜ&VQëÜ%ÖRhÏzªPd‰ËÚ-ªÙÍbTT µøô¶~~Vçuz4x†B¯†³7‹Ù謨Q7{sü,ao‹Û•þã8ü6/¨ö«§Aþ'yU„ÇÙ‡£“7§Oÿöêät6ɧÇŤäÙ£Óâêfœ/Ðêt4»(§W {_NO«ruáY¹¨ê£k”v‚,ÇE5Z”óz¶ B B½Êcšììæ¼¢@¼•«‘ã}yQ_SÒdÏâ¿›?6ô5}Ìò¨ýxÝ=ÓƒûÝrtäÊÕ‰\¨e:z*E¿0§kí=<…“xKé›+Ò,üû¹íãÇÕˆFÓâv”Ï_åÕu°)£.¡±ú {Ìž²vÆr6b¬`—ìƒÎ®Ø5+Ù˜MØ”ÍØœ-XÅjVÿ9c7ì+»ýk¨³©úG$Ìžó+M4½ù¤ÅX¸é‰'!Äçææ³r\Ióˆ^ç“â>$¼¬óq9z<½x”U„QK@:ܺ˜ü¨¬3®H°±¦Ì†/_~oa‰vŸÌÆ\ð¥¤K8€þppkpjW8 IfÓGBHè§0|Ðe›¾±$—kÏ:ÌN‡«ÚÐB/ÛŒ”;‘æH3eƆkˆþÉN£A»[P‡T‚8+ü¢I\A較~= eâ=ð›i˜Qµw£gËßÿê{ؽ9]ÎÈ'숃៱ìxþ ; \¶ÍƳiËùø¿üZ¬¸ÿúÛüº˜vT°^,Šª¬ØlZ@!Ì‹E9»z¡*oI7\/Šb©!¾mуéO÷`˜nÔ„l™Š»ªX‘› `0ç?>yòë›WD5y}}ömr>WnƒN 3nmîmL‰îÜÇ4NýÙ»i‰j ¼x¬t#8Ѱ–üA@Hí@È{j¡9]‚o °T_&èK6ÎëºõlÎ&åô¦bÓâ*¯ËÙ´çÕu5TË6ÔI>²| 6ô:hîË]ÁCÒìž×Ï_>=þ-6ØT¿Ñ¤åKh Î7 G$ë¦,¿>æøE<{*ñk_œ$ï ™®ëà5hÛÀL{ÆÀ=2Btž1z7>&+¶±hIØhÛZ½^ŽTp÷cTÓš–ÐnÕ–v›á¯éŽVaJ8¢Š¯äU®ÕX ZL¯YljŸ ¡­ûüª³¾õüœzÆÞ²,ϯÁ¬E Sz6™ä Ö‹bŒ³‚]åt~µ(à>-@ª¿cLÎ/r6¹aÓb× fAË©óë’¾œÍñ[•a¯ð|˜!`Ú¯ìÏ5~ І™òîZRìz@°v}®ÜÝçÊ6KkH´~}ÿÏ£^ƒ›y¶Õ«©24¹Éºün›Û,#D‰þUi¾‡€…ßݶ7VÅ9p¿HÖV{,1ÚJ’_Øz#¢eÓ²ò<‘˜ICK¢OâYÄ å=lŠ¿´8î‚8àwÍÁîß„P¡š»RQ“kuë½0;Ôí Чo?=ùµ596c³FKlªMFÀº?’Ý š ³X lvÒÿÛl€ÖFøO>T÷~d8*£›É常eÅ7ù¸±iIi\\ÖÍÑ‚$+q ­ÛÎëhûÀ`fƒuV¢|l¯Ãs×É›goŸ¾P|z[Ó vÌUßùN;qÝGtnWˆh¾ÿé ÿÈÏ~,' ddª‡1ÕƒØMçåUPtVÝ€—ȼ(«ù8ÿ¶ºP·=2â*Û¢/³x“Kg©å>Ø‚;ÜÛýØu"Û™^¼|úË/Ïûæì̵“ã.Ìñ,YW™w;'.­qh£•×ÚwÛ>ë÷ï+ÿ°Ÿ°êºa=˜Ve÷£ÈóE>*†£† A–å×|\LGEô‰&7㺜¿õ£hR3pÅá{çå4[•“Cß…¸7ÛN÷,ƒ!›ºÁ’Û}`Û•TŶEÙÞ³ÅE±ˆa‰ ÖQ8áÍ  ¸‚Šüøáã'¨§Ô¢V‘‰”|¾éÍxL%O‹•”F¥RÈ„;•fð‡¤si†y“zèëψ¿*§_ZéBXeÜ{÷üݧëfñ`ЬϷM6*—ëNlšp}7óÐ3á‡Î2=\o¶ðF{6©ìÍ&²GÿÕ£v¿ÅÎÌš{&,nÊuÜšîð1ïïY/8¥iÃ¥íòVT$íS²Q93òT •Çc“xÝ;Š’7Ç&DÈã1…gÛc P¶Ç¨4΢Sø÷ÁÁ Ç"Ó㉠qôxbB=ž¸=ïý8Ïöîôårˆ³šK¹®ëyõß êxñµªó:]|)Ó‹â¯!0¸}ÞóÎlæÜ§±2•Zøi“_CbËmJá¬fó*b;ƒÇŽ }øAË+ͯˆ¿2þªø#®"Ö#lüõ‰XŸŒõÉXŸŒõÉXŸlêëEj]ô`©u½H­£½_¤v'jn͈5kåS2ùÖ¨Y(—j H‹Û‰ÄƒkPÚå»1óe’J¥ ÃÜÊd\*0J?@&9”ÉxŸÂëÈUe0æQ&-Dêý•Éei_ÝÌ¿°nïÃ<4Ò¤ªaÕŸ/¶ÔÒÂe+”¾¼ÜO¨YìèôñëôôÑ|1ûͧ³¹!£/˜/ÿSÍ÷â4% ®Ã¸j /%¬¨ÔZ¥±_ÿƒç8,õÙ /i¦äR(ÉujZ( –÷Н„ ZÌ€½„:Ì_û±·)9æ¾T›*ᆚ²77XÆ&0ް”)(w%¨ÎÑâàCÊd³TuûÉ«T¿ŸL‡àÅ$ŸW×9ܬ}FY êBA™8°F€OgS‹·ù€ˆv´N¾Ÿ¹LÝ}˜9»Jy„|P¡„¢T¶V(Ífòé© ôbœF+Cvꇅ,¤O9u˜Á$t…ºMy[d²è>¥V2abxG‰·'­LR¯„r<Í‹FôæšLª@Sº¦§_³´GDfSJaÜÓ—ÑV–ÑVVÑVVÑVVÑVVÑVVÑöVÑöVÑöVÑöŽdãûÄu¬OÇút¬ÏÇsßžÇúc¾ ŽUß&×µÉ}'¦3ÿ=6ùre⟯^|s¢ÎÆù´Þ;{Rªá"…Œ>eg‘bç@%ëÄotì;W¾ç»½†áÍe·Iq·líSÙÏê;leŠGKÝT¼ÞÒÈãúC‰?ÏÙ ö2$ÿ¼f¿Ä ·ìû½gXÎòjT–Mè¦9®ËñE±LÚ`yÍÎÙy¾Ø¼vI‡_ŠzyÇÍ6¿h ŸIVÄÐP?ߨŒwòŽBp‘‹ª HÓrZ°éÍä¼XTåUHHjÒ6…—Ú8úø¦b°?nfuqq>nr•ŠIÙV_Ñå.µqõnÓÍäYf‹"„ÛoÙ7ö¯bÑZÁÏkM”RÛ jêæ6¥JÐ8­-7™4ËMwÏâî‚Ó#~gîë¶(B'ÃQü !ŒL)#^IRr²°&Í`Å)eƒËýJ‹yí`õž V¸ƒUv¨UÿW}Ãèf+¨V‹i ÓM¼Œ&±«¢=€Ì4MÎö[«CÓVxr8t{‰ÿÝö”ò>;×C‹&z)YÃxxP¡Zk¸ji ÿì®F9xv?—ǤN“ËÃSWGjWhKá–ë]hZPb><…·ØÊ¤²Ö¹x@™\XéÝJ(Èü!„Z'ÅhÑÞˉ <-)÷M†å1çÛÁÜ“ k™ýDJ¼ºšgµØ‹[|ÙÅh“McGùNêƒNãMCœéÔ f1'cÔR&a9üIý 2AÕ¥´¥q)E=Å!Dú^Ð (àÌAmS|qNAÞ,?¹çÁ!P—OË&)d¿øS_W†åQ)i[`–jÌ^< ¹ëZ|'oèãûןþö¢-êr”wcÈf³Ñî©êºgz¸»mײèdZ¸êÅ`iŒš,]ÚS¶Ã·ÿ¼1«,Dôt[´!¦Ö”¢c:jÊuŸìIÚh÷½µûâ–Ǩƒ¾t_„ý´r ¡¤kY¶z.kåhó:QgÅ{QçpÚq­žÁ¡z½t¥~[î ÅÙúVŠÖ—™´ ï33[m¤ F[§åè¦,2ÀÛ+þ$dè‘PZãæ<`×Ü¥=Åô:kÉ xÑ;£ÞÖ­2=îKdÚ‰W:ö=Ùn UüZ(,;ä:èíš53b'a£?ºq'·u¨éŽ ÃqyyY,(ѵIZO“ˆ^³y¯eÑï©òçYnù¡ªa†=]IH4Lš]\I³©+¡=xÍæ¼ÄM¦7 m†Ÿ—aówذEm† &ü¼*“f‡ ¸!\æ°¶“hö%Í:9iÅf9ú@ï@²\^ªCDì‰Î»SÔ¯¾|SÙ¾$¬ŒøN‡i> stream xœÝ[msÛ6þ~¿‚Ÿ:ít‚÷×›¶7IZ§éÅm*÷½“é°2có*S®$'éýú{eêÍ¡l9¹éxd$ˆ],»Ï.@d! T¡¤ÃU:*\MaÓÕÁÐs<³*¢àñ‹ÿB¡TLµB9/  ¨É( ÝA¯Ñãõˆn¥¤G¦ÐZl¡E¯ÑÚ ‚éHwBa´FÏ1¢`m¡„(ŒqT…qèY …‚e¼i¼¦G¦0!Ð#[XΔp…UÆ à K£R l­¦G±°cTR6h¼DÁbRaäôºÔ…“=KS8 ¶p&¶’r‰ºô…ó$ /4¨c^AJ‰ÂMB’…w=+…‚§;ºÀKSa¨1Äœ©\tzËCð¶R¡¾v…A-Ѝˆ~Ñx‡‚B¢UZÑ94Ö¦ˆAÒ#[H!HdÚQ‰¸&ÙŠ4 $…ÖÔ“#,‰„¦[xô¤À™TÃ@dŸÁLI0HVJ ®d#¥ñ`Ö€†t2 != €T‚Úä 4JèUYÐÀ@À tº4”ÃÔ( Ê[p 5* zê¨D#² ¡4I¡X!IZÐÐó¢ r©-i í1ŸÊ†¨+БFÒ]Ð0¤è m%4Ú†1˜xh6•Ò a¬‘ÿøä“‚?lšéb^üšôE£¤%íÕæ«ËWŸ¯!]_üñ´YT ÞÖQ¦{ü¸:­ËGÓ7èOàÏFËhÚdÐ ¼ñ¼œá…¢¥ÀGÕ|z5Wó‚8ùâÍâÉÉ¢\TIÓRƒ#Hê–jÏgÓñIµ@ßüùçGÿ®z³@§Ÿ}†â_—õ~V¡º6.ˆa“_uP~µíó«ÝøµíàIÚ«ÎW³eú ã°+ã°wGlùv"_ó¸\;.2žíµm§¥ÈW™¯¹Ü6æãÖY¥Ûqko1îGå¼J¯óož=9úêèãgÇ£éEÙÄ£êìjRÎ@°OOëæ,­Ï–^=›/Ÿã!4>Qÿ¼šgõåb:K®*µzVv`•øÉÕï‹Dx+-éëÓÅ9 ߦEüö?#Úý)ÐÓ°Š*Ñ¥ºŸÈu±¬µm®ÿÈ>ve—Ê×wœ!£®z­-žù•;«‰.ÚØÅîª;~È·’ÕE)@Oén÷”F§ ïI#KOÐ’èÙü"™¿ãIèÅr¡ÎÇ´4<<\^~YÕgç]ÊFŠÿ!Èø—ü?æ'ü;^òßù˜§“iƒÿ%?寚Ór~Î_ò—õ«ŠŸñs~þ×åyÕðšÿÁ'ü‚7|Ê¡øÕ¬š×s>m*~É/iaNª—‹¶4#âü²šÕÓS>ãs>¯^¡‡_¼žò+þŠ¿æoø_ü¿ÕlúQÁi‘ïÈó£Iy6ÇOkàQg Ò³F#zÑ><ª'Áž•ûº¼¨nX²Oå¤?lÎ&ÞáÇõ|Žœ–twNÕÅä¨û ±·ˆ7­ÃÑÓŸŸ?©ãi3Ýf°ˆ›‡Í¼¾¾qm%€r6­D¶]K+!É– ³Ê®kî ù‰^Il¹sk ]ééf¶·Ûývûd]ÿ\IOÿÛêRÿK^^@+çesÊËEOý“âÿyUN:½ Ï’”¿Î:ßÔPôi§î­fÿyUÍ5^¿Vñyý†Ï'´€ ì糪Ê*Õœ‚îx:«’öoÑ}:Ýjî+ÿ×>µpd4ž5íwÚ¿C%*?àòvÝç?e¡ØÜ,õQ‚؉ƒîpva²ËIã€ugDˆWue Ú® ¡Ù¼FˆÐ”èÊŠbƒ®b(<È•@qAìóðh:ƒ´3ˆHæâqªÈ¶‚1 йëŸ~þaCtÏ䘲n®&j9ªÆÔ3–â+Å´Na³ˆâèJ1΋Þ}V7tLàéÞ˜Rž ŠÈ:¦¬`°}˜z˜ ÓIÁ¿=]6“N··><_,.çÿäüñèá×lôàr6ýȳéì –~üÓ§g³úàkV~”°ÔîqÊ÷ÚD)¶ -·:‚zˆ±YßJÔ„ ‰"”d€¯k5B3GAWf A2‹)mðyÂ]æ%KN³HÑï^,-Õñ7O¿zòÃÇ_V“WÕ¢—M'§+@Ök@¶³E}ýº‹‚e梔»ù”†ð” qƒ~»úrRî|¶“~êþÓÛýkÛý:þé Ýý–žÆjO¡z{Ç£ÝDSq¢¥êÒEeX–o2ȵyó:² 68RX 6F{Ç"ùsE»)!0'òt³¾bÈ(‰¾Í¨ -znxœ±¡ð9ãùVÁAÙ™€2R2Do´Å"Ä\*,B7Ñ/íÊöNå •ížrö­Í0¾â»ôm|׭׉‘ @Éuk´P[8Fy$…æ&_ÌÅ=/Ý,)˜M»NKA'Tg–n\ºÑ3h{Í'Ϻ®ƒÁ¦ W3Åj”Â,í‚0‹x¸¨AåëׯY39+YSW„EËñù¼jØ)Àìt|È'€¾ìòüò_Mùª>+©‡ßêÓOµóQ~PÎ''ÝÚí>øír~Q6§Ÿ*±O(j ƒÈ'ªd®,Fœ¶{…aööo8â 0Ç´Å‹ëÂJË„—Ýø÷Œ)Ÿ|ñýèÛ»\«Û3𾫏^uvy^R{PtÙEbIAgW’‚©ºŒ¸(xBDÔ‹~Dú8Dsa- «¨Cêc%ò1}¼ÞF>;E30G¥wú •N.kíy¶F[ç¡ó´grˆ7²¡è½ÝÁÃýùÙÛÞ¬ÿÎØÂ4J£˜õ°u€sèŠ?¸J¢d_Ç“Wh%ßOš¬þºƒò˜R'"0?Lš!`Å@gph¦4˜"4´d*Æödji¿¾=þ÷OßtÙr)´ks ù"C²a¾66pgÇ®·[¶m¼ôïݼ1³¾¡"6¶ZÄ–{ëå +J©˜žMÕÞÖâük~ÂÛMÄ6SE;…—|Îüõ°­Ñ>tF§î× ¬Z7°»æn }…ù{ÛN‡ö›óËñN~&ªåâ¼%µ¯Û“ró|€êRÿ=űƒŸNûò]u}ꌑý©k«×&©?At.OÔ@h}’¨MQ¦\Ÿ$½>I7‹k¨+Œoß”’·ó‹t:‰Nµu5N´eO&Џ,ÎÃù¿÷twë ¾;ó”,¦@äHY¸¿a1áK=Á íµø,5ˆ?t´…â·6Ô+)¼Ï;Õ;{;ÝväÄËÚC#ŠpKÅZÌê¤WLtYûeéEo9˜u3J™áé÷M Ú4/¥Û-«a½Dü¾ ÒW Z¦tŠqôÎa‡+t ¿îÎåÙBá%<¦¡m ŒÖ’©¡¹¢Þ9¼œ6Õù\˜ùšÏ…™|ÞÍä4„Éi“Ó&§_MÛÏj:" å@éˆnbó9¸,°w“ŽØ1ZGæ°–sá(_§ö›Œ[3¥bt.w)GÐT/™"¦1oï•)ceÊ/™ò–y,Î÷+) SJÉ‚àÀœ…äÀ$û îï’”¦Ü¯¹fÊ„9S›¥9MJâèµRtJ,$¡õtÖ¼4ñ¶åèml‘“rxêÒ±hUJãG:>¯0ÁóDÙýK˜B:+~wŽn=st¾ÄÐÉD ÒÅt@A»ôù C³ÑƒaCwb÷ÝÃw_°a%‹BîNuÇ>þ¯på{CGŒŒÜˆÄsEÁ ;úÐÁú¤Çú=›À,I%µñš§`Ò:º3K˨ûFà­Ðh¤–‘¦;,Û’i¥+w§]Ì›"‚Y Š…k†¢H~t/†î’z\M6® è!Ëâ†XôµÙÀ;Å|:žà(3E[±”)õ¤uCw®?´Øˆý!±½C£…î:? ¾µB×`Ó7̆—ñtÈ ¾Zø;¾»5OZÂÓa‰’>„qqôýñN9ÙÛóÈ+ëkž€í< Þ=ðDŸ¢ Ó~J] ú€vFÈX2¾’¾£d>œ»kýw›FqгUºs¬­þwŸ§Ý‹þ=4Aç_aT3Ly@|’,½O§zgµoÈ?~^¿|YA>$_Ó'Jí·ÔyÛÛ²mîpõ BReËËöæ{ÑÇ`ÛcŒ!ÿ?¶Êûendstream endobj 269 0 obj << /Type /ObjStm /Length 3000 /Filter /FlateDecode /N 88 /First 803 >> stream xœÅZisÛFý¾¿b>&µe`î#•M­lÅ9|$¡’Mv·ü¦ ŠTPŽ¿¯ €”A‹£Š1Óozzº_÷@:Î8“N0Á®’IëqULYƒ«fÚY\ 3®–9!puÌ+êïñ^l&„FÃs&^—CjËK&¬ph(&œÖhh&| >Á5dzŒGh ŸR¸óxSÓïôÔ*¼'Æ‚¢$SqÇ””è4S  d0L‰q€ZYG¯;¦¼¤×=S!Ž˜¯rδTÅÓ³P\2ÆàŠNÚàšz¬8T¡$GÃ2c,r‡†X˜±ŽÆ  Ypè Ò”f…D!™%u+¡˜Õ²„f¯¡a˜uŠ:[fT® 5Gƒ)á™3š hP pNPC ¡$)€9oÑ“ôc(©fL?æµf`ò–€I, #`Ò3Ô8¬A)ŽÔ¯ â âÉAPJ± -^Ê`I?ʰà,ôƒ5ƒR%©&Á õ&ãàŽºÃ:¸ÀÚ*€€ÁÐ$5™œ&µÁ·«4,„;Ø’‚™ Ek¦ ™&i óø~… A†ª´'»Ô,Ð8Âô3!0²&$7dŠZ´¤2¤$¹xŽ–¦~!I;Ê@†ÔBýíóÏYzž—û/óØ+3–þòïÿ0/ˆ±ÂXâ@b¬Ô‰ òÄîÁ!pËÃcÄOЉ"=Ò‰–‰£ÑN&Ø4\˜ÇÒðØqö$ ´Dtæz ¥|*PÖ#Fï0ž˜H¬“~d¤Lkoâ.§€mH8 .㈫sí8 e‰õµ––N!Õ¤x"ì@iì5²¯“‚Ò:$4¸0†²Ž'%Œ\ˆ(ç#ëjAuuJPž'Oj— ›#žÕs£@ÆpL‚Ü&²¢” X½§e1ö‘I ͘ (dÃð›æ´ $· eÒ(lFÁõÚãÌ%4åL ùs‚äü¤˜ˆ¨[r-&Fp=í!Iªë‘ ´ƒ»±EÁ)9Ê”_BÇ%™»X':‹,ï‚¥?;é:Äì¥~ôÉmV,ªÕgeþ>¹ÍÿÌ×ÿ¼Ê#>¤f1°2ç ÛJ@ÊjĦ¦ú­¬Ì#ñLß~ÿÝ«óŸþþúÍE¶,óY~ ¸S]ÎW—DªÓŸ‹åÙ²,6bÒüâ½à6#…²çëâ®Z­cq¨Ë¥»N"Â"ZH5‚Ÿ‹Ëê†Xºq¼Õd9”Æ“¾Èî¾Î‹ë›ö£Gþ$}:öäo‘]—àsÆúzðçšn¹o¿«yY,r°.!6$ümv›ï×Ç7U¶(ægËkeˆzS”%”±ÇAzQå·ÿb¡7¹-½Œ?{uvöÝW4[ÝfËð¬0QñX硪ÁõOŸiš71«ìÿ™˜£íû3’v–ŽEú—jpô¼½"hƨ{R¡P±Œ«‰ù•…e ×Ûq³½Þõm·Þߦi–ÎÓ<½J‹t‘.ÓUºNË´JïÓß·lᙤ÷jsJÞ¶‡g€»80#10Š­Ì¬6Š}k5Ñ(·{¬"ý¥™((öØD^½ýáùù9ľɪ›‹?o߯¥Ý±E©øÖä;­¨ö¡ö¡¦îKFë¤moêÛn !_寷À½k‹êÑö4dv´j¸PÉÄAÖ÷à.Qí´ÞNÝDßD“O}S˜KãÍ U|Û¶ŽòæÆ²Ð¾n< íÛ–³ÖcÎ,ÕZÛ¶FjÛmÛ6‰nÚ’Ûñ% ¢½¡"p ƒboEÇs‡V69´5¢Y¬ÃËþœGZÀ¡Û7Õš•Ý~ä`Åôq}Ó!´{>N† ˜«¥#ƒ:°*‘<èêý1y†´Ãb$Ì-±bL\ƒ˜" ±.WÂ$ rnû(LN;(ƒµ ë…|ÍÒá‚„ž°1O“v`ñ¸Ú…|͓Ŕö#PBš^żå^ô3’ÃlÈs‘ëÆÊq¯pÜœq:¦X܇Ói0ièËÇÅ<Ss¾ûñ—/¸hC;j>Ž; âÀ´À£átéÿI€ËÝ& ñ¶ >wTì\äWUÝZSŸ7€'x€*Æß•3qØA8ÒÃp´W[‘ÙG Fëòí«¯Ï_¿m_=ú®Å¡Ó·bÇš¸!W$Â4 Äà Ïk6Ö?ÄO÷§¹>0§¯Ìnß_féò>½»)ú¬Rïc0ñ7«Ý®£-FwVóðZNÍ4ÜÁæèMÇÕ¢=„˜ÑI‹êèg©Ž€ôÈËbþqö :´X¤ £dq 4=6tPè§Ï&Ñ!à¿}S¡Â‚ÂůIè“i†ÍA`sð§dsUÍU7×æÈ«YâþQV£À#e©ÖçÄ£,Õ~r”µ™—læ#ü²9²“Í‘ô;æãŽ:zóá3Ÿ‚nªê®ü,M_ÌÎÞ&³gwëÕÿ`%Éj}°5ÿCýã*[Þ-VÕ!µ!aBBæ4F”€>Q9ÄÂ>šžÈHÐÌ®¢¨£¯PjLÜ[ÐG2'Ťt¢Â“ñààGÑÓ‡ó‚rJ0¸·nœÑ^e¡/1±&z˜ÏßÎU'øÎƒÖ¢Ý4[kaœKüˆæÓ¼-·ôñVÊ1 z/Á¥†Ùè£æC“1ii“ø)^‹ ¹}úñ`šNóu }1'¤Œåßö¼ŠNBÈ¡ŸÔ0q¤œƒ«Óæhf·PØpŠ ä5ÚÝ£ïXl@Z¯ÆVna9]Ц\بkjŠö>÷Q¬©+.VœQ†MrxÂÁn•5‰¦`å]BGAðØô¹ÎiN±ÇLpñ+òÞpFtÆâ’ãn±-‹Ý`  ÚÓpé¶?L4ô1ö„‰­ï4;s&úZ¾GÒ7¤p£Øp&†Û'6è½)ɾºéãj¥]hÜÀ¸¶$<ÜJР â³SÝ_l|û0yøè:LŠ|*6íÓ€RTÄ"w©52šN–`uô!‚H‚ x 6;õ¤öØ ¤…†è÷T‘·êYÃÍÍž#qÉšïW§¦äx)v·€O†;’O¤U ­ÒiöÒc\è@µ¤ç¤ ÒcD}Šï=B戀6‘~P`>/®šéc‰€õI㵊»>fT*“Ö•?„5–.ï)_  àîñÿŒ’îÌendstream endobj 358 0 obj << /Filter /FlateDecode /Length 5541 >> stream xœ­\KGr6àÛœ¬ƒì‹a4öTíe—óý°†e@^j-»â~>gš3µêžâvÕp4þ½þ >ùàˆÈ̪Ìêêž¡H º«3##ãùEFÖüiÅj¾bø_üÿÕþâï~TzuÓ_ÈÚ»ÕÃ[ýöÂq¶²V°ÚèÕþB gk«Ç'»‹W0‚Ãp·²RûZ{5>±ÜÕÆÐ(¶º¹øÓ§WñWûÕ?^â¢fåjoŒZ]¾»Ìð•óµòʯ¬µa~u¹¿x]]Þ¶ýz#•¬wU{·?Ùj8të ~aÒV×÷WÚ \;YµÝNð]WC§3^õí6ÃÇzι¬öë |–^Z_½‚¶öÖûª;4»õ]þyu9¯š×J*à÷òú¢º½½UëË?Î7$@Œ‹0è5,Ájf™õÒU‘gQ]ow´/”[Õ†!Rsc«÷»m>c [vÀ= ¾9l^øêzÚS;îÜn#ÓšåLsQsÐN`úÇŽ%%¼M¿o®HÎBØê§æf$*²)RÕŽÛq“ýýáC`ÔòjÛîvÍÝUšW,¥<îÔ¥yA»À¾7ÕÛ¦ß^‡¯Œé*h1ì²!RÐRí…^m8( ,/p{ÿv×^¡fï&‰ŽR1¹TTƈU`ד–~×Ýî@éi,UÕ½ÃÏŽ>¿šdϸ–‡öj­q°”|Ê«îÝðÐÂo0rQ\¨Ú§u«/Qß^^üá"x¦^>Òm„×µ´r›A%¯ùaûˆÊð`†Õöð"9®^nw×/’ˆEÕÜ%KâÕËÿ½Ý†#;ɇôªVÀÀÄGõ¦úäÝIÀ 0Q „ŒîGTÜÔàÒ¹´^LæÕöjÃE¿YOFøe2/_=Ü‚  ¹ ©«[^˜r²¹0`©¼4ØþþæfÛ£­sQ¶ï¶‡-ºL$QìÝô9hÓqL÷驯îûmäÈÛÌÊË€%!¢©dmç›|ò‰p„d5Œ.‡â±E$Ê>ÄÇVAø£ÉÊTi"lþaâxwø©žLr¦Ü3æ™ñI–g(_Imk“§«ð?eÚ¬¸­×…yp˜ç˜ZÏj%,Ü$5íò9RC.Ðcùj½ÑŒUßÞ]o÷íÕfû¾¥°O5Þ«j©3ÿÛ»Ú+"オ»@Œ¢ÎÃj[Š2DÆUWÝýÝZòjÀGàÚý6ýhªu¥¼‘Z‚ç·Ûì{Œ°XGß°… ÈÓ8H¶ékÉ’…¾ÚB,Æ™°!)¬ÑÜ¥5ª0e2c¥‡·d0Úòèñ¤»PãE0c¦¶Ä/e­'ñÿù³œÝˆúó='j©aW†Ã>µ þþOkäC{ÑŽ;ã «âgi9ßÀ¿?08ðïéùæ›]œãA\®úƒß”ÞŠa‡Í¿Þe¿µ!Wr¡«‚ƒCßÿ3Á%œW9P^Å|›-vØkß æ«mþåÿò@¡­¨ÞÀcøŒÙ›õ’­p¦ê‚)Ì'†¾ßvw·Íá:Z¤[L1q~©“ €LÁÑÖpK:ÌbÑ^AÔ8'–ð‹ñZ6ÀÄcò ª„¸ôŸ÷ ÊSà%™ò7¥Ö‚¿g,Eû†ÙBU@ ‰4ÛÑE–)¶èj+…ãÅ_eœ!EÎ0DƒØýSnaÝn·J=²Öœ0÷89!FFhZQdã·sa2`,#Lá–€»´+­eí¼¡[~ó¶ ànŠŒ ‡iÚ†kSKƒ8ÍÕÊÚ ‡Ë°KÍkcÈB–l'\õa­5ê×TM»kÞ†]L2U»Ãݡ̘"åÓN]Ð>f#FÛwŽc!¼¹š?E4§yrS"_ÌD3Æ¥äèôÇcšÝp;­œ“j†&²œFß ¿$ºÂu l¤‘|”‚&??¹ø!|3ðƒ’UôdO©€2«Ç"!¿ÇšÆ`ÃCMÊ»ÏV)D5Ü#صÄpØFÒÖF‰£_Í$»ß°Ã1_QÌ"ã©þÁ9¶›/x—CÉY ’˵ÑV¡»+WÈÀG ¦Sj§ßæ´zš]ȳ ì€*0ÚT#ýjWÈöŸCÄBqtø9;̃ôt_¨ìjAMsžF##jj×XRsüÖqMʽ°>l•²B9¨n‡öª4Ô8´½'ë?mø»>Œ<²Ü$†ôŸÙ ïÿi n Ñ ú¸ý÷—ûºz—Ñë ZBµýûÂyBe~ÞxU˜ ^æñÐ’c"qeËíå µ'…ÀÌg¦à¹Tæ[ñLQ5HËáæR°;&Ó†ÉÂ¥ÕFÿq! Â§±6Ï·RT±¡LŸÌw,Ø'°ˆuY½žï"æÝX¸çV幉”V O´J«»‹:Тt»ÒªJG¾!Ç)ª|À¢°‰Y¡ .ˆ×v9ûñ€ëŽ]áýƼqdì4ÁÇ,‚Õ px³Þ`LA׺9ÐqÀf]νɊ çÍhA“ï7Bmx¨%‘2d”6†"€29 ŘôÁ|`„J&;ã)Á¨( 0 sƒEl(«!Õ¥NBȇr „‰zÄ…z†a¡Yò »’³¤T¦†Ãõúh>il€cT5¡×XM%Rá6m?ÉöC{swÊ%‡a1a1Xõ}–n· ó4! àc̤ü<.#<¦ÂY>ov=r'œ§H†V„Íá0Š£ÙìæÊ ®VXdœQ<”sÄ®ÊÄ1•+!ÚDæð¨ì]ääZÊ¿L¹‚S™-èˤÜöyùÀZ†Z‚Tfz8åáÇAvúº™ÅiŽö¶þD”¦õU‚0>ßÅ.À‘1z#@OÂâ”ÆBõ3l#ʮРú5_¡Ûk7ZæË<†°gý 'áûc„Ï!ó¿,¥Ÿ gn.²«¸­•(þÈÓÍe²‚×›‚,”Øê¹' P3É’*Ñ}*F­e–uºtÞ™A¾Y×ñüq«r³Ì¼@3xÊî) ŸNÍ#²¡¿…Pþ¦úúÀ¯Þ¬ÜÀA]™|`+…ÁCm€ø‘Ž´÷Æbz±êæd°*- ¦0œ32€~8Q@ž®¢HˆDIPå¿$@JÖû'|_ÖZê>/èô/ÐÝ1ÞÉ3…ÊîþDÌ>J(D®Ó#>‡ ô¸´‹tbi(À–Œôç0]ˆÈ3À’scv+iwy ¹‰ÕDø(-™zByÅyB8j`ȦEñçÙyAªÚb¢Áú0ÛþÛÚ!(Ñ3E†ÿ:ÇÓX±Ñ3g gÃ3M†d~tZ@Ïççmç`'”ìbªcç Á¹âi64¯;òχ.V!ÊÈ^.Ôs Êǃì“Çè?Òâ‹ç?ÏëÄ,ù·ï2;x æy’jF(»ÎU(é$I$èàÝ*í³³?íÐBn"ÃP šÈB Ú¢8kví—hÛÍò´¸æ¤€û6%V†«],fHÆ6TÂêÛ ºGÛñ¬dĘ t¡ € X'ñ,”1Gü´Ã3=€˜K¸5(±Ä­’’&Un OÍoúr÷a æ†3õ×Ù\Xì˜VÔÿ–ø²Vâ |vH5"ÜQd ½’š©]†{róÈÍq $Š4vç¡£ˆL¡TiVºÌà­„˜ÿ-AiI°OkÎ+µ›åy80 ò4t.õ}·N©îabÆÃC¥™§ÿæç.fL@Ù{Ø/&@nd ¿- î›0Ó0™frOÐEJEŒ ÿˆ:fQËŠsw°naå <Ò©‹=´^ÿÛÇ`IÒAyùÐQs$*«ë~ñ_éZ1í¯ÐÅéT ;ç¢Sw‚ ô“JE~­¥ê!vSèˆÎil†?ôéP¿1 tWù"]ÞÖ%½4`“”Ý©b”e/ ï,t£BŸeªÁhΦ ð>ï8,£BæB¸] §ÍÒ¢aƘYè§›´È-ÅïNÍ~$Œ䔹dú(>ˆ'ùúm_j¬OJ‚ ú‹öÁL²‘²7×íº›`¸ GÃ}›;4ùFCÖ”àXy÷§Rlu1[pxH‰|‚,Á¢Jóê‰ÊTñhÑ»ÆëFûöæå¢Z—#iŒŸGñÛÙ~º[qUKLÑ9€À¸YIøM±Ø€å5µÊÅfD>×bÜa<–ç*¯v±ÍY•zÜx?ü3ušbuPŒI—ŒJX]D ¯Z+QxÔã7xÄ®žl-´TŸhôŽ®¾>éZÜ1 d€A4؇2XT¹¹ïè,ÃŒøUÑ¥*‘ŸcÇ.íÖîîã*oŸçÀq!@À¹“béžËò䋎=™dïÅ“žDd—&ø$ ·/=†˜5ÊPÏxÍ] õÕ±*»–Õflç‚9¿4°–Œ ’›ÄË ÙÈT¢Féwû= ;Ûà*%«ûÌrKkO0O©Ò'æÛ%–ðœQ9•RÙoÌ{J|‘$ðÅ¡þHã¿^o¸1T?}…èýjö4|üzðÝbZ…0‘{¼b”ë6ßù¡-®4€’]yLw3³Ã«hÒ±ÙË/ˆ. ŠPÉG¡-ê‘dÀü‘ÐøY¡ùOÚå²ÐL­Ç’Nƒe7è&,dÏ23D9)ÈÊ]é3×q Ð\„ÏÇ=É[¸cÈíx%,‚Öxäô²»\5e‹7)ò°¶ÍS|†æÚ”¨&ìBÕË.w°}1,ûüÜc¿¥ûCÁŒ-˜_vä·DR×B SÐd«?á–@lõ9É×Ý\„tîy¹‹:ú>€{º­`È¢è)d½Ý؉6Ý.e¢úyXÈ'¡çh…iq*€è³Ä3;â•ËêDÎ †¹DPn#xLÓ¹ 4Ñô âÒG5~³—¼z&ô߇âxjŠ„Mh#™ZöŒðåŤƒ¹É'¡]€©¡^ë#‚TÅ%§ê§PêÇ;6(TËÑÀÜóîö.oVY@J²4Ú¯?Ý”õ57vQ†Àu)ä?1Náè¼1Œ4Ëô:6,žSí®ãE…¥%çŸ"t´ð+¡1(ÙÏ%.uÍ1ªNd§]‡Û%»PvÁÃqwîØ Ãˆ]riƒûŸ²Dø€Ë?÷þñìÊJ]îÿ‡Â¥c{Ž RŒP ^¤r䃹5¨O‘†”¶Æ+PÛØ?¸* #—ž à.*»}¸Ç•Nwc"¼;Kã}®0;Ï„ÝÎû.4¯ù(,±ñ6Bíxb¯M­Ty•±ï6ÚnvåmØëp™ /+d­ÎLL mT`§ 3(ÇüÁ¾ˆD½›ê¥Ï×)RSÒô}¾ÿýQýCgê@3 ô0Œ(”ÅÅ©×ÎäÚD0Ùtw‘Sæ©p«+ì«Ë úÂ8PéÑÅZ]͵׿X® ¨º±Ÿ|ª¬0ù̲¶n˲¦VŸ¶7J‚D™çZÒ˜,‚Ê· *Ç{Ο¨dí¬x×7øW‹¥s”gŸÜÔ»lAò׋û i_.›.‘zæ>¬+¥wÒÄŒâ×i#ù[ @ѯÉUi™R¹ “ä{|I¶æÚý±Âø›EÎO˜‘Í{Ì$&WtBacçõßZóeÓP'cô‡XÌ¥§YÕd"kçäÈ¥Y ‹¿ýfy™/N1J1@¹ÄñlŽ‹ZIKuË1)[;x¦Èk`y£%Èv1XBòtR<ÏFf‰c î 䉯‡”ïJƒqB:ù„ÁLX4Î ASðø¦âá~ÄFa¢‡]#¢°< „…eŠñjLjo¡1¡ÊŠîJ¶}*¥ô|XÚ†tm¨Ìj‡¦ŒŸÃ š-ÆP…ÅEº±ZÔ-gFÌ}ÉZ³ªÖߟHlSÈ|]±¸edˆ5–Á;äqÃv‱‹°Ù€w´Žz:ƒ"e¼6HÝa}Ë>BF;­iéNb‘Z®dÍ!B|˜™J_5’ËQMŽÙ S.Æ„ç&HжýÊ› …E‰úÜa©JódÀö¦s^Àð‹“¨*½ß™'så£ÝÅÀ÷kl¾PÔ„/CÊûâó&át‡a~R&$eqÂØD*¼,Ë¢g—†˜8œÅ‹O5 vMÑQ7‰ÓÇ! ÓÍ|íSH.K†ö4‚{z“ëÜ ²áþ—û·©›ó1Ž õ}O?[¡«®íûï%½UAÞ|Ȫ‚Yq,èZúÃmØ.cN€QQÓ^bó›sÂË*Õ’Ïbý¡T@Ÿ+üTè§…é¯WP÷H$7¶öí°è4B‹í'q볜& üâd^^ŠfÙ±DºDªÒY,™€¨pþ8ŠÁŽvÍ!öÁ I tëw¼Ÿ?öMi ¸ØÔ êâ¥M‹÷ÖqÜA§¤Kô¨¬tÓÛógvHûÔ³.ùK'!Ü8Ô)ýf—_‡‡ö®Ú}~¶¯Œ—`Ï…Η ¼qê|ÉWßýxjEœò„ð_ÄL„F4KDGªñY”+ê bzƒŽ!ÔŸç žKé°ÞÑÖáqþ)ÝŒp2'›){ugž Kêö©§å¼×GÙp]5×'‚@;¤·¡Ù¬“Aæ<]ŽÏbÑÔìî"u63çç_ Š;>=õé*&|‰æý”ÎÝ›YÓÝjÕKoé­ß2L¦Wý   3ú›<^ñ<¹díüz½1”¦7†Æ°ˆ¼Ûº3`y+ª¸ cE 8s¥´DËOOÎ݈Á¦a¬-.è{ ÁcÏæs=ý…ƒùßÉ©%÷Ý@}ÍœöMø«.„î‡Ûð*¥œþX }Æ¿F! ²W}(ãàßòYuw×ø7F¾Êœù:÷gYÜÒaø6¡\y ôW#`ýöm½ß>nÿ𮹯¯·£ þáâÿðð_‹endstream endobj 359 0 obj << /Filter /FlateDecode /Length 6456 >> stream xœÅ\K“ÇqÖöÁ>(|Ð#&tê•1í®wt„DKMQ–(D8 ×¢‰™°gpùË}tfVUOguõî‚»–ÌÎT×+ß™_ö7›®›ÿ¥ÿŸïýÛ—Úl.ºÍå£o úu“þ{¾ßüæ Œ°¾iCĿɫGñQ±ñbãŒkƒ2›'ûG¼xò5ŒÂÎ×jcð‘'/=m~{ѵÑ^†Ð\Í>¿ Ïʉ.4//¶øGPñÍ~xÿôÂ[ßl_ÎÿzKO™ ½o†ÊñšB)ÕvN6ûÃÅV¦½±µEã¼»ájöÓezZ4‡WñcТéGöH¿ÃŸd‚mØŽßΦºº¾íTPÍ ‡k˜T6§aÿ2-¡UsŒÓZi­tÍ8°?ÿóä?ÙæKÞ*ÓzkãUïóþœ¶ªé¯` mZØÞpŒ;¡šùæŽó?úÝî‡YÚâtkÚÜpkŒp/ðiݸ緳'ÆÃÛ8•v¶9Œ§ápÅVMkv¶9ÒŽ½I»‡ÙtsøÉ‘­zÊ»4‘<ø„²|gßáš¾WžÿÀ(ub?½ÈsÝœ™2ŽQIl:¹–& qzçw2ø®ó›­h­~¥Ã)Žäd¶­V¡é:|Ú´[íaLh>ËÖÀ'ó+ïOÃt¯pKýü·ùç]µÄký–ŽŸ“v¨Z£ƒŒëN„ÓÒuºA– @¸ ¢~6¦9½žÉ82y€ó:×ì/‚¶Œw§áÝ…Aê ò5ô§9G%Î÷LI ïÓý¾~ýZ×.Ö’“tÐÝT@Úl¢çU3\¥Ï ©épña*|@8v©}b= ¬Ëåp“ ‘l¦—qTVÿô->”sjær2œþ¹ÊoÂu­Îì6ÔîøÕÚnº ®Ä^­ÝÆ8ÑWG¹ÌW“?ªæ’)ªÃåÈøŒ]ÕóBqF6’X)›y_Ûß%2hJÌE*mn@Ò÷¶yORÙiR¨“;œ_6×ogOämDu•ôNá5W‹Ó,ÍW™RѰäL`77ö\­œ7-I2Ÿ¡ùê"MS/X€&ÖMÒ–ŒÏü>™Øô³%@øwû~>бWÄBV* ™µ‘é¾|펧ɫJÍÊÖzq—¹V‘VK\F¨²àµ9Ÿ/Å3ñw "9üYzjf.Èž@aš. Žiž”Û1¨ÀÄ<›±É‘Yµ”¡«mú³ ¤ÛùfGÐd@·IXœ–A’È>(ÛJJÔ‘j~L|t© ~žöjKã´Oìb,X뵉¸‚» †›ŒÝp:柸“ð6}­òΣA-’NÀ¡Æ›? î¹?sÄ{‚Iœ*SöΞù {„ËÖ´¨²¶¡eÛǤXÀAýã'¿,ÕÉÛ™“Q@›ôb!h‘ÂLad™#ýœíÀÙª?æqpø÷Ó2“¨Z¹&ªp{²*ª"øÖ› ‚jÁ‰÷“ƒþ8-|Ö¯Yãù 7Dl?ÃåëȶyvV[ã\Êð–Q9ƒë/¼K1)oª”Ÿœ5X_[ W‰Ü‰²`xtÓÖ€S—,T:(ؑ縀ùÎ$4I…'{wØG«$;ÐuÂVéP’ø¬_F8E  FFâK®-êþ¢U¨B¢××5z™V'B¦ú"`pò_ï¢Se'7©,0mñ®18‘)‹¬õ óøO ÍÿÛ'þü(Æ‹f3~h|(Áa7jôj•T# 'LІU€ûAL%ÁEø®¾fÜF€ó…¾>3ð@›ó.€v(bÓüèœãùûÝár›Úø+“‘~ŒœLE×ËÍçÜa£¿Xu¥@çS<Û%cf Bw»üCpYÉá°µ\ç~¸};~™\ð àaÕ…x6¸˜ ù~OŠN[GÕ—yNƒg@ŸêùyâSm æã1%Ñ*¥zjñb|ø8-.y¤(FÌò<BÎ6­t ‘cJ K&ôµ²ÏSfýXJ(—\a(ˆyª„I úõ¢[ìtþgG½IjWa£0sf•³ž­ÔNy <ú˜ÅUp}á1¾2N!1·Ë§n/ÛôúxHóˆ"›Í H§o åˆ÷d|½vÌ‚‡¼>µÊr¬¾{<Ÿóþ¨Ë&Ùá·½]æšic¶Xb¥VìqˆWj:‰ŠÔe÷.½ Ìjrþî—š«Nvc:K1åÒ~ÏWýžmòSˆAP>êOS~…åúwiòL™;Ž'Ÿ–ˆ–l—- ;!æûàì`°ày~"Ò˯ eÿ£?õi=¯›‰Fq)Z­>Ÿo½À-Ïû™Ò˜‚|Þ2ÛéÛI΀§c)Ç4 -î’ñ#kÇ´5øLx<™w<Í«óê`I¥T²ÖTãEÌ Š9:ñ ×éÛ 8³FÅ)0¯ *ÕnKîÏT²‡ÿ¡…08 ¤Ëè8æa 1,;oàî!(0‘?åÕ’]¬–XÅÕê+^af*Y‹XÌXÈÑù< ¬Í_f³¾ÿ÷]œy}Q™Û°§†=góUJÏK"o¿BºÈ˜º£{áõ”OÅ·È–§ÝÀ˜ëÙr/Ûm•'˜j}M"¬j½Ò9´I6k4Y!Paì}fÀ­K§±n@›!£!*Ì\HÕ­¬‘Ùú{/ñyEõ¬" º+Ç´ºç: Kñ{S˜WÎÇóâóíP2¼!˜ +`Ž5å˜8+ž$î…céÞLÞàlEä“Ñí¢gÝTg«”-Ò©HcVØ"“JG—åzœ-=DÑZ—Å|¨ +®ëqÆû®_òn¶o­”œ+.ž'ò–O4„Ë—iJ*“S™YtËú(suÛè’ØÖ#GŸäw>n™¸ÂRxâIƇ{Ø—ˆè£ŸÀH&ߘÌOéÈŽ\LynëâÉÌÞÈÅY×ë¢(“:#¸š¿Ö3Æp‹)a숀M5¹….æ»ç§EÚD >Ò­Ø2¸©Ë%ì*^y‚ã—7—¡Y?¾XÓý/òL"‚iÈÙPçlÁàß*ª:qn4éø”^DA €ûr’òr·o¯žUoÕ·FLxŸj)] B Õ?/0ö© *èMÏ4èY·†Ôô ÙÔµº„ƒhµÑÊ´˜L"­þůg«ÏíÞ_ÎßßÇ’×Jåæk¦”Ú}½wÒøY¾€‡qªc«É1ëèîågqM¶6Ù¬"dé3Ä1€ôÿ+–Þ^±<émø¢ %R¤7ÎO!L!¶‰Mô2]™35Wû/RMYâwÃåÕËÓéåWÍ/PübJä²»…Gl§DMzRZŠ’˜A%á1q+Ç×ï×éO YGeì¥ï†è^䜮¤äð–Á7‚!áwÂŒ~—]·@áF Ÿ'È™\<~WL=m0dkå€Iá€Üt£µš§Àðt—Yä_œ¼Fj¥E+Ì­Bž«×1`æþ!^ñ 4‚¡)*K0ôÛ#ì1±§5…ϲ‚K #ôL&‰'dšâÙ-C[7S‚t @nyt«ì’‘ýÁÿ€Xéðádmc˜Ò³l,K-,§•˜çàš¨¯ô2ÅÔ˜iŽîó4@¥Š4'œ—>å¥C„Æàq¤M°¬ød–$Væþ‘©¢Uh<0¡+ý½aY˜@wà!Ìæ{z†0ž]lD©á8nþVû¬Í2’ÐbÈJk8˜"dEû¾âºÖwÁ9Vñ|Ú| ˆù6PVÕfŒ‚]Qûä9‘;f}KÝ©ÞYâž0‰ hkÓ´&I9AðÈß§KPA ÁŠúRVš ‘ÜÒR.ŠV eêv¸©„hC¨\l¯ÂCë¥ÉÚ}…¸Ö*´u…®=øV*‡«ÐVüL÷:…Éõ%ò{f*3E°{e2Ê[)×ZSêá»1öVIEWN ÃÞP7ɘ6çA~©Cô‘—ãž±#ª,)ˆ]žÅ+œ''hbÎÙ¿«GåûB‹ãÚÄdMrCý4ã`š\zßÄ'±¾ñ‚é¸>íÕ?P‚msgõß°¢kië¬^:ÆÊ¦%œ[â—©ˆƒzláÜ•¬)ìe1>3§—éVc2WÎŽñ$÷4@Y\ЧÌdÝœŸ\¦dj·ˆyïÄÝ¢Ð÷±SBÃ-ºù5bRJÑOÜ4Í«µóÔ œA"ž5˜Bj¥Ò©œ…Ÿ˜ìJB³ÕÃ#8©¼Å Ô_Ê›&û±ç²xË‚ûîšR;ˆ3nSc¸j¿Nó’gÅþáÔÏýîmQ"ÆàØžÄpûCé“Ñxˤt<¡ þ³[ÌRVq*!Kgr¶Ýzb»ÃeѸ¸KS–žd Èj˜o]qöY)/Ó²Ó\›Ÿ*[-Õ}'B­?Ôùz[k@ç¨! P>Ü`=×A˜I²þùú>óu¤Ô#î&bä!œ‰÷/¯c بža4Ò(`@Ò‚÷É<`ºóüsf£ùdήýz<0¦ó¿9Ê[Ð.Æô™¢ô)8ÉÃ)•|¶h|æí®Ÿïƒ+ú~Ný2ÒIŒû2­kõzŒÅ9}ê ¸®úÈ!S„ú€>2¸üZÌ}äæãr‹<)S´ÏÀE.Ál¦•ÎB,^i5?ª#=.Oô‚ÔwþnëJ“ŸÁ¯š ÷÷týÚÊ+ƒø£c§†vùs M£c…\z4’jÙJcLàî×s&_Go¬Ó×i[À–‡qõ´c= B+BöîÕ^é½ô ¶}n’@k9‚›]àÊÍü¿4¢Ñ¢`¿ ÌÓ/‘hŠÒúÕ­ÙÒ^–¡W¬…B0"¬dÃä‡AQJ-íF¢ ¥\7³\×Qs,éFj&[ôVƒÑFd7ý"î_võèvð=~à :ˆæÊšˆjcßSkàŠ9޼ýñÀ¬æ9îûÝð}™„B&vÄhì@_qþ¾,RSÁƆ‹ÜFż3-p¿Tq•uö5!•uq8DFl÷ÉOÓÔ®F#JI[Ibì7KD–t2È^ôÖ´ÜÄÈuª3ÐÈìkêZmPs½Ü¶‘j‹-¾ÕÎL½Ow°3[ØC#Ê(P~Bà­ cLê59}¹ 4WdG–îW¸+ݘn½ü•†k4P" /+Ò‹Å‘{½÷éW™ÌòùÖƒ°æ çG85Ú7;?Eý­±‚-}[µ_;BöM‡ _ú*ãÀÁÈøÆPò"–¡»˜¦ç)m¿Ÿçˆ"TÑR¬´È³âòÆÝ˜cŠÛ´ÔÚ»|‰ :Ÿ¦ö™£L¥uzüf¸ÔÂmÂ÷éØ[»pí”YZ&;U¾ˆ+só±‹ñ!ïS=Ç ê¯l©<7NÆ^sæ4Ì@šêó+ñK?]ä×A:ßÅ?­4«ý% )ÅŽß*婸~»”»VÚ̼¹"š};át+ Θp 8á†7ñ"Uí†ùuä ×dìc‰>¾´j=‘ÆmbÇ•š|w_ääÒzA,}ßôÉEQˆ®žz–’£‘zª- EXu›*fiÚX;KÖvYãú nSݹe9g&'ÏãõZkvQ‰Ã+²°E~b8®2Aµgõû‡Í Ê%BëƒféCïsú0¾8o"mÙ@¡£\:MLYü`pˆíf{| p<æ~>/sxê ”F«…ã׉±·–‹Oå¢éºª@–J`s\Ø ä½„P Pùb¦zN¶¤oHlß+¶ ¤ ÏÚÙø›ý¾xûÀ|­]žJàÔø‚mäzRCeê$Þ¤¸ä©| x>õ÷\UÏàm÷‘pfÁy’ÆÀJæá„^Ëç½gþY€Å†Ðx6ã„O÷ †2Ï5/_Õ–º‡8àŽpå’81Š’ôõðTúøb±ž;Lוþ-š[Vx u̳€Ê~µØõ-¥üÜ¡"mÑ#7ý»¬í+8¸1넯™ï¼Ç}ñ.“†:–µþxŽ=½ÖmÆoËW¥”à­@×A"Àų—ºp BG® ÞP—Þ5ƒ€¾šùäýœuv'ztñ*³3×ÓÜ]å•EÔXe $ÂqØþ‘a6ÞŸ(šíb4Ûï.#+üƒÃ¿ÆTv?sm°•fØQO•O=  B´ËËëÂcêçòušÚèf%œÃ^Hª°…^ç â—Õ>R~lá®à±ˆ;4D“_ÍÕn?¬À*]ë¤Í.÷éÊU¢U]‰¤Ø÷ß ûeÒ•¼Kã÷=ŗü©G 7¹Ó“Q;ßæj¨ßK4ŸÎ} +Ååq"¿„ÿ N#ü'Fý¶¬Žå^@$ܧ$[8õ$v…›z•†Ë šÞ†\%°±0²ëé4qŸ*ÙyÙt?½çlÅ1¦™cJ˜V.:‹Ñ_9w™ÙcqŠW¤Ø_ãûCéu^ºùìUêq±y§}GT`/Š>¶„â„sŸúç;§æšqÍq †Ú8mÁ(7‚ÜSßJõ Š©­h¥E˜[À,8+Ðkº¶EkKê‹‚ è?ð ó‘±ÒåË"vv“’\‘±|•…Œ¥ªc5˺>`>ƒB¬}¿ãUè‘·.r€Â%d³„ï[MS£ìŽÆ-ÛN2›Hÿšáü:RÊù“Ã~ùªÌ„ʯÊÄéôÚ>¼SIPa?“Ósâž½#z‚ßÉW©`þÆ|î¾JœÑƱ҈>ÕzH®ÙœŸ8!—ð‚˜8RU°ë¹àK˜ps¶ôžx|p Oi|ízØ_Ä<Ô=^'Eë´šOú”+ÑÜaR‡åËœx˜B»´®•æËÿ¦©R#€ÏÓ{ÑЯ^¾]Q’Îÿ¢OLºKûfþVºóøÝÂrÅü½áýØ&´`dI¹8 $K· #*$X úFn Þƒ,¿YC¶é¥ "uÜFx57,àà°ß>?};¾ü(åO,”i­Ë='Gˆ„+žhGÌ‚$Uk­N^¾[NW³€iîóÌÒs|@Sân òuš{Ÿæ“éý¥¢Hß»]¥Ð_Ó\ônFW¸·§òU1ö„d¾=¿Lø0bÊ€öbŽÁxêaÚ›q}ÜØ!-âu³öBâg3›.XVèuÂÄ7•¤Û%0<ïî`Æb‹òmøøTs9°÷JÐbÎ6ãÀ2ž Uâ<씟ÀðÑõ+`Œ°§ˆz—(ø¸ØøvÉXz¡÷±¸Û=ZGÎë¾/3zó¿‹kñ¢¡.½ýçÓ5ü»#³Ç½Þ}:±H]$ø|÷åeÙÃVAߣ÷U6hÏ X3l|Õö¥hXFh¬  o½M]à®–µkAm s,·’«°€F«ø¢Å«¢q}zgµå»kÇSjÿó‰?óJôç3Ð.n\ÔϘØöÚ‹S^ØbæËÏ?#ü>éu¤©ˆ¹tÞh.F¼bœ~}9.L±K½S‹W‡â<]™ˆ½©Á(Ï%ðgzù‹­“iúó£ÿ•Ž4endstream endobj 360 0 obj << /Filter /FlateDecode /Length 4352 >> stream xœ­[KsÜÈ‘¾ó¤=ðäKŸ6ª#Ø ê]5{5ãÑŒÅõ˜¤#í")£n6 €ÒÈ?ܱÇÍÌ*U šäŠ:¨Ô»2¿üòÁ.Ê‚/Jüÿ¿ØŸ*½¸nÊÅõÁ?8}]Äÿ.6‹?žC Î ¼*|éùâüãAèËÜ™¢4 «má¥^œo~eg˲(µ´¼ôìj¹Âíû|¨Ú®®n—+)ôtì$kùu)LáÕùÍvEY:ö.û²½MƾIçi.ûI {ûh¯œcëËåø@#+Y²“úb)p?FåCe3®û¥Höößi³uhf„1ÂþÏùÏpxF¤g'¥.¼‚ã;¿<`‚/Ï;X)Å+xïŒÁ׿²ûɬ2’Õ뛥p0¨æì>™ë#ýVNx:jÉ nˆàn¸*¼çÞ½„ÁpÏá‹RìÝQì§™ÞÙ§æ?·Ù^»›Ø Î0mù—~ž½®7ÙuäcÝÆ¡´`?¦h(8gØÛå ïß v™´èÖõNqš™Y²?õ'áÙ{&J®Þ/‹åJÁ«’[öê¼éR϶tçÎzö…ŽO+¾0(|`ëŠäÓ+ãø‚UwÉ‚ÒßÍ8öï«%ŠD†ÅŠËB+/•כª«ó“ƒÁ=¬…K¶ýˆ¿aaÙfK+䎳Ïa­B±ìš7ÙÓ-5RN²Žd·»4´ —¢?©Ù¶ù—Qªì>ª®?|L>l›qÝ›x—0ùå®Y×uº ë°ÆìÝÇ]]/R…†Ó»Ÿ9½2£:—• ©amvk©³*¢Xré`OœýÇ2h¸-3 ·ºàÚÿ•ý±Þn®º`Es8G·GÃV} Î…Ž?oï›ÛiÛpb ¡¥xr„pMTÚÄÆXÞ7Ñ&¶É†á&V¾_ó{&ß/"tÂåI#¥í÷‡óƒ¿”…&#Ðì6ÆÍÙ Ê'ƃÚXŽ6ƒ]nëï %‡»:þPo~+@S<K Ó=bœ&;‰óHC¦%›¨ ´ŽÓ—•À%[~›A."¥ÐÍ!¥Ð(^`@Á^€ñ+ 'Ô¥p\o·)4oªÛäé66S`õ⸠¼ˆN¥&t’…K³W¯CKDª¶p›y‘Éî:Î>Q‘¦Úd2>")3Í[™êlJ!ÜgêFk°œ¡½†c–|<ˆ°åøÚÒ§,h×xTˆY4— ô°˜TE×]ýy «jꪛÚÍyLOrbþFÄ»HX ¸G=œ‡…Ð)À¶ƒ·iÿ&`.çÌ­×ë*Ŭì¦úÁŒÍßg€pZzÀéx ©¢MXï<Úp§ £M¯¹gƒ¤ Ú=A)‘ m¾e'[|ëÑü_^Á{‹r׳NOâöz94`„{þ8ÐhÖ£š9œ´²p^pFà²wö{¿˜máT £]Aâ“à lã˜@^ÏËp—qçàÄßKÝv¥wÛê ćUˆ…¡ Áô…@H8¿ „¤Ç;â®ù ¡¶Xš“Šæ:¶Ñ<‰½ ¼G²¤¸Ü°W'½Y†ïÿ?»<µža©Öu7p¯ý4jm܇Ël5Õ’ñaÕÕ›Þ4ëoäKÔ[’žÐÕöÇ$ŸA ,ÍÞ¦zÚ#‹¬Ç<D‘¶œ¢›w™\%«¨÷À7w° QX.‹=a:*>zfJgT‚NgVÃÞúA}wR ãzWÏb&cN¨C§ä>Tp¤ÐÖ/ ¨’‚u>B%Ji_ ÅJ«B9›M´XZI_‚{9§ÅÍ¿R;±ERVÀÅæ^Óë£ñý/ƒ%˜ê7¶@¥>Z› ¬.8Éñ'ø„œPÀIñìUîwwg0@ÛëhšK%Tï=„>¹ü“îÃqsÔ}Z-Ô}Z„ðà® •^7Qüì!Óôà…Œ˜Oš®´¦wƒ@¡ó=T¸rZˆÊ5ýž¢Ðºª'nW85ù€ í&(=goëM ¿B~¨XFØR#ôoÓƒÇà”Á³.Qz¤èaõQç ÖâÜ_?ÜÕ—W›z ³<ÜW±k´qÆÃÚñz/—Á—‹ärñõ‡9ÀŸ¸ýxÈ(ò ø+^8%žFã°Á\Ìâ±+`Ù#« Žu©5×{qìlÜ/4.is4æöø¬ôTß9Àf !F½Ä·ó¯0›+2¶†/ß®÷Ú„ú´¾ NV©xŒ•YŠTRÇ8 €ù;~´P*c@‰\¶ Íð[«)5Êh2ýH8¤ËP9ê|„´¢eAZVËêHµÙé¬lÀes5hTAéš*· —qv€â!ªlòk8Š}}D-%*h{ÛKŒZ5ÝÈAa’nyÀ0ÄÈV¸|àçS°Û69/íÚB¯¬³Cü †‚×¼çñ§SìÏUÛ®Þf^WG–×aÙßCK¼æd¡ß ¦áàºß³Éé$gW šÍŒmSŽ'¼­½o>_ÕÑ“°úu6÷àÉ]}Þ vrÕÝl̓í]¢½2’¶ Àä¿Éâíh ¢ã>ëî/ë«vuçEº  ³R‚@‹Ar°¹ÙIÝ%¦jÊ((bŽÌƒ‹òHiÚ¹è['v(àŽû${33gxØ Y­ØÆ =ìmµ^¿9]Æ`ä›x«Þ†ghñSâ©>U1Lüôhü}’Ù¨Ü*¯×}dÇ™s …bÜ!ž£ÙÛm“ÒúSßdôhüý'T¡t«›ýüæh ¥¤²«ÒEþáa¢cɶûÇÄÆæCx‡³×cBBƒH8ï¨x°@ƒËÅÙ*¶Må|Û€gØË4ÐÃhbQæ•@v™@ç÷âB ììn|\„`‡A6L3wi&’|RÝÖw÷™Îí4Ê Z²t¢ß ²iYa:ú€8ñpɈ`b%ÐQ¢T»9k//Á<ñB®PY”7ý·ÓwûpœÇ„À‚h® i»›®»k¿;yýßÅé ¦Äk6–Ý5Ûß®.ºbÛ\ßU¸‹ÿŠ  ¤#Chv±]ãUVW/ ›(ŽY}—.ÝGò¨ÉŸ3+¡dÃk”“8ùù( JÖé6Sùîkl¿Ä&DkÝ.çÈGÏü$òEî(è–GÚB¦ @Ž"â ?¼§˜¥aßcˆB£Óg)>Ñö½c„š¼½lÇÄüðº×ŠÛzS¥º³Ã hT¹TÎÁ STú—õêÇø÷üˆ]ÂÑ{.² G·íñXÿß²ƒÿü»ip4¤`_û4¬‰ ‹NRÖ£m‘¢)A&r?$’t) ã–eˆ.¢}ùò¥Ølá¦ázk¸Êpƒ—pwxe¤F/ E Æ ê&Gæë$}ÉUã$Ó†¯}MO!ÖSÜð :´ëÔí.•àÂöòqss£ÈÞÞvÕE×"Y‘‰à]_­Îºæþ¢»oÎ+ŒŸõr޼c¤€ÃɭΗ³Ú˜âÜÜ S4¤\„(—B¬W:jš…È5 )zƒœ³h,¨ÀéœÒaê•›!BƒâE¶ºÜM8鸋@³\Iº÷&Èíým7¯i€p¢Ô<³(Ž‚dQBJü ‹‚¤ž´(˜÷ ¼1À>]õ_“"°[¡ödSbDžÄ+ŠÕK¬Š) Éœcá¬NtÇzø §<ð™ºÒIŠ=(g 4Ñl†#zú®ÏõÙ¼8!\ÿ«4rRœ0‰d5+,G@3¤âKïS‰yÇ^Ú<âï³aàüýþ˜ÝK BP¹ÄB aá> @[üðM\Ÿ¶Çù¾_ÏðøB|eh%gê è FÔãÏÒ¦€¢ Rü*u—nö ¥¨›cE¤›ÓŸU^uðµÅÀ}ô<˜q\²tßœÆ ›ÉWø08Ô›&Ìi³óSÕŒÏÒ[í¤ÌbGu@w“#1*Mq§°{ ÔÄâA1¥èT¹Ç§kãCÏ¿ÔN”°…Ѳ××¾ x“¤Fd\ÄÉv.I*V>Û~ì¾TÍàh]ÍúR\áy©ÇPƈ~ßÄÚgU0`✊”JÊñC½—„™Rá àL^¾àŒ´±D 悇Y~kÛâsimQóáKtˆPëù.‡h˜X—潯Kù´¯ÄH0Õ%ÑsŽK~œqĘæ;ú™U$PÝÕc ¢É$-³s“¤XÌ—œ]Å•`Ma›»m;ÕÌ¡Ú;qÊ ¡<Ò2íªøšJ6ÏRUyTîÏ4ý±HÖdút™áÅØ*ëþ‡Œ¦ä;nÇ>Ïc)cûç’”ÍàS>,ØÄ0 Ê@¬Ú”ëC-‹[B£ñ`9iêì± í0ôJ Ý«I«§]MAq¥Ç 2A.%85]‘Îï:LVõ°×C1«¡¥¸—GCMq* ü­¾¨ow Y ÆB¸ÇÑÌÀx}ŠW–;ÑL'®"æ¬ ÍB© ¸vî0º³ÖN¤Zø*Í|/ð „]LÆù T«­7Ð÷—i X(FŽÒ)b©%@(Å”ž fB…$Ut“_;CŠUt†ºLÂì|‰1XÌîlÛ˜µ:ã Ÿ†HÎUìf {}æA^5fVàYxu2S3ÌŽ*H#)ý̠σÂNÚ 0EªØVÁqÚ‹.ºžÔCÚ9¬· 5šJMíK7?‡¿µq“°×7[QÛ—•[æîÆ2'ªn{jô„Šs«ŸPñä7Äó‹ðc‘@¡º<„³±{ñŽ0á)ì‚kiV•Ó•/Ir€> stream xœµzXT×Ööæ»2Ž jÎ`ïÆÞ£Ø; b¤#½ÊÀ0kfè½ Åì½×DI¬X‚1Å’˜˜}Èæ»ß¿Ï€Æ›äæÞïûÿÿÑÇçñÌ™söz÷Zïû®µG@™t¡ÙÊU6~>޾“&Ž·quñv 䯎à ¸A]¸„ÎXû›¢-Îz¡‡É©Aã̸í}ÑÞÞhcÊD Øà¶ÀÏ?"p‡»G°å䉧ŒOþeéa9‚årGg/¿° ¯–޾.–Ë'¬š`¹Ú/Œ\Üa9ÊÏ×ÒÉÕÃÑÛÍÒÏÍrëFK;ÛE6¶–Kl¬íÖØŽžð§…½»°ÒÑÇÉÅ‘¢¨ V¾çûmZà¿yaÀ¢ÀÅAK‚—†, ]æ¸"Üie„óª.«]­ÝÖ¸{Øì°õ\çeç½ÞgÃŒ™³fÄ ÿu„ýœ‘}Fno;hÜã%>œ8iò”©ÓúNd)jeMÍ¢†Rk¨ÙÔ0j-õ5œ²¡FP¶ÔHj5в£FSë©1Ôj,µ‘šO£6Q ¨ñÔfj!5ÚB-¢>¤S©%Ô$j)µŒšB-§¦R+¨iÔJj:µŠšA­¦fRRÊ‚@ ¤Q”ˆºKÑT4ÅR µƒêJu£Q—©”Õ“ò¥zQ~ToªÕ—2£ÄT?JBõ§Â(sJÐMÐÚH¶’2¡"¨7‚º.w)šŒ0‰5ymêhzO´\t‰Ž`z1Î]]]ºè6¦[i÷5Ý¿î‘ÚsCÏG½¬z}Õ{fï}Æö9Ôwfßò¾ÈÌÑì®øJ¿å’n÷þCú«Ìæz)+Ý,½j9`ÎýÀq/ ¢mÔþÁ-ÖS¶D¶CÖ$û‡e´åýÁ³>¤pÈ‹¡‰CÏ[7Ì{Xì°²a‡o^>bàˆú‘ôÈÏG­uôò1¢1OPm¯¶80 Mn[˜ Í±¿!‚¶†¨ty-ön3•&æ&§GB$(‰Qعý{iÄFç]v*Æ›þI‹h¥©Þ¨¯Ðª³ÔÙ!dnŠ@tW'idác þ¬7]¯½{ÁýP¦‡ˆ ºcÚë¿»ŒÕR`àL rêr¹^7Ws5ý ôÕnÙÒð ÞõQ…ž%ka>lÝî·Šù…_ǃå¦ÞôŒ„Í2\JÛËa)y 2Õ"~AKåpP†VÒâêŸož¹r9ÛΆÅQïÝej ¸M`”·ÙÛ<ûÂÉ+CSC Ø}.E mºš=5­j …JgØÎZ ozŸJÁ›œœ Ç"¸zÓ§¡8¡Ø­Ä)ž‰£Â|¶ò$$Ô6Ài¨W’7lSffl"ÈÔ¦¤g£!ÈMŠ&ãxM’6 ”²s;uö í¬ ]Ó¡Fƒ’µ sÏç¿2l“¡x2ëK,Ìy^|ý |Á<ùðî϶wñ.ÝÖÈÝeíå´{²ü6È›$#‹§­ßÉpôP²bó ,dñp¤ÕjÒ³¨H|ûyÝôõ²rÜ"Y¸aÖ0÷mMN¯•¡ ´†›¼lž°TÖ‹SÊõÜD ªínr^ÈS‚ú|ƒ{â¾c°÷Å’ŸÇ¢®¨ç/˜™!w° q±wðÝÛÁ¡ÔÿPà¸õЧÊT:\ºÀþŠíÛa-¸2ï6 =|,l m³”hïdg•?`šL7„‡ÉÑI ž…Kñ2t$! 4jQªO9Èhw².›QDò‚䆿—â o¡Õko’×7ÂM²Œ!˜þD™Õ(Cv4²CŸ6\<ŸRõ›3©CÛxƒàÌkη°m<Š’dAz´±*6µœ…À¬Æ÷ ãèÚ°ç"´NÄ#Jdš(PæSÚRŠ¥ !]ž”1ñì&+·úÇÆ‚¶ÆÓð¼;£éxZf¼@2ÄÈ:J¯7 q:ÎÂ¥7{s´˜‹ûpEÈ[‚Äc^b“9Ž!aì5Züã‹âfºÂAÖîñ.ÝM´Èô÷¢ø˜Î¤S#›í¾uÿù’ÈföÇ=Ͱrv-iòg£JA % ¢ÅýŽW­>>ðÖÅ)Ø”_‰ó öpÿ pj!w•HEñX>¯"•=SÄI¹ßÒ³É×Ó- ƶ¯Éqˆ©^”ŽLwßG3É '‰Ú-Úq‚To±3JYÎQD¿¦:w™}|ôŠ~%lÛ€Z%ÈD“ðÜ¿Ná."ô1bÑ(´F6²?`a¸µûæ0›µ#€Ñ‘ªÜ^ژͯD—àzÈñ…û×dNƒ9| õ¾ðÕ1zÁžTp]È•ãõ’N”¸³!´ëÄè*§Ë‘Ía†ŒÁýqßç#s£iµN†—¼®©7º'¯¿ è(/ÿ­ÀÌ_ÝŠhÔýFË÷š§®ç¡«æy]0<6 $ÈA­h³ÕkõÂ6K”Mp Ä‚çãyG‹Î*+yJ?Ïöš.Ó£¢@Ñ4¹÷vJè,N‰‡ÊuXÆèE~(Ä´ýÂ;|JßáóAVdxǰo®½yl.¶ä(®¯¤Æ»zû|÷¥Û£XÔ…gSÙ_±©H»Ã>BQ¡´Urv½ M Å£^6·~•®•†UªÂb €ñ+Ý¥+ÒçÔ°$Põ>ÐÃtˆpÓ VçÖ»­z4To.nà~å¶HŒ‹=ôçÅŠÄjmÝhØßËГÛŒƒÜ:R=¦Èz ÄŒXϱì4”&‡½mfɶ T”\§)æ›ÕANG‚˜‹g¢vÔO'}vÇäxÖ¸d8fØf/Í…sL]EÓcÔ%u’·†UÇe“ ©Å²š˜ 1Ѭ2)6.IéZå»ÈÖôr]jëQàW"« ¨R|ňoé’D.°ÑÃyÎ ÷³ÂYe®*%˜hHˆa)½²SÕêâbV£MQñǃªRRô¡O?'y!ìs˜ Š2pü2½UØ„Iâ^Dt¦ƒ;ú©Vî&[Ac,Žó[Ž7× fSí…_¿™„G–°Ã/^5v§F‘^§ãÉØ;¢©x ²¹u¯âüYnÈ>çl`2!#_†æÓ)©WÉ ¾¦äzôQŠ7 •af?_';8€ìàoèê#9¸Ž¶òqu[ ߲Ȁ†ðP^i§ŠT³|,G'1!´ØðW‹pïocêoVݼÂvØ‹K´§#ùO8·÷7ÑŸðYÅ•ÓõšìÛl¹Aä¡´"Òé óÀCËx—ÓÆ,ÁÑøŠþû{~§Qö "”{áK¨#yÔù”Nàü¿¾§ƒdå:¹áˆí7x7¿ó"Ë^dQ|úQB´x?ù{™,¦§nY2FÒᬸzD‹›:>½ÊÉ2<†žѸ3ª.U³“h‚êŽAo)nP«=îo ?VvF¯Í¾ËVð‘}Lâr‘UÐwµ‘)å³üªï’57ÂÝÎUË å>4й(!—Ê #‰œì« †©¼46¨²ƒ!â’“’äÃq†› E.¤XT4BG,Púƒ³ÚGC ÉeHQäz£aIÓ¢4‰¹@îÌLÉBæèŽ4³¬pÿ55ÿJÁ×Tˆ‰2 Ñq¡³&d²™üHˆeçjTg,Q:Âp%©[O¿€hYûVúÃM¶ëYñ,÷sŒx؉œÝõ~%~2ñÂQ21XÝ´nýéÖ/³Yuð= ·†nʃËl‡ö’@†|ƒ ¨ÍJØfk 5„„øPëUºð$'FOÄ™ÒQ¨&)GÅÛ€ÊF(!‘Uú€oG  PœªÈöIŸ†¥ãPIbycÊÛ{ *«ÓÇ G™ã…Ìð¯ÒÔ(m<ˆ&-5ïGT/ý 7¤ÈùK¹ åQêŠîK‹ŽrëJÄévPÁÓ#:³šÛÈùú-R<Ñ\X«äL -½6P!÷L:˜Ê¢­44C£{ƒK㦂-ÀÌZ¼u™OÉΊª¢’ŠœÄÚmjYeÝÑì`Žžu™,s£7*)WúÌÛ¸±|öóÀË×í;\ÌŠç;§T:Xz1ï¾ t\"V[°Ã~³SݱÓÍ-hVPØõÂ{é×LÒÚBS|àHô­-EV'ßçýn€Ò ü‰O³$ ‰åM †8ˆŒOÀ×ð )ºùYŠ hÄ .h.M‹ËŒ† âx‡{£ÓáöækL0˜åpjs±’Ë%K¯±ƒMp5€¬¤»÷î=Z^a¨oÊ?Ì»î€dUøÀzM´š,[lYšœ9€,<:Q±jŽtÎq¼1L³€üüÌ5#Î%;M)Ca«ÚŸO‹ V¶~‰%Ò­Ö¼ÕfËÚ5É¡@žT¡1¨+à{¥”¼^ˆ6!7èªk/~þÕHi†<7’d]\Ü.#Vͤ´•ШÚlñ–U.6£ó:äÖLäwY Òïv¸Ó»~‰Es¶oˆdÑ ºÃº©¥ý[=])?¸yÓ`ñÖ£©%à–líkêíêiŒØÍÜ˃ˆ]ÓBƒœh(uvAã™ÓåpêÊ]+œ´6àD´)2,Œ›Ü)ɨžäãUî®ÑxȇG—¾¤ŸH<±Ã4í¦÷@Þ÷l­A$¥tŸN]`Nç‹oýÑ…‰:픣®è!è8ƒYñCÒŽü™ ª‚¤­‹U%'ÆŒÀ*)"]RVr ©¼Š(þ!åy 1íiàšu~‹W€…øv"é¾Â‹ ):(`* ‚ÃB¢}ì›Ý]n:{¶œE ¹¹—« xË.8À Yí³£ÅÛðLÈMAÝ%Y± $œ¨Hf}',qfý”ýhšñ ùdæe•{ÌI©ðh& (¬ª¢¤p÷gs?Á}?Äîƒû½Erw@ ê‘ÅU¦ámQYV¡ü*{_ø›ð/t Ϩ"°_û)öáÎÆé”$ <çRÒþ°uo»ºjQWÞ¯ƒÃ•2®^M#ÅuIN%ùk‘ ÚŒ”l¤jë)U·ß½-´ígÆæShà•ô\?Ò—q]…ÜpdMv:w uÀ ñ1ÝDÈÀõÈÌ6’^n$wEÐÞ€&åYh‚ͅꃥ†½µ§ šwì³w’UE¼×ªâfUKÑ¡?]•¸+Ï߯a«¿¬}.ßpq9*u8ÁûïjQ>”¨òUeJµ ™öâ{!š¨V¥(¸qíÏ¥™1jU:0y^,ãŽÒ•pø5û.Á|JÑ|cw­3Ãâ5‰qÉŠødÖcØ$ˆ…Mà¼;¸Áç\ƒzÕˆtZ(}i÷œÔóá0òï€_Æ~¡×A$,–-C+JC£ê÷ó: t‘uðwHEÛL=o^ Û\Ñ3 ÚŽÇ’~q9^‚Çã©Ø‰¸» x"ZŒ–£±h ²g‡åIpþ`Ƈcñ€¯QÊA#>ky‚†.Ä™üò'uN_ÐÔ‡:2¹ö쉵µõ–4¸Õ®_4}ý`Ó{ßÅ·ÿ¦#ø‰ ¸+bè¯9 Í‡„|6&)"™à‚°Êêü’rö]ÿ³·]6˜Õ½†ÇÚ×Èöµ¹ø×6N!y1êkü‹ßü¹Åû‡æÐ¨¢î¿’ ë¿HeNaÅž˜EeýQ«MÁ›ùév*C6ç–”!(‹)3CS¾$ûÒ\L˹n”¤0¦Æ%ÌAáäÈŠ±¼ÖÑQ2pÂâÅŸ8è\õ¡²è]žàÞ¹®†0ë^ÛÁ™Yðrê…ºý|üN]ÔñUìúªµ°šÚvHP{¥„ †ø«²Â’F¿&e10ß^¿~»!²!°LV¿§>µˆð¶¹ ´*yR¢b˜¹1YÅée,^ˆ) ø«¼vÆÇû93^•Uªkòõ2ñyNFYÕ¾O`d° uiï.±[¸iôˆÅÇOÚÛp@Ëž=F&0Mön¢fÑY›oì­¿ªÍëHwF…~½ tÈPá¿«ý«¡Úwy4ˆ÷‡tR‡Ntl5}.nóÿZ’ÙÑrˆKP±Š…°âG}}Oqesíºâçåw.Âæ,zˆG²øÓ÷²Aìû×£š·ù†hº€x©º{ÝÁ–ÂrpnreÄÇÝ›N+v¼Sø J†C¸)’ÅA³ñ(–èNŽÊ G§ÍÒTC 0O‘INàH.t”„w3¼1{ôëlÂlz¼eI©2NH‹ÏbK£«™ ÂlºwñwÑÖA]ò•…XºŽûQR\á³#Ì/п,`÷ž’*=Û±7¤Û[d@s  hv•àÌ•O¯ •W„\Z-WËÌ(Áý ÒUù.§HzãÔÅ;è#žiŸÆª ÈîlPÑ6c‹— RÅ$°6>ÕNM“ µ gL<óäü;þ²ì¤ã17vV&ìN¨r+ ÈòOfá¦3|ç¦]Ï®=¥¼¢ªWeŃòmŸºÕا¦«5Ùé,€6¥ö¤aÇ÷V¢]ï½@]dTA¾àk.ÈŒó³ã¿.#Ð|Ü6I89ÇñÜÎäÓÆ’¶›¶"1rØü”’<¨d*"Jüü"Â6œñ;ûå¥+ß°â~mCLþ "âô þ«CÑzƒ ^2ZQ†^ØfÅm”„ó“$ 7N”òдüZ4Š ²’K“@Á É”5„uö5i‚CäÏkh"yâL¼=¼“ÍÎ+JÉÖTsA¾žï™‡§½3œ<ðUóæÚ—×It-\Ùx7דXŒ–HUšÄ4â·Rn^Èʸ|¼YSÊO_e4ø¿¼JÅÏbU–¢!,*†øåÁ¸—” ¦Åu]W-êò®®^ÓWNßÜl á;“ÂY£™¬†jU51“mq!î’ápGÿ<«õµáÜuSâîïä¿¢ñ1ÛŠ»é‘ Ëõý7^½'#“§"úé·HTÈjK ö1è] *'élx>XKÇœìüðè/c‡ìªÐ¶é¤?mÛ"ló}7» ,â á UiqAñJE²¯h•b[N£È3v¨ÕgAoß.ægébþö«¼#tE»Ú“¦‡§*s¡4©©y(ˆ{$Ík¨¬þŒïP…Vv8R0àѶSK€;]£žXeÛ¿wÂpÿ?OÍůN’E= ¦?›¼ns„ývÖÉ>Øæ1¸ï×£‘ÉŦæse¬£‡n[»ÓN³ÇŸ=Q]hʉô‰sYzÊé’s1yÉ>|&™¹c q5æòHØÞ—#à…Sp¸´¡òØÞÜ:Bnµ; í1Cåx¥¬Ü6 ³Pß ¿7‚Ço„h×KRTîëäë[T]]^^Íâ;&ºÖñEEŒ4v0–ÈÄçá£}KO¹®Â”4!¶8æ3Ô­,º!ª™ï‡x…úȰZ"ÁëðcS±§[sâÙ3 Ys¦òàîÇ ëa"Š"™³x±<ÁÚw›ï¶-.¤øw¤û•#[ôHÚ¸M3Ÿï|a«CX:¤Õ=Ñ™¹tQÿ³;„lH›|âdÛ²6_Iv\¦<61!AÁnZ²Ô>,‚Uúu' Có½€™»pîŠ{~>ûË[g[‘I=!»êv,±¾‚ㆴµJÚn÷_“âˆÚf“gÅeeiR²3XNÛ¦HËÔh!Í¢¥d½æÉÂ?<Œm÷ .Sl[–‹f£®æ–žÏG]rþùÜÑßóžÃ•”›á¹¥óþùø qÞ¿:?èFñÔßœ ˆMåx<×þÚ{#hžjn§5-0¢COþ¿žDSï¢çÍûã,:Aþ‡a´¸;5˜üOcU(º¶]#•eº/mGÑàT+ʃâ°0'ÿ«ÅµtÔÛBAä¢(/)â<Õ¢º³pÞýæ‰[ëùCQ4üW{Ú8¿êpµB›ÅEªø¶HV%C?¹B¦"qûËÇû.í® .a’~ÉxVD—•ì>¿®Ùjî¾ X,ú硉P‹„¿›ÁÛh2}(=ÚI†ËþÉ+¿§Â´Œ¢ƒZr%¨ÉùmAçç¥ee³šýV;lU(T*H2VqÎÝ»ˆfß+‰P+–; êù{AýƒvW$J¤±ðÊs"3 l‡ÊþÝrÝÿé3SOnž{ò`ôùö«C_°b—L¨„ª¸¸¤ÈX€ˆŒ]… ~¹ÊŽBÖçÙ¨Hˆª‘µä.ZK“ÄD:pI|Ï›!ѵ'…ÐoK‡ó8ùgãÁÏq:Jø g.ä¬;9*)6VÉâïþ1?1yeÍŒËÎKÉÊÒ²è»ßæ§’fŒ5D×&Õ [PF‹ÛŽnIà^â=/¶ý0«À¬a~€Ó¯Å‰sà#˜—2©iîþÙ·Âx«õUéïk®§Þ»ÌÌ iœ–ÈWìgãc.°Fñƒü<ƒóp®eœ*FÝ¿ÌÔC-\‹(•e sa%¯dG Wõø!äfô7xÑ“”Ù 2î]š`vÕŠ)àÅŸ1”眨`Úó‰3™Äzñ“¯'ÄÆìƒ'Ƴ>ò¤ÛÏo£Å¿üh0;öË‹_àsñoœš/ %ú$8ÄîJˆ_FúT/½y&"öÂ)xeD“îá^ØÔêÃɶÇ@[X—ÓTQ០*%[võTÃ9`¾Ù?{–L|>ÚôñºUÄQyJåüÐ7ˆáh‘ÑîÞD V†ºýxI/@ž‘˜Ÿñö{®¬¼3´ôA幡SÎŒ1×z®§.¼ÚP¢«>¶•H—áèµÜz`šN‡LŠI^à óÙ²C¨ŠW%'@¼*A±Œ< Ù¢ KFãA‹}¶Ï+<ï!«K4è`/Sï_âäå0ñÛeH€z}óÍO¬U4ÀÀ…XOÞäs4KbÉm! ¦EÆ)ùso|¡}‡©7*žÊ­ØP~ p‚P\3œ4:‡—Oè… VŠ’ëjjŒuy1¶mÒ!ó–E/üªBuÚ0³c/C[§¿D’Vsq¿>ómÔ}Ö+LmÙéá΢ ´˜)U”Ô&Ô D½o|“›¦LM‰»RJHT†Åm[ Œ¸ å ÛÒ·–Æk“øˆ÷ŽŠ…øH>JG@|^ºF›–Âf4œº'@¿-#¢ÀMã›À¬ƒƒ\ܶ‘ÎÔæäÎó aX•V«ÊX[¨//ß©÷ŒòHØ&—J§]ƒLóÓÄÈñ¢þÈh Œ’þ¿õDÒÿw–‚ É )kùfß!«§~¤=j'9³]‚Ä“ÀÂ%n·„±å4JC}ê—7+vèØ]Î`ï]¾KW°;³ñ‚Ñ™¸ˆ%8— fá·2ñi$üþ;$•MRK` lÚéîc½-1V‚ÏE~Äa¸EÌšWO Á*[äa3/Ñû/î7p(LPÓÖUØ6šâ\P¦Å4à­m©¢X¡‘C$$'%îÄëÚŸIc}Â\ñ5ùmçϦìÔÁ•PN¸D›š‡Æpü¯óÚå©Q@6ÒÂg O.ovž\.éœ> Ti‰°À5aÓÖ[Rï±ÇvƒkR"ëÛ`›êÌ8ÌlÀÔ¿e_·3}§ D™ºõÈáƒ=}Ç1Õ’He?£R¨+ã”Ñ1 ¦ñdJ?Ð|õhU8°ïMNøY­N`TòWØvð=]tQ‰ïPD £"þ­N±qÞÁ×9–lf<îJÄñ¨6ÿpâƒm%.ÉqA!9‘E‰ îÏëýêIãùòºD¿J¶WˆŽ[Pˆ|³Ót"C·ëÝÙn&ëÖ9ôè =ºëÔ>¡Ó5íÅ=ôMÚ4MšV«MMKéÑ“¢þu-ø0endstream endobj 362 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2328 >> stream xœU–yPwÇ{¦»ˆÀ0r=£ ˆPÔHÌH6! J’18 A.9GNaÞ0ÀÈ)Ê0lbTÔ$›ÄÈ-ãZD͵&n’r_³?ªÜ†­MÕVWýªú÷Çï½÷ù¾KBÙÍ $Éœ°wÂS’4ÉËüÖ¦ìºòæIÏ‚—Š&¾œØ({)ØÛ]ðœÙìŒ'Œ›ƒ[);‰d{\rƺ”Tí¾„=ñªåË–­ðóÏÕª­j­¿ê-ͮĔìôÄ•&9Võ–ÿ;þª)Ùâe‚Ê7%Y¯Ù»[•²[µ5.J¡ ß¹9b‘ÿÿ;õç_˜&)&VCQ”óš}隘]/¯^°|ÅÊ—VI)jAm¥"©µÔ:j=åF¹S”åLÉ)JAÍ¥\%J.MÙQÔMIŽä³3¾”¾!í³[e7(ó”ÅÊЕô=&ubsñ”Ã3i\*<úðÂÙ’‰/çò‹R;!+:VûÁ=ÊKJµÄ8ù«›.O_l–šÆ™&\„>½;ÏÀrhTV5œÅÙ2l§?#>²Õ´Õô3 B?<€^=Knc©‚äÐHc·Ìá™äNË”½òêQç§H:䢃«ÜWØ(Ø)ÎGvmÙõnX‡2F>F^)‘©™+fˆU’+Ô :›¬p ,¢á•¸Ž¹qž@Îþ䘞쮮žö~N|þr3¥ëI´ózœ­_cá×®òaª0˜Ý"¶+±æõÆÝæ·êg¯ü­·¬É[«9cž±¬ØN¨îPÞeZ¡V[^9±\Zc|Í.`“ˆ?×]m©mû•ýñVÝí|‹îVlfƒ—Bæü´±ÁB®¬© òM]†’H˜(>l®„Cíœ\¬åLâ9h÷nôôQŠNž{™Òõã3#²GZÍãs¼«ü±àŒŽŠóê(&41=e \ëà°KT†ø`„š1,|Ï×WÏî¹Ü#ÇiÕw™_3|iŒs.ê,IíE;:}lÁ§6ÉmtÂMè5åÇ=Å€ äYàû ñ ܯÁ8§—7ß°r™ ¬-Þœ—°?vç@ {*“ÚL}M0ÌžÎ8›žúI8JE!îc-G¼~U„¥y¾·žüwÿõiǶU\ǰ¦)X„ËU‹dXÌ­t‘ Çð¦â±KˆŽè ¤x‘¯‘ä¢K+qÿޏ4( –•nÏ÷ËO‚=q¤`¬øü£p®<×ððF]'ôÁ@NktËn˜«§¬/èøk¢¸…8K*Ïå‰JcŽ@]ZQ”so„¿YÀf«Ûèf5~ÚÊN6¥š2=…Åï) é§ß]ÂùVÞùr5È™ðr®ò¡ ÷)Ô´>»øíüÒ"]0äŠ9¹æmç‡O±ò#}ÿÿ³2ÏÿÌ'³ýÞ Ø<’×ÙÓäì9Ms^×Õi­·;~&4xC\hÈz±(‰¦ * Û]ËÈK…5ô´X=èdÃŶ›èeµ9ßE¥*£Ñ ÐËU΋ʽ©€ÑäqâÝýUûØ%go] ÎzýíWwv§Z‡öô]ެ/7r½'†vûwÓÛˆëó:eLE…¡ÌpÀPqt¬Ü±H[‡9¹•¢Q‹¢Ôàý|Úöª“ï+OÕ= ¬ü5œØ­‰O x¼ œ\EaèØ“ï•ÓÀQ ïŠÄï#-lâ(BÉc~±°š9^Q’e0ärä·É¿ÈÔ8@$ÄNÍXMßOšï¦ÍŒV ðªl:òÏÑ_°> stream xœcd`ab`ddôñ NÌ+64Ð JM/ÍI, ªüfü!ÃôC–¹»ôÇß ¬Ý<ÌÝ<,è }üÀÿÝG€™‘1<=ß9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õÐã3000303˜€ìg ¹ô} ߦ֫ ʾ_<ñ}ÆaÆ×¿ßºÃüã¯Øï¨ï·>­“³»tqÌÞ¬)ú‹gV÷ç.m™˜¿¢{;DZƒÇŸßß•³AnÖí5!sœº%Ë›hj$ÌLÜœ(¿5n{ý±ÚeS;–ͯZ˜ÕÀáâid8õ’¹\ÕãÛµ§º%¿K<ÿðIž¯tá€9ßÃÎ^Èv‚ë&·KHH<g7÷æY=@ÐÛDSyxŽÌèíëñ\^×'ÃŽendstream endobj 364 0 obj << /Filter /FlateDecode /Length 258 >> stream xœ]‘1ŽÃ E{NÁ Œm° Ñ$MŠV»{Œ‡ˆ"§ØÛgfœl±ÅñlþÇ|7ÇóéœÓ&›Ïº†oØdLy©p_5€œáš²h;¹¤°½ˆg¸ù"šã‡/?¿$n€¸óÅß ùÒ}ÏÚÝÖîŨ>_AX¥œÑ ÈË¿W­Ùs|mí:ÇR '¢F4ŒšpBôŒap¶ß1 ö‹c)…SXÝ:«GB\! ñ@ˆ^£ÉkĉWˆ³c!΄˜j8ÙP²‰Ž…ˆ·²4òg tЈÉ$¥FJÁ±+xߕڠ^ß5Êð¨òÆås¹ÔiÊð÷ÊZÈ%Qâ %Ùƒendstream endobj 365 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6674 >> stream xœYXWמ¥ÌŽŠq¤™Y£±Ä{ÔØ@EA° Š¢‚ ô^—¶Ô¥^zï–&AÅŽ-X5q­Ñ$¦‰Ñ4“|Iž3æ’ÿùï²´üÉ—ç‡e—;s÷–sÞóž÷ÜQ:Z”H$šhemíçë·há|·o§@õÅ™‚‰H˜¢%¼¡ŒÃ…£¯-u‘ž6ÒÓ¹vﮘ¶rÕ[3ÖÌ~{Îþyç/p|gᢨÅK¢—.[~ˆ¢¦QÛ©•Ôtjõµ“šAÙP3©]Ô,Ê–šMí¦öPs(;j/eFí£6Pó){j#µ€ÚOm¢Þ¡Ì©…Ôfjµ…ZLYPK(Kj)µ•ZFYQÖÔ»Ô6jeHQÚ”1eBéR4ÅS£¨ÑÔj55–ZK£ÆSë© ÔDJŸ:H±Ô$Ê‘â¨É”(ÚJ|DéPÑ” ªÐzCËAëŽö6íFI:…ºÚºÁ´6N'>(V0㘦Q‹Fݽxt˜9cbôVéUŒ5›5öçq;Ço8aâ„ãçL|¨¿\ÿKv?{j’ù¤4Žâš&ÛMî0˜onð«á|ÃÏ".ë[?511±5É19eò±Iß”S§ܞòÓ^oü¿—¿!Y-é’Ð6N¨AÊ_•›RQ#lÿ¶k ‰Í*N*ˆÉNÌ AQª ãÉÒ½‘/ŠDñ.xl_µ¡ £ÄÔØÄÄ8Íø4 rþº¢5·H‘›¤öW]XN×N×u“"oŸ:T!ù….o@ͼörØþ>ÒíŸz”¶JýT`«2`ÏùÍ\K Šä!Šþyï©Õ[<ÂÂxVÕŠJóftd ®•HÎàÇá,¡KÈèêoJaÍ6ýôðØÅË%~Ûy,="îïרî7¿¿Ÿ¤fA¦ÔoklÖv`mJþ[ÖìANÖ€¢ø`¿   Áº5t©z|rU2Ž D>Þµ¨V²Ï\ 3u«jQKs æV¹Õ€J%µ4èál„ËuCh¶:2ˆ¬ ž\gS~%ÍþÁ‚P°äìÑeS^aò2Ðç×þÉ4‹„P%8(õ¿QA”j¿…Bá=©öß^Uy«æô%ÔÃ<Øökó8”–©'¯Ge’Æ>™ÿã¤Ñl0èÞè}"Yœ³—Åþ-p€‰4ûøËkOI5>ÎÙÙ±”Ç,„O³:_6›9¨çOTÂc¥èª êUÚ‚xs0qÁ+¬ƒuÌÆ1ûÝ<Эï¾}Þ<—[`½ÞÔÔúÑËonß¾wÿ–åBž «ò”¢*¸NƒÕ\[ŠF¾©¼üíUAΈY¸ìw˜oý{ï®*‘dFdD6#¦UWI@".Cõ>áIqò$>5¥Fz*VíE æÈ*Œ±%Þ ä&óUïsõŠq ÞQ ¨N«`*1š¡¥^ûøÅ?¾¹ß!ÜÛƒg_5¥–¸üO}ŠÿŠ'gºÓéT|+b@ôÃwÀJÌ'ÏÝd¹iû³óü1«ýÚ囯™-åQ%zª‚ ²ßp¸ÂÁÒe0ñØypôRIMŸ,d¸E†ƒg0–‘ñ¨x<ñæ\Aö= ºÝ@̈m=ì·e-û(¶å‚"y{á ]‰j<ÜQ„ ïßäÜ`C¬£3cfñ„oç€Ö³µÕìe/î‡m¼G—Ö«cq±0™³±_¹ÒÔòîówUŸ>:³ÖB³ Q‚cX¨Î¨þ!¤ur½bÍT¡RÞWAˆQdûQTSÉ¿¸éÌcp¤ÙNHÝC‡¡£j_Kµ$xð}£†c¤¹Oæ3lAB³Zm¹ù­’¼óU ­B_° …Ha WsrÅÞ­áV¶üQ1û¸D¬Eíì3ܳj¸%ÃQ‹µÕxëÛëßÃX>=¨\Z˜šª²ÆÉ<Õ/Ñ/*˜B¶«-D ‰Üà‚'/±­Oæ9Âq úͨö‚ÄÃ)ôÜ;n~vªWcu[5ªô¡˜«Ìa%ä·¨·*ãà)Ýïï¿äšíZ´*Æk5jkå¡Vü÷ùô\UЃÎÎEÏðJ¯F&è²z͆4tad76IS‚ ¨À<6@õÉ05¢}l(”‡ £•¢:Ø÷öi )Â[šèÇ£†=¤ ±?Â"x¤«F&é1”|šiã—EU¨U¢ZTØbøÖ°YÃdšäá¢RTû¿…ýÚB¶0ƒkBá<ÓáAýI¯RÒEïÃuÓèä†è³1á7S ÝQblHŠü0æ“¥Lmu»4j …I¿^M&¹{³‚3£N £(3¿BYÿ,½$³†I§³í:𨬄¢ˆ T„:PfYVÍ è5l®ÄñÞ=¥þD: ʈçHÒuŠËÎLàÁ[|o÷ø­C3™Oud]©"¿#GyééU%éÅ(1_òÞ(Á›Rðø}h.ÃÆšß´ü¥£'·åÏ®÷®9ŸvÌDQC¦ÂkþÃez$œa‹#ÜP‚‰µóÑã]_uÀŒ¬!j"ÂÁÛ‚ýeòaöìã!Õp˜Æ“`Ð0[÷]Ò8èæGÕ F‰éÌu?ë6Ô ˆÜψ}r‚†Ñx6ž€—é¦Ùú¡ë0JãÐPä-ù Æ÷âñº~ƒjÜSÏ2?• «ÞÎ!˜û?Y,ÿà¾ZŠBI$VÕóÿ’åþžã@¤‚Dõê¬@EâOJ²B¢ ëo{ù0ú:úd®Ã-A${¦ÜúŽJa¿R¿öá-OÁö°Æÿ ç°G´kb¸ÜÛ(NªŒ¯–W.¹aý?ƒ¾…†iøuVJAÈ¡Àw£Vîkë–•Æ ìüb »¾>¼"gOùG„8=ÜõÓ0,Ì’À;Â~ÝáØÐ°öõj ® â¾(12.U*ç£Ã˜"fù†»ßœW2©>Žâ%é:ÄÔU—7=˜Žðúíxʬ÷í ÐÉÑËдR eJý«Ý‡º?í†)äÀ­²šB‘/ÈÄ­ê`—©ÁÂï"9&Y°;ƸÅû&ú’h‹;·ŠRsâê‘ 1»ú-%a›H¸µò}2±—5l¶ÚüSÍnØ4ƒ¤‹ Þ¶YÑyÁÅ.Ùòœ„"y*F%yy%™9_BNÑe&½/€V¡‘¯qO‡ìÑ¢.tøur׆Š®Ãm誮JÏDåFGCP_Òž ž’ƒâ¡TØb|w…JÓRP„‘G ªä…ñtMªB¥Ì`ÐßQCz$kG³¶ó¬½˜ölr.;DòŽh.ÑA6Ox>ç÷î“M žÝæ†d'øŽÆ à]Žmßå°bíÆí÷z¿¿{ûî­®]¶Ã0Ù ¡Ý$% 5@|sXõ}~i4¶RbÚ¢2ý‘ÑæaˆÖ÷ɇ[¿3PðK§Áª/¥Ø½,­5e“9õâa¡߀IJ}Ö_82²ð„”09²ww¼ZÖ_ˆüŠ‹tu%êzëx23w/a;ð¸Ÿg†çž×óa‡+é’×?¸‹H˜ÿ3¤È»UÐH¼æ×88ªÀÖØ:ÔŸÂ'«ýÁ¬já$ožÏ!k´1vw쮀ÐÅh ¬Ž¹s}>@=èNáÙâë-EOÑ#Ô_j[t€¬l3 ˜HÂJõÃ×Ú‚…p…»ñŠ|oíÁ¥üžYÃùùgÜ3sD®«Ή3¡ƈæqçè'¡f>9ÿH{Um™b@£Z)!¥ŸëRÉV‚…õÜKÓçXÌãàÿ&1žÃ¬ˆ"æÁó—„êö2ŸË¿ )¿Óߟ2ßÓOJá7Àôê7`Ý ŸúM×ÂT6*Ø¢ ¸–¬ÚyÍ€@ 9‚!WÖ²;Ö>Íã ÏŽ¦ #Ý+šÌ߸~ù¡rÏÒ0 +¢b#ãC|Œ‘{I`~ a ¦hs¬ñ²ß¶Á$˜ô[Ï—!ª¶µú1ì5¡(ÄÉY"ŸJ¯rEäQÄܬûð)àà?œ½ÃÎ…üð¼O³½/NïØ?DÍÒŸÌÈ*If'Óe.ž6"ôtq;"LÎkd'»Oj8EHŸ_HˆŸ_MˆBQS£ªëõ/ݶTSDårÛ€õ¼a‡n¹Œ)v>៻¦bU…¡S‘K;:Ç\ì:F—Î÷Îá3C «kCMA“á“À;·ï.r œ­½~õò-g->’€Ø_—-U$~.]jlwhÇj?û¬ÆÃ¼ScòÉ´Š´ò´ ¯Úö759%­ùü eä-"b˜ûÏzÄarµ5Î÷‚áO›ˆ=<GN0ׄ¤‹!J‚É}ói\Üý]¼‰ ôE1Q$‰e \F\á˳ñë~D0ã}лų“Ò…ïÿÑHš ò‘êùÕ’FÔ”&šTh6œ /ƒQŸÌnDn:¢¸$ƒá_+H ÉŽ!$» öïêÞÕ¯Ö|ìMã·aŒ±nûˆ:cÁ%Fãåxž.ü¦YŽåpªêê“Ù( GT¸öŸÑŸ>„1øÍ‘^¿µF8¨*tÜš$ÛäÁäzøõ½îû§ÁÒ2žeZä‡m4VCžô²€‰"8µá‰ Ãuø4x¹z{»6´«oiáñu¿]#ß¼v ´” º¥®Öq¨ËïžÑÈÀq[òYÙÞ¸„¤Íšl¬®+êxl{.à;úIÞFò.b¬½u2EA9˜‚ÕÞ Ž;ä8×D]ÌÉ*ÈCµŒ"¨\ï–|pŵµÀÄò®jfoiFõeü11Œ«¼øºËàhØÁÙìy]DçÏŸè)``mŸ‡ö:ØË€¯øÃèSh¯ÚÈ+z`Z¤ôÀôQ{wO÷ïäO\„«Ü“#Ýûí]v®_s|×ù®c×ñöŠ«ˆ*—ÉÃb’xÜðç¦ä¸Ô$$7 +‹¬¬Ë­(Ìâ¡ñõ欂Œl”kt©ïwî¡ëõ}û\w˜švì¸p¡ãúC÷ yœc˜_LL˜âtgEsqq…3m}ê«þäjãéÓ•EE•þŽjk‚ÝݧwEB„ Ïµ»’j¿¢e®Èݽ Iຨž§Óî‰bxüãIîu¨9ó]ÒA0%ñe±›C¥ò¬ð"<ዃ`„@ýt $`üMYan©¤ò’ª|ñ!lˆóñ˜³‹Ú÷ñ—Íí"¥iCvU^ÿ0ï«´á7¸Î!sð¹û…=Öw!&0QšU(ÏN‘À ,*Åˈ™åŠ%Ødañ5Šbr¤õMpˆ@/¿Gáj À“Cå1ù©éå›ÛJ€ºnX”[œ‹*™,Ôt˜Ç6d4¤ˆšŒòQ›§'òŒ÷M·Èà1uS–ŸŠäÈHV˜X,—€h¦vÄÈ£‘Ô(ùžàaÂýÔ€4 äk<ÛÚP[~SÚ‡© ¼Òõê®ScdÊCLUqE©z_+”¯§“´HŒ$Ý3ÀAó^O‡y#Š ÚSï%ùs«Ø;'î(î&FfjëzNyä¸ãá`/—¦À¶œÜôŒ\>Êú@dLr\Jx’2Q¥å­¿\-~xZ1êNÜë­BÃbDf÷çt¸û6ž5 ŽÆ)aœTId¬mªa¡PN«é",1†D¡Ër»Ø°ÔÈ´ÐTäÇV$•Vvæ;Í÷­Z(–ÍYCé]m¸àƽ^'.BíîdÇ1üŸëÄ1Ƚì¸h`Ö"\{ &|IæH¼;¹†ƒ‹0?ÇÓì„ë¿têþ¼Ù}öÖ§Æ 7ó‡G¯^¹ÜU[^][®(J*ŽÏåKÏžkù1O\²É~§…­àmñ ‰IHf¤~dzÙð‚f™AϪS×-°'©«w{oq/ŒV&KðÕ$¯{®[4w¿¯¸Š®0Í>Âb¬·i¿¹g½¬J=aIbAJ&ßÒrO}’yç‚›ƒO”»ˆÄ+ 0Õ-Õ&9 !_F $þ,ͼº¸eç¶]V ¯-< ÉÎÎÍAUL]XU`pH”×âv’4aðå‹—js–ð5WU›˜”(ç}ü"eD($äGEK«=?ò‹ ŽFù† p&²4²¬0';'—oV4”• RæÇGW…EHQV[^UÚTƒ*ª4J)¼AÜûP͹Bì×xx üF·Éó¥’0òÌ—·ð)ëuÑ–áhµêÉÀÃ+³Ò¿èjlÛ¢„eJÑ3¤> stream xœµY xSeº>!4Q¨‘õEPá" ›2Ãj„ ”Mè¾ï[Ú¦Ùš=_rš=ÝÛЦKºÐB -»b-¸‹£ Ž(s;wtœÿdNg¼Ú¢ŒWg˜»<<ô¡!§ýÿ÷{ß÷{¿/v¯˜÷ºÿ^¾}°\’H½Ýk ¢ü£ÇÈH@$Z£à®}õë(]’Aa4zS©«±…/åƒ6}+–r¨u©@e¢5¦D3øÀaq;ªßASBP¡ÀÅ-çÊ£r(”»é:Ì@7Õ õ@ZÝPCsk‘VÈÅ Ðfôq>ß‚¥„ÂÃÎõðØà³5çùì§h¦Ð©µ %:J••5g ÆÊŠF§×Þ@×éAca€üd›g÷²=a…2J}"¹5 Aœ'I/Œ•mÆgV:ÁRn2y,TÍ•Ú> ½¡è uz%wÆ 1jA/RØKêÜÕ¶Zu-²x¬õ¨ü˜ª[*úÞÿÈ£æ}›ös¤±´,Y_ äþæÄã_u 9 üôç`ßô C>žÚç|ÿ2”)„O×÷¯q IMï}’ï„_äxwQ Q`8ìPëk‚b=tRš{hè°*Y£ ÅÈþÓU4úT€f qhÜ·tº!\ü«Ç9Å…. ÆqÐí B÷®9CÓè-Ü{Â'Ÿ›É¡¸ûiÀجŒÓd¥¯ Ž ´Rð•õÙlzÒ÷¼ï…¹‚ÜWø¬ù„¿ ¿¼ˆ»Ÿr3¸Y½±éSt?âßúµî¢òK ËØ¶sßn ã|ïœô"~Û+t×ùã­‡€<Ѽ?ÿÜ1"ßçŸëã¡'oðý§ü+„¦2“ÊH0:• E)õÒª¨Ë[ªvˆ‹áR¹|NÎ-ýócˆB‘ˆ‡RŽãwi5jPééÜ nòÆ¥@.Yx͸Јžù¡¿ü²ÿC ¿;øÔ¢lm*èé@A]Œ©ºŒ¹·Ã‡žaMØ[|Ö† ÿv"lwTbr%Øçι Bh@¢Î¤9ÁÐ>UšJg•bÒª-Z[¦{3ÝzüN+¦»[ Ò`uZmÞ²*ú še+nŒ9ËÁCÐl4‡æîãÖ å9Qëv¹EyÝΘ³>†¶Ø;.\}D}έ©ÑYÜ„Œô$¿|~æÌúOùþ*vƒÍ\þGNHq—î–&çh Š@É(Ÿ^Ú-„ð .lñ»·®~ÈÇؓŽN› çkÁo®îã¦Ò“ب±CÄ ²òÙUÜáí+ÚÌ“•B°Gðœ"‡Ê¬W$&eJ(yKvç 9>w÷47kqÿº÷{º¼MÍ´x… ÄÏ+¢ŒºFR†YjÕÛÚ:h§Û±òÛF@¤W¡“BUÚæç¶¹WõzëI_ÓK7žï?Ùv8`¬ÉtJœPz£Î !1Ñš†½ëœï3Zâã]ðÿšï_ƒ@è’ƒ»S^)µ…£’6p ñ¡&Ýqï˨9è†`Ð&ÉRKT4Tz¹¬.Æ\SF¿Š²F¯æ–ƒNú U¸¶09Ëç‘ÑÞ>Œš,@DcúÚ,ƒLŸKµÆRГr”U˜ÊjÌÔ´Žñj DC‰‚b%ÉlP7ªR•®„æ¦ µÿ´nl® L&[åoQfˆÉÌà#àKò¼>ÂY€¾¸Z‰É<矕²÷ Oop¥¼¸+_B)ÎÄÕ¦üÝ­ÕÖb7S—P¥‰éCÂÏ@df¨“&)ô© %eŽBo¯âPÀËL ùPæ…|$›-¼ãŠ{îâŠ.`÷2p˜î‡cú> n,œRÐJÁj°——¹¬’~Y‚>\r”dë$øÀµQ7Š+Öw­… T§Ìd‹(Pe™Q_¤¥ŠÖJr°E¬\DîÛÕ/ø³'í…\}¡>6J‚~, F´üsì{¯}Œæ žÄ$ŸwMyÏ>‚žÂ51ŽLk¢Ž õƒ7u)ã\TªN•JRa-n¨öºôÇz‘óTä¯.I›5ÔQeŸ¶“©YÏ=–¿ÅrJB²ÀQ\†ZYyA^fñ¾Í‰o£'»Ñ¤~ü»ùAØ‘ÔÇ>>jT.´ë,¥iÉzH¥¢`¤Jb… *i» ªåÆz½ÝRÐaªfæ/0(Ò3£â¶Éã|zÙ›H4Ѐþñÿ‘/žGºý#~öÛGÑŒ/ßíïj¡¹žDØÀle\ÇQDˆõ€ÙyÈrîÑ׆۲ȇ"ÅØäÎñ;Ú—å`,RQE{bWn2 «lPek¦ßC'ƒ® ª]£5NÐ…f—U€²¾Ø¢ÌQànÇ- Z,(¾-ˆk¸ÃFNRÑ®öØÓÿyj´µŽd– >Ô £ï_‡3‹Ä[Àî°—URè!¶ÛÞf·¿¢zÔ¸Ôfu|ŒâèXˆaâ€ÔÈ~ꤛ9C×$8‡4ÿÚs?u`Lóîч¡G›¢ ‡šÛg p¼‚~ 5¡&Á‹\Ý?{.ÐLC|·›ô¿¯<Ëgnãl4æk(iDáKÉ@fCSÅÎ냹T•âtu†Ê@­æú´E`(•‰ 33Ò÷¹¯ôhûùö/i{½¥jÉ“)¾¨yIÜl͈w˜+Ê(»¯éw@º\úì\e–4ŽÎ^—½ "ÉE¯œéhmm j¶ÑÔBÔ7VújºÝçFìJi&Fú×kl8ݬºU Þ6€m¤0]ö6«ã2Ø9Ü9u±Ñzˆ¡c ЉógØG:Z0À¬oš{x¨G•RªZ¢‚R(RØ ¶€ôÐ=pDè¸o¢4ÿ|ÅY4þ·|VÉNvÊ}y9yy2›Úª¦²™TœÒ2÷reܸ튓ím7šÞ¡,UÖÊ»Ä m±8 ö’ó/f¼ŽžïGõR“XO¾çÒïY©w뾌¡Ð¡aT)‰zH¦öÁ^ÃÈ Ã„v ªëÇà ¨¹$ f”#‡B Wn]· b ©QÕc6š±ìÈnOG£W\^ ‡_…¾{ñÖ—ïßôÐh<›fk¶Ùû@Té Üûû1åÙ· òÌùò³×Ï£5¿åû7ýÂå!6uFqL~djÌË@î’ôô:L ®£t/zÞêqÆî`M†: ³f+W¨Î4`í)Ò–îXï•¿â}Ï÷ e«µÜ-\»¸‡!² ÙžìÍmËìÓWCt–·žªL8œõ:œƒÞžÖ·[¡yp†¼3þ§Ï?&ú j¼Ã?RÕÉZ#Ux$µ*õïÈÁ£õ'Ó®Ý]OU.´P¨JÝ´üçÒy´12ŒjƒÌ'>eô7ß¿ 3ºJ©D“Ü&÷qSÑBÐKhîÚÁ×Þ´Šì&§ ªI›Î¢.ÈÑC•ñLòˆo(F ]atk±‘—HdÜŸ¸þ«èÿ?ñÚÛ,5t'z ÑxjàÚ¬%`ÀÍ?5Þ( - ¥ƒ‡è¢ZñìÖ‚{2ö΀»:dÕGhÐÃ;s Ä©£äÇjH´TÖ³»â¢g¹O7¸ŽØ;èôHÅé¦WˆF¨’Æ*!ƒ|;CœÚâÎØ–²»PIåŸÛmÏò‰íÜÔ¼a怩ÊB7}vú–rKm^l®|wi7_²¡à¹0é!Š+ZíŽF¨$½VYNNAJ\o^ÿñöîÖjªnë …ÈoN¡iu?˜Jèå¡q¯¡,ý÷Fÿøä‚Ôdê j¿[±HõJ£QOÍVÉ #ŠN¨8nV+õz)P³‡h£^ñ¢%½¡ï¢±h›ô­Ð¢r©tF£RE­š»@W äöœ¾3Mò§^:ÙÙ‡-­ÏP³KQ¸ä—ä@Sƒ§ûDTׯÛsäì×_ü=ðé* Há•Ó›yžïÿøŸtîrÓÜ‚|Ѓ¢ˆûjèBH;`ð0/DœèçF¢†ÜÒˆxù>ƒH¥0fÖ|x`ëذ>Üj“œÞj6x¡°–U!ÛbœúÆ\ êJ•ƒÅfu±ãý<ü2÷èÐ?‘\–M7Ý%×õC¯–]äö¸.ò.°³øìº€lpP•õ2U´kOrˆAb;ÒËåebЂ ´F›½¾±¹=Žf†¼>püpXj,5¹†JÙ*ÓJ ”ÎB¯¼ªøö·UQsÅ¥6ƒÝm2»-´ÝÓÒØuP£ò(ÛKph„’âR…DÂ-å–„DlÛ³ GW¥O7¸üeTE}S_7xÀ®¨É©Wb@¾~=Øpç>`X?¶à¶_¶àJkf²ƒw)§-œ¬Ä—ÕkvWæ¼¾à_‡y›åAÏaâ .#m÷ÏwƒâíCÝÎ>[}HÐ o1Çk¯¶Á%°‘ý ‡6ÎàfÎâÖ=s|ñïF¨…ìÂG¹eBŽ ¥ßàyŒ<| +9Ðsÿæ#ò½þ¥<4û 6þ:ß߆ ÑÒÇ¿æ¦pÑ\,§äJ¸§nMG£½(å# µ¸W 9ÑŽù8þ‚ð•@ÎøMè¯@Ó¯ Iô™[7ß½äGï„qÓ¥Xà ¸FíÇl¡Íý¨ÞÃ˹†.`Þé‰93'‡{0YMpc‚^ h@ŒÑ®¤/V—oRÆh DªdYd"(¡QT¶Z* Žô9%99â¤}G º¾íA mع OÕÎQ¡­´¡Åö.×™ƒ ²C½¡\’®•悘̯QV56ÖuR?LÝÝ^ô†çðs¾?ƒm^ ^e¹‹Å?OÈç‘)ý›MAý§6 A\2'~RÜ®Â0ÌŽ)‚AÔ4ºòúLpåTöÆáŶÙvFÀ¼0yïyIˆx솲JʆC‚poEãëѯíÃW:çX¢¢õÒ ŸŠêúð ³íîW˜ë“’ÒÓ¨wQß]ꌛ=tÃh0*ð[Ž’ÚúòjCA«F÷—Žƒ&sM[]Û‘7®üÓýåGÙD¾úŒöMa‹¯ã‹©ÁÕþÄ/…6ƒU&3jåzª8"=5 Èt}S›—i`¼4sÀrêálRïÎ4ãàà x—¼úëËÜdŠ«þn'%«0=ú¥0}è—Øq U!BÐ{Z²Fª/•FЊ½:)’Á=«Î§¾q­õ;;õ4› nÞöíé»òBœ%ÀOÙZíf›Yd3·A-sG¥6\ ï¾›‚8{ìÕ©Á¢k_¡Œ¬§p…TRS“·¼½¼‹¾ˆ~íl1㋈^oL˜›ÌÍÑþØ”íÞ¯†›²6/W‘¡.¤Ó—&Ì–Æë°HEq 1§oµ£'˨àéMl’°¾Ä“žšš–š_UÐÒÖæk£FÞù>ÿüfÚ3ˆöc"w¢R!´¨{²Ûr|ræéæBKšCkN®,nƒò“{ýVsèªl£Z—O¥A?Žü§Qì#¿ÖhÄ#ÿ¾ˆ¸·ÖšÄ؆ïãxøï¸HÏŽ,Úª÷h*u'¤!§Kìúê"—Ô•‰äüO,X¹òà·,MŒ g• W)îJ†$‘\¼AmÔã,©±è¬6“Ùi§\no›³¼kûÅ’Ó@bíòÑ44et >–óñÐÿ„ÀN3]ØŠBMe`Ág ¬¨!§@Œ¼¦(œ ÑÊðd¤Â LY0 e6›LNï1ôhs=Ù!8:µÚPŠã97m¨£4©T¹{ËÈâÀ –Sg8EŸ†Wô§†×Lu.%”Ð% ¤™õÉhË ·}Ì%4í ÐÂn²›› ÈoH7áqMNÃÇ kfj˜ÑÅ®ÍT|“}ïóý_ù ¯nÒSôF¥B ƒ¥ Iúú´Á.ÆW©AmP-àØTNøèü¹@Fnë¸é±´Y<ôØYÿZôjèAU*äƒRÄM¼z cŒDcš¨›ì˜ª‹g™“ˆq›ª1æÄ÷ fµ_ØË»uŽÚGé¬Õ€VO©sŠ×Fg‚èÔɹÉC¸éjÅP"Úq0áxw]Sc9UÝYqr!c1F(ÞÿßÏú ÁàRäfé!‡JÇeà‹a€v°é*cƒ9™B¬Ss½Câl}P듳"°(R€>!VñT2$1)#ÐÊñYNšKsÌô¹¡!s¡I["\r“«ý;ûvÈá·:]]ŒÝ䜘qØ|æÜèDéþôÈ—Ÿ]ÛR·wÝ®ýûÓ)ÕåÈÚ}»S’_þ?ý$é˜Ýõ-' \²v–d©3 ¥ô®ü_yè—í›óóÛ…ˆûËlþ_† .y^6ž¨0W“˜Ô¦R]mìÐàv'×–jœu(!$ŸU‘)«¶Ö^2Ñv¬!‡Ê¬IˆÓCx=à¹Ø­½eš3mÒ1/à4kÐ(9éÐJü¤Æzcã[&ѵüoOãZö*×D7ýÕT`ÖáÜó¸Å^‰šYñ iM… ©D;8kЛ¸ÀªŽ—9MepVÁ† N1ýÙÿ¬ÐR£¨(Âi¹Pª/z™cBZh5b~æåã‡ïP&¶ý ÄËD¼©Á×QÎB¤>35%=%»¦ØÛáko¥~ƒ>ÔeRÁáÉi©iyUâæ_›o´w°‹ Ðöïx¨ññ¸0AX¯íŠÍIÊH= ¬¯®q8”",~í‹Ûe8EƒŽÔ3j[-ºM@ã©‘$‰£ëxK¾òÐS¾¯Ï³KZùþƒB§ %PK¨å óàÌB½€¬ú<‰’Q(šüÑãœhO<Ç,À’j´b³º£‰1”ìTcgͨê²/=Ÿ€§±G¸™s.„}ðæÉþÚ:šÙzJUoCÛ;•=&¦›$Z>ã̽ŒSl>ΰ]åîG *.ƒçåµ¢Ixräp¨–&®^†ÛêKÅïõ£©_£™×ß«~V:šxÙuå(AˆÏGyÇ„íRoêmLêª\eªäW»6î•ÿˆI ºÝ‹&öóñçv–÷²òq'Þ#4[­(#‡;‰;…t2ƒF[ø”Â5Ú&¨ÅÍ„q“·ËøÕ<þÏ–s$“å_±æ4tc¾¬Mô ™oóY7ZòÖ'ظõë!âì’²D{œ# ØÎ Æ“Ÿ½Ûã«AónܼHH¢q+^YÁÍ^ÆíÛ ¶Fõ]íE»kJ;e-ö[Й ”U^&9™‘ðèf¹ÒÒ|é}Ž&õËZÊ=¾hÉìpj_Vtntäº%е£–â6›qn³7×l…6h7{‹|ù‡q[×V»F‡5nU õÕùØ󎲫ùlF…ТÁ0é@§¤ŠÔ9xæQão´¦£è…á ÌÞ\“>]“]¬£¢¹å«½=² §(ÁUŒ»Šã*3¢ˆ@âƒ"s†&/KM¥p“÷s×räóÜ Öéôj}j1HHMf·Vºí.ÊawØ^‡<…v*^Ï Iàæè›&¨ Zë¬-w°R]h–Õh+ˆš/•WÑ“ò=ìÊ5Wyž{ÎN î»mÛþ‰ãaâƒc þs¨ºÌ:qbw5þ·Í\a²Ô²õï%ˆÿË$­endstream endobj 367 0 obj << /Filter /FlateDecode /Length 2184 >> stream xœµXKo¹¼ë´9ì}nfšß9hmÇÆf`%y`C[ImÏk§[œžsê#Ù#¶<’eKaˆ=|¬ª¯È?&¼NÿòßÓÅÞÁ‘6“‹nO.öþرv’ÿœ.&? …•ø¥<ˆÉÉù^ê*&^LœquPfr²ØcRV'ÐX;jÍe¨ËÉÙÞïìEÅkn´—!°eQ>‹eålVMéà o=[´§åçtT¹Ž½LÐÞ³vÇ©&¡”ª¹“l±ª¦‹öÆÞ>é¼]U¹·`«óT Z°f3êÒÌ© [ –V¼º*†ZVÒ×\Åzj®1¨d}»˜å)´b]ÖJk¥c›vôÙUÿ:ùù‹™æO•©½µ)ÒGíºˆï|´ØÏ˜Î"A°Ÿ†¢aï˜ä½«ê<‰ãå$ÞÔ.x?äëÃãã§èë}æøj½®Œ¨9Ž­6´»€ù„b©œE¸•fWËÓ¾]-;êÐ˱fy–>ÛçMßt³~¨õš¯6C­a¿Uαٲy?¯®÷1ë†yÆcURÓµëQûÏÅY<é†å»¸›¡UFÖÂeø²š>ÕÀ··PµÑAæxçï2,Ó,Íi%±åûØ\ çl-û¡À¥ –É6B”‡²‚¹ZMµßÏ`ኽ9ú%.ôÅÉÞ¯{¼6‘‹›;¨ëwQWjU[ë&ŽûÚH¢ïïì²ï×ÝÓƒƒgG‡«¦ÕTB3¶³Y}˜öõjsq°nNiÞ,­ã›µCsFúb9¸ÊÛX1•²6"cù¸@r3_Äiœœf¯)4‡Î}n•ÂŽ¨ÔFIvI%PŽ•<\4©‘/oSMž“>ßÏe/Ù«ÿ–=ˆXq:°×¹(lâ’%.Muàì‡×«RQÚ~µi+b‹´Ð̬ÄZ/†6€ B-T ÙI ¢1E=[V¼Œ¯(HÞˆc¥Èeì”[9HÙŒý£¤îããDd51 ‹ÂÓá04;|ŸtV+q#ª›†T`<õ%’çÌ)ÈLï¬8÷Ñ ýˆ3§åG|*‘NÒsÙhyUŒü¾°ã±îzì)J³bÛ†V³ãÕyÿïf«„ -î@¡)µ ØÏ Ðe[+#„ËMß6)êß1ÁßUD*ŽÅ&~Dêz]Ó¡ÃOÖÉZ›äKÎVíÓ¤ÛÜÕÂË‘ncøÍ*wð¡ëêOÜñºqß)l;pFÖ€dÜÊ&”ˆ5·+Ûæ#Ž#.“ ÍžSÑÜ'3cÏŠoc;/³OŸ“pgà§ &æÓäÓäD6©Þ)6:(Y+ ¡¥…hè˜QÙË„î4kÖ—íéP9‰éZøG· {ÑnX%„ÑZ!=eNÍ-åí;gl¾åÄ k1Ö•”8©D‹ñZrø¡ý¸$47”9µwµ…(â­B<Þ”8SöBtt7dìfN5fgNÇÓš=$­’rLk1¯E>)\¬Iè3Ù´œT^‘\Ûm,¶j¤Ž)Qjygž”ÖG}9ܧ2ÙIE&Œ”H.²ëFÒ=Ÿûk.KwžRñmÖÙ,šuwÙ\ûÏÙ@׊ÇÜø¬T÷ò¾0[ö$â`· ¼ôA+²p ÆæIÖû o4}9´uÕÅÀêJð.¦ìàRnÌôBàÂAò‹ŸµÖ0¬Oòì¸ü}½eÕ¬ XrË»ÈDçl­¿Ý–šÿ§)å5Zïç«Px,Kª@,¦tÎ~‡'p€>Ä™‚Â^‰rC€…Ž5‰B:“ûmå%%[3¦P‹µ:Z,{»¿-¾cÿŒ*’\ý’Š}¾ŽÖì"<±ž5ó¶´)ÙC¥îFlýP"dG·¨a¸ó¢[ThÒ}´{^RãÊA—³QVi—boq)”×-ß^û¯³Í¬ëw#Ã;u—ÍâÅòRÝËeèh2àN°\¦¼ûÑóG5ÆêZZq—Ѳ9 ðú ƒWÒ¡À2N›¾(¿zøòœ>éôpõJHRÆ›‰9Q^³„1±fdFÞ¶Iì¥ ìãeéL‰ü„§WT$]´_QiH”ãf .ùÀÉ`‘J:k³J.õFæ2ˆ°ûÁÄŸqXåÀ•Iþé·*"Ôø—«Ñ°í}vÚ”çètaS´ 9Ÿaã">ðÜÔRJ(ZŠ@Swû”Cˆ˜µTÄÌ÷8bý4JÕžëÛµ´;mæ³î!ØSˆŠ”¦\Ã`E€mªùìɘÙÙ«ýTÆÏÏJ;Ò”O‰t‰–<*o. †ÂÞj(€Lm¶wª‹‹u —U/#D)Ù鑟(¬óÖ|4}¼ŠÛÈc4GÏ.še¼½›h(è勾\~èR¾„m× ÀÏ=ß Þ£k—y\ûËYnr”Ž}1ÛŸ’vC(oÔ‚n)§Oé®ð¥éßÅ(¼2%o8 †ˆ¼áqK_á 5Ÿ¢7¡C›]¿ ¬Ab¬e]Å`")3A°*^&‡?pÈðÚ‘Ÿþž²h)C`¯œ/`ê—L¡äD[ŽR¯Ì»å?èå‡R7’ý“Šú²a½”[.4ËvaG:Bêp0üš½lòôÝg›ÏÙΫÁ”¬½FçŒÙaà.&Dz­‰ewývÑ }}zã¼éÛòm·íÛÙÐf¬_ -Õ.Ê1P6íÙuÇÑú2_ ö-ë’/,­}‡ ‘ŠÎ\”TÐ9}|÷´áô€£@³ŸM¹´‡a —‚ ¬Æš|;ð·€yHò0prVêr äq¼_÷þäOÿIendstream endobj 368 0 obj << /Filter /FlateDecode /Length 17996 >> stream xœí[od¹‘ ßëi÷aߤ®ôáÇ‹Y`|™Þ؃™îšñƒ{Ô]R•ìºYR»Çóë7‚Œ’çä9ÊT¦ªTÕ„at‰ÉÛ!ƒ_¼üålت³ÿGÿýþí³_|mÝÙ«ÛgÃÙ«gy¦Ò¯gôŸïßžýêÄðB¶ã0ª³WÏrRuÕYpa;wöâí³Î_ü "+囨ƒÞŽ˜äÅËgÜüö|ØÎF=Ž›wÕ¿_¦› †qsyþÿˆ*ú¸y{ý}ýçóæÇ)•mŒ›ëYä_RƘíôæíûóç*_.ôÍõ»ê§W”ZmÞ_åŽVm.nš$oð'øÔÑoš¿ÿ¡ÊêݹŽÛÁŒfs‡Ñ-dª7w×o/©k6·9[¯½×assÝüy{þŸ/þyÖ!Ï©Ÿ·Þç–þGÈ SvsU54W:Xo6?bœ°øä‹›W—ôgðXkˆ7š5Tð»*øløÁ9?øÍÅŸos’šùuõé;”ý×sí¡QbØpî^m¾Ë}ÿjÚ°ùãF÷X…ÍíõÛ”K4›º1ß\Ü5)êîüyúúÍwUPôŽª ÿzÝ Aª"tïÛ¶wßQ•ùïIs¿¹¾¥&ÌÒ¾yžZËØÜöøQaG  ¢SW"Í…‰ä¾¤zM²f•o¾ümî–ªx“DL™­³£>{ñ»g/þþ(øIt,I`l9Èßxßþðö[¨üíåÍ_/_~ Myqûæòö—ðÛ··ßžÿÑ™_ªÁB9í 2aóŸßžï”l ƒÂ¡Ç?À×9…ÝÂÿa«¡ÊÍx»¸m>û$à»Í5vbð©q¨ÉKbœ 6KÍ3(Ó6ÊÅMŠŒƒ‘Õ8hÂæßo 9Ö+Êg°³.•žÛÕzϵõ[mâÙóÔì1â×n>¼y—‰:ilë‘›ä9 êh \nªˆ:¬Ž“\¸ÜÛ··ÌÀ‘›.'¾ž ¨œPùã5ä EøËBW_÷}’DãmM€BbO RÍ7¯_¿¶;?ÏC¤ E–pì¯'ƒÿú}n|f ㇼw›º~UÇk(µúí‹gÿö,ë@wvs¨Î3ACƒê3?ÚíTR|JáwP¾gÓ÷ÖÂG×Òó>³o ›os ÓgÌÀpç+ è â´"´þùÍߨ'f†U„É Íû$)}ÐsAv#¡,dsÛ(¡9ʲ4¾d]ëZ)•žÿ¼%Õ9L¢½û¡ ¢­«¼a9P臭ºóu¨Ý˜ÏÛQró–íÖ´Ôo­0ÔW;nþz}ÁÆ€Û\PÍ¢k2K k £œ[•{s÷Kb¨²öl„NÓžÔQè2Ê¿þ?ˆ]¶Q'ÄŸ¿¹~ûsú)ªÍÏ®.ÞýŒÿ›"½»Ý‚‘pËaqÌÑß\ßBNßž3ÓÁ8øóåß$¾Kß¶#>q? 8Ú˜ŽgÖÀH1öÌ8 £Å¡zyö‡³wÏàŸ£ îìGA ¦Îþcî«gʃòê Hà¶j<{+!~€§ÏÞ<ûfW,çãÖ•&ÖˆÃÕ×±(¤Žå†Ñoƒ©bqHKG ßPEÊM ?éPG¢&–w (¶ŽE!M¬hÆmh ¤:·M‰U·ÖËTΠÿB2e#„¸3ëÇmŒyN¦Ï¡zÑá¬ÊJ%üçÙÂàµ0Ì6a)Èσ¢d:*«š Ô0®š’¨t•‹Jb'ýíƒÊý Òc&HÈ ñ0Ò¶ÛGÚpRRÞ†fˆ[¨·…‘º[ðNrý© ©a™SПÚf…ñ/ïÏ퀓 ·Ùž]¿»:×0þGk7—ßß]¾,C, ²I=R[èkÂf4РeÏPgT’*ÂW:ãÄüZ˜èFB\`ºÀ÷ЦKÚ8ÈÙÔ!vÛX§ÓGoµªC@T¶>¸ôwÈPHe§òƒ¸)$9S¥Áh]Å1æ¡/™D['ýº5XˆÃ9†Œ`i†X¢€Ú[ù3x0"ªªBSÞ\õ1FÁh’•DF"(Æ]!`Bc#côŸ‚|FD‰Â¨ø6@Qâ&$X«‘P8B#ãð·`þ\ë8P!à%„8¿µXC ­¹…vA\TÊXƒEÛÔÖ§Âq [³R0N“³b šx¬2T"el@cmµ«âÀ,w€é(~Î)1$‚õm¡Ê ¼@o¥°f!¶=Î 1$À¿üâP ¦Osæ ´dNäÁôÀ¸”M!ƒEvq·? @4`¡ÎC*‹ÃÓØÑaÏTA4L ±j«¡(jmAk ×u1ÒÓ >é@’¶J#À-%ÒÚ ïAƒåc«Nw#ØB¦ `õ˜ÅeÇ=4âå 4dês–@˜jC•: uÐŽ…HGÉRî4|c–ré“‚®ÆŠ3ÐNUÃ)µpŽCCBB”N)‡UÆ­‹Ðˆ6TcÛi “³Õø‡–²VÑ`‹¡®‚8éc1ÄBU±3µÊ#QÌê ô²IQ®k@ËhhƒB¢‡…FPW l&UgЩ¦ÎÂ$ÃŽ G @JªùäÐÔÖ‰ØÄ0`4¤¯bÎ9k²z¾Úap2~ýU'c'c'c'ãOŒ¯q"‘HƒkmDE 3w’¾{jÊF7E£«ÉÈ5h¼‡Œ’FИ?`ÂÆ ð»[6š<, 9N#Î:]ÃFICC©B, ·* ɽˆˆ™„LÔPJ2^ˆ ÿtCT˜"„ÐÕ2‡…¨¸:Q0J„e jǨ0*[ž‚œ$bO#TA™†§§ð¥v O¡RF·<õ ‚Ó„KÕ8Õ 6TMS¦4–„¦Š¿Zhjyâ,457ƒ›iªcÀ^-4Åyž³5M5Tp5MaÈlM S  ˜zÈ-$ÃÔá2e­ˆ´r¡¢©J JACäf–ø4¥…¥:²Œ KÅaY±TÒDÂR Ý–ãKAÞ¼¯YŠ ®+'±T7,5 (‰LÂRÀM"a©‘Œ K4©Aa©ÑMSCªR`ªò\¿ÀÔyþª†)|–Y`Š>›`k˜( Œ5Lq‚Mxe˜¢ãä ÍÌ‚ÒÆ¨ì(í(í(í(í(Ý¥Å.…¶Ø¥©Õ'0]˜ ¯³ô^rÆup:MP“³ž•T\ç“Ò`Ò5”„,î§d=uKsHÖ3À=i'xì•4‚ ##"Fú,ß…‘LDA$ö\=&f$ŒDözÛ0˜“S µQ %€S,¯Z ’7H€ˆ¿ÔSuàWÌ‚+@DꛚˆÂ‚BDôó5D„Þ ¹1g’cKDi:OD4Pb^&"B…3j…ˆ0ò]l8¤Ï­èwIX‰¦ü¾ŒDÜ•‘sf$‘tŒP?=5 PñkËddŸ†SQ±Ô(:C‡©ˆðÉÐa*j€h*¢d™ŠŠCYv#**èÞÔ BE$VZ )T„á“×„Š˜«©8hKón¦¢òÔí¶ž¬£:)&a¢‚¦ˆ¶b"²ßÕfŸÃÞ5LT´*U˜•ÚïªBbk_v$v$v$v$þäXÙ‰ª5'^œE RE2êºV„¤ï«CrT©„«"\µäÀ8lÚ~iM;±Ø‹´ež¾7j¹ò kcÃZ‰2‡íQh¦ùb…V¢NA+Œüìմ„&ÏÑ­Ðå¶uAˆªÑ B“çß‚Vž YUêðЬD`LÙòŒ<€Œ l«¢m„üòäz…¶Tx¡-$r¶€)OHdØ*˜1æ¯À$)µƒÀV Ž|< [œü¹ÐÀV…;h;h;h;h;hOÚbÓzm§F-n8·î!´uSغ)këößZK#å±Y ¢w­ˆ/J"}9¤Ðmî¥o»å‰?°YSØÇŒ†*„ð‘ ªBÌ^OlýWsˆ—‚8¦Jnq5ˆKQ¼%·~âÀ*qjŒ§igƒñì‚)2 *Œ»œ`< ãŽvŽkEë ò8zìÕ äz÷| òGW¨A>ˆT0Èv|È•N WÐHJ7 ‡oZ¤qbáôœ ƒ\C‡„Z2±5)³Ò[MkòÁÓ&9 #ÖIÉD@Ž Ûå ÈÖ6—\…ã(&cÍq¤jŒÐжÞ ½@SûÂqå2J5c •›rùÈrCcœ6zv™1Èø:[s\A÷Zßpê½Á];®öæv&páö@ç ·%d…ÛÌöÂmNUq;'nãFÕr›6Û¬r›â4ÜÎg„Û¼ P¸ œ¼Ž ·Ó6žÂíüÀÂm¨¹nCbkn;S®á6ôbÞÐ&܆=ÖÜpÔÖ‡žhnC“êv!e´‘¹= ¸ë†ÛðUªå6Œè¬Õ˜Û {¢]Há ·%çÂmY'ÉÜÆê5ØötÊ£Âö@§v˜ÛAW](‡–‚„ÛÈ—ÌEá¶ÍÚ³p[Ó)”ŠÛ†`/ÜÆÛ#lÃíÎÀ0·íq„Û.°¿¹-‹Anc§àY÷,ë7÷‹€[ÓF·ÝcëˆíÆïØîØîØîØîØ~ŠØ.ö¶…‘4µ·A ÖÁ1𱸽¸*‚³’zÿNÅS¡´ÄÙ ÓË\nö(åÂ`øh^Ãë°U¾Æ+2/Öûãvà h&«SÆ+È´ŸÒU7Ç*vФѶtU‘‰"tÅ­x±¦k„æTBW0ÑÕŽ0.C½dtÚ=s0fŸïºª¼Õ¾Ð•§ÑÜycŒMïºd©aëàlnáÂVOç\…­n[k|‹¸mmh|‹èuËVª^a+ç\تéôMf+ÚÕŽf¯›£;àŠ»O[¸:EÇy®ƒËŸ)p…^Îk$ln1ÐA 6Ép½#6£OxÛÚ¹˜Pš1)p…~§¾ËpųJº†+êÁXóªÜDÄpEÕ”©À…möÌ)l/WÓ+1ÖF1²ujw¶v¶v¶v¶v¶>Œ­År5mc¹â¾ñ±¡+4©iïWú¤4SΛrN³1[r s]+‹oÁ\F°§[XW!ÐIPŸºÜMd¾dd(³Û¿`ÓÖÃneabnn~ÆCòØ+ec\;‡0Ü+ÜWpÏœ¸7`€"Çæ®œ„òvWû–¤;Ÿºó¹ëŠîì*ºÃ¸ÍG™î t‡LãlM®ÂîŽw.Â=møËõc¸C5Cs"Ý‹®ñ84^@dch¶å•8‚wÞŸVðΛð ÞeÆ^ðɉ&xÇ[•ʲ„r~²,Áë3…îƒoW Ó‘oWæäÐKKSÝÙ5Çtç¦)t/!Bw^ºº+Z@*t7¼à)tçž*t9Œõe9ÐS­¶0 ñ¦îÜÂwÔcwZÄ)lg_ba;ûį*²7vs'{'{'{'{'ûgJöbµkèÖj±Ñ¶`»!×KÅvв‚v«³ LÚî$°gl {Ž#°|­ Á^ñ5”ÇÁ:Mû–ög•öq'ì Ê9àÔ$WˆÐ Éusn¦„Éññ–äQå=c5É íLr6ÛnÌ+!q{ 3ÏÂmH­ZnCÕ}³1/b-\Ãm:Ñ^¸­éTQá¶ã3ân;ÐÎA÷@7p{:_»¡¶ ä[,Ô¦Õ‹ŠÚC¾3H ­íhkK.g6ûáD>Q‡ŒÍ)TãÚž¯$h¸Ëñ>h3~ ´Ít±jm=pÓ¼fSC7Ìvù¤A¶xûÙƒn‘"Vˆmc{AÄÑY8 ±=+!6´”j.â.(Ä&Ê ±U$™ZC6´vÀUÅëÖï¼î¼î¼î¼î¼~J¼®,ìarŸ[–ðubó>ñ9²7 6 aë2Ÿe;ú“´yo@Ça7b17Ê|¥d™ÎÜøGÒ:7ßy¹ƒÎ´7¯Ä^Kˆð„Æ5{óÊóZ^SƒW¼–æ5§*¼.!ÄkT1ùõÂkF¯ðzPt>óº©Yäuôªõg¦µ“v]òWªî9¹QpmGÞwG¸vtþC:œCs9Ïú z§P;ï—+Ðvjr ç0Ð BíBN¦6/zjCþ¡ugòÝ­W´3»C»C»C»C»CûéA»ØÚ Zñp[›÷üM¨] Í‹Œ†úçS ¤)Š0f CýªÊƒ¨íé.ó5jKœSS;Ks7T­…‚r!7ÌÀ}$•™Båȯ"*sœBe)Tfœ.S9f •AØl{ÌeNs>§¹Ñ §yyD8­#­G0§+*/rZ®ÒNÀ›V. ¨CË#jÛ.†ÀÇÄÔ†ÖŽ*Pb"XïåɹÙ*Û5,ËÁòÇÁ2ïêç›}a€[°ƒK%2D¦ÃØ~$·9Já6µ]á6’¼õ5–á6{sâ¶ó汃¸M·ÀVØæ}€Ûœ†Ü Œf} ׋cqðæ½ŒBmK®ãBm·írE/±hãݲ%V|l…ÙšÞ¿*ÐæÊ­Al×láÅ«–†ÚÒÐ.‚H"67pmº-J˜=Ð …ÙJSIÂl•¡!\Œv²·¹¤f7×5É lÄžáméNЊÞ|`¥Ð»Y•”ª­¡›+"ä&p+~¼@ÀóƒµÜžCJ[§]‘ë]…Üž|€…Ü¡]øÝfÁ6‡¹ºá«›_–­È=LÞß –ªÚ 2±²;·;·;·;·;·Ÿ*·³Å§ƒÍÌêN‚z½%„èm'7p?Ïùômtq7Þôk Xtäç´°ægŠÖ`-'ŠW¶óMñÍí} ¿ùð‘üf¨®ð„„|˜Âï9­ÎDk¾tƒäa´æTk´Žš×D˜ÖP‚jž"Ø…kfü2®e·Ÿàš¢­ƒ#¦ÐšÁTÑ:ƒhÖ–5‡ÀZ8+°†jç3è…×ìÀ^[ºß¾â5?’+¼Æ‡~M lÓÞã/ÿ¯\‘º¶ƒÒªJs-êŒÖÖMöŒ \}'jUE\+M«!‚kÍË‚kç)ß‚kKñ2®QYŽÍÍR%•à뛥ÒêWÆC!6m dFÊEW…Øø‚žkˆ ýÐ;ÐÙ« ×­±ÝqÝqÝqÝqÝqý„p-öµ¯j?ØÄÚGâõ‰éÜlõ?!9dÎf2k-0¾½ÏUŽ#\ í¥Nûvî>œ‘ÖÑ íi¹ñÖHË!LÚÂÕBZEY!-ðÙ¬“VÇö‰®¤Åﯟ HP‰MGíAZåH1¬Öñ=UBÚÀ¾ÌBZšÖÒ*ê©BZKM#2Œ÷©æ.<ÙQŸ-WL/)¸aж›ô&°åúW°åƒ)[©É2ly ¢À–7ß lm ¬¯Á–2.¬¥[v+Ör¢ÂZJÄìBøÆµž àHb jùtPa-ß—uU‘ö¦q'm'm'm'm'팴bÕªø¥ZµÅÃ7§ï8õð„¾P…vì /ü›‘´ƒ¾|ûŽeˆûx\Ž€OW!,o£*˧`8ÈȽN¿ gø®0\rž1|eû0<5/T§æ]£z0ÔqkTWÛæf¦„ð±…:'¨t…–P]Ñý+T‡Iohú2ýÐP=Zz=€±>XZ})X'|¬k^v*X§‹ö ÖA<)dëCûÂmr0Ö+i?^~>€Çîn¨Îo\ ÕA¡L¨.™°«ÉÝÒ4ìÚÒõ¦ vn«5²Ë}§…ì´O²ûe…ì òɘ²ãõ« *9!;÷J!;·D!»ñùVƒBvKçk®*®‘6tçzçzçzçúOŒël±GãÖbŽ£ìУ!|I`n/‚=²QÀ>ÒYÒ5°Ë5¨+`—°KÈÞ`ç­Pkd§4';³UÀˆGƒ]8¾vG8«À.?첓ÁÎQ]vò Ù…ã‹d—§ ÙyaFÀÎ(²š[ß"nË?!{p|>&KDÄ[{ë7 v‘]É+Lv›¡=0cÇöÍ‚|³kë\ ß²ËIA;m¢²C=ó [™ìƒcg"“s Ù¡ÍÆf(—Íz…ìzrËd»É{ÝÖÀÎ_´vKO ×A2&Û÷$‘€šshÌÄ@öÊ2ع *°ó{¸ÂuzÄ¢p7ðý×LõÚ^ïTïTïTïTïTÿ©.ÖºŸîÊ&alÀN#á°£È4_ô™£žÇuA=¾ÅzïÊÌ£¡ÊlÆñÖsÀ Qχo ˘ž¦÷f×àԾ׺üO…z9 õa¤cÜêùN&a½¨a½'ïÁ!1tëIut–EXÏk"#rÔ»b½ÐŸY/ÎÕÂz^‰Ö~»¸°ž/›=ˆõ|÷TbxÙ«o×fä¡]a=BolY¯Rë¬g/²>B‰ªywûe°ëMœ:S ýöŒm½¤*°çT+°¶¹D^ÃX½¶Ó#8Œÿ« õ­ ßQßQßQßQßQÿ… ^ìz3Ý þ0ØË]…öŒÿÏö‘$-Á^B ìãäµ§£a/hçGa» œÿ>’ä²Fr®ФlCr }Â…¼| ’3õ§†é^’HH^VlVHNk8r“ÏpŽ0l½û1ºfë£lކ&û +†+z¡0|Ø6‚ˆ¯´Ï* ðò#Æ+Ç'ÂZWjÛPÞñ+H†ãSíy9Æ^Î{Ž€nž/ÃU,×С¢:3<Òí·ÃéÐÕ çT‡1œê#×ô€w8·gEqrþ.ìfºÏ¼3¼3¼3¼3¼3üé3\,q¨öI,q†é2Åå%¤­Ÿe°>s»ßÕVìã8õs’Ë@^#ù˜7;=>ɹ͟ÊÓú’;zʶ"ù˜æTÓTT¡4¤ñÉÖöä¼tS´„,CšŸ>;Òre¬PZ³kT(M‡\ ¨®9g„ˆÕí}°ò`š€k¡r‚© šT@!5¿æUHÍËBjiŒeRCí2¯ ©™Ë+¤Všˆ*¤Ææ¯ÕÁÑ(T3ÕEP-!¡Ú{º±JPÍýrª¹tA5gA5?[WP=„éa£‰¹@}s»ƒºƒºƒºƒºƒúÔ f›:ÌîŒÐ$Ф€j Rƒ ÆCQÍÚ¯¢ZÈ|ªÃk¨Ž4[+¨äÎ\\> Sç>,—±üPcV¶aÚAè. –©ç벻Вﭺ„©ù³ ©e-DPÍ!…Õr<èV#àcÍêr@aµ¢UŒeVÃÐÍ~¿ÂjzJ`…ÕÛ)‹ð¹“Ë^!ãQ·¬fWå!¬†Ñ“åa[? œæï¦ÜåFÇò §r8NSä`èõ^á4 .´k¸JМšsš›¥pZB„Ó@\Ó< ŒKMÙk*œm¤bËiÒ¨…Ó’J8-eN~T8ÍßYqšt–V9½“ÓW¥ƒºSºSºSºSºSú PZ¬iëfÖ4ŠUƒé1Ÿo.˜öôXÒ˜.Tæ†2È@>[^ žbZ¢N3r…Ó\—5NÓTœ¦7™´P¸`š/êYÄôôN¡]˜Îu9ŒÒ~ú\Õ©¹-œ¦€ÇÃtYö^ö(O<û°=S…vødçDËd/!…ìC¾P© ]ÖSíL&» ¼/PÈÎ ÙÉÍU‘]8Îd—wŒYúâiÍe…ìì²Ë2‡ Ýêz§­¼Ž\è.>L¡;Ъ=Œ/we¸3¹ Üù +†;Àtâ~”òw\ÚiÙΔ.l—µf;7ù*Û9•°ßCoÙîô¶¾> —´’µ ]{:ž/hçW– ÚUÈd¹ªÀÞàìììììŸ%ØÅf‡V¸Ïfgy­Ð.‹-Ç Ó¬ £ì@û"È…ÉòÂí’GºÖæ±I^Nü„ryÚ(_%ޝS°¨üñÑNð1È®Éá)d/²CÆfìüÞñ Ùƒ£¥¢“zßî”S9…ìÌñ£ÀŽ”.[m«c:vŽ `Ç=qÍ»Äȼüvñ!dÇ¢dì »å³<‡¡ÝMrÀ–¸í%„ÑÎùÛQ,Û#ùxßXƒvìÓÖ¹ÉW’]U`_·Ù;Ø;Ø;Ø;Ø;Ø? °³Íû2Ù™ãe§ài9èPôa³?ŽC^ùÔ‡m²;z«";÷Äh·>_úTÐ.!G¡¿ B;Ç‘–@ŠÄ°]“¿´°Õa»š\{[R-²3Z¶»0õ º‘H^ØN˜fÙCzúíÐFíû(UÈ Ü¿²ÆpWŽî•ÍpÂMŽù ÊÛ[´Ê¡;êYa;bºÙ’(°¶s˶sëËvê•cÑ.Ç~í´lVØîãäñ5è‹ôzãUûOÆdï`ï`ï`ï`ÿ¢Á.6»Ýhׄåæ"αçÚ…íNå¶ÇöèsûãÐ\Ⱦ¯éí¸÷³¾ ";y…ìÎå5‡‡‘}J¯0YØ/3fè¾9Nț˭ª#A‹L.P˜Ìq “½÷&Pæ×“ ”yc²„,B>ÊM ÌÓe a(Ãç&e^ ,žÌe¾t*CYnŸ(K&GB™IÉP†&3( ¦ÊP›É } lèÆßƒ  âZ(C[õ™úPL¾½·‚2_w%P&£áªBr7·;’;’;’;’?)’ÅN6³=äÚbüô¨,¯¿.Q9Ðñúƒ¨\ü–Le™? ËÂB2øæÙ¯°,èÁqàk:ÜŽ`Àkh+,!Ázò‘Ò'G°¸ Á‘ئìÔ×LàÂŽŽN\ ‚Å)¹‚`ŒÛ¾“ ßÒ‹Ÿ˜£€5;Àüû!ü å `—ù+\ãï0;ÅÃ!+ü-ÛÿùK}RðË1 })ÛeúF´¿Ì~ô½ªØÛĽ½½½½Æ^±|Õl'v®í=ôå«OK_ë¼!çIà7‚Ìê¿Bc’ÔácàwÌwÏìZ‘`ür€à—´ºHê@¦‡ó¸PÒ¨<)+þ¶Bh^Ę3›S}Š ¡`väÛQט­gž½=˜ÍWM ´á[Th¡Í{öÚð-9ÕaÐæ8,Ãèï¥6ŸÉ؆&²Í%‚p[â·A8|ËmÞ[w·-á6ÓT°ÍBmMë¢ö@ÇðW¨ÍQ ¶U>¬#Øæ|ÛÜ'¶ä‚m¨%ÝÔº`3«Ù6ëNíNíNíNíNí'Hm¶¶]ÜÃØŽ“’*ŸÛŸà4 LLš½ø ÁGCÆÎ2µ9ÂG v ™Q»@ZB>5¤)ÊœÑâ œSmZjçlv@{Ńh=yÀ8§©¶Þ=Øeë÷~œoÁ.?ì%`‡†ÍªrìPóf—'nB‹oLB{ )GCpa?åSà/'çþôU…þÚçÛè ý­/ÉÎìoüÎþÎþÎþÎþÎþ/•ýbù›Ùã7;è²ÿb…þ~:Qy<ú‹+µÐ?Ò±W¡q·.ÓŸ>j•þ>Op×读•2ýE,ÓŸÏkúS9GÓŸb•þcrpÏé¯Þtîcõæ`Ô•ϦœJˆ·¨¦ô\AHªÓ*ëó¥ù­ ÌLA˜Ó() bxˆ‚PtÀ§h•ƒWb G>І&Ï~D;²_W4„›i¿‡†`Ÿín¤õâFø|þH±„¤"x³†…"Ñ%d¦!–é¬7-ü™CNtüéî°>ÿ£¿£¿£¿£¿£ÿ‹@¿ØýÐ÷Úý\›SÁ_\»su0Ò|çêàøÔ¯À_®ÞZ†¿¶üˆÃð‡ð üÃö>ö—eö—Cà¿'ê+ŽSÀa?ÚSDˉ#r«ìxpí‹¡8´`l!nÚn®.`ˆó’0¼,ù0Ã%Dš;¯X Ñêí=]s†Ã÷‡v ÜËp^Í„óïá²ã’.Źr!\Ñ€ž#\VsfPGû-_X . ?1Õ¡å'gÿ'}bú=}gzgzgzgzgúg:[êf'KÝjìÒOCõ§Ïp‚Gfx¹»«Cü@ˆS&Âp zZc*/!O¡.1›êÎç%²“C㪳DBu5£ºšQ]œ³BuÞ¸¹Fu¾×VFÔjÕû@¬s9ërîþXç+žØÂy¾µ dé~ò?ˆóÃö>Ì–_8ÞmºgÈ7¦{‡|‡|‡|‡|‡üçy±åýlŸ}n™ã1?æKü? çýäâÍrd9˜5ÎKWmÉ+"ÍqVAïéXÓG}Ùl96Ðø¬4 y[èqš€Xº·µÒÓÚ£ ö%äîÃWä‡ÿ¤{ µò]ºq_ÓZËœûLyXƒü€_ß@~È'šV!/HçQ_É»/ä%ÅqWtSß ä©¡V _ÈQ Ï©Žƒ|¹’—)\MgÈÏèeížJè'©®*Æ·¦|g|g|g|g|güçÎx±äõlßüÊÓQŠò!Ë_¡üGdú Nݹpú½ð›iÕ&¿Y»ÊoYã75çÉù-Q>­s¨…8ê{#ü´‹/ LòGšãB ÷'tµÅñBy`!tYXaB‹oõ0BóÎÃBƒtçÇŸ ¡e¯"šÌ»–ÐÃ}nRá±ZO^ƒ.£¾Zø— ]BTÑ–ó¤RY…Ù*·fÅìaò27_A6߇|Uû>³¼»»»»û[lìa¶G}²é ²Ë]Œì–È.+)g¥§„8÷̬‡|jå `}: ˆu 9ëÔ Oë‘1/`ðzÅ^ ºXŸ6ÁTÇéDuýÅ z?çuZj:”óðq!ÜÃyF:$¿Èy¦ºŒEIQ8χˆ„órkØþœ—e‘eÎWTÎZA]㻼C¾C¾C¾C¾Cþ3ƒ<Ûò:ÌÞSzæ´+˜`ï…ù•ÃImìCý²ãñÉQ/S÷RßÓ£g‡Q¿çü'q Ðý#ñ~ÆÔŸ Ýc90!?(,7SϦìc\a¹ž^ t?ˆåÌØ5–óâÍþ,Ï&³ÜŽYÓ| –3b9÷RÅrŽsË¡ÏÛ»ø6«ŠäÇìäääääŸäb•»Ù~ôü@ÔÓayØŽ¶ib)«à<ä½9ÃùÚ~FGëE"Z@Þ\å‡ÆÝØ:š8¤¼VZ˜—m„CžV–†'ÖrØT5˜˜¥ãÝ iæ…,j ¨£?…¶`m!‹:+ÚBÓ¢.$ΊºPÓ‹t ëêúä…뉺ÀMʺ>N]².N_¸–=OB_z·p®/ÒzꀅosÍy%i΢p_õ™ún¶‘½+‡®ºrèÊ¡+‡Ÿ®r¹ƒžÝK“;åɨÉyE=Hkõ¶Ê¬e\ÔwgQr‹KŒ çÖôƒD( ‚…¯(ˆÙ1d„<-! ÑwŒ>˜Jš«T§×KŽçé?Œ—Á¸!_nÁ¸žzjË sœQ¿†qÙc¹„q9·ÄƒÆÁèn¯ê.~Ù§‰q9ãåhcœ×„ Å©5+ŠYÃ]Uomüñññññ'q¶ÅÕ¨¿([üh ¢‚6#ZäÆM¨Îv†éзyûßìy#(Dvq•âc¶bò“†¶Ù¶$%€%c&=Õ‚Š [e:¬ ÛŽùIè &Uh‰Í|>–Øšnú]Fvn…G$¶°,¸=\±6ß“p×ßྪþåâàààà?‚‹îg{ÜOÅðˆMÃ9ÎSe8^ußJÛ†³l= †ûì^®.!‡0œ:fá%äpˆ?9Ü‚ÆÚ' ÀÑf‡Xé"øݾƒ(]}‚¸Ëf2@`Ù½x‚ìŠu‹$ÖtJ†±ŒÈ5Së­A˜Û|‚°ËˆË¦X¥0½~U1øQìèÎàÎàÎàÎàÎàE‹%lÌÔöøàô}öÙk·BáÂÜÇ'¬ÛZ{8ayËË ÿaXûfü¬VÆêl8Ïá9çÄ^ð„¶W5’žMËóÔ1]í¿cßݼ}?X=og}(ËO‘·ø0¹9˜·2ámqíÄ[¡ë o…®§æ­É×Â[!ðþ6o¢mcóvÚvÚvÚvÚvÚž¶bÝÎMæN¨p›ðÐl±žU'²é¸Â§Á-wÌ2nåÖpËb²„[4§ ítô| Ú [¦ø±ðÃx*¸Ê+ FzÜæÂí¼Š ™!O—®ú~Úp° Mþ<¯*;OÅ«Ínµº‚ ̓h;è}ö ]%Î"]ç&溂~j¤OLÙÙ‘ÃŽÖŽÖŽÖŽÖŽÖ£•íÖ:â~Ãuº<¯ÌÜО{Âvð6uûÃy˳ƒÀ._ãyY– l¹6‹–?Y¦%É ‚tQ? ‚©…×a+PžM®O‹`Šq ·Ói<[MY®÷ùÚþÒ¶0jÇÃ۹Ξñv®úïå­±– o‡íḕõ´ƒpké¬vÁ-Óu·<ò×x;§ëlU…G5t¥êTt5S§·Þ’åšázŸéÚáÚáÚáÚáÚáº'\Åvu³½µ¯¦+xõy7ðax-Û¸ŽÂkΣÀ•Kp…qæ&pù8NשÇb/¶:šÑ˰܃¶óù­§·•VióÒôy"üÝ®|Ù9¿cµŒ[Éë5wŒÄßÙºÙa•½lóÌ»0‡’†ã sÝùâúÀ²vÀ# Œ‰+Z7<’À“·Ó«(`¡… /,ó6Ž>¿-~UÑöS³¶¶¶¶_>mźߥ†]žo?&]åDÂþ€åE@º³–â XÅù¦Ê㻂AÇ|Çþ§,ÀqÜyÅÎ a9M…XвBØÉ=¡ûÖ{÷!€…*å+&KŸ9Zß)€ä `9¤HÃôPË+«"¿LËc+#©V“ÙôùVl~7ઢkkÍvºvºvºvºvº>œ®d½N-×¼8^³äÍ©³CÙèµÅÂV ùrØ ã,#Ø!›+lA›x¹¸‰«¡b±v§9\eXÂ@ O˜¶#,Ro…¿f0»üèè\ö® svoмæè„^³ }}:ùzEô`žÛ îG§š:º†¼Oqœriãå&JëÔÚÁM;ujAÓ ÍA‚u>µ{EØlLÒŽÍŽÍŽÍŽÍŽÍ%l¢½ùoÏþòLi—¿×¨»Í8ÏÔˆ¯èÝ\žýáìÝ3øçh‚;ûHûÏðÿ?=ζ^éÔÚ>¤ ÖÞ>³Aû$vòFB¼‚âÓ šœjRRQÅ&á E%LY_T9O±©›:«Á "S)‚q Ë<ÊŠòur²ÍÙü®£4>JeÞÆ’—o=Õ€;¹[wkT ç—U×Gcòã"g©ª! c­,¢±yh•+à¬Æ«+Ù„v¶¦_ˆê"áy:%C>vðÍ(†0¦H0ÜÇâš.E†â¨é~ ®cÌwôɈơîšAó`Óp!¤ž®Ø¡Ï]ûn&4¡®„*É7W¥à'õN§ˆN¦FODm'Sp$A~Õ“¡ â´µc Ö¯IO*‰ODhöì¯cË#QÂk舡U@²œ±Pú3=<_Ö"\ ŒÊr|UÂNux£ĽiNM¸(—PBH:^n¡„|’âK(m sr ¥¥‹PÊ-”ØÆ)—òªkÈ:¦rŽT’(7§³C«(@çr¿Éèˆ:9Áì}i}žP6Ȇ€B>ÇÔCþr7d•ûB@‚@È –M[Ú ’Ê `¤¬9ÁÈCsÌIÿ@ OñÅx° '”œÓD:ØhÔœ:!|{’q6œBc(ì€èÇgˆ3ž!zÐ'ꢡ¯O(† \,ZúÀPM§ÈL–4QÀ È)j8‚-êOIC0æcš¦Èð¬1¸"”£?ØœF¦IÌ¹Ô >Ù(°õóäFÞ †²Ñtg'öærm@‘Œi9¦¯`”Ÿ!Lnmº ¯à>E'œŸ¤E-°ãNÑÉ0Ý…©!djw‚bpfápª‚k(§hC0ŸÕhO™!Þ=dNøÉ¦Šç}0iˆ§(å¨~r  §Ê`âxÂ&ÄýÀ:ž°†£‚ÉŒ9e†`¤õÙehÁòWkZî„}ba²?¤eìSUPá’DS4e,¦à2”Ö“2bZØäòàšÑ‡)Ú2–Rpƒ™ô¸wMÿ)˜§»¦Ç1ESÆb *£Í?èì5£Ø¸4èê¾hó^ŒÏjŒÁÌòqÙšSàDqês‚¶ˆ…T‚}šqUt÷èº;ûŠÅT†ŠÓ2pÙ¹JáA÷k[•¡â´ŒÅ¹Œ>-c„Ñ[RÀ?´¥Œœ¢-c)•á§½‘«/êUU~ÚË)¨ 3í§LÓ¸ 9Vm•S4e,¦ 2;+#9m$X¡vôUƒ•±”"—f’ëtrDp 3ây±XÊ3Ñ]NAeX7-Ã$·ž¤À)tA)úi‹)¨ ­§e€õ¦Š&3]fU[åM‹)r~œáke™fϾjª” -a)•àôˆª&yëJ )ASÄR*ÁÌúÝÙ¡$Àu™PõENѱ˜‚ÊP³¾@÷\U)¥·0¢ª2Ô¬/Sä2ÜU¦ÝªT*-ùU%¸)¨ãSþnÖ¸Q¥J€~mSuvNѱ˜‚Êг¾ˆ!y9.&[W•¡g}±˜‚Êf}GB« šÕP—1Ìúb1E.¦„“2ü ÐaÊ Ð)®*Õ”ÔE,& Ìtèù!âÅ ’ 2ªJ0Ó¡·˜€JPS½ä“s^âƒ]Œkw¥5UK‹ r &NiîøU³¦ÕØÎ š–P ~Ö:n‹‚AǪªENЖ°€Jг~0®ê8…GðcÕÓ9ASÂR*a˜õƒÕÛÒoÊk h5ìr‚¦„¥¹¦£ÎcÜ’ÀŽÐôU?äm ¨7ëçj ™öZ¹ª™rЦˆÅT†žI“×yã¥Ð²­:[ë™8-¦˜¼ _¥q_ ¤€1å]5(äÅâ=RLÞÇ,)ð¤PI§¿\¬Ëð³îXL1yy¨¤ˆ:oË)pgŠ®õ‘¼ž±GŠöþ÷*A:/iô‘¹JnÕ¬ÇLnê,)F_÷Ÿ³[c*¡’ÛçîO0¹OI@LÕ{`Së ¹d“Sí%…ÂÐJƒ¹Êþfr»œ¢:{TÅN{¥ÊHÚº±Âì,ï¥Ø¸çëÕârš ÃL8õd5 =þáÌáVO•\Rõw¸’¿ÂübÄm /Ÿm´+#.ab v×$)pÿNV羄½°ØÎX´ªÓÖòЭN !ÜneÓZ´¿ž¬f×^¼?·´o¬¾|K¶I®Æ*!Š\~S¶ÎJ¬RbÉþÓR¢„T±&µ¨ëUbÝ'ôizÓæø6沟D^ƒÆ‡qê ²ç 7 ÀFáýø Z” z þSá‹D8®ÚT)žBãaW*&*ü4I”RÁ×&ì.Ì‚¼Ì«ø­¸ìl |žw U­{ýp[jL“?nþéúÕçÈM77—çÏõˆÃF©_ž?G/Ë?|SEº~{Ž{Aýoê´o.î®ß¿K6êqÜ<ÿ®úãâ²Æ?£Š>n^b9¸&6o(QÎåÕó»&âÍ[ª‘Ò›«*Þû›&Ú÷õ·w”hð›Û»‹›»ë\Lbܼ¢²£kr¼yÿ–~õæîuõ‹4ŠƒÌyc,»ùñ÷xA±›¦2ù¯Áž ›?—L¡)£ÑØÁŠëa6ßnÞ49Ôõº{žëBßV7ÖËòïÿ|À¡Ï‹ß={ñ÷¤_só¿¿ûö|›»Ë{1ý<ÓÜæCÝŸïñKq7»²›Û×X½Ñ‚ý7ïÏ5.Ê›o)Æà¸Årqœ¥õÜFÆíj#úãÏoþF †IW¾¯%ì]Ê  °¹»¥øÊm.^½º9Ǿ¶Ñ¶Ù¾º¸› î`5–?!Œ›¿æú)Ó¦½á ©ÍÅ›7”úðe=nïn®¿?G’1k…ýéG7ÒÚaGkC“C½,ýšË° Z+§Ç°©‚S”è7­ô˜ á"}í¨Ë b 5EA)™ö›ÁWº¼E»þ Ì„jܽÏáãè’rÏ‘ °¿üPqÊ^ùÍÝu+Ï·œ´üåC:ÊrÙfs‹ˆÁþq~ 1 ôþ˜óÓÀJyšI/^ä¦E M™«`Â~"ù¿!>>P Â?­f‰u}Ãf6oÛ’¥Jä„b,´òÓŒ·‹T×Q›ÍßvËäKÊÒ@\é„ ®ƒÚüX×ôº‘~îï7×ïÚO1‚…fG‘µv‹åNEÖ›‡'èe‡_ßü ]Ò{ÑUêcRš8ïoXróßÐÏñ«¡ãÞ׌ÆO5 ê% þ;î˜T-ÀÛwU8Ë|Î鿝2Ôg‰¹Z³7qª±­ ?Y«˜¶8Ç#`qt¹^?½i?öjÞðù‡ª –ó>å ú;ÖúÛá"œw þ}ùæÃ·›ŸÁ(ùFÄåöõë×ögßž£Q0Óûi—DÌ ÿ¸ª=¦Ejfœ m™@+¤ò ðÛÕ2G.³¦Ü{ùÒ&¸1Aîju×Àì†:\Mî]¼mR‹ž-5(Ì]•Å+ù\áÙíÏž§S06æÊ~’<¡ƒ/×QAÆ Yn.ß}y[B¨ÍšO®"G k–¹œë?~—¥¦íˆÅbñ­pèø¯þ9ÿUà·`(‡;†ºˆÍ%í{ñîÛFÕƒÝHÑÿǹA’ #o¸xÓÀ'Ãô9zöP™#˜aÀ$õòÍå9 â¿üpùîîúâ Åñ›½9Ç™ 9Œ¸4I¸øîºÉøîo”8õ›¤#¿û‹ºÍÁƒR›‡ì‘À@úw¯¸ aóOçÁgꃠâ§?ǃr …`ÿ²mƒŸüëü¹: vóôâíù®Î0¸ôœœ*)Q¢›Á!jT&k øçŸ/^ñðõžmm'Ãõ65\|?L·êçRÿþõïR}’Ždi`ÑR»,uÜg­`ú¨ñ %sýõÝ݇Û_þâ¿þúÿeûõsø"Ü´êÃæÃÍû?]~·}óê.¾ÇÏø‡$`Ä•º¬LvOžÞ…SUÚÆüsœ!ã/ϵÝúèXÐ3kA…Õ†A3ŸFw?@/ÿ*ÿÅ?‰|Xy˜X9'"ÿêæúåoÿëèg*Æ'ûâ÷×·ß§pFÌ%È.Š”Q€…ºÇß]rÚ÷? ®‚ÙE>H&Ç»ïI^Ñ̓*ö* ß‚Qð3Tsç¹›¯ "?+¿|E5 vsñáõõ÷»åR{<j*¹4>íGÙLM£vʧ™å=7ðã¢íz{]Ï©Ò@2xDÍy ¹\²Þ[s"±UOë3n-P[îÜ‹c·€zÀoU \“NBŽ,¸D”_ÉTì´ÞC2…~ósüwLrðû‹&VáÆëúGt{ÎÉm~Oÿj­‹»Â»Ë‚e ùý0ô¿@Æ=uÕ7DòoÐÚ®¡OÄú%›p›ß\¾Ë?ÙdÂç<èWHøëºÂõ<äööòV2¡ ]jˆß_Þ½~ŽÕ`4½\í ¶*Ô²š‘ÿuzÚ3fb#‡êIÉ:T™Y 5ŠÝÇb|ïKmÀfy®2ŒqHéSÁØàª‘ôhjû#ÄÙú켫êÀâ}ú¥åð¯®ÿzîЖlòåÖE£×¨ÊQ º1Qëô‚•›WîSÎ`°»¼øñòòˆ$|ÂL*‘Ì&ƒ‰*™ï¿¹Ä_6—ï^‚ýTÀœ’މz8Ç#EiåúÕë»d˜˜§Ûß|ÿúòíå-v(T’n¾¹ƒnï®+‹hŽð/ÊËËø z±t¨¤Õé\®H«Ù4“ùãÉåu؆çöçbŸHZ5nši1xTë! ¾ý½{”Àâ¹`cë*°À‚ã/­Àþú¿k³ø¢YºBýšQükl)t?@}µcKÓÒ»fŠ‹Ò¤\^öªÒÿß&Í›—ô‹›ßq! aÌKg)¿ùÿZMSo&SÊÊÌi&•w×y:S/)û 6oßçyZ¼uâ&×7T³hœ›¹Ím»èPMW©P5íª)…ë]“^°¯£L,®âp&mí.î.¶ç¨ç1÷ÿ¹x¾a4¤€Fïß^Þ=ÏÝ?êäA« úÍ Žæ]3ɰµ¸C%gósŠbë(xå†ÊQ¼Û=!…¢¬LH¿ÝØoÏ+ÃGigÿ—Ò^mO1öðz˜ü¦~nÌcïåûë_*t±*õ‹?Ùl¿èÜfÀ; PÌPM‚Ùrœ¢PxÖ )>;òüöuº,endstream endobj 369 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3306 >> stream xœµW PTWº¾MÓ׫"*7-}‡¼ &¾¸ÇG ‚ðKÏÈÜ&9’$‰Ý•·;>!1)9%Dœöýâ%L¼Bì%ž%BˆP"ŒXDì'¶[‰%D8ñ"@l#¶;ˆ b'ñ±’ØMì!>"fÞÄ“8=„'¡#¾áY<ž÷èäÇð¯zZ<4’¤eÚo¦õP±ÓyÓÎð¹iæ[^k½Ð¬µ³~ðn÷þfö<Ôáý£Çó\¬À%wø Ù×ñÏ—¶³íóL® ã ¦…¿mvIºY]zÃ^ØaÑñ»ëÿ&¢¯sÏÈUâw¡\QÎDqöÒH9£#Ò€ø“+ä``N ]ºíÛúG®ù]}Xɾx®Pt¶J,³Þ¬Fîd—:x¬¥ í艵ßq³€› Ü4Ž—ÃÍ•rÂ;Ï£é€fšñ;¢©µ¡2©$,=*-2<ýDCœý虼þÊËæ®òžŠaWÿÉ3oØOC?ôHmѶèâ½Êêþi¹ý.´ØÁ2®B§ÏíëÁ×_¾…úoùÒsØa$Æ[Óë¿âÀÐ!­è}…þXGØ€A3qÀ8Z!µf^.7kõê@ˆƒä†ÜÞb;è ÝèˆèÔàpÛ üά8Ê Ü¶¹Ë.¹n»Ðj—;mœ6'šïÌuúÒWˆ‰—‘U(!rÉ[¸Í@q ÚrsG?j}NÞóáÂßPô÷r'Ùê²pÕ1ñs@-#O#…©ÃP~G%$ѨUp¿¦œd’ &/‘*± ‰ü@®LZ9i)“Ôò@q³ï“Þ?òÔ®‡0é¸ cã·}iv3;WhjÏj‹Æ¨ˆ’FÛ‡ˆâæ? ]YŠÓ凳5ÍpÎB†1¹9$½8ÀjîjF¢Ú¯FÇÿå ½V£•ÊTYêŒúÔCK•¹g†§Í"ä½oã¡×Î}|ŽÏÎEO+.HNWe¶'Xb-aÖ—ª+/šOvôÞäÅËÔbªÄ P­3Ù OÕ}m¨Ó•ËqÕ  djµ¼D¥Im…à¼!<¨8D™\•Ñ(mÍjQ^/t¨?:&ÛZz0&nP«!sTý©¶Zk,†"Ð*4yRN$ÒäkV0N×hÓã¸í¶î˜­Ð4}»êwî˜w¹­ÏE¥.´+×mºnu9áZ¢ïÐaÅ(®=X* LLH&jÿ¤¯;‹\"ô ‰sÄ=Câñœ‚µ¯ú/Tk¤¢OÉ׸¶nöŸd]À¼§ß³^£¼'J0f®¸P§Ë-׎£$üð¥јǂ#äÆ{i¦èÔ;l“¹Ëhý˜&¼|’&€I€ÍbÀL|€€x®HÄ ‘=¨è0™¢¿b²é>`7`º ïÃ)`NÁ èÄÌ=ؾÕˆÐÅÕüÜä)‚Êr×9zÝ%îó¡ƒîiÑ6P”WœgÞDH@ws‹~ÂW:·½`å+;¶³Œg-CM OLú´š‚匄{®hCÁR´˜8ßÚs¥`™È­8Ž|ªýüœÃ‡ÎdU㊜è’â½YJŒ’T0èL(BTÞgîIïN퉨}ÖÂÆùNUZ]~3´‚½ÁÔ¬¯‚Ž×t'­ípã –SÊÄšmši̺””Š(Š–¯+üRrÕo .œn9KÑ›ã4 1gýìpõøñ›·bPHËlH‰ô ‡ä“–7*~;r ­3?LÇå>ô¦%öñPÌ-´çÿR­ûŠ#±RŒ8šw½+ÂBõ0/ '¿8É3Wª²;½ÿ˜é„ÊDYpRd¦8:5 "ápS^7Ö#ƒ¡¾ÅŠŒ6ÐUמ±4Á´gÕ%4Ä*ö)b1Æc¹¹ìr£'BpOŒ2þ3™›Ë½ÔÚ)-gOˆL†ãª'Q³b‰Ç‘>ŒšÇu¦ëŒÇìKã¨ÿl”˧ìÕ'¾t/û;vÐäÊ.KÓf³ ¯âÒVç«%LY±¶L!ãžæ´¢ ä(«ÔÁȘš»Áyœ‡&âuiz,Ôçð%™Ÿä%¿"Ûþ20t ²áX}»±Ê¡¯55ç×fC.)R¥QX²]IoàëêÑÎQì&Q÷ÕA]-¸I}>ËMêŽ/º>ïÞB·â¾ð¥Yvš)ÔWƒJ@£Ö(#‚d‰°Ö¿ÞŒVµ¢Õã} ®hÛ0c^ŒÕÈÓÊŠTY5¹­Ð u¦=ðŽu{ÏF?÷¥çÁ9Üœî‰?.D _ÁòÒWâ½ùnžàá,oem7ßäÿÿ(Ç1ÁE÷IK5Ý d€¶8›¼$âæ°£*‡ŸšÁ/Ñü5“‘*³4bÁ½ y†Q˜¹ ÀrÖÔÂŒ³]‰žú‡‡¡ÈPR ŒŒ³ýmb–HG>?ùÞ#t>exz€é·¡ëQ:¸Ðo1‚ÝŒÆ)Û~ë|áÆËÙ¦Ÿ¨ý5û­€®•?Šá$NœÝ•Іƒ%zQ'Ìáè›  ×`°óD»|§ˆÞL8P¨ÉÓ–åSôiâÕ„pi´†usþ©ÜÞòÑò^swÕ¥®×ëÃpN4FZò¡L“÷S)Óìh ¶~cü©*–êUî**5¥û,ƒb8É'ŽuKÏYÇ°Š¢vÒ0Øë¾J¸ë®o6)ÙܯƟÃâ¼áâlTb„\1VðEwœð È8?E¼{ÛeSž ­üÄâðéÛ3Ö0&ÛùòøÌ—%ظ‰ÙBs·¸c?lƒ%ûóæ妉^ é.ÙG$­"¸¦Ü­%þí^ œ’û@bÝ ò¦“ôÒ 6DÕÜ9׌jยH[¤–¨³«s[  êŒMF.¶í»8ÐXÛˆ QÖèS3Ôw#òÆÁ¡È¡7àFæ ùÒžìyv¡ÐP§lÇ´‰T†ÇRôt¢#1Ö õ €uÛ‹6RôÓrETm‚=§ àHª2Y%.OhÍÝ•­ŒÃ¢¸e«ìóPäí‡fò¬þÐ|R5ÑJÑÙ¢ÖW÷Â? vu ØxÌej× ½| _¯þÀÜ]Ò-mìëì6Õ`ã`ÐR2µB^&Óä[eµP örC#Åíç¡:Sy8WR,Ë̈Šæ+¡ö¯ÆFŠÖjL-æv›³²ªµõ4|ùÿ¥Î¦ÎMΖ„­?´ž…àÁŠ X®7—Ÿèî7à Þ$±µð„ÂUÔCëÌLû{¾þKîy5„K“(-y}- ï> ÷U“u¿à ë¿Åö˜ŸóÏ?ò„—îcJ܇xßùœÂˆRïK;à`v‚ÆTÞÃ\fùú-îi¼ç[`Q–†3‘œã§=ù†“ÐYÖ©ehŸ3ì×BcK^s¤€$C-QeÚ²N@'8[Ω“K]h› mr]v¡u­¼Ï¯ñÙ´GX÷×ý\ßÀÍv‰‚kÒ†+/V½{íò‡€ÖƒŠ[SI)µJë}7Ö‰^Ó×éÝvLeÚYÔ>‘¤-¥w9p|X¸"o~ášÞ-ïgVªÏËÞÎoV´)‰µY¦TeªüÅÝ[WC:l2E§Â‡Ë¯™ºt•¥Xuïû².bÊ—a+©·XÏŒŠœ)“Æ7wÿR<¨©Â"ê.Úœ1_ºYæ=Ìõ7ìÜÚü\a<ÝÉæ†ýKÓT7Õ9M ÿrí$è>Ûjü¿vQ'©‹úß!fªãB¼?û Ô»7ïúÒþ_›/z G²´Ðؔߘ bJÔRµ¤.»\àpb6¢íó~öÝýšq›sPØw<´ÓÁGQ:¡õZ~/n§ ;S¥ÎªÊìŠVc®®”½°ç@„B©Õ‚ºLaR›  ¾øÈ†¦¹—ÙF à‹>}¨ž³ z\0t  +/ ¸z’¾P¼Wà-u°[ëPºÕì ]3Æg>5Ã344Êk:xÍ´ëtz^¯«Ð.{y9kš f‹Á`0™^³⟉ ùhendstream endobj 370 0 obj << /Filter /FlateDecode /Length 14799 >> stream xœ½],9rž}}løN– Bë®ÚÞ.e2™™ä.öB2V’Ɇ¤Ȭ.Z3gfzÝ}zÕÝÚÿp_;ȈàGߨÖÙ NßH&3Èd2ž,FýÓÍtžo¦ôŸüûõÓ‡?ú¿Þ|÷úaºùîÃ?}˜³z#ÿ|ýtó'Ébž7*:Ç)Î7¿ýÀÇÎ7sØÎÓv³¯û9.ëÍǧ_þöv:Oë²ÏS<}º½KÙ…Ó?6ÂýëÛÃýçÛ»eqtd8ýUgùÛ[·cØ×¾‚—¥–ó4…Ó_vÊóç¦îïÛó¼|£'ÙN.Ǭчpzüæ¶~È5{ªy9ýÕÃ×·.]Ïæûªº3>jS–ÓŸÿŸÖì‘Í6·mnÿ‡AÎÛ\ë»eYÏÑ“û>~óá´Þ~üŇŸ}üð×äù@>÷[ðg·ßxOÜæ·›—O7wó™<þ4øðí‡í¼Òù×›_“á_Ðÿ¿ ÿÿ ð·ù„ó4‡ó¼Ülû¼ž—@œÉíËßýys«žššîþº95d9;Ÿ>üº4¢¶ÇÔ§n¢±¢©1Å$lË9¬ÅD>v&Ô]g|lMö)uLTýØ™Ìó~ÞJ[ôc6™Ã’®N¯ò©”ìs¤ŽÙÊ'ui­¤¤³Úü~v±µ’’Î*'ºª¸ µiú·¸sÙÒ8*îä½;Ý|^—êNþØ»sÚÎs¨îä½ 5cߪ ì=¾SÓ×êqþØ{|›ª»éo·pÎ/—.%\¤>ž[+)é¬VºËÝÖZIIgµoîлRÒYŸ]×%RÒZMç%Mœ©Íþ¼Ì¥ Âyr‹Owx¾#æi§›bÅrpm^Èq¦CŽç;y_ªLµŸƒ‡G§q¿ãÊgš†7¬ÒDæ–½?{|]Ô;gC¥N™#–÷ÙòÙr'a9}–ä4›MÛ¢F‘\³_1rt»ìøDŽ†Ï¥ÿ"MG = ÄÆù‘WºÉö½œ‡¦°å²¦y£)”z[Œ¼;x4„yM7Á¦6ëœîïcEŽF÷ìW5ÚÈ}——îæùìc©‰nÔx9ªM]tK©Ñ¾<½øæõ¨F´ˆxúPS$W^žŽúòì×]Œ–ÉŸ×ËÓõ¾\æÅ¶‹s#Wy™é w!§VPÅjä§‘—SÿP'£˜ÖNWjJ++|ÿ.9òòþ=ÔA³ñÀ¿¥Z <[d®ëå­ÖŸÂOŽgèqžF΂OáÝij-’i Ì»ÈKù±È~³<è×uäÁ"ÓÔ~éºÃÅÓü¾]žfùõZOyšë 7®ÓÄ« $GËkz•§%÷eå}Wšò¾wVšò gÒæª3Wšø×Ë3ôÓîJÓÿÁ™iDj¢‡î÷5Ä‘/iž ´T#ZfÌ×nÑmÚG~í[¼Ñ“`à]—ÖIQ'ðáÒA}›6ú¸_ÞK‡6ÑTƒïøëµGÛFyí‡ÆÐèÒÇý<·íáìð˜ÙÂþÓóiºv‹í4ûG|¢}^FÞ-2Íû¿™æý ß\;Íø—V™üdT¾&Æ3ܾQÌ€ïÜ}ßF,rXG¾+2Íïß³fö€+4³ï¸ò@3»áµ@3ûŠ/,,ÁòZ PÊðZX7Ëka[STe j ¯šÎ-¯ÑDŽGb¤y|³äHñ4–iÇN‰nçøÈT¼à‰~ù¬¿Ïâê-ÏEšÁ#¾"ÍÝwK¤Y{‡•wÔb&7úønjÍmj1§àΕèW>v²ó´®²|ìL+Z+؉OÿÖx^>v&+ÝŒ{ ÖåcG-ä*+µØVZþÍ®§ÕJKZ+¥ÕJKZ+¡ÕH ›µ xçö&4W†Úùز ½ÊÊ.ÖHÓù¼w좱ҒÖJHEc¥%­£ŠÆH ›Kv±®Sžî‹;ùcw•+Ý<{u„|ì=Nßâ«Çùcïñ-€êqþØ»“ÆùºWwòÇÎ$.SÛ\ùز‹ÆZÒzIHEc¥%­•ŠÆJKZ+!•–´VB*+-i¬ŽìB;° (3»€2³ ,gvÑÊvŽvåÌ. ÊìÊÌ. œ©T™W@™I”™T`9}vI—…Q :„Q@93 ¨2£€2Ó (g.z\ˆ<˜Y–3‹€2S(3€2“$ s€2Ó(3g€2s(3aÀr& Pf¶e¦ Pfªe¦ Pfª€d¡ Pfªe¦ XÎTá8_&`¶ë`¶ef PÎlªÌ ÌlÊÌ,lËÑr°(3[€2³(3U€ræ Pe’efhúa†fzeæHbefPfJeæPÎdªÌ Ì4ËÑð™(sìeŽý‘,±?”9ê‡2GýPæ¨Êõc9GýPæ¨C‰úáÑõC™£~(s¼d‰÷¡Ìñ>”9ÞÇrŽ÷¡Ìñ>”9ÞG^“xÍñ>”9Þ‡2ÇûPÎñ>R%ÞÇrŽ÷¡œã}¨r¼eŽô¡Ì‘>”9Ò‡2GúPæHÊé¹ô}ا´ŒèC÷ˆ"}lnFú>Rܾ– R?váà4Çô¯†ƒò±3™)nßkP){ZÃ/5¨”‰Û]Z˪‰|l#}½Ê&Ò_Ro†.Òo¬4Òo­$®o¬4Òo­8°oŒ$Òol.#}¢KcKÝ)Û«ô‘f²°UóÇÞãÛœæ„âqþØ»ÓçÇDq'ìݹä;°¸“?v& ¹§î¬Ñm¤ß8@#ýÖK×7Vé·V×7Vé·V×7Vé·V×7Vé7VÇH_;DúPæHÊéc9Gú­<ˆôÑÑéC9GúPåHÊéC9GúPåHÊéC™#},‡£Ï:™c|$KŒåãC•c|(sŒå㣾–ÿxpwI¤ÏÀ‘>”9Ò‡2GúPæHÉéC™#}(s¤eŽô¡Ì‘>–s¤eŽô¡Ì‘>”9Ò‡2GúPæHÉéC™#}(s¤åé£)1><šc|(sŒåãC•c|(sŒeŽñ‘,1>–£å4‰ñ¡Ì1>”9Ƈ2ÇøPÎ1>T9Ƈ2Çø¨·9ƇsŒeŽñ‘,1>”9Ƈ2ÇøPæÊ9Ƈ*ÇøPæËÑð™ÄøPæÿ(¾MÀ‘>ªC"}(s¤eŽô¡Ì‘>”9ÒÇrŽô¡Ì‘>éã9Ò‡2GúPæHÉéC™#}(s¤åéC™#}(s¤¼&‘><š#}(s¤eŽô¡œ#}¤J¤åéC9GúPåHÊéC™#}(s¤eŽô¡Ì‘>”9ÒrŠô] ¨òÞŸweQ¸n>ŒôëašEa™ÒKÒ.B1*yԨɤPŒJ&5jr)¨QÍ¥ Fm6…bT²)¨Q“OÁ¥wÞ¨{鵤ÝKO—»¦ï4VRÒYm)phó)hIgéΛ’Š•”Œ3*T×jF…âÚšS¡ºVs*×Ö¬ ÕµšU¡¸¶æU¨FšW¡ÕÌ ÕÿšY¡ø¿æV¨þϹŠó%»‚K›£{oIIç­ÅKŠ€b%%ÕJSËÞfWÐ’Î*Ì4/·™´¤µ¢(„‚˜¶¯µd”]Úì¹ÎᎠGÝyƒ†E-ÆÆnK‹ÜG9Ù ‰KçåB?œÛÇíú ’Ó9eZ×G+ ˃;ÍÂ8= vËw;Í«Q9ÍÂÞ¨<½ã¸Òy»™JÊíãTR]– ·§×øFÙiBäõéû(¤—¸BzéOh^¤é)ò²Zn é­vc°òJ¹Þzà»0˜y¥\“¡ “Jù2T»¶ˆf")iV6<Ó;|ODŠ·pZ/òFuêeƨ®áém¾%¢±ÌŒéUî‹8N UäôªŽ’e§‚*rzÕ+_¦ôªÞgË´ÌF¦ ¼/IÁus ”$J6i ŠQIS FM¢‚bT¨Q“ª •TjÔ$+(F%Y5é (›ÔKI³I½@j¥%­•Bj¥%­•Bj¥%Äյ𰠏¶¦,¨®Õ”ŵ5iA5Ò¤Ũ¦-¨þ×´Åÿ5qAõ¿&.(þ¯© ªÿ5uAñM^PÐ@õ†–´>S4P­´¤µR4P­´¤µR4P­´¤±*h X•’Aò‚‚Æn @² $û‹M›#4å8Ú?xDHf4€TAH4dAH4€d7Ü„yDPŽ–Ï YÐ’7k·eAH4€dAãýz €£ @ÙÚgYÐ’ YÐ’ YÐ’wk‡eAH4åˆ7 4€dAHf4€TAH4`íS,€Õ!€É Ì€ÉÁØfY ™R Y’½µ¿²(3 @²$ @²³Ï€: U’ YД ˜ÍW4€ê4€dA¹K§RÝÁèDÌ:€:Øu,°  2@² $ 2@2#+ÿBAV&‡Ðy@9Žéô~RdêPd€dAö) : y˜Îél¦pbpµaæ¦#8+hæl*àÉ,àɉšFà5\À:z°í{[ñª`œ“éˆÆrÁH|€dÁH|€óh÷Î<×ÍM|PóH¨Øf (F%S€5¹ŠQÉ FM¶€bT²¨Q“/ i¾€bT3(,¨ûÄKI³O\aAc¥%­•À‚ÆJKZ+•– sT×j΀âÚš5 iÖ€bTóTÿkÞ€âÿš9 ú_3ÿ×ÜÕµš; ¸¶f(F%{€5ù4ÞÐ’Ög +-i­4VZÒZ ,h¬´¤±RXP­JÉ €â°‹Gñ”@Ù_ì×à,Gcó¡â(g|UÆPf|p”û P ì¬]› °Gžë~UAQÂѨ"@ÁÌG X¶fnäÎ5übÅ•š˜•Øs…°ûtBL.®.mšt¶nråtÌMìÉTè šMƒ•VJé ”Çi¥ ÓU‹a~©I9”¤ £…¤@™I ”™¤@ù"µÔ€¤À†3IG+qa(P6óJ)C²2(3C23(3C120h$ûÎ ×ÍM†R30H¼Üæ`(AuÉÁ Au“…¡•, jÔäa¨Fš‡¡ÕL ŨdbP£&ƒ“º¿0”f¾“ÆJJk%Ĥ±R†ÒZ 1i¬”¡ ³1ÔÑl êÚ&Cõ¿æc(þ¯ªÿ5#CñÍÉP]«9ŠkkV†êZÍÊP\[ó2£’—AšÌ JLo(Ci}&Ĥ±R†ÒZ 1i¬”¡´VBL+e(•“jUÊ 3ƒ2°?J ”™¡@Ù_ì‡0,Gcs§2(g†Uf(Pf†‚d¦'Pezegí‡Uz‚åhùL¸ ”™˜˜ ”˜À:vkC¬²(3+Û+•’ £…`ÙÚ«LÊLC ÌÊL@ ÌìÊ»µ!V©”™z`9â½J= Ì¼Ê™w@•I”™tØÃQxÇ#¦ðDÌ;°œy”ƒ±7Vy’…t@93¨2ã€2Ó (ûáÖØdY­ ²J4 Ì4ÊÌ1 ÌÊ /ìö3¼@U¶€2‹+g``ë`Te†Pf<ePf$e†Pf dPfô€åhyMpƒíyÁ ° PfÄpå1À*Ɖ©ßЧ§:1\¸Ò† ¨5‚ŽrÿUÁ ö‰+À1P¸R…+FV+Å P6sXe €5+•¢´ ‰f+E Pf”eF P¾È`5@ °áŒàÑÆ²TP”ÍÄUŠÌÁ @Ô¡@Ê  Ì@ÁHô°Ì³üb÷»=\7…z˜&zð) \ú¨&ÓC±*™ŠU“ê¡X•TŪÉõ V5׃ZµÉŠUIöP¬šl´Dö¼½´ìí—’.ÀJ®p{k%%Õž‚‘6–tV)C‡kóhÉ8ÛCõ¯f{¨þ­éª5ÝCõoÍ÷Pý«ùªk‡j¥ ªUÍøP{A3>Ô^¨)j/䔵 $çÃ2oñà3)é|–VôKç3)é¬RÚ&׿|Ð’Î*·¥Íù %­•ŸbætÕJKF9¨ÍÖNÛe¦[hÆ›»RNQ¼E”‚¼y´ÃQe7MÆF>’£±-mq³µ½v¡è×ØÛ¸P˜—ÙÉù•Ú‹·Ð‚ïpôfm¬]4¼F«Ók!;B—”No\–iÏ¿àަñ`y.ܨߏ,‹?z­“ýbym¡ðq†ÛM—ï9'm¸•¶È{àÄ8@Ö&Zºa­M´‹ŸÖü£‡Hž½å2ïžE€œÒ¾•SÜh¸Ì¯p-iÁغøm·\æ÷ ÿìý’¿w².>úÑÞ«¼NÖ&Zz~9Ëc+=4fÜ´•BÄ ”u ù×ø¬½áËê­í´´Âß8YÍ»F+wo9p¥i×r -¬|ŸmÓl9p›'Ë[z,bn4íF<`7*Få4íîFå4íâ¹_6švqŠ¡e£i×ðÚfÓkôðÄ)†HŽüÔË;„8›Î²ó‚Ê4íâñF#ÃrÚN³®á´fÝßmû6s µ#qß'ËiymTN±Ÿ¡Ò¼‹S -æÝˆ;$¤×%°Ý!½-¹’Àc 4ùž é n~03Z‘4VZÒZ |h¬´¤µøÐXiÉ0gDõ¯æŒ¨þ­I#ª•&¨V5kDíÍQ{¡¦¨½ i#j/Ô¼Õ¿š7¢ú·&Ž(V%qD±j2G(|h|¢%­ç>4VZÒZ |h¬´¤µøÐXiIc¥ð¡Z•’AæÅhs’à(3Ž€2ã$ ŽÀr4öl)Ž€2ã(3Ž€2ã°QMqõ^~Ù¹XIIgµÑÔÒut6q^xçb1’’®wf/¿]zGJF ¨ÅÖR…Ô§Äœ+ÞÎä¼Ë¿ˆäuοˆäm2öô‘lm!õnÆRï¨3ñvH…Ô/“çÈÔ+ÛeÝݺƒ‚:‡wöÑ-<[ž£€ÓòEW–ç(Ž0vöyZ0ç_D2Ý Ñ¨<7’vjn$U™c#Ïyž Ÿy7埄r´¶ýQÃ-Ÿyoí õžžÆ¾>¿yËg~_òï"9¸üûHŽsþù; ¯“±…”Ôh9&=k3äJQŸ±r¥âɨÜûü[wHNùþÊ7g9mÝgËik˜L§…Ø>¡.dz*^Û¦ÝÈã·ÙÜBJ “³±…4bÃk͹†×6šsw£ršsqâ’£åµæ\Ãk[Ø9!)â3¼¶S¬‡³Äøb=Ãk;M·8yÝ€óÈkÝ7¨h9Y¾ÛiÖÅý²Ó¤‹3èø&]Ãu{ún$V)ÔÃi‡h ç:>}cuÂÝhÒ5<Üd¤"9Éb| Yû,Фkø,¬›‘?LJmø¬ ‡ôžÃ8CzÏaœÁLØä£™°‰d+aÍêÁH=äczχDLï9ŒÊ/6u²™°ÉÇôž{-¦÷Fåé=Çeå}ÇÄô¶ßkñ2mS#Ó#ÏJÛ´¦ûnÌ´Mìøü#ŠHNo8ŒÊÓ£òm6òÅG¾+²™¹iÒK¬Æ¼iÉszÇëžÍÄMël&nZg3qS Þ—Øàªµ JZƒ:6i Ô¨d5(FMV5*I ŠQ“Ô@JNƒbÔä4P£’Ò 5) ¨›Öµ¤ÝÚ® ZiIk¥ ZiIcU @±*%ÔŵšÑ º¶f4(®Õ„Õµ5¡A1Ò|Õ¨æ3(þ×tÕÿ5Añ¿f3¨þ¯Ù Šÿ5™AõMfPP@õ™–´žUP­´¤µP¤ µQP´¤í#Eµ´dÊ  °ÛGQ’ YP’ YP”‡[E(É‚GC(ɂ̩,ÊÃ=ŸG€dH€äpÜÜ9‚@V€d†Hå8Úl×íÞ,(Õá­Ý› YP’ YP’YPT£å:EH€dAH€dAH€dAHåØ>§ ²¢$ÏÃí›ýxT €ê €dH €dPŽ–ï Y€’Y’ Y€’ YP”3 @ª $ @2£¤ @²  + @² $ €r%ˆ9 ¤ @² $3 @ª@$ @²™¤©@([Iš @²@$ @òe’¦@²@$ @²@(G#YN ÿÇr ÿ‘,á?’Í$M%üG²„ÿH–ðÉþC9^+á?’9üGª„ÿ@ÖðÉfR¦þ#ÙLÊÔ„ÿïL$pÕÚ ÿk õÚ4jT²£&‹€•$ŨI" F%‡@1jr#M!Pj  ö›MâZÒn%—`¿±Ò’ÖJ‚ýÆJK+ ö«U)¦(®Õ Õµ5ƒ@1ÒÕ¨&(þ×üÕÿ5@ñ¿¦¨þ¯éŠk5{@umÍ F%y@1j’h°ßøLKZÏJ°ßXiIkÅÑ~c$­û‘–´}$Á~ÓGZ2H á?ÚÃ#á?”9ü‡2‡ÿPæðÊþcÙÚ¬©á?”9ü‡r4¶ijøeÿ¡œÃ¨røeÿ±líÉÔðÊþC™Ã(‡ãvL jÚï?DkS¦B(g`ŸAPÀ5£hmªe?ÜŸy83;ƒb+51€­a8p¥F¨FX#—”@™”@™}ñ `  Ì Ë±}¢P€dPžÍ훂 ÌˆÀvŽ€Xƒ(3(Àr´|' Ê  Ì É  Ì Ê  Ì Ê °œ@TØÝ&¸àŠQ†ö$èàJE P‹ ØuF°[#0ášQ¥w9œ.ƒ…‹Š(+©ÿ/º¤ ŽF]ªA WZÄÀáʵ1v€ž6“1)vÀ²•ŒI±”;@™±”/“1 °”;@™±”;`9©q;Y±ƒÙ÷ `f&…Pføe†WÈÖÁÊf>&APedAP6Ó1)‚€²™Ž)!ˆyJoåëÏÍ+U˜Ó»éØ0ˆ°ÎP]7§z) ›°Hµß¤ÿ䟯Ÿnþäã‡?ú›yŸnè¢gzº}üöÃÌ&7sZ å}éi+¢¿ùøôáD#c›n?þâÃÏ>RkS{Ý´…“½¯½×Íp{Ý:QvÙÞ¹koÝÿ®ö^7ÿÁíÍ?yž’AÚëºö––hºo@„ãšùxH)öEÛ»nãñð¾ö^7ÿòñphï>ïkïuó/‡ö†®½½«¹W­pkÓ—Wæå²µq8zõ« ï½Øü‹GoŠ ÂJ{Ýpô¾³½×Í¿xôÛ» Gï;Û{Ýü‹Gï±½~4zßÙÜ«Ö_yV±:¤Óê“g«C:­>yV±:¤Óê“g©Õ1Ö÷ñ’¶&ç”Gÿj>¦q¼¯ÈÇõe$Íü«î‡×“ýËÈbux=Ù½Œ,FýÛÉþed1:¼žì_FªÕñõä÷pz4§wI)Ç.<œæœ)Bïa?Íý(vû<òðšÉÖóîòOéÎçÆT~(¤Â]"|nÍ&¬44¾ùpš³2¥²Í§Ø“Ê\-+vË ÌÊÖ ôY2u¿ÜûT×öÍ~übU6ä«fC~±*;ò‹U³#¿Zé–üjU·ä«UÝ“_VmÍžübÅ›òëÂN6åaÍ)ÙÏþî*enÐk_ÞCe³DñW³Y¢X•ÝŪÙ-Q­t»DµªÛ%ŠUÙ/Q¬šýŪl˜(V͆‰bUvLÔØ±î˜ø²~¢9ƒ&47ì§Íûõ²ŸbxÏTŽýõSýVKa<Í·Zª•~­¥ZÕ¯µ«ò½–bÕ|¯¥X•/¶«æ‹-Ū|³¥X5ßl)Vå«-•PÕ¯¶|Y?ÑÓóìüòÿeÆ+ÇÂ~ªiIõJÛ´¤Åª¤%-VMZÒâµ’–´x­IKZ¬JZÒbÕ¤%-V%-i±jÒ’«’–´’åš–tºÒGiÁ¸Ö%´ õéKqémCÎOŸªóÞ]eªî.ÕâyŽéí=Ò]tü$þïÏ·ž–>´h=o>{›ÒïÍáôéë·OßÔgë_Óm 0œãç.ðÎÉÇhå˜vÝÉCÿO¾ûçÛ”ÜoÙç)ž^>ѳ<åÓYãÉýøöΧX=̧ÿúÌV´qñôùÖú°žÞÄz>½%?Ü¥ïÐ¥V¿ÒßÉ<Ìa §—‡O·)Qç²Ð‡W>$Fwzþ6ýí( §·ï›VhMÔˆy›¸î¯«öëöÃ['}#ù•þ¬õ>¼¾½<ô‡½ž³?ÿèoÖp3ûsBÖÉe …Š´8¾¹Koö=Ý%_–óí]ú¶]î_åJ¶mÙ¢?=ÓÙ¦tEtâOŸ¿£Ï)-V\O÷ŸSSè@yJ=™Híñ§O/Ÿ>ýIÎÞwØÝìh¡Ö›;ZVù$Óéÿô6$?ÄÓó u àÓ¼ŸžnSÁH>o»ññíáW·kjB§û—‡ûäž|õ ¦7ÁÔß¿JÇOSØOâ@šÉÖpzx¼¥8‡>m§ÇûÏI¡ò"9=ý™rÆžr•t09™{?Ÿ€>]ö~þ¸Frÿ'»ÖÜÿùoïÚzi¨åóÑUÍ2ÔÈŠº*Y¯tM‹^_ì×·é'ðDߋŲœî_¥uÓz1¶JÛÄ÷¡õ} >–àè†I3ãÓ§û×ÇO¯÷éõÓËÏž^Ó~ì,Z¥—|ÀWÝx»»ÿ5#­i¸š±¹ms{jÆ]Ê—hÉvG‘ÀêÓLjû¶é+é7·ÓPúÜ”ë€Þý¶PO<®§] ÝÑóºD¹Àï¿ÿÞ®*ªÖ:rU¿ß4=wDJ`F½ùDc?™†ÃÖ€G= ÎÜçéïu¿pˆßè>¡±ðmSüüòDÂ>å»éç§&°H“Úy½yÁSîxt{âEî†në350Ïâó»¦pPݕӴ·õ}uúù­^òrúÕý~H—ðKöض¸ÞKŸÛóøð¿Û›æ0¹UC>ç©àþ7<š^Ú;äI|KwÑãÃÿÊwMä‡Nzh{C»u×?§ÙÍÝ™i. tÿ]ž”¸}Ó§×·û—·ÜUw™—wò°^y0ý#ßÓTáoir >OjïI­—Ò<’[óã#Í.ìëœ!µ„Æg7«¥{¹ýüª§ßú‡Ésë<žêÈ7µi.—¿×åòÙø)Ⱦ9\Âar¼ûÙmíæ§Ò =?‰«Ýwé¶–ªÿ¨7³ÿè)#çœçÓëãÃwßç9–ʧ·ÇߪhÒ|xúeûŒxø}0åÇg:=Ð~•Ï5ÍK/¯MƒòLÞMªy ´ÄøËÿóWê ž®²ƒèã¾ÐÍýðÝC?î“H#f^»û¡÷Å}zºåÇž[Ju4Ÿücû¨o~zàšóSš‡Zz-ÆH“†L{w'½^,3ö˜Ç@Û'_>G-Ó’^q.+=[‚, ÿ¼{Œ>~SÇ ÏòûÔÍßÛÙQ¤ó÷'Z©ù|+nÉÉímÜ´ö_ÜÌ•–I´¬nÚ™æè:—þÐËßÜ9ý\m[¯£'ùÌÒi¤Ò¢¬wéÏoÓŠ.ðJ꿵#æµ_OÞ—žæ'˜þ}eqy÷*“½‹‡Ùöëöv“ñRá……Ôò;ZÙx ¹CdaDËÏÒÔ¼xùºáºéî—ýC\†Mç.òΜ~˜ÿ–W4ŒÒj`ÊéQÓ÷jSžŒ¸ÃÉÊ7Vé‹CtÑRÏïêñ´À]( a zŽ]Vr—žSûoè°ú؇Ñr…|³Nñ†îšIì¾â):e&÷—ÐÅïÝÓ®©à¼ð”º8m$HóW»h}’®¦µàéÎ]ŸóÔ¼l´øù7#-„͓쒔+§È§_^ߤÑ4ÁÜ¿vËß'½žÕåÁ³§§(Îy`ñeÍ)HîûöáUjýrèþ5õbn—wu­½nÆ (…®sàŽn'(ϯ@©÷¥´ îGM×=ݵ¼ÖC.G¥ËáCëýçÇÇçÓüú¸üÏ5•U™tÑ?ý³1û¦©/&`A« íÉUû±{þæíplsdsϽþX¯i=u·fnyZ•ÿêvÝ’ÿöcº Äù4³/4~ÓTk-(Ò}‚aX·²ÿZêß6m†£gÈ×øànAÎã.çéZýáÁÂèˆZŠ‚„ûï¤chÐù@3õÒ›ïÌþæË÷SÂ=ø4šr£SÐõrß¹þéáõµ¶‰<*cs=DÉ9 ÒÞ~ýQ½mZáîÖÛ/E†G¼Ü£¥Àó“ÒË¥¿¹‡d’¥5f‚™gôügØúÕV8óx¥A}zkÇôýcërE«Õ•ƒ86?÷¯ÎGÔ¢•ö1OIµ“Ê!”ýUA‘—,vÉ,q¸2Íósäå¹7p5õðVXÆo…DO¡ÁÊÛ+oÇÙʦÂiN^™ Oîø2íÓjS‰ðäNrÿš+¥ÛܹS^&&îK‘lšn—™)ë7Ÿ‡È7íÝÙ–E«þ-ìkú¥»9Þ8¬Í}Y£ÚÙX¾>Vúþ}÷xP¿ÖÊü:àÛLXÖu£òù1?¢ÃLÓmšŸ7Y錴úðäý, M²äúå¶½ðÏÍÚ¢_-üx¸M¿=·Ç%SómdÉöR-Ä]Ži›Ûyݽs´Ê;oyKRŽ0Þ†œ÷œ6Õ­7­åOeuÚ7#ýÀɪùÓ`‰›¾ŸG£ápÖQ]iYKwÒßÖ¸„8m}ÃËHK²)l]ÿexùO¿s{7oŒÓÿþvàÈÙóE÷—ômÂÔ˜†nÿo |ê•°íêÁy¼¾Ÿ×ôZô—¡ÁˆI¸¡‡ ­¸=é×ù6*Ù§i—Qó?e¸…y›‰®vðÜ9—¾¾˜ß~1¸Úåš`e\í$ÚOýÚ{ ç¦e¾™ÝÙ/;ÇÈ¿TµŸÃ÷½ë¡¯¨Éwi_;­Q†÷Tú”Õõðï‡ ¥[:̵çib£Qó c!¸tÿý DZ—cá'CJ0ÓýJàxZ9v¼[ÒÞ¾ô¶Ïű<>Ó6§I18}õp1ºÒoÈLÇ`õ‡Ý™i%z¸ ~‘Ó1Ì4>@ ö°_‹¼ÓÄEwèä;ðö³¿x;3îÞÎnÞ&šš³]^Nÿn8¢æ}Ú‡~Û¯ùmìà´•C9çõVýüeT õÅ^ÑW Ðã,Ťùu %é—}9äéù—Þ”Ò2ám¸HßÎssy¥˜Ç€Ëo™¨Õàë¾iÏüûñ„9å Kêì׉¯xx‡´`þA ¯PïÐ Û¶é=øãámš_Áîå6Ýä6õ™"ïoÓ®ßôº%¿†Ÿqw+ð«kâôv™NÑj´Òx`ï{Éë°l·ƒ=~Q’#~þÊÕ{¾À,6ñIª£½[Tõ‘\æÁC:«D §ñ+ò|ro¼¡œZÞaå•oB~ISè¾³pÅûñFˆc|9£úâóËpØæ/"”š•ƒ“XÚ¯nL!?Øïú>¹\èÒϬ-‡øÝËùç4i(¼ @À¾æå±K_¡€IÐG‰°ïDw|ÔÛË!rl»Jê+ÀéP¾%nœ*y8¼…þýñës7ÔîåœÞßê‹âޏû¬ŒéY¾t1 ÙT«®ï;ìy—~£¯¾öúÃ|D³ø?N4ô´režý©>jÝɧCšçÓv±ÿO<Rì÷Óñl˜p–/՝ޢE hsHôÇÚÛüÏ%«S^{Åă/Å€sŽcêkveE¾¡-yÚ¬(M§>^¼9?~K,Ûí;wpzü.ã)M+ÐcüþÿvJKC MÃÇ)\¾~1ŸžÛ)§ûö”R¯ôú~ë!ÉK[F_·9ŒÈ­?0<ÎE~O8ºbB¾¹¥ÑŽ |9£_üç¾$ïÜ¿ŠËfžhJîãÛÃ/›ºûÊïêÓMû§‰¼ÛL/ÐÂá%Ëóï½vãõ-Ý7~ÉáÇUªûø&ï—-E½ò*Ï¥7¾{üÜ¿Ü÷Ä¢ò¿Œ_Î+ÅJ».l~gŒ–ºÂîæ›î¿iVf E{éûÂï{á¦_æ~Ç ·ß®û£ŸôË``áŸòl¥ýwÍùx隺hÝÏž+7MB›ºÿƒ±/W׬g¿Ø—뿾+ÿ`PÝì˵w—É•.½öº2íлi†~ºS »x5܃Øüî gÏOŠ[3m7;tKçWyðL)Ý[<¬zî»eÏËszë“~¨>M&èÖÐòu–/Ïö¯ÇÒw7ââïXº71ÙaM ôí^3óžW÷©ÒtIu\¯4··6ÀÉ×Z«”æ¡ó·EÊ—q»çb÷:´¯õé¹_ò¤ÅwŠæ™×QŸø´é->œ±ÚGõgp&ôvžŽ“A÷%pèbý´-i3û%Ã10 )d3ˆ^B±ÔW%êÅŽ)ÏѬµm SûŠ(þ#À³MS†ÏÙ´/¸6üNL/[t¡w¼¼‡'X¦Ë[¯^\<ž‡+öH/M±_5ü´^ÓLØì)ø¿cYendstream endobj 371 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2786 >> stream xœ}VyXgŸdf@„Êq'QQÜÖûh«în½.VEÏrƒ`‚Ü(j„7$ˆ\Šr ¨\‘Ãkk[mmµ>}´‡õqWëzÕªÛÝwôãÙîDjíõôŸü1óäûæý¯ŒR8P2™Ìãù‹õëÂus¢×ÅO?fqtlZbx²ýÍHÑG&qÿ$²ú™ßÓ %8ËÁYñÞç67l„™®¸úJ.“-KÌš­OÊJŽKÕL?~Ò˜1ÒïTMD–fÖXM`xd‚>#%!^®‹ÒŽ?V³@Ÿ!=Œ×ŒÒë4Ñqá‰1}ŒfIôrMH°ÿâ`MÀâ…!AÁû»ßö‹‡EyÏÔé“ü“SRÓÒÃ3#çGEÇÄÆÅ'®›8™¢†Q © j5’ ¦–P!ÔRj5‹ZAÍ¡ÆRþÔ\*€z›ú;HM¦æS (ŽRQƒ%T(•J]•M—õ8ø:äÉýää×Óï*§*kéú"3)guìUG?Ç/œ8UpŠ­.?8üÛB€>‚Ÿ!{å!¼Î¤§Ê­ 9æ,ðÎl]Oâúzåg›Œ:cFa*d«eþcA'£R`rý¡Bm­èD¹õ´@|”oji›åŸÐplF–˜¥" è;¸[)Ý÷Úóûv ‚Þævi|iOî3±ÇC˜‹»˜+)ùìå u¼éÍÝ!3r•Zæ| D©Éù¹ZÝ,è&]<£®åŸ =U5ù“xÒ(½tµ(]Dã¶.‘³Éö¡;.Dw¹˜€zt‡ &ªqÉâ{wrèõÍ ÔðĽLZX–Ÿ“ 1]g8’Û ç 8^ÚRÖq°þ †V]iBéZX«Ùþ1ÈR‡ÚD™ÐåvCdº{r¯ˆÕ˜¢B¿±_Ehø&] ˜áûÕPå…ÕFÈ… ¶oû/¦ñg¤´o鯩‰»Ñ,[º2,qÿL÷0œ{sC[ÃQŸ“]óˆ«Zúës Û,ܤQ‡Õá0­€NB¦àÉ}ñ”Á&•–N'¯’iÀúb{Í)n[Ãf©lÓÒܳYaãù4,{Hã8¨œº‹(XNÄmʾfíݾëc´âÚåYK¯ýš 6°óu©èâɉ¾¢BõAPãªÕá)o§ñ¦Û4·ŸLû Uð‘$oa2H\Ù…Ê[¹AÑ’±Km/oZOm³aeËÃYëåG—+/˱Õ*8›Ø¼©rmklIÄmYHœ`Ï}j®¾YÑ?h|.vðæ‰9×^jwº8B‰EâP•À$êLÉaE›Ì’ƒKŽ˜ …9êÉ$ý5´(O 4q5…E©=Ïàð>Dzõå…UàÝÖòíU8¿÷Ú^eÙ~$ýËn±ÓÖŒcl²ztĉHËÅÔ½*¨É)2˜µ¨„Z™{3Ï׵ijpBX{fSsKí¡–Ô=À×Zw¶·qU€:–!¾Fâ¹ †±oÞM¸r®»ýh-ŸKoó‡èš Ø«&H«¦¦é"R»;н*‹øþ%i>‘Üá!0D¡wѽ¬²¸ä+ð˜„ÂSøZ¼´Œä;SUŽÿ«^3R“æt2FÃZsl‘·ö"ƒîdÁP2bSæZ)¼µÌ¢æ xlô¹ hóŽk¨ðºA\•«µ4æÙ I´]¢k—¬Urž’‹“ÐQµsäd˜¶ðyiófB,$ÖeufušŽÂqö<à+wö”«ø­¹†Ê¾äã™!^SÆ õ`ºtÜfT”ó.ÏAÄ^!ÝnðSbòäJŸùycÄ[wŤÛã9™÷§!Á¢IÉ-¯ßšoIò!Ñ’‡{iHSŠ‘å Æ´tÈóÉ|?-J΀¥ØÉ`¸¸tH/Ê3'[À u¬Øff0µï†’ËÛ\lÝRëSÖÊâ Ü >ò2÷}9ÆþKû×ÐéÃ:á:´Ù—b–¸øÌ†‹ìz–`¹†4Ø=Ç Ú~’ô÷ WEõ‡a¿jƒ˜ÐöK °d€ßt2ŠŒþö-”wwVîkSG0Ü ê;×iˆMчúÄ€®as‡¡ ÎJÉܧ*Úwuµ6tC3ز›¢íš¼Ül÷é;­8Íæ&¥ÿ¿îÁ=Oî{1P¢fO&äo(Ìߔϧ,X”)ݧtVº¡Ä¼ïV,:’qD5a’Dˆ裂'>ú¸V=«ÈBš‹;i¶ sÓçá©öH˜`é—&Ùd÷‘ºˆnrq˜øTu(îèìq¾„æG.Òž!O~ƒOî£3èø¥¹Üb“•ÏÉÛ´Ö³kÚ3´ÔvóR}‘Õ6}î'ÛðÍû±¶Øn·Fäˆåȣܓs Ä,ÉÏõÙíÙ±ÆøhžSöE®°ê}ÈÀ ÿ¿®©ŽÜŸªNŒ4ÆHEm(ZÑ™ÀruÔÆmKR^yìoè>9w Ç’a@X~½¾h}dëK+€ç¼NåUÚ²Îú Ë™ËŸŸLjÏ)WWì(·î´šŒ…ùÃ&ïÎjlÜ]½—'KG«–¹sá|ÏžqÎ]ºóWð÷ûª¢Ö.î}ìXïØÍߥ??¼!TýSó_x~ÉO¡Wÿ‹òç¹·çÀªHýrÖ„7iîðÏäÒ×ó« à÷úÿ™êy.<’ãÝzqqAÊ“kÀ=Â|ÑáN“Yö3Ͼ¬*É^—Ä'¶5Ú„èÈðöØÃBKG×amÄÿ–}ð‹ÈÅ SAoæ±ä¶ðÓQ¥¯×êKâw¬ñ•º©¥Žï=}ýjÈÐèbÞ’],hOá¼çEµÕdJKå“’¢ZWï^Þdÿ$¢ª kZ«îZe˽™VŸß™³½ðDÚîÁ®Ì˜6‡8ïGMoÚÅi/J+ðyi•šÍuõü¾}gÂ>Íëoôøä>:©_ Þ²£|Ï>úAl~êÃp—~çsÌä3C^¬eÒ6ó#3ýì\zùgìÌYµ,‰Ï¼9Ý’³ay„n!kßÓþÑžö[–pÐ(%kâind=è+• /C0YÚgŒ)y+·lÌÏ YØ™nÚûчM{kªß=RS}¢§V€“,:Lø’¸ ðFÐñì½-]u=Ýëâ¶óM:Šw{£|dDpæÜ™ãÔd"Y™³ !Ó;KT0ök” ⊠¶ÙÛ,ÁCx eW…·Ä©Lƒ©D¿1²sxÒÛ¨Ôb>‘½ªeÚ-RB7œ‡NiÑ],邬¡q VºÊÅ R ­-+§'6€wR,Ñ;;‚ó€V‹Õ\d5—”T^¨rv¶›»+·ïÜQl.·:¤¨ÿØÅÝendstream endobj 372 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 675 >> stream xœ]Ï]HSqðÿÝÇÝMo~2Š>î.$T„Ã4,¡(²͵˜b±Ùts²«ns[²Iåü:›I9×,YjÚÐõø%qŸIõ=ö%TÿkW¨™¥áËáœÃáüÎ!L‚‚È®Ôh8;·¿0_gnp5[WšyÂvBØ!vJ! t/Éå@K–=]ªÎÁ5ÙX—‰+³” ª¸R®ÙÛjm°8Ù‚‚¢üüT,aM^ö¸š­0ÖÙ8·Ãfeö‹l…Z£fOsîTÓÊîáì¬Él16Õ³\=«7Ÿe U'uUl™Nk8SµW½ñ¨5BHæpZ ¤GTŽ”HžúÉPŒ~b'2~I$aàñ{>ç}¼ß’Û,p–~ˆYwj® kÃ𚜚þøéÚù–rôD€JÀHLõVq F9GÀLÝx-¸ºYMãÜ}jÚïZðS¹ñïüúmõV‹ú”ñî|Óíjª'±>EtÇ•+;î ¿ÖΖ”]0{.1X§˜ „­L9ékù»kfùªi½Â»É5Þ„ËÉ//Íñ‘F#¶›§Tk´„v¥Þ{ñL*xñ¹UùþI&:oX'逮¾è^&¶^ñC/x)ËÍîI÷Šíö‰u[‹%oV ñh\)ÚIlÇßå¡4‚Gûƒ$Ÿ–LgÒdzŽÞtz|ðv0 ûƒ±šNŒ¥Ò`04¤7#ôéÈB¹endstream endobj 373 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4228 >> stream xœ­W TS׺>!s冢çç[ÅÖjp¤¢ ¨ †ˆHdˆ‚ÁA¦d”Y‘Id"C‚J‹¨­­C«µÕ×[µƒW/÷µ¨½¥úÜÜuß µÃzï­·Þ:À‚M’½ÿïûþïÿ¶ˆ27£D"‘í*¯µªðÀˆé3ܪ‚LKãg‘0ÒL%Fxó‹¼^o d#F6æFŽÈ±ƒëÃ!ÆV£Ä"‘ßöˆEª]±‘Ê!{d3¦M›éîN~zȱ²…Sd+·…ªb¢B•²Àˆ ÙŠ)^Sdï©bÈ¢R6A!Sl –©‚e¾Û7ÈÖù,Yë#[ºvõ:oŸ‰S~{¨WQå±Pµh×â%‘žQ{–E««b·ymöÞ²Vé>÷¹û”é3fÎú˛εšCySc©5”+5Žò¡ÆS¾Ô:j"µžò£R‹(wjµ˜šB-¡<©¥ÔtjµœšI­ fQ^Ô{”3õ55”²¥ì(–AI){ÊAdEM"°QæT4Õ%Z(ºbæiV%¶«Ä×ÌcÌ/[xXZ¼ÄK^ÐoÒçž1Zº[ž´b¬¶[/³>g#·93$tHõÐ÷†jmGÚN·õµÍ&Ö2Ürøe»õ¬ôC{-ªÍÆH½ˆA[@äÀæ ÝöFO(¦P¼Íy…,PrZ0“°ÿÀóYÈé+Ù(ˆÇŸ{Êé Ýè$y¾D†¼EI³_u·óÚ鲨ù®þýK†þ[ÌH‘=?ÐC…Q®` ßÃHqo4xIÑsnâ!¹0¶úä}tŽéš}ÏâúæÊŸõu»È… ð¸÷ðGÏo¤K‚aKO„ X.ù¹lÞFþ$¾']¥œ‹i¯‚À_–%˜ÚÂý·ÙŒ*¥QxC/ª(±P *)8O}‚§ãÙ³Æ`{ìÐåÓaöƒ'`Ça›<é„,Åö,ïŸC”6rå-gŽч¨qW‰êøä‡üMÅLN âQjˆ1Š®€‹a÷&Â^iIJÆþÄD” å’ðd,õ›ŽV ™Ç|®†4…^DÀ¡ÇE_ž»tíÎÓ¼vtÁÀZ¼X—”‹ St•A=$à ã;y<2Cаå~¿€ÍËvNG vºÁMò}®<íW£(Ý„°” lö Ü$ƒŠvdGð0€›!ÁàÀ¾è]Ò@‰O ž‡’˜†Ë’óóyÔJ$N⼡¦IØVpGúEä3 ’H´èû…ªËEÞk!úoѵÓ&‚© zz~Æ• óZÚáwÒÿm¥gà"±„½‰çü^þwt5èª$àÍ‚4;AŸ 3Á’;‡b…>®ªJ_ÒÊ‘R.¹›v©1}‰úK™iQËxÁ[Ú¦‡g’Ôè@‚N#ðÑ8±Ô\¤ÌÙºp ¨…‡¶Nâ|¡ÆH`&ªZXˆ‡˜DíTŠÞ¨…Qµ×kEM7`ß ±0x)jß­9¦hPf­Ë[™¿:µ3×¢2g-‰ÔqsLŠ+C™ü÷t)ÊÞŸ¢AIû¹´ô„äÔtUqpÖÄ„c7„íGðèºT¾:UŸrµ$µD¢@æiH½aUq·ŠK9®ÍˆCŒ¥ïá1MïEÉEÙ:T|œ;Qz&ä:†œ.Âðp"‚úû‘6‚OŒÝ?Ah€!„ÎnÁ †I;ýèåáa«Ñg4ÀX# >´v‚ÿ„ éÌNâ/÷pÄåþž/n·]ºM`«ÊL°ž1±AXï‚£¸÷¾½ÑEè~f¤#42´ƒ<2¡cäÏð1|ŽýqݤPºF÷5’ç9ª!|ºÀ¸‹Ïü~ô[Š~—I.òŽ×LÓ×dš´W2jæsšÕcÏ_µ²ž¿å½y Òª.r¬#üH³5¯ÿ7‘ÿYÄóÊÛ螑˘Kôh¶¦“*V nF‘ð©à*5Ò;4¤@Ñ9ÊéêòÔd„4©‰<¶ÄyX ’=š%hŠ@kÐnRÌU÷ÙåîÕ¥V §b”£Ë=ð/Çì¢Ã9W‘©«FG䲫Z¥·«!%(LœšÊ¥eIè·*£ Âè®…W°‹¶JX[][SÖTš|,.ŸÓçV¢RÄÜhÝîÁo£ñ ×Ôø©ñNê-¡žKPŠG YºŒÚÔÄè£ÊÂâÔÊ€¶Àï_¸Ývœ¥˜Ux8çr*¤“þqh5‘y¶¬ÄBÁ· %îÓjãS¹ä½»–M%vè‚`ò™ËàÙ—5©H«ÑhùôôƒûQ$ØWUÖtôÜ}Lg­ÃžKȸ£ñȦÂx˜^L6i,óI£_‚4þœÐCöy‘7ØTXI«QJRãä¾SŽ8Y8•D„£&CJIúL‚¢µÚÝi±šm,böÈ%º¿ö™¯û‡ÌzÒ ¨ÌˆÃÚ TÎ3h¨ê{~$!+±9• ¬¼#ùPÛkæ˜a]R­ëA äéAÕ¯šO°"²1õŸ ‚,“zWß¿j?f¯ o¡£K·ÖxHF›‰exÌ“7Áéâ¹R}3ïG³ ž›³Õïn8¸ÃCÀ~J~y_wérVjEm±ú­¦–­&®>5ðŽÞÎ$Æu¡.ö+!š`_´¥ìÓ¦Láv¯X®ö'¹jÁù$ì/Y¨ª6ùÎæs| ÁçèÓœzÓÛaÙÏÓ`L:󬄟 NRœ$ѵf4—5–ÖŸ*7«É%‚Þhòv¿N“Á½0B”^= s…I[wOÃâí˜á\ߕ߯/þd"½‰[ÿL÷|Z¬Ï×i5YÜþĤ8¤f¶ÕÇž(o,j39(Õ?þŠš s`ˆÃ9p÷®¥@Mþ{p}“@ò{ƒ,‚whxëßýÌcûåh6žÊa:—ÀTä±t0}áÍõ0£ëN=ÄÕ«ìêî¯} ŸeÝw`J0c¥•±õr…:VͱvT¥"(wƒ3æ|ßY–§0(ù¸½±!ħåÁeûöqBTŠ×žµox__«`î·îümMMdç_¹ÍD‘h+JÍgÇ7{ÊÉ(Ê?Ú¾û*2yÄů>ïˆhŒÏãkŠ+—èÒSÓÓÐAF]¸÷ĉÂÒ2ow“nFž³86‡š…nž=‹n>x€<7ó`Þg+ Yƒ9vqvÜq©éÚUTăDòåçýø ]l¼1¨È_'¿‰Ñã6-7åˆÇ’߈³ï£?ÑÿCˆ^*£âõj#œÖCc.bÁ\ªÁÅ-íý.iɡ̃{µÉµ\êÆ0µ ­DÉŸêJéL¾)=87ê¿@˜§£¿Å^\Ÿ…ü™„ œ=ýôþ2Hïi°¦[P}|ùîZ%ŠFËÈ£èP2lGÈùûÚrç<*äq½0Eê«…ßâ°%4‚µfgzx›ýœÁX%ïøÆÚÆL[õöF/aÍ~ˆß1ápùµÚÅì¨ÞSB_Òöñ¶OFãáxÞ<\¸ á" …|Žÿ 2³Ò è­1+#/ä¤qôè.ÊeÀ¶óüå'è­ñ¦8²à׸Br}P`éU–0ß´ðMܶ†5ˆ\±·[óã~/¯y1ôŒ5¸£Yš‡ÂQlÖ¾ÂS¾U>%sõ—¢ó§*¥çpCã ï\Øz<¯@b´‘5ge±D6Ö5™™™ºŒœìü;66†Ãg Žèr³3u¹‡m†PÔ Küendstream endobj 374 0 obj << /Filter /FlateDecode /Length 176 >> stream xœ]1à EwNÁ $U—ˆ%]:´ªÚ^€€‰b!Co_ MUuø–žío}³á|:£K”Ý¢×HÔ:4¿F t„É!á‚§Ó‡jÕ³ „ ž¯4/€Ýøªf`÷Žj‹o&í ,Aiˆ ' }ÓÈÞZIÍß¨Ý £ýÙ,‚ ™±•U[UB¨®^Û}åp‰¸'¢z0Õ?jÎÏ!|_ >Í"o YÌendstream endobj 375 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 578 >> stream xœm‘ßORaÆßWJOdKÊï…l6…Qn-k«ÍÖj¦Õ gwíh ä88¤LDƒÐÞG~)˜8¡Ò›ÖE]4æMw]xéßкëö}ÏÎNó¢µuó½ø<Û³ç³/ímBx~|b‚¼®èÜ4_·9ÝžH€ ý‰¬ô"¤}mô’«~¥¨<ëÀŒ3íßè÷R:Cði’îz§æ–2¥­;ü|4äóxtÕá¶Ù´;‚¦£hԎƸ?¿öû|ŽÆìvô_Р ðA4íörYÄÏ¢'î§hÒu×éB÷œ&».Ûÿ?ï_Ê…wÈöÏi,èöp‚†\ØàÁ7ãøy@;Ð]»À|1”@‡¦¯±!ðü„VòÑx¤»1 ÈB*É™,²­½Á‚PÇU =ÐWë¸a1µ”#WL¸–È'eÕºßKú÷Ër%·Ìù•÷^VµlÁìærƒÇæ(c9ñDÒ°¡©¦ñRg4šXŠ-VÒ包ô«ý’™x/šÓÙÐ'–XÅTGÇkC&UÞá,×W6E2ØK 7?D³¸ˆÍµõ·£2¢Ü7­½Zã™T<ŶøCšJhíËæ—¥Dµ"*–ò -¬cçÌÇŠÛ/”¾&¤š:í§ÃÇ¢‡ÝEÉ^‹êEi4p½ÊRJö ÇâÉò—U¥g÷s]ßìlv±º©s·™“˜éÚÍeW‹R^–V¥5†ÙÍI%Yª­ÉŬĜà7î1ÿCendstream endobj 376 0 obj << /Filter /FlateDecode /Length 310 >> stream xœ]’Arƒ0 E÷œÂ7@Œ›Æ›d“E;¶[ΰˆaYôöýRš.ºø’>²E}<ŸÎeÞMý¾-ñ“w“ç’6¾-÷-²™ø2—Ê6&Íqÿ%ñ:®U}|×¯ï• 8?øm¼rýÑY«¯ì£).‰oëyË…«( 9‡ŠKú—jÚGÇ”Ÿ¥Sˆ¡v²¡¬ *à$ØÑä}P!›AEm$AX‰€­ \­:ÇØ`¦Æ*¾¦Q«$Î-úDDMLAÌ‚°!VCQ'3wA<>$"r2•k¢LåPè´ØIqL/ç%<‘éGEÍæ ÊV^­¼Xy\Œ÷Šr@^¯ÎˆrõÏ;–-È>Ÿë3ñ¾m\v]º.Uv9þû/Öe•.U?gXœœendstream endobj 377 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4653 >> stream xœuWy|Tå¹>Ãñ€aÉ ž°XQ@zû+}‡°L²e&™Ìd²Í¾¾3gö-Ûd²M’…%l 6DªØVkñ¶EëR{õ;éǵýlo{ïío–?Μ3ïö¼Ïó|jìJ L}}Í©"g¥BšŸ›±`þÜYÙ¥ùÒâÄOOò øécøÇ…Õ˜åFõI,„ä±g§?Ò<…>„†&¡úÉÔ$`[A…Öhãü¡š†ÆÖx×ò"™º87;G‘úÜüù çÎ%ß‹RÓÕ©Ëæ¥®’f(R•ÈM•f¦®š·f^êÚ"¹˜›úTQajzVŽ4jÑþÔÍYÛS·lZ±qSê«×mY¿iö¼ÿ?ѽ*Í—åHÓ³Ò̬|…4[ZP Í—¤gJe%¹²œÄ{AaiQAV¶T–[’›] ¥(jÆËE;J+•*ufÖúÜMy›—¾ðâ£&Oœ Ne~N><¡nâã“2&›ÜöPòCW§¤O¹2å¨kâ¨:G_V F³¢â ª×€·ÝʬM²EÁU’ °M:üõÝ_¥d¼–Yµ×ª±ëÊh“Ûìkëä ÎtAõ О04õ#«p–ø Bž /â 9àDÓÈ%r*#x:èè‚mVU•TÚÀá£fZವ…üA¢,Þ‚Ìb¬¡裤‰|zœÒÆø¹1Áᛨû=!Ÿ‹ZÅ^qužF^3ņ̃Þ^ñ$A!=É,ëC¦jfÖªœ ›sw½ooç­S­ˆ:ø{úƒáš8Ð:v­c'þuÌÏ9Š”-è$.ûÌ.ƒ¼Ð 2&r¸@›ª¡L°»½í6e¹Bn1³¸GñtÚ@Ò| ‘Dƒ°2xеÖpÅ !Ï©´¸ôÅ~M¿vX9-X%`ÍÀÏ›ÕÕ›íÖìt™á~ù,šÂ¡G¬I^RyPe g9«tšœ¯¿ÇÝØƒf¤¸œÏ¨/%éèèê~Ç- :üõ4iÐ{C¤AC·ÑSïˆ Ð|*zV ‡ÊZ4!Y¼Ð½×ŸíËð ÝÞ|ñvËicf SdW•B)]富Śëú÷~ §ìŸµ÷Å›•í&æŒîŒ6ÓrÅOqrÕRR0}æ–ˆÓM!¥¼@¹gãpÆ'è?úÑ„A†ÄÏž¤mS ÐÛè qÀ½Ýª53ûžØZ’ ´Rîjvz]uìMt2éŽ(šè›ÔìBÑ!4Ó]§ ”[‹ì9z&/Lš+Ré Lã#p¸-ZŽ{-å ¦·ôeýÓ0zÒ—z,ðÃøÐoÄ!”ªÍàT1J§ÅAð9}N/šÆw¤øqnöACH §X±„K2&Æä‡†#mPf›MÏâÇîÒï·ê–€D¡'?†€cÑTM³&ùBÐÀþ3‘àJ`M½#äsxZ|V^«..‘—V»MA-Ó¨ Ë!›–®ÅjÀ´®¾fê€_À±Ë­#Ý·¢ip2ÛÏ^£°4väöRu%8"äËù‡Ä®8ÁK'òÓU˜*õŒÍlÈ·¨U/¤ìÁ¯Y*÷­X ’íÚc½Çë.ußfk»‚‰¼H[ÿw^w:ºÿÞV¹±ŒÍ˜¡Þiôs— ÞìﮋǙêmš[å¹Y…»¡ öpåýµ†H(à"£;e."¯bçŽcû/}óÍïPR<1ºòþÐþ#‚w…¼9w=XuvK••)_¥^Ÿ´ÌÚ½wô#þIÁêÊ9z[9c°›ÌPMküPsÒiÔ1VÕ:¬S÷¶í ‡'ãã'çž[y+zÚõîë“öä„hjª=Xw(|€Æ©ègâx»Y ¶ÊrÉÞÍéE@ï¨:×ú šÔtœí|s°wè«‘E&“Íd7'p{½‘äŒd1ôBLpüªëò˾{L^“Ùf3˜˜%Oah€~QÿñÁ£³æ";$j‡›ÎÓ×;ÜoB„>–uø,ÄÏ<—ÏzsÉ艿 1»'~ÿÒ™tQ?šóMM+Ð'Ú sÙ‰£B'êkE— ¹šùvñ+oâ© þ@T¦%Kí‡h¸Þn±µ6•àÍb·Z5xÚÝî]¦Í°èòÄ]÷ÖïaîŠ=1[#H¼áû¹¿ê=N·ÃÃ^B\Z*B3ûg4–ל`þç3³wìYgØK:5Côjñ÷8¹£ ù\ôÑì•D/¶~˜ß£Ÿ ~9rtDˆzG“ÄѪZ…L&—•EÊ››:š:ÿ]åý±‚µǪ̀_Ï[»$f 4µx"MÙþÿ µƒ3Ð&ñEÿÝZÿþ”F¥EÇä{0]±O'¯Î%ÖsòN/šåO€*kUÚ9:?.@¯^G•×…üi¤õÜîʈ¢©Òõ\Ókõ)2n; Ñ¿úåo>ûèâ><ö€E &@ 8¸:s%q6¯Þl·Wi˜]å'¶µ¬"¨z'ãð„ÅC»ß¨d¿+êÕŸ«„E’‹æÎ^…14¹ÙÝìð0—ƒˆ0:Ìfc±lÂe`%"oñ¸ŽHˆ95|tÃ;U@‚¦£ñDp''ÚYûvb‡¿å¹{­þ=*¼,äg–6TÕ•( ªHES[[k#ÅWÅ„ê‰zÒÃÒž³6þÐ.¿ÃÑàcZ.¿xèH½Eª°j-åìÜ»ãÊ^Úµq‘T¨µ¿ÃK¥kµ ²âBevÆ@éÉëú²%Ñ¿×ö1àq¯`ô§|‘¸ -#倓)gîž•€Ýn,[‡žb·™+Hĺxw­‡´íÙÖzôÐý¢8X &bn¬,Ac'Ñm*H²MŒAð´ÅÐÆþÆñ‘½:lqŠmyq58ål!gà <®$áã)Þ¸ËâüÎ.húëAË‹•–L‹œµ[lšDW9£?èôÕ8IöÂq©x$]E B·Ö}÷ I©öÚÀ ´V¯×êݦˆ‘åcØq—|ªŒfè%Z¿>Ȫ 3<¹=èö¹!$!#PøgJ´å[Z¢½ñ[Åý™yªâ"YTÞ »ü†s:¤ à´W½œ³./ÕÞ'yÝwð— qÌDÞŠÕÊ¿TªüúÑBqPï×V±:_}¿Æ\ fb„9o‡AŸýe©; nr‘Œc§ƒÂÛ”H㗓ǯý;†Œ…NøzØ8¢¸š@Ÿ«Fân ô'`~³Üžk`Òð:ù,»y×üÅ ÙQÒu¶Ý÷ÆïiX#¹Ó-ùÏ€t÷}«,$~ePSת県Ë>Ó‡æ” Z¢pú›ãþ=½EÇþ•QI¾š8L!ÿɈØkâLF«ÕheÔ;³ÈLé|¸ÕÜHö=ÄÞAãѸDëì-!õ=rx)m=}é´`Þ©—ñã8?gÌyéO—o4]|Ÿ oíÊz¨ó\-‹_í/\ºT›ôº‚Á+?8Óïm ú%à©/î‡ Ä’¤žo¤ðËJ´:†¾…›»i Ÿ{©úüÔ‡ÇòQ´VìŽq1ˆÂ€®WÕ©©«ª)<äåèè8¤þ v†BÓ SÛ®ŽÉJëÓ'Ã|üx.žŽçÝÅ)—ÅøEnpq×;¨-¥nÃñŒw`.6œé;y¨÷ȽÒ-Öì.MËÌÉÊK+#œº<ýÜ»µÎZ¢k#È|M¹…Äh Hº!^U+÷WråÄÀVØÊÍåú,uV~¡Á¨7êÍ*ŸÂ]Ù £ÌnK‡.9 =--. Öª½ôÃ? (]ŠâiPd.0ÒkPޏÒ\i­‚Rȇ‹ówA3Ñæ-hM8‡Sr2°Ñù]‚£¿jûòš£Ub·»º Ö^c«ÑŸPõì~ýCÃùÝ~Ÿßﺎ Úâú*h—ÝeçÕø½aÎãô€†@5·ß/ dƒôvƒ½ÊZi©ÒW´c­¯´&*ÜÚ¹ºcSº>C™S°c_îÆª &¥M*ØïÏm(l“žŸ‡Ûpã³æ/èUeâ²eÙK^‡t(hªì6Ô[!mäð™èÐÀ‘æÖÎh§Ÿ3§D³ë³|RW…£ÊAn-2ÊÀL:Iá­Jþ×7èû!?À/4Vln›“ñãŒ'íö÷3ÿXr1ãÔ+DóZçäëü`]î~ôj%è™ ^¾d­¹Ü¨bK—`ä´Ömô…}±¾ Óôq`ØÕé ;îðÁ/¯ ÙzC¡¸ ¼º…ò)G‰¯âõB~Ð.Îæ´ºtAS1Š÷ño¥(/l §MAkðÛ€í"®¢åÕ?â–ÜŽÛ4“ ª%åMm­?ð1È„zÏ<‰çÖ*$µ¥h:& 8¢ $dRøu%ÚzO¡Ýä81ö-÷zƒí¯Q¾Øßû-£ÏË"ÿ×ï®Þ¶('{ás« ÐТÑY)¨ûž éì6µ…Á‹ÿ{öKþ¬^xKBö¦õ,Ju…¼uÿÆ;~6ÐþƒvËuÅÕ9ì.<äd2sn¥n2dƒ­j«U«ZL3!Àà—“pª§…‹ô¡Ù)½dþw¾;|¼ñX°#QÕ¦›÷ª: â·+Q«Jpê*Ï\ò×Q>Üú{ÌÎ#U !F1 ÑÙ­åf®À ÍÄJO—ÀœëKÐD£bnŠ&M—E¢ê¼v·Ûéà8Æéô4ߊžw£Yè1@Óh¬@ Å?ºûì:ny|%”ü JE³Ã4Zˆ1àñÏŠzZó ÿlÊû–áݰ0‘%÷4…w(QÆôŸ§[ùP\Èÿ ‹oeŽü ÏZ‡·âmëLE7‡oBcF®ùüà"ëì²ytEKñ¬gæ¾µì»bf+^b©Nlº¤´Á DÕDÇçîjC3ýv¯½h´ÍC ÐslQ©'a1žˆçlà00»ƒc£ˆêDÜúüS\kÛ²+á3¾ÀÄø‰G|#¿Pœ ~ƒÂRh`VcžƒÇbÑþ/ø™) £­Xf°É‰ÑÖÚÉ‘ñïFÛ¨I3ʘµØ¦Ý“DNõ&"ºB‚þo>G)hRšþD ”öÿ­[È  †h5Ç*Ã&Ó\mÒéô:³–øVËà5¶”†ó!4öj«†VÌßðìØy}ú3áx ÃÛáô;ýà£kÌÁª2]q©™!G™{aÞ–]™›^+?}9Ê5¹clÍÈ¡ó}CœËIè<·™³:­Dý‹n6¥o,^]ñº.Ëœ 9ôâö5ï_>sìR\Ó³÷mø3\Fâ4!‘ÿbPò\ OO ù+ü3âf%”1ø¶¨²`oZN¦|7˜ïaÖçtù<Ì©.e ‡Eð„-x‚t¾¡’ø#]Vkwøâ½!&rœáÓç‘<%‰òðSú}ðñc2_n`/a £õQ8M¶ð\…8 yÏÏÐH$ ‚î„’½›8~|AÐw ůü#/5ƒËDør®X„\øæŠßÝs•м:8™ŒEcîÿÞŒ§Š!Mµ(w{æú-rr,Ý™qèFGè×=o²G®DÈž~ì[™ÏÞw>ð­à“o…h󸽤¹°°¤¤°°¹¤½½¹¹™XJüH0F1QlüÈƒÌø±›7ïMÉÆNŽxµÚˆ£Æ‘œÜâè&öÈãp†<Îä õ7J‚ELendstream endobj 378 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2595 >> stream xœ}Vypç_ÙFYÀ*°H²+ÌPBɆ¤p0ø"6‡m|È—dI–-ë¾·«ËÖiK¾°eÇæÆ!h¸ 4’@“¦Ã„É™6ŸÜ¥Ó®BþéL§ófvg¾ý~ßûýÞc¥¥`gÞŽììbYåvYq°ôåUye 5Å’ä—¥‰g8‰gSÏ¥J™ÃSǦvOƒôTHO»øì ô4Š?…l³‘|†s8{jj£ÅF¿!+$ŠJ™`íš5¿[µŠ}þ^P¢lZ-È*.­5J«…‚âº#‚¬ÕÙ«;Eì¢Pð¼¨NPRVY\S.• Êö vçoÉ˼™·kwNþòÕÿó€ÿµXRƾ‹kKŽ‹+…u ¢Ú²Šb ÃæˆÄRÙ‘a~Uõ†t1!†å`¹X¶Û‚½ˆeaë°·°Ø“8‡æ8±§XN°4¬CrzSˆ”»©Ê´'ÓîO+å¾Â•>á~‚Á4ý<œõï…éc 2Æ9u¾—š° NÞw[þ¼ˆÉd6Kîlþ -BÏ!"ˆW†yPªXY¶«<¯@¸ðÊœÈWcQ„»Jž¿6éï|ì¢d=Én;ï.Ƽ=ˆ^øeëÄÎORí(Îûþ­v–ÔÖòÛÛ@ ‘)kdu{Á†¼Ö– åêõÁ‰È¥1ÀzeR½Uj7’LÚ£\cµÝX |µš ­·Ïå„É;Ðióî C4¤m!xZ½‘Ûq4 Ê*ÞÍF¿A™h ùÚ8ʵ9õ» þ¦ò/ÐAÊIžC¹îv Ãþ‰Ó'»‡¿ÝÍóM>KÍ©¯Ðâ»'bôì•ÔÄzô[C2Ï/º¹ëîõɉŽÙzË€3Ð}¢¥½c8t\8SVÉÛ·u¼ð²ñwÏöýÜuŠì¿r~ü à7¢›´VÉrs=©)»þ0Ξ¼+ŠÁ :GW9SYߦNKôñ¾Øp‹áÌ®âqæmƒý ´:6 É,x4d(·6_¦ƒ&«SŒöÐT”¼Îýz“æ =¦Ô¦º™”Óv'´‚›öPî+2P-F+~@3È]<ÐXÖæ¨T…eËgVro¡žÖ!Ê9|”½Mº1Y[‰_Éå}ÅùÛ‡ƒ¥¢‰©4^—²MV_'­mhSv÷ö÷ĉ裞Ïè4ií&½m())\«u÷õx#ÁràÞÀ½ÖîÀ´ó/”ß»¢˜hÛÈãs±¯ÏôÅù,"½C­¯%Å[ÅÛÁ.Þ·¨,ZhÆ÷Ÿ¨¸øí“r[Ö`òÁ©qʺü·SŸ¢fœQ ‹cµƒU-E5]µÞüøÿäóÏzpµˆÁ¤V9X m«Ý \m.b \´Ü|¯Ùm2ÙíZ¡ÓÔWë´G.ííeé YÁ§3ÜÜ¡ÛDVöï47ÐÐoê7]WÂËøº—Vgf13;Ð'tzzÊ7- £¬‡Uf!J˜õlÙ‹ÁÆ7z,^/Eý„·Åãçºk/•þȺ} š‰æ£ô$ÃC#s8–øë/«¾F²;©‰YŽ£ª¨´¶^Tßnê‰÷Æz‰bæÏ [ ŒOÍ]˜ý+‰~Êöñ'&.ÞPW©ml«ÍPíÜŸÅÖ®T.;5võA+Þ£ÊëÄ’ª²É¥+(åJ'Y]þ:«3:ù ü‹ÖCõ4+¬„¦¨~ÛŠêÍ]}A*àî&)—« üpqd¯w¤kh(œ|ïôÈ9BÀÖ¢ßm‚B¼¡]ÕÕï’ïËÝs(/È͓蔦ï‹2ÿ?´Ý¢ ˜ÌGXU`bÍÚRG‡ZŽ…\ÄY”7i¾Ùy|°€Å®·iìj°à9§_ž‘¶÷ÁÃ:Œ³l1(•ƒvÅRQµ“w]zêPe£H,ŠŠFzÂaÈRçegV›ÝÎþol1{ùMOòQ°c6ÊÑŽ>ôcÌCŽØÓ õG²kóç¦%Σw_î’J€Ø*6‰ðM¨”§±ªíVÄ*Hºe޲zûí>{²oUßÀZåSlŸO|FóÀmwZÚÅgŠ2 ‰[¦hӹŀëU ÖúnÙa‹Ú»sï0Û2F—2£LD§×kÙ&ÞØ®i…ü¾V9ÑÀÈš+Ìz¿‚ß.é€Àû[ œÏmó–ô'2û›Eü;òó=±ôÆ"ב1ƒ5Eã0+­D£`¶™E ˜y|Xöåkh¦E¶*C[d(g§6€6¤ÜQ71Ž^E[ZÙa;Ð<þæVne–1¯7ÿÈÌøØ|³VãL/äUÓ § Гðógì½b]8™úŒíX§<±ð'q>±š—VMÍ:±‘ØÎ¢ÿañ’š‡ <ƒrQ¬ª,bH©\n°7z»Õ £iç¾û’›Õ…žg°µÓßMÌ`3ÿ2ò|c³0 1s"lvœÐ$÷Óôl£ÔÎ¥o5m Õ‚tv6pÙÚ쵯Ân¨Ôž õûyh/Õ^³—¦):@u¸=A:=}Àíë¦hÊí Qîô'1ì?ül]ûendstream endobj 379 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 741 >> stream xœ]kHSqÀÿ×Í»ëv]Í1ÃG÷^ˆ(k.S°EÑSª™h–ÓÔùÈkº\¢¹R³éYkÎDDb5£ö¡‡AÒC‹$éSPD}¨=„Â8wý ›Dê8pÎ~œs¢Ž" ÃvYså#¶êÕ©¹%eǪlµsÃÅJ£$G) U@½a¸%xðêñ°‡EÌŸ‡ÖùDÅ0ûÊäÍrMCmy™Ý!¥§¥e¤¦FꩨAÚd‘vØŠ+eg]e¹d«>,í°X-R¶ìŒ Ë¥¥rµTTb·U•Jr©´§¤@ÊÏÛš›'mÏÝŸ“—bù«¿=!„=¸~iÊÊtBš‰@bˆ–Ä#ÑDŽ!j’BdŠYÆ8Š!ýl”q#QBõ¸ÅÉ(™Ê5c&5Ó̾("A‘’hý¬jm)ÁØQ\;ÊL„÷©Â~TLCuÐ$üŠa›êÀá¸1l`aH¤võsŽØ&g„]šc1làR„ég™ „6Ôÿhr2ߦTø¶˜à\§§¹.DS9f®A&=íïóxÀÇùÎøO5´´ 4‘J2ÍÊu|¦Y˜¼œëî…޽莈'Ñk‚éFd­¨Ýÿ1íMp§Ümíg £×%¢D®Ó@-@oSM.8ÐÜÜÙ í\»·­gàÁÃóÝ&¢4ŒY€<÷çKR®‡žEô®×*%/>dטݽ7DeLìðÔEÅ{ëÌÀUh‚𞹟=šR·Ë,Ø+Øï;¸É÷0âþ+{‹_g¾„âÆg¬Ó‡f0~z1¨Åí¦*Öíl-t?ݺ£ÛXLBý@àNh ?aòÉÄcøÀ¡nÉ+jŒ9”_—–¾ÿV[ÿàµÀMÑX1V.áê‹ç—ï÷éÞºU‹6m Z+Ò8mô»NBGm¢"²úúAesåžîA6¤}©´ê=2¼nØ3>Ÿçl÷žö‚Þ.¿÷¬Ï×ÅÇò!éPendstream endobj 380 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 746 >> stream xœu’_HSqÇï¯m×ese`þéæn´„3©¨þQŠåœ¢=ÜåÔåÜævÍ¿•sþÙîÙv×܃jAQdPP/EAÈ í%Šž|z ú]ýMífÐCÑy8œï9>_QÊuB(ëlYÇ7ŸêäÍ6—Ån+0äW™›Ú­œó×4WÚŠ$f´MÌ’—QµLª@£òåâàfü8ßÛˆoo¢’ªu¸cwŸž´;ºœ–¦fžÝg0æçËùkêbOèÙRîB‹½ÃÕba9[[ª/Ó³åö¹ia÷Øm¬ÉÜÌYY{#[m®ckŒ§ªŒlqUEM¥1Oÿ_ÿ œÓl³šy“¥i­^3# W{k+ÇË;¼¹“ÿ#,.‡•ë¢(JI¡Ê: (•|¹w‘zŽ¢7ø¾vMÕP ^b”;Þ;­ âIÑðë_æðA~®ÿ|<>…Ïb Þ‰€ Žz`¸·¦¢÷JvI)%%@\@vÄH=N'EÑ«ñ£ G ªû›Ò7­Ào¯Óïpâz’Ž‹Ü×K?tzhÀçxE¯îymüðRxËÙzÈíÏiË3¶òH±¿†e¸'ì ½z;z={§Äq `—Z»ªÔ‰ÔJï«¥m“h©gÙ“æ¤ÇJÊØz†N»ÈnP'Šh> stream xœ];!@{NÁ F³l±¡ÑÆBcÔ °0 Y‚káíe@±x$™É|ºÍn»‹aáÝ1ÏöŒ ÷!ºŒ÷ù‘-ò ¯!2 Ü»¼­¾öfë6{“.Ï„¼$ o~07ìN땬_²ÙÙá=‹ÙÄ+²Q=z¯F÷ZÁä2 º¨Ô 1)RÐ áHe‰½$t`e‹ö½®¡&R¥+E]QUš¨ÖÈÔÁ>#ÐŒ´íg9n9c\êIêÊ´iˆø½ZšUñ{Œqi«endstream endobj 382 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1071 >> stream xœu’[L[uÀÿ‡V8t±I±=Fã¦g²h4Adsn\†Üu®@) ¥ -:zZJ/_OÛÓ˲Œ‹Ý ^&Üf|Ø4hÔÍ™èôE_Ôèò°Cþ§Â<¦Éóýó=|—ÿ÷û.’æ ‚ ”UÕÕº®zGO›Åd}¶´¸No4éú·}Oñ|Qÿ˜¶²«Y÷ —€\úy‘ÔYˆßß‹'ÂÌÃ( šÍN„KWXzýFC×u°´ô¹âbQ¿@µ9¨WJ¨ãºön‹ÝÚm¤tæêxIu Uc±‹F#µßb¦Úô]:S'eé¤ô-Tcý‘ºzêh݉ÆÚú§Kþ‡ð>³¾oÐhÓ™ôæv}¿®ÃØ®3Y=F1ά7茳դ³v!„òÑiÈÙÛ«<„Ð<êGZt eˆ Dˆ`Lœ ’¢èú“&Örjs®J %5øƒ‚»’ü¯~{™ÈÇaÅÌ8Õ›—sC`·OCJÃ_ÎMMÃŒ¦à.¡ø á7Ö‰ßÖ%¸A ÍXÓf³Õj6§­™L:Qð~Áaã‡Ó¼ÓN`Ów¾Lð( é:ôR´ó÷¢Ÿ>$ñ3yð.\ $Ïܪ¼ÐÁaÙEøHüZ܆¹ôùsçÞI‰†"`IΣû¶TÔBeÃpŸÅéìí­ò‘ccAšf!Ô\ñÿjƒ}¤p2^ãõÎ+=ßzÞr"œf—*fãã÷¨DøªÓáC³p‡ÄbÞ—p±ùÒéLe¢Hš×ÎÇ?_:•0„]€.R±{ …¡'Ýì[r 2# )ˆØ0híw8¬G|ãAŸ¼¤+ É;\»Í¨±ˆ½ g/,¤Róó7"d,JjvÆž•e0.NhÅZ%Ç1 ÄUœ;áòø|n·ZЊò&Öº¸ãM»]žˆ/áÖàVÑÑ*´Ò´ß ^•+éNƆãÔX»-‚6I³~Tñ·[oq—l?"«çkww½vo×S~5wj{×›J©èQo®æŽü{k;w€›¤÷åýç‹”7¢­2ÛÆˆø1;+É®Î(8ObtÔ?6êUo¾¸…„Wù"_<ÀŽÊ/ÕíÙÿ²ÒåA\gÄdžÅÞêëKøäæQÖÉ9P&›âµ‡•Q.‚(¹{²ª\°B¬,ðë ’¬ÿ®˜çÜ´˜ªÇŸ¬h­*h[,¿UùÅ[ÓZ Ÿ¨~ü€5æ‰qá™°&ŠÉ_>ú nÀdžŸŽÝ¬»:ô)³þ—¦@h¶mÇ#‘ .Å0Ùrùƒý%\"Àendstream endobj 383 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 698 >> stream xœmÝKSqÆÏ™SŽºVjÃi5ÏMQ”ô›®$#*iVΗ‘&n¾mºœíÅÍùÒ^œ[ûž³—³e;›Ͱ9Ò£… ’ ÑEEQýBwõ›¢Öe<Ÿ«Ïóà˜P€á8~øšB¡6k¯šÕz]×ÙªÊ:ƒ¾û/?ž9‚gŽ 2Çr€oÙ/ÞWæ‚(D­}y1ê+Bšƒ¨ã&ÄñÖ~ÛØEÃЈQ×§5“ÕUU5••Ù>OjFÈ:9Y¯î0XM:R=ØMÖËr²Á`ÍByÒ0Hjz´j}/iè%›zTd³òR£’¼Üx½ù†ò”ü?fÿ"MYa˜À.°6ÜådaB,o¢gâ߂ӥ˜å =+ž™Cg$¬&'àòÉ\6§ñŠ›79¥O‰½/¨É¿‡ ÁŽƒkì>8=2“Öf6Á]°$Ì Ó¬q¶ˆšÆjýx"Ñiˆ*X†¡iâQKÅü,…$a©ahtôD-ßÁË-õà%ÆYˆ&(ê#ã6W˜,@Òw¤-OFV@Â$^­ÈZFÖ1þÂ0jàÐ7Ï!Wœ¡¿)vKK„™¯¨Ež&! kŽç¦Åɨ;âfÖÒ©õ‡DÉÏ`œŠ³å°äL'û—[Ù&à‹€ÏçÅý|_õ+Wêw„= æòéð;ÄHSmÛw>ÂøÄ¾y±Í­¾b_¼€‘8nµwkµí@Ôª¶>Çh6ÀV¼EBÄ.|‡²4¤œ1cØAOÀ O™=·ÎÙg4 EõA=¨à¦ßÑé÷‚|Dï¶÷åòr(¶$£}Ùx‰’sŒ=0b+‡·Ö¥#zÐ-‰Õi™²fÖ ÆW ³0ã‹{±}&£¢‘ Py\ÁBYÀzO”¢Bަ¨@0âX†‰6Øôt ÑajzZtÃþž<áendstream endobj 384 0 obj << /Filter /FlateDecode /Length 5494 >> stream xœµ\KsäFrŽð‘'û°'¯#> í!„z Û±Ú°´;¶´Òjhïaèp€d‰™~P@sFÔÁ?ÛggfU•4g4KRw£P¬||ùU:­JqZá¿áÿWÛ“/~Ôæôf8©NoN~:ôô4üïj{úûsh!„…ŸÊ¦jÄéùëÿ®8µ-+{êŒ+eNÏ·'¯Š—«ª¬Œr¢jŠõê ¿ÔЮ..“ípèÚÝêL) oÖÅw¬åÃJÚ²©áôÏñUVU]|ËžìwIß·é8ýuÄ ï˜F×u±¹^M_¨g =«â»îj%q=Vó®Øˆ›8UüñÓfßÌJk¥û¯óáY™ÊN)S6Äw~}R¨Õù›“3­Åéü\[‹¿¾*Zè]4(‚ÂÏRײ)ÚËôë°:e%,LFUi]ì_‡·US\ù97 æ í×é×_Á÷Ù©$÷‡î·©.³uÒëÖ†9ú߻ɩå_´„íhLñ>[ºl=LFÅ釮v~ Kg¨"¦ÖEœ‡¶ÅO÷Çt¯ïØ×ë0Há]×Ñ ]ü”|£ùFºŠo$LØ5~'Aïïûw/íáw?þû ìE7R™%pº4ʪøÓÝM·›-ašÁ™²4œž UÀ÷ÀEÜ¿ëØ®£|Tƒó).ŠvóõùÉŸOªÒ÷ÇÞÖ‹6²ªusꪺ4m¾¸=î†/¿øb ‚²Û•×kÔm?Ö#ž…Ë&" ,ÔÙdWÅŪ\i+h§ÎW5YŸ)ö´>¾Ý?³oÛ;&á׉Ý?àË5šW¿7`öFòÎÚ³ ûþ5æ ŠÌ#„ÍæR5ÕÆs¿½½Õ(•|ÙÐÈÂ>G•ØÂšÐj¥™mññ†8wWt»ð\éá–¿A›ï\ѯ@r”w³m™Ê]ã³FZ#pyðQUMÝÀˤJêÒ*ô¯®ƒ£û° ¼š‹£{Õ þAUg·’5«Š{ÄJ%‹éjßá5L­)î¦Fô®ò^ƒzAk_‡ÎA±S»èwM!4VY a_ÞnÂôÍÎ>íÖÏ^5ª8ЪЇÕléÛÌñq­¬@w™À_Ûß«4X:æ&â @–—4/-,é2à2‡|è;¶®Ã´+¤88”r®8Ø™+þ‚–Ö4•æÓËœÎÙ×£Ï+¶iË裾=9ÿ‡WEÏ^¸Á’C,4>Ñg˜Æ·{¿ià{h 6¶Ø„ögèMSY¨5­TGÖ`KÐÝø”£FºŠš£@„ôí}Ô…„~ÿ‘ñ7P¿T²{­r ġïÛ£F{Ö a:Ýø~¿]-†˜ dؘO 1•£?¹ ¨@õÂÅW»™Šƒ´S½o7Áô+­¶Þôï÷Ǹ6§­BƒE§eA÷ýÁëŠ $hÈwôD ç·ÇÄãm×Àw®Ã|bà§c#+3{ F‚Š· 4 þؕ̽ ÷ËðÙŽâR¹ôïh0a¡÷n³iÓá®Ö«¥]1ˆ8Â¦àŽø@ÀÃ…*jDhs ë¾(žm×èL†¿¬‡uÿõvxv±ZŠ!$x÷8ÙßD¹¢ÍVy¦ )6¹¿ô¨w¿I¼8Ûdæ®a“µò¶‚JEŸMRË Ba©„u%)1ª85×0Z-–dh±/çbs}Æ&´i‡a1 £lš&Ê~8 ‹QXÀô' ^=Ûqt$y™í~j4àDPJðáÛø ™ùψO½»þöØ7…x‘G7¦ÊØqêNö}x¹ªçfD»ÔX…îÜ›w¸‘ ¶ÂE,5XwýA¤^dÚ¾:^k+‡Ýdà7ˆ^KWi2í“=ͲÍQº^Kþ.QO š ¸~A $ÿAõÐãÄм%wù÷É«9Êž¾Ð4P™lq"o±¡ØAë~žPÎñ¼9ý2ÁwÊáÍ£ð}YÃ6È7­®Jç´‡ÖóÅ e¾c¯)¾kñÉI¥¥®cú¦!¼¼MrŒ_û•¥pu:;ÌZ¦DâW­´)µdÝÊJTOÈPd”R5\Žhµ$¡Úå’c¶óÄÅ4`D"úå—ÛÍ–¡E€/h;z_2?…[ŽéÖ£&£·mš‘K«©kôÍ£ë…lÛÒ”yĉjçw“‡ŠOÜ!$ذÙ0})ÍgÓ!! ˆ8Ãú%²OP"NÖ›vé•H:AùÈëÄßì{ÿ;eS{DAôÍé´ÑÞûœ p a Í|B¿Òw¶ÃKiê37ZçÁ+\ fõ}KÒöÜ¥1Ç7ìÀâ ‡gI\•ZÖ®ÛtÎ ‘ n`isi±%æØY@ô3‚g ŽÝ¥<•†oÛ›u—J¤5CÚ•bô>çLUÉlÇõ]JgÝ„-&Ø>'¨Ñl'únüÛ6<£€iq±õx3KÈ6¨g€,Ú¾kqÚN|uÇ©¥—Í,›ÏÐhL%2blàoùäÛÀt]»ñ¬ HD(BVðH»¦ð?î7Gðô¦m˜Âõ̶c¨åR¦h(óܶgÛ„!c㣠!M+ïfbRÎ4QËR7¾-Î=È­YÚeuµø+ß„w!ʼnM^,A妔NˉlaÞ?{cĬÀ¦ °;çü5œó‘s éŸö w H4A/S‰çMèöÛejT 7U¢Õ_ˆ¦ÉQVW5ãÛ˜×Ú§¹(?áØ%Onü @SËìÐ,Á þ¸U%\Ù—ñ¨AˆèÉ=ž.v{׃Ÿ[~Ä¢3Ó‘fËÇ(­”{’Þ¿ƒX)g#›ê:6íð~»!÷4;Òu§!íM¢LíUS–¦v£}£aþ0G#¡£~XŒtJ„ÓÑB÷ÁBõ)ž{V•A «%jii¿qoVg­G€_ÂrgZ!ωç˜à¦…lükÑ.“£ÒôCˆTê£õFoÌL=a‚þŽžŽk@å2R_…Ž”mÛ»ðEDlêåÀKC¨À ¡¥ÇFa¾ :zãÜÞ6¼Ð°™´‹¼'¬¼TÁ Š—w-"³ö›‡›ýn‘­ÁãÊ‘ða0³T ™îÌŽ– †ž£ª"©‚‘d•Ÿdÿ6Ù°ÝÜ·xu  ³::üòÌŃgÜ’3üe§ô±Gßf9]\h`Ò´ÐÕ§ëCÏŸÂZÀ> åxßf9DÑ9‹ZÀBñùAGª‚Ïã‡ðe=g±R†¼möÞ˜3ˆ‚j;~ßà4£ÊÆ&€ÞÓØÄªt–/ÅStÄyy >°š³¶¤Xù!3þ¦ä…GøçIÉaEðÛÒw …GÒuæp¶™Ršw~b$8 g3–-O²¥;íqûèyZ]¾ŒñdniC•küéSŠS{Xw†tc§‚gºÃ,G¦‘NªñwˆÍ©Ÿôù\çèjfŒÖ±ƒ 5–pÜ÷”íõXÇ’µÈ0葦xŒ#J'«˜Xî.¿ï¯×ýÒ­+ÇxFX¤ÑˆáõÛ%}{ÇçêR ‘ùâ”/ºO4(õË fÂl7Ýa,¿xˆ„R“Jîƒ,N~èñÉŽ»©©œÈT€Sj5:î³8"³Ð»Eú«©Âm队…†– G%_Ëcι/ðdàLÝSœ©lT)áëY}étþ´ÁLȾ“BR[Ì7Œ’Áýø/¬<‘ô³×Ûῃ)Á䊊:›Ú$¦v \7±9˜ÚÙœÅ^£õø'5ï7<¼È'ñ<6·0ÚÏ›ö&¾b‹žzz±{&2;Û„.]œ×vCêùÚ ¤,NÏ^G5¬3êуxë¤ L.½ªeè3¥íàïzUÏ¥¨ËÞp3cg‹ØÈ¹J¥4ËÕÑf¼°v†ª^“¡¡ 8+\ã`ˆ´‚iÙÿ"ÆSéaÜtÀÜ Qê2+@b‰Ô~»e u·JgzɦPuª†Häj®¼)Çš*MÃa¤M3»*ÉïfFk2Éõ%:P%Ðßc“Æ4Jv°!•ÕxÞÌ¿5 °4”’šlG2vÚ=¦ÈZ¢w²^wqDXW‡y=òâ&²|7þœÒ Åd µ®½R–ìUþb1HŽwd•úýû—÷Ûaæ ŽUÙ¸R›X¾]úòm*fL͋ױ@Œ¦‰²|a#‹ìÌÌé<1 ¡p¡²¡" !€ÍÊ·cqÃ#Õ‡«X|”©;ûÖf~ܱHüŒªÏÓØEVSNi'ô³’nZ6^ ²¸aƒ0ºžéœ]¤Ü+e¾©ó¥â‹Š’|"’ð›!ÌöV%òŠô!Î(×øî(¹Ji³#‰î(ªê¹Óˆ®¦ŸÕY1¥·TªôvØ\®ÎO;9öëÛ¥iFJ€¦NàC…B¶*d/§¥g„Œ6V"6óšßÏ•lʺjNU£±j„V¿Mqs10 ¦ Ö®û'e¬ ׋däÏSþÒ€ÿ®5[ÐTAÏ4÷~•zƒÈþ¯ û^-” á> ûчˆjlËøQýf3nìSª®tàˆS®‚£¶ô„^r%Êí Ýâe©V ÁôTRéWŒÐ+§¿iˆ/h9&áôà1<6RZyZ oñeB;é‹Âq`ܯ8—쳡²4áøü:›»Úþ!ÐÒ9mà .ìÌ7ùR–W´ðSô¬/‚‘fÊ+ˆ†±ÂÃqP}Ó]Ý‚Œ-݃¯Gñuýˆ…ðDí ÷ì‹ðD/ô-.­J¡ìLçÔê‚qñ+ËXëUL;«^dxkœë8æÆ’ ›#H.Cɾ¹²¦èÝï’Ì'w(i½Ì14íA²Sµg@Uíì ¼2jãë)ƒÚâýðeOJ}*º”5æR[ÊEaW/Š«ýýŽÔ„$mˆ©¡J³Ä« º>0¶µ… cUÿM¯ûõO÷ëÝÕÔs&où|JuA³Â¤ÿ.@ÙÐìïî㱟£›:Éãoúöêù¸¤Ýº»¹½Üß÷·ûýul^§Cç)tLŠGÑ)t”6ŸÒòÅlØŒ'^¾\B5Ç`z9•Â{I/è3¨ƒQÕX?ž9æÇ 7YjÛÄŒiGF¯©u%­f oSm ¦LX½p¦C¿;P¨–ªÁ1q1:¿;ÄN;óÜ;€ !~žëz^n×1wB|½>/v8R 4q!Ýú„ó!?é9s-´,k%Žw-íG»oâÖËÎìH#e41¦¦ò÷ÆŒÑkbT.Â5äÆfA®íc£Êà6æÇÉÚ)ÚÓOM–©ô‹k¨žp¢kÖ*ÂÛ)ÇÒ‡ðæ†Û3yâ ¶ ‚„LÑF‚É—pæHŽ~ϳ¢q&ÓäÄ«XAñ+0[æbÉRÌœp®Xñ 9õxŒ@Â_†èFÄ@Œ5ztQ‡Dt±¿-ð&±œm:dŠà{1 ,þDÅDFÒÔ8Ôi—Ã4ÒÓÝŸ_y¯ÇM~ðÕc5‡îÀînäfk„¿Õ†U^ãÕ?B‘åd€˜"¯‡VRgåýàc¶Òvfð¹€èFšÒŠ]e‚*)6$-ÆÚ‘}ßÝtü8b={fªéÅ·ÛgAÔžˆ¼Ešï°ØÌR]¬‚n“ûóÉÿ,}o¶endstream endobj 385 0 obj << /Filter /FlateDecode /Length 9718 >> stream xœí}[“ÉqÞ;Þù$?LP/=òÎa×½j#¬ÙZ™”E)¤FxÞõÃ0ŽvÎ9Àj#þíÎ/³º».=»\”iƃ‹3ÙYY·¬¼W÷ï®Æƒºñ¿üïËùÙ¯þź«7çgãÕ›g¿{¦øéUþçå|õŸŸ†×9¤1©«ç¯ŸISuÕUpጻz>?ìõó%\¥|‰œÂÁ:‡&Ï_=ûføêz<ŒÎFÒð®øýŠ› Æ4Ü^ßàdF‡ùôRþŒ*ú8ÜÜ–½çV.Ù‡Ó yÂ$Œ1‡1èa¾¿¾Ñ4èèü^§B÷îô®xô&·VÃýkù™¬ŽU“ãéCJ~¨F|ÿ¡ õîZÇÃh’.@·DT—Ó|›»°f8 Y¯½×ax8Už¯ÿ×ó¿öÕógÿL{‰–ŠWNiwÐáJëÑÉn¯¾¾z÷£;ªÂxعm?õhÁAmJ)ÞTí+žß1ѧé_y­0* }3üãýµ17®Nï^_ëD aípûòrûj3F­´OøÆ¨Ê#9Nž!5¹+@{öúòÍ&’S´<4™a. ΃¯ï "=DZÝutö $³‘Ô,ý—”ôˆ0ÀÍ,‰¯èAÝâ”ÙÑóC ’`í„‹\¼²#¹®ÆŒÆe%à 9na•Ò0 ¼¢&É 6Sˆy’D3íhÇ›ÀF/8¨i; +§DgJ:&%âái£»$ÄÖ%¶Œ%#ÍG³é° •Q±ÿ‰¬Z0 e‰Y Õ ¼ñtà-¬`@<ê[ B&†HH(íóJEAÑìÀÃs Ò5æQÜgè,7r€ =Ñ!ù+â×3r1:ç ¦ 4߈Œ ¢Ä ¼cÉÀDi &@hÁþîÉÓø'€‡ê ŒÚ¸HQÏÄZ1R~¦‰8Ü5­¬8ò$¿di<±oà°’b5ãmàtB§žW"ŒpÞ¼FüCÆK¿ÆIœe€Á™ó–Æd¨F‚!a“È€ ç«xõŽÞÿ>ñïÿ¿üû–¥rˆR9A6“h‡X¶ uÒ°Àh²#³µ6Ìpd“ñbghM' b ™bp3HKÙêÄApZÆ1ãËÉ ’HL˜Cè<8β²"D9ðz¢‡fÎ~Ra!C 'Í<Ê0¥wœ0°XB%´šhZ"ñÖ:'.©Õ(8„ y&2êPñ ˆ·ì{â–Ü(ñ¬¼YŸ£Q0_&•Ÿ£·±1Š’$ò~áp,ÇÄ‚;ЊLÎr[Gã‚¡g¬–,„Å(M²µØ¤¥áÌt†ú–9yÇY_yÎâ¾y(¡uZaÍ禩—]0œÄ[, ˆ’ Ž[r²¬ –g©cŽbZP4AFcݺ㎀Fü逷9$†VÑ@PŸYúiš%¢Ød…åY‚•x­²ánÙd†ƒG#–µÒÄwH·Ò2b <+6§%Áç„Ùï­+³·5t²»¯^BÓd®Ž&b$÷JÅaFKÐܑɹ@7¡Bæ%„®£ŽòÊ`òE‹¼ Z 3¨Qfdp±Ùd…å9’åÎ!V¯ ž‚I‚ai­T!°‰¯¬8 $ŽY´3œ¾=a»/k‰Ý õ=Áß8&Ë«œ¦'"³ìm% îžä“\x’ Or¡– 0#hÔ–·°© ¡––- [Zfoé_/‹á9½ji1DD¾eDJ€Á>-Å I Pô‚Å–%58¼0—Ñ3ï/Òãd'yeÙÉDs''·å4m!¥Â"3›áÈ3™tÔ8ðr¦èшâ:2Ã¥kÚ;4A!LZäšh›{/ {Ù-è΢÷³³yÁß¹»^CíYôÞGãžôþKëà´PoyÒX×¼ÙÄ÷ï:buóÄTOLõy™êíc(Rpê†Ì„P˜£1ãê\WÞpcÅõX î±mú&ÉU¹0›%®idÌz–|]þ… BöZ#´²D£‹!Š ¹bŒb¸¤„Àü(¾Hv™16#Ѫd™N#J­¶ ¼ö¸g ¦ÌHV.íD20´ààR·(@”FÁ{ŒäFç]¥±ÒÊû@£pÂc#«>ÏÉGQód«àÿ±zÓp]œPQšÕÐk'ÕÅêÍ{bÞ$ºK±f&“-bz˜:1fB=2m+~Uäj0ô’xÉĨ ò¨B7™cèÔ—e…ɇƒX7ò8™gµØA(èöƪ¸õ4 0B£rô£ÔbÆ(ZÜ÷c ¨‘—»ˆD‡8 kœÄn2^q (í^Ìü„ÂMH¦H&›ÓGúWâ$žlJ N9銦I§•ÖÆb­1)²)ɉ(r²\#WÓ¶dIk®dN%óÒ‰`U™…Ã5SrÙÒ@د(À)ç3Õ¶bJúáRD@¡íáz‚¨ÍñdzPr™—ÙÆK|§¦Ã´#ñ]  +"Ò¯iTõŒ€Ð“O݈CuO'üé„?ð?Ûž5;mÞ'®À¦U{ÃYó÷õºÃÅÊ>®t³Ç‡Û Õ¿#/[Ÿì‡3‡fC®4(“«&§ŒÖŒäLÈ€ÖHé ™ÞØÙ ïvà>JŒÈ²†qLK"‡Aˆëèðº¥É 2Ktäh¢0¦/¢ÂkÁ±=KË¥–8<.vxH 0H˜Å£&î±ãÛñN XÏ’ÎcÊ"¹Éíçy$Ä}˜A0käæó*/ÙU™“õœ’„¨€ý+‰‹†.k‰'fyb–ßYÏžø xµik¤ ÅÒ:£Ê“øÍAHÚŠ.¦%Úzþ›K¢iºž¹ª‡oÅ¡À…y K¡Ðȇìñ0¿!UDƒœ øÅ=¤›Ræ2´Â}'”âJ`±K`ÕóP÷VóH¹á}#KBÌ¢ÖL5â] /”KñQs"(Êd2cîÊáý7ì ús£` ꘴Xwa¼Ë†ÉŽ_ݺ޽{¾ã·^þN €šp/!-¶ ¢@†<Ö„4¨ðáx‚Îá8C‚·wˆ!…0"‹8Ùxrø8s=wÖ’­Ç/½ UÓ²6càYYbÞ(Åi>+uèĸ’Ѳugqä‰Ûž¸í߉ÛÊèI"¡ ó0Iø¤NtÏ{Éð._¾“Ro³î}b¾ÏÝ÷éý® /è úb̸¸ö £“Ë'HŒ«}(Ö;Ï€4,üȉíDZ9GÓ2oRæ(ðshŽÖ +Bc ’×2œB@² 9QH‰S)œ×b$åóm #¾™A¦¼jqcHñËuDR¸ÌNW°äe_ù8Kþß{Ç5TÆÁ @î(JZ„!¬„‰CRV¡–”1òB‰pež]­Ãë'¶xb‹ž-²Ý” >¢ƒ£F(b7A"Á&»:Àö¶¸øL?‰t»È)Z9IŽ5püÁYÍsxó$‰h+È1¯Ä•øk»\LbÖÄ]Y׋Ã^`v2µ—»ÃB~"-™nRS|Íårjydc—Û$zOº‚é :Ê‹ŒW9 3]®†Âd&_&s8Jˆ‚SÝÜ*ùœ‘€ñuØ1çÇ-ùZâ#k^ÚŽvhé›T®pGêQ¦¬#ûðF6•¨Œ;‹X$RD]±ºKÞdUfi§äOðaÔ¢Ã9JF³3<x>üâ1“‰íRsˆ4²ÅHÌ©C0š# ‰¹ÆÀH¾3Àbe5a» NMGì©'.|âÂÿ·\ø¨ÕØÅàMT!ൈi‰©Ì5pT³‰kååˆ!g‹:e.ÖgHä(+€qå~¥Òš»ìËdúRš®Ú¦/ÈÙ)Úé {ú⟾@¨+"Ú)4êS¥m6µË·öÙ6gÛ§uwR¿_Ñ»­wÒ;0;NNï5¾Òë'6yb“Ÿf“ÇãWŸ÷¤|¯ v´E¯Q:­c`ECOâž¶p†ã(Ìk+¼Ò{É'Ý{Û]H_)ÒÖ’ìÄVÛðk íc¸¨ÅÀ^x×ÚF…·G{Da$¢€{ZSö ïN¹yÙï«Ñ×Oó§¹1\ÿÆgÑ—¶€r¸$;Ãç LEkÀÙåÕ:AÞ¶ÈfÁ( *_¢5K=-Ù4‘-#CÒ#wå‘€ƒ3Ó9¹+Ö§Ö’Qþ<„¯a`‰<ØÉGô9‹>¯Ñe{û„p—4îË;Éç>AÝ'±ûD÷N2¼I˜÷Iõ½Ä{—œïø;Iþ6åÚ²›‰ãȹ‘€{´‰oÙ%© x÷œ•ÞF®.P’o€¿Ì)_i XÛQ+m֢ϊ2÷¦ßh ÊpÆ7’ 7ð2í–5r¬ÄBœ¡ØçÈ[)þ~bñ'ÿ3fñǽ.£´dñ&e¾õ ™ŸÈŒÍUñI<÷h·p?Ó÷xdž0–!þÄ;â² ÙºÁ;®rïNw*©ÓZ;Š­S~;Ùçþ¸tGª;u;³?¼íùîEÀŽ˜èEI/nZ^´Ú%. «!·á¢%$€½®IA%¿ì]yµRйn´Þpf:ÌÁã í.曞Hþ8@ð®Y?ÅE* ŽðŸ1·,EAF̺'özb¯?{e¡v…—Ô9”Fq¨½­®˜w+0º* òÙñD(“Yc§N®¯¥ëëíº’¼®ho§®¯­yýg1‹Ç•NsA 1r= s’ýâÓÁ%-nP’+Gý%¤îžRw•©»í´s!ª»3Õ_«jo^uw³v®oõW¼ú[`ÍE±×OkóèÚ<Ôi<üy7)°“8èJ ºòƒ®Ba§ˆ¡ôÑ„6àÐÅ$^ÿYÌâGN|­äw VuÐ0ùn>¦œçæØ*®ßÀ)]‡(‘³âBäð«æ8MDT&î¯ÿÄÆÃQW6ñ+³çݺ¥¾¶©­~ê룺¼[Ÿ› Zñk„IªËÎ6ƒá%ûÓàÛ?àÕintbÈžZßGEò„‹ÜxõÝÌïV’7#­íI{ 2¤ ï’zõl 'R^žvƒÛdd¹u’Ú>¬Oåipi&7P¤)lO ·EÁ9§7ì5ºí):S“ùãÉJRVÉpóCÇMi,W78Åè;?r2"‹Wõ“ž C‘ìHµ>ÕùnÄšöê¯o$§}}*#2(‡%ÍrC&éˆËc¼~2¼¯PÍÃÖV†ƒÔЀopGŽl÷õ±ç¶ðbI,á탉¶yyðåÇËDŠNÓq\F&ŒÍOdÙÞ@¹i·µMx¬` ‘͈·s‹èÇüP{àÈët|^)r<ðÂøo¨êQñ×½€Ë†·,.í÷imQÒ¾¶20ÇeA‰›ãÉŠ™‡š\ÖÏx¤6¢Ü¥ÙÞÍ0X¨%–Ë«7,áÊ+滳VæÁ+C*¬ÌqV†TX™½ ¬ ©°2/XRaeÆ)°2¤ÄZ¸dÃZ –°D$€ 'ï”!VÞï+CJ¬Â‡ÏX›;þÓúÅ*l‰F„« aP±Fùš0ùVå—*/0Òº,~3† j-€y›¿DLúbƒÛŽ™ B9¥‘ÆÊ.˜PéY ¨”Ij\u‹¢Ì´[€¤ÁFúÜ·ÎÍ’ÅÐ.ñ{óÈÉx j–!‘8©ôÉÏxU¥Ab‘ŽwóªÊübHRÌAÞZ‰×GªáoOõ«*çå;ÒdÝ,Ÿ°æ×IV/š\¾”ÍO*6Y¿OM£y/Ð6ªiü°½×»r£| ?ü0â~EfLõ¨Þ^cQ<8]ŽòLÚúárþöúÍ´úCäÔJÌ›[£ÑQ¾1þw§7å7·–Á»4¨/¯o,,Q¿­¿ß}¾«þæ×{š¡úøëǾþ²üÜøåt_6:/Ë¢AL>îÍpy[“†áëk6˜júçꯇ›¯ŠïžÏK£êO’¿Y¢ÈžNà žá×{þ‚?\Æë K.ñ;z ,_1!¿ž¿->ÐŽ!bC}î¯ùêiø˜ßwjëO¶?ïð1tÄL“Í_7ßžÞœkäSõç9wC“y_,ÐÝý%? ¶çeu«÷öz]€õ­©òÅ{6™~ÞîSQ$QŠç¬|æ^×Óýcñ‚Ab[ü¦Ùµ¼ºÉú¡ù¾ü9Ï:úá|y¸o¿PÏ«–V9ž+¼ãÝé"›ÒðÃB/m+jRϘ âðª¤s9.‡ïOÔdm~¾;½yË|A&üp¹ûA8L!F7‹6æ“úª`°Ó_ÔL^ý%Ò€¬áá‚÷ CØŠAŽ—Kݼ9‚0§–#¨Iñ%½Îtåo¦‹£I-ïò5ŽØŸGKÆ@eš½y8H®(áÛçÍ2YG›V÷t¼Ë„cèyÇH‹[Ž÷Ë빯,G½°¦z±uXtñ³iÃ$´¢}:ç©E7·5.WŸB½Ðß1œäY U’†Ëa)«µ#[õóùý{,1âv¸†Œ`ÒE‚÷ «ºbÇ^òÉ!³eøîø&¿ÓY{¯Ã¶0´î˜ð¬½Û]RõˆÌYdi2«0g~²#ŽåmC› ~ÅŽ^Ž.þ"Óâå5þÕjŒÃýÝýä QUÖ{rNîçëOŸ°"†0äNU#{ɽÖk~{ý óç8:y5E/´©…øþCÕ*4ibÕèSûãwGR·v»«á·Õ±­%ÛÝ#:Öl¿¾¯äÖé»å‰•¿;ßj¿–vÞT¸¥gÁú‹’isËòŸ¬­ì=©E‡é÷nȘþgÕË©¶Nç…‘,dÄÂNáj@p±Þ©k‰Ù`éQ­9>,yÎFšüõ&›Šq,;BªÔâ`²Ùs\îýž @Y!“›ó›á¦2R~Wîç©TŒ§ój¹B•æwÊ“ÞyY¶/;3Õ^ ÷'!“ír^^Q¯ÉXÆym4¶kë²ìþ®‘ŠÒØ’Á^ ©Ï–!íÉ6K?7Ù6’´ŽŸ~Ô ¾nF+oý›"oíùåñîöü v”AúÝÛŠèç8ÙÆk2€CI÷›áë“,vø®:ås^ÍÑã„O9øDˆV±žù=¤E"FEþ„†ÖÚì›çHµ2¬¥Dé¾K¼» uÇÐ’{ê4:D.SV§—Þßî$fg½`Χ¢Ä €h…{ÿâ|ûðñ–ø4ƒ\ù?ø Ùh²ÁȰüßÛƒïN—]÷P…).Ô›SC3Öl±¾ÚÖ‰¿õ@:&#K¶Æ4;ŠýANÐç¼âägCRVù6¯¥µC#N¬a1„v¹áRT$‹Ï8þphH~ï8–YbŸþÃuõ„»q±ð°VSßÜ8¨àDj:Y€Æ‹\¯h,XTŽÊ ¿®=4ÌÈ o}ƒ@ß°ÀÈ;—|(¾!YI„Êžö8†ÎÐæ–äß(ÔÎ¥\è…¦»ä´6øØ†å:HÕù)B´1 kIýñš/XCŽÐŽ{á u—ãá=(¿Ç—ûÇLHëDra¹›jcê!íÈ6.˜oÌExçlåó»€I‰Â«S:ìã±åk0¦¤¶EP|8¾/'½HRÇúŒ·’X…„3­áŠOÓ¨úóÏÓ.Ž8£0>ƒyŠ›ÈÊ‘šÁM„là½yó¾”™÷ý)ò—d äýÖÅgÑ` nœWõÐW Fkö]yK ÖÊGYÙ8ü—Jåµa#ì§€øÌOÒõj\)'LY[ÄJo´â›«°—Æ`2“üË_/ºAù—ÛoœÓo‡ùá½ó×·¤_¾šÏ_,ÏEyœ}c†ÿ´üTÄ·§—o¿…S2}˜Ï߮ʩ£öí5\*!臿Þ(Œü‹BVmrŽ&üÏžÿU=ػӋ‡ãÃß¿$þSý²lãÍ^›E=>1ÿï4±Néǃ'Ñ™ÇÜñQy—öôb¡oØèÕŠI»ÓŸÿ‘ÈTPüo™"™-[ûTs#Ý7eRIà‡ó…½aÝ™Ô2“óï]ÿ‚Vôÿõé®QGåh*Çí¸†6>îG“ÞZ^†'³³^Œ¾Ô—<RÞ…ÿñíÎ%„OjôþáÒ8 U(e•IJ£/Ké{¬ Š5^@O8æžN«CÃÿVíô݇jÑ+^Ù°^e7“t;Ç)vÆmzR–õsG~±n!]i¼;+¸OÖ“\klIï›L.¯"Ë¡z±:}OÕÖžï~¸Æ}MrJvÙ=;”]˜KïÝ£g+[ y“•¨ÄºØµÔEÅ”¼…N‘ ^¼Ó[ŽW…–i…®£Í¯ã uÿÕ£ug ðxë¹æƒÄ§*:.T鬔ŒyƒÚK¸<ïëiüHc«ãUE!eQS ~ÿäÌâèNÕc€ãJû+I~Þg '#[[¯i‹Óݱ”¼wmNýZ@¹–£¿X¢NNLAX®¶ñ3s ùI÷w{SYÃϯLÊEl}eÆ@ªðxÙ"bxmGúþr¹Ÿ¿\. TA.Žm¹ÝØÏ»lã|ùåùøñö×ÏûÙÜh‚Lÿ‘úÁõ²¥Íí£á"Ò—÷çœQ«`‘úÒé/¶0K¯ÃñáÍZJ±Ä¾#óÛÑ¡/xHÍ8.§ËݒáÝ[êá—_}¼¿û ƒÐ ,Ù–0Ýåíí6¼<‹@[ÿþôêv†§+9!.~ÜoËS¿ùj>oS¸E¡Ü9(_îN€òðýé´ˆ´å$Ü8.T!Ü··§7o/»KåÇ1ÇÐr¡èÿÔÇ©.endstream endobj 386 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7773 >> stream xœ•z|Çöî£e)àð:âˆ!´z ¡ÙÁ`À`ªMsïU.’-Ë’,éXͽwãŠ1-ZD¢&$&!É ¤Ïæù¿7+ Çvnî?$Û¿ÙÙÙ3ç|ç;ßɉ8€rrrµÚÇ'&:fCä®èħO]’¹+^¸âÁKœøÑø9ÇãÔßüî-‚aÎ0làéÑ“º\xŸ‘¨cÚñ$åìää™úJLlj|XHh¢ûŒéÓgNJ~Îwßê¾tš»÷®=1Ò„ˆ0÷]Ñ{ݽ§ùLs_#%ƒaîc¢Ýw…îŠ v v÷ Úì¾qÃòõÜW®_»ÑwÃóÓþ£m})ŠZûrôæ¥1¯ÄÆ-_‘°2qU’W²tWÊîÕ©{|ö® Zìº>lC¸_ÄÆÈMQþsÇη`üÂE‹_šø¼ç¤m“§ì˜0-ð…éé/ÊfÈgfÌš=‡¢ÆRk©ùÔ8Ê—O­£ÖSÔjåGM¤6RÏS›¨I”?µ™ZJm¡^¡¦R[©eÔ4j9õµ‚šN­¤^¤VQ^ÔLÊ›šE½JͦVSs(j.µ†šGq”3õ45’P"j4õ/êj 5˜B=K ¥Qè'¨—¨áÔjåI=I¤¶S.ÔŠ¥¨§¨@JL¢\)_7²„ÖÉÃéáÓ€[Î[X-Z)ºH‡ :À̱aøüá#GüüdΓ¿ŽÜ<ò—VýÔØ§þ-Nå1ê”ëRn4WÅýâóôb %Ù!i=kôÿükÙ3ÎÏl¦ù™Gc¼Æ޹ã®{vÒ³IÏÞë16vlåØ c¿ç:n͸Æñ³ÆWŽÿà¹5Ï}æ¡ò¸3!aÂÿLÌAíÃùZ°þl埕:µ¡µß¡µÎ¼¾El(Ñ*ÌjcÈ Œ¯æt幑 é ÂAj89$‚Z—©ÎÎÒeh¢¡˜éJ¨s‹¹U !pägÍ¡ÍãB@ šH7MT=T s* ‘Ìaðh´YŒ9 AŠì6 ‹V?«Ëo6ägse›ùÒ±¹5ž< ¤!Yů-·U°9,)…ammfcÙÉR:âÉò‚¥À¼Aûã‹¢À¾ƒh&]jfÏr-h¹ˆm~X~ëàIÉi(ˆÉZ„¥ÜÞžÛöÙo›ê¸±[ÇË­.mÈg>òÁcÈÛù¬&¿†#Wö2¯l#®béI¨MF‰¢ZºÌñTû…q´LX=JYu0{pþÈ£šüinu3·Ä SØUãhÖWqöiPF†ÎÕÑ·q^Ž+DI4[“ v „‹?÷µ}luâEŠkÐÈ—à ¼œ&&ã‘ɘýd ÂËù»ä¬Ì˦yz¾ /ÃÖe÷˾úèý+pN{˦ ‹)¬|¾Õé+úÅæÌ EbK{(@I¼¥ŠNx~NÂn˜+m@“Ðó¿üÚÌ;Çv,“›¦Oo0Ö˜ªëÐÎXnjˆ‚TPe©UÚÐ¥ÅG7íªÞ X X‚ŸŽÂÞQøÕ.ü4ˆºÊî ÇñVô‚]@}Ùo;`SÙ~!¾~’âkì»±ôûgalKÝɰã©f3”ýЬžšñ¨éo1Ͱ*ªÕLp-a/*é´{ÿ®#Ê6pCN€DßÖ –Y1Š]JMN_à½\²¤wó_ãØ‘Š …ž~WrÞ\*›ÕËÞëV—lHdk°i‰±*Þ€ýÄÀHâl¥ïóo‹Ø´*£©6L Ú4uPRspãz{ˆ†L!ñIÆOÞœDâs Nu6Ô1ì£!ÚÚýzBh!Ácƒ`ûT~”X¹~õüù$~›.—Ý+ûú¶íSú7 í%…—¯IV(ðB‰ m±E£ñ–#â².c1ÜB!'Y+Í\Ááj¨$r¥U»µé°LµÆªòûœ±ÊH&†‚.]µ›Á®”"¤£ÙcÊMÚ”œ¤ýàÖ¦c5ñ‹¹5§0 ˜Gƒé>iØbG}T¯A~ Ýæ6¦}¡¹6$ÿ•È㇊՚£ó`3¬JõZmÙϱ¶V3Y_‚ôõÈ-;m-èç¦Ò¾‚i’"vâ7å7¾COH´ %Ò¨…ºró>‡áÂË ´mRÛ“üpeïó—yµ¸øZ÷ÎÜ컉všýMØ[xßa4Í#Gèýé(\„FÿÕµ&»kµv׎îže¤{Ë~ÙíÚ?S¹X‘ÌêÌ'¢‘⊟ñÈšH³W1mò*Î;djìlý>ƒ‚(}œ.MŸÖ ŽÀØ8ƒ=@-תv×B à…2_’þÂOi]òãÙ73”›ÔÁ;çÃvØX”y“ÑUêŠâ é“8mzN| @yneçk!§uM€fÀ›Ÿåï& 4ÓŠ^·ºtÙPªm7qÏ·#•ØÜÒíú¡}Cs”ŽÄ×oß `¢Є4õûŸnk/$ê1¥O3e6þ…?’A¥H‹j .Ûx`,‰Â^‘xõm솆Â98ÖRO2f`RŽVÚ!a™n3ì²&´¨¾»Nt;ñ q„Í׿g»O ÍåÑ‹ØXiª …pÐ$kÓ>¾Y‰ðœ250ìÎÃH)Bóú†“õÅóh–)½Ý$‡´ÄKdX>_4« öâÁvÝ¥wcmúä‹!×Àí:Ü}­¬«O!ù?$1‰9ß’ß®ì]ojyLñôm^.jèûìþÎl Ãp€‡ÒìDJ(„ ßÁ°c ¹‘»$ä¦>¥}ƒLpßw íû°xš=OÙËL(„“Éô¾9öxz7>ý„$vAkд:4Í•åK[í@ŸA·9ôŽÁa"öeó2#$‹ÀÒnn{Õ=æ’¿ÌÞ‰ Ò'¿Ÿ@¼y^+<ÒDê~DN TJ®Ñå‚1­=‚à )‰Syÿy)»KÕöå+r]p™Ýwø`/%P‘Ì!Åm¹¶8óïñãG îë¤&ÏÅ7üÐ QS¿Hîëüú<¾o «†p«"ˆ­hGžè®¥—s>B'­NŸ¡mß mÎüUþ9âßRZ<ˆNÖ²ë£*`NÐðI‘ž†FÍ›š#Ùïê‹B!‹d½™a+§¼”t»y§ZÖ3²â¸þ ¤‰08y$žò“X›˜“¼+•LLÛÙÝo9TpâëNôœ©§Ä ºB[Íä×$´Õ•½ÖK|î¡=Ðl4M&ò`_/|üÒZ2>݃óý¡ÑþäÇÚ;*Þcõ{˜¾'âÉx¶hÍ6÷¹„÷À "á74‚»„GÄØ§Ûã<ì0ÀAü×­HDà¼ß&(±¿ÈŸäý·Ù2ç‘E+ÍIî·ý`¬67tË›Þê&}2‘6Ð#m /]êšn鎆’LúÑ^á³íò¡ÚTÓ-¤ÚdA>¨í©u–fù¾¾›ÓåöÔ î;Èë¥pŠu r ´òÛ¬.wÑìGÞsÈ{íí5· ·ü5m!BÐ÷É:J †J V¦fF x¯ÒÔäŠ0’Ú„T„VÙ§¨¾¬>’"«°©nÓÖ…ŠÒó$¬ùt+i#~7féµn{ç¦Åùëdz€¼C #Õ`’UÆKØ7ÜcAšš§ÚµoÏ x"ÎR„Òùm$YêÉÞti/çN$ )ÈIlnŠ5±"K§fgÄnæÀÚËe_å?†! ɬC WjB+äõ$aë*ÌÍLñµqØæãѲ™R<ìãç  1ðÖ÷Æ âç[Q9yʉ³@þ/`="€„Šk³§«ÀèÝDÈã&à.5D­ˆåã¸\Ú¸£ û2L‰yA&•)»HU %P–_Tj² YjN6Yø(®{·~ õÉ%ý.Wm?ÛîüÉú”•/xËß••X<#¦9¨|'¸a'"±}MØ?™|}Ò¯’³pl_[3Ã. Qëä‡ÿ¬˜EsÅlǥ7$Ë`Û•²®òïn½ÞƒC”~Ö–ŸÎ"+ñè=þãÇ|¶/¦èEb{ðZU»Ü n+ûWîî Ügð×þø>F”KÿðH›Z®o·(1Z’ms }üï|ôzŠPn,ŸÜƒ§TPj³R¢6oPÆ€'x½¥û’A'éR!,UˆÞö=x(q΄d<‚a;ñpéçH,A\¼GäÏv4VŒ«èÆk—Î\†Sp>>{üŸ!_ŽÎ‹££éMØÈ+.v~m>Z‹|­†}ûÈEfe8Ë's™t£tCTò ˜ É59oiO–Þ)8St±èRÕ›uÚ‹oà hWZüLÛ3=kzØ$̳ɖf[qç%rÇ•ÝÍïãß¾³8g!ÌÙ!Ÿ¥ÜÄMè'¹Vý@³f¡%ðèW¿ëû–}š]u ]¡áýäÝR<œfŸË?VróCRÝô9ƽP åæ&‡m«­Hku²7U‰$ƒóžâòû¾÷ð ÂD‰ÿ ùA⾦DÑ­hµÐê“øî½²û„—³7ù­˜, êÒŠ~¥¿ƒÖÊMv~L}½|îÌ;hÉ;Q︔?bK·m" òuœ_gK>oðœØT'oÝHö­zÿ0†ýpo‘<¢j‡d*Ìõ”ÏQí,/JÉHÏHÒD©C ãó2ç(VêòÙß®AOðt±ô K§ò­íûEÞÞÚYNgC¨ 2­¬Re©±ˆ·œ¨\“©ÔRȰîZaâ É×ðÅU"sپ斜æÌ¦ºâzSinnl­ª* ¡˜Þ†Ióêè!ìXÁi†ýàÉs…'_?%yöo';=ޱX8ç˜+_Ë{ÝXYÖÖQÝT^×ÈC©]¤„l¶# vŽp²Ÿ~9ÿ׳¯V´æo‹¥¨rúUþðÖÁ“àöOϾ¥ ôm[e3Û‚u)øŽûbs›p¤’%œF鳕Áiùo îÀTỆ|M]vsJMfÑÕÎfkÞ‘Ò/}nã!cËûsÍ?óB{y“®"˜ÞS•œ“¤ÚEúJá­‰*`ØoQÅ éû%ïBÇy™ è'qöV¿uÓyÅ~çUšý’úöûfoëÉÐë]Ñ–ñЕµñ;{„ÔØ^jí—„"{·ŽŸè—ÇkkvâF¾VljJ­!¾ˆKʉÑÄT&5A4ÖvçŸ~\>µ%Ø„ÇjÑqá{ÑG•%¡‡ãò<+Wr{Š#:òœÈ\Úçħà4‡ÜìÐóï×¾ÜÿüÃÞvqt¿#£?™~¨Õ¥mÃóÈÛý, mkÈþäÍžueO{ò…=ØŠ¤1ƒ6¡±h¨£2žŠV3¹*ÁÓúõ¹]ž4öÅS. _Ûñîké »ù[i™Ýã «¥"5䚤ç‡ÄÕÑG³*j+]zëëë"VIÝÇ/ˆØ,ªû€þq̆ôj NI‘@ mHAHéþfψ¸‰X¿Iu÷ô÷·M°áTåoç_£]¡ýÍMëð)qå…‡àö~úº8ÛþCìÌGö+àQ½TS/ÐuóݨîÖWÜo¸·(Ëþ”'«B«Ñ0´Ú™øçΞ뱱†$~ _à’6E,‘ï$j2·C_¡íŒàݸ‡òüË-àGœ)¨šIQe(†¯äô4–Ï ß=‹† /Wö_Ù-jCàÒpÆj¢kf@ìÌÝ«Ü_NÄh„<&‰aoµ¥*‰èó<ÂE\ˆCÆÚ¹ûnOa–lA+9öDWÙ‰cG$uP”¦ðÞ‹å\Jo²¿ñ—ʺÈtø_¦Ûù9M²B³Î¡Y¡h–+»ŠÿÍ.(ížYD?îD~ènDHWÿeêštMŒ›ž6½'G[Á¢©K%© R µ\µo—ùÎ6ª o—òî\¿ó£E=j鲉þ–=ªÖ‡Ö“NÞ­€hœ’jSÞ}”QtXèóÊqj®Îßyäz=u ™|5Ç2E=Íia2žHÁëÊ`ü­-O…lƒœ$mŠj×ò`¬"¤ƒ*h¼¯^†cSñ\ÞA$AU‘¹ùêDÞhé• u•ƒ±TXÝBÇœø þ=q᱈ü HHEN`2ät2Hn"Ûʯ4U@£ÿ}F÷åü‹¨“àv„­íæ‡$#ªÑûâÃH=Ñ6Eà~-çŸÈ|€Ý÷íG{¹öœcòüÍŠlU¦6C›X’¼Ð@c±¥³äãW1ShétTñHȉצ«ƒ8,ÊX²$ã圄LL¡¹‘AXÆZ‚jÕ'-¦â|S©)¹BJ¢œ£Ú!Ÿ÷ÆKˆV¨ƒíµ»U8ìj0–[rÈ¥êý/‹/38ùŠý ·È?™üÌáw ™_¹Š•›ý·{) hî½ŒŽ€ìÍÌÿ‡¾}ßDH"2F¦‰) =Iw§¤e«µ2•6]'+N«€Zøåí*4PX˜—~%6V)ò³òp!òâÐeäUœW–o¬r3Õ¥§“hõéJüñ.K-ËÖ¦è2,Š:‰ƒ¸¥A_@ \M±©ÎîcÿË·/;ñÇx‚¶`¡wÆh9ÛÑ.ý›Ä¹]ˆsžB&… èÃÿ&è '“4¡ö:ð€(ÛN0wØí+GĆu‘2ŸDA\f6WI( 93'Q›R”]¨B…؋×±W¦J°Ï-'±"³œÐŽ)·¬€§Ð®ÐRJöc7Pè£<7Š ejSz1ðyr#~¨xhEcÐó_Uå› e¹ùz’}Ñ€“1·HñÐÖ÷m9²ôý õÀ4BAun¾}­;d­ ĸj44ò^ì[»¯yŸM $œ%Õgëd*³y`§L<[á6a-ƒ'MOËRjt2}¶AÚL3 dĽ† º[ë“VÔB~¸|{ö«³g΢óŸõ)i±cí¦2³öDìQ„¦`¢êÑØô<òãODh½–U²FkÊÐBX4;‹öŽTŠèM=…b ü>N„¦ô;÷§R™?^å4‘¦¬ýx^½ª¿ì‚r/ï¸¼Ž¼]Y3¿ŸÄÚÁ—¤ß`™z4ÎP, ¸ ̧Ë$ .‘k}¸­Ad¶'¹¤ËÔ!¢J͆b2N‘kâëNr'ôSƒ¸Ðq(ö@ !UPC<Ù7äåæâ|¶¤gæ(´)­´;‘Û9¿]‰ü¹wt|—1¿¿úXzyõÍSh<àbå”~ã^½GÉÖìy÷x»Wún ]ée4ßÀãIŸ¨ŒJPiÝð²EAieþenhöûèYï6Yû©ˆ ·Ç»»{ñ¿²4^Hž¼sÿìÉ×~Ÿ 6Vf¾M‚,YvÆ£u¬à²Òõ ÏÖ¦§Už+,Ë/á×ý¾‚+,Ï…îÄu,Õ¢óbÒ§/D®x€ýÃñö¯ Dâ5ŸbWáë @O· ofU‘8Oœƒ‡,†Å€†4 ‰õÈãË×áœ~>Oèv?zKx9ñþbssj9ypÙ£Üô~M¿©wžÄ]~ý²3z=DŒèß—ôÉLÿ±„Óe ±bF@ßm˜VHQž GĦƞ¯XÇ0XI_:‰¨o¾zöÜ{%ŸV£a3oàဇÀ´ùò9êàFE…P¡+LM†b]Iv^í›§[Ïsl;d3Ë}×yúa3^Ã)²Õ­Üñôu/t÷ m¶#V” ˜[r³ !;òÎ6¡…œ©)ÿíÍ>¦P¾viW•S è_:uˆ&<ÏæT{ #%®‰ÈڮωÆ+8M´:{èQ"®€;ð}uó-ƒ%ÿ-sSÙ=ÎrÀXv°üPÙñÜzGТÑðÚjuù°+· m²m'Ñ ç-h©¸øJð…5-tž+x»äºÏ‡xð©ôâm™+4áµòj»ÌM†ÒœB­±³õŠ µ/Áë!Ùš¨äШ¤à¸x]ˆn]Ž 4ÑŽ4“f ÀáUYë²Ö¬Z=pŒgQê1‹9ßb¬T'‘œ/ÓDÈfÜY‡Fr…¾.»oO6%º#6”g–§ƒTšluXLtºœÔ&U¢8«$­& b!2=>-Qž¤MÕ¥§“çAY»£©©¼ !OY”Y”Qž¼Ÿ(ûÖòÆŠÚ²öZc¥£å¢¬ü¿Z??tvÇY#©Á|Úö²‹iÒ][ÚÕù*14Á¢>MŠãsŠ ½N+U‡ç«Z…SYd¦Ys*¦D>ý »ª/ÿûЬw%¢D7#/nãxíG?ŠºƒÒjE³ PWˆä¢õâŠÖ|OP ª€¤6´žCª~%¥ÖQRq§MÍIl#éh6¶·½^ynCûR…·|Ⴕs!|òSÎXÌyÆjs³´<D(Õ{åó®.ˆg$ ú^rvàcÀE4ð"šO¬YA¬´QLÐ¥]„¸üÁ/Í÷Aô,¢nß…ýPª0iÔµš> stream xœUV XMéú_Ën¯µ†d´,!öÚ'ƒ¤” Ñ™.J%]'TÒ]¨D‘É`Ðׯ ”ä6¤‘:”[î¢ÑÞR±ÓÌF3æÌ»öÿÛ=ÿóí:3çœçÙÏz¾ïÛë}×ûý~¿÷BSF(š¦ÎKÊŒËXmØ—ÌiiôiŒ, §èÞé²äÈX†Œ*G›¤˜Âƒ¡4œ?¥d4íóEêʬ´e ‰JËÀ°‰“&YÿçÄÞnŠ£riÖŸÿ(ÝãÒ—%¤(Ç“Ef\RêÊ且 ÿeÉKW§+ƒ¢SÒ•¾ÊÀ¸„ÕIÑiÿsHQ”­[JêÊUižé«½3×DgÅdÇúÇÅ$$. Z¼")4yºÓŒq6“í¦Ø;8N¦¤( j>@- © jL…P¡”F}IÍ¡RîÔ"ʃ²¥<)/j 5—ò¦(Ê‘šGM¥|)?j:åO FR£(†:N ¡†R¦O £j8eFÑ”A2¢fRÙÔUz4½Š>M7˜9 }@倻Þʲ }a”htÓèÜSž+¿Åx3Û™÷¬ÀfŸ°¹ œ ·„»Â½ùdù'êSæ|2ðAáƒG7?†S&:[T‹Ô’]-¥@ªð§Ê?2x¯.YŽ\Ø›,ÿQAªö¨¼žcx!7‘®¡")°%±È´YåÚ ;;Ìø3ÍR± /î„*–oø£¾ùåê_þÿIÉj|êÇ+x;ž1‡ëb‰}†J²VÑç4pM#ƒcÒ9[:X`wìÑ5&‚å«ßa6øLý€­Å|Wáu½+Ž?]àj;9P<ð7UZÑàD-Y©I× A\јñ ×qŠÐ eLuHmz#â`tÐà îSaEÞήˆõãž±¼µ+Ã7@¶¯ðË™x(ä?ÓÎ>° †À›m¯þÛy™®’û9I›ˆo]¶›Ë«nÄœô4ÇŠ)XŽç`× ¶Ô•ݬñ)×9 ¯n~Žyl¼ÀÙÁÖÿ9˜€ÉÝ翈&ð’À¶¶è›"Ó&±·éߘcóÁôj=°Û¸,o·#gSþFó´tÅ"ŽxCBSC;ä´ÓÝZ̃¼oÇï!GR¶ësz“µŒ‰´­ÔKøZ#“|$!ïƒ×-<qØäs_«U±ði²¨^{+§$Å _¸|Nd\áÑLņƒ[~SÁ90xpãC€ÑÙð^uqì1Ñùˆ×÷)GQÅÈÚ‹'K Þ¡0S-’U#ý¢C»É¦ÂgNø3w¯ŸôJ&ä\JÃÑÃ;v•+šÙ¯¶åæe#.aã¾ ðË>â[ ˜6t@AÇì§füZ)s¸Tì„ëX¾Fäáèýã}…Ä:é-Ydž (xwª=^ÛÄÍaÉwQ‘Σˆ~÷Z¡ºdÁ¦7ùµáâ}°Òp~8DHÅr[ê]°Rr!KðÕËMtñý¯HW†Ãä¾WÆê­?“¬å㘠zk%YØ2`MÞ|ͼ—lÿ©·•÷…*Ù©è* vȤӵÂ×Û·¢o—²î`™wY­W\ýWÇ&(ÒWnLÞÆu2»œ?¡F\ë…Ôpq5›—µÁëk¼Vrý¶âÛ²Œëè0Ú¿£|7‡Çƒ—€R7e§e,KZºn!â|âN]»q®¼»P|uàPAy!Gî‰SÚuÃÈ-FÌñ8½5E"·gÀC_²Â)'>+'ÌA_íÈ*àf³‡¾>´õ(:ŽNì=ú}Ù‘ƒG¿¯‚Ɉ¿trŠˆd¼¶^É=³æDB­ï‰9D)v؈hÚ¥[ 0ôÙS¶OœÎäL_íŽ8Ûà§ð)˜]WÿÜ\½tÎ>Ñ}‹dÒBKó J6Ÿ5 ~¨7–Ï–\[°š…Òà>$ÕÁE’Ÿ\ÿJ§ZiáÏ —2‰×‚Ê=ȇGÛc;c—˜‹ÇuÇjD~½çgKÑB7É'S‘?ƒÿwJý¬è#Ö ˆÖ.IÑ%Ó"NôZF?TÒÊÇ÷&wI]Œ4Xß%ÿé+:0·U´´6¨mËåõ•Ë^:_H>?Þ˰vë¶K0îh¦˜Ü;ÃsqÂ\Š"KS«×œÜ|2ï*·£QØÝsû~'â^Üö¶û4)·æ-tI‡ýÇvæì‘Õ»w¢¼#Š&vmAn>É׈¨Ù¢½‡W³~q‡´XÃö×ÞªvØÛNÿ¬…W=2ð…{d17Q͡ʳÕ?¹„q0f¦ ¦À× I.™Á^e_][äìºÈÞP¨pJ3 50JŠÕY œU™ñ£%KÆ,–ï¹QîmŽy<îP<¯&T¬Œ¨K»Žî£šòê‡ÜJ+cÃÆºÇ—ßÙ¤˜Æì±RùƒTèÁ±ª~¬=Ø€`GÜù°|N÷ºêÜðHÌéæ85ü)0¬®õ¥øg; ôÒͤȚ ½É¤:AyÙ¦õEŠÒ¬}i(žëï]¾7ƹEfÌ[¨€“l‰p© Úi­V2"@øÃ#631SÄ<¹'ª0y$ÈK˜ÄÒÍeÛ{òÀxí¹Ïh¿p¦ur`êÒd@èUBJ#(€ÕìUtrSÉšc™…ËÑÎ1*Ö’T­´¾"ðîwÓ‡NDƒZ°"(9é‹;þ½.ÙhºE'CHÉh—Þ«éf­Dke’V:  ºmß­û!¦sZ5B”âh9°¿ô6MïEÚô ñ(p$ŠÍŒIZ’±19£Ð#‰U+Ou6¿†Õü¹…Q'bê<;A†4è§¢Kçj+O5ºƒZÇójG8”®(GõÜ“†Ú_k›”o§´èÆh ¦²¾æÚÆ­ËÛ² åç*ÜÙ}Ûwå"îumÅcQ7˜…h#'‹¦¯SèØv¾#}â¹›ÚõM3`s¯¹ö¯R ~Eô-"Ö¿rÐ@Ôæyxà ù/‡·àÞr%ƒÓpš¼6CŠ5vÊÀšLïMîéÿT=¾%Ó‚%ƒ#õ½x¹Ô+ŸÀÀA27˜èžüÏ”°Òð3ãÏþ9(´³ü£ÖwÀ½†Ãöî¹XoÃVþ¹:Ñ#:3`¡"©>ºÔ q¼Z¼*Ê—{Âö‹î7 -Ò… úG‰g° Þâ‰-Cq÷š©„5¯ a×WàôHW›VtûtCy˜ñ=’¹ô‰ÐRSzÖfFŽ*lЇ:¸`™wIBK¤‚ÿ036&ÀeÞ3þÊ_»APð=èYÌí•æ`¿ðôr”§÷Â(·Ù‹ª5^®~*òpQ× §iÁvSçßìè¸]ÿïiÕpOEŸï†óoe×`šps­ž@¡g¨¹¢êAuS‘€`PVkôýØ›~§\ˆÖÌ­&`èž ÃÕ–Þø»˜‡Ý‚&G~hIeN#äåBû=/[‡ùþŽÓBo¿é¾ÝÐ.šüßà5Ek›!¢¹¸"›MO4ATXžfüÕ\X¤slf¹ÚØ´º¾ÑªT¿ôÌn$zݬ‰ Žˆ Ѝ©¯¯©©¥É¯½H˜|ÈH"¡¸PoFìfÙˆ|B®uë,bÛª}Klý¶!Ä60²¦þ†ÁÖDzáÍ´tŠ}¾‡”Ï åGZóQA…±c?2ýV­¦/vCE· Ê Þh~Jü¿ k„Í8¼¹ ›‚5Xµ“¡/«Yü@_P>q.Fo.Yã a3qòâ_!B/½yÓ_‹h8Ð%ƒÒA¿£K¾€MÂôšõxt6çÛ§TEzÀŒn™´S#è?aöÞ:]¡¹òîúˆß®_i!)z;ýFtetÅ—‡½Ð47)Ö?-.7jû\³óò·'””\ü{Ù5ÄµÝ œ´|‘o‚h†-§/™» Û”’˜þáñ‰ÊT»=‰Îš`¨…ýLE¾¼§.jš}p¨í¤Å—?lÉÀ¸/þЊs^͉=dèÿZ£ºë¦ùŸ©ýi˜ÌlÁæxì,,~ª”Ofáê3§1÷û{3hÔ`KÉ™²ÒL˜PýpùsæBí‡ê÷æ¶Å¸¿I®‹+Û2IÐìK-^õcÈã¤6ôØwÁ ”“ßâÑá1’—Šå°P—ûQ€»êûEŠßÀyâý’úÙÀÍjÂrAñÑó¢<×8", l|xv•ïùÀ{Id|óžw ˆ)ZÌ{¯ ‹óÁ­þí{t]Œý΋#óúTáŵkûù>3gø5þÜuç®ÆÐ‰M2J¤âƒx ¸„é¨TU°{Ïî; ví16¾P°ç[²Ø½k—ñ`Šú_C$endstream endobj 388 0 obj << /Filter /FlateDecode /Length 168 >> stream xœ35ѳP0P°b 3C…C.=C aŒä\®Bc ° Pa ĺ@@`ddnRâäÉ¥ïé«PRTšÊ¥TÏ¥ïTÌ¥ïତ\¢fÇré»é;;»¹66úÞ º@çüœÒܼb ;;.Oµ1"bôÄ>k}R²h=ôlúä€ÿ„ÁïÅJ§û  \®ž \H+PAendstream endobj 389 0 obj << /Filter /FlateDecode /Length 162 >> stream xœ]O1ƒ0 Üó ÿ ª² º0PUm?eÀ‰Búû’:œ¥óÝÉgÞõ·žlþN½0‚±¤.n aÄÉ%h«âÁòT³ôŒwƒôïGØ hv~—3òçEÔy%ör/I²¦(ÚÆ˜–!é?éŒæpV¢Í(ëêšý§’¢©ÄyÔRÌMs“TÀþžñΧl`_0[S4endstream endobj 390 0 obj << /Filter /FlateDecode /Length 162 >> stream xœ]O1ƒ0 Üó ÿ €ÚJ• ]¨ª¶Žƒ2àD! ý}I€ÎÒùîä³l»[Ç6‚|‡/Š`,ë@³[ 4ZeÚbÜYž8)/dÛ+ÿþx‚Õ@fãw5‘|žŠk^•[¦Ù+¤ x$QESÓbý'íÁìÎ 6Õ7ÿ¡¤h*qÜ\B ޹in’ X¦ß3Þù”‚â oÚSýendstream endobj 391 0 obj << /Filter /FlateDecode /Length 14440 >> stream xœí}[s%9ržÃýî'Ë|pȇ²º¦p^[¾¬d)$;4Û=Ì(ÜiÎ4%²Ù"97ýzç—™¸Ô!›=¢w§¥ Åjú$Q( ‘™_" ™ø§“u1'+þOÿûÕÕ‹Ï>÷áä›ÛëÉ7/þé…῞辺:ù¯¨E´DYÊZÌÉ«¯_È£æ$›“ÒR\8yuõâO_ýµ5&ŽKZ|xäÕë_~}º.kðÙ–rx;üû5ÿÛ%³–ÃùéKü(n ùpuñ•üÌ&Ç|xy>þzÇO…âs>\<Ð…ü…»pÎ-k²‡«ëÓ—–C|è¥ÒïåÅÛáOßèÓæpýµü³xs8»Ù fÚú5˜©KÜ`¦Þ2re~ ‚<ÏôÿC_'Ñì|›x³ó9ØùÆäfçÛB4;ß«Ùù¶ ÍηEov¾ Æ#v¾ÉWµóM(«ï„÷ÛùNQ;ßÚíüsí|µêò3·lÓ÷ÃnÓw›¾Ûôݦú6ýÉÄÉSgýÄþ¾SpdOhBøÚ»9µF²îV¼›º§ ï««öäÕÍ‹Ãe;¶öäilÓÌñÑ,ÐúEÌsN´’¤J‘,’<Î葌w‘ÐH;î9c$ƒ\hÖ„k˜ÓcXüOˆ£íûŒãâ-iM$”nJ‰4Šf]2dN‚;IÆã ø”Kó3ÇèÉ„’I‰8,0‡ˆÁÂÍ“pÖgX2KF}ŠôìC­KyΤ㢙:Ĭ‘ÇYb=ìÜI }˜Ù#ÙÙâÔ €“ŸÚc\²Ä–§õ1œ*ßäM•™8ˆì3U¼’nNðc-SŒy2%ä©C$“粑v™ÃÚ‹3aJ YSùX–uÊGòŠW7Õ-˹`3g çnٛͅrÙ¢ÿ½u,Þa“Ó[WÊÏIOJØ$›|EsnnßÝ]\ß_½»¾9E¾± ‰ȶI‹MŽvƒ¯þêÅ«?úâpöíÝõÍù77ç··ßÚp8çV‡ó·¯Ï‘øŸz¦ÍÏNã³ùF-—‰ö ÷røŽšèÏžN—É®Ž)wК88ºvLðë”ÞÈÓÖºŒ‰UÒoñsr÷v‹ØkÌÜ=phr GV Iˆž9þ̓­|ßÀkî^k…OæÅŒ­”²iEK¿¸±‘6m òËØH)c«:ÒÞjûS¹N|2ˆ¦çïÑãb²‘¤wŸäï“â}Rn6¥M²Ë ´r \6JÏÑk“¾G9ÎÚ³6s¦ÞGÈܳdYÊI™{Žƒªö8s/l3÷ŽçùÁÌ=É\Ú2Jm£àMÖ‰`†RøÔ‰Å}9`V…üñȾ€#ô`JÒX;Nê3!‹Yð¤¬B(fÿ!"rI²ñxºжÉɈµƒ…FDdŠx0É™…9{‰ÀÙäùÄ2Q‚Äÿl‚•á3ÜAâm6a] œÄ)™TJœöJs‹r"ǦÌç»ù\õ*mŠ›øÈDàwå•S"aŸœ ·ÙØ%ôãøL´ÍÄ%N½E¸<äÜ‚1Ëh—€P!g#pÆ‚ÍÁ ÏSåyŽè.¦ô ²Úë+¯ÈÁÀc.Q»-ó!$D6‰Ó€øe ò[Ù —ÐÃ7¶X²×Óö¶Ûù8y£‡™Ÿ+Û#[‚Gæq 8í"“‡ J’‡3Ÿed•§2g°ž醰ܮ²tn]Ã"[Gå„[M–S1+Ûiã-S\мé"Qb·’+½*E{QDy*ÂÝ–~øP¼[qŠÄn(ä\Å“žàVbw2"לJâ IP.2ÑÌ/7FŸ» ßAxîT>®zÚàñŒÈÉú·HŸA¿ Þì˜B •Cö†—~“|7Pfé7sAŒIËœðBœ’Vyå6vÍ¢tôÎTpV¢ÛꨒVºPgmú#,çv8ë9÷!ògi2k]¤ñóHç™åH'mŸ‰‘Úò1 GbË,¤YÂ’ Öº°}Š˜Î<‡Maw‹ÈZÇ_\@‘ìrÔ˨#Çdá£CQGìgÄ”%ª©+¹R2¨ ±TzÉjéðíBSVÖ;PØ6)#Ü‹7úÝ€C‡Lüp7^œÇyš‹ÂgðŸâ§,>ɀ¡2X-ͨqa‹(Âeå]Ø‚{1¼Já]È£—ž‹Ø:Pøè—·Eñœ¤Œcf›âI«¦®‰~ %ÕD6~.x±u5!ÄàU œÓåÙ„ëDÑnÈ’93*kÈlìBacו7’uMfC1bí<Ùq™e´jIDø¢SSW'„}¦ÕìY2ŒÂq¢ðg¬æ§‚R¶óS³w”ÝQvGÙew”ÝQvGÙŸ‰²› ÆOQÛšéˆêË*ãk€ ã6€JºÃb×µ¦'7@õ…{DTš1#¢®™8B*Æy©€†4B*¬GH]õà‡TZžè6˜JÂãS˜êG!5HnÀ©I]:¤VÐ05I¾Ì€©I§Ù1ÕæwH5¢oBªfK? ©UKŸ ©¦Èi¦©½Bj'THmwH­Ú¬Z­JÃÔjx¤bÚfƒ©Í~5P…¤ ¨¢¬ƒA?bN¨ºŠÍŠ©!9oÔ1•¸È~bÃÔˆšyÄTØr–†©7bjÄ1¨ ¦†²Vü®˜ rLE9Œ˜Z5±A*tÊo•°Pd¢"ª/NßÔÕI¢N‡TÍÓ uU,ìjk7 ©4Û°EÔ¤ëÒ5¨#ÓÕÉ—™R­œ u•(s‡ÔšéÔ!•Ä%mµÖGx6¢Z1m¢ZÙÁˆ*¥æí[Ûg·Ow<ÝñtÇÓOw<Ýñô9;TÍKý„µå@wD¥ÿ–²ATè`?€¨8xí6ˆêRÐçA*¤RAÙ@*:ÖnRñr–÷Bj‹UH…–JêE…T°Â‡R[·©CH·b*±­Èc˜ZK™=‚©CLW1µ• Û1õ#a*8lÊS­e7HŲèCŠ©XLŸÇThç¦"©+Ž˜ áÒx­b*p‹©=nY1µG;+¦ríº ¤VUì˜êÔŸl  4\ÝT½VTì êµ~â“@µjô/TiavL}SÛC¿»=ªžõÜuGÔQwDÝuGÔQŸûõ¹9Ù„‹Ez?i¹‘©ƒêVb;„´qJváïybòÔ >¸˜Á¼ ìãÔYãð—J'ÅŠ~Jd8Jœ(;d1<Ì™b²u3:D(3Îì^Ÿ˜àM'x§µÛgd¶‘‹Fëf.KÖüîi°rŒiÂM~}àzóz$,ࢳ&¢y^䪑Ï5q€äé‘ã<Ór“§È¹•(+A>Å”ɯ\ùj‰…ܼ)=N¶šf › æLc£ÅF²L\iì ÓÔ9ÃáÌ3—…ÜÈR¦Î™öa€èy²ˆ­«éF8¾YrnÔÜÆy³Æ SÚCqO3{ôÈä›Ù#B%aªRÚn¦GÇø¬Ìb¿jJdK¹ ¨ò3Üó‰äÉû­:¥%ôzÌ>n5JoWÚTBo‚’_eÌí”Öèx”㸟“bìJ¦mdú¸)Æ~õYöñ5¶Y) Õ]ô2·ZÝ=÷ãÖJ¿¬­Ú·ö¡U¤¹ñc+¥lZ!º˜óØJ)›V-¹µR‘ÛŒV‹ãÚ½‘6mtÖC£O^AϤ²•-í°“kFï“l'%çå’Ñû­ü}R¸ÿ`lÚÙ¸5jŠ#å²QzsçÌ1å8§Ù¥°r c~N³ðãâÖ99Í|ÅRÑršÝÆ’Ïóƒ9Í÷˺QK*¡Æ½!ƒè{ØÑÄÊvôFÂ\v4L!öIõö  `‚!;JRÞÎ¥M2„¨aG"'ŒÕzÍ’7؃D‰(rÌÆÛµ~%ðò4×%kXµÎ[[¿Hv ݶjۅcJÑI=uº ùr+ŽÓÐ-ŽñprF”~’•Ò„ÞKˆÇöš‹yMBñ(SÊ• j¾†G~ºÑ´™§3Nj’õåÏÞž—‡´ ¾yè½UYš(>pàyá‚㊱H\Ì£J)§ìùîâ]òZÌ]3bè Í,–ÃT¦Ë€I¬°Œ¼T|”PÒk„8 ð > 臥Њdýü O!k-±I"Ô¯^‚½Ä“ l¯¡pÏ0ˆkXÞãŒbeÒã.g%ÈC(SZ\V“Ⲏ_<€?Ä/I›â"ѪðÛíeJ Q¸Þû‰Qj›¢?é‰z$ׇœ¤ˆ¤Í’ãF ’„ë¨ÛÊk§HŽ‚«‘'‰%¾ÖAƒœ>Ú$Ї/Ì«ˆ0:gÓé1DúSž#>!Ý„$Š'±mPbžgMòP¢xð`¥MÎÂs’-áy$l‡æÅµ¨º¦U¿½ˆÌ'T ÅÉ5ZÍÀ¼A‚!4)NÚ8NÇ#ûf¥„‡O¤N¬zˆLñLSàëÏb@”P…Æ'ODÝ}Jò™'ò8ûÌÃÎe+OYé¹È¾qsá!¹z¬zX{¾~^ºŠê½7Äg'ÄN–3#µ’Îyùúæù°(Mfö上êe¹`­y]¨Ã+„,ö×js23£*CÛnQ½šÞé 3¨ÄW¦Yl5x«€¼/Ψêéå}¥W¥JRPk‹{ÊWU4þøáKT‹gƒ|õ%©Åëýäú¡@¿óÑZ«Å«ܵ4¦i”^-ãׄ°Ê—Ãþé/¬®*`ãEøéTùDcIƒåKA}wX£kªÇAý°’ÀJ4¥Hk@½Ö2vBú´ê3ü‰1à{3~ †Œ™—¥$[í©>†ºÇ ðçNùÉ™Í;ÖîX»c펵;ÖîX»cí³°v“ßüé⪓ØÑ£¸eŸ„«^³¨:®"i*mqÕÉÁ»GqÕ+˜t\uKÚª•ccV½QvUXuE]ƒ«µœ@‡Õz]tƒU§yi V•¥`u•*Vëáš«dÆã¬FåÓ`UõíQXµ:«§Áªj逫ª¥?WŠ6Ê#(ªÊÝQT5w€QÕÜ£ÕÒ4­%NŒV{Õa´(í0Šº2~£µðC‡Qëåb‡Qå¼W‡Q«e;:Œ’. ÜTE‘ŽÕl`ÔY9ÆÖ`+­ÐVatÕ«:ŒûeÌ FýªkÞ`Ô®ºæ FQØ&l`Ò´…Ñz «Ã¨øC!vÅn0÷\–C¡¿eƒ¡«œ†êš’Zœ ¡®¨µkZËt Å1Œ¸ÁPçÔUhŠ£ºfƒ¡Äiqƒ†âf 3CT90TÏ¥>CUl§chCÌ_4†Í;‚îº#莠;‚îº#èÓv¡šÃ¼C衟 „Z£ù¯BÁQáÖÇ‡Ð–×ø$…LÊ<+„v¹}?„vÝ{?„B¯d„B½ÜÚ9Bñfq*†btÞOÀP$`)å  eÌþ_9†VÄì”ßçžS3”w¼ÜñrÇË/w¼ÜñrÇËÇ¿s>7ÿ˜YØØ5# ©é9º©=’ùàëÓzdÝ(ÓH}š;>—-S{Œ’ˆ4±G.–8­ÇŒò,ib™ÒÅ ~•”wJ"\qÞ¬=3¥n†ŽñY©MÆp¢ÂI@.ÉÊ÷êéõ•‚Šû­:… %HÎ 9å¸mlÕ(C«H&€üÉ¡U£ ­Šãj C«Fé­ŽÇ:޾·úN0ô‘Ì7ßW÷q2œhã“Q) Å2S•€‚C«QÖ7ZQÄV¦+ìæ”²i×pÓH›6:‚¡Ñ0¦'3“ü$õÅmóvÌ6Êã{†ÐKM*Ñè_$ éÆ&4ùïjB`qèpáF)Nëí¶§îSÁ?Ö­‰‰CäÃÓv€4Ž«\ìûœÄ!C‰@ ÃN€öi-qÈoìÄñ?˜8dp©8ëf“ÑJȺµ5¸/Û)…7 ÿb%̺ß4§ú˜bYÔh“ÏõŘÀn¦! (úek°«^ù¯T% ñÑi¸ÞQäg@2~Òj1!ò=2·9"”U=TÞ(L±²Í5ØP(X‘k”Œ[yG,j…ñ”9¥ŽJâ¢ä“_O”(ûJãh­PxÇJnBòØ$¥ðr¼Ò`G½yH;N¨MÌ„,˜Ý´'Óó3^ÆÛ¬.µñÆ¡ k:ï1 —ý"Š—H (Î+»‹Ô72|’–)Q"('/…ßuprÖGY$Q#8<Âs+û{ƒêã)ˆ8èxŠo«Ï[  [½‘,&Ì…ñò”4¡ý3=ëÆÎÙý ²d³Æ.dG.C€Ÿ?>s—uó>Ä`‡½*E˜r Š‘žiœ6Áï¸ò …ë푈X”L@˜/¢è—™3Œ#ø»¦Á[˜žä0oƒGK,ÊÒ)£SIÒžs£%Òý ¡å3­¤¦\YŒ(^Î㛄QÚÈâaƒ ¦[Ú2'yŠì” Ë[XÃ×,±ð‰ˆ™øv°d%µMÌ,WDI”e¦§˜/ÒŸ2 Á×µÂ\µð-ZaÕƒxS³á]q€ òfžXWXõ8-YžÂ ID@)5~9Ì7ñËa'ËoÊoÈ;HBI\†›„CCŠ&C†ˆyfVä"†Ž#“ܤ¬,xÁ•À‹UŒ:ÄéV¡ ´=´Xsd\Žœƒm°Á†æ¡úZ n»Åè¶œÔ_-]1úY2Q¼‹J®Æ.È‘xSŠQÅsZ. [»ì$Xc±¿^ý $ bî@a鲫Ss‡²è\=p%SV5OÊ&®Án5Ï®Ñ6ÍÓ6É6ÍKòöìšæI±Åµˆ½KE ®*žÔ $ßsaw·CóˆuMõ¤!Y_V½ÞÄ‹½º!—º”Í›¢Ú»¤§ø­Ay+}J*HÂÎ1Û«©è' Ì–¢ÚS†v”ÝQvGÙew”ÝQvGÙŸ‰²›d¡OQ3†žŒ¨ ²: µÉP+ˆ=¨QM{Ôj@: †Ú¦ª_ìO¤ã€ªù¢®ÚoGÔ Æ«!ª«¶ #ª¦þˆ$‡s@Tý7 ªæg>Q+Ø<†¨«ÂÏ#Za­!jÕÐŽ¨Uq>€¨ŠŸ!ª¼{„T¥¼S«¦wLm£i˜ÚFÜ0µÚØÍZã¹c**¨ú ¦EŸRLe—$˜Ú,cÃT,–ß@*jZçR±æëR¥fù©FªÜwDÅ¡ ;"ª•¿#¢ÖbùQqHÁŒˆŠë|]Þ êª—&wDÍE¾&6D tQq]³ß"jRg±!ª7rŒ¤!j”r×PM–3- U‡¨Ië×€WD ªžRƒŠz‡Ô(ÇS:¤Ò:‹?Ô15(G;¦zIÄ6¦šŠ…¦š'Cjõùz@•ð{ݦ¶L¡>wøÜás‡Ï>wøÜáó§Áç˜&´ãçï?ñDÏ>6~‚¢ú?¡ŽbRvüÜñ³ã'ÖS"ÌOÁOÈŽÛ(äK¤©(”³”@!§“¬Úe¹¨)r³qÃϦŒ>{,[á“?Š”>ÿ6#zöï1={ˆ\Ñ” |‚"p_áoV°TøÄàV?Â'ÌKÚÀ'æèâŸÐβOð*¸>?%øì9C;xîใçž;xîใç¾}>7Sr‰Ã‹u3Ò%€ÙŘ‘œƒÌ_Ÿ,"Í33+QN¸„¨qg/„Ÿ&2‘D¤„"•$Ì´¶ð݇ïɲ3z$þ Â<µFâ3ažÊ`3‡ežÁ…ƒaÌc ð¬4>Ús®'=ªÞp<¦25ÑŸC.ÜF?´¨„Þ¦^r>¼©Q†VzwöЪQ†VGcGý¬Ü=lÈ#ÜÖ™»gCÊâ™kŒ¢2ßsÍ½ßÆ«#ÜR÷Z\u6”²i…«ÈAZ)eÓª&øµF=Á¯µÁX|ÓVk¤”M+™ÌШÏî©«âQQ‚r”(DA&½ƒþ) Yr†ù걑äê±Tõ÷›…µiY_“&u‰öÔå²SZj`{ê>å(YÐZ¹òï#$ ZT ðiV 〽—0˜6éxžL´5ôË ô#¿ÓÚèù³PxÃÚö3|t˜,(ß­@”,_’mL½“ê" dµ*#ï¸bÁý—B‘­]"=·úÇ»lÂW[}JÞ…ËÖà!ÑfV÷WÉqYŒaW–H²â@6Ž, û´„;àÜ ±)ñ±p>§,ÃÉ\û"X)vJáâ9¼çsç$AÄ’í2³'Óv99^¤ ®µCàÌfT,B'q3›=Å e“«mŽÙnÓÍgŽˆ6ò×f®Z|'×#.ʱ2 ƒ‚jüÜgÈ‘ÄQ¸M1\£‡9,œ)Vcx$l’[H𽮂4ñ¬¶Ï%x¼bXº¹èLOÓ°…v2kŤH€ˆƒ« G"¦,\Ü[W.ùÓŸr« ÂsjÃëâV¾ÜR8ÌÁJR˜Ð¯žÜ¢,x§DFOÑÎÈÛ k&/_…P¸f§°ÅwfåÒRmÂï –r8œÏ;¨’N6œGpc©Œ‡´œ¹Nú&Jî,‚0 Ðxô©Ì!j£¥ƒ @Ïp¹HñÙŽëc…?¸ÀšõŒÆÅ‘z‡K±æøPÀÆË9”ÁJÏ9²]¬gò¥”(ö ÎÒMZYÑü*HÎÉÕ1¬Ñ¬jΑc,ª¦õhºÓD#OÜ7z`Ä( 9®ŠÃý$í™K™E9‚#óäª_z¨„Ãoޝ7 êcq¨ôRuÍK›ÄÅ’º¹užw’£Öø"æ ÂÙ/Ä ±o ðÁZ6«º¦æßk›®)ÅYѵ¦¡Ø­V]}$øb6²VΌڊx¬É&3¾*±_ÅúÍ#®/'‡;j*€É›c¨Æ«Ž·¹®R~RàŽœ;rîȹ#玜;rîÈù¾Ä¾O%“œoÞ ¤|l(ÙqóQ”T$Pr5Ç0i?„’õ;jEIè‹ÂWCI½¥¡¢$ Xñ”4ze‡I|ò·#L®I®3l8\ߊ“Ôd œ„Ò•-Nê§ó N ·ÇI…Å”YÎJl€rõÇ@)Pß²JÓÓ€²Áâï(ÛCPºcœdYš“Îlq2Hxqƒ“ÖnqR 8饶ê'Å>vœ4rÀhÀÉŠ'µöCÇÉ ò'}µò'­ipRo$pÒÊí'Nš%la2*Hw˜ŒjöLÒôBa²*LZ½ w€I­@Ý`Òi)Ú“`d2˜¬×µ 0™;LF)(0ÀdT` &ƒñ`ROz}˜ä3)¿S˜|ñß&íï>ù]áŽw;Þíx·ãÝŽw;Þ}h‡§©sŸ4àÕCØÓoŒæ*š 1 ^î÷#^oó^Ä«gßâõãµñÚ¡ðŠxõ0|;4ÒÎÖVÀëÑÉ xí{¼ö|?à%ÉË}.Þ5AyïšÀý$¼«èÖ)÷Э¡P§˜4>RQh Ô6íÕ…ººWê‘—ŠBmš …zð´¢PcWC¡n¢* u3VQ¨­LC¡¶z …Ú 7jRÐP¨IJC¡*K „š:4jêÐ@¨©CC¡&ü …8Ïc€œþ[§å14Ä:ÄiÚѧjGCœ¦qêáó†8íxCœv’¼!Xõ#âÔ˜œj§ž 8M*à4Yú8=Ùl‡›nv¸Ùáf‡›n>îþæÙéY„ ‹•4Ä…Lî„cé„ ‹C "ò†ËŒÜ|Yvvf Jê8I; Îèl‚$LÎb#‚?’^9­GÒLÐÂÄ©J‡¸Âð´…Až"FæõC„‹lÊ”þ¢dN!ŠŠ»©ëBs•„äY²Ãøvjrf‡q‰œú#|_ù˜åüŠ…¾25BÊZªï7525¤Zë´6[?6RʦUÈZ)eÓJÇ0´Fõdvz‰éß¿ëŸÕbyè®ßá/¦·¦=x:¾ì·ó¨‹BŽ£7JËÖoOݧåï;TA £ýò÷%u(ÏÊß÷ø P8Êß/<Ïæï{ÜÖ쬿õã…7Ȳ9éU½AŠ"®¢è yd‘)ZѹÿŽó<‚j8Š:Z¦Ð¦LLi2ÞÐŽÜŽÅ!=¿T H¡àìGUô~.oWýJû>”é-vøÖÐj›ÞZýZ3š¼%KÖ"˜Þ2üœôÒ{ÞÒ~Þé±V#ýD‹,.9èÊcæœ-~*ËÙ:Pn¶ CÐÜK){Z F¯5äOZ;~«¥ù»Ç–n q;ËC¸¾ÍH†!'—u\+z )BXä«G±Ï²é%q…Å`!†LÀƒeHÓòPiázsž¤Š«á!ãŠ?õ yá:-° ŠùkõU~j}Ökù„YžŒçª¥!…¡84)'MUÚ| ÂóúÌû¤_BëÇ38öàÖˆî@AqÓñã·G©Ïâ†ï`>à¸m¥p?p]Œ>Uä)ŽëgD|lÅ?µMˆÂôÞOŒ½ú§¼ ÕÑNúÕ‚>à$íp­¡‡›2ö[²~îó¸ýΟ}´©)žHáXS<+½ Ó­® *}¥ˆLà¦Çõò µ3 aj-ƒËy‚>’<‹æi¹H²”ú¶–”ô‰ü˜Ìß²Óô(õ ͳ¶èz&Wô.D'%:}"Ók½$òGBZò¢w!‘¥ +šˆº¦$Ÿa-I•npÜn(rçŠí"WŠ/âÔ÷œF[h¯Ì 86xøÈÃå, VQ<§—q’ŠÁƒ…K•#W>ò¯êÏ4Ë‘³Z»ZR×g”±Òº2ܲVk§OøbŒT¡ÌšOê‹Uk—ƒÜÊè M.éÚñ‘VRŸE rÊ” òHµ+–õ%ªµÃ'[é'©µ«õ”}ɶižÈh)jíꡎ?(©.rÎi@©Ï↯Ôa%K¶ÞÃêê—ZUW‚N×O;z²>Èý$a®ë]aJrÛ;H*}–MÔHݼɬ¾)›r'ý2jx0Ö+×µüf÷<ë)€NI?1ÛÇÙgwœÝqvÇÙgwœýÙ8»© °cêïS$U=Š©¡Rž…©UO+¦­±óicª¬ÔÇÀÔûª”_$‚²<A]ÅË'!¨&Õ šU;;‚jFfGPš _lÐÔë•~‚®S‚ju€P'y¥„®µç¡FÕ¡A(>• „¦Š BIc!”QLCƒP«Qß¡ˆ–Bù¶—´EQ[Áº¡¨‘š@Eõ’›GAT³twò÷¸5ÀÜ7¡;`æ˜;`î€ù¡=¦V'Øów†˜xJ,ÝJ) P“¯ÞHOCL¾.ÎŒˆ –Jô­B&Ø.ÆñýÙ®¯ûE@fKüýe@fÓþmÉWàø2!‘ u ™]j+dB²óãˆÙêE5Ä„V)E³•¼jˆÙ‚½0A£SÝhLV“3wG¼le¨^¶ Fw¼ìb;/ èØK)ìØ¸cãŽ;6îØ¸cãŽóê>2@qi)eF"„‡¤¢ÎÊÄiíqŠ~bà·ŸÚ#YŽP¡ÏŒ¤ÂÄ%¬aêqÊcê¬ ‡âÔ!ârû4UxÈF©Ö:«G¶¢SU&Ù™‚“ä ò‰Ã£¡¹¹Ž’¨9qÒ„ƒ|uǼ³&jΛuáäÇyÙÒž}M”Û…w;#1ÎÃåeërW3 Q¨É̵ÞðåÃT[Kn•“‹_&1àÂ'÷¨ô¼¿Or¡È%,+m…†.3ŒY¨qø³‹o¾=%I .™µnÎO_¢àËêËÁÿÉéKÔâ*ÅS³»;ú·†|x-튋‡¯FúõÕ;ú ¹å!øÃõ[”Ãæñ·§œ·]ÜáîVßhòáâ­öˆþfVUB›N¿¸»8»ÄßÊáêšþ‹ŠÈŽÆ¶y?2¹™™Ø&ùJ´Hk°=Nä]¯œÊuu~v{y~KþûßžÝ^|N3³øþÀ‡¯Oû®ox4<›gìáöâý±¦ÍX/nïn.¾,ÌÁ¥ðåðýÅØ!&òéôœÖ—´¡ä?Ëx®®±ŠØA“u¬£58{+(ø79´%m—ðìv³T· ‰'t5‡ÿuqÄç³þžºÔ2‘Ëk×›ùÝœ"ÿßXsøþ­¶°Eù'MÀ?¦çtPAŠæp}K ý¦×ú¿•äýá{–£Õ…íBo~ücN‡ {¯GÑEraA!ߩІåäÕ_½xõG_þ›W`Ô(ßW0ê×wJ\ 'œZ¨ÄÝýøîü!)CÉ ÚV©”Ýê+hg£Z½[€D¢;®ÛFü Ð16+Â>°ü"wøƒÞô_füz+ŠÇ3DÜÌ6Ë ß¼yãœ!mýH¼ëY…±Æ!>¢Ã2fZtO’Úù~IÚs4BaŒlW¸1éÕ)®ÞƒÄœýv\ªñÙ–Ë•öj7ïO¦|ØÌz‘ Í˜ÇɆÀ(}0Íh?–œùžþBeìï ²—düP™q5áð[±!‹‚€šH™GyÜÈæ…Ì8u’p g³óÆÂŠ™ ‰_¾53ÇÚ † ÁÁ·C£›Ûª¹$s×_«Rºôž®ª\ ùúòòZÌGŒ4óÑÜ|ÓmÆO¡f6ä¶ò3¾áöBí›!/»Ô>|öy ¡G@"X,G+\5n±d9.[íá^Ÿ:xüdÿ¿;åiÈß\œÝßrÏ$’Öª*m•µ/Éh·¯2BÉG÷ ´¡te,VCjdî©¡óËäÍ*ÝœmÚç»òx$À‘9œñb­S8|[ûr÷-ÓÍöiµe߆ \Ô¶ÉoÇùï7¿îkÃõ[ù7ðè·ìw”Ž˜ŠÏùp4¯Ët0ÿ#|µòâ½ ×¾p¿‰=b‡ móä?ŒFm„·—,²/QvÖDQå Š\…ÛÛDF•¸âQ[6Ÿ$Á!И푣r~Ïaàgh7š¹±Í­zƒ]‚6lZ‘6Eþ±6AB ¹$$XB›tÎÔ©¸:¡¡þêÊâ¦òS)æ RÉZÊ’kÜ=¤×¦¿íî I S iÌͦù7§¼Ï7)²ŒáæKò§ #/s¶Áy•%é‰ì×ÝÅÕ¹¾-=Òêø-Él–»­" O‘\õÍØ~d‰`›Þœ{¦ÕÈí¾mŠÝò³ÏÓÆŒxv—ÔÖ¼C“× š–æµú=ÿVšl;!sjRÐñ ó½ÄLêÕ¬Õ ý:PRò¡¿½/ªñòQΛ6»,Žb<h’;æb_½#™€Œ¹T 4 ž¶œ~­½»cÍ}¿ÿù2.vø³S|Ü(j1’Û’}Í‹´¡·bˆ$éhâò*or|nuâæa¥–GX©¹Y(Èû~Ä3ûc<Í¹ÇÆæi°B…òpìPkÎf÷ˆm;?&T•'Çálc-6S¾Ø<Í6î%¾ãÁܺ(âU˜ªñÖoÍÎÍÙ7çúîDœ¿íã8«]ÒFäâjØ®ÜÜ©M&wêNXÌþgW¬¾Ä³kÄýÒ o·ÂÌzìòáMmq8Ó‘Û÷~¼o!Õí£Cˆ˜Ú‘ó€ånÛ)™?±µMÇ-ØxÏ‚ß]HÀƒ¦^=Ùã/E¡h}ív%®Î¶›ÿøåiÝ ˜Ê4éùöýˆònhv§È)¿.ÛxïCÕ±¾Wì[Ö»àdŸ$Œmì<4s<üïBjbÕ¸{“Žöi7›ðÍ}$ø-œ]þx{Ñv?âL㟤ŸWGj|ÉFÁÆ@PÖ6‘±íýÑ}5.Ý&4´]îû¢ϜË;Öè‡}—Ü @þ|tf7W«@=L²X_o%¥¯à{]Š <;½;ÛF¯ÈR=‡Ï¥œX|Ä–BB_þ÷þy£‘ßè®!m@_h¬ÏÎIÁPX n"Í¡Oo‡üÔ±Z˜€”ÆÁ’ž ҟɹèÐØ­%Ž?c§k9Ò›·leå6yØn¨ºltã ¡:+,¨øxÈø(T¯(Xî¶ O?ì2N°ÈEuÑ ©Z÷k’³[RFø &ˆ2jdl;¶³û1 tŠâp87úöuÿÍžýݸ7¸Ù(ÄÙ?Ç-o/þù1<…öð·â˜08àÉhܯ³Ïð½À ü™ì@ìö´>¶¸¹¦¥D·ž~¼ÑniQ3pyãG êŽÇÁtìÝ È¾¼Uœ·åÈÉÛ.Üœnþ½‡ã©hW›ƒuQh>‘l²Q[±u ýšpÈC¼ãóÿ9¢Xœ4ùN›øÜl²Jðq±9[ˆÉi4¼xÈÓæ»O†V_€Ë›- ×r™Æ—mf#üŠ#]aE„Þ˜'¸m÷¾9ðe§I=!²‡q/._±ˆ£=¦•ñÕwÇaÐÚÛàÐnÝž¡ùY T"‘p¬`ÿýöôÁ]"™å hLö'(Î  8èFF5ä¶î¶H+.æIñhß±qyÓ8`s+Œ}æ޼ó¯*ŒS‡$â”áߎ=wx2k~P^û†tô¯äarD0D¼7é¿îáÀ`È/ÚÜé?óQ䛄õNg ™{{$gÌ™‰¼Žyœ]]Çeñ’ò€Ä2/ݽ7t7ò¶>l· ßxŽXVMÍÝ‘Õÿ Žîz2ÙRýü­fµÛ~Y»y­³îêkÜO4(hÇñ¤¾ŽxÌq,.ž"ŸRe ñCö šâ.Y[µô=è ­ú­ã ïa+ ?ô{Ngá uIýò$çœô¹ÛŽö½Î_!×ánb?áû "øÜïë¥\{ ÅWÆÖIÜõ ¾Ül62[C‘¤M–‚ÜÿÂ/Û‚êW£Œ*^¸Tuso‹8˜÷5k ÷7P·ú06¥×—6mÜWn€%¾ÙìGo·Puul…ðÜ4é7q\òÞ÷qøQã &E§i×`®gÁ±„'ûx>)<€ªé~Pm;Š›z¨ÍÕp9ŒÇŸËŽ¿Áp´$V§í½ß`†½‡?‘Æû“‚È ÷6` Ñz¯ÏÿëéË`ÅNþæÃÿÌáð_^ö? ã¾$xÉ^L8Ô¿’¥gþöüöüæ×W·zuöîO_ŸÝýÇïξúÊ,ÐIÙ0ËÇ.Smè&.‰†¿½¹þ¾öí¿ê}ã_¿áËÓ?ÖÆäͼý ÆíÞ£†ÿðø£¿ýQ_ëy£5<ûêóÿ÷kÚ5ÖàÂȦÛo¯®În~üRøõ…ùãþÔßé#¼†õ¸'ž–‰ö^K(ªŽ}ñvé£6€M•;üÍ·ô³fÌ_Ÿ¿¾@(îìÔÑoüªÏ9 Âæ90ôð×g?ˆ|‰„|ý{ÙX—SÏnòüðÙôaüSèc¡ÿ—Ý:þ6®änmq>ùž£„·ÁÅö)áÊQ\LG²W)•]FÝ^Ú!âæ`@ N2%sÂâ"T ògŸûx‚{C##Fmæ5ÑîÄ-yÍ•Ùvq#Î9".#´\d5ÎX-âGÚè‘üö__‹¢sœ_õ/ds_ "òI%ý»Ú'9J¨wLщ'Pàç]\žýöò¼vž_ß\_é¯ñ¼óú<í÷¾ýí%à–_MûæüìRFiy›ñúüí3®`AÒšŠ#ëüVfG¯¬3F´îëú:{ø«ëÖB}]2Øç7ý¥¿9ûßùØ9ü¨ ßóËÀ¬Kà¥yY}f<åFt‚Ì!¹Zåðæî—yôGˆ-.`1ûì³ï¿ÿ~y{ùÍÙòöâüõùÍíÙWonÏß.¯Ï?{‡Pùåg—ß/ïÞ¼ûooϾ»ø†íëß_¼þ•‹©˜?Ä>ì«ËsŒ ´?þÿw{uööõ¯ìú“}#_íhÁ «á$ÓnC.ù8|yº Çêþ?÷ñ#«endstream endobj 392 0 obj << /Filter /FlateDecode /Length 3167 >> stream xœ•ZÝoäHç9âN ÑŠÓõ@Ƹ¿Û'@”ƒC¼ÜnNæ#g;VB÷·SUݶ»mO’S2cwUWU×ǯªçûEžñEŽáÿúpñû×J/n›‹|q{ñý§·‹ðo}XüåVO²"/øâzwáIùÂñ…Õ6+¤^\.Ï—×ßÁbÎM²:Y$×›‹·ìj™g¹VN;FŸ7ôYZžl»\áÇqìP­ã¯«äå=QéB9Ǫþ ±Rf¹ìpZ®í´9¿é¾:F¯n5g§ÿX(ÎÊ:!)÷ø T- K$>=D¬ŽKá²\’µ¸\SÁÚê° [(ÉÏÖc„eu•|m–ï®ÿ6VjQd‡-•Âå ŒS–Å) ™7Ng~Y[½¾í;¶&YTŸî}6SÖ°SÝV§c'–bU/®b§XáýÇÀŒC‹sàÙ|¸ñéY{ Ĺëï h7P¼ŒõmOi¢¼­ÓŒÖT()r°S¯¥åÐCÐSÍN+2“»Î=ŽéÄž‚ܵq/C–…l÷!"m»%‚=a® ë³³`©Ct/,+CöwjäB‡²þO9>JÏ ¼èžfoo’œËQ1L¾fhom½Ô,{¼#¯ƒ€ƒÐÚ÷Þ€A@99s\®¥4£° ª‰Ç¬jÃáù{Míäüi¶l$eìGc ^0”h âèçøSVܰ6[®”R¥×wg<ºKWï=o!’8Mƒ»œÊb”~1„õ¹¦¸“ÀÂûدÊj*{p8i ŠÙ÷½=C4ÿ>K,=ʹí$˜9|ØçEq¾ú¸´PxÏC±Í3‡38j„zPUW°ÅéJgXðd!AòÄ3““ï¬gØ eĦeÄŠL…G ì¤¦•ÆdÒ¨Üt õfx<ÝyEÏ›Uìï·Ië2k$!ÈYÚï1.Þù!I%–«³*{;ë:•~êU²j†³yЈ@~°%ÔPpZØÌëÎå"Zø–íOàN1¯.À®<ìËé¦7ËßßËñYÇHâæžÇø¹aoîŸÝ,ñïr®•‰„…mËNûi‰S·‘ÞóaÇö]Ÿ¶»›±•/‰ÍtŸ#¦×¯¿¾ºY¾}ªf±&¯žï 3e äÓÎðª·l·ñ›v“ ê^Õ5„ ˆèEèUðžYî8µHšå3ì|¿°ðYpìƒCç€ÔדD ²…^´*Ë‚0oòü¿¡äI-»’— N¿*.y¤Ê½° ÄM­0ûf.iB.ÔZçã¥gR¾!«$ÃU¥=>°ÀiÊC´*™äVûªõURH(zs^#pô`e°Ô¯ç,)Q庿 ¥ô„»åŽÆÃ2¯ÛA±4l›ÒðC'ƒã•dæ´‹À£eQP±?;¹«nï|LYÑÏJåדI±ðÓ2;m>j¯n«¤SjhD+‰âo¡]@Ž‚Ùs•zêR8BŒw4¡”é0ñxWÓ ';T¬À˜à ”›Ä¹I;ÝææTsb˜ümê9tÒŸßKؤïAa4bš´;˵N/>y˜Ê㎀¹ÒâÒöwD4£—-Gã%LÃe6ÁÄ’zç§ Ñ¹cs(¬ Qõ¸¤Ýû‹ë ÍjG稠eI]5­K¸JÒÜþä;H[àñ`t6¾Ë æ×âuKÓ]¢øSÁ átë/Æö'A j7ñá%Æ~˜ƒç ºoKÚMG×~ïÉîertú<’Çæ8Ò®û¾©#ÝûÙm]öåõƒÏ0DðñçâÀA> stream xœÕ]Ý#ÇqÏóú9Hx6'ýýáÄC’åŠ#‡;# nyw<“Ë5IiuyÈßžªêî™îáp?îÊ!ßr¦§§»ªúWŸÝó§…èåBàÿò¿¯wWÿø­±‹·Ç+±x{õ§+IwùŸ×»Å¿¾€NÁ•>Š(/Þ\¥Gå"È…·¾Ú.^ì®:©®_¼‡ÆRº¦µP}ÄG^Ü\½ì¾¸½°&¨»Ûêïú[{)b·¾^â ƒ Ýnóºþ¹lnÞÑS6šºÍLéu¡µî…WÝn½T0è`Ýå—n7·Õ­·ùiÙíߤ?£‘ÝêÐ<²Úâ-˜jt]3âýUW·×*ôBGݰ¹NUwÚìÖùFwÇÔ­SÎ)ß6ÍÏãõ^üîê‹Wÿ ¼ŠÊôÐéÂ{í æ×{³Æ $ùa½ø¯Å탌•^,`@N8SsV Ñë 6†Þ›‘½ûÌ]xÂöÀw‡˜Þøèâb)á£2¹{¿Á¦4Èg¼ß»”ÔLôκL8èå÷s/·}€)§wãh'ï6½–A-îaV¿ƒÿÞþº’ÊÆÞAçJG¤Õ®€85\Ù^}7¶BJ Y·ÊWšVΉ^ùºU¾Ò´ æU7Jê6^чº§r[=FL׃ iW3RÂBtÚÀäd0z¤XÀBETƒÁV}¾fÆkZ™|ÑÍ4 Oæ÷Üê%H«ƒ¡jI²ö²“×K#½ë]ìTþÓÛNWÍxÕŽk9¬`Ùõºb° ¸lÃàÒhàïШâoi4°whT±·4*ÜÚŒÜÍMFæ–65sqA¢"ƒìâÒZXfa%cÆ-z ²!ß~ulšˆù%ú+ø­aÉ„Ð,u-³^€ð/xp¸ê¶SŸ×¡ô–DÃ:ÇÐ!ŽÐzE#ŒZ1t Ô Doeä˜2LUÇÔaS6½ó‰'–…'xáò¹H¨lâ‰`¡ê5MY÷Q‰ƒ„(~4B–é¢Ëë„ChŒé­…*édB}êpBH3–†ƒ'²œ@ʄ̟:eÄ1!ü«4Ôýi¡ÄÀ0e¥€ƒáCCdŠP2Alh„Fs¢!r™ µçC0g{ å,ô«Y¨z'4‚eÓi¡44äVñ¡!àµ2YCYl€%Œ$Ô`‚E–ÂJŽI¡À=†ÆbmÑ:Lð=‡Š`0Ùî f’tdF&´Ö,ðëN#0XøWÂì'!”š\ ­‹¼–¡ž èdÔx:ôÁ²Œ¼$áÈ`5 Ô8MC°kŠáÅeŠl]3™† LCÃfâÊsÄ´²=Æ#—˜Ï4”àODNÓP“Çhí<§e¨Á“¶Œ–!úÑ3Z† …žµ?‘у€ÊÁ5¡ù¼PÄkÒñPƒ¡Øâ“ñøÉ ~ž ¼‘|–!NÙéÌeÁ€5×Ú)>˱F¨Àç(ãR–62š†ày£g|/$ƒ>A0.ò!bMÙ •LØ d`Ä`²TŒ–H¡Rš³Càeýn—¼Ï„5,^¨€Ž,cÐh(=£iˆxñŸ®'Þs Áhpˆ FöÑrÌŠ`´ =Î4ðY†µX³`!B.áÅDB•ýn¨Á(¤ )ví9V2.<Åë(KkÃç(Ó”mö¼9¬aÔxÚ—-Üã ×L &ðò.Jh û^y¦Œ‡³™ÉCÉ$9ò\ãÓ$3\!Cðƒf„BÐ&ÆΈ¡H ®!vèãó’‘'J¥|‡`± 1sî9dIšÍKF(”.ðA!¢¿Š1› SF5âœ#MÊ‚\J:FÃüxioBÆr¦c ;ÉhgR<ŽÜxF'ÙDN,„…,…áMŸXn0ô‚ ÑIöŠÑI¦`½dÌ&£X{Í›@ÑÙIæI `ž1F2’4Oh]€ å4 öƒa4 ¡Ci _©ù;¤A}oyžÈ±.4cÁf;Ž%!ƒðª«¡ b($V¢%Çž’Nò¡!&%áµï ¢gÇj‚´`L“Í2ÄbxŠ-dˆyA,Ȳˆ†LXã¬çõ’qÅñ™† ¡´`Œ’Û]ð•'g¤ÒÊã2 ɼ†­æ„CįC¬BÈ>R﬎·qŒhh°šË{-Vóó¨¨H…\pˆu|¹"ËI¦ü´Æ’1¾ ŠéU0Œ\(%ÕÈcÙ΀¡Cޱ²…:Å­Ù,CÓ{¯y‹¸£‘|^2•Ïz¬¡Çí\@£§e˜‹¸¹ÐaE§ßL¦ô9WrKI…åt“sÜš U*ºæ‚B´œb¬¬A3)èÀç'“í*8ƒ†È´»¸üd UJ뙊ŒgL&kчà9Óç`­{Ï—>¡¬[`Öà.GÏ—üÅòÙXÊy¢+É€ãƒC#{ƒÉZ.ÇS(1o&–ÃîBÉ™N.Û’âg‰ ƒ`KÇ–BAx F1F q)[ÅXZ#ô¥ —¥Ðü•¶+2ùɘô’/…Bn­uŒÆ!š8Æl2z<Ö0¦“MÚÍgØX´Ø6µ€VÙ|å™±¢M¦|aH„WÚSÍ”¡¦²k*Öd CbÄKF7Ë84g>ÀÐ3ÖÒBÎÑž ! ’Ž/…Rí0yé<—GÕ©‚]qO#b_i r×0چСËñ¶M-;M-¾ðŒ¶!0Å(É4´y'[†ì¤È¹ÝYà‰œü¨¨Y3njA°1Œhhr,œ-…‚ wÖrîNJsš†yÿ4_•´Î[üË®uÙÌ£QR¨Ù Pž#2 ž²-Hž­P%QÆVÇ-¨Ò %mw`3 uª»às“GŠÉMÆ…ì C°Xƒç„ÂfËÇ ûnù Ò'Nñ¥Oh‡ |PHEhd ³mN–½ŒACªþTœµ5†òŒ|Éd<­,hN$L~ ïŽÖÍÎ…*òVq{83(&Ù \XXû;lvad AŽ)¶ZCñÖí}Æ+F/9ÆÞXdžèv£¡Éç%£«Èé$‹Þ縓ŒÛ–´cL'v òŸ#†N0žü€Rãófg¦ (y£(0B«=çþ>“vðíï“`»ò F' yΓ¨ö‡±r‘Thέ²ü kÜç8 mÏkÈ™Xë å¸Q—g Šì]9Є e>úm;îºat’)ÝûçøÃÓó8Óɸ£Q2Ú†t* ¬À–@ARÃ\»Z4bß®˜²gÝÕ¢€†ŠwW‹ôœå:¸ 1o5º`mJx•5nq%èp‘¯®¤Ám ºŒðWìá Âj}'Ì‚I{*n6xL^ÑèQ@Vâ)³p:% ža9—ö‰M?|àòÅ3mËá·³Drju#ª=2XåÖk*ò|'¿êV¯®ËÜÝ7ûÃnµÝüO>ˆ;HíË ß~šî&75²»K‚['»ýµ Ýýµrè«áLpzü°Ü®èôn˜´û¾§‹Bù¶ùæí;ºáBèNǾ>· W,5’x‘9 cêAº#–w–er™ aCÎêÜ_M,ÇúGtÈ€ãÚcØ M ê*bžTšæÖ±»}þ/ +ລ&FÆìÐáÑÔÊÀp(ò/]¯ÓƹFR)m¯¶ ¸Øq%Ét¤²ÀH÷!Î5¯ÑR–0“çŸ3×!UäâÕÈÒ£‘%hœÎì`虦Š]<ÜýÙ@4×cpdƒ:ûy K²'4˜Eᣖ²6hR™AnQ‚¤mûù ÉÜY«ñ èoj僧ýêc«áÊØÊH‹GµÕo®T­¬†ÇºÕp¥j5k=ú±Õã˜ãw ÔT~5æòðà»”_M˜{XQ–Î/OiúKõÚÒñåébuzù€ ÞâaâåŠÇ…ÓRœkô%g8]iZéôÒu«|¥ieqkaÝ(]hÚx ¼Ru£|¥iö'R¾j•¯Ô­Ê|ÆVõ ŸH¤=}0@ΦäY@ Àsî—RÁÂ՚η¯~ú:-ÐöÕ0þÐÁ9kFá‰?¢1J~¾à¥ñ˜¾ÙV“^©—ËÇ\„ù¿°¨ìSì»ûüæýêõúöõ‡Åþp³>àšé‹Á ×‹§@ÅLŸoö·ËÛýtŸÁœí’¾”¸‰Å‡n}³¸¿Žø™Œh»5(³ÓHŒgè°—‹b¬ °þã¹™ƒ—Fµ%¼¨¤¤`ƒÁÍöHìZ\ÂÛqÉ+çz‰‚4,oe¼»§™®¸wÂÕ}£ ¸¦k‰™ª¦k‰‘7êúežÛ ¶d‚P€3 Zý•¤¦haà¸!"-zÚ3`¶(j:“Èæ&zº,ûJO˾ÒÓ¥Õ¨§‡V(sŒêZq©k°Âd`èqP×  óY]ŸÚcQ×|=VêúB-žQtÑÿWµ0ƒ1Ûû¬hAúSŠ¿4£0YéJ1éZzp7>6ö4#àõ¢(ªÐC´S¨KŒ€.ðŒƒ|%I^Õ2 Wçë–ùJjÙ|äâc…5:ðê5*!¬WCúØ^ƒ(~nÅ»sÜMc`z’ÒÒ?š"°ùËî÷×$WÞ‚ç!±X<¢k!éÈxÝ­“Ë¿Àc¹_ìö7ë-Á°D ŽIÅ¿ê¾[¿ÞßÞ, ös“_Ž8ý ¯JKt$&NÕ÷ôñ" ¾–]ò¯ðCHÕGú¬ÌÑuËúÇe×+ý\/S\-òrs$Áæô.ÿÒ]´—?Æt÷›¯³‹5ýVÕR‚û¼— K]Lú Õ—›·õW™åóK6vöW`ša )¨ü±ªô©ãi³[šO>•‰ØPœ@°ìš4ŒãD¢êVô·îVe¡{Sç‡ê½õ‡¨šïJ6À‚<•¿L…„ ݪþ®Õ{|&ç¬éV¯¯±JÌ:áÚq^|ɇò•*àêùײÊ7ªé—X1T_jú”‡J¤®?òUÞ Ø¢&ƒ RF.8zà‡wÕø­®þÆ ›/v%nû†Û.¢Ð,è[cåƒUàÜ@×^P´Q@÷ã7£œ¶1‹ÐÈëͬáµV.š‡¾?cX3~Ø+๴²[mûòËÃ4]鈪ùâé]KU€ÚÆu§ý‰¾(†Í@òW»ü1°%}F ¤ÊàÑÛLb?¶u¦aæ¹4êþœà©}&5кKßI`“ ÌªÆæEµ@lާCû¥¶Óõ‡”TXô>±¨¥vDÀU¹ÉËns›ßhÂ<µ¬Ì‹'oí°鶯îäá„ ú–š¢m Ô&åbaT¿Ÿ‰E^ä¼p‚íþ˜G/ªv4ª E]îÉU-D¾÷ë™·€PÀêLD¼W ÖŒ9AáSÞtç¿[P`'jàV·ªTþ ^¾…Èéð4[ß÷ôÝ<üeº¯­Ã0œëV‡Í*ƒ#vmuZzÍÌ‚s„µ"xÀ·Û„àØM” \£E׃#D§?MwÌEª³é³Y&›¿i±—ÆãâƒxKï¨fe§_}–ðuýä# Ÿ[}¸¨äïz`»B ²Ý‹w`… Ëô±wI–wÈRó¦âbæ¨òÂ4:áu­ˆm„<¯Íà1¥>KìÛõé›/îÉ;=Î! }S ¬ÚŒ$­ˆ ʳFÃá;ŒŒŠŒd5H`«ö¡ùi_Œ“ m:V4L‹ÓTzÐvИÉÌ ó$a¿/ 6?Û̓U7ͰPêLÛû¼ðhIyŸ´§ÓúiÚŒR´¨S²'´AœÆ×—Òáv¨ÜãçoºÏ¿þMžˆp-÷»»JŒ`Ñ{è2ÚC´ä‘• ùmÃáFý¼¡äa²Rˆªjd£|âwD#Ûσ¯Ÿ‘´CaЇU½@»Íñ˜->Ô…úÉ€•"6íÀê!•ù&©”£Â=Êäc¼øû—Ý·ÿ‚X`È|¦¼êvëÕq»>~¹9ý÷íún÷Y¹¯ë[wûûõa»º/wCs÷öNS1¬óÊ'Á=+ømO´Úñ„J’‹`ªVTî í$åDej7pŠr¡‹eª-í“3UM<>„q1ÝI1R:PÔÁä)˜]Òw$§ÈÙ¢p““Hdž<#àg#æ‡=Y~@éÇœw2Ý™~¤GM«t'éAAä§ç¾\[ü|±ñ ±gÇ¥!™s Çëx3¢ ŒDÇî&¡ÆÑØv‘ö»±ïÆ~x{qb‡åœÞ,7Sw¨¦Ÿk#ËHâČǰÒVe¶¶¤S6ß$ËkÕ†¹uèäÃô£QÐ$²(Ñ$¥Š°{•þDÉhí¢–sõün*ù™'O꡼ônÆ>n`E1âîëÛ<.‹fOÅ*TaÔ«K‹Š°Út<ÃdjØ®N§)è™8ÁäcíÀoÏd2?³)ãwe•¯ûÛ!Ä4=m?à-M:¹N²hÚÙ–a6õ .\mÀÐæÅ³±…j™N݃Eu¿ÙnË8dWÏáX¨àí™RÞ[à¦ð*KY¬ã&|¥(É©§ÄµGC9&&#RÈ>¿>¨·(œ)háD \à7ê‚küàÕqs8Ãz"^ uf¦]­|µ4OT¼ùmQMí²‹&ð±ØžÉÅ>–ÀÏ•FÙ,´u&'zìSEŽã³îxZ¯Æô÷rµÝß^xª‘¶Çwî®,îalµ¼`±VšhÌÏ›_ó¦+zù%`Õ†ö§ÏÚ¢ vIÜ€ÓJû8ûyö$Ÿ·£½Ò8C«Z²¶Å4ò) €Â@wû1v7%Óînò|%Ål×Ï·ã&ÜÌC‘mÈ3m]¼ÆŒOÓ5:L¦Û<²Ún?Ò©ÁÈSY5°±ù¾âù¶az ‰Ú°HF…£1 èÃ`ïèÞ ›—Aë[zÞè”Íí é`ŸŒŸõÏ馉`ëh¿órøY}‚›"÷‹Ãå´æ$tÃÏ0"…5 ©öcãH'Æhùް²•ä׬j?ò¯ ²ŒÛˆ×v3Ì£|îð¤õTU©1‹ð‘Ó–NöÚ6sïP´êùÙ]<Ô±¥&Æî‰>°Ì6YAúO‡\U­¦ÿá’dN]RêÌÑÃE”CJ,Óíªj].ŠM§85ú-剉™‹ H¬(ó%(ðîÝ;3 €EÀ (Á€'®ûϰP#’ƒ?ò cXDøs…hD¹B¦ÛÇeYG+S”AG,DCÑ6‘ ƒÍ›BYó°1Ì ä¦µ‘—Úæ«C³iI}aVhê5kå§:øž%ÿ8á#Œ½‹ZúÔÚû·•mscß*¿aï}®Û1Cbà t•²¬òÃõùÖëly.¶ ²õŽ/Æ,.>2{5ÉÒá,1ùìÌ\µÏ(ÇëOw]é,jÜÛA ‚Ïà•ùü)~§“´±é{âù6æÚ'N|GeýºN}’/{Ævø˜ý[üÎ `ÙoÅûÏó´\é`CRF …b<dï~&Y˜ÉQ€ÃI£¸m¶³G=†—L@y96º»:~0ߟ„T6Ny»¢.“¡FiòéiUŠÑßæ<¿Hï³jªÀg­ÿv9î6e¸&W|)E þ.³—€ÎgcíÕÙ«Í ò§PßXÌ€êñ,Í›œ k |ϪŠ¡:¤*’g¹b9ß:ºOÝC¼:‘‰`Œ‘©j{Å*…}yƒž„æJzNÉ’žK1ƒ?WÕtÝê1¯iÓK]›q  LÛxtM0Q.ÝP’‚ïß<ÌÝVÁXg?B4²¥Sõ¾W„G"Be.s¡¹¨÷é8[´þ«3©ög׿œÖZQÆNš…Å}ŽTwÐÍ”5àkU,ñ£¿š©Ù2XîKU˜&ç,ÑðÐËÏ{°‚1€%ÐÇKq{™.nnRAÔS}`[+,FƒU©€²ûë¹X–Ä=\Ãx¾fÕ6Â3M©îúÙÌ´ yôXêu™BÚÛçS¨ióÓuiÙ?]/%á°¿°¸îK˼nƨæè›°$ø²t½³X@Xµ%Ÿê)¡ Ï`T>ù³Y"J€5ùÁ®z–Œýå,#XÒúSðk^Æ"^xŠŒðD‹B=AÆì#ÔÁUñL{ØD,s;›gˆp?DçǥϖMýüb¦<ˆûq¤ÓîÒa*ôÿ=Òëô:ÃðgºZ1/„V#ÐM„ë£é<ó”KÅüF2¤é:&nCåÐhåujUjc¾u0!¦ií©©€±ÝÓ‘ƒ,»è1¡[Ã4e8"ˆ“*Ž2‹:ÖSŒ¹àŸžâÝ)i,ÏbTSèJ†@ FӤĤLÈ»Öòlâ4Ób(ÊÙNËýr¬ÀøI4¥ €´'„Î iÞn³×Ÿg×êU…i‡M¹ÜýórlñÃÝ PêÕ|ÕÞX KïÿT‘˜.–Ýúö&ׯÁ =ÖÖm7ÇÓ+Œƒ§wØú^yÝ ÊÛÕì{_]ÿ-t=Tºîûò·Ä÷§¾dwؼ"qNåy¶[Ž·ä«kDÛ™¿jü«C.(äûêðYî÷“Æ=ìíúÏ2ØÛõ'6Wpæ-gÿ7‚*endstream endobj 394 0 obj << /Filter /FlateDecode /Length 14580 >> stream xœí}ß$¹‘Þûøùà‡³Æ¾¸Ú·]—üM ÎétÛw–ÖðîaÔÎL϶Ô5=êêÕjý×;¾’ÉÌÈšii´ÒjP„ía‘L&Œßñåo®¦½¹šð¿úß—Çû ®Þœ^LWo^üæ…á_¯ê^¯þëÔ#ZjÙ—©˜«/n_ÈPs•ÍU i_\¸úâøbgüõ¿¢ÎÆÄEïÉî †|ñêÅ—»Ÿ^Oû)ølKÙ½þ~Å»d¦²{}}ƒd“cÞï^Žÿ¼YüøŽG…âsÞÝmL!¿ðιý”ìîøp}ciÑ9Äó½¿{;üô¦Ž6»‡[ù³x³;<.†îñ½j‰»Åо¦z{mó~rÅížÐÝÓ¤v÷tw|]áÝî$ÓF£M»Ç»Å?O×ÿç‹yñÓ/^üO>+WöÁ_Åi2{ã®r´{kÌ•±&í]¹z|}õ¿¯Þâ¸öa¢¼z|óÂxO}ÍU¤åìS¹:RK¶ûH-1S‹»ºG‹ßgG->í£ç–ö†ži‘Π%Ð_&Q‹ñ{›¸Å„½³W1Ðh_d·ÏÔÓÞÊĉíB™»Dj™Ò^žÌ>Ð ü0I—äö–æõžßŠ[Â>ѳ½‹õÙžv¡eò˜-žVLó8¼•m}B¡êãäY6î½¹ÍadKGBóØä÷!È(ƒ§RË´wYúLxj´ôKâ>Žv§`ö™WèèhõÑIJOü,[ì>ÓZÓÞËÒ{y+O÷QúŒ§š}ä sï PJ›Kv´M¼b=o©óyŸù=­›öt¥#QÙ^hYoEÜ{d QaÄv…½åå"‡>%ÖW âÝô1Ä…y¦¸´KŸ‚‡ÆD+.¼@, DhåNÎÊn‰Å7š\Òíý‹Û´'1Ó;G$þ/ôÿ_û§ …_(ü¡ðo^üòÅ´Ïô\S™wˆtF„R0ˆH;CÂ…ZB®!{ ZÚqF"¢À¤C›/ çJ[1Uê¢CÃîY›úOë8ƒ\GЙâ#^>âw"&^*MI*Ž×HæHP2ˆªbÝܘ‰:-ξԧ&’—³˜JÒ Ò¤H4`²tÉ{Ò/˜8KpA£%Õcâ‰S™@™±¾n"Ã>Ò¢ëRm’G Ýd¦…Œ‹LëŸ@ŽÒ….ÉÈ8ÑÑ™ØZ@‡¤EÔ#KÖñõŸˆ²l õ)ôÑ_Ýkï™Ê&ÃóñÖEÞË 4Å-Þ®t©†˜÷ ÓÐÑe^`tËéÈ&:)!ÖHì<Ë ¾4(h" ²21Èw’ÈX6+D‡¥F¢ì½—gÑ!c9´Ò½°¹Âä T9i!bó!žX¹Z }¢gØÇJ™o ±Ê £#N1ȶ'œøÙYv=f4¨]äH—É{y¶ìqLL‘ŽtͲLᦴóÆVÐm€0ï3¿¸è]äR¥$Ë|€·4ó [ß®` ó$z&6GlÄŒ¼Ú‡×cFL\iÀ}·yì&^ñjÍÏÏÔÛã}lˆö/ê‰>jŸ%€¼0… S¸0… S˜‚()w½Á“FgOûèqò`¤l€!$ÒŠŸY¨¬ %š7È“ˆªr€Ó('BÏÂ<¤¼T¤E.67xV¡À *߀6„¼¸QN¡— t®ræ ç = Jš´LÌÈ„¯{œè€' "B‘Ëiÿ-úئ G¨Yº¶kÄDôU,Њ]ãR¤·Qû´ï7fÉ5ûT;¼u ê¤6Ôz­ú+ë`Û€m m†hSE›3&6‹Ö*(­˜µåþٮ–X]èëB_?} 7+´©Ñ(–@m†Ä?ÉHš¶[{6á‰h6Þõå LK6XÀ1&CÜ≩#}L•i®ÔyèÄybÙÚ£ƒ1h¡W N½xk9òRËM ¾fD d›¼x´Ø&êc«Õè‰Ô-æ!SXˆËe¡¤É4"98!7r<™ÀPH Ù»µÁòö•®b4qcJJM b€¥^‚M.@ÙBŸ«œ¤9ARáD­ÝŽ ]+.€,fn¡½[žº@e)´¯böâ’¢ˆÍÊ~ 鎲Y¶_(ôúQ¬yº¶P—ŠwÍÄöâ´(¶ì”±m4O¬«1Ð[VìÄo`ˆ®/¯)PDKg7áäQt©,vØÚÞ'¯Ð¹˜*Êá\à³£‰Å¹`=“Ÿ]õtÐ3Ž7C»AÝÄÉ€Lڛà BJk­VׇaÞCäGG%ŠÅ’ ™HI/— q = mƒ¼h¿÷1´%Э÷uÇV£x&›™Ôé¬8í£œOB šè$–8Ðz§Ó0ã»8—¥ËržÚ‘ökqIÃòlƒ8b' Ýyj¸x2IjPój‹’ËݾÜíËÝþï6Äø2µ$©ãÑiºÔ´?’Y!Ì“»˜zû hF&¨fž2ÆpK2©P¥š^74f[é[é![ºŠÖg”[W»~µ{˜Êºqª3[¢6Uš‹ÃҩâLÄ„Áñì¨Oî¸Íbg!t¾·Š[*×› ß\š5«¯íÆÕ^Ý~Ð.h\8Ú'Ñù§lj‹‡O‡†M´c Œ0Ò6sƒD,©‹Ã|hÉ|´ÌsålV³T¸Ê…TžC*ÚVÈ´ƒ0‰’cÁCÏδ—;ˆ`¿y†³†LWO"‹Ç¾Ã%'š“D®hã«Ò‘aFÁõü™¶&f$Á!öc¦ƒ…W(šT… hûic%ÚÅ-°Ï’¯*G¶ElÌДÐ`íò, ¤o´de‰¾Kg÷—¥'² ÎB˜<",'ZÜ_ŽÞKNbÂö¤ƘHÿ@ ‡Ô¦Ì´å˜6xDdQ¸ú±£—hZ‡ˆ ¸JI*±áöB²Ðd±¡-9>y²™™óCx‘¾ #zj§ ïi|-˜™'Ñø²mžýlÙœŽñ0i!AÑ”S ½e0V/Þk6™ÛÔLRóQÍj-ǰ#¤˜¯}&Ñu¡@ ËÓZš>Læ-ëÕÎ S½b¨‡zù=»†LOeß9ì‡*ª²„ű_EúÀ\`oaeš¹º@z8”^èÄDíOŽcíir-3‰…¢´ÈÖNš’­~©d9^ž 2Ot†”X 2Û³s£µdWûøÆV4Á}$›ÃÃM™?!8ù¹Ô’ꎒª²H¤<´à/‘« â%˜jìf1(P¼ÐàŸ“µNµRhIì£DÔ+¦¶;0±=-ÂU-0‰8µ-‘!9Þ Î å¤ )2`õ¡(òÔÖ–UFŒNšÑy5:õF§ç¬ówÖù=«ü ¤rˆtš‘ ‡ª€©Ž©ª¸«ŽÍêð­ŽðjËB[ÚBQV̆¥³¶†n/$r!‘÷“ˆÊÉYqéã'×Ü^ -3”\¡ñ|Š£©çLD–F¦¾‚6|µm¬ìgÁ±‘å¡2A6Ü¥kªvºn8f‹xT3M,ùzȪƒZœ‰^l¥ñ›r•H~F„’èȜߗ·—Ãùñ޶YÀ|õ€à™ãÒÉê·Ñ5‚c¦á܈Q^¶6²¨>7"«iwnÀ¨ÙµÞq~Ï™££¸(‰Û#–²¥@úd>ó!ëZŒ ˜Êöq`¿ú8 e¶œÎ>Bvw‘Kɳ#äÇ%p\üìˆÙ¢©#HèpFéù½˜£€*ÎÑHü Á.Iœ:ZÈD@-8_8RC÷am¹§Ž­“•¬Ï¡“my s'ä=E;vª-c§zÔC§Ú2vB¼orc§Ú2v*…3õ‡Nµeè”UæËЩµÜ?Cîg‚´²Qî@ w‰±&Hî8–;7t"`OøóÂG©uZ+ÿ¼™}‡[vm³š­žõù=ž,ôB6.ä(# ¦«Èˆ–ã‹/w_í_]7¸½Ý?\[h Îî*Ò^16îžé_¥øB?4¤¾l\Ú½y\üótºû-£òã´÷·¿HãªPÐì‚0ÃÝ¿¼C‹¼#Ò+tˆS!ƒ Š–¯v­_ú!/ÛO±NõW[Sù}"N$è}7&! $Ÿd…“-Î}ïúfÿ†¤¯w±Í¸ñi@O³pGqu+㦱{©·Í%ÃSЫÁIÈìëã¶ÎÑœ«Ê- È8TžÛLê°)Cq:÷áZôZ¿n3²ºýPâNƒ"»²z¼… Éåô XƒÞJÆ:ø†…ÂýÐA-lÎ ™ñ°|:zµ°Å3£§Ùì¼ ƒ4ô4‹Ä3–} =Í¢ ¾ŒŽžfaAÁj¶ZP=ÛÕBÿJKψ¥'8ÎRíY³IØÁžYKÓHø¶åÞZ( vÈε8#„|[/‰h1Ìzޝó@òHϦÛÍE¸s®°… ¯'“Zdv˜0€§ÑÌžó]:z­FD:zš…yçPGO£ /D/y²(l ô²(›+BA/Z“íyxÀ _ü“ p¦–ì.,lØ_¶/¯ÖÀEh3½µŒ+‡àå俤,79ΖŸó¶Üd9ï}ÎírΪç~Ѽ$©¹a%ÔÈ®êÉcÜ ¼'˜¹‰ìõ‡$42‚9t8ç©92˜8%®ç²¹ªRÎ`Îx#¹ø ÌÁm7_#Ó½Ö3˜³ðŤŒúm7 0'?l5³’Vk¤Á‡‘‘f¥”¬ålZø|y¢šÕiQˆt¢žøI-Ã@õäP úNyH åלòdJ-:ÈœˆJ‡—%‹ª%«ÒYI`¹å³rƒÉsÊ+B”4ÙšË Ø½ž7kÑ‚ÛÒsk©…«{ú­ER¡gèRKôíI¼´8~ÉzGöjç±(a²vÆ„±¨[€í°16™šÝÓry,B° òžïcc–’ðždAP¸ÿ=oˆŒt#éy-·ˆ yÇ—®¥‘­ÀÜœ D=²$þ6ì0‹¬ ±Wì0j™b®c‡Yºç;ŒVà˜3võq’B×ÀÃ,ãw¤<ŒÞ*CœÁÃ,ª&M«‡­É‘I.‹É àaLÙ ùÕÀÃÄõQð°õ(ž©¦4Îàa•jŒÞÕ¾,j+ƒÁÃúËvð°õ4<5j¥Ò€fqê`Æ™æÍïÖ°ÃVƒX„\®õåZ_®õ§u­›ðn±ð=5Ái’TT[œ ¡µ¢R#Ý> éѬW?¤P[žêÙHÏ@2Í\ò¦-åD+0Ê‹«=½Ê 2Ô½ðÆ]xPx³(bnx³H$#2¼Y”È–ß.žàEõä]ºœŽ½)=Áwëºê+½ºõ Ù‰)zx³(#”– ðf=€ëf|7LÎàn< …Üm=)‹ …\(ä=¢ŠCp…8篡±9 ·¢ž»g : OŒ² © xç„Cg³D¦zR¢ƒ—>ÐŽÇæ,ŠÐ€ÇF-™­ÈŽÇÆ£@[¢ðØ;–Ò€ÇæàŽÂÑu<6g §˜ôêr°[$òö tg*ô[¯R§Æ š+Ù ‘•‹^íîŒXsEü¦q¼²Ÿµ‰½a†+K]óø¬ËPÓì¦hç|a(%¸âzJ±ƒ#n¶žvì g™É€º|/[ö²ƒ7’kž[†³ƒÐ²qÀoqUhÍ/(À> 00kÒºÛ…Üþd䦪Ö!ëãVX[‡¾7Âã*‚®bìë(¼Ôë`¾ø«œ6Ь·C¼Ñêr¯ß¨âŽáÛÄ›…/Ê—âD…:Ä›Eñ¨±C¼Yø´ø»‡ âÍâSIœØÐ Þ, Þâ€ðfï’ì€ðFrŒíÄáZ¸Vp†x³žNÚH*4MÌ·Šñf½hÒ3Æ›Åg‡‚0Þ¨¥æÀ6Œ7µp{!‹ Yh²Pu4$ò> ¨kÛ_â»F-Q¼ vÍ!˜M¯Ã®9DT‹`לE ­`×ð©ÃP‡¡yÛÿÓ@#Ú'µbÓÇ-V®Ù½–Zh(Á2Þ# ÕLŒת®×f¯²Š×†³NÌØJÞP ÒµUyY7±E\¨…¨ª0Ì]GM¡W¨á¯†¬âƒ³f@_Ñ¢òör.?Ês‘4w›ÿ¥É|‹¸%¾Š5µMæÕ4vûÇMl í°_:r çúAGèè6d©eAûj8üVüž %‡Zxßf$[#¨3ÚÎF{ ãÃWé4šÚêYÃA³PömpШŰ ÚqÐ,¢#>Phë™ùiˆ(£´µC¡Ñ†$ù&[ƒB£;Ã\`†B«g<#¡­§‘í a_û“#ì5Ö±ƒAÇË©Xlnš‚Xö …UAƒuÎ GÂvcc³⸃±ikvËàUF±–:Z2­¥—–p[RP]}‡ô=ÓwQßW}§õ½_1Í9V¬eMôÒV°ñ—!„‰ |B³#±±m€Ķ:m¡´ÌÌ`lœ|Ÿ,6Zg‡t(6V^àèPlëYDi»Ö…´~ÒRòuæÃq3;BePÌ3ET€¼­<µU&›NvÛHˆSIs:±NåjÜ~o±/«â$P@b¼ÝÉŽh¢bÇ5(;]ý£+„¶ªˆt¥‘*FRåJª I×<麨uí”®¯ÚªÁZ•iÝ^6çüæ¨/¯ õã¶÷~ËÿŠù«¼;°‘_°4øµC@9 ”cáöx‡ ‡ÙR€o ù•d gsMå ­Ç«a¹V¡õ¸ÓÈz0i@ÖÓºÃík9Ø,ç¦ 0v Do+Håm¤!©T%[ÎPÐgQ‡Ð[¯†·ìG¾Â?ä~÷À™HçAþÂ_ÈŸy?Èß…ñG†ä{0þÂ{1þèyg1þˆqýPÖAÅ?çï¨Lk?çhNæ=äoñ\¿>âÙ }ÄsAþú€gƒüõÏùë#ž ò×G<äoñL¿>àÙ }ijAþúˆgƒüµÏùë#>òwŽ`Ș+÷åÏ!y©,@þz§Žò×: ½SGùk¿Þ©£üµNÈ_ïÔQþZ§ä¯wê(­Óò×:Í(µÓG‚ü9|ÖúOäÏÂ.$V½ùûšáü¢‹ÎìïÏ¥o÷ËæïÝð÷áéîáæI ü"¾KìvÇw×7ðEØbw‡ûë-P¿Â’íŽé÷ŸÎ`úHœ úNgQý\ö‚Òý|`?o«¿¨ãžy[¿Øk°=ð*ÂÞë´I0÷^ËíXö^îí¼ÿn( §y&‰ë·²qLIþ^+-—>i®>÷D]œœÙ ÔiÞn.b§ ¿v@ z­/Ï šAóÈgþ:°÷±7'»zd+ä!Ö1æœYžËmiµ†AôCæ­Gúâº-7—DUîé».¿’†_R€8&1§“v&Ííy¢¤Ìº}0Ï<#fÀ<#ŠgWP‡<ó›§ñÌÛÔ„¡†É€§ßËœ<£ë¤¡jM±ç1ý.´}¡í¿tÚV^2²,;ï;|—ÇgÄJ°A¼'~/©eí$a~ðWgkÖ5LìÜë‰YYgeün+µd©¨ù]Ô Ÿ¤—cEr)@Ë£öùÍ9dDÆò™ìžgFË–(nÏEó¨Ù‡Ç°ç«QËÝEÖdà|ÚÝE-‚qÕ¡»Èºãï­ÍÐ]dÒ J‡îòÈê%6è.ϱÂÔ »h åS¶ºË#9Œa¹t—Gáµut—÷ðW§ºËû áìÝå‘uÏ`^ º‹ÎŸ:CwÑööItè.ÏËt­gÑ¡»ø´AFº‹iÄÈ]ÔP?nÒ»èáì{ë^O¦¢4øE½“ÑÙwJ$ÑòÙ¿J/%yCÝKt%A«î§õøZ^)³+×{Ú7qÓ¶«ì,‡0í¨¤ÝuŸ1½%GÊf¿2ï² »ï™–ŒÔ¤Ù=í]a»h7å‹.¶Ë;'…Á¶«3éÛåñÍ!ø…:l×wÝdÀ+&­¹bö_5 bÉžÂ/ÙA}Ö €åß…)\˜Â…)\˜‚Æòë-«ƒ‚º·æ«.5g}R‹¯Õ-53”Öe%ºÓ²Gé>Ö{†©G ZZU-7Ä¡îÖã“ v(Íõ¨ÑçO¬·ò]ºeÈĦrÿ{¶6upò5õ–ÑMïšù{?=éÛ㋯œÞÉÐëa-wœâœ-¹|ƒ/jÞ©¶wëÔ1m(óZáW6Á¶Ù°0-´ù±a¢(3F›:æÐZõ6º}à*ÖtÄòçB[ÚúAhKå "?”Q*â—+ÞVünã91˜!¿Vƒ0+wV>LÓ ¿<’"‘¾Ô“3=ª8x¢š¿éM亳žáI òUåžêQ¾Æ_>m™¢ü’Á Ù¤ÔR8©gœzÄJgÔ³Ré¨jì¸e®r O¶æ¶Ò)L¬„´ìWJ䜇Y¢†\ì9´߯äÎÖ4[:n¨qs"®‡;•Ss[²®‡ÐwðÞ*Î^«ø:eI1ÍÐ.5H ¸ÓÐ_<¶•3xZ¾Ž7“0„žÓã§\ë8[Þîâ¤è¹AÊ>¼å¹"ŸÑî)F¾ö†,$Ì3@~yä­ðgmäû äÞ5úëUçƒk_$¶`«C~±k€sÞä­ŽåòË£úÊÆòËü™suäך¹¤‰)>_LÙÖ _¼Fþ(nƒüZbbGÒ¢|ê»B~ñùÈçu+0—‡êÈ_û®_ýe;ä×zžškŸÂ€ùÅ- Üyj@o'?`~­Gq2Àåf_nöåfr7[¥Ó­Hê¸Atš.5í::)7טx‹rL…fõ2”![šÆÈçÖ{Éš‡SjT+jÓȆ’¢õåÈÕÎ^톊_l£>AF5À6_5fÀ6ö4£öµ¶нÝÛ<Ø [{¦®7†«éçlÞ­[«oöêòƒtùãß3`›ˆsðÚ\]˜ÛZTrÆls(.´dÛjV6).Tr¡’PÉ)Ô#kЗgÍ“ÇßXì©ЦlÍ´ôALXK1$»‹T= ÑãSåp$vœ5Wê k9ƒ#ÆšR²?c¬IK0Ö|¤­d‹²a¬Q 'Ìkž¿†Âq´ZäíöÚr2C#'ôús2.'$ôuS*F/c÷€A†ñÝKݵ•¼6£•¥­mqe­kƒÞ×O)·’eäÛâ5?Øûúáõž?ìasË™kޱV¾ÒóÙËw²å*Ó+:©jnùÌ©$0w;2 µˆ;»£·x ø; ¼¬ÉŠÙÓ…Ô.¤ö§ 5ȵ X7‚Ú:ð½Wñsb_Gáu ^Åòu¸_§¬rØœKj›‡Î}BzfÍ ÚæQ†:¢ÚƦ€h›G>|th›CiŸà¯UÐ6ڳȟ×é mÚÃÔ6–^& ¨m°ðnuÔ6‡ÙhÔ6—ËÕb•ÁP*j›ƒ†áÐ6—Å6œAÛèÑŽc´M',Ü^hâB+šP_@ñ,@€£æc­¬ì8jÔÂÛ?ã¨Q‹« Íi»²g5a¦GÍfºŒÕš¯mð>Í7x¨æ³DÄr]˘¨%‰^ÛJ‡82ü€½B<]4ïÏB)ŠŠß\8~Ë/Ú•a ¸Æ{a/Ç­ƒŠ©…+…çažDÐÔ°š«Fþ91˜YCQciØ«j=ÂPUKkg$™EDî´wˆ‹i."j jtüÒ¥a¨­éM~Ÿ‚|£áNxølg5\ɘ5zeƒsŸAÔÖóˆÂt¡¿ ýý¹è¯[Š­’b­ì‚'©lìm¼36 mt´NdhCh£>F€kDm†ä»tˆ6>~_ˆ¶ì³‘%£3it¶Í2G'ë¨|ó£Ò‚tæ tªP¨Ž–ªˆªŽºnEf—–‚6%´¹¡,e´hÃF?·¹ÐÈhD9 Vú¸ÅÅ5§×Â@Ë %S|áºØ^1Í&s°CUõ†µ« be4ë¤ŒÄ •ܱá]ûLµ[uÃõZÄiÚ!O8CÎ ¨(´b |5àzKÇÄÙÁU´œ¼½œÌôdpƒ<—ÌŽR¶eÈ 7Æ£°-ÆQ£Ÿ¿½Õö>f†¦ñÕ|šák¨ÅrÈ·CÜp*¿dƒÁñ0–yy *‡W‘̧³AXÇtB…bU°vÎ݈øª ð:l¼YÖÑçõ:Š­#ÝÑðuÀ\‡ÔuÔ} ]¼„ïCæ†uæ fÓ€uæñO԰μ!švÔ?½˜êl=1? 2ÑäêÌ#˜c£ êÌ’_uëPgí€g¬³õ<’“}¡ê UZTýÍ‚€äV–Uœ5…ú†yâQ¤vpNG~cÇY# )_Îè8kv솭«ía-q”PZ‹--Ù6¤Ÿ¾ú ék¦¯¢¾®úJëk¿â šq¬8ËŠþ<\‡q@YãM(#ÌÛÙï0kÔRŒµÕI eNëŸ1Ö$×> k´4þŽÀŒ²FŒ%°o £¬­ç}íBXÂú£ÖF2Ò2Áḙ¡%V`„Û|§3ÓTòšÎoÛÊSyr:—NådÜ~¯!ÒeŸYÕ# Èlf©#¶`¤ü¨Ôéz]´Q6¤K‹tù‘.QRULºÐIC©‚)]TµQwµ¬Ìº½lÎùÍY ¬môã¦×~ó¯¢ü:@e èŒmìkÀÚe ¼ ·ŸÄ[TrF¤Z ñmA¿’ôo#Á„ šÇkaÑVAóعÀšG]¼@Ü6Ô<­?Üþ¸–£ùa"Y-¤ãåm¤é £,$•©¤Ãc*„†‡³æ­—Ãøc_âˆéÇÙFö½~å/ Ò/¼ÒÏÿP˜~ÄÃ߃égÞ‹éG:ïYL?Dö~ L?—œÇÿC0ý>ŒÉ¤lê$šòóaýæÏ…õë#ž ë×G<Ö¯x6¬_ñlX¿>âÙ°~}ijaýæÏ„õëž ë×G<Ö¯x6¬_ñ|X¿>âC°~çVÁúùL*!•ÖÏçŠ÷:àúõ^ׯ÷€ýz¯ì×{ È~½WGöë½h¿Þ«Cûõ^¶_ïÕ±ýz¯ܯõšÁýZ¯D÷“,‡òÉ û!‘þ¸B÷{É8}ÄiK3¼ß”w? ýÞ¿þ~=>Þsm ü 9¹ üÈÞç üYâX2Õ¿ßFø#IVò‡þˆ…S'ðÇ›Hzu™ SÅ ·§˜® ®ñáatýr÷³»7ßÊ~$º…»Ç×uÿBÙÅ¿»¾V²Ùý÷û¡×©a(¦ÝíüMât÷ôÍЧO”ú&›óîôtwð7„·ÄC¿ÙïãVÛJ;‘H&ür÷9½<‹%ï¾ã›\è›Üîôzuܼ£¾ìíàÒâÜûù0îÏøÃy"zÕö×ï¾9w2+Š|xSDmŒ6íÎèÝS'ïå q¢_WZÈ~õk4ç`ÛÆ„ÕJÏ=”ÉÞ"±'BaÇ7rº_“8ò HaGû ¢œ‚Ù=^SãDFÒnAÚÜV‚i òqÙãô´øçã[yøÆxÍïNOw‹ ñtBOø 8r¶¢ºÊ¨ûo—Û*K»7©c£’îfyIvÇÃÝ8¼þCXÖ›:عÕ׃"Vs¿ íégiæÔö/„åâçØ–úá‡ÖåÑJÇÙBb“Ý šŒÛ­ù“®_ü·_ü—/™?2ÍHÊ›[3#b ŸÊá¯_Ó‰•û¼blËóÕ†€Æ™™›È„oä¤ï¸8€1¡×½¸¾áDzœôpÏC–wùéësŒowøõ©>ƒÈ`M² ´;<¶'GOO8ÑÑ@W²¦YŸy£>ÕNSÜ}w‡«Ôž¢§ÂA—Åݽ9O2Oub:Ã’SÁ¹Â‡šWBˆÅØ×bRÜÝÏßö­ÿ–ïx´t„Gž,ú~øf5Û5ïÙPôvfB£ÖðÉ¢å—#ÉNK†°‘FÞÖnDÝ–ÒPVYøôx8=A"0”CÒÞz½—k®Š—ñ•¸p'J]"ÈÔíþõþÕ¹-®Ï V³ªoæ9¿? + Lä¦Ô³‡üzŽT¯P#°*efÍšîOwrÔ¹¬Žú¾]¢bpmÚQ~×Vê›ÊRïÊJe¹‘…çþ,9Ò®ÇÈAŠƒ‰=zÌîv8Ãòê“&ÕÕéAø'³GU^UqÿJÔV ‚;ѧIÞN‘$­´Sçõ[øL¸ ½ß½ÖJúÖâð…xµÚ>¾Å؇LZŠW`B ÕýÅ[ ºÇ–´zÏq*_‘º—Êþú ->JBÊê𼿩“-•*ˆëô•CÚÖ~e¥üþËv¥ïQ[öb’”•ÃÇIÆ8åóGˆ ?…µã—lÑÉúù8ÓnÚ<3øá•õüÝÖCÈ$qpÕN2ý”“ù¼’0]‡s7ý©v¡›x7ü­ÐA{8µY#Ñ?þö,tî”^^­Às&ô4<â÷žÛâƒf9÷W×{QŒIùg*o~è÷¦ ý´|Ï—ÛÏø½'/™ “°œüs¼Zf°&j&Ž€ë9˹f=Ô!õâÃÚ²uÙ{ÆD|’{ƒƒÆ—ÆÓA”…H&0JòÉ|[Úÿ•jkA«ÃãÜî¸øápº_jMmò•¢ÔX)êÖÝ|UL 5p1‰Özù¹IBE¬¾d¹d —OuJø²2Duiéì~Àl~±ã‡Ç_Ï}Æ9Ìà×àÂÊ)Ê ø%®%mó›6ì»TW1Îtj¯à—:öá©mŠUÊ÷Ì¿¿Þ°‚êÏï*㳉Œ¢»¯G†‰'pü;±Þ†?éaK*¨º[ÕJ—?t¼H¢{6´¡>ˆ¢G¶Èwíg»wÎg¶Ð0Ù»‰%Ma¹óK…ù=Úð™!¯ëª`,ÝŽ÷ee4Ô­¡ƒŸñ«3ü›täñ‰oÚv6=³^Ðǹ]TXiïïfÊJZܰ à 5c· òñ—·uÒ°q[¸=îN‹µ¾\Yéók/ÜŽw ŸÅ–åÝ­¨Ql>>TÎáɼ!ÎqW­MùRõìddüRí¥tyÉD¦ö7ÕÓêžãto^ö‚#Þ¿ª>Y·rTqe¿÷«]jü/®xÈ’+‡[]°xšñwæË…çæÜKBC·B‡w¬Ë5>ÙRí¹9ÒÞná¿>ç<{%—î™vJŽ5»%ùŠÃÙ°•’Ú!ÿ¼-’¥°YK…ê©þ0eí˜Cû샩ŠÙÇøI¸Ï<·äßUžpwß ä‰åÏLFv…§òÎ2~ºù€«^—ÿë÷û©ñ¤ ËFæÏïýýÜI KÉЧm[Š¿w}§–îá»ó÷˜nPæɑ~õÈŽ”Ç£eɇ‰¸„ÝL{•Çk[é5ÑÜá­Ñ÷®^Õ•î Ì†‰½·«[Ï- Äòxøz¸L,«0‘ËȑŠÁëä›ö¦õò+céüÆœÚ\l¿>\±}´{fûÍ£¥œÖòÔßÞ-¸?ËV-eò´?ÞÜäYÇzçK§bçßGÅbÆÆ<ªÃ¤Ý@ï;ýìîéÿ¾{øîõãýá»ëÿ¬µf0e×LYX™6´q;2ÝÛ?âºñÞˆ©-þ(þ—_ ï…ér©ª[÷óà¼Îò{ð º@¬Â6ÿì:ã’PøvëÀkðÂMðѱkZþ|<®_Ÿ7þê yq˸ÍC5 ëö/ èû&œY=Ô¢ ÕÉÄ F½ñéÀª3.ÛÝ?üó?Š7;÷Ûëà¨7´Ÿßj*šãÅLnù-3¾qkžÍ_yNºa )~<¿ç)†³?ç@œc ( sÏû@€—Ÿè/©ÑVYƒÂÔ[lÚN\Þ%båÄÔf]=¯m/NðÇ,•2žPÎA¼¡dóiÁÆW„Arÿy¯äâ=[ûº£Òwx¼;-ô<&úùzÿ+ä³a]ŠæQ;K¯ù WÀh3ó8qk– 3†=.ª­qéuz[Ròþ᩽€–}HÇ1ÿ‡QíU*&-‰Î‰­™Ø‰[ˆGIpôÏ݇Ãï| gûÇ;9€¬o'oZD*åñÅ.}Dt›”¾} eœO<›¼ñf#PÉûnID-.ßáþþûê…HŽg¼©VXÏ"Ú²¦¦×sbÇZŸœIðî±%Y˜ÝoFUäÐE™¾o96=¤ÅÙšØ +……äGíj–΂RêTtÔ'áÛ(sOC|ë»·µ‹-Âêð7)£"º@ñUŠWÎ:„—™,üÇ$=pjgXÌWÖÆû!ñˆÝÞèyƒŒXäŸòÿâïE …ÐzG÷ò«Qqx¼c50ÃxúþÝëù_?©Ã²Ù}v{G÷óÕgŸ·¦¸ûö-ûZ埋ίÄP|:Y<­O¿ûæîÕë© !v1 ùâÿë§DèUËY:ë ’¥JS—i7 *ÁîÄÚ<ÿ#‰UB„¬ã< ŸÚˆÞ2r!¾P #âІp—ðÁ§úÓ´eQA sµ>~Xæ‡ÝøôVw§öd³Ò2Z°J% if·Oµålùý¾uY‰Æ»ö¢ˆK,¥ñéxw:‰9R{¯Ã ÊMñVŸ‚°D®Ù‹ŸìF~x\;u,K´•áòféá`ÿl~³ð Þ¿®^ú°a†µ•óQ˜ ÏýœÝ!"çþ{é³XßhEo(_£_l[ëYv $|-©[E¢‘Ußõ⹺BK|XÍ Êó7¿/žûfé¢ó»ïçDqFðö„¤<§Ý–Í=*¬ð‰½+çŸ<7¸K «Ó]µƒQóá\½CiTcWÏQé›!uLÃ^{‹å—VÉ'˜Ù|0»FFë3éÓ¶¤‘:Ý"‚‡ú¥RÖ¸aÉtAßC™zòZâ¢=m¤ h~˜A­5»-s”» ϺþO뷻ώ‡w§Ï6<ÖRL3O‡\ukŽwþãe3ªq&ë Ð KóGÈf+nÃl_]oËfÀ SEsÌ<ÑÌ;û¹\=Χ1íêý Q”A¢¹!Žx÷ò›6(ÌãIö|µûìõ»»ýÃwo?ëÏËÒöö51课}à_ˆ<ÜlI›ÑšÑ’=td•£«È‚D%¨ØÜF 3eqôÊÝÂfŠ_º—Ø/gW®[GÅZ…ÄÀ]ø½mQ• þ^SêϪz¿{ªf×´ÎN?»DÖvki_/Y ®ÏÞr¢Ì:èwŸNƒ”@óAý·ÇׯÈ €Ì\ï$êƒÒ0¸ˆp¶x²ã^½¡&/:öItgZ9Rç¿_Ÿûáøú-?÷âúã…D&9aìÞ…š[ðo|.Ž.HKäg·´«,Âû0j¢Ðârb?èÏ—‘Ûáž~DþƒDvãkjÖGÊFøYl^ÌkÉàøùh’ä»,¶S’µróʦ½y³ÒÔÚæ:æíï¥kþ:@ à\ž!¾Ü<‚èö|ÒíÍiyÍÆkzs8k(Úù’b¸ 7œwANœ?R_BEBxº¬bTCÇbjôæñ%?3špšŒŠm«uÉH¶\º«ÏÆ™—‚L…ÙS‹u7-¾tõ¨Ño—ÿH:‡ÅY-r–Xeù¶‚— žV©ð‡§Ã¼Òš×ù‘….D‡¨ß.yŸQMÌdþÿoE5³Gàáó¶²²û§ ú¬q×Õ9.«†ÀW Nò”¾˜@"ï`Ö†.òT®?‚éxÀ–¿|EÉ.C¹òä>P¸À¯ëÃ* bugNõM@ÊË;wÚHV›ã§µPðÿ›öϱendstream endobj 395 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4554 >> stream xœ­X XS×¶>!’sTÍ1jï ×ÖY©Õk­¶µUª(j¥¢âˆ"2I$̃SH²2@„Aæ@à Š(hUÔ:q«}Z[«¾¶¶jíhë>vÛwߎ í»Ï¶ßû¾ÇáƒÃf¯½×ÿ¯ý 5À…‰DÃ/Y¦Ú3sò²°ˆ$eH¼óåa¤HxÚEø›°ñ—÷s\ÁM nzž1VŠ. Céè¡”X$ ŠPùªbÓâ£""½§N™2mòdòu¦÷¦4ï¹>Þþ!¡Ñª”„è(ï˜ÍÞþ>K|¼ßP¥—QÞãT1Þ›Â"C”áÞªpïåa«¼WÎ[èí·l銀Àñ>ÿ~¬G?S5qNŒ*6~~B₤ä”ÔM‹ÓB—l ˆŒ \­Ü:cÖ½qã'M–ùLy~êtŠE-¥¨7©@j,µœZA§VRAÔ*j.µšò¥&Sk¨×)j5Ÿò£P )êÔtj1µ„zƒ’S#©+Ô@j5„r§T”5Œ’R,5‚šD’G  rD¢‘‹Òå q™øöÀ/\×Kd’V:¾Ëø1×ÎøÉ äA×¹Ív{wˆÏ»î›ÝÿËÃw(;4mhǰÅÃZ¤©¯t­4AZÊgCØ‹Ãh‡û¿Ä.<‘ž­#Ø ut»±ô2WÏK‚µ°ž<lb”õôC‹2þ|̓ºßavœ`ÖÇáÁ¬?*Ggqù“×ÂPw®¢>?Ô¿Ë!B4žøÿæÑSW/ò}QÓÙáOús´Sx þÒÙœ²/o/CõͧËB=NE•$ Ïñ"¡JxVÆÓ[µë@JƒÊH¤¬Y·ý-ˆƒl½®@ý .”c jÔéŠÀâÕ¸ ª9žÞ¨KÔo€Hˆr_º›ˆ]E8ƒ‘¼(½Xk+-ÛÑÓèš¼öðNÛNƒSMnùõG½ö0j¨V[ 2 Ô¹I§¾<R [—¯Í{›äcP“¦ L`òjä$èzí&¢¼J4Ú¹¾jô¥VuY(h5ò™8i*˯ ¥möjÚóð˜X¤ÝB–G™¼”4Q- ÉðÏòÂ,SvT€¹Ô\òÚ!ÿï0g›ÕàU¦s äu§÷™k TО²EØÑT»ôì—è¥K û‚…ü²ãªå´VGDÀÁJùÒDÞÚ‚÷…ïX[±˜óB)k·56U×4v‚¢©ñ µ˜Ã'¦)¶Ð+t¯iDûF&A(êgÞ‰=÷ñîcŽrŽRØÑ9Ò~¶âªÏ="cí^Ûºa݆¶·ß=ñhrׇ!áïi¾… h'ä…­äÀžh–<ÏJ’@>>ºS\Ì·µ5œ6aŒÑÆ’T„AZ_¶+te¹$Ûé9jMþ¢—å¯|›gÕ À`+µÕ;ׇéâôÁd“Øì\ÿu]?b™|¸zé2]2¤6“¦× ­ÐªouŠo¼I»JfåU |c‹½åÊyuè ÔÙ™ Î>Ùal0t’}Ož>šÛÑWöv; ïÝ»€ì¤Ë<”þaã¾Çn~ë"c8tŽîSþ‡Œð¥ƒn?Íox[Õ^åÝ ƒuù+ãB“¢7)WB0„5$´gÔ‚Á)óhBOCie[סÊÝÐ {C7 Ú‰nŽÉã}ÑC _“n¬’¨Çd`)öæ’u:K›B !Ͷ[\+/‰ÔNPRéKž\éBs}áû ^PóÒšOs?õd›…í9­UBæo•Ö¥ƒ(uAvAîœ#ÇPE>QX¯Æ6¨uRX¬ÕÂ2‚Éö¨ÖÙbÑÔ´<> ieŒŸ?xÅö2­‘a¿/68ŠÛžjL­LŒOK î?òÏÎwŽ5ph¡ðRicÕ¾^£ÒÓgˆ¢]·š¢¶ëh×báU4XfSƒV ºmù\âüÀ¸UÀ,šyCS®vŸ*ëÑÅ·+’ R2 †‰«Iil¬ÝΟ™·{>Ñò»ã‰uQ´¢!VÎý—¹ý©Í_à……×Ä¿Œx‚¢â—%Éyi8ñA¯' §rkôÆXðÂ/?nw:ÖŽ&mõ˜±Üpˆ´÷ }“a£á`“Bh¥ ¤ÿ•*Ì4çØÀ« ­f+2Ýw“ô®Î=–ÔS¦s¤Ì‹àœíçZ|‡’¯³Cʱ·Î9=ÉCÉõ×/x²Þ…Bû#•îÒlPÀïh‡£hMQðÑWH‹óðexØwcÐà÷tÖV)Ñì8 y µ¥}+™aMƒ•ëSCGn„І¸Ž¸NÝIR"ÝEG÷ÖµîãBìMn ³¥ƒRíøÌ$'(‘ höC§¥=߇ŠES”“­Í+ÐsQ£§êÞ‚µ°©)±mË!ý)è`ÐnI]!Ôþø5±an“ŸÁC±çOc‘;r?t¯^ᇞ’á‰ùܬtÀ18bÀáf "l\yTÀÇ‹ézn˜ox²Ï .÷Ýe»Ãv,çØÓ¯Ì «ÀôËÊ+øÃ?q7—ÃãÁÈ•f‡ß:t “cG•@‰®„P™Xx&®:ÍÞTUÝÈõ)(ÞÔ„Ÿ½Ú„òš¤ÍÇ.gGO_n;îɧ„a¬¬:ƒ VGDr±u›ËC€™äë÷òª–ˆÊ·:*’T\TeDSÃÞV¯J _÷Ôëß.CÑÇOG/ïKÝÞÀî|&E‹†\cLQjIyea…µÌžÎ¿E|ö×Ï_9¤jË,WìÝÕ 6Ðhs5ƨ-©õå•%µöÇ”,&<ϱ%ÔTø¦®Éض½AQQÓTáæ&LHT ñF¶lvðdŽõWŸÓ}¬²äÝëŠ/$­ÈC?KñÈ»£~Zý›}ßòdû¾ÖD*=º-a;¯r•áßÿÚ½‹þ¦îÃZÙqQÒˆšAHnGEä8þ…{‚˜fOàg1{­ù„âµv:`¬5ì‡JBÔCZ†• ßÉZ¶nMHغµ!¡¥¥¡8Xá|’CÅ£e”æšéžèý¹Míõd=)¡-‘Á‰äý -—úWL«•¿T× û™s=½Ÿ Ù‘‰cÊ9SªAc{h)kh]ÅYyz}V—™VR¶%h[MÐÛ“a£ÕxàŒ)£_é^[¨QØP¥AƒU×R­ºQ ì ð[óÚ”Ù˜HÐÌ\…ž”{æC_™¢`sÔx¹6‹Á`³peUÙ™;ŽœYz%û±–î×¾»§ès%$K˜ˆÖâ— «d)ÄyÿJKRp’«CRŽfÖ4£ ¤ƒ4vW² ·‰ÞGÁ[£¸ÍJÉ.r!=¥È·]ÄÛm¦GAE›Sí Ñ`­1—›  È51åx&ó¨q;K0®oÌ@â @€Éj 0[ Áqa×áQhÅ7Ÿví9oòâéHâ”»˜ä¤qëmyÄ¥¦gæäâ¿ãÁr!Žfù'R‰MH¬uí'Í÷toÏìY™Tœ^ÙÚ,¥s eröïf­×#Âýv²×•©•èÿcáWš}ïùÙݰ]ÈÉ:ñª4ª†·÷O±ÎOO¶àþ%g%ý®>Ç–v†õhHµ­é kBT+³N†îš/Áš äõŒþ ëø?͵fD}ôö©cU›çýQiü¶ø/—öi—>YøøjkŠù“~Yp_.ÃF –‚¶L[ͨ$[pቹ¾øx™ÍRtÊ ¹Â%±'ý²ð X楆à®nØ_Æ¢­CÌÑ‹ÈÊ­¥Ä¨Õ>ªUD¡hD‰>G”­†<.¹˜†xRröf8 9ÁNÞÅÇüV†¿Mé÷îH›¯Þ¹vÇD&è ÿÿÃ:; /¤²¦äÚØØ¤äØØº¤¦¦Úº&Íñ¿ÞõÍl85ù—ôÑ÷gÅè+œ#ƒB­)ß‚ehÐf´/ çZPú;zÊl6š ±hÌyYÏûbÑ níÄ„g_+–ÃNb/ç©°š-Šÿ±9Ê"»Ffügr Bâäáó>™-³u¹ZQkÉS¼„\ðÓ€w~&¯Å£ñH¶ 4ŒÖ˜[b»y‰z¸ƒ·~äÖ~-­ ` »…eïŵoŽL­ŽÝi¯¨$sËÌW}¹ hMQž¥ôÚe4Èyí•6 -9#*EMb´›ˆàÜ´„îC Yì"JÄD-2ûƒ’xú1òý¨÷Èþà$û}©]´÷:*'y+z_ç´×#?ØðÕ« oÂRx5aÃÄèùšYð*ø't¾ÜýÂGé]ðO¸äèø¢å\Ñp•™n“Ó:#; KædÇ“iÁ·<¹fŸ„ëæópÅv¬æFoU솳)Õ>¥ËáXÜ_D¯Úù^’ë”Ëbáõ|4í£µKwœ¶ëñÜ’EÏ‘±ŒØÙj8 =Ì2Ôj³|¸h§<Þ€}ä¹éÇþÍ®¢îþÀ‹ßEÑ_ˆ…MhqܺÌÜ€Ìôüœù¤ƒ3x¾äۯЋhÔé£ðƒ¢']%¦_™2eu§ÆZ×R¹«%¹N©Ñ‚¾€k¸ÐÛÚÌ;'Í=ûŵA ¼¯Q/ ‰^+éOž‰¾™ø1 ²#Ï[S¤wùmügüO7=YNM⯓¡!Ó¿Å¢µkÒ‰ý@«é–^Ã;ÿûpñF™5߬!]“£X—º>76BpñúêìB-a˜,ÈÞ¦ÀÝ4+¢Ò@M·=G‹Ád.²¶tl8Ì=À>JX¢ VĆ„¤n&ÃÔ‚ö„K ÛCEg©i.ÛÅ'UÅ&«²B§|øs¬÷khÈß ¡ ÷¤:Áw;Š)-ª“ðƒnæ X¾|ƒÛ@pÜ`0’Ç\d0XÞqss˜ìÅ“Íl2¹ ¡¨ÿ\ýŸendstream endobj 396 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3709 >> stream xœ…W TS×Ö¾1psE$FQÛ{óZåY§Z¨Z+hE‘¡âˆ•Aœ0$HˆaP„æyždÁ ðÑ´ Z®S5­Ö§Õ>k­C}¯çvßZïPèoÿþ\VÖºw{ö>ß÷íoïË#LÆ<Ïjƒ‹‹L*s˜ëá õ‰4>³å¦ñ¸wÆpïò÷¢®ôwgS`Îæ&úw¬-¬áé 0Ê®·"ø<ÞIØ*YxldP@ \l7¾ýܹø×Aì+^9Oììã"SF…‰}¤»ÅÎó\æ‰7Ê”øax¦L*öõô •ˆeñ&ÿ­bÏÏ<>¯õpõtûüƒyÿ+«á[‚ l¥²ðÈ(¹"Zéãë·Û_¶Èa‰í²åŽóv}8ÿ#;û,$WÂp'>'6žÄfb ±•XI¬"¶« 'b ±–øŒXG8.ÄF†˜JL#Mˆ‰¿–„#aEL ¬ !1‘“ˆÉÄß1T„ ¡!Nñ–ñêÆ¬sOóµ&"“Sži+) µä=Á:j•A=k?ö;³ÅfGÌ~×9î?æró—-,§Ç Çg[β,²šb• [ÇsÕ€…zÖ•µþÉÝ “…Ý\Q‹¨5¨é]PI>ÝÞíàµ3.ØŸ^nH+ó¥—“ñ2\J˜.¤ß5r’Å  Åø&³ ® …¿Ü8ØÓSåF£¨A¼¯k0®›5¸ŽÁ‘÷±ð"ËûÒ+ |.†Š ÕܧșΉ¬ÕãYК<~­è9¢\W®\ézíáƒó—¯|íbGã P$ ç°°o8}N߆Ó7·à92ñò‰“ÒÂ'íš,éUù&îE6‡Žíä?y ­™“ìœ?[¹z÷íSôpb__ϹË}k?¦Ggá¸ó9G‰*öt/öØ幃n/·&åÑÈ„T…*e¾Cú¥#w°œ,nÄe80âÃq¤Püüâ=HÐ’†ä"@ÕT•5 Át‰… +g­¯²0Ÿ5žq´žÐ樿‘YsK|²×€ª®¥áÇ3‚::]Vr%w€š †o—€úù¾=ÉûiÿŠí Ph•z¾ló‘¨Â$¦-ºa߯ªº”o5`* œ½Ñ¯ªOI'W¦È%r%3_ á-%Å9 ¹ôÉÀ³ #´¤öŸ‡‡yìc¡¥ÒÎ6à ŒÆÎŠD#€V¥L I£Swø)‚µèkíoGö·É P#¡…×ã,],P…ƒà#3w‘š|ÿjà7÷.÷èÁ8®FÈ1ÕW ]8Jè(©Þ$Ñþƒ<%¤°gѧ{‚>Í4¬¼½"“œ{1âæÁ#YM´Ð1,³”O»ñFŸ¥Ñœ€åÕrá|n?÷ž1’ŠFfä)בÓ;²¦u£ˆ4!¸‘„cÐýBI ¨S*ÀPØÇÀlÉ’?D(å´|.‹{_Ôb< ²‰p’܉ޙ¦‘)õª¯’šÔ§SJ% ¤¨UîZ‰Æ+%’J#·Ác¦'GÅ· ÕáøíZÐÀœE÷rü«1US:AF~YÍm]¥®˜Ò‘²2—lE™k†æ((Õ çÐYxϦ¡´2¯ažÃþ“µ>a€ Œ³WÚjÌM¥Ž914 Ür½…Ä;m£´:¶¶´9ûÝQòõíñà ZšŠl¼À”P»ü²Ë“Âà°ÃT«­Ó£ GHˆ€Dû))ak\À eš›o둞çmÐJ7¬©ŽayƒuÍ«ªáÚ·é|H%w`ÉWÒQÅ£k)Ùr–sgy#ɘˆ£IÆá]5Ùñ%)LV*ælG³ld ´Aû”óäF婈+òþä’¨ÌkvzQVN(¡0H±Æ·U˜À˜ÂļýøíF 1|½´Ñ¥fjþ“/UK~RmdjN…MêÁÈüX@ÉbcÂýš½O]ÑŸ¿×ÈÀ8÷2вҧä¦ç€jê[~c€¡øœòDUê<…&(éduœ ®¹|¿·ù78±¬8 d2•©º4]bFP}B) ê++ë¯Ï^hÅF4Íÿe&´„ï7?-yÃxŸnë¶!U”§û“ÒšC**üj6cáÏž&0Âddùp$º;ËÚÛ1ס î=\Ièc¸H$lõüb‰ã·K÷°¯õŸÜâ9TÑP4-XÞé[0ÿŸÛ=|¬xñXQ븃EmÊÇì&+«Á!H9ÿŒDhüœh²z9N„S»Ö2ËátÊ'+î|}ø ¸ŽîÌq¤^{44gyмŽëwêO—xHo›=â4OÞv¤ê`ãH=ÙB=;Ò ÐØãäµsº&:#¼JU¨ŠºâÁBF1pɹ'àækÖàrÞ£x—Ëæ&ŠêÍ›å»öJ%´¬<¨ PsW¬´—…”G1‰ª„|ªdé©k}ö;5eÿoW(„Ö¿õÿßG€”^M O% HÊP 5ªªLP˜•W¯nNlÔO†k?´$6ÄÕ1Õ…%éź숪¤bÜ@*ÊkäŒx"Ooï­[½;õúÎÎÞÞNoOú߈ù9yÛ~°òhgGËÑÞLºŸ|y`13ZßëÚsðýù@×ÿI*þb"øçA² /¬aà‹å½sœ7ŒI ß{mïhƨöiŠôhü¨púAÖá|dËU‰ä52™\.“ÕÈjj†:6§ÀRPà3…à­#Œ~>éµ¾ÑÂ!ç¬3î=é•MuŸ,©•$îú½ý4þOö ¤Ø”ÕšØ%ìÛ|éÔÌ˜ãžØä‚“¤”ðvcŠÄN Ú´d^¨àÃÁý›0pµ@Øs÷èñ#•Eñ.4Š$J‡OøÍýÅcžùÑœžåuzðaåÜõ!ÑM2¹4$6õæ AÌ _VÕÓ0“t[·Ã1pÉ4> ™”t´ëÚJéL¨€<¸æåóŠòŒtlrxs-ë ç]½Yë“x|»k¥p@µˆ¸n‹Lg,BæÈôÁGФûtѱZƒ„ŸØÙaKuʒ̬Ì,PF Õ5q5ÒpeLØÎ7HÂiØ„p ½è[‘»ÇÖO—na¯Þ½üåÕ‹m›6—ѹŠ49ˆ¬h¼È ypòá·_ÔZ"  ‘4‡·tÔ7·ÐèŒÉ[Ï“†, ­YÞóþ;ýЪ7•¡®®¦ ²Uœ\–ÊD­ [(Û_#éWþϵM½àu!âÚZ÷m›çn*ÚPâMÇ«$UxpÂnH}rbõõ¯Ž´·ÔÓmþ‡Ãºu©þ›î¶0d©á{™Ôxe A‡5e­g+õ9§à»6MþT¶Í]õ%8ò¨Óµ5# “_™‰”RY üµ_¶É­îîbŠÂO,ª”!€›®ß¼Îëà6óñÐ9Ath7ˆ§Ñ2~7ð—´ƒrdA;è`Ðl“Ž ¥Gj€Äÿ0(fà²ø084¨ä/£9\åçõÞy†UâËíaù" osv«Ž=p ª²®,%+%›nhþJ‡ýîÇîˆ yL‚\à ñ'àcàK‚Ø£GAU5]*Ý…§Ÿê»”w€V -~µáO‹p{œ…Õø‡×Õÿ|ay~/j  ±û&žŽ’Äùê½Ùÿ‚bø÷gOŸu¶FHŠMnt^$ ÖÛ#>2»ìpãäÏÐq@ZÞE–È­ANÐM…{x÷lã £DKvyúîôë»~»K‹ÅÍ‘ÒÏkí|ý¶tŒV>ë: D¦¢C°‡FI­?Æ®2ð"Yp㊹Dÿ^®äåæàVüûtQMLIlTbLÂ>ÝúÏÊ$HÉSäêòÚ¼ò‚,Þú}en)М)ƒ:äËóU+=žÁ3àdd‚LmÑTl×_ ÉøËÇô9œ é"4Ã]¶ÌšÁépÆ¥Ÿ¯^½4 M64’…ã•<˜Œ÷rö4;®4ŽûqI‰š½t¨“_¸ß~uš"„QÊ‚=µGWUÖЯ>´¨"†ífò7NËZŸz´shö»É…5 Œ#ºD‡ÓHAž>M¨éh¿z<¥à¸™·-£±K—.d„V~- %´ðNSURξ,¦¬««®Pßv.pòtõ fPòJJNNê)F'§ádk^n3T£),ÜÂZw=Zÿ<‚f†/pÁœ®;._yU];•sÔS7—_À_Š–ë¶¯}­Ó¼ýûrèÖzdêJ·ÄW¦ñÝÉDÄŦyíߪ4ßè‘´ÐpŒüµËië·Ë3O2éÙy == ÐedPVEDÉÕAö?yÀ pÒýÁò+˽ƒ.ìøâsIÐkÈ;VÀd[R^ -%#ÁÞ4M4R Î&QRA4%ÍŒ?DCÝt×Q}곑¶èú«aØ V·ŠP CàO¦C0ø°¸Ó|ÄZÿÓ0‹¹Pè!zñÉ46ØwŸÂ›† vÔgT%”˜äÏ "ðŒD,ÏÊÊÏ¥›Ú»‹{ðTÞå´þÓ5n~[J;ŒN—“¯KO/> stream xœ]Vy\WŸ™ ‡AÈ è$ZE¤¢(àQ! j9UŽáˆM€ ¨àQD]‡hQ‚‚  B¹äËڊ‚ž¸­ÚºÝz´j[QÃ>ÚϾÛîîùäÍ›7¿ë{Ì(=J ˜úÄ©×Ç¥©b£§{$«•Ú-[ÞFÀ×ã'è§ã¤ákÃ!2ÑG&gÆgšC¥D›Â‚±”¾@°8P±$9%c*!1Mfüaè4Ç¿vfÎpv‘ÅdüqGæ—ªJH’Ù’Åú8urŠ&.)-@¥‰IO•F'¥Ê–É´%üÏEQ“’’SÖÉSÓÒ7DÇÄ*ãUj«›ût§¨÷g8Ïœå2{ŽŒ¢–S+¨•T 5• ¢‚©*Œò –Pž”%§|¨¥”/åOPVÔ8Êšª¤L©EÔXÊŒ2§$Ôß(–² ,)õe@yS¨ŸŽ‚Á ž¹^Ò·ÐO×ï6p2Ø'+Œî¥…´Ý-rù‹”¢õ¢}Œ˜™Áì2.4,6²1â ZÌ*åÀ8©Ô¼d2KI[ßÀŽ4Ë{"ɽÞ3-ݧÖúqøÙù]&¾}˜ñXýq@,'qû‡ˆ„H!¼¡ ŽÈ™>tñí,v·Åì…å¿` æ‚û¯@øÙ½Å ¤9XÈÞ;'ŸhêµhaØÀÐÐùA) ” †ð I1_‘PYºb`5©Ë~ÛKvêèÚåÉýˆ‹Ÿ@ nƒéƒ 礒°ó >µ¾6ÞhM’j9#¹FÉìÍï÷ìÖx{y†÷ÿòkGÿM~iÕ¤£­ZJþl³I$Yñ ¹ùAÑá½»K8˜$Úž³íD~((ZíÁHf¼éæ`î`&¸öú¤é>n¾Eö~³‘C¿iÀžóÓ@^ƒž “„"ãà÷ñzì g à)ˆÁæÈ±~B¾ºd½´dã‘ì ™0/Ôª.« ¥3k•|ã“?-Ìà6çïÌßYENÓû±ñ?À ÝE_7Õ4Õ?‡.¢‰mžÇ°×y+eÁ¶ƒ¨Œ9USz¶ïóÔÕ9œ¥½7OG‘¨`À,ÃSäNø;zN[ô“šò܃Ü Ñ–=;öf!&>;¿S ï 4v(åw cÃF¾Ñ‚o ‹$m~QÑòåššküŒe#&"lr͘Ûg+®4q’0?‘x¸iðÃ0oâ)´ûˆx./b™v5[»šBƒãHƒ&Óx³û#fBÝЄΥ¼ ÍO’ÌËaž?v„M-ß^Œ*¸(½E—°-¶]èͲ9°¡ó.•@LWeFBFöæÍÙÒÛ’gn³’e„!{ÆþšïËî®ΑÚPrî¶ÂM 8Ò’B¼4ìÜØÏð¤M-e¥_p‡ò>ÝW|pœn†ÓKù„‹.¥æ—ÿ bøåa K –}!’œ ©íX×oì 0×Ûéw.Hã/.­]мQø:U0"0ÂçØ³^SíÖÈ û†^vöߎvªSK­–%ð˜ÝV._ãñ„sœ&âeXþô=pËÇ÷-”bk:Ó+9%1žÑ=o.î8R#->U]Ü„¾D•)ÅžÌÿ\õGÁ›ùi Öè èÄ®ˆÞ$; Å®e‹ëC¥’œ†ëk¯Ûô£öãu]ŒDø1:áH%ŸO#ÚñZ3𒓨é¸Ái  “ž‚é[ Ö³9èÊC]ÛÏmmLxár Hø÷±^Š?›ÓaÌ‹þ·ÕRÌÑ™ åº0‹>:²áÔÖÒ¿ßsžÙ÷”=ô°®é*êEмyÚ.pÒ¯I uúo&]$Ã8KÉx~2‘©›Hò¼G©¨úÐf IW&/@Ž žû=¦ýª®äòYÎCä¹t•º¬9‹Ã“éœè¢¤MkâåÌAâ3žÝ3)‰FÐS㽘b¯Ÿõ˜:-ÜÇ+@Ñ÷â×Ö›=Ò?½LQÐGò‡€úÞN¬ðjÛ™žêò¬ôb®0#w3R1ø¡ÎQ_Fg|µº"²(ÉѪårJEb¨Ö)¡—øEŸV‰±:Óú =¬1  ˜‘•îÔ°Wé»#$q:öÆ¿ÇüiÌÝ ÅR’jÑèÏRR×ý_Ý×Wº»£*EÁáÝÎõú¦¿®ysÑk¿«˜’‡§FsŸ®òAÄÑüQ솈@¦Hþ"És…ÉŸ^ÅŽì"e½¡s0›ì¿zò:§Ø‰t!¤Ý&ÉçC££° lùˆZË@†¢‚CþIqÏùé¼{¼0?/ÿpUå‘VÔ΀¾Ã}l‰­æb^'yå© qµÆÖ¯œ`ؽz Öœä9úVuѽÁÖÎ^m ŽR,S4^êjmì‘J^íÁµì@kÄbï¨HooEÛ[­íýZE¥’r¬€ 'aœ~#¸³¹XðdˆÑc4ÐØr«¡§ì- múfmWä WÓBÖIöS°¶}4Ìëk—I …±€o†3ìH6æst@‚­ WûfX ¶,¶Ç¶£o¼r@ÀßÅ&ìÈs9ÿ\{pK©”Ñ,ŽùM-ì£!fX=ê€&|>ñ­€•Z:T '² ‘ïGŠ1Aæ6/žUÜâ=ÿÝC=Õg.7}QúÁ8›¾W}Ý/op# êQÕ†#ñŸi~€¦¡y;d%mŠÖ¤Å¢x”\’Y¿åÔö;èGômÞ7ùUE­ÕÇ›£#‚²µ‰³ù-ìÈ⫝̸Dé® ,FŒ“Ž*`Æg!ŸˆÐÚ×!0cq]ÒXvlè.˜þP=g`‚ã÷d°Sg»`{nØ”‹¾nhï½Ú¨ðœŸš„gb›¸ÇûïÄV ¿žþ«ssxCÈd¨%ÑhàÛ…rщ[OÅ PfYTTÀÒ„ÆÛ»8<žÎÁ“žÌ["l‡çÿîaB×¼ÓRÉwךO¶]³£Ywñ„Éó#?Ps[U»ÒÐ ò½@ç4æ–ä-¬®)iFÌ¥ÕŠ%1‰nÒOh]ã0\uä v1ïƒÝi\0"b#hÀÎç;"¼ûÓà—Þ!ÇAÿµV=c´ÏnÑJÈ”^6"‚9]TWSÒŠ˜›­a³Ýažªê/wkípûÌ8R¼ãÐñI[ç—Ø2<ñuŒ´ì„Ðþn&Pú0™0¢8P^óûù6vG{vyFEüyßS Yh‰Rá-Ïœ0‹°¸haý‡ÍKï(¿%±'þôÞ‡ñ®Ï°x¥23"JšS´ïzî±Ã•ãJ.ÔVœEmèxÆÑHƱ×[VÍ_äïuaðÞ™®^)!©8­œo8>±å4˜ÔøJÞGöçåØobÒs è³ý rsMÆä˜ˆ)ê?§A£ªendstream endobj 398 0 obj << /Filter /FlateDecode /Length 3252 >> stream xœ­ZKãÆ¾OÎF.F ì%”3¢ÙïîEÄ6Æ@ÛIÖJrØ áZe’ãÝÍÁ¿=Uý »)jÆ0Œ9 %vWWWUõU—~X9Yøçÿß5WŸ¾âbµï¯ŠÕþê‡+bß®ü¿»fõÅFH ßä¦0dµ½¿rSÉJ“•*7L¬¶ÍU&×Û·0–6*çBà”íîêuv³.òBpMÉŽÑóÎ>3E “Uë ~0¬:kê;÷Q-u¶©âO';K®uV/ˆpo¬ÆX^(š5ízCAi-äÒ¢Nî¡>F¯ö~6ÉÚ{÷h8ÉÊ.™RðÍ‘Y¢qû‰:®©Î fX6àpBi6ÔMå—à,ëXI¥¤*ëêäc¿þÏö¯gÙ#o˜Èµ”ÎÔ÷‘yÛn½áŒ€v<¢~OA¾ôjØO‚foœ™$IÝ‘æÆ RYöî!zÇÉTñìÁ/ÌLÖ¤‹%õ8 ö_È žû¾¼F$ý~T›Ã#,Ö9¡|#)£Y½& ÍÀÓnú2jcŠà:õèå4–,kc‚ 8¿«´¾D£Œfó6w‚º¶ñ߃öq¨Õ]âÓdõ!Y%žõ6]ÞųÑòa`*„傺Ú~}µýäµWù¾î‡..çÜ¡Ïaqî¢r›8t <ž"9¡Äîìáá; HÓJЛã äâ‰NS6ti¤ÜGÚ®éý‰Ô c=Âáqhý|­ÎÇ4¡ÀWBHºöp°Ã5ÏÚ5( ø@³wç0àDÀv(¢Â8jÉJ´à9öVºkC×– ÅY®¨ v*»} ÍÜÍý&Ài/½oç+ƒ¡.-(0` ÔjCE^è‚8©¯þ´ÞÊÁ²€…UÙªþ›vWþû¦ì1Ž.höÇMÇìvo3OMFB<ý\IŠÏguÜ…Ù,ûÌOÖÔO¾ÒDü®Üí¾Ú#½W>ÊÛì'^3”îáô_OꜪ®nw᳜’°£W}ÕÝ4ýŸï»ê‡ÛõµUÝë«´ËïûjXP‹d§öº u{¼K¼]ÏÄ…í—Ýdן¹ûŸÈYÇêȺž¬ÿ®ª÷C¾H,tÄwoÚÇî¡mw Ûó“HöY˜dH6*êÜoÜ_65bׂn/¾­ö_ÔGò¤/¥/8nR± s;KOLžI3Kg…9Ÿ,>#‡2LàÔ%kx6Bå<;FÉôû.Ét£$åi†["Íú»˜€¤@Þv½“  €³vï·®R*eD.Fhø­ÅW µ*ì‘3­´YmH.,dKèH/TÁVÑÀ×Dƒx׿²PŒêâ-‰†GØýˆà ïÜ.¹RW`ðZæWøÝ…D1-ÐŽÎsrù²bš#{×Gù1ɯ»"+­KÝù,Ý$3šä“Ï*ÒgÔ9º¢rf3ô‰£cßÉ»r¨pÖg°„}ˆ¬¯/ÎߤÖî"DàñOWm0ä)dý9Ââx¨\ÒH°B80äò{[niåe» Ϋ="¢Sˆ¤lfž: õ)H³Y9ør‡ú,L±Bæ´pïyÖ‚›6J&‡EŽFÚÊÓŸr >hOÚ¤çĆ’›ÃTBº2-oB̹·ýrF]̈UÕbF6]è4#×KT¹²åQ’‘ãÃoKDH`W}fOÚ¸=}Ës·˜ƒŠœ2£Çäë{¦¥¯,а»ÁKɸ-L·sŒ1ŽN•±g€%ÒöiÙÛ÷!¤¸eÈ”l•Ýà= j΋q4ˆJ¬Èd’_X§øTÄ{§c^­3µ%e˜HÎ"Ëò¸¨Lk[ ¬Ä[.Fdï¾ßø(“Q”aLÂWØ›5Øy8²cä-ˆâxû2’L á‹ätÌ"ZϦ{*\t¾»3F\ZëšsЋC%r¼$ª›®9ãöî éã],ǹKVþƒgçýÉ”ËÿmI³‹œ¥û¼Á+ Ÿ¡œ>‚/SÎÞ‡•9¿}pq¥B\aÒ¿x“WÏÇÕÀ5Áù¿R\Aé’öD!˜úɰÚp0µ`©€à+œ*€väç Ýdzòзþ“fçE›Ó)(òË¡«ßûq†¹”ï &½ÙmQSÎ^oÆL²T#ƒ¥„ó™LÂjÝ“›5œY …Æ’„‚½TöäIvFWLãûº‰#ï0J¥éuð.*eìý+!bv^Ž^k[‚MŽ#ÙÇqZ쇇w8-Bš¼·Ý.Œ ì;ØwI»ó”"‹T8ÚmUäêÙ( ›IccÊʃ¤?†/}§l³«ä w]ªL8ßR̆¹óm—„JüÂùN ígæSSQÇßxÛÜ‚7*mz=1'@1PÀòá aλ•0»ä°–Ø´ÕhÒóû-”TÌû×gÉ?Ý[…ùž˜•@„w1èÅç>ñ¼—Âllƒ¹ùP`üìv—l4v%ݳ–KÕóx ƒ\+;¾¦šß[AB$ļ k›jœ»X`žë‹n°”ÝÄgû1âÉq›¸Ã”n„ï|²<ºOöw¦CÝØ[-×ÿ¤çôÚ~o~æ/$–›Ž`9FÌØZh6~US«Ñµ¤¦V#µ¶º]û¿½yúWú‰ßõô&4V—º^çÎK½(Ø ôb3ÊÛ.f«C ¦;opkIdMÄœÿ ’·¹¹EþºeðÕc´lÓ”]ý¿ÊZPži°óßlx_yàZõî‚ÛÀ`ØdZp[ÿˆë¸=óßõÔ€­wïéÍûӢ巯þy3: ¸@s:ÔÃã®ú·ÝWqq40ÂòýÍ¿¦³“ u´^äT ®Ù—@x^®?ïZ?dô×2àoörŪÔV÷÷õ]]±qª ¼Î :ÚŸI§•@ñ†WUß »<ôfYvÓu)¤¸rª÷§[€Ôœ`¨˜(²"—\ð$ …nƒ/ ù{êëʱkg«d6 º&Él(‹i6®Í®Ž;7]jp1Á;S*âéTÓ»ßãœ!ž¬ÃÌ—”ÓþùmF'g|2¹ðTO1}=|*(®2m—x³ä”Å‹C Méé"E28ˆ’q&Ýš(ŸAGùíU·³\˜áOØ%6”ÂÅÑxLoNõ®jÆm@ÖÝAEu,ÃôMUï«ãåá±zéôÉ 2f$"_·ûÍ¡þ¾:Ôøã€—“£HEÊt”>ÿË—/1D\#Ô¸³/f¯Œ\ÚÄ·Í›jüí„#Á¤Ç äIãd,ªð”÷›¶pjNmmOÝhR0+ñf{õøû?-ƒ_>endstream endobj 399 0 obj << /Filter /FlateDecode /Length 5068 >> stream xœµ[Ýo$7r¸7%È[‡Ædãz’U§ùMÎ8Á:烸³7ñƒöŒ%­¶×<3ûõç9¿*²»ÉnŽV{v`ÛâT“Åb}üªŠýÓªkŪ£ÿÒ¿—Û³ûV›ÕÍá¬[Ýœýt&ø×Uúçr»ú÷ç Âb¨ ]«ç/Ïâ»b%¼m;»rƵA™ÕóíÙEóݺk;£œèBs½>§?<è|óCöÃæpì7wës¥$ÞôÍ ÊkiÛà)'Ø?¥TÛu¾ù¦øew—Íý*_g5,b›ß§wLÐÞ7·WëéžYcfÕü±¿\KÚÕåTÅŠ·+ªùýÿæd·‘ÌJk¥ûËó?@xVæ²SÊ´AC|ϯη~þúì\k±:ǰ·–F/šçqFíe˜„è´UiBŸO(Uë¬öiÆþê½|öþžæ¯¬ øòié ÈææM¶Ì6­ÖjîÖÒƒº³Íq}®e¡ï^Æç Bs|uâœk,zˆÖÈÄááÍv»Ù8ÍáÀà¶x±àn}Nü iš+â "•¡Ù/üôæ”&އaSb± eîŒÃ#ø‚êH×èåàµkŽýZà-al7Çü¨›4eð¶y¹ÎTs¿ŽqÅN…“­0áý}M¶… º"ÉÓHRÎâ[¥¥‰ä³ú,æ£3—Hþ&‘À¤Ûà:¦€4Lq¥Ú`|ðL÷¢I„:#T­„¼~ÿ¡2•n­WaØô‹u_ev`è<[ºšøÕôL¢=×°-õê\¨Öè ã+¹Ù40Öté:MÜ׎Dòcbîo+´­ 5±Nkük›Æx¸Ì‰ð‚ö{®¼k ”§Ï÷s8¦·¹ŠtA[¶8åÉâô ¨…Sˆoôûô·–ÀÖ¿Z{øfìg—¶Ð =NqößÅ´O×5Ï£:ъш®ßß¿h®ï®Úc]ù¬¬åb&ÈûŒ‡}i÷]™1 \ +§ ° -“rú¤Ïó³”çPjÂ!¶H·¹íš¼ ͇óÍUöÛ댿ܫÏt늖‚e)—œTš¹T: "ƒá#j“fÀáÆDó.w™)\‰ \Ž³Ï½jÜ š¼'Õº™‰±jîMÁ·ñuš¸Ô™b7}åýå"s½b®l yÉ÷862 ]ðóP³)•àØÂ¼dŽ3(“VÍ;–o§föY¨Ø°­°vÁãÂîè¿9k6Û{¨Ï›«ëï^õ/ë_/¯l—þSÐp„¤ ä:šã¾°ÔÃË<^ï·$EÊ«—ÊA3@9ïp¤\yql»(ëÐÍ„ýY©{Õ€ É`QAÈ6‹YûzÌò^}ÝÁªt„ÂïßÕ&w€…j:Š,Ç ‹r„K*¬¡Øïy)±% Öˆ¦Ä6tzÑ›JwˆéìÍLòe»2„ÆÜ¯!ú±7„öe?".D´Œk5yI %y}Y“Î OóȳSd¥\ÅH2L¼c% ¯@ù‡ë´-šCáçr}>VuÅ‘%K•¸ûu•;ÀÇqñ4™#°ÙK`K4n¦âûJ|§×Áíî”Ó,Îø&-XKØŒa‘ùqD´¼ÀÁïúõø|5IŒc>±×r`üÃÓ[NàðXqQsZíÃÚ Ò"ŽÏ1±!6O 8áZ'†\ã¢ùg0j)¾˜ñÌf³#{’£þk #Ó™ñЩºV@vbX”‘ÄC)d.ü­"a.§êÊÈ ƒ 3HcRÓ*:ûLêZËH?'Œ8þÙó³?ŸÅ¢€YíOf‚jB.^Y£[åç"ÀŸX)€}šMEn‡#ë h 5¯kÄG*R´I1Ûêb!‡Èd$‘§f{úäÍ„®Õ!”›y±Fü5–´Ü.°r†¶7ÇݹAÝè4¶'›-[ ý}7oûÂl­“»µZ•nþûqy'ì}ˆ=C±#ðLN±žiIzÿî#ÁÍÂ[‹yFø×«¯ºL©úCÚᬰ`¥jÞÝ%–¶È©•ö³Ìñ«þ&?Žý<&ý\{1ÈVa/ºk„kÔÏQY©[ø»lº‹2[ÙÅÐ#èåQ!·ËËÜͪs(à°h›¿I–(´^Š –8Fmfu.qJä·XœßþÖ#£ÂßßîŽ/&7‡ÛëÃWýñ~ $à)6¯ã‡ûëô—PÍéM/š'‡kÒÊ'O‡!Û\î¶÷»»ë;ªæÄ|ñ½‘<Øf»¡ð§6á8ìñ`:“Á-ü‘!½WN‡V ümzÄj½ú~uwf¸¤R«w8Š?àÿ×8¼ÿ<“ÊHDƒ•ѺQ«-F<åDQ<íí™ÔÐë0bàn$hGOF[ŠV<‚È(ˆÇ2¡Óél ‰ÓˆhcF ¸+ËÚbÀËÓ€%b" 8^Üz‰%ù%kCëhĪÖ+yâ(WÆu2-î 2qóðâÎÒŸ¿™_,ñ ®“LF4^c€ßð¶ÃOÆ“+eV|ôd<$äy˜,ø6p ­<`L ïO£:GZäø@™D`#$@°žh5uqù ÍãB:EKѸâi„¶|rNJ’<Ñ!BÃ÷#WãÙ8 Œ`S€-4hé(ñˆS-¨1p“|*Juš5Þ ¦A>ÙZ¢> ‡̨} Pé®k%ûâÕ5Î9°Þ€¯8b ¿`„lwAï“­e |¡¤·`–‘gÒ8`£k&@ऺs$&ŒXHT@“ hAP„Þ¤C¤‡4ëÿ±i§øËÓÕúx¶CZ@u¸ çi‘H~ǃ ².0®x!ÒÏïÀ(˜:k残J¬BçY 4I–_ p€¤Vb8Þ/F€ 1ð[·È0yç$íXÊΊ eÀñéÁ¸I=ŽjnÜÈ×”=Ãvb$Ð*Kªi„\€TƒNTãHF5èÿD5ŽLT£ÊM|#ÕpÈÕ8’QÍv”ïq¢z°YxK’Ž, T¶¨Hp»ÆÍ‘ª£ÊŒÕÚFÐs稗žážU|–0öFg4¦›œöè²Éë"YÞN#Þ€—(Ë -=Dj"UF”J"˜‚9Q(ˆ`µ@.Q(ˆœëÈ5LDi  Š{™h¦½}êY`/Þ±uÃéx!@3CºÜv@‚BP ™O6†GBÛäGà]Pº4f–o«HXÛ¨kº#Çh3{G6G€á­åHf……†*8÷Îc©Ž’Ò¤¡ïÖX`¹ìõ“Æ}P¸ ÉáÛœç_ð|Uó.-+y˜…úûÏôïÏŸŒ9áŸá&5&à‹«À\nišÐ¨ßÀÌ4¡#Ù<+ªÉýØöJ©ÂÐ_VüE²êÂΫÁÉfˆi“™ÔN~D6“ñ‡©¥¼úÑT+˜gyÄ–y ~¼,2§Ò©£\ݬ£YÔ ÛT`3tPbEx1ÔûÁšâ®q%TÏ+l§‹ÞÌö†«|SuzWö R£ƒ$z*öð‚äÜöÔÀVËÆ)O–ÉGJO·n‡4+Pú&=Sgýä&fcAx¿íóúð\=yfl1Ë_† ÉÊ&шb›ýfËÝ`iPóÒh½l øÌõ`WŽŸX5&ï­†Ù«}_ÌîÂXí {9p>\>ïŠGÔˆöÞ,¯ñ•ù ›h®œÞæ+\ÃÍfÙlâ>f(e/)ëÆL›ø;Ù^‘€î¶q ŠvQ­¨-D[𨡖ÇÇßÈÃAŒ¤Ô‹2:1”«ßn[,¿I w@xCe±³éoj¯j’.û£qѬ¬9ïc<Ýéíæý³ÿ®:Öˆ, ‘˜86 XB•¦AZŽ}ß¿×EíÜŒŠú+z_#Q3Õz*2Fâj«Ð5÷¨t‚zøfÖ&ÍÝ9‚ÑYij3ÈŽ­vîõ•¨3Õ³ý"5° O#èYÈúW)óŸ•¥kzébUÊ"Åç‹5}Mà¡• G9å'ŠÈf¬K×2v+§*2Ç#Ú°^oØÌÊü››ç„v2Ä"½ìIgÎ…ß·ðî'%@É1v6Áëz}žeðH ÕÀÏÞUÊ”‘‹N«^4¯×çÜ^M_/áS# .š²ûXoJóѤ½ù¢4 0¯­º¶¶ýÔxÌ©W5¹9ßé~±Š¼|EF¾ÒŠÎPy'†Š|‚c§*òÂê²"¯-èS‘w­•í£ŸY§êW”^ì… òZ8]Ó|ýr0“%lëò‹xlŠç*«½y÷qôòÉå”·àº?Ë«77Üä!¥\ý„1:ˆÒÉ”©~1ôܼB°€#¾½pƒ;ûô‚˜õÍéú$³G&ž®¹¯DÐþ8½p9ƒ›éÁ`¼–ÀÔðÉñnµ"ï†K³6ü}³öUD6¡..ÌD·Ù©€-ŸƒÁy} Æòûj†8¨ÕÎÂðýnØ6ߦ*š‘c¬ùæìù¿”šÐÏSŠ”Ô6ÈjwM’6Tøã1ÕvRk®V7_ßÑzг™Åe!âƒD›N‘ÚŒ»¼÷JàI¨‘©ëvÀáÆžFÕ·O#J ‹ ”ÀkÚ9bLé`ü•ša0N~>ì6óeÐw'ïŽò½Úu0ÙŘMÞ{Š?;¾uÀk “.?Å– R×-ÛDusdj¥86é^÷‘ælR˜~›tÍ𠶇oª)A‹Ë˜§RÝuÂbŽŠ{yÅU€ýxåôz¦8<%Ôüq§›èa‡å•‚qÖ”w*ø•:ºÔn‰3Åçg`Œ·ý&í,Ð]€4î ë¼Ý‡—ÓåFk‹Ë$ ØÚ?å—.–•[S‹¼züå“¶šRº»1Y™¶Jwvewð fðïzÚE¬†TΖJçÿC^P)ŽtÿvÔôeNrÒ]&Jy/ùlû‘nXRC€.`œhfŽzüó †ÔH ´Z)IÐèŸî¥ˆÓ"Ÿïâdg÷ÄâgŸ•’oó‹9 L/,ï'šR Øñôeý¡? ‹(KO‡¡ö䊣GpÚí³šÑ"j3¹ù9Ìôt~ðD»U¸Ž…•Ú­bÙn½Š\òž-ÏHÓüö|úýÝ«þòÕ‹ærwûÝ›íátóp½{}5¶h¿¿ÆÀ3ü´¦Trè¤þnêÊ.å”÷í[ø…š¾/{ýUÞô}s×ý^_—›¦Í«þêº;LÜg¯<ÿö¿žùÏ ÄÒuv1lg^€£+Tä¨o7ûŽÃe¸¼¸–`ˆâo'|ºõeÉÝUn}9ÆDq|ô¶Ñ5ÇÇ÷ÛfbO…꼋/)f·YÓ}¿Ü¼ö»mš`n£À|4” $.ÓÝÄõùé*–7ÞÂ$ŒôµHeŽ»’ë›Ù=íÃPiÖËkiÙMY:îÁ¹²5E ¼¸]þ éþR¬%¿ø þ²t–Ü>¡A| e§Ï‡ˆœ`J»¢7ôÅJDHš>/½aMŠŸ¬$… ±ôÉ GLXù°§8W•“ ü%H³ÉÏ&¿v¾9]àÍnÙN²y„w¥%+Õ –§ebZºß$½ª\ŸÞkŠæ@ÉÕzÀoE³¼'zâ‹jþÿgÀJi[+œ<åƒFÖ«…Iú$f(<ìÞ^ïáë_……V5얅²¾»ŸÂ×R[T‚é'âì£!+/Pz øùØÊÚAKSšvÌB0Ÿ À¦{ül'»x¿_… K°ù _ $5vç†j9·OJMLÈ(®£Tƒ:ÝYp^‹õX1Öté—ÍÍà³mº ÍW]+©{¼Qª[ròÀðõÏ Æ”BeÅÕj§²:Õ ˆ¿¹¿"K«}cúéßIÇ다¸Æ…¡ #jàâÕ«WºÚn´8 =b‡"g9•µ"«ŠDž pP”‚›J29MB_`o¶ýí‡jÎ÷äOÑë<᜶%ÝÁ°®ŒW/S°"-fuÉŠH7ç o‡×ÜÄ€€1L)³£Û/¶­È))»ÍuíB~{éÿ¨Ü€Sendstream endobj 400 0 obj << /Filter /FlateDecode /Length 3871 >> stream xœµ[IsÜÆN®L.9øä¦Tª ÆâÀè ÝíÄ®R[vb9e‰©Ä%º\Ð HžŒ”²ýìœó^/@7€!eË)8zyë÷–n}¿ÈR²ÈðŸû»Þ¼ÿŒ‹Åe{’-.O¾?!æëÂýYï¿?ƒ„äð*Õ™&‹³‹;—,ˆÊÓ,_H!SÍÄâlwò"y¾ÌÒL0I2”Ë>(§’—Á‡¢íªb¿\1Fa¦JžF#_/ižj%E¼@sŠXše*ù<úR¯Â}šß$O>us„æJ%ÛÍrx0+sX™%O«õ’"?9—ŠvÜzRXòéÃa[;,§yNå×gáå4”c"ÕÄw¶9IôòìÛ“ÏN¾Xð­µ,k˜R‚÷áïm­àdF¸¤±ÌºzéÐUEì‰(©{WWW|Ž//‚síùª_¢÷a Ê“o—Ãæ!”kS³ýŠ –J n dåDI»àÙU i¯PÉsÖìY€Øä‹¤”{c€h鼨º`¦xrkÇ Y™p¥µ[ÿY¢xÜo‘=Ô×è÷fIätŽ0©¼n‚õ¯bË´|H@ÁPßÑ^Qô UÞU/GÔ¯ŽjêƒÕ—9bLË’«ò¿Á2"ž<É…vµØ:IœclO=$)v‘õ^K݆ܻ| æ ƒ˜„k‡ÁÝÈ*8VfÕî0Í œÒ[Œ²„EV­›8 æ†ÉuäK½)‡Lš(†ã³|ªþ)²à XÉ\)ði }ÿíº¾\Î…'Èœ±™KD"Ž)¦€\$ÐB:ä‹wÕ-Gâ4S ºy{þ!uN!XDëÒŒ`弤„$Z‰X®çK £h‹)#4>`„É(úþÊfðÅk…N7€äâ'BtÜ<ÉâBN èðmt‚Õ1PgYıǕ+ZG½1ŽÍÝpegl† Š6˜ì¥0 ޶‚´ÿf èX4•AQ3T؃ ˆ‰è¢úo¥áQq„&ÂÚua…Ê©Ì8@yQyÙÄ ­n\e&ûPË©§Õ¹ÓοܗÃQúa‡íÒ2f‹7âÃØ9 ëçŽÒ€Ý,HC%È`”R© Œ\yg©ò”åÔ#OˆT£%Sº½H¾2Ìp@E £•ŠWþmçP0 †ª”‚Œ17Jô•:™%2‡ c?DE ºX,ûW‡A+Žö°&bÙB‹çTJ@$¬Â‘¿˜¡”L4p ·ŸÌ¨‚ERxgf%D ùºgF yJIù*ØîÑl3?ÝZ¿œ5 "3ë¯=²%£‹%ä½,#Š ¶%tqW¤ i<hU³æ{<Ðú^‚‘îyJ9Õ22€ŸÏ®–áȯæ} \áMIñÿt£ð«Cœ&ÿHGÈÕO먀{ü@ñ‘Ä„C%ÑbÁR»FZ/S‚ä1ùç^²ãÜ0%”·¶Xyp€ÅòH”3–‡‚uþL)[@T”ÒY¶H £¾Î³Ø¥'¶)SJÚŠþD¦=hõ˜iç’ÞeÚ+ÈÜScV4ƒ¿Ò•ø}QmrÛè¡n¤×ëvj+t­ÂÜ«Øæ=”µ»¢mý¨¡Ž·áÄåKÚÄü¸R®Ž6dªq¡iÖ†ÕÀ+‚„úG濦L#lÁc%u]æ?—GSÆí1ÙŒZ–KÈEŸÕWA;(U¹QZAÊ©·)p¦b.°>ZåÌ´e’ǃN¢FÀå4ôGo÷÷4 ³I}1T™¶ÕD7liº h†.;·–ÓFf%AîÑgçC#2È©a¥MWÁä…ø›E uÕvM[âl:h:qÔæ,Úã÷ØöÂæüfó|0VþH&ú÷ä&©¾!ÞõÂð7pâ:}Ø&2¿€¤6•æéPmLR`mÒùäò¾Æ¬Ó´ëØÍ)ªÑþæìø¤[³M úç˜v]Éq‡õt¹â7VZ¥Qÿ2=o­@aÉÕ}9¬=›”É‘>¹„ü$ŠÍ)‚šà‚¹M3ÓzXq†uƒp®”5ŠÇÛ.î"„µ Èú¦oÒDö¾}½TØ«“Ïö¸&˜ÆÅo…çSêÛjù¨ÙúîHæ0sNì©Wž9ÞJÝ‚ùqìž31*_a#×F…õnl¼f6|Ek÷C≩y/Ø´qæØÔšöšwŸŽhžeà 9û‘š³J€¤¨XK~5«yHްMî\žØzNS¬¢ÏKÐ~C5ܮ͉0•$ÜÚJVi .\:9Ì'õMûLâÖ”Á%¦‘¿ìã$Ja`‹œ#ÛŒ[.GJpÛ2ź:ïCX8Ųö>6Û¹9a–}·À¢÷±nðQ·Àì$XÌèØ¸£“ 4$<ÐÇ“ƒ}ÐÆE£4ívr_gtþ$Çù*Æ,aØã'3`ó Áú¦MÝžzÒ™AýAмY lѼoϘuÁPÞ¬Ýï ׉òÔZúš;_1øö]}„'wxëŒ-ã±14A‹{&ØoIö‡U}‹øägãNÈ@D;oÝ䎆–»†€NKÑGu›håÌ`]0ò:TpêN!3–|R5mwÚ·ˆœ0˜è{Bœ'µù £ãË4]6s²"Àf«þ^±!Ò "јòKK^†Ç[[ÄkBD>‘Ì¢o‚å"¾2òlßìï›`ôÏP†eÚ¬΃*RÈÒdðþì£åJPnTô¼>`¼ÆûÛ"ùÝjøº>O\ï×WÅþ²Ü<85ƒ’Ïë‹‹¶ìì37ùíƒçëú¦h@a6sÒm¸«7åö‰‘¶}'£-ËW‡b¿IQçI¹ßx°t7cé‰ö ,4~ 67ÒÑ5&¦©oÓ}±+Ûó€.leû¥Ê ã¬Óu±Ý‚HEÛ•=û°Í:œß¿G_n»s°Êà ހ¸ÿyá?lgAxÀ•‹“áñó[ß+DuA„†=Ù7µ"æ@jRøPUWÙ“_s%¥ÇLËûfz‰> ”]nçÆs†´¸h¿+‹v[¶ŸTÝ7/‹vþð_‹”Jæ#õ]‡ÈMx•Ê‘n.½ƒqw"m®ŸDÀQØãSÎ0¶÷˜ÐÔ6ÄPf’cs7+ŸÔD&¡Dg}JXÿÜÝ ìQßøÀ‰]bIž*.MK›)¼‚¢zdûÍM±^úYq8l_Ÿ'w– œ„n³0UÈÓÇÏž|ö…_!ON7ùä¯_ø9‘+^Ø:Ä»Ây2xgïÈÿœG`_¯;ùëOkƒ«sø1· Ž>·»ÚM-ëímÕ­¯<=çä›’uîóåi-Ì™–¹iÕƒ¤/‡©ÔMµ#k#ÅÇßß t€:Ýo=ººQaay~<³ µR¶’{xáòŸtÐò£@õå¹'(À³ûTx>ñøYA! 4'ØÁt¡‡ëzß5õö!Lžè½}A¾>¢´!ˆÐ¼UÑÑÈïDí ^)lª#Í!º~8Q|ÏÁþû®P’éc¡»‰)Fg|a†ytX †*{飿¨$…»¨4S`ÌöfF8 ¥ŸÌé$8 › ƸUcA¹ðô1#PÿÁ·>°qžèY2r ÷|ô²–L±«îvþuxÌŒI Ó¹1ƒÙ;9€WWŽ¡Ý+¤NÆœbR~[º™{swÀîlóš’‘*ˆ1ZJFss‡Ï4$J÷^²ÑÙn32ŸY°ø¤÷r¦F R©üÉBŸ›Î…Ê Êzî5ݘ´-ð²Ô ã{cœgÆå&Wa1*ÔGÝ_˜)ˆ9Mís[Ds Ââ“n±Ù ´"¤ôXÙì“ùÖW§4PÛú X™kÄ‹¿™†”’Ó‚r5MÊ'¯øL!TtÛ5!k#‡w—²3á0yµ$]ñEm£t’rÓú brǽÏYã믠BE<ëõ6мÍuÅw“³Sm Ïéyr5ÝlElŸv#ƒ3cØþð·ü¨½"âþW@Ñ\o×¹‹“xäHQ¸Â{<ÈϪ/Ç™dQ­ã2Nµú‚äåóDÐñÖ¥–®°C9FÄ>œ­©¿âLf.g(÷7•Î*Jc` ó±ÞïÊ}7·Ÿ‹ŠæèåË“ÿ¡ªhendstream endobj 401 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 442 >> stream xœcd`ab`ddôñ ÊÏMÌ3Ó JM/ÍI, ªüfü!ÃôC–¹»ûǺŸº¬Ý<ÌÝ<,~( }üÀÿÝG€™‘1<=ß9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õÐã3000101ƒìg <þ} ߦd)†îM?æo:]Îø}éCæ½b›ØUºg¬‘ÿ±‹}e{w®œ§·jwz7G ûÒî³ÝÇ—süéeÏê®S‘KHa;Ô³û0Þì>ÔÎ5ìé÷çßžlb¼üáûÔÌ?Ö}÷Mcë¬mô¬ihiµê®íæøíÏö]äóÚeON¯Z)¹rå–}Ý—8¾ þf½ò[ê·¨¡™nĶÖiKVÌ]¿°nu¼Ü¢}'6^èæørØÖÊ%ÆÉÕ[þwãïÜÆÆ®®îÉîl|e ~8Ïúž?uò¶M\÷¸å¸XBòy8»y¸W÷ôöôõôNêé|œ‡gCïæþžþI=ýSz§òð20ºÇ´=endstream endobj 402 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2180 >> stream xœ¥•yPùÇ{„i[DW¡FbºÇsFÖDÍj¢•è®·âx- rÃ5ÌÁÀœðææ€n˜áF×VE<ˆŽë…®îf³cªbewSٲ̯ݦRé³X©ò¯í®êªß¯~Õ¿Ï{ßï{ƒ…OÁ8άÝ{ö „¿ZµrGiJ^vZho)ý3= ýó0`$/ç¾ ãBdD†_ž?í?QH5%½ƒvÏÂÂ8œÃ ¥ÅÙ™Y¥‚_¯ZµzåJö»^*lŽìLIËŠKr³)';c÷Ä â„bv3[°LX HMÏJÉË3Óâ·ˆl;°7a_ü/bÿêK Ãfm*n))§œˆKÏÌʎǰ…Ø^l¶[ŠÄ°#Øfl ö¶ÛŽíÀvbk°Ùl¤X8&å,âdOáLé[ÖžþœkÀq\3uÖÔbñêI·@ðy^ æÐæ^^ ŠÈZºÛ/…Â’2È)'Çx‡ AgàK55¥„0õä÷¸7½ìùjø9ý¯^$‡"ÐUó•:­ „°¼ì)Ÿz)fJà1óp´Ý5ÖpÙKµAô(ȡ׌…ÑÃh1ÏRÓ–]¨WHu¤âXY¦­Áæô8ýö&ÊÑ:ˆ¢à2q+ýt\rš4#ƒ”f¸J ŠÊ¤9åyŠx¨"ÔqW§Ù°“æzoЄÛ(S«jôÕjj Ó£W@5èùb¯Ò°6\t“_¶=éù¬ù“þKÃ@4¹«r’R˜y ¥•êäPF$ve=;‰b¼ä¤(z iï…Ñ&äç½Ø1úf:Á,`¨ØÑ-f ´”Üfâ1œULøï”^AáGœ/®68ú SDï½ú“k ýÀFmA'yOo˜xBX,$K/%™”ÅBE‘$Wq*&B2¹ÒÖê¹ÒÌr‹u†j6(Š™9.çfâÊÈaµðPh^Ϧ9PJ* ¿€«{ÒG€°h9P[Y®©ï3ÄÞdͽfÄ}Œ¦ß8Y—”D¾‰‚(™•ÂRÏ3[;v©oÈ*³Õ¤l—iį!ÍÁ«5z%›ëJ‹´»Ñem·‘íÿ4ÚLV°ó VkŽªHf>Œ’¹È€ëD•©` „`kpYÚldóc£Åd ? %9Ë‹X~?Ëߊ³)¸¸¼ðuD´÷õĤ»‚h{0Œ–¢%³äKÑÙ.ïéÒ좦nCÿµÖÑ7t$Ø2:ý:iBƒ*_Mê%òx1âšV›ÃľÔmTg©•£¦rL¬*¯2¹9  ¶€YÎP+.í¿;úé9§“²ªZS¯À0´žqx{뮂ƒ`Ö¡…ouü+ ÄeA¢îM6Ÿ·€ ©t’Ñj²mµ¿´è žÎ¬œ€âÿd(ÒŠ çå\úk^¨ŠÉ÷´…zç´ñ|n ¾—ÖêOªaðÓ&|…“;YJ/pOçk«ÉpAçsøq­Yd”Ÿ¾o UU7âÑÞyݯ\IM¤$&ˆ¢Ø”cHÃ6§ŽG<Ÿ¤±¼B£5èI±4GÈLa³²Ön46R½ø}¸Y{Ê÷ç>ûgÐL\?2´™™Íð˜hfÉþ¦T9ôñœ‚~¸d¬óZï³×ë‘›÷áBÕZ2ïÿêó £@ôµÊŠB·3’ ú]¨¤¢îÁØÜèÑk7òPÿ†¤r…TOæžNµ—°˜ÊpC¾{cßÃÞ“ž¶>JÈpõªÜ øåP2“Ñl4³9o*o*.,åíú+ ¢¥×¿ñnôoÁZ†û½,¹lèâ> stream xœm[HSqÇÏqG]vc•¨Û Q‹rH†”…&•8/óVjàñ²KÚ6Ýtl¦MÑ6ýyÜE‡s¶±å%·T £Ò"¢‹BõÐCtÇ"| zøŸ8A©oA/߇ï>|¿_ Ãpß›/‘P:ÅyÕ¤¬ËH•6È[›¨–Í$‰ÃÙø06\9»ÎJ"€Ï~øã_'w#Å.Dí@Õ;1ŽW4rÔC‹R®Ð‘GÓÒÒSS7ôYk ³ÅdUרÖk•$¥ª'óÄ1Y Öo˜Jò ZEÖ6(¨&©–‘¥ Ȳ’\i yVZXVTrHüßjÿ˜†ñÔ-†aÅXéÖ$,«Æ³ðŠùVoº‚ì¾ þn ½Yã±/ѨàGÖ*ÉæR¸XŽ$?ŸA8JC‰(%…ÐÒ•R’s¥N*—Q|qfõ¶ûë ÑÂòÊÄžªŽ‹6¸ÝŒ+ŸGI[lvø ]GÁÏìWé™ùy½×…†ç— .örg«–ºVfÂä4;Giûè Ð÷)05 Ä,Ôvû-}Ý".âwYOsO ÄvB/˜{ûÌæN°ÐÚ4“b¦` nô¼ØÀŒÝ:À¸€!,#]`BÛ ®Aû8ãÍ¢ä€|N»±h?ŠCB”(ʘ€RÏñê ”Õ* ˆÓú÷ŽA«fD÷Pî ¬cÞØàìbð‹Ó²‚Í…ç:6ž›ÿŽ|q”µ‚¤Ë> stream xœ]O»Â0 Üóþƒô%Xª.ea!àRÇ©2Ô‰ÒtàïiÒ–á,ïN>Ëþz¹² Áá‹"Ë:Ðì–€–EY¶w–'NÊ Ùß”<Áj ³ñ»šH>›ªÉ«r ¡Ó4{…$Ú¢èZc:A¬ÿ¤=0˜ÝY—]Fu®OÙ()šJ7—ˆcn𛤖é÷Œw>¥`…ø/ S2endstream endobj 405 0 obj << /Filter /FlateDecode /Length 4181 >> stream xœ½[[o$G†W‹HÃJ(=°ÓtÝ«‹”  %IŒò°QÛÛíÌL;Ó³ëÄßæ™sêÒ]Õ]íËîBò°3=Õu9u.ßùÎñ‹ª$‹ ÿ÷ÿžm~÷‹Ëî¨Z\ýpDì¯ ÿÏÙvññ1Œ D£ÒT†,Ž/ŽÜ»dA´,+¹PB•†‰ÅñöèUñõ²*+Á©L±^®ð‹†qº8~¨»CSï–+Æ(¼©‹Ï“‘wK*K£•H'Ø?ÇXYUºø,ù¥ÝEs_ÅëìÏÃ"²øÔ¿# ׺؜/‡/vf3³âóælIñ<’§S%+nÂVXñéâa7LR)©úöø¯ À1¬l(È0š³\æ.“šRj£ýmÒŠp¼O𧞘IZr•œ¸ø0šï-ÉœB©Tƒ7œ×tˉâÜß4£½Iy£¿HædiÁSwÍ/3é®O–`¨œÃh£‹[{÷¨Ûko,‚¿ˆö™î¹ÿŒ›Z1Ãìô+ÂJÁ u·ßö‰+¹+—h…´HŒéMs>µ÷Sl„gñkœ 6̹×O7¦Ý‡5Šîuò®uB‚‚ðYX·“Ÿ//7í6½¯úд»0<ÕýâçÉ·³øËá÷Ë• „iŠþò'¿†N¤VÌ¿¾_xUU£ë.ùÚùiÁ°.¢i÷í6@ÄåÅT‰âÐâ'ZG¿ŒÕÑNÌá«É†GloZëÅñgGÇ¿yÕïUqÐVGÛú\dpÉóo–«p5m|Û#5@å-+Ö Œ.©¦ Zj¥QÑÁ[üMÜQ¢þ+R !*½XÅCæ‡ò,¬*;R– \J8°xÓÞ¸¡#£’¥ âu4´éÜHÂùlääÖC’Âå%•ÚÙÅWxyg§Íîü¤xöÒËì™ÿI“âEø£ÚõÅI±]×ÝfÝ}Ò¾Û­aoh¿ö*ÈU²p¿‰’ªB8kwÍî{õdùêÙn]nÚË“Â>xöüÛà”ut¸ ^ÔÏý²¿Ú°-îSØàýëåŠFõO >µ»¥ù­ìnq¢€k4LzYjF†¯ .e#Å*Ìzæ Ül_OõÇ)äYü¥z2÷ Â:j¤3ðŒÖ<Ç“Øjû:q «ŠÐQÐuÙfä›8±€kÓÆ‘ÿrµ÷6H¸¢à(×~$8©Ã>1ÏnÛtsKè¸%±øÃ~èæà_°3ªÀ_àF 8.Â蟻ǚ«âù{€L²|!LUJ®Ÿ áˆS߃'ál “€ó¶Q‘RqïÑÕ;cŽ TËdÞwD/’]{²ô2ª¸I¼¾÷¢\É¢íbWÝËT(Tj­•´s§Ñ:ïÁmŒP4Ă޶\ðe6p™:ìæÒcÉ l©ó&œúfR>“ìÝf|2H€@s>,Åíó ÌLHÑd]øªŒZ$/ÕãÚ¢þùâÐù:2ÈX)ÓØ> æ @ã`éTÔqпŽ dÞLRYýÎOK88“Y4±Ï‹[Á>)ñân3âS5ÕïCܧNåÈæÖheR´9ƒ×Ü^Ðs ¢jn6éeu%lžäçóÉRÛŒT£vfq¼âÊ›öÁ¹‰AHw¨3—Ñ#Ða)  ççN½„ÅÔ7½Zwr3g/ûÕ¦v~ìôÖÏ Y±mÝztØIö é]¼ëâ´bFiïr*Px®Hbí~›Õ$ˆ"%ä5\¡IU °4…U/r¨ŽÐ’T*ÕdY4ÐÞ‚—Âþ‹ã~’}B‹ž=8·äAx¶R08y¼pÈÕ v&!Ͷ/9¥É4/R^ÙçµÛªN2k žÅ ‘9\ZùZ“{n‚ ¹{}OÂ7Ù?àlùx_žQ‰ë9±‚J˜EòÒ —J`zU-G&È\.;M\‚oìu]ÞŸÞØT‰*5 ’çiœA˜uïçÀcs|Nv½¯·‰ý§ÉR^IÀÁ\$ÖÖŒ Qtáþ ›Î/»EDË1û˜ž¸gûpìÏ’ ÎÅÄØý€_…뀋ÓÅà&êM“’W.LÚ¥9 ¸c¢‘ZvdU©èœ-ª‘S@L|½Ô›DœÙ`bâ†õ ÙvÃþ–ÙÌ,ì*€+•s&ßç,LB¨B ¥ÂÌ9•‚ÿØøTßçM•¸zòÎp¿N³ÇŒ‚¤ív; ¬ÃÀiPp£šMøõy 3ÚÙ‰w|µÓuN„¤›Èd6M–`¨’˜<1k1Ž –ó/ö¨uLól~FCîq;·äÌ‚Œ,탮¡,vMJaõ)rBÀëà\¿ù]ï7õmÎD¥ýØ;ÙÎîaJ7´0´?µüµÝ=ø™IGÁ •Èì¤?ÐîÇgG„y»ÿ9épSd”o=ÆR¤‰õHãìªD"9æ$8"J(ý6rž(‰Œ^¼=Ãð‡UÈŠ×7ç๦”GÄ•è›r%»õ°XD½lWž·k^ƒ[Q#Htß°hý㦾 ‘x˜@Î2¸,ñÅ ˆÿ~WÇ£d‹#tÂÆe¬íiÙ WVIž bCØhFA™„S’ ¡iÝEÀ5³’AúÔ~æ’'d$e4‰s¨ÒV‹&L¸–£@Ðû«‰Ñ‡Š²d%’qÜ{+¼'±kzÜ3%#¼’Éq1f—s|<Æ@_@ç’É'îY wÆa ÷؆¼7n»÷¦1½-È#éíámÇp{Ï]žÿ_ùmîi°Þ*â·i3>|Å¢Cõ~;÷6Ž ¾°NÖÁ ¡Ÿ5= t·ë`úK—‰y¾Îùf$Ák?-ıL)Ïý¤î3¤r!-¶&cµ ¶9à;¥-5åý·°Ž¥ñÄ:2˜ÿKH)xï½q>•‰Εņ`h.M\›á¥üt¨OZHH™ŠÛ€mJÐp0’"ìLq­ÞŒžô&š7ËÙPq9æs®„Aù”¹¥XXx(µLšIò)5xlÜTâæG너àrs*Œ½Í¹ ŸÂʤäqØ×ͬ¤ÏýŠbnKc mO()ÞÈM˜Ä Éj¢Ú:U£'Œ6¤'Q’S!`²Ë0™:Z{% Ãó)ø$YóŽBõœ:ͣķìarÚ.á8ó) ß4´b|óÝ.[ E&0¢ŒšôÚ•ªÏýf@ÆmTË-‘Oú¸|JØ4>ì‰ ­áK-óaíŸ;?6Ú!ÞVÆ*¤f£âÙˆÛÍÂiS Â{¨Šá¿°ððEGf ¿‘0ÎêK»O“ú.ÔÊ9É1ý¡œ˜‘ ¶”·6Øi X¡æI²ÞeÎC•ÒU¶üÀLßð`Ùktüäžæ‡%î”ÍÝš2™ª|ž'Ž(Aºô~â¨2–¼{R)£*©á&-e¼@™k×5áßJ‰Y(̈@cýÔí†ò¤ÃO”\0¨;’åJ*œ«JŽ@ ÌÚ¤Ì÷¤†ƒÔ[\’ùƒcá‘ZSþÊÝ ƒì²Ïá‚s[«l‚Nô,8îW^Z„, Ö+%ý¤¬(žTªrDÍqâ æ–ÁÃîAŒxà°ä¡xXþFýoäâ¡ï¨@å˜OáÍ!DBq<ìÊ› „›`×ú€M×úš¸Â½ æHrÝ®’/"ts9ë8 -Ó£ô'‰B®Ôdé󇽮üc.§ýX}™’ë=XÕÖ\]sêm¨ßŠ!h±û*®Ù¸„pLŠÔ=d “± …I³pâÖì¡Iƒ[ìnVØ}&Šp™å °Í‘cHŒÖžùœxsÝ V¼r,L1{,¹IŠ[íÇ5wõ„òé£ÁÈŠ3læŽÉ"Ì×ëËzÔ“ÇÊ®õ¿€H¦‚«™vu16 #èÓ…?‰¡Ú—ͨ 3A´—ô;þ¥.™€½ Í€¢~‡V@ʱªâ '® 'p§%Anÿ'ÇÅ@Ý„r¬´¸‡)ßÌÔ÷ll„CÌÖ÷6Íé¾ÞßÏ6õáМ­ŸyD4ªØÅï gÈ’¿ÏÃÙû^GÕF¨+ò½Ï܆SÖû€ÓdüFïj»¾©wëMxOÄhñâõîÌ1•nA~«,K´{7„ÿ²o—ýb~À‡Ã–Ü€úÍz__®ýÏÿ~¾^7x®°o¡´8þêï/Ÿ»°zšÛúÇ›ýÚ¶ Ÿí«ëæ[ûW$ ¿{Ìk·îµûj¡¤¿ï/ZÛ†ŠWiP®±údS¤Ñßl0åPŽžNjÛûÐ§âø…6ú»dœí;`DqŸ&Šm‚Xh´¹•e.ÒÚ߬qœûw1/ÛùÏŒ¦6ë&ÕözÒœb/BÊÕù>žeuÂûõ‚”®uU9ò}7omî‡<˜®(…]fÚz†ù0ÕÆªä/Â2RÏõy&œlKFó3Œm<1´é¹(B!ÇW£fÕq~¨ÌvÞ§E_]Á?¼ážz| -5`#znáz¦»‹SÝ÷ŽXzÏïõmVX+e?e[árUhôíFÚgu> stream xœ]O1ƒ0 Üó ÿ @«¶b¡ C«ªí‚ã  8QC_ C‡³t¾;ù,ÛîÚ± Áá‹"Ë:Ð俀= –EY¶7–'ŽÊ ÙÞ”<Áb ³ò»I>Õ%¯Ê5„NÓäRP<¨‹¢©i±þ“¶@o6ç¡l2ªóá”ý»’¢©Ä~p8榹I*`™~ÏxçS ˆ/1˜S6endstream endobj 407 0 obj << /Filter /FlateDecode /Length 2351 >> stream xœµXÝoã¸÷{ч #(pô]¤?E¸í!‹CqÛövÝëC\Š­ÄÚÊ–WR²›+úo÷¹3$%‘Žö£E‹<Ä"‡3Ãáüæëí2Ké2Ã?ÿ{X|óJÈå}·È–÷‹· jw—þßö°üÝ((U°”šÌÐåúnáÎÒ%Õ*ÍÔ2—yj¸\®‹òz•¥™ä9Í )W ~h Óä6Ø(º¾*Ž«„s'5yQ>­˜JÎeÌ ½Ä<Í2M~ˆvšcÀ{ÊiwƒE¾÷g¤Z“z·š>,gœ9yYmW ï£DÌ*’Xªpòý¿B²Ú‘)¦Ëÿºþ=O±ÐvœËÔ0ßz· ”¯ÖoоB,Mjà’$BÐetZ)$»!¯~³J$©1Œt‡CÑ>mÈ¡,ººì^TýßÚê $(¤Hq8ÕUÿ°+_ï«»Þ®“oýyMÉúÕŸ¯/‡ONÅû럦Ï3ÂÍjå/¡AМ-×?,ÈwE]_­¾\Pš))®­¿º!ûý^lH×w¼}3¨¦'îŒ4·oÊmÿkGá´'ÛæØ·M=]%ÐÆïy…GƒêAÚ«â¸kƒÀoîî€yweiKs…UD“þT´«„ʹ“ïš¶µ´ÉU»ò!Ý{²$'ªcqì§P§<>õCy5€•O-hfûSy,êêç ^9+&uõ÷²®öM³» ¤I™"Us–{Y´÷ E=)ñœ‰¿\"EÊæ@þ‡‡ÃmÙN1¯¹›ÜãáX!ÞAi>‡™q€pPNð?5ÕÑ2ÌC3¾šËn9¢#ª×.5 ñ“¹X0@ –m6Ã-ÌI˜Ê›Ó Ÿ òΟ¥Œl]6r1f~$‘ܾ¨Â³ž!XiØß’ƒ ,T,'ïû¶ð†’.ÊïÛ𣯚€Ã»ªß{uìíãzÇÝð¬rƒëTqì< iÈãJJˆŸXM¬"J'öâõæ˜ÀbE‚Ĩ «âl$¨"}ç_-^M@½Å4®(ùÂÕ$9v€´ÌR`,•Kp@©\@Å<•¨@&…b1ÉSÊ´±Éü‘ƞ%ϵžTÃYÂKÏ3"L€$@¾á)¸Œþÿèø«y%‡ˆêxckE¡1;ÿbÎw“ùçl O@!-þlœ£Aà€”Ú–ˆä—óúSú3ˆáJûTŸb¤×6rýe¥YêÉÑ¿rÞ‚TX<£“rò÷ëŠÍ΃ÙmVç‚+.  ‡*ÇŸBw`Ñ/µˆ¡Ó»^@2èÅ?c‚èc`(Ì3`Z­€M´ÞF˜,Ýiˆ-¤ÀËL+ +8ð ã’>B\{_x@;ÍÉ ×¡Œæ Hg= o§¢æ(´çhé³ Uݰ!ð·-Ì$T‰¶s€rC|„Pà®M×U·Çb¯ÂÁ²œCŒxÂEêb¢?,Ø`fu£\Ý,Ÿª÷Sóv™ì+‡„‚Äëï1Û|;ý¼€îâbjB"ï6Ð A:ôlª£×[Èço—t.x¢ÏAò˜ ž£Kás•Û·°†ä.tˆöàҔȣ§«ãŽ‹imlµžSÞ ZQÌvR‘ƒó•Œ}&ü r©Å×¹nRaò³pŠ"PÂ2(¸v!}^w HTèv:Nħ@+ÿðD6mΦ@8pa>K³aT±R '~GnÞÄÑá>þ¿}m\ze@ðç=ƒ4(9>ãy8ºðúpïiÒöS±,BÿΟ“¹XŸdò"Ø q¦Gy¬ŠyêTæ6D<±ŒùFÛƒú‚cxÄ(`ltô3¨ó(s>öÑqaœa2öé¬QÞÍelp–ð ’ï‘D€±MˆRGæ¼òo{6Râ:C)– ciîó¹Ò¾,v§ÙÜlÉ¥û¾7n«÷Sãòl`P§½€ŒÏ•8¤/0P2—žßü¬Ùw«ú¬µpà*2.2Š¡Ÿ~– M:#ÖÞ*ç–­PŒr®…B^lâ >ã¾3×w+a'7œú¾)•L‰±³Åã|æXÑšå~i¥Æ‘„Ӄⶂ†î#ׇú.ëB¹PÜù/³VÃplñ9äëæ³0b‹¢²[â›GPŠ F\»$R@“Â/Cu(NƒtqV‰|kv]Ʊ²†ºtzÐ?ðaäz3ÆF×ó†µF[]ÌÚâoÊ yQ݇·²2¸^/~\¸1»\¶«Çb†©º€F_¾Ðs€÷Ú±:Q,<ÛÿœŸI©0¿ÍêjvòŒ Òº0¡Ùó0q× •$¬Ü°V&Õq"Ün zk/‚Áôű¼&ÏXÈEÓœS‘Ì K¾ž¦§¶:ör‚§þHŒzžü\àÁä£êͱt£ aËðhÞ|8]ΠξF4»é¶©Ó¶¼‡ú¢›qo)4m·!TøÈ(¡\¸-ënÒ7ZW\l[ÎÇW€?2™7Ñ SÑOO¨Ò•o7v; '×3T]ïû}Ú<ôSH „S‰Oå«—9ÌŠÿ¹½þÇÅ¿¿ endstream endobj 408 0 obj << /Filter /FlateDecode /Length 23731 >> stream xœí½Ï“9’¸gžV]¤Cš.úRÖü6ðÐM»Ú‘vlfm¥.3Z2»Š¬Juf±†dw©ÿñ=ËŸ;@"“Ìb°»ª:fl¦˜ø@àðçp¸?üÓÍr57 þ·þ÷ë‡ÿÇöáæÛ÷/–›o_üÓ Ã¿ÞÔÿ|ýpó~E5Œ‰Tt-K17_½y!Ïš“ãu‰7)¤kqáæ«‡¿»üöv¹.Á%³”ËëÛ—ø#S½|ùýðë÷î^}ûÒ9KOæË?®jþùÖÆkÉ)¬x÷<à®Ë’/ÿ°úåí÷CÛßý¼ûF;‰—ÿXŸ Åç|¹ÿæ¶ÿÁ-{jÙ]þñîë[‹ï‰~ÝÔªÇ{}wùÿÿXí^ªE£Mÿí«¿§Á‹v;çµx¾¯¾yq1áö«ÿñâÿþêÅ¢¡/Ñ_©‘›°XwuþÆ›Å\­»±n¡á7ï^ßü—›ï_úm1áæGš†¿§ÿû4sÿá…±‰*‡›èƒ¿ÚróðÂÚ`®¥´’û¿Ý©ÕKìruµV0ñêÇJZ0ÔIÑ\éˆJ­¤×² ½z›ê%C­Í›ŽïÞk=)Ÿi¹ ×X"Éé(Ÿ&_½I7‘¦Êú(Jo`®ËíKc}¸’Œñßÿ†Ôáo»ùÝöß þ¦‰¿ÅÜòÄQ¹‘/ʆzã1•’d¼¿Òâ’‘Ÿk- Óª%«Zѧ+½øP«–¬jeÉkÕ’U­’2 ÍX«–Œµô]{­ñíŸ=î4ŸFú¡dŒûe¤¿tWs7$O!…,‹€ZVev§Ì e1K™_Úê#Ü¥¨,ׇ %Éä,£Ù¿[2®›qyFôk¦t1]—LÜÕ']žÏS ÕKÃÕH°©Eê^äôÿ}{ë $©˜ëÍÝ÷oné•ÅúËë¯?¼þæVt‹IöÏ,v5þ1^)ädíÕÐ2âñ'­aÛ`ჶj_®ÔP¢ÕR|Ñ¢F¯Ñ;jøÝ·ô  ±+1n%ôXæ,…>%^Û¸%Ër¦’´2ŒJHéò\¦yÈ%ÑLT’—ZŽ%¥v ÊZò‚J#Z¢ÄÄ-ñznK|€Ë ,ñ…Î `‰ApvKŒS-©h‰¶×h‰ñ•ñéhÙ&VѲÍ}Ë¦×ŸËæ}|XR‰M?#°l½7´Ä®À2;Ñ3ǃ¥Žû³°²­9ÅJÈ@Zyb!'µäQ¬„š*! ÕóZ±"œó–¼F¬ì¦—b%Ä]pz+;Œ7¬$ +¨0æ@%•Ø2B%–“‹*PÙÞï¸}%å¹­<òÊ(O <òÊGÏ+¿åh| z,˜ó† dáèæ!t—Ò;–?zMY·7_½{q¹2žÙ¢áQ:°AÀ#-š8¤éˆiä,ChãpH‹$³žZ$EŽùhxu|·´LÊ!-’⤙tx{Ì0&^!¤ ²Ï‡4H¦›¥7ÄoÇL žt“ <4HRÉÚ9ði]'R€1-XûG4hIYú#…;T3—,žxÌ(bGè²L—CD‘>Ö‹zØ;’e\ü‘-F*´æÐ ”c>²EHárl‹´M áÐÉl‰åЩ¥rè;,þPX¥K>t’–1Ž´Ï"£îÉê1ñÐw$3=ÄCÇQtN ؽ¢ɦ<×Ç#í³;t‹œ·6Œ´Cð&ùÑððT i˜‡cá¸Ýã¤YþO®jG›3OÛ³71ý €´I²çr„w,[ÞTjÉ} h«/´2~¬^KîÛU¯KÂV¶W®?%G“dšì;ꎶ®š¼ýþ‡WîÞ~xýðÃÛw·ù†©\^Ýs²a¤²§êWÿðâ«ó»Ë«?~xûîõ·ï^¿÷§[ëiËé‘ñª—×ßóúáîëÛݳ ?+»ÙFìŠZn§Cp=Ks®ÕK†lã,È¡V+鵜±ùšÆµ`¨ã’»–1º— µ6o:¾ûge7Û€}yxNvsyvv³K–/R§¯–à [ùí^­h§ì†ýñP+Òòn¬UKVµRv’‘ÜjÕ’U­â<4éP«–Œµô]{­ñíŸ=î„ülo²›éGš¤â"ƒy*ñSIœJrS3}H»Ø€gaLLÖ’ž¼Ü>x*Ù¦3[ç ó ¤3[‡˜(wX:³#‘ô$›tæ°NgÞ~觤3[ àZ¸µ TOYŒñZݤ⃃x©î5^¼6fÎôç9»‹h¿${é8Ȧŋ"*ìÜF‰qÕ±oëLÁAl«S”ÿ¦EQ]¢VcáFׯN¼v‰v«lG[_&Å……$˜zTaA„C ­t/uȾ¦)ç˜8#¯G/Š­P Ý¼Kaw"uåÄ­káæÎ—"ËËfzcà9­Äfw +6˜¸ÄEC=l&ŃÎ1" sþat^HÊCTÛ(|o–®’‡pÆ Ï;ˆÊ¦}¿:í2#“P £­-ôÁð¯c åŠ1 ¢÷[$ÞÉÂG̾Ô,[hpc |‹RÇ/Ü9ÂŒØUN%G¯%!sïibŸ°-1sï3,R’ÒUv õpÇÂM,ö,9A¶ÀÝ]],€~bv°/A0ŽðN­Ør”F¡Ä*“–K Ýàæt´ý‘ÞÕUëà(¶ãIA±­½'‰"sp/ev·d#½“˜i¹,ÕÏ.Î,ËÕW:ku*)×\}÷ìÍwð³Õï$ßHñ5â$EZ„˜K/þ|ÿV€Âñ(„È=Gjž—ˆõºŽKÍÖr&ñRŽd¼Ôo–ƒ ²8ÕÌH´›ê¡†ƒ¼!¡ÔSLgiµ¢ïD=9n×ÒLŽÄ\ê,X€dœ\ lXR%ð¡/>ñs¤¶ØÃwó±¡#]%»;Ëy•ùph%. åº a, yˆÖ+ú¥¦2:š:îQy24Ü9Jdü¨wî<Ðk±Cß9¤š¡sÏnr”Ðz Yžª%à$Ùu…ÐC¬l¨¤ÔÏRCkF$ÒᔋKœœ¼:‡W^{IÜì ¨Þ5X×yc¤wšOeO+–{§!äã çiÅ2Ûˆž’PI©æHÁ™,J<uòJc=NŸE³]VOÑŠ5µ„µ¶ó)Õƒ€(:Ïa,Q¢HI‰Uû‡:†¦²ÔsP‘Œ”³ÃQŠ ´b“žÐñW°.Îì¦ ÆáÌÆÝÕÎÛC´`µsþ*(pî›ä«\ õêÜp°ã¾¸µ¹ˆ£.ùHW ¦ˆKÄÎPƒGJf]ò©IÏ'ÖžX{b퉵'ÖžX{bígaí*5ú—Š«–…ö£¸Z›}®V•Ðq•d$¥5®ÆÆ¡¸Êr´ÆUjf«˜n³‚Õ`‹>Ta C£¸ÊqDfÄU¨>bõ;FèåXçWÀ°³VzAÓX%Ê¥+"üÊ X©å šX!bd4`¥iuf ¬VIÖ'ÔUㄞÖ£°VˆlÀZÉ8ö€µf+i Ù€UASãyh¶¹†š(Iq…šMTÔl!sÍÜÔQEM¬+Y©ŠšÁ5!Ê‚àŠšå”GÔ ;¦œU È„Q"hÝ 3‚7p„L†€2Bf°©~BfˆE²b&²®¬1 Ò†3ë¹äfÚ 9b¦Â“Ó@3Ät +̤1”×i˜ ¶U³ÂLS£;fªøuÌ$a‘h˜¹ Bí˜)v#f.* 3á#f"Ì/•3™†$˜Ùb|fBá%·ÆÌPû13ùgc¦†ñuÌ.úŸ„™ö‹`¦< ™µÝg`&>á0Ìò£OÄ<óDÌ1OÄ<óḐw™5Iú ™C»rÞ6~»™ >ò#Ù`¢AæRgìs1Se¾ƒæR~Í¥æuÐ$H’w~4Y^FÌ„X';b&'¯Ù39§,˜é%ckÀLÌ /Á'0³Ïðã˜É GÌl¹H'fþ4ÌlÃÞ0³-¬†™]§VØÄº²þIØ„ °_½Áfcé°ÙÐ 6I¨ò6— Éy6›?²Á&†È®`Óõ+lW_¹Á&_9°ÂMãëw6Ü4•½åy¸I½W”ü™âfSŒ'nîá&•ÈýËí4kØæ‰š'jž¨y¢æ‰š'jž¨ù)gšŸ›>M wõÌh ÔÉ!At‘©IY‘C8KËÈÚb¼ÚÅÚ"²Cma@Ç~uœ{c^IqÒ"©^ŒãqÒ"ÏñV¤ªŽH˲¬&ò¡-ò%kÇ%e[D¤ä6%N?<¢EB'ž81„ðË¡-‚^çØ%ÃæC[D ]8ô«áÒ>rÉr#ìu‡¶ˆ(Ewà8’éHŠBØ ¢9‚%€LO&ßI¸<ôˆU –­èÒÚ‘ ]ÒG"¡C¶%HgŽ›j‹SÀ#1,u2PÌ‘3ƒÈp$Ê8æs¤8Z0®©z°U0K¤—ùÕ™çøÈw+Ù‘ €´½|ìÌxðÂ…#[¤ ž7O*ÜÏN ö |@Øýi~$m®+Q[ÏtÜ©ÕJzò­GJ'»[Z­V2Ôbâ¾1q¸— µÒº»´íkó–ã{V:°ƒË µ/™ì “´©?“ÿL>AI¸~÷¶2†µ,`©Øi2Ô‚^Æ#mR‡µ¤WɤìM«Ô’^¥e·*Cv°¼ýâÜL½Š–ô*õ‡*Ã'?wš°ÆÍÉÈÞÎFîDž‹ìPD«oDžkù¹(ŒšžxV¶G_ BĨ±PÞÎ ©¤ºß‹Ô¡I5•¼‘c­¼ot'YôFú ŸEb¸¼5¶^_`űïáhåÞ5VÎ[BPá| ¢“<­Ì²dQMý³ó“¿ŽV¦©þˆRR$,É$I1ò6åúérW‚ǾÕô, —$<—màg55Ÿˆó¤<öB²YjÆÓR}pò‚΅꩎Uœ‡›¯{ß½ þ:ºÑ½‹Ì!ߨ‡—Uø¢ø¥½ËV'›¸Á˺øÁõO Æ\G†TO‚#]W2VÏHV ²”Úuk„Ö«IãëyŸk×í©k×5EÊû˜*ßdÖR0¥–DéæG9<4 ÓÁU§´ÇÜ‹›:HÜžÇL³é9ᇋ•ä4ÔIž¢õŒ`IÏCÀ¡™™æÓIWò‚!éÑ‘ü:ð±Úï$ˆ9Þdp -Wö‘Óòb¿5•³rI|Òž ŒÜSþZ+µr¯÷éUS½á#JI¥VF´œÈ[¬ÔÊüÎü>ÔÊÜW®Ÿ+µr»)Ä#Š=ô¢ÖPR¹•C–dátgB«\?+UjeĽɧ'Ä!ZÎ'½±GxdQ¢7öpn•˜T¬M¤…Ê«ÌÉNRPj¶Q¥Ž%QZe&´E -Õ‡óGŸ”V9×;K|*I•6Õç¥zµEŠr%VÖS(ZJ¬\iUI–•X9Ix É»ony™µÜˆ•k^$=îšÒ—fR]N|B@²n¯õ ÂøKãÚ)WYei¼ÊÕ‘ïËÀ«\ëÐ: ~8º"µÞy•³”€W¹–ÈЕƫìµZ§«›h}i¼Êõ”±›½õ|b(øÔœâeO”=QöDÙeO”=Qö'¢ì*›øލ‹– êòS­–<…©KA%¢T1u&®Aµ^â1€j]¡SkäXÃT¾PÐŽ˜ªáy R½„ Ê÷ØRñ™‹!CQK*¤ö§ÚÕ{ƒTå´0µÆO ˜ZWK‡Ôb RklÙ©*³R‚*¤ª 7HÕu÷¤Ö@ŸR¶Û µÞɱ© 0[IÌöИÒpÌzµÇ˜õò‘0Ì*`Ö» ºó¸„âe-ÅË>¢Š—zJvÄ˾®0ûºRÀìëJ³45ÀÔÛs:^.úUŠ—-vªá%ÄVYñISÞ®ðrQãAñ²]˜ÑñÒ,¼ôrQɈ—ÍÈlx x[Áå²áMƒË6Öð²µ6¼p™°ÂKk„à¦ã%¶àRjþTöŸêë§æE{4È\¼22k,h‡Ì¦Ë:dÖ;JȬ± +È”ùýtÈô ~ 2½Âݳ Së!˜ùL„”®žBH}ߣö¡‚¿üç‰'>žøxâã‰'>‡c¦ð '@þ’²^Æø·‡mп8>6Ö¿gáccîløO£ø&ÇGÍß{Û‘5 ðp|Ä .fÄÇvûë§ã#§ø‡Ÿ]ßýMd꯻¬)Á'<žðxÂã '<žðxÂ㡹¿¤×èY¦î&:"÷‡4é[sh‹´FqCõ-vÊqÙ›xÊ‘¯Hº°øC?š–If‚óãZ$ $Û"Y9˜8FŠTîGF~9"Q‡”,Á¡sê=ÙǵXãóä"üìd"cœƒ­SO½ß]KØ0×j%6Fáf¥ZÁa¨T Æ:‰–iÙ¡’– µì"Ã[iÉXkó¦Ã»µ~BBl|²¾o8òN2#>–P”ŸPd*ÉI@6_á{0µ¤ØJñÛÝZÈ ­dU ‘cÙŒµjɪV‚•´j«–¬jÕ·j ïõìÝ Y%ÿ {©rš°ó¸¡Õ>þbVµ“”…¶ú0uQ€q1Ö’ º>4Œ¢¿·ÂÌé1¬#\¾žÒgçô€Ç' Ë%Ø–ÔãW*cû¡Ÿ’×c0|Æ®$±•d±¿©„­v.᣽Ôc'FûXRÂF;M~uc+m±qbµs ßb¬v'%Iú«K²´ «}Ñwy©#V{@zjíÛâ(%Íg¼XíR‡ ÈhON ødÍx1Úƒ‹F¢ÖŒ£=€ˆwjÆ“…´Ê»ãÅh§/Ç ÷LÈb³$zÉëú”¥g_ ~›= Ó4ÈS¸íUJ‡@&;ÿ.m¨VŽu¿m‚˜ì!ÃýŸÄdQ¶­(ñ̆Äó˱Øée­l€ "*£‘N€3_U/45;^Å-udƒƒñ@ÊLG1Ùù)§(a„üF1â¹á4xOîšê°¯ÄD1â¹NmF|–÷‰bÄíÐ:vaÕŽñT'‹CÀD±Ùƒ$4s îlª}IIÂuBµ„w&/½[a7à “Î+±ÁbãÎÿË4Ö©d©ÀƒÉ4õ,ý²HºIÄ ê°wÌ$Ú[{ˆ™L2|  Ë(Ñf“dë8q–K@AÇ]ëõ2dwp(kðô ¼+2Ú߉tÊËdZ¦ Z&Ñ^¤ŽÄÔÚˆ×z‡ýo¤/Z¦èº¯C :zû€]¬ÈtÎ|  T’­´É´LÑ;Ò+™°ÉZ¦4æ`šrR@ËšÜ7è zŠ·L!aྗºÕ7` CßѪúôMÈ/^*)Üw– V”ÐJ¥¾£&˜’à^¹^.f@?WH®I C—)´LIãx„VOM°S -ýBKÕzÌ®©„÷ÈAuõÊÝ] I‡1²2k ­Õ*²B ˆ+·JÄÑ.´VÑ9+T©“lµ+ªÒµKf^·±þ…*ÖB‹ÓÒÔckh¹Ó5¾5 Ñ(X=ZW"¿0êrXUñ¹)üZB‹5Kܤ½®Kh±†2,q Š:í¼Ö«4o ’:í]ÆÂ¿éÝZ¾˜ª+!*p 뤀Æ?”±@­Q¶¡¤ZjMë9AöÙdO=AöÙdÈ®²z~Ñ€jë®+@­0ªù8 Ê+7@mÈе—0 ÚzÓiÔ¡¤´žë#ЍqQœVDmJ‚† ¨íýP›þW@mcЕÔ|NTctPUê:¢¶9iˆÚæMµMlCÔ^ÒµÊGÔ&B >‡’-|6,ê% Fí©æí% =ÚyŸö~ |z‰‚OûÈ>m |P|fØÁ§ gŸ&œ >˜loFðq<ÐÀǃîx >¤ã|–¨ð¨àCÐÇçg |BPd©àÓ °8ÿì>^ø¿Gð15!µƒ«gñ|àé3ø€Øæ|0õv…>0: }ô+;ú€DÙŒèƒQ/a>uD;úè¨7ôiš²¡j–5ú˜g£OÓ§ }:Ö||>YG]D°Gn»Zˉ'œxpâÁ‰Ãx0fmœ€ð„ÞÑ„æ R<èCyâÁOÁƒ&›Ïƒ6Q ÚL*´ÙW8è"£pÀb•G8èþá (Èq€ˆH(t'¢*ÿ¡¤*ÿᩪü‡†Eùs×ePþÝ­Ê¿/UþMè{P‹ÊxWþºl»òW±>•ÿñ›š‘pªþSõŸªÿTý§êÿQýÇDÛ“–£õÌþërÈ­¤ß®È³¼c>"”Ý œ0Ð Ç|]\9¢ER-‹w86».áwÄS±9Žà3ñÐw$íØ}@-óŽáš¸I+õNúLàÂÓ>_®¶'õÅ}ã"a)!uÈ}+¸Å!`„¢WF §Å‚eæhª%Õ:®AuJªB*’<š¶o‹1 Žpf¦ ·…52^®­G`o–•*~‘ÎÁ•"Íh…Ó*SSB–ÎeÌ YŒÜsp5>¯Ð@rÏMŠò¼,Ò,øÍ‹HŸ‘kí—(>yt„±¸Ö¾»PH]ØñB¯)7cíûÑ}ã@ê½÷z3k·Š© ÷ŽKú¤¯d¥÷Þr6Ò»$;ºpïò4.©—{æéÛmý ºdޱ­„ ž  š\ï^AºEÆ:DSâø·Tï¡3>!Œ¶‡½:Pº kÜýÇ#\<ô… %™Ù(1¸Î0—}ˆQ¯v7|uäê3ˆ¤벊>)gÇ]#RVîz£ ¼@šæh_g ŽTÏ$RÞµQï°ü#ŽÏÓ‹=;0ºÀ¶Âï<-¤)€[Xœ¤Jâðá +]e¾Þ>8¥Na·Rð¦zð]ØÕ.v§±àÎRÅ80ºpçPœüʈÙçÞ1ò-×€ë§#hÇT1ÈEFwšÞJ3Ùí«$š×9ð½ ¤r¦8Ç—Jã!#¡$dV:7Vønhap˜1æ?­‘ž}¬÷ÁyCîYÕªë ÷ ÕË_‰¡åž•Õë u‰ÅÚÖ1ö‘ï á¹xñׄkåõhò—8.E° x] r¥=.€pR®@Ç÷QT@qrɽõÒ»†;Ü@b´DÚ¡åãª-×e]B N{—9í‹ö.oˆà WKd‘ƒ÷Eƒ–yÀ°q¬jIk„®ø&j;»úó“slN”=QöDÙeO”=QöDÙŸˆ²«$›_*¢‚4m ¨~¨‹Ä‘> ¨¶BXÔ¥"aGÔP¿r…¨f…¨4ÿ%®µÆËvDõNKR%fa€T§´RI¥»¢&SÏ^¢Úš¼Û5V5Ý5åŠ ¨!Jšê¨®æÔ=¨V OMM ëxª©fRí©UºŸ ©|ö¿‚Tž™gCjÐçBê Q5ª`…¨KX#ª©jå`D­û ˆê$és€Ô í6Hõuü¤F±Í:¤Z‰u µ^=@ª“ë Huõ…;¤êÜ5HÅŠ¶kH5®9@ª­³Ð1ÕWË¡ajÒ/ï˜j% bÀT'Qè¦1¿L5ßRóZˆH]Äú 5ÔÁèZsHµÂÒ9@ªÝBêR±ú)HÍõ;ªÖkû¾ª vüŒPÕ~Uk˪ÖÞGÕŠq‡ì]SÁ»ÔSOL=1õÄÔSOLýY`ê˜ìõKUR8ö‹ *°ÏÙªŠ6QÕ{ÅÇÇQÕ»ÚרڸTª6wuCUú SV° Þ|;Â*Ƨ˜¬º(‰ÆV]½v¹ã*òGpÕ9ÅÞÏVÉì|UMÊg¢jÇÐOAUÅÐ^¢ÚŸzD›ë¹h{ç¢m­Wín* ƒjÚ©‚¨“ôÜDÛ:k ª“Ð0´­³†¡]ÃV …,qÀP†7b(äȯ\½XgÙÚí ÅPÈl!‚.îC…P€€„B(œ—ÁJ\N'„’—˜þ¡ «Þé ¡(á(ÿ¡Ë²‚P*1qÄP´ìVŠÞÝ Cñ_ñW7 Eª[a¨·ZG1”ÆÀ¯ øfVª„I C9j¡ª;„ª’ü\uVŸRm>ÐBŸ³-­)s'€žzè  '€žzè3OK?7ñïê9·wÆ‘­CÀFúš½«4=Ç´H˜Ç ÑG%õay/Â^{="‹Š`™V˜?r‘ÈÈ̴ǵH¶'Û“š)Ç|5ìƒCç,¶öدà8'i<$§±;&úޤ9 ÿ¸™!K”³ø“žŽª|h‹0Ž}ÇÈiG­jÇ^áx`{ –>òýÀ~äûÁ92 ¼&–¹Žšc2}¯–s·ŽZ+ΰÅ|\1ÙÙlÀ³çÿˆæ,'l°\¤#îC‹´[™ öazr~ɇ̳ñWÜÓt\º8í\Q™ ðš–#Rjq, %ã˜aL¼<,/,B²C‰C’»âBq ía¹Ø´ó»ð†7Ñ´_ñ =‡Á1*‚6ž¼%‡%ò;d$sàÄàJˆbL§óÕº|ä+"Ú6©i-2)q0œ°—>¢ÁÌ·K—.¼EOf ÿ„K8´EìJ™>‡6èö%w‘;¶EBÓ”œçøÝ´MpAŒ°¬63`¥=ÒF†³)„#÷ì±+GîÙØ;Åš7³#=pÚ…#¿>H–žƒloèíràÞ€ÝO´÷Ù¼~ÁözHs÷õ*ê1§–– ŒìÉoµ´d¬U/¡jiÉX+­»KÛ¾6o9¼÷çq^ð¥›ð@WKøDÃZ£âÏ rôåq:fK=r‘–iÛë Œz™z@* g_;Oºèq<&'É ô!ö¦_ç-íâ¥ó,ËÖ[¹ «-y‹Kì¢ñ1‚Ç»x|fìªW’<ȘøF©¤È_örìá“çÞõdÚË)ŸåÏÛ’*9&ÿ ÷’xÓê-iè膓=ÂRK8´Ò£¶lZ©ƒ4È›Nîéº<òÎzÄZ§‘ÝÕãlÌè©¥ÔÉV˜1õZ7Ïw Œì™¢•yRþ6˵Œ/GÓÂ={Ž=à‚Ò{–*8*OR‡Ï½§é‰µ‘tœŒ-«Õàc^L=1õ kÆqð’œÊß$Ò×ð±‰NÆL=Í«%Æ×ï VE‰õõdSÎ =l†PO ³”@6̪azg‘G¦=òð&içVêèï¸Y‘ ò"ôÄAž(‹,Êey\R‰‘“ÜÆæ™ð»ZzGyÛX‰‘½„ œJ|7D®Z!*12ɈkTbdz~·ˆxŽÏåæP¢¼È©È&Í—CMÔ‘®*/rh htîYÁO%åE¦_øØãâ8b÷¥å¤ÄÈ9K8®OJŒ¬4RÕŒÑà~Ÿ”»gi6”z¢™åx—D¤#;¯¥\O4ëå–>)3rÓ‰–©\€É䥆ˆ¦Î•¹‰]V^ä^¢ÄÈzHê³÷ÒmSø¹#ëªÍÑU…_,|V çÚ,ˆ‘Çe’a`­WiÄÈ­D/¡t*0¥Q%·:x«z#&7\ôÊJ ì ® \è ”¦á ­PíZÐ©è ”¸Ñ-M ÓJ>•YâØ`O€=öØ`O€}>À®H%~é`ºEÒŠ›’ÿq$5n¤ª§:’†Š› HU¹u$m% ICÅÖŽ¤|7 I½ø×:’6)jHª—Kw$íø«Hêl-EÒv•yGÒÐ8©•Œ¾Êší@ª“7biˆ+,mBа´ÉlÃÒKÝJEnž€R½³a¥¢v:”Ö[f(UXl Û# µ£ŽŠ•ê£bÇREŦG*¶¯n¨ØF¦¡b½†Šm uXÔYè°¨K¨Á¢x°h´NƒEµE.jxj‡F‘µ†‹êÞ€%%Àˆ8]³ÂEo×,6;³Á"i1`.‚¨É­pQ#‹;.úšÛpÑ;5„‘ï׸T1(.vÑo¸èëˆ1¹ãb³Ê.6[¾ãbMpQ•VÇņ‚.º .êì~246}ß ±aÂ/[Ë#6JçO‚£`Ôa»OÆ_Á>ó„ÆOh<¡ñ„ÆÛ7VЇÿ’ØH%â/|6:­Ó°±2æ>äXvpÔ¤ãmç pÔþ9€cõ/ ŽíeþÖÀQ™;86ë¨c³©:R‰b<.×c.WÿƒG—å6ûšàÙà±{Ð/¬cÜòåT#sÚ»Ë×cùÛ‡èäÒYúã{n™ú+å²züû[`“‹éòá=Z‚ª¹Ü}_æòá»á¥^KùÂåݫþýö¡>]œö•MŽùò/V}=þÑ:Ïùòð–þM†QqÕîêéûšpD»àalm½đÆX¯_½¿ýž†ì¿¿»Ã‹6´ÂòfúVã¹úúËjüÆUµzæÏµåÅ]~_Waöë…÷áÅٛ˷ð ->®+l–éK°ÑZË[q–:¿z³õ;ËÇÚÎäËF.ïþ$»ÐF#˜Y˜?Œ’ñáîí dE¦Õ$YÜ;@[.Y‘ÿßÞ*¾+y½ ëw@—ÈHúË«:%\þåø6ûnâ|W$ôï' :¸l´™ôäìÎhƒÕ\î_Õn£Ñ¦Ë;Yàà´‹>oø[?Ø‹.ÏœÈhº¼ûÓ-¿bÚèezDÓœ]þt îť˫û?ΟÁõ÷†>¹«ÎÔ¡ÿóÞГAD#ïuè¡*àl1ñòïjÿ¤]‘Ïûû—íí­ŽõßׇEªúXÿÏW+ýsÿZê-Þ“˜ÕgHýlÇœëÄËûúãVy­¦'é]•¿{MŽàÚt_Þ¯¤_-M}ºü×Ëÿþ~5£ïÿÙ½•F­ôóí®xƒú7Ùõçe¬P¨þ7©°nœM¦è<ýóZÅßÐ+§…k€GŽ ’ªkÌ…ÌÃG×ö™¶¤›±"}†4‡&=©`“o4KéÅîµî2ë_öz¿»ü†F%õìåÇq¦Hµ@l°—ïÖJá¥_@ýPq/H3<ãÙñÒþã H߯fùþþϨ ¦¿DÄÊ‹f-ïna¹„L?¾úv’Œ h *¢ü|®ÉËëFê(<µ,aýBw^ýÐhèþ–&o¢x]ŸÃ [ߟûí›ú.„ߣš{»–啾zÿAÊHókeU*U ¾‚Í&ß9+-~„æaÕÍ«öÄ#K«.„oêØ2/-Ò¸Íe¡åùo';•`&Lþ‡_ý›ß]VŠïãÈþ/ãiXrF )×5¿}w7í·¨/ïF™¹_›<µ¥%éÜ)D£?G3ôÔ(Ž>–kCÁΖždèØËýÛo_½»[ýú åßý¾ZqÌ×µBOW]âÄ c„îóŒæÚåÚ¼þ[éÆn”Û7b'Ò®À%¯Æ?îîï>ð ë`¤ð[š P'|žHÌ}É»ÆuÊßdA@šõë?È⊼0Q ó•f+Íg10-˜¶ÈZ~µšàõè’(O£õaZ“=Î}åµ2z{ÿº>AëáÓH;yži$Ããmýø@Ò¶Vïßë¦Í²¿_µL룶GÓM·5W¸à.ï¿[­ãVc¹5èds‚9~÷ ³H0:~Ìý‡Wî ß®”7©k¨”¶¶Æ\¾š6P°XiÙ¼}¹Þ¹ÜßoÅUKH—ÿŠ'ÃØ@»¥q^þ–µq$ Åì,}”(éhI3“½[×Úʼnß[¹àÖ^cG﫼ã…hc{÷^ÿÖ“ñv+žƒÂ¬Ó‚{ûÃVTúŸÃ_:øí»õjxÿƒ¨dçÖƒotwš‡mb¼TÍfgóaUÞ§BKµI©o±/ú¦ß5<Ý,ÆÕÑØÃfŠ "á/3ˆ›l8óÿÐB GŒyÚðm,æµûU^ ±ï¾ûÎï™D4 Ô±YoW¤ýw¯VŸ^ç,áÿ@fSˆ8brGè£`-o\?ÑY"õIÎ hm þ ~ˆ&4}xµéBÞ"¨a–ŠnVÈb~uw¿Âž{­O ù÷‚ ô>®SUf(ÔÊ£[æb{Oޱª[èL<@kÝÔU°ô—1\÷ê”ÉÂÞóöû׿ýðú‡÷Ýkúæ)ˆ™9ET~Sk¬Úy4Zåý×´ ß﵄åh˧7õaøÞ6:]M6QåV:ŸhN`±Ù¯o=h%ÝÐ| ìùêõûÝniDÿw!±ý_*°Q•Jûû{1: BG€yßjíXDØq_Ö›³µÚÞ€!w@ÛåQûa«8¹e6Ëq2ï…«nåiÏÍv+s‘æ‚> NºÅòÅŒdé¬WL—ˆ] ‘}gл;,c¼[/ãߨÙ#Î?ˆrδ*¿©oAºwòún ùöV[ærsY‹ï¡tø2Ã?M·è+’ÿX?4 x+^/ZÕ?ŽÚl˜–—÷¢L`åüÈM<÷=Ìla¨v‡À±Q÷_6žî3¶òeï‰cuöÖ­®@Rÿõ®­©~V‚r¸üÝÝ»÷~£àÎNÂÄ"ôZåKòÓâòXž‡yR[Ô?ñ¯ÞÜ}ÿêþ_ízÜÕ0éB_yàÄyÏÊôïeG8†gƒêo'oÐ0ˆÃCîÚW‡ÍîúÝ]ýS0³#À7Á&7)„§º]Ùìmã#_>ŠÝÍò„ùò›Nª×™ üÕ¤o˜ |n¸HÄšOãq³7ˆED3ƒcœ# ]¾˜¡B¥Møw×··Æc÷iáªk¯"Xs¼1ÈMÉ7X^èUì‚ÛzôM®‰@×G°ÅD‡#Ç(Uµ‹gB܇lzÆQ‰IÂÜG%|“¡Õ$±1Qc‘ p˜¹ /­1%Ô{Y n=‰xÈʈH¢7,‹—P*'ö¢‘®ŠR‡¤7M!¶ÇøRp¿Éˆgá’`ð_˜”ë­ËTâícm±8èÎÀLbîf©íҨĹ•ëੈ¤ ©“8KËD&1–ƒd%Må'¤Á¢’Eb< ÎiÉž0ˆKRÇ{¤¯sÄšÁ5°ô}p ±2 õH46AnF‰åk‰¸wN.2|^ÐȽYÎ;š4A®­`Z"V À%F˜žÂàÊ’DMà>2æŒ1¶~c²A¡ £eÀXÕ›¥ .HÂp"þTbª“BæɈ´.“HÁr^›ÁmH:¹2v ÝÇä¹ê‰¿pÁ(P'a÷0 ·$æ Í¥å¹DB½…¥…Ì•q!QJÖòŠØcê3Ñ"Üž’}Jö/[²k>ÙâI]CÖ\XiGcýhî fRƒ XLD*õlƒ C­"ƒá‹ÆçúK%8íä«¢¡v,6þÅx[ WÁø€*¶ÚCކØâ!ImDIÊÒpÔ…îÐBŸn}©ûxPé`¡ÃmË=!s– R®«Ïo¼_w–5ê„¶m×3zÊuH­cH¥*ê» i¸bD]¬¦ ¸ícœê¦/T‰2wR€0LULÚ.<^&ÏI mÓ-_“Í%¸Ã$ˆ_½ÅÚ0õê`‚el`z NjfÁZYD‘Â1…ÿÆŠ°“hcxØ[cõ=„=¥ê·Ù<Å-9Q49kîAfk. ÃU>-ËKfÝèÇ"Yt÷¦YGF–s0ƒ„uÍ<´Œ¨8K€{ZÄgý ƒÉ¹²Ï•}®ì_ÝÊ®^Ma Â·é’@ùF®ödoÏY‚q‹n€ˆ„JÔO;4®¡NÔ}âbå)ÏéäüBÖ.5ì*f‡·d•ÁÒÜ3KvL—Ù¼ÙñônÁ³¿˜½Ìè|qêe6œÄn ‡”ʉme,Ëå½x¢iä,hEêSN¤¾ï:±0”é+ðÝ–Ö]]0;«w^á[-@b+ë SP@Šs! h]hHŒY Ÿ+©®W9»¤*I|x Æ…êxÚ4Ëèp Ë),Ÿ&,£ÒM·…F€3çùP'O.º©|TyVà†â:Åz–¡‡T\;NxõJ1U>Š8;i¯Ä[3.a¿*Ù+¾Â|‘I£ l¬Ã†B%ú¯©ÞÁ,.!~¯ú†Ø}YÙ¯Š#R86ù±1²gnrvUì³aò*Qge6,Ê´ý³u¤¡v‘eÑ#5lKJp‰®ì„w6ÔÛ=÷¼-Ÿ·îÓö~vÄÌ”3´Jõ`&$²ã@O(“e*±u㛨Wv *Õ+Ëd4éN?4i§$¹ç>”·úրȊÏ4¼z|]ÙðaŸ…<ŠÄþ(Í„:¡£|±Ú:E¤È±Ëw}Îý°w>–ÏêÓ¡ûæT~>µŸÏõ·'ÿ;ÁSÁd€á“€¢¦yö8¼á³j¾'æ,2 ˆÕ|ǵñ(quÌ-3ÜðŽ+Ô:ž…4àëå«A”tÃg02R‹ŒB„CK0 'AγDÚh` eìàcÀȉ4"ò~ô?|¼†Ó0Wë Óh‡iôé<~:Ù¯ÆÁÅ(%l”Ðäúº¡Ào$c¶ Å6ÎáÍ)§H¬E‚õD–Ó.Ëw4±Ÿ$Ó¦:ÂDz5QìÆ_\ê8Ž$"»·Þf†ÀIôn a‚¸RÊÂûUÒd®>EfXU£ºÑßê­Õ¶£þ¶rV¢)ñ[XŒ¿—:‰Éõ¨$W76N‰áv0¾Ò ò8%˜½´¿—cĘÕÑZ‚ÑéÖȦ ÙÁ˜Ï¾Š…ÿ]c±*zlßF©€&Cõƈ8¦Ì—èÒR4×ú®…! ^ Y ‰puA‚uPÇaç¾Ä†-ðô×’ÉB^®W<ï <}\S8àé(UÂ7‚Àæz2ìÕ²|ô›8® 0,Ò÷VRwªcØQŒÕ·­œ‡€ÈǦÖF§à‚÷—<ÑykÓ¢çY!›l­˜‰ýÍdžÖ›¼©Äâ<Ÿ>YŽB(T“›-ËŽhÖÝ5Ìæ$ÂPCX¦ –9ðe Ž™hv‚l¦8œP)œgù™Ã‚æcÌé¤s: Lç3ÕùØuçhv2ýçíÁ´…˜·;[‘y»²ÝÒ¼9e唕O”Ö,£Z~ØÕÛ“jŸµÿŒ3Š8'¾>?FB@Ãû'Aó¾uÞÛîì§ÈŒ)xc'¾cö{ξÑÉ:ûXa)ã°ÏÂÝYÅRϨ¨~zÄÑ<¼ˆL¯}¦Ëµk#Ïèøæœ—Ÿå¼HhR ̈ô¡0g9Û?VéF³N}¿²LTŽûœZ~\ïSƒ9¯öe®îðXpì*±Ñ1ݯu0å –^‡M+P×’íiÁΉÂ|ê0Ä·µóî|è; χÇóóÎ!ôtN½=ÊÞvï‡oOÌçCõí±ûö$t+rìXø ׂÎÜðA§%ÅÇŒ¦TtôŽÙÚ-¿¸ônå»qð(8â4S;•ôyÛ2÷¢¸VqŸ°€qj^¡^Ü£‘üºUÈ|„íiï/nâÍ|³„á3ð\@¤¨d °/—„'h@jaÉJŒØXv’J-×DˆU+’Úr ×)\_D¸j‹© \‚“$&iÜð°1IXÏ;sk];˜£Ô¦@¶9ÖmЇ›cææ°ºm8Æ›_ÅW<‘ »ÎR‚DX\ÆqÃù8r"aGØP e' hÎ𲉿Œ£¬¤)siJnšÓŸæ ©9‹jδÚÉÆÚdl½9ÇçÉñOÍzïþ°ë½Ÿ=üóþ|Î?ÇÌñsLÁì'˜} [Û_Éwˆ¹ñ}œßb½_^f„Z30 ÎXÜ÷•ÛéI޲¨G7ÆÉCÎ}v,ˆ7?³÷áâˆÄ òc{!AsØÐ^hÑ6üh:Û93óA`I)ßF"~Ö/¨77=NͳÜà">ê5x£q¨µ ÆTXë\ûÄÌõÛVÈÙÙ ‹3~eŠf›×Ș|‰S°B¯¿:~koIùæ%½r)•Í?3™!Y€‘¾û†TB%ÚŸ%[4SñÍK¬IëÚ³A^‹ö‰Þâ €0šTbû•_ $~ÆoŸúÅûé¯òZÈ-“·ÆI±þ̯…›-î£ pKh?Êky&Ú27/Ó²úâù“Hë8ÃÏÂòk?&üˆ( Pú½¤“Jï5sÃ`-Yú•C\炟ᕰ8 OÇbõÇ¸È ÙéÁ-)·WŠu¤pq˜6É\é¯vu[È'2?=BKó4SÓ㱪¸{¬%C{g~ŒkÁsoÉÓçà‰ˆ›ƒ>8Û½úXë(y ´…´ôðÿiðW¦…£Šyp'ú_Ì+õ‘çh®ÜýçhxÆçŠ—4ê' $ƒô m¯† Ó˜Ií±Ñ—OÒcX=h½ýø'òÇåù -µ›BÔgÞyÏãCØnÅG:ƒX=&]¬¨–…¤‚!Aj=¼àpðd;·Ào{:õC¥Z²ª%Ó5T’‚±ŽŽp¯¤%«Z2,C%)XÕÑM_«£û·kóxµ1@• 7šÀ>Jø+ó+«‰åª4‘Òdpµca-ó;eq§,Ï é壧Ѣ›œñbR¶(gÄ9Õ)  …R@Q•Œmt§€rØ»ù0P@9k`Dt(‡ Ö‘òÒ p78—”Ê™,!QÊÁdv'e€rˆÖFxc€¢ï,lý+ »dà4(ÒûäN壒r7ÒlÉlä5þ'[˜¡~ €¢iŒ%€’7K "Ê”Š ØwÛ ,íDe±ª¿Œ% dTͧF%ÂŒÔünn1ÂqÔ|sôMœÙ×ýwô݆©NÔÅGV¹“X|õ:¸Ÿ˜?K…\’íàL$Ѳ´5‡#}§ÄÒ5§$…ü–ôÆVdB}›ô–G«1@ÑXUWc€²§7TSØÊ"H¬ŒP{ªvOoö¬Ô'Ÿ6,ªÆci{ΈӸb6j0xj†S3œšáÔ [ÍS‚ÌÚE(”½‹„“¿EZ¸8h‘†,`%ÁˆNV¦´€E‡í¾OC²%—`Ú[B¦ƒ÷69›Î‰'nyŽ6»<ò-¦—êV-î×Á3»µÅ;¼*ØôZü0‰F‘x] 1f‹yC&EdÙƒ¢‘Ê{zq£:§QÝøirvlúÙ»›‡Õþb³ÙÙ¡L»˜y§³³ÚZ¡6Ãú·­ÁVxNá:…ë‹ë.pÕÁ%ÖÈ¢,ˆòpŽÖÈ¢lÓëÀµ}MÑžva" ÆEû2N$mA}´Éµ%ÓÂþlJŒ(-2Ð"çñs-xÐrŠU/äã€H%ÌÚƒ-ò –4Ä1Z䌡Ž\ ?IÔÿ’9€¨…LZ¤Áñ9¤†UÒôqH½´8CsCt&aD{'Í13Õö O%Y®_…‡*Ä‚Å"tÞ…øÃ"[ßÜ FdñC¨‡Å(ˆŽ4ÄÆ¤@F,笄!¨ÄÂ{À!Y¡íË&?éÁ)T"1G-~ÅF žìdQÁ|"«dQì&XR'‹²ÑK,f#‹²ˆ„€à6²(‹­Ä q®êsUŸ«úWµªãÛ ÕÞàÍÂ9 p&Òl‡RËf%Ââ[Ø­%ò¥ZæY'œ¶Ù³£fËcÇ:Ù±`6^Ü­—wvÃ{ŒUÐè¼Pgàò²±NË‹ÝËa òÂõ²¶”ÊËrгâ;-áaÝ[³Ó²Þ®|ˆ.¬b7yqÜ/ó*‘—å;h/=‰lD^üL6“×¶]F„SHN!yZH `¡9ŽÒl9fz C™ÃÔs¢¥†š9|¶O-ÍÙ"‘í-dÍUþ¿F³å܇_f‹J"»mÍ?UFš-* áÚh¶œÅ~14[Žå×wš-‡czlQ[ž±#¡Âöµç";ÚØq xËW¦’ÈŽØ–Óì ô¿òž݆r£w·ÃÛ-ó´«ÞÙxÏ›óyïÄZÊ«[hÉ0 ¢†’Ò®º¦Åj¸)™=œÕCRq޳W[Ø*{YnÚB[Á|ˆ~ufàò ñòøÆöáÈbÂEeÙˆÓ)q§Äý%%îQBüíõÃî¡ötð½s8> ¯OاøùŒ~:Æß9êŸÂæˆËÜÌÛ‹`ÜàK:·ï® Ü^d$°Æíeq»¼wÛËâtÈæÛË"ýJxº„ÜË"GŠïtQr/‹³ŽƒPr/N|Âë4r/B² ×é)¹•d^7Ü‹íz¦ïÐ2¶£1€ÜËâs7{QIZ6%÷¢Þ°)¹×³ðæ‹S,f±xt/æ@þ{³r‘J²ð)wB.* ìnhœ\„ 3Ô9¹ò#é;'—c¢õ’Ë!ëR4¯UTÜèºu8iÌ¥:é]—„%YsaØ;|rOøL˜­jåõp0Ÿ³¸?¨Ä —q¥!PʲQPÙá½BÒlQ>°–íÇ¢„ÄÈ1å”[M7“‹^% #}åärœ3“N.ÆGã†tM*I’T©éš»ôÔx¹yåÜEy¹à)—³5°±rm¥‚ã(ý@eà°Yá¬Keå"P-ìbi¬\3èÂÀʵmGl©SúNéûëHߣvÕÖ†P.œ]ÔÉ¿x8ùAÉ¿h N4ò/Y7‘m,„Wü‹å€C^”ük/Àe ‚™ev‚i怛9(gÜ™ƒ{æ 9Hh>ÓœŽ=ç“Ñéôt>aÝ9…Ý9©6ó†cޔ̗is3o€¦MÒ›SZNiùdiy„z`¥Æöôü;h1#ÊŒ:8Mi ¹¼Å.~HÚÝÛÏûçí{ÝØ ï˜C@f÷éìbܰ“«VÂ'â@µÁÁsKè8è+_.Ñ(;èK>ªi´,}sÎÊÏpV?R*ôýl^¨™@o™åpXÙK¨D+šÑ§a4l¨Äá};SŠ…7N®”ª¡¶d1ªá -N&) •0/x'ná÷aãLÉ]ö"¦³Šù8c:×N~çÃáùy:dž¢ç³êù8{çÈ{{,¾=8ß9Zßž¾Ïôóþö`u+ R®8ÐmQÓNÎ-•nË&a®ét[Tâ8§¼ÑmQ÷XámkÛ0wV€­c*öÂ.¦È œ[0/ kçs Ü,7ÔÍAwS`Þ»7E¼ùU|ÅãǪ›|'X[0?üÀ¢FR’ùX¦±¨ÍùD;)GsVÒœ¹4g7ÍPs–Ô”H5çZÍùXsÎÖ6¯kÎýzsŽÏ“ãó˜‹g³íØ?&˜N¦ƒ9 a U˜Ãv““aã…˜Üo~ßðø)èé÷­-|Ð$¹ºHißØ× ôh´oì6bNZ¥}ã“Þž(íÛlg¼ùÙ½ÇÚáÊ7ìˆÓÛ^Óè´ 5LMGqÓiv|#ÑÛömxÔ~æoø¹èpQža²¼Ç¹èüâ¢÷ÔgpÑ}1*:ûÓ©èìßÝÇÈ U‹lÊ—Õ ØÇ¹èÚƒ#]{òq2ºöÜHF·óÜL„ÒžÙèvžœù®Ú“Ý΃3]{pä£{ìÉ!>¹"¤Û{rb¤kOŽŒt{Ÿ¹¥¤k”tóTn9éÚS#'ÝÔIØã’²b¥sy2¶³Ò9\[ÝÈJ×ê4VºVi`¥kµ”•®Uê¬tZ§³Òi¥‘•®ÕRVºV©³Òµ:m›¨u>‹•ÞÇ€°_+âø6ÿ–îòúûo^?Ü}½RZ.Ëå#¡›—³g5—º.ÛY]rˆ=;5Ògì-bõì‹ìáÔeÈWö¶H<Ÿ$4{8Ÿåh·f<“çkÏŠæ:ˆ Ô¼ivtŽžÖÔj-ì’†ôk£‚ïoU×8<EìÈÁUøÒ\¥Šð«è¾.*‰ÌÎÝøº¼•ÝnçëòÌoR¾.À%Æ 8 Y„ýQã,=l¾WC1 êå:Ù®éñÍ÷N*‰§P£>¹̋ƅzW.QãFÉnñCT©_ê¶ÈSWÈÖB |‹NuúMI‹`u¥ÞLÞB]¡îÐèº<û±ü@×å9òÁt]643W*_•XŽùÒob «9:ž4¾èMãÙŠëãÎcÕö)´E›®JÉ£ŒUdûpvk ¤‚Â4-fŒ!èka… %rU<ôœØe{p"WÑðEð¢0Þ–ëÁ `òéAíÁ K*É%ˆ^jÑ”4øB|Ô".=Òï0h-*Óãr@\PÖ"7=NÐøŽAî$Áå¼ÕJ%|¸ÛcD=BLøærå|ááŠià…ñįwxV Ä 5l¤.ñ‹¬²B†Ñ"×× óh.иÏY1cì‰k,Çni| YL^.•ײz$8©Å¹8:,v ­rˆ¡(#m; p›ÒVÑ®¿ð­Ä¶Ê#bÂĶÊ#˜«Ø·Ê#I‡%Ey«<œßH¼kÄUjìæW⪭Pr*^A^ÌH\ÅM؈«Øç‘ÞªíC,ñ‹h€N\ÅÓÃ!U•_Ê#@ƒßQ™«Ú·6æªm3²˜¼,ßF]å‘À±YÚ4r!.ºjûŸ$Ÿëû\ßçúþ•®oÞ}l„èaOÐfaœÖ¹C³%6ɬ=ê–·Ä©o‘¹!ÄH½jIT´ì8%´'ZÍ–Çžu2Y0³wòóNž`¸ñÛ8ƸŠ1ÍMÇwš1ªÃtògÌ#J‹W”òŒyvC¨GPžj±¢;Ku^ÎÓ’'ç1g˜+Ó˜ƒ ¯19¾ïÆTcz(Ù¨Æ\µ;;ÕØ¶aÞOœârŠË§ŠK£)<܇VeóLQ‡03ÛÊ9³SCÑ<8Ødµp5OÈ·6:æSæ0ÖGâ0C,?ð†y0Ó˜6L â@æ# '0+m•xÎ.WÚ0Øøè)ÎN*ï‡4h2… 矷Tic8ÄѶtj8áà†”kÀS1¦eïm—§õ¼ëžwæóî}Þá› Ìbš_KO±§Þ¹¸Å§ÒÆœ9…z «‡i²-ΕJüëACÄ\",ë‘tìÀ.â_‚0úÆ@âá<æ—Q’’X±²:%í”´¿€¤U=7G›m±vº·‡áóùt¢¾9oŸÎã§ûùP>øŸ‚vŠ•kꕌÞ,3gEc có= d´uðœÏÐÈx[`þ1‡üWþ1‡@O¡þ1‡´ªRþ1‡ŒWŸþ1‚¤À/ÓøÇǬp”)ÿ˜ƒ» çgÌáR¿¸"ôÀâsIãs9°ÝÑùÇ¨Ä uœò9Üfß\ã›cÞœ"qŠÄZ$x†PŸ0Б¶“¨úFÿEZȲ_¡ÑQŽêô_r/|£ÿòLñnþ/ñâøI•íh»8kÍY³.^(?4'ÆCfâ†ÂçÀl>++ˆG8iqsˆÇ ¦‹\ÄÃYÄ{‚f#ª;fÍ"åC꜇4S*‰2tšŠÊ­æê€äÅ»0ó}¥ÿò8¾Le ÿbô³~Hãô,ÐnH㤯–Yjô_«rÚ¢ô_ŒÎØ"40kŽ`cÛÈïø½ç«N~@é$!S À¨Nd'M#£Ïö#Û¶#fÒ)~§øý•ÄõßÚ¨…JRVçãA€@ãCÆŽ²µˆÇ€Ø;‡y°9”4‡É¬Üa;!,s˜ËN(Ì-3ÔìÝL9sìÎÞ3…í„ mO6ç³Ïùxt>BY§“Øí–`Þ5ìì,æÝǼC™w1›Î›SLN1ù¸˜h`î”3´RÔ»š|Rö̘1Á çÈŒ ¸,K2t§Íí¼ûvÈsDÆNÔÆÙ±ã ü¥³OuÇÐ(ÉGÄþ}…½ú«Ãó1^ø<6Xù朓ŸÝœ<â²uôíLÅÔà§¢|Ä«„%\ÂÃÍ×?®Lœ“ÂCÝÈQ¼ƒo- *Q—|‚ª$+ßÓ@ÄB%àÙÉZ¸÷œB—½ó„ùÌa>—˜ÎfçóÛ3Þùx>+žÏ“ç3çù\zçìz{¾=ï’oÒç³öé8~{8º¶ ­cû¯óoyCJšO•˘ÀqàߢùôÆ¿EÝ[æFÀµmYzÓ„¸¼Õ˾” Èrʪ \mš×¶‰Ð>…üò_µ?æ¨öÞJH£ó ÎðËÉ\0>Ò€ñ/T°½Íï¼AÞì gˆÚ¢Ø t;`8æ¼Væõ4¯¹y]Îkw^ß³˜õĬKf}³FšûÆÆ£!LaêýÀªa–w¥ã=Ev ØvÊYððxNó»9,ß¹Œ^1ñiŽÒ€Ñ—¾© Ñ€mZ;S¾¾”|=¾åÛ„H<ì†QlC-ø,~ÌÆÐ¶Ù6E¿m#äæ(º½H»)oÕñæ×ñBÏ& Bät¨ñ¨y`>ç)Ú^¾ÐœS4å͹I;ùKsŽÓœµM•𳩿„«)%k'kk“Ùõæž§†gLÂ^1Ël<ûç;g«h)œ`9Ø KØÆ-L~†É±uW¼ù…¿ÿ#>„ ÀïÚ[Ìðˆ ç{”Éß4_É8—20¹ñ)ƒI“Ûl]¼ù¹½g¡mÄm{±Gs|ÒÃ4Ç9mOÚ¶'qyž¥mÛ¾‹œþœßï'ÒÊyþÿÓiåÂO§•+¤¶ÿ´r4hOÒÊÅ¿­œ±_ˆVŽ)ؾ­ÜÇ裕#0Ä™ì³Yåô¹g’ÊécÏæ”ÓŸM)§>—QNŸ{6¡\}ðù|rúàséäô¹g±ÉéC#“{T>V\r±JÖu.9{ pÊ×¹äZÆ%×* \r­–rɵJKNët.9­4rɵZÊ%×*u.¹V§íµÎgqÉÁ~´ÝúkrÉý§GßÖ5©¥¬ˆäp6„³Pì¡A1÷ðâw—¿»ûö·°½H/-åòîõíKçB¹ä{û’, 2êìå_ý0Ôz_+™tyûFþ]üåÃwC•ÖNºüË¡øÃúf“c¾|ƒZØHºË×cùÛ‡n_vn„ËÛï×íöjßßZ_wù€†<½‘½Œ/úî-Ú!ëÈS3ï>Ü­šª_Qr¼¼ºEg´˜.â&ÉÊX÷ôîÕ·òw\Èjë/îâåí-:ÈÁ>úl­W÷÷õ%_~D§Ëâìºzí‡ÀѦËÞ_oÿÛW¯óý¿òïendstream endobj 409 0 obj << /Filter /FlateDecode /Length 5960 >> stream xœ½\KoIr¾óà›a»0zç²Õ^umå;ÓÀ°™Ý5|g8ž50J$EÕª›ÍéjICÿzGD>*3«ºIIƒꮎ|ED~ñ,þ´êZ¶êð_øÿzwñÇo¥ZÝÝêîâ§ F¿®Â×»Õ¿_…æð¤uc«Ë7~([Y¶2Ê´N¨Õåî¢av}ù7 fLÔo¹¼¹¸j¾^wm§¤åÎ5÷Ùçú, ë\s»Þàˬ¶Ín¸Î¿nŠh”rÒÚfX˜ÂÿBS!ÚÎðf·_o8lÚ*}zÑípŸýtF³fÿÆt’5ý¡Òoñ'8ªÓM±ãýûlªû5·m'œhŽH.aRÞ‡ÝmXBŠfôÓj®57Ía(¾Žë/ÿy,åʵž"‹7Ç¡Z«µçô·ÿºÞ(.aC¼y³?àÕvh^5»é8hú¼ÛßÜnG~½ß=Àá^­i-ÆZ§Hò¿..ÿùªùpu2ãa8ÂT·ý¸½_noF~uµûñÇa%¦š‡íþ¿‰æOa%Ë€¿#Œ}Üq'Vç?_¿jºÓ@Örõjý"nT7»ÞoÛ¯’ ܽZ‡m}yñß ÎNË8¿RBÛV³Ú´]1°ou¸]ý°º?«ûÌð•iïx®ûLÂ3iVÚ²VC ðâ›áø¿¯û”Î_Ó­T«f$+Ü´‚û´aµF2Vóò¯—HŒomAµ\Ø•r¦5Jàì ÐÛm>¬ñ¬¦ÓÍíê›ÃíOïoﯧ#/Z²X(êC«VHàßê# ä¼Âõÿ|Á¬ƒµpÂÕî‚s®á’§'ۋ都'p.Á=•´ ¤6§JO2*mdË ªô$£²Ê¶€TUz2QñNò–í>=ɨªågœ¨Î+E!Ô¤0‹f0R-ƒiHnpYÖf%ª(|áôE€ìዤ/¨ðEçd6’)Ðÿn0,a[·R†‰Ö"üw­‘±Ì³jF¸Jä$ÖèVå$þAF¢­Zæ2šø$'â a–çDáIN$@/I2¢ð$'Rμ Or¢pØŒ(;þ3e6]6f[¨ ÚÐJX(šÔ.NZú"é BQýâ‚ÐË'€ëW^ÑÈÿ €ÎÁlYgñ8Ï»¡^œŽ·ˆj+cÀæcé~rXuž&ÞÅŒ†ÛŠFYxÌgóXÎM¼­å<Ž©VYh€Áx¯ªyœ¢‘ž$^犄Áõ‘Æ©®U®^ ̈Hyštá«-+Ñ ¶Ã˜^ãjiÔ]˜çjÅt Ë\jÓufõ#(ËÍEG¨ýç¹Â„àd¹¾¢¨¹ŒÎõK› WÕÂV2t•Û ‡ýDÐq°­oÛ~ÍPeÁ ùˆòB€óÒi8ýYËÄ%øxš_ß2qm8 -¡¶ÿ®0Ks’éIÿ¼ÖNçTéÉD%:8*Ï©¦'ƒ®rS2=ɨdçÚÜÂ¥M~˜t¶/2G¨xéžcÔgY#XAe²Kr@^ ¶š¤D-R¢™,Rš;™¤H”›¤D•lR¢ÊlR¢JF)QeF)QM—sFõf‰ƒÔ¤‘¿ªYJRø»”®Z ª– GPÌ’äg£‰—±y«Ÿ=“®›pÊ $é¶V4|‹$ b.9[Ȃ‰°™t›+kÒé˜h3-<¬„°*Є _.¥H*Ø$¡P;g³€¢µ"ígÙ¤¹¾ -@þnf•„‰â¹~i«$qÇNF‡a1*Lp#ÎÛa`«¸ç_ßöHNÂg ['93? TéÉä’Ã^YŽõÓ“ŒJvÀ“‚*=ɨè‰Îã°éIFeÐUÈíÏô$£ªN”Ÿñ‹ÌÄ|hû§GEò¤’¥‚%D†»ô Gà‘pPDæv(ÑD;”h&;”æNv(åv(Q%;”¨2;”¨’JT™JTÓ½ŽTÙ½®ÏœQ}ˆD–ÿªv(I¡°Cúyv(ݹ¤ lŠ<¶þ›Vü¨§'o‘•l¬XðãÓ=§+[G"*À¹„`£å3Ä·Ü„p&ÝèÊDâ,©àöÈùŸyÈËw1ko"3üó˜¿W.æïÂe) _û&Ô `¿?½G*§¹àM@}rîBs,˜qµ+B Ûðb ‚OPhùóý¼¾ÎØÔÙ¬hœšŸÈ¡$( Q2Ý<ýV@°¯µa:ô8Œatgý^qÉŸ£xÓƒëìÐŒ°fh‹=·k†…ƒ4>•a L–€ç¯|Í©yô'„R]D¢@Ëa;Ìu´š"m$ŽžÒveýªÏæÏ(ÿ1LY"o•Ô.¬úraUƒõ¬Ó,­ZÁ˜Np™Q^5o2îì“àprøÍ­˜@oâÚM^,».Ñ鉸ó÷f’% qåà:»UKBaÒ¶Rª'Ø#ų¹ƺàÖ„ˆ#ÜÎ*¡ îl#QTÕ`@d¢Ñøc!ãÔ¼§ŽxJZ¯Y©æ‡ÁñM”ÌÂRVä@së;ES*5³;Í*¸¸Kv‡F5x§¤é¨äU–³o2ï»v½±`™qâ€þ§“–æPÊ<\°šl¬4ËïØöyêWƒ²g<¾ÚøuÐíÃg«›ï7#á§³ ÌIÎÁ&Rº õì ì+"g.³düQ¨à` õïKd± ¼™&¿Cç°¸-×6¨ÏÍKÉH‚ØÖŒïÖÑ-((>Îmm;¢´-^"Ýüõ>ì 4óXêTÜUÓßÝ•ºëñ Ð k> åÂaBp;Ñi1»g4X=­a3O©ÎÖ¹ó¼¼8ÅÄ̈yZKXˆ"E9Þ”rJô¼a(ÜËÉ3g…"Už9z)Ú{:3%BoMÌýªÌ‚àA±‚ ˆF¬Â€U9k÷„U>ô‡!lñÓYÉ ûj|+ -§ÅÉû̵kûÈÁ}_´ ÒÙ'íuËÈ_Ä.¾I· ùË>Iý#j¨pÍR)ªFy1=/b„ëv7¹¼ÇMaPJþœYÒò,®ó/}Òc`¶ÀfdÃ}ø .³÷íè †)Ij@¸sðÉ?+à„ Ú*rŽ%@‚X™Ç‡1·:wwAõ;É%bÐ8­Qp¥?Æd¹“çÇ­4ÀU¨WBH$œnåù?OcÂT Ô…Ñ»;â±ÔµåCÒ{Ò0ÜÞ·g*6% È‘¬jæú¤}Ò&¶Éz]–nZ„ð€Ð~p+éÛá·u…3x“#Ñ¡ü¥?ÖW–æ†Àò¸Kvó«‚“a7]yßû±¸°Øç'+ä‘2qÿ Ìçb}&¨TËÏW{>Ù®—½ˆþ0F6aTÍâîE}í‹|콑> ¯Ë¯ÍiÀî0b7çíŽÏfø³gñ¹ÌÛ0K:M¡4~žÎ6ë ½‹Ê5ÉS$Ký‘Y‹%—6óxzÒvÐÈ‘{?ËѪºÒƒóI<€æ˜ôȀ㠦÷@ð±Pm\ä8Ãçq2*¶†`ÉÀcâ[‘ŽÌiô¤®Ë=ˆ*cágÙÓÎtvAž%’ö s1;iQPçßæX6f»>Ï„´æ{i&™ ×¼*OñP IhHåKÉФ$)ñîû‚Õêð©}ÀÌ(ª pô˜ö%?ÖcÜæýä ­n…(æ{µn}"@Ù•oIå¡óU!éFt-ÒúH^´ºEϸ#³vèÃ@Tòþp|{‹ˆoo1Aa¸ÕÀ4œÌRûï] Âpç‘Ñ«LÃ}vCW)§Vv"µÉRü…?/¸ø¾%ç¯í‡a_Ĉ8†‘Ër&¹˜¼¥lPW"&Í¢+ðüùœe>èØuΛ»B±âNí3„À Æf¹-?kv•…)ScØæ#Ë¥›{vÄrÞü°¶á¸2%z6_O¶7†YA@H$Q ,¼£$¹1€æ¯¸à –è‘ügл%†øTPOUáàIÊýqðçŽò Ö Ãîô!&òñ7áCSœ1d†S87åg§Z†GAá°×ý~r‡Ç¸«™Q¤ÉåÜFLçñäãÒœVÔiîþ\€ÖVkBòË5šó®öR F@s îÐ’¹ƒ#¹Î¹#éYÙ‡¢CR,½}LxÜ>|ñe¡Ý_!ßfæCx3ø&“&åt…#—ÃC>&»* –Ì_¡:O¼Lá‰Â›h=çá¸Ïìƒn/Ôs8¤×^Í- t(J¬¡‰!”N†¤Û÷ÏÏ0P;Z¸Ù»¼ÛTJ´ ÀøU. ÔZ¤r®ÍôÜúå ¥PÇÁG8™ïzܾU?% 2gÊû°Fa @R´8„ªgìlÖ£¤ñÒqkiµ0>e´ÝßmÆ2‰¸-Û®3îx«¬[qƒ; m)ñúÆï Ó[3†ÑsÓ¼$®b¢3Üž|‡Ÿº5޵y+ó­ç“yŸydnºt¢˜—wŒï‹Xæ(¸øjøÛ˜seˆ½·…0?|î·ã>Î`0÷Q(ü1>—U°¹Œù陉ƒDÉBàgÅž( p0ÎxȲ€RÄ- ¡ÇBþÌ–‘A‰K(,Ôý6Pz£ñÇXÐÖÑÙŸ£ßbÙbŠ>Ñe) K<É*!ûqÈJä‚òá…ퟕ#ž/V¾¾[,h1jš /É©…îcb˜f™s×èZÅOeÈSAVÐ7…Óõ>˪Ü Á'WfþúÝ‚9РzGR/âh˜4ð­PÉ"Úy"c†<ž(ðBÄ!yä×ïh9lK¾¹Áþ¥Nþ¿•G›¿@'âÍj£°£¾ã'K”X f–)ÕÙI ¦E=Õèï¯ãt6Ãt6Üü‰-šaRlPä- ¿SDùf©Ð gW"jKóê°XßÖóúö¸¤yØ€…Ì)J©hé6X‰àqv±œkZœõbZþÿo*@ØzI ]"Ý0±‘sŸTû饔ёy·p\ bû‚ãP³OØâ*vvdýÌ#‹$±õ’øeË%w-€U ›/EÕÊF2_5T@Ÿ?FSƈòÅÖ*ûåIÑ’|VîuÃbÌøòΦæ5Ú¨‘¥ÃËbd ãjU˜¸‰‡RödB¾ùãÞ§O6 Û°AÝ6)$CÞÝ/X$²[)÷ox–ÜrœrHMQüñ)ìR—’[­d³_X3úîÙ[ÁßÃþ}˜ øoÇJib Ç3‘ó:÷K¥‡Õð\ T†edE[ÕE-ü‡åÖ‹½˜Å][ìÒ°-Çuç]žW<¼ î•©Ì„•Qß—û¶=€|8/µ6ú ¼<ô¤,zyÓ|WS€N´È]TÅ„dËžoYê"ºÂ—›¥$as‹ÎZîþÆPˆj¾°†oZ@0~7¢y2½‚…˜­¿¨ÙÔ]æk š’7GØ[íÃ/à‚>ú(ƒoκ”{×”;BðÀÔ;¦TwÅM™ò?¡Ó,Ö~µ¯´t]ío[JèJÀ¸m⦅îÈ2·a#š/äýÕbŠƒè±X—gYà®'ØBàŽ‡TÇ“e ˼VâYëy$)lœFÞNÇèCSŒ/®©Bá˜ú2é|HÓëÞÃMXP²P 2~ª¢ž¥ÁÆc ´–é(µ˜!…ß}hœgA¯ŒRЊwa.§}ÞÆ#j‡T9þbÕùþƒY¶©P‘ „’Ž–ŒäŽ,–ßëÙÙË”åÏa @ü“Õ3¿r–Lò‰j+ÎÜi ¿µÉ2HS xŒ[ÁcÆœÅ>ÏTàÅåUEêðÛ\*˜AïòŠhV‘êÈï(ˆc<ð–0eû…I¬¾éË!'òF6 é0ÿk—j/¨‰®Èi.wÑÌ‚DJI›âyðêt…€[ob\ñíšÃ-—““Çæ'äbOç(ä²)ui¬}6š®Gò§­—¶x%:‹âe‰ÕO¤Ê®³98äµf¡Nßy×s‰ï¦26ùux¢9Ï4tÑà¨Â]ùÖOv±MÜ›>RãÚ”©·xž®D©5ÿT(l‘ë:–½s´¢¥ÎÍ"{A&ØGÏ„¾ª¼ú8ÎtFÌ«É4»”³Âk´2'’E^a!²§äü´j™-˜lçÉÜnòâèk¸B6¿˜h¯6\¡þææ»[„AþfؽßöKWÊÇ¥eŒ¥¨*˜Â÷ÂÅÿ>âuO5“ꃯO ‘øÉwà|RmŽFg -ÕùŠ—ñ%hæšÓóà‡ßEçZ±Ú"‡\´%Çb_TjUÉÕq—ƒ >p¾×òMà¸3Oå¡&ÝŒl…Ògó,?ô>õ‡3vó@ÍŽÆÎÓõ„Ûp”'ZýjElÞ?Ü`+Ìïgú&d¦oWͦtH³¸í¯OˆwŠÒª :oýû@2¹&!h<,W 8^ûSáî̆áÌýê¢ò¿”¿Sع^b ³‹ëg¢ÕŽ3"0§ §¿ò²†(|®ÊÔÂvLü` iÔr7ø‚rJ¢\5ÇÇ‡Ûø'¡ÂR4ÏW#aÈW‹™‹ïC¦ιv¾zy™0KËãß¶ò/ÀQ´ÐExÔ|µëþú¾Zb¾É:eªRà¢D`þÉåxûö­\š–kX]¦2ï>9ÆWžºJëÈI ~Pĸ"˜‚xáÿª+ÿšÚÌÑKPÕÅÃ.µ™ÅÂbõKÛÅhAAËT‚Î"›©oÿ0ÛžôpÌÚ,-žâi_3ÛXŒè¥àš-$ÿ†ÍŽ˜§HÉ,î(¿S ?%T|‹?¡?fÏ]þh³w;j«gU_? Ÿ÷ŠˆŽ2ýOwAÿÚ@#ðóª˜1l·ç›·qQSûíqóâL1wë$Šcí}VôöL¤Ú¡ŸMºÏöi—ªê”ÿM‘4¬{C=“x&Ï'Þ*—ÊüñÎ%ó¯væ2>ìwñ‡¥Ö=I AÛÌ~TÅÞ8¸Œ¦Â; ˜"¶¿úWCgÕYæ_áÒ»Òq+5$&Au‘)v#•j~(Z^ʶ‡ã´Ä© Óát—È!ž¢tP÷Ç":(Ǽð=xÔ.˜¿@ÛÐg|Ê©z=½êw!ẅk´o!!^öý ð{é,yÏÛþYÙôf°_þd{j¶q€Ï±ÐG7ÓޝT`ÿëÜ-cækEXQ…lªŸLœi¼ñ#\¶ ̽ Ÿ›5†Ð6@©>®ky_ÞQ‹¬ }(Ó•KͼRi{æþqË)?8K¿!WÁÝ[}žü¾Æ`2‡Ä deøÓ›t¥§³ÊZÊ ˆKSØÐˆÏ¥á²?bðÿ¡a‰-endstream endobj 410 0 obj << /Filter /FlateDecode /Length 4740 >> stream xœ½\K“ÜÈqvè8'ëâ‹tèÐ m³aÔ(ÙrÄÚ^ÇJ!v9 ©p€œab?¸†³ãî³3³ª€Êº—…c4ê‘•/•Ø7U)6þþ}s¼ùç´Ù쇛j³¿ùñFÐÛMøçÍqóï·0B ?•®rbsûöÆÏÑØ²²›ÚÔ¥Sfs{¼yY¼ØVeeT-*WÜowøÐÀ¸¦x¼h‡±kOÛRf6Ås6òi+méšÚðúg8A•UÕdoΧdíwé>ý]ÜÄß…9Æé¦)wÛùVÖ°²*žwo¶Ïc5_Šíxˆ¤¨â»ÿM‡ü0+­•õ_nÿ̳2åR¦tØw{wS·½ýëÍNk±ÙÁïµøóK ûü@‹jYWºH’Z”Î4…¨ðoYVBw)©[ÙàºxàdÒ«Ê)ᔲÆSúµ)º!üí,Çe´BàI¾½½ùþÆ+Ùô—•…Ÿ7êŠ~3›ZÁÖyeá"éÿ‡ u¿õü«+Æ?SZ§…gàËâ~Šk×E{HX¦46±(M-Rb‹WÊê+™Ð€…fëJT²òç.©ªº´Jr¾¾Ú9WÛý¾gº»oGöL [Œï.Yo×]«DñHŠQ©Ì>ÙÃûÃST%WÙ«v8°ç¨s(†‡dÿþ£×ãJf¤mjo‹c#Qv°ù³ª4ÚI¯6Þ\t#ºvl‚8ÐØ¢;y­oT1žÃÏN3ðê ŸœQq7§`GþðuØ_™º@N4h¦5[žƒÛÇ­`@œjC¹ÝåÓŒ?maª#i VV:8ró¨¼ú€¶‰ 8ß&Pwîa%BŠpBU lJÊß¡»ÝHxá´õÇùÂLíái ¡Å%ðŒŽ*ØŒ>•ð‰ý Û#…NÝ PHÿ«•Jû™Ö\Miqë8ÂÉÆ2”+:€Œ» úŽªC Ó4›Û?ÞÜþãËâü1ߥvâõæ)’Ѱ ¨¤õ0SÞ÷Óy˜Žœ¥•‘ai8ûÀ†0ºÇî| AÄÜŸæ­Ð¢UÍ\cpG ƒH§u„S ˆW`´h¨ÃŸî‡ûþÛ#:#5ÙÈémÿ#>’óïÂŸà…¤äYózR JÙ¸ ê·ÅÅtñŸç.Uƒ}äèÝÝ2ù·f ™f»SÖ•¢ÉlüCjã}{dŒÙ€›r–Ç~‡0åØò¡EK5^#pÚ8•«I!Àª-2 ¬ºïΩîa¸÷ãÙÛm rI!‹Ã6ƒ9žmw ï’¯@8ia ëÀÁÅ'¦4ÉIeql÷©ÀºñE'K6Àœ6‹`ˆƒZefIƒ@|p öâÀøÖ±hoØFS5ÑP9wŽÄMN³0\üQ× &¨)¦ÖÖê|wö~”à‘,wvL^5>zˆ¬rø}†ÚîHÔP»¢»]â˜Fe7ïEäLO~¤M°íu‚óhæJz¡Â|u¡;ÆUµH¼Ã9¸¡ZºbÂø& þ8ÒE.óßt²†ìfyä¬ÍD|ü°Œ•ûŸ¥`ì}¦/ ¨·+ÐשµUůØP´! ᬓÑAØ{Ùèp¼¤óM"‘9©Ðá.¬h˜3;# ChÝ0V€wªä‘‚šIGƒŠî")^bÆ¡TÊéuÆQZ©æ¾0[)œq§=¼I£ñTõí¸@iܲ flŸÝãzü–¢wñ~×¾›ÍžÇ‰‘· ©Úô+ê8%5¹»Ì‘Õ% þRaöáŒþiR{h[~<ùµœY¬Vq9ÍVù ³çI(¹`°ßÔCgš‹µL(x0H ÌÃBBoS£êçEhƒãm1¤z:{Þqƒ\ŒÅ ón?Æ“:D»è :Šä¨30›Î@—˜ê f(o·¹Þ3>#óÐ`ãR¥íx¸GÑŸÒ¨“:² h4“d›®!Xþ$ók$@»êØDæï¨ £k*Èä‚"rçkׯ° +æ‹J#2‚p0»q‘²ÒX]ïÖ}%U—pˆÉ b…u‰HéD6uh“ìèD*Çáò#t¨O4 öIñ §žíò«xK1'KRP5þþн"$ )‘<•àéùà‡!zÄÙÂ:.ß_ârE˜ §µ”1+HÈËà2·ù`çW®a;g nÆY¦|J ˆ¶nBº¹>U»ø”¢Å)P ^‰H]ì¾g¶ú '¦ö3.E0í%"R·pN'æ®–Á*ª¤Tj\­àò ´Yžøÿ42_{J:±‰¨F‹ØØúÜyIé .k‹èpWê3³Һע.6!‰ÂTQ¼uO£~ó’JK鸶¬6c* _C5]|›ªSôÍ*\φŽhE8½ôQ«°˜†?Y]"À‡TÅùVi0ãAz$äLȇ”KýEˆÀ@Ü 2Áëøä·Ë "…Àäh“Ñ3 ó”¶Ïón–v¥ÚÓíß%åk‚vQ‘Ÿh÷ 4Æ‚Ð.swªªäéZRÛÃ*ý9Ž)G8Œ¬`ʇ=$ÈÕÇó€Ð²6ý  ù8±TÇæQb /Óºnˆ/Ô'û¡Á×4ƒ€•mʾ!崈˼]KÜâ"”ÿŸûé¤ïY1¯>jG·ƒ(mÿ÷ÂbÙyZÿlvAJ¯,œ q—–nÄåøo ¼d<«Ý})úÐ)jõ‰ð“§û4"˜>暪Ÿô8iȹ¿]«6+È—ŒiÂíç»wï4Þ|-ŠÅ!ÂÅb1«J ‘•¶XË&Vnb5ÍRŽáËÅ.Y½8`5ë©Ð²x¢é 13L•ãýRÙhêä¾îRQ4ª„gHR6FøÀçlë§X)XxkCiÚ¢@[£ Ô•;ó¯¹]µ)K þÛÜ®ZWªJ°u% ßWÜ®Jª„ä¬}µEXD!tq›þ‘¡o¶Ã‡?Ìâ°<™e¡¸§Î\áY¿ãhœã§4.ÿö²ÕoÎsÙÒ8|ͺ†$ÚZÁÉ`Y]è²;~œºx2¨_o`Ó%À̪EL=&!­ÈL‚BC¤gâ}Ö`î¾Z“D%KØcc„%•ó==UPOzbl œ¿Ý™ÝÎà áòÖ×*®¤Rö~‹ù+E²R^\6„ Ú§ýÜ‹çÎ. D»ôŠù)Yl@LøeÈ/ aAº1« Ÿ[ŸD©FQJ¬ zsåB'2îoÓa@­³¦›1Ƚd~뺃–Ö^£Œ÷7©XÏ}¯DS|ìúü¢P)ºÞ·zæÁ.f‘óĈ“«4„êT•ÑžKÈÇ6)Â.å‹k1[Ÿ(5ÄŸŽ®×èÃꟇ†¬c;R,…ÙD÷Sâ °N¡Kà·$#ƒ0±Ñv³S®¶ñüÕÓ†-Å‹î¸U”¼éâ!TXÖ®©wÓBRr(áWz‘¦¶Ç 9VÊ6¥’‡›ÖIÎÇð;¼H¯nÆ<>˜æ¬ÞÔWu "üùØ©vM >ùf™\²ðý_ÖWn/Fª‹'&h:¨ÑY÷‡_¾ BÕúb¹` ,® Œº#Jø~9Úæìxô:æEšËòkš–×ÿW™˜j­1·JÂýk´S}ر)P£‘5dâ‹ÜÃZÊ=V.o™ :C özY}KBÔ!nÛ|âmè·“— o8ø„¨Z —3Æoî+x× A˜”¡yàqº±Cå7ãcwÂ߀]·`1z’÷¥Kåµ-AȺ®ëõ-_üþ‡K;VͬaÅ3ßÜ©àø5‹%^¢–z1bFt` 5ÇY*;–ÒÓ^z“¬P¥Y+…ÆÄ±uÃ8ÏQM—&Y™•ä~|X*›';½§,›Hµù½ö!òª©(‹ÆŸ"ìO¯»à÷˜È²®M÷ ~?(Ã&HÍ”‹«}8ƒ@×P»)­2q&^sTYË:KS¿ñŠ#9ɪ¡ÚKXCl­• 0¨¢8;4ƒÐã›ABAå*èá'öÜ2ò0š–"ôܘ•(¼û¬¦/¼´Ò_æå—çHµySè8 Xag[þ­­s¡ÇºÖ´²ŠÆÚÒÔ îÀ7âª&ª»U²xK F™Œ|éãÔÊ_x_Ĺ‘)bdæ´ˆ~p5«¸Sô²ãÈÍZöûE \ÕÔ^@ _•¿Ä_´ž϶òRM"†YUv9ÆÚߦKo"bY3à~N€Ÿ»Ì`oáÝ >Ö€¥E]¯šÊÒUĪb€ohª©üÏ´’KhĪj@ ÚˆL5þ%êF• mJé´ˆñÖßùµåzÖ˜¹—M¿ÀYÙ8®_øƒ³ÍÀQ4 ¹%v«Vž‰öJÌÇEë!­‹¥NZAËKbõàfU¿?:éænÀSµoLåïâ1’®G¥¯^ƒøñ œŸùHŸ«Žt·8ú¶]¬œ¯‹/¶-±Ru®ÖXzÏ ™Nè|ëËU9ÍÃ-¦ã]š <…Ù!@v(ÞFÒ÷æ|ºÏú}.ì0âU$­*C¾'ç5ö¼ðŸÛZæÍ0;š|ÞS9Œm¿ «u“MÒœ¤¨ã›!Õ$‡Í¯­Û+m‚èY*M‹=†ª+.È;ÛhÔÒ®ˆÅ ¶¢ªfNr;iû%¿ŠŸˆ×‹02|pwÖþ àa¼2ë}£UŸþ‡~oì+2¾ÇH…Æ-ÞË<P1·(ßH‘ËÏž…:™–}Öž`,—Qu"«†·}  X)A!ÃxQ¯w§{çxæhã;[Te—·pØðf›õŒyö¬Ä{½e4Иÿ+féËFÑ0ç?¨š«8Ç_s‹ìÂ|ÙU¨Ê…_v†¾¤â‚bÐ7nõÅNÅC뻥ÿ´k½Í‹=¼•¢:Ù`E?ˆèúª‚Ð2D„…»JÛ•©6®õLsÖaÒg½žÃob ­7øä‹Xc¶Š˜äYþÿ…¯€m¯& Ÿ/˜â_wóëóëá¾ÿx·øâÕö¥‘ñkH¾þ2òФ;»Ò¨jê嬔ÆÓûO( =Jþ¨ø£æ&>*|4‚?Jþ¨ø£æÙRvþ°kþØðGGGÅæ;×¶&TÉV-ýÿúSøêž4ñgÇGx`^'Vi[1[.+¿à¨k*80©.‘ªbÐ0¬R†ßj¦‹±¦5éâuã÷Ý3ß! óŠöO3_Nƒ_ÐP+íïâñ$ºÀgó‹áþþn}ؤå0èìaŒÏv& £~+*¬lfWÞ]øLHámÛ·y¶ÑóóŸ?× õà]ÅT 1Âxð›Ôëä÷Sùç6¬íâb7×*\Z7üÂ’à¿ Ço*^èÂòu¬=üâB £â#µXF–BÇOd?a™—!&rk‡˜Ý·SõØ x@:pGÜÆÓú¢üÁ…?pCÁÞ¡Fÿ„ÕÃir´÷ú—iª´±¢P`©h­pR•RêéçXm¸úkÒerÍÓ—áÊ‚JSçñkÁ'_§3eb½FÓêY„WîËøJ‡X\¶œD7 ·ãì×cÇ‚!Þ~/L°²Ç‚Ø8ÛŠ¥}}!<Œ_J*Bzÿ¯H¤—üÿ\д—ÚY…Ælòóõðp<¶ýÓ«âÍùðâp‚—ŒÁuÇaÆÀ=¼Ú®»hŸ’ç¸ü¼;•ó2b˜`Lß?ÀQ×ç÷wô¿0•Ã6PxƧ8OõwÙ<åây.°L)È*s+R*ò&tY¢¤´Ôóƒ1UòÐȰ¸rµ˜ïο¿ù?¹F ¦endstream endobj 411 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 336 >> stream xœcd`ab`ddðñ NÌ+¶Ô JM/ÍI,‰©ÿfü!ÃôC–¹»ûÇ—Ÿ^¬=<ŒÝ<ÌÝ<,¿oú$øÝŸÿ»3#cxZ®s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kê¡9 Êe``` b`0f`bdd‰ú¾†ï?ÓÌÇ Ê¾Ÿ?ó}ò1¡7/¾w<ê~$.ÌñS@ìwÜ÷›¬Â_>.¿|ù®Ô§ß÷+Ëýžð×ëÅ÷óßMؾý>ÏZñ£_ÔËÏ÷7¿Üoõï“¿«³}ç8ì,ÏWºðGÀœï¡ ç.d;Ãõš[Ž‹%$$ž‡³›‡{Û쾞޾žžž S§òðïŸÚ××ÛÓÓÛ3±‡—fƒlendstream endobj 412 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2078 >> stream xœU{T“çÿB ~*ÔkÔlîKj‹®V‘iO{ªuQ9RŽËÔ*ÄpM¸…[Èry’ ! AnAV´jÑ):µºÙµUk·9{6íY·¾á|žÓ}‘zjwN·ýóó½ç=ïïò<Ïï¡aáaF[¸{O’°Wôæú]å¼Afèluð‡´àʰàè¥$o&m&5"éþÞʹå‹QÍ"”¶í^ˆÑi´}9EqÂbI© —_ÎÙ»iýzêû&'CÂÙÃIàeæ Åeù¯(‹“³'†óK¡˜:p~,,âddóy9a'%{?'5yGR2'>)1uoò+1ÿÆêÙ/†a Š„¥eå¢êìAr†%b{±d,KÅ~½ŠíǶaÛ±X<–€½†íÁR2±plœ¶ˆf [f¦¿E„7D¬ŒG|ɰÌY7ç+œú^ø:ìk±:op—’~¡mš|Œ^b¶Ê@-Õi*ê y®ps*àJ™¾§«õX³‡Ý~Òèp¿š9¼#î 7¿„PœÊéæA”Š%ÙÕ|i2¨q™šìÐè6î\ƒ½€;,Š‚ŠúšGúÕRÐBKÒ&·3¹ÏÚϧÇвF[ïé®.–ÝÞ×÷àC-yù¿:LΫJg׿ië¡Oú?DkÌE:räÒˆ~9oÒƒí¨—ùyâÈ%äròEruÌûÛ¢eh)ŠF/Û†˜À¯$é;óß9”ÏœÏíúxØýáivßùÉc£€Ïg¿ð5mðf©þœzwéÄ»CªƒQÌÑC©‰™¹‚2¢.À÷füŸRÛ\M¾fbµÌchÁ}`5A/tÔÊÊ Ûk]Ý%ŽÖu–‡üWÞ¥hlx-Ÿ¢× X&ôÊ»Å%Ýå¦ô–Bs®NàíŽ÷Ôò-DŽŠ¢¸¢©²ËÓá dúãȹܘ”­W¥GUÄ„< ‡}xQÙ’V’lž¨&&L0JÝï)oª«çjö&ŸÉø­F/BR£Bî.ó¡}bмL†¡—™Vhd:´žîॼ®Ê0Übô˜Üì›h"âS†Ó í69T³·0¨25¶YN™µº¸NT¥&²È؈×Uu ‘YÀÁþc;9 •5é¾´©/΢h U€°Õžö'Ó-éÁ[ßtcN]©&ªvIöå^©rxg‘¯¡#OL¬v©¥&_Y ÐÛÉUqÆîD`íWŸöžé¼ÖÿvKg£Üø»‚¾ôu9d´¢¶LmzSk#aîîùÛà«¶¤´®PUÉN#È3€‹¿rC<>:èò÷vî@uŒCÇH³³}ÐvŒ8ÅôÂDÞéÁ:íï¥ÏÌŸÙÈl®7)ór4 ¸f< ¸JF©µRj-Œvh·¶[cÔ%´j)‰?ÉY!‰KÚ‘ À³ËOáSÆÓF¯¸µRy@³ýíIîµ¾ußÃFó‚…Í}Mæq`µQ‡\ò­|æÒÆ+拜F“ô™´à\æ¹b[uEqE©ÜÐЬ ¬2—AVI¯Hó‹÷¾[sÑsÄÜkîa£X“Ç2MO½«–(‹TD )Ô5¨„PʱR\Y\UVY+<®;öÉá¯Ø–îFËÿhd:%Ï„Lœs_rr¤Ï}¢›èI™Rúà6ŒüÖ5îû`­‚søóÃüø:=8ôŸ ~u<×Y2‘RHe”»dààd8EF“¯FO¥\¹0v²ÃŶr—ú¿[82QÂTvÿ”Ê´Í-ûäQfbw_:yz ð‹-o¨@§‘‡¢àö–ç"†—¬ø‚©¶)šê¡´Z•"iÛfQà †®Œº\f™œ=­pBëÌâ6h³©p(êQ›]>{`âðp<¹”\F®"£7ÙúøÁg§~3D<Aù^ô…ƒß@:ÿ÷áÄ˼Ž9(Æïàtó@ÛõÞ–sвýñÑäÚõä.2üÒ®{³O¿ƒZ˜/“› G¯=2¶Q ×QX’µù:Fò¼ÎƒŠùÐ饕ÞA7¨ ãÎ,aÒ:²ö xrQ—ƈÈ9+âgG6ÔÄ—;ž`µoƒV²“¥*–¦òA":,F4áîêV‰¨¸*‡;*y8†Ö¢¥^âú(âîl2ÔQÉðã(Úh XÆ À Žê\¹¦êq±£¶ÝÓã$f>5þK„-FË.ø/._r=ü¾­älê´úØmƒ`pŽö?\ÑÒi= ®ÿÒŸe*qÕ!6?¦t§²BQbÖ·»e §#˜Ëì9Ê Â\¡§ºÓ×ß;@ÌîI‘o&¶—†Ò¦‘Z”HÆ;œøK|ÓfOŠC *C–M4@%óÝïö¨{{œP§Ñ”Z%eàTð™­z—‰˜D<½Qo#eƒµV¥ÓÉ•DZRÞÙT[°È…T+Ï'ñU÷ mj6ŠÊ먫€8Öº××müÙÖþvš1/<%…9"ç{½ÞШorZ"#Gô.Ê“Þ`1˜"£0ì_YTendstream endobj 413 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 423 >> stream xœcd`ab`dd÷ñõM,É®ÌMÊÏ)6Ó JM/ÍI,I©ÿfü!ÃôC–¹»ûÇÊ©¬=<ŒÝ<ÌÝ<,~ˆ }/ü^Èÿ=O€…‘1<·ºÝ9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õ°;U4±¸$µ(³8;(ÆÀÀÀÈÌÀØÅÀÄÈÈ2÷û¾ÿLu¾o:ËücåwCÑîu'üÖ;!ñ]óøì‰Ó'uÏ—\X1½®¥³«¹^î·ŠáÌ諾3XçǪ̂¬ª®«êèmèn—›ù[á·ÊÓúÉ=-Ý’uõ¥eÓÛfµÊ×òÿ­é_ÝZßÒ].Y:¯~ƤޞÉÓ徫> stream xœcd`ab`ddôñ ÊÏMÌ3× JM/ÍI, ªþfü!ÃôC–¹ûwïîŸM¬Ý<ÌÝ<,~p }üÈÿÝW€™‘1<=ß9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õÐ]ã3000ih20p2pìg‰Xÿ} ߯}¹ ¿+Ê~U—3~g?Ïüƒûw£h÷ÄŽÞ–I¿%¿óD}·ëþîÕý}ѧïw¯ö÷÷õuOà˜^ßÝ,÷;è·TäïŒîߺݿ·þÎÿõ[còôîéò¨fÎ:ÏüýÞ÷>ÑîßóG}Wàh©ï®oëë˜Ø"ÿÐæõoéîßÓº§zý6úÍ YUÕÕÕÝÆÑÖ×2uú«³ßÏÊm¿·â;C÷wN¾òù?œg}Ï›:e>Ûz®[Ür\,!ù<œÝ<ÜK{{{{úz'õNZ½‚‡gùÄÞMý=ý“ú'÷Oâáe`¨¯sendstream endobj 415 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 804 >> stream xœm]hSgÇß·IÙµ³Ml=9È”-õ CQ°ŠX[ÝÒªtóôËD³œØÆSMŽmÒ$Ísrš–¤IšXY›2;?â¬èÞkëìb^T/&Œá{Â+¸ìr°ÿÅsñû?<Ïÿ‘¾aŒWµ´¶ ûàtt~fµuŸ>ïzÿuÖiuX«¯ÐÖꀞ*Õ•š+Á¨£þ~)½’ø>$îäL 2`|Ìé“CM¢Û×ë8m÷ð[6mÚjµ–çç|‡ßÓÈ7 gE©ï¬ƒ\]|sck#H”ÊÐÁ¯]|G·]pöðbßÞý¤mŸ­ßo;|ä‹¶ ÿ›î?Ð)|ÛÑ%¸í×y„ÞÁr«jÆ1 XA•åŽHưç*jÈ\õ{œÜˆŠš¥HØ%Lô¿_Бç¥J6'O‰n×9WÆ;3;Sœá¦ßyÙL¢þØÐåçÙñMG0R83uu,Ÿœ²\ûýgR«¦Ô4¤Ìó·Úן¤õý,¨Y%1®rÓ/îܸ L.t{†.õ¶ZZè¶H ,C¿ùÄÝ¿¾¹C¸ ®ú}Åt %½¥£~¢ÝÕ•ôqQu8.\$iT[4…&¥Ÿ€‘ýà—S±DÌr%š~g#UtÎDïѼ< –¯ö²ùtFU92A®ÿB ¿Ñuãs¾orÀ ù¤-å‡×—=è%í³ZÃ,‘ð£E­iQWª#)þÞø”V'’ )#CøR,ÜálÔG÷é'´è3ÐÊ¿ö]Äc5É'{ ÊÈP'õJ‚»Mv’Ýcd3Y ¤ÞL5bwì½ ¯àÍ3Ò@vçÒBy(ÞF×Ðíþ?µÓó肟2å\; ›ÇÚš•ôg%{H¹NúQy×Jw_Ò“2¢ŒB‚È^äàËpˆ»0ì‹]¾“càeüYH߃¡Á¡° pÇé×½‡%ˆ˜ý0Âå /³¤vþíkRO–ˆ €©– ZS*•&î‚¡¸l¡Š[¦o€±ª¨¨ŠšV™±Ñ´ÑøC<>§”5Ï(Æåý›†n²endstream endobj 416 0 obj << /Filter /FlateDecode /Length 18735 >> stream xœí½ßsãH’çù®a_hc·vÔ]%ñ;0fw=×Ó³e»½ÓU²ë‡ª¶³œL±JuRf—2{jgÿð{>wî@A‚IÁÊÊR y">_÷düº* µ*ñ¿ößO7¿ûκÕO_nÊÕO7¿Þ¨ú¯«öŸO«ßß…RŠŠª¬ÔênsÓÔU+}QúUp¡¨Œ[Ý=Ýü°þþ¶,Jg‚*«õýí;ü%‚]\ÿ[ò‡÷_¾>¼ÿtûÎ 5ãú¿u,ÿãVû¢ŠÁuxþ+˜¢,ãú¿vþòùSÒöÏéuž?ÒEüú_Ú:®²1®?ÞÊ/uËZ6ëÿöðáVãx¼í6Õ¹â#uŬÿåÿKÍ3¯½×á¯wß<¯SvƸ¢²€ïîãÍZ…Û»_nþpwóg@º¶*¼_Y UJ³Ò6–…·«çûÕ_VŸn\¬ÖfõHð-üÿ ¨öÇ¥•+TXy«BaíêéF+]¶â’Ç›ï·Xq‰‰ª(Cce|(œI­¨$µrª*ªN[T’Zù  Ói‹JR«¨m:mQIjU…P¨N[T’XõÇH¬F==”+_(íJÛñt ¥V^GPÃ6žîýí;e‚/‚_ûXÿì סL~ÖblRžÔ ñ¥ö……õ0ëŠèp˜mIPJ•k`l±*ax—t¬œóEô©U[Ò±ò sŒ©U[Ò± !±J­Ú’ŽUŒà *µjKR«P–&±¢’ŽU;îÄ*!±£Œ(á;U›¹¢­†‘µ3Ê¥ˆ­ÖîözU¨ôZA±v ¦Ž¸ÖÍÏïvmÊmj±»é2:$G%AEpj쵌¬_’†+;Drq¥l(±ëJÛ²0šf„q_Ö«PxçMÇ•a¨¤ºžJ‘Áº4¶Ô8eäL Ì‘@¯Œ `UO[wO÷hÍX«ºqí ôÕ7\ÿôùÖ@×+·.VŸ6·‰z}ÿáëýGˆíP¥¯Š}4ãí`¡ó°rU.¬žJæ3 ‰~ .ñPâÑ•5LÔÐdâÜ„ L¿6tØH ±aZ̆i9Ãá"8™ ‡ÖY‚#ã8Œ‚ØP»Ì†bl“™ê5×M&ñ5‡ÓPˆ¡áFð ÏÌ„†³8f#aH©½Ì²ÌÚ1]6Œ¢e#*ÐÐ#˜†ŽÛ¨9¼æªÐˆßxm§;¥÷ct¤d˜—0¦#3ï0^Œ™—¡ÌxX ÆÓÞ&a3Ùs®œxŽ3ÓóäœGÚ.¦##g:<¦Ãs8Ñ‘šèH Ó‘0¦ý1‰ç ›Ã=çºØˆçXWÅs’’a:\ÂtxäLG–m¢Ãó8Ó¡©Tèp ÓD‡[f:í¬½IØÃs.™xŽ fºçÀ•|—ñšN2ÿÓ¡ôŽáPÁ0i—FÎsö&A3Ùq®ø†1Æo¤d|œv8TÀp$‚†áÐŒ½IМÆo.Mâ7åÀ^œ¯Äpä™…EÙ¹{Ü©” "•’¤²ÖRΆ‘Òö‚& )·;ìmåÀ~: ¨ø¨ÒzÀGùY#eÈ‚ôº Óà Ó"³Io÷ÚñˆÅK3°+xmÈ„”KF2.F*‹Õ RÙÓ¸¤d*·<è·ˆô,ýöò²Ÿž“RÉØD0bNÕFóÝF,?Œ˜R³ÖkÏÉc¯ pãÃÐmØ*¾¢CwìΘ*—•Î资ôÕ<÷º²ŸÚl¾mðXÚAI”`ÊÕۡʧ|¸ }~ðŒ™KæÆ,7ñÓòv?]  ™|9ä÷ÉöÃÌ6—ŒY ˆ™R°My_^ oƒÌ¾lÝ /çéƒÌ;€gÌ\Ÿ½Ü<·<^J†—Èý¤à…u’~g¯…Øîï‹'‚cBë%&XŠd2š"ߨ–BZЉZˆ%&^QŠ _½Ý`Ê“”`î*A«úFtx£q:pDøpÉ!Aà¹äìÁoì—‡ýÝ\ôNáòÀoì‹¿ŸÞßÕ%ï3—ÌŽ™™êÎÞ­.9Ã?{ÈäË.{¤UúTéÌÅ)s Í'å.”‰;Ï<Ì)OâÎ-3wšg6B½ãÛ õcRgowYf~àåZù¶éì¥Ø$B\z\´:ËÞg’B†žKÁॄ¾Oñ”R0æsˆ åó‹¯e–áï"º“€{RðCÇCb¢Ìv‹§‚b†ì]±SHAà©D N‘BÚ‘’ásIÁàg‰Fˆ“ÇÄ"Ä–˜0ÙïEŠÃ¥ðƒR°\›Dˆ%&^QŽ •}Fc‘âUbBeŸìX„x˜01{Ç™¥˜ ¼`æ’0SªË%»@„±Œ äv|¹¸Ý—€£Ùýpþ>Wðó‹´ÜNöˆåZ1oÈGõÓ· ™}YçÝg‹9¯u x^Úr)²‘ øyý]çÝ‹'‚c¢ìçÝíÅÓt‡5IœlXRë”âðã›ìZg"Å&"‰EˆWŠ ú϶N!ƒÏR îó«HA6›DˆSÇÄ"DbÃ1áúû€=¥ÈÒ½C¥È1Ÿ-xÁ¼s¸þÎ`Á~Tììïºïe?^…âïºÇfÁ~Tìäïªê¿»°€ïŒ‚1Ïêï öÅßO†ýÝï“ãKO >K6·<æØü옹!ïöûäï ä!³/›þ÷‡,˜ç÷eÓÿþò1|yŸmæBùÊd³Æ‹'‰1yrú’š söRÂļI Å—ȉ/»£eËscÎ_%y<7fÅ!¾ìŽ–-/_Îïì5&OÛšÁœ}Üv 3oz³ÂcÀ²Qм‡ù(ò‘Žˆ#RìùÝ¿Eš×–¦›73ùµ^?BÞ\tœ™ ¾ùõ&ªre£­°ÔZ…' ­´eáíêù~õ—Õ§W«µYýº} ÿÿrS®@:e6î­‚-ªË€·ô©ä‘K‚Š€µP[+/‘ZMÇúåªôUÕ*Àh Àn;§TÝwýÎië ‡•½-”­ýÊI, •ÁË(£u5P)A›æ-ãÑÈùÂøÆÊ–ºphemë¶,ØG,ðÍGÍÐ.T)€öí!F¶ª ñ‚® ¬œ³ø5Þ‚x¿$Û«B£ë¸PÄÐXyÓ\°u§',qMçÉÁÀ* [Ë5Á*(Sxn¼1ÌÉç»Ñ(ÆÂè•<Ý«H>Ý÷„%¿¤¡cU™¾ÇV•-‹à;Vº„N$o<­~wó»ï4üáµV«;šWÔJiðc…3õ›wÐ×ÕÝóÍúñöî—›?Ü56­ÅÝÃc¹ý-‚¤Ú£Ã@ȇ9´àÌ¡vË„YZt%H9+Fë£AñCšØò -zœžæl0ÀÞ¶výÙñ´³Y1B »:¤fkVžZ—¹Ô¥)¢™£Æ©Þb“Í8˜Â]geʸÄDÕlóÀ*ÂTéljE%©U“`Õi‹J+ƒqmÒ¶¸$µÒ¬§ÎSIjeaúR¶¨$µê[8$6åê§Aý`eZÁ*ª]i;úA¤*뇎 …Eý~X{ûzËÈÚÇúg äu(ÛŸ[-6Á&6IÝoÿz÷mãÚÃÊhCº¸´%¡ôàXªU2³rÏåí¬SdäK|‡/1j :FÁÕÄŨ-èUeU€c‹Q[Q?Ù(íøŽØù;d¯a…)‘;®Ñ5Üo‚èjíàGaY³k…Åû£× Ë1~œ_ër]v鯮’8¡ÉòxdYI?ïÓ:ââ½òe ʆúwHéðu{ŠáqÔ+X®7©ÿ˜‘\Ѧ(ˈÖ¥±Nãô‘áÃÙËANøNA®W©ju÷ñf}÷ðtÖ¶ÎQ!|@ž*ú†íŸ>ßèzåÖÅêáÓæVã/Q¯ï?|½ÿ( ëÁö 4I®Î’Üúlâ ÒظÊDŽËKŽKì¤ÆáYêû é&PÜs̸ÖûJCw±„&Ö4«U¬S)¡©(@Ÿ<朦ô@Ñ'%<©Ar‚»,1‚SÃfÆ<;ŠI€”p‰v€”¹±Ùl™È…Ôw\H)92…k]á²Ü`VôòwEG­Ÿƒ” r’y9PÁVG 'q†s„À¾`O6+Œ` AsÉ”A3¨áQS¥M2æ×–þTcf¥Uœ¬´ÅWd^È’Æ0Р¹dØß_Æ 9òÒ«8Yú+‚@¾£òy¿Ã«½4q—Ï2RWŒn“€Ûê? ¸|ÎgYG=È'iDÈ]KYÆ'ÀäBŵ6 ËŽ.,'³dÏ4Yôê4™—ŒägAs“°97ÛÆñ“¡ ƒË%C~ë’s¾m´ì·¦ÿé¿öJOÛš¹hºyßæuSÓÿ4àBro¯Ì6Kû ÌvŸev{x$Àã”Ùfi¹§O–¡ÿ"ï[dÉÝ?À)’oÝ+#É^é²¼s–#½9LbÇ%Ù‹L¯@“jm–SýraÙeÉž™ß]ºTšýëÛóÛI ¹Ý¼î"<.7ÉZ9­Ç]„·µŸÛsJ8g¸<îª;ž)ªŠöpõNç‚V…ãGjèÚâ×·0Øï¡º`k´õiöø­‰Ê¢bÎ*œš#=~ šËШ*ë3ßÛjÍÈ®LdÃÏö8Sx•^Δ0×x7xü0¾ßot3BWag›c’K]¸ô {(qE¯A+hVqE4‚±DÃ7g);ÝÈÁÔà¥ê^Е:å–…ª{A b$%ž¸¬ðëƒzVÑ$FÑ•ë9¸8ò+T¦c…}jdz¼6¸GYŠÂׯNÍp`w° fÎ#ƒÞáð+ÑÍ,-Bl„jÎ>VuµÛÍÕ¢?V9Îu”ºQ¦&5g‹º,Œ›“£Ñ¢7ÌÙGã <Ýœ-bKzVŽ¿}±šµEX¸Ü(ǃ–3« •,^O7§: SnÅ%É©òÖÀlY¯>lE%©ÎÂU§-*I­<8¹é´E%©Uð°œvÚ¢’ÔªRmÂVT’XõÇH¬Æ.ïœANZè·R°ˆèrØæ”qïoß)ƒ«¤_ûXÿì`âY‡2ùY‹M°IyR7D9’«P¯ì¼ÄP‰œ%ýýV+Xäë#æe!b+eš£ÐIBƒKÈwmU5›i)h&q6˜™ëýŽ8)OS\ÉÇX'Àìí4ß%•œŒ!©D§T2ŠÆ4x æJ2_R67³Ù²Z©ïþ¸¢fä”'<‚~ªñ$9ŒF®Ý¢I†@h¤b#°ÚES*íŽ&-@“˜lq"3Õe®LrÒzŒ3øLRÒ¦5rñ™ÙH%‚Õ†ÙH¥a8ÔÌ&!s¸Ó\™ÄkÔ‰œ†G0 L#ƒ\ØdÐaÔ‰üå ˆ¯àôS…ü.|é X’’Wv¤2Õ[®—Šx G¿xKß[Êâ-¹·àÙôí-Rr6Ù$\.Ú_fæ"ƒgÓ¿ŽÇH+§#3è ˆáuä,0$ç«G?ƒ?$%C ¤7SHH ¡Z9ŠA¹q”‡Ë}®£LÔ,§ïfÏvœäØIIëÙR‹¦¾]| œ¾Ÿ½v6â9xxü1¾s&pØw¿ð›Åg¶û Y¿øÍ¿!8‹ï ùŽ]æœa߱˼3æ;*^ïHÉaxØf“À¹tß™Ÿ`ýâ;C¾ÓÀY|gÈwü5ä;Óð yŠ¿†ìæ@ìæt¹Ì™ }“ ü4^p&gÍKû šÏ«@‰CÈÎ}?é ˆ†îùvaC§“Ÿ:ñûLØÐ)Ú“ºÃ%[º34n:dúxêŸÁ|ì!ÑÅ'á{ô!Ñ!·'“Ù'*÷“Ù'âö“:Q4ñáœÇ“Ûç&ÃØ•òÙ‰?±ÅµòÜf„Ûg—‚Þeç@îÒAîNRÒNîÇÂç&Äû)»—ŽøÊ¤ÔZJ(µ–ZyJ7D]O˜‘ÎPÙ †×1¬Þ™„×1¨ì”Á‹m•’ú˜1×¢Z/*Ìç¾eÙIoFïô¾·Œ";‘ï-Ãè²÷–Qd'ç½ Œ¤äõý‚OÃ{Ë(²îÞ2ŒÞ©uoEvÝ[†Ñ;]î-£ÈNŒ{Ë0z§À½eÙÉnoFï´¶·Œ";í-Ãè¡ö–Qd§ ½AlÓ;Çì-£ÈN"» R2«_ðÉaoEvÒ×ÕÂòyÙÄÏNÉš}èg2ÐÞV×:ÌþùRGç¼Â+_;a>-éü»Ü;”èü;œýsÄ.ÑrÇZ v÷¤Œ}h“rÝ¡¾ÜCûpØ×vù«‚wýöÜ­§P@[DÌÉŒÁ‘=A––¸,'?Ô_Ò [YpF.C£ðd ªÖ|¥¸_Ãï‡!™4ïÀï/MóMÕ|5‹ßg¬º—³•oÎ% ¤*b" ¹ ›ËØÈלèœXyñë+ïtsFjÍ×V¿ªþjòöp ¬_¶VõaP3(Sh<ŒÃF­jC(¹ójàÔ¼+ꦪ²ÂóL %…7ßrÍ»N·*绑‰ßr^Ÿ8AÌ] ·h$Ì÷>ƒÂ*ÛœAî®ô ß~~Seú|ß§ouUh¯çì#¤ÂVaæ(\é`Šuðƒ–2¥•Ã=ƒS°ä¨ú¨!¥ëÙJêI)³’˜íC3»)^{”ÄŠK+§*€]Ηà)‹=Ÿœ=ŸK´Ñ3áOÓY‡M—è9BÎÚaÝ,;l‚s͊̆›a6¡ªã;aƒ_GhUÊS×…Ã:0ÜV8\ÂpŒju ¡s˽ƒ&6IËÙYÓè ø‹3<|qÂãašn‚ˆñÀܨLi?ÀÊx,-ÊvðØúPÐGã)ñeÌÄãu ¹ã¡qõŽ›Xà¤pú'NL£CéÓq•k{Ìt(‘:°S­OI:‰)ç³Ì4Â^¬3—s˽3-¢ÍNÃØÂ”º#L©Ë”†%%s+Á]%”-*ý‚Óé´?•ú,rѸdša)8å`)xac)ü$)¨åÞy‹¯%Dv"È+KA˜ÙfL×’›Ü2ÅᥗÅaÌ,§v,—L‡“4Gn8Á¶·Â£¤=Æd‘æ|¤ÉÎ^¹$qh[ âðí°q(цõcmx&dmxOBÚÈüy 6Ôrïä—E™³Q&;wæ²µáÛ‡#ÚpºÀâ0f‡¡ˆ8\Ââpê;"'Ì,—ŒˆC-÷N½Y¤9i²3w¶‰CgÌ,×ëŠCƒqøù·ÌCgqÊú•ºqqhÞcmøià飦=ïgæ\„éœ5tÙ²ðÓ†aY$½fY1ËÂëÂ%, o™Oœ#ÂÈ# ÆkzTJÂPËÉIG‹,ç#KvÎҞ⌤:öž£%â\ls \4¬irq¶="O€,—L’‹ÅÙ;Š’sŸ±ÎY¬ì*‘«Áó”4#rM¥8€YÉé‘ô˜€œ¤³€,B&P©”œ@@ÚÜöNÊZä»,ù²³¼v.%%Ô‘â‚D&"2¿ŠÀ-3ÂI"óDÌ"Ëëu$2ß&š"ròÈyç¥É‰¯Oâì\µEä]Eæ­=‹Ìr±Èì,2—ŒˆÌ SeIˆc>n‘øú$Îθ›&2ƒ?[‘ÉfLdÚ®‹Èüz׈ȼ1™á";ø·+2«wvß"ñõIœI¸ˆ¬ÒàFDæ Ö$‘¹„Eæ›~ÇŽc3eï»H|QgçLî)ò$ñóž¦+Áúñ\ÍúɧƒÓOÞÙÛ9DéˆÍE½‹R/;]t~ýH­)ò‘ÉêÑŽŸkÉ»°#êñ~gD=Vø@õX«IêѸz‡±.Ú]vÙÙµoN=fs z\Âêñ>V=eÞÈ££~í.H»ìdä+WßÈQï °z¬«Ç ³zò©â“G6½hwAÚõÏïÞW<ê_.'çý‹œ§ E:$}ó¢ÅÌN¢¿`=[“9yÛ,rÊE ËÉ›ÿ9Yr–S¾@á09å…cÒX°T4¬M¢åeÇæ¢%G¦9p§8EMæÅrr ë)7ÙÎRO¹5Æz²Í°žRkDOVï€Ø4î5ÏBMŽN•í&¢ç£§P&î¬Ö° yn´— ra’ òý1§O•m09/QNŠO—½~ûfôä&\ƒžQómFçU©ÉÑé²]ç• J[1A9ñ"=ùVðž¢93ùZ«a=yT‡éI£Ú$j¾…ð¼n59:u¶óÌõ¼ õä[Ÿ®ß˜¤ž¼Ø¼k,êlŸ¹hwöÚqä•;ì*Y«‘WY‡æ1œ©Â¼wáþ±V¬0{+,_Úuêè,wØf.ú^ ¾Á6dï§ŸRaîñ$…åŪa…‰×EKÌÝ?„_-„'0ǰÉ^XØEbÆ~eËñIÌ6,±| à©cØd/1,_‡ÀÃ*ûÜöÛ‘˜2™IóŒs•˜FµI~£1|ÝS ›˜}FìxSo…“ÐqC¸Ñ÷D!¼è{B}9‚ý^»á£)Ìg€}ÆGXNûš 0÷˜fX¾átnûPû½6˾g¯/G°>á^8S8£³‹Âòõq¯ 0ßy…å}ï#XŸp+¼è{B}9‚Ël'\jG¹Rrz9‰„ˆ—=p8ššlÃjÊ·H«I—š7XËlÏ»HyiRR\ê½e±ˆyz1YºIbÒÀ7‰”K\^´”—.Û³^£˜lÂbÊ‘ÂÔpvûCnRœ»š›DË«Ì+×’#Sg÷ƒ¥fv_MJ.XM¶a5å‹O™:»÷»hyqZRdª*{oñ¬Ô”ÙÎBÍìÆåNjr­ãFf£åùFæ¢å¤Èôí2¹7Ô½³—7"sËËû™s—w“ˆ»w¨.âž§¸»&û–ÎcÉËÝ;O}“ƒï¯@ßM¢îI‚wQ÷5¢wŸÛHY_fR— 3½ìSÄç//Û°¼ò½­§Þ}î+-âž»¸»eȾ>âdúfQÜS_~à=E_~n>I_ξ^C_~ mX^ª´IÄ}à]Ä=š¸».Ûñ6&ç«ï° cúæï¸\·À›DÞNô.ò^ƒ¼¿ùSžk˜?v5Iàá™LàìsÞbÃË÷X¾,ðÑš?æYļ<1ÛØ|µ¸Ì¿«u Ô•IɵrbÔ½#õÕ¢t‘öˆÒbÜþùæ×›¨Ê•¶Âë[«J|…Cã¹ÊÞ®žïWY}ºQ[­Íê7ð†oáÿ_nÊ8„2¡°~åÂÀ·Âµ.~]9•t¢ˆ£‘¨W_1¡â`h±ÆA¥ZY!S¶ßK¸I¸Lt—«æ’xŒÚî0Ü®0Ô^Z+ [½´w¼œ&TU]š”¿ NPÆ)ðZœFh2;¦I«Ã¤U@hÊìÝÒ.Ug®†9MSš\B¬0ës!õ2µÝÉ–»³Ïôàð§pM(¨û"8ãäÉ€p <¢É¹ã$xDÓ@¡T'´æªNZ^hHx_ºÔœxc$tpr ã$À›æ)|óªaŠoÂź¾Ù°z’f'žûÓ"ú`šÈÀÞšl™Ž“ ýˆS"çV8 ` 8IÀwñF$`›1 ø&s+ß.f øžKÀOY¥õú9<~`èmU0{Ä S_˜ t7e`›h+2ðjRA5Se¢1gøn «@Jm ¦†Â¢Á<p$Ø}V„ùU Æl3AVÛ奜u‘ iX¶]ÈfD¾ ÞêÂÏcXVu¡{"K+Ý&åõCc%vbEÅcÇÊä^7C:9ßµAÎ6Œœn¼ "ç—/9&â|Ó’‰“(›„÷QÃ`áíeoî}ßÛܳsƒˆ³’Ÿ¶@²gÍùhÀ“ʈd3IyŠD"ÐãLbÃÌEºmÈ*´:m :N¿Hp* 8|¶?`Î9ä´3rLÈùfùr¶áÓM9?}j‘ócPAN„‡™“,›„øv·_ˆÏKœ½Üd¹ÿ\Ì©„oNË#!¾9M6ühKrJ6L=Ó.+p®ùØÜüÚ±ÍÚµ|D;¾£ÍÚq‰hת¹I¤;J¸,ÒK:Ž»ÒÎwdrÉâ‰TÔ¾é>,žØŒˆ'l[ñøuï°³x\2w¥%îéN(Å]Èïúî"^l¾¯x'ñæ– s+œ™L’mÆdhïnŽÈÀ¯3ŒÉ@wìYš7‰“#ha8¬ëÇBsã$Ýf² ,ŒÜ\¹\aè.þÂÈ‹ ­0üjC2°0tŸu!í6‰*àXTyEU8Z´Œ–‹U!™¢UQl&©@¯ß° Ä|D„V§M"ÁöÐX$8²¾Ú# ˆÌñ5 µE&~ è>h¢¿ÏÐjÀoç k@·õÂÀW{DÁ¢À, pøpñaÀÓ•ˆÀÈI¾±?·üÊ‹@̇EheÚ$ \v\ªfx1E2¹ Ȇ5`› ä%Ò€^×Ö€n±­É&‘àð0X$ØCŽ•í šû}éžE`Yäž`+ ¡ÙI¹˜ ÅsÚÅE7' źˆRt·~ XT¶Xt:+(¢\öš u˜,Œ\î±³P‚mö”Ž2S­ b²t#bŠtÔ?¾WÏc`›ÃÄäWäDL’nDL|#ZnºEˋђ#Óe;Ÿ×sL<–j‚xm‡O!ÛŒˆ'/9µâÑ‹|#Úñc‚¡8tÙŽiQîÌ•ã¨ÓÙNkíèöãNÚ½‚.™6·0Œ"—Š3Šë’Š_–Š„Ù=‚TöùµE¨óŠb šéÇT³ÖvÒ’ŠÅ“ç‡ûˆÇ9 ‹·§À$g¿`O9I˜©òûc™Türî1ÕÕ‰©E¨óŠcÊg{¥½¤Ê^o‘Š¿‚T\gL*êq.÷†Ÿ_Ê™ÉÉ6“䤷|Gää§$"gk³IÄ<<î1_ULŽMí¹XÎIâœýÄ{kR±0»ÇÎva‹Pç%ÇT™íËæ–êªd‘·2ÐëÇ#*ðsVl6‰G —EƒA (tÈžÒ6—N“Vu‘då8X¢ÎSÝ¥H—¥˜ùˆ ùK§/«ÀÌwŽ„FƒN$,œLŽ—íÞš <­~wó»ï4üŽ€´V«;š`ÔJƒ{”Íó¯ÂB‡ïžàOwÏ7ëÇÛ»_nþpWûÖ´$g@/¢›¥EJ£;ßòÏÑbU·„³Žƒøž¡Å ¢¯B•`*‰çðñþ–ÒfÎñão¶ö.ˆ×9”©WWÍÚb(ª&¼fRÆ@œº ƒ &é0 G Á©ÕœÊ8<詚³0sYWÏ…‚etK‹-gVÁVNUÉræpÁqª³0åVRbËf+V&KX¾+.I¬,̃U§-.I¬<8¹é´Å%‰Uð¶^HÄŠK«J5)ˆXq‰XõÇ’«rõÓ „*”+Èc´ƒ%-‘Ð*”VŒÒÖ_i þ°öþö2¸”úµõÏ&žu(“ŸµØ›”'uC¼ýëÝ·#ÀZ“®ÍñxORRaòÕÒØbk§R+9V/±2°ÕK[µ%+‡IJ•Zµ%«à4:fbÕ–t¬Ú¾&VIïwdÜß¡ø}*%‡œ8:ÓÀÆ5Õq­w„¼1¨µn~6EéÖ&)·åÆâ%ÊöÒ?.ádOÆ–•ôÒ?÷ÒÌÐü®VJ[ü” ó¸B¶XxH.:^è0¡ƒe¨Š01×òº4y8dü Õ†õÀÃÌ!Îï>Þ¬ïžîÑZàÖYµÃ¯Ø€$Ý6pÿôù­ÜºX=|ÚÜjü%êõý‡¯÷$¶¡ÉuU–ë®ê³…a„½-O<쾦ì¾\)]óÝVU³/±Ú6_ÂS€…Zµ£òf_‚ëÿ£Ì$RÅLjG“ˆoóœT)ßø±uDbÂ(—¦ÙMJ ¤‹˜Ÿ§ê/ûái6sÍCM«Â= Ó•Ç9üQÆM•6[ft!õÝRT©¹7R³ødâ+ž™ŒA[Ý!ƒû'—‘Z G9Üw%p"ìxB‡ _œÙp ³Z-AÁp`ßdUÕÚ$l&{Í•³Ï 1Îá9Ì‚éc3Ž!†Ã•&b '@›8#:2N¢#%LGxM¡Cµ6 ›<çªØ$ž£&;Ž\‰áŠa6<932a4w„Æãn×΀†A0/玻šì5× F|Æk;‡ÓÈšNp¸„èÈÌ;L‡Î¡:^uÐð ‡Ñ$%Ðp­Mf§¹0â3ÎLÏåR¢af#© ±’&ÈFðpÉÌ~ƒp&û͵ÃßKÌá;²¦.a<¼`àá›ñ@îgÌ+ù™Áw® ŽøŽ æõ|‡m†ñ8ø‹˜–†” ú ªµIP¼š§œ ñ ½9‘_ÐÂ<Ì"Ù` ¾3Á,xT#Q³ «Šæ¾È £ ›9ÊŰI<§œ¾×–K Ó‘)ï0:PɇèpÉÜžSNßk_;ñ¥õ ž“l¢#÷&ˆ¬æÖ½’ç ›Ã=çºØˆç”f –îî2¾Ü\:¬-çbʉ A›3ƒºInu¸éÞ~z>Êwús “`‘Më×è{s£¢7è«`ÎË·8\&ãtmÛÇ“3ú¡:#ß:GTìWöUç,Ù1 ÃâÔdX4ÝçøÖîžf_u»Txì{*^¥ïñóÍc»ŸŠWé~ÇçG£¿<d&(· ‡2Œ‘x§l^˜Sž+RöSÂì»s¨üX*—Ìë§þ„Yâµ#e?5'Ì&¯*}ÈOÍ sÌkGÊ~ZÚyü”KxèGÃ,™Ó$ÌüÌé=·´óxîyÌ—Ã\w†Ž‡™zA˜Éf“@>k_¾dÈìËÖíãË|©Ù1Ëã0Ìòx0ó f9æCüÔº}üt˜ø ÖÇöA:Û0žkǼI ÕOß2dòe_½Wf›“»²¯ÞŠ'¿cödWÌüâè¼®\C^|ùHÙ—ÍѳÜ×ÁÌKÝ9ø²9z&ü–!³/«+Í–wÀœ<Ë<²/«+Í–Ï2ù²Ûëu„+¥,oŽo¡Lw}rî<®ÛíõÃB}_êìíîJ3ês¿I°/þ~z×sgÝ æÜ»õÜY÷y›/—{eÝù N‰™mÄÌ/ÝóH¹Ï#¨fñîr¯<|Á~¨¿Û°×{E‡¨d3&…´CµDœkb“qâX„Øf¯‡;#R\4f.™×ßÍ^OwÈ}Yíõþùc–‡¿gàËj¯7óÈÓ|ÙĽÞ-}]Ì|uÆœoÉrÌôÉ“»rÃøÂ\ùb³'û™²nîüíqg„T²IÏàÉ ã-ŒÙ“õL¹òuQòI=SÒ{å´Ø»Ê½²×ìÅÀkçµIhMö®7G‹¼K‡áç<2/ž&ó©”m®ž2¨ag§l owÊòÁÙ—ÝpF¹`žË—ÝpJ¹@žÏ—u¶ÏoLž’M–`^ÀÏäÝ:Ûú/ØOáïªÊž9ÏžKæÏxr„ç&Žìšö‰Fš£ÄÄ"ÍÁqã³ü}çµÅÙ$Ò,qsVÒpܘì{ '¿ø”‚?’ÓyXÀT‡"Édß°ˆu~bqleÛðã©•}áßjåJì¤Í9I¶/_¨ŸÂÛË}°çêÁç“\~­3‰Fš·g/ ÇÛkçrRœ?æMyr,'úò~wkÌ“|y¿{³ äI¾|:?Î7-§D,=<±ŸÎ‡ß`ôá?ßüzU¹‚¾U…÷+kžE´Ò6–Hèù~õ—Õ§W õV¿&ßÂÿ¿Ü”+¥ ¡°qåü«êÓ±” …®¸äQJ*k [¿pAµò®Õt¬_®2¤˜Á‡Â(CS Œ¬ëwNUeá6p+ë'®ª†Ç¸úV{ƒ2£(ºU€Ÿ"–˜Â†ÆÊX¹€Ïma@&UL é´Xá·/yÍM7V>"S§]U”¶~ÉF×'g;[ÅBµrÖãñë2¯ÐÊ—p¥úÀBÃ]÷ЋPʬ*ªÆÊ™BÕ÷7êzµUÐàØ/@]‡M0MSÚTÍ‘Ý`˲©È":MÕ¥¥÷¾ÐU´Eýâ®jÎÙ£ úÜ«yÂßø<ùá÷+º*BbäJ¸NçcF0¹BA#ê¯7ª¬'‚öŸO«ßßÝüî; ¿ƒ'G¸þêŽ& µ²(7j’hp¯»'øÓÝóÍúñöî—›?ÜÕž5­E ¯}@%ÄÈ-BßjïÐEŒqŽaJˆqÎ18«8ç ¸d%þ-aB›£Å ç%ty˜3õ-zŠí"¨9Ú æˆY)F ¡éçTºÂ'ùj΀©BM5c‹&ëFƒº9F¯r͹îtç4Ë(ð‡)ÑU!¬ŒÃÉ—5H/ÒEêb²ñr]:1Â:Ú½šÅé–kÀ !T_L*t/1P®bì]!Â65©€&*½Öè^b¨_Cu/`ºK*ÀÜìÊÎ( Bç ƒè ¾{‰z 渤˜Î%°F÷C5èxh}÷±¨´ÔÏ©­”kÐ1÷/×èŸüÎ50ÓªåÉ5è8ô—kôO—s®Q¼;¬è í—kôO›–Wq ¥%¥— #˜_¬Ð?•˜+à­·*©;ÔÎÊžÛUèŸ^+<>îå :ØŽt¦ëË5úçœR ™’RœÒ¢\r :Æóåé•bm1·bkøAÿÒ~¯í!ëþ9…R#`ö'5xæHê·îŸUÇÖàÊ.±†LPФ糽X¡"™Tp˜%rÌ“K.Ágp½\£æ”Ôˆ˜år H“µ‹r 9Réåýó‚¸,Ý6­)yL¯á3%kôÏz‘²`© M¬’k˜LŽÁýs:¤l“Yö»Nùä|èÄË5úç'p XLtZf «å!÷ÚÁýïµ—uîÌ5J ;–įä‹Ü_®ÑÿÞr®aë#V¨†ª\Ýu¹ ÷Ë5zß'-,þËb„>‘ƒ¿ùå ýïù•oH Üù%£/­}¹FÿûW¹†SxW€kܽ‡ä&Sc°Fÿ{1¥†Ã›\oPVØý’Ç—kô¾¯P*À.<©[›Ä¸Ë¦ª!ûþ7Äq¯‹Ô^ƒ×'Ó¹|·Ù‹úßÉ%\!Ë£²@@%¡'ß/õb…þ7%I…ªHœÃ€¯˜R™É0T¡ÿÝ4\!¼§!5À(mù•—kô¿ëCj€3$54L@> <ù⊗kô¿ƒkDÌó¤,lUÜò…/×è6^jX¼-Å5Ê™~²fÈ'½_®ÑÿÔ²Ôx Lj@Î òÜ—kô?OÊ5*˜d¤FY’M3ùLåË5úŸ*”o»Q ȸ«j.Ÿ¬{¹Fÿ³eR#¦{…PϤk†|PêåýÏüPK—’˜ °;Á÷䮯Çpþg1¤†Ã›ÜT& mÊ$åc/×è¿ÿ.5ªt»“ii\2YÉkÙ/×è¿+Ì5”)JY/¬Ú^%+“¼Âúrþ{•RÃãmxªa nÝÍåå¾—kôÞ/ã KHe´J—&•)>X¡ÿNÔ0E%k d}¥rItÈ«&/×è¿ÿ 5>(‘<7oI”ËÃü—kôŸKs H´U²fÂF:¤¹H™{î`ôy¡XÛd ›è€Ï¨ù¬éãïoÊÕOƒwÔT(Wê`Þ¹£`’2° Æ;”õÝØµúÏx7­\Á,^✻7kíÚBPÄáÍV,t¥z ËÇÕ}=µaaUýg¾CwÖÏš¶ÃóøÐ©¨Êªs72âb[— ±ý°þ營þ~‹g‚*«õóýí;ø ~Wëêoß9Ø!ÂÒ»þç[\.Kå×ï?¡4lÜúÃ-¸eeʸþ9iãýó×/m+¥[ÞÀÏø ÇëõóçÇLJO‰éO­ÒëÏi9ô‰*ú¸~÷Û­†®Ò)îüòÿ¾{ÿóPý÷Û;»Þ$FŸŸ;f:u¾ð”[Ljuhåƒ_K³þÚëLÝë/Ía¿êuè^±3þ¤Ç¿þ½‹¶Óçç–m¥ÎXÖe©¿¹ý븠)œ…õãî¿ÞÜýo?À°ÀHcnë׫۵QW0Ï·ïPʪ-ƒmlÚÞ‚Üáã•b7Á¾Â†»²~ýoµPÏ­ÿ£-ŒžX4Ü·×výüþSò‡ôªŸŸZ«242FèþÓ°\µXx½Ê¬Ÿh,ÎwZíÔ~¬é@ÄNTUëÝ,ÆÿÓýû/÷_þùáëÿóü€3A?¦`³f5ùëo°x#"öÜŒF£s¿¨Yèõ—‡ÿ¿˜v_¾ÒpÔúýö™¯?‘Ýa?|ùúüЃU´£W0 בéq8@ oÊùÕ;ƒMX=¬ïþO˜êÎ@?ï¿_îï?þ¸6ZýxÛ¸˜?…T«u±Žùû¿ýíñ?~\ÿOÿý»?|ÿ þÁ­7ÿôáë¸;þV‡×ë/ ¡½¦¨ç¼~úû×÷hwwÿåëëúRØþÿêªF£H ï±òý¿tôúájýMÛ¡¨šëüõ›¤ßõ{§vÿíý—‡mÓãíª-í~úWõ.®ÿjFÊSýxÛb­}SÄ pðV­ÞA-ït#ÍãçŸÀñµÇ–`výÿQùåKsaÐìKÝà;n‚{ˆm||Ølþû¿%5qÇX¢vÞY%êà¬xûN9|BXÁo>Öçoÿ÷ûÇ¢‘*Ä5Þ”ŽB*il]ÛvISx/]oS§n£B¹²éd¬{„m´MB ¿—ôwL Oôð» JØNÃ\Qï˜Ú+ý Í`™õ§|ì¬>Ílž`ñ=‡*ŸíĨ^ZcÄg©”ÍÏU´ëtÞÿŒÅ0wU¡;Ý>vZzÿLf®{‰h"R†Ø[ Ó«ôR÷ÊUù¬…=„E§½Zì.„ÝùøyËåš~l¿\€Õ¢ž§½êöôë-­D°îw€ÞšþY—Ϫ|dåü‚“ ‰øöŠ]¿ï/¶8>¸µ%èàs¯Bo­ª9énÿƦí/²6ãcðÆñdÝRí:NDëLÎUùí:Ûüâ*¦ßøÁOïŸqP8CÖõõskiÑ—\OꤞÓ[/þ½IÀLínõ§ð¬‚¦¶Ê÷¼Iúüüô~Ôó°-Xÿ>b9ôÕèò+³%·Â6@ínfT/¡ÆÖ³öÔ£¾¶×ÕD#ƒÜ»#j³>Âæ4hÅÃ_#{$æ¡ýÊÕyðKäÛ ê„}½PÈ¿4­ÁE0ÙÓU“t½o„Ì!½¤Š]S°ïŸÛZ±Ú5a{SO‰—‚%ÿŽï"–ðão©ƒ$•Ûñ+ÛK¯Òà|~ßï#®ç1¸÷¨ Õ=ꋸvkóip½ÇÇÿ 8àÔŸêN:°kýY™uÏg~zŸåTÍm'¹Ýšß£Þ}ßþtx__Ë®G6?½y¶v„À«iú-îü¹0˜‹?É”„ W&füê}u½e-ê7Q¦ícó…/ÕJ›P`¦Š{Ù¿ÜÆzjìôà†®²Y¿F 4ÿ¥ë´ º¤ŸS;h!›ÇWƤƒçòý„½Çm5¾åÒf5Èš4<¹E‹ïºÉo Hi´ª”vïobëMÚÚ¬Ë%N ÿãýÓßê ÜZ«&+ø§ª‚Eâ·ï4Œõ5ßi¬ÔùF£@?RNþ¯Ï÷¿è~ø‡N²ÿý«¤û¿ýüðágÊ©¤×jý!ÿÃöôÚª"ÂN®“]ÿ“ôA2Ù:œÛK™õ‰42ëúü÷O_åÂÿWvdùãö÷%#mmæíïþõû¶[ï¸#…ŠmŽMýc“ܾbÛäÊ#ÙmàSnÔ7’èÚj§µØÀóîßß?þý^6 `|–SÅá,;êÑÝÏÍlà\ç×opAŽõD8žIã§·)“®V±ŸIëê‰kŠÜYâš?mÉõéfG{¹fÝÅf!ž¾L]ÓB“enKÈh8 ËRzÔÝ[ZϘŽ6ã¶Y¢TW€Di<™mjOÉe©JGÀ*Ë8’G3Lþ°Ìf¥4®¡¶™±þéönù¥®Ð8d(Ó¶ ÒðKßqŽvñ‹+æcâ OíªÂO@Øæçf[”Âíu§] ëþë€2±€]lÚ$.°T±¾£0$é—N°> stream xœÕZK“Û¸¾Ï_ðTºJ,†x[ÙTm¶¼‡­Í&kONWŠidÆ”(“Oùß§ HÏ8Þ=¤|°HýÐß×ù°Ê3ºÊñŸÿÿöxõç—B®ÝU¾:\}¸¢öëÊÿw{\ýíF(o2“ºº¾»rS骠+-uf¸\]¯U›ëÿÀ`JU2:g™Á)×»«×äÅ&Ïr) f 9E¿wö7×47d¿ÙâCA Ucu?n“g;KQ¤šá¾Xœó,׌›Í–Ñ…TËJëê}:øÙ”4wî§””m2¥¬ñ¸jI,nî#Q§ +²œNz.@(#}uÜ{‚“ΉUL)¦I[%ÝæÍõO ²õ1Þr™J¹H?¼‹Â @§™äw ÒÇC¼7†ƒá`§sFÒUÇsäAý)ø)‚ŸnJÓ¶‰ˆîìÍ©!MÎ]]¾ñƘ`˰6R“o¢×}Ÿ„|¸—¢Ⱥ­Ö7oÑ…Nú?Ûý®£áubH]žÏõ§r<ìû›‰Ù7›Ákاý«~þþݾÜ=”ý bOór¾ïÂ<Œê`,œÑOç½¢<µ¾«Ne½önL#¬;-LýKƒ»„SXtÍÓ3Wöö©NnäŽä{…{–Â622=le—œ5°™³Ü.÷ôL[½ëêæ°íÒÄÔŸ)¹‹¶bÓzk MJ?Œ´™Sùór`r*àœ+HNõ¬¹bgHœ3Úɱ’vbQ_5'ï07>(ð[¦'¥êúv2Ï/ƒN–s“1jòÊSºR:c¬ÁiÔ(ɃÍÔÜÄø$¿Ÿ× P ÛfõŠÜhô&>Ä ©¬»°ü" † [n ·1¶ÚRžIé—]àΤ¨*/r©ÀÅ…XŸ–PñPöÕG‹#†qü$à7bj½¡¸æ°`“Ù­QÀ½¯Þã¼<×j ´±OaƒiI’,éLƒTšî_¦’Áh«· )Ýî©ñ1Ûlµ=ÄšüÐ$ÀV^$«6é4îÖm83Ç”œð‹„ âšß&M;Å!+Ùhê<24ÇQe²ßŸ¥Œ æc€ã.¾0,äž‘íP/3{¿]€-å2Ž%;Öoô”+DtÍSÎÐu a-ƒU뫲v´A HÛœbX’ƒ·Ï ¹šÆÅíØuÛ&N[Ûo¢ÄÒ–bðLæ§!ô^ö Œ©PsÀùꇼ|ñ*<Ë)¯!ëv&ž[·çñ²ýz×¥Ïݾ['xmfñÚå«[ØZ)å†Ì^¡2€ì@RC1ä仌(`ZS×Õé°žM†Bö…?G6¼ÜÑŽ© óô~Å1Éeœ4BqoôL…åÙʃã l(àp‘—(‰=œÚOÝÐ’HC<92¡×³Ôxêwr’ÓvM&í$Ìr¿¸üÜFš­H˜‚J豊DjE‡Š$Ö{H4„¾ÀÄcÛÑý~l;:¶É.l+P¿hC¥™ã±~‚ϰG³âs>ÃöV< qÍÆ,þ¡xj˜Pb¡/³°wM޼"thPÄR3ƒýÖÍŒ Žÿf}p”£6Ž¥†Y×CŠ˜z}Q/äÇêp?³kìÆé/®¯~½r j¹j¿´!M)VOlŕʨä¶+mp彨/–Ö+fby¯qËb ¬Ž’´xµÕ `÷ƒ£ŽN)øÂ>㋜׭`*l¶D÷]œÙâô—th›>ÒÿåN8ÝSÅZÙÍsC6_¿R,×™V"Uò½'.‚ÓK^¤‘ó¼Sù5Î1À>–³T/l]ë¼å¨KÎð+Œ€¦$-'?Ü_fwľF¶Y•µ×Q˜ß›+ õ‚Nòé2!+;ËSµ¶\ê²#a—ý² ’6Ÿ(ŒÂ¸n ‡é°-—®xP²Kð4m"9ºËý®tw2ÂrÃGÚŠiˆfÐÉI5´¿N#‡YÈ€ ûºsųR K²LåÂf@ý+¤o"‘÷­¿æK‘¹¹ ˆw÷A7äþTõã-¶^ÃÀľ»bßFºïØRÚPà[èzúì°w_¿^'5îúÍ›€ƒÀ€ƒ íüð|,€¥3oa\t»À©0˜§Þï?ee{èF]ÊVw£¯i@øw#Çî˪¾YŠÆsj#âå“>߸ rÃ&g“+ {%ª.ó\1 sϤ>Ü—§¾‚Z|†PïY‰'TK§N>££,PÔÛæ¬b–´ ´nà©i'¯Ÿ6“™LŽoÔ½´W]îÀc£½ ×}Q5],Vu÷˜ë›^žÌùG…„㡼1¡›eã ¨)3ÁËLj¶OLŸ%Ú™kgñD‰ò=ÞŽX?‡6¬ Íû‹;P‰¤X¹R #ËœÞ2á{ÍCä0pȘHÓ{[ÂhI/Ú@×µV³p×î’΂r4aïFå ÁIš” Û-†+ÉȺÄ0hµxý`ÑfxGè¤éÓú±KÈ:LäO+ÒEC;ÞŒã{®E¼ñ“3Õ§]l7Ù»hk!Io9ºj;ÞÅxSàO+Ó¹ U÷^†3cótd˜ã5þÔ ¯Ÿ«xgOGŽ»14 .š«3'ÄÈŒi>dš4:é š»z°¿1íñŒ\-À6@xò®}°ÜR[( eùÐcå¡k{³§µðÙÿC ŸýÎ-|3ßÂûߪ‹Os63Ï´ÐIŸó¨É/3‘‹<Ö¹ç*¬¤ˆ;÷†%‚ %ç§ÝzJóT$g±H."‘pЊ|¹Yobõ*J}ÙCªÒ?A¨±_B-‹îªC’â^YšeO—_œ¸½ï¾¸v.þ4ü’žÛ!RÌÞ†Ì<¹ÜÏøíbFîBë‡Y"jÝ›./xízK©áÏ.ñ‹1nk§i¼‘¦khbˆ(øøÀRÂý½/év>f`õ[7û“Šüf6ïrlŠœ÷íñ—º9]ï»Yöµ 3ÒBo©ºJ§Jÿ>,üõVŠue_†lͽ(nù³ý¸Ôa½—»‚ÁáY±L3¹ вþ‰×·cÿá׫ÿÔÜrêendstream endobj 418 0 obj << /Type /XRef /Length 283 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 419 /ID [<53ad1bb8114c0798305cd9256897e850><83735729291fd17b23f40567a24d26c4>] >> stream xœcb&F~0ù‰ $À8JŽ’Lÿç­²Ù½@iãEÑhÚ%iCË}%0U\M£$"UXœ¥Š“FSÅ(‰HÎAõˆØ{Pªj‘‚^ R©DrƒH&EÉè "¥sA¤d&ˆä¼$ݦƒØ|® ÒJ DrÛ‚Hæ¿`Óîƒõþ‹Ì³ëA¤pØü:°¸=ˆdqËJ€Ù]`q)vd‹šˆ-¿Dò€U~“¯¤åf°ìJ)³ì°ÉBª ’ÿÈ®`5ÿ@¤ˆˆû… l'صÌ`3߀eç#Ø\• 2¬W|ØçÀzWH°,0‹Èo`_€|ÇèYbóÜ`g"7ÿ endstream endobj startxref 281193 %%EOF surveillance/inst/doc/glrnb.Rnw0000644000175100001440000005416313165505075016322 0ustar hornikusers%\VignetteIndexEntry{algo.glrnb: Count data regression charts using the generalized likelihood ratio statistic} \documentclass[a4paper,11pt]{article} \usepackage[T1]{fontenc} \usepackage{graphicx} \usepackage{natbib} \bibliographystyle{apalike} \usepackage{lmodern} \usepackage{amsmath} \usepackage{amsfonts,amssymb} \setlength{\parindent}{0pt} %%% Meta data \usepackage{hyperref} \hypersetup{ pdfauthor = {Valentin Wimmer and Michael H\"ohle}, pdftitle = {'algo.glrnb': Count data regression charts using the generalized likelihood ratio statistic}, pdfsubject = {R package 'surveillance'} } \title{\texttt{algo.glrnb}: Count data regression charts using the generalized likelihood ratio statistic} \author{ Valentin Wimmer$^{(1,2)}$\thanks{Author of correspondence: \texttt{Valentin.Wimmer@gmx.de}}\; and Michael H\"{o}hle$^{(1,2)}$ \\ (1) Department of Statistics, University of Munich, Germany\\ (2) MC-Health -- Munich Center of Health Sciences } \date{6 June 2008} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Sweave %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage{Sweave} \SweaveOpts{prefix.string=plots/glrnb} \setkeys{Gin}{width=1\textwidth} \DefineVerbatimEnvironment{Sinput}{Verbatim}{fontshape=sl,fontsize=\footnotesize} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontsize=\footnotesize} \DefineVerbatimEnvironment{Scode}{Verbatim}{fontshape=sl,fontsize=\footnotesize} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Initial R code %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <>= library("surveillance") options(SweaveHooks=list(fig=function() par(mar=c(4,4,2,0)+.5))) options(width=70) set.seed(247) ## create directory for plots dir.create("plots", showWarnings=FALSE) @ \begin{document} \maketitle \begin{abstract} \noindent The aim of this document is to show the use of the function \verb+algo.glrnb+ for a type of count data regression chart, the generalized likelihood ratio (GLR) statistic. The function is part of the \textsf{R} package \textbf{surveillance} \citep{hoehle-2007}, which provides outbreak detection algorithms for surveillance data. For an introduction to these monitoring features of the package, see \texttt{vignette("surveillance")}. There one can find information about the data structure of the \verb+disProg+ and \verb+SurvRes+ objects. Furthermore tools for outbreak detection, such as a Bayesian approach, procedures described by \citet{stroup89}, \citet{farrington96} and the methods used at the Robert Koch Institut, Germany, are explained. The function \verb+algo.glrnb+ is the implementation of the control charts for poisson and negative binomial distributions for monitoring time series of counts described in \citet{hoehle.paul2008}. This document gives an overview of the different features of the function and illustrations of its use are given for simulated and real surveillance data. \\ \noindent{\bf Keywords:} change-point detection, generalized regression charts, poisson and negative binomial distribution, increase and decrease \end{abstract} \section{Introduction}\label{sec:intro} For the monitoring of infectious diseases it is necessary to monitor time series of routinely collected surveillance data. Methods of the statistic process control (SPC) can be used for this purpose. Here it is important, that the methods can handle the special features of surveillance data, e.g.\ seasonality of the disease or the count data nature of the collected data. It is also important, that not only the number of counts of one time point (week, month) are regarded but instead the cases of previous time points are considered, because beside abrupt changes also small constant changes should be detected. CUSUM-methods (function \verb+algo.cusum+), LR-charts or GLR-methods as described by \citet{lai95} and \citet{hoehle.paul2008} can afford this. With the function \verb+algo.glrnb+ these methods can easily applied to surveillance data. A typical assumption for time series of counts is, that the observed counts at each time point follow a Poisson distribution. If overdispersion is likely, the negative binomial distribution provides a better alternative. Both distributions are provided by \verb+algo.glrnb+. In the GLR-scheme, an outbreak can be defined as a change in the intercept. The function \verb+algo.glrnb+ allows the user to specify whether increases or decreases in mean should be regarded. For each time point a GLR-statistic is computed, if this statistic exceeds a threshold value, an alarm is given. The function also provides the possibility to return the number of cases that would have been necessary to produce an alarm. This vignette is organized as follows: First, in Section \ref{sec:prel} the data structure is explained, in Section \ref{sec:glr} a short introduction in the theory of the GLR-charts is given and Section \ref{sec:control} shows the different \verb+control+-settings. % In Section \ref{sec:extensions} some possible extensions are presented. \section{Preliminaries}\label{sec:prel} Consider the situation, where a time series of counts is collected for surveillance purpose. In each interval, usually one week, the number of cases of the interesting disease in an area (country, district) is counted. The resulting time series is denoted by $\{y_t\>;t=1,\ldots,n\}$. Usually the data are collected on line, so that the time point $n$ is the actual time point. Our aim is to decide with the aid of a statistic for each time point $n$ if there is an outbreak at this or any former time point. If an outbreak is detected, the algorithm gives an alarm. Observed time series of counts are saved in a \verb+disProg+ object, a list containing the time series of counts, the number of weeks and a state chain. The state is 1, if e.g. the Robert Koch Institut declares the week to be part of an outbreak and 0 otherwise ~\citep{survstat}. By using the state chain the quality of the surveillance algorithm can be tested. %The 'surveillance'-package provides standard plot routines for the surveillance objects. As an first example the number of cases of salmonella hadar in the years 2001-2006 is examined. \\ \textit{Example 1:} <>= data(shadar) plot(shadar,main="Number of salmonella hadar cases in Germany 2001-2006") @ The package provides the possibility to simulate surveillance data with the functions \verb+sim.pointSource+, \verb+sim.seasonalNoise+ and \verb+sim.HHH+. See \citet{hoehle-2007} and \texttt{vignette("surveillance")} for further information. \\ \textit{Example 2:} <>= # Simulate data simData <- sim.pointSource(length=300,K=0.5,r=0.6,p=0.95) @ <>= plot(simData) @ \section{LR and GLR-charts}\label{sec:glr} Our aim is to detect a significant change in the number of cases. This is done as follows. One assumes, that there is a number of cases that is usual, the in control mean $\mu_0$. The in-control mean is defined in \citet{hoehle.paul2008} to be \begin{equation} \label{mu0} \operatorname{log}(\mu_{0,t})=\beta_0 + \beta_1t + \sum_{s=1}^S(\beta_{2s} \cos(\omega s t) + \beta_{2s+1}\sin(\omega s t)). \end{equation} If an outbreak occurs, the number of cases increases and the situation is out-of control and the algorithm should produce an alarm. The change is assumed to be an additive increase on log scale, \begin{equation} \label{interceptchange} \operatorname{log}(\mu_1)= \operatorname{log}(\mu_0) + \kappa . \end{equation} If $\mu_0$ is unknown one could use a part of the data to estimate it with a generalized linear model (GLM). If $\kappa$ is known, LR-charts can be used, if not, $\kappa$ has to be estimated, which is the GLR-scheme setting. For each time point, the likelihood ratio statistic is computed as follows \begin{equation} \label{cusum} GLR(n)=\max_{1 \leq k \leq n} \sup_{\theta \in \Theta} \left[ \sum_{t=k}^n \log \left\{ \frac{f_{\theta}(y_t)}{f_{\theta_0}(y_t)} \right\} \right] . \end{equation} Now $N=\inf \{n \geq 1 : GLR(n) \geq c_{\gamma} \}$ is the first time point where the GLR-statistic is above a threshold $c_{\gamma}$. For this time point $N$ an alarm is given. If the parameter $\kappa$ and hence $\theta=\kappa$ is known, the maximisation over $\theta$ can be omitted. With the function \verb+algo.glrnb+ one can compute the the GLR-statistic for every time point. If the actual value extends the chosen threshold $c_{\gamma}$, an alarm is given. After every alarm, the algorithm gets reset and the surveillance starts again. The result of a call of \verb+algo.glrnb+ is an object of class \verb+SurvRes+. This is basically a list of several arguments. The most important one is the \verb+upperbound+ statistic, which is a vector of length $n$ containing the likelihood-ratio-statistic for every time point under surveillance. The \verb+alarm+-vector contains a boolean for every time point whether there was an alarm or not. \\ At this point in the vignette we move more into the applied direction and refer the user to \citet{hoehle.paul2008} for further theoretical details about the GLR procedure. The next example demonstrates the surveillance with the \verb+algo.glrnb+ in a learning by doing type of way. The example should demonstrate primarily the result of the surveillance. More details to the control-options follow in the next section. All control values are set here on default and the first two years are used to find a model for the in-control mean and so surveillance is starting in week 105. A plot of the results can be obtained as follows <>= survObj <- algo.glrnb(shadar,control=list(range=105:295,alpha=0)) plot(survObj,startyear=2003) @ The default value for $c_{\gamma}$ is 5. The upperbound statistic is above this value several times in the third quarter of 2006 (time points marked by small triangles in the plot). In the next section follow a description of the control-setting for tuning the behavior of the algorithm, e.g.\ one can search not only for increases in mean as shown in the example but also for decreases. \section{Control-settings}\label{sec:control} In this section, the purpose and use of the control settings of the \verb+algo.glrnb+ function are shown and illustrated by the examples from Section \ref{sec:prel}. The control-setting is a list of the following arguments. <>= control=list(range=range,c.ARL=5, mu0=NULL, alpha=0, Mtilde=1, M=-1, change="intercept",theta=NULL, dir=c("inc","dec"),ret=c("cases","value")) @ \begin{itemize} \item \verb+range+ \\ The \verb+range+ is a vector of consecutive indices for the week numbers in the \verb+disProg+ object for which surveillance should be done. If a model for the in-control parameter $\mu_0$ is known (\verb+mu0+ is not \verb+NULL+), the surveillance can start at time point one. Otherwise it is necessary to estimate the values for \verb+mu0+ with a GLM. Thus, the range should not start at the first time point but instead use the first weeks/months as control-range. (Note: It is important to use enough data for estimating $\mu_0$, but one should be careful that these data are in control) With the following call one uses the first 2 years (104 weeks) for estimating $\mu_0$ and the the years 2003 to 2006 will be on line monitored. <>= control=list(range=105:length(shadar$observed)) algo.glrnb(disProgObj=shadar,control=control) @ \item \verb+alpha+ \\ This is the (known) dispersion parameter $\alpha$ of the negative binomial distribution. If \verb+alpha+=0, modeling corresponds to the Poisson distribution. In this case, the call of \verb+algo.glrnb+ is similar to a call of \verb+algo.glrpois+. If $\alpha$ is known, the value can be specified in the \verb+control+-settings. <>= control=list(range=105:295,alpha=3) algo.glrnb(disProgObj=shadar,control=control) @ If overdispersion is present in the data, but the dispersion parameter $\alpha$ is unknown, an estimation $\hat{\alpha}$ is calculated as part of the in-control model estimation. Use \verb+alpha=NULL+ to get this estimation. The estimated value $\hat{\alpha}$ is saved in the \verb+survRes+-Object in the \verb+control+-list. Use <>= control=list(range=105:295,alpha=NULL) surv <- algo.glrnb(shadar,control=control) surv$control$alpha @ to get the estimated dispersion parameter for the salmonella data. \item \verb+mu0+ \\ This vector contains the values for $\mu_0$ for each time point in the \verb+range+. If it has the value \verb+NULL+ the observed values with indices 1 to \verb+range+-1 are used to fit a GLM. If there is no knowledge about the in-control parameter, one can use the values before the range to find an seasonal model as in equation \ref{mu0}. \verb+mu0+ is at the moment a list of three argument: \verb+S+ is the number of harmonics to include in the model, \verb+trend+ is Boolean whether a linear trend $\beta_1t$ should be considered. The default is to use the same model of $\mu_0$ for the whole surveillance. An alternative is, to fit a new model after every detected outbreak. If refitting should be done, choose \verb+refit=TRUE+ in the \verb+mu0+ list. In this case, the observed value from time point 1 to the time point of the last alarm are used for estimating a GLM. Then we get a new model after every alarm. In the following example a model with \verb+S+=2 harmonics and no linear trend is fitted for the Salmonella data. The observed cases from the first two years are used for fitting the GLM. <>= control=list(range=105:295,mu0=list(S=2,trend=FALSE)) algo.glrnb(disProgObj=shadar,control=control) @ <>= control=list(range=105:295,mu0=list(S=2,trend=F,refit=T)) surv <- algo.glrnb(disProgObj=shadar,control=control) @ The predicted values for the in-control mean in the range are shown as a dashed line in the following plot. <>= plot(shadar) with(surv$control,lines(mu0~range,lty=2,lwd=4,col=4)) @ Information about the used model is saved in the \verb+survRes+-object, too. <>= surv$control$mu0Model @ The $\mu_0$ model is fitted by a call of the function \verb+estimateGLRNbHook+, %% Instead of using the standard seasonal negative binomial model from equation \ref{mu0}, one can change the \texttt{R}-code of the function \verb+estimateGLRNbHook+ to get any desired model. which is defined as follows: <>= estimateGLRNbHook @ \iffalse To include own models in the \verb+estimateGLRNbHook+ function, the code of the function has to be changed. In the following code chunk \verb+estimateGLRNbHook+ is modified so that weights are included in the model (here always Poisson, ignoring \verb+alpha+). \begin{small} \begin{verbatim} estimateGLRNbHook <- function() { control <- parent.frame()$control p <- parent.frame()$disProgObj$freq range <- parent.frame()$range train <- 1:(range[1]-1) test <- range #Weights of training data - sliding window also possible weights <- exp(-0.3 * ((max(train)-train)) %/% 12) data <- data.frame(y=parent.frame()$disProgObj$observed[train],t=train) formula <- "y ~ 1 " if (control$mu0Model$trend) { formula <- paste(formula," + t",sep="") } for (s in 1:control$mu0Model$S) { formula <- paste(formula,"+cos(2*",s,"*pi/p*t)+ sin(2*",s,"*pi/p*t)",sep="") } m <- eval(substitute(glm(form,family=poisson(),data=data,weights=weights), list(form=as.formula(formula)))) return(list(mod=m,pred=as.numeric(predict(m,newdata=data.frame(t=test), type="response")))) } \end{verbatim} \end{small} \fi The fitted model from the call of \verb+estimateGLRNbHook+ is saved. The result of a call of \verb+glm.nb+ is in the standard setting an object of class \verb+negbin+ inheriting from class \verb+glm+. So methods as \verb+summary+, \verb+plot+ of \verb+predict+ can be used on this object. If refitting is done, the list of the used models is saved. Use <>= coef(surv$control$mu0Model$fitted[[1]]) @ to get the estimated values of the first (and in case of \verb+refit=FALSE+ only) model for the parameter vector $\beta$ given in (\ref{mu0}). \item \verb+c.ARL+ \\ This is just the threshold $c_{\gamma}$ for the GLR-test (see equation \ref{cusum}). The smaller the value is chosen, the more likely it is to detect an outbreak but on the other hand false alarms can be produced. <>= control=list(range=105:295,alpha=0) surv <- algo.glrnb(disProgObj=shadar,control=control) table(surv$alarm) @ For a choice of $c_{\gamma}$ we get \Sexpr{table(surv$alarm)[2]} alarms. In the following table the results for different choices of the threshold are shown. <>= num <- rep(NA) for (i in 1:6){ num[i] <- table(algo.glrnb(disProgObj=shadar,control=c(control,c.ARL=i))$alarm)[2] } @ \begin{table}[h] \centering \caption{Number of alarms for salmonella hadar data for varying c.ARL} \label{c.ARL} \begin{tabular}{l|cccccc} \verb+c.ARL+ & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline no. of alarms & \Sexpr{num[1]} & \Sexpr{num[2]} & \Sexpr{num[3]} & \Sexpr{num[4]} & \Sexpr{num[5]} & \Sexpr{num[6]} \end{tabular} \end{table} \item \verb+change+ \\ There are two possibilitys to define an outbreak. The intercept-change is described in Section \ref{sec:glr} and equation \ref{interceptchange}. Use \verb+change="intercept"+ to choose this possibility. The other alternative is the epidemic chart, where an auto-regressive model is used. See \citet{held-etal-2005} and \citet{hoehle.paul2008} for more details. A call with \verb+change="epi"+ in the control-settings leads to this alternative. Note that in the epidemic chart not every feature of \verb+algo.glrnb+ is available. \item \verb+theta+ \\ If the change in intercept in the intercept-charts is known in advance, this value can be passed to the function (see Section \ref{sec:glr}). These LR-charts are faster but can lead to inferior results if a wrong value of \verb+theta+ is used compared to the actual out-of-control value (\citet{hoehle.paul2008}). If an increase of 50 percent in cases is common when there is an outbreak which corresponds to a $\kappa$ of $\log(1.5)=0.405$ in equation \ref{interceptchange} use <>= control=list(range=105:295,theta=0.4) algo.glrnb(disProgObj=shadar,control=control) @ If there is no knowledge about this value (which is the usual situation), it is not necessary to specify \verb+theta+. In the GLR-charts, the value for $\kappa$ is calculated by a maximation of the likelihood. Use the call <>= control=list(range=105:295,theta=NULL) algo.glrnb(disProgObj=shadar,control=control) @ in this situation. \item \verb+ret+ \\ The \verb+upperbound+-statistic of a \verb+survRes+-object is usually filled with the LR- or GLR-statistic of equation \ref{cusum}. A small value means, that the in-control-situation is likely, a big value is a hint for an outbreak. If you choose \verb+ret="value"+, the upperbound slot is filled with the GLR-statistic. These values are plotted then, too. The alternative return value is \verb+"cases"+. In this case, the number of cases at time point $n$ that would have been necessary to produce an alarm are computed. The advantage of this option is the easy interpretation. If the actual number of cases is more extreme than the computed one, an alarm is given. With the following call, this is done for the salmonella data. <>= control=list(range=105:295,ret="cases",alpha=0) surv2 <- algo.glrnb(disProgObj=shadar,control=control) @ <>= plot(surv2,startyear=2003) @ Of course, the alarm time points are the same as with \verb+ret="cases"+. \item \verb+dir+ \\ In the surveillance of infectious diseases it is regular to detect an increase in the number of infected persons. This is also the standard setting for \verb+algo.glrnb+. But in other applications it could be of interest to detect a decrease of counts. For this purpose, the \verb+dir+-option is available. If \verb+dir+ is set to \verb+"inc"+, only increases in regard to the in-control mean are taken into account in the likelihood-ratio-statistic. With \verb+dir="dec"+, only decreases are considered. As an example we take the salmonella data again, but know we look at the number of cases that would have been necessary if a decrease should be detected. <>= control=list(range=105:295,ret="cases",dir="dec",alpha=0) surv3 <- algo.glrnb(disProgObj=shadar,control=control) @ <>= plot(surv3,startyear=2003) @ The observed number of cases is below the computed threshold several times in 2005 to 2006 and alarms are given. \item \verb+Mtilde+ and \verb+M+ \\ These parameters are necessary for the so called ''window-limited'' GLR scheme. Here the maximation is not performed for all $1 \leq k \leq n$ but instead only for a window $k \in \{n-M,...,n-\tilde{M}+1 \}$ of values. Note that $1 \leq \tilde{M} \leq M$, where the minimum delay $\tilde{M}$ is the minimal required sample size to obtain a sufficient estimate of $\theta_1=(\mu_0,\kappa)$ ~\citep{hoehle.paul2008}. The advantage of using a window of values instead of all values is the faster computation, but in the setup with intercept-charts and $\theta_1=\kappa$ this doesn't bother much and $\tilde{M}=1$ is sufficient. \end{itemize} \section{Discussion} As seen, the function \verb+algo.glrnb+ allows many possibilities for doing surveillance for a time series of counts. In order to achieve fast computations, the function is implemented in C. An important issue in surveillance is the quality of the used algorithms. This can be measured by the sensitivity and the specificity of the result. The aim of our future work is to provide the possibility for computing the quality and in the next step to include a ROC-approach in order to have a more formal framework for the choice of threshold $c_{\gamma}$. %\include{extensions} %\renewcommand{\bibsection}{\section{REFERENCES}} \bibliography{references} \end{document} surveillance/inst/doc/hhh4_spacetime.Rnw0000644000175100001440000015141213231650105020063 0ustar hornikusers%\VignetteIndexEntry{hhh4 (spatio-temporal): Endemic-epidemic modeling of areal count time series} %\VignetteEngine{knitr::knitr} %\VignetteDepends{surveillance, lattice, spdep, gsl, colorspace, ggplot2, animation, gridExtra, scales, rmapshaper, fanplot, hhh4contacts} <>= ## purl=FALSE => not included in the tangle'd R script knitr::opts_chunk$set(echo = TRUE, tidy = FALSE, results = 'markup', fig.path='plots/hhh4_spacetime-', fig.width = 8, fig.height = 4.5, fig.align = "center", fig.scap = NA, out.width = NULL, cache = FALSE, error = FALSE, warning = FALSE, message = FALSE) knitr::render_sweave() # use Sweave environments knitr::set_header(highlight = '') # no \usepackage{Sweave} (part of jss class) ## R settings options(prompt = "R> ", continue = "+ ", useFancyQuotes = FALSE) # JSS options(width = 85, digits = 4) options(scipen = 1) # so that 1e-4 gets printed as 0.0001 ## xtable settings options(xtable.booktabs = TRUE, xtable.size = "small", xtable.sanitize.text.function = identity, xtable.comment = FALSE) @ <>= ## load the "cool" package library("surveillance") ## Compute everything or fetch cached results? message("Doing computations: ", COMPUTE <- !file.exists("hhh4_spacetime-cache.RData")) if (!COMPUTE) load("hhh4_spacetime-cache.RData", verbose = TRUE) @ \documentclass[nojss,nofooter,article]{jss} \title{% \vspace{-1.5cm} \fbox{\vbox{\normalfont\footnotesize This introduction to spatio-temporal \code{hhh4} models implemented in the \proglang{R}~package \pkg{surveillance} is based on a publication in the \textit{Journal of Statistical Software} -- \citet[Section~5]{meyer.etal2014} -- which is the suggested reference if you use the \code{hhh4} implementation in your own work.}}\\[1cm] \code{hhh4}: Endemic-epidemic modeling\\of areal count time series} \Plaintitle{hhh4: Endemic-epidemic modeling of areal count time series} \Shorttitle{Endemic-epidemic modeling of areal count time series} \author{Sebastian Meyer\thanks{Author of correspondence: \email{seb.meyer@fau.de}}\\Friedrich-Alexander-Universit{\"a}t\\Erlangen-N{\"u}rnberg \And Leonhard Held\\University of Zurich \And Michael H\"ohle\\Stockholm University} \Plainauthor{Sebastian Meyer, Leonhard Held, Michael H\"ohle} %% Basic packages \usepackage{lmodern} % successor of CM -> searchable Umlauts (1 char) \usepackage[english]{babel} % language of the manuscript is American English %% Math packages \usepackage{amsmath,amsfonts} % amsfonts defines \mathbb \usepackage{mathtools} % tools for math typesetting + amsmath-bugfixes \usepackage{bm} % \bm: alternative to \boldsymbol from amsfonts \usepackage{bbm} % \mathbbm: alternative to \mathbb from amsfonts %% Packages for figures and tables \usepackage{booktabs} % make tables look nicer \usepackage{subcaption} % successor of subfig, which supersedes subfigure \newcommand{\subfloat}[2][need a sub-caption]{\subcaptionbox{#1}{#2}} % -> knitr %% Handy math commands \newcommand{\abs}[1]{\lvert#1\rvert} \newcommand{\norm}[1]{\lVert#1\rVert} \newcommand{\given}{\,\vert\,} \newcommand{\dif}{\,\mathrm{d}} \newcommand{\IR}{\mathbb{R}} \newcommand{\IN}{\mathbb{N}} \newcommand{\ind}{\mathbbm{1}} \DeclareMathOperator{\Po}{Po} \DeclareMathOperator{\NegBin}{NegBin} \DeclareMathOperator{\N}{N} %% Additional commands \newcommand{\class}[1]{\code{#1}} % could use quotes (JSS does not like them) \newcommand{\CRANpkg}[1]{\href{https://CRAN.R-project.org/package=#1}{\pkg{#1}}} %% Reduce the font size of code input and output \DefineVerbatimEnvironment{Sinput}{Verbatim}{fontshape=sl, fontsize=\small} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontsize=\small} %% Abstract \Abstract{ The availability of geocoded health data and the inherent temporal structure of communicable diseases have led to an increased interest in statistical models and software for spatio-temporal data with epidemic features. The \proglang{R}~package \pkg{surveillance} can handle various levels of aggregation at which infective events have been recorded. This vignette illustrates the analysis of area-level time series of counts using the endemic-epidemic multivariate time-series model ``\code{hhh4}'' described in, e.g., \citet[Section~3]{meyer.held2013}. See \code{vignette("hhh4")} for a more general introduction to \code{hhh4} models, including the univariate and non-spatial bivariate case. %% (For other types of surveillance data, see %% \code{vignette("twinstim")} and \code{vignette("twinSIR")}.) We first describe the general modeling approach and then exemplify data handling, model fitting, visualization, and simulation methods for weekly counts of measles infections by district in the Weser-Ems region of Lower Saxony, Germany, 2001--2002. } \Keywords{% areal time series of counts, endemic-epidemic modeling, infectious disease epidemiology, branching process with immigration} \begin{document} %% \vfill %% { %% \renewcommand{\abstractname}{Outline} % local change %% \begin{abstract} %% We start by describing the general model class in Section~\ref{sec:hhh4:methods}. %% Section~\ref{sec:hhh4:data} introduces the data and the associated \proglang{S}4-class %% \class{sts} (``surveillance time series''). %% In Section~\ref{sec:hhh4:fit}, a simple model for the measles data based on the %% original analysis of \citet{held-etal-2005} is introduced, %% which is then sequentially improved by suitable model extensions. %% The final Section~\ref{sec:hhh4:simulation} illustrates simulation from fitted %% \class{hhh4} models. %% \end{abstract} %% } %% \vfill %% \newpage \section[Model class]{Model class: \code{hhh4}} \label{sec:hhh4:methods} An endemic-epidemic multivariate time-series model for infectious disease counts $Y_{it}$ from units $i=1,\dotsc,I$ during periods $t=1,\dotsc,T$ was proposed by \citet{held-etal-2005} and was later extended in a series of papers \citep{paul-etal-2008,paul-held-2011,held.paul2012,meyer.held2013}. In its most general formulation, this so-called ``\code{hhh4}'' model assumes that, conditional on past observations, $Y_{it}$ has a negative binomial distribution with mean \begin{equation} \label{eqn:hhh4} \mu_{it} = e_{it} \, \nu_{it} + \lambda_{it} \, Y_{i,t-1} + \phi_{it} \sum_{j \ne i} w_{ji} \, Y_{j,t-1} \end{equation} and overdispersion parameter $\psi_i > 0$ such that the conditional variance of $Y_{it}$ is $\mu_{it} (1+\psi_i \mu_{it})$. Shared overdispersion parameters, e.g., $\psi_i\equiv\psi$, are supported as well as replacing the negative binomial by a Poisson distribution, which corresponds to the limit $\psi_i\equiv 0$. Similar to the point process models in \code{vignette("twinstim")} and \code{vignette("twinSIR")}, the mean~\eqref{eqn:hhh4} decomposes additively into endemic and epidemic components. The endemic mean is usually modeled proportional to an offset of expected counts~$e_{it}$. In spatial applications of the multivariate \code{hhh4} model as in this paper, the ``unit''~$i$ refers to a geographical region and we typically use (the fraction of) the population living in region~$i$ as the endemic offset. The observation-driven epidemic component splits up into autoregressive effects, i.e., reproduction of the disease within region~$i$, and neighborhood effects, i.e., transmission from other regions~$j$. Overall, Equation~\ref{eqn:hhh4} becomes a rich regression model by allowing for log-linear predictors in all three components: \begin{align} \label{eqn:hhh4:predictors} \log(\nu_{it}) &= \alpha_i^{(\nu)} + {\bm{\beta}^{(\nu)}}^\top \bm{z}^{(\nu)}_{it} \:, \\ \log(\lambda_{it}) &= \alpha_i^{(\lambda)} + {\bm{\beta}^{(\lambda)}}^\top \bm{z}^{(\lambda)}_{it} \:, \\ \log(\phi_{it}) &= \alpha_i^{(\phi)} + {\bm{\beta}^{(\phi)}}^\top \bm{z}^{(\phi)}_{it} \:. \end{align} %% The superscripts in brackets distinguish the component-specific parameters. The intercepts of these predictors can be assumed identical across units, unit-specific, or random (and possibly correlated). %\citep{paul-held-2011} The regression terms often involve sine-cosine effects of time to reflect seasonally varying incidence, %\citep{held.paul2012} but may, e.g., also capture heterogeneous vaccination coverage \citep{herzog-etal-2010}. Data on infections imported from outside the study region may enter the endemic component \citep{geilhufe.etal2012}, which generally accounts for cases not directly linked to other observed cases, e.g., due to edge effects. For a single time series of counts $Y_t$, \code{hhh4} can be regarded as an extension of \code{glm.nb} from package \CRANpkg{MASS} \citep{R:MASS} to account for autoregression. See the \code{vignette("hhh4")} for examples of modeling univariate and bivariate count time series using \code{hhh4}. With multiple regions, spatio-temporal dependence is adopted by the third component in Equation~\ref{eqn:hhh4} with weights $w_{ji}$ reflecting the flow of infections from region $j$ to region $i$. These transmission weights may be informed by movement network data \citep{paul-etal-2008,geilhufe.etal2012}, but may also be estimated parametrically. A suitable choice to reflect epidemiological coupling between regions \citep[Chapter~7]{Keeling.Rohani2008} is a power-law distance decay $w_{ji} = o_{ji}^{-d}$ defined in terms of the adjacency order~$o_{ji}$ in the neighborhood graph of the regions \citep{meyer.held2013}. %% For instance, a second-order neighbor~$j$ of a region~$i$ ($o_{ji} = 2$) is a %% region adjacent to a first-order neighbor of $i$, but not itself directly %% adjacent to $i$. Note that we usually normalize the transmission weights such that $\sum_i w_{ji} = 1$, i.e., the $Y_{j,t-1}$ cases are distributed among the regions proportionally to the $j$th row vector of the weight matrix $(w_{ji})$. Likelihood inference for the above multivariate time-series model has been established by \citet{paul-held-2011} with extensions for parametric neighborhood weights by \citet{meyer.held2013}. Supplied with the analytical score function and Fisher information, the function \code{hhh4} by default uses the quasi-Newton algorithm available through the \proglang{R} function \code{nlminb} to maximize the log-likelihood. Convergence is usually fast even for a large number of parameters. If the model contains random effects, the penalized and marginal log-likelihoods are maximized alternately until convergence. Computation of the marginal Fisher information is accelerated using the \CRANpkg{Matrix} package \citep{R:Matrix}. \section[Data structure]{Data structure: \class{sts}} \label{sec:hhh4:data} <>= ## extract components from measlesWeserEms to reconstruct data("measlesWeserEms") counts <- observed(measlesWeserEms) map <- measlesWeserEms@map populationFrac <- measlesWeserEms@populationFrac @ In public health surveillance, routine reports of infections to public health authorities give rise to spatio-temporal data, which are usually made available in the form of aggregated counts by region and period. The Robert Koch Institute (RKI) in Germany, for example, maintains a database of cases of notifiable diseases, which can be queried via the \emph{SurvStat@RKI} online service (\url{https://survstat.rki.de}). To exemplify area-level \code{hhh4} models in the remainder of this manuscript, we use weekly counts of measles infections by district in the Weser-Ems region of Lower Saxony, Germany, 2001--2002, downloaded from \emph{SurvStat@RKI} (as of Annual Report 2005). These data are contained in \pkg{surveillance} as \code{data("measlesWeserEms")} -- an object of the \proglang{S}4-class \class{sts} (``surveillance time series'') used for data input in \code{hhh4} models and briefly introduced below. See \citet{hoehle-mazick-2010} and \citet{salmon.etal2014} for more detailed descriptions of this class, which is also used for the prospective aberration detection facilities of the \pkg{surveillance} package. The epidemic modeling of multivariate count time series essentially involves three data matrices: a $T \times I$ matrix of the observed counts, a corresponding matrix with potentially time-varying population numbers (or fractions), and an $I \times I$ neighborhood matrix quantifying the coupling between the $I$ units. In our example, the latter consists of the adjacency orders~$o_{ji}$ between the districts. A map of the districts in the form of a \code{SpatialPolygons} object (defined by the \CRANpkg{sp} package of \citealp{R:sp}) can be used to derive the matrix of adjacency orders automatically using the functions \code{poly2adjmat} and \code{nbOrder}, which wrap functionality of package \CRANpkg{spdep} \citep{R:spdep}: <>= weserems_adjmat <- poly2adjmat(map) weserems_nbOrder <- nbOrder(weserems_adjmat, maxlag = Inf) @ Visual inspection of the adjacencies identified by \code{poly2adjmat} is recommended, e.g., via labelling each district with the number of its neighbors, i.e., \code{rowSums(weserems_adjmat)}. If adjacencies are not detected, this is probably due to sliver polygons. In that case either increase the \code{snap} tolerance in \code{poly2adjmat} or use \CRANpkg{rmapshaper} \citep{R:rmapshaper} to simplify and snap adjacent polygons in advance. Given the aforementioned ingredients, the \class{sts} object \code{measlesWeserEms} has been constructed as follows: <>= measlesWeserEms <- sts(counts, start = c(2001, 1), frequency = 52, population = populationFrac, neighbourhood = weserems_nbOrder, map = map) @ Here, \code{start} and \code{frequency} have the same meaning as for classical time-series objects of class \class{ts}, i.e., (year, sample number) of the first observation and the number of observations per year. Note that \code{data("measlesWeserEms")} constitutes a corrected version of \code{data("measles.weser")} originally analyzed by \citet[Section~3.2]{held-etal-2005}. Differences are documented on the associated help page. We can visualize such \class{sts} data in four ways: individual time series, overall time series, map of accumulated counts by district, or animated maps. For instance, the two plots in Figure~\ref{fig:measlesWeserEms} have been generated by the following code: <>= par(mar = c(5,5,1,1)) plot(measlesWeserEms, type = observed ~ time) plot(measlesWeserEms, type = observed ~ unit, population = measlesWeserEms@map$POPULATION / 100000, labels = list(font = 2), colorkey = list(space = "right"), sp.layout = layout.scalebar(measlesWeserEms@map, corner = c(0.05, 0.05), scale = 50, labels = c("0", "50 km"), height = 0.03)) @ The overall time-series plot in Figure~\ref{fig:measlesWeserEms1} reveals strong seasonality in the data with slightly different patterns in the two years. The spatial plot in Figure~\ref{fig:measlesWeserEms2} is a tweaked \code{spplot} (package \CRANpkg{sp}) with colors from \CRANpkg{colorspace} \citep{R:colorspace} using $\sqrt{}$-equidistant cut points handled by package \CRANpkg{scales} \citep{R:scales}. The default plot \code{type} is \code{observed ~ time | unit} and displays the district-specific time series. Here we show the output of the equivalent \code{autoplot}-method (Figure~\ref{fig:measlesWeserEms15}), which is based on \CRANpkg{ggplot2} \citep{R:ggplot2}: <0), "affected districts."), out.width="\\linewidth", fig.width=10, fig.height=6, fig.pos="!h", eval=-1>>= plot(measlesWeserEms, units = which(colSums(observed(measlesWeserEms)) > 0)) library("ggplot2") autoplot(measlesWeserEms, units = which(colSums(observed(measlesWeserEms)) > 0)) @ The districts \Sexpr{paste0(paste0(row.names(measlesWeserEms@map), " (", measlesWeserEms@map[["GEN"]], ")")[colSums(observed(measlesWeserEms)) == 0], collapse = " and ")} without any reported cases are excluded in Figure~\ref{fig:measlesWeserEms15}. Obviously, the districts have been affected by measles to a very heterogeneous extent during these two years. An animation of the data can be easily produced as well. We recommend to use converters of the \CRANpkg{animation} package \citep{R:animation}, e.g., to watch the series of plots in a web browser. The following code will generate weekly disease maps during the year 2001 with the respective total number of cases shown in a legend and -- if package \CRANpkg{gridExtra} \citep{R:gridExtra} is available -- an evolving time-series plot at the bottom: <>= animation::saveHTML( animate(measlesWeserEms, tps = 1:52, total.args = list()), title = "Evolution of the measles epidemic in the Weser-Ems region, 2001", ani.width = 500, ani.height = 600) @ <>= ## to perform the following analysis using biweekly aggregated measles counts: measlesWeserEms <- aggregate(measlesWeserEms, by = "time", nfreq = 26) @ \pagebreak \section{Modeling and inference} \label{sec:hhh4:fit} For multivariate surveillance time series of counts such as the \code{measlesWeserEms} data, the function \code{hhh4} fits models of the form~\eqref{eqn:hhh4} via (penalized) maximum likelihood. We start by modeling the measles counts in the Weser-Ems region by a slightly simplified version of the original negative binomial model used by \citet{held-etal-2005}. Instead of district-specific intercepts $\alpha_i^{(\nu)}$ in the endemic component, we first assume a common intercept $\alpha^{(\nu)}$ in order to not be forced to exclude the two districts without any reported cases of measles. After the estimation and illustration of this basic model, we will discuss the following sequential extensions: covariates (district-specific vaccination coverage), estimated transmission weights, and random effects to eventually account for unobserved heterogeneity of the districts. %epidemic seasonality, biweekly aggregation \subsection{Basic model} Our initial model has the following mean structure: \begin{align} \mu_{it} &= e_i \, \nu_t + \lambda \, Y_{i,t-1} + \phi \sum_{j \ne i} w_{ji} Y_{j,t-1}\:,\label{eqn:hhh4:basic}\\ \log(\nu_t) &= \alpha^{(\nu)} + \beta_t t + \gamma \sin(\omega t) + \delta \cos(\omega t)\:. \label{eqn:hhh4:basic:end} \end{align} To account for temporal variation of disease incidence, the endemic log-linear predictor $\nu_t$ incorporates an overall trend and a sinusoidal wave of frequency $\omega=2\pi/52$. As a basic district-specific measure of disease incidence, the population fraction $e_i$ is included as a multiplicative offset. The epidemic parameters $\lambda = \exp(\alpha^{(\lambda)})$ and $\phi = \exp(\alpha^{(\phi)})$ are assumed homogeneous across districts and constant over time. Furthermore, we define $w_{ji} = \ind(j \sim i) = \ind(o_{ji} = 1)$ for the time being, which means that the epidemic can only arrive from directly adjacent districts. This \class{hhh4} model transforms into the following list of \code{control} arguments: <>= measlesModel_basic <- list( end = list(f = addSeason2formula(~1 + t, period = measlesWeserEms@freq), offset = population(measlesWeserEms)), ar = list(f = ~1), ne = list(f = ~1, weights = neighbourhood(measlesWeserEms) == 1), family = "NegBin1") @ The formulae of the three predictors $\log\nu_t$, $\log\lambda$ and $\log\phi$ are specified as element \code{f} of the \code{end}, \code{ar}, and \code{ne} lists, respectively. For the endemic formula we use the convenient function \code{addSeason2formula} to generate the sine-cosine terms, and we take the multiplicative \code{offset} of population fractions $e_i$ from the \code{measlesWeserEms} object. The autoregressive part only consists of the intercept $\alpha^{(\lambda)}$, whereas the neighborhood component specifies the intercept $\alpha^{(\phi)}$ and also the matrix of transmission \code{weights} $(w_{ji})$ to use -- here a simple indicator of first-order adjacency. The chosen \code{family} corresponds to a negative binomial model with a common overdispersion parameter $\psi$ for all districts. Alternatives are \code{"Poisson"}, \code{"NegBinM"} ($\psi_i$), or a factor determining which groups of districts share a common overdispersion parameter. Together with the data, the complete list of control arguments is then fed into the \code{hhh4} function to estimate the model: <>= measlesFit_basic <- hhh4(stsObj = measlesWeserEms, control = measlesModel_basic) @ The fitted model is summarized below: <>= summary(measlesFit_basic, idx2Exp = TRUE, amplitudeShift = TRUE, maxEV = TRUE) @ The \code{idx2Exp} argument of the \code{summary} method requests the estimates for $\lambda$, $\phi$, $\alpha^{(\nu)}$ and $\exp(\beta_t)$ instead of their respective internal log-values. For instance, \code{exp(end.t)} represents the seasonality-adjusted factor by which the basic endemic incidence increases per week. The \code{amplitudeShift} argument transforms the internal coefficients $\gamma$ and $\delta$ of the sine-cosine terms to the amplitude $A$ and phase shift $\varphi$ of the corresponding sinusoidal wave $A \sin(\omega t + \varphi)$ in $\log\nu_t$ \citep{paul-etal-2008}. The resulting multiplicative effect of seasonality on $\nu_t$ is shown in Figure~\ref{fig:measlesFit_basic_endseason} produced by: <>= plot(measlesFit_basic, type = "season", components = "end", main = "") @ The epidemic potential of the process as determined by the parameters $\lambda$ and $\phi$ is best investigated by a combined measure: the dominant eigenvalue (\code{maxEV}) of the matrix $\bm{\Lambda}$ %$\Lambda_t$, %such that $\bm{\mu}_t = \bm{\nu}_t + \bm{\Lambda} \bm{Y}_{t-1}$ which has the entries $(\Lambda)_{ii} = \lambda$ %$(\Lambda_t)_{ii} = \lambda_{it}$ on the diagonal and $(\Lambda)_{ij} = \phi w_{ji}$ %$(\Lambda_t)_{ij} = \phi_{it} w_{ji}$ for $j\ne i$ \citep{paul-etal-2008}. If the dominant eigenvalue is smaller than 1, it can be interpreted as the epidemic proportion of disease incidence. In the above model, the estimate is \Sexpr{round(100*getMaxEV(measlesFit_basic)[1])}\%. Another way to judge the relative importance of the three model components is via a plot of the fitted mean components along with the observed counts. Figure~\ref{fig:measlesFitted_basic} shows this for the six districts with more than 20 cases: <>= districts2plot <- which(colSums(observed(measlesWeserEms)) > 20) plot(measlesFit_basic, type = "fitted", units = districts2plot, hide0s = TRUE) @ The largest portion of the fitted mean indeed results from the within-district autoregressive component with very little contribution of cases from adjacent districts and a rather small endemic incidence. The \code{overdisp} parameter from the model summary and its 95\% confidence interval <<>>= confint(measlesFit_basic, parm = "overdisp") @ suggest that a negative binomial distribution with overdispersion is more adequate than a Poisson model corresponding to $\psi = 0$. We can underpin this finding by an AIC comparison, taking advantage of the convenient \code{update} method for \class{hhh4} fits: <>= AIC(measlesFit_basic, update(measlesFit_basic, family = "Poisson")) @ Other plot \code{type}s and methods for fitted \class{hhh4} models as listed in Table~\ref{tab:methods:hhh4} will be applied in the course of the following model extensions. <>= print(xtable( surveillance:::functionTable("hhh4", functions=list( Extract="getNEweights", Other="oneStepAhead" )), caption="Generic and \\textit{non-generic} functions applicable to \\class{hhh4} objects.", label="tab:methods:hhh4"), include.rownames = FALSE) @ \enlargethispage{\baselineskip} \subsection{Covariates} The \class{hhh4} model framework allows for covariate effects on the endemic or epidemic contributions to disease incidence. Covariates may vary over both regions and time and thus obey the same $T \times I$ matrix structure as the observed counts. For infectious disease models, the regional vaccination coverage is an important example of such a covariate, since it reflects the (remaining) susceptible population. In a thorough analysis of measles occurrence in the German federal states, \citet{herzog-etal-2010} found vaccination coverage to be associated with outbreak size. We follow their approach of using the district-specific proportion $1-v_i$ of unvaccinated children just starting school as a proxy for the susceptible population. As $v_i$ we use the proportion of children vaccinated with at least one dose among the ones presenting their vaccination card at school entry in district $i$ in the year 2004.\footnote{% First year with data for all districts -- available from the public health department of Lower Saxony (\url{http://www.nlga.niedersachsen.de/portal/live.php?navigation_id=36791&article_id=135436&_psmand=20}).} %% Note: districts are more heterogeneous in 2004 than in later years. %% Data is based on abecedarians in 2004, i.e.\ born in 1998, recommended to %% be twice vaccinated against Measles by the end of year 2000. This time-constant covariate needs to be transformed to the common matrix structure for incorporation in \code{hhh4}: <>= Sprop <- matrix(1 - measlesWeserEms@map@data$vacc1.2004, nrow = nrow(measlesWeserEms), ncol = ncol(measlesWeserEms), byrow = TRUE) summary(Sprop[1, ]) @ There are several ways to account for the susceptible proportion in our model, among which the simplest is to update the endemic population offset $e_i$ by multiplication with $(1-v_i)$. \citet{herzog-etal-2010} found that the susceptible proportion is best added as a covariate in the autoregressive component in the form \[ \lambda_i \, Y_{i,t-1} = \exp\big(\alpha^{(\lambda)} + \beta_s \log(1-v_i)\big) \, Y_{i,t-1} = \exp\big(\alpha^{(\lambda)}\big) \, (1-v_i)^{\beta_s} \, Y_{i,t-1} \] according to the mass action principle \citep{Keeling.Rohani2008}. A higher proportion of susceptibles in district $i$ is expected to boost the generation of new infections, i.e., $\beta_s > 0$. Alternatively, this effect could be assumed as an offset, i.e., $\beta_s \equiv 1$. To choose between endemic and/or autoregressive effects, and multiplicative offset vs.\ covariate modeling, we perform AIC-based model selection. First, we set up a grid of possible component updates: <>= Soptions <- c("unchanged", "Soffset", "Scovar") SmodelGrid <- expand.grid(end = Soptions, ar = Soptions) row.names(SmodelGrid) <- do.call("paste", c(SmodelGrid, list(sep = "|"))) @ Then we update the initial model \code{measlesFit_basic} according to each row of \code{SmodelGrid}: <>= measlesFits_vacc <- apply(X = SmodelGrid, MARGIN = 1, FUN = function (options) { updatecomp <- function (comp, option) switch(option, "unchanged" = list(), "Soffset" = list(offset = comp$offset * Sprop), "Scovar" = list(f = update(comp$f, ~. + log(Sprop)))) update(measlesFit_basic, end = updatecomp(measlesFit_basic$control$end, options[1]), ar = updatecomp(measlesFit_basic$control$ar, options[2]), data = list(Sprop = Sprop)) }) @ The resulting object \code{measlesFits_vacc} is a list of \Sexpr{nrow(SmodelGrid)} \class{hhh4} fits, which are named according to the corresponding \code{Soptions} used for the endemic and autoregressive components. We construct a call of the function \code{AIC} taking all list elements as arguments: <>= aics_vacc <- do.call(AIC, lapply(names(measlesFits_vacc), as.name), envir = as.environment(measlesFits_vacc)) @ <<>>= aics_vacc[order(aics_vacc[, "AIC"]), ] @ <>= if (AIC(measlesFits_vacc[["Scovar|unchanged"]]) > min(aics_vacc[,"AIC"])) stop("`Scovar|unchanged` is not the AIC-minimal vaccination model") @ Hence, AIC increases if the susceptible proportion is only added to the autoregressive component, but we see a remarkable improvement when adding it to the endemic component. The best model is obtained by leaving the autoregressive component unchanged ($\lambda$) and adding the term $\beta_s \log(1-v_i)$ to the endemic predictor in Equation~\ref{eqn:hhh4:basic:end}. <>= measlesFit_vacc <- update(measlesFit_basic, end = list(f = update(formula(measlesFit_basic)$end, ~. + log(Sprop))), data = list(Sprop = Sprop)) coef(measlesFit_vacc, se = TRUE)["end.log(Sprop)", ] @ The estimated exponent $\hat{\beta}_s$ is both clearly positive and different from the offset assumption. In other words, if a district's fraction of susceptibles is doubled, the endemic measles incidence is estimated to multiply by $2^{\hat{\beta}_s}$: <<>>= 2^cbind("Estimate" = coef(measlesFit_vacc), confint(measlesFit_vacc))["end.log(Sprop)",] @ \subsection{Spatial interaction} Up to now, the model assumed that the epidemic can only arrive from directly adjacent districts ($w_{ji} = \ind(j\sim i)$), and that all districts have the same ability $\phi$ to import cases from neighboring regions. Given that humans travel further and preferrably to metropolitan areas, both assumptions seem overly simplistic and should be tuned toward a ``gravity'' model for human interaction. First, to reflect commuter-driven spread %\citep[Section~6.3.3.1]{Keeling.Rohani2008} in our model, we scale the district's susceptibility with respect to its population fraction by multiplying $\phi$ with $e_i^{\beta_{pop}}$: <>= measlesFit_nepop <- update(measlesFit_vacc, ne = list(f = ~log(pop)), data = list(pop = population(measlesWeserEms))) @ As in a similar analyses of influenza \citep{geilhufe.etal2012,meyer.held2013}, we find strong evidence for such an agglomeration effect: AIC decreases from \Sexpr{round(AIC(measlesFit_vacc))} to \Sexpr{round(AIC(measlesFit_nepop))} and the estimated exponent $\hat{\beta}_{pop}$ is <<>>= cbind("Estimate" = coef(measlesFit_nepop), confint(measlesFit_nepop))["ne.log(pop)",] @ Second, to account for long-range transmission of cases, \citet{meyer.held2013} proposed to estimate the weights $w_{ji}$ as a function of the adjacency order $o_{ji}$ between the districts. For instance, a power-law model assumes the form $w_{ji} = o_{ji}^{-d}$, for $j\ne i$ and $w_{jj}=0$, where the decay parameter $d$ is to be estimated. Normalization to $w_{ji} / \sum_k w_{jk}$ is recommended and applied by default when choosing \code{W_powerlaw} as weights in the neighborhood component: <>= measlesFit_powerlaw <- update(measlesFit_nepop, ne = list(weights = W_powerlaw(maxlag = 5))) @ The argument \code{maxlag} sets an upper bound for spatial interaction in terms of adjacency order. Here we set no limit since \code{max(neighbourhood(measlesWeserEms))} is \Sexpr{max(neighbourhood(measlesWeserEms))}. The decay parameter $d$ is estimated to be <<>>= cbind("Estimate" = coef(measlesFit_powerlaw), confint(measlesFit_powerlaw))["neweights.d",] @ which represents a strong decay of spatial interaction for higher-order neighbors. As an alternative to the parametric power law, unconstrained weights up to \code{maxlag} can be estimated by using \code{W_np} instead of \code{W_powerlaw}. For instance, \code{W_np(maxlag = 2)} corresponds to a second-order model, i.e., \mbox{$w_{ji} = 1 \cdot \ind(o_{ji} = 1) + e^{\omega_2} \cdot \ind(o_{ji} = 2)$}, which is also row-normalized by default: <>= measlesFit_np2 <- update(measlesFit_nepop, ne = list(weights = W_np(maxlag = 2))) @ Figure~\ref{fig:measlesFit_neweights2} shows both the power-law model $o^{-\hat{d}}$ and the second-order model. %, where $e^{\hat{\omega}_2}$ is Alternatively, the plot \code{type = "neweights"} for \class{hhh4} fits can produce a \code{stripplot} \citep{R:lattice} of $w_{ji}$ against $o_{ji}$ as shown in Figure~\ref{fig:measlesFit_neweights1} for the power-law model: <>= library("lattice") trellis.par.set("reference.line", list(lwd=3, col="gray")) trellis.par.set("fontsize", list(text=14)) plot(measlesFit_powerlaw, type = "neweights", plotter = stripplot, panel = function (...) {panel.stripplot(...); panel.average(...)}, jitter.data = TRUE, xlab = expression(o[ji]), ylab = expression(w[ji])) ## non-normalized weights (power law and unconstrained second-order weight) local({ colPL <- "#0080ff" ogrid <- 1:5 par(mar=c(3.6,4,2.2,2), mgp=c(2.1,0.8,0)) plot(ogrid, ogrid^-coef(measlesFit_powerlaw)["neweights.d"], col=colPL, xlab="Adjacency order", ylab="Non-normalized weight", type="b", lwd=2) matlines(t(sapply(ogrid, function (x) x^-confint(measlesFit_powerlaw, parm="neweights.d"))), type="l", lty=2, col=colPL) w2 <- exp(c(coef(measlesFit_np2)["neweights.d"], confint(measlesFit_np2, parm="neweights.d"))) lines(ogrid, c(1,w2[1],0,0,0), type="b", pch=19, lwd=2) arrows(x0=2, y0=w2[2], y1=w2[3], length=0.1, angle=90, code=3, lty=2) legend("topright", col=c(colPL, 1), pch=c(1,19), lwd=2, bty="n", inset=0.1, y.intersp=1.5, legend=c("Power-law model", "Second-order model")) }) @ Note that only horizontal jitter is added in this case. Because of normalization, the weight $w_{ji}$ for transmission from district $j$ to district $i$ is determined not only by the districts' neighborhood $o_{ji}$ but also by the total amount of neighborhood of district $j$ in the form of $\sum_{k\ne j} o_{jk}^{-d}$, which causes some variation of the weights for a specific order of adjacency. The function \code{getNEweights} can be used to extract the estimated weight matrix $(w_{ji})$. An AIC comparison of the different models for the transmission weights yields: <<>>= AIC(measlesFit_nepop, measlesFit_powerlaw, measlesFit_np2) @ AIC improves when accounting for transmission from higher-order neighbors by a power law or a second-order model. In spite of the latter resulting in a slightly better fit, we will use the power-law model as a basis for further model extensions since the stand-alone second-order effect is not always identifiable in more complex models and is scientifically implausible. \subsection{Random effects} \citet{paul-held-2011} introduced random effects for \class{hhh4} models, which are useful if the districts exhibit heterogeneous incidence levels not explained by observed covariates, and especially if the number of districts is large. For infectious disease surveillance data, a typical example of unobserved heterogeneity is underreporting. Our measles data even contain two districts without any reported cases, while the district with the smallest population (03402, SK Emden) had the second-largest number of cases reported and the highest overall incidence (see Figures~\ref{fig:measlesWeserEms2} and~\ref{fig:measlesWeserEms15}). Hence, allowing for district-specific intercepts in the endemic or epidemic components is expected to improve the model fit. For independent random effects $\alpha_i^{(\nu)} \stackrel{iid}{\sim} \N(\alpha^{(\nu)}, \sigma_\nu^2)$, $\alpha_i^{(\lambda)} \stackrel{iid}{\sim} \N(\alpha^{(\lambda)}, \sigma_\lambda^2)$, and $\alpha_i^{(\phi)} \stackrel{iid}{\sim} \N(\alpha^{(\phi)}, \sigma_\phi^2)$ in all three components, we update the corresponding formulae as follows: <>= measlesFit_ri <- update(measlesFit_powerlaw, end = list(f = update(formula(measlesFit_powerlaw)$end, ~. + ri() - 1)), ar = list(f = update(formula(measlesFit_powerlaw)$ar, ~. + ri() - 1)), ne = list(f = update(formula(measlesFit_powerlaw)$ne, ~. + ri() - 1))) @ <>= summary(measlesFit_ri, amplitudeShift = TRUE, maxEV = TRUE) @ <>= ## strip leading and trailing empty lines writeLines(tail(head(capture.output({ <> }), -1), -1)) @ The summary now contains an extra section with the estimated variance components $\sigma_\lambda^2$, $\sigma_\phi^2$, and $\sigma_\nu^2$. We did not assume correlation between the three random intercepts, but this is possible by specifying \code{ri(corr = "all")} in the component formulae. The implementation also supports a conditional autoregressive formulation for spatially correlated intercepts via \code{ri(type = "car")}. The estimated random effects can be extracted by the \code{ranef}-method: <<>>= head(ranef(measlesFit_ri, tomatrix = TRUE), n = 3) @ They can also be visualized in a map by the plot \code{type = "ri"} (Figure~\ref{fig:measlesFit_ri_map}): <>= stopifnot(ranef(measlesFit_ri) > -1.6, ranef(measlesFit_ri) < 1.6) for (comp in c("ar", "ne", "end")) { print(plot(measlesFit_ri, type = "ri", component = comp, col.regions = cm.colors(14), labels = list(cex = 0.6), at = seq(-1.6, 1.6, length.out = 15))) } @ For the autoregressive component in Figure~\ref{fig:measlesFit_ri_map1}, we see a pronounced heterogeneity between the three western districts in blue and the remaining districts. These three districts have been affected by large local outbreaks and are also the ones with the highest overall numbers of cases. In contrast, the city of Oldenburg (03403) is estimated with a relatively low autoregressive factor $\lambda_i = \exp(\alpha^{(\lambda)} + \alpha_i^{(\lambda)}) = \Sexpr{exp(fixef(measlesFit_ri)[1]+ranef(measlesFit_ri, tomatrix=TRUE)["03403",1])}$, but it seems to import more cases from other districts than explained by its population (Figure~\ref{fig:measlesFit_ri_map2}). In Figure~\ref{fig:measlesFit_ri_map3}, the two districts without any reported measles cases (03401 and 03405) appear in dark pink, which means that they exhibit a relatively low endemic incidence after adjusting for the population and susceptible proportion. Such districts could be suspected of a larger amount of underreporting. Note that the extra flexibility of the random effects model comes at a price. First, the estimation runtime increases considerably from \Sexpr{round(measlesFit_powerlaw[["runtime"]]["elapsed"], 1)} seconds for the previous power-law model \code{measlesFit_powerlaw} to \Sexpr{round(measlesFit_ri[["runtime"]]["elapsed"], 1)} seconds with additional random effects. Furthermore, we no longer obtain AIC values in the model summary, since random effects invalidate simple AIC-based model comparisons. Of course we can plot the fitted values (Figure~\ref{fig:measlesFitted_ri}) and visually compare their quality with the initial fit shown in Figure~\ref{fig:measlesFitted_basic}: <>= plot(measlesFit_ri, type = "fitted", units = districts2plot, hide0s = TRUE) @ For some of these districts, a great amount of cases is now explained via transmission from neighboring regions while others are mainly influenced by the local autoregression. Note that the decomposition of the estimated mean by district can also be seen from the related plot \code{type = "maps"} (Figure~\ref{fig:measlesFitted_maps}): <>= plot(measlesFit_ri, type = "maps", which = c("epi.own", "epi.neighbours", "endemic"), prop = TRUE, labels = list(cex = 0.6)) @ However, for quantitative comparisons of model performance we have to resort to more sophisticated techniques presented in the next section. \subsection{Predictive model assessment} \citet{paul-held-2011} suggest to evaluate one-step-ahead forecasts from competing models by proper scoring rules for count data \citep{czado-etal-2009}. These scores measure the discrepancy between the predictive distribution $P$ from a fitted model and the later observed value $y$. A well-known example is the squared error score (``ses'') $(y-\mu_P)^2$, which is usually averaged over a suitable set of forecasts to obtain the mean squared error. More elaborate scoring rules such as the logarithmic score (``logs'') or the ranked probability score (``rps'') take into account the whole predictive distribution to assess calibration and sharpness simultaneously. The so-called Dawid-Sebastiani score (``dss'') is another option. Lower scores correspond to better predictions. In the \class{hhh4} framework, predictive model assessment is made available by the functions \code{oneStepAhead}, \code{scores}, \code{pit}, and \code{calibrationTest}. We will use the second quarter of 2002 as the test period, and compare the basic model, the power-law model, and the random effects model. First, we use the \code{"final"} fits on the complete time series to compute the predictions, which then simply correspond to the fitted values during the test period: <>= tp <- c(65, 77) models2compare <- paste0("measlesFit_", c("basic", "powerlaw", "ri")) measlesPreds1 <- lapply(mget(models2compare), oneStepAhead, tp = tp, type = "final") @ <>= stopifnot(all.equal(measlesPreds1$measlesFit_powerlaw$pred, fitted(measlesFit_powerlaw)[tp[1]:tp[2],], check.attributes = FALSE)) @ Note that in this case, the log-score for a model's prediction in district $i$ in week $t$ equals the associated negative log-likelihood contribution. Comparing the mean scores from different models is thus essentially a goodness-of-fit assessment: <>= stopifnot(all.equal( measlesFit_powerlaw$loglikelihood, -sum(scores(oneStepAhead(measlesFit_powerlaw, tp = 1, type = "final"), which = "logs", individual = TRUE)))) @ <>= SCORES <- c("logs", "rps", "dss", "ses") measlesScores1 <- lapply(measlesPreds1, scores, which = SCORES, individual = TRUE) t(sapply(measlesScores1, colMeans, dims = 2)) @ All scoring rules claim that the random effects model gives the best fit during the second quarter of 2002. Now we turn to true one-week-ahead predictions of \code{type = "rolling"}, which means that we always refit the model up to week $t$ to get predictions for week $t+1$: <>= measlesPreds2 <- lapply(mget(models2compare), oneStepAhead, tp = tp, type = "rolling", which.start = "final") @ Figure~\ref{fig:measlesPreds2_plot} shows \CRANpkg{fanplot}s \citep{R:fanplot} of the sequential one-week-ahead forecasts from the random effects models for the same districts as in Figure~\ref{fig:measlesFitted_ri}: <>= par(mfrow = sort(n2mfrow(length(districts2plot))), mar = c(4.5,4.5,2,1)) for (unit in names(districts2plot)) plot(measlesPreds2[["measlesFit_ri"]], unit = unit, main = unit, key.args = if (unit == tail(names(districts2plot),1)) list()) @ Note that \code{quantile} and \code{confint} methods are also available for \class{oneStepAhead} predictions. Looking at the average scores of these forecasts over all weeks and districts, the most parsimonious initial model \code{measlesFit_basic} actually turns out best: <>= measlesScores2 <- lapply(measlesPreds2, scores, which = SCORES, individual = TRUE) t(sapply(measlesScores2, colMeans, dims = 2)) @ Statistical significance of the differences in mean scores can be investigated by a \code{permutationTest} for paired data or a paired $t$-test: <>= set.seed(321) sapply(SCORES, function (score) permutationTest( measlesScores2$measlesFit_ri[, , score], measlesScores2$measlesFit_basic[, , score], nPermutation = 999)) @ Hence, there is no clear evidence for a difference between the basic and the random effects model with regard to predictive performance during the test period. Whether predictions of a particular model are well calibrated can be formally investigated by \code{calibrationTest}s for count data as recently proposed by \citet{wei.held2013}. For example: <>= calibrationTest(measlesPreds2[["measlesFit_ri"]], which = "rps") @ <>= ## strip leading and trailing empty lines writeLines(tail(head(capture.output({ <> }), -1), -1)) @ Thus, there is no evidence of miscalibrated predictions from the random effects model. \citet{czado-etal-2009} describe an alternative informal approach to assess calibration: probability integral transform (PIT) histograms for count data (Figure~\ref{fig:measlesPreds2_pit}). <>= par(mfrow = sort(n2mfrow(length(measlesPreds2))), mar = c(4.5,4.5,2,1)) for (m in models2compare) pit(measlesPreds2[[m]], plot = list(ylim = c(0, 1.25), main = m)) @ Under the hypothesis of calibration, i.e., $y_{it} \sim P_{it}$ for all predictive distributions $P_{it}$ in the test period, the PIT histogram is uniform. Underdispersed predictions lead to U-shaped histograms, and bias causes skewness. In this aggregate view of the predictions over all districts and weeks of the test period, predictive performance is comparable between the models, and there is no evidence of badly dispersed predictions. However, the right-hand decay in all histograms suggests that all models tend to predict higher counts than observed. This is most likely related to the seasonal shift between the years 2001 and 2002. In 2001, the peak of the epidemic was in the second quarter, while it already occurred in the first quarter in 2002 (cp.\ Figure~\ref{fig:measlesWeserEms1}). \subsection{Further modeling options} In the previous sections we extended our model for measles in the Weser-Ems region with respect to spatial variation of the counts and their interaction. Temporal variation was only accounted for in the endemic component, which included a long-term trend and a sinusoidal wave on the log-scale. \citet{held.paul2012} suggest to also allow seasonal variation of the epidemic force by adding a superposition of $S$ harmonic waves of fundamental frequency~$\omega$, $\sum_{s=1}^S \left\{ \gamma_s \sin(s\,\omega t) + \delta_s \cos(s\,\omega t) \right\}$, to the log-linear predictors of the autoregressive and/or neighborhood component -- just like for $\log\nu_t$ in Equation~\ref{eqn:hhh4:basic:end} with $S=1$. However, given only two years of measles surveillance and the apparent shift of seasonality with regard to the start of the outbreak in 2002 compared to 2001, more complex seasonal models are likely to overfit the data. Concerning the coding in \proglang{R}, sine-cosine terms can be added to the epidemic components without difficulties by again using the convenient function \code{addSeason2formula}. Updating a previous model for different numbers of harmonics is even simpler, since the \code{update}-method has a corresponding argument \code{S}. The plots of \code{type = "season"} and \code{type = "maxEV"} for \class{hhh4} fits can visualize the estimated component seasonality. All of our models for the measles surveillance data incorporated an epidemic effect of the counts from the local district and its neighbors. Without further notice, we thereby assumed a lag equal to the observation interval of one week. However, the generation time of measles is around 10 days, which is why \citet{herzog-etal-2010} aggregated their weekly measles surveillance data into biweekly intervals. We can perform a sensitivity analysis by running the whole code of the current section based on \code{aggregate(measlesWeserEms, nfreq = 26)}. Doing so, the parameter estimates of the various models retain their order of magnitude and conclusions remain the same. However, with the number of time points halved, the complex random effects model would not always be identifiable when calculating one-week-ahead predictions during the test period. %% basic model: same epidemic parameters and dominant eigenvalue (0.78), same overdispersion (1.94) %% vaccination: the exponent $\beta_s$ for the susceptible proportion in the %% extended model \code{"Scovar|unchanged"} is closer to 1 (1.24), which is why %% \code{"Soffset|unchanged"} is selected by AIC. %% random effects: less variance, but similar pattern We have shown several options to account for the spatio-temporal dynamics of infectious disease spread. However, for directly transmitted human diseases, the social phenomenon of ``like seeks like'' results in contact patterns between subgroups of a population, which extend the pure distance decay of interaction. Especially for school children, social contacts are highly age-dependent. A useful epidemic model should therefore be additionally stratified by age group and take the inherent contact structure into account. How this extension can be incorporated in the spatio-temporal endemic-epidemic modeling framework \class{hhh4} has recently been investigated by \citet{meyer.held2015}. The associated \CRANpkg{hhh4contacts} package \citep{R:hhh4contacts} contains a demo script to exemplify this modeling approach with surveillance data on norovirus gastroenteritis and an age-structured contact matrix. \section{Simulation} \label{sec:hhh4:simulation} Simulation from fitted \class{hhh4} models is enabled by an associated \code{simulate}-method. Compared to the point process models described in \code{vignette("twinstim")} and \code{vignette("twinSIR")}, simulation is less complex since it essentially consists of sequential calls of \code{rnbinom} (or \code{rpois}). At each time point $t$, the mean $\mu_{it}$ is determined by plugging in the parameter estimates and the counts $Y_{i,t-1}$ simulated at the previous time point. In addition to a model fit, we thus need to specify an initial vector of counts \code{y.start}. As an example, we simulate 100 realizations of the evolution of measles during the year 2002 based on the fitted random effects model and the counts of the last week of the year 2001 in the 17 districts: <>= (y.start <- observed(measlesWeserEms)[52, ]) measlesSim <- simulate(measlesFit_ri, nsim = 100, seed = 1, subset = 53:104, y.start = y.start) @ The simulated counts are returned as a $52\times 17\times 100$ array instead of a list of 100 \class{sts} objects. We can, e.g., look at the final size distribution of the simulations: <<>>= summary(colSums(measlesSim, dims = 2)) @ A few large outbreaks have been simulated, but the mean size is below the observed number of \code{sum(observed(measlesWeserEms)[53:104, ])} $= \Sexpr{sum(observed(measlesWeserEms)[53:104,])}$ cases in the year 2002. Using the \code{plot}-method associated with such \code{hhh4} simulations, Figure~\ref{fig:measlesSim_plot_time} shows the weekly number of observed cases compared to the long-term forecast via a fan chart: <>= plot(measlesSim, "fan", means.args = list(), key.args = list()) @ We refer to \code{help("simulate.hhh4")} and \code{help("plot.hhh4sims")} for further examples. \pagebreak[2] %-------------- % BIBLIOGRAPHY %-------------- <>= ## create automatic references for R packages .Rbibfile <- file("hhh4_spacetime-R.bib", "w", encoding = "latin1") knitr::write_bib( c("MASS", "Matrix", "spdep", "colorspace", "scales", "gridExtra", "lattice", "sp", "ggplot2", "animation", "rmapshaper", "fanplot", "hhh4contacts"), file = .Rbibfile, tweak = FALSE, prefix = "R:") close(.Rbibfile) @ \bibliography{references,hhh4_spacetime-R} <>= save(aics_vacc, measlesPreds2, file = "hhh4_spacetime-cache.RData") @ \end{document} surveillance/inst/doc/glrnb.R0000644000175100001440000001320413231650373015740 0ustar hornikusers### R code from vignette source 'glrnb.Rnw' ### Encoding: UTF-8 ################################################### ### code chunk number 1: setup ################################################### library("surveillance") options(SweaveHooks=list(fig=function() par(mar=c(4,4,2,0)+.5))) options(width=70) set.seed(247) ## create directory for plots dir.create("plots", showWarnings=FALSE) ################################################### ### code chunk number 2: glrnb.Rnw:92-94 ################################################### getOption("SweaveHooks")[["fig"]]() data(shadar) plot(shadar,main="Number of salmonella hadar cases in Germany 2001-2006") ################################################### ### code chunk number 3: glrnb.Rnw:101-103 ################################################### # Simulate data simData <- sim.pointSource(length=300,K=0.5,r=0.6,p=0.95) ################################################### ### code chunk number 4: glrnb.Rnw:106-107 ################################################### getOption("SweaveHooks")[["fig"]]() plot(simData) ################################################### ### code chunk number 5: glrnb.Rnw:140-142 ################################################### getOption("SweaveHooks")[["fig"]]() survObj <- algo.glrnb(shadar,control=list(range=105:295,alpha=0)) plot(survObj,startyear=2003) ################################################### ### code chunk number 6: glrnb.Rnw:161-164 (eval = FALSE) ################################################### ## control=list(range=range,c.ARL=5, ## mu0=NULL, alpha=0, Mtilde=1, M=-1, change="intercept",theta=NULL, ## dir=c("inc","dec"),ret=c("cases","value")) ################################################### ### code chunk number 7: glrnb.Rnw:173-175 (eval = FALSE) ################################################### ## control=list(range=105:length(shadar$observed)) ## algo.glrnb(disProgObj=shadar,control=control) ################################################### ### code chunk number 8: glrnb.Rnw:181-183 (eval = FALSE) ################################################### ## control=list(range=105:295,alpha=3) ## algo.glrnb(disProgObj=shadar,control=control) ################################################### ### code chunk number 9: glrnb.Rnw:191-194 ################################################### control=list(range=105:295,alpha=NULL) surv <- algo.glrnb(shadar,control=control) surv$control$alpha ################################################### ### code chunk number 10: glrnb.Rnw:205-207 (eval = FALSE) ################################################### ## control=list(range=105:295,mu0=list(S=2,trend=FALSE)) ## algo.glrnb(disProgObj=shadar,control=control) ################################################### ### code chunk number 11: glrnb.Rnw:210-212 ################################################### control=list(range=105:295,mu0=list(S=2,trend=F,refit=T)) surv <- algo.glrnb(disProgObj=shadar,control=control) ################################################### ### code chunk number 12: glrnb.Rnw:217-219 ################################################### getOption("SweaveHooks")[["fig"]]() plot(shadar) with(surv$control,lines(mu0~range,lty=2,lwd=4,col=4)) ################################################### ### code chunk number 13: glrnb.Rnw:225-226 (eval = FALSE) ################################################### ## surv$control$mu0Model ################################################### ### code chunk number 14: glrnb.Rnw:233-234 ################################################### estimateGLRNbHook ################################################### ### code chunk number 15: glrnb.Rnw:274-275 ################################################### coef(surv$control$mu0Model$fitted[[1]]) ################################################### ### code chunk number 16: glrnb.Rnw:283-286 ################################################### control=list(range=105:295,alpha=0) surv <- algo.glrnb(disProgObj=shadar,control=control) table(surv$alarm) ################################################### ### code chunk number 17: glrnb.Rnw:291-295 ################################################### num <- rep(NA) for (i in 1:6){ num[i] <- table(algo.glrnb(disProgObj=shadar,control=c(control,c.ARL=i))$alarm)[2] } ################################################### ### code chunk number 18: glrnb.Rnw:319-321 (eval = FALSE) ################################################### ## control=list(range=105:295,theta=0.4) ## algo.glrnb(disProgObj=shadar,control=control) ################################################### ### code chunk number 19: glrnb.Rnw:326-328 (eval = FALSE) ################################################### ## control=list(range=105:295,theta=NULL) ## algo.glrnb(disProgObj=shadar,control=control) ################################################### ### code chunk number 20: glrnb.Rnw:336-338 ################################################### control=list(range=105:295,ret="cases",alpha=0) surv2 <- algo.glrnb(disProgObj=shadar,control=control) ################################################### ### code chunk number 21: glrnb.Rnw:341-342 ################################################### getOption("SweaveHooks")[["fig"]]() plot(surv2,startyear=2003) ################################################### ### code chunk number 22: glrnb.Rnw:352-354 ################################################### control=list(range=105:295,ret="cases",dir="dec",alpha=0) surv3 <- algo.glrnb(disProgObj=shadar,control=control) ################################################### ### code chunk number 23: glrnb.Rnw:357-358 ################################################### getOption("SweaveHooks")[["fig"]]() plot(surv3,startyear=2003) surveillance/inst/doc/twinSIR.pdf0000644000175100001440000044474013231650475016563 0ustar hornikusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 5027 /Filter /FlateDecode /N 87 /First 734 >> stream xœå\[wÛF’~ß_ÑoãœX@7úž3›s|·lÉv$ß’?P$$!¦H…€ly~ø<ïWÝ/IAÏqﮪ®úªª»€Œq&™±L1­-ÓÌ`ß0/³ÌëŒ9&¸ÒÌ3‘y‹}&”Ç9Á„'™p’eÜi\d™† Í2ÇqÑ0)$¶–IŸá~Ç”r¸î™rœbš[lºw‚e3‚†[æ8VÌ8‰Æ4³™ÁÖ0«•c™eÖYŽN˜¸˜yæ””Lræ,¤`žƒ^tí•ıdÞ©ŒIZA›‚gV1"–+ô'‰;m“IJ¥xNpg Sà)¦À©F24%„Ôœ)ð‰€´, Hƒ°„°O¡eáq¨Ðr¦=GË™s6Z–ü !vL£eÅÁ9D.”и„–•„ 4ZV h’¯WšÌ!>Œ˜Ð <ƒóÚÓø2hYCfŒFG;‹‘¥áà$Q´l¤nв‘8J„Ñ Ì cÁ´@/Iü<Žñ5žv Xˆc›-)„, °†ÜЦ°ƒ Î1Zsî³hÙeø×¢e§@žu¤;àË¢eçp³CËÎC  ØA-{I:´ìiàДð™Ã%´ì%ˆ êDÊÁ o ‡–½•î¿þþw–æÕ`4¨ ÏpvÄÒ—WÕ¸˜ä%Ô<¿œá@Ń×_.s–>ÀýãéûùçÐĽ«ê|:cwŽó“AYƒ ;Ì¿ä³»ì ŸNγ{šGwÙa1<äcöôßçãü43ËU1<T9»óð§ŒC"“¾âêG.þÆùßšû¨ƒƒÁëü=û\Tçì„Ìfù)» ?‚BÜö<ÿòy:•ìN1ŸŠÑÕ`¼7Î?¡Çòjö)/ÆãÁd˜3âö.Ë'£ü¢îå—EØaÓQÆÏî²bršAØUÉFE™ÊœÕwMÁõ—»¬Ìǧ{ùõ°¨p?»œ“Š]Φü,ﲓz9â©HpqqQœÍ¿ õp:º‰ëW³éèj˜ƒí'¯Ø“óiY•ÃYqY1Ÿ‡ޝN~ìö_Õ­UŸ‹ÉñþÑOl¿-›ì°Óâ:…Ë«q -ûq2ý/ èI-\øW@ùã6jRü&¢:„-›,l>4š•­Ñ«ÉdZQ/"6 ӛدÛçuK¼îgõ¶é¨î˜ë¦«ÓI•Oв°±)Á¨ÜŸ^£/jM{t*‘À*>Y3<ÐÁQ^N¯f #*]WOŽ+L²¿pÃã)I)³µA Žó m§¯>§ùu…Fþy™éU +´QÌÊŠÕMÀ®˜­×7>ÌËj>éû_*$pV™J X\ÇDù ê̋Ɣ5•µÎ’B°áxP.Æy.yY–±Ÿ”‘*…W¶ŠÃ bW*‚Šc b+jÝøÝŽ€[ÿ#0ç]GŽtäHGŽtäH«.+Žï’½Ì‰þSŒ˜H˜‰Œ˜ÈHm‡&’aâг†-±K¶Ì2[ækغŒ*F*x 5ˆxPÛE ,Á0´L,Œ¾4 5–qDØù„P>ш¯¬r‰ÙDC§­ö‰„ ÿ€¶ d“ IAºQÛ(jef#6ŠÚFÑØ(jEmí‰g;µ‰šŠÚ&jbn)óC Étv1#>xuY§¯Ÿ³jv•7w/úkÛ =¦Çï~Ý?¸ÿãÁáÑôb0ÙÞýéx„'&ÃéˆQ£`ñ ^ °5P‹± žJèÆ{õ,F†ˆ -±ÛwŨ:êŸéZW6ÿ$F‘x”3Lcùoé.![Ϲà}\°©°P‡}C17vq3Ôj;1!ÆÌ(îåq‹%ГȠãHÅÊ´çÀá®ú*º†©#îÖWp§Ã´ÕÁÿÿü‘„>̵’ÙXÈ‘ìåÓ¼8;o¡YdwÒûéÃôiºŸ¤‡éQzœÒ“t˜NÒQš§§éi‘žÂàÒ³ôËË¢L§“<½L®ÓQ:KË´J«óYž§Õçiz•~J?§×é—tÊöB‹Çƒ³2DPçû „kˆqt øC¼ú¸ç”<Ö¦M§^ .ò¦·ð½Þ›œÁÿƒëâ,aˆÁ`(/ÅsU~ñ–r§e“Z²ÆŽ>úõÑÁÛyG|ï(?CD9[6󆺹™#ûí˜ùRÀÍ~·Ÿ™+àœ²!j¾2þè<¤šR¥U#ŽÇBA X•! ²ÖÅ3¸F[j­ï_V?[‰}XÄ–#Dòf e.™!²4º&á›5hz‚ìÖCá:øhe¤>´ c‹PƒØ 2Ÿ“Ú€ 8h¶’èú|`/$Ô‘\CQ}ÎKH`ãüü@[úSêÿ"¤¬ªN¿»H:€Ñ«£Wæ æ@æQú8} æYú<ÀÍ‹ôeú*€ÎëôMú6}—þøÌñä$EŠ9ü˜W3j—P©˜ ¯.NÇùu PÃéÅÅ ÀTè:E®;(ÏÓü䃄\ô¬ø(¯²ßçP6)€_kðŒ‚q~ZŽH @ŽXoÀîr|U¦¤\M«|t2w7ñpw KJQ %²Vü[\§å˜h_ÅÌ«915z¦ÿJÿ•Ϧ+ Jò^¢{ŠÇ«H}–ŒÖÕF7£[o$}‘ôõ‹ƒý—Ï–újEK¼É½IY,N,Uù. Ö!öP…è7iÛ„*´·ü×¶güŸµ9d8á‘®‘lÓO!ˆVH¾¥¶½ï–í-.Ù[táÑ"‚â“"G­kt­ZV 1wÂB šFhyb\w”V Ÿ–é¶mÔ¾Ú“© Ú“¾¯™Up&Uzþìͳ礶‡ÓÉt½On²±¹ IÕé$mÊÖ©ÐôͶ;ÊiÖ’-M¶µ*ªôïêÞ®þxë¨_›ïê^áúùüÜîùÙNWü·k jÕÔvϳÎï¼O%¯S‹¢*Æ£»„ÔåGò?ƒYユ[~g4CÏî§ñ;ÁÛDWsFsºù¬ërÆyY®ø¯õ6q‡ jœ'U)Z¦¾Ö­LFù¬Ngù6¿’ùM~%^ÔÒ‘·@Á¶Aa£yö„ÚëçS~;|¿ÿòÕüÄúz•5 ; zzÉ-“Ú…ízŒo_±´„øµ‚V·HçŽ!¼t&è¿ þÇ…ùaK tˆgiKK]zž›¯õ;ñ4›Å>õß7´d”8Z£óóç +N hYw:gœ-ãu"Bò½Ka8ìØåã:< öøK'ý\Dw§«1[“zΓÍ?êt3&™­S7ZìݪC á2£,ÐØR䥼¨ÈÕkY‘÷ÞlöpáMNe]Å~ÿèÅã÷dBƒê<ö¶ÖÏ5³ÌK¹§è*u{ŠId|»Ÿó[üœQ4í`ºò`µ£É˜E²¹d/z5SjÝ“fe.K»õq—ÎB ¾¶LZ­ëì)$°!ù&…¡½ît˪îs³:ݲ-‡Ç_žC×ój0WóÓàƃ‹“Ñ \5ºMZ ˆÞ Ó-d¯áª…ùRÏ«¸[ÑèôªoÜ&6ÅmE~ðòÉ›ý_V:tëâµf*w®Çºògí9$`›7ËCkõ8ó›',•@ }Èôž€{óøøÑý9¯Õ&­]L³g]Ýi§‹¾¯_×r{æV9,QµfÑéÉå¿ÂýsYIûÿ¨ÛÍÎ,G·1|½ gp¾!]Œ.¦.å–) £µâ¹]šØ3fÍœ„ïLínð݃ÓÓ—¿Þü¶ÖåG×UŽ@qºa’·I}·MòÊNB)zk•÷øM‘ã_ó\·•QÜ<º:=Íc!™éÎb¨µT­ÌIñîgñ è^sT+ìÒáüò\eçóKå0‘J?FEy9|Yœ¨òëÕ «7¤>¼¾($Uou”·3¡v³FõÔ⌻¾ZüìáÛgû¯ê>¿\œLÇåú`±3)»*ÜI€(lõ±µa¬Õj»&ŠÛü³ïDÄ~óãÆüõæ£ÃZÕmx0›M?Gd=Ì(‡â_P¶_ÏÔ¨\LôÇZÅùQ¯Iàm=å–]´]ªã‰ {“òô]uÓ>”ÅþwU\Ï~…=›¹kä)☠AV õË|"õnõ®‹ª„›f(í“ÌÉ9QʹÄiñ‰ò*!Ò¥!)«Õ7!jM9ç€ÓA h§ª}` Uª« èAñEõ­-tMJ.¨ø½¡IÛ„ÒùÛ5äö_¼yüä}“ú“j}2Ò¸ñm…eªSqÒ»°Lwò€ö¯P×þY=×êz¥hjk¿ë ?øJÙßXôÁ;%|¥àc×qáÿ–ßÚø•f—çœôêœ-©-&îçSöE˜³__)v9Ÿ¯_Sf6LMùxÑ{hhE²U§Œ§w Û;ï:~öô—wÇõ2×fcݶµfQZuêÖ.Jo_n¯Ù®[ëݼþÚ^û½ýšs—ŠnK¼ç½ßfý|•Л֙3¹}ù }1_a~O«ËÈÜÊÁd´¼Î|²2ùÖ.uÚå óM‹Ëë•»õ›K‹Æ=–ŒeËzÃb.D\ÝEcßYkÛnM}­Wn²ÞµËm;Ž2‰¼î%“ˆ…%b8aãB2DþèûDM™ ¹Õœ&z ÀÙ]ÕÎÿü‚¦ðÆŽAš§¬ïf6q6¼Í‡È—²áIµN¨Âè»D¼Â©v{pG¯¥ª„ªÝ·‰w»MµzÓ”!ú¦Ó MÒG¹ÝЦÅ,áᛣÃýŸæãOyU ËádãK~©»€¢MÇ/õ-`Þ,jpR‡nuóº¿Í¡!qëöÛGM%±ŸÏgÇ^´Íûã‹ýPwÜì‡öB!4½©*e‹B*©nʤ›vV ¨;Mš-ZápîeÀ³¼€?yB­-®cQ»ê'ÁXœL\ò ‹’ýP1„œ:ïïo@|á6Ï;âšä#-¸oÊóŽuÜ ñéâ7UT4/B‚ôP|]h€x*«ß¤¤™‚…Òó¶Ò7E¦5CD2‚A3çåp‘VÞTsÎ÷>,Y†j¯JËåóŒo[•ÖÀ¡…¢e´ôÀ–ÞŽ<)^láˆbC][ï½›Þ¼2Eï ×{¤3–ñfßЫõõ¾cÍ{G&¼R_ïgô:}½o â¾ ¯¶×ûŽd³D×­]„pY¢èÍv”ã¶“Y[`#d¯€ ©›‚K¡5å!sùY:™Ð+ú™3‰Ç(+‘áv@³÷Á{|ŸÉáEŸNhˆRð«H«oET¯¹ŸÒttŒ¦E˜ˆ<¸Ô[·'÷ŒÊö¤îùÛLÉepn†¾`Á„¦23Xú&†Y„RèoI|–ž¿C¯¸çœk~+ÊÝЇÍùÓlT>Œ  ïW}-á¤Ç\’Ü­vÿ¼Ã³þÀ¹Ð~OÞ†åxâé[´š!sÞ"‰î~_|äB¯bú‚$´|Û).~mMÜ·D;}€jnlZ9iÀx¼ËzñW þKÀ)±ÇUÆaq¼0ˆ¯o¥XŠ'޾èb\b—ËÃÍ7V¬]ñPk–Ñ´Ä +i9MOÝêËÂ`v]|  NÊTÐÒ×VÝŽ2dÖÎ V„Ð߆à–Ì‘6ý½,“O¹]!Äí”Å$nË@‚ ‘eAÂÊ…ÿÏ%¼Ñ¤­Ž€ßˆ€¢Y›Ë¾1zz Ï5-«AU”ˆžËƒ7t+׋œ›Öhµñ‰æŠiÄ2TÆ£).ã=Óð?áy6ÀV0Úõr× ß  £DüG¬¡/½§v±ùÇÕ`„ó·ZÌ ” pDŸôÐB'’¾E,ë@ÂemqR‹ÓÓ|–Óçm1ûc­Zzùi¥â„*–ŠSè#!MeJ¬ŠÕ*Db¤iÞã×Euq¡$š…šè@M¬„¦W0ÒÉ}&¤&™ÅÉÑÍ=¯6MÙe}»!”ÖN‹5FUf7ðr;)¶ò*[} 5H5¾"KµÓééià%=Ó~A¸YzO•>d´ôÆí®ä—±ºÂt‡> stream GPL Ghostscript 9.18 individual-level surveillance data, endemic-epidemic modeling, infectious disease epidemiology, self-exciting point process, branching process with immigration 2018-01-23T16:14:04+01:00 2018-01-23T16:14:04+01:00 LaTeX with hyperref package twinSIR: Individual-level epidemic modeling for a fixed population with known distancesSebastian Meyer, Leonhard Held, Michael Höhle endstream endobj 90 0 obj << /Type /ObjStm /Length 3555 /Filter /FlateDecode /N 87 /First 800 >> stream xœÝ[[sÛÆ~ï¯ØÇd:ö~ɤ™ÊVìø"Ç¥ìÔvÇ0I¨yQHȱóëûÅ…$@J MÕ‡Xì~8÷³{ã,H&¸gA1i š)ãX0ÌJ´,sR²à˜†ô²Š…€Ç¾RQK0¡¼Ç Æ2ÊáD1a½Á‰fÂ+´8Á£#·L MO9&½ôqv%L.ñ¸àLyL¦‚ÅB2-žŠi-é–fÚx ÓÁa a™‰x„cÆà²žgiÀÀ,w„—3«ÞÎj¼ŸÀXÖax¼ sñ ¤fNi@•†9M¯+AGPÎ9MOyæyìp‚Q…â H$”`^iLª$óÆæóŽ(¡4óÞµ@MNôS–…H P-‚ªˆœN¸A5˜Sð„GÏ8áÐDZ® ­‰ìè+t¤»ÇÔƒ[êCxxt×Y@д ~ '‚Z‚À/ž3‘ÆÄHC´5Ô6Ä Gì6‘ºôœ±D^B¹Yi&C¤’"aˆzÚãYKÔ· —°DZçp×FJE$TÄm%©m‰tšÓ–ÎH2"… ýZ"µÏ…%òy‹8¬9„¦z?N³¹H8QIF´$¦9¢—¤…Vô^ލ©F¦¯6ÆÿåÇYzœ/Kö/æ¡)#–¾~ó\N8DX$$³ëÉ„½céóüSIª{½Èù¬d¶n-òÌUç/‹r’³ï޳2cËrq=.¯ù÷ì§Ÿâ\æ×xìžlg Y• °7“>,èͽžeÔ0U£Âcwâ bÐÉü,Ÿ³ –ÍÎX1;ÏñÀxléu"¡l›D0“64©'ºŸ-‹1Ë?eÓ«Éjü£Ùl^.1Iu'™«Žº>šúh룫¾>VØHʪ£¨õx¶çyVØ’‘$Dh'ùY‘ÝŸÂüô´ &!õÖ"n¼kߤ!åËùõbœ/!ÿùSùè´ÌÊ<ŠkìðD‘­©=ŸæD½ôÅñCÐhô/ŽÓÏW9~‘wé¬;„†¦%Z­ß¡mÅQÕç(Ë]ÌæË²/»Ì¼+\Ò$ºØ™dCj6™yZL¯'YYÌgíà÷狳|QS’Gzdž¨ÍÜr5·QP$GÆ8 «7åcêwHا}¢ñ”r2±d–MH üÔóôú} ù¬˜}hˆêfL¢iÔ˜îåÚü’›ÄÁ¨[ÉqÔh;™5hB´¾búIx$0S ·ªG­‹ª šðDB´õ‰3_E“¯å ¡Ð€Tp‰"wj‹ð„Ó“8h2¸æUâÆH™€“ qý›€ò<ëf\‹6Qa” ¾ ÷`nˆÁ@€BÁøAõH)¿ &É!]c’B&Æí‡é(ÚèS–¾=n;ŒÉ`U—¾›fŤœÿ°Ìß'Óüs¾øûyvœEÇtÓ‰ A„èM'¯èy hË%Ú ¥]¶Ì£ÛHï¿xùøéË¿>;ͧÙ,Üå0± 8šÙx~Fš•ÚRÁû?¸ÄMp.zÐx¼(®Êù"F×mTPuB0¸‚B Dƒ¥šúŸÅYyINØ]¿òÍÍ«/}¤·í/=ß|y;Zs¬ú¬>Ήí åÚãÈH¶ Oœ}4‚ƒæ¨,h×è´Œg¡]mîÒ»À^!O¡wª®T³™æüÿuÞµê´SDàö§²«_òââ²iBÄ(Ìù.=JIOÒÓôeš¥ïÓq:žOæ3üN§Yz–æi>;Ë–—éyzŽ0*½H/Ó"ýNÒi:Kç)d±ç²X¦óYž^¥W„Lòó²:[ÐŒéU¾(ægé"]¦Ëüc>KË´ücž^§¤ŸÓ?óÅüûho"Ø{iNúp’],ÁEQ¿ßÄzñž‡{§WxWÝ|XLr¤Â¼Ž¦èÒólšß ™ËlRŒf‰@‰“b¹„žFm‚ áÊi™O‹Éßš¾­éjÏRkøDøGm)Š0ÑÇKçYs¤=ºOwâù²ÆWÑòaX]Û“¼iÝ´®ñWéï­Ú}ÜP:.Z¥“=»Îi Žoc¶í2ûf Ö¼]Æ}¥yÆô`ôôèè×G+§RM7õNoa½é±> µô*ô­±s·Z}ídý«De“›£Œ«/4Fc­5GKôЂ–hI'½ìPÉõ#6[1ymô¸6Ï“(&­eÞÓˆˆP‚–¢7l3 Å.êBStÅue¯†ŠDï6A Ù‘go¾|ösí„ÜÓ<8µEFº©Á2"¶øt\Ûv}³G¿çú3Õyÿû>\múpµÍ‡“!)ÈuC.6¥‚|þNÛFÈ8hG|Wv2f @¸òÀûòðæøí“Ó¬¼<ý<}?Ÿ,ýÖ<±]Ñj„a›,t#C»ÍSÏ_Í ›ƒ uÿDì€C|-8îwÜörßȯŒ¸nùa B¦ù$Ÿâ‘´˜³¢üœN²²,Æy9¿Z—«w&´qÁ‘7ôN³è±’[˜8Ô¤Pæ5,Ò½úõÑë'uH³w±-Æ“_ãé;ŒñŒÛ8 zÖ|AÒÞûÁAÞÉÏÇ/~«y]ŽùîÏ'gÚÚø›–èb˪ŽìEvr(Õˆ®ïN=¿Ågep<ÎlÜ¢×~@¡6Š —‘M®.³ô}^fˆ"þH?¥®kV8T ÚÔÍ´÷ßÞÐ1µ«´ޜӺy}nª²‡º!Ùê\3Ù̇„M6£Ƚ>·´`Ûœ#Âož%g×>Œœ]µç>&Cëï¿…"믺ÿÛm¼Ä¡€{Jw›s¤³~ñ—oqž(€êln 3Âí€/$ y2<ñTã‚ëÒ¨»í®yýv¢~*8©Žõôwc÷»!óv¿ÕZb«Yößý>4‘•q‰GÖ×Ù‹ÄRµÐ>D¶y¼V¢FÒR$Ž\õ¶µ4@!·TVS%‡ÆÁ SÎ%VvCy0"â ± ÒÞ"é‰Hȸ~PA$A¨2AtWûÚbzþ‡ŒÊ­»“—eyµü!MŒŽž'£{W‹ù¿Aœd¾¸H¯²ñ¨Îߖ׋ÅÇl²ÏŽ¥ bÄ›GKE[’êàD•L¢™}O]‚£k#¤ëÒ]#]#½¥§Y®:ÒkIz¬oÛß‚)e1ÍùÅ^»È:¨MËé|ä~,Ù«Î…4&)«Yºð¸K¦ w• ëéh‡4ñ櫊º„êU–Ád[nú52Ñ60itkL}€‘€²ZUþUÅ]L]DÖ‰D#øë!"skW+'À7*|}ÜË8•´é`r*ÀÁõ\ ™Já‡Y¨OSõB J ”¥5µUQÃ×UÔˆ/‰V¥GG£‡oš%8¾ßò9ÅôÝDG÷—FÝ^¥·m—îÞÚܼ³ýjóí­žʵÕZ:X¥T/ÒQ»·Òì¶ÓÎJ½h¾ßâ(2^[ Ñz²Õ[,ßÅ™¡«+»²¬µLwƒ—±\ºÍ¹6Ò]>ÏlèF×¾ ’¤=³[@" á½ ö5ÑýJ4*¦äðÖäk¬³14õˆ$B/Ú´¹ã²¯í 4#ZPT»G¼ùï€Ú^‹F”Q0¿ÒÂ%J#d N $ûœßT!7 šù.@õÃvƒÌ…þ0ÒË%T, ‡/Œ dü§ÜpשÄ.LÁ&T@Þ`2Q|ó>˜þ~áú^q¡V;I©cø¡Á\I¯BåµwMN¡‘”º9=.‹Q[Tû !55µ"2”ªY©`TÂr¨».=ÞHP„jM ù}pæ˜za¡U°PŸP H2iOÿ•Ñá>¹D‹xþéã5¸¢¶Mûlý [§¶Š˜7Ó;ÐØÑmÄŽî‹bÇa4å’˜Ou/ÅÒŸ’$t€þÉ$ÿ·.®¯ˆ~ÍzÅ>oH–bŠFÿƒÑ弯”FiªBÎIƒ=óPr^´sHÅÈD%áG‰š€æ¸dJÑ_bA¾ýºâ÷V •v°ë–Y¸,Z;íÚXè¦ãViÚ}Ñ0¶ôß' ãòË%k3.ÞI7…nÐ*ÙGÌ;74v`X¿–(Þ çõÝÈ )¶±÷D$®hÚ>pˆQ©¹)1`MÑA,ºXÕhj*ñ­Š­4 e•q¯”ÅÍÒí£þã±Mfendstream endobj 178 0 obj << /Filter /FlateDecode /Length 5588 >> stream xœ½\K“#IR>p+.ìaËd{JA+‰÷c°Å°Ù^v0ÛéÂÀ˜æ .©Ô9*ÕffuMó{ù œ8àî‘‘JUW±3XZJExxøósÈúãŠÕ|Åð_üÿæxõ7ß ¿:ôW²önõxÅV¿½rœ­¬¬6zu¼ÒÂÙÚêñI{õFpîVVj_k£Æ'–»ÚÅV‡«?^qZpÿ»9®þá•låjoŒZ]ß^føÊ©Z:ËWÖˆÚ0¿º>^}_]¿oúõFJ[3fªæn-\͸1ÕÐÖü¸­v7Csº ½WÕpÂϘòÕð~¿þëßá²"_–±Ú* K_ﮪᱹ{óú»õõsö¤®=°Æ}_׬f–Y/]…øš‰j·o›»CZÒV·Ý6Œ“š[í‘mo½¨N݇È%pvºS¼Î¹T9— YÁ—KüÁ'âŠüÝooÖÄ”°Õ‡ía$jò-©4ÅÓ”þ¡ûHreJUû¦m·w7ã¼|)…t­Mó‚fpǪz·í÷»$[]ùo£þ„¨îÞµÍÍ–t…ôáY;!VÎj¦èâd%`²ÉÅâ2N„©˜”ò»ÓCw·mašAC‘A²ÆÑç7ÃvXs°®%ð<47kæêµqŠ®Þœn‡Çm~›Z”ªö<®[ýÕñõõÕ®‚[éU÷B›f °yX¼‹LþÛý'2Ïxµï^¡,$p¯«oöíîU £ÛÞíÒoÕ7ÿý¾ Gv^ȇÕ.3>ª·ÕŸ¼;©eͽͩ p׌îK Z $\!®Q@®z³Oa€Dä*õvý?’â«Ç÷`hñBêê=ÖŒVçƒÕƒû‡Ãaß`Þd²‚‰ZÊÒb»ýí¾Û£×D`h·‘‚çèÓ¢ûƒÇ?¤§¶zèÇე7µ4Â>HØ‹ý¡É£Ï}»ÏƒÖþŽây Û$.”ÍÏUÁGž»øØ‚c‡ÉVVi"Õ#=eÒb|«';„ì¡){Œ™b|’e Ê8RÛÚä '<Àß/™ˆ‚'¢£.lÄC.3Þ¯Œgµ–¬®ˆ)›Év0ÆÂ/aS|Ü»êõÝ®ù¸Þ€ä”ƒ ²{ض›vÿq-Q÷ÂT{ŒVWûûf·?‚MÑ·#&á…œ2ƒÕen×½S—3$ɸ€1 rÚ0îK_ü˜ðü©¢(‹ÄxuŸ8†ÐÑýC›”I+7ÃûÀχ|þÝiM“4ÄõÁÈw`þgfz 9ÓRËDÁ_Z ¦>¶¹Ó0ZFWx³‡T@3Á äÍ6-ã«o‰c¥‡¸ a¥d0Övyìúl°Qj…þÄxJ™©­W+D9üzÿ³g…eVèÌÌô¸9êÂpøÀL6¿Y»à¯]³§½hÇqÕŽv á‰áO7äï`é[¦ç›¯Ú8ÇK˜Wý‚Áo s ˜S(†u›¹Ë~kBªæBW]ß ÿ5A1Î+!JÖZyóu¶X×kŠóÕ6ÿü?ùÎüÒ`!ïúXTÞŒÙÃzÉV¸‡uÁæ£Yÿ~º{¿ívÉ å·4½PÉ\ZqG.RˆrÑž<)—=5@ }'@/Ð%DÄXО’<×Þâ® y¦VSÑÄa¾PÐB2Û'ÐD–ªÏ¶éj+…ã³m¾É¸C\‹Üah‰V™äCnf§ö·š=3Ä:Ö\°÷iòDŒË kH’³˜¾>–ÝʃeSx§…àÄJƒÌaûê«wýÐmo†•M6kÃ5&> ’pµ²:Jâ:ìSsiÉI$2m4Oáªk­Ci°mÚí»°oÀjP5´¸?”Sd´Wl÷cÄèÎqÌb$eÀX7ó§.„Î]F¾˜‰æŒKÉÑ÷ÏÇl[ŠÌqåœÔvØFö€Óè¢á—DWc¥@Ï4’Ržš|üÅŻ𠢚Q ‚Cƒa!Ììð±„,hÛ)HX˜ .º‡l•BTÃ"n+A Ý>’Fôp·¡f’=nbþQºÈÍxª¹pŽƒíæ ÞeÆÐDr`*PŒÚÇ «Ðé•+d ’'˜N©~ŸÓêiv!Ïm`T1§éWm!Û>‡È…â8áç€-1ÒsÐ}¡²›5ÍyŒ¨ ¨A\cIÍñ[?Ä5=™I\6‡pMPE9^QmTj Ú>’õ_6ü¶cÁÏ,7‰¡?üI6‚ÂÃʸÚÜ¢!õCœøýÕõ_}PS¤G¨IYÙý}á<ÍióYãUŽ î¹×yDȄĕ-·—/Ô\B€€0Ÿ™‚çR™CnÅ3EÕ -‡›KÁîœ@HšeñRP$•¥ß-DTø4vò­‡$¢ÃS³`2ß±m0Ñ€E¬kŒ¾ØE̾±}[u–ë&RZA6`#ê.­î.ê@‹ÒíJ«*=ù†,§|l+ 6U³0B\ ®9åì÷¡”Áº§-¼ÿã˜7ÎŒ&ø˜E°:ècLA×:tèW0·.ç²¢ ÃùvH´ ŽÊ÷ˆ6<”¨AI2Jâ´œ…bLûÔc"F¨d³3ž0°ŠÒ·07X„ˆ²RiìÄy „|(Ç@˜¨Gx¨'|š%Ÿ°+9KJejèvë³ù¤i°ŽQÔ„^c5uþ ·iúI¶›ÃÝ%—†åÄS«~ÈÒ —až&„aXV§ü<.# ²Yšï¶ýÔ7}ü-B5²×ªÔp‘±>‘ç¡ ·)“OôGåg†ØD´}æ¿˜ÓØL0gÞž é) œÏÄÌy‰’2Õ‡ÜNc\|Ì£R¬Õuè( [}º/%žY)fä°#ˆƒù°B¦0†€»!Éße¡  ʱÙ– j$øP%E¯ÂŠ%ý7!c8¥1cÌ<ûŽ©ÌbFù9“@A¿Âˆ#nS<@orI¾í.+7æn7I°§¼Œð,ü2FËß¿ˆI Ù¬VƒÍq³Ôl,’·4µÉZf¿ˆü;j»^ô솎Y(¥RèÊ+1@80P=/dþ±<§×³°’GT¾Ò ÛßÈšRiAV:xnSj"öƒKF¿¯¨Ç èrAÑæF>³œÍ 6Î=…Œp³g•É.š7$®݇V¹s5穚3r<Þ™2éJî5Ã0s¸¦£ ·±ï“75bÉ‹xtðB@ 0ʇ8ÕÍR+Õ‚2qYi¥Â+y[ší9çåÖ©§ß8Uîù¦¶Ý±‡P¡x8˜Ì%<Ûnˆ19CLÅ„væ™?r¬Ïrqâ6ö‘`ïERis¢A®2EêF•Ä™–³*û©B6HÆ…Luö, ±…Ê,¶veƒ( Êe‡£& 5ä™"é¬9“Z@Ž5–HcÂ;u¨Ž“TmTÿºvèœ:dF¹¼@=–ç´’“—UÙ—|6E6‘Æl-½ÊŸfxâ !Wá@&Ï3¯"ÞÒ..çòî+Ne$U58@êY¯‹Q=‹Hù.`–ö³ÒìÇ)ϳòdms›}Cèd݈µÁ2ŠÐ0±(BKQ útØO{~j¦åDað@•ŽåÎ$&,ÿ¦/ ƒæ?ËæŸ4ZŠs|n q>·ž:%E» ›uˆ äDŽ#h³kƒL)D?®ç-¶¶ÝìÎ E‘ñdËÇ™êÑç̼S9‹hÇYð)‹û>f>6 ÅCÞ>œ¥»i|>žæÖñàs"jwfͱ£7žLqÞêÅ¥aãMjº4K‰ê·¥W©¡‚¬i¨1°¢;d9ÿ›ía¦›¨¬óD¦T8%¦”ï+î €MXR‡0SzƒÂ«¶>BýÓÐìþSð!é@µ'ºrÁðrÆ®_<QºV¦8¢U\P6 i ù÷"“cC=y4ù×ü g*™ã1H£­†­6¬†Iúâœ(öL¼=ˆ(êeu“/€bŽR/X„Pó*ôs±v+8Ê)-œ†ƒ¯1³…9›‚Â}.‹a‘ Ö YP¸2y.:Ÿ‚]øvx•Z¿S{пܮ‹ÍO_b(Œ9¸£Iý$ðB“}Aa[|%´™Ì¤<=KÃ,fœ ŽpèžÌÄqjO‡O¶c‘7‚Âh·ÙÌMñÓ7ù·&…ïxÌš*A“JÁ¬´"V‚Šì W\—4¢Å™AM_ú>U¤`ïòé3‹¤ã)¨;óCÃBm‡ãô9ì¹]çl¤]ŠÔO§Ã^5Çcsè¦>P­ËóFˆt:;oL_Ÿæ)(z=¶Z"4h ÕpHóz:n‹}* ãÔ¹5Tõ«tgÑaÉ5»4ÌÂp‚Ðe™í†ÔL—fð3àŽ<´€‹¿Ë(µ#)YB©x˜6¡œt߈úÛw#yg›º7ÙyPHü³üÑÇÅæ`«ÔôClŠcööáÇ 3Y@èØëñœ Þ©÷å}ž\û‹u±aìùXhá2šg1rú ÐÅÜÏ©q-Ç6>’—ᘟW ›çª´ê/2àUÜJó ë@›Ð©µòú.`Ÿa ‚N§xU<|»^… Þ˜eèª+ÍñKø¯@XAåJ~ÐÔƒ(†mghrù*m¼Õ…îKm®li Å—ÆÇÕ˜ ±DG†;ëteñC¾Ô)œªa·ç.LôSáaj±TjkALÃ>®¥|–G³âaˆ$]*…û~¦µ€ó4Áí¢$‰ÐN…óbbbH?í0Çãt"J-5Qyvë!$ï! ”îB÷ÍF»¡ì,'‡Ó—ÀzÐ$Z­6e ="äðKi;±‡*,‹ïÌâN±ò ÿ/44 tE^;¾_¢œ¬ÊìU“!¨+A­£8÷ö¬Î 1áb9N—€Hþñõo0cáwìʆ3KM Õ³E.CÁ³’Z×~*+·H‹?‰ Ï_R $CíÇV\®ÍSwܶÁi%Ð wI ï?g&Cœ©ÕøªNx;†¸ì²0]§wx‘´Æ¦ HT͘µt‚ÉU>0œ ÍWUµP|„üË´¼bBfÀ…aÁ„#S¼0éõõ0¹är™¶í¶¥ •Ú[} eY÷™1QÅ9Üý° †W‘  ²g0&ÖŸýÒºˆf bî¼A:XJfÄø” óŸìû,ÚˆºV^E5.š„­ÐOç£[R5€r^K&çЪ[˜=—P52ÿ³‘ž™d6½¢°yh"–2nŽ¥ \˼už¡;EWsfènÙ“,”6ãû$Õ›eiHn}z3í²kˆqÌs6I!wÀÝÍk†Ršt÷;‰óõÒJº6šY÷s1¬cÌŽŸ‹ÌÜ/õKBzÈÃêÐäв•v^ Ò*ҽțâ‚çí6"æŸ(Œžô&ÊÌ>Ü-•þñö¥ÒO:wh¤âÅí² ð)€[-›)³d÷÷Ì–é#•xÔù-¹Ç’¥i0|/ijM,¤~áU‚¥ú[«Zq½â^Ô˜âŠËSÝUpþ-õ®µ0ùR/¿ ±H×=WÐ}Éuˆ’‚óTZJ…ê~!¨Œ,AKÄ8€ h=«ï…¤Âö,?¢i[x× OIAÚ~:§J+øÛ%¥x +›·ënÝ)Ym¨U–Þi2 ¸1ñò´I%ÆSö$0d:5ó¸Ù¹ðž^†ùÿ-¶ð´‰þÁttpM?Q“’¼ êc/_X#ds¡âöáHû©ŠóµO p„øð≎n7Ã^Ô¶fº°¢P‚ÑßÒøiʳiR¤ó/*[9ÌR•)÷rÇê³Yë)—¿¤÷€QK‰pñkü®1° €Ž§›Ú€ÝcjÇËõ¹¯g`›ÔƒÇ%åéaqE†BŒ²«ã•Ðø´ã“§n @áÈÇ÷©=žàòpºi¸žþfÀü߀û ¤O†$“¯Â_i]< ïÃ[‰rúã3ôjÝ^Qœ4Lªˆñèp@Êw;ü‹!_f'ѵ&¾žú3+béÈ0|1O® ´A`/W÷ûwõqÿißýýíö¡ÞíÇ"ëWÿ »d“endstream endobj 179 0 obj << /Filter /FlateDecode /Length 6266 >> stream xœÅ\ϳ¹qÎYÎ!9¤r°+Åòe‡‰8üÆØµ®ò:ëÚ½Ny÷R%åÀÕ“ÞãŠwIJOÚ?<çt7€!ƒ!ù~T\:ˆÄ`€F£ûë¯øiÖµbÖá¿øÿ«Í³ÿVö³›ý³nvóì§g‚~Åÿ^mf_\A má›¶ïz1»zó,<*f^Ìœqm¯Ììjó¬‘ó« ­gmn•öÚ_]?{Ñ|³/¤o;a|s=ïÚÎ('º¾y=_à^xë›õê]öÓÍ|¡”j»²ÕY›Õd_›Õ«üÏ}êÌ7ðúÜ[Õ,ñ£l{oš_e=}d]]ÇFÆÂ»&nE³Í‡ñ>û¼^VÛô #›»Õá6uà›·ù ·sIÒŠIgµ?,󔬴V:>Ýýü®þs´`‹´ eZomX‹ðíe”™Ó WùÛMœ¬6ðÇþu)Í^€4%J'¡½j[üÞÞëæß6wsx ?ÈôŽ^A_ñ$#\³}7µ–ï¨e]sØ·ó…Žòê–?@C²l!wûÃóùBw0e§Çf-2=È-hQèwzx|±æôÐA: ÖõeàËŽòg÷°âû$,û›øYkRÕøõ¶(¦j>Æá ƒº ?[©d³›ãâ8Ñ6ŽRyÛlw Ò¡Z£{9»úó³«}Ѻ’FH×Á{Öð„M.ÜåÏùˆ—»\ƒöØ\Â\ó&ûz»ÛíÖ®º=¤ÁÁŽDPÃ’Ù‚Ò0„7z uä]³/¶ÿ"ß ËÝrÃ~?ìpeažmçdó}ÞtÏ4€Û¤×ñ{xè·°+ Û•J PLcóOÁzÚnËä:ja[e¥ïg ÑZã †]hÈw¸n˜–YÞîeš¢¡Ô"šcÐÅJWh}úÎ&‹ýræ F’o•´tËð{ïaQ·7‹$¨ „×¹¥ZîHïÊŠÔ¦eZ-¬/ú1Óš³G¹š­˜á8lwóšh5Øçâ,ÿ9ÊÁg’5­ò.IÖ A Wuq(/;5ËN‹VŠþ¬l½Îe«%Ñ|ž>ö)Lñc&—0U+g=npK=úVt†"íuO¯þ‡¨J:µ]ƒéfÍ~®ÈÅâ«ìßF.IçP,¡ÎFF½ôn†ÞÔ÷¤3Íïj§à5,þ"où÷±e.:×ë Ç\&ÿX]ßze„eÒ{Œ²1Ø]a¾‚Á“¦ù07´~µ<ŒÜ¦ K½Ù»ìTÜák{ÏÍᛩÇ_åv,‚ì@ògvÛMü\ëàãmã]¾ÁÑMÀdšýö=ùã<8©£ãa’aÝ  7±˜mþ8÷øAHæ#¢Ÿ3ðe°Ñ\n§àËn³Ý±ñ?G ÚÓ_¢Ë!€æ(·+×aôJAû¾zX}ØE+²ùJƒŸ|ƒævë ¥çµx<‚€ãP}XGËÜÓ˜ Kõ£t€£v̨ï7«ý>¸ehÐ+;V¸ÙCº¨G£“ûk|¨ZgeAÉ`=Ãnÿº¶åLkÉ‚Ÿ°+½»¯/ƒ*n_šŒì¹™àvl:€jâ]оÌõ­³hYšÂÅ”âM†ªj3º²Õö=‡Sª×„¡WSuõé[>ðåš²ÐqØý„ŽAu[Øí®Ü¥øjÀòxjŠynlzELvvvN¡7055m’ÀPQ ª¾ 6ŽUrB'7iŠtzYŒ ¼w˜§¦`²ÜAâýÃ"ºÚŒ…?ä’C½®Âë¼8®~¨É|š±}Ï #DpÐr¡À>pñA·}4¼ÌÖ._Q-›ÛºêÌ€¾;#oÆö:hþ«9F6Þ÷#{K¡º–ä\2pÈöMÞUUX]˜DV-ÔChß% .k¶>ªNº¿ÉB1(ôF·Ìçûý&q f-ãBxÊe{…íš·äg:¡øØM:¦ú®€³zŒƒŲŠ&ü¦6aÛa¤º‡ÜÞ×»‘íonêâ0@Öq€ù‘ªÕ&ÙÚ¾#«Ý|SÁˆ Ù:pºb¶@v#êý¿£¼P®Ò9l»Þvˆa§:Àñ¦à¹VÃÛÓÜ?UÕƒ!âàÿ‚jù‹j_ ;3Ó­éLç¹4óÑ)±Ga¾©t¥QmOpœOÑ·, 8>×J€>Ÿãh\«ŠÚ„ñQé:“"¸ÍÚÔ–ñ2n‘Ë¢Ýcèq^o†¹Ú"°½M$fŠÔÇfÔ86éjƒq-*ˆM~[íEƒl?ìƳÐhAÐH ñ]Ž€WÁƒÑÃf3¢`ÏÃg…Ĉ@àµò_öì¯HÅ8°>%J/ð}`þ„m>…·!)·Œ/îÇÌIN‘Ä^å˜8X!ã'ÃzŠR z!xÆ­æ,Þq,t|áÍ2ºŠÅŸhЧ„Hž4àäÏÆ˜qÒ­[Ul 6 MÔ€©}bx€^Ý%h7|×çú‹ÈBÓì¨ C­ ` Ñ€n!ÆëO¢^è™iaœ´BÇ]7m…@ÝÐ uƒùSâèP llø¢ù ׳wÄ›~?púl”±·î1öv£ø“º1å6Û'Hé] zöºç•ºrå–õàšû/ŸyÀn¯°åà½[Þ+ªiƒ'#b6M½ˆ0ÎÀ„<¬®ÂqÓµ€åøºŽl%Œ&yj>KÆ£‘é-ª*[üéÚ<±M“'#³•zÌ­ âée’‰o¾XìóxzÚŠQ¾¬{„ʹÖyõì¯ÏBÆÍÌv÷ΰt`vf x2…Y¶Ç\æ¸Ûp­Ý=ÇÀÃÒòþ©2ôØ,7oÏC¨‚ÑýŸ—y{“úB $°òŠœÀ7ËÝÇðW'?’vÄéßwÞÒ!Ù³yóÍwg¢ÏÈí‡èÓS: 0þËù0[Îcø\Siˆ_•èäÇÇ[ÚäÐåÜ  Y8“ø.®‚p!ç5Y·QPŠm`ݾœ ˜çZOóZ¹!Ò(KB„Qøu ù,öåPLðՀ³ÞÖ™nmTÂY/ÀÏb‡ð® uðQ€Ô‹ ˪†m+œo”7ü»Úë‘$væáo¯†¨:cÛS÷u®ÚjÑ aЄS;wcæfhÐS_†&í"]á6P½ôCùœýgÉdØf+JÎx9› ¡[¥œdRåSfBꨘµ5/˜!ÈwëiËÁ‡…áŸMÜÔÂ𨦠e®o¤ Ì:nwq]@ª—˜€Æq¦ejÚ§î)ŽÝÚGÐZ`*Š5¿”T6cK‰jŠ:ëÔMqËBwžxþRƒï;gx˜Ñ•'f]Å;ÈÿÁ2œ¦å‘á(åNº‰Ab.ëêзƩn08«4óP+@“Ü7ƒŽÅ's\þÝœŠ ,xœ·H!»Ž|ÉÕm`ò`ÊAˆÆÝ‹a:þ±¨fÚVNž!©i‘¤¦'Œ©‘Ô•×Ã2è30.DÌðì¶\ýj*»]¬$(µj=mèܦ¤e˜W¤ «/ŒõúÓœ‚/ÐxD­XÓ7á»P ?Án=g«KÍʦx¬rÙf^5u “BïÑ‘ÆÇ*YçóžuÙC ˜<ú]]õhg’Á¶NžFW6ÙÆØòß¿gãß­&¹†›´+ŠßVÿÄñزJI~©°§'YV\hxätšg‚}µ­?e’Z9 - Û›LS©UÓÔµîhøª«T…íÓ”gX–­BDDܵ‰RrÍW…?mhB+Lýö¤•#7 {R÷D£E+³~A3×á*IØÜYQÕ1¹q}ü2k2½Ø…{‚Z1êô‹Ò•¾§ôÊ—ÙFý‰©ÇJYöÀøSw¾2t !;–yŠ,¬½oº“- ,ï¯(AóÔ=¯ø%Jôn·:ðz„ôVíãç`é0Y{¾™×c$@MOáû‹ÁžV* Èžb¶Lõ9{­ÉDÙRQº‚,o—¶ÔÇŠ)t­ êû…Zpy. à’\Ô9^’‹âK7™‹Òêÿ5…)Ø|й…oAG?Žþ¼ø` ”]7^2g§ÙT¼ÇNy¹ ‰´)RÈÅ\apj¨‚›˜JìBÚ«¬…“)ÓY|M+jˆÁc†à‚LCB]góq©áÕ§g‰´ÓPÛj¯9Ô£´/M€þ­š÷­ÖF±ÄïŸj› ì§ÆÅ¸ßf/+ Ì€ÔEàVÉi*¾ØVŠ!»qv»Å|ÚŒË]µÞXf& ¾Ùz7(Eß Ù96;¶ÓÓ;2–ˆ “æ¸Ó<ĺO´Ó”8·Õ†}t¸±Õ¤l«ÕB×Â¯ŽØG9Äò?̆ŠçH¹v²C€} ¿‡ÇšÏ'XI#’/‚T‹À·Þ´èü½÷û²ÐÇ ˆIdd¾dWP•nÖðµ<îXPÍû¤5¤ê_6ªÌÃCx%]L"îóâ¤;” ix…ކ‡ËCû¬ÃÊØ¦°‚°Ë°_É?eÍ:ÎKËO‡x޳ܭxÁ><Õz[®×øæ¦|¢‹ú2%æÛ¤·€õßSpæ‹c'›Íˆkò¡Òuéžù0QUOwJ‹¼í©ò2üFàdy˜ë¹½ªT—õ#ƒõèÅÄÌpGmó—-Š“ä§ žt6¬XçG蘀 (3«KU°aDÝ ¢ËrìL f è¬.´ˆ1!{Âqb}wF@%%¬æ:ØYÖr¿XPNŒ²DS”ÓZpržFA ?Ã8ð?iþ#¹BW¸÷aXI4Æ>¤ˆ/ŒÃ›@ GœèÙNbÅ5ÿ‚r4%„ÉünÖ_4K(ÕÞ¥×Òû%?ÇPa] zš±ÇXúw¿dÜ;žsIuw«wûÃªŠ‘µiýà ?ÛÇúZÕZë n3”!å~e}Xñr¦ýË´E„‡Ó,±óËÜ$3¦b›*w%‹‘nTÔüWQ,E}:›öihv›ÀÝêMÀ…5‡åMj¯ûÀ\,ûFG£,!4 œŽA+®x—ã­µβò¹n.Ý8Î Z݆P”«}üÜ–-¥c¯•Yš1‹ûsŽ8ø˜, `‡Çà~z_ƒôõ»ÄÝÒXD•´ç§åŠSš:´»Šg-#KC+‚Ÿ+É1ª™5µ¬Þb˜È«#ÙIO€yÔúA6‡FÑ$ˆgYÜíã~Ì’Òð(#>cuÊòPq`ÄKê‰P=Þ™†Ÿ =ìS­°Îd3öt4S« Z‚l«¤0ž}VT­Hb†í/&Tuaõ.J]güˆÇ_ÇT§ôÈE»s ¢ NõPB-‡ µ5‰¨ ri1Y$nÇŽÄ*¹ü>;Ã\GkI/;V—æ\ÖÖÔ$F• ;æ%iš—a1|ó‡¯ÿ8¨){òcÉ`g¯ˆ[ÕRñM˜êÃ]‰Èh¶8YÓÙí`I¸ÁˆîU¬)ö- ù…ÁÊ“² g÷a…)¿·éà8¶ê=Ou/ן¨€–ºÃªCúÜQÃò>„hòïÞÅ&:rûد7!K€ŸeÎyÄä6O?ocê­&|ìPˆ|‘ˆ‡áý¨–§O€‡aÂÂ\V¬»…øåI ,- 5SÚ—GPé°x«cu(ÃíûŠ^fµ]^RwEJ›' ÉÞàÂ|Ç6>™¸âÀ<›ûêmØÓÚ„tJ·‘`OSH(¬h‘9Cfß!5µIQ+¬ãýý>¾L„­ëíb\°$6j–+¬ÃÑž¶{tĸ¶jhTCžPšòðüîëo«¸Sµb ©^\nq A:§K©• ! Nq׺cw°ª ¾ÓÒ‚;_&ýP »Ëã0:ˆ†ŠÛÃ_§ aЦ֖œØUjêÞ%»V ± þ×»×7ˆhð@e½¾à%‚ZøøvyS*&G0É?¢ð†ØYŸxøº<Íhmîô`‚C ôy{ô¾¨ÑÁï%9¥Q ¿/Š13Éòšd; ³óU´ƒWJcÝ;I#¨ÙpõOâL“u‡e®#p=8ß@‡1-b!ÏѽÆk·¶ЫÙ(‹ü‡•§l@¢Þm WaéãñÎ|óŽns¢ûà †?^­¹{›nSg¢vš†aµ“­ô¾¼Mô°º!1PÇeR8û>»õP34˜U[ū’‡ËÓ–iàZ"d«´\ÒÚWGDU ­Ð‘u hd‘o「g¦+ºž…í[9®‘ùBEu@Ü—ÝãR°P]:y#ª HåêœìFÔ¡zuU°v#æHI¢ÂÎSGÐÍPÓÆÐÞ% ÚM%[¸!$H0~,ÙzÑH ¹;Ë,¸º}E< )`h`iwï_Þï^ÿ&U5uy¿Ba`ª…yýãêû©c€mÖêkÆT8@#ø ÛÌwé–&Í|è×ß.Ïu®ù”ÄíÂÅCxeSq¼,Z6!GK€Nøñª+ÎB ÐU^6\‡ûéGnGsîbûhðÀ»Tõ`ŽWr®-Æîj§1±+ÏMmŽ·Te7p…Q5ûU,ۉל¦^´ªÍBÑ,Xfœ€É ÝxÉqOõâ#ܦ[p€¶wC:+YòÔB .hxØ=héùòØ|ëÝ÷Ô0[h?¤Ûù"ΦmJ®WÏXWð»øUÜ<°\úyò¡ë8b¥ÙÙ‡c¼FCèKè×Þ´OÁW*:jïÀ.÷­¶1w”,ëp#_˜–ïÇCàÈÁŠ|»Mò1¯Œy÷ǰœª£ÓÃÙøž†ål¬gýJ@f9ö C!m•‹2\GAæ¢J§h‘«ì2é›Ùåx¥¡Wp¬ÂãÁ„ºxð/‰=Ïô`ü€)–¿<©—‘Uè×¥ytüΊåʬxA¾ a» ÷XŒ.G3…ôLÈŽ]É>^ô/§ÒãyŽç{$’½é6®UšÕ[­Ök^•÷ºZ«múÖv.õv.½­mH°¢ùá„N´ÆááÓ c"íôíïxIMÓËæ×·ÐìW·¿~9v—îÉòæÜ¾^^¿l†'Úë7ÏñGCñÅ»ØÎK¼©:|‰½Ò¾øë³ÿ…ãxTendstream endobj 180 0 obj << /Filter /FlateDecode /Length 20965 >> stream xœÅÝÛ$ÉupøµìWûÅ6Ð ¸Úâ´*%@$Q„d@Ëc—0š3³»MvL/§{¹\ýázvDœKœ/Îéé¥C´ýõ×Q™YYyÿÕüþêr3\]Êÿðÿ“NþÙx\}õxº\}uúýi¨¿½âÿ÷&]ýüunìkNnŽË1\½þòD:\ ûzsY¯¶e»9¦åêu:}~þÕõåæ²LÛp9Îï®_•öÜÛÏ¿1¿¸}|º»}ýjšÆü—ûù¡ùýõ¸Þû¶à~Zþ`º¹\öó?ÀoÞ›±¿¶¯óá­¼ÈzþÿÍrÌû~¾{Ý~¨#Ïyäéüwo®Ç2?ëŒCÁ+ÞˤLç_ü«­ÝSm×uÜ~ýú—yÙͰì¦i¹9æ¼ø^¿=—ë׿=½šçáêUŽ÷u-éççGqÞÇã8?ÔÉ9¦ùüÝc~Õe¿¹ óùÉVÞ•|Ë?žï®_¹qYóšàcÊ}¾}ºã¥DR‡*K9¿À—ôçÇ4<7¬Ã‡oͰT  øñæúÕ2ä×;Îõ¾å´€–Ñ. ñ’kYB·ïïÒíÓ»²œú%9çaŽzŸŸßò åyM·ßðÍ‹,šÀºÎ•Ö¼oïxy^†¼v¾ë_Ï4Û9ݦó7f†>Cíƒ ±ŸîÒ;þ”ÌSYòí•äCYÖKªe¹KߘUæÞ.œxEnöyç¥Nñ7÷OѪ²,7Ã>ʪòë)}¼Æ‰>^<-ýPgcÙμmºÍŒ¹¯ìûuÖ1§ó—×f‹õÁAK`,땼Sü§°)Áuë V]œs^uÅ´Ót÷tsM‹p߯ŽRXËby5–5qºz5濞çƒÏg™?«ã\ʹ,Ð/Î_ß~õîþþáÍ×?-¿YòÛ{þãýíoä‡éüüûpþÉëú¾ÓÓùó··ß?þú'_\××ÿ›×§*û˜õòðWËp)kðU^÷›ýj˜óû4]}xwõÏWïOŸ—]Ì~3mËÕ¯ó¾=Í7y%Ë?}—÷?¿ÌÿûÛÓåfç«¿; û¥¬e:^Òd]ò'jŸ¯îO¿:sÎSâÀv¦K‰6S’ZkÎÆÉ¶8±­yÌ™-q`;mIäwb®¥õ¸Ül-VoöÁ¶8Ö¾Í7Ãa[œØVYGn–Õ´$)­ú.Ë¥4ç¼þ•˜–1¿GÇžßy‚·$|;ºEQ§ãÙ÷lÉ™óçÞ3Ûyþ=ƒÖ³ï™m=÷žÙÎÇŽ“†<ÞvSŽ…ÌQҶߌë|5óͼít˜t¹~µMã‘׃óXþû²ŒyŠÏ³ùïÕü÷~iŸ¿Îôïi¼f ë¼Ýì/­YÚú蚥­®YÒ²ÓõC–\Yj¯Êâò'e–<ÉÓÍz´E7_æñ&oã–üßÓ¼/y¹ž‡Kùa¼äW\ÎÃ.0}WõC&+¤~ôé³ã»êÊWÍ›qY®æm½Ù'ž£²É¼Ê[Êë¼BäãÞ|üøë:ùmAäƒ#Ж¼@óTæ¿:ÿïoÓoÞ}¸zøòêîýÛ»?ܽý6Ñ”_ç¼™¶ª[> ý»OÜ6­Ëe.¶f{ÂIi}~•÷›Ë:æχ¿m›~äýr}ñ|>’Ï$.7kÞKßÌëvõYÛŽ¬ó‘çz«›ˆi»Éëƒ$´!Ñ,ÿyY…óÁ¡?Ö­ˆ ÊïóÄŒCW‘lŸhfó?ÏØ¤ µ$Ëo߸ÕVÞHæÉ•„Z’­yþê+ùgM’Úê²ÒšóÍÖµ4hñŽåC±LšPK²e¾É›˜ÒÚÊ‹&Ô’,¯E´$†}(LI¨…Yiå¥} ]K³ü~-¥5æëyÓ¤¶º¬´Ö|Î8v-ÌJkËKpïZ’åã©q§Ö”×UM¸ÅY>V§¥:僔úw”Ô–fùãX¨µÞ¬«&Ü‚¬´ò¡÷¾w-Í^öÓ^6BšP ³ÚÊ7ׂ¬´ŽzÌ%ˆj'¸Ž¾ÄYþÒ»8çèÔÚ½rVÚ´äçá¸ÉÇÙ’pK² /ùyÌ×jI–?/´äç¼”ó§Tnq¶-¼Lç|Â0ŽšPK²uçyœ§µ®»œpK²¡|’¸5Œšh«fù“Àó˜“iÕD[5Ëë8ÏãtÜäÃKI¸%Ù¥ŒÉ­òYçD[5ËŸðý¨­²¿Z5¡–de‰ÐXs^N-ádÜ*;Õ¾U³¼^.4s>`4á–dCy×K«,CjIv©ï·ŽQm•lÌëÉe¥VÝOJÂ-ÎöC–DNŽUmQ6ÞlSm­y®'M¨%Y^OzÅ5Oé® ·8Ëë ÏcN ´T£¡–NÞ¶,³&T’,Ï)Ïá6Ðá %Üâ¬lèõ¶º¶KÂ-ÎòšÁs˜œÊç€nI6Ê–ÏÄP-Ëï?Ïa>Â,[3N¸ÅY~ÿyóv}ž5¡–fƒÌc^âå3Å ·8ËûãCJ»Ú)Ñp¬2‡{¹ ¢ ·8Ëï>ÏaþíÜji6ÞÌX*vòÒàùËëݾjÂ-ÎÖrA‡ZùuM¸%Ù…æo¹¬å¨–ƒÚÑh™xþÊAiYÓ8¡fÜZ}©DyýXê4-#íã9¡’dyý¨Ë`™Ê¼óÏT‘dä%ÏöËŽîPTNÔéµòñÄÒ*I6l<ÿ3m2)àŽD™³|”SŽÎ8¡–d刓^¶±’p‹²Ky©´Õ ܱQéä÷¢ìªlG¢½n•k)¿÷-á–d£,ƒœ”O6'Ú2YmåíþÒ· +­ü9Û†®%Ù6óòÌ¿ÌûPG¢<âFÓžg¬ì±9¡–f^žk>ØVMjK³¼’Íuϻґ€$Ô’,¿“´´òú]·œp‹³¼žÑ®eMœ4¡–fC9 ,­ü_Û¢ µ$gžÇµóšp‹³¼²ñ‘§÷z»,e›( · ãVþÄ»Vͦ׈-ïeë4PÂ-É^#¶ËÎ7èÑeÜÚ}©Dyë3ñTõB!'\â,o}†]Zˬ‰¶(»ÈÒ*ÿuhB-̸µ­¾e²ÚËqD×âì2Ê2ÍÉ6j¢-“qkŸ}«dû‘σiå-§$Ú2YmMeav-Îò'——|Þ‡ì-á–du[QZå®Ã¢ µ0«­z<ßµ8“Ë‘5YW¸ÙgÜÚß2YmmõÅgyËÁïP¹x;hÂ-Îòžc§©Ï+߬• ª‰æJÕm[°%Ù(ïÏ”êvM¸ÅYþäñû“?]Ë  ·8ËÿŸ—|ù šh‹²A–V>*XM¸ÅY^¶¼´&Úšq¢-“•V>‡Îǡؒ¬¬?4]3mÍ8ágùSÉK¢Ónšh‹²Q–D>oGM¸EÙ–×q^åìzÖD[&«­¹\ìZœåO/¯™¶Œœp 2n•eÓ·(ÊM»ä’g[kÝbc‹³|^*Kµ_IÂ-ÎÖ|G¥£\Œà€;åõr¡×+W?gM¨¥Ù(K+Ÿä³yI¸Ym-´”¡ÅYYjR*›) ´Ó¢ÜYË%`ìp”×{^šK½Ú'‰¶LV[Í ´ «­ÞhAV[Gù¯®·¦ EÙEÞårÆ´kB-ÉÆ‰ß嵞(pÀŽògŽßåu*WØ$ágù3Çïß:—+’p 2n•­kߢläw'¯su2kÀŠÖü‰ã¥“eÕD[5+W`y·›yÔ„[’]d)Ð(Üá(Fx)lk¹Ò' µ$+SGCíõ®$Ô’,¿GÃL­Qäʈ¿/O´ôɆrîP[õS' ·8Ë[#: ÉGÆe—@u$š¶òIåÒ4j¢-Ê.åº~mMuÝç„[ÕÖ\y±YmÕk:]‹³ru¹ž«íù˜wÚ4©­.«­¥®ûØâ,¯³´L÷rl¹hÂ-Èjk«[lq–)ZõhGnI6ÐíÕ±îvM¸·¶Ù·J¶”åFÓ5ÐÑ?'Ô’,¯3M×@7Ã9á–dY^99Z¢­š•«—üŠs¹×& ·8Ëg¹¼$†zmInAÆ­Ý—JT®Ò©·§)Ñeƒ.‡µÞÈç„[œÍ³.‡µnQ8ÑVÍÊe²AZåxm™¬¶Z’]Êò(­±ÜËÔ„Z’•#Ý]Zõ†;%ÚÚímù±•­˜¹-ß²K½kTZS½Ê& µ4dIäãÆcЄ[”•§¦‘ZKݳsÂ-ÎöMæ±<¸xh¢-“ÕV½Òµ8ÛYS½s · ãV> s-ÊÆr–Q[õ΃$Ü‚¬¶ê¶´kq–WL^ªùt×€Jåõ’—i>,ǼœpI²A–iNÖ]m™¬¶Ö ÅÙ<Ë2ë>I¸YmíõÜ[œM«,ÓòJ“&Ô’¬œÕÐt-S=£â„[’²´Ö±n58¡–dyíjÍõXnq–×^^y[G§„[’ 2[Þw šP‹³r³ô8¤•÷ö’h«fû*óˆ ¶ò·®Ôšê'nI6Ê©”º]çÃdµµ×ë´Ø‚¬¶ÊÓ]ÉF¥“™¶~$̸uô˳ښë]alAV[õYÆ®YmíåÓµ «­z}¾kAVZõ ³Ú*n»’jg¿é' ¢Ò)÷úi¬¶†zm[œMü|0%›&­µak,ct-ȸµ¾µv¯X¯u-Îò’¨Tâ€;6ªº Içð£ëÔÍvZÄ}v¦9o§nz ªÑM3D?¸3ÑNØvlÄúñÁN‹j§žY@Å$µQŸ¥ÇŠjg÷S¼wSÌ—ñm"îô¯w6ßÙ°3ÐÉ‰íØ¨vF:¶ÕÎtÓ-d›pÃMñÔO1ÝÂ…Žj‡7<¶c£Ú© bÇF¥S.uã@T;{½€‰ø)þ©Åß²a¦£œ,6áÖâZ+£B‹³ ?Å_“:¿}Š¿ÏJ«<Ñ=t-̸µôcaV[tvŽ-Èjk,Ï\u-Èjë # hIv!³1•§ ËY:'µ%Ù9i 9”1VM¸Yi tæ -ÉvÖ9)·£$à’¸³¥µkås®½oAVZyo<®] ³Ò*‹*5Èk!­}ÃTŸÕ—„+•VÙ#ô-ÌJkÊ JÕçb ²ÒZëurlaV[C=–Âdµ5û9ÔlàOΰÕûþ’PK²•åÄ4ô 'ÔÂ,·Æ¡Þs„V—•Vþ¼Wöh[˜•VÞ«»f¥µÓS<Ь´ŽòÐ)– ’ΔVlmõ8[åÖt¡«¶Õe¥UŽˆ»iï²Ò*DZ[׬´¦h§maVZyM*Oç@ ³ÚÚ‹öèZ•VÞòŒýX˜¥ÓŠÞ¡·Æõè-€q½0Ñ[ãç2.Oê2\•Sþ¿—|Îû™ý''åUÄÙ i™¬æÕÄÙO2Š€8;JËÚ(âp Íøƒ' Î~<[&Û(qv3Ö2‹AŒ¥Y‹@Ž%™lÎÄÙ¾fºgw3š™±ÄáXœµ±ÄÁX’µ±ÄÁXšé<2ˆƒyÔ¬E Çâ¬Mƒ8˜®– úcgwË&Ó±ÄáXšéX;Ÿ0Ú±4Ó±ÄáXœµy$³(‘.-q°´4Ó‘ÄÁP’µ©bSÕ2™Cq0‡šÉš€8{8×294g MFG™âáÌ‘h‹äTP8œ=al™œÈ ‡³§»-“kS¬áìõ«ÉÅ2ÆppIM3½èÉ.j&÷ ØÂÙ{ ™‘&º)#qÖF:èøÒŽ$‘ÜÊ`7<4ÓÛ" áàæ‰fr‡…œ½ #Q»åà n µLî1ƒƒ[LšÉÝ*VpöŽ–FzƒÜ…ÓHnÕ1‚ƒzšém?FppsP3½…Èn4j¦·+ÁÁMÍ–É­OFppƒT3½Ên¶j¦·dÁÁÛ–Éí]FppX3½UÌ n(k¦·™ÁÁÍiÉÚ-l&np£»er;¼K°¥·ÖÂÁ xÍô6=C8¸™ß2¹åÏ ÐL` hÖÆª‡â¨DG’Lj O>H¤Q†ƒ'-4’‡6ÃÁ£šéóÌáà!ÍôQæpðÀIËäáæpðˆ‹fú¸ ƒ8x¨F³6‘8K²6‘8K2}؇I<¤™«’¸n,ÎÚt‰Ãé’¬E(Ç’¬M¡8œ.ÎÚMŒâà±§–ÉÃQŒâà*ÍôA+Fqð8–fúУ8x´K3}ŒQ<&Ö2y˜ŒQ¾Æ(rÓL…cÌiÖÆ"‡cIÖ¦‹PN—dm,Rq0GmªÅÁTi&û г¶LÇ"CqÔ¦‰TLGmîÅÁÜi¦ï £8x%kk£8X$kk£8X³$3cíî‹ò5kÓÅ(¦K3GRq0‹éHŒâ`$ÍÚH„âp(ÉÚX„Tp,ÎÚðiâgf¬ƒ?v,Ît,Aqv,ÍtÉ Š³K^3Ý>Š³Û‡–ɶFPœÝÖ´¬EÌÇ’¬E·_q,ÉÚXk0]œ™y$‡ó¸»±ªŠÃ¡(2#ŠÃ‘83KžP.yÎô]gßEÍÚXŒâ`,ÉÚt1Šƒé’ÌŒE(Çâ ÆÚû¥%Œu¸éâÌŒE(ÇâÌŒE(Çâ¬-/¾M ËK²6£8K23¡8‹3k_üX5kóÈ(æQ23¡8‹³6]¤â`²8j#1Šƒ‘$kSÅ(¦jê·7‚âp,ÎÌTí¼ÿ³“µwûDAqv;¨™îÅÙfº'gwešµ±ÅÁX’µ±ÅÁXšÉVPœÝÃj¦Oæ Š³ïk¦@Pœš™±ÅáXœ™±xËcqfÆ¢›a8g0–I°eÆ"‡cqfÆâã+‹3¥Ââ,°h™0 aqkh¦¤CXœ…š™±ˆÅáXœ™±½áXœÁX&éZ:Œã`5kcÑ•?K²6ÖÆócÇâ¬-{Æq°ì%kï#ã8x%kë=ã8Xï%kcñ-tK²6]Ìã`º$kóÈ<æQ3]^Ìã`yiÖÆ"‡cIÖÆ" ‡cqÖÖ r°NšS~¤@Î ¥–íº¼˜È¥™â)%r†Xi¦\K‰œA]š5 ¶÷­f&r0 gf&r0d–¿EHÎIºjäPÛÕ¨‘W";ÒaÇæem$qv$„ ˆ³hX3Èâ,SÖL,³x8ã5R-ÎÒé– °g¶fbÈEÃg®‘‰îîáHœµ‘ÈÂÁH™‘ˆÂáHœµ‘öÞÐkdF"‡#q¦#„³q¢`_œeý-“¯g¿H em¬Õ&ÜZí_¦Æàp,ÉÚXÄàp,Ét,fp0–dò-¢àÌ7%h¤_§ Î~é‚fúÕ ‚àì8´L¾ BœýÊÍôë'ÁÙ/©¬}á…ð6ûµ-“/Ïèléq‚³_ס™~©‡ 8ûÕšé׈‚³_6Ò²]瑎.ì—h¦_o"Î~ ŠfúU)ÕÁÙoS¡ ÂF‘¬ÂÒL¾¼EœýŠÍô+eÁÙ/žÑL¿žFœýÍÌXôp*ŽÅ™N[8;YÉ †³sز6=¢ŠCI¦c‘†ƒ¡$Ò‘ÃÁH’µùcó'Y‹AŒ¥™N“8˜,Ít,Æn0–dmº0ÁV{ÅÁ{(™~õ‘ 8ûIšµ±ÅÁX’µébÓ%Y›GFq0šéòbËK2ýüгŸÍô-(Î~¢[&[Aqvë ™niÅÙ-fºÕg·ZšéPPœÝ¶L¶¦‚âìÖT²¶eg·ÌšéV^PœÝÊ·Lö‚âìC3Ýûг{Íd?&ÚÍìÇ4Ò=b—t-Ù» ‰³{WÍäèADœ9|ÐHCÄÙãÍt$öpv$‰ÚHÌá`$ÍäØO8œ=öÓLŽ"EÙ£HôxT0œ=ÕLmÃÙcÛ–2dáÌQ²Díx[(œ=ÞÖLÏ„ÂÙ³€–]n´T&ÓœOh¤ç%á쉉fm$>©³#qdF" ‡#q¦ç]‚áìy—f2–b83VËd,Åpf¬–Éù b8s>h2>·T gÎ-[Æg©jáÚYj‹äÌY)œ9s6_­P g®V´L®|(…3W>Z&×b¹™k1-“ë:}Òµø‘X8s‰H"½Ú¤Î\mj™\¹R g®\™ì¢sX-œ¹¦‘\›S g®ÍµL®ó)…3×ùZ&× •™k†&d™Â™ëî-“køJáÌ5ü–ɽ¥pæÞ‚Éø>…R8sŸ¢erÏC,œ¹å¡‘Ü= gnžh$÷ •™†&dþ˜Â™û˜&kc…ñ$kc…ñ(ÓçB”™çBZ&Ϙ(…3Ϙ´ÌŒEÇâÌŒE×2p,ÎäÙqæÙ“ñ³BJâ̳B-“çŽÅ™çŽZ&Ï0)‹3Ï0™lydôf‡j™•m\×Ù±³vÿè|¥&Þl¢Ü!¥&â c£Ô<œé`”š†³‰”沆³~£Ô0”0Kªá QR ‡¥†á „Yj[=< -ÌRÃpØ‚,5 ‡-Î1 †³Ô¹ËRÃpØ‚,5 ×·+¢ÅÂ5Ý"ÑBá,›î²Ô(´0KÂA ³Ô(œmuYjZ˜¥Fá°YjZ˜¥Fá …Yj[¥Fá°YjZ’)! g¡¹fbÈEÂgŽQRg+6IMÁAÅF©8èH$X œí)Ugg=»D"ÕEÀÍ.Qƒêà,go™@up–³k&R]ü›Ñ쥦ߠc£Ôìtl””¾Ù 'jâ¾Y8ße©Á7lI&t^à›öš)øf}—¥ß°Å™{o–ák¦À^à›eø-`/ðÍ2|ÍØ |³ ¿Ëj‹(¶8S†/ðÍbý.«-‚oØ‚¬¶ö`¬¿ºNä›uÿÕÁ7,AÆ­eö­_á´$Ó¯øf¿h@3ý oö‹ºŒ[¾õ­’µ/øf¿Ž Ë¸U¶“}‹2ù:oöK º¬¶¾a ²Ò⛲ВL¿Ú@à›ý„.ãÖºúÖºš{O ßì×$´L¾µ@à›ýjƒ.«-‚oØ‚¬´H¾A‰#ýoök4Óo@øf¿&¡Ëj‹ÁdµEð [q«Üœî[&«-‚oØ‚Œ[«{EÎô¾Ù¯yè²Ú¢­¶ ãV¹åÒ·LV[ß°·öÙ·à«L¾Ù/ è²Ú¢-#¶8Ó/ Òf¿¦¢Ë^jé×T|³_fÑeµEGSØ‚¬¶¾a ²Òbø-Ìj‹à¶$;”{|³_@Ñeܪ[ª®U3ýŠ.Á–~…À7û5]Æ­}÷­Šá÷øfQ¸fj´¾YÈ-Y£¯ß,•¬ÑWoÈbVZßl ³Úbø-Èj‹á´ «-†oÐ⬑\oîbV[ ß ·–Õ·LV[ß°Ymù¯hè²Òbø-ÌJ‹á´0«­~¢(Ø:øx³Ú"ø†-ÈJ‹á´0ãÖ4úÖ„ÓÅô [œ5âÌø ´d8ó5€Ð˜¥Æßl«eB…¿Y6Úe©8l­Ý?å)ÎâÒ.KÀa ²Ô¶8S‚*ÎBÕ.K ÁA ³Ô¶ K Áõ­£k‚Ãd©18lq¦è•œ•±¥áú’ÉRƒpØ‚,5×·â …ë[;°^¡pìvYjZ˜¥†áú–ÉRÃpØ‚,5-ÌRãpØ‚,5‡­¥û‡bÄõ­š)Jgér—¥Fâ°EY£ËBâ,pî²ÔP¶$à,(Î2è.Kêâ Qj,K¥ÆâúÖjâUgÙu—¥Æâ°Å™‚iaq–UwYj,Z˜¥ã°Yj0Z˜¥ã°Yj0[{ÿŠ ã …Yjä­oíÛiŒÃd©Á8lA–ŒÃd©Á8lA–Œƒf‰mVVËçÆYdße©Á8lA–ŒÃd©Á8Ûê²Ô`\ߢL¸ºÀ8‹Ú5eÎ0Î@tI”˜ ‹³½ËRcqØ’L :»8«Õ1JÅa ²ÔX¶8k´‚Y ÉÓ`˜³ÔÀ¶ û„ÖîÿY&ÌRcqØâL% «8«U4RÃ(d Ú0ŠŽÃY3;lâ¬ëÑHñ“8 B’5HÄ$¸‘dj’XÄY·$QÃM â€@i¦PŠAp*ÉÔ\±‡³.K¢ÆÀ„ÃY,¦™’2ápžI¦:M4œl5æa8OæÃYX§™ò;néIÖ(&Ð2,9àAÍ”2ˆˆ(Y㊠â5b–‰ƒ–d H2‰F)YÖLâ€dj¦p“QðNÉeTT²JÅ;ÕLq*³8 ¬’5èÊ,8¬d Í2‹Z+Y¸ ã€éj¶ë<®Œyw3¥Fã°ÅYž>YDã8áeÇ¥>?‘ãD[&34δZVîDŒÒ*Wp8Ñeõ¸ÙÐ8N¸ÅY^›&~E¢qœp‹³¼6-üŠ„ã8á–dõyƒã8¡–dymâydlj¶j–=yÇq¢­š•G¨½qÂ-É6™GL°U¶ˆ£´Z ¥åuIæ®üqÂ%ÉvCÂqœp‹³cÕ9¬:Ž.•h½”ûxÇIB%Éò»?ÒÊ[~I´EY=~k8NnqVþ¿Åq’p‹³ò,¿bE&’pK²£å5' ·8Ëg?<„ã$¡–dùÝçy¬:N.Q´^d«Ž“€;m2„ã$¡’d[y`¬Ù8¸c£&ã\§DåÉ*š"‚q’pK²C–Á8I´U³rµìª¹8¸c£¦â°CQ¡"¼”ÅIÂ-ÎÊ}ÌI[‡&­U³M–A5qh§Fã¢Ë ’8I´U³©âµFâ$¡–fÏY7¸ÃѼÊüa‚­¼úðüˆ“„[œÕ‡@š‡ã@;í2ÕÃIÀ%Šò™¡Ì]}(].q¶2w;Md ¸#QåZ ÃIB-ÉòÛÎsGNm•l,gNRÚ4ÐN†¡ìW…“„[’í2Dá$ágù}Ÿø‹…“€Kåw}±N-QvèüÕ{¾’p‹³ò\6¿m‘8ágˬsX—¤$Üâ,Ï)Ï!Q8I¨¥Ù.sHNnAÖ(¶0k®kq–×£E‘ÛºhÂ-È…s­šåWæ¥JNjivÈR% '‰¶jvl²T ÃIÂ-ÊòÇ¿17 ' ·8Ëk/ Âp’p ²†á ÕeÃu-Éêykãp’P 3q]‰¢ò´û(µ%ZªY^Çi™2ˆ“„[œÍõœ ‘8I¨¥ÙV`«8ù‘*&h(®«pFOr6' µ$ËŸ•¦¨ª8 ¨$Ñ^öÅIÂ%ÎÊóÎôzÄâ$¡–dûÄŠYœ$Ü⬬©ôŠã$ád Æa ³ã°¥ÙÆK‹aœ$µ%Ù|VÅ4NjIFOr6' µ4Ûyy1“„Z’BÇHÇI@%Žò;NsÈ8N’V*Ù|‘9$' ·$ëpœ$µ¥Y^“hÇIB-ÉVA{Œã$¡–fâ8I¨%Ù&qœ$Ô’lŸíŽ“„[œå÷pœ$ÔÒŒŸd­>N~,ŽƒŠdK^?ûÊIRZÞ½E:,\ú´Pîãî-ÒqνE:®³pÉI8jy÷é8ïÞ"çÝ[¤ãÐÂ%'á¨åÜ[¤ã: —œ„£Z¸ä$µ÷ö)ÿ ÜKî-Òq`áÒ§ÿƒr‘{ó:.po^ÇðÍḺ·HÇEî-ÒqνE:.po‘ŽsîíÿA¹—Ü[¤ã¼{‹t\ïÞ"¹·HÇuî-Òq{‹tX¸ÔK8-uð-Àq=| p\ß×Á·Çð-Àqßçá[€ãøร«ô¨ÍÁ·Ç9øà8ßçà[€ã| p\ßçá[€ãø฽ï8×÷Çý8øt| p\ßçá[€ãÀÂ%'á´„ð-ÀqÞ½E:Î÷Çõð-Àq{‹tœso‘Ž Ü[¤ã¼{‹tX¸ä$µ÷é¸È½E:ÎX¸ÔK8.Y —œ„£’wo‘Žóî-ÒqνE:.po‘Ž Ü[¤ãœ{‹tœwo‘Ž Ü[¤ã¼{‹tœso‘ŽC —œ„ãX¸ÔK8.õð-ÀqN¾yçà[€ã¬…KNÂQ ,\ê%w¬…K„㊵pÉI8.…KNÂQ -\ê%—| pœƒoŽëá[€ã¬…K½„ãŠwo‘Ž —œ„Ó–±pÉI8ny÷é8°pÉI¸Úê,\:õŽ[`áÒ©—pÜ —N½„ÓVïÞ".z §­Þ½E:λ·HÇín¬½ÿ’º¾8.ro‘ŽëÜ[¤ãÐÂ¥S/á´e,\:õŽ[‘{‹tœ±péÔK8my÷é8cáÒ©—pÜòî-ÒqνE:-\:õŽ[‘{‹tœ±péÔK8m —N½„ã–wo‘Žsî-Òq`áÒ©“pÜéÿ¡áNÂqË»·HÇy÷é¸È½E:®wo‘Ž‹Ü[¤ãÖ¡o G­À½E:.ro‘ŽëÝ[¤ã"÷é8cáÒ©—pÜòî-Òq`áÒ©—pÚú÷æ[/¸·HÇy÷é8çÞ"¸·HÇ…K§^Âq+ro‘Ž3.>îÞ¼Ž{ѽE:ÎX¸tê%·ÀÂ¥S/á¸.z Ç-°péÔK8muî-Òq{‹tœwo‘Žóî-Òq`áÒ©—pÚêÝ[¤ã"÷é¸Þ½E:λ·HÇ9÷é8ïÞ"¸·HÇáD Ç¿÷î-ÒqνE:.to‘ŽëÝ[¤ãÀÂ¥S/á¸.z Ç­Þ½E:®³pÉI8ny÷é8°pÉI8ny÷é8ïÞ".9 §­Î½E:.po‘Ž‹Ü[¤ãz÷é8ïÞ".9 §-ß×»·HÇEî-ÒqÞ½E:ÎX¸ä$·œ{‹t\èÞ"×»·HÇ9÷é¸À½E:λ·HÇEî-ÒqÝÔ£„ã–wo‘Ž —œ„ÓVïÞ".9 Ç-çÞ"çá[€ã"÷é¸uï[?ĽE:,\rŽ[νE:.po‘Žsî-Òq{‹tœwo‘Žsî-Òq¡{‹tÜsoQË»·HÇy÷é8ïÞ"çÜ[¤ã÷é8œt#áè÷{‹tœwo‘ŽëÝ[¤ãb÷é¸iè[FÂq ,\ê%—Œ…K½„ãŠwo‘Ž —œ„£–‡oŽóî-Òq`á’“pÔB —œ„£VàÞ"÷cÝ[Ôòî-Òq`áR/á¨.9 §%cá’“pÜ —z §¥fá’“pTB —œ„ãX¸ÔK8.Y —œ„ãX¸ä$µÐÂ¥^ÂqÉZ¸ä$—ÀÂ%'á¸.õŽKÖÂ%'á´d,\rŽZhá’“pÜ —>îÞ¼Ž‹Ý›×q{ó:îãî-Òqhá’“pÜ —œ„Ó–±pÉI8n…KNÂq ,\rN[ÆÂ%'á¸.9 Ç-°pÉI8n…KNÂiËX¸ä$œ¶z÷é8°pÉI8n…KNÂi Ü[¤ãz gu\èÞ¼Ž Ü›×q‘{ó:.to^ÇîÍë¸È½y¹7¯ãB÷æu\àÞ¼Ž à›Ãq¡{ó:.po^Ç9øæp\ìÞ¼Ž Ý›×q{ó:.ro^Ç…îÍë¸À½y¹7¯ãøæp\ߎ Ü›×q/Á·Çm}g{νy¸7¯ã> ßg-œÁq¡{ó:.to^Çyøæp\äÞ¼Ž Ý›×q¾9¹7¯ã"÷æu\ߎóðÍá¸È½yÁ7‡ã÷æu\àÞ¼Ž‹à›Ãq¡{ó:.po^ÇðÍá¸Ð½y¸7¯ã"÷æu\äÞ¼Ž Ý›×quo‘Ž Ü[¤ã× ǭȽE:ÎX8«ãB÷æu\àÞ¼Ž Ü›×q¡{ó:î£î-Òq‘{‹tX8Ðqwo‘޳Îà¸È½y¹7¯ãB÷æuÜG蛣q`ᬎ‹Ü›×q|s8.po^ÇEîÍë¸È½y÷q÷é8ïÞ"‡tœwo^Ç…îÍë¸Ð½y¸7¯ãøæp\äÞ¼Ž Ý›×q{ó:.ro^Ç…îÍë¸À½y¹7¯ã"÷æu\èÞ¼Ž{–¾9×Y¸Ø½ýÓé÷§a¤ççu­ç?Ó’'h8ö¼y¸úðî꟯ޟòùssõÝi¸úeþßßž.WwšËó“›q’Ø—Z層ÿU¹þ/[ËŽ5æÏXŒ¼h—áªÜÂòÿ½ä3ùúOÜ Ù+žˆøÊÃ|éGIž´Zb[BòZKÛ’×Z’˜–b;mib[‚íZKÛl×Z’Ø–0ºÖ’Ä´”¾iKh1}3-NLKé›¶4±-Fm¦%‰m123-ILKYki-Bf¶Å‰m123-I EÈ̶8±-Ff¦% ´Öî}Ô¤k cß‚±ÊcÕØª ´™Ù'] ×hMl‹‘™iI-d¶Å ´ˆÙ'¶ÅˆÌ´$éZÇØ·Ž~y1$³-NºÖ±ö­£ŸGÆd¦% ´èTÛâ¤k}©ŸC&e¦$ ´†~ÉK-be¶Å ´æ~­—ZK·½ÔZ{·•ÐĶ˜—™–$ÐûO$]kw­Ýµ™Ù'¶Å™–$?¢EÔ̶8a3ÛâÄ´„›µ–&¶E–Ì”8°±ßSib[dÉL‰èTKf;ØS2S’Zý6PÛbJfZ’@kîÞMl‹‘˜iI-Bb¶Å‰m1í2-Il‹i—iIb[L»LKÓÚÕZšØÓ.Ó’Zk÷yÕĶ˜v™–$¶Å´Ë´$Ñ.ÛâZ{÷éÑĶd™–$¶E&Ë”8€ÎÒ}Â4±-¦K¦% ´önÛ¬ ´ŽîHIÛbœdZ’@˽‹‡î´–&ÐZº£AM µvŸ M Uµ-QÂ6¶ÄI×Zæ¾ÕïȘ–$] 4ÖÔWj-B-¶Å‰mýÑ&ÐÚúy”ZDLl‹ÛbbZ’@‹n’Ú'ÐÚ»}”&]k=úÖÚ¯ Cl‹ÛbòaZ’@‹È‡mqÒµ–­o-ýúÅäö&wL/˜Ã¶8ÖÒmá4ÖÚ%V¿ÔZ0l‹Ûb€aZ’@ké?’@kíα5±ÛâĶ˜˜–$Ðê÷gš@‹Ømq­¹ÿ¤I­ÕM×Ll-ý²gP`[œ@«ßshb[ LKÛÚûëš@‹À€mq­£ÿ[hõÇ š@kïÎ]4±-~ÐÜ´$=hn[œØ?hnZ’@kîöš@kï_QÛâÍMK’®…gâšüˆÖԯϒ@kéÎâ4ÖÚ¯õ’@«ßSib[ü ¹iIb[ü ¹iI­­Ÿ.I E’Û'¦%’·–&ÐÚº5ZÛ¢§¶M‰èÐC۶ĉmMcwDh-ÝU^M~Dkï>ÙšØ?zjZ’Ø?þhZ’@ëèŽg5i-yXªµZ­g[b[ôø„mIb[{wU¢%ÐZñl¼%¶EØ–$¦U~ kWKl‹°-Ilk‚I§íïéæµ­Hb[tóÚ¶$i­z²UøÇöûzñ\£0Çõ¡×ýj˜ó‰Ä$·?¿*'·kþhÎå2ò¶\ýúêrõö”÷Q;Þ‰¼.ëÕ¥lŒËþ~+wçËQ¯c¯s9—+7“çòLÐÜ’2-ŸóáÍDbZ&z¦S‡à„†¸\å]°N]¹u}”éÈ¿¿Üly×l‡Ë5#Š“2Ôåꫲl.Wåøÿ½IW?}úóφ|´SŸ,}ýežçZ¸*_1”‡ˆÊ å1^§ÓççÇoß¼ûæéî7×cyrw<Î÷ï®ýú—§bUc¼zý§×ÿãóóÝû/¯§²Ó™§ó»7Owß>ÖZù݇wéá:ûe=ÿá:ùù ÿüîmmüÍëüþÓ³Sš¸ò¡ìqÉ8fZ÷<¹å>_Þ„ÖÉüÛ»¯¾½Î/¿LÛp9ò+^¿š÷B½÷óð?¯_•óáË0žÿ¦væ=¯ eBò‰Ç¾¬ç‡{û·yÚß—¿.Ííç‡/ù¿§õüôµ©½£<ÿxöuàVž­_Ü~•WŠ{þÅ~¾¿¸~U_jšÏoê‹NÃqþZÆÎ ú·÷ðó#¿ÐeÀË¿±?<ÔåTÆÍëßš—Fù Àrz—Ç<Ê—ˆM4d¹k´ÀŠcÞ÷û·ÝZß²sz“—}ùûc9¿þº”Ž5o•ê U^ಎõm+/µÏ燧§‡T?›þYÞ›_>¤¿)ÏK\®^¿=?|ûÕõëߺÏhÞPLy;U;ŸŸÓí‡ß=ò¢Ùw·RÕ—Ÿ×è¡ÙeÞÈ­ãÆÔ:p^ÙžîR÷±‰f`(O™O;ÏÀÓßGÓŸ÷wó2oܹ¡J^;‹þ×Òx•÷BåˆþUÞ åµr¢9ýì/¯_-eãvŒç¯óF ðß|ýß<<|xûȿهóÿzÕZߦ¼x¾ÿ¢Õ¿¸þoõîÞß>½£Y¨»ß¼;á‡}•oîž¾p¯õÓRÈ+hþ¬þñþö7üS^þ¢MÅOþ(£LçÏÓ¯òSùÕtþþÙ¿ù¾ÿ›6y‡LÞŸåwd¸”Áù›7_Ë”˜qÆó°ü´å·ßÄ¥Ÿ¶Ù|óîAg8?þþCžýôíýÓÝ7÷woîž¾÷ ã‹ëò?/-Èûw_½{ÿö‹³¼Î°ØiùÉÓÃ7÷ï¾|Ò¥tìÏÌÜ€3GÃÊ­¶÷æ žEZÌóO۲ݿ¸6c|ótÃóïÆ ùבJ¸š‘†2RKöÃæ½yº{*ÛHú#œÙ_ä]÷»¯îuº·óãÝ¿¼û /ÅüiÉŸ¨|07çã£ú‰*§(ËÕ«rTµäÁúY˜òg¡—úGúÌ®ÓzäMËõ«©<6îç·ïîïÞ•.!o˜nË’*ÏR^.s=œ(Ÿå!oæó»ïÞ¿yg^¾¾“õå_éëOÅ1æS~ýA¦ oõ~ûXGËËsÌû€7ü:ù].K¶ýæ6}s¯/ÓoÓÊwŠÈºóúºî‘óv«ìÛç£~pîîá8âñéÃmÙË–‡á.y×Å[>ÝÝÔ<ïþës»î?Â.íîþXŽó÷ü×—Ev¥õÏà ^ýò‚A6xßݽÿÕßmõæ|ž<ì²ÕþŽvSù(@¦t[Ïßå9䟆]v~4á·÷ßÿ‹vù«|<à¶øu¾×O8Nª ¸ì Íë=ÝÊ”,pò;’¯äÝ™q/|ûøØ~õ¡¼p9zÉ«JÞñqÞÍá[\ί†òý”yu{¥/e¹Ù÷XÆ-¯Ðp€µòI›–¼_Ê×wϼd]iÛßß>=”ã©òWù˜+Ïtº»¿ýP‚¼ž=´Ãêz(]žº|þL >¾.–!ï&Ë—á® Ÿ üož…å˜Ë¹ç©ö Šòé8öÀGëØ­ÛžíT~êäMc½;g&ïüʬÕÚ\OEm8î˜?æfäO²žcÀ%ùÅuÝ8uÓÿÏ×ùÄŸ6 õýÌ{°àŠûí3ëGý멟ç7ƒÞ€|Ptûö¹Õ©<Ùϯ¬MÝYÆsëã;{$–îìDÖG9-ó]? }8ìæì–>ásÞÃýî«v¶ºƒê©THô6-G½*Ás±oí‰bwECæÂ_¶ÑµK/=´ËX2F½ØÐoˆŽ±ÎI¹FR¿ývñu%¿lc>ë-×Zê_,ÛóW-^¸nSGËçæ_èê¬ëMý•¿F3s}ýûë!¯=Ç”iëö$ŸØïuY×iê/:е°ã2ôÿ²Ôó¢²XNèë u§=º;„?qÇ\îõlÃÕP/ãÔk~çáOÙ+ïåjôbÇã½òZ¾´"ÏÀ_Ý?=|Û¯`5’u-o.æK=r Þ²BÌç¿þû¿å…•Oy_¬mâk>Ÿoiû6•§äòÔáöM>Õ=Ê úS´ßËsûãÁ;¾»hV¾¡œ¹ñ±ÿ]ÙLS=ÈOrL>/Áî_J`ý.Ÿ”‰?Ã]qù*“u¯^•£¸µÎÞù?Ò„-;ì‘§uwÚ#oÃðü”g"e,E: ì_{¾çA¯ÿÄc壒q’¥‘O{ó(gù,9<°(Fp;¤ÿ겘ó&d¸ÞÍSž¥áÎÓPÖÑ4Oã±½0SÓq‘ß]Ù—þ䉜ÃÍ•}íëÝݹÈ(vçr/½cÞÆ v.矅7¢ö›å¢7r¾8ÏôÂõVX]å{mV¾{óÝ×þ‘N>ØW´MåÒéú ºyZ·ñã—}½²ÅËFùürõPk†—^ù«åcÛÆò”Ö¢K÷åUã.:ê([ˆ|´ð±íR!ã ‘_=s;´­Û¿ÍzZ–R]Nå»ò‰O9..ÿ}”ÛÍý½ñz‰|ɧү>Ü=þŽƒËôò]¾òôð!Ÿ}lõD`<ÿü{y©±»}ŒÊÊŠœ×óSÕ»üq¹Íó5ÞI¥ÉÔ¿<>ñ~w¯w¡êse—ùGÞº…‹ö|]gò*?Ã5C¸û_.Û§Û'8|¤“Þrîõøìyöí‡î¯î¿—?Ûá1:+'…;Þ/WîŽòÜÐXžH¨—.®¯ð™Ò1Nç‡{ýî;ôwPq«'ê2'Ïžj=Âpîä¢Êp¸‹Iu¬üÒYú\Lðg§K]m¿¡gÆr‘%ûªÜK.C-—=Ðq÷_ðêz¯¶ä?G—¸øø¬v(ë2üÐc5¹Âüò±Z¸í-¢ìFàôÇnX¹“«13ì/N®¼¿8¹ºû òÊä–CF˜ÜúœUùRÝÉ_]©oÊŒW>ÀŠV[C}ëêæ¨Žô£®Yâ[¶ÃëR¯ù¾§jn—E¦ù#—EdUÝy×q©W–ðóüt×6húÑ­³2¯å;m¦¿¿Ö{ŽËÜ]J·¼K×25¸A¯×qÊVèþîw´u_»OÆýÜ‹¤MÞ¾Ö;õõ¦•®è”]ã,gêÚÕ¼a/_£™þöü)Ç_åêÛ/þÕ.ëz#£\ƒÊ­1/µ?åfáX ïvàË•;]äúøícZ€~ÃYþté¶|ySfŸhüDã#Çendstream endobj 181 0 obj << /Filter /FlateDecode /Length 13405 >> stream xœ­Ë“%ÇuÞ÷³’ÚÙ7´ºí@_V¾3µpiK"%ÂakA( ÌhzzìˆÒ?®µÏÉsNæÉGÁ  `00÷×_eUeåûËÇ/ÇÍ\üÿ÷«§7¿ø-—o^ß—oÞüñ©½ð¾zºüêsPääVŽb.Ÿý†.5“ã툗Ò­¸pùüéÍﯟÝ·#¸dŽr}ww?2èòõKõ‡‡×îî³pe¾~:(ÿíÎÆ[É)Œ¼|‚¸Ûqäëo‡¿<Pa«ïóòVn¯¿ækBñ9_ß¿½ë?jÈBv×O¿º³ø>ÑA w|/⮿þw-{O²hc´éŸ?ÿ{ˆ;?ÄsáV‘ìn~O¬ão.m‰w+DÊÍ»9rºS‰5·²æ8p·°ÆÞL}º æ=‘·ŒÁà¿6äÈ…c’õÍ”Á˜ /sý0` Ÿð7wä(¥]oÉ퉽¥L¤l~‰HKÎïˆ9"‡™0ÊöJäˆØ3™Ù1WL[â ýÌtëùgÆ*÷L[ Ý ¨­  ’‰O{’o†ÂÅX7{RµLìžÄúßJ8wm7L ”LgäHB|Þ'oùÕï äv¹Ü޼'-6€ØSR(6 {ÕaC¢| ÞìI’·€LO‰ÏD<‡¼#rw(OH–˜‡´yNä 3Á‰FHÎg$ó–[ {RÓ#Ç¥ê–$&†JÕ-)”¡–µeK Ü>ŒhG•ù9¡gvP݆SBWyHÙöŒð÷Râáw÷–ÞkK8zHÏñŒX ÊlëÎÈÑIÙˆC΃Áߢےþ¦Q…<¸*RÈcS:#ü½ îŒÈUéN€\S° rB8Þ¡eýᔚœ¼NƒP×—´%ýˤt‹þŒpÙ$¹&/¡tÂqŽÍ?sF8 @½(W­„c¢ø›1g„Ó¶áNˆá»g¨ùL>#–‰<áŽx&PÞ…3B‰ Cm’ì¡|”¡¦¨­-ñ|Uì÷Z‡ %³+g„JK$1ž¾;–ºåŒP‰š¡D5šº3––åŒ&ر9#r•£–Ö–ðÝ¡lœžGŽ1ì¶œËj“@é\3IsÙ›Ÿ-µùþ†+áÔæ¡õÏ?=˜Î9ï±-wB8øPÛ¤{ÂÑÐfüyðÏ´ý)w„áÈ»ejgn‰ÊíÄ 9¸ ÌPKøtFb#ÁŸþ`Áü‘«Líì€ÜÛb Ù’–v |8mìÑœþ>Ô¯ÜN*PYÊ£¬„¿éS*"÷í³¬Ä5N Ì­FÞj%œL€L G9µL±~whFøîÐEH§D®2˜`NˆmDBÞz è"¸S"w÷sŒ)"wÔ ß 9RGeCZÂ…¶Ì””i 5¦žA"!—vÕJä- 5è·DÞ¢¶²NH4'l\˜3ÂWQã⌴«R8#\EÑõ'„ã*½"WÙö„+‘«l{Ó•ÄFò)É+áwwԱܾÊ/ïÕ Wê8¼öÄJ uö¶„ËhRê]I9·'œ‰•” Ä…=éošÛwŸ‰¾Šº@+鱑—¯¬_U¸û·#ü½òÁÝ¿-1BL8%íª)m(Âwφ·„c5ÛSÒ¾ xBZlä%6Ò¯rRÂá²QíHÇÆ–p8…;Ÿ¸Ç)á¦ÿF¸›½#rU\‘óŽpó ˆ/g„K¶’{8+1B²=#òÌÐ…Œš”ÃLM&ž†„·„r.’Ïå¦r„v÷•ÈU=;Y5)ê´ª5ò„±ß}!N¾…SbrJ<“2}wMœ"!¯Db¾ô{-„J€bÐ(ÛªQ*ˆg$·‹Ü))íªpäÓb}%r‘m)e&N¾ Òžþ2dùœþ2¦™Ñ‰åÈÙþ V•v„ò¹Ó†´€å‰WŸÊB«: Ù,wï„cÙÚvÕJbâN§ ëÚ5+áoe=Ûh²HäYøFQn4/¹@’Ûljßr&^R‰Í=&…Æv„Óóh+žÎw.´…¤EÓ q'ƒe;è-” 1æŒð—ñÕG;!?ÞðÖJ‚¼©·òŽð{yÇCl;Âïå¡W˜Ïˆã»'´Ò4>µÉg„ï]Û•TpKøîÐO”{­„cˆ„¼Îk!ö™äòBä-r»j%ò<-ñÂWaÔž~wè9æpFä*σ‰;"WÅö+á´=«xFø*,³OHK‡hVŸ %~•²'ýªÄwß.l€7l3Ÿ#ÄÆ3Â9.gjÛ.ÏÑ„@9nñp",¦=ÌJ8É×^ª“œN ßÊÿáÊ®„ö +á $Ÿ.d¡ÁZÜ)á{…\ ñö8ÊÙ‘úñ€rk·$6RüI²mW­D®²<$´%FHNg$pÈ2ܳ#5Þ+É'ÀæÒ)á{{àÞãHŒ®äàpùü{b„ÈÌ͝x€q%ý¹vDîžö?ù¾‰‡PVÂ]ªJäIVâ%Xþ¶;ÂÅíWÂ_H:%ü„2waCŒÄ•q­#¿Nû8¡ÊŸ‘Ô®*§„Óµñã€ÒHŒvÕB8ÆL¢GÂWÅ6¸‰Õ4$„“6pJ8-É\Š-‘˜/mÐi&‡Ä¼•¯¼#™®²–æ¬lIòBB8#«Öµ«VÂoj¿ÅŽð›)áŒð›â ¢=CHþÂ_Ðʼ–‘7í$6„³N?@dÆL²äew´!+áôãl›#²ŽCçxFÈJ’¼»ÌíØ’ØIÞ“H3f*ɧ„cÌù ¡‘Έ¼ià7ÝÓÅêJB{ÂÄó6v$5óá/Ý¢£œ‘: H¡áµ-á´êJ»ûL\{ÂBÆ["_§pŒí§gèpeO¬Ä¸'¡HÌ©±º!Õ%­ÄP™°%rwNu’äM½§'Ü¹Š¿ò†Äv÷LCâ…àì͸'Û•XòÚ–ê sGO¸’¬ˆ‰{’ZÈ<ü¸%rUhWÍ$J‰„Væ)98䨮š ´%@¡å¶ Ƚ1Õl§<‡ºl,Vë Ýü;¶úÍ´Ú×HÞxjNIXþ~:l÷¥=i©$ñ/ _“h0fK8¾s ¹ ÉòÝhºò–I#У‚C9@÷¬Žû¬ öy*±8yKvŽ+áÙN+<øªLÏ·Ò­Ø@•fM/ä¨C2H ­RìŽàLäˆÐ ›q4³Úâ³Ú€¸.5Fk ±ðź$ÖvþŽÄj0Á¶ð†àDcGÄ×Ɇ@¬S)ÎóÏvÄðp…åa•Ä’#Îoª$(+=ÅV®ÃJ‚µ»MIXmÎè«+¬Eû¥ìHðœ§!ä›[~œÁM1óOá9É4Ì×Égu‰N™Êð¡Bë.s<Ô{òß³ÊCÖ‡<½±žtBð.«ª“ÃЬþÏp¼Áì¯TtôÇ ÖóêŽ(•³Û™JÕˆRMϪŸ¾«~h’x̸à´z f @ÁC½#­A:îîÁ)uéjáß¶NR2W_ÿ Ë5 ÷éš;\©S×áÈ*þrO’Ɇ>Ûh,´`ñÕ÷fQÄቢ4 ´ÄBª„Ni˜hQ€" ¢K‰˜hQ†“‡»1Q"y“.Òïö#££þ¿–lPüÀg„ïÅ<Åÿ c×ìÜÂ+?üðú/QÿÈýô ×OÒ“N9@­Ò=ƒd¡)në°¿ê tVù)‰ ŸêÿiˇL/ûññéÝå÷oîÐú€è¾þÛë?ׇïq„O•ZŒ#WtÕüFúÖ‡SŸ°è&0é;1Ðå‡çIüsùCî?ÿî0ÌOyj$µÅYŸíT"›,jVƒ¨"ŒI‰ [êì>%b2¨ £½¡TLvZ!©(­’÷é*ý†îÔçps4,üש ó—IêÃÔ?Dõ‡ÿï‡Qiªd]î¾o¤Oeh/»Û~BJô¢Ì@…îÌÍÙš¯ßãµpnrÅB µ4ÃÕmâþ+í„!Þ¾RŒµØ>-”’¨Å‰x¸ç%mxû¸ [AdKÒ@YØÚ~ì)@#&VŸšgaü÷ïŸî NªOñúýû‡ÿrg±°JîúîòöñõãËݽA` $ýòÎàd‹è®ß³-jI8Åæv#^¼Õá½.o ÞR†*·eê6'è—Ôiz‹ ìÎ%¨B®„§AùT·!ujø„ÁDžÔè"Mu jŸXÍø½Ð©s¶]ÄFÍ%dÃË&\Ìä™gˆŒš¥\:ê:\x›ê’!1uß‚iÂ.¨ p”¢ŽWÖ– %=^ÉqõÐóBw w=(õÐ#Â:wŽN!ß{5uST—X[]Њ®?¡; Jà™û.;x¸à§¾ŽÙãHtÉ ýÍ÷­>h%ŽÃ!4¨”b]×BWÞa)I¹Îztuù?S¾NrAbkö‰G×y’~z$4‚!Ö)oú` ~¢¯Ey˜7¡9ahSi¨Ÿ#VCõ­ÆŽ8ñ³æMˆ¦‚y3& ¤pr“å}Ú|À͘8^êì!‘×™¹hº5HD5{¦èköô<Ñ3¦T({BÝœhÒ-dÓƒ‚Á…‚X©C<¦ò;fOÞ†H:êÄïˆ[ÖìéqN fOtãêäzó.0{¢·S³§´åzsÁ£§ÙÇb…C«©#ŽÅQöL¹.H‰8´SƒAs³'8ÔͦáË̞أ¦ì‰+bö,éàìY÷êó8‘Ùßè4¹,î–Îsë=nÁTp×jÃÛ#xºÆêW}åL9xk_‹e$¼Òí™sg¡9× gü×=Ö=.à#mÛp_—œãŠ²Ã‘@~¯Û‘GÚ Ü×åÈ8#Ôšp1e]§îcÍžÐsñ´H>”=¥!¬ÛZF—¢Ïpœú“‹Ð ” Fº8™w1Q¢àÝdÂ*f¸]LM¥ì² !•0(è†ä²1 MC…JoqÙ„4Uek†Uè³ `!¨Ye´ £b©o)F›1ÃI׉Tä´ !Uc™Jn±Ú„J˜©3à»×&„TÂp@U±Ù&¤ªs–JnqÛ„J˜?.Ýk«?éï ¤Zf‹ÑÆ€4‚ð˜ætéF›V1ƒzvpÚ„°ŠY2Tf‹Õ&„TÕ}þ»×&¤©*£åÝlB*a´î¢ÙmHD(â™>ãd· a3<ý°ªØoRUe.³ÙpÂ*fu}~7ÜFó\b³á&„UÌp3»ú Ér@"AuGïn¹ !‘°¸¼fÏM«˜áR—ëlº ©ªÆ’£6ЏnBH% ­^ºëÆ€4 ÕýÜ»ë&„TÂè´©æ» ¨"F¸Ì(ißM‹˜Ñ›ÝxB*a´£;oBX%,s‰ÍÖ›R £ »÷&„T 7–šúØ|RUáNaNTXæ0i*b¥®”÷kÕ]ÿºùÆ€4‚RàòšÍ7!¤†«h´û&„TŠá›í7!¤j,s™Íþ›VÃ%]©ˆª4ÐDˆpËÒT NiAýJå5[pBXÄ ·¦£8'N«„e.¯Ù„B*a|;²àêOþ;ƒºëZ÷ßTMC±Ž}tÿM©› 8!¬bU+•×ìÀ a³¸¼f N©„•º\¿{pBXE¬î›M*2ᄪ±Ì%6»pBXÅÌDn™¤º1?ý$IP¯zíà !‰0\vé>Òòõì…îà !Uc‰Ëj6â„°ŠntWãœ8!UÕÔ®©Æ9[qBH%,.­Ù‹BªÆ —ÖlÆ a3\þtéfÒ‚tL¥5›qBHE,Õýæµ'„TÂèÌ´nÇ !Uc™Ëköã„J¾Cy6ä„JôuGNHU5†½âú}Ø’B*aáàÖ {rBHÕXâòšM9!¤†')]º)Ç€4‚ðdA‰)'UaÁƪZ· a•°B%¶ØrBH% #s龜VÃU©…UžÏ ñRbw†›“–Kwæ„°ŠºL*ËG•!Uc™Jmñæ„JÔaµÔsN«˜yO¥¶¸sBXŬf1ñæêOþ»€B½Iqæ„4UetVX·æúéaŸ)&û A¢SBÕŽ £ãö´øm¬·§Åo#Õè¸=-~©FÇíiñÛšÊî=¸»¶zp;wmõàvîÚêÁ­ÛdÀmܵՃ۹k«·q×Vnë®­ÜÖ][=¸»¶zp;wmõàvîÚêÁmݵՃ[íµÅ‚ÛØk‹·s×Vnç®­ÜÎ^[,¸»¶zpwmõà¶îÚêÁíܵՃۺk«·q×Vnc¯-ÜÎ][=¸­»¶zpwmõàvîÚêÁíܵՃ۹k«·u×Vnq×Vnï®­ÜÎ][=¸­»¶zpwmõàvîÚêÁíܵՃ۹k«·u×Vnã®­Üè±i÷mc¯-Üj¯-ÜÞ][=¸»¶zp;wmõàvîÚêÁmݵՃ۸k«·s×Vnc¯-ÜÎ][=¸­»¶zpwmõàvîÚêÁmܵՃۺk«·u×Vnã®­ÜÎ][=¸»¶zp;{m±à6îÚêÁíܵՃ۹k«·±× në®­ÜÆ][=¸»¶zp[wmõàvîÚêÁmݵՃ۸k«·s×Vnç®­ÜÖ][=¸»¶zp;wmõà6öÚbÁíܵՃÛÙk‹·Øk‹·u×Vnç®­ÜÎ][=¸­»¶zpwmõàvîÚêÁíܵՃÛÙk‹·q×Vnc¯-ÜÆ^[,¸»¶zp{wmõà6îÚêÁíܵՃ۹k«·s×Vn5Ø&nµ× nç®­ÜÎ][=¸­»¶zpwmõàvîÚêÁ­öÚbÁmݵՃۺk«·q×Vnc¯-ÜÎ][=¸½¶XpwmõàvîÚêÁíܵՃ۹k«·³× nã®­Üj¯-ÜÖ][=¸»¶zp[wmõà6îÚêÁíܵՃ۹k«·u×Vnµ× nc¯-ÜÎ][=¸»¶zp[wmõàVwmõàvöÚbÁmìµÅ‚Û¹k«·u×Vnã®­Üb°MÜÆ^[,¸­»¶zpwmõàvîÚêÁíܵՃ۸k«·w×Vnã®­Üb°MÜÎ][=¸½¶Xp[wmõà6îÚêÁíܵՃ۹k«·u×Vnã®­ÜÆ^[,¸Õ][=¸½»¶zp[wmõà6îÚêÁíܵՃ۹k«·s×Vnë®­ÜÆ][=¸½¶Xp;wmõà¶îÚêÁmܵՃ۸k«·u×Vnç®­ÜÖ][=¸»¶zp;wmõàvîÚêÁ­ÛdÀmܵՃ۹k«×ݵß_êvÍ1^p¢ýŸ/Çå-n³ ‰ìï6Û•·½³7Û•+#OöÓV·Z¶nÆZ§6=ÚÖÍ9fÞ Y¶nÆ“¯h'dÞº9.ÿÚÖÍõ8Ú©™·n®‡ÀÐfμwsñuOcÞ¸¹„Èû ËÆÍEúmãæ‚¾ måL7GQ©Ûó¾Í“m„Ìû6GL´2ïÛσv²osijh#dÞ·9ðT´2ïÛ4côÖÍÐGp¼2mÝxb²us4ÞmæÌ[7ãø'ïÍ{7›z&„ÚºÙà k}ÙºO_¯àmëf OUwZm[7[{PVk[7[´.h3gÞºÙÂcÚš·n¶ÑÓFÈmëf m„,[7[„U[7;<Î6sæ½›]=<¼oÝì° D¡ðÖÍ.XÞY¶nÆÚY¶nvuÜNíÜ OÎ!ËÎÍð'jß´›¡ãH#mçfï¹­Ñvnö!ðFȲs³Oo„,[7C5Æ!óÖÍPó>Ȳus@Ë„6sæ­›@´²ìÝЬº¨­›Cȼ²lÝŒ™6B–­›±K!ËÖÍØO¥eëfÌl´²lÝiLXmÝ}äeëfÌm´²lÝ }ÞY¶n†&o„,{7'Ú›˜7nÆC·idÙ¸½3ÚY6nN8@[9óÆÍèˆû6c£ŠvA–}›Saû´íÛŒgÌÒ.Ȳo36ÌidÙ·9ÃSÑ.ȇŒñàRÚYömF;ƒvAæ}›ñAÚYömF×€6A–}›ñØ2ÚY6n®#øµo3žÍD› ˾ͅš5jßf¬ÞidÙ·‡šifÞ¶™G•û¶Í t¼ 2oÛœp$•ö(çm›kk„vAæm›k›‚²&oÛ mî)ʾÍP'DÞ™öm†jÚpÞä}› RÞä}›Ê †6n†ê‘a۾ͭökû6›ä©biû6›Ì#>mßfÌm”7eßft/j §íÛŒ„¥œyßfÌn”7yßfÙRiû6[tŨhû6cv+´“3oÜìdضmÜìÐð“)&\ [W!%аVBG&U`<"•e­ ÄN¹Õ5 ÎÂÈI×€1°(• ¸X£+ÁˆÃEW‚±°ÅÐN/@C¿eíô‚6½¦^ <¦ãäô‚µ· §à8· §$(u%TtÞ‚œ_ û…r~v+è¼9¿ º¢EU‚ÏØ¥ó¸ xZ+µ2¸ ØÑ¤Vׂφ¤fׂÏó£fׂχ£fׂÐÌðª xÀµ3¸ xhµ3¸ „vFæ²Lª@lg']&qY&5 6-©,ã*ð𑚭 ¬ntÑU žãDE™T”ÅÉé:Ðà[Fר6¦²Lê@ã<Ÿ· u ñ…Ë2© ÔFW&e>oAª@SØh—*ÐB AE™TÖr‹¾UŠc:oAª@KGD«:Ð’»¬ê@ôᨙ!u ºiT–IèÌÁe™ÔÎ’Wܪ@'ôV:ì‚]ºÈVT«qÐÓê *ˤô†Ç½¥ô8Àgu%è=Oöh• G)êJÐãÉÁ^ׂP rQ&µ`ÀS”²®Ñ<°QׂÁÜÎZ0à4 ] BDEY«qNµ3¸„,ÄÍ ©!•r3C*AÔ.ÃéИãf†Ô‚ðÜÌZ0FËÍ ©¡ºçf†Ô‚P›r3CªAÚ¢óäôžàÓ«Á:dJM 9½>éÀ9½ qGº^ X¡ì)§¤øÀ>½ C©B- 9½ [ž6ÕN/ÈŽ©ÛñØ?¢–WƒûG”=¹ŒØ?:Šª#v¨©ÁÕ`,bK5±ƒdT-ëÑYÕ‚ûH”=©¬C>”=¹„–M±j• ö|Ò• v‘Œ×• ÎÞÉ?éP7<Ý$bm7êöe=k 2ž3W:ßÍaGöúùFúò Ïc{ýZýx~yâ3Þ ÍæÒõ-Ÿç¯/Ž…û^ýûáý+ðVŸFHðØ÷uvƒ½À!B=ž¹ôûëß>~ÃC˨ԛÔç åêÿúîÞC UÅõ<>|CÏì³-åúüú±>—‚>WƒxÿüñU^úúµúÃó a¸üã·ŠË{HLôÜP^©çÆ©.ðG>%êãŸ?|ö›ßÑQQã ¢Y !þþúôL‡àå¯oOîw}ßÎßõ釼 ¿zÕÑóþáãpõ[~#w}üÀ…,'ùÕ+þ¨/“ø '¸ÐNŸªI Jö—󣻯m'wÕÐ-üÊx(óðä.1ÃÁþÙáa{²¼ïF1 ÅeÏ÷KTÞcµï0Œðßý·»{ôtK±××wo¯ïÞ½ýâj à«Ö¦”æŸÿöÍçÿuÿò7ÿý‹ë·ß¼{ÿþù«oÿöñã'ýoÿŸ¯_?¾ûŽÃ«É¤?ú™ðíïÑÉÈP¼Ö'zûõÝ=´ ¼C½è^dô4,Ó÷€4oº«Îd_餆3QÆäÜC¢Êñ8 eÂÓ9àâð˜ù°ç —´ŒáÃg ÔçxýÓ#Ü‘~…pýƒº‚7´23Üý#? uwÛŒŒ§LAC2ò‡çß>ÿúîÛç÷ow¹´‘¬<ÄÄóŸn ]ˆ«œl¹¾À‡šƒ¡ÑsýÈQw$̦]þÊ™h6]Þ’ÚÌ×ç¯ù…[ +ú ¢ñ¥E~¼þ—³çø×Ç/7¥•v÷»"+÷µÍ•3§\õ‰_?>èçþJ×á^÷_ªË^‡ÐjøTÈ¡[W]!àß¶ä¥8—fž C G—`›äI¡×’K@ OÌAe7Ô /ÃÓ~­RÏð‡——©”í!´ª R¶þ#eXO?ŠPa'ZÍ5ý r#ååÏŸîðL¸#z:&Oÿ[êÈžÙg Ÿé¯UfžT檢;.Pmè|y~â?@|üguÑÇÓ'j×lóÏMúWëòŸW¾ò#–x}¼Ã¨*Î^+Äqx~åë;_ ¹×»93éÞò ØÇQå<ÜXLFaȹ?¿ætÕ¼4‹Ï“£¦Û¯ÿýÛÊ©?µRÅ'4ÂÕ­øÌÌŸYùCKÞC÷Y‡ 5Wù9õ?ŽU@÷eˆ•Oð`k?p6Ø|ª¯t9ªò…Väw ½«'z^?ÿ¡†ß½ÃNÜ¿…¯Ôi”“†r}ÚøÞDH9ô ­jqTÿ]àš]´¾£?ÀO¨³pt#Cñ/wÐÕ8lK?¾˜Ko‹F´y¿l·û7б¹k„JP—|C)ø<üz•»œ3Í 3JªùïkCt—óCo*ÿþz?FÐP‘a™€ß¤æËúÈ^Jd®f_8nà³ 9üýÃëë¶~Ï8ÉÀüˆâ Â*FòÆQjÂõŸ°‡TÊáפ©=¤©’|ý¿ßµþÑÒ*rhbAYóþ½.§_?¾<èʪ\Ï’dï Aš*`iöÃGþ±5št3à9ŸOGÙ޽oß½ÿî‹ë_ɧ¾qlþ•œ‘;å_„ ž¯åûXCBÄ¡ 4W‘¿«™ ?5Ó;z|hËB àÝË»_½{íd_]f{K;8Rcw*ï2µ4ø›Øß´õl©²{ÄôU[˜ùúÛOðߨDóר´èøŠ/ù o¯Ÿ"Wûëot³äÊŒåU»ƒ¹~úðò¯ý~¿ªÿ„"ÙBß +þ:~È€˜üŽ–fw‡Ë” ´×ßÝ…ZW¦ë7/ôÏq÷ú ) »Ï¸vžéÓgºÀ@n{÷^§ÆO¨†Ã öÓwÐ ®aHpo±êű£‚‰SÜAOÿË;—©½îïtPЗû×þºï|àšXtR¹ÇÃTh8s»¶ytüò8ÄöØÉ¸ÿß4ÈqØñÓ½¼ø«_»Ú¿ÑæWÿ“óF.×’ò½»ÞÞ;ìÞª³ê±’Äjê*Ê)Gq­†C«1ÁŸ²"$P­ööùñ¯Ak ¾~w…gÃ2¾ÃcS-˜+> ü Xs”+>“c¥±îZî~N³—…@%§žŠ?NÜÇ¿Ü[øœñà&¨4N(/½¯=œû¯Ÿò?­‰ø(µÆ x~4dŽ¿øe­§ŽX‹-\\g¡¦]õÐì¹'A­Ü nhå~|º˜CÍ@ÇocY¹§„Oè¦Bò›ñgÍ+Ô*СûñU ü˜Çm8 øZ¯úA1GÜݽ¡ùòð^®L×Ú#rò]²Ú(6¦>VƒJúô8´‚^owÆQµöŸ¶E ýsªÑ~õøüôîã çeܵ>XÀê9\ÿþùû—*Óïr8õæ"½„O¸2ÈZ‚g'#…@0Û:\–ú‡5ãwŸHN…´Í_B¾ùÉŸØå‚š Oš…PsBÏžö_>>ýá†éú8Žpüœæ-®`‡¬¦oÄYO÷M’å WŽ¿þ^t›f•m=|ÿ_Þ™: Õ]ÿé$©ŽüÃãT7yœæ A|ú[üw¦,[ëûR sý‹O1`ö-éh(,lþÀ¿¨2dPjøÆä;dì×adä~¸?ŽœÑLí„Ñœ_†Eª&–èï¿NÍõeD£tQXu¦ÞJ¹Í@ç´û6¾FÒÛ1¯lóÜð…t·ýù婨2¢Låê>S'ô/Sk'H†…*ÃÕ\ßÿ]Üõ3ì¦ÔqôZoSV¯„.ËÿÒUûǾá?fnP0æú›6 |ýðõ;ÕùP†‚›ÓÛ¶€¥îÖ”ùf=Tæ,Òo[TdÝé€]K ŸòÕ•ô—8gé? ”@O¿N ta(%( —cú®ª¡_|v¸^»'¨ÃSÈ_\xDhK…"u=Ä—û9µy]jüÔ#ª‘óÞ?¾ù×¶Åéendstream endobj 182 0 obj << /Filter /FlateDecode /Length 2189 >> stream xœ­XÍwÛ¸¿û”rëAGð½Æ÷GÞë!Én›M7ÙÄv»‡M´$ËL(Ë!ioü÷Ü”­äí®“L‘ƒÁ3ó›ßÌ—£|Æðú;_Ÿ?[ Gl¶:úrÄÃ×Yú3_Ï^ž„2ð†zæùììâ(.å3ÇgV[꥞­gÕÙ'v…°õÔ1‰KÎG¿·›ªŽ2®YTŒ2--gž,«8îŒ#]{•}ZUµ”–”B×™H{PÕºç?‡¤‹9{„go$iðQPï4ùk¦ék¡j‘„´½k7œlr3n²ç®ÛÍ´…ä×v¼œ8ò9?ঠ7Â@hZ ‹Ëi‡±ÉÄ#aŒ°åq‡ê?go~ã°zrB-5uÆ$W4ý—€{[î ã‡!iõ4´ ÕIEΞÅgR§…IÂÀɘ!—‡\ÑÂï”%Ÿ«hvУAçk|æ SD0f>V4D«"ò,§ÊÈ)˜¾» {i¯Ù_K v8AN* ëйËJ£noɪ¯´4 É9~rŒÊ ×°XvùEL2†\lúI»%§7}Åq)Ãm{Ûté“2ä»flözApG%÷“ñ´ª3hM~#„Í0î-ª«¥uÔY9«¹¤ZyÕ\„ÅÊ ÔOqlÉËvÓmVwøB‘=Qjq†¯ 77Ýx™ÉÑ)ïlaað}™¨…»ûúß•“1®Ë]³Šî­ãíÌj!¨æSXNÂ5òQ™mцøXaÞHŒK ³O 71‰¿?;úpĨ¤ ?Ì!´ØÇ!”â®`f¬ JG"±Ø´ÏA”ÿãOí«¥òYDMØÇµâ58 ƒÏX‰Ë($+úÁ8E¿föýarƒh­˜íà› †[w^±*Äsµ—ãxýüø¸é¿¶·tӝޛóá˜k†Ùe»ßôB1ow÷µÈÅ/z¥•¡jî@ïôº,*Ý"~ñQ?n¥äì _Gì ÌFìµ{µ¶=9T‹oÕcIþO²¹EÚŠÀšYï†vH=pº‹d²tšrÆÃ”dF\üÔLS2Ía‡-ࢺþ…f€*…GÌ삆—§àñs³šä!0†›LO@<ƒ”9¢àH®»nc=„|.àò~ôã@¿ŒÞR¾7››þ*xRaLÉè,¥ÀIN·ì)0>I¶‚€Õ§›‹ñצߒÁå^’ÆAZƒ¨¡ZåL"ÖPåï”ó€ RDÁŸjýmàÓ"RÏ ¦³â|:#íqLvØ ~èI> ½eÖÒ–óG@ 7 tƒ@ªÞB 4.ª„˜wÄ „VÁýï³ B’&"§ '›óXá 3;P4I ðä?á³ÞR6¦lH??ù=’MÑA¸H¨‹CYÛ§_©ýx Úƒ^«KÔYÄ÷^ÚHÉÃÈY¼EJÎÒf[Ç4\0´ª»D.ÞŸ`a»g´VäaSòºY,³ë"ƒ2kRç',Ïñí •l¯ºâ÷¶=W¥§¯³Øø?zý¸(! ôÒû‘hžƒFèžW S\ì§VŽGs#ƒ1vêðˆÞ§«?wv—YÅ®M¡üSaø·€¬ðÊš™†’!„- yy|žøXSAaóGöÊêb¿ h#~‰@ R$œæ>íR ­W“;;l ½5z¶å:¶'F“·ˆÚû²Ü)£ÖcÈq柉ís1C<û€FvrÛ«¼`_ c¿64íÕ2þ€Öi]”Ú_–4C‚Áɨ Œš\],Sy¾²¼š=N„<¯j«‘œhòSXd±ì‘”+ÜMŠîMørÓäóŒv¼ËP ¬ŽmtsµH-9hç>MtrÕ%8 ã¡s“:¦è«|ôoAàŒû§PÀ‹O6ÿ*èü¹í oáÔ[¯ÙH‰¾íÎàk»$ ö“”NÎŽÐØc!ÙFSsž_K†SÞq@·1š‡~ò.)ò0âZ 7ÍÃ%Œ»ÄïÏnh2ŒÛ=Çt"6´Û»€xÈ5¾|7­„ÕÊòZ0'l-¾@`Î>k!©á²Ä&޽uЀ9n´áê¸Iw¶‰°ÝÝ&T8 3#¦ )Hf—È(Üø%”ZôîËÈ”nÿWÂmÚ²t<0¡Ú™rvI1äÒ‹ImÿÈøÀ©s§˜†l[\G0p«›˜46† V> stream xœ­WiTTǶ>MCŸƒ¢Nš!èiPp 8¼8Ük48QT084DI¦˜dêÞ4Ȭ2ÈdhD¦vJ5á¾DF_^Ôäfðr_BâMî£Å]÷ÕLLÌzïýx«V÷:]]uªêÛßþöW2ÆÜŒ‘ÉdãÖ{nŠóŸ=gƲˆÐ©k²è(Ç›‰ä@v<)zìeVr°2¿4ž/¶Áž0v®³fä2™Ïîðåû¢‚÷Å8ÍqwŸ;cý^è¤IpZ6Ói­ÿ›!qÑ!ÁNþáNkgzÎtz="Žv;MwÒìò tŠtÚ¼Û×i‹÷ÊMÞN«6mØâå=mæo7õË/†a¦†/‹Ø·"*:fuìmœ¼f}›ž»÷m ö [ôhüŒ™³çÌÇ0˜IŒ³‘qe¼™ÍÌf³•qc|_f³YÎÌ`Þ`V03™•Œ³ŠYͬaæ2k™yÌzÆ“yqd>c˜±Ì8Ɔá™%3Ƙ3±L¯l™ì¢Ù³ÃòYòDùæÍsÌZ6Š*v<ëËÞã^ã>µÜ`ùþ(·ÑcF'Y¹Zã>æë±ÂØžqfã ­­_±Þf]òÂèÎÚŒEãØÇ`Â:S›)Êhƒr”áN”Ùñ…bŸ­ÉKÙo5o³åžAKƒ=š)ø¿“Ň-Ôìûù "{¨ÙjÃ-8IÛ'P­ãè”`–ÿ™»ÝWOWF/HÝý—\õ.C×|LjÕ&ºâ8üÇËÇ¢§¾]pƒŒ)D—º“÷á<×;ÿ.™' .R ö9«E_.¼÷Íw*²?W® XN,2 «qâ§ÊÅÛT'É=åúàE„Èz|ýhYF˜ª±ÿ2›“̤·ˆ/eh…%h%ë0B‰Ž³~ ³Éüy“ˆ-±ë³qþW? @¬Š” €pDIl-w*Z„ªö³å&xZö•EœØ>àÇQôÈVºEÎÑbÓOáËC+;ÞZü£•(Ìü†8zùÆ…¼)\dù>òÚ/Ð üt›ÙÚØ3Q'<ú'«ˆ•-q]î»N­®:*`>Ë¿xátwi›ãµ/bOÏ%ß¹‚")öQ]ÇK0¶ã%jÉtG¼„Á…#Ð-TàfœJ¡Þ«"㳕@,úmÚ±zïlàˆ›Ø‡nНàãàÓ>õšŠ7€(iœdW“¥8‰3úûBÎŽw—ˆ¬²Ëç¤ßŸƒ=üQJÈü ²à÷”¸COU÷ †žk®eù©Æ|œ‹–¡ä´ýÀiŒûkke]åB7“nÄ—pBõYëuiÊy±Ÿ®ó¤hD¾H0«…THÕ’´ÁSö$M<•Jy¬L‘úH±z}df‚.NŸ\ŒZQmøÏ¡jøÙP5Œa÷¢sÂsõÙPʼn—³Y¬|t$9/¥ Ê ¯èH16<6³Ï–@WÔú¡™¶~¨ûEæÄQ”6’ÒIäIÉ´Vüò¡YÞô aÈN6¶bW½…dâä¹Ä‰Lúát¸|¾Âئòaù¥Ìùº×ý}÷8k@þCj ªZUWzòª¡Î$wI,Û@ëz×ã«FÉjLî…^;þS1–bü ¤Ðg%¦ ‘k×hýèB®zt¼¢ÂK þçê<¨mH»³ã¼Ê¿ÓûèFú§û+®Ä†8ýäŽ/ãËgÊT³ÐAIR†Žì¶Ê–ЦSU&*ê…”ÐÛ¤Zí3’¶m”¡Eÿ7ÈÉÅEâ?•{:W¸ùn ®¯©o“'PŸŸ ÂDFÿÄöXj,6èuyÂÁ”Ôý åÞlJx«ªåøaØB‘M8§÷NîoŠh¶i¼¿i— äÝ·ã9Fì]”5 Mþj6A+ð6L& Ðב›_]Z¤é VíO¢b«®¬<Àñß'G§{ÆlzÉëÚj\‹¾¸tçëõQ%‚_Í:˜ Q° 2²ÕùI­TÐ ²½yŽKi|ùÓ»Â[’ŠTõ¥5¹e†¬Œ¬LHä´ÇâßzëXE¥@v»)w€ÇhÄ ôýŸGÌÀiͶCSRUdC0ÄÂjÚ4]Áßtñ¾¾ÊñÇ’ÇT¤Iœ©Ü¬ŸGþ$KlÁÑ œŸ³ÐKr= F| ºëKt±¡2J¸~;¾›lMžâË,ÿ.yU¡çxêè1¯Jãí·‰?+;‚wkBöhšC[;šŒmÅ;É„KLèÓŽí²÷ ×ƒÎr±·+á¿<Y-™Ðh?µ*ë㺌=}}_m'v•BŽô#ƽ†œ_Z–>%UP¿U¹­Í ̤%³‰luËöc‡T}N¦÷Ç<Œ-ÑUi&ÖG€/§Öþ™˜Ï%ªœ|XЗCNÜS÷ç5ìþ²³ ‹„â⣵µïí¸Ÿ(r÷TO«£¦ ­M¸Æ„~Qú)Åâ-*, ’³ådæ$#ÂP{´ù±¤¨¸ð†T7#uq‘à 1’Õ(©É:œ™žIk'YK&[ˆj–×ÿžNüRC5Ò‘¯¬ƒ#”z‰--9~´ªÇw{~iþaÈ‚—øä”8ê†fÔ|(ÍHî‚cÐ)ql8zT¡%N[нžÆ6JçÇ*–÷çø{“Æ­nŽÐ³a(ðuƽÏ\w ìøëO\‡Ó¢7à"1Ÿ¼}UÈáÀ_W_/ƒ§Öº/žù?ܯ£ìÞÅNWÅ.þƒ,N£ÿaÀÈiò¸£‹ì t‘c¼È);ö6ì ÕhŒ¡mmÆÆt›?×÷ÌÕðÚJ’½m‘AÛ͒ѸùÿtKä§“uâ8åéГÁaA ͧëN ˜jû\ß° =1©/~‚V®¦»ÒÕ hت¤Úå!Τ.'Â_ŸI\²Ô6*j/n¸!4%1"9Þ:°.ºYà¯OV·^ÞùÞd¢ ÓƒÉÕä_Õÿ™ StŸàJ¶6O¤"wž£€8WôÊJ°[Ž×p…²—tÏbÁ{ë[ÏC= +e]Žéjœ ¡…\Œ£— â=¶^!Âk눜 ¯®Pœ‚î¼ö£Ü`Q©YÜj°™£ð*:t™dWнðE¹hÀêÀ²´i^S§-†ƒ´LÎRÐÀFùç×»à;åt“Ø ·uÓ·šV7¶Tžë ­ ÍÚÏuçV×{féòÅ[—kÔ*FâRR©ÅHpØ/.`‡×LjoCmN}/v¶ØœGgb†fGй Íèe’,ã*%¼õ-™U÷uÝ¿¿Ÿqw–@TÄ|¡×¢mmÞª?Uq®:¥y{¾ÐÙqò€û<ÂÂ2w„hT‘Á‘ºÝº$}œ>S—žiÉíσšÃ$¿àLíšœf?•©ðx#4páõO[êî?ëáz}_øÙߪžÂK˶¸“âK/ …’ˬ³5¹¡¢Ïä&¾ÆÖês£tp0I }ƒ,ÔxšA&•†hah†$£D4Tl (ð¦ÅؤÑ«w(*Q˜F¡l´0Ê|s„•%X®ÏÉÎÉÉ6däß±²êÌ=WrÄP˜Ÿc(̵Ã0ÿ É-óendstream endobj 184 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 8066 >> stream xœµzXçúï¬ ;cWÆ•EÍ,önì-1ŠK,(ˆ]¢ô"°”…eßÝ¥÷º°D°÷û‰c,‰Fƒ1Å’˜˜oÖîýfAãIrrÎ=÷ÞgyxffgÞò{ßßï}eщ‰DVK—9øûºøM?ÖÁÝ3ÔÇ%H8:Œï/âtâß»aÝ+¥)Þº‰¡›ÅÉ£fYñËz£ªžhe/J,­ñ œç´ÍÓ+Ävâøñ“ÆŽ%¿gغFÚÎgû‘‹›·x°÷6[¿­¶[6Îv¹89¸Ív„¿Ÿ­«»—‹‡­¿‡í*÷µ¶NŽ:8Ú.t°wZá8rÜŸìzs€¢(G;¿¹þóÖÏü0hAðÂE¡‹Ã> wYáº4ÒmÙŽ­ËÝí=Vxz9lsܾÊÛÉgµïšiÓgÌ|o诛g ï5bd[ëècÞÙ4V:îÝñ&Nš<¥÷ÔþE ¢ì©ÁÔ jµ’zJ9PÃ(Gj8µŠA9Q#©ÕÔ(j 5šZKÍ¥ÆPë¨yÔXj=5ŸGm >¤Þ¥Pã©…Ôjµ˜šD}DM¦–PS¨¥ÔTj5ZNM§d” ÕêO  $Ô*†â(†ÚFu¦ºP_Q©n”/Õò£> zPþTOªÕ›²¢Xª%¥úRᔵ¨‹¨+µŠä² "©—¢Ñ£N›:=ÏïµdQdÙÕR-™)ù„BŸb†2Ì]ºôîb躲›¬›¾{§îyÝM=2z<é¹£§©×Ö^zê]h¥a»²—úŒèóµt‰ôT_÷¾÷­û[keïË~³q·yÚOÕïdÿý P7½c÷ÎINÎí”÷•ß·o{a =0wàW>$4oÐÑÁôàØ!ìï¡Ó†¶ ›3¬mø-T×ÃF´ÎÈo ™\ú#i{ˆÎPÔa“¥,)/%# ¢@¥LŠÆnmßË"׺ítR3>ôO:D«,ôº C¥N“­ÑÊ"kK’x¬&Y«„d_Gà|èÝ5Ø ¤8T‚,ÐmËÿ«ÓhFÞÒ¨Ð[¡NW‘ûUk¶†¯ík¤×@¨w1È‘†`ôiˆ.Ú^ºæÂÆ-þ˘_hö*¨°ô¡¯e&®—ã2z³‘§ K² Z¤€r´”fk~¾~úÒÅ'G¿u•ðì3NäÙèŠ5­ü:ûdîskö€IŽ–HáጛXœû¤äê%øŒyøî—¸/×ÖɧBrK«ð”·UО)Џ`~€„ A6Z¿“ã^è¾tÉúiXÌá¡H-©ÓfâP/ {ëIýÔÕò |O:ÍŒ!î-Ù˜’Q'G•hÍZÁC„¬^ÏP:ËÛ¼ÞäËB‡,ÏêûtÕâô90¨ëÏO‘T>½/îþá4;7÷Òæ.º 4PÊ `šís¬æHͱþ7ÎO–‚%n(ØÍÿF"ÀkÄüT* ’$`yÄX¼Œ@sº„—ñ¯2rÈ×3l •ε­’(p¨¥A’,w}¦“N´Ù´áD¨!ÁfG”q¼‹„ÜMÀdEˆ{pä9Šy.6­A­Rä€û£ xö_ƒ§“½84­ï Xaï¹><Àaå0`†µƒ„ßC›qô\r®†›¿oEÖ˜%d³ç¹×Qeí¾‡ ¯Šù ¼ZÚ%þL(í>>¦Úõâ{$9Ì Q¸/îýdb®5ï«ÑËñ·‚kéƒîJÁ;Ò?48&Ú;`#0s—·"u½vï³»-“W ¡« 3>0¢iÄÉ­h½6è b“-Ê!q ÂãBæâ9$Ž6ø.}D?Éñž*7 â É…Ï(nJì( ©…ªU…XÎ$þ(Ô²íÜ›ø”½‰Ïg$²¢dã›ñòÊËÖ¬-Oñ½¥µ>5[æz.ÚÍ¡NB;ÿU;èöÂ!Ø«²1†Ñv)9 r4ŽfGš›‚Ò%ìÈöPt“ Q`p,ÄI«HH)ôÚ~`‰UÝaäz8ä°5;µ¡>R8á»+6w{íÖL—LÇœEyp–©¯l~€:¥MðÑršø`ò ­Dþ£¹@“R 6†S%ÇÅ'«Ü«]a'IM÷EŽ^…þU¡òÚÀjå§Ñ {CŸüeÔ¼~k½ÜfMó<óU§ÊS§Æ‰‘r,£w@bNšFSRÂiµ -.Ùïr@]Fê€>øO .Ľ‘¦‚¢üPs_™Ú*6£$‚BÜCåSÁSgãSK?Ò)<äKhlÙxÿðúzsƒYWwî×o&àá¥ÜßôïZ§“#„—ã©x"vÁ.h2ž„nÜ­üx·#\¹nB=ÁQÇ3P:Ž þúšö&«Ð+Œ‡hŸÑ§å ™~d&Ó2ŽÈ¢Ù}xøïe²€ž¼aáÜiɇŽsl7ôÍ6·Ÿ½ ª‰r<ŠžãјÓû«/ÔphÕm^·¸­bô ¯1~_Õá½.çW)xö>ñk+¼oö¬’¾£ëðL¥xŸ ¬¾Cln‚;V“&–Æ¿k•ðÑb>B€’â§É:™ݨΠˆOINV Å™2lj•y `SÙÅA™Hn_­}R•y>hF²ôhmR+³R³‘5º-Ë*/ÚwE#jÌ«'Q"jD¿Ãˆ Ö[ÕÞBnWoâ‰áÃ[¥§ƒé•AJÅöäiÚHC 4y6nmZW¸˜ 6.ö-ÝQY]\Z™›T·I#¯ª?’S Ì‘3['Ê=赪UK}çl ZÎ «˜ù$è╃{•pì\·Ô*—CýËÎç!Çš1ó¶m^ïZôTË=4#„PÜùÜ[ð3…X;AXªï~…¾•¡EÈ.3óı/46F:På D!9À6‚Bz¯:=â!*..!_ÁÇeèúÿe)Σƒ:¡Å¸,=>+bm|·µàC×·‹Üv`ƒÑL˜`´Êå5Ö¬ŠÏ#&³+œ RRƒû!;Ù®={ŽTTš ibvН:|aµ6FCÌfmËR2c¢úÃc’”ËfÉfýŸM²œnY¥†Í#™¦Ta°Q ÀâhÔ‡ìŸa©l£=¤ltذrEJ;UjšJø^%#ÏŸªKÌ+èúšºóŸ~>\–©È‹"¨‹ß fXáLJWMê])6¯»Êùô±y´ú]|i‰v;Ô¡ÝF>Ã’Y[6FFqèÝ.ÝÌ­¥í[Ýp¡ ¤eÝg`óZ£i¤à‘bï·9ÌÇ}»0¬Çfð¬n$rMÅ r¥¡49…M§OeVÀh¬p¯tÕ9€+ÓÃdIBÎOì dÔ@ðx™¿cŠ¡ÑDÏ'ð“°ãÛEÓ.z7äÏÕ%ì•çxpí¿fud˜½ñGV,éS.úâû çV%÷É ðç~dTî sIœ:%)vV˰铳SRIåU6BÉúÑaâP¾Õ&’­]å¿` ذ·’€´´bcj¦ ™ÊˆÂðÐßÍ-žG/6Ÿ9SÁ¡ùüìÊ‹Ç4…@â/:(YÝãF³Ä[óXÌOB]¥Ùq "=Q™Âùû(Ö˜Õ“ö¡)hÚ—-'².ª=ëå®*¥/Ä0ÅáÕ•¥E»>™Ýôîý.¦p/ÜçÙ‚Ý~µ¨[¶PTYÆ×Ee[ ªQÜâWâ¿à5UÉù ”ÿÓ)-&à×&t™©9Hmê.Ó´]—¼.´FÝ'„šàÐ(0ƒà9ø>d"â;‹ù¡Èžd:w sÆ Ñ1]$ÈÈwËÊ17½¼ˆäð "Õ§©žþSI#êDŠD‚kÛºÇ+ ’l¢3HzÐ=ÉïLyÚˆNT dIB[rÅšuç+^s%ÿ3;hìCû5l©t=h$–böé$¹t`w­A¾˜’Z@$¤(v0lÓßÍ¡[úpWï lVfhÔž«9PfÜSwê¡e§qsÎbU$cVí-­šŸQM$E;ÿtVáÎBÿ~äm³iü’/ŒÏUk"H¼?ð©‘@©º@]®Ò¨!‚i+ùq/¢Ó’4êT%?¦í‰,+V£Î&2Jäüº ½àÞÌ· Í5ÏžñW:– MŠOQ&¤p^C&@¬·]!¾‡á 40¨V¢×AÙ3§'¤î˜w‡ßý~Eæ…¸D¾ÙHqœ$¼oØ Ì‹lÜ«¼½‡Vš¦™èüBlrG¥h MæÅðB<OÆ®DÝÃãÑô&¡ÍÜ|).ÆïL{w4î÷5ÊG¹hØ'÷¢Áóq–`þ„Žõš|?S/BW?#“©§´Ñ£nõ‡SWä0ý¾Ï|ëo&‚›HbÄC}øð~]$p±É‘1Ä„†WÕ”VpoæŸ=•è¢Ñªþ<н@Ž/¬Ù_M¼RútÄ×ø¿üóˆ÷/$Í¢Q7D}ñ\>¤ïF •9‰c·c•·ÏG­4 ®öص9œ=P^XŽ <¶Ü MºInvÓš¥|$?BZ[»5ÜYéê±XQç⢠í?nÁ‚œõî†0yÌÎÈíà>yîÆpûÞ[À™÷lêºü|ìv}ô±µÕÜêê•°œ4µ-¨ñN 3B-ÑWåE¥Mþͪ`¾½zõVcTcP¹¼awCZ1éÛÖ € ЩÉI ˆeväÅf—d”sx>¦¤ öÞ”âïÌdx^^¥©-0ÈÙKŠÜÌòê½ýÂð9êÔÖUê4ÝÈa Ž8¸§q¿ŽûXòYÀù›•MGm¾²7þf+4 œí£<5úQòzƒÐNCEÿr/ô¯·B_ ô¡Уãí©’çSÀ×ÒtȉQ@|¢šSÎ÷Š ‚õp,úÛ˜»²ÈKëëV•<©¸}n3?`É}<œÃÿx ¬ßk<4è®›ûÜuóŒø鈦 ‰–ªß¶Ç|`|nÍî {̳ù”rWÿÛE_VËq(?Iº x&ÁÞÉ•@9äêuÙÚ(æ²HÆCIøDÒsí%áÓ‚D/­¾úu&él$x‹“Ӛ优fÏ`[!F—³”¤³éßøßIWõ)»Õ6¬lÿ£´*¤Òw[¸P@yà®Ý¥Õ®=7dÚûЈfÏÑÌjÑéKÿ¸„–^óÉh¹ž/þrZ)îc”-+Øz’̧×Nž¿ÞÓãé›Ó9”9*ÚdñÕêØDÎËÁ·Æµy"imâi“N?1÷v€<'ùXìµU‰»«=ʳ·ÃvfþºyÓüf§YÍ­<©º¤nPg'€êõœºÑ<§fh´9€.µî„qÛ%ÏVÂï>Eäí­‚|á×|°90nýº˜„æ{ä±NÊ+h“$ÞBÁýfÑB™Z›”NôVêõsÙ™µhËáé§Š¢——i£áY¢ÎV@ „Gǽ<÷ñ!4[ÿ×u%Ò¡Noêê}éÔ­-Ži±#9‚3‹É¨Q×1iŠ5òŒ‡Úçç­/Œo讋 w}Cwø9zoÌFÜÅ€8¾÷¿ÑêÝi<1˜ÜѾE’"NW Y°—A7è:8`f9iÇè ô1 K#ÂÒ¾'ûMXý¥obÒLñê0ÓT2Ÿš6ˆM~fs}R܈LÇAW—” R¦(ñ’¶0väµÊ|ó„Zs Dzª›1+\~YP„îhgÛ+YFDš*Š@›––‚ù¯dùU5ŸªØÎé;qsj_ ¹%®ÿC]ºŒòJU‰Ô¨6WžÌǨSSÒÉ„»ë,Tš#µPˆTárvú(ƒ\Oý‡2,o³ÃSx…ZGŒî//>qR“r=ÐÆ6“L¯‹Ëƒ|Ðf¤æ¡|š ÍlKo?hÓ~”a§#Gþ~ñ™}ÙMDeó*bþƒ[µá"4ŸìH“LŠ“%¸¤ä%—0A’íØ•Ô«®0ëb^nFúm2C3ÈM‚-ðÄ ¸ÿv,‡¡6q°ùàA8Í£á”îTæÉÔòüû/ þÈA–%LæeÂLZmêiµ-;ŠTGÅü&ô¾Ü["Ê¢²—ìý´ñÈq¸Â<žxfüð™vã"µ›[6r9±A†+ý¦8ÂfàO‹~A–ßßû•›~’‚ÃÖ ö^¸×]Ù¦]É»¡ˆ9¹åúKkæqemR©Ýœ53¦Ì»pïlí¥¯q¨ç¬êˆC¾°ÜÆlGÃãûå ðM0ì1Xµ<*{„z=²fŸŸ F})EzL2qÕúÈÍ[8×Í!.0‡Á½¿‰,Î7·œ-ç¼i3xÓÊNÚÝÜþÌš"cpAh”oüÖE']¿BR". où»¥Ó·"ªÆZ›Àçbd#…#p•5VÝ“WOš[ݶ¢Í ËP¹Þ©K7õë(Ô—Èÿ¥èÁK1ZÅ÷ÖWøùûùU×ÔTTÔpø¶ÅŸŽµÏ CNÿeÑ5)Ÿ9yE4¤é4Àehr´™¤ÎZb—˜@t¹ŠILKNËùô.b¸örtÔ#¬=Òéê­N_8oøÙ€f^@d =~´Øä'͉ÏRÄ%%&*¹u Ì…a™aÕñˆ¢°o`fÏŸ†;ãîŸÎ¼yãL+²È‡CaÇå—=Ž&5Àçp̘žªQËÚœþgBùâ ¹þúÿ‡Oì¼€g¥aå>‘A¡Ae!UÆbC9‡ôýÓ1b¿; ÍñÃø*)Cfƒ1xj^4’# É1eÙ>G ›½hÜ^ÑiÓXaŒx.-€h®íIt„‡—@œÿNRP¥r¼Ú‚œÛɵ}'ÙÙ~._Îÿ É壆Ÿ, F„–êÅÈ• =|`Ëkx”æg§á¢ÕjÐF'{'Î[ºLû;Hî}Žº³}xî%r }ªGsôø¥•;ª<ãã”JN’¢n’ŸZ›ñéÅ ò\¡%蘌¤Ô$ÅôÙ¸‹}Åæ}õÅU•ZÝ÷¿ùZûÆG†½Ú.zvVŒîãD)ayíŽ"ÜYy£•€Æš»ÍE=Q.û$ë”qbv·wŠÅbB#³rp÷SØòîùà£l`ÒSuòº;Š"·oA:)ÜV î«¥=ê9år0Êäd¥ RJ"åOGœÁ““æ<ۃ̽°UL{À”©ÉéÙ>AìÇÜ1Ô)‰áþŸ7׈þ^`=w‚HÂz‹æüó»iοÚ`w¡„võ7;lÖRÇòmÿ1ß,A…*©½•Jlšg^…†ø½ ¥ÞZ†Î™óÇmh¢âëP¶+5ý‡Ž˜KfYº²]!•e¹W(]{ÑàZT'ɇ’ðpˆ Õá::úu¡ ò—$"JK¡$ŸCu¨–î(œ7¯íÛÚ ¼–CC¯ÑU§Ì”v]%¦±U|”ZÀ°MŠ:¢…Ý ²”°mÏì½°«!.¤”sMQúC³½2¦¤¼¼p×Ç«ZìÆá®k±ˆÃ’ÛÅ:$þ]ŽÜBéƒ1®r\þOjí-¡Å¤5ÒKÁÍn¯ º ?=;‡Ó¾ï¿Üy£R©VC²¹ŠsïÜA4÷¶[ÉÆP³[žÄ©'o9õí©Lµ&YkãïJ4;3‹Ëÿ¹žÿtÎr;?GŠ· Áèõíç?ãØ­YPÕññÉQq‘™;‹”L‡7º½¯Æì¡®{ÅhÖI_íÄï¸=ùmÌ(7á•Ì2' ÙŸå b1ªAöÒ³¸x%M‹2õ"à“…±,SªoK¥_“k;9žø37 «†ö?Í[‹yûR‹NŽ‹Sqø»ßæ&Å@’ÀNYñ9ù©ÙÙ:}÷jn™çÀ,¢Bõ&™^ÔteÞó[Ð )ÜMºëõÙ¦fº€=Ì tç½ i¼sR'4ÏÞ7óF¸ >/Ûÿ}íÕ´Ûp‡™ž+%Ú~¡bÉÎ1¾›a+¬0Dþ 8ác¸W2O– ®7³ PW"KFd;ÂlX*è*’²Fã%Ò›>óÓú½é ªœF9–®m·lÉ$ðÖà¥ä>Ç+™¶"c'pÞÂræ!ì%Ÿ‡æ×QäN·žÜB ~ùÑhuô—§¿À7Öì+Þ Í•I’|ãv&&,&£ƒI^¾@ãwî$<·A’ wqli÷îDÇ£ +ªÏm®Œ¬ôJHµŠ+¿|²ñ,0ßì›9CÎ^†÷Ö½¿j^…·ËÂ^2˜ái‰Y‘]G RŽºüxÁ B㟠q¶¾\z{pÙ—Ug¯‘}9éôèa³ígo×GÔKõ5G7n3¹’×Ló©Ð ±)+å¾¶©‚Ô êà”DHP'ª!ŽQd@·_òeã‘xÀ?ç-sŠ>ö’×'õ°‡i(õ öŽvÿíb$B=¾ùæ'ÎUÔÏȇ’°ž¸.üCÊ ©q8¿1=*^%¼šÅçÚ¶Yú ’É®ˎ fÖ㤶À óÌÚ±_{HÏ7J±J‚T|gK³¯¨ÓÓÑ÷Ð:=²¾÷áSÿê0½.Üêè³°Ö©Ï´ÕšíÓ‹Ä|“uñS¶Dyyrh Í2eÊÒºÄÚþ¨çµoòÒUi‰r¶3 ‚$UxüúðEÀ°(7Ø”±±,A—,¼ g÷Œˆƒ„(9>BGBB~†V—žÊå6žüŽƒaSfd¡‡v+¬/°v Þ급 O'v|̬ÖéÔ9ýëŠ ; Û£½7ÉÙ2Ù”«£b~úˆ!õ¿2+3çÿ·âpþ§9H$ùAå÷¾Ù+(xd÷ÈŸ(ø6‚™-RÄNü‹z¬ÝÎUÐ(õj8VѢܦçvºÁfŸŠúÂ]YMçœOÇ}p,Ÿ1ó¿•³§øûïL>A#… °n‡§¯ý¦¤X ¾ç”‘‡à.3·kŸ?*<ËŒ\±¬…õ‡/ìYQš^„t„ àŠØÄ˜zJ¼v;®pvONâüÓ€ƒ™5˜ú· Óã߬li#!†n=|èÀ_¯lql4J.,6”š ªxU ÄC,ƒi¼ YÒO¾l¹|¤:¸·ÆmÄ>®Ó‹ÌMŸüˆMÞ¢²­ªA í$fc&±¿¥°In;#¹z—ÒuÀŒÅ ŸýÄÀuø€©¿tkJ|0„ChnTqƒû ”B?ØôqE}’×#TÏÏ+B~9éz‰±ËÕ®\‹U«œ»u†n]õ­± ­Vw¾[7C³.]›®ÓéÒÒS»u§¨ÿ …÷eýendstream endobj 185 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1661 >> stream xœU’{LTgÆÏsÎQa„†›xδ©€µ€·B»µEQjc(*¥v, BÐî3#r)88ðŒ€ ·*¢#AµÔZ«»®–hIÛ4®šµ]÷ÖyùLÜcšm²ù’/ùÞ?¾çy~Ï+£<Ü(™L¶8þÃDÃA~ÕÊðXÃÌ—£eâ™ì&.u‡ŠùÛó rðtOé`zP‰y>˜º·xSî2Ùνú†\s~öþ¬BÍê•+ׄ‡K÷Ûšt³&6B³E—‘c0ädktúLÍ–ˆ#4 £4ÌÖ„ôšô½Yºû4†}šä½©š”¤¸Ä$ÍæÄ­)Û’–Gü¿§ß_EynÈ/(Ô¥gD¿µêÍ(Šz•J¢’©*–ÚHm¢¨@JIùQþ”—”ò  ©oe&Ùu·$·Ûî﹟÷ˆò(“/•à9Å ÷½¹"ˆŸeó·ý„×Ò4/¯8U‡ ÐG«Ž˜‰íù?,‡­U1Àki\`+pÞ(0°Zùúã—ÐKŽNú: ‘¿¡¥‡í¿À8ŒÂC²²ä;<¢&&i<+W¼Íu¼Ôû— Q>C PQ‚ U˜˜ z¨/§ôïŒËø(¾C9£š%¨’k™ÈäÉ÷µ *íÃp\’ðZÜÈÜù ÿÓ!}ú€±¿À9ÊIß_k§,9.qÉ€rø.–ßõW™Ä5¨Qøq(ëtfNã»­û[Z@`o<®{ÃúäÎvØVí¶zøï™.h2­S&—ך՘ìAÄ?£;·û?š5lù®Ôe¹WÛØõ‘PôJÞìx9WÝV ¥À€¥'2Æ•Ž:8áäTÖS“9_B7žÅÀ^2ùå[”e_˜dTþŠ´VÀ…‚¿ê©¨Doõem*³9§À°nöpØ/5CB0IËÔ†î ³²û%.?’>Zó—¢»÷/^åâ‹ë €[Ï`¸KÙ‡ 0i•V¼Ô«î)ƒ2.Á­ÐÃbóhÓ-²<‘(Ž®I2õp^8cê°Öq§lǽ7¤‹á³™MV⨲ŒUU¬@oóŸ¿Æ.œäTëÀîÿpSt÷qèåÉndÔªs+"ËòS3†&ÂÕm—ì·²‡”Å%úºpûË~i@_ôF_U®ø Ôþ3Yû‘ÞXÀá$Câ~/øùSiïêèlïbU·ªŽ}žòh .ÿõ1ò<ñõ-$çeêÓwWä@dNz‚Åz¦ohªXTñŠ{‰õE°„U\<ªF_@Ÿ6ôY…>þª'b>.P·•§æÚš²j./þcS*°„ ¼è‡ê¡«µ•W%›KjŠ+ƒþGça·s*'Ù¼0„%?¿uY¯¿m.ûÐgÀ(ÃôqgæÔd]$´¡´¾¸¾¶©¦™ÕÒYÄ!èæû­­õu-?@‡äø]Ú\d*6­ É alÜhlþÈM20eŸrMr~54†‘øA@s ÔÁ+)VŒcäˆ4"›zpëF>p{p«Šv¾ã:;ר¯¼HhÂÇ­[‘Ö?—ÆEïKK„ ,ñB*Õ¸ö‡‡èÆipV »ò²ÓôäõŸJš 0ÈÞyìýéRúfÎù|‘::¼$qyâss—LJº9\3‘¾>”\€ Z„›Rìr\ä.Vú D#Î2'¡9¯¢ŽTrï%¾ÅÀµÝt;ÌØ¾êbŸ·^ËLØŸÁçÒyÖßÒ|Áøšë1z•W1(ƒá«þª)± w«‘Y÷„„éwXs´0§«[j%v!EùgŽš–rk-­à‹vXö@ ìèÊkª´×Ú¬À–BE O.2f(;ÙZWÌÁLN7ûÖ¼ ¡Ä³ ¾áªŽW]sÕõ÷Ž]Þs¢àðÎÊ„¨¹(iW×þý1*¸ß`ƒÞÑ®)ô>5¢œB^n“Fb®S£&d–xqªŠ t1lH;Ç'z…i××Àª¾è„AkOáþjs.d³{ ##½§†oè¾y…“·ß$ ëšÞ{ŸbîÜ‘Rñûƒx\§ !;sGÚ«¸’˜…N}¦…™_`}(§¨h·5á'ÎæZXˆô"n¡G²Ásx.:g·Ûluõ6‡c𺧧Ðx¡µ±Å~LÚ8»§Eýùe2Nendstream endobj 186 0 obj << /Filter /FlateDecode /Length 250 >> stream xœ]‘½rà Çwž‚70¶!¤wKºdh¯×ö‹C0Gœ¡o_IN:tŽH}0œÎ¯çZ69|ô5}Á&s©K‡Ûzï d„K©bœäRÒö öéšNo¡}ÿ4yç÷p…ásš4_{RZ¸µ ‡zá”ò.g/ .ÿžÆyψù:MžM)ôˆÑ0j£ws`<"Î ñ$œ½Ó/„xBŒÞÅ ª–2¤lPÊp°!)CÁ‘‘ƒ³gCľÝ•-×=²ÅºdJYªk±Ëm §!ŸÓм´¹ç¢dº÷uãõòúhk¥Âß´µQ–D¿Î{ºendstream endobj 187 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6722 >> stream xœyX×úþ,evDlLFŠf–Øc‹=j,€Š‚bl¨ (½ÃÂÒ–Þ½÷ÞA‚Š[°,jâZ¯ÞÄÜD1š¦ÉMòÿ&9äyþgwi)7ϲpfΞó¯¼ïûÍŠ(-J$MØbcãçë·pÁ<[·`ïCª‹3„I"a²–ð¶v2Žþj­‹ôµ‘¾ÎåÉSß66M€£ãÀq<¥#ívó‹Zççèáæ.5]´`ÁâyóÈë Sç0S‹ù¦Ö‡{ùÉ‚¼µÚ@½GYR ¨ÔBjeE-¦¬©%Ôfj)µ…ZFÙP[)#ʘҦL¨I”.ESoS<%¡FQzÔhj¥O¡ÆRã(3j<52 P,õåDqÔDÊP”Fm%!£t¨(JUh½­å¨uGÛLû’Ž¡N¢®XWªû‚–Ò¿‹÷‰Ÿ1;™ªQô¨j½wõÎŒ¶}V_OÿØzÌ•±ÓÆV›8N6îñøµã«&Œ78ÏNf¯¿eþV97—ËâîOŒ˜øÀp‡a…‘¡Ñc-ã*ãW&sL‚LÎMÒš”;I9Ùx²ídÙäâÉ&¿y{åÛowòsùKcIŠäwS¹i/´jâ'…ðŽLÔÛ¾…mÚBb ‡Š“ ¢³3ƒQ$Âc„*£¸còtoä‹"Pœ Ó_m$GR”˜“˜‹¢ŸTÎÿHWÔ¡–Vr“Ôþ¤ ËèÚ©ºn2äíS‡*$?Òå ¨E‚WÃÑÃ'ºê¡Wa¯0øN öJCöŒßµ¢Þ "éöœZµÉÑ#4”g•m¨ô0oAG’åP‰ä îuÁbº„¬®z§Ä 6Ðló›‡Ç.^.ñÛÆcÙ±z^£jÞ<õ<‰zgA®0hl6»ÁÆœü·l ÙB±!EòR¿  RݺTµ>¹*™JG"ïZT+Yg¬ºUµ¨µ%Ps+€Üj@¥’Zôq06ÆåºÁ4[D,¨'×Ù”ŸÈP½X’J^Â.]6å5&¯qÒà9?©7Ó ! pT|¥„Hå>µ‡Bà)÷Ý^Yy«æô%ÔË<Øúkó8„–«6¯Ge’Æ~¹ÿç¤Ñ¬toô=‘,„.ÎÙËj6? aÍ>þ¢ÆÆSRsG¶/á1 !ÀÓ¬Î-ŽªýðX!ºª„z¥¶àÞL˜ÿë`ù³ðÌ~3´@ë›oÁ€·ÌåæÛ˜™›ÛŠí5ás®Ð•¨ÆÃ…»ðþÍÎ ¶Ä;:Óçbÿz6hÝ9ÛY[-Á^#bö&>x‘0‘³uX±ÂÜúî‹—w•Ÿ>:³ÆJs V€“ •g”û‰Òº¸>±f«o‰«  ÅÎ(¢ã(ª©ä_ Ü‹pæ±!8Ñl¤î¢CQðQU,‰§Z <øþQÃEÙÒ/÷öƒ ¡Y­öÜü6É ‚yJÐV¢/ ÙB„0š«Š>¹|Ïæ°-öüQ1ûX½"ÖÎÐÏpïÊá” ÃÖVØ´¯¯ cøô rY=bjªÊ6óTýˆ~TÂdr\m!JHä ž0lb{¿ÜsDàæ§þnð„Éôßúb2¹•9ÂCu|_ mÁ &pè'ÌU{eo,2òÍÚX„Ž3 m­ß|^âɧ‡g„·ÔƒR]AÉò„TÞ©Ú …’P ]áöÞÏá/å’îøO£Ð.ÆÕÕsÁ~»Â'|RErabTá’ÌG À–ü²ôÎ"¾ÛírjÉæEmŸŸ×),VÀi…è˜Èé kQ!.=ìÌ“t4ÖqØ¿ 1+×EÊ|Þ§ÿ}ÒqSŠ©rIFxNtÃk6$)Æ#’wo9\zˆ©? OÂVxËOØF_=ÙR[% F2¯`•¸Ž ö¾Ý!ðDb¾ˆ˜± ¸ Tíî™Î§ÙØÆJ³]ª—@,¹/JeåŠ%vQáösœBϹãöàág§úøè-z¦w²~Z‹¦‚yýp$Gž¹;bwpüãÝ!î¨ï—þ„!àŽCé?äæöªä6€˜o©´„ù†l¤ßªò¸œw„§´:íþÀ­4Û½pe´×*ÔÞÆC­ø¯3òé9Ê ]]M<»ß+½ULz@—Õkü:ömÈS‚¨õql¸.ê—cjÄøØ–‡z Qì} {µ…ašÆ…xÔðQ›h,°é6pܨaWµÐ ƯŠ<ªP52®Dµ¨°ÄðµQË’ÿ¢2Ø÷5ìÓ²…é\K 㱘 R“}¥¤›Þ‹/ê¦ÑÉ Qg£»Ân¦º£XR1Á) ‡1Ÿ,cÒèÝpQ·[£‚¤(T2øöj²É Ü—%ÍŒ<ŒO Ìü Eýóô’Ì&ÎÞ݉GeÅ…W "Ô‰2˲jn@ŸQKõ`Š’èÝS\PBAÅP¡ŒDŽð䡨ìÌx¼Å÷vþO;8YøTGÔ•6åw¦ó(/=½*£$½å#æ_—¼×Kð†UÕóÿÀýe~)!Qµ‡Š+I~T’…®Lä=âác/.†Î~¹ëðHЧ)‡*¶‚“Bا0h€½xÓS°„½†¬Éÿ*»uØ#Ê51,ÁÛ8NªŒ«N¨œ Fõ_ƒ­4LÁ¿fÅ¢„Œ |?*a|íÝR#Ó”_,aÍêÃ*yö”xXÀ¡£‡»ßœ£Â, ¼'ìÓmg*.{ „ >mÁD\“/JŒˆM•%ð‰Q¡ûͳlÝݯÎ7‘ ŸT}ÅIÒÝ+åuˆ©«.o~09b³mxòb¬ÿõt0ÉÑï˲i…ÊW{ö|Ú“ÉC¶VÈ"Ù‚¼xA.nS$»T•,¼aÞdy\À&ìhíç›èKŠ?öÜb(J͉­ DrÄØ©=%a›Iõ·ñýr±—*kØl•3ø§šÓ°ŸhH¸…í³¢ò¤Å.Ù 9ñE E¨•äå•dæ|9E—™ôþZµ„¦‹ˆ}:äu!ˆº•ÐEÒÀ¯‹»6,™\pnCwuUz&*7>ŒByüŠöŒ÷” „ÈãÛ¸;D––‚Â=jP%/Œ£krP*e1èŽ*¥G’HÔ0‰9C"‹hÏf粃„Esˆ:”°™xü‹Ù¿ôœllnâÙ­nH~‚  <ÞçØ;ÇåkÖo»×÷íÝÛwouÛÙ§ù«é!Ba°‡xg$+ú¥Ñx‹Ý™éŒ7Ž Sa~Á—‚_: [úSŠÝËÒqKQæ1‰S/N2tã_7à-…ë/H²°ø”Ð>xÏÎ8?d†Ì.D|ÉÀEººu½ù{<ž3“°xì3€£s/êùõ0…ÕtɃëÝE¤] ÌŸÆ õ)=Jh$Qs‡kœ iÂ6Ø&ÄŸÂ'«ýÁ¶Ô4ÂIÞ2ŸC6h}Ìλ€Eh1 ¬Ž¾}=C¡^t§ðlñõÖ¢§èêˆ+µ/ÚO,ÛÊ ¦L ±EùÝ3mÁJ¸ÂÝøE|°æÀ~×ÌaÕòî1‚zë†)zôÂØÕ<öýäÔÂ'ç騪-kÐ8[¢ÆºTr©`ƽ2Å<–þ/á Üð>°…èd`¼xE n×AË9ü;ò ýí)Ë]jP »æW?ºkoøÜ0h¾ª´UÂ&eÀµdåŽk†ìxJÈŒ¸ÚÐÖ1ixV*Œp¯<0iÞz³eË=KC%¬ˆŠ‰ˆ ö1Aî%ùÑuÆ›;¢1&KÞ oÁ[?÷~Á³æ¦¨3ìžƨÜC5 ³ŽGQ(>#%¢è†S’VƒLPVFIVAfê1i7b^>¸ß'a™¡–¸æð¦ê¢º¬âôÿÚ„Ä”×5Kð&¬ÍÙ:9íÞyèÜež½}õôéKWNîßÅ…1çdvpæL³S§+òÛÚªøú²|ô1} ‹–”õA±'Žýû#°õo¸DþOFþÏE4½‰­VÊCÊ*":¾*_qm¤‘&ŠØ'Ou ÷Cg/ßDyqµ|t³´Z^Ȱ?ÜY©è2ùríS¬Çã ÿ7Ùêù„HéÔæÇ°¿Õ„ àC&ÈùTz•û4EEÌͺ‘®þË98îXÀ¯Ïû4Û÷òôö}CÈ÷ðx¼± Vâàþ)ƒ¢O‘Ùº¸‘…ç5Z‚]€§5\SpŸ_p°Ÿ_MpSSM:¹ÕEjpé¶µòœ$J—Û†¬·à +9tËídt±ó ÿÜÕ++Œ¹t sÌÅîó÷@¯tžwŸ\˜X5Ø iº¨¤pŸxÞ¹cg‘#Dm³UË6µú™V‘VžVá5ÐPa#uGU“SÒ–ÏŸðQDÜ"¹ÿ¼o€» Pú«¼q¾ŒÞl þðtœ8ÁR“ ‡*&öÏ£Q8r p÷wñ&¢ÏEgDfŽÈ@¹L“´_=kŠCné!eYÙÙ9¨œ© « ”…ûxU¬'lgD*f8ð«sö;m—¯ÜõÉÃg÷zîŸj’ÊÊx–i;’ºÞD•Cd–LÁ~˜  O®Ó§ÁË%ÐÛÛµ% íX}k+¯ëüåyçµ[ ¥Ñ-•8_Ë¡n¿×xz#GÄíÉäe{bã“¢QC@¦±º®¨ó±ý}¬WÀwª!ÒFð.b¬µy-2GA9˜‚UÞ Ž;æ8×D^ÌÉ*ÈCµLSP¹,Î-ùÀòkk€‰á]U¸ØÚ‚êËøcb[yñKt—ÁQ°³-Øõ!ºˆÎŸ?Ñ[ÀÀš~CíqÜ¿9†_ñÇQ§Ñ•“—÷”^Hé…©½¢ŽžÞž_ȯ6¸W¹'Gzö9¸ì0[}Üî|÷±kx}ÍUD–Ë‚B£“xÜðû†äØÔ$”`ZQY—[Q˜ÅC㯳 2²Q®ñ¥þ_¸‡®×÷îuÝnnÞ¹ýÂ…ÎëyÜ'äqN¡~ÑÑ¡M§»*ZŠ‹+|œyhïW]õ'WOŸ®l,*ªôwRySpÿŠC•Qy1¹øXy)Ì-ÎC•Ƶ¡Eq)iqr?Ňã£âQ¨1"3 àKìbT—™FÚÿ²Ê¢ZuZî¾ûô®H ¸W¢Ù É]‘»{;*’ÀotQ;êà¹:ž(šÇ¿ÑÑžä^§ W^Ó%äžÚ¸Î¡âøÂØ\ü%¸ÉóSÒã- %W$p[aò“ 6FZ]–Ÿ™ž_ÂÃS8œŸ£6[eŠ9)x«*MÈ +ÂãÿsŒè 7Ç@&_•æf‘¾#/©*ÀÄF8>»°c/Ùâ‘i䲫òÔ'úP© ?«L‚Ñ^¸_ØõÀ¬'1‰²øÈ„ì ,Ç¢R¼”(Š™®X‚'-ˆ$ɇ"™øY}3$µ¯r1„}¬-ìO•G秦–ol(êºQQnq.ªd²Póa_—Ñþ1j6ÎGížžÈ3Î7Ý*#€ÇÔMy~*J@Ʋ¨°ÈÐÂÄbâÑvLmNˆJD2ãdä{‚‡ñ÷SÒ¬¯qòloGíùÍi§6ð ת»‡#2PbªŠ+JUçZ®øu*¡€@â$Ù®PœûëT˜;BŠ[Ñž q^’ß7‹½sbò`5þPwW²»ÚB8ñL‡»*šS`*]„:ÜÝ‘;MÅSÄÑä_÷Uä§à©t4rïè@ElºŠ®0->Áb¬¿aŸ¥g½¼JµaIbAJ&ßÚzOõHòÎ7GŸHwÿ`‰W@`ª[ªmr$B¾ŒJñgi¶àõÅM;¶ÚmYpxMá¹IvvnªbêB«¥Á‘^‹¾ÛA8Ìð‹—¯Ôøh ϸ²È²ˆ˜Ä¤ÄÞÇ/ BŽbQ|~TQT±¬Úù#¿i¸,Ò7…1¥e…9Ù9¹|KSCY * LqtqTUÈQÔˆšÊjË«J›kPÅ@M)„·IxªAˆ‡}š¯†Ÿéö„<ÞBIiQ2Š3Š‹B©¤<óZyÈÆ”͈–gÓpåÚõdàÃ0‹VÒ?êj|Ûª€¥ Ñs%¤‘|ò[î‡5ßc=w§„`B¶0â#ˆMýãJq’¶Udeäñm]×H4ÏXX°~Ûû~›ó>ò#ÎËË%Îk––…DúÄYþŸ  ^¿mMƒZ½ Ó +ˆÄ¸·þßüïÝ$¢çˆÈØÉ½¸kíÞîìÈ—À;_?}ŽŽ¢²˜ì$ò•HœT!k¨¯*oév»2›ÔŽ ‘"Ž8t,^óì }ÿÐ'-ýR+ÛuÖGº2>¶.£Žè³ÞþõÙåMæj¨ø1ÎÉ ÀçùÚ ÙƒpƒhêÔš°J)b’hiZxxª”a³Ñ–|ëÌÍéAÉ®ÇÓ”ÑQ-)³¦—3?ʾœž—N‚ÈŒ)ÖÂê¬BZ¡§ÍëéØûéBú£•夫¾²«²rôõ;ª3²rÓ+Ó ®´表ÿÛêS°endstream endobj 188 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4732 >> stream xœ­˜ XSgÖÇoŒÄKµÚbo5]îeԶتãÒ±v±Õ*Õº""j•b d!$d9IÈa_"„%aÜ—R׫mu\jWç™Î|ÓeÞd.ß8o§v¾v>g¾ïáÂ]Þ÷œßùŸÿ{8Äøq‡ÃytÝúMâ¤HÑ‚ùsßN‹LD{?|Öý$ÇýÔ8÷ÓÜT6ò¯yž˜Ä…IãO<5õCgEÙSPÐ#—à ‹O^!NÎNÄ'¤ù/œ?ÑܹøçËþQÙþoÎó_-gî ü#E1þkæ­Ÿç¿Aœ‰?øˆEþQ± ‘‰qþâ8ÿͱ[ýCC7…ø¯Ú2{Þ?/ë°\ô¦xEòʔԷö¤¥¿±&3rmTvôú˜Ø ¸àø ›!‰I¯Ì™; fAÄL"˜˜El$ž!6!ÄsÄf"”ØB9Ü£¨«pä½ÿ,†JÝà¡hšð“ˆnS‹_†åÑìtÞd,î°@+ðÑC¼›%«™ìeêùWg²ãhö^"-fc‰ÞÌ\Dm>hïkóoR˜Éw9wŸ -w•^äºÍÈIý>øÂ‹ì#,ÅÎ`Ÿuvý ô¢ð[Ÿ£»)ˆHŸ% mÞºs1qÎK‡ˆë:Îtž>ØÒ 䡦]Áø¹ãΉt§g®“ƒž¿Íõñ,¥ôEz3‘ +É%È èuË#.l¬ >Å ÙtVÆ.ùË,D£0ÄA»â« UJPh˜­ìRöѵK€|iÑI4ãLZp c†¾újàc èxáÅ”B!hoBmF}U=º-v‹Í¥&è®Û‚º©¿ Ú/ѲÁ¥©„ $J1Ãò†w*š¿C«4Z1îMŒ Ú4øJ3ƽ4¤[Á\b¶8Š*™ô¬%§!ê(NMDh6ÃNaWS²ÔˆÀ­@nÌ¿e5ê+sm´¶¹zøý%›„‘ÉìDÑZf²G N3³ú×Sé^C¡™¯ü™¥höüƒbrЇ6¢$@éÌ’. ‚ElÐâç¶mZù*³îÃÑîÃÅí=ç¼ß]ÝÉNc&»#~Œ"†yˆë^ή îmÑb0éÍ4zÚ݇·PÀ/V4òø±„–5§´o’å²±sØg^éít461™KõùšãéâzÂ1ÑP@Çëe™“†þ4­Cs÷Ö ½û¾™o՗衊´¨MÊŒT ¤Ñ kÄëVåA–¼XgbÊu¥… …ìœ\Iû=;0ý*ºduY­gq=CµMiPÆFi †‰†(cÌèÿº³bîê5B7Ó½lv,ج–)!s#X‹ÍV—©šiG³ƒÍë2ç‚7a¬.Ï[hÞZêè6B'Ý‚-r3Öw+Öó{µ„âöqЄwQ26*»ÆŒJ¬ C( /¢Ö{M³®É×é4t€B¦“ë ‹//òƒe¾F#:`˜Ñiò£ –ÿÒ¾U¢ñÈ=-Ûý¶#uwÝ•ýÅí͈ÇXêÁPQÛÜÓÕÖäýÖã.ç #ÁFÚÑ2ïÂüþx°N›ú÷" õ›Ö› ÿ¬x”¢è `àÿ_¥nÀY_VFDz//ßävi— ô‹žqšJ¡’¬“زé©&YŒ*$¬Wpâ»/¿ýcÃhQ×ÕþQy‹ëNøŽ2)l µN—¯ —Ï]¨Î24µðXã÷ŽƒLÇùÃíýXúµQá*ˆÀxJl’½õö®Ckï¹Þ€÷Þþ =vãO¸/påÎ1*ßÿëk\Ï5|6Ë9€uTg»îã œrö1^:h@žÍ~=|fzˆ{Pk×Âluù?gà.•†ÄÊvjù ¹.ÛëŒZÚŒàÄö²}Ä^bÌJ•z³É u@Á\T‰øî¦ézÞéáo 9 ¬~˜,f›Û×ÃÁ³¿>ûOävbúº˜.Lnç(¹÷Ûÿ ,®_–‚ s=ƒfº‡Çl^®3¹1oúDbuÆ¿åüFŸlG¯âÌó. Â®ŸÏüùo»»Jú-L7¯>0¬¹ê‚ó`!âº×Î`g>Ë.8¸ø÷£¹Ž@VêWì˰›Îàõ¡%ßK€ìÙ›,ðjÿßœDºÃ³¤ƒ¾pÇÞâzšÝÁZòÌX?6’fóÙ\ö…;þè)´Å¡t¤¢ï£`Q<Ëß2 Ë]¼ Èù!×ÑÄräMfŽÝùòÃÛ@~r)ˆ}Â›Š…NoÙÕ\sg9ÑÜOêìœÔ›è 6´[=S©¾¨½Q³SÙÇJ:ƒçó¶¢Lí æ ïÍa_Ùúü(U_!È ‹‡|È2Ê+ZLåõPKÚ³K$©©™ ;û2:¿ëEq¬(¬Ïu^UÉ©Ky.´ØÚi;Ö|+ÔiË$I…Ò=I¦WçW64Ô¶{QãÈ€ ËÎâ3Éãø+r»¨›«FN®ÇàHò¯„ÓëlË™ÓHïƒ~ÍC~èÉ?#_fQ#™¹³cw%Ä„ga:üxC¨qì„û)ïâ‘”µ#ç¬SkíîÞêÇð>´ŽB÷š¢ ܬŠFš•,M!RÓÒæä¦üñì6€ýÕâ«®éë--e2^’…«2Ä~ôŽhìò ’mµÖÒ:ÜXÊ jR²¥1ÑÙ7¿ÿèýjh Ã}lÃRŒh¨ö#ÛÁä[w€i8¾¿oéTñK F#õE…Ýrç“4Åînösës;¾Éõ¬ÕQ–B“J¡U)µtZ`¸8°§Bû%zùzZEþRííVK­ÓŠ@Jn®‹Dd/ ºØŽÛÅêÙß<£u©.¯rsä¦í£ÒPȬlM»—à\zá špúë['.ùÕ{¯°V2¼Ú#Êq—'AO‡ëÀþãðNŠd:Åÿ…[#3׃Ï\V'$$%Ò¢þT 6`ø¶N«“ãKåŹ5ueU6#݇– \Š;ô†jW­«ïìÅÿuàòI ‘nǨ³££N?w6â´}1mj•'þ+Ê¢5çåé e:'$I˜d’¦Ñå0ÖŒq¯i?ÔÁÉ„}[«ÑŒŽ¡Ûð!yõ ì£4[õ tûLM(0àOþƒoï‹éþ%¾Ï£JDðö•¬j ¤!Œ|‡Z YäÔÞå§…go¶ü`¥ç¸ã(P©ç…†&‰ÂÓVù,ßei±,¾Åà‚ Ï}sÇÄb$A?üà‡;yàÄ´©£›?Í(ùœ!…Tßè(k-ëdΡ7Jš x#ü± qsììÂûrq«ã둾\˜¶G.Rf1IK⤱j,3ü˜ú¨£wZÑóEôTÿFwU—kO …é•Í.—ÓENèÒžùM´}í¥؎ (hVö¦¸R2㜦,Sbq¡AP‘ã‚^òúǟߺӴjyŠN©N§uRŸg7GQôè ˆïêtòzgHÌ+õ™¸‘La9ø{B˜}Ë`2cÖØUêCÒéGs­šªl›Ô–ñäü¥Ï-\¶¬ã»½¦F£ Û[¨dZoHÂØX|`Ö`W¦2©Í½¡ÄJÛJ®’²ÎÐs¹GÄêÃEO ?aâ®GØCíãÜÁ§ÐֱЪ PC+Ss³"ÅÀÿú"ûè0na…™ËßÒw°«¶±¡Œ®j/?Fl̹ NsÏȬÓó€³Î›kw†ïÚ•D+.„Õì„ Ø¶[ðÎÿëÜóJëš÷ ^r¶æ&+EÚf [öïÜô˵ëe~@bL´âˆgÚÔ[(õ,e—Ô‰…»“v§Tç8Úœ­-ôïÐ'Ô^I­˜ž,H&¦Uf6µ9]Î{=tY ýƒŸÁ墴T«Ô!ŒNM ÷æ×ÕVÚŠLtîëákwD˰Ã5©1*-Õh V߉Þ5Äž"PÐIΧÈÌÅõ´2˜Ív("½Ãš ãebO¯ÎÓª ³¼ +TÓh3¯°#.%ïíÀûj÷gW>9Ýî^aC{ •vžý¡“釯oÞ¼k’/Lšh7bìñWwU‘yÒ¤®*ü»ÅP®7Õ¸ë&=L<hêendstream endobj 189 0 obj << /Filter /FlateDecode /Length 245 >> stream xœ]‘Ánƒ0 †ïyм i%äKwéaÕ´íB0U QJ}ûÙfì°Ãgéÿ¥ØTçËÛ%ÅÕVe _´Ú9¦©Ðcy–@v¤[L¦nìÃúkZÃÝgSß}þ~e² yó«¿SõÙÀQ?ÕÛPX&zd¨øt#3à0Ïh(MÿZu»MŒóq€À´cf¨;TXGQ‡ ëÄÚrXhë¡A€+ë Ök×¢À••;v;éöT¸²ö¨°ö¢콪„¼ œ„¿ÈU.¹o#ûÊåöCÙð,…ÒªçÕóÉÕb¢¿?—,S–1?îzpendstream endobj 190 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2790 >> stream xœmV p×^a[,Ž9 U±ì:¡PÂ`†#™)&M œÆ\1ÛØÆ–-Y–,Y¶îó_]Öeù-ùÀ¾9 †Ä8sÄ€I¡%i;%aJHšÌ†<9iº ¤3t:;³3ûÞÛ÷ÿïû¾÷ý?‡ˆDp8œÙïlÙ"än” ò/_–¼3ûHi@Zy‘™;)2/¦ &ì»ã !b/ÌMˆ‰º,ÓQé b2‡³§°\­·2ŠŠåâ¼#¹’¤Ë–­LNfß«’2åIë—&m>Z$+9š—$f%mZºeiÒÖ";˜—´¨H˜”™+(ÈI*ÊIÚ•½7)-õ­©I);·¥mO}eéÿOðùQAAq® 3›ýff „¥AÌ\¿ORºQV–•“—š¿ú…Þì× b>ñ:‘Fì&{‰}Ä[D ±‰x•ØLLåX9Àa86b:1‹†ˆ%ú9JΣI¡^Ì?bâRã~à:&oœ|ƒL$»¦\‰_ß?ŒŽOûqÒ÷j:ÐXõwp&v¢|¼ãÒbß¿‚ß݆/ÉÛ¯á ßç–i@¦ö@ÁRG×[i¹IûÛ’ƒG{÷-ÉÁ ´?€—±Õ:©æÏúzû€ôÔZ–¨…%³Hºö“KnŠ/Œõ †ê(_f·ètC8\ÛY×S} Òiï3ºÑgAž_¥r#Ød”Ôfr€Ü6·­ ͉´'zzìÞO€lrCЯ͘oÓW>íÉV(3‚Å¢¥ñ‹Oz´9fÍàK´ì¤ì4šmGsÌqn?£»öåÏq>òŒ>º†¶?Œ™H‰¼‘â…X,*­t<:ʧnÁ»'|E´W´;7w?éÅíUu8ôI´Æòö‚‹EL%×Éô”YŸŽSõ"}¡ErPƒ…1Jvd¹n×u:ûϢ鴯Ý€r0¿wÿÿ@ØúEG÷SÅê"½‚ÎÀñªM.»ž{§î,ŒP-›oÚ᜾Ú2Úu·Í!ÄI«Mìªï#Áýê§íºþ &¢F¼ÖbÒ[¨ü¤”ööd•wv…\!ßiº Ísµ„Œß MÐXYd”‰¡„,÷•µ†:ëÞßÈÛ‘»[¢¢Äci^!ówbž8š«ÛnóØè®ÇcÍ]@»µ; oçà$º|K®  iu³3ÔÇÈÖR·²P,:zà¼ìôXϸËNùsz²Füö"â5G™ •O™@9'9·b"ÆçÔªØ$ßž d±¹¥áé-A¿ŽÜ‰ðU*—h- Jg5¡’Ty fȦ×PfÙ6¬‘÷ [OÁ3ðoðÂä‘wÎ;nÒnAwþÐóúÃIh-oÞk”ƒE©àgìÊ,/r_ÅHÿùN4=|†îøp°wÈ« ‹Ájdsæ<ôX ~)î@ îׇ8ÃÐ ðs3xg„3óÞ‘/*¤ R³¦Ï$ÿÀ-S³7–•(=Æ]û„–/V,Û|ˆ¡¬þŒÝÓ5dXî/ K³ž.912ða_=Õy5Œ¦2U£h<ñÞÏ®  Ëõ]²Z|—[.¿'XWÓh <äÉ%)©W[ÚB}¬pöêžAû«ûœOGOÆ Þ‰8^CE­¤¸XT\P4…ÛÃí”ç‰ô)â`V)ù;ù[÷²&¯÷†›]ðeºÿ;ؼ­|wÃo~röó²}8ÐÎJÁ]G¥z©ICëD1Y~H#ªÌ)™Þ•;ô°-ðDÝ){9QÚ1±ì¥Œ#åxLä|à=%ý}Q¯vD «øËW%¿²DŽЌ&gã¢ÃV Ò«gŒF [Ü(“)—™48M.'ÃüÔ¹‹§vܨ¸Ä°¹l}ã£QÖk¯GY÷~±ÿ„hå$¼y‰…4XQW")”ÊåáÖÖ–VJ€?â±ÞÍ–#ò¢ {ß‚Ïàò0LÐM5_>syÈ@½I 1«M :ùÉ”²7ßÝ™ÊÖ(P‚ÜÓ^UÓÂD­:X,J(ÿbø›æ(©¼Q¯•¢´Ç´1ƒ2Þ˜¸?+_&.*n÷W;<^Ên³1ì Áf­X—»-?ŸV³NÄPï49}ŸþM‰¡xf'nÇDîòª vƒÞlÖ›)ùþl`/€»M,ó~ú!ŠoDS¢;Z½jV&òŸdòfúvòÊd´|é¹uxNÄóñKKGß|tõãðå?QÕ» 9Ü1RKã”~ÞÊ7ÞPr[áàµs-ˆè|>ûÇ AÖë¾<ûw9°ƒ­­lR¯5xm¡‡ªÃȞɻRùÁìY±‘´•ç ÙCК^Y‡ª®¢FáóºØÇ=ÐÞ~Â7HÎúÁ^móûç@‡ºM*îÔ§N€ex^ž‹—>Á‰:‡ÉE9¹NpØÇ ÔšX·ãÌáp.ßïêé}/0LntòTJÓ³r³óÓË2€Ü9r«ÖVËšÏ(2v¢™wM~«¨y”vÛ”[F…6[ž] Ôéµz­Qæ–8Kà@_lµ€‘¯ät77;<ÍTµÆ[YUNÎzÕ+uHÄs ÈX¨’[P.OiTš+  €qØ=ÇY_®¿ÅgŽZ|Já–N°ÄpD´òÀn±™Ÿ¡F߀EÆ¥—ÒªÓ4V‚Zç±}ÜPehNù'nNÄm¸U¥2 ’¯¨jk=>¯›BÔ{âå!œ\+á×–z¡È×Ë0.V¶¬Ò¾Æ„"ÓNr"‘•¼h¢“˜„:j3–á%8ss¾Ž¼œõbÉzEÄz±ÚÊö"?{±^•®/¦¶b‹ú`Û®¹¨wÜ8ýß~…ÑôV4<äS=ÃcνÇ1h×0¯­¤I(,) ›JÚÚššÚ¨i¥¡ÈŸ¯†¸¡øÑ¨øØ]»2¦@ !Æf·{lµ¦†IHhfºXÑ»›ßeK˜JÿNæè°endstream endobj 191 0 obj << /Filter /FlateDecode /Length 218 >> stream xœ]Anà E÷œ‚'n$k6é&‹FUÛ `"Áˆ8‹Ü¾ŸqÒEijyhfºãéý”Óª»Ïºøo^uL9T¾-÷êYÏ|IYõ;’_Ÿ$Õ_]QÝñÕŸGa 7>»+w_»~/ŸúMòKà[qž«ËV“14ÅHŠsø÷ë° s|ÞÞh'àLàÜ0€vOcP–$@ÛÏXqq³âÚæŽIŒAŽ$ŽÒç«£Örþ5«ö÷Z9¯²!Ù@> stream xœ•Uyp×^Y¶XÀФZ)¡»‚¤ §dšæhgÒ—í`ÌmcŒm|ȇlKÖeY×J¿]Y’uÛ–mÙ²°‘Ø@À%P“@LÉh˜†20d2ÓiŸìU›®ÐiÓfšÙ™ýãíîÛïû}Çãa‰ ÇûñúÔÔlYþYvQAÎ+K2ró*‹²ËÇŸ<{†›“û)_Íî»>š™É|HN<3gÆ¢"ó“¨èhçŸÇÛR¤X!-U”äåË$Ë—.}iÉîþªd¯Bò›ÉÚìœBiuEa$»dŸdmJjŠ$MZÍ-HæKK${só³‹öK¤û%™¹[%›6®ÌØ(y+#}ÓÛ¤üWlÿ¶ˆaØ,Ùê5ÕërR÷(,~Ã6a °…ØVl1ö&–‚½…­ÅÖaë±4l6›cŒ%bjž6!1á ÿËÄ̤_$}& Ʀ]ÃïL¡èì¯yÚ>L‰=E›«yèzVè©cŒµV³Ê@TïØöfàUZ4hóØ|äu4ô… è… _5äRAšW€¸Ué®)0”îª%ŠØÙI‹r ÈÕ>h"ï ÒYƒ±¼.ÔâôSgþvÍõ³¿æçŒA]ˆ¢î(olþè2!XýJy…Å*'Ö A™Í¸Y9±Kcô (ÍV+¥!ÓY*‰½!8Ô®>ÆuÄ-šÇ_’ßñ%ût¼§.×¢ÿ5ˆåZ›m:_°¡ƒäeÁ#SNÀþIb”˜²Š±ØÀvÆAÛ?D"tC°Ší¬+R@ºU¬Õ|ÏÐÓ±‘ûãºxˆƒLr£îã&û{”sLÑWY¬J‚%j:QO±ðBË%0j f%ÉŠãuy”ŽcQQ rS}×eè‰HßÚgñOÐB•Ê8¢†ÑÓà; 6ÿW/ã¾ñD˜l\2ÂC3¯£•#hãWüѲ&üd˜+¤eej‡Þi"<º®rØ%ÒÅÒ-Òmò·¾» t9ìŒøÏ‘”èh÷ €CÜQíÐæËwj‰Bö©º\m”ˆÁDëÁ„Cé«krv5þáThøÐm¶¹ ?»»kçü½ì\mÓÜà£nþl ·ð€K'«ÒË rß ŠÍ°ÿÙ’k¿…+G‰È¦KÚ¸Çî4÷îE? øì±§&G9ÚúÕ`$öѧ²‡} Ý}M~·S|ó<Â>‰¶êo=^ß@ûih¶:Î.PBˆA ”Cm€} ·fPƒhMÀJ6X- euŪ7ˆ(Êl6QñÅì)ÑMtí»}hRM(Øôø Ö¨%¸=Í-Ôp&lD1à‡³ÃÖèÔd¾ƒ^F?G¸%³ÜçÐÌâÒýÖZÝ`u£û0C»ˆó‚û@Q>À¹„NÚm§4ê¸ßá ÞF5ù±ì¿]:§ÑHQFñË6€oÚýx°å¯'Ož;Ý|¼pÂ.ÙkÒA5^ÖûìCõ/®éHg籜UYÉâá_!>ZþéW¾ñXÇ ¦LÍUè2!Á ¥@¦:>+þ¡hy좹Ãʃ˜}F Ð|+¦?Š;´ÛÊ*W[ÄF­Ua´ëÝõ!Œ7!@¹&Ùxk™G; ·Û@ 9±w’hÁçqdSÒµ~ûÁéq¸b/Ž D´•¿ô÷u1´ŸËíhÿþ¹ýGÆî‰îÆ £hÞÝ@„wöºõˆûht–ðäŽöë•/u2°”²ü Aµvª ?¬ˆ‹äÏ«^Þ b ª@î=áàvVø+KKd¹ÙÒÓ]îð}WBèIÆ} ‹Z¾iÜå\ãfÖ7Ù<¯Øçi`<€Fʧ7YŒ”‰ª©Ó*8dÍ궃½œ¼‚¡Ét#á}ÞÝ«Ñk|44š(lS6ÊÊJ*Š+•¡ðÁö."¯ºõ6ƒÖbÐQ„ìõ½{s×jííÎf_7Ù}»û¶+äí†&ñéœÞ­ ³Y‰æ_‰<<ÑÙ¸ßm’ê¬j]1Yºªt Ç}¥Ø¤2q.Æ·Î;óùQ$÷¯§|x±?M@R=D²~l‡)¨ V—IËäy{W8&²Ùa¡ÍË4@€«‰#æ¦NýÔCÛN¢ëêÐÐiÀ[½êjŠ»È%ñª´íkÓ@¬U½…îÔw‚ oWøªJJËäö—ÿî"J8Œ’»8 ÞÏÂÀ½@åçÅš¹so’¿Qa&4Ye«³/3¶uúh¯=DÒõõ\‡þñ¹æ­Îþ¶ž¯ïì{Çûßx©Ý&ìà4¬lRµuvµí©èÛ¶aËîŒ bCFy­ÒðeìYÍØüÜ+v³Kk.¢,2b£¹Ò¢³‚B¬öƒ÷]0ÖQ`1qI™¿bV;Pküê`OÃ!=qeœ5~ ‡ ®JÁdÑQ‹š+Ô·÷œ?îúˆöþÆ÷Ásá;42U棯]µðÇÈǼÆu­x%;7p¥Þ 5´¹;ÈÀáA4 Îá7¶ô­X•‘—º‹ÐßZ×¼vBš2s…áý‘,ȇòªš‚Š,ÝVŽÀ¤èõa'á=Õ|áàaGy¥Â$× «^ÛÏ.4«Œå\É‚z_sÀëu6GC½5ôg‘-à>l ØÜŽvÆÍأÃўp´!xKåÎ £¬vYÌ&«ÒM5†b0ýïüïŠFOüð¾Öª¬Ìlvš|©+£ Ç3NJ¾øÆj/<‡âóPz„ mÂ˃»ó«¥¥Ò ´¿=€µêŒÔTÂLY,Ü4õ F§÷Ó›h:1»ª5¶Âíñ ÒVAdÆÈLbFb¦4y:$Ï 3 Íxé»ÃÇ$'wÛÝ!š¡í6?mOž…aÿÐãþendstream endobj 193 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1141 >> stream xœ]R{LSwþÝ^(—¶2Ú®Þި̀!ü± Ù@œ l0|ÀB:åuQJyrê]å1¤hxÚ:¬›l˜¬a(Fb$›‹²%N3Éæ¶ß…Ÿ›+QÿØÎINrΗœï;_…Ü$ˆ¢(å I|afÑ[ÁIY9¥™—‡ëDJ ˆ«h Âbëb;(hP¸¸Uª0¯Äi¯àDoDSÔž~ _\qP—“«çÂBCÃ]õmn_ÂÅgîÏçËJòu\fÑÇ\|HB—È—¹†:n=_ÄíËÊÍ,Èæøl.%k/·+ykR2—ôá®ÉBþ/ëe’mzg½Ï†B7†…#€Xä‰j‘ E"%R!5zÉ]—!7”†( åC驉J’!¹K7b‡×3*p-"› x7¦q¦),·Ùiœ!Ê5g‹ûx]i1¯³•ÚÏöÙì¬ðÔ]ãhº–’Wz ¨°÷Àç'Ž –Vâ ;3RÔ›Z ‘©k?b9~cËY¯gtD6Â+œ8ÂIM-î¡[±¨é/*öoOiU èõ=`Õ.*¥Öè×’\·þ²eL)­*sa˘§Ô:àÂ\*O†#RaXª*£žLÓøOR§OZÌ5ÇÉ*¬ÑáDÀoÁrìÁÙuÜl cij=\™º·®ž%~„ãÉ6 ú‡dxië„N×^‰:‰³Ã”˜.Îj†Ÿª²<þÃ…›]d—± G•Xš€ei÷Cg+€9ÜÜÐØ¦N£sÄ÷ yH¯ˆœìM¯©iYv¢Qhèè»ÐÞÆb?ÌÙñ6À æ…ß‚s‰sRØÛIã"hœë–¸?œ$ðŸ*ç’ öE™¹‡ûïÑb5¾¦¿j§ó®dÜèK¢‚ôàj>'Æ´öÀvaÝè&çæåã0 w¬c¿Ÿ»&܃i&¬S;`£1Ù°:¶:tÛmX¨„‡p®ÂŸNôÎýØ1gáꡞÐΈ†8æ998Ä3Ž+®ã3´˜ìãÈõjî<§/zØLæbvßþÝ%AÀäyØà|kcžvxd7ƒØÜ<éˆp¾vå/0ÒürÙOøñÂoÕøB£Œìóh¥Ú&ÀqšisY}ª±üH}TCb¥Ø{u[Ï;º»|/ONMÀ¯ –Þ"JV½ƒ("CÃÒ¾lèê²kÕySÁÈž¾þÝà7À<|sML‘‘Z¢">îêVc-˜ú‰Zé 7?»îzîá'®‡SªsïΧ͛çzçWª½‘xGiàçí7_ë›±O}·uPíí“k¸ˆQÙƒ•§†zúNŸËï*5³ç'n 'Q«ÆOݬ_»µ(³ºR[X 7%6•·Ô·@ SÝ'Ø1éÌØÎÕZõ%D”ïeïN‰îÏe¿ìwhÕÑgôýùÅü¡ýAs XŠ}ÜÌzzÅ-VÌw´õJ²›rVæ–Â+> stream xœu”{LSWÇïmËíU«S³&è®ôâLœÛ$ø€L“%NvJxŠ3fJ©”¶”E^ŠôÞßíhÕb`° n*ÑÙm.Õø^çòDzG¢Ë41ºlqÌsë)ºƒÓŸìüqr¾çwÎÉçûË7‡¦T Ц酹yygu–Ëi´Ö›mÖéË Œ¦‹Á1]]*¿DËœB^¤.žÊ%ÕD“@£ê<—¤âóÐйÔ,š.µ»}‡>¾8qý× 6{³Ãlªvò+ÓÓW-_Næ5|y3¿>ßd¨¨±5Õטyƒµ’ß”–—Æo¶5‘M3ÿŠÍÊ—« –*ÞVÅ·òÅ…Y…üÆ‚-Åù…ËÒþô?»Áa´ZŒUÎõfÓãõc"êjk NrÆit9ˆ ãÓÊ´¨1:Ÿ•Æ'/<)=Qÿ>Qi®·[ ÍE±sçåÛÌÖê­-Ò@K´öÓ:H÷R3H)å¥)ºV±P±^ñ‹òEå::ç‘¢ø Š‹g6rjuôß*åK\ü5-Ÿà7+¾‡˜BEy@ÎGóQm@Y~?ذ:ÚèêLy} uÙØô.Nvâ Àk»?ÅÃhn«1ì&WG¿Ò=Ïp‡0¬žº§Õ£Ïqjh;Pu¢~ØÓ+@;°îNp÷z|‚n¼ú|Ñe¬@.ŠbìD6ÖàA¬Ç9‚ xÁ˺CÞïƒþPÊÏ×ï#Ý5d:‰ L@ìœG*]€zØzáÁ¢(ý eªKë`ëô›3­-{²ëñR`o2èžüV_Èç‡ÀˆRw/$Ë<ƒ@»<“x ;Êd ö¤©IÆ.ŠL'DŒ9]nQ€ž»C0˜ŸdˆÉÃϘqd¯$Áé ýÝ›ã˜c4ÚS"H-aÇMÛ‘ž‹—bývõSS©qÌOOMqñ -DÀßéÏ]ÛuGØ ãð>‹êˆ¸Yn¯:÷öA¤>}éëÁIÿ>ß Y™ Þ¸úåÝè@ßc€!QrY×UY*RÌö’Bq#‹»Õ˜ ®‚¥ymVKöÎöîiSÐ"‰ïuþµít&ä² Ò»í°åLéHÃpã)Ç>Ïû°C’4¤{ÞQcL)—M;Ša=ÙAúnâä8q”4ZGq¼79Õï§hòÑ<üŠÄ¢òåÔX]Û¸gY."¹¸ÇȽòݾ~’‹àz‰ªø¼dù3-„Ûm!á|×Í]?”¶Lì_K‚g£ñ$—3NEo·èì–NU''º; àŸ¬pª!fŽ;,/ ʺ°_b¢3¯ÍJ™©*²if€fÖÈ_ŸÔ+ü}‘ãMÔèï## ¡ûšÙõ7kˆdRendstream endobj 195 0 obj << /Filter /FlateDecode /Length 191 >> stream xœ]M …÷œ‚ÆàOÒ°©›.4F½¥Câ”ÐváíåÇãâ#yÌfUÓž[gZݤ¸Pc]pžÖ ‘v8XG8ÐÞêå£ò©GåIÕ\”¾<Òh@SôUX݉|ÅK“žzœ½Ò”ÔŒÉÚIÐõ%Q:óãLpQrY`Ý!J.d`/¢„X)œ’y2ÀŽyÖöj›lûR½†€nÉ)sŠ´¼uøý?ùÔE#ä ‚_€endstream endobj 196 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 729 >> stream xœußKSaÇß×­³©k™4ÐÒ³“ä4•ij$É uX—gzü󬶹ãjS7sSßmçÌœº…Óµ(‰nìäE7IWõ$]IÝÙ{¶³´£ÐÍsñ|¾ð|ž/ê<!,¹ÞÖF;û;ÜC›Õq¾º²é¶Òö=vZ:¥²<©\…äH¶%ã?„t*¤S¿Ë‹qò(ŽÁÓE@aë F+-¶»nû@_¿“ª©®®­¬TfeqSWLT+Ý=hãƒÍöP­¦6uÃÆ)Ëꌥ,L?mí¥l½T's›2w\mï ®µß4ßê8kúà5m·Û¸ý㌕bXgŸ¡Œ¹7L[-´½Çbž¬1 ð Øá D0Ã@£ÔภÞÀ †›ø¥~W•ÿàû"Ì´âˆayyÉÜ:áA—Dq£´NÄ“h٨߅†÷ßÙ†_·U¸S‰®:Ò,ëp°lÚ±ºšN¯’ú¬'æÂ“"žäà¦+«ãTÙ%‡„  Qk[#X=#øÒº‰É@`Âø¸j£á£Yûkšð>ôù|³¾¸13M4›»Ti'„@”\"$ð!!‰ÕŸ¶~®ñ!žG‚V¿›—xºEE{ÏüËk•ô™ûã.×2…dÍ÷1|\+5íËïc®‰XÀe¸à.CZ\÷Èõ„\'Ÿ’õr£|WÈE¸Þˆ/üýz¯¹|¿´èç}Bî-Ž—ŒÎN£)¤÷ûÇÇ¢S‹“F)%‡rOä°?è¢ÑÒñ9ÿ<FÑyRÚÀ‰9>& …Ò\·Z9é!s"áå,MÉnWÖÃA\"â*Q…›eÖmÔÄÑÇ!—‡Ü©Óxky-ÅIÜŲušZQ˜ÛKî4j¼È­°•©÷ÅD!SüüUŠ ÄB²@Õuì’.é S‘è\$ E#á§:]*yÄó óñp8sYw€ßí]Éendstream endobj 197 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3630 >> stream xœµW PTg¶¾MÓíUqãÚáÞÁIã$šÆh,w#3* â‚È¾Û¬Ò ‹t½ÜîÓ+Kƒ, ÍN³µ¨q‰»‰šÄ1‰câ„,oÊq¬d’ÿ’˼y .™z¦Þ{U¯ªëV×½ÿ½ÿùÏ÷ï|G@¸»Àkã¦ÀÔäÈ” idJæ›óÞŒ—I#3\^á¼Ü 7î·Â">êgÙp°<„àá>0Ãs†':6 LAS ¡@°#9oMjZNFb|B¦Ïüyó¼ñ¾.ñ‰ÊñYíëóndôÞÔì}{}"Sb|ÞõÝäë³95ßLô™šâ›)óIóÙ»Ó'8hm`ÏúÀ€à-As|ÿûà~y— ˆ)©iû2ýeÙ‘û£6æDoЉOH Ú+MþiÆ\‚ ¶[‰ bLÌ!¶;‰ÕÄ.b ñB¼Cøk‰u„?±x—x‹ØHl"6ŸÉÄ$â·8C„;¡'¾”ºIÜ®ç y÷8Ñ«¢kâªq¯ŒÒ—tŒ?Ü*nšÄܑ޳ê/‹°!7šòç_úEúETYX1ËG5ÎxNB/˘¢,15×ÀjéiF¾tõƒóC‚0€AÇêdruº&µ6ßµÐRaépE K'vƒ{É&@{N}~JÈMCÓ%eg3Ú +Ò:bK£Jƒ­ïV–_°tw¹È ßÔHÉ"+@¥Þl3¾XóÐX£/Qàì€òå¢HÍ&µFA>ð“!Ä¿0H•P‘Ú kMoQ]?`×|–'_S¼32z‹ í¼æK]¥ÎT S²92ž¦Ù\Ò fÐëlw½Íy\Whœÿ â#WÌʯEZ–Šhc¶'zûºµ©¿)¯É‹òC?¢©’²ó¢ 1ÕW´MîŒ?Tc¨9‰4zYŒsÄ¿,Æ/â5ùKvûÌÖ°2úKñ¾-‹Ÿò¼˜›pø¦õ9y¸èŠu9<Ñœ!ÝŠÇ/J9ëE´O¼òQšI*é+®ÑÒc²Þ¦>žõƒX`ba$1ãÅ·ªø¾€æûލà°˜¤>^0Ò¨Š×(V³O¬–ö?CÀ‚[Ð…H?Þþª¢Q¿8œ¯zÞâ±BPØŽSôžCzÔ“òTókAYRvš¹ˆˆròsžò+…_—ÿÖ–õ«Y¦“¥ý$EžC_>^ô)èØüùLÿZÁŠüyh.0çàtkï•ü7i¼ÕÍÅDy'pT9<¿öûçòa?/*aØÊÍ’˜2m²NÌïñI{t¶u £Sé´ÊžáËèí¨C[¡3èÍŒ¹¥êr&› ©úd.='TiK “Ê’lÚÏ{òjz'ªc+ô0=]Ï»±¿7â0ÕÒ3`eKö2ð?Š+©£¥ô šzèÞiPŒÝ4—™ËÑ*t‡n>ÓUÙ­']ÒdÏu ê¯OÙ=©4N=$);‡™RT¸5]…iž¦ãzs' ¥KŽZzSœI½¡Õ»a ¬ UlP'×ä6C+Ô×™› йGßÙÝgí€ÓГ?ŸTÅí`ײ듙¥‰‰;”á$¥Xz໌«ÞƒpöpËI’ZÍÖEžô®‡«Þ!ù}J17Eb˜w$t—ž){ÿÜ]´ÔâÂsÊ%¬˜—ðų‚Óh8=f&Wéb&µ%r ûÛf"?ÚyèÄéÖfgϱª“zœ t­T—ɰÃP Çl£|ê´–m›'/P©V­ 7?,.×ôÆPUSV§'©2³ƒ°Y°GŸæBáèuÎæ6/ m` ¸5@›$Ū¥Í†}30ÿÁºBX•eTWªLöîÎ?ºø*mQ”ça¬‹äùiºG«‘À؇tíZæ1=/Eí(î¨EÞE›ï +ôÒ¼+ôÎÐý9gÑ  ôžÎùNÔ$>q¥"³s×'¿P`½D'ˆK“F$CìmÌqb6k»Pm²¾²úô¹s¥p:Òkb뢔Ê(\ó"œÕìln¾C€ ‡PK“pX„¬’ qêïøiü;@.‡‚®ÄÒ9ĵӿ.ãÁ¿Ù‰ 9ŽQÀÄàHQȸŠéÑÊ$]•)âjÅ£øñ‘öÚ/ÀÎ…;<µ_¨¿ð¢Žp=*’L\$™À,Ä_qè*s5Œ¶‰œŸÉëhd×–ëL.Ò7;Á6Fú4ˆ­’SøVi34"HØ"ݽîÀPþjÈ„¼ÚS…ÝPmnέ΄lØW NÆè†){âÏà6}æ|×yÜÛ´ójŸ¾\"{:Ý%²ß:›róy=düzé… çYy=ç@ïc»§lÝݱшQpO¥ö!÷ƒˆªV<Ëáx^šÙÛŒƒ€[æœ,^’ÅSwf#1\ƒ¾®öÅšZEØ‘DÂæè´¹$u˜Ø"‹ðÆ´nÎ=”}¤ä|É‹³âRÏñÇ{Ð ‡óÂJsAËæ<…2¹­Æ–Ë{P8†b±AíBQÅoŸõ&Â.HhÏsÊNYqWCb;ÁX_ó ö¾ -xÁ,lÎ2ùß ½†›1š ×Ðh#Ã#á qGóUS|rÞ[ãR>ª^8ÞPÝ€ AÞàYÕôVØ­ýaý;n!Ñ­´~è÷¢ÜݸÓÜl‰±FÕƒy¦ ‰"©ñDg\”Qæí K׬$©™ exul}V~þ¾$U‚ZZÛš½17:BEtõù×ÛÐdo4{_å§–nu_h+IeÒ­»·Âfï l•z©)ÏaîЛL uu]©GX|Ÿ_¯¼mq9e G»œæZ씌:R®Q*´r6×*¯†r¨/16üvžhÒT{³3 åi©ÑXñÄ[PýwSIéXs‹¥ÃÖT^ÑÚzþ¹¯j2ÉS#%EÁËvÍW  ¯ì,–÷U%'Ž;ñ¿YÅØK¹Ã…äOÎŒ1ç±-¿þk¶|ÈâIøz(¢î?˧…#5¿bÍkÀ¾˜çó $—F©ô(üèyh°nPó“Õ„³XsI/s™Ѝ?ò3ñž„RUqÆÛŸî)4vC—¶KÇPž'¸‡SKNs2$BFª&CfKo‡.hj55\æ@kèmÇeZÚ*øúškA›%5ßþçeuüP•²ú“´rÍiù¹ÍÊ6¥=®:Ýœ¤JR¼³iÍ"H·Íá§É’kæ}y1–µQ#šÈ‡ŽQì ¥Öçé¦Ä ñC€§’û«EnOš0NJ„ÛÌAÔ5èEÝáJqªâ@)g™×ÐzAcÑ0ݹTQz³ï=C½«'³ ñ°ÙpÀÕˆmºR…¶@“'/Rò ùÉôç\&ž¢ž‹«› žâZóýÇï_|©3ˆÍaØý9šýàÛ U×æê¯£ b=u…9ÇèD®ÇÞþžûOžîž·•»‹B¿à›kƆÇá_gé¾Xý_ÖXÃþ¯ƒd÷¯ ’ÿ;n HðWO”tÿÎ}/êìÿëüI-æÅ%15æ6¤d™&£&³7{Ö ´î…ç>{fRGÔPݳup3.Eù ~3¨Æ*V=j+c‡§2}pQòÓ‹òtZ£Õiáü± ‰ª|wø 0¸î «3£´ŠTmž*©±À Ð\mn/¿¸û¨ø?}g/ØÏ‹éåbjÛægbJMó·Ç¢®ž€Ýžf}Ý¡ùâ`.PF…ñ ϤÜý±œð«²Pð´Á.Dáz‰õZî<Cfš&]“^‘ÖUPe©,—/ݼ#T©Òé@£Uš5f¨€o?³¡qäd™[SƒR¬»Ø1ahâ‹Ü·m ÷ëõØ­ ú2ƒñ²‡GSU36ùF£Ñl1yL"ˆÿ !Ø0endstream endobj 198 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6505 >> stream xœY XS×¶>ˆ9=*Uá4«´¶jjµZµj)u‚Š¢ ¨¨81OÊ!2² $̳ B±ÚA´¥¶Q{k[Ûz;H«·}m½î>½ÛûÞÛ'Jè»÷UàÛgŸ½×Yë_ÿú×>nÔèQ”››Û¤õAA)É)!‰{’ÓŸ?wsTLFâžTþÊtNìÆMÅ=枊³¸û¿ ÀÃ4!1iÉO.Ÿ¾bå̧#fÏÙ9w^äüg,Ì}nE=Am¤–RÓ¨`êIjõµ™šN…P3¨Pj&µ…zš £fQ[)jõ25—ÚN­¢"¨ÕÔ3Ôj-õ,µŽ  RÔsÔ+Ô"j=Dm |(wJ@=F=DM¡¦Rc¨±Ôrʃz˜ZI§&P~”'åE±Ô#T$%¤&Q/‘PP£)Ût·GG}æ¾mô˜ÑÙ‚‰‚·èeô§I_¦}Œl,36~œ×¸VHÛo¿h|Å Ÿ›Øä¹Òóm¯Ëlâ#«9-<0i̤"ïhïS"½ÏTŸ„Gg=*ow‹ñ䵓-“?lóc¦Ç>™òДÙS¶Nyuªhj¥ï‹¾µÏ{ü:2žkÛÏ6îq©['ÚøÚèÎéÛ…Å:«Â¤1d@Äqõ¢Â£ò¢DHäDᨠ"9¤ƒ¦0O£Ê/ÌÕ&µ@ 0§ká˜ÚMRˆã?‹ÐbÚ4-¤ MôÑ&‚Z~N ´9 žŒ¶ ±ˆFcч‡ è‚-Ôæõ; µ{³‡¹Êv¡©#•lÈDÒ¯¡œšû‘o,Ÿu°5.#“aí&CÕ>±?-ƒT²¶¹q€… Èsåx4ð·™ì)Áì'sÐ(à?îß5 /fm‰0gžŸßKðl¿Yu¯ê›>¸ ×àl`Î|~1…+µ¹}cG¿ØÝ9 Z.4I(‰·ÔÉiO/NÛ óaí¯ÍhV3zú—_ûy¿w粩EÙzY;tƒ¡ÁXß„¦Š ÕÆæ$Èu¾F­+€ÂìÔä¶=õ[ ‹ñ£I80 ¿ÒE“1p¿¿êk~sœjCÏØÐeÔWì©öWíjû/Ä×)®Áñtü¿" "k"Ã>I6AeÔÍê©Úþ-¦VMu˜®ÅìE$Ýöví9®ìäHðmb™5“Xj¶lYàjñ Þ)=Y~]Äz*Þ³~xö¢øœðÏynânw ,PqW':'lEÏm@³° ÖÞaûH5:`á:ˆöÒÈ›„ù¶¢EdÛLÝ`l0Ô“@˜: ¬qÀ<C»ä}»Ã¿I®þå¦ÒGÀb1u2Ãø=oGò/¼Ù™\/7Nh¨×¾¾¶Âº¬€õæ.kï0‘õÅx”«G>sðä²nªte,ìN“°3ÿV}ó;ô°X—V!m†Fhª6µ:-ˆç?^h´=„ç?òÛ½Ç]á4ÂòëOæóÀÓõ!ŽÐì?øg‹yÎ9CN¿Šâhò]kt¸VçpíäYzȱì—®ýK— åØÜ¹tä)¬ù{6$šÊEÉÆ€ò’׌-=ßÂ_Á’¤?X˜­Ïîg`ì¢bGÒ§F®Sïmˆ„LÀ/@ÌRMŒì™Ÿ²ûå'U·r•ašèÝñóal)Ë»ÅÖ–„tÈf‰t²‚Ôv°@uQmÏ1g Û-€-=9ÀLh¡ ½ióê·£,û^â6Ž;‚ÔBSû€ëǹ†æu:Þ¼# –Á&D5£Íhî÷?Ý"Ö¾—®Ç”>Û˜×òÂ’€Z!‰Kj®Úذ'á€D¼þ6öAãà]èm?D2ftFNÚ-f™3ìª6´üÐ@apâeâ{°=Ô~ZÄÅ#/¡¡ÖØ ñ •è²AÁùé°,gŒÍ »ûR Ð×p²Áx Í2•·RƒäŽx‰ Ë— žB‚£Z±ýwè½X'›}!æ:øÜ€;oTõ»T®ÿ"‰IÌù–üöfï(8cû a¤:x¦Ùuï‘Îl¦ãð.Ž¥Ù™_Ÿ÷ÞÁ°O6%w‰ÉM.µ–}‹Lâq›ê:ŽÆ¹n–J³ç)G]‹¥£°„LwͱÁéø 哨 m@óšÐbê| 5 rÉfïÆÙìÒˆ7ÃÖãmDh$4@­ø:]ÍÓñ;ý#%qª;>¤g0åp)¢FpÃQW¾"×yçÙ®ÃG‡I‚Ði›Û_QÄßP„;w{ŠÇOÂnx òüµIu²CäA[JzŠK‹Šê‹+‹*Hν‰y«ðjm“ÍfXÅÅ™À¿‹{àbÉ™†õK¬9©?*n#dJ¶Äs~êÒ ${²ÈÄìý»@%‚Ø.ók–Sw{ÐSÆ!¶'ús;ž„¶›È¯Yh»7{}˜ðÜGOG‹ÐT4SpŒHƒÖa¡3ÁF2>º(ø~‹cçA݉ÅgPù£ïá™x6^$ØG³‡].¡1Cp—@"üM]ÆRjÓg0%Æ8 prð duÙyöéÓŽÿ-p?0뤒nðéC½©y@Ú W6²ÙDÖÀ¬±¾G4 ŒÐ4^hõßÅéNå¨äõƆJ.ÕIøJ®q ¼f9Wß-vÍöÊ£]9aegÚ6 ¯Ha󺃶áPò]L¾oo¸]|È_sÐ6"ƒ¹KÜ“ƒ´5,D–h£1Åg8CeF+³òy¼×i 9{RaHMŽ}„r%XOŠ¬ÂŽ¦LcX/*IK̳¦³¤…øÍ¯×øì>;5*4º0GPb)® p¤š9µ©bö-ß Í*8¨ÞÓºïü"‘¹ ɸQ;ÍR‡3—£²º‘€f"7¡©-4ÄŠüB…T•{`ÇK°6^©ú¦ôd/z‰If½z¥6¶F~ˆ$lSé0S~}ììKñ䜅RìññSÈ ÐTxû{CÍâÝ~µ£"²‰ä¸ÐzÞ¥t¨£D¸‘FÿNª/2j|Ì]¸GǃR¥‰Wíé2uDðe‘€§E„ŠiüßøTšT¯Óeûhây®á&ÐMfC½¡j(ó/ópõºfÿÙ~‡&Ç…’¿àÌÿŽ’à)‡£ªwƒv#ò”צ$ñDÉY¿Šû ·µó0ÃúÇh åÇ~ç]Ì¢ç…lwˆ2xÉJñ*ˆ¸ZÕ_ýÝg\KðZˆ2ôw^þ©Ùúܹ¯¹1ó¸+›éåRgNçtê#rÃðY;²ê T/—Á_G¯O¸A}ÿ®$¶Zß>íPa0%-jv)\ðþGï£GGà$CÈ¥.?3ikˆ2ü àíÂ/tšn n6÷Ô!:â{< ð8âœzéÝwÞG/¾Ÿô¾WÕùãv™=ŒH£7íp~“]rÞÑm^åDBc“¼c i}·ëÃãöÃýeò„ºâ¹ð¼Ÿ|±zwy|Yf®,7C›¤‰µ¦–ä-Ý¥X[¨/úvzøÏC*¿0÷(ßÞÑÊ(Jö7> ÌjZ¹ .Î!qϯTVxË*2+ÍV†õÕw¥Ÿß…/®ýÆ.6µÎkk*?d¬,*:Ш¶B 4—*ÀØteá‘á°âz-gö/ßµž~óŒøtí Ozc¡:réî0Ö¾Qò¦¡¶ª³»¾­Ú×ɦÔè~R g‘3 Žvsœ#¹ÿÇS¤´áß–>Pæ©úÇÏŽžŸ?{Šäì˜x ‹hû:»ÉEH¦_Áußš:ùÉ|þ\-I¯RFgC ”žàÝ)ëÅâRm“êpfC^ÙµžÃ¶’ã•_ÝÆc ÆV$‚?¥Rù¾é]G0ÝšR')ÈPï!›Rj“*ö[ERy³¬K|ºÿRr”™~ª¶‡nšÌËŽ;¯Ñì—Ô]è VE eè½Ážû£7kçvÉ’'†ÉXüĈ$8ÚPüðˆ„89(Ù™[¸F¡±-«1…øâ`FAŠ6¥6£ Ú ¥q ÿ'<^ŸÚÓìü¶:´Lh½”üº²"öØÁ¿Úµ¢}å Ý¥½–Óïž¼ h,èç%ê3¬šzg£×ˆDÎn) TÙ¹I±Ýáå¤,¹ÃÂå9‹ëº>ICîD­šO¤„_—C"Œ±­ ÛÕjx½¸¶¸¦¸6ÁÙõe`‘³ícXS#X*+;»“ÎË.ñÇB_Ýhcˆ@ ”~€wWSt?zÄ^D\þ)¼Æ­ôÔWC“è5æf«£b}⣠F’!¯X^̰L‘¡¨¸¨„oی҉˜Õ§CjvArî‹ßÃq@OAò(»DôÁ}î»ÿèJ§Vr³+‰R"ðœ@\ÌÝréåÅÎâʰ?äù»eXΊzá#:ž—F6öŽ~BD8 ùéÇÙ¼ZP^B¾¾}€"6?ÂÉ—íófÏúqÖ!l%Ò˜Aaè ô {2~й*ÆóF4pý~=4ÆsÞC¿8'ÐÕÒSó·Ó„3ÆVG%jÉ5ñÐ鉫³AdÕÔvºò³»7¬’º‡Ÿ°ùÔÀQ÷`ÌÆº»:»+w.q¨[Å“† Ša!`›I•pÄðíauxð èbǼÙS\-¿¼„?GZ‘¡žÔÝ»sc÷+»Rkã!ä) ûY»A Yâ„¡”l€W¤£($¿ÓסÚÄ/ÙŽÖŠØSýU§z‹› ,[¸ËE™Ãùîæn¨ê'Óáÿ™î<)¶¡6¯ëvµ)ì±€³83òVÜ youÃç­çNYÞ­¼ýò-^DxÀ¬åòeÊÍ=ÛndØëË%þÁ¹~²Y·"O Jòwªÿ‹‰EÇ„ù›×Dú“ðwøÃ–·,}–3—N~·àT„2œ‰Ã¯ k^ YB®‡.¾2»Õf¿ø Ü…ëó7ðF¡ÏP¯—Ë]Z{Js‰ÄLTDJp¤¨0$m$¥µÆJ´û?Ïà×ʰiÈwN…^–žÊûû¶v¡ý¢#½òÒ­ •:O—«K¯´ÁÜRnî©øx÷5ÌXÍ=NŠJ„‚TLC”¯ ÷Ås_*HËÃz>1 çˆ"ÍQšÓfcy©±ÉØ&©‘‚¢ Ô;åKÞZ‰h…&ÚAL|_Ül¨6!¯º¾,¿ÂàH, µîxµôtéÉwŽ]´2¿>ð*·†ïP¼Š’E—r»w©¶òæsÒo„†:Ei~ ¶¢º‚ÊKªJ u>ƦìrÙP§—)ñÿà}¢|MŽJ—Y˜kVXÔè4ŽU(‹õ’d åÆ&g¬¯ÛÐ$’÷ˆ´=÷{;ô̰¼¬ý«v,Š ËoHº¨8‡Æþb}ÏØdµ©>ZÛ h—l†jwaHÙz&_µö>=M«Ú™ûb÷ËÙÛÙs´"³këyø ¿\zÒt$€ ]sP¯e‘¹2ˆ†¤êòÖî¶•Í_¢ù¢ŽÁìÂò/„Úä´˜àõ™Ò³Å¥–ó-ÐùëôJf݃‡…;âµrÒÂ]4¶–ž¬(ï;c”UÆ[Ó«÷”iŽp‡_¹}Åë弄æîh¾À?Ðr²¥&V{ÊI2ÿ“.‡#`îfâ9dR<ä‘Iÿ¤ó žLÒÆö82þ¢ zÀÔíˆA5zOX\¡)S–àÓ(J”gÑ)‰Ï$yéºÌ2•U¬8@„¯à€<5Ÿ‚ôš¼j°€±¨ÊÂQhŸÈj®$1sÈëU¿-Ââ*QVŽG}ž†|êÐèšmh*zú›Ú²RcqUQ©¾þ ©6X‚E»±EŠÇu<Ûºí¸ÿ!‡€iK}Q©c­¯ÈZ3ˆqõh\â×ÞÞ{=°/D1_ªWæXÔ&šŽÝòð"E`öŒx*ž5?;_©%]¨ªXÚ Ìa@$zYøÅ–Ø~›fsã’Æ˜rFý6M€æŒ8Ú à ’R›€™½"Ò&ó»ˆÃ†Q$:tÅ ]Ùyeùz³&®‹ØhîŽuxú še¡iÅåüi,5±…y„áÓð4¹–±ŽPuó¡b™íG.æiÉ©Z¦îâr2NkåDQ˜1äé†~jZm ¯EÂ>HIÒ&¨£šSI ¡¤¨´ø`Ð6Y^B—©ÕI sʳk û¹Z4ê÷gG'÷óÛ+ƒÅ!`DQCãQÿ"VÎ10ì(‚<º›/ƒ{Õõ‘ÐÕ‘Fß¹ ,é9Ø’Q”¨MTG·ì„£ÐÞ1p0†_ nÆ¢?µàÀ»7bÅy!ÑÙ/ o<ÊñÖf‚ã…Y"Þð)öæ_ä4=ÚŽ™ueÂT†g8 éx/õB¯8ß6„ ÕÓùôW\ÍUúd‚*O¾x‹BZȰv™^R¨M)H­ÑV‘vôuó飫,Í¡’.µ•Óñ$°N;.4¶ ½ü!qKa°’¾|Q7ß>v­ïÝKŸÖ#…7ñx Š|ÞRùbMt‹¢†gñc[qya…ª¤ñÄÙŽw€¹ ö9 «ƒ7ù…bÞ R¨4ZÜùrÝ>¾^BÛm^öõ“ÖwyÚxG9,¿ýÞ†ö ¯ö¼k9Wq#èCÒj’r¸""o6¾Q^ïØ×ÔV\Y`Õz:®’äg.Û1ª]Ú$IlRFôÁÔ˜ÂM9 MvâæÍZ~€cëò7åoX·~>­_YV¯ÙTj6ÔåÔ§Á™š£MÈYðÕ&47Ü¿K:Sž”è+aqu^µŒô.j­J—’,““.FmQ”çWd7ÄÁH”¥f§çÄgè² eå2²_”µ»ÛÚª+Á %ʲ¼²ÜjI´BGuKMcÕ‘FC­SàP6î1íÏû¢úvöˆÄ‰æšQÄ`ÈWÐDΙhJIhRhK}¶Ãÿ)rõ…:©&¾TÝÁ Íš²0%òu®„D³µˆ"­Ñ`XÑ!Ä©4êB ¥Ã†`¬%À(B›…5÷7|O¢ »Ô»2:ÑfRà¨F'GEâ:‘.« ½jÁd²Xt¾Y{nÃE ü…eŸ'Â<¨4ó³ÉRb¨7–VK€É¥f¿|ɵÕ|¦iC]‡Ü™ñŠ2îå2´¢ÌXFÛÆÚÇM;:4Åc xŒ;Zm.âÿ™êf¾â²¢ò’"ë9s«ÕãaŠú_Ý¡Qendstream endobj 199 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2841 >> stream xœUV XMé^«Ý^kIBËÊÞ{ G‰¢"—¢›.ºéÂD!ºŽö–Jdd\fÜþ™0%—0†\¨TîC¤‘”´ËÞš Íap|kÏ¿sþ]ãÌñ<ûÙÏyþïò¾ï÷}‹¦Œ(š¦MüâS2ã3’Åv#DKZ´2‡JVýé¢Ë’"S 25>ce:Å~ê }ar?JBÓ³y-IÍJKNLÊPŒŒ ›m;j”ýß'ãÇ:+f}¼Qxǧ''ª#È"3>eIª2^•œ¬\¸,]«JW*Â◥Ħ}rHQ”­j‰WjZz†ß²ÌØ ³­Œ ŽOHLJŽXœ¢œí:znÌDZ㜜]Æ+(*„ ¥†Q3©p*‚Фl©YÔlÊ“Š¢¼¨9”75—ò¡¨é”/åGùS” HQÁ”+5˜:BM¡Ü©¾Tʜ⩔@ ¤,(š²#QÆäñfêHo ÿ0²3Š0Úat^â'Y-yhleœdœkü\:@ºXz˜±e’™­Ì ¦yÏF°¹\Nιqs¹®†ÓôòéUÕëµÉ “ “*8n&V£B1¬!©Ð¼¾É½ ¶ª-øõb‘ /jƒ2–¯}µþéݲE2üµ¨`5WGÈxG7¥Œñä´,yŸÑ$Ú7ѧ4P­‘À!ñ”€G:Yco죵[ùìLƒ—7Ø^žã.<¿êŽâ~3ÝÆ„5üµ¦N¹™.!£Uìj¥Ë;%:; *pvhÆÎÈMI‰ ñ÷J´AØaÓÒauÞ×f>H}`:zõòDr£˜õQk“W©”!AÉnˆÃÀƒÑ Ö7®¬T“IÛ£ÜÁBmíšIª5†T/k,øÚ¬Úà0s!²"½q`¥&ƒ· a¹œwôFa‹ã‚¸Ç,oïÎðµ°2Pøíæ$Ü÷žä8.¬úBßk-Ïäfð”ยpC¡ù}bÜ‚¿uÿ/±9`^uØM\;Ë;æf¯ÏYk‰.žëÆñ¡/‚›z¼¤u‰ š [Þø^Ç}H6fSí&–ÅA?¥¼yÅõìâL”08jΞóâwÈ”­ÞóÍž ¥œ“‡ûÔÍ„¡$þAmµ¯›çŸ·9$Ÿ¼ß÷{ÕT:¸âü±º{§T¹238žÑ ÚÕÑíj 䓸\`˜+æíû‹^ÁDžRÕØ—»­DVÏ~µiÍ–•ˆK\[P*ü”%¡B¨m…òBZÝ)öåÐ.àöNr ®Ó÷†º1”ÐÞ­‡†(æµjÈSOk´àWˆ™Å"W\Éòá>Îþ±goËDÖU?’u® ÿCÆ{7¡Š#÷9OÝ0Òpz ĈEÒÑ ©wà Ñ,!P_$íö :6ÑeØ­–ˆ?Të6oD§úrÏa9Üb;}+±à¼,.Q–žºV¹y6ׯäß9}´qÎ-‰’/c·$f­ö]‡MVem\¼:xiJ òåìï†üënuqÍ ÙöÈÃ5hÚ™[’Ïáà+ %ëW¦e$§,ürââW_9UÒ±[þl×Þ¼’ÝÜßA_„ƒxÃvCØæ8 ›C˜Ôž/\€ƒp¡ôƒ!,pŒ´‹é–cD¡Ô îD‘j¨"zŒ®Ñ)…ÊÆ{,_|¶ZÕ` ²‚'¸‡å^Ÿ§†ÆÉá( #p‘ÐÙ#Ä O…(nªVÝ€BZDÆÃõöxˆh/Ç€¾x±kvBVvœ¾ÊÍÊ㦱{×íÝxAG¿=ðýáý{|_Ù:³AÿSåq"ÉÅðZØxy͉åG+z]Z;bcì‰Ý:` ý7€ù&{‚XoÄ9D4B?°¨iþµþÂBÏCH¨A4k ÅCMXzÂEßÕ›J§‰î ¸™…;bé§pÖ@éDâz‚‡+>È$U‡—øÇVã0'cŸ§˜ë•Gj/ÊùUÓ²x¥+t\›‚Íåü Ügæd'‡à'`f·žü*떯Χ~¤eZ‰n1ê¤ïdôýÅNéˆJ­¨eÄ>z­ô]7+MàWÎM´X«ÔòMùª3ÉO'WÙ÷#Fc öÀÖ0LÕuÀ‘¼3¦G'ú¡YhÞÁ%–ûúØ–*.·NÈïºq» qí7üG“öpœH„˜µl µ¤øv œ[™“û÷Éߊ¶ì—ÝgWä­É!5ç3š|œo½>Z-Fk …UõÐß@é\'5p²É‚·G SY¾ëvlL‰¿%æ° žâT4ãâ,ù™˜Ê´t],¹p—Ke±"n¶wBÉÍõ²ñÌ»¦``PºsèDz³{jô刹–OÁéA‚¶ÒÆüçÎ.Q À€ÊGOå‡a†®W“!©ï–©šLÃ|(9¼~U¡ì`VAJàzæ„6ðÊpy3æÈàkiÝòêùÝ6WÂk'Ø‘ð]õEj†­SO°n#È!‰m¥á»N ¼×Y °¾U"|ýÁ²“ùXcTH_'~fÐ…!‚Ì“ðÁ¥Ò7 þ^’Öï/U08 §I»Ýh¯k“€=y0გøÑ=üdâ¥~üÉC¯•åï=ºr«îç“ñ~2üÁp`ØÞ:çoØŠCÙç‘U¶>±™¡sd)Wcú"ŽwôAÑKçrY³?½{|êV „ RjÃà!úgx’øLú'Ë¡diÃ@È¥ô&ˆ/aŠþeþᇇÞl^ÚÐ[ÈŸß%Z턆‹O¢{;7‘¾ÒßÉ Kü‹æÉø7“â…º Á»ÆÂg ø½ß…/º1ñ ‡9Ø)4–ÏŸî?g¾Ç´¹îÕ•_h”óop¥±öf¸ëøÐG—kjõ«†¾ñ¢êiñ ú1‡!šÅIt§Ðwà[ ~8øßü`˜îô›ÿ»sµ¤' ü§özóáô0Ã-zKkÞJ ü­`có–ééÚÍÍôù(í@‰.JðG!ª„91Aö[pøëÒ/íÁ®•|dƒlÙoÑwd •¡%~ˆs3~qɇ㘘Ѷc¢‡Y0ëÒ‹=º¤a—V»Ä\AŸ«ÕEÍdS0½|¶ZÉŠiÄ2RÊ;$âV ïÅ|{ý‡RÍåW5ƒþYs¹iÐô+±gbK?ßç‹Æ"¿”¸à´ø5ó7{qZfkùö£»Š‹Ïÿt¸q-7æ†170Qî0œ°Ào=v,¦ô´qña“¹(ï˜N»K¡YØÉ”æH»*ç1ËaTtù›oädJ‡$ì]|Ê·>©‹LêÏ50¤#©rüQ9ß~÷ȉŠ_†€Ù¤l‰m¦ºáQ›dZ&ç|ÞÁ Ï\8xqÍ—æMÊRÆ})O_›²1h ×=Ø=¦¡…Ðîvׂû»ÇÖâ‚7êäcX¨z,à4Òàö_Ó4ƒƒ†'@R z#f–~ ô s®âǽW÷âF€õðРQîÑgZ2Iлf,)Zz6òAJ ÚæÕ[°Ř—Ø*jÑjåBy Ì‘By p«ùvá{Bñ 8M¬o µ¸©÷1…ÜOBìŒùÓ—;#,¹}ÓÊO‡ýœBF2Xv½9 Û‰yŸˆÔÙñòð¸úò5úûΗ##ÎEh¯µ0ibPݯڛ·4††j–Q,í°]Ōڤ³wY^þŽü­[ó¶í05=—·c;YäoÛfÚ‡¢þ PV!éendstream endobj 200 0 obj << /Filter /FlateDecode /Length 168 >> stream xœ35ѳP0P°b 3C…C.=C aŒä\®Bc ° Pa ĺ@@`ddnRâäÉ¥ïé«PRTšÊ¥TÏ¥ïTÌ¥ïତ\¢fÇré»é;;»¹66úÞ º@çüœÒܼb ;;.Oµ1"bôÄ>k}R²h=ôlúä€ÿ„ÁïÅJ§û  \®ž \H+PAendstream endobj 201 0 obj << /Filter /FlateDecode /Length 162 >> stream xœ]O1ƒ0 Üó ÿ „Jí‚XèÂЪjûà8(NÂÐß—èÐá,ïN>Ë®¿öìÈGôø¢Ö±‰4û%"Á@£c¡j0ÓÎÊÄI!»›ïO X d7~×Ég­ª²R[½¡9h¤¨y$ÑTUÛXÛ bó'íÁîΓj êËé\ü‡’£¹Äqp‰‘8•¦¥I.à˜~Ïr Vˆ/*ÉS+endstream endobj 202 0 obj << /Filter /FlateDecode /Length 4141 >> stream xœ­[[ܸ±>ÏsòòÐ0@3­ˆw28 °Yd±NÖ² žPznʪG³­¶Ç“žçTI5I©ÇžµáKj^ŠdÕW_k~\55[5ø/ü¿Ýýú{îV·ãY³º=ûñŒÑ¯«ðßv·úý´°¾Ô®qluqs滲³ºnôÊ(S;¡V»³·Õ_×MÝ(aXãªëõ_,´³Õ?“Úñе÷ëzÚêMÖòiÍuí¬Qùûsì ꦱÕwÙ/Ã}2ö]:Ïþ*N¢«oC夵Uµ>¾ÐÈFÕ›n»æ¸-ó¡²û(Ѝ¾ýOÚ¬÷Í4ך›¿_üöNf{'„ª„í»¸:«Ìúâ_g)ÙjŸ­Öøõí´l#µ¨`«ví!|r>W¸¨ÆÖNóê0„g§`‡7(¹f8€h\ÍE•õûð@’JË«.«5Êç\­g+^[cQDë(Ö¯¿W™àV+¥»Ú¤Mæ›êf3›†Zêšá^¬ ‡°ÁÔ°ñ ó͵¼«¤áÛêrë°uÃªßÆ'ž«BXˆßò°"ßhX˜³a£ÿgiv[K+IÏ¢\´ª¥Ž…&¿Y´@€Jú&o+¡Åq<]AÄÌgM­ó‚ š¦ÑBªz½‘ÌÙê«{Üxòí8‚FDûÙ¦›ÖMZäߣiümm9ö°UÛÇϲèîL:.Tõóu:Lið^ù«Ô(³‘‚v6dºGck¤qÕ!뼿V`((\ÛÓÆm8j´– V¢V GЖêë׸áÖŒÈÃÌÌl8 *8.Æ?Ö#½Ÿv©ž†`uk`sîqh0AmÍPVÅ«]Ûw0ÇÉü,ÖUà >ËÚ)gœöÌÏ(¡ï‡nGèc…¬Þ'Ø…¾NT}÷m“"·‰¾[3ØPiÀ­£h„  ~ŒQ¥™vBí±–¶ÓÀö¾ùîǃ÷;#ó3mã†J‚!X¾AÒÁñ éä¬]]|wvñ«·ÕàKrÓÈêÐv÷sßq<9Dq… ‡ëö6˜OE7Á”®#Œ‰™šYmisØ·÷Éé7É˰ßeÝÌgrv€Ù"K‘,Èk'$Ú÷7Ýýa Em¸‰²Ý$SÀ‰,aÓqF„‘OA1  !±aìÓ86 hç…ØÂ5yЂZ9w.`'¼°ßÿn½Q¤¡wþ2.ó²ºko¯û~ØÞ}ÓÎc#]=´û¾-1(I?XV½Ú.«~¸ý'XoßÝ__®_]®A玲= [S[ ô+ëeáµ #ƒwþåzà ¡3ÓW†_ Q¦þŒ¡n1ß.ÀQ:8’¦aŒ‰øIÓ'¡™Y/y{08Å`·‚Âÿy@”ãš /žö€?XÏñó` xV5™›7ˆ!ÕÚŸ'šr•cÙ±Çû®Ã¼Rã“Uî*24C°ÙBG½¬ÀDJû öÚä`“bk7÷"¡Õ1—v Œÿ!ãví.kYˆÚ¼û4$-}k#}ÖºÚ¾oßm }‚}Ïì**_¤‚a*`%cÖm›jFÈDóS(ò&te󜓥››ôrhš†¼ô7“š'RøàÝ€Û 42 'ñãÇt*RnêŠ?ÚC7ºìp[Œ4b°ª2/zsÊÐãiøˆì9òx|Á¸Í€rvي2[=öÌB;ظê}G´G+ubkø ŒîÔÈdŠ ±ÉÛ Ù¨ÕÌz"F6úƒ'‚Ö”Tí®ÐöÀ× Š†€.Т <‚ħ¤ÔDß|#tKÝ %ÂF+t'ö(*‹ŠªÝhÕ{zjx* ·óXU2$ÚU†1]Š·¡µ§g‰Y1x6Oûᦃø{‰ÝÀ01ŠÖWmy–L–/N0±œv²ÚòHÄÝý__¿(ˆ¬5g.J2„ rÿ:uÊÛÔ.#ضv¨` m“L“ó•̇ƒ™¹qÎMéˆ<™)ILMØ>èï £IYÀ °Gc憘eC6\!U…“J•h7„Pÿ.(J‘ü`¶¦ ºRÔSŒÉqj¤rŠšˆ³è|´¹)¢ãifÑΈÎ-Ñ…eFnj O9½bš2rg,yrd»@ÝE­µqQ¹Ùr£áÚ©<}’÷Õóâò¦¶Èö¿¸¸ü“Å¥H<œg›]åÓ±('òåÔ/ÉÈ,rÀ€Õ_¿ÏcsY=z;”\¥nDoøM@¸,î£hÏNLï!îC«ÿßä¿"—A 9–qùñþÖÏ€±€áõp¤?^V»ö°½»„€½:¯îr_^ßäãbx¹Ž-ÿüÕù1Ì^¸Â†(F˜[’8›•¿šÂÕ/6iÈq"Õ†MÛ{Q¦¤ÐåxðJ‡*„›(•‡ºñ]Ò¢?Pò¹%}' Ý‹ŒÌzÀÁ³˜¨Ê¨Tw{*3ž(Î’Xˆ®Ú}Œ-Ã1N ‹É>ï(¯Âl‚ à8u²âw<žÂ-îe!ç¹ï‡yº6ÌÙ0‡6gp’"‹Ý÷ÇMlÇõŒoÍ“h­pD…‘ã톉‹”ĸó4VhdMqÒ»ô: Ýwcvò °S0ð‹mWßõ‹©Uk)25ÝÕJÏ`"¥ºëë~x\cš• ßß=Ä4‹¨aµ¾Š è 6LؼÚ×÷y0YžÖa>„Ãã¸Ó7L%‹&¬ð‹Nç_˜œÌÛ#eö… ëøÝ´ˆÛ´åÇ©E65ô4:¤‘J¨ü ƒOEÉraôþS2P3dqH’Š{"¯—:Š‘oj…QŽRºÉÙ| =ó?ѱ>ŒÅ ÝAé½5´ÁÜôÌ&±¯VyôŸÒÅ…ñ* Wdè" UN•ýi‘- \3„Ù—ãŠ,DÆt ü\\P†@wœ ’$aþxö3MБÇçKÁç$¥K¬_ô‹ÉuJ`Û)ÎÊñºW••ÄA8àcS|ìP‰Ü`|O1)Ä@O‹ˆµ±®æF„|µeó|õC?áÀe=çœÅI 0êXµáÞ°´ôB²°xäÕ.ø5 Úv2ïÙ‡‘Yî·w»vÿF o{¼îÃ7\I®J‘S24âµ–òsMÄy`+‡“‰†Íx:A‹gaº/üêõ×Akâµì.Îþræ+ÔjºÂ@.V`v§vÅAD(†%ß¾K®îŸ!ae-c¢ põ§§&Ù«³N¥©ØpVµU.›x¢p‚ÎàÑßÑ)c¥¬bÉÕ)™"W&!àÀ‘ž &в¸bóLWœ’¸er7ê æWRúîØ'+«o/‹ úì-O¯Rú× .ÜIÀú£.“«Ô×f‘ÜØº÷xÿ’ÀOa_ºÌžr$û6æ^E€Ø“ŠÃ óÛî$ðµÝ&4rº¼oÃàh»'wsÌDÝwáP¹33Ëó§çfþyV'•­…d+¼¶±¡®ç#e.?ÙPl­µNfBÜ€müÌ€/‡oé°`Ò.ø¥#*&ér6t]ûòáïmó”ÖÌMh†¯éøS ý{ÒV§ò\š.~NÅ ceo”f‰IdsŸ9ØÃ” x òQBÅ?c"ð¤†Æ9½]N÷ä fW¡Lê©Ó½Bö æ·  æëvß¡¯T‰u*‡³¾(¦ÿ€‹÷l0Üc˜nÉ%sŽë‡æäÛ‡æÜ_ƒ’x,fK ¸À¯Ò{“.yYL[ã= ãõ¡¯¯¯ XÇñ*r–¦÷Gž#7ᾦâšåÒ!¦²zªtßy¢±$¸6€Ö‚ä… ‰¾¯ÃÅè÷Ey Œri­n‡}ž[Ûù_1ŸÕD*z~)D"×™C¤"õûÂÙÈš3¹â’ÕvrVûØ]ãzи65àL}{Ú\’"û“•Ë úIXÉXº’/„Á¦fJdã«ÏaP,“‹z0ØÐ/›@AÍL³5^%¯ŒCŒ°·ÁÞN•RÝt·‹å[ Hã‡ù £¨]›çlc›XÜÊÂ&–ðþHW!ºšßµ¦F°o} š™×Cì‡Û=-Á áÝ!&ën£°‹·pGþk¼ ·Õ(¯„ÇÚÛe¿ú'ôŒŽˆe€P µâ°;¼ VtzõÅr?¡³Z™Kfþ2ZoÕsf+ºðwð éÒö}ÜZ³Äû%“óþ¨hT0G!Éý 'pîx§j4²ã͵­àéa,PfZú9;ËÈÎV޵ó¡Op ξ¾ s-B&~í[5F…@CºÍ+–¿r7Ù`>(’ Ùy™AXÆ»qÁ‘“yÓñ¥!:˜É9¥™i~Å_Xœ4íww†äi/—á´k!bÍøs·Ëàšµ™ª§ÐMÈgB·P=öM•‘9‹=•‚žñË´È,&ûr~I©éÀ/©Œ²¼xÈÒÑ©¡Ì‹ß)q%rÙöO‡®d#Ç"©:¦v`k)!Ç}9 Ÿò٢栨 /¢^½ñXg„kDEuöÈ+a/¯19ƒYkˆw¯ºöö~ILñcÎtK¯Òa¥àbB©¡˜>&”¼Œ@<Û´¶/ÛçÕ:b…<=+¼;þ _Ì€ÅÂ6§ã½¥»;TmØ)Üóo8 1˜(¢–T±bò”çŒoŒÅ<;34óTVFÑçå"¬†8î“ìHA¨°Hqûv Ìš¢üD*þH¡ÍÊÇsà:G£o(Æ ªBîo¡)C‘%6ÔŘ*OHÓ>‚î>úHxfŘ¡ãÉê~áŠø*ã3×àEN្ ¡ ð(G•Õ†üŒ£?õÁ²Åìx?ýb/~(wuÜfC¨%Áó ãŒ|1_ú•Á¢ÑSU:G/Lî]U®Rw©çHœ­õ±4lùÓ•VÏ$sýúTJ 3Mö0åÌN(Þ>ÌÚàîïJe¼¡Êø,`öR–×ÖÁ)™|ëÊDÓÄÿ‘qNþÉ£ç7ÝmFª¾0jÂ1IðŒóÚ„¼l?6Ñ(L|ûñ; ‰qx®ÍT†±|‰1+¶÷5wÝöîx•šVÛ_?tWפR±žýa?< {4°WI]Çï7–êõ½2ÄÞo¯Ú§ñï¯ÂM mÒ_Îþ Aƒ endstream endobj 203 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4022 >> stream xœ­X TTåÚÞÃÀì-(ÛÈÚC&Þ%ÓÊ0óFÞP“¼&ŠÈ}d¸_$`¸ 3óÎ;Êu``+Š)(H jiPzJÇÔ¿“¥v³“æÉoÓG«ÿAë?¿Õú×ú×fÁbóÍ·¿ý>—÷yQÖV”H$³zÍ:Å®À(Ï™ë‚Cä±–›“„ñ"á+áY1`ýÏã³lÀ^ öÖ=ϰZ'tf JtDoަÄ"цP…—":%6<4,Þmö¬YsfÎ$ß=Ýv¤¸-ñpó ŠT$ÅE†»FítóöXãáö¦"‰Ü w›¢ˆrÛ(qS„¸ùotó÷]ºÎ×mùºµþ>¾S=þóX~§(jÒâ(Etl\üŠ„¤À)Akv‡„†…ûúEÊwÍ÷`ÊÔRY/Î~‰¢&Pk)ê-Ê—ò£ü©©Ôzj#µ„ò¢6SoPÔRjµœZA­¤¼©—¨—©ÕÔêMÊ…O]¥FQ¶ÔS”‚r¤ÆPNKI©É¤Z”5•%rÅY‰¬äâgÅÑÖc¬å6m:%ó$—é—è~&œ¹<ÊÛöEÛn»çìnÛo°¿÷Ô+¹C“ãBÇ½Žƒ£_ýæè˜Ñ?Œ™?æ Ó(tÀáW±O¶ð–$Ñ`ü8~7½”E™fœ4H»¨ÊÔ{R!4¹¹©8rè¶KFD|Ø-#§¡Ú…§×évóPEú|}~'’º RIžnÌÔ©AåºËb89}Üp :€Á.¨DŠ•d‹®Ù8'¿Í§™œõ pf•±q<Íúm„XÐò ò£á3hRŒ7—mؾ,MÁhïHØ&ì®´‘Ó‹r6Ëp5½U +És:õUºpʴ݆§W*¡C†¼i¶è§ONõ~P¶y-‡SŸ¸ÖáW+Ñ”Ò,L3‰šn C7ÄB2 —"ççïcGÌNrÃcñ˜ûS#bïÞEŽÜËER·b·)¶nM „MhŠ7¦MÛM^³ΚŽ6Ÿ|¯âœ…£‘ÕáuºÈÆëy4Än™køÝf§¨ö†3;E8€äRä4õlë¿)aG0×K³ðËûõän— …ýéûyÒ 1-ƒìÕwÈYöò8,Y>g^@pÃÁ8.½ôPÅ hšµ}¿åtuÛøOϽˆ)™ƒ0‰ÿ\[5/oszÐÿàKgÖG%Œ–îßÕ°60pM<§½/aïà O¨s·¾LwKðO¢—¨KZeh}´MFNKk´©ÇD×쮫©«hæ~‡PJ’˜PC­¨å$J?)$h¬Ž'5&Ô…-\\“¿¤ Î2ûëÚn#ªðÕX=§Ë€Ü2`Ê¡°Jö½Š2TÈHç4š¬¬\•¼V^náTÄ’‘å1u ²ùᜓY'3÷ªkwg›’!˜™3 ÒÜc>ïÉàÔÅÚ‚ `Ò ;E†ÇÒ»!«´@§«ÚÇ JÊòóÛvt¨M¤„Ží—.ÈÈ­6°äQ /Bn·Pï-ñ`ô8>ž^ !jéV}ɮޗ¨}a+¹|!ÀÀÈëè+zeˆ §á^”öçk†jér/—7œ!Tì€3p\Í;|Ú\αKó›BÛÇ›z+®Éð’SRÖ4mÑ®mookyïã³G3 8 P&ô©Õ„BÚDú‘‰˜ÕC3å.¶_þvXt‡.ÐÃò³¡¯Ítëy~Û{Šp}ì:)¼»>&(!r‡|=@p}\kZ è,n±&–®+©léèª< íp$®!°a»Þ"-Uá4å%ïTýyöçÎl“°÷!®‘j9¤ƒä:…žàÔ¡PÈe^f^ö$œå‚­QE.Ñ3€kC ÔX`«Õ°vZ`:UšÒh4{ˆv‰õIXµÜ\caw™Zϰw÷èÌ{ZžnH®ŒMIh 9õQûû§ë9´Rx­¤aßÑ>½+‘íù‰lÑ¡ÛMfQË ´ík±°ÙIK• V‚fw.¿Ì7f#0«ÍnðùEp8­*è~ª£ÛT,Åc~˜„ì.o¯Ù'[E³S(äl ) ~'‘a Ûä[“ƒÆo‡ ú˜¶˜vͰ: ºŽÔî?ÊwCIl .M-$ºˆ>œa%¬-xØ\Õ‡Q)Tdeªsò´\¸ûlÍ;°v4Æ·DtiÏAƒKjó¡æGßoI絟ù<ÿ=9 ‡®u²åèi)Γ![•f8 çux¬åQól‰Ç 6<ÊãcIª°é‡›Æ›ÎìDÁjÐAz8ø€ÇžÝÓg² ÓóåWñ?þ¤¡ †ÇvȆfÇÞî:ÞαŠ¡XSL¨Lº[,S•bjÜWÕÀ »ÞшV÷^kD9NMg⮤ŸAÏ\i9ãÌŽ¥„®¹¹¾¾Ùb³ fÖ™QŠÌÈÓìt¶ï§>4»Ï™u¦„b´F gÅ5o?Pâ]1§Æåµê˜>8Æ\èéû'’žš>©œ3$ëT¥L ùÓÕ°'#G«ÍÈáÒSŠË"6ì®ÞðÞL`ØH%5w–ûë[òU²ãÛö©âzr‘æ@8ƒ}–o^4k&ä™-Ó¹§?L1I26K‰ýé$È.-ÔéJ ¹²}™éN}¸öjf 2×x J˜˜ÖU’7ü„Ò$”`ó -I 6fI9ò¬nBÓˆÛ7vïËÓen“ïLàvÊ%‡ ÈŠø;‡H’ØIO€Š‹ÛAƒ®¨ÚX¬o„}@6¨Ž*Çž#ÍaX‚1Ãɉû“%Ô`" Nz‚a߯ÿ÷Ÿw¼{ÑàÊÓa$ „¶2¸Èé miiõÉ©éYÙø9lç"ÄÐ,ÿDê ±‰Õ6#¤¹K÷õÜÁΕ {2 Í5S!·,¡ MD)Mj×G„!þma¯ 9R+*7òaášýÛò³:a¯¶ËÂ:ñÆjdl‰5 .¡–/g6opÀ¢„ ¿SÂ`ŽheXÇúÄ Ò­ã½`s b}ÆA‡æÂk°yCâVFû½„5ÿŸF#¢>}ïÜé};—þ‘4~[ü—K‡½K›(|vm’y“~™7è"Åz vu™ºŠQH"p0ቱnÏ™²Ò‚«PNÈ"™Žñ8¼<Ï…u®Jèè„ce\ hr-bº/!7äëRTBYÍ#­" E"Jô%¢Äh£ðÔcÉEÕÇÉ™š8üë¦8¹õ› ÌÜqjº‘çúšúÿÿç3v^)8Ik¢£££kkj9´lÜÿº7ÈÑã2™d25Ùj•^]˜#{²ÂÏ> øù¼»ãñu^¨µ>»¸ôÖ%$êáN|Wÿ# û0ð¢DäOÀ@Þ&1 ÒKÿÓº3,9::º*ú ©¢’dsÏ…^\ž TŒª §°äúd;‚*4‰@(,”š†ŠcéÇ Û#ý LƒN&Ñ‘¨œ„Ö]è².¨o„}²í›…õoÁZX·mzä2Õ‚sÛWÍ >kÌË¥RXs3}±dqf,ì¯òdd“ùÜ p^„«¥§«oöíkÃЛTåQâ¯Ãê¢_jåûHM“®ˆ…7Æñ‘´‡º”D·3´I«åÖ¬zŒ$¶VÁyèi`†È¨¤Îðà"-6xŽ’ë–ÅG6»†îݿNjNÞG‘_‰…h©T!Ѥgû¤§æf-#šÁË$ÿú½Š&œï†{®ˆžqp•~}Ö¬Míª¢ÚæÊC͉µr•´y\}ßþ`Ì}Á«[6Èð*¼YI2+Ä» ¬äÑñÑÓ¼@Î~Àòÿ O)ï.l&m¥09C«MËâðGC!6rÔð29·r— —ôþNÒv>\²$D>^d‰67èżƒ ±qH¨¼ö¢¨’‚Z o{ËŽ³µöóÛf? ìíêuzrɘ\ø¾½½Ù`ÚSh(5ŒùöOQÔoõ^mendstream endobj 204 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2183 >> stream xœ}U{TWŸ˜ŒŠ2M¡R'iݺ”åøX‹vß+–‡ >AÞáH€$HˆˆÔ7„7J€@ ’Q”‡EmÚTæ(T#Õeë²»ê®uk»íÙ;{®ì°ÐvÏÎÌ™sîœïÞß7¿ßïû>æì„q8œEJ%R¿•¡ ‰ŠÔ˜LÇ·eŒ'‡yˉYÂý)ãœ\€+¸:ÛÞšûÔ¾£ÂÝ‹0.‡³_”¶Ušž“™œ˜$®òõ]½r%ûöÆæ·øbâÄR¥Lœ,Œ‘Ä |}„AR%û1YøžT"ŒMHŠI ¥"áÞ„Âð°í¡a¡Áá!aË}~–ÕôÃ0R’)“+v)cbsâD¡Éaiþ>Œ…a{±plæ…À¶`[±CØvl¶[`k° ìml!ö:ûǘ3¦Ážp´œNQNmÜÜϽœí.A.çpwü3ÞRžÈ#^ÎY­  ¡¦Ýþa‡!vw²9ÝÁ·¦5•ø7‡úü""sS(rÄ\\KmÂó¤@œÒ ‚^d‹šYÁßâµfÐáØ)ˆ‚›qÒòϱÎZY…db^ž„3;â¼&㳡‹ë˨‚o<Ú÷~臲ðÃT;±¯J¦3®ž©üÙ6̬`^ka!¥,$âÂy8)üööÄ(½È\xÍMõfÎ ú ´œv»KÃjÚô`¢  ¤¶Ë qg–­4Ä”ïª]Ä™ó“'úd…Ž*‘¶‚J@Â.ÐlÐTh ÀÇ ¼ätYE 0,I9ŽÝ*VÀìSU'ÙÝ–b¸}ï¡+*Õö’oPKq’üÌ¢ £GQgfu ¤9ÙéqíÑ×Fm7',¸œÙSÌ ¬äÍÊ’Ú `"^É2èàÄí¬ƒwR=ãsF÷?|¾Wãš÷±%ÍõöF¯ ÈB´ð±ÄúzêÏcI¹—¨i[£5pŸ´†Yï¿#äÎ_þFß¾7teøTyAþ0œOs>}«Ç¸L<äð›ÔUŠ< PP²ÐÝ ìëÎ*Ÿ°o4óøñÑ‚ï¢yhÑ÷ïÁ×áâ¾Ç-‚MðW|TÿtëÂÀ(¸YáO¼j˜Ð•-©V…]ÌUþM? Þ¸>ú7ÔAŽlËfU‘eÆôË  ΙéÓhN?~ҧ7©šacŒÏøg¥ àXH)¦>*JTg‚Ë༠…ÒX%ÍZ=AþpÍÚvõ³Å¿Bs(´sªÂΰ­ºå¥B6³‚ pC+›CP d0þ>ÞZŠ-ùwS6Ç.A ¥ALÿ-ªNÏ›­·zh|ÁŠö¡vÀøüiwÈ‘gˆý;7˜ôÝ&6ËLôt£yçUGCïΚ.ȆÌZ¶©Cú¢eLß,o–Jår©´Yn677›¢æÓ  Ý®ÂòÑèQw2I…ø £ ;õBü刚Äʬ²-õšÒ#5‰ç@/1pùòÈ3ød–R¥iõÅu€˜œð žc|( 4i…Txwˆ>“õgÓkÃ-¢ê£‚‹Qm…÷s«Oލôìȱ +’ïÛWU—NEšµ‹ÅuÅIÓÃñ'§‰©êt[Õ/¦ó¯²LÜýëãÙcõêÄ;90é`»Á1ž @çUǃƒ±TQiv8Û]RŽKXòÇ-Z%ÈñL™ÒÉ:ÈÆKRL›êñ”dì!¸G<ºØßÝx:/B¹¼É4Ÿ_ü$èÿ„Lu®~šØ§wèÏìÍeä_ñÛÒÀ±œ“@“GÉ䉹q€xÇû(„¿~ñÍ‹k†¨V ©ÌªbÙóÛ½qÑÜ¿±+_÷@ÿaUhZ‚"´m‡óÑbøöãG×ÛÁPÆ_7x¼×Ææâï@’C’ Þâw¥¶ŠEé©bQ{zGWk{µ ¿†ÙZW«×áô\û> stream xœcd`ab`ddðñ NÌ+¶Ô JM/ÍI,‰©ÿfü!ÃôC–¹»ûÇ—Ÿ^¬=<ŒÝ<ÌÝ<,¿oú$øÝŸÿ»3#cxZ®s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kê¡9 Êe``` b`0f`bdd‰ú¾†ï?ÓÌÇ Ê¾Ÿ?ó}ò1¡7/¾w<ê~$.ÌñS@ìwÜ÷›¬Â_>.¿|ù®Ô§ß÷+Ëýžð×ëÅ÷óßMؾý>ÏZñ£_ÔËÏ÷7¿Üoõï“¿«³}ç8ì,ÏWºðGÀœï¡ ç.d;Ãõš[Ž‹%$$ž‡³›‡{Û쾞޾žžž S§òðïŸÚ××ÛÓÓÛ3±‡—fƒlendstream endobj 206 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1958 >> stream xœ}UyPwîaŽnAiFPÜžñЦT¢+YÝ5*‚)AC1  ÎpŒ\¢‚È5†ûPQA‘A¼:jib£F¥RÆ­¸[ni\¯³eíkëgU¶Gâj*»ûOÿñ{]ï½ï}ß{Ÿ„’¹P‰dÂêà0Ó–Xã Ý–¤ùóæ†éô[SbÓ‘÷‰0ÙEøƒȦ—Ã/ƒäà*WÙ…ÉÌI¬©î¸i%•H¢RrüM©9éIúD³zÁ¼y~sçŠß?ªµ9êå¾ê Ø8ƒ)+äŽ5Æ«ƒ|ƒ}ÕkLYâc’z–ɨÖêcSÔ¦õ:]´:"< ,\½2,$"4ü}ßÿÚÛo)Šo4¥¦¥g˜·fÆÆÅëôI)[(*„ ¥ÖRaT8µŽŠ "©(j9µ‚  ©O© *˜ZCyˆè)¥§®H‚%.ž.'¥£¥FéYˆì„|‰ü¨¢@q“–ÒUØíö‹Ël+<îåûy“Ýã!*ð#Tx±ß g'𸗾•qHý£µ!FÎò\Á>$K åúr Ä«Èå@ Vô(•‹ÿêh¶¥·ù³Íû‹ý8r8H º[ånBi‘C`í’#è‰!è) hR⿇dQ~°€Ì Ó-B½¸‹jŽxÖ+AQIñ f=$€î@þÉÂn‚àáó:[}_ïÁ^8ÝÆ:C]2l„MÌ Éã» á »"(ôôbÇ ­˜¡Ä™¾ßYLìvcw‚fŸ’'ŠVØ e­¥PYÌ«êß   fôììGÿüœ­"žˆ:*rÃæ”ΣٶЬgWû±öS>竈»JìÀ}ðMã’nì”J;‰TòÂ#-êÐ …‰D1} ™Mæ<û]zmv ©-Æï”°²’M&CQ.0Qñ×ÑÕÎð_÷.׈e$¶A'_Wíàäë.RwÑÍ‹ ¦ 2å—¡7Åf|º•³dçµ¶¬ÎN[›ƒó[Ò¨";6ÙžÙ$ÝÃχ›†¥ø UJ¸”Òµ½)¹[_£­ÕÔGÔÃfèfy뽪U™\y^EÉ~`AÕAÕ÷âXër ³òwïàrëMµ:`üýÒ§l8œÖ¸Se3ôžÞå(Ú ÁLhL^Œ¿‘¿–Ë•ì±X³É€"³ŠHèlØÕRS-\U垺*«ÃtöŠL¸÷ݼåAñJªÈÓ²p7áYE…†ÿ÷bÿ…G7åš:b[¢1®¶rhñ<‹áÚò‘‰(Þ+aô4Ûõ59¬ ÔÌ«ßu^äFäSdßÂ÷Û±ƒ×|ñv’{@ï†~•@ÑlYõv¦´âšU«-Îs¬+þH³ïFwÐ3¿1=í¸×û¸ò•ŠìËfð¡B˜¢äéô2£% °¹b{9£¡kNZòÊJ T’ÌÙh•_伔ȬrÍe§½UŸÖPÖ Û¡²¡º'ã ïêfkõˆú—<˜ì¤msεKâ(\€ ©`>¤„ýùå+4Aƒ)ôãe_÷dâU6sOöá.[Ûq›¹¸¶ÊÚŠ£À vl\©ÒÓdz)ñÚS™n ôœjã2!òw\±¿©H*” ƒ¶µæ>tAïÆŽ §tΈÒqî#ê㥂ŽRîÙy%–%Ü«–Räôçô[NÁçÌeÀq[ÊJ›¹]…ùÛÀ̼iëÚ²Ž?ï…óˆšÌzºXL7¹ e ïp%nÁ·v\ë¤K¬wà$lE¾`ÿc/h¶™ÙõRB阭52fæb2‹Ìùñ”ô79¦ÒÒìRê'ÛŸ¯7'˜b|Àؾ£/ÿ\Î7öìut·@Øóëœ#îrÊpu7.²{ˆÇíá±ûB1·dCqnYñöb.cÍÚÌ8±ž pü%Zí5åGîëqù€(çû‰èfü´½pÒ©ŸÛTsp’’„(ØÄsåV¤ïù<2ͬ/(ÙdÇ9OàIº?~¢·ë<:%R”"‡R/Ö…rDIÌëÑæéK“t+Ë?·¾ÒäCƆüù³Ö¸N³*%®4ò ¿b}¿aPÛŠÖ™Ã&m8½pþ7C7ЗLÂpkii —9X×ë}~w“=ç’º}5|û\jOAƒª±¶¡rO¥¥´¬ ˜ô}9ûZq$rŽ2ÖÂå³{qé9ºq‚×sO^UÆ'GO›©;}zð$ìã)nŸÈqn²òõ1{.rxçy â|↔ÛŽ-ø`a&Í^$Ëì]z{ÄܬrÖû†ðOåñDûgƒ..¶G‚·õ½>^¯ó ÷šxìLÔ‹í¢½ô¡ÙïÈàÕÙÀ_½é鲈7ö'ºÆ¯k?²ú{9üŽ®Ø•Êeß[l5€?Dk!ŒÓŸý??ü½âøÿ’»å7¡uÓVß àGãÔ1ÜhÙ:“ë(pÓm­,¯¨,¯©iºÚìêÊW—4Uï©­*o¨tKQÿS©endstream endobj 207 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2078 >> stream xœU{T“çÿB ~*ÔkÔlîKj‹®V‘iO{ªuQ9RŽËÔ*ÄpM¸…[Èry’ ! AnAV´jÑ):µºÙµUk·9{6íY·¾á|žÓ}‘zjwN·ýóó½ç=ïïò<Ïï¡aáaF[¸{O’°Wôæú]å¼Afèluð‡´àʰàè¥$o&m&5"éþÞʹå‹QÍ"”¶í^ˆÑi´}9EqÂbI© —_ÎÙ»iýzêû&'CÂÙÃIàeæ Åeù¯(‹“³'†óK¡˜:p~,,âddóy9a'%{?'5yGR2'>)1uoò+1ÿÆêÙ/†a Š„¥eå¢êìAr†%b{±d,KÅ~½ŠíǶaÛ±X<–€½†íÁR2±plœ¶ˆf [f¦¿E„7D¬ŒG|ɰÌY7ç+œú^ø:ìk±:op—’~¡mš|Œ^b¶Ê@-Õi*ê y®ps*àJ™¾§«õX³‡Ý~Òèp¿š9¼#î 7¿„PœÊéæA”Š%ÙÕ|i2¨q™šìÐè6î\ƒ½€;,Š‚ŠúšGúÕRÐBKÒ&·3¹ÏÚϧÇвF[ïé®.–ÝÞ×÷àC-yù¿:LΫJg׿ië¡Oú?DkÌE:räÒˆ~9oÒƒí¨—ùyâÈ%äròEruÌûÛ¢eh)ŠF/Û†˜À¯$é;óß9”ÏœÏíúxØýáivßùÉc£€Ïg¿ð5mðf©þœzwéÄ»CªƒQÌÑC©‰™¹‚2¢.À÷füŸRÛ\M¾fbµÌchÁ}`5A/tÔÊÊ Ûk]Ý%ŽÖu–‡üWÞ¥hlx-Ÿ¢× X&ôÊ»Å%Ýå¦ô–Bs®NàíŽ÷Ôò-DŽŠ¢¸¢©²ËÓá dúãȹܘ”­W¥GUÄ„< ‡}xQÙ’V’lž¨&&L0JÝï)oª«çjö&ŸÉø­F/BR£Bî.ó¡}bмL†¡—™Vhd:´žîॼ®Ê0Übô˜Üì›h"âS†Ó í69T³·0¨25¶YN™µº¸NT¥&²È؈×Uu ‘YÀÁþc;9 •5é¾´©/΢h U€°Õžö'Ó-éÁ[ßtcN]©&ªvIöå^©rxg‘¯¡#OL¬v©¥&_Y ÐÛÉUqÆîD`íWŸöžé¼ÖÿvKg£Üø»‚¾ôu9d´¢¶LmzSk#aîîùÛà«¶¤´®PUÉN#È3€‹¿rC<>:èò÷vî@uŒCÇH³³}ÐvŒ8ÅôÂDÞéÁ:íï¥ÏÌŸÙÈl®7)ór4 ¸f< ¸JF©µRj-Œvh·¶[cÔ%´j)‰?ÉY!‰KÚ‘ À³ËOáSÆÓF¯¸µRy@³ýíIîµ¾ußÃFó‚…Í}Mæq`µQ‡\ò­|æÒÆ+拜F“ô™´à\æ¹b[uEqE©ÜÐЬ ¬2—AVI¯Hó‹÷¾[sÑsÄÜkîa£X“Ç2MO½«–(‹TD )Ô5¨„PʱR\Y\UVY+<®;öÉá¯Ø–îFËÿhd:%Ï„Lœs_rr¤Ï}¢›èI™Rúà6ŒüÖ5îû`­‚søóÃüø:=8ôŸ ~u<×Y2‘RHe”»dààd8EF“¯FO¥\¹0v²ÃŶr—ú¿[82QÂTvÿ”Ê´Í-ûäQfbw_:yz ð‹-o¨@§‘‡¢àö–ç"†—¬ø‚©¶)šê¡´Z•"iÛfQà †®Œº\f™œ=­pBëÌâ6h³©p(êQ›]>{`âðp<¹”\F®"£7ÙúøÁg§~3D<Aù^ô…ƒß@:ÿ÷áÄ˼Ž9(Æïàtó@ÛõÞ–sвýñÑäÚõä.2üÒ®{³O¿ƒZ˜/“› G¯=2¶Q ×QX’µù:Fò¼ÎƒŠùÐ饕ÞA7¨ ãÎ,aÒ:²ö xrQ—ƈÈ9+âgG6ÔÄ—;ž`µoƒV²“¥*–¦òA":,F4áîêV‰¨¸*‡;*y8†Ö¢¥^âú(âîl2ÔQÉðã(Úh XÆ À Žê\¹¦êq±£¶ÝÓã$f>5þK„-FË.ø/._r=ü¾­älê´úØmƒ`pŽö?\ÑÒi= ®ÿÒŸe*qÕ!6?¦t§²BQbÖ·»e §#˜Ëì9Ê Â\¡§ºÓ×ß;@ÌîI‘o&¶—†Ò¦‘Z”HÆ;œøK|ÓfOŠC *C–M4@%óÝïö¨{{œP§Ñ”Z%eàTð™­z—‰˜D<½Qo#eƒµV¥ÓÉ•DZRÞÙT[°È…T+Ï'ñU÷ mj6ŠÊ먫€8Öº××müÙÖþvš1/<%…9"ç{½ÞШorZ"#Gô.Ê“Þ`1˜"£0ì_YTendstream endobj 208 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1425 >> stream xœu”}PeÇw9XVEÈÛ.Ml÷šF|K|AISDEàÐ|IFîCoãåDyùÝ!(†¼Èqp(É¡høÆ„ ¸™vΑš5j¥¥“¦VZúl³ÎÔÒ¡ 3ý³³ûÌóìçûû~¿»8æê‚á8>fYx8«agÍž®HHÌØ¨Ô ,úðÞ8?Á…K‚ޝú[âðp=3H—"Ýô±Zþ&ÁñU‰l«ÍÒ%'&¥ËgÏœé7}ºx «²ä¾ò0e\ «OKI–+5ñò0ßp_ùrV/.&Ë'³¹*!I¹qƒœÝ _‘°Z¾2:X-QD¬ŒŒžâûª¬çφÒhÓCõÊøEr4†E`QØJl*¶ Ä‚±%˜†ÍÁ<Äá0W,Çðx¼Ý%Øå†ä#Éi×4׫nÙÈæù‹Ën 8äàVqÒûv´Â>–:Á·ÊZSa ­ByÄØ“!ë Ù4Õß5qt(±%4š¨a:‡jè M"jZ uà$£B¡ÕúÀq¬‡«V+ha³ÊýÕ}Œ.è84›Cß Ø! ǧ¢2äõÞÃwcÖço£©6¨}™ü¬ýÉj¢YÛ¡éòÉÝ_Å„½1-$dñ¢ 7»ékîÔëgûúì—¹ÀY´_4€F^zM³#?»„_†¼df°¨S #“.‹Pä§ùt73¿û Œàÿ=±šRÔžEø»oÑj¹%T¾_%_îùmß#ú¹¿|‡£ ñí‹È<Ò,X†fyô¬`â°É,ýªËä=9¼–7HøbÞGÖªß$¸ÿ±÷‰»»ˆ5çVF·lîËo˲—T«!Šó²–êC 5%Yd± qn]DÍ>‘¬ ž¶B3sN¸[™TWÒoÓ.sÕÁºÞò}¤‘0æV° Ìš¶†z0ÃÎŽsèÞ¸fë ]Ebxh÷„“ž²#ƒ˜à:¾Ò9hªÞT¹…F÷o×oåTX¢mȱTÚLG4T¦j㨆&h›î ,h"K£ŠÃõk²—&BIm]|!ânÛùŠC§ij‘ÚÜ]zØ»¹Y$ e™*IÙ²“ÖA‰wdl[çOÛÑèá²ÄtINÚálVÎPµù*â@Ñîä—ëü>±¹NվȷgL¤ U(xÝšòØ~숥A¤+!÷3ú¢3ÁÍ•Q¶è˜€EAQWîÜw8.Ù»"W½hÕÍ^èEÞœ´Ï.Ž¥nðë.«,µl4æѺ¨°í˜¡¶~G¢“Dct ¡÷„1é;Ið¤LA^HÖu»… E´Œš/4{nÚ»/ÀïÐè¿c éåq1Šä´ÒpÒ[v´Ôo·ˆƒ6må«îÊÌÛö¤m*MÛVX—¥…ãgP™o¥s[ÓÌyU$ƒõ¶}ÚÓ3þ‡À…‘´°€ÈÑ ayVá´Å µ ‡ú’Økbï@KR [›2!=v<ƒ¦!¹.µ%çÍý‡á]ô§líúˆt Ò\!(ûåxÄZfØïæú)Jº&Jý’Ìd2ºéÌD7ÊSÁ!CGœþS3†o–YõfN¯×éÌz«Õl¶ÒÏmáë8üÔyÔy^ÂÇ¡y2ø:öxÉŽ¸NßæàúqªZõA8Ažéþ¼ÿê©8ÿ=t¹Á”»Hì53ˆq¯ ›YZ Ì£×SìLû°p¡_äÁøÊ"樲¾ø/ÝÕìúb+»7c·XrelÄü¹A?o§ËjËê7©ƒžh÷ͱ¿Ñ´ëh5ÝÛ_Ø $r»ôÓmÆ3¯šªFókÊ7Ò>Š麂õ£Z«ê&£ÑXn4WxxØšÄ[ñ#1}bªòaÿ4 ®endstream endobj 209 0 obj << /Filter /FlateDecode /Length 184 >> stream xœ]1à EwNÁ ÜTí±¤K†VUÛ 0C2ôö Nӡ÷ô°¿ù®ºþÒ{—yuOA?1së¼I8‡%iäŽÎ3Ü8¿DUO*²ª»ªøzGäëÚojÂêâHOb3é`pŽJcR~DÖÖµl­• ½ùk5›a°ûäA’ÄI²ö $iE,’PŸ ¢$¨†–ïkÊ?%ñë%%ô™Î¢Ø%­óø»<†X\|ûßÅ]endstream endobj 210 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 728 >> stream xœm_HSQÇÏñî_nM³FZ¶ÝdË\þÌ¥ÿdþCßbÚæ.n»â®éÐiƒlé¹sŽ©©©¸Y "ë!Ä—ˆ,ÈÀ‡^ {HzÓ äÜyìÏ5"çüø|~ßï@ „G+«ªLœµÎeofmÎóµæÖN›©cOé…ãPHŽNP¨b§?Z.E* ©$/¢L?„}qØä6Ú{¼Ããs¥l»«ƒiµrtvffNF†xçÑÍ.ºÄH—›ZÚØ.gC›×èrc•‘¾Ìv‰¡ÓXÝl¶šlšµÐõæ&º¡îbm]V[Ýp¥î”ñÿñþ¥&'gî`œmv‘™mf»ÙÁ1 ã`8—ÍÄqL‹™cÛ*;«À!ˆ }@*~?؆^¸Œ©Å.‚ giÐLÀã'†•D¬_óOÐlR`ðžUK iS8Ý7};Ì¢$r÷»ù9C4}£È+ÒþžÞî‰1¯ë+‰¾Âãí@ÝI¾ŽÇZlØì%™Ò[rïÍQn=@þÐà´§'byþ}—QÒÌ»S:1Ê«&P±ˆ÷~6kÂÈ­%2’‚ˆzË ¡V6Bá=¡ÛglÀê-œ‚¸à¯ E2RLN“dr‰\Ââ‹‹u¸è·HRoÏ‚ \€¯#;ªµÓm,Ëljӟ-K+×–­ !û|ÍóÊÙz¤ ê\H,‘­ Ç}ÿ²ºùN·šÏ£‡Îå«o»_Š›ÕëàXËkR KÏeW¬ai–öÉ›ÛX)Z¸lÈÕívqKuÞI"k¾­ýðþÓç•|"ÝQ,`îz4Y,}l‘Š£9ûÍÄË܈ãBhR‡—v™u†Ã(4©¼$ßïã{6Mˆ< Éc•ÚXªñH‘êR)#þ‘ ðó#ü¸JæGýü̸?èãUø OWLóendstream endobj 211 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 324 >> stream xœcd`ab`ddôñ NÌ+64Ð JM/ÍI, ªÿfü!ÃôC–¹»ûÇß^¬=<ŒÝ<ÌÝ<,¿¯ú*ø=ˆÿ»¿3#cxz¾s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kê¡» Æg``` b`0f`bdd ù¾†ï?SëU†eß/žø>ã0ãë‡ßoÝaþñWìwÔ÷[ŸVž»Ô}GòÝoÆG¿•å~·þõzøýâw#¶ï¿/²–ÿ˜ êâð›Kî·Ê÷ßUؾsœ p‘ç+]ø#`Î÷ð…³²àºÉ-ÇÅÏÃÙÍýyVôöÑTž#3zûú@| —‡—ЂVendstream endobj 212 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1358 >> stream xœm“kLSgÇO[À£V˜°FpxÚ%‹ÑM ê’]¾è4‹Ž¨¨H‘– …^è…RZ ú´”–¶ô´Ôr BUYÄËV"n3nÑ÷Á‹‰n3KÆ’ù–l®,fÉ’åMžÿO¿ç÷þ–ÄÄ ÆëGóóJñ'JTrvOîîƒ2iõZ¾=þ#žÍŒoc]²]-N6 ØI±ìdy:ÒmFõiHø–Ì`œ¨Õ´šÉµrIXÉÛ››»o÷îÄü€W¥åÌáå ÎÖÉÔŠ: OÐPÍËËÉÏáÈÔ‰PÂÛ!kàU Å©ˆ'ñøÂRÞñ⋊y‡‹Žÿ´xgÎÿ°ý7HÅ‚*¡R€aXŠB­Ñmdc+Åʰ“ +°u‰%±$Ì˨fò˜K¬š$šJ}ÉÌ8€™©´eü2L1Ñ&Tñˆ?ÞçÀ´n\’Ž ]b'ßSí‚àJ Q=êq¢ÖÐ^­xÓ~xt&t=VÙÓPÜ#>MTHZ Aõ¤lX{A5Ø}Ï0a¹m„ ¼ réå"O@EL{†Â0S µD(+ËûN²‚4€‘ú’µ_— ŠgR ”†0ôÞ ´ ½ÅZ¢¿8O…gkdCmn qIéÕ‚ ôò]R¾¬¬®©ðCÖ¥Ðy‡à&wìWrÁáwŽA_Öp˰´Ed®0¥t¥Y 0dAc¯ :qKcAᇰ<4;píò ÑòŒÂ ~«ð"ÿÍ2:[Ýê÷€ |b ±æ=À^hVšämRnõÛúrà4óyÓ¡9X˜#Æ%WUßÃmˆ…çž\~8‰Òá <á·?åÕ6Q”Š¢TVü ÚÁ!õÐÞÖ†.¢!÷P}àBmðâ/æžáFP¶ÿvd2Y}0!}I+9®TLEfÂ7¢ ŠD•Z!Ÿ->W8~˜N«ý—•~zâ àÑ ¶NÓÊo¯áJèmú‚šz dY@ j?å NÃ>¬­‹ÊKbâåřς>bL° Y¥ßCiSÜû;[03b¡5#~íâ:èè0B{7Ñ®1ɘi…)óÂx °òU œáoÀ“­Ð®ïS'¡k” hU@PåAàûŠöJ[Ðïö‚¯—Kº\¶ ;J!m>+iCg¦¬±¥eû~º‚ÎQåAÞJ‚;`³y\usÆ€qÑù“ª1m4A™ô¥F×(ãç_žCëX«ü%΄Á ÑÖ îÀå=qBØ0J†^|M¾ÆÚ£±š#õ|•Ôzݺt|þD,Ïs*¡³’fÒ{iÍ||m~þøJ4Æ ®ˆ–¿;=7Ä¥õ h+ËÇšÎt+/®¿;5‚X·¸¿¾þ~/Ítì´Ég@ñO®bôGͨ€B¨Q )¨ô¸ý·üg[2’â?£ŽsÔ1’øéYã%ÅD‡ÛÜovÍN†¯\Ã3þpøm~r+L›&›Gj#'H>Л^O§ÖÒYtîŸÉ™V£³³ðs).èsØ_!Wføä|ý=¸ ß’Ë—ç©è—äb¢¥.Žñ´þTµX\wʸ“ý¥±û>;ÙKrï #übþY“6ùäN£=q!ÐlQvªÌS\Öè–:¤P …Vc¥µ º Íw݈Dú|Ó„½;ñºðŒw]º^­f+Ô™Åí\ˆÊ9j“Ê¢N4@v·Ã?aÂ`·¿OÕ ÆKmHNõÚR¨ /6˜ê6öz`o¤ì6[¯£¿"]66û9éuØúìN›×ËÞ„añ¤yendstream endobj 213 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 423 >> stream xœcd`ab`dd÷ñõM,É®ÌMÊÏ)6Ó JM/ÍI,I©ÿfü!ÃôC–¹»ûÇÊ©¬=<ŒÝ<ÌÝ<,~ˆ }/ü^Èÿ=O€…‘1<·ºÝ9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õ°;U4±¸$µ(³8;(ÆÀÀÀÈÌÀØÅÀÄÈÈ2÷û¾ÿLu¾o:ËücåwCÑîu'üÖ;!ñ]óøì‰Ó'uÏ—\X1½®¥³«¹^î·ŠáÌ諾3XçǪ̂¬ª®«êèmèn—›ù[á·ÊÓúÉ=-Ý’uõ¥eÓÛfµÊ×òÿ­é_ÝZßÒ].Y:¯~ƤޞÉÓ徫> stream xœ½\Ýsݶr×{ûÔUÓéð´>,ñ ¶÷fÆIœÄØÉ•Õé‰ûÀèÃbr¤£ÒNœ?¼ÏÝ]$‚²ûvü`vûñÛÅR¿75;nðŸÿÿüæèßNy{üf8jŽßýrÄèé±ÿïüæøó3a5ܩۦeÇgWGîUv̬®}l”©[¡ŽÏnŽ~¨^mšºQ°¦­.7[üaaœ­~ŒtÃØw·›­Þ´Õ‹däû ×ukJ'8<ÁDÝ4¶ú6y²¿æ¾Ž×9\„EtõGµÒÚjw±™ÐÌfÕ‹þ|Ñ-Ó©’wQ}ó¿ñ°¦¹ÖÜüÏÙ‚ìd";!TÝJßÙÅQ%6g?ÁÅÛº…wpÀVЦV¢=ÞÂH«5ü¡úþåfË›†ÙêåÓÏ6[ÅUÝ0Q}õ¯eݶ¼ú&º~ú5 â¬iªWÏþºÙJWߟ~篞þ—¿úâÛðŽ¨¾|öôË0³ªžuöÝüëÕó ò³^¤n€<ÆêV)æècx ¼/i>Ë«o/w»ËƒŸ¤Ñ•d3ßQg¯ÌüÎÕåM‡RtÃtòf°°îÙùžŠî cXGTç»nœ¢úÓ˧Ÿ¹Å*9½Â*ÖK#ßýËŸYá€ýVDóq¬pbé3ýâÐ/@¿ÍéçÛ†Ï÷î—Ãùõ~¿ Sé@vPCBV .ØF›Ð†Móàˆ W—ý{°Ü‰ 3á笘˜¹ 8[) »À¿½øÐNlC#WtIÍ#£Ëûñw·¸l$¸ˆˆ·Ø þéU‰'VÔÚªÜο˜Iúþt¦ú‹§óõËç³CùúÙ|}öåÌÙÙ‹ùþoõn>SõÞý ²Ég¹_¶Éo…í¿B'W7¼Og9zoUæ"rQ·û™òóýÍÝ®?ïÆýíè_áR×<óøòéÌ#“¼V3Dðü“óÚ°è§®ÑC8¶âyXÅÛzr`Uœá‹Áðù§æjáFÀ;4µˆìé~¶dÍc¶lmÚ2[‚Ñ£‰-/Fþì²Å‹ûl©³ÕÖª Ðkliz4±eñÅÉKh9»‡sÈq™nœ‰8Ô*f‰5 Ã@(ã ÃÍŠ>´jb}4µDK?øpÕ#6nÝàRyº…ÝtÂ/ºàÍœ¼32ÈñÅ®C!” Ÿ9P(-ogl¤î]@|ñ»`ÿFxLx}¹»{]\wo `ïϯO^oJL×c «…´î¥ªó Kâà»>Ç e[ßæíð™4ÕÅf’iý]4pì÷·~ ×û+­ªn· «ÈŒ®ÝÛtß$„Õ dÑRÌJúáÒÍÖH]ýJ|ÁtÝÔ8ó‚uø![.Tú áË˧QÕxèÆ°€{ݳaªñz!–Öä‘ ë ‹¨¬ç¶!Þéê%mcÒÛnq­a€àÒÆ­­@Ž‚œÜÒ^NN•†MI ø £¼aÀ,( ª.›ôåuÕÝEÓÞö­JŠ@«£¤;tñ.å• IÐîãu+YëÈlr9ÅAÉà]Hr‡Û7—0ªUB ’Ñ+Mõzó¤È®CÒ„àü¥¹c¬x -ž"[iò! ë‘wÍ_3O"á’¦`3‘±åu“r¿záëò×U+í@Sø!•î¯6ÓRT¡E-•ñŠj­[ú"Úü·Ñõ¡µí Xƒ¢˜ Ö094a üÃßã$ÿjÒϯ7`ãºÑèÁÿ{cyMd`îg²kümXÔ)·B·®Ì%7£Qr4,›L®[©ª_ãI|‚ÏÁñ]ã×…uÐC˜ª_Q‚t ~£µRû膉{6ïí:“&½½Û{“”‚¥O.<Í’WÿK>­@x“(ùþfp–59+¥DãÝ(cÕw‰ ÷?z— UêÞ¹·.¢ @“‹† â—†«¸éo_WS\«/®þ \ÕJtƒxÍ Ÿ ÍÒj@®áZᮡóàÖ(6ÇU cwçW\t¢Á-6ǘLȱôúÕ½»éÏ£°@U$ãE_Ç£ªé¨mÜ×äZhë7 w Œ.õZdæ¼Aß"œ™+'62ò &µß~ðá$Ûît}“×ÍRH,âM˜H¥÷û±ð~^&yzµ&Ñó8ò—qDˆ &ö”ÉDûCQ9ƒtªÕ^Ç_ûÛaìoJJÑηL¢+)ø Ê"]°W\zF¸ ïD“6¢XøxAÆûÞƒÎȯ±XÄFY7^Ù†!ýéçš}¸wš£Ë¹æ5c2‹ç1bÙÇ1!yïÏ!uøŽi8rÃ%#ЙŒxçê¼VW…öjðMN•žë¥¿‡ë¼gÃ%NACÁ:~gK}×ÞŸ 6©NÇ?ú]ï7PRxÁ×[Kç ø%DŸ>ûà–Öœz²›`93ßc:Y7Þ¬Œ9¢yÀ&ŸõËÕMÕ‚tÞ¦êMC$Æ€ùÝÜhŒ!£Ÿ t¢v‡wåR(à&¤ò‰îd|†qÓÈjØ>úU2¼.¤#Ñ݈YŽlÆ4±ãæi)ùAl`UŒK»~‡.x—Ià‹ÙÁ¹NœÒ׿ ÚàÕ…r¤À‹`è Úÿì"½nã!…$#lÜÄ8Â|K-¬@FÆtDoK ¾öBu“¼ñãá…ÃЭö73³?E/÷ã˜ú¸Yœ“”Ûe¨M2(Ô‡G§Kë  SàÁÃÜ#Üæ_ûdÙþÖ¿%ÍReð#ª7½_{™'ºwu¨³†Wï)&At=Ë#C+k3/1ƶJÎHùž3—ã„H¦C5a\ÏáÒz2CE#t-¹e<̳žuMó¸˜IÛð¸ä d/›y©µì‰ŠM2¬EÞŒVÕHå¼ëư£<õ3.#UµRf©;*®X(ç E‘x8q ÆHüÖA6ˆÒe¹‚³†`;΂QăSZ Q®Ë RF:cúÊ¥I`ˆ™½y0ÐðTq©ggG9r»êø°~+‹¹rDÃͱT½º;É}™”a0&ÀV¶·p1¦ªNCÒ U~v;1™¥O@(Q:&3P‘c[([ÛF$ór°ÀhæGOi›Zs–JÒUtCyV)H²tƒ÷ >±˜-A›SF– ¸ó§Ö‘Ò¤iq¦CšÌ· æDµ·æ6³‘©GNýÓÂËF`¢l¥í÷AöjYu€žaÔ@ØoFFkÁEí×¾»€ÞwŽDgEQ[K aÿXÌ,U-1•`žãìœbJž–{k+À-¦Qá6ÅO2óäo¥"S+£lðvÏ‹T2àCL~’äiµ¤^uéïg¾)ŠPáEFÛ x[Y™ò”æPÑŒyø¦û:ÝíP8ä™:~ nØ8Jå-”œhW‹ä~Š~}UcË!ÜH]RÞÅ òÂul@('‡ÍÌf5ª›½“ è$±˜G„Y¤JTù@@ ûL0Mk¸–Ìôˆƒ{ß‚ö?ß•Þ`øÔ÷*=¸ON~¨N±ËZT©ñ&Qz'9Òy’Dû •·µ˜TþtU奈UžzrX†#®tl ‚;éJÒk- è>ªŒVKüêÛy¹>ίåµ~ã+Ùóy¢ÅŠ8ù6Ñ [`n1geYöMiŽï:tÃõ¤»û@)ø·œ"òÙÕÜïÓ M{Ï™O—HÀ÷\aÍe½ˆº2“/mò r¤›ÙvØ9“×9kWÊÔµÕj*eÎPéà<’ÛhRªð6*µV2Fiô®"wùÂK¡º0 yñ\6’pœós’üÆÒ«J:CÉòVD ®çŠ¡G HžZ=ïó~‹‰•sÜšp°—fKjDÍf%¼Ü¸n”%OxœFeصÔ[ó"uú=®dõî{s‡» BÕ®º¼ë/0é/PDÑÌÔ†ñŸ`¤Eð·©ßtC‘+Žõj¥ìˆº±bÊi³¿z^ô{¦²íTv¬q”jšSRÐb.a˜®•fë2 1&«°òŽ9ÎôãõjaÚD$OPEœÁ®Â‚eM{q ز:äµÝPß³×ÊÔܰ4-µt¶\tbàǯ½h‹ï†ý,¨ø¹zÿ천­P¬6Rexd½¦:ôظ’BÁÕ= -t ]<èÂß³v³óM_“‡m¼ËT{fg›žbí’ŸI£›IWk[¨FiñÇ1”çgêvJ Z¦½¬V“íýæ«övÉ4ΕÕ̶€™¶¬ÖBÚ ÈXJE‡R:lŽºÜ¦L ¹æO åÉPML‚q€3#]ˆ ÔÕ³HIa¹ »IgCŸöK…µcHZ5¤M BÌÅG$¿N±·9šÎ… §<=P¢›#æS­(OŒ Óþ°õFe©s:>ປ3Ôý¡KMhêüv%@¼„…»²³æ5Sì!Îë$vÊo.jPíj:@`Q'D ¤Ð["ëJiȯö;d¾µ "!V}4¡×¼è3A¿ÌZCg:ĉ7… {¾CÁŒ=d^­N¯¹ç¶y@$–®ØäejFè?ãsršFŠâ‚8¦Yg(SŒà¤ ÅÏwCÄ=ø\AB þËZJæ±ÂégsëÚ¼‚o3ÕŸ¶óã9>¥GÞOJÝqÿ:÷žÍ<ǟ禹æÉ|{|^ŸO­Õ­Š‡ŒÏOžÌ}mãi¡Nß“Ðô³.“«y݈„ÄLíþípyM=á®õ·×½z{{Ž>óuõ}m ìí<âÏž{›'ÓA¬®-Ý®n÷c´ˆk ´[ä³ù² ìf<þzçlnx†uQ âÒßÖý“yÃáçOŽ&§øxny?™Å™o?™çù癜r^qž‚ùµ <ÚÛÿfôÏ-ûCÿÊîü|yy7i·3öˆÔîWÏþêtÛÍ{òôëg'#'_| Ь[GuÝ€‹]kVRý(môãcÜË•d ÇnÙÞZ¿Ž¢›¨¿tæc ©{L-Ô”Ôø–þµ™tZóY4²C4ô…diÆsáÙó'×$6V(è85†Ö-å4Ùé{ç*åq^ëåam˜*¾¶¬$A,¶ äŠRïö—`áƒ?d2‹ò½'B¿Ò@æ3¦šZ˜¼»ƒ†k!—iD‹Ð˯µX§­Ò7äiq ºh^ë× ÊJ•Vv2g¨û³!}¹§n\˜¢qçµs%µ[)a4m-¦ÞÐû ›¬AÕ&]ë’µÁÓÝê¼¥Èß·tÜÓˆ‰O0ËIò6®.˽/Oœ÷ÊËFÊRƒ¡?d×§MT±4bð0n‚ˆsûl(†+Qkm üã¢æÓC¬2¹sóéÊ-·<Ö¡-Z–é}#2EØe> ;¹Bm£b2lèèæÄî‰!N»‘`$k)b|ÀNi È,©Å›4Ç š•H ˆ¿eÕ%7ƒP«1‹fz¡]zZ­ÜjNÅsê "qɶJ:ŽR?qpâ²Ø;1 vt17%H‡>Hˆ¥UĺÔòù9ži××¶š²Ä6ÐÅú²±.IŸXÙ¥&à´Ê§¯K]Kâ×®”ð{ÿ‚ c&©R û¬š¸8TÂå5[¶-†¬!Tp“zjžpÌ.›-lq2÷uл"?*u„¡ÃÙÓIA+tÚ_<3Å(7ËÓúÔè‚ÉžÛK“é=Þ4Õz(Šý ¸_+ŠzºË|sR;ÚNÐhôQ§ÑéÇ-Õî½+Û¶*·òC–uß_ÅÓ «4löØT—S-Ót‰h×?õHú ÿ>Ú†KóàRØÞ7U»Bf,Ü1÷)ØY€^é1úKähˆ¶Ýxè›)}×Zì¼f»Û’ËN¾q¼m%_hkx€hņ›¶Ö’·S¦žuV%HÇ7“Òa†È¿Š)öJz¼ºlõ£,N†˜¬‹ Ç P˜º‚åc°0‚*Ê,›·hi?N¼\6Ó$ÏSà2®üc²7þ¥9‘®ºôµöä5ô‘¸ Ä„ Mã=Nä\_$†p4¾,/yðó/’—h*®V‚ï ûy¡ªkkn§UÝb«7µ,5Œ¹ï‚ñ;.Ú‚ì\g+¤v݈BJ>.ü£èÔ‡ˆe˘–N`“Ыô‡*Þ’‚éjÁ;þ“ Y0 ’0±Ì}V@1Ëô7pàO^>2(jkÅ”¾ñÂT \Ú·á{Xt5o% À|*™ÛdÞNþ%TÌ“I°:jB½µ ߊ¤z¤0ˆ‡Ç¼6J0þ0íÀ´ª”X7®æ®×üg.Ê‚2ØF™¬ÚÿT^–kie¼¬Ï‰%~G£«!i£R/jY#³Þº ©Å,§r+­ûæâ›ô%‡@©Áaí«=¬ª‡‚ìTB+dU-æ‚Â=’GzÅ3üj^1w¦CÛG’þoŠ®W`X{}ȯžê´¡‡v =›aXÑö%ð7lO%IYÖŸ4¹†òW,5¨Q(Í$5É’&á¹ÿ <§có{ʼn§þ(y'΂‘šZaáwÒ óï 3nA„±íñ6YÜô¤¯ýéöÇÕ™\«oŠðÒh…_™ßxî‡/ªx(eó> !ð+kWÍiUމþ‰¢âwUEE§eAHQÒèIJóӛ黂•ÌçÈ÷Ÿiã"ynRú' þô…[¹üÜëj`>…ùwîËÁ'® {H—j!óß8?mt;©….²õ¸?ÒoÚR½ÎŸÃ'Ñ:Žè®^‡“ »,™Ñ"6ûvèã?1ué—Oha샵CÏq^;œ'~âæB].”ʶ¸'SÛ…Ëb­ÈÚBC*çbä2ñ_öêoú]w•X}ùÇÑ @`ãµPYz8ßôÒn—]èa\ºFËÝÇu¡ƒ´k­ELß'iC……{*™÷#ÛГÜe¤n¨TOП¥%a_‘”üƒ |Êm$9ôKÑ]ò3)¹?©€o)½Æ8·fyG>Lh,jô˜Ýö0Ù¦)Ç"éÆoÅ=ùÿ‡ 7R,×›L²ˆ¬L .Üžs¶Òl®DË>ˆçö!`0IúH|^Åøwøô§DŠ4bÞˆãx²OZI_ÚG}$`1ÑIó¿­4¥1•¦˜ÚBŠ4ý?I“±PqŸˆO  ÿ lru9ú?w Xendstream endobj 215 0 obj << /Filter /FlateDecode /Length 4629 >> stream xœÅÉrÜÆõÎ{*æf0¥AÐ{·SI•íÈŽ')K<$%û0"‡, ‡ E3_Ÿ÷^wÝ@c´V¹tˆéåí;~Y55[5ø/ü¹;ûã3îV7ýY³º9ûåŒÑ¯«ðßånõÕ¬ÞÔ®qluq}æ·²•e+£Lí„Z]ìÎ*y~ñ3¬µÙZ#k!­…õWg/ªîÏ×ÜÖ S¶º:oêF ÃWmÏ×ø‡eVÛªko“ŸnÎ×Bˆº™®ºKÖ´‹gíÚËôÏ>f+¸„žÕyí¬ª>KNú5;ê*,Rî^s@\³jŸ‚qŸä¬Ï¦{Õcˆbi«‡mõ¿TÊ2‘;ìq•"ë™*Ëþ03sUª4m—Êñ!;-!×°'¼,ïLéðɪ¾d‚ æÊå•fnüO`9ªÍ‚>–iîj­E¤yQDŠ4ô† ™(•hŒþœæÑÜ\€é±]3´ütq䂨RYŠ\†yb—×ÂOwžt3×a p©õ9ôG¿Áó?9i ÖVá&XøÍ¹§è‚Àà .sî¹\¬û€…–™,í½5u¬i‡ç“­@”á;ñ‚7þò²†€ýÞž9©Lõæ\¸ÀÏ·›—xšO|êÎâ(øÔM{’1–¿ÿ%õ¹›.®o“„°j?Ñ›A°rU<Ó#<°ê!£i—^…‚Eâäøêâû³‹?¼â °Éñ#!ž:´žˆà‘Cs 0]kÿö+ðò²AÙ™4ÉaQ('Gü‹tas¸Iã‡Ý„gˆ®B§\´‹L‚:˜h_o·wõå¾ëKªª`(]ÔU‰zæ 8ó4j€Q™Ö c¿ 8HÀtvÁ2³Ô=†EàÛ_“ÈsÞmQÆ@g¤D²ãb'팞vÊ`ã,…—HgMV´o\5Ûÿ9êË„sª,ø êùÓÿ­›©™åaÍ“àn³cL-!Sˆ~ÿËoŸ¾Û1  'öVLQü^Ó¥á3N”i4 %UÄîëï‹P±ZŽ®'7A¹‚Ë‹¢­”†Põ@šnÀÖAŒXºGŠZÂe¯67Û®Û_¾ª¯®K×j[nÂ⚈Á@sµÆ( a÷]LM1¦7Àë¹)’Äë:_?šå‡ˆ’_!«‡2¡¢’ À%¢àè^H×in‰†ð;&W§Ã%Ó@Œh{×^mŽ›Ý€ÊÝ^Tû`µ°ÿçwKb‚ˆV}@«ês™"‘r&äkÌ<1 E0ÊHÊ/‚`€?vh5¼œI09jµæ²6AÊŸýü#üvçÕvsõã(0OðŒ'Ð9ÓË«?êÇóQþÆk€F£TÒ”þž¯¾ÿ÷×ÿˆ{æÑõs€¬Q 8,wD±Û0ׯˆ•äâj9€Xf5å7-¦ãh…%fÏãïÝÚ`ÔdzYL=è2`wÃ+¸ªG‘r-t*˜ý$Äõ;$›U?Ž2\²šKž š°Û¶7(HŽ…>!ɽì?O½Ãìå:\ûÙÜ€ø_6ä¿ÓЬ¹4X2§"&XÜEQ5‘ò_ëçDöñûÁKXÇ*4`ˆæ Þ•ãs_ªÀú‰4‹ ÇÇ"=[‰¥úDËÛcøüÚý„Ä_ê-QAÈ)¿÷|N9×C %Õ>ªšìSùê³Ül±Bí4fšÊhÐò"ûã_&‚#!ȳ®@-,²‚‡ Àƒ«r5ª>A(YK•ð°ìO¥‚€®V 'AzQ:ˆãc´T?!|‚JDñY‡BÛÛø‡C£–a-|V‡Ëiýri8)NÚ%T‹cœ¼Öû 2u\Lv{8!w ¤:TÊú²àÈy9ôõwßDä$è,b"ü»BoC×B n}oCî{%òŠZØÛµÉBà¼?2о¸XŽ(2›–®Ña ä ¾~Cåâé$«ž&µœ_R±ŽÍSçÈ^y – Û×ê”™\°éR×LË•MÔF“™da ™Â1—ž÷÷ØY“ë3µ5Ñ~5" ›EÁ½x;v3‹>ÈâHìüà9QÃñļ!”Ýp0ý“XoœTvs+°õÇc&x™x²cx›½›Ô­Í"¹ˆ§uùaWI‹£}“uûóŠy_T!°GKoß˾µVŒE ÿ4ZH[3¬š‘rEõ{bg£¨›5éÁdQV9—΄!PlӊÕí7‡Ù0ð¡ø+ÌPü ÿB«2—w,û÷‹£ÀŽë&ÝÔ%‹Ã‘¶JOÐz¨÷-‘Z6\d¤òI#ŠòYS/×/Œ9£NU¦T¼'2)Y%qBât2’%B¥¶’—úYGlËó÷iñûS£ü¨yWÀ£`«4nÊÁÛ¼»!]2&qô!ôIRñ. TžA0)kp£“ ¨M¦?ò6Ȭ/ª€fcÇæ3TõewÜç ,äIѸ!o dàn^³Ô¤ì¨Úòì å×¢ñPµb†GQÌî÷á™k&a§G292¦ZÒ$FÖ¢„ èðè™;·ô°y£}DA¼ÁgSaTøÃ2à ^,êº/¿-À{Q —»ärU1kãåŒ: ±h^É7© ‡&–ða©šáý”AéR¹…Œi§`µf ¤MŒ°±qi;21 =½µH”›^ÚPÕ—ÎæWöñÄBG RzŒÊà)±+ ¤)8·Àõ’sóê½)·¯8è„:E°»<~ ÔÐYòž‡Yñ ‰‚³€àtЩ8Þ$À½ûx‘tnˆry6•÷¾ûP{™â”áÐLna¦2i8…Mý=ñ] üí3Çé…ƒR‰»QdŽmjBۮŮ“ÁÑwm!÷z ç{ H£ÚñÓ‡“ xϨ–0ëçâzýïÖa Ä•ó½¾õl=µ<–îZ2<}Ø ¸S¯ËSebj6iî;«ôeÕ CVÇò„` hÙ¬MÝyfø¿v©d”{Ó™ښ˜fƦT©” ' %ÏbzÞh=­RÜÁk®[?© M©\UYÍ8ž-_>r⢠!q)ŸÍ‰&ÇIX,&Bytj2’\01•¾7|±äFKè8V[=¤¢§è/j*[¬8"×G·£~**Çîzf4?ñ:¶"gá“àä/Ûëp”,$5 ú‡åž dEmråeø(zJ„_šB•sˆƒø½Ø?žÎÒääÚÍg£½*$_…^·Ÿ7kšNö£ÑèEE¡Ïo(Q<÷"ßà0;ÉØž¬Fæ|-• ©Ÿ %a¬? ÊBìì4’šÊ_žŒRÀɦ‚2ÎwµÃ|Wn4sÄH…i~:ÏÂ[·€9¡¸…(þ¡™oÄÏÄ9%Œ‹B/ÚjS“uT`Jiú’¤0Gšåg<êÜäÖi·÷†Çšèˆ¸Ìeq8FyåÁgëJA:è— AºÃ ßÛêˆ"5b°¨“@ØÀ†&Âä7b$'^‹`Ä5<ãœÄnßÇ_ÏCx”Y”ÊÃÐëñJ‡4˜¹6§º>ÌѤYìèp[Œ[7ñ[ï6áŠÝ¼wp\Ô ÒBϦNÓw—Mñeï8z#ƒa¤®ìIxæ¾ëÆùœ})é _#ÄýÀŸtŒ§ñQ" P™¨_f,œy¡D˜ÉÌŒ†ÑßÎ~é§Ê”ˆôÌ87ªð™…ÏѳµK_‘D`&µýa·Yü©\ºoïš¡ òÐÞ>ÿîÙ‚³–lŒov±YªôrE¢ë©€‚°œ‰gïL=L¸¿¥-™´Å"ô,‘36 Þô‘•*0Câðføâf2”Ö'Á±qxPMÌ{» ,XÃùDÞg“mÃW?»LX2ÁˆÅ%®22û£ú±º8·ÂÛÐÍË´ª<­b|d‰.‘Ú®80ÆBRùÑ%rk©é•œ‡•º¨Ñqý¡3UüVJ°¨ÀLISõí®í6‡h\ˆU8•«²>]{hCH†“m8y§çá 3éØç…Àì§¿Èé3Ññ_9ftk j"…Q`dq´fœ­U3èøúùâh³Ê†J‰¯¶6bõìýöŒs‚£W»¾N®vgÂWƒ‡oº³ç§„ 8Œ}dk!WعRÒ‹À_ÛÀ*ðÀánãõQRÎÈ-:uÌŽqm"=¿Lv} Ëp&õ|ÍpvÐeYB›ÚëäDZ›¤j©÷oˆ3`YŠwxs ï|ÐrŠ7Æâw‡'#æ¿Ú¾€G¥->Þß]¡á˜ 7Uýýn·(áó³ê®ÛñÿÍmK¯}73–^íKNa]ÊÚˆC‘³5¾y [‹ó€vá ŘÇ/˜)©çfŠ””}òMˆ†¿}Û°ppçÔÞÀùå·~š#3PÁ”Cšþv»¾ÙÞnñ´’v`(ª‡ ñzæ‘}Š0ÿ3Ú‹ùval:+¡ä£yÖàIÆ$–ÛS’…‚™OA 1]ø¬$G­Õ5¡y-¬"f*Ž çðXo3þº91(…ÞÀ)*ÐÓÞ”*LŸÌ»ñZAJS ¥>Þ»9ˆ©Jσìªë²Žæq:éÞÍC%9QÈBý(¦`®ý3KæGù5˧°ª®‹ñœÈÛd°c9q‚›¾+1pöþ=>Æ&ÐŒÂ2a˜ˆ{Œ‡šê¹ •ÎÏM‚lßXU@Väeß4°/MýQF’×Ôò±œ¢¯òÏ&PÎýûyxïqçƒ?£¦ƒýg¹ð,iþ!´' þÉdk¹˜m³šõL÷¸4Ÿ¦sï—³ò4½“rñnüè}á[µ¸S±úzt‚#Öæ«r‡BšâÔZ0„À•˜H:E'k;vük?pu®²1ù3f ’X%Áû[¸-ñ.|žLÇþpöúà"endstream endobj 216 0 obj << /Filter /FlateDecode /Length 3285 >> stream xœí[YãÆ~×oÈß¶µ‰¸} Ç@bø„sxw€<ìøAžÑÌÈÖH¶¨ñ® #¿=_5Ùd·/' kŠäǪ꺋ìù¡âµ¨8ýׯî'/^ÉPÝ6^ÝN~˜ˆx·êW÷ÕŸ/€ÐWêÀƒ¨.n&í£¢ò¢rÆÕA™êâ~Âìôâ[`}uºVÚ{à/®'oØ_6Ó™ô5Ƴë)¯¹QNðÀÓxá­g«å:»u;)¥j¾ú>Ã,OÒº_^å§M"æ˜ÄßÁ*6§Ÿ²Þ°ße”Þ¤®;±à=“X¸l“‹ñý^ÍwËMba${»ÜÝ%ž}—¯p3*á¥T¡e³›ç´K²ÒZéÊå6Ó¯/¾˜||1ùŠliƒ¨C¨Œó¶v¾’!øÚWBS«j»¨þQ­£Ù•0¢¦²ÊÈZÙÊZœIÚk@'7çÉ`këòªÆM2ˆÓ²?v”l¨}¨¬v¢Ö ‹¨¡¼xp¼ñ˜ÀEÍIH2Ü”6 Ç’Þã&$²VÕ^V&ð^Å£4þ å¸÷ÊJn`¢þf· ƒX]Y)tè.dRZûZºÊøŒÓ%»à²Z’X¯5Ìв1vOO£@JÈZC÷{ïj#êçI5m& mµÿ_ITmEe‘js*VÆ8Ôʶ”¬«‘¤ J½¹r( p޼]w‰ŽAùÿbŒÆ2%@/\W 1¨ö`Cʈ!Ê]ÞÒ¦§¼!T<7ÈRèšÊqe E”áÜ;±‚|Ãr ¯èÃz/d?ßhJOÉž¥‡(dA…Lã‘)aü(‰‘ýñ É[¯õ(íp§\“ÉÓœõ°„F½q*O¹”žÏŠ—o¡¢:P¾õö·Õ€Q¾öÄIrȈõpTL!ŠºLÇG€Ò‡q• È^Üô•½¬ðç¥R‰Î‡d:^*Ïrœ·îB­õqO9#È»VF„Ú‹%ˆˆÖõV.’ĸ$jõSnnʼnÌn¸ŒFõ«¯!µºFz†Q<¦?QQñ‡êÍ|•Ú…ÌïÓ'á%œ®¤§¯äÑòXOR¨‚R7bWØèIì]õæþkÚq0¨@S^ ^QQe&ÐO —4ú›ø‰LlæiNô”JjÍm¥uœ2Úe‰Àc£ê8Ʊýé77›GÐLèr°éÛAM¦™]Ç÷û”b}Žô¸xDëop ‡ò¾u‘Ï6Íân³º®šåÏSÜáBy¶ˆ~@[<¦›•k–×&HP™ñ.¾œ0=}6aÿtü¸=$\QB¢8Ÿ,oóMÛí‡Ð´×É—Ó™†Ð&צ݀¡=,Éæ»å|Õ=",[u»M0?v{&`Wn›ß–V"#G<-‘Þ”ì®}®„ŸÙv|…MA¨€­Ú- &hjSÓêÑÈxÇ.îÊÝ.Q,cY0#ÖëN‹*Î;i½Í¥Í÷žlvI7–-»í3É"ß÷²Ýtb´³l³í•ÛÞ…EÈ›PœŒn}æâù¶Û¤=7Žô<Ø"3ù:nŒÑ°d®²ûv» lúM¿ g‘[wÛmòù“]x©åe§å–÷¶ ³Nûud±Yhw ~zóx×QO/^!68IKB&1È6Ú^}8‰kA²;¸!\ïêî“厮RðzöÁl@ìÞ.ׯ?uÉþy—â¼rÅ~ßá¼`W"=S^–G/¯7»žÜB°ëùnžÄ0ì¾—órÚ­°ÌÒÇž­[a·ÓIK¤ÐaÏÕi'É7lí’O…ÞWI%M c¯`Ò“îç[Ä îa6Ð{^t<ÇúYö›èR^iööå1ÛánJ“û¶k»ºY,®/™è´"èÃÁcà’ô§ËÂâ½2‘¡²dÍW«—HÌ‘2ÚÇyÉ)n6Ûû‡Uo³ÁdrÏ_H ^»çþ¢~Í_h”¤F2®i³¸¹Y^-ë]Ck ôÒõvÖ/’¶~Üì–÷óÝbpÇ×»ëz`öñv»Ù&†Šý<ðþq¾zX wþ¾½dþòó/$³=v¡e—)K»¸~/‘N2 ã r+„‚#¡ÿ"eëZܤ6ºE³˜q“‚Ó²çÏŸ^1ØŽïiíX(dÆ“ÍY83°@?öE¤+ º\•ÓåΘ®Bço¦•¢n&×dsË#œ„îp¯DÎ@h900µwƒàÐ'ß¼»D Þ~3o«åzCõ¶œÑ #­Ö-#¢ŒÈ;¤‡ŽõÌײ·B` ÏÊÅLØÁK6›ÍRDÙ>e½^Þ®—7õ áÕæz÷aé ×¥`Ï@çÙpJ+“gÙMº'‡}ö<&ï¥ùgÝ3Hâ”2XŽª)ÓÁE÷½'å'ŽÒô„°àÄ~ÔÑ/6;j­Z¸aë‡ûo)„‚‰…6¥«åúfqEM@R­ílo´¿­³fy½HÉ-ÀŸ>ÿèå°!5V¥eë—èl(QíY6ú~±ž¯v? :»XÞÞíš<›qóåæv¶Z~¹Ûl®{N £eÈð!áÿú+Ë[´")¶ ¼1OkN¥XtÄ<1¨v¯²Iêo¬ÙëFš‡ µÚ5ÇšüÙ¶ªGȳR{œè²ªÕ·u¼¢ÎæD„qm6 sîØ‹tËw ¡;§DÍ<’aºFȹ{›‘[j–-×í^5<±íˆ¡~ï¶Å–çæ~Ù4qCub~¢(ïÚšì{ûDZôb¯-6O'zJ°bÓyÛ–µ,,¶—?­mÓ÷¶&™3öŠô%“ÂAÓB¯®c¢Ùu O£ u H~h)æ]¯Zé¦{–*Í{¦ã†G´<ìL½¤ö™Ériž;ãÁ™f Œ–ì“©§OjåR·ñ¶U-­v¿I®ÚÞ…‡)´½˜2”Ú½9eÿ«œ ¢©è¢;¹!øû:íθmÐ*¾~}`ߌ0´,d[µC÷ ƇÇ&—¶|Q9£·&’‚~:ð ,²=¥À¢ áyÿÛÐ@¨sÚyÅh'3‚ñoªqݰåÔVks0x škt'ªˆ}áyÌÕSNʇÙ1!ÓB”*í¾köÿ$ ð8‰îúH:6¬µgu_ÍöÓ7íØ¦ô½7K˜#¬Ò‚⫨߳ù-Ë3­ª4~~w»-ä]Ç|aá‘2†6½£B*ض¾ß‰Çàð[]ˆH·ZbÊÇ?œ ­³Ó+ÚÇîõþÅ€F)J2SÊfÈu,ýuL¤#Ò_ÇÄ3ÃÊ?ŽiWè,òUá­ðÊhÝ0½4p5Wí0H"£»(ëÒ¼Yíש–…-YÌ›CE,Í–ý{Ò¯&ÿ´ÌJmendstream endobj 217 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1993 >> stream xœ­U{Pwß²®J­Âå¼ ÝNqzZ9{ÞÍéÝuÚªh± ¢Œ‡`@$!’ò⛄I @„˜€…óEUD)£iu4¾mïfœÓNëܵt¦úËÜz3·ˆ\çüïvwvæ·³³ßÏë÷Y3c±XKRÓÒD¢÷Ö¯K‘ Ê…SÏVG—³¢+æEßb-‰~ýbÙsiÅ‚Ú8¤]ŠrßD©K06‹µ¯¨b‹H¬‹K¤ü_¯_¿aÝ:澉Ÿ¯àoNâdUeB¾ âGRZ§HÆ<òßUðó KåE|QOa6?+39#“¿=cWÖîÌ_&ýÕ–†-‰%UÒjAÁ¡ÂÝ%²r Û¥c™Ø, Û‹mƶbÉØ6ì=,Û€íÀR±4l)ËaY9¬ïæ ØóÙVöóà,àTáqøäütb!!D¡ÅÑ#ú0ºf¡øÒßdG­(À}–2ù!½ˆ^H¯¤©¤ÉäGˆ@o ´šÜnåÒ¬õtÌÙÒóã(æ[ĺ?Ñqd¾BKÂèW/¿ÔAÿŒ°£64Ì}’s}kÎ!‘DDJ/æZ5 ‰H])/Sï…:Bg“ ô[]A'éèu_öÑc‘Lfm“‘¢¿PqŠqM”Š‚à¦ÐZ¼#¡ 4T.~í³˜ LJ°gh âSÛ\óG»òoúçZtuØ“›;…«£&fE•ß²£Ð×Ü›[C›žEjŽ•rX+¡W_BivqP­Ãí£A Z{Œ"=˜*j;0ªÀ &ž¬Sã Ú».¸ÈÂüwƒŽŽŒþlî©Ö´:UÝÊ#]!×9«ë'aôq˜U D.oñ~5Ôòøˆ+Ù£›é¥ ûx:1½'?PIŽ…‘ÿæ¾ ¹¸[WiKÆyçü$C½µ•3Â(5ŒLLStßa3ý_ÎýBð€ÆHZ…«*º†n/Îô’šS4+âÎö’ÿ¥rÐ-ŽbŸS[Üí[ÿH®Â¯"çþU(g?5Gü8ô$ÒYoŸ1@lÔÈ ¤j¯¸¬­Ùén«k€ŠÚê?‡¸Ÿ%ÜÍ9ž–•/Q×’§Ñ_cÉ(Nǽ£ši,ãtc9zýr½síD8ÇÕU9¹ô›ÚR*Þ®WÔò„ý¡’sÿ8~ÞCN Q:uÅE"Ý‘m·—Åÿ=û7X :µªt¤®BS­¢Ál÷tYÛ=ãTÛéævè€ñâ³õáðÅ;pƒx°kr I§ÎÂòNKW6+&Z„»û_µK-~•rá×;Ê+Õu‡ŒJJ“ jP\ªó“ñOï=öQÛ¢lnZrÊ»äüóöü¯Çò3‚Þû:i"FχQÍŒžj­‘¬Ý]Pv˜©6UKO‹ç„ÓG þ¥ïjçIF=/oüà‰¬Ä zAéT…øímv²ïþYo]®úÚcC“‰ÚHç4¦Fñöž-¹ôÃ$Z8HÆóó¢¸GåÕâj‰Tî©ú]Ó)ŽêkïG>‰\øû²xßsÕ iTÉ“‹ñªmŒ¯½ö¦@\Ëîó¸Ú®Ý°Ù._Z½¨mj2™4 õjP¼ü£ŒÙ®øGk†äî—¤¤‘²¥òjí4ñ‹é /30§‡'š.·ëˆƒ<‰~2?ÖA/Þ§44U%¤ /|?„H× p:Ìl¼ªW%­ÚHêkdÉÐïo²ƒÅæ¡Ý?7}ôÏfGƒó_|dT‚ô¼äÛâñ†QB'¹¸®=šbGﻚ-xxad¹0f(vÄ.í°L6K»Óû™Åf·2Ëf‹·%ö û7í¯ƒendstream endobj 218 0 obj << /Filter /FlateDecode /Length 4837 >> stream xœµ[[o#Ç•~×þ/@äaÓÜ ;u¿Äñ¾Åë ›Ý ðƒd,8%1C‰c’3cç!¿}¿S·®j659Æ` fñtÕ©sû¾ºðÇëùŒÑ¿ô÷êþì÷/…ŸÝîÏØìöìÇ3¾¥?W÷³/Î!¡ ZzÏ<ŸßœÅWùÌñ™Õ¶÷RÏÎïÏ:7?ÿd]#kU/•s?¿>»èþk;_×3®]w=g=ÓÒræ»Õ|AwÆu›õCõÕí|!¥ìÙXêM%³>Ù×ýúªþ¸Ï¹ƒ„god·¤GÑ{§»Oªž~jººNBÚ`ì…ÀÄ ï¶µo«çÍò°Þæ!´èÞ¯w¹×½®g¸“0ådcõþ°¬_ˆS2ÂaÛéîç?œÿùìëó³ÿ%_ZÆz8I;¥zxEpÛsü•^öÚÌv«Ù÷³‡3Õk/­ž½‡_ÿŒÿC$|ƒw•îŸiÏ\/Íì-^ôÎÎ ·º·n¶9ãNúÞú™‘ÞôÖ†žŒ¶¾GX¡Åc:VÍŒ:Pƒc½13ã´èG‹`°¥ˆ×¼×±acÄÌ2¼ä©cå{­ÐâY/Th1®×áRõŠz‚ë^y´„1,w¼Ô ™ï%‰@O-C‹6½´QDÅ$½ŽnL¯ÂPJcP’Q‚æK-Þ’–sÞ³  †a\Ë,'+Q‹ç='•…&/ ÅH×s‰Z™Æ‚zFSçªwdSa!LyXn±®÷°²…†6èìÐ#ÒË`°Üby á{®Ñò]Œ^ð®–^‘Ϥn—è^Èýdg™CçþLxÌqh€#™¡q•àÞ"æx%SŠ <‰ˆÕX¥a‘dŽJ$$½©F++u7¥ai'ZϼÈL[†ÀþnJÊ ØíÐÒHiLF¯¤RK#廑J-µTÖbªõú(Ë¡H8‡t ü@zÎ,  ›Qa‘F°t Uµ1ÛµQ) ø®¥}ÑX²ö¶¥’Sâ<7XAÉ*XžåQK•9ûBê‘!èÙJIu@þšç ³9»;£„üØà¨ž å\Sª«]Ýæà³‰q…š¤©tÚÜÇ|Øî(Àw@§ûåfý÷9§O–w«ëÙf{»Ø¬_ÏÅ©Ýj³¾Ûn¯‡|:À\ ŇK¨ ÌDQû:]OTž8¥—ú8 ‹ úA¢BÔYÙ¢™Zl$[ôÁ_ߢËxT¡lÀÇùT“kð Á߀·¿øÛ‚O†ˆ|ŒƒOìgŸ#ð‘r >¶à€¤“FÀÇ‘³(ü/(ê@àÞèl¢œƒ5î5 ¶×®v¯V.Blq¯Ñ¾W ¹°h1¼öo©AÅ¿ºÈƽ™£ îÕ*ò˜â_P°žûÖ¿žŒÖøWgºQû×|ØÁQfppî§8¸ŒU\ô).:'Wó*ÎSÏþ-Ö)þ-,þ-V.þ-ž(þMÞŠþÍný†¦Í)2S@†b‚–¸<ÎQ~#mC‡‰D@g”^bŸÓu¢T…Ò ¼î‚>~8èòÛ(:P¬z?5<ØÜ ù.”Þ7»íÍz³¢úë¨Ø@ÏÿrÖ­ö‡õýò°ºžÿöìüß/ºïçð¶wÂtËMUUOÙ€‚ZF[‡«ˆÐ8æj°F„¢ì¨–[2BIeÔsW``>„…Àh†è…Ô0%1„cA‘ÑNI¬‰ÈûЂh§$FÄ¡ÛЂhEÚɘ#Ò’6T¤­B ¢=d1ò2ˆ8{Hb zZíq… )åÐB~I¬)U¨Ë’R¤)h¦$1¡…ÈymPÅ‚M+¡œÄ4”(¡±H³˜FJžréD *É\ÌaøÀªÐ¢u,Ò Z3”¢Œq)»!‡L´QHøP£Qý%Pi C¨Ñ ¯`3¤°î²Ÿ2Ò_ie#ìýÂõԨ׺bÒÓÑJ¨¢@G2CCaÒÒAEàÓ SŠŒ¢5_Íȇ†AF"DÅㆆA¦U±ÖùÙÌž–! 9¦öŒÏ½N‰ðQÐGŒŠ…=}”ñ[ë|ø¨Za=Ôƒœ à¿žbï¾´Ô ?%…˜µCK#¥<ñ¼Z*µ4RN…D­¤RK-50ý,õ\¦/¼" „@j‰–é#-r»aú¡ÍM1ýJz`ú£Rï#ƒ¦Ÿ^_fyÔ2bú@@•™~xNì^Y¿úù1}¢jÌôEÃô%ðOü Lÿi@ñ ¦ŸQd`úE8† Š› õ¬ HXã«EŒOA: lâ*²äEX"öŠX“:.(¤®E‘X6*a‘h= "Œºk@DÄÁ¡–5Š0o7c5„€òˆq„ж“n0Œ,@nÁK›U¦Æ$y\)¡¿ÊÔ ¢P6•yå*AAoŒ\9WK·ÉŠs2½¬}k1É0íâÛR€Šo=˜»k| ˆa-C”H.¾åÄûZ‚`ã’¨!aã±!ÑÀ„(3ø6÷3ø6U1„¨ÎàݬqåÝ4«Ê»qâƒs³mçfû ÎM&|›½0ø6zê1>ž¹h6D…ËcËÔp‚•‹òUÝÍ-…‹|ÜɃ¦z%cûÓú¶Þzß­æ iÈb²“˜/4£éwÝîbñ ûå^2íº^C9V‡í}¼ä¥ëJIt„Æn|:q×ì݇“Ïx—6”}q:énjá]¨ª¿©ÛY!v5ør8#éþ%£Úˆ²³ aðä<Õx@í#¶]EAÃ*A ßX7vÅ£DkCd–Ö yCW]s¼P=L©K‹eáø?_]qJ]MPS«ûþîÔyÏC²<¼VŸäéL ]8ΔŒ„¯ðÍ©®ÒÔE£ ¯ÍúÞ¯¾ûöå”ÖȦ¤ÊÇ^÷)LœT{%Õ½JA›µóWu”/B,-¤¥ V [‰'pƒ¥æäÙUsìõuèN9ìøñmõ¡œ]¡L×]vˆ§‡X|ìi!·¢WT. *‡؋*ôìãO¹¥Bªêþ.ºË9i ãsѶùTÏy9jÛýçò¶õÁ¦òÔÕœž$‚ä.˵î[–ý`Gg1ïãñ‰ƒ´Ð3¥#ÕVœöiTiyŒc¾°»m¯§‹’-Qð”¥zïât¿Zïãù#Ê·äðzŠßýŒ%…adˆäå(ñÓa·Ì¢¨ì¶;`f.þïl!žSâ2ˆì†)jðObqyz ¶„FÕôRËcÓCJ=2=C;˜"NïÍnýQ ÉfÝ»«í»ùiE;'Ý~}ÿ6„9iG'XÛÒV í®ìßÞß/wdîë¨èAA'QúþÍfKýZ«èËÏ¿ýrèà—:ÁØ«‡ýúðs”Ö,j± 6<ä—@Õy3¡Ð ›>Ww««×/WûõõÛåævÛ«Õ~?ÿí‘ ˆ³#qcQ©ödñUz©±léã®Ý`ÿÜòðš†T*%Ì$L=Ÿ;:'W¦[¾Š•A€vvÐ –@iÞ `«%² ûfT…j\ÄÛLJ÷­Ê KÎ1è¨FM¢O"ƒÎÃöaq»zXQwÕ׫e>Wß›£#úˆÇGêIýPý†ïö¤²§¼:æ FÐùÀ‡1]yž•ì£]¨úŸŸD·]¶>2|?P5Ð]{ õÄ»}º¨ úMGÍ ‚õ'óéo¦¦Ç9Fĺ"Nïj»º™š› Ë1 KE’Ðô„LF@Gèr.õøpCY?e0ÐQa ¦6•ÊWŒ¥ÌÄ„nÊõþEÀà~=áýÌ #„(u6ví¥‹le怜\‚êÝ<#KîJñÓtঊÔes³ä§QlFÓ)¤É1ÓÄòn{Ÿ;UÍÍšeA…Ç×+ëà­Û}xNnß–‡ýdtPÉÑòYX?o~Î×ud·­MpØ­oïH1"YÝ¡OTÈЙž™-ƒàØû_·D…èì‚Ù6L–jYõ£/²¼–€Ôý!~ò^vMÐÜ´o ÔDSdRa¨ú>®)°.Xîóàzª\NPsûånMö Š2ÕŠ6ñ²3Á0,¢øU°  d!v#Ž">ÚIöäb! Ř 7¯ÂëjT^·÷)a´ÑÝöxò©,=[a)ݲ~f:o‹}¢—å©O6™@?ÓæúÉAjà@kã´¤Ä7£ÙoS3·àøQˆ òs#¥æà”©†ÂÎd"Ê\WÏk½©m¿y(¾,á§ç©zFº«nûŠÞõÉÏGá²{WG êÔˆº t’íúm§'…wI×FLè nÂ|6×Qo$xcŽe¹EUf\–)ƒT2nO‡B™†>=9^tŽ–‡cÇÆxyÞ Š}ëãå¾ñ?@_)Z‡šî{â[ÞÇ }´ÎÌ(>–©Sà=8á6}B|4ÁVÐÈšÇЈÞhÔµ+Åœ› Åo»[n’2œw_nçy«ã§ÅwÕˆ'Ë×fsreŠZ/ûDôÈï‚оfŸd{“Œa&bœÔ‡WÛí€#ßÓÛ:3UG‡¬€YC=úsµwNwy¥hëÐdû}Â&n½6\ç¢kò}]GíP8 Ëš$ëcBuUy{äŽØ~ Ec–ÝxÀóÞŸñ{rù2á ZÀX]˜,!éH‘9âËQw®Ds…ù÷ ÷€Â‹éè È£3ô(ë*´ŽÈa…~£®ýOô¦¥¥ŒW…ñìPøöy÷ÄœäsÁi«Ÿ¶fj7OlÙ£&$¼[ß>¬­—Ýoh%A—~s9Ÿv‚ ºZNÐé/Ùz¼œ>®F$¶¥˜GW°é%`b«µÉé_¶G$i§ÄMXäwÞP¯Ú }æ~‘”.\!lúnm ºW£ÂI5 Z ;mï³ í騋M»ÖQœ\f=ºÕ†7±Òѳ8Þº JiõÔÝÆ£Ú«´u)nòÀ¯'0.jÕ—ÝšR…Óù.Ò #¤èޝò³zCn(jt3I›Š-×ÇAH/ƒ†# Žìƒ±^•Ð.‹æ9Õö½:.Øs 3õò®€ßHœº„3»C^^Rš,a9‰u í€Év¡?«Fq:¹» WÚôä4߉Õ+6^îS²—šZ!cÚøåD (Ú#ËŸT>,¿•ü§ì7ë篙Ž«ª+{¨Îe•Â--p™hƒ|ƒ<^ÌJŠ›YxKi~é±ÞlšeÒa̪ ðòù·_.^Õ«Å–º]§ŽÀ˜K¾Á¶íîy_KœŠž ûj§¨Z»…(SÎÌkâ9è­è€?a×uÔÊF=Žw·BJÒÁ×zN1Óôr WZî¨CbËlH“V>a$Ô‹=eŸÖ¯jˆ)¦6O>IlOGb7TÒÞ= "FËáXìJ‰K›Äo*ï¶ ¶ÌxºaVÇ-œ×„ŸÑV½ûC%oò¡¢|&]Kj#¦¡+ñà“?á÷CCõ ï Ê¼®NÕð4ÁŸ<ÏQ$óáäþ é5×"³œË.í¶Û}½P/"›˜J%Ôwt^Õ°äǤA§–Õ†Ÿ·ym*L!ºó‹‰Ã`׃šµgÆ“Ø0±áVÔ'ÂÝgSÄéçd&øíĈª·žâg!zoê†`dŸrƦY6ݲÒÍÚNE/d>¾ªü\Î_LN¢ÞQ}¢Ù&ÒÉlÂù'šM‹Ø¯ívÑ] ‡_všöûT0FÀá<íàÁš1&Zá鮸Ó̉eٓͪ…º—óbúâÅSl+l­+OY—6$žfÝ’§¬K§W'­ Ë~šÍ©ªQ$o/Œæ£ªûÓ!N·±ø¯áùt^öò †ßÖŽøo<%ùÀæMüÉì²üºW¶Nõsy{¿ÿC²˜Àp»ËBK1Í{ÇlTøå Ö¢pÁÝë‡íaŸ>‚=þq1|uuIÿ"7hòPŠøÑÁtÝá ¸Â›é7@ìté‚ÞúÝœöæÁ©ÏòËèëíÃÙe÷YÓmO°¾¯‰<°ãÿmxüjxüãðf}Áx1©Œx®2Y^Ë#$A®Ÿª”8¡”ü§)%~¨½8Ü ¨½x·¼]!¾®îþ´>ü_q©‡)ƒKe>N^­n ŒÔÿÇÝöí~u·¥mîø®¥¯³’W•ÿëf1Œô»ÁPC´´Í'¤å¤A¯—‡evެMúö ¾Z]&(@›“¥ÛφÇ`ŸËy²jº]üÿù‚È}endstream endobj 219 0 obj << /Type /XRef /Length 192 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 220 /ID [<6ab93ad5e5bfb315ffc7f204531ccb9c>] >> stream xœcb&F~0ù‰ $À8JŽhò?ƒˆÄ* ›½”*žnM£$(UhN¥ q9Pz8"ƒ @¤É ÉyD ˆIF…» 6û Éè "¥ç‚Ha°F;Éíf+ƒõ>‘¬Àä°8ˆd6‘ü Rl#O Xö#˜| ¶±L ‚Íy"™VHF0Y "ÙÞ€ÕƒE˜ÀjæÅW‚Ù qF11[(Dòʃõª€H}ˆ endstream endobj startxref 149517 %%EOF surveillance/inst/doc/surveillance.Rnw0000644000175100001440000006716113174706302017710 0ustar hornikusers%\VignetteIndexEntry{Getting started with outbreak detection} \documentclass[a4paper,11pt]{article} \usepackage[T1]{fontenc} \usepackage{graphicx} \usepackage{natbib} \bibliographystyle{apalike} \usepackage{lmodern} \usepackage{amsmath} \usepackage{amsfonts,amssymb} \newcommand{\pkg}[1]{{\bfseries #1}} \newcommand{\surveillance}{\pkg{surveillance}} \usepackage{hyperref} \hypersetup{ pdfauthor = {Michael H\"ohle and Andrea Riebler and Michaela Paul}, pdftitle = {Getting started with outbreak detection}, pdfsubject = {R package 'surveillance'} } \title{Getting started with outbreak detection} \author{ Michael H{\"o}hle\thanks{Author of correspondance: Department of Statistics, University of Munich, Ludwigstr.\ 33, 80539 M{\"u}nchen, Germany, Email: \texttt{hoehle@stat.uni-muenchen.de}} , Andrea Riebler and Michaela Paul\\ Department of Statistics\\ University of Munich\\ Germany } \date{17 November 2007} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Sweave %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage{Sweave} %Put all in another directory \SweaveOpts{prefix.string=plots/surveillance, width=9, height=4.5} \setkeys{Gin}{width=1\textwidth} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Initial R code %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <>= library("surveillance") options(SweaveHooks=list(fig=function() par(mar=c(4,4,2,0)+.5))) options(width=70) set.seed(1234) ## create directory for plots dir.create("plots", showWarnings=FALSE) ###################################################################### #Do we need to compute or can we just fetch results ###################################################################### CACHEFILE <- "surveillance-cache.RData" compute <- !file.exists(CACHEFILE) message("Doing computations: ", compute) if(!compute) load(CACHEFILE) @ \begin{document} \fbox{\vbox{\small \noindent\textbf{Disclaimer}: This vignette reflects package state at version 0.9-7 and is hence somewhat outdated. New functionality has been added to the package: this includes various endemic-epidemic modelling frameworks for surveillance data (\texttt{hhh4}, \texttt{twinSIR}, and \texttt{twinstim}), as well as more outbreak detection methods (\texttt{glrnb}, \texttt{boda}, and \texttt{farringtonFlexible}). These new features are described in detail in \citet{meyer.etal2014} and \citet{salmon.etal2014}, respectively. %and corresponding vignettes are included in the package; %see \texttt{vignette(package = "surveillance")} for an overview. Note in particular that use of the new \texttt{S4} class \texttt{sts} instead of \texttt{disProg} is encouraged to encapsulate time series data. }} {\let\newpage\relax\maketitle} \begin{abstract} \noindent This document gives an introduction to the \textsf{R} package \surveillance\ containing tools for outbreak detection in routinely collected surveillance data. The package contains an implementation of the procedures described by~\citet{stroup89}, \citet{farrington96} and the system used at the Robert Koch Institute, Germany. For evaluation purposes, the package contains example data sets and functionality to generate surveillance data by simulation. To compare the algorithms, benchmark numbers like sensitivity, specificity, and detection delay can be computed for a set of time series. Being an open-source package it should be easy to integrate new algorithms; as an example of this process, a simple Bayesian surveillance algorithm is described, implemented and evaluated.\\ \noindent{\bf Keywords:} infectious disease, monitoring, aberrations, outbreak, time series of counts. \end{abstract} \newpage \section{Introduction}\label{sec:intro} Public health authorities have in an attempt to meet the threats of infectious diseases to society created comprehensive mechanisms for the collection of disease data. As a consequence, the abundance of data has demanded the development of automated algorithms for the detection of abnormalities. Typically, such an algorithm monitors a univariate time series of counts using a combination of heuristic methods and statistical modelling. Prominent examples of surveillance algorithms are the work by~\citet{stroup89} and~\citet{farrington96}. A comprehensive survey of outbreak detection methods can be found in~\citep{farrington2003}. The R-package \texttt{surveillance} was written with the aim of providing a test-bench for surveillance algorithms. From the Comprehensive R Archive Network (CRAN) the package can be downloaded together with its source code. It allows users to test new algorithms and compare their results with those of standard surveillance methods. A few real world outbreak datasets are included together with mechanisms for simulating surveillance data. With the package at hand, comparisons like the one described by~\citet{hutwagner2005} should be easy to conduct. The purpose of this document is to illustrate the basic functionality of the package with R-code examples. Section~\ref{sec:data} contains a description of the data format used to store surveillance data, mentions the built-in datasets and illustrates how to create new datasets by simulation. Section~\ref{sec:algo} contains a short description of how to use the surveillance algorithms and illustrate the results. Further information on the individual functions can be found on the corresponding help pages of the package. \section{Surveillance Data}\label{sec:data} Denote by $\{y_t\>;t=1,\ldots,n\}$ the time series of counts representing the surveillance data. Because such data typically are collected on a weekly basis, we shall also use the alternative notation $\{y_{i:j}\}$ with $j=\{1,\ldots,52\}$ being the week number in year $i=\{-b,\ldots,-1,0\}$. That way the years are indexed such that most current year has index zero. For evaluation of the outbreak detection algorithms it is also possible for each week to store -- if known -- whether there was an outbreak that week. The resulting multivariate series $\{(y_t,x_t)\>; t=1,\ldots,n\}$ is in \texttt{surveillance} given by an object of class \texttt{disProg} (disease progress), which is basically a \texttt{list} containing two vectors: the observed number of counts and a boolean vector \texttt{state} indicating whether there was an outbreak that week. A number of time series are contained in the package (see \texttt{data(package="surveillance")}), mainly originating from the SurvStat@RKI database at \url{https://survstat.rki.de/} maintained by the Robert Koch Institute, Germany~\citep{survstat}. For example the object \texttt{k1} describes Kryptosporidosis surveillance data for the German federal state Baden-W\"{u}rttemberg 2001-2005. The peak in 2001 is due to an outbreak of Kryptosporidosis among a group of army-soldiers in boot-camp~\citep{bulletin3901}. In \surveillance\ the \texttt{readData} function is used to bring the time series on \texttt{disProg} form. The SurvStat@RKI database uses a 53 weeks a year format; therefore a conversion with \texttt{correct53to52} is necessary. <>= data(k1) plot(k1,main="Kryptosporidiosis in BW 2001-2005") @ For evaluation purposes it is also of interest to generate surveillance data using simulation. The package contains functionality to generate surveillance data containing point-source like outbreaks, for example with a Salmonella serovar. The model is a Hidden Markov Model (HMM) where a binary state $X_t, t=1,\ldots,n$, denotes whether there was an outbreak and $Y_t$ is the number of observed counts, see Figure~\ref{fig:hmm}. \begin{figure}[htb] \centering \includegraphics[width=.75\textwidth]{surveillance-hmm} \caption{The Hidden Markov Model} \label{fig:hmm} \end{figure} The state $X_t$ is a homogenous Markov chain with transition matrix \begin{center} \begin{tabular}{c|cc} $X_t\backslash X_{t+1}$ & 0 & 1\\ \hline $0$ & $p$ & $1 - p$ \\ $1$ & $1 - r$ & $r$ \end{tabular} \end{center} Hence $1-p$ is the probability to switch to an outbreak state and $1-r$ is the probability that $X_t=1$ is followed by $X_{t+1}=1$. Furthermore, the observation $Y_t$ is Poisson-distributed with log-link mean depending on a seasonal effect and time trend, i.e.\ \[ \log \mu_t = A \cdot \sin \, (\omega \cdot (t + \varphi)) + \alpha + \beta t. \] In case of an outbreak $(X_t=1)$ the mean increases with a value of $K$, altogether \begin{equation}\label{eq:hmm} Y_t \sim \operatorname{Po}(\mu_t + K \cdot X_t). \end{equation} The model in (\ref{eq:hmm}) corresponds to a single-source, common-vehicle outbreak, where the length of an outbreak is controlled by the transition probability $r$. The daily numbers of outbreak-cases are simply independently Poisson distributed with mean $K$. A physiologically better motivated alternative could be to operate with a stochastic incubation time (e.g.\ log-normal or gamma distributed) for each individual exposed to the source, which results in a temporal diffusion of the peak. The advantage of (\ref{eq:hmm}) is that estimation can be done by a generalized linear model (GLM) using $X_t$ as covariate and that it allows for an easy definition of a correctly identified outbreak: each $X_t=1$ has to be identified. More advanced setups would require more involved definitions of an outbreak, e.g.\ as a connected series of time instances, where the number of outbreak cases is greater than zero. Care is then required in defining what a correctly identified outbreak for time-wise overlapping outbreaks means. In \surveillance\ the function \verb+sim.pointSource+ is used to simulate such a point-source epidemic; the result is an object of class \verb+disProg+. \label{ex:sts} <>= sts <- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) plot(sts) @ \section{Surveillance Algorithms}\label{sec:algo} Surveillance data often exhibit strong seasonality, therefore most surveillance algorithms only use a set of so called \emph{reference values} as basis for drawing conclusions. Let $y_{0:t}$ be the number of cases of the current week (denoted week $t$ in year $0$), $b$ the number of years to go back in time and $w$ the number of weeks around $t$ to include from those previous years. For the year zero we use $w_0$ as the number of previous weeks to include -- typically $w_0=w$. Altogether the set of reference values is thus defined to be \[ R(w,w_0,b) = \left(\bigcup\limits_{i=1}^b\bigcup\limits_{j=\,-w}^w y_{-i:t+j}\right) \cup \left(\bigcup_{k=-w_0}^{-1} y_{0:t+k}\right) \] Note that the number of cases of the current week is not part of $R(w,w_0,b)$. A surveillance algorithm is a procedure using the reference values to create a prediction $\hat{y}_{0:t}$ for the current week. This prediction is then compared with the observed $y_{0:t}$: if the observed number of cases is much higher than the predicted number, the current week is flagged for further investigations. In order to do surveillance for time $0:t$ an important concern is the choice of $b$ and $w$. Values as far back as time $-b:t-w$ contribute to $R(w,w_0,b)$ and thus have to exist in the observed time series. Currently, we have implemented four different type of algorithms in \surveillance. The Centers for Disease Control and Prevention (CDC) method~\citep{stroup89}, the Communicable Disease Surveillance Centre (CDSC) method~\citep{farrington96}, the method used at the Robert Koch Institute (RKI), Germany~\citep{altmann2003}, and a Bayesian approach documented in~\citet{riebler2004}. A detailed description of each method is beyond the scope of this note, but to give an idea of the framework the Bayesian approach developed in~\citet{riebler2004} is presented: Within a Bayesian framework, quantiles of the predictive posterior distribution are used as a measure for defining alarm thresholds. The model assumes that the reference values are identically and independently Poisson distributed with parameter $\lambda$ and a Gamma-distribution is used as Prior distribution for $\lambda$. The reference values are defined to be $R_{\text{Bayes}}= R(w,w_0,b) = \{y_1, \ldots, y_{n}\}$ and $y_{0:t}$ is the value we are trying to predict. Thus, $\lambda \sim \text{Ga}(\alpha, \beta)$ and $y_i|\lambda \sim \text{Po}(\lambda)$, $i = 1,\ldots,{n}$. Standard derivations show that the posterior distribution is \begin{equation*} \lambda|y_1, \ldots, y_{n} \sim \text{Ga}(\alpha + \sum_{i=1}^{n} y_i, \beta + n). \end{equation*} Computing the predictive distribution \begin{equation*} f(y_{0:t}|y_1,\ldots,y_{n}) = \int\limits^\infty_0{f(y_{0:t}|\lambda)\, f(\lambda|y_1,\ldots,y_{n})}\, d\lambda \end{equation*} we get the Poisson-Gamma-distribution \begin{equation*} y_{0:t}|y_1,\ldots,y_{n} \sim \text{PoGa}(\alpha + \sum_{i=1}^{n} y_i, \beta + n), \end{equation*} which is a generalization of the negative Binomial distribution, i.e.\ \[ y_{0:t}|y_1,\ldots,y_{n} \sim \text{NegBin}(\alpha + \sum_{i=1}^{n} y_i, \tfrac{\beta + n}{\beta + n + 1}). \] Using the Jeffrey's Prior $\text{Ga}(\tfrac{1}{2}, 0)$ as non-informative Prior distribution for $\lambda$ the parameters of the negative Binomial distribution are \begin{align*} \alpha + \sum_{i=1}^{n} y_i &= \frac{1}{2} + \sum_{y_{i:j} \in R_{\text{Bayes}}}\!\! y_{i:j} \quad % \intertext{and} \quad\text{and}\quad \frac{\beta + n}{\beta + n + 1} = \frac{|R_{\text{Bayes}}|}{|R_{\text{Bayes}}| + 1}. \end{align*} Using a quantile-parameter $\alpha$, the smallest value $y_\alpha$ is computed, so that \begin{equation*} P(y \leq y_\alpha) \geq 1-\alpha. \end{equation*} Now \begin{equation*} A_{0:t} = I(y_{0:t} \geq y_\alpha), \end{equation*} i.e. if $y_{0:t}\geq y_\alpha$ the current week is flagged as an alarm. As an example, the \verb+Bayes1+ method uses the last six weeks as reference values, i.e.\ $R(w,w_0,b)=(6,6,0)$, and is applied to the \texttt{k1} dataset with $\alpha=0.01$ as follows. <>= k1.b660 <- algo.bayes(k1, control = list(range = 27:192, b = 0, w = 6, alpha = 0.01)) plot(k1.b660, disease = "k1", firstweek = 1, startyear = 2001) @ Several extensions of this simple Bayesian approach are imaginable, for example the inane over-dispersion of the data could be modeled by using a negative-binomial distribution, time trends and mechanisms to correct for past outbreaks could be integrated, but all at the cost of non-standard inference for the predictive distribution. Here simulation based methods like Markov Chain Monte Carlo or heuristic approximations have to be used to obtain the required alarm thresholds. In general, the \verb+surveillance+ package makes it easy to add additional algorithms -- also those not based on reference values -- by using the existing implementations as starting point. The following call uses the CDC and Farrington procedure on the simulated time series \verb+sts+ from page~\pageref{ex:sts}. Note that the CDC procedure operates with four-week aggregated data -- to better compare the upper bound value, the aggregated number of counts for each week are shown as circles in the plot. <>= cntrl <- list(range=300:400,m=1,w=3,b=5,alpha=0.01) sts.cdc <- algo.cdc(sts, control = cntrl) sts.farrington <- algo.farrington(sts, control = cntrl) @ <>= if (compute) { <> } @ <>= par(mfcol=c(1,2)) plot(sts.cdc, legend.opts=NULL) plot(sts.farrington, legend.opts=NULL) @ Typically, one is interested in evaluating the performance of the various surveillance algorithms. An easy way is to look at the sensitivity and specificity of the procedure -- a correct identification of an outbreak is defined as follows: if the algorithm raises an alarm for time $t$, i.e.\ $A_t=1$ and $X_t=1$ we have a correct classification, if $A_t=1$ and $X_t=0$ we have a false-positive, etc. In case of more involved outbreak models, where an outbreak lasts for more than one week, a correct identification could be if at least one of the outbreak weeks is correctly identified, see e.g.\ \citet{hutwagner2005}. To compute various performance scores the function \verb+algo.quality+ can be used on a \verb+SurvRes+ object. <<>>= print(algo.quality(k1.b660)) @ This computes the number of false positives, true negatives, false negatives, the sensitivity and the specificity. Furthermore, \texttt{dist} is defined as \[ \sqrt{(Spec-1)^2 + (Sens - 1)^2}, \] that is the distance to the optimal point $(1,1)$, which serves as a heuristic way of combining sensitivity and specificity into a single score. Of course, weighted versions are also imaginable. Finally, \texttt{lag} is the average number of weeks between the first of a consecutive number of $X_t=1$'s (i.e.\ an outbreak) and the first alarm raised by the algorithm. To compare the results of several algorithms on a single time series we declare a list of control objects -- each containing the name and settings of the algorithm we want to apply to the data. <>= control = list( list(funcName = "rki1"), list(funcName = "rki2"), list(funcName = "rki3"), list(funcName = "bayes1"), list(funcName = "bayes2"), list(funcName = "bayes3"), list(funcName = "cdc",alpha=0.05), list(funcName = "farrington",alpha=0.05)) control <- lapply(control,function(ctrl) { ctrl$range <- 300:400;return(ctrl)}) @ % In the above, \texttt{rki1}, \texttt{rki2} and \texttt{rki3} are three methods with reference values $R_\text{rki1}(6,6,0)$, $R_\text{rki2}(6,6,1)$ and $R_\text{rki3}(4,0,2)$ all called with $\alpha=0.05$. The methods \texttt{bayes1}-\texttt{bayes3} is the Bayesian algorithm using the same setup of reference values. The CDC Method is special, since it operates on aggregated four-week blocks. To make everything comparable a common $\alpha=0.05$ level is used for all algorithms. All algorithms in \texttt{control} are applied to \texttt{sts} using: <>= algo.compare(algo.call(sts, control = control)) @ <>= if (compute) { acall <- algo.call(sts, control = control) } print(algo.compare(acall), digits = 3) @ A test on a set of time series can be done as follows. Firstly, a list containing 10 simulated time series is created. Secondly, all the algorithms specified in the \texttt{control} object are applied to each series. Finally the results for the 10 series are combined in one result matrix. <>= #Create 10 series ten <- lapply(1:10,function(x) { sim.pointSource(p = 0.975, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7)}) @ <>= #Do surveillance on all 10, get results as list ten.surv <- lapply(ten,function(ts) { algo.compare(algo.call(ts,control=control)) }) @ <>= if (compute) { <> } @ <>= #Average results algo.summary(ten.surv) @ <>= print(algo.summary(ten.surv), digits = 3) @ A similar procedure can be applied when evaluating the 14 surveillance series drawn from SurvStat@RKI~\citep{survstat}. A problem is however, that the series after conversion to 52 weeks/year are of length 209 weeks. This is insufficient to apply e.g.\ the CDC algorithm. To conduct the comparison on as large a dataset as possible the following trick is used: The function \texttt{enlargeData} replicates the requested \texttt{range} and inserts it before the original data, after which the evaluation can be done on all 209 values. <>= #Update range in each - cyclic continuation range = (2*4*52) + 1:length(k1$observed) control <- lapply(control,function(cntrl) { cntrl$range=range;return(cntrl)}) #Outbreaks outbrks <- c("m1", "m2", "m3", "m4", "m5", "q1_nrwh", "q2", "s1", "s2", "s3", "k1", "n1", "n2", "h1_nrwrp") #Load and enlarge data. outbrks <- lapply(outbrks,function(name) { #Load with data eval(substitute(data(name),list(name=name))) enlargeData(get(name),range=1:(4*52),times=2) }) #Apply function to one one.survstat.surv <- function(outbrk) { algo.compare(algo.call(outbrk,control=control)) } @ <>= algo.summary(lapply(outbrks,one.survstat.surv)) @ <>= if (compute) { res.survstat <- algo.summary(lapply(outbrks,one.survstat.surv)) } print(res.survstat, digits=3) @ In both this study and the earlier simulation study the Bayesian approach seems to do quite well. However, the extent of the comparisons do not make allowance for any more supported statements. Consult the work of~\citet{riebler2004} for a more thorough comparison using simulation studies. \section{Multivariate Surveillance} As of version 0.9-2 \surveillance\ supports the visualization of multivariate time series of counts. An (multivariate) object of class \texttt{disProg} contains matrices with the observed number of counts and the respective state chains, where each column represents an individual time series. Additional elements of the \texttt{disProg}-object are a neighbourhood matrix and a matrix with population counts. However, only modelling of the time series as by~\citet{held-etal-2005} is currently available. In the near future the surveillance algorithms will also be extended to handle these multivariate data. For example, consider the weekly counts of new measles cases for each ``Kreis'' (area) of the administrative district ``Weser-Ems'' in Lower Saxony, Germany, in 2001 and 2002~\citep{survstat}. Figure~\ref{fig:map} shows a map of the $m=15$ areas. The corresponding $m \times m$ neighbourhood matrix has elements 1 if two areas share a common border and is 0 otherwise. \begin{figure}[htb] \centering \setkeys{Gin}{width=0.5\textwidth} <>= data("measlesWeserEms") par(mar=c(0,0,0,0)) plot(measlesWeserEms@map[-c(1,5),], col=grey.colors(15,start=0.4,end=1)) text(coordinates(measlesWeserEms@map[-c(1,5),]), labels=row.names(measlesWeserEms@map)[-c(1,5)], font=2) @ \caption{Map of the administrative district ``Weser-Ems''} \label{fig:map} \end{figure} In the package \texttt{surveillance} the measles data are already available in the form of a \texttt{disProg}-object. <>= data("measles.weser") plot(measles.weser, title="measles in Weser-Ems 2001-2002", xaxis.years=TRUE, startyear= 2001, firstweek=1) @ The number of counts for each area can also be looked at and plotted as individual time series. Here, the x-axis is the week number since 1st of January 2001 and the y-axis is the number of measles cases. <>= plot(measles.weser,as.one=FALSE,xaxis.years=FALSE) @ \vspace{1em} The data are analysed using the model proposed by \citet{held-etal-2005}. A call to the function \texttt{algo.hhh} fits a Poisson or negative binomial model with mean \[ \mu_{it} = \lambda y_{i,t-1} + \phi \sum_{j \sim i} y_{j,t-1} + n_{it} \nu_{it}\, , \quad i=1,\ldots,m, \, t=1,\ldots,n \, , \] where $j \sim i$ denotes all neighbours of $i$, to a multivariate time series of counts. It is estimated by maximum likelihood using numerical optimization methods. The $n_{it}$ are standardized population counts and $\log \nu_{it} = \alpha_i + \beta t + \sum_{s=1}^{S}\big(\gamma_s sin(\omega_s t) + \delta_s cos(\omega_s t)\big)$ with Fourier frequencies $\omega_s$. For the weekly measles data $\omega_s=2s\pi/52$ (i.e.\ \texttt{period}=52). In the following, the model specified in \texttt{cntrl} is fitted to the data. <>= cntrl <- list(linear = TRUE, nseason = 1, neighbours = TRUE, negbin = "single", lambda = TRUE) @ The counts are assumed to be negative binomial distributed with mean $\mu_{it}$ and variance $\mu_{it} +\mu_{it}^2/\psi$. A linear time trend $\beta$, seasonal parameters $\gamma_1$ and $\beta_1$ (i.e.\ $S=1$) as well as the autoregressive parameters $\lambda$ and $\phi$ are included to specify the mean. All in all, there are %21 parameters to be estimated. $2S+m+4$ parameters to be estimated for the negative binomial model. In case of a Poisson model, the number of parameters reduces by one as the overdispersion parameter $\psi$ is omitted. <>= measles.hhh <- algo.hhh(measles.weser, control = cntrl) @ Depending on the initial values for the parameters, the optimization algorithm might not converge or only find a local maximum as the parameter space is high-dimensional. It is therefore reasonable to try multiple starting values. The function \texttt{create.grid} takes a \texttt{list} with elements in the form of \texttt{param = c(lower,upper,length)} to create a matrix of starting values. For each parameter a sequence of length \texttt{length} from \texttt{lower} to \texttt{upper} is built and the resulting grid contains all combinations of these parameter values. A call to \texttt{algo.hhh.grid} conducts a grid search until either all starting values are used or a time limit \texttt{maxTime} (in seconds) is exceeded. The result with the highest likelihood is returned. <>= grid <- create.grid(measles.weser, control = cntrl, params = list(endemic = c(lower=-0.5, upper=0.5, length=3), epidemic = c(0.1, 0.9, 5), negbin = c(0.3, 12, 5))) measles.hhh.grid <- algo.hhh.grid(measles.weser, control = cntrl, thetastartMatrix = grid, maxTime = 300) @ <>= if (compute) { message("running a grid search for up to 5 minutes") <> } @ <<>>= print(measles.hhh.grid, digits = 3) @ <>= if (compute) { # save computed results save(list=c("sts.cdc","sts.farrington","acall","res.survstat", "ten.surv","measles.hhh.grid"), file=CACHEFILE) tools::resaveRdaFiles(CACHEFILE) } @ \section{Discussion and Future Work} Many extensions and additions are imaginable to improve the package. For now, the package is intended as an academic tool providing a test-bench for integrating new surveillance algorithms. Because all algorithms are implemented in R, performance has not been an issue. Especially the current implementation of the Farrington Procedure is rather slow and would benefit from an optimization possible with fragments written in C. One important improvement would be to provide more involved mechanisms for the simulation of epidemics. In particular it would be interesting to include multi-day outbreaks originating from single-source exposure, but with delay due to varying incubation time~\citep{hutwagner2005} or SEIR-like epidemics~\citep{andersson2000}. However, defining what is meant by a correct outbreak identification, especially in the case of overlapping outbreaks, creates new challenges which have to be met. \section{Acknowledgements} We are grateful to K.\ Stark and D.\ Altmann, RKI, Germany, for discussions and information on the surveillance methods used by the RKI. Our thanks to C.\ Lang, University of Munich, for his work on the R--implementation and M. Kobl, T. Schuster and M. Rossman, University of Munich, for their initial work on gathering the outbreak data from SurvStat@RKI. The research was conducted with financial support from the Collaborative Research Centre SFB 386 funded by the German research foundation (DFG). \bibliography{references} \end{document} surveillance/inst/doc/twinSIR.R0000644000175100001440000000741313231650434016176 0ustar hornikusers## ----include = FALSE--------------------------------------------------------------- ## load the "cool" package library("surveillance") ## Compute everything or fetch cached results? message("Doing computations: ", COMPUTE <- !file.exists("twinSIR-cache.RData")) if (!COMPUTE) load("twinSIR-cache.RData", verbose = TRUE) ## ----hagelloch.df------------------------------------------------------------------ data("hagelloch") head(hagelloch.df, n = 5) ## ----hagelloch--------------------------------------------------------------------- hagelloch <- as.epidata(hagelloch.df, t0 = 0, tI.col = "tI", tR.col = "tR", id.col = "PN", coords.cols = c("x.loc", "y.loc"), f = list(household = function(u) u == 0, nothousehold = function(u) u > 0), w = list(c1 = function (CL.i, CL.j) CL.i == "1st class" & CL.j == CL.i, c2 = function (CL.i, CL.j) CL.i == "2nd class" & CL.j == CL.i), keep.cols = c("SEX", "AGE", "CL")) ## ----hagelloch_show, warning=FALSE------------------------------------------------- head(hagelloch, n = 5) ## ----hagelloch_plot, echo=2, fig.cap="Evolution of the 1861 Hagelloch measles epidemic in terms of the numbers of susceptible, infectious, and recovered children. The bottom \\code{rug} marks the infection times \\code{tI}.", fig.pos="!h"---- par(mar = c(5, 5, 1, 1)) plot(hagelloch, xlab = "Time [days]") ## ----hagelloch_households, fig.cap="Spatial locations of the Hagelloch households. The size of each dot is proportional to the number of children in the household.", fig.pos="ht", echo=-1---- par(mar = c(5, 5, 1, 1)) hagelloch_coords <- summary(hagelloch)$coordinates plot(hagelloch_coords, xlab = "x [m]", ylab = "y [m]", pch = 15, asp = 1, cex = sqrt(multiplicity(hagelloch_coords))) legend(x = "topleft", pch = 15, legend = c(1, 4, 8), pt.cex = sqrt(c(1, 4, 8)), title = "Household size") ## ----hagellochFit, results='hide'-------------------------------------------------- hagellochFit <- twinSIR(~household + c1 + c2 + nothousehold, data = hagelloch) ## ----hagellochFit_summary_echo, eval=FALSE----------------------------------------- # set.seed(1) # summary(hagellochFit) ## ----hagellochFit_confint---------------------------------------------------------- exp(confint(hagellochFit, parm = "cox(logbaseline)")) ## ----hagellochFit_profile, results='hide', eval=COMPUTE---------------------------- # prof <- profile(hagellochFit, # list(c(match("c1", names(coef(hagellochFit))), NA, NA, 25), # c(match("c2", names(coef(hagellochFit))), NA, NA, 25))) ## ---------------------------------------------------------------------------------- prof$ci.hl ## ----hagellochFit_profile_plot, fig.cap="Normalized log-likelihood for $\\alpha_{c1}$ and $\\alpha_{c2}$ when fitting the \\code{twinSIR} model formulated in Equation~\\eqref{eqn:twinSIR:hagelloch} to the Hagelloch data.", fig.pos="ht", fig.height=4.4---- plot(prof) ## ----hagellochFit_plot, echo=2, fig.width=4.5, fig.height=4.5, out.width="0.49\\linewidth", fig.subcap=c("Epidemic proportion.","Transformed residuals."), fig.cap="Diagnostic plots for the \\code{twinSIR} model formulated in Equation~\\ref{eqn:twinSIR:hagelloch}.", fig.pos="htb"---- par(mar = c(5, 5, 1, 1)) plot(hagellochFit, which = "epidemic proportion", xlab = "time [days]") checkResidualProcess(hagellochFit, plot = 1) ## ----hagellochFit_fstep, results='hide'-------------------------------------------- knots <- c(100, 200) fstep <- list( B1 = function(D) D > 0 & D < knots[1], B2 = function(D) D >= knots[1] & D < knots[2], B3 = function(D) D >= knots[2]) hagellochFit_fstep <- twinSIR( ~household + c1 + c2 + B1 + B2 + B3, data = update(hagelloch, f = fstep)) ## ----hagellochFit_AIC-------------------------------------------------------------- set.seed(1) AIC(hagellochFit, hagellochFit_fstep) surveillance/inst/doc/monitoringCounts.pdf0000644000175100001440000152337413231650473020605 0ustar hornikusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 5211 /Filter /FlateDecode /N 99 /First 836 >> stream xœÝ\[wÔÆ–~Ÿ_¡·ëĪûÉd-ƒ0ñØ> pNÚm ÚÝNK'ù¼Ïó|»ªÔî‹[Ž›d£Ö}k×¾Õ·w•$ ^¨ÂúBÚŠÂ΋ÂÁ`«Á¾<È"BKüðBX! !°¶ªÀ¦”tPÒYƒ‹ ÅöM¡”Ǿ-”¡ã®PÎáz°áÀ³eèeG”qP8…#”£þÀ­€à(» y2Á¡/Pöí"³òD á-ÚâAÙ{ÈÖƒràt;( Êd‹Aã7€r°`DðN€ÍrÙB’KMªÇ††|`AØ€$!aÉa‘T/9µ"ÑÒí°lmþãÛo ¶[µƒãA;Àa—Ú/Øí¨W ¼)îï ÞcG§ÃßΫ‚=Á £Éûâ»ï"í‹öt2-ìþ=UÅÁ`t6SìÔÓÅÁðôâl0<­¦ß»õðtPŠïÿçtT=™i5hëÉxgÐVŃG’ ÏaBЈæòï\üó¿u×Ñ^ «7Åçº=-NÁÈtZçƒáGpˆË^V¿}žL›âÁþ7Es1ýTÕ£Ñ`<¬¾)&íˆ|,Ž«¶Ò3qE‹‡7m=ŒŠóédX5M1œŒÛédb»“ãÛØÚ›NŽ/†øz¾÷ªx~:iÚf8­ÏÛ"”Âゃ‹£xZñÛ‡u Ñ<ØŒk4¥¿/žL.ÆmqXŸAbÕ´†Œëq±ÿ¨Ø>Bâ\ŠŽ[:µwq4ª‡Å÷Õ`„ö̵ïa§ˆD±½¬!‡",’Ö|ü\åµÎk“×IÑ2ŸWÝZé¼ß­ÓõʦµF,Œë|½Î×é|Ît5wqm´Îëļ6í#P¤ýLǧóƪ|^gþºuæ#Ó7*ÑC§óùt¢*E¢"³r£~éL9YwgÈãñ¤%¹…î¢'0ˆjŒc&¤VÀaŽëÁãÉ%®âø3Á” íµ(ỿÁ)nèüe¿j&SØVAôŸ^¶ÏZ2+£Ò#Ø3<"áÙ×`‡U Úloçx¬.[ýî»yvµm@£ž6m‘ù{5À¶É­ÏWîTM;³öæí;Ä«QÀ›Ò¢_ŒFÄúkzšÉêì’£@¶ßä°z2ʇ+b“YÖYQÙ®c2d­¥•Ⱥôyu'x^çó¢Ób&)L^gÚ"™N¶I)3™éd“™ÃEÍúûÔ¬àóšâ.šÝŽ4 öýÝùíâ¡§m{þˆ±ãËòxR—“é{&8bŽUŽ}hšòw¼¬é?FPD”J­â±íq]íìSˆú'†.Ñã Ûó%ÀU¥…âç(úÆ_b4k#'¯êñÇW¤úŽíÇ»°¡Éô •ý¸· òìðeÑN/ªîò+1u· š* нûù§ÞíüýÉî>DÆžŽ‡“cŠ’ÛEr:˜„‹²…QÇh‹Ž![I´ýt ŒîŠaz¶èXHOû¹>nOc„$(ƒ¾”¯T–´Ï׫ݺˡ§•X[⯎(×tõº‹Ì÷&*@šŽÚ罸J"ì˃•èxN ‰‹ à#ñÚ÷i Ð[i˜D3"¾nÇFÇKM›ݤaÝš:ƒîxl&íËÄ6 $Š4Ÿ§ã 0Fž…pºcÄ­i‰´ù¼h™9C3$·#î<ο¯ê÷§Ý.tMNõ€m³Çì ÛaOÙ3öœ}Ï^°ØKöŠí²×ìG¶Çþ›í³vÈþÁ~b?³7ì-{Çl0¼h+68”hãcvĆlXO‡g'£ê’ '£É¿ggvÌŽëjZ5uÃ*Y`ÕøxМ²ê׋Áˆ°ú_³øÿSÅNp ‚½g§ `å´³š}`Ùˆ1 ¢)HãH‹MØ¿çìœ̨:iÓÖ4>¼Qûi]OŽÙùè¢a¿²_/Ò°1i«ã£Q¼­ÛIwƽ´9e kª³:µ¨©>›¦¾d͈ZвötZU¬ýÝbçI¿Ñ¥½]쬭ë‡_ê¨uì¬ÑQ‡«c<ÿÍU[ò_ ]·ü]r×§®8ct§ ]dê ÇèÏ»>ï×MÚØ7]²ßªՓA˜ÈÔ’Ê•±`@kwHööˆaV­u÷õÎOïžãa‡/Án¶¿9#å+¤sj3o¤jM#Õ€:¦\<¦ÏʸœFSO1¿Ìz’¸®™3` £Džè \2fë|‚¢èOèUP (r @QZ°é2v\Kk‡„ÐPQhèt_>®Wú3pAU-Zºmâ©ÛmÉû’€<¢ÑîZïE*HmJ•®¥28‰çèÚÛp'€»ãÎdô‹Àr Ož\Ç·ÂÄyWé è_DtÊdDG½â5}®Zv %›ž÷ -À¨›}ˆñ6ÒrÕ‡Þìm¿xvHÏ;\ô¡°ìC]`˜÷¡?0ÆúRúåy«Ûë¶ïc¹¿åÚÕ£üš½ëÚ²é…/qs-@ÙþÔ ®˜ïb(ÜÝääWÞ×ù^Êøï5únëÑ1’¾žx4˜²£é`ø±j£?åíäQËn:ËÿŽ'£nœ¹m—ÿÍ@ð{öž*ÖÕtÕGUÓDg^+ñKÝeu÷•ÅÉ0sú¥,.4êZL§—=~É—ûÌÁåœú½ŸŽt˜ÛôðþµêbÍ#Æžìo¿.÷·Î§*ÀÇY'ø¯f©p¾n}L*]*‡¼Ê©Ò! 0Ü”9–õ¶4F¬Y!»ñQq'×iå\¡ÖàiT#±®´è¡ºRmW´s®t*·%ç@oJ–ñÎ _znÖcjV¾U]A?­ˆ×¹:Ÿ‹ó¹ÆŸKü¹ÂŸjt]]?Q1‰ŠéŠüiµZ~µ¹œ_…u{e¦4ÚØ¿øzß:ÒÊ—”7Îtde)mO­É”_aJ¨€§ë¦/µ¼2#e€Òîf8.©Õ%ݸ$—4á’\bÍ%ãðÉ8òOÆ‘Ç|¢âóØU¢â•<4䕨„D%$*!Q ³qž9K³÷iiÁÌYZèK7`ik+Õsèi_8 ¤ ]N:FûàŠ¡)iJffLi˜ ›`*yÍ3å”)aÒËLI¥JM³-<˜€¹*¸$÷”øú’;ÙÓúM¯LFi“QÚd”6ñ”‡2m2©<€j“ÍØdÚ6Q±‰ŠKT\¢âä5Æ|¯ã‘Òuã,dÍ2{kOsžaó×÷¶cýíàÕÚ™°ZU«õW¿.NúHùk*_ĬW„¹5ÕH+¡éEŠULºˆBãî …¨ ”7´#˜6¹ì—k›TÒ‘äæòWJI˜kE²ëVÒüJ›oÞ>e»E5ŠYÍõªR±še©åŠæúYÖ—KiËgg2«–ŽÐ_óÕ c–ëí •†kƺº»n.žE‹ŠÝP7¾u=å•ÚB,&Ü\[Øaß#—9¸¶j07uºP6›R¥lÞøºÄ+óãÎ.›]‚ŠÏ_2À•›%‹X·P¦o·?\²b?<}ó2=íàÅÚq„êæË–¸\Ø]»¶Þ¿~Þ£zî ¡ÕL«›2p%ôe1¬+u~SrõÇæð ØQ=9«ZÈ!JaMŸLJ Yªhn¾TH!:ìéH!ÏX¯÷ýSXj4ÄÎ]IÓ’ ½E”ƒã”¯‹îƹð– íÄÀ‹Þø/l/©ÛêÛ ?z¿â·dÂý¥yÏb·Z•ÀJÂP M5ºtvÍÔû®Ã Îo‰-mÁ8ç·t¯º¬ã°•ÞPmÈŒ2/J£¾šµ›PBx*ôbÝA¾èZ 4YtŒ}¯a1µv© v)½µ¶ß$&Aé,Œ›ÃB Íz¶%Mû6B—jÝlã>ªLOÏë§M[Ÿõb^"'W4"acTé‚Þ¦%M×ø ½Ðl¾}Ã>^~àý€¦¤!ØzL±8/é½ô©Ê­Ù‡ÎMùùp÷íë˜D®ŸVh»£)–\¾î|‘/¦¡óYïh°RY®îµÁ‘¨@ä3IO³¿hêH°75ÈVM —³mÍ»3‰9:&A#héÅëBš*âDç·2S´×ä·\-ä·|aäîjjØ­N 9YJlgóAºÙ —‹3Aäl&ˆ\×Ú§Cydb)ßZ™­´b ë&\a·–Yf£Yûô2TÊõº#XEå¡uìhz߫۱ô²WÚA2I/Y¥z»ItÛ²ÝíôFSw7½¹”Sù}ßZ›{ê]A}Ôs/ßpÓ´<øÉ WFbdI³.:]²ÕY(]…5çœÿYÌw)IPe IcŸÓT-Žxª6› bh8½”´…MZô–ï‡T™¦ìPþâˆTP‚·›íÀð/¦$¥èz™‹T1q2HXé ¹Î\LÄ9Q¦³™@zßRŠR{)Dš’&¥mÎJ„eÊas<(%ç¾ä”Äõ«ÓdÿÔ$ð¹1BMç›õÏ?Îý,!²§÷G\1¹â.2)'؇ÉÅt<•çãš\ViÓ !KÏKz3Tš®H¨ž^TVðÑûým³%·½¸&©¦ÕxX5lçà àWqt°ª'7½„  ÖeôÉ8Ð’ ‚L´šÿKmÉaFPU¦MËNh Õf¼óα§2ðý-'ûUö„¥:½y/bE•Øæ„µ.iBìW‹/ð^z‹µ_UR”j.$iÑ/üÙ÷¿4õ°þ×C¤µÀ^Òø=!@çŠã $ì·xáÑ£A}¼…T]8ñ*y9œü§Üúµß8‰/é-/™ë~ S‰íÿOCgXšŠ¶è<04B2µX_Ù4²ûP mÝVðçØàê²_Ç'©¡µŒà”ê+ÁÄ6÷ Noñ§Ë¶¹‹äá;è¶yiéÓ%èk„Ø(¦¾qLË·\€A?=€è©Ú*ÀÜÉÍ]· Åær]ŠÍúÊý6d–/ø’>OÒu'ƬܸËÕgˆ}tÐÂôêPº\O„˜)@"ø漓8!,^8J… ’R»g(rM!Z8ä Ѽ+$(Rú^Y)šTjBœVG³’é#í°_cÜåx2dûãês?Ô$-£F”ܠʣO°[+©o¸ðãY[ OIà¡Y¨^ù¼Tûï±ç±9'OoU hoÃ5+A5«ØS™K‚k¦ß€ì¢ÊÐ(úÌCbzì/ÌyvQ¥èûJè±)5F°›­üÌ}RCª²æ½rø®bEQܸ«<‡ŒH­=ÍôO`< œ²aGÃ,y0WqXÐæcùMÀS“€ç·6ÌPg°ö uŽî¯a‹%È_%¡Ö•Þm8ò½Vvª¤\È!— oƒä›Ç4R©¦æª_µ£tT ÿÌ´Cï'„¿2ç]A è’FìˆakéûlHWõW¬Üý˜?yv8™ŒzåÝ4A•%yåõÙü>Ó±Mµ S¶è“iœžlˆ¾ hâ‹8_-ŸD_”AÅr't¿|Rá6úd0qXÉ ! ôeBšD¶¦ ®^¼¿EÂÊÅ£‹4ìþ…ñõú¤+ÆQ]JìäKeDÛ5‘Nê¡·vó—sâ;½ _»¡—׿¾x?1ÿmz!hîÛ>é¥ùôÆuš–Þͧ&á&iΘ¼SKæèßÅMpy+ÍÿG'Æendstream endobj 101 0 obj << /Subtype /XML /Type /Metadata /Length 1753 >> stream GPL Ghostscript 9.18 R, surveillance, outbreak detection, statistical process control 2018-01-23T16:14:02+01:00 2018-01-23T16:14:02+01:00 LaTeX with hyperref package Monitoring Count Time Series in R: Aberration Detection in Public Health SurveillanceMaëlle Salmon, Dirk Schumacher, Michael Höhle endstream endobj 102 0 obj << /Type /ObjStm /Length 4427 /Filter /FlateDecode /N 99 /First 938 >> stream xœÕ\[sDZ~?¿b“Jiî×T’²H[cIQHY¶œòÃ’\káB Dùáüöóõì,°À"@a¡V{›ééééþº§‡RèBR˜Bi…³-Œu8»Âzî‹àéy(¤2±6àÄa#K<õø^J” –.t¡ê•µJ‹ÇÒJE|*]¡Œ±¸ð…²‘^…ByªYÆB…ˆZ•(4þáBÚ9|¥Ta„C¥ £‰e ã5e +RaWXéÂÖôA…Â|*U,œ¤ÞiQ8íñ•–…sÆôÔ9zP… ((µ)\ôôÄ^¡ Ô®ðÚÓ+_x«è«Px—ÊÄÂ%Á+= £'z)*‚£Ö.bªÇ\ÔƒþG¨Œ+¢Eƒ¤D4 '„¨ P/mº·4 ¼HLé «it¨J¬ [Zb° TÎÑpPß­§ñ’†ÆújiDñÕ«ˆúé€0¡þH=0TkL=%.Ò ñ2€éC=ň*AüŠVýÏßþVð§ãñd>+þ“f(NÓ¤kÎ:ŸM>Û|vùìó9¤ó¯?žŒçÕµ¹\Y]ÖåÑäõ ül´ s(É@&¾x]NñAÑ´ÀO«ÙäfzQÍ ¢ì»Ûù÷gór^¥É• öýÔYÔ›~ê,ðûõó¨œUésþËÛ—¯Žÿrüò4¢‘ñÅä²_¥9Û´QOgóãA9…jZü¶š]Lëëùdš¬f*õ¢Ì…È€ñ³›óyj‘Ú•móMs?Õ—ó1XCÐ!òtXQî¢sÕ–jJúη»ü¼Q[ߥ6 ½ 4gßyÚ´· Ð/ß ¤ ËmSOÒ›N+Tê×…`Í.hh=l?.¯ŸWõÕ`^8(JNŒ£ûÃK~Î/øÅd8óK^ñj|Yμúý¦ò÷õÇŠ_ñ¯ùù„OÆ¿æ×$5Ãêý¼¹šRÍüºšÖ“K>å3>«FuS㬾ås>L«ŠÏ?Mø ÿÈÿ¨¦“?œF•|Bœ?–W3Èa´£VbÓ;‚2Ô‹_›—Ïêad‘µpzôªUkru2/‡õÅÓñÕ°B9þ²žÍ eI€nðäl^Þ&¥ß‘–ޤñŸ3Ç æefé)Yüf¶µOÈZd…J7¦ÈZ•n\‘U*?…)R"S|JV[¶×d5Ûk²dùVWÉnKG“ée5Íó81ã8ÝÈæ”ÓDT­bþùÝ/…ÕÌ[h1ô0¾©èiu‘ŠšÀ‰òièJû«¢d¤‚íL«õøC˧¤°Œ*m"#fµDyÍC„(Û£ÉéÀÉ:MÞ3v-QV)pÊ=.QA0A.†3Ìð‘‚£>2(ùÇ! sÉ%EÚ²xŠd{“)"—jAR ÎQŒ@òAt&=ÓдÆ«DÄ8ÊC2©…d&YH²@£ë¤3É»³@Œ‘‘EB¯Úà‡(£,s*,‰B1£ãžD-,üóWoNO^A¿<º\ÚxBÞk6žôïºW¢gãÕŽ6Þhò_lR¤{ Ýjá«8²ž‘\^Ÿí©…v1IO“”îcß—?Èx:D2-Þ/Ûö pú©WA´ÃÛäLƒ>CóÖV |D£›÷äåê“'ÅMmØÄµΉÅÀ§¤cµ“™Ûôþ•qö.¬ÐÜ.°Â1ÿŽ¿â§ü ¨áG^¯„Ϋy™ÄhTò÷ W%]]M+ Çi‚ø‡òúºäÃrt~YòÝLŒoZÈp=¨ùuÝ ‡ú φA€Êþ‰ßòÛšæ¬`"mfÀ»6b†Œm0Ú¤îŠ0 ›QCo*ýë‡ç'g©°‚v[øòå™ z3Aî:¶H’Ó Šu²ûLÞSò!û+³Æ¯ÜÕĺ6ґܳ/ýŒëÞ52l­^/£Ãò©Uä³°+×év!×Où÷ü9¤º‘èV”Il!§Y6gÆÏ+ˆ©´Uñ.ýQ;kØú8 \•åÏï*ÿ|~zòÓ¨ÿÍ jWÛ¹°@µAMOÅŽhí}Eªÿ³â®^9ˆ|(¼hÔ­së‚|#pÍ m5Ò—Û[5¶9Úk-–÷Z,ï“Ò"ÕIïŠ$g ¥(¦ªl*érû éð·PÁ/ù뤄Ì®9mïá©e?í7Èí:vé­M“ô’ç]º"ÃÂl–á'Ú5o ˜lâ¸.ÅkR¶«CÜå|¦õdúøè‡×ßý­¼y³‚/ |ã§ãY½|ÐU¯vƒx»uñÆ´ÝQ¼ó®#þôcÛ[”èzßrÅûƸtÇõ£!µ$Œ»¦V`íi U¬G —–ñΠõñ(o;Ô­Ž=iFÇÛ;j¨78?¾<;úîÚ>{·†ýZ2C²!¼£zá±ë€ø ºðk‹®H%|§ìÝßòÔ}ô_«©=ÝáWĬ¹]ˆÙ+~^Nùù´¼¨RÐ&]5A› ÓšhϰšÍš«Q=¾™Áü çõõðsÆiÔŠ^òiõ~XÝÎnÎgÕˆmTËéNàì lzS‰È5AîDSA^¦¯Ö+}óøý›·gG3ZEgv]VÕã¨Åš°:»«òØ pØ(“B'¡c£èÛöè>ëÊW[ÚÇ»AþºÉP^L'ãÆ‚lŒö o(Î÷±§¸^/¦·gmÈ]ÅèÞ¹ ½…¼ãÒ£ãzæË"°1”×Þi‘ÖOÛ;• w{gRع½siÍ´½ i½4ßÑ‚¯jkÙìþh ®ýàžA@¢¯²G{¥‹$cÌRe”p4Ó;†G–Ë!/›…¼Œò2FÈË!/c„¼Œò2SÈËLQäs^†‹M}+Ëê°ËNqeÙ)ÞgÙéÐ#Bc0kcâQB³Ï˜ì× }’´g´†¿’ŠQ¦BK\.ܛǥ 4D½¤ÉJËhÁåëiêG;c—¢^cŒD/Úˆ¹Í(þ"f4àJFÀ_zËH•<MÒFFŽì¢5xÏR^€Âćª}Ш욌õP:˜²Žqβ”> <ƒ¬ïi|sôïçï@x±‡/ uߘ›~¨e_W`ý[ßâØ½v±¥ìÝ5ˆ•ÿ·Õóð=ì9YPœÛ,ZÞä9?Kžþ>ô+þ¯ìGS0ó-ÿ‰ÿÌßÁ£.G»³r|ÉËÙE]Ïëáe…Kßzö—sŠxnÒtù¡š/ãºyÑ®­6Q¥K~9.ÓBkzÝ ­êöbXŽ’ÿÞ<¬R!ÔÁçë€VëÜNOþ¸<ߌÎAr}u÷ú,ñnt%÷;ÿýf2¯.χëë¶ ÙÑêí"»²†KQÙÏü>îS‹µÜ×°¿h^“Kã·ûÌ:ìëMí.ô{"wöcÓ<¾+Ê ¾~‰÷‹¨ÒŽÚ.ž¦2³[€à}W€û&T¢ {PCÀ¬SŠ „- >B%kt@)|öÐf}MѱèÌ‚&;å½Ù¦¥w÷쇣ÿ”‚«G+ÆAÆ6„õÅè§é'›ì¼ecÒ_mðÛºUïK =ÿ~Ô?)Þ¹)ÜV=ÌÐÕÇiÁè²âÿëj…no{ë;Bm¯ Ê0 ©Þ5%ÒºíKßqMvuér·ÂÛ׿üòî9y§nGô©êIšk’F91» ”=éV¢[ ‘èénÙqÙ]è¯j¤à¶s½°M/g…';²<ܱ¤vH‡}»‹¾¦¨]“HÜÞ¹”CÜÜQò«Ø/½gÏ~c+ÑI¤I[yÅ(ß¹§G5£´l_Ø´Á¦‡ƒ‹ìõWáþòC”ƒ'$ûY·…54ûEÅgZ?tÍ¢r…ß)UD»äYø.>»|öùœSws½:׫Ûzs MçšÎ14ch:ÇÐtŽ¡éCÓ9†¦s MçšÎ14]:‡¸tŽoë¸!EºÕŒJŽ+©Ãñ^©Ã;Jò®ñå™Ò” í"1Î9;R½8 Ì ‹¢Î’Þ1K&Åkh¯ à±€E‘Á&õ¾MûšÈ®QÜ;Aõqê Qÿëž>¤Èš² ó P¶ ØÌú[³¾«¢‚c¦ç©…2¡(SÜ0CûKô æ¯UQ¦Ù£Ðä!b@0 š¢a²á€¦ )½óÍØþ"CæY ü¤¥d Î :ÖÂîN”–”Ú! z6e=UÒ0¡~mþÚÔ6˜U°/̈e¢19ˤJ…¨ ´õÐL¤` ¡H«xÁœ=(£6®’DÕ>iU¢fA¨ Ñ?6U·hÔ’*ØLoÕCPµ{n¯ hk3 ñ'̸9°DÎ>V4Œ¡Âã–(#,4ºß¨¯ˆÕí¸.ûp¶o«Ùú¾N x¤^6› étàM¯ióÁAuúî4ÁJ“oÜÒdS»ý/Ñ´E¤²žò‚¶¸ä39Úg,iÿÁCëÎ-4Ñr›qITRðAÓ&ç£#toð´“iã£åJG0 ÊR‰vÞø]¦óÏ þãéÉ¢ÀżžŒ›GÌç׳¿r~|úô;}r=ü†æÙdzůˋ@÷Ÿƒòù œÿ9ÁþíÝ”+^¨KËá ÉËr/É{,â#Å´1s¡ë¤€ž‚PD’4ˆpHƃôË[v9©ÉR˜:íùo³û(€ káö¡[ e“„Ðng‹GiãŒòœÿK„ ÂÕ>„Ó*·˜³ŽÁ˜0:$¨°°>~×ùwiyùý‹—û®Ì¢Õ:ÙjÚã(¼a`»%売Î'•ÕpX±Y9MÆß|.“ ›U{±Yp¤-©0Þ>&#® äPÓŸV80¹õð›ËzúáÉìbp3*/Õ”«½&¢²$¸qA°¦|°‡%¸•‹QÙð–]ÕóÁÍ9«'|/îQ¡Y1#ÌB1CAǃŒ°ÜTî:û>}úÄ60÷~{š}ôH²tP̺CÑ›¥a0©Ãê›Q9°ÙÍ=åVy‚T&Lú$ œ¦ÜæƒsvI&ÿ߆ò{1VÙáA§fôG_È÷ á¡1³¥­êm´o;d¦¿>òUð¹œU_XFû¶~ÿ¾šVcŠ4þ'eå6™ªÔû¦»‹²÷©6a¥}@MÕ7„«øu []ÐV X¸Éä8T{hå}}°Êt‘÷ï> stream xœÕ\Ûr7}߯ÀcR)hܱ•M•,ljkãÄE'ÙxSy ¥‘D["’¶•ýú=Á )‘Ê’6)fmËsÃ4î>FF[¡…ÑN˜ÄG/\J8AZó(ÈE<ÕIP2|' Ê! C¸ JüŸ0&œayœXa|À[Är3nã®ÕŽO‚°”ñEa­ã“$l©”²°Áâ TccBaCÂf‹zŒNGTa¬pÆp'œ\†!C oJá(¼@h’ðÞð£,|à×ñØ'¼a, Ÿ#`Z#q»¬ÁÀ‚à¸]Ö‹€×pDˆ\…"$n©M"jn©Í"Ràvk-tà„+Ek£+w¬ˆÞã-çDŒP¸q^ÄäÑvDÒšO¢HTî$‘LæÂY$‡‚Æk‘|F“ñ8EǪ5"­z+²fz'2e´Â{‘-@Aý"­ú(r@ ŒO"ÇÄr²È($LÐÜˬè@8c]´…´-÷,Î<eГ¤ÛGð8KÐ+÷7éÌ:…†ˆˆûÚà w ìƒ%LDäñ¿‰¨ƒ"+%`8¬Gô”ÏŠ„ŒR"ê@ÿ¤C.k7¢€d)‰Ïz˜+ÓÅr f†V'Ôauâ3ÔaY–I¨Ã:ÔnÐx²ëM¨Ã&ÖeBN³¼Ä¦^lj#g?E6$ ”‹À-‚ñ’ËÜièòšUšQ‡g-ty‡>3u` 6t'ùÄý”QGÐlu„2P€›‚Å‹ ”¡‚:‚·öo_~)ÔÑx<™ÏįÅĵ o©s{„y·GªGS¶]=úz¬òl•g«<ÛÊûM¨ãÉxÞŒQ{¨u©çÍéhøxr<\›Ï^âZ'¡,¼ñb8Å ¢­I šÙäÝô¤™ nÉ×7óo^·󦌗Rà)*(ƒ¦\½˜NN^6sÈV/ž<êÇæf¡_}…Ó?®–~ÞàòŽ^\m§«ítmíPu=Òšöä]¶‡}À¢=èÏOkOíWûÇÕþqµ\ío_ûÛ×þöU¾êÁ×þöUž¯ò|•ç«<_åU}™ª/SejsØ´Ç*/Ty¡Ê U^¨òb•«¼XåÅ*/Vy±Ê‹¡öW×¾»û±S=¶õP­‡j=Të¡ZÕznõ+»êÿÚ„Úÿµ!Ûõÿãá¬)¯«ƒ£§G¯¾8~þøø#õõødr:Ÿ¿ÐÖ2šÎæÇéàçüÒ“fv2]Ï'Ó´K©ï†}¡(ÔËw¯ç¥N®™:m…ÿÎ/Øô‚áväâ>þ¯…6,™V¡0¢»?}92·ÞK0ì˜p?Õr þ5Á×sHæ+¾‡hKqÔb ‹¡sÖŠõ¬ûë1ž¸”‡£-G¸_ ŸÁøº…ãáÌùŒ•PJÕ§Z8Œ‡ò®{‚’ •åG/Õ…·~ëGöì„m(â¹:^ÛŒÎ/ºKô[ÈgêH=VÇê‰úF}«ž©ªçêõB ÔKõ£úI Õku¢N&—“±:U§£fÚÌF3Õ¨3uv6Råß{\Á:Õ¹ºP\_4c5RoÕ¥ºRc5Q“q£®Õu3MNÕTÍÔ\Í/¦M£æ&êz¯>¨õ‡úÏçB±51âGΰ‘Ëáù # Ëãn¬”gÈ|iÈoíÓ§£Ë‰”íì·¾^5+&ýl>¼Ï/”TÏG³ ¼˜aQ£z9o®~Fشˆºdäݘ™LO›i»Åq¹ ö/ðà«qPýòêßH eÄpˆÖË“¿»¼ä’ƒæ¤” V²[² n€­8EÉÞæ$uä.]Œ£ïF㷺⻷eü (2^"¡[•IrŠÑòÆÈŒ¤â  ’–wm$”BªCA&Nå““Hà Y¥tj=(g$¥}€"»‚*è$|Ã]T.Hî½ ÑTú¼%¨EnklM5¶¦[S­©ÆÖTckª±5ÕXj¬N5V§*/Wy¹ÊËU^®òr•—«¼\åå*/§51Öì2Ær¦¼ˆ±V뉱»î\äB’óæ¾wS–Ú=˜Éy¥GHº‹*ã1õ @C%'m‡åHcÐú*ë2ìÕ‡à<¿ïŽÍDli€–Y/0æbx ½xH†àÛÌ$›%G¤‡@ä¬,a‘ƒÞö¬‡_µæ ˜,ŒÌ!Õë1¡'KÄþdLÔ]TLi uhÎõ%Rݤµdo ö#Áñqeä)/½CDFÛ;˜@­¤·+ÑÖ ?fÈÒã¥.s3””>iÈ­brwõä"ÆûŠÇì1™$3j‰;MØ SÏ•¯žýüêé?Ž®šÙ£Áäj8^"L 6ã£ñl´¸±`Nv sêR%æä6dN-¿Å‚¬-?Ýu[‚³ÛM~:Ñ‘ž{  =!´ÜÌ2¿ÄJ¹L÷¤-ˆêÝeTz —‰âú–ü´ÃÁ3n‹³ˆŸ»HK;yÎmé×¹ÜS(Âm:‚,Ñ!ž ]¡COAƒ¾/4¨#A¯‡Sõz:e`H§ DEžj~7¼dzt‹-Ñx>Ô³"Î@мrÖJ«Té÷B–fÍ{ð©ÙèFÍ®‡'Í}ä©™Nnñ'¤Ä•?uö¶D ð0[q‡?ÙE¦Óò§ufþg$Š­#Q&ëI”ú¥êÞ½eØ_rŠ]NŽ8åüŠ 2n£È"e¹Ì½J˹‰E®ž7î»ZG L–3ÿP˜åB•îÆøÅèLÊÌDN— Ê-yý§å\ rûµJólpr5åf¨šgõ³FÌK‹¢‘•ÐNÓ‘1U6L1à!/•ä,0?°ž <$Ð6ô˜ 3tö‚i pVËh¥ó\’<çÖ¡ê:ï°¨ºî F&N½áxm’3½`Ê¢Ã<¯Tu¨ YVÕà AKZ!qÖÂsZ^*¥äiYÃü7:ÆÃ€r,ŽW;PHosÕÜŽA­!(.ÙU×IN&M"ûâ­ <”•Ô(Ó¾9Ó}2ô‹Æ-$ÏfKHöjíÌKw‡8’V¯4 ß.ηW¼ÖªëZÈ ,wçlÆÝ9üe^–øÑAÌÀíº•qdÐj^Ÿq™@·™µ&„:Bn ·™÷W×C² ÔΛ¤Ä4vViÙR¼(´,"%JzuÊÈÐЈ÷ƒ ¨hôŸƒ£æm{Ø&ÉëÒwQ!¦kcE„bÈ–Rg/"L×ìxê{ TÎÊÒU@ŽËìèaP­w‚ª§E)–]`â{= ¸™mt€,ò¶ì^@­<#óùû´#²£²‘ùkCÈ¡@EDø 2Æ"\ä@­›†DÔ$2÷j*ð„Zæ]%Òƒ¸1È`vê¶…ôƒg(zP$ooبuΜkÿ›ò<‰è‹kŽü](ÏA@9d†-õ ¬½Ì{µ†’ð$_^MÔɬ x.0!•=(¨¾ûlààkJÁ´‚×eÒû0˜  ÞùÖaмòk÷‚iÕ¢îYïõÊÆ»Ù¬G¦€¼‘1æ§þƒ²=>ä¨Ä\8ïԚȖXf·VVì1Øõ¨\2Òi{`T.!MI‹ôÄÙ§Û ªUKçH›hum©³*^£äM­pŽMÝÀÛ}ÏæÜ*ò€_€b áÃZ?ŸÓ)ŠWÏË6`Ø”µT0¦x L ¯^`²Œ ƒÅÔé ú!Þ7]õä‘TY³[¾·µž*¦NOûÀ´Å“Ñ%÷¨nj †£Bí¼˜Õ¡â)è¸L›Ï›ô&’ ¼'?‚…"ëdˆ»µò-0%pP¦S»Üœ‹©Ó2f齞ܨý¤%ð(ª‚êµ{Pëvª ½—\y‡PÌû „œ HÞÍpPQ/i·…¨È?(á+‘Øi/³[(ªc [aú_“–¼bî»9Ë[Ó”üIwÎ_vtçý”¥ðw1´,û¨ì[{)ÔOƒg=œ“ùh2no}v1Ÿ_ÿ]©Óy:ÉÉô\‘†)ê¨È„bþ¼ì^»_“tKAYò‡PeV%£”‘Ìñ Y,ÉÝF ú8Èüº¸–úµ&ÛXJ.tØ>/jDÀ !ÂU˜>´ Ó†„ðcÑk£^®Þ 2“ÑÇ´ p¼RVg©ËwKTB|0ðynÃ@õ‘ÈñG½ABêè‘æðˆ”È îs³•í@ù¬lÏ~š‹}†# M·¦¶ €š‰C3ÌŸ?ò‚ýðç7ž§­ý†LyÓ& §7£÷¥Ã×3Åß~ñ*¯ÓÛà5a¨|VÐv·¼`²Àwtž‚êÍl&ßë制2xç‚ y´PC c±YbÔþuwBànì¸ü¼füNz¿!ëÝ÷‡äÕèd:™MÎæòdr¥¶RqFÀߺ‚.0!ïU¬©8ɿԪT‡îà]ÏÈ©xCh™aØt ÆÃµQæ2‹ü±ß9Ž3{0³Ñ¬,û­\„ã/x»v™ü³Pù«Pä·´é:íFgÀ|<8ú^]O'oP{Á~:9Qƒqóa¶•¢y»'©hïë4Hiy?S@س5¹“1)븕g°H*­wíþ/ óõop Ö %ݯi$­4"G¢¨µN9ØlÒvÐù£¦XAÄN´)ÛëòžÃH Ý.ÄG9!l!yBLÓ϶K?<ÏŠr*ey±‘ ‚ üÿ¢ Õ½ÒgÊoÀÐ h’G٥Ǿg¬^OÞÏ› ~xòøx«áÊü€¿µç°ž¨ Ûˆ0c’aÏÊ×ˆæ Æ,ÿF í!ëÛ.J&°×Ä¿@ò'ßý2žÎ2Rƒ ¯Æ¢Ë«º]ªÊÛo즫¼k©,œlÇRooÆá¯kºm6»%¹¼ÿO¶Ù?5ÓfÌ_qýZ>R>ÁÔ¬Ú~ŽÜ}ÂÊÍnÛÙ¿*þ í!Ò©endstream endobj 302 0 obj << /Type /ObjStm /Length 3489 /Filter /FlateDecode /N 99 /First 922 >> stream xœÍ[ksÛ¸ýÞ_Ýé,ˆÇÅ«³³3yy»¤“‰“}´“ŠÍØÜ•%Wb¶I}Ï…@Šå¬ìH«ŽG&@‚ÀÁŽÀ¹—€UV(a #®N8gpõ"äkÉz\£ÐÆ'$’Ð.âŽVBKHh¡cÔHatÀKÚ Cøg5ju> á„ ü¦ãGÈx…–5ZõüO£öhñÏànb0F Tƒ‚Æ2Ñ!a‘Åë†9nÔ8AÁð[^P \&§ ?ŠÂiÆŒÇ.·c•pÄx¬Î3k„ ùŽ.å;$¼ò¨Ç:áMNx$"6ˆÂ{Ë’ð‘>±4H‹ ¸0rOÉ"€‡HR\ÆA¸,]‚” ‚@5œˆ"¤Ì”DÔøgq7šðN‹H(hñft õ öˆ$bÌwœH ¬ó"éȯcâ·"F’Î%‘ƒ÷J$ ‹_¤‘XoDJ0¼E‚õ$´ÒÄ¥R†ñ)Güb@Ê'~únó BATŠ( !Z)”Cï‘Jh꡵áú‚EÊ&~Š6 )¼‹áÓÚ3È€6td”ЭË8°jý€6ŒááXT‡!·ÈiãP—E—´ P¨R‘Ux´ÍZš´ÍjvPëÆTc0Ð.ÔNCh ƒî¡ÿ6¡ ›XŸÑSM RbÜšŒfMEÄÒµ $EœBäP¡Ïš"÷9íäŠT®…I£7%ÐÎ$N¡ GVýé›oDõh6›·Kñ¯lJ¼ÊƱºêr5åjË•ÊÕ•«/×P®±\K}¶ÔgK}¶ÔgWõ½Õ“ù¬­g@áíªîêE}ÙLÏ?¿í’“¨6’–Þx9YàQJ¿ª—ó‹‹z)¸GÏ>¶ß·“¶Î– œ¡le9÷r1¿8¯[Ô]½|z&ª×õÇ•~û-’Ÿnk®ýªFvK>TúM¥ßTúM¥ßTúM¥ß®ôÛ•~»ÒoWäèJ}Îíƒ;¨œÊÁ…/’ƒ+ýt¥Ÿ¾ôÓëýðí‡7Ã~xûEýðeÜ|Ü;wâê¸O–u~½zóÃÓçgßýåɋׯZ™]Ì/›Ù•¨~lffËf}ã¬Y,Û'ד…€ªæ¶ŸÖË‹EsÛÎy½Í(žOJ!̆¢:ÿð®Ím3ÝY5ücsÙ^³èLøS忺ãî~û—^·ðùÜvúm¯Ë 6ù´zôÛUîX.Q=™Üþ­n®®ñ¬£bÁðý¹zY]̧óYuYÕU.P5Õ/Õ¬šWóY]ÝÖ‹f~Y-ªeµ¬«gÕ²ùX-§“åuÕ^/êºú­úo½˜%*nûkƒù²:›N®–˜™V"~ÜiZ~f‘¾]=z÷¢Y.¡ƒ;çm}ó(Âp¤ZRýT¤Aà!&Ηõ¢X„Êv“3z•ÁÛ¬ÒºLÕO?ÿÜHôH’«üìÃtÊE_Õ\4*©³€(=¬V2òzi´³y;PÊçÍì×i6ä£aÒ•zHF‘ ÌBï©7س³×Oß<ÇÿËkój({;Uc3ÕfËL1Ž­tþfÖ ÚúQ*Ýi¸1¯Õûüí_r×_È“Ë]õî4Ãáåloxõ´¾A©j:iÛæ¢nç·Õ´^.ë˜L«›föa9´*TgU´mTüŒ™øØ¨HmÕæ˜mÕ†X3ǼÎF:ñ÷'¯ž<;Gý/¾÷{Nâà­;ÔƒÄö,î÷œÅ)슭90gû¡h7$Ý dW«±´\+“«Ø¶Þö¦0ö¶×ûÊúÙ«ïÎÚÖ¤Ÿh I«l¯Iï“ öûöqsuµÎ½ës ~ëñf¶úkÝn¼[òÃç›ïw7r‰ëIûŸæ+BuËì­¯©Ï¡ÔF¦äÖU®³}ÑuõË77“¶™Ï.›åítòicÍOXvNO_ÛòÂôYZ[F3`¾+£ÙÒê=­Æðôð9³yåØãÎuwàN‹â¬q†ƒ}†é.cÙO}Ž}dÝç°¾›¾Ë~vÿ±‡Ý¿çØŸíßãHõÏr ¨Æ1Ý×Éþ»î€åÀ@—Fc] pæ ¦{‡â²yƒ§$Y0[¼Œ•R ÌàšŠsˆ#è ÝjÝ9›¹(—¤‡ô{PÑJŽqý1  ¦Ú-P†¼äX€7^Â%vÆÈl 0’C'ÁT˜¨×ÀÂÑ” (…5L†NƒI;0Q•Ö @Xƒ9¦Ðb‚êJø¶>E#=ÅR?v'ÄT†Î¥Õæ©´Þ®†ÒÔ‰ØæC‰áì¡pÄäsxD;tɱ.a&½CHÑÁòBû( ±Kps0Ž'ÁÄúlà€ö FÅx P¦[-†V‡Q ~luÐ P.ÊÀ‘Ý9’¯¥‹æD ŒÂø±½T†æƒ'EÅ¢r1Á0‚ôsOV:”¤p²„úD½Fe0Gy°Œ Ò]¦Óõ.jͨ¢–L蓌ʎÇÏe ÐK8ŽÁTàG÷¡òfOLëfa^¶„„lqýmñf7šTw €&mbé!ØcÍý©%LéKnMdŒò»¸$Þé9æ—óÊûؾöÌ-y 8ÁèÈÙ'éœ;Õ|”‚T´Fe’B>-*í­ä¡Ôl†o­ôüñFæK,ï#*ÌÁ¹0:þÞy/P}DãüÓÍ»ùt#”Q"XŸ‰K|Îö`ëâ©›8ê¸þøÚÛ¨ão¾]sü¡´ÏÓ(÷%xco€EyëL¼£K %<é´ F0L4ï`8<¦ýµŸ@<±&ö¨:‡á´¨ &²’w"h…UÙaøœÏ^ò‰f/p޹УWБŽj””•¼a‡4¦-‹«7Ù»"Ã>ü‰ä™»ÐÖD•Ü!@žØßçáñBH^rt™¡)·Ædâ~•‚:IÃt3Àõ¬ðð¡OÔŸÊm §¥áMaªrÌ»¸¾ÕxøüÖðeÆmG2þôÈÝ8ÌO¼-nlÐxØÙÞ6$³¯F_bÑIe”y öüIbÒ{2‡ÿç îCµ»4Ð{%õØVA ´ dcúEÉĉ6е7¨²&¯eÞɦ8œL#æ‘CBŠcD.†Abÿ>ÞGÆFÁ5O'ÐHÏѾ2 x£]*Déy+Ü}@Ý“ †înÕ½¼G`íÉì©öko#L ¥ ¢ŽË©Æ[{r±Á.ª²‹Í¯:Le[©U‡¨È—Ѝìg ‚—ÊlÒ;vÁÑAw’î‚#ý]p‡ ¶%ð–õ`„ óÍû ÆCAËÿG;_,(Üå&CjåÓó´ÎߊT<ºµçUmÌ4ñ´ÀÀóÎçn¦†Éa8­o,Qw›0æänÅšðá|M,ê &i4,‰?ûÞ9.£‡† ˜Ã¼èu’Þ{\œ"Ìù£©„ ÀâÜP’—"dˆz_jr`H&bþ"˨t@»L$=üÔ©8\>,4RqþÔãó,@)ŸdÊ`gÑ…ƒjø=@qà’½ÏëÑÔׯɤv̸Í!&¬ù|Æš$y”ƒ?¬Ó±¿UßÊÂeäb&Ììqúƒ0–È(fa}ÊúÜêÖ—“‚êB«`˜‘xkw’|¶@bx+Û!§ƒ1ƒ"¬.ð Çë°—ì±u (FÉç¿N *iÈO÷ œ˜#€Úµ¼$,/aì"²ýkóFØ¿Ë\“W!©Ò±÷®ÜŠàˆÌ]=(âmGµc‰‡,iÌÊáB@Ñy—/Ø9ïy€¢{ö¥ù;ÇAãâûcâ]yQ,¬Ï±ç{az”}çsQ½yõ}_à‚wµ®nýùºmo—­ªeÓÖKy5Ÿ_Mky1¿É7ªöº^Ô·Ííbþ 0}•é»»©‡à‰‰(Y€ÇG!Û&¨$öKÑ.Õƒèøæ÷ô¿²B„)þ`‘Ãû|üï4 °øÀÓé1EÞË©ï‡i¯aÆ(_~”—óFÎW˜§‰*Tè¿ú:$H¦^3€Ê}ïݽƛë#>Šë%4&,ûžãdXîݾóßïúöÈö~®ýƒ"u“eý™“O›÷ïa3ŽL± V‡WF¬´`Õ݉—|Òg}ê…E±ê{_åCÚ… •†óI‘vò7L !hÐѪ™½ofMû ]DîrÞÞLÚëA@‡ÛëÅæzÁÇ7¶ßo@~kÓ¿mò Ø›Ç ÄÖA¶´Íbk›¿Ø>k F‡ `}bó,ƒØ:¾ ÀÌFGVGHús»Åú?fÆ*uendstream endobj 402 0 obj << /Type /ObjStm /Length 3023 /Filter /FlateDecode /N 99 /First 915 >> stream xœÅ[]·}ï¯àc‹ ÉËO µ“¶€vš¤ ü°]m¡k­±’·¿¾çp¨‘v%-¤õLõ°;‰Ã9÷òò~ËQFy㕇kP¾^£Š!âšTÁwÞdeáÄ¢¬ø¬¼5Êú’0°ÊF¹Ö)›Š` ÊÉ«šÌÉA9'XÛF¼'ã6)ç¹ ÍÊ)åbÆ:Î(—žrV‰qüÄ)± +;Á X ¼ œ” ô˜'1à.)ÉÄì²’8àê Ó‹áx»` )¥§5Á×!â]‚bÂ?ÂÍŽ|ZŸJ*€ d\äãE’ëAmˆÀë½Å€äx§BæÊ^T(d”÷*Züó>¨èÈ(p-ò ïØ]°2ˆ©>^TÌO£’)>X•À; Üœ *îˆL1‚ R6–¤¨TIeK>ƒYÙŠÊ•öhT®´G«r,X0:•3FQ¹ÏÑcÿ 'UlUq¥2IRécV%ÔÉE•Ä}OF•LrdÂÿ¬±`±Ø î¸lÏœ0ŠØ9Ÿ"F ÿ}JÇ' |øïL> IR|ÊZá®d¼Ãn äÊÚTGx‡Íæ³§àF~†w8GZ dÒˆ·ÁLÁÛ2ÄÈðAî1Â; }éOß|£fß-7«¥ú½JºQ/« ÷ר®©]s»–þ ﯶ^_«Ù“›Åª[`µèû5fÏ»7óË‹›ÏXŸ³C Ëdo5ˆÇ/.oñ€êß<{Ù-o>Ý^uKEdß^ýõÕêrÕÕÃS'üpÃÉ"ý݋ۛ«WÝ kÏ^<ýAÍ~ê>¯°è·ßbøŸW×áöÒè”F§4:%í¡#ŽJ‡7ÛtxûEtøž)<öýµÑÕxïvùþš÷ЗF¥/Ømú‚û"úB£+4ºB£+4ºB£+4¹ M.c“ËhÛÕí¡;Jw”mº£ÿ"ºc£36:c£36:c£35:S£35yHo©ñ-µõR[/µõR[/µõ²Ùç2&Ÿ‚ß–à#7·oºÛ†ÃT´¸±ë›§Ý’ Icâì×þ³¤aÚ¤è Ó¼øt}͉/»+N„›¡#8#ÖèHÕi“¶4þÎihdÎ|õé_« ãÙ|ñï5¤º]c2Õ“³²ÁD'(Ö¶; à‚èËâ²Ó…vĈ¦X8°=Á9 (xfšÑJœ6ÆM*ì`JÆhx+÷1Y¯éÄ8—uä€]+0ˆ‚ ]tHÙ€+ðFmÐ6Ò):@:—t‰çd-¸“<`’ %”)0­ õ&—‚¦k³³uAl¤Çd:”qC7-é<ê±;RL ¥¬ TÂ)^ú’õ…ëOàFªµÇ‚„a¸ÞI롟Y†;xÎwô‡™0ˆÎùá.ÒÃkw‰‹´1ôy[aÕ)µDL0PâEÃEœEs¬>ØX=»ö.›Us{¼Ê`FµÚîŽWéãUÇRoä8–:| ¶2Ì…Ö€ð†§"Eͨù ŽÅ.&ä6†9»†Ëi£Ó?þXlŸ„ã…ß×Pi¯ðƒk¸fF~7̤dÚ}Ç„±áÇ‘GfGçƒÝÓú>3sªºE‚Ó¿6XqvÀŽ1ÍÃÑ šÉI 6BÈÝ1:!â< &Ú(¦xP~š™ÔÁ­N0;çq–Тš¼Ù>'ÚŽk¶N@•=”œž’4f0aÚàÐ¥µ§µ¥¾ͬÑ}NØs‚¡‘`ªªqÊz€sSû@5A·ÀB}`dŒù¯K*ç]§¡˜4=µå) ¾Àë¸ãK@c:÷éHläZ“>VG/Ïä…Áér֊ȯ Ó¸0PAÆõ¡Gåà[ç (p æp L{„'AF»+<ÑÒã‚MDÌHŒN!@†D3õ}LÎBQ»´¯iìÓ@].»ê•ÍþñÛÓ—?ÿøÕ“çÏÿ~‘á½-®nÞÌïjb³wÞæ·ËÕ“÷—· Xª+ÈW·ó«›Ûš6¯³ž]nMÞÏ7Û5€þ}¿Ì߬ÞÓ! ÅU¯¯wS—Wt(¼£Ù“ËëæïÞ¯o±*ÝÅ?ÏVï»Õå_*Ëêì¯ ½¾|·„#ZW¿X»¬ø&¤XŸÝõÃüº8¸[ù‘/?t;ôÿ}uy=¿únñîºÃÌÙóùr nTÐ5Ã;{µê>ü¬rܦj‹!£øcÔ ƒjyÐ;»¨í1y/ƒO&¬2HžF+í‘kDÊÚÀ5»oЪB0ÈuÂcƒé‡'ǂԴ‡í¨fù:)ÔºG³ü #FÍÈœ`ø²&ÔDGˆÊÆE Zì¨ŽÛ †í!ÝׂÖ’Ó.iïgW g[kkÚ±|i½öæÈÀjt) ì8g'j7T¦h ÃÃÁÖ1²r×Ü&»Žöo‹òýó'¯žA£^üºmP¨=ï·kOÖˆÁž¸#ÍI û̉¹kN̶9ùé¾9±þ =ÁW9ûºÂ=ƒ²•âè Ê]ò´'´§”ò^Ç›šÇ%25ÔV~xîl†T …å-]HNd­äã¤x&Ýe âß8`bbYÒ$˜ö9è…}8e71”ŒNLëç¾~ÇÈ&@[ îþL <œl@ÈVÃFµ“Êö8ÿÎK꽂L‘ýõ¦‡ZñG†¡›”Üú'së›Ì­o2÷yª×w:Qš„ÔÙZ\[_dkt¤%Û‰ËÍô-¼ œRê5æmŒ©)§ò¶õœæÖkZÌžú1yÊþá)»éÇâédW›•wb5]þM»"‚Ì8µëq¨†°nX¤:5A‘Œ…„\LàÊ/Á5c_ó*fÈ€Ôî‰ØÒF“ÀTXØ0®2ÈÂ_̆V>m>2½´9¥ui¿ç$Œû뉒<ÙI°âww8’{Ñ!rg¥šq࢔ÚéfÇíï9•¸¸AÑÌLhœ‚èÄtÁœN„Žm» lëYgu¯ñMiûÝc‡lNa_:]7þ’Îf <Î`S&/8Ä:7€b2ºy'ÊC¿|ÿôÅ‹g_ý4ÿÐ-¿¾¸¹~s§F´¶)CÈËn‘¨´ÂÖP$‚PÙtPÓÑÿ7µÓ—¥6ãÍg¡{îV”øs­ŠR;T”ÞÎÿèfo¡#fæ‹OËÙb¾èf7øûx»e÷G·˜-çŸgÿínoîžäpáI˜¹©/z}·ð7:§/<íaìCÕ'þ‚°UŸR™¬øôPNî’’0mPNÏ×AÊa®/¾[,盞Îß¾í Ñ©Â¯*µ¥„œíɦ>f=VðF\ÎÕ‹Ñþõþ1)œÜendstream endobj 502 0 obj << /Type /ObjStm /Length 3452 /Filter /FlateDecode /N 94 /First 860 >> stream xœÅ[[oÜ6}ß_ÁÇE(ñN.ж“4Ù6ia7Û´E&cÅÖffdhä\úë÷|JÖeìŒãq Ñe$òð»œïbL®XÎL®™pGÔ8Z¦ÇÑ1Žž9iq Ì͌șÈ%~‚ añ„LH/p¢˜ˆï ´i%Ý1h\Ò[– ¯ÑŒpLæ‚N<“BÑOI©ñ–Ì™TPð¦4šN$“Ö”TLúx¢™ÊÁHÀ„Ø”Rô°ÃŒÄ‰gÊx: L9 ¨*gÊÓ%˜Îqe”dZÅ;ŠiíèÍ´#ÔV«áÒ3ôs ·ðs¦ÅŒ]ã®s©Æß@fÑx!Ð3Z1+08£5³’`à®ÕšÞ²8±ô–cÖÂZ[gñ*\`ÊäÌåä#˜0¶ÁØœpƒŽù X˜Ã-œœzÆ2çiÆ1:…?¼ <”d1›3¯ /xÛûh1¸Ó;ØÏX oÃ!þ¹£Ë‚ŒwNÈÖ³ ÈtpL Ï<,Y  –,†‹àÉàN1ÀÁ[±‘ Š(DE 9DG®c g&6áqæ$œyºç{xÍy >[…°2á'4p¯)4|Æ£á0ãчQãчÌ)r=ú2ÞC>òúÜ& „_tlŒð”â_ßϲ£êrÕ°G’e‹uÃþbév̲×ü ðœÒŽ xnu¹X°7,{ZÖxŽŸûy¯Ò[/‹OMLµxõë¬.иMWuñ¹Íùoe³(Ø7?MS®ÎXS±÷«ê#kÎ öv¶.çkV½‹W³ùûÙYñ-ûá‡>\ÕÁ‘ú€]n¹¼1`3ìú€[ø °iÛL0Ÿ´Š­›ª.XS. ¶.ê²X³Ùê”ÕÅbÖ§¬\½«êå¬)«U‡öZŒ .ü-ÆÃŽ`茓EÕt†™/fë5 ­¿Ü™ðŽë:sÛ;‹nꬕº>ª‹82ê}†ßþ¯˜7tq =‚JãD“-Œk:¶ƒŽ)Ør¶*/.„Mÿ7ØbK˜˜¥%Ïš„Iè‡ lk`$¬z[˜\® 6{[ÔõîiÑ+ÍgU]6çË-Æ£“Ap’ú ¹=„ã‡Ò ËuSÎg ö®ž-‹Uýž!,·â™‚°#ÖköƒÛÄl¶¢\mÍíkq€Ï8Õ–Iä zn“z~òi¶¼ÀÉGXƒ Éo8¤äÃâs…òS­ŠGT’.ª’¼p]rë)ÇC˜$÷¨Š!?&S”- GîExÖÕ‚ÍÏgu3íuìˆ\îô¸ðµf÷š> ¿Ö³ù†ãÀ´ÓÇä!…à¤û'!7ìÃM¦0нîÝX(Ås°Á( ¤p‡„»1 ì(N7c*.+85|2‡(¡rCvÚ–›S¤ loÅØ5R ÁÈ!Ëõº9zuòêEÄñ¶\UË·–Õi±¸¢®ƒÕŠ$Ì_q@ÍÐ`sô鸉„7d[ðÞ OÛôLö¢8-g‡Õ'¼O  háXÌ ‡.¾òl ôãb]]Ös¨4êùɧæG*EœXÄžV4ÛV³ºšŸd™ì×ÇO1>ýÇéç‹‚Z?+F6¤™ßHjiǽ'•4Ûm¸qh 7Zty¹h¾hT›Œh·ÑïÕˆn`Dw'#Ž™ “.혽¥½ÑˆêZ#RôS×Õ%LX *í8+ä„&1æ"˜ }Œºróíê×´Sm§u g ˜`”Š¿ ‹º'2YIú‡ÊVœÜD`ò,Ò˜[Ol “UÞ'0uýüo¬+ž··i ÖcW´65ݤô£À(7ÎjTYåî m¢X X^7Årª6ÆFhÏs%§!2§r$Œ/›Šf‹óž.¦™Íeós­÷˜[6ÑcÇtÃ~ªæçìù â¾¹lŠ-¹ï6v¥ŒÍQ§£IÇD¸.®K\á6°hÑbsé˜Úó©=ŸÚó©=ŸÚó©=ŸÚó©½Ú ©½Ú ©½ ·pTØ+GÓç¨Ð…áWp”ã0ƒªÈ½û|ê£ {\®ç—ëu_œav[DtÙÓ£ƒ×'‡ß½øíyÀ Vóê”2"û½\¬ÖåÕ˜~G[ ŽCÆy]^ Aâò`—•ñ!ZÚËN.ß6qh4@ÑŽsÓñïåis#HùhíþŸM´\÷gÃÜ:Fý«âŒ"ïŽÒÊÔÆæI±†ôJß%yü™‹šùCŒý14ÑŽþð×¹câ?žüñúõ 4rrøZä;:ÁË-Nð#'ÐC;9ÁåÓä° Î¾Ñãegôãž­ó›,Ì3*¾=²³ÛybˆMÜͦ>6´ˆ{ëîÄÅôÄê6Ÿ=Ò…Œ_<Ò}]é³¶½ðñ3ÈæÂÑ2|{.Y;¿?¦¥ý¶)ZÒïžGï©{š7±MÐ kP€ó:€s´†PydáöJÓ~wEKûÝ“˜ -¶ l0–¯ÁXÕ§P‡¥t¦²KKmíE;)ôã:çTà>¿ZÅ8¦u_z0ç4wS8* @Å雚 ’çðÍ›^„ÿ\®Þ·¡õÊT¼h5VíU èÐ_#¶Æ@ßí#OÓ籃§*»½‚Tçláé ¢Ù·ww~ånÙûÖcwÀ'½åZŒÝ­¤€›5øBrúú¦æô9µ“» oíî¤õ–yªÕ{u»ÌSÍ×ÌS÷lKmsŽ éLIË„^ÜΔûc£bTÓ'ÆîÉ›"ÖÒoÝ“£øU¸êp}e4_Éäßþ|üÓ“ïž‹­ÞA™ÞêýF©]µ‘±Ýß›ÆnѰa¨aC¿L¿+?Yµ*²æc5‘H¨7I$©âZ5µ8*Ý=†K’ub­›j·„Rív_I_dB£i·ÄÖØQNÅM÷Ãh½å€”…6—Ü+;ICªTþ\ä´ Cò€9¢»+ؾA¡šÒž—H/¤'×*£æ¹6ƒI@ßeÉPz ¦òcò-»üPòCbšà¸ žvÖÄÏ]6ä\ûOsè@Ñ býŽÑ=¶Ït©ô:y¦ ‡(³‚k7Jq› Ú8êÛVë4%0©2›Ä3êm÷ZµÛæÒ}û=dÿU[¨žES` \Ú©2Ž“ŸI^åA |¸¯Å>“ó¨4Ej‹Ê*ni×ÙmPÝIØî.Âà¡RC@g:ÆrKh¥å´ËL`vÌ=CR:ç4/´â4ÿUp9íÔÆðïȰ÷% ‡äv}YÌݯœ{W MEIŠIاBéàDrfW¼­å&ßQDß&á¹ëJÌ‘ˆºœÈDõ0˜$HK (ŠCR÷J¨ *“[.Í” œ6TZH/¸ õIbjf ¤Ý±|ï”B±–¤íý‡0 (üÔ}’;ÚîLb5®›ƒ@ Ÿ-´—û©»£"~"EØ¡rÈÂ`îÕT¦j ¸©ÿRßÐÞ\ϵëÁj…?Sb*ÝAŸCµÒטՉð0˜BŠC Î#Áp ¶É§ GNMôE˲…6MIº&T0™Ý+Ÿß”IÒöúôsÚô¾gPÛ’O[Ïi7ìi¯r1ÕWóÖ8Ÿ½“~¹¨èÚÂŽ´÷<MÙŒÈŰWi¼•ÐQäh y2qÍ1ëP´ŸŒ@ÿ³#@f 4þw÷nªëPrø¯E%‘f¸TJNA…Às¯'‘îUœ\´ h«6íiyPPå$@»t ¤çô±ö@‰vçA¿ø P’™ò§ƒ0 ÿ‘h¢ ‰Q¢T˽®ÑÜ•DZÛR9­Ï‹ûµE{åTQi‰ŸÁªìêh¡;@Ëȸ[†¶F< &d_$LF˜Ûc:ˆ«',{uü¼{`³'Þúæ¼i.Öÿβþf"~üèiUŸÑñ¢®è/p\f߯ՋëG)ú>Æä†þOîAcò »|W%ÿõ“Äý}ü?•ó”endstream endobj 597 0 obj << /Filter /FlateDecode /Length 8025 >> stream xœÕ]KsÉq¾Óú8"£z?äÓJ²$Ë^‡%ÒáƒåCA Ü¥tð_w>ªº2{ºùÖ¡pì=êªÊ¬||™•Uû§3³·gÿkÿ^¾{ñÓßÇ|vxzá÷µœ}ÿœýúE±æ,W[÷&Ÿ½{]Éûç7w/^B ÍËYNÉs«ùMµyo µ2g‡zaiÀ³öÏ廳Ÿ¿ÂAËYÙ×”ÂÙ«7/x2öÌV·Ï%œåâö¡æ³Wï^ü×îÕù…Ù{cJ»|6ÎZ_ÃîöÜì£ÍÞ×ÝÓù…ð)»ð6Y—àí-¶ŽÆãvxmm-&îî©kJµaw?à}Ny÷Úxëáczt¥$g±öíLÚ]â[ ³Ë»#ög|He÷ø(;yÂçCƼ{8¿p†*ª½ÿJþ 2,|€÷©ÖŒŸÒÛRënR½À´ä›Gž¿ &(ÒqÖ¶šßß – ²äžå×ò‡øXv/ ¾&ħ{Åc#Ô—÷LX-Aòûfey’ á¿_ýä&!7¡Àz¸zvaaÜXÏ^]Àüú2°ÒÎ9b»«5Z„¡dSÜî{~–Š|4û\}6x ¯³é²@ì…O äû¯ßðë ¾Ä×ΟW hÊ!ÒŠ¸¢Ïê5J«-.x`~—ªO .Ï#,·5¼ºmú4¡ ò}d*Ñst>ÂÔ„ n¿'v6vP9g,ˆšÔÌ,¦Þ˜ÃZ3]¦EÐNb­ÒfÆ£i<þãXé¶tNtìpÁ|íg"4åR¡ã.ùkó.ÁNµ¯þ°bcåÔ ‡jPÿpN[ÂîgC~E㿌G?¾‹ô6Ùjw{MÇ?½zñ»ð‚LÖ㶃ùž8€Õžål÷Ñ6pW¨4Õ‡ãx¼?v<šñ¸_mPÆc~<æñøÓñøGzL1V’ÔÓÇýxü0ÍxÌ«oÅg·ãÑʶƒ¿_ë9BrûŠfìÚÊ7‹äÍfÏ5¿ž‹<`J ØÞ`‹ÍeOgгQM¯–}t0­ì,èŸçé}Çš ’^Ù?„ÈÞ=ÙȀ橒aŒ ž ¿Gñú‘š—PìN¶¾?€•È¿Øý‚©7 œâqôò|î 0h&|Žû.4mDš{³u÷Ž>  ]ä, ¥‡®^^7 ì¦iD“\‘ß]Ÿ“¹¬%’CƒïŠ)ì­©éýy³E² ÔxŸÓ¬Ú¿'£ TùÒZkÆ‚7ê{ëŸñ8€vßgL΀÷"RA¨—“n-™GÎÛÉ“¢Î§Æt¢üV´ .Z}l4\8ð$âÖÄÇñl~IÖ33 Ø(·uº-.y4Z'¹–¼fµ Dðªw%Ÿï™hør÷ïDRòÑïž_߉…¿¥?€ÅGÀ€‰ý ¾5l¡bŒàÀÝæý úfÌãåó£æÊ”³&«þxɉuw‚wƒÿ¹j“ ƒûKñíXs`lŒŽ¼½-Ø…?»ðšÁ‰Ûß5g‡<žšc‘z€@ ÝÙ‰70‹¿øŸ6sïÈ.ÐJ8 ¾Hµê³±Õ3ô«ü–µ"À×n÷’)±¥Æ¢Ú°ÿñ¬¿íu׌|ø¤ÐÂN8aë÷1T't E„¥;‚P»´–ƒgXkÈ‘„€€u$hÞ;è´ìþ…0Aªd<˜7kAð{øˆ–‚éýg1ÁÓˆþבÕŪ 1h-nY7Vz ƒ¨ñŠT.í­¬ÕçÓMkkjCÞ—àν¿œ'.É£àß[f= šÝËK6h ò†V|÷Ì|OĚܺ‰” ÚînÈBY——®¯xúÕÕ(ÀÀy1R•„®.F^Y 7¯Hͼ–—£1ðt9‚5I²ød92¸‘¶ÉÅú5Ëã¾z½ßIÉ1WH6#+ÑuGˆÊXø=à‡®5„Hïš6ÿ†©A!6'ø2€\WLç¡}³ÐÈæ#-zÓ Tq¥Ób£]]ÂL‹mËøRò‡­FŠy±4Ñfic„ †ñF,ÇñŽâAð/ôVÏCø•vÿ!E“„ÛÑâv‡ñЍŸZ %¾ƒh8ßÀ ÕlwÏ‹‡ úü†f Ú\ÈÎá½äF#Äá_'ª4þ,ªõkE•‡ I…HÍα¤&„Ýl8°Áí˜õ'$•Û.•°¢²b¼/ŒÛÜøù)Hn¹`tI"2—+Ì?Ÿ:í3 "²o»Aký§À%¿ÁÀrD–XE´ŸÄ»ê@ÎvÓeSYjÙfÈ1ƒ !®ÌÞ)”&èÀ})(aÏMÂlŠ4 P+êvGá¡Ïd‰ÀHöê€_áÛY4ñÃkâÅeøË‚«É\9â–땉¼dkx5ø#W)ÃàMv­>'ø±& YÅìîš9‚w«Bˆf:yÝg]wÓí˜Þ»¦É•Ò(8=¼}Ï­2ÈqäL˜‚CèZÔ†™_7á4¾6ݲ6D þ}É€r<,§dNšnô;=­€àõèäyð€Yj ,³…«šX8«ÓVå5ò<€1d½k€j#í1J¾&á@z}°ïÇ‚Ä3}Vöœ? –Ð¥üu&”’Á­¤†”ƒ$·©LýÈùP ßäÌƒÅæõm÷çó^`‹Ùª?‹6ób3”€P rG–)ºë}/DóÀÌRŸ/̽¬A¯™ëÀúî u‡…3bƤuÈ{w|j-ôåõ,*§ôpˆ»é­ü'î/ز ß"À–Ú0= .^·Á»¼é­Ãìâ±k–Ùš‚¥”k”2È…xÏÞå$ç!I|bÇ…©Ó«™DÑö å~‘UB›ˆñ7üdÆrÊêDÚå¬ïµƒ¬GÎ]„I¿ãÓ mù‹š^ó>* +övÎ2 I|Z0©'šH>Nw‹å(‡ AQÞ]jxîf8êuq$àR3&Œy]xjŽé Ù\¬°æîª½Ÿ¿Xì'f Qùv¡iøw§dkÈïQ@AÑÙ›!žÇ6ûlµågÍu®ThAH¤¤}z}0ϣŭ+!”S C! ±½“žæÜ†v ² 5oýåâ¢òm÷CÌ®kÈÐöÁ,境/1Í.ñ@9¦VÿAêï=¿’f( ßÍÏV½MSC¡-ãÚ¯…A;Á‰J©²L¯„%–îœQwâ¸åíyÄý‹„ê:r½yÙß{Û%ZM°‘µ.#ŒÆ9ŸSÉIGóã$Â.ae/‡®_K·Bu´{0Åu苘)—Ýž‡c³5Íã0å†qNé¢Ïu·!be,ï¾}Ëþù$Õ¥üSœ@á'ž!j‚J‰ö7 m &y½ÑõW®õ2ÅÍ#¸_cÒFƒËó5×ó,UGª“•Z‹I¨.Ö’t2Gº„oº=Üï­‹lÕl'ÆœïÚ®…`#5¦±±QÑÒ%Yó“¹èûÛë9¯ ³Ã¼®P < O 'L8Ì>¡që m5Q» :IMAª@}3vA)2¸Í³ - ò xšJ‘Ó$½Á¿EÿƒÐ%•[È>Z™V‡Hv$bxRKz»‡²"ü̘gË[Ò/olµ wJ ‘o<‡ˆò{‘µ»o €~Õ7Ê&‘mөε°LÈ A-¢-*rà -pË®DcËp¥4ÆD;õÞ‚!’§;u4Œh­ÒCH f+Ÿæ4V A§jÈF _ %^Øa©5¤ƒ°¼ñóÑð× «¸³ RçìÎ^û M® -YŠÿzÖwìëØÚ×S«F{^ qÏmqwnâG„ê?::Q)†~}Î~5™Ë™« MêÊÛRëcSó¬ò4KVŒD”’×i_PÚ1Cs&[˜æ­LÒì6¤bHØ&ß úM_—ÚƒJlj+Ü=TX®Á¬È:¾å¹:ÞÇ'¶G½ý©÷hæ÷]çh‡AíË1"ªèSºð´¾¡&EüšiñÝ¿SÊvc3Ot¡÷9¹ ê œ£bä>Í2Zb̵M’â$KNì2±ŸsA26`=¦ò’­ÝÓmÊåÖù†t“ÅĪk`Ä:tµbfG‰¯×ó("蘄kxMîþËÀèH²ì Vô«­@*GC›˜Z¢ãÕÝ/×̉4H9ö>t$y’‚Ó³‡v#›ä$R»û\hÁÕ¢.{ÌÏ1€¢säà\ÊnÕŠGÌ¥…Ó\Ú2”¾ibQ%jÒÞ§s…R£N§W¿@DÙ¤RP ÆÁüJUÉ¢#¿ÅªåE~UwkùU‘žÒ²6 Q¨ïµQÄ—h?¥;Š uC?Öƒ…Gî/Û­@Zù\ n +7›Ÿ§ÐH”·LË-ã±u…M©ùžg„áòF‚øK¼EUÛOVX*ÊäYܬrBâ¾âEï[ ô„¨é "jmíDzËÏ:ôÕ“‘0¯RLQ«„ÐÝkf_Û?Yñ@³ßyä£Fm‰°òr쥴ä§}Š wª=ëuû¤¥ô‡J9À×äÈ“)V ¤Z„ÙJäײLØWDB•^-6¶`0Ï…í#_M‰ ›¼êñ®Æhg KÛXÊuœØ–6¦i 5á•Ð&RûFMŠžÎJòèR2²/+K×ÊNhì³¥Yñ¹ti¬â“?7% {;∽™Y JÛà‹(ZiØ‘—6híšßêí¤O:œ¡]HF¯“‰[[t ­#th0@:ÎE(GµìÛfpˆ÷œ#WR& gÉÉã¨|)rTjëùCÚÆ0:W&¶CçR¸ø£”2ÍTˆŠ½_-Wg‰³8<æR&T±*PQ–Ñö˜‡£K³š9ôáÍÇŠÎu»”g ™}ƒ>³•Ÿ¨eÂc³˜^W¼B½ýGØ#P‰öÐ&ô¬6ë¶@*¬Xè>¥ª3±ù5r-2yâ5†('+šâŸ)K¤­ç¯nÆ þõf4ß/ȶÑ~hieèÐù•˜h?Bó&ïE3õ¸Ó…ÕP.’úrt’ÒzÓʾ+ÄÅ I‰‘Á§Êö„*ÖvÃC;dýˆ—ÀxS[ÙÞ>±Ü›œÓ¬tb!íC´N\‹ÐNÏÅÁ¢1h`ôÕ.˃Mªk]CÜàãÈ·³èº˜e×Ñ3…ÑUÆÃuÏãñq<~×ãñv<Þ­>NãñžA“XÚãõê1ûTPR² …*…Ó4ñDÑ—>¤–s¦ª|^6ÍîÑNo{±Q¢è´µ•MØ…ƒd9õºI­«['ºeì$'ú´ìº@ÜÒ÷RLÉOÆ‹ÃÇ[íE“KIÐ|Ü)öýoE¼:<>“”±Î{[k?b†gT™^>=ÍY‹<öË# EZ|YgÕëÇçÃÀ rà}ûYàöës·³à‰ÉäÔYàÆ'Å3‡¹òY`¼˜&ÀÊØB(†îÑhÇާ„Uxñ€µ±]bÀÒˆ (iáé;‹çË÷â/·ç²dÇKŒ6®…°xÍLðÂ…=H‹í¿y7Ò·<í²ÓÆR0‘n³"óüHpÀ§æËº"o6é:’l†]ã€uLÀ.¬cúÉx{¸ÁŽƒ¡Ó¤ÐÀÃ<ÁO&Îa©\¹C‚çö^ŠxǼ)µÂTzÔZ²T$€„ÉJé¥#Á8,¹yây#ÂÚ(F|jØ6­Æ\JHص(·þªìOèÀFã{Ѹ“nÓ¼ñ€F†opÌb¬ˆ-ʺ‰ù)Ð]f¬e‰îFªÎ¼pI©ù·€•ZËÚ&Ÿ ƒ‰(Û‚µ‚Œw\ »ÏoÛ‡8§,Šì¼e^[ŒÉ3ë4I‰i ×Ñ]›³¾Ü ‹²ñ¡eÓsÊŠ|ìé>ÜJfyHÛ7+5A]$W𵣌A x+F¶­(­úžlŠô<:ìX0”–¤ðx=܃Å3B©ˆ¯"NöÚÈ.º yli'\½˜ï°hÉdËà)q=È%{ÂÔ Ÿqïgx=v&•95“³k<'/™Ô²é ë®” ^|ÍÒÓÝ(o¹Ò@ˆ“^ŠÁ„»¡™šÜ„u¦„´ÀWÜš·R,&Då5åÕÃÒÜóD °½iÏ¥¥ª˜Ö`ЭrpÞ}!·³wSúÕžžøfâàIÉ–ËÚö+ÛõŽŒlqû¼¥N ×<ÈRµ†ÓK¢¨Õ\8Q™°XíGng]拉ø-Z¢áy†Ô½W}´¨%au01K1®dêcù¥MF¶m'Åâ¶©’-!BW¯´&äT¾º-¿ ðCÚC¶˜6v⺘uóºÑ9êLYÄñ&1é!´7³Åw#¢Ñ˾î¥ÿš [¢ô®TBÙ5•ì÷ìÜ É˜DãÙ úVŽÒ!ô@7%¹äLÝVÕ8FÛBTm]6±õbütÅo±øaŒ"ÝÄëaéÔÒÎã]r˜V° {(|5“;&‡—(Õ@û4¶åFÁu¹; ‡Á–Ÿ.*Z·¡K¤BdWË¥àÓ *„yÓp :ÉTr!UnfÞÉU@mNG忍´üŸ……ò;ÜúJì×–)ÿgÁò®qǾÑ@O¼M’väP˾D;¢}š5ó•ŠÖ—Kp‰·¨kVžbÀ~ƒhÂî/Íþ·i‘¬Ç>7ºª ç„4¶{tÀ_´å<‘0^̀׿~ì!“„›óWŸw*lŸ ÌOêuC$6Iß \ñÈXN==ñ3ï®Ä«úê~ßÉÆàP(KÕ×^йp×}a|÷ ²¤µM†"”OǸMö§Uß¿.úî·ê~×Íøì¶%³ØÊ¤’°2Â/™"ü“.*râÍxœKB]pMëîö/€ÿ°moÈ¢Ëú†OÔn[ŸŠhR¤}ÐÆõ"Üå³»?. Ak½0C/CÕŠŒåA Ø„¡y¢+ËwÚopY±Jh™õ¯4÷1¯Kî¦36r\†”鯕ô£5GÙ®§|s;;‰×k ¥Úv¸3ÚÁÄ…7tñÓ·âR:ô?ø$Vb[‰i_†´‚%>Ï$"he´'nbŒiOíÃâÕr‹ ‘-n‡çšT"©3DÞ±øžG)U‡òBˆÁwB9Ѓ[5sô.lü¯3ï&iŽ~Km…ÑjuùÀŠ¥b›†³£J1~a“” y‚·©oµOá‹)é23ŸT$:ïÊ:‚†n6‰‡U&n·z*%»kW…lÝFʵ0¯ß‘j%PÌGX|I¢vòÌ-«„]S™Ôž)â7:D‚|"ÄbgÚ×´\Ÿ½a¨(ý‰ÈO7O›.l·õ,ò7±IH,(~ÑB¯Te¨°ûBùžæ‡e˜œv‘ü‰d练ܢ'Vˆ'e>F¥Dxɦæw˜¢PÂ"b&Nãæ–ÂcZh¡Ü“LöIv€âU[©l¡<#Ñ¢&lÓÏ…! )\ˆBBÏs¶2÷…ÖÖ£ üº¸K/Ëþ<Òž¾ð.Ë-€ÙÏz „"!q¶£|ãf$ß·IJÐn:õ tÍÍ –ˆÓ﬋¤…„Ò§÷ÛJ'ñùìÙZ°t\Ï!`²ÀX: ÄGpðNWªŒÄ»D ”vÔ÷±¯Š•¾`È¿21‘@Á©hM×O”£Ã[")`å{¸ædÓÜÝa˜¨QšZ…VÃþE‹iÊÖ¥M/¬ˆÄ@J¶f›LNŸszlšf¶ ’`´Ôjbq,Ž*&œCghù¨¢Û§y§u#œ“aÙF}±6’gßóœœõ_lÇN(v;¡óñÜ$–s¶»APøÚö$9|Y°¦Oü§Ã°|Õ^ÙÜ=?Jz8¾6Î%G;ifó®myå7W/›V/ÜB¤ÛøµÇ£’ðyûôD „§>MU-ÒIÊ:2|‹–gøô Î.ýá<‰_ ØÄгÿôÈŠî®BÐ7ŒóÆEÄ6Djɪ69 z].ÕS¯À-®)‰¥—•RMÎß!Egh [p|î5ƒ§Á5å;j2|Ö‰gœ”] k¯!~*íŠÌs•j¢ëM¤²Ev|æ´I9 h#cJjO]y¾F³ýwKKî ÿϪ<`v(ÆSu€„æ’êYùÞÊ´€.ÊÒÂÑú€¼­Cì/*Ä#öäΰElª.Q`˾ÓGãâŠeÈ«´»‡á{Ä&¦TKê´T©Om,¶ Úë-ý¥ßµþL\¤¼H? B“°²™·*ÛËŒoïx£2LÀ#‰BDg‘%¢J¬ß½ø_¨Ò`çendstream endobj 598 0 obj << /Filter /FlateDecode /Length 8507 >> stream xœÍ=Ë–·u{Ú'ß0ËêM»ð,À9YÈŽ9NäXfNRÍáp†&5MsDÊô&¿žû@( §IŽ’-XªA£.€û~á/ó^]Ìø_ú÷êû'¿øÆ-7÷Oæ‹›'y¢è¯韫ï/~õF,øfç¨.ž¾xÂ?UA],nÙGã.ž~ÿdÒ»§†±Jéj°ûEøÁÓçO¾îwóÞD¯T˜ÞÁãMŒVMow—óÞŸ,zz¿3 þ âtoÕcò—K ÑMwø@Ïj]­¯ÏÃì]Yí7ù‡<º>éK£ü~iÜ>x¿!oÿl,a:‰«ö°>Øð[€Ë{€a™÷ülì24´¸0÷ Ó]qC ]®°]*$‘¨Ä²ÂlÍ $Ôg>`´5gr‚á‘$ŒÁoˉ˜]¬‘Yò `¢]™К›ŽŒrÆ3½.Ó]‹!W%x‚©=g˜pÄ)ä‚ïÇàâÅ êªÁttòÁkåtA,¸/øËHô’ªˆ‘ÿзø; ¼i¡øžð0ÆóÁÁJ1S í¬¦‘°ÿ æ×‘^—Ëß1~- äÃa€€–•Àˆ"^2ÂQè9®O0øž×È-hn¤™Ûþæ%†BÔÆG˜Áæ]Ø”f$Nß»T@ Zù³¿K2PYÂ4í<1•Ä%𭜓H¾)÷åñ—åñÝÇ_—ÇoÊã—åñëò¸ï޽ƒÃígå­„ámy<–Ç?—ÇëòxÕ]о;ƒ˜÷¦» áû‰Wô”^Òz¼)×åñËã}y|Wß–Ç÷Ý^–Ç×ÝGÃ]y¼’“”úh×ÍÈO׸„ºîb÷ Ãïà;À3€E7(|iÉÐÒ6ÉP À Z–ƒ¶­wI÷ R&Ťµc‘È”H«ÆIx&¬…_’Ö†Öl KÇžé'”Z™µkWsXf¼À÷mQ­®¯`gR4“p‘hp­ìòKVXglÇʦ…5&Áªe_‚þ3°ÜäÙ®ûKR!+½ÛÅ’N(æ#îY—tbV^Êa­ÒÕâwb ’êd£‡÷å¼Ò}λˆ6À›Vºoဎ—E{ee“baÕ“ðDÁ–VtÒˆE1ê^ ae;H I.€”ùSXÇ+Û¤µé¥±4©÷•ÊRÈ up <2;“²à·Ó É6£–¥6Ó$"1þƒ¶¯ªó¾çQ€ •QPß‘õ È,Õ gk›·ÒWp2° é°ðÙ&}² ‘LH”%Œ¦‡Q»ùô‘è+4 ¯*u=a‹$Vë'`ÍDªÂ×ðŒ-­â¨íY„N­Q8\„™?P¾îy0™vy+EQaë÷¶1`ø‡ä5H07^Ò:Ú€–ŽMb˜X\BñG &ÊÆ>-œ ×pèúÐ*MöÀÜÉÎÞm˜ÚŒžCÏ;AÏê,^Fø¦ñt)^Kdk zkáÈ _ ¸+û|Ã0Á4ºÑB7S²:ƒ;Ñïy ´x‰  —ؘ4:)÷ŽÂ~â !3DÌq,¶ÇзDߎ$äû\µPÌUò‘U„l'òZÉr»¯D‚f50d–N¡ƒ ýlüÑÁ*=¶…4ä—ø4´IlòÄ⌓‡Œ!«þê_B¯kã+Õ>š>0±¤Í~ƒƒ`Ž÷Eh?Ó¨fyRc`@qi; óc+7‰½'«Ì· å>xò±DvZ»IÊÍ+üüœ ø;O>ÕÂû×CÉr,<èž##•}ï¿“¡rƒ87'â õm! ©<_á«\·wü¶QPþ6£)í%#ª]7.!ô²J¿ë ùKDR¯‘BÀøafo÷Ñ,Í¿/¬\R•ñ£°ÝïÓRâz²¼ÒÓ&H¨O GÒY"ªÉ‚Ý癣ô'±$ À !ªpì5¾4dGˆ§âG‰õŸãóL^£¾]]š{¬Û‚jBîÁ“º-!ÌP·å9e2H®–)BzÜeW¯@Ñ{þCõ»ÃºD8øgBxÐ ù“‹Uò®¨ZÌûÑZëa]b`ÕrXôLìûe1~Ž{ø‡lÌ_‰]fŸ6ù•Š»íUÃIé>ÎÐÚ`+ŸþMãxúD»Ø`ÂÊW 7õ¼8Ÿº)ÖĽµA|aÒpØdþT˜½ÚkßÀ¼ãã ¬ûVǾŠÁGXKµSWþù1:K]¥_¿¬ï ¦O¿(f9d`´¾…ß@GR2 L`Ä]Q)o$?J°0ðâ-À°Lÿ\ô)­%k¹e[Ó+á!Lî]Rxœjýˆ2«ƒ™ó1ñÏàãˆÔä_ëŸ`lGxnGNÉÆ°1.ÀäËôe}æ™ÎÚøMÝHG #£AmÓæÔ^õSБmœA,‰O!)ý„d,XæK õ®œ:È4ªŠnúêH*ˆ¼:&”7õ=ãþ7|ŒQ,#á(vͧi€·m¼ ¢ý€#–}¤ÀƒE| +‰°æÞ•KIwÔ êŽø¢ w¢–¯@vh}$Àqh³jYDÞ„KP¦V0UãM5¤u^€ÚŒ!žï¼ˆpDËÂpʶ¾ œÐª”ÀfPˆìÇ¡‘fÍÆøeJtÒdƒT˜Ï«8  S<µ§®†ƒxý,9¨ãNtœ<ð€yöýhr^”TÄhÓÃCS5†¾Æiû“ÃFUKþ…FgôJAe”1z*¦=ÐÖ“uÅÆ„H}¥íZAïýÕ†éç•rõþˆÍKº3¯¤ñž Í+²ÿ“†Y'©½U {NûJb8Ü•ÕÈS~Ö0­ìI¤Ák©ÇÿJiä\GF\‹Ð¥ÝD|ßµßRG»/ãÒ[Ϲ`ä[Ÿ|¶!zâ¶#§‰lò@K¨Ýu È׊™ˆ,´ §àð5Olbk×r (åËY!²4_Íhi;rÂâL1áa·$ ª~è¼D*8WÞéU^¿%÷¤ˆœ#yDÃlL¨àÒ7s•–”t•62…õrùËc^¬•JÙ†Ò ¤“¥J_ªÒ>1KK©JYê;"FIpN«•¦csâ1cú›dÙ„*BRÓ$lO™miÐxMÅ")oA…˜oŠy3Œ6ef>pÒ gçñ†éÑ8UgˆÊ°›|ߤªåµ}òôï¿]³F)SD  Ò›u䬑 hÃ,Œ‡ò3^@X| ù²—·r5ÃhKÎ+dføK‡Ê›ÒÐòöIÁSÙžì§RÞ *uÖ ­IFΑù¾lØê0#¯ýb'9­×Iƒûàš´%yŒÕ<˜Ëw+[¢×€¡a£]T“»™8@õ#*”1‹ï°ÚTBp›Ò-Ã>Úœ¾v‚éZöÇ7Ž]|½æ×pþô£6®›tì£^<«ÚÄVäçØ‰Ub Q€PIÁX €àJœ dÄåj0¤5¤”e’x‘žO¤î·¶Õ¾åðŠØ…G—Î=Ïg[Ÿ*¾Ä„þM>£UJg ñDcÑmw*aYabÕy9Ïl>ÏMkrUÖd?px[ÖZÏ‘«$÷Ó!‡"–øÀ |N^mBF ãúuäÓu˜ÊeŒ}‰,üñ ÎʲV)Ô—öÑ„0¤ÃF3à•Ö&d›Z±u°ˆªŒƒ°y´]3ý­ÌiOF  Q >DZ ´° œ•ФçF=í’a}Îñ³=¯a°m‚ñ¢ØåS¯‘ßÞâ3ý'¬tÌ5šã H”½_$ïÕšAU½¦ìtÙ(ýäs%.¥ÏW>×è¥+D¿+©l=V¹ôV–mµH*X)%°¾ãÀ” :?¬u—«ÙéëCß×SI#>7M!ÛgA‰\%ýòYÙ`æ #œ‹äOI¿âeÕúÕW2«åðºÞûâ7>RÉjÊK£×wE"œ!bÄ|­J±›äÙ”¼G*ØB6ñôÛ]ö' bŒ¸D’Eˆ[ªI@:ù®#ÆBO( ‘fJY¦·ý §ˆ4µxú`Oåýo÷î#èàôÞuj+áý¢R OLÉh˲D«©Î8_1m òkª/ÈŸ­Ú×±îã? 3äܺméî$-ªB¯ä[3v vžÔ>FNaËLòÍ3ôCc½/1J†F·þ‘õ zu]MÏÜ's€^:oà qYp%ThÙeµUØ”ÜçÇzxQT•¤ê¨B»WŠ~½Š³A<| ¨HˆŠÊóÊØFí$†–eÑ¿@†¼¬é Yz¾ÊË82ìÞ)»%-|˜­Ò¿¦‰‡¦ßçµSY‡ÝØ•H#©qËßB']•×+][¦:n$anŽ‘–“ªöð¥XÙïËN 0kª¦‡´„a±Ógâ Õú«å#¯*äÚGÜiT`rŽ4G¬¦D»ñ{¨þõ(Ì+±)©CF¥ÛÂ]E©´uT±gÝ ÔfÑîÿ¨pxÕR’X`±‹lœõÎ[àÇGŽ»¨F¹‚,_¯i:±É´ô\úô0H‘÷*‡£Ù噹3†Ë‰î[šmúxô—J§C_Q“Ô›Î6Ý-j„c€džÇ¡Pó«’{Ô&a^*„ii+©UfyÖ¶Ž\»c]PŸ-Y<ä'®`'#>¹<Æ´4fxÀ‚J³tÔ²N4y²J>ƒó{VšÈ žá­íïA“ÊÂûYûb#\vUʈ*¹Åè &À ûI°~X—`Öhß×Úìõ>Ç@JªÑy:Å,¥Åâ¾õ÷af2òŸ6v—r‰Ú:kU{ EÚ¶|}Ut¶Á†K¿[1Rží²g`ÛUÒVH»¾–JyY//µ^ê„}Á~ûéðÇM&AX,(C2ªÅéx`_¹ŠB¤³ˆÓ$±žä}¯D¦ß‰rWÐu#['ÉŠ©ÆYÀ „Ì'ãâ=š94ù´ž;?<í[·öSªƒd-ä3(By¸ÏBÃ,¨Uí[[Qˆ\e=µfç3eGf±.’¨6éKœ ›‡Qð"`“®•À¿‰³j,i8÷ÊÒi«:Ú=©Ô¦¬Þ8DX%fß~Ò!nëâ6§Ø¯f¹un¿´©…¢Ð¾Û.f ãäÞaÏÜΙƒR½× c_kã㟹²XêüÛN$Ffñ¡u’·fªèKöÚ%jІ’9ˆ%…ò¼aa#C©ÿ›Jˆf/BŒ¬¸EŒüîuÓ”¡‚Ï8jûÙýtç2¸²iÏ¥ÒyRÏŽµm½Uøóö~%|ƒB_lH™Ž0Øíap+Œth¹)ûh‡±|ÎaXj6× 1•߰ʼi ç4¯[ÂpœhM‰äÑ® œ"X•M¼Ú!¶%-ŽE&Å®9o{l¸f5šu*ê†x#ijÈ$Ðp:ô«SDQã™DÒkEN„A¦üg)£ëÜä¬Àç9§G+•‘´eQš‡[­²l3¢¥pöÏâ½3ê½—^(ýB5Oª°Á Æl_Ê>M,OTtÝ8AZ¯›è;8¯]°4ÍÕDì¦Á\ëuKaµÖÙ-ýn¥à{Û%78˜ÁTVf'8¬â&8¼Pæ·+5e2wÙ¹Ý÷ˆrÞU° Œ­çü Ç(“É#Ò ÷°ë†h¹ôWÈÃHÁiÖgBœ}«Ï¬ï2§ÜVëH¬øT¥ô'ßcVj†Ž®và3 ”µ ûÅ´@ïø CÓú¦©¤ú̵ í©]ÿ8±<ëìÓìÈ=½`{sY 9Œ„˜?PƇ£žs~ÊìÐ>ëè­ø;»×Fÿ”¸A9BÞ6È¡æÏ)º è[h¡®‹n±çêþÖÁï´ n̆鄂m3ÛïlUÁÕG@²;6o>ã#]U èF«8.5¸øÆ?^x{SĪu`±Ža7ÍÉQ7£ÞïrÊåÆ¿ÊEñø;V ´æ&ã¥KSÛ¥¸õб`µ#5B¸ÿAMƒæb×<Ú„¦°§l—˜OT'V•u2C`Ô¬¥Ê§TX’'ˆvN `_æTùg°¬ØæiÖ(¡9kïTÄ?ÌÂ!RnÐ9úDœ:íݹ³µzÕ*6á7j—z+Ͱüìj»á›x,U^è@ôÈg_¶îáTç|í•[[³†ZÔ&Âöo:/®HÊœ€ex­‹ #]j@¨=Û]¢•²"3…ÿIôŽgvñTóf9Ç -¬Q[ŸÓ˜Ž¬tá*!c8‡¦®‚§­Q͵ ”-êÎÑóëA†Çä§Ý¯Ž^HE‘Þú®š¬›ÑÓ¯§¿NŸ~_¥èÏ6ý]+S%!q„(¨"ùFÆÇãYÙêì”Òìr‹Êÿ¿:;¶pPΓèèáÜlíl÷³=Ñm•¹ªj›0P;f훪@bUÁôq“Ê5ƒø\‚,3ÀØé?@5:‡M1Ð(Ï»$á¥.íµYBÙÀ•ë[∧%W¼6°·9>ÛdqÒUÚ<ü6u‚XÛ£~H‹ öa»{T™‘å¶b!ã˜3‰GÒÊ8¾ó/È¥A2„h&8hX^Ý—Á¥ ÌÖmW~Öη4)Òž:½ ËHY€ ¶/J–R¤Š7®–‰äg!j!cÓt™D´Õ”ÎîœVJàÄe¢oжª†¡âÚ©–®ùPœÁƒ÷CÛiݲª†ìU uOQÿ©Auœ1䵯Œ'vÆÊoërkæÆ_1¾ Ç.s{YpµrþÄßÌå•.ƒlàAÉásþ K—w HœpX4"™ÁTX Ñìlú/†[€‹4EI%UâÀe§ªDĨÁàœlÀ…^ÐÕkË}\Ÿjlbvör¾o§›"–ßwðCXüáÖs_ÊAÑSÎ ]%ÛÇÔ< ³ùÓ‘ËÔÇ#¿Œa\ÚK¸¡ôTW“^®YŽÔTS pȤïÂ\A4õë3m6|,Ý&†uR¹ùjy~ÎÞ·É~Ç·¥'l¯¿°Fwëe€Ì ;´b–eÛß=ý,‰7íÂ}›-!9f¾€¢‹:ãä(kž—ÖaÁ‹7ƒ¤°*rØJ°ðû[JýJGÕZ¦§4q[[€£ÊC‘Í'ÝŸÉ–ÝžUJÉGg‡øÞëd÷‚P™«ÂÆTªYµÏo¿±ñAVÜ ºu’Mq1 ÓÉ”½Ôÿ²Ü>ÑKâr]Þ¨#bGX„ÂD¶û=·Êšw«ÈáèsXÓÂÔF®¦£ŸTêtSUÛëãšÁŽÌÎôCê#õ‚!¥¼øgƒÙù£îB¤ÇáUa"ñó£{¾­S‹œÙµ žsN×€®?*¡kòeÍE­ÄCÝ%›6½WÛx¡o¬;‘H"|–gž¨ ÚsZe›)<ÛÍaÚ”‡|¾¢V3 ¢ l…á]ˆ2™ÏÐ4†=ô~ö +m÷ªÕœ¦]É…OTÔ®ÜXˆa‚ fÝî‘ÜD’¹æ-ÿÐ×ýxnû4&¬€›µÜ=º©ÕäÏïè÷¹¬jnЍ#€ð®ˆ“Öòñ¾Nv¦±Vj Ö€yj ë">‘ðð-`Y$¦n~^8+h/³7+ÄL¦wéÕXÙ[Žß'‹L‡6˜öå?Iå§#ø)hÑKšìgÒ¢BÇXJ†k{Ê$Z”*g’J‹,‚¯®õ`¯ñ\¿Ô®›û4¥$ˆó¡nV'ÌΛV)å´ÛËáÌn½B6PꈼêÒxâ£QDpd޶Í×…Eü½Y5×kˆ»Z"Fð—úÞ£ôÅaŽ~>Áî5œz²“°Ô¤m¸˜…STeËç9€pcÌz“'>Gÿ8¾±•]vó?f3õ}y¬¦E˱•F.£¨ÏH”¥fv²š“k´l'+«÷i:`]W?D+¡j½¤3Û(óEç;‰Ä¢Ä ¾cÐfñT¦TºÒZ4±¤¥k‹…ÒÔ’Sr„aç7Ü3ݶǫ¹KºK÷Á<ðÚkö‹o¼¿ÀîDÖkº<fY”º¸ÄÌUë Ÿ¼F #Ø2ÜäbÆÿÃê¬8Å¥aIN‡²Ù´µ(!qÑôú»íb,>ÖÃüÚÍ93"âUËwG¼BÝÍ.¢4ÁäùH¿»½æ×`oMÏ„x µ"W*h¥ÐµHß·ÀWñ^š{þÆ÷¢A1½àY|jýÓ™ü O®¨™ñÚ+°°mäЗ߾ ».[Õ͸ÊÛæµÎ Ò'R©g˹> n'Þ»?‘ðqõu4qà^Ó.&Þž¥×˜)unò^»íT†M^fµõc­Miùw1ÚQ¾ŸLUnÊBÚ7Q[ˆ2Ü×»‡’m©öµÚÃçtíÈÝ-is–*ìô¦˜±[79Ã¥7imÒ#›H_'ý 厡¦M|å\&¤>é°»èm°)Bål¹¬bŸ©¼´ê¶*uŽ·¥ö"ÚkËïH-”šŽ`‹ZýS)rš°‹Ú·ŽpàÌTû%›ÞÊXŽ#kNžÁ·b(úª¬¼ J©¶½Yã@‘-ëh–UýÚ6€Ô|1å‰FÀ;áûñe{Í_^Ks˜µÉ¦vûqK§¦APúݘFËÊÓb0·ê~jÙõÉŸT#Í%ÝtŒxÙo“C‡Ëšžîr›‡µÁ üŠƒ™ÑõÚ¦ËüÞO 6º¾4<½üyL(pµžHëç^#ÖÛSN·åÔ÷¬pŒr,VjMõ¦¼)ƒ>RÈÚ”§ªÝ] °Ÿ'¯—ÛUô8²ƒ?:]3d8Š•!Óã€!ãÆ•tk™0Ô{Qùº}½u=•vc1‹¤êXÛL3›reâÚb[ÿ…8lÒoFxì{Ô눌Ùò—Ê9ÝSºTykÒV ÙÇ)mT±5LÝ\Á“tt`+xu†Vòf´²›ö8RÞ°ÉG½`ïò½A‚R-²D6âáÞ@ŒÐë…ä¢i¦Ü?qEÄæÒÉ kÚŠ$(j~S½öaâK×HÏÁ¡Jžz=£{gÿ±·#;”¦ÏœãwH¨ ¦´/¬|Žëý‘í ,©ÛÓ¦¡b2Õ×Ot´’±u:Ti.Í…Ï´)Ð2s–àùmîI8p<” '£WRKœgަv5ýÉ_÷Ç'ÿM=¸endstream endobj 599 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 8682 >> stream xœµZtWÖ!¬š¬L°ŒL ½—P!”Ð;˜jܸánËEV¹’Ü{‘dËÙØlZÀ¦C lB'lBBB oœçdÿ'Ù&Ù³›ý÷ì|޲4šwïýîw¿ïª{7J ˆæ¯X;q‚å_Ãø~`7þ-¡'Öý,oK¶ÞBèÝ}÷À1Év¼K_ÔðÚð:%‚“ç‡D‡m÷õ‹pá9ÒqâŒÓÆ8Nš0a†ãÜ@ï°ížîAŽ+Ü#ü¼Ý#È‹ÇuÁžÛ½#¢GÌò‹ˆ™9~|ddä8÷ÀðqÁa¾ïã¹=ÂÏq­w¸wØNo/Ç…ÁAŽ+ݽ­‡gý=?80Dáæ¸"ØË;,ˆ¢¨sƒ6Í Þ ÆS © Ô"j"µ˜šD-¡&SK©)Ô2j*µœz‡ZAM£VRÓ){ÊêO  R"*ž¢©Š£j;Õƒ’QŽTOª7•BR}¨ Ê– ¦^£^§úRv”˜zƒb©7©HªŸ § µ‰’êNiýOºùuûX¸Eøy÷íÝOÚŒ¶© åÒ"º™ÙÈ”ö˜×£¢ÇO={^ì¥ê=¢÷Ý>zÛ‘¶É¯9¼&{}Àë}»õÕöåí–Ù5‹¿Ñç3ìò7{¾éÕï­~²~/ìóÄ«Îõϰj@ÓÀ÷~öV·ü¸‰ÜVÉhÉ Iºä¶£ãqÇkƒÖ Ú=ˆ¼qÄû#E£ºóJÛ¶d0£Íf~‰^PÛ6WÈn[Φ¨²b!”ò´xìÙþµ}ô&Ï8'5@—kökÀ ­ªZõÑÞCÌôæ0S¥N“«ÑJ¡~6DÇðXB+…Cà:áèݧ°öÃ!u³ÊrI4½ â³du 6ò¹,²Á7l°TdË·‚™·i–íP·KÈûR?ñAÔ =e±v‘ÁbòEõšmT’{ïî¸÷b” åô—O^8Ÿç´–Ãñÿô³! Ô»´Ž†û`hˆ/Ù¡_óÀÙ-x#¾þ‚ƃd6´øà§Ù©[$Ö¬´ Ì‚Š¶µB~ÿ&‹ÞBÛŒµ»kjÌ´—ÚYž°ZËUeô (K- F˱ÙOÇiñ‘Û†I™¦Y[p”ÖÓoÓÄTA)äèÒ³òÐ`äc&á­B§¥$JcÜ,µ©×]!‰n~•è(ôÎŒfƶm©ñE#Úk¶C’»èôÓyÏú‰yÆwc‘š®ÓfæÐ뢧õïlX¶eJ%³OË.]€«Ìƒñwð›\{·€ Ñu­ÌWÒ^A‹_øªdïqáü@røêá_̸†…ù’ø&‹ûŠœUYuT‰VÓß5[¼`㌡[^)3ñŒ‚ê»h×]!ïv°èá/qÜw྘ýq4êú|ÿ-s8;³nàj9vÎAì…ãª6샰_ZéVékH*}ÁIê*uq Ú Ì«Š¡{÷…üOü=¶ñÜ™ôZ yPyªCHÞ×hC5Öj5GEÊä ¹ÏÀ¼}˜š ZÈp0˜ÒrfÚ—Ê Üa›ÆÝZ¨RúÈ–‡"üµ=ÞHwÆ/jÐ]&gÛ —;ËA¿§ÌÝ+AN´m›ÔÜ6Ölwò9ï_fê'~r}ÍbOôžˆV¢iß" br!+Aò$5—‚‡8ÎÀ`VâM»Q‹Dü=jEwŸC‚‡ð0=§e!0Å 3HP]Y2…S¸Ís}6 â'xžŠ'c7’îV¼ÁŒÆy‡æ0“ÝËK¨øn?ñSô>ß›½H㡜_Î’»JÄ·Ûýºf·¦U[ UТªÿ}sÍ¢sèŒØf§ÏA½~ü±H<ê;Ü]"~:Ü]#¥Œ±(œ®i9RÓÌ•s“± îóÁ´¹žÞú¦I¼4 gly»ù_Í‚K&~…IÈhÈfå‘·²˜b9DríëE2,µ1‰²Í®Ûh:¹ÙDQ»C;N•Rb2ÀÀñ· ¥`IÔX¼<]dÛ–ÞYvî>/~&¬o›ÃTÐ]XíBj7š…84­Fkñ4Ï‘à7~qd­`å÷t´À3ÑGpIÚ²`ÿꜩ0°0j•ï–ȵk†xñ9eŠÔÛí¾‹Š CÝæ_?ÇâEÿ:‡ü))í=ÁFü´:Áãü»03x~÷}: 1¤ŸBÓ~c £C,Dƒt°4øIïÕÖVÃ>8 û¬=±“ž«Êk q„~ž¥µ–Sª#!” 6ÄKMùµµ5nœøú<ð]ïFÙ‘„yØŒu„¹Þ„†ÈÜl›Å¶zEC†WMX¯»AZ° u6áz ÔKú>ýMnWÀÓ’vŒæ¦¢Ì΀{‹Ð(0­+Æ Ø–çdFþ2»:S؇(Úña?ñCä…6°FÅX˜Ïlòóœ=Í÷ÔQœ²@žL¤FK°=©yMY§Õ‚¶´ì€ûAµ`—>ô—ÏŽîJÌ—ì¨õÊvÏ&óe]Þâ‚Óýë+›î£n´œ&9‡PSe’ï­ ¦‚ÄN©HJV(½«= ŽTÏÖ{ñ:¿âà*©Dü°6´ZþY<ÉIjNÖ£03ÿ¶•_ÞyèWßOÇuž-îóÌ&²‹$h½7=ãcBg>êõª@2­Þ_ë´ª¥¿ÒÉ|$ËhñaÜ‹“ƒ—â-õ¨…0Îæº³?=šˆ‡ÿKÂñ¯u:>ðJüž„ݱ;š‚'£µqܸU¹û é{™ ×£`3š®üx õ'(ËeÑ3‚–‡‰Ô3G*鸆Ư=Il¸\}ùw*l=M„«ÏbxTÂu“Ìh·ÙŠƒÖ‡B¾ÿmÐæ]ç*Ì"?å\2¼á}ð³FÕÙô8·¢úO>õ5ü\%Ss\ƒz+~Âé÷¬€-B­¸èÏ>E¨Vf”6“y¥Z¢ø7Ù‰4šgc¦?HÉ:BÚ!Õ.x!=eë¢yÓ‡[9ôEç;7@9I‚GѳaÉ£NÂêš[ôK'¿ |(DRKüº¼›\¥%²Y$./˜ÕY%}S×™R6‹ µœù&9ñ^¸ÙyæPz–Òzæ ™ïo”ññB~ ºÏæ”—ì¿hQ(ª u„Ã6mLǤlTçE@$« ÙÛ8ÛwGµò\­Cå^(%à T¯SE@xj­³’>éò‚4#ûÌxmZ@zNz.AE®ÔxuçwšM¨;y_ˆN ìøÍë6ÈÁi_®5WeC°>Xº=ÞuîåU¸òéµ<‰&›Ün7鍊 á<¹£«Ê[íL¦ódð¶Þ@ ~„}:Â*µ¨Ø¿¡‡léQsA½%,) K Aà¢ê«AmŒ&¯å JK˜€sìG ZE¾Ú¢ªö‚žÜ#H½IÔU#«r2äyYQSqšý¤OË'Kﺢ# Ø ñí¸â(ä+óý‘þÉ>#^—bɃ63£ð{Ô`ÿnL—YþäPºŽÜ(eÆ3ò7V~5ññ!£]óõ­Ñ´KWˆp<†îΦ{V¹Æp®ð¶ädØ:zM˜\¶Cq0ƒCÎ4‘|{}½ön.Þ ÌŒ…ÎKõ1•Õ¥úÊü´ºmIUý‘<¢ƒŽœòš$ñ¡ÅûmR~ \øþö°àÊÌ|vž#7¹‡ö•fRÑtv8=fþv—-õGO4ßE32I+–þB~(?E‹ÑÜììc-·-j8TéOà ka{—ÎŒ€dˆMJJIÅq«=ºü_hÈù4bˆ#X‚ ™É9 èèE¤ƒEöZüE=ì锽´ìL<`Ù–Ñeäó!Ú‡Ù]{ö©¨474¶À"T¨%EÞ M者A•@\OlRBš|ÅlûÙß'[da¦åè­W¨—¨ba'8kB:Šü)hÔ‡W}‡Yû±¸×Ö5«U;-ò½RkÖTB 4«*:t€T—ZE`¬©;÷ÙçÃí³e±|ÉÉq!ݾKsRk$²a¯zWWÑÚˆÆJ.ÓCŒÈ§¹KÆÅׇEŸvê8+¡´?1ÑMvaÕaF|$¢¨yóÕ]bmäwXD˜y6¸9ÇF±VÌ"Ê@“W¼÷ä‰ì 8 ¡Þ•ºµà>ªUA.;¼w8 øV„7ý¦ƒR2sl{êy®ƒ‹¿° d”dž‰doÇù¾€à®Cgð»èÝPø5Wgù*'¯ô"JêŸTš/Yd•»±ô/%ttOÈO&m[y¾ES ¯Ø(œµÒŽú˜ÕÅ1ÄÆ%©Ui‰Ã°Ú ‘Q‘«J']XÙe\Gb~ÏF’X ýШv}ZBüy‚t}ðÂeFÌZT©9=ÛÅLeTqD¤4!Ð¥Ù÷èù¦S§*8[~5™`uM¥·ñq¼Éb—z  M»Ó|,ç¼Ú·žóPÊ! -¬®Ô—ìúdÎÞ÷pßñ˜Â¯sâøïF¸ö¯E½ss“@IT®â‚Æ-MôFÌo˜¼M•Øþ<¢³¯«ùŠÛB$oÉ&•äp žýJë(épj5µGˆ-¬ƒ#]úr(®’ð Éé–‘Aðêºìô<¤nëc¯i¿,êêªFÝ'V¯òhü}Wñ]‰g‹BÔ©Ñ8¸ý¬=ɘø7Œ‚fúˆT»?ÿ6›“g!<¦ ¢9|…(ö©D±gþPÖˆºÑ#áÚö>É2PAšC|)ºKû*¢F“qÏ®˜!AõuML+¨;utÿú v †ÿ63ð?þâ8€jp«t²|Çà‘˜ÅâoG ²/ÀÁݦZºcwš€E%‹ Üê"u³¸2|Oh“ò‡Ú³5 æ=uÇ Q4Ç™]òbÈ9£çVó3ª…(®m›œ¯ÖD‘½P#*½ºH]®Ô¨!Ši/û“J”ÐiuºœÓþÔ>'Q£Î¦²Ê$üº ?'õSoQ퀰Eë×êçà"iŸCw`.ЀæíˆON¾f]w”Áf¢‘÷L»yž‹xIpòNÕŠŒ:0|çô”t3~(î+!˜ëÿb1 ¶‘°,7E›–¬’§¨8¿¡! 6ƒç®ˆÆÀá"4¨K¥•mÓ*D=º>¶y£Ç,rã‰9]Šá±x ö ²nž€¢¥h4šŒ\8üþ’û‰ Q>öÉÝhÈœƒKñ[ÓÆKlÑi+Ù¢)÷²ÔýâãB4ŸŸÏ"†þòÃèŠ µˆKTD'@QYUS¤¯hô©ÛðÁ;q˜žp_ÿ3q ‰Ìt‡ ÚS‰Î[LßCtø¹E¢K,š-B½uûÙ·#¾ÄoIðËß­,þd´(Q ‹Ê;LàCš ƒ¶8iäÉ–Íö(GkOß+GPnWÝy Í»VßêzºŸø' Cï³SàYy•¦¶È$ÉÎ/¯ÞÌ¢ö “¤$F{ 1^,¤Cy‰~op“² ˜'—.]oŒm +—4ìnÈ(µ¬@§–)ÒdÈÄ$ç–e•—$ÖzEºÊ=Ü9÷:w˜q ¾çjô6í”$ÄEï?FÜFA@·9rUŒ¿x2ó¿[lQÏ[nÔÇ·lªæ6T¯•„/Ý UãŸ¾Ó ¤M†âKì°…-Çíi< “œÝGÝaªÓ‚Í#‰~*Åž_2¡×Œ|Éîä3bvÑð¦çÏÂÌýģеbÖI»_àäxûñS4p*Ξˆ šÍIOú] ̦7‚(J‚Æç²Û£üää›RÕêö7º¯É“4E±¨ç±/ЀF3ÿ;4š¸‰¥æúÌœNü«lLQáø'~(C-¹'KV§$©%r'÷@7p†°Ýᘎ͡•O"\ˆº}Îþÿ- §ëªo=ÿ=AÙ¶EH˜ÇŒ¨Õl‡¸ûHlæ<ÿ¦²Ÿøg^²(Ÿ†rÈ7êrµ5 æ+Ô]ß^>qUˆ8jÙîOã·±Ûv)vC sîãæËW.lœ¿Ökë*?ÎÇ~Öx¤.2'š0|æÜqÑZ—fg./±1ÌDÈóùš ©ëFôôÃâÈæë»?5Èz7sQ†ØÜeû˜áî,zmvuÔá@Xé0÷ý3¦ÎÿèîéÚ _æ¬'ix|¯œJŽòÕÒÇÈë+¢Šx!ºÌúÓ8aȶ51NÚÝ!Üìšsx‘460Ùkñq/ˆ/µ%é/!djÄô'“Öo‰vqã<\"Üá}÷ýr$êΉ:MÍå§üú{l,lƒ€óÑpŽÀq8lh¬:º§ žð^Ýö—|ÿôå°™¾}ÔdÎÒ¿/QðKÁý—B´ž·eÿtñ? b´ ;Ðû–+í2öÿÇW‹ŸDµ YÂg³—ÍMM!Bɤf(2ò>»…˜ÕU'¿èÐÐ’† -h4\–&O›eéÏuF„`D:ã£àäGh­ Í´ü¶Ímsf3s´:Èdò’sdIi©©rnó¢Å!óàXaZßU²³È˜9 ¦á¸Ïg3¯]9õu/„Ã;[%ûMk€Ï¡Åœ™®QÛ·;ý219¸[•ƒ,797W›ž—Í™øqlä’4½ûqáXËÜÁ˜Ú8£„_Õ>üß õYÄ"zõƒÿëž–’óYhµy •B¾W[o6'+;ò™ÒèÒè8™L®àpo<¶$ÚÆb1Ìü3*&òîžóh€ ­¶-G}Xå¬e;\À 6¶øï9tlß'‡nî½h¨h¡I•“ZNfÜ´®Ë!STI‰Z)Y?Êe‘Û†„"Bêo¹"úøÙO>'>{wÁйë¹gίŸÄMå²-4œ¦ÜYþÝgö×5r—V‰ýdèü)í}¦Ý5±!·”Ä«0÷öÕÖŸ…!ª%3§„‡rnï²Fç¢Àý+Ê‚66ú,[»"5˜éOßÞÝp¼ÕbøFÃíV1õz!ÒYC<°41? úíÒRKÄÈa·Op²m¬°m>ºÅ•^ñ’öoDñQYEþk¼-ìx'NÒþWQ\Ç;…–ÙÃK ;Që BÔ[j´ø?þ>{6ü [°ô…¹™D%i5 0ZˆWø§Î_¾B’˜øï~ŽzZKŽ„Z#õvDÉKQï«–_ýÄ¿"¿Ž­Œ©òŒO’Ë9µJ­V£‚ÂôÚ¬ÏÎ$É·p–ŽÉJKO“MŸƒ{®ªpÙ__ZUÉ¡ oþ'—ÙòöXgøy^ðÝi!º‡SY"´1%¸/²óGk4oš‡^C} :¿D¡“'M\„Å«¹M¸["’é1;÷9mÎâ×î/Í&3]—e­ÊI³àúEÈÏãO²füK1Òðò¶]zô‰ÑîäcÃË¥¦§wû‰1JDZÝÓËõ•UzC43§=¯ã‘˜Z±héöòørËÊô ;Äsæc§‹š + `‘×êØèèhÉ’ùÒñ°’q¡£Až_9¥œø—}xê?òÃoÁ¢Xm3Ò±pC†ú¬G6«ÐkS?NF®PÈ• *‹–|;âž Øð¼¿Ží:Ê(OWdæ~õ ŸáZP·|$„{Ó>Ý€îC‡ôÞfŸ‹b,{€Â.áZT'*„²ÈHˆŠçp®£ã» …È+QÚÕ¡çGwö8›"·2¨¾Æ.‡À³ò¢èÃp J™µÏ¾*>+Ì\©l‚-ÄŽnŽñ \µ--Ââ[ü˜avô¹øä_oyÎO› ©3¢‡>ø‡›ß¿ÝëV»z+Ò¸ Æu!ÀŒÁÌFLý»Üˆ|þtYL¦áKÙÐOï4|¤: 4œšŽQEZVrMXU²2’!‘Á4Ýéž­síq]'Ïw޶ÿãÿa¶y)·(R`«ÂA|úwgÛ䵞qÑ\D½»~30cq2èþí4øþcdIçyö`ú´à*ÎK•‘ Í-Mcl¥F~~ ÊË4аG>mîy©׳û4}ïƜ޽/é{÷¡¨ÿ€÷ø endstream endobj 600 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2261 >> stream xœEU TTå>ã0ç Ga<‘¨gFM„„"‰²ð…¬[h >0Çp$ÞÃcä):83{x<}0#¨ äŒ<âqÐT¤nf·›I¦«º-K{x-W–îC?ëÞ{ uï]g­ÿ±Ööþ¾ý}ûÿe”ÛJ&“1kÖ¯Ž œXúˆsdâÜ)â<9ʱ¿•)À]înÝs§Æz¢ÍSgàö™”\&KÏ9°&=Õœ˜¤×øÆùi‚BCC–jž Õ¬JMÈJŽÓ¥iÖëôI ©:½´y[—œ 7h|W$éõ/.[–—— KÍHÏJ|Åo©&/YŸ¤‰JÈNÈÊMˆ×¬KOÓk6èR4¢ øsZ“žš‘£OÈÒ¬OOÈJ£(ÊsUV¶^·;.ä…ÐeAÏ>üürŠZ@ES›©-Ôjj µ–zŠšMyS3)Ê“RQ³(Žz’ò¢TyÊ*¤¾•YeŸNysÊçòçåÍn Üœn?("õôTÚÉȘV6D4)ÇÆ@@A|Õ.ë;%ÓÆ‚¹Ò“%°Òáàþbÿå)c¡i°¹ZºË:TÑÝpΚλ/s04Z+ë¬Võyœ®@ýWâ£X*¬¼}Ðßsòà3 ùILá& ’O+ÅT)o#.Ü<ìù©G¨ôR `,ÞåPÁ÷+´ÌīɕuZÆi¨„.¸ ®ÉXÁ¸†Qݼv•x‹ÅPiìîμööNGÏÅ-íÛxÕ@8Äm×G²Jq»Ñ%ÎéôìzW÷–Hƒ—ê&&¢À½e{µöÊÐ|£+ms5o-´–;€m…êõ—L3Ôš!?žÏlLª‰6•ñгgØ÷ª{’ºŒ7‹XÕ—ñFñFï•Ë g~æh_ _ÞTEÀfƒQ¯&2&ÊŽÙ*à°ƒ·ÂñÕƒ)Àlúôå9“ÚÔª›ñí)5/7JH£=øoÃ첇Hã4AþPœÏ‘SŒæÛœÏ¾å/jc˜ˆ”ìôMpµ…ÇvI4âƒÑZƲø __›È(ÅËFWª€¯ŸF—g'N}=0i/U®8í&÷6ìü¢í ÐÚR Åê Vh„S˜;k?&~QDyð¹Xgþ©ŽNÇ»§óš*ø¶šNk°7œº0u2£Öšˆ­Œ,ò^‚3 ŸòªÜ/Aè=þ.»ƒ¸¥Ì’eÅY1qÎ~¤ðÙ¦ó•¼rÌSBãç¹pÓ„Æ4Vã,/U!îq8Èðÿ‰<~_`Î]V¨Îí?tnË9è÷ð.ªq¶ÿOd‘ZU¸¶§eç±5d˜Ã*æ”s¨}XT™®…Í™ñê´Ý;KS â/í;,ò±GœÑ#ëÂY¸=ä8..á æ\(cÿKï6ak6‘ˆU„!,™ýÓR Àå§‘µ5Á>ƒÅ\\ÎgFîÈ–¨^|9çQ“©Q­¯—:Äô]¾–‹â\]=T€“%»h=ÅÕEU¹U–Zs«¥“ˆM!Ðu_46VUÔ×|G%è/Ó›_]BÜÖ9@|g‡_†š#BõßøA†*‡lBí'Žœ½ìD¢>ñ«nÏ¡Û[nàÑOxw‡˜ÍÔ¦…3ìµ»¶žoÎïŽx#396ïÏ⮹:úá}ö×ÀBuøŠ%±Ç"oÅòª;!oÅF­ò&Ó‘ŠAƒ¿ú§ "¼ÑÆ“°Îi2†ßîÏ:› ;Øÿ‚(¿¨÷nݺØç´ó“èqÎ…$ 8W#9êuœç¥z,zã—ÃÀê²…É{ãw½¹ X‘jo¨<Ûì}[||vfBÄ{Q(—Êô Öòª?>l ûÈ߉7áY‰3xÕc'¶®k,‘ïæ–Â?×?hÙº¯Jݰ6A2™¹(d ©tüm—]£äbÅØF®ºjÀÊÚ ê‹rË‹ŠŒüøŒ”—€,³óŽ”69ª×L’p‰ß»d’#òq–\<‰×¹ûÜOŒÄh!e~¾VR€F„B4ØVY” j …~» Kð 9>“sÇ¡.³Ô ÊøW¢ž†\`ó´vú [?hfÇ›ˆZËôW>‚sÒ÷ú'o6¢a&"IUÁù]‚lŸÆuÈËÅ&Ìâ´´)¯ìµ¢¥Æ•P ys1-t_èxéo® pEfáçd>™î¿>hãPakgÏñótG «øöÖ®z°·#V®Kˆ_«&;‰®¸Ì7Û ®b&eîDTt_Çy]JûKnQ#ó¤ÙßKE(üç>uŒŽÀmöfØ)Ï/¿öÒ®ŽŒ®gßßRÐÊ;ÛúuûÊ×ö[ˆ×B£z·Ùl)·ì³˜÷‘U—êàßO£ üb´°ha涪Ó;ÔïÔž8½ì@JG¬.)#&èþë’M#F|ÏK‰a8í6YÔñg…Q&ˆáR‰G':or÷…gÄPú”¹:=×b),áɯãQh±—Ȉ›–éªü~òúöÿ-ýD€FÀ“¼?Ĺø´ë.ÎôAï.â\0aï&ÜÉ!³âGâ›¶Õ”¢åñ)¦­¼Þ|Fê_ŸPqÂf®/1Yà`©:*g«q„ÁÖæÌÚ²J‹Õl”¨Éc€âãU‡l|÷ॺ^`ïÀs/©U¬†ÅÄ=;²zDÇ»*Ú[%îwÎ.ÜV¶aù­å8Sj þù.*'o›>|è™''dáqzhp®—j#ñ×ÌÒŽ>ÛáVá’ëC8gL-úÄrC¤²É-éÝÝ­'»®è>šOæ’ÐçIµÔ€°¢ö¥ÞuBØÙ×$*ê~Þ¨ñ%ÓÕªñÉÒº0öwò· 2º÷)è„Q8Æ¢Ç%aø¬\ì«|xei½¸±ßtÔÕÓd§¦!ý?Í-Äî>µÇæîŽt›ût«»’¢þ_Ž–òendstream endobj 601 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 392 >> stream xœcd`ab`dddwö 641U~H3þaú!ËÜÝýãïO/Önæn–µß? }OüÍÿ=\€™‘1¿´Å9¿ ²(3=£DA#YSÁÐÒÒ\GÁÈÀÀRÁ17µ(391OÁ7±$#57±ÈÉQÎOÎL-©TаÉ())°Ò×///×KÌ-ÖË/J·ÓÔQ(Ï,ÉPJ-N-*KMQpËÏ+QðKÌMU€¸MB9çç”–¤)øæ§¤å1000¹10¨1ƒÅâÐý£ƒïÇËî‹ß§ŸøÞpžñåæS¿ß=ñûÞ÷ÆïrìÓ»§wMïæøî}æOÐ_÷ —~ ±Õw×wÕwsüNý>ï§d÷‚ï{N|Ÿq˜ñõÃï·î0ÿ0ÿ~KôÓÊs—ºïp¼ûÍøè·²ÜïÖ¿^¿_ünÄö=à÷EÖ'lÜð‰~Ÿñ]…ý;ÇÙï€ß\ò|¥ Ìù¾pöB¶ßIÓÙOpÝä–ãb1ŸÏÃy¢‡çæ4^*ž¬endstream endobj 602 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3681 >> stream xœ­W{TSWº?1pδzªÖö$>±*>j­í´#ˆÖˆZE%‚á© ‚ˆ<%É—T”¢È+J1ØV­´¶Z×­mgú°•öjKÎ̽ýÝôÞÙ 2z;÷»fÝuÖÊJÖÚ9{ßïñý¶ŒqÂÈd2Ö?Ðoîç·©Òx™ôüé9-¿øô¹ƒ§<ÝÚŸyä|$f{ㆌ\&Ó¤äùk3’ãbbuÊi‘/*ç¾òÊ‚™Ê—æÌyE¹x‡:9.r›F¸M«Þ±MGlW®ÓFÆ©uÊi¯Åêt‰‹fÏNOOŸµmGÊ,mrÌë/ÎT¦Çéb•kÕ)êä4u”r©V£SmÛ¡Vº7Ëõé¯Ý‘˜ªS'+µQêd Ã0Skü´þ‰K’’S–éR—§mÛ±*203*H½:&vmܺ·¶ïðÅ0™ÕÌ$&˜™Ì¬a¦0k™©Ì:æ-f³žÙÀLgB?fãÏø2K˜YL(ÀÌf–2s˜7™åÌEßxÕpܵõRTs(ÿÔñö¡š½óDrl…г™ºÌíÐ × 5K8¯¾PZ`§ «2c0 'Ê[ûüÕÃþ_•4CŸÛ=½_­ý˜xTüpäÝëð1ßð%™"_ò¾€Õ¨äß2r±vÅ"J>°gr5Ð u*k$¼y°5o{vjbX$dï%é íÒ(›ì8Ýo5Ž–K ¨p¼ä9"Ì~‰L!“.ÂQ8öÛ{¨I ¢A]›s6¿º¡ ÐUÞ¼ÿÔɺ“Ð-šò„òx…- ‚ܸܨh] ݤ/:Ç!ý⽇¾ò>ß¾¹Â(ÏÈ3 òÅ5¶Ø7Ö.‡qd#™MF“4’‚3ÈÜ‚ ☟k L™ÙyiT±ÓW͇%ÐÝ{µð&|ïÃŽ›oßþ´ª>‡¯­dªyW)Tß`27((ldƒ'ؤvÙ= ]­­ÄGXŠ쉔¶=§€G¿|†3ÐgÖŸˆ[ضݚhEGœX¨0ÑC>¤óýûþÓ¥R§p´©õh'ðïØWo¢ Ù°9|{㉠¯¾RʘŠÏã»èó4Š<‡¯â Èa2f%% d⯣©çÏܸ¡i ªßZ¶ˆ&æ¯K OX¨ñw"Uÿ¤šúÞÍ(—KñÒ!‚ H´Gœ¦Md'¿Nf™ÞÀ!§OV6Û$ð##Gl ÒãcµÚ„BÊ„¨[èÊ‹ç7Nú©h“(Û¸ÿ‚³ˆ‰8Ô!ïãð˜ bÓȳéÓÉ"à'c[-û]q¸ŸÂ­*Ö¯(|Ž˜Šû±8ª^9HÜx» Ýû›hå_ÒÊÏR)½1 ¥{ÈÜC/9®Ç4áîAtïÆŒ] á#šÓ›­ö÷‚B·lKy3U4~Ç’EÿS]m¦Nó98E 0 ×—9/I,´Iã›e-w0ðŽïK¿w±,?=§ [Ìܯ-Sï?/yÂæcI•{Í §òÏåÙó»÷@ –æ¯q|)0ZvŸ…:‘q;!ïp©*‹%ÅÊK,ví8H9ã}ꣻW·7í®RÄ·Ä”F”©ö¯ßçùîLGî—¬L3‹¦,sQ ðõPRG;y,Çë’‡Kx‹jºof·l´Þ"©^fB¸…֡‘S¹×–gkBVß £n¾‚[p~´_¿ðÅð|\K^|šå˜À=­¦õ]k„P"¨ÈLò,Ñ‘4¤ªÂMßtž±T4&w'–ªRuO»ùIã­kâ%Õzný®XMÜ<"R‘ѾË.ýÃñ¢$ bµžó Z¹ÊX{AÄ9²ò ŠÙœÏ‡ÚÞ†‹pë”hZÆbÀ>wXí ‰¡`Nx,ŸQ´YXÛ7Jxä`cô³ ‚>³ ÆÕ¬Gý=Ó¨‹ZÀiúüµ†ÐeŠŽLÖ“1¡0‘_ø0án÷é¶N«˜¾ϰ5•P_“kÎ1)T¨+OØ‹Âü©šÝéS8ÇV6˜iÃë©0ÿJ{sÍÂC½¿ª¤ôO0ÎÁ%"Œ ›ÌÚ©åLûdÜÏ9‹Ûdˆ5Ä›bÌη8M‚&)»wÆSçâN˜Ï›è!à²Á:005¦"svÙçè6öñvߢbO˜n˜ ÎZ]+–q mÃ5—ž¸ìú¾€ºàîïí⺵)vÍU‡Ã}Ž>è;í.‘…Fe%Æ)ömZ:Ú´€ N¤Tª+ãaK›³ÔYqñ)Ñ 5Ií´ó½´öÈIærÖ‰ré¢Ë‘ ü3éð˜ür©=l„~„Ñ7øB¬‹)¾›CL§÷€zàH9¾+ÍòòsvŽÄìƒÅ ¯‘±óç%™Öû*]ö|ºUØ ¹YEÆ=EbAzêÊÅÛk3Ú3ÚÐÅ_ñàp…AHôúeÅ ó_*é’_È:ɘW·×’H•©¦Ç¹ÆB*Sô©ú4(>]Åž49Ì68 ]›«¯é\¤™ LÉ0A-/µš8Ôõß+É.Þc…q5P\UR‰™ÒOcMýôU±m–/¨¿·Ã—ÐæR¯ÔóÐA¢èKh6J¦ »äFù*qri¼4U(« ìã­»!C$°{ˆ¿»ƒÝ÷]U2À_`Éî~&? 7.µ Žˆø {ÃÜUlþŒ¼åÄø·Ø§qwö3Ä)þsÎ1÷XâÁ\X[„%x2ÌçU2Ìüñ ”Ÿn¯:ÞªˆàpåÁÿGØþ^A­ £PkŽfŸÊi…«4]ØáBeÛA{ËÑÓж¬cjš%êŸôwá9žè›'äÔCÝ'ê_jí~NZÐÿoåÙ%TsãŽAyBºËA-˜ê-µ+Pì¡NmTbèáBÍ1.qÕpV°JGõ`„T¾_ äЦ†ºª=NSß˥騎–šŽ÷ÄÐ1?›sçQVMùó|ížëü‹õðNØ›iØ»{¯"%hMZ$­À päUE‹›é r÷ÿÈ$!y9gúX»k~|å QËñßÌ%Sp8YLÞ$ 2Šì"»p2†~¸‚¦‹gP'’;¤[X ¡§“®lÿÈøGø˜ÎË»Ço¶||¹Á—ábÌñe «L+Á^3.Óø'­Ú¹Î ÉÎüᎠu§e ÔƒE5pî—B’9©–6²®¬Âdª*°e\¥³ÐëÊOßIlË­PT–U(6ê {!—O®Îhh¨>R_—Õ‘£S‹‘Ç7ki‰Ãƒ~¿õHd£N±=RMƒzŽyS{®·t°–ß|îu À¹v߯Yd"^,ýYX ×ß~ºo߆ÀM!h©¢“„ Ÿvd†EÅoœä£>wîÚY¨V ¦t'ÿ9¨/ ܨxŸ}Ú–Þþד:䨒ØdÃ&Ç3®”·}njʒÒ(2½G/Ý„;ü_§I^É×þC5ê¼dØá›Ab7êü×l œ€zuM¤@ ¬‚¢ÒÔÆE(Ï¥Íý±ìaE5žŒ¢‚]FEQxz²–útÁåüúºÂ.£…••ÓeÛPDZVx›¾`q<,[²È /ë¢sJ–9 °ƒóCœãvñ> stream xœµZtTUÞŸadxF!dÄ}&E)JCÒ{ïÉdZ¦ÏÿM/éeÒ3)$$@BG „"eAPPAÜUñsýv-{_|ùÎùî$Aq—Ý£_9s8À»y÷ÿÿµÿ½p9OŒàp¹ÜQk7oß°`¾ç·3˜I\æùÌx1¬ñ'¦¿`$ŒåÁØ'šžŸ8ž™0?‚žáð¸ÜäLåÚä”Ü´Øè˜ŒÉ³ÂgO^°lÙ’9“Ο¿lòšÄÈ´ØðФɛC3b"C3ð&$‡ÇFfäNžõZLFFÊò—_ÎÎΞš˜>/9-zÕì9“³c3b&o‹LLËŠŒ˜üVrRÆä-¡‰‘“‡ÞnÞЗµÉ‰)™‘i“7'GD¦%q8œUk’v½‘¼6åÍÔuio¥ûf¬Ïܵ1;tSNØÛ¹á›ó"¶DúEùGoÙ·=~GÂÎÄÀ¥ËgÍž3W4oþ‚…‹8œ©?Î2Î4Ž?g:g+çÎ6Î Ng&g;ggg6g'çEN ç%Î.Μ9œ ÎZÎ\ÎnΛœyœ=œuœ—9oqæs|9 8ë9 98‹89¯p6q^å¼ÍYÌÙÌYÂÙÂYÊr&qFsžä<Åñâ$sžæŒãŒçxsžå¼ŽÀy‚ãâŒãàíâÝxBÿÄÀÈJ¾”ÏŽê%|G-{2uÌócìcŸ«jËSõúêéºg=sr\ê¸ãÛ¼#Ÿýó·¯ *&¼2¡wb”Ï4Ÿ„‡Ÿ{{Ò¤IuÏÇýaí¾!ƒÉo¨û“/O šR>凩›¦§öNýzÚ“ÓÒ¦};½í…FëÕ/7ÚífÖWrÏö?ÅCÛÑHAÈë!šL¯Ï=¡¥ œd-4ëÀ ÍÚ&8>vš¹*œ PÐ”ŠŽ6àïÛÍ…ö²ëh¼Êá;Ùå#³Ó¥!2)äH ÁH¶C§±Ú`¿¶Õó°¥Ê‹ ÔÚêtTH?_ïÒE F©’ ,OPÍÞÉFò½˜³23×ÅEÑ}hs塵³ËRevº¬±¸¦ûæ- ‚³6ïcLjÃ)I¬¶²ˆ} ÑG¿jE³Í(% Ë׊””Ù[ÈÒ—×:êl5Tå©.ôôŸlwí^¶Ç/GB*Å6…@4dgˆsÂ%þ #ä0Ñ´ËL–_«8梒d"mŽFD­fOéTz5h…2[~ea™µÂJ–³Ÿëæžè/á12Æ[€– ¿BGM]{×-³ÐI;Ê »Ò¨"“!Q›±eŒóTE…«%³ë”UߨƒPhe¹Yì,v•ÏhÐÐB°VV´ ³“.s* J*µx‰˜á%$¸à(>m’gÚ¨ïØf6‚•ûûhãtÂáfj Ùnc#´â~´ 6³*2ZG%Õeàí°: zðパü9« 5ÏNAž•­Sê ´O 6·c°¹?/ö°¹;4Î %åÕ€Ñõ¾ pgîý)áó‰Þ_1f@`ßo… Гü»߄ū^`ùëÃGñäUÿÁgð!qÝÿ"Ë%Ù‹|‘ oËîzÈÓ‚N#¦ØI#½ÿ«P)|' þµJ)ô)ME£Ð¨ï?]ß³ÖN±“ÙÛö~­£ƒ¶P×PëH´šÿ•åÕÔWLcGP^Œm`#®¡Âk<Ƃ܂¯ý¯¾Â>à ةìŒé6ŠžA¼ðL’µ°•‚ˆ(÷õãuˆ×|šjï;Útˆc ûüC2§ÇûQIÛwï«_¦»®›‹^¼Ïë?Ñ¿R@›h ˜ƒÞ&שAV@¾½&äêÖÒ ²al<›ÉJÙ¥ŸŽHˆ¸(î¨Cj•C€ÚÅ®dÇmZ Ä’EgÐÔóµhÁ4‚ºòå—=ñãþ—^IUǃ–ò Ôi¤ËL$Þ»Óæ îŠñ»Ìû3û¬@‘ ÐFè‰ 1¥Ym¥ê1› ZµîÁža6ÊA¼ ,‹µÎTJíG3¬yµa'Aˆßg š…fÿÝï˜ßîèØ$JÚ\˜öH¢‘2™:›!°µž¿ý.ÝŽmñ¡)오M”4-dÝ. ¶ÊïÙŒ´Ñ`Ã8Ñ Ñ¦ý§<´ú†@‹[ Ä/½=ÇG[QŠE™hÚò¿±нô`Üž`o³ÒXßð?¾ÌNôObýϤvo{3tÓ‚òKç )`^x^ „]aÐÊ¢c’E¤´1µm,}’ÃÎXܳîfW{]}Á.…è5›ôB ~‹‹ÖJ5C›±£z¿¶ù«j5˜ñÏÔ!nÅ–ÛØ«8ÛtÜF—¤jûzŽw ªõåÉ‘# r@«×èTFË1yιQK+·c;¯ÿu$УhÂ)-¦tF¹•%c6²‹ð;z=²½«¨aä}þ«(E©ÏW$Q Ó©@K`u°8†rù.JÚ¬°P  h³TdΛ9™ËXÎïCz[‹§ŽB4Ž8µ‰o¦è$ÚtJ¯ÖxVq‚©˜6•Èj´ÎX§‚,Dóóä+±Be/( ô ÔäSìs-CþÜI&_ 4m-!¼˜e²*tõv êì»<äD]¸ÝHð˜¡*Å12m<¨ ‰=§®Ü]|àäFgÜ[ÑA™"Rv*¢"î¨ÓMÖF›ëôd\Û#nÔƒk»ª‡®¢Ÿò/ÙóSò4"üÖ8ÍðV1±*̃3ÑfÀ"Žk/ÑksÕd4ÌÍ•ü‹¨ðaÁFóÿîJx+]›£Í ô¢‘­ÕžßP+'©N8hì„8¢íö Ê^ˆU"JÎlE&0˜J0çÈ\ïÝAó®w¿uOyoï‰Þ?!@A‚Ãòn9ì âSVLÏÜj>!"O˜á Fx…¤(+#9/xKoôыȫçþÊò0;éýc²%Úv蹚ª+wêÛåN2^£H9!³äÕ”Õê ;°öR éý¬º$nðà´8ÓÄnæ…aÅ["–jƒã0EN(·iÌTÄâf†@°1ij…²eN(¡lü"(Óé«´6=ˆA:EræB,19$b»4ˆ9ËÞGÂÞ´ècÄûwÂׇ4C*+üw*ûê÷SÐÔ/oô´7RötW´¬`°„º‡@èFk+±àã¡"fºà¿Ì9\ñüv4ËT Üÿª<³©8LÇÚbëÒ›“»µe8õ´5(‰êL9 çà`WÓ›®@óàñ¸CxüÔ¼°ÌÀø°w€u´Ó5ÎÃÔAôšÅåèÄbãm’2Ãv(KNªÔ¹Æã<^ï›èý!úÛYsw{VÛoÆÝTûˆÌÄ+cÕzÒ»ûPN|iü¤GSåýá~8\ÕyŒ8¬‚½ìVEüæåÛAøOÁ‚8\ªÓ«u*\eû¦Ï÷wð-Î;èm4·ºâÊ{ï[„6ÚACaÕ˜•d¤i3 "±…&fªX_¨Æ"›—/’°?°=>·ÑõÿoѱؚÍåTšŽ(œìÙfK>è°•ÇGê%ÊyXEî‡ÆvhÂÓiã OÚL%Xµ ¨hZj•ºqЗ¹Šï Ô;Å.î©»èø]“ļ(—Cž‰æ‹[ “¶ÇíΑ“™çvÛÒ€˜¹ƒ˜1ˆ. KÍTýg'tÑX‘ž.Ý]EÉÂôÙ;¢Y+ü@ éWÜd³×B Q—e‘¤¥eÅEÌè9ÚÒÑTFVn;&«â»è¹Êáî‹ÔTÊ«A¡@d§ž¬q²µR΃%çm-Å'ëß=F¨…R1ñPPÔA.õJ¹ÌCgúüU11µr½^KÎRHõ2=äex@›œ8äâdª•êµ9J2~aK°ó=Ùôџˆ–œºÓãb¦WÊ\㿽—ÔWrf¢÷¨¿NÉ.[³/ˆ=â3ã&M¹Í…õPJT‰œ¹ÒU@`Wì»ßñÝ·µä_’¶° õ ##½ÿ#Iîç?ék?8Tõ€»¦¨h¨—¨ãv÷ÐÀzÇø2O ‚T¸Z:BäU×׸:Ž…´oz8Î:»ásôì§ÿYbV8½^® ×Ì]¨ÉbGZwï©úêŽRû/oëÆÜ­+ #¼~zv¨Aïÿôï§q¿x0Ï£Øgù™®²\ö«ó>L¯Î¥Ãà²ÂÇMÚÏŠ"¥Á:¡B¦Ïœsš ÕèöèèðôˆÉZ¨¤¥Ô6ƒ®J0n-¦R$d|h~ßÀw†7èù߸êX'õÛ­¥ÄRCù×ü¾éSôÐ,p2Í`>”^(~à9ŸÖƒZ´¹b˜e).´ÓŒ©;xHD‚&¸lûÒƒÉèy´E¡L¤"f¼-˜ð ÓSŒ&_C^Ô©_ܸÄG×ýØçE³Âó©,o¡ÿj,µè,ꪸÃä¸Ñܪ\Ü´»è<“›ðdò ¿Ì1Lç•üâŒå%×líÎSûq#«tE¢Dµ8²‰ÌryimmeÛ¡°ê°Ùiì„Xìì숑<-ÈÆ(+¡Îóß-Ý,Se ±’ÀhCŽQVÒd.®J•륥eÇÊjÿ¾ Eí÷pz%:êÐ7·ÂçÁŽbg±SñÅÑë‡p¨«°¸„ŠÁìFEü–•8zíÐÝrmB£«ŽPµ§wâœ}‰ÂvçƒjÑÓ.¦±ƒåÞŸ\hG½E€–]GO!?@¾Äã€ÓÖf³V‘Š@]ÁÛ«¢zÑ… VµY¥Ð©”:2c]PrÄBz‰î ‚]k¼Ù’ñ \‡‹µè¥›hTßW÷Þýˆ/Ï.gÇ,ÚÇÒì«/PºfÕkغmȨ4¨)4Ã)H—ÆË°PÊ¡só‘çáTHõ êWêuïLyßï ì¬ûz¾tB™=¿¢ª¨Ìi$M%Íh‚µaèß¾Ÿ6”7W6ºpíÿâ}LLbib¦ Ãô” ts™\Ämý³'­à‘¦Éf°âO3Tqñ/0W¥™·c•˜”á Ä >ò ÐÔýWîà âöëWÙq$[ö›±ì9?ð¯±| •ŽDþÁ“¢µbm8€’íÕˆ!‡XÓánÓ6«Î"‘èÕR-™ŸD¢¶¾¹ÎXc¬£ŒÕæÃPgbî*÷ÃPO„GÏž9ònè'½tMhA/šHï?©™ Am¶Mœ•’œV©(®l¨hÄÓÏÙLwÿü.Úsí»Âëò×ÇÞj½^V@D\~“ÎÆ>ð4ËÅ¿Fºvö¦P­KU¢9&ö9™oÓ–å:ÅÎLˆ&毜¹põêýßW›ëN ´CÎY€^çÙa ©SêµxP™5+mpØHga]³£¨}ÇÅü“@`Iâ¡çÐøFeWj3•æ–ç4ä˜ìjClI^3tŸ|ø§{|פꕚLR/ùÈ1ú øÚï0ÎÁ2ÇÜE1çö~:Ñ{]E×1üM¥PLI<0k';SùpF°µ:Ïã]kÈÌ:|œ30N²3båfæ‚Ø¦£ÛœÆf0ÿ,?QíY‡oݹt¯Šôþ=׿LÐi‘¦¥§§KÙ55µ®ZŒå}àfØvn¿¬ÇcÐ †m´ÍPe@|_-ÞŒçp¹?¥“áÁHGH<ïb0–É&äK›ÀŒõÌs„E8øÙ8÷©rýY_lÖž,+£ÉF#i0д£îšÒP…@´ò«A£Tê ðØÈ>7ÐZS _„Á>tØUfêœ2ž€“pZ{bøl²Ò)‡|*Ÿ/‚ƒ’jc£ÆÐ¶ä¤úk IÉ‘‹gïý¯¤¤ÉÚ`7'оvõÅ,Ø*%h´bìÚJßÖIk?ìj©p’®Žâ>0>’Š$»r|÷‘¢«®¬¶6ÐfÊ\4Á•uõoÛ«‹«ªêÝ'Ïè9ŽõÁ*£õ¡Ju (GDWCyG]nkðÎÐðXrÛ‘(&Ï“’0ì'º¹(øæãSR"NI 8%Åý›”´e|âYÁ”ùsÜÞú…ËÜlvQÿÉÌøÝÃõKñ r!;ö®ïä)0¨Ç€ÆBÞ/8È}pîwÖ}Ü„êlÈîÜu´£²¾¶ˆ,k+¾8\Vµ ÔZR™–·.'4„¿ÄMOiªú§àÒDöÏäõg2W—ÛœíFí†ÂªÆã‡z¯Ñ»òS”IºÅŠþ醷½2ôŒðŸúŸ[×Ý­•{×íÛ—H*®Vƒ쎋}çÿà:ú§¼áDü4‹÷“Œ¹,h=_SzÔä Mvp48¤d¤jÓ1BcŒñœöX©2}« G&©º@%c-Q>™ŒLO$(³T\¢ &½]aPQQ¡\bä[Þè8hRå(ZcÜ z<éTrV<°¯#ÖWék/Ó‡Í|츙ݠH§©†ÿ¢³ !£4»¡ÕÝìÆ†:‡5VýPÉEsŽóP «àÒ”ŽŸ(îÁ5@ÏŸeF!% ).¦iÌE«ÆˆÛ4j9;õ’ÁnH`·Ãdð·¿]T»þÐÖb ,&“çÐäçeïç1ã™ œ-¸{<írH¯•F£ÂÎ`•S§—ÙÃ:`Ÿ÷Å*Ù±X¯-¡4i-N4êc4õ>‰F  n´þ>8¬ì¨ÊB'§Ty6ÍK­óD’Ý%‚üUA›ö†K±ø‚†Ð•Örô4޼cZÄuñái1IñÕòªÊR§ÉŒ‹ÖüÎp?Czù *°u ‹ GˆAc±ƒé@#Ñ©Ô9ž‹A”{Ž]‘ÍÅýŠ æ1ÕÈ&(q€sЈæðóå œsÂõtƒ÷Øx°ãê÷Áê0úºtÇœd”‚N5šÀ Ö®ØËòýÈÝóBص°H–BϽÿ  ½p‰ìúª-„ öä€RRùÑ'7ÑѶëTûÍÓ®V ºö'nZ³ŽÝ2‡ÊÜ´+<ÅfžìFÜJ.Ü/x¨Â6•I…A•/%WM_§LÒª=Jœçù¦’c–¶#$ûä@’"^!_ BÅãa—:ÝÆCpz´‡¾MƒˆRð%GKèL£ŠÆl1ØiÓ ?®Y=ç'èÞè²&4Ö…¦ý‘‡æ| 8þÙ.w9šwÿ‹ó€˜+O¯dg-cƒ7f[BºoDc;Ê Ú$*µÚZGZ¤& H‰¤¨)[¤rsÃ¥›ÈyuIYʾðÊ’YþdpJhzhàº%²u ­BƒG[Cùþ&<Õ7d׿Õåº3;qJÕƒÞp><ÕPâ°ˆõë!"l"S´-ž2l’:ýàû»¾¿ƒ&¹Ïã áâ~í¾Ñtßuíºëœ/ß ò°èÊmPF5ð+zuËs fúQɱï¤C5é>8¤)j‡¢TVš±Kç—ë{ÔÏÃùñ? ±š¯·‘ß·õ~·ˆ{­dÇ̘º8¦"©½½§íx…Ì-õì\KëŒ*’Ö[%OÄÆ''e«*Êoñà›ö£¹kErÖŸ]Fzeº˜µN”n(uñÙPç(÷“WÆO>±¤rìh—}ìXç¿wÌçendstream endobj 604 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6477 >> stream xœY X×Úž˜ŒŠé¨w†Öµî{•Z·kÅEEv! „² ²&ì J±îŠ+.qiÜnmµVÅj«­ÚÚû=ô¿ÿ oý|p2'gù¾÷{ß÷›Q=(‘H$™ïâê:i¢á¿#„Á"aHáâí8BØûÚÙY‰‘•Eýw[­…¹ ¶¬éO‰E"Yhâ|YP„ÜÇË[a?jËûö“fÎü`¬ýä‰gÚ;xÊ}¶xÚ»x(¼=<äÂß~…l‹§"Â~Ô,o…"ÈaÂ¥R9Þ# d¼Lî5ûý±öJ…·ýrÏOy˜çVûE²@…ýRO{ãîÆÿÌ—…*<åö.²­žò@Š¢–8®ž'[3?hAðBù¢¡NaÎJðÍK"¶¸Dn]êùé¶e^ÞË}Vøºú­ôpû`Æ{3†}8ë£Ù£ÞŸ».fì†qã'Lœ5yJôÔiÓ)ê=êSj&5”ZF9PèϨáÔrjµ‚I¹R£¨•Ô*j4åF¡VSó¨5Ô|jµ–Z@§ÖQ © Ô"j"õ15‰ú„r¢¦PÎÔTj15ZBM§\¨¥Ô Ê–²£ÄÔ j0eI ¡þAqOõ¤zQïR³¨ª5›êKõ£úS(kj%¥Þ¡6R,5²¡\Hª( *‚úC¤½êñA q?q’ø¶Å|‹3–#- èIô!‰T’(ù’˨{J{–÷z¿WA¯'½Czë¬|­.÷™Ó§©oϾþ}[ûïß«쀑­'XWXÿ—4QÚöΈwô¬‚½å°r«¤c\aÜ8óqQô‹Õ‡fqÒo>Aî>ááLÇÚ‚Z'Ú'¸‹á0|Ë‚%(,Ëé"Ãw‚Q?”Ž’£ÿ TÁ/À#fÃKMÚ]/7Þ &·ªQ_AƒÅv¸Ä2”V…µ«È§¿§ A þ1¬ú¯²T„¾y˰‚¢3a:p×Yÿ¨‡(ý:¦ ÇX@ÿPîâ»ÙÏi4?Œ†•2öJùáSèscé],æp­6ì¡ ó5íjZú*È,Di4X^l»­_wÕ¡ŒwÂ,–BpôõóÜ×n]6•' 'éà蜪ôbÁ üÉŠãÅØbü(<K = ÇÏOÁšÃxëèrëÉW¯^»~Åyâx—¹Ž|w!œL°ŒlYKUuœZÕ¼rTÉ¿‡cÕ'`FœÖ®²Ü@ÃíJ²y- £ðK¼X.éþ z›f’ÃbC˜buB®N´___ áÂm¶UD$Ç%&s©ÛQj´Ü·vƒf5AKŽ0;ãÅ@þÂ@`î·=Ú‚bã(0•O|ß!d3b&NûFÃûþh»xvƒC!Ÿ¹CU˜F¤ÕÎ…å:˜ ƒ¯;‘™M’r „½pþôå›ççM³ÐyáGÞsx„ÅCñ ˆѳŸA ý&ÿòî:÷^ú¬.µÐó ·×þO8¦»£yW¥zñEØÎ‘E|y»:”Í4Ø<{˜S§ÁhlÇcIû1VP?•€e A"ƒ{~†ûa±ÙInv„®‚äÉU°gËP¹7Šôä‚ê6W/'1³>KqÿŸFC¯6Uhyì·Ö,š²±–^À._;s¦£së£Ç­úïn™íÄqªƒ³Ñѯ'Aûó™Ž 0í\àé=9y |›Ä¸ƒ0%·k$ÒvÉf¤jÜ‹Ê˸'·U›9l!uŽB÷’ÃÝìNÚéõ÷4U`½9À8=,z`#=rXÊþtá)ôáÒCJ”Uˆ)××hbÎX½8b‰+/ýf¯q*ÜÄÅ;ø’ƒé M¥ŠÅ«ø~E/õ0„œQ s –…!ô[÷>|!ã-{`ŠÈžvµ¯YfÇ›íFw•¨õuÄèüu6ÒprYE¦2Cž˜ùqú‚©nØýó÷…Á\zäŽÈÝÖK Õ²]˜ÊmÔnDá$Ç*fzMxùXÍKŸ4'|½jжm¾ׯȿ-ç’K·ç#Æ~´D…äõyÅéM\³×éÔZíÉ ßç¥/Ðï˜Õúe1åStp˜Ð§ª ¬V‚'[i ÇŽ`õ6ñ ƒ-Ö®_…‡9@ÁH÷Ýo·/+0UÂïˆÌŽ©îÜ2ð{KŽõ‰â¼ë·y=[ ñ^ò;¶ƒÞçÖWhøP¤4FÚž¯u¿iD†¤O&É 4 3L1Ä3îÒÝH›9Õ( ~ˆSè1_{ݸyçP[)Òzû¦…Eri.Ë㈙NUéÑÕ€©.e ‡?Øt?-*EÌ º¸ªã¨jÞîÒY}C®|ˆ(Mrˆñ›…ö4pP!ùûˆä' ?€ìlªeÞ S8aàÊ }ûLpª])³ë}fã(j¶Ÿ‚[:Q¥$摈ԛ¤§)1µ4á[X·,kßÑ-bõ4Hð“ Ò"»2Tò÷S/¤èD×Ú`Éû²Óú®p 8™6v·}<=}frxÂ:TÈefef¡b¦2\#W„Fù-ùrýó¶;g~4¤q»õ ։ЅX±°Á°e-™/Ef£#B:D¸Œo¦×à“–iôöêè£1".§ä{£8íØÐ”Ä-˜Û®dÒh78iÙlô$ Þýu-ªç/â¶LEFÔ~d·eä•ꪦf”3ét–[î™™PYŠ PÊ(Î,gºò?I÷\g}V¿© \„ l¹ÿñ´}ˆ©í”2¸¬Œü%×VÞÃÃ6 Gó´ªÊ¢Ú¼¦t妧kv¦ïByˆùç)ÿ¼ô^˜‚û­3hÑeç—œ4¬ ]Ê9¶›‰%dõ„Ø«°­^‘î(1.›÷~Ñ|¿ †gò]üF¬™öƒœ"š–ûéš®Ä÷ìÒÛÞqÄœ–Õ]J‹;˜ÒèˆöÓÐ Âýñ4Ë-¦O¡§1ýaÈŸ¿ýÚp?KY—Y!÷º×Øbd$W-€,»…1ŠX6[œÿòölZ‰ÂHµjª8i³Ç"“ƒÍT’—F­Cî>þ ^cqCò7i5•„HI¤*¬µ˜yº ªMíêm¦+ÁªKgtIõ+ÈÎ$I r®öêD‡ü¥1ûDoKŠHô·K£“Ëⵉeã!Ѷêíu²›†÷ðëÌ8”ŠÒìPª|f´<ÐÕ+5* ¥gå¢]LUD©<(2"Øcï–æçGÀ6?“ë¶_7ôÒ&¶ˆ­ DIª¸Te"—¾Þ1Óç·þx¼$0XûŠçÓ½ËÔ•ˆ©Ô–ÔÝŠÜñÜOñ)Øê§á` üÞ_J:a2Tõ:Qk Tµˆá`ÉÆxÅ&’âˆ;6 R³ã*åH˜ÆójQß®–ø…uænüx!8]’¿á vÍŒÎUìòÌJÌN(H,@»PannaFö]pšIo¦ßúeµ¤AÛ‰ÁD·«ãƒ™n 7ëá@‡j¼fµšô TÂì Eá~Bû&$øò$Ý¢Y ;$ø*nS¦¥ H;ŸrTÆ ýèòl¤AEÌy““ðÄå’®²ýº ŸwôϬRïçÌy[È~ oO¦¥Íu¾›‹7 Æ¢1–èÑè?N[ÐÁšÚ:ü,HV¸Ï˜½àÓkmO[¯¶^i^ájÂé“#1_.\gcöDe!æc¦ªÚÕrÓÕfþV¥Ó°¤=e—wqZ5²«/ÈØÇ ÙU’îïš VÕ.Kë4C.Â;:ÑY=T’@΂¬¶ 5½ø<÷3’À¾/F ¶ÇU ‘žÈ‡®^/CsÑܪûLúE¶ðÆ…³­ˆ´ò¼aL·ÍnÑC ™Õγp0¬»`—° |Ô ,)¯ƒÞŒsÙ)H®9s=@gÑ%ôuþÑ]vÜE·Pc|‘kÁz²ÒRä‚Ä®Œ]6u#º^¢ö@ ÙÕîkVZ}Ñ·¿BõÜö¼­šŠâÚ‹"Õ‡³7LåV4Iø |i„™VšDpD§S[¢¢S„¥R w8@ª¡£æÆ£'Oa f²]mfS5M@ j‹?觇­ZµiÑ’ ‹D\Çsg/†‹Öuçà á‹óŸ]·‘þ+Ô°€]éqìô¹Ã‡O9¸~ÕòÝøIÞlFê>E3b߸ÞV_YËk *3w¥gU$îDLIEA]Eøî•±kÓ|6ðª|ï² ˆ·`îôM%¾Eá¼S±ªøÐ€AÈ»PžãèŽ>F±Ì´WKáxçÕ¥š"N¬®á¢s<Ê'!f!€¢QÂŽ(”„b c Ó4hÊÜQ˜¹“Þø2;rî¡Ã¥y ¾ª8Ý@LX¢içnÙÉ Õ#êð=bae ó'†®™ƒ¥o¡yõÿÒœÿ?Zscw·¦ÓZ[?Ѓ“ÞC¯!•«‚‰„ò¯Ó/[·Öý³‰ü|\ýØ/›ÊtèsÎ]܋à ͫƒÔX÷Õ›M¤/-=q›¸ÁzÔ +C¡È9£€2¿’€ZÕ^Ä\®ür_é‰ HãR·EÊÐÑÓ—Qn|S§Ðªó»¡{ç¹5x>_Dö÷. ƒXcñž-ñ%ÜÇ OÇMxz–¾R-jCËe²ÐP™¬<´¶¶¼¼–ë*=ëSW¡øªçUÃäÍPÃÖ&}¯DS·MËfÉÖfÖlá~{ktŒ[­;=ØvYdÛ·tWƒ2Ï$!§Á®]ífÖÏ:þG›ed¤Þ„‘z´üU. ý@bÙhf¬Ç›y OÇc-á•qAg«7·«×šµfÝÜÚ;ôw7IõM0>ëM/Óôþt·¯¾¥‡Xƒ2þ‡¯fÍÈ ÿDÛ;¹¹­r>õ/~ª—iÞ6êW÷{0áùó¡÷ŸýÅWo檣t’Æ‚5»¾kÆÉÍ›ìÓ-ÐÛðkx*"†³©õJ?ãêZô9/I¼Â:‹ý¡ñœaÈ‹‡%Òæ¶ÇTF:sX- ïb„[o ú?‡$gôä€ÍÑ[e\Ô^Y©/b¤wüP€:$ÔÐ-Æt±N”/¤‰ f~—mœeÆôF|?ai¢[šŒø¼¤+ëamZv|…Å“ÆB‰âHc±¯Ov!Þ e¥•%žqìÍMà,£‰®Ey|:}½]“å]IZ»d‡Ø/ñÁA÷`ÔÈ·±¤$¿ŽË‚&ót4¥;v Bư,‡¿§“Š# =‚ ç=:‘^ÖÉ"°CtÖ‡õ®†'>†ÞõA;;ÏåHË©–ãßÞ>·Îm¹ËÆyü·þìw5GšÑ9æîôÛ¸7¶ú`–Ãò£k¾ æ¤¿Í [¼lî ÑO¦À°~üðÙ-ç ŽZnn`g8µèuç/ÿøøÜ’¥‹œVÌ0ˆÜc¢SÑ©Ÿïþ,þ7uûß”p…Í8æ“M´ÀØŒ»ðFÛô¨Œ°ZT…²JÓKX›þ÷ÆÃ̼Mqz·6ˆ¾MŽ" ƒj6÷ÿhÔ’&¯ô°â̬¬lb +#4Áred€_颊¶¤‚ÀZNú ’°X?‹GÌÀ}0ýp2ôà¤ÏN¡S%G0xX&ë°ê«›®µ\?T«PóÕ¾«‰n¦¦¥¢d”œ©BñŒëÊå3:ê‡LèD°ˆá¶`Á6TûyÊýý·Õ7ì«Ú½›Ã,þöùæ íÝÍ{àzïI¤õù+‹Û~Ðýzsñé_Z8 uì—чÜÑj´Ú}ýâXf)¨X%qÏÞ\u2;sg.ª`jCJ”ñ^Û7Ì8?˜Xn›ñw×£ªbnŸú–¼ZQ³ìW<¼†‘þ×iØ*Ù³ý„ºxu\Br ŠfÍÖh+ š¾q½Ž{íäš:xÞÉUœ§÷ˆ^<9¢lLÁ,¦ÕbùÎUŸ£“èøñý—vv=¯…^Ƴ[ξì‚áIÔ[Ï/}²¬Ý‚^é•”¢ND*&ª(²¤üé°ø2 ÁÓ+Xæ#+ñn6¥E+lÔˆZ„‰†gÇ*6?gW.*c* Tñ)iñjßÅ[â“¢P¸ŠÎÝ™÷±§ma|Fi¦‹Ë *Êȧ9<ÞN–ºµÞmí\Å‚ xÚªóRÒ㣠Q„“OyØ0ù›Ø±IEYLq^Fz^¡áp3µ¯C4"p$¥í´’EE‰™¸ÿ½ `‡À=ß< ú±8?'“ô0¹Éšà@¼ Ûâ<Üûè¤Æ5Üéy·VN¯:K“Ë›&ûœ÷+¸À"è½á‘÷‰U7æ¶„ Fž¤LˆÊOÌJáaáiÄ֌܆y!)©û/ã\Ýù$ \ÆáxúÂɧ·í¿Ürô úŽ«·p_ÜkÖÌéÛjcK´%µÉ»âs¸¢£ÇvŸEÌÝo6LY¸ö3'W¾S?/^Çnû´ ‚ô[ ú)ˆáÛòyí9t†¹9ï+,ÁV ×-ò­Rk “&íLÉàvï¾fxÌ÷õ /÷€(ï PÞ/Xžê•º|{BŒô7*¸£ô¯'?ùléŠ%·ÌÎ?Ìgeåd#M÷SÑÉÏ>#ºeóÃã'D£Ðµõœê ,Ä€•óUëð›ôÁIø'[U¬ŠMJNJädÁ*5±+ yÑÑ»”Z„d*E¤2*0E0ª"Uq~vVvW_[]\ˆv’ŽfWÌ®hMØ^Tƒj‹+J4Eu娴³»¡tBO¨®ä-â}ÂÆG£TR¾y‰»9È”‹Y{õ‰)—.@Ý6]}¯è=‰¹>œŒAÉiÑJØÎ° ‡—–ø¥¤#È-÷€ÓÁ4Òï´­ÒC ò¿ ^°c½ÑÆÄÍ¡whz‚ËÄ€Ë$HÑPš™µ3—«i8Pzž¸¾?ï™çüá‚O?-Î=+#ÍÍ!­S‡EÄoqo!XÀ€_˜“þëÅì_HËhÌrÓ%˜IŒÅ· nsëxéÚ~d áÝŸî>D{QqlV2ùI"! )UVWiJ꛽Ό&3ˆØwâ+pXÌûD¿Ü+ §´aâ+7äé¾™{|€uF[›•ºÔì´ìÔl¡´LD~Òó:a54-'µ„4@—.žøçÓŸ8NsZ>Ÿë›/Ìσ9ù4ŽÈ‘èzé{s½,"dV=uVVz«>õßrαendstream endobj 605 0 obj << /Filter /FlateDecode /Length 7254 >> stream xœÕ]Kw\·‘Þk;€'‹™ÛçˆWoÀçÌ‚¶åÈŽì8zdÑ,ZEÑÙ´H*V´˜¿>U\ €Æe“!활,Œ\¡ñ¬ÇW/ð—½i{þ/ý÷ðôÁ£gÆí_<˜öŽüò@пî¥ÿžî}ùz8ü2†)ˆ½oÄŸŠ=/öœqcPfïÅéƒAÉÕ‹Ÿ ³²ê­ô(¬ƒ_¼xóàoÃÅjU°Bøá šSP!h1|XíO£ Á99|\)ÿ Âp„_Å4¹É'ÐÛx-&;¼ÇÏzšLб­‚WÆë³v7Âëá¿OÁkÇGùïßÑ 5_¡UÐTa^á«}­Õ臃׫}éF;I\I^ÞÜÁdm\³›&í‡õ%íE8c­TŠIY?lÎVûJIà oØq8+”a¸ÄÏ>k\šÅ•ÖŸö·RÉ¥±Oh)Á3œaÖ<‰y³¶º©F£õ¼Ùg4ûבΦ¾ê}%p‹vo_™Ñ[´y 3»;ÓoÙý5~Ÿ&9|Ï?¼–t]oãê&DÜm¼Ñ´Û I»5Žgk»0¸ñ²¯C95lNc5©áàÛB_ãˆp6‹áyZ:LÊWΖÈOžæŸ`®z+M"ËÔƒ~(„óõÒJ`|öH'ÞIG´‘\ƒ…9ÿ°J§ïùéKiF§Í|W_uˠ㺔PJèaSöyŠ<§³ Þå#¥Á9ÉÒÖ`& µŸKçu­G¨M9/èa¦ºÔ¹b|7Jï|f+¿¦†éä0­zc 9©óد†U¾ñjÅŽm¬f}üâÁ_‘Lú°,Â|W„i¡FktRŽ“ (ÇþF7‚ÒÁáææIi~Qš¢4§Òwu¥©JóQi¾îNÌ–sZšG¥yÉÃãÙWRŒÚïí dû ç»ÀnVë$Òª©)v}µ¥iVån­C„«÷à–áöãñ×÷»o,Ð\€ÀF,ÒSâ…}$_ u›¤¦‘!‰dð+2¦òv¾XG¡%pã”éúOƦvø¯•WÀ#rÌ['ŒYPX”wvf~Up }Täò0YåÄvÁ Oèp@ÊŠ=T[hÚã&†ÿA}‰º¸|ÙúŽ$‘™\TmQ¨Åõ$†ïç9MÅ# ïubà­ð¥ÄÝ ¯^=.Òí¢Õ+©;“´§ìlI`Áò•Ó¼ËY†ÇqiÁGÉ–ó®’–qí~xyÆtà›"9¹@êU ©‡}¶g\Ÿ£ò4Z¹áœ4´¹7ñŽ•€‘£Á®Õ’ËÔiÍp"¤Ë"AØá$ËU¸qØâT¶ÃÇK¤æAf’QØËãùâp –Ä4Ð{’ôR[MÍÎ’"àWÄÚÄ €nF œRósTSÁ“"ÛWê79ü¿z«oˆ6puÓg+8J4û)|ñ²ýlìë?Ø$LqFZq ÔÏqDÏ@$)4¬£:†wh°uTÉÒƒÆh4kn¿Áñ<Â8xµgÛ]3ùgtVW”¿!꜄Õ„ë¸jR&¼Ê[Ïs™|qi“pe,=<$€ë㣴ØíŸ3θ*‹»$ɤ¬EÑè¯Ù,8ùä¯ëŸã¸î0ŸÐÝó22;“/‡ãuÒHiÊHÂ>ɽ+/G’D‰ñ€U~%"RÖ襓ØÇ»ó åðãÖÒ0g¾‘ä Ñáë{X¯BÑÈÑ  ž6Ê.F°#~AѪ†¯ˆƒð"ɼç‚"w)§/&ýEá‹':ö¢h¶‡_m”ébŒ'¨´4K(QøQ©Jüž¤™¥‰ëÔ¨Á`Ôo3ÅÅÓ‚ßÍi¸¸mÀy@µŠÎ¦ƒ"O 1ôIô;yäÀ œÍŒÆýš`_4à2»\¬Šå—fcÈ“þYLNK™p,}ËfR=Âí³æá–YÓ@S‹£Ï½®Q`M½ M•¯ i\éŒLͤá¸ÆCv3Äg;Ök¸#P apÉÖëiuc J‡ô$¥m”†¸dMߺ}uiºnÐðÚÀÙÚ’å«ê6uý3$ê¶g3Þ—qAˆˆò•5í]@«T(=ìžÕXBwa«Ðú,ÃÖ¨"A¾ @Ƥ›µžmCÚM‚vý5ýœø¶&‘àH7Ôh?¢öÖÑ(j8âVÀG5¸`4$À CºænåÂŽÍñÇÂÁúYT5\·ýƒµ÷Wsïg\JÌî ²q"Òåfþ¼ˆèMÀ¦-ÒU-Ò­ÍÐZ<*0¢…™÷€ÝÀyYk¾_e3³‹PÄkÁ6HüçL€ž¯ Nª —d­ÔTÂÐUk>f@!Q¹^¡¬ƒ¦­FX§™á*VRÃáºJ†¯›Mø 'p.+»‹UÏ…€°Çˆ1€4#Åu·—l’w‡ õ/99†"Zwø—@3+ ¹7*V¥AkÊA2øÇPR’g°wkq”ˆteÒõ2L•Ç,ÚÄDc)Ð}j Àó‚η°…Q*,Â3Âò³w*³ ±0¨GʰG+—€9ØëãûtxH820R÷,þúóŠ!¹¸)Í“Òü¢+C§Òwu`MWšJ3t;ø]"}Ö:˜ø·ÝåôõƒÛõ³þô]ˆòÀÍ%4úDv‰ê#¨mõ©E¡G,c\0gFø(I\7. ü\ÁXÐ:¹zV:(‰/b? î¯Q¡ +™ø mŒ}ˆ…Dp²uÌÐ6ÀíëWgñW`œ¯²NØæ$Dy›õáŠÐ)ÙOéwšû6i Þ/{@mâÖ@æ-fKjóºèuWñT6m¶.ñÄVà§t‚“[2Q¸o•Ö•SÿCAÖ¬óë²tnD{[øà[…“#|G£+P˜­’ËW˜‡Ã”M$'D€Êgá4Ý2h‡J5gqÖH\Ї£v¶‘¸O¹ô"‹ HB¹á˜{¹ß1ZH|Á”æ‚K7rx F·åZ· AÍ™%—7Ž·ìóÎnìë}Þ@ðÙÜÙdŸw¸­Ï[U¬õpVKn€ñ?ˆOÖ…±V݃Vp€‘”Ý3ô_ÿ»i&ôUW+¼îNÌ–sZšG¥yÙÌt'»k`|SšÌWî"ÿ5“sõy7ö⾂KÆNËÄUt$?Af: lXr ÚweG±¢½ÖÜ#Bî"+ÿ+½ñ4~^ªd¿"M æ‰Ñ%‚úåÕ+òwxØZG°i6}l]GEf‘ fuÞT²–,&ʼS7ŒšÂØè3ìk¶¦ ðäô8~W~xpµª¦™•Ô¶çˆÛçROªÏès¾OG Š÷ï™É€¿‰#»†ÄNÇ—ì6™ÓɶMbZÖœîdŠHƒ†ú\¶MM–ΆEÀO0è è&bdAm=Ÿô°jšç›&›Lpc*§²£v"Sècθì·O>Ýýìw}\á‚ÅK"WAM€dPÙ“›ÀˆÚYÉð²Æ¤Ð@|,ƒÂ]Çàó,¸‰#ØQ9²°<._“‚CôÍ9z'”iäṚe2u!"1O êëEÆ`L’ÑBb®$uÔõ¯+°Zm°Õ° —ñxC\ŽÑ¢‚vÇi08¸g(è);î¿9çã‚0Uˆ,’HT†£L¦¯g½ÁƒeþZ°%Ïç(Áçèd¬&}ÇÀíëžî©¥‹x7è#}[dó‡hfMz46“l…œkæÒ c¯ñ­ñË®‰œÜ¾Rg´MŸ²Ž×NLY)DPºè('ˆffŸ\•«f÷÷‘Ódnî€Íž‚"y»[!9ÝF}T"*Ìß*¸ *sïób$F§1`2tçå*z2@8÷±ñ…$·s¥ËM˜ü–‡ªDIÑ<MbŠ_0°E5¼dÆòÓÕ=h*ÌØT{ÚÁ &—ßpÙmž—æEW}=ê6¿*Íg¥yPš?tUëËB"çE%}àè27*M–³zXš,}uìŽÀÆ=.M–7ËÖ°îNñs·ÃqweÿÓ'¤ bDƒ6S?JŸˆ“RÂIi>.͋Ҽìö=½‡Z ð´ø-’h¹keNwôèÂÉ$fÊIa;ºKR^Ñ$0}òaüê‚æñR–ÀÖs¼0fc™<)a}Ç5~¢9ìHÉûyŠw[&ÎwÀ@E–L9¶È§d²®ŸjSssü¾ˆeôûÑ”VPŒŸVâ}›…`®ÍBh ŒDgGq,0V)g”· ›+Ý:fÝœá û××LݽÏêîh òû&¨ø‰cP³¨ù¸Úù5c U)Õ£yÌ,dêaQé* Æ·¨œVo‹Ò]~ÊQZrK]sl©G<7²ŽßŽ#31yÓÚÁD}ïÀöˆãb¹ÖÒLíoì¤Ma³€€…¾Y9 XBÕ–hÌðX¨rûJ µ-Gñà†'áèÓµD;‘ixþ“c‚Ò:"}pMâJ€Õ„Ýe°Wl%æÈH¹–‘lAé_C› ã±à©d“(È&¤œÀÄK´j`?éü´ÞN¤:/¶èƒæˆÃ$fÇ«!KÇÅ7‡¦„ü¢å¨ßƒèùtYÖ‰´D`bÊÜÆVüG’‰°f çB`~ÁsÎϯëÞŬ`½â Þ#] Üש@rΪX~^çW™0ÙâÞ7À”pËÌ>÷.·«ku…+¿k ÉÃzZ%ïF’Ö×Å$E!*™Ež¯Fʪo®ÐÃÚ‚„$A#…!°¶}'ÁLá—ÏÈ2¤ô«û@’˜úÀlÆè¿“þ_JÒ×\†äæO¥Éâ¾‡Ý ÝظÇÝ ±5¬»SÜJææ›îÏ.»_Ç]XØ{>ñ]î"vè6,аÄn±RW—ýÊ>Õ mUÓÍã,¶Á!‰þ5z1ƒóä2Iƒ*î?±ZVÿ¦áG±–gRp#ò^k'dÝçfìhþ53^Uý5e¼²È€.Â_–æ<‚–¯4ä)ˆäÑ3X!ª Å8¶±Eò DÌš=ˆ‰Œs®Nó8ÛpoÉE ßÐòIéNlìºj™¹;bhx’±¾»+ø|ðõ*B=Œ[@6dAêê=”fªl&V![âÏGq0¬sdêí ~më-ÀÖ±­ƒaæ<߸ÜàëºU^Zœ­Š*_¶í›ª¢Ý<€Âê0ÎËbéÇ)€NºJö/‰wÑ%<¦5°$X:„)yï# l˜eŽ_GiÏÑ K)HtëFáÜ5Õ‘r=p”á²ël¥¢:ÛÅ·A˜ƒ¿ÐÜ!#둈‚b‰³’šžëHm˜ûÌß.ûätOÑnL뻈Ãé40N²¤ŒÞ®òBo—uűEšŽ½À±@Eñ訔·r'ò¹c¶µê)Áˆö&›¢÷”m¥ýhZ×~tBW.…&QB;й4È2-x ­7[]Ÿt™ý[)Iff tösêaÌr <ô6Ë!õHiª77RŸ{“k£r”®*­ê@ÃO«ì›ˬÑŸ.¨LñAüGŒJþ¯ˆjÈU½5ã×¼Œò ¾ZbS´:ùÅ–sE ÚŠÁÆXZã^ë…i»k©{´¬)\{¦mŠÈB>ü§Â‘1½d] Ÿ(¸uw^K…ÙJØ™OªÑ³Yr¦»vŸUmò›¥m~#” •§RÉ£¬9¦ Ôg™ÓÊ•Hÿ€´RÞaï¤DiG¥ £õ7é©Àú&&'¶IËp,½z©<gÀ<ñªþ²§êŽòçöº§EE׿Dyeã>x;XUdðóBÐf_c (èêQ…¯ ×?Œ=°øè 7Ò£1?Ô8œ€2 kôƒQ©áÓ4 «\@q9•FÕØ­ñã?Šc`%/XÐd£ã'”£ €ð-€8§@ð2ѪFé¼ÌË}ÛËÏáܨªüL|->j^3ª¦>)Jà0ž \Ð-k¢!„o 6u<¬ße'ûaÿ°‹Zß®8›­Y4fYŒ{Î&Ùª¦ÅÔ.Û>ÊDzj–ꜘÀáïuUvÑ“JŠ×|´/‰èɃ˜þë÷rßM‚…)®Š91—ŽS¼ŒF ä¬*ÊæåóÒû%ÓzÜ3ÌáÃ:>Í5[Ÿø›8<†U¿¯Lz<µ*ì+§³¡×P`lÇ} Ì/¶9þDò«;‹•%>hr9OÇÖží¨u—T®Êà!-Ud,²c¬/\ÐX’¦Ž¹ÄÀFU–µŸ³\{¶8GG}{mÒ£.UL;_Z‚ËTUænûÒR¬7-ÞÐZSã‹Y¡}DÁçÏ€~BºK8Yq÷p(r?€èEýf(åòmJ“eø}QšìÉ¢/Mm³-`­g‘ V!Ý/ufá‹*$q—’ÀjmWQ«ÞA8aŸú…‹úýb%ÉTÿ­´«CX9ݹ ⤩­<˜¶ÊÛ®ê^£ÖÍYÍ߬z©Õ<ñŠçþó¡Y¹¡úåÏ |ÝJÐFÚïçg³aa,€ìV$k;¹Q¨ÉÂ"»òàyÝ „-}·Ê¥;²±Tn¾_J*¾_ö!¡Õ µ|ü÷’ÃàÀrÝ[- `ÂQ¸¶Tå®d…2×NIÝ$ˆ÷0‰bPÁų› ° ?y{3OtùxžÓ´ô¶p=5 0ïy¹…x²Øj1W‚jÜ;³Îmݦg¤gVû4ó©Æåâc“Û…¡üˆPÝ´5~ë‘ÇͪBã¼é]*G”<¨ÅéfCz9ål²*Z¨è¢0øô•ê"Š£¼Ú¶ËGÀ†kTß/E2ÄÜ<ª–ÚNiÜrjŸd9³X½H5›&, ¾øöezo¿=b¿’ž»êJ`ÛFÝ¢6Q« kãÙßkÐvõÒã+ZéÏ®)ÞÁ==¾‚Áa¸Â†QÚߢ2±ßÁw¿>ê~e z××ÐýÚõ…}eˆ¤_I¹µÞ6Ûán @ÕFšú¶ë uºgå2MTèÐ*—iŠ5” ,NÜ–4y@Œb[·à<^Äÿ4È<×\Ùv3 N*ÞMPòFOšW‰̹§õilââWc[ÛÉ9,òŒ‰œÍë3I»öðeš4jPI¡‰* RÆ(È«ymP/üuN‹í—Êþoï¥/ 8µÎMyÕ?éšó¬x™j] žXÁ(‹kâjö"Î’ËCÓÙµ~ `Â1Èk¢ôF·Çw«9 °PZû Xú¼ó…íF_4šó·©îç¶øõáÚmSüš7R’Ï“1ÿý:Wø‚æï ¹tö3& ß§ÄâT°– L.¥ÿ/²ôî˨nsì|iª»i(P"ÂÕG´­¡uª5Töcc6Iãøf½E…Ï‘¿ZYK5rOøÓM´Uë5>fR ¤³ôÛɵõ€ß=/úsGÃþôލ’k+ñ ›g—ÞZ°€òÞ=4l=|ܨËs$Èú•%¾áa¸ì“%IÄQ¦uTV>ÐM·d žÇç™8ªçf˜ž9Ãá´Hå80Ÿ³Ï“|xìO ,ü¢÷éb½ÚzõׇþêM  7¥5Ï„»ˆ?ÓéOgÔòbëÖžÿÊ’Ðó_Y˜Wq‡?U+xKªyî´ Ç×y`4ú:"%§míèŽ>gkfßÂu.`Ü0˜–³ŒÜùhV]·Öw›/ªzRƒç×ß(躼°7&ãn®3òs/øé/¼ÕÃYÄËBô…”Ÿ1ñå~™¡{“YÌï—Î}÷§*™&é×ò°¯ì ÿ‹]»}YM<«Súµ4Y1>3§ØŸ«ºÓùø÷ ŒÔõ5õ²úÿòàÔœ†~endstream endobj 606 0 obj << /Filter /FlateDecode /Length 7165 >> stream xœí][s7v~WåGLå©§Jl5MmoVë•l¯LeSµÌÈ¢(™G&%ÙŠò×s.èÆAš‘v’ª” 5ƒû9ß¹a~^ ½Z ø_þÿÑÛ{žº°:¹¸7¬Nîý|OÑ_WùGoW_@ ¥,|êÓÔêàå=n«V*Ú>Eµ .ôɸÕÁÛ{‡Þ j\·YÿÇÁ·÷”ë•Õzµ7ô6Cˆ«ƒ÷ºÿZütkºèÒJþéïÝñêšóÝ §¡RÒ\Tƒñkcz«ºá£U^»Ôm°‚J>Ùî-RÐ)Åè»íŽ(y¥bwÛé>¤Ð}_‡˜œŠª{ÕC‚uçXY£lwÊ•ã`¡¨àR AwGkz –ºWkí¡smºe²ëM® ã|%(Cm¯ŒJ‰»¼ç‘™>Òúåæ¯Ë„°+—\Be´P–¦ü&V™î¯{ŠÐÚ5×}¶à[":èhp•¡A`µ¢Ü¤øàiªs M‚³€”CÒ{ÖªÕžq}ôž‰?E"p”Ýö:rQ§º 1xØlíþ„“ŽÞ:Ú-üŠSz¼y ßÃ`¢ Ý;±–ÊæžœÑ,͙ܺ¨BÄ=Ì)uï¹Ð›s:Ã`#o¯Ã£ðj—œ'LÂÃúvkšZb»™×t¨4ÓõPÏ¥>ýÃÃý³Üj0Ýþ»õt¼åTÎiæpUº-îvŠNw¿Òñ7ÞYyª3öÇ ¼ ÷ ;10´¯iÕSR!vÏè’ðJ?ËÃï~À:~°¦}^–} 5B?(­`1Ä¡-—òA maýç b$/q¶1Y¸FÛó¼ °ü?îl"Væû£‰ÝGÜ çˆáé³FõF;>mçåØa {ee°ÍžÕt[V{ÊôÎ&Ím™©¤ÛÆ'ÅÀ xº¹°QêyÉe\¾GòÊm¸c8Ø¡Ã]\Pd \¾þQL’磌—2Ùàº3ü ké%y5zbjÚzÛýã:ßÂXߦu¡uÕpÛˆd9 S°ºúúºü :ËÉóHð‚håßqq`a•¦«kð~h2¿<ï¦È2@…S9^;gÉÀ¡Ùà FËòñ%ªD5¼Éq0V»¼ù;¬gðý`í8éûÏ•µ¬áÀù!•ÕZõÀ×Å6mØ;mi§ð›¶Z}ÖJëžy¤óÞ ?Üû+È2Gbñ|YŒÆ¡%E-P‡é¬€‰@¿,D_”µÞ–âëR|XŠª‡R쯪 Šº”"1·iÃ[ƒ8j~&HWÏÀÁV)ä«ã¸øXÑ[›ò`ÃS—J1”"\fëàð8#ëêRt¥K1œÊªÙG»84©™fâôU.Ʊ–¢¨àKñŸavf'_7ë¶‹›ÅM)¾.Å¥8®%°‘‹fÝ·ÍÞBóë¿b¦|íKqh~=*Åm)þS)j9^F¬4Ç/,¨`Þ$ à^@MÝ£û\ŽªB¿$“Õ Mˆå& !£ºA áL ™k\ÄÓ-}ÍtPøz=rœ —l K€¸’gܰu÷a³ðb ß‚ëçàÒÃÑÍx…ÉÂb˜D ^aº 1ãÝc^7Õ}%«09ÈŸXîƒÄã‚0sð 2E'›q¢)vÎû„`쬞—3àí¢nÛ ÄGpœQ„G¥‹1Krg`lTšãÑAÔÃØG¡òž &@ƒïn$˜b¤ìµ 2¹×HËç7Ä>ø v÷$äˆë‹â]eDà(èT3ÂoÏj .ÎØtNO°6ꂆw!Ø3ÜSç:¢=‰LýDlB>"N;'«¼àq8Œß—# W„hgÌ]ƒTŽúñæ£<ÀE]Ñ7Ge¹# ÷è‹ñù¤D²®¢ƒÊób€ñi¹zÛ³2"Þêz‘àH ht´^•ƒô­d©¾úPPôyZgnJeR9ÂWAâ%~¥Y0óÊí^•Ç\YÖÓµÃUrARøDw0Ù»½’Ö@ª´+|é"áâEe½r¼¼>Emùn€­vÀj®r´v ¤žu^]˜q1kíàÇŒáhÃ|®=0£ ¨N˜÷¸|•°ú3dK_Öß›ÅQTײÀjˆŸ±r˜€¬Z²VÕ å[¨3ëçs)Ì"À>›¤kÉx;€«0#F"Ü9x¤ŸÚÀâJÐ$ŠJñ§«ˆÙ&p˜H ªÔD¾ùUô¦›s®jÖ®æ_/Ñ ~]—½1š²:öÉ«zKûb9bqdUb8åÃ.œbQ¯4Ë2K\HO=Tù޿ϟèÒϘq+c]1›íšÈàš¿âF޳ õ$“‚[[ÝI¾ @€™ÂOóÕX¸…6Ž—ê×õhszO·Q{NŒ²šúºëýØúázÏ[ä²Qr’G–¦¼‚‰J¦r-ÅýRü®ûf]¡×‹1œ—â¶*ÅãÂÝ„&ù¾É…L9/Å“¦xWŠ›f§Í ‚˜ÙJñ׿ /nÃwÍj„ŽõFÏ´X ¼ëÔZ¬Ð*7ÙÄ? žÕ~ŸĽxˆG­ÑKµÁ÷Ã$ÉmÉ‚éUe &¬@óâÖ½*í¥ ôœ{ð±öÊˆŽ¥¦È¾2> ý!7iYŸeÊpµer!ùî_×ü@Å ’Âæ¬ÖÓ\ôgiHŸF¤«Ï¬7iìeC£cOÊ/'H‡ªóGÙ²ÿŠä¯q5¼3¬3II´ñ¦Q´!cðBÃGSòÑV>·šÒ‡öi-$Ë\Çb*¬åM¦êæVþ‡g˜ \/¦™%pŸ)…>Ëãí®áN§¯­æ/ÝFÔå»ï'nû¡œ.AïùŽçŒIµÍ)’ =Zä<ž¯ ±Gí3=† $G ;TçgK—0ÚH2.‹OZIŸbíÍ‚vŽ@¬zßÐwso>*D½ÃæŠKkl+õ0ã.Úny›ôŽ›ÖˆyԮ˼uúº9ebè'(«_ ªBNòäñ•Îä.ßu06pÒ"4e9²§€„Nz~ °?j×o”®áÂü»l¦‡µ…n³¨õ†¬šO…IšiÇ QõØ£HÛÊU3U®ç;õx¤Q×haª!ðf2*çOØö[²®6xq˜t߯֓qThîÂìú¶àƒã¤XjvÄÉX4˜fG}m0µÝ+îŽ,ÍÒü:瀈uL×4…1AM•Ýd —øôcòU÷sS¨%hn;à|ê³àÞ©»ß8Ñvåà\€Äÿ÷÷³©D‘MsCøó‚8^±ý¶…rÞÆ!:d`›Úu$I·º*¨.ÂÊáI@ñк š™fËL4<WÌ–K,)«zPOÚHõF P¶n€ú*öËTÐ÷­ð!Ôc÷·uÔpßùVÂè`¡œŒà’®¾àKox¨¨rü­ôüˆ¿o˜KC´‘N=\¸`=Å~-nû6Ãyí¥”ŸÌµÛÜmHµ’Y€22Y1ˆ¯H퀆èngU3(¤wΟ=Œiÿ¨’l“T«¹à÷<›â8ßçeí_qaÉ(bÒÿY@â‚\­*±ë×ÂJnòØÉQ~š$ÿCXPt·¥1jTÓvÙ™[û'Ñò‘ ›0ÝK=Ú"S÷ó¥ÄÏ΂Ä̶À “ ´ëÄùfõÔÀ5ëf'‰[8 îˆèB¹*ÂÀ#ݯq êéLA1v3Û›—Å"$¦óžÜ>Í4uŠî”ÃS3îLëÃÃñ T>äL :ïÀÏë)ˆHv=gó9PÜDäaQ\ögasw*Z˜A·¹¦;Š¥—÷®î:Sgg*.’!—@Y]•Kùÿ×uÃÞ!’wš! *˜b®ˆ¾ #C!·9Ä,¦E¸É­Ò2Üœ$8qÍ9Ò¤1žŒÀŽÎ"B/ø³KUNdzZžbÀ8¼ 2½Of€Ý¾)³A ¤˜Ë'n\ÌË<6ÑÉ 3Ô]ÜÛ!TVØ·œX¡q-ÆRÕ-°ï:èê²A³iAå¬ñWKÕý²žbwã/ª­-Zñ¾ à xðÁO;ä`Ѽ.†ÉÔ¢•MùRC›ÓÈ®0;rdw߈E<–kÛv7Œºš¨ðZ,!9ËÅè/èÓ9ÎÝå•eDˆðf t§|Ó¬î/ÆótÂ^íìB±¶ ØJqTd¤ÑmͶ´i-ÖhàRdfmñ"êøÕ‚Ò9³ýO‘z ¶ÿI\Lí­|-áécïm‘Ù7 W.6z}Sý¢$5é3¨Å|„0]ðôBûàVTúÝ‚•ÛáÃBÌ ¹Ö|¯Ê&ÞDÕkkˆâ«o6¢½•0 m¼õzïDñҢa~{6—[œÅ+ý‡²L6Ðä(ÜX"Üûüs $Gµ5Âpšë‚èú&“žk†¦:¸”Žyb°0 cPE4¨ ÁùX8à†’£þÂ4Ô®F‚ŸAÉ»NÔk¾äXÝI@ºÔ‰Í«ˆNìHWZÑQ=©8­J€l%3¯®»Q4UŬ±k»sc­KöB2ÍÛÞ¦‰ñT1å  ½˜¤my!ÿ½H¼$Uª|¶Ê"±«Ãñ…p†¤pmædò”D‡þy…öVéc—cåp1z7áMó˜1´Ø_/é}ºŒWæ0EС…ýÍË9ð·È8¶/'Ì*b…žü—$1¡ÍÜ,‰ U¬¡Jšå0Y@ÓÀ*ž¢}Õa [•Ã$ü³Þ4%,§Û/Zcó¹v§ c¹%Ÿ½t"ô4–$QIÛd[å°±‘¥p¥HY<µË~ìï‘È­š)XY´ U¼‹òyAî/“—ˆÛÉDTL0º(Å äð=T{¿)‚–Ù–›_šÚ–u­yj[º/¨)•zo|my!ƒYbÅÍræ\õ@¤é¹_›BÈŽtí»â­óéˆng3ÊkçáÛ¨S¥ZÈ(HF(Ô¿.×ÎÁ»äM<‹¶°À‹g-å½È7 ç*Y|OìJ• <Ï(3A4ç,—D G¥°“1˜_X£ÁšhdÃ]ß fïÜÄuÃÝ­KºA^%/¯P7B=^J@MLÿî€Ìã c(BŸƒ¾ù¿c¬G¾6׃c:Ô‡bEصeDÆ` › ¡zÀ‰$ Ãd‘ÎhóÙ€Êt§(,§ÿÃéèö·Hÿ¿é€@WêÅâñŸvšŸèBø®j?7Ð~OW|X@ }ñ ò± p…ΪBS€c +Ö©E¸LbzU\`ñâvrÄ3ŠsÁV«¦{. sÓ¹H?P‡¡„Fr:í{ô qÉìXçù>²NA[]4³R Y`-oÀä±TÙm@ÚôLî‡!ãnÛQËoþÏ€0®×Ú(’µôC+S Ö£<=!€aû<Ä%·À…Þ¡(Tž¥ß•™¿TG‹¨0¬é©/OQ8é"L€="¯Í°5zþÂæž ïCók£=Ïôay DeÂÿulZå;T„ì¾ÝÆž[¡SÏUf m÷!T*óôfºËúÑ š²Àûsj9E›RäÅ'fÝì÷`d Ö°*^%Y4Ø1`°Œd½S…àU¯HKc€´[z«fÑ~"bõ÷‰tò¬"¥Ÿ ¸[7}†ÿè}(zõE^½añç»XV㯊ÍÍ“§kZ’XeEÌL°¹ž˜s>-m·Ùæt==ž!O0+rFÃ!qSpÃ>÷Ì/¦OW_¼H@¿c0N1 ˆ¿àɱ6Ú%7À{§Ò,ÎòÒ4þáŠ×Þp˜‹KaYÇ„ü|‘ £`fˆó}¥`íI¿0t ²~G~À'#ñ¥ÄF æ˜í¼²U²½ìFV¿4 X¹~æôÀ@«ºÿòãq2ø;W…aÂH$9úI‰…*ñJÒXr—„aÖO&.åbhB¸¦³éssôï*C£?u•Ƚüû%cü/ÇÏ£EF@lµÌ¥¯²æ§â¯M¼{ef‡j6k{ìB³™mR¸ÕËñÀ°ñê-mýõÞ*tòkendstream endobj 607 0 obj << /Filter /FlateDecode /Length 7118 >> stream xœí]KsG–Þ3BáÅDÝtÉ÷ƒˆY`lšqÓØånǘY\„ÐUëaÚf1}Î#«òdÝ,I„ c^8}••Ï“çûÎ#ÓÿØSk½§ðŸòïÃ÷wî=óqïøüŽÚ;¾ó;šþºWþuø~ï먡µƒŸÖYe½wðê«÷trëœô^ôq­ß;xç—á/+µ¶J+å‡Í꿾»£ýZ;cööÕÚ%¥bÚ;xygøŸÕÁ¯w°¦O>ïÉ?ý2­ ®ÍÉú0¼ƒæ Tʆ‹ZÙ°†µvíôð#üèt0>¬ sÈnx-˜œS ÃöG”ƒÖi¸‹ß™uÌqø~U){ôð«Ç ÿ5œaem­vÃ[®œ”ƒ^ ‚Ï9F3®L\Ckyx½2:7v¸¬£]oJ]çkÑÂÔÚꜹ;Ì®­_ùüMð!vå³OÐP0-”ƒ¥†)¿+£ÕvxÌëž|í»ë>[ð-5ªL²¸ÊðAR°ZIn¶xïYT»†?,`ËÖbÓûÎé½}ë×)nüñ8Jeí¡N!…<¼\í›àqRÓ»\ŽÉ”Á;¿Îz¹ùཊ@½çø#ìú\õÉžɲÆÿ#”Øñ¥úPÔ* üe Ý@KQƒXMòµ‘S”ró%+io†í‰žÕ ¢oDžʲ5¨Q!Әʑ¤eÇCáy‹P‰£ù;h8¡™âª`\pø3vbó[DÍea‹ð(A 8lõ(±<Á–'^¤œ\”KôÛÊ{ênØœág!'ãÊ:ó `ýQàl†_‹ò/sÁßwZ£¤íÚ»l¸7’¬À‰Ò+š¶ŽpK3ÙE›…5œŽ±Œs–CÝÊyÁXcà[çW7Ú˜vÄ£l!ë“ —Mû;5 ªCÓÉã›å£OÞÂZÿ†ëk”iGý¦«~EqCS V“¦È¥Ò³M¦Òí¥‹{pç¯èž¸ÁÙ2—HªG%œ4Wn:^{ÃLô•6v*¾©Åûµ¨kQÕâº[As÷×{´ôû6èµËã©On¸^p.ŽŠ %yˆµ¨kQÕbªES‹?wëúZ<¯Å‹nÝÜíb[‹LÂxw® x±»-€h({ ¸×9jÞ—u#tû¶ ëìÃÏ€³$lQبf£ì'€¸ózâðh ð‹ÅÀBBZô'Ào,r4žF¨3<Æ¿åµ"—€ÿÅ0‰¼XáËZ<«Åßjñ¨Y }‚1¼ë7µxR‹‡µxÔ=à!!#ŠãèîÃt²‰8< S¾lX¹ÁmÈ“jx6W íƒh{›Çʧ‚T2Õ˜@ài$i+<2îÀ] )¶|@r]ÞBBð>)ì›eݲ{iyL âˆ)ÐH”[ªýªÒ‘£•`ó3š•ùôUÀŒý00ןßT"0L2ÉvÄäÏëJ‚ú˜·¬úI3&òÓ9¤L idjD6¸ÓÑÉÈE‚ó¼„*Ùl¬Ý­Â"A ff böÝõº+Þ2‹é™ »M÷´jhåºðévೞ>êp¼>+|ÐÏÔAðiMRQñ“tͶ…âº_‹ºU-®¯« бïÕâùuŸ‰vS·Â>8:ãn·BëX‹X×A]JQ¡_×µŸaÀÓmÐÒaÈζ»°®ö4³Š¤¨Á¥IùóÂ%è+PÎèE€"ÚK3´ÔjŽ–ÎŒhù=T©ÀULAö4kéuj"êئûÌÌci}î3&ÄÊè´@ÀròÖ­A4¥™@Sˆk|7G; <˜ëT<Õþ„gೞÍ `É=”ÅÅB÷Ç[RxúϪŽå]<˜ì8Ÿ˜óp0×qÚ0-ýaZcØéò’½³©O•Åd <ŒÅN\³Ñ‹fv˜¬Þ¯P ²Ûá?«ý2­Çqb]Cn"2ôCR‹xÂv|Q‡|w~‚Yg,ûO`ø'4×-tšÈ gË•˜À“?¸.ØÈ°K3–mh“•i gÆ[ëQüWõˈh08dPµz‚ˆe˜C»3!¾Òð¶ó§Zžh$%‡|òhé gCÓ\S)dšQ@rÉöœ:;¡“kñÈ«°‹<Í‚“ÿkd€:<Ó+¢¬Ð›7 Eá¨×~Ïp æœ ã;û³z|÷@¿¶­üA_ I3F¦•¶Y¶K"ÈAëOÌ- íJ2a |â“ &k”I¡E½I¯ÑGdcühs\³´F8?ÔsS]É×ûÇ«jÛì ñ·U²ˆbqI-H· »`ô07“ùôùâ°ý¦²ð[W¢`W¶}ìŠ9¤9vM¿]]ÆYÀ?÷×¢#>¡£ kµ–.1yÊϸF€#üX‚Œ ç _–¶ƒväç….CžûyõÈèXnae€‡‚r~Š5¹„nFÜÈœç~Ç’ÆC´ÀöÅ–ÖÉ¥áéqP)€(öÍ*Pl rWÎ_F(̨“j¢ótàp”¹“Xîúq³—Í,œŸ+œ¾Žm"Mâ°~[~È•7¾ŸP^+w¿¢ÅcWz„­þ^àÌ%‡”QNG°º}ÈH_ïQ]­ÍÛ9øä LMÏÀ§uì‚éJ€?Uû¤ºI¡ ½rÀµÞ0ož@àXåWœA­¥Qœôzš~ߨƒ±6MÆÅ×´öÀô—¡P”齃 …&•ßœ•@OÖ}‚)úÒƒ¾º™)ìHÒ´Oq2¥Ô­M©qs¶¡ÚRÁkŠÔq)ßɨ &ÈŽžâž"ͱƒ¬)*”vPaË­ŒÜÒ¯‰>ScöÀèÃ5þ—96ûÅ{µø¢Û±Î{Ù0`³¶ËþPáØNPá¡t·òEÂÖàYõh]aìù"m9Î_Ä ô ½™áþSeÜü±š\@B+s0Xq`¿|ÀE PÄÓáB¤¥æA( na@îùó/@Ab`98 .âxs@<,Éè1Hì[W–ˆN u/)or‰´$Ø_Ân вé>¨t˜ñr²F®q`â óäÀ½4qªiñ/+$.EVk¬T®˜œ8Ò^Z÷ ç§¶i7«]jšðçBX÷õ¸J¹@‡Å©:×…l±QEƒÄrÔu ­å¸ñìýê‚eúçûî—›EÀ|-ã行·¾ĨŽÑÀþÏhK†G;rô‚–Xcñ=.„V£!I^‡Âl,Xj&†=<¦ b±_„€",Ä G1 ?së ~ý/¯iÐ;"ƒ–ÇceÝ`N»íO_ðÖÒQ­¹Âz4ÚƒjÒ7uŽNz´Û.ÛãÍœí· ÞôE[}ÃO”Ò®+gβ±û°•Ñ­–çÑJK»õum‘à2Š^óH˜{~‰5<üÁo6íÓ|È&9âÆ”J½ /ËJnÄ ˜ò”œlÔ_]sXš¶©!<‚>:Š:8®ë̃µÕ|¦¸†t¸Þ ú}5%ÊÁ7îá«¡I…µõ7Î!2“qíoÖ´=S<ÏMq€~Ò‡ÎúøÑat€åçó¦94Ÿí—µžU÷×P‹Ý´ ‘3ÿºšÌàu5xkQ䙼¬ÅM-ŠÏ„!­ºÅÔýLu[èWº¿•Už† `§0ð¸!+…udÈó—á±H|'Œd YJÿ|PÐ"àý+/w”?e3J%ùa5)´snÄ(< ²{’œC‚œ-¤l âf8&j?ìºÜIoó @‚oÔ]þM5Ëì“€…ÞwƒÉ`ó»Õâ,Ý@Ë0ˆF`¸9ªÈ)pCiI¡imù·š$4¬Ê¸„B€ëEI'„±ÿ½šQ"ÉP8’%á¨%ìZÍ]:©5HÆÝ!´;Ƴ+û»23YႨñ…?U›Û ëÃ* óBRž?§óØÛ ³ Ðùm*°ðáæ{ øÉyÝ‘òºªT² ÝE–´ ÞJ 9­#Y£öIûÉÚf@5)À•_Où<(öLлàFzÉ3ÃHwˆ›â³ÝxE“^õ–Ý0“›g•’O‹Ã¸‘7‹ªýŒ¤òðñtµ¤dÌ=¯”ªb:ô·ìy ƒ]‘5FJ@N¶§,ä>¯á›š.s)¦áìØ @Ü­jQ„E‹ù3çRÑ,ÞúQv†ƒß ™ã`lFzÀ±Ö $IrM6êƒUv×¹Q8ü ½ѲwZ ¾¡¥Kîa*ß”SïÕdOè‰Sù›rª2BØ}º$§^v­ i†EÇÇŒÉ2ïq³11–`ìnàãç íÀFA–Ƙ©‡»åg•[­qViõ›REüͲ2ì[l¬¶…ت¸Áµ-CÉÃÏSs^º 6—Õ1WÜå*.ñΖ"ºpÓ³T™»u.8"gb£”ÏkËshÈTnÚmm‰ˆIWuDNòl .ŸbÑÑ=¡tÜt\NëD!gþSÀøw©rºçúM±…º›Gi܈¡<«fsàúvÇqŒ‰ I;ž¯ýé¦×öd%\ÕLízÜ/«è Ñaåå?î870qU/_BG‡™É儦ÌltžÑBF?âÑí!¡¨‹“M˜¹Œ†D¨:=›çجMã9fF7=þ˜ÈYVíÈ-_p‚&´¹ ÑYŒÔgôe[IiOû͉t9|yª8C‡WƒÛcn¬OJ®ã• MÄã%ÿŒêm7n^ˆåäT‡©*H:h¦Œ—©“&IJIJÍuátç×!ÆÉ`þAÌó â¨"#Ý·ÌÎ^¼~ BÃð>Gâµ0ùÛ kt­g´v¬9Œxeì TÆáÁù}ò³ä¬ß«dt/e¼Ÿ{cC“9­ouécÐK™ÓR|4*?o5fj9¿gÑ–5þËfQÛZŒÝ "‹ú×î.kñ¬Åeqå]w8§µ(.¦ôS®ušˆ¢­E‘fík1Þ.Í"P¢f›vÓ¬-U’©j¿ &]ÎÞܲi:…Ȇ œ‰4ÀXœeQ‡yX 9Þ‡æÂðP3òÂÑj§+"ÑÚ3ì1ë^v 0 56^ ÂC¡Ý,ÿ׳\œ•¬'¼÷æf.Ó1¡sæ®ÍŽBûhÝFå²'~OZu˜'תŸ÷ó+É“ Ób·Ž»A£a]ÀY©1ϲh©; WžÎCIP-#ƒ=>2ŸQ°&K-£å€ø¯´Œ‹ÖÖ…üQ±<³UèÚè&sõÕH0á#Ìaél?¢Õ~¸t¾’T¬´9iú'&êÄs·„·V1úP`E ÙQ´¦ºK¤=¤ñ¶„¿únn›—ºì™¶Sd§‹¹³“9ÏúÈk-qãÙNí¦mº® üüR¦Œ.ß_£#î9 º.‚1‚DnKt3•Èsð¢lÇG@'üôŒ“xÊ“ÕgÀ&¾n BTI~z]uöE·(ô»¸ˆ#ë^·ø°ŸÕâƒZ|ÚEQW\Úc(%`L€ÛQ.º½m»íw'$ưévñ¶[á¸ÖQ-þG-ž×âi-Þ ÜàUÈíFï€^4 m,½·Ý'–bŠS$Rë2±çß0G'Áñ7w™Ò>$úaFó§ Ÿ¦ ¼«ÿ‘ÖÉoZ{ 4ó£®;Dt€ÒâÿIŸÛG¼'‘<îÜLñ Õ ÈD=€6ôólÙcAq æQ”,º†·øô§gâ€} ¤KoÁNÂkcéÓAèZäùp]Q€@´M·cQá°[÷¤Ûî €åúÝÂæh“Û5œù| ¨w¬ÓÚ.OŠ›ÏgVSEN9¢vJ›;ÂÞÌàÙýÔ†®gŠØà#Î[À«KMæ1p™Q¿óì5‡€…ÏŸ?eŸ ehs*»­Û¸Çtñ…ú@O¬”c‘zÓXaâþ„`^›wãHýÜÅ„ÓòåÆÐî›Yÿ¬mˆð‰øŒ/œR"A½p*¥ÒoIóT²m}¤µJÉÖÚqH‹ íÂýŸÙ žl‚¾'˺ÉìæJ.$ÚôS!Ûï¬Éè»$AI ¤Å!¢4W$ö˜„ä™Q4¶1Ý*P;Wpþ/jåëý_u_n jÝ_c8hÉýÌí#šÍ0nkUÀüQ£;ÌSü/S‹¶[·ÿl€íEo®s·‚¹•’†SDzY–¹Žv‰ª´ü‰|ëŽÏ·2&Œ6%:»ev0gjRÆ’‰óëúÊ.çŸv·Áh¾À×°mÊòùP‹â‘Ô¼sÓµëa€¡úçgº˜§bEÏj—Bëõ6ä¶ùnŠA K+ºÃ5 ‹ìO¦y“Ä ò¦S܆ÚÑÔ©Èqi²õš¹‹Rµâ8›7¯Óg*‰0[º‰£´Ñ2GTÚ_í-þ)¢Ö Ñ7ÏŸMcÿ w=PT§½–Ï#÷x…‚²s3ÞŽXöFâäNB;Й1SÆøÆ^­x2®ptštÓßïVZú[Óë”·3væøÒnÂÎü]ºs/pÜàúÿm.ph ô“¢—a¤’ä §h‹õt·Ô‡äö8tÑÙHbœÙÁ)þèñ¤EsÓq]*m=7Ä]8ÚZá«5‹½A¶ËªƒÌ÷³þ€gÆ+%>™¹äSnÛWá 8 Œîþ}:i¦5T'îñv4#ÏÅÁoî¢LÅSn­c—Çè r}i¸åž ;aùU(Á(Îá·ãx.ë/&?,ðæšÑC–°ÑBÊ¥ø¯0Ï/ý¢„höÌÄhÌxÓr¦øB”“œø"Ä‚ãüDŒŸå ¾¯Ö¸üÃqâ9/Ç)|pRàN꤄•Ö0mcJË[²ý`íI±©›f‡vXCŠëXßEŽŠž|h/#OØ%é0ó#‚r¥¡ƒÊûdioÒ`³§,™ˆº¦ÉšÇÉ}côåÚ¹Åg‚S0 Æ<­¶( 7§H³¾×-~¸®(BŠÏjQ¼Æ$z;k ’Rüµ…tv‡>ÞbFМǸIÊÞ/ÿ×â½Z9Ýâ™Å“Z|ÕeZgÝ_OºíŠ çÝ1|S‹‚â=¬Eြÿ—`Ø‚‚ÿP‹}¿}ó”a¯( a=§‹ð©œË1܆¹+‹¹§Ñ½¢mŸº#e‡:3êÎlÆ¡ÜñõjŸ0­ã¼R¶.³i™Ꜥwíð™Â\rÅ0k²„€"¸&Ì´‘i1çܾß˾}ôOL­%‘Ô=%"-dv¾ä‚“FâÝöû挣ÚD9%ô’&&Ôâ 'òF´`©Ÿô¸/1||zËTÎÆ‰{z”ý‡Nš·+ïÖSÊóô¥pñÏêÈ72ÇûÒÄïnôê4}U|ÏŒ—k–a[[?ÁÚDW•è¹uÅ×½"Å€·†u³ÌE9ÌÕ*ÙŠgmnp Û°Y Ïž“âÊ–nj—k"´ žŽd¤g °U|^óO- öéñE¨Þ›öSe¾;º“ý‡Øa#¾äaÀãa~µÔ Þ`ÄÚøÎ¶ðÿ {láQ±œˆÿ‚ÖÞê^Ü1LõúàÁD•BiðÖ© }²*™5tÄK"/¬½„&ÉŒç×ÐdÔãQ•Þ¯y¤(ÕïHõƒÁ’ˆú;ö´Ý€ævH¬äײ,Û(ù¤>Nx® ²¦—pùZV+­'I>Kìˆl%ÊØön|ÓŒݽ›ÛŸ”¬¦&o]˜J÷¦Òu¾<«‘ï6éŸÉ=§ñ}>öÀÄ‹MÒ?7çojñ~-öߢî'¤ O\êþÚwÕ}S‹ßÖ¢ Â?'HG?Y v[°²±[’¥fËÙ!X狃 é%烕Ì#ç_µPÝW yqgÀGŠ.ÎÈߨ–Ò»<ƒœ4¢9ùñŒ€ÖIšñŒ22~§Žr‰§¡m_ÔDRûEùŠ¢+e”nþšQ™‚t¼\“I€·¥)ƃvAÇÒŒYRÔªB“«0›òVIñ^\ô#+™ÿ_5" SÖïÒÝ^á´@ÜÌN9™U[n¸ÌstqÁ£Ã¬À¹+‡ÞÙ°»Iku&— .:X‰À,‰îšøy1‚@ÍU¡ð£É.ç-§'D›ó”¾+.*ã‹þ±¯çÉ`£;É`x-té  Pkÿ+“ÀÒ žoS¢8¥€ÙÏn±£üÛ=4×Óý˜ôï€HÚ¾áIØÔ¢p¼íV¸6LøλíŠA^Öâ‰láˆæ5¥Ï¶BÑ{Àî¯wþŽä endstream endobj 608 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1317 >> stream xœuSkLSg>‡Ó–ƒt .u0\ÛhÌ0Q@6/23plqoŒNSª ”ÖR- ˆ´´=ç¼§WZ Z°\‘K8ÔN~ŒE™s:3ºì–mî÷c3›ß!Ç;:Í’%þûÞä}Ÿ÷yŸïypL‡á8ž¯Ê{wÇæUYŠe\Î-Žã^"À>·dîm1H ŠF‹Ý Qó´/•ÎÇ?POåŒõ¦ª½•fezùr媜œµ+”ÙYY9Ê×õ:SU¹¶F©Òš+uz­Y(ª•; åU:s½2=·Òl6®ÏÌ´X,Z}m†Á´÷µå+”–*s¥r»®Vg:¤«PjÌÊB­^§|J/ãé#ß 74ëLJ•¡BgªÁ0l^©öà!m¹®ªö`;°"¬ScyØF¬Û„©°DáRL„¹±ûx(.1î‘F4¿‹ D4G%Í-„GDq® ÷º(swBäeÃyeºªPk3’ð}>ÏfÓˆÏEÀBC·(Ôüçâ7$­ñˆë2{&à=ÈLK—¶ÅÄ’ÎÛ½HÁ¶øîëÙ[@ŽùÌú£ÐJ7+4üø³‡’8=ÄP'ZŠs P2¼¨N掌£ÕHâ±µ64@5Y>Ò˜šÞÕ«Ù´³dË~yøo>÷Ć؋®÷a.Â%ìÄį ;vÚ£\Ú0þÓ—H}‡àJ¸\ëg=à"‡‚:|O·äµÀË­™HTwÊ¡¸Ó4Ó»H;¬ç©·†î5Ëé0í¶À!`(ªÎ“)L“¸¥Íð»àXŸÜç |žIý9zHTæEéáñ†¡=ŠÊA½w[°8X€ ²½‚œø6Úi+PòÆÃ6â‘ Ÿ"ÐÄgp”‚âˆ9œ+–ñª§gR Å´*öñš–-êüÕZ=a?ÛÉú—ú[”j¬©Ù_5~Ûw ¾˜‘³’æ&˜Çÿ«ÃñC9[vƒÏ*çW²êÞƒ#cÑSST»-(–òKºÏxG{®ÃÚ&GµÓ,_b/¥77Öí„B2½`‹=˜¾íqÉc©þÌ9,_ƒŽÈ§ÁapèÆÊ½©Âj²¬ªrdð* z´Ù'¹äIü&šÞCÏÜn…ÌhaªÁN>b1t¦oúÚºP._ö ¿œŽñÏ"$Fk>Dñm¡&°f˜ú£r£F]½ ÈBõÈ.÷_ã7®±O¾‡Qˆ8}Œ FŸ}mAë£øU”Œ‚¿jdA¸âó¦y _”Á/À~Ø€– ìÙÇ»êÁÑH9ZZ»ÖeRu`ÇÐ_ÛcƒAð»|QÒ;"óîGi(ÈÛ]Ûßirîg¬Š$tSH×3wQŽÞBÙúy.^5 ïÖhµ%{÷Ÿ¹0yö¬œßÇ«d‚ƒ¦º…<Ñ­@ yºþožúÙY×8ôÂezøIfU’kÜËâÇÈÜ]Á¬¿Îm’ño ì„0´3©aÚO IrMÎzx>å1ÌÉÇ0Spžý/úGÛ¹­T ¶Kø|l’&Êç‰Öž&DÛ¥RVš„aÿ!¡Dendstream endobj 609 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2627 >> stream xœµV{tÕŸe³Ë!XN²EwV$-BQ` @0…ò d!!»Éf³›Í ’Mö13ßì;› I6ïMá!yVÀ'XÔ*ZE¨U«âõ¦çtBÒSÚGÏiÿ˜33|÷~÷÷¸¿OFÄ #d2ÙðÄ”´¥Îøœ,Ž—‰÷ ï—^ùƒ9ºI±rˆ ß7êäú2ŽFkî%ä2Y®Ù–˜k(2fmË4i¦lIÐ<:kÖÌ©šÇf̘¥™§×³¶¤çhRÒM™Z}ºIúÑiÒr·diMEš)s2M&ÃìéÓ-Ë´t}þ´\ã¶§¦j,Y¦LÍrm¾ÖX ÍÐ$åæ˜4ËÒõZÍ`wÓ_‰¹zƒÙ¤5jRr3´Æ‚ ÆÍËÉ]`4-2§oÞ’’¡ÍÌJËÖég—M%ˆ ÄsD*1‰H#V Ä*b>‘H, ¦ÏID2±˜x‚XJ¤ˈñD%1Šˆ—° bˆFÙBY˰ñÃå ùõ˜rÅƒŠ°r¸òÍáÚáo‘@öß³o„iÄ#ß» ¶Ld⢠ 5‚˜Ü$‹D“äbu4™b9O ”‚ÓYY‚Ïö_7§gæ-ÖÊ•³V²™?àÚMpŽíäŽÅNô…Ï{ÀUÛN7ík=ZßI"Pvàžá+€Qm_F5WÉìà*È^÷[Ð/Àaî +ÕòUî:>@–( Ú{H¼DôQgðû lVƉ'@U!™˜z^ŽŠÑçT×xb¹C§8]ç0TlÃ:‡žfŠìYkË5Ájpèâ{ø“®vh‡lÏ@k^A±ÆmnŸ»‰öò òvW½xôH¸£¯¾È}M–u¥lyÅót^g×–@ ¨¤õo¿Š·þ3w=½ëš§Ý·Tï­mOš¶r^^©:NdÊÛÄ!ÙË—Ñá‹rÑü’?õ!&ð‡i¬šøÞ“(©…bÑ$5®Æ6*wfÅî­EÄãôÑË< @F®”âS%&2“iÝòºÕ@ÆE= De‚,ú«Ïä(!ú åÐÕAÔsªSÏ‚llWùx(ޙϔé…LX %JCIh ÊA?„Fã4NYHy»øÀ1 ¿P~ñù <½Ø‰=õ½yEâªÉ@>¬Ì-„f7¸Ü»è8qü øèúU92¡O¨†oq\EDZœCŒÓ,9À6¦ˆÞ€›íZ§c¨8¥à~þ°« |ð.2À²+ÈW»‚d¡rY™/TAÏz›è†—\ÿHnx‰­¼,¤¾ÍVÛÖÚŽZ2–¬]µ:_‚5^‚u¬€žl’¡8I6ñA MT­†'*Ãh©Â¨,ydÕ/§3Œ9þÏÊ ¸)vª¾R>"=»Õ»Wm퇤QY6ŸÝ±3¯²Ô”¡2ݺ¯«š÷ð~zЯ ¨GuGûäÑâ ÊñT_2¤”¸Ïdæ‚2 ¶¹¥Ã ¹Yy.h+¸‰>­ÅE |B¹UxWÍPýÈ:‰6G6[6TæÔzÝïJÞØoÃæ_Þ(P.Ýé ¹y ¡:®Üˆwÿ´:ÉJå!QuP†~þ†\ì—Q˜²²PÊqœŠaF`nri³g1tc×U®Þ´Q•­³ê€œÏõ5zùFÞCŸA_Þ¶ÐjÆcfÚ®µ¦A!¹LØô͵߿ô©ynÇL4&è‚]<Ï«Ü.O¸ÉÔ2o‡ üîÝô€qB¨¨Í ÉN_Dì›r±M¢œy¶t¦¢R_¸³H³-Ô¬:ꪥ}‘4Bä{ Íœ¼pqZqÐ,tµ´v¶Õæój¡÷TuÈÓáuk¬¶•N†f9LžeÇ#çÀ4òé/J^¼väB]@ô‚µ¹ë¥¦wjÔîZ>àÛKâÙ^Ê¡wè´[óó3‹3Ü”Ýy€”€JƒCÐ=B[ÊDó%9:]Lá1·aÐ Sú?iž÷¸U¼Ëëï;֔їù*(•Ìÿ ºgæÛSç¯Þd±Ð¶Tʽ\õ»»z^ì<äÁ× ŠšôEôÖÔ4Ãz Ÿ´\özø* ÷81µ¼ uº§Mvþ 2\—‹O‰c©Õ¬c3XÉÚ:÷¿‘NÆ÷ãXľÍÉ^¹Œü’碪\ànt‡ |$1gO"Ò3Ç|0û;4ú5¤lð°þŠJÖiu¨7}N¹ÄÈúE]ˆûz¥ÚÓLõ¢Ç?ÛÕ äUH°˜9›Ó@ÿ33oªUŠMÑ‹^P™êÉÀúõªeÛ-jŽ?ƒþzdžèo¸õ6ŒÃ68ÅF†øýi¡ºì®ëx$b½t K+¢Q7d(é{9ê‹Ê©–â}nvþ¶œæâv¡«KPãGñrj0ƒ†"èTí"(ŸrµÂ^èRÅ ´z¥p«§_ …„”YˆÎè”!úò_‹Ij ØÝv;'õ®Þ°¼ ²¾O&¥™€Gš]é{6ÒÂÖvû•‚Ëñ¯çy’¡˜œ³hÆÔÉOCÊZÏn¨QWKÃN9ç(fÔYx[!売»?ÏêÃgC¦Cë¾÷7t/ÑÄצõ}Ùçviƒñïö*›k{®Ž“/\¼ŠäGŸy ˜«µ*kÜ^Þå–2±U‚I ¾¼ˆ¬S씣PŹAàÁýñ¹êÀù#‡øzÞ+Äë­Ô€R\f^:¿]¯¨«©Øi)Ü‘c¢ñÍe1ÿÇ  ["®U2øËlû-Äñ 7$,ßùÃ.cïâÖõª`±× e¤eGežZªéà_v5CD¸öfÍ:ØáË;¢ºItT‘u£Z9:|w‹Þ¦6h…cìžÿPôOƒKtëyy´ãße?gåªyjçÕÁ0 VÎ+Íãøxiš}ÇÿCMÿ_ üï­tåÞ]—lT%RT¨¤U·=W¯7×ç Ýá°z~ŸŠë ² z½©ÁîÚ{¦XñÜW2”þõ§_ËÑÙ¨‚LµÙF}^Qm^¤Mõ¨Ñª±m…F½Ách.n wtt©¥ÝðÊf4WÚÅÈÑ’ÊúØÚçÖmfX†'i÷:|uhØ7ht ¼ò[­);§°&¯·±¾*àWÇ™CbbÊ©ö…”xsÍpaÄ¥‘ê13›bï UÅÆÄ?¿0³·endstream endobj 610 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 331 >> stream xœcd`ab`ddäpö ö44±ÕH3þaú!ËÜÝý3à§kc7s7ËÊï{…¾' ~Oàÿ+ÀÀÌÈXPÞæœ_PY”™žQ¢ ‘¬©`hii®£`d``©à˜›Z”™œ˜§à›X’‘š›Xää(ç'g¦–T*hØd””Xéë———ë%æëå¥Ûiê(”g–d(¥§•¥¦(¸åç•(ø%æ¦*@ݧ¥ós JKR‹|óSR‹òƒŒ˜YBtðý”ì^ð}ωï33þø‡ùGÍ÷[¢ß7]zÙ}ƒã‰ñ…ßÂr¿[Ù~küõb}ÈvîûEÖïÆlßy~_d}Âö{ÿO!ÑïÊlßYw„…¸»˜ÿV”ÿ­ÊÆWºðGÀœïá g/dû4ý×mn9.óù<œ'úyx\Qxâendstream endobj 611 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3789 >> stream xœ½X T“gºþc0þ*‚ˤBµÿ•[í\·.n-]\pQÍY"û¶¬ì7 Âv"k¢(FÄZ—bmõžÚ™Þiíµê´õÎØÞ«_ð㜹_€ÎÜδs½wæÜ“Ã9ÉáÏÿïó>Ïó>o8”Ó4ŠÃáÌܲ{spÀÎWÖ8>,³/âØO³¿ÀáËLcþÓÁ™ ÎNÝ‹1c>º0å¹¢#s).‡“*VnIN c£cÒ=–G¾ìñÊÆëWx¼ºfÍFM‰aldx’ÇîðôAbx:ùàáŸ+H{,÷ŠIOOycõꬬ¬Uá‰i«’…Ño¿¼Â#+6=ÆÃO&f ¢<¶%'¥{ì OxüpÀU?¼Ù’œ˜’‘.zìNŽ“(Šb“6'oIÙê-LÛžž.Šð‰Ü%ð=ãëŸ¸Š¢|©¥Ô^Ê“ÚGýõåOPË©ýT µ™ ¡¶P+©­Ô*Ê›ÚF­¡¶S;©×¨_Q¯Sk)j7µ‡r¥<T”ÕÆñâTLsŸv»ÃÉÓ©iúªéy‚sfÔÓÁô½™¢™÷g½?;qöçÎ÷æä»¤¸Ø]ß›7oݼ†ù™óv¥ËS`µ»Y9vÕw\ô²ñuíÿ»ô)ˆ|aWña6_¨Ìí?wñ?Ñ¢Æêl‰Š![Á¤¦¬ðº8ê æ* [Ý;€fÁýùޯ̰m'“5âkŒ‡ƒ ŒÍÎJ Ïö-¯‚šµºUÇè»ë>±mÔ¤‹J Rv+>®A »'´ä4êNiÎW1.c#`CVd²qÆ|‘ùŒòr•J¬ÊQIU9@gð$bH› †µ{òß´ðë;Þ'ßÔ±èóõƒßÐß¼~òEf|kâU‚YeTÑÈEÎ/­Q«;F y ×`ã;û—àÙ,fyûð¿òó¡ Õ·Ði7´™×|Vzijñ|ÖÅ~w·'ˆƒš‡k€zùßo%ÿ ]†ßÄóƒq?æ€éfŸ9µ^`Û¯ wÝsV²5*; Ù$ÿ¸` ]Æ>”ØÆx6ZqŸ¾0ö*9hAMW瀌Y»ÝçÆ[ wlÛ° Çà´Ì-ÿ—Ïš¯~ÊÞ¹ÑôTÐŽþÈò!_ÉÀ¯à炼 |ÊÃNꇫЭ(à.¢>úâaë‡@ÿþÌ[+•EPÈÊ*¡¡U e )Ú;I ù©T‰@Ë$”c(ª`Û KÛ=`UZàœóR]´›$ê<¹ÔÙl?z»+Ùªhwäõ‚Àóhöú“ïì9/JcE=‡k£ž™ßKùhÕúS#ý5¤I͹ßþìš›ÌÆþ2@– 1Ü”{‚÷G°Ù¿")A¿øÛqâ¡&´)Ñaäç_ÃsÙqçŸbÆ‚?1ãÞÍGiØm¿ï8ô.´aCØ2 —ò&ÉA­$í±!ÃΘð5eÚr(§ëÄ—ªÔ&»y¯zÙÔw>F·!Þ¥ê¼ÄBe–BÌ–ªŠ¡„×Á¤ƒ–rfejtj-hÝ'î¢TŠŠ±·Xèt8ïÒWkNÂ1‚®Ë(,R™Êª%ÙJ¹…Y­«×0Í(´Ä$9¸Wñ$’‰òªIyè.)¼düšÛÏBÔÎk„2Йh{IA#‹®#LðA.\ôºÉ/oøäc¨„UƒôP¦*œ6X!­™qyº@bClö¹Sâë@1|mµtêJM%Aƒn©…ör…QÊF@˜2ÀOàÐFŽˆàZGÀ·ðŒg¡H‘þŠ2•øïŠÛ { ¸1¥%éXV/|fäûÛÇ7ï=júûþ ¯Å+Pðß„9ŒÒ'ÝÀý/Üà4Þ‚8û¢7¡•Wn× ^bÍéýi:0‚¦Bk$}俚nCÛ8hÎ#.ºd_ÂÿŒg2A{äìVžá”¶ª¼Yg®< zºYRŸœ-(:˜ÃDã—¦¿ÁK¦˜q‹ç»RBâ"wŸ‘ØËhÆuÄšŽ“¡RI ˜ðå¡âT ósÔõ}i-ë2FM%Zû×~×îêð3 ”ÑiÆÌ쨢f¶(Ä*Er²»<[(%Rbkºlùªå[ÑZf=ܽi(^”é P}T•2zó±oF€.«qfNB‘œ_›¼üé5£1Ÿ·õ—dêc¤}`ƒVKUƒ¹¿jJ'œ1M¥2qâwcÎ)Ô7OóCü„k¶Ó“Ç,@B")ÈÎf⻣ÊHiØk~?gqûŠ­«¾…ýß=ȳ–_RJUÁ¿pYÐé±Õ#{kekyx©ÆL,µ-£2’tl¤ÀjBÓÑ\4ÓdåÜ@.h€èÏþúŒ_q¼mèhÔJƒEpxJ½=¶ !={Ó£ŠF2é]a{ÉyçîÄsãÀ5”BukþòªåÐC ÈÍÌÊfãñsòáápWBÈj‡êa€”Ð*jLÄÆ :}e¨ÇR_Ë4ÇÚD—ȘœwÍírT˜¥y1›ºÞ7úÐÁÐg(ƒÖH lŸ€ùsÓ·Hø„‹î-ç«Ë4åäÐõb•\…]‹ÜrUYIÓ«0Ö©TFÆsüµühH…8Úfgù!bÕ!âj2}BGÏ©Á°S°ß¼?·Ñ¶-3_Õ4\d.6öõ‘Ögµäw(,d6mx d@$tŽôµ!—cçÙ¾[Wk:ˆ!SÕgÑ.OG&x:à€ ´zÍUµÛ”òe,öá¥AJž?Þè¶Á^«0iRˆ§ìÿ뙈=ÆGÜHP¤å–d*…@KÉ% ­ÜÄö íqèƒ~åq‚úúIc!ý4¤‘f·MWóŒ¢Í,+h÷V(7jì/Ø¿vS«03~a[÷›]Y\ÉžA­ ÎÂ9åYÇ}+¦îËfðò NSD<%\ÛˆvÇœŸ…i81¾-º4”ùÿ&gGÓý¬h±ÂiˆBšQ.:†’ø—Q( 沿uIt³ñB¼ Sî@ó:ß×Ö±?Ùm9ÐþIÝï·êú*,l…•_}ÎÐÑÞÕf9]KFjsJ¼'É{ˆõ~+雂ƒ^' ØA’óØc{íÀs?Æ >‰Wc3>„ßFô;h9²¢W‘E3ã[ÆßåAl«¸)±OyÚáV/ÚrñÞè“/͉ú]ê–ø{G`ŸÕ쮕›“ö9:à‰[í—mHhåˆÈ”¾æpÑ·dÀ if<^vÖÈ\E]Ûð×÷Áýï_Ž‚#¥1GÈjó‰UdCVÔi›oïEžZÄ,\ ã¢|4³ýÎm¸O£™x¡åEþzü[šPÎYÒÂ98¯üIå|„ÚÝ >æÕ|oI b …lvPI>HiÌAK•ݺ¿¯"×çŠUÄHCS“’€Ž.é0ׂ¾ê·¬îia9½@'2û}Í4^ÔÄ_ÎE5dnª‰Âx¿þÞÊ”½ÍFÆå;v„&[1Íä ·o[3×N=Ï7‹šÆÆÆ¤4d¶÷Z,= –Ž7ó‹¤Ê‚ÿÙ*]«ZÃÞCùåµZ=Ô¸ÿí¤](T•]0dÇšuŠƒOPàcî˜/Ù²´Uj héšl(ÊUA¦P+´î1Ýaµ¾dŽzoÄ+WFâ“ØÎðyƒ9…èÊïË·åÀ6:8SxúŽnùÏZ Á€!Ù½4ç§—Iï!ø ªØ‘òÝå„ýµZ_Át¶F%\=ßÿ^úoˆ²¼ï N# ÚÑ6¡7A·«v»ÉMRT×è3'¿AœO†£–e*Ò@ÉÈŒPÛ<¹«õ{ÿõ{ûív‡½Cšîá=lû$E•ä±%y -2AeÌ¥LÚIâª4îõRïåe±Qöt+Ìʉ…¢‰=¤A«nÐ16´¸­ñ¡…|¡ÖÁ·[n U’"èÓtl€RöÕ’?øP9ê`Zõ£%Œ— ‰ê,Í”ùU"ºz2Ü|R\ÿoRlÁ6—ö½>ú¨-×OYvj!#Û›u šDÒlM—êô]¬Æ 1€n¯mÞ¢·š-½õÛ§HzÐ’°¬Í‰(N…¸‰<Õ~ºñz‡|ÐÏ?4jû.&2\"O“£aÎýGÏZ¼v*2ïº7lkµ4T1ÏHŸnL¤c½ýÓŒP!É=†c¯¢´¼H(œXšŒ}eCṲҵüîÞ?Â¥Þ<ËdÜ^™äµvnûüœƒ egÉE­wù=–舂ˆNqûÀÀIã"1Ù÷ê‘@ÝbâáÃú¶YOf3³œÄÉÎ3­•ÎÎjgŠú/ãõö endstream endobj 612 0 obj << /Filter /FlateDecode /Length 8587 >> stream xœÍ=K“·yU9²|ÌØÊi&¥7^ À.䨲?bËÌIÎa¸KÎRZî¬v©•Cþz¾ø€f–¤âJé p>|ïWs1íÔÅ„ÿ¥ÿ_½yöó/œ¿8<>›.Ͼy¦è¯éWo.~ýf(eá§]œ¢ºxþê?«.T°»Ô…w~»xþæÙ—›?m§™Ô4¹Í~û_Ïÿý™r;eµ¾¸œv6L“ϯŸmþgûü«g8Ó/䟾ܼÜÂ\ƒqóæ–Ó0)jªÉÌgcvVmþ?Z5k7{œ âíæ ® c aÞïpGqV*l>ÁçôÎG¿ù ü:…èTP›×8ÝGø×æ'+c”Ý|Í“Ãdá-0ÁÅè½Þ\mµßÁjqs³Õ3¼\›Í·eòÕû4öy#Vx ³geTŒüºižygf~éñ×åÀWø*]€…Ê P@ G¾M»Ufó{†{ ð´ë½ø‘t0ex L­ /Wüù~ªð@›ü pW6¸ò¥µêâÒ¸]˜g^û-^Ê4)»lÝ/.Pm¾£6³³òÀâh]îoËUÑìÉzo6?n¸avf³Këu˜´¼X@‹€¯–±‡ý]â‰&ïÀ'á¼¢8Op÷b«rS|‰~ö®\¢xýyšmpø.` û»èkþ×*û ¼üT]uAøü2I%-´º ŠËŠý _ÜEVq=¼†Ÿ¬Â­'•&k€\ùø@èm”¯.‡H4xÇ:òwÞhF­/ÄXv]Á'ãž~V>Øš‚Ê B‘hbxÊ'¯Ë“»BŒú€ÏJí¢sQÿrÙॳ©„럳6žŸ·@Ç€6 ±sRÆüÙMø¯¨ßk´›ãÖàdµùç- -ã%,¼þN?»„6N3p‚ÓjÆ ¸èd´&IoC¬ñøÍu“·sd°§¹o¶y˜çâK &¥¸Â8š´ðl’årÊ#oYæ/]Y—swÍkæhÞ®zðV,ÈON(ëmy¥œÍëÑíÚèæ7w¯0€„@éôP°È]»G[{+fàrNiçmÏ»m÷iØÌŒ¸ðÇgÏÿõËÍçø@bsw…zÒ“sÅ5ñ~gµ öBº“©щ2^;` Dô¤ Ã`œ˜™¾€ÅÃdIæb¸O[B²[BÀ!ða/×ëÑqºìD”%yè8ª˜‚}°4HF8Ml¸&Q[´‰mêàŒ©iØ.b‚!N…cT"IùÈìŽÆwY×ÜŽ6¢rßÌž®ùçY…>GzG%QjvÁ[ª¡pW¸Ò+ö£Ð,*öªf ¹ ²R>/ÜäÂÜ!õf\w…qUÀÙ^êLÈV+^™7E'|}‚t.Táhà5_cf±—jàù¦Ú£–Ó±Ò]~ÆÝÎ;•úÕr³¡Ò­ì%S¹53ÑLµG™‹KÜ¥ !?iF^Ô# ]¸)æDÚÁ$›vÅÊPn‹úð²Ì¸n‰7Ô$1ï´µ±/ü)ÂÍDB¹4|q PM3Ýÿ}S4=Èév§ ¨EòMðMmXÛÔ´nÏ.qT¤b°žŽ§‰&Ð5$¤»EуʨOÜ–ANl"Ñ2¢‘¨ ]mÚÁYˆG ú}TÌ,A<ãûe9þ† JîÌ“L6iÃ@3ÖÈ =HõV`5/(àä WÔÕ9AÃ3·xÏ qÂ<М€¾â¤%¥çóß X0G²Z7\(kz5ÍmY5¹V·"´3 ¨´/Yà#½ ©½(àáïøt> FŠ«E­¤±!•uÞ…·I’¥¾ÛÇÛA.‚ w6Ù;é±}£ áû`#‰Å#:µžÉ“ç:TaøHa6ÖVbpÓä1ƒÇ÷YâñUMy—*êȉDúQ¯Iÿ(äeºYIÙ$Áš—…í‚ÀdÓ/NÀr•$})$ M¸<¢í=‰2±v­#Ó Å•p£ýƒã1=ˆ÷°ŒAÑfÞbœg"P¦¦k6™ Þy²L×@³~b¦µ¢ ÈDw³™½^tj"?àIÙäqè@ª€×Eõü/3òv·4 —&4xVgA™ë¿øNÈ|õW‹@ƬÚö!0ï@5ÉÀfÔìɰÿa= ª_4¿òð—e›üÜÂ݈Œ{;´ïÿá;¼+<··+ƒW0iÉÄA}M‡×hWdÎ}CœFϱC«`°U$Ü¿Yµ3Ú/¯<³Á¸s€Ô7ä÷ƒ>íú¦¨2™ðBãûéé=ÖÒÜdAúßðí,¶5®‚váiµi½¼EîãuÑ+ØÂ5¾V‰Iv`ž0“rk~å%ðÊÅ…ÿNÓ“£ÀEÍÜÐ = ÉQ&ÛZ#i¯# /'áìõùWGÍN;=º„ôÊŠ·IG N0€•……}+xÉ%BõEx5W}àfX–®Â‚ìyI*dc_² .USÄúý`µß•ë<ì¶‹Ÿ0Mö0<¼,BìxH·ö`ìï3Å´û»Úf_*˜xDçM¥µã «axÂ7ù&‹GBÁ¬ZÎ… •z Ù‚6Š wh¾e´Bh3š‡årAÜŠvp”×Ëg³Z'µõ»¹˜¯b§/ÈÚpÁÉ«‘§e/ODœ½<— SQj6ê}Ç{ë}mSd=6pvÔNI5ätñŠîäÓ;vE€,‘ô‡möAîåÛ%…¡‘|%` 8ëÀsKO!#ú¨ø²TÅ7/Ä=Þòd´CC\¬

sÙnËaq™mEÇ™Vù1o$i«ô5¦o0æuu ­Va×uX˜}€Ô¹ÜÐôM¯W-÷;‹åÓá“Îò24ê+ì|5Êo—Н[¥%7X¹Ù^¡òaÖaXœ­\#¦ô9’0=FÚæà@«Qûi%fal5‹ßΛÞ&èŒ,K}és¦Û¦.GTûÓû›…Y/5ëGÃòÜj¿¹ZEµosY·»v¦Ýªšõá­×z—«“µžç9jwY6JݬU>Û5æ0eߣVšÆJÆÕî‰û[IÏwG¹Ær­>KµK튫•g9™‘±¼ž`Ñãþ´r=‰"Û7©m~Xßg¤“2–Û9f 5‹ß,»Î—ŒÉôØr@­›ãO§ù¬dßSÃâ_i9ZÝN{ÚZ_I3.ý¬mÎ_4ÊGT^õr:âø¨ív¾´ôhX»1ÃG=×Ùa•±Q »/›ñÛ÷;;N©×yÁ"/Vä%ˆ¼l2Yÿ¬SŸÄ—‰z™xwúK A^@ÈKy"/]dì!sz|!c ™;‘±…\oº®ÒjÝœ6ó6§l®k5ª3¿NCòЯ–…ͪÌ[Õò•jYò)mïZgqÎ.jÞÞ·k¤Kmw:LÔõ/JËæ@j½õtA©°”'ݤôfÔE‘ŠAè‘É€áŽÿni¦§Æz±},„Îø=6[rò‘6ô¹Å,cðÎגּ8¸WTwJÊ$ð.š„­à“µþ ‡øeI!é£Ò Aa´å‹‘'ÙÀ£þˆÙ«½Êê¥a´Ö¶Ú:<`ûÊ\;U~¥â7Sâ *tg3ˆß0`{óQ¾¶¸Â3(hÝÍø1N^¼D8}¨åÂ"ÿ4ù—@ :Hsƒ›¿í_º„ÚUSD¸Ä>"´M¾IæÌ›œݦtº%ׯlë\k]€XšG#™Ï›Z(|ÝI¢v%ï:”LºÉ¦µ8›Ä¥X´‚½ø¹i"€öœ±þÌ lž3D;.RÉLÑ}´‡—€ßi>5hx0ŒV Ù-Vp_I?ý³°æãfèE f/^Ø6as ψ¡wéã\£Rô}ɼÂñdÃ'Wô<È; ·Ð uÞ®ØÆI¡QŸ QmBÚgF#ú@Š,¹‹wBÃsl”“3EtqOÎ ¦UÄ#Á£ƒŸ’läëjnµ\/Ãq&W[%b %Ý­ >e šÁÈGê ˜Ÿn/ê€H-=Šâ )Yt‡­’_?Š+Þa#Éå–¾"NòkN¶ÞtËEšv«K1üÉz3ÂÅÁ±|7®  ×îÁºÝ~àÃJª¬WB}\Ç òÆW>ôh“Óc”&ª~ŽÎY—ç*†¼z¨ŸÊ|n9±¾ê,µûº`cYÝAàï„Ø•SþÉ×›\ Ì‚ª&lMuºÚ3Åáõ-4–oŸ–Žë± ûb—VŽã ¹„ö¦>=êÄñÝß_OfòÙ|¥HFÓsY`Ý‹.T{6ê•7"„•$ÎGVçzü½ë¹÷ï4¸Q!­A†·¦›’Õ£åK¯z—Mò™Þ¾¡/ýMZ×¶e˃sž†#ËJ­0Ápy ŠOÝøão¾¢™&îýbEµôgñi«Cѧ„ ÷{g·ë™„tÅî]!¨9kzhm: Ì4e1\wÄGªÆf£WJÅÇÖiÓä1£Nõèó74ðë‡#íœL®è ùíßhÕö{ŽoRÞšï!8#Z0¬mÈ3‡‘àÐ;¡¦Ä^Ñ%Uþk0 ¨S¢ 6Ä»?fEÙ]Žw•ý8ø8{C£ù“½Ð È ]ÜÆeØw¬m­üîù”ýjP[ïå;T ˜Í÷’Áû*‚Ïœ¼ ^(‹ÿÈû[oò;€Þ­û8 Ù¨Ù …&ÅÕ'\‚[!{¨ÖpG †œ=ýèºä9%ÛïKfþ? NØž˜s:†÷›`I²zš ¤ 'ž÷ëzWÁ` ½c(7’A$ê˃1È z‰ÌER¿ æ“lêõ¸C+Õ‚Ÿ–ÀÇ®È$9as®a!äX¿ÎžµRÑ©µ­T¬ëݦ¹þÒ%äïu#ÿñ¾uÜÏ®b"°ÁÚ¾Vy¢éU{¥ýjË‘s\#ÓhÓ.æôUõ²ÙZ}3Ÿ_vXø~™vJŒê’6 “ðï™ßì»}âÚbÅ—ëGC䱓Æd}§ê®`þƯq0õ%îž~-•?Ÿ“¼Ô=Gþ0k eËž]H÷žïö]¢ŠV¤Råqúø*¶ ErŒ! ß óc ì0Ÿ{Ÿ±|ÇŸ{B䯗¾Ú̈w g‡áÕĤšoÏÈÀÏ ÌæÈÃ2¬]ân˜>Õ £S#>Å¢­q$·±Ãà|º%Tòo]ÝñúŒ†lRPøæNÆáAƒ“ßí){u?xG›¾¾‡žû4*Ìß³Î\yÖ.ݢѢ’J‚¾X+tY^ KEj(ž‰äž6àowÃÛ®B"„háòZ]µQÇ™S(¥¤À— z”êPJ. ”ϳiJáT‘=—ëMUÀˆC€·¢Œo•sÉú_Hû!A$jYÄ&üSr_§Fßs…3¹}¡sb%C© ý¡y¾0.§}8)äÿÞàZËô,õŒ´§0Êô°Ÿ|¿>UVüñcLßk´ã €Îü(Â…s4qkîúJûÈŸs‰ï5áì3;TåÌè‚Ó]\¤½8,ëYÁ‹4‰­¥1H¢eHë?Ž’8µ½–ü¼ÉÑ¿ä‰Îç •nIÂp×^÷^Ýý9à3º3t8ª½fé96ϵ^ŒX nÏ9­«ákï.(Va}ü“@vî,Ý0 ñ-vïȋ߄µF#ñtªúìiÿñÇP³‰Ãcæ’íìÞ?K¥§¥î)Ù,ÚaÊj ü߈_œºh˜ Õ·#žñm)Hµ@kûiÞ3]‡*Žq&6Ú§ßÍ6Æ·9ßÏOFT˜÷E»\mFTÅlh‰<¿ŒXŸ#/¹MšÉ ;O/Œ? í¶þ™*w¦bmvÒöÁœ¡x²U ¶n÷5õÔ=­?s#F ”a@/†D$À.ä5iTqÎQe:]Óz¿H²û+|Ú×Y›+PcØúv{Ldì‰Àüu3쳦·KþúLé9{'aDéõ¾Ìß_.'ò§\¶C!{•¤ôj¤£9k@è€hn¢™`¶ÅVd|ÆФöwótÜB($ñ*¬ñ†«X¥öVe¸v+šº¢_× ÀÏ”­ï™ÆþH3…€ßHœH•Q´ñ†í,ìðž1ÙÃÙ|¼Ñ5«ší.#ÍÍB?Zä@úh´Ž•œP ©F³zˆµïáTœ3ƒ‰ë×§ñšaÃeÝÒ@A_õ†Eÿ€C3–IRËVÆCßäÑÊx— ô—íK׿Øl%kLxK“?@eëL‡ÒßE' ì-“>µ8Ži„X⵿ªyðëóÓ#É’!:÷^èÌb´=°àq‘EN¿ÄV¿&ˆ‡_[c‘5Ý²× Y^§½.… ¹¸÷@dsa™1ü$u@ jâ 2~w:Ý«×Cäôáx¦žFÖ‡Yw%Ï<ʽ‹úk2/ïÕBȵ€?¦4OŒd¡yõ~¡SË•µOÌEd±u»ÄSvǃ½K‰þé§MÒíÔp<úÒ'M?G§¯óEBùs ÓŽ€ˆŠ¦äåþ±8ÅÞÁ¶ô“1€0Ä V€ðå›(aX]êxCáˆ>¢U(}@ÃÄÑ4òÿ¸wbÔe Å% ¬'ž»¿r¹0î%é»1Õ³ÝÐê:›w³‚Y˜p2ÛëOÝ1Y üu{Î’›èbí³Q*¶Ý&?§!Ì)-„wóƒâëÖm)›Wjsl=Ök\t¡@×&Õ:Ç‘QBR«, òæ˜Õ4oµ/HèÞ#îW†Ý3Ž‚äæ?'o¥9‰šwöP72W^¿¢%œE9ÝÃÆ}¿³ÔK<8/‚ÚýKð 4ëT’ãº>¸“Ÿ+!ÓyXM;Õ×½u“²¾øýú'<åxI}Å…Àê s„‹Ç§><0ÉŸMëå$æt±_m¬ª²“´Î4kNµÝÊž½›+§QGîþ|N¿Þ,‚,W”@éÌŒX‹ì…¼à)õß]ï‹rAQ?Ú&@…x{Ì%«c$é !¨µ³§š PÆŠ„eZSoÅ3â´çLž–ؤ1÷“ Á­Ä¸ªο»‘N9šQ] 5 ¢|'Û²Ž”¦Ð[j3½Ï•Tl>D+ÂêôÀÕ®ce©³.¤g Å!Âî ?Qê¡T›–to?p!…Ï™?¥—Yª`OH8¨Ñ;uc`òYIynÏ>%ÖQŽêöžß¾yå^n踲¾KPsâD¾hGý/¾ppç9Èe¡öçpž‡'ðþóœ EF•ÅÂÛ€Í ³{ɇg\¥©tü‹9Ü­Üü Ú¾ ³ã¹Îf–¹£ˆŸAéøad>ØK=žœLòoU`ȯ+{1\<<ØÍOSAW¢áçTÞGÚ»ñÅžRÓHÞæJ_Ucä_ fvz?V»j— ‰!¯¥a/EJ]ÆÑà‹ìT­0‡ßb ™w¼›o×(~_”ð@¿öfnÑe¶à^»h]©*2‘ñ³£’¦¥\Ÿ¶=æ$ÍàÚ DJ9äNCk3Ô,DþDçˆÄQ]í½©`ô;n£n„gM†+ m±`õ×ö•¨?ÿœVä”.Ñ…§•rcÓø¡Ná*GÓ·6« «ŒomÞ…¨["rQñJÙª îfæ~%™@¸LGî„K6!tÂS ÚÔƒoHŸŸîÊ.˜){LÄ’k^’|fG+AñÑ_ôj7ȉÒÛÜåQ/—ɇãëÉÛ­ý ã¤((ƒCAõì@[ü1QŠúyPTÒQUا½zã0{µÆê¥C๦ꌂ—7þCÓCœ,ò¿ ¡¿â`'Uû‚@VŸyfÞ B1þ=C÷æ \ÙW/$‚šŠ=øÞ4å>Ä[ËF}Cà™z6Z.ßlUr:F6/˜àn­\*ú‰‹Œ¶Ô+Z¦Ó¬Ömî¾­¤5+¯>ê}Ú‹„‰ÊÍØÖØ#ÀN‡’ƒ&¥žÓ"‹ÈÕ|(Í9ÕëܺxÕY— ¶nœ¬¸ÇYYÚüp‚¥>ºü¤«à6Iä@.<¹b è^Ê62êÒ>‘+T°&†wÁ²_rýºD„ì@þ}^Ÿ*2.jùpçÕÙ"(‘¤ú;‘ '`²z%Bk~í€4:a:OFæÍGõ/]Mlý¶£æó5"Ûä ?UÑÎ?oñ‘[á» Sô“‰"<0OZÔŽÕO»#²çÓ®ˆ#J1þ[¿‰dHÁNÐ2³)YÔÉtvDGX=-Õ$ª—Ý/ê¥ÚÍ+¿” пh ©7¡²ž’¹”¦o+eI/CÂ+2,e0gZè\¡p3ÑöE$«–4Åì `år(˜·ÿãµØõ€&?-ð±?;¹GÙÁ0þÖ &[óQIœ‘€œüpƒt•‚r"ó} òÜÚèzБ/cݾƒîOŸØK_l¶>B{·ÇLï Ú»·r¬´Ã)á‚‚I?óoYâaÜ”õÒãîŠA%ŒŒl˜+‡¡ôÆ÷Ûñµ™Jç.ó§+–ì-팂ÀËazKL X–àÏʦÞ4Ʊ@ಠöÂè­ùèEØØÑm`ã÷ùL³mîÀÜ(CÚ Ë•¥y ÈGð š¿¯óÈ”Z(ey8ûØÍîà+OÅ\c¾ »ø’ÓrŠv\UnÕ2‰×ãÄ"àQ¹ô *·{íÚyYhË nPäv²Ì~y‹û3ÄäÍðTí)Ä@J8ñbxõj*ü$¤Sàl‹Šý°dI¶X6‚ÏÀ4n±Y8Ñ®KE5"Ÿ$ÿ¾z þläð+Í.oX:­úylÀ •ìͺlR]—Å¢ùOpwú‘¤©Ö"7­9è¥ Å¤vNž·>sCÖª§m€ÕeXmDö@ÂjÃìݤHáÝ?¶ˆùÓɾƒ ‚jÒVŠŸÕ¾Ö´I«Ý Ó,2M£…ZGû~M7¥S7PãÍ—‰šn´–wºÓ‹Æ¾©:$•«ŠN¦ Óךs¡qËñ½:¹˜ ós4°*àãwÕ6¡Pë×wG÷”Û¥º1SŠ…ß.›ìL3ЮºI£Æ½oT§cH2ßz Þÿ‡çIÒ¬m¸­¨O³Nx•^®4Š¡­Fènô¯I2UgÇaKÛÏdÀâûš,ÁÂÒ‰•!¯}ÑÔ¸ÇTÔxM‹òعÍï{º?[8/ÌenMQÓ%®n·¼´h½ãQHx6ùÊFÑÀl¿0êŠñ1I S~÷~†oò¨!·¬w“ÿ—Ôxt ŒE1¦âÑEÔ39³þ?;æ;#î´Æ·YC¬GSÆX»ƒbÎ7M2³.R 3‡í#·hx÷ýLèm-Çq¸]P$©<—µS½o.8HaÛŸæO–t—+2;4œÀ%°çlNŠ,8 nˆ>c[Ç‚ƒ¼oïˆ/}Äö´0²Ï0]ä&?nLk`)›e:OnŸèœ }éþ@„µßÏö|d¶!¾s˜4`·ÄôÉ–àÓ@¦aê¡­0á¥à» :eìù›êQ'_~Ï[ê^’楓ý²ŽÊïY@4ìK¤÷Î"K^fYŽýœ)Œd1’åb~gQRä†ùâ,¨˜â3 ÚCKº6¾ý”Ûº´RâÄ,w»$Ȳϻsjba‘Ls‰æ°Ê†aOŠèúzd…:ÿ/HdûŸRKÅ\@Äü¤×âå£FÇ-Ÿ™g|äÍFIûM7€ŠñwÂñ™^¤ I§:X©ñ ꚇóß×ø’¹]‘eƒdcûõHM¯¹Dì —ŠŒƒ,<1s×Âxɸi&’ºGz,üð ÎZÚ²U|—–9ÀnE ùMô….övQ¨ôm<ñâä­-™:ÅEâǯT¢»\Ò¿^LYiž±/G¥föAw‘ÊçØb|ͶJÃÒfÝÁK üYñˆ ¬]_lÜA…ü÷‹[é& ¾RÜêxç=Ãdm`ؘXý@cþ® ¥`†ë–ÞÃÑù%«Âcò‹l~ˆq3rîò‘ Àú† ÍuYyE0Gj”s©Þ6ˆ´N–eºíB•dû 3C`©qªFø,· ŠÒçR—÷g&pczâËI 5oJ4Tq®ztb7Âñ¡Z4ƒíÓC7|6Ïy—… þ ŠÓS[j%é¥ÁÅ‘Oô>÷êè÷9^˜Æ½`'ÆkúK@ 0^QØ¡¦§-¨¤)ëÐ(ý3/T¨Aè‹j¶ŒO÷ÚÔµªó> Qð†yãân¯ÑʨqCŠZ5ÄÓŽÔA¯ØSëI£7f3%¨Vãâ—OšÈ·ÁnB¼è]£üÌ–7¶üV OÁ*¾ÐöÞöìƒÝF“ŒðêHê@ñ6˜®p•ckr cŽ+½’º¹vN™i°2dëe¼,§y&–Û‘„›ùj£>-wðÚç±GŒE‚4ë/PÜ@ÿ^„Òà¿)Ô Ï4ŒòZ»Crg•`Õ­7d8º‘I‰ƒ„Þž-‚¾b{¶(ø …RÞ>x0ð>®[F‘º}¡Fn-"QVüræhÕ+]÷á9 þáhÿ·ëälC¼§ú‹ô¶ÑöW•F§N†”Ⱥ­g:08Ç0‡{·Å&ŠQÜ$x¸qoô>M¬³ZãÛ¹jãöqZ/z/²óñÈYÞçêí«hÃи!•bÞ£)ÄÐ#|\ ˜ÿæK`y .ü+]“£“úSsqzâi`Boô÷Ü"X –’•Ÿ 0Ä” gxsb‰‰­Añ¦lifT¬{$@ˆÁÃA›Ϭԉ¥.û€óçßw¬ïv÷¥€Ïî:ßÍOšÇ ø ‹#vÔBý€€„{08¼©@­äHd‚ÙB‰0q~ô©ÎÎp¨±ú¸UÙ ½ÃzOq-„÷ ɶ9bKÞ ›[‡ÌúSÿúÐv÷Ü•Äk»á0jƒñ˜bñ‹{æ¶F& î‚}Æ9ù¾õWER Ï!!ùö«˜Ü¹û{ó!ƒëmHbfùÜÕ0vá)ŽI¨¬ÓU•f”;Ö†fU<"¨c0@¼åñ¦™ïMâ TBÁù—Óê(†¿¤ç·T3 ·X§=ÐçZ§ºtÆpQÞ‡Û:`™­:‹Bœn¦€:ÛâU|¨¬#G€x®ƒß}ÒhÖ5 ýßø)¢ïßx{íËrh „›‡Ôc?„,§/%+ò/áyZ~0Èm–Ì Ù$™á»qÇK/V«Ü xÚÒ5Áבùæœ2Ù:ž>4B5䃈h5þõ‹ä -9ô®½‰uw¹gˆÃ¼[F'¯ ,çç… a‘€On0¾‹¾,zcɶÕýËwãÔì‰òÒp`tüñÓÅ™ìŽSns(4®¡-™†[u™75|Û¢b•¿ ÙŠÑ mêŠAüâX®>Ò—¸¹0òŽæ~„P€|ÚzØŸ¶&n-µ/õálŽ˜]‡VºÌpÓGPàW1!E|_qs7*ñä!=âwÍÛÛÇšûSeF­\ ¢šsŸbƒ£I^ JÇkÒõüe׫øóÙ®ù6)tÍ2ºa¼ µ‡ÜQ¥fwËßïšL¡Âêt‰—çík'Iš.¢½×¸9“ ÁTÜìRoJšFÁ§màî¢ä£é¦uÍ"@[ x̵±u.’“Á€ðaÐ;FèGÚ矚AoÆèl s«£¦îzL±­ ݺˆÃ4%Ñ:+ 5$‘¶.¹µ*YYP+áåáý5˜ˆÐƬÑ/zî_›çqÂÎÐsˆ¦üœ|mý%)É"©%ÿiÎ̯Õï²êJ+¹…ÎÿjÂ\Õs ¶¥Ü¾½›wÐté#·.K®TÈê{HáÔ¶Ç¢=HŽö‹'Ý"4ÿš·É›ˆÌú-ÚªmåA“m¦tÿm§W³³î¿MJW “ÈÒ(ñ„ÿA@UK4øˆ°2›ÕW•ó‚X£sñæ;É$>L{³#²áˆµ›+æ°É Ad©aŸuo¸j^ÙLo¯‡”¡uƒòWDϲ 5àÏ{?akÌ.FøŒÅfïqÃÑ|C‚Ç€¾Qrv¦fXë{²çLê%l+auÁo:\°äï ;Ô”tÎP‚5·Áx„µ¥ÑÇMÞaØtåT™YŽ;oõ9!”<Ù£Ž0Óâ2Î0KNVîÜ…×–æ,ÙkOøœ0‰–:Kµ ™Û08ÊáyÏ«@`¹ý%7VËf¾×ðI[Z8ð--_÷4Àœg<6uM?HÜÊPcƒ.Çüw•½Ö¼=—”⡳ÈHä—·™ó¶{óêN„}¨áìqïñ¶Ùñ!'ŒÑ*9”•جýZž BElÞ–Én(eòz!Á¸Ëx@flÖQ“Z î¤bCH‰’ø‹+å—žãøËºÀ×Ù›'Þøì6¬ÆB[R_}˜23¾~²¶Hw³  +(¤ÂE“Ƶ'% 2ù U8`Ñ(ÊJŽ”*a Li]äÕYê@2ÊPS%?‹PL=“Ê˃ԉ'S¦ ΗÌP¿§¼•lqì„ôÞ3všm¤³p7>¢'”ˆc\ò`Q¦—*)öéÞNamݺø*2,~à{9Ï?î]¦sª„ÔeôÐ%jyð’kŠÌêâ~ù¿àe&Õd0ús¾WòõKü ©†hÜÜo“P÷d§¾}ídª×’ôø:ô>ÌÄÿxZ·¯9õ*óî¸î/ë]˜áaˆjiÅLõèxð`ñ"yIÿ1ÄÞô0Nâ_BÆô:¤ÿ7óÝí²Û6=‰™Ýµ˜¨Ú»R°…;QER¾ ÊXE ’± |@YLœA5xÿˆÊ"ŽÛG­j¡MK§Ûœ¸1ÊŽotc—2W¼ÁÙ»’=)øSE²¬Ñ×`ÒðÖãs1†Úƒ‚«|ƒCdÌçŸ+žš¾CÊ¢ùS³¸“®’ƒu$ÑwÉð®†Zœ–_a~§zÁæƒ=?‹Žôao2.õ>qzé'5(öXà ÄýR¨Áþœ½ª£2 6§âÊ8žmg= 4ÐV¯z?áC²¹X³8&îfRœi±6“ÉéÞ·7¿g/r³'<­Î-¹áU¸5Óo?~£%°:kî¢-4ä£ê@ÂÕ–ÀPÀ©Ú…ÑVè$‚òºèÏŠDsˆðW@¯V"%‡’¾P":`!{'F—’Bô4䶇rBa6Ì/¤Õ,ìËt JVCÙDEá™ @£¬¨E×ø—‡÷G7»·Xí}µ£Ô¨ù I6CÓ×Äd¥eš­ÑuÅ`ƒí8¬'oš(Pl¨‡à¢ÂÒÆ cƒNkMô8¿V–îz*Xár² >к"~ˆ¨’µt]y…P¶JÁG~aÁ øíÁ=‰Á¼ä(fy+¢Îx‰¬dÞUâf+C†Òjz®ì ‡Óñí~",„R@ýbñϧ|hœ¢)K©ýhÄës$ë99°4%Ù‚eûe= Ôl?ÿ¯±‡S‚·d¥ºà–V©Q„ȾHx*B`wkH¹OBºpTU-¾º7jmu$1òm!‹&5š“^änmOù[GÉJ%IÜ>¨àœö'i£2…Å«A5Üe)(3=DZoˆ’¶\ƒgÇ àØ(ï]t*y®zò°³0ëì’AMžß²m¶£Ñ0JPœfºÄÌlôœÚ6Ž…O™ÆD«å©²Ý;·ÛMþ/pWpsÞcý\¾‚F ¯}ÚÀT»5⸓,ë¢Ïiœ|Jüs´o+©Jf’\¸¥>¹Áдô½h÷³}ÌÆ)O!¡A 9mXÆKèÛò\ÓW¨ÈsZ‚$ˆÌ+vÁfuPè©zSHç¥y®¸ŒGkÑl­?† %.º‰K5`3÷„îÌ´rÝH¤ð`ò»„W—-ÿ¹a­ÉÔ2¶RPþè]Zx„µNA6àQ4¹@—.²D!€ÑnŸ ¯k¶ÿŠ\­ìHÛóótã2˜–‹ÀŽN¡‡x¶ ­&¤ËÅe3ÁnìjgÜ„ÂD~œ*Õ³óîŠe”m‰œe´Äï÷†x#­ß¥½V¥†.¢ŽÐQ$/#M«Ô§¶§eå–Èd#Xÿ\í«Òz@L³û¶;è ·|<å¾1‹x—‰þ0ƒ!fÐsbÇs½/$“•ü‘Ï ú‘³Ë¥Ç]ÝUˆÙ½ÞáÕ K Eytâ*ÿÍäl¯®†_¥ÍË‹,k?ã‚"6l:K³—ºË§Ì*­9ЬE/Ǫ3l½'¬4ù fÙÐî^ž³…Ù<Ž–ÑØÍøîŽõüÀç_”¾Ë4NuáP±j!Òg*X•ùµ{m¶£ìNÖ :ô,Un.‘þ\}©]\+o5/É ãF4ƇØwa¦œ)ÁA©ÈÀv+~TñfМÆ÷õ#u%§f„Ï‹)‚“Áô¥¯%¶Üö›ÕÀÌx(|ú…ÖVˆuÿ„£ŽÃß’7›…çó<.Vp»G_Ne3½QqušÖ¥X€iÈg "äD{Y!Ûó§'.°¯¡]„µOÓèaimvEúY£&k­3Zð#¤,Ê]7–ˆèmìÂÉ&X†ª¢qƇä UÒ‹{Ü_Cäxz¸ŽAŸ D[äL­~òM4°¾Nˆâ„Ò듬i Ѩ1Åb£k‹z‰ÚÌv9s«ŽMܯÌï>-ëÂÜbâí²rHòTE„qN¥'¨4ð ù´À= Ð…À˜í<1“Y~Sk³c*öºÛæ™ÀÐU±È´>:£âæG‰IŠOoTÒ]ÑÁ³6»lÔ+®VºˆîWØJáNhÅî1 à.¹ÚW” øË⌉± ioþdx!ˆ®8Œ0‚Ñ—Œ±£YÕÚµïëWzÑ­Ùyî#~C“"YÙ¾ü?ÿÖ%fצö»CÃáHÛZZ¿}°‡6}IX…ÑL#ä{¿\µäÚçT[ƤÕ[Å ú†aQJ¶”üü0 /Š´}ÿk‚æ×>Å$\Š»qÌÊŽ¹H¦×gtžŠ< pò‡%+±Ý˹&}'5f:%GqµS)á‚5)ŒÖz“&cNxXZz8±bÙĵ:U#°iÁ™’ßVq2M$R€SP1õ0Ud¦%‚$€Ô•¡L6KÊܹ‰ªX«íߪÆu´[F×F,€ ¶A§,Rgq$~g½uaèר"ìfuO`~}úZËwû 7×ñ¶–žQjR˜ýÊkä‰ì@db¬æSDQcg•?ÛmÃäbÛ*‘”1¦§œ“ìòVRÈ/Œ°¨ü†BëŒÍÿ$ý{ªc'*4Ó÷•Ç¢ª4»±ÖÎÖP!û‡Â…£Ò¢•Öûꬻ¹è,3Ä+b&þóûÖôþZªÉ½ªWUãÖ[²{þ Sw2'¦v˜ªŸ´*Ar›×›8\C~\˜Ð|•71Iü«B­¢ª!uM§"·.!Ÿé/S >‹=r Lµ¶S—6!/¤V/~²ýMÜK£Z·Ñ%`”²ßv¾”'jïA+!nT™,AÃ0¹vfpªÞÓßmŸ2=MÙÈ vÊj`:>“ˆ¥ 0OÄ7ïd–ÞÎɹB:¥:Ð}Ÿ8€úYýä€qÓÜt§õþÿÎ8¥^†Ý’ÀU~ŽØ™†2±Rf«yÒ Mº6‰¯hzÇÕä’µ’nz¿ÃV­Vrgâ^Ys‰¤IÆhc9ŸüÛuúŠÛíņ7Xd|¶æòRPÌ‹(Þ¶ ¿O"‡Þö,_ÔvÛ‘ªRZŽ–Tÿ'«FŸdÃמO‘QWŽÇjKó*¦U Ú„¬ {^÷1€Ê3a)] ;H÷ç!³ˆÚ)vðø¤Ôþ©_Õé!®•½‡¸Z;ç+NvyEàö÷m¢á˜‡Xk/0¹ó8˜?Ü0 MÏ&"2)ẉ»pkrþÈ£.áÜæ2‰+F!‰5R9K¹DFê4`°ª$ÐÙî k!ÏÝïOÊÒÎöi…¯¨íøó¦Ó5¡ŒÉË»x¨ Ǭ›à3 %‘asÝókÛݱnÏ’Q¥C¶ƒV1Û*Jð 3­Î¢w ïIæ½õÐKŠ)¯XpR–!û›SYO8·?䫞šãDlÇžLùÔÐÉ­å–¯r½ÝíÖ{ÓT¬…ÍÆ«Fæ]×{Éå•2DÐmÜÒHPŒÎ I^@‰¬˜ ª 8¦Øg5ÁÁ7AÔä‰×=N|S¾¶ÍØ©§†Ó^|ØL×›ãÁö£ñå‘‚w5É2ÎÛöǰê×·ë™Ø£Bã­cõ<ÏO~ú–˜}‹ˆÙÅüe3ØFIŒ‚wÆŒ-uÙÿ\ž×ày…îkÝ]˜/z!ÛP÷”Êg»©óFB'Êœ¾”RžîAU ñã½5‡„ÀýçU¥ùF¬.öéã˜yŸÿÛä/Ê’"“!‰³r¬apT±¯Ž·˜O÷Ö €EȉLFƧ3wqˆâåœS#ÆL0æå_!vbMÖon(Àfv_M81kîŠpðIJáÅžíÀ9Ú¥íÀ`#úÑR"”/ m‰tûÀms…ÔãiE-Úc H Öç# õÒÔ0Ì ZË0|Ån~í²©ZßåUEwíÄ|fçÚQqk©w‰¹q³´ÚÐ|É&ÛÁ_䗺ˆ•Ã?V͸„4ŒÃV+~01G*Ê_aB6x:ÖØ¾g Æ`zbØ_ó%£=¸Ž”.õŒ_s"c˜5¬¾„.~^•!Gj¬ÛŽ¿ÍùF†Í•9£&taÊä® éÊŒ¸”ŸöùQù‡I"èSdíöMÊj'rÅ?*¶Cß®Òññmo2I<^ªÎ3üÍ8œ  qÙ̆É`Ô}ª~ªshøôMÔ-5SAëðZئ‡B@K°i’Vó íÝ|ôÇO¤؈10Œ¡¾YLaÙ•æ`.Ø-nïüQgûÖxµŒCަb3!k¢8[¡ï°ÏÂb%%{8¥¦íÅá=)Ñ+c'´A:³¶‘0:tš4_üÉs5IE8]f‹+쯈éÛßËú¸Ä–wþxY¬Ê¡%¦áik/¢÷hš‚k$"”°züq¦­¿V¿»'ÚiBk¾ƒæZng/zÐöë{dzʽ´´5oÆ{É7°ÅÌ.Ö ²Û[Õ˜²¹’®>ÿŸšñ§×fá/Ä݃§¿”ïÄ:U‘ClÄӣܡ [QgÓðQm›˜K|gp`d,ô™÷ÞF×0µ}ˆ$qì–vÐñ¨§¯«nž+pfYóÀ"z‰¤×r£ð|§W"ŠHG'³Yaš¤µÉ¸•üM.Ë]·º%¾ìá-`Ž`èE@$Þs“%(€ÓªbìqUØ ~ÖÅœJÜ3ûÆŸlëâàĽHN¥ ªûtL`™mL¼¤¸®ïª éç¶<0«uõ}WZ{hìƒR@£‹BÚþP.*F­€]ø^·J g ‹ð\Çê\*ðf«M„z:Î$%VnÜ¥Û´B®=:î[í{Û ´° ¶• EãY¾‡T©½‚#Q[»vFÙ3mv옱×]-=8‰çБíÍWœôy i*÷@ü„šóFâÂPcÙ\jtÅ‘ çYcZh9o쑚w™dÊä…V§ÌGÓÕ_ñgÊKå•«B«Í>ZÍnd"êÓNBú*ÓsäwCYŽ%}Óù^oS«ODKb`|ÛPåjðšÈK£Ÿ§ÓÌbÓÇùˆ T·GT .4ƒ¸ˆ)Õ÷ŸX9E#ëªÆ™X„Çc ø™M",£Hªâº|Ø[µ€±9”ÐJN A1Šñß&V5~¼ðâÃ&Û.`~Þ¶AuÖsYq÷N„ßå´øq¦"!ða/ÍDNö\1/÷9þžç)¾å}ß÷ŸöÐÊÏ¿yÎ9ÔƒQÉwƒ´,óIn%)å„wqÌÙP$¯ Ñûᤧchý]df™ùEºs />Fc„HÊݰñ¤a»¤í MZç: $oƒ!/l·`ÿlu”»Íhåg8­ÏüÒ]tBuQ+4µõv„‹âŸ;º¸Dó"óY„@î4ø0ÓÊ Ê˜2%HrÍq¶IÕè}SéÏÙ¦‰Wæ¾$ÝÀýV9?½ ÁAœ‰Åc£FòWÑÈ>Bd`û({å·ã÷Æÿ\ ¢ØšU dÄûݺ©Y¾ãkS8 5 ¡Ãˆì EC{ù™ÙبŒÑA‚Œ.î¸Ðÿ48 ²ÊÁ¶2P´g£XsÖ¾úT“!Y1¶ù¶\’£LÔ`°¥ôÉX¨„á¯cв4s¦¹?ö<»ÄÖ5W´gœ•·¬ˆB¼&ñž5ŒÐ°€ÜH<çmj×¼E<Ñ@V³¡/'3Áo‘xÙ˜*Ú•L è’êÊL’"kÔÚ ¡¼_cGI™®æ5·\€žâC¯]9q——2‘ ÂèÅé–gºÆ$SØ÷ÐPȆ‰’6‰ÇÉ i':¤B Ϊ¹"t×rýåCñj®Ï‰Ñû銔eÀù çHÍׯ9hYm>‰± bÒŽ³¤kŒ‘þ£åxñܽm[›kóK3ý¦¥%Çöî#3ìV jy>÷yƒÑ·XDó.½KF L mžPò(| .]=U¨ ]ÈÊ”ë´â¶Îö,}> µƒ1+f%@Röi‘Gpé°Üòpm$NL¶êN哎ÌëÕF¡6-ª)’gœl-’bùSlOâà:Ìj`ëñîÇZ¼W  R@4¹Ô÷¥àã ¬ygƒ™Ï3 íÁ=bY|2ú> Å[—«íàÖlWk4Rm¯±þžÛQð{©òÇ/»f ç9á.mï@›4úo¼ˆ,‘‘¡r!-'Y8.¤šîeÛˆUÆùß.¬ŸÀ4ý:«ëKHÒjš²•71áêϺžÆM©Ã« bßß÷gþ*q7 2<¬ÖŒ®™üßÃÞé”}Fyr‹D+ÑôoSâmÄMñ ­|Kñõ{ýÍQ ’ö$@ÂX™åÁÓÅ×WŸ¡§žuÞøºâã˜çÆPí~­Ja£#áâ€ëP«[Qk¦Ú„é+)Þé!ô&rСUvÔé#Y™4¢ê抲^Ä­B¿5L4kÈÙñ¿¾oÞò«} Ó52dÏ0žË5‚N Ë_ªI)éfy ñšG”–°_Yá(?]ÙôÖc§’¸-ØÈÏd?>’¬:…ª/µ]ÝÙ³‰E¬±¼+ÍJEÁ4±µãГ(à_ h*›¥'nî ôI ®¼wmniùÙ-Ñ-¨þü~ÈêíÁ·¶eãm§!나NÎaå<"! ‹I)m§ŽÀˆ?œJÆoR"‰'p3g8WWÃi]~ž§ÌÂi´`{›Ntn$°/ÔèüÕïð¹ó§ãµð?¾uéõ°å%f¯lþl“tø€è^ô®ª]ìžMPŸ’ø a§£GŸ_$?† 1(ÀÙe Ë<[ÿùpŠg͹ŹAB_œ™"}õþz-EÜsJ•QÎe¨ÿ<ênÝ02¢d¬º›»a5‰lÖŠ²0…'U!Œzùœ¬å¶@ÿfÔÂs}šn}}Q€¯‹6taÑ51<ó)¯)¿A¨ù#q˜¡2]aÃH‘¤Ùv2–ojˆë@YÚì‰ÔûO¬>éSÚñÂÆ3°TtB<¶Ã`û5—Åîµ›á¡(?1mŒ WIH€{Ÿ{úæ·r¶”ê§6)È™ì<#½])“å+_É_1ù·mI.(ç b‹±öþ«{±Ç–ëÆ+߈VÈ+7À;¨Éë/ÜGZaõ.Ÿ5gdÛp0&§‘¶mòk5E<ñݘ—ƇñT‚>¿Éœ,£Ùº‘#zª2B•£–e4ænž£ÂLz¾µo¢àû/«Ç0ëŽr-;ß•uXòŽ” çó•Jxë¤Ð€O"I^ú·F~>9sÕûܸ¯AXÎ4;Ç‚‚Â|åéEIm²Ã ÙÁfäÂcØÔq néÄà çšK·ƒT¤¯ëE?c޶œÓúN _,˜®¦•³ŽÌœ8¬( ˆˆô˂B⊢â1O_+(T›óC6bA—ÝxL›kÂÍ.&5Ýž^ÚÖ&Þf`Œ^y´åý¦dî‹~QA9ÿGsŒ('N}Dä2Ã8›#£< W=V¬K´t‘^žÛ~š]l޲CÀºY EÝùW¢¡p7Z3ã1©ÜnÇeJÙ2ª¥¸˜r4€ ¼Ü‰]7¨Ûê£Â‘=îFH·ÕõfÖÃmÞÊ/•':´åi%séW°Œ±/ý‘ñ¹›?Hö»O{Dy6lÛYÈQu7#}ÃnàR€` ùOv «G›}¤ûQô„sû9Ð+…O‹°§FÒͧ<ÊÄʳxÌRœ/´žµÔatuì=*;É)@›öˆdÈ@FÙùÔ>§îËý…Uö”9¤Ø;¥OaÒ§ÌŽtõ››÷`’6ø¿X˜^7]e2öeìÏËŒö`JCòT 1 ¤¼„” ;çüzäÙ û“#Y§ó/u>+B[YQWTPÒæ+vê·cN¦.¼«ò™sTˆaš<›ÖŒ7­îB`+°$ô©e`ÊûÂɵ|À¶;òŸÍáËÌÍÿú'¸§CÞ9<Õ0ÂÚä˜çDêÛL]9¬@I¾Çž^—K)Ñv²/\ß Ÿ.&[-Ýj/ ZÞžƒ"œžO(x"†ÙNú±0êaËöÿú–¶î€67¸ÝÁiøz¨9â55ÖSÍŠ­Rþx²møÓ»àÁÇÆ˜QêåüñWÜE[U³2VåiïdªŽí™3ÔzÚ(T”¤~iøLk¡¾$Ë©œIÎ"!Ý%gƒ`‚¨’™þ[ë"Ÿ2œ2k†öø›Éí{2j&ÚÉÜ…$d|Îò;q˜Þt†'V¢kŠÁùZå²mét}nÝ:Swà<ñ¦‚Íà1'Þ!eˆ0‰oë–qS¡/BÁfp¶}¢b–§ò»Þì­4/爳Rãl’ß«¶*q¤ƒÇs\Èn;Ëálá³Q ÅÔíÙ×>òåĽÔôÛÍ…Ñkážt“±i÷%¥QÚ5;id=Ã?Û.ÝG²’4®FÒuN,µäít)%úŸ£ zœf:2…oþ„dÏâVÙs=âÀµ2¤h¿<£1páÙîZ )¬¿©/Îøä¡dLh‡®ñá¦iû‡s­„׈!ï œrfòKR²ó—ôÁrš—ŠŽè{Ô ´„¥6†-tHèú5È% ¯Ç „i‚C¡šQt@*Ç1}=I›”T²q¾ZIź·¨jtâb¾Ewð&LáJ¬çeM?Nš}Ÿóû&ùTµ×O¦›Þ¦‚ù®âããàAM`€”è*¥ô•øÿóav’r‘>¦<Ïz™äŠÐgkô?CÙ[Eˆ¤¡ÎZt]3sc€‹D·+AQšÌÌ…¸;˜@C=΀€P èìúF>JÙíšœ¦nÃ:¾¨R°xobm\YÊi‹–œ‘Fá~ °ª®ýrN|Ê8àÊöD/Žº¥”Á£^¨˜q³IlCîžE2BMdU¹/ŸB·KNÈv†gÊÒtNCô˜Äû÷ 4Ÿwi±¤\¸žÚH‚0^±Vv±S‚Õ•bÀ´2#˜X†–´¤‘‰<íÁ5ÜÆ,àçR}‹€}è»')'…Ýû§F¿Bo®ªØÛfu§]޼åF_! Gø63ƒ%Š<ÕÞ˜šô49¨=ø Mɤ)Úu!“Ê|ëiŠÔÇ.³K¨»©±×VëCôÅ–}¹ ¸g"X y¨Yébí½©ª­Ü?3±u&¾3 ÛßC(ב{ Àì>.Ìlȇ l”8MÀ‚÷lïÁ:uëy‘Ó§Ï!™¶±Ž Æ 7”³dLR‚ˆ„7îàed•"mN–%Š] Ý=è)®¬ú®ŸÃ›ƒC˜·>£®Ë›³S•¦œq¦Rº7åhÈ©ÚÑ/P£Qî£E >µ*ßþ‘<ôV›³Oéˆã¹wÀŒ\+Ô*dî„}e}'9F`&Ü^ó›ÛºÉîÅ¢IÞª›¶G¡m•iM«­Š„†×:µVM¤ˆྫྷ¼³âWϲçý³v³£-QÆ2~_ʈ—,aN¾;û]»ÆÒrì.!»GO5.)DÜÜŽ>bIÑüeÐùÎÎ h%\ïöeuÝ»-I_z|‚;ê:Üð±%I”ÈÌB¢©m ØÆº[ Þ÷©Gƒt {û–²¼õöc ¢a8h€ß²wÔžs£Ï5‚›~1åÝ%auîƯ°xxBÏl¼õo­Óv0•ÕZ-ÜþˆÔ¼­„Šc‘$€ŽW#•¨T®OÁìJÖ‡È'# HAÌè­Ä"­¨åY™Îjb§‚ש§€KðÔÐ!µýcÔaž\"bºdoÂQFùøIûJ=œ!t"ø”&^šŸdžqá™ÀÞ¹:Õtµc»ÍBÇÐêÇILQ³›+€Ê[ãTP[T0_ß%³’ñv½—7ÄD!5Mž+³ÊH媟0Œ¨,oƒiç]ÓØâMÌ]p‘þýÔÙä×§cÿ ÒºÇ 0oeiníXlõõ.ûhcß™¥×Î,ƒ¤‹7Y4;ŸˆÄ/ ÑÈÂ1—M[ðšb!ø[ð¤‘Ve~–õVîâ#±|ïøoá5» x¡ANx?„ó!ÎÛËyÁcç%Ћ·Ñ»…_͹ó̵»§o¤±ZIû—n—SUŒnªª€ƒ‡}ëÎÑ&šÆ6¾a·@°5:þœŽSG3/1 }CØž1(ž»Â1ÀÆôSí1Æ#XoH LþòC–­Œ¢«Ç¨9kb註#Ý Ö ‘¡˜x˜;¶è},Èl%äë2‰"Ïè‡G}èö7´—î>"‡÷ª³Ø Î2ù³Î@ >+Ö{X_ nÂñâ«Î´g¿ePšþ‚!L€ÄgJ”¨¬p;‘gÅÅ#7º¯%¾ ø9ª™›ÕˆjŸËh1ûDÿõOŽè\ÑâħdWQR˜:¯Xß<Ü f&Æÿ³øÉµb=×`‹«<1Eâ]Ä«%œ¬$”óõý„—ÏûBq¬…Ä–ÛžšHmîÇ“>¤»n¥VÎË(ãþ‡L±ELqâå\ ÙÚß;Ѫ cå¡£f*J+:BRã9ŸÊgv<š M¸<1_2ï–N|êg‚^™§%*‹a÷Ý1`!Ñ â+eª‚ÞP™?Z›fW~fQïYÅ2\®|€ ­bx:þÀàÿh4ëïú|$½†×Rø8â|Ù‡q‘ÿ“t¥iòÀ§ƒ,mW+O­iË(õ…1J™K¼¾R d‡¶vÀÅØeÒLK?÷ÔL»>j߆GùcFmÑË߉tO¶‘úÆ…$’F?HDª¹ 4)_|ÏâïŸÀŽS9Po×à™l.¬×¤ÌŠpWi\&¹ÔäB±'ó´Ãëe˜*=Övž cÉ)ÎQy µSìVç\Ú(&ƒ€,ãöhësÝS݈µ[À Æ6\v^©.qŒ ¢ê¸5îN%y˨_‰0BÓhu9$÷˜ቧÄÃlííÏ8XÓ‰ù‰ +Ù:ºž°—a3©ÕAc$¨_e®¥•A²IFmíw±öÎ:M¨Äú¶J•Q(Ä<‡Ì¯À•iñ;@ÛãßlÁÔRðô¶ŽÓ‚>xçë±³„–ˆÒ_~^ 3—‡ºt\`?¡«D¨÷ý «©bi7ÊòñâM$E¶¬€Þ–K…§åîÑ”lÄA~UŸF8›yØëñ´wR¥8ĺº¥Ê¨ß¯¨ªMtÖ”\0hcX˜Û¸¾ñøŒ³§ÚÜ2ôµÇ=OóR[ð±¶nDîÅÕã,EÎwPp2G©ºëòIÜšUXíÜûêßRµbäŽ"¿(g&ÈÚÇ{'ÚàS”¦— Sê'ê.2nFÔ<¶…®Ò‘”»“Ž“ûœ}®Þ$Y`E¸s0r»Ä«‚fí»È?¤xf 1%I'µŠ`º_2þÞ£é'­­ð9#¯Œ)ÜP-[wJ¶¥Íæy[W8¤hyÆCù)\ió‰ßM+׌‚„¬tÛF@­³‡_,h¿Óq§D”ák@oòÆpQº¤ÙûH Q12Ï¢lh8cut] 5L¹á±ôX·¢)†ôœf¾t Oün.*Ö w„tÿ°ºñË!§%/fQL6+<íÿh4óÄŒ™Ô¡Ôk`‚¤qâ1ùèq2:&n¤ÚÆ©î÷C]PâäÅœôœZƒ g‚¹¥óVä¹wu‘ëËE, 9ñxË»•~ˆvh ¥MQÇŽ‡è×-æ°aÈeœyK)QÐ ) ¼ØˆðöHíQ}¥$ªºLâU~³<»5O8eö©¹Úíê#­ôI#Û/”6…²N¨ÃW¢ŒŠï °Ryš}?S†k˜ô_ùðïIÈð:›³JÇc;zLg‰rö–b‘Ÿ"º9Bÿ€*Ô7,ÇÈÆatpèM‚í’’î »!ÒÑûÕÈuÜV2d|E ð舌•6ÅÇtB¹Ø`s¬,ļXH1×:1‹ LB}»S³åiÝz5¢8$ÉÕà,™uhÍ%Sæ¥ó5¯gÛ/í°}:XÛÝU2[XW<·®æ<Ÿ»d±X‘¡Ë]|ÐfP»6æg|Cø³bzLÌ6¬û¶cñ+ÿðÓJ%W®½ôN𹺌é9ée#mjì0ç³ m‡ÔÑ΃T¹1á«¿ ™j]º.”Q/0¤µQ¢“®[¦‘0°LA¸‰ã¬x°Ž¸h‹ IWS(åVâou€á«?«Ì_ŸÆ;²ƒŒR\£ :m&­åP¤™ pŸéiÂ^À¾¾:ž§ÌMÉò; íLÔÖ€œfö†º¸ƒ»=ïÜ` ß@ØÊ ²$)Ýü6 kj¥8®ÆÈÂ>÷‡•§-.³i èJwµx[ç½~©¯bmÑ?hO[IƒÍ­a\¹P:æw˜ ϰù‰Aã[ØýT6Û1T¨·žrƒÓ6[?&Ù¤TJÖÆÚb0eA„”Áó4†º‹ž¡bŒn…„ù«4Xc¶óÊãñÛ¤£âؾßî…eLÓC òpõ³õÛqï6^å×2õPPïªã*òTƒÓ¬RMaÍ vӣƪâ>3~¨ wËXËqú„¾¼þ²WþˆRB¡ó/ ¸'Hë 47ù˜Â”Üam6{ØÐº"ä‰3E¹Ú˜À£þ,lçk~a‡Ôýë)w ¶~ëñßdweωwšÕ¸ã–|OÛÍns¼Eª|Yì$L¡Ö"X›JUC°¾¿ƒ»ªd”, ½U*7#.:L¤2ÖŒ¾"¦wöc@K¶Ê&ʬW–ÀÀ=í€ô‘ÇWí½ÿ|h÷[hú}à×È•¾ª-ŒÅaÕ§d;'¾Jý[”–N(ü œJ¤@ПåWHoK<[ITSw3¿2ÈvaßöÉM¨Çã R >v#ƒ XÞôÞ)o‰3Çè–À™lÎAb~CYª¤ 켇‘³dÅÈl•oo5¾BÆyg¡G Iž vÙÀG™#ýˆlÙCèD÷àíû]ªñVx­g–zq¯x!µr.Wá3'¾ËÛ^¸ÌÌæs”Ù[ºIÊOœœˆ’àAê.*»ÃùXݦ Ñ0kã*®Mñì`SyÏ{çÒUŽÉZ‰¥½El—ÈÇêß¿]Qö踀é- ÖåùH¡T|‘6ÿ~B ¡Ï®Š¢‡Âñ}‚ð*ëDß}CŸKt m–ª¾ô]h¨>]׌v[»ñ3D’ì×Ô˜ãÅÛ,ò"7KV¦{tüÓ4"SÇ&Þ\À0óö}RTR|ÒBãÊI&_:â}_¼S&t¼5F´¼YÉg™›; “”§Fg˜`Rf|9ëmS)ï¤ [ß I¢Ž·±(2—œP­øédC€Æ >0}`*épν·€tÕc“êÞ¶{äo¢qj´Ȥӆ‡iF³1]øyb>žú 5óº`8|*·g ËÈ#$£IŒÏøÝ_±Èa 7F0¥c»v{’¬ûýóö7©CÃ’˜ ®óQ°œ]’Ÿ××P¤„JÇY¢- ã$û“}ð\CÎ[”Ñ]YÞYvƒ ‚j—»†-ÇÐP›[dñ¼ŠÓ M™áÛ6df¼€Ú]ëÕß½ø©‡o€úƒ©é: ÛÌbJŒÈü`²i¥ýKmÏr1âïÚ¬ÜxSÿUéû÷%d ¢A¶°4Ë¿uj"‘“5âæGÔgâF1¬ï‚Ñ\À3$^ñ|"3±úJ…@h©í•í'W1Æl¶\x??e{þïs¬£!2—it¬ìMŪÜöàÚ*<Þ±©–Kj±—ÑÎê6½U0°Ũà~¢øÍ¦µëß„öžÛÒq·ÂDËò -~T85¡bj°x_pÒƒ¸C| ¦½è[3eAsQü¥wû¹§ ÀÛ\XàW4òs±Û±¹vr’þmê}J¤Ç ªTFÌ8Žº:»î&4Í”‰Ïß^²Xâ;í4{Ÿ·‘¡åÀî,hÊu3@P)Ò„ ²¢¬ü2#·ÜÌа6¼±šÕB¸Í‹©û,´“ŒkºÞªƒnˆÆIÛ™{kð¬¾ÿñLìåÝÄ¿¯‘РuÀT6HŸË£óŠÇYë€WŒÚ>à‘ĉóW*ÆåÄÅg[@—t8×0Méó ¼nR÷7&Gæm‚± )ð”O¢òÎ ˆ«¸ûK;Ú=ŒÇ£îm ²ï=ê,»?8·Š\ð®ef"ô^ŸÌw°º+î3ýíÓ׺<®†D|†˜¹pE–Þ#øLbüW\´z5Ï“ÒGCûp_«ðû×Öqˆ@Àw戻™' E ZÆãôð‘º϶ÃÌÞ<èaävrÖZðéeì?çàk:¨®FéË¿û*B-a¡¬ëѹª…½l؆Ìäz÷N¥¾Ö:d×µx´¬ð_a›jT ßÐ4>ÃO€ùPàbtâ0•3⮋ûðð×»?‡Ý®sÁݨç§.ßà­3³K­~‰ZX|†þ¥E’…?æ"‚´ã6Œ¼Rlúå «mR%r6ñvlÕ£×Ñ5@ù³ÎIš«xêÖÀm–Úô{Pð5ßC„()ÆŠÊÜŽåJêd]ÝmcÑÙ%Jž¤§–¢¡Í¡r$q ÿŠÜ >æäççÏ™¨m§î¾D®Pw~FÜ‚¨qˆÉÑùR:°!ï:{_ù‚‚z‘ø/"b³KeÓeJ›êÏYFy•%C¶ ¤”¨;øŽJyq-)¢H„l–CÃeAð®´^µM2‹X`u#.RwiVÄa]!OêËË”é¢Âˆ¿X0TnÒ0R&0÷Ò¾äNù/Þ4©£çè®% Lácß>˜¡bªÚ”5>‚@UñfA‘Ë} æÐ5ÒwYÀÆëÁVùU¶ÁsÓuú儊.}LÞ¡r®Ž÷ ®ß>¹O©Ò5;`5®ö±„J”$Òç÷Jf0‰+D•ˆÍ°JȸuvN‹Ó]†ZœšCíõòJB«yâêõÙ‘é¸ÕUù1ÎÚÎ{75³TSÞ#æÙ$4o‰**ö94îB™R9¥§/b/NïèM¥v"ºpœ½tw /M7dQ–XP.°¼=«‘Æ’ÐB΋Ä!°Ê䩚I(4PÛV^.ÒQ©‚ =î¦M¤š™avh¼‡£Åz‹(=%çx"ˆ€lXhj3Â/ü´ \Fgzêa7ÔÄO|gíúªwxYø Íÿ•!eÎ!ÞíÓáq›E÷¿ˆ&"=7eF=1=-Ê{"B~\í²…óèÁ•“_uLò3÷|û¾1ñ8o¥[ÄŽeƒ˜>WÏ>¢Öm<3­zu›î/¸iY;´ Q6‰.½Ïè ¬5Ê\Ìj­µ#Õ+Y ALæ¯]¼šÒ0ÈÔçÂv%œÂ;Á6ÌZƒØÐEƒ‘…8¾îäé”§³ŠWã-Snhðßž0JV$Y4×·•Ç‚rÑ4ëí¦Á!äÕ5Rá»É}¼£ñ*¼_«¿[6·Að…ÉÞ·ž4%CKWnº>ŸŠª¢µPåê )Y–×HàÔ•râ>¼fS»}JPÞòí%«rû™îÔw/ÙÒ5‹qÅóF(²bŽ‚ÁÏ‹"iò~êƒð¦ÖáÃq™E÷mu‘Éíew¢|B^œnÀAB° ¹ "§mS/*x Öæ©T‡ ìÛ÷â é™Zî%|@ÖׯPlLuX·'ñÀê[æ¼€æ³Nñ¨+ãŒ"Û^爾ΠŒxêÂþº–E«´p]´·†qkµÿÿ¯REâVv‚t/ï6: ¹‡žaÕ¯ÅÝ99Å ÎSsŠå½fæ`wcSPoÏ­%wH9ÈýR?Š ÈEz¢V‘ë\PöWäUO6¾V*¿º¾ƒ¦JLT$CÊž‹«–dã1L=ýÎßÔØÓ…OŒ 9E€q£Jh2«-‘Z±Fäâ1.S¡Q^çV=®ã¯¤ž‚µßádZ²Íú=åz8ú)Lx¾×•©ÂÊ´4ºÄ ë>0 ‹YZsurveillance/data/stsNewport.RData0000644000175100001440000001213412645666575017031 0ustar hornikusersBZh91AY&SYoEÕJ~ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿà=¾ B€@p à€1@qà{ÞàÃ0Ù’IØß†"!2`#F‘§¥<™4¦FÔI¦=CÔÉê7ª 2zG©„ɦÓS=SÒzdM=M¤ôžSFFM1Ô¶“íi| Åü_—Wãëgîòç÷¿Ú`y¿óÐÞowø~¿‹ìò±ü?Á¨ÔøÚÍmÞ»_äì67·×û?+m·Üz¿K}…úñ8\>'•Ž6Ûí—ùÙí|¿3mƒçn7;­ß£éz~¦­Ààð±}Ž'‘Éåãîw[¿G{¾õ7ø^¯­‡ÀÄàúü+¸œ?cÿq8¼n?#ÙÆö¹<®_3Ç3Á™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™é¯°5=Ô=^Œ‰DDŒÖit­d¥“Ä(PH¬*“Û@˜$ê®) Š1©J ¥Ä&U!€$XÔ"¤)j0”â2áUc ®!b ÂYs¼TÆ1f0c;lå%Õd ÕHTЩJ‚0*‰ˆUQ €È“ÏÁ Ild*Œ5HT!KeIeId©-B¨U­•IP2UK¶ PUEQ9‚B†€ˆ¦&Êq4lâZ(LCAED™ãSÿ…@c(Îs²’œHb £&˜…¨ ª™+ßÁ‹8dÝhTÿgHCc"HB‚¬±±“jÔ*Ù ZÔ Y) I3œàÊLçe!•‘% ±U`ìRJ»bH’È!f.Y-bbîÁlk{)¶bÙ’^–Y…ÒâT08BbÒ‘U‰a¦˜ÄÇr1l0‚XÒáV’ï5̃Ó&ÉBË%1¶< ©½ß¶7›V1‹²²Á$d -¹iʘºhB@áfKª7ÝèišJÁQ×K¸$f!yo†–JV+I@K? ŽHÑ— ¹fÃ5[emક$•¼›ä­»7´ c,‰d8e»àoÏñã,ÆS ÝË!klÕº2G9Öô\å̳e»d©*MµÆ™½-$c¬½vbËyf%Ž4—Ž Žqº·MfÂi3Wn¼I— ‘Ùei‰¦3¦¦xÆ[Z‹gbÉu™ä!ö¼FJ€Ö÷eQ2o9ñ·&gaâwþCñenÒó1dMùÎ~bC˜bHc-ïœ, 0gº„·[¦¤µ&šzlbæq›®Þ¸²e]‹10“çc¨éŠòúOß/÷I¹“‚Т*ov£56à4²hÈ„&„¤ª0Ä€7s.wi“KÒñm0­©yŒb^™»löX¼oο‰œãní›+Œé·“­íæ›2imføm€=æ‰.3ɽqŽ6.kµÀlgŒ¬Jk˜±…‹ŠÕ‡9iÙœ@D Ĺ[–% «ûÏ6O<뮸ãŽ8Ûn8â•Õt¿//×ûÕ+ÝtZ/¥Ü)JR”¥)VÊR• RºŽ“µïû¾ÝYå|ý³ÞMÑ|nýJR”¥xŠV_.¥}Õ)W7]–¥Zuwº]?h¬çÞºúy¬ø5`  ht@¡ªÑþ<Ô4š>ð þû¾ð´¾P¼ò÷ûväxÚð0çk€ÁyûíçžÝ ñ´Ìóv{mèa€88#‚(ÂÞo,X±bÅ‹  118 8À8øÜøæ <޹$^ªH‹ºø0˜€ãeæòyøx©£vUO@\'Ëãö£°ì5:ªªªª«$’I$UUUUY$’I"ªªªª¯ $’I#RI$Íi$’IUUUeä’I$Y$’I"ªªªªª«'{ÓçÏŸ>|ùûÖ|ûî;wwwwwwww}»¦½zõëׯ^â.!®Ò4 4Â!¦˜4Ó†’!¤i"àC^¼"õàׯ†¹×äC\µ¤+BÖ½­TZ×µª‹^Ö½UUT’*ª­I$’HÉ$’I$’I#/$Ä’I$Šªªªª«$›M¯{ZֵꪪªHªÔ’I$Ьš½ïy$’HÚÖ¶Ù¡{UKßÁ›$aCÿÅÜ‘N$ [Ñu@surveillance/data/salmNewport.RData0000644000175100001440000000575412376633551017153 0ustar hornikusersBZh91AY&SYñ$’?ßÝÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿà à|À0<Ÿ0>†AJˆ=M4h hhÐi ÐÓA¡¦A¦†A‘¦I£Lš2112d40›SFÔdÂ`˜š`Ú@oõTzi‰íT+ÕM5'³iµ£Ôz=5¨h€hÐ@J©ú§§ÿµJF"Ÿ¡d"z&M)妆€ h€€Ð ~ÿÕU@˜ÀÀ˜F0LF˜#i€IDdCSLSôL§E4ÓÊ0i 2h@ Ó@d ŠR„!UMbòþï€ÆÊÐÕØî8º<>@ü"ÇJLÏ¢F’Ù>Io>»«Øíظ̬í-m®N®ïoþØDcd¥æèiQØZ\)^ÚnwÌLœ¶Ž›_i¼ÿ‹Èð÷ꃅA!)17AIQX’Ñ*ƒ3t›{®.nÎï/ðPpŸ(˜¨¸éY‰©ê$Uuö6©S¸¹xÝžŸ`=žøHtD1q²O2ß¹©Ú 4TõU•âÎÙ-Ê“CDDÅ}ÿò2’²Ó3S“Ô_ÔTÕUuµé,límÒ¦N¤é¹Ùú:JZzš$uu•µÕö •¥­µ¿ù-Âk”êÝk„×)Ô)º8ÇqÇqÌÌ$Ñ?cJR”¥)HBš©+¸H$‰á£# ÈjU (¨•*2§‚TI@’@‘I!$YŸÊße²2B$‚2*ÈeE‘d«¹»ØH« B[‘Œ’H$€HH²,’0…¨²-°[!!"Ki«)¨2# HŠTjYRH’222$Œˆœ¤ ˜ @•KQ BE¶H@?ò \0°P ˆªJŒƒ%J‰" ’d  “`[$XFéP’¡*€.…„±„„•T2 „ É2NrŠb2ú£0UBI$D C  #UÎY$‘˜S Š€røû(…ÔQäí«"’š5AZKÌÌÌ`€dÍ/ ;IU›A€U M¸ õxp¸LVa– j¢ÐmR ÿGÏÙ ˜` 0â`X‡M×ôV^žÃŽw]¡Òqßx·ó÷…BÕÕX€ˆn€(b€ÌÌa9Vtà %¾#Bòy2©­ˆEÌáʪ54jÈ[¶¢Û b0–  UFX@U5ñåˆ ¡§ÌX ‰¯¾" ©ÌYN‰•it–.´ÒX°‹³›X똷®À¸ÑØU ˆÈ"‰ü Š„íGÏŠ>RûA€o,É.1¦ÓBD)±™öGÉnÂóóódS9§Šc¬%M=iƒJ¦Îý]78Ÿô×’ /#I!£”A¬©­Oy®È‡1´XI‰Žžu%|AÏS ÿ`bœœÅ•m¢Ýž(½a: ¢tKÿ ˜gšÿ²Ž\Wá4ëBUQ÷tÈ#h2Ó0„jµ*ŒÔ¨¢rÆxS” •AÀëÙ†„NºZ­$R„`¾Q‚Òñä«€ì® +Áhc]Í!dšë6(ìâ·`n2{îœ$·‰½µ„fÓ²°Ö®8§Æa¥N`By$÷ø2tá¦q[5¬‰Ï9*¾6‡¾Á¼6¸>òñ NˆäÎÓ=u²­r2»|o£“õš¶ÂÊÕ¶JÃÑ#¤\E RÊáÒt“-x,±·w‘z!y/£—´îLûú0!rísÚêì1öÛ‹C³Š¼¨,5}H&‹€ê®©ÄìZ‰Ž¤Ö„¡ÍiY³^&.˜¾Q2¢ú —.]â[¶w±)mÜ()YÂò§9|T³¼™hr"týGŽ¢;§ê%¥ ¼k•QWRˆL²…Žå•báH 94¼ê·¼ËŸ*“µ#Š3U/{ÙIÞTuެ•Áœ Ús´ˆÐÆ¥ã%Ù( ”eó D€ M£,)0[UI”žVÛR‘¨D ãZA2 Øfñ3çkW?iBD.‰œóxY$Jl¢°ZG*X Ñ1M1Cr6 Þª"¶C`[L<¤ˆ$©¢vL v‘Á‚¼…¿ÐG‰š,oâŽCD¼rœÙ[r¤˜ËL;#>fãÅ¡ÄàÁ›ƒ>Ô3¢©m–c’¸Px©¯¸  {ØÓ§¤S!Ÿ³ÁÔ·$“Òë¯-СT9+ÉS­1êЂZã£B¤‰ˆ³´Ñ`ÚEäæþjÁwúš"jAÚÀ6°qDq_@(_.‡-˜ÌxéD1ã¤1ã /ˆc¾› }ôKï¦ÂI$‰/¾ûKà·Âøßu.œà€ÌÎ`{ž÷s™™ïyÎs0˜ œæœÎpg3Ïzâð—µ-‹Ö—®®Lì€äÉ“&K´/ºô/¿šÅ‹÷Ýz·Ýu×]v•ºë®ºë°Ü ÓAUTËä1Ö;f¨hB"6è ŒDâw “Á®$@‚¾É` K˜0Úv쟡sĺŽÀ²€ô!Wô Œ…ã€9ð ȨrÔ G0à ìs%À߀˧ëE€$ ›ç¯­6Ûm¥$ï c90ºñ´²""\ŒãÇ}÷ß}÷]y}÷ßúÑ9âùoª½K»ú‹Á]˜¼¢ð6Êæ.û…Ï/0¸6fµ^»[@Ú®-MmnBÕÉŸÐv+W4]} ‡ÆE·]^ãquø`·,\þu—W¤ò4åq/B»Š–­,\ÅÔ^–.ÝxŽ;½…w[ º\KçWi[åë뜾;}¼Þo·»¬º(›Ôà­.æ­^ [½Üíï×ZÛ-ë¸ãµqq«»Ò¶®UǶØ]ñ¸,¥À¸‚-ÀQ««¶Ù5tò¦ˆz8uL™Ë´[.‹¸â×j¶.âk[ÒÝF¦Ž×çp ‹båZÇl[¸Ì¹l½`¸Ö—+VÁqdˆ–.(¯:²à<ºgDÒ0g;ų…¹¥Ç·5¹”MlêÍòêðO„³s¸à›nõxí¹¶Ô^g¹á`×ÙÙßãßï(ÙÃZåéy¬ámX¹d]Z[EÒ-ȶÀ-ήï{ƒZ±lOíù#&%ãMÚÒýžÔì]îÆÆè½tò¨EÐ\ `% hËWo·ã×[‡™Ó2¢W¸÷{8ØÒ×1-ë—.]xb&Žv‘HR,’ü°°®°UueUcÇ=y)ì‚êæÕg<µ–4€hŰÀ\æjBþŒhs«€¶€è€C;#C`ÄO oX: <Ï@_†çõœÝ€¡­Ã´ÞŸlð ÷!À7€#ÐÀ:ºÂˆÑ  D¯OѲ¨‚Î2:fr^LIËÇ#'C':›”, QÐRVŠŠ`*R ºÔuHëŒcYƶ1¬¬ÌcÆJ™2ƒ(1ŒcÆ1!4ÆU!¸¨R¹œç9œÌÍñÔØc|Ü2h0C’I$†!À!˜S½ï{ÄÁ€Pöfffg33Þ $’H`I$J œÌ@Bèˆ]  !tD.€…ѺDBèˆ] ¢!t.Š×\’I$’I$žI$’I$’I$’@A½ï{Á$’O?Æg3™˜3˜8üvté£LïCBá ¥þ‹¹"œ(Hx’I€surveillance/data/salmHospitalized.RData0000644000175100001440000000727112301106340020123 0ustar hornikusers‹íœg”ņ§ºgv bÀœ³¢æp èl`Y˜Ýgw¬HF`$9 1ç*(Š¢Â}¿éõ¬Ë¹Þs÷×ô9/=OwuõWU_Eª·eã¶õª´­ …¼/y¾~†=ýãBáPe÷.‰ÆŠšÆK…¥ÑXa¯ü¼ó*&’ŸˆçvÑêŠgŸË…ìh°¬I¿à|9|%|5Ün __çÀáB¸NÀ¥ðMðÍp_x< ‡GÃwÀãá{áàIð#ðTx:ü$<ž?χ_‚ÁËà•p ~ ^¿¿ o‚¿¿ƒ€† xy(àå>œ W«Ã5áýááCá#àcàãá“áSáºð™ð¹ðp}øb¸ ||%Ün _ _w‚sà|¸ŽÁ ¸¾ î÷…ûÃáÛàáð(øø.ø^ø~xü0<~~~ ž? χ_„ÁKá•ðø5xüüüü1ü9üü ¼þþ þÞð ?àYp¸\Þ>>>>>> >>>>¾¾¾¾¾ n·€[Á×ÂíáNp·»À18—ÀÝá^p¸?<¾ ‚ÇÂwÁ÷À÷Ãá‡á)ðãððSð\øYøøEøx)¼^¿ ¯ƒ7ÀïÀïÃßÁ_Á_Ã[ámðOð/ð®€Wz¯Ì‚+ÃÕà½áýààCàÃá£áãà“àÚðéðð9ðùðEpCø¸)Ü n·‚¯ÛÃá(œw»Áq8 w‡{Â}à~ð øVx< ß ßßO„‚§ÀÓà'àYð\øøx!ü ¼^¯†_…߀7ÀoÃïÃÁŸÁ_Â_Ã[àmðvøxgÀ«¼€WEàÊð^ðÞð¾ððÁðáðQðqð‰pm¸||6|>ü/¸!Ün _7‡[Â×ÀíàŽð p\wƒ‹á$\÷„{Ãýàð­ðíðHx |'|7|ü üü(< žÏ‚çÀÏÀÏà á—á%ðrx5¼~~~~þþþÞ o¿‡·Ã;à¯v¯ŽÀ•à½àð¾p-ø`ø0ø(øXøDø¸\>>þÜn _ __·„ÛÀíàð p.\w…‹áá2¸Ü¾o‡GÀcàqðÝðøAx2ü(ü<ž ÏŸ†Ÿ‡À/Ëáåð*x-ü:ü&¼~þþþÞ  ÿï€ x xM®W…kÀûÀµàƒàÃà#ácáàSàÓàzðYðyð…p¸|)|9||5Ün w€¯‡sáÎpW¸¾.…{À7÷Àà!ðPx<‡'ÀÀ“áGàÇàéðLx6ü4ü¼~ ^ /ƒWÁ)øux=¼~þþþÞ ÿÿ ÿp*p* gÃUáêð>ðþðAð¡ð‘ð1ð ðÉðip]ø,ø\øB¸>Ìü?Åü?Åü?Åü?Åü?Åü?Åü?Åü?Åü?•3ÿO1ÿO1ÿO1ÿO1ÿO1ÿO1ÿOóÿr‹áÎÉ|s@›ÔºiåÃDJJ£ÉRy l‘RK…+ÅsJò“ÝóÕ {ÕlD×l„f­†yª­”qÍ<ÛFó8ßÅ=[‘Fxkýl†÷²Ñ‘ÀÍ+le@£c§’Ó(Óifì4Zu2ЩWwª‰N½±S¼N³P§8zo·LÒ(Ò©%wÊ}§sêEÜéŠOÞää1ÎZ‘õ¼û>d#A=Úv¢d3 « VClÔi-»Õ>QZ-M’N;Û,úVž·¢Õ’iü¶ÙfµÖÛjÅwz¿¼Øi$åÔz9õ®®Ô ›Hò—ŠH·z§–Ãé]N=¬-]¤+¤©«(Ö¢Û¨b¦4»çð{8å`yo=Yw®™óXË4’´[Ø1ÅÇ’¯æ3`× Ò<ž4 À~+;Å äúRžß‚/x¼÷Plˆâ_Vòa§8œòÂ=ŽoiFêTÖžfjîgI>â4Kpò'_wÁ8ÍrÝAÚ¬ÜFÅÎF:6ºz·™Æ êÉ|®Í¢nجÖVÎî& VQ_ÌÏlV²„´Úý¡”é\òÄüÖZÒ]A9¹ýŸwÍ©KuHç(ÊÀlmÇýRë ¾8[MØLø ‚2}O°™Ï2~O&=V‡lÄÕ ÿ·|·ºÂûãcVW¬Õ‡í6â±UkùFsßêã(ÊÓÒlõj#ï™M^ÙÈÇ|}«5O”£µUßâ›[I[åàšåEhGp=´ Úˆ?݃ú‘¿–¯Ö³[éÀo³u0¶š%P|m$q˜ÝÖÎåñŒù§µ%“(£±äÛ,òÉ®O$Ü3”¹­2,Æl„¿»·H¶BeõòÓÊkéœñ§t® ý ì°Õå2øò5]×’¿v¿5iëÃ}›¥µlôm}˜Wnœáçš‹U n¥‡®üPDAŠ£Eù¶¹o.ív{ÿ9švéÛ;+ò”ª:xÕ‰;sdŽÌ‘92GæÈ™#sdŽÌ‘92GæÈ™ãÿ|ØbE–-WV°þ‘m×÷´ÞQy÷ÏÔ U°êE“Ez°ŠÅØ/¬àe”QFe”QFý·ú§F+UʉüdN¼¬8/3dÉ(£Œ2Ê(£ŒþWýSC–jÅù…]4dIv‰Çµ„\Åo ¶¬UðÆ=¾ío›Q=O”Å¢¥…ñâ&Éhî;uÝ"WKs¥ç¥é*©…T õ–žn—Rkéné ) Ù·ÐþmR‰4G*•ÖHódÁ•¡PÄWkJŠ3ëi¶Ò¦4f%u~Xê%éù쥶{G©PØJ¥£tí2…›ª8¶J“¥zŠ3%}*§w|.5‘ªJvÙn_ï@é]ÓóÞfI6yí¥b©‘´¿¤¼u¤iÒbqI¿}Ùãw×ïotn))éYÿ½s¤8ÂJgD“}ÛÖ!Iy”u­$»²”¯Y1i˜´›%Î’/gJ¤áÒJƒâ«”/)/³ß—ê>±ðò©È ’ü3¬gÃS¤—¤*|¥ß{\²϶ã\á¼±Ò@I>ïÝB=j'YØÚRIïõj)üO:w’ä#^™ÔŸµ8“Öás*ßp Iù–½‘S¤³õÛòZéÈ7ÃuΖäÓ½+¢°½/¢² oWòÿðIþàËŸ|ù¡/ò•.ÿDòÞêöéÙÖ(ØÕëÖvºg¥IÒvl+éôòk÷fPFîUØvr['?ó΢ m×ô6gâ·Êcï ½Ûڥϯ$]*Éoü>Ò²U-–ÿ…Îf§ÊÛÿRš/Éç|•¡ßWÏþ<ïu'Ï—l7ógøØPv›Û·aªé]ójëÜ:Òa÷»H–æAAZÜéIõ"ý…€ìòjÐÖ©sjܦ í4vjçÜNÚ”‹%ÕeïP©­t®¤ø½ _øÊ_>à_.í§kÊ3omj7ò§Cð¾ôŽòå¼ÏÒЛØò ûBÀ¾Rp{…‚Ýþ¶;û¬àº«Îîæ+Ù©}ˆTƒÜäAŒ2¶û¶‹ÝÚÌGõÞªø­µ3jƒ<åƒ÷lG[(óT<Õ-Oí¢×Œt™ß~-Íã¹¾´W*'/_¨EÙ¼A}±óKÉóMÁÎìô×z&ý¥@Kv—['ù姮ε¡\TwÒ»Ñí«kçä7NïrµÈ+ÕqϾ¦/Í¢Qÿá#]ôGy¦ÛÈmÔOŸ:[@ý“zj#½ñA÷mÐ"êƒú%§¾È©]sjÓݹä©}Ëc»’ŸÒoõN}OúK‚žøÚŠôWªNý™S›ïÔ>§w©¿ ¾|0ŸÌ¥Öâ´zåT6é/[Ö†‚~kXδ¯ÙW#jS}qñ‘¤>ÓS›æÉÿ½«‘ú)¯#ö[Þ÷ ¿ºRw‡“—í±Kýµ³¿-`;®-½YA¤wgÛ7ƶ3{­ =þ©Ñ“_MTð÷VÂ99qÙžK…ÿóHn·öh‹÷ûë ‹ÿxs ªšHÆ»žYRš,,.¨À°Jv;š,(ù=‘Jà.åÿÛ-7-±ÒøsNøZ¶*.;Íí-È/—g^IëËÛW)õ,ˆïÞ*w¿r"/mžÌËO’=¨¹«œ15Z%4ZŒÆZüŸÛg×ß¶$;7^\šŒÇö`HÕôŸÌiXÒ8½é:T…Ì*¿¡»ZQY¬´°8^$SZ·úkÀ¿Øí—”îÉÖ½JÊäg…±X´87ÿ«C;ÿ L”`Hsurveillance/data/rotaBB.RData0000644000175100001440000000447412305624556016004 0ustar hornikusers‹í\ l\Õ}óÿlÞ&vìÛ &$Ä1£q°BCcœ¡@œ””­ÛƒmÏþŒÓ¤l¦…¶P"6! ,jUµZ$(´*mˆl8 jQ+@´Uº«tB€{î¼óìï‰-Z©´‘xO:Üï¿ï½{ï[¿É «7/)ß\®”r” 8.ÃþRaUõ½Bª«K…܆’7‘tÎëÀCØÙ¹ç%¥sÏ/G4ý‹¦{CZ¾·šô8ÊO!ý8åç‘¿”4Cù5¤·R~ù¯“>CùÒSþkÒ¿kù¾°æ÷ՒΧ¼ôLÊ/ ÿiòYòבÞFù¤Rþ=òH_¥ü·¤okùþ˜æ÷Ï"]Hy;é*Ê7öP~5ùÒ”?DúMÊ@~”ôuÊOúŽ–(#­×ò-ä—‘®¥|išòùÏ‘ÞAù#¤OP¾›ô0å?%ÿ'Ò÷´ü¥JÒ9ZþÒbòËɯ#¿™´Ÿò­¤_ ünò_%}ŠòHHù/È¿E:¦å£ Ò&-m%]Aùzò—^IùvÒ[(¿—ü×HŸ¦üEÒW(ç:ý›–t4°†ôxÊ“¤+)?Ÿüe¤ʯ!ý2å\'¿AùwÉï#ý åo’þSËE4¨ŽüòKH»(¿t å9ò7î |éã”?Kþék”ÿŽôm-?Ìurø-?ÜL¾ƒt å•.“6§ð~új¥÷¦Pg‹šJ'’/¤ü•œÎ‡Î.ª¬|kJå¸×“Oû[Ó}P­^Æ+DÀ9ÀÊ É®3 4³Ùeã€9Àjè\ÝÀ'ðÜÙ |_-²Ç€ààaà]èCŠàYVØYÀl ‰ýœȈ AçTè>lÁóç!ûÐÊö¤mYiõÀ ÀEÐÁ q^WÊíÄó§ û «m.í©¤=ÂKpöBoðÔ»u•ÌÆú q”Ý#`W ‚ÁA¡õ´ÿZvªÀBÖ{¾ «` bæ^Œç¥É–eüè¯ìëé—ìŒð7´è|ðÝŒM"à÷©‹»€W¡wè;ŒïF¾‹³Îé@p °ÈDy';þ&Ú£¾K_V«€[¡;¸Ï»€åÔKÐña>Û¨ oüdÎE—pýÈ|YDý*Êõ «‹©e;s8&³Ø_œúaÒ(Ÿ?2rËø•QÏôcžËiƒŒÓÚUŶÂãâ¢æÇ3¶K¾™¶£l»ž~.ele¼e'¨e[¢WÍúQúÕÄñ`ÝÙô+°+Lý(ã)6%“èCœuÜ€ýfÕSÿDÆt.uãÔ»*Ù¶Ëx×1–u´Ýøkc½8ëU±ýÓØ_-uÌ8¹ÿ#>«)3ãe_¡€ß¦n9û3sÀŒQpÌL;f_2º&žÁùgb§ïnI{ª¤ cWë”α`=_Ó¾Ù+Cj²&&ÁøÆ£Ÿ€¾é+Âg±%¡&ÇÛ)iÛôkæU0¦Á5kl‹beêTÐ&WcS°¿àÚ7k.¸¾ Â%ý­VóÒ™¦Ù÷’À¹Î$…³¬¸¦k Y³H2ÏPú,[û<¥ç«™k1Æ/L}±AöÒó”Þ¥¿¹ôÝĬœz²Vå,ÙàP8Šk¿–}T²í:Ú/çg?p7°Ÿú-»ÙÔ-SçžØº€>J?÷}ô©ž}4P§…zŸF9q^*¹quѦ¶)uQ.g󣀜‹›W‰¯ì§²¯6±íu¬·Žþʹ"gWž>×ñ}=û©cì¤93q(î¹ùj™ÃxWÒcX¿‘¶-cÝfÖ¯âcß@[Ň/¿nf}3þ‹ØÇ ÆÀÜ'dO”y´+ŬÕû”gÙg/Wú\¬¦žY{fýÏÀöÑÁþ‚kËÌýÇí3³NàBÖ3w³vÌÞ/ú7¸;¨{•>“ïË}•ñý±ŒíõÀÏUñÎUô¡FMìI&N¢'ãšSz.­ ßÿëÕ1.“vÆÞv(}‡êa;Œ·™«Í³vúû<ð$ûjá;³nÌþ'¶ŸNz“ÒkFî'gÐf³Ï ~3ûÛd­¯ ´;“úQÆWüù-çô}¼çJ þÀúf·Q_Ú˜[r¿vû‡h²ˆwêa|‡J65”Ϋ‰£ô}†2bîôÉdk²}œéhM.7L[²µmüM[GëRóÆ]–\¬›:âó €^'¡¯û¶Øb‹-¶Øb‹-¶Øb‹-¶Øb‹-¶Øb‹-¶ØòaùãttLMù7ò˜ÈÿOeRþþ')ÎË#Jÿÿ1 ‹ÆÑq§/ÎåÒ~7œí³{ ‹ÿGÇž*›ìÀÅÞð<ÞíUÃÿÉÿÈ4þÿ—|ÿB˜Èy¹áLª0èe×ú©Þ@îïAwßz ùŒÒyN’c‘T:7£S鼕~è z{ÑÏBñônc|îdÛóÔDžX—ÒyR߇âá®o¢ÉWÝÅ1–\â>¯×6Úùcç?vþØùcç?vþ|ÔæÏÑð}ä¥rSü®Y¸§ÇÛÆ¯¥ðˆúÀ/bZËñî³=o›Â Šœï]Ùž/øƒÙþ) ‹Ëë”ߟgÃÅŸ«C)ýGZ½™TJNuÐÙUºKôb¹TïU©þôxsZìäs´¾Ô¾xÎËlï÷²&[•¼/Ëe¼Âù~_Úgx¨P3Vb̌R™ ÆÛµ™cÿ¶%±^/[ð½Ì4†TšîÌüêbw1÷œ¿Å1ùyh8SÌzC0ec÷‘ŠGØíæ ÓÙZ™ö·¦3™T¶7=aµzÿ_÷qõ®cOsurveillance/data/shadar.RData0000644000175100001440000000224012625315364016061 0ustar hornikusers‹íÚ‡eÀñ÷I ŒRµjÕP1TT·Rµ¢âB\u›6¡”¦$)¸q/÷¸÷Þ{ï½÷Þ{ïþ.¹7Øçò~âpïçóíÓ»wÜ{—{®ïåÓIÍ-£´ 0ÆDL¤ZL¤Š_«#üc¢ý‰}s‰d"kLÕ`¶úa •Ê-Œ×²Ð}¼Ö~›x½½‘ÂÂÅ~fA‹b1xãÖbq,%Q‡¥°4–A=–ÅrX1 AVÀP¬ˆ8¼¹5b% ÇÊX«bVÃHŒÂh¬Ž1‹5°&ÖÂÚXëb=¬ 0MØac4cŒÇ¦Ø ›c¶À–Ø [cLĶ˜„í°=vÀŽØ -Ø»`Wì†Ý±öÄ^H mH"…ÉhGÒØSЉ©èBݘ>W“C=˜ŽØûb?ìp ÂLŒCp(Ãá8Gâ(cp,fá8ÌÆp"NÂÉ8§â4œŽ3p&ÎÂÙ8çâ<ÌÅù¸â"\ŒKp).Ãå¸Wâ*\kp-®Ãõ¸7â&ÜŒ[p+nÃí¸wâ.Ü{p/îÃýxâ!<ŒGð(ÃãxOâ)Ãçø_â+|oð-¾Ã÷ø?â'üŒ_ð+~Ãïøâ/ü0ó‹©/üò_È!ÿ…üò_È!ÿ…üò_È!ÿÅ{nÿBþ ù/ä¿ÿBþ ù/ä¿ÿBþ ù/ä¿ÿBþ ù/ä¿ÿBþK ä¿ÿBþ ù/ä¿Ä‹Ï¦ˆwœaã¼³¤4Õù±FÅ~¬õ£ñc½£ª}Ô±ßF£¢ß.0Zµ?ªêãjÛÖ7úqL…vz>1ÕÞžŸ¯VE[ßàèW¯Ú×ôÞ¶¥t~ŽëdëKíLïvÎþêó²E÷ÌÃÑ/ÐN§¯ãx¥ë¥?zÕN_g½_ߟ®û,ª¶+Ýêºêëë*ñ£Žú ý××u¿ªù®gƒÚÖíó-Õë¨óAÏo¨õ}àª×ÇwÍOmÛ¢¯“-®Ï)ðQû+Wšêß‘¿ú<\yäÊóÀ¶ë¾°Q?ÏU=o£ê]ór7ºŽã¨<×íœÏ¡JÇuå·½žñòíÏ=‡FõÓy¡óζ•?À¸ž•î³JŸ‹ÞÖÅ9Žëï‹£Ÿ>Ž>ß@~ ÷£}®ÄÕþíþFG½g¤Çú1¦úÕÙöz¬J¦½Wïõ-²àÕ¯W“št%¦¦¼W‰ÁÅv…¥b´Ø¦ð*Ø?ÓšKe§§’£Š•Å5š KX–°„%,a Ëÿ,Þ,2ß”]˜Uyû] ±¾¹|"ŸòWa VbzÕÆ0†1Œa cÃÆòѽ+¬¯¼ÿx¦ ¶ma;Ò4·¹Ì¥¯ÓúØïÒ¢¦ðï…Õ3R©)öû6û]šíPXÒù»RéöŽÖLO¶#“±-ugº{:ùt¦k|6ÑfÇœœMMûÏÙ¼žI[g"ggbý’éÜÄl¦Ý?Ãyÿ0ÂúÝE"surveillance/data/meningo.age.RData0000644000175100001440000000246610667221044017013 0ustar hornikusers‹íšYsÜDÇgµ’ö^{qpH€„p†Ã&6B± !ÜÌenÖ¶²^bï:k; ˜ûg¸SÅŸ€*^xç¯Â ¾@à?ëþ£–xóàš©ú¹%M«§{¦{$«v|ÏÄpq¢hŒñŒdŒ—Å¡ïáOƘÞdi.j5[ö`½“íÃ¥¨€“+jƪwïE'¬ k¾Êr_ô€^Pçkw8ôƒõà<°lçƒ À…`Ø .[ÀÅàp)¸ \®[Á•à*p5¸ €Ap-؆À0¸\FÀ àF°Üv€›ÁNp ØFÁ¸ì·=àv°Üîw»Á=à^p¸<öÁ8x< ‚ÇÀx<žO§Á3àYð¨ƒI0¦ÖÈì 0šàypÌ‚9Ðm0‚X‹` ‡Áðx¼Ž‚—Á+àx¼–Áëà ð&x ¼ Þï‚÷Àûàp|>ƒOÀ§à3p|¾_‚¯À×àð­é曇üñ¬ß6ÇlÙü²y¶’Â+yçË1sÑÈuê2?CÑ͈nVt3rlûË)OÙE¯$öé •ž¶]½¢Ø-™dÍäå¾4y寎Ñ»¬?úï©þ@ÝŸU10¾Œèq^Ø([“/+רh7§l{JŸñц§lxjÎuŒ—±ÒW}c£ÿž:MÒW®'ó_TkF9_^j,kËîUÜ—¸…b'¯æ“9f÷µªÜceIÉ@$}(ɽ5¹–^Îç„ù–—~ú¶ M¼ïr/fNdÔxŒƒz¾ÄÊÚÉ™8t~ùb³ 2m&ù\èUþÒOÖYÁÄ9’S÷å˜s¯ãÕ}%é×ç%uNÛ¬_ÆÃ9`îø&YË\‹¬øRHé“Ìí¬‰s±,Çe5¦Þ‹hƒyo±ÏÄšøn×K\ÖF²Wl¿}FÚgf¿ÌqŸèTÕåÜöm[eå[Ò-KÌôÕöm¾ŠÒe>Qo“èqéwAé3oC‰¯bâ|à~¤ôõX%±Ïú©ª¹cîê~ëë:‘=j¬¢ŒÏ=„ùÎ` ¬?ævÁÄuX3qíÐfÍÄõÀ=,PãÐ.ç—µB;¾· >2ç9÷œ9sjâgºþ‚Ôu®cá»ýöÔ}ºNÊ&ÎƒŠšî±Ü‹ù\cp}e+T¶¹^ºFè#Ÿ§º~=™ËªIî30ñ^Κæ{aîk_ô³@ï!=æÌ=ǘxe̬+Ös˜ó¨×X¿èg§~wá~È÷iæŒ~×ÖÏC;ë9ýÞ“U’¾qœ´^¨ô¼T?÷ œ‰ë¼h’û×LbOü‹‘nΉ{ùäŠÙ„J*­ú\d_SûDï´,=K$À(;‡ä$ÄÉÐÀˆœåp620¼MuîêžÁ†W•WJ×\sÍ5×\sÍ5×\sÍ5×\sÍ5×\smÕšýÞçýaÎú0k¯¯Âw¿®n=õÏrµôηÿ7qÿÛ˜ÿ³o¥£Ëý¿œØñÛn'tÒÉ5'¿Žÿ^9ò£“N:éäš“?ÿÔ>ÚìuÒI'\sò×ñS›—Øî¤“N:¹Öäÿÿ­´û3ÖÌØÖ¿>ZÚsoì;?õM3ñ›Í€?Ø”ßaw/ú‡£èÔÙž\ˆ:‡¢iÞ°°X_Œä¤ÒŠš™ÉöRg¦Ý¦Fu¾=¿4[_l¶[{;õ)ÚÜ߉*Å´'S³õz’a¼ÓÍ…}vC"<ý'%Ï^{ 7surveillance/data/measlesWeserEms.RData0000644000175100001440000002327312672237564017743 0ustar hornikusers‹í] @LÛÿŸ6-B‘PÓÌ­P¤$ Ió„º%E! -“J5™Šd—-ñ²ïkY³ï"K–'»/QvYZžÐÿÄ=3ÓÌØú=Ëÿ½sžïïÓ=÷ÜsÏöýžï÷{¾w~=œûØhõÑb±XÊ,eU–² úSUýK•¥‰°N¤ &BÓ[#uŽŒa)©4’)¢&ˆ…¢?j! ýx£²>ëce•Õ@¤ŽHQåC•﬉H›y®vå»é ÒETQ=Dzˆê#ÒGÔQCD¨,D†ˆØˆŒqqQˆŒ™ 2EÔQDM™!2GÔ QsDˆZ ²Dd…¨%"kD­Ù jÈQDvˆÚ"j‡¨="{D9 êˆÈ â#rBÔ ‘3¢Îˆº êŠÈ‘+"‘"wDÝy êŽÈ‘¢ˆz"òF䃨¢Þˆú òEÔQ?D~ˆüõG4Ñ@Dˆ! F$@‚hЧù©2yª!"Áfü• ²USÕ Ž‰ Å2…”a¹óÇ"¼2……5„h¥  +£ò5ŠX$‘DÒÿ›2(ÎoÊ`Cm´a?ö¶g®¹v[õºEÕzd–+ WõZöþçž«nÂÏËâ·>÷¹|øL9ÐQ\4ß?'ó<'Ù÷þ¯ãñ»§{ÿþk ¾rÿ[åÀ÷Öû­IŽ5~Ì{Húw§ê®ãKú¯õ—$’Húý‘C¿&Á/zïÏšïëº?g_~«Ý)kßãzeýb?ƒ ƒ”Ly™údëgÉ”Öï€Añøè0(kgÈøE@&_ì?Àù:UËËÖÿµyû§Ö󝿋_ýþ{úÕãû½ïÿ\y,w¾&W¾×Ï5ßÿÑüWÝô«ßÿ£Ò÷ö ¬4ùÇ›ò['øL¾Üþ£Ã ¹ 6•¹ÏfïïxßÂû¼5ƒ­¤Äã÷7\?®O¦]$ýéÿË|üi'I¿wú·®£k¿Hú9 ¾µÖ˜}þsö¼ìµ¬½,FJæ—ûÎöÉÞÿV?Ç×îî\¿ON¯êÄ Ž³°cБAgÑ‘¹æ1ØŽÁÆ ºŽ­ZÇiØÈ”3‘¹ÆíhÍ ÖãdÇ]Oq¹¯õ糫æWw<ÿ«IV?'éǦ¯Ùï_‹øZ=$ý^é{ç[ö>|¦ž*ŽíM?{Êù§?Ó9¿ƒl>Þ¿t”Ñ#pùŸþ×xÂ{ú¯öûwK˜oHú=Òÿ¾øQú÷?u®ó£Çñ[ß 2ø9½ð=oúÑéwiÇ÷¦ßmÿ«é{ý'ÿÝùªò}JpX$ëÓ7“•Ù•ß[êÊ~‚‡ŠDD bXŸ¾¡¬¼÷…¿­d¾é³nmkÝJúÂFú¢µô…­ôE©‹6Ò´‘® tm¤+hS¥;é‹¶Òí¤/ÚK]ØYK_H·ÀÎæSGå>^Œ AÐ"#’DI$‘DI$‘DI$‘DI$‘DI$‘DI$‘DÒÏN•‡w5*X O8Õ+óɉf@D€(ŸhŽE9„"Dˆ!B„"Dˆ!B„"Dˆ!B„ú9DN4¿~¢©- ã¢Äÿ¯‘cÊ*‡N=• A‚ $H A‚ $H A‚ $H A‚ $H A‚ $H A‚ $H A‚ ü7!ùìðëŸÖŠ„ ƉB…ÂÊ/ÑH)³>%Uft*QEêoe™k•JòðߪL=*2u(1¨,U~Fš¤ï³XŠß%ۮϵSeR“ÊWfU퇊Ô;”¥ž“¾§ÆÔ£¬àéñQ•y&é6²XUÇDIª.%™gp{¤û%[ÏׯTvì•eòY Þ+MÒÏ(Bü Kæyé>H—•Ùwàö¨È<+=>x dQv HÏ—²‚²²m“í·ôø(šOéyS‘ù[ѸɎ¢y’^KÒådÇGúyÙñ•­C™%?>Òó%ÛnE|õ¥{ŸgÙu,»Öeùž¥@zë²KoÖ@rÿ':)»=ÕŽFÇEĆ £ºˆ‚ð—ñ¼å3´¹‰ A‚ÕÀ¹ýG6V¹ A‚ÕÀ­C|ÜÖ]%H`5p›5µ^Ã2 A‚ÕÀ•3野µß$H°¸öd͸„wS$X ܱ-3àêp#‚ V·äžî;¹`A‚«‡žÿÕ~qÎ6‚ VW³‹7 [J$H°¸aY­ qm×$H°¸MßluzÊp‚ V×\Û1hA‚«GævÕ*ßH Ájà††û» A‚ÕÀ´Y[ÆT‡ A‚ÕÀùÏW%§užB ÁïGòeü×?=T‰ ˆf)©4’ÉV Æú‘¥ Ë|/^]ã´êé)œEi`ÑÐ?õ¯Æ@ß}l<Ø.VÁ83¤ðVeæJñøá2wT"â$í‹WÐìšÑ"a¸mL¬(,j‚ækTÞ Ša*Æù<‹Ê#„Qƒ"b)‹à€Ø¸È޽»ölgKYD  Bb( ADDt ÎÓζ£u ôŸÌkÔ‚"bÐ;”¥ß¡Ò©GO™rêÑAƒ dZ£Í,=ÙîiD #†FÅ0C§«¨žUË()(£[ù…iåëÀØ%ÉU͵Гêy\çfÊÎy€HÀ”UâMØ·%ÿÙÀ4Ù2¡ÂˆÊnh±ÄßSWíiå„8‡‰˜¥À|v]¥H ¡PÃ,®ºâÅdìÐât-0¶ 1=ÚÌŒÍTwÜ:9Œ- <m2ÀØùÒ¥]+ëq÷&ý÷ivãÁ1ÎOg¦JãÄìz\û×o^×z4l;ÛxÐc—i÷¹uz#çÔ„` §íZì°&èé/WÌ]tÒáGz{/ãç,fM‰¨¼§[!3ãêÌL|º]·â›§Y3:BÛ],P0^õ+¾qÚ”]e^ȯÅôq523*× ©åôå^Tï ad¤ *V¦°’õDz⩇e€Ô"•ê {—«×¤Лº^zS®å3ºÓÃF^ø”ß B~ý5ÄÓ%5€*˜%¦F£Î=9F6j¦–—ÍÀ¨®¯®ß¡†ÀfGÐ'µ§€á‡¥Í_Ø>ví‰Éû$ÛþiþÀÃ[€=³lŠ“ï8`ÙXÿ(é Zç}F\½ñrÏ)Mæ½^·Sbá"„ùÚýz´zƒfƲÑÍP8ж£¥·uD¡P+èM]Þ*§D½£æF Ç  ·wìæq?艙GÍq} –`Íx (°¯Mˆ¡l­Ì¾øÅÙúßÖ[öîw.,J”gc™6èY ~áÓäš:ý”*ïÚ›ôj/,jqNÒ¢\ fO[ ¨ÔŽVìTP³Þܻݨ”¾ï$5¤}Þ‰€ê[0®(§¨Nz.ãÛ6Ês¹Ç«Š›@…ä¾Ü²+F\½ oâ†[@ÏWoʯdÓì» Ššå=coáÄáW‘ ë_¸ôÐS{¦o sA²¬86iéJ„9eÉ@Ïó–|ûÐ ¯šñ/üëûõ Ká„(^X­¿<[¿xa5h]ëÕ& M;è4žà#×Ô”Yæ-‹‚«¹°(à^²Í¤)pwÏÎrê܇úaÝgÕîµ%ó›/Jõ¼‡ÚÕ{@iõ<ýð­P~¢zó÷ØÕyHšFŠPÎsÇMòªÝ‘£ÎUÕlæÙÎSßU×Ô ¢ûÂù¾WÛ­À½rGíæ–µÀ½ùçXáìñ{i“³æ7n2ÉRg®ÐæÚg|˜ t³¤!¾¡m€¶ðoë~m-ÊÏo±¼× Ǩ<:e´ñ4½œi·æ4>в Ú²Øöš¦]-Ñuf½ §‘DdŸ9yèZ¨•~].MÕÒÁÕg¼vAIñkü^ Uç'/TE¬x¡Ú~yöñBµØ:h%'èì½1ÜR¹¦N³ö®SúàN5ªP\MûW÷½[Ôí- ¬ J·ªW¤eó„aH•«û–˜Õ§žþ“ÇòðvŸèXGü}xUì–½ôY¿IÎ<ÎÙýä™dzWYÖ@ äè›XÇáw€>6Í6¿yo ³Î%؈ŸS°P4~òBQ4ÀŠJ›/þ/^(jçÞbs^|i±éørMÍpw½5a~u%šÚú”¾?Ù ¨Þ'w/[š ÔØ÷S—¬k ÔTç?òǵÒÁ_+rdKÅ["Þ"ñ–ÙÔØua((‡÷ þn²ŸÀ¡ð>pûŸ¬qIn˜Àó¦:pnn,ø°êpÎÑ:}ÝvHzù)p§–xŸè—Ü[£þn]¨:+ù³ûÆeâS+¹7Å/íVƉÛKoRn™ÁÞ+ÑñÖÌ>—Ï7:-;¨0ø1Úb;Ø/ö©+Ù²ñ–‹·`¼%'Ê*ݲèÉSx»¦£òztÈY:Ÿïôœí¯Ž{‡ž{œjºé ÐKÆÇ†4zõÈ:[gCºácþŠ•M^kÕÕ¿öÀýF“§#]³´Æl¯ Ó{N6ÄíUÀ ~2c(ZP £¼­Reµý,ÆPSȆSW8ÇÔCºWÎÆöIþuäšÚÁÒܾæŒúÕd 0LÕXgxg'&Mzÿw„Æz™¹=NçÓYÛXïú‚®ŠYÚst­9ÜÉ)ç+˜hüCdÿÀD+£që÷„µIúà²Tˆ\,7 ÇÝïiÝ©_ÝqN›ð¦ÀèyÚ¬7W(à¨_=‘PìFÛ"òíTŸÑêÉÇï™ Fûj4îw8 U/ŽÙ8kOlçu¸œ¹s<.øÆgOÈöbU;àìž:K©|2pž5KÝ_8 8é×#¸ÜyO-h$1ô§è>6n»€w« øÀ픲nvr#àŒàÚ±Ö0ÔŽÑ·/¦«€Ñ´Ìšž€Q`Üîûu$V%cb+Ql5b+’±*ÅV¦AJŸÓçëÛz¥§_Ÿ‰À¦”F/éרÁ§³ëèžö4¯w.ùÀî}ïškÊ<`§æíóÜ|Ø/·vº<ÊŒ\Ïû͉z#'úJÂ9Ö"u /5Ô2»ôùŒ›§·DèvÁGÿ/´•ŽéT°yÚBÛ¯KT×úÄ%Q¿Bt¨‘3m¹GðHÞŽ¶TÝõÔϽ¿Ö²=ÈèÈì}¡á4Tß^·ÇKÖ Loòj0²^?ì·:ÊCÈQuÌ­ô–—7oi¥ ´}>?.]w³±(˜‚$‘Þä3ÛÿD×#jûån’XËØÚÅÖ/¶†±uŒ­el=hqßV„ÚwwÝóÎ1¨Ýî¬yK›}ä¯$ÍcÐuôÖ'‘Êp²½Y^³©ˆQ–[ŠBÆQîÚ<®ß@ ¯Î7µnY„ÇIÃ4ý± cX6sÿK¯+¨°§Áà r Ó~ñ¼¶f}æU_‚¼é¾Ëír’‡Úf o;hM—Ü­·Åùô ³IÖH Ïþ®Dà€X—ÌLqþÏ— ìû‡ ø#О˜o8d]¹ uaRÆ%Õ-`—¦O󩹌‚¼®æš{W­SE g1÷éëhQ¦jÇKýÎë¨ýtƒÐ×f„û«8áû Hí‹Ø´È5%ùÈ,º~)›ýw[¹rý²‰o£²j¯£L¯¦Wf‚ÑÁÙå“ÍÀH¸ZõÍ“"q>}#i[Ò•¥’¹^>éiÍ8ÿÇ®˜ªÊ…šÔ Ô˜©|Ûž¤XÙ°‘ß°5ëšöcü šÖóë{´qî’ëíaб — L¬'×äl¾àÁ~·±Õ\ÎbíkËbí™Ñ¦±vM9æ•XyáàÇIFÑ6ÞÊqüˆ)@Åm°šT³%PƆø | TüÝõ¯g5º×ù¯‘V=X§Skú4P‚eFGÕîÍñ½3›#³¯Ç"ï½…@i¼rŠ»Úiá¾|íN%ÀM¥GíÕnøëÛkKº·vR'›'köôSàœiÛV÷LNþ„F#£³³ÿµþ*cÐõ€0ç À5¾xí„ÞZ§Zø™çU‹ªÛÓsãÙýþ»€ó׸5/†'¦esý‘ÎÙ úƒXëÆZ8Öʱ–޵ö1Ïý—yÎ:~XØò´'Æ<Ë<›ª´Ð;¹ gÂÓÙþ©§€-¿b’ ´ÿ$íüæ½P=¬éiîÈê¼]}Û§БªÏB66:ÚzãI? ã6|HÛ ôp«kAí€q¡¢µÝY ÇuÜ©¹õkˆ×Rݱ@Ïß§ÄR»ÇAƒ›ü(Wl=(dÅ -ï(¬Â¿Ö¬6Z21/Ôm)ý£¬¥×kê_!Å“Ý*ªÉÈž’8^ð `†À ‚FÂ@ Caà wâÖ剹œ¨ÛÇ\¼ œQuW­¾­a\v¢pº¹ô^_8® Å)y<àô .Û48àqçXÎ{à¨æz;{”‘s»IKvO#MÞáÉû€·`αñ6`d`ÿðD{02ÍUU?V F-ìÆ$Öö±Àƒ\¥p`Go½{d@k¤ËŒ›·yÂq`ÏÕqƒ¥`XîÕ;Ú±7°ÕFÛtK¶Ý»“s]€íë½?Çe/°3F‹F!e?8ãA—&`T²lã´…þÀ±Øp6S)]Û7®ìÐî¯g[EýsË4½~ ”î­:N/AJv·5W‹.£û^YZ´é$ {„ï­è> 舻yΤLÇGuœ{ Õ7¶Æ®m÷Q?þ¦ÉN¬ trMøÎÈ ž0rEœézxês‡g©@…Õ^Yû–­Äo‡ýbØOÆøÍ°MìWÕ¢‹þ…MÀþÕ5ÿ” po´r_â¼ ¸7GQƸûÆŸ˜3Ó¸‡_Öø®sRX'®×é݃—×V7òÊê=“m¼®¹‰p/?›”ߨŽ-§ÏTJg°VøY= ´—óˬ”þœmž‹û'v c‡2v0ïëeùܴГÏ78M!+Ô±4ÆíÀ[´ß?ðê%ñóa?ö«a?ö»a?ÜÖºÁ£ j‡º~SßÈ:.‹ÚYµûëÚfÞëƒ¬ÖØ&.&ûÎ8">ÁµÃ<Õ"YëGf<œœ ô)NìÙ÷¨]ç’[O"̯úXµ?¿Mb-W¤q\ó 4á7@ÆÚf]— @_ìð8žkû§€ñŒþ9ÆS¸@úZ^ AæûÝú»ÕcähO —g­ªm´qoìoþV¸×²)÷ÚÜX–ƒÛÉÁÀxFýÔv{ñ}&èè;ÇW´ÊEFä5•`Ëg(?+Ÿ×øÒ‚’þA£­ªdRf:¥üm\­X:ÉŸìgÞ¿™’î‘N*ßk‘°õßhßêh‰6žC£Ò¯”Ë5öp$oÌÞ'S«9ýâ ]¼Á3¾XÀ £ `…A¬@0 …XÁ`±b=¿Æ)#ç)ÅmDõ Û],él>ß„í³ØïÃø=C€M»Œ8l†¯DG=滀á±È3¹ŽÁ0|–ßÝÖ—ÁP•W'­y!œ•õ:à .êÛëå[ƒAƲv™ê`¨3Ëáô»å`Pøîõ“Y(ÿ¾°ô|O ^ëÌZ9QÒOñŒ7d¼Aã oàxCÇ<Þ𱀬 `…ÁøB¡AÅB„“GŸY‹ä·Á›Œ!@sn}õª ÐM”¬ÆÏå"…ãðÉwãVÝáOÖÅúhÃo{°é¿§@Û_|iè=”ß»Ìo¦ÐŽâv"È)UÔ$).]VïŽrɺkéƒs¹GP»ÃæO8:õ«vËäñH±X™e¯»÷S;r~;~&¦EÑVÌŠv_^Ý¿VQ0zçS¦ëVôÒ#M] ¹¦fÝ;{|³j2¢ÄÍ͸½±»Å¹¾#K߉$=Þø™6|à&>€Ã¦6¶T käXCggø镹Øç‹ruûûIbè+~s`_ž3&,ÁØ\ö—-o/Þsa7ãpLÿÔ¹^Ø/h”ê¬j.0m0l÷GÛQ:N`¨<ãzò 0Èî-Üd:BelXã’(Øù‘¸}f¬À×I¦3ÐJo2Ųc^ÔX…® Çë ôyßYA'‚p9VãGIšÏoü ¹T±´‘wïñº{Ûxh‡ßcã§ŽßøÑTèÑÞ…“ vÊË›óÍ6îÖ šË¡‹$®Çùâ¸_Œã‚]ʳ›¬ðcÿÜûa6×Á8¨op7{0v¥âÝÏ$ ´¹00p ë9¦\±[Ƶτ«¥ûõhjÏîºÈÐ){O·ºx¨S§†‡LêB£õþÜÔný¬¦@¥koŽ™´BâÒÄ.NìòÄ.PìÅ.R€pŒŽùÃ1€8&Çþ©kë¿ûPgç{‡8cÕå)æQ.âñÇ)ã¸eÇŒãšqœó¨ºªI¯OpÁÊXYè¡|:»†»Ów±+’#Q_ˆÒ:ÜíæhÁß@:Î;ý)!3ß%>út˜ñIàND˜ÚêdûG@G¬ï zà<Б†·Æ˜¡÷1÷Ê9^ qmbW'v}bW(vbW)xÀ8FÇ,âFÓˆcç^ºýú}Ð)á )utÿ@ÜÔýðx(`oÓÅÞŸ lPÄŠY»Ý—¹åWÇ0Z…Å×l´õ#ÞûÐerMÍÉžìî“·³šŒ=TâÓg|üØçO™w]|÷ý  _mØ.ߨú´pÙºRdÉû/8sYö œ6)/â^R¾qÉ(Jp4!q/P^6uælõ*ôaÙƒ] €Z:~x§;Z Ó“"jÕë”`' VÜ\µn b´;ëÝ^ž±ªäØò‹kÞu/`ú™3ÀX9yNYTP9^í؆𥗮jkÄ Öì7>H@ôñÖ¡[P­Î÷×}6(.};­xÜ{¥ÿ>ô;ÞÏþ ¸Iº§8ú@©ÆÌM{¸õïî£@>…ú-´,\fÜeÒ[Jb9qŒ%޹db0qL¦8FÇlâNÓ‰c“aæS|6!>«`Î.<5²cë"…É=êÃâEÐ/whÝWKÁ٥߃²@ÃÀÅ™£‘"dÿ°ðösdq ^Ô¢ýV ;NŽÚö´м«êÍöE÷ºy›MÚ.>Ù|Ú÷[Œûh+ç¦! …bâX:#m±V¯ ´4ZÿÅ¡ÄíHêz™rEí¬}¼ìø[  ulÒNo´&_tëê Õûy_;Ú©q|…êIñWMty&NHÓÊU‘‰aíóìóÇë]¿¬OÄ|dQ5te—h¡kƒ¬ò™GU$1²8vDzâØVq¬+Ž}ű°Ll,ޕű³8–ÇÖâX[«Yì 4>Ö—ž™¸GÛD‹Ì<ÔïÖ¼:{¼ï qê°¸Ey¸ÄµŒ]ÍØõŒ]ÑØ5Ï’ðÙÒ§ùT X;üdÁªH )¬í¿,­~±`2¢sÚnøÞÝ”È5uÿÄ…§¼}VMÁê(Ñhžy¿¹ã  –E?­= yä jùÙãwNj{iï²6kZÙ\õåÕ‰(¨XÀb‹0ÈX@c8èøPòâC_|Œ…ñ!1Ö°°Æ…50¬‘a klLÅ‹ÿùÈfãg …{½à|~>Ð=:ÝíA úÐ…û.!3ÿù€6Hàl»Ò'e›D `ƒ@X a…`X a‡>¼Å‡¹øpöâÃ_|Œ5(¬Qa k\XÃÙ§þ*`LîOfLE Z!cÚYyµÿZ× •½Äef±2­»ZøZÜ–kêûÖg5ªÍ˜ÆE<ËxÔ» ýÓý‘ÆQ‘dœq™¯ëû»æÆÚãÍ*šÆûžéo|ʈM ÆÀ&ØDÀ&þÌÇHã˜iCcªqŒ5>»Ág9ølgÜ ·ö}@X1ß¹¯*¿\eûþ=dò˜´peG F´Ün9 ¨—fO´A&Lú¶¦gMcŽOb×öã†K§}ÝHÜ_:ë](çEÐø;êvA¦Ëæ;{öóv!ã—œu ™ Ö ÿ°jRíG^ü|‰äÓKlâ`«üØÀ&þ JcÍÄ\ãl“])ø,Ÿíೞ:NÖǽÏeð=ºdoÔƒ=÷œÉ4ín¸ í°çb;G=Û tv鉩9ž@WÒwønÜߢ °ÇÚÈÝä¹Þ+eâ™×r Ø5©¥y¿“jŸÁPÝ­#£»Ê¡óÂŽ“ÿÊíîÂÇžhâƒWþí_*¾/9¬š¶:¼ÇT o¬n³¶-R‘®?´*ˆ[†ïÿg0 ¹^±ô’D?Yæ?.ñÝÏvŨ(œ~λî;øZh=¶ºî¾¾LþÀèö³ÈÂíÕ>ƒÁg­â³W|‹ÏfñY->»Åg¹ølŸõâ³_ì"Æ.cìBÆ‘Ö8òš‰ÄÆ‘ÙâHm¹#¹qd7Žôf"¿q$¸82œ‰GŽãHr&b÷S¼Œñ,æ,ð™->ÃÅgºøŒŸùâ3`ìJÆ®eìjÆ‘Ò8rGRãÈji#¯q$6ŽÌÆ‘ÚâÈm&’GvãHoù#ÁqdøgÙñ<ƒQ¸`ë6™¼h j@¡ãÃAwä¬ßÀæ¯tv©¶+™3)¨ÿ‚úBàhíš:uÀ<0zÐüîü´a`”W>/ñ¤&½ìwùüƒ‘ârta­4 ™D¯gë¦BòÊÒ¼þŽ$$¿fݘ½MÜÍ܉µÏ¶Ãå~¬+Yဇ”Þj[ôíUÝ.zÊ X?]‘ÆÍj x®¥­çÎõaÀIoœ×ìpN mÛ¥”–p&sŸ¾¹ñÈür oéšzÄ¢öܹ·Ï›Ý¡MáÜ& ðýŸ)àU$^A°BѨXÈÛÈêî,ïFV¸þ!¯& þ­Ú]Ö§_–¨lBå7‹ê•+š¹W“©¤³ât™‰®ì»*3j’ ¿L58 6Ý®Ç<§Ã’ü¤Mížn”³ "R*ÅÄâΡÜΑÁü{+Úèº{ºŒ bòjUæÅDŠâAƒ™L”Ù;,"Õ0TR»ÅŒˆ"¢‚qte^œ(,(·etŠFGWy–{e[b¤¬¬¬‹(L §òºŠBb‚BBb)'ATl¨ ,//t×] IU ×wÝ©lb/AP(>I{ b¢ÈQŒ¸á5+sÃbc#ãP{>Í.fUp_#þ¢ù©†«ïðƿК޽¿äíáÜĺBþ‚aÜƒÃøÇ×Û/m5æ_ŠöŒx{Ë…Ÿ«™Ö»ÿÞü{QYéíOäé›ñg|+3þY·´™åøçwm_÷`³ÿ¼±öØu/Žò £b÷þÊg;ö¼Õu3ÿ¤gÆÛåùG RYëßáöÀÓéT¥8€‡œ•ÈWñþxÍWµ ý˜ÿ|ÍÇ|(qøc¾zÓOå”w7üˆu³û|¼ÿ:gÆÇkV‡øOÏ׿ù1ÿC|¼®-øãuŵèøJùÓ{Ÿ4c1éc{xŇgÅ¿N(å›OŠÈ¸8…÷¤Þp”íl^qdy^bAM^±F³éûx9¼â»'–ŽªÄ{’i?Õq~¯x‡÷rMÓ‘¼GÏ2¬Š ºðŠýk­¾ïË{rLcbiJ9ïñÛåzž<Þ“ŠÜ¢µÚëy%M‚[Öê˜Ì+ M ¢aÄ{´ëX¯e¨~½úû­Ï·§d¨Y úÇ{µáGyÅL~Ií½WŸô¿É+¹Z«`Ø)Þ㆗¾Î+á— &Ÿ¹Æ+U[¸¾û.Š÷dÜÙ‰¡3ìy¥J}÷ÚªÏ+v0ô Ÿ2WÏþª|¯$8¿þpÿèþ²ä¼ŒT^ñìà<»n³y%-¹Ø*nÏÖߣ¼{Gùõ·Ý{Å»“å8 ÝeïþÈ=§Ñ?ÞƒB—SW\—ðî•eî  ón¾Þ—\T²ƒws˳Œp“μû«TõÕÌ»¤²X+‡âÝ ˜ÔýãÝ™z±ëÉY¼{ £¬õzðnEäDš]Ä»ÏéÙƒeÌ»³s•jÔż» ö8uŸµUF–¨ED ð(ÕÀ*k×ÎXÖð{tæcÎõìîéãÎ÷víŽïj  YÙX‹ K«2¯•\ŽÍ§±ð­">µ*%šUˆµE¦}š"á0+é6êJ ùóowÉmP {FĆDà}Ê YɈ}Ç© £bEÂÖ'+„%s»¦ Zʯ|Á—~ªVd\DlX”0µÉ»§|A¹¨ÄÄ~nsÕŽ‰ „E  H i5ëÃÿ¢‘AÑ8surveillance/data/s1.RData0000644000175100001440000000050310636320360015132 0ustar hornikusers‹íV½N1 v~ª–“@•ºTb¨ØX */@‡NL¨S׃†ªPq9ñ:<o lHT_êëb©òIß%v|öwÎýÍg‹«bQ€mhƒS«ñ úGä÷3 7òù»PlȚL`ë@ÅÆ8—rÅóM`ºÆkðú1þIºGÈKä9òy†#O‘CdÙ×Öe#×Z°¼6ÑnX¬¤Ó¶¬q­†ÅK=áýâqißMrïQªKêë¾Ú\ƒ‚]¤>#ÄÆ{ M¿´¿m5¤u©>¯jÒÐÔ´/·´·ÝŸÒ³”ñ \ü‘‘qÀ ï‘šÞ4l=}›}Û÷`ãï°ó\>9??P68{›;ïªW·ŒA¾.k ûP¹¶PÕiÊûÇÒÇ”ô­%gw¹ö·Õf…ÓOâÚÓ…¸ surveillance/data/s3.RData0000644000175100001440000000047110636320360015140 0ustar hornikusers‹íVÁNÃ0 uœt Iü |;ìÄ qÚµ°€€‰¦âwø&þ„/@$U,^­iÜ&ú$/¶_cù-®Ò›õæ¼ÞÔDÄÄÎÛè:Ž?†hy”òá‚Èž¥t´“h´?ìHÞ€ÑÈÊ3Ô²À¡±…}x¬Yêã’½ikX¥Qz’¼…¾7+h`õœè1Àëÿm Ø›ìÅ}–†5ò”{}i:æÐçq´*ÇóÌ'=u^…K¶ÈµðœPSUÐVÒñ§gNÏ™ž}V’›e=ôÍó>8¥¿½K&L8\~þ¯uÂÁ"ÝGfu5ˆyõ¾îƒŸó|V/ͳÑYR9öÉÅî6øöÍoå¡Ð5Ï»oý+m§KÞ=5AJ¦;¸ÿÎØ>†ëv÷ݯdßJ×I¸ surveillance/data/m3.RData0000644000175100001440000000042110636320360015125 0ustar hornikusers‹ r‰0âŠàb```b`bad`b2Y˜€#ƒ'H<טY$ ļ@|‘8À„EŒˆ™!¦£¨a‚šÏ ÅPšM 6óÑıñabÌHvñ±K±Ë±"˱<K1(dŒ¡âš@,ã„Ò 3@aÆävV(fƒÚ…l'ˆÍeãsç( .ŒáÊÇ@|^ûK‚Q0 FÁ  úˆÑÁ …Ïä0ßÌA”c(­CÖ¼ÄÜÔb C€ܨ rä'§•¥¦À—$–¤B9,iE©…HE%èF&ç$ÃŒÕÛ Aö”Ì•üt ór×b¸ surveillance/data/husO104Hosp.RData0000644000175100001440000000125312625315364016617 0ustar hornikusers‹íšÍn1LJMj‰÷¨ñ=ôÀ ©§^W$ˆ* 円òUÊWÓ†’¶¼R_©`O[O=±½»Nð!ùe½žµýßÝñÌ(k«ë÷Zë-È ¡>YCýlfêë 4aIñú“ý‡wïÜÐío4nOºBã¦ÂæÊÉ+Tǰrò1Œ[Ún «áˆL¬ßBM‰ÿßA¢•˜˜xÎ÷X)11&?@b-‰‰uà6$ÄÄ‹ü±žÜŒX~‚Ãø"gó «áWpP÷ûŒhrÑäP·Ñä0¢ûà î7“ß%¢úüÍ1í<Ô牓vVÚ»úèiÞï«·.46WóAGñô¼ÈGE³Í_Óœq'»íèï»Éî„Ú£ÝÞå$Š¥U´ HãÅ ^¸Ó–œRp²„~Œ”ñMÀå$ç¶.a¾®ç#8X`ëuÀÙ¬*I[xðNÄÅ0V0ué¾¢ÉàÍÝÁè~ŠSÐ3Úûƒåè|ßHOŒ¤_I}œ: ë-Œ=Y™¾žzúê+Ùr%%¡÷I ÊË’Ç™ Ó‹±´ÎhÒ7¹òN’<9·çס§¯¾¡~Å7‰$λøº.g2Oësý.vÁÎèþ†Í_òãÒóË“ý²q”ï¾íz‡Œ¾ú-îï›hç™®4´³h^Qv~¤'m‚ÇÖ+í$}œº³qøsTÖÏï v¼Ÿx}L÷uäÒK /ªQ±‹Ï‡tÛgít'+Ëó<Þ€»»»»°ã®ºë®º—www¨wwww`îîîîÀÝÝÝÝ€¼Í{ß¼}§ØkÀûŽéÊ6(Ó7»´dÆîB‚{¨€` @Î+fÒÑÜB3QÙ†!Ž…ç-‹A“Ï6?w±½Ö-·ºS?Àå8ЖÔ)q£¼…ìaÀI€ó‘ÈgÞA‘Aø"D‹Ý¥mÅÚü¢/ydŽ©¸Õu[q_oeé=ЬpøkL/Yb@µn÷^§›!f)Ž”ä8+ßšúÖ¤tìr£ ¦ú¦_ªšλJbÎûy8ÛÕ»Uå†5Mn˜’@™|Ë¢Ô1$•ÌG­†[ ¦x‰}´Î —á2ÕÜhˆÊ`$`¨ß•D ºô¢ƒ¿Ö‚¦Ö DIt ŒI³†^ÎîïGwwwqÇqÇqÇ.óœç9ÎsšÎsœç\Vé5×]u×]Ày¿RIX©4¬VšIX©$¬T’bªI+$•Š’JÅI%b·â·òrm¶Ûm¶ÛÀ »»»¾_†íxV*I1U$•Š’JÅI%b¤’±RIŠ©$¬T’V*I+1\997ïÛm¶áwwÀ*ª«6­]Ò€WqjÊë™™™›UUUU±@®k®”¥)FUUUUˆ›vÀª€*šÈˆ•˜ˆˆˆˆ•UYˆ ª U™UUUU[.-X X¥)JYbªªªªÌ@ «và»»»»°Ýw¦ši¦ši¦šiZiœç9ÎsµUp©Ã`H –]¯óڸ߷òP~ûô?ÃÞ1<ÚíCâö3Ò%"æÊ®pf4IƒK|á¥,á ]ç­ÊBa”Ö-óÍZ‡ Ä/×Ñ æ–Ž,5SFm}?¯óÔà©’56pb†Õ¾1È‘†jàà ÖÒs¤! =¡…‹Ì†&n.†‘†© C9l^Âælaÿ‹¹"œ(HÞ•asurveillance/data/deleval.RData0000644000175100001440000000142511522016226016225 0ustar hornikusers‹ íÙùRÓ@ðmR ´€€Þ÷­¨ˆ÷AÄ[¢âí6YÚhš›´â¼‰¯Ä#ø>øÝ6RíVfÜùtÛä·›_6³9šÉÑéät’¢-#šŽ¯q 1h‡6“Ù¬DmÓw„Vµ0—y|é„|°B”;‘Ð*û€DÐHn+A».ØÝн°¶ÀVØÛ¡Ù »`7ì½°öÃ8‡à0£p ŽÃ 8 §à4œ~8 çà< À„‹p .ø ×à:Ü€›p † ÃpF`îÀÜ…{pÀCxá ŒÃ<…IÈÀ<ƒçð¦á%¼‚×ðÞÂ;x€B 0Á ä*ǧæàÅgûŒ,-{-—ÚìùTøA–þ–.‡ ýˆ Nð¬ÇD‰aÚ<°ódc”Ø_è+ÜgÔïØo~ÿ‹²Û_ï}ht\Âcõ=ê÷Ÿ–Gå±Ú}\m‡JÍüÒM«@*çL¹8_©k§ BZ`©œCåºR9·jAL‹É¨Ÿ¯6pËó*+&¿3ˆ&'ÿF™Ìª¨¢Š*ªüwE^œZIä°M._ûÚX‡†òe~Š¢¬N3fl²èºLdyÑ1Õ´U”µkÆ´ít˜•ËcÚŠ<çf0sã d¢Õɤ¡,V•j—ËÝ¢M}‹;c‚ÕÇá¡ï剪U­jU«ZÕͬ›q•Ö ÔxëÏfùlpÍn# ßEè æ§,g)ƒÙˆÄR®à=_XN."Á„\ME®zÍ//_D ?î6•;®u/[¨LfÂo@]j|¢9¶¼;™¯çÙ‡óK¸ÜþšãNõoxZßîÚÜ&Áð„â&õ)r‰jÜRýƒ¿;ªgÁ¿ôW–õܳJ>)·Ð?#º´2ªf0ú2.î|¨=ìÏ(UÚÈøÞp¯õ‡¤ÍàŽ/¸]gDRå7ÉÃr2Ÿ$ùõJ¤ö¾±P´}Ëáä4•Y¸btÏ÷êäÚáE‰Y¶Mƒ-eM~þ¿‚surveillance/data/m1.RData0000644000175100001440000000034010636320360015123 0ustar hornikusers‹ r‰0âŠàb```b`bad`b2Y˜€#ƒ'H<×Y$ ļ@|‘˜!ªÀ€Êfb~ æbnÉPq^¨8ˆb¨>$sÐÙƒêF4LmóG*náÄÇ€ÈK$ûÔ¥GÁ(£`ŒXª¼PøLó]ÀD=Ò:dÍKÌM-2À D° G~RqjQYj LQqIbI*”Ã’V”Zˆ$QT‚ndrNb1ÌHPdOÉ,(ÊO2ÿ0•ƒø¸ surveillance/data/h1_nrwrp.RData0000644000175100001440000000043510636320360016353 0ustar hornikusers‹ r‰0âŠàb```b`bad`b2Y˜€#ƒ'æÈ0ŒÏ+*/*```I1/_d@Fì€ cãcÓËŒÆfEÓ‹ÎF6ƒìˆ™ÐÄÕ1¢éA¶ƒM6w2"™É€ÆÆÄŠá’GWË„f'­º½Øâ›:B=>ð± ™ž.˜ÑÔ˱ sCí…Å7T-’{¹ ¦†šaÏÇ€š—FÁ(£`Xûƒ“àúˆÑÁ …Ïä0ßÌA„J‘5/17µÈ`7  Çü¤âÔ¢²Ô˜¢â’Ä’T(‡%­(µI¢¨ÝÈäœÄb˜‘ :$Èž’YP”Ÿdþa ¸ýo¾ surveillance/data/measles.weser.RData0000644000175100001440000000311210716603245017370 0ustar hornikusers‹í]ÛoU?s¶7nmA¼à PÀíÌìÌ,ŠT©A ‚J¹ˆ.íÐ6¶,îxlâÀ”S/A‰bÔG$˜øà«O>ßHŒú¤1ý>vη§Ó™v™m·lý~Éß73gÎ9³ùè¾®^saïB!„²Ñ2aƒ„ !Ú€.ñsÅa¿¸éŒ_ô B¤î€•͸8X*(p‡›{MA™ V‚‹€‹ƒýZmÀvàRà2 Ö»x'ð.àÝÀ{€+€÷ïÞ|ø p%ð!àÃÀUÀÕÀ5ÀG€×××>ÜÜÜ|˜vM ´ t0 Ü |øp ðiàV`'ðà³ÀmÀ.àsÀnàvààóÀÀ]À€»{€{=Àû€û/_¾<ì¾ < | ø:0<ìö}àqà@éüH8ÞMx“BDà9Äs‹ç ÏsIßku¼Ôó[¿†ÃÞj<Á²jœAÅ÷ŒQ¯Â÷>ŽÍF›qøN¾ Fmˆ‚~ªûï“ÅË8·Às†÷¶WÍ#ðþÇ>¤‚òÍbâ³ ž1}˜Çe¶QËcÄçcjDßøLÀûÝ•QÏŽTÀQžÊPÙpýQïáe}¢?§ðÛÊ`~ÇÀo8/ÆïøÍçâø=Äåyó²`úV‚õà÷&­ý¢ümEAz›ÅÄ9nT[ç ·C’"<¾‡çŸá2óq}VËQïוÔUM™©öj“>ÀûKÝ'j[5~•¬«æËu×0× ˜ÌÖûY¥õNU®š9JÔ¾á9¶>þÎÔ³~¶®íz‹tĽ£ÌQß&üh”꥟zp5þLÔ*ÒENäFü¢(½êà¶¢4•SÓÐËN›Zli±]Ž3Z¬•Ïhå3zùŒ;Zìj±§ÅÙr줵XóuÌRûek•?·0 ƒÁ`0 ƒÁ`0 ƒÁ`0 ƒÁ`0 ƒÁ`0 ƒÁ`TÌÕÿŠÈŽ®ŸO9ØÇŸ#BÒT¿ÙJÅŠÛgºT ¸ÿf$i_¦JŽJ­$å*.å´Òc9]û’ÔW&ܯJêŽÓ¸}¦;Æ•ö½’íqõŵµšÿ²fšþOzî´‰èçN=?sê¹í”ã¶õí¿ß[þAÏZVVÖúÅØÙ†ïϵ±²²&ÐK#ÆVv]geeM Ÿ¬ÿóÔ¯WYYYèWk–èìýš••5~þÇ51öãG¬¬¬ ôòнGŽŽÌÊÊš@?¼òÏõ]¿\deeM Ÿ _>¿}ãYVVÖz©ë\zÿÁßXYYè…·¶ütxs++k½ú×é÷¯üÐÍÊÊš@?½¶cõ¡ÝëXYYèø†o¶­ú¶ÈÊÊš@ßýnÏ—ït_dee½u½…·ö`æA*!ÂPY†JÁ0Tþ…¡’/ •ya¨´ Cå\*áBv¤)ê È¤È¢È¦(C‘C‘K‘Gy˜äa’‡I&y˜äa’‡I&y˜äa’‡EyXäa‘‡EyXäa‘‡EyØäa“‡M6yØäa“‡M6yØäa“G†<(éFRʤ„Ié6’’m$¥ÚHJ´‘”f#)ÉFRФé‡Cy8äá‡Cy8äá’‡K.y¸äá’‡K.y¸äá’‡KyxäᑇGyxäᑇGyxä‘%,ydÉ#KYòÈ’G–<²ä‘%¬òHu¤Óå°£šåÐ*‡hTç9\¢htî ¸,;ÏwÝ\Øú»Z=áo¶5ª?؆oV6œñý7ÔuË+ú…Ó~¿Ú¡8šõƒ…%'ü¡ÁcùS…Á|^•h=™?yj87:”?Ñ]Èõ©:ü7µ: £á–ô 犪%Fнæþ¡bO!?ôðÆá<À ݈surveillance/R/0000755000175100001440000000000013231640220013156 5ustar hornikuserssurveillance/R/twinSIR_intensity.R0000644000175100001440000002772011775403713016775 0ustar hornikusers################################################################################ # Authors: Sebastian Meyer, with contributions by Michael Hoehle # Date: 02 June 2009, modified 25 Mar 2011, 27 Jun 2012 # # This file contains functions related to calculating and plotting intensities. ################################################################################ ################################################################################ # Calculate the two components of the intensity lambda(t|H_t) for each row # of the event history. # Be aware that the function assumes atRiskY == 1 in all rows! # # ARGS: # theta - parameter vector c(alpha,beta), where # beta also contains the baseline coefficients in the first place # X - covariate matrix related to alpha, i.e. the epidemic component # Z - covariate matrix related to beta, i.e. the Cox-like endemic component # # RETURNS: a numeric matrix with two columns e and h and nrow(X)==nrow(Z) rows ################################################################################ .eh <- function(theta, X, Z) { # Extracting params from theta dimX <- dim(X) nRows <- dimX[1] # = nrow(Z) px <- dimX[2] pz <- ncol(Z) alpha <- theta[seq_len(px)] beta <- theta[px + seq_len(pz)] # Calculate the epidemic component e(t|H_t) and the endemic component h(t) e <- if (px > 0L) drop(X %*% alpha) else numeric(nRows) h <- if (pz > 0L) drop(exp(Z %*% beta)) else numeric(nRows) # Return the two components of the infection intensity related to the # rows of the event history in a two column matrix eh <- cbind(e = e, h = h) return(eh) } ################################################################################ # Cumulative hazard function # # \Lambda(t) = \int_{timeRange[1]}^t \lambda(s) ds, # # where \lambda(s) = \sum_{i=1}^n \lambda_i(s) # # Be aware that the function assumes atRiskY == 1 for all rows of X/Z/survs !!! # # ARGS: # t - scalar time point until we want to integrate, must be non-negative # theta - parameter vector c(alpha,beta), where # beta also contains the baseline coefficients in the first place # X - covariate matrix related to alpha, i.e. the epidemic component # Z - covariate matrix related to beta, i.e. the Cox-like endemic component # survs - data.frame with columns id, start, stop, event; "timeRange" attribute # weights - vector of length nrow(X) indicating the number of individuals # with the same covariates. weights are allowed to change over time. # Note: it is assumed that none of the individuals covered by # "weights" can have an actual event, if so they need to have their # own row # # RETURNS: value of the cumulative hazard function at time t ################################################################################ Lambda <- function(t, theta, X, Z, survs, weights) { timeRange <- attr(survs, "timeRange") eh <- if (!isScalar(t) || t < timeRange[1L]) { stop("invalid argument 't': must be a scalar >= ", timeRange[1L], " (beginning of observation period)") } else if (t == timeRange[1L]) { return(0) } else if (t < timeRange[2L]) { # We have to extract the relevant intervals sortedStop <- sort(unique(survs$stop)) # Find first stop time beyond t idx <- match(TRUE, sortedStop >= t) firstBeyondt <- sortedStop[idx] includeSurvsRow <- survs$stop <= firstBeyondt # If t between start and stop of an interval we need to chop... if (firstBeyondt != t) { survs$stop[survs$stop == firstBeyondt] <- t } # Extract relevant parts survs <- survs[includeSurvsRow,] weights <- weights[includeSurvsRow] .eh(theta, X[includeSurvsRow,], Z[includeSurvsRow,]) } else { # if t >= attr(survs, "timeRange")[2], we take all rows .eh(theta, X, Z) } lambda <- rowSums(eh) dt <- survs$stop - survs$start intlambda <- sum(weights * lambda * dt) # no individual sums as in loglik return(intlambda) } ################################################################################ # Function to plot the path of the infection intensity or the proportions of # the endemic or epidemic component, either on an individual basis or related # to the total intensity at each event (=infection) time. # The function works with objects of class "simEpidata" # as well as with objects of class "twinSIR". ################################################################################ # 'model' is the result of getModel(x) # if x is of class "twinSIR": theta = (alpha, beta) = (alpha, (h0coefs, betarest)) # if x is of class "simEpidata": theta = (alpha, 1, betarest) # per default, the function uses the fitted or true parameters, respectively intensityplot_twinSIR <- function(model, which = c("epidemic proportion", "endemic proportion", "total intensity"), aggregate = TRUE, theta = NULL, plot = TRUE, add = FALSE, rug.opts = list(), ...) { which <- match.arg(which) ## model components survs <- model$survs start <- attr(survs, "timeRange")[1L] end <- attr(survs, "timeRange")[2L] timeIntervals <- unique(survs[c("start", "stop")]) timepoints <- unique(c(timeIntervals$stop, end)) # need 'end' here, because model does only contain rows with atRiskY == 1, # otherwise would terminate in advance if all individuals have been infected nTimes <- length(timepoints) idlevels <- levels(survs$id) ## helper function for use with by() intensity <- function(iddata, what) { # 'iddata' will be a subset of survs, 'what' will be "wlambda" or "we" y <- numeric(nTimes) # zeroes y[match(iddata$stop, timepoints)] <- iddata[[what]] y } ## Calculate epidemic (e) and endemic (h) component in each row of the model eh <- do.call(".eh", args = c(list(theta = theta), model[c("X", "Z")])) ## Calculate individual _total intensity_ paths lambda <- rowSums(eh) survs$wlambda <- as.vector(model$weights * lambda) ## put individual intensity paths into a matrix [nTimes x n] wlambdaID <- by(data = survs, INDICES = survs["id"], FUN = intensity, what = "wlambda", simplify = FALSE) # initially infectious individuals (without re-infection) don't appear in # survs, since they are never atRiskY => wlambdaID[[i]] is NULL for such an # individual i but should be a 0-vector of length nTimes initiallyInfected <- names(which(sapply(wlambdaID, is.null))) #if (length(initiallyInfected) > 0L) # not necessary wlambdaID[initiallyInfected] <- rep(list(numeric(nTimes)), length(initiallyInfected)) wlambdaIDmatrix <- as.matrix(as.data.frame(c(wlambdaID), optional = TRUE)) ## alternative way but slower: ## wlambdaIDmatrix <- matrix(0, nrow = nTimes, ncol = length(idlevels), ## dimnames = list(NULL, idlevels)) ## for (ID in idlevels) { ## iddata <- survs[survs$id == ID,] ## wlambdaIDmatrix[match(iddata$stop, timepoints), ID] <- iddata$wlambda ## } if (which != "total intensity") { ## Calculate individual _epidemic intensity_ paths survs$we <- { px <- ncol(model$X) if (px == 0L) { stop("nothing to do, model does not contain both components") } as.vector(model$weights * eh[,1]) } ## put individual epidemic intensity paths into a matrix [nTimes x n] weID <- by(data = survs, INDICES = list(id = survs$id), FUN = intensity, what = "we", simplify = FALSE) # we have to replace NULL entries by numeric(nTimes) (cf. wlambdaID) weID[initiallyInfected] <- rep(list(numeric(nTimes)), length(initiallyInfected)) weIDmatrix <- as.matrix(as.data.frame(c(weID), optional = TRUE)) ## alternative code which is slower: ## weIDmatrix <- matrix(0, nrow = nTimes, ncol = length(idlevels), ## dimnames = list(NULL, idlevels)) ## for (ID in idlevels) { ## iddata <- survs[survs$id == ID,] ## weIDmatrix[match(iddata$stop, timepoints), ID] <- iddata$we ## } } ## Generate matrix with data for 'matplot' ydata2plot <- if (which == "total intensity") { if (aggregate) { rowSums(wlambdaIDmatrix) } else { wlambdaIDmatrix } } else { # calculate epidemic proportion if (aggregate) { rowSums(weIDmatrix) / rowSums(wlambdaIDmatrix) } else { weIDmatrix / wlambdaIDmatrix } } if (which == "endemic proportion") { ydata2plot <- 1 - ydata2plot } ydata2plot <- as.matrix(ydata2plot) colnames(ydata2plot) <- if (aggregate) which else idlevels if (which != "total intensity") { # there may be NAs in data2plot where the total intensity equals 0 # => when calculating proportions we get 0 / 0 = NA # we redefine those values to 0. (0-intensity => 0-proportion) ydata2plot[is.na(ydata2plot)] <- 0 } # prepend time (x) column data2plot <- cbind(stop = timepoints, ydata2plot) # if the epidemic is SIRS or SIS (re-susceptibility), there may be time # blocks during the observation period, where no individual is susceptible: # Problem: those time blocks are not included in the model component, # which only contains rows with atRiskY == 1 # Solution: fill the missing time periods with 0 intensity (or proportion) innerStart <- timeIntervals[-1L, "start"] innerStop <- timeIntervals[-nrow(timeIntervals), "stop"] noSusceptiblesStopTimes <- innerStart[innerStop != innerStart] if (length(noSusceptiblesStopTimes) > 0L) { data2plot <- rbind(data2plot, cbind(noSusceptiblesStopTimes, matrix(0, nrow = length(noSusceptiblesStopTimes), ncol = ncol(ydata2plot)) ) ) data2plot <- data2plot[order(data2plot[,1L]),] } ## Plot and return data if (plot) { dotargs <- list(...) nms <- names(dotargs) if(! "xlab" %in% nms) dotargs$xlab <- "time" if(! "ylab" %in% nms) dotargs$ylab <- which if(! "lty" %in% nms) dotargs$lty <- 1 do.call("matplot", args = c(list(x = c(start, data2plot[,1L]), y = rbind(data2plot[1L, -1L, drop = FALSE], data2plot[ , -1L, drop = FALSE]), type = "S", add = add), dotargs)) if (is.list(rug.opts)) { if (is.null(rug.opts$ticksize)) rug.opts$ticksize <- 0.02 if (is.null(rug.opts$quiet)) rug.opts$quiet <- TRUE do.call("rug", args = c(list(x = attr(survs, "eventTimes")), rug.opts)) } invisible(data2plot) } else { data2plot } } ### intensityplot-methods for objects of classes "twinSIR" and "simEpidata" intensityplot.twinSIR <- function () { cl <- match.call() cl[[1]] <- as.name("intensityplot_twinSIR") names(cl)[names(cl) == "x"] <- "model" cl$model <- quote(getModel(x)) if (is.null(theta)) { cl$theta <- quote(coef(x)) } eval(cl) } intensityplot.simEpidata <- function () { cl <- match.call() cl[[1]] <- as.name("intensityplot_twinSIR") names(cl)[names(cl) == "x"] <- "model" cl$model <- quote(getModel(x)) if (is.null(theta)) { config <- attr(x, "config") cl$theta <- quote(c(config$alpha, 1, config$beta)) # 1 is for true h0 } message("Note: the (true) baseline hazard is only evaluated", " at the beginning of the time intervals") eval(cl) } formals(intensityplot.twinSIR) <- formals(intensityplot.simEpidata) <- c(alist(x=), formals(intensityplot_twinSIR)[-1]) surveillance/R/epidataCS.R0000644000175100001440000005347213137632634015170 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Data structure for CONTINUOUS SPATIO-temporal infectious disease case data ### and a spatio-temporal grid of endemic covariates ### ### Copyright (C) 2009-2017 Sebastian Meyer ### $Revision: 1939 $ ### $Date: 2017-07-31 15:50:20 +0200 (Mon, 31. Jul 2017) $ ################################################################################ ###################################################################### # MAIN GENERATOR FUNCTION FOR epidataCS OBJECTS # PARAMS: # events: SpatialPointsDataFrame of cases with obligatory columns # time: time point of event # tile: reference to spatial unit (tile) in stgrid, where the event is located # type: optional type of event (-> marked twinstim). will be converted to a factor variable. # eps.t: maximal temporal influence radius (e.g. length of infectious period, time to culling, etc.), may be Inf # eps.s: maximal spatial influence radius (e.g. 100 [km]), may be Inf # The remaining columns are further marks of the event, e.g. sex, age of infected person (-> epidemic covariates) # The column names ".obsInfLength", ".bdist", ".influenceRegion", and ".sources" are reserved. # ".obsInfLength": observed length of the infectious period (being part [0,T]) # ".bdist": minimal distance of the event locations to the boundary # ".influenceRegion": object of class "owin", the intersection of W with b(s,eps.s), with origin at s # ".sources": potential sources of infection # stgrid: data.frame with obligatory columns # tile: ID of spatial unit (e.g. id of municipality) # start, stop: temporal interval # area: area of the spatial unit (tile) # The remaining columns are endemic covariates. # The column name "BLOCK" is reserved (indexing the time intervals of stgrid). # W: SpatialPolygons. Observation region. Must have same proj4string as events. # qmatrix: square indicator matrix (0/1 or TRUE/FALSE) for possible transmission between the event types. will be internally converted to logical. Defaults to an independent spread of the event types. # nCircle2Poly: accuracy (number of edges) of the polygonal approximation of a circle # T: end of observation period (=last stop time). Must be specified if only the # start but not the stop times are supplied in stgrid (-> auto-generation of stop-times). # clipper: engine to use for computing polygon intersections. ###################################################################### obligColsNames_events <- c("time", "tile", "type", "eps.t", "eps.s") obligColsNames_stgrid <- c("start", "stop", "tile", "area") reservedColsNames_events <- c(".obsInfLength", ".sources", ".bdist", ".influenceRegion", "BLOCK", "start") reservedColsNames_stgrid <- c("BLOCK") as.epidataCS <- function (events, stgrid, W, qmatrix = diag(nTypes), nCircle2Poly = 32, T = NULL, clipper = c("polyclip", "rgeos"), verbose = interactive()) { clipper <- match.arg(clipper) # Check and SORT events if (verbose) cat("\nChecking 'events':\n") events <- check_events(events, verbose = verbose) # Check and SORT stgrid if (verbose) cat("Checking 'stgrid':\n") tiles <- NULL # FIXME: add argument to as.epidataCS stgrid <- if (missing(stgrid) && inherits(tiles, "SpatialPolygons")) { if (verbose) cat("\t(missing, using time-constant 'tiles' grid)\n") check_stgrid(tiles2stgrid(tiles, start=0, T=T), verbose = FALSE) } else { check_stgrid(stgrid, T, verbose = verbose) } # Check class of W and consistency of area if (verbose) cat("Checking 'W' ...\n") W <- check_W(W, area.other = sum(stgrid[["area"]][seq_len(nlevels(stgrid$tile))]), other = "stgrid") stopifnot(identicalCRS(W, events)) # Check qmatrix if (verbose) cat("Checking 'qmatrix' ...\n") typeNames <- levels(events$type) nTypes <- length(typeNames) # default value of qmatrix depends on nTypes qmatrix <- checkQ(qmatrix, typeNames) # Check nCircle2Poly stopifnot(isScalar(nCircle2Poly)) nCircle2Poly <- as.integer(nCircle2Poly) # Small helper function converting event index to (time, tile, type) string eventidx2string <- function (eventIdx) { with(events@data, paste(c("time", "tile", "type"), "=", c(time[eventIdx], dQuote(tile[eventIdx]), dQuote(type[eventIdx])), collapse = ", ")) } # Check that all events are part of W if (verbose) cat("Checking if all events are part of 'W' ...\n") WIdxOfEvents <- over(events, W) if (eventNotInWidx <- match(NA, WIdxOfEvents, nomatch = 0L)) { stop("the event at (", eventidx2string(eventNotInWidx), ") is not ", "inside 'W'") } # Some basic quantities nEvents <- length(events) timeRange <- with(stgrid, c(start[1], stop[length(stop)])) # Are event times covered by stgrid? if (verbose) cat("Checking if all events are covered by 'stgrid' ...\n") ## FIXME: what about pre-history events? don't need stgrid-data for them if (events$time[1L] <= timeRange[1L] || events$time[nEvents] > timeRange[2L]) { stop("event times are not covered by 'stgrid': must be in (", timeRange[1L],",",timeRange[2L],"]") } # Are all events$tile references really part of the stgrid? .events.tile <- factor(events$tile, levels = levels(stgrid$tile)) if (missingSCellIdx <- match(NA, .events.tile, nomatch = 0L)) { stop("the 'events$tile' entry \"", events$tile[missingSCellIdx], "\"", " is not a valid level of 'stgrid$tile'") } events$tile <- .events.tile # Map events to corresponding grid cells if (verbose) cat("Mapping events to 'stgrid' cells ...\n") withPB <- verbose && interactive() gridcellsOfEvents <- integer(nEvents) if (withPB) pb <- txtProgressBar(min=0, max=nEvents, initial=0, style=3) for (i in seq_len(nEvents)) { idx <- gridcellOfEvent(events$time[i], events$tile[i], stgrid) if (is.na(idx)) { stop("could not find information for time point ", events$time[i], " and tile \"", events$tile[i], "\" in 'stgrid'") } gridcellsOfEvents[i] <- idx if (withPB) setTxtProgressBar(pb, i) } if (withPB) close(pb) # Attach endemic covariates from stgrid to events if (verbose) cat("Attaching endemic covariates from 'stgrid' to 'events' ...\n") stgridIgnoreCols <- match(setdiff(obligColsNames_stgrid, "start"), names(stgrid)) copyCols <- setdiff(seq_along(stgrid), stgridIgnoreCols) reservedColsIdx <- na.omit(match(names(stgrid)[copyCols], names(events@data), nomatch=NA_integer_)) if (length(reservedColsIdx) > 0L) { warning("in 'events@data', the existing columns with names of endemic ", "covariates from 'stgrid' (", paste0("'", names(events@data)[reservedColsIdx], "'", collapse=", "), ") have been replaced") events@data <- events@data[-reservedColsIdx] } events@data <- cbind(events@data, stgrid[gridcellsOfEvents, copyCols]) # Calculate observed infection length = min(T-time, eps.t) for use in log-likelihood events$.obsInfLength <- with(events@data, pmin(timeRange[2]-time, eps.t)) # Determine potential source events (infective individuals) of each event if (verbose) cat("Determining potential event sources ...\n") events$.sources <- determineSources( eventTimes = events$time, eps.t = events$eps.t, eventCoords = coordinates(events), eps.s = events$eps.s, eventTypes = events$type, qmatrix = qmatrix) # Calculate minimal distance of event locations from the polygonal boundary if (verbose) cat("Calculating the events' distances to the boundary ...\n") Wowin <- as(W, "owin") # imported from polyCub events$.bdist <- bdist(coordinates(events), Wowin) # Construct spatial influence regions around events if (verbose) cat("Constructing spatial influence regions around events ...\n") events$.influenceRegion <- if (clipper == "polyclip") { .influenceRegions(events, Wowin, nCircle2Poly, clipper=clipper) } else .influenceRegions(events, W, nCircle2Poly, clipper=clipper) # Return components in a list of class "epidataCS" res <- list(events = events, stgrid = stgrid, W = W, qmatrix = qmatrix) class(res) <- "epidataCS" if (verbose) cat("Done.\n\n") return(res) } ###################################################################### # HELPER FUNCTIONS FOR as.epidataCS ###################################################################### ### CHECK FUNCTION FOR events ARGUMENT IN as.epidataCS check_events <- function (events, dropTypes = TRUE, verbose = TRUE) { # Check class and spatial dimensions stopifnot(inherits(events, "SpatialPointsDataFrame")) if (ncol(events@coords) != 2L) { stop("only two spatial dimensions are supported") } # check suitability of Euclidean geometry if (identical(FALSE, is.projected(events))) { # is.projected may return NA warning("\"epidataCS\" expects planar coordinates; ", "see 'spTransform' in package \"rgdal\"") } # Check existence of type column if (verbose) cat("\tChecking 'type' column ... ") events$type <- if ("type" %in% names(events)) { if (dropTypes) factor(events$type) else as.factor(events$type) } else { if (verbose) cat("Setting 'type' to 1 for all events.") factor(rep.int(1L,nrow(events@coords))) } if (verbose) cat("\n") # Check obligatory columns obligColsIdx <- match(obligColsNames_events, names(events), nomatch = NA_integer_) if (any(obligColsMissing <- is.na(obligColsIdx))) { stop("missing obligatory columns in 'events@data': ", paste(obligColsNames_events[obligColsMissing], collapse = ", ")) } # Check other columns on reserved names reservedColsIdx <- na.omit(match(reservedColsNames_events, names(events), nomatch=NA_integer_)) if (length(reservedColsIdx) > 0L) { warning("in 'events@data', the existing columns with reserved names (", paste0("'", names(events)[reservedColsIdx], "'", collapse=", "), ") have been replaced") events@data <- events@data[-reservedColsIdx] } # Check that influence radii are numeric and positive (also not NA) if (verbose) cat("\tChecking 'eps.t' and 'eps.s' columns ...\n") with(events@data, stopifnot(is.numeric(eps.t), eps.t > 0, is.numeric(eps.s), eps.s > 0)) # Transform time into a numeric variable if (verbose) cat("\tConverting event time into a numeric variable ...\n") events$time <- as.numeric(events$time) stopifnot(!is.na(events$time)) # Check event times for ties if (verbose) cat("\tChecking event times for ties ...\n") timeIsDuplicated <- duplicated(events$time) if (any(timeIsDuplicated)) { duplicatedTimes <- unique(events$time[timeIsDuplicated]) warning("detected non-unique event times: ", "concurrent events at time ", if (length(duplicatedTimes) == 1L) "point " else "points\n", paste(duplicatedTimes, collapse = ", ")) } # Sort events chronologically if (verbose) cat("\tSorting events ...\n") events <- events[order(events$time),] # First obligatory columns then remainders (epidemic covariates) obligColsIdx <- match(obligColsNames_events, names(events@data)) covarColsIdx <- setdiff(seq_along(events@data), obligColsIdx) events@data <- events@data[c(obligColsIdx, covarColsIdx)] events@coords.nrs <- numeric(0L) # forget index of coordinate columns # Done. return(events) } ### CHECK FUNCTION FOR stgrid ARGUMENT IN as.epidataCS check_stgrid <- function (stgrid, T, verbose = TRUE) { # Check class stopifnot(inherits(stgrid, "data.frame")) # Check obligatory columns autostop <- FALSE if (is.null(stgrid[["stop"]])) { if (is.null(T)) stop("'T' must be specified for auto-generation ", "of 'stop' column in 'stgrid'") stopifnot(isScalar(T)) autostop <- TRUE stgrid$stop <- NA_real_ } obligColsIdx <- match(obligColsNames_stgrid, names(stgrid), nomatch = NA_integer_) if (any(obligColsMissing <- is.na(obligColsIdx))) { stop("missing obligatory columns in 'stgrid': ", paste(obligColsNames_stgrid[obligColsMissing], collapse = ", ")) } # Check other columns on reserved names reservedColsIdx <- na.omit(match(reservedColsNames_stgrid, names(stgrid), nomatch=NA_integer_)) if (length(reservedColsIdx) > 0L) { warning("in 'stgrid', the existing columns with reserved names (", paste0("'", names(stgrid)[reservedColsIdx], "'", collapse=", "), ") have been replaced") stgrid <- stgrid[-reservedColsIdx] } # Transform tile into a factor variable # (also removing unused levels if it was a factor) if (verbose) cat("\tConverting 'tile' into a factor variable ...\n") stgrid$tile <- factor(stgrid$tile) # Transform start times and area into numeric variables stgrid$start <- as.numeric(stgrid$start) stgrid$area <- as.numeric(stgrid$area) # Check stop times stgrid$stop <- if (autostop) { # auto-generate stop times from start times and T if (verbose) cat("\tAuto-generating 'stop' column ...\n") starts <- sort(unique(stgrid$start)) if (T <= starts[length(starts)]) { stop("'T' must be larger than the last 'start' time in 'stgrid'") } stops <- c(starts[-1], T) stops[match(stgrid$start, starts)] } else { as.numeric(stgrid$stop) } # chronological data.frame of unique periods histIntervals <- unique(stgrid[c("start", "stop")]) histIntervals <- histIntervals[order(histIntervals[,1L]),] nBlocks <- nrow(histIntervals) if (!autostop) { # Check start/stop consistency if (verbose) cat("\tChecking start/stop consisteny ...\n") if (any(histIntervals[,2L] <= histIntervals[,1L])) { stop("stop times must be greater than start times") } startStopCheck <- histIntervals[-1L,1L] != histIntervals[-nBlocks,2L] if (startStopCheckIdx <- match(TRUE, startStopCheck, nomatch = 0)) { stop("inconsistent start/stop times: time intervals not consecutive ", "at stop time ", histIntervals[startStopCheckIdx,2L]) } } # Add BLOCK id stgrid$BLOCK <- match(stgrid$start, histIntervals[,1L]) # Check that we have a full BLOCK x tile grid if (verbose) cat("\tChecking if the grid is complete ...\n") blocksizes <- table(stgrid$BLOCK) tiletable <- table(stgrid$tile) if (length(unique(blocksizes)) > 1L || length(unique(tiletable)) > 1L) { stop("'stgrid' is not a full grid") } # First column BLOCK, then obligCols, then remainders (endemic covariates) if (verbose) cat("\tSorting the grid by time and tile ...\n") BLOCKcolIdx <- match("BLOCK", names(stgrid)) obligColsIdx <- match(obligColsNames_stgrid, names(stgrid)) covarColsIdx <- setdiff(seq_along(stgrid), c(BLOCKcolIdx, obligColsIdx)) stgrid <- stgrid[c(BLOCKcolIdx, obligColsIdx, covarColsIdx)] # Sort by BLOCK and tile stgrid <- stgrid[order(stgrid$BLOCK, stgrid$tile),] # # Get row indexes of the blocks' first/last rows # beginBlock <- match(seq_len(nBlocks), stgrid[["BLOCK"]]) # endBlock <- c(beginBlock[-1L]-1L, nrow(stgrid)) # Done. return(stgrid) } ### CHECK FUNCTION FOR W ARGUMENT IN as.epidataCS check_W <- function (W, area.other = NULL, other, tolerance = 0.001) { W <- as(W, "SpatialPolygons") # i.e. drop data if a SpatialPolygonsDataFrame if (!is.null(area.other) && area.other > 0) { check_W_area(W, area.other, other, tolerance) } return(W) } check_W_area <- function (W, area.other, other, tolerance = 0.001) { area.W <- areaSpatialPolygons(W) if (!isTRUE(all.equal.numeric(area.other, area.W, tolerance = tolerance, check.attributes = FALSE))) warning("area of 'W' (", area.W, ") differs from ", "total tile area in '", other, "' (", area.other, ")") } ### CHECK FUNCTION FOR tiles ARGUMENT IN as.epidataCS check_tiles <- function (tiles, levels, events = NULL, areas.stgrid = NULL, W = NULL, keep.data = FALSE, tolerance = 0.05) { stopifnot(inherits(tiles, "SpatialPolygons"), is.vector(levels, mode="character")) tileIDs <- row.names(tiles) ## check completeness of tiles if (any(missingtiles <- !levels %in% tileIDs)) stop(sum(missingtiles), " regions are missing in 'tiles', ", "check 'row.names(tiles)'") ## re-order: first 'levels', then any extra tiles tiles <- tiles[c(levels, setdiff(tileIDs, levels)),] ## drop data (also for suitable over-method in check_tiles_events) .tiles <- as(tiles, "SpatialPolygons") ## check tile specification of events and identical projection if (!is.null(events)) { check_tiles_events(.tiles, events) } ## check areas areas.tiles <- areaSpatialPolygons(tiles[levels,], byid = TRUE) if (!is.null(areas.stgrid)) { check_tiles_areas(areas.tiles, areas.stgrid, tolerance=tolerance) } if (!is.null(W)) { stopifnot(identicalCRS(tiles, W)) check_W_area(W, area.other=sum(areas.tiles), other="tiles", tolerance=tolerance) } ## done if (keep.data) tiles else .tiles } check_tiles_events <- function (tiles, events) { tiles <- as(tiles, "SpatialPolygons") # remove potential data for over() stopifnot(inherits(events, "SpatialPointsDataFrame"), identicalCRS(tiles, events)) tileIDs <- row.names(tiles) eventIDs <- row.names(events) ## get polygon ID's of events (via overlay) eventtiles <- tileIDs[over(events, tiles)] if (length(which_not_in_tiles <- which(is.na(eventtiles)))) warning("some of 'events' are not within 'tiles': ", paste0("\"", eventIDs[which_not_in_tiles], "\"", collapse=", ")) if (!is.null(events@data[["tile"]])) { which_disagree <- setdiff( which(eventtiles != as.character(events$tile)), which_not_in_tiles) if (length(which_disagree)) message("'over(events, tiles)' disagrees with 'events$tile': ", paste0("\"", eventIDs[which_disagree], "\"", collapse=", ")) } invisible() } check_tiles_areas <- function (areas.tiles, areas.stgrid, tolerance = 0.05) { areas_all_equal <- all.equal.numeric(areas.stgrid, areas.tiles, tolerance = tolerance, check.attributes = FALSE) if (!isTRUE(areas_all_equal)) warning("tile areas in 'stgrid' differ from areas of 'tiles': ", areas_all_equal) } ### CONSTRUCT SPATIAL INFLUENCE REGIONS AROUND EVENTS # An influenceRegion is an object of class "owin" with origin # at the event (over which we have to integrate by a cubature rule) # An attribute "area" gives the area of the influenceRegion. # If it is actually a circular influence region, then there is an attribute # "radius" denoting the radius of the influence region. # Argument 'W' can be of class "owin" (preferred) or "SpatialPolygons" # (especially for clipper="rgeos") .influenceRegions <- function (events, W, npoly, maxExtent = NULL, clipper = "polyclip") { Wowin <- as(W, "owin") if (is.null(maxExtent)) maxExtent <- diameter.owin(Wowin) doIntersection <- switch( clipper, # which package to use for polygon intersection "polyclip" = function (center, eps) intersectPolyCircle.owin(Wowin, center, eps, npoly), "rgeos" = function (center, eps) as( intersectPolyCircle.SpatialPolygons( as(W, "SpatialPolygons"), center, eps, npoly), "owin"), stop("unsupported polygon clipping engine: '", clipper, "'") ) eventCoords <- coordinates(events) res <- mapply( function (x, y, eps, bdist) { center <- c(x,y) ## if eps is very large, the influence region is the whole region of W iR <- shift.owin( if (eps > maxExtent) Wowin else doIntersection(center, eps), -center) ## if iR is actually a circle of radius eps, attach eps as attribute attr(iR, "area") <- if (eps <= bdist) { attr(iR, "radius") <- eps pi * eps^2 } else area.owin(iR) iR }, eventCoords[,1], eventCoords[,2], events$eps.s, events$.bdist, SIMPLIFY = FALSE, USE.NAMES = FALSE) attr(res, "nCircle2Poly") <- npoly attr(res, "clipper") <- clipper res } ### CREATE stgrid TEMPLATE FROM tiles tiles2stgrid <- function (tiles, start, T) { start <- sort.int(unique.default(start)) stgrid <- expand.grid(tile = row.names(tiles), start = start, KEEP.OUT.ATTRS = FALSE, stringsAsFactors = TRUE) cbind(stgrid, stop = rep(c(start[-1L], T), each = length(tiles)), area = rep(areaSpatialPolygons(tiles, byid = TRUE), length(start))) } surveillance/R/wrap_univariate.R0000644000175100001440000001463512556524634016535 0ustar hornikusers############################################################################## # This function is a wrapper for univariate surveillance algorithms # using the old disProg and survRes object # # An sts object is given and a pre specified algorithms is ran # by successively creating a disProg object for each region, # running the algo and then assign the slots of the resulting survRes # object to an sts object. ################################################################################### ###Apply other algorithms by wrapping up a suitable package. #Wrapper function to call algo.farrington for each time series in an sts object wrap.algo <- function(sts, algo, control, control.hook=function(k, control) return(control), verbose=TRUE,...) { #Number of time series nAreas <- ncol(sts@observed) nTimePoints <- nrow(sts@observed) nAlarm <- length(control$range) #Create alarm matrix having same size as sts sts@alarm <- matrix(NA,ncol=nAreas,nrow=nTimePoints,dimnames=dimnames(sts@observed)) sts@upperbound <- matrix(NA,ncol=nAreas,nrow=nTimePoints,dimnames=dimnames(sts@observed)) #Loop over all regions for (k in 1:nAreas) { if (verbose) { cat("Running ",algo," on area ",k," out of ",nAreas,"\n") } ##Create an old S3 disProg object disProg.k <- sts2disProg(sts[,k]) #Use the univariate algorithm (possibly preprocess control object) kcontrol <- control.hook(k, control) survRes.k <- do.call(algo,args = list(disProg.k, control=kcontrol)) #Transfer results to the S4 object if (!is.null(survRes.k)) { sts@alarm[control$range,k] <- survRes.k$alarm sts@upperbound[control$range,k] <- survRes.k$upperbound #Control object needs only to be set once sts@control <- survRes.k$control } } #Reduce sts object to only those obervations in range sts@observed <- sts@observed[control$range,,drop=FALSE] sts@state <- sts@state[control$range,,drop=FALSE] sts@populationFrac <- sts@populationFrac[control$range,,drop=FALSE] sts@alarm <- sts@alarm[control$range,,drop=FALSE] sts@upperbound <- sts@upperbound[control$range,,drop=FALSE] #Set correct theta0t matrix for all sts@control$theta0t <- control$theta0t #Fix the corresponding start entry start <- sts@start new.sampleNo <- start[2] + min(control$range) - 1 start.year <- start[1] + (new.sampleNo - 1) %/% sts@freq start.sampleNo <- (new.sampleNo - 1) %% sts@freq + 1 sts@start <- c(start.year,start.sampleNo) sts@epoch <- sts@epoch[control$range] sts@epochAsDate <- sts@epochAsDate #Ensure dimnames in the new object sts <- fix.dimnames(sts) return(sts) } #Farrington wrapper farrington <- function(sts, control=list(range=NULL, b=3, w=3, reweight=TRUE, verbose=FALSE,alpha=0.01),...) { wrap.algo(sts,algo="algo.farrington",control=control,...) } #Bayes wrapper (this can be implemented more efficiently) bayes <- function(sts, control = list(range = range, b = 0, w = 6, actY = TRUE,alpha=0.05),...) { if (sts@epochAsDate) { warning("algo.bayes currently can't handle Date entries. Computing reference values based on freq") } wrap.algo(sts,algo="algo.bayes",control=control) } #RKI wrapper rki <- function(sts, control = list(range = range, b = 2, w = 4, actY = FALSE),...) { if (sts@epochAsDate) { warning("algo.rki currently can't handle Date entries. Computing reference values based on freq") } wrap.algo(sts,algo="algo.rki",control=control,...) } #outbreakP wrapper outbreakP <- function(sts, control=list(range = range, k=100, ret=c("cases","value"),maxUpperboundCases=1e5),...) { wrap.algo(sts,algo="algo.outbreakP",control=control,...) } #HMM wrapper hmm <- function(sts, control=list(range=NULL, noStates=2, trend=TRUE, noHarmonics=1,covEffectEqual=FALSE),...) { if (sts@epochAsDate) { warning("algo.hmm currently can't handle Date entries. Computing reference values based on freq") } wrap.algo(sts,algo="algo.hmm",control=control,...) } #Cusum wrapper cusum <- function(sts, control = list(range=range, k=1.04, h=2.26, m=NULL, trans="standard",alpha=NULL),...) { wrap.algo(sts,algo="algo.cusum",control=control,...) } #GLRpois wrapper glrpois <- function(sts, control = list(range=range,c.ARL=5, S=1, beta=NULL, Mtilde=1, M=-1, change="intercept",theta=NULL),...) { wrap.algo(sts,algo="algo.glrpois",control=control,...) } #GLRnb wrapper glrnb <- function(sts, control = list(range=range,c.ARL=5, mu0=NULL, alpha=0, Mtilde=1, M=-1, change="intercept",theta=NULL,dir=c("inc","dec"), ret=c("cases","value")), ...) { wrap.algo(sts,algo="algo.glrnb",control=control,...) } #### this code definitely needs some more documentation -- wrap.algo atm is # 100% without docu #Rogerson wrapper # theta0t now has to be a matrix #library(surveillance) #data("ha") #rogerson(disProg2sts(ha),control=list(range=200:290,ARL0=100,s=1,theta0t=matrix(1,nrow=91,ncol=12))) rogerson <- function(sts, control = list(range=range, theta0t=NULL, ARL0=NULL, s=NULL, hValues=NULL, distribution=c("poisson","binomial"), nt=NULL, FIR=FALSE,limit=NULL, digits=1),...) { if (sts@epochAsDate) { warning("algo.rogerson currently can't handle Date entries. Computing reference values based on freq") } #Hook function to find right theta0t vector control.hook = function(k,control) { #Extract values relevant for the k'th component control$theta0t <- control$theta0t[,k] if (is.null(control[["nt",exact=TRUE]])) { control$nt <- sts@populationFrac[control$range,k] } else { if (!all.equal(sts@populationFrac[control$range,k],control$nt[,k])) { warning("Warning: nt slot of control specified, but specified population differs.") } else { control$nt <- control$nt[,k] } } #If no hValues given then compute them if (is.null(control[["hValues",exact=TRUE]])) { #This code does not appear to work once n is big. # control$hValues <- hValues(theta0 = unique(control$theta0t), ARL0=control$ARL0, s=control$s , distr = control$distribution, n=mean(control$nt))$hValues control$hValues <- hValues(theta0 = unique(control$theta0t), ARL0=control$ARL0, s=control$s , distr = control$distribution)$hValues } return(control) } #WrapIt wrap.algo(sts,algo="algo.rogerson",control=control,control.hook=control.hook,...) } surveillance/R/boda.R0000644000175100001440000002531312714570221014222 0ustar hornikusers###################################################################### # An implementation of the Bayesian Outbreak Detection Algorithm (BODA) # described in Manitz and H{\"o}hle (2013), Biometrical Journal. # # Note: The algorithm requires the non-CRAN package INLA to run. # You can easily install this package as described at # http://www.r-inla.org/download # # # Author: # The initial code was written by J. Manitz, which was then later # adapted and modified for integration into the package by M. Hoehle. # Contributions by M. Salmon. # # Date: # Code continuously developed during 2010-2014 # # Changes: # MS@2015-02-18 # fixed problem that the posterior was drawn from the respective marginals # instead of the joint distribution. # MH@2014-02-05 # changed tcltk progress bar to text based one and modified code, # use S4 sts object (no wrapping wanted) and changed to new INLA # function name for calculating the transformed marginal. ###################################################################### boda <- function(sts, control=list(range=NULL, X=NULL, trend=FALSE, season=FALSE, prior=c('iid','rw1','rw2'), alpha=0.05, mc.munu=100, mc.y=10, verbose=FALSE,multicore=TRUE, samplingMethod=c('joint','marginals'), quantileMethod=c("MC","MM"))) { #Check if the INLA package is available. if (!requireNamespace("INLA", quietly = TRUE)) { stop("The boda function requires the INLA package to be installed.\n", " The package is not available on CRAN, but can be easily obtained\n", " from .") } #Possibly speed up the computations by using multiple cores. if (is.null(control[["multicore",exact=TRUE]])) { control$multicore <- TRUE } if (control$multicore) { INLA::inla.setOption("num.threads", parallel::detectCores(logical = TRUE)) } #Stop if the sts object is multivariate if (ncol(sts)>1) { stop("boda currently only handles univariate sts objects.") } # quantileMethod parameter if(is.null(control[["quantileMethod",exact=TRUE]])){ control$quantileMethod <- "MC" } else { control$quantileMethod <- match.arg(control$quantileMethod, c("MC","MM")) } # extract data observed <- as.vector(observed(sts)) state <- as.vector(sts@state) time <- 1:length(observed) # clean model data from given outbreaks -- this is now part of the modelling # observed[which(state==1)] <- NA ### define range # missing range if(is.null(control[["range",exact=TRUE]])){ warning('No range given. Range is defined as time from second period until end of time series.') control$range <- (sts@freq+1):length(observed) } # check that range is subset of time series indices if(!all(control$range %in% time)){ stop("Evaluation period 'range' has to be vector of time series indices.") } #set order of range control$range <- sort(control$range) ### show extra output from INLA if(is.null(control[["verbose",exact=TRUE]])) { control$verbose <- FALSE } ### setting for different models if(is.null(control[["trend",exact=TRUE]])){ control$trend <- FALSE } if(is.null(control[["season",exact=TRUE]])){ control$season <- FALSE } if(!is.logical(control$trend)||!is.logical(control$season)){ stop('trend and season are logical parameters.') } ### Prior prior <- match.arg(control$prior, c('iid','rw1','rw2')) if(is.vector(control$X)){ control$X <- as.matrix(control$X,ncol=1) } # sampling method for the parameters samplingMethod <- match.arg(control$samplingMethod, c('joint','marginals')) # setting for threshold calcuation if(is.null(control[["alpha",exact=TRUE]])){ control$alpha <- 0.05 } if(control$alpha <= 0 | control$alpha >= 1){ stop("The significance level 'alpha' has to be a probability, and thus has to be between 0 and 1.") } # setting for monte carlo integration if(is.null(control[["mc.munu",exact=TRUE]])){ control$mc.munu <- 100 } if(is.null(control[["mc.y",exact=TRUE]])){ control$mc.y <- 10 } if(!control$mc.munu>0 || control$mc.munu!=round(control$mc.munu,0) || !control$mc.y>0 || control$mc.y!=round(control$mc.y,0)){ stop('Number of Monte Carlo trials has to be an integer larger than zero') } ### set model formula and data modelformula <- paste("observed ~ f(time, model='",prior,"', cyclic=FALSE)", sep="") dat <- data.frame(observed=observed, time=time) # outbreak id if(sum(state)>0){ modelformula <- paste(modelformula, "+ f(state, model='linear')", sep="") dat <- data.frame(dat, state=state) } # trend if(control$trend){ modelformula <- paste(modelformula, "+ f(timeT, model='linear')", sep="") dat <- data.frame(dat, timeT=time) } # season if(control$season){ modelformula <- paste(modelformula, "+ f(timeS, model='seasonal', season.length=",sts@freq,")", sep="") dat <- data.frame(dat, timeS=time) } # covariables X.formula <- NULL if(!is.null(control$X)){ if(nrow(control$X)!=length(observed)){ stop("Argument for covariates 'X' has to have the same length like the time series") } for(i in 1:ncol(control$X)){ X.formula <- (paste(X.formula ,'+', colnames(control$X)[i])) } modelformula <- paste(modelformula, X.formula, sep="") dat <- data.frame(dat, control$X) } modelformula <- as.formula(modelformula) ##### sequential steps ##### #If there is more than one time point in range, then setup a progress bar #(now text based. Alternative: tcltk based) useProgressBar <- length(control$range)>1 if (useProgressBar) { pb <- txtProgressBar(min=min(control$range), max=max(control$range), initial=0,style=3) } #Allocate vector of thresholds xi <- rep(NA,length(observed)) #Loop over all time points in 'range' for(i in control$range){ # prepare data frame dati <- dat[1:i,] dati$observed[i] <- NA #current value to be predicted dati$state[i] <- 0 #current state to be predicted # fit model and calculate quantile using INLA & MC sampling # browser() xi[i] <- bodaFit(dat=dati, samplingMethod=samplingMethod, modelformula=modelformula, prior=prior, alpha=control$alpha, mc.munu=control$mc.munu, mc.y=control$mc.y, quantileMethod=control$quantileMethod) # update progress bar if (useProgressBar) setTxtProgressBar(pb, i) } # close progress bar if (useProgressBar) close(pb) # compare observed with threshold an trigger alarm: FALSE=no alarm sts@alarm[,1] <- observed > xi sts@upperbound[,1] <- xi control$name <- paste('boda(prior=',prior,')',sep='') sts@control <- control # return result as an sts object return(sts[control$range,]) } ####################################################################### # Helper function for fitting the Bayesian GAM using INLA and computing # the (1-alpha)*100% quantile for the posterior predictive of y[T1] # # Parameters: # dat - data.frame containing the data # modelformula - formula to use for fitting the model with inla # prior - what type of prior for the spline c('iid','rw1','rw2') # alpha - quantile to compute in the predictive posterior # mc.munu - no. of Monte Carlo samples for the mu/size param in the NegBin # mc.y - no. of samples for y. # # Returns: # (1-alpha)*100% quantile for the posterior predictive of y[T1] ###################################################################### bodaFit <- function(dat=dat, modelformula=modelformula,prior=prior,alpha=alpha, mc.munu=mc.munu, mc.y=mc.y, samplingMethod=samplingMethod,quantileMethod=quantileMethod,...) { # set time point T1 <- nrow(dat) ### fit model link <- 1 E <- mean(dat$observed, na.rm=TRUE) model <- INLA::inla(modelformula, data=dat, family='nbinomial',E=E, control.predictor=list(compute=TRUE,link=link), control.compute=list(cpo=FALSE,config=TRUE), control.inla = list(int.strategy = "grid",dz=1,diff.logdens = 10)) if(is.null(model)){ return(qi=NA) } if(samplingMethod=='marginals'){ # draw sample from marginal posteriori of muT1 & etaT1 to determine predictive # quantile by sampling. hoehle: inla.marginal.transform does not exist anymore! # Since the observation corresponding to T1 is NA we manually need to transform # the fitted values (had there been an observation this is not necessary!!) marg <- try(INLA::inla.tmarginal(function(x) x,model$marginals.fitted.values[[T1]]), silent=TRUE) if(inherits(marg,'try-error')){ return(qi=NA) } mT1 <- try(INLA::inla.rmarginal(n=mc.munu,marg), silent=TRUE) if(inherits(mT1,'try-error')){ return(qi=NA) } # take variation in size hyperprior into account by also sampling from it mtheta <- model$internal.marginals.hyperpar[[1]] theta <- exp(INLA::inla.rmarginal(n=mc.munu,mtheta)) if(inherits(theta,'try-error')){ return(qi=NA) } } if (samplingMethod=='joint'){ # Sample from the posterior jointSample <- INLA::inla.posterior.sample(mc.munu,model, intern = TRUE) # take variation in size hyperprior into account by also sampling from it theta <- exp(t(sapply(jointSample, function(x) x$hyperpar[[1]]))) mT1 <- exp(t(sapply(jointSample, function(x) x$latent[[T1]]))) yT1 <- rnbinom(n=mc.y*mc.munu,size=theta,mu=E*mT1) } if(quantileMethod=="MC"){ #Draw (mc.munu \times mc.y) responses. Would be nice, if we could #determine the quantile of the predictive posterior in more direct form yT1 <- numeric(mc.munu*mc.y) #NULL idx <- seq(mc.y) for(j in seq(mc.munu)) { idx <- idx + mc.y yT1[idx] <- rnbinom(n=mc.y,size=theta[j],mu=E*mT1[j]) } qi <- quantile(yT1, probs=(1-alpha), type=3, na.rm=TRUE) } if(quantileMethod=="MM"){ mT1 <- mT1[mT1>=0&theta>0] theta <- theta[mT1>=0&theta>0] minBracket <- qnbinom(p=(1-alpha), mu=E*min(mT1), size=max(theta)) maxBracket <- qnbinom(p=(1-alpha), mu=E*max(mT1), size=min(theta)) qi <- qmix(p=(1-alpha), mu=E*mT1, size=theta, bracket=c(minBracket, maxBracket)) } return(qi) } #done bodaFit surveillance/R/modifyListcall.R0000644000175100001440000000220512060143477016272 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Function to modify a list _call_ according to another one similar to ### what utils::modifyList (by Deepayan Sarkar) does for list objects. ### ### Copyright (C) 2012 Sebastian Meyer ### $Revision: 463 $ ### $Date: 2012-12-06 17:26:39 +0100 (Thu, 06. Dec 2012) $ ################################################################################ is.listcall <- function (x) { is.call(x) && as.character(x[[1]]) %in% c("list", "alist") } modifyListcall <- function (x, val) { stopifnot(is.listcall(x), is.listcall(val)) xnames <- names(x)[-1] for (v in names(val)[nzchar(names(val))]) { xv <- if (v %in% xnames && is.listcall(x[[v]]) && is.listcall(val[[v]])) modifyListcall(x[[v]], val[[v]]) else val[[v]] x[v] <- list(xv) # allows for NULL value of val[[v]] } x } surveillance/R/twinstim_siaf_polyCub_iso.R0000644000175100001440000001013213136565661020550 0ustar hornikusers################################################################################ ### C-Level Cubature of "siaf" over Polygonal Domains using 'polyCub_iso' ### ### Copyright (C) 2017 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ################################################################################ ### construct a call using either .polyCub.iso or its C-version .call.polyCub.iso <- function (intrfr_name, engine = "C") { if (engine == "C") { call("siaf_polyCub_iso", quote(polydomain$bdry), intrfr_name, quote(siafpars), quote(list(...))) } else { call(".polyCub.iso", quote(polydomain$bdry), as.name(intrfr_name), quote(siafpars), center = c(0,0), control = quote(list(...))) } } ## construct siaf$F function siaf_F_polyCub_iso <- function (intrfr_name, engine = "C") { F <- function (polydomain, f, siafpars, type, ...) {} body(F) <- .call.polyCub.iso(intrfr_name, engine) environment(F) <- getNamespace("surveillance") return(F) } ## construct siaf$Deriv function siaf_Deriv_polyCub_iso <- function (intrfr_names, engine = "C") { Deriv <- function (polydomain, deriv, siafpars, type, ...) {} res_names <- paste0("res", seq_along(intrfr_names)) calls <- mapply( FUN = function (intrfr_name, res_name) call("<-", as.name(res_name), .call.polyCub.iso(intrfr_name, engine)), intrfr_name = intrfr_names, res_name = res_names, SIMPLIFY = FALSE, USE.NAMES = FALSE ) result <- as.call(c(as.name("c"), lapply(res_names, as.name))) body(Deriv) <- as.call(c(as.name("{"), calls, result)) environment(Deriv) <- getNamespace("surveillance") return(Deriv) } ## 'polys' is a list of polygons in the form of owin$bdry ## 'intrfr_name' identifies the function used in the integrand ## 'pars' is a vector of parameters for "intrfr" siaf_polyCub_iso <- function (polys, intrfr_name, pars, control = list()) { ## default control arguments for polyCub_iso / Rdqags ## similar to args(stats::integrate) control <- modifyList( list(subdivisions = 100L, rel.tol = .Machine$double.eps^0.25, stop.on.error = TRUE), control) if (is.null(control[["abs.tol"]])) control$abs.tol <- control$rel.tol ## integrate over each polygon ints <- lapply(X = polys, FUN = siaf_polyCub1_iso, intrfr_code = INTRFR_CODE[intrfr_name], pars = pars, subdivisions = control$subdivisions, rel.tol = control$rel.tol, abs.tol = control$abs.tol, stop.on.error = control$stop.on.error) sum(unlist(ints, recursive = FALSE, use.names = FALSE)) } ## 'xypoly' is a list(x, y) of vertex coordinates (open) siaf_polyCub1_iso <- function (xypoly, intrfr_code, pars, subdivisions = 100L, rel.tol = .Machine$double.eps^0.25, abs.tol = rel.tol, stop.on.error = TRUE) { if (length(xypoly[["y"]]) != (L <- length(xypoly[["x"]]))) stop("xypoly$x and xypoly$y must have equal length") .C("C_siaf_polyCub1_iso", as.double(xypoly$x), as.double(xypoly$y), as.integer(L), as.integer(intrfr_code), as.double(pars), as.integer(subdivisions), as.double(abs.tol), as.double(rel.tol), as.integer(stop.on.error), value = double(1L), abserr = double(1L), neval = integer(1L), PACKAGE = "surveillance")$value } ## integer codes are used to select the corresponding C-routine, ## see ../src/twinstim_siaf_polyCub_iso.c INTRFR_CODE <- c( "intrfr.powerlaw" = 10L, "intrfr.powerlaw.dlogsigma" = 11L, "intrfr.powerlaw.dlogd" = 12L, "intrfr.student" = 20L, "intrfr.student.dlogsigma" = 21L, "intrfr.student.dlogd" = 22L, "intrfr.powerlawL" = 30L, "intrfr.powerlawL.dlogsigma" = 31L, "intrfr.powerlawL.dlogd" = 32L, "intrfr.gaussian" = 40L, "intrfr.gaussian.dlogsigma" = 41L ) surveillance/R/twinstim_iafplot.R0000644000175100001440000003105012520414147016703 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Plot estimated interaction kernel (siaf/tiaf) as a function of distance ### ### Copyright (C) 2012-2015 Sebastian Meyer ### $Revision: 1325 $ ### $Date: 2015-04-30 13:56:23 +0200 (Thu, 30. Apr 2015) $ ################################################################################ iafplot <- function (object, which = c("siaf", "tiaf"), types = NULL, scaled = c("intercept", "standardized", "no"), truncated = FALSE, log = "", conf.type = if (length(pars) > 1) "MC" else "parbounds", conf.level = 0.95, conf.B = 999, xgrid = 101, col.estimate = rainbow(length(types)), col.conf = col.estimate, alpha.B = 0.15, lwd = c(3,1), lty = c(1,2), verticals = FALSE, do.points = FALSE, add = FALSE, xlim = NULL, ylim = NULL, xlab = NULL, ylab = NULL, legend = !add && (length(types) > 1), ...) { if (isTRUE(verticals)) verticals <- list() if (isTRUE(do.points)) do.points <- list() if (add) log <- paste0("", if (par("xlog")) "x", if (par("ylog")) "y") scaled <- if (is.logical(scaled)) { # surveillance < 1.9-0 if (scaled) "intercept" else "no" } else { match.arg(scaled) } coefs <- coef(object) epiloglink <- .epilink(object) == "log" typeNames <- rownames(object$qmatrix) nTypes <- length(typeNames) ## interaction function which <- match.arg(which) IAFobj <- object$formula[[which]] if (is.null(IAFobj)) stop("the model has no epidemic component") IAF <- IAFobj[[if (which=="siaf") "f" else "g"]] if (which == "siaf") { # needs to be a function of distance IAF <- as.function( c(alist(x=, ...=), quote(f(cbind(x, 0), ...))), envir = list2env(list(f = IAF), parent = environment(IAF)) ) } isStepFun <- !is.null(knots <- attr(IAFobj, "knots")) && !is.null(maxRange <- attr(IAFobj, "maxRange")) ## interaction range if (isScalar(truncated)) { eps <- truncated truncated <- TRUE } else { eps <- attr(IAFobj, "eps") } if (is.null(eps)) { # cannot take eps into account (pre 1.8-0 behaviour) eps <- NA_real_ } else if (length(eps) > 1L && truncated) { message("no truncation due to heterogeneous interaction ranges, see \"rug\"") } epsIsFixed <- length(eps) == 1L && is.finite(eps) ## scaled interaction function if (scaled == "intercept") { idxgamma0 <- match("e.(Intercept)", names(coefs), nomatch = 0L) if (idxgamma0 == 0L) { message("no scaling due to missing epidemic intercept") scaled <- "no" } } else { # we do not use gamma0 -> 0-length selection idxgamma0 <- 0L } SCALE <- switch(scaled, "intercept" = if (epiloglink) quote(exp(gamma0)) else quote(gamma0), "standardized" = quote(1/IAF(0, iafpars, types)), "no" = 1 ) FUN <- function (x, iafpars, types, gamma0) { scale <- eval(SCALE) vals <- scale * IAF(x, iafpars, types) } ## truncate at eps if (truncated && epsIsFixed) { body(FUN) <- as.call(c(as.list(body(FUN)), expression( vals[x > eps] <- 0, vals ))) } ## if (loglog) { ## body(FUN)[[length(body(FUN))]] <- ## call("log", body(FUN)[[length(body(FUN))]]) ## } ## extract parameters gamma0 <- coefs[idxgamma0] idxiafpars <- grep(paste0("^e\\.",which), names(coefs)) iafpars <- coefs[idxiafpars] ## concatenate parameters idxpars <- c(idxgamma0, idxiafpars) pars <- c(gamma0, iafpars) ## type of confidence band force(conf.type) # per default depends on 'pars' if (length(pars) == 0 || is.null(conf.type) || is.na(conf.type)) { conf.type <- "none" } conf.type <- match.arg(conf.type, choices = c("parbounds", "bootstrap", "MC", "none")) if (conf.type == "bootstrap") conf.type <- "MC" # "bootstrap" was used <1.8 if (conf.type == "parbounds" && length(pars) > 1) { warning("'conf.type=\"parbounds\"' is only valid for a single parameter") } ## grid of x-values (t or ||s||) on which FUN will be evaluated if (is.null(xlim)) { xmax <- if (add) { xmax <- par("usr")[2] / (if (par("xaxs")=="r") 1.04 else 1) if (par("xlog")) 10^xmax else xmax } else { if (epsIsFixed) { eps } else if (isStepFun && maxRange < Inf) { maxRange } else if (which == "siaf") { sqrt(sum((object$bbox[,"max"] - object$bbox[,"min"])^2)) } else { diff(object$timeRange) } } xlim <- c(0.5*grepl("x", log), xmax) } xgrid <- if (isStepFun) { c(if (grepl("x", log)) { if (xlim[1L] < knots[1L]) xlim[1L] else NULL } else 0, knots[knots 1L && truncated) rug(eps) } ## store evaluated interaction function in a matrix (will be returned) typeNamesSel <- typeNames[types] res <- matrix(NA_real_, length(xgrid), 1L+length(types), dimnames = list(NULL, c("x", typeNamesSel))) res[,1L] <- xgrid for (i in seq_along(types)) { ## select parameters on which to evaluate iaf parSample <- switch(conf.type, parbounds = { cis <- confint(object, idxpars, level=conf.level) ## all combinations of parameter bounds do.call("expand.grid", as.data.frame(t(cis))) }, MC = { # Monte-Carlo confidence interval ## sample parameters from their asymptotic multivariate normal dist. rbind(pars, mvrnorm(conf.B, mu=pars, Sigma=vcov(object)[idxpars,idxpars,drop=FALSE]), deparse.level=0) }) ## add confidence limits if (!is.null(parSample)) { fvalsSample <- apply(parSample, 1, if (scaled == "intercept") { function (pars) FUN(xgrid, pars[-1L], types[i], pars[1L]) } else { function (pars) FUN(xgrid, pars, types[i]) }) if (length(xgrid) == 1L) # e.g., single-step function fvalsSample <- t(fvalsSample) # convert to matrix form lowerupper <- if (conf.type == "parbounds") { t(apply(fvalsSample, 1, range)) } else { # Monte-Carlo sample of parameter values if (is.na(conf.level)) { stopifnot(alpha.B >= 0, alpha.B <= 1) .col <- col2rgb(col.conf[i], alpha=TRUE)[,1] .col["alpha"] <- round(alpha.B*.col["alpha"]) .col <- do.call("rgb", args=c(as.list(.col), maxColorValue = 255)) matlines(x=xgrid, y=fvalsSample, type="l", lty=lty[2], col=.col, lwd=lwd[2]) # returns NULL } else { t(apply(fvalsSample, 1, quantile, probs=c(0,conf.level) + (1-conf.level)/2)) } } if (!is.null(lowerupper)) { attr(res, if(length(types)==1) "CI" else paste0("CI.",typeNamesSel[i])) <- lowerupper if (isStepFun) { segments(rep.int(xgrid,2L), lowerupper, rep.int(c(xgrid[-1L], min(maxRange, xlim[2L])), 2L), lowerupper, lty=lty[2], col=col.conf[i], lwd=lwd[2]) ##points(rep.int(xgrid,2L), lowerupper, pch=16, col=col.conf[i]) } else { matlines(x=xgrid, y=lowerupper, type="l", lty=lty[2], col=col.conf[i], lwd=lwd[2]) } } } ## add point estimate res[,1L+i] <- FUN(xgrid, iafpars, types[i], gamma0) if (isStepFun) { segments(xgrid, res[,1L+i], c(xgrid[-1L], min(maxRange, xlim[2L])), res[,1L+i], lty = lty[1], col = col.estimate[i], lwd = lwd[1]) ## add points if (is.list(do.points)) { pointStyle <- modifyList(list(pch=16, col=col.estimate[i]), do.points) do.call("points", c(list(xgrid, res[,1L+i]), pointStyle)) } ## add vertical connections: if (is.list(verticals)) { verticalStyle <- modifyList( list(lty = 3, col = col.estimate[i], lwd = lwd[1L]), verticals) do.call("segments", c( list(xgrid[-1L], res[-length(xgrid),1L+i], xgrid[-1L], res[-1L,1L+i]), verticalStyle)) } if (maxRange <= xlim[2L]) { ## add horizontal=0 afterwards segments(maxRange, 0, xlim[2L], 0, lty = lty[1], col = col.estimate[i], lwd = lwd[1]) if (is.list(verticals)) do.call("segments", c( list(maxRange, res[length(xgrid),1L+i], maxRange, 0), verticalStyle)) if (is.list(do.points)) do.call("points", c(list(maxRange, 0), pointStyle)) } } else { lines(x = xgrid, y = res[,1L+i], lty = lty[1], col = col.estimate[i], lwd = lwd[1]) } } ## add legend if (isTRUE(legend) || is.list(legend)) { default.legend <- list(x = "topright", legend = typeNamesSel, col = col.estimate, lty = lty[1], lwd = lwd[1], bty = "n", cex = 0.9, title="type") legend.args <- if (is.list(legend)) { modifyList(default.legend, legend) } else default.legend do.call("legend", legend.args) } ## Invisibly return interaction function evaluated on xgrid (by type) invisible(res) } surveillance/R/clapply.R0000644000175100001440000000126513117527513014765 0ustar hornikusers################################################################################ ### Conditional lapply ### ### Copyright (C) 2012,2017 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ################################################################################ ### clapply uses lapply if X is a list and otherwise applies FUN directly to X. ### The result is always a list (of length 1 in the latter case). clapply <- function (X, FUN, ...) { if (is.list(X)) lapply(X, FUN, ...) else list(FUN(X, ...)) } surveillance/R/epidataCS_animate.R0000644000175100001440000001533312424415000016640 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### animate-method for "epidataCS" objects ### It respects the ani.options() "interval" and "nmax" of the animation ### package, and it is advisable to use it within saveHTML() or similar ### ### Copyright (C) 2009-2014 Sebastian Meyer ### $Revision: 1096 $ ### $Date: 2014-10-30 11:59:12 +0100 (Thu, 30. Oct 2014) $ ################################################################################ ## three types: ## time.spacing=NULL: sequential snapshots at all event times ## time.spacing=scalar: snapshots with given time step (and timer) ## time.spacing=NA: time step is determined such that "nmax" snapshots result animate.epidataCS <- function (object, interval = c(0,Inf), time.spacing = NULL, nmax = NULL, sleep = NULL, legend.opts = list(), timer.opts = list(), pch = 15:18, col.current = "red", col.I = "#C16E41", col.R = "#B3B3B3", col.influence = NULL, main = NULL, verbose = interactive(), ...) { stopifnot(is.numeric(interval), length(interval) == 2L) with.animation <- requireNamespace("animation", quietly = TRUE) if (is.null(sleep)) { sleep <- if (with.animation) animation::ani.options("interval") else 0.1 ## we cannot set this as default function argument, because we don't ## want to depend on package "animation" (surveillance only suggests it) } if (is.null(nmax)) { nmax <- if (with.animation) animation::ani.options("nmax") else Inf } s <- summary(object) removalTimes <- s$eventTimes + object$events$eps.t eventCoordsTypes <- cbind(s$eventCoords, type = s$eventTypes) pch <- rep_len(pch, s$nTypes) typeNames <- names(s$typeTable) multitype <- length(typeNames) > 1L # set default legend options doLegend <- if (is.list(legend.opts)) { if (is.null(legend.opts[["x"]])) legend.opts$x <- "topright" if (is.null(legend.opts$title)) legend.opts$title <- if (multitype) "type" else "state" if (is.null(legend.opts$legend)) { legend.opts$legend <- if (multitype) typeNames else c("infectious", if (!is.na(col.R)) "removed") } if (is.null(legend.opts$col)) { legend.opts$col <- if (multitype) col.current else c(col.I, if (!is.na(col.R)) col.R) } if (is.null(legend.opts$pch)) legend.opts$pch <- pch TRUE } else FALSE # set default timer options doTimer <- if (is.list(timer.opts)) { if (is.null(timer.opts[["x"]])) timer.opts$x <- "bottomright" if (is.null(timer.opts$title)) timer.opts$title <- "time" if (is.null(timer.opts$box.lty)) timer.opts$box.lty <- 0 if (is.null(timer.opts$adj)) timer.opts$adj <- c(0.5,0.5) if (is.null(timer.opts$inset)) timer.opts$inset <- 0.01 if (is.null(timer.opts$bg)) timer.opts$bg <- "white" TRUE } else FALSE # wrapper for 'points' with specific 'cex' for multiplicity multpoints <- function (tableCoordsTypes, col) { tableMult <- countunique(tableCoordsTypes) points(tableMult[,1:2,drop=FALSE], pch = pch[tableMult[,"type"]], col = col, cex = sqrt(1.5*tableMult[,"COUNT"]/pi) * par("cex")) } # functions returning if events are in status I or R at time t I <- function (t) s$eventTimes <= t & removalTimes >= t R <- function (t) removalTimes < t sequential <- is.null(time.spacing) # plot observed infections sequentially if (!sequential) stopifnot(length(time.spacing) == 1L) timeGrid <- if (sequential) unique(s$eventTimes) else { start <- max(s$timeRange[1], interval[1]) end <- min(interval[2], s$timeRange[2], max(removalTimes) + if (is.na(time.spacing)) 0 else time.spacing) if (is.na(time.spacing)) { if (!is.finite(nmax)) { stop("with 'time.spacing=NA', 'nmax' must be finite") } seq(from = start, to = end, length.out = nmax) } else { tps <- seq(from = start, to = end, by = time.spacing) if (length(tps) > nmax) { message("Generating only the first ", sQuote(if (with.animation) "ani.options(\"nmax\")" else "nmax"), " (=", nmax, ") snapshots") head(tps, nmax) } else tps } } .info <- format.info(timeGrid) timerformat <- paste0("%", .info[1], ".", .info[2], "f") # animate loopIndex <- if (!sequential) timeGrid else { idxs <- which(s$eventTimes >= interval[1] & s$eventTimes <= interval[2]) if (length(idxs) > nmax) { message("Generating only the first ", sQuote(if (with.animation) "ani.options(\"nmax\")" else "nmax"), " (=", nmax, ") events") head(idxs, nmax) } else idxs } told <- -Inf if (verbose) pb <- txtProgressBar(min=0, max=max(loopIndex), initial=0, style=3) for(it in loopIndex) { t <- if (sequential) s$eventTimes[it] else it infectious <- I(t) removed <- R(t) plot(object$W, ...) # FIXME: use default lwd = 2 title(main = main) if (doLegend) do.call(legend, legend.opts) if (doTimer) { ttxt <- sprintf(timerformat, t) do.call(legend, c(list(legend = ttxt), timer.opts)) } if (!is.null(col.influence)) { iRids <- which(infectious) if (sequential) setdiff(iRids, it) for(j in iRids) { iR <- shift.owin(object$events@data$.influenceRegion[[j]], s$eventCoords[j,]) plot(iR, add = TRUE, col = col.influence, border = NA) } } rTable <- eventCoordsTypes[removed,,drop=FALSE] if (nrow(rTable) > 0L) multpoints(rTable, col = col.R) iTable <- eventCoordsTypes[infectious,,drop=FALSE] if (nrow(iTable) > 0L) multpoints(iTable, col = col.I) infectiousNew <- if (sequential) it else infectious & !I(told) iTableNew <- eventCoordsTypes[infectiousNew,,drop=FALSE] if (nrow(iTableNew) > 0L) multpoints(iTableNew, col = col.current) told <- t if (verbose) setTxtProgressBar(pb, it) if (dev.interactive()) Sys.sleep(sleep) } if (verbose) close(pb) ## if (dev.interactive()) ## message("Note: use facilities of the \"animation\" package, e.g.,\n", ## " saveHTML() to view the animation in a web browser.") invisible(NULL) } surveillance/R/catCUSUM.R0000644000175100001440000002233712645673551014721 0ustar hornikusers######################################################################### # Categorical CUSUM for y_t \sim M_k(n_t, \pi_t) for t=1,...,tmax # Workhorse function doing the actual computations - no semantic checks # are performed here, we expect "proper" input. # # Params: # y - (k) \times tmax observation matrix for all categories # pi0 - (k) \times tmax in-control prob vector for all categories # pi1 - (k) \times tmax out-of-control prob vector for all categories # dfun - PMF function of the categorical response, i.e. multinomial, binomial, # beta-binom, etc. # n - vector of dim tmax containing the varying sizes # h - decision threshold of the Categorical CUSUM ######################################################################### catcusum.LLRcompute <- function(y, pi0, pi1, h, dfun, n, calc.at=TRUE,...) { #Initialize variables t <- 0 stopped <- FALSE S <- numeric(ncol(y)+1) U <- numeric(ncol(y)+1) ##Check if dfun is the binomial isBinomialPMF <- isTRUE(attr(dfun,which="isBinomialPMF")) #Run the Categorical LR CUSUM while (!stopped) { #Increase time t <- t+1 #Compute log likelihood ratio llr <- dfun(y=y[,t,drop=FALSE], size=n[t], mu=pi1[,t,drop=FALSE], log=TRUE,...) - dfun(y=y[,t,drop=FALSE], size=n[t], mu=pi0[,t,drop=FALSE], log=TRUE, ...) #Add to CUSUM S[t+1] <- max(0,S[t] + llr) #For binomial data it is also possible to compute how many cases it would take #to sound an alarm given the past. if (nrow(y) == 2 & calc.at) { ##For the binomial PMF it is possible to compute the number needed for an ##alarm exactly if (isBinomialPMF) { ##Calculations in ../maple/numberneededbeforealarm.mw. at <- (h - S[t] - n[t] * ( log(1 - pi1[1,t]) - log(1-pi0[1,t]))) / (log(pi1[1,t]) - log(pi0[1,t]) - log(1-pi1[1,t]) + log(1-pi0[1,t])) U[t+1] = ceiling(max(0,at)) ##Note: U[t+1] Can be higher than corresponding n_t. if (U[t+1]>n[t]) U[t+1] <- NA } else { #Compute the value at by trying all values betweeen 0 and n_t. If #no alarm, then we know the value for an alarm must be larger than y_t if (S[t+1]>h) { ay <- rbind(seq(0,y[1,t],by=1),n[t]-seq(0,y[1,t],by=1)) } else { ay <- rbind(seq(y[1,t],n[t],by=1),n[t]-seq(y[1,t],n[t],by=1)) } llr <- dfun(ay, size=n[t], mu=pi1[,t,drop=FALSE], log=TRUE,...) - dfun(ay, size=n[t], mu=pi0[,t,drop=FALSE], log=TRUE, ...) alarm <- llr > h-S[t] ##Is any a_t==TRUE?, i.e. does a y_t exist or is the set over which to ##take the minimum empty? if (any(alarm)) { U[t+1] <- ay[1,which.max(alarm)] } else { U[t+1] <- NA } } } ##Only run to the first alarm. Then reset. if ((S[t+1] > h) | (t==ncol(y))) { stopped <- TRUE} } ##If no alarm at the end put rl to end (its censored! hoehle: Actually it should be length+1! ##but the chopping is written such that copying occurs until the final index (hence we can't ##just do ncol(pi0)+1 ##Hence, N is more like the last index investigated. if (any(S[-1]>h)) { t <- which.max(S[-1] > h) } else { t <- ncol(pi0) ##Last one } ##Missing: cases needs to be returned! return(list(N=t,val=S[-1],cases=U[-1])) } ###################################################################### ## Wrap function to process sts object by categoricalCUSUM (new S4 ## style). Time varying number of counts is found in slot populationFrac. ## ## Params: ## control - list with the following components ## * range - vector of indices in disProgObj to monitor ## * h - threshold, once CUSUM > h we have an alarm ## * pi0 - (k-1) \times tmax in-control prob vector for all but ref cat ## * pi1 - (k-1) \times tmax out-of-control prob vector for all but ref cat ## * dfun - PMF to use for the computations, dmultinom, dbinom, dBB, etc. ## ... - further parameters to be sent to dfun ###################################################################### categoricalCUSUM <- function(stsObj, control = list(range=NULL,h=5, pi0=NULL, pi1=NULL, dfun=NULL, ret=c("cases","value")),...) { ##Set the default values if not yet set if(is.null(control[["pi0",exact=TRUE]])) { stop("Error: No specification of in-control proportion vector pi0!") } if(is.null(control[["pi1",exact=TRUE]])) { stop("Error: No specification of out-of-control proportion vector pi1!") } if(is.null(control[["dfun",exact=TRUE]])) { stop("Error: No specification of the distribution to use, e.g. dbinom, dmultinom or similar!") } if(is.null(control[["h",exact=TRUE]])) control$h <- 5 if(is.null(control[["ret",exact=TRUE]])) control$ret <- "value" ##Extract the important parts from the arguments range <- control$range y <- t(stsObj@observed[range,,drop=FALSE]) pi0 <- control[["pi0",exact=TRUE]] pi1 <- control[["pi1",exact=TRUE]] dfun <- control[["dfun",exact=TRUE]] control$ret <- match.arg(control$ret, c("value","cases")) ##Total number of objects that are investigated. Note this ##can't be deduced from the observed y, because only (c-1) columns ##are reported so using: n <- apply(y, 2, sum) is wrong! ##Assumption: all populationFrac's contain n_t and we can take just one n <- stsObj@populationFrac[range,1,drop=TRUE] ##Semantic checks if ( ((ncol(y) != ncol(pi0)) | (ncol(pi0) != ncol(pi1))) | ((nrow(y) != nrow(pi0)) | (nrow(pi0) != nrow(pi1)))) { stop("Error: dimensions of y, pi0 and pi1 have to match") } if ((control$ret == "cases") & nrow(pi0) != 2) { stop("Cases can only be returned in case k=2.") } if (length(n) != ncol(y)) { stop("Error: Length of n has to be equal to number of columns in y.") } ##Check if all n entries are the same if (!all(apply(stsObj@populationFrac[range,],1,function(x) all.equal(as.numeric(x),rev(as.numeric(x)))))) { stop("Error: All entries for n have to be the same in populationFrac") } ##Reserve space for the results ##start with cusum[timePoint -1] = 0, i.e. set cusum[1] = 0 alarm <- matrix(data = FALSE, nrow = length(range), ncol = nrow(y)) upperbound <- matrix(data = 0, nrow = length(range), ncol = nrow(y)) ##Small helper function to be used along the way --> move to other file! either <- function(cond, whenTrue, whenFalse) { if (cond) return(whenTrue) else return(whenFalse) } ##Setup counters for the progress doneidx <- 0 N <- 1 noofalarms <- 0 noOfTimePoints <- length(range) ####################################################### ##Loop as long as we are not through the entire sequence ####################################################### while (doneidx < noOfTimePoints) { ##Run Categorical CUSUM until the next alarm res <- catcusum.LLRcompute(y=y, pi0=pi0, pi1=pi1, n=n, h=control$h, dfun=dfun,calc.at=(control$ret=="cases"),...) ##In case an alarm found log this and reset the chart at res$N+1 if (res$N < ncol(y)) { ##Put appropriate value in upperbound upperbound[1:res$N + doneidx,] <- matrix(rep(either(control$ret == "value", res$val[1:res$N] ,res$cases[1:res$N]),each=ncol(upperbound)),ncol=ncol(upperbound),byrow=TRUE) alarm[res$N + doneidx,] <- TRUE ##Chop & get ready for next round y <- y[,-(1:res$N),drop=FALSE] pi0 <- pi0[,-(1:res$N),drop=FALSE] pi1 <- pi1[,-(1:res$N),drop=FALSE] n <- n[-(1:res$N)] ##Add to the number of alarms noofalarms <- noofalarms + 1 } doneidx <- doneidx + res$N } ##Add upperbound-statistic of last segment (note: an alarm might or might be reached here) upperbound[(doneidx-res$N+1):nrow(upperbound),] <- matrix( rep(either(control$ret == "value", res$val, res$cases),each=ncol(upperbound)),ncol=ncol(upperbound),byrow=TRUE) ##Inherit alarms as well (last time point might contain an alarm!) alarm[(doneidx-res$N+1):nrow(upperbound),] <- matrix( rep(res$val > control$h,each=ncol(alarm)), ncol=ncol(alarm),byrow=TRUE) # Add name and data name to control object control$name <- "categoricalCUSUM" control$data <- NULL #not supported anymore #New direct calculations on the sts object stsObj@observed <- stsObj@observed[control$range,,drop=FALSE] stsObj@epoch <- stsObj@epoch[control$range,drop=FALSE] stsObj@state <- stsObj@state[control$range,,drop=FALSE] stsObj@populationFrac <- stsObj@populationFrac[control$range,,drop=FALSE] stsObj@alarm <- alarm stsObj@upperbound <- upperbound stsObj@control <- control #Fix the corresponding start entry if (stsObj@epochAsDate==FALSE){ start <- stsObj@start new.sampleNo <- start[2] + min(control$range) - 1 start.year <- start[1] + (new.sampleNo - 1) %/% stsObj@freq start.sampleNo <- (new.sampleNo - 1) %% stsObj@freq + 1 stsObj@start <- c(start.year,start.sampleNo) } else { stsObj@start <- c(isoWeekYear(epoch(stsObj)[1])$ISOYear,isoWeekYear(epoch(stsObj)[1])$ISOWeek) } #Ensure dimnames in the new object ## THIS NEEDS TO BE FIXED! #stsObj <- fix.dimnames(stsObj) #Done return(stsObj) } surveillance/R/twinstim_siaf_step.R0000644000175100001440000001201112306105105017207 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### twinstim's spatial interaction function as a step function ### ### Copyright (C) 2014 Sebastian Meyer ### $Revision: 820 $ ### $Date: 2014-03-06 15:46:29 +0100 (Thu, 06. Mar 2014) $ ################################################################################ siaf.step <- function (knots, maxRange = Inf, nTypes = 1, validpars = NULL) { knots <- sort(unique(as.vector(knots,mode="numeric"))) stopifnot(knots > 0, is.finite(knots), isScalar(maxRange), maxRange > knots) nknots <- length(knots) # = number of parameters (per type) allknots <- c(0, knots, unique(c(maxRange,Inf))) allknotsPos <- c(0,knots,maxRange) # pos. domain, =allknots if maxRange=Inf nTypes <- as.integer(nTypes) stopifnot(length(nTypes) == 1L, nTypes > 0L) ## for the moment we don't make this type-specific if (nTypes != 1) stop("type-specific shapes are not yet implemented") npars <- nknots * nTypes ## ## auxiliary function to get the type-specific values (heights) from logvals ## logvals4type <- function (logvals, type) ## logvals[(type-1)*nknots + seq_len(nknots)] ## auxiliary function calculating the areas of the "rings" of the ## two-dimensional step function intersected with a polydomain. ## Returns a numeric vector of length ## length(allknotsPos)-1 == nknots+1 (i.e. not appending the area of the ## 0-height ring from maxRange to Inf in case maxRange < Inf) .ringAreas <- function (polydomain, npoly = 256) { polyvertices <- vertices(polydomain) polyarea <- area.owin(polydomain) bdist <- bdist(cbind(0,0), polydomain) ## distance to farest vertex (-> later steps not relevant) R <- sqrt(max(polyvertices[["x"]]^2 + polyvertices[["y"]]^2)) sliceAreas <- sapply(allknotsPos[-1L], function (r) { if (r <= bdist) pi * r^2 else if (r >= R) polyarea else area.owin(intersectPolyCircle.owin(polydomain,c(0,0),r,npoly=npoly)) }, simplify=TRUE, USE.NAMES=FALSE) diff.default(c(0,sliceAreas)) } ## since this is the most cumbersome task, use memoization (result does not ## depend on the parameters being optimized, but on influenceRegions only) ringAreas <- if (requireNamespace("memoise")) { memoise::memoise(.ringAreas) } else { warning("siaf.step() is much slower without memoisation", immediate.=TRUE) .ringAreas } f <- function (s, logvals, types = NULL) { sLength <- sqrt(.rowSums(s^2, length(s)/2, 2L)) ## step function is right-continuous, intervals are [a,b) c(1, exp(logvals), 0)[.bincode(sLength, allknots, right=FALSE)] } F <- function (polydomain, f, logvals, type = NULL, npoly = 256) { ## sum of the volumes of the intersections of "rings" with 'polydomain' sum(c(1, exp(logvals)) * ringAreas(polydomain, npoly=npoly)) } Fcircle <- function (r, logvals, type = NULL) { # exact integration on disc ## this is just the sum of the "ring" volumes sum(c(1, exp(logvals)) * pi * diff(pmin.int(allknotsPos, r)^2)) } deriv <- function (s, logvals, types = NULL) { sLength <- sqrt(.rowSums(s^2, L <- length(s)/2, 2L)) whichvals <- .bincode(sLength, allknots, right=FALSE) - 1L ## NOTE: sLength >= maxRange => whichvals > nknots (=> f=0) ## we do a bare-bone implementation of relevant parts of ## deriv <- outer(whichvals, seq_len(nknots), "==") Y <- rep.int(seq_len(nknots), rep.int(L,nknots)) # column index Z <- rep.int(exp(logvals), rep.int(L,nknots)) # value ##<- 6x faster than rep(..., each=L) #X <- rep.int(whichvals, nknots) deriv <- (Y == whichvals) * Z dim(deriv) <- c(L, nknots) deriv } Deriv <- function (polydomain, deriv, logvals, type = NULL, npoly = 256) { ringAreas <- ringAreas(polydomain, npoly=npoly) exp(logvals) * ringAreas[-1L] } simulate <- function (n, logvals, type = NULL, ub) { upper <- min(maxRange, ub) knots2upper <- c(knots[knots < upper], upper) heights <- c(1,exp(logvals))[seq_along(knots2upper)] ## first, sample the "rings" of the points rings <- sample.int(length(heights), size=n, replace=TRUE, prob=heights*diff.default(c(0,knots2upper^2))) ## sample points from these rings runifdisc(n, knots2upper[rings], c(0,knots2upper)[rings]) } ## Done res <- list(f = f, F = F, Fcircle = Fcircle, deriv = deriv, Deriv = Deriv, simulate = simulate, npars = npars, validpars = validpars) attr(res, "knots") <- knots attr(res, "maxRange") <- maxRange res } surveillance/R/sts_creation.R0000644000175100001440000001401013122430275016000 0ustar hornikusers################################################################################ #' Function for simulating a time series #' #' Function for simulating a time series and creating a sts-object #' As the counts are generated using a negative binomial distribution #' one also gets the (1-alpha) quantile for each timepoint (can be interpreted #' as an in-control upperbound for in-control values). #' The baseline and outbreaks are created as in Noufaily 2012. ################################################################################ # Parameters for the negbin #' @references An improved algorithm for outbreak detection in multiple surveillance systems, Noufaily, A., Enki, D.G., Farrington, C.P., Garthwaite, P., Andrews, N.J., Charlett, A. (2012), Statistics in Medicine, published online. ### #' @param theta baseline frequency of reports #' @param beta time trend #' @param gamma1 seasonality #' @param gamma2 seasonality #' @param m seasonality #' @param overdispersion overdispersion (size in rnbinom for the parameterization with mean and size) #' @param delayMax maximal delay in time units ### # Parameters for the time series ### #' @param dates dates of the time series #' @param densityDelay density distribution for the delay ### # Parameters for outbreaks ### #' @param sizesOutbreak sizes of all the outbreaks (vector) #' @param datesOutbreak dates of all the outbreaks (vector) #' # alpha #' @param alpha alpha for getting the (1-alpha) quantile of the negative binomial distribution at each timepoint #' @examples #' set.seed(12345) #' # Time series parameters #' scenario4 <- c(1.6,0,0.4,0.5,2) #' theta <- 1.6 #' beta <- 0 #' gamma1 <-0.4 #' gamma2 <- 0.5 #' overdispersion <- 1 #' m <- 1 #' # Dates #' firstDate <- "2006-01-01" #' lengthT=350 #' dates <- as.Date(firstDate,origin='1970-01-01') + 7 * 0:(lengthT - 1) #' # Maximal delay in weeks #' D=10 #' # Dates and sizes of the outbreaks #' datesOutbreak <- c(as.Date("2008-03-30"),as.Date("2011-09-25",origin="1970-01-01")) #' sizesOutbreak <- c(2,5) #' # Delay distribution #' data("salmAllOnset") #' in2011 <- which(formatDate(epoch(salmAllOnset), "%G") == 2011) #' rT2011 <- salmAllOnset@@control$reportingTriangle$n[in2011,] #' densityDelay <- apply(rT2011,2,sum, na.rm=TRUE)/sum(rT2011, na.rm=TRUE) #' # alpha for the upperbound #' alpha <- 0.05 #' # Create the sts with the full time series #' stsSim <- sts_creation(theta=theta,beta=beta,gamma1=gamma1,gamma2=gamma2,m=m, #' overdispersion=overdispersion, #' dates=dates, #' sizesOutbreak=sizesOutbreak,datesOutbreak=datesOutbreak, #' delayMax=D,densityDelay=densityDelay, #' alpha=alpha) #' plot(stsSim) sts_creation <- function(theta,beta,gamma1,gamma2,m,overdispersion,dates, sizesOutbreak,datesOutbreak,delayMax,alpha, densityDelay){ lengthT <- length(dates) firstDate=dates[1] # Baseline observed <- rep(NA,lengthT) upperbound <- rep(NA,lengthT) state <- logical(length=lengthT) for (t in 1:lengthT) { if (m==0){season=0} if (m==1){season=gamma1*cos(2*pi*t/52)+ gamma2*sin(2*pi*t/52)} if (m==2){season=gamma1*cos(2*pi*t/52)+ gamma2*sin(2*pi*t/52)+gamma1*cos(4*pi*t/52)+ gamma2*sin(4*pi*t/52)} mu <- exp(theta + beta*t + season) observed[t] <- rnbinom(mu=mu,size=overdispersion,n=1) upperbound[t] <- qnbinom(mu=mu,size=overdispersion,p=(1-alpha)) } # Outbreaks nOutbreaks <- length(sizesOutbreak) if (nOutbreaks>1){ dens <- lognormDiscrete(Dmax=20,logmu=0,sigma=0.5) for (i in 1:nOutbreaks){ tOutbreak <- which(dates==datesOutbreak[i]) numberOfCases <- rpois(n=1,lambda=sizesOutbreak[i]*(mu*(1+mu/overdispersion))) cases <- rep(0,length(dens)) if (numberOfCases!=0){ for (case in 1:numberOfCases){ t <- sample(x=1:length(dens),size=1,prob=dens) cases[t] <- cases[t] + 1 } } cases <- cases[cases>0] if(sum(cases)>0){ observed[tOutbreak:(tOutbreak+length(cases)-1)] <- observed[tOutbreak:(tOutbreak+length(cases)-1)] + cases state[tOutbreak:(tOutbreak+length(cases)-1)] <- TRUE } } } observed <- observed[1:lengthT] # Reporting triangle if (!is.null(densityDelay)){ # use density delay n <- matrix(0, lengthT, delayMax + 1,dimnames=list(as.character(dates),NULL)) for (t in 1:lengthT){ if(observed[t]!=0){ for (case in 1:observed[t]){ delay <- sample(x=0:delayMax,size=1,prob=densityDelay) if (delay > delayMax) {delay <- delayMax} n[t, delay + 1] <- n[t, delay + 1] + 1 } } } } else{ # Using a poisson as for the outbreaks because it looks good n <- matrix(0, lengthT, D + 1,dimnames=list(as.character(dates),NULL)) for (t in 1:lengthT){ if(observed[t]!=0){ for (case in 1:observed[t]){ delay <- rpois(n=1, lambda=1.5) if (delay > D) {delay <- D} n[t, delay + 1] <- n[t, delay + 1] + 1 } } } } # Create the sts firstYear <- isoWeekYear(as.Date(firstDate,origin="1970-01-01"))$ISOYear firstWeek <- isoWeekYear(as.Date(firstDate,origin="1970-01-01"))$ISOWeek newSts <- new("sts", epoch = as.numeric(dates), start = c(2006, 1), upperbound = as.matrix(upperbound), freq = 52, observed = observed, state = as.matrix(state), epochAsDate = TRUE) newSts@control$reportingTriangle$n <- n return(newSts) } ################################################################################ # FUNCTION FOR DISCRETIZING THE LOG NORM DISTRIBUTION ################################################################################ lognormDiscrete <- function(Dmax=20,logmu=0,sigma=0.5){ Fd <- plnorm(0:Dmax, meanlog = logmu, sdlog = sigma) FdDmax <- plnorm(Dmax, meanlog = logmu, sdlog = sigma) #Normalize prob <- diff(Fd)/FdDmax return(prob) } surveillance/R/twinSIR_methods.R0000644000175100001440000002312112422377747016410 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Methods for "twinSIR" fits, specifically: ### - vcov: enabling the use of function confint to calculate Wald ### confidence intervals for the parameter estimates. ### - logLik: enables the use of function AIC ### - AIC, extractAIC: compute AIC or OSAIC depending on argument 'one.sided' ### - print, summary, print.summary, plot (intensityPlot), ... ### ### Copyright (C) 2009-2014 Sebastian Meyer, contributions by Michael Hoehle ### $Revision: 1088 $ ### $Date: 2014-10-24 09:29:43 +0200 (Fri, 24. Oct 2014) $ ################################################################################ ### don't need a specific coef-method (identical to stats:::coef.default) ## coef.twinSIR <- function (object, ...) ## { ## object$coefficients ## } # asymptotic variance-covariance matrix (inverse of fisher information matrix) vcov.twinSIR <- function (object, ...) { solve(object$fisherinfo) } logLik.twinSIR <- function (object, ...) { r <- object$loglik attr(r, "df") <- length(coef(object)) class(r) <- "logLik" r } # Note: pz is determined by scanning the names of coef(object), # thus the 'model' component is not necessary # See the Hughes and King (2003) paper for details .OSAICpenalty <- function (twinSIRobject, k = 2, nsim = 1e3) { theta <- coef(twinSIRobject) npar <- length(theta) pz <- length(grep("cox\\([^)]+\\)", names(theta), ignore.case = FALSE, perl = FALSE, fixed = FALSE, useBytes = FALSE, invert = FALSE)) px <- npar - pz # number of constrained (non-negative) parameters penalty <- if (px == 0L) { k * pz # default AIC penalty (with k = 2) } else if (px == 1L) { k * (pz + 0.5) } else if (px == 2L) { Sigma <- vcov(twinSIRobject) # parameter covariance matrix rho <- cov2cor(Sigma[1:2,1:2])[1,2] as <- acos(rho)/2/pi w <- c(as, 0.5, 0.5-as) k * sum(w * (pz + 0:2)) # = k * sum(w * (npar - px + 0:2)) } else { # px > 2 message("Computing OSAIC weights for ", px, " epidemic covariates based on ", nsim, " simulations ...") W <- vcov(twinSIRobject)[1:px,1:px] w.sim <- w.chibarsq.sim(p=px, W=W, N=nsim) #c.f. (12) in Hughes & King (2003), r_i=px, m=0:px, ki=npar #as npar=pz+px, we have that npar-px = pz, hence the sum is k * sum(w.sim * (pz + 0:px)) } attr(penalty, "exact") <- px <= 2 penalty } AIC.twinSIR <- function (object, ..., k = 2, one.sided = NULL, nsim = 1e3) { AIC.default <- match.call() AIC.default$one.sided <- NULL AIC.default$nsim <- NULL AIC.default[[1]] <- call(":::", as.name("stats"), as.name("AIC.default")) ## I don't see any easy way of using AIC.default while avoiding ":::". ## NextMethod() does not fit due to extra arguments one.sided & nsim. ## Could maybe unclass "object" and all objects in "..." and then use AIC() if (is.null(one.sided)) { one.sided <- object$method == "L-BFGS-B" } if (one.sided) { penalty <- .OSAICpenalty(object, k = k, nsim = nsim) edf <- length(coef(object)) AIC.default$k <- penalty/edf } res <- eval(AIC.default, parent.frame()) attr(res, "type") <- if (one.sided) "One-sided AIC" else "Standard AIC" attr(res, "exact") <- if (one.sided) attr(penalty, "exact") else TRUE res } extractAIC.twinSIR <- function (fit, scale = 0, k = 2, one.sided = NULL, nsim = 1e3, ...) { if (is.null(one.sided)) { one.sided <- fit$method == "L-BFGS-B" } loglik <- logLik(fit) edf <- attr(loglik, "df") penalty <- if (one.sided) { .OSAICpenalty(fit, k = k, nsim = nsim) # one-sided AIC } else { k * edf # default AIC } res <- c(edf = edf, AIC = -2 * c(loglik) + penalty) attr(res, "type") <- if (one.sided) "One-sided AIC" else "Standard AIC" attr(res, "exact") <- if (one.sided) attr(penalty, "exact") else TRUE res } print.twinSIR <- function (x, digits = max(3, getOption("digits") - 3), ...) { cat("\nCall:\n") print.default(x$call) cat("\nCoefficients:\n") print.default(format(coef(x), digits=digits), print.gap = 2, quote = FALSE) cat("\nLog-likelihood: ", format(logLik(x), digits=digits), "\n", sep = "") if (!x$converged) { cat("\nWARNING: OPTIMIZATION DID NOT CONVERGE!\n") } cat("\n") invisible(x) } summary.twinSIR <- function (object, correlation = FALSE, symbolic.cor = FALSE, ...) { ans <- object[c("call", "converged", "counts", "intervals", "nEvents")] ans$cov <- vcov(object) est <- coef(object) se <- sqrt(diag(ans$cov)) zval <- est/se pval <- 2 * pnorm(abs(zval), lower.tail = FALSE) ans$coefficients <- cbind(est, se, zval, pval) dimnames(ans$coefficients) <- list(names(est), c("Estimate", "Std. Error", "z value", "Pr(>|z|)")) if (correlation) { ans$correlation <- cov2cor(ans$cov) ans$symbolic.cor <- symbolic.cor } ans$loglik <- logLik(object) aic <- extractAIC(object, ...) ans$aic <- as.vector(aic[2L]) # remove 'edf' element attributes(ans$aic) <- attributes(aic)[c("type", "exact")] class(ans) <- "summary.twinSIR" ans } print.summary.twinSIR <- function (x, digits = max(3, getOption("digits") - 3), symbolic.cor = x$symbolic.cor, signif.stars = getOption("show.signif.stars"), ...) { cat("\nCall:\n") print.default(x$call) cat("\nCoefficients:\n") coefs <- x$coefficients printCoefmat(coefs, digits = digits, signif.stars = signif.stars, na.print = "NA", ...) nEvents <- x$nEvents nh0 <- length(nEvents) if (nh0 < 2L) { cat("\nTotal number of infections: ", nEvents, "\n") } else { cat("\nBaseline intervals:\n") intervals <- character(nh0) for(i in seq_len(nh0)) { intervals[i] <- paste("(", paste(format(x$intervals[c(i,i+1L)],trim=TRUE), collapse=";"), "]", sep = "") } names(intervals) <- paste("logbaseline", seq_len(nh0), sep=".") print.default(rbind("Time interval" = intervals, "Number of events" = nEvents), quote = FALSE, print.gap = 2) } cat("\n", attr(x$aic, "type"), ": ", format(x$aic, digits=max(4, digits+1)), if (!attr(x$aic, "exact")) "\t(simulated penalty weights)" else "", sep = "") cat("\nLog-likelihood:", format(x$loglik, digits = digits)) cat("\nNumber of log-likelihood evaluations:", x$counts[1], "\n") correl <- x$correlation if (!is.null(correl)) { p <- NCOL(correl) if (p > 1L) { cat("\nCorrelation of Coefficients:\n") if (is.logical(symbolic.cor) && symbolic.cor) { correl <- symnum(correl, abbr.colnames = NULL) correlcodes <- attr(correl, "legend") attr(correl, "legend") <- NULL print(correl) cat("---\nCorr. codes: ", correlcodes, "\n", sep="") } else { correl <- format(round(correl, 2), nsmall = 2, digits = digits) correl[!lower.tri(correl)] <- "" print(correl[-1, -p, drop = FALSE], quote = FALSE) } } } if (!x$converged) { cat("\nWARNING: OPTIMIZATION DID NOT CONVERGE!\n") } cat("\n") invisible(x) } ### Plot method for twinSIR (wrapper for intensityplot) plot.twinSIR <- function (x, which, ...) # defaults for 'which' are set below { cl <- match.call() cl[[1]] <- as.name("intensityplot") eval(cl, envir = parent.frame()) } formals(plot.twinSIR)$which <- formals(intensityplot.twinSIR)$which ###################################################################### # Extract the "residual process" (cf. Ogata, 1988), i.e. the # fitted cumulative intensity at the event times. # -> "generalized residuals similar to those discussed in Cox and Snell (1968)" ###################################################################### residuals.twinSIR <- function(object, ...) { #Extract event and stop-times eventTimes <- attr(object$model$survs,"eventTimes") sortedStop <- sort(unique(object$model$survs[,"stop"])) eventTimesIdx <- match(eventTimes, sortedStop) #Dimensions and zero vector (in case we need it) nTimes <- nrow(object$model$X) zerovec <- numeric(nTimes) # Extract the fitted model params px <- ncol(object$model$X) pz <- ncol(object$model$Z) theta <- coef(object) alpha <- theta[seq_len(px)] beta <- theta[px+seq_len(pz)] # Initialize e, h and thus lambda if (px > 0) { e <- as.vector(object$model$X %*% as.matrix(alpha)) } else { e <- zerovec } if (pz > 0) { h <- as.vector(exp(object$model$Z %*% as.matrix(beta))) } else { h <- zerovec } lambda <- (e + h) #Determine bloks BLOCK <- as.numeric(factor(object$model$survs$start)) # lambda_i integrals, i.e. integral of \lambda_i until t for each individual dt <- object$model$survs[,"stop"] - object$model$survs[,"start"] #Easier - no individual summations as they are all summed anyhow afterwards intlambda <- tapply(object$model$weights * lambda* dt, BLOCK, sum) #Compute cumulative intensities (Ogata (1988): "residual process") tau <- cumsum(intlambda)[eventTimesIdx] tau } surveillance/R/twinstim_tiaf_exponential.R0000644000175100001440000000523113165704240020602 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Exponential temporal interaction function g(t) = exp(-alpha*t) ### ### Copyright (C) 2009-2014,2017 Sebastian Meyer ### $Revision: 1994 $ ### $Date: 2017-10-06 15:44:00 +0200 (Fri, 06. Oct 2017) $ ################################################################################ ## nTypes: determines the number of parameters of the Exponential kernel. ## In a multitype epidemic, the different types may share ## the same temporal interaction function (type-invariant), in which case ## nTypes=1. Otherwise nTypes should equal the number of event types of the ## epidemic, in which case every type has its own alpha. tiaf.exponential <- function (nTypes = 1, validpars = NULL) { nTypes <- as.integer(nTypes) stopifnot(length(nTypes) == 1L, nTypes > 0L) ## function definitions for nTypes = 1 (length(alpha) == 1) g <- function (t, alpha, types) { exp(-alpha*t) } G <- function (t, alpha, types) { if (alpha==0) t else -exp(-alpha*t)/alpha } deriv <- function (t, alpha, types) { as.matrix( -t*exp(-alpha*t) ) } Deriv <- function (t, alpha, types) { as.matrix( if (alpha==0) -t^2/2 else (t+1/alpha)*exp(-alpha*t)/alpha ) } ## adaptions for nTypes > 1 if (nTypes > 1) { ## time points vector t, length(types) = length(t) body(g) <- as.call(append(as.list(body(g)), quote(alpha <- alpha[types]), after=1)) body(G) <- quote({ alpha <- alpha[types] ifelse (alpha==0, t, -exp(-alpha*t)/alpha) }) body(deriv) <- quote({ L <- length(t) deriv <- matrix(0, L, length(alpha)) alpha <- alpha[types] deriv[cbind(1:L,types)] <- -t*exp(-alpha*t) deriv }) body(Deriv) <- quote({ L <- length(t) Deriv <- matrix(0, L, length(alpha)) alpha <- alpha[types] Deriv[cbind(1:L,types)] <- ifelse(alpha==0, -t^2/2, (t+1/alpha)*exp(-alpha*t)/alpha) Deriv }) } ## functions only need the base environment environment(g) <- environment(G) <- environment(deriv) <- environment(Deriv) <- baseenv() ## return the kernel specification list(g=g, G=G, deriv=deriv, Deriv=Deriv, npars=nTypes, validpars=validpars) } surveillance/R/hhh4_simulate_plot.R0000644000175100001440000003336413231340377017120 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Plots for an array "hhh4sims" of simulated counts from an "hhh4" model, ### or a list thereof as produced by different "hhh4" models (same period!) ### ### Copyright (C) 2013-2018 Sebastian Meyer ### $Revision: 2066 $ ### $Date: 2018-01-22 11:46:23 +0100 (Mon, 22. Jan 2018) $ ################################################################################ plot.hhh4sims <- function (x, ...) { ## use the object name of x x <- eval(substitute(as.hhh4simslist(x)), envir = parent.frame()) plot.hhh4simslist(x, ...) } ## class for a list of "hhh4sims" arrays from different models ## (over the same period with same initial values) hhh4simslist <- function (x, initial, stsObserved) { ## drop attributes from every single hhh4sims object for (i in seq_along(x)) attr(x[[i]], "class") <- attr(x[[i]], "initial") <- attr(x[[i]], "stsObserved") <- NULL ## set as list attributes attr(x, "initial") <- initial attr(x, "stsObserved") <- stsObserved class(x) <- "hhh4simslist" x } ## converter functions as.hhh4simslist <- function (x, ...) UseMethod("as.hhh4simslist") as.hhh4simslist.hhh4sims <- function (x, ...) { ## we do not use x here, but construct a list() from the sys.call() ## such that as.hhh4simslist(name1 = model1, name2 = model2) works cl <- sys.call() cl[[1L]] <- as.name("list") xx <- eval(cl, envir = parent.frame()) objnames <- as.character(cl)[-1L] if (is.null(names(xx))) { names(xx) <- objnames } else { names(xx)[names(xx) == ""] <- objnames[names(xx) == ""] } as.hhh4simslist.list(xx) } as.hhh4simslist.list <- function (x, ...) { ## verify class lapply(X = x, FUN = function (Xi) if (!inherits(Xi, "hhh4sims")) stop(sQuote("x"), " is not a list of ", dQuote("hhh4sims"))) hhh4simslist(x, initial = attr(x[[1L]], "initial"), stsObserved = attr(x[[1L]], "stsObserved")) } as.hhh4simslist.hhh4simslist <- function (x, ...) x ## 'x[i]': select models (elements of the list) ## 'x[i,j,]': subset simulations while keeping attributes in sync "[.hhh4simslist" <- function (x, i, j, ..., drop = FALSE) { ## case 1: select models if (nargs() == 2L) { ## select elements of the list xx <- NextMethod("[") ## restore class attributes xx <- hhh4simslist(xx, initial = attr(x, "initial"), stsObserved = attr(x, "stsObserved")) return(xx) } ## case 2: subset simulations, i.e., index individual arrays cl <- sys.call() cl[[1L]] <- as.name("[") cl[[2L]] <- quote(x) cl$drop <- drop subseti <- as.function(c(alist(x=), cl), envir = parent.frame()) x[] <- lapply(X = unclass(x), subseti) # unclass to use default [[ subset_hhh4sims_attributes(x, i, j) } ## select a specific "hhh4sims" from the list of simulations ## (the inverse of as.hhh4simslist.hhh4sims(xx)) "[[.hhh4simslist" <- function (x, i) { xx <- NextMethod("[[") a <- attributes(xx) attributes(xx) <- c(a[c("dim", "dimnames")], attributes(x)[c("initial", "stsObserved")], list(class = "hhh4sims"), a[c("call", "seed")]) xx } ## aggregate predictions over time and/or (groups of) units aggregate.hhh4simslist <- function (x, units = TRUE, time = FALSE, ..., drop = FALSE) { if (drop || time) { # unclass(x) to use default "[["-method in lapply lapply(X = unclass(x), FUN = aggregate.hhh4sims, units = units, time = time, ..., drop = TRUE) } else { as.hhh4simslist.list( lapply(X = x, FUN = aggregate.hhh4sims, units = units, time = time, ..., drop = FALSE) ) } } #################### ### plot methods ### #################### check_groups <- function (groups, units) { if (is.null(groups)) { factor(rep.int("overall", length(units))) } else if (isTRUE(groups)) { factor(units, levels = units) } else { stopifnot(length(groups) == length(units)) as.factor(groups) } } plot.hhh4simslist <- function (x, type = c("size", "time", "fan"), ..., groups = NULL, par.settings = list()) { FUN <- paste("plotHHH4sims", match.arg(type), sep = "_") groups <- check_groups(groups, colnames(attr(x, "stsObserved"), do.NULL=FALSE)) ngroups <- nlevels(groups) if (is.list(par.settings)) { par.defaults <- list(mar = c(4,4,2,0.5)+.1, las = 1) if (ngroups > 1) par.defaults$mfrow <- sort(n2mfrow(ngroups)) par.settings <- modifyList(par.defaults, par.settings) opar <- do.call("par", par.settings) on.exit(par(opar)) } if (ngroups == 1) { do.call(FUN, list(quote(x), ...)) } else { # stratified plots by groups of units invisible(sapply( X = levels(groups), FUN = function (group) { x_group <- x[, which(group == groups) , ] # [-method has drop=F do.call(FUN, list(quote(x_group), ..., main = group)) }, simplify = FALSE, USE.NAMES = TRUE)) } } ### simulated final size distribution as boxplots aggregated over all units plotHHH4sims_size <- function (x, horizontal = TRUE, trafo = NULL, observed = TRUE, names = base::names(x), ...) { x <- as.hhh4simslist(x) if (horizontal) { names <- rev(names) x <- rev(x) } if (is.null(trafo)) #trafo <- scales::identity_trans() trafo <- list(name = "identity", transform = identity) if (isTRUE(observed)) observed <- list() nsims <- sapply(X = unclass(x), # simply use the default "[["-method FUN = colSums, dims = 2, # sum over 1:2 (time x unit) simplify = TRUE, USE.NAMES = TRUE) nsimstrafo <- trafo$transform(nsims) ## default boxplot arguments fslab <- "size" if (trafo$name != "identity") fslab <- paste0(fslab, " (", trafo$name, "-scale)") defaultArgs <- list(ylab=fslab, yaxt="n", las=1, cex.axis=1, border=1) if (horizontal) names(defaultArgs) <- sub("^y", "x", names(defaultArgs)) ## defaultArgs$mai <- par("mai") ## defaultArgs$mai[2] <- max(strwidth(boxplot.args$names, units="inches", ## cex=boxplot.args$cex.axis)) ## if (trafo$name != "identity") { ## ## ?bxp: 'yaxs' and 'ylim' are used 'along the boxplot' ## defaultArgs <- c(defaultArgs, ## list(ylim=c(0,max(nsimstrafo)*1.05), yaxs="i")) ## } ## generate boxplots boxplot.args <- modifyList(defaultArgs, list(...)) boxplot.args$horizontal <- horizontal boxplot.args$names <- names do.call("boxplot", c(list(x=nsimstrafo), boxplot.args)) ## add means if (horizontal) { points(x=colMeans(nsimstrafo), y=1:ncol(nsimstrafo), pch=8, col=boxplot.args$border) } else points(colMeans(nsimstrafo), pch=8, col=boxplot.args$border) ## add axis aty <- pretty(nsims, n=par("lab")[2-horizontal]) ##aty <- checkat(list(n=par("lab")[2], trafo=trafo), nsims) # linear on sqrt-scale axis(2-horizontal, at=trafo$transform(aty), labels=aty, las=boxplot.args$las) ## add line showing observed size if (is.list(observed)) { nObs <- sum(observed(attr(x, "stsObserved"))) observed <- modifyList( list(col = 1, lty = 2, lwd = 2, labels = nObs, font = 2, las = boxplot.args$las, mgp = if (horizontal) c(3, 0.4, 0)), observed) observed_line <- c( setNames(list(trafo$transform(nObs)), if (horizontal) "v" else "h"), observed[c("col", "lty", "lwd")]) do.call("abline", observed_line) if (!is.null(observed[["labels"]])) do.call("axis", c( list(side = 2-horizontal, at = trafo$transform(nObs)), observed)) } ## numeric summary mysummary <- function(x) c(mean=mean(x), quantile(x, probs=c(0.025, 0.5, 0.975))) nsum <- t(apply(nsims, 2, mysummary)) invisible(nsum) } ### Plot mean time series of the simulated counts plotHHH4sims_time <- function ( x, average = mean, individual = length(x) == 1, conf.level = if (individual) 0.95 else NULL, #score = "rps", matplot.args = list(), initial.args = list(), legend = length(x) > 1, xlim = NULL, ylim = NULL, add = FALSE, ...) { x <- as.hhh4simslist(x) nModels <- length(x) ytInit <- rowSums(attr(x, "initial")) stsObserved <- attr(x, "stsObserved") ytObs <- rowSums(observed(stsObserved)) ytSim <- aggregate.hhh4simslist(x, units = TRUE, time = FALSE, drop = TRUE) average <- match.fun(average) ytMeans <- vapply( X = ytSim, FUN = function (x) apply(x, 1, average), FUN.VALUE = numeric(length(ytObs)), USE.NAMES = TRUE) ## axis range if (is.null(xlim) && is.list(initial.args)) xlim <- c(1 - length(ytInit) - 0.5, length(ytObs) + 0.5) if (is.null(ylim)) ylim <- c(0, max(ytObs, if (individual) unlist(ytSim, recursive = FALSE, use.names = FALSE) else ytMeans)) ## graphical parameters stopifnot(is.list(matplot.args)) matplot.args <- modifyList( list(y = ytMeans, type = "b", lty = 1, lwd = 3, pch = 20, col = rainbow(nModels)), matplot.args) col <- rep_len(matplot.args$col, nModels) ## observed time series data during simulation period if (!add) plot(stsObserved, type = observed ~ time, xlim = xlim, ylim = ylim, ...) ## add initial counts if (is.list(initial.args)) { initial.args <- modifyList( list(x = seq(to = 0, by = 1, length.out = length(ytInit)), y = ytInit, type = "h", lwd = 5), initial.args) do.call("lines", initial.args) } ## add counts of individual simulation runs if (individual) { for (i in seq_len(nModels)) matlines(ytSim[[i]], lty=1, col=if (requireNamespace("scales")) scales::alpha(col[i], alpha=0.1) else col[i]) col <- col2rgb(col) col <- apply(col, 2, function (x) if (all(x == 0)) "grey" else do.call("rgb", as.list(x / 255 * 0.5))) } ## add means (or medians) matplot.args[["col"]] <- col do.call("matlines", matplot.args) ## add CIs if (isScalar(conf.level)) { alpha2 <- (1-conf.level)/2 ytQuant <- lapply(ytSim, function (sims) t(apply(sims, 1, quantile, probs=c(alpha2, 1-alpha2)))) matlines(sapply(ytQuant, "[", TRUE, 1L), col=col, lwd=matplot.args$lwd, lty=2) matlines(sapply(ytQuant, "[", TRUE, 2L), col=col, lwd=matplot.args$lwd, lty=2) } ## add scores ## if (length(score)==1) { ## scorestime <- simplify2array( ## simscores(x, by="time", scores=score, plot=FALSE), ## higher=FALSE) ## matlines(scales::rescale(scorestime, to=ylim), ## lty=2, lwd=1, col=col) ## } ## add legend if (!identical(FALSE, legend)) { xnames <- if (is.vector(legend, mode = "character")) { if (length(legend) != length(x)) warning("'length(legend)' should be ", length(x)) legend } else { names(x) } legendArgs <- list(x="topright", legend=xnames, bty="n", col=col, lwd=matplot.args$lwd, lty=matplot.args$lty) if (is.list(legend)) legendArgs <- modifyList(legendArgs, legend) do.call("legend", legendArgs) } ## Done ret <- cbind(observed = ytObs, ytMeans) ## if (length(score) == 1) ## attr(ret, score) <- scorestime invisible(ret) } ### Better for a single model: "fanplot" plotHHH4sims_fan <- function (x, which = 1, fan.args = list(), observed.args = list(), initial.args = list(), means.args = NULL, key.args = NULL, xlim = NULL, ylim = NULL, add = FALSE, xaxis = list(), ...) { x <- as.hhh4simslist(x)[[which]] ytInit <- rowSums(attr(x, "initial")) stsObserved <- attr(x, "stsObserved") ytObs <- rowSums(observed(stsObserved)) ytSim <- aggregate.hhh4sims(x, units = TRUE, time = FALSE, drop = TRUE) ## graphical parameters if (is.null(xlim) && is.list(initial.args)) xlim <- c(1 - length(ytInit) - 0.5, length(ytObs) + 0.5) stopifnot(is.list(fan.args)) fan.args <- modifyList( list(probs = seq.int(0.01, 0.99, 0.01)), fan.args, keep.null = TRUE) ## compute the quantiles quantiles <- t(apply(ytSim, 1, quantile, probs = fan.args$probs)) ## create (or add) the fanplot fanplot(quantiles = quantiles, probs = fan.args$probs, means = rowMeans(ytSim), observed = ytObs, fan.args = fan.args, means.args = means.args, observed.args = observed.args, key.args = key.args, xlim = xlim, ylim = ylim, add = add, xaxt = if (is.list(xaxis)) "n" else "s", ...) ## add initial counts if (is.list(initial.args)) { initial.args <- modifyList( list(x = seq(to = 0, by = 1, length.out = length(ytInit)), y = ytInit, type = "p", pch = 19), initial.args) do.call("lines", initial.args) } ## add time axis if (is.list(xaxis)) { xaxis <- modifyList(list(epochsAsDate = TRUE), xaxis) do.call("addFormattedXAxis", c(list(x = stsObserved), xaxis)) } invisible(NULL) } surveillance/R/twinstim_intensity.R0000644000175100001440000003117012625070115017275 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Plot the temporal or spatial evolution of the estimated intensity ### ### Copyright (C) 2012-2015 Sebastian Meyer ### $Revision: 1520 $ ### $Date: 2015-11-24 15:12:29 +0100 (Tue, 24. Nov 2015) $ ################################################################################ intensity.twinstim <- function (x, aggregate = c("time", "space"), types = 1:nrow(x$qmatrix), tiles, tiles.idcol = NULL) { modelenv <- environment(x) ## check arguments if (is.null(modelenv)) stop("'x' is missing the model environment\n", " -- re-fit or update() with 'model=TRUE'") aggregate <- match.arg(aggregate) stopifnot(is.vector(types, mode="numeric"), types %in% seq_len(modelenv$nTypes), !anyDuplicated(types)) ## remove (big) x object from current evaluation environment qmatrix <- x$qmatrix # not part of modelenv force(types) # evaluate types before rm(x) rm(x) # don't need this anymore ##thisenv <- environment() ##parent.env(thisenv) <- modelenv # objects of modelenv become visible ## Instead of the above, we do cheap and nasty model unpacking! ## safer than the parent.env<- hack (R manual: "extremely dangerous"), and ## cleaner than running code inside with(modelenv,...) since assignments ## then would take place in modelenv, which would produce garbage t0 <- modelenv$t0 T <- modelenv$T histIntervals <- modelenv$histIntervals eventTimes <- modelenv$eventTimes eventCoords <- modelenv$eventCoords eventTypes <- modelenv$eventTypes removalTimes <- modelenv$removalTimes gridTiles <- modelenv$gridTiles gridBlocks <- modelenv$gridBlocks ds <- modelenv$ds tiaf <- modelenv$tiaf tiafpars <- modelenv$tiafpars eps.s <- modelenv$eps.s siaf <- modelenv$siaf siafpars <- modelenv$siafpars ## endemic component on the spatial or temporal grid hInt <- if (modelenv$hash) { eta <- drop(modelenv$mmhGrid %*% modelenv$beta) if (!is.null(modelenv$offsetGrid)) eta <- modelenv$offsetGrid + eta expeta <- exp(unname(eta)) .beta0 <- rep_len(if (modelenv$nbeta0==0L) 0 else modelenv$beta0, modelenv$nTypes) fact <- sum(exp(.beta0[types])) if (aggregate == "time") { # int over W and types by BLOCK fact * c(tapply(expeta * modelenv$ds, gridBlocks, sum, simplify = TRUE)) } else { # int over T and types by tile fact * c(tapply(expeta * modelenv$dt, gridTiles, sum, simplify = TRUE)) } } else { ## the endemic intensity is 0 ## but a non-endemic "twinstim" holds no information on 'stgrid': ## 'gridBlocks' and 'gridTiles', respectively, are undefined NULL } ## endemic component as a function of time or location hIntFUN <- if (modelenv$hash) { if (aggregate == "time") { function (tp) { stopifnot(isScalar(tp)) if (tp == t0) { hInt[1L] } else { starts <- histIntervals$start idx <- match(TRUE, c(starts,T) >= tp) - 1L if (identical(idx, 0L)) { # tp <= t0 NA_real_ } else { # idx is NA if tp > T block <- histIntervals$BLOCK[idx] hInt[as.character(block)] } } } } else { if (!is.null(tiles.idcol)) { stopifnot(is(tiles, "SpatialPolygonsDataFrame")) row.names(tiles) <- tiles@data[[tiles.idcol]] } tileLevels <- levels(gridTiles) tiles <- check_tiles(tiles, tileLevels, areas.stgrid = ds[seq_along(tileLevels)], keep.data = FALSE) # drop data for over-method tilesIDs <- row.names(tiles) # = sapply(tiles@polygons, slot, "ID") function (xy) { # works with a whole coordinate matrix points <- SpatialPoints(xy, proj4string=tiles@proj4string) polygonidxOfPoints <- over(points, tiles) tilesOfPoints <- tilesIDs[polygonidxOfPoints] hInt[tilesOfPoints] # index by name } } } else function (...) 0 ## epidemic component eInt <- if (modelenv$hase) { qSum_types <- rowSums(qmatrix[,types,drop=FALSE])[eventTypes] fact <- qSum_types * modelenv$gammapred if (aggregate == "time") { # as a function of time (int over W & types) factS <- fact * modelenv$siafInt function (tp) { stopifnot(isScalar(tp)) tdiff <- tp - eventTimes infectivity <- qSum_types > 0 & (tdiff > 0) & (removalTimes >= tp) if (any(infectivity)) { gsources <- tiaf$g(tdiff[infectivity], tiafpars, eventTypes[infectivity]) intWj <- factS[infectivity] * gsources sum(intWj) } else 0 } } else { # as a function of location (int over time and types) factT <- fact * modelenv$tiafInt nEvents <- nrow(eventCoords) function (xy) { stopifnot(is.vector(xy, mode="numeric"), length(xy) == 2L) point <- matrix(xy, nrow=nEvents, ncol=2L, byrow=TRUE) sdiff <- point - eventCoords proximity <- qSum_types > 0 & .rowSums(sdiff^2, nEvents, 2L) <= eps.s^2 if (any(proximity)) { fsources <- siaf$f(sdiff[proximity,,drop=FALSE], siafpars, eventTypes[proximity]) intTj <- factT[proximity] * fsources sum(intTj) } else 0 } } } else function (...) 0 ## return component functions list(hGrid = hInt, hFUN = hIntFUN, eFUN = eInt, aggregate = aggregate, types = types) } intensityplot.twinstim <- function (x, which = c("epidemic proportion", "endemic proportion", "total intensity"), aggregate, types, tiles, tiles.idcol, # arguments of intensity.twinstim; # defaults are set below plot = TRUE, add = FALSE, tgrid = 101, rug.opts = list(), sgrid = 128, polygons.args = list(), points.args = list(), cex.fun = sqrt, ...) { which <- match.arg(which) ## set up desired intensities cl <- match.call() cl <- cl[c(1L, match(names(formals(intensity.twinstim)), names(cl), 0L))] cl[[1]] <- as.name("intensity.twinstim") components <- eval(cl, envir = parent.frame()) aggregate <- components$aggregate types <- components$types ## define function to plot FUN <- function (tmp) {} names(formals(FUN)) <- if (aggregate == "time") "times" else "coords" body1 <- if (aggregate == "time") expression( hGrid <- sapply(times, components$hFUN, USE.NAMES=FALSE), eGrid <- sapply(times, components$eFUN, USE.NAMES=FALSE) ) else expression( hGrid <- unname(components$hFUN(coords)), # takes whole coord matrix eGrid <- apply(coords, 1, components$eFUN) ) body2 <- switch(which, "epidemic proportion" = expression(eGrid / (hGrid + eGrid)), "endemic proportion" = expression(hGrid / (hGrid + eGrid)), "total intensity" = expression(hGrid + eGrid)) body(FUN) <- as.call(c(as.name("{"), c(body1, body2))) if (!plot) return(FUN) ## plot the FUN modelenv <- environment(x) dotargs <- list(...) nms <- names(dotargs) if (aggregate == "time") { ## set up grid of x-values (time points where 'which' will be evaluated) tgrid <- if (isScalar(tgrid)) { seq(modelenv$t0, modelenv$T, length.out=tgrid) } else { stopifnot(is.vector(tgrid, mode="numeric")) sort(tgrid) } ## calculate 'which' on tgrid yvals <- FUN(tgrid) ## plot it if(! "xlab" %in% nms) dotargs$xlab <- "time" if(! "ylab" %in% nms) dotargs$ylab <- which if(! "type" %in% nms) dotargs$type <- "l" if(! "ylim" %in% nms) dotargs$ylim <- { if (which == "total intensity") c(0,max(yvals)) else c(0,1) } do.call(if (add) "lines" else "plot", args=c(alist(x=tgrid, y=yvals), dotargs)) if (is.list(rug.opts)) { if (is.null(rug.opts$ticksize)) rug.opts$ticksize <- 0.02 if (is.null(rug.opts$quiet)) rug.opts$quiet <- TRUE eventTimes.types <- modelenv$eventTimes[modelenv$eventTypes %in% types] do.call("rug", args = c(alist(x=eventTimes.types), rug.opts)) } invisible(FUN) } else { tiles <- as(tiles, "SpatialPolygons") # remove potential data for over() ## set up grid of coordinates where 'which' will be evaluated if (isScalar(sgrid)) { sgrid <- maptools::Sobj_SpatialGrid(tiles, n = sgrid)$SG ## ensure that sgrid has exactly the same proj4string as tiles ## since CRS(proj4string(tiles)) might have modified the string sgrid@proj4string <- tiles@proj4string } sgrid <- as(sgrid, "SpatialPixels") ## only select grid points inside W (tiles) sgridTileIdx <- over(sgrid, tiles) sgrid <- sgrid[!is.na(sgridTileIdx),] ## calculate 'which' on sgrid yvals <- FUN(coordinates(sgrid)) sgridy <- SpatialPixelsDataFrame(sgrid, data=data.frame(yvals=yvals), proj4string=tiles@proj4string) ## define sp.layout lobjs <- list() if (is.list(polygons.args)) { nms.polygons <- names(polygons.args) if(! "col" %in% nms.polygons) polygons.args$col <- "darkgrey" lobjs <- c(lobjs, list(c(list("sp.polygons", tiles, first=FALSE), polygons.args))) } if (is.list(points.args)) { eventCoords.types <- modelenv$eventCoords[modelenv$eventTypes %in% types,,drop=FALSE] ## eventCoords as Spatial object with duplicates counted and removed eventCoords.types <- SpatialPoints(eventCoords.types, proj4string = tiles@proj4string, bbox = tiles@bbox) eventCoords.types <- SpatialPointsDataFrame(eventCoords.types, data.frame(mult = multiplicity.Spatial(eventCoords.types))) eventCoords.types <- eventCoords.types[!duplicated(coordinates(eventCoords.types)),] points.args <- modifyList(list(pch=1, cex=0.5), points.args) pointcex <- cex.fun(eventCoords.types$mult) pointcex <- pointcex * points.args$cex points.args$cex <- NULL lobjs <- c(lobjs, list(c(list("sp.points", eventCoords.types, first=FALSE, cex=pointcex), points.args))) } if ("sp.layout" %in% nms) { if (!is.list(dotargs$sp.layout[[1]])) { # let sp.layout be a list of lists dotargs$sp.layout <- list(dotargs$sp.layout) } lobjs <- c(lobjs, dotargs$sp.layout) dotargs$sp.layout <- NULL } ## plotit if (add) message("'add'ing is not possible with 'aggregate=\"space\"'") if (! "xlim" %in% nms) dotargs$xlim <- bbox(tiles)[1,] if (! "ylim" %in% nms) dotargs$ylim <- bbox(tiles)[2,] if (! "scales" %in% nms) dotargs$scales <- list(draw = TRUE) do.call("spplot", args=c(alist(sgridy, zcol="yvals", sp.layout=lobjs, checkEmptyRC=FALSE), dotargs)) } } ## set default arguments for intensityplot.twinstim from intensity.twinstim formals(intensityplot.twinstim)[names(formals(intensity.twinstim))] <- formals(intensity.twinstim) surveillance/R/checkDerivatives.R0000644000175100001440000000463612523122744016606 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Simple wrapper around functionality of the numDeriv and maxLik packages ### to check the score vector and the Fisher information matrix ### CAVE: the return values of both wrappers are not unified ### ### Copyright (C) 2012, 2015 Sebastian Meyer ### $Revision: 1327 $ ### $Date: 2015-05-08 14:02:44 +0200 (Fri, 08. May 2015) $ ################################################################################ checkDerivatives.numDeriv <- function(ll, score, fisher, par, method="Richardson", method.args=list(), ...) { cat("Checking analytical score vector using numDeriv::grad() ...\n") nsc <- numDeriv::grad(ll, par, method = method, method.args = method.args, ...) asc <- score(par, ...) print(all.equal(asc, nsc, check.attributes=FALSE)) cat("Checking analytical Fisher information matrix using numDeriv::hessian() ...\n") if (length(par) > 50) cat("NOTE: this might take several minutes considering length(par) =", length(par), "\n") nfi <- -numDeriv::hessian(ll, par, method = "Richardson", method.args = method.args, ...) afi <- fisher(par, ...) print(all.equal(afi, nfi, check.attributes=FALSE)) invisible(list(score = list(analytic=asc, numeric=nsc), fisher = list(analytic=afi, numeric=nfi))) } checkDerivatives.maxLik <- function(ll, score, fisher, par, eps=1e-6, print=FALSE, ...) { cat("Checking analytical score and Fisher using maxLik::compareDerivatives() ...\n") res <- maxLik::compareDerivatives( f=ll, grad=score, hess=function (par, ...) -fisher(par, ...), t0=par, eps=eps, print=print, ...) cat("Comparison of score vectors:\n") print(all.equal(res$compareGrad$analytic, drop(res$compareGrad$numeric), check.attributes=FALSE)) cat("Comparison of Fisher information matrices:\n") print(all.equal(res$compareHessian$analytic, drop(res$compareHessian$numeric), check.attributes=FALSE)) invisible(res) } surveillance/R/stsNC.R0000644000175100001440000002475412743251170014360 0ustar hornikusers###################################################################### # initialize-method for "stsNC" objects ###################################################################### init.stsNC <- function(.Object, ..., reportingTriangle, predPMF, pi, truth, delayCDF, SR) { .Object <- callNextMethod() # use initialize,sts-method ## initialize defaults for extra stsNC-slots or check supplied values dimObserved <- dim(.Object@observed) if (missing(pi)) { .Object@pi <- array(NA_integer_, dim = c(dimObserved, 2L)) } else { dimPI <- dim(.Object@pi) if (length(dimPI) != 3 || any(dimPI != c(dimObserved, 2L))) stop("dim(pi) = (", paste0(dimPI, collapse=","), ")") } if (missing(SR)) { .Object@SR <- array(NA_real_, dim = c(nrow(.Object@observed),0L,0L)) } else { stopifnot(length(dim(.Object@SR)) == 3) } if (missing(truth)) .Object@truth <- as(.Object, "sts") return(.Object) } setMethod("initialize", "stsNC", init.stsNC) ###################################################################### # Special coerce method to account for consistent dimensions ###################################################################### setAs(from = "sts", to = "stsNC", function (from) { new("stsNC", from, pi = array(NA_real_, dim = c(dim(from@observed), 2L)), truth = from, SR = array(NA_real_, dim = c(nrow(from@observed), 0L, 0L))) }) ###################################################################### # plot-method for the "stsNC" class, which starts by # using the inherited method, but with some additional plotting # put into the .hookFunSpecial function. # # Parameters: # same as the for the plot method of sts objects. ###################################################################### setMethod(f="plot", signature=signature(x="stsNC", y="missing"), function (x, type = observed ~ time | unit, ...) { ## if special type "delay" (only applies for stsNC objects) if (type == "delay") { stsNC_plotDelay(x, ...) return(invisible()) } ## environment of hook function will be set to evaluation ## environment of stsplot_time1() and only then be called legend.opts <- lty <- lwd <- "accommodate tools:::.check_code_usage_in_package()" #Hook function specifically for nowcasting objects. nowcastPlotHook <- function() { #Define some colors for the plotting as well as some plot symbols color <- surveillance.options("colors") pchList <- c(nowSymbol=10) #Prolong line of last observation (this should go into the plot function idx <- nrow(x) - which.max(!is.na(rev(upperbound(x)))) + 1 #Continue line from plot - use same style as stsplot_time1 lines( idx+c(-0.5,0.5), rep(upperbound(x)[idx,],2),col=col[3],lwd=lwd[3],lty=lty[3]) #Add the prediction intervals as bars (where not NA). Conf level #is found in x@control$alpha idxt <- which(apply(x@pi[1:nrow(x),1,],1,function(x) all(!is.na(x)))) for (i in idxt) { lines( i+c(-0.3,0.3), rep(x@pi[i,,1],2),lty=1,col=color["piBars"]) lines( i+c(-0.3,0.3), rep(x@pi[i,,2],2),lty=1,col=color["piBars"]) lines( rep(i,each=2), x@pi[i,,],lty=2,col=color["piBars"]) } #Extract now date and date range of the plotting startDate <- epoch(x)[1] #Add "now" symbol on x-axis. Plotting now takes possible temporal aggregation into account. #points(x@control$now-startDate+1,0,pch=pchList["nowSymbol"],col=color["nowSymbol"],cex=1.5) points(x@control$timeDelay(startDate,x@control$now)+1,0,pch=pchList["nowSymbol"],col=color["nowSymbol"],cex=1.5) #Add this to the legend if (!is.null(legend.opts)) { legend(x="topright",c("Now"),pch=pchList["nowSymbol"],col=color["nowSymbol"],bg="white") } return(invisible()) } callNextMethod(x=x, type=type, ..., .hookFuncInheritance=nowcastPlotHook) }) ###################################### ## For plotting the delay distribution ###################################### ###################################################################### ## Convert discrete time hazards to PMF ## Parameters: ## haz - vector with entries for (0,...,Dmax) ###################################################################### haz2pmf <- function(haz) { PMF <- 0*haz for (i in 0:(length(haz)-1)) { PMF[i+1] <- haz[i+1] * (1-sum(PMF[seq(i)])) } return(PMF) } ###################################################################### # Find a quantile of a discrete random variable with support on # 0,...,D and which has a PMF given by the vector prob. We # define the q quantile as \min_{x} F(x) \geq q. # # Parameters: # prob - vector on 0,..,D containing the PMF # q - quantile to compute ###################################################################### pmfQuantile <- function(prob,q=0.5) { which.max(cumsum(prob) >= q)-1 } ###################################################################### ## Show empirical and, if available, model based median of delay ## distribution as a function of occurence time t. ## ## Parameters: ## nc - nowcast object ## rT.truth - reporting triangle as it would be at the end. Typically ## this is taken directly from the nc object. ## dates - vector of dates where to show the result ## w - half-width of moving window ## modelQuantiles - which model quantiles to show ###################################################################### stsNC_plotDelay <- function(nc, rT.truth=NULL, dates=NULL, w=1, modelQuantiles=0.5, epochUnit=NULL) { ##Extract reporting triangle from the nc object if (is.null(rT.truth)) { rT.truth <- reportingTriangle(nc) } ##Which dates to plot if (is.null(dates)) { dates <- epoch(nc) } ##Determine the appropriate unit of the delay if (is.null(epochUnit)) { epochUnit <- switch( as.character(nc@freq), "12" = "months", "%m" = "months", "52" = "weeks", "%V"="weeks", "%j"="days", "365" = "days") } ##Determine max delay from reporting triangle. D <- nc@control$D res <- matrix(NA, nrow=length(dates), ncol=D+1) ##which data variables are actually in rT.truth isThere <- !is.na(sapply(dates, function(date) pmatch(as.character(date),rownames(rT.truth)))) idx <- which(isThere) ##Loop over all time points. for (i in (w+min(idx)):(max(idx)-w)) { now <- dates[i] the_idx <- pmatch(as.character(now),rownames(rT.truth)) subset <- rT.truth[the_idx + c(-w:w),,drop=FALSE] res[i,] <- colSums(subset,na.rm=TRUE) / sum(subset,na.rm=TRUE) } ##A slightly modified function to determine quantiles, which can ##handle NAs (if there is no case at all) quantile <- function(q) { apply(res, 1, function(x) { if (all(is.na(x))) return(NA) else return(which.max(cumsum(x) >= q) - 1) }) } ##Find 10%, 50% and 90% quantiles quants <- sapply(c(0.1,0.5,0.9), quantile) ##Make a plot (use plot.Dates instead of matplot) plot(dates, quants[,2],xlab="Time of occurence",ylab=paste0("Delay (",epochUnit,")"),ylim=c(0,15),col=1,lty=c(1),lwd=4,type="n") idxFirstTruncObs <- which(dates == (nc@control$now - D)) idxNow <- which(dates == nc@control$now) polygon( dates[c(idxFirstTruncObs,idxFirstTruncObs,idxNow,idxNow)], c(-1e99,1e99,1e99,-1e99), col=rgb(0.95,0.95,0.95),lwd=0.001) text( dates[round(mean(c(idxNow,idxFirstTruncObs)))], D, "right truncated\n observations",adj=c(0.5,0.5)) lines(dates, quants[,2],col=1,lty=c(1),lwd=4) matlines(dates, quants[,c(1,3)],type="l",col=1,lty=c(2,3),lwd=c(1,1)) legend_str <- c(expression(q[0.1](T)),expression(q[0.5](T)),expression(q[0.9](T))) legend_lty <- c(2,1,3) legend_col <- c(1,1,1) legend_lwd <- c(1,4,1) ##Which dates have been analysed in the nowcasts dates2show <- attr(reportingTriangle(nc),"t02s") ##Loop over all model based estimates model_CDF <- delayCDF(nc) if (length(model_CDF) > 0) { for (methodIdx in seq_len(length(model_CDF))) { ##browser() ##Fetch CDF from model (can be a vector or a matrix) theCDF <- delayCDF(nc)[[names(model_CDF)[methodIdx]]] if (!is.matrix(theCDF)) { theCDF <- matrix(theCDF, ncol=length(theCDF),nrow=length(dates2show),byrow=TRUE) } cdf <- cbind(0,theCDF) pmf <- t(apply(cdf,1,diff)) ##Determine model quantiles quants.model <- matrix(NA, nrow=length(dates2show),ncol=length(modelQuantiles),dimnames=list(as.character(dates2show),modelQuantiles)) for (t in 1:length(dates2show)) { quants.model[t,] <- sapply(modelQuantiles, function(q) pmfQuantile( pmf[t,],q=q)) } ##Make sure the NAs in the beginning agree i <- 1 while (all(is.na(quants[i,]))) {quants.model[i,] <- NA ; i <- i + 1} legend_str <- c(legend_str,substitute(q[0.5]^methodName(T),list(methodName=names(model_CDF)[methodIdx]))) legend_lty <- c(legend_lty,3+methodIdx) legend_col <- c(legend_col,"gray") legend_lwd <- c(legend_lwd,2) ##only estimates up to 'now' are to be shown and which are within ##the moving window of m time points show <- (nc@control$now - dates2show <= nc@control$m) matlines(dates2show[show], quants.model[show,], col=tail(legend_col,n=1),lwd=ifelse(modelQuantiles==0.5,tail(legend_lwd,n=1),1),lty=ifelse(modelQuantiles==0.5,tail(legend_lty,n=1),2)) } ##Show lines for breakpoints (if available from the model) if ("bayes.trunc.ddcp" %in% names(model_CDF)) { ddcp.model <- attr(model_CDF[["bayes.trunc.ddcp"]],"model") changePoints <- as.Date(colnames(ddcp.model$W)) for (i in 1:length(changePoints)) { axis(1,at=changePoints[i], changePoints[i], las=1, cex.axis=0.7,line=-2.5) lines( rep(changePoints[i],2),c(0,1e99),lty=2) } } } ##Make a legend ##c(expression(q[0.1](T)),expression(q[0.5](T)),expression(q[0.9](T)),expression(q[0.5]^"ddcp"(T))) legend(x="bottomleft",legend_str,lty=legend_lty,col=legend_col,lwd=legend_lwd) ##Add title if (!is.null(nc)) { title(nc@control$now) } ##Done invisible() } surveillance/R/permutationTest.R0000644000175100001440000000351612532032517016524 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Permutation test to compare the means of paired samples ### ### Copyright (C) 2011-2012 Michaela Paul, 2013-2015 Sebastian Meyer ### $Revision: 1347 $ ### $Date: 2015-05-29 11:45:51 +0200 (Fri, 29. May 2015) $ ################################################################################ permutationTest <- function(score1, score2, nPermutation = 9999, plot = FALSE, verbose = FALSE) { stopifnot((nTime <- length(score1)) == length(score2), !is.na(score1), !is.na(score2)) meanScore1 <- mean(score1) meanScore2 <- mean(score2) diffObserved <- meanScore1 - meanScore2 diffMean <- replicate(nPermutation, { sel <- rbinom(nTime, size=1, prob=0.5) g1 <- (sum(score1[sel==0]) + sum(score2[sel==1]))/nTime g2 <- (sum(score1[sel==1]) + sum(score2[sel==0]))/nTime g1 - g2 }) if (isTRUE(plot)) plot <- list() if (is.list(plot)) { do.call("permtestplot", args = modifyList( list(permstats = diffMean, xmarks = c("observed" = diffObserved), xlab = "Difference between means", ylab = "Density", main = ""), plot)) } pVal <- (1+sum(abs(diffMean)>=abs(diffObserved))) / (nPermutation+1) pTtest <- t.test(score1, score2, paired=TRUE)$p.value if (verbose) cat("mean difference =", diffObserved, "\tp(permutation) =", pVal, "\tp(paired t-test) =", pTtest, "\n") list(diffObs=diffObserved, pVal.permut=pVal, pVal.t=pTtest) } surveillance/R/stcd.R0000644000175100001440000000414711536625024014257 0ustar hornikusers###################################################################### # Shiryaev-Roberts based spatio-temporal cluster detection based # on the work in Assuncao & Correa (2009). The implementation # is based on C++ code was originally written by Marcos Oliveira Prates, UFMG, # Brazil and provided by Thais Correa, UFMG, Brazil during her research # stay in Munich. This stay was financially supported by the Munich # Center of Health Sciences. # # # Parameters: # x - vector containing spatial x coordinate of the events # y - vector containing spatial y coordinate of the events # t - vector containing the time points of the events # radius - is the radius of the cluster # epsilon - is the relative change of event-intensity within the cluster # to detect # areaA - area of the observation region A (single number) # areaAcapBk - area of A \ B(s_k,\rho) for all k=1,\ldots,n (vector) # vector of areas A\B(s_k,\rho) for k=1,\ldots,n # threshold - threshold limit for the alarm and should be equal # to the desired ARL # cusum -- boolean if TRUE then CUSUM otherwise Shiryaev-Roberts ###################################################################### stcd <- function(x, y,t,radius,epsilon,areaA, areaAcapBk, threshold,cusum=FALSE) { #check that the vectors x,y,t are of the same length. n <- length(x) if ((length(y) != n) | (length(t) != n)) { stop("Vectors x,y,t not of same size.") } if (!all(diff(order(t)) == 1)) { stop("The vector of time points needs to be ascending in time. No ties allowed.") } res <- .C("SRspacetime", x=as.double(x), y=as.double(y), t=as.double(t), n=as.integer(n), radius=as.double(radius), epsilon=as.double(epsilon), areaA=as.double(areaA),areaAcapBk=as.double(areaAcapBk),cusum=as.integer(cusum), threshold=as.double(threshold),R=as.double(numeric(n)),idxFA=as.integer(-1),idxCC=as.integer(-1),PACKAGE="surveillance") #Indexing differences between C and R res$idxFA <- res$idxFA+1 res$idxCC <- res$idxCC+1 #Missing: compute which indices are part of the cluster. #--> Thais R-code return(list(R=res$R,idxFA=res$idxFA,idxCC=res$idxCC)) } surveillance/R/sts.R0000644000175100001440000004114513167112475014135 0ustar hornikusers################################################################################ ### Initialization and other basic methods for the S4 class "sts" ### ### Copyright (C) 2007-2014 Michael Hoehle, 2012-2017 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ################################################################################ ###################################################################### # initialize-method -- see ../man/sts-class.Rd for class information ###################################################################### #Ensure that all matrix slots have the same dimnames, which are #always taken from the observed matrix fix.dimnames <- function(x) { dn <- dimnames(x@observed) #Make sure all arrays have the same dimnames dimnames(x@alarm) <- dimnames(x@state) <- dimnames(x@upperbound) <- dimnames(x@populationFrac) <- dn #Special for neighbourhood dimnames(x@neighbourhood) <- dn[c(2L,2L)] return(x) } ## a user-level constructor function, ## which calls the standard generator function .sts(), ## which calls initialize() on the "sts" prototype - see init.sts() below ## NOTE: using sts() is the preferred approach since surveillance 1.10-0 ## NOTE: NULL arguments are ignored => default slot values sts <- function (observed, start = c(2000, 1), frequency = 52, # prototype values population = NULL, # an alias for "populationFrac" ...) # further named arguments representing "sts" slots { slots <- list(observed = observed, start = start, freq = frequency, ...) if (!is.null(population)) { if ("populationFrac" %in% names(slots)) warning("'population' takes precedence over 'populationFrac'") slots$populationFrac <- population } # else "populationFrac" is a possible element of ... ## call the standard generator function with explicitly set slots isNULL <- vapply(X = slots, FUN = is.null, FUN.VALUE = FALSE, USE.NAMES = FALSE) do.call(.sts, slots[!isNULL]) } ## initialize-method called by new("sts", ...), ## the long-standing default way of creating "sts" objects. ## For backward-compatibility, we keep this customized initialize-method, ## although it would be cleaner to put things into the generator function ## and use the default initialize-method. init.sts <- function(.Object, ..., # also for slots of classes extending "sts" observed, # use copy constructor if missing(observed) ## the following default arguments depend on dim(observed) epoch = seq_len(nTime), state = matrix(FALSE, nTime, nUnit), alarm = matrix(NA, nTime, nUnit), upperbound = matrix(NA_real_, nTime, nUnit), neighbourhood = matrix(NA, nUnit, nUnit), populationFrac = matrix(1/nUnit, nTime, nUnit), ## FIXME: change default to a matrix of NA_real_ ? ## the map slot needs special treatment (see below) map = .Object@map # old/prototype value ## the remaining slots have useful prototype values ## and are handled as part of ... ##start = c(2000, 1), freq = 52, ##epochAsDate = FALSE, multinomialTS = FALSE, ##control = .Object@control ) { if (nargs() < 2) # nothing to do return(.Object) if (missing(observed)) { # use default initialize-method ## such that, e.g., initialize(stsObj, map=newMap) will set a new map ## and copy other slots from stsObj instead of (re-)setting to defaults, ## as well as to support new("stsBP", stsObj, ci=ci, lambda=lambda). ## CAVE: automatic dimension correction of matrix slots is not done. .Object <- callNextMethod() ## Drawback: .Object@map has been forced to "SpatialPolygons" if (!missing(map)) # restore the supplied map .Object@map <- map ## If missing(map), .Object@map = as(stsObj@map, "SpatialPolygons"), ## i.e., data will be lost => map=stsObj@map must be passed explicitly .Object <- fix.dimnames(.Object) return(.Object) } ## Ensure matrix form (auto-conversion is useful for single time series) observed <- as.matrix(observed) nUnit <- ncol(observed) nTime <- nrow(observed) state <- as.matrix(state) alarm <- as.matrix(alarm) upperbound <- as.matrix(upperbound) ## clear rownames and set colnames for the matrix of observed counts if (is.null(namesObs <- colnames(observed))){ namesObs <- paste0("observed", seq_len(nUnit)) } dimnames(observed) <- list(NULL, namesObs) ## if there is only one state-vector for more than one area, repeat it if (nUnit > 1 && ncol(state) == 1 && length(state) == nTime) { state <- rep.int(state, nUnit) dim(state) <- c(nTime, nUnit) } ## time-constant population fractions can be provided as a single vector if (is.vector(populationFrac, mode="numeric") && length(populationFrac) == nUnit) { populationFrac <- matrix(populationFrac, nTime, nUnit, byrow=TRUE) } ## we need to set the map manually since the initialize,ANY-method called ## next would coerce a "SpatialPolygonsDataFrame" to "SpatialPolygons" if (!missing(map)) .Object@map <- map ## set all other slots (including for classes extending this class) ## using the default initialize-method .Object <- callNextMethod(.Object, ..., observed=observed, epoch=epoch, state=state, alarm=alarm, upperbound=upperbound, neighbourhood=neighbourhood, populationFrac=populationFrac) ## this also checks validObject(.Object) ## make sure all arrays have the same dimnames .Object <- fix.dimnames(.Object) return(.Object) } setMethod("initialize", "sts", init.sts) ########################################################################### # Conversion between old "disProg" and new "sts" classes ########################################################################### ## transform a "disProg" object to the new "sts" class disProg2sts <- function(disProgObj, map=NULL) { disProgObj$map <- map ## NOTE: we cannot trust disProgObj$week to be a valid "epoch" specification, ## e.g., the week in data("ha") refers to the week number _within_ a year. ## CAVE: in "disProg" objects, several elements may be missing or NULL, ## and there could be further elements not matching any "sts" slot, ## e.g., in "disProg" objects generated by sim.pointSource() validElements <- names(disProgObj) %in% slotNames("sts") & !vapply(X=disProgObj, FUN=is.null, FUN.VALUE=FALSE, USE.NAMES=FALSE) ## initialize an "sts" object using the valid "disProg" elements stsObj <- do.call(.sts, disProgObj[validElements]) return(stsObj) } ## The reverse action sts2disProg <- function(sts) { disProgObj <- create.disProg(week=sts@epoch, start=sts@start, freq=sts@freq, observed=sts@observed, state=sts@state, neighbourhood=sts@neighbourhood, populationFrac=sts@populationFrac, epochAsDate=sts@epochAsDate) #For survRes: alarm=sts@alarm, upperbound=sts@upperbound) return(disProgObj) } ########################################################################### #Method to aggregate over all units, either the time series is aggregated #so a new sampling frequency of nfreq units per time slot is obtained. #The other alternative is to aggregate all units. # # Note: The function is not 100% consistent with what the generic # aggregate does. # # Warning: In case the aggregation is by unit the upperbound slot is set # to NA. Furthermore the MAP object is left as.is, but # the object cannot be plotted anymore. # # Params: # by - a string being either "time" or "unit" # nfreq - new sampling frequency if by=="time". If "all" then all # time instances are summed. ########################################################################### setMethod("aggregate", signature(x="sts"), function(x,by="time",nfreq="all",...) { by <- match.arg(by, choices = c("time", "unit")) ## Action of aggregation for populationFrac depends on the type binaryTS <- sum( x@populationFrac > 1 ) > 1 # FIXME @ Michael: why not any()? ## NOTE: we cannot rely on x@multinomialTS since this is not necessarily set ## if population(x) contains absolute numbers #Aggregate time if (by == "time") { if (nfreq == "all") { howmany <- dim(x@observed)[1] } else if (nfreq == x@freq) { # nothing to do return(x) } else { # nfreq != x@freq howmany <- x@freq / nfreq if (howmany - ceiling(howmany) != 0) stop("nfreq has to be a multiple of x@freq.") } n <- dim(x@observed)[1] m <- ceiling(n/howmany) new <- rep(1:m,each=howmany)[1:n] x@freq <- ifelse(nfreq == "all", howmany, nfreq) x@epoch <- 1:m x@observed <- as.matrix(aggregate(x@observed,by=list(new),sum)[,-1]) x@state <- as.matrix(aggregate(x@state,by=list(new),sum)[,-1])>0 x@alarm <- as.matrix(aggregate(x@alarm,by=list(new),sum)[,-1]) # number of alarms x@upperbound <- as.matrix(aggregate(x@upperbound,by=list(new),sum)[,-1]) x@populationFrac <- as.matrix(aggregate(x@populationFrac,by=list(new),sum)[,-1]) ## CAVE: summing population (fractions) over time might not be intended #the population fractions need to be recomputed if not a binary ts if (!binaryTS) { sums <- matrix(rep(apply(x@populationFrac,1,sum),times=ncol(x)),ncol=ncol(x)) x@populationFrac <-x@populationFrac/sums } } #Aggregate units if (by == "unit") { #Aggregate units x@observed <- as.matrix(apply(x@observed, MARGIN=1, sum)) x@state <- as.matrix(apply(x@state, MARGIN=1, sum))>0 x@alarm <- as.matrix(apply(x@alarm, MARGIN=1, sum))>0 # contrary to counting for by="time"! #There is no clever way to aggregate the upperbounds x@upperbound <- matrix(NA_real_,ncol=ncol(x@alarm),nrow=nrow(x@alarm)) x@populationFrac <- as.matrix(apply(x@populationFrac, MARGIN=1, sum))#>0 x@neighbourhood <- matrix(NA, 1, 1) # consistent with default for new("sts") ## we have lost colnames colnames(x@observed) <- "overall" x <- fix.dimnames(x) ## drop the map (set to empty prototype) x@map <- new(getSlots("sts")[["map"]]) } #validObject(x) #just a check return(x) }) ##################################################################### # Miscellaneous access methods #################################################################### setMethod("dim", "sts", function (x) dim(x@observed)) setMethod("dimnames", "sts", function (x) dimnames(x@observed)) #Extract which observation within year we have setMethod("epochInYear", "sts", function(x,...) { #Strptime format strings available as: #http://www.opengroup.org/onlinepubs/009695399/functions/strptime.html if (x@epochAsDate) { epochStr <- switch( as.character(x@freq), "12" = "%m","52" = "%V","365" = "%j") return(as.numeric(formatDate(epoch(x),epochStr))) } else { return( (x@epoch-1 + x@start[2]-1) %% x@freq + 1) } }) #Extract the corresponding year for each observation using setMethod("year", "sts", function(x,...) { if (x@epochAsDate) { return(as.numeric(formatDate(epoch(x),"%G"))) } else { ((x@epoch-1 + x@start[2]-1) + (x@freq*x@start[1])) %/% x@freq } }) ##################################################################### #[-method for accessing the observed, alarm, etc. objects ##################################################################### setMethod("[", "sts", function(x, i, j, ..., drop) { #default value for i and j if(missing(i)) {i <- min(1,nrow(x@observed)):nrow(x@observed)} if(missing(j)) {j <- min(1,ncol(x@observed)):ncol(x@observed)} x@epoch <- x@epoch[i] x@observed <- x@observed[i,j,drop=FALSE] x@state <- x@state[i,j,drop=FALSE] x@alarm <- x@alarm[i,j,drop=FALSE] x@populationFrac <- x@populationFrac[i,j,drop=FALSE] #If not binary TS the populationFrac is normed binaryTS <- sum( x@populationFrac > 1 ) > 1 # FIXME @ Michael: why not any()? if (!binaryTS) { x@populationFrac <- x@populationFrac / apply(x@populationFrac,MARGIN=1,sum) } x@upperbound <- x@upperbound[i,j,drop=FALSE] #Neighbourhood matrix if (ncol(x@observed) != ncol(x@neighbourhood) && # selected units !all(x@neighbourhood %in% c(NA,0,1))) { # no adjacency matrix message("Note: selection of units could invalidate the 'neighbourhood'") ## e.g., if 'neighbourhood' specifies neighbourhood orders } x@neighbourhood <- x@neighbourhood[j,j,drop=FALSE] #Fix the corresponding start entry. it can either be a vector of #logicals or a specific index. Needs to work in both cases. #Note: This code does not work if we have week 53s! if (is.logical(i)) { i.min <- which.max(i) #first TRUE entry } else { i.min <- min(i) } start <- x@start new.sampleNo <- start[2] + i.min - 1 start.year <- start[1] + (new.sampleNo - 1) %/% x@freq start.sampleNo <- (new.sampleNo - 1) %% x@freq + 1 x@start <- c(start.year,start.sampleNo) ## If !epochAsDate, we also have to update epoch since it is relative to start if (!x@epochAsDate) x@epoch <- x@epoch - i.min + 1 ## Note: We do not automatically subset the map according to j, since ## identical(row.names(map), colnames(observed)) ## is not a property of the sts-class; Unmonitored regions are allowed. #Done return(x) }) ######################################################################### ## Plot method ... the type argument specifies what type of plot to make ## ## plot as multivariate time series: type = observed ~ time | unit ## plot as map object aggregated over time: type = observed ~ 1 | unit ## new map implementation via: type = observed ~ unit ## the specific plot functions are in separate files (stsplot_*.R) ######################################################################## setMethod("plot", signature(x="sts", y="missing"), function (x, type = observed ~ time | unit, ...) { # catch new implementation of time-aggregate map plot if (isTRUE(all.equal(observed ~ unit, type))) return(stsplot_space(x, ...)) #Valid formula? valid <- lapply(as.list(type[[3]]), function(i) is.na(pmatch(i,c("1","unit","|","time","*","+")))) valid <- all(!unlist(valid)) obsOk <- (type[[2]] == "observed") alarmOk <- (type[[2]] == "alarm") if (!valid || !(obsOk | alarmOk)) stop("Not a valid plot type") #Parse the formula, i.e. extract components map <- (length(type[[3]])==3) && (type[[3]][[1]] == "|") && (type[[3]][[2]] == "1") time <- pmatch("time",type[[3]]) > 0 #All-in-one if type=time+unit -> no, use argument "as.one" for stsplot_time #as.one <- all(!is.na(pmatch(c("time","unit"),type[[3]] ))) && is.na(pmatch("|",type[[3]])) #No unit dimension? justTime <- type[[3]] == "time" #space-time plots if (map) { stsplot_spacetime(x, type, ...) return(invisible()) } #time plots if (time) { if (obsOk) { #In case observed ~ time, the units are aggregated stsplot_time(if(justTime) aggregate(x,by="unit") else x, ...) return(invisible()) } if (alarmOk) { stsplot_alarm(x, ...) return(invisible()) } } }) ## define how "sts" objects get printed setMethod( "show", "sts", function( object ){ cat( "-- An object of class ", class(object), " -- \n", sep = "" ) if (!object@epochAsDate) { cat( "freq:\t\t", object@freq,"\n" ) } else { epochStr <- switch( as.character(object@freq), "12" = "%m","52" = "%V","365" = "%j") cat( "freq:\t\t", paste(object@freq," with strptime format string ",epochStr,"\n",sep="")) } if (!object@epochAsDate) { cat( "start:\t\t",object@start,"\n" ) } else { cat( "start:\t\t",paste(epoch(object)[1]),"\n" ) } cat( "dim(observed):\t", dim(object@observed), "\n\n") n <- 1 cat("Head of observed:\n") print(head(object@observed,n)) if (npoly <- length(object@map)) { cat("\nmap:\n") print(modifyList(summary(object@map), list(data=NULL))) # no data summary cat("Features :", npoly, "\n") if (inherits(object@map, "SpatialPolygonsDataFrame")) cat("Data slot :", ncol(object@map), "variables\n") } if (ncol(object@observed) > 1) { cat("\nhead of neighbourhood:\n") print( head(object@neighbourhood,n)) } } ) surveillance/R/twinstim_siaf_powerlaw.R0000644000175100001440000001327713165643423020131 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Power-law kernel f(s) = (||s||+sigma)^-d ### This is the pure kernel of the Lomax density (the density requires d>1, but ### for the siaf specification we only want d to be positive) ### ### Copyright (C) 2013-2014,2017 Sebastian Meyer ### $Revision: 1988 $ ### $Date: 2017-10-06 11:04:19 +0200 (Fri, 06. Oct 2017) $ ################################################################################ siaf.powerlaw <- function (nTypes = 1, validpars = NULL, engine = "C") { nTypes <- as.integer(nTypes) stopifnot(length(nTypes) == 1L, nTypes > 0L) engine <- match.arg(engine, c("C", "R")) ## for the moment we don't make this type-specific if (nTypes != 1) stop("type-specific shapes are not yet implemented") ## helper expression, note: logpars=c(logscale=logsigma, logd=logd) tmp <- expression( logsigma <- logpars[[1L]], # used "[[" to drop names logd <- logpars[[2L]], sigma <- exp(logsigma), d <- exp(logd) ) ## spatial kernel f <- function (s, logpars, types = NULL) {} body(f) <- as.call(c(as.name("{"), tmp, expression(sLength <- sqrt(.rowSums(s^2, nrow(s), 2L))), expression((sLength+sigma)^-d) )) environment(f) <- baseenv() ## numerically integrate f over a polygonal domain F <- siaf_F_polyCub_iso(intrfr_name = "intrfr.powerlaw", engine = engine) ## fast integration of f over a circular domain Fcircle <- function (r, logpars, type = NULL) {} body(Fcircle) <- as.call(c(as.name("{"), tmp, expression( fofr <- (r+sigma)^-d, fof0 <- sigma^-d, ## calculate cylinder volume up to height f(r) basevolume <- if (is.infinite(r)) 0 else pi * r^2 * fofr, ## r=Inf is used in R0(,trimmed=F), Fcircle(Inf) is finite if d>2 Ifinvsq <- function (z) { if (d == 1) { -1/z - 2*sigma*log(z) + sigma^2*z } else if (d == 2) { log(z) - 4*sigma*sqrt(z) + sigma^2*z } else { z^(1-2/d) * d / (d-2) - z^(1-1/d) * 2*sigma*d/(d-1) + sigma^2*z } }, intfinvsq <- Ifinvsq(fof0) - Ifinvsq(fofr), basevolume + pi * intfinvsq ) )) environment(Fcircle) <- baseenv() ## derivative of f wrt logpars deriv <- function (s, logpars, types = NULL) {} body(deriv) <- as.call(c(as.name("{"), tmp, expression( sLength <- sqrt(.rowSums(s^2, nrow(s), 2L)), rsigma <- sLength + sigma, rsigmad <- rsigma^d, derivlogsigma <- -d*sigma / rsigmad / rsigma, derivlogd <- -d*log(rsigma) / rsigmad, cbind(derivlogsigma, derivlogd) ) )) environment(deriv) <- baseenv() ## Numerical integration of 'deriv' over a polygonal domain Deriv <- siaf_Deriv_polyCub_iso( intrfr_names = c("intrfr.powerlaw.dlogsigma", "intrfr.powerlaw.dlogd"), engine = engine) ## Simulation function (via polar coordinates) simulate <- siaf.simulatePC(intrfr.powerlaw) ## if (!is.finite(ub)) normconst <- { ## ## for sampling on [0;Inf] the density is only proper if d > 2 ## if (d <= 2) stop("improper density for d<=2, 'ub' must be finite") ## 1/(sigma^(d-2) * (d-2)*(d-1)) # = intrfr.powerlaw(Inf) ## } environment(simulate) <- getNamespace("surveillance") ## return the kernel specification list(f=f, F=F, Fcircle=Fcircle, deriv=deriv, Deriv=Deriv, simulate=simulate, npars=2L, validpars=validpars) } ## integrate x*f(x) from 0 to R (vectorized) intrfr.powerlaw <- function (R, logpars, types = NULL) { sigma <- exp(logpars[[1L]]) d <- exp(logpars[[2L]]) if (d == 1) { R - sigma * log(R/sigma + 1) } else if (d == 2) { log(R/sigma + 1) - R/(R+sigma) } else { (R*(R+sigma)^(1-d) - ((R+sigma)^(2-d) - sigma^(2-d))/(2-d)) / (1-d) } } ## local({ # validation via numerical integration -> tests/testthat/test-siafs.R ## p <- function (r, sigma, d) r * (r+sigma)^-d ## Pnum <- function (r, sigma, d) sapply(r, function (.r) { ## integrate(p, 0, .r, sigma=sigma, d=d)$value ## }) ## r <- c(1,2,5,10,20,50,100) ## dev.null <- sapply(c(1,2,1.6), function(d) stopifnot(isTRUE( ## all.equal(intrfr.powerlaw(r, log(c(3, d))), Pnum(r, 3, d))))) ## }) ## integrate x * (df(x)/dlogsigma) from 0 to R (vectorized) intrfr.powerlaw.dlogsigma <- function (R, logpars, types = NULL) { pars <- exp(logpars) -prod(pars) * intrfr.powerlaw(R, log(pars+c(0,1)), types) } ## integrate x * (df(x)/dlogd) from 0 to R (vectorized) ## (thanks to Maple 17) -> validated in tests/testthat/test-siafs.R intrfr.powerlaw.dlogd <- function (R, logpars, types = NULL) { sigma <- exp(logpars[[1L]]) d <- exp(logpars[[2L]]) if (d == 1) { sigma * logpars[[1L]] * (1-logpars[[1L]]/2) - log(R+sigma) * (R+sigma) + sigma/2 * log(R+sigma)^2 + R } else if (d == 2) { (-log(R+sigma) * ((R+sigma)*log(R+sigma) + 2*sigma) + (R+sigma)*logpars[[1L]]*(logpars[[1L]]+2) + 2*R) / (R+sigma) } else { (sigma^(2-d) * (logpars[[1L]]*(-d^2 + 3*d - 2) - 2*d + 3) + (R+sigma)^(1-d) * (log(R+sigma)*(d-1)*(d-2) * (R*(d-1) + sigma) + R*(d^2+1) + 2*d*(sigma-R) - 3*sigma) ) * d / (d-1)^2 / (d-2)^2 } } surveillance/R/qlomax.R0000644000175100001440000000135512254317225014620 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Simple implementation of the quantile function of the Lomax distribution ### (we could also use VGAM::qlomax, but this would be slightly slower) ### ### Copyright (C) 2012-2013 Sebastian Meyer ### $Revision: 691 $ ### $Date: 2013-12-18 14:09:41 +0100 (Wed, 18. Dec 2013) $ ################################################################################ qlomax <- function (p, scale, shape) scale * ((1-p)^(-1/shape) - 1) surveillance/R/hcl.colors.R0000644000175100001440000000166013117705477015375 0ustar hornikusers################################################################################ ### Generate a color palette via the colorspace package ### ### Copyright (C) 2007 Michael Hoehle, 2012-2014,2017 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ################################################################################ hcl.colors <- function (ncolors=100, use.color=TRUE) { GYR <- if (requireNamespace("colorspace", quietly=TRUE)) { ## the Zeil-ice colors colorspace::heat_hcl(ncolors, h=c(0,120), c=if (use.color) c(90,30) else c(0,0), l=c(50,90), power=c(0.75, 1.2)) } else { if (use.color) heat.colors(ncolors) else grey.colors(ncolors) } return(rev(GYR)) } surveillance/R/twinstim_helper.R0000644000175100001440000003722712725340424016543 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Some internal helper functions for "twinstim". ### ### Copyright (C) 2009-2016 Sebastian Meyer ### $Revision: 1750 $ ### $Date: 2016-06-06 20:29:40 +0200 (Mon, 06. Jun 2016) $ ################################################################################ ### Determines indexes of potential sources of infection ## determine potential sources of the i'th event ## all arguments but i and qmatrix are nEvents-vectors ## -> determine potential sources for eventTimes[i], eventsTypes[i] with ## distances distvec_j = ||s_i - s_j|| determineSources1 <- function (i, eventTimes, removalTimes, distvec, eps.s, eventTypes = NULL, qmatrix) { tp <- eventTimes[i] infectivity <- (eventTimes < tp) & (removalTimes >= tp) #<- eventTimes= t)) ## ~5x faster alternative assuming a full BLOCK x tile grid, which is ## sorted by BLOCK and tile (tile varying first), specifically there must be ## all levels(stgrid$tile) in every BLOCK in that order; ## this structure is guaranteed by check_stgrid() blockstart <- match(TRUE, stgrid$stop >= t) idx <- blockstart + match(tilename, levels(stgrid$tile)) - 1L lidx <- length(idx) if (lidx == 0L) NA_integer_ else if (lidx == 1L) idx else { stop("'stgrid' has overlapping spatio-temporal grid cells") } } ## Crude estimate for a start value of the endemic intercept ## assuming the model only had a single-cell endemic component ## (rate of homogeneous Poisson process scaled for the offset) crudebeta0 <- function (nEvents, offset.mean, W.area, period, nTypes) { ## nEvents = exp(offset + beta0) * W.area * period * nTypes log(nEvents/W.area/period/nTypes) - offset.mean } ### Really internal helper function, which constructs the function that ### integrates the two-dimensional 'siaf' function over the influence regions of ### the events. The only argument of the returned function is 'siafpars'. ### The returned function is defined in the callers environment, where the ### variables used in the function are available (inside twinstim() or ### simEpidataCS()). .siafIntFUN <- function (siaf, noCircularIR, #= all(eps.s>bdist) = all(sapply(influenceRegion, function(x) # is.null(attr(x,"radius")))) parallel = FALSE ){ ## the following variables are unused here, because the environment of ## FUN will be set to the parent.frame(), where the variables exist ## they are only included to avoid the notes in R CMD check iRareas <- influenceRegion <- eventTypes <- eps.s <- bdist <- effRanges <- NULL ## define the siaf integration function depending on the siaf specification FUN <- if (attr(siaf, "constant")) { if (exists("iRareas", where=parent.frame(), mode="numeric")) { ## in twinstim(), 'iRareas' are pre-defined to save ## computation time (data are fixed during fitting) function (siafpars) iRareas } else { function (siafpars) vapply(X = influenceRegion, FUN = attr, which = "area", FUN.VALUE = 0, USE.NAMES = FALSE) } } else if (is.null(siaf$Fcircle) || # if siaf$Fcircle not available (is.null(siaf$effRange) && noCircularIR)) { ## Numerically integrate 'siaf' over each influence region mapplyFUN( c(alist(siaf$F, influenceRegion, type=eventTypes), list(MoreArgs=quote(list(siaf$f, siafpars, ...)), SIMPLIFY=TRUE, USE.NAMES=FALSE)), ##<- we explicitly quote() the ...-part instead of simply including ## it in the above alist() - only to make checkUsage() happy parallel = parallel) } else if (is.null(siaf$effRange)) # use Fcircle but only delta-trick { mapplyFUN( c(alist(function (iR, type, eps, bdisti, siafpars, ...) if (eps <= bdisti) # influence region completely inside W siaf$Fcircle(eps, siafpars, type) else # numerically integrate over influence region siaf$F(iR, siaf$f, siafpars, type, ...) , influenceRegion, eventTypes, eps.s, bdist), list(MoreArgs=quote(list(siafpars, ...)), SIMPLIFY=TRUE, USE.NAMES=FALSE)), parallel = parallel) } else { # fast Fcircle integration considering the delta-trick AND effRange .ret <- mapplyFUN( c(alist(function (iR, type, eps, bdisti, effRange, siafpars, ...) if (eps <= bdisti) # influence region completely inside W siaf$Fcircle(eps, siafpars, type) else if (effRange <= bdisti) # effective region inside W siaf$Fcircle(bdisti, siafpars, type) else # numerically integrate over influence region siaf$F(iR, siaf$f, siafpars, type, ...) , influenceRegion, eventTypes, eps.s, bdist, effRanges), list(MoreArgs=quote(list(siafpars, ...)), SIMPLIFY=TRUE, USE.NAMES=FALSE)), ## before: compute computationally effective range of the 'siaf' ## for the current 'siafpars' for each event (type): before = expression( effRangeTypes <- rep_len(siaf$effRange(siafpars), nTypes), effRanges <- effRangeTypes[eventTypes] # N-vector ), parallel = parallel) if (exists("effRangeTypes", where=parent.frame(), mode="numeric")) { ## in simEpidataCS effRangeTypes is pre-calculated outside siafInt to ## save computation time ('siafpars' is constant during simulation) body(.ret)[[grep("^effRangeTypes <-", body(.ret))]] <- NULL } .ret } ## set the environment of the siafInt function to the callers environment ## (i.e. inside twinstim() or simEpidataCS()) ## where the variables used in the function are defined environment(FUN) <- parent.frame() FUN } ### Helper function, which constructs the function that integrates the 'tiaf'. ### The returned function is defined in the callers environment, where the ### variables used in the function are available (inside twinstim() or ### simEpidataCS()). .tiafIntFUN <- function () { ## the following variables are unused here, because the environment of ## FUN will be set to the parent.frame(), where the variables exist ## they are only included to avoid the notes in R CMD check gIntLower <- gIntUpper <- eventTypes <- tiaf <- NULL ## from, to and type may be vectors of compatible lengths FUN <- function(tiafpars, from = gIntLower, to = gIntUpper, type = eventTypes, G = tiaf$G) { tiafIntUpper <- G(to, tiafpars, type) tiafIntLower <- G(from, tiafpars, type) tiafIntUpper - tiafIntLower } ## set the environment of the tiafInt function to the callers environment ## (i.e. inside twinstim() or simEpidataCS()) ## where the default argument values are defined environment(FUN) <- parent.frame() FUN } ### rename control arguments with optim names to have names compatible with nlminb control2nlminb <- function (control, defaults) { renamelist <- cbind(optim = c("maxit", "REPORT", "abstol", "reltol"), nlminb = c("iter.max", "trace", "abs.tol", "rel.tol")) for (i in which(renamelist[,"optim"] %in% names(control))) { fromname <- renamelist[i, "optim"] toname <- renamelist[i, "nlminb"] if (is.null(control[[toname]])) { control[[toname]] <- control[[fromname]] } control[[fromname]] <- NULL } defaults[names(control)] <- control defaults } ### Helper for iaf-checks: ### Checks if FUN has three arguments (s/t, pars, type) and ### eventually adds the last two .checknargs3 <- function (FUN, name) { FUN <- match.fun(FUN) NARGS <- length(formals(FUN)) if (NARGS == 0L) { stop("the function '", name, "' must accept at least one argument") } else if (NARGS == 1L) { formals(FUN) <- c(formals(FUN), alist(pars=, types=)) } else if (NARGS == 2L) { formals(FUN) <- c(formals(FUN), alist(types=)) } FUN } ### Internal wrapper used in twinstim() and simEpidataCS() to evaluate the siaf ### and tiaf arguments. If succesful, returns checked interaction function. .parseiaf <- function (iaf, type, eps = NULL, verbose = TRUE) { type <- match.arg(type, choices=c("siaf", "tiaf"), several.ok=FALSE) res <- if (missing(iaf) || is.null(iaf)) { if (verbose) { message("assuming constant ", switch(type, siaf="spatial", tiaf="temporal"), " interaction '", type, ".constant()'") } do.call(paste(type, "constant", sep="."), args=alist()) } else if (is.list(iaf)) { ret <- do.call(type, args = iaf) ## keep special attributes attr(ret, "knots") <- attr(iaf, "knots") attr(ret, "maxRange") <- attr(iaf, "maxRange") attr(ret, "Boundary.knots") <- attr(iaf, "Boundary.knots") attr(ret, "constant") <- attr(iaf, "constant") ret } else if (is.vector(iaf, mode = "numeric")) { do.call(paste(type,"step",sep="."), args = list(knots = iaf)) } else { stop("'", as.character(substitute(iaf)), "' must be NULL (or missing), a list (-> continuous ", "function), or numeric (-> knots of step function)") } ## indicate if this is a constant iaf attr(res, "constant") <- isTRUE(attr(res, "constant")) ## attach unique interaction ranges if (!is.null(eps)) { # in simEpidataCS() eps is not known beforehand attr(res, "eps") <- sort(unique(eps)) } return(res) } ### Construct a call/function for mapply or parallel::mcmapply, respectively ## args: alist() of arguments for mapply() ## before,after: expressions to be prepended/appended to the function body, ## where "res" will be the result of mapply() mapplyCall <- function (args, cores = 1L) { parallel <- is.name(cores) || cores > 1L mapplyFUN <- if (parallel) quote(parallel::mcmapply) else quote(mapply) parallelArgs <- list(mc.preschedule=TRUE, mc.cores=cores) as.call(c(mapplyFUN, args, if (parallel) parallelArgs)) } mapplyFUN <- function (args, before = list(), after = list(), parallel = TRUE) { FUN <- as.function(alist(siafpars=, ...=, NULL), envir=parent.frame()) body(FUN) <- mapplyCall(args, if (parallel) quote(cores) else 1L) if (length(after) + length(before) > 0) { body(FUN) <- as.call(c( list(as.name("{")), before, if (length(after)) call("<-", as.name("res"), body(FUN)) else body(FUN), after)) } FUN } ### parse the list or vector of start values check_twinstim_start <- function (start) { if (is.null(start)) { return(start) } else if (is.list(start)) { # convert allowed list specification to vector stopifnot(names(start) %in% c("endemic", "epidemic", "h", "e", "siaf", "tiaf", "e.siaf", "e.tiaf")) names(start)[names(start) == "endemic"] <- "h" names(start)[names(start) == "epidemic"] <- "e" names(start)[names(start) == "siaf"] <- "e.siaf" names(start)[names(start) == "tiaf"] <- "e.tiaf" start <- unlist(start, recursive=FALSE, use.names=TRUE) } if (!is.vector(start, mode="numeric") || is.null(names(start))) stop("parameter values must be named and numeric") return(start) } surveillance/R/plapply.R0000644000175100001440000001077212503317261015000 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Parallelized lapply (wrapping around mclapply and parLapply) ### taking care of the random seed and printing progress information ### ### Copyright (C) 2015 Sebastian Meyer ### $Revision: 1273 $ ### $Date: 2015-03-21 17:39:13 +0100 (Sat, 21. Mar 2015) $ ################################################################################ plapply <- function (X, FUN, ..., .parallel = 1, .seed = NULL, .verbose = TRUE) { if (!(useCluster <- inherits(.parallel, "cluster"))) { stopifnot(isScalar(.parallel), .parallel >= 1) .parallel <- as.vector(.parallel, mode = "integer") if (.Platform$OS.type == "windows" && .parallel > 1L) { useCluster <- TRUE .parallel <- parallel::makeCluster(.parallel) on.exit(parallel::stopCluster(.parallel)) } } FUN <- match.fun(FUN) .FUN <- if (useCluster || is.primitive(FUN)) { FUN # no support for reporting to the master || add.on.exit } else { # be verbose on.exit of FUN verboseExpr <- if (isTRUE(.verbose)) { ## progress bar or dots if (.parallel == 1L && interactive()) { env <- new.env(hash = FALSE, parent = environment(FUN)) environment(FUN) <- env # where the progress bar lives env$pb <- txtProgressBar(min = 0, max = length(X), initial = 0, style = 3) on.exit(close(env$pb), add = TRUE) quote(setTxtProgressBar(pb, pb$getVal() + 1L)) } else { on.exit(cat("\n"), add = TRUE) quote(cat(".")) } } else if (is.call(.verbose) || is.expression(.verbose)) { ## custom call or expression .verbose } else if (is.character(.verbose)) { ## custom progress symbol on.exit(cat("\n"), add = TRUE) substitute(cat(.verbose)) } # else NULL (no output) ## add on.exit(verboseExpr) to body(FUN) do.call(add.on.exit, list(FUN, verboseExpr)) } ## set random seed for reproducibility if (!is.null(.seed)) { if (useCluster) { parallel::clusterSetRNGStream(cl = .parallel, iseed = .seed) } else { if (!exists(".Random.seed", envir = .GlobalEnv, inherits = FALSE)) { set.seed(NULL) # initialize } .orig.seed <- get(".Random.seed", envir = .GlobalEnv) on.exit(assign(".Random.seed", .orig.seed, envir = .GlobalEnv), add = TRUE) if (.parallel == 1L) { set.seed(seed = .seed) } else { stopifnot(requireNamespace("parallel", quietly = TRUE)) ## Note @ R 3.1.3: this loading of package "parallel" ## before set.seed() is crucial; otherwise, the first run of ## plapply() would not be reproducible !!! set.seed(seed = .seed, kind = "L'Ecuyer-CMRG") parallel::mc.reset.stream() } } } ## rock'n'roll if (useCluster) { parallel::parLapply(cl = .parallel, X = X, fun = .FUN, ...) } else if (.parallel == 1L) { lapply(X = X, FUN = .FUN, ...) } else { # use forking parallel::mclapply(X = X, FUN = .FUN, ..., mc.preschedule = TRUE, mc.set.seed = TRUE, mc.silent = FALSE, mc.cores = .parallel) } } ## add an on.exit() statement at the beginning of a function add.on.exit <- function (FUN, expr) { FUN <- match.fun(FUN) if (is.null(expr <- substitute(expr))) { return(FUN) } if (is.primitive(FUN)) { # body(FUN) is NULL stop("not implemented for primitive functions") } onexitexpr <- substitute(on.exit(expr)) obody <- body(FUN) body(FUN) <- if (is.call(obody) && identical(as.name("{"), obody[[1L]])) { ## body(FUN) is a braced expression (usual case) ## and we insert on.exit(expr) directly after "{" as.call(append(x = as.list(obody), values = onexitexpr, after = 1L)) } else { ## body(FUN) is a symbol or a single call like UseMethod("print") as.call(c(as.name("{"), onexitexpr, obody)) } FUN } surveillance/R/stsNClist_animate.R0000644000175100001440000002223312744770132016745 0ustar hornikusers###################################################################### # Function to plot a sequence of nowcasts. Can be wrapped with the # animation package to produce PDF or Web animations # # Parameters: # linelist_truth - data.frame containing the linelist of cases/reports # dEventCol - name of the column containing the time of event (as Date) # dReportCol - name of the column containing the time of report receipt (as Date) # aggrgate.by - aggregation level (se function linelist2sts) # nowcasts - a list of nowcasts (if NULL then they are generated on the fly - Note: This is currently not implemented!) # method - which method to animate. Has to be part of the individual nowcast objects in 'nowcasts' # control - control object for controlling how the plotting is done ###################################################################### animate_nowcasts <- function(nowcasts,linelist_truth, method="bayes.trunc.ddcp", control=list(dRange=NULL,anim.dRange=NULL, plot.dRange=NULL,consistent=FALSE,sys.sleep=1,ylim=NULL,cex.names=0.7,col=c("violetred3","#2171B5","orange","blue","black","greenyellow")),showLambda=TRUE) { ##Extract the dEventCol and dReportCol from the nowcasts dEventCol <- nowcasts[[1]]@control$call$dEventCol dReportCol <- nowcasts[[1]]@control$call$dReportCol aggregate.by <- nowcasts[[1]]@control$call$aggregate.by ##Boolean indicator for those having information on dEventCol validVarInfo <- !is.na(linelist_truth[,dEventCol]) ##Show info about what is being illustrated message(paste("Total of ",nrow(linelist_truth)," cases in linelist_truth.\nIllustring reporting for ",sum(!is.na(linelist_truth[,dEventCol]))," cases with information on \"",dEventCol,"\"\n",sep="")) ##Reduce linelist_truth to those who have the appropriate information linelist_truth <- linelist_truth[validVarInfo,] ######################################### ## Check and set default control options ######################################### if (is.null(control[["dRange",exact=TRUE]])) { range <- range(c(linelist_truth[,dEventCol],linelist_truth[,dReportCol]),na.rm=TRUE) } else { range <- control$dRange } range.dates <- seq(range[1],range[2],by=aggregate.by) #plot.dRange if (is.null(control[["plot.dRange",exact=TRUE]])) { control$plot.dRange <- range(range) } #anim.dRange if (is.null(control[["anim.dRange",exact=TRUE]])) { control$anim.dRange <- control$dRange } #sys.sleep if (is.null(control[["sys.sleep",exact=TRUE]])) control$sys.sleep <- 1 if (is.null(control[["cex.names",exact=TRUE]])) control$cex.names <- 1 if (is.null(control[["col",exact=TRUE]])) control$col <- c("violetred3","#2171B5","orange","blue","black","springgreen4") if (is.null(control[["showLambda",exact=TRUE]])) control$showLambda <- TRUE ##Check that a list of nowcasts is available if (is.null(nowcasts)) { stop("not implemented!") } ##################### # Preprocessing block ##################### #Create an sts object with the true number of cases.. sts <- linelist2sts(linelist_truth,dEventCol,aggregate.by=aggregate.by,dRange=range) #Index of the time points in the plot.dRange plot.dates.idx <- as.numeric(control$plot.dRange - range[1] + 1) #Index of the animate dates anim.dates <- seq(control$anim.dRange[1],control$anim.dRange[2],by="1 day") idxSet <- pmatch(anim.dates,range.dates) ##Find ylim if (is.null(control[["ylim",exact=TRUE]])) { ymax <- max(observed(sts),upperbound(sts),na.rm=TRUE) ymax <- max(ymax,unlist(lapply(nowcasts, function(nc) max(c(observed(nc),upperbound(nc),predint(nc)),na.rm=TRUE)))) control$ylim <- c(0,ymax) } ##====================== ## Loop over all dates ##====================== ##Loop over all days. always show what we know for (i in idxSet) { ##fix this #Set "today" curDate <- as.Date(range.dates[i]) message("Animating ",as.character(curDate),"...") #Choose all reports available until this "today" linelist_truth.avail <- linelist_truth[ linelist_truth[,dReportCol] <= curDate,] #If consistency checking is requested remove all entries which #are "beyond" today if (!is.null(control$consistent)) { linelist_truth.avail <- linelist_truth.avail[ linelist_truth.avail[,dEventCol] <= curDate,] } ##Check that date exists in nowcast list. sts.nowcast <- nowcasts[[as.character(curDate)]] if (is.null(sts.nowcast)) { stop("Date: ",as.character(curDate)," not available in nowcasts.") } ##Check that method exists in nowcast object if (!(method %in% nowcasts[[as.character(curDate)]]@control$method)) { stop("Method ",method," not in nowcasts!") } ##Exract the used safePredictLag control$safePredictLag <- sts.nowcast@control$now - max(sts.nowcast@control$when) ##Fill upperbound and CI slots with output of that method (not pretty code: ToDo Improve!!) N.tInf.support <- sts.nowcast@control$N.tInf.support Ps <- sts.nowcast@predPMF when <- sts.nowcast@control$when dateRange <- epoch(sts.nowcast) idxt <- which(dateRange %in% when) alpha <- sts.nowcast@control$alpha ##Loop over all time points for (i in idxt) { predPMF <- Ps[[as.character(dateRange[i])]][[method]] sts.nowcast@upperbound[i,] <- median(N.tInf.support[which.max( cumsum(predPMF)>0.5)]) sts.nowcast@pi[i,,] <- N.tInf.support[c(which.max(cumsum(predPMF) >= alpha/2),which.max(cumsum(predPMF) >= 1-alpha/2))] } dimnames(sts.nowcast@pi) <- list(as.character(dateRange),NULL,paste( c(alpha/2*100,(1-alpha/2)*100),"%",sep="")) #Done upperbound(sts.nowcast)[-idxt] <- NA #All events which (in an ideal world) would be available now linelist_truth.now <- linelist_truth[ linelist_truth[,dEventCol] <= curDate,] sts.now <- linelist2sts(linelist_truth.now,dEventCol,aggregate.by=aggregate.by,dRange=c(range[1],curDate))#range) ##Percentage of possible observations which are available sum(observed(sts.nowcast)) sum(upperbound(sts.nowcast)) message(sprintf("(%.0f%% of total cases in linelist_truth reported)\n",sum(observed(sts.nowcast))/sum(observed(sts.now))*100)) ##Show the true number of counts observed(sts) <- matrix(0,nrow=nrow(sts),ncol=1) upperbound(sts) <- matrix(0,nrow=nrow(sts),ncol=1) observed(sts)[1:nrow(sts.now),] <- observed(sts.now) upperbound(sts)[1:nrow(sts.now),] <- upperbound(sts.now) ##Plot the true number of counts as sts object plot(sts,legend=NULL,dx.upperbound=0,main="",lwd=c(1,1,3),ylab="No. Cases",ylim=control$ylim,lty=c(1,1,1),axes=FALSE,xlab="",col=c(control$col[c(1,1)],NULL), xlim=plot.dates.idx,xaxs="i") ####################start to change. Use proper customizable arguments ### plot the nowcast using the S4 method and then add the other ### stuff on top of it... ##Add the nowcast plot(sts.nowcast,dx.upperbound=0,axes=FALSE,col=control$col[c(2,2,3)],lty=c(1,1,1),legend=NULL,add=TRUE,lwd=c(3,3,3),xlim=plot.dates.idx,xaxs="i") ##Last proper index idx <- nrow(sts.nowcast) - which.max(!is.na(rev(upperbound(sts.nowcast)))) + 1 ##Continue line from plot lines( idx+c(-0.5,0.5), rep(upperbound(sts.nowcast)[idx,],2),lty=1,col=control$col[3],lwd=3) ##Add CIs from the nowcast for (i in 1:nrow(sts.nowcast)) { lines( i+c(-0.3,0.3), rep(sts.nowcast@pi[i,,1],2),lty=1,col=control$col[3]) lines( i+c(-0.3,0.3), rep(sts.nowcast@pi[i,,2],2),lty=1,col=control$col[3]) lines( rep(i,each=2), sts.nowcast@pi[i,,],lty=2,col=control$col[3]) } ##Add lambda_t if it exists. if (method == "bayes.trunc.ddcp" && control$showLambda) { lambda <- attr(delayCDF(sts.nowcast)[["bayes.trunc.ddcp"]],"model")$lambda showIdx <- seq(ncol(lambda) - control$safePredictLag) matlines( showIdx,t(lambda)[showIdx,],col="gray",lwd=c(1,2,1),lty=c(2,1,2)) } ##Add axis information axis(2) ##Add extra line parts on x-axis axis(1,at=0:1e3,tick=TRUE,lwd.ticks=0,labels=rep("",1e3+1)) axis(1,at=0:1e3,tick=TRUE,lwd.ticks=1,tcl=-0.2,labels=rep("",1e3+1)) ##Hilight the mondays is.monday <- format(range.dates,"%w") == 1 axis(1,at=(1:length(range.dates))[is.monday],labels=format(range.dates[is.monday],"%a %d %b"),las=2,cex.axis=control$cex.names) ##Show month breaks dom <- as.numeric(format(range.dates,"%d")) axis(1,at=which(dom==1),labels=rep("",sum(dom==1)),tcl=-0.8,lwd=0,lwd.ticks=1) ####################stop to change ##Extra text <- c("Events up to \"now\"","Reports received by \"now\"",paste("Nowcasts by ",method,sep=""), if (method=="bayes.trunc.ddcp") expression(lambda[t]*" of bayes.trunc.ddcp") else NULL) col <- c(control$col[1:3], if (method=="bayes.trunc.ddcp") "gray" else NULL) legend(x="topright",text,col=col, lwd=3,lty=1) ##Add now symbol points(curDate-range[1]+1,0,pch=10,col=control$col[6],cex=1.5) ##Add nowcast symbol points(curDate-range[1]+1-control$safePredictLag,0,pch=9,col=control$col[3],cex=1.5) ##Add this to the legend legend(x="right",c("Now","Nowcast horizon"),pch=c(10,9),col=control$col[c(6,3)],pt.cex=1.5) ##Pause Sys.sleep(control$sys.sleep) } invisible() } surveillance/R/twinSIR_profile.R0000644000175100001440000002411112422442515016367 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### profile-method for class "twinSIR" to calculate the profile log-likelihood ### (normalized) as well as profile likelihood based confidence intervals ### ### Copyright (C) 2009 Michael Hoehle, 2014 Sebastian Meyer ### $Revision: 1091 $ ### $Date: 2014-10-24 14:25:49 +0200 (Fri, 24. Oct 2014) $ ################################################################################ ###################################################################### # Function to compute likelihood based confidence interval, basically # the two solutions to # f(\theta) = l(\theta)-l(\hat{theta)) + 1/2 dchisq(1-alpha,df=1)=0 # are found. # # # Parameters: # logliktilde - normalized likelihood function(theta, ...) # theta.hat - the MLE # lower - search interval [lower,theta.hat] for f=0 # upper - search interval [theta.hat,upper] for f=0 # alpha - confidence level (see Equation 2.6 in Pawitan (2003) # ... - additional arguments passed to function logliktilde ###################################################################### likelihood.ci <- function (logliktilde, theta.hat, lower, upper, alpha = 0.05, ...) { # Highest Likelihood intervall -- target function f <- function(theta, ...) { logliktilde(theta, ...) + 1/2*qchisq(1-alpha, df=1) } # Compute upper and lower boundary numerically hl.lower <- uniroot(f, interval = c(lower, theta.hat), ...)$root hl.upper <- uniroot(f, interval = c(theta.hat, upper), ...)$root return(c(hl.lower,hl.upper)) } ###################################################################### # Function to compute estimated and profile likelihood based # confidence intervals. Heavy computations might be necessary! # #Params: # fitted - output from a fit with twinSIR # profile - list with 4D vector as entries - format: # c(index, lower, upper, grid size) # where index is the index in the coef vector # lower and upper are the parameter limits (can be NA) # grid size is the grid size of the equally spaced grid # between lower and upper (can be 0) # alpha - (1-alpha)% profile likelihood CIs are computed. # If alpha <= 0 then no CIs are computed # control - control object to use for optim in the profile loglik computations # # Returns: # list with profile loglikelihood evaluations on the grid # and highest likelihood and wald confidence intervals ###################################################################### profile.twinSIR <- function (fitted, profile, alpha = 0.05, control = list(fnscale = -1, factr = 1e1, maxit = 100), ...) { ## Check that input is ok profile <- as.list(profile) if (length(profile) == 0L) { stop("nothing to do") } lapply(profile, function(one) { if (length(one) != 4L) { stop("each profile entry has to be of form ", "'c(index, lower, upper, grid size)'") }}) if (is.null(fitted[["model"]])) { stop("'fitted' must contain the model component") } px <- ncol(fitted$model$X) pz <- ncol(fitted$model$Z) ## Control of the optim procedure if (is.null(control[["fnscale",exact=TRUE]])) { control$fnscale <- -1 } if (is.null(control[["factr",exact=TRUE]])) { control$factr <- 1e1 } if (is.null(control[["maxit",exact=TRUE]])) { control$maxit <- 100 } ## Estimated normalized likelihood function ltildeestim <- function(thetai,i) { theta <- theta.ml theta[i] <- thetai with(fitted$model, .loglik(theta, X=X, Z=Z, survs=survs, weights=weights)) - loglik.theta.ml } ## Profile normalized likelihood function ltildeprofile <- function(thetai,i) { emptyTheta <- rep(0, length(theta.ml)) # Likelihood l(theta_{-i}) = l(theta_i, theta_i) ltildethetaminusi <- function(thetaminusi) { theta <- emptyTheta theta[-i] <- thetaminusi theta[i] <- thetai with(fitted$model, .loglik(theta, X=X, Z=Z, survs=survs, weights=weights)) - loglik.theta.ml } # Score function of all params except thetaminusi stildethetaminusi <- function(thetaminusi) { theta <- emptyTheta theta[-i] <- thetaminusi theta[i] <- thetai with(fitted$model, .score(theta, X=X, Z=Z, survs=survs, weights=weights))[-i] } # Call optim using L-BFGS-B. For harder constrains we need constr.Optim lower <- if (fitted$method == "L-BFGS-B") { c(rep(0,px),rep(-Inf,pz))[-i] } else { -Inf } upper <- if (fitted$method == "L-BFGS-B") { c(rep(Inf,px),rep(Inf,pz))[-i] } else { Inf } resOthers <- tryCatch(with(fitted$model, optim(theta.ml[-i], fn = ltildethetaminusi, gr = stildethetaminusi, method = fitted$method, control = control, lower = lower, upper = upper)), warning = function(w) print(w), error = function(e) list(value=NA)) resOthers$value } ## Initialize theta.ml <- coef(fitted) loglik.theta.ml <- c(logLik(fitted)) se <- sqrt(diag(vcov(fitted))) resProfile <- list() ## Perform profile computations for all requested parameters cat("Evaluating the profile log-likelihood on a grid ...\n") for (i in 1:length(profile)) { cat("i= ",i,"/",length(profile),"\n") #Index of the parameter in the theta vector idx <- profile[[i]][1] #If no borders are given use those from wald intervals (unconstrained) if (is.na(profile[[i]][2])) profile[[i]][2] <- theta.ml[idx] - 3*se[idx] if (is.na(profile[[i]][3])) profile[[i]][3] <- theta.ml[idx] + 3*se[idx] #Evaluate profile loglik on a grid (if requested) if (profile[[i]][4] > 0) { thetai.grid <- seq(profile[[i]][2],profile[[i]][3],length=profile[[i]][4]) resProfile[[i]] <- matrix(NA, nrow = length(thetai.grid), ncol = 4L, dimnames = list(NULL, c("grid","profile","estimated","wald"))) for (j in 1:length(thetai.grid)) { cat("\tj= ",j,"/",length(thetai.grid),"\n") resProfile[[i]][j,] <- c(thetai.grid[j], ltildeprofile(thetai.grid[j],idx), ltildeestim(thetai.grid[j],idx), #9 June 2009: Bug discovered by L. Held. as part of paper revision. C.f. Pawitan p.63 - 1/2*(1/se[idx]^2)*(thetai.grid[j] - theta.ml[idx])^2) } } } #9 June 2009. This did not work. # names(resProfile) <- names(theta.ml)[sapply(profile, function(x) x[4L]) > 0] names(resProfile) <- names(theta.ml)[sapply(profile, function(x) x[1L])] ## Profile likelihood intervals ciProfile <- matrix(NA, nrow = length(profile), ncol = 6L, dimnames = list(NULL, c("idx","hl.low","hl.up","wald.low","wald.up","mle"))) ciProfile[,"idx"] <- sapply(profile, "[", 1L) ciProfile[,"mle"] <- theta.ml[ciProfile[,"idx"]] rownames(ciProfile) <- names(theta.ml)[ciProfile[,"idx"]] if (alpha > 0) { cat("Computing profile likelihood-based confidence intervals ...\n") lower <- if (fitted$method == "L-BFGS-B") { c(rep(0,px),rep(-Inf,pz)) } else { -Inf } for (i in seq_along(profile)) { cat(i,"/", length(profile),"\n") #Index of the parameter in the theta vector idx <- profile[[i]][1] #Compute highest likelihood intervals ci.hl <- tryCatch( likelihood.ci(ltildeprofile, theta.hat = theta.ml[idx], lower = max(lower[idx], theta.ml[idx]-5*se[idx]), upper = theta.ml[idx]+5*se[idx], alpha = alpha, i = idx), warning = function(w) print(w), error = function(e) rep(NA,2)) #Wald intervals based on expected fisher information ci.wald <- theta.ml[idx] + c(-1,1) * qnorm(1-alpha/2) * se[idx] ciProfile[i,2:5] <- c(ci.hl, ci.wald) } } res <- list(lp=resProfile, ci.hl=ciProfile, profileObj=profile) class(res) <- "profile.twinSIR" return(res) } ###################################################################### ## Plot the result of the profiler ## Parameters: ## x - the result of calling profile() on a "twinSIR" object ## which - names of selected parameters, NULL meaning all available ## conf.level - level for the horizontal line for -qchisq(,df=1)/2 ## legend - logical indicating whether to add a legend to the plot, ## or numeric vector of indexes of plots where to add the legend ###################################################################### plot.profile.twinSIR <- function(x, which = NULL, conf.level = 0.95, xlab = which, ylab = "normalized log-likelihood", legend = TRUE, par.settings = list(), ...) { ## extract relevant components of 'x' lp <- x$lp[!vapply(X=x$lp, FUN=is.null, FUN.VALUE=FALSE, USE.NAMES=FALSE)] mle <- x$ci.hl[,"mle"] ## check arguments which <- if (is.null(which)) { names(lp) } else { match.arg(which, names(lp), several.ok = TRUE) } xlab <- rep_len(xlab, length(which)) if (is.logical(legend)) legend <- which(legend) if (is.list(par.settings)) { par.defaults <- list(mfrow = sort(n2mfrow(length(which))), mar = c(5,5,1,1)+.1, las = 1) par.settings <- modifyList(par.defaults, par.settings) opar <- do.call("par", par.settings) on.exit(par(opar)) } ## loop over parameters for (i in seq_along(which)) { coefname <- which[i] matplot(lp[[coefname]][,1L], lp[[coefname]][,-1L], type = "l", col = 1:3, lty = 1:3, xlab = xlab[i], ylab = ylab) if (i %in% legend) { legend(x = "bottomright", legend = c("profile","estimated","Wald"), col = 1:3, lty = 1:3) } ## some lines which help interpretation segments(x0=mle[coefname], y0=par("usr")[3L], y1=0, lty=2, col="darkgray") abline(h=-1/2*qchisq(conf.level, df=1), lty=2, col="darkgray") } } surveillance/R/bodaDelay.R0000644000175100001440000006375713010042670015207 0ustar hornikusers# ____________________________ # |\_________________________/|\ # || || \ # || bodaDelay || \ # || || | # || || | # || || | # || || | # || || | # || || / # ||_________________________|| / # |/_________________________\|/ # __\_________________/__/|_ # |_______________________|/ ) # ________________________ (__ # /oooo oooo oooo oooo /| _ )_ # /ooooooooooooooooooooooo/ / (_)_(_) # /ooooooooooooooooooooooo/ / (o o) #/C=_____________________/_/ ==\o/== # Author: M.Salmon ################################################################################ # CONTENTS ################################################################################ # # MAIN FUNCTION # Function that manages input and output. # # FIT GLM FUNCTION # Function that fits a GLM. # # THRESHOLD FUNCTION # Function that calculates the threshold. # # DATA GLM FUNCTION # Function that prepares data for the GLM. # # FORMULA FUNCTION # Function that writes the formula for the GLM. ################################################################################ # END OF CONTENTS ################################################################################ ################################################################################ # MAIN FUNCTION ################################################################################ bodaDelay <- function(sts, control = list(range = NULL, b = 3, w = 3, mc.munu=100, mc.y=10, pastAberrations = TRUE, verbose = FALSE, alpha = 0.01, trend = TRUE, limit54=c(5,4), inferenceMethod=c("asym","INLA"), quantileMethod=c("MC","MM"), noPeriods = 1, pastWeeksNotIncluded = 26, delay = TRUE)) { ###################################################################### # Use special Date class mechanism to find reference months/weeks/days ###################################################################### if (is.null( sts@epochAsDate)) { epochAsDate <- FALSE } else { epochAsDate <- sts@epochAsDate } ###################################################################### # Fetch observed and population ###################################################################### # Fetch observed observed <- observed(sts) freq <- sts@freq if (epochAsDate) { epochStr <- switch( as.character(freq), "12" = "month","52" = "week", "365" = "day") } else { epochStr <- "none" } # Fetch population (if it exists) if (!is.null(population(sts))) { population <- population(sts) } else { population <- rep(1,length(observed)) } ###################################################################### # Fix missing control options ###################################################################### if (is.null(control[["b",exact=TRUE]])) { control$b = 5 } if (is.null(control[["w", exact = TRUE]])) { control$w = 3 } if (is.null(control[["range", exact=TRUE]])) { control$range <- (freq*(control$b)+control$w +1):dim(observed)[1] } if (is.null(control[["pastAberrations",exact=TRUE]])) {control$pastAberrations=TRUE} if (is.null(control[["verbose",exact=TRUE]])) {control$verbose=FALSE} if (is.null(control[["alpha",exact=TRUE]])) {control$alpha=0.05} if (is.null(control[["trend",exact=TRUE]])) {control$trend=TRUE} # No alarm is sounded # if fewer than cases = 5 reports were received in the past period = 4 # weeks. limit54=c(cases,period) is a vector allowing the user to change # these numbers if (is.null(control[["limit54",exact=TRUE]])) {control$limit54=c(5,4)} if (is.null(control[["noPeriods",exact=TRUE]])){control$noPeriods=1} # Use factors in the model? Depends on noPeriods, no input from the user. if (control$noPeriods!=1) { control$factorsBool=TRUE } else { control$factorsBool=FALSE } # How many past weeks not to take into account? if (is.null(control[["pastWeeksNotIncluded",exact=TRUE]])){ control$pastWeeksNotIncluded=control$w } # Correct for delays? if (is.null(control[["delay",exact=TRUE]])) { control$delay = FALSE } # Reporting triangle here? if (control$delay) { if (is.null( sts@control$reportingTriangle$n)) {stop("You have to provide a reporting triangle in control of the sts-object")} if (!(length(apply(sts@control$reportingTriangle$n,1,sum,na.rm=TRUE))==length(sts@observed))) {stop("The reporting triangle number of lines is not the length of the observed slot.")} if (!(sum(apply(sts@control$reportingTriangle$n,1,sum,na.rm=TRUE)==sts@observed)==length(sts@observed))) {stop("The reporting triangle is wrong: not all cases are in the reporting triangle.")} } # setting for monte carlo integration if(is.null(control[["mc.munu",exact=TRUE]])){ control$mc.munu <- 100 } if(is.null(control[["mc.y",exact=TRUE]])){ control$mc.y <- 10 } ###################################################################### # Check options ###################################################################### if (!((control$limit54[1] >= 0) && (control$limit54[2] > 0))) { stop("The limit54 arguments are out of bounds: cases >= 0 and period > 0.") } # inference method if(is.null(control[["inferenceMethod",exact=TRUE]])){ control$inferenceMethod <- "asym" } else { control$inferenceMethod <- match.arg(control$inferenceMethod, c("asym","INLA")) } if(is.null(control[["quantileMethod",exact=TRUE]])){ control$quantileMethod <- "MC" } else { control$quantileMethod <- match.arg(control$quantileMethod, c("MC","MM")) } #Check if the INLA package is available. if (control$inferenceMethod=="INLA"){ if (!requireNamespace("INLA", quietly = TRUE)) { stop("The bodaDelay function requires the INLA package to be installed.\n", " The package is not available on CRAN, but can be easily obtained\n", " from .\n", " Alternatively, set inferenceMethod to \"asym\".") } } # Define objects n <- control$b*(2*control$w+1) # loop over columns of sts #Vector of dates if (epochAsDate){ vectorOfDates <- as.Date(sts@epoch, origin="1970-01-01") } else { vectorOfDates <- seq_len(length(observed)) } # Parameters b <- control$b w <- control$w noPeriods <- control$noPeriods verbose <- control$verbose reportingTriangle <- sts@control$reportingTriangle timeTrend <- control$trend alpha <- control$alpha factorsBool <- control$factorsBool pastAberrations <- control$pastAberrations glmWarnings <- control$glmWarnings delay <- control$delay k <- control$k verbose <- control$verbose pastWeeksNotIncluded <- control$pastWeeksNotIncluded mc.munu <- control$mc.munu mc.y <- control$mc.y # Loop over control$range for (k in control$range) { ###################################################################### # Prepare data for the glm ###################################################################### dayToConsider <- vectorOfDates[k] diffDates <- diff(vectorOfDates) delay <- control$delay dataGLM <- bodaDelay.data.glm(dayToConsider=dayToConsider, b=b, freq=freq, epochAsDate=epochAsDate, epochStr=epochStr, vectorOfDates=vectorOfDates,w=w, noPeriods=noPeriods, observed=observed,population=population, verbose=verbose, pastWeeksNotIncluded=pastWeeksNotIncluded, reportingTriangle=reportingTriangle, delay=delay) ###################################################################### # Fit the model ###################################################################### argumentsGLM <- list(dataGLM=dataGLM,reportingTriangle=reportingTriangle, timeTrend=timeTrend,alpha=alpha, factorsBool=factorsBool,pastAberrations=pastAberrations, glmWarnings=glmWarnings, verbose=verbose,delay=delay, inferenceMethod=control$inferenceMethod) model <- do.call(bodaDelay.fitGLM, args=argumentsGLM) if(is.null(model)){ sts@upperbound[k] <- NA sts@alarm[k] <- NA } else{ ###################################################################### # Calculate the threshold ###################################################################### quantileMethod <- control$quantileMethod argumentsThreshold <- list(model,alpha=alpha,dataGLM=dataGLM,reportingTriangle, delay=delay,k=k,control=control,mc.munu=mc.munu,mc.y=mc.y, inferenceMethod=control$inferenceMethod, quantileMethod=quantileMethod) threshold <- do.call(bodaDelay.threshold,argumentsThreshold) ###################################################################### # Output results if enough cases ###################################################################### sts@upperbound[k] <- threshold enoughCases <- (sum(observed[(k-control$limit54[2]+1):k]) >=control$limit54[1]) sts@alarm[k] <- FALSE if (is.na(threshold)){sts@alarm[k] <- NA} else { if (sts@observed[k]>sts@upperbound[k]) {sts@alarm[k] <- TRUE} } if(!enoughCases){ sts@upperbound[k] <- NA sts@alarm[k] <- NA } } } #done looping over all time points return(sts[control$range,]) } ################################################################################ # END OF MAIN FUNCTION ################################################################################ ################################################################################ # FIT GLM FUNCTION ################################################################################ bodaDelay.fitGLM <- function(dataGLM,reportingTriangle,alpha, timeTrend,factorsBool,delay,pastAberrations, glmWarnings,verbose,inferenceMethod,...) { # Model formula depends on whether to include a time trend or not. theModel <- formulaGLMDelay(timeBool=timeTrend,factorsBool,delay,outbreak=FALSE) if(inferenceMethod=="INLA"){ E <- max(0,mean(dataGLM$response, na.rm=TRUE)) link=1 model <- INLA::inla(as.formula(theModel),data=dataGLM, family='nbinomial',E=E, control.predictor=list(compute=TRUE,link=link), control.compute=list(cpo=TRUE,config=TRUE), control.inla = list(int.strategy = "grid",dz=1,diff.logdens = 10), control.family = list(hyper = list(theta = list(prior = "normal", param = c(0, 0.001))))) if (pastAberrations){ # if we have failures => recompute those manually #if (sum(model$cpo$failure,na.rm=TRUE)!=0){ # model <- inla.cpo(model) #} # Calculate the mid p-value vpit <- model$cpo$pit vcpo <- model$cpo$cpo midpvalue <- vpit - 0.5*vcpo # Detect the point with a high mid p-value # outbreakOrNot <- midpvalue #outbreakOrNot[midpvalue <= (1-alpha)] <- 0 outbreakOrNot <- ifelse(midpvalue > (1-alpha), 1, 0) outbreakOrNot[is.na(outbreakOrNot)] <- 0# FALSE outbreakOrNot[is.na(dataGLM$response)] <- 0#FALSE # Only recompute the model if it will bring something! if (sum(outbreakOrNot)>0){ dataGLM <- cbind(dataGLM,outbreakOrNot) theModel <- formulaGLMDelay(timeBool=timeTrend,factorsBool,delay,outbreak=TRUE) model <- INLA::inla(as.formula(theModel),data=dataGLM, family='nbinomial',E=E, control.predictor=list(compute=TRUE,link=link), control.compute=list(cpo=FALSE,config=TRUE), control.inla = list(int.strategy = "grid",dz=1,diff.logdens = 10), control.family = list(hyper = list(theta = list(prior = "normal", param = c(0, 0.001))))) # if we have failures => recompute those manually # if (sum(model$cpo$failure,na.rm=TRUE)!=0){model <- inla.cpo(model)} vpit <- model$cpo$pit vcpo <- model$cpo$cpo midpvalue <- vpit - 0.5*vcpo } } } if (inferenceMethod=="asym"){ model <- MASS::glm.nb(as.formula(theModel),data=dataGLM) if(!model$converged){ return(NULL) } } return(model) } ################################################################################ # END OF FIT GLM FUNCTION ################################################################################ ################################################################################ # THRESHOLD FUNCTION ################################################################################ bodaDelay.threshold <- function(model, mc.munu,mc.y,alpha, delay,k,control,dataGLM,reportingTriangle, inferenceMethod,quantileMethod...) { quantileMethod <- control$quantileMethod if (inferenceMethod=="INLA"){ E <- max(0,mean(dataGLM$response, na.rm=TRUE)) # Sample from the posterior jointSample <- INLA::inla.posterior.sample(mc.munu,model, intern = TRUE) # take variation in size hyperprior into account by also sampling from it theta <- t(sapply(jointSample, function(x) x$hyperpar)) if (delay){ mu_Tt <- numeric(mc.munu) N_Tt <- numeric(mc.munu*mc.y) # Maximal delay + 1 Dmax0 <- ncol(as.matrix(reportingTriangle$n)) # The sum has to be up to min(D,T-t). This is how we find the right indices. loopLimit <- min(Dmax0,which(is.na(as.matrix(reportingTriangle$n)[k,]))-1,na.rm=TRUE) # Find the mu_td and sum for (d in 1:loopLimit) { if(sum(dataGLM$response[dataGLM$delay==d],na.rm=TRUE)!=0){ mu_Tt <- mu_Tt + exp(t(sapply(jointSample, function(x) x$latent[[nrow(dataGLM)-Dmax0+d]]))) } } # with no delay this is similar to boda. } else { mu_Tt <- exp(t(sapply(jointSample, function(x) x$latent[[nrow(dataGLM)]]))) } } if (inferenceMethod=="asym"){ E <- 1 # Sample from the posterior set.seed(1) # take variation in size hyperprior into account by also sampling from it theta <- rnorm(n=mc.munu,mean=summary(model)$theta,sd=summary(model)$SE.theta) if (delay){ # Maximal delay + 1 Dmax0 <- ncol(as.matrix(reportingTriangle$n)) mu_Tt <- numeric(mc.munu) newData <- tail(dataGLM,n=Dmax0) P=predict(model,type="link",se.fit=TRUE, newdata=newData) # The sum has to be up to min(D,T-t). This is how we find the right indices. loopLimit <- min(Dmax0,which(is.na(as.matrix(reportingTriangle$n)[k,]))-1,na.rm=TRUE) # Find the mu_td and sum for (d in 1:loopLimit) { if(sum(dataGLM$response[dataGLM$delay==d],na.rm=TRUE)!=0){ mu_Tt <- mu_Tt + exp(rnorm(n=mc.munu,mean=P$fit[d],sd=P$se.fit[d])) } } # with no delay this is similar to boda. } else { newData <- tail(dataGLM,n=1) P=try(predict(model,type="link",se.fit=TRUE, newdata=newData),silent=TRUE) if (class(P)=="try-error"){P<- NA return(NA)} set.seed(1) mu_Tt <- exp(rnorm(n=mc.munu,mean=P$fit,sd=P$se.fit)) } } # can only use positive theta (mu_Tt is positive anyway) mu_Tt <- mu_Tt[theta>0] theta <- theta[theta>0] if(quantileMethod=="MC"){ N_Tt <- rnbinom(n=mc.y*mc.munu,size=theta,mu=E*mu_Tt) qi <- quantile(N_Tt, probs=(1-alpha), type=3, na.rm=TRUE) } if(quantileMethod=="MM"){ minBracket <- qnbinom(p=(1-alpha), mu=E*min(mu_Tt), size=max(theta)) maxBracket <- qnbinom(p=(1-alpha), mu=E*max(mu_Tt), size=min(theta)) qi <- qmix(p=(1-alpha), mu=E*mu_Tt, size=theta, bracket=c(minBracket, maxBracket)) } return(as.numeric(qi)) } ################################################################################ # END OF THRESHOLD GLM FUNCTION ################################################################################ ################################################################################ # DATA GLM FUNCTION ################################################################################ bodaDelay.data.glm <- function(dayToConsider, b, freq, epochAsDate,epochStr, vectorOfDates,w,noPeriods, observed,population, verbose,pastWeeksNotIncluded,reportingTriangle,delay){ # Identify reference time points # Same date but with one year, two year, etc, lag # b+1 because we need to have the current week in the vector referenceTimePoints <- algo.farrington.referencetimepoints(dayToConsider,b=b, freq=freq, epochAsDate=epochAsDate, epochStr=epochStr ) if (sum((vectorOfDates %in% min(referenceTimePoints)) == rep(FALSE,length(vectorOfDates))) == length(vectorOfDates)){ warning("Some reference values did not exist (index<1).") } # Create the blocks for the noPeriods between windows (including windows) # If noPeriods=1 this is a way of identifying windows, actually. blocks <- blocks(referenceTimePoints,vectorOfDates,epochStr,dayToConsider, b,w,noPeriods,epochAsDate) # Here add option for not taking the X past weeks into account # to avoid adaptation of the model to emerging outbreaks blocksID <- blocks # Extract values for the timepoints of interest only blockIndexes <- which(is.na(blocksID)==FALSE) # Time # if epochAsDate make sure wtime has a 1 increment if (epochAsDate){ wtime <- (as.numeric(vectorOfDates[blockIndexes])- as.numeric(vectorOfDates[blockIndexes][1]))/as.numeric(diff(vectorOfDates))[1] } else { wtime <- as.numeric(vectorOfDates[blockIndexes]) } # Factors seasgroups <- as.factor(blocks[blockIndexes]) # Observed response <- as.numeric(observed[blockIndexes]) response[length(response)] <- NA # Population pop <- population[blockIndexes] if (verbose) { print(response)} # If the delays are not to be taken into account it is like farringtonFlexible if (!delay) { dataGLM <- data.frame(response=response,wtime=wtime,population=pop, seasgroups=seasgroups,vectorOfDates=vectorOfDates[blockIndexes]) dataGLM$response[(nrow(dataGLM)-pastWeeksNotIncluded):nrow(dataGLM)] <- NA } # If the delays are to be taken into account we need a bigger dataframe else { # Delays delays <- as.factor(0:(dim(reportingTriangle$n)[2]-1)) # Take the subset of the reporting triangle corresponding to the timepoints used for fitting the model reportingTriangleGLM <- reportingTriangle$n[rownames(reportingTriangle$n) %in% as.character(vectorOfDates[blockIndexes]),] # All vectors of data will be this long: each entry will correspond to one t and one d lengthGLM <- dim(reportingTriangleGLM)[2]*dim(reportingTriangleGLM)[1] # Create the vectors for storing data responseGLM <- numeric(lengthGLM) wtimeGLM <- numeric(lengthGLM) seasgroupsGLM <- numeric(lengthGLM) popGLM <- numeric(lengthGLM) vectorOfDatesGLM <- numeric(lengthGLM) delaysGLM <- numeric(lengthGLM) # Fill them D by D D <- dim(reportingTriangleGLM)[2] for (i in (1:dim(reportingTriangleGLM)[1])){ vectorOfDatesGLM[((i-1)*D+1):(i*D)] <- rep(vectorOfDates[blockIndexes][i],D) wtimeGLM[((i-1)*D+1):(i*D)] <- rep(wtime[i],D) popGLM[((i-1)*D+1):(i*D)] <- rep(pop[i],D) seasgroupsGLM[((i-1)*D+1):(i*D)] <- rep(seasgroups[i],D) responseGLM[((i-1)*D+1):(i*D)] <- reportingTriangleGLM[i,] delaysGLM[((i-1)*D+1):(i*D)] <- 0:(D-1) } responseGLM[((i-1)*D+1):(i*D)] <- rep (NA, D) responseGLM[(length(responseGLM)-pastWeeksNotIncluded*D):length(responseGLM)] <- NA dataGLM <- data.frame(response=responseGLM,wtime=wtimeGLM,population=popGLM, seasgroups=as.factor(seasgroupsGLM),vectorOfDates=as.Date(vectorOfDatesGLM,origin="1970-01-01"),delay=delaysGLM) } return(as.data.frame(dataGLM)) } ################################################################################ # END OF DATA GLM FUNCTION ################################################################################ ################################################################################ # FORMULA FUNCTION ################################################################################ # Function for writing the good formula depending on timeTrend, # and factorsBool formulaGLMDelay <- function(timeBool=TRUE,factorsBool=FALSE,delay=FALSE,outbreak=FALSE){ # Description # Args: # populationOffset: --- # Returns: # Vector of X # Smallest formula formulaString <- "response ~ 1" # With time trend? if (timeBool){ formulaString <- paste(formulaString,"+wtime",sep ="")} # With factors? if(factorsBool){ formulaString <- paste(formulaString,"+as.factor(seasgroups)",sep ="")} # # With delays? if(delay){ formulaString <- paste(formulaString,"+as.factor(delay)",sep ="")} if(outbreak){ formulaString <- paste(formulaString,"+f(outbreakOrNot,model='linear', prec.linear = 1)",sep ="")} # Return formula as a string return(formulaString) } ################################################################################ # END OF FORMULA FUNCTION ################################################################################ ###################################################################### # CDF of the negbin mixture with different means and sizes ###################################################################### pmix <- function(y, mu, size) { PN <- pnbinom(y, mu=mu, size=size) lala <- 1/sum(!is.na(PN))*sum(PN, na.rm=TRUE) return(lala) } ###################################################################### # END OF CDF of the negbin mixture with different means and sizes ###################################################################### ###################################################################### # Find the root(s) of a 1D function using the bisection method # # Params: # f - the function to minimize or the first derivate of the function to optim # reltol - relative tolerance epsilon ###################################################################### bisection <- function(f, bracket) { ##Boolean for convergence convergence <- FALSE ##Loop until converged while (!convergence) { #Half the interval (problem with ints: what uneven number?) x <- ceiling(mean(bracket)) ##Direct hit? -> stop if (isTRUE(all.equal(f(x),0))) break ##Choose the interval, containing the root bracket <- if (f(bracket[1])*f(x) <= 0) c(bracket[1],x) else c(x,bracket[2]) ##Have we obtained convergence? convergence <- (bracket[1]+1) == bracket[2] } #Return the value of x^{n+1} return(ceiling(mean(bracket))) } ###################################################################### # END OF BISECTION FUNCTION ###################################################################### ###################################################################### ##Find the p-quantile of the mixture distribution using bisectioning ## ## Parameters: ## p - the q_p quantile is found ## mu - mean vector ## size - size param ## bracket - vector length two, s.t. qmix(bracket[1] < 1-alpha and ## qmix(bracket[2]) > 1-alpha. Exception: if bracket[1]=0 ## then qmix(bracket[1] > 1-alpha is ok. ###################################################################### qmix <- function(p, mu, size, bracket=c(0,mu*100)) { target <- function(y) { pmix(y=y,mu=mu,size=size) - p } if (target(bracket[1]) * target(bracket[2]) > 0) { if ((bracket[1] == 0) & (target(bracket[1]) > 0)) return(0) stop("Not a good bracket.") } bisection(target, bracket=bracket) } surveillance/R/sts_toLatex.R0000644000175100001440000001142112672242502015622 0ustar hornikusers################################################################################ ### toLatex-method for "sts" objects ### ### Copyright (C) 2014 Dirk Schumacher, 2014 Maelle Salmon ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ################################################################################ toLatex.sts <- function(object, caption = "",label=" ", columnLabels = NULL, subset = NULL, alarmPrefix = "\\textbf{\\textcolor{red}{", alarmSuffix = "}}", ubColumnLabel = "UB", ...) { # Args: # object: A single sts object; must not be NULL or empty. # caption: A caption for the table. Default is the empty string. # label: A label for the table. Default is the empty string. # columnLabels: A list of labels for each column of the resulting table. # subset: A range of values which should be displayed. If Null, then all # data in the sts objects will be displayed. Else only a subset of # data. Therefore range needs to be a numerical vector of indexes # from 1 to length(@observed). # alarmPrefix: A latex compatible prefix string wrapped around a table cell # iff there is an alarm;i.e. alarm = TRUE # alarmSuffix: A latex compatible suffix string wrapped around a table cell # iff there is an alarm;i.e. alarm[i,j] = TRUE # ubColumnLabel: The label of the upper bound column; default is "UB". # ...: Variable arguments passed to toLatex.xtable # Returns: # An object of class Latex # Error Handling isEmpty <- function(o) is.null(o) if (isEmpty(object)) stop("object must not be null or NA.") if (is.list(object)) stop("supplying a list of sts has been removed from the api. Sorry.") if (!isS4(object) || !is(object, "sts")) stop("object must be of type sts from the surveillance package.") if (!is.character(caption)) stop("caption must be a character.") if (!isEmpty(labels) && length(labels) != length(object)) stop("number of labels differ from the number of sts objects.") # derive default values tableLabels <- colnames(object@observed) if (!is.null(columnLabels) && length(columnLabels) != ncol(object@observed) * 2 + 2) { stop("the number of labels must match the number of columns in the resulting table; i.e. 2 * columns of sts + 2.") } tableCaption <- caption tableLabel <- label vectorOfDates <- epoch(object, as.Date = TRUE) yearColumn <- Map(function(d)isoWeekYear(d)$ISOYear, vectorOfDates) if (object@freq == 12 ) monthColumn <- Map(function(d) as.POSIXlt(d)$mon, vectorOfDates) if (object@freq == 52 ) weekColumn <- Map(function(d)isoWeekYear(d)$ISOWeek, vectorOfDates) dataTable <- data.frame(unlist(yearColumn)) colnames(dataTable) <- "year" if (object@freq == 12 ) { dataTable$month <- unlist(monthColumn) } if (object@freq == 52 ) { dataTable$week <- unlist(weekColumn) } if (object@freq == 365 ) { dataTable$day <- unlist(vectorOfDates) dataTable <- dataTable[c(2)] } noCols <- ncol(dataTable) j <- 1 + noCols tableLabelsWithUB <- c() # I know it is imperative - shame on me for (k in 1:(ncol(object@observed))) { upperbounds <- round(object@upperbound[,k], 2) observedValues <- object@observed[,k] alarms <- object@alarm[,k] ubCol <- c() for (l in 1:length(upperbounds)) { if (is.na(upperbounds[l])) { ubCol <- c(ubCol, NA) } else { ubCol <- c(ubCol, upperbounds[l]) if (!is.na(alarms[l]) && alarms[l]) { observedValues[l] <- paste0(alarmPrefix, observedValues[l], alarmSuffix) } } } dataTable[,(j)] <- observedValues dataTable[,(j + 1)] <- ubCol tableLabelsWithUB <- c(tableLabelsWithUB, tableLabels[k]) tableLabelsWithUB <- c(tableLabelsWithUB, ubColumnLabel) j <- j + 2 } # remove rows which should not be displayed if (is.null(subset)) subset <- 1:nrow(dataTable) else if (min(subset) < 1 || max(subset) > nrow(dataTable)) stop("'subset' must be a subset of 1:nrow(observed), i.e., 1:", nrow(dataTable)) dataTable <- dataTable[subset,] # prepare everything for xtable newColNames <- c(colnames(dataTable)[1:noCols], tableLabelsWithUB) if (!is.null(columnLabels)) { colnames(dataTable) <- columnLabels } else { colnames(dataTable) <- newColNames } xDataTable <- xtable(dataTable, label = tableLabel, caption = tableCaption, digits = c(0)) toLatex(xDataTable, ...) } setMethod("toLatex", "sts", toLatex.sts) surveillance/R/backprojNP.R0000644000175100001440000003630012003522520015332 0ustar hornikusers###################################################################### # Implementation of the backprojection method as described in # Becker et al. (1991), Stats in Med, 10, 1527-1542. The method # was originally developed for the back-projection of AIDS incidence # but it is equally useful for analysing the epidemic curve in outbreak # situations of a disease with long incubation time, e.g. in order # to illustrate the effect of intervention measures. # # See backprojNP.Rd for the remaining details. ###################################################################### ###################################################################### # Helper function: Replace NaN or is.infinite values with zero. # Good against division by zero problems. # # Parameters: # x - a vector of type double ###################################################################### naninf2zero <- function(x) {x[is.nan(x) | is.infinite(x)] <- 0 ; return(x)} ## Rcpp inline function to significantly speed up the computation of equation ## 3a in the Becker et al. (1991) paper. Created with the help of Daniel ## Sabanes Bove, University of Zurich. ## eq3a <- ## cxxfunction(signature(rlambdaOld="numeric", ## ry="numeric", ## rincuPmf="numeric"), ## ' ## { ## // get arguments ## NumericVector lambdaOld(rlambdaOld); ## int T = lambdaOld.length(); ## NumericVector y(ry); ## NumericVector incuPmf(rincuPmf); ## NumericVector dincu(T); ## NumericVector pincu(T); ## pincu[0] = dincu[0]; ## for (int i=1; i0) { w <- choose(k,0:k)/2^k for (t in 1:T) { i.sub <- t+(0:k)-k/2 goodIdx <- i.sub %in% 1:T w.sub <- w[goodIdx]/sum(w[goodIdx]) lambda.new[t] <- sum(w.sub * phi.new[i.sub[goodIdx]]) } } else { #no smoothing lambda.new <- phi.new } #Done. return(lambda=lambda.new) } ###################################################################### # STS compatible function to call the non-parametric back-projection # method of Becker et al (1991) for time aggregated data. # # Parameters: # sts - sts object with the observed incidence as "observed" slot # incu.pmf - incubation time pmf as a vector with index 0,..,d_max. Please # note that the support includes zero! # k - smoothing parameter for the EMS algorithm # eps - relative convergence criteration # iter.max - max number of iterations # verbose - boolean, if TRUE provide extra output when running the method # lambda0 - start value for lambda, default: uniform # hookFun - hook function to call after each EMS step, a function # of type hookFun=function(stsj,...) # # Returns: # sts object with upperbound set to the backprojected lambda. ###################################################################### backprojNP.fit <- function(sts, incu.pmf,k=2,eps=1e-5,iter.max=250,verbose=FALSE,lambda0=NULL,eq3a.method=c("R","C"),hookFun=function(stsbp) {}, ...) { #Determine method eq3a.method <- match.arg(eq3a.method, c("R","C")) #Define object to return lambda.hat <- matrix(NA,ncol=ncol(sts),nrow=nrow(sts)) #Loop over all series for (j in 1:ncol(sts)) { #Inform (if requested) what series we are looking at if ((ncol(sts)>1) & verbose) { cat("Backprojecting series no. ",j,"\n") } #Extract incidence time series Y <- observed(sts)[,j] #If default behaviour for lambda0 is desired if (is.null(lambda0)) { lambda0j <- rep(sum(Y)/length(Y),length(Y)) } else { lambda0j <- lambda0[,j] } #Create incubation time distribution vectors for the j'th series inc.pmf <- as.numeric(incu.pmf[,j]) inc.cdf <- cumsum(inc.pmf) #Create wrapper functions for the PMF and CDF based on the vector. #These function will be used in the R version of eq3a. #ToDo: The function uses the global variable inc.pmf which #definitely is dirty coding. How to define this function #in an environment where inc.pmf is present? dincu <- function(x) { notInSupport <- x<0 | x>=length(inc.pmf) #Give index -1 to invalid queries x[notInSupport] <- -1 return(c(0,inc.pmf)[x+2]) } #Cumulative distribution function. Uses global var "inc.cdf" pincu <- function(x) { x[x<0] <- -1 x[x>=length(inc.cdf)] <- length(inc.cdf)-1 return(c(0,inc.cdf)[x+2]) } #Iteration counter and convergence indicator i <- 0 stop <- FALSE lambda <- lambda0j #Loop until stop while (!stop) { #Add to counter i <- i+1 lambda.i <- lambda #Perform one step lambda <- em.step.becker(lambda.old=lambda.i,Y=Y,dincu=dincu,pincu=pincu,k=k, incu.pmf=inc.pmf, eq3a.method=eq3a.method) #check stop #In original paper the expression to do so appears funny since #- and + deviations cancel. More realistic: #criterion <- abs(sum(res$lambda) - sum(lambda.i))/sum(lambda.i) criterion <- sqrt(sum((lambda- lambda.i)^2))/sqrt(sum(lambda.i^2)) if (verbose) { cat("Convergence criterion @ iteration i=",i,": ", criterion,"\n") } #Check whether to stop stop <- criterion < eps | (i>iter.max) #Call hook function stsj <- sts[,j] upperbound(stsj) <- matrix(lambda,ncol=1) hookFun(stsj, ...) } #Done lambda.hat[,j] <- lambda } #Create new object with return put in the lambda slot bp.sts <- as(sts,"stsBP") bp.sts@upperbound <- lambda.hat bp.sts@control <- list(k=k,eps=eps,iter=i) return(bp.sts) } ###################################################################### # EMS back-projection method including bootstrap based confidence # intervals. The theory is indirectly given in Becker and Marschner (1993), # Biometrika, 80(1):165-178 and more specifically in Yip et al, 2011, # Communications in Statistics -- Simulation and Computation, # 37(2):425-433. # # Parameters: # # sts - sts object with the observed incidence as "observed" slot # incu.pmf - incubation time pmf as a vector with index 0,..,d_max. Please # note that the support includes zero! # k - smoothing parameter for the EMS algorithm # eps - relative convergence criteration. If a vector of length two # then the first argument is used for the k=0 initial fit and # the second element for all EMS fits # # iter.max - max number of iterations. Can be a vector of length two. # Similar use as in eps. # verbose - boolean, if TRUE provide extra output when running the method # lambda0 - start value for lambda, default: uniform # hookFun - hook function to call after each EMS step, a function # of type hookFun=function(Y,lambda,...) # B - number of bootstrap replicates. If B=-1 then no bootstrap CIs # are calculated. # # Returns: # sts object with upperbound set to the backprojected lambda. ###################################################################### backprojNP <- function(sts, incu.pmf,control=list(k=2,eps=rep(0.005,2),iter.max=rep(250,2),Tmark=nrow(sts),B=-1,alpha=0.05,verbose=FALSE,lambda0=NULL,eq3a.method=c("R","C"),hookFun=function(stsbp) {}),...) { #Check if backprojection is to be done multivariate time series case. if (ncol(sts)>1) { warning("Multivariate time series: Backprojection uses same eps for the individual time series.") } #Check if incu.pmf vector fits the dimension of the sts object. If not #either replicate it or throw an error. if (is.matrix(incu.pmf)) { if (!ncol(incu.pmf) == ncol(sts)) { stop("Dimensions of sts object and incu.pmf don't match.") } } else { if (ncol(sts)>1) { warning("Backprojection uses same incubation time distribution for the individual time series.") } incu.pmf <- matrix(incu.pmf,ncol=ncol(sts),dimnames=list(NULL,colnames(sts))) } #Fill control object as appropriate and in sync with the default value if (is.null(control[["k",exact=TRUE]])) { control$k <- 2 } if (is.null(control[["eps",exact=TRUE]])) { control$eps <- rep(0.005,2) } if (is.null(control[["iter.max",exact=TRUE]])) { control$iter.max <- rep(250,2) } if (is.null(control[["Tmark",exact=TRUE]])) { control$Tmark <- nrow(sts) } if (is.null(control[["B",exact=TRUE]])) { control$B <- -1 } if (is.null(control[["alpha",exact=TRUE]])) { control$alpha <- 0.05 } if (is.null(control[["verbose",exact=TRUE]])) { control$verbose <- FALSE } if (is.null(control[["lambda0",exact=TRUE]])) { control$lambda0 <- NULL } #Which method to use for computing eq3a if (is.null(control[["eq3a.method",exact=TRUE]])) { control$eq3a.method <- "R" } else { control$eq3a.method <- match.arg(control$eq3a.method,c("R","C")) } #Hook function definition if (is.null(control[["hookFun",exact=TRUE]])) { control$hookFun <- function(Y,lambda,...) {} } #If the eps and iter.max arguments are too short, make them length 2. if (length(control$eps)==1) control$eps <- rep(control$eps,2) if (length(control$iter.max)==1) control$iter.max <- rep(control$iter.max,2) #Compute the estimate to report (i.e. use 2nd component of the args) if (control$verbose) { cat("Back-projecting with k=",control$k," to get lambda estimate.\n") } stsk <- backprojNP.fit(sts, incu.pmf=incu.pmf,k=control$k,eps=control$eps[2],iter.max=control$iter.max[2],verbose=control$verbose,lambda0=control$lambda0,hookFun=control$hookFun,eq3a.method=control$eq3a.method) #Fix control slot stsk@control <- control #If no bootstrap to do return object right away as stsBP object. if (control$B<=0) { if (control$verbose) { cat("No bootstrap CIs calculated as requested.\n") } stsk <- as(stsk,"stsBP") return(stsk) } #Call back-project function without smoothing, i.e. with k=0. if (control$verbose) { cat("Back-projecting with k=",0," to get lambda estimate for parametric bootstrap.\n") } sts0 <- backprojNP.fit(sts, incu.pmf=incu.pmf,k=0,eps=control$eps[1],iter.max=control$iter.max[1],verbose=control$verbose,lambda0=control$lambda0,hookFun=control$hookFun, eq3a.method=control$eq3a.method) ########################################################################### #Create bootstrap samples and loop for each sample while storing the result ########################################################################### sts.boot <- sts0 #Define object to return lambda <- array(NA,dim=c(nrow(sts),ncol(sts),control$B)) #Define PMF of incubation time which does safe handling of values #outside the support of the incubation time. dincu <- function(x,i) { notInSupport <- x<0 | x>=length(incu.pmf[,i]) #Give index -1 to invalid queries x[notInSupport] <- -1 return(c(0,incu.pmf[,i])[x+2]) } #Loop in order to create the sample for (b in 1:control$B) { if (control$verbose) { cat("Bootstrap sample ",b,"/",control$B,"\n") } #Compute convolution for the mean of the observations mu <- matrix(0, nrow=nrow(sts0), ncol=ncol(sts0)) #Perform the convolution for each series for (i in 1:ncol(sts)) { for (t in 1:nrow(mu)) { for (s in 0:(t-1)) { mu[t,i] <- mu[t,i] + upperbound(sts0)[t-s,i] * dincu(s,i) } } } #Create new observations in the observed slot. observed(sts.boot) <- matrix(rpois(prod(dim(sts.boot)),lambda=mu),ncol=ncol(sts0)) #Run the backprojection on the bootstrap sample. Use original result #as starting value. sts.boot <- backprojNP.fit(sts.boot, incu.pmf=incu.pmf,k=control$k,eps=control$eps[2],iter.max=control$iter.max[2],verbose=control$verbose,lambda0=upperbound(stsk),hookFun=control$hookFun, eq3a.method=control$eq3a.method) #Extract the result of the b'th backprojection lambda[,,b] <- upperbound(sts.boot) } #Compute an equal tailed (1-alpha)*100% confidence intervals based on the #bootstrap samples. The dimension is (ci.low,ci.high) x time x series ci <- apply(lambda,MARGIN=c(1,2), quantile, p=c(control$alpha/2,1-control$alpha/2)) #Convert output to stsBP object and add information to the extra slots stsk <- as(stsk,"stsBP") #Add extra slots stsk@ci <- ci stsk@lambda <- lambda stsk@control <- control #Done return(stsk) } surveillance/R/addSeason2formula.R0000644000175100001440000000367512505254341016675 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Conveniently add sine-cosine terms to a model formula ### ### Copyright (C) 2010 Michaela Paul, 2013-2015 Sebastian Meyer ### $Revision: 1299 $ ### $Date: 2015-03-27 14:19:29 +0100 (Fri, 27. Mar 2015) $ ################################################################################ ## for S = 1, 'sin(2*pi * t/period) + cos(2*pi * t/period)' is added to 'f' addSeason2formula <- function ( f = ~1, # formula to enhance S = 1, # number of sine/cosine pairs period = 52, # periodicity of the sinusoidal wave timevar = "t" # name of the time variable ){ ## check arguments stopifnot(inherits(f, "formula"), is.vector(S, mode = "numeric"), S >= 0, isScalar(period)) ## return unchanged formula if S = 0 if (max(S) == 0) return(f) ## character representation of old formula ftext <- paste0(deparse(f), collapse = "") ## add sine-cosine terms if (length(S) == 1L) { for (i in seq_len(S)) { ftext <- paste0(ftext, " + sin(", 2*i, "*pi*", timevar, "/", period, ")", " + cos(", 2*i, "*pi*", timevar, "/", period, ")") } } else { ## unit-specific seasonality for hhh4() via the special fe() function for (i in seq_len(max(S))) { which <- paste0(i <= S, collapse = ",") ftext <- paste0(ftext, " + fe(sin(",2*i,"*pi*",timevar,"/",period,"), which=c(",which,"))", " + fe(cos(",2*i,"*pi*",timevar,"/",period,"), which=c(",which,"))") } } ## convert back to a formula as.formula(ftext, env = .GlobalEnv) } surveillance/R/stsplot_time.R0000644000175100001440000004035112677441220016046 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Time series plot for sts-objects ### ### Copyright (C) 2007-2014 Michael Hoehle, 2013-2016 Sebastian Meyer ### $Revision: 1676 $ ### $Date: 2016-04-01 11:42:40 +0200 (Fri, 01. Apr 2016) $ ################################################################################ ###################################################################### # stsplot_time() sets the scene and calls either stsplot_time_as1() # or stsplot_time1() for each unit ###################################################################### stsplot_time <- function(x, units = NULL, as.one = FALSE, same.scale = TRUE, par.list = list(), ...) { observed <- x@observed if (is.null(units)) # plot all units units <- seq_len(ncol(observed)) nUnits <- length(units) #graphical parameters if (is.list(par.list)) { if (nUnits > 1 && !as.one) { par.list <- modifyList( #default: reduced margins and mfrow panels list(mar = c(5,4,1,1), mfrow = magic.dim(nUnits)), par.list) } else { par.list$mfrow <- NULL #no mf formatting.. } if (length(par.list) > 0) { oldpar <- par(par.list) on.exit(par(oldpar)) } } if (nUnits == 1L) { # a single time-series plot stsplot_time1(x = x, k = units, ...) } else { # multiple time series if (as.one) { # all time series in one plot stsplot_time_as1(x, units = units, ...) } else { # each time series in a separate plot args <- list(...) if(same.scale) { # compute suitable ylim if not specified if (is.null(args[["ylim"]])) { ymax <- if (x@multinomialTS) { max(0, pmax(observed,x@upperbound,na.rm=TRUE)/x@populationFrac, na.rm=TRUE) } else { max(observed,x@upperbound,na.rm=TRUE) } args$ylim <- c(-1/20*ymax, ymax) } } else { args$ylim <- NULL } #plot areas for (k in units) { argsK <- modifyList(args, list(x=x, k=k, main="", legend.opts=NULL), keep.null = TRUE) do.call("stsplot_time1",args=argsK) title(main=if (is.character(k)) k else colnames(observed)[k], line=-1) } } } invisible() } ## a simple matplot of observed counts from all/selected units, with a legend stsplot_time_as1 <- function (x, units = NULL, type = "l", lty = 1:5, lwd = 1, col = 1:6, epochsAsDate = x@epochAsDate, xaxis.tickFreq = list("%Q"=atChange), xaxis.labelFreq = xaxis.tickFreq, xaxis.labelFormat = "%G\n\n%OQ", xlab = "time", ylab = "No. infected", legend.opts = list(), ...) { observed <- x@observed if (x@multinomialTS) { observed <- ifelse(x@populationFrac != 0, observed/x@populationFrac, 0) } if (!is.null(units)) observed <- observed[, units, drop = FALSE] ## basic plot opar <- par(bty = "n", xaxt = "n") # a formatted time axis is added below matplot(observed, type = type, lty = lty, lwd = lwd, col = col, xlab = xlab, ylab = ylab, ...) par(opar) ## add time axis xaxis.line <- !epochsAsDate || grepl("\n", xaxis.labelFormat) addFormattedXAxis(x = x, epochsAsDate = epochsAsDate, xaxis.tickFreq = xaxis.tickFreq, xaxis.labelFreq = xaxis.labelFreq, xaxis.labelFormat = xaxis.labelFormat) # line = 1 ## add legend if (is.list(legend.opts)) { legend.opts <- modifyList( list(x = "top", legend = colnames(observed), lty = lty, lwd = lwd, col = col, ncol = magic.dim(ncol(observed))[2L], bty = "n"), legend.opts) do.call("legend", legend.opts) } invisible() } ### work-horse which produces a single time series plot with formatted x-axis stsplot_time1 <- function( x, k=1, ylim=NULL, axes=TRUE, xaxis.tickFreq=list("%Q"=atChange), xaxis.labelFreq=xaxis.tickFreq, xaxis.labelFormat="%G\n\n%OQ", epochsAsDate=x@epochAsDate, xlab="time", ylab="No. infected", main=NULL, type="s", lty=c(1,1,2), col=c(NA,1,4), lwd=c(1,1,1), outbreak.symbol=list(pch=3, col=3, cex=1, lwd=1), alarm.symbol=list(pch=24, col=2, cex=1, lwd=1), legend.opts=list(), dx.upperbound=0L, hookFunc=function(){}, .hookFuncInheritance=function() {}, ...) { stopifnot(length(k) == 1, is.character(k) || k != 0) #Extract slots -- depending on the algorithms: x@control$range observed <- x@observed[,k] state <- x@state[,k] alarm <- x@alarm[,k] upperbound <- x@upperbound[,k] population <- x@populationFrac[,k] binaryTS <- x@multinomialTS #Control what axis style is used xaxis.dates <- !is.null(xaxis.labelFormat) if (binaryTS) { observed <- ifelse(population!=0,observed/population,0) upperbound <- ifelse(population!=0,upperbound/population,0) if (ylab == "No. infected") { ylab <- "Proportion infected" } } ##### Handle the NULL arguments ###################################### if (is.null(main) && length(x@control) > 0) { #a surveillance algorithm has been run action <- switch(class(x), "sts" = "surveillance", "stsNC" = "nowcasting","stsBP" = "backprojection") method <- x@control$name main <- paste0(action, " using ", method) } # control where the highest value is max <- max(c(observed,upperbound),na.rm=TRUE) #if ylim is not specified, give it a default value if(is.null(ylim) ){ ylim <- c(-1/20*max, max) } # left/right help for constructing the columns dx.observed <- 0.5 upperboundx <- (1:length(upperbound)) - (dx.observed - dx.upperbound) #Generate the matrices to plot (values,last value) xstuff <- cbind(c(upperboundx,length(observed) + min(1-(dx.observed - dx.upperbound),0.5))) ystuff <-cbind(c(upperbound,upperbound[length(observed) ])) #Plot the results matplot(x=xstuff,y=ystuff,xlab=xlab,ylab=ylab,main=main,ylim=ylim,axes = !(xaxis.dates),type=type,lty=lty[-c(1:2)],col=col[-c(1:2)],lwd=lwd[-c(1:2)],...) #This draws the polygons containing the number of counts (sep. by NA) i <- rep(1:length(observed),each=5) dx <- rep(dx.observed * c(-1,-1,1,1,NA), times=length(observed)) x.points <- i + dx y.points <- as.vector(t(cbind(0, observed, observed, 0, NA))) polygon(x.points,y.points,col=col[1],border=col[2],lwd=lwd[1]) #Draw upper bound once more in case the polygons are filled if (!is.na(col[1])) { lines(x=xstuff,y=ystuff,type=type,lty=lty[-c(1:2)],col=col[-c(1:2)],lwd=lwd[-c(1:2)],...) } #Draw alarm symbols alarmIdx <- which(!is.na(alarm) & (alarm == 1)) if (length(alarmIdx)>0) { matpoints( alarmIdx, rep(-1/40*ylim[2],length(alarmIdx)), pch=alarm.symbol$pch, col=alarm.symbol$col, cex= alarm.symbol$cex, lwd=alarm.symbol$lwd) } #Draw outbreak symbols stateIdx <- which(state == 1) if (length(stateIdx)>0) { matpoints( stateIdx, rep(-1/20*ylim[2],length(stateIdx)), pch=outbreak.symbol$pch, col=outbreak.symbol$col,cex = outbreak.symbol$cex,lwd=outbreak.symbol$lwd) } #Label x-axis if(xaxis.dates & axes) { addFormattedXAxis(x = x, epochsAsDate = epochsAsDate, xaxis.tickFreq = xaxis.tickFreq, xaxis.labelFreq = xaxis.labelFreq, xaxis.labelFormat = xaxis.labelFormat, ...) } #Label y-axis if (axes) { axis( side=2 ,...)#cex=cex, cex.axis=cex.axis) } doLegend <- if (missing(legend.opts)) { length(stateIdx) + length(alarmIdx) > 0 || any(upperbound > 0, na.rm = TRUE) } else { is.list(legend.opts) } if(doLegend) { legend.opts <- modifyList( list(x = "top", lty = c(lty[1],lty[3],NA,NA), col = c(col[2],col[3],outbreak.symbol$col,alarm.symbol$col), pch = c(NA,NA,outbreak.symbol$pch,alarm.symbol$pch), legend = c("Infected", "Threshold", "Outbreak", "Alarm")), legend.opts) #Make the legend do.call("legend",legend.opts) } #Call hook function for user customized action using the current environment environment(hookFunc) <- environment() hookFunc() #Extra hook functions for inheritance plotting (see e.g. plot function of stsNC objects) environment(.hookFuncInheritance) <- environment() .hookFuncInheritance() invisible() } ############## ### alarm plot ############## stsplot_alarm <- function( x, lvl=rep(1,nrow(x)), ylim=NULL, xaxis.tickFreq=list("%Q"=atChange), xaxis.labelFreq=xaxis.tickFreq, xaxis.labelFormat="%G\n\n%OQ", epochsAsDate=x@epochAsDate, xlab="time", main=NULL, type="hhs", lty=c(1,1,2), col=c(1,1,4), outbreak.symbol=list(pch=3, col=3, cex=1, lwd=1), alarm.symbol=list(pch=24, col=2, cex=1, lwd=1), cex=1, cex.yaxis=1, ...) { k <- 1 #Extract slots -- depending on the algorithms: x@control$range observed <- x@observed[,k] state <- x@state[,k] alarm <- x@alarm[,k] upperbound <- x@upperbound[,k] ylim <- c(0.5, ncol(x)) ##### Handle the NULL arguments ###################################### if (is.null(main) && length(x@control) > 0) { #a surveillance algorithm has been run action <- switch(class(x), "sts" = "surveillance", "stsNC" = "nowcasting","stsBP" = "backprojection") method <- x@control$name main <- paste0(action, " using ", method) } #Control what axis style is used xaxis.dates <- !is.null(xaxis.labelFormat) # left/right help for constructing the columns dx.observed <- 0.5 observedxl <- (1:length(observed))-dx.observed observedxr <- (1:length(observed))+dx.observed upperboundx <- (1:length(upperbound)) #-0.5 # control where the highest value is max <- max(c(observed,upperbound),na.rm=TRUE) #if ylim is not specified if(is.null(ylim)){ ylim <- c(-1/20*max, max) } #Generate the matrices to plot xstuff <- cbind(observedxl, observedxr, upperboundx) ystuff <-cbind(observed, observed, upperbound) #Plot the results using one Large plot call (we do this by modifying #the call). Move this into a special function! matplot(x=xstuff,y=ystuff,xlab=xlab,ylab="",main=main,ylim=ylim,axes = FALSE,type="n",lty=lty,col=col,...) #Label of x-axis if(xaxis.dates){ addFormattedXAxis(x = x, epochsAsDate = epochsAsDate, xaxis.tickFreq = xaxis.tickFreq, xaxis.labelFreq = xaxis.labelFreq, xaxis.labelFormat = xaxis.labelFormat, ...) } axis( side=2, at=1:ncol(x),cex.axis=cex.yaxis, labels=colnames(x),las=2) #Draw all alarms for (i in 1:nrow(x)) { idx <- (1:ncol(x))[x@alarm[i,] > 0] for (j in idx) { points(i,j,pch=alarm.symbol$pch,col=alarm.symbol$col[lvl[j]],cex=alarm.symbol$cex,lwd=alarm.symbol$lwd) } } #Draw lines seperating the levels m <- c(-0.5,cumsum(as.numeric(table(lvl)))) sapply(m, function(i) lines(c(0.5,nrow(x@alarm)+0.5),c(i+0.5,i+0.5),lwd=2)) invisible() } ##################################### ### Utilities to set up the time axis ##################################### #Every unit change atChange <- function(x,xm1) { which(diff(c(xm1,x)) != 0) } #Median index of factor atMedian <- function(x,xm1) { as.integer(tapply(seq_along(x), INDEX=x, quantile, prob=0.5,type=3)) } #Only every second unit change at2ndChange <- function(x,xm1) { idxAtChange <- atChange(x,xm1) idxAtChange[seq(idxAtChange) %% 2 == 1] } #Helper function to format the x-axis of the time series addFormattedXAxis <- function(x, epochsAsDate = FALSE, xaxis.tickFreq = list("%Q"=atChange), xaxis.labelFreq = xaxis.tickFreq, xaxis.labelFormat = "%G\n\n%OQ", ...) { #Old style if there are no Date objects if (!epochsAsDate) { #Declare commonly used variables. nTime <- nrow(x) startyear <- x@start[1] firstweek <- x@start[2] if (x@freq ==52) { #Weekly epochs are the most supported # At which indices to put the "at" tick label. This will # be exactly those week numbers where the new quarter begins: 1, 14, 27 and 40 + i*52. # Note that week number and index is not the same due to the "firstweek" argument weeks <- seq_len(nTime) + (firstweek-1) noYears <- ceiling(max(weeks)/52) quarterStarts <- rep( (0:(noYears))*52, each=4) + rep( c(1,14,27,40), noYears+1) weeks <- subset(weeks, !is.na(match(weeks,quarterStarts))) weekIdx <- weeks - (firstweek-1) # get the right year for each week year <- weeks %/% 52 + startyear # function to define the quarter order quarterFunc <- function(i) { switch(i+1,"I","II","III","IV") } #nicer:as.roman, but changes class. # get the right number and order of quarter labels quarter <- sapply( (weeks-1) %/% 13 %% 4, quarterFunc) #Computed axis labels -- add quarters (this is the old style) labels.week <- paste(year,"\n\n",quarter,sep="") #Make the line. Use lwd.ticks to get full line but no marks. axis( side=1,labels=FALSE,at=c(1,nTime),lwd.ticks=0,line=1,...) axis( at=weekIdx[which(quarter != "I")] , labels=labels.week[which(quarter != "I")] , side=1, line = 1 ,...) #Bigger tick marks at the first quarter (i.e. change of the year) at <- weekIdx[which(quarter == "I")] axis( at=at, labels=rep(NA,length(at)), side=1, line = 1 ,tcl=2*par("tcl")) } else { ##other frequency (not really supported) #A label at each unit myat.unit <- seq(firstweek,length.out=nTime) # get the right year order month <- (myat.unit-1) %% x@freq + 1 year <- (myat.unit - 1) %/% x@freq + startyear #construct the computed axis labels -- add quarters if xaxis.units is requested mylabels.unit <- paste(year,"\n\n", (myat.unit-1) %% x@freq + 1,sep="") #Add axis axis( at=seq_len(nTime), labels=NA, side=1, line = 1, ...) axis( at=seq_len(nTime)[month==1], labels=mylabels.unit[month==1] , side=1, line = 1 ,...) #Bigger tick marks at the first unit at <- seq_len(nTime)[(myat.unit - 1) %% x@freq == 0] axis( at=at, labels=rep(NA,length(at)), side=1, line = 1 ,tcl=2*par("tcl")) } } else { ################################################################ #epochAsDate -- experimental functionality to handle ISO 8601 ################################################################ dates <- epoch(x, as.Date = TRUE) #make one which has one extra element at beginning with same spacing datesOneBefore <- c(dates[1]-(dates[2]-dates[1]),dates) #Make the line. Use lwd.ticks to get full line but no marks. axis( side=1,labels=FALSE,at=c(1,length(dates)),lwd.ticks=0,...) ###Make the ticks (depending on the selected level).### tcl <- par("tcl") tickFactors <- surveillance.options("stsTickFactors") #Loop over all pairs in the xaxis.tickFreq list for (i in seq_along(xaxis.tickFreq)) { format <- names(xaxis.tickFreq)[i] xm1x <- as.numeric(formatDate(datesOneBefore,format)) idx <- xaxis.tickFreq[[i]](x=xm1x[-1],xm1=xm1x[1]) #Find tick size by table lookup tclFactor <- tickFactors[pmatch(format, names(tickFactors))] if (is.na(tclFactor)) { warning("no \"tcl\" factor found for \"", format ,"\" -> setting it to 1") tclFactor <- 1 } axis(1,at=idx, labels=NA,tcl=tclFactor*tcl,...) } ###Make the labels (depending on the selected level)### if (!is.null(xaxis.labelFormat)) { labelIdx <- NULL for (i in seq_along(xaxis.labelFreq)) { format <- names(xaxis.labelFreq)[i] xm1x <- as.numeric(formatDate(datesOneBefore,format)) labelIdx <- c(labelIdx,xaxis.labelFreq[[i]](x=xm1x[-1],xm1=xm1x[1])) } #Format labels (if any) for the requested subset if (length(labelIdx)>0) { labels <- rep(NA,nrow(x)) labels[labelIdx] <- formatDate(dates[labelIdx],xaxis.labelFormat) axis(1,at=1:nrow(x), labels=labels,tick=FALSE,...) } } }#end epochAsDate #Done invisible() } surveillance/R/epidataCS_methods.R0000644000175100001440000003300613121751702016671 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Standard S3-methods for "epidataCS" objects, which represent ### CONTINUOUS SPATIO-temporal infectious disease case data ### ### Copyright (C) 2009-2015,2017 Sebastian Meyer ### $Revision: 1882 $ ### $Date: 2017-06-19 15:38:10 +0200 (Mon, 19. Jun 2017) $ ################################################################################ ### Number of events nobs.epidataCS <- function (object, ...) length(object$events) ### UPDATE eps.s, eps.t, qmatrix OR nCircle2Poly IN AN EXISTING epidataCS OBJECT # all arguments but 'object' are optional, the ... argument is unused update.epidataCS <- function (object, eps.t, eps.s, qmatrix, nCircle2Poly, ...) { nEvents <- nobs(object) # Check and update eps.t if (!missing(eps.t)) { stopifnot(is.numeric(eps.t), eps.t > 0) object$events$eps.t <- eps.t } # Initialise indicator of which influenceRegions to update ir2update <- logical(nEvents) # all FALSE # Check and update eps.s if (!missing(eps.s)) { stopifnot(is.numeric(eps.s), eps.s > 0) oldeps.s <- object$events$eps.s object$events$eps.s <- eps.s ir2update <- oldeps.s != object$events$eps.s } # Check nCircle2Poly nCircle2Poly <- if (missing(nCircle2Poly)) { attr(object$events$.influenceRegion, "nCircle2Poly") } else { stopifnot(isScalar(nCircle2Poly)) ir2update <- rep.int(TRUE, nEvents) as.integer(nCircle2Poly) } # Update influenceRegions of events if (any(ir2update)) { clipper <- attr(object$events$.influenceRegion, "clipper") if (is.null(clipper)) # epidataCS < 1.8-1 clipper <- "polyclip" object$events$.influenceRegion[ir2update] <- .influenceRegions(object$events[ir2update,], object$W, nCircle2Poly, clipper = clipper) attr(object$events$.influenceRegion, "nCircle2Poly") <- nCircle2Poly } # Check qmatrix if (!missing(qmatrix)) object$qmatrix <- checkQ(qmatrix, levels(object$events$type)) #hoehle @ 16 Apr 2011 - bug fix. .obsInfLength was not handled # Update length of infection time, i.e. length = min(T-time, eps.t) if (!missing(eps.t)) { timeRange <- with(object$stgrid, c(start[1], stop[length(stop)])) object$events$.obsInfLength <- with(object$events@data, pmin(timeRange[2]-time, eps.t)) } # Update .sources if (!missing(eps.t) || !missing(eps.s) || !missing(qmatrix)) { object$events$.sources <- determineSources.epidataCS(object) } # Done update. return(object) } ### subsetting epidataCS, i.e. select only part of the events, ### but retain stgrid and W. If any event types disappear due to subsetting, ### these types will be dropped from the factor levels and from qmatrix "[.epidataCS" <- function (x, i, j, ..., drop = TRUE) { ## rescue attributes of .influenceRegion (dropped when indexing) iRattr <- attributes(x$events$.influenceRegion) ## apply [,SpatialPointsDataFrame-method (where "drop" is ignored) cl <- sys.call() cl[[1]] <- as.name("[") cl[[2]] <- substitute(x$events) x$events <- eval(cl, envir=parent.frame()) ## assure valid epidataCS after subsetting if (!missing(j)) { # only epidemic covariates may be selected endemicVars <- setdiff(names(x$stgrid), c( reservedColsNames_stgrid, obligColsNames_stgrid)) if (!all(c(reservedColsNames_events, obligColsNames_events, endemicVars) %in% names(x$events))) { stop("only epidemic covariates may be removed from 'events'") } } if (!missing(i)) { ## update .sources x$events$.sources <- determineSources.epidataCS(x) if (drop) { ## update type levels and qmatrix (a type could have disappeared) x$events$type <- x$events$type[drop=TRUE] typeNames <- levels(x$events$type) if (!identical(rownames(x$qmatrix), typeNames)) { message("Note: dropped type(s) ", paste0("\"", setdiff(rownames(x$qmatrix), typeNames), "\"", collapse = ", ")) x$qmatrix <- checkQ(x$qmatrix, typeNames) } } } ## restore attributes of .influenceRegion attributes(x$events$.influenceRegion) <- iRattr ## done return(x) } ## The subset method for epidataCS-objects is adapted from ## base::subset.data.frame (authored by Peter ## Dalgaard and Brian Ripley, Copyright (C) 1995-2012 ## The R Core Team) with slight modifications only ## (we just replace 'x' by 'x$events@data' for evaluation of subset and select) subset.epidataCS <- function (x, subset, select, drop = TRUE, ...) { if (missing(subset)) r <- TRUE else { e <- substitute(subset) r <- eval(e, x$events@data, parent.frame()) # HERE IS A MOD if (!is.logical(r)) stop("'subset' must evaluate to logical") r <- r & !is.na(r) } if (missing(select)) vars <- TRUE else { nl <- as.list(seq_along(x$events@data)) # HERE IS A MOD names(nl) <- names(x$events@data) # HERE IS A MOD vars <- eval(substitute(select), nl, parent.frame()) } x[r, vars, drop = drop] # this calls the [.epidataCS-method from above } ## Subset epidataCS object using head and tail methods (which use [.epidataCS) head.epidataCS <- function (x, n = 6L, ...) head.matrix(x, n = n, ...) tail.epidataCS <- function (x, n = 6L, ...) { # ugly hack for tail.matrix because I don't want to register a # dim-method for class "epidataCS" nrow <- function (x) base::nrow(x$events) my.tail.matrix <- tail.matrix environment(my.tail.matrix) <- environment() ##<- such that the function uses my local nrow definition my.tail.matrix(x, n = n, addrownums=FALSE, ...) } ### extract marks of the events (actually also including time and tile) idxNonMarks <- function (x) { endemicCovars <- setdiff(names(x$stgrid), c( reservedColsNames_stgrid, obligColsNames_stgrid)) match(c(reservedColsNames_events, endemicCovars), names(x$events@data)) } marks.epidataCS <- function (x, coords = TRUE, ...) { if (coords) { # append coords (cp. as.data.frame.SpatialPointsDataFrame) data.frame(x$events@data[-idxNonMarks(x)], x$events@coords) } else { # return marks without coordinates x$events@data[-idxNonMarks(x)] } } ### permute event times and/or locations holding remaining columns fixed permute.epidataCS <- function (x, what = c("time", "space"), keep) { stopifnot(inherits(x, "epidataCS")) what <- match.arg(what) ## permutation index perm <- if (missing(keep)) { sample.int(nobs.epidataCS(x)) } else { # some events should not be relabeled keep <- eval(substitute(keep), envir = x$events@data, enclos = parent.frame()) stopifnot(is.logical(keep), !is.na(keep)) which2permute <- which(!keep) howmany2permute <- length(which2permute) if (howmany2permute < 2L) { message("Note: data unchanged ('keep' all)") return(x) } perm <- seq_len(nobs.epidataCS(x)) perm[which2permute] <- which2permute[sample.int(howmany2permute)] perm } ## rescue attributes of .influenceRegion (dropped when indexing) iRattr <- attributes(x$events@data$.influenceRegion) ## permute time points and/or locations PERMVARS <- if (what == "time") { c("time", "BLOCK", "start", ".obsInfLength") } else { x$events@coords <- x$events@coords[perm,,drop=FALSE] c("tile", ".bdist", ".influenceRegion") } x$events@data[PERMVARS] <- x$events@data[perm, PERMVARS] ## re-sort on time if necessary if (what == "time") { x$events <- x$events[order(x$events@data$time), ] } ## .sources and endemic variables need an update x$events@data$.sources <- determineSources.epidataCS(x) ENDVARS <- setdiff(names(x$stgrid), c(reservedColsNames_stgrid, obligColsNames_stgrid)) gridcellsOfEvents <- match( do.call("paste", c(x$events@data[c("BLOCK", "tile")], sep = "\r")), do.call("paste", c(x$stgrid[c("BLOCK", "tile")], sep = "\r")) ) x$events@data[ENDVARS] <- x$stgrid[gridcellsOfEvents, ENDVARS] ## restore attributes of .influenceRegion attributes(x$events@data$.influenceRegion) <- iRattr ## done x } ### printing methods print.epidataCS <- function (x, n = 6L, digits = getOption("digits"), ...) { print.epidataCS_header( timeRange = c(x$stgrid$start[1L], x$stgrid$stop[nrow(x$stgrid)]), bbox = bbox(x$W), nBlocks = length(unique(x$stgrid$BLOCK)), nTiles = nlevels(x$stgrid$tile), digits = digits ) cat("Types of events: ") str(levels(x$events$type), give.attr = FALSE, give.head = FALSE, width = getOption("width") - 17L) cat("Overall number of events:", nEvents <- nobs(x), "\n\n") visibleCols <- grep("^\\..+", names(x$events@data), invert = TRUE) if (nEvents == 0L) { # not handled by [,SpatialPointsDataFrame-method # and thus actually not supported by "epidataCS" ## display header only print(data.frame(coordinates = character(0L), x$events@data[visibleCols])) } else { ## 2014-03-24: since sp 1.0-15, print.SpatialPointsDataFrame() ## appropriately passes its "digits" argument to print.data.frame() print(head.matrix(x$events[visibleCols], n = n), digits = digits, ...) if (n < nEvents) cat("[....]\n") } invisible(x) } print.epidataCS_header <- function (timeRange, bbox, nBlocks, nTiles, digits = getOption("digits")) { bboxtxt <- paste( apply(bbox, 1, function (int) paste0( "[", paste(format(int, trim=TRUE, digits=digits), collapse=", "), "]" )), collapse = " x ") cat("Observation period:", paste(format(timeRange, trim=TRUE, digits=digits), collapse = " - "), "\n") cat("Observation window (bounding box):", bboxtxt, "\n") cat("Spatio-temporal grid (not shown):", nBlocks, ngettext(nBlocks, "time block,", "time blocks"), "x", nTiles, ngettext(nTiles, "tile", "tiles"), "\n") } ### SUMMARY # the epidemic is summarized by the following returned components: # timeRange, nEvents, eventTimes, eventCoords, nSources, as well as # - tile/typetable: number of events per tile/type # - counter: number of infective individuals as stepfun summary.epidataCS <- function (object, ...) { res <- list( timeRange = with(object$stgrid, c(start[1], stop[length(stop)])), bbox = bbox(object$W), nBlocks = length(unique(object$stgrid$BLOCK)), nEvents = nobs(object), nTypes = nlevels(object$events$type), eventTimes = object$events$time, eventCoords = coordinates(object$events), eventTypes = object$events$type, eventRanges = object$events@data[c("eps.t", "eps.s")], eventMarks = marks.epidataCS(object), tileTable = c(table(object$events$tile)), typeTable = c(table(object$events$type)), counter = as.stepfun.epidataCS(object), nSources = lengths(object$events$.sources, use.names = FALSE) ) class(res) <- "summary.epidataCS" res } print.summary.epidataCS <- function (x, ...) { print.epidataCS_header(timeRange = x$timeRange, bbox = x$bbox, nBlocks = x$nBlocks, nTiles = length(x$tileTable)) cat("Overall number of events:", x$nEvents, if (x$nTypes==1) "(single type)" else paste0("(",x$nTypes," types)"), "\n") cat("\nSummary of event marks and number of potential sources:\n") print(summary(cbind(x$eventMarks, "|.sources|"=x$nSources)), ...) invisible(x) } as.stepfun.epidataCS <- function (x, ...) { eventTimes <- x$events$time removalTimes <- eventTimes + x$events$eps.t tps <- sort(unique(c(eventTimes, removalTimes[is.finite(removalTimes)]))) nInfectious <- sapply(tps, function(t) sum(eventTimes <= t & removalTimes > t)) stepfun(tps, c(0,nInfectious), right = TRUE) # no ties, 'tps' is unique } ################################################### ### Distances from potential (eps.s, eps.t) sources ################################################### getSourceDists <- function (object, dimension = c("space", "time")) { dimension <- match.arg(dimension) ## extract required info from "epidataCS"-object distmat <- as.matrix(dist( if (dimension == "space") { coordinates(object$events) } else object$events$time )) .sources <- object$events$.sources ## number of sources nsources <- lengths(.sources, use.names = FALSE) hasSources <- nsources > 0 cnsources <- c(0, cumsum(nsources)) ## generate vector of distances of events to their potential sources sourcedists <- numeric(sum(nsources)) for (i in which(hasSources)) { .sourcesi <- .sources[[i]] .sourcedists <- distmat[i, .sourcesi] .idx <- cnsources[i] + seq_len(nsources[i]) sourcedists[.idx] <- .sourcedists names(sourcedists)[.idx] <- paste(i, .sourcesi, sep="<-") } ## Done sourcedists } surveillance/R/knox.R0000644000175100001440000001260412707631463014303 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Knox test for space-time interaction ### ### Copyright (C) 2015-2016 Sebastian Meyer ### $Revision: 1703 $ ### $Date: 2016-04-26 11:21:55 +0200 (Tue, 26. Apr 2016) $ ################################################################################ knox <- function (dt, ds, eps.t, eps.s, simulate.p.value = TRUE, B = 999, ...) { stopifnot(length(dt) == length(ds)) if (isSymmetric.matrix(dt) || isSymmetric.matrix(ds)) warning("symmetric input matrix detected; use 'lower.tri'?") ## logical vectors indicating which pairs are close in time and space closeInTime <- if (is.logical(dt)) { dt } else { stopifnot(is.numeric(dt), isScalar(eps.t)) dt <= eps.t } closeInSpace <- if (is.logical(ds)) { ds } else { stopifnot(is.numeric(ds), isScalar(eps.s)) ds <= eps.s } ## manually build the contingency table (table() with factor() is too slow) .lab <- c("close", "not close") knoxtab <- array( tabulate(4L - closeInTime - 2L*closeInSpace, nbins = 4L), dim = c(2L, 2L), dimnames = list( dt = if (is.logical(dt)) .lab else paste(c("<=", " >"), eps.t), ds = if (is.logical(ds)) .lab else paste(c("<=", " >"), eps.s) )) class(knoxtab) <- "table" ## expected number of close pairs in the absence of spatio-temporal interaction npairs <- sum(knoxtab) expected <- sum(knoxtab[1L,]) / npairs * sum(knoxtab[,1L]) ##<- this order of terms avoids integer overflow ## test statistic is the number of spatio-temporally close pairs METHOD <- "Knox test" STATISTIC <- knoxtab[1L] ## determine statistical significance pval_Poisson <- ppois(STATISTIC, expected, lower.tail = FALSE) PVAL <- if (simulate.p.value) { # Monte Carlo permutation approach stopifnot(isScalar(B)) B <- as.integer(B) METHOD <- paste(METHOD, "with simulated p-value") PARAMETER <- setNames(B, "B") permstats <- plapply(X = integer(B), FUN = function (...) sum(closeInSpace & closeInTime[sample.int(npairs)]), ...) structure(mean(c(STATISTIC, permstats, recursive = TRUE) >= STATISTIC), Poisson = pval_Poisson) } else { METHOD <- paste(METHOD, "with Poisson approximation") PARAMETER <- setNames(expected, "lambda") pval_Poisson } ## return test results structure( list(method = METHOD, data.name = paste("dt =", deparse(substitute(dt)), "and ds =", deparse(substitute(ds))), statistic = setNames(STATISTIC, "number of close pairs"), parameter = PARAMETER, p.value = PVAL, alternative = "greater", null.value = setNames(expected, "number"), permstats = if (simulate.p.value) { unlist(permstats, recursive = FALSE, use.names = FALSE) }, table = knoxtab), class = c("knox", "htest") ) } print.knox <- function (x, ...) { ## first print by the default method for class "htest" NextMethod("print") ## then also output the contingency table cat("contingency table:\n") print(x$table) cat("\n") invisible(x) } plot.knox <- function (x, ...) { if (is.null(permstats <- x[["permstats"]])) { stop("this plot-method is for a permutation-based Knox test") } defaultArgs <- list( permstats = permstats, xmarks = setNames(c(x[["null.value"]], x[["statistic"]]), c("expected", "observed")), xlab = "number of close pairs" ) do.call("permtestplot", modifyList(defaultArgs, list(...))) } xtable.knox <- function (x, caption = NULL, label = NULL, align = paste0("r|rr", if (!is.null(sumlabel)) "|r"), digits = 0, display = NULL, ..., sumlabel = "$\\sum$") { tab <- x$table if (!is.null(sumlabel)) { FUN <- setNames(list(sum), sumlabel) tab <- addmargins(tab, FUN = FUN, quiet = TRUE) } xtable(tab, caption = caption, label = label, align = align, digits = digits, display = display, ...) } toLatex.knox <- function (object, dnn = names(dimnames(object$table)), hline.after = NULL, sanitize.text.function = NULL, ...) { xtab <- xtable(object, ...) if (is.null(hline.after)) hline.after <- unique(c(-1,0,2,nrow(xtab))) if (is.null(sanitize.text.function)) sanitize.text.function <- function (x) gsub("<=", "$\\le$", gsub(">", "$>$", x, fixed = TRUE), fixed = TRUE) res <- toLatex.xtable(xtab, hline.after = hline.after, sanitize.text.function = sanitize.text.function, ...) if (is.null(dnn)) { res } else { stopifnot(length(dnn) == 2) headeridx <- grep("&", res, fixed = TRUE)[1L] res[headeridx] <- paste0(dnn[1L], res[headeridx]) res <- append(res, paste0(" & \\multicolumn{2}{|c|}{", dnn[2L], "} & \\\\"), after = headeridx - 1L) class(res) <- "Latex" res } } surveillance/R/intersectPolyCircle.R0000644000175100001440000000404612455232124017302 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Compute the intersection of a circular domain with a polygonal domain of ### various classes (currently: owin, gpc.poly, or SpatialPolygons) ### ### Copyright (C) 2009-2015 Sebastian Meyer ### $Revision: 1169 $ ### $Date: 2015-01-13 16:05:56 +0100 (Tue, 13. Jan 2015) $ ################################################################################ intersectPolyCircle.gpc.poly <- function (object, center, radius, npoly = 32, useGEOS = FALSE, ...) { if (useGEOS) { loadNamespace("rgeos") # coerce gpc.poly to SpatialPolygons res <- intersectPolyCircle.SpatialPolygons(as(object, "SpatialPolygons"), center, radius, npoly) as(res, "gpc.poly") # also defined in rgeos } else { gpclibCheck() circle <- discpoly(center, radius, npoly = npoly, class = "gpc.poly") gpclib::intersect(circle, object) # this order seems to be faster } } intersectPolyCircle.owin <- function (object, center, radius, npoly = 32, ...) { circle <- disc(radius = radius, centre = center, npoly = npoly) res <- intersect.owin(circle, object) # order does not affect runtime ## ensure "polygonal" type (because of rescue.rectangle in intersect.owin) as.polygonal(res) } intersectPolyCircle.SpatialPolygons <- function (object, center, radius, npoly = 32, ...) { circle <- discpoly(center, radius, npoly = npoly, class = "Polygon") circleSpP <- SpatialPolygons(list(Polygons(list(circle), "0"))) ## ensure that circleSpP has exactly the same proj4string as 'object' circleSpP@proj4string <- object@proj4string rgeos::gIntersection(circleSpP, object) } surveillance/R/algo_outbreakP.R0000644000175100001440000001316512556524634016270 0ustar hornikusers################################################### ### chunk number 1: ################################################### ###################################################################### # Workhorse computing the OutbreakP statistic. # Alarm statistic at end time n is returned. # # Author: # Michael Hoehle # # R port of the Java code by Marianne Frisen & Linus Schioler from # the CASE project. See https://smisvn.smi.se/case/ # # For a manual on how to use the method see also # http://www.hgu.gu.se/item.aspx?id=16857 # # Date: # 25 May 2010 # # Parameters: # x -- the series with the counts # # Returns: # value of the alarm statistic at the end of the series x. ###################################################################### calc.outbreakP.statistic <- function(x) { #Length of the monitored series n <- length(x) #Index problem when converting java arrays to R arrays x <- c(0,x) #Initialization (not all parts might be needed) leftl <- numeric(n+1); y <- numeric(n+1); yhat <- numeric(n+1); sumwy <- numeric(n+1); sumwys <- numeric(n+1); sumw <- numeric(n+1); w <- numeric(n+1); meanl <- numeric(n+1); xbar <- 0 meanl[1] = -Inf leftl[1] = 0 for (i in 1:n) { #Initialize yhat[i+1] <- x[i+1]; sumwy[i+1] <- x[i+1]; sumw[i+1] <- 1; meanl[i+1] <- x[i+1]; leftl[i+1] <- i; #Calculate mean (this is a sequential formula to calculate mean(x[1:i])) xbar=xbar+(x[i+1]-xbar)/i #Create plateaus while (meanl[i+1] <= meanl[ (leftl[i+1] - 1) + 1]) { #merge sets sumwy[i+1] = sumwy[i+1] + sumwy[(leftl[i+1] - 1)+1]; sumw[i+1] = sumw[i+1] + sumw[(leftl[i+1] - 1)+1]; meanl[i+1] = sumwy[i+1] / sumw[i+1]; leftl[i+1] = leftl[(leftl[i+1] - 1)+1]; } #calculate yhat for (j in leftl[i+1]:i) { yhat[j+1] = meanl[i+1]; } } #Compute the statistic in case of a Poisson distribution alarm.stat <- 1 for (j in seq_len(n)) { #Ensure 0/0 = 1 so we don't get NaNs div <- ifelse(yhat[j+1]==0 & xbar==0, 1, yhat[j+1]/xbar) alarm.stat <- alarm.stat * (div)^x[j+1] } return(alarm.stat) ## The above might cause NaN's in case of large numbers. ## logalarm <- 0 ## for (j in 1:n) { ## #Eqn (5) in Frisen et al paper in log form. However: it is undefined ## #if \hat{\mu}^D(t) == 0 (it is a division by zero). ## #We fix 0/0 = 1 ## if (xbar != 0) { ## if (yhat[j+1] != 0) { #if \hat{\mu}^{C1} == 0 then ## logalarm = logalarm + x[j+1] * (log(yhat[j+1]) - log(xbar)) ## } ## } else { ## if (yhat[j+1] != 0) { ## stop("Division by zero in Eqn (5) of Frisen paper!") ## } ## } ## } ## #Done, return the value ## return(exp(logalarm)) } ###################################################################### # The detection function in S3 style ###################################################################### algo.outbreakP <- function(disProgObj, control = list(range = range, k=100, ret=c("cases","value"),maxUpperboundCases=1e5)) { #Set threshold to some fixed value, i.e. 100 if(is.null(control[["k",exact=TRUE]])) control$k <- 100 #Set largest observed value to try as upperbound when numerically searching #for NNBA in case ret = "cases" if(is.null(control[["maxUpperboundCases",exact=TRUE]])) control$maxUpperboundCases <- 1e5 #Which value to return in upperbound? control$ret <- match.arg(control$ret, c("value","cases")) #Initialize the necessary vectors alarm <- matrix(data = 0, nrow = length(control$range), ncol = 1) upperbound <- matrix(data = 0, nrow = length(control$range), ncol = 1) observed <- disProgObj$observed #Store results count <- 1 for(i in control$range) { statistic <- calc.outbreakP.statistic( observed[seq_len(i)] ) # store the results in the right order alarm[count] <- statistic > control$k #Find NNBA or just return value of the test statistic (faster) if (control$ret == "cases") { #If length is 1 no alarm can be given unless k<1 if (i<=1) { upperbound[count] <- ifelse(control$k>=1, NA, 0) } else { if (is.nan(statistic)) { #if no decent statistic was computed. upperbound[count] <- NA } else { #Go up or down delta <- ifelse(alarm[count], -1, 1) #Initialize observedi <- observed[i] foundNNBA <- FALSE #Loop with modified last observation until alarm is caused (dx=1) #or until NO alarm is caused anymore (dx=-1) while ( ((delta == -1 & observedi > 0) | (delta == 1 & observedi < control$maxUpperboundCases)) & (!foundNNBA)) { observedi <- observedi + delta newObserved <- c(observed[seq_len(i-1)],observedi) statistic <- calc.outbreakP.statistic( newObserved ) if (is.nan(statistic)) { #statistic produced a numeric overflow. observedi <- control$maxUpperboundCases } else { foundNNBA <- (statistic > control$k) == ifelse(alarm[count],FALSE,TRUE) } } upperbound[count] <- ifelse( foundNNBA, observedi + ifelse(alarm[count],1,0), NA) } } } else { upperbound[count] <- statistic } #Advance time index count <- count + 1 } #Add name and data name to control object. control$name <- paste("outbreakP(",control$k,")",sep="") control$data <- paste(deparse(substitute(disProgObj))) # return alarm and upperbound vectors result <- list(alarm = alarm, upperbound = upperbound, disProgObj=disProgObj, control=control) class(result) = "survRes" # for surveillance system result return(result) } surveillance/R/epidata_animate.R0000644000175100001440000001361712424415000016415 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Two types of spatio-temporal animations of "epidata" are supported: ### - sequential plots regardless of time between events (i.e. only ordering) ### - chronological animation with timer ### ### Copyright (C) 2008-2009, 2012, 2014 Sebastian Meyer ### $Revision: 1096 $ ### $Date: 2014-10-30 11:59:12 +0100 (Thu, 30. Oct 2014) $ ################################################################################ animate.epidata <- function (object, ...) { s <- summary(object) animate.summary.epidata(s, ...) } animate.summary.epidata <- function (object, main = "An animation of the epidemic", pch = 19, col = c(3, 2, gray(0.6)), time.spacing = NULL, sleep = quote(5/.nTimes), legend.opts = list(), timer.opts = list(), end = NULL, generate.snapshots = NULL, ...) { counters <- object[["counters"]] # remove pseudo-R-events, which come before S-event directSevents <- which(duplicated(counters[["time"]])) counters_noPseudoR <- if (length(directSevents)) { counters[-(directSevents-1), ] } else { counters } # remove initial row and keep essential columns eventTable <- counters_noPseudoR[-1, c("time", "type", "id")] eventTable[["type"]] <- unclass(eventTable[["type"]]) # get integer codes .nTimes <- nrow(eventTable) # extract initial individual information (id, at-risk, coordinates) coords <- object[["coordinates"]] d <- ncol(coords) if (d > 2L) { stop("spatial plotting in more than two dimensions is not implemented") } else if (d == 1L) { coords <- cbind(coords, 0) } else if (d == 0L) { stop ("'object' does not contain any defined coordinates") } # plot the initial state pch <- rep(pch, length.out = 3) col <- rep(col, length.out = 3) isInitiallyInfected <- rownames(coords) %in% object[["initiallyInfected"]] plot(coords, pch = ifelse(isInitiallyInfected, pch[2L], pch[1L]), col = ifelse(isInitiallyInfected, col[2L], col[1L]), main = main, ...) if (is.list(legend.opts)) { if (is.null(legend.opts[["x",exact=TRUE]])) legend.opts$x <- "topright" if (is.null(legend.opts$legend)) legend.opts$legend <- c("susceptible", "infectious", "removed") if (is.null(legend.opts$col)) legend.opts$col <- col if (is.null(legend.opts$pch)) legend.opts$pch <- pch do.call(legend, legend.opts) } # animate the epidemic by iteratively re-drawing points at the coordinates sleep <- eval(sleep) if (is.null(time.spacing)) { # plot events sequentially for(i in seq_len(.nTimes)) { if (dev.interactive()) Sys.sleep(sleep) tmp <- eventTable[i,] # c(time, type, id) points(coords[as.character(tmp[["id"]]),,drop=FALSE], pch = pch[tmp[["type"]]], col = col[tmp[["type"]]]) } } else { # plot events chronologically if (is.null(end)) end <- eventTable[.nTimes, "time"] + time.spacing timeGrid <- seq(from = time.spacing, to = end, by = time.spacing) timeWidth <- nchar(timeGrid[length(timeGrid)]) timeDigits <- nchar(strsplit(as.character(time.spacing), ".", fixed = TRUE)[[1L]][2L]) form <- paste("%", timeWidth, ".", timeDigits, "f", sep = "") if (is.list(timer.opts)) { if (is.null(timer.opts[["x",exact=TRUE]])) timer.opts$x <- "bottomright" if (is.null(timer.opts$title)) timer.opts$title <- "time" if (is.null(timer.opts$box.lty)) timer.opts$box.lty <- 0 if (is.null(timer.opts$adj)) timer.opts$adj <- c(0.5,0.5) if (is.null(timer.opts$inset)) timer.opts$inset <- 0.01 if (is.null(timer.opts$bg)) timer.opts$bg <- "white" do.call(legend, c(list(legend = sprintf(form, 0)), timer.opts)) } oldtp <- tp <- attr(object, "timeRange")[1L] i <- 1L # to be used in the file argument in dev.print if (is.vector(generate.snapshots, mode="character") && length(generate.snapshots) == 1L && requireNamespace("animation")) { img.name <- generate.snapshots ani.dev <- animation::ani.options("ani.dev") if (is.character(ani.dev)) ani.dev <- get(ani.dev) imgdir <- animation::ani.options("imgdir") imgtype <- animation::ani.options("ani.type") generate.snapshots <- list( device = ani.dev, file = quote(file.path(imgdir, paste0(img.name,i,".",imgtype))), width = animation::ani.options("ani.width"), height = animation::ani.options("ani.height") ) } if (is.list(generate.snapshots)) { do.call(dev.print, generate.snapshots) } for(i in 1L+seq_along(timeGrid)) { tp <- timeGrid[i-1L] if (dev.interactive()) Sys.sleep(sleep) timeIndex <- which(eventTable[["time"]] > oldtp & eventTable[["time"]] <= tp) if (length(timeIndex) > 0L) { tmp <- eventTable[timeIndex,] # c(time, type, id) points(coords[as.character(tmp[["id"]]),,drop=FALSE], pch = pch[tmp[["type"]]], col = col[tmp[["type"]]]) } if (is.list(timer.opts)) { do.call(legend, c(list(legend = sprintf(form,tp)), timer.opts)) } oldtp <- tp if (is.list(generate.snapshots)) { do.call(dev.print, generate.snapshots) } } } invisible(NULL) } surveillance/R/misc_dataProcessing.R0000644000175100001440000001111012113474604017265 0ustar hornikusers################################################### ### chunk number 1: ################################################### # 'readData' to reads the data of a specified disease of several years # and generates a state chain using the bulletin knowledge # # Parameter: # abb : abbreviation of the disease # week53to52: Boolean indicating whether to convert RKI 53 Weeks System to 52 weeks a year readData <- function(abb,week53to52=TRUE,sysPath=TRUE){ #Read depending on which path is requested if (sysPath) { #Prepend the systempath/data to the filename #hoehle 2012-07-24 - this does not work when package is not #installed. Use extdata as recommended in the file package structure. file <- file.path(path.package('surveillance'),'extdata',paste(abb,".txt",sep="")) } else { file <- file.path(paste(abb,".txt",sep="")) } # read the data from four years and write it to a table #file <- paste( dataPath, abb , ".txt" , sep="" ) fileTable <- read.table( file=file, header=TRUE ) observed <- fileTable$observed state <- fileTable$state result = list(observed=observed, state=state) class(result) = "disProg" # for disease progress #Convert to 52 week system... if (week53to52) { result <- correct53to52(result) } result$freq <- 52 result$start <- c(2001,1) return(result) } ################################################### ### chunk number 2: ################################################### toFileDisProg <- function(disProgObj, toFile){ length <- length(disProgObj$observed) writeMatrix <- matrix(0, length, 3) dimnames(writeMatrix) <- list(c(), c("week", "observed", "state")) writeMatrix[,"week"] <- 1:length writeMatrix[,"observed"] <- disProgObj$observed writeMatrix[,"state"] <- disProgObj$state write.table(writeMatrix, toFile, row.names = FALSE, sep = "\t") } ################################################### ### chunk number 3: ################################################### # 'correct53to52' sums up and cuts a value from a splited last and first week of a year # # Parameter: # disProgObj - object of class disProgObj (including the observed and the state chain) # firstweek: the number in observed of the first week in a year, default = 1 # ouput: # disProgObj: the new disProgObj correct53to52 <- function(disProgObj, firstweek = 1){ if(firstweek > length(disProgObj$observed)){ stop("firstweek doesn't exist") } observed <- disProgObj$observed state <- disProgObj$state if(length(state) != length(observed)){ stop("state and observed don't have the same length") } # do not cut, if observed is too short length = length(observed[firstweek:length(observed)]) if(length > 53){ lastyear <- floor((length-1)/53) # sum case numbers of double weeks up for(i in 1:lastyear){ # last week of year i (-i+1 because the array now is shorter) last <- firstweek + i * 52 # first week in year i+1 firstnew <- last + 1 observed[firstnew] <- observed[last] + observed[firstnew] # delete double weeks observed <- observed[-c(last)] # with state state[firstnew] <- state[last] + state[firstnew] # delete double weeks state <- state[-c(last)] } } # correct also the first week, if it doesn't is the beginning if(firstweek > 1){ observed[firstweek] <- observed[firstweek] + observed[firstweek-1] observed <- observed[-c(firstweek-1)] state[firstweek] <- state[firstweek] + state[firstweek-1] state <- state[-c(firstweek-1)] } # correct all 2 to 1 state[state==2] <- 1 disProgObj$observed <- observed disProgObj$state <- state return(disProgObj) } ################################################### ### chunk number 4: ################################################### enlargeData <- function(disProgObj, range = 1:156, times = 1){ # enlarge observed disProgObj$observed <- c(rep(disProgObj$observed[range], times), disProgObj$observed) # enlarge state disProgObj$state <- c(rep(disProgObj$state[range], times), disProgObj$state) return(disProgObj) } surveillance/R/hhh4_oneStepAhead.R0000644000175100001440000002530213231640220016556 0ustar hornikusers################################################################################ ### Compute one-step-ahead predictions at a series of time points ### ### Copyright (C) 2011-2012 Michaela Paul, 2012-2018 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ################################################################################ oneStepAhead <- function(result, # hhh4-object (i.e. a hhh4 model fit) tp, # scalar: one-step-ahead predictions for time # points (tp+1):nrow(stsObj), or tp=c(from, to) type = c("rolling", "first", "final"), which.start = c("current", "final"), #if type="rolling" keep.estimates = FALSE, verbose = TRUE, # verbose-1 is used as verbose setting # for sequentially refitted hhh4 models cores = 1) # if which.start="final", the predictions # can be computed in parallel { stopifnot(inherits(result, "hhh4")) type <- match.arg(type) if (type == "rolling" && !is.list(which.start)) { ## new in surveillance 1.10-0: if 'which.start' is a list, it is ## directly used as the 'start' argument for hhh4() in all time steps which.start <- match.arg(which.start) if (cores > 1 && which.start == "current") stop("no parallelization for 'type=\"rolling\"' ", "if 'which.start=\"current\"'") } ## get model terms model <- result[["terms"]] if (is.null(model)) model <- result$terms <- terms(result) nTime <- model$nTime # = nrow(result$stsObj) nUnits <- model$nUnits # = ncol(result$stsObj) dimPsi <- model$nOverdisp withPsi <- dimPsi > 0L psiIdx <- model$nFE + model$nd + seq_len(dimPsi) ## check that tp is within the time period of the data stopifnot(length(tp) %in% 1:2, tp >= 0) tpRange <- c(model$subset[1L], nTime-1L) # supported range if (any(tp > tpRange[2L]) || (type != "final" && any(tp < tpRange[1L]))) { stop("the time range defined by 'tp' must be a subset of ", tpRange[1L], ":", tpRange[2L]) } if (length(tp) == 1) { tp <- c(tp, max(model$subset)-1L) # historical default if (tp[1L] > tp[2L]) # probably unintended stop("'tp' larger than the default upper limit (", tp[2L], ")") } tps <- tp[1L]:tp[2L] # this function actually works if tp[1] > tp[2] ntps <- length(tps) observed <- model$response[tps+1,,drop=FALSE] rownames(observed) <- tps+1 ## adjust verbosity for model refitting verbose <- as.integer(verbose) result$control$verbose <- max(0, verbose - (ntps>1)) if (type != "rolling" && verbose > 1L) verbose <- 1L do_pb <- verbose == 1L && interactive() ## initial fit fit <- if (type == "first") { if (do_pb) cat("\nRefitting model at first time point t =", tps[1L], "...\n") update.hhh4(result, subset.upper = tps[1L], use.estimates = TRUE, keep.terms = TRUE) # need "model" -> $terms } else result if (!fit$convergence) stop("initial fit did not converge") ## result templates (named and filled with NA's) pred <- matrix(NA_real_, nrow=ntps, ncol=nUnits, dimnames=list(tps+1, colnames(observed))) if (withPsi) psi <- matrix(NA_real_, nrow=ntps, ncol=dimPsi, dimnames=list(tps, names(model$initialTheta)[psiIdx])) if (keep.estimates) { coefficients <- matrix(NA_real_, nrow=ntps, ncol=length(model$initialTheta), dimnames=list(tps, names(model$initialTheta))) Sigma.orig <- matrix(NA_real_, nrow=ntps, ncol=model$nSigma, dimnames=list(tps, names(result$Sigma.orig))) logliks <- matrix(NA_real_, nrow=ntps, ncol=2L, dimnames=list(tps, c("loglikelihood", "margll"))) } ## extract predictions and stuff for specific tp from fit getPreds <- function (fit, tp) { coefs <- unname(fit$coefficients) c(list(pred = as.vector( meanHHH(coefs, fit$terms, subset=tp+1L, total.only=TRUE))), if (withPsi) list(psi = coefs[psiIdx]), if (keep.estimates) list( coefficients=coefs, Sigma.orig=unname(fit$Sigma.orig), logliks=c(fit$loglikelihood, fit$margll)) ) } ## compute the predictions and save ## pred, psi, coefficients, Sigma.orig, and logliks if (cores > 1L) { ## return value template (unnamed NA vectors) resTemplate <- lapply(getPreds(fit, tps[1L]), "is.na<-", TRUE) ## run parallel res <- parallel::mclapply(tps, function (tp) { if (verbose) cat("One-step-ahead prediction @ t =", tp, "...\n") if (type == "rolling") { # update fit fit <- update.hhh4(result, subset.upper=tp, use.estimates=TRUE, start=if (is.list(which.start)) which.start, verbose=FALSE, # chaotic in parallel keep.terms=TRUE) # need "model" -> $terms if (!fit$convergence) { cat("WARNING: No convergence @ t =", tp, "!\n") return(resTemplate) } } getPreds(fit, tp) }, mc.preschedule=TRUE, mc.cores=cores) ## gather results .extractFromList <- function (what) t(vapply(res, "[[", resTemplate[[what]], what, USE.NAMES=FALSE)) pred[] <- .extractFromList("pred") if (withPsi) psi[] <- .extractFromList("psi") if (keep.estimates) { coefficients[] <- .extractFromList("coefficients") Sigma.orig[] <- .extractFromList("Sigma.orig") logliks[] <- .extractFromList("logliks") } } else { ## sequential one-step ahead predictions if (do_pb) pb <- txtProgressBar(min=0, max=ntps, initial=0, style=3) for(i in seq_along(tps)) { if (verbose > 1L) { cat("\nOne-step-ahead prediction @ t =", tps[i], "...\n") } else if (do_pb) setTxtProgressBar(pb, i) if (type == "rolling") { # update fit fit.old <- fit # backup start <- if (is.list(which.start)) { which.start } else if (which.start == "current") hhh4coef2start(fit) ## else NULL fit <- update.hhh4(result, subset.upper=tps[i], start=start, # takes precedence use.estimates=TRUE, keep.terms=TRUE) # need "model" -> $terms if (!fit$convergence) { if (do_pb) cat("\n") cat("WARNING: No convergence @ t =", tps[i], "!\n") ## FIXME: do a grid search ? fit <- fit.old next } } res <- getPreds(fit, tps[i]) ## gather results pred[i,] <- res$pred if (withPsi) psi[i,] <- res$psi if (keep.estimates) { coefficients[i,] <- res$coefficients Sigma.orig[i,] <- res$Sigma.orig logliks[i,] <- res$logliks } } if (do_pb) close(pb) } ## with shared overdispersion parameters we need to expand psi to ncol(pred) if (dimPsi > 1L && dimPsi != nUnits) { psi <- psi[,model$indexPsi,drop=FALSE] } ## done res <- c(list(pred = pred, observed = observed, psi = if (withPsi) psi else NULL, allConverged = all(!is.na(pred))), if (keep.estimates) list(coefficients = coefficients, Sigma.orig = Sigma.orig, logliks = logliks) ) class(res) <- "oneStepAhead" res } ## extract estimated overdispersion in dnbinom() parametrization, as full matrix psi2size.oneStepAhead <- function (object) { if (is.null(object$psi)) # Poisson model return(NULL) size <- exp(object$psi) # a matrix with 1 or nUnit columns ## ensure that we always have a full 'size' matrix with nUnit columns dimpred <- dim(object$pred) if (ncol(size) != dimpred[2L]) { # => ncol(size)=1, unit-independent psi size <- rep.int(size, dimpred[2L]) dim(size) <- dimpred } dimnames(size) <- list(rownames(object$psi), colnames(object$pred)) size } ## quantiles of the one-step-ahead forecasts quantile.oneStepAhead <- function (x, probs = c(2.5, 10, 50, 90, 97.5)/100, ...) { stopifnot(is.vector(probs, mode = "numeric"), probs >= 0, probs <= 1, (np <- length(probs)) > 0) names(probs) <- paste(format(100*probs, trim=TRUE, scientific=FALSE, digits=3), "%") size <- psi2size.oneStepAhead(x) qs <- if (is.null(size)) { vapply(X = probs, FUN = qpois, FUN.VALUE = x$pred, lambda = x$pred) } else { vapply(X = probs, FUN = qnbinom, FUN.VALUE = x$pred, mu = x$pred, size = size) } ## one tp, one unit -> qs is a vector of length np ## otherwise, 'qs' has dimensions ntps x nUnit x np ## if nUnit==1, we return an ntps x np matrix, otherwise an array if (is.vector(qs)) { qs <- t(qs) rownames(qs) <- rownames(x$pred) qs } else if (dim(qs)[2L] == 1L) { matrix(qs, dim(qs)[1L], dim(qs)[3L], dimnames = dimnames(qs)[c(1L,3L)]) } else qs } ## confidence intervals for one-step-ahead predictions confint.oneStepAhead <- function (object, parm, level = 0.95, ...) { quantile.oneStepAhead(object, (1+c(-1,1)*level)/2, ...) } ## simple plot of one-step-ahead forecasts plot.oneStepAhead <- function (x, unit = 1, probs = 1:99/100, start = NULL, means.args = NULL, ...) { stopifnot(length(unit) == 1, length(probs) > 1) ## select unit obs <- x$observed[,unit] ms <- x$pred[,unit] qs <- quantile.oneStepAhead(x, probs = probs) if (!is.matrix(qs)) # multi-unit predictions qs <- matrix(qs[,unit,], dim(qs)[1L], dim(qs)[3L], dimnames = dimnames(qs)[c(1L,3L)]) ## produce fanplot if (is.null(start)) start <- as.integer(rownames(qs)[1L]) fanplot(quantiles = qs, probs = probs, means = ms, observed = obs, start = start, means.args = means.args, ...) } surveillance/R/LRCUSUM.runlength.R0000644000175100001440000001260512712141044016447 0ustar hornikusers###################################################################### # Compute log likelihood ratio for a univariate or multivariate # categorical distribution # # Params: # outcomes - a data frame with all possible configuration for the (c-1) # variables not being the reference category. # mu - expectation under which LLR under pi is computed # mu0 - null model. A vector of length (k-1) # mu1 - alternative model. A vector of length (k-1) ###################################################################### LLR.fun <- function(outcomes, mu, mu0, mu1, dfun, ...) { #Compute likelihood ratios. Both univariate and the multivariate #values are computed llr.res <- t(apply(outcomes,1, function(y) { llr <- dfun(y, mu=mu1, log=TRUE,...) - dfun(y, mu=mu0, log=TRUE, ...) p <- dfun(y, mu=mu, ...) return(c(llr=llr,p=p)) })) res <- cbind(outcomes,llr.res) colnames(res) <- c(paste("y",1:ncol(outcomes),sep=""),"llr","p") return(res) } ###################################################################### # Function to compute all possible outcomes for the categorical time # series. This is needed for the LLR computations # # Parameters: # km1 - Dimension of the problem (k-1) # n - number of items arranged (i.e. number of experiments). Integer # # Returns: # matrix of size (number of configs) \times km1 # containing all possible states ###################################################################### outcomeFunStandard <- function(k,n) { #Compute all possible likelihood ratios and their probability under mu #Note: Currently all states are investigated. This might be way too #much work as defacto many states have an occurence prob near 0!! args <- list() ; for (j in seq_len(k)) args[[j]] <- 0:n outcomes <- as.matrix(do.call("expand.grid", args)) #Take only valid outcomes (might reduce drastically the number of cells) if (!is.null(n)) { outcomes <- outcomes[apply(outcomes,1,sum) <= n,,drop=FALSE] } return(outcomes) } ###################################################################### # Compute run length for CUSUM based on Markov representation of the # Likelihood ratio based CUSUM # # Parameters: # mu - (k-1 \times T) matrix with true proportions, i.e. equal to mu0 or mu1 if one wants to compute e.g. ARL_0 or ARL_1 # mu0 - (k-1 \times T) matrix with in-control proportions # mu1 - (k-1 \times T) matrix with out-of-control proportion # n - vector of length T containing the total number of experiments for each time point # h- The threshold h which is used for the CUSUM # g - The number of levels to cut the state space into, i.e. M on foil 12 ###################################################################### LRCUSUM.runlength <- function(mu,mu0,mu1,h,dfun, n, g=5,outcomeFun=NULL,...) { #Semantic checks if ( ((ncol(mu) != ncol(mu0)) | (ncol(mu0) != ncol(mu1))) | ((nrow(mu) != nrow(mu0)) | (nrow(mu0) != nrow(mu1)))) { stop("Error: dimensions of mu, mu0 and mu1 have to match") } if (missing(h)) { stop("No threshold specified!") } #If no specific way for computing the outcomes is given #use the standard way. if (is.null(outcomeFun)) { outcomeFun <- outcomeFunStandard } #Discretize number of possible states of the CUSUM S <- c(-Inf,seq(0,h,length=g)) names <- c(levels(cut(1,S,right=TRUE)),">=h") #Time variable t <- 1:ncol(mu) #Dimension of the problem (k-1) km1 <- nrow(mu) #Create transition matrix for CUSUM control chart P <- array(0, dim=c(length(t),g+1,g+1),dimnames=list(t,names,names)) #Once in the absorbing state stay there! P[,g+1,g+1] <- 1 #Loop over all P[t,,] and compute probabilities for (i in seq_len(length(t))) { cat("Looking at t=",i," out of ",length(t),"\n") #Determine all possible outcomes outcomes <- outcomeFun(km1,n[i]) #Compute all possible likelihood ratios and their probability under mu llr <- LLR.fun(outcomes,mu=mu[,i],mu0=mu0[,i],mu1=mu1[,i],dfun=dfun,size=n[i],...) #Exact CDF of the LLR for this time F <- stepfun(sort(llr[,"llr"]),c(0,cumsum(llr[order(llr[,"llr"]),"p"]))) #Compute probability going from c <= S_{t-1} < d to a <= S_{t} < b for (j in 1:g) { #from index for (k in 1:g) { #to index a <- S[k] ; b <- S[k+1] ; c <- S[j] ; d <- S[j+1] ; m <- (c+d)/2 #From zero to new state if (j == 1) { P[i,j,k] <- F(b) - F(a) } else { #Rieman integral assuming as in Brook & Evans (1972) that S at midpoint #P[i,j,k] <- F(b-m) - F(a-m) #Slightly better approximation by Hawkins (1992), which uses Simpson's rule P[i,j,k] <- (F(b-c) + 4*F(b-m) + F(b-d) - F(a-c) - 4*F(a-m) - F(a-d))/6 } } } #Whatever is missing goes to >h category (take care of rounding errors) P[i,-(g+1),(g+1)] <- pmax(0,1-apply(P[i,-(g+1),-(g+1)],1,sum)) } #Use matrix to compute RL distribution Ppower <- P[1,,] alarmUntilTime <- numeric(ncol(mu0)) alarmUntilTime[1] <- Ppower[1,ncol(P)] for (time in t[-1]) { #from 2 to length of t Ppower <- Ppower %*% P[time,,] alarmUntilTime[time] <- Ppower[1,ncol(P)] } pRL <- c(alarmUntilTime[1],diff(alarmUntilTime)) mom <- NA #If the Markov chain is homogenous then compute ARL by inverting if (length(t) == 1) { R <- P[,1:g,1:g] I <- diag(nrow=g) mom <- rowSums(solve(I-R)) } return(list(P=P,pmf=pRL,cdf=alarmUntilTime,arl=mom[1])) } surveillance/R/pairedbinCUSUM.R0000644000175100001440000002206512712141044016063 0ustar hornikusers###################################################################### # Compute ARL for paired binary CUSUM charts as introducted in Steiner, # Cook and Farefwell, 1999, Monitoring paired binary surgical outcomes, # Stats in Med, 18, 69-86. # # This code is an R implementation of Matlab code provided by # Stefan H. Steiner, University of Waterloo, Canada. # # Params: # p - vector giving the probability of the four different possibilities # c((death=0,near-miss=0),(death=1,near-miss=0), # (death=0,near-miss=1),(death=1,near-miss=1)) # w1, w2 - w1 and w2 are the sample weights vectors for the two CUSUMs. # (see (2)). We have w1 is equal to deaths # (according to paper it being 2 would be more realistic) # h1, h2 - decision barriers for the individual cusums (see (3)) # h11,h22 - joint decision barriers (see (3)) # sparse - use Matrix package ###################################################################### pairedbinCUSUM.runlength <- function(p,w1,w2,h1,h2,h11,h22, sparse=FALSE) { #Size of the sparse matrix -- assumption h1>h11 and h2>h22 mw <- h1*h22+(h2-h22)*h11; cat("g =",mw+3,"\n") #build transition matrix; look at current state as an ordered pair (x1,x2) #the size of the matrix is determined by h1, h2, and h11 and h22 #Look at all 3 possible absorbing conditions transm <- matrix(0, mw+3, mw+3) #the last row/column is the absorbing state, I_{3\times 3} block #Is this ever used?? transm[mw+1,mw+1] <- 1 transm[mw+2,mw+2] <- 1 transm[mw+3,mw+3] <- 1 #go over each row and fill in the transition probabilities for (i in 1:mw) { # cat(i," out of ", mw,"\n") #find the corresponding state if (i>h1*h22) { temp <- floor((i-h1*h22-1)/h11) x1 <- i-h1*h22-1-temp*h11 x2 <- temp+h22 } else { x2 <- floor((i-1)/h1); x1 <- i-x2*h1-1; } #go over the four different weight combinations for (j in 1:2) { for (k in 1:2) { x1n <- x1+w1[j+2*(k-1)] #death chart x2n <- x2+w2[k] #look at all possible combinations of weights #we cant go below zero if (x1n<0) { x1n <- 0 } if (x2n<0) { x2n <- 0 } newcond=0; #try to figure out what condition index the new CUSUM values correspond to if (x1n>=h1) { newcond <- mw+1; #absorbing state on x1 } else { if (x2n>=h2) { newcond <- mw+2 #absorbing state on x2 } else { if ((x1n>=h11)&(x2n>=h22)) { #only register this if other two conditions are not satisfied newcond <- mw+3 } } } if (newcond==0) { #transition is not to an absorbing state #translate legal ordered pair to state number if (x2n h1, S[t+1,2] > h2) if ((S[t+1,1] > h11) & (S[t+1,2] > h22)) { alarm <- c(TRUE,TRUE) } # alarm <- (S[t+1,1] > h1) | (S[t+1,2] > h2) | # ((S[t+1,1] > h11) & (S[t+1,2] > h22)) #If one or both of the CUSUMs produced an alarm then stop if ((sum(alarm)>0) | (t==nrow(x))) { stopped <- TRUE} } return(list(N=t,val=S[-1,],alarm=alarm)) } ###################################################################### # STS wrapper for the Paired binary CUSUM method. This follows in # style the categoricalCUSUM method. ###################################################################### pairedbinCUSUM <- function(stsObj, control = list(range=NULL,theta0,theta1,h1,h2,h11,h22)) { # Set the default values if not yet set if(is.null(control[["range",exact=TRUE]])) { control$range <- 1:nrow(observed(stsObj)) } if(is.null(control[["theta0",exact=TRUE]])) { stop("Error: No specification of in-control parameters theta0!") } if(is.null(control[["theta1",exact=TRUE]])) { stop("Error: No specification of out-of-control parameters theta1!") } if(is.null(control[["h1",exact=TRUE]])) { stop("Error: No specification of primary threshold h1 for first series.") } if(is.null(control[["h2",exact=TRUE]])) { stop("Error: No specification of primary threshold h2 for 2nd series.") } if(is.null(control[["h11",exact=TRUE]])) { stop("Error: No specification of secondary limit h11 for 1st series.") } if(is.null(control[["h22",exact=TRUE]])) { stop("Error: No specification of secondary limit h11 for 2nd series.") } #Extract the important parts from the arguments range <- control$range y <- stsObj@observed[range,,drop=FALSE] theta0 <- control[["theta0",exact=TRUE]] theta1 <- control[["theta1",exact=TRUE]] h1 <- control[["h1",exact=TRUE]] h2 <- control[["h2",exact=TRUE]] h11 <- control[["h11",exact=TRUE]] h22 <- control[["h22",exact=TRUE]] #Semantic checks. if (ncol(y) != 2) { stop("Error: The number of columns in the sts object needs to be two.") } #Reserve space for the results. Contrary to the categorical CUSUM #method, each ROW represents a series. alarm <- matrix(data = 0, nrow = length(range), ncol = ncol(y)) upperbound <- matrix(data = 0, nrow = length(range), ncol = ncol(y)) #Setup counters for the progress doneidx <- 0 N <- 1 noofalarms <- 0 noOfTimePoints <- length(range) ####################################################### #Loop as long as we are not through the entire sequence ####################################################### while (doneidx < noOfTimePoints) { #Run paired binary CUSUM until the next alarm res <- pairedbinCUSUM.LLRcompute(x=y, theta0=theta0, theta1=theta1, h1=h1, h2=h2, h11=h11, h22=h22) #In case an alarm found log this and reset the chart at res$N+1 if (res$N < nrow(y)) { #Put appropriate value in upperbound upperbound[1:res$N + doneidx,] <- res$val[1:res$N,] alarm[res$N + doneidx,] <- res$alarm #Chop & get ready for next round y <- y[-(1:res$N),,drop=FALSE] # theta0 <- pi0[,-(1:res$N),drop=FALSE] # theta1 <- pi1[,-(1:res$N),drop=FALSE] # n <- n[-(1:res$N)] #Add to the number of alarms noofalarms <- noofalarms + 1 } doneidx <- doneidx + res$N } #Add upperbound-statistic of last segment, where no alarm is reached upperbound[(doneidx-res$N+1):nrow(upperbound),] <- res$val # Add name and data name to control object control$name <- "pairedbinCUSUM" control$data <- NULL #not supported anymore #New direct calculations on the sts object stsObj@observed <- stsObj@observed[control$range,,drop=FALSE] stsObj@state <- stsObj@state[control$range,,drop=FALSE] stsObj@populationFrac <- stsObj@populationFrac[control$range,,drop=FALSE] stsObj@alarm <- alarm stsObj@upperbound <- upperbound #Fix the corresponding start entry start <- stsObj@start new.sampleNo <- start[2] + min(control$range) - 1 start.year <- start[1] + (new.sampleNo - 1) %/% stsObj@freq start.sampleNo <- (new.sampleNo - 1) %% stsObj@freq + 1 stsObj@start <- c(start.year,start.sampleNo) #Done return(stsObj) } surveillance/R/graphs.R0000644000175100001440000000662713174076737014626 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Functions concerning graphs: neighbourhood order, adjacency matrix ### These are wrappers around functionality from package "spdep" by Roger Bivand ### ### Copyright (C) 2009-2013,2017 Sebastian Meyer ### $Revision: 2022 $ ### $Date: 2017-10-25 14:04:47 +0200 (Wed, 25. Oct 2017) $ ################################################################################ ### Determine the matrix of neighbourhood orders ### given the binary matrix of first-order neighbours. ### Working horse: spdep::nblag() nbOrder <- function (neighbourhood, maxlag = 1) { if (!requireNamespace("spdep")) stop("package ", dQuote("spdep"), " is required to determine neighbourhood orders") stopifnot(isScalar(maxlag), maxlag > 0) checkNeighbourhood(neighbourhood) neighbourhood <- neighbourhood == 1 # convert to binary matrix nregions <- nrow(neighbourhood) maxlag <- as.integer(min(maxlag, nregions-1)) # upper bound of nb order if (maxlag == 1L) { storage.mode(neighbourhood) <- "integer" return(neighbourhood) } ## manually convert to spdep's "nb" class ## region.idxs <- seq_len(nregions) ## nb <- lapply(region.idxs, function(i) { ## nbs <- which(neighbourhood[i,]) ## if (length(nbs) > 0L) nbs else 0L ## }) ## class(nb) <- "nb" ## convert first-order neighbourhood to spdep's "nb" class nb <- spdep::mat2listw(neighbourhood)$neighbours attr(nb, "region.id") <- NULL ## compute higher order neighbours using spdep::nblag() nb.lags <- spdep::nblag(nb, maxlag=maxlag) ## Side note: fast method to determine neighbours _up to_ specific order: ## crossprod(neighbourhood) > 0 # up to second order neighbours (+set diag to 0) ## (neighbourhood %*% neighbourhood %*% neighbourhood) > 0 # up to order 3 ## and so on... ## convert to a single matrix nbmat <- neighbourhood # logical first-order matrix storage.mode(nbmat) <- "numeric" for (lag in 2:maxlag) { if (any(spdep::card(nb.lags[[lag]]) > 0L)) { # any neighbours of this order nbmat.lag <- spdep::nb2mat(nb.lags[[lag]], style="B", zero.policy=TRUE) nbmat <- nbmat + lag * nbmat.lag } } attr(nbmat, "call") <- NULL storage.mode(nbmat) <- "integer" ## message about maximum neighbour order by region maxlagbyrow <- apply(nbmat, 1, max) message("Note: range of maximum neighbour order by region is ", paste0(range(maxlagbyrow), collapse="-"), if (max(maxlagbyrow) == maxlag) " ('maxlag' reached)") ## Done nbmat } ### Derive adjacency structure from a SpatialPolygons object ### Working horse: spdep::poly2nb poly2adjmat <- function (SpP, ..., zero.policy = TRUE) { if (!requireNamespace("spdep")) stop("package ", dQuote("spdep"), " is required to derive adjacencies from SpatialPolygons") nb <- spdep::poly2nb(SpP, ...) adjmat <- spdep::nb2mat(nb, style="B", zero.policy=zero.policy) attr(adjmat, "call") <- NULL colnames(adjmat) <- rownames(adjmat) adjmat } surveillance/R/hhh4.R0000644000175100001440000024134313023473353014155 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### hhh4 is an extended version of algo.hhh for the sts-class ### The function allows the incorporation of random effects and covariates. ### ### Copyright (C) 2010-2012 Michaela Paul, 2012-2016 Sebastian Meyer ### $Revision: 1809 $ ### $Date: 2016-12-12 11:07:39 +0100 (Mon, 12. Dec 2016) $ ################################################################################ ## Error message issued in loglik, score and fisher functions upon NA parameters ADVICEONERROR <- "\n Try different starting values, more iterations, or another optimizer.\n" ### Main function to be called by the user hhh4 <- function (stsObj, control = list( ar = list(f = ~ -1, # a formula "exp(x'lamba)*y_t-lag" (ToDo: matrix) offset = 1, # multiplicative offset lag = 1), # autoregression on y_i,t-lag ne = list(f = ~ -1, # a formula "exp(x'phi) * sum_j w_ji * y_j,t-lag" offset = 1, # multiplicative offset lag = 1, # regression on y_j,t-lag weights = neighbourhood(stsObj) == 1, # weights w_ji scale = NULL, # such that w_ji = scale * weights normalize = FALSE), # w_ji -> w_ji / rowSums(w_ji), after scaling end = list(f = ~ 1, # a formula "exp(x'nu) * n_it" offset = 1), # optional multiplicative offset e_it family = c("Poisson", "NegBin1", "NegBinM"), # or a factor of length nUnit subset = 2:nrow(stsObj), # epidemic components require Y_{t-lag} optimizer = list(stop = list(tol = 1e-5, niter = 100), # control arguments regression = list(method = "nlminb"), # for optimization variance = list(method = "nlminb")), # <- or "Nelder-Mead" verbose = FALSE, # level of reporting during optimization start = list(fixed = NULL, # list of start values, replacing initial random = NULL, # values from fe() and ri() in 'f'ormulae sd.corr = NULL), data = list(t = stsObj@epoch - min(stsObj@epoch)), # named list of covariates keep.terms = FALSE # whether to keep interpretControl(control, stsObj) ), check.analyticals = FALSE) { ptm <- proc.time() ## Convert old disProg class to new sts class if (inherits(stsObj, "disProg")) { stsObj <- disProg2sts(stsObj) } else { stopifnot(inherits(stsObj, "sts")) } ## check control and set default values (for missing arguments) control <- setControl(control, stsObj) ## get model terms model <- interpretControl(control, stsObj) dimFixedEffects <- model$nFE + model$nd + model$nOverdisp dimRandomEffects <- model$nRE ## starting values #* -> better default values possible theta.start <- model$initialTheta Sigma.start <- model$initialSigma ## check if initial values are valid ## CAVE: there might be NA's in mu if there are missing values in Y mu <- meanHHH(theta.start, model, total.only=TRUE) if(any(mu==0, na.rm=TRUE) || any(is.infinite(mu))) stop("some mean is degenerate (0 or Inf) at initial values") ## check score vector and fisher information at starting values check.analyticals <- if (isTRUE(check.analyticals)) { if (length(theta.start) > 50) "maxLik" else "numDeriv" } else if (is.character(check.analyticals)) { match.arg(check.analyticals, c("numDeriv", "maxLik"), several.ok=TRUE) } else NULL if (length(check.analyticals) > 0L) { resCheck <- checkAnalyticals(model, theta.start, Sigma.start, methods=check.analyticals) return(resCheck) } ## maximize loglikelihood (penalized and marginal) myoptim <- fitHHH(theta=theta.start,sd.corr=Sigma.start, model=model, cntrl.stop = control$optimizer$stop, cntrl.regression = control$optimizer$regression, cntrl.variance = control$optimizer$variance, verbose=control$verbose) ## extract parameter estimates convergence <- myoptim$convergence == 0 thetahat <- myoptim$theta if (dimRandomEffects>0) { Sigma.orig <- myoptim$sd.corr Sigma.trans <- getSigmai(head(Sigma.orig,model$nVar), tail(Sigma.orig,model$nCorr), model$nVar) dimnames(Sigma.trans) <- rep.int(list(sub("^sd\\.", "", names(Sigma.orig)[seq_len(model$nVar)])), 2L) } else { Sigma.orig <- Sigma.trans <- NULL } ## compute covariance matrices of regression and variance parameters cov <- try(solve(myoptim$fisher), silent=TRUE) Sigma.cov <- if(dimRandomEffects>0) try(solve(myoptim$fisherVar), silent=TRUE) ## check for degenerate fisher info if(inherits(cov, "try-error")){ # fisher info is singular if (control$verbose) cat("WARNING: Final Fisher information matrix is singular!\n") convergence <- FALSE } else if(any(!is.finite(diag(cov))) || any(diag(cov)<0)){ if (control$verbose) cat("WARNING: non-finite or negative covariance of regression parameters!\n") convergence <- FALSE } if (!convergence) { if (control$verbose) { cat("Penalized loglikelihood =", myoptim$loglik, "\n") thetastring <- paste(round(thetahat,2), collapse=", ") thetastring <- strwrap(thetastring, exdent=10, prefix="\n", initial="") cat("theta = (", thetastring, ")\n") } warning("Results are not reliable!", if (any(splitParams(thetahat, model)$overdisp > 10)) { # FALSE for Poisson "\n Overdispersion parameter close to zero; maybe try a Poisson model.\n" } else ADVICEONERROR) } ## gather results in a list -> "hhh4" object result <- list(coefficients=thetahat, se=if (convergence) sqrt(diag(cov)), cov=cov, Sigma=Sigma.trans, # estimated covariance matrix of ri's Sigma.orig=Sigma.orig, # variance parameters on original scale Sigma.cov=Sigma.cov, # covariance matrix of Sigma.orig call=match.call(), dim=c(fixed=dimFixedEffects,random=dimRandomEffects), loglikelihood=myoptim$loglik, margll=myoptim$margll, convergence=convergence, fitted.values=meanHHH(thetahat, model, total.only=TRUE), control=control, terms=if(control$keep.terms) model else NULL, stsObj=stsObj, lags=sapply(control[c("ar","ne")], function (comp) if (comp$inModel) comp$lag else NA_integer_), nObs=sum(!model$isNA[control$subset,]), nTime=length(model$subset), nUnit=ncol(stsObj), ## CAVE: nTime is not nrow(stsObj) as usual! runtime=proc.time()-ptm) if (!convergence) { ## add (singular) Fisher information for further investigation result[c("fisher","fisherVar")] <- myoptim[c("fisher","fisherVar")] } class(result) <- "hhh4" return(result) } ## set default values for model specifications in control setControl <- function (control, stsObj) { stopifnot(is.list(control)) nTime <- nrow(stsObj) nUnit <- ncol(stsObj) if(nTime <= 2) stop("too few observations") ## arguments in 'control' override any corresponding default arguments defaultControl <- eval(formals(hhh4)$control) environment(defaultControl$ar$f) <- environment(defaultControl$ne$f) <- environment(defaultControl$end$f) <- .GlobalEnv control <- modifyList(defaultControl, control) ## check that component specifications are list objects for (comp in c("ar", "ne", "end")) { if(!is.list(control[[comp]])) stop("'control$", comp, "' must be a list") } ## check lags in "ar" and "ne" components for (comp in c("ar", "ne")) { if (!isScalar(control[[comp]]$lag) || control[[comp]]$lag < (comp=="ar")) stop("'control$", comp, "$lag' must be a ", if (comp=="ar") "positive" else "non-negative", " integer") control[[comp]]$lag <- as.integer(control[[comp]]$lag) } ### check AutoRegressive component if (control$ar$isMatrix <- is.matrix(control$ar$f)) { ## this form is not implemented -> will stop() in interpretControl() if (any(dim(control$ar$f) != nUnit)) stop("'control$ar$f' must be a square matrix of size ", nUnit) if (is.null(control$ar$weights)) { # use identity matrix control$ar$weights <- diag(nrow=nUnit) } else if (!is.matrix(control$ar$weights) || any(dim(control$ar$weights) != nUnit)) { stop("'control$ar$weights' must be a square matrix of size ", nUnit) } control$ar$inModel <- TRUE } else if (inherits(control$ar$f, "formula")) { if (!is.null(control$ar$weights)) { warning("argument 'control$ar$weights' is not used") control$ar$weights <- NULL } # check if formula is valid control$ar$inModel <- isInModel(control$ar$f) } else { stop("'control$ar$f' must be either a formula or a matrix") } ### check NEighbourhood component if (!inherits(control$ne$f, "formula")) stop("'control$ne$f' must be a formula") control$ne$inModel <- isInModel(control$ne$f) if (control$ne$inModel) { if (nUnit == 1) stop("\"ne\" component requires a multivariate 'stsObj'") ## if ar$f is a matrix it includes neighbouring units => no "ne" component if (control$ar$isMatrix) stop("there must not be an extra \"ne\" component ", "if 'control$ar$f' is a matrix") ## check ne$weights specification checkWeights(control$ne$weights, nUnit, nTime, neighbourhood(stsObj), control$data, check0diag = control$ar$inModel) ## check optional scaling of weights if (!is.null(control$ne$scale)) { stopifnot(is.numeric(control$ne$scale)) if (is.vector(control$ne$scale)) { stopifnot(length(control$ne$scale) == 1L || length(control$ne$scale) %% nUnit == 0, !is.na(control$ne$scale)) } else { checkWeightsArray(control$ne$scale, nUnit, nTime) } } } else { control$ne[c("weights", "scale", "normalize")] <- list(NULL, NULL, FALSE) } ### check ENDemic component if (!inherits(control$end$f, "formula")) stop("'control$end$f' must be a formula") control$end$inModel <- isInModel(control$end$f) ### check offsets for (comp in c("ar", "ne", "end")) { if (is.matrix(control[[comp]]$offset) && is.numeric(control[[comp]]$offset)){ if (!identical(dim(control[[comp]]$offset), dim(stsObj))) stop("'control$",comp,"$offset' must be a numeric matrix of size ", nTime, "x", nUnit) if (any(is.na(control[[comp]]$offset))) stop("'control$",comp,"$offset' must not contain NA values") } else if (!identical(as.numeric(control[[comp]]$offset), 1)) { stop("'control$",comp,"$offset' must either be 1 or a numeric ", nTime, "x", nUnit, " matrix") } } ### stop if no component is included in the model if (length(comps <- componentsHHH4(list(control=control))) == 0L) stop("none of the components 'ar', 'ne', 'end' is included in the model") ### check remaining components of the control list if (is.factor(control$family)) { stopifnot(length(control$family) == nUnit) ## guard against misuse as family = factor("Poisson"), e.g., if taken ## from a data.frame of control options with "stringsAsFactors" if (nUnit == 1 && as.character(control$family) %in% defaultControl$family) { control$family <- as.character(control$family) warning("'family = factor(\"", control$family, "\")' is interpreted ", "as 'family = \"", control$family, "\"'") } else { control$family <- droplevels(control$family) names(control$family) <- colnames(stsObj) } } else { control$family <- match.arg(control$family, defaultControl$family) } if (!is.vector(control$subset, mode="numeric") || !all(control$subset %in% seq_len(nTime))) stop("'control$subset' must be %in% 1:", nTime) lags <- c(ar = control$ar$lag, ne = control$ne$lag) maxlag <- suppressWarnings(max(lags[names(lags) %in% comps])) # could be -Inf if (control$subset[1L] <= maxlag) { warning("'control$subset' should be > ", maxlag, " due to epidemic lags") } if (!is.list(control$optimizer) || any(! sapply(c("stop", "regression", "variance"), function(x) is.list(control$optimizer[[x]])))) stop("'control$optimizer' must be a list of lists") control$verbose <- as.integer(control$verbose) if (length(control$verbose) != 1L || control$verbose < 0) stop("'control$verbose' must be a logical or non-negative numeric value") stopifnot(is.list(control$start)) control$start <- local({ defaultControl$start[] <- control$start[names(defaultControl$start)] defaultControl$start }) if (!all(vapply(X = control$start, FUN = function(x) is.null(x) || is.vector(x, mode="numeric"), FUN.VALUE = TRUE, USE.NAMES = FALSE))) stop("'control$start' must be a list of numeric start values") stopifnot(length(control$keep.terms) == 1L, is.logical(control$keep.terms)) ## Done return(control) } # check whether or not one of the three components is included in the model isInModel <- function(formula, name=deparse(substitute(formula))) { term <- terms.formula(formula) if(attr(term,"response") > 0) stop(name, " cannot contain a response") attr(term, "intercept") + length(attr(term, "term.labels")) > 0 } # used to incorporate covariates and unit-specific effects fe <- function(x, # covariate unitSpecific = FALSE, # TRUE means which = rep.int(TRUE, nUnits) which=NULL, # NULL = overall, vector with booleans = unit-specific initial=NULL) # vector of inital values for parameters { stsObj <- get("stsObj", envir=parent.frame(1), inherits=TRUE) #checkFormula() nTime <- nrow(stsObj) nUnits <- ncol(stsObj) if(!is.numeric(x)){ stop("Covariate \'",deparse(substitute(x)),"\' is not numeric\n") } lengthX <- length(x) if(lengthX == 1){ terms <- matrix(x, nTime, nUnits, byrow=FALSE) mult <- "*" } else if(lengthX == nTime){ terms <- matrix(x, nTime, nUnits, byrow=FALSE) mult <- "*" } else if(lengthX == nTime*nUnits){ if(!is.matrix(x)){ stop("Covariate \'",deparse(substitute(x)),"\' is not a matrix\n") } # check dimensions of covariate if((ncol(x) != nUnits) | (nrow(x) != nTime)){ stop("Dimension of covariate \'",deparse(substitute(x)),"\' is not suitably specified\n") } terms <- x mult <- "*" } else { stop("Covariate \'",deparse(substitute(x)),"\' is not suitably specified\n") } intercept <- all(terms==1) # overall or unit-specific effect? unitSpecific <- unitSpecific || !is.null(which) if (unitSpecific) { if (is.null(which)) { which <- rep.int(TRUE, nUnits) } else { stopifnot(is.vector(which, mode="logical"), length(which) == nUnits) } terms[,!which] <- 0 } # get dimension of parameter dim.fe <- if (unitSpecific) sum(which) else 1 # check length of initial values + set default values if (is.null(initial)) { initial <- rep.int(0,dim.fe) } else if (length(initial) != dim.fe) { stop("initial values for '",deparse(substitute(x)),"' must be of length ",dim.fe) } summ <- if (unitSpecific) "colSums" else "sum" name <- deparse(substitute(x)) if (unitSpecific) name <- paste(name, colnames(stsObj)[which], sep=".") result <- list(terms=terms, name=name, Z.intercept=NULL, which=which, dim.fe=dim.fe, initial.fe=initial, dim.re=0, dim.var=0, initial.var=NULL, initial.re=NULL, intercept=intercept, unitSpecific=unitSpecific, random=FALSE, corr=FALSE, summ=summ, mult=mult ) return(result) } # random intercepts ri <- function(type=c("iid","car"), corr=c("none","all"), initial.fe=0, initial.var=-.5, initial.re=NULL) { stsObj <- get("stsObj", envir=parent.frame(1), inherits=TRUE) #checkFormula() if (ncol(stsObj) == 1) stop("random intercepts require a multivariate 'stsObj'") type <- match.arg(type) corr <- match.arg(corr) corr <- switch(corr, "none"=FALSE, "all"=TRUE) if(type=="iid"){ Z <- 1 dim.re <- ncol(stsObj) mult <- "*" } else if(type=="car"){ # construct penalty matrix K K <- neighbourhood(stsObj) checkNeighbourhood(K) K <- K == 1 # indicate first-order neighbours ne <- colSums(K) # number of first-order neighbours K <- -1*K diag(K) <- ne dimK <- nrow(K) # check rank of the nhood, only connected neighbourhoods are allowed if(qr(K)$rank != dimK-1) stop("neighbourhood matrix contains islands") # singular-value decomposition of K svdK <- svd(K) # just use the positive eigenvalues of K in descending order # for a the factorisation of the penalty matrix K = LL' L <- svdK$u[,-dimK] %*% diag(sqrt(svdK$d[-dimK])) #* only use non-zero eigenvalues # Z = L(L'L)^-1, which can't be simplified to Z=(L')^-1 as L is not square Z <- L %*% solve(t(L)%*%L) dim.re <- dimK - 1L mult <- "%*%" } # check length of initial values + set default values stopifnot(length(initial.fe) == 1, length(initial.var) == 1) if (is.null(initial.re)) { initial.re <- rnorm(dim.re,0,sd=sqrt(0.001)) } else if (length(initial.re) != dim.re) { stop("'initial.re' must be of length ", dim.re) } result <- list(terms=1, name=paste("ri(",type,")",sep=""), Z.intercept=Z, which=NULL, dim.fe=1, initial.fe=initial.fe, dim.re=dim.re, dim.var=1, initial.var=initial.var, initial.re=initial.re, intercept=TRUE, unitSpecific=FALSE, random=TRUE, corr=corr, summ="colSums", mult=mult ) return(result) } ### check specification of formula ## f: one of the component formulae (ar$f, ne$f, or end$f) ## component: 1, 2, or 3, corresponding to the ar/ne/end component, respectively ## data: the data-argument of hhh4() ## stsObj: the stsObj is not used directly in checkFormula, but in fe() and ri() checkFormula <- function(f, component, data, stsObj) { term <- terms.formula(f, specials=c("fe","ri")) # check if there is an overall intercept intercept.all <- attr(term, "intercept") == 1 # list of variables in the component vars <- as.list(attr(term,"variables"))[-1] # first element is "list" nVars <- length(vars) # begin with intercept res <- if (intercept.all) { c(fe(1), list(offsetComp=component)) } else { if (nVars==0) stop("formula ", deparse(substitute(f)), " contains no variables") NULL } # find out fixed effects without "fe()" specification # (only if there are variables in addition to an intercept "1") fe.raw <- setdiff(seq_len(nVars), unlist(attr(term, "specials"))) # evaluate covariates for(i in fe.raw) res <- cbind(res, c( eval(substitute(fe(x), list(x=vars[[i]])), envir=data), list(offsetComp=component) )) # fixed effects for(i in attr(term, "specials")$fe) res <- cbind(res, c( eval(vars[[i]], envir=data), list(offsetComp=component) )) res <- cbind(res, deparse.level=0) # ensure res has matrix dimensions # random intercepts RI <- attr(term, "specials")$ri if (sum(unlist(res["intercept",])) + length(RI) > 1) stop("There can only be one intercept in the formula ", deparse(substitute(f))) for(i in RI) res <- cbind(res, c( eval(vars[[i]], envir=data), list(offsetComp=component) )) return(res) } ## Create function (pars, type = "response") which ## returns the weighted sum of time-lagged counts of neighbours ## (or its derivates, if type = "gradient" or type = "hessian"). ## For type="reponse", this is a nTime x nUnits matrix (like Y), ## otherwise a list of such matrices, ## which for the gradient has length length(pars) and ## length(pars)*(length(pars)+1)/2 for the hessian. ## If neweights=NULL (i.e. no NE component in model), the result is always 0. ## offset is a multiplicative offset for \phi_{it}, e.g., the population. ## scale is a nUnit-vector or a nUnit x nUnit matrix scaling neweights. neOffsetFUN <- function (Y, neweights, scale, normalize, nbmat, data, lag = 1, offset = 1) { if (is.null(neweights)) { # no neighbourhood component as.function(alist(...=, 0), envir=.GlobalEnv) ## dimY <- dim(Y) ## as.function(c(alist(...=), ## substitute(matrix(0, r, c), list(r=dimY[1], c=dimY[2]))), ## envir=.GlobalEnv) } else if (is.list(neweights)) { # parametric weights wFUN <- scaleNEweights.list(neweights, scale, normalize) function (pars, type = "response") { name <- switch(type, response="w", gradient="dw", hessian="d2w") weights <- wFUN[[name]](pars, nbmat, data) ## gradient and hessian are lists if length(pars$d) > 1L ## but can be single matrices/arrays if == 1 => _c_onditional lapply res <- clapply(weights, function (W) offset * weightedSumNE(Y, W, lag)) ##<- clapply always returns a list (possibly of length 1) if (type=="response") res[[1L]] else res } } else { # fixed (known) weight structure (0-length pars) weights <- scaleNEweights.default(neweights, scale, normalize) env <- new.env(hash = FALSE, parent = emptyenv()) # small -> no hash env$initoffset <- offset * weightedSumNE(Y, weights, lag) as.function(c(alist(...=), quote(initoffset)), envir=env) } } # interpret and check the specifications of each component # control must contain all arguments, i.e. setControl was used interpretControl <- function (control, stsObj) { nTime <- nrow(stsObj) nUnits <- ncol(stsObj) Y <- observed(stsObj) ########################################################################## ## get the model specifications for each of the three components ########################################################################## ar <- control$ar ne <- control$ne end <- control$end ## for backwards compatibility with surveillance < 1.8-0, where the ar and ne ## components of the control object did not have an offset if (is.null(ar$offset)) ar$offset <- 1 if (is.null(ne$offset)) ne$offset <- 1 ## for backward compatibility with surveillance < 1.9-0 if (is.null(ne$normalize)) ne$normalize <- FALSE ## create list of offsets of the three components Ym1 <- rbind(matrix(NA_integer_, ar$lag, nUnits), head(Y, nTime-ar$lag)) Ym1.ne <- neOffsetFUN(Y, ne$weights, ne$scale, ne$normalize, neighbourhood(stsObj), control$data, ne$lag, ne$offset) offsets <- list(ar=ar$offset*Ym1, ne=Ym1.ne, end=end$offset) ## -> offset$ne is a function of the parameter vector 'd', which returns a ## nTime x nUnits matrix -- or 0 (scalar) if there is no NE component ## -> offset$end might just be 1 (scalar) ## Initial parameter vector 'd' of the neighbourhood weight function initial.d <- if (is.list(ne$weights)) ne$weights$initial else numeric(0L) dim.d <- length(initial.d) names.d <- if (dim.d == 0L) character(0L) else { paste0("neweights.", if (is.null(names(initial.d))) { if (dim.d==1L) "d" else paste0("d", seq_len(dim.d)) } else names(initial.d)) } ## determine all NA's (FIXME: why do we need this? Why include is.na(Y)?) isNA <- is.na(Y) if (ar$inModel) isNA <- isNA | is.na(offsets[[1L]]) if (ne$inModel) isNA <- isNA | is.na(offsets[[2L]](initial.d)) ## get terms for all components all.term <- NULL if(ar$isMatrix) stop("matrix-form of 'control$ar$f' is not implemented") if(ar$inModel) # ar$f is a formula all.term <- cbind(all.term, checkFormula(ar$f, 1, control$data, stsObj)) if(ne$inModel) all.term <- cbind(all.term, checkFormula(ne$f, 2, control$data, stsObj)) if(end$inModel) all.term <- cbind(all.term, checkFormula(end$f,3, control$data, stsObj)) dim.fe <- sum(unlist(all.term["dim.fe",])) dim.re.group <- unlist(all.term["dim.re",], use.names=FALSE) dim.re <- sum(dim.re.group) dim.var <- sum(unlist(all.term["dim.var",])) dim.corr <- sum(unlist(all.term["corr",])) if(dim.corr>0){ if(dim.var!=dim.corr) stop("Use corr=\'all\' or corr=\'none\' ") dim.corr <- switch(dim.corr,0,1,3) } # the vector with dims of the random effects must be equal if they are correlated if(length(unique(dim.re.group[dim.re.group>0]))!=1 & dim.corr>0){ stop("Correlated effects must have same penalty") } n <- c("ar","ne","end")[unlist(all.term["offsetComp",])] names.fe <- names.var <- names.re <- character(0L) for(i in seq_along(n)){ .name <- all.term["name",i][[1]] names.fe <- c(names.fe, paste(n[i], .name, sep=".")) if(all.term["random",i][[1]]) { names.var <- c(names.var, paste("sd", n[i], .name, sep=".")) names.re <- c(names.re, paste(n[i], .name, if (.name == "ri(iid)") { colnames(stsObj) } else { seq_len(all.term["dim.re",i][[1]]) }, sep = ".")) } } index.fe <- rep(1:ncol(all.term), times=unlist(all.term["dim.fe",])) index.re <- rep(1:ncol(all.term), times=unlist(all.term["dim.re",])) # poisson or negbin model if(identical(control$family, "Poisson")){ ddistr <- function(y,mu,size){ dpois(y, lambda=mu, log=TRUE) } dim.overdisp <- 0L index.overdisp <- names.overdisp <- NULL } else { # NegBin ddistr <- function(y,mu,size){ dnbinom(y, mu=mu, size=size, log=TRUE) } ## version that can handle size = Inf (i.e. the Poisson special case): ## ddistr <- function (y,mu,size) { ## poisidx <- is.infinite(size) ## res <- y ## res[poisidx] <- dpois(y[poisidx], lambda=mu[poisidx], log=TRUE) ## res[!poisidx] <- dnbinom(y[!poisidx], mu=mu[!poisidx], ## size=size[!poisidx], log=TRUE) ## res ## } index.overdisp <- if (is.factor(control$family)) { control$family } else if (control$family == "NegBinM") { factor(colnames(stsObj), levels = colnames(stsObj)) ## do not sort levels (for consistency with unitSpecific effects) } else { # "NegBin1" factor(character(nUnits)) } names(index.overdisp) <- colnames(stsObj) dim.overdisp <- nlevels(index.overdisp) names.overdisp <- if (dim.overdisp == 1L) { "-log(overdisp)" } else { paste0("-log(", paste("overdisp", levels(index.overdisp), sep = "."), ")") } } environment(ddistr) <- getNamespace("stats") # function is self-contained # parameter start values from fe() and ri() calls via checkFormula() initial <- list( fixed = c(unlist(all.term["initial.fe",]), initial.d, rep.int(2, dim.overdisp)), random = as.numeric(unlist(all.term["initial.re",])), # NULL -> numeric(0) sd.corr = c(unlist(all.term["initial.var",]), rep.int(0, dim.corr)) ) # set names of parameter vectors names(initial$fixed) <- c(names.fe, names.d, names.overdisp) names(initial$random) <- names.re names(initial$sd.corr) <- c(names.var, head(paste("corr",1:3,sep="."), dim.corr)) # modify initial values according to the supplied 'start' values initial[] <- mapply( FUN = function (initial, start, name) { if (is.null(start)) return(initial) if (is.null(names(initial)) || is.null(names(start))) { if (length(start) == length(initial)) { initial[] <- start } else { stop("initial values in 'control$start$", name, "' must be of length ", length(initial)) } } else { ## we match by name and silently ignore additional start values start <- start[names(start) %in% names(initial)] initial[names(start)] <- start } return(initial) }, initial, control$start[names(initial)], names(initial), SIMPLIFY = FALSE, USE.NAMES = FALSE ) # Done result <- list(response = Y, terms = all.term, nTime = nTime, nUnits = nUnits, nFE = dim.fe, nd = dim.d, nOverdisp = dim.overdisp, nRE = dim.re, rankRE = dim.re.group, nVar = dim.var, nCorr = dim.corr, nSigma = dim.var+dim.corr, nGroups = ncol(all.term), namesFE = names.fe, indexFE = index.fe, indexRE = index.re, initialTheta = c(initial$fixed, initial$random), initialSigma = initial$sd.corr, offset = offsets, family = ddistr, indexPsi = index.overdisp, subset = control$subset, isNA = isNA ) return(result) } splitParams <- function(theta, model){ fixed <- theta[seq_len(model$nFE)] d <- theta[model$nFE + seq_len(model$nd)] overdisp <- theta[model$nFE + model$nd + seq_len(model$nOverdisp)] random <- theta[seq.int(to=length(theta), length.out=model$nRE)] list(fixed=fixed, random=random, overdisp=overdisp, d=d) } ### compute predictor meanHHH <- function(theta, model, subset=model$subset, total.only=FALSE) { ## unpack theta pars <- splitParams(theta, model) fixed <- pars$fixed random <- pars$random ## unpack model term <- model$terms offsets <- model$offset offsets[[2L]] <- offsets[[2L]](pars$d) # evaluate at current parameter value nGroups <- model$nGroups comp <- unlist(term["offsetComp",]) idxFE <- model$indexFE idxRE <- model$indexRE #isNA <- model$isNA toMatrix <- function (x, r=model$nTime, c=model$nUnits) matrix(x, r, c, byrow=TRUE) ## go through groups of parameters and compute predictor of each component, ## i.e. lambda_it, phi_it, nu_it, EXCLUDING the multiplicative offset terms, ## as well as the resulting component mean (=exppred * offset) computePartMean <- function (component) { pred <- nullMatrix <- toMatrix(0) #is.na(pred) <- isNA # set missing values in observed Y to NA # -> FIXME: why? seems to be awkward... and # incompatible with simulation for t=1 (given y.start) if(!any(comp==component)) { # component not in model -> return 0-matrix zeroes <- pred[subset,,drop=FALSE] return(list(exppred = zeroes, mean = zeroes)) } for(i in seq_len(nGroups)[comp==component]){ fe <- fixed[idxFE==i] if(term["unitSpecific",i][[1]]){ fe <- nullMatrix which <- term["which",i][[1]] fe[,which] <- toMatrix(fixed[idxFE==i],c=sum(which)) } if(term["random",i][[1]]){ re <- random[idxRE==i] "%m%" <- get(term["mult",i][[1]]) Z.re <- toMatrix(term["Z.intercept",i][[1]] %m% re) } else { Z.re <- 0 } X <- term["terms",i][[1]] pred <- pred + X*fe + Z.re } exppred <- exp(pred[subset,,drop=FALSE]) offset <- offsets[[component]] if (length(offset) > 1) offset <- offset[subset,,drop=FALSE] ##<- no subsetting if offset is scalar (time- and unit-independent) list(exppred = exppred, mean = exppred * offset) } ## compute component means ar <- computePartMean(1) ne <- computePartMean(2) end <- computePartMean(3) ## Done epidemic <- ar$mean + ne$mean endemic <- end$mean if (total.only) epidemic + endemic else list(mean=epidemic+endemic, epidemic=epidemic, endemic=endemic, epi.own=ar$mean, epi.neighbours=ne$mean, ar.exppred=ar$exppred, ne.exppred=ne$exppred, end.exppred=end$exppred) } ### compute dispersion in dnbinom (mu, size) parametrization sizeHHH <- function (theta, model, subset = model$subset) { if (model$nOverdisp == 0L) # Poisson case return(NULL) ## extract dispersion in dnbinom() parametrization pars <- splitParams(theta, model) size <- exp(pars$overdisp) # = 1/psi, pars$overdisp = -log(psi) ## return either a vector or a time x unit matrix of dispersion parameters if (is.null(subset)) { unname(size) # no longer is "-log(overdisp)" } else { matrix(data = size[model$indexPsi], nrow = length(subset), ncol = model$nUnits, byrow = TRUE, dimnames = list(NULL, names(model$indexPsi))) } } ## auxiliary function used in penScore and penFisher ## it sums colSums(x) within the groups defined by f (of length ncol(x)) ## and returns these sums in the order of levels(f) .colSumsGrouped <- function (x, f, na.rm = TRUE) { nlev <- nlevels(f) if (nlev == 1L) { # all columns belong to the same group ("NegBin1") sum(x, na.rm = na.rm) } else { dimx <- dim(x) colsums <- .colSums(x, dimx[1L], dimx[2L], na.rm = na.rm) if (nlev == dimx[2L]) { # each column separately ("NegBinM" or factor) colsums[order(f)] # for NegBinM, order(f)==1:nlev, not in general } else { # sum colsums within groups unlist(lapply( X = split.default(colsums, f, drop = FALSE), FUN = sum ), recursive = FALSE, use.names = FALSE) } } } ############################################ penLogLik <- function(theta, sd.corr, model, attributes=FALSE) { if(any(is.na(theta))) stop("NAs in regression parameters.", ADVICEONERROR) ## unpack model subset <- model$subset Y <- model$response[subset,,drop=FALSE] #isNA <- model$isNA[subset,,drop=FALSE] dimPsi <- model$nOverdisp dimRE <- model$nRE ## unpack random effects if (dimRE > 0) { pars <- splitParams(theta, model) randomEffects <- pars$random sd <- head(sd.corr, model$nVar) corr <- tail(sd.corr, model$nCorr) dimBlock <- model$rankRE[model$rankRE>0] Sigma.inv <- getSigmaInv(sd, corr, model$nVar, dimBlock) } ############################################################ ## evaluate dispersion psi <- sizeHHH(theta, model, subset = if (dimPsi > 1L) subset) # else scalar or NULL #psi might be numerically equal to 0 or Inf in which cases dnbinom (in meanHHH) #would return NaN (with a warning). The case size=Inf rarely happens and #corresponds to a Poisson distribution. Currently this case is not handled #in order to have the usual non-degenerate case operate faster. #For size=0, log(dnbinom) equals -Inf for positive x or if (x=0 and mu=0), and #zero if x=0 and mu>0 and mu0, which is always true), we have that sum(ll.units) = -Inf, hence: if (any(psi == 0)) return(-Inf) ## evaluate mean mu <- meanHHH(theta, model, total.only=TRUE) # if, numerically, mu=Inf, log(dnbinom) or log(dpois) both equal -Inf, hence: #if (any(is.infinite(mu))) return(-Inf) # however, since mu=Inf does not produce warnings below and this is a rare # case, it is faster to not include this conditional expression ## penalization term for random effects lpen <- if (dimRE==0) 0 else { # there are random effects ##-.5*(t(randomEffects)%*%Sigma.inv%*%randomEffects) ## the following implementation takes ~85% less computing time ! -0.5 * c(crossprod(randomEffects, Sigma.inv) %*% randomEffects) } ## log-likelihood ll.units <- .colSums(model$family(Y,mu,psi), length(subset), model$nUnits, na.rm=TRUE) ## penalized log-likelihood ll <- sum(ll.units) + lpen ## Done if (attributes) { attr(ll, "loglik") <- ll.units attr(ll, "logpen") <- lpen } ll } penScore <- function(theta, sd.corr, model) { if(any(is.na(theta))) stop("NAs in regression parameters.", ADVICEONERROR) ## unpack model subset <- model$subset Y <- model$response[subset,,drop=FALSE] isNA <- model$isNA[subset,,drop=FALSE] dimPsi <- model$nOverdisp dimRE <- model$nRE term <- model$terms nGroups <- model$nGroups dimd <- model$nd ## unpack parameters pars <- splitParams(theta, model) if (dimRE > 0) { randomEffects <- pars$random sd <- head(sd.corr, model$nVar) corr <- tail(sd.corr, model$nCorr) dimBlock <- model$rankRE[model$rankRE>0] Sigma.inv <- getSigmaInv(sd, corr, model$nVar, dimBlock) } ## evaluate dispersion psi <- sizeHHH(theta, model, subset = if (dimPsi > 1L) subset) # else scalar or NULL ## evaluate mean mu <- meanHHH(theta, model) meanTotal <- mu$mean ############################################################ ## helper function for derivatives derivHHH.factor <- if(dimPsi > 0L){ # NegBin psiPlusMu <- psi + meanTotal # also used below for calculation of grPsi psiYpsiMu <- (psi+Y) / psiPlusMu Y/meanTotal - psiYpsiMu } else { # Poisson Y/meanTotal - 1 } derivHHH <- function (dmu) derivHHH.factor * dmu ## go through groups of parameters and compute the gradient of each component computeGrad <- function(mean.comp){ grad.fe <- numeric(0L) grad.re <- numeric(0L) for(i in seq_len(nGroups)){ comp <- term["offsetComp",i][[1]] Xit<- term["terms",i][[1]] # eiter 1 or a matrix with values if(is.matrix(Xit)){ Xit <- Xit[subset,,drop=FALSE] } summ <- get(term["summ",i][[1]]) dTheta <- derivHHH(mean.comp[[comp]]*Xit) dTheta[isNA] <- 0 # dTheta must not contain NA's (set NA's to 0) if(term["unitSpecific",i][[1]]){ which <- term["which",i][[1]] dTheta <- summ(dTheta)[ which ] grad.fe <- c(grad.fe,dTheta) } else if(term["random",i][[1]]){ Z <- term["Z.intercept",i][[1]] "%m%" <- get(term["mult",i][[1]]) dRTheta <- .colSums(dTheta %m% Z, length(subset), term["dim.re",i][[1]]) grad.re <- c(grad.re, dRTheta) grad.fe <- c(grad.fe, sum(dTheta)) } else{ grad.fe <- c(grad.fe, summ(dTheta)) } } list(fe=grad.fe, re=grad.re) } gradients <- computeGrad(mu[c("epi.own","epi.neighbours","endemic")]) ## gradient for parameter vector of the neighbourhood weights grd <- if (dimd > 0L) { dneOffset <- model$offset[[2L]](pars$d, type="gradient") ##<- this is always a list (of length dimd) of matrices onescore.d <- function (dneoff) { dmudd <- mu$ne.exppred * dneoff[subset,,drop=FALSE] grd.terms <- derivHHH(dmudd) sum(grd.terms, na.rm=TRUE) } unlist(clapply(dneOffset, onescore.d), recursive=FALSE, use.names=FALSE) } else numeric(0L) ## gradient for overdispersion parameter psi grPsi <- if(dimPsi > 0L){ dPsiMat <- psi * (digamma(Y+psi) - digamma(psi) + log(psi) + 1 - log(psiPlusMu) - psiYpsiMu) .colSumsGrouped(dPsiMat, model$indexPsi) } else numeric(0L) ## add penalty to random effects gradient s.pen <- if(dimRE > 0) c(Sigma.inv %*% randomEffects) else numeric(0L) if(length(gradients$re) != length(s.pen)) stop("oops... lengths of s(b) and Sigma.inv %*% b do not match") grRandom <- c(gradients$re - s.pen) ## Done res <- c(gradients$fe, grd, grPsi, grRandom) res } penFisher <- function(theta, sd.corr, model, attributes=FALSE) { if(any(is.na(theta))) stop("NAs in regression parameters.", ADVICEONERROR) ## unpack model subset <- model$subset Y <- model$response[subset,,drop=FALSE] isNA <- model$isNA[subset,,drop=FALSE] dimPsi <- model$nOverdisp dimRE <- model$nRE term <- model$terms nGroups <- model$nGroups dimd <- model$nd dimFE <- model$nFE idxFE <- model$indexFE idxRE <- model$indexRE indexPsi <- model$indexPsi ## unpack parameters pars <- splitParams(theta, model) if (dimRE > 0) { randomEffects <- pars$random sd <- head(sd.corr, model$nVar) corr <- tail(sd.corr, model$nCorr) dimBlock <- model$rankRE[model$rankRE>0] Sigma.inv <- getSigmaInv(sd, corr, model$nVar, dimBlock) } ## evaluate dispersion psi <- sizeHHH(theta, model, subset = if (dimPsi > 1L) subset) # else scalar or NULL ## evaluate mean mu <- meanHHH(theta, model) meanTotal <- mu$mean ############################################################ ## helper functions for derivatives: if (dimPsi > 0L) { # negbin psiPlusY <- psi + Y psiPlusMu <- psi + meanTotal psiPlusMu2 <- psiPlusMu^2 psiYpsiMu <- psiPlusY / psiPlusMu psiYpsiMu2 <- psiPlusY / psiPlusMu2 deriv2HHH.fac1 <- psiYpsiMu2 - Y / (meanTotal^2) deriv2HHH.fac2 <- Y / meanTotal - psiYpsiMu ## psi-related derivatives dThetadPsi.fac <- psi * (psiYpsiMu2 - 1/psiPlusMu) dThetadPsi <- function(dTheta){ dThetadPsi.fac * dTheta } dPsiMat <- psi * (digamma(psiPlusY) - digamma(psi) + log(psi) + 1 - log(psiPlusMu) - psiYpsiMu) # as in penScore() dPsidPsiMat <- psi^2 * ( trigamma(psiPlusY) - trigamma(psi) + 1/psi - 1/psiPlusMu - (meanTotal-Y)/psiPlusMu2) + dPsiMat } else { # poisson deriv2HHH.fac1 <- -Y / (meanTotal^2) deriv2HHH.fac2 <- Y / meanTotal - 1 } deriv2HHH <- function(dTheta_l, dTheta_k, dTheta_lk){ dTheta_l * dTheta_k * deriv2HHH.fac1 + dTheta_lk * deriv2HHH.fac2 } ## go through groups of parameters and compute the hessian of each component computeFisher <- function(mean.comp){ # initialize hessian hessian.FE.FE <- matrix(0,dimFE,dimFE) hessian.FE.RE <- matrix(0,dimFE,dimRE) hessian.RE.RE <- matrix(0,dimRE,dimRE) hessian.FE.Psi <- matrix(0,dimFE,dimPsi) hessian.Psi.RE <- matrix(0,dimPsi,dimPsi+dimRE) # CAVE: contains PsiPsi and PsiRE hessian.FE.d <- matrix(0,dimFE,dimd) hessian.d.d <- matrix(0,dimd,dimd) hessian.d.Psi <- matrix(0,dimd,dimPsi) hessian.d.RE <- matrix(0,dimd,dimRE) ## derivatives wrt neighbourhood weight parameters d if (dimd > 0L) { phi.doff <- function (dneoff) { mu$ne.exppred * dneoff[subset,,drop=FALSE] } ## for type %in% c("gradient", "hessian"), model$offset[[2L]] always ## returns a list of matrices. It has length(pars$d) elements for the ## gradient and length(pars$d)*(length(pars$d)+1)/2 for the hessian. dneOffset <- model$offset[[2L]](pars$d, type="gradient") dmudd <- lapply(dneOffset, phi.doff) d2neOffset <- model$offset[[2L]](pars$d, type="hessian") d2mudddd <- lapply(d2neOffset, phi.doff) ## d l(theta,x) /dd dd (fill only upper triangle, BY ROW) ij <- 0L for (i in seq_len(dimd)) { for (j in i:dimd) { ij <- ij + 1L #= dimd*(i-1) + j - (i-1)*i/2 # for j >= i ## d2mudddd contains upper triangle by row (=lowertri by column) d2ij <- deriv2HHH(dmudd[[i]], dmudd[[j]], d2mudddd[[ij]]) hessian.d.d[i,j] <- sum(d2ij, na.rm=TRUE) } } } if (dimPsi > 0L) { ## d l(theta,x) /dpsi dpsi dPsidPsi <- .colSumsGrouped(dPsidPsiMat, indexPsi) hessian.Psi.RE[,seq_len(dimPsi)] <- if (dimPsi == 1L) { dPsidPsi } else { diag(dPsidPsi) } ## d l(theta) / dd dpsi for (i in seq_len(dimd)) { # will not be run if dimd==0 ## dPsi.i <- colSums(dThetadPsi(dmudd[[i]]),na.rm=TRUE) ## hessian.d.Psi[i,] <- if(dimPsi==1L) sum(dPsi.i) else dPsi.i[order(indexPsi)] hessian.d.Psi[i,] <- .colSumsGrouped(dThetadPsi(dmudd[[i]]), indexPsi) } } ## i.fixed <- function(){ if(random.j){ Z.j <- term["Z.intercept",j][[1]] "%mj%" <- get(term["mult",j][[1]]) hessian.FE.RE[idxFE==i,idxRE==j] <<- colSums(didj %mj% Z.j) ##<- didj must not contain NA's (all NA's set to 0) dIJ <- sum(didj,na.rm=TRUE) # fixed on 24/09/2012 } else if(unitSpecific.j){ dIJ <- colSums(didj,na.rm=TRUE)[ which.j ] } else { dIJ <- sum(didj,na.rm=TRUE) } hessian.FE.FE[idxFE==i,idxFE==j] <<- dIJ } ## i.unit <- function(){ if(random.j){ Z.j <- term["Z.intercept",j][[1]] "%mj%" <- get(term["mult",j][[1]]) dIJ <- colSums(didj %mj% Z.j) # didj must not contain NA's (all NA's set to 0) hessian.FE.RE[idxFE==i,idxRE==j] <<- diag(dIJ)[ which.i, ] # FIXME: does not work if type="car" dIJ <- dIJ[ which.i ] # added which.i subsetting in r432 } else if(unitSpecific.j){ dIJ <- diag(colSums(didj))[ which.i, which.j ] } else { dIJ <- colSums(didj)[ which.i ] } hessian.FE.FE[idxFE==i,idxFE==j] <<- dIJ } ## i.random <- function(){ if(random.j){ Z.j <- term["Z.intercept",j][[1]] "%mj%" <- get(term["mult",j][[1]]) hessian.FE.RE[idxFE==i,idxRE==j] <<- colSums(didj %mj% Z.j) hessian.FE.RE[idxFE==j,idxRE==i] <<- colSums(didj %m% Z.i) if(length(Z.j)==1 & length(Z.i)==1){ Z <- Z.i*Z.j hessian.RE.RE[which(idxRE==i),idxRE==j] <<- diag(colSums( didj %m% Z)) } else if(length(Z.j)==1 & length(Z.i)>1){ #* Z.j <- diag(nrow=model$nUnits) for(k in seq_len(ncol(Z.j))){ Z <- Z.i*Z.j[,k] hessian.RE.RE[idxRE==i,which(idxRE==j)[k]] <<- colSums( didj %m% Z) } } else if(length(Z.j)>1 & length(Z.i)==1){ #* Z.i <- diag(nrow=model$nUnits) for(k in seq_len(ncol(Z.i))){ Z <- Z.i[,k]*Z.j hessian.RE.RE[which(idxRE==i)[k],idxRE==j] <<- colSums( didj %mj% Z) } } else { for(k in seq_len(ncol(Z.j))){ Z <- Z.i*Z.j[,k] hessian.RE.RE[which(idxRE==i)[k],idxRE==j] <<- colSums( didj %m% Z) } } dIJ <- sum(didj) } else if(unitSpecific.j){ dIJ <- colSums(didj %m% Z.i) hessian.FE.RE[idxFE==j,idxRE==i] <<- diag(dIJ)[ which.j, ] dIJ <- dIJ[ which.j ] } else { hessian.FE.RE[idxFE==j,idxRE==i] <<- colSums(didj %m% Z.i) dIJ <- sum(didj) } hessian.FE.FE[idxFE==i,idxFE==j] <<- dIJ } ##---------------------------------------------- for(i in seq_len(nGroups)){ #go through rows of hessian # parameter group belongs to which components comp.i <- term["offsetComp",i][[1]] # get covariate value Xit <- term["terms",i][[1]] # eiter 1 or a matrix with values if(is.matrix(Xit)){ Xit <- Xit[subset,,drop=FALSE] } m.Xit <- mean.comp[[comp.i]] * Xit random.i <- term["random",i][[1]] unitSpecific.i <- term["unitSpecific",i][[1]] ## fill psi-related entries and select fillHess function if (random.i) { Z.i <- term["Z.intercept",i][[1]] # Z.i and %m% (of i) determined here "%m%" <- get(term["mult",i][[1]]) # will also be used in j's for loop fillHess <- i.random if (dimPsi > 0L) { dThetadPsiMat <- dThetadPsi(m.Xit) hessian.FE.Psi[idxFE==i,] <- .colSumsGrouped(dThetadPsiMat, indexPsi) dThetadPsi.i <- .colSums(dThetadPsiMat %m% Z.i, length(subset), term["dim.re",i][[1]], na.rm=TRUE) if (dimPsi==1L) { hessian.Psi.RE[,dimPsi + which(idxRE==i)] <- dThetadPsi.i } else { hessian.Psi.RE[cbind(indexPsi,dimPsi + which(idxRE==i))] <- dThetadPsi.i ## FIXME: does not work with type="car" } } } else if (unitSpecific.i) { which.i <- term["which",i][[1]] fillHess <- i.unit if (dimPsi > 0L) { dThetadPsi.i <- .colSums(dThetadPsi(m.Xit), length(subset), model$nUnits, na.rm=TRUE) if (dimPsi==1L) { hessian.FE.Psi[idxFE==i,] <- dThetadPsi.i[which.i] } else { hessian.FE.Psi[cbind(which(idxFE==i),indexPsi[which.i])] <- dThetadPsi.i[which.i] } } } else { fillHess <- i.fixed if (dimPsi > 0L) { ## dPsi <- colSums(dThetadPsi(m.Xit),na.rm=TRUE) ## hessian.FE.Psi[idxFE==i,] <- if (dimPsi==1L) sum(dPsi) else dPsi[order(indexPsi)] hessian.FE.Psi[idxFE==i,] <- .colSumsGrouped(dThetadPsi(m.Xit), indexPsi) } } ## fill pars$d-related entries for (j in seq_len(dimd)) { # will not be run if dimd==0 didd <- deriv2HHH(dTheta_l = m.Xit, dTheta_k = dmudd[[j]], dTheta_lk = if (comp.i == 2) dmudd[[j]] * Xit else 0) didd[isNA] <- 0 hessian.FE.d[idxFE==i,j] <- if (unitSpecific.i) { colSums(didd,na.rm=TRUE)[which.i] } else sum(didd) if (random.i) hessian.d.RE[j,idxRE==i] <- colSums(didd %m% Z.i) } ## fill other (non-psi, non-d) entries (only upper triangle, j >= i!) for(j in i:nGroups){ comp.j <- term["offsetComp",j][[1]] Xjt <- term["terms",j][[1]] # eiter 1 or a matrix with values if(is.matrix(Xjt)){ Xjt <- Xjt[subset,,drop=FALSE] } # if param i and j do not belong to the same component, d(i)d(j)=0 m.Xit.Xjt <- if (comp.i != comp.j) 0 else m.Xit * Xjt didj <- deriv2HHH(dTheta_l = m.Xit, dTheta_k = mean.comp[[comp.j]]*Xjt, dTheta_lk = m.Xit.Xjt) didj[isNA]<-0 random.j <- term["random",j][[1]] unitSpecific.j <- term["unitSpecific",j][[1]] which.j <- term["which",j][[1]] fillHess() } } ######################################################### ## fill lower triangle of hessians and combine them ######################################################## hessian <- rbind(cbind(hessian.FE.FE,hessian.FE.d,hessian.FE.Psi,hessian.FE.RE), cbind(matrix(0,dimd,dimFE),hessian.d.d,hessian.d.Psi,hessian.d.RE), cbind(matrix(0,dimPsi,dimFE+dimd),hessian.Psi.RE), cbind(matrix(0,dimRE,dimFE+dimd+dimPsi),hessian.RE.RE)) hessian[lower.tri(hessian)] <- 0 # FIXME: should already be the case! diagHessian <- diag(hessian) fisher <- -(hessian + t(hessian)) diag(fisher) <- -diagHessian return(fisher) } fisher <- computeFisher(mu[c("epi.own","epi.neighbours","endemic")]) ## add penalty for random effects pen <- matrix(0, length(theta), length(theta)) Fpen <- if(dimRE > 0){ thetaIdxRE <- seq.int(to=length(theta), length.out=dimRE) pen[thetaIdxRE,thetaIdxRE] <- Sigma.inv fisher + pen } else fisher ## Done if(attributes){ attr(Fpen, "fisher") <- fisher attr(Fpen, "pen") <- pen } Fpen } ################################################# sqrtOf1pr2 <- function(r){ sqrt(1+r^2) } getSigmai <- function(sd, # vector of length dim with log-stdev's correlation, # vector of length dim with correlation # parameters, 0-length if uncorrelated dim ){ if(dim==0) return(NULL) Sigma.i <- if (length(correlation) == 0L) diag(exp(2*sd), dim) else { D <- diag(exp(sd), dim) L <- diag(nrow=dim) L[2,1:2] <- c(correlation[1],1)/sqrtOf1pr2(correlation[1]) if (dim==3) { L[3,] <- c(correlation[2:3],1)/sqrtOf1pr2(correlation[2]) L[3,2:3] <- L[3,2:3]/sqrtOf1pr2(correlation[3]) } D %*% tcrossprod(L) %*% D # ~75% quicker than D %*% L %*% t(L) %*% D } return(Sigma.i) } getSigmaiInv <- function(sd, # vector of length dim with log-stdev's correlation, # vector of length dim with correlation # parameters, 0-length if uncorrelated dim ){ if(dim==0) return(NULL) Sigma.i.inv <- if (length(correlation) == 0L) diag(exp(-2*sd), dim) else { r <- correlation Dinv <- diag(exp(-sd), dim) L <- diag(nrow=dim) L[2,1:2] <- c(-r[1],sqrtOf1pr2(r[1])) if(dim==3){ L[3,1] <- r[1]*r[3]-r[2]*sqrtOf1pr2(r[3]) L[3,2] <- -L[2,2]*r[3] L[3,3] <- sqrtOf1pr2(r[2])*sqrtOf1pr2(r[3]) } Dinv %*% crossprod(L) %*% Dinv # ~75% quicker than Dinv %*% t(L) %*% L %*% Dinv } return(Sigma.i.inv) } #* allow blockdiagonal matrix blockdiag(A,B), with A=kronecker product, B=diagonal matrix? getSigmaInv <- function(sd, correlation, dimSigma, dimBlocks, SigmaInvi=NULL){ if(is.null(SigmaInvi)){ SigmaInvi <- getSigmaiInv(sd,correlation,dimSigma) } if(length(unique(dimBlocks))==1){ # kronecker product formulation possible kronecker(SigmaInvi,diag(nrow=dimBlocks[1])) # the result is a symmetric matrix if SigmaInvi is symmetric } else { # kronecker product not possible -> correlation=0 diag(rep.int(diag(SigmaInvi),dimBlocks)) } } getSigma <- function(sd, correlation, dimSigma, dimBlocks, Sigmai=NULL){ if(is.null(Sigmai)){ Sigmai <- getSigmai(sd,correlation,dimSigma) } if(length(unique(dimBlocks))==1){ # kronecker product formulation possible kronecker(Sigmai,diag(nrow=dimBlocks[1])) # the result is a symmetric matrix if Sigmai is symmetric } else { # kronecker product not possible -> correlation=0 diag(rep.int(diag(Sigmai),dimBlocks)) } } ## Approximate marginal likelihood for variance components ## Parameter and model unpacking at the beginning (up to the ###...-line) is ## identical in marScore() and marFisher() marLogLik <- function(sd.corr, theta, model, fisher.unpen=NULL, verbose=FALSE){ dimVar <- model$nVar dimCorr <- model$nCorr dimSigma <- model$nSigma if(dimSigma == 0){ return(-Inf) } if(any(is.na(sd.corr))){ # in order to avoid nlminb from running into an infinite loop (cf. bug # report #15052), we have to emergency stop() in this case. # As of R 2.15.2, nlminb() throws an error if it receives NA from # any of the supplied functions. stop("NAs in variance parameters.", ADVICEONERROR) } sd <- head(sd.corr,dimVar) corr <- tail(sd.corr,dimCorr) pars <- splitParams(theta,model) randomEffects <- pars$random dimRE <- model$nRE dimBlocks <- model$rankRE[model$rankRE>0] Sigma.inv <- getSigmaInv(sd, corr, dimVar, dimBlocks) # if not given, calculate unpenalized part of fisher info if(is.null(fisher.unpen)){ fisher.unpen <- attr(penFisher(theta, sd.corr, model,attributes=TRUE), "fisher") } # add penalty to fisher fisher <- fisher.unpen thetaIdxRE <- seq.int(to=length(theta), length.out=dimRE) fisher[thetaIdxRE,thetaIdxRE] <- fisher[thetaIdxRE,thetaIdxRE] + Sigma.inv ############################################################ # penalized part of likelihood # compute -0.5*log(|Sigma|) - 0.5*RE' %*% Sigma.inv %*% RE # where -0.5*log(|Sigma|) = -dim(RE_i)*[Sum(sd_i) -0.5*log(1+corr_i^2)] ##lpen <- -0.5*(t(randomEffects)%*%Sigma.inv%*%randomEffects) ## the following implementation takes ~85% less computing time ! lpen <- -0.5 * c(crossprod(randomEffects, Sigma.inv) %*% randomEffects) loglik.pen <- sum(-dimBlocks*sd) + lpen if(dimCorr >0){ loglik.pen <- loglik.pen + 0.5*dimBlocks[1]*sum(log(1+corr^2)) } ## approximate marginal likelihood logdetfisher <- determinant(fisher,logarithm=TRUE)$modulus lmarg <- loglik.pen -0.5*c(logdetfisher) return(lmarg) } marScore <- function(sd.corr, theta, model, fisher.unpen=NULL, verbose=FALSE){ dimVar <- model$nVar dimCorr <- model$nCorr dimSigma <- model$nSigma if(dimSigma == 0){ return(numeric(0L)) } if(any(is.na(sd.corr))) stop("NAs in variance parameters.", ADVICEONERROR) sd <- head(sd.corr,dimVar) corr <- tail(sd.corr,dimCorr) pars <- splitParams(theta,model) randomEffects <- pars$random dimRE <- model$nRE dimBlocks <- model$rankRE[model$rankRE>0] Sigma.inv <- getSigmaInv(sd, corr, dimVar, dimBlocks) # if not given, calculate unpenalized part of fisher info if(is.null(fisher.unpen)){ fisher.unpen <- attr(penFisher(theta, sd.corr, model,attributes=TRUE), "fisher") } # add penalty to fisher fisher <- fisher.unpen thetaIdxRE <- seq.int(to=length(theta), length.out=dimRE) fisher[thetaIdxRE,thetaIdxRE] <- fisher[thetaIdxRE,thetaIdxRE] + Sigma.inv # inverse of penalized fisher info F.inv <- try(solve(fisher),silent=TRUE) if(inherits(F.inv,"try-error")){ if(verbose) cat(" WARNING (in marScore): penalized Fisher is singular!\n") #return(rep.int(0,dimSigma)) ## continuing with the generalized inverse often works, otherwise we would ## have to stop() here, because nlminb() cannot deal with NA's F.inv <- ginv(fisher) } F.inv.RE <- F.inv[thetaIdxRE,thetaIdxRE] ############################################################ ## compute marginal score and fisher for each variance component # initialize score and fisher info marg.score <- rep.int(NA_real_,dimSigma) ## specify functions for derivatives deriv1 <- switch(dimVar, dSigma1, dSigma2, dSigma3) d1Sigma <- deriv1(sd, corr) Sigmai.inv <- getSigmaiInv(sd, corr, dimVar) # derivation of log determinant # -.5*tr(Sigma^-1 %*% dSigma/ds) = -R (for sd.i) # = R*corr.i/(corr.i^2+1) (for corr.i) d1logDet <- c(-dimBlocks,dimBlocks[1]*corr/(corr^2+1)) # go through all variance parameters for(i in seq_len(dimSigma)){ dSi <- -Sigmai.inv %*% d1Sigma[,,i] %*% Sigmai.inv # CAVE: sign dS.i <- getSigma(dimSigma=dimVar,dimBlocks=dimBlocks,Sigmai=dSi) #dlpen.i <- -0.5* t(randomEffects) %*% dS.i %*% randomEffects # ~85% faster implementation using crossprod() avoiding "slow" t(): dlpen.i <- -0.5 * c(crossprod(randomEffects, dS.i) %*% randomEffects) #tr.d1logDetF <- sum(diag(F.inv.RE %*% dS.i)) tr.d1logDetF <- sum(F.inv.RE * dS.i) # since dS.i is symmetric #<- needs 1/100 (!) of the computation time of sum(diag(F.inv.RE %*% dS.i)) marg.score[i] <- d1logDet[i] + dlpen.i - 0.5 * tr.d1logDetF } return(marg.score) } marFisher <- function(sd.corr, theta, model, fisher.unpen=NULL, verbose=FALSE){ dimVar <- model$nVar dimCorr <- model$nCorr dimSigma <- model$nSigma if(dimSigma == 0){ return(matrix(numeric(0L),0L,0L)) } if(any(is.na(sd.corr))) stop("NAs in variance parameters.", ADVICEONERROR) sd <- head(sd.corr,dimVar) corr <- tail(sd.corr,dimCorr) pars <- splitParams(theta,model) randomEffects <- pars$random dimRE <- model$nRE dimBlocks <- model$rankRE[model$rankRE>0] Sigma.inv <- getSigmaInv(sd, corr, dimVar, dimBlocks) # if not given, calculate unpenalized part of fisher info if(is.null(fisher.unpen)){ fisher.unpen <- attr(penFisher(theta, sd.corr, model,attributes=TRUE), "fisher") } # add penalty to fisher fisher <- fisher.unpen thetaIdxRE <- seq.int(to=length(theta), length.out=dimRE) fisher[thetaIdxRE,thetaIdxRE] <- fisher[thetaIdxRE,thetaIdxRE] + Sigma.inv # inverse of penalized fisher info F.inv <- try(solve(fisher),silent=TRUE) if(inherits(F.inv,"try-error")){ if(verbose) cat(" WARNING (in marFisher): penalized Fisher is singular!\n") #return(matrix(Inf,dimSigma,dimSigma)) ## continuing with the generalized inverse often works, otherwise we would ## have to stop() here, because nlminb() cannot deal with NA's F.inv <- ginv(fisher) } F.inv.RE <- F.inv[thetaIdxRE,thetaIdxRE] ## declare F.inv.RE as a symmetric matrix? ##F.inv.RE <- new("dsyMatrix", Dim = dim(F.inv.RE), x = c(F.inv.RE)) ## -> no, F.inv.RE %*% dS.i becomes actually slower (dS.i is a "sparseMatrix") ############################################################ marg.hesse <- matrix(NA_real_,dimSigma,dimSigma) ## specify functions for derivatives deriv1 <- switch(dimVar,dSigma1, dSigma2, dSigma3) deriv2 <- switch(dimVar,d2Sigma1, d2Sigma2, d2Sigma3) d1Sigma <- deriv1(sd, corr) d2Sigma <- deriv2(sd, corr, d1Sigma) Sigmai.inv <- getSigmaiInv(sd, corr, dimVar) # 2nd derivatives of log determinant d2logDet <- diag(c(rep.int(0,dimVar),-dimBlocks[1]*(corr^2-1)/(corr^2+1)^2),dimSigma) # function to convert dS.i and dS.j matrices to sparse matrix objects dS2sparse <- if (dimCorr > 0) function (x) { forceSymmetric(as(x, "sparseMatrix")) # dS.i & dS.j are symmetric } else function (x) { #as(x, "diagonalMatrix") new("ddiMatrix", Dim = dim(x), diag = "N", x = diag(x)) } # go through all variance parameters for(i in seq_len(dimSigma)){ # compute first derivative of the penalized Fisher info (-> of Sigma^-1) # with respect to the i-th element of Sigma (= kronecker prod. of Sigmai and identity matrix) # Harville Ch15, Eq. 8.15: (d/d i)S^-1 = - S^-1 * (d/d i) S * S^-1 SigmaiInv.d1i <- Sigmai.inv %*% d1Sigma[,,i] dSi <- -SigmaiInv.d1i %*% Sigmai.inv dS.i <- getSigma(dimSigma=dimVar,dimBlocks=dimBlocks,Sigmai=dSi) dS.i <- dS2sparse(dS.i) # compute second derivatives for(j in i:dimSigma){ # compute (d/d j) S^-1 SigmaiInv.d1j <- Sigmai.inv %*% d1Sigma[,,j] dSj <- -SigmaiInv.d1j %*% Sigmai.inv dS.j <- getSigma(dimSigma=dimVar,dimBlocks=dimBlocks,Sigmai=dSj) dS.j <- dS2sparse(dS.j) # compute (d/di dj) S^-1 #dS.ij <- getSigma(dimSigma=dimVar,dimBlocks=dimBlocks, # Sigmai=d2Sigma[[i]][,,j]) # compute second derivatives of Sigma^-1 (Harville Ch15, Eq 9.2) d2S <- (- Sigmai.inv %*% d2Sigma[[i]][,,j] + SigmaiInv.d1i %*% SigmaiInv.d1j + SigmaiInv.d1j %*% SigmaiInv.d1i) %*% Sigmai.inv dSij <- getSigma(dimSigma=dimVar,dimBlocks=dimBlocks,Sigmai=d2S) #d2lpen.i <- -0.5* t(randomEffects) %*% dSij %*% randomEffects # ~85% faster implementation using crossprod() avoiding "slow" t(): d2lpen.i <- -0.5 * c(crossprod(randomEffects, dSij) %*% randomEffects) # compute second derivative of log-determinant of penFisher mpart1 <- dS.j %*% F.inv.RE # 3 times as fast as the other way round mpart2 <- dS.i %*% F.inv.RE mpart <- mpart1 %*% mpart2 ## speed-ups: - tr(F.inv.RE %*% dSij) simply equals sum(F.inv.RE * dSij) ## - accelerate matrix product by sparse matrices dS.i and dS.j ## - use cyclic permutation of trace: ## tr(F.inv.RE %*% dS.j %*% F.inv.RE %*% dS.i) = ## tr(dS.j %*% F.inv.RE %*% dS.i %*% F.inv.RE) tr.d2logDetF <- -sum(Matrix::diag(mpart)) + sum(F.inv.RE * dSij) marg.hesse[i,j] <- marg.hesse[j,i] <- d2logDet[i,j] + d2lpen.i - 0.5 * tr.d2logDetF } } marg.Fisher <- as.matrix(-marg.hesse) return(marg.Fisher) } ## first and second derivatives of the covariance matrix dSigma1 <- function(sd,corr){ derivs <- array(2*exp(2*sd), c(1,1,1)) return(derivs) } #d1: result of dSigma1 d2Sigma1 <- function(sd,corr,d1){ return(list(dsd1=2*d1)) } dSigma2 <- function(sd,corr){ derivs <- array(0,c(2,2,3)) dSigma <- diag(2*exp(2*sd)) if(length(corr)>0){ dSigma[1,2] <- dSigma[2,1] <- exp(sum(sd[1:2]))*corr[1]/sqrtOf1pr2(corr[1]) # derivative of corr_1 derivs[2,1,3] <- derivs[1,2,3] <- exp(sum(sd[1:2]))/(sqrtOf1pr2(corr[1])^3) } derivs[,,1:2] <- dSigma # derivative of sd_1 derivs[2,2,1] <- 0 # derivative of sd_2 derivs[1,1,2] <- 0 return(derivs) } d2Sigma2 <- function(sd,corr, d1){ derivs <- array(0,c(2,2,3)) result <- list(dsd1=d1, dsd2=derivs, dcorr1=derivs) result$dsd1[1,1,1] <- 2*d1[1,1,1] result$dsd1[2,2,2] <- 0 result$dsd2[,,2:3]<- d1[,,2:3] result$dsd2[2,2,2] <- 2*d1[2,2,2] if(length(corr)>0){ result$dcorr1[2,1,3] <- result$dcorr1[1,2,3] <- -(3*corr[1]*exp(sum(sd[1:2])))/(sqrtOf1pr2(corr[1])^5) } return(result) } dSigma3 <- function(sd,corr){ derivs <- array(0,c(3,3,6)) dSigma <- diag(2*exp(2*sd)) # if(length(corr)>0){ dSigma[1,2] <- dSigma[2,1] <- exp(sum(sd[1:2]))*corr[1]/sqrtOf1pr2(corr[1]) # dSigma[1,3] <- dSigma[3,1] <- exp(sum(sd[c(1,3)]))*corr[2]/sqrtOf1pr2(corr[2]) # dSigma[2,3] <- dSigma[3,2] <- exp(sum(sd[c(2,3)]))*(corr[1]*corr[2]*sqrtOf1pr2(corr[3])+corr[3])/prod(sqrtOf1pr2(corr[1:3]))# # derivative of corr_1 derivs[2,1,4] <- derivs[1,2,4] <- exp(sum(sd[1:2]))/(sqrtOf1pr2(corr[1])^3) derivs[3,2,4] <- derivs[2,3,4] <-(exp(sum(sd[2:3]))*(corr[2]*sqrtOf1pr2(corr[3])-prod(corr[c(1,3)])))/ (prod(sqrtOf1pr2(corr[2:3]))*(sqrtOf1pr2(corr[1])^3))# # derivative of corr_2 derivs[3,1,5] <- derivs[1,3,5] <- exp(sum(sd[c(3,1)]))/(sqrtOf1pr2(corr[2])^3)# derivs[3,2,5] <- derivs[2,3,5] <- (exp(sum(sd[2:3]))*(corr[1]*sqrtOf1pr2(corr[3])-prod(corr[c(2,3)])))/ (prod(sqrtOf1pr2(corr[c(1,3)]))*(sqrtOf1pr2(corr[2])^3)) # # derivative of corr_3 derivs[3,2,6] <- derivs[2,3,6] <- exp(sum(sd[2:3]))/ (prod(sqrtOf1pr2(corr[c(1,2)]))*(sqrtOf1pr2(corr[3])^3)) } derivs[,,1:3] <- dSigma # derivative of sd_1 derivs[2:3,2:3,1] <- 0 # derivative of sd_2 derivs[1,c(1,3),2] <- derivs[3,c(1,3),2] <- 0 # derivative of sd_3 derivs[1:2,1:2,3] <- 0 return(derivs) } d2Sigma3 <- function(sd,corr, d1) { derivs <- array(0,c(3,3,6)) result <- list(dsd1=d1, dsd2=derivs, dsd3=derivs, dcorr1=derivs, dcorr2=derivs, dcorr3=derivs) result$dsd1[1,1,1] <- 2*d1[1,1,1] result$dsd1[2,2:3,2] <- result$dsd1[3,2,2] <- 0 result$dsd1[2:3,2:3,3] <- 0 # result$dsd2[,,2]<- d1[,,2] result$dsd2[2,2,2] <- 2*d1[2,2,2] result$dsd2[3,2,3] <- result$dsd2[2,3,3] <- d1[3,2,3]# result$dsd3[,,3]<- d1[,,3] result$dsd3[3,3,3] <- 2*d1[3,3,3]# if (length(corr)>0) { result$dsd1[2:3,2:3,4] <- 0 result$dsd1[2:3,2:3,5] <- 0 result$dsd1[,,6] <- 0 result$dsd2[,,c(4,6)] <- d1[,,c(4,6)] result$dsd2[3,2,5] <- result$dsd2[2,3,5] <- d1[3,2,5] result$dsd3[3,2,4] <- result$dsd3[2,3,4] <- d1[3,2,4] result$dsd3[,,c(5,6)] <- d1[,,c(5,6)] # derivative of corr_1 result$dcorr1[2,1,4] <- result$dcorr1[1,2,4] <- -(exp(sum(sd[1:2]))*3*corr[1])/(sqrtOf1pr2(corr[1])^5) # result$dcorr1[3,2,4] <- result$dcorr1[2,3,4] <- -(exp(sum(sd[2:3]))*(corr[1]*(3*corr[2]*sqrtOf1pr2(corr[3])-2*prod(corr[c(1,3)])) + corr[3]) )/ (prod(sqrtOf1pr2(corr[2:3]))*(sqrtOf1pr2(corr[1])^5)) # result$dcorr1[3,2,5] <- result$dcorr1[2,3,5] <- (exp(sum(sd[2:3]))*(sqrtOf1pr2(corr[3])+prod(corr[1:3])))/ (prod(sqrtOf1pr2(corr[c(1,2)])^3)*sqrtOf1pr2(corr[3])) result$dcorr1[3,2,6] <- result$dcorr1[2,3,6] <- -(exp(sum(sd[2:3]))*corr[1])/ (prod(sqrtOf1pr2(corr[c(1,3)])^3)*sqrtOf1pr2(corr[2])) # derivative of corr_2 result$dcorr2[3,1,5] <- result$dcorr2[1,3,5] <- -(exp(sum(sd[c(3,1)]))*3*corr[2])/(sqrtOf1pr2(corr[2])^5) result$dcorr2[3,2,5] <- result$dcorr2[2,3,5] <- -(exp(sum(sd[2:3]))*(corr[2]*(3*corr[1]*sqrtOf1pr2(corr[3])-2*prod(corr[c(2,3)])) + corr[3]) )/ (prod(sqrtOf1pr2(corr[c(1,3)]))*(sqrtOf1pr2(corr[2])^5)) result$dcorr2[3,2,6] <- result$dcorr2[2,3,6] <- -exp(sum(sd[2:3]))*corr[2] / # SM @ 14/05/13: formula fixed, marFisher() # and hhh4()$Sigma.cov[5,6] are now correct (prod(sqrtOf1pr2(corr[c(2,3)])^3)*sqrtOf1pr2(corr[1])) # derivative of corr_3 result$dcorr3[3,2,6] <- result$dcorr3[2,3,6] <- -(exp(sum(sd[2:3]))*3*corr[3])/ (prod(sqrtOf1pr2(corr[c(1,2)]))*sqrtOf1pr2(corr[3])^5) } return(result) } ### Various optimizers updateParams_nlminb <- function (start, ll, sc, fi, ..., control) { lower <- control[["lower"]]; control$lower <- NULL upper <- control[["upper"]]; control$upper <- NULL scale <- control[["scale"]]; control$scale <- NULL negll <- function (x, ...) -ll(x, ...) negsc <- function (x, ...) -sc(x, ...) ## run the optimization res <- nlminb(start, negll, gradient=negsc, hessian=fi, ..., scale=scale, control=control, lower=lower, upper=upper) if (any(is.finite(c(lower, upper)))) checkParBounds(res$par, lower, upper) ## Done list(par=res$par, ll=-res$objective, rel.tol=getRelDiff(res$par, start), convergence=res$convergence, message=res$message) } updateParams_nr <- function (start, ll, sc, fi, ..., control) { ## objective function llscfi <- function (x, ...) { loglik <- ll(x, ...) attr(loglik, "score") <- sc(x, ...) attr(loglik, "fisher") <- fi(x, ...) loglik } ## run the optimization res <- newtonRaphson(start, llscfi, ..., control=control, verbose=control$verbose) ## Done list(par=res$coefficients, ll=res$loglikelihood, rel.tol=getRelDiff(res$coefficients, start), convergence=res$convergence, message=res$message) } updateParams_nlm <- function (start, ll, sc, fi, ..., control) { ## objective function negllscfi <- function (x, ...) { negloglik <- -ll(x, ...) attr(negloglik, "gradient") <- -sc(x, ...) attr(negloglik, "hessian") <- fi(x, ...) negloglik } ## run the optimization res <- do.call("nlm", args=c(alist(p=start, f=negllscfi, ...), control)) ## Done list(par=res$estimate, ll=-res$minimum, rel.tol=getRelDiff(res$estimate, start), convergence=as.numeric(res$code>2), message=res$message) ## nlm returns convergence status in $code, 1-2 indicate convergence, ## 3-5 indicate non-convergence } updateParams_optim <- function (start, ll, sc, fi, ..., control) { ## Note: "fi" is not used in optim method <- control[["method"]]; control$method <- NULL lower <- control[["lower"]]; control$lower <- NULL upper <- control[["upper"]]; control$upper <- NULL res <- optim(start, ll, sc, ..., # Note: control$fnscale is negative method=method, lower=lower, upper=upper, control=control) if (any(is.finite(c(lower, upper)))) checkParBounds(res$par, lower, upper) ## Done list(par=res$par, ll=res$value, rel.tol=getRelDiff(res$par, start), convergence=res$convergence, message=res$message) } ## Calculate relative parameter change criterion. ## We use a weaker criterion than the maximum relative parameter change ## max(abs(sd.corr.new/sd.corr - 1)) getRelDiff <- function (final, start) max(abs(final - start)) / max(abs(start)) checkParBounds <- function (par, lower, upper) { if (is.null(names(par))) names(par) <- seq_along(par) if (any(atl <- par <= lower)) cat(" WARNING: parameters reached lower bounds:", paste(names(par)[atl], par[atl], sep="=", collapse=", "), "\n") if (any(atu <- par >= upper)) cat(" WARNING: parameters reached upper bounds:", paste(names(par)[atu], par[atu], sep="=", collapse=", "), "\n") } ## default control arguments for updates defaultOptimControl <- function (method = "nlminb", lower = -Inf, upper = Inf, iter.max = NULL, verbose = 0) { if (is.null(iter.max)) iter.max <- 20 + 280*(method=="Nelder-Mead") lowVerbose <- verbose %in% 0:2 luOptimMethod <- method %in% c("Brent", "L-BFGS-B") defaults.nr <- list(scoreTol=1e-5, paramTol=1e-7, F.inc=0.01, stepFrac=0.5, niter=iter.max, verbose=verbose) defaults.nlminb <- list(iter.max=iter.max, scale=1, lower=lower, upper=upper, trace=if(lowVerbose) c(0,0,5)[verbose+1] else 1) defaults.nlm <- list(iterlim=iter.max, check.analyticals=FALSE, print.level=if(lowVerbose) c(0,0,1)[verbose+1] else 2) defaults.optim <- list(maxit=iter.max, fnscale=-1, trace=max(0,verbose-1), lower=if (luOptimMethod) lower else -Inf, upper=if (luOptimMethod) upper else Inf) switch(method, "nr" = defaults.nr, "nlm" = defaults.nlm, "nlminb" = defaults.nlminb, defaults.optim) } setOptimControl <- function (method, control, ...) { defaults <- defaultOptimControl(method, ...) cntrl <- modifyList(defaults, control) ## ensure fnscale < 0 (optim performs minimization) if (!is.null(cntrl$fnscale)) { # i.e., using optim() cntrl$method <- method # append method to control list if (cntrl$fnscale > 0) cntrl$fnscale <- -cntrl$fnscale } cntrl } ## fitHHH is the main workhorse where the iterative optimization is performed fitHHH <- function(theta, sd.corr, model, cntrl.stop=list(tol=1e-5, niter=100), cntrl.regression=list(method="nlminb"), cntrl.variance=list(method="nlminb"), verbose=0, shrinkage=FALSE) { dimFE.d.O <- model$nFE + model$nd + model$nOverdisp dimRE <- model$nRE getUpdater <- function (cntrl, start, ...) { method <- cntrl$method; cntrl$method <- NULL if (length(start) == 1 && method == "Nelder-Mead") { method <- "Brent" message("Switched optimizer from \"Nelder-Mead\" to \"Brent\"", " (dim(", deparse(substitute(start)), ")=1)") } list(paste("updateParams", if (method %in% c("nlminb", "nlm", "nr")) method else "optim", sep="_"), control = setOptimControl(method, cntrl, ...)) } ## ## artificial lower bound on intercepts of epidemic components ## reg.lower <- rep.int(-Inf, length(theta)) ## reg.lower[grep("^(ar|ne)\\.(1|ri)", model$namesFE)] <- -20 ## set optimizer for regression parameters updateRegressionControl <- getUpdater(cntrl.regression, theta, ## lower=reg.lower, iter.max=if(dimRE==0) 100, verbose=verbose+(dimRE==0)) updateRegression <- function (theta, sd.corr) do.call(updateRegressionControl[[1]], alist(theta, penLogLik, penScore, penFisher, sd.corr=sd.corr, model=model, control=updateRegressionControl[[2]])) ## set optimizer for variance parameters updateVarianceControl <- getUpdater(cntrl.variance, sd.corr, lower=-5, upper=5, verbose=verbose) updateVariance <- function (sd.corr, theta, fisher.unpen) do.call(updateVarianceControl[[1]], alist(sd.corr, marLogLik, marScore, marFisher, theta=theta, model=model, fisher.unpen=fisher.unpen, verbose=verbose>1, control=updateVarianceControl[[2]])) ## Let's go if (verbose>0) { cat(as.character(Sys.time()), ":", if (dimRE == 0) "Optimization of regression parameters" else "Iterative optimization of regression & variance parameters", "\n") } if (dimRE == 0) { # optimization of regression coefficients only parReg <- updateRegression(theta, sd.corr) theta <- parReg$par if ((convergence <- parReg$convergence) != 0 && !is.null(parReg$message)) cat("! Non-convergence message from optimizer:", parReg$message, "\n") } else { # swing between updateRegression & updateVariance convergence <- 99 i <- 0 while(convergence != 0 && (i < cntrl.stop$niter)){ i <- i+1 if (verbose>0) cat("\n") ## update regression coefficients parReg <- updateRegression(theta, sd.corr) theta <- parReg$par fisher.unpen <- attr(penFisher(theta, sd.corr, model, attributes=TRUE), "fisher") if(verbose>0) cat("Update of regression parameters: ", "max|x_0 - x_1| / max|x_0| =", parReg$rel.tol, "\n") if(parReg$convergence != 0) { if (!is.null(parReg$message)) cat("! Non-convergence message from optimizer:", parReg$message, "\n") cat("Update of regression coefficients in iteration ", i, " unreliable\n") } if(parReg$convergence > 20 && shrinkage){ cat("\n\n***************************************\nshrinkage", 0.1*theta[abs(theta)>10],"\n") theta[abs(theta)>10] <- 0.1*theta[abs(theta)>10] diag(fisher.unpen) <- diag(fisher.unpen)+1e-2 } ## update variance parameters parVar <- updateVariance(sd.corr, theta, fisher.unpen) if(verbose>0) cat("Update of variance parameters: max|x_0 - x_1| / max|x_0| =", parVar$rel.tol, "\n") if(parVar$convergence!=0) { if (!is.null(parVar$message)) print(parVar$message) cat("Update of variance parameters in iteration ", i, " unreliable\n") } ## NA values in sd.corr cause a stop() already in marLogLik() ## if(any(is.na(parVar$par))){ ## updateVarianceControl[[1]] <- "updateParams_optim" ## updateVarianceControl[[2]]$method <- ## if (length(sd.corr) == 1L) "Brent" else "Nelder-Mead" ## cat(" WARNING: at least one updated variance parameter is not a number\n", ## "\t-> NO UPDATE of variance\n", ## "\t-> SWITCHING to robust", dQuote(updateVarianceControl[[2]]$method), ## "for variance updates\n") ## } else sd.corr <- parVar$par ## overall convergence ? if( (parReg$rel.tol < cntrl.stop$tol) && (parVar$rel.tol < cntrl.stop$tol) && (parReg$convergence==0) && (parVar$convergence==0) ) convergence <- 0 ## exit loop if no more change in parameters (maybe false convergence) if (parReg$rel.tol == 0 && parVar$rel.tol == 0) break } } if(verbose > 0) { cat("\n") cat(as.character(Sys.time()), ":", if (convergence==0) "Optimization converged" else "Optimization DID NOT CONVERGE", "\n\n") } ll <- penLogLik(theta=theta,sd.corr=sd.corr,model=model) fisher <- penFisher(theta=theta,sd.corr=sd.corr,model=model) dimnames(fisher) <- list(names(theta), names(theta)) margll <- marLogLik(sd.corr=sd.corr, theta=theta, model=model) fisher.var <- marFisher(sd.corr=sd.corr, theta=theta, model=model, fisher.unpen=fisher.unpen) dimnames(fisher.var) <- list(names(sd.corr), names(sd.corr)) list(theta=theta, sd.corr=sd.corr, loglik=ll, margll=margll, fisher=fisher, fisherVar=fisher.var, convergence=convergence, dim=c(fixed=dimFE.d.O,random=dimRE)) } ## check analytical score functions and Fisher informations for ## a given model (the result of interpretControl(control, stsObj)) ## and given parameters theta (regression par.) and sd.corr (variance par.). ## This is a wrapper around functionality of the numDeriv and maxLik packages. checkAnalyticals <- function (model, theta = model$initialTheta, sd.corr = model$initialSigma, methods = c("numDeriv","maxLik")) { cat("\nPenalized log-likelihood:\n") resCheckPen <- sapply(methods, function(derivMethod) { if (requireNamespace(derivMethod)) { do.call(paste("checkDerivatives", derivMethod, sep="."), args=alist(penLogLik, penScore, penFisher, theta, sd.corr=sd.corr, model=model)) } }, simplify=FALSE, USE.NAMES=TRUE) if (length(resCheckPen) == 1L) resCheckPen <- resCheckPen[[1L]] resCheckMar <- if (length(sd.corr) == 0L) list() else { cat("\nMarginal log-likelihood:\n") fisher.unpen <- attr(penFisher(theta, sd.corr, model, attributes=TRUE), "fisher") resCheckMar <- sapply(methods, function(derivMethod) { if (requireNamespace(derivMethod)) { do.call(paste("checkDerivatives", derivMethod, sep="."), args=alist(marLogLik, marScore, marFisher, sd.corr, theta=theta, model=model, fisher.unpen=fisher.unpen)) } }, simplify=FALSE, USE.NAMES=TRUE) if (length(resCheckMar) == 1L) resCheckMar[[1L]] else resCheckMar } list(pen = resCheckPen, mar = resCheckMar) } surveillance/R/AllClass.R0000644000175100001440000000764213167134731015025 0ustar hornikusers# ------------- class sts ---------------------------------------- .sts <- setClass( "sts", slots = c( epoch = "numeric", # this slot was called "week" in surveillance < 1.3 freq = "numeric", start = "numeric", observed = "matrix", state = "matrix", alarm = "matrix", upperbound = "matrix", neighbourhood = "matrix", populationFrac = "matrix", map = "SpatialPolygons", control = "list", ## New slots added in version 1.1-2 to handle proportion time series: epochAsDate = "logical", multinomialTS = "logical" ), prototype = list( start = c(2000, 1), freq = 52, # historical defaults epochAsDate = FALSE, multinomialTS = FALSE ), validity = function (object) { dimObserved <- dim(object@observed) namesObserved <- colnames(object@observed) errors <- c( if (!isScalar(object@freq) || object@freq <= 0) "'freq' must be a single positive number", if (length(object@start) != 2) "'start' must be of length two: (year, week/month/idx)", if (!is.numeric(object@observed)) "'observed' must be a numeric matrix", ## check consistency of slot dimensions wrt dim(observed): if (length(object@epoch) != dimObserved[1L]) "'epoch' must be of length 'nrow(observed)'", if (!identical(dim(object@state), dimObserved)) "'state' must have the same dimensions as 'observed'", if (!identical(dim(object@alarm), dimObserved)) "'alarm' must have the same dimensions as 'observed'", if (!identical(dim(object@upperbound), dimObserved)) "'upperbound' must have the same dimensions as 'observed'", if (!identical(dim(object@neighbourhood), dimObserved[c(2L,2L)])) "'neighbourhood' must be a square matrix of size 'ncol(observed)'", if (!identical(dim(object@populationFrac), dimObserved)) "'populationFrac' must have the same dimensions as 'observed'", ## disallow NULL colnames in *multivariate* "sts" objects if (dimObserved[2L] > 1 && is.null(namesObserved)) "units must be named (set 'colnames(observed)')", ## FIXME: should we generally disallow NULL colnames? ## NOTE: aggregate(by="unit") previously (<= 1.15.0) had no colnames ## if a map is provided, it must cover all colnames(observed): if (length(object@map) > 0 && # i.e., not the empty prototype !all(namesObserved %in% row.names(object@map))) "'map' is incomplete; ensure that all(colnames(observed) %in% row.names(map))", ## check booleans if (length(object@epochAsDate) != 1 || is.na(object@epochAsDate)) "'epochAsDate' must be either TRUE or FALSE", if (length(object@multinomialTS) != 1 || is.na(object@multinomialTS)) "'multinomialTS' must be either TRUE or FALSE" ) if (length(errors) > 0) errors else TRUE } ) ###################################################################### # Definition of the stsBP class for backprojections. ###################################################################### setClass("stsBP", slots = list( ci = "array", lambda = "array" ), contains = "sts") ###################################################################### # Definition of the stsNC class for nowcasts. ###################################################################### setClass("stsNC", slots = list( reportingTriangle = "matrix", predPMF = "list", pi = "array", truth = "sts", delayCDF = "list", SR = "array" ), contains = "sts") surveillance/R/twinstim.R0000644000175100001440000016555713165625426015223 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Maximum Likelihood inference for the two-component spatio-temporal intensity ### model described in Meyer et al (2012), DOI: 10.1111/j.1541-0420.2011.01684.x ### ### Copyright (C) 2009-2017 Sebastian Meyer ### $Revision: 1983 $ ### $Date: 2017-10-06 09:04:54 +0200 (Fri, 06. Oct 2017) $ ################################################################################ ## model.frame() evaluates 'subset' and '...' with 'data' utils::globalVariables(c("tile", "type", "BLOCK", ".obsInfLength", ".bdist", "area")) twinstim <- function ( endemic, epidemic, siaf, tiaf, qmatrix = data$qmatrix, data, subset, t0 = data$stgrid$start[1], T = tail(data$stgrid$stop,1), na.action = na.fail, start = NULL, partial = FALSE, epilink = "log", control.siaf = list(F=list(), Deriv=list()), optim.args = list(), finetune = FALSE, model = FALSE, cumCIF = FALSE, cumCIF.pb = interactive(), cores = 1, verbose = TRUE ) { #################### ### Preparations ### #################### ptm <- proc.time() cl <- match.call() partial <- as.logical(partial) finetune <- if (partial) FALSE else as.logical(finetune) ## (inverse) link function for the epidemic linear predictor of event marks epilink <- match.arg(epilink, choices = c("log", "identity")) epilinkinv <- switch(epilink, "log" = exp, "identity" = identity) ## Clean the model environment when exiting the function on.exit(suppressWarnings(rm(cl, cumCIF, cumCIF.pb, data, doHessian, eventsData, finetune, neghess, fisherinfo, fit, fixed, functions, globalEndemicIntercept, inmfe, initpars, ll, negll, loglik, msgConvergence, msgNotConverged, mfe, mfhEvents, mfhGrid, model, my.na.action, na.action, namesOptimUser, namesOptimArgs, nlminbControl, nlminbRes, nlmObjective, nlmControl, nlmRes, nmRes, optim.args, optimArgs, control.siaf, optimMethod, optimRes, optimRes1, optimValid, origenv.endemic, origenv.epidemic, partial, partialloglik, ptm, qmatrix, res, negsc, score, start, subset, tmpexpr, typeSpecificEndemicIntercept, useScore, verbose, whichfixed, inherits = FALSE))) ## also set fixed[st]iafpars to FALSE (for free posteriori evaluations, and ## to be defined for score function evaluation with optim.args=NULL) on.exit(fixedsiafpars <- fixedtiafpars <- FALSE, add = TRUE) ### Verify that 'data' inherits from "epidataCS" if (!inherits(data, "epidataCS")) { stop("'data' must inherit from class \"epidataCS\"") } ### Check time range if (!isScalar(t0) || !isScalar(T)) { stop("endpoints 't0' and 'T' must be single numbers") } if (T <= t0) { stop("'T' must be greater than 't0'") } if (!t0 %in% data$stgrid$start) { justBeforet0 <- match(TRUE, data$stgrid$start > t0) - 1L # if 't0' is beyond the time range covered by 'data$stgrid' if (is.na(justBeforet0)) justBeforet0 <- length(data$stgrid$start) # t0 was too big if (justBeforet0 == 0L) justBeforet0 <- 1L # t0 was too small t0 <- data$stgrid$start[justBeforet0] message("replaced 't0' by the value ", t0, " (must be a 'start' time of 'data$stgrid')") } if (!T %in% data$stgrid$stop) { justAfterT <- match(TRUE, data$stgrid$stop > T) # if 'T' is beyond the time range covered by 'data$stgrid' if (is.na(justAfterT)) justAfterT <- length(data$stgrid$stop) # T was too big T <- data$stgrid$stop[justAfterT] message("replaced 'T' by the value ", T, " (must be a 'stop' time of 'data$stgrid')") } ### Subset events eventsData <- if (missing(subset)) data$events@data else { do.call("subset.data.frame", args = list( x = quote(data$events@data), subset = cl$subset, drop = FALSE )) } ############################################################# ### Build up a model.frame for both components separately ### ############################################################# ########################## ### epidemic component ### ########################## ### Parse epidemic formula if (missing(epidemic)) { origenv.epidemic <- parent.frame() epidemic <- ~ 0 } else { origenv.epidemic <- environment(epidemic) environment(epidemic) <- environment() ## such that t0 and T are found in the subset expression below } epidemic <- terms(epidemic, data = eventsData, keep.order = TRUE) if (!is.null(attr(epidemic, "offset"))) { warning("offsets are not implemented for the 'epidemic' component") } ### Generate model frame # na.action mod such that for simulated epidataCS, where events of the # prehistory have missing 'BLOCK' indexes, those NA's do not matter. # ok because actually, 'eventBlocks' are only used in the partial likelihood # and there only eventBlocks[includes] is used (i.e. no prehistory events) my.na.action <- function (object, ...) { prehistevents <- row.names(object)[object[["(time)"]] <= t0] if (length(prehistevents) == 0L) return(na.action(object, ...)) origprehistblocks <- object[prehistevents, "(BLOCK)"] # all NA object[prehistevents, "(BLOCK)"] <- 0L # temporary set non-NA xx <- na.action(object, ...) xx[match(prehistevents,row.names(xx),nomatch=0L), "(BLOCK)"] <- origprehistblocks[prehistevents %in% row.names(xx)] xx } mfe <- model.frame(epidemic, data = eventsData, subset = time + eps.t > t0 & time <= T, # here we can have some additional rows (individuals) compared to mfhEvents, which is established below! # Namely those with time in (t0-eps.t; t0], i.e. still infective individuals, which are part of the prehistory of the process na.action = my.na.action, # since R 2.10.0 patched also works with epidemic = ~1 and na.action=na.fail (see PR#14066) drop.unused.levels = FALSE, time = time, tile = tile, type = type, eps.t = eps.t, eps.s = eps.s, BLOCK = BLOCK, obsInfLength = .obsInfLength, bdist = .bdist) ### Extract essential information from model frame # 'inmfe' indexes rows of data$events@data and is necessary for subsetting # influenceRegion (list incompatible with model.frame) and coordinates. # Note: model.frame() takes row.names from data inmfe <- which(row.names(data$events@data) %in% row.names(mfe)) N <- length(inmfe) # mfe also contains events of the prehistory eventTimes <- mfe[["(time)"]] # I don't use model.extract since it returns named vectors # Indicate events after t0, which are actually part of the process # (events in (-Inf;t0] only contribute in sum over infected individuals) includes <- which(eventTimes > t0) # this indexes mfe! Nin <- length(includes) if (Nin == 0L) { stop("none of the ", nrow(data$events@data), " supplied ", "events is in the model (check 'subset', 't0' and 'T')") } eventBlocks <- mfe[["(BLOCK)"]] # only necessary for partial log-likelihood eventTypes <- factor(mfe[["(type)"]]) # drop unused levels typeNames <- levels(eventTypes) nTypes <- length(typeNames) if (verbose && nTypes > 1L) cat("marked point pattern of", nTypes, "types\n") qmatrix <- checkQ(qmatrix, typeNames) # we only need the integer codes for the calculations eventTypes <- as.integer(eventTypes) ### Generate model matrix mme <- model.matrix(epidemic, mfe) q <- ncol(mme) hase <- q > 0L ### Extract further model components (only if q > 0) if (hase) { eps.t <- mfe[["(eps.t)"]] removalTimes <- eventTimes + eps.t eps.s <- mfe[["(eps.s)"]] bdist <- mfe[["(bdist)"]] gIntUpper <- mfe[["(obsInfLength)"]] gIntLower <- pmax(0, t0-eventTimes) eventCoords <- coordinates(data$events)[inmfe,,drop=FALSE] influenceRegion <- data$events@data$.influenceRegion[inmfe] iRareas <- vapply(X = influenceRegion, FUN = attr, which = "area", FUN.VALUE = 0, USE.NAMES = FALSE) eventSources <- if (N == nobs(data) && identical(qmatrix, data$qmatrix)) { data$events@data$.sources } else { # re-determine because subsetting has invalidated row indexes if (verbose) cat("updating list of potential sources ...\n") determineSources(eventTimes = eventTimes, eps.t = eps.t, eventCoords = eventCoords, eps.s = eps.s, eventTypes = eventTypes, qmatrix = qmatrix) } ## calculate sum_{k=1}^K q_{kappa_j,k} for all j = 1:N qSum <- unname(rowSums(qmatrix)[eventTypes]) # N-vector } else if (verbose) { message("no epidemic component in model") } ### Drop "terms" and restore original formula environment epidemic <- formula(epidemic) if (epilink != "log") # set as attribute only if non-standard link function attr(epidemic, "link") <- epilink environment(epidemic) <- origenv.epidemic ## We keep the original formula environment since it will be used to ## evaluate the modified twinstim-call in drop1/add1 (with default ## enclos=baseenv()), and cl$data should be visible from there. ## Alternatively, we could set it to parent.frame(). ######################### ### endemic component ### ######################### ### Parse endemic formula if (missing(endemic)) { origenv.endemic <- parent.frame() endemic <- ~ 0 } else { origenv.endemic <- environment(endemic) environment(endemic) <- environment() ## such that t0 and T are found in the subset expressions below } endemic <- terms(endemic, data = data$stgrid, keep.order = TRUE) ## check for type-specific endemic intercept and remove it from the formula ## (will be handled separately) typeSpecificEndemicIntercept <- "1 | type" %in% attr(endemic, "term.labels") if (typeSpecificEndemicIntercept) { endemic <- update.formula(endemic, ~ . - (1|type)) # this drops the terms attributes endemic <- terms(endemic, data = data$stgrid, keep.order = TRUE) } globalEndemicIntercept <- if (typeSpecificEndemicIntercept) { attr(endemic, "intercept") <- 1L # we need this to ensure that we have correct contrasts FALSE } else attr(endemic, "intercept") == 1L nbeta0 <- globalEndemicIntercept + typeSpecificEndemicIntercept * nTypes ### Generate endemic model frame and model matrix on event data mfhEvents <- model.frame(endemic, data = eventsData[row.names(mfe),], subset = time>t0 & time<=T, na.action = na.fail, # since R 2.10.0 patched also works with # endemic = ~1 (see PR#14066) drop.unused.levels = FALSE) mmhEvents <- model.matrix(endemic, mfhEvents) # exclude intercept from endemic model matrix below, will be treated separately if (nbeta0 > 0) mmhEvents <- mmhEvents[,-1,drop=FALSE] #stopifnot(nrow(mmhEvents) == Nin) p <- ncol(mmhEvents) hash <- (nbeta0+p) > 0L ### Generate model frame and model matrix on grid data (only if p > 0) if (hash) { offsetEvents <- model.offset(mfhEvents) mfhGrid <- model.frame(endemic, data = data$stgrid, subset = start >= t0 & stop <= T, na.action = na.fail, # since R 2.10.0 patched also works with # endemic = ~1 (see PR#14066) drop.unused.levels = FALSE, BLOCK=BLOCK, tile=tile, dt=stop-start, ds=area) # 'tile' is redundant here for fitting but useful # for debugging & necessary for intensityplots gridBlocks <- mfhGrid[["(BLOCK)"]] histIntervals <- data$stgrid[!duplicated.default( data$stgrid$BLOCK, nmax = data$stgrid$BLOCK[length(data$stgrid$BLOCK)] ), c("BLOCK", "start", "stop")] # sorted row.names(histIntervals) <- NULL histIntervals <- histIntervals[histIntervals$start >= t0 & histIntervals$stop <= T,] gridTiles <- mfhGrid[["(tile)"]] # only needed for intensityplot mmhGrid <- model.matrix(endemic, mfhGrid) nGrid <- nrow(mmhGrid) # exclude intercept from endemic model matrix below, will be treated separately if (nbeta0 > 0) mmhGrid <- mmhGrid[,-1,drop=FALSE] # Extract endemic model components offsetGrid <- model.offset(mfhGrid) dt <- mfhGrid[["(dt)"]] ds <- mfhGrid[["(ds)"]] ## expression to calculate the endemic part on the grid -> .hIntTW() if (p > 0L) { hGridExpr <- quote(drop(mmhGrid %*% beta)) if (!is.null(offsetGrid)) hGridExpr <- call("+", quote(offsetGrid), hGridExpr) } else { hGridExpr <- if (is.null(offsetGrid)) quote(numeric(nGrid)) else quote(offsetGrid) } hGridExpr <- call("exp", hGridExpr) ## expression to calculate the endemic part for the events -> .hEvents() hEventsExpr <- if (p > 0L) { quote(drop(mmhEvents %*% beta)) } else { quote(numeric(Nin)) } if (nbeta0 == 1L) { # global intercept hEventsExpr <- call("+", quote(beta0), hEventsExpr) } else if (nbeta0 > 1L) { # type-specific intercept hEventsExpr <- call("+", quote(beta0[eventTypes]), hEventsExpr) } if (!is.null(offsetEvents)) hEventsExpr <- call("+", quote(offsetEvents), hEventsExpr) hEventsExpr <- call("exp", hEventsExpr) } else if (verbose) message("no endemic component in model") ### Drop "terms" and restore original formula environment endemic <- if (typeSpecificEndemicIntercept) { ## re-add it to the endemic formula update.formula(formula(endemic), ~ (1|type) + .) } else formula(endemic) environment(endemic) <- origenv.endemic ## We keep the original formula environment since it will be used to ## evaluate the modified twinstim-call in drop1/add1 (with default ## enclos=baseenv()), and cl$data should be visible from there. ## Alternatively, we could set it to parent.frame(). ### Stop if model is degenerate if (!hash) { if (hase) { if (nEventsWithoutSources <- sum(lengths(eventSources[includes]) == 0)) stop("found ", nEventsWithoutSources, " events without .sources ", "(impossible in a purely epidemic model)") } else { stop("nothing to do: neither endemic nor epidemic parts were specified") } } ############################# ### Interaction functions ### ############################# if (hase) { ## Check interaction functions siaf <- do.call(".parseiaf", args = alist(siaf, "siaf", eps.s, verbose)) constantsiaf <- attr(siaf, "constant") nsiafpars <- siaf$npars tiaf <- do.call(".parseiaf", args = alist(tiaf, "tiaf", eps.t, verbose)) constanttiaf <- attr(tiaf, "constant") ntiafpars <- tiaf$npars ## Check control.siaf if (constantsiaf) { control.siaf <- NULL } else if (is.list(control.siaf)) { if (!is.null(control.siaf$F)) stopifnot(is.list(control.siaf$F)) if (!is.null(control.siaf$Deriv)) stopifnot(is.list(control.siaf$Deriv)) } else if (!is.null(control.siaf)) { stop("'control.siaf' must be a list or NULL") } ## should we compute siafInt in parallel? useParallel <- cores > 1L && requireNamespace("parallel") ## but do not parallelize for a memoised siaf.step (becomes slower) if (useParallel && !is.null(attr(siaf, "knots")) && !is.null(attr(siaf, "maxRange")) && requireNamespace("memoise", quietly = TRUE) && memoise::is.memoised(environment(siaf$f)$ringAreas)) { cores <- 1L useParallel <- FALSE } ## Define function that integrates the 'tiaf' function .tiafInt <- .tiafIntFUN() ## Define function that integrates the two-dimensional 'siaf' function ## over the influence regions of the events ..siafInt <- if (is.null(control.siaf[["siafInt"]])) { .siafInt <- .siafIntFUN(siaf = siaf, noCircularIR = all(eps.s > bdist), parallel = useParallel) ## Memoisation of .siafInt if (!constantsiaf && requireNamespace("memoise")) { memoise::memoise(.siafInt) ## => speed-up optimization since 'nlminb' evaluates the loglik and ## score for the same set of parameters at the end of each iteration } else { if (!constantsiaf && verbose) message("Continuing without memoisation of 'siaf$f' cubature ...") .siafInt } } else { ## predefined cubature results in epitest(..., fixed = TRUE), ## where siafInt is identical during all permutations (only permuted) stopifnot(is.vector(control.siaf[["siafInt"]], mode = "numeric"), length(control.siaf[["siafInt"]]) == N) local({ env <- new.env(hash = FALSE, parent = .GlobalEnv) env$siafInt <- control.siaf[["siafInt"]] as.function(alist(siafpars=, ...=, siafInt), envir = env) }) } .siafInt.args <- c(alist(siafpars), control.siaf$F) } else { if (!missing(siaf) && !is.null(siaf)) warning("'siaf' can only be modelled in conjunction with an 'epidemic' process") if (!missing(tiaf) && !is.null(tiaf)) warning("'tiaf' can only be modelled in conjunction with an 'epidemic' process") siaf <- tiaf <- NULL nsiafpars <- ntiafpars <- 0L control.siaf <- NULL } hassiafpars <- nsiafpars > 0L hastiafpars <- ntiafpars > 0L ## Can we calculate the score function? useScore <- if (partial) FALSE else if (hase) { (!hassiafpars | !is.null(siaf$deriv)) & (!hastiafpars | (!is.null(tiaf$deriv)) & !is.null(tiaf$Deriv)) } else TRUE ## Define function that applies siaf$Deriv on all events (integrate the ## two-dimensional siaf$deriv function) if (useScore && hassiafpars) { .siafDeriv <- mapplyFUN( c(alist(siaf$Deriv, influenceRegion, type=eventTypes), list(MoreArgs=quote(list(siaf$deriv, siafpars, ...)), SIMPLIFY=TRUE, USE.NAMES=FALSE)), ##<- we explicitly quote() the ...-part instead of simply including ## it in the above alist() - only to make checkUsage() happy ## depending on nsiafpars, mapply() will return an N-vector ## or a nsiafpars x N matrix => transform to N x nsiafpars: after = quote(if (is.matrix(res)) t(res) else as.matrix(res)), parallel = useParallel) .siafDeriv.args <- c(alist(siafpars), control.siaf$Deriv) } ############################################################################ ### Log-likelihood function, score function, expected Fisher information ### ############################################################################ ### Total number of parameters (= length of 'theta') npars <- nbeta0 + p + q + nsiafpars + ntiafpars # REMINDER: # theta - parameter vector c(beta0, beta, gamma, siafpars, tiafpars), where # beta0 - endemic intercept (maybe type-specific) # beta - other parameters of the endemic component exp(offset + eta_h(t,s)) # gamma - coefficients of the epidemic predictor # siafpars- parameters of the epidemic spatial interaction function # tiafpars- parameters of the epidemic temporal interaction function # mmh[Events/Grid] - model matrix related to beta, i.e the endemic component, # either for events only or for the whole spatio-temporal grid # offset[Events/Grid] - offset vector related to the endemic component (can be NULL), # either for events only or for the whole spatio-temporal grid # dt, ds - columns of the spatio-temporal grid (dt = stop-start, ds = area) # mme - model matrix related to gamma in the epidemic component # siaf, tiaf - spatial/temporal interaction function (NULL, list or numeric) # eventTimes, eventCoords, eventSources, gIntLower, gIntUpper, influenceRegion - # columns of the events data frame if (hash) { ### Calculates the endemic component (for i in includes -> Nin-vector) ### h(t_i,s_i,kappa_i) = exp(offset_i + beta_{0,kappa_i} + eta_h(t_i,s_i)) .hEvents <- function (beta0, beta) {} body(.hEvents) <- hEventsExpr ### Integral of the endemic component over [0;uppert] x W .hIntTW <- function (beta, score = NULL, #matrix(1,nrow(mmhGrid),1L) uppert = NULL) {} body(.hIntTW) <- as.call(c(as.name("{"), expression( subtimeidx <- if (!is.null(uppert)) { # && isScalar(uppert) && t0 <= uppert && uppert < T if (uppert == t0) return(0) # actually never happens # since uppert %in% eventTimes[includes] > t0 idx <- match(TRUE, histIntervals$stop >= uppert) firstBlockBeyondUpper <- histIntervals$BLOCK[idx] newdt <- uppert - histIntervals$start[idx] dt[gridBlocks == firstBlockBeyondUpper] <- newdt which(gridBlocks <= firstBlockBeyondUpper) } else NULL ), substitute(hGrid <- hGridExpr, list(hGridExpr=hGridExpr)), expression(sumterms <- hGrid * ds * dt), expression(if (is.null(score)) { if (is.null(subtimeidx)) sum(sumterms) else sum(sumterms[subtimeidx]) } else { if (is.null(subtimeidx)) .colSums(score * sumterms, nGrid, ncol(score)) else .colSums((score * sumterms)[subtimeidx,,drop=FALSE], length(subtimeidx), ncol(score)) }) )) } if (hase) { ### Calculates the epidemic component for all events .eEvents <- function (gammapred, siafpars, tiafpars, ncolsRes = 1L, score = matrix(1,N,ncolsRes), f = siaf$f, g = tiaf$g) # second line arguments are for score functions with defaults for loglik { e <- vapply(X = includes, FUN = function (i) { sources <- eventSources[[i]] nsources <- length(sources) if (nsources == 0L) numeric(ncolsRes) else { scoresources <- score[sources,,drop=FALSE] predsources <- gammapred[sources] repi <- rep.int(i, nsources) sdiff <- eventCoords[repi,,drop=FALSE] - eventCoords[sources,,drop=FALSE] fsources <- f(sdiff, siafpars, eventTypes[sources]) tdiff <- eventTimes[repi] - eventTimes[sources] gsources <- g(tdiff, tiafpars, eventTypes[sources]) # if(length(predsources) != NROW(fsources) || NROW(fsources) != NROW(gsources)) browser() .colSums(scoresources * predsources * fsources * gsources, nsources, ncolsRes) } }, FUN.VALUE = numeric(ncolsRes), USE.NAMES = FALSE) ## return a vector if ncolsRes=1, otherwise a matrix (Nin x ncolsRes) if (ncolsRes == 1L) e else t(e) } } ### Calculates the two components of the integrated intensity function ### over [0;uppert] x W x K heIntTWK <- function (beta0, beta, gammapred, siafpars, tiafpars, uppert = NULL) {} body(heIntTWK) <- as.call(c(as.name("{"), if (hash) { # endemic component expression( hIntTW <- .hIntTW(beta, uppert = uppert), .beta0 <- rep_len(if (nbeta0==0L) 0 else beta0, nTypes), fact <- sum(exp(.beta0)), hInt <- fact * hIntTW ) } else { expression(hInt <- 0) }, if (hase) { # epidemic component c(expression(siafInt <- do.call("..siafInt", .siafInt.args)),#N-vector if (useParallel) expression( # print "try-catch"ed errors if (any(.nonfinitesiafint <- !is.finite(siafInt))) stop("invalid result of 'siaf$F' for 'siafpars=c(", paste(signif(siafpars, getOption("digits")), collapse=", "), ")':\n", paste(unique(siafInt[.nonfinitesiafint]), sep="\n"), call.=FALSE) ), expression( if (!is.null(uppert)) { # && isScalar(uppert) && t0 <= uppert && uppert < T gIntUpper <- pmin(uppert-eventTimes, eps.t) subtimeidx <- eventTimes < uppert tiafIntSub <- .tiafInt(tiafpars, from = gIntLower[subtimeidx], to = gIntUpper[subtimeidx], type = eventTypes[subtimeidx]) eInt <- sum(qSum[subtimeidx] * gammapred[subtimeidx] * siafInt[subtimeidx] * tiafIntSub) } else { tiafInt <- .tiafInt(tiafpars) eInt <- sum(qSum * gammapred * siafInt * tiafInt) } ) ) } else expression(eInt <- 0), expression(c(hInt, eInt)) )) ### Calculates the log-likelihood loglik <- function (theta) { # Extract parameters from theta beta0 <- theta[seq_len(nbeta0)] beta <- theta[nbeta0+seq_len(p)] gamma <- theta[nbeta0+p+seq_len(q)] siafpars <- theta[nbeta0+p+q+seq_len(nsiafpars)] tiafpars <- theta[nbeta0+p+q+nsiafpars+seq_len(ntiafpars)] # dN part of the log-likelihood hEvents <- if (hash) .hEvents(beta0, beta) else 0 eEvents <- if (hase) { gammapred <- drop(epilinkinv(mme %*% gamma)) # N-vector .eEvents(gammapred, siafpars, tiafpars) # Nin-vector! (only 'includes' here) } else 0 lambdaEvents <- hEvents + eEvents # Nin-vector llEvents <- sum(log(lambdaEvents)) # * llEvents is -Inf in case of 0-intensity at any event time # * If epilinkinv is 'identity', lambdaEvents < 0 if eEvents < -hEvents, # and llEvents is NaN with a warning (intensity must be positive) if (is.nan(llEvents)) # nlminb() does not like NA function values llEvents <- -Inf # lambda integral of the log-likelihood heInt <- heIntTWK(beta0, beta, gammapred, siafpars, tiafpars) # !hase => missing(gammapred), but lazy evaluation omits an error in this case because heIntTWK doesn't ask for gammapred llInt <- sum(heInt) # Return the log-likelihood ll <- llEvents - llInt ll } ### Calculates the score vector score <- function (theta) { # Extract parameters from theta beta0 <- theta[seq_len(nbeta0)] beta <- theta[nbeta0+seq_len(p)] gamma <- theta[nbeta0+p+seq_len(q)] siafpars <- theta[nbeta0+p+q+seq_len(nsiafpars)] tiafpars <- theta[nbeta0+p+q+nsiafpars+seq_len(ntiafpars)] if (hase) { gammapred <- drop(epilinkinv(mme %*% gamma)) # N-vector hEvents <- if (hash) .hEvents(beta0, beta) else 0 eEvents <- .eEvents(gammapred, siafpars, tiafpars) # Nin-vector! (only 'includes' here) lambdaEvents <- hEvents + eEvents # Nin-vector siafInt <- do.call("..siafInt", .siafInt.args) # N-vector tiafInt <- .tiafInt(tiafpars) # N-vector } # score vector for beta hScore <- if (hash) { score_beta0 <- if (nbeta0 == 1L) local({ # global intercept sEvents <- if (hase) { hEvents / lambdaEvents } else rep.int(1, Nin) sEventsSum <- sum(sEvents) sInt <- nTypes*exp(beta0) * .hIntTW(beta) sEventsSum - unname(sInt) }) else if (nbeta0 > 1L) local({ # type-specific intercepts ind <- sapply(seq_len(nTypes), function (type) eventTypes == type, simplify=TRUE, USE.NAMES=FALSE) # logical N x nTypes matrix sEvents <- if (hase) { ind * hEvents / lambdaEvents } else ind sEventsSum <- .colSums(sEvents, N, nTypes) sInt <- exp(beta0) * .hIntTW(beta) sEventsSum - unname(sInt) }) else numeric(0L) # i.e. nbeta0 == 0L score_beta <- if (p > 0L) local({ sEvents <- if (hase) { mmhEvents * hEvents / lambdaEvents } else mmhEvents sEventsSum <- .colSums(sEvents, Nin, p) fact <- if (nbeta0 > 1L) sum(exp(beta0)) else if (nbeta0 == 1L) nTypes*exp(beta0) else nTypes sInt <- fact * .hIntTW(beta, mmhGrid) sEventsSum - sInt }) else numeric(0L) c(score_beta0, score_beta) } else numeric(0L) # score vector for gamma, siafpars and tiafpars eScore <- if (hase) { score_gamma <- local({ nom <- .eEvents(switch(epilink, "log" = gammapred, "identity" = rep.int(1, N)), siafpars, tiafpars, ncolsRes=q, score=mme) # Nin-vector if q=1 sEventsSum <- .colSums(nom / lambdaEvents, Nin, q) # |-> dotted version also works for vector-arguments dgammapred <- switch(epilink, "log" = mme * gammapred, "identity" = mme) sInt <- .colSums(dgammapred * (qSum * siafInt * tiafInt), N, q) sEventsSum - sInt }) score_siafpars <- if (hassiafpars && !fixedsiafpars) local({ nom <- .eEvents(gammapred, siafpars, tiafpars, ncolsRes=nsiafpars, f=siaf$deriv) sEventsSum <- .colSums(nom / lambdaEvents, Nin, nsiafpars) derivInt <- do.call(".siafDeriv", .siafDeriv.args) # N x nsiafpars matrix ## if useParallel, derivInt may contain "try-catch"ed errors ## in which case we receive a one-column character or list matrix if (!is.numeric(derivInt)) # we can throw a helpful error message stop("invalid result of 'siaf$Deriv' for 'siafpars=c(", paste(signif(siafpars, getOption("digits")), collapse=", "), ")':\n", paste(unique(derivInt[sapply(derivInt, is.character)]), sep="\n"), call.=FALSE) sInt <- .colSums(derivInt * (qSum * gammapred * tiafInt), N, nsiafpars) sEventsSum - sInt }) else numeric(nsiafpars) # if 'fixedsiafpars', this part is unused score_tiafpars <- if (hastiafpars && !fixedtiafpars) local({ nom <- .eEvents(gammapred, siafpars, tiafpars, ncolsRes=ntiafpars, g=tiaf$deriv) sEventsSum <- .colSums(nom / lambdaEvents, Nin, ntiafpars) derivIntUpper <- tiaf$Deriv(gIntUpper, tiafpars, eventTypes) derivIntLower <- tiaf$Deriv(gIntLower, tiafpars, eventTypes) derivInt <- derivIntUpper - derivIntLower # N x ntiafpars matrix sInt <- .colSums(derivInt * (qSum * gammapred * siafInt), N, ntiafpars) sEventsSum - sInt }) else numeric(ntiafpars) # if 'fixedtiafpars', this part is unused c(score_gamma, score_siafpars, score_tiafpars) } else numeric(0L) # return the score vector scorevec <- c(hScore, eScore) scorevec } ### Estimates the expected Fisher information matrix ### by the "optional variation process" (Martinussen & Scheike, p. 64), ### or see Rathbun (1996, equation (4.7)) fisherinfo <- function (theta) { # Extract parameters from theta beta0 <- theta[seq_len(nbeta0)] beta <- theta[nbeta0+seq_len(p)] gamma <- theta[nbeta0+p+seq_len(q)] siafpars <- theta[nbeta0+p+q+seq_len(nsiafpars)] tiafpars <- theta[nbeta0+p+q+nsiafpars+seq_len(ntiafpars)] # only events (intdN) part of the score function needed zeromatrix <- matrix(0, Nin, 0) if (hase) { gammapred <- drop(epilinkinv(mme %*% gamma)) # N-vector hEvents <- if (hash) .hEvents(beta0, beta) else 0 eEvents <- .eEvents(gammapred, siafpars, tiafpars) # Nin-vector! (only 'includes' here) lambdaEvents <- hEvents + eEvents # Nin-vector } # for beta hScoreEvents <- if (hash) { scoreEvents_beta0 <- if (nbeta0 > 1L) local({ # type-specific intercepts ind <- sapply(seq_len(nTypes), function (type) eventTypes == type, simplify=TRUE, USE.NAMES=FALSE) # logical N x nTypes matrix if (hase) { ind * hEvents / lambdaEvents } else ind }) else if (nbeta0 == 1L) { # global intercept if (hase) { hEvents / lambdaEvents } else matrix(1, Nin, 1L) } else zeromatrix scoreEvents_beta <- if (p > 0L) { if (hase) { mmhEvents * hEvents / lambdaEvents } else mmhEvents # Nin x p matrix } else zeromatrix unname(cbind(scoreEvents_beta0, scoreEvents_beta, deparse.level=0)) } else zeromatrix # for gamma, siafpars and tiafpars eScoreEvents <- if (hase) { scoreEvents_gamma_nom <- .eEvents(switch(epilink, "log" = gammapred, "identity" = rep.int(1, N)), siafpars, tiafpars, ncolsRes = q, score = mme) # Ninxq matrix scoreEvents_siafpars_nom <- if (hassiafpars) { .eEvents(gammapred, siafpars, tiafpars, ncolsRes = nsiafpars, f = siaf$deriv) # Ninxnsiafpars matrix } else zeromatrix scoreEvents_tiafpars_nom <- if (hastiafpars) { .eEvents(gammapred, siafpars, tiafpars, ncolsRes = ntiafpars, g = tiaf$deriv) # Ninxntiafpars matrix } else zeromatrix eScoreEvents_nom <- cbind(scoreEvents_gamma_nom, scoreEvents_siafpars_nom, scoreEvents_tiafpars_nom, deparse.level=0) eScoreEvents_nom / lambdaEvents } else zeromatrix scoreEvents <- cbind(hScoreEvents, eScoreEvents, deparse.level=0) ## Build the optional variation process (Martinussen & Scheike, p64) ## info <- matrix(0, nrow = npars, ncol = npars, ## dimnames = list(names(theta), names(theta))) ## for (i in 1:Nin) info <- info + crossprod(scoreEvents[i,,drop=FALSE]) ## oh dear, this is nothing else but t(scoreEvents) %*% scoreEvents crossprod(scoreEvents) } ### Calculates the partial log-likelihood for continuous space ### (Diggle et al., 2009) partialloglik <- function (theta) { # Extract parameters from theta beta0 <- theta[seq_len(nbeta0)] beta <- theta[nbeta0+seq_len(p)] gamma <- theta[nbeta0+p+seq_len(q)] siafpars <- theta[nbeta0+p+q+seq_len(nsiafpars)] tiafpars <- theta[nbeta0+p+q+nsiafpars+seq_len(ntiafpars)] # calculcate the observed intensities hEvents <- if (hash) .hEvents(beta0, beta) else 0 eEvents <- if (hase) { gammapred <- drop(epilinkinv(mme %*% gamma)) # N-vector .eEvents(gammapred, siafpars, tiafpars) # Nin-vector! (only 'includes' here) } else 0 lambdaEvents <- hEvents + eEvents # Nin-vector # calculate integral of lambda(t_i, s, kappa) over at-risk set = (observation region x types) hInts <- if (hash) { # endemic component hGrid <- eval(hGridExpr) # integral over W and types for each time block in mfhGrid fact <- if (nbeta0 > 1L) sum(exp(beta0)) else if (nbeta0 == 1L) nTypes*exp(beta0) else nTypes hInt_blocks <- fact * tapply(hGrid*ds, gridBlocks, sum, simplify=TRUE) .idx <- match(eventBlocks[includes], names(hInt_blocks)) unname(hInt_blocks[.idx]) # Nin-vector } else 0 eInts <- if (hase) { # epidemic component siafInt <- do.call("..siafInt", .siafInt.args) # N-vector gs <- gammapred * siafInt # N-vector sapply(includes, function (i) { timeSources <- determineSources1(i, eventTimes, removalTimes, 0, Inf, NULL) nSources <- length(timeSources) if (nSources == 0L) 0 else { repi <- rep.int(i, nSources) tdiff <- eventTimes[repi] - eventTimes[timeSources] gsources <- tiaf$g(tdiff, tiafpars, eventTypes[timeSources]) sum(qSum[timeSources] * gs[timeSources] * gsources) } }, simplify=TRUE, USE.NAMES=FALSE) # Nin-vector } else 0 lambdaEventsIntW <- hInts + eInts # Nin-vector # Calculate and return the partial log-likelihood p <- lambdaEvents / lambdaEventsIntW # Nin-vector pll <- sum(log(p)) pll } ################################ ### Prepare for optimization ### ################################ ll <- if (partial) partialloglik else loglik functions <- list(ll = ll, sc = if (useScore) score else NULL, fi = if (useScore) fisherinfo else NULL) ### Include check for validity of siafpars and tiafpars ('validpars') in ll if (!is.null(siaf$validpars)) { body(ll) <- as.call(append(as.list(body(ll)), as.list(expression( if (hassiafpars && !siaf$validpars(siafpars)) { if (!isTRUE(optimArgs$control$trace == 0)) # default: NULL cat("(invalid 'siafpars' in loglik)\n") return(-Inf) } )), after = grep("^siafpars <-", body(ll)))) } if (!is.null(tiaf$validpars)) { body(ll) <- as.call(append(as.list(body(ll)), as.list(expression( if (hastiafpars && !tiaf$validpars(tiafpars)) { if (!isTRUE(optimArgs$control$trace == 0)) # default: NULL cat("(invalid 'tiafpars' in loglik)\n") return(-Inf) } )), after = grep("^tiafpars <-", body(ll)))) } ### Check that optim.args is a list or NULL if (is.null(optim.args)) { # no optimisation requested setting <- functions on.exit(rm(setting), add = TRUE) # Append model information setting$npars <- c(nbeta0 = nbeta0, p = p, q = q, nsiafpars = nsiafpars, ntiafpars = ntiafpars) setting$qmatrix <- qmatrix # -> information about nTypes and typeNames setting$formula <- list(endemic = endemic, epidemic = epidemic, siaf = siaf, tiaf = tiaf) # Return settings setting$call <- cl environment(setting) <- environment() if (verbose) message("optimization skipped", " (returning functions in data environment)") return(setting) } else if (!is.list(optim.args)) stop("'optim.args' must be a list or NULL") ### Check initial value for theta initpars <- rep(0, npars) names(initpars) <- c( if (nbeta0 > 1L) { paste0("h.type",typeNames) } else if (nbeta0 == 1L) "h.(Intercept)", if (p > 0L) paste("h", colnames(mmhEvents), sep = "."), if (hase) paste("e", colnames(mme), sep = "."), if (hassiafpars) paste("e.siaf", seq_len(nsiafpars), sep="."), if (hastiafpars) paste("e.tiaf", seq_len(ntiafpars), sep=".") ) ## some naive defaults if (nbeta0 > 0) initpars[seq_len(nbeta0)] <- crudebeta0( nEvents = Nin, offset.mean = if (is.null(offsetGrid)) 0 else weighted.mean(offsetGrid, ds), W.area = sum(ds[gridBlocks==histIntervals[1,"BLOCK"]]), period = T-t0, nTypes = nTypes ) if (hase && "e.(Intercept)" %in% names(initpars) && epilink == "log") initpars["e.(Intercept)"] <- -9 # suitable value depends on [st]iafInt if (hassiafpars && identical(body(siaf$f)[[2L]], quote(sds <- exp(pars)))) { ## "detect" siaf.gaussian => use 10% of bbox diameter as initial sd initpars[paste0("e.siaf.", seq_len(nsiafpars))] <- round(log(0.1*sqrt(sum(apply(bbox(data$W), 1L, diff.default)^2)))) } ## manual par-specification overrides these defaults if (!is.null(optim.args[["par"]])) { if (!is.vector(optim.args$par, mode="numeric")) { stop("'optim.args$par' must be a numeric vector") } if (length(optim.args$par) != npars) { stop(gettextf(paste("'optim.args$par' (%d) does not have the same", "length as the number of unknown parameters (%d)"), length(optim.args$par), npars)) } initpars[] <- optim.args$par } ## values in "start" overwrite defaults and optim.args$par if (!is.null(start)) { start <- check_twinstim_start(start) start <- start[names(start) %in% names(initpars)] initpars[names(start)] <- start } ## warn if initial intercept is negative when the identity link is used if (epilink == "identity" && "e.(Intercept)" %in% names(initpars) && initpars["e.(Intercept)"] < 0) warning("identity link and negative start value for \"e.(Intercept)\"") ## update optim.args$par optim.args$par <- initpars ### Fixed parameters during optimization fixed <- optim.args[["fixed"]] optim.args[["fixed"]] <- NULL whichfixed <- if (is.null(fixed)) { integer(0L) } else if (isTRUE(fixed)) { seq_len(npars) } else { stopifnot(is.vector(fixed)) if (is.numeric(fixed)) { stopifnot(fixed %in% seq_len(npars)) fixed } else if (is.character(fixed)) { ## we silently ignore names of non-existent parameters intersect(fixed, names(initpars)) } else if (is.logical(fixed)) { stopifnot(length(fixed) == npars) which(fixed) } else { stop("'optim.args$fixed' must be a numeric, character or logical vector") } } fixed <- setNames(logical(npars), names(initpars)) # FALSE fixed[whichfixed] <- TRUE fixedsiafpars <- hassiafpars && all(fixed[paste("e.siaf", 1:nsiafpars, sep=".")]) fixedtiafpars <- hastiafpars && all(fixed[paste("e.tiaf", 1:ntiafpars, sep=".")]) ### Define negative log-likelihood (score, hessian) for minimization ### as a function of the non-fixed parameters negll <- ll body(negll)[[length(body(negll))]] <- call("-", body(negll)[[length(body(negll))]]) negsc <- if (useScore) { negsc <- score body(negsc)[[length(body(negsc))]] <- call("-", body(negsc)[[length(body(negsc))]]) negsc } else NULL neghess <- if (useScore) fisherinfo else NULL if (any(fixed)) { ## modify negll, negsc and neghess for subvector optimization optim.args$par <- initpars[!fixed] if (verbose) { if (all(fixed)) { cat("\nno numerical likelihood optimization, all parameters fixed:\n") } else cat("\nfixed parameters during optimization:\n") print(initpars[fixed]) } tmpexpr <- expression( initpars[!fixed] <- theta, theta <- initpars ) body(negll) <- as.call(append(as.list(body(negll)), as.list(tmpexpr), 1)) if (useScore) { body(negsc) <- as.call(append(as.list(body(negsc)), as.list(tmpexpr), 1)) body(neghess) <- as.call(append(as.list(body(neghess)), as.list(tmpexpr), 1)) # return non-fixed sub-vector / sub-matrix only body(negsc)[[length(body(negsc))]] <- call("[", body(negsc)[[length(body(negsc))]], quote(!fixed)) body(neghess)[[length(body(neghess))]] <- call("[", body(neghess)[[length(body(neghess))]], quote(!fixed), quote(!fixed), drop=FALSE) } ## if siafpars or tiafpars are fixed, pre-evaluate integrals if (fixedsiafpars) { if (verbose) cat("pre-evaluating 'siaf' integrals with fixed parameters ...\n") if (!"memoise" %in% loadedNamespaces()) cat("WARNING: Memoization of siaf integration not available!\n", " Repeated integrations with same parameters ", "are redundant and slow!\n", " Really consider installing package \"memoise\"!\n", sep="") siafInt <- local({ siafpars <- initpars[paste("e.siaf", 1:nsiafpars, sep=".")] do.call("..siafInt", .siafInt.args) # memoise()d }) } if (fixedtiafpars) { if (verbose) cat("pre-evaluating 'tiaf' integrals with fixed parameters ...\n") tiafInt <- .tiafInt(initpars[paste("e.tiaf", 1:ntiafpars, sep=".")]) ## re-define .tiafInt such that it just returns the pre-evaluated ## integrals if called with the default arguments .tiafInt.orig <- .tiafInt body(.tiafInt) <- expression( if (nargs() == 1L) tiafInt else .tiafInt.orig(tiafpars, from, to, type, G) ) ## restore the original function at the end on.exit({ .tiafInt <- .tiafInt.orig rm(.tiafInt.orig) }, add=TRUE) } } if (any(!fixed)) { #################### ### Optimization ### #################### ## Configure the optim procedure (check optim.args) # default arguments optimArgs <- list(par = NULL, # replaced by optim.args$par below fn = quote(negll), gr = quote(negsc), method = if (partial) "Nelder-Mead" else "nlminb", lower = -Inf, upper = Inf, control = list(), hessian = TRUE) # user arguments namesOptimArgs <- names(optimArgs) namesOptimUser <- names(optim.args) optimValid <- namesOptimUser %in% namesOptimArgs optimArgs[namesOptimUser[optimValid]] <- optim.args[optimValid] if (any(!optimValid)) { warning("unknown names in optim.args: ", paste(namesOptimUser[!optimValid], collapse = ", "), immediate. = TRUE) } doHessian <- optimArgs$hessian optimMethod <- optimArgs$method ## Call 'optim', 'nlminb', or 'nlm' with the above arguments if (verbose) { cat("\nminimizing the negative", if (partial) "partial", "log-likelihood", "using", if (optimMethod %in% c("nlm", "nlminb")) paste0("'",optimMethod,"()'") else { paste0("'optim()'s \"", optimMethod, "\"") }, "...\n") cat("initial parameters:\n") print(optimArgs$par) } optimRes1 <- if (optimMethod == "nlminb") { nlminbControl <- control2nlminb(optimArgs$control, defaults = list(trace=1L, rel.tol=1e-6)) ## sqrt(.Machine$double.eps) is the default reltol used in optim, ## which usually equals about 1.49e-08. ## The default rel.tol of nlminb (1e-10) seems too small ## (nlminb often does not finish despite no "relevant" change in loglik). ## I therefore use 1e-6, which is also the default in package nlme ## (see 'lmeControl'). if (nlminbControl$trace > 0L) { cat("negative log-likelihood and parameters ") if (nlminbControl$trace == 1L) cat("in each iteration") else { cat("every", nlminbControl$trace, "iterations") } cat(":\n") } nlminbRes <- nlminb(start = optimArgs$par, objective = negll, gradient = negsc, hessian = if (doHessian) neghess else NULL, control = nlminbControl, lower = optimArgs$lower, upper = optimArgs$upper) nlminbRes$value <- -nlminbRes$objective nlminbRes$counts <- nlminbRes$evaluations nlminbRes } else if (optimMethod == "nlm") { nlmObjective <- function (theta) { value <- negll(theta) grad <- negsc(theta) #hess <- neghess(theta) structure(value, gradient = grad)#, hessian = hess) } nlmControl <- optimArgs$control if (is.null(nlmControl[["print.level"]])) { nlmControl$print.level <- min(nlmControl$trace, 2L) } nlmControl$trace <- nlmControl$REPORT <- NULL if (is.null(nlmControl[["iterlim"]])) { nlmControl$iterlim <- nlmControl$maxit } nlmControl$maxit <- NULL nlmControl$check.analyticals <- FALSE ##<- we use the negative _expected_ Fisher information as the Hessian, ## which is of course different from the true Hessian (=neg. obs. Fisher info) nlmRes <- do.call("nlm", c(alist(f = nlmObjective, p = optimArgs$par, hessian = doHessian), nlmControl)) names(nlmRes)[names(nlmRes) == "estimate"] <- "par" nlmRes$value <- -nlmRes$minimum nlmRes$counts <- rep.int(nlmRes$iterations, 2L) nlmRes$convergence <- if (nlmRes$code %in% 1:2) 0L else nlmRes$code nlmRes } else { # use optim() optimArgs$control <- modifyList(list(trace=1L, REPORT=1L), optimArgs$control) if (finetune) optimArgs$hessian <- FALSE res <- do.call("optim", optimArgs) res$value <- -res$value res } ## Optional fine-tuning of ML estimates by robust Nelder-Mead optimRes <- if (finetune) { if (verbose) { cat("\nMLE from first optimization:\n") print(optimRes1$par) cat("loglik(MLE) =", optimRes1$value, "\n") cat("\nfine-tuning MLE using Nelder-Mead optimization ...\n") } optimArgs$par <- optimRes1$par optimArgs$method <- "Nelder-Mead" optimArgs$hessian <- doHessian optimArgs$control <- modifyList(list(trace=1L), optimArgs$control) nmRes <- do.call("optim", optimArgs) nmRes$value <- -nmRes$value nmRes$counts[2L] <- 0L # 0 gradient evaluations (replace NA for addition below) nmRes } else optimRes1 ## Convergence message msgConvergence <- if (finetune || optimMethod != "nlminb") { paste("code", optimRes$convergence) } else optimRes$message if (optimRes$convergence != 0) { msgNotConverged <- paste0("optimization routine did not converge (", msgConvergence, ")") warning(msgNotConverged) if (verbose) { cat("\nWARNING: ", msgNotConverged, "!\n", sep="") if ((finetune || optimMethod != "nlminb") && !is.null(optimRes$message) && nzchar(optimRes$message)) { cat("MESSAGE: \"", optimRes$message, "\"\n", sep="") } if (hase && useScore && !constantsiaf && grepl("false", msgNotConverged)) { cat("SOLUTION: increase the precision of 'siaf$Deriv' (and 'siaf$F')\n") if (optimMethod == "nlminb") { cat(" or nlminb's false convergence tolerance 'xf.tol'\n") } } } } if (verbose) { cat("\n", if (finetune) "final ", "MLE:\n", sep = "") print(optimRes$par) cat("loglik(MLE) =", optimRes$value, "\n") } } ############## ### Return ### ############## ### Set up list object to be returned fit <- list( coefficients = if (any(fixed)) { if (all(fixed)) initpars else unlist(modifyList(as.list(initpars), as.list(optimRes$par))) } else optimRes$par, loglik = structure(if (all(fixed)) ll(initpars) else optimRes$value, partial = partial), counts = if (all(fixed)) c("function"=1L, "gradient"=0L) else { optimRes1$counts + if (finetune) optimRes$counts else c(0L, 0L) }, converged = if (all(fixed) || (optimRes$convergence == 0)) TRUE else msgConvergence ) ### Add Fisher information matrices # estimation of the expected Fisher information matrix fit["fisherinfo"] <- list( if (useScore) structure( fisherinfo(fit$coefficients), dimnames = list(names(initpars), names(initpars)) ) ) # If requested, add observed fisher info (= negative hessian at maximum) fit["fisherinfo.observed"] <- list( if (any(!fixed) && !is.null(optimRes$hessian)) optimRes$hessian ## no "-" here because we optimized the negative log-likelihood ) ### Add fitted intensity values and integrated intensities at events # final coefficients theta <- fit$coefficients beta0 <- theta[seq_len(nbeta0)] beta <- theta[nbeta0+seq_len(p)] gamma <- theta[nbeta0+p+seq_len(q)] siafpars <- theta[nbeta0+p+q+seq_len(nsiafpars)] tiafpars <- theta[nbeta0+p+q+nsiafpars+seq_len(ntiafpars)] # final siaf and tiaf integrals over influence regions / periods # and final gammapred (also used by intensity.twinstim) if (hase) { gammapred <- drop(epilinkinv(mme %*% gamma)) # N-vector if (!fixedsiafpars) siafInt <- do.call("..siafInt", .siafInt.args) if (!fixedtiafpars) tiafInt <- .tiafInt(tiafpars) } # fitted intensities hEvents <- if (hash) .hEvents(unname(beta0), beta) else rep.int(0, Nin) eEvents <- if (hase) { .eEvents(gammapred, siafpars, tiafpars) # Nin-vector! (only 'includes' here) } else rep.int(0, Nin) fit$fitted <- hEvents + eEvents # = lambdaEvents # Nin-vector fit$fittedComponents <- cbind(h = hEvents, e = eEvents) rm(hEvents, eEvents) # calculate cumulative ground intensities at event times # Note: this function is also used by residuals.twinstim LambdagEvents <- function (cores = 1L, cumCIF.pb = interactive()) { if (cores != 1L) cumCIF.pb <- FALSE if (cumCIF.pb) pb <- txtProgressBar(min=0, max=Nin, initial=0, style=3) heIntEvents <- if (cores == 1L) { sapply(seq_len(Nin), function (i) { if (cumCIF.pb) setTxtProgressBar(pb, i) heIntTWK(beta0, beta, gammapred, siafpars, tiafpars, eventTimes[includes[i]]) }, simplify=TRUE, USE.NAMES=FALSE) } else { # cannot use progress bar simplify2array(parallel::mclapply( X=eventTimes[includes], FUN=heIntTWK, beta0=beta0, beta=beta, gammapred=gammapred, siafpars=siafpars,tiafpars=tiafpars, mc.preschedule=TRUE, mc.cores=cores ), higher=FALSE) } if (cumCIF.pb) close(pb) setNames(.colSums(heIntEvents, 2L, Nin), rownames(mmhEvents)) } fit["tau"] <- list( if (cumCIF) { if (verbose) cat("\nCalculating fitted cumulative intensities at events ...\n") LambdagEvents(cores, cumCIF.pb) }) # calculate observed R0's: mu_j = spatio-temporal integral of e_j(t,s) over # the observation domain (t0;T] x W (not whole R+ x R^2) fit$R0 <- if (hase) qSum * gammapred * siafInt * tiafInt else rep.int(0, N) names(fit$R0) <- row.names(mfe) ### Append model information fit$npars <- c(nbeta0 = nbeta0, p = p, q = q, nsiafpars = nsiafpars, ntiafpars = ntiafpars) fit$qmatrix <- qmatrix # -> information about nTypes and typeNames fit$bbox <- bbox(data$W) # for completeness and for iafplot fit$timeRange <- c(t0, T) # for simulate.twinstim's defaults fit$formula <- list(endemic = endemic, epidemic = epidemic, siaf = siaf, tiaf = tiaf) fit["control.siaf"] <- list(control.siaf) # might be NULL ### Append optimizer configuration optim.args$par <- initpars # reset to also include fixed coefficients if (any(fixed)) optim.args$fixed <- names(initpars)[fixed] # restore fit$optim.args <- optim.args fit["functions"] <- list( if (model) { environment(fit) <- environment() functions }) ### Return object of class "twinstim" if (verbose) cat("\nDone.\n") fit$call <- cl fit$runtime <- structure(proc.time() - ptm, cores=cores) class(fit) <- "twinstim" return(fit) } surveillance/R/twinstim_tiaf_step.R0000644000175100001440000001267712273015471017243 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Step function implementation for temporal interaction ### ### Copyright (C) 2014 Sebastian Meyer ### $Revision: 735 $ ### $Date: 2014-01-31 22:52:57 +0100 (Fri, 31. Jan 2014) $ ################################################################################ tiaf.step <- function (knots, maxRange = Inf, nTypes = 1, validpars = NULL) { knots <- sort(unique(as.vector(knots,mode="numeric"))) stopifnot(knots > 0, is.finite(knots), isScalar(maxRange), maxRange > knots) nknots <- length(knots) # = number of parameters (per type) knotsmax <- c(knots, maxRange) nknotsmax <- nknots + 1L allknots <- c(0, knots, maxRange) nallknots <- length(allknots) allknotsInf <- unique(c(allknots, Inf)) # ensure Inf as last element stopifnot(isScalar(nTypes <- as.integer(nTypes)), nTypes > 0L) npars <- nknots * nTypes .parintwidths <- rep.int(c(diff.default(knotsmax)), nTypes) .parintwidths[is.infinite(.parintwidths)] <- -1 ##<- in case maxRange=Inf, last interval width will always be multiplied by ## 0 and should give 0, but Inf would produce NaN, so we just set it to -1 ## the step function is right-continuous, intervals are [a,b) g <- if (nTypes > 1) { heights <- function (logvals) { # get matrix of type-specific heights dim(logvals) <- c(nknots, nTypes) rbind(1, exp(logvals), 0, deparse.level=0) } function (t, logvals, types) heights(logvals)[(types-1)*nallknots + .bincode(t, allknotsInf, right=FALSE)] } else { function (t, logvals, types = NULL) c(1,exp(logvals),0)[.bincode(t, allknotsInf, right=FALSE)] } G <- if (nTypes > 1) { typeheights <- function (logvals, type) # vector of type-specific heights c(1, exp(logvals[(type-1)*nknots+seq_len(nknots)])) as.function(c(alist(t=, logvals=, types=), substitute({ mapply(function (t, type) { knots2t <- c(0, pmin.int(knots, t), TMAX) sum(typeheights(logvals, type) * diff.default(knots2t)) }, t, types, SIMPLIFY=TRUE, USE.NAMES=FALSE) }, list(TMAX = if (is.finite(maxRange)) quote(min(t,maxRange)) else quote(t))))) } else { ## function (t, logvals, types = NULL) { ## vapply(t, function (t) { ## knots2t <- c(0, pmin.int(knots, t), min(t, maxRange)) ## sum(c(1,exp(logvals)) * diff.default(knots2t)) ## }, 0, USE.NAMES=FALSE) # vapply is faster than sapply ## } as.function(c(alist(t=, logvals=, types = NULL), substitute({ ##omtk <- outer(t, knots, pmin.int), bare-bone implementation: omtk <- pmin.int(rep.int(knots, rep.int(L <- length(t), nknots)), t) dim(omtk) <- c(L, nknots) .colSums(apply(cbind(0, omtk, TMAX, deparse.level=0), 1L, diff.default) * c(1,exp(logvals)), nknotsmax, L) }, list(TMAX = if (is.finite(maxRange)) quote(pmin.int(t,maxRange)) else quote(t))))) } ## the derivative is simply the height corresponding to (t, type) and is 0 ## outside this interval/type deriv <- function (t, logvals, types) { whichvals <- .bincode(t, knotsmax, right=FALSE) fixedheight <- is.na(whichvals) ##<- intervals number 1 and 'nallknots' don't correspond to parameters whichvals <- whichvals + (types-1)*nknots # select type parameter whichvals[fixedheight] <- 0 ## we do a bare-bone implementation of relevant parts of ## deriv <- outer(whichvals, seq_len(npars), "==") * rep(exp(logvals), each=L) repL <- rep.int(L <- length(t), npars) Y <- rep.int(seq_len(npars), repL) # column index Z <- rep.int(exp(logvals), repL) # value ##<- 6x faster than rep(..., each=L) res <- (Y == whichvals) * Z dim(res) <- c(L, npars) res } ## only tiny modification necessary for nTypes == 1 if (nTypes == 1) { body(deriv)[[grep("types", body(deriv))]] <- NULL formals(deriv)["types"] <- list(NULL) } Deriv <- deriv body(Deriv) <- as.call(append(as.list(body(Deriv)), expression( partwidth <- t - knots[whichvals] ), after=2L)) body(Deriv)[[grep("whichvals[fixedheight]", body(Deriv), fixed=TRUE)]] <- quote(whichvals[fixedheight] <- partwidth[fixedheight] <- 0) body(Deriv) <- as.call(append(as.list(body(Deriv)), expression( W <- rep.int(.parintwidths, repL) ), after=grep("Z <-", body(Deriv)))) body(Deriv)[[grep("res <-", body(Deriv))]] <- if (nTypes == 1) { quote(res <- ((Y < whichvals | t >= maxRange) * W + (Y == whichvals) * partwidth) * Z) } else { quote(res <- ((Y > (types-1)*nknots & (Y < whichvals | t >= maxRange)) * W + (Y == whichvals) * partwidth) * Z) } ## Done res <- list(g = g, G = G, deriv = deriv, Deriv = Deriv, ## FIXME: simulate = simulate, npars = npars, validpars = validpars) attr(res, "knots") <- knots attr(res, "maxRange") <- maxRange res } surveillance/R/twinstim_siaf.R0000644000175100001440000003232213164444360016177 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Spatial interaction functions for twinstim's epidemic component. ### Specific implementations are in seperate files (e.g.: Gaussian, power law). ### ### Copyright (C) 2009-2015,2017 Sebastian Meyer ### $Revision: 1965 $ ### $Date: 2017-10-02 16:10:56 +0200 (Mon, 02. Oct 2017) $ ################################################################################ ##################### ### "Constructor" ### ##################### siaf <- function (f, F, Fcircle, effRange, deriv, Deriv, simulate, npars, validpars = NULL) { npars <- as.integer(npars) if (length(npars) != 1 || npars < 0L) { stop("'siaf$npars' must be a single nonnegative number") } f <- .checknargs3(f, "siaf$f") F <- if (missing(F) || is.null(F)) siaf.fallback.F else { F <- match.fun(F) if (length(formals(F)) < 4L) stop("siaf$F() must accept >=4 arguments ", "(polydomain, f, pars, type)") F } haspars <- npars > 0L if (!haspars || missing(deriv)) deriv <- NULL if (!is.null(deriv)) deriv <- .checknargs3(deriv, "siaf$deriv") if (missing(effRange)) effRange <- NULL if (missing(Fcircle) || is.null(Fcircle)) { Fcircle <- NULL if (!is.null(effRange)) { message("'siaf$effRange' only works in conjunction with 'siaf$Fcircle'") effRange <- NULL } } if (!is.null(Fcircle)) Fcircle <- .checknargs3(Fcircle, "siaf$Fcircle") if (!is.null(effRange)) { effRange <- match.fun(effRange) if (length(formals(effRange)) < 1L) { stop("the 'siaf$effRange' function must accept a parameter vector") } } Deriv <- if (is.null(deriv)) NULL else if (missing(Deriv) || is.null(Deriv)) siaf.fallback.Deriv else { Deriv <- match.fun(Deriv) if (length(formals(Deriv)) < 4L) stop("siaf$Deriv() must accept >=4 arguments ", "(polydomain, deriv, pars, type)") Deriv } ## Check if simulation function has proper format if (missing(simulate)) simulate <- NULL if (!is.null(simulate)) { simulate <- .checknargs3(simulate, "siaf$simulate") if (length(formals(simulate)) == 3L) formals(simulate) <- c(formals(simulate), alist(ub=)) } ## Check if the validpars are of correct form validpars <- if (!haspars || is.null(validpars)) NULL else match.fun(validpars) ## Done, return result. list(f = f, F = F, Fcircle = Fcircle, effRange = effRange, deriv = deriv, Deriv = Deriv, simulate = simulate, npars = npars, validpars = validpars) } ########################################## ### Constant spatial interaction/dispersal ########################################## siaf.constant <- function () { res <- list( ## use explicit quote()ing to prevent notes from codetools::checkUsage f = as.function(c(alist(s=, pars=NULL, types=NULL), quote(rep.int(1, length(s)/2))), ##<- nrow() would take extra time in standardGeneric() envir = .GlobalEnv), ## integration over polydomains is handled specially in twinstim Fcircle = as.function(c(alist(r=, pars=NULL, type=NULL), quote(pi*r^2)), envir = .GlobalEnv), ## simulation will be handled specially in simEpidataCS, this is only ## included here for completeness simulate = as.function(c(alist(n=, pars=NULL, type=NULL, ub=), quote(runifdisc(n, ub))), envir = getNamespace("surveillance")), npars = 0L ) attr(res, "constant") <- TRUE res } ########################################## ### Naive defaults for the siaf primitives ########################################## ## numerical integration of f over a polygonal domain (single "owin" and type) siaf.fallback.F <- function (polydomain, f, pars, type, method = "SV", ...) { if (identical(method,"SV")) { polyCub.SV(polyregion = polydomain, f = f, pars, type, alpha = 0, ...) # since max at origin } else { polyCub(polyregion = polydomain, f = f, method = method, pars, type, ...) } } ## numerical integration of f over a circular domain getFcircle <- function (siaf, control.F = list()) { if (is.null(siaf$Fcircle)) { function (r, pars, type) { disc <- discpoly(c(0,0), r, npoly = 64, class = "owin") do.call(siaf$F, c(alist(disc, siaf$f, pars, type), control.F)) } } else { siaf$Fcircle } } ## numerical integration of deriv over a polygonal domain siaf.fallback.Deriv <- function (polydomain, deriv, pars, type, method = "SV", ...) { deriv1 <- function (s, paridx) deriv(s, pars, type)[,paridx,drop=TRUE] intderiv1 <- function (paridx) polyCub(polyregion = polydomain, f = deriv1, method = method, paridx = paridx, ...) vapply(X = seq_along(pars), FUN = intderiv1, FUN.VALUE = 0, USE.NAMES = FALSE) } #################################### ### Simulation via polar coordinates (used, e.g., for siaf.powerlaw) #################################### ## Simulate from an isotropic spatial interaction function ## f_{2D}(s) \propto f(||s||), ||s|| <= ub. ## within a maximum distance 'ub' via polar coordinates and the inverse ## transformation method: ## p_{2D}(r,theta) = r * f_{2D}(x,y) \propto r*f(r) ## => angle theta ~ U(0,2*pi) and sample r according to r*f(r) siaf.simulatePC <- function (intrfr) # e.g., intrfr.powerlaw { as.function(c(alist(n=, siafpars=, type=, ub=), substitute({ ## Note: in simEpidataCS, simulation is always bounded to eps.s and to ## the largest extend of W, thus, 'ub' is finite stopifnot(is.finite(ub)) ## Normalizing constant of r*f(r) on [0;ub] normconst <- intrfr(ub, siafpars, type) ## => cumulative distribution function CDF <- function (q) intrfr(q, siafpars, type) / normconst ## For inversion sampling, we need the quantile function CDF^-1 ## However, this is not available in closed form, so we use uniroot ## (which requires a finite upper bound) QF <- function (p) uniroot(function(q) CDF(q)-p, lower=0, upper=ub)$root ## Now sample r as QF(U), where U ~ U(0,1) r <- vapply(X=runif(n), FUN=QF, FUN.VALUE=0, USE.NAMES=FALSE) ## Check simulation of r via kernel estimate: ## plot(density(r, from=0, to=ub)); curve(p(x)/normconst,add=TRUE,col=2) ## now rotate each point by a random angle to cover all directions theta <- runif(n, 0, 2*pi) r * cbind(cos(theta), sin(theta)) })), envir=parent.frame()) } ################################################ ### Check F, Fcircle, deriv, Deriv, and simulate ################################################ checksiaf <- function (siaf, pargrid, type = 1, tolerance = 1e-5, method = "SV", ...) { stopifnot(is.list(siaf), is.numeric(pargrid), !is.na(pargrid), length(pargrid) > 0) pargrid <- as.matrix(pargrid) stopifnot(siaf$npars == ncol(pargrid)) ## Check 'F' if (!is.null(siaf$F)) { cat("'F' vs. cubature using method = \"", method ,"\" ... ", sep="") comp.F <- checksiaf.F(siaf$F, siaf$f, pargrid, type=type, method=method, ...) cat(attr(comp.F, "all.equal") <- all.equal(comp.F[,1], comp.F[,2], check.attributes=FALSE, tolerance=tolerance), "\n") } ## Check 'Fcircle' if (!is.null(siaf$Fcircle)) { cat("'Fcircle' vs. cubature using method = \"",method,"\" ... ", sep="") comp.Fcircle <- checksiaf.Fcircle(siaf$Fcircle, siaf$f, pargrid, type=type, method=method, ...) cat(attr(comp.Fcircle, "all.equal") <- all.equal(comp.Fcircle[,1], comp.Fcircle[,2], check.attributes=FALSE, tolerance=tolerance), "\n") } ## Check 'deriv' if (!is.null(siaf$deriv)) { cat("'deriv' vs. numerical derivative ... ") if (requireNamespace("maxLik", quietly=TRUE)) { maxRelDiffs.deriv <- checksiaf.deriv(siaf$deriv, siaf$f, pargrid, type=type) cat(attr(maxRelDiffs.deriv, "all.equal") <- if (any(maxRelDiffs.deriv > tolerance)) paste("maxRelDiff =", max(maxRelDiffs.deriv)) else TRUE, "\n") } else cat("Failed: need package", sQuote("maxLik"), "\n") } ## Check 'Deriv' if (!is.null(siaf$Deriv)) { cat("'Deriv' vs. cubature using method = \"", method ,"\" ... ", sep="") comp.Deriv <- checksiaf.Deriv(siaf$Deriv, siaf$deriv, pargrid, type=type, method=method, ...) if (siaf$npars > 1) cat("\n") attr(comp.Deriv, "all.equal") <- sapply(seq_len(siaf$npars), function (j) { if (siaf$npars > 1) cat("\tsiaf parameter ", j, ": ", sep="") ae <- all.equal(comp.Deriv[,j], comp.Deriv[,siaf$npars+j], check.attributes=FALSE, tolerance=tolerance) cat(ae, "\n") ae }) } ## Check 'simulate' if (interactive() && !is.null(siaf$simulate)) { cat("Simulating ... ") checksiaf.simulate(siaf$simulate, siaf$f, pargrid[1,], type=type) cat("(-> check the plot)\n") } ## invisibly return check results invisible(mget(c("comp.F", "comp.Fcircle", "maxRelDiffs.deriv", "comp.Deriv"), ifnotfound=list(NULL), inherits=FALSE)) } checksiaf.F <- function (F, f, pargrid, type=1, method="SV", ...) { res <- t(apply(pargrid, 1, function (pars) { given <- F(LETTERR, f, pars, type) num <- siaf.fallback.F(polydomain = LETTERR, f = f, pars = pars, type = type, method = method, ...) c(given, num) })) colnames(res) <- c("F", method) res } checksiaf.Fcircle <- function (Fcircle, f, pargrid, type=1, rs=c(1,5,10,50,100), method="SV", ...) { pargrid <- pargrid[rep(1:nrow(pargrid), each=length(rs)),,drop=FALSE] rpargrid <- cbind(rs, pargrid, deparse.level=0) res <- t(apply(rpargrid, 1, function (x) { disc <- discpoly(c(0,0), x[1L], npoly = 128, class = "owin") c(ana = Fcircle(x[1L], x[-1L], type), num = siaf.fallback.F(polydomain = disc, f = f, pars = x[-1L], type = type, method = method, ...)) })) res } checksiaf.deriv <- function (deriv, f, pargrid, type=1, rmax=100) { rgrid <- seq(-rmax,rmax,len=21) / sqrt(2) rgrid <- rgrid[rgrid != 0] # some siafs are always 1 at (0,0) (deriv=0) sgrid <- cbind(rgrid, rgrid) apply(pargrid, 1, function (pars) { maxLik::compareDerivatives(f, deriv, t0=pars, s=sgrid, print=FALSE)$maxRelDiffGrad ## Note: numDeriv::grad() would only allow one location s at a time }) } checksiaf.Deriv <- function (Deriv, deriv, pargrid, type=1, method="SV", ...) { res <- t(apply(pargrid, 1, function (pars) { given <- Deriv(LETTERR, deriv, pars, type) num <- siaf.fallback.Deriv(polydomain = LETTERR, deriv = deriv, pars = pars, type = type, method = method, ...) c(given, num) })) paridxs <- seq_len(ncol(pargrid)) colnames(res) <- c(paste("Deriv",paridxs,sep="."), paste(method,paridxs,sep=".")) res } checksiaf.simulate <- function (simulate, f, pars, type=1, B=3000, ub=10, plot=interactive()) { ## Simulate B points on the disc with radius 'ub' simpoints <- simulate(B, pars, type=type, ub=ub) if (plot) { ## Graphical check in 2D opar <- par(mfrow=c(2,1), mar=c(4,3,2,1)); on.exit(par(opar)) plot(as.im.function(function(x,y,...) f(cbind(x,y), pars, type), W=discpoly(c(0,0), ub, class="owin")), axes=TRUE, main="Simulation from the spatial kernel") points(simpoints, cex=0.2) kdens <- kde2d(simpoints[,1], simpoints[,2], n=100) contour(kdens, add=TRUE, col=2, lwd=2, labcex=1.5, vfont=c("sans serif", "bold")) ##x11(); image(kdens, add=TRUE) ## Graphical check of distance distribution truehist(sqrt(rowSums(simpoints^2)), xlab="Distance") rfr <- function (r) r*f(cbind(r,0), pars, type) rfrnorm <- integrate(rfr, 0, ub)$value do.call("curve", list(quote(rfr(x)/rfrnorm), add=TRUE, col=2, lwd=2)) ##<- use do.call-construct to prevent codetools::checkUsage from noting "x" } ## invisibly return simulated points invisible(simpoints) } surveillance/R/hhh4_simulate_scores.R0000644000175100001440000000507412575642536017451 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Compute scores based on simulations from fitted hhh4() models ### ### Copyright (C) 2013-2015 Sebastian Meyer ### $Revision: 1476 $ ### $Date: 2015-09-15 00:08:30 +0200 (Tue, 15. Sep 2015) $ ################################################################################ ## logarithmic score ## CAVE: will be infinite if none of "sims" yields "x" logs_sims <- function (sims, x) .logs(px = mean(sims == x)) ## Dawid-Sebastiani score ## CAVE: undefined if all simulations have the same value (i.e., no variance) dss_sims <- function (sims, x) { if ((varsims <- var(sims)) == 0) { # FIXME: What to do in that case? warning("DSS undefined for zero variance of prediction: all(sims==", sims[1L], "), x=", x) NA_real_ # if (x==sims[1L]) -Inf else Inf } else { .dss(meanP = mean(sims), varP = varsims, x = x) } } ## ranked probability score rps_sims <- function (sims, x) { .rps(P = ecdf(sims), x = x, kmax = ceiling(mean(sims) + 40*sd(sims))) ## Two alternatives via the expectation-based definition of the RPS: ## method = "means": equivalent to ecdf approach but slower ## method = "means.MC": faster than ecdf but with approximation error ## simdiffs <- switch(method, ## "means.MC" = diff(sims), ## "means" = outer(sims, sims, "-")) ## mean(abs(sims - x)) - mean(abs(simdiffs)) / 2 } ## scores-method for simulations from a hhh4 fit scores.hhh4sims <- function (x, which = "rps", units = NULL, ..., drop = TRUE) { observed <- observed(attr(x, "stsObserved")) scoreFUNs <- mget(paste0(which, "_sims"), envir = getNamespace("surveillance"), inherits = FALSE) names(scoreFUNs) <- which if (!is.null(units)) { observed <- observed[, units, drop = FALSE] x <- x[, units, , drop = FALSE] } counts <- array(c(observed, x), dim = dim(x) + c(0L, 0L, 1L)) res <- lapply(X = scoreFUNs, FUN = function (scoreFUN) apply(counts, 1:2, function (y) scoreFUN(y[-1L], y[1L]))) res <- simplify2array(res, higher = TRUE) if (drop) drop(res) else res } ## scores-method for simulations from a bunch of hhh4 fits scores.hhh4simslist <- function (x, ...) lapply(X = x, FUN = scores.hhh4sims, ...) surveillance/R/twinstim_tiaf.R0000644000175100001440000000353412272751567016214 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Temporal interaction functions for twinstim's epidemic component. ### Specific implementations are in seperate files (e.g.: exponential, step). ### ### Copyright (C) 2009-2014 Sebastian Meyer ### $Revision: 733 $ ### $Date: 2014-01-31 17:46:47 +0100 (Fri, 31. Jan 2014) $ ################################################################################ ##################### ### "Constructor" ### ##################### tiaf <- function (g, G, deriv, Deriv, npars, validpars = NULL) { npars <- as.integer(npars) if (length(npars) != 1 || npars < 0L) { stop("'tiaf'/'npars' must be a single nonnegative number") } haspars <- npars > 0L g <- .checknargs3(g, "tiaf$g") G <- .checknargs3(G, "tiaf$G") if (!haspars || missing(deriv)) deriv <- NULL if (!haspars || missing(Deriv)) Deriv <- NULL if (!is.null(deriv)) deriv <- .checknargs3(deriv, "tiaf$deriv") if (!is.null(Deriv)) Deriv <- .checknargs3(Deriv, "tiaf$Deriv") validpars <- if (!haspars || is.null(validpars)) NULL else match.fun(validpars) list(g = g, G = G, deriv = deriv, Deriv = Deriv, npars = npars, validpars = validpars) } ################################# ### Constant temporal interaction ################################# tiaf.constant <- function () { res <- list( g = as.function(alist(t=, pars=, types=, rep.int(1, length(t))), envir = .GlobalEnv), G = as.function(alist(t=, pars=, types=, t), envir = .GlobalEnv), npars = 0L ) attr(res, "constant") <- TRUE res } surveillance/R/scores.R0000644000175100001440000001455513230402514014612 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Scoring rules as discussed in: ### Predictive model assessment for count data ### Czado, C., Gneiting, T. & Held, L. (2009) ### Biometrics 65:1254-1261 ### ### Copyright (C) 2010-2012 Michaela Paul, 2014-2015,2017-2018 Sebastian Meyer ### $Revision: 2057 $ ### $Date: 2018-01-19 15:48:44 +0100 (Fri, 19. Jan 2018) $ ################################################################################ ## logarithmic score ## logs(P,x) = -log(P(X=x)) .logs <- function (px) -log(px) logs <- function (x, mu, size=NULL) { if (is.null(size)) { - dpois(x, lambda=mu, log=TRUE) } else { - dnbinom(x, mu=mu, size=size, log=TRUE) } } ## squared error score ## ses(P,x) = (x-mu_p)^2 ses <- function (x, mu, size=NULL) { (x-mu)^2 } ## normalized squared error score (IMPROPER) ## nses(P,x) = ((x-mu_p)/sigma_p)^2 nses <- function (x, mu, size=NULL) { sigma2 <- if (is.null(size)) mu else mu * (1 + mu/size) ((x-mu)^2) / sigma2 } ## Dawid-Sebastiani score ## dss(P,x) = ((x-mu_p)/sigma_p)^2 + 2*log(sigma_p) .dss <- function (meanP, varP, x) (x-meanP)^2 / varP + log(varP) dss <- function (x, mu, size=NULL) .dss(meanP = mu, varP = if (is.null(size)) mu else mu * (1 + mu/size), x = x) ## ranked probability score ## rps(P,x) = sum_0^Kmax {P(X<=k) - 1(x<=k)}^2 ## for a single prediction (general formulation) .rps <- function (P, ..., x, kmax, tolerance = sqrt(.Machine$double.eps)) { ## compute P(X<=k) k <- 0:kmax Pk <- P(k, ...) ## check precision if ((1 - Pk[length(Pk)])^2 > tolerance) warning("finite sum approximation error larger than tolerance=", format(tolerance)) ## compute the RPS sum((Pk - (x <= k))^2) } ## for a single Poisson prediction rps_1P <- function (x, mu, k=40, tolerance=sqrt(.Machine$double.eps)) { ## return NA for non-convergent fits (where mu=NA) if (is.na(mu)) return(NA_real_) ## determine the maximum number of summands as Kmax=mean+k*sd kmax <- ceiling(mu + k*sqrt(mu)) ## compute the RPS .rps(P = ppois, lambda = mu, x = x, kmax = kmax, tolerance = tolerance) } ## for a single NegBin prediction rps_1NB <- function (x, mu, size, k=40, tolerance=sqrt(.Machine$double.eps)) { ## return NA for non-convergent fits (where mu=NA) if (is.na(mu)) return(NA_real_) ## determine the maximum number of summands as Kmax=mean+k*sd sigma2 <- mu * (1 + mu/size) kmax <- ceiling(mu + k*sqrt(sigma2)) ## compute the RPS .rps(P = pnbinom, mu = mu, size = size, x = x, kmax = kmax, tolerance = tolerance) } ## vectorized version rps <- function (x, mu, size=NULL, k=40, tolerance=sqrt(.Machine$double.eps)) { res <- if (is.null(size)) { mapply(rps_1P, x=x, mu=mu, MoreArgs=list(k=k, tolerance=tolerance), SIMPLIFY=TRUE, USE.NAMES=FALSE) } else { mapply(rps_1NB, x=x, mu=mu, size=size, MoreArgs=list(k=k, tolerance=tolerance), SIMPLIFY=TRUE, USE.NAMES=FALSE) } attributes(res) <- attributes(x) # set dim and dimnames res } ### apply a set of scoring rules at once scores.default <- function(x, mu, size = NULL, which = c("logs", "rps", "dss", "ses"), sign = FALSE, ...) { ## compute individual scores (these have the same dimensions as x) scorelist <- lapply(X = setNames(nm = which), FUN = do.call, args = alist(x = x, mu = mu, size = size), envir = environment()) ## append sign of x-mu if (sign) scorelist <- c(scorelist, list("sign" = sign(x-mu))) ## gather scores in an array simplify2array(scorelist, higher = TRUE) } ### apply scoring rules to a set of oneStepAhead() forecasts scores.oneStepAhead <- function (x, which = c("logs","rps","dss","ses"), units = NULL, sign = FALSE, individual = FALSE, reverse = FALSE, ...) { y <- x$observed # observed counts during the prediction window mu <- x$pred # predicted counts (same dim as y) ## transform overdispersion to dnbinom() parameterization size <- psi2size.oneStepAhead(x) # -> NULL or full dim(y) matrix ## select units if (!is.null(units)) { y <- y[,units,drop=FALSE] mu <- mu[,units,drop=FALSE] size <- size[,units,drop=FALSE] # works with size = NULL } nUnits <- ncol(y) if (nUnits == 1L) individual <- TRUE # no need to apply rowMeans() below result <- scores.default(x = y, mu = mu, size = size, which = which, sign = sign) ## reverse order of the time points (historically) if (reverse) { result <- result[nrow(result):1L,,,drop=FALSE] } else if (missing(reverse)) { message("Note: surveillance 1.16.0 no longer reverses the time points by default.\n", " Set the 'reverse' argument explicitly to avoid this message.") } ## average over units if requested if (individual) { drop(result) } else { apply(X=result, MARGIN=3L, FUN=rowMeans) ## this gives a nrow(y) x (5L+sign) matrix (or a vector in case nrow(y)=1) } } ## calculate scores with respect to fitted values scores.hhh4 <- function (x, which = c("logs","rps","dss","ses"), subset = x$control$subset, units = seq_len(x$nUnit), sign = FALSE, ...) { ## slow implementation via "fake" oneStepAhead(): ##fitted <- oneStepAhead(x, tp = subset[1L] - 1L, type = "final", ## keep.estimates = FALSE, verbose = FALSE) ##scores.oneStepAhead(fitted, which = which, units = units, sign = sign, ## individual = TRUE, reverse = FALSE) result <- scores.default( x = x$stsObj@observed[subset, units, drop = FALSE], mu = x$fitted.values[match(subset, x$control$subset), units, drop = FALSE], size = psi2size.hhh4(x, subset, units), which = which, sign = sign) rownames(result) <- subset drop(result) } surveillance/R/epidataCS_plot.R0000644000175100001440000003474012616246275016226 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### plot-method for "epidataCS" objects ### ### Copyright (C) 2009-2015 Sebastian Meyer ### $Revision: 1507 $ ### $Date: 2015-11-04 01:09:33 +0100 (Wed, 04. Nov 2015) $ ################################################################################ plot.epidataCS <- function (x, aggregate = c("time", "space"), subset, by = type, ...) { aggregate <- match.arg(aggregate) FUN <- paste("epidataCSplot", aggregate, sep = "_") do.call(FUN, args = list(x = quote(x), subset = substitute(subset), by = substitute(by), ...)) } ### plot.epidataCS(x, aggregate = "time") -> number of cases over time ## in case t0.Date is specified, hist.Date() is used and breaks must set in ... (e.g. "months") epidataCSplot_time <- function (x, subset, by = type, t0.Date = NULL, breaks = "stgrid", freq = TRUE, col = rainbow(nTypes), cumulative = list(), add = FALSE, mar = NULL, xlim = NULL, ylim = NULL, xlab = "Time", ylab = NULL, main = NULL, panel.first = abline(h=axTicks(2), lty=2, col="grey"), legend.types = list(), ...) { timeRange <- with(x$stgrid, c(start[1L], stop[length(stop)])) ## subset event marks eventMarks <- if (missing(subset)) { marks.epidataCS(x, coords = FALSE) } else { do.call(base::subset, list( x = quote(marks.epidataCS(x, coords = FALSE)), subset = substitute(subset) )) } if (nrow(eventMarks) == 0L) stop("no events left after 'subset'") ## extract the data to plot by <- substitute(by) eventTimesTypes <- eventMarks[c("time", "type")] eventTimesTypes$type <- if (is.null(by)) { # disregard event types factor("all") } else { # stratification of counts (default is to stack bars by event type) as.factor(eval(by, envir = eventMarks)) } typeNames <- levels(eventTimesTypes$type) nTypes <- length(typeNames) if (!freq && nTypes > 1L) warning("a stacked barplot of multiple event types only makes sense for 'freq=TRUE'") ## default breaks at stop times of stgrid if (identical(breaks, "stgrid")) { breaks <- c(timeRange[1L], unique.default(x$stgrid$stop)) if (any(eventTimesTypes$time < timeRange[1L])) { message("Note: ignoring events of the pre-history (before \"stgrid\")") eventTimesTypes <- base::subset(eventTimesTypes, time >= timeRange[1L]) if (nrow(eventTimesTypes) == 0L) stop("no events left to plot") } } ## calculate cumulative numbers if requested if (is.list(cumulative)) { csums <- tapply(eventTimesTypes$time, eventTimesTypes["type"], function (t) cumsum(table(t)), simplify=FALSE) if (!is.null(cumulative[["offset"]])) { stopifnot(is.vector(cumulative$offset, mode="numeric"), length(cumulative$offset) == nTypes) csums <- mapply(FUN="+", csums, cumulative$offset, SIMPLIFY=FALSE, USE.NAMES=TRUE) } if (is.null(cumulative[["axis"]])) cumulative[["axis"]] <- TRUE } eventTimesTypes$type <- as.integer(eventTimesTypes$type) typesEffective <- sort(unique(eventTimesTypes$type)) col <- rep_len(col, nTypes) if (!is.null(t0.Date)) { stopifnot(length(t0.Date) == 1L) t0.Date <- as.Date(t0.Date) t0 <- timeRange[1L] if (is.numeric(breaks) && length(breaks) > 1L) # transform to Date breaks <- t0.Date + (breaks - t0) if (is.null(xlim)) xlim <- t0.Date + (timeRange - t0) if (missing(xlab) && is.character(breaks)) xlab <- paste0("Time (", breaks, ")") eventTimesTypes$time <- t0.Date + as.integer(eventTimesTypes$time - t0) ## we need integer dates here because otherwise, if the last event ## occurs on the last day of a month, year, etc. (depending on ## 'breaks') with a fractional date (e.g. as.Date("2009-12-31") + 0.5), ## then the automatic 'breaks' (e.g., breaks = "months") will not cover ## the data (in the example, it will only reach until ## as.Date("2009-12-31")). The following would fail: ## data("imdepi"); plot(imdepi, t0.Date = "2002-01-15", breaks = "months") } gethistdata <- function (breaks, types = seq_len(nTypes)) { times <- eventTimesTypes$time[eventTimesTypes$type %in% types] if (is.null(t0.Date)) { hist(times, breaks=breaks, plot=FALSE, warn.unused=FALSE, ...) } else { hist(times, breaks=breaks, plot=FALSE, ...) ## warn.unused=FALSE is hard-coded in hist.Date } } histdata <- gethistdata(breaks=breaks) if (!is.null(t0.Date)) { ## hist.Date() drops the Date class, but we need it for later re-use class(histdata$breaks) <- "Date" } ## establish the basic plot window if (!add) { if (is.null(xlim)) xlim <- timeRange if (is.null(ylim)) { ylim <- range(0, histdata[[if (freq) "counts" else "density"]]) } if (is.null(ylab)) { ylab <- if (freq) "Number of cases" else "Density of cases" } if (is.null(mar)) { mar <- par("mar") if (is.list(cumulative) && cumulative$axis) mar[4L] <- mar[2L] } opar <- par(mar = mar); on.exit(par(opar)) plot(x=xlim, y=ylim, xlab=xlab, ylab=ylab, main=main, type="n", bty="n") force(panel.first) } ## plot histogram (over all types) suppressWarnings( # about wrong AREAS if breaks are non-equidistant plot(histdata, freq = freq, add = TRUE, col = col[typesEffective[1L]], ...) ) if (!add) # doesn't work as expected when adding to plot with cumulative axis box() # because white filling of bars might overdraw the inital box ## add type-specific sub-histograms for (typeIdx in seq_along(typesEffective)[-1L]) { .histdata <- gethistdata( breaks = histdata$breaks, # have to use same breaks types = typesEffective[typeIdx:length(typesEffective)] ) suppressWarnings( # about wrong AREAS if breaks are non-equidistant plot(.histdata, freq = freq, add = TRUE, col = col[typesEffective[typeIdx]], ...) ) } ## optionally add cumulative number of cases if (is.list(cumulative)) { aT2 <- axTicks(2) div <- length(aT2) - 1L darken <- function (col, f = 0.6) apply(X = col2rgb(col, alpha = TRUE), MARGIN = 2L, FUN = function (x) rgb(f*x[1L], f*x[2L], f*x[3L], x[4L], maxColorValue = 255)) cumulative <- modifyList( list(maxat = ceiling(max(unlist(csums))/div)*div, col = darken(col), lwd = 3, axis = TRUE, lab = "Cumulative number of cases"), cumulative) csum2y <- function (x) x / cumulative$maxat * aT2[length(aT2)] for (typeIdx in typesEffective) { .times <- as.numeric(names(csums[[typeIdx]])) lines(if (is.null(t0.Date)) .times else t0.Date + .times - t0, csum2y(csums[[typeIdx]]), lwd=cumulative$lwd, col=cumulative$col[typeIdx]) } if (cumulative$axis) { axis(4, at=aT2, labels=aT2/aT2[length(aT2)]*cumulative$maxat) mtext(cumulative$lab, side=4, line=3, las=0) } } ## optionally add legend if (is.list(legend.types) && length(typesEffective) > 1) { legend.types <- modifyList( list(x="topleft", legend=typeNames[typesEffective], title=deparse(by, nlines = 1), fill=col[typesEffective]), legend.types) do.call("legend", legend.types) } invisible(histdata) } ### plot.epidataCS(x, aggregate = "space") -> spatial point pattern epidataCSplot_space <- function (x, subset, by = type, tiles = x$W, pop = NULL, cex.fun = sqrt, points.args = list(), add = FALSE, legend.types = list(), legend.counts = list(), sp.layout = NULL, ...) { ## extract the points to plot events <- if (missing(subset)) { x$events } else { # calls sp:::subset.Spatial eval(substitute(base::subset(x$events, subset=.subset), list(.subset=substitute(subset)))) } ## should the plot distinguish between different event types? by <- substitute(by) events@data$type <- if (is.null(by)) { # disregard event types factor("all") } else { # default is to distinguish points by event type as.factor(eval(by, envir = events@data)) } typeNames <- levels(events$type) nTypes <- length(typeNames) eventCoordsTypes <- data.frame( coordinates(events), type = as.integer(events$type), row.names = NULL, check.rows = FALSE, check.names = FALSE) ## count events by location and type eventCoordsTypesCounts <- if (is.null(pop)) { countunique(eventCoordsTypes) } else { ## work with "SpatialPolygons" -> spplot() events$COUNT <- multiplicity(eventCoordsTypes) events[!duplicated(eventCoordsTypes), c("type", "COUNT")] } pointCounts <- eventCoordsTypesCounts$COUNT countsLegend <- unique(round(10^(do.call("seq", c( as.list(log10(range(pointCounts))), list(length.out=5) ))))) typesEffective <- sort(unique(eventCoordsTypesCounts$type)) ## point style colTypes <- list(...)[["colTypes"]] # backwards compatibility for < 1.8 if (is.null(colTypes)) { colTypes <- rainbow(nTypes) } else warning("argument 'colTypes' is deprecated; ", "use 'points.args$col' instead") points.args <- modifyList(list(pch=1, col=colTypes, lwd=1, cex=0.5), points.args) styleArgs <- c("pch", "col", "lwd") points.args[styleArgs] <- lapply(points.args[styleArgs], rep_len, length.out=nTypes) ## select style parameters according to the events' types points.args_pointwise <- points.args points.args_pointwise[styleArgs] <- lapply( points.args_pointwise[styleArgs], "[", eventCoordsTypesCounts$type) points.args_pointwise$cex <- points.args_pointwise$cex * cex.fun(pointCounts) ## plot if (is.null(pop)) { ## classical plotting system if (!add) plot(tiles, ...) do.call("points", c(alist(x=eventCoordsTypesCounts[,1:2,drop=FALSE]), points.args_pointwise)) ## optionally add legends if (is.list(legend.types) && length(typesEffective) > 1) { legend.types <- modifyList( list(x="topright", legend=typeNames[typesEffective], title=deparse(by, nlines = 1), #pt.cex=points.args$cex, # better use par("cex") pch=points.args$pch[typesEffective], col=points.args$col[typesEffective], pt.lwd=points.args$lwd[typesEffective]), legend.types) do.call("legend", legend.types) } if (is.list(legend.counts) && any(pointCounts > 1)) { if (!is.null(legend.counts[["counts"]])) { countsLegend <- as.vector(legend.counts[["counts"]], mode="integer") legend.counts[["counts"]] <- NULL } legend.counts <- modifyList( list(x="bottomright", bty="n", legend=countsLegend, pt.cex=points.args$cex * cex.fun(countsLegend), pch=points.args$pch[1L], col=if(length(unique(points.args$col)) == 1L) points.args$col[1L] else 1, pt.lwd=points.args$lwd[1L]), legend.counts) do.call("legend", legend.counts) } invisible() } else { if (!is(tiles, "SpatialPolygonsDataFrame")) { stop("'pop' requires 'tiles' to be a \"SpatialPolygonsDataFrame\"") } ## grid plotting system -> spplot() layout.points <- c(list("sp.points", eventCoordsTypesCounts), points.args_pointwise) ## optional legend definitions legend.types <- if (is.list(legend.types) && length(typesEffective) > 1) { legend.types <- modifyList( list(corner = c(1, 1), # "topright" title = deparse(by, nlines = 1), cex.title = 1, border = TRUE, points = list( pch = points.args$pch[typesEffective], col = points.args$col[typesEffective], lwd = points.args$lwd[typesEffective] ), text = list(typeNames[typesEffective])), legend.types ) corner.types <- legend.types$corner legend.types$corner <- NULL list(inside = list(fun = lattice::draw.key(legend.types), corner = corner.types)) } legend.counts <- if (is.list(legend.counts) && any(pointCounts > 1)) { if (!is.null(legend.counts[["counts"]])) { countsLegend <- as.vector(legend.counts[["counts"]], mode="integer") legend.counts[["counts"]] <- NULL } legend.counts <- modifyList( list(corner = c(1,0), # "bottomright" points = list( cex = points.args$cex * cex.fun(countsLegend), pch = points.args$pch[1L], col = if(length(unique(points.args$col)) == 1L) points.args$col[1L] else 1, lwd = points.args$lwd[1L] ), text = list(as.character(countsLegend)), padding.text=2, between=0), legend.counts ) corner.counts <- legend.counts$corner legend.counts$corner <- NULL list(inside = list(fun = lattice::draw.key(legend.counts), corner = corner.counts)) } ## create the plot spplot(obj = tiles, zcol = pop, sp.layout = c(list(layout.points), sp.layout), legend = c(legend.types, legend.counts), ...) } } surveillance/R/sysdata.rda0000644000175100001440000002336413164444360015342 0ustar hornikusersý7zXZi"Þ6!ÏXÌà|Q&¸])TW"änRÊŸ’Øâ_''ñÅq•ÒÅФ¤}v˂Ȃ¬lQ8гž¹ÊqƒÇ×ê/h' Ç;åïPZ± ù?üùƒ<6—*Á{âÿDºF»šˆ_XH±®CC9@(ÄiYßùO{ÖÜAÕ¦¥ 4á„eµŸ X.Jâ)ü•ßb&¸®}l#sá€u-ºÍ»%®Šyùüö޲wN'&Õ]½ØÚŸ{Ý5^ÕúEv°”ú¯ÍñÙh-¾Zü#Ë 8ÿ¢é¢Î×ú[Ö]oS‹?}®·î³V“™Û¨jË|b:nÑ2H©¾³b)GöBízgˆµuêR.ü6ÅYÑç€2gì6râ91ü±‰u&([ Ü𠆿Íy*¼¬ƒÐáÉóö²ç´*Ȥ#Ï?H6l`(¼ïðÿIQ]Íáå±(æFKƒúl#‰Þ!Ã"ØÒ"o+#Æ8Ö¡Y©¤ïÈ? èN‘ËDB«‘.qüÇ*Q‘YÁÕ¶eù¦ŽÚ†ËëSÓî¬âB%úº†ðúG¢ð TR’)þ¹D¶A´CN”h8ÌÞŠâÑ1€(Ÿš«EAGÁŒvÔ«ôk%j¯ãЀ´¥º”¯5&q׌o«Ì¼=¨ÍJþÂâ¹È°ø…‚ùgÿ"Ó ¿^ã •¨….õ6Ö<µšæç:{cª¶fL’zóÚÁäW   È`ÅöÓ¼>ª*»¾ùñ²å¼‡ Íéøƒÿã¡·x8Î_K½2äó‰6¨rrh<54P²ìïX'dßþþ \Ä.šêË.®:lH0èÇe+ɈÃ3¦.›èL a»Í­®áû'.*|âzNmÔÑEº"·zèÉ _" Û'Œ!1Ärø}è¸ãX#Ö“Ë| Ø4SÝjA'â±^ÌQݼ'ƪœ\2†ºèx¤(_‘ð̤_æWç~sj&-í±aûñݳ(Aœ%FÁÙ "Sj|"Gca›!¯ö=Bò\‚s\k^'¿Æ/øœÚj‘ð¸¡ó+M•܆êm¯É—cv&Eæ.jå/eEµuø`‰0öÙÝù¬ï¤9©ƒ¬m\¡7@Žû!2põTgäÉ~`RÌ:0(ŸïÿƒÝ˜¶ž(œTßQ ÍòGÔëVȶ`ÈÝ󻉾X˜º¥¹ßOG}fJÝoœ«æû÷ bZ||Z鯡rõò°§Ûúiº¶9ºwCxâûÅXdºâ’=«ÒÍî Ü ÔyÝÁ†:¾)‘¾3—MvÕþ[qt¨¶î%¡tꛜŸµïjUS^¸˜%±òB{½«‚âÊ ‘XCå¸:œ…«ÊŽç§PÀåü:Ê.§v¦Þ¯ãsÔ½ªø åâGa T^†úå/‰ß]Z®tu ß=äd¼‚»_M«11e7ÝêKsìüØ&BÔf¥Ú×ÔÕéúÅ p£S³Ö·ù§:vfò­¯%2Š$} D´/æuöámTº~½|J{C”Ï.\Bí~άCa ³8~qƒbÖ:DäÂi MU$¥F¢U'”‹-h§Òxô”:â ­b©SÛiKRb¬ºOÿ¥Õyy2Ýe8WuC%¤4äõÊ»_ ¬×â³r4.ÿ,–©›ñ wzr•“¸wú=KÜXøŠÌþOÞ°Ó¬ ¤yR11Ü"atl—éê[„›”[ý¸9×êà©ó[]]Ì£¤ÅºžáÇ€™R ÕNòtÈZÛá·&¸«rÈRN>´NÿS‡/kÖþΡ R7ž²| „w¾Õ/rÔkN*ÕrZí1è §‚íH’u3žæ½I[Ø7¥ª[!p½›BÏC$tÖí»óãsTu > t«r’ÁTuèE;Æ8Þ»:Y®'¤ÒòrT;{E‚Ø ElZEW©­- 4yH¦A]"C¹™Ì H=×ÉL;[?¦dßIâ÷³%çƒÁ㲉Ϻ4³©8FûŠQî8nŒ–#ð4ej™P9g4ý[¸Õ j®TXÑ~c-0Ë8Ð`Þ¢C+¶,mɸozOK¨ÛH¸ã­N¨îƒ„717…›ª6b´H;[IaUdñcѺ†qR³¶î«É‰¾Ûl­÷›Ï)רHß'‘øÍ“2`ÃEröâ ÛW÷àiW´I”r•úY•9÷xÿ,¤$ìn'ÕUêfGÕA3µÉ±Àzæf׬ÇömenV7T ±_­!¹Š‰`ºèüöyF©»™ZžòƒŒ?5¯m1öwEPÒEÐÜ78µæ_Áž6A?é@\MG‡?^÷jV¹XCr̘6pê$…íY9Тrú·Bd¨s†£º½½FüMÒª²Œ¼užä"Y~‚–‡ÝzåD\ÖÓË—ªrž.¤ñ»Ö]w:íá8’bŠ¢¦Ý¬º\‰È‰È?+ôødœWÂèk(oÚÇ,4¢põ úÜa¡¯V¯·»™>bFƒµŽg7(‹3. Ã;Y¿kâÿˆy,k˜$kÄIÕ€ ¢9zÂ%5 ÖÝŒ‹(ˆ­c¼˜5Þ4ôùÍäw[¦n²:÷mÓ-C“*gDq…  9¿\ÚâûÛxžT}Udƒ…¨6]18É»)4[‡ïÚ³ÄþêÓÄ 8u>Fõû9[.Õƒ?ù+WÅÑ+s]N¼@:“WôÕ}§ÕŸ7ì—ÿç 2W¶ôûã¬rSZü9Y Ó¬®€v<Î]+ˆYz ao[Ÿcï§Ò–Kh«R'¬~Ë¥žUÌ‘Õ`Ê£Zµ|Õ{MÙx‡‚E›9–M‰DŸq±ÞeN“ü*Á“TD9â!P 5/kÔ=­Éãܤ­{×üÞļ0D½D¯àMeÙð Í›s-¿r?\ÇàCÍúáEÞSÕÔ‚h5Ö"Ëó‡„væºåû;Ìîúnì0ÜŠî [‘–êÓQ²U…{à `3„‚+E iŠD·þXJ¢+¯sï„+z1öºt»:AÕ ŠjÈöÍ=ÚÅ…Õ/`/RÀdœš«HÆr£ììå"[À¥eñåðçÿå{Þuár¶¶wÏ3ÜíÁâ—5ôíºïËÛ]Û-q}îô†}‘ëFÌàÆFtγàÿä!Ûìçù`1Â0Óà³Hб² ¢GÉ™ž—+ÆVƒ„s®•ž®žª›ç—TrÐ¥¦{V3{c™cÊÀâ§ëšñu¹0orÛÁV÷Q]‹s(œïp_ì'á£Ñ#9D½1–ÑÐG‹#du7´Ïß1mËàžÀœP{ åÏ{ÛcwþS¶ÂP›Ü’}¡H;û¨©Ój‡=v95·øŽ„YrÎw„á®wësëaî=œuŽu¿WÔGw<»PêCÌŽh0/³CÊß–›.7þìRàÈ©O–ÁKA(n—]ÄŒÈÀÔ=-CþDaîd« “b‘}‰8g"ãt‚R¶Ýþ¶ƒX‚£EÔfõrÁ´2ZÑ•ê? ýÚ]Z òJeèßC± k æô’:å¹àÆ—„›âíÿ+jlâ#‰G|Ö×µcúPGF­'ªu™IR•—ú8ãùI´Gtfâ²}HÆ —xI`ˆ¹êÿÁwÛš]Òªd¡Ñ×$øÃµ:‚mË!ïØò!M¿”‹O—UžMHîõKt=¶OŽs¶åNò¯= * `³ØÄj¼H³!^®ò†Ž‹ô×À¶°÷Cd¯àæñ*@Î0ÑkwBúÑlB> $1iïô:“lã Cà<‡ŽEWH,©ÇH«á»[ºƒm\‘Òå?>uÛ<÷Ksz¶Î­joû”¤Ù75ÑÃy׈h{&ã ÷û¢­ÖMW ['Y²ùµ·PƒA¢L›ªvì¨5rst8–Ç i?_’Z4yzýRÌ\±ð´Æ þÀ÷­ã+壒ÉÄO&´¶Vq€Ë«Àx~á:iÍy¿#î~ÛÑy¿¾º†½äƒ>9…R÷®k]víå—<£I„s©ÜŸæ1ïC,xÛÛ¹Ó+Çgzf @J~´FijôöÛ󇣱&ˆ¼Ÿþ' S¼Ryné8•b+vôùœEXÚ\n™ÍG£%3™%Ūº‹FjhÑp.~<…§˜Yʨ#™\a«¿Øf0Ãèøq¶ÑCŒÍ¢bÎIqó©;Ô£|Ï2‚’7ópEþ‹ô FÉó•úgRƒhÞª',ΫýôšßüÊa¦ëu«–¬iŸÚ 7ae¬k¹>A¨¨È5|sÕÜy,Â’.½'¾ Z‚{°÷~¾A„™Òñ~ côPrß7à%þ>¬#|Ð p¾fu>½Ë¿ðÅŸT»K‹Ëÿªaä":9­kœDl»Ù¸~ýbƒ^{"¢6}—Ù» Ç7=qt9Óe%S{ڙͱó7§Kç‹ê…!ßX=ÀÖG)‹ÞÀºÜE,I+†‚_+1ŸÓX)³s.ÛÓXþ[ò¶™¸Á äh uÙÒMP¾»²[m6ñ8ÑMA‡76;n¢((8.Kz_ “|óðÃ;öÿ´…%‚}×è0ÄòóÔsØ¥u¾Å\gh›a^% «uƒ®hc'JÂfúÍýnNN'ìwÓ‚dźÿÊW R‹OûÏd?}ŒK’žX©uzEkƦÓ:*à_è¶&²,MǸäaGIgxôA1lãª+ó™†YKŸÀ'Pˆ=¤ËËò›P|—”Ó²#þ±îFûG-užŠUFè¯È¯éÑ@ÒaÖ^«#ѵó;®çv@ÓÈ1o@=Ý €–V4Sm²~Z•è ÇvQa*áÄZÀÒ!úøÈɱ®Ì3Á`=tŠ×áY¿z7ÝÛe‚zjjAu¯F¹±è8Ió"ÎÑ]1s—þuXl˜Öö©Ä<–ùÀƒß}-xKM[2¢E¿22-jÀ[%EPζ ª´]æ%tl—§.$Ÿßm¸ \aïÔ°Æ’ùs–×:úõ*SAÝÀ‚ù›R» úBf ®z-Ï›÷“; =Øb¥Ö•)¿ßJÁMÚ‘¬G`„<¯‘ýÖãÂ:å%3§¤a`¥"Irõ›^Rbª¾Ëê«™F—È»¯—½¡O$G[›Èƒ˜†\s††ø4(fwWÜ1Ê×Sf¡þðè–á/ÐßZûU~JQHx ئY›A¨›½4óãµwN-‚ˆÑÚ1ÂYâ+zúAmõªÜ¯#/‹õA'ôÍ`˜T¤åO/skÙ0O¥ŠÀ,Œ½!÷o"ç½Íc!÷ç-a8æs¨¹[å—AL–µ”]m±Ÿ!¨’ üQ{œ–ƈeOÞ¤c¼Ô“q(ýDm ªuPi¥9‹ã¦Â±›÷U3ŽæÇÿî]0{×ÛµHíORçÖ°$ sVóÅ?¥Çi„ÈtK|azmœ)«H à†ßK׆Eý×ý·ï´7‡ùK d1Wÿ&¿~Ê+dáø=*’݈¼÷ 4»ºÜMœ%ú%`¶Ãótdpw«ÒqrÒ¶ëWŠ|X…¾ñ_Û2NMÁ3ÌÍ`ú™ãèe‘R㈳…ŠHÈnOÂÉŒ¬™™«ØÐð-ÔŠñ¨¢_ùýiëMî@¿ @%ÇQAÿUo+¤ùzÃoÍ Œë°Ù`þ«JÑC饤¿–eys¢å¤ ÁƒQ6.t\ÔØ§IgKs$«_Æ.\ËòúˆÑFïë¶>F,˜B¨X‡™1¨yß :êSx#x#Þ=$$:V"pš€¿ÿ±û%g¤~sc3¦ÀÇÂRñæûG!X ‚(©*Uî{M\RÓϼҙq]Â3|Œìb¬z— ­S‹7Ãx­Œ‰™Üª¯Ö–<½(Û™JN)°^‹½ÓèÇÏœÔðç„‹”î{Z7Ò[LýÚÛЀ{…/R6î¥}…M§ ®™ñÌæ2ÒTšWd?g1,¹è{ƒÿéqÿ…wpʈ*‚¤½/€ÐP:F~ÜqKªÕ].ØPÔGÜ!¼$8ý£T¼*#AH(ìåè? ¦È†äÇÕ£3wŽŸ™<Õ|ÎxÖ VáŠñ}…I-¦I§›Î6Zmì=ƒ,Y®Èjó†÷H¬þñÕ5‚2­,hðñÃãÖ0@M÷ >®Ìu”{íhþ—î¯HÇ_½]7·±ÏÑüp.¶jç)¨Xˆz•äQþ#dÒ·è·7ÁŸ‡xNy{é¤(˲d__Š9£vh½•Ú†XçÏÀ-Aw`YrE€`ù[HbâTjuU@—¯‘Œ)[ÕbK”¶ì,MÍÚ—wDOÔï_¾l¿"&‰’|ÜTL¯ÅL-U(Ï¢Iù°¶€,M1ñÚÌÀí˜ßàŠÒ¦u›½ùÚ,»°)§ „O @—VèË =.•™+‹Ý‘qéé"ûkU¢éĈêpåŽ÷ ÁùÑúÏ_)j3. ¤‹LF±) iÙUÁœT•}ðG9MbÔuõán©B ßh˜VÖüçG5‘%1µìËçVZ~ô^›üж‰Y°"\õ4;*p䄱Ùy¤*$£F¼š ¦äÔ¶pBŠlôôR&¸ñ&n„ã$;‚Æ0ÓfPû/‚»’7îdÖ¨‰ è—ƒ@îÂ(RÙÏÝ/ —Ò¥à›Ù *®[€ùî¢ÏÁ® q¹Á“ ä÷Ç"V­/IܼãË‘±$3BÁä1rŒ{ZðfÑ õÅŒs¤ùI´O\¹ ÍK"INc}Ç÷Oføè-äçÍ> 3ÈB²š[aåv¿é•ïÞ¥bf‰úÖwÓM-äÃMj–ÉÝ+C± TõC[4†‘êF>®Lzß9R° ¼ÚÝ£î›z…/7^/µ *E)Èõú$y]}Ͳ±Lœ|ã‡.Œ‚m¯ñT1ík—s6~Št[àêÉ»ˆvER‘ÆsP—ƒ÷X ½vÚtGœ¼†QVÒlëüOcŒA¨ó9òê;¥Ø¨±ÀöéÈîß<õ×jñšbàDí»þ³sјßnAÑvp‚ŒCÍÌš#Šƒ·ÐµÚ%ë+÷MÎ[ŽöÉ[·l‹ÒJÈíš ¤äò_TBèøžQ¿°ó× tü2ì=8G×_Ò^™£ú^¬Qoÿaf¤âÀ4s'àhñ%Ç×ÉåsŠël2}FmY$àbN%¾´€äÔ¦Wò³NÒôSÉDq|fΣ±¥¡à©!35~úë·gjJˆë€ ó~?Œ ã(-˜Fµ*ôì6MŒ1wGä•^¤½( ²KvŽP’s¸˜d<$\h×—;¦V‚ ”cJQ¢È–#$è·`¯— `dV îCîÇžš¦Ÿ*+ Í ^A¡°×ø8‘¬eê6Wnm?MròØ{Éó¸.}üè°± ºª¦¡:Ð#5À'_à&ý}Ë©º¡B)|þÜõËPPÎq÷é¡„‡›J! '¹”Œ†à(È µÙP®ój>ý´Ç=:4²›/á]PÂ?½wӣ᫚û‡«ð95¶x/6ƒ]v—)ÆÇàÂ. œ8œQ²šT‹o…ã¦õiºÝë¡i›nú€ýÎÏ i„]ÉÓö˜+G±U€Ù•c=Î-ú¶j†\™¾€4Õ}ø=©Å˜§“ì-oEƒ]hÎE“9#.43ˆo]µòSóã¯[I€ä¥fœÃ^ 0gq`ÀäoÃ1JÍÄâêþîþ~°®„³qßSMÕ#Ô†4«ôGé`¢'"2˜Äx¢f³ìšZ/¢­}¿‡”•«Ì++‹bJ ±aú¨EÆÆÊ¼*‘ÊB(t¦ÖN&ïki±¾*XW ÂnJ©5ÏGuKµX‹÷=Ârg­Îæó^1°º¿¥ÕŒ©¶ÁpÕWüEØÈϧ³² ¼É9V‹ÏnÃþ]uä õŸÝë3vÈ ,ÒÆ>†‘ó*°õTxÄ\Ñ=Rb~—2s¢Cñ@gTÕE ñÚ·š‘†ÊAeÜ˽¯š¡ãA _¥å:šsÉY§®rÅ—ÊD‚nWöòÝ…#/R°Ì̲ñl¼”Ý—{}ûj¶ƒZ³½ÿ©‚=¦u˜¼=°¥hY_6v7îJEÑ{ðãˆÔdÜÖtãðO¹6ž÷ÆrÉ” v²ÐfŽõy˜îÁîR“LÚõÉÞÜŽê–†“øfÝ¿ûyÄÅs4£»»A¾Ÿ0·èUç…ô]+ •­ /˜EÏA8ÜŽ¡a¼à¶qÊ †ó’¿F‡b5Tú )“àTQÚÒ–óü½#–‹óéˇTOue\|3vvOðóÜÊHA_¨¹Î×IÉ}¼~õ¥f¹LŸ¯}:ÁðÀéôh®ÍÈ™·tÎC§lyÁ5˜Hsj‘Á ÝÙžv?g fÞ´lüÚ•ä?þã¬x[X5÷ßZ¶ ªBöó1 WÝ@]?m"#0ê>e=O­:ÉÄ#†Œôÿ3ƒëK0Ä6}F–µ|"M£€úѸL…ÂpHyœï Âˆ{ÒªÒ—È*Kìp¨˜±óÏ|Ž‘‚ñ›á2¹çr Øn‚4í+y•üH;ÈIe £èû.?çŽéU8EÉ¢Ûmõ‚¡ŽÐåœÔµý9ÃÏn z(¹Kú/Ç)DÉ©pL’v'ðžr)Ë"—Ð\¨ÎCoOboâð(.ŒŒÛ^mÇÚ…ú±Ä¨èb/¸M¼{ÛŽºÚ{!…è. ànÓß7 ?î^WÂI†!´i\vÝÏ05ÌÒÍ+Ög"v†ZOŒý™¬&v>´V˜’q+0œƒ.I¢õ5×WÎìêg:ò)¼¥Ä˜Õjl%ZyÖ”“H?CI°XoKAŽ„¾v®Uª ®·J@o±£zž1æÒ¼1‘îs•rLðµÅŸ;½3ÐMÒø16™_>0 ‹YZsurveillance/R/twinstim_simulation.R0000644000175100001440000015254213165702123017443 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Simulate a point pattern according to a spatio-temporal intensity model of ### class "twinstim". The function basically uses Ogata's modified thinning ### algorithm (cf. Daley & Vere-Jones, 2003, Algorithm 7.5.V.). ### ### Copyright (C) 2010-2017 Sebastian Meyer ### $Revision: 1993 $ ### $Date: 2017-10-06 15:25:39 +0200 (Fri, 06. Oct 2017) $ ################################################################################ ### CAVE: ### - the type of contrasts for factor variables has to be set through options("contrasts") ### - if epidemic-only process (!hash), we actually don't need stgrid, but we ### want to have valid epidataCS at the end, which requires stgrid ## model.frame() evaluates '...' with 'data' utils::globalVariables(c("BLOCK", "tile", "area")) simEpidataCS <- function (endemic, epidemic, siaf, tiaf, qmatrix, rmarks, events, stgrid, tiles, beta0, beta, gamma, siafpars, tiafpars, epilink = "log", t0 = stgrid$start[1], T = tail(stgrid$stop,1), nEvents = 1e5, control.siaf = list(F=list(), Deriv=list()), W = NULL, trace = 5, nCircle2Poly = 32, gmax = NULL, .allocate = 500, .skipChecks = FALSE, .onlyEvents = FALSE) { ptm <- proc.time()[[3]] cl <- match.call() ####################### ### Check arguments ### (this takes many lines of code ...) ####################### cat("\nChecking the supplied arguments ...\n") ### Some simple input checks if (missing(endemic)) endemic <- ~ 0 else stopifnot(inherits(endemic, "formula")) if (missing(epidemic)) epidemic <- ~ 0 else stopifnot(inherits(epidemic, "formula")) if (length(trace) != 1L) stop("'trace' must be a single integer or logical value") trace <- as.integer(trace) if (!isScalar(nCircle2Poly)) stop("'nCircle2Poly' must be scalar") nCircle2Poly <- as.integer(nCircle2Poly) if (!isScalar(.allocate)) stop("'.allocate' must be scalar") .allocate <- as.integer(.allocate) .skipChecks <- as.logical(.skipChecks) .onlyEvents <- as.logical(.onlyEvents) ### Check qmatrix if (missing(qmatrix)) qmatrix <- diag(1) nTypes <- nrow(qmatrix) if (is.null(typeNames <- rownames(qmatrix))) { if (nTypes > length(LETTERS)) stop("'qmatrix' needs dimnames") typeNames <- LETTERS[seq_len(nTypes)] } qmatrix <- checkQ(qmatrix, typeNames) qSumTypes <- rowSums(qmatrix) # how many types can be triggered by each type ### Check other "epidataCS" components (events, stgrid, tiles, and W) if (!missing(events) && !is.null(events)) { events <- events[!names(events) %in% reservedColsNames_events] if (!.skipChecks) { cat("Checking 'events':\n") events <- check_events(events, dropTypes = FALSE) # epscols are obligatory in 'check_events', which is also appropriate here } ## check event types events@data$type <- factor(events@data$type, levels=typeNames) if (any(.typeIsNA <- is.na(events@data$type))) { warning("ignored some 'events' of unknown type") events <- events[!.typeIsNA,] } } if (!.skipChecks) { cat("Checking 'stgrid':\n") stgrid <- check_stgrid(stgrid[grep("^BLOCK$", names(stgrid), invert=TRUE)]) } W <- if (is.null(W)) { cat("Building 'W' as the union of 'tiles' ...\n") unionSpatialPolygons(tiles) } else check_W(W) # does as(W, "SpatialPolygons") tileLevels <- levels(stgrid$tile) tiles <- check_tiles(tiles, tileLevels, areas.stgrid = stgrid[["area"]][seq_along(tileLevels)], W = W, keep.data = FALSE) ## Transform W to class "owin" Wowin <- as(W, "owin") Wedges <- edges(Wowin, check = FALSE) maxExtentOfW <- diameter.owin(Wowin) ### Check parameters beta0 <- if (missing(beta0)) numeric(0L) else as.vector(beta0, mode="numeric") beta <- if (missing(beta)) numeric(0L) else as.vector(beta, mode="numeric") gamma <- if (missing(gamma)) numeric(0L) else as.vector(gamma, mode="numeric") siafpars <- if (missing(siafpars)) numeric(0L) else as.vector(siafpars, mode="numeric") tiafpars <- if (missing(tiafpars)) numeric(0L) else as.vector(tiafpars, mode="numeric") nbeta0 <- length(beta0) if (nbeta0 > 1L && nbeta0 != nTypes) { stop("'beta0' must have length 0, 1, or 'nrow(qmatrix)'") } p <- length(beta) q <- length(gamma) nsiafpars <- length(siafpars) ntiafpars <- length(tiafpars) hase <- q > 0L hassiafpars <- nsiafpars > 0L hastiafpars <- ntiafpars > 0L if (!hase && (hassiafpars | hastiafpars)) { stop("'siafpars' and 'tiafpars' require 'gamma'") } ### Check time range if (is.null(t0)) t0 <- eval(formals()$t0) if (is.null(T)) T <- eval(formals()$T) if (!isScalar(t0) || !isScalar(T)) { stop("endpoints 't0' and 'T' must be single numbers") } if (T <= t0) { stop("'T' must be greater than 't0'") } stopifnot(t0 >= stgrid$start[1], T <= tail(stgrid$stop,1)) ### Subset stgrid to include actual time range only # BLOCK in stgrid such that start time is equal to or just before t0 block_t0 <- stgrid$BLOCK[match(TRUE, c(stgrid$start,Inf) > t0) - 1L] # BLOCK in stgrid such that stop time is equal to or just after T block_T <- stgrid$BLOCK[match(TRUE, stgrid$stop >= T)] stgrid <- stgrid[stgrid$BLOCK>=block_t0 & stgrid$BLOCK<=block_T,,drop=FALSE] stgrid$start[stgrid$BLOCK == block_t0] <- t0 stgrid$stop[stgrid$BLOCK == block_T] <- T # matrix of BLOCKS and start times (used later) blockstarts <- with(stgrid, cbind(block_t0:block_T, start[match(block_t0:block_T, BLOCK)], deparse.level = 0L) ) ### Check mark-generating function # eps.t and eps.s are also unpredictable marks (generated by rmarks) unpredMarks <- unique(c("eps.t", "eps.s", if (hase) { setdiff(all.vars(epidemic), c("type", names(stgrid))) })) rmarks <- match.fun(rmarks) sampleCoordinate <- coordinates(spsample(tiles, n=1L, type="random")) sampleMarks <- rmarks(t0, sampleCoordinate) # should be a one-row data.frame if (!is.data.frame(sampleMarks) || nrow(sampleMarks) != 1L) { stop("'rmarks' must return a one-row data.frame of marks") } markNames <- names(sampleMarks) if (.idx <- match(FALSE, unpredMarks %in% markNames, nomatch=0L)) { stop("the unpredictable mark '", unpredMarks[.idx], "' is not returned by 'rmarks'") } if (!all(sapply(sampleMarks[unpredMarks], function(x) inherits(x, c("integer","numeric","logical","factor"), which=FALSE)))) warning("'rmarks' should return \"numeric\", \"logical\", or", " \"factor\" ('epidemic') variables only") ### Check prehistory of the process Nout <- 0L if (!missing(events) && !is.null(events)) { .stillInfective <- with(events@data, time <= t0 & time + eps.t > t0) Nout <- sum(.stillInfective) events <- if (Nout > 0L) { events[.stillInfective,] } else { .eventstxt <- if (.skipChecks) "data$events" else "events" # for simulate.twinstim cat("(no events from '", .eventstxt, "' were considered as prehistory)\n", sep="") NULL } } ## separate coordinates and data if (Nout > 0L) { check_tiles_events(tiles, events) eventCoords <- coordinates(events) eventData <- events@data ## check presence of unpredictable marks if (length(.idx <- which(!unpredMarks %in% names(eventData)))) { stop("missing unpredictable marks in 'events': ", paste0("\"", unpredMarks[.idx], "\"", collapse=", ")) } ## check type of unpredictable marks for (um in unpredMarks) { if (!identical(class(sampleMarks[[um]]), class(eventData[[um]]))) stop("the class of the unpredictable mark '", um, "' in the 'events' prehistory ", "is not identical to the class returned by 'rmarks'") } ## add marks which are not in the prehistory but simulated by 'rmarks' if (length(.add2events <- setdiff(markNames, names(eventData)))) { eventData <- cbind(eventData, sampleMarks[.add2events]) is.na(eventData[.add2events]) <- TRUE } eventData <- eventData[c("time", "tile", "type", markNames)] } else { ## empty prehistory eventCoords <- matrix(0, nrow=0L, ncol=2L) eventData <- data.frame( time = numeric(0L), tile = factor(character(0L), levels=tileLevels), type = factor(character(0L), levels=typeNames), check.rows = FALSE, check.names = FALSE ) eventData <- cbind(eventData, sampleMarks[0L,]) } ## helper function to attach covariates from 'stgrid' to events attachstgridvars <- function (eventData, stgridvars) { if (length(stgridvars) == 0L) return(eventData) gridcellsOfEvents <- integer(nrow(eventData)) for (i in seq_along(gridcellsOfEvents)) { gridcellsOfEvents[i] <- gridcellOfEvent(eventData[i,"time"], eventData[i,"tile"], stgrid) } cbind(eventData, stgrid[gridcellsOfEvents, stgridvars, drop=FALSE]) } ### Build epidemic model matrix epidemic <- terms(epidemic, data = eventData, keep.order = TRUE) if (!is.null(attr(epidemic, "offset"))) { warning("offsets are not implemented for the 'epidemic' component") } # helper function taking eventData and returning the epidemic model.matrix buildmme <- function (eventData) { # which variables do we have to copy from stgrid? stgridCopyCols <- match(all.vars(epidemic), names(stgrid), nomatch = 0L) eventData <- attachstgridvars(eventData, stgridCopyCols) mfe <- model.frame(epidemic, data = eventData, na.action = na.fail, drop.unused.levels = FALSE) model.matrix(epidemic, mfe) } mme <- buildmme(eventData) if (ncol(mme) != q) { cat(ncol(mme), "epidemic model terms:\t", paste(colnames(mme), collapse=" "), "\n") stop("length of 'gamma' (", q, ") does not match the 'epidemic' specification (", ncol(mme), ")") } ## (inverse) link function for the epidemic linear predictor of event marks epilink <- match.arg(epilink, choices = c("log", "identity")) epilinkinv <- switch(epilink, "log" = exp, "identity" = identity) ### Build endemic model matrix endemic <- terms(endemic, data = stgrid, keep.order = TRUE) # check if we have an endemic component at all hasOffset <- !is.null(attr(endemic, "offset")) hash <- (nbeta0 + p + hasOffset) > 0L if (!hash) { if (!hase) { stop("nothing to do: neither endemic nor epidemic parameters were specified") # actually, the process might be endemic offset-only, which I don't care about ATM } if (Nout == 0L) { stop("missing 'events' pre-history (no endemic component)") } } # remove (1|type) specification typeSpecificEndemicIntercept <- "1 | type" %in% attr(endemic, "term.labels") || nbeta0 > 1 if (typeSpecificEndemicIntercept) { endemic <- update.formula(endemic, ~ . - (1|type)) # this drops the terms attributes endemic <- terms(endemic, data = stgrid, keep.order = TRUE) if (nbeta0 <= 1L) { stop("for type-specific endemic intercepts, 'beta0' must be longer than 1") } } # ensure that we have correct contrasts in the endemic component attr(endemic, "intercept") <- as.integer(nbeta0 > 0L) # helper function taking eventData (with time and tile columns) # and returning the endemic model.matrix buildmmh <- function (eventData) { # if 'pi' appears in 'endemic' we don't care, and if a true covariate is # missing, model.frame will throw an error # which variables do we have to copy from stgrid? stgridCopyCols <- match(all.vars(endemic), names(stgrid), nomatch = 0L) # attaching covariates from 'stgrid' to events eventData <- attachstgridvars(eventData, stgridCopyCols) # construct model matrix mfhEvents <- model.frame(endemic, data = eventData, na.action = na.fail, drop.unused.levels = FALSE) mmhEvents <- model.matrix(endemic, mfhEvents) # exclude intercept from endemic model matrix below, will be treated separately if (nbeta0 > 0) mmhEvents <- mmhEvents[,-1,drop=FALSE] structure(mmhEvents, offset = model.offset(mfhEvents)) } # actually, we don't need the endemic model matrix for the pre-history events at all # this is just to test consistence with 'beta' and for the names of 'beta' mmh <- buildmmh(eventData[0L,]) if (ncol(mmh) != p) { stop("length of 'beta' (", p, ") does not match the 'endemic' specification (", ncol(mmh), ")") } ### Build endemic model matrix on stgrid mfhGrid <- model.frame(endemic, data = stgrid, na.action = na.fail, drop.unused.levels = FALSE, BLOCK = BLOCK, tile = tile, ds = area) # we don't actually need 'tile' in mfhGrid; this is only for easier identification when debugging mmhGrid <- model.matrix(endemic, mfhGrid) # exclude intercept from endemic model matrix below, will be treated separately if (nbeta0 > 0) mmhGrid <- mmhGrid[,-1,drop=FALSE] # Extract endemic model components offsetGrid <- model.offset(mfhGrid) gridBlocks <- mfhGrid[["(BLOCK)"]] ds <- mfhGrid[["(ds)"]] ### Parse interaction functions if (hase) { ## Check interaction functions siaf <- do.call(".parseiaf", args = alist(siaf, "siaf", verbose=trace>0)) constantsiaf <- attr(siaf, "constant") if (siaf$npars != nsiafpars) { stop("length of 'siafpars' (", nsiafpars, ") does not match the 'siaf' specification (", siaf$npars, ")") } tiaf <- do.call(".parseiaf", args = alist(tiaf, "tiaf", verbose=trace>0)) constanttiaf <- attr(tiaf, "constant") if (constanttiaf) gmax <- 1L if (tiaf$npars != ntiafpars) { stop("length of 'tiafpars' (", ntiafpars, ") does not match the 'tiaf' specification (", tiaf$npars, ")") } ## Check control.siaf if (constantsiaf) control.siaf <- NULL else { stopifnot(is.null(control.siaf) || is.list(control.siaf)) } ## Define function that integrates the two-dimensional 'siaf' function ## over the influence regions of the events if (!constantsiaf && !is.null(siaf$Fcircle) && !is.null(siaf$effRange)) { ## pre-compute effective range of the 'siaf' (USED BY .siafInt) effRangeTypes <- rep_len(siaf$effRange(siafpars), nTypes) } .siafInt <- .siafIntFUN(siaf = siaf, noCircularIR = FALSE) # not certain beforehand .siafInt.args <- c(list(siafpars), control.siaf$F) ## Check gmax if (is.null(gmax)) { gmax <- max(tiaf$g(rep.int(0,nTypes), tiafpars, 1:nTypes)) cat("assuming gmax =", gmax, "\n") } else if (!isScalar(gmax)) { stop("'gmax' must be scalar") } } else { if (!missing(siaf) && !is.null(siaf)) warning("'siaf' can only be modelled in conjunction with an 'epidemic' process") if (!missing(tiaf) && !is.null(tiaf)) warning("'tiaf' can only be modelled in conjunction with an 'epidemic' process") siaf <- tiaf <- NULL control.siaf <- NULL } ### print some information on the upcoming simulation txtPrehistory <- if (Nout == 0L) "no prehistory" else paste(Nout, ngettext(Nout, "event", "events"), "in the prehistory") cat("\nSimulating a", if (length(unpredMarks) > 2L) "marked", "spatio-temporal point pattern with", "\n\t-", nTypes, ngettext(nTypes, "event type", "event types"), "\n\t-", txtPrehistory) coefs <- c( if (nbeta0 > 1L) { setNames(beta0, paste0("h.type",typeNames)) } else if (nbeta0 == 1L) setNames(beta0, "h.(Intercept)"), if (p > 0L) setNames(beta, paste("h",colnames(mmh),sep=".")), if (hase) setNames(gamma, paste("e",colnames(mme),sep=".")), if (hassiafpars) setNames(siafpars, paste("e.siaf",1:nsiafpars,sep=".")), if (hastiafpars) setNames(tiafpars, paste("e.tiaf",1:ntiafpars,sep=".")) ) cat("\n\t-", length(coefs), "coefficients:\n\n") print(coefs) ########################################## ### CIF of the temporal ground process ### ########################################## ### calculate integral of endemic component over W (= union of tiles) ### and over types for all time blocks in stgrid hIntWK <- if (hash) { dsexpeta <- local({ eta <- drop(mmhGrid %*% beta) # =0 if p = 0 if (!is.null(offsetGrid)) eta <- offsetGrid + eta ds * exp(unname(eta)) }) fact <- if (nbeta0 > 1L) sum(exp(beta0)) else if (nbeta0 == 1L) nTypes*exp(unname(beta0)) else nTypes fact * c(tapply(dsexpeta, gridBlocks, sum)) } else setNames(numeric(nrow(blockstarts)), blockstarts[,1]) # zeroes #<- is a named vector with names referencing BLOCK in stgrid ### helper function evaluating the epidemic terms of the ground intensity ### for a specific set of events (the lambdag function uses eTerms) eTermsCalc <- function (eventData, eventCoords) { # extract some marks from the eventData (USED INSIDE .siafInt() BELOW!) eventTypes <- as.integer(eventData$type) eps.s <- eventData$eps.s # distance to the border (required for siafInt below, and for epidataCS) bdist <- bdist(eventCoords, Wedges) # spatial influence regions of the events influenceRegion <- if (nrow(eventCoords) > 0L) .influenceRegions( events = SpatialPointsDataFrame( coords = eventCoords, data = data.frame(eps.s = eps.s, .bdist = bdist), match.ID = FALSE ), W = Wowin, npoly = nCircle2Poly, maxExtent = maxExtentOfW, clipper = "polyclip" ) else list() # epidemic terms if (!hase) { return(list(matrix(NA_real_, length(influenceRegion), 3L), bdist, influenceRegion)) } # epidemic model matrix (will be multiplied with gamma) mme <- buildmme(eventData) # integrate the two-dimensional 'siaf' function over the influence region siafInts <- if (length(influenceRegion) == 0L) numeric(0L) else { environment(.siafInt) <- environment() do.call(".siafInt", .siafInt.args) } # Matrix of terms in the epidemic component eTerms <- cbind( qSum = qSumTypes[eventTypes], expeta = epilinkinv(drop(mme %*% gamma)), siafInt = siafInts ) # Return list(eTerms, bdist, influenceRegion) } ### function calculating the (upper bound) intensity of the ground process ### it relies on several objects for the epidemic component which are updated alongside simulation # t will be one of the break points in stgrid or an event time lambdagVec <- function (t, upper=FALSE) { ## endemic part hIntWKt <- hIntWK[[as.character(tBLOCK)]] ## epidemic part ejIntWt <- if (!hase || length(infectives) == 0L) numeric(0L) else { eTerms <- eTerms[infectives,,drop=FALSE] gTerm <- if (upper) { rep.int(gmax, length(infectives)) } else { times <- eventMatrix[infectives,"time"] types <- eventMatrix[infectives,"type"] tiaf$g(t-times, tiafpars, types) } # ejIntWt only for infectives, others have 0 setNames(apply(cbind(eTerms,gTerm), 1, prod), infectives) } c("0"=hIntWKt, ejIntWt) # endemic component has index "0" ! } ### helper function calculating the integral of lambdag from oldct to ct ### during simulation; it depends on the current values of the simulation add2Lambdag <- if (!hase || constanttiaf) { function () lambdagUpper * (ct-oldct) } else function () { # old endemic ground intensity * passed time hIntWKInt_oldct_ct <- lambdaghe[1L] * (ct-oldct) # integrated epidemic ground intensities of infectives (from oldct) ejIntWInt_oldct_ct <- if (length(infectives) == 0L) numeric(0L) else { eTermsProd <- apply(eTerms[infectives,,drop=FALSE], 1, prod) # integral of \id_{(0;eps.t]}(t-t_j) g(t-t_j \vert \kappa_j) from oldct to ct, for j in infectives # we can ignore the indicator because t-t_j is not >eps.t if t in [oldct;ct], because recoveries are change points times <- eventMatrix[infectives,"time"] types <- eventMatrix[infectives,"type"] gInt_0_ct <- tiaf$G(ct -times, tiafpars, types) gInt_0_oldct <- tiaf$G(oldct-times, tiafpars, types) gInt_oldct_ct <- gInt_0_ct - gInt_0_oldct eTermsProd * gInt_oldct_ct } sum(hIntWKInt_oldct_ct, ejIntWInt_oldct_ct) } ################## ### Simulation ### ################## ### Initialise values for simulation loop # all necessary components for an epidataCS object will be build along the simulation # let's start with the events of the prehistory tmp <- eTermsCalc(eventData, eventCoords) eTerms <- tmp[[1]]; rownames(eTerms) <- NULL bdists <- tmp[[2]] influenceRegions <- tmp[[3]] sources <- rep.int(list(integer(0L)), Nout) # Transform eventData into a matrix, which is faster with rbind # (factors will be recreated at the end of simulation) # simulated events will be subsequently appended to this matrix eventMatrix <- if (Nout == 0L) { matrix(numeric(0L), nrow=0L, ncol=ncol(eventData), dimnames=list(NULL, names(eventData))) } else { sapply(eventData, as.numeric, simplify = TRUE) # prehistory } if (Nout == 1L) eventMatrix <- t(eventMatrix) # we will also know about the source of infection and corresponding BLOCK in stgrid navec <- rep.int(NA_real_, Nout) eventMatrix <- cbind(eventMatrix, source = navec, lambda.h = navec, lambda.e = navec, Lambdag = navec, BLOCK = navec) # row indices of currently infective individuals infectives <- seq_len(Nout) # maximum total number of events (including prehistory) maxEvents <- Nout + nEvents # change points of lambdag stgridbreaks <- blockstarts[-1,2] Rtimes <- setNames(eventMatrix[,"time"]+eventMatrix[,"eps.t"], infectives) # name indexes row of eventMatrix # index of next event (row in eventMatrix) j <- Nout + 1L # allocation of large objects for faster filling-in of new events allocated <- Nout ncolEventMatrix <- ncol(eventMatrix) newAllocation <- expression({ eventMatrix <- rbind(eventMatrix, matrix(NA_real_, nrow = .allocate, ncol = ncolEventMatrix)) eventCoords <- rbind(eventCoords, matrix(NA_real_, nrow = .allocate, ncol = 2L)) eTerms <- rbind(eTerms, matrix(NA_real_, nrow = .allocate, ncol = 3L)) bdists <- c(bdists, rep.int(NA_real_,.allocate)) influenceRegions <- c(influenceRegions, vector(.allocate, mode="list")) sources <- c(sources, vector(.allocate, mode="list")) allocated <- allocated + .allocate }) # current time point ct <- t0 # current value of the cumulative intensity function of the ground process Lambdag <- 0 # last point rejected? pointRejected <- FALSE # did we have numerical problems simulating from Exp(lambdagUpper) in the current loop? hadNumericalProblems0 <- FALSE # index of the current loop loopCounter <- 0L ### Let's Rock 'n' Roll if (trace > 0L) { cat("\nSimulation path (starting from t=", t0, "):\n---\n", sep="") } else { cat("\nSimulating (starting from t=", t0, ") ...\n", sep="") } while(j <= maxEvents && ct < T && (hash || length(infectives) > 0L)) { loopCounter <- loopCounter + 1L if (trace > 0L && loopCounter %% trace == 0L) { cat(loopCounter, "@t =", ct, ":\t#simulated events =", j-1L-Nout, "\t#currently infective =", length(infectives), if (hase && !constanttiaf) paste("\tlast rejected?", pointRejected), "\n") flush.console() # affects Windows only } # check if we need to allocate larger matrices if (j > allocated) { eval(newAllocation) } if (!pointRejected) # what we have to do in the usual case { # we need the time block of stgrid corresponding to the new covariates, # i.e. search BLOCK such that t in [start; stop) tBLOCK <- blockstarts[findInterval(ct, blockstarts[,2]), 1] # Compute new infection intensity (upper bound) lambdaghe <- lambdagVec(ct, upper=TRUE) lambdagUpper <- sum(lambdaghe) # Determine time of next external change point changePoints <- c(nextblock = if (length(stgridbreaks) > 0L) stgridbreaks[1L], Rtimes) nextChangePoint <- if (length(changePoints) > 0L) { changePoints[which.min(changePoints)] # don't use min() because need names } else Inf } pointRejected <- FALSE ## Simulate waiting time for the subsequent infection if (is.na(lambdagUpper)) { warning("simulation stopped due to undefined intensity") break } if (lambdagUpper < 0) { warning("simulation stopped due to negative overall intensity") break } Delta <- if (lambdagUpper == 0) Inf else tryCatch( rexp(1, rate = lambdagUpper), warning = function (w) { # rate was too small (for R >= 2.7.0, # rexp(1, Inf) returns 0 without warning) assign("hadNumericalProblems0", TRUE, inherits = TRUE) Inf }) # Stop if lambdaStarMax too big meaning Delta == 0 (=> concurrent events) if (Delta == 0) { warning("simulation stopped due to infinite overall intensity") break } # Stop at all costs if end of simulation time [t0; T) has been reached if (isTRUE(min(ct+Delta, nextChangePoint) >= T)) { # ">=" because we don't want an event at "end" break } oldct <- ct if (ct + Delta > nextChangePoint) { ## Simulated time point is beyond the next time of intensity change (removal or endemic covariates) ct <- unname(nextChangePoint) # update cumulative intensity of the ground processes up to time ct, # i.e. add integral of lambdag from oldct to ct Lambdag <- Lambdag + add2Lambdag() # is this change point due to next time block in stgrid? if (names(nextChangePoint) == "nextblock") { stgridbreaks <- stgridbreaks[-1] } else { # i.e. change point due to recovery recoverer <- names(nextChangePoint) # update set of infectives infectives <- setdiff(infectives, recoverer) # remove recovery time from Rtimes .Rtimesidx <- match(recoverer, names(Rtimes)) Rtimes <- Rtimes[-.Rtimesidx] } } else { ## Simulated time point lies within the thinning period ct <- ct + Delta # rejection sampling if non-constant temporal interaction kernel g if (hase && !constanttiaf) { # Calculate actual ground intensity for rejection probability at new ct lambdaghe <- lambdagVec(ct, upper=FALSE) lambdag <- sum(lambdaghe) # rejection sampling step if (lambdag/lambdagUpper < runif(1)) { pointRejected <- TRUE next } } # At this point, we have an actual event! # update cumulative intensity of the ground processes up to time ct, # i.e. add integral of lambdag from oldct to ct Lambdag <- Lambdag + add2Lambdag() # note that lambdaghe[1L] did not change by the above update in case of !constanttiaf, # which is expected by add2Lambdag (which requires the value of lambdag.h(oldct)) # Where did the event come from: imported case or infection? .eventSource <- as.integer(sample(names(lambdaghe), 1L, prob=lambdaghe)) # We now sample type and location if (.eventSource == 0L) { # i.e. endemic source of infection .eventType <- sample(typeNames, 1L, prob=if (nbeta0 > 1L) exp(beta0)) stgrididx <- which(gridBlocks == tBLOCK) .eventTile <- sample(stgrid$tile[stgrididx], 1L, prob=dsexpeta[stgrididx]) # this is a factor ## spsample doesn't guarantee that the sample will consist of ## exactly n points. if no point is sampled (very unlikely ## though), there would be an error ntries <- 1L .nsample <- 1L while( inherits(eventLocationSP <- try( spsample(tiles[as.character(.eventTile),], n=.nsample, type="random"), silent = TRUE), "try-error")) { .nsample <- 10L # this also circumvents a bug in sp 1.0-0 # (missing drop=FALSE in sample.Spatial()) if (ntries >= 1000) { stop("'sp::spsample()' didn't succeed in sampling a ", "point from tile \"", as.character(.eventTile), "\"") } ntries <- ntries + 1L } .eventLocation <- coordinates(eventLocationSP)[1L,,drop=FALSE] } else { # i.e. source is one of the currently infective individuals sourceType <- eventMatrix[.eventSource,"type"] sourceCoords <- eventCoords[.eventSource,,drop=FALSE] sourceIR <- influenceRegions[[.eventSource]] sourceEpss <- eventMatrix[.eventSource,"eps.s"] .upperRange <- min(sourceEpss, maxExtentOfW) .eventType <- sample(typeNames[qmatrix[sourceType,]], 1L) .eventTypeCode <- match(.eventType, typeNames) eventLocationIR <- if (constantsiaf) { as.matrix(coords.ppp(runifpoint(1L, win=sourceIR))) } else { eventInsideIR <- FALSE ntries <- 0L while(!eventInsideIR) { if (ntries >= 1000) { stop("event location sampled by siaf$simulate() was", " rejected 1000 times (not in influence region)") } ntries <- ntries + 1L eventLocationIR <- siaf$simulate(1L, siafpars, .eventTypeCode, .upperRange) eventInsideIR <- inside.owin(eventLocationIR[,1], eventLocationIR[,2], sourceIR) } eventLocationIR } .eventLocation <- sourceCoords + eventLocationIR whichTile <- over(SpatialPoints(.eventLocation, proj4string=tiles@proj4string), tiles) if (is.na(whichTile)) { warning("event generated at (", paste(.eventLocation, collapse=","), ") not in 'tiles'") stop("'tiles' must cover all of 'W'") } .eventTile <- row.names(tiles)[whichTile] .eventTile <- factor(.eventTile, levels=tileLevels) if (is.na(.eventTile)) stop("tile \"", row.names(tiles)[whichTile], "\" of simulated event is no level of stgrid$tile", "\n-> verify row.names(tiles)") } .eventType <- factor(.eventType, levels=typeNames) # sample marks at this time and location .eventMarks <- rmarks(ct, .eventLocation) # gather event information .eventData <- data.frame(time=ct, tile=.eventTile, type=.eventType, .eventMarks, check.rows = FALSE, check.names = FALSE) # determine potential sources of infection (for epidataCS and lambda) .sources <- infectives[eventMatrix[infectives,"type"] %in% which(qmatrix[,.eventType])] if (length(.sources) > 0L) { .sdiffs <- .eventLocation[rep.int(1L,length(.sources)),,drop=FALSE] - eventCoords[.sources,,drop=FALSE] .sources <- .sources[sqrt(.rowSums(.sdiffs^2, length(.sources), 2L)) <= eventMatrix[.sources,"eps.s"]] } # calculate actual intensity at this time, location and type .mmhEvent <- buildmmh(.eventData) .etaEvent <- .mmhEvent %*% beta if (!is.null(.offsetEvent <- attr(.mmhEvent, "offset"))) .etaEvent <- .etaEvent + .offsetEvent if (nbeta0 == 1L) { .etaEvent <- .etaEvent + beta0 } else if (nbeta0 > 1L) { .etaEvent <- .etaEvent + beta0[.eventType] } .lambdah <- exp(.etaEvent) .lambdae <- if (hase && length(.sources) > 0L) { .sdiffs <- .eventLocation[rep.int(1L,length(.sources)),,drop=FALSE] - eventCoords[.sources,,drop=FALSE] .fSources <- siaf$f(.sdiffs, siafpars, eventMatrix[.sources,"type"]) .gSources <- tiaf$g(ct - eventMatrix[.sources,"time"], tiafpars, eventMatrix[.sources,"type"]) sum(eTerms[.sources,"expeta"] * .fSources * .gSources) } else 0 # calculate terms of the epidemic component e_j(t,s) of the new infective tmp <- eTermsCalc(.eventData, .eventLocation) # Update objects eventMatrix[j,] <- c(ct, as.numeric(.eventTile), as.numeric(.eventType), sapply(.eventMarks, as.numeric), .eventSource, .lambdah, .lambdae, Lambdag, tBLOCK) eventCoords[j,] <- .eventLocation eTerms[j,] <- tmp[[1]] bdists[j] <- tmp[[2]] influenceRegions[[j]] <- tmp[[3]][[1]] sources[[j]] <- .sources # Update set of infectives and recovery times infectives <- c(infectives, j) Rtimes <- c(Rtimes, setNames(ct + .eventMarks[["eps.t"]], j)) # Increment next event iterator j <- j + 1L } } if (trace > 0L) cat("---\n") ### update T if simulation ended preterm if (j > maxEvents || (!hash && length(infectives) == 0L)) { T <- ct # clip stgrid to effective time range of simulation stgrid <- subset(stgrid, start <= T) if (j > maxEvents) { cat("Maximum number of events (nEvents=", nEvents, ") reached @t = ", T, "\n", sep="") } else { # epidemic-only model cat("Simulation has ended preterm (no more infectives)", "@t =", T, "with", j-1L-Nout, "simulated events.\n") } } else { # ct >= T or ct+Delta >= T cat("Simulation has ended @t =", T, "with", j-1L-Nout, "simulated events.\n") } ############## ### Return ### ############## ### Throw warning in case of numerical difficulties if (hadNumericalProblems0) { warning("occasionally, the overall infection rate was numerically equal to 0") } ### throw an error if no events have been simulated ## because SpatialPoints[DataFrame]() does not allow the empty set, try: ## SpatialPoints(coords = matrix(numeric(0), 0, 2), bbox=bbox(W)) if (j-1L == Nout) { stop("no events have been simulated") } ### transform eventMatrix back into a data.frame with original factor variables cat("\nPreparing simulated events for \"epidataCS\" ...\n") preEventData <- eventData # drop unused entries (due to large pre-allocation) from objects seqAlongEvents <- seq_len(j-1L) eventData <- as.data.frame(eventMatrix[seqAlongEvents,,drop=FALSE]) # rebuild factor variables for (idx in which(sapply(preEventData, is.factor))) { origlevels <- levels(preEventData[[idx]]) eventData[[idx]] <- factor(eventData[[idx]], levels=seq_along(origlevels), labels=origlevels) } # transform integer columns to integer eventData[c("source","BLOCK")] <- lapply(eventData[c("source","BLOCK")], as.integer) ### Append additional columns for an epidataCS object # add endemic covariates at events stgrididx <- apply(eventData[c("BLOCK","tile")], 1, function (x) { ret <- with(stgrid, which(BLOCK==as.integer(x[1L]) & tile==x[2L])) if (length(ret) == 0L) NA_integer_ else ret #<- events of the prehistory have missing BLOCKs, thus return NA }) stgridIgnoreCols <- match(c("BLOCK", setdiff(obligColsNames_stgrid, "start")), names(stgrid)) eventData <- cbind(eventData, stgrid[stgrididx, -stgridIgnoreCols, drop = FALSE]) rownames(eventData) <- seqAlongEvents # add hidden columns eventData$.obsInfLength <- with(eventData, pmin(T-time, eps.t)) eventData$.sources <- sources[seqAlongEvents] eventData$.bdist <- bdists[seqAlongEvents] eventData$.influenceRegion <- influenceRegions[seqAlongEvents] attr(eventData$.influenceRegion, "nCircle2Poly") <- nCircle2Poly attr(eventData$.influenceRegion, "clipper") <- "polyclip" ### Construct "epidataCS" object events <- SpatialPointsDataFrame( coords = eventCoords[seqAlongEvents,,drop=FALSE], data = eventData, proj4string = W@proj4string, match.ID = FALSE #, bbox = bbox(W)) # the bbox of SpatialPoints is defined as the actual # bbox of the points and is also updated every time # when subsetting the SpatialPoints object # -> useless to specify it as the bbox of W ) if (.onlyEvents) { cat("Done.\n") attr(events, "timeRange") <- c(t0, T) attr(events, "runtime") <- proc.time()[[3]] - ptm return(events) } epi <- list(events=events, stgrid=stgrid, W=W, qmatrix=qmatrix) ### Return object of class "simEpidataCS" cat("Done.\n") # append configuration of the model epi$bbox <- bbox(W) epi$timeRange <- c(t0, T) epi$formula <- list( endemic = if (typeSpecificEndemicIntercept) { update.formula(formula(endemic), ~ (1|type) + .) # re-add to the formula } else formula(endemic), epidemic = formula(epidemic), siaf = siaf, tiaf = tiaf ) if (epilink != "log") # set as attribute only if non-standard link function attr(epi$formula$epidemic, "link") <- epilink # coefficients as a numeric vector to be compatible with twinstim-methods epi$coefficients <- coefs #list(beta0=beta0, beta=beta, gamma=gamma, # siafpars=siafpars, tiafpars=tiafpars) epi$npars <- c(nbeta0=nbeta0, p=p, q=q, nsiafpars=nsiafpars, ntiafpars=ntiafpars) epi$control.siaf <- control.siaf # for R0.simEpidataCS epi$call <- cl epi$runtime <- proc.time()[[3]] - ptm class(epi) <- c("simEpidataCS", "epidataCS") return(epi) } ############################################################################# ### much more efficient simulation for endemic-only models ### where intensities are piecewise constant and independent from the history ############################################################################# ## auxiliary function to calculate the endemic intensity by spatio-temporal cell ## from the model environment of a "twinstim" fit .hGrid <- function (modelenv) { .beta0 <- rep_len(if (modelenv$nbeta0==0L) 0 else modelenv$beta0, modelenv$nTypes) hGrid <- sum(exp(.beta0)) * eval(modelenv$hGridExpr, envir = modelenv) blockstartstop <- modelenv$histIntervals[ match(modelenv$gridBlocks, modelenv$histIntervals$BLOCK), ] data.frame(blockstartstop, tile = modelenv$gridTiles, hGrid = hGrid, hInt = hGrid * modelenv$ds * modelenv$dt, row.names = NULL, check.rows = FALSE, check.names = FALSE) } ## simulate events from the endemic component of a "twinstim" fit ## this simulates pure (s,t,k) data with the only extra column being "tile" simEndemicEvents <- function (object, tiles) { ## check arguments stopifnot(inherits(object, "twinstim")) if (is.null(modelenv <- environment(object))) stop("no model environment -- re-fit or update() with 'model=TRUE'") tileLevels <- levels(modelenv$gridTiles) tiles <- check_tiles(tiles, levels = tileLevels, areas.stgrid = modelenv$ds[seq_along(tileLevels)], keep.data = FALSE) ## calculate endemic intensity by spatio-temporal cell lambdaGrid <- .hGrid(modelenv) ## simulate number of events by cell nGrid <- rpois(n = nrow(lambdaGrid), lambda = lambdaGrid[["hInt"]]) nTotal <- sum(nGrid) ## sample time points tps <- mapply( FUN = runif, n = nGrid, min = lambdaGrid[["start"]], max = lambdaGrid[["stop"]], SIMPLIFY = FALSE, USE.NAMES = FALSE ) ## sample types beta0 <- coeflist.default(coef(object), object$npars)[["nbeta0"]] nTypes <- nrow(object$qmatrix) types <- if (nTypes == 1L) { rep.int(1L, nTotal) } else { sample.int(n = nTypes, size = nTotal, replace = TRUE, prob = if (length(beta0) > 1L) exp(beta0)) } ## put event times, tiles, and types in a data frame events <- data.frame( ##lambdaGrid[rep.int(seq_len(nrow(lambdaGrid)), nGrid), c("tile", "BLOCK")], time = unlist(tps, recursive = FALSE, use.names = FALSE), tile = rep.int(lambdaGrid[["tile"]], nGrid), type = factor(types, levels = seq_len(nTypes), labels = rownames(object$qmatrix)), row.names = NULL, check.rows = FALSE, check.names = FALSE ) ## sample coordinates from tiles nByTile <- tapply(X = nGrid, INDEX = lambdaGrid["tile"], FUN = sum) xyByTile <- sapply( X = names(nByTile), FUN = function (tile) { n <- nByTile[tile] if (n > 0L) coordinates(spsample(x = tiles[tile,], n = n, type = "random", iter = 10)) ## else NULL }, simplify = FALSE, USE.NAMES = TRUE ) ## set coordinates of events events <- SpatialPointsDataFrame( coords = do.call("rbind", xyByTile), data = events[order(events$tile),], proj4string = tiles@proj4string, match.ID = FALSE) ## order by time events <- events[order(events$time),] row.names(events) <- seq_along(events) events } #################################################### ### some twinstim-methods for "simEpidataCS" objects #################################################### ### wrapper for R0.twinstim R0.simEpidataCS <- function (object, trimmed = TRUE, ...) { R0.twinstim(object, newevents=object$events@data, trimmed = trimmed, ...) } ### wrapper for intensityplot.twinstim as.twinstim.simEpidataCS <- function (x) { m <- do.call("twinstim", c( formula(x), list(data = quote(x), control.siaf = x$control.siaf, optim.args = list(par=coef(x), fixed=TRUE), model = TRUE, cumCIF = FALSE, verbose = FALSE) )) components2copy <- setdiff(names(m), names(x)) for (comp in components2copy) x[[comp]] <- m[[comp]] environment(x) <- environment(m) class(x) <- c("simEpidataCS", "epidataCS", "twinstim") x } intensityplot.simEpidataCS <- function (x, ...) { if (is.null(environment(x))) { objname <- deparse(substitute(x)) message("Setting up the model environment ...") x <- as.twinstim.simEpidataCS(x) try({ assign(objname, x, envir=parent.frame()) message("Note: added model environment to '", objname, "' for future use.") }, silent=TRUE) } intensityplot.twinstim(x, ...) } ### the residual process Lambda_g(t) is stored with the simulated events residuals.simEpidataCS <- function (object, ...) { setNames(object$events$Lambdag, row.names(object$events))[!is.na(object$events$Lambdag)] } ################################################################################ # A 'simulate' method for objects of class "twinstim". ################################################################################ ### FIXME: actually stgrid's of simulations might have different time ranges ### when nEvents is active -> atm, simplify ignores this .rmarks <- function (data, t0, T) { observedMarks <- subset(marks.epidataCS(data, coords = FALSE), subset = time > t0 & time <= T) if (nrow(observedMarks) == 0L) { message("Note: 'data' does not contain any events during ('t0';'T'],\n", " 'rmarks' thus samples marks from all of 'data$events'") observedMarks <- marks.epidataCS(data, coords = FALSE) } observedMarks <- observedMarks[match("eps.t", names(observedMarks)):ncol(observedMarks)] rm(list = "data", inherits = FALSE) # to save memory (environment is kept) function (t, s, n = 1L) { as.data.frame(lapply(observedMarks, function (x) sample(na.omit(x), size = n, replace = TRUE)), optional = TRUE) } } simulate.twinstim <- function (object, nsim = 1, seed = NULL, data, tiles, newcoef = NULL, rmarks = NULL, t0 = NULL, T = NULL, nEvents = 1e5, control.siaf = object$control.siaf, W = data$W, trace = FALSE, nCircle2Poly = NULL, gmax = NULL, .allocate = 500, simplify = TRUE, ...) { ptm <- proc.time()[[3]] cl <- match.call() ### Determine seed (this part is copied from stats:::simulate.lm with ### Copyright (C) 1995-2012 The R Core Team) if (!exists(".Random.seed", envir = .GlobalEnv, inherits = FALSE)) runif(1) if (is.null(seed)) RNGstate <- get(".Random.seed", envir = .GlobalEnv) else { R.seed <- get(".Random.seed", envir = .GlobalEnv) set.seed(seed) RNGstate <- structure(seed, kind = as.list(RNGkind())) on.exit(assign(".Random.seed", R.seed, envir = .GlobalEnv)) } ### Few checks stopifnot(inherits(object, "twinstim"), inherits(data, "epidataCS")) stopifnot(isScalar(nsim), nsim > 0) nsim <- as.integer(nsim) if (is.null(t0)) t0 <- object$timeRange[1] if (is.null(T)) T <- object$timeRange[2] if (is.null(nCircle2Poly)) nCircle2Poly <- attr(data$events$.influenceRegion, "nCircle2Poly") ### Retrieve arguments for simulation endemic <- formula(object)$endemic epidemic <- formula(object)$epidemic # we don't need any reference to the original formula environment environment(endemic) <- environment(epidemic) <- .GlobalEnv if (is.null(rmarks)) rmarks <- .rmarks(data, t0 = t0, T = T) theta <- coef(object) if (!is.null(newcoef)) { newcoef <- check_twinstim_start(newcoef) newcoef <- newcoef[names(newcoef) %in% names(theta)] theta[names(newcoef)] <- newcoef } thetalist <- coeflist.default(theta, object$npars) ### Run the simulation(s) # establish call simcall <- call("simEpidataCS", endemic=endemic, epidemic=epidemic, siaf=quote(formula(object)$siaf), tiaf=quote(formula(object)$tiaf), qmatrix=quote(object$qmatrix), rmarks=quote(rmarks), events=quote(data$events), stgrid=quote(data$stgrid), tiles=quote(tiles), beta0=thetalist[[1L]], beta=thetalist[[2L]], gamma=thetalist[[3L]], siafpars=thetalist[[4L]], tiafpars=thetalist[[5L]], epilink = .epilink(object), t0=t0, T=T, nEvents=nEvents, control.siaf=control.siaf, W=quote(W), trace=trace, nCircle2Poly=nCircle2Poly, gmax=gmax, .allocate=.allocate, .skipChecks=TRUE, .onlyEvents=FALSE) # First simulation if (nsim > 1L) { cat("\nTime at beginning of simulation:", as.character(Sys.time()), "\n") cat("Simulation 1 /", nsim, "...\n") cat("-------------------------------------------------------------------------------\n") } res <- eval(simcall) if (nsim > 1L) { cat("\n-------------------------------------------------------------------------------\n") cat("Runtime of first simulation:", res$runtime, "seconds\n") cat("Estimated finishing time:", as.character(Sys.time() + (nsim-1) * res$runtime), "\n\n") # set up list of simulations res <- if (simplify) { with(res, list( eventsList=c(structure(events, timeRange = timeRange, runtime = runtime), vector(nsim-1L, mode="list")), stgrid=stgrid, W=W, qmatrix=qmatrix, bbox=bbox, formula=formula, coefficients=coefficients, npars=npars, control.siaf=control.siaf, call=call )) } else { c(list(res), vector(nsim-1L, mode="list")) } # force garbage collection gc() # run the remaining simulations simcall$.onlyEvents <- simplify for (i in 2:nsim) { cat("Simulation", sprintf(paste0("%",nchar(nsim),"i"), i), "/", nsim, "...") capture.output(resi <- eval(simcall)) .nEvents <- if (simplify) sum(!is.na(resi$source)) else { sum(!is.na(resi$events$source)) } .T <- if (simplify) attr(resi,"timeRange")[2] else resi$timeRange[2] cat("\tsimulated", .nEvents, "events", if (nEvents == .nEvents) "(reached maximum)", "up to time", .T, "\n") if (simplify) res$eventsList[[i]] <- resi else res[[i]] <- resi } cat("\nDone (", as.character(Sys.time()), ").\n", sep="") } attr(res, "call") <- cl attr(res, "seed") <- RNGstate attr(res, "runtime") <- proc.time()[[3]] - ptm class(res) <- if (nsim == 1L) { c("simEpidataCS", "epidataCS") } else { attr(res, "simplified") <- simplify c("simEpidataCSlist") } res } ### print method for lists of simulated epidemics print.simEpidataCSlist <- function (x, ...) { cat("\nCall:\n") print.default(attr(x, "call")) simplified <- attr(x, "simplified") nsim <- if (simplified) length(x$eventsList) else length(x) cat("\n") cat(if (simplified) "Simplified list" else "List", "of", nsim, "simulated epidemics of class \"simEpidataCS\" (not printed)\n\n") invisible(x) } "[[.simEpidataCSlist" <- function (x, i) { simplified <- attr(x, "simplified") if (simplified) { x <- unclass(x) x$eventsList <- x$eventsList[[i]] names(x)[names(x) == "eventsList"] <- "events" x <- append(x, list(timeRange = attr(x$events, "timeRange")), after=5L) x$runtime <- attr(x$events, "runtime") attr(x$events, "timeRange") <- attr(x$events, "runtime") <- NULL class(x) <- c("simEpidataCS", "epidataCS") x } else NextMethod("[[") } plot.simEpidataCSlist <- function (x, which = NULL, mfrow = n2mfrow(length(which)), main = paste("Simulated epidemic", which), aggregate = c("time", "space"), subset, ...) { simplified <- attr(x, "simplified") nsim <- if (simplified) length(x$eventsList) else length(x) if (is.null(which)) { which <- seq_len(nsim) if (nsim > 4) which <- sample(which, 4L) } opar <- par(mfrow = mfrow); on.exit(par(opar)) main <- rep_len(main, length(which)) for (i in seq_along(which)) { do.call("plot", args=list(x=quote(x[[which[i]]]), aggregate=aggregate, subset=substitute(subset), main = main[i], ...)) } } surveillance/R/hhh4_calibration.R0000644000175100001440000000345713041377177016535 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### calibrationTest() for "hhh4" fits ### ### Copyright (C) 2015,2017 Sebastian Meyer ### $Revision: 1829 $ ### $Date: 2017-01-23 14:00:47 +0100 (Mon, 23. Jan 2017) $ ################################################################################ calibrationTest.hhh4 <- function (x, subset = x$control$subset, units = seq_len(x$nUnit), ...) { ## perform the calibration test in the specified subset res <- calibrationTest.default( x = x$stsObj@observed[subset, units, drop = FALSE], mu = x$fitted.values[match(subset, x$control$subset), units, drop = FALSE], size = psi2size.hhh4(x, subset, units), ...) ## change "data.name" to be the name of the supplied model res$data.name <- deparse(substitute(x)) res } calibrationTest.oneStepAhead <- function (x, units = NULL, ...) { ## perform the calibration test res <- if (is.null(units)) { calibrationTest.default( x = x$observed, mu = x$pred, size = psi2size.oneStepAhead(x), ...) } else { calibrationTest.default( x = x$observed[, units, drop = FALSE], mu = x$pred[, units, drop = FALSE], size = psi2size.oneStepAhead(x)[, units, drop = FALSE], ...) } ## change "data.name" to be the name of the supplied "oneStepAhead" object res$data.name <- deparse(substitute(x)) res } surveillance/R/gd.R0000644000175100001440000000474112625315364013717 0ustar hornikusers###################################################################### # This file contains utility functions for the generalized Dirichlet # distribution described in the article by T.-T. Wong et al. (1998), # Generalized Dirichlet distribution in Bayesian analysis. Applied # Mathematics and Computation, volume 97, pp 165-181. # # This includes: # rgd - sample from the generalized Dirichlet distribution # Egd - expectation of the generalized Dirichlet distribution # # Author: Michael Höhle # Date: LaMo Apr 2014. ###################################################################### ###################################################################### # Sample from the generalized dirichlet distribution, i.e. # (X_1,...,X_{k+1})' ~ GD(alpha,beta) # This is the algorithm described by Wong (1998), p. 174. # # Parameters: # alpha - vector of length k # beta - vector of length k # # Note: The alpha and beta vectors are for the first k categories. # The element in k+1 is automatically given as 1-sum_{i=1}^k X_i. ###################################################################### rgd <- function(n,alpha,beta) { #Check that alpha and beta are of the same length. if (length(alpha) != length(beta)) { stop("alpha and beta not of same length") } if (!all(alpha>0) | !all(beta>0)) { stop("Assumptiom alpha>0 and beta>0 is violated.") } #Prepare result and sample the first step as in Wong (1998), p.174 res <- matrix(NA,nrow=n,ncol=length(alpha)+1) res[,1] <- rbeta(n,alpha[1],beta[1]) sum <- res[,1] for (j in 2:(length(alpha))) { xj <- rbeta(n, alpha[j], beta[j]) #Adjust for previous samples res[,j] <- xj * (1-sum) sum <- sum + res[,j] } #Last cell is fixed. res[,length(alpha)+1] <- 1-sum return(res) } ###################################################################### #Compute analytically the expectation of a GD(alpha,beta) distributed #variable using the expression of Wong (1998). # # Parameters: # alpha - vector of alpha parameters of the distribution # beta - vector of beta parameters of the distribution # # Returns: # Expectation vector of the GD(alpha,betra) distribution ###################################################################### Egd <- function(alpha, beta) { mu <- alpha/(alpha+beta) mean <- NULL for (j in 1:length(mu)) { mean[j] <- mu[j] * prod(1-mu[seq_len(j-1)]) } return(c(mean,prod(1-mu))) } surveillance/R/stsBP.R0000644000175100001440000000367712672237564014376 0ustar hornikusers###################################################################### # initialize-method for "stsBP" objects ###################################################################### fix.dimnamesBP <- function (x) { dimnames(x@ci) <- dimnames(x@lambda) <- c(dimnames(x@observed), list(NULL)) x } init.stsBP <- function(.Object, ..., ci, lambda) { .Object <- callNextMethod() # use initialize,sts-method ## NOTE: we cannot have a validity check for the dimensions of ci and lambda ## in the class definition of "stsBP" since we could not easily get ## new("stsBP") to be a valid object. Thus, we will directly check here. ## check/set extra stsBP-slots dimObserved <- dim(.Object@observed) if (missing(ci)) { .Object@ci <- array(NA_real_, dim = c(dimObserved, 2L)) } else { dimCI <- dim(.Object@ci) if (length(dimCI) != 3 || any(dimCI != c(dimObserved, 2L))) stop("dim(ci) = (", paste0(dimCI, collapse=","), ")") } if (missing(lambda)) { .Object@lambda <- array(NA_real_, dim = c(dimObserved, 0L)) } else { dimLambda <- dim(.Object@lambda) if (length(dimLambda) != 3 || !identical(dimLambda[1:2], dimObserved)) stop("dim(lambda) = (", paste0(dimLambda, collapse=","), ")") } ## fix dimnames of extra stsBP-slots .Object <- fix.dimnamesBP(.Object) return(.Object) } setMethod("initialize", "stsBP", init.stsBP) ###################################################################### # Special coerce method to account for consistent dimensions ###################################################################### setAs(from = "sts", to = "stsBP", function (from) { res <- new("stsBP", from, ci = array(NA_real_, dim = c(dim(from@observed), 2L)), lambda = array(NA_real_, dim = c(dim(from@observed), 0L))) fix.dimnamesBP(res) }) surveillance/R/stK.R0000644000175100001440000001535712532032517014064 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Space-time K-function analysis of "epidataCS" objects ### along the lines of Diggle et al (1995): ### "Second-order analysis of space-time clustering" (Stat Methods Med Res) ### ### Copyright (C) 2015 Sebastian Meyer ### $Revision: 1347 $ ### $Date: 2015-05-29 11:45:51 +0200 (Fri, 29. May 2015) $ ################################################################################ ## call K-function methods in package "splancs" stKcall <- function (which = c("stkhat", "stsecal", "stmctest"), object, eps.s, eps.t, ...) { stopifnot(inherits(object, "epidataCS")) ## get the function which <- match.arg(which) FUN <- get(which, mode = "function", envir = getNamespace("splancs")) ## default arguments commonArgs <- list( pts = coordinates(object$events), times = object$events$time, poly = NULL, tlimits = summary(object)$timeRange, s = eps.s, tm = eps.t ) args <- modifyList(commonArgs, list(...)) if (is.null(args$poly)) { # use coordinates of first polygon if (length(object$W) > 1L || length(object$W@polygons[[1]]@Polygons) > 1L) stop("package \"splancs\" does not support multi-'poly'gons") args$poly <- coordinates(object$W@polygons[[1L]]@Polygons[[1L]]) } if (which == "stmctest" && is.null(args[["nsim"]])) { args$nsim <- 199L } ## unfortunately, argument names are not consistent across functions if (which == "stsecal") names(args)[names(args) == "tlimits"] <- "tlim" if (which == "stmctest") names(args)[names(args) == "tm"] <- "tt" ## call the selected splancs function do.call(FUN, args) } ## Monte-Carlo test for space-time interaction stKtest <- function (object, eps.s = NULL, eps.t = NULL, B = 199, cores = 1, seed = NULL, poly = object$W) { stopifnot(inherits(object, "epidataCS"), isScalar(cores), cores > 0, isScalar(B), B > 0) cores <- as.integer(cores) B <- as.integer(B) ## naive default grids if (is.null(eps.s)) eps.s <- seq(0, min(object$events$eps.s, apply(bbox(object$W), 1, diff)/2), length.out = 10) if (is.null(eps.t)) eps.t <- seq(0, min(object$events$eps.t, tail(object$stgrid$stop,1L)/2), length.out = 10) ## extract coordinates of the polygon polycoordslist <- xylist(poly) if (length(polycoordslist) > 1L) { stop("package \"splancs\" does not support multi-'poly'gons") } Wcoords <- as.matrix(as.data.frame(polycoordslist[[1L]])) ## calculate K-function stK <- stKcall("stkhat", object = object, eps.s = eps.s, eps.t = eps.t, poly = Wcoords) ## calculate standard error seD <- stKcall("stsecal", object = object, eps.s = eps.s, eps.t = eps.t, poly = Wcoords) ## perform Monte Carlo permutation test (parallelized) permt <- plapply( X = diff(round(seq(from = 0, to = B, length.out = cores + 1L))), FUN = function (nsim) { stKcall("stmctest", object = object, eps.s = eps.s, eps.t = eps.t, poly = Wcoords, nsim = nsim, quiet = TRUE)[["t"]] }, .parallel = cores, .seed = seed, .verbose = FALSE ) mctest <- list( "t0" = sum(stK$kst - outer(stK$ks, stK$kt)), "t" = unlist(permt, recursive = FALSE, use.names = FALSE) ) PVAL <- mean(c(mctest[["t0"]], mctest[["t"]]) >= mctest[["t0"]]) ## return test results structure( list(method = "Diggle et al (1995) K-function test for space-time clustering", data.name = deparse(substitute(object)), statistic = setNames(mctest$t0, "U"), # sum of residuals parameter = setNames(B, "B"), p.value = PVAL, pts = coordinates(object$events), stK = stK, seD = seD, mctest = mctest), class = c("stKtest", "htest") ) } ## diagnostic plots related to space-time K-function analysis ## inspired by splancs::stdiagn authored by Barry Rowlingson and Peter Diggle plot.stKtest <- function (x, which = c("D", "R", "MC"), args.D = list(), args.D0 = args.D, args.R = list(), args.MC = list(), mfrow = sort(n2mfrow(length(which))), ...) { stkh <- x$stK stse <- x$seD stmc <- x$mctest if (identical(which, "stdiagn")) { splancs::stdiagn(pts = x$pts, stkh = stkh, stse = stse, stmc = stmc) return(invisible()) } which <- match.arg(which, several.ok = TRUE) stopifnot(is.list(args.D), is.list(args.D0), is.list(args.R), is.list(args.MC)) ## K_0(s,t) = K(s) * K(t) K0 <- outer(stkh$ks, stkh$kt) ## D(s,t) = K(s,t) - K_0(s,t) st.D <- stkh$kst - K0 if (!is.null(mfrow)) { omfrow <- par(mfrow = mfrow) on.exit(par(omfrow)) } ## D plots Dzero <- which[which %in% c("D", "D0")] == "D0" whichDzero <- match(Dzero, c(FALSE, TRUE)) omar <- par(mar = if (is.null(args.D[["mar"]])) c(2,2,par("mar")[3L],1) else args.D[["mar"]]) mapply( FUN = function (z, Dzero, args) { defaultArgs <- list( x = stkh$s, y = stkh$t, z = z, main = if (Dzero) "Excess risk" else "D plot", xlab = "Distance", ylab = "Time lag", zlab = "", ticktype = "detailed", shade = 0.5, col = "lavender", theta = -30, phi = 15, expand = 0.5 ) do.call("persp", modifyList(defaultArgs, args)) }, z = list(st.D, st.D/K0)[whichDzero], Dzero = Dzero, args = list(args.D, args.D0)[whichDzero], SIMPLIFY = FALSE, USE.NAMES = FALSE ) par(omar) ## Residual plot if ("R" %in% which) { st.R <- st.D/stse defaultArgs.R <- list( x = K0, y = st.R, panel.first = quote(abline(h = c(-2,0,2), lty = c(2,1,2))), xlab = "K(s)K(t)", ylab = "R", main = "Standardized residuals", ylim = range(0, st.R, finite = TRUE) ) do.call("plot.default", modifyList(defaultArgs.R, args.R)) } ## MC permutation test plot if ("MC" %in% which) { defaultArgs.MC <- list( permstats = stmc$t, xmarks = setNames(stmc$t0, "observed"), main = "MC permutation test" ) do.call("permtestplot", modifyList(defaultArgs.MC, args.MC)) } invisible() } surveillance/R/sts_observation.R0000644000175100001440000000333413122430275016536 0ustar hornikusers################################################################################ #' Function for creating a sts-object with a given observation date ################################################################################ # Parameters ### #' @param sts sts-object we want to set at a previous state. Needs to include a reporting triangle. #' @param dateObservation Date for which we want the state. Needs to be in the reporting triangle dates. #' @param cut Boolean indicating wether to have 0 counts after the observation date or to simply cut the sts-object #' @examples #' data("salmAllOnset") #' salmAllOnsety2013m01d20 <- sts_observation(salmAllOnset, #' dateObservation="2014-01-20",cut=FALSE) #' plot(salmAllOnset) #' lines(salmAllOnsety2013m01d20@@observed,t="h",col="red") sts_observation <- function(sts,dateObservation,cut=TRUE){ # The sts object we shall return stsSub <- sts # Index of the observation date line1 <- which(epoch(sts)==dateObservation) # Maximal delay D <- dim(stsSub@control$reportingTriangle$n)[2]-1 # Number of dates theEnd <- dim(stsSub@control$reportingTriangle$n)[1] # Nothing observed after the observation date (I am a genius) stsSub@control$reportingTriangle$n[(line1+1):theEnd,] <- NA stsSub@observed[(line1+1):theEnd] <- 0 # Not everything observed before the observation date for (i in 1:D){ stsSub@control$reportingTriangle$n[line1+1-i,(i+1):(D+1)] <- NA stsSub@observed[line1+1-i] <- sum(stsSub@control$reportingTriangle$n[line1+1-i,],na.rm=T) } stsSub@control$reportingTriangle$n <- stsSub@control$reportingTriangle$n[1:line1,] # Return the new sts object if (cut){return(stsSub[1:line1])} else{return(stsSub)} } surveillance/R/sts_ggplot.R0000644000175100001440000000303113231374663015502 0ustar hornikusers################################################################################ ### Plot a surveillance time series ("sts") object using ggplot2 ### ### Copyright (C) 2018 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ################################################################################ autoplot.sts <- function (object, population = FALSE, units = NULL, as.one = FALSE, scales = "fixed", ...) { stopifnot(is(object, "sts")) data <- tidy.sts(object) ## select subset of units to plot if (!is.null(units)) { ## ensure that 'units' are labels, not indices units <- unname(setNames(nm = levels(data$unit))[units]) data <- data[data$unit %in% units, , drop=FALSE] } ## scale counts by population if (doInc <- isScalar(population) || isTRUE(population)) data$observed <- data$observed / (data$population / population) p <- ggplot2::ggplot( data = data, mapping = ggplot2::aes_(x = ~date, y = ~observed, group = ~unit) ) if (as.one) { p <- p + ggplot2::geom_line(ggplot2::aes_(colour = ~unit)) } else { p <- p + ggplot2::geom_bar(stat = "identity") + ggplot2::facet_wrap(~unit, scales = scales, drop = TRUE) } p + ggplot2::labs(x = "Time", y = if(doInc) "Incidence" else "No. infected") } surveillance/R/twinstim_epitest.R0000644000175100001440000002605712653663512016746 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Monte Carlo Permutation Test for Space-Time Interaction in "twinstim" ### ### Copyright (C) 2015-2016 Sebastian Meyer ### $Revision: 1542 $ ### $Date: 2016-02-01 15:10:18 +0100 (Mon, 01. Feb 2016) $ ################################################################################ epitest <- function (model, data, tiles, method = "time", B = 199, eps.s = NULL, eps.t = NULL, fixed = NULL, verbose = TRUE, compress = FALSE, ...) { ## check input stopifnot(inherits(model, "twinstim"), inherits(data, "epidataCS"), model$converged, isScalar(B), B >= 1) B <- as.integer(B) method <- match.arg(method, choices = c("LRT", "simulate", "time", "space")) # eval(formals(permute.epidataCS)$what) if (model$npars["q"] == 0L) { stop("no epidemic component in 'model'") } if (.epilink(model) == "log") { warning("boundary issues with the epidemic log-link", immediate. = TRUE) } if (isTRUE(fixed)) { fixed <- setdiff(grep("^e\\.", names(coef(model)), value = TRUE), "e.(Intercept)") } else { stopifnot(is.null(fixed) || is.character(fixed)) } t0 <- model$timeRange[1L] # will not permute events before t0 T <- model$timeRange[2L] ## auxiliary function to compute the LRT statistic lrt <- function (m0, m1) { l0 <- m0$loglik l1 <- m1$loglik c(l0 = l0, l1 = l1, D = 2 * (l1 - l0), converged = isTRUE(m1$converged) && isTRUE(m0$converged)) } ## observed test statistic m0 <- update.twinstim(model, data = data, epidemic = ~0, siaf = NULL, tiaf = NULL, control.siaf = NULL, model = method == "simulate", cumCIF = FALSE, cores = 1, verbose = FALSE, optim.args = list(fixed = fixed, control = list(trace = 0))) if (!isTRUE(m0$converged)) { stop("endemic-only model did not converge") } LRT <- lrt(m0 = m0, m1 = model) STATISTIC_D <- structure(LRT["D"], l0 = LRT[["l0"]], l1 = LRT[["l1"]]) STATISTIC_R0 <- c("simpleR0" = simpleR0(model, eps.s = eps.s, eps.t = eps.t)) ## LRT p-value (CAVE: invalid for the default log-link models) DF <- length(coef(model)) - length(coef(m0)) # number of epidemic parameters PVAL_LRT <- pchisq(as.vector(STATISTIC_D), # drop attributes df = DF, lower.tail = FALSE) ## result template res <- list( method = "Likelihood Ratio Test for Space-Time Interaction", data.name = paste0(deparse(substitute(data)), "\ntwinstim: ", deparse(substitute(model))), statistic = STATISTIC_D, parameter = c("df" = DF), p.value = PVAL_LRT ) class(res) <- c("epitest", "htest") if (method == "LRT") { ## we are done return(res) } ## otherwise: determine the null distribution via permutation or simulation res$method <- if (method == "simulate") { paste("Test for Space-Time Interaction (based on", B, "endemic simulations)") } else { "Monte Carlo Permutation Test for Space-Time Interaction" } if (model$npars["q"] > 1L) { warning("epidemic covariate effects might not be identifiable for null data", immediate. = TRUE) } ## define a function which generates data under the null generateNullData <- if (method == "simulate") { if (missing(tiles)) stop("'tiles' is required for 'method = \"simulate\"'") rmarks <- .rmarks(data, t0 = t0, T = T) function() { events <- simEndemicEvents(m0, tiles = tiles) events@data <- cbind(events@data, rmarks(n = length(events))) as.epidataCS(events = events, stgrid = data$stgrid[,-1L], W = data$W, qmatrix = data$qmatrix, nCircle2Poly = attr(data$events$.influenceRegion, "nCircle2Poly"), clipper = "polyclip", verbose = FALSE) } } else { function() permute.epidataCS(data, what = method, keep = time <= t0) } ## interpret 'verbose' level .verbose <- if (is.numeric(verbose)) { if (verbose >= 2) { ## create '.verbose' expression to print test statistics stats2string <- function (lrt, simpleR0) paste0(c(names(lrt)[1:3], "simpleR0"), " = ", sprintf(paste0("%4.", c(0,0,1,2), "f"), c(lrt[1:3], simpleR0)), collapse = " | ") cat("Endemic/Epidemic log-likelihoods, LRT statistic, and simple R0:\n", stats2string(LRT, STATISTIC_R0), "\n", "\nResults from B=", B, if (method == "simulate") " endemic simulations" else paste0(" permutations of ", method), ## will actually not be printed if parallelized using clusters ... ":\n", sep = "") substitute({ cat(STATS2STRING) if (!lrt["converged"]) { msg <- c(m0 = m0$converged, m1 = m1$converged) msg <- msg[msg != "TRUE"] cat(" | WARNING (", paste0(names(msg), collapse = " and "), "): ", paste0(unique(msg), collapse = " and "), sep = "") } cat("\n") }, list(STATS2STRING = body(stats2string))) } else { verbose <- verbose == 1 } } else verbose siafInt <- NULL if (method != "simulate") { ## if siafpars are fixed, determine siafInt for use in all permutations siafpars <- coeflist(model)$siaf if (length(siafpars) > 0L && all(names(siafpars) %in% fixed) && is.null(siafInt <- environment(model)$siafInt)) { if (!identical(FALSE, verbose)) cat("pre-evaluating 'siaf' integrals with fixed parameters ...\n") setup <- update.twinstim(model, data = data, optim.args = NULL, verbose = FALSE) assign("siafpars", siafpars, envir = environment(setup)) siafInt <- with(environment(setup), do.call("..siafInt", .siafInt.args)) } } ## define the function to be replicated B times: ## permute/simulate data, update epidemic model, compute endemic-only model, ## and compute test statistics permfits1 <- function (...) { ## depends on 'data', 'model', 'lrt', 'eps.s', 'eps.t', and 'fixed' .permdata <- generateNullData() .siafInt <- if (!is.null(siafInt)) { siafInt[match(row.names(.permdata$events), row.names(data$events))] } # else NULL ## sink(paste0("/tmp/trace_", Sys.getpid()), append = TRUE) m1 <- update.twinstim(model, data = .permdata, control.siaf = list(siafInt = .siafInt), model = FALSE, cumCIF = FALSE, cores = 1, verbose = FALSE, optim.args = list(fixed = fixed, control = list(trace = is.numeric(verbose) && verbose >= 3))) ## sink() m0 <- update.twinstim(m1, epidemic = ~0, siaf = NULL, tiaf = NULL, control.siaf = NULL, optim.args = list(control = list(trace = 0))) lrt <- lrt(m0, m1) simpleR0 <- simpleR0(m1, eps.s = eps.s, eps.t = eps.t) if (isTRUE(compress)) { # save memory m0[c("fitted", "fittedComponents", "R0")] <- m1[c("fitted", "fittedComponents", "R0")] <- list(NULL) } list(m0 = m0, m1 = m1, stats = c(lrt[1:3], simpleR0 = simpleR0, lrt["converged"])) } ## rock'n'roll (the computationally intensive part) permfits <- plapply(X = integer(B), FUN = permfits1, .verbose = .verbose, ...) ## if parallelized using forking with insufficient memory available, ## part of the replications in 'permfits' may be left unassigned (NULL) permIsNull <- vapply(X = permfits, FUN = is.null, FUN.VALUE = logical(1L), USE.NAMES = FALSE) if (npermIsNull <- sum(permIsNull)) { warning(npermIsNull, "/", B, " replications did not return (insufficient memory?)") permfits <- permfits[!permIsNull] } ## extract the statistics permstats <- as.data.frame(t(vapply( X = permfits, FUN = "[[", "stats", FUN.VALUE = numeric(5L), USE.NAMES = TRUE ))) permstats$converged <- as.logical(permstats$converged) ## compute permutation-based p-value PVAL_D <- mean(c(STATISTIC_D, permstats[permstats$converged, "D"]) >= STATISTIC_D) PVAL_R0 <- mean(c(STATISTIC_R0, permstats[permstats$converged, "simpleR0"]) >= STATISTIC_R0) ## set results res$statistic <- structure(STATISTIC_R0, "D" = unname(STATISTIC_D)) res$parameter <- c("B" = sum(permstats$converged)) res$p.value <- structure(PVAL_R0, "D-based" = PVAL_D, "LRT" = PVAL_LRT) res$permfits <- permfits res$permstats <- permstats res } coef.epitest <- function (object, which = c("m1", "m0"), ...) { which <- match.arg(which) permcoefs <- vapply(X = object$permfits, FUN = function (x) coef(x[[which]]), FUN.VALUE = coef(object$permfits[[1L]][[which]]), USE.NAMES = TRUE) t(permcoefs) } plot.epitest <- function (x, teststat = c("simpleR0", "D"), ...) { teststat <- match.arg(teststat) defaultArgs <- switch(teststat, "simpleR0" = list( permstats = x$permstats$simpleR0, xmarks = setNames(x$statistic, "observed"), xlab = expression("Simple " * R[0]) ), "D" = list( permstats = x$permstats$D, xmarks = setNames(attr(x$statistic, "D"), "observed"), xlab = expression(D == 2 %.% log(L[full]/L[endemic])) ) ) args <- modifyList(defaultArgs, list(...)) if (is.null(args[["permstats"]])) stop("nothing to plot (no 'permstats' available)") do.call("permtestplot", args) } ## auxiliary function also used by plot.knox(), permutationTest(), ... permtestplot <- function (permstats, xmarks = NULL, xlab = "test statistic", ...) { defaultArgs <- list( data = permstats, xlab = xlab, col = "lavender", main = "Monte Carlo permutation test for space-time interaction", xlim = extendrange(c(permstats, xmarks)) ) do.call("truehist", modifyList(defaultArgs, list(...), keep.null = TRUE)) if (!is.null(xmarks)) { abline(v = xmarks, lwd = 2) axis(3, at = xmarks, labels = names(xmarks), # if NULL the value is used tick = FALSE, line = -1, font = 2) } invisible(NULL) } surveillance/R/algo_farrington.R0000644000175100001440000005160012176171204016466 0ustar hornikusers### R code from vignette source 'Rnw/algo_farrington.Rnw' ### Encoding: ISO8859-1 ################################################### ### code chunk number 1: algo_farrington.Rnw:25-35 ################################################### anscombe.residuals <- function(m,phi) { y <- m$y mu <- fitted.values(m) #Compute raw Anscombe residuals a <- 3/2*(y^(2/3) * mu^(-1/6) - mu^(1/2)) #Compute standardized residuals a <- a/sqrt(phi * (1-hatvalues(m))) return(a) } ################################################################################ # WEIGHTS FUNCTION ################################################################################ algo.farrington.assign.weights <- function(s,weightsThreshold=1) { #s_i^(-2) for s_iweightsThreshold) )) omega <- numeric(length(s)) omega[s>weightsThreshold] <- gamma*(s[s>weightsThreshold]^(-2)) omega[s<=weightsThreshold] <- gamma return(omega) } ################################################### ### code chunk number 3: algo_farrington.Rnw:136-305 ################################################### algo.farrington.fitGLM <- function(response,wtime,timeTrend=TRUE,reweight=TRUE,...) { #Model formula depends on whether to include a time trend or not. theModel <- as.formula(ifelse(timeTrend, "response~1+wtime","response~1")) #Fit it -- this is slow. An improvement would be to use glm.fit here. model <- glm(theModel, family = quasipoisson(link="log")) #Check convergence - if no convergence we return empty handed. if (!model$converged) { #Try without time dependence if (timeTrend) { cat("Warning: No convergence with timeTrend -- trying without.\n") #Set model to one without time trend theModel <- as.formula("response~1") model <- glm(response ~ 1, family = quasipoisson(link="log")) } if (!model$converged) { cat("Warning: No convergence in this case.\n") print(cbind(response,wtime)) return(NULL) } } #Overdispersion parameter phi phi <- max(summary(model)$dispersion,1) #In case reweighting using Anscome residuals is requested if (reweight) { s <- anscombe.residuals(model,phi) omega <- algo.farrington.assign.weights(s) model <- glm(theModel,family=quasipoisson(link="log"),weights=omega) #Here, the overdispersion often becomes small, so we use the max #to ensure we don't operate with quantities less than 1. phi <- max(summary(model)$dispersion,1) } # end of refit. #Add wtime, response and phi to the model model$phi <- phi model$wtime <- wtime model$response <- response #Done return(model) } ###################################################################### # The algo.farrington.fitGLM function in a version using glm.fit # which is faster than the call using "glm. # This saves lots of overhead and increases speed. # # Author: Mikko Virtanen (@thl.fi) with minor modifications by Michael Hoehle # Date: 9 June 2010 # # Note: Not all glm results may work on the output. But for the # necessary ones for the algo.farrington procedure work. ###################################################################### algo.farrington.fitGLM.fast <- function(response,wtime,timeTrend=TRUE,reweight=TRUE, ...) { #Create design matrix and formula needed for the terms object #Results depends on whether to include a time trend or not. if (timeTrend) { design<-cbind(intercept=1,wtime=wtime) Formula<-response~wtime } else { design<-matrix(1,nrow=length(wtime),dimnames=list(NULL,c("intercept"))) Formula<-response~1 } #Fit it using glm.fit which is faster than calling "glm" model <- glm.fit(design,response, family = quasipoisson(link = "log")) #Check convergence - if no convergence we return empty handed. if (!model$converged) { #Try without time dependence if (timeTrend) { cat("Warning: No convergence with timeTrend -- trying without.\n") #Drop time from design matrix design <- design[,1,drop=FALSE] #Refit model <- glm.fit(design,response, family = quasipoisson(link = "log")) Formula<-response~1 } #No convergence and no time trend. That's not good. } #Fix class of output to glm/lm object in order for anscombe.residuals to work #Note though: not all glm methods may work for the result class(model) <- c("glm","lm") #Overdispersion parameter phi phi <- max(summary.glm(model)$dispersion,1) #In case reweighting using Anscome residuals is requested if (reweight) { s <- anscombe.residuals(model,phi) omega <- algo.farrington.assign.weights(s) model <- glm.fit(design,response, family = quasipoisson(link = "log"), weights = omega) #Here, the overdispersion often becomes small, so we use the max #to ensure we don't operate with quantities less than 1. phi <- max(summary.glm(model)$dispersion,1) } # end of refit. model$phi <- phi model$wtime <- wtime model$response <- response model$terms <- terms(Formula) # cheating a bit, all methods for glm may not work class(model)<-c("algo.farrington.glm","glm","lm") # 23/10/2012 (SM): # added "lm" class to avoid warnings # from predict.lm about fake object #Done return(model) } ###################################################################### # Experimental function to include a population offset in the # farrington procedure based on algo.farrington.fitGLM # Alternative: include populationOffset argument in the two other # fit functions, but I suspect use of this is not so common # # Parameters: # takes an additional "population" parameter ###################################################################### algo.farrington.fitGLM.populationOffset <- function(response,wtime,population,timeTrend=TRUE,reweight=TRUE,...) { #Model formula depends on whether to include a time trend or not. theModel <- as.formula(ifelse(timeTrend, "response~offset(log(population)) + 1 + wtime","response~offset(log(population)) + 1")) #Fit it -- this is slow. An improvement would be to use glm.fit here. model <- glm(theModel, family = quasipoisson(link="log")) #Check convergence - if no convergence we return empty handed. if (!model$converged) { #Try without time dependence if (timeTrend) { model <- glm(response ~ 1, family = quasipoisson(link="log")) cat("Warning: No convergence with timeTrend -- trying without.\n") } if (!model$converged) { cat("Warning: No convergence in this case.\n") print(cbind(response,wtime)) return(NULL) } } #Overdispersion parameter phi phi <- max(summary(model)$dispersion,1) #In case reweighting using Anscome residuals is requested if (reweight) { s <- anscombe.residuals(model,phi) omega <- algo.farrington.assign.weights(s) model <- glm(theModel,family=quasipoisson(link="log"),weights=omega) #Here, the overdispersion often becomes small, so we use the max #to ensure we don't operate with quantities less than 1. phi <- max(summary(model)$dispersion,1) } # end of refit. #Add wtime, response and phi to the model model$phi <- phi model$wtime <- wtime model$response <- response model$population <- population #Done return(model) } ################################################### ### code chunk number 4: algo_farrington.Rnw:344-370 ################################################### algo.farrington.threshold <- function(pred,phi,alpha=0.01,skewness.transform="none",y) { #Fetch mu0 and var(mu0) from the prediction object mu0 <- pred$fit tau <- phi + (pred$se.fit^2)/mu0 #Standard deviation of prediction, i.e. sqrt(var(h(Y_0)-h(\mu_0))) switch(skewness.transform, "none" = { se <- sqrt(mu0*tau); exponent <- 1}, "1/2" = { se <- sqrt(1/4*tau); exponent <- 1/2}, "2/3" = { se <- sqrt(4/9*mu0^(1/3)*tau); exponent <- 2/3}, { stop("No proper exponent in algo.farrington.threshold.")}) #Note that lu can contain NA's if e.g. (-1.47)^(3/2) lu <- sort((mu0^exponent + c(-1,1)*qnorm(1-alpha/2)*se)^(1/exponent),na.last=FALSE) #Ensure that lower bound is non-negative lu[1] <- max(0,lu[1],na.rm=TRUE) #Compute quantiles of the predictive distribution based on the #normal approximation on the transformed scale q <- pnorm( y^(1/exponent) , mean=mu0^exponent, sd=se) m <- qnorm(0.5, mean=mu0^exponent, sd=se)^(1/exponent) #Return lower and upper bounds return(c(lu,q=q,m=m)) } ################################################### ### code chunk number 5: algo_farrington.Rnw:412-451 ################################################### ###################################################################### # Compute indices of reference value using Date class # # Params: # t0 - Date object describing the time point # b - Number of years to go back in time # w - Half width of window to include reference values for # epochStr - "1 month", "1 week" or "1 day" # epochs - Vector containing the epoch value of the sts/disProg object # # Details: # Using the Date class the reference values are formed as follows: # Starting from d0 go i, i in 1,...,b years back in time. # # Returns: # a vector of indices in epochs which match ###################################################################### refvalIdxByDate <- function(t0, b, w, epochStr, epochs) { refDays <- NULL refPoints <- seq( t0, length=b+1, by="-1 year")[-1] #Loop over all b-lagged points and append appropriate w-lagged points for (j in 1:length(refPoints)) { refPointWindow <- c(rev(seq(refPoints[j], length=w+1, by=paste("-",epochStr,sep=""))), seq(refPoints[j], length=w+1, by=epochStr)[-1]) refDays <- append(refDays,refPointWindow) } if (epochStr == "1 week") { #What weekday is t0 (0=Sunday, 1=Monday, ...) epochWeekDay <- as.numeric(format(t0,"%w")) #How many days to go forward to obtain the next "epochWeekDay", i.e. (d0 - d) mod 7 dx.forward <- (epochWeekDay - as.numeric(format(refDays,"%w"))) %% 7 #How many days to go backward to obtain the next "epochWeekDay", i.e. (d - d0) mod 7 dx.backward <- (as.numeric(format(refDays,"%w")) - epochWeekDay) %% 7 #What is shorter - go forward or go backward? #By convention: always go to the closest weekday as t0 refDays <- refDays + ifelse(dx.forward < dx.backward, dx.forward, -dx.backward) } if (epochStr == "1 month") { #What day of the month is t0 (it is assumed that all epochs have the same value here) epochDay <- as.numeric(format(t0,"%d")) #By convention: go back in time to closest 1st of month refDays <- refDays - (as.numeric(format(refDays, "%d")) - epochDay) } #Find the index of these reference values wtime <- match(as.numeric(refDays), epochs) return(wtime) } ################################################### ### code chunk number 6: algo_farrington.Rnw:571-769 ################################################### algo.farrington <- function(disProgObj, control=list(range=NULL, b=3, w=3, reweight=TRUE, verbose=FALSE,alpha=0.01,trend=TRUE,limit54=c(5,4),powertrans="2/3",fitFun=c("algo.farrington.fitGLM.fast","algo.farrington.fitGLM","algo.farrington.fitGLM.populationOffset"))) { #Fetch observed observed <- disProgObj$observed freq <- disProgObj$freq epochStr <- switch( as.character(freq), "12" = "1 month","52" = "1 week","365" = "1 day") #Fetch population (if it exists) if (!is.null(disProgObj$populationFrac)) { population <- disProgObj$populationFrac } else { population <- rep(1,length(observed)) } ###################################################################### # Fix missing control options ###################################################################### if (is.null(control$range)) { control$range <- (freq*control$b - control$w):length(observed) } if (is.null(control$b)) {control$b=5} if (is.null(control$w)) {control$w=3} if (is.null(control$reweight)) {control$reweight=TRUE} if (is.null(control$verbose)) {control$verbose=FALSE} if (is.null(control$alpha)) {control$alpha=0.05} if (is.null(control$trend)) {control$trend=TRUE} if (is.null(control$plot)) {control$plot=FALSE} if (is.null(control$limit54)) {control$limit54=c(5,4)} if (is.null(control$powertrans)){control$powertrans="2/3"} if (is.null(control$fitFun)) { control$fitFun="algo.farrington.fitGLM.fast" } else { control$fitFun <- match.arg(control$fitFun, c("algo.farrington.fitGLM.fast","algo.farrington.fitGLM","algo.farrington.fitGLM.populationOffset")) } #Use special Date class mechanism to find reference months/weeks/days if (is.null(disProgObj[["epochAsDate",exact=TRUE]])) { epochAsDate <- FALSE } else { epochAsDate <- disProgObj[["epochAsDate",exact=TRUE]] } #check options if (!((control$limit54[1] >= 0) & (control$limit54[2] > 0))) { stop("The limit54 arguments are out of bounds: cases >= 0 and period > 0.") } #Check control$range is within bounds. if (any((control$range < 1) | (control$range > length(disProgObj$observed)))) { stop("Range values are out of bounds (has to be within 1..",length(disProgObj$observed)," for the present data).") } # initialize the necessary vectors alarm <- matrix(data = 0, nrow = length(control$range), ncol = 1) trend <- matrix(data = 0, nrow = length(control$range), ncol = 1) upperbound <- matrix(data = 0, nrow = length(control$range), ncol = 1) # predictive distribution pd <- matrix(data = 0, nrow = length(control$range), ncol = 2) # Define objects n <- control$b*(2*control$w+1) # 2: Fit of the initial model and first estimation of mean and dispersion # parameter for (k in control$range) { # transform the observed vector in the way # that the timepoint to be evaluated is at last position #shortObserved <- observed[1:(maxRange - k + 1)] if (control$verbose) { cat("k=",k,"\n")} #Find index of all epochs, which are to be used as reference values #i.e. with index k-w,..,k+w #in the years (current year)-1,...,(current year)-b if (!epochAsDate) { wtimeAll <- NULL for (i in control$b:1){ wtimeAll <- append(wtimeAll,seq(k-freq*i-control$w,k-freq*i+control$w,by=1)) } #Select them as reference values - but only those who exist wtime <- wtimeAll[wtimeAll>0] if (length(wtimeAll) != length(wtime)) { warning("@ range= ",k,": With current b and w then ",length(wtimeAll) - length(wtime),"/",length(wtimeAll), " reference values did not exist (index<1).") } } else { #Alternative approach using Dates t0 <- as.Date(disProgObj$week[k], origin="1970-01-01") wtimeAll <- refvalIdxByDate( t0=t0, b=control$b, w=control$w, epochStr=epochStr, epochs=disProgObj$week) #Select them as reference values (but only those not being NA!) wtime <- wtimeAll[!is.na(wtimeAll)] #Throw warning if necessary if (length(wtimeAll) != length(wtime)) { warning("@ range= ",k,": With current b and w then ",length(wtimeAll) - length(wtime),"/",length(wtimeAll), " reference values did not exist (index<1).") } } #Extract values from indices response <- observed[wtime] pop <- population[wtime] if (control$verbose) { print(response)} ###################################################################### #Fit the model with overdispersion -- the initial fit ###################################################################### #New feature: fitFun can now be the fast function for fitting the GLM model <- do.call(control$fitFun, args=list(response=response,wtime=wtime,population=pop,timeTrend=control$trend,reweight=control$reweight)) #Stupid check to pass on NULL values from the algo.farrington.fitGLM proc. if (is.null(model)) return(model) ###################################################################### #Time trend # #Check whether to include time trend, to do this we need to check whether #1) wtime is signifcant at the 95lvl #2) the predicted value is not larger than any observed value #3) the historical data span at least 3 years. doTrend <- control$trend #Bug discovered by Julia Kammerer and Sabrina Heckl: Only investigate trend if it actually was part of the GLM #if (control$trend) { if ("wtime" %in% names(coef(model))){ #is the p-value for the trend significant (0.05) level p <- summary.glm(model)$coefficients["wtime",4] significant <- (p < 0.05) #prediction for time k mu0Hat <- predict.glm(model,data.frame(wtime=c(k),population=population[k]),type="response") #have to use at least three years of data to allow for a trend atLeastThreeYears <- (control$b>=3) #no horrible predictions noExtrapolation <- mu0Hat <= max(response) #All 3 criteria have to be met in order to include the trend. Otherwise #it is removed. Only necessary to check this if a trend is requested. if (!(atLeastThreeYears && significant && noExtrapolation)) { doTrend <- FALSE model <- do.call(control$fitFun, args=list(response=response,wtime=wtime,population=pop,timeTrend=FALSE,reweight=control$reweight)) } } else { doTrend <- FALSE } #done with time trend ###################################################################### ###################################################################### # Calculate prediction & confidence interval # ###################################################################### #Predict value - note that the se is the mean CI #and not the prediction error of a single observation pred <- predict.glm(model,data.frame(wtime=c(k),population=population[k]),dispersion=model$phi, type="response",se.fit=TRUE) #Calculate lower and upper threshold lu <- algo.farrington.threshold(pred,model$phi,skewness.transform=control$powertrans,alpha=control$alpha, observed[k]) ###################################################################### # If requested show a plot of the fit. ###################################################################### if (control$plot) { #Compute all predictions data <- data.frame(wtime=seq(min(wtime),k,length=1000)) preds <- predict(model,data,type="response",dispersion=model$phi) #Show a plot of the model fit. plot(c(wtime, k), c(response,observed[k]),ylim=range(c(observed[data$wtime],lu)),,xlab="time",ylab="No. infected",main=paste("Prediction at time t=",k," with b=",control$b,",w=",control$w,sep=""),pch=c(rep(1,length(wtime)),16)) #Add the prediction lines(data$wtime,preds,col=1,pch=2) #Add the thresholds to the plot lines(rep(k,2),lu[1:2],col=3,lty=2) } ###################################################################### #Postprocessing steps ###################################################################### #Compute exceedance score unless less than 5 reports during last 4 weeks. #Changed in version 0.9-7 - current week is included now enoughCases <- (sum(observed[(k-control$limit54[2]+1):k])>=control$limit54[1]) #18 May 2006: Bug/unexpected feature found by Y. Le Strat. #the okHistory variable meant to protect against zero count problems, #but instead it resulted in exceedance score == 0 for low counts. #Now removed to be concordant with the Farrington 1996 paper. X <- ifelse(enoughCases,(observed[k] - pred$fit) / (lu[2] - pred$fit),0) #Do we have an alarm -- i.e. is observation beyond CI?? #upperbound only relevant if we can have an alarm (enoughCases) trend[k-min(control$range)+1] <- doTrend alarm[k-min(control$range)+1] <- (X>1) upperbound[k-min(control$range)+1] <- ifelse(enoughCases,lu[2],0) #Compute bounds of the predictive pd[k-min(control$range)+1,] <- lu[c(3,4)] }#done looping over all time points #Add name and data name to control object. control$name <- paste("farrington(",control$w,",",0,",",control$b,")",sep="") control$data <- paste(deparse(substitute(disProgObj))) #Add information about predictive distribution control$pd <- pd # return alarm and upperbound vectors result <- list(alarm = alarm, upperbound = upperbound, trend=trend, disProgObj=disProgObj, control=control) class(result) <- "survRes" #Done return(result) } surveillance/R/epidata.R0000644000175100001440000010432313203320730014713 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Data structure "epidata" representing the SIR event history of a fixed ### geo-referenced population (e.g., farms, households) for twinSIR() analysis ### ### Copyright (C) 2008-2010, 2012, 2014-2017 Sebastian Meyer ### $Revision: 2044 $ ### $Date: 2017-11-16 15:34:00 +0100 (Thu, 16. Nov 2017) $ ################################################################################ ## CAVE: ## - we assume fixed coordinates (this is important since time-varying ## coordinates would result in more sophisticated and time consuming ## calculations of distance matrices) ! ## - in the first block (start = t0) all id's must be present (for coordinates) ## - those id's with atRiskY(t0) = 0 are taken as initially infectious ## - SIS epidemics are possible, but must be given as SIRS with pseudo R-events, ## i.e. individuals will be removed and become susceptible directly afterwards ################################################################################ ## Convert a simple data.frame with one row per individual and with columns for ## the times of becoming exposed/infectious/removed ## to the long "epidata" event history start/stop format. ## tE.col and tR.col can be missing corresponding to SIR, SEI, or SI data. ## NA's in time variables mean that the respective event has not yet occurred. ## Time-varying covariates are not supported by this converter. ################################################################################ as.epidata.data.frame <- function (data, t0, tE.col, tI.col, tR.col, id.col, coords.cols, f = list(), w = list(), D = dist, max.time = NULL, keep.cols = TRUE, ...) { if (missing(t0)) { return(NextMethod("as.epidata")) # as.epidata.default } ## drop individuals that have already been removed prior to t0 ## since they would otherwise be considered as initially infective ## (atRiskY = 0 in first time block) and never be removed if (!missing(tR.col)) { alreadyRemoved <- !is.na(data[[tR.col]]) & data[[tR.col]] <= t0 if (any(alreadyRemoved)) { data <- data[!alreadyRemoved,] message("Note: dropped rows with tR <= t0 (", paste0(which(alreadyRemoved), collapse = ", "), ")") } } ## parse max.time if (is.null(max.time) || is.na(max.time)) { # max(stop) is at last event max.time <- NA_real_ } else { stopifnot(max.time > t0) } ## parse id column id <- factor(data[[id.col]]) # removes unused levels stopifnot(!anyDuplicated(id), !is.na(id)) N <- nlevels(id) # = nrow(data) ## make time relative to t0 subtract_t0 <- function (x) as.numeric(x - t0) max.time <- subtract_t0(max.time) tI <- subtract_t0(data[[tI.col]]) tE <- if (missing(tE.col)) tI else subtract_t0(data[[tE.col]]) tR <- if (missing(tR.col)) rep.int(NA_real_, N) else subtract_t0(data[[tR.col]]) ## check E-I-R order if (any((is.na(tE) & !(is.na(tI) & is.na(tR))) | (is.na(tI) & !is.na(tR)))) { stop("events cannot be skipped (NA in E/I => NA in I/R)") } if (any(.wrongsequence <- (tE > tI | tI >= tR) %in% TRUE)) { # TRUE | NA = TRUE stop("E-I-R events are in wrong order for the following id's: ", paste0(id[.wrongsequence], collapse = ", ")) } ## ignore events after max.time if (!is.na(max.time)) { is.na(tE) <- tE > max.time is.na(tI) <- tI > max.time is.na(tR) <- tR > max.time } ## vector of stop times stopTimes <- c(tE, tI, tR, max.time) stopTimes <- stopTimes[!is.na(stopTimes) & stopTimes > 0] stopTimes <- sort.int(unique.default(stopTimes), decreasing = FALSE) nBlocks <- length(stopTimes) if (nBlocks == 0L) { stop("nothing happens after 't0'") } ## initialize event history evHist <- data.frame( id = rep.int(id, nBlocks), start = rep.int(c(0,stopTimes[-nBlocks]), rep.int(N, nBlocks)), stop = rep.int(stopTimes, rep.int(N, nBlocks)), atRiskY = NA, event = 0, Revent = 0, # adjusted in the loop below row.names = NULL, check.rows = FALSE, check.names = FALSE) ## indexes of the last rows of the time blocks blockbase <- c(0, seq_len(nBlocks) * N) ## which individuals are at risk in the first (next) block Y <- is.na(tE) | tE > 0 ## Loop over the blocks/stop times to adjust atRiskY, event and Revent for (i in seq_len(nBlocks)) { ct <- stopTimes[i] ## set individual at-risk indicators for the current time block evHist$atRiskY[blockbase[i] + seq_len(N)] <- Y ## individuals who become exposed at the current stop time ## will no longer be at risk in the next block Y[which(tE == ct)] <- FALSE ## process events at this stop time evHist$event[blockbase[i] + which(tI == ct)] <- 1 evHist$Revent[blockbase[i] + which(tR == ct)] <- 1 } ## add additional time-constant covariates extraVarNames <- coords.cols # may be NULL if (isTRUE(keep.cols)) { extraVarNames <- c(extraVarNames, setdiff(names(data), id.col)) } else if (length(keep.cols) > 0L && !identical(FALSE, keep.cols)) { extraVarNames <- c(extraVarNames, names(data[keep.cols])) } extraVarNames <- unique.default(extraVarNames) if (length(extraVarNames) > 0L) { evHist <- data.frame( evHist, data[rep.int(seq_len(N), nBlocks), extraVarNames, drop=FALSE], row.names = NULL, check.names = TRUE, stringsAsFactors = TRUE) } ## Now we can pass the generated event history to the default method ## for the usual consistency checks and the pre-calculation of f covariates as.epidata.default( data = evHist, id.col = "id", start.col = "start", stop.col = "stop", atRiskY.col = "atRiskY", event.col = "event", Revent.col = "Revent", coords.cols = coords.cols, f = f, w = w, D = D, .latent = !missing(tE.col)) } ################################################################################ # DEFAULT CONVERTER, which requires a start/stop event history data.frame # It performs consistency checks, and pre-calculates the distance-based # epidemic covariates from f. ################################################################################ as.epidata.default <- function(data, id.col, start.col, stop.col, atRiskY.col, event.col, Revent.col, coords.cols, f = list(), w = list(), D = dist, .latent = FALSE, ...) { cl <- match.call() # If necessary, convert 'data' into a data.frame (also converting # column names to syntactically correct names for use in formulae) data <- as.data.frame(data, stringsAsFactors = FALSE) # Use column numbers as indices and check them colargs <- c("id.col", "start.col", "stop.col", "atRiskY.col", "event.col", "Revent.col", "coords.cols") colidxs <- structure(as.list(numeric(length(colargs))), names = colargs) for (colarg in colargs) { colidx <- get(colarg, inherits = FALSE) if (colarg != "coords.cols" && length(colidx) != 1L) { stop("the column specifier '", colarg, "' must be of length 1") } if (is.character(colidx)) { colidx <- match(colidx, colnames(data)) if (any(is.na(colidx))) { stop("'", colarg, " = ", deparse(cl[[colarg]]), "': ", "column does not exist in 'data'") } } else if (is.numeric(colidx) && any(colidx<1L | colidx>ncol(data))) { stop("'", colarg, " = ", deparse(cl[[colarg]]), "': ", "column index must be in [1; ", ncol(data), "=ncol(data)]") } colidxs[[colarg]] <- colidx } # Rename main columns to default column names colidxsVec <- unlist(colidxs) colnams <- c("id", "start", "stop", "atRiskY", "event", "Revent") colnames(data)[colidxsVec[1:6]] <- colnams usedReservedName <- any(colnams %in% colnames(data)[-colidxsVec[1:6]]) # REORDER COLUMNS, so that main columns come first (also for make.unique) data <- data[c(colidxsVec, setdiff(seq_len(NCOL(data)), colidxsVec))] # Make columns names unique (necessary if other column with name in colnams) if (usedReservedName) { colnames(data) <- make.unique(colnames(data)) message("Some other columns had reserved names and have been renamed") } # Convert id into a factor (also removing unused levels if it was a factor) data[["id"]] <- factor(data[["id"]]) # Check atRiskY, event and Revent for values other than 0 and 1 for (var in c("atRiskY", "event", "Revent")) { data[[var]] <- as.numeric(data[[var]]) if (any(! data[[var]] %in% c(0,1))) stop("'", var, "' column may only assume values 0 and 1") } # Check consistency of atRiskY and event (event only if at-risk) if (.latent) { warning("support for latent periods is experimental") } else { noRiskButEvent <- data[["atRiskY"]] == 0 & data[["event"]] == 1 if (noRiskButEventRow <- match(TRUE, noRiskButEvent, nomatch = 0)) { stop("inconsistent atRiskY/event indicators in row ", noRiskButEventRow, ": event only if at risk") } } # Check event (infection) times for ties eventTimes <- data[data[["event"]] == 1, "stop"] ReventTimes <- data[data[["Revent"]] == 1, "stop"] duplicatedEventTime <- duplicated(c(eventTimes, ReventTimes)) if (duplicatedEventTimeIdx <- match(TRUE, duplicatedEventTime, nomatch=0)) { stop("non-unique event times: concurrent event/Revent at time ", c(eventTimes, ReventTimes)[duplicatedEventTimeIdx]) } # Check start/stop consistency and add block id histIntervals <- unique(data[c("start", "stop")]) histIntervals <- histIntervals[order(histIntervals[,1L]),] nBlocks <- nrow(histIntervals) if (any(histIntervals[,2L] <= histIntervals[,1L])) { stop("stop times must be greater than start times") } startStopCheck <- histIntervals[-1L,1L] != histIntervals[-nBlocks,2L] if (startStopCheckIdx <- match(TRUE, startStopCheck, nomatch = 0)) { stop("inconsistent start/stop times: time intervals not consecutive ", "at stop time ", histIntervals[startStopCheckIdx,2L]) } if ("BLOCK" %in% colnames(data)) { warning("column name 'BLOCK' is reserved, ", "existing column has been replaced") } data[["BLOCK"]] <- match(data[["start"]], histIntervals[,1L]) # SORT by block/id and create indexes for block borders data <- data[order(data[["BLOCK"]], data[["id"]]),] beginBlock <- match(seq_len(nBlocks), data[["BLOCK"]]) endBlock <- c(beginBlock[-1L]-1L, nrow(data)) # make block column the first column BLOCK.col <- match("BLOCK", colnames(data)) data <- data[c(BLOCK.col, setdiff(seq_along(data), BLOCK.col))] coords.cols <- 1L + 6L + seq_along(colidxs[["coords.cols"]]) # Check consistency of atRiskY and event (not at-risk after event) .checkFunction <- function(eventblock, eventid) { if (eventblock == nBlocks) return(invisible()) rowsOfNextBlock <- beginBlock[eventblock+1L]:endBlock[eventblock+1L] nextBlockData <- data[rowsOfNextBlock, c("id", "atRiskY")] idIdx <- which(nextBlockData[["id"]] == eventid) if (length(idIdx) == 1L && nextBlockData[idIdx, "atRiskY"] == 1) { stop("inconsistent atRiskY/event indicators for id '", eventid, "': should not be at risk immediately after event") } } eventTable <- data[data[["event"]] == 1,] for(k in seq_len(nrow(eventTable))) { .checkFunction(eventTable[k,"BLOCK"], eventTable[k,"id"]) } # Set attributes attr(data, "eventTimes") <- sort(eventTimes) attr(data, "timeRange") <- c(histIntervals[1L,1L],histIntervals[nBlocks,2L]) attr(data, "coords.cols") <- coords.cols # <- must include this info because externally of this function # we don't know how many coords.cols (dimensions) we have attr(data, "f") <- list() # initialize attr(data, "w") <- list() # initialize class(data) <- c("epidata", "data.frame") # Compute epidemic variables update.epidata(data, f = f, w = w, D = D) } update.epidata <- function (object, f = list(), w = list(), D = dist, ...) { oldclass <- class(object) class(object) <- "data.frame" # avoid use of [.epidata ## block indexes and first block beginBlock <- which(!duplicated(object[["BLOCK"]], nmax = object[["BLOCK"]][nrow(object)])) endBlock <- c(beginBlock[-1L]-1L, nrow(object)) firstDataBlock <- object[seq_len(endBlock[1L]), ] ## check f and calculate distance matrix if (length(f) > 0L) { if (!is.list(f) || is.null(names(f)) || any(!sapply(f, is.function))) { stop("'f' must be a named list of functions") } lapply(X = f, FUN = function (B) { if (!isTRUE(all.equal(c(5L,2L), dim(B(matrix(0, 5, 2)))))) stop("'f'unctions must retain the dimensions of their input") }) if (any(names(f) %in% names(object))) { warning("'f' components replace existing columns of the same name") } ## reset / initialize columns for distance-based epidemic weights object[names(f)] <- 0 ## keep functions as attribute attr(object, "f")[names(f)] <- f ## check / compute distance matrix distmat <- if (is.function(D)) { if (length(coords.cols <- attr(object, "coords.cols")) == 0L) { stop("need coordinates to calculate the distance matrix") } coords <- as.matrix(firstDataBlock[coords.cols], rownames.force = FALSE) rownames(coords) <- as.character(firstDataBlock[["id"]]) as.matrix(D(coords)) } else { # a numeric matrix (or "Matrix") if (length(dn <- dimnames(D)) != 2L) { stop("if not a function, 'D' must be a matrix-like object") } if (!all(firstDataBlock[["id"]] %in% dn[[1L]], firstDataBlock[["id"]] %in% dn[[2L]])) { stop("'dimnames(D)' must contain the individuals' IDs") } D } } ## check covariate-based epidemic weights if (length(w) > 0L) { if (!is.list(w) || is.null(names(w)) || any(!sapply(w, is.function))) { stop("'w' must be a named list of functions") } if (any(names(w) %in% names(object))) { warning("'w' components replace existing columns of the same name") } ## reset / initialize columns for covariate-based epidemic weights object[names(w)] <- 0 ## keep functions as attribute attr(object, "w")[names(w)] <- w ## compute wij matrix for each of w wijlist <- compute_wijlist(w = w, data = firstDataBlock) } ## Compute sum of epidemic covariates over infectious individuals if (length(f) + length(w) > 0L) { infectiousIDs <- firstDataBlock[firstDataBlock[["atRiskY"]] == 0, "id"] ##<- this is a factor variable for(i in seq_along(beginBlock)) { blockidx <- beginBlock[i]:endBlock[i] blockdata <- object[blockidx,] blockIDs <- blockdata[["id"]] if (length(infectiousIDs) > 0L) { if (length(f) > 0L) { u <- distmat[as.character(blockIDs), as.character(infectiousIDs), drop = FALSE] # index by factor levels object[blockidx,names(f)] <- vapply( X = f, FUN = function (B) Matrix::rowSums(B(u)), FUN.VALUE = numeric(length(blockIDs)), USE.NAMES = FALSE) } if (length(w) > 0L) { object[blockidx,names(w)] <- vapply( X = wijlist, FUN = function (wij) { ## actually don't have to care about the diagonal: ## i at risk => sum does not include it ## i infectious => atRiskY = 0 (ignored in twinSIR) rowSums(wij[as.character(blockIDs), as.character(infectiousIDs), drop = FALSE]) # index by factor levels }, FUN.VALUE = numeric(length(blockIDs)), USE.NAMES = FALSE) } } ## update the set of infectious individuals for the next block recoveredID <- blockIDs[blockdata[["Revent"]] == 1] infectedID <- blockIDs[blockdata[["event"]] == 1] if (length(recoveredID) > 0L) { infectiousIDs <- infectiousIDs[infectiousIDs != recoveredID] } else if (length(infectedID) > 0L) { infectiousIDs[length(infectiousIDs)+1L] <- infectedID } } } ## restore "epidata" class class(object) <- oldclass return(object) } compute_wijlist <- function (w, data) { ## for each function in 'w', determine the variable on which it acts; ## this is derived from the name of the first formal argument, which ## must be of the form "varname.i" wvars <- vapply(X = w, FUN = function (wFUN) { varname.i <- names(formals(wFUN))[[1L]] substr(varname.i, 1, nchar(varname.i)-2L) }, FUN.VALUE = "", USE.NAMES = TRUE) if (any(wvarNotFound <- !wvars %in% names(data))) { stop("'w' function refers to unknown variables: ", paste0(names(w)[wvarNotFound], collapse=", ")) } ## compute weight matrices w_ij for each of w mapply( FUN = function (wFUN, wVAR, ids) { wij <- outer(X = wVAR, Y = wVAR, FUN = wFUN) dimnames(wij) <- list(ids, ids) wij }, wFUN = w, wVAR = data[wvars], MoreArgs = list(ids = as.character(data[["id"]])), SIMPLIFY = FALSE, USE.NAMES = TRUE ) } ################################################################################ # EXTRACTION OPERATOR FOR 'EPIDATA' OBJECTS # Indexing with "[" would be possible (inheriting from data.frame). # But using any column index would remove attributes (row indexes would not). # Thus, we define an own method to retain and adjust the attributes when # selecting a subset of blocks of the 'epidata'. # Selecting a subset of columns will remove class "epidata" (resulting in a # simple data.frame) ################################################################################ "[.epidata" <- function(x, i, j, drop) { # use data.frame method first xx <- NextMethod("[") # then return its result as pure data.frame or assure valid 'epidata' # if a subset of columns has been selected and attributes have been removed if (NCOL(xx) != ncol(x) || any(names(xx) != names(x))) { if (inherits(xx, "data.frame")) { # xx could be a vector class(xx) <- "data.frame" # remove class 'epidata' } message("Note: converted class \"epidata\" to simple \"", class(xx), "\"") return(xx) } # else there is no effective column selection (e.g. j=TRUE) if (nrow(xx) == 0) { message("Note: no rows selected, dropped class \"epidata\"") class(xx) <- "data.frame" return(xx[TRUE]) # removes attributes } invalidEpidata <- FALSE blocksizesx <- table(x[["BLOCK"]]) blocksizesxx <- table(xx[["BLOCK"]]) blocksOK <- identical(c(blocksizesxx), c(blocksizesx[names(blocksizesxx)])) if (is.numeric(i) && any(diff(na.omit(i)) < 0)) { # epidata should remain ordered by time warning("dropped class \"epidata\": reordering rows is not permitted") invalidEpidata <- TRUE } else if (!blocksOK) { # blocks should not be cut, epidemic covariates might become invalid warning("dropped class \"epidata\": subsetting blocks not allowed") invalidEpidata <- TRUE } else if (any(diff(as.numeric(names(blocksizesxx))) != 1)) { # blocks can only be selected consecutively warning("dropped class \"epidata\": ", "only consecutive blocks may be selected") invalidEpidata <- TRUE } if (invalidEpidata) { class(xx) <- "data.frame" xx[TRUE] # removes attributes } else { # # adjust block index so that it starts at 1 # firstBlockNumber <- as.numeric(names(blocksizesxx)[1]) # if (firstBlockNumber > 1) { # xx[["BLOCK"]] <- xx[["BLOCK"]] - (firstBlockNumber-1) # } # Restore or adjust attributes tmin <- xx[["start"]][1] tmax <- xx[["stop"]][nrow(xx)] oldEventTimes <- attr(x, "eventTimes") attr(xx, "eventTimes") <- if (blocksOK) { oldEventTimes[oldEventTimes > tmin & oldEventTimes <= tmax] } else { xx[["stop"]][xx[["event"]] == 1] } attr(xx, "timeRange") <- c(tmin, tmax) attr(xx, "coords.cols") <- attr(x, "coords.cols") attr(xx, "f") <- attr(x, "f") xx } } ################################################################################ # INSERT BLOCKS FOR EXTRA STOP TIMES IN 'EPIDATA' OBJECTS ################################################################################ intersperse <- function (epidata, stoptimes, verbose = FALSE) { # Check arguments if (!inherits(epidata, "epidata")) { stop("'epidata' must inherit from class \"epidata\"") } if (!is.vector(stoptimes, mode = "numeric")) { stop("'stoptimes' must be a numeric vector") } # Identify new 'stoptimes' sortedEpiStop <- sort(unique(epidata$stop)) extraStoptimes <- stoptimes[! stoptimes %in% sortedEpiStop] # Return original 'epidata' if nothing to do if (length(extraStoptimes) == 0) { # message("nothing done: no new stop times") return(epidata) } # # Retain attributes of 'epidata' # .attributes <- attributes(epidata) # .attributes <- .attributes[match(c("eventTimes", "timeRange", # "coords.cols", "f", "config", "call", "terms"), names(.attributes), # nomatch = 0)] # Check new 'stoptimes' timeRange <- attr(epidata, "timeRange") inside <- extraStoptimes > timeRange[1] & extraStoptimes < timeRange[2] if (any(!inside)) { extraStoptimes <- extraStoptimes[inside] warning("ignored extra 'stoptimes' outside the observation period") } # Impute blocks for extraStoptimes oldclass <- class(epidata) class(epidata) <- "data.frame" # Avoid use of [.epidata (not necessary here) blocksize <- sum(epidata$BLOCK == 1) nInsert <- length(extraStoptimes) lastRow <- nrow(epidata) epidata <- rbind(epidata, epidata[rep.int(NA_integer_, nInsert * blocksize),], deparse.level = 0) # add NA rows, to be replaced below if (verbose) pb <- txtProgressBar(min=0, max=nInsert, initial=0, style=3) for(i in seq_len(nInsert)) { extraStop <- extraStoptimes[i] nextStoptime <- sortedEpiStop[match(TRUE, sortedEpiStop > extraStop)] # Find the block (row indexes) into which the extraStop falls rowsMatchedBlock <- which(epidata$stop == nextStoptime) # Split this block up into 2 parts # later part equals original block with start time = extraStop newBlock <- epidata[rowsMatchedBlock,] newBlock$start <- extraStop # earlier part has stop time = extraStop and no events at this time point epidata[rowsMatchedBlock, "stop"] <- extraStop epidata[rowsMatchedBlock, "event"] <- 0 epidata[rowsMatchedBlock, "Revent"] <- 0 # write the new block to epidata (reorder rows later) epidata[lastRow + seq_along(rowsMatchedBlock),] <- newBlock lastRow <- lastRow + length(rowsMatchedBlock) if (verbose) setTxtProgressBar(pb, i) } if (verbose) close(pb) # Adjust BLOCK column sortedEpiStop <- sort(c(sortedEpiStop, extraStoptimes)) epidata$BLOCK <- match(epidata$stop, sortedEpiStop) # Reorder rows by time and id epidata <- epidata[order(epidata$BLOCK, epidata$id), ] row.names(epidata) <- NULL class(epidata) <- oldclass return(epidata) } ################################################################################ # SUMMARY FUNCTION FOR EPIDATA OBJECTS # the epidemic is summarized by the following returned components: # - type: one of "SIR", "SI", "SIRS", "SIS" # - size: number of initially susceptible individuals, which became infected # - initiallyInfected: vector (factor) of initially infected individuals # - neverInfected: vector (factor) of never (during the observation period) # infected individuals # - coordinates: matrix with the coordinates of the individuals (rownames=id's) # - byID: data.frame with time points of events by id (columns time.I, time.R # and optionally time.S) # - counters: data.frame representing the evolution of the epidemic ################################################################################ summary.epidata <- function (object, ...) { class(object) <- "data.frame" # avoid use of [.epidata (not necessary here) # extract coordinates and initially infected individuals idlevels <- levels(object[["id"]]) N <- length(idlevels) firstDataBlock <- object[object$BLOCK == min(object$BLOCK),] coordinates <- as.matrix(firstDataBlock[attr(object, "coords.cols")]) rownames(coordinates) <- as.character(firstDataBlock[["id"]]) initiallyInfected <- firstDataBlock$id[firstDataBlock$atRiskY == 0] m <- length(initiallyInfected) n <- N - m ### summary 1: event table with columns id, time and type (of event, S/I/R) # Extract time points of the S events for each id StimesID <- by(object[c("atRiskY", "stop")], object["id"], function(x) { SeventIdx <- which(diff(x[["atRiskY"]]) == 1) x[["stop"]][SeventIdx] }, simplify=TRUE) names(StimesID) <- paste0(names(StimesID), ":") StimesVec <- c(unlist(StimesID, use.names = TRUE)) # c() if by() returned an array .Sids <- sub("(.+):.*", "\\1", names(StimesVec)) Stimes <- data.frame(id = factor(.Sids, levels = idlevels), stop = StimesVec, type = rep("S", length(StimesVec)), row.names = NULL, check.names = FALSE, stringsAsFactors = FALSE) # Extract time points of the I and R events for each id Itimes <- object[object$event == 1, c("id", "stop")] Itimes[["type"]] <- rep("I", nrow(Itimes)) Rtimes <- object[object$Revent == 1, c("id", "stop")] Rtimes[["type"]] <- rep("R", nrow(Rtimes)) # Combine the three event types into one data.frame eventTable <- rbind(Rtimes, Stimes, Itimes) # need this order for the counters below in the case of SIS: # pseudo-R-event occures infinitesimally before S names(eventTable)[2L] <- "time" eventTable <- eventTable[order(eventTable[["id"]], eventTable[["time"]]), ] eventTable[["type"]] <- factor(eventTable[["type"]], levels=c("S","I","R")) rownames(eventTable) <- NULL ### summary 2: type and size of the epidemic resusceptibility <- length(StimesVec) > 0 epitype <- if (resusceptibility) { Rtimes_notLast <- Rtimes[-which.max(Rtimes[,2]),] onlyPseudoR <- length(setdiff(Rtimes_notLast[,2], Stimes[,2])) == 0 if (onlyPseudoR) "SIS" else "SIRS" } else { if (nrow(Rtimes) > 0) "SIR" else "SI" } isEverInfected <- idlevels %in% initiallyInfected | idlevels %in% unique(eventTable$id[eventTable$type == "I"]) isNeverInfected <- !isEverInfected size <- n - sum(isNeverInfected) # everInfected <- factor(idlevels[isEverInfected], levels = idlevels) neverInfected <- factor(idlevels[isNeverInfected], levels = idlevels) ### summary 3: eventTable by id in wide form byID_everInfected <- if (nrow(eventTable) == 0) { data.frame(id = factor(character(0), levels = idlevels), time.I = numeric(0), row.names = NULL, check.names = FALSE, stringsAsFactors = FALSE) } else if (!resusceptibility) { .res <- reshape(eventTable, direction = "wide", timevar = "type", idvar = "id") attr(.res, "reshapeWide") <- NULL if ("time.I" %in% names(.res)) { .res } else { # degenerate case: only R (and S) events in data cbind(.res[1L], "time.I" = NA_real_, .res[-1L]) } } else { rowsPerId <- table(eventTable[["id"]]) modulo3 <- rowsPerId %% 3 rest1 <- modulo3 == 1 rest12 <- modulo3 >= 1 missingR <- data.frame(id = names(rowsPerId)[rest1], time = rep(NA_real_, sum(rest1)), type = rep("R", sum(rest1)), row.names = NULL, check.names = FALSE, stringsAsFactors = FALSE) missingS <- data.frame(id = names(rowsPerId)[rest12], time = rep(NA_real_, sum(rest12)), type = rep("S", sum(rest12)), row.names = NULL, check.names = FALSE, stringsAsFactors = FALSE) eventTable3 <- rbind(eventTable, missingR, missingS) eventTable3 <- eventTable3[order(eventTable3[["id"]]),] .res <- data.frame( eventTable3[eventTable3$type == "I", c("id", "time")], eventTable3[eventTable3$type == "R", "time", drop = FALSE], eventTable3[eventTable3$type == "S", "time", drop = FALSE], row.names = NULL, check.names = FALSE, stringsAsFactors = FALSE ) names(.res) <- c("id", paste("time", c("I", "R", "S"), sep=".")) .res } byID_neverInfected <- data.frame(id = neverInfected, time.I = rep(NA_real_, n-size), time.R = rep(NA_real_, n-size), time.S = rep(NA_real_, n-size), row.names = NULL, check.names = FALSE) byID_all <- rbind(byID_everInfected, byID_neverInfected[names(byID_everInfected)]) byID <- byID_all[order(byID_all[["id"]]),] rownames(byID) <- NULL ### summary 4: upgrade eventTable with ### evolution of numbers of susceptibles, infectious and removed counters <- eventTable[order(eventTable[["time"]]),c("time", "type", "id")] init <- data.frame(time = attr(object, "timeRange")[1L], type = NA_character_, id = NA_character_, nSusceptible = n, nInfectious = m, nRemoved = 0L) cumulatedReSusceptibility <- cumsum(counters[["type"]] == "S") cumulatedInfections <- cumsum(counters[["type"]] == "I") cumulatedRemovals <- cumsum(counters[["type"]] == "R") counters[["nSusceptible"]] <- init[["nSusceptible"]] - cumulatedInfections + cumulatedReSusceptibility counters[["nInfectious"]] <- init[["nInfectious"]] + cumulatedInfections - cumulatedRemovals counters[["nRemoved"]] <- init[["nRemoved"]] + cumulatedRemovals - cumulatedReSusceptibility counters <- rbind(init, counters) rownames(counters) <- NULL ### return the components in a list res <- list(type = epitype, size = n - sum(isNeverInfected), initiallyInfected = initiallyInfected, neverInfected = neverInfected, coordinates = coordinates, byID = byID, counters = counters) class(res) <- "summary.epidata" attr(res, "eventTimes") <- attr(object, "eventTimes") attr(res, "timeRange") <- attr(object, "timeRange") res } ################################################################################ # PRINT METHOD FOR 'EPIDATA' OBJECTS ################################################################################ print.epidata <- function (x, ...) { cat("\nHistory of an epidemic\n") cat("Number of individuals:", nlevels(x[["id"]]), "\n") cat("Time range:", paste(attr(x, "timeRange"), collapse = " -- "), "\n") cat("Number of infections:", length(attr(x, "eventTimes")), "\n\n") print.data.frame(x, ...) cat("\n") invisible(x) } ################################################################################ # PRINT METHOD FOR THE SUMMARY OF 'EPIDATA' OBJECTS ################################################################################ print.summary.epidata <- function(x, ...) { cat("\nAN", x$type, "EPIDEMIC\n") cat(" Time range:", paste(attr(x, "timeRange"), collapse = " -- "), "\n") cat(" Number of individuals:", nlevels(x$initiallyInfected), "\n") cat(" ", length(x$initiallyInfected), "initially infected individuals") if (length(x$initiallyInfected) > 0) { cat(":\n ") str(as.character(x$initiallyInfected), give.head = FALSE, vec.len = 100, strict.width = "wrap", indent.str = " ") } else cat("\n") cat(" ", length(x$neverInfected), "never infected individuals") if (length(x$neverInfected) > 0) { cat(":\n ") str(as.character(x$neverInfected), give.head = FALSE, vec.len = 100, strict.width = "wrap", indent.str = " ") } else cat("\n") cat(" Size of the epidemic:", x$size, "\n") if (x$type %in% c("SIRS", "SIS")) { cat(" Number of infections:", length(attr(x, "eventTimes")), "\n") } dimc <- dim(x$counters) cat("\n$ counters ('data.frame',", dimc[1L], "x", dimc[2L], "):", "evolution of the epidemic:\n") counters2print <- if (dimc[1] > 6L) { tmp <- format.data.frame(x$counters[c(1:3,1,dimc[1]-(1:0)),], na.encode = FALSE) tmp[4,] <- c("[....]", "", "", "", "", "") rownames(tmp)[4] <- "" as.matrix(tmp) } else { x$counters } print(counters2print, quote = FALSE, right = TRUE, na.print = "") cat("\n") invisible(x) } surveillance/R/hhh4_W_powerlaw.R0000644000175100001440000001246512701212027016353 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Parametric power-law specification for neighbourhood weights in hhh4() ### ### Copyright (C) 2012-2016 Sebastian Meyer ### $Revision: 1699 $ ### $Date: 2016-04-06 15:50:15 +0200 (Wed, 06. Apr 2016) $ ################################################################################ ### Construct weight matrix wji according to the Zeta-distribution with respect ### to the orders of neighbourhood (in nbmat, as e.g. obtained from nbOrder()), ### optionally fulfilling rowSums(wji) = 1 ## As a formula (for j != i, otherwise wji = 0): ## wji = pzeta(oji; d, maxlag) / sum_k pzeta(ojk; d, maxlag) ## Here, oji = oij is the order of nb of i and j, ## and pzeta(o; d, m) = o^-d / sum_{r=1}^m r^-d is the Zeta-distribution ## on 1:m (also called Zipf's law). ## Special cases: maxlag >= max(nbmat) yields the weights ## wji = oji^-d / sum_k ojk^-d ## and maxlag=1 yields the classical weights wji=1/nj. zetaweights <- function (nbmat, d = 1, maxlag = max(nbmat), normalize = FALSE) { ## raw (non-normalized) zeta-distribution on 1:maxlag zeta <- c(0, seq_len(maxlag)^-d) # first 0 is for lag 0 (i.e., diag(nbmat)) ## replace order by zetaweight of that order wji <- zeta[nbmat + 1L] # results in vector wji[is.na(wji)] <- 0 # for lags > maxlag ## set dim and names dim(wji) <- dim(nbmat) dimnames(wji) <- dimnames(nbmat) if (normalize) normalizeW(wji) else wji } ### powerlaw weights ## in the non-truncated case, i.e. maxlag = max(nbmat), ## the raw powerlaw weights are defined as w_ji = o_ji^-d, ## and with (row-)normalization we have w_ji = o_ji^-d / sum_k o_jk^-d W_powerlaw <- function (maxlag, normalize = TRUE, log = FALSE, initial = if (log) 0 else 1) { if (missing(maxlag)) { stop("'maxlag' must be specified (e.g. maximum neighbourhood order)") ## specifying 'maxlag' in zetaweights is actually optional since it has ## the default value max(nbmat). however, repeatedly asking for this ## maximum would be really inefficient. } else stopifnot(isScalar(maxlag)) ## main function which returns the weight matrix weights.call <- call("zetaweights", quote(nbmat), quote(d), maxlag, normalize) weights <- as.function(c(alist(d=, nbmat=, ...=), call("{", weights.call)), envir=getNamespace("surveillance")) if (log) { # the parameter d is interpreted on log-scale ## we prepend the necessary conversion d <- exp(d) body(weights) <- as.call(append(as.list(body(weights)), quote(d <- exp(d)), after=1)) } ## construct derivatives with respect to "d" (or log(d), respectively) dweights <- d2weights <- as.function(c(alist(d=, nbmat=, ...=), quote({})), envir=getNamespace("surveillance")) weights.call[[5L]] <- FALSE # normalize separately header <- c( if (log) quote(d <- exp(d)), # such that d is again on original scale substitute(Wraw <- weights.call, list(weights.call=weights.call)), if (normalize) expression( nUnits <- nrow(Wraw), norm <- .rowSums(Wraw, nUnits, nUnits) ), expression( # Wraw == 0 means o = 0 (diagonal) or o > maxlag => deriv = 0 is.na(Wraw) <- Wraw == 0, # set to NA since we will take the log logo <- -log(Wraw)/d # = log(nbmat) with NA's at Wraw == 0 ), if (normalize) quote(W <- Wraw / norm) else quote(W <- Wraw) ) footer <- expression(deriv[is.na(deriv)] <- 0, deriv) ## first derivative tmp1 <- expression( ## in surveillance < 1.9-0, 'norm' and 'tmpnorm' were based on 'nbmat', ## which is incorrect for the truncated case maxlag < max(nbmat) tmpnorm <- .rowSums(Wraw * -logo, nUnits, nUnits, na.rm=TRUE) / norm, tmp1 <- logo + tmpnorm ) deriv1 <- if (normalize) { expression(deriv <- W * -tmp1) } else expression(deriv <- W * -logo) body(dweights) <- as.call(c(as.name("{"), header, if (normalize) tmp1, deriv1, if (log) expression(deriv <- deriv * d), # this is the non-log d footer )) ## second derivative body(d2weights) <- as.call(c(as.name("{"), header, if (normalize) { c(tmp1, expression( tmp2 <- .rowSums(Wraw * logo^2, nUnits, nUnits, na.rm=TRUE) / norm - tmpnorm^2, deriv <- W * (tmp1^2 - tmp2) )) } else expression(deriv <- W * logo^2), if (log) c( do.call("substitute", list(deriv1[[1L]], list(deriv=as.name("deriv1")))), expression(deriv <- deriv * d^2 + deriv1 * d) # this is the non-log d ), footer )) ## return list of functions list(w=weights, dw=dweights, d2w=d2weights, initial=initial) } surveillance/R/twinstim_siaf_student.R0000644000175100001440000000762213165643423017754 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Student (t) kernel f(s) = (||s||^2+sigma^2)^-d ### This is a reparametrization of the t-kernel; For d=1, this is the kernel of ### the Cauchy density with scale sigma; in Geostatistics, a correlation ### function of this kind is known as the Cauchy model. ### ### Copyright (C) 2013-2014,2017 Sebastian Meyer ### $Revision: 1988 $ ### $Date: 2017-10-06 11:04:19 +0200 (Fri, 06. Oct 2017) $ ################################################################################ siaf.student <- function (nTypes = 1, validpars = NULL, engine = "C") { nTypes <- as.integer(nTypes) stopifnot(length(nTypes) == 1L, nTypes > 0L) engine <- match.arg(engine, c("C", "R")) ## for the moment we don't make this type-specific if (nTypes != 1) stop("type-specific shapes are not yet implemented") ## helper expression, note: logpars=c(logscale=logsigma, logd=logd) tmp <- expression( logsigma <- logpars[[1L]], # used "[[" to drop names logd <- logpars[[2L]], sigma <- exp(logsigma), d <- exp(logd) ) ## spatial kernel f <- function (s, logpars, types = NULL) {} body(f) <- as.call(c(as.name("{"), tmp, expression(s2 <- .rowSums(s^2, nrow(s), 2L)), expression((s2+sigma^2)^-d) )) environment(f) <- baseenv() ## numerically integrate f over a polygonal domain F <- siaf_F_polyCub_iso(intrfr_name = "intrfr.student", engine = engine) ## fast integration of f over a circular domain ## is not relevant for this heavy-tail kernel since we don't use ## 'effRange', and usually eps.s=Inf ##Fcircle <- function (r, logpars, type = NULL) {} ## derivative of f wrt logpars deriv <- f body(deriv)[[length(body(deriv))]] <- # assignment for return value of f substitute(fvals <- x, list(x=body(deriv)[[length(body(deriv))]])) body(deriv) <- as.call(c(as.list(body(deriv)), expression( derivlogsigma <- -2*d*sigma^2 * fvals / (s2+sigma^2), derivlogd <- log(fvals) * fvals, cbind(derivlogsigma, derivlogd, deparse.level = 0) ))) environment(deriv) <- baseenv() ## Numerical integration of 'deriv' over a polygonal domain Deriv <- siaf_Deriv_polyCub_iso( intrfr_names = c("intrfr.student.dlogsigma", "intrfr.student.dlogd"), engine = engine) ## simulation from the kernel (via polar coordinates) simulate <- siaf.simulatePC(intrfr.student) environment(simulate) <- getNamespace("surveillance") ## return the kernel specification list(f=f, F=F, deriv=deriv, Deriv=Deriv, simulate=simulate, npars=2L, validpars=validpars) } ## integrate x*f(x) from 0 to R (vectorized) intrfr.student <- function (R, logpars, types = NULL) { sigma <- exp(logpars[[1L]]) d <- exp(logpars[[2L]]) if (d == 1) { log(R^2+sigma^2) / 2 - log(sigma) } else { ( (R^2+sigma^2)^(-d+1) - (sigma^2)^(-d+1) ) / (2-2*d) } } ## integrate x * (df(x)/dlogsigma) from 0 to R (vectorized) intrfr.student.dlogsigma <- function (R, logpars, types = NULL) { sigma <- exp(logpars[[1L]]) d <- exp(logpars[[2L]]) sigma^2 * ( (R^2+sigma^2)^-d - sigma^(-2*d) ) } ## integrate x * (df(x)/dlogd) from 0 to R (vectorized) intrfr.student.dlogd <- function (R, logpars, types = NULL) { sigma <- exp(logpars[[1L]]) d <- exp(logpars[[2L]]) if (d == 1) { log(sigma)^2 - log(R^2+sigma^2)^2 / 4 } else { # thanks to Maple 17 primitive <- function (x) { x2ps2 <- x^2 + sigma^2 (d*(d-1)*log(x2ps2) + d) / (2*(d-1)^2 * (x2ps2)^(d-1)) } primitive(R) - primitive(0) } } surveillance/R/algo_rogerson.R0000644000175100001440000004125511112250032016142 0ustar hornikusers################################################### ### chunk number 1: ################################################### ################################################################### # Average Run Lengths for CUSUMs using Markov Chain approach # # based on the program of Hawkins, D. M. (1992) # "Evaluation of Average Run Lengths of Cumulative Sum Charts # for an Arbitrary Data Distribution" # Communications in Statistics--Simulation. 21(4) 1001-1020. #--------------------------------------------------------------- # # for discrete distributions (i.e. Pois, Bin) # and upward CUSUMS (increasing rate,probability) # # Parameters: # h - decision interval h # k - reference value k # distr - "poisson" or "binomial" # theta - distribution parameter for cdf distr, e.g. lambda for ppois, p for pbinomial # W - winsorizing value W (for robust CUSUM) # to get a nonrobust CUSUM set W > k+h # digits - k and h are rounded to digits decimal places # ... - further arguments for distribution # i.e. number of trials n for binomial (defaults to n=1) # # Returns: # ARL - one-sided ARL of the regular (no-head-start) CUSUM ################################################################### arlCusum <- function(h=10, k=3, theta=2.4, distr=c("poisson","binomial"), W=NULL,digits=1,...){ h <- round(h,digits) k <- round(k,digits) #cat("h",h,"k",k,"\n") distr <- match.arg(distr,c("poisson","binomial")) ############## # cdf of a binomial variate with fixed sample size pbinomial <- function(x,p,n=1){ pbinom(x,size=n,prob=p) } ######## distribution <- switch(distr, "poisson" = ppois, "binomial" = pbinomial ) #no winsorization if(is.null(W)) W <- ceiling(h+k+1) # common denominator of h and k denrat <- commonDenom(h,k,digits=digits) #cat("h =",h,"k =",k,"denrat",denrat,"\n") # check parameters for feasibility if(h <=0) stop("Nonpositive decision interval\n") if(W <= k) stop("Winsorization value less than reference value\n") K <- as.integer(k*denrat+0.5) N <- as.integer(denrat) M <- as.integer(h*denrat -0.5) w <- as.integer(W*denrat+0.5) deviat <- abs(K-k*denrat)+abs(M-h*denrat+1)+abs(w-W*denrat) if(deviat > .01) stop("h, k or W not a multiple of 1/denrat\n") # determine probabilities x <- seq(((-M-1)+K)/N,(M+K)/N,by=(1/denrat)) probs <- distribution(x, theta,...) # Winsorization (any observation exeeding some treshold value W is replaced by W # CUSUM is then: S_n = max{0, S_n-1 + min(X_n,W) - k} probs[x>=W] <- 1 #construct transition matrix transition <- matrix(NA,M+1,M+1) transition[1,1] <- probs[(M+2)] #Pr(X <= k) transition[-1,1] <- probs[(M+2)-(1:M)] #Pr(X <= -j+ k) ,j=1,2,...,h-1 transition[1,-1] <- probs[(M+2)+(1:M)]- probs[(M+2)+(1:M)-1] #Pr(X = j+ k) , j=1,2,...,h-1 idx <-rep((M+2):((M+2)+M-1),M)-rep(0:(M-1),each=M) transition[-1,-1] <- matrix(probs[idx]-probs[idx-1],nrow=M,ncol=M,byrow=TRUE) #print(transition) # I - transition matrix R IminusR <- diag(1,M+1) - transition #Solve might work poorly in some cases res <- try(solve(IminusR)%*%rep(1,M+1),silent=TRUE) # res <- try(qr.solve(IminusR)%*%rep(1,M+1),silent=TRUE) if(inherits(res, "try-error")){ warning("I-R singular\n") return(NA) } ARL <- res[1] #FIRARL - one-sided ARL of the FIR CUSUM with head start 0.5h FIRARL <- res[(M+1)/2+1] return(list(ARL=ARL,FIR.ARL=FIRARL)) } ################################################################# # find smallest common denominator of x and y, # i.e find an integer N so that x=X/N and y=Y/N (with X,Y integer) ################################################################# commonDenom <- function(x,y,digits=1){ x <- round(x,digits) y <- round(y,digits) which.max( ( round((x+y)*1:(10^digits),digits)%%1 == 0 ) # (x+y)*N is integer & ( round(x*1:(10^digits),digits)%%1 == 0 ) # x*N is integer & ( round(y*1:(10^digits),digits)%%1 == 0 ) ) # y*N is integer } ################################################### ### chunk number 2: ################################################### ################################################################# # find reference value k for a Poisson /Binomial CUSUM # designed to detect a change from theta0 to theta1 # # digits - k is rounded to digits decimal places if roundK=TRUE # ... - extra arguments for distribution, # i.e number of trials n for binomial, set to 1 if not specified ################################################################## findK <- function(theta0,theta1,distr=c("poisson","binomial"),roundK=FALSE,digits=1,...){ n <- list(...)$n if(is.null(n)) n <- 1 distr <- match.arg(distr,c("poisson","binomial")) k <- switch(distr, "poisson" = (theta1 - theta0)/(log(theta1)-log(theta0)), "binomial" = -n*(log(1-theta1)-log(1-theta0))/(log(theta1*(1-theta0))-log(theta0*(1-theta1))) ) # for discrete data the # Cusum values are of form integer - integer multiple of k # so there is a limited set of possible values of h (and ARL) if(roundK){ # add/substract 0.05 to k so that k isn't an integer or a multiple of 0.5 # when rounded (then the Markov Chain has more states) if(round(k,digits=digits)%%1 == 0.5 | round(k,digits=digits)%%1 == 0){ round.k <- ((k-floor(k))*10^digits)%%1 #print(roundK) if(round.k < .5 ) k <- k+0.5*10^(-digits) else k <- k-0.5*10^(-digits) } k <- round(k,digits=digits) } return(k) } ################################################### ### chunk number 3: ################################################### ################################################################## # function to find the decision limit h so that the # average run length for a Poisson/Binomial CUSUM with in-control # parameter theta0 is (approx.) ARL0 # # Params: # ARL0 - desired in-control ARL # theta0 - in-control parameter # s - change to detect (in stdev) # rel.tol - (relative) tolerance (if attainable) # roundK - should k be rounded up to digits decimal place (avoiding integers, multiples of 0.5) # digits - h is rounded to digits decimal places # distr - "poisson" or "binomial" # ... - further arguments for distribution (i.e number of trials n for "binomial") # # Returns: # vector c(theta0, h, k, ARL, rel.tol) ################################################################# findH <- function(ARL0,theta0,s=1, rel.tol=0.03,roundK=TRUE,distr=c("poisson","binomial"),digits=1,FIR=FALSE,...){ distr <- match.arg(distr,c("poisson","binomial")) #FIR-ARL or zero-start ARL? fir.arl <- ifelse(FIR,2,1) theta1 <- getTheta1(theta0,s=s,distr=distr) k <- findK(theta0,theta1,roundK=roundK,distr=distr,digits=digits,...) # compute ARL for two (arbitrary) points (h1, h2) h1 <- min(12,4*k) arl1 <- arlCusum(h=h1,k=k,theta=theta0,distr=distr,digits=digits,...)[[fir.arl]] nEval <- 1 #ensure h1 and arl1 are not too small (-> log. interpolation is better) while(arl1 < 100){ h1 <- 2*h1 arl1 <- arlCusum(h=h1,k=k,theta=theta0,distr=distr,digits=digits,...)[[fir.arl]] nEval <- nEval + 1 } h2 <- h1*2^(sign(ARL0-arl1)) arl2 <- arlCusum(h=h2,k=k,theta=theta0,distr=distr,digits=digits,...)[[fir.arl]] nEval <- nEval + 1 # determine h (that leads to an ARL of ARL0) using logarithmic interpolation h.hat <- round(logInterpolation(ARL0,h1,h2,arl1,arl2),digits) # what's the actual ARL for h arl <- arlCusum(h=h.hat,k=k,theta=theta0,distr=distr,digits=digits,...)[[fir.arl]] nEval <- nEval + 1 relTol <- abs((arl-ARL0)/ARL0) #cat("theta0:", theta0,"k:", k,"h:", h.hat,"ARL:",arl,"relTol:", relTol,"\n") i<-0 signs <- sign(ARL0-arl) convergence <- relTol < rel.tol if(convergence){ # print(nEval) return(c("theta0"=theta0,"h"=h.hat,"k"=k,"ARL"=arl,"rel.tol"=relTol)) } # find hLow so that the target ARL0 is in interval c(ARL(hLow), ARL(h.hat)) denrat <- 1/commonDenom(1,k,digits=digits) steps <- denrat #max(0.1,denrat) # cat("denrat",denrat,"steps",steps,"\n") hLow <- round(h.hat+signs*steps,digits) arlLow <- arlCusum(h=hLow,k=k,theta=theta0,distr=distr,digits=digits,...)[[fir.arl]] nEval <- nEval + 1 relTol.Low <- abs((arlLow-ARL0)/ARL0) if(relTol.Low < rel.tol){ # print(nEval) return(c("theta0"=theta0,"h"=hLow,"k"=k,"ARL"=arlLow,"rel.tol"=relTol.Low)) } while(sign(ARL0-arl)*sign(ARL0-arlLow)>0){ # cat("steps:",nEval,"\n") h.hat <- hLow arl <-arlLow relTol <- relTol.Low signs <- sign(ARL0-arl) hLow <- round(h.hat+signs*steps,digits) arlLow <- arlCusum(h=hLow,k=k,theta=theta0,distr=distr,digits=digits,...)[[fir.arl]] nEval <- nEval + 1 relTol.Low <- abs((arlLow-ARL0)/ARL0) if(relTol.Low < rel.tol){ # print(nEval) return(c("theta0"=theta0,"h"=hLow,"k"=k,"ARL"=arlLow,"rel.tol"=relTol.Low)) } # cat("hLow:", hLow,"ARL:",arlLow,"relTol:",relTol.Low,"\n") } # cat("hLow:", hLow,"ARL:",arlLow,"relTol:",relTol.Low,"\n") # return the ARL which is at least the target ARL0 if(sign(ARL0-arlLow)<0){ h.hat <- hLow arl <- arlLow relTol <- relTol.Low } #print(nEval) return(c("theta0"=theta0,"h"=h.hat,"k"=k,"ARL"=arl,"rel.tol"=relTol)) } ################################################################## # find h for various values theta0 # # Params: # theta0 - vector of in control parameter # ARL0 - desired in-control ARL # # Returns: # matrix with columns c(theta0, h, k, ARL, rel.Tol) ################################################################## hValues <- function(theta0,ARL0,rel.tol=0.02,s=1,roundK=TRUE,digits=1,distr=c("poisson","binomial"),FIR=FALSE,...){ distr <- match.arg(distr,c("poisson","binomial")) n <- list(...)$n hVals <- t(sapply(theta0,findH,ARL0=ARL0,rel.tol=rel.tol,s=s,roundK=roundK,digits=digits,distr=distr,FIR=FIR,...)) res <- list(hValues=hVals,ARL0=ARL0,s=s,rel.tol=rel.tol,distribution=distr,firARL=FIR) res$n <- n return(res) } ################################################################## # get the decision limit h for CUSUM with # in-control parameter theta using a "table" of h values # # theta - in-control parameter # hValues - matrix with columns c(theta, h) ################################################################## getH <- function(theta,hValues){ one<- function(theta){ theta.diff <- abs(hValues[,1]-theta) idx <- which.min(theta.diff) h <- hValues[idx,2] if(theta.diff[idx] > 0.05) warning("table doesn't contain h value for theta = ",theta,"\n") return(h) } sapply(theta,one) } ##################################################################### # get decision interval h and reference value k ##################################################################### getHK <- function(theta,hValues){ one<- function(theta){ theta.diff <- abs(hValues[,1]-theta) idx <- which.min(theta.diff) hk <- hValues[idx,2:3] if(theta.diff[idx] > 0.05) warning("table doesn't contain h value for theta = ",theta,"\n") return(hk) } t(sapply(theta,one)) } ################################################################# # get out-of-control parameter theta1 # # X ~ Po(lambda0): theta1 = lambda0 + s*sqrt(lambda0) # theta1 corresponds to a s*stdev increase in mean # # X ~Bin(n,pi) # H0: Odds of failure =pi/(1-pi) vs H1: Odds = s*pi/(1-pi) # prob of failure under H1 is then pi1 = s*pi0/(1+(s-1)*pi0) ################################################################# getTheta1 <- function(theta0,s=1,distr=c("poisson","binomial")){ distr <- match.arg(distr,c("poisson","binomial")) theta1 <- switch(distr, "poisson" = theta0 + s*sqrt(theta0), "binomial" = s*theta0/(1-theta0+s*theta0) ) return(theta1) } ################################################################# # logarithmic interpolation, i.e. linear interpolation of ln(f(x)) # in points (x0,ln(f0)), (x1,ln(f1)) # # (ln(f)-ln(f0))/(ln(f1)-ln(f0)) = (x-x0)/(x1-x0) # # returns: x # # to find decision limit h for given ARL0 set x = h, f(h) = ARL0(h,k) # and solve equation for x ################################################################# logInterpolation <- function(f,x0,x1,f0,f1){ x0 + ((x1-x0)*(log(f)-log(f0)))/(log(f1)-log(f0)) } ################################################### ### chunk number 4: ################################################### # control - list with # range - vector of indices in the observed matrix to monitor # theta0t - matrix with in-control parameter, needs to be specified # ARL0 - desired average run length for each one of the univariate CUSUMs # s - change to detect # hValues - matrix with decision intervals for theta0_t # reset - if TRUE, the CUSUM is reset to zero after an alarm # nt - time varying sample sizes (for Binomial), # matrix of same dimension as theta0t algo.rogerson <- function(disProgObj, control=list(range=range, theta0t=NULL, ARL0=NULL, s=NULL, hValues=NULL, distribution=c("poisson","binomial"), nt=NULL, FIR=FALSE,limit=NULL, digits=1)){ if (is.null(control$s)) { stop("Error: the s value is not specified") } if (is.null(control$hValues)) { stop("Error: the hValues are not specified") } # if (is.null(control$ARL0)) { stop("Error: no ARL0 value specified") } #Default value is poisson control$distribution <- match.arg(control$distribution,c("poisson","binomial")) if(is.null(control$FIR)){ control$FIR <- FALSE } if(is.null(control$limit)) control$limit <- -1 if(is.null(control$digits)) control$digits <- 1 x <- as.matrix(disProgObj$observed[control$range,]) if (is.null(control$theta0t)) { stop("Error: no theta0t vector specified") } else { theta0t <- as.matrix(control$theta0t) } #theta0 <- colMeans(theta0t) #size = length of process size <- nrow(x) nAreas <- ncol(theta0t) theta0 <- rep(mean(theta0t),nAreas) #check dimensions of x, theta0t if(size !=nrow(theta0t) | (ncol(x)%%nAreas)!=0) stop("wrong dimensions\n") reps <- ncol(x)/nAreas #time-varying size n for Binomial nt<-control$nt if(control$distribution=="binomial"){ if(is.null(nt)) nt <- matrix(rep(control$n,size),ncol=1) else nt<-as.matrix(nt) } theta1 <- getTheta1(theta0,s=control$s,distr=control$distribution) theta1t <- getTheta1(theta0t,s=control$s,distr=control$distribution) hk <- getHK(theta0,hValues=control$hValues) k <- hk[,"k"] h <- hk[,"h"] #cat("k =",k,"h =",h,"\n") if(control$FIR){ control$limit <- 0.5 fir <- h/2 } else { fir <- 0 } #cat("fir",fir,"\n") # initialize the necessary vectors # start with cusum[1] = 0 cusum <- matrix(0,nrow=(size+1), ncol=nAreas*reps) cusum[1,] <- fir alarm <- matrix(data = 0, nrow = (size+1), ncol = nAreas*reps) upperbound <- matrix(0,nrow=(size+1),ncol=reps) #CUSUM as in Rogerson (2004) for(t in 1:size){ #choose k_t based upon theta_0t and theta_1t hkt <- getHK(theta0t[t,],hValues=control$hValues) #kt <- hkt[,"k"] kt <- findK(theta0t[t,],theta1t[t,],distr=control$distribution,roundK=TRUE, digits=control$digits, n=nt[t,]) # #for given k_t (theta0t) and ARL_0 choose h_t #ht <- getH(lambda0t[t],control$hValues) ht <- hkt[,"h"] ct <- h/ht # compute cumulative sums of observations x corrected with the # reference value kt, scaled by factor ct # cusum[t+1,]<- pmax(0, cusum[t,] + ct*(x[t,]-kt)) # reset CUSUM to zero if an alarm is given at time t if((control$limit >= 0) & any(alarm[t,]==1)){ cusum.t <- cusum[t,] cusum.t[alarm[t,]==1] <- pmin(cusum[t,], control$limit*h)[alarm[t,]==1] cusum[t+1,]<- pmax(0, cusum.t + ct*(x[t,]-kt)) } else { cusum[t+1,]<- pmax(0, cusum[t,] + ct*(x[t,]-kt)) } # give alarm if the cusum is larger than h alarm[t+1,] <- cusum[t+1,] >= h # in case speed is premium then one might want to comment this line if((control$limit >= 0) & any(alarm[t,]==1)) { upperbound[t+1,] <- ceiling( (h-cusum.t)/ct + kt) } else { upperbound[t+1,] <- ceiling( (h-cusum[t,])/ct + kt) } #Ensure upperbound is positive (this should always be the case) if (upperbound[t+1,] < 0) { upperbound[t+1,] <- 0} } # discard cusum[1] and alarm[1] cusum <- as.matrix(cusum[-1,]) alarm <- as.matrix(alarm[-1,]) upperbound <- as.matrix(upperbound[-1,]) #Add name and data name to control object. control$name <- paste("CUSUM Rogerson:",control$distribution) control$data <- paste(deparse(substitute(disProgObj))) # return alarm and upperbound vectors result <- list(alarm = alarm, upperbound = upperbound, disProgObj=disProgObj,control=c(control,list(h=h))) class(result) = "survRes" # for surveillance system result return(result) } surveillance/R/isScalar.R0000644000175100001440000000110013117531333015041 0ustar hornikusers################################################################################ ### Check if an R object is scalar, i.e., a numeric vector of length 1 ### ### Copyright (C) 2009,2017 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ################################################################################ isScalar <- function (x) { length(x) == 1L && is.vector(x, mode = "numeric") } surveillance/R/earsC.R0000644000175100001440000001615013020355717014353 0ustar hornikusers# \|||/ # (o o) # ,~~~ooO~~(_)~~~~~~~~~, # | EARS | # | surveillance | # | methods | # | C1, C2 and C3 | # '~~~~~~~~~~~~~~ooO~~~' # |__|__| # || || # ooO Ooo ###################################################################### # Implementation of the EARS surveillance methods. ###################################################################### # DESCRIPTION ###################################################################### # Given a time series of disease counts per month/week/day # this function determines whether there was an outbreak at given time points: # it deduces for each time point an expected value from past values, # it defines an upperbound based on this value and on the variability # of past values # and then it compares the observed value with the upperbound. # If the observed value is greater than the upperbound # then an alert is flagged. # Three methods are implemented. # They do not use the same amount of past data # and are expected to have different specificity and sensibility # from C1 to C3 # the amount of past data used increases, # so does the sensibility # but the specificity decreases. ###################################################################### # PARAMETERS ###################################################################### # range : range of timepoints over which the function will look for # outbreaks. # method : which of the three EARS methods C1, C2 and C3 should be used. # ###################################################################### # INPUT ###################################################################### # A R object of class sts ###################################################################### # OUTPUT ###################################################################### # The same R object of class sts with slot alarm and upperbound filled # by the function ###################################################################### earsC <- function(sts, control = list(range = NULL, method = "C1", baseline = 7, minSigma = 0, alpha = 0.001)) { ###################################################################### #Handle I/O ###################################################################### #If list elements are empty fill them! if (is.null(control[["baseline", exact = TRUE]])) { control$baseline <- 7 } if (is.null(control[["minSigma", exact = TRUE]])) { control$minSigma <- 0 } baseline <- control$baseline minSigma <- control$minSigma if(minSigma < 0) { stop("The minimum sigma parameter (minSigma) needs to be positive") } if (baseline < 3) { stop("Minimum baseline to use is 3.") } # Method if (is.null(control[["method", exact = TRUE]])) { control$method <- "C1" } # Extracting the method method <- match.arg( control$method, c("C1","C2","C3"),several.ok=FALSE) # Range # By default it will take all possible weeks # which is not the same depending on the method if (is.null(control[["range",exact=TRUE]])) { if (method == "C1"){ control$range <- seq(from=baseline+1, to=dim(sts@observed)[1],by=1) } if (method == "C2"){ control$range <- seq(from=baseline+3, to=dim(sts@observed)[1],by=1) } if (method == "C3"){ control$range <- seq(from=baseline+5, to=dim(sts@observed)[1],by=1) } } # zAlpha if (is.null(control[["alpha",exact=TRUE]])) { # C1 and C2: Risk of 1st type error of 10-3 # This corresponds to an Z(1-zAlpha) of about 3 if (method %in% c("C1","C2")) { control$alpha = 0.001 } # C3: Risk of 1st type error of 0.025 # This corresponds to an Z(1-zAlpha) of about 2 if (method=="C3") { control$alpha = 0.025 } } # Calculating the threshold zAlpha zAlpha <- qnorm((1-control$alpha)) #Deduce necessary amount of data from method maxLag <- switch(method, C1 = baseline, C2 = baseline+2, C3 = baseline+4) # Order range in case it was not given in the right order control$range = sort(control$range) ###################################################################### #Loop over all columns in the sts object #Call the right EARS function depending on the method chosen (1, 2 or 3) ##################################################################### for (j in 1:ncol(sts)) { # check if the vector observed includes all necessary data: maxLag values. if((control$range[1] - maxLag) < 1) { stop("The vector of observed is too short!") } ###################################################################### # Method C1 or C2 ###################################################################### if(method == "C1"){ # construct the matrix for calculations ndx <- as.vector(outer(control$range, baseline:1, FUN = "-")) refVals <- matrix(observed(sts)[,j][ndx], ncol = baseline) sts@upperbound[control$range, j] <- apply(refVals,1, mean) + zAlpha * pmax(apply(refVals, 1, sd), minSigma) } if (method == "C2") { # construct the matrix for calculations ndx <- as.vector(outer(control$range, (baseline + 2):3, FUN = "-")) refVals <- matrix(observed(sts)[,j][ndx], ncol = baseline) sts@upperbound[control$range, j] <- apply(refVals,1, mean) + zAlpha * pmax(apply(refVals, 1, sd), minSigma) } if (method == "C3") { # refVals <- NULL rangeC2 = ((min(control$range) - 2):max(control$range)) ##HB replacing loop: ndx <- as.vector(outer(rangeC2, (baseline + 2):3, FUN = "-")) refVals <- matrix(observed(sts)[,j][ndx], ncol = baseline) ##HB using argument 'minSigma' to avoid dividing by zero, huge zscores: C2 <- (observed(sts)[rangeC2, j] - apply(refVals, 1, mean))/ pmax(apply(refVals, 1, sd), minSigma) partUpperboundLag2 <- pmax(rep(0, length = length(C2) - 2), C2[1:(length(C2) - 2)] - 1) partUpperboundLag1 <- pmax(rep(0, length = length(C2) - 2), C2[2:(length(C2) - 1)] - 1) ##HB using argument 'minSigma' to avoid alerting threshold that is zero or too small sts@upperbound[control$range, j] <- observed(sts)[control$range, j] + pmax(apply(as.matrix(refVals[3:length(C2), ]),1, sd),minSigma) * (zAlpha - (partUpperboundLag2 + partUpperboundLag1)) sts@upperbound[control$range, j] = pmax(rep(0, length(control$range)), sts@upperbound[control$range, j]) } } #Copy administrative information control$name <- paste("EARS_", method, sep = "") control$data <- paste(deparse(substitute(sts))) sts@control <- control sts@alarm[control$range, ] <- matrix(observed(sts)[control$range, ] > upperbound(sts)[control$range, ]) return(sts[control$range, ]) } surveillance/R/gpc.poly-methods.R0000644000175100001440000000401412237174420016505 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Methods for gpc.poly polygons ### These are no longer used by the surveillance package itself ### ### Copyright (C) 2009-2013 Sebastian Meyer ### $Revision: 666 $ ### $Date: 2013-11-08 15:45:36 +0100 (Fri, 08. Nov 2013) $ ################################################################################ ### Redefinition of gpclib's scale.poly method to also do centering scale.gpc.poly <- function (x, center = c(0,0), scale = c(1,1)) { x@pts <- lapply(x@pts, function (p) { p$x <- (p$x-center[1]) / scale[1] p$y <- (p$y-center[2]) / scale[2] p }) x } ### Same as inside.owin for gpc.poly (using point.in.polygon from package sp) inside.gpc.poly <- function(x, y = NULL, polyregion, mode.checked = FALSE) { xy <- xy.coords(x, y, recycle=FALSE) N <- length(xy$x) # check for each polygon of polyregion if points are in the polygon locations <- sapply(polyregion@pts, function (poly) { pip <- point.in.polygon(xy$x, xy$y, poly$x, poly$y, mode.checked = mode.checked) if (poly$hole) { # if point is inside a hole then attribute -Inf ifelse(pip == 1, -Inf, 0) } else pip }) if (N == 1) sum(locations) > 0 else .rowSums(locations, N, length(polyregion@pts)) > 0 } ### Maximum extent of a gpc.poly (i.e. maximum distance of two vertices) diameter.gpc.poly <- function (object) { pts <- object@pts x <- unlist(lapply(pts, "[[", "x"), use.names=FALSE) y <- unlist(lapply(pts, "[[", "y"), use.names=FALSE) ## The diagonal of the bounding box provides a fast upper bound ##ext <- sqrt(diff(range(x))^2 + diff(range(y))^2) xy <- cbind(x,y) dists <- dist(xy) max(dists) } surveillance/R/options.R0000644000175100001440000001052612375650445015022 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Description: Set up surveillance.options. ### The code below is inspired by the options management of the ### spatstat package authored by Adrian Baddeley and Rolf Turner, which is ### available under GPL-2 from http://CRAN.R-project.org/package=spatstat ### ### Copyright (C) 2012 Sebastian Meyer ### $Revision: 960 $ ### $Date: 2014-08-22 16:18:13 +0200 (Fri, 22. Aug 2014) $ ################################################################################ .Options <- new.env() ## Specify options .Options$gpclib <- list( default = FALSE, # no gpclib due to license restrictions check = function(x) { if (!is.logical(x) || length(x) != 1L) return(FALSE) if (x && !requireNamespace("gpclib")) { warning("cannot set gpclib=TRUE") return(FALSE) } TRUE }, valid = "a single logical value" ) .Options$allExamples <- list( default = TRUE, # maybe disabled by .onAttach() check = function(x) is.logical(x) && length(x) == 1L, valid = "a single logical value" ) #Tick sizes of sts xaxis relative to par()$tcl .Options$stsTickFactors <- list( default = c("%d"=0.33,"%W"=0.33,"%V"=0.33,"%m"=1,"%Q"=1.25,"%Y"=1.5,"%G"=1.5), check = function(x) is.vector(x, mode="numeric") && !is.null(names(x)), valid = "a named vector of relative tick sizes" ) #Colors for the prediction intervals in nowcast plots .Options$colors <- list( default = c(nowSymbol="springgreen4",piBars="orange"), check = function(x) is.character(x), valid = "a vector of color names" ) ## Function to activate the defaults reset.surveillance.options <- function () { opts <- sapply(ls(.Options, all.names=TRUE), function (option) { .Options[[option]]$value <- .Options[[option]]$default }, simplify=FALSE, USE.NAMES=TRUE) invisible(opts) } ## Internal function to query options get.surveillance.options <- function (x, drop = TRUE) { opts <- lapply(.Options, "[[", "value") if (drop && !missing(x) && length(x) == 1L) opts[[x]] else opts[x] } ## Exported function to modify and query options surveillance.options <- function (...) { knownOptions <- ls(.Options, all.names=TRUE) called <- list(...) if (length(called) == 0) return(get.surveillance.options()) if (is.null(names(called)) && length(called)==1) { x <- called[[1]] if (is.null(x)) return(get.surveillance.options()) if (is.list(x)) called <- x } if (is.null(names(called))) # case: surveillance.options("par1","par2",...) { ischar <- unlist(lapply(called, is.character)) if(all(ischar)) { choices <- unlist(called) ok <- choices %in% knownOptions if(!all(ok)) stop("unrecognised option(s): ", called[!ok]) return(get.surveillance.options(choices)) } else { wrong <- called[!ischar] offending <- unlist(lapply(wrong, deparse, nlines=1, control="delayPromises")) offending <- paste(offending, collapse=",") stop("unrecognised mode of argument(s) [", offending, "]:", "\n should be character string or name=value pair") } } else { # case: surveillance.options(name=value, name2=value2, ...) assignto <- names(called) if (!all(nzchar(assignto))) stop("options must all be identified by name=value") recog <- assignto %in% knownOptions if(!all(recog)) stop("unrecognised option(s): ", assignto[!recog]) ## validate and assign new values oldopts <- get.surveillance.options(assignto, drop=FALSE) for(i in seq_along(assignto)) { nama <- assignto[i] valo <- called[[i]] entry <- .Options[[nama]] if (!entry$check(valo)) stop("option ", dQuote(nama), " should be ", entry$valid) .Options[[nama]]$value <- valo } ## done invisible(oldopts) } } surveillance/R/fanplot.R0000644000175100001440000000572513230341175014763 0ustar hornikusers################################################################################ ### Wrapper function for fanplot::fan() ### ### Copyright (C) 2017-2018 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ################################################################################ fanplot <- function (quantiles, probs, means = NULL, observed = NULL, start = 1, fan.args = list(), means.args = list(), observed.args = list(), key.args = NULL, xlim = NULL, ylim = NULL, xlab = "Time", ylab = "No. infected", add = FALSE, ...) { stopifnot(is.matrix(quantiles), length(probs) == ncol(quantiles), is.null(means) || length(means) == nrow(quantiles), is.null(observed) || length(observed) == nrow(quantiles), isScalar(start)) ## axis range if (is.null(xlim)) xlim <- c(1 - 0.5, nrow(quantiles) + 0.5) + (start-1) if (is.null(ylim)) ylim <- c(0, max(quantiles, observed)) ## graphical parameters stopifnot(is.list(fan.args)) fan.args <- modifyList( list(data = t(quantiles), data.type = "values", probs = probs, start = start, fan.col = heat.colors, ln = NULL), fan.args, keep.null = TRUE) ## initialize empty plot if (!add) plot(xlim, ylim, type = "n", xlab = xlab, ylab = ylab, ...) ## add fan do.call(fanplot::fan, fan.args) ## add point predictions if (!is.null(means) && is.list(means.args)) { means.args <- modifyList( list(x = seq_along(means) + (start-1), y = means, type = "l", lwd = 2, col = "white"), means.args) do.call("lines", means.args) } ## add observed time series if (!is.null(observed) && is.list(observed.args)) { observed.args <- modifyList( list(x = seq_along(observed) + (start-1), y = observed, type = "b", lwd = 2), observed.args) do.call("lines", observed.args) } ## add color key if (is.list(key.args)) { key.args <- modifyList( list(start = xlim[2L] - 1, ylim = c(ylim[1L] + mean(ylim), ylim[2L]), data.type = "values", style = "boxfan", probs = fan.args$probs, fan.col = fan.args$fan.col, ln = NULL, space = 0.9, rlab = quantile(fan.args$probs, names = FALSE, type = 1)), key.args) ## convert ylim to data key.args$data <- matrix(seq.int(from = key.args$ylim[1L], to = key.args$ylim[2L], length.out = length(fan.args$probs))) key.args$ylim <- NULL tryCatch(do.call(fanplot::fan, key.args), error = function (e) warning("color key could not be drawn, probably due to non-standard 'probs'", call. = FALSE)) } invisible(NULL) } surveillance/R/plot_multi.R0000644000175100001440000004762611770105224015516 0ustar hornikusers################################################### ### chunk number 1: ################################################### create.disProg <- function(week, observed, state, start=c(2001,1), freq=52, neighbourhood=NULL, populationFrac=NULL,epochAsDate=FALSE){ namesObs <-colnames(observed) # check whether observed contains only numbers if(!all(sapply(observed, is.numeric))){ stop("\'observed\' must be a matrix with numbers\n") } #univariate timeseries ? if(is.vector(observed)){ observed <- matrix(observed,ncol=1) namesObs <- deparse(quote(observed)) } else { # ensure we have a matrix observed <- as.matrix(observed) } if(missing(state)){ state <- 0*observed } else if(is.vector(state)){ state <- matrix(state,ncol=1) } else { state <- as.matrix(state) } #check number of columns of observed and state nAreas <- ncol(observed) nObs <- nrow(observed) if(ncol(observed) != ncol(state)){ #if there is only one state-vector for more than one area, repeat it if(ncol(state)==1) { state <- matrix(rep(state,nAreas),ncol=nAreas,byrow=FALSE) } else { cat('wrong dimensions of observed and state \n') return(NULL) } } #check neighbourhood matrix # neighbourhood can be a matrix or an array of dimension c(nAreas,nAreas, nrow(observed)) if(!is.null(neighbourhood) ) { dimNhood <- dim(neighbourhood) if(length(dimNhood)==2 & any(dimNhood != nAreas)) { cat('wrong dimensions of neighbourhood matrix \n') return(NULL) } else if (length(dimNhood)==3 & (any(dimNhood[1:2] != nAreas) | (dimNhood[3] != nrow(observed)) )){ cat('wrong dimensions of neighbourhood matrix \n') return(NULL) } } else { # no neighbourhood specified neighbourhood <- matrix(NA,nrow=nAreas,ncol=nAreas) } if(is.null(populationFrac)) { populationFrac <- matrix(1/ncol(observed),nrow=nObs, ncol=ncol(observed)) } else { # make sure populationFrac is a matrix populationFrac <- as.matrix(populationFrac) # check dimensions if(nrow(populationFrac)!= nObs | ncol(populationFrac)!= nAreas) stop("dimensions of \'populationFrac\' and \'observed\' do not match\n") # check whether populationFrac contains only numbers if(!all(sapply(populationFrac, is.numeric))){ stop("\'populationFrac\' must be a matrix with real numbers\n") } } #labels for observed and state if(is.null(namesObs)){ namesObs <- paste(deparse(quote(observed)),1:nAreas,sep="") } colnames(observed) <- namesObs colnames(state) <- namesObs res <- list("week"=week, "observed"=observed, "state"=state, "start"=start, "freq"=freq, "neighbourhood"=neighbourhood, "populationFrac"=populationFrac,"epochAsDate"=epochAsDate) class(res) <- "disProg" return(res) } print.disProg <- function(x, ...) { cat( "-- An object of class disProg -- \n" ) cat( "freq:\t\t", x$freq,"\n" ) cat( "start:\t\t", x$start,"\n" ) cat( "dim(observed):\t", dim(x$observed), "\n\n") n <- 1 cat("Head of observed:\n") print(head(x$observed,n)) #cat("\nhead of neighbourhood:\n") #print( head(x$neighbourhood,n)) } ################################################### ### chunk number 2: ################################################### sumNeighbours <- function(disProgObj){ observed <- disProgObj$observed neighbours <- matrix(nrow=nrow(observed),ncol=ncol(observed)) for(i in 1:ncol(observed)){ #only one neighbour if(sum(disProgObj$neighbourhood[,i])==1) neighbours[,i] <- observed[,disProgObj$neighbourhood[,i]==1] #more than one neighbour else neighbours[,i] <- apply(observed[,disProgObj$neighbourhood[,i]==1], MARGIN=1, sum) } return(neighbours) } ################################################### ### chunk number 3: ################################################### aggregate.disProg <- function(x,...){ #aggregate observed counts observed <- apply(x$observed,MARGIN=1,sum) #aggregate states state <- apply(x$state,MARGIN=1,sum) state[state > 1] <- 1 #create univariate disProg object x <- create.disProg(week=x$week, observed=observed, state=state, freq=x$freq,start=x$start) return(x) } ################################################### ### chunk number 4: ################################################### plot.disProg.one <- function(x, title = "", xaxis.years=TRUE, quarters=TRUE, startyear = x$start[1], firstweek = x$start[2], ylim=NULL, xlab="time", ylab="No. infected",type="hh",lty=c(1,1),col=c(1,1), outbreak.symbol = list(pch=3, col=3),legend.opts=list(x="top", legend=c("Infected", "Outbreak"),lty=NULL,pch=NULL,col=NULL),...) { observed <- x$observed state <- x$state # width of the column tab <- 0.5 # left/right help for constructing the columns observedxl <- (1:length(observed))-tab observedxr <- (1:length(observed))+tab # control where the highest value is max <- max(observed) #if ylim is not specified if(is.null(ylim)){ ylim <- c(-1/20*max, max) } #Plot the results using one Large plot call matplot(x=cbind(observedxl, observedxr),y=cbind(observed, observed),xlab=xlab,ylab=ylab, type=type,lty=lty, col=col, ylim=ylim,axes = !(xaxis.years),...) #Show the outbreaks if (!is.null(outbreak.symbol)) { for(i in 1:length(observed)){ matlines( c(i-tab, i+tab), c(observed[i],observed[i]) ) if(state[i] == 1) matpoints( i, ylim[1], pch=outbreak.symbol$pch, col=outbreak.symbol$col) } } title(title) cex <- par()$cex.axis #Label of x-axis if(xaxis.years){ # get the number of quarters lying in range for getting the year and quarter order obsPerYear <- x$freq obsPerQuarter <- x$freq/4 myat.week <- seq(ceiling((obsPerYear-firstweek+1)/obsPerQuarter) * obsPerQuarter + 1, length(observed)+(floor((obsPerYear-firstweek + 1)/obsPerQuarter) * obsPerQuarter +1), by=obsPerQuarter) # get the right year order year <- (myat.week - obsPerYear) %/% obsPerYear + startyear # function to define the quarter order quarterFunc <- function(i) { switch(i+1,"I","II","III","IV")} # get the right number and order of quarter labels quarter <- sapply( (myat.week-1) %/% obsPerQuarter %% 4, quarterFunc) # get the positions for the axis labels myat.week <- myat.week - (obsPerYear - firstweek + 1) # construct the computed axis labels if (quarters) { if (cex == 1) { mylabels.week <- paste(year,"\n\n",quarter,sep="") } else { mylabels.week <- paste(year,"\n",quarter,sep="") } } else { mylabels.week <- paste(year,sep="") } axis( at=myat.week , labels=mylabels.week , side=1, line = 1 ) axis( side=2 ) } #should there be a legend? if(!is.null(legend.opts) && (class(legend.opts) == "list")) { #Fill empty (mandatory) slots in legend.opts list if (is.null(legend.opts$lty)) legend.opts$lty = c(lty[1],NA) if (is.null(legend.opts$col)) legend.opts$col = c(col[1],outbreak.symbol$col) if (is.null(legend.opts$pch)) legend.opts$pch = c(NA,outbreak.symbol$pch) if (is.null(legend.opts$x)) legend.opts$x = "top" if (is.null(legend.opts$legend)) legend.opts$legend = c("Infected", "Outbreak") #Create the legend do.call("legend",legend.opts) } invisible() } plot.disProg <- function(x, title = "", xaxis.years=TRUE, startyear = x$start[1], firstweek = x$start[2], as.one=TRUE, same.scale=TRUE, ...){ observed <- x$observed state <- x$state #univariate timeseries ? if(is.vector(observed)) observed <- matrix(observed,ncol=1) if(is.vector(state)) state <- matrix(state,ncol=1) nAreas <- ncol(observed) max <- max(observed) #check if x is multivariate or univariate #multivariate time series if(nAreas > 1){ #all areas in one plot -- not supported in sts if(as.one){ matplot(observed,type="l",lty=1:nAreas,col=1:nAreas,ylim=c(0, 1.1*max),xlab="time",ylab="No. of Infected", axes=!xaxis.years) #If no legend.opts is specified or not set to null if ((is.na(pmatch("legend.opts",names(list(...))))) | (!is.na(pmatch("legend.opts",names(list(...)))) & (!is.null(list(...)$legend.opts)))) { legend.opts <- list(...)$legend.opts if (is.null(legend.opts$x)) legend.opts$x = "topleft" if (is.null(legend.opts$legend)) legend.opts$legend = colnames(observed) if (is.null(legend.opts$col)) legend.opts$col = 1:nAreas if (is.null(legend.opts$lty)) legend.opts$lty = 1:nAreas if (is.null(legend.opts$ncol)) legend.opts$ncol = 5 if (is.null(legend.opts$bty)) legend.opts$bty = "n" do.call("legend",legend.opts) } title(title) if(xaxis.years){ #todo: move this as output of ONE function # get the number of quarters lying in range for getting the year and quarter order myat.week <- seq(ceiling((52-firstweek+1)/13) * 13 + 1, length(observed)+(floor((52-firstweek + 1)/13) * 13 +1), by=13) # get the right year order year <- (myat.week - 52) %/% 52 + startyear # function to define the quarter order quarterFunc <- function(i) { switch(i+1,"I","II","III","IV")} # get the right number and order of quarter labels quarter <- sapply( (myat.week-1) %/% 13 %% 4, quarterFunc) # get the positions for the axis labels myat.week <- myat.week - (52 - firstweek + 1) # construct the computed axis labels cex <- par()$cex.axis if (cex == 1) { mylabels.week <- paste(year,"\n\n",quarter,sep="") } else { mylabels.week <- paste(year,"\n",quarter,sep="") } axis( at=myat.week , labels=mylabels.week , side=1, line = 1 ) axis( side=2 ) } } else { #plot each area #set window size par(mfrow=magic.dim(nAreas),mar=c(2,1,1,1)) if(same.scale) ylim <- c(-1/20*max, max) else ylim <- NULL #plot areas k <- 1:nAreas sapply(k, function(k) { plot.disProg.one(create.disProg(x$week, observed[,k], state[,k], freq=x$freq,start=x$start), title = "", startyear = startyear, firstweek = firstweek, xaxis.years=xaxis.years, ylim=ylim, legend.opts=NULL, ... ) mtext(colnames(observed)[k],line=-1.3) }) #reset graphical params par(mfrow=c(1,1), mar=c(5, 4, 4, 2)+0.1) } } else { #univariate time series plot.disProg.one(x=x, title = title, startyear = startyear, firstweek = firstweek, xaxis.years=xaxis.years, ...) } invisible() } ################################################### ### chunk number 5: ################################################### plot.survRes.one <- function(x, method=x$control$name, disease=x$control$data, domany=FALSE,ylim=NULL,xaxis.years=TRUE,startyear = 2001, firstweek = 1, xlab="time", ylab="No. infected", main=NULL, type="hhs",lty=c(1,1,2),col=c(1,1,4), outbreak.symbol = list(pch=3, col=3),alarm.symbol=list(pch=24, col=2),legend.opts=list(x="top",legend=c("Infected", "Upperbound", "Alarm", "Outbreak"),lty=NULL,col=NULL,pch=NULL), ...) { ################## Handle the NULL arguments ######################################################## if (is.null(main)) main = paste("Analysis of ", as.character(disease), " using ", as.character(method),sep="") #No titles are drawn when more than one is plotted. if (domany) main = "" survResObj <- x observed <- survResObj$disProgObj$observed[survResObj$control$range] state <- survResObj$disProgObj$state[survResObj$control$range] #print(list(...)) # width of the column tab <- 0.5 # left/right help for constructing the columns observedxl <- (1:length(observed))-tab observedxr <- (1:length(observed))+tab upperboundx <- (1:length(survResObj$upperbound)) #-0.5 # control where the highest value is max <- max(max(observed),max(survResObj$upperbound)) #if ylim is not specified #if(is.null(ylim)){ # ylim <- c(-1/20*max, max) #} #~~~~~~~~~~~~~~~~~~~~~~~~~~ if (is.null(ylim)) { max <- max(max(observed), max(survResObj$upperbound)) ylim <- c(-1/20 * max, max) } else { max <- ylim[2] } #ensure that there is enough space for the alarm/outbreak symbols if(ylim[1]>=0) ylim[1] <- -1/20*max #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #Generate the matrices to plot xstuff <- cbind(observedxl, observedxr, upperboundx) #no adjusting + min(x$control$range) - 1 ystuff <- cbind(observed, observed, survResObj$upperbound) #Plot the results using one Large plot call (we do this by modifying #the call). matplot(x=xstuff,y=ystuff,xlab=xlab,ylab=ylab,main=main,ylim=ylim,axes = !(xaxis.years),type=type,lty=lty,col=col,...) if (!is.null(survResObj$aggr)) { points(upperboundx+tab,survResObj$aggr,col=1) } for(i in 1:length(observed)){ matlines( c(i-tab, i+tab), c(observed[i],observed[i]),col=col[1]) if(survResObj$alarm[i] == 1) matpoints( i, -1/40*max, pch=alarm.symbol$pch, col=alarm.symbol$col) if(state[i] == 1) matpoints( i, -1/20*max, pch=outbreak.symbol$pch, col=outbreak.symbol$col) } # check where to place the legend. If the left upper side is free place it there if (max * 2/3 >= max( max(observed[1:floor(1/4 * length(observed))]), max(survResObj$upperbound[1:floor(1/4 * length(survResObj$upperbound))]) )) { xlegpos <- 0 } #Label of x-axis if(xaxis.years){ # get the number of quarters lying in range for getting the year and quarter order myat.week <- seq(ceiling((52-firstweek+1)/13) * 13 + 1, length(observed)+(floor((52-firstweek + 1)/13) * 13 +1), by=13) # get the right year order year <- (myat.week - 52) %/% 52 + startyear # function to define the quarter order quarterFunc <- function(i) { switch(i+1,"I","II","III","IV")} # get the right number and order of quarter labels quarter <- sapply( (myat.week-1) %/% 13 %% 4, quarterFunc) # get the positions for the axis labels myat.week <- myat.week - (52 - firstweek + 1) # construct the computed axis labels #cex <- par()$cex.axis #if (cex == 1) { mylabels.week <- paste(year,"\n\n",quarter,sep="") #} else { # mylabels.week <- paste(year,"\n",quarter,sep="") #} axis( at=myat.week , labels=mylabels.week , side=1, line = 1 ) axis( side=2 ) } if(!is.null(legend.opts) && (class(legend.opts) == "list")) { #Fill empty (mandatory) slots in legend.opts list if (is.null(legend.opts$lty)) legend.opts$lty = c(lty[1],lty[3],NA,NA) if (is.null(legend.opts$col)) legend.opts$col = c(col[1],col[3],alarm.symbol$col,outbreak.symbol$col) if (is.null(legend.opts$pch)) legend.opts$pch = c(NA,NA,alarm.symbol$pch,outbreak.symbol$pch) if (is.null(legend.opts$x)) legend.opts$x = "top" if (is.null(legend.opts$legend)) legend.opts$legend = c("Infected", "Upperbound", "Alarm", "Outbreak") do.call("legend",legend.opts) } invisible() } #the main function -- cant we do better than this? plot.survRes <- function(x, method=x$control$name, disease=x$control$data, xaxis.years=TRUE,startyear = 2001, firstweek = 1, same.scale=TRUE,...) { observed <- x$disProgObj$observed state <- x$disProgObj$state alarm <- x$alarm #univariate timeseries ? if(is.vector(observed)) observed <- matrix(observed,ncol=1) if(is.vector(state)) state <- matrix(state,ncol=1) if(is.vector(alarm)) alarm <- matrix(alarm,ncol=1) nAreas <- ncol(observed) max <- max(max(observed),max(x$upperbound)) #multivariate time series if(nAreas > 1){ #all areas in one plot #set window size par(mfrow=magic.dim(nAreas),mar=c(2,1,1,1)) if(same.scale) { ylim <- c(-1/20*max, max) } else { ylim <- NULL } #plot areas k <- 1:nAreas sapply(k, function(k) { #Create the survRes dP <- create.disProg(x$disProgObj$week, observed[,k], state[,k],start=x$start) obj <- list(alarm=alarm[,k],disProgObj=dP,control=x$control,upperbound=x$upperbound[,k]) class(obj) <- "survRes" plot.survRes.one(obj,startyear = startyear, firstweek = firstweek, xaxis.years=xaxis.years, ylim=ylim, legend.opts=NULL,domany=TRUE,... ) mtext(colnames(observed)[k],line=-1.3) }) #reset graphical params par(mfrow=c(1,1), mar=c(5, 4, 4, 2)+0.1) } else { #univariate time series plot.survRes.one(x=x, startyear = startyear, firstweek = firstweek, xaxis.years=xaxis.years, domany=FALSE,...) } invisible() } ################################################### ### chunk number 6: ################################################### magic.dim <- function(k){ if(k==1) return(c(1,1)) #factorize k factors <- primeFactors(k) #find the best factorization of k into two factors res <- bestCombination(factors) #if k is a prime or the difference between the two factors of k is too large #rather use the roots of the next square number greater than k #up is root of the smallest square number >= k up <- ceiling(sqrt(k)) #low is root of the biggest square number < k low <- up -1 if(diff(res) >5){ # e.g. k=11 is a prime, the next square number is 16 so up=4 and low=3 # low^2 = 9 < 11 is naturally too small, up^2=16 > 11 so c(4,4) is a solution # but low*up = 3*4 = 12 > 11 is also adequate and a better solution if((k - low^2) < up) res <- c(low,up) else res <- c(up,up) } return(sort(res)) } ################################################### ### chunk number 7: ################################################### primeFactors <- function(x){ if(x==1) return(1) factors<- numeric(0) i<-1 #start with i=2 and divide x by i (as often as possible) then try division by i+1 #until all factors are found, i.e. x=1 while(i < x){ i <- i+1 while((x %% i)==0){ # each time a new factor i is found, save it and proceed with x = x/i # e.g. k=20: 2 is a factor of x=20, continue with x = 10 = 20/2 # 2 is a factor of x=10, continue with x = 5 = 10/2 # 3 and 4 are no factors of x = 5 # 5 is a factor of x = 5, continue with x = 1 # result: 20 = c(2, 2, 5) factors <- c(factors, i) x <- x/i } } return(factors) } ################################################### ### chunk number 8: ################################################### ###################################################################### # Given a prime number factorization of a number, e.g. 36 # yields x=c(2,2,3,3) # and parition x into two groups, such that the product of the numbers # in group one is as similar as possible to the product # of the numbers of group two. This is useful in magic.dim # # Params: # x - the prime number factorization # # Returns: # c(prod(set1),prod(set2)) ###################################################################### bestCombination <- function(x) { #Compute the power set of 0:1^length(x), i.e. a binary indicator for #variable stating whether to include it in set 1 or not. combos <- as.matrix(expand.grid(rep(list(0:1),length(x)))) mode(combos) <- "logical" #Small helper function, given a vector of length(x) stating whether #to include an element in set1 or not, compute the product #of set1 and set2=x\backslash set1 #set1: all those for which include is TRUE, set2: all those for which #include is FALSE setsize <- function(include) { c(prod(x[include]),prod(x[!include])) } #Compute the product of set1 and set2 for each possible combination sizes <- apply(combos,MARGIN=1,FUN=setsize) #Calculate the combination, where x is as close to y as possible bestConfig <- combos[which.min(abs(diff(sizes))),] #Return this setsize of this configuration return(setsize(bestConfig)) } surveillance/R/twinstim_step.R0000644000175100001440000001431112213074366016225 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Functions and methods to make step() work for twinstim objects ### (restricted to one component at a time) ### ### Copyright (C) 2013 Sebastian Meyer ### $Revision: 645 $ ### $Date: 2013-09-08 15:17:42 +0200 (Sun, 08. Sep 2013) $ ################################################################################ ### To make step() work, we are dealing with modified twinstim objects: ### object$formula is replaced by the result of terms(object), which selects only ### one of the two components! The original full formula specification is ### retained in the new "formulae" component. ### We let this special class inherit from "twinstim" such that, e.g., ### extractAIC.twinstim is used for its objects. However, this is tricky since ### the classes are actually incompatible in the formula specification. Only ### methods which don't use the $formula part work, but this constraint holds ### for what is needed to run step(), if we define some additional specific ### methods for this class. twinstim_stependemic <- twinstim_stepepidemic <- function (object) { stepClass <- grep("twinstim_step", sys.call()[[1L]], value=TRUE) ##<- since sys.call()[[1L]] may also be surveillance:::... if (identical(class(object), "twinstim")) { component <- sub("twinstim_step", "", stepClass) object$formulae <- object$formula object$formula <- object$formulae[[component]] class(object) <- c(stepClass, "twinstim") } else if (!inherits(object, stepClass)) stop("unintended use") object } ## In the first step() loop, object$call$formula is set to terms(object). Since ## there is no "formula" argument to twinstim(), we must remove it from the call ## before update()ing. We also have to convert object$formula to the complete ## formula specification (a named list) and remove the original one ($formulae). .step2twinstim <- function (object) { ##if (identical(class(object), "twinstim")) return(object) component <- sub("^twinstim_step", "", class(object)[1]) stopifnot(component %in% c("endemic", "epidemic")) object$call$formula <- NULL object$formula <- modifyList( object$formulae, setNames(list(formula(object$formula)), component) ) object$formulae <- NULL class(object) <- "twinstim" object } ### special update- and terms-methods for use through stepComponent() below update.twinstim_stependemic <- function (object, endemic, ..., evaluate = TRUE) { object <- .step2twinstim(object) res <- NextMethod("update") # use update.twinstim() ## we need to keep the special class such that step() will keep invoking ## the special update- and terms-methods on the result stepClass <- sub("update.", "", .Method, fixed=TRUE) ##<- or: .Class[1L], or: grep("step", class(object), value=TRUE) if (evaluate) { do.call(stepClass, alist(res)) } else { as.call(list(call(":::", as.name("surveillance"), as.name(stepClass)), res)) ## the call will only be evaluated within stats:::drop1.default() or ## stats:::add1.default, where the "stepClass" constructor function ## (twinstim_stependemic or twinstim_stepepidemic) is not visible; ## we thus have to use ":::". } } update.twinstim_stepepidemic <- function (object, epidemic, ..., evaluate = TRUE) {} body(update.twinstim_stepepidemic) <- body(update.twinstim_stependemic) terms.twinstim_stependemic <- terms.twinstim_stepepidemic <- function (x, ...) terms(x$formula) ### Function to perform AIC-based model selection (component-specific) ### This is essentially a wrapper around stats::step() stepComponent <- function (object, component = c("endemic", "epidemic"), scope = list(upper=object$formula[[component]]), direction = "both", trace = 2, verbose = FALSE, ...) { component <- match.arg(component) ## Convert to special twinstim class where $formula is the component formula object_step <- do.call(paste0("twinstim_step", component), alist(object)) ## silent optimizations if (trace <= 2) object_step$call$optim.args$control$trace <- object_step$optim.args$control$trace <- 0 object_step$call$verbose <- verbose ## Run the selection procedure res <- step(object_step, scope = scope, direction = direction, trace = trace, ...) ## Restore original trace and verbose arguments if (trace <= 2) { res$call$optim.args$control <- object$call$optim.args$control res$optim.args$control <- object$optim.args$control } res$call$verbose <- object$call$verbose ## Convert back to original class .step2twinstim(res) } ### add1.default and drop1.default work without problems through the above ### implementation of stepComponent() using the tricky twinstim classes, ### where object$formula is replaced by the requested component's formula. ### However, for stand-alone use of add1 and drop1, we need specialised methods. add1.twinstim <- drop1.twinstim <- function (object, scope, component = c("endemic", "epidemic"), trace = 2, ...) { component <- match.arg(component) ## Convert to special twinstim class where $formula is the component formula object <- do.call(paste0("twinstim_step", component), alist(object)) ## Call the default method (unfortunately not exported from stats) ## Note that the next method chosen is "unchanged if the class of the ## dispatching argument is changed" (see ?NextMethod) ## (the "component" argument will be part of "..." and passed further on to ## extractAIC.twinstim() where it is unused) NextMethod(trace=trace) } add1.twinstim_stependemic <- drop1.twinstim_stependemic <- function (object, scope, ...) NextMethod(component="endemic") add1.twinstim_stepepidemic <- drop1.twinstim_stepepidemic <- function (object, scope, ...) NextMethod(component="epidemic") surveillance/R/farringtonFlexible.R0000644000175100001440000010403512673301413017137 0ustar hornikusers# ____________________________ # |\_________________________/|\ # || || \ # || algo.farrington || \ # || new version || | # || || | # || || | # || || | # || || | # || || / # ||_________________________|| / # |/_________________________\|/ # __\_________________/__/|_ # |_______________________|/ ) # ________________________ (__ # /oooo oooo oooo oooo /| _ )_ # /ooooooooooooooooooooooo/ / (_)_(_) # /ooooooooooooooooooooooo/ / (o o) #/C=_____________________/_/ ==\o/== # Version of the 26.06.2013 # M.Salmon, M.Hoehle ################################################################################ # CONTENTS ################################################################################ # # MAIN FUNCTION # Function that manages input and output. # # RESIDUALS FUNCTION # Function that calculates Anscombe residuals. # # WEIGHTS FUNCTION # Function that calculates weights based on these residuals. # # FORMULA FUNCTION # Function that writes a formula for the glm using Booleans from control. # # FIT GLM FUNCTION # Function that fits a GLM. If it does not converge this function tries to fit it without time trend. # # THRESHOLD FUNCTION # Function that calculates the lower and upper threshold, the probability of observing a count that is >= observed, and the score. # There are two versions of this function depending on the method chosen. # # BLOCKS FUNCTION # Function that creates the factor variable for the glm. # # DATA GLM FUNCTION # Function that prepares data for the glm # # GLM FUNCTION # Function that calls fit glm, checkst he time trend and calculate the prediction fort he current timepoint. ################################################################################ # END OF CONTENTS ################################################################################ ################################################################################ # MAIN FUNCTION ################################################################################ farringtonFlexible <- function(sts, control = list(range = NULL, b = 3, w = 3, reweight = TRUE, weightsThreshold = 2.58, verbose = FALSE,glmWarnings = TRUE, alpha = 0.01, trend = TRUE, pThresholdTrend = 0.05, limit54=c(5,4), powertrans="2/3", fitFun="algo.farrington.fitGLM.flexible", populationOffset = FALSE, noPeriods = 1, pastWeeksNotIncluded = 26, thresholdMethod = "delta")) { ###################################################################### # Use special Date class mechanism to find reference months/weeks/days ###################################################################### if (is.null( sts@epochAsDate)) { epochAsDate <- FALSE } else { epochAsDate <- sts@epochAsDate } ###################################################################### # Fetch observed and population ###################################################################### # Fetch observed observed <- observed(sts) freq <- sts@freq if (epochAsDate) { epochStr <- switch( as.character(freq), "12" = "month","52" = "week", "365" = "day") } else { epochStr <- "none" } # Fetch population (if it exists) if (!is.null(population(sts))) { population <- population(sts) } else { population <- rep(1,length(observed)) } ###################################################################### # Fix missing control options ###################################################################### # How many years to go back in time? if (is.null(control[["b",exact=TRUE]])) { control$b = 5 } # Half-window length if (is.null(control[["w", exact = TRUE]])) { control$w = 3 } # Range of time points to be evaluated if (is.null(control[["range", exact=TRUE]])) { control$range <- (freq*(control$b)+control$w +1):dim(observed)[1] } # Reweighting past outbreaks? if (is.null(control[["reweight",exact=TRUE]])) {control$reweight=TRUE} # With which threshold? if (is.null(control[["weightsThreshold",exact=TRUE]])) { control$weightsThreshold=2.58 } # Printing information? if (is.null(control[["verbose",exact=TRUE]])) {control$verbose=FALSE} # Printing warning from glm.fit? if (is.null(control[["glmWarnings",exact=TRUE]])) {control$glmWarnings=TRUE} # An approximate (two-sided) (1 - alpha)% prediction interval is calculated if (is.null(control[["alpha",exact=TRUE]])) {control$alpha=0.05} # Include a time trend when possible? if (is.null(control[["trend",exact=TRUE]])) {control$trend=TRUE} # Which pvalue for the time trend to be significant? if (is.null(control[["pThresholdTrend",exact=TRUE]])){ control$pThresholdTrend=0.05} # No alarm is sounded # if fewer than cases = 5 reports were received in the past period = 4 # weeks. limit54=c(cases,period) is a vector allowing the user to change # these numbers if (is.null(control[["limit54",exact=TRUE]])) {control$limit54=c(5,4)} # Power transformation to apply to the data. if (is.null(control[["powertrans",exact=TRUE]])){control$powertrans="2/3"} # How many noPeriods between windows around reference weeks? if (is.null(control[["noPeriods",exact=TRUE]])){control$noPeriods=1} # Use factors in the model? Depends on noPeriods, no input from the user. if (control$noPeriods!=1) { control$factorsBool=TRUE } else { control$factorsBool=FALSE } # Use a population offset in the model? if (is.null(control[["populationOffset",exact=TRUE]])) { control$populationOffset=FALSE } # How many past weeks not to take into account? if (is.null(control[["pastWeeksNotIncluded",exact=TRUE]])) { control$pastWeeksNotIncluded=control$w } # Which function to use? # Only one possibility at the moment if (is.null(control[["fitFun",exact=TRUE]])) { control$fitFun="algo.farrington.fitGLM.flexible" } else { control$fitFun <- match.arg(control$fitFun, c( "algo.farrington.fitGLM.flexible")) } # Which method for calculating the threshold? # Extracting the method if (is.null(control[["thresholdMethod",exact=TRUE]])) { control$thresholdMethod="delta"} thresholdMethod<- match.arg(control$thresholdMethod, c("delta","nbPlugin","muan"),several.ok=FALSE) # Adapt the argument for the glm function control$typePred <- switch(thresholdMethod, "delta"="response","nbPlugin"="link","muan"="link") # Which threshold function? control$thresholdFunction <- switch(thresholdMethod, "delta"="algo.farrington.threshold.farrington", "nbPlugin"="algo.farrington.threshold.noufaily", "muan"="algo.farrington.threshold.noufaily") ###################################################################### # Check options ###################################################################### if (!((control$limit54[1] >= 0) && (control$limit54[2] > 0))) { stop("The limit54 arguments are out of bounds: cases >= 0 and period > 0.") } ###################################################################### # Initialize the necessary vectors ###################################################################### # Vector for score score <- matrix(data = 0, nrow = length(control$range), ncol = ncol(sts)) sts@control$score <- score # Vector for time trend trend <- matrix(data = 0, nrow = length(control$range), ncol = ncol(sts)) # Vector for predictive distribution pvalue <- matrix(data = 0, nrow = length(control$range), ncol = ncol(sts)) sts@control$pvalue <- pvalue # Vector for expected count expected <- matrix(data = 0, nrow = length(control$range), ncol = ncol(sts)) sts@control$expected <- expected # Vector for mu0 (prediction from glm) mu0Vector <- matrix(data = 0, nrow = length(control$range), ncol = ncol(sts)) sts@control$mu0Vector <- mu0Vector # Vector for overdispersion phi (from glm) phiVector <- matrix(data = 0, nrow = length(control$range), ncol = ncol(sts)) sts@control$phiVector <- phiVector # Vector for time trend (from glm) trendVector <- matrix(data = 0, nrow = length(control$range), ncol = ncol(sts)) sts@control$trendVector <- trendVector # Define objects n <- control$b*(2*control$w+1) # loop over columns of sts for (j in 1:ncol(sts)) { #Vector of dates if (epochAsDate) { vectorOfDates <- as.Date(sts@epoch, origin="1970-01-01") } else { vectorOfDates <- seq_len(length(observed[,j])) } # Loop over control$range for (k in control$range) { ###################################################################### # Prepare data for the glm ###################################################################### dayToConsider <- vectorOfDates[k] diffDates <- diff(vectorOfDates) dataGLM <- algo.farrington.data.glm(dayToConsider=dayToConsider, b=control$b, freq=freq, epochAsDate=epochAsDate, epochStr=epochStr, vectorOfDates=vectorOfDates,w=control$w, noPeriods=control$noPeriods, observed=observed[,j],population=population, verbose=control$verbose, pastWeeksNotIncluded=control$pastWeeksNotIncluded,k) ###################################################################### # Fit the model ###################################################################### finalModel <- algo.farrington.glm(dataGLM,timeTrend=control$trend,populationOffset=control$populationOffset, factorsBool=control$factorsBool,reweight=control$reweight, weightsThreshold=control$weightsThreshold, pThresholdTrend=control$pThresholdTrend,b=control$b, noPeriods=control$noPeriods,typePred=control$typePred, fitFun=control$fitFun,glmWarnings=control$glmWarnings, epochAsDate=epochAsDate,dayToConsider=dayToConsider, diffDates=diffDates,populationNow=population[k,j],k, verbose=control$verbose) if (is.null(finalModel)) { #Do we have an alarm -- i.e. is observation beyond CI?? #upperbound only relevant if we can have an alarm (enoughCases) sts@alarm[k,j] <- NA sts@upperbound[k,j] <- NA mu0Vector[(k-min(control$range)+1),j] <- NA # Get overdispersion phiVector[(k-min(control$range)+1),j] <- NA # Get score score[(k-min(control$range)+1),j] <- NA #Compute bounds of the predictive pvalue[(k-min(control$range)+1),j] <- NA # Time trend trendVector[(k-min(control$range)+1),j] <- NA trend[(k-min(control$range)+1),j] <- NA warning(paste("The model could not converge with nor without time trend at timepoint ", k," so no result can be given for timepoint ", k,".\n")) } else { pred <- finalModel$pred doTrend <- finalModel$doTrend coeffTime <- finalModel$coeffTime ###################################################################### # Calculate lower and upper threshold ###################################################################### argumentsThreshold <- list(predFit=pred$fit,predSeFit=pred$se.fit, phi=finalModel$phi, skewness.transform=control$powertrans, alpha=control$alpha, y=observed[k,j], method=control$thresholdMethod ) lu <- do.call(control$thresholdFunction, args=argumentsThreshold) ###################################################################### # Postprocessing steps & output ###################################################################### #Compute exceedance score unless less than 5 reports during last 4 weeks. #Changed in version 0.9-7 - current week is included now enoughCases <- (sum(observed[(k-control$limit54[2]+1):k,j]) >=control$limit54[1]) #18 May 2006: Bug/unexpected feature found by Y. Le Strat. #the okHistory variable meant to protect against zero count problems, #but instead it resulted in exceedance score == 0 for low counts. #Now removed to be concordant with the Farrington 1996 paper. X <- ifelse(enoughCases,lu$score,NA) #Do we have an alarm -- i.e. is observation beyond CI?? #upperbound only relevant if we can have an alarm (enoughCases) sts@alarm[k,j] <- !is.na(X) && (X>1) && observed[k,j]!=0 sts@upperbound[k,j] <- ifelse(enoughCases,lu$upper,NA) # Possible bug alarm although upperbound <- 0? # Calculate expected value from glm if (is.na(lu$upper)==FALSE) { if ( control$typePred=="response"){ expected[(k-min(control$range)+1),j] <- ifelse(enoughCases,pred$fit,NA) } else{ expected[(k-min(control$range)+1),j] <- ifelse(enoughCases,exp(pred$fit),NA) } } else { expected[(k-min(control$range)+1),j] <- NA } # Calculate mean of the negbin distribution of the observation # Use linear predictor mean and sd eta0 <- pred$fit seEta0 <- pred$se.fit # deduce the quantile for mu0 from eta0 which is normally distributed if (control$thresholdMethod=='nbPlugin'){ mu0Vector[(k-min(control$range)+1),j] <- exp(eta0) } else { mu0Vector[(k-min(control$range)+1),j] <- exp(qnorm(1-control$alpha, mean=eta0, sd=seEta0)) } # Get overdispersion phiVector[(k-min(control$range)+1),j] <- finalModel$phi # Get score score[(k-min(control$range)+1),j] <- lu$score #Compute bounds of the predictive pvalue[(k-min(control$range)+1),j] <- lu$prob # Time trend if(doTrend) { trendVector[(k-min(control$range)+1),j] <- coeffTime trend[(k-min(control$range)+1),j] <- 1 } else { trendVector[(k-min(control$range)+1),j] <- NA } } }#done looping over all time points } #end of loop over cols in sts. # Add information about score sts@control$score[,j] <- score[,j] # Add information about trend sts@control$trend[,j] <- trend[,j] #Add information about predictive distribution sts@control$pvalue[,j] <- pvalue[,j] # Add information about expected value sts@control$expected[,j] <- expected[,j] # Add information about mean of the negbin distribution of the observation sts@control$mu0Vector[,j] <- mu0Vector[,j] # Add information about overdispersion sts@control$phiVector[,j] <- phiVector[,j] # Add information about time trend sts@control$trendVector[,j] <- trendVector[,j] #Done return(sts[control$range,]) } ################################################################################ # END OF MAIN FUNCTION ################################################################################ ################################################################################ # REFERENCE TIME POINTS FUNCTION ################################################################################ algo.farrington.referencetimepoints <- function(dayToConsider,b=control$b,freq=freq,epochAsDate,epochStr){ if (epochAsDate) { referenceTimePoints <- as.Date(seq(as.Date(dayToConsider, origin="1970-01-01"), length=(b+1), by="-1 year")) } else { referenceTimePoints <- seq(dayToConsider, length=(b+1),by=-freq) if (referenceTimePoints[b+1]<=0){ warning("Some reference values did not exist (index<1).") } } if (epochStr == "week") { # get the date of the Mondays/Tuesdays/etc so that it compares to # the reference data # (Mondays for Mondays for instance) # Vectors of same days near the date (usually the same week) # dayToGet dayToGet <- as.numeric(format(dayToConsider, "%w")) actualDay <- as.numeric(format(referenceTimePoints, "%w")) referenceTimePointsA <- referenceTimePoints - (actualDay - dayToGet) # Find the other "same day", which is either before or after referenceTimePoints referenceTimePointsB <- referenceTimePointsA + ifelse(referenceTimePointsA>referenceTimePoints,-7,7) # For each year choose the closest Monday/Tuesday/etc # The order of referenceTimePoints is NOT important AB <- cbind(referenceTimePointsA,referenceTimePointsB) ABnumeric <- cbind(as.numeric(referenceTimePointsA),as.numeric(referenceTimePointsB)) distMatrix <- abs(ABnumeric-as.numeric(referenceTimePoints)) idx <- (distMatrix[,1]>distMatrix[,2])+1 referenceTimePoints <- as.Date(AB[cbind(1:dim(AB)[1],idx)],origin="1970-01-01") } return(referenceTimePoints) } ################################################################################ # END OF REFERENCE TIME POINTS FUNCTION ################################################################################ ################################################################################ # RESIDUALS FUNCTION # anscombe.residuals(m,phi) # is defined in algo_farrington.R ################################################################################ ################################################################################ # WEIGHTS FUNCTION # algo.farrington.assign.weights(s,weightsThreshold) # is defined in algo_farrington.R ################################################################################ ################################################################################ # FORMULA FUNCTION ################################################################################ # Function for writing the good formula depending on timeTrend, # populationOffset and factorsBool formulaGLM <- function(populationOffset=FALSE,timeBool=TRUE,factorsBool=FALSE){ # Description # Args: # populationOffset: --- # Returns: # Vector of X # Smallest formula formulaString <- "response ~ 1" # With time trend? if (timeBool){ formulaString <- paste(formulaString,"+wtime",sep ="")} # With population offset? if(populationOffset){ formulaString <- paste(formulaString,"+offset(log(population))",sep ="")} # With factors? if(factorsBool){ formulaString <- paste(formulaString,"+seasgroups",sep ="")} # Return formula as a string return(formulaString) } ################################################################################ # END OF FORMULA FUNCTION ################################################################################ ################################################################################ # FIT GLM FUNCTION ################################################################################ algo.farrington.fitGLM.flexible <- function(dataGLM, timeTrend,populationOffset,factorsBool,reweight,weightsThreshold,glmWarnings,verbose,control,...) { # Model formula depends on whether to include a time trend or not. theModel <- formulaGLM(populationOffset,timeBool=timeTrend,factorsBool) # Fit it -- this is slow. An improvement would be to use glm.fit here. # This would change the syntax, however. if (glmWarnings) { model <- glm(formula(theModel),data=dataGLM,family = quasipoisson(link="log")) } else { model <- suppressWarnings(glm(formula(theModel),data=dataGLM,family = quasipoisson(link="log"))) } #Check convergence - if no convergence we return empty handed. if (!model$converged) { #Try without time dependence if (timeTrend) { theModel <- formulaGLM(populationOffset,timeBool=F,factorsBool) if (glmWarnings) { model <- glm(as.formula(theModel), data=dataGLM, family = quasipoisson(link="log")) } else { model <- suppressWarnings(glm(as.formula(theModel), data=dataGLM, family = quasipoisson(link="log"))) } if (verbose) {cat("Warning: No convergence with timeTrend -- trying without.\n")} } if (!model$converged) { if (verbose) {cat("Warning: No convergence in this case.\n")} if (verbose) {print(dataGLM[,c("response","wtime"),exact=TRUE])} return(NULL) } } #Overdispersion parameter phi phi <- max(summary(model)$dispersion,1) #In case reweighting using Anscome residuals is requested if (reweight) { s <- anscombe.residuals(model,phi) omega <- algo.farrington.assign.weights(s,weightsThreshold) if (glmWarnings) { model <- glm(as.formula(theModel),data=dataGLM, family=quasipoisson(link="log"), weights=omega) } else { model <- suppressWarnings(glm(as.formula(theModel),data=dataGLM, family=quasipoisson(link="log"), weights=omega)) } #Here, the overdispersion often becomes small, so we use the max #to ensure we don't operate with quantities less than 1. phi <- max(summary(model)$dispersion,1) } # end of refit. #Add wtime, response and phi to the model model$phi <- phi model$wtime <- dataGLM$wtime model$response <- dataGLM$response model$population <- dataGLM$population if (reweight) { model$weights <- omega } else{ model$weights <- model$weights } #Done return(model) } ################################################################################ # END OF FIT GLM FUNCTION ################################################################################ ################################################################################ # THRESHOLD FUNCTION FARRINGTON ################################################################################ algo.farrington.threshold.farrington <- function(predFit,predSeFit,phi, skewness.transform, alpha,y,method){ #Fetch mu0 and var(mu0) from the prediction object mu0 <- predFit tau <- phi + (predSeFit^2)/mu0 #Standard deviation of prediction, i.e. sqrt(var(h(Y_0)-h(\mu_0))) switch(skewness.transform, "none" = { se <- sqrt(mu0*tau); exponent <- 1}, "1/2" = { se <- sqrt(1/4*tau); exponent <- 1/2}, "2/3" = { se <- sqrt(4/9*mu0^(1/3)*tau); exponent <- 2/3}, { stop("No proper exponent in algo.farrington.threshold.")}) #Note that lu can contain NA's if e.g. (-1.47)^(3/2) lu <- sort((mu0^exponent + c(-1,1)*qnorm(1-alpha)*se)^(1/exponent), na.last=FALSE) #Ensure that lower bound is non-negative lu[1] <- max(0,lu[1],na.rm=TRUE) # probability associated to the observed value as quantile q <- pnorm( y^(1/exponent) , mean=mu0^exponent, sd=se,lower.tail=FALSE) # calculate score x <- ifelse(is.na(lu[2])==FALSE,(y - predFit) / (lu[2] - predFit),NA) return(list(lower=lu[1],upper=lu[2],prob=q,score=x)) } ################################################################################ # END OF THRESHOLD FUNCTION FARRINGTON ################################################################################ ################################################################################ # THRESHOLD FUNCTION NOUFAILY ################################################################################ algo.farrington.threshold.noufaily <- function(predFit,predSeFit,phi, skewness.transform, alpha,y,method){ # method of Angela Noufaily with modifications # Use linear predictor mean and sd eta0 <- predFit seEta0 <- predSeFit # deduce the quantile for mu0 from eta0 which is normally distributed if (method=='nbPlugin'){ mu0Quantile <- exp(eta0) } else { mu0Quantile <- exp(qnorm(1-alpha, mean=eta0, sd=seEta0)) } if (mu0Quantile==Inf){ lu <- c(NA,NA) q <- NA # else is when the method is "muan" } else{ # Two cases depending on phi value if (phi>1){ lu<-c(qnbinom(alpha/2,mu0Quantile/(phi-1),1/phi), qnbinom(1-alpha/2,mu0Quantile/(phi-1),1/phi)) } else { lu<-c(qpois(alpha/2,mu0Quantile),qpois(1-alpha/2,mu0Quantile)) } # cannot be negative lu[1]=max(0,lu[1]) # probability associated to the observed value as quantile if (phi!=1){ q <- pnbinom(q= y-1 ,size=mu0Quantile/(phi-1),prob=1/phi,lower.tail=FALSE) } else{ q <- ppois(y-1,mu0Quantile,lower.tail=FALSE) } } # calculate score x <- ifelse(is.na(lu[2])==FALSE,(y - predFit) / (lu[2] - predFit),NA) return(list(lower=lu[1],upper=lu[2],prob=q,score=x)) } ################################################################################ # END OF THRESHOLD FUNCTION NOUFAILY ################################################################################ ################################################################################ # BLOCKS FUNCTION ################################################################################ blocks <- function(referenceTimePoints,vectorOfDates,freq,dayToConsider,b,w,p, epochAsDate) { ## INPUT # freq: are we dealing with daily/weekly/monthly data? # b: how many years to go back in time # w: half window length around the reference timepoints # p: number of noPeriods one wants the year to be split into ## VECTOR OF ABSOLUTE NUMBERS # Very useful to write the code! vectorOfAbsoluteNumbers <- seq_len(length(vectorOfDates)) # logical vector indicating where the referenceTimePoints # are in the vectorOfDates referenceTimePointsOrNot <- vectorOfDates %in% referenceTimePoints ## VECTOR OF FACTORS vectorOfFactors <- rep(NA,length(vectorOfDates)) ## SETTING THE FACTORS # Current week if (epochAsDate==FALSE){ now <- which(vectorOfDates==dayToConsider) } else { now <- which(vectorOfDates==as.Date(dayToConsider)) } vectorOfFactors[(now-w):now] <- p # Reference weeks referenceWeeks <- rev(as.numeric( vectorOfAbsoluteNumbers[referenceTimePointsOrNot=='TRUE'])) for (i in 1:b) { # reference week refWeek <- referenceWeeks[i+1] vectorOfFactors[(refWeek-w):(refWeek+w)] <- p # The rest is only useful if ones want factors, otherwise only have # reference timepoints like in the old algo.farrington if (p!=1){ # Number of time points to be shared between vectors period <- referenceWeeks[i] - 2 * w - 1 - refWeek # Check that p is not too big if (period < (p-(2*w+1))){stop('Number of factors too big!')} # Look for the length of blocks lengthOfBlocks <- period %/% (p-1) rest <- period %% (p-1) vectorLengthOfBlocks <- rep(lengthOfBlocks,p-1) # share the rest of the Euclidian division among the first blocks add <- seq_len(rest) vectorLengthOfBlocks[add] <- vectorLengthOfBlocks[add]+1 # slight transformation necessary for the upcoming code with cumsum vectorLengthOfBlocks <- c(0,vectorLengthOfBlocks) # fill the vector for (j in 1:(p-1)) { vectorOfFactors[(refWeek+w+1+cumsum(vectorLengthOfBlocks)[j]): (refWeek+w+1+cumsum(vectorLengthOfBlocks)[j+1]-1)]<-j } } } ## DONE! return(vectorOfFactors) #indent } ################################################################################ # END OF BLOCKS FUNCTION ################################################################################ ################################################################################ # DATA GLM FUNCTION ################################################################################ algo.farrington.data.glm <- function(dayToConsider, b, freq, epochAsDate,epochStr, vectorOfDates,w,noPeriods, observed,population, verbose,pastWeeksNotIncluded,k){ # Identify reference time points # Same date but with one year, two year, etc, lag # b+1 because we need to have the current week in the vector referenceTimePoints <- algo.farrington.referencetimepoints(dayToConsider,b=b, freq=freq, epochAsDate=epochAsDate, epochStr=epochStr ) if (sum((vectorOfDates %in% min(referenceTimePoints)) == rep(FALSE,length(vectorOfDates))) == length(vectorOfDates)){ stop("Some reference values did not exist (index<1).") } if (verbose) { cat("k=", k,"\n")} # Create the blocks for the noPeriods between windows (including windows) # If noPeriods=1 this is a way of identifying windows, actually. blocks <- blocks(referenceTimePoints,vectorOfDates,epochStr,dayToConsider, b,w,noPeriods,epochAsDate) # Here add option for not taking the X past weeks into account # to avoid adaptation of the model to emerging outbreaks blocksID <- blocks blocksID[(k-pastWeeksNotIncluded):k] <- NA # Extract values for the timepoints of interest only blockIndexes <- which(is.na(blocksID)==FALSE) # Time # if epochAsDate make sure wtime has a 1 increment if (epochAsDate){ wtime <- (as.numeric(vectorOfDates[blockIndexes])- as.numeric(vectorOfDates[blockIndexes][1]))/as.numeric(diff(vectorOfDates))[1] } else { wtime <- as.numeric(vectorOfDates[blockIndexes]) } # Factors seasgroups <- as.factor(blocks[blockIndexes]) # Observed response <- observed[blockIndexes] # Population pop <- population[blockIndexes] if (verbose) { print(response)} dataGLM <- data.frame(response=response,wtime=wtime,population=pop, seasgroups=seasgroups,vectorOfDates=vectorOfDates[blockIndexes]) dataGLM <- dataGLM[is.na(dataGLM$response)==FALSE,] return(dataGLM) } ################################################################################ # END OF DATA GLM FUNCTION ################################################################################ ################################################################################ # GLM FUNCTION ################################################################################ algo.farrington.glm <- function(dataGLM,timeTrend,populationOffset,factorsBool, reweight,weightsThreshold,pThresholdTrend,b, noPeriods,typePred,fitFun,glmWarnings,epochAsDate, dayToConsider,diffDates,populationNow,k,verbose) { arguments <- list(dataGLM=dataGLM, timeTrend=timeTrend, populationOffset=populationOffset, factorsBool=factorsBool,reweight=reweight, weightsThreshold=weightsThreshold,glmWarnings=glmWarnings, verbose=verbose,control=control) model <- do.call(fitFun, args=arguments) #Stupid check to pass on NULL values from the algo.farrington.fitGLM proc. if (is.null(model)) return(model) ###################################################################### #Time trend ###################################################################### #Check whether to include time trend, to do this we need to check whether #1) wtime is signifcant at the 95lvl #2) the predicted value is not larger than any observed value #3) the historical data span at least 3 years. doTrend <- NULL # if model converged with time trend if ("wtime" %in% names(coef(model))){ # get the prediction for k if(epochAsDate){ wtime=(as.numeric(dayToConsider)-as.numeric(dataGLM$vectorOfDates[1]))/as.numeric(diffDates)[1] } else { wtime <- c(k) } pred <- predict.glm(model,newdata=data.frame(wtime=wtime, population=populationNow, seasgroups=factor(noPeriods), dispersion=model$phi),se.fit=TRUE,type="response") # check if three criterion ok #is the p-value for the trend significant (0.05) level significant <- (summary.glm(model)$coefficients["wtime",4] < pThresholdTrend) #have to use at least three years of data to allow for a trend atLeastThreeYears <- (b>=3) #no horrible predictions noExtrapolation <- (pred$fit <= max(dataGLM$response,na.rm=T)) #All 3 criteria have to be met in order to include the trend. Otherwise #it is removed. Only necessary to check this if a trend is requested. doTrend <- (atLeastThreeYears && significant && noExtrapolation) # if not then refit if (doTrend==FALSE) { arguments$timeTrend=FALSE model <- do.call(fitFun, args=arguments) } } else { doTrend <- FALSE } #done with time trend ###################################################################### ###################################################################### # Calculate prediction # ###################################################################### #Predict value if(epochAsDate){ wtime=(as.numeric(dayToConsider)-as.numeric(dataGLM$vectorOfDates[1]))/as.numeric(diffDates)[1] } else { wtime <- c(k) } pred <- predict.glm(model,newdata=data.frame(wtime=wtime, population=populationNow, seasgroups=factor(noPeriods), dispersion=model$phi),se.fit=TRUE,type=typePred) coeffTime=ifelse(doTrend,summary.glm(model)$coefficients["wtime",1],NA) finalModel <- list (pred,doTrend,coeffTime,model$phi) names(finalModel) <- c("pred","doTrend","coeffTime","phi") return(finalModel) } ################################################################################ # END OF GLM FUNCTION ################################################################################ surveillance/R/RcppExports.R0000644000175100001440000000054113136402341015576 0ustar hornikusers# Generated by using Rcpp::compileAttributes() -> do not edit by hand # Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393 determineSourcesC <- function(eventTimes, eps_t, eventCoords, eps_s, eventTypes, qmatrix) { .Call('_surveillance_determineSourcesC', PACKAGE = 'surveillance', eventTimes, eps_t, eventCoords, eps_s, eventTypes, qmatrix) } surveillance/R/formatPval.R0000644000175100001440000000141613117532200015417 0ustar hornikusers################################################################################ ### Yet another P-value formatter, using R's format.pval() ### ### Copyright (C) 2013,2015,2017 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ################################################################################ formatPval <- function (pv, eps = 1e-4, scientific = FALSE, ...) { format1 <- function (p) format.pval(p, digits = if (p < 10*eps) 1 else 2, eps = eps, nsmall = 2, scientific = scientific, ...) vapply(X = pv, FUN = format1, FUN.VALUE = "", USE.NAMES = TRUE) } surveillance/R/algo_call.R0000644000175100001440000001510612646503322015233 0ustar hornikusers################################################### ### chunk number 1: ################################################### # 'algo.quality' calculates quality values # like specifity, sensitivity for a surveillance method # # Parameters: # survResObj: object of class survRes, which includes the state chain and # the computed alarm chain ###################################################################### ## Hot fix function fixing two issues in the algo.quality function. ## ## Author: Michael Hoehle ## Date: 2015-11-24 ## ## 1) The function does not work if state or alarms are coded as TRUE/FALSE ## instead of 0/1. ## 2) algo.quality doesn't work for sts objects. ## ## The function now branches on the appropriate thing to do depending on ## what class the argument is. This is not necessarily very good object ## oriented programming, but it works for now. ###################################################################### algo.quality <- function (sts, penalty = 20) { if (class(sts) == "survRes") { state <- sts$disProgObj$state[sts$control$range] * 1 alarm <- sts$alarm * 1 } else { if (class(sts) == "sts") { if (ncol(sts) > 1) { stop("Function only works for univariate objects.") } state <- sts@state*1 alarm <- alarms(sts)*1 } else { stop(paste0("Class ",class(sts)," not supported!")) } } state <- factor(state, levels = c(0, 1)) alarm <- factor(alarm, levels = c(0, 1)) confusionTable <- table(state, alarm) sens = confusionTable[2, 2]/(confusionTable[2, 2] + confusionTable[2, 1]) spec = confusionTable[1, 1]/(confusionTable[1, 2] + confusionTable[1, 1]) TP = confusionTable[2, 2] FN = confusionTable[2, 1] TN = confusionTable[1, 1] FP = confusionTable[1, 2] dist = sqrt(((1 - spec) - 0)^2 + (sens - 1)^2) if (!(is.element(1, state))) { lag = 0 } else { lag <- c() outbegins <- c() varA <- which(state == 1) outbegins <- c(outbegins, varA[1]) if (length(varA) > 1) { varB <- diff(varA) outbegins <- c(outbegins, varA[which(varB != 1) + 1]) } count <- 1 for (i in outbegins) { if (count < length(outbegins)) { pos <- match(1, alarm[i:min(i + penalty, (outbegins[count + 1] - 1))]) if (is.na(pos)) { lag <- c(lag, penalty) } else { lag <- c(lag, pos - 1) } } else { pos <- match(1, alarm[i:min(i + penalty, length(alarm))]) if (is.na(pos)) { lag <- c(lag, penalty) } else { lag <- c(lag, pos - 1) } } count <- count + 1 } lag <- mean(lag) } result <- list(TP = TP, FP = FP, TN = TN, FN = FN, sens = sens, spec = spec, dist = dist, mlag = lag) class(result) <- "algoQV" return(result) } ################################################### ### chunk number 2: ################################################### print.algoQV <- function(x,...) { qualityValues <- c("TP", "FP", "TN", "FN", "Sens", "Spec", "dist", "mlag" ) class(x) <- "list" result <- t(as.matrix(x)) #Give the result matrix names dimnames(result)[[2]] <- qualityValues #Print to screen print(result) invisible() } ################################################### ### chunk number 3: ################################################### xtable.algoQV <- function(x, caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, ...) { n <- names(x) x <- matrix(x,nrow=1) dimnames(x)[[2]] <- n xtable(x,caption, label, align, digits, display, ...) } ################################################### ### chunk number 4: ################################################### # 'algo.call' calls the defined surveillance algorithms for # a specified observed vector. # # Parameter # disProgObj: object of class survRes, which includes the state chain, the observed # control: specifies which surveillance systems should be used with their parameters. # The parameter funcName and range must be specified where funcName must be # the apropriate function (without 'algo.') # range (in control): positions in observed which should be computed algo.call <- function(disProgObj, control = list( list(funcName = "rki1", range = range), list(funcName = "rki", range = range, b = 2, w = 4, actY = TRUE), list(funcName = "rki", range = range, b = 2, w = 5, actY = TRUE) ) ) { #Function to apply one algorithm to the disProgObj onecall <- function(i) { do.call(paste("algo.",control[[i]]$funcName, sep=""), list(disProgObj = disProgObj, control = control[[i]])) } #Apply each algorithm in the control list to the disProgObj survResults <- lapply(1:length(control),onecall) #Create some fancy naming.. names(survResults) <- lapply(survResults,function(survObj) {survObj$control$name}) #Done return(survResults) } ################################################### ### chunk number 5: ################################################### algo.compare <- function(survResList){ return(t(sapply(survResList,algo.quality))) } ################################################### ### chunk number 6: ################################################### algo.summary <- function(compMatrices){ # check if the input is large enough for summing if(length(compMatrices) < 1){ stop("It's an empty list !") } if(length(compMatrices) == 1){ return(compMatrices[[1]]) } #Stupid conversion... compMatrices <- lapply(compMatrices,function(one) { n <- dimnames(one) one <- matrix(as.numeric(one),nrow=dim(one)[[1]]) dimnames(one) <- n return(one) }) # Compute the whole result wholeResult = compMatrices[[1]] lag = matrix(0,length(compMatrices),length(wholeResult[,1])) lag[1,] = wholeResult[,8] for(i in 2:length(compMatrices)){ wholeResult = wholeResult + compMatrices[[i]] lag[i,] = compMatrices[[i]][,8] } # Sens (TP) wholeResult[,5] = wholeResult[,1]/(wholeResult[,1]+wholeResult[,4]) # Spec (TN/(TN+FP)) wholeResult[,6] = wholeResult[,3]/(wholeResult[,2]+wholeResult[,3]) # dist wholeResult[,7] = sqrt((wholeResult[,6]-1)^2 + (wholeResult[,5]-1)^2) # median(lag) for(i in 1:length(wholeResult[,1])){ wholeResult[i,8] = mean(lag[,i]) } #class(wholeResult) <- "compMatrix" # comparison matrix return(wholeResult) } surveillance/R/nowcast.R0000644000175100001440000013177412743013376015011 0ustar hornikusers###################################################################### # Function to perform nowcast at a specific day "now" using a procedure # which takes truncation of the available observations into # account. The full documentation is available in the nowcast.Rd file. # # Author: Michael Hoehle # # Parameters: # now - a Date object representing today # when - a vector of Date objects representing the days to do the forecast for. # A requirement is that for all elements in when are smaller or equal # than "now". # data - the Database containing columns dEventCol and dReportCol, which # contain the date of the event and of when the report arrives in # the database. # dEventCol - name of column in data containing time of event occurence # dReportCol - name of column in data containing time of reprt arrival # method - which method to use # D - maximum delay to consider # m - moving window for delay estimation # control - a list containing the following arguments # * gd.prior.kappa - prior for delay is symmetric Dirichlet # with concentration parameter gd.prior.kappa # # Note: As predictions are done simultaneously the entire vector of observations # is casted. Then the subset specified in "when" is returned. # # Returns: # stsNC object with reporting triangle, delay estimate and prediction interval in the appropriate slots. # # Todo: # * yt.support to N.tInf support in nowcast?? # * bayes.notrunc and bayes.notrunc.bnb could become one code segment # * Enable user to provide reporting triangle directly. # * Function should work for weekly and monthly data as well ###################################################################### nowcast <- function(now,when,data,dEventCol="dHospital",dReportCol="dReport", method=c("bayes.notrunc","bayes.notrunc.bnb","lawless","bayes.trunc","unif","bayes.trunc.ddcp"), aggregate.by="1 day", D=15, m=NULL, control=list( dRange=NULL,alpha=0.05,nSamples=1e3, N.tInf.prior=c("poisgamma","pois","unif"), N.tInf.max=300, gd.prior.kappa=0.1, ddcp=list(ddChangepoint=NULL, logLambda=c("iidLogGa","tps","rw1","rw2"), tau.gamma=1,eta.mu=NULL, eta.prec=NULL, mcmc=c(burnin=2500,sample=10000,thin=1)), score=FALSE,predPMF=FALSE)) { #Check if the runjags package is available (required for bayes.trunc.ddcp to work! if ("bayes.trunc.ddcp" %in% method) { if (!requireNamespace("runjags",quietly=TRUE)) { stop("The \"bayes.trunc.ddcp\" method requires the runjags package to be installed, which is available from CRAN.") } } if ((!inherits(now,"Date")) | (length(now)>1)) { stop("The parameter 'now' has to be a single Date.") } #Check if all when_i<= now if (!all(when<=now)) { stop("Assertion when<=now failed.") } #Check that specified methods are all valid method <- match.arg(method,c("bayes.notrunc","bayes.notrunc.bnb","lawless","bayes.trunc","unif","bayes.trunc.ddcp"),several.ok=TRUE) ###################################################################### # Time aggregation. Make sure it's a valid aggregational level and # move all dates to the "first" of this level. # @hoehle: Should work for day, weeks and month. Quarter and year not atm. ###################################################################### aggregate.by <- match.arg(aggregate.by,c("1 day","1 week", "1 month"),several.ok=FALSE) epochInPeriodStr <- switch(aggregate.by, "1 day"="1","1 week"="%u", "1 month"="%d") if (aggregate.by != "1 day") { warning("Moving dates to first of each epoch.") #Move dates back to first of each epoch unit for (colName in c(dEventCol, dReportCol)) { data[,colName] <- data[,colName] - as.numeric(format(data[,colName],epochInPeriodStr)) + 1 } #Check now and when if (!all( format( c(now,when),epochInPeriodStr) == 1)) { stop("The variables 'now' and 'when' needs to be at the first of each epoch") } } #Choose the corect difference function if (aggregate.by == "1 day") { timeDelay <- function(d1,d2) {as.numeric(d2-d1)} } if (aggregate.by == "1 week") { timeDelay <- function(d1,d2) { floor(as.numeric(difftime(d2,d1,units="weeks"))) } #Count the number of full weeks } if (aggregate.by == "1 month") { timeDelay <- function(d1,d2) { #Helper function from http://stackoverflow.com/questions/1995933/number-of-months-between-two-dates monnb <- function(d) { lt <- as.POSIXlt(as.Date(d, origin="1900-01-01")) lt$year*12 + lt$mon } monnb(d2) - monnb(d1) #count the number of full months } } ###################################################################### #If there is a specification of dateRange set dMin and dMax accordingly #Otherwise use as limits the range of the data ###################################################################### if (is.null(control[["dRange",exact=TRUE]])) { dMin <- min(data[,dEventCol],na.rm=TRUE) dMax <- max(data[,dEventCol],na.rm=TRUE) } else { dMin <- control$dRange[1] dMax <- control$dRange[length(control$dRange)] } #@hoehle - check that dRange is proper if (!all( format( c(dMin,dMax), epochInPeriodStr) == 1)) { stop("The variables in dRange needs to be at the first of each epoch.") } dateRange <- seq(dMin,dMax,by=aggregate.by) ###################################################################### # Additional manipulation of the control arguments ###################################################################### #Check if alpha is specified if (is.null(control[["alpha",exact=TRUE]])) { control$alpha <- 0.05 } if (is.null(control[["N.tInf.prior",exact=TRUE]])) { control$N.tInf.prior <- "unif" } if (is.null(control[["N.tInf.max",exact=TRUE]])) { control$N.tInf.max <- 300 } if (is.null(control[["gd.prior.kappa",exact=TRUE]])) { control$gd.prior.kappa <- 0.1 } if (is.null(control[["nSamples",exact=TRUE]])) { control$nSamples <- 1e3 } if (is.null(control[["score",exact=TRUE]])) { control$score <- FALSE } #Checking for the bayes.trun.ddcp procedure. If so make sure params are set up. if ("bayes.trunc.ddcp" %in% method) { #If no parameters at all set to defaults. if (is.null(control[["ddcp",exact=TRUE]])) { control$ddcp <- list(ddChangepoint=NULL, logLambda=c("iidLogGa","tps","rw1","rw2"), tau.gamma=1, mcmc=c(burnin=2500,sample=10000,thin=1)) } #Check form og logLambda if (is.null(control[["ddcp",exact=TRUE]][["logLambda",exact=TRUE]])) { control[["ddcp"]] <- modifyList(control[["ddcp",exact=TRUE]],list(logLambda="iidLogGa")) } else { control[["ddcp"]]$logLambda <- match.arg(control[["ddcp"]][["logLambda"]],c("iidLogGa","tps","rw1","rw2")) } #Check breakpoint to use in case of bayes.trunc.ddcp (delay distribution with breakpoint) if (is.null(control[["ddcp",exact=TRUE]][["ddChangepoint",exact=TRUE]]) || (!class(control[["ddcp",exact=TRUE]][["ddChangepoint",exact=TRUE]]) == "Date")) { stop("Please specify a Date object as changepoint in control$ddChangepoint.") } else { if (any(control[["ddcp",exact=TRUE]][["ddChangepoint"]] > now)) { warning("Some of the elements in ddChangepoint are beyond 'now'. This might be problematic!") } } #Make this an accessible variable ddChangepoint <- control$ddcp$ddChangepoint #Precision parameter for gamma coefficients for hazard delay distribution if (is.null(control[["ddcp",exact=TRUE]][["tau.gamma",exact=TRUE]])) { control[["ddcp"]]$tau.gamma <- 1 } if (is.null(control[["ddcp",exact=TRUE]][["eta.mu",exact=TRUE]])) { control[["ddcp"]]$eta.mu <- rep(0,length(ddChangepoint)) } else { if (length(control[["ddcp"]]$eta.mu) != length(ddChangepoint)) { stop("length of eta.mu is different from the number of change points in 'ddChangepoint'.") } } if (is.null(control[["ddcp",exact=TRUE]][["eta.prec",exact=TRUE]])) { control[["ddcp"]]$eta.prec <- rep(1,length(ddChangepoint)) } else { if (length(control[["ddcp"]]$eta.prec) != length(ddChangepoint)) { stop("length of eta.prec is different from the number of change points in 'ddChangepoint'.") } } #Check MCMC options if (is.null(control[["ddcp",exact=TRUE]][["mcmc",exact=TRUE]])) { control[["ddcp"]][["mcmc"]] <- c(burnin=2500,sample=10000,thin=1) } else { if (!all(names(control[["ddcp",exact=TRUE]][["mcmc",exact=TRUE]]) %in% c("burnin","sample","thin"))) { stop("mcmc options need names 'burnin', 'sample' and 'thin'") } } } ###################################################################### # Do preprocessing of the data ###################################################################### hasNADates <- is.na(data[,dEventCol]) | is.na(data[,dReportCol]) data <- data[!hasNADates,] message(paste0("Removed ",sum(hasNADates), " records due to NA dates.")) #Create a column containing the reporting delay using the timeDelay #function data$delay <- timeDelay(data[,dEventCol],data[,dReportCol]) #Handle delays longer than D. #@hoehle - handle that the unit might not just be days #notThereButDThere <- (data[,dReportCol] > now) & ((data[,dEventCol]) + D <= now) notThereButDThere <- (timeDelay(data[,dReportCol],now) < 0) & (timeDelay(data[,dEventCol],now) >= D) if (sum(notThereButDThere,na.rm=TRUE)) { warning(paste(sum(notThereButDThere,na.rm=TRUE), " observations > \"now\" due to a delay >D. If delay cut to D they would be there."),sep="") } #Which observations are available at time s #@hoehle: data.sub <- data[ na2FALSE(data[,dReportCol] <= now),] data.sub <- data[ na2FALSE(timeDelay(data[,dReportCol],now) >= 0),] if (nrow(data.sub)==0) { stop(paste("No data available at now=",now,"\n")) } #Create an sts object containing the observed number of counts until s sts <- linelist2sts(data.sub,dEventCol,aggregate.by=aggregate.by,dRange=dateRange) sts <- as(sts,"stsNC") #Create an extra object containing the "truth" based on data sts.truth <- linelist2sts(data,dEventCol,aggregate.by=aggregate.by,dRange=dateRange) #List of scores to calculate. Can become an argument later on scores <- c("logS","RPS","dist.median","outside.ci") #Initialize scoring rule results - to be saved in control slot -- dirty SR <- array(0,dim=c(nrow(sts),length(method),length(scores))) #List for storing the predictive PMFs. if (is.null(control[["predPMF",exact=TRUE]])) { control$predPMF <- FALSE } #Prepare a list of different estimated of the delay CDF delayCDF <- list() ###################################################################### # Done manipulating the control list with default arguments ###################################################################### sts@control <- control #Save truth sts@truth <- sts.truth #Reserve space for returning the predictive PMFs sts@predPMF <- list() ###################################################################### # Consistency checks ###################################################################### #Check if support of N.tInf is large enough if (2*control$N.tInf.max < max(observed(sts),na.rm=TRUE)) { warning("N.tInf.max appears too small. Largest observed value is more than 50% of N.tInf.max, which -- in case this number is extrapolated -- might cause problems.\n") } #Create a vector representing the support of N.tInf N.tInf.support <- 0:control$N.tInf.max #====================================================================== #====================================================================== # Build reporting triangle and derived parameters for delay #====================================================================== #====================================================================== cat("Building reporting triangle...\n") #Time origin t_0 t0 <- min(dateRange) #Sequence from time origin until now (per day??) #@hoehle t02s <- seq(t0,now,by=aggregate.by) #Maximum time index T <- length(t02s)-1 #Check if the maximum delay is longer than the available time series if (D>T) { stop("D>T. Cannot estimate the long delays.") } #How many observations to take for estimating the delay distribution if (is.null(m)) { m <- T } if (m<1) { stop("Assertion m>=1 not fullfilled.") } #Define the observation triangle n <- matrix(NA,nrow=T+1,ncol=T+1,dimnames=list(as.character(t02s),NULL)) #Loop over time points. (more efficient that delay and then t) for (t in 0:T) { #Extract all reports happening at time (index) t. #@hoehle: data.att <- data.sub[na2FALSE(data.sub[,dEventCol] == t02s[t+1]), ] data.att <- data.sub[na2FALSE(timeDelay(data.sub[,dEventCol], t02s[t+1])) == 0, ] #Loop over all delays for (x in 0:(T-t)) { #Count number with specific delay n[t+1,x+1] <- sum(data.att[,"delay"] == x) } } cat("No. cases: ",sum(n,na.rm=TRUE),"\n") #Handle delays longer than D #@hoehle: Not done! nLongDelay <- apply(n[,(D+1)+seq_len(T-D)],1,sum,na.rm=TRUE) if (any(nLongDelay>0)) { warning(paste(sum(nLongDelay)," cases with a delay longer than D=",D," days forced to have a delay of D days.\n",sep="")) n <- n[,1:(D+1)] n[,(D+1)] <- n[,(D+1)] + nLongDelay } else { #No problems. Just extract up to D+1 n <- n[,1:(D+1)] } #Calculate n.x and N.x as in (2.7) and (2.8) and Fig.2 of Lawless (1994) #Note the different moving window definition as in the Lawless article. n.x <- rep(0,times=D+1) N.x <- rep(0,times=D+1) for (x in 0:D) { for (t in max(0,T-m):(T-x)) { #hoehle: Lawless definition is max(0,T-x-x) #cat("x=",x,"\tt=",t,":\n") n.x[x+1] <- n.x[x+1] + n[t+1,x+1] for (y in 0:x) { #cat("x=",x,"\tt=",t,"\ty=",y,":\n") N.x[x+1] <- N.x[x+1] + n[t+1,y+1] } } } cat("No. cases within moving window: ",sum(n.x,na.rm=TRUE),"\n") #Available observations at time T, definition of N(t;T) on p.17. N.tT <- sapply(0:T, function(t) sum(n[t+1, 0:min(D+1,(T-t)+1)])) #Truth - already in another object. Delete?? N.tInf <- table( factor(as.character(data[,dEventCol]),levels=as.character(t02s))) #Store results of the reporting triangle in the control slot together with additional #attributes for fast access of, e.g., summaries or defining variables. reportingTriangle <- n attr(reportingTriangle, "n.x") <- n.x attr(reportingTriangle, "N.x") <- N.x attr(reportingTriangle, "N.tT") <- N.tT attr(reportingTriangle, "N.tInf") <- N.tInf attr(reportingTriangle, "T") <- T attr(reportingTriangle, "D") <- D attr(reportingTriangle, "t02s") <- t02s sts@reportingTriangle <- reportingTriangle #====================================================================== # Calculations are jointly for all t values. #====================================================================== #List of casts each containing a table 0..N.tInf.max with the PMF Ps <- list() #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # # Lawless (1994) method without adjustment for overdispersion # #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if ("lawless" %in% method) { #Hazard function estimates, i.e. g-function estimate as in (2.9) #of Lawless (1994). NAs are set to zero (consequences??) g.hat <- ifelse( !is.na(n.x/N.x), n.x/N.x, 0) #Force g.hat(0)=1 as stated just below (2.1) g.hat[1] <- 1 #Check how the estimated CDF looks #F <- NULL ; for (d in 0:D) { i <- d+seq_len(D-d) ; F[d+1] <- prod(1-g.hat[i+1]) } #plot(0:D,F) #Compute weights Wt.hat as in eqn. (2.13). Use T1=Inf. #Note: Wt.hat estimates F_t(T-t). T1 <- Inf What.t <- sapply(0:T, function(t) { if (t 0) { CDF <- c(0,ltruncpnorm(N.tInf.support, mean=Nhat.tT1[i], sd=sqrt(Vhat.Zt[i]),at=N.tT[i])) PMFs[,i] <- diff(CDF) } else { #@hoehle: previous bug: c(1,rep(0,control$N.tInf.max)) ##all mass concentrated in zero, but it should be: Nhat.tT1 PMFs[,i] <- (N.tInf.support == Nhat.tT1[i])*1 } } Ps[["lawless"]] <- PMFs } #end lawless procedure #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # # Bayesian method (simple model, clever sampling -> no MCMC) # #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #Part jointly for both bayes and bayes.notrunc if (("bayes.trunc" %in% method) | ("bayes.notrunc" %in% method)) { cat("bayes prep...\n") ###################################################################### # Prior of N(t,\infty) ###################################################################### N.tInf.prior <- control$N.tInf.prior #Extract prior parameters from prior choice if (N.tInf.prior == "pois") { lambda <- attr(N.tInf.prior,"lambda",exact=TRUE) } else { if (N.tInf.prior == "poisgamma") { #Find size parameters such that mean variance is as target. var.prior <- function(size.prior) { mean.prior + mean.prior^2/size.prior } #If mean & var specified if (all(c("mean.lambda","var.lambda") %in% names(attributes(N.tInf.prior)))) { mean.prior <- attr(N.tInf.prior,"mean.lambda",exact=TRUE) var.prior.target <- attr(N.tInf.prior,"var.lambda",exact=TRUE) size.prior <- uniroot( function(size.prior) { var.prior(size.prior) - var.prior.target},interval=c(1e-12,50))$root #Check result cat("(E,V) of prior for lambda = (",paste(c(mean.prior,var.prior(size.prior)),collapse=","),")\n") } else { stop("mean.lambda and var.lambda not part of prior specification") } } else { if (N.tInf.prior == "unif") { N.tInf.prior.max <- attr(N.tInf.prior,"N.tInf.prior.max",exact=TRUE) } else { #No option applied stop("Not a valid prior!") } } } ###################################################################### # Define function to generate PMF for max(0,T-D),..,T by sampling. # # Parameters: # alpha.star, beta.star - vector containing the posterior GD params ###################################################################### pmfBySampling <- function(alpha.star, beta.star) { #Sample from posterior distribution, i.e. sample from the reverse distribution #and reverse result p.sample <- rgd(control$nSamples,alpha.star,beta.star)[,(length(alpha.star)+1):1] #All the time points where extrapolation is to be done tSet <- max(0,(T-D)):T ###################################################################### # Procedure to generate nowcasts of all time points up to T-D,...,T. # This is based on the posterior samples available in p.sample. # Current code adds up the PMF tables instead of a pure sample based # procedure and also prevents PMF=0 better than tabulating the samples. ###################################################################### N.tT1.pred <- array(NA, dim=c(dim(p.sample)[1],control$N.tInf.max+1,dim(p.sample)[2]),dimnames=list(NULL,seq_len(control$N.tInf.max+1)-1L,tSet)) for (j in 1:control$nSamples) { #Extract delay PMF from sample p <- p.sample[j,] #Proportion reported up to x, x=0,..,T F <- c(rep(1,T-D),rev(cumsum(p))) #Guard against numerical instability: ensure that not larger than 1. F <- ifelse(F>1,1,F) #Loop over all time points to nowcast for (i in 1:length(tSet)) { t <- tSet[i] N.tT1.pred[j,,i] <- switch(N.tInf.prior, "poisgamma"=dpost.bnb(N.tT[t+1],sumpd=F[t+1],mu=mean.prior,size=size.prior,N.tInf.max=control$N.tInf.max)) } } #Average the PMFs as in Step (2) of the algorithm PMF <- apply(N.tT1.pred,MARGIN=c(2,3),mean) #Add part, where no prediction needs to be done if (T-D>0) { #Empty PMFs determined <- matrix(0,nrow=control$N.tInf.max+1,ncol=T-D-1+1) #Add "1" entry at the observed for (t in 0:(T-D-1)) { determined[N.tT[t+1]+1,t+1] <- 1 } PMF <- cbind(determined,PMF) } return(PMF) } #done definition of pmfBySampling } if ("bayes.trunc" %in% method) { cat("bayes.trunc...\n") ###################################################################### #Prior of reporting delay as parameters of generalized Dirichlet prior ###################################################################### #Define symmetric dirichlet as prior, just as in the other case alpha.prior <- rep(control$gd.prior.kappa, D) beta.prior <- rep(0,D) beta.prior[D] <- control$gd.prior.kappa for (i in (D-1):1) { beta.prior[i] <- alpha.prior[i+1] + beta.prior[i+1] } ###################################################################### # Posterior section ###################################################################### #Deduce posterior distribution of delay distribution, i.e. it is again #a generalized Dirichlet alpha <- beta <- rep(NA,D) for (d in 0:(D-1)) { alpha[d+1] <- n.x[D-d+1] ##Note: +1 coz index 1 is delay 0. beta[d+1] <- N.x[D-d+1] - n.x[D-d+1] } #Check if there are any points without data and warn about it. if (any(alpha + beta == 0)) { warning("The delays ",paste(D-which(alpha+beta==0)-1,collapse=",")," have no observations. Results might be instable and depend all on prior.") } #Add up. Note: Delay zero (i.e. element D+1) is ignored as this is #not modelled explicitily by the GD distribution (sum to 1 constraints) alpha.star <- alpha.prior + alpha beta.star <- beta.prior + beta #Compute the expectation of the GD distribution and store this as the delay delayCDF[["bayes.trunc"]] <- cumsum(rev(Egd(alpha.star,beta.star))) #Save result Ps[["bayes.trunc"]] <- pmfBySampling(alpha.star, beta.star) } # end "bayes.trunc" %in% method #====================================================================== # Bayesian version which ignores truncation #====================================================================== if ("bayes.notrunc" %in% method) { cat("bayes.notrunc...\n") ###################################################################### # Prior section ###################################################################### alpha.prior <- rep(control$gd.prior.kappa, D) #symmetric dirichlet beta.prior <- rep(0,D) beta.prior[D] <- control$gd.prior.kappa for (i in (D-1):1) { beta.prior[i] <- alpha.prior[i+1] + beta.prior[i+1] } ###################################################################### # Posterior section ###################################################################### #Deduce posterior distribution of delay distribution, i.e. it is again #a generalized Dirichlet alpha <- beta <- rep(NA,D) for (d in 0:(D-1)) { alpha[d+1] <- n.x[D-d+1] beta[d+1] <- sum(n.x[D - (d+1):D + 1]) } #Check if there are any points without data and warn about it. if (any(alpha + beta == 0)) { warning("The delays ",paste(D-which(alpha+beta==0)-1,collapse=",")," have no observations. Results might be instable and depend all on prior.") } #Posterior parameters. alpha.star <- alpha.prior + alpha beta.star <- beta.prior + beta #Check that its a ordinary Dirichlet for (i in (D-1):1) { if (!all.equal(beta.star[i], alpha.star[i+1] + beta.star[i+1])) { warning("Posterior at i=",i," is not an ordinary Dirichlet as it's supposed to be.") } } #Save resulting delay distribution delayCDF[["bayes.notrunc"]] <- cumsum(rev(Egd(alpha.star,beta.star))) Ps[["bayes.notrunc"]] <- pmfBySampling(alpha.star,beta.star) } # end bayes.notrunc ###################################################################### # Unadjusted procedure using beta negative binomial. ToDo: # integrate code with other Bayesian procedures ###################################################################### if ("bayes.notrunc.bnb" %in% method) { cat("bayes.notrunc.bnb...\n") ###################################################################### # Prior section (same as for all methods) ###################################################################### alpha.prior <- rep(control$gd.prior.kappa, D) #symmetric dirichlet beta.prior <- rep(0,D) beta.prior[D] <- control$gd.prior.kappa for (i in (D-1):1) { beta.prior[i] <- alpha.prior[i+1] + beta.prior[i+1] } ###################################################################### # Posterior section ###################################################################### #Deduce posterior distribution of delay distribution, i.e. it is again #an ordinary Dirichlet alpha <- beta <- rep(NA,D) for (d in 0:(D-1)) { alpha[d+1] <- n.x[D-d+1] beta[d+1] <- sum(n.x[D - (d+1):D + 1]) } #Check if there are any points without data and warn about it. if (any(alpha + beta == 0)) { warning("The delays ",paste(D-which(alpha+beta==0)-1,collapse=",")," have no observations. Results might be instable and depend all on prior.") } #Posterior parameters. alpha.star <- alpha.prior + alpha beta.star <- beta.prior + beta #Check that its a ordinary Dirichlet for (i in (D-1):1) { if (!all.equal(beta.star[i], alpha.star[i+1] + beta.star[i+1])) { warning("Posterior at i=",i," is not an ordinary Dirichlet as it's supposed to be.") } } #Save resulting delay distribution (i.e. no truncation adjustment) delayCDF[["bayes.notrunc"]] <- cumsum(rev(Egd(alpha.star,beta.star))) #Allocate PMF to return PMF <- matrix(0,nrow=control$N.tInf.max+1,ncol=length(max(0,(T-D)):T)) #Concentration parameter vector of the ordinary Dirichlet distribution #Note. alpha.star vector is reversed (shortest delay last). alpha <- rev(c(alpha.star,beta.star[length(beta.star)])) #consistency check if (!all.equal(rev(Egd(alpha.star,beta.star)),alpha/sum(alpha))) { stop("Problem. GD and Dirichlet do not correspond...") } tSet <- max(0,(T-D)):T for (i in 1:length(tSet)) { t <- tSet[i] alpha.i <- cumsum(alpha)[T-t+1] beta.i <- sum(alpha) - alpha.i if (T-t==D) { PMF[,i] <- ifelse( N.tInf.support == N.tT[t+1], 1, 0) } else { #Calculate PMF knowing the q ~ Beta( , ) by the aggregation #property. #Note: Vector N.tT starts at time zero, i.e. time T corresponds to T+1 PMF[,i] <- dbnb( N.tInf.support - N.tT[t+1],n=N.tT[t+1]+1, alpha=alpha.i, beta=beta.i) } } #done looping over all time points #Add part, where no prediction needs to be done if (T-D>0) { #Empty PMFs determined <- matrix(0,nrow=control$N.tInf.max+1,ncol=T-D-1+1) #Add "1" entry at the observed for (t in 0:(T-D-1)) { determined[N.tT[t+1]+1,t+1] <- 1 } PMF <- cbind(determined,PMF) } Ps[["bayes.notrunc.bnb"]] <- PMF } # end bayes.notrunc.bnb ###################################################################### # Fully Bayes version with MCMC ###################################################################### if ("bayes.trunc.ddcp" %in% method) { #Allocate result PMF <- matrix( 0,ncol=(T+1),nrow=control$N.tInf.max+1) #Fix seed value of JAGS RNG for each chain n.chains <- 3 init <- lapply(1:n.chains,function(i) { list(.RNG.name="base::Mersenne-Twister",.RNG.seed=i*10) }) #Make design matrix for a quadratic TPS spline in time makeTPSDesign <- function(T,degree=2) { nbeta=degree + 1 X <- matrix(NA,ncol=nbeta, nrow=T+1) for (t in 0:T) { #Form a centered time covariate t.centered <- t - T/2 for(pow in 0:degree) { X[t+1,pow+1]<- t.centered^(pow) } } #Make the knot points evenly spaced between 0,T not including these points knots <- seq(0,T,length=min(round(T/6)+2,22)) knots <- knots[-c(1,length(knots))] #Remove knots which are beyond T-maxDelay/2 knots <- knots[knots <= T-D/2] knots <- knots - T/2 nknots <- length(knots) #Penalty as REs - setup design matrix Z <- matrix(NA,nrow=T+1,ncol=length(knots)) for (t in 0:T){ t.center <- t - T/2 for(k in 1:nknots){ Z[t+1,k]<- pmax((t.center-knots[k]),0)^degree } } return(list(X=X,Z=Z,knots=knots,nknots=nknots,nbeta=nbeta)) } tps <- makeTPSDesign(T=T,degree=2) #Design matrix for logistic discrete time hazard model containing #changepoints. Could be extended s.t. the user provides W. W <- array(NA,dim=c(T+1,length(ddChangepoint),D+1),dimnames=list(as.character(t02s),as.character(ddChangepoint),paste("delay",0:D,sep=""))) for (t in 0:T){ for (i in 1:length(ddChangepoint)) { W[t+1,i,] <- as.numeric( (t02s[t+1] + 0:D) >= ddChangepoint[i]) } } #Priors. Uniform on the delays D.prime <- round( D/2-0.4)+1 p.prior <- rep(1/(D.prime+1), D.prime+1) mu.gamma <- qlogis( p.prior[1]) for (d in 1:(D.prime-1)) { mu.gamma <- c(mu.gamma, qlogis( p.prior[d+1] / (1-sum(p.prior[1:d])))) } tau.gamma <- rep(control$ddcp$tau.gamma,times=D.prime) #Prepare data for JAGS jagsData <- list(#Data rT=n,T=T+1,m=m+1,maxDelay=D, #Time dependent logistic discrete hazard model W=W, eta.mu=control$ddcp$eta.mu, eta.prec=control$ddcp$eta.prec, mu.gamma=mu.gamma, tau.gamma=tau.gamma, #Epidemic curve alpha.lambda=2500/3000,beta.lambda=50/3000, #Spline related stuff X=tps$X,Z=tps$Z,nknots=tps$nknots,beta.mu=rep(0,tps$nbeta),beta.prec=1e-6*diag(tps$nbeta) ) #Select appropriate model (change this to be part of the options!!) logLambda.method <- control$ddcp$logLambda #"tps" #"rw2" #"iid" #"rw2" #"rw2" #"iid" #"rw" #"tps" ### browser() #Load the BUGS specification of the Bayesian hierarchical Poisson model bugsModel <- readLines(file.path(path.package('surveillance'),'jags',"bhpm.bugs")) bugsModel <- gsub(paste("#<",logLambda.method,">",sep=""),"",bugsModel) #Problem when eta is scalar (TODO: Improve!!) if (length(ddChangepoint) == 1) { #Make eta ~ dnorm( , ) instead of eta ~ dmnorm bugsModel <- gsub("(^[ ]*eta ~ )(dmnorm)","\\1dnorm",bugsModel) #Use eta[1] instead of eta for matrix multiplication bugsModel <- gsub("(eta)(.*%\\*%)","eta\\[1\\]\\2",bugsModel) } #cat(paste(bugsModel,collapse="\n")) bugsFile <- tempfile(pattern = "nowcast-") writeLines(bugsModel,bugsFile) ##browser() ## if (FALSE) { ## #Try to compile the model with ordinary rjags to see if there are any problems ## #before doing 3 chains parallelized using runjags. ## model <- jags.model(bugsFile, ## data = jagsData, ## init=init, #Fix seed value of JAGS as well ## n.chains = n.chains, n.adapt = 100) ## list.samplers(model) ## coda.samples(model,variable.names='logLambda',n.iter=100) ## } ###################################################################### # runjags way -- ToDo: parametrize using control options! ###################################################################### runjagsMethod <- 'rjparallel' #'rjags' monitor <- c('gamma','eta','logLambda','NtInf') samples.rj <- runjags::run.jags(bugsFile,#bugsModel, monitor = monitor, data=jagsData, n.chains=3, inits = init, burnin = control$ddcp$mcmc["burnin"], sample = control$ddcp$mcmc["sample"], thin = control$ddcp$mcmc["thin"], adapt=1000, summarise=FALSE,method=runjagsMethod) #Extract posterior median of discrete survival time delay distribution model parameters dt.surv.samples <- coda::as.mcmc.list(samples.rj, vars = c('gamma','^eta')) post.median <- dt.surv.pm <- apply( as.matrix(dt.surv.samples), 2, median) #Posterior median of the lambda's lambda.post <- exp(apply( as.matrix(coda::as.mcmc.list(samples.rj, vars = c('^logLambda'))), 2, quantile, prob=c(0.025,0.5,0.975))) #Extract posterior median of model parameters gamma.red <- post.median[grep("gamma",names(post.median))] eta <- matrix(post.median[grep("^eta",names(post.median))]) #Map from reduced set to full set gamma <- gamma.red[round( (0:(D-1))/2 - 0.4) + 1] #Compute the resulting PMF from the model. Possibly put this in separate function. pmf <- matrix(NA, nrow=nrow(W),ncol=D+1,dimnames=list(as.character(t02s),paste("delay",0:D,sep=""))) #Determine PMF for (t in 1:length(t02s)) { if (as.character(t02s[t]) %in% rownames(W)) { lin.pred <- ( gamma + t(eta) %*% W[t,,0:D]) pmf[t,] <- haz2pmf(c(plogis(lin.pred),1)) } } #Store result as CDF delayCDF[["bayes.trunc.ddcp"]] <- t(apply(pmf, 1, cumsum)) #Store model as attribute if(control$ddcp$logLambda != "tps") tps <- NULL attr(delayCDF[["bayes.trunc.ddcp"]],"model") <- list(post.median=dt.surv.pm,W=W,lambda.post=lambda.post,tps=tps) #Convert to coda compatible output. samples <- coda::as.mcmc.list(samples.rj) #Extract PMFs for (t in 0:T) { #Extract samples related to this time point vals <- as.matrix(samples[,paste("NtInf[",t+1,"]",sep="")]) #PMF PMF[,t+1] <- prop.table(table(factor(vals,levels=0:control$N.tInf.max))) } Ps[["bayes.trunc.ddcp"]] <- PMF } #====================================================================== #A really bad forecast -- the uniform #====================================================================== if ("unif" %in% method) { #Allocate result PMF <- matrix( 0,ncol=(T+1),nrow=control$N.tInf.max+1) #Loop over all time points to nowcast and put U(N.tT[t],Nmax) for (t in 0:T) { #How many values are there in N.tT .. Nmax noVals <- max(0,control$N.tInf.max - N.tT[t+1]) + 1 #PMF at t is 0,...0 (N.tT-1 times), 1/noVals,...,1/noVals PMF[,t+1] <- c(rep(0,N.tT[t+1]),rep(1/noVals,times=noVals)) } Ps[["unif"]] <- PMF } ###################################################################### #Loop over all time points in the vector "when". Only these are #returned. ###################################################################### idxt <- which(dateRange %in% when) for (i in idxt) { #Save PMFs if thats requested if (control$predPMF) { res <- list() for (j in 1:length(method)) { res[[method[j]]] <- Ps[[method[j]]][,i] } sts@predPMF[[as.character(dateRange[i])]] <- res } #Evaluate scoring rules, if requested if (control$score) { #Infer the true value ytinf <- observed(sts.truth)[i,] #Evaluate all scores for all predictive distributions for (i.P in 1:length(method)) { for (i.score in 1:length(scores)) { #cat("i=",i," i.P=",i.P," (",method[i.P],") i.score=",i.score,"\n") SR[i,i.P,i.score] <- do.call(scores[i.score],args=list(P=Ps[[method[i.P]]][,i],y=ytinf,alpha=control$alpha)) } } } #end if control$score #Add first nowcast & ci to stsNC slots sts@upperbound[i,] <- median(N.tInf.support[which.max( cumsum(Ps[[method[1]]][,i])>0.5)]) sts@pi[i,,] <- N.tInf.support[c(which.max(cumsum(Ps[[method[1]]][,i]) > control$alpha/2),which.max(cumsum(Ps[[method[1]]][,i]) > 1-control$alpha/2))] dimnames(sts@pi) <- list(as.character(dateRange),NULL,paste( c(control$alpha/2*100,(1-control$alpha/2)*100),"%",sep="")) } #end of loop over time points #Add scoring rule to output if (control$score) { dimnames(SR) <- list(as.character(dateRange),method,scores) sts@SR <- SR } ###################################################################### #Other arguments to save in control object ###################################################################### sts@control$N.tInf.support <- N.tInf.support sts@control$method <- sts@control$name <- method #Store variables relevant for the nowcast sts@control$D <- D sts@control$m <- m sts@control$now <- now sts@control$when <- when sts@control$timeDelay <- timeDelay #Store delayCDF object sts@delayCDF <- delayCDF #For backwards compatibility -- change this in the future TODODODODODO! sts@control$yt.support <- sts@control$N.tInf.support sts@control$y.prior.max <- sts@control$N.tInf.max ##Store the call options theCall <- list(now=now,when=when,data=data,dEventCol=dEventCol,dReportCol=dReportCol,method=method,aggregate.by=aggregate.by,D=D, m=m) sts@control$call <- theCall ##Done return(sts) } ###################################################################### # Helper functions ###################################################################### #Helper function na2FALSE <- function(x) {x[is.na(x)] <- FALSE ; return(x) } ###################################################################### # Logarithmic score # # Parameters: # P - predictive distribution, given as a vector containing the PMF # with support 0,...,N.prior.max # y - the actual observation. Can be a vector. # # Returns: # -log P(y). If y outside 0,..,N.prior.max then -Inf. ###################################################################### logS <- function(P, y, ...) { return(ifelse( y>=0 & y<=length(P)-1, -log(P[y+1]), -Inf)) } ###################################################################### # Ranked probability score # # Parameters: # P - predictive distribution, given as a vector containing the PMF # with support 0,...,N.prior.max # y - the actual observation. Can be a vector. # # Returns: # -log P(y). If y outside 0,..,N.prior.max then -Inf. ###################################################################### RPS <- function(P,y, ...) { N.support <- 0:(length(P)-1) sum( (cumsum(P) - (y <= N.support))^2) } #Some other scoring rules which are not proper. dist.median <- function(P,y, ...) { point.estimate <- which.max(cumsum(P)>=0.5) - 1 return(abs(point.estimate - y)) } #0/1 indicator of observed value outside equal tailed (1-alpha/2) CI outside.ci <- function(P,y,alpha) { N.support <- 0:(length(P)-1) ci <- N.support[c(which.max(cumsum(P) > alpha/2),which.max(cumsum(P) > 1-alpha/2))] ifelse( y>=ci[1] & y<=ci[2], 0, 1) } ###################################################################### # Helper functions for sampling the predictive distribution ###################################################################### #Unnormalized in Binomial-Negative-Binomial Hierarchy. Should work for vectors of N.tInf! #Only kernel parts for N.tInf need to be taken into account dpost.bnb.unorm <- function(N.tInf, N.tT, sumpd, mu, size) { dbinom(N.tT, size=N.tInf, prob=sumpd)*dnbinom(N.tInf, mu=mu,size=size) #Direct implementation - appears to be less stable... #ifelse(N.tInf >= N.tT, # exp(lgamma(N.tInf+size)-lgamma(N.tInf-N.tT+1) + N.tInf*log( (1-sumpd)*(mu/(mu+size)))),0) #Compare the 2 ## foo.a <- dbinom(N.tT, size=N.tInf, prob=sumpd)*dnbinom(N.tInf, mu=mu,size=size) ## foo.b <- ifelse(N.tInf >= N.tT, #& N.tInf <= size, ## exp(lgamma(N.tInf+size)-lgamma(N.tInf-N.tT+1) + N.tInf*log( (1-sumpd)*(mu/(mu+size)))),0) ## plot(foo.a/sum(foo.a)) ## points(foo.b/sum(foo.b),col="red") } #Sample in binomial-negative-binomial hierarchy rpost.bnb <- function(n=1, N.tT, sumpd, mu,size, N.tInf.max=1e4) { p <- dpost.bnb.unorm(0:N.tInf.max,N.tT=N.tT,sumpd=sumpd, mu=mu,size=size) #Set NA values to zero (why would they be NA?) #if (is.na(sum(p))) { warning("rpost.bnb: sum is NA") ; browser(p)} #Normalize the distribution - safe this for time reasons #p <- p/sum(p) #Sample sample(0:N.tInf.max, size=n, replace=TRUE, prob=p) } #PMF for the predictive distribution in binomial-negative-binomial hierarchy. #Returns entire vector for 0:N.tInf.max dpost.bnb <- function(N.tT, sumpd, mu,size, N.tInf.max=1e4) { p <- dpost.bnb.unorm(0:N.tInf.max,N.tT=N.tT,sumpd=sumpd, mu=mu,size=size) #Set NA values to zero (why would they be NA?) #if (is.na(sum(p))) { warning("rpost.bnb: sum is NA") ; browser(p)} #Normalize the distribution - safe this for time reasons return(p/sum(p)) } ###################################################################### # PMF of the beta-negatative binomial distribution # See Teerapabolarn (2008) # # Parameters: # k - where to evaluate. can be a vector. # # Returns: # PMF. ###################################################################### dbnb <- function(k,n,alpha,beta) { #Check if k's outside the support are requested. neg <- k<0 k[neg] <- 0 #Calculate the density of the beta-negbin. See Teerapabolarn (2008) num <- lgamma(n+alpha)+lgamma(k+beta)+lgamma(n+k)+lgamma(alpha+beta) den <- lgamma(n+k+alpha+beta)+lgamma(n)+lgamma(k+1)+lgamma(alpha)+lgamma(beta) res <- exp(num-den) res[neg] <- 0 return( res) } ###################################################################### # Convert discrete time hazard function on 0,...,Dmax to a probability # mass function. # # Parameters: # haz - vector with entries for (0,...,Dmax) # Returns: # vector with PMF on 0,...,Dmax. ###################################################################### haz2pmf <- function(haz) { PMF <- 0*haz for (i in 0:(length(haz)-1)) { PMF[i+1] <- haz[i+1] * (1-sum(PMF[seq(i)])) } return(PMF) } surveillance/R/twinstim_methods.R0000644000175100001440000007672413227413354016735 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Methods for objects of class "twinstim", specifically: ### vcov, logLik, print, summary, plot, R0, residuals, update, terms, all.equal ### ### Copyright (C) 2009-2018 Sebastian Meyer ### $Revision: 2048 $ ### $Date: 2018-01-16 16:14:52 +0100 (Tue, 16. Jan 2018) $ ################################################################################ ## extract the link function used for the epidemic predictor (default: log-link) .epilink <- function (x) { link <- attr(x$formula$epidemic, "link") if (is.null(link)) "log" else link } ### don't need a specific coef-method (identical to stats:::coef.default) ## coef.twinstim <- function (object, ...) ## { ## object$coefficients ## } ## list coefficients by component coeflist.twinstim <- coeflist.simEpidataCS <- function (x, ...) { coeflist <- coeflist.default(x$coefficients, x$npars) ## rename elements and union "nbeta0" and "p" as "endemic" coeflist <- c(list(c(coeflist[[1L]], coeflist[[2L]])), coeflist[-(1:2)]) names(coeflist) <- c("endemic", "epidemic", "siaf", "tiaf") coeflist } ## asymptotic variance-covariance matrix (inverse of expected fisher information) vcov.twinstim <- function (object, ...) { if (!is.null(object[["fisherinfo"]])) { solve(object$fisherinfo) } else if (!is.null(object[["fisherinfo.observed"]])) { solve(object$fisherinfo.observed) } else { stop("Fisher information not available; use, e.g., -optimHess()") } } ## Extract log-likelihood of the model (which also enables the use of AIC()) logLik.twinstim <- function (object, ...) { r <- object$loglik attr(r, "df") <- length(coef(object)) attr(r, "nobs") <- nobs(object) class(r) <- "logLik" r } ## Also define an extractAIC-method to make step() work extractAIC.twinstim <- function (fit, scale, k = 2, ...) { loglik <- logLik(fit) edf <- attr(loglik, "df") penalty <- k * edf c(edf = edf, AIC = -2 * c(loglik) + penalty) } ## Number of events (excluding the pre-history) nobs.twinstim <- function (object, ...) length(object$fitted) ## print-method print.twinstim <- function (x, digits = max(3, getOption("digits") - 3), ...) { cat("\nCall:\n") print.default(x$call) cat("\nCoefficients:\n") print.default(format(coef(x), digits=digits), print.gap = 2, quote = FALSE) cat("\nLog-likelihood: ", format(logLik(x), digits=digits), "\n", sep = "") if (!isTRUE(x$converged)) { cat("\nWARNING: OPTIMIZATION ROUTINE DID NOT CONVERGE!", paste0("(",x$converged,")"), "\n") } cat("\n") invisible(x) } summary.twinstim <- function (object, test.iaf = FALSE, correlation = FALSE, symbolic.cor = FALSE, runtime = FALSE, ...) { ans <- unclass(object)[c("call", "converged", if (runtime) "counts")] npars <- object$npars nbeta0 <- npars[1]; p <- npars[2]; nbeta <- nbeta0 + p q <- npars[3] nNotIaf <- nbeta + q niafpars <- npars[4] + npars[5] est <- coef(object) ans$cov <- tryCatch(vcov(object), error = function (e) { warning(e) matrix(NA_real_, length(est), length(est)) }) se <- sqrt(diag(ans$cov)) zval <- est/se pval <- 2 * pnorm(abs(zval), lower.tail = FALSE) coefficients <- cbind(est, se, zval, pval) dimnames(coefficients) <- list(names(est), c("Estimate", "Std. Error", "z value", "Pr(>|z|)")) ans$coefficients.beta <- coefficients[seq_len(nbeta),,drop=FALSE] ans$coefficients.gamma <- structure( coefficients[nbeta+seq_len(q),,drop=FALSE], link = .epilink(object) ) ans$coefficients.iaf <- coefficients[nNotIaf+seq_len(niafpars),,drop=FALSE] if (!test.iaf) { ## usually, siaf and tiaf parameters are strictly positive, ## or parametrized on the logscale. In this case the usual wald test ## with H0: para=0 is invalid or meaningless. is.na(ans$coefficients.iaf[,3:4]) <- TRUE } # estimated parameter correlation if (correlation) { ans$correlation <- cov2cor(ans$cov) ans$symbolic.cor <- symbolic.cor } ans$loglik <- logLik(object) ans$aic <- AIC(object) if (runtime) { ans$runtime <- object$runtime } class(ans) <- "summary.twinstim" ans } ## additional methods to make confint.default work for summary.twinstim vcov.summary.twinstim <- function (object, ...) object$cov coef.summary.twinstim <- function (object, ...) with(object, { coeftab <- rbind(coefficients.beta, coefficients.gamma, coefficients.iaf) structure(coeftab[,1], names=rownames(coeftab)) }) ## print-method for summary.twinstim print.summary.twinstim <- function (x, digits = max(3, getOption("digits") - 3), symbolic.cor = x$symbolic.cor, signif.stars = getOption("show.signif.stars"), ...) { nbeta <- nrow(x$coefficients.beta) # = nbeta0 + p q <- nrow(x$coefficients.gamma) niafpars <- nrow(x$coefficients.iaf) cat("\nCall:\n") print.default(x$call) if (nbeta > 0L) { cat("\nCoefficients of the endemic component:\n") printCoefmat(x$coefficients.beta, digits = digits, signif.stars = signif.stars, signif.legend = (q==0L) && signif.stars, ...) } else cat("\nNo coefficients in the endemic component.\n") if (q + niafpars > 0L) { cat("\nCoefficients of the epidemic component", if (attr(x$coefficients.gamma, "link") != "log") paste0(" (LINK FUNCTION: ", attr(x$coefficients.gamma, "link"), ")"), ":\n", sep = "") printCoefmat(rbind(x$coefficients.gamma, x$coefficients.iaf), digits = digits, signif.stars = signif.stars, ...) } else cat("\nNo epidemic component.\n") cat("\nAIC: ", format(x$aic, digits=max(4, digits+1))) cat("\nLog-likelihood:", format(x$loglik, digits = digits)) runtime <- x$runtime if (!is.null(runtime)) { cat("\nNumber of log-likelihood evaluations:", x$counts[1L]) cat("\nNumber of score function evaluations:", x$counts[2L]) cores <- attr(runtime, "cores") elapsed <- if (length(runtime) == 1L) { # surveillance < 1.6-0 runtime } else { runtime[["elapsed"]] } cat("\nRuntime", if (!is.null(cores) && cores > 1) paste0(" (", cores, " cores)"), ": ", format(elapsed, digits = max(4, digits+1)), " seconds", sep = "") } cat("\n") correl <- x$correlation if (!is.null(correl)) { p <- NCOL(correl) if (p > 1L) { cat("\nCorrelation of Coefficients:\n") if (is.logical(symbolic.cor) && symbolic.cor) { correl <- symnum(correl, abbr.colnames = NULL) correlcodes <- attr(correl, "legend") attr(correl, "legend") <- NULL print(correl) cat("---\nCorr. codes: ", correlcodes, "\n", sep="") } else { correl <- format(round(correl, 2), nsmall = 2) correl[!lower.tri(correl)] <- "" colnames(correl) <- substr(colnames(correl), 1, 5) print(correl[-1, -p, drop = FALSE], quote = FALSE) } } } if (!isTRUE(x$converged)) { cat("\nWARNING: OPTIMIZATION ROUTINE DID NOT CONVERGE!", paste0("(",x$converged,")"), "\n") } cat("\n") invisible(x) } ### 'cat's the summary in LaTeX code toLatex.summary.twinstim <- function ( object, digits = max(3, getOption("digits") - 3), eps.Pvalue = 1e-4, align = "lrrrr", booktabs = getOption("xtable.booktabs", FALSE), withAIC = FALSE, ...) { ret <- capture.output({ cat("\\begin{tabular}{", align, "}\n", if (booktabs) "\\toprule" else "\\hline", "\n", sep="") cat(" & Estimate & Std. Error & $z$ value & $P(|Z|>|z|)$ \\\\\n", if (!booktabs) "\\hline\n", sep="") tabh <- object$coefficients.beta tabe <- rbind(object$coefficients.gamma, object$coefficients.iaf) for (tabname in c("tabh", "tabe")) { tab <- get(tabname) if (nrow(tab) > 0L) { rownames(tab) <- gsub(" ", "", rownames(tab)) tab_char <- capture.output( printCoefmat(tab, digits=digits, signif.stars=FALSE, eps.Pvalue = eps.Pvalue, na.print="NA") )[-1] ## remove extra space (since used as column sep in read.table) tab_char <- sub("< ", "<", tab_char, fixed=TRUE) # small p-values ## replace scientific notation by corresponding LaTeX code tab_char <- sub("( xtable.summary.twinstim must be exported } formals(xtable.twinstim) <- formals(xtable.summary.twinstim) ### Plot method for twinstim (wrapper for iafplot and intensityplot) plot.twinstim <- function (x, which, ...) { cl <- match.call() which <- match.arg(which, choices = c(eval(formals(intensityplot.twinstim)$which), eval(formals(iafplot)$which))) FUN <- if (which %in% eval(formals(intensityplot.twinstim)$which)) "intensityplot" else "iafplot" cl[[1]] <- as.name(FUN) if (FUN == "iafplot") names(cl)[names(cl) == "x"] <- "object" eval(cl, envir = parent.frame()) } ### Calculates the basic reproduction number R0 for individuals ### with marks given in 'newevents' R0.twinstim <- function (object, newevents, trimmed = TRUE, newcoef = NULL, ...) { ## check for epidemic component npars <- object$npars if (npars["q"] == 0L) { message("no epidemic component in model, returning 0-vector") if (missing(newevents)) return(object$R0) else { return(structure(rep.int(0, nrow(newevents)), names = rownames(newevents))) } } ## update object for use of new parameters if (!is.null(newcoef)) { object <- update.twinstim(object, optim.args = list(par=newcoef, fixed=TRUE), cumCIF = FALSE, cores = 1L, verbose = FALSE) } ## extract model information t0 <- object$timeRange[1L] T <- object$timeRange[2L] typeNames <- rownames(object$qmatrix) nTypes <- length(typeNames) types <- seq_len(nTypes) form <- formula(object) siaf <- form$siaf tiaf <- form$tiaf coefs <- coef(object) tiafpars <- coefs[sum(npars[1:4]) + seq_len(npars["ntiafpars"])] siafpars <- coefs[sum(npars[1:3]) + seq_len(npars["nsiafpars"])] if (missing(newevents)) { ## if no newevents are supplied, use original events if (trimmed) { # already calculated by 'twinstim' return(object$R0) } else { # untrimmed version (spatio-temporal integral over R+ x R^2) ## extract relevant data from model environment if (is.null(modelenv <- environment(object))) { stop("need model environment for untrimmed R0 of fitted events\n", " -- re-fit or update() with 'model=TRUE'") } eventTypes <- modelenv$eventTypes eps.t <- modelenv$eps.t eps.s <- modelenv$eps.s gammapred <- modelenv$gammapred names(gammapred) <- names(object$R0) # for names of the result } } else { ## use newevents stopifnot(is.data.frame(newevents)) if (!"time" %in% names(newevents)) { stop("missing event \"time\" column in 'newevents'") } if (any(!c("eps.s", "eps.t") %in% names(newevents))) { stop("missing \"eps.s\" or \"eps.t\" columns in 'newevents'") } stopifnot(is.factor(newevents[["type"]])) ## subset newevents to timeRange .N <- nrow(newevents) newevents <- subset(newevents, time + eps.t > t0 & time <= T) if (nrow(newevents) < .N) { message("subsetted 'newevents' to only include events infectious ", "during 'object$timeRange'") } ## extract columns newevents$type <- factor(newevents[["type"]], levels = typeNames) eventTimes <- newevents[["time"]] eps.t <- newevents[["eps.t"]] eps.s <- newevents[["eps.s"]] ## calculate gammapred for newevents epidemic <- terms(form$epidemic, data = newevents, keep.order = TRUE) mfe <- model.frame(epidemic, data = newevents, na.action = na.pass, drop.unused.levels = FALSE) mme <- model.matrix(epidemic, mfe) gamma <- coefs[sum(npars[1:2]) + seq_len(npars["q"])] if (ncol(mme) != length(gamma)) { stop("epidemic model matrix has the wrong number of columns ", "(check the variable types in 'newevents' (factors, etc))") } gammapred <- drop(mme %*% gamma) # identity link if (.epilink(object) == "log") gammapred <- exp(gammapred) names(gammapred) <- rownames(newevents) ## now, convert types of newevents to integer codes eventTypes <- as.integer(newevents$type) } ## qSum qSumTypes <- rowSums(object$qmatrix) qSum <- unname(qSumTypes[eventTypes]) ## calculate remaining factors of the R0 formula, i.e. siafInt and tiafInt if (trimmed) { # trimmed R0 for newevents ## integral of g over the observed infectious periods .tiafInt <- .tiafIntFUN() gIntUpper <- pmin(T - eventTimes, eps.t) gIntLower <- pmax(0, t0 - eventTimes) tiafInt <- .tiafInt(tiafpars, from=gIntLower, to=gIntUpper, type=eventTypes, G=tiaf$G) ## integral of f over the influenceRegion bdist <- newevents[[".bdist"]] influenceRegion <- newevents[[".influenceRegion"]] if (is.null(influenceRegion)) { stop("missing \".influenceRegion\" component in 'newevents'") } noCircularIR <- if (is.null(bdist)) FALSE else all(eps.s > bdist) if (attr(siaf, "constant")) { iRareas <- sapply(influenceRegion, area.owin) ## will be used by .siafInt() } else if (! (is.null(siaf$Fcircle) || (is.null(siaf$effRange) && noCircularIR))) { if (is.null(bdist)) { stop("missing \".bdist\" component in 'newevents'") } } .siafInt <- .siafIntFUN(siaf, noCircularIR=noCircularIR) .siafInt.args <- c(alist(siafpars), object$control.siaf$F) siafInt <- do.call(".siafInt", .siafInt.args) } else { # untrimmed R0 for original events or newevents ## integrals of interaction functions for all combinations of type and ## eps.s/eps.t in newevents typeTcombis <- expand.grid(type=types, eps.t=unique(eps.t), KEEP.OUT.ATTRS=FALSE) typeTcombis$gInt <- with(typeTcombis, tiaf$G(eps.t, tiafpars, type)) - tiaf$G(rep.int(0,nTypes), tiafpars, types)[typeTcombis$type] Fcircle <- getFcircle(siaf, object$control.siaf$F) typeScombis <- expand.grid(type=types, eps.s=unique(eps.s), KEEP.OUT.ATTRS=FALSE) typeScombis$fInt <- apply(typeScombis, MARGIN=1, FUN=function (type_eps.s) { type <- type_eps.s[1L] eps.s <- type_eps.s[2L] Fcircle(eps.s, siafpars, type) }) ## match combinations to rows of original events or 'newevents' eventscombiidxS <- match(paste(eventTypes,eps.s,sep="."), with(typeScombis,paste(type,eps.s,sep="."))) eventscombiidxT <- match(paste(eventTypes,eps.t,sep="."), with(typeTcombis,paste(type,eps.t,sep="."))) siafInt <- typeScombis$fInt[eventscombiidxS] tiafInt <- typeTcombis$gInt[eventscombiidxT] if (any(is.infinite(eps.t) & !is.finite(tiafInt), is.infinite(eps.s) & !is.finite(siafInt))) { message("infinite interaction ranges yield non-finite R0 values ", "because 'trimmed = FALSE'") } } ## return R0 values R0s <- qSum * gammapred * siafInt * tiafInt R0s } ## calculate simple R0 (over circular domain, without epidemic covariates, ## for type-invariant siaf/tiaf) simpleR0 <- function (object, eta = coef(object)[["e.(Intercept)"]], eps.s = NULL, eps.t = NULL, newcoef = NULL) { stopifnot(inherits(object, c("twinstim", "simEpidataCS"))) if (object$npars[["q"]] == 0L) return(0) if (any(rowSums(object$qmatrix) != 1)) warning("'simpleR0' is not correct for type-specific epidemic models") if (!is.null(newcoef)) { # use alternative coefficients object$coefficients <- newcoef } coeflist <- coeflist(object) siaf <- object$formula$siaf tiaf <- object$formula$tiaf ## default radii of interaction if (is.null(eps.s)) { eps.s <- attr(siaf, "eps") if (length(eps.s) > 1L) stop("found non-unique 'eps.s'; please set one") } else stopifnot(isScalar(eps.s)) if (is.null(eps.t)) { eps.t <- attr(tiaf, "eps") if (length(eps.t) > 1L) stop("found non-unique 'eps.t'; please set one") } else stopifnot(isScalar(eps.t)) ## integral of siaf over a disc of radius eps.s Fcircle <- getFcircle(siaf, object$control.siaf$F) siafInt <- Fcircle(eps.s, coeflist$siaf) ## integral of tiaf over a period of length eps.t tiafInt <- tiaf$G(eps.t, coeflist$tiaf) - tiaf$G(0, coeflist$tiaf) ## calculate basic R0 (if (.epilink(object) == "log") exp(eta) else eta) * siafInt * tiafInt } ### Extract the "residual process" (cf. Ogata, 1988) of a twinstim, i.e. the ### fitted cumulative intensity of the ground process at the event times. ### "generalized residuals similar to those discussed in Cox and Snell (1968)" residuals.twinstim <- function (object, ...) { res <- object$tau if (is.null(res)) { if (is.null(modelenv <- environment(object))) { stop("residuals not available; re-fit the model with 'cumCIF = TRUE'") } else { message("'", substitute(object), "' was fit with disabled 'cumCIF'", " -> calculate it now ...") res <- with(modelenv, LambdagEvents(cumCIF.pb = interactive())) try({ objname <- deparse(substitute(object)) object$tau <- res assign(objname, object, envir = parent.frame()) message("Note: added the 'tau' component to object '", objname, "' for future use.") }, silent = TRUE) } } return(res) } ###################################################################### # Function to compute estimated and profile likelihood based # confidence intervals. Heavy computations might be necessary! # #Params: # fitted - output from a fit with twinstim # profile - list with 4D vector as entries - format: # c(index, lower, upper, grid size) # where index is the index in the coef vector # lower and upper are the parameter limits (can be NA) # grid size is the grid size of the equally spaced grid # between lower and upper (can be 0) # alpha - (1-alpha)% profile likelihood CIs are computed. # If alpha <= 0 then no CIs are computed # control - control object to use for optim in the profile loglik computations # # Returns: # list with profile loglikelihood evaluations on the grid # and highest likelihood and wald confidence intervals ###################################################################### profile.twinstim <- function (fitted, profile, alpha = 0.05, control = list(fnscale = -1, maxit = 100, trace = 1), do.ltildeprofile=FALSE, ...) { warning("the profile likelihood implementation is experimental") ## the implementation below is not well tested, simply uses optim (ignoring ## optimizer settings from the original fit), and does not store the complete ## set of coefficients ## Check that input is ok profile <- as.list(profile) if (length(profile) == 0L) { stop("nothing to do") } lapply(profile, function(one) { if (length(one) != 4L) { stop("each profile entry has to be of form ", "'c(index, lower, upper, grid size)'") }}) if (is.null(fitted[["functions"]])) { stop("'fitted' must contain the component 'functions' -- fit using the option model=TRUE") } ## Control of the optim procedure if (is.null(control[["fnscale",exact=TRUE]])) { control$fnscale <- -1 } if (is.null(control[["maxit",exact=TRUE]])) { control$maxit <- 100 } if (is.null(control[["trace",exact=TRUE]])) { control$trace <- 1 } ## Estimated normalized likelihood function ltildeestim <- function(thetai,i) { theta <- theta.ml theta[i] <- thetai fitted$functions$ll(theta) - loglik.theta.ml } ## Profile normalized likelihood function ltildeprofile <- function(thetai,i) { #cat("Investigating theta[",i,"] = ",thetai,"\n") emptyTheta <- rep(0, length(theta.ml)) # Likelihood l(theta_{-i}) = l(theta_i, theta_i) ltildethetaminusi <- function(thetaminusi) { theta <- emptyTheta theta[-i] <- thetaminusi theta[i] <- thetai #cat("Investigating theta = ",theta,"\n") res <- fitted$functions$ll(theta) - loglik.theta.ml #cat("Current ltildethetaminusi value: ",res,"\n") return(res) } # Score function of all params except thetaminusi stildethetaminusi <- function(thetaminusi) { theta <- emptyTheta theta[-i] <- thetaminusi theta[i] <- thetai res <- fitted$functions$sc(theta)[-i] #cat("Current stildethetaminusi value: ",res,"\n") return(res) } # Call optim -- currently not adapted to arguments of control arguments # used in the fit resOthers <- tryCatch( optim(par=theta.ml[-i], fn = ltildethetaminusi, gr = stildethetaminusi, method = "BFGS", control = control), error = function(e) list(value=NA)) resOthers$value } ## Initialize theta.ml <- coef(fitted) loglik.theta.ml <- c(logLik(fitted)) se <- sqrt(diag(vcov(fitted))) resProfile <- list() ## Perform profile computations for all requested parameters cat("Evaluating the profile logliks on a grid...\n") for (i in 1:length(profile)) { cat("i= ",i,"/",length(profile),"\n") #Index of the parameter in the theta vector idx <- profile[[i]][1] #If no borders are given use those from wald intervals (unconstrained) if (is.na(profile[[i]][2])) profile[[i]][2] <- theta.ml[idx] - 3*se[idx] if (is.na(profile[[i]][3])) profile[[i]][3] <- theta.ml[idx] + 3*se[idx] #Evaluate profile loglik on a grid (if requested) if (profile[[i]][4] > 0) { thetai.grid <- seq(profile[[i]][2],profile[[i]][3],length=profile[[i]][4]) resProfile[[i]] <- matrix(NA, nrow = length(thetai.grid), ncol = 4L, dimnames = list(NULL, c("grid","profile","estimated","wald"))) #Loop over all gridpoints for (j in 1:length(thetai.grid)) { cat("\tj= ",j,"/",length(thetai.grid),"\n") resProfile[[i]][j,] <- c(thetai.grid[j], #Do we need to compute ltildeprofile (can be quite time consuming) if (do.ltildeprofile) ltildeprofile(thetai.grid[j],idx) else NA_real_, ltildeestim(thetai.grid[j],idx), - 1/2*(1/se[idx]^2)*(thetai.grid[j] - theta.ml[idx])^2) } } } names(resProfile) <- names(theta.ml)[sapply(profile, function(x) x[1L])] ############################### ## Profile likelihood intervals ############################### # Not done, yet ciProfile <- NULL ####Done, return return(list(lp=resProfile, ci.hl=ciProfile, profileObj=profile)) } ### update-method for the twinstim-class ## stats::update.default would also work but is not adapted to the specific ## structure of twinstim: optim.args (use modifyList), two formulae, model, ... ## However, this specific method is inspired by and copies small parts of the ## update.default method from the stats package developed by The R Core Team update.twinstim <- function (object, endemic, epidemic, control.siaf, optim.args, model, ..., use.estimates = TRUE, evaluate = TRUE) { call <- object$call thiscall <- match.call(expand.dots=FALSE) extras <- thiscall$... if (!missing(model)) { call$model <- model ## Special case: update model component ONLY if (evaluate && all(names(thiscall)[-1] %in% c("object", "model", "evaluate"))) { return(.update.twinstim.model(object, model)) } } ## Why we no longer use call$endemic but update object$formula$endemic: ## call$endemic would be an unevaluated expression eventually receiving the ## parent.frame() as environment, cp.: ##(function(e) {ecall <- match.call()$e; eval(call("environment", ecall))})(~1+start) ## This could cause large files if the fitted model is saved. ## Furthermore, call$endemic could refer to some object containing ## the formula, which is no longer visible. call$endemic <- if (missing(endemic)) object$formula$endemic else update.formula(object$formula$endemic, endemic) call$epidemic <- if (missing(epidemic)) object$formula$epidemic else update.formula(object$formula$epidemic, epidemic) ## Note: update.formula uses terms.formula(...,simplify=TRUE), but ## the principle order of terms is retained. Offsets will be moved to ## the end and a missing intercept will be denoted by a final -1. if (!missing(control.siaf)) { if (is.null(control.siaf)) { call$control.siaf <- NULL # remove from call, i.e., use defaults } else { call$control.siaf <- object$control.siaf # =NULL if constantsiaf call$control.siaf[names(control.siaf)] <- control.siaf } } call["optim.args"] <- if (missing(optim.args)) object["optim.args"] else { list( # use list() to enable optim.args=NULL if (is.list(optim.args)) { modifyList(object$optim.args, optim.args) } else optim.args # = NULL ) } ## Set initial values (will be appropriately subsetted and/or extended with ## zeroes inside twinstim()) call$start <- if (missing(optim.args) || (!is.null(optim.args) && !"par" %in% names(optim.args))) { ## old optim.args$par probably doesn't match updated model, ## thus we set it as "start"-argument call$optim.args$par <- NULL if (use.estimates) coef(object) else object$optim.args$par } else NULL if ("start" %in% names(extras)) { newstart <- check_twinstim_start(eval.parent(extras$start)) call$start[names(newstart)] <- newstart extras$start <- NULL } ## CAVE: the remainder is copied from stats::update.default (as at R-2.15.0) if(length(extras)) { existing <- !is.na(match(names(extras), names(call))) ## do these individually to allow NULL to remove entries. for (a in names(extras)[existing]) call[[a]] <- extras[[a]] if(any(!existing)) { call <- c(as.list(call), extras[!existing]) call <- as.call(call) } } if(evaluate) eval(call, parent.frame()) else call } .update.twinstim.model <- function (object, model) { call <- object$call call$model <- model if (model) { # add model environment call$start <- coef(object) call$optim.args$fixed <- TRUE call$cumCIF <- FALSE call$verbose <- FALSE ## evaluate in the environment calling update.twinstim() message("Setting up the model environment ...") objectWithModel <- eval(call, parent.frame(2L)) ## add the model "functions" and environment object$functions <- objectWithModel$functions environment(object) <- environment(objectWithModel) } else { # remove model environment object["functions"] <- list(NULL) environment(object) <- NULL } object$call$model <- model object } ## a terms-method is required for stepComponent() terms.twinstim <- function (x, component=c("endemic", "epidemic"), ...) { component <- match.arg(component) terms.formula(x$formula[[component]], keep.order=TRUE) } ## compare two twinstim fits ignoring at least the "runtime" and the "call" ## just like all.equal.hhh4() all.equal.twinstim <- function (target, current, ..., ignore = NULL) { if (!inherits(target, "twinstim")) return("'target' is not a \"twinstim\" object") if (!inherits(current, "twinstim")) return("'current' is not a \"twinstim\" object") ignore <- unique.default(c(ignore, "runtime", "call")) target[ignore] <- current[ignore] <- list(NULL) NextMethod("all.equal") } surveillance/R/algo_glrnb.R0000644000175100001440000003173512672357566015452 0ustar hornikusers###################################################################### # # Implementation of GLR and ordinary Poisson/NegBin CUSUM # -- documentation converted to Rd format. # # Author: Michael Hoehle (with contributions by Valentin Wimmer) # Date: 8 Jan 2008 # History # - 2016-01-17 added ret="cases" for glr using the NegBin distribution ###################################################################### algo.glrnb <- function(disProgObj, control = list(range=range,c.ARL=5, mu0=NULL, alpha=0, Mtilde=1, M=-1, change="intercept", theta=NULL,dir=c("inc","dec"), ret=c("cases","value"),xMax=1e4)) { #Small helper function either <- function(cond, whenTrue, whenFalse) { if (cond) return(whenTrue) else return(whenFalse) } # Set the default values if not yet set if(is.null(control[["c.ARL",exact=TRUE]])) control$c.ARL <- 5 if(is.null(control[["change",exact=TRUE]])) control$change <- "intercept" if(is.null(control[["Mtilde",exact=TRUE]])) control$Mtilde <- 1 if(is.null(control[["M",exact=TRUE]])) control$M <- -1 if(is.null(control[["dir",exact=TRUE]])) control$dir <- "inc" if(is.null(control[["ret",exact=TRUE]])) control$ret <- "value" if(is.null(control[["xMax",exact=TRUE]])) control$xMax <- 1e4 if(!is.null(control[["theta",exact=TRUE]])) { if(control[["theta",exact=TRUE]] == 1) { stop("Error: theta has to be larger than 1!") } } ##Set alpha to null as default. Not necessary, coz it would be taken from ##glrnb output. ##if(is.null(control[["alpha",exact=TRUE]])) control$alpha <- 0 #GLM (only filled if estimated) m <- NULL ################################################ #Extract the important parts from the arguments ################################################ observed <- disProgObj$observed #range is fixed, but t is modified as we iterate the cusum t <- control$range ; range <- control$range control$mu0Model <- NULL control$dir <- match.arg(control$dir, c("inc","dec")) dir <- ifelse(control$dir=="inc",1,-1) control$ret <- match.arg(control$ret, c("value","cases")) ret <- pmatch(control$ret,c("value","cases")) mod <- list() # Estimate m (the expected number of cases), i.e. parameter lambda of a # poisson distribution based on time points 1:t-1 if (is.null(control[["mu0",exact=TRUE]]) | is.list(control[["mu0",exact=TRUE]])) { #Initialize if (is.null(control[["mu0",exact=TRUE]])) control$mu0 <- list() if (is.null(control[["mu0",exact=TRUE]][["S"]])) control$mu0$S <- 1 if (is.null(control[["mu0",exact=TRUE]][["trend"]])) control$mu0$trend <- FALSE if (is.null(control[["mu0",exact=TRUE]][["refit"]])) control$mu0$refit <- FALSE control$mu0Model <- control$mu0 #Estimate using a hook function (lazy evaluation) control$mu0 <- estimateGLRNbHook()$pred mod[[1]] <- estimateGLRNbHook()$mod # if it is necessary to estimate alpha. Note: glm.nb uses a different # parametrization of the negative binomial distribution, i.e. the # variance is 'mu + mu^2/size' (?dnbinom). # Hence the correct alpha is 1/theta. But now it's the same every time. if(is.null(control[["alpha",exact=TRUE]])) control$alpha <- 1/mod[[1]]$theta } #The counts x <- observed[control$range] mu0 <- control$mu0 #Reserve space for the results # start with cusum[timePoint -1] = 0, i.e. set cusum[1] = 0 alarm <- matrix(data = 0, nrow = length(t), ncol = 1) upperbound <- matrix(data = 0, nrow = length(t), ncol = 1) #Setup counters for the progress doneidx <- 0 N <- 1 xm10 <- 0 noofalarms <- 0 noOfTimePoints <- length(t) #Loop as long as we are not through the sequence while (doneidx < noOfTimePoints) { # cat("Doneidx === ",doneidx,"\n") # Call the C-interface -- this should depend on the type if (control$change == "intercept") { #Generalized likehood ratio vs. ordinary CUSUM if (is.null(control[["theta",exact=TRUE]])) { if (control$alpha == 0) { #poisson if (control$M > 0 ){ # window limited res <- .C("glr_cusum_window",as.integer(x),as.double(mu0),length(x),as.integer(control$M),as.integer(control$Mtilde),as.double(control$c.ARL),N=as.integer(0),val=as.double(numeric(length(x))),cases=as.double(numeric(length(x))),as.integer(dir),as.integer(ret),PACKAGE="surveillance") } else { # standard, not window limited res <- .C("glr_cusum",as.integer(x),as.double(mu0),length(x),as.integer(control$Mtilde),as.double(control$c.ARL),N=as.integer(0),val=as.double(numeric(length(x))),cases=as.double(numeric(length(x))),as.integer(dir),as.integer(ret),PACKAGE="surveillance") } } else { #negbin. This is direcly the window limited version, does M=-1 work here? res <- .C("glr_nb_window",x=as.integer(x),mu0=as.double(mu0),alpha=as.double(control$alpha),lx=length(x),Mtilde=as.integer(control$Mtilde),M=as.integer(control$M),c.ARL=as.double(control$c.ARL),N=as.integer(0),val=as.double(numeric(length(x))),dir=as.integer(dir),PACKAGE="surveillance") ##hoehle - 2016-01-17. Try out calculating upper bound in terms of cases if (control$ret == "cases") { ##Warn that this might be slow. message("Return of cases is for the GLR detector based on the negative binomial distribution is currently\n only implemented brute force and hence might be very slow!") ### browser() myx <- x res$cases <- rep(0,length(res$val)) for (pos in seq_len(min(length(x),res$N))) { myx <- x gotAlarm <- (res$N <= pos) #already got an alarm at the position? direction <- ifelse(gotAlarm, -1, 1) #go up or down? alarmChange <- FALSE #have we suceeded in changing x such that the alarm status changed? #Loop over values until one is such that an alarm at (or before!) the time point is given while (!alarmChange & (myx[pos] <= control$xMax) & (myx[pos] >=1)) { myx[pos] <- myx[pos] + direction ##cat("pos=",pos,"x=",myx[pos],"\n") tmpRes <- .C("glr_nb_window",x=as.integer(myx),mu0=as.double(mu0),alpha=as.double(control$alpha),lx=length(myx),Mtilde=as.integer(control$Mtilde),M=as.integer(control$M),c.ARL=as.double(control$c.ARL),N=as.integer(0),val=as.double(numeric(length(myx))),dir=as.integer(dir),PACKAGE="surveillance") if (!gotAlarm & (tmpRes$N <= pos)) { alarmChange <- TRUE ; res$cases[pos] <- myx[pos]} if (gotAlarm & (tmpRes$N > pos)) { alarmChange <- TRUE ; res$cases[pos] <- myx[pos] + 1} } if (!alarmChange) { res$cases[pos] <- ifelse(gotAlarm,NA,1e99) } #didn't find alarm before control$xMax } } ##end new 2016 addition to calculate 'cases' for negbin glrnb } } else { ###################### !is.null(control$theta), i.e. ordinary CUSUM if (control$alpha == 0) { #poisson res <- .C("lr_cusum",x=as.integer(x),mu0=as.double(mu0),lx=length(x),as.double(control$theta),c.ARL=as.double(control$c.ARL),N=as.integer(0),val=as.double(numeric(length(x))),cases=as.double(numeric(length(x))),as.integer(ret),PACKAGE="surveillance") } else { #negbin res <- .C("lr_cusum_nb",x=as.integer(x),mu0=as.double(mu0),alpha=as.double(control$alpha),lx=length(x),as.double(control$theta),c.ARL=as.double(control$c.ARL),N=as.integer(0),val=as.double(numeric(length(x))),cases=as.double(numeric(length(x))),as.integer(ret),PACKAGE="surveillance") } } } else { ################### Epidemic chart ####################### if (control$change == "epi") { if (control$alpha == 0) { #pois res <- .C("glr_epi_window",as.integer(x),as.double(mu0),length(x),as.integer(control$Mtilde),as.integer(control$M),as.double(xm10),as.double(control$c.ARL),N=as.integer(0),val=as.double(numeric(length(x))),PACKAGE="surveillance") } else { res <- .C("glr_nbgeneral_window",as.integer(x),as.double(mu0),alpha=as.double(control$alpha),lx=length(x),Mtilde=as.integer(control$Mtilde),M=as.integer(control$M),xm10=as.double(xm10),c.ARL=as.double(control$c.ARL),N=as.integer(0),val=as.double(numeric(length(x))),dir=as.integer(dir),PACKAGE="surveillance") } } } ##In case an alarm found log this and reset the chart at res$N+1 if (res$N <= length(x)) { #Put appropriate value in upperbound upperbound[1:res$N + doneidx] <- either(ret == 1, res$val[1:res$N] ,res$cases[1:res$N]) alarm[res$N + doneidx] <- TRUE #Chop & get ready for next round xm10 <- x[res$N] #put start value x_0 to last value x <- x[-(1:res$N)] ; t <- t[-(1:res$N)] #If no refitting is to be done things are easy if (!is.list(control$mu0Model) || (control$mu0Model$refit == FALSE)) { mu0 <- mu0[-(1:res$N)] } else { #Update the range (how to change back??) range <- range[-(1:res$N)] mu0 <- estimateGLRNbHook()$pred mod[[noofalarms+2]] <- estimateGLRNbHook()$mod control$mu0[(doneidx + res$N + 1):length(control$mu0)] <- mu0 #Note: No updating of alpha is currently done. } noofalarms <- noofalarms + 1 } doneidx <- doneidx + res$N } #fix of the problem that no upperbound-statistic is returned after #last alarm upperbound[(doneidx-res$N+1):nrow(upperbound)] <- either(ret == 1, res$val, res$cases) #fix of the problem that no upperbound-statistic is returned #in case of no alarm if (noofalarms == 0) { upperbound <- either(ret==1, res$val, res$cases) } # ensure upper bound is positive and not NaN upperbound[is.na(upperbound)] <- 0 upperbound[upperbound < 0] <- 0 # Add name and data name to control object algoName <- either(control$alpha == 0, "glrpois:", "glrnb:") control$name <- paste(algoName, control$change) control$data <- paste(deparse(substitute(disProgObj))) control$m <- m control$mu0Model$fitted <- mod # return alarm and upperbound vectors result <- list(alarm = alarm, upperbound = upperbound, disProgObj=disProgObj,control=control) class(result) = "survRes" # for surveillance system result return(result) } ##################################################################### ### Function to estimate a Poisson or glm.nb model on the fly - to be ### called within the algo.glrnb function. Experts can customize this ### function. ##################################################################### estimateGLRNbHook <- function() { #Fetch control object from parent control <- parent.frame()$control #The period p <- parent.frame()$disProgObj$freq #Current range to perform surveillance on range <- parent.frame()$range #Define phase1 & phase2 data set (phase2= the rest) train <- 1:(range[1]-1) test <- range #Perform an estimation based on all observations before timePoint #Event better - don't do this at all in the algorithm - force #user to do it himself - coz its a model selection problem data <- data.frame(y=parent.frame()$disProgObj$observed[train],t=train) #Build the model equation formula <- "y ~ 1 " if (control$mu0Model$trend) { formula <- paste(formula," + t",sep="") } for (s in seq_len(control$mu0Model$S)) { formula <- paste(formula,"+cos(2*",s,"*pi/p*t)+ sin(2*",s,"*pi/p*t)",sep="") } ##hoehle - 2016-01-16 -- problematic: a full model was fitted, but ##this implied a different alpha. Changed now such that a glm ##is fitted having the specified alpha (i.e. theta) fixed. ##Determine appropriate fitter function if (is.null(control[["alpha",exact=TRUE]])) { ##Fit while also estimating alpha (if possible!) m <- eval(substitute(glm.nb(form,data=data),list(form=as.formula(formula)))) } else { ##Fit the Poisson GLM if (control$alpha == 0) { message(paste0("glrnb: Fitting Poisson model because alpha == 0")) m <- eval(substitute(glm(form,family=poisson(),data=data),list(form=as.formula(formula)))) } else { message(paste0("glrnb: Fitting glm.nb model with alpha=",control$alpha)) m <- eval(substitute(glm(form,family=negative.binomial(theta=1/control$alpha),data=data),list(form=as.formula(formula)))) } } #Predict mu_{0,t} pred <- as.numeric(predict(m,newdata=data.frame(t=range),type="response")) return(list(mod=m,pred=pred)) } ###################################################################### # simple wrapper for the Poisson case ###################################################################### algo.glrpois <- function(disProgObj, control = list(range=range,c.ARL=5, mu0=NULL, Mtilde=1, M=-1, change="intercept", theta=NULL,dir=c("inc","dec"), ret=c("cases","value"),xMax=1e4)) { if (is.null(control$alpha)) { control$alpha <- 0 } else if (control$alpha != 0) { stop("algo.glrpois has to operate with control$alpha = 0") } algo.glrnb(disProgObj, control) } surveillance/R/hhh4_plot.R0000644000175100001440000007646413231413117015216 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Plot-method(s) for fitted hhh4() models ### ### Copyright (C) 2010-2012 Michaela Paul, 2012-2018 Sebastian Meyer ### $Revision: 2070 $ ### $Date: 2018-01-22 17:50:23 +0100 (Mon, 22. Jan 2018) $ ################################################################################ plot.hhh4 <- function (x, type = c("fitted", "season", "maxEV", "maps", "ri", "neweights"), ...) { stopifnot(x$convergence) cl <- sys.call() # not match.call() because plotHHH4_season() has no 'x' ## remove the type argument from the call if (is.null(names(cl)) && nargs() > 1L) { # unnamed call plot(x, type) cl[[3L]] <- NULL # remove the second argument } else { cl$type <- NULL } cl[[1L]] <- as.name(paste("plotHHH4", match.arg(type), sep="_")) eval(cl, envir = parent.frame()) } ### ### Time series of fitted component means and observed counts for selected units ### plotHHH4_fitted <- function (x, units = 1, names = NULL, col = c("grey85", "blue", "orange"), pch = 19, pt.cex = 0.6, pt.col = 1, par.settings = list(), legend = TRUE, legend.args = list(), legend.observed = FALSE, decompose = NULL, total = FALSE, meanHHH = NULL, ...) { if (total) { units <- "Overall" # only used as a label } else if (is.null(units)) { units <- seq_len(x$nUnit) } if (!is.null(names)) stopifnot(length(units) == length(names)) if (isTRUE(decompose)) decompose <- colnames(x$stsObj) ## get decomposed mean => no need to compute it in each plotHHH4_fitted1() if (is.null(meanHHH)) { meanHHH <- if (is.null(decompose)) { meanHHH(x$coefficients, terms.hhh4(x)) } else { decompose.hhh4(x) } } ## check color vector col <- if (is.null(decompose) && length(col) == 4) { ## compatibility with surveillance < 1.10-0 pt.col <- col[4L] rev(col[-4L]) } else { plotHHH4_fitted_check_col_decompose(col, decompose) } ## setup graphical parameters if (is.list(par.settings)) { par.defaults <- list(mfrow = sort(n2mfrow(length(units))), mar = c(4,4,2,0.5)+.1, las = 1) par.settings <- modifyList(par.defaults, par.settings) opar <- do.call("par", par.settings) on.exit(par(opar)) } ## legend options if (is.logical(legend)) legend <- which(legend) if (!is.list(legend.args)) { if (length(legend) > 0) warning("ignored 'legend' since 'legend.args' is not a list") legend <- integer(0L) } if (length(legend) > 0) { legendidx <- 1L + c( if (legend.observed && !is.na(pch)) 0L, if (is.null(decompose)) { which(c("ne","ar","end") %in% componentsHHH4(x)) } else seq_along(col)) default.args <- list( x="topright", col=c(pt.col,rev(col))[legendidx], lwd=6, lty=c(NA,rep.int(1,length(col)))[legendidx], pch=c(pch,rep.int(NA,length(col)))[legendidx], pt.cex=pt.cex, pt.lwd=1, bty="n", inset=0.02, legend=if (is.null(decompose)) { c("observed","spatiotemporal","autoregressive","endemic")[legendidx] } else c("observed", rev(decompose), "endemic")[legendidx] ) legend.args <- modifyList(default.args, legend.args) } ## plot fitted values region by region meanHHHunits <- vector(mode="list", length=length(units)) names(meanHHHunits) <- if (is.character(units)) units else colnames(x$stsObj)[units] for(i in seq_along(units)) { meanHHHunits[[i]] <- plotHHH4_fitted1(x, unit=units[i], main=names[i], col=col, pch=pch, pt.cex=pt.cex, pt.col=pt.col, decompose=decompose, total=total, meanHHH=meanHHH, ...) if (i %in% legend) do.call("legend", args=legend.args) } invisible(meanHHHunits) } plotHHH4_fitted_check_col_decompose <- function (col, decompose) { if (is.null(decompose)) { stopifnot(length(col) == 3L) } else { nUnit <- length(decompose) if (length(col) == nUnit) { col <- c("grey85", col) # first color is for "endemic" } else if (length(col) != 1L + nUnit) { warning("'col' should be of length ", 1L + nUnit) col <- c(col[1L], rep_len(col[-1L], nUnit)) } } col } ### plot estimated component means for a single region plotHHH4_fitted1 <- function(x, unit=1, main=NULL, col=c("grey85", "blue", "orange"), pch=19, pt.cex=0.6, pt.col=1, border=col, start=x$stsObj@start, end=NULL, xaxis=NULL, xlim=NULL, ylim=NULL, xlab="", ylab="No. infected", hide0s=FALSE, decompose=NULL, total=FALSE, meanHHH=NULL) { stsObj <- x$stsObj if (!total && is.character(unit) && is.na(unit <- match(.unit <- unit, colnames(stsObj)))) stop("region '", .unit, "' does not exist") if (is.null(main)) main <- if (total) "Overall" else colnames(stsObj)[unit] if (isTRUE(decompose)) decompose <- colnames(stsObj) ## get observed counts obs <- if (total) rowSums(observed(stsObj)) else observed(stsObj)[,unit] ## time range for plotting start0 <- yearepoch2point(stsObj@start, stsObj@freq, toleft=TRUE) start <- yearepoch2point(start, stsObj@freq) tp <- start0 + seq_along(obs)/stsObj@freq # all observation time points if (start < start0 || start > tp[length(tp)]) stop("'start' is not within the time range of 'x$stsObj'") end <- if(is.null(end)) tp[length(tp)] else yearepoch2point(end,stsObj@freq) stopifnot(start < end) tpInRange <- which(tp >= start & tp <= end) # plot only those tpInSubset <- intersect(x$control$subset, tpInRange) # fitted time points ## use time indexes as x-values for use of addFormattedXAxis() if (is.list(xaxis)) { tp <- seq_along(obs) start <- tpInRange[1L] end <- tpInRange[length(tpInRange)] } ## get fitted component means if (is.null(meanHHH)) { meanHHH <- if (is.null(decompose)) { meanHHH(x$coefficients, terms.hhh4(x)) } else { decompose.hhh4(x) } } meanHHHunit <- if (is.null(decompose)) { if (total) { sapply(meanHHH, rowSums) } else { sapply(meanHHH, "[", i=TRUE, j=unit) } } else { if (!setequal(decompose, dimnames(meanHHH)[[3L]][-1L])) stop("'decompose' must be (a permutation of) the fitted units") if (total) { apply(meanHHH[,,c("endemic",decompose)], c(1L, 3L), sum) } else { meanHHH[,unit,c("endemic",decompose)] } } stopifnot(is.matrix(meanHHHunit), !is.null(colnames(meanHHHunit)), nrow(meanHHHunit) == length(x$control$subset)) meanHHHunit <- meanHHHunit[x$control$subset %in% tpInRange,,drop=FALSE] if (any(is.na(meanHHHunit))) { # -> polygon() would be wrong ## could be due to wrong x$control$subset wrt the epidemic lags ## a workaround is then to set 'start' to a later time point stop("predicted mean contains missing values") } ## check color vector col <- if (is.null(decompose) && length(col) == 4L) { ## compatibility with surveillance < 1.10-0 pt.col <- col[4L] rev(col[-4L]) } else { plotHHH4_fitted_check_col_decompose(col, decompose) } ## establish basic plot window if (is.null(ylim)) ylim <- c(0, max(obs[tpInRange],na.rm=TRUE)) plot(c(start,end), ylim, xlim=xlim, xlab=xlab, ylab=ylab, type="n", xaxt = if (is.list(xaxis)) "n" else "s") if (is.list(xaxis)) do.call("addFormattedXAxis", c(list(x = stsObj), xaxis)) title(main=main, line=0.5) ## draw polygons if (is.null(decompose)) { non0 <- which(c("end", "ar", "ne") %in% componentsHHH4(x)) plotComponentPolygons( x = tp[tpInSubset], y = meanHHHunit[,c("endemic", "epi.own", "epi.neighbours")[non0],drop=FALSE], col = col[non0], border = border[non0], add = TRUE) } else { non0 <- apply(X = meanHHHunit > 0, MARGIN = 2L, FUN = any) plotComponentPolygons(x = tp[tpInSubset], y = meanHHHunit[, non0, drop = FALSE], col = col[non0], border = border[non0], add = TRUE) } ## add observed counts within [start;end] ptidx <- if (hide0s) intersect(tpInRange, which(obs > 0)) else tpInRange points(tp[ptidx], obs[ptidx], col=pt.col, pch=pch, cex=pt.cex) ## invisibly return the fitted component means for the selected region invisible(meanHHHunit) } ### function which does the actual plotting of the polygons plotComponentPolygons <- function (x, y, col = 1:6, border = col, add = FALSE) { if (!is.vector(x, mode = "numeric") || is.unsorted(x, strictly = TRUE)) stop("'x' must be a strictly increasing sequence of time points") stopifnot(nrow(y <- as.matrix(y)) == (nTime <- length(x))) # y >= 0 yc <- if ((nPoly <- ncol(y)) > 1L) { apply(X = y, MARGIN = 1L, FUN = cumsum) # nPoly x nTime } else t(y) if (!add) { ## establish basic plot window plot(range(x), range(yc[nPoly,]), type = "n") } ## recycle graphical parameters col <- rep_len(col, nPoly) border <- rep_len(border, nPoly) ## draw polygons xpoly <- c(x[1L], x, x[length(x)]) for (poly in nPoly:1) { polygon(x = xpoly, y = c(0, yc[poly, ], 0), col = col[poly], border = border[poly]) } } ### ### Maps of the fitted mean components averaged over time ### plotHHH4_maps <- function (x, which = c("mean", "endemic", "epi.own", "epi.neighbours"), prop = FALSE, main = which, zmax = NULL, col.regions = hcl.colors(10), labels = FALSE, sp.layout = NULL, ..., map = x$stsObj@map, meanHHH = NULL) { which <- match.arg(which, several.ok = TRUE) ## extract district-specific mean components if (is.null(meanHHH)) { meanHHH <- meanHHH(x$coefficients, terms.hhh4(x)) } ## select relevant components and convert to an array meanHHH <- simplify2array( meanHHH[c("mean", "endemic", "epi.own", "epi.neighbours")], higher = TRUE) ## convert to proportions if (prop) { meanHHH[,,-1L] <- meanHHH[,,-1L,drop=FALSE] / c(meanHHH[,,1L]) } ## select only 'which' components meanHHH <- meanHHH[,,which,drop=FALSE] ## check map map <- as(map, "SpatialPolygonsDataFrame") if (!all(dimnames(meanHHH)[[2L]] %in% row.names(map))) { stop("'row.names(map)' do not cover all fitted districts") } ## average over time comps <- as.data.frame(colMeans(meanHHH, dims = 1)) ## attach to map data map@data <- cbind(map@data, comps[row.names(map),,drop=FALSE]) ## color key range if (is.null(zmax)) { zmax <- if (prop) { ceiling(10*sapply(comps, max))/10 } else ceiling(sapply(comps, max)) ## sub-components should have the same color range .idxsub <- setdiff(seq_along(zmax), match("mean", names(zmax))) zmax[.idxsub] <- suppressWarnings(max(zmax[.idxsub])) } ## add sp.layout item for district labels if (!is.null(layout.labels <- layout.labels(map, labels))) { sp.layout <- c(sp.layout, list(layout.labels)) } ## produce maps grobs <- mapply( FUN = function (zcol, main, zmax) spplot(map, zcol = zcol, main = main, at = seq(0, zmax, length.out = length(col.regions) + 1L), col.regions = col.regions, sp.layout = sp.layout, ...), zcol = names(comps), main = main, zmax = zmax, SIMPLIFY = FALSE, USE.NAMES = FALSE) if (length(grobs) == 1L) { grobs[[1L]] } else { mfrow <- sort(n2mfrow(length(grobs))) gridExtra::grid.arrange(grobs = grobs, nrow = mfrow[1L], ncol = mfrow[2L]) } } ### ### Map of estimated random intercepts of a specific component ### plotHHH4_ri <- function (x, component, labels = FALSE, sp.layout = NULL, gpar.missing = list(col="darkgrey", lty=2, lwd=2), ...) { ranefmatrix <- ranef.hhh4(x, tomatrix=TRUE) if (is.null(ranefmatrix)) stop("model has no random effects") stopifnot(length(component) == 1L) if (is.na(comp <- pmatch(component, colnames(ranefmatrix)))) stop("'component' must (partially) match one of ", paste(dQuote(colnames(ranefmatrix)), collapse=", ")) map <- as(x$stsObj@map, "SpatialPolygonsDataFrame") if (length(map) == 0L) stop("'x$stsObj' has no map") map$ranef <- ranefmatrix[,comp][row.names(map)] if (is.list(gpar.missing) && any(is.na(map$ranef))) { sp.layout <- c(sp.layout, c(list("sp.polygons", map[is.na(map$ranef),]), gpar.missing)) } if (!is.null(layout.labels <- layout.labels(map, labels))) { sp.layout <- c(sp.layout, list(layout.labels)) } spplot(map[!is.na(map$ranef),], zcol = "ranef", sp.layout = sp.layout, ...) } ### ### Plot the course of the dominant eigenvalue of one or several hhh4-fits ### plotHHH4_maxEV <- function (..., matplot.args = list(), refline.args = list(), legend.args = list()) { objnams <- unlist(lapply(match.call(expand.dots=FALSE)$..., deparse)) objects <- getHHH4list(..., .names = objnams) ## get time points epoch <- attr(objects, "epoch") start <- attr(objects, "start") freq <- attr(objects, "freq") start0 <- yearepoch2point(start, freq, toleft=TRUE) tp <- start0 + seq_along(epoch) / freq ## compute course of dominant eigenvalue for all models maxEV <- sapply(objects, getMaxEV, simplify=TRUE, USE.NAMES=TRUE) ## line style matplot.args <- modifyList( list(type="l", col=c(1,2,6,3), lty=c(1,3,2,4), lwd=1.7, cex=1, pch=NULL, xlab="", ylab="dominant eigenvalue", ylim=c(0,max(2,maxEV))), matplot.args) ## main plot do.call("matplot", c(list(x=tp, y=maxEV), matplot.args)) ## add reference line if (is.list(refline.args)) do.call("abline", modifyList(list(h=1, lty=3, col="grey"), refline.args)) ## add legend if (missing(legend.args) && length(objects) == 1) legend.args <- NULL # omit legend if (is.list(legend.args)) { legend.args <- modifyList( c(list(x="topright", inset=0.02, legend=names(objects), bty="n"), matplot.args[c("col", "lwd", "lty", "pch")], with(matplot.args, list(pt.cex=cex, text.col=col))), legend.args) do.call("legend", legend.args) } ## done invisible(maxEV) } getMaxEV <- function (x) { Lambda <- createLambda(x) if (identical(type <- attr(Lambda, "type"), "zero")) { rep.int(0, nrow(x$stsObj)) } else { diagonal <- identical(type, "diagonal") vapply(X = seq_len(nrow(x$stsObj)), FUN = function (t) maxEV(Lambda(t), symmetric = FALSE, diagonal = diagonal), FUN.VALUE = 0, USE.NAMES = FALSE) } } ## generate a function that computes the Lambda_t matrix createLambda <- function (object) { nTime <- nrow(object$stsObj) nUnit <- object$nUnit if (identical(componentsHHH4(object), "end")) { # no epidemic components zeromat <- matrix(0, nUnit, nUnit) Lambda <- function (t) zeromat attr(Lambda, "type") <- "zero" return(Lambda) } meanHHH <- meanHHH(object$coefficients, terms(object), subset=seq_len(nTime)) W <- getNEweights(object) Wt <- if (is.null(W)) { NULL } else if (is.matrix(W)) { function (t) W } else { function (t) W[,,t] } type <- NULL Lambda <- if (is.null(Wt)) { # no neighbourhood component type <- "diagonal" function (t) { stopifnot(isScalar(t) && t > 0 && t <= nTime) diag(meanHHH$ar.exppred[t,], nUnit, nUnit) } } else { function (t) { stopifnot(isScalar(t) && t > 0 && t <= nTime) Lambda <- meanHHH$ne.exppred[t,] * t(Wt(t)) diag(Lambda) <- diag(Lambda) + meanHHH$ar.exppred[t,] Lambda } } attr(Lambda, "type") <- type Lambda } ## determine the dominant eigenvalue of the Lambda matrix maxEV <- function (Lambda, symmetric = isSymmetric.matrix(Lambda), diagonal = FALSE) { maxEV <- if (diagonal) { max(Lambda) # faster than max(diag(Lambda)) } else { eigen(Lambda, symmetric = symmetric, only.values = TRUE)$values[1L] } ## dominant eigenvalue may be complex if (is.complex(maxEV)) { if (Im(maxEV) == 0) { # if other eigenvalues are complex Re(maxEV) } else { warning("dominant eigenvalue is complex, using its absolute value") abs(maxEV) } } else { maxEV } } ### ### Plot estimated seasonality (sine-cosine terms) of one or several hhh4-fits ### either as multiplicative effect on the 'components' (intercept=FALSE) ### or with intercept=TRUE, which only makes sense if there are no further ### non-centered covariates and offsets. ### plotHHH4_season <- function (..., components = NULL, intercept = FALSE, xlim = NULL, ylim = NULL, xlab = NULL, ylab = "", main = NULL, par.settings = list(), matplot.args = list(), legend = NULL, legend.args = list(), refline.args = list(), unit = 1) { objnams <- unlist(lapply(match.call(expand.dots=FALSE)$..., deparse)) objects <- getHHH4list(..., .names = objnams) freq <- attr(objects, "freq") components <- if (is.null(components)) { intersect(c("end", "ar", "ne"), unique(unlist( lapply(objects, componentsHHH4), use.names = FALSE))) } else { match.arg(components, choices = c("ar", "ne", "end", "maxEV"), several.ok = TRUE) } ## x-axis if (is.null(xlim)) xlim <- c(1,freq) if (is.null(xlab)) xlab <- if (freq==52) "week" else if (freq==12) "month" else "time" ## auxiliary function for an argument list "x" with named "defaults" list withDefaults <- function(x, defaults) { if (is.null(x)) defaults else if (is.list(x)) { if (is.null(names(x))) { # x must be complete stopifnot(length(x) == length(defaults)) setNames(x, names(defaults)) } else modifyList(defaults, x) # x might be a subset of parameters } else if (is.atomic(x)) { setNames(rep(list(x), length(defaults)), names(defaults)) } else stop("'", deparse(substitute(x)), "' is not suitably specified") } ## component-specific arguments ylim <- withDefaults(ylim, list(ar=NULL, ne=NULL, end=NULL, maxEV=NULL)) ylab <- withDefaults(ylab, list(ar=expression(hat(lambda)), ne=expression(hat(phi)), end=expression(hat(nu)), maxEV="dominant eigenvalue")) main <- withDefaults(main, list(ar="autoregressive component", ne="spatiotemporal component", end="endemic component", maxEV="dominant eigenvalue")) anyMain <- any(unlist(lapply(main, nchar), recursive=FALSE, use.names=FALSE) > 0) ## basic graphical settings if (is.list(par.settings)) { par.defaults <- list(mfrow=sort(n2mfrow(length(components))), mar=c(4,5,if(anyMain) 2 else 1,1)+.1, las=1) par.settings <- modifyList(par.defaults, par.settings) opar <- do.call("par", par.settings) on.exit(par(opar)) } ## line style matplot.args <- modifyList(list(type="l", col=c(1,2,6,3), lty=c(1,3,2,4), lwd=1.7, cex=1, pch=NULL), matplot.args) ## legend options if (is.null(legend)) legend <- length(objects) > 1 if (is.logical(legend)) legend <- which(legend) if (!is.list(legend.args)) { if (length(legend) > 0) warning("ignored 'legend' since 'legend.args' is not a list") legend <- integer(0L) } if (length(legend) > 0) { default.args <- c( list(x="topright", inset=0.02, legend=names(objects), bty="n"), matplot.args[c("col", "lwd", "lty", "pch")], with(matplot.args, list(pt.cex=cex, text.col=col)) ) legend.args <- modifyList(default.args, legend.args) } ## plot seasonality in individual model components seasons <- list() for(comp in setdiff(components, "maxEV")){ s2 <- lapply(objects, getSeason, component = comp, unit = unit) seasons[[comp]] <- exp(vapply(s2, FUN = if (intercept) { function (intseas) do.call("+", intseas) } else { function (intseas) intseas$season # disregard intercept }, FUN.VALUE = numeric(freq), USE.NAMES = TRUE)) do.call("matplot", # x defaults to 1:freq c(list(seasons[[comp]], xlim=xlim, ylim=ylim[[comp]], xlab=xlab, ylab=ylab[[comp]], main=main[[comp]]), matplot.args)) if (is.list(refline.args) && !intercept && any(seasons[[comp]] != 1)) do.call("abline", modifyList(list(h=1, lty=3, col="grey"), refline.args)) if (match(comp, components) %in% legend) do.call("legend", legend.args) } ## plot seasonality of dominant eigenvalue if ("maxEV" %in% components) { seasons[["maxEV"]] <- vapply(objects, FUN = function (obj) { getMaxEV_season(obj)$maxEV.season }, FUN.VALUE = numeric(freq), USE.NAMES = TRUE) do.call("matplot", c(list(seasons[["maxEV"]], xlim=xlim, ylim=if (is.null(ylim[["maxEV"]])) c(0,max(2,seasons[["maxEV"]])) else ylim[["maxEV"]], xlab=xlab, ylab=ylab[["maxEV"]], main=main[["maxEV"]]), matplot.args)) if (is.list(refline.args)) do.call("abline", modifyList(list(h=1, lty=3, col="grey"), refline.args)) if (4 %in% legend) do.call("legend", legend.args) } ## invisibly return the data that has been plotted invisible(seasons) } #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # get estimated intercept and seasonal pattern in the different components # CAVE: other covariates and offsets are ignored #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ getSeason <- function(x, component = c("end", "ar", "ne"), unit = 1) { stopifnot(inherits(x, "hhh4")) component <- match.arg(component) startseason <- getSeasonStart(x) freq <- x$stsObj@freq if (is.character(unit)) unit <- match(unit, colnames(x$stsObj)) ## return -Inf is component is not in the model (-> exp(-Inf) = 0) if (!component %in% componentsHHH4(x)) return(list(intercept=-Inf, season=rep.int(-Inf, freq))) ## get the intercept est <- fixef.hhh4(x, reparamPsi=FALSE) intercept <- unname(est[grep(paste0("^", component, "\\.(1|ri)"), names(est))]) if (length(intercept) == 0) { intercept <- 0 # no intercept (not standard) } else if (length(intercept) > 1) { # unit-specific intercepts if (length(intercept) != ncol(x$stsObj)) stop(component,"-component has incomplete unit-specific intercepts") intercept <- intercept[unit] if (is.na(intercept)) stop("the specified 'unit' does not exist") } ## get seasonality terms (relying on sin(2*pi*t/52)-kind coefficient names) coefSinCos <- est[grep(paste0("^",component, "\\.(sin|cos)\\("), names(est))] if (unitspecific <- length(grep(").", names(coefSinCos), fixed=TRUE))) { if (unitspecific < length(coefSinCos)) stop("cannot handle partially unit-specific seasonality") coefSinCos <- coefSinCos[grep(paste0(").",colnames(x$stsObj)[unit]), names(coefSinCos), fixed=TRUE)] ## drop .unitname-suffix since non-syntactic (cannot reformulate()) names(coefSinCos) <- sub("\\)\\..+$", ")", names(coefSinCos)) } if (length(coefSinCos)==0) return(list(intercept=intercept, season=rep.int(0,freq))) fSinCos <- reformulate( sub(paste0("^",component,"\\."), "", names(coefSinCos)), intercept=FALSE) mmSinCos <- model.matrix(fSinCos, data=data.frame(t=startseason-1 + seq_len(freq))) ## Done list(intercept=intercept, season=as.vector(mmSinCos %*% coefSinCos)) } #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # compute dominant eigenvalue of Lambda_t # CAVE: no support for Lambda_it #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ getMaxEV_season <- function (x) { stopifnot(inherits(x, "hhh4")) nUnits <- x$nUnit freq <- x$stsObj@freq components <- componentsHHH4(x) ## CAVE: this function ignores epidemic covariates/offsets ## and unit-specific seasonality if (nUnits > 1L && any(c("ar", "ne") %in% components)) { compOK <- vapply(x$control[c("ar","ne")], FUN = function (comp) { terms <- terms(x)$terms epiterms <- terms[,terms["offsetComp",] %in% seq_len(2L),drop=FALSE] identical(as.numeric(comp$offset), 1) && length(all.vars(removeTimeFromFormula(comp$f))) == 0L && all(!unlist(epiterms["unitSpecific",])) }, FUN.VALUE = TRUE, USE.NAMES = FALSE) if (any(!compOK)) warning("epidemic components have (unit-specific) ", "covariates/offsets not accounted for;\n", " use getMaxEV() or plotHHH4_maxEV()") } ## global intercepts and seasonality s2.lambda <- getSeason(x, "ar") s2.phi <- getSeason(x, "ne") ## unit-specific intercepts ris <- ranef.hhh4(x, tomatrix=TRUE) ri.lambda <- ris[,pmatch("ar.ri", colnames(ris), nomatch=0L),drop=TRUE] if (length(ri.lambda) == 0L) ri.lambda <- rep.int(0, nUnits) ri.phi <- ris[,pmatch("ne.ri", colnames(ris), nomatch=0L),drop=TRUE] if (length(ri.phi) == 0L) ri.phi <- rep.int(0, nUnits) ## get neighbourhood weights as a function of time W <- getNEweights(x) # NULL, matrix or 3-dim array if (!is.null(W) && !is.matrix(W)) stop("neighbourhood weights are time-varying; ", # and thus probably changing within or across seasons "use getMaxEV() or plotHHH4_maxEV()") ## create the Lambda_t matrix createLambda <- function (t) { Lambda <- if ("ne" %in% components) { exp(s2.phi$intercept + ri.phi + if(t==0) 0 else s2.phi$season[t]) * t(W) } else matrix(0, nUnits, nUnits) if ("ar" %in% components) { diag(Lambda) <- diag(Lambda) + exp(s2.lambda$intercept + ri.lambda + if(t==0) 0 else s2.lambda$season[t]) } Lambda } ## do this for t in 0:freq diagonal <- !("ne" %in% components) .maxEV <- function (t) { maxEV(createLambda(t), symmetric = FALSE, diagonal = diagonal) } maxEV.const <- .maxEV(0) maxEV.season <- if (all(c(s2.phi$season, s2.lambda$season) %in% c(-Inf, 0))) { rep.int(maxEV.const, freq) } else { vapply(X = seq_len(freq), FUN = .maxEV, FUN.VALUE = 0, USE.NAMES = FALSE) } ## Done list(maxEV.season = maxEV.season, maxEV.const = maxEV.const, Lambda.const = createLambda(0)) } ## Determine the time point t of the start of a season in a hhh4() fit. ## If \code{object$stsObj@start[2] == 1}, it simply equals ## \code{object$control$data$t[1]}. Otherwise, the \code{stsObj} time series ## starts within a year (at sample \code{s}, say) and the beginning of ## the next season is ## \code{object$control$data$t[1] + object$stsObj@freq - s + 1}. getSeasonStart <- function (object) { if ((startsample <- object$stsObj@start[2]) == 1) { object$control$data$t[1L] } else { object$control$data$t[1L] + object$stsObj@freq-startsample + 1 } } ### ### plot neighbourhood weight as a function of distance (neighbourhood order) ### plotHHH4_neweights <- function (x, plotter = boxplot, ..., exclude = 0, maxlag = Inf) { plotter <- match.fun(plotter) ## orders of neighbourhood (o_ji) nbmat <- neighbourhood(x$stsObj) if (all(nbmat %in% 0:1)) { message("'neighbourhood(x$stsObj)' is binary; ", "computing neighbourhood orders ...") nbmat <- nbOrder(nbmat, maxlag=maxlag) } ## extract (estimated) weight matrix (w_ji) W <- getNEweights(x) if (is.null(W)) { # if no spatio-temporal component in the model W <- nbmat W[] <- 0 } ## draw the boxplot Distance <- factor(nbmat, exclude = exclude) notexcluded <- which(!is.na(Distance)) Distance <- Distance[notexcluded] Weight <- W[notexcluded] plotter(Weight ~ Distance, ...) } ### ### auxiliary functions ### yearepoch2point <- function (yearepoch, frequency, toleft=FALSE) yearepoch[1L] + (yearepoch[2L] - toleft) / frequency getHHH4list <- function (..., .names = NA_character_) { objects <- list(...) if (length(objects) == 1L && is.list(objects[[1L]]) && inherits(objects[[1L]][[1L]], "hhh4")) { ## ... is a single list of fits objects <- objects[[1L]] if (is.null(names(objects))) names(objects) <- seq_along(objects) } else { names(objects) <- if (is.null(names(objects))) .names else { ifelse(nzchar(names(objects)), names(objects), .names) } } if (!all(sapply(objects, inherits, what="hhh4"))) stop("'...' must consist of hhh4()-fits only") ## check common epoch, start and frequency and append them as attributes epoch <- unique(t(sapply(objects, function(x) x$stsObj@epoch))) if (nrow(epoch) > 1) stop("supplied hhh4-models obey different 'epoch's") attr(objects, "epoch") <- drop(epoch) start <- unique(t(sapply(objects, function(x) x$stsObj@start))) if (nrow(start) > 1) stop("supplied hhh4-models obey different start times") attr(objects, "start") <- drop(start) freq <- unique(sapply(objects, function(x) x$stsObj@freq)) if (length(freq)>1) stop("supplied hhh4-models obey different frequencies") attr(objects, "freq") <- freq ## done return(objects) } surveillance/R/sim_pointSource.R0000644000175100001440000000423310662666102016501 0ustar hornikusers################################################### ### chunk number 1: ################################################### # Programme to simulate epidemies which were # introduced by point sources. # The basis of this proagramme is a combination of # a Hidden Markov Modell (to get random dates # for outbreaks) and a simple Model to simulate # the epidemy. # # Parameters: # r - probability to get a new epidemy at time i if there was one # at time i-1 # p - probability to get no new epidemy at time i if there was none # at time i-1 # length - number of timesteps to visit # # Parameters for the background: # A - Amplitude, default = 1. # alpha - Incidence, default = 1. # beta - time dependent regression coefficient, default = 0. # phi - weeks of seaonal move, default = 0. # frequency - frequency of the sinus, default = 1. # state - a eventually given markov chain, # which defines the status at this time (outbreak or not) # K - additional weigth for an outbreak sim.pointSource <- function(p = 0.99, r = 0.01, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K){ if(is.null(state)){ # create a markov-chain state <- matrix(data = 0, ncol = 1, nrow = length) state[1] <- 0 #hoehle - fix: rbinom(1,1,0.5) # always begin with a zero # create the transition matrix transitionMatrix <- matrix(data = c(p, (1-r),(1-p), r), nrow = 2, ncol = 2) if(length(state) > 1){ # just do it if there is a preceding value for (i in 2:length){ # check the matrix for the correct line and take the right # probability. The last value of state is the newest. state[i] <- rbinom(1,1,transitionMatrix[state[i-1] + 1, 2]) } } } # go sure to have the rigth length as parameter length <- length(state) observed <-sim.seasonalNoise(A, alpha, beta, phi, length, frequency, state, K)$seasonalBackground result <- list(observed = observed, state = state, A = A, alpha = alpha, beta = beta, K = K, p = p, r = r, freq=52, start=c(2001,1)) class(result) = "disProg" # for disease progress return(result) } surveillance/R/calibration_null.R0000644000175100001440000001572412616616447016657 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Expectation and variance of proper scoring rules for Poisson and NegBin ### Reference: Wei and Held (2014), Test, 23, 787-805 ### ### Copyright (C) 2013-2014 Wei Wei, 2015 Sebastian Meyer ### $Revision: 1512 $ ### $Date: 2015-11-05 10:11:03 +0100 (Thu, 05. Nov 2015) $ ################################################################################ ## wrapper function calling the necessary "EV" function for the selected score score_EV <- function (mu, size = NULL, tolerance = 1e-4, which = c("dss", "logs", "rps")) { which <- match.arg(which) if (which == "dss") return(dss_EV(mu, size)) ## for "logs" and "rps", the EV function only works with a single prediction ## -> apply to each mu (size) res <- if (is.null(size)) { # Poisson vapply(X = mu, FUN = paste0(which, "_EV_1P"), FUN.VALUE = c(E = 0, V = 0), tolerance = tolerance, USE.NAMES = FALSE) } else { # NegBin mapply(FUN = paste0(which, "_EV_1NB"), mu = mu, size = size, MoreArgs = list(tolerance = tolerance), SIMPLIFY = TRUE, USE.NAMES = FALSE) } ## 'res' has dimension 2 x length(mu) list(E = res[1L,], V = res[2L,]) } ########################## ### Dawid-Sebastiani Score ########################## dss_EV <- function (mu, size = NULL) { sigma2 <- if (is.null(size)) mu else mu * (1 + mu/size) E <- 1 + log(sigma2) V <- if (is.null(size)) { 2 + 1/sigma2 } else { 2 + 6/size + 1/sigma2 } list(E = E, V = V) } ##################### ### Logarithmic Score ##################### ## for a single Poisson prediction logs_EV_1P <- function (mu, tolerance = 1e-4) # tolerance is in absolute value { ## use the same kmax for expectation and variance -> shared computations ## K2 is always a bit larger than K1, so we use K2 kmax <- if (mu^3 < tolerance/.Machine$double.eps/2) { ## we can calculate K2 from Theorem 1 (b) qpois(1 - tolerance/(mu^3 + 6*mu^2 + 7*mu + 1), lambda = mu) + 3 } else { # very high quantile (e.g., 1 - 1e-16) would yield Inf mu + 10 * sqrt(mu) } kseq <- seq_len(kmax) ## compute values required by both E and V fseq <- dpois(kseq, lambda = mu) logfactseq <- lfactorial(kseq) ## expectation E <- if (mu > tolerance^(-1/4)) { # fast version for "large" mu ## approximation error is of order 1/mu^4 0.5 + 0.5*log(2*pi*mu) - 1/12/mu - 1/24/mu^2 - 19/360/mu^3 } else { ##kmax1 <- qpois(1 - tolerance/(mu^2 + 3*mu + 1), lambda = mu) + 2 seqq1 <- fseq * logfactseq mu * (1-log(mu)) + sum(seqq1) } ## variance (does it converge to 0.5 as mu -> Inf ?) seqq2 <- (logfactseq - kseq * log(mu))^2 * fseq V <- sum(seqq2) - (E - mu)^2 c(E = E, V = V) } ## for a single NegBin prediction logs_EV_1NB <- function (mu, size, tolerance = 1e-4) { ## TODO: replace simple kmax by formulae from the paper kmax <- qnbinom(1-tolerance/10, mu = mu, size = size) + 5 kseq <- 0:kmax ## compute values required by both E and V fseq <- dnbinom(kseq, mu = mu, size = size) lgammaseq <- lbeta(kseq + 1L, size) + log(kseq + size) ## expectation seqq1 <- lgammaseq * fseq E <- sum(seqq1) - size*log(size) - mu*log(mu) + (mu+size)*log(mu+size) ## variance con2 <- E - size * log(1 + mu/size) seqq2 <- (lgammaseq + kseq * log(1 + size/mu))^2 * fseq V <- sum(seqq2) - con2^2 ## check against formulation in the paper (Equation 11): ## con2paper <- E + size*log(size) - size*log(size+mu) - lgamma(size) ## seqq2paper <- (-lgamma(kseq+size) + lgamma(kseq+1L) + kseq*log(1+size/mu))^2 * fseq ## Vpaper <- sum(seqq2paper) - con2paper^2 ## => V and Vpaper are only identical for kmax -> Inf c(E = E, V = V) } ############################ ### Ranked Probability Score ############################ ## for a single Poisson prediction rps_EV_1P <- function (mu, tolerance = 1e-4) # tolerance is in absolute value { ## expectation if (requireNamespace("gsl", quietly = TRUE)) { ## faster and more accurate implementation (works for larger mu) E <- mu * gsl::bessel_I0_scaled(2*mu, give=FALSE, strict=TRUE) + mu * gsl::bessel_I1_scaled(2*mu, give=FALSE, strict=TRUE) } else { E <- mu * besselI(2*mu, 0, expon.scaled = TRUE) + mu * besselI(2*mu, 1, expon.scaled = TRUE) if (identical(E, 0)) { ## R's besselI() works fine for mu <= 50000 (on my .Machine) ## but returns 0 (buffer overflow) for larger arguments warning("'mu' is too large for besselI(), install package \"gsl\"") return(c(E = NA_real_, V = NA_real_)) } } ## variance kmax <- max(qpois(1 - tolerance/(10*mu^2 + mu), lambda = mu) + 2, 8) # cf. Theorem 2 (a) kseq <- 0:kmax fseq <- dpois(kseq, lambda = mu) Fseq <- cumsum(fseq) # = ppois(kseq, lambda = mu) psiseq <- (kseq - mu) * (2*Fseq - 1) + 2*mu * fseq seqq <- psiseq^2 * fseq V <- sum(seqq) - 4 * E^2 c(E = E, V = V) } ## for a single NegBin prediction rps_EV_1NB <- function (mu, size, tolerance = 1e-4) { ## determine kmax for Var0(RPS), which is always > kmax for E0(RPS), ## cf. Theorem 2 (c), here corrected (1-) and simplified l5 <- (mu + 1)^2 + 1 kmax2 <- max(qnbinom(1-tolerance/l5, mu = mu*(1+2/size), size = size+2) + 2, 8) ## the other listed terms seem to be always smaller than the first one: ## qnbinom(1-tolerance/l5, mu = mu, size = size) ## qnbinom(1-tolerance/l5, mu = mu*(1+1/size), size = size+1) + 1 kseq2 <- 0:kmax2 fseq2 <- dnbinom(kseq2, mu = mu, size = size) Fseq2 <- cumsum(fseq2) # = pnbinom(kseq2, mu = mu, size = size) ## expectation ghgz_part <- mu * (1 + mu/size) ghgz <- 4 * ghgz_part / size E <- if (ghgz < 1 && requireNamespace("gsl", quietly = TRUE)) { ghgz_part * gsl::hyperg_2F1(1+size, 0.5, 2, -ghgz, give = FALSE, strict = TRUE) } else { kmax1 <- max(qnbinom(1-tolerance/mu, mu = mu*(1+1/size), size = size+1) + 1, 8) # cf. Theorem 2 (b) kseq1 <- seq_len(kmax1) seqq1 <- vapply( X = kseq1, # we could use kmax2 (> kmax1) also here FUN = function (i) fseq2[i+1L] * sum((i:1) * fseq2[seq_len(i)]), FUN.VALUE = 0, USE.NAMES = FALSE) sum(seqq1) } ## variance psiseq <- kseq2 * (2 * Fseq2 - 1) + mu * (1 - 2 * pnbinom(kseq2 - 1, mu = mu + mu/size, size = size + 1)) seqq <- psiseq^2 * fseq2 V <- sum(seqq) - 4 * E^2 c(E = E, V = V) } surveillance/R/plot_xtable.R0000644000175100001440000000040212035776751015636 0ustar hornikusers################################################### ### chunk number 1: ################################################### compMatrix.writeTable <- function (compMatrix) { xtable(compMatrix, display = c("s", rep("d", 4), rep("G", 4)), vsep = "|") } surveillance/R/twinSIR.R0000644000175100001440000005254713203323012014651 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Function 'twinSIR' performs (penalized) maximum likelihood inference ### for the Hoehle (2009) model. Now with REML estimation of smoothing ### parameter lambda. ### ### Copyright (C) 2008-2009 Michael Hoehle ### Copyright (C) 2008-2009,2014,2017 Sebastian Meyer ### $Revision: 2046 $ ### $Date: 2017-11-16 15:51:54 +0100 (Thu, 16. Nov 2017) $ ################################################################################ ## ATTENTION: the .loglik and .score functions assume atRiskY == 1 data ###################################################################### # Log-Likelihood function # # PARAMS: # theta - parameter vector c(alpha,beta), where # beta also contains the baseline coefficients in the first place # X - covariate matrix related to alpha, i.e. the epidemic component # Z - covariate matrix related to beta, i.e. the Cox-like endemic component # survs - data.frame with columns id, start, stop and event # weights - vector of length nrow(X) indicating the number of individuals # with the same covariates. weights are allowed to change over time. # Note: it is assumed that none of the individuals covered by # "weights" can have an actual event, if so they need to have their # own row ###################################################################### .loglik <- function(theta, X, Z, survs, weights) { # Calculate epidemic (e) and endemic (h) component of the infection intensity eh <- .eh(theta, X, Z) # Calculate infection intensity assuming atRiskY == 1 for all rows lambdaNoY <- rowSums(eh) # dN Part of the loglik isEvent <- survs$event == 1 events <- which(isEvent) intdN <- numeric(length(isEvent)) # zeros intdN[events] <- weights[events] * log(lambdaNoY[events]) # here one might have got -Inf values in case of 0-intensity at an event time # lambda integral of the log-likelihood dt <- survs$stop - survs$start intlambda <- weights * lambdaNoY * dt # Return the log-likelihood loglik <- sum( intdN - intlambda ) return(loglik) } ###################################################################### # Penalized log-likelihood function # Additional Params: # lambda.smooth - smoothing parameter # K - penalty matrix on the beta component ###################################################################### .ploglik <- function(theta, X, Z, survs, weights, lambda.smooth, K) { loglik <- .loglik(theta, X, Z, survs, weights) if (lambda.smooth == 0) { return(loglik) } # Add penalty term and return the penalized log-likelihood beta <- theta[ncol(X) + seq_len(ncol(Z))] penalty <- lambda.smooth/2 * drop(t(beta) %*% K %*% beta) return(loglik - penalty) } ###################################################################### # Score function # Params: see .loglik ###################################################################### .score <- function(theta, X, Z, survs, weights) { dimX <- dim(X) nRows <- dimX[1] px <- dimX[2] pz <- ncol(Z) isEvent <- survs$event == 1 # event indicator for the dN integral events <- which(isEvent) dt <- survs$stop - survs$start # for the dt integral # Calculate epidemic (e) and endemic (h) component of the infection intensity eh <- .eh(theta, X, Z) h <- eh[,2,drop=TRUE] # Calculate infection intensity at event times lambdaEvents <- rowSums(eh[events,,drop=FALSE]) score <- if (px > 0L) { wX <- X * weights part1intdN <- matrix(0, nrow = nRows, ncol = px, dimnames = dimnames(X)) part1intdN[events,] <- wX[events,] / lambdaEvents part1intlambda <- wX * dt colSums(part1intdN - part1intlambda) } else NULL if (pz > 0L) { wZh <- Z * (h * weights) part2intdN <- matrix(0, nrow = nRows, ncol = pz, dimnames = dimnames(Z)) part2intdN[events,] <- wZh[events,] / lambdaEvents part2intlambda <- wZh * dt part2 <- colSums(part2intdN - part2intlambda) score <- c(score, part2) } return(score) } ###################################################################### # Penalized Score function # Additional Params: see .ploglik ###################################################################### .pscore <- function(theta, X, Z, survs, weights, lambda.smooth, K, ...) { score <- .score(theta, X, Z, survs, weights) if (lambda.smooth == 0) { return(score) } # Add penalty term and return the penalized Score function beta <- theta[ncol(X) + seq_len(ncol(Z))] penalty <- c(rep.int(0, ncol(X)), lambda.smooth * K %*% beta) return(score - penalty) } ###################################################################### # Fisher information matrix function # Params: see .loglik ###################################################################### .fisherinfo <- function(theta, X, Z, survs, weights) { px <- ncol(X) pz <- ncol(Z) isEvent <- survs$event == 1 # event indicator events <- which(isEvent) # Fisher matrix calculation only incorporates data at event times! Xevents <- X[events,,drop = FALSE] Zevents <- Z[events,,drop = FALSE] # Calculate epidemic (e) and endemic (h) component of the infection intensity eh <- .eh(theta, Xevents, Zevents) h <- eh[,2,drop=TRUE] # Calculate infection intensity lambda <- rowSums(eh) # calculate intdN of d/dtheta log(lambda_i(t)) for all individuals with events wpl <- weights[events] / lambda dloglambda <- if (px > 0L) Xevents * wpl else NULL if (pz > 0L) { dloglambda <- cbind(dloglambda, Zevents * (h * wpl)) } # Build the optional variation process (Martinussen & Scheike, p64) fisherinfo <- matrix(0, nrow=px+pz, ncol=px+pz) for (i in seq_len(nrow(dloglambda))) { x <- dloglambda[i,,drop=FALSE] # single-ROW matrix fisherinfo <- fisherinfo + crossprod(x) # t(x) %*% x } return(fisherinfo) } ###################################################################### # Fisher information matrix function # Additional Params: see .ploglik ###################################################################### .pfisherinfo <- function(theta, X, Z, survs, weights, lambda.smooth, K) { fisherinfo <- .fisherinfo(theta, X, Z, survs, weights) if (lambda.smooth == 0) { return(fisherinfo) } # Add penalty term and return the penalized Fisher information matrix penalty <- matrix(0, ncol=ncol(fisherinfo), nrow=nrow(fisherinfo)) zIndex <- ncol(X) + seq_len(ncol(Z)) penalty[zIndex,zIndex] <- lambda.smooth * K return(fisherinfo + penalty) } ###################################################################### # Marginal likelihood of the log(smoothing) parameter as given # by a Laplace approximation c.f. Kneib & Fahrmeir (2006), p.9. # or Cai et al (2002) # # Params: # log.lambda.smooth - log parametrization to ensure positive value of # lambda.smooth # theta - fixed regression parameters # X - design matrix of additive part # Z - design matrix of multiplicative part # survs - the data.frame containing the data in survs format # weights - for weighting individual entries # K - smoother matrix # # Returns: # value of lmarg ###################################################################### .lmarg.lambda <- function(log.lambda.smooth, theta, X, Z, survs, weights, K) { #Contribution of the penalized likelihood loglik <- .ploglik(theta, X, Z, survs, weights, exp(log.lambda.smooth), K) #Laplace approximation using TP representation H <- .pfisherinfo(theta, X, Z, survs, weights, exp(log.lambda.smooth), K) beta <- theta[ncol(X) + seq_len(ncol(Z))] #[Q]: Extract baseline terms from model and translate into #TP-spline setting, i.e. a B-spline of 0th order is assumed baselineIdx <- grep("cox\\(logbaseline.*\\)",dimnames(Z)[[2]]) b <- diff(beta[baselineIdx]) laplace <- 1/2*(length(b)-1)*log.lambda.smooth - 1/2*log(det(H)) return(loglik + laplace) } ###################################################################### # Model fitter. Prepares everything and uses optim's (L-)BFGS(-B) to # maximize the (penalized) log-likelihood. ###################################################################### twinSIR <- function (formula, data, weights, subset, knots = NULL, nIntervals = 1, lambda.smooth = 0, penalty = 1, optim.args = list(), model = TRUE, keep.data = FALSE) { cl <- match.call() ## Verify that 'data' inherits from "epidata" data <- eval(cl$data, parent.frame()) if (!inherits(data, "epidata")) { stop("'data' must inherit from class \"epidata\"") } ## Extract the time range of the epidemic timeRange <- attr(data, "timeRange") minTime <- timeRange[1L] maxTime <- timeRange[2L] # ## NOTE: modification of 'data' has no effect with the current evaluation # ## of model.frame in the parent.frame() as the original 'data' will # ## be used. # ## Impute blocks for 'knots', which are not existing stop times # if (is.vector(knots, mode = "numeric")) { # insideKnot <- (knots > minTime) & (knots < maxTime) # if (any(!insideKnot)) { # warning("only 'knots' inside the observation period are considered") # } # knots <- sort(knots[insideKnot]) # data <- intersperse(data, knots) # } ############################ ### Build up model.frame ### (this is derived from the coxph function) ############################ mfnames <- c("", "formula", "data", "weights", "subset") mf <- cl[match(mfnames, names(cl), nomatch = 0L)] mf$id <- as.name("id") mf$atRiskY <- as.name("atRiskY") mf$subset <- if (is.null(mf$subset)) { call("==", mf$atRiskY, 1) } else { call("&", mf$subset, call("==", mf$atRiskY, 1)) } if(length(formula) == 2L) { # i.e. no response specified formula[3L] <- formula[2L] formula[[2L]] <- quote(cbind(start, stop, event)) } mf$na.action <- as.name("na.fail") special <- c("cox") Terms <- terms(formula, specials = special, data = data, keep.order = FALSE) mf$formula <- Terms mf[[1]] <- as.name("model.frame") mf <- eval(mf, parent.frame()) ########################################################### ### Check arguments and extract components of the model ### ########################################################### ## Extract and check 'weights' weights <- model.extract(mf, "weights") if (is.null(weights)) { weights <- rep(1, nrow(mf)) names(weights) <- attr(mf, "row.names") } else { if (!is.vector(weights, mode="numeric")) { stop("'weights' must be a numeric vector") } if (any(weights < 0)) { stop("negative 'weights' not allowed") } } ## Extract the response response <- model.response(mf) survs <- data.frame(id = model.extract(mf, "id"), start = response[,1L], stop = response[,2L], event = response[,3L], check.names = FALSE, stringsAsFactors = FALSE) attr(survs, "eventTimes") <- survs$stop[survs$event == 1] ##<- equals attr(data, "eventTimes") if missing(subset) attr(survs, "timeRange") <- timeRange ## Check that we have events if (length(attr(survs, "eventTimes")) == 0) warning("no events in data", if (!missing(subset)) " (subject to 'subset')") ## Check specified baseline intervals if (is.null(knots) && isScalar(nIntervals)) { knots <- if (nIntervals == 1) { numeric(0) } else if (nIntervals > 1) { quantile(attr(survs, "eventTimes"), probs = seq(from=0, to=1, length.out=nIntervals+1)[-c(1,nIntervals+1)], type = 1, names = FALSE) } else { stop("'nIntervals' must be a single number >= 1") } } else if (is.vector(knots, mode = "numeric")) { isInsideKnot <- (knots > minTime) & (knots < maxTime) if (any(!isInsideKnot)) { warning("only 'knots' inside the observation period are considered") knots <- knots[isInsideKnot] } isStopKnot <- knots %in% unique(survs$stop) if (any(!isStopKnot)) { stop("'knots' must be a subset of 'unique(data$stop[data$atRiskY==1])'", if (!missing(subset)) ",\n where 'data' is subject to 'subset'") } knots <- sort(knots) } else { stop("'knots' (a numeric vector) or 'nIntervals' (a single number) ", "must be specified") } intervals <- c(minTime, knots, maxTime) nIntervals <- length(intervals) - 1L message( sprintf(ngettext(nIntervals, "Initialized %d log-baseline interval: ", "Initialized %d log-baseline intervals: "), nIntervals), paste(format(intervals, trim = TRUE), collapse=" ") ) ## Extract the two parts of the design matrix: ## Z contains the Cox part, X contains the epidemic part, there's no intercept des <- read.design(mf, Terms) X <- des$X; px <- ncol(X) Z <- des$Z ## Add variables for the piecewise constant baseline to Z (if requested) if (nIntervals == 1L) { nEvents <- length(attr(survs, "eventTimes")) if (attr(Terms, "intercept") == 1) Z <- cbind("cox(logbaseline)" = 1, Z) } else { # we have more than one baseline interval/parameter intervalIndices <- findInterval(survs$start, intervals, rightmost.closed = FALSE) intervalNumbers <- seq_len(nIntervals) baselineVars <- sapply(intervalNumbers, function(i) intervalIndices == i) dimnames(baselineVars) <- list(NULL, paste("cox(logbaseline.", intervalNumbers, ")", sep="")) Z <- cbind(baselineVars, Z) nEvents <- as.vector(table(factor(intervalIndices[survs$event == 1], levels = seq_len(nIntervals)))) } pz <- ncol(Z) ## Check that we have at least one parameter if (pz == 0L && px == 0L) { stop("nothing to do: neither a baseline nor covariates have been specified") } ## Check lambda.smooth if (!isScalar(lambda.smooth)) { stop("'lambda.smooth' must be scalar") } if (lambda.smooth != 0 && pz == 0L) { lambda.smooth <- 0 message("Note: 'lambda.smooth' was set to 0, because there was no endemic ", "component in the formula.") } ## Setup penalty matrix if (isScalar(penalty)) { K <- matrix(0, ncol = pz, nrow = pz) if (lambda.smooth != 0 && nIntervals > 1L) { # do we have equidistant knots? knotSpacings <- diff(intervals) #equidistant <- all(sapply(knotSpacings[-1], function(x) isTRUE(all.equal(x,knotSpacings[1])))) equidistant <- isTRUE(all.equal(diff(knotSpacings), rep.int(0,nIntervals-1))) if (equidistant) { # K = D'D only works for equidistant knots # difference matrix of order 'penalty' D <- diff(diag(nIntervals), differences=penalty) K[intervalNumbers,intervalNumbers] <- crossprod(D) # t(D) %*% D } else { # special weighting scheme for the non-equidistant case if (penalty != 1) { stop("ATM, non-equidistant knots only work for 1st order penalty") } #Use Fahrmeir & Lang (2001), p.206 invdelta <- 1/diff(intervals) * mean(diff(intervals)) #Use Fahrmeir & Lang (2001), p.206 for (i in seq_len(nIntervals)) { idx2 <- cbind(j=c(-1,1) + i, deltaidx=i+c(-1,0),fac=c(-1,-1)) idx2 <- idx2[idx2[,"j"] > 0 & idx2[,"j"] <= nIntervals,,drop=FALSE] #Off diagonal elements K[i, idx2[,"j"]] <- invdelta[idx2[,"deltaidx"]] * idx2[,"fac"] #Diagonal element K[i, i] <- sum(invdelta[idx2[,"deltaidx"]]) } message("Note: non-equidistant knots. Using penalization matrix ", "correcting for distance between knots.\n") # print(K) # browser() } } } else if (is.matrix(penalty) && ncol(penalty) == pz && nrow(penalty) == pz) { K <- penalty } else { stop("'penalty' must either be a single number or a square matrix of ", "dimension ", pz, "x", pz, ", fitting the number of unknown ", "parameters in the endemic component (baseline and covariates)") } ## Check that optim.args is a list if (!is.list(optim.args)) { stop("'optim.args' must be a list") } ## Check start value for theta if (!is.null(optim.args[["par"]])) { if (!is.vector(optim.args$par, mode="numeric")) { stop("'optim.args$par' must be a numeric vector or NULL") } if (length(optim.args$par) != px + pz) { stop(gettextf(paste("'optim.args$par' (%d) does not have the same length", "as the number of unknown parameters (%d + %d = %d)"), length(optim.args$par), px, pz, px + pz)) } } else { optim.args$par <- c(rep.int(1, px), rep.int(0, pz)) } message("Initial parameter vector: ", paste(optim.args$par, collapse=" ")) ## Set names for theta names(optim.args$par) <- c(colnames(X), colnames(Z)) #################### ### Optimization ### #################### ## Configuring the optim procedure (check optim.args) optimControl <- list(trace = 1, fnscale = -1, maxit = 300, factr = 1e7) optimControl[names(optim.args[["control"]])] <- optim.args[["control"]] optim.args$control <- optimControl optimArgs <- list(par = optim.args$par, fn = .ploglik, gr = .pscore, X = X, Z = Z, survs = survs, weights = weights, lambda.smooth = lambda.smooth, K = K, method = "L-BFGS-B", lower = c(rep(0,px), rep(-Inf,pz)), upper = rep(Inf,px+pz), control = list(), hessian = FALSE) namesOptimArgs <- names(optimArgs) namesOptimUser <- names(optim.args) optimValid <- namesOptimUser %in% namesOptimArgs optimArgs[namesOptimUser[optimValid]] <- optim.args[optimValid] if (any(!optimValid)) warning("unknown names in optim.args: ", paste(namesOptimUser[!optimValid], collapse = ", ")) if (! "method" %in% namesOptimUser && px == 0L) { optimArgs$method <- "BFGS" } if (optimArgs$method != "L-BFGS-B") { optimArgs$lower <- -Inf optimArgs$upper <- Inf } #Fit model using fixed smoothing parameter or use mixed model #representation to estimate lambda.smooth using marginal likelihood if (lambda.smooth == -1) { if (isScalar(penalty) && penalty == 1) { ################################################################### ##TODO: Need to check for B-spline (?). Move options into ctrl obj ################################################################### #Iterative procedure where we change between optimizing regression #parameters given fixed smoothing parameter and optimizing the #smoothing parameter given fixed regression parameters (Gauss-Seidel) #procedure. The tuning parameters (5) could go into the control object. lambda.smooth <- 5 reltol <- 1e-2 maxit <- 25 #Parameters for keeping track of the iterations lambda.smoothOld <- 1e99 iter <- 0 #Loop until relative convergence or max-iteration reached while ((abs(lambda.smooth-lambda.smoothOld)/lambda.smoothOld > reltol) & (iter < maxit)) { #Iteration begins iter <- iter + 1 if (optimControl$trace > 0) { cat("==> Iteration ",iter," of Gauss-Seidel maximization. lambda.smooth = ",lambda.smooth,"\n") } #Step 1 - maximize (alpha,beta) with fixed lambda optimArgs$lambda.smooth <- lambda.smooth optimRes <- do.call("optim", optimArgs) theta <- optimRes$par optimArgs$par <- theta #better start value the next time #Step 2 - maximize log(lambda) with fixed (alpha,beta) optimLambda <- optim(log(lambda.smooth), .lmarg.lambda, control=list(fnscale=-1,trace=1),method="BFGS", theta=theta, X=X, Z=Z, survs=survs, weights=weights, K=K) lambda.smoothOld <- lambda.smooth lambda.smooth <- exp(optimLambda$par) } #Done, update optimArgs with new smoothing parameter optimArgs$lambda.smooth <- lambda.smooth } else { stop("REML estimation using TP-splines only works for 1st order differences.") } } ## Call optim with the arguments above (including the news smoothing param) optimRes <- do.call("optim", optimArgs) ############## ### Return ### ############## ## Set up list object to be returned fit <- list(coefficients = optimRes$par, lambda.smooth = lambda.smooth, loglik = optimRes$value, counts = optimRes$counts, converged = (optimRes$convergence == 0)) ## If requested, add observed fisher info (= negative hessian at maximum) if (!is.null(optimRes$hessian)) { fit$fisherinfo.observed <- -optimRes$hessian } ## Add own (exact) fisher info computation fit$fisherinfo <- .pfisherinfo(theta = fit$coefficients, X = X, Z = Z, survs = survs, weights = weights, lambda.smooth = lambda.smooth, K = K) ## Add 'method' fit$method <- optimArgs$method ## Append further information fit$intervals <- intervals fit$nEvents <- nEvents if (model) { fit$model <- list( survs = survs, X = X, Z = Z, weights = weights, lambda.smooth = lambda.smooth, K = K, f = attr(data, "f")[match(colnames(X), names(attr(data, "f")), nomatch=0)], w = attr(data, "w")[match(colnames(X), names(attr(data, "w")), nomatch=0)] ) } if (keep.data) { fit$data <- data } fit$call <- cl fit$formula <- formula(Terms) fit$terms <- Terms ## Return object of class "twinSIR" class(fit) <- "twinSIR" return(fit) } surveillance/R/algo_rki.R0000644000175100001440000001056511770114750015111 0ustar hornikusers### R code from vignette source 'Rnw/algo_rki.Rnw' ### Encoding: ISO8859-1 ################################################### ### code chunk number 1: algo_rki.Rnw:96-214 ################################################### # Implementation of the Robert-Koch Institute (RKI) surveillance system. # The system evaluates specified timepoints and gives alarm if it recognizes # an outbreak for this timepoint. # # Features: # Choice between the different RKI sub-systems (difference in reference values). algo.rkiLatestTimepoint <- function(disProgObj, timePoint = NULL, control = list(b = 2, w = 4, actY = FALSE)){ observed <- disProgObj$observed freq <- disProgObj$freq # If there is no value in timePoint, then take the last value in observed if(is.null(timePoint)){ timePoint = length(observed) } # check if the vector observed includes all necessary data. if((timePoint-(control$b*freq)-control$w) < 1){ stop("The vector of observed is too short!") } # Extract the reference values from the historic time series basevec <- c() # if actY == TRUE use also the values of the year of timepoint if(control$actY){ basevec <- observed[(timePoint - control$w):(timePoint - 1)] } # check if you need more referencevalues of the past if(control$b >= 1){ for(i in 1:control$b){ basevec <- c(basevec, observed[(timePoint-(i*freq)-control$w):(timePoint-(i*freq)+control$w)]) } } # compute the mean. mu <- mean(basevec) if(mu > 20){ # use the normal distribution. # comupte the standard deviation. sigma <- sqrt(var(basevec)) # compute the upper limit of the 95% CI. upCi <- mu + 2 * sigma } else{ # use the poisson distribution. # take the upper limit of the 95% CI from the table CIdata.txt. #data("CIdata", envir=environment()) # only local assignment -> SM: however, should not use data() here #CIdata <- read.table(system.file("data", "CIdata.txt", package="surveillance"), header=TRUE) #SM: still better: use R/sysdata.rda (internal datasets being lazy-loaded into the namespace environment) # for the table-lookup mu must be rounded down. mu <- floor(mu) # we need the third column in the row mu + 1 upCi <- CIdata[mu + 1, 3] } # give alarm if the actual value is larger than the upper limit. alarm <- observed[timePoint] > upCi result <- list(alarm=alarm, upperbound=upCi) class(result) = "survRes" # for surveillance system result return(result) } # 'algo.rki' calls 'algo.bayesLatestTimepoint' for data points given by range. algo.rki <- function(disProgObj, control = list(range = range, b = 2, w = 4, actY = FALSE)){ # Set the default values if not yet set if(is.null(control$b)){ # value from rki 3 control$b <- 2 } if(is.null(control$w)){ # value from rki 3 control$w <- 4 } if(is.null(control$actY)){ # value from rki 3 control$actY <- FALSE } # initialize the necessary vectors alarm <- matrix(data = 0, nrow = length(control$range), ncol = 1) upperbound <- matrix(data = 0, nrow = length(control$range), ncol = 1) count <- 1 for(i in control$range){ #hoehle Debug: #print(i) # call algo.rki1LatestTimepoint result <- algo.rkiLatestTimepoint(disProgObj, i, control = control) # store the results in the right order alarm[count] <- result$alarm upperbound[count] <- result$upperbound count <- count + 1 } #Add name and data name to control object. control$name <- paste("rki(",control$w,",",control$w*control$actY,",",control$b,")",sep="") control$data <- paste(deparse(substitute(disProgObj))) # return alarm and upperbound vectors result <- list(alarm = alarm, upperbound = upperbound, disProgObj=disProgObj, control=control) class(result) = "survRes" # for surveillance system result return(result) } algo.rki1 <- function(disProgObj, control = list(range = range)) { algo.rki(disProgObj, control = list(range = control$range, b = 0, w = 6, actY = TRUE)) } algo.rki2 <- function(disProgObj, control = list(range = range)){ algo.rki(disProgObj, control = list(range = control$range, b = 1, w = 6, actY = TRUE)) } algo.rki3 <- function(disProgObj, control = list(range = range)){ algo.rki(disProgObj, control = list(range = control$range, b = 2, w = 4, actY = FALSE)) } surveillance/R/linelist2sts.R0000644000175100001440000000546212471147162015763 0ustar hornikusers###################################################################### # Takes a data frame with dates of individual # cases and create an aggregated sts time series object for these # data with aggregation occuring at the desired scale. # # Parameters: # linelist - a data frame containing individual case information, one per line # dateCol - a character string denoting the column name in case containing # the relevant date variable to aggregate # aggregate.by - aggregation block length given as a string compatible with # seq.Date -- see \link{seq.Date} for further details. # # Author: Michael Hoehle # Date LaMo: 04 Jan 2014 ###################################################################### linelist2sts <- function(linelist,dateCol,aggregate.by=c("1 day", "1 week", "7 day", "1 week", "1 month", "3 month", "1 year"),dRange=NULL, epochInPeriodStr=switch(aggregate.by, "1 day"="1","1 week"="%u", "1 month"="%d","3 month"="%q","1 year"="%j"), startYearFormat=switch(aggregate.by,"1 day"="%Y","7 day"="%G","1 week"="%G","1 month"="%Y","3 month"="%Y","1 year"="%Y"), startEpochFormat=switch(aggregate.by,"1 day"="%j","7 day"="%V","1 week"="%V","1 month"="%m","3 month"="%Q","1 year"="1") ) { ##Check aggregate.by argument aggregate.by <- match.arg(aggregate.by, c("1 day", "1 week", "7 day", "1 week", "1 month", "3 month", "1 year")) #If no dRange let it be the range of the dateCol if (is.null(dRange)) { dRange <- range(linelist[,dateCol],na.rm=TRUE) } if (aggregate.by != "1 day") { ##Move dates back to first of each epoch unit dRange <- dRange - as.numeric(formatDate(dRange,epochInPeriodStr)) + 1 } #Add exactly one time step to dRange to ensure that cut #contains the last level as well. We use 'seq' to ensure #that even weeks/days with no data are present in the factor. maxDate <- seq(max(dRange),length.out=2,by=aggregate.by)[-1] dates <- seq(min(dRange), maxDate, by=aggregate.by) #Make a table containing the specific number of cases. Note that this #needs to occur using a cut statement lvl <- cut(linelist[,dateCol], breaks=dates,right=FALSE) observed <- table(lvl) epoch <- as.Date(names(observed)) #Translate "by" to freq string freq <- switch(aggregate.by,"1 day"=365,"7 day"=52,"1 week"=52,"1 month"=12,"3 month"=4,"1 year"=1) startYear <- as.numeric(formatDate(min(dates),startYearFormat)) startEpoch <- as.numeric(formatDate(min(dates),startEpochFormat)) observed <- matrix(observed,ncol=1) #Create S4 object sts <- new("sts",epoch=as.numeric(epoch),observed=observed, alarm=0*observed, epochAsDate=TRUE,freq=freq,start=c(startYear,startEpoch)) #Return return(sts) } surveillance/R/twinstim_siaf_gaussian.R0000644000175100001440000002062213165636121020070 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Gaussian spatial interaction function for twinstim's epidemic component ### ### Copyright (C) 2009-2014,2017 Sebastian Meyer ### $Revision: 1986 $ ### $Date: 2017-10-06 10:18:25 +0200 (Fri, 06. Oct 2017) $ ################################################################################ ## nTypes: determines the number of parameters=(log-)standard deviations of the ## Gaussian kernel. In a multitype epidemic, the different types may share the ## same spatial interaction function (type-invariant), in which case nTypes=1. ## Otherwise nTypes should equal the number of event types of the epidemic, in ## which case every type has its own variance parameter. ## logsd: logical indicating if the gaussian kernel should be reparametrized ## such that the log-standard deviation is the parameter in question. This ## avoids constrained optimisation (L-BFGS-B) or the use of 'validpars'. ## density: logical. If TRUE, the isotropic Gaussian density (on R^2) will not ## be scaled to have maximum value of 1 at the mean c(0,0). ## effRangeMult: determines the effective range for numerical integration in ## terms of multiples of the parameter, i.e. with effRangeMult=6 numerical ## integration only considers the 6-sigma area around the event instead of the ## whole observation region W. ## validpars: If logsd = FALSE, you should either use ## constrained optimisation (L-BFGS-B) or set 'validpars' to function (pars) ## pars > 0. siaf.gaussian <- function (nTypes = 1, logsd = TRUE, density = FALSE, F.adaptive = FALSE, F.method = "iso", effRangeMult = 6, validpars = NULL) { if (!logsd || density) .Deprecated(msg = "non-default parametrizations of siaf.gaussian() are deprecated") nTypes <- as.integer(nTypes) stopifnot(length(nTypes) == 1L, nTypes > 0L) if (isScalar(F.adaptive)) { adapt <- F.adaptive F.adaptive <- TRUE } else adapt <- 0.1 if (F.adaptive && !missing(F.method)) warning("ignoring 'F.method' since 'F.adaptive=TRUE' (adaptive midpoint cubature)") f <- function (s, pars, types) {} # coordinate matrix s, length(types) = 1 or nrow(s) F <- if (F.adaptive) { as.function(c(alist(polydomain=, f=, pars=, type=), list(adapt=adapt), quote({}))) } else if (F.method == "iso") { if (!logsd || density) stop("only the default parametrization is implemented for 'F.method=\"iso\"'") if (nTypes > 1L) stop("only the single-type kernel is implemented for 'F.method=\"iso\"'") siaf_F_polyCub_iso(intrfr_name = "intrfr.gaussian", engine = "C") } else { formals(siaf.fallback.F)$method <- F.method siaf.fallback.F } Fcircle <- function (r, pars, type) {} # single radius and type effRange <- function (pars) {} deriv <- function (s, pars, types) {} # coordinate matrix s, length(types) = 1 or nrow(s) Deriv <- if (F.adaptive || F.method != "iso") { function (polydomain, deriv, pars, type, nGQ = 20L) {} # single "owin" and type } else { siaf_Deriv_polyCub_iso(intrfr_names = "intrfr.gaussian.dlogsigma", engine = "C") } simulate <- function (n, pars, type, ub) {} # n=size of the sample, # type=single type, # ub=upperbound (unused here) ## if there is only one type, we set the default type(s) argument to 1 ## (it is actually unused inside the functions) if (nTypes == 1L) { formals(f)$types <- formals(F)$type <- formals(Fcircle)$type <- formals(deriv)$types <- formals(Deriv)$type <- formals(simulate)$type <- 1L } # helper expressions tmp1 <- if (logsd) expression(sds <- exp(pars)) else expression(sds <- pars) tmp1.1 <- if (nTypes==1L) expression(sd <- sds) else expression(sd <- sds[type]) tmp2 <- c( expression(sLengthSquared <- .rowSums(s^2, L <- nrow(s), 2L)), if (nTypes == 1L) expression(sdss <- sds) else expression( types <- rep_len(types, L), sdss <- sds[types] ) ) # spatial interaction function body(f) <- as.call(c(as.name("{"), tmp1, tmp2, expression(fvals <- exp(-sLengthSquared/2/sdss^2)), if (density) expression(fvals / (2*pi*sdss^2)) else expression(fvals) )) environment(f) <- baseenv() # numerically integrate f over a polygonal domain if (F.adaptive) { body(F) <- as.call(c(as.name("{"), tmp1, tmp1.1, expression( eps <- adapt * sd, intf <- polyCub.midpoint(polydomain, f, pars, type, eps=eps), intf ) )) environment(F) <- getNamespace("surveillance") } # calculate the integral of f over a circular domain around 0 body(Fcircle) <- as.call(c(as.name("{"), tmp1, tmp1.1, expression(val <- pchisq((r/sd)^2, 2)), # cf. Abramowitz&Stegun formula 26.3.24 if (!density) expression(val <- val * 2*pi*sd^2), expression(val) )) environment(Fcircle) <- getNamespace("stats") # effective integration range of f as a function of sd if (isScalar(effRangeMult)) { body(effRange) <- as.call(c(as.name("{"), tmp1, substitute(effRangeMult*sds) )) environment(effRange) <- baseenv() } else effRange <- NULL # derivative of f wrt pars derivexpr <- if (logsd) { # derive f wrt psi=log(sd) !! if (density) { quote(deriv[cbind(seq_len(L),colidx)] <- exp(-frac) / pi/sdss^2 * (frac-1)) } else { quote(deriv[cbind(seq_len(L),colidx)] <- exp(-frac) * 2*frac) } } else { # derive f wrt sd !! if (density) { quote(deriv[cbind(seq_len(L),colidx)] <- exp(-frac) / pi/sdss^3 * (frac-1)) } else { quote(deriv[cbind(seq_len(L),colidx)] <- exp(-frac) * 2*frac/sdss) } } derivexpr <- do.call("substitute", args=list(expr=derivexpr, env=list(colidx=if (nTypes==1L) 1L else quote(types)))) body(deriv) <- as.call(c(as.name("{"), tmp1, tmp2, expression( deriv <- matrix(0, L, length(pars)), frac <- sLengthSquared/2/sdss^2 ), derivexpr, expression(deriv) )) environment(deriv) <- baseenv() # integrate 'deriv' over a polygonal domain if (F.adaptive || F.method != "iso") { body(Deriv) <- as.call(c(as.name("{"), ## Determine a = argmax(abs(deriv(c(x,0)))) if (density) { # maximum absolute value is at 0 expression(a <- 0) } else { c(tmp1, tmp1.1, expression( xrange <- polydomain$xrange, # polydomain is a "owin" a <- min(max(abs(xrange)), sqrt(2)*sd), # maximum absolute value if (sum(xrange) < 0) a <- -a # is more of the domain left of 0? )) }, if (nTypes == 1L) { expression(deriv.type <- function (s) deriv(s, pars, 1L)[,1L,drop=TRUE]) } else { # d f(s|type_i) / d sigma_{type_j} is 0 for i != j expression(deriv.type <- function (s) deriv(s, pars, type)[,type,drop=TRUE]) }, expression(int <- polyCub.SV(polydomain, deriv.type, nGQ=nGQ, alpha=a)), if (nTypes == 1L) expression(int) else expression( res <- numeric(length(pars)), # zeros res[type] <- int, res ) )) environment(Deriv) <- getNamespace("surveillance") } ## sampler (does not obey the 'ub' argument!!) body(simulate) <- as.call(c(as.name("{"), tmp1, tmp1.1, expression(matrix(rnorm(2*n, mean=0, sd=sd), nrow=n, ncol=2L)) )) environment(simulate) <- getNamespace("stats") ## return the kernel specification list(f=f, F=F, Fcircle=Fcircle, effRange=effRange, deriv=deriv, Deriv=Deriv, simulate=simulate, npars=nTypes, validpars=validpars) } surveillance/R/calibration.R0000644000175100001440000000511212551431236015600 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Calibration tests for count data based on proper scoring rules ### Reference: Wei and Held (2014), Test, 23, 787-805 ### ### Copyright (C) 2015 Sebastian Meyer ### $Revision: 1424 $ ### $Date: 2015-07-15 12:14:54 +0200 (Wed, 15. Jul 2015) $ ################################################################################ ## perform a calibration test given observations x ## with Poisson (size = NULL) or NegBin predictions calibrationTest.default <- function (x, mu, size = NULL, which = c("dss", "logs", "rps"), tolerance = 1e-4, method = 2, ...) { stopifnot(x >= 0, mu > 0, is.null(size) || size > 0) ## calculate scores which <- match.arg(which) score <- do.call(which, args = alist(x = x, mu = mu, size = size)) ## calculate z-statistic z <- calibrationZ(score, mu, size, which, tolerance, method) ## calculate two-sided p-value p <- 2 * pnorm(-abs(z)) ## construct an object of class "htest" res <- list( method = paste0("Calibration Test for Count Data (based on ", toupper(which), ")"), data.name = deparse(substitute(x)), statistic = c("z" = z), parameter = c("n" = length(x)), p.value = p ) class(res) <- "htest" res } ## compute the calibration z-statistic given the computed scores calibrationZ <- function (score, mu, size = NULL, which = c("dss", "logs", "rps"), tolerance = 1e-4, method = 2) { stopifnot(method %in% 1:2) ## expectation and variance of score for given predictive distribution EV <- score_EV(mu, size, tolerance, which) ## calculate the z-statistic z <- do.call(paste0("zScore", method), args = alist(score, EV[[1L]], EV[[2L]])) z } ## compute the calibration z-statistic and p-value ## from a set of scores and their null expectations and variances zScore1 <- function (score, E0, V0) { n <- length(score) ## emean <- mean(E0) ## varmean <- sum(V0) / n^2 ## (mean(score) - emean) / sqrt(varmean) sum(score - E0) / sqrt(sum(V0)) } ## alternative z-statistic Z* zScore2 <- function (score, E0, V0) { n <- length(score) sum((score - E0) / sqrt(V0)) / sqrt(n) } surveillance/R/untie.R0000644000175100001440000002021712404144277014443 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Spatial and temporal tie-breaking of events ### ### Copyright (C) 2012-2014 Sebastian Meyer ### $Revision: 1005 $ ### $Date: 2014-09-10 23:55:11 +0200 (Wed, 10. Sep 2014) $ ################################################################################ ## epidataCS-method ## makes use of untie.default (in time) and untie.matrix (in space) untie.epidataCS <- function (x, amount = list(t=NULL, s=NULL), minsep = list(t=0, s=0), direction = "left", keep.sources = FALSE, ..., verbose = FALSE) { stopifnot(is.list(amount), !is.null(names(amount)), is.list(minsep), !is.null(names(minsep))) minsep <- modifyList(list(t=0, s=0), minsep) do.spatial <- pmatch("s", names(amount), nomatch=0L) > 0L do.temporal <- pmatch("t", names(amount), nomatch=0L) > 0L if (!do.spatial && !do.temporal) { stop("no amounts specified, nothing to do") } ## Generate new events data frame events <- marks.epidataCS(x, coords=FALSE) newcoords <- if (do.spatial) { # untie spatial coordinates untie.matrix(coordinates(x$events), amount$s, minsep$s, constraint=x$W, ...) } else coordinates(x$events) if (do.temporal) { # untie event times ## by default, we shift event times (non-symmetrically) to the left such ## that the shifted versions potentially stay in the same BLOCK of ## endemic covariates (the CIF is left-continuous). events$time <- untie.default(events$time, amount$t, minsep$t, direction=direction, sort=TRUE, ...) ## FIXME: Does sort=TRUE always make sense? ## maybe only sort in untie.default if amount < minsep? } ## Generate epidataCS object with new events coordinates(events) <- newcoords # -> SpatialPointsDataFrame #proj4string(events) <- proj4string(x$W) # "proj4string<-" might change the # string e.g. add +towgs84=0,0,0,0,0,0,0 events@proj4string <- x$W@proj4string npoly <- attr(x$events$.influenceRegion, "nCircle2Poly") clipper <- attr(x$events$.influenceRegion, "clipper") if (is.null(clipper)) # epidataCS < 1.8-1 clipper <- "polyclip" res <- as.epidataCS(events=events, stgrid=x$stgrid[,-1L], W=x$W, qmatrix=x$qmatrix, nCircle2Poly=npoly, clipper=clipper, verbose=verbose) if (keep.sources) { res$events$.sources <- x$events$.sources } ## Done res } ## untie event times by uniform jittering untie.default <- function (x, amount = NULL, minsep = 0, direction = c("symmetric", "left", "right"), sort = NULL, giveup = 1000, ...) { stopifnot(is.numeric(x), is.vector(x)) distx <- dist(x) isPosDist <- distx > 0 if (all(isPosDist)) return(x) # no ties direction <- match.arg(direction) if (is.null(sort)) # sort if x was sorted sort <- identical(order(x, decreasing=FALSE), seq_along(x)) if (any(isPosDist)) { minsepx <- min(distx[isPosDist]) # smallest positive distance amount.bound <- if (direction=="symmetric") minsepx/2 else minsepx if (is.null(amount)) { amount <- amount.bound } else if (sort && abs(amount) > amount.bound) { warning("'amount' should not be greater than ", if (direction=="symmetric") "half of ", "the minimum separation (", format(amount.bound), ")") } } else if (is.null(amount)) { stop("default 'amount' does not work with completely tied 'x'") } shiftFUN <- switch(direction, symmetric = function (x) x + runif(length(x), -amount, amount), right = function (x) x + runif(length(x), 0, amount), left = function (x) x - runif(length(x), 0, amount)) res <- .untie(x, shiftFUN, minsep) if (sort) base::sort(res) else res } ## untie spatial coordinates by moving them by vectors drawn uniformly from a ## disc of radius 'amount', optionally respecting a region (constraint) ## inside which the jittered points should be located (of course, the initial ## points must also obey this constraint), and a minimum separation 'minsep' untie.matrix <- function (x, amount = NULL, minsep = 0, constraint = NULL, giveup = 1000, ...) { stopifnot(is.numeric(x), is.matrix(x)) dimx <- dim(x) if (dimx[2L] <= 1L) { untie.default(c(x), amount, minsep, giveup=giveup) } else if (dimx[2L] > 2L) { stop("spatial tie-breaking is only implemented for 2D coordinates") } if (is.null(amount)) { distx <- dist(x) isPosDist <- distx > 0 ## take half of smallest distance, which guarantees that new points ## will be closer to previously tied points than to others if (any(isPosDist)) amount <- min(distx[isPosDist]) / 2 else stop("default 'amount' does not work with a single location only") } if (!is.null(constraint)) { stopifnot(inherits(constraint, "SpatialPolygons")) proj4string(constraint) <- CRS(NA_character_) outOfConstraint <- function (x) { is.na(over(SpatialPoints(x), constraint)) } if (any(outOfConstraint(x))) stop("some points of the matrix 'x' don't respect the 'constraint'") } else outOfConstraint <- NULL shiftFUN <- function (x) x + runifdisc(nrow(x), amount) .untie(x, shiftFUN, minsep, outOfConstraint, giveup=giveup) } ## workhorse for both vector and matrix 'x' .untie <- function (x, shiftFUN, minsep = 0, outOfConstraintFUN = NULL, giveup = 1000) { x <- res <- as.matrix(x) move <- rep.int(TRUE, nrow(x)) # initially move _all_ points ntry <- 0L updateMoveExpr <- .updateMoveExpr(minsep>0, is.function(outOfConstraintFUN)) while((nleft <- sum(move)) > 0L && ntry < giveup) { res[move,] <- shiftFUN(x[move,,drop=FALSE]) ## determine for the moved points if they are too close to another point ## or fall out of constraint -> try again eval(updateMoveExpr) ntry <- ntry + 1L } if (ntry >= giveup) warning("could not obey 'constraint' and/or 'minsep' for some points") if (ncol(res) == 1) res[,1] else res } ## check if points with index 'idx' are too close (< minsep) to any other points ## (this function could probably be made more efficient, especially for ## length(idx) << nrow(pts), since we actually don't need all pairwise distances ## calculated by dist() but only those related to the idx-points) .tooClose <- function (pts, idx, minsep) { distpts <- as.matrix(dist(pts)) diag(distpts) <- Inf rowSums(distpts[idx,,drop=FALSE] < minsep) > 0 } ## generate expression which updates logical vector 'move' (points left to move) .updateMoveExpr <- function(doClose = FALSE, doConstraint = FALSE) { if (!doClose && !doConstraint) return(expression(move[move] <- FALSE)) exprClose <- expression(movedTooClose <- .tooClose(res, move, minsep)) exprConstraint <- if (doClose) { # only need to check those not too close expression( movedOutOfConstraint <- rep.int(FALSE, nleft), if (any(!movedTooClose)) movedOutOfConstraint[!movedTooClose] <- outOfConstraintFUN(res[move,,drop=FALSE][!movedTooClose,,drop=FALSE]) ) } else { expression( movedOutOfConstraint <- outOfConstraintFUN(res[move,,drop=FALSE]) ) } c(if (doClose) exprClose, if (doConstraint) exprConstraint, switch(doClose + 2*doConstraint, expression(move[move] <- movedTooClose), expression(move[move] <- movedOutOfConstraint), expression(move[move] <- movedTooClose | movedOutOfConstraint) ) ) } surveillance/R/twinSIR_simulation.R0000644000175100001440000006453312420322610017116 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Simulate from a "twinSIR" model as described in Hoehle (2009) ### ### Copyright (C) 2009 Michael Hoehle, 2009, 2012, 2014 Sebastian Meyer ### $Revision: 1079 $ ### $Date: 2014-10-18 01:26:00 +0200 (Sat, 18. Oct 2014) $ ################################################################################ ## Apart from simulation of SIR data, it is possible to simulate ## - SI: infPeriod = function(ids) rep(Inf, length(ids) ## - SIS: remPeriod = function(ids) rep(0, length(ids) ## - SIRS: remPeriod in (0;Inf) ## ## One can even simulate from a Cox model with the following settings: ## + no removal (i.e. infPeriod = function(ids) rep(Inf, length(ids)) ## + no epidemic component (i.e. no alpha, no f, no w). simEpidata <- function (formula, data, id.col, I0.col, coords.cols, subset, beta, h0, f = list(), w = list(), alpha, infPeriod, remPeriod = function(ids) rep(Inf, length(ids)), end = Inf, trace = FALSE, .allocate = NULL) { cl <- match.call() ####################### ### Check arguments ### ####################### ### Build up model.frame mfnames <- c("", "formula", "data", "subset") mf <- cl[match(mfnames, names(cl), nomatch = 0L)] mf$na.action <- as.name("na.fail") mf$drop.unused.levels <- FALSE mf$xlev <- list() data <- eval(mf$data, parent.frame()) if (!inherits(data, "data.frame")) { stop("'data' must inherit from class \"data.frame\"") } if (inherits(data, "epidata")) { id.col <- "id" I0.col <- "atRiskY" # but we need !atRiskY (will be considered below) coords.cols <- names(data)[attr(data, "coords.cols")] if(length(formula) == 2L) { # i.e. no response specified formula[3L] <- formula[2L] formula[[2L]] <- quote(cbind(start, stop)) } } else { for(colarg in c("id.col", "I0.col", "coords.cols")) { colidx <- get(colarg, inherits = FALSE) if (is.numeric(colidx)) { tmp <- names(data)[colidx] if (any(is.na(tmp))) { stop("'", colarg, " = ", deparse(cl[[colarg]]), "': ", "column index must be in [1; ", ncol(data), "=ncol(data)]") } assign(colarg, tmp, inherits = FALSE) } } mf$I0 <- if (is.null(I0.col)) { substitute(rep(0, N), list(N=nrow(data))) } else as.name(I0.col) } mf$id <- as.name(id.col) for(coords.col in coords.cols) { eval(call("$<-", quote(mf), coords.col, quote(as.name(coords.col)))) } special <- c("cox") Terms <- terms(formula, specials = special, data = data, keep.order = TRUE, simplify = FALSE) mf$formula <- Terms mf[[1]] <- as.name("model.frame") mf <- eval(mf, parent.frame()) ### Convert id to a factor (also removing unused levels if it was a factor) mf[["(id)"]] <- factor(mf[["(id)"]]) ids <- levels(mf[["(id)"]]) nObs <- length(ids) if (nObs == 0L) { stop("nothing to do: no individuals in 'data'") } idsInteger <- seq_len(nObs) ### Check start/stop consistency (response) .startstop <- model.response(mf) if (NCOL(.startstop) != 2L || !is.numeric(.startstop)) { stop("the lhs of 'formula' must be a numeric matrix with two columns ", "like 'cbind(start, stop)'") } timeIntervals <- unique(.startstop) timeIntervals <- timeIntervals[order(timeIntervals[,1L]), , drop = FALSE] nBlocks <- nrow(timeIntervals) if (any(timeIntervals[,2L] <= timeIntervals[,1L])) { stop("stop times must be greater than start times") } if (any(timeIntervals[-1L,1L] != timeIntervals[-nBlocks,2L])) { stop("inconsistent start/stop times: time intervals not consecutive") } ### Check .allocate if (is.null(.allocate)) { .allocate <- max(500, ceiling(nBlocks/100)*100) } else { if (!isScalar(.allocate) || .allocate < nBlocks) { stop("'.allocate' must be >= ", nBlocks) } } ### Check that all blocks are complete (all id's present) .blockidx <- match(.startstop[,1L], timeIntervals[,1L]) if (any(table(.blockidx) != nObs)) { stop("all time intervals must be present for all id's") } ### Define a vector containing the time points where covariates change # unique 'start' time points (=> includes beginning of observation period) externalChangePoints <- as.vector(timeIntervals[,1L]) ### SORT THE MODEL.FRAME BY BLOCK AND ID !!! mf <- mf[order(.blockidx, mf[["(id)"]]),] ### Extract the coordinates coords <- as.matrix(mf[idsInteger, tail(1:ncol(mf),length(coords.cols))]) colnames(coords) <- coords.cols rownames(coords) <- ids ### Extract the endemic part Z of the design matrix (no intercept) des <- read.design(mf, Terms) Z <- des$Z nPredCox <- ncol(Z) # number of endemic (cox) predictor terms ### Only include basic endemic variables in the event history output basicCoxNames <- rownames(attr(Terms,"factors"))[attr(Terms,"specials")$cox] basicVarNames <- sub("cox\\(([^)]+)\\)", "\\1", basicCoxNames) nBasicVars <- length(basicCoxNames) # this is necessary if some variables in 'formula' do not have main effects extraBasicVars <- as.matrix(mf[setdiff(basicCoxNames, colnames(Z))]) ### Build up 3-dim array [id x time x var] of endemic terms coxArray <- array(cbind(Z, extraBasicVars), dim = c(nObs, nBlocks, ncol(Z) + ncol(extraBasicVars)), dimnames = list(ids, NULL, c(colnames(Z), colnames(extraBasicVars)))) idxPredVars <- seq_len(nPredCox) idxBasicVars <- match(basicCoxNames, dimnames(coxArray)[[3]]) ### Check simulation parameters ## endemic (cox) part if (nPredCox > 0L) { if(missing(beta) || length(beta) != nPredCox || !is.numeric(beta)) { stop(gettextf(paste("'beta', a numeric vector of length %d", "(number of endemic terms), must be specified"), nPredCox)) } } else { beta <- numeric(0L) } ## epidemic part nPredEpi <- length(f) + length(w) if (nPredEpi > 0L) { ## check f if (length(f) > 0L) { if (ncol(coords) == 0L) { stop("need coordinates for distance-based epidemic covariates 'f'") } if (!is.list(f) || is.null(names(f)) || any(!sapply(f, is.function))) { stop("'f' must be a named list of functions") } distmat <- as.matrix(dist(coords, method = "euclidean")) } ## check w if (length(w) > 0L) { if (!is.list(w) || is.null(names(w)) || any(!sapply(w, is.function))) { stop("'w' must be a named list of functions") } wijlist <- compute_wijlist(w = w, data = mf[idsInteger, ]) } ## check alpha (coefficients for all of f and w) if (missing(alpha) || !is.numeric(alpha) || is.null(names(alpha))) { stop(gettextf(paste("'alpha', a named numeric vector of length %d", "(number of epidemic terms), must be specified"), nPredEpi)) } alpha <- alpha[c(names(f), names(w))] if (any(is.na(alpha))) { stop("'alpha' is incomplete for 'f' or 'w'") } stopifnot(alpha >= 0) } else { alpha <- numeric(0L) } ### Parse the generator function for the infectious periods if (missing(infPeriod)) { stop("argument 'infPeriod' is missing (with no default)") } infPeriod <- match.fun(infPeriod) ### Parse the generator function for the removal periods remPeriod <- match.fun(remPeriod) ### Parse the log baseline function h0spec <- paste("'h0' must be a single number or a list of functions", "\"exact\" and \"upper\"") if (missing(h0)) { stop(h0spec) } if (is.list(h0)) { if (!all(is.function(h0[["exact"]]), is.function(h0[["upper"]]))) { stop(h0spec) } if (!inherits(h0$upper, "stepfun")) { stop("function 'h0$upper' must be a 'stepfun'") } h0ChangePoints <- knots(h0$upper) } else if (isScalar(h0)) { h0func <- eval(parse(text = paste("function (t)", h0))) environment(h0func) <- parent.frame() h0 <- list(exact = h0func, upper = h0func) h0ChangePoints <- numeric(0L) } else { stop(h0spec) } if (!isScalar(h0$exact(0))) { stop("'h0$exact' must return a scalar") } ### Define function which decides if to reject a proposal during simulation exactEqualsUpper <- identical(h0$exact, h0$upper) mustReject <- if (exactEqualsUpper) { function () FALSE } else { function () lambdaStar/lambdaStarMax < runif(1) } ### Check simulation ending time if (!isScalar(end) || end <= 0) { stop("'end' must be a single positive numeric value") } ################### ### Preparation ### ################### ### Initialize set of infected and susceptible individuals infected <- which( mf[idsInteger,"(I0)"] == as.numeric(!inherits(data, "epidata")) ) # in case of "epidata", mf$(I0) equals data$atRiskY => infected = I0==0 susceptibles <- which(! idsInteger %in% infected) ### Initialize tables of planned R-events and S-events Revents <- if (length(infected) > 0) { cbind(infected, infPeriod(ids[infected])) } else { matrix(numeric(0), ncol = 2) } Sevents <- matrix(numeric(0), ncol = 2) ### Small hook to subsequently update the (time depending) Cox predictor ### based on the current time (ct) during the simulation loop if (nPredCox > 0L) { coxUpdate <- expression( predCox <- as.matrix( coxArray[,which(externalChangePoints == ct),idxPredVars] ) %*% beta ) } else { predCox <- numeric(nObs) # zeros } ### 'lambdaCalc' is the main expression for the calculation of the intensity ### values IMMEDIATELY AFTER the current time 'ct'. ### It will be evaluated during the while-loop below. lambdaCalc <- expression( # Endemic Cox predictor (no h0 here!) of susceptibles predCoxS <- predCox[susceptibles], # Epidemic component of susceptibles lambdaEpidemic <- numeric(length(susceptibles)), # zeros if (nPredEpi > 0L && length(infected) > 0L) { fCovars <- if (length(f) > 0L) { u <- distmat[,infected, drop = FALSE] vapply(X = f, FUN = function (B) rowSums(B(u)), FUN.VALUE = numeric(nObs), USE.NAMES = FALSE) } else NULL wCovars <- if (length(w) > 0L) { vapply(X = wijlist, FUN = function (wij) { rowSums(wij[, infected, drop = FALSE]) }, FUN.VALUE = numeric(nobs), USE.NAMES = FALSE) } else NULL epiCovars <- cbind(fCovars, wCovars, deparse.level=0) # epiCovars is a matrix [nObs x nPredEpi] also used by updateNextEvent if (length(susceptibles) > 0L) { lambdaEpidemic <- epiCovars[susceptibles,,drop=FALSE] %*% alpha } }, # Combined intensity lambdaS <- lambdaEpidemic + exp(h0$exact(ct) + predCoxS), # Ground intensity (sum of all lambdaS's) lambdaStar <- sum(lambdaS), # Upper bound on ground intensity lambdaStarMax <- if (exactEqualsUpper) { lambdaStar } else { sum(lambdaEpidemic) + sum(exp(h0$upper(ct) + predCoxS)) } ) # the following initializations are for R CMD check only ("visible binding") lambdaS <- numeric(length(susceptibles)) lambdaStarMax <- lambdaStar <- numeric(1L) # At current time (ct) we have: # lambdaS is a _vector of length the current number of susceptibles_ # containing the intensity of infection for each susceptible individual. # lambdaStar is the overall infection rate. # lambdaStarMax is the upper bound for lambdaStar regarding baseline. # 'susceptible' and 'infected' are the corresponding sets of individuals # immediately AFTER the last event # in theory, if a covariate changes in point t, then the intensity changes # at t+0 only. intensities are left-continuous functions. time interval of # constant intensity is (start;stop]. but in the implementation we need at # time ct the value of the log-baseline at ct+0, especially for # ct %in% h0ChangePoints, thus h0$upper should be a stepfun with right=FALSE ### Create a history object alongside the simulation epiCovars0 <- matrix(0, nrow = nObs, ncol = nPredEpi, dimnames = list(NULL, c(names(f), names(w)))) basicVars0 <- matrix(0, nrow = nObs, ncol = nBasicVars, dimnames = list(NULL, basicVarNames)) emptyEvent <- cbind(BLOCK = 0, id = idsInteger, start = 0, stop = 0, atRiskY = 0, event = 0, Revent = 0, coords, basicVars0, epiCovars0) # WARNING: if you change the column order, you have to adjust the # hard coded column indexes everywhere below, also in getModel.simEpidata ! .epiIdx <- tail(seq_len(ncol(emptyEvent)), nPredEpi) .basicIdx <- 7L + ncol(coords) + seq_len(nBasicVars) .nrowsEvHist <- .allocate * nObs # initial size of the event history evHist <- matrix(NA_real_, nrow = .nrowsEvHist, ncol = ncol(emptyEvent), dimnames = list(NULL, colnames(emptyEvent))) ## Hook - create new event and populate it with appropriate covariates updateNextEvent <- expression( nextEvent <- emptyEvent, # populate epidemic covariates if (nPredEpi > 0L && length(infected) > 0L) { nextEvent[,.epiIdx] <- epiCovars # was calculated in lambdaCalc }, # Which time is currently appropriate in (time varying) covariates tIdx <- match(TRUE, c(externalChangePoints,Inf) > ct) - 1L, if (nBasicVars > 0L) { nextEvent[,.basicIdx] <- coxArray[,tIdx,idxBasicVars] }, # At-risk indicator if (length(susceptibles) > 0) { nextEvent[susceptibles,5L] <- 1 }, # Block index nextEvent[,1L] <- rep.int(block, nObs), # Start time nextEvent[,3L] <- rep.int(ct, nObs) ) ## Hook function to add the event to the history addNextEvent <- expression( nextEvent[,4L] <- rep.int(ct, nObs), # stop time if (block*nObs > .nrowsEvHist) { # enlarge evHist if not big enough if (trace > 0L) { cat("Enlarging the event history @ block", block, "...\n") } evHist <- rbind(evHist, matrix(NA_real_, nrow = .allocate * nObs, ncol = ncol(emptyEvent)) ) .nrowsEvHist <- .nrowsEvHist + .allocate * nObs }, evHistIdx <- idsInteger + nObs * (block-1), # = seq.int(from = 1 + nObs*(block-1), to = nObs*block) evHist[evHistIdx,] <- nextEvent, block <- block + 1 ) ####################################################################### ### MAIN PART: sequential simulation of infection and removal times ### ####################################################################### ### Some indicators ct <- timeIntervals[1L,1L] # = externalChangePoints[1] # current time block <- 1 pointRejected <- FALSE loopCounter <- 0L trace <- as.integer(trace) hadNumericalProblemsInf <- hadNumericalProblems0 <- FALSE eventTimes <- numeric(0) ### Update (time depending) endemic covariates (if there are any) if (nPredCox > 0L) { eval(coxUpdate) } ### Let's rock 'n roll repeat { loopCounter <- loopCounter + 1L if (trace > 0L && loopCounter %% trace == 0L) { cat(loopCounter, "@t =", ct, ":\t|S| =", length(susceptibles), " |I| =", length(infected), "\trejected?", pointRejected, "\n") } if (!pointRejected) { ## Compute current conditional intensity eval(lambdaCalc) ## Update event history (uses epiCovars from lambdaCalc) eval(updateNextEvent) } pointRejected <- FALSE ## Determine time of next external change point changePoints <- c(externalChangePoints, h0ChangePoints, Revents[,2], Sevents[,2]) .isPendingChangePoint <- changePoints > ct nextChangePoint <- if (any(.isPendingChangePoint)) { min(changePoints[.isPendingChangePoint]) } else Inf ## Simulate waiting time for the subsequent infection T <- tryCatch(rexp(1, rate = lambdaStarMax), warning = function(w) { if (!is.na(lambdaStarMax) && lambdaStarMax < 1) { # rate was to small for rexp if (length(susceptibles) > 0L) { assign("hadNumericalProblems0", TRUE, inherits = TRUE) } if (nextChangePoint == Inf) NULL else Inf } else { # rate was to big for rexp 0 # since R-2.7.0 rexp(1, Inf) returns 0 with no warning! } }) ## Stop if lambdaStarMax too small AND no more changes in rate if (is.null(T)) { ct <- end eval(addNextEvent) break } ## Stop if lambdaStarMax too big meaning T == 0 (=> concurrent events) if (T == 0) { hadNumericalProblemsInf <- TRUE break } ## Stop at all costs if end of simulation time [0; end) has been reached if (isTRUE(min(ct+T, nextChangePoint) >= end)) { # ">=" because we don't want an event at "end" ct <- end eval(addNextEvent) break } if (ct + T > nextChangePoint) { ## Simulated time point is beyond the next time of intensity change ## (removal or covariate or upper baseline change point) ct <- nextChangePoint if (nPredCox > 0L && ct %in% externalChangePoints) { # update endemic covariates eval(coxUpdate) } if (.Reventidx <- match(ct, Revents[,2L], nomatch = 0L)) { # removal (I->R), thus update set of infected remover <- Revents[.Reventidx,1L] .remPeriod <- remPeriod(ids[remover]) Sevents <- rbind(Sevents, c(remover, ct + .remPeriod)) infected <- infected[-match(remover, infected)] nextEvent[remover,7L] <- 1 } if (.Seventidx <- match(ct, Sevents[,2L], nomatch = 0L)) { # this will also be TRUE if above .remPeriod == 0 (SIS-like with pseudo-R-event) # re-susceptibility (R->S), thus update set of susceptibles resusceptible <- Sevents[.Seventidx,1L] susceptibles <- c(susceptibles, resusceptible) } # update event history eval(addNextEvent) } else { ## Simulated time point lies within the thinning period ## => rejection sampling step ct <- ct + T if (length(h0ChangePoints) > 0L) {# i.e. if non-constant baseline # Update intensities for rejection probability at new ct eval(lambdaCalc) } if (mustReject()) { pointRejected <- TRUE next } # At this point, we have an actual event! => # Sample the individual who becomes infected with probabilities # according to the intensity proportions victimSindex <- sample(length(susceptibles), 1L, prob = lambdaS/lambdaStar) victim <- susceptibles[victimSindex] eventTimes <- c(eventTimes, ct) Revents <- rbind(Revents, c(victim, ct + infPeriod(ids[victim]))) susceptibles <- susceptibles[-victimSindex] infected <- c(infected, victim) # Add to history nextEvent[victim,6L] <- 1 eval(addNextEvent) } } ############## ### Return ### ############## if (hadNumericalProblemsInf) { warning("simulation ended due to an infinite overall infection rate") } if (hadNumericalProblems0) { warning("occasionally, the overall infection rate was numerically ", "equal to 0 although there were individuals at risk") } if (trace > 0L) { cat("Converting the event history into a data.frame (\"epidata\") ...\n") } epi <- as.data.frame(evHist[seq_len(nObs*(block-1)),,drop=FALSE]) epi$id <- factor(ids[epi$id], levels = ids) rownames(epi) <- NULL attr(epi, "eventTimes") <- eventTimes attr(epi, "timeRange") <- c(timeIntervals[1L,1L], ct) attr(epi, "coords.cols") <- 7L + seq_len(ncol(coords)) attr(epi, "f") <- f attr(epi, "w") <- w attr(epi, "config") <- list(h0 = h0$exact, beta = beta, alpha = alpha) attr(epi, "call") <- cl attr(epi, "terms") <- Terms class(epi) <- c("simEpidata", "epidata", "data.frame") if (trace > 0L) { cat("Done.\n") } return(epi) } ### We define no plot-method for simEpidata (as a wrapper for intensityPlot), ### because we want plot(simEpidataObject) to use the inherited method plot.epidata ### which shows the evolution of the numbers of individuals in states S, I, and R ################################################################################ # A 'simulate' method for objects of class "twinSIR". ################################################################################ simulate.twinSIR <- function (object, nsim = 1, seed = 1, infPeriod = NULL, remPeriod = NULL, end = diff(range(object$intervals)), trace = FALSE, .allocate = NULL, data = object$data, ...) { theta <- coef(object) px <- ncol(object$model$X) pz <- ncol(object$model$Z) nh0 <- attr(object$terms, "intercept") * length(object$nEvents) f <- object$model$f # contains only the f's used in the model formula w <- object$model$w # contains only the w's used in the model formula if (any(missingf <- !names(f) %in% colnames(object$model$X))) { stop("simulation requires distance functions 'f', missing for: ", paste(colnames(object$model$X)[missingf], collapse=", ")) } if (any(missingw <- !names(w) %in% colnames(object$model$X))) { stop("simulation requires functions 'w', missing for: ", paste(colnames(object$model$X)[missingw], collapse=", ")) } formulaLHS <- "cbind(start, stop)" formulaRHS <- paste(c(as.integer(nh0 > 0), # endemic intercept? names(theta)[px+nh0+seq_len(pz-nh0)]), collapse = " + ") formula <- formula(paste(formulaLHS, formulaRHS, sep="~"), env = environment(formula(object))) h0 <- if (nh0 == 0L) { if (pz == 0L) { -Inf # no endemic component at all (exp(-Inf) == 0) } else { 0 # endemic covariates act on 0-log-baseline hazard } } else { .h0 <- stepfun(x = object$intervals[1:nh0], y = c(0,theta[px+seq_len(nh0)]), right = FALSE) list(exact = .h0, upper = .h0) } if (!inherits(data, "epidata")) { stop("invalid 'data' argument: use function 'twinSIR' with ", "'keep.data = TRUE'") } if (is.null(infPeriod) || is.null(remPeriod)) { s <- summary(data) eventsByID <- s$byID if (is.null(infPeriod)) { infPeriod <- if (s$type == "SI") { function (ids) rep.int(Inf, length(ids)) } else { # SIR, SIRS or SIS eventsByID$infPeriod <- eventsByID$time.R - eventsByID$time.I meanInfPeriodByID <- if (s$type %in% c("SIRS", "SIS")) { c(tapply(eventsByID$infPeriod, list(eventsByID$id), mean, na.rm = TRUE, simplify = TRUE)) } else { structure(eventsByID$infPeriod, names = eventsByID$id) } meanInfPeriod <- mean(meanInfPeriodByID, na.rm = TRUE) if (is.na(meanInfPeriod)) { stop("'infPeriod = NULL' invalid: ", "no infection periods observed") } function (ids) { infPeriods <- meanInfPeriodByID # named vector infPeriods[is.na(infPeriods)] <- meanInfPeriod infPeriods[ids] } } } if (is.null(remPeriod)) { remPeriod <- if (s$type == "SIRS") { eventsByID$remPeriod <- eventsByID$time.S - eventsByID$time.R meanRemPeriodByID <- c(tapply(eventsByID$remPeriod, list(eventsByID$id), mean, na.rm = TRUE, simplify = TRUE)) meanRemPeriod <- mean(meanRemPeriodByID, na.rm = TRUE) function (ids) { remPeriods <- meanRemPeriodByID # named vector remPeriods[is.na(remPeriods)] <- meanRemPeriod remPeriods[ids] } } else if (s$type == "SIS") { function (ids) rep.int(0, length(ids)) } else { # SIR or SI function (ids) rep.int(Inf, length(ids)) } } } set.seed(seed) res <- replicate(nsim, simEpidata(formula, data = data, beta = theta[px + nh0 + seq_len(pz-nh0)], h0 = h0, f = f, w = w, alpha = theta[seq_len(px)], infPeriod = infPeriod, remPeriod = remPeriod, end = end, trace = trace, .allocate = .allocate), simplify = FALSE ) if (nsim == 1L) res[[1L]] else res } surveillance/R/algo_bayes.R0000644000175100001440000000755112600466365015435 0ustar hornikusers################################################### ### chunk number 1: ################################################### # Implementation of the Bayes system. # The system evaluates specified timepoints and gives alarm if it recognizes # an outbreak for this timepoint. # # Features: # Choice between different Bayes sub-systems (difference in reference values). algo.bayesLatestTimepoint <- function(disProgObj, timePoint = NULL, control = list(b = 0, w = 6, actY = TRUE, alpha=0.05)){ observed <- disProgObj$observed freq <- disProgObj$freq # If there is no value in timePoint, then take the last value in observed if(is.null(timePoint)){ timePoint = length(observed) } #If no level specified. # check if the vector observed includes all necessary data. if((timePoint-(control$b*freq)-control$w) < 1){ stop("The vector of observed is too short!") } # construct the reference values basevec <- c() # if actY == TRUE use also the values of the year of timepoint if(control$actY){ basevec <- observed[(timePoint - control$w):(timePoint - 1)] } # check if you need more referencevalues of the past if(control$b >= 1){ for(i in 1:control$b){ basevec <- c(basevec, observed[(timePoint-(i*freq)-control$w):(timePoint-(i*freq)+control$w)]) } } # get the parameter for the negative binomial distribution # Modification on 13 July 2009 after comment by C. W. Ryan on NAs in the # time series sumBasevec <- sum(basevec, na.rm=TRUE) lengthBasevec <- sum(!is.na(basevec)) # compute the upper limit of a one sided (1-alpha)*100% prediction interval. upPI <- qnbinom(1-control$alpha, sumBasevec + 1/2, (lengthBasevec)/(lengthBasevec + 1)) # give alarm if the actual value is larger than the upper limit. alarm <- observed[timePoint] > upPI result <- list(alarm=alarm, upperbound=upPI, disProgObj=disProgObj) class(result) = "survRes" # for surveillance system result return(result) } # 'algo.bayes' calls 'algo.bayesLatestTimepoint' for data points given by range. algo.bayes <- function(disProgObj, control = list(range = range, b = 0, w = 6, actY = TRUE,alpha=0.05)){ # Set the default values if not yet set if(is.null(control$b)){ # value from bayes 1 control$b <- 0 } if(is.null(control$w)){ # value from bayes 1 control$w <- 6 } if(is.null(control$alpha)){ # value from bayes 1 control$alpha <- 0.05 } if(is.null(control$actY)){ # value from bayes 1 control$actY <- TRUE } # initialize the necessary vectors alarm <- matrix(data = 0, nrow = length(control$range), ncol = 1) upperbound <- matrix(data = 0, nrow = length(control$range), ncol = 1) count <- 1 for(i in control$range){ # call algo.bayesLatestTimepoint result <- algo.bayesLatestTimepoint(disProgObj, i, control = control) # store the results in the right order alarm[count] <- result$alarm upperbound[count] <- result$upperbound count <- count + 1 } #Add name and data name to control object. control$name <- paste("bayes(",control$w,",",control$w*control$actY,",",control$b,")",sep="") control$data <- paste(deparse(substitute(disProgObj))) # return alarm and upperbound vectors result <- list(alarm = alarm, upperbound = upperbound, disProgObj=disProgObj,control=control) class(result) = "survRes" # for surveillance system result return(result) } algo.bayes1 <- function(disProgObj, control = list(range = range)){ algo.bayes(disProgObj, control = list(range = control$range, b = 0, w = 6, actY = TRUE,alpha=0.05)) } algo.bayes2 <- function(disProgObj, control = list(range = range)){ algo.bayes(disProgObj, control = list(range = control$range, b = 1, w = 6, actY = TRUE,alpha=0.05)) } algo.bayes3 <- function(disProgObj, control = list(range = range)){ algo.bayes(disProgObj, control = list(range = control$range, b = 2, w = 4, actY = FALSE,alpha=0.05)) } surveillance/R/twinSIR_helper.R0000644000175100001440000002204712401160566016214 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Auxiliary functions for twinSIR() ### and to compute one-sided AIC by simulation (in twinSIR_methods.R) ### ### Copyright (C) 2009-2014 Sebastian Meyer, contributions by Michael Hoehle ### $Revision: 991 $ ### $Date: 2014-09-01 23:13:26 +0200 (Mon, 01. Sep 2014) $ ################################################################################ ################################################################################ # The cox function is used in model formulae to indicate/capture the variables # which go into the cox part/endemic component of the model. # Also, with this "cox variables" it is possible to build up interactions # as usual: cox(var1):cox(var2)... (as if cox(...) was a normal variable) ################################################################################ cox <- function (x) { x } ################################################################################ # read.design extracts the two parts X and Z of the design matrix. # Z contains the endemic part (consisting of the cox(.) terms), # X contains the epidemic part (the rest). # The automatic intercept variable is excluded from these matrices! # # ARGS: # m - a model.frame # Terms - terms for this model.frame (used to extract the model.matrix from m) # RETURNS: # list of matrices X and Z. # If there is no variable in one part of the model the corresponding matrix has # 0 columns, e.g. ncol(Z) = 0, if there is no endemic (Cox) part. # NOTE: # This function is inspired from the timereg package by T. Scheike (available # under GPL2). See http://staff.pubhealth.ku.dk/~ts/timereg.html for details. # The function has been improved/modified to fit our purposes. ################################################################################ read.design <- function (m, Terms) { attr(Terms, "intercept") <- 1 # we will remove the intercept later on # we need this to ensure that we have a reference category # in case of factors (correct contrasts) XZ <- model.matrix(Terms, m) Zterms <- grep("cox\\([^)]+\\)", colnames(XZ), ignore.case = FALSE, perl = FALSE, value = FALSE, fixed = FALSE, useBytes = FALSE, invert = FALSE) # timereg 1.0-9 way: pattern="^cox[(][A-z0-9._]*[)]" with perl=TRUE X <- XZ[, -c(1L, Zterms), drop = FALSE] Z <- XZ[, Zterms, drop = FALSE] ud <- list(X = X, Z = Z) return(ud) } ## Alternative way to do the same thing as read.design. ## This approach is similar to that of coxph, but most often some milliseconds ## slower. # read.design <- function (m, Terms) # { # attr(Terms, "intercept") <- 1 # we will remove the intercept later on # # we need this to ensure that we have a reference category # # in case of factors (right contrasts) # nCoxTerms <- length(attr(Terms, "specials")[["cox"]]) # if (nCoxTerms > 0) { # dropX <- untangle.specials(Terms, "cox", order=1:3)$terms # } # if (length(dropX) > 0) { # X <- model.matrix(Terms[-dropX], m) # by subscripting a Terms object, # Z <- model.matrix(Terms[dropX], m) # one always gets an intercept term # Z <- Z[, -1, drop = FALSE] # } else { # X <- model.matrix(Terms, m) # Z <- X[, NULL, drop = FALSE] # } # X <- X[, -1, drop = FALSE] # # ud <- list(X = X, Z = Z) # return(ud) # } ################################################################################ # Little helper function which returns either summary(object) or simply object, # if it is already a summary. The function also verifies the 'class'. ################################################################################ getSummary <- function (object, class) { summaryClass <- paste("summary", class, sep=".") if (inherits(object, class)) { summary(object) } else if (inherits(object, summaryClass)) { object } else { stop("'object' must inherit from class \"", summaryClass, "\" or \"", class, "\"") } } ################################################################################ ############################## OSAIC function ################################## ################################################################################ # Two functions: # Ztilde.chibarsq <- function(Z,p,Winv,tR,s=1) # w.chibarsq.sim <- function(p, W, N=1e4) # # Both functions are only used internally, no need for documentation # they are used in function .OSAICpenalty (twinSIR_methods.R) ################################################################################ ########################################################################## # This function computes Ztilde # for one Z as specified in Simulation 3, Silvapulle & Sen (2005), p. 79. # See also p. 37 for the quadprog link. # # Params: # Z - px1 matrix or vector with specific Z value # p - dimension of the problem, where theta is restricted to R^{+p} # Winv - inverse of covariance matrix of Z # tR - transpose of constraint matrix R\theta \geq 0. In all cases equal to # diag(p), but to save time we deliver it to the function every time # s - rescale objective function (division by s) # # Returns: # Ztilde, the point at which (Z-\theta)' W^{-1} (Z-\theta) is the # minimum over \theta \geq 0. ########################################################################## Ztilde.chibarsq <- function(Z,p,Winv,tR,s=1) { #The solve.QP function minimizes #-d^T b + 1/2 b^T D b subject to the constraints A^T b >= b_0. #Thus using p. 37 we have d = t(Winv) %*% Z. d <- crossprod(Winv, Z) #Note: Winv and d can become quiet large (or small), but since the solution is #invariant to the scaling of the function being minimized, we can equivalently #call solve.QP using D/s and d/s (e.g., s=mean(D)) to avoid the error #"constraints are inconsistent, no solution!" theta <- quadprog::solve.QP(Dmat = Winv/s, dvec = d/s, Amat = tR, bvec = rep.int(0,p), meq = 0)$solution return(sum(theta > 0)) } ###################################################################### # Compute OSAIC by simulation weights as described in Silvapulle & Sen # (2005), Simulation 3, p.79. # # Params: # p - dimension of the problem, theta is constrained to R^{+p} # W - covariance matrix of the chibarsq distribution # N - number of simulations to use # # Returns: # vector of length p+1 containing the weights w_i, i=0, \ldots, p, # computed by Monte Carlo simulation ###################################################################### w.chibarsq.sim <- function(p, W, N=1e4) { #Draw Z's from multivariate normal distribution with covariance #matrix W Z <- mvrnorm(N, rep.int(0,p), W) if (is.vector(Z)) Z <- t(Z) # case N==1 #inverse of W Winv <- solve(W) #For each simulation calculate Ztilde sims <- apply(X=Z, MARGIN=1, FUN=Ztilde.chibarsq, p=p, Winv=Winv, tR=diag(p), s=mean(Winv)) w <- table(factor(sims, levels=0:p)) / N return(w) } ################################################################################ # The helper 'getModel.simEpidata' extracts the model of an object of class # "simEpidata" similar to the function 'twinSIR' with model = TRUE, # i.e. a list with components survs, X, Z and weights, where atRiskY == 1. # The log-baseline h0 is evaluated at start times of intervals only. # This function is used in function 'intensityPlot'. ################################################################################ getModel.simEpidata <- function (object, ...) { class(object) <- "data.frame" # avoid use of [.epidata (not necessary here) config <- attr(object, "config") alpha <- config$alpha beta <- config$beta atRiskY1 <- object$atRiskY == 1 simepi1 <- object[atRiskY1,] survs <- simepi1[c("id", "start", "stop", "event")] attr(survs, "eventTimes") <- attr(object, "eventTimes") attr(survs, "timeRange") <- attr(object, "timeRange") X <- as.matrix(simepi1[tail(1:ncol(simepi1), length(alpha))]) logbaseline <- sapply(survs$start, FUN = config$h0, simplify = TRUE) Terms <- attr(object, "terms") Z <- read.design(model.frame(Terms, simepi1), Terms)$Z Z <- cbind("cox(logbaseline)" = logbaseline, Z) model <- list(survs = survs, X = X, Z = Z, weights = rep.int(1,nrow(survs))) return(model) } ### Similar auxiliary method extracting the model component ### of a fitted 'twinSIR' getModel.twinSIR <- function (object, ...) { if (is.null(model <- object[["model"]])) { stop("'", deparse(substitute(object)), "' does not contain the 'model' ", "component (use 'model = TRUE' when calling 'twinSIR')") } return(model) } surveillance/R/hhh4_simulate.R0000644000175100001440000002633013231340050016041 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Simulate from a HHH4 model ### ### Copyright (C) 2012 Michaela Paul, 2013-2016,2018 Sebastian Meyer ### $Revision: 2064 $ ### $Date: 2018-01-22 11:42:48 +0100 (Mon, 22. Jan 2018) $ ################################################################################ ### Simulate-method for hhh4-objects simulate.hhh4 <- function (object, # result from a call to hhh4 nsim=1, # number of replicates to simulate seed=NULL, y.start=NULL, # initial counts for epidemic components subset=1:nrow(object$stsObj), coefs=coef(object), # coefficients used for simulation components=c("ar","ne","end"), # which comp to include simplify=nsim>1, # counts array only (no full sts) ...) { ## Determine seed (this part is copied from stats:::simulate.lm with ## Copyright (C) 1995-2012 The R Core Team) if(!exists(".Random.seed", envir = .GlobalEnv, inherits = FALSE)) runif(1) # initialize the RNG if necessary if(is.null(seed)) RNGstate <- get(".Random.seed", envir = .GlobalEnv) else { R.seed <- get(".Random.seed", envir = .GlobalEnv) set.seed(seed) RNGstate <- structure(seed, kind = as.list(RNGkind())) on.exit(assign(".Random.seed", R.seed, envir = .GlobalEnv)) } ## END seed cl <- match.call() theta <- if (missing(coefs)) coefs else checkCoefs(object, coefs) ## lags lag.ar <- object$control$ar$lag lag.ne <- object$control$ne$lag maxlag <- max(lag.ar, lag.ne) ## initial counts nUnits <- object$nUnit if (is.null(y.start)) { # set starting value to mean observed (in subset!) y.means <- ceiling(colMeans(observed(object$stsObj)[subset,,drop=FALSE])) y.start <- matrix(y.means, maxlag, nUnits, byrow=TRUE) } else { if (is.vector(y.start)) y.start <- t(y.start) if (ncol(y.start) != nUnits) stop(sQuote("y.start"), " must have nUnits=", nUnits, " columns") if (nrow(y.start) < maxlag) stop("need 'y.start' values for lag=", maxlag, " initial time points") } ## get fitted components nu_it (with offset), phi_it, lambda_it, t in subset model <- terms.hhh4(object) means <- meanHHH(theta, model, subset=subset) ## extract overdispersion parameters (simHHH4 assumes psi->0 means Poisson) psi <- splitParams(theta,model)$overdisp if (length(psi) > 1) # "NegBinM" or shared overdispersion parameters psi <- psi[model$indexPsi] ## weight matrix/array of the ne component neweights <- getNEweights(object, coefW(theta)) ## set predictor to zero if not included ('components' argument) stopifnot(length(components) > 0, components %in% c("ar", "ne", "end")) getComp <- function (comp) { sel <- if (comp == "end") "endemic" else paste(comp, "exppred", sep=".") res <- means[[sel]] if (!comp %in% components) res[] <- 0 res } ar <- getComp("ar") ne <- getComp("ne") end <- getComp("end") ## simulate simcall <- quote( simHHH4(ar, ne, end, psi, neweights, y.start, lag.ar, lag.ne) ) if (!simplify) { ## result template res0 <- object$stsObj[subset,] setObserved <- function (observed) { res0@observed[] <- observed res0 } simcall <- call("setObserved", simcall) } res <- if (nsim==1) eval(simcall) else replicate(nsim, eval(simcall), simplify=if (simplify) "array" else FALSE) if (simplify) { dimnames(res)[1:2] <- list(subset, colnames(model$response)) attr(res, "initial") <- y.start attr(res, "stsObserved") <- object$stsObj[subset,] class(res) <- "hhh4sims" } ## Done attr(res, "call") <- cl attr(res, "seed") <- RNGstate res } ### Internal auxiliary function, which performs the actual simulation simHHH4 <- function(ar, # lambda_it (nTime x nUnits matrix) ne, # phi_it (nTime x nUnits matrix) end, # nu_it (nTime x nUnits matrix, offset included) psi, # overdisp param(s) or numeric(0) (psi->0 = Poisson) neW, # weight matrix/array for neighbourhood component start, # starting counts (vector of length nUnits, or # matrix with nUnits columns if lag > 1) lag.ar = 1, lag.ne = lag.ar ) { nTime <- nrow(end) nUnits <- ncol(end) ## check and invert psi since rnbinom() uses different parametrization size <- if (length(psi) == 0 || isTRUE(all.equal(psi, 0, check.attributes=FALSE))) { NULL # Poisson } else { if (!length(psi) %in% c(1, nUnits)) stop("'length(psi)' must be ", paste(unique(c(1, nUnits)), collapse = " or "), " (number of units)") 1/psi } ## simulate from Poisson or NegBin model rdistr <- if (is.null(size)) { rpois } else { ## unit-specific 'mean's and variance = mean + psi*mean^2 ## where 'size'=1/psi and length(psi) == 1 or length(mean) function(n, mean) rnbinom(n, mu = mean, size = size) } ## if only endemic component -> simulate independently if (all(ar + ne == 0)) { if (!is.null(size)) size <- matrix(size, nTime, nUnits, byrow = TRUE) return(matrix(rdistr(length(end), end), nTime, nUnits)) } ## weighted sum of counts of other (neighbouring) regions ## params: y - vector with (lagged) counts of regions ## W - nUnits x nUnits adjacency/weight matrix (0=no neighbour) wSumNE <- if (is.null(neW) || all(neW == 0)) { # includes the case nUnits==1 function (y, W) numeric(nUnits) } else function (y, W) .colSums(W * y, nUnits, nUnits) ## initialize matrices for means mu_i,t and simulated data y_i,t mu <- y <- matrix(0, nTime, nUnits) y <- rbind(start, y) nStart <- nrow(y) - nrow(mu) # usually just 1 for lag=1 ## simulate timeDependentWeights <- length(dim(neW)) == 3 if (!timeDependentWeights) neWt <- neW for(t in seq_len(nTime)){ if (timeDependentWeights) neWt <- neW[,,t] ## mean mu_i,t = lambda*y_i,t-1 + phi*sum_j wji*y_j,t-1 + nu_i,t mu[t,] <- ar[t,] * y[nStart+t-lag.ar,] + ne[t,] * wSumNE(y[nStart+t-lag.ne,], neWt) + end[t,] ## Sample from Poisson/NegBin with that mean y[nStart+t,] <- rdistr(nUnits, mu[t,]) } ## return simulated data without initial counts y[-seq_len(nStart),,drop=FALSE] } ### check compatibility of a user-specified coefficient vector with model checkCoefs <- function (object, coefs, reparamPsi=TRUE) { theta <- coef(object, reparamPsi=reparamPsi) if (length(coefs) != length(theta)) stop(sQuote("coefs"), " must be of length ", length(theta)) names(coefs) <- names(theta) coefs } ### subset simulations and keep attributes in sync "[.hhh4sims" <- function (x, i, j, ..., drop = FALSE) { xx <- NextMethod("[", drop = drop) if (nargs() == 2L) # x[i] call -> hhh4sims class is lost return(xx) ## otherwise we were subsetting the array and attributes are lost attr(xx, "initial") <- attr(x, "initial") attr(xx, "stsObserved") <- attr(x, "stsObserved") subset_hhh4sims_attributes(xx, i, j) } subset_hhh4sims_attributes <- function (x, i, j) { if (!missing(i)) attr(x, "stsObserved") <- attr(x, "stsObserved")[i,] if (!missing(j)) { attr(x, "stsObserved") <- suppressMessages(attr(x, "stsObserved")[, j]) is.na(attr(x, "stsObserved")@neighbourhood) <- TRUE attr(x, "initial") <- attr(x, "initial")[, j, drop = FALSE] } x } ### aggregate predictions over time and/or (groups of) units aggregate.hhh4sims <- function (x, units = TRUE, time = FALSE, ..., drop = FALSE) { ax <- attributes(x) if (time) { ## sum counts over the whole simulation period res <- colSums(x) ## -> a nUnits x nsim matrix -> will no longer be "hhh4sims" if (isTRUE(units)) { # sum over all units res <- colSums(res) # now a vector of length nsim } else if (!identical(FALSE, units)) { # sum over groups of units stopifnot(length(units) == dim(x)[2]) res <- t(rowSumsBy.matrix(t(res), units)) } } else { if (isTRUE(units)) { # sum over all units res <- apply(X = x, MARGIN = c(1L, 3L), FUN = sum) if (!drop) { ## restore unit dimension conforming to "hhh4sims" class dim(res) <- c(ax$dim[1L], 1L, ax$dim[3L]) dnres <- ax$dimnames dnres[2L] <- list(NULL) dimnames(res) <- dnres ## restore attributes attr(res, "initial") <- as.matrix(rowSums(ax$initial)) attr(res, "stsObserved") <- aggregate(ax$stsObserved, by = "unit") class(res) <- "hhh4sims" } } else if (!identical(FALSE, units)) { # sum over groups of units stopifnot(length(units) == dim(x)[2]) groupnames <- names(split.default(seq_along(units), units)) res <- apply(X = x, MARGIN = 3L, FUN = rowSumsBy.matrix, by = units) dim(res) <- c(ax$dim[1L], length(groupnames), ax$dim[3L]) dnres <- ax$dimnames dnres[2L] <- list(groupnames) dimnames(res) <- dnres if (!drop) { ## restore attributes attr(res, "initial") <- rowSumsBy.matrix(ax$initial, units) attr(res, "stsObserved") <- rowSumsBy.sts(ax$stsObserved, units) class(res) <- "hhh4sims" } } else { return(x) } } ## done res } rowSumsBy.matrix <- function (x, by, na.rm = FALSE) { dn <- dim(x) res <- vapply(X = split.default(x = seq_len(dn[2L]), f = by), FUN = function (idxg) .rowSums(x[, idxg, drop = FALSE], dn[1L], length(idxg), na.rm = na.rm), FUN.VALUE = numeric(dn[1L]), USE.NAMES = TRUE) if (dn[1L] == 1L) t(res) else res } rowSumsBy.sts <- function (x, by, na.rm = FALSE) { ## map, neighbourhood, upperbound, control get lost by aggregation of units .sts(epoch = x@epoch, freq = x@freq, start = x@start, observed = rowSumsBy.matrix(x@observed, by, na.rm), state = rowSumsBy.matrix(x@state, by, na.rm) > 0, alarm = rowSumsBy.matrix(x@alarm, by, na.rm) > 0, populationFrac = rowSumsBy.matrix(x@populationFrac, by, na.rm), epochAsDate = x@epochAsDate, multinomialTS = x@multinomialTS) } surveillance/R/twinstim_siaf_powerlawL.R0000644000175100001440000001723013165643423020236 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### _L_agged power-law kernel f(s) = (||s||/sigma)^-d for ||s|| >= sigma, else 1 ### Similar to the density of the Pareto distribution (but value 1 for < sigma) ### ### Copyright (C) 2013-2014,2017 Sebastian Meyer ### $Revision: 1988 $ ### $Date: 2017-10-06 11:04:19 +0200 (Fri, 06. Oct 2017) $ ################################################################################ siaf.powerlawL <- function (nTypes = 1, validpars = NULL, engine = "C") { nTypes <- as.integer(nTypes) stopifnot(length(nTypes) == 1L, nTypes > 0L) engine <- match.arg(engine, c("C", "R")) ## for the moment we don't make this type-specific if (nTypes != 1) stop("type-specific shapes are not yet implemented") ## helper expression, note: logpars=c(logscale=logsigma, logd=logd) tmp <- expression( logsigma <- logpars[[1L]], # used "[[" to drop names logd <- logpars[[2L]], sigma <- exp(logsigma), d <- exp(logd) ) ## spatial kernel f <- function (s, logpars, types = NULL) {} body(f) <- as.call(c(as.name("{"), tmp, expression( sLength <- sqrt(.rowSums(s^2, L <- length(s)/2, 2L)), fvals <- rep.int(1, L), inPLrange <- which(sLength > sigma), fvals[inPLrange] <- (sLength[inPLrange]/sigma)^-d, fvals ))) environment(f) <- baseenv() ## numerically integrate f over a polygonal domain F <- siaf_F_polyCub_iso(intrfr_name = "intrfr.powerlawL", engine = engine) ## fast integration of f over a circular domain Fcircle <- function (r, logpars, type = NULL) {} body(Fcircle) <- as.call(c(as.name("{"), tmp, expression( ## trivial case: radius of integration domain < sigma (=> constant f) if (r <= sigma) return(pi * r^2), ## otherwise, if r > sigma, integration via f^-1 fofr <- (r/sigma)^-d, basevolume <- pi * r^2 * fofr, # cylinder volume up to height f(r) intfinvsq <- sigma^2 * if (d == 2) -d*log(sigma/r) else { d/(d-2) * (1 - (sigma/r)^(d-2)) }, basevolume + pi * intfinvsq ) )) environment(Fcircle) <- baseenv() ## derivative of f wrt logpars ## CAVE: the derivative of f wrt logsigma is mathematically NaN at x=sigma ## this non-differentiability at the treshhold causes false convergence ## warnings by nlminb but is otherwise not relevant (could use slow and ## robust Nelder-Mead instead) deriv <- function (s, logpars, types = NULL) {} body(deriv) <- as.call(c(as.name("{"), tmp, expression( sLength <- sqrt(.rowSums(s^2, L <- length(s)/2, 2L)), derivlogsigma <- derivlogd <- numeric(L), inPLrange <- which(sLength > sigma), fPL <- (sLength[inPLrange]/sigma)^-d, derivlogsigma[inPLrange] <- d * fPL, derivlogd[inPLrange] <- fPL * log(fPL), cbind(derivlogsigma, derivlogd) ))) environment(deriv) <- baseenv() ## Numerical integration of 'deriv' over a polygonal domain Deriv <- siaf_Deriv_polyCub_iso( intrfr_names = c("intrfr.powerlawL.dlogsigma", "intrfr.powerlawL.dlogd"), engine = engine) ## simulate from the lagged power law (within a maximum distance 'ub') ##simulate <- siaf.simulatePC(intrfr.powerlawL) # <- generic simulator ##environment(simulate) <- getNamespace("surveillance") ## faster implementation taking advantage of the constant component: simulate <- function (n, logpars, type, ub) { sigma <- exp(logpars[[1L]]) d <- exp(logpars[[2L]]) ## Sampling via polar coordinates and inversion method ## random angle theta <- runif(n, 0, 2*pi) ## sampling radius r ## trivial case u < sigma: p(r) \propto r on [0;u] if (ub < sigma) { r <- ub * sqrt(runif(n)) # inversion sampling ## now rotate each point by a random angle to cover all directions return(r * cbind(cos(theta), sin(theta))) } ## case u >= sigma: p(r) \propto r if r sample component unir <- runif(n) <= mass1 / (mass1 + mass2) ## samples from the uniform short-range component: n1 <- sum(unir) r1 <- sigma * sqrt(runif(n1)) # similar to the case u < sigma ## samples from power-law component: p2(r) \propto r^(-d+1) on [sigma;u] ## For d>2 only, we could use VGAM::rpareto(n,sigma,d-2), d=1 is trivial n2 <- n - n1 r2 <- if (d==1) runif(n2, sigma, ub) else { # inversion sampling P2inv <- if (d == 2) { function (z) ub^z * sigma^(1-z) } else { function (z) (z*ub^(2-d) + (1-z)*sigma^(2-d))^(1/(2-d)) } P2inv(runif(n2)) } ## put samples from both components together r <- c(r1, r2) ## now rotate each point by a random angle to cover all directions r * cbind(cos(theta), sin(theta)) } environment(simulate) <- getNamespace("stats") ## return the kernel specification list(f=f, F=F, Fcircle=Fcircle, deriv=deriv, Deriv=Deriv, simulate=simulate, npars=2L, validpars=validpars) } ## integrate x*f(x) from 0 to R (vectorized) intrfr.powerlawL <- function (R, logpars, types = NULL) { sigma <- exp(logpars[[1L]]) d <- exp(logpars[[2L]]) pl <- which(R > sigma) upper <- R upper[pl] <- sigma res <- upper^2 / 2 # integral over x*constant part xplint <- if (d == 2) log(R[pl]/sigma) else (R[pl]^(2-d)-sigma^(2-d))/(2-d) res[pl] <- res[pl] + sigma^d * xplint res } ## integrate x * (df(x)/dlogsigma) from 0 to R (vectorized) intrfr.powerlawL.dlogsigma <- function (R, logpars, types = NULL) { sigma <- exp(logpars[[1L]]) d <- exp(logpars[[2L]]) pl <- which(R > sigma) res <- numeric(length(R)) xplint <- if (d == 2) log(R[pl]/sigma) else (R[pl]^(2-d)-sigma^(2-d))/(2-d) res[pl] <- d * sigma^d * xplint res } ## local({ # validation via numerical integration -> tests/testthat/test-siafs.R ## p <- function (r, sigma, d) ## r * siaf.powerlawL()$deriv(cbind(r,0), log(c(sigma,d)))[,1L] ## Pnum <- function (r, sigma, d) sapply(r, function (.r) { ## integrate(p, 0, .r, sigma=sigma, d=d, rel.tol=1e-8)$value ## }) ## r <- c(1,2,5,10,20,50,100) ## dev.null <- sapply(c(1,2,1.6), function(d) stopifnot(isTRUE( ## all.equal(intrfr.powerlawL.dlogsigma(r, log(c(3, d))), Pnum(r, 3, d))))) ## }) ## integrate x * (df(x)/dlogd) from 0 to R (vectorized) intrfr.powerlawL.dlogd <- function (R, logpars, types = NULL) { sigma <- exp(logpars[[1L]]) d <- exp(logpars[[2L]]) pl <- which(R > sigma) res <- numeric(length(R)) res[pl] <- if (d == 2) -(sigma*log(R[pl]/sigma))^2 else (sigma^d * R[pl]^(2-d) * (d-2)*d*log(R[pl]/sigma) - d*(sigma^2 - R[pl]^(2-d)*sigma^d)) / (d-2)^2 res } surveillance/R/sts_coerce.R0000644000175100001440000001211613167154115015446 0ustar hornikusers################################################################################ ### Conversion between "ts" and "sts", and from "sts" to "data.frame" ### ### Copyright (C) 2014 Michael Hoehle, 2015-2017 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at https://www.R-project.org/Licenses/. ################################################################################ ### Convert a simple "ts" object to an "sts" object setAs(from = "ts", to = "sts", def = function (from) { ## Extract frequency and start from the "ts" object freq <- frequency(from) start <- start(from) if (length(start) == 1) stop("could not convert time series start() to (year, index) form") ## Remove "tsp" attribute and "ts"/"mts" class tsp(from) <- NULL ## "tsp<-"(x,NULL) is documented to also remove "ts" and "mts" classes ## but in R < 3.3.0, it did not remove "mts" (see PR#16769) from <- unclass(from) ## Create the sts object .sts(observed = from, start = start, freq = freq) }) ### Convert an "sts" object to a simple "ts" object as.ts.sts <- function (x, ...) { ts(data = x@observed, start = x@start, frequency = x@freq) } setAs(from = "sts", to = "ts", def = function (from) as.ts.sts(from)) ### Convert an "sts" object to an eXtensible Time Series "xts" as.xts.sts <- function (x, order.by = epoch(x, as.Date = TRUE), ...) { if (!missing(order.by) || x@freq %in% c(52, 365)) { xts::xts(x = x@observed, order.by = order.by, ...) } else { ## frequencies 4 and 12 are nicely handled by the as.xts.ts method xts::as.xts(as.ts.sts(x), ...) } } ### Convert an "sts" object to a data frame suitable for regression setMethod("as.data.frame", signature(x = "sts"), function(x, row.names = NULL, optional = FALSE, # from the generic tidy = FALSE, as.Date = x@epochAsDate, ...) { if (tidy) return(tidy.sts(x, ...)) #Convert object to data frame and give names res <- data.frame("observed" = x@observed, "epoch" = epoch(x, as.Date = as.Date), "state" = x@state, "alarm" = x@alarm, "upperbound" = x@upperbound, "population" = x@populationFrac, check.names = FALSE) names(res) <- if (ncol(x) > 1) { ## names from data.frame() above should already be as intended namesObs <- colnames(x@observed, do.NULL = FALSE, prefix = "observed") c(paste0("observed.", namesObs), "epoch", paste0("state.", namesObs), paste0("alarm.", namesObs), paste0("upperbound.", namesObs), paste0("population.", namesObs)) } else { c("observed", "epoch", "state", "alarm", "upperbound", "population") } #Find out how many epochs there are each year res$freq <- if (x@epochAsDate) { date <- epoch(x) epochStr <- switch( as.character(x@freq), "12" = "%m", "52" = "%V", "365" = "%j") years <- unique(as.numeric(formatDate(date,"%Y"))) dummyDates <- as.Date(paste(rep(years,each=6),"-12-",26:31,sep="")) maxEpoch <- c(tapply(as.numeric(formatDate(dummyDates, epochStr)), rep(years,each=6), max)) maxEpoch[pmatch(formatDate(date,"%Y"),names(maxEpoch),duplicates.ok=TRUE)] } else { # just replicate the fixed frequency x@freq } #Add a column denoting the epoch fraction within the current year res$epochInPeriod <- epochInYear(x) / res$freq return(res) }) ### convert an "sts" object to a "data.frame" in long (tidy) format tidy.sts <- function (x, ...) { unitNames <- colnames(x, do.NULL = FALSE, prefix = "observed") v.names <- c("observed", "state", "alarm", "upperbound", "population") stswide <- as.data.frame(x, tidy = FALSE, as.Date = FALSE) ## nrow(stswide) = nrow(x), i.e., one row per epoch stswide$year <- year(x) stswide$epochInYear <- epochInYear(x) stswide$date <- tryCatch( epoch(x, as.Date = TRUE), # only works for particular values of x@freq error = function (e) {message("Note: ", e$message); as.Date(NA)} ) if ((nUnit <- ncol(x)) == 1L) { stslong <- data.frame(stswide, "unit" = factor(unitNames), check.names = FALSE) } else { ## we have observed/population/... columns for each unit varying <- sapply(X = v.names, FUN = paste, unitNames, sep = ".", simplify = FALSE, USE.NAMES = TRUE) stslong <- reshape( data = stswide, direction = "long", varying = varying, v.names = v.names, timevar = "unit", times = unitNames, idvar = "epoch") stslong$unit <- factor(stslong$unit, levels = unitNames) attr(stslong, "reshapeLong") <- NULL } row.names(stslong) <- NULL ## reorder variables (ordering from above differs depending on nUnit) stslong[c("epoch", "unit", "year", "freq", "epochInYear", "epochInPeriod", "date", v.names)] } surveillance/R/glm_epidataCS.R0000644000175100001440000000473712376573337016037 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Formulation of an endemic-only twinstim as a Poisson-GLM with response the ### number of events per space-time cell of stgrid and offset log(dt*ds) ### ### Copyright (C) 2013-2014 Sebastian Meyer ### $Revision: 967 $ ### $Date: 2014-08-25 10:42:07 +0200 (Mon, 25. Aug 2014) $ ################################################################################ utils::globalVariables("area") # in glm(), the 'offset' is evaluated in 'data' glm_epidataCS <- function (formula, data, ...) { if (missing(formula)) { covariates <- c("start", setdiff(names(data$stgrid), c( reservedColsNames_stgrid, obligColsNames_stgrid))) formula <- as.formula(paste0("~", paste0(covariates, collapse=" + "))) } ## for a type-specific model, we really have to set up the full ## "stkappagrid", i.e. with nBlocks*nTiles*nTypes rows typeSpecificModel <- "type" %in% all.vars(formula) typeNames <- levels(data$events@data$type) nTypes <- length(typeNames) ## aggregated number of events in each cell of the stgrid if (typeSpecificModel) { .stgrid <- do.call("rbind", lapply(typeNames, function (type) { cbind(data$stgrid, type=type, deparse.level=0) })) eventsByCell <- c(table(with(data$events@data, { interaction(tile, BLOCK, type, drop=FALSE, sep=".", lex.order=FALSE) }))) .stgrid$nEvents <- eventsByCell[paste( .stgrid$tile, .stgrid$BLOCK, .stgrid$type, sep=".")] } else { .stgrid <- data$stgrid eventsByCell <- c(table(with(data$events@data, { interaction(tile, BLOCK, drop=FALSE, sep=".", lex.order=FALSE) }))) .stgrid$nEvents <- eventsByCell[paste( .stgrid$tile, .stgrid$BLOCK, sep=".")] } .stgrid$nEvents[is.na(.stgrid$nEvents)] <- 0L stopifnot(sum(.stgrid$nEvents) == nobs(data)) ## Fit corresponding Poisson-GLM environment(formula) <- environment() # to see typeSpecificModel and nTypes glm(update.formula(formula, nEvents ~ .), family = poisson(link="log"), data = .stgrid, offset = log((if(typeSpecificModel) 1 else nTypes)*(stop-start)*area), ...) } surveillance/R/plot_graphics.R0000644000175100001440000001003210662666102016147 0ustar hornikusers################################################### ### chunk number 1: ################################################### plot.survRes <- function(x, method=x$control$name, disease=x$control$data, startyear = 2001, firstweek = 1, legend=TRUE,...){ survResObj <- x observed <- survResObj$disProgObj$observed[survResObj$control$range] state <- survResObj$disProgObj$state[survResObj$control$range] # width of the column tab <- 0.5 # left/right help for constructing the columns observedxl <- (1:length(observed))-tab observedxr <- (1:length(observed))+tab upperboundx <- (1:length(survResObj$upperbound))-0.5 ###################################################################### # Generate the axis labelling ###################################################################### #Compute how much has been cut off by the specification of range start <- min(survResObj$control$range)-1 startyear <- startyear + start %/% 52 firstweek <- firstweek + start %% 52 # get the number of quarters lying in range myat.week <- seq(ceiling((52-firstweek+1)/13) * 13 + 1, length(observed)+(floor((52-firstweek + 1)/13) * 13 +1), by=13) # get the right year order year <- (myat.week - 52) %/% 52 + startyear # function to define the quarter order quarterFunc <- function(i) { switch(i+1,"I","II","III","IV")} # get the right number and order of quarter labels quarter <- sapply( (myat.week-1) %/% 13 %% 4, quarterFunc) # get the positions for the axis labels myat.week <- myat.week - (52 - firstweek + 1) #Find out how much the axes are scaled cex <- par()$cex.axis # construct the compute axis label if (cex == 1) { mylabels.week <- paste(year,"\n\n",quarter,sep="") } else { mylabels.week <- paste(year,"\n",quarter,sep="") } #Remove NaNs from upperbound (real problem: where do they come from) #survResObj$upperbound[is.nan(survResObj$upperbound)] <- 0 # control where the highest value is max <- max(max(observed),max(survResObj$upperbound)) #Generate the matrices to plot xstuff <- cbind(observedxl, observedxr, upperboundx) ystuff <-cbind(observed, observed, survResObj$upperbound) #Plot the results using one Large plot call matplot(xstuff,ystuff , t="hhs", lty=c(1,1,1), col=c(1,1,4), ylim=c(-1/20*max, max), xlab = "time", ylab = "No. of infected", axes = FALSE)#hoehle, ...) if (!is.null(survResObj$aggr)) { points(upperboundx+tab,survResObj$aggr,col=1) } for(i in 1:length(observed)){ matlines( c(i-tab, i+tab), c(observed[i],observed[i]) ) if(survResObj$alarm[i] == 1) matpoints( i, -1/40*max, pch=24, col=2) if(state[i] == 1) matpoints( i, -1/20*max, pch=24, col=3) } if (disease != "") { disease <- paste("of ",disease," ",sep="") } title(paste("Analysis ", as.character(disease), "using ", as.character(method),sep="")) # parameters for the legend placement to the right upper side xlegpos <- 1/4 ylegpos <- 1 # check where to place the legend. If the left upper side is free place it there if (max * 2/3 >= max( max(observed[1:floor(1/4 * length(observed))]), max(survResObj$upperbound[1:floor(1/4 * length(survResObj$upperbound))]) )) { xlegpos <- 0 } if (legend) { legend(xlegpos*length(observed)/sqrt(cex), ylegpos*max, legend=c("Infected", "Threshold", "Computed Alarm", "Defined Alarm"), lty=c(1,1,NA,NA), col=c(1,4,2,3), pch=c(NA,NA,24,24),cex=cex) } axis( at=myat.week , labels=mylabels.week , side=1, line = 1 ) axis( side=2 ) invisible() } surveillance/R/AllGeneric.R0000644000175100001440000001514212743013376015326 0ustar hornikusers ### Define some functions to be S3 generic animate <- function (object, ...) UseMethod("animate") R0 <- function (object, ...) UseMethod("R0") as.epidata <- function (data, ...) UseMethod("as.epidata") intensityplot <- function (x, ...) UseMethod("intensityplot") untie <- function (x, amount, ...) UseMethod("untie") intersectPolyCircle <- function (object, center, radius, ...) UseMethod("intersectPolyCircle") calibrationTest <- function (x, ...) UseMethod("calibrationTest") scores <- function (x, ...) { if (identical(class(x), "list")) { ## backward compatibility with surveillance < 1.10-0 scores.oneStepAhead(x, ...) } else { UseMethod("scores") } } pit <- function (x, ...) UseMethod("pit") ## internal function with methods for "twinSIR" and "simEpidata" getModel <- function (object, ...) UseMethod("getModel") ## list coefficients by component coeflist <- function (x, ...) UseMethod("coeflist") coeflist.default <- function (x, npars, ...) { if (is.null(groupnames <- names(npars))) { stop("'npars' must be named") } f <- factor(rep.int(groupnames, npars), levels = groupnames) split.default(x = x, f = f, drop = FALSE) } ### Declare some existing R functions (which we import) to be S4-generic. ### This is not strictly necessary, but considered better programming style, and ### it avoids messages noting the creation of the generics during package build ### and installation, see the section "Basic Use" in help("setGeneric"). setGeneric("plot") setGeneric("aggregate") setGeneric("toLatex") ## data frame-like methods defined in sts.R setGeneric("dim") setGeneric("dimnames") ###################################################################### # Conversion to and from sts objects ###################################################################### #setGeneric("as.sts") setGeneric("as.data.frame") ###################################################################### # Accessing and replacing slots of the "sts" class ###################################################################### #epoch slot setGeneric("epoch", function(x, as.Date=x@epochAsDate) standardGeneric("epoch")) setMethod("epoch", "sts", function(x, as.Date=x@epochAsDate) { if (!as.Date) { # return numeric vector x@epoch } else { # convert to Date format if (x@epochAsDate) { as.Date(x@epoch, origin = "1970-01-01") } else if (x@freq == 12) { # use the first day of every month as.Date(strptime(paste(year(x), epochInYear(x), 1, sep = "-"), format = "%Y-%m-%d")) } else if (x@freq == 52) { # use Mondays firstMonday <- strptime(x = paste0(x@start[1L], "-W", x@start[2L], "-1"), format = "%Y-W%W-%u") seq(from = as.Date(firstMonday), by = 7L, length.out = nrow(x)) } else if (x@freq == 365) { # use day of the year (incorrect in leap years) as.Date(strptime(paste0(year(x), "-D", epochInYear(x)), format = "%Y-D%j")) } else { stop("date conversion only implemented for daily, weekly and monthly data") } } }) setGeneric("epoch<-", function(x, value) standardGeneric("epoch<-")) setReplaceMethod("epoch", "sts", function(x, value) { x@epoch <- value x }) # observed slot setGeneric("observed", function(x) standardGeneric("observed")) setMethod("observed", "sts", function(x) { return(x@observed) }) setGeneric("observed<-", function(x, value) standardGeneric("observed<-")) setReplaceMethod("observed", "sts", function(x, value) { x@observed <- value x }) # alarms slot setGeneric("alarms", function(x) standardGeneric("alarms")) setMethod("alarms", "sts", function(x) { return(x@alarm) }) setGeneric("alarms<-", function(x, value) standardGeneric("alarms<-")) setReplaceMethod("alarms", "sts", function(x, value) { x@alarm <- value x }) # upperbound slot setGeneric("upperbound", function(x) standardGeneric("upperbound")) setMethod("upperbound", "sts", function(x) { return(x@upperbound) }) setGeneric("upperbound<-", function(x, value) standardGeneric("upperbound<-")) setReplaceMethod("upperbound", "sts", function(x, value) { x@upperbound <- value x }) # population slot (actually its populationFrac) setGeneric("population", function(x) standardGeneric("population")) setMethod("population", "sts", function(x) { return(x@populationFrac) }) setGeneric("population<-", function(x, value) standardGeneric("population<-")) setReplaceMethod("population", "sts", function(x, value) { x@populationFrac <- value x }) ##control slot setGeneric("control", function(x) standardGeneric("control")) setMethod("control", "sts", function(x) { return(x@control) }) setGeneric("control<-", function(x, value) standardGeneric("control<-")) setReplaceMethod("control", "sts", function(x, value) { x@control <- value x }) ###multinomial Time series slot ##control slot setGeneric("multinomialTS", function(x) standardGeneric("multinomialTS")) setMethod("multinomialTS", "sts", function(x) { return(x@multinomialTS) }) setGeneric("multinomialTS<-", function(x, value) standardGeneric("multinomialTS<-")) setReplaceMethod("multinomialTS", "sts", function(x, value) { x@multinomialTS <- value x }) ### neighbourhood matrix slot setGeneric("neighbourhood", function(x) standardGeneric("neighbourhood")) setMethod("neighbourhood", "sts", function(x) { return(x@neighbourhood) }) setGeneric("neighbourhood<-", function(x, value) standardGeneric("neighbourhood<-")) setReplaceMethod("neighbourhood", "sts", function(x, value) { x@neighbourhood <- value x }) ###################################################################### # Miscellaneous access methods ###################################################################### setGeneric("epochInYear", function(x, ...) standardGeneric("epochInYear")) setGeneric("year", function(x, ...) standardGeneric("year")) ###################################################################### # For stsNC class ###################################################################### ### access function for repotringTriangle slot setGeneric("reportingTriangle", function(x) standardGeneric("reportingTriangle")) setMethod("reportingTriangle", "stsNC", function(x) { return(x@reportingTriangle) }) ### access function for delayCDF slot setGeneric("delayCDF", function(x) standardGeneric("delayCDF")) setMethod("delayCDF", "stsNC", function(x) { return(x@delayCDF) }) ### access function for SR slot setGeneric("score", function(x) standardGeneric("score")) setMethod("score", "stsNC", function(x) { return(x@SR) }) ### access function for prediction interval slot setGeneric("predint", function(x) standardGeneric("predint")) setMethod("predint", "stsNC", function(x) { return(x@pi) }) surveillance/R/sim_HHH.R0000644000175100001440000001363510667221044014601 0ustar hornikusers################################################### ### chunk number 1: ################################################### ############################################ # Simulates multivariate count data based on the model described in Held et.al (2005) # Note: trend is omitted ###################################### simHHH.default <- function(model=NULL,control=list(coefs=list(alpha=1, gamma=0, delta=0, lambda=0, phi=NULL,psi=NULL,period=52), neighbourhood=NULL,population=NULL,start=NULL), length){ ################################################# #Help functions ################################################ # draws n random numbers from a NB(mean, psi) distribution rNB<-function(n,mean,size=control$coefs$psi){ rnbinom(n, mu=mean, size=size) } # returns formula for the seasonal part of \nu_t formulaSeason <- function(mod="~-1",S=1,period){ for(i in 1:S){ mod <- paste(mod,"+sin(",2*i,"*pi*t/",period,")+cos(",2*i,"*pi*t/",period,")",sep="") } return(as.formula(mod)) } # sum of all neighbours # params: x - vector with counts # nhood - adjacency matrix, 0= no neighbour # returns a vector with the sum of "neighbouring counts" for all areas sumN <- function (x,nhood) { n<- length(x) if(any(nhood>0)){ nhood <- nhood >0 res <- sapply(1:n,function(i) sum(x[nhood[i,]])) } else { res<- rep(0,n) } return(res) } ################################################## ################################## # set default values if not specified ##################################### if(is.null(control$coefs$alpha)) stop("alpha needs to be specified") nAreas <- length(control$coefs$alpha) # define neighbourhood-matrix, assume there are no neighbours if(is.null(control$neighbourhood)) control$neighbourhood <- matrix(0,nAreas,nAreas) # set population (i.e. n_i,t) to 1 if not specified if(is.null(control$population)){ control$population <- matrix(1, ncol=nAreas,nrow=length) } else { #assumption: n_i,t = n_i pop <-control$population[1,] control$population <- matrix(pop,ncol=nAreas,nrow=length,byrow=TRUE) } #determine number of seasons if(is.null(control$coefs$gamma)){ control$coefs$gamma <-0 control$coefs$delta <- 0 S <- 1 } else { if(length(control$coefs$gamma) != length(control$coefs$delta)) stop("gamma and delta must have the same length") S <- length(control$coefs$gamma) } if(is.null(control$coefs$period)) control$coefs$period <- 52 # is there a autoregressive (epidemic) part if(is.null(control$coefs$lambda)){ control$coefs$lambda <- 0 } if(is.null(control$coefs$phi)){ control$coefs$phi <- 0 } if(!is.null(control$start)){ if(length(control$start)!=nAreas) stop("wrong dimension of start\n") } # simulate from Poisson or NegBin model if(is.null(control$coefs$psi)){ rdistr<-rpois } else{ rdistr<-rNB } # computation of seasonal part of nu_i,t: season <- model.frame(formula=formulaSeason(S=S,period=control$coefs$period), data=data.frame("t"=1:length)) #rearrange the sinus and cosinus parts season <- season[,c(seq(1,2*S,by=2),seq(2,2*S,by=2))] # this computes \sum_{s=1}^S [gamma_s*sin(omega_s*t) + delta_s*cos(omega_s*t) ] season<- as.matrix(season)%*%c(control$coefs$gamma,control$coefs$delta) # compute endemic part: nu_t = exp( alpha_i + season_t ) nu<-exp(sapply(1:nAreas,function(i) control$coefs$alpha[i]+season)) # initialize matrices for the mean mu_i,t and the simulated data x_i,t # x_i,0 is set to the mean of n_it*\nu_it mu <- matrix(0,ncol=nAreas,nrow=length) x <- matrix(0,ncol=nAreas,nrow=length+1) x[1,] <- ifelse(is.null(control$start),colMeans(control$population*nu),start) #print(x[1,]) if(control$coefs$lambda == 0 && control$coefs$phi ==0){ mu <- control$population*nu x <- matrix(rdistr(nAreas*(length+1),mu),ncol=nAreas,byrow=FALSE) } else { # simulate data for(t in 1:length){ #mu_i,t = lambda*x_i,t-1 +phi*\sum_j~i x_j,t-1 mu[t,] <- control$coefs$lambda *x[t,] + control$coefs$phi*sumN(x[t,],control$neighbourhood) + control$population[t,]*nu[t,] x[t+1,] <- rdistr(nAreas,mu[t,]) } } #remove first time point dp <- create.disProg(week=1:length,observed=x[-1,],state=rep(0,length), neighbourhood=control$neighbourhood, populationFrac=control$population) return(list(data=dp,mean=mu,endemic=control$population*nu,coefs=control$coefs)) } ################## simHHH <- function(model,control,length){ UseMethod("simHHH") } ################################ # simulates data using the estimated parameter values of a model fitted with algo.hhh # Note: NO trend simHHH.ah <- function(model,control=model$control, length){ #hoehle: removed this to make simHHH.ah consistent with simHHH.default # control <- model$control #number of areas nAreas <- ncol(model$disProgObj$observed) #number of seasons S <- control$nseason cntrl <- list(lambda=NULL,phi=NULL,gamma=NULL,delta=NULL, psi=NULL,period=model$control$period) #extract coefficients coefs <- coef(model) if(control$neighbours) cntrl$phi <- coefs["phi"] if(control$negbin) cntrl$psi <- coefs["psi"] if(control$lambda) cntrl$lambda <- coefs["lambda"] if(S > 0){ cntrl$gamma <- coefs[paste("gamma",1:S,sep="")] cntrl$delta <- coefs[paste("delta",1:S,sep="")] } cntrl$alpha <- coefs[paste("alpha",1:nAreas,sep="")] result <- simHHH(length,control=list(coefs=cntrl, neighbourhood=model$disProgObj$neighbourhood, populationFrac=model$disProgObj$populationFrac )) return(result) } surveillance/R/functionTable.R0000644000175100001440000000711513122025572016110 0ustar hornikusers################################################################################ ### Categorize functions and methods for a specific class ### (this is an internal utility function used in some of the package vignettes) ### ### Copyright (C) 2014-2017 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ################################################################################ functionTable <- function (class, functions = list(), format = "\\texttt", format.nongenerics = "\\textit", horizontal = FALSE) { ## categorization of known generic functions KNOWNGENERICS <- list( Display = c("print", "summary", "xtable", "plot", "animate", "as.stepfun", "intensityplot"), Subset = c("[", "head", "tail", "subset"), Extract = c("nobs", "marks", "coef", "fixef", "ranef", "vcov", "confint", "coeflist", "logLik", "AIC", "extractAIC", "profile", "residuals", "terms", "formula", "R0"), Modify = c("update", "untie", "add1", "drop1"), Convert = c("as.epidata"), Other = c("predict", "simulate", "pit", "scores", "calibrationTest") ) if (is.null(names(functions))) # put all functions in category "Other" functions <- list(Other = unlist(functions, use.names=FALSE)) ## union known generics with specified functions categoryNames <- union(names(KNOWNGENERICS), names(functions)) knowngenerics <- mapply( FUN = union, setNames(KNOWNGENERICS[categoryNames], categoryNames), functions[categoryNames], SIMPLIFY = FALSE, USE.NAMES = TRUE) ## get registered methods and associated generics allmethods <- methods(class = class) allgenerics <- attr(allmethods, "info")$generic genericsList <- lapply(X = knowngenerics, FUN = intersect, allgenerics) genericsList$Other <- c(genericsList$Other, setdiff(allgenerics, unlist(genericsList, use.names=FALSE))) ## all extra 'functions' are not generic or without a method for 'class' nongenericsList <- lapply(X = functions, FUN = function (fnames) { res <- setdiff(fnames, allgenerics) ## note: we do not check if these functions actually exist() if (length(res)) paste0(format.nongenerics, "{", res, "}") else res }) ## merge generics and non-generics functionList <- mapply(FUN = c, genericsList, nongenericsList[names(genericsList)], SIMPLIFY = FALSE, USE.NAMES = TRUE) ## transform list into a matrix by filling with empty cells categoryLengths <- lengths(functionList, use.names = FALSE) nrows <- max(categoryLengths) functionTable <- if (horizontal) { as.matrix(vapply(X = functionList[categoryLengths > 0L], FUN = function (x) paste0(format, "{", x, "}", collapse = ", "), FUN.VALUE = character(1L), USE.NAMES = TRUE)) } else { vapply(X = functionList[categoryLengths > 0L], FUN = function (x) c(paste0(format, "{", x, "}"), rep.int(NA_character_, nrows-length(x))), FUN.VALUE = character(nrows), USE.NAMES = TRUE) } ## done functionTable #xtable::xtable(functionTable, ...) } surveillance/R/sim_background.R0000644000175100001440000000414010662666102016303 0ustar hornikusers################################################### ### chunk number 1: ################################################### # 'sim.seasonalNoise' generates a cyclic model of a poisson distribution # as background data for a simulated timevector. # # Parameters: # A - amplitude (range of sinus), default = 1 # alpha - parameter to move along the y-axis # (negative values not allowed) # d.h alpha > = A, default = 1, # beta - regression coefficient, default = 0 # season - factor to create seasonal moves # (moves the curve along the x-axis), default = 0 # length - number of weeks to model # frequency - factor to determine the oscillation-frequency, default = 1 # state - if a state chain is given, it is weighted by the parameter K # and influences mu # K - weight for outbreaks sim.seasonalNoise <- function(A = 1, alpha = 1, beta = 0, phi = 0, length, frequency = 1, state = NULL, K = 0){ t <- 1:length # constant factor to transform weeks to the appropriate pi-value. omega <- 2 * pi/ 52 # season moves the sin along the x-axis. if(is.null(state)){ # no state chain mu <- exp(A * sin( frequency * omega * (t + phi)) + alpha + beta * t) } else{ # encounter the state chain mu <- exp(A * sin( frequency * omega * (t + phi)) + alpha + beta * t + K * state) } # create the noise as random numbers of the Poisson distribution # with parameter mu seasonalBackground <- rpois(length, mu) # get random numbers result <- list(seasonalBackground = seasonalBackground, t = t, mu = mu, A = A, alpha = alpha, beta = beta, phi = phi, length = length, frequency = frequency, K = K) class(result) = "seasonNoise" return(result) } surveillance/R/pit.R0000644000175100001440000001211513041377177014116 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Non-randomized version of the PIT histogram as discussed in: ### Predictive model assessment for count data ### Czado, C., Gneiting, T. & Held, L. (2009) ### Biometrics 65:1254-1261 ### ### Copyright (C) 2010-2012 Michaela Paul, 2013-2015,2017 Sebastian Meyer ### $Revision: 1829 $ ### $Date: 2017-01-23 14:00:47 +0100 (Mon, 23. Jan 2017) $ ################################################################################ ## x - observed count data ## pdistr - predictive CDF or a list of such predictive CDF's, ## one for each data point x. If evaluated at x=-1 it must return 0 ## J - number of bins ## ... - additional arguments for pdistr(), recycled to the length of x. ## Ignored if pdistr is a list. ## plot - a list of arguments for plot.histogram (otherwise no plot is produced) pit.default <- function (x, pdistr, J=10, relative=TRUE, ..., plot = list()) { PxPxm1 <- pitPxPxm1(x, pdistr, ...) breaks <- (0:J)/J Fbar_seq <- vapply(X = breaks, FUN = pit1, FUN.VALUE = 0, Px = PxPxm1[1L,], Pxm1 = PxPxm1[2L,], USE.NAMES = FALSE) scale <- if (relative) J else 1 f_j <- scale * diff.default(Fbar_seq) res <- list(breaks = breaks, counts = f_j, density = f_j, mids = breaks[-(J+1)] + 1/J/2, xname = "PIT", equidist = TRUE) class(res) <- c("pit", "histogram") if (is.list(plot)) do.call("plot", c(list(x = res), plot)) else res } pitPxPxm1 <- function (x, pdistr, ...) { if (is.list(pdistr)) { # list of functions, not necessarily vectorized stopifnot(length(pdistr) == length(x)) vapply(X = seq_along(x), FUN = function (i) { stopifnot(isTRUE( all.equal.numeric(0, pdistr[[i]](-1), check.attributes = FALSE) )) c(pdistr[[i]](x[i]), pdistr[[i]](x[i]-1)) }, FUN.VALUE = c(0,0), USE.NAMES = FALSE) # 2 x length(x) } else { # pdistr is (the name of) a function pdistr <- match.fun(pdistr) if (nargs() == 2L) { # no dots, same pdistr for every data point # and assumed to be vectorized stopifnot(isTRUE(all.equal.numeric(0, pdistr(-1)))) rbind(pdistr(x), pdistr(x-1), deparse.level = 0) } else { # ... arguments for pdistr, recycled to the length of x # pdistr is called by mapply, so no need to be vectorized stopifnot(isTRUE(all.equal.numeric( 0, do.call("pdistr", c(list(-1), lapply(list(...), "[", 1L))), check.attributes = FALSE))) rbind(mapply(pdistr, x, ..., SIMPLIFY = TRUE, USE.NAMES = FALSE), mapply(pdistr, x-1, ..., SIMPLIFY = TRUE, USE.NAMES = FALSE), deparse.level = 0) } } } ## calculate \bar{F}(u) for scalar u pit1 <- function (u, Px, Pxm1) { if (u <= 0) return(0) else if (u >= 1) return(1) F_u <- (u-Pxm1) / (Px-Pxm1) ## If Px=Pxm1, this means that predict. prob. of observed x is exactly zero. ## We get NaN for F_u. Our predictive model is bad if that happens. ## We could assign either 0 or 1 to express that and issue a warning. if (any(is.nan(F_u))) { warning("predictive distribution has 0 probability for observed 'x'") F_u[is.nan(F_u)] <- 0 } F_u[F_u < 0] <- 0 F_u[F_u > 1] <- 1 mean(F_u) } ## plot the PIT histogram plot.pit <- function (x, main = "", ylab = NULL, ...) { relative <- !isTRUE(all.equal(1, sum(x$density))) if (is.null(ylab)) ylab <- if (relative) "Relative Frequency" else "Density" ## call plot.histogram NextMethod("plot", main = main, ylab = ylab, ...) ## add reference line abline(h = if (relative) 1 else 1/length(x$mids), lty = 2, col = "grey") invisible(x) } ## a convenient wrapper for Poisson and NegBin predictions .pit <- function (x, mu, size = NULL, ...) { if (is.null(size)) { pit.default(x = x, pdistr = "ppois", lambda = mu, ...) } else { pit.default(x = x, pdistr = "pnbinom", mu = mu, size = size, ...) } } ## pit-methods for oneStepAhead() predictions and "hhh4" fits ## (similar to the scores-methods) pit.oneStepAhead <- function (x, units = NULL, ...) { if (is.null(units)) { .pit(x = x$observed, mu = x$pred, size = psi2size.oneStepAhead(x), ...) } else { .pit(x = x$observed[, units, drop = FALSE], mu = x$pred[, units, drop = FALSE], size = psi2size.oneStepAhead(x)[, units, drop = FALSE], ...) } } pit.hhh4 <- function (x, subset = x$control$subset, units = seq_len(x$nUnit), ...) { .pit(x = x$stsObj@observed[subset, units, drop = FALSE], mu = x$fitted.values[match(subset, x$control$subset), units, drop = FALSE], size = psi2size.hhh4(x, subset, units), ...) } surveillance/R/hhh4_W_np.R0000644000175100001440000001407512410025775015140 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Non-parametric specification of neighbourhood weights in hhh4() ### ### Copyright (C) 2014 Sebastian Meyer ### $Revision: 1024 $ ### $Date: 2014-09-22 16:02:37 +0200 (Mon, 22. Sep 2014) $ ################################################################################ ### non-parametric estimation of weight function, i.e., provide each ### neighbourhood order up to 'maxlag' with its own (unconstrained) weight ### for identifiability: ### - first order is fixed to weight=1 ### - usually maxlag < max(nborder) (since only few pairs with highest orders), ### and to0 indicates which weight is assumed for orders > maxlag, either zero ### or the same as for order 'maxlag' W_np <- function (maxlag, to0 = TRUE, normalize = TRUE, initial = log(zetaweights(2:maxlag))) { if (missing(maxlag)) { stop("'maxlag' must be specified (usually < max. neighbourhood order)") } else stopifnot(isScalar(maxlag), maxlag > 1) # at least one parameter ## auxiliary expression used in 'dw' and 'd2w' below indicatormatrixExpr <- if (to0) { quote(nbmat==nbOrder) } else { quote(if(nbOrder==1L+npars) nbmat>=nbOrder else nbmat==nbOrder) } ## weights as a function of parameters and a matrix of neighbourhood orders w <- function (logweights, nbmat, ...) {} body(w) <- substitute( { weights <- exp(logweights) npars <- length(weights) # only used if 'to0=FALSE' and in derivs W <- c(0,1,weights)[1L+nbmat] ## repeat last coefficient for higher orders without separate estimate W[is.na(W)] <- .HOWEIGHT # substituted according to 'to0' dim(W) <- dimW <- dim(nbmat) # nUnits x nUnits dimnames(W) <- dimnames(nbmat) .RETVAL # substituted according to 'normalize' }, list( .HOWEIGHT = if (to0) 0 else quote(weights[npars]), .RETVAL = if (normalize) quote(W / (norm <- .rowSums(W, dimW[1L], dimW[2L]))) else quote(W) )) ## version of w with assignment of its return value (for use in normalized ## versions of dw and d2w) .w <- w body(.w)[[length(body(.w))]] <- substitute(Wnorm <- x, list(x=body(.w)[[length(body(.w))]])) ## derivative of w(logweights) -> a list of matrices (one for each param.) if (normalize) { dw <- .w ## append code to calculate first derivatives body(dw) <- as.call(c(as.list(body(dw)), eval(substitute( expression( FUN <- function (nbOrder, weight) { ind <- .INDICATORMATRIX (ind - Wnorm*.rowSums(ind,dimW[1L],dimW[2L])) * weight/norm }, mapply(FUN, 1L+seq_len(npars), weights, SIMPLIFY=FALSE, USE.NAMES=FALSE) ), list(.INDICATORMATRIX = indicatormatrixExpr) )))) } else { dw <- function (logweights, nbmat, ...) {} body(dw) <- substitute( { weights <- exp(logweights) npars <- length(weights) FUN <- function (nbOrder, weight) weight * (.INDICATORMATRIX) mapply(FUN, 1L+seq_len(npars), weights, SIMPLIFY=FALSE, USE.NAMES=FALSE) }, list(.INDICATORMATRIX = indicatormatrixExpr)) } ## result of d2w must be a list of matrices of length npars*(npars+1L)/2L if (normalize) { d2w <- .w body(d2w) <- as.call(c(as.list(body(d2w)), eval(substitute( expression( seqnpars <- seq_len(npars), inds <- lapply(1L+seqnpars, function (nbOrder) { ind <- .INDICATORMATRIX indrs <- .rowSums(ind, dimW[1L], dimW[2L]) list(indterm = ind - Wnorm * indrs, indrs = indrs) }), k <- rep.int(seqnpars, npars), # row index l <- rep.int(seqnpars, rep.int(npars,npars)), # column index ##<- 12x faster than expand.grid(seqnpars,seqnpars) lowertri <- k >= l, ##<- and 2.5x faster than ##kl <- which(lower.tri(matrix(,npars,npars), diag=TRUE), arr.ind=TRUE) norm2 <- norm^2, mapply(function (k, l) weights[k] / norm2 * if (k==l) { inds[[k]][[1L]] * (norm - 2*weights[k]*inds[[k]][[2L]]) } else { -weights[l] * (inds[[k]][[1L]] * inds[[l]][[2L]] + inds[[l]][[1L]] * inds[[k]][[2L]]) }, k[lowertri], l[lowertri], # inds[k[lowertri]], inds[l[lowertri]], SIMPLIFY=FALSE, USE.NAMES=FALSE) ), list(.INDICATORMATRIX = indicatormatrixExpr) )))) } else { # for k=k', second derivative = first derivative, otherwise 0 d2w <- dw if (maxlag > 2) { # i.e. npars > 1 ## add assignment for the return value of dw body(d2w)[[length(body(d2w))]] <- substitute(dW <- x, list(x=body(d2w)[[length(body(d2w))]])) ## append code to generate the list of second derivatives body(d2w) <- as.call(c(as.list(body(d2w)), expression( d2wlength <- (npars^2+npars)/2, ## indices of diagonal elements in x[lower.tri(x,diag=TRUE)] d2wdiag <- c(1L,1L+cumsum(seq.int(npars,2L))), d2wlist <- rep.int(list(0*nbmat), d2wlength), d2wlist[d2wdiag] <- dW, d2wlist ))) } } ## Done environment(w) <- environment(dw) <- environment(d2w) <- .GlobalEnv list(w = w, dw = dw, d2w = d2w, initial = initial) } surveillance/R/algo_twins.R0000644000175100001440000002156012671753213015471 0ustar hornikusers###################################################################### # Experimental version -- integrating the twins program into # the surveillance package ###################################################################### algo.twins <- function(disProgObj, control= list(burnin=1000, filter=10, sampleSize=2500, noOfHarmonics=1, alpha_xi=10, beta_xi=10, psiRWSigma=0.25, alpha_psi=1, beta_psi=0.1, nu_trend=FALSE, logFile="twins.log")) { if (inherits(disProgObj, "sts")) disProgObj <- sts2disProg(disProgObj) if (ncol(disProgObj$observed)>1) { stop("algo.twins() only handles univariate time series of counts") } ## Determine period from data T <- as.integer(disProgObj$freq) ## set default values (if not provided in control) if(is.null(control[["burnin",exact=TRUE]])) control$burnin <- 1000 if(is.null(control[["filter",exact=TRUE]])) control$filter <- 10 if(is.null(control[["sampleSize",exact=TRUE]])) control$sampleSize <- 2500 if(is.null(control[["alpha_xi",exact=TRUE]])) control$alpha_xi <- 10 if(is.null(control[["beta_xi",exact=TRUE]])) control$beta_xi <- 10 if(is.null(control[["psiRWSigma",exact=TRUE]])) control$psiRWSigma <- 0.25 if(is.null(control[["alpha_psi",exact=TRUE]])) control$alpha_psi <- 1 if(is.null(control[["beta_psi",exact=TRUE]])) control$beta_psi <- 0.1 if(is.null(control[["nu_trend",exact=TRUE]])) control$nu_trend <- FALSE if(is.null(control[["logFile",exact=TRUE]])) control$logFile <- "twins.log" if(is.null(control[["noOfHarmonics",exact=TRUE]])) control$noOfHarmonics <- 1 nfreq <- control$noOfHarmonics control$logFile2 <- paste(control$logFile,"2",sep="") ## Call the C code x <- disProgObj$observed n <- as.integer(dim(x)[1]) I <- as.integer(dim(x)[2]) ## with(control, res <- .C(...)) is not valid R syntax!! res <- with(control, .C("twins", x=as.integer(x), n=n, I=I, logFile=logFile, logFile2=logFile2, burnin=as.integer(burnin), filter=as.integer(filter), sampleSize=as.integer(sampleSize), alpha_xi=as.double(alpha_xi), beta_xi=as.double(beta_xi), T=as.integer(T), nfreq=as.integer(nfreq), psiRWSigma=as.double(0.25), alpha_psi=as.double(alpha_psi), beta_psi=as.double(beta_psi), nu_trend=as.integer(nu_trend), PACKAGE="surveillance")) ## Log files results <- read.table(control$logFile,header=T,na.strings=c("NaN","-NaN")) results2 <- read.table(control$logFile2,header=T,na.strings=c("NaN","-NaN")) acc <- read.table(paste(control$logFile,".acc",sep=""),col.names=c("name","RWSigma","acc")) rownames(acc) <- acc[,1] acc <- acc[,-1] ## Nothing is returned by the function - result is not a ## standard survObj result <- structure(list(control=control, disProgObj=disProgObj, logFile=results, logFile2=results2), class="atwins") return(result) } ###################################################################### # Adapted the functions form figures.R ###################################################################### ## Helper functions to make list of Z and the means of X,Y and omega make.pois <- function(obj) { n <- nrow(obj$disProgObj$observed) m<-list() m$n <- n m$Z <- obj$disProgObj$observed m$X <- numeric(n) m$Y <- numeric(n) m$omega <- numeric(n) ## Read means at each time instance Vars <- c("X","Y","omega") for (t in 1:n) { for (v in Vars) { m[[v]][t] <- obj$logFile2[,paste(v,".",t,".",sep="")] } } return(m) } pois.plot <- function(m.results,...) { plotorder <- c(expression(Z),expression(Y),expression(X)) plotcols <- c(1,"red","blue") lwd <- c(1,3,3) sts <- disProg2sts(m.results$disProgObj) ## Make default legend if nothing else is specified. if (!"legend.opts" %in% names(list(...))) { plot(sts,legend.opts=list(x="topleft",legend=paste(plotorder),lwd=lwd,col=plotcols,horiz=TRUE,y.intersp=0,lty=1,pch=NA),...) } else { plot(sts,...) } ## Add Y and X lines for (i in 2:length(plotorder)) { lines(1:(m.results$n)+0.5,m.results[[paste(plotorder[i])]][c(2:m.results$n,m.results$n)],type="s",col=plotcols[i],lwd=lwd[i]) } } ## makes list of gamma, zeta and nu make.nu <- function(obj) { n <- nrow(obj$disProgObj$observed) samplesize <- obj$control$sampleSize frequencies <- obj$control$noOfHarmonics # instead of just always "1" ! season <- obj$disProgObj$freq basefrequency <- 2 * pi / season ## optionally also get the linear time trend coefficient withTrend <- obj$control$nu_trend ## this list will be returned at the end m<-list() ## first get all the gamma's from the logFile matrix into nicer elements of ## the list m for (j in 0:(2*frequencies + withTrend)) { m$gamma[[j+1]] <- numeric(samplesize) m[["gamma"]][[j+1]] <- obj$logFile[,paste("gamma",".",j,".",sep="")] } ## zeta is a list which has one element for each time point (vector of samples) m$zeta<-list() ## for all time points: for (t in 1:n) { ## start with the intercept m$zeta[[t]]<-m$gamma[[1]] ## add all harmonic terms for(j in 1:frequencies){ m$zeta[[t]] <- m$zeta[[t]] + m$gamma[[2*j]]*sin(basefrequency*j*(t-1)) + m$gamma[[2*j+1]]*cos(basefrequency*j*(t-1)) } ## and (optionally) finally add the linear trend if(withTrend) { m$zeta[[t]] <- m$zeta[[t]] + m$gamma[[2*frequencies + 2]] * (t - n/2) } } ## nu is the analogous list with the exponentiated zeta's m$nu<-list() for (t in 1:n) { m$nu[[t]]<-exp(m$zeta[[t]]) } ## also copy the number of harmonics m$frequencies <- frequencies ## and return return(m) } ## Function to plot median, and quantiles over time for m.par (m.par is list of n vectors, x is time) tms.plot <-function(x,m.par,xlab="",ylab="",ylim=FALSE,...){ m<-list() n<-length(m.par) m$median<-numeric(n) for (t in 1:n) { m$median[t]<- median(m.par[[t]]) m$q025[t]<- quantile(m.par[[t]],0.025) m$q975[t]<- quantile(m.par[[t]],0.975) } if(!ylim){ ymin<-min(m$q025) ymax<-max(m$q975) ylim=c(ymin,ymax) } plot(x-1,m$q975[x],type="l",col="red",main="",xlab=xlab,ylab=ylab,ylim=ylim,...) lines(x-1,m$median[x],type="l") lines(x-1,m$q025[x],type="l",col="red") } ###################################################################### # Function to plot an atwins object -- currently not # properly documented ###################################################################### plot.atwins <- function(x, which=c(1,4,6,7), ask=TRUE,...) { ## Extract from the 3 dots if(is.null(which)) { which <- c(1,4,6,7) } if(is.null(ask)) { ask <- TRUE } ## Make list of X,Y,Z,omega means of results2 m.results <-make.pois(x) m.results$disProgObj <- x$disProgObj ## Make list of results of gamma, zeta and nu nu<-make.nu(x) ## Plots show <- rep(FALSE,7) show[which] <- TRUE par(ask=ask) if (show[1]) { par(mfcol=c(1,1)) pois.plot(m.results,...) } if (show[2]) { ## make room for 2 * (frequencies + 1) panels par(mfcol=c(2,nu$frequencies+1)) ## and plot all gamma coefficients (possibly including the linear time ## trend coef) for(j in seq_along(nu$gamma)) { plot(nu$gamma[[j]],type="l",ylab=paste("gamma",j - 1,sep="")) } } if (show[3]) { par(mfcol=c(1,1)) plot(x$logFile$K,type="l",ylab=expression(K)) plot(x$logFile$xilambda,type="l",ylab=expression(xi)) plot(x$logFile$psi,type="l",ylab=expression(psi)) } if (show[4]) { par(mfcol=c(1,2)) acf(x$logFile$K,lag.max = 500,main="",xlab=expression(K)) acf(x$logFile$psi,lag.max = 500,main="",xlab=expression(psi)) } if (show[5]) { par(mfcol=c(1,1)) tms.plot(2:m.results$n,nu$nu,xlab="time") } if (show[6]) { par(mfcol=c(1,2)) hist(x$logFile$K,main="",xlab=expression(K),prob=TRUE,breaks=seq(-0.5,max(x$logFile$K)+0.5,1)) hist(x$logFile$psi,main="",xlab=expression(psi),prob=TRUE,nclass=50) } if (show[7]) { par(mfcol=c(1,1)) hist(x$logFile$Znp1,main="",xlab=expression(Z[n+1]),prob=TRUE,breaks=seq(-0.5,max(x$logFile$Znp1)+0.5,1)) } } surveillance/R/algo_hmm.R0000644000175100001440000001145312375723257015114 0ustar hornikusers################################################### ### chunk number 1: ################################################### algo.hmm <- function(disProgObj, control = list(range=range, Mtilde=-1, noStates=2, trend=TRUE, noHarmonics=1,covEffectEqual=FALSE, saveHMMs = FALSE, extraMSMargs=list() )){ # check if the msm package is available if (!requireNamespace("msm")) { stop("the HMM method requires package ", sQuote("msm")) } # Set the default values if not yet set if(is.null(control$Mtilde)){ control$Mtilde <- -1 } if(is.null(control$noStates)){ control$noStates <- 2 } if(is.null(control$trend)){ control$trend <- TRUE } if(is.null(control$noHarmonics)){ control$noHarmonics <- 1 } if(is.null(control$covEffectEqual)){ control$covEffectEqual <- FALSE } if(is.null(control$saveHMMs)){ control$saveHMMs <- FALSE } if(is.null(control$extraMSMargs)){ control$extraMSMargs <- list() } #Stop if not enough for estimation if(min(control$range) < 2) { stop("Error: Too few values as reference values") } # initialize the necessary vectors alarm <- matrix(data = 0, nrow = length(control$range), ncol = 1) upperbound <- matrix(data = 0, nrow = length(control$range), ncol = 1) control$hmms <- list() ############################################## #Repeat for each time point to monitor on-line ############################################## for (i in 1:length(control$range)) { #Function is so slow some sort of perfomance indicator is usually necessary cat(paste("i=",i," (out of ",length(control$range),")\n",sep="")) #Initialize observations for each round -- can be done sequentally first <- ifelse(control$Mtilde== -1, 1, max(control$range[i]-control$Mtilde+1,1)) t <- first:control$range[i] observed <- disProgObj$observed[t] #Init data counts <- data.frame(observed, t) names(counts) <- c("observed","t") #Initialize formula formulaStr <- ifelse(control$trend, "~ 1 + t ", "~ 1 ") #Create formula and add harmonics as covariates -- this could be done recursively? for (j in seq_len(control$noHarmonics)) { counts[,paste("cos",j,"t",sep="")] <- cos(2*j*pi*(t-1)/disProgObj$freq) counts[,paste("sin",j,"t",sep="")] <- sin(2*j*pi*(t-1)/disProgObj$freq) formulaStr <- paste(formulaStr,"+ cos",j,"t + sin",j,"t ",sep="") } #Obtain crude inits q <- quantile(observed,seq(0,1,length=control$noStates+1)) lvl <- cut(observed,breaks=q,include.lowest=TRUE) crudeMean <- as.numeric(tapply(observed, lvl, mean)) hcovariates <- list() hmodel <- list() for (j in seq_len(control$noStates)) { hcovariates[[j]] <- as.formula(formulaStr) val <- crudeMean[j] #Substitution necessary, as hmmPois does lazy evaluation of rate argument hmodel[[j]] <- eval(substitute(msm::hmmPois(rate=val),list(val=crudeMean[j]))) } #Any constraints on the parameters of the covariates for the different states hconstraint <- list() if (control$covEffectEqual) { hconstraint <- list(t=rep(1,control$noStates)) for (j in seq_len(control$noHarmonics)) { hconstraint[[paste("sin",j,"t",sep="")]] <- rep(1,control$noStates) hconstraint[[paste("cos",j,"t",sep="")]] <- rep(1,control$noStates) } } #Prepare object for msm fitting msm.args <- list(formula = observed ~ t, data = counts, #HMM with "noStates" states having equal initial values qmatrix = matrix(1/control$noStates,control$noStates,control$noStates), #y|x \sim Po( \mu[t] ) with some initial values hmodel = hmodel, #Models for \log \mu_t^1 and \log \mu_t^2 hcovariates = hcovariates, #Force the effects of the trend and harmonics to be equal for all states hconstraint=hconstraint) #Add additional msm arguments msm.args <- modifyList(msm.args, control$extraMSMargs) # fit the HMM hmm <- do.call(what=msm::msm, args=msm.args) #In case the model fits should be saved. if (control$saveHMMs) { control$hmms[[i]] <- hmm } #If most probable state of current time point (i.e. last obs) equals the #highest state then do alarm # print(observed) # print(matrix(viterbi.msm(hmm)$fitted,ncol=1)) alarm[i] <- msm::viterbi.msm(hmm)$fitted[length(t)] == control$noStates #Upperbound does not have any meaning -- compute posterior probability! upperbound[i] <- 0 } #Add name and data name to control object. control$name <- paste("hmm:", control$trans) control$data <- paste(deparse(substitute(disProgObj))) #no need for hmm object -- control$hmm <- hmm # return alarm and upperbound vectors result <- list(alarm = alarm, upperbound = upperbound, disProgObj=disProgObj,control=control) class(result) = "survRes" # for surveillance system result return(result) } surveillance/R/newtonRaphson.R0000644000175100001440000001450312166473572016175 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Michaela's own implementation of a Newton-Raphson optimizer ### ### Copyright (C) 2010-2012 Michaela Paul ### $Revision: 589 $ ### $Date: 2013-07-08 10:25:30 +0200 (Mon, 08. Jul 2013) $ ################################################################################ ##################### # x - initial parameter values # control arguments: # scoreTol - convergence if max(abs(score)) < scoreTol # paramTol - convergence if rel change in theta < paramTol # F.inc - eigenvalues of the hessian are computed when the Cholesky factorization # fails, and a constant added to the diagonal to make the smallest # eigenvalue= F.inc * largest # fn must return loglikelihood with score and fisher as attributes # fn <- function(theta,...){ # ll <- loglik(theta,...) # attr(ll,"score") <- score(theta,...) # attr(ll,"fisher") <- fisher(theta,...) # return(ll) # } newtonRaphson <- function(x,fn,..., control=list(), verbose=FALSE){ # set default values control.default <- list(scoreTol=1e-5, paramTol=1e-8, F.inc=0.01, stepFrac=0.5, niter=30) control <- modifyList(control.default, control) # number of step reductions, not positive definite Fisher matrices during iterations steph <- notpd <- 0 convergence <- 99 i <- 0 rel.tol <- function(x,xnew){ sqrt(sum((xnew-x)^2)/sum(x^2)) } score <- function(fn){ return(attr(fn,"score")) } fisher <- function(fn){ return(attr(fn,"fisher")) } ll0 <- c(fn(x,...)) if(verbose>1) cat("initial loglikelihood",ll0,"\n\n") # fn cannot be computed at initial par if(!is.finite(ll0) | is.na(ll0)){ cat("fn can not be computed at initial parameter values.\n") return(list(convergence=30, notpd = notpd, steph = steph)) } while(convergence != 0 & (i< control$niter)){ i <- i+1 ll <- fn(x,...) if(max(abs(score(ll))) < control$scoreTol){ convergence <- 0 break } # get cholesky decompositon F <- fisher(ll) F.chol <- try(chol(F),silent=TRUE) # could still give a nearly singular matrix # => could also check condition number if(inherits(F.chol,"try-error")){ if(verbose>1) cat("fisher is not pd\n") # fisher is not pd notpd <- notpd +1 ev <- eigen(F,symmetric=TRUE, only.values=TRUE)$values # add a constant to diag(F) diag(F) <- diag(F) + (control$F.inc*(max(abs(ev))) - min(ev))/(1-control$F.inc) # compute cholesky decomposition of modified fisher F.chol <- chol(F) } direction <- chol2inv(F.chol)%*% score(ll) if(max(abs(direction)) < control$paramTol*(max(abs(x))+1e-8) ){ convergence <- 0 break } # do Newton-Raphson step x.new <- c(x + direction) ll.new <- fn(x.new,...) if(verbose>1) cat("iteration",i,"\trel.tol =",rel.tol(x,x.new),"\tabs.tol(score) =",max(abs(score(ll.new))),"\n") if(verbose>2) cat("theta =",round(x.new,2),"\n") if(verbose>1) cat("loglikelihood =",ll.new,"\n") ## Backtracking: reduce stepsize until we really improve the loglikelihood # ll(x1,lambda) = ll(x0) + lambda * fisher(x0)^-1 %*% score(x0) i.backstep <- 0 ## Gray (2001) Ch 3: Unconstrained Optimization and Solving Nonlinear Equations # It is technically possible to construct sequences where ll(x1) > ll(x0) # at each step but where the sequence never converges. # For this reason a slightly stronger condition is usually used. # Dennis and Schnabel (1983): Numerical Methods for Unconstrained # Optimization and Nonlinear Equations. SIAM. (ch 6,3.2, p.126) # recommend requiring that lambda satisfy # ll(x1) > ll(x0) + 1e-4 *(x1-x0)' %*% score(x0) while((is.na(ll.new) || (ll.new < c(ll)+ (1e-4)*sum(direction*score(ll)))) & (i.backstep <= 20)){ if(verbose>1 & i.backstep==0) cat("backtracking: ") i.backstep <- i.backstep +1 steph <- steph +1 # reduce stepsize by a fixed fraction stepFrac direction <- control$stepFrac*direction x.new <- c(x + direction) ll.new <- fn(x.new,...) if(verbose>1) cat("*") } if(verbose & i.backstep>0) cat("\n") if(i.backstep >20){ if(verbose>1)cat("backtracking did not improve fn\n") #cat("ll: ",ll,"\tll.new: ",ll.new,"\n") convergence <- 10 break } x <- c(x.new) if(verbose>1) cat("\n") } ll <- fn(x,...) # max number of iterations reached, but check for convergence if(max(abs(score(ll))) < control$scoreTol){ convergence <- 0 } # convergence if # 1) relative difference between parameters is small # 2) absolute value of gradient is small # 3) stop after niter iterations if(i==control$niter & convergence !=0){ if(verbose>1) cat("Newton-Raphson stopped after",i,"iterations!\n") # iteration limit reached without convergence convergence <- 10 } if(verbose>1) cat("iteration",i,"\trel.tol =",rel.tol(x,x.new),"\tabs.tol(score) =",max(abs(score(ll))),"\n") if(verbose>2) cat("theta =",round(x.new,2),"\n") if(verbose>1) cat("loglikelihood =",c(ll),"\n\n") # loglikelihood loglik <- c(ll) # fisher info F <- fisher(ll) if(inherits(try(solve(F),silent=TRUE),"try-error")){ cat("\n\n***************************************\nfisher not regular!\n") #print(summary(x)) return(list(coefficients=x, loglikelihood=loglik, fisher=FALSE, convergence=22, notpd = notpd, steph = steph)) } # check if solution is a maximum (i.e. if fisher is pd ) eps <- 1e-10 if(!all(eigen(F,symmetric=TRUE, only.values=TRUE)$values > eps)){ if(verbose>1) cat("fisher information at solution is not pd\n") return(list(coefficients=x, loglikelihood=loglik, fisher=FALSE, convergence=21, notpd = notpd, steph = steph)) } if(verbose>0) cat("number of iterations = ",i," coverged = ", convergence ==0," log-likelihood = ",loglik, " notpd = ", notpd, " steph = ", steph, "\n") result <- list(coefficients=x, loglikelihood=loglik, fisher=FALSE, convergence=convergence, notpd=notpd, steph=steph,niter=i) return(result) } surveillance/R/algo_cusum.R0000644000175100001440000002060312237174420015451 0ustar hornikusers################################################### ### chunk number 1: ################################################### algo.cusum <- function(disProgObj, control = list(range=range, k=1.04, h=2.26, m=NULL, trans="standard",alpha=NULL)){ # Set the default values if not yet set if(is.null(control$k)) control$k <- 1.04 if(is.null(control$h)) control$h <- 2.26 if(is.null(control$trans)) control$trans <- "standard" if(is.null(control$alpha)) control$alpha <- 0.1 alpha <- control$alpha observed <- disProgObj$observed timePoint <- control$range[1] # Estimate m (the expected number of cases), i.e. parameter lambda of a # poisson distribution based on time points 1:t-1 if(is.null(control$m)) { m <- mean(observed[1:(timePoint-1)]) } else if (is.numeric(control$m)) { m <- control$m } else if (control$m == "glm") { #Fit a glm to the first observations training <- 1:(timePoint-1) #Set the time index t <- disProgObj$start[2] + training - 1 #Set the observations x <- observed[training] #Set period p <- disProgObj$freq df <- data.frame(x=x,t=t) control$m.glm<- glm(x ~ 1 + cos(2*pi/p*t) + sin(2*pi/p*t) ,family=poisson(),data=df) #predict the values in range t.new <- disProgObj$start[2] + control$range - 1 m <- predict(control$m.glm,newdata=data.frame(t=t.new),type="response") } #No transformation #standObs <- observed[control$range] x <- observed[control$range] standObs <- switch(control$trans, # compute standardized variables z3 (proposed by Rossi) "rossi" = (x - 3*m + 2*sqrt(x*m))/(2*sqrt(m)), # compute standardized variables z1 (based on asympotic normality) "standard" = (x - m)/sqrt(m), # anscombe residuals "anscombe" = 3/2*(x^(2/3)-m^(2/3))/m^(1/6), # anscombe residuals as in pierce schafer based on 2nd order approx of E(X) "anscombe2nd" = (x^(2/3)-(m^(2/3)-m^(-1/3)/9))/(2/3*m^(1/6)), # compute Pearson residuals for NegBin "pearsonNegBin" = (x - m)/sqrt(m+alpha*m^2), # anscombe residuals for NegBin "anscombeNegBin" = anscombeNB(x,mu=m,alpha=alpha), # don't do anything "none" = x, stop("invalid 'trans'formation") ) # initialize the necessary vectors # start with cusum[timePoint -1] = 0, i.e. set cusum[1] = 0 cusum <- matrix(0,nrow=(length(control$range)+1), ncol=1) alarm <- matrix(data = 0, nrow = (length(control$range)+1), ncol = 1) for (t in 1:length(control$range)){ # compute cumulated sums of standardized observations corrected with the # reference value k for all time points in range cusum[t+1]<- max(0, cusum[t]+(standObs[t]-control$k)) # give alarm if the cusum is larger than the decision boundary h alarm[t+1] <- cusum[t+1] >= control$h } #Backtransform h <- control$h k <- control$k Ctm1 <- cusum[1:length(control$range)] upperbound <- switch(control$trans, # standardized variables z3 (proposed by Rossi) "rossi" = 2*h*m^(1/2)+2*k*m^(1/2)-2*Ctm1*m^(1/2)+5*m-2*(4*m^2+2*m^(3/2)*h+2*m^(3/2)*k-2*m^(3/2)*Ctm1)^(1/2), # standardized variables z1 (based on asympotic normality) "standard" = ceiling(sqrt(m)*(h+k-Ctm1)+ m), # anscombe residuals "anscombe" = ifelse( ((2/3)*m^(1/6)*(h+k-Ctm1)+m^(2/3))<0, 0, (2/3*m^(1/6)*(h+k-Ctm1)+m^(2/3))^(3/2) ), # anscombe residuals ? "anscombe2nd" = ifelse( ((2/3)*m^(1/6)*(h+k-Ctm1)+(m^(2/3)-m^(1/3)/9))<0, 0, (2/3*m^(1/6)*(h+k-Ctm1)+(m^(2/3)-m^(1/3)/9))^(3/2) ), # Pearson residuals for NegBin "pearsonNegBin" = sqrt(m+alpha*m^2)*(h+k-Ctm1)+ m, # anscombe residuals for NegBin ? "anscombeNegBin" = h-cusum[-1], # don't do anything "none" = h-cusum[-1] ) # ensure upper bound is positive and not NaN upperbound[is.na(upperbound)] <- 0 upperbound[upperbound < 0] <- 0 # discard cusum[1] and alarm[1] cusum <- cusum[-1] alarm <- alarm[-1] #Add name and data name to control object. control$name <- paste("cusum:", control$trans) control$data <- paste(deparse(substitute(disProgObj))) control$m <- m # return alarm and upperbound vectors result <- list(alarm = alarm, upperbound = upperbound, disProgObj=disProgObj,control=control, cusum=cusum) class(result) = "survRes" # for surveillance system result return(result) } ################################################### ### chunk number 2: ################################################### ###################################################################### # Program to test the transformation of NegBin variables # using the transformation similar to Anscombe residuals ###################################################################### ##################################################################### # function to evaluate hypgeom_2F1(1/3,2/3, 5/3, x) # "exact" values for x = -(0:10) and linear interpolation for x = -(10:100) #################################################################### hypgeom2F1special <- function(x) { #Return the z (the approximation grid), which is closest to x idx <- which.min(abs(surveillance.gvar.z-x)) if(x >= -10) return(surveillance.gvar.hyp[idx]) else{ # find out interval that contains x if((x-surveillance.gvar.z[idx]) < 0){ idxLow <- idx +1 idxUp <- idx } else { idxLow <- idx idxUp <- idx -1 } #linear interpolation: f(x)=f(x0)+(f(x1)-f(x0))/1*(x-x0) return(surveillance.gvar.hyp[idxLow]+(surveillance.gvar.hyp[idxUp]-surveillance.gvar.hyp[idxLow])*(x-surveillance.gvar.z[idxLow])) } } ##################################################################### # compute anscombe residuals for Y ~ NegBin(mu, alpha) using hypgeom2F1 function # E(Y)= \mu, Var(Y) = \mu + \alpha*\mu^2 ################################################################# anscombeNB <- function(y,mu,alpha=0.1) { hypgeom.mu <- 3/2*mu^(2/3)*hypgeom2F1special(-alpha*mu) one <- function(y){ up <- 3/2*y^(2/3) * hypgeom2F1special(-alpha*y) - hypgeom.mu down <- (mu+alpha*mu^2)^(1/6) return(up/down) } return(sapply(y,one)) } ################################################### ### chunk number 3: ################################################### ###################################################################### # Given a specification of the average run length in the (a)cceptance # and (r)ejected setting determine the k and h values in a standard # normal setting. # # Description: # Functions from the spc package are used in a simple univariate # root finding problem. # # Params: # ARLa - average run length in acceptance setting (i.e. number before # false alarm # ARLw - average run length in rejection state (i.e. number before # an increase is detected (i.e. detection delay) # method - optim method to use, see ?optim # # Returns: # list( k - reference value, h - decision interval) ###################################################################### find.kh <- function(ARLa=500,ARLr=7,sided="one",method="BFGS",verbose=FALSE) { if (!requireNamespace("spc")) stop("find.kh() requires package ", dQuote("spc")) #Small helper function which is to be minimized fun <- function(k) { if (k>0) { #Compute decision interval h <- spc::xcusum.crit(L0=ARLa,k=k,r=50,sided=sided) #Check if xcusum.crit managed to find a solution if (is.nan(h)) stop("spc::xcusum.crit was not able to find a h corresponding to ", "ARLa=",ARLa," and k=",k) if (h > 0) { #Compute ARLr given the above computed h arlr <- spc::xcusum.arl(k,h,mu=2*k,r=50,sided=sided) #Deviation from the requested ARLr if (verbose) { cat("k=",k," score = ",(arlr-ARLr)^2,"\n") } return( (arlr-ARLr)^2 ) } else { return(1e99) } } else { return( 1e99) } } k <- optim(1,fun,method=method)$par return(list(k=k,h=spc::xcusum.crit(L0=ARLa,k=k,r=50,sided=sided))) } surveillance/R/stsplot_space.R0000644000175100001440000001740713174304557016215 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Snapshot map (spplot) of an sts-object or matrix of counts ### ### Copyright (C) 2013-2014,2016,2017 Sebastian Meyer ### $Revision: 2028 $ ### $Date: 2017-10-26 09:06:23 +0200 (Thu, 26. Oct 2017) $ ################################################################################ ## x: "sts" or (simulated) matrix of counts ## tps: one or more time points. The unit-specific _sum_ of time points "tps" is ## plotted. tps=NULL means cumulation over all time points in x. ## at: number of levels for the grouped counts or specific break points to ## use, or list(n, data, trafo) passed to getPrettyIntervals(), ## where data and trafo are optional. ## CAVE: intervals are closed on the left and open to the right. ## From panel.levelplot: zcol[z >= at[i] & z < at[i + 1]] <- i ## i.e. at=0:1 will have NA (=also white) for counts=1, thus we have to ## ensure max(at) > max(counts) stsplot_space <- function (x, tps = NULL, map = x@map, population = NULL, main = NULL, labels = FALSE, at = 10, col.regions = NULL, colorkey = list(space="bottom", labels=list(at=at)), total.args = NULL, gpar.missing = list(col="darkgrey", lty=2, lwd=2), sp.layout = NULL, xlim = bbox(map)[1, ], ylim = bbox(map)[2, ], ...) { counts <- if (inherits(x, "sts")) observed(x) else x if (is.null(tps)) tps <- seq_len(nrow(counts)) if (length(map) == 0L) stop("no map") if (is.null(colnames(counts))) stop("need 'colnames(x)' (to be matched against 'row.names(map)')") if (!all(colnames(counts) %in% row.names(map))) stop("incomplete 'map'; ensure that 'all(colnames(x) %in% row.names(map))'") ## compute data to plot ncases <- getCumCounts(counts, tps) total <- sum(ncases) if (!is.null(population)) { # divide counts by region-specific population population <- parse_population_argument(population, x) # pop matrix populationByRegion <- population[tps[1L],] # pop at first time point ncases <- ncases / populationByRegion # (cumulative) incidence by region total <- total / sum(populationByRegion) } ## add ncases to map@data map <- as(map, "SpatialPolygonsDataFrame") map$ncases <- NA_real_ map$ncases[match(colnames(counts),row.names(map))] <- ncases ## default main title if (is.null(main) && inherits(x, "sts")) main <- stsTimeRange2text(x, tps) ## check/determine color break points 'at' at <- checkat(at, ncases, counts = is.null(population)) ## default color palette if (is.null(col.regions)) { separate0 <- is.null(population) && at[1] == 0 && at[2] <= 1 col.regions <- c( if (separate0) "white", hcl.colors(ncolors=length(at)-1-separate0, use.color=TRUE)) } ## colorkey settings if (!missing(colorkey) && is.list(colorkey)) colorkey <- modifyList(eval(formals()$colorkey), colorkey) ## automatic additions to sp.layout (region labels and total) if (is.list(gpar.missing) && any(is.na(map$ncases))) { layout.missing <- c(list("sp.polygons", obj=map[is.na(map$ncases),]), gpar.missing) sp.layout <- c(sp.layout, list(layout.missing)) } if (!is.null(layout.labels <- layout.labels(map, labels))) { sp.layout <- c(sp.layout, list(layout.labels)) } if (is.list(total.args)) { total.args <- modifyList(list(label="Overall: ", x=1, y=0), total.args) if (is.null(total.args$just)) total.args$just <- with (total.args, if (all(c(x,y) %in% 0:1)) { c(c("left", "right")[1+x], c("bottom","top")[1+y]) } else "center") total.args$label <- paste0(total.args$label, round(total,1)) layout.total <- c(grid::grid.text, total.args) ## "grid.text" wouldn't work since package "sp" doesn't import it sp.layout <- c(sp.layout, list(layout.total)) } ## generate the spplot() args <- list(quote(map[!is.na(map$ncases),]), "ncases", main=main, col.regions=col.regions, at=at, colorkey=colorkey, sp.layout=sp.layout, xlim=xlim, ylim=ylim, quote(...)) do.call("spplot", args) } ####################################################### ### Auxiliary functions for the "sts" snapshot function ####################################################### ## sum of counts by unit over time points "tps" ## the resulting vector has no names getCumCounts <- function (counts, tps) { ntps <- length(tps) if (ntps == 1) { counts[tps,] } else { .colSums(counts[tps,,drop=FALSE], ntps, ncol(counts)) } } parse_population_argument <- function (population, x) { if (is.matrix(population)) { if (!identical(dim(population), dim(x))) stop("'dim(population)' does not match the data dimensions") } else if (isScalar(population)) { # a unit, e.g., per 1000 inhabitants if (!inherits(x, "sts")) stop("'", deparse(substitute(x)), "' is no \"sts\" object; ", "population numbers must be supplied") population <- population(x) / population } else { # region-specific population numbers (as in surveillance <= 1.12.2) stopifnot(is.vector(population, mode = "numeric")) if (length(population) != ncol(x)) stop("'length(population)' does not match the number of data columns") population <- rep(population, each = nrow(x)) dim(population) <- dim(x) } population } checkat <- function (at, data, counts = TRUE) { # for non-transformed "data" data_range <- range(data, na.rm = TRUE) if (isScalar(at)) at <- list(n=at) at <- if (is.list(at)) { at <- modifyList(list(n=10, data=data, counts=counts), at) do.call("getPrettyIntervals", at) } else sort(at) if (any(data >= max(at) | data < min(at), na.rm=TRUE)) stop("'at' (right-open!) does not cover the data (range: ", paste0(format(data_range), collapse=" - "), ")") structure(at, checked=TRUE) } getPrettyIntervals <- function (nInt, data, trafo=scales::sqrt_trans(), counts=TRUE, ...) { maxcount <- max(data, na.rm=TRUE) if (counts && maxcount < nInt) { # no aggregation of counts necessary at <- 0:ceiling(maxcount+sqrt(.Machine$double.eps)) # max(at) > maxcount } else { at <- if (requireNamespace("scales", quietly=TRUE)) { scales::trans_breaks(trafo$trans, trafo$inv, n=nInt+1, ...)(data) } else pretty(sqrt(data), n=nInt+1, ...)^2 ## { # alternative: quantile-based scale (esp. for incidence plots) ## quantile(data, probs=seq(0,1,length.out=nInt+1), na.rm=TRUE) ## } if (counts && at[1] == 0 && at[2] > 1) # we want 0 counts separately ("white") at <- sort(c(1, at)) if (at[length(at)] == maxcount) # ensure max(at) > max(data) at[length(at)] <- at[length(at)] + if (counts) 1 else 0.001*diff(range(at)) } at } stsTime2text <- function (stsObj, tps=TRUE, fmt=if(stsObj@freq==1) "%i" else "%i/%i") { sprintf(fmt, year(stsObj)[tps], epochInYear(stsObj)[tps]) } stsTimeRange2text <- function (stsObj, tps, fmt=if(stsObj@freq==1) "%i" else "%i/%i", sep=" - ") { tpsRangeYW <- stsTime2text(stsObj, tps=range(tps), fmt=fmt) paste0(unique(tpsRangeYW), collapse=sep) } surveillance/R/algo_cdc.R0000644000175100001440000000677312003517525015060 0ustar hornikusers################################################### ### chunk number 1: ################################################### # Implementation of the CDC surveillance system. # The system evaluates specified timepoints and gives alarm if it recognizes # an outbreak for this timepoint. # algo.cdcLatestTimepoint <- function(disProgObj, timePoint = NULL, control = list(b = 5, m = 1, alpha=0.025)){ observed <- disProgObj$observed freq <- disProgObj$freq # If there is no value in timePoint, then take the last value in observed if(is.null(timePoint)){ timePoint = length(observed) } # check if the vector observed includes all necessary data. if((timePoint-(control$b*freq)-control$m*4) < 1){ stop("The vector of observed is too short!") } ###################################################################### #Find which weeks to take -- hoehle 27.3.2007 - fixed bug taking #things in the wrong time order (more recent values) ###################################################################### midx <- seq(-control$m*4-3,control$m*4) yidx <- ((-control$b):(-1))*freq baseidx <- sort(rep(yidx,each=length(midx)) + midx) months <- rep(1:((2*control$m+1)*control$b),each=4) basevec <- as.integer(by(observed[timePoint + baseidx ],months,sum)) # Create a normal distribution based upper confidence interval # (we will use the prediction interval described in # Farrington & Andrew (2003)) upCi <- mean(basevec)+qnorm(1-control$alpha/2)*sd(basevec)*sqrt(1+1/length(basevec)) #Counts for the current mounth yt0 <- sum(observed[timePoint:(timePoint-3)]) # Alarm if the actual value is larger than the upper limit. alarm <- yt0 > upCi # Save aggregated score for later visualisation. aggr <- yt0 result <- list(alarm=alarm, upperbound=upCi,aggr=aggr) class(result) = "survRes" # for surveillance system result return(result) } # 'algo.cdc' calls 'algo.bayesLatestTimepoint' for data points given by range. algo.cdc <- function(disProgObj, control = list(range = range, b=5, m=1, alpha=0.025)){ if(disProgObj$freq != 52) { stop("algo.cdc only works for weekly data.") } # initialize the necessary vectors alarm <- matrix(data = 0, nrow = length(control$range), ncol = 1) aggr <- matrix(data = 0, nrow = length(control$range), ncol = 1) upperbound <- matrix(data = 0, nrow = length(control$range), ncol = 1) #Set control options (standard CDC options) if (is.null(control$range)) { control$range <- (disProgObj$freq*control$b - control$m):length(disProgObj$observed) } if (is.null(control$b)) {control$b=5} if (is.null(control$m)) {control$m=1} #bug fixed if (is.null(control$alpha)) {control$alpha=0.025} count <- 1 for(i in control$range){ # call algo.cdcLatestTimepoint result <- algo.cdcLatestTimepoint(disProgObj, i,control=control) # store the results in the right order alarm[count] <- result$alarm aggr[count] <- result$aggr upperbound[count] <- result$upperbound count <- count + 1 } #Add name and data name to control object. control$name <- paste("cdc(",control$m*4,"*,",0,",",control$b,")",sep="") control$data <- paste(deparse(substitute(disProgObj))) # Return the vectors- # as a special feature CDC objects contain an "aggr" identifier # containing the aggregated counts for each week. result <- list(alarm = alarm, upperbound = upperbound, disProgObj=disProgObj, control=control, aggr=aggr) class(result) = "survRes" # for surveillance system result return(result) } surveillance/R/sts_animate.R0000644000175100001440000001560613020027566015630 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Animated map (and time series chart) of an sts-object (or matrix of counts) ### ### Copyright (C) 2013-2016 Sebastian Meyer ### $Revision: 1802 $ ### $Date: 2016-12-01 15:11:02 +0100 (Thu, 01. Dec 2016) $ ################################################################################ ### Corresponding to the S3-generic function animate(), ### we define a method for the S4-class "sts" and omit the recommended ### setGeneric("animate"); setMethod("animate", "sts", animate.sts) ### [see Section "Methods for S3 Generic Functions" in help("Methods")] animate.sts <- function (object, tps = NULL, cumulative = FALSE, population = NULL, at = 10, ..., timeplot = list(height = 0.3, fill = FALSE), sleep = 0.5, verbose = interactive(), draw = TRUE) { if (draw && dev.interactive()) message("Advice: use facilities of the \"animation\" package, e.g.,\n", " saveHTML() to view the animation in a web browser.") if (is.null(tps)) tps <- seq_len(nrow(object)) if (!is.null(population)) { # get population matrix population <- parse_population_argument(population, object) } ## determine color breaks (checkat() is defined in stsplot_space.R) at <- checkat(at, data=.rangeOfDataToPlot(object, tps, cumulative, population), counts=is.null(population)) ## style of the additional temporal plot if (is.list(timeplot)) { timeplot <- modifyList(eval(formals()$timeplot), timeplot) timeplot_height <- timeplot$height timeplot_fill <- timeplot$fill timeplot$height <- timeplot$fill <- NULL # not for stsplot_timeSimple() stopifnot(timeplot_height > 0, timeplot_height < 1) } if (verbose) pb <- txtProgressBar(min=0, max=length(tps), initial=0, style=3) grobs <- vector(mode = "list", length = length(tps)) for(i in seq_along(tps)) { cti <- if (cumulative) seq_len(i) else i ls <- stsplot_space(object, tps=tps[cti], population=population, at=at, ...) if (is.list(timeplot) && requireNamespace("gridExtra")) { ## For gridExtra 0.9.1, loading its namespace is not sufficient ## since it does not register its S3 methods, especially ## "drawDetails.lattice". The consequence: The below call of ## gridExtra::grid.arrange would produce an empty plot. ## Since CRAN now disallows require("gridExtra") in package code, ## the user has to manually attach the package beforehand, or we ## register the relevant S3 method here: if (packageVersion("gridExtra") == "0.9.1" && !"gridExtra" %in% .packages()) { registerS3method(genname = "drawDetails", class = "lattice", method = "drawDetails.lattice", envir = getNamespace("gridExtra")) } ## NOTE: in gridExtra's development version, S3 methods are properly ## registered, see https://github.com/baptiste/gridextra lt <- do.call("stsplot_timeSimple", c( list(x=object, tps=tps, highlight=cti), timeplot)) if (!timeplot_fill) { lt$aspect.fill <- FALSE lt$aspect.ratio <- timeplot_height * ls$aspect.ratio } grobs[[i]] <- gridExtra::arrangeGrob( ls, lt, heights=c(1-timeplot_height, timeplot_height)) ## alternative using package "gtable": ## drawDetails.lattice <- function (x, recording = FALSE) ## plot(x$p, newpage = FALSE) ## heights <- c(1-timeplot_height, timeplot_height) ## gt <- gtable::gtable(widths = grid::unit(1, units = "null"), ## heights = grid::unit(heights, units = "null")) ## gt <- gtable::gtable_add_grob(gt, list(grid::grob(p = ls, cl = "lattice"), ## grid::grob(p = lt, cl = "lattice")), ## t = 1:2, l = 1) if (draw) { grid::grid.newpage() grid::grid.draw(grobs[[i]]) } } else { grobs[[i]] <- ls if (draw) print(ls) } if (verbose) setTxtProgressBar(pb, i) if (dev.interactive()) Sys.sleep(sleep) } if (verbose) close(pb) invisible(grobs) } ### additional time plot below the map stsplot_timeSimple <- function (x, tps = NULL, highlight = integer(0), inactive = list(col="gray", lwd=1), active = list(col=1, lwd=4), as.Date = x@epochAsDate, ...) { observed <- if (inherits(x, "sts")) observed(x) else x if (is.null(tps)) { tps <- seq_len(nrow(observed)) } else { observed <- observed[tps,,drop=FALSE] } epoch <- if (inherits(x, "sts")) epoch(x, as.Date = as.Date)[tps] else tps if (anyNA(observed)) warning("ignoring NA counts in time series plot") ## build highlight-specific style vectors (col, lwd, ...) stopifnot(is.list(inactive), is.list(active)) stylepars <- intersect(names(inactive), names(active)) styleargs <- sapply(stylepars, function (argname) { res <- rep.int(inactive[[argname]], length(tps)) res[highlight] <- active[[argname]] res }, simplify=FALSE, USE.NAMES=TRUE) par_no_top_padding <- list( layout.heights = list(top.padding = 0, main.key.padding = 0, key.axis.padding = 0) ) xyplot.args <- modifyList( c(list(x = rowSums(observed, na.rm = TRUE) ~ epoch, type = "h", ylab = "", xlab = "", par.settings = par_no_top_padding), styleargs), list(...)) do.call(lattice::xyplot, xyplot.args) } ### determine data range for automatic color breaks 'at' .rangeOfDataToPlot <- function (object, tps, cumulative = FALSE, population = NULL) { observed <- if (inherits(object, "sts")) observed(object) else object observed <- observed[tps,,drop=FALSE] if (!is.null(population)) { # compute (cumulative) incidence observed <- if (cumulative) { observed / rep(population[tps[1L],], each = nrow(observed)) } else { observed / population[tps,,drop=FALSE] } } range(if (cumulative) c(observed[1L,], colSums(observed)) else observed, na.rm = TRUE) } surveillance/R/spatial_tools.R0000644000175100001440000002301412573360044016171 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Auxiliary functions for operations on spatial data ### ### Copyright (C) 2009-2015 Sebastian Meyer ### $Revision: 1463 $ ### $Date: 2015-09-07 21:06:12 +0200 (Mon, 07. Sep 2015) $ ################################################################################ ### Polygonal Approximation of a Disc/Circle discpoly <- function (center, radius, npoly = 64, class = c("Polygon", "owin", "gpc.poly"), hole = FALSE) { class <- match.arg(class) if (class == "owin") { # use spatstat::disc res <- disc(radius=radius, centre=center, mask=FALSE, npoly=npoly) if (hole) { res$bdry[[1]]$x <- rev(res$bdry[[1]]$x) res$bdry[[1]]$y <- rev(res$bdry[[1]]$y) res$bdry[[1]]$hole <- TRUE } return(res) } ## do it myself for the "Polygon" and "gpc.poly" classes stopifnot(radius > 0, isScalar(npoly), npoly > 2) theta <- seq(2*pi, 0, length = npoly+1)[-(npoly+1)] # for clockwise order if (hole) theta <- rev(theta) # for anticlockwise order x <- center[1] + radius * cos(theta) y <- center[2] + radius * sin(theta) switch(class, "Polygon" = Polygon(cbind(c(x,x[1]),c(y,y[1])), hole=hole), "gpc.poly" = { pts <- list(list(x=x, y=y, hole=hole)) if (isClass("gpc.poly") || requireNamespace("rgeos")) { new("gpc.poly", pts = pts) } else { warning("formal class \"gpc.poly\" not available") pts } } ) } ### Wrapper for polyclip or rgeos::gUnaryUnion or maptools::unionSpatialPolygons unionSpatialPolygons <- function (SpP, method = c("rgeos", "polyclip", "gpclib"), ...) { method <- match.arg(method) W <- switch( method, "polyclip" = { tiles_xylist <- xylist(SpP, reverse=FALSE) W_xylist <- polyclip::polyclip(tiles_xylist, tiles_xylist, "union", fillA = "nonzero", fillB = "nonzero", ...) ## FIXME: polyclip() seems to return owin-type vertex order? W_Polygons <- Polygons( lapply(W_xylist, function(p) Polygon(cbind(p$x,p$y)[c(1L,length(p$x):1L),])), ID="1") SpatialPolygons(list(W_Polygons)) }, "rgeos" = rgeos::gUnaryUnion(SpP, ...), "gpclib" = { ## rgeosStatus needed by maptools::unionSpatialPolygons is only ## set in maptools:::.onAttach. Since it is bad practice to do ## library("maptools") in package code (cf. R-exts 1.1.3.1), ## the user has to attach "maptools" manually beforehand if (!"maptools" %in% .packages()) { stop("need 'library(\"maptools\")'; ", "then call surveillance::unionSpatialPolygons") } gpclibCheck() && maptools::gpclibPermit() maptools::unionSpatialPolygons( SpP, IDs = rep.int(1,length(SpP@polygons)), avoidGEOS = TRUE, ...) }) ## ensure that W has exactly the same proj4string as SpP W@proj4string <- SpP@proj4string W } ### Compute distance from points to a polygonal boundary ## nncross.ppp() is about 20 times faster than the previous bdist.points() ## approach [-> distppl()], since it calls C-code [-> distppllmin()] ## minor drawback: the polygonal boundary needs to be transformed to "psp" bdist <- function (xy, poly) { if (nrow(xy) > 0L) { nncross.ppp( X = ppp(x = xy[,1L], y = xy[,2L], check = FALSE), Y = if (is.polygonal(poly)) edges(poly, check = FALSE) else poly, what = "dist" ) } else { ## spatstat 1.41-1 returns a 0-row _data.frame_ for the trivial case numeric(0L) } } ### sample n points uniformly on a disc with radius r runifdisc <- function (n, r = 1, buffer = 0) { stopifnot(buffer <= r) rangle <- runif(n, 0, 2*pi) rdist <- r * sqrt(runif(n, (buffer/r)^2, 1)) rdist * cbind(cos(rangle), sin(rangle)) } ### Count number of instances at the same location of a SpatialPoints object ## NOTE: the default multiplicity-method has been integrated into the spatstat ## package which we import multiplicity.Spatial <- function (x) multiplicity(coordinates(x)) ### determines which polygons of a SpatialPolygons object are at the border, ### i.e. have coordinates in common with the spatial union of all polygons polyAtBorder <- function (SpP, snap = sqrt(.Machine$double.eps), method = "rgeos", ...) { SpP <- as(SpP, "SpatialPolygons") W <- unionSpatialPolygons(SpP, method = method, ...) if (length(W@polygons) > 1) warning("unionSpatialPolygons() produced >1 Polygons-components") Wcoords <- unique(do.call("rbind", lapply(W@polygons[[1]]@Polygons, coordinates))) atBorder <- sapply(SpP@polygons, function (x) { coords <- unique(do.call("rbind", lapply(x@Polygons, coordinates))) res <- FALSE for (i in seq_len(nrow(coords))) { if (any(spDistsN1(Wcoords, coords[i,], longlat=FALSE) < snap)) { res <- TRUE break } } res }) names(atBorder) <- row.names(SpP) atBorder } ### sp.layout items for spplot() ## draw labels for Spatial* objects layout.labels <- function (obj, labels = TRUE, plot = FALSE) { stopifnot(inherits(obj, "Spatial")) ## get region labels getLabels <- function (labels) { if (isTRUE(labels)) { row.names(obj) } else if (length(labels) == 1L && (is.numeric(labels) | is.character(labels))) { if (!"data" %in% slotNames(obj)) stop("no data slot to select labels from") obj@data[[labels]] } else labels } ## convert labels argument to a list labels.args <- if (is.list(labels)) { labels } else if (!is.null(labels) && !identical(labels, FALSE)) { list(labels = getLabels(labels)) } else { # labels = FALSE or labels = NULL return(NULL) } ## set default coordinates for panel.text() and parse labels labels.args <- modifyList(list(x = coordinates(obj), labels = TRUE), labels.args) labels.args$labels <- getLabels(labels.args$labels) if (plot) { ## plot labels in the traditional graphics system do.call("text", labels.args) } else { ## return layout item for use by spplot() c("panel.text", labels.args) } } ## draw a scalebar with labels layout.scalebar <- function (obj, corner = c(0.05, 0.95), scale = 1, labels = c(0, scale), height = 0.05, pos = 3, ..., plot = FALSE) { stopifnot(inherits(obj, "Spatial")) BB <- bbox(obj) force(labels) # the default should use the original 'scale' value in km if (identical(FALSE, is.projected(obj))) { ## 'obj' has longlat coordinates, 'scale' is interpreted in kilometres scale <- .scale2longlat(t(rowMeans(BB)), scale) } offset <- BB[, 1L] + corner * apply(BB, 1L, diff.default) textfun <- if (plot) "text" else "panel.text" lis <- list( list("SpatialPolygonsRescale", layout.scale.bar(height = height), offset = offset, scale = scale, fill = c(NA, 1), plot.grid = !plot), list(textfun, x = offset[1L], y = offset[2L], labels = labels[1L], pos = pos, ...), list(textfun, x = offset[1L] + scale[1L], y = offset[2L], labels = labels[2L], pos = pos, ...) ) if (plot) { for (li in lis) eval(do.call("call", li)) } else { lis } } .scale2longlat <- function (focusLL, distKM) { ## .destPoint() is copied from the "raster" package by Robert J. Hijmans ## 'p' is a longlat coordinate matrix, 'd' is a vector of distances in metres .destPoint <- function (p, d, b=90, r=6378137) { toRad <- pi/180 lon1 <- p[, 1] * toRad lat1 <- p[, 2] * toRad b <- b * toRad lat2 <- asin(sin(lat1) * cos(d/r) + cos(lat1) * sin(d/r) * cos(b)) lon2 <- lon1 + atan2(sin(b) * sin(d/r) * cos(lat1), cos(d/r) - sin(lat1) * sin(lat2)) lon2 <- (lon2 + pi)%%(2 * pi) - pi cbind(lon2, lat2)/toRad } rightLL <- .destPoint(focusLL, distKM * 1000) rightLL[,1L] - focusLL[,1L] } ### determine the total area of a SpatialPolygons object ## CAVE: sum(sapply(obj@polygons, slot, "area")) ## is not correct if the object contains holes areaSpatialPolygons <- function (obj, byid = FALSE) { if (requireNamespace("rgeos", quietly = TRUE)) { rgeos::gArea(obj, byid = byid) } else { areas <- vapply( X = obj@polygons, FUN = function (p) sum( vapply(X = p@Polygons, FUN = function (x) (1-2*x@hole) * x@area, FUN.VALUE = 0, USE.NAMES = FALSE) ), FUN.VALUE = 0, USE.NAMES = FALSE ) if (byid) setNames(areas, row.names(obj)) else sum(areas) } } surveillance/R/isoWeekYear.R0000644000175100001440000001073412500404621015536 0ustar hornikusers###################################################################### # Extract ISO week from Date object # # Details: # Code by Gustaf Rydevik , revised 2010 # http://tolstoy.newcastle.edu.au/R/e10/help/10/05/5588.html # This is a platform independent way of doing # format.Date(x,"%G") or format.Date(x,"%G") # which unfortunately does not work on windows platforms. # # Note: The function is vectorized. # # Parameters: # Y -- Inputs a date object (POSIX) or Year # M -- month (NULL if Y is a Date object) # D -- day (NULL if Y is a Date object) # # Returns: # ISO year and wek of the date ###################################################################### isoWeekYear<-function(Y,M=NULL,D=NULL){ #Format the date. But whatts the difference between the two statements? if(!class(Y)[1]%in%c("Date","POSIXt")) { date.posix<-strptime(paste(Y,M,D,sep="-"),"%Y-%m-%d") } if(class(Y)[1]%in%c("POSIXt","Date")){ date.posix<-as.POSIXlt(Y) Y<-as.numeric(format(date.posix,"%Y")) M<-as.numeric(format(date.posix,"%m")) D<-as.numeric(format(date.posix,"%d")) } #LY LY <- (Y%%4==0 & !(Y%%100==0))|(Y%%400==0) LY.prev <- ((Y-1)%%4==0 & !((Y-1)%%100==0))|((Y-1)%%400==0) date.yday<-date.posix$yday+1 jan1.wday<-strptime(paste(Y,"01-01",sep="-"),"%Y-%m-%d")$wday jan1.wday<-ifelse(jan1.wday==0,7,jan1.wday) date.wday<-date.posix$wday date.wday<-ifelse(date.wday==0,7,date.wday) ####If the date is in the beginning, or end of the year, ### does it fall into a week of the previous or next year? Yn<-ifelse(date.yday<=(8-jan1.wday)&jan1.wday>4,Y-1, ifelse(((365+LY-date.yday)<(4-date.wday)),Y+1,Y)) ##Set the week differently if the date is in the beginning,middle or ##end of the year Wn<-ifelse( Yn==Y-1, ifelse((jan1.wday==5|(jan1.wday==6 &LY.prev)),53,52), ifelse(Yn==Y+1,1,(date.yday+(7-date.wday)+(jan1.wday-1))/7-(jan1.wday>4)) ) return(list(ISOYear=Yn,ISOWeek=Wn)) } ###################################################################### # Not very beautiful function implementing a platform independent # format.Date function. See format.Date, which for the %V and %G # format strings does not work on windows. # Added format string %Q for formatting of the quarter (1-4) the month # belongs to. # # Params: # x - An object of type Date to be converted. # format - A character string. Note that only "%V and %G" are # processed on Windows. Otherwise the call is sent to format.Date ###################################################################### #Small helper function - vectorized gsub, but disregarding names of x gsub2 <- function(pattern, replacement, x) { len <- length(x) mapply(FUN = gsub, pattern = rep_len(as.character(pattern), len), replacement = rep_len(as.character(replacement), len), x = x, MoreArgs = list(fixed = TRUE), SIMPLIFY = TRUE, USE.NAMES = FALSE) } #More general version also handling a mix of several formats formatDate <- function(x, format) { ##Anything to do? if (!grepl( "%G|%V|%Q|%OQ|%q", format)) { #nope return(format(x,format)) } #Replicate string. formatStr <- rep_len(format,length(x)) ##If days within quarter requested (this is kind of slow) if (grepl("%q",format)) { ##Loop over vectors of dates dateOfQuarter <- sapply(x, function(date) { ##Month number in quarter modQ <- (as.numeric(format(date,"%m"))-1) %% 3 dateInMonth <- seq(date,length.out=2,by=paste0("-",modQ," month"))[2] ##Move to first of month return(dateInMonth - as.numeric(format(dateInMonth,"%d")) + 1) }) dayInQuarter <- as.numeric(x - dateOfQuarter) + 1 formatStr <- gsub2("%q",as.character(dayInQuarter),formatStr) } if (grepl("%Q|%OQ",format)) { Q <- (as.numeric(format(x,"%m"))-1) %/% 3 + 1 #quarter formatStr <- gsub2("%Q",as.character(Q),formatStr) formatStr <- gsub2("%OQ",as.roman(Q),formatStr) } if (.Platform$OS.type == "windows") { ##Year/week isoYear <- isoWeekYear(x)$ISOYear isoWeek <- sprintf("%.2d",isoWeekYear(x)$ISOWeek) formatStr <- gsub2("%G",isoYear,formatStr) formatStr <- gsub2("%V",isoWeek,formatStr) } ##The rest of the formatting - works normally as defined by strptime res <- character(length(x)) for (i in 1:length(x)) { res[i] <- format(x[i],formatStr[i])} return(res) } surveillance/R/hhh4_W.R0000644000175100001440000002476512677547251014467 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Helper functions for neighbourhood weight matrices in hhh4() ### ### Copyright (C) 2012-2016 Sebastian Meyer ### $Revision: 1687 $ ### $Date: 2016-04-01 21:40:25 +0200 (Fri, 01. Apr 2016) $ ################################################################################ checkNeighbourhood <- function (neighbourhood) { ## setValidity() in sts.R only guarantees correct 'dim' and 'dimnames' ## we also assert numeric or logical matrix with non-NA entries ## FIXME: However, we currently don't check for symmetry and for zeros on ## the diagonal... stopifnot(is.matrix(neighbourhood), nrow(neighbourhood) == ncol(neighbourhood), is.numeric(neighbourhood) | is.logical(neighbourhood), is.finite(neighbourhood)) invisible(TRUE) } ### calculate the weighted sum of counts of adjacent (or all other) regions ### i.e. the nTime x nUnit matrix with elements ne_ti = sum_j w_jit * y_jt ## W is either a nUnits x nUnits matrix of time-constant weights w_ji ## or a nUnits x nUnits x nTime array of time-varying weights weightedSumNE <- function (observed, weights, lag) { dimY <- dim(observed) nTime <- dimY[1L] nUnits <- dimY[2L] tY <- t(observed) # -> nUnits x nTime res <- apply(weights, 2L, function (wi) ## if dim(weights)==2 (time-constant weights), length(wi)=nUnits, ## if dim(weights)==3, wi is a matrix of size nUnits x nTime .colSums(tY * wi, nUnits, nTime, na.rm=TRUE)) rbind(matrix(NA_real_, lag, nUnits), res[seq_len(nTime-lag),,drop=FALSE]) } ### normalize weight matrix such that each row sums to 1 (at each time point) normalizeW <- function (W) { dimW <- dim(W) if (length(dimW) == 2L) { W / .rowSums(W, dimW[1L], dimW[2L]) } else { # time-varying weights res <- apply(W, 3L, normalizeW) dim(res) <- dimW res } } ### scale and/or normalize a weight matrix/array scaleNEweights.default <- function (weights, scale = NULL, normalize = FALSE) { if (!is.null(scale)) weights <- scale * weights if (normalize) weights <- normalizeW(weights) weights } ## update parametric weights functions w, dw, d2w scaleNEweights.list <- function (weights, scale = NULL, normalize = FALSE) { if (is.null(scale) && !normalize) return(weights) if (normalize) { dprod <- function (u, v, du, dv) du * v + u * dv dfrac <- function (u, v, du, dv) (du * v - u * dv) / v^2 w <- function (...) scaleNEweights.default(weights$w(...), scale, TRUE) dw <- function (...) { W <- scaleNEweights.default(weights$w(...), scale) dW <- clapply(X = weights$dw(...), # matrix or list thereof FUN = scaleNEweights.default, scale = scale) # always returns a list dimW <- dim(W) normW <- .rowSums(W, dimW[1L], dimW[2L]) normdW <- lapply(X = dW, FUN = .rowSums, m = dimW[1L], n = dimW[2L]) mapply(FUN = dfrac, du = dW, dv = normdW, MoreArgs = list(u = W, v = normW), SIMPLIFY = FALSE, USE.NAMES = FALSE) } ## for d2w() we need all the stuff from dw() -> substitute d2w <- as.function(c(alist(...=), substitute({ dWnorm <- DWBODY d2W <- clapply(X = weights$d2w(...), # matrix or list thereof FUN = scaleNEweights.default, scale = scale) # always returns a list normd2W <- lapply(X = d2W, FUN = .rowSums, m = dimW[1L], n = dimW[2L]) ## order of d2w is upper triangle BY ROW dimd <- length(dW) ri <- rep.int(seq_len(dimd), rep.int(dimd, dimd)) # row index ci <- rep.int(seq_len(dimd), dimd) # column index uppertri <- ci >= ri mapply(FUN = function (k, l, d2W, normd2W) { dfrac(dW[[k]], normW, d2W, normdW[[l]]) - dprod(W/normW, normdW[[k]]/normW, dWnorm[[l]], dfrac(normdW[[k]], normW, normd2W, normdW[[l]])) }, k = ri[uppertri], l = ci[uppertri], d2W = d2W, normd2W = normd2W, SIMPLIFY = FALSE, USE.NAMES = FALSE) }, list(DWBODY = body(dw))))) } else { w <- function (...) scaleNEweights.default(weights$w(...), scale) dw <- function (...) clapply(X = weights$dw(...), FUN = scaleNEweights.default, scale = scale) d2w <- function (...) clapply(X = weights$d2w(...), FUN = scaleNEweights.default, scale = scale) } ## return list with updated functions list(w = w, dw = dw, d2w = d2w, initial = weights$initial) } ################################## ### check ne$weights specification ################################## ### checks for a fixed matrix/array checkWeightsArray <- function (W, nUnits, nTime, name = deparse(substitute(W)), check0diag = FALSE, islands = FALSE) { if (!is.array(W) || !(length(dim(W)) %in% 2:3)) stop("'", name, "' must return a matrix or 3-dim array") if (any(dim(W)[1:2] != nUnits) || isTRUE(dim(W)[3] != nTime)) stop("'", name, "' must conform to dimensions ", nUnits, " x ", nUnits, " (x ", nTime, ")") if (any(is.na(W))) { if (islands) # normalization of parametric weights yields division by 0 warning("neighbourhood structure contains islands") stop("missing values in '", name, "' are not allowed") } if (check0diag) { diags <- if (is.matrix(W)) diag(W) else apply(W, 3, diag) if (any(diags != 0)) warning("'", name, "' has nonzeros on the diagonal", if (!is.matrix(W)) "s") } } ### check parametric weights specification consisting of a list of: ## - three functions: w, dw, and d2w ## - a vector of initial parameter values checkWeightsFUN <- function (object) { fnames <- paste0(c("","d","d2"), "w") if (any(!sapply(object[fnames], is.function))) stop("parametric weights require functions ", paste0("'", fnames, "'", collapse=", ")) if (any(!sapply(object[fnames], function(FUN) length(formals(FUN)) >= 3L))) stop("parametric weights functions must accept (not necessarily use)", "\n at least 3 arguments (parameter vector, ", "neighbourhood order matrix, data)") if (!is.vector(object$initial, mode="numeric") || length(object$initial) == 0L) stop("parametric weights require initial parameter values") TRUE } ### entry function for checks in hhh4() checkWeights <- function (weights, nUnits, nTime, nbmat, data, # only used for parametric weights check0diag = FALSE) { name <- deparse(substitute(weights)) # "control$ne$weights" ## check specification testweights <- if (is.array(weights)) weights else { if (is.list(weights) && checkWeightsFUN(weights) && checkNeighbourhood(nbmat)) { if (all(nbmat %in% 0:1)) warning("'", deparse(substitute(nbmat)), "' is binary (should contain", " general neighbourhood orders)") weights$w(weights$initial, nbmat, data) } else { stop("'", name, "' must be a matrix/array or a list of functions") } } ## apply matrix/array checks if (is.list(weights)) { # parametric weights if (length(dim(testweights)) > 2L) warning("time-varying parametric weights are not fully supported") checkWeightsArray(testweights, nUnits, nTime, name = paste0(name, "$w"), check0diag = check0diag, islands = any(.rowSums(nbmat, nUnits, nUnits) == 0)) dim.d <- length(weights$initial) dw <- weights$dw(weights$initial, nbmat, data) d2w <- weights$d2w(weights$initial, nbmat, data) if (dim.d == 1L && !is.list(dw) && !is.list(d2w)) { checkWeightsArray(dw, nUnits, nTime, name=paste0(name, "$dw")) checkWeightsArray(d2w, nUnits, nTime, name=paste0(name, "$d2w")) } else { if (!is.list(dw) || length(dw) != dim.d) stop("'", name, "$dw' must return a list (of matrices/arrays)", " of length ", dim.d) if (!is.list(d2w) || length(d2w) != dim.d*(dim.d+1)/2) stop("'", name, "$d2w' must return a list (of matrices/arrays)", " of length ", dim.d*(dim.d+1)/2) lapply(dw, checkWeightsArray, nUnits, nTime, name=paste0(name, "$dw[[i]]")) lapply(d2w, checkWeightsArray, nUnits, nTime, name=paste0(name, "$d2w[[i]]")) } } else checkWeightsArray(testweights, nUnits, nTime, name = name, check0diag = check0diag) ## Done invisible(TRUE) } ############################################# ### Utility functions for fitted hhh4-objects ############################################# ### extract the (final) weight matrix/array from a fitted hhh4 object getNEweights <- function (object, pars = coefW(object), scale = ne$scale, normalize = ne$normalize) { ne <- object$control$ne weights <- if (is.list(ne$weights)) { # parametric weights nd <- length(ne$weights$initial) if (length(pars) != nd) stop("'pars' must be of length ", nd) ne$weights$w(pars, neighbourhood(object$stsObj), object$control$data) } else { # NULL or fixed weight structure ne$weights } if (is.null(normalize)) normalize <- FALSE # backward compatibility < 1.9-0 scaleNEweights.default(weights, scale, normalize) } ### extract parameters of neighbourhood weights from hhh4-object or coef vector coefW <- function (object) { coefs <- if (inherits(object, "hhh4")) object$coefficients else object coefW <- coefs[grep("^neweights", names(coefs))] names(coefW) <- sub("^neweights\\.", "", names(coefW)) coefW } surveillance/R/makeControl.R0000644000175100001440000000421713125005041015561 0ustar hornikusers################################################################################ ### Convenient construction of a list of control arguments for "hhh4" models ### ### Copyright (C) 2014-2015 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ################################################################################ ##' Generate \code{control} Settings for an \code{hhh4} Model ##' ##' @param f,S,period arguments for \code{\link{addSeason2formula}} defining ##' each of the three model formulae in the order (\code{ar}, \code{ne}, ##' \code{end}). Recycled if necessary within \code{\link{mapply}}. ##' @param offset multiplicative component offsets in the order (\code{ar}, ##' \code{ne}, \code{end}). ##' @param ... further elements for the \code{\link{hhh4}} control list. The ##' \code{family} parameter is set to \code{"NegBin1"} by default. ##' @return a list for use as the \code{control} argument in \code{\link{hhh4}}. ##' @author Sebastian Meyer ##' @examples ##' makeControl() ##' ##' ## a simplistic model for the fluBYBW data ##' ## (first-order transmission only, no district-specific intercepts) ##' data("fluBYBW") ##' mycontrol <- makeControl( ##' f = list(~1, ~1, ~t), S = c(1, 1, 3), ##' offset = list(population(fluBYBW)), # recycled -> in all components ##' ne = list(normalize = TRUE), verbose = TRUE) ##' str(mycontrol) ##' \dontrun{fit <- hhh4(fluBYBW, mycontrol)} makeControl <- function (f = list(~1), S = list(0, 0, 1), period = 52, offset = 1, ...) { ## set model components control <- mapply(function (f, S, period, offset) { f <- addSeason2formula(f = f, S = S, period = period) list(f = f, offset = offset) }, f, S, period, offset, SIMPLIFY = FALSE, USE.NAMES = FALSE) names(control) <- c("ar", "ne", "end") ## default: negative-binomial distribution with common overdispersion control$family <- "NegBin1" ## customization via ... arguments modifyList(control, list(...)) } surveillance/R/ks.plot.unif.R0000644000175100001440000001343412424247304015651 0ustar hornikusers################# # Plot the empirical distribution function of a sample from U(0,1) # together with a confidence band of the corresponding K-S-test. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # A copy of the GNU General Public License is available at # http://www.r-project.org/Licenses/ # # Parts of the code are taken from stats::ks.test, which has # copyright 1995-2012 by The R Core Team under GPL-2 (or later). # Furthermore, the C function calls are taken from # http://svn.r-project.org/R/trunk/src/library/stats/src/ks.c (as at 2012-08-16), # which similarly is Copyright (C) 1999-2009 by the R Core Team # and available under GPL-2. Somewhat disguised in their code is a reference # that parts of their code uses code published in # George Marsaglia and Wai Wan Tsang and Jingbo Wang (2003), # "Evaluating Kolmogorov's distribution". # Journal of Statistical Software, Volume 8, 2003, Issue 18. # URL: http://www.jstatsoft.org/v08/i18/. # # # Parameters: # U - numeric vector containing the sample (NA's are silently removed) # conf.level - confindence level for the K-S-test, # can also be a vector of multiple levels # exact - see ks.test # col.conf - colour of the confidence band # col.ref - colour of the reference line ################# ks.plot.unif <- function (U, conf.level = 0.95, exact = NULL, col.conf = "gray", col.ref = "gray", xlab = expression(u[(i)]), ylab = "Cumulative distribution") { stopifnot(is.vector(U, mode="numeric")) U <- U[!is.na(U)] n <- length(U) TIES <- FALSE if (anyDuplicated(U)) { warning("ties should not be present for the Kolmogorov-Smirnov test") TIES <- TRUE } if (is.null(exact)) exact <- (n < 100) && !TIES ## Helper function to invert the K-S test. The function ## pkolmogorov2x is the CDF of the Kolmogorov test statistic ## and is taken from the R project sources, which ## is (C) 1995-2009 by The R Core Team under GPL-2 f <- if (exact) { function (x, p) { # x is the test statistic PVAL <- 1 - .C("pkolmogorov2x", p = as.double(x), as.integer(n), PACKAGE = "surveillance")$p PVAL - p } } else { pkstwo <- function(x, tol = 1e-06) { # x is the test statistic ## stopifnot(length(x) == 1L) #Same copyright as above applies to the C code. if (is.na(x)) NA_real_ else if (x == 0) 0 else { .C("pkstwo", 1L, p = as.double(x), as.double(tol), PACKAGE = "surveillance")$p } } function (x, p) { PVAL <- 1 - pkstwo(sqrt(n) * x) PVAL - p } } ## Test inversion Dconf <- sapply(conf.level, function (level) { uniroot(f, lower=0, upper=1, p=1-level)$root }) ## Small helper function to draw a line myabline <- function (a, b, x.grid = seq(0,1,length.out=101), ...) { lines(x.grid, a + b * x.grid, ...) } ## Figure 10 in Ogata (1988) plot(c(0,1), c(0,1), type="n", xlab=xlab, ylab=ylab) myabline(a=0, b=1, col=col.ref, lwd=2) rug(U) lines(ecdf(U), verticals=TRUE, do.points=FALSE) sapply(Dconf, function (D) { myabline(a=D, b=1, col=col.conf, lty=2) myabline(a=-D, b=1, col=col.conf, lty=2) }) #legend(x="topleft", col=col.conf, lty=2, # legend=paste(100*conf.level,"% KS error bounds", sep="")) invisible() } ###################################################################### # Check the residual process of fitted twinstim or twinSIR # using ks.plot.unif on 1-exp(-diff(tau)) # and a scatterplot of u_i vs. u_{i+1} to inspect serial correlation # # Parameters: # object - a fitted twinSIR or twinstim model # # Draws the ECDF of the transformed residuals together with backtransformed # 95% Kolmogorov-Smirnov error bounds. ###################################################################### checkResidualProcess <- function (object, plot = 1:2, mfrow = c(1,length(plot)), ...) { stopifnot(inherits(object, c("twinSIR", "twinstim", "simEpidataCS"))) ## check plot argument if (is.logical(plot)) plot <- which(rep(plot, length.out = 2)) else { stopifnot(is.vector(plot, mode="numeric"), plot %in% 1:2) } ## extract residual process tau <- do.call("residuals", args = list(substitute(object)), envir = parent.frame()) ## Transform to uniform variable Y <- diff(c(0,tau)) U <- 1 - exp(-Y) ## Calculate KS test ks <- ks.test(U, "punif", alternative = "two.sided", exact = match.call()[["exact"]]) ## return value ret <- list(tau=tau, U=U, ks=ks) ## 2 types of plots plotcalls <- alist( ## Investigate uniform distribution of U ks.plot.unif(U, ...), ## Investigate serial correlation between U_t and U_{t+1} which ## corresponds to Figure 11 in Ogata (1988) plot(tail(U,n=-1), head(U,n=-1), xlab=expression(u[i]), ylab=expression(u[i+1])) ) ## eval selected plot calls if (length(plot) > 0L) { opar <- par(mfrow = mfrow); on.exit(par(opar)) for (i in plot) eval(plotcalls[[i]]) invisible(ret) } else { ret } } surveillance/R/hhh4_methods.R0000644000175100001440000005345113227413354015702 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Standard methods for hhh4-fits ### ### Copyright (C) 2010-2012 Michaela Paul, 2012-2018 Sebastian Meyer ### $Revision: 2048 $ ### $Date: 2018-01-16 16:14:52 +0100 (Tue, 16. Jan 2018) $ ################################################################################ ## NOTE: we also apply print.hhh4 in print.summary.hhh4() print.hhh4 <- function (x, digits = max(3, getOption("digits")-3), ...) { if (!x$convergence) { cat('Results are not reliable! Try different starting values.\n') return(invisible(x)) } if (!is.null(x$call)) { cat("\nCall: \n", paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n\n", sep = "") } if (x$dim["random"] > 0) { cat('Random effects:\n') .printREmat(if (is.null(x$REmat)) .getREmat(x) else x$REmat, digits = digits) cat("\nFixed effects:\n") } else if (x$dim["fixed"] > 0) { cat("Coefficients:\n") } if (x$dim["fixed"] > 0) { print.default( format(if (is.null(x$fixef)) fixef.hhh4(x, ...) else x$fixef, digits=digits), quote = FALSE, print.gap = 2) } else cat("No coefficients\n") cat("\n") invisible(x) } ## get estimated covariance matrix of random effects .getREmat <- function (object) { ## return NULL if model has no random effects if (is.null(REmat <- object$Sigma)) return(NULL) ## hhh4()$Sigma is named since r791 only -> derive names from Sigma.orig if (is.null(dimnames(REmat))) dimnames(REmat) <- rep.int( list(sub("^sd\\.", "", names(object$Sigma.orig)[seq_len(nrow(REmat))])), 2L) attr(REmat, "correlation") <- cov2cor(REmat) attr(REmat, "sd") <- sqrt(diag(REmat)) REmat } .printREmat <- function (REmat, digits = 4) { V <- round(diag(REmat), digits=digits) corr <- round(attr(REmat, "correlation"), digits=digits) corr[upper.tri(corr,diag=TRUE)] <- "" V.corr <- cbind(V, corr, deparse.level=0) colnames(V.corr) <- c("Var", "Corr", rep.int("", ncol(corr)-1L)) print.default(V.corr, quote=FALSE) } summary.hhh4 <- function (object, maxEV = FALSE, ...) { ## do not summarize results in case of non-convergence if (!object$convergence) { cat('Results are not reliable! Try different starting values.\n') return(invisible(object)) } ret <- c(object[c("call", "convergence", "dim", "loglikelihood", "margll", "lags", "nTime", "nUnit")], list(fixef = fixef.hhh4(object, se=TRUE, ...), ranef = ranef.hhh4(object, ...), REmat = .getREmat(object), AIC = AIC(object), BIC = BIC(object), maxEV_range = if (maxEV) unique(range(getMaxEV(object))))) class(ret) <- "summary.hhh4" return(ret) } print.summary.hhh4 <- function (x, digits = max(3, getOption("digits")-3), ...) { ## x$convergence is always TRUE if we have a summary print.hhh4(x) # also works for summary.hhh4-objects if (!is.null(x$maxEV_range)) cat("Epidemic dominant eigenvalue: ", paste(sprintf("%.2f", x$maxEV_range), collapse = " -- "), "\n\n") if(x$dim["random"]==0){ cat('Log-likelihood: ',round(x$loglikelihood,digits=digits-2),'\n') cat('AIC: ',round(x$AIC,digits=digits-2),'\n') cat('BIC: ',round(x$BIC,digits=digits-2),'\n\n') } else { cat('Penalized log-likelihood: ',round(x$loglikelihood,digits=digits-2),'\n') cat('Marginal log-likelihood: ',round(x$margll,digits=digits-2),'\n\n') } cat('Number of units: ', x$nUnit, '\n') cat('Number of time points: ', x$nTime, '\n') if (!is.null(x$lags)) { # only available since surveillance 1.8-0 if (!is.na(x$lags["ar"]) && x$lags["ar"] != 1) cat("Non-default autoregressive lag: ", x$lags[["ar"]], "\n") if (!is.na(x$lags["ne"]) && x$lags["ne"] != 1) cat("Non-default neighbor-driven lag: ", x$lags[["ne"]], "\n") } cat("\n") invisible(x) } terms.hhh4 <- function (x, ...) { if (is.null(x$terms)) interpretControl(x$control,x$stsObj) else x$terms } nobs.hhh4 <- function (object, ...) { if (object$convergence) object$nObs else NA_real_ } logLik.hhh4 <- function(object, ...) { val <- if (object$convergence) object$loglikelihood else { warning("algorithm did not converge") NA_real_ } attr(val, "df") <- if (object$dim["random"]) NA_integer_ else object$dim[["fixed"]] # use "[[" to drop the name attr(val, "nobs") <- nobs.hhh4(object) class(val) <- "logLik" val } coef.hhh4 <- function(object, se=FALSE, reparamPsi=TRUE, idx2Exp=NULL, amplitudeShift=FALSE, ...) { if (identical(object$control$family, "Poisson")) reparamPsi <- FALSE coefs <- object$coefficients coefnames <- names(coefs) idx <- getCoefIdxRenamed(coefnames, reparamPsi, idx2Exp, amplitudeShift, warn=!se) ## transform and rename if (length(idx$Psi)) { coefs[idx$Psi] <- exp(-coefs[idx$Psi]) # -log(overdisp) -> overdisp coefnames[idx$Psi] <- names(idx$Psi) } if (length(idx$toExp)) { coefs[idx$toExp] <- exp(coefs[idx$toExp]) coefnames[idx$toExp] <- names(idx$toExp) } if (length(idx$AS)) { coefs[idx$AS] <- sinCos2amplitudeShift(coefs[idx$AS]) coefnames[idx$AS] <- names(idx$AS) } ## set new names names(coefs) <- coefnames if (se) { cov <- vcov.hhh4(object, reparamPsi=reparamPsi, idx2Exp=idx2Exp, amplitudeShift=amplitudeShift) cbind("Estimate"=coefs, "Std. Error"=sqrt(diag(cov))) } else coefs } vcov.hhh4 <- function (object, reparamPsi=TRUE, idx2Exp=NULL, amplitudeShift=FALSE, ...) { if (identical(object$control$family, "Poisson")) reparamPsi <- FALSE idx <- getCoefIdxRenamed(names(object$coefficients), reparamPsi, idx2Exp, amplitudeShift, warn=FALSE) newcoefs <- coef.hhh4(object, se=FALSE, reparamPsi=reparamPsi, idx2Exp=idx2Exp, amplitudeShift=amplitudeShift) ## Use multivariate Delta rule => D %*% vcov %*% t(D), D: Jacobian. ## For idx2Exp and reparamPsi, we only transform coefficients independently, ## i.e. D is diagonal (with elements 'd') d <- rep.int(1, length(newcoefs)) if (length(idx$Psi)) # h = exp(-psi), h' = -exp(-psi) d[idx$Psi] <- -newcoefs[idx$Psi] if (length(idx$toExp)) # h = exp(coef), h' = exp(coef) d[idx$toExp] <- newcoefs[idx$toExp] ## For the amplitude/shift-transformation, D is non-diagonal vcov <- if (length(idx$AS)) { D <- diag(d, length(d)) D[idx$AS,idx$AS] <- jacobianAmplitudeShift(newcoefs[idx$AS]) D %*% object$cov %*% t(D) } else t(t(object$cov*d)*d) # 30 times faster than via matrix products dimnames(vcov) <- list(names(newcoefs), names(newcoefs)) vcov } getCoefIdxRenamed <- function (coefnames, reparamPsi=TRUE, idx2Exp=NULL, amplitudeShift=FALSE, warn=TRUE) { ## indexes of overdispersion parameters idxPsi <- if (reparamPsi) { idxPsi <- grep("-log(overdisp", coefnames, fixed=TRUE) ## change labels from "-log(overdisp.xxx)" to "overdisp.xxx" names(idxPsi) <- substr(coefnames[idxPsi], start=6, stop=nchar(coefnames[idxPsi])-1L) if (length(idxPsi) == 0L) { # backward compatibility (internal psi coef # was named "overdisp" prior to r406) idxPsi <- grep("^overdisp", coefnames) names(idxPsi) <- coefnames[idxPsi] } idxPsi } else NULL ## indexes of sine-cosine coefficients idxAS <- if (amplitudeShift) { idxAS <- sort(c(grep(".sin(", coefnames, fixed=TRUE), grep(".cos(", coefnames, fixed=TRUE))) names(idxAS) <- sub(".sin", ".A", coefnames[idxAS], fixed=TRUE) names(idxAS) <- sub(".cos", ".s", names(idxAS), fixed=TRUE) idxAS } else NULL ## indexes of coefficients to exp()-transform if (isTRUE(idx2Exp)) { idxLogCovar <- grep(".log(", coefnames, fixed = TRUE) idx2Exp <- setdiff(seq_along(coefnames), c(idxLogCovar, idxPsi, idxAS)) } else if (length(idx2Exp)) { stopifnot(is.vector(idx2Exp, mode = "numeric")) ## index sets must be disjoint if (length(idxOverlap <- intersect(c(idxPsi, idxAS), idx2Exp))) { if (warn) warning("following 'idx2Exp' were ignored due to overlap: ", paste(idxOverlap, collapse=", ")) idx2Exp <- setdiff(idx2Exp, idxOverlap) } } if (length(idx2Exp)) names(idx2Exp) <- paste0("exp(", coefnames[idx2Exp], ")") ## done list(Psi=idxPsi, AS=idxAS, toExp=idx2Exp) } fixef.hhh4 <- function (object,...) { if (object$dim[1L] > 0) { head(coef.hhh4(object, ...), object$dim[1L]) } else NULL } ranef.hhh4 <- function (object, tomatrix = FALSE, ...) { if (object$dim[2L] > 0){ ranefvec <- tail(coef.hhh4(object, ...), object$dim[2L]) } else return(NULL) if (!tomatrix) return(ranefvec) ## transform to a nUnits x c matrix (c %in% 1:3) model <- terms.hhh4(object) idxRE <- model$indexRE idxs <- unique(idxRE) names(idxs) <- model$namesFE[idxs] mat <- sapply(idxs, function (idx) { RE <- ranefvec[idxRE==idx] Z <- model$terms["Z.intercept",][[idx]] "%m%" <- get(model$terms["mult",][[idx]]) Z %m% RE }) rownames(mat) <- colnames(model$response) return(mat) } ## adaption of stats::confint.default authored by the R Core Team confint.hhh4 <- function (object, parm, level = 0.95, reparamPsi=TRUE, idx2Exp=NULL, amplitudeShift=FALSE, ...) { cf <- coef.hhh4(object, se=TRUE, reparamPsi=reparamPsi, idx2Exp=idx2Exp, amplitudeShift=amplitudeShift, ...) ## CAVE: random intercepts have no names (all "") if (missing(parm)) parm <- seq_len(nrow(cf)) pnames <- if (is.numeric(parm)) rownames(cf)[parm] else parm a <- (1 - level)/2 a <- c(a, 1 - a) pct <- paste(format(100*a, trim=TRUE, scientific=FALSE, digits=3), "%") fac <- qnorm(a) ci <- array(NA, dim = c(length(parm), 2L), dimnames = list(pnames, pct)) ses <- cf[parm,2] ci[] <- cf[parm,1] + ses %o% fac ci } ## mean predictions for a subset of 1:nrow(object$stsObj) predict.hhh4 <- function(object, newSubset = object$control$subset, type = "response", ...) { if (type == "response" && all((m <- match(newSubset, object$control$subset, nomatch=0L)) > 0)) { ## we can extract fitted means from object object$fitted.values[m,,drop=FALSE] } else { ## means for time points not fitted (not part of object$control$subset) predicted <- meanHHH(coef.hhh4(object, reparamPsi=FALSE), terms.hhh4(object), subset=newSubset) if (type=="response") predicted$mean else { type <- match.arg(type, names(predicted)) predicted[[type]] } } } ### refit hhh4-model ## ...: arguments modifying the original control list ## S: a named list to adjust the number of harmonics of the three components ## subset.upper: refit on a subset of the data up to that time point ## use.estimates: use fitted parameters as new start values update.hhh4 <- function (object, ..., S = NULL, subset.upper = NULL, use.estimates = object$convergence, evaluate = TRUE) { control <- object$control ## first modify the control list according to the components in ... extras <- list(...) control <- modifyList(control, extras) ## adjust start values control$start <- if (use.estimates) { # use parameter estimates hhh4coef2start(object) } else local({ # re-use previous 'start' specification ## for pre-1.8-2 "hhh4" objects, ## object$control$start is not necessarily a complete list: template <- eval(formals(hhh4)$control$start) template[] <- object$control$start[names(template)] template }) ## and update according to an extra 'start' argument if (!is.null(extras[["start"]])) { if (!is.list(extras$start) || is.null(names(extras$start))) { stop("'start' must be a named list, see 'help(\"hhh4\")'") } control$start[] <- mapply( FUN = function (now, extra) { if (is.null(names(extra))) { extra } else { # can retain non-extra values now[names(extra)] <- extra now } }, control$start, extras$start[names(control$start)], SIMPLIFY = FALSE, USE.NAMES = FALSE ) } ## update initial values of parametric weight function if (use.estimates && length(coefW <- coefW(object)) && ! "weights" %in% names(extras$ne)) { # only if function is unchanged control$ne$weights$initial <- coefW } ## adjust seasonality if (!is.null(S)) { stopifnot(is.list(S), !is.null(names(S)), names(S) %in% c("ar", "ne", "end")) control[names(S)] <- mapply(function (comp, S) { comp$f <- addSeason2formula(removeSeasonFromFormula(comp$f), period = object$stsObj@freq, S = S) comp }, control[names(S)], S, SIMPLIFY=FALSE, USE.NAMES=FALSE) } ## use a different time range of the data (only changing the end) ## Note: surveillance < 1.15.0 disallowed subset.upper > max(control$subset) if (isScalar(subset.upper)) { if (subset.upper < control$subset[1L]) stop("'subset.upper' is smaller than the lower bound of 'subset'") control$subset <- control$subset[1L]:subset.upper } ## fit the updated model or just return the modified control list if (evaluate) { hhh4(stsObj = object$stsObj, control = control) } else { control } } ## remove sine-cosine terms from a formula ## f: usually a model "formula", but can generally be of any class for which ## terms() and formula() apply removeSeasonFromFormula <- function (f) { fterms <- terms(f, keep.order = TRUE) ## search sine-cosine terms of the forms "sin(..." and "fe(sin(..." idxSinCos <- grep("^(fe\\()?(sin|cos)\\(", attr(fterms, "term.labels")) formula(if (length(idxSinCos)) fterms[-idxSinCos] else f) } ## remove all temporal terms from a formula removeTimeFromFormula <- function (f, timevar = "t") { fterms <- terms(f, keep.order = TRUE) containsTime <- vapply(attr(fterms, "variables")[-1L], FUN = function (x) timevar %in% all.vars(x), FUN.VALUE = TRUE, USE.NAMES = FALSE) formula(if (any(containsTime)) fterms[!containsTime] else f) } ## convert fitted parameters to a list suitable for control$start hhh4coef2start <- function (fit) { res <- list(fixed = fit$coefficients[seq_len(fit$dim[1L])], random = fit$coefficients[fit$dim[1L]+seq_len(fit$dim[2L])], sd.corr = fit$Sigma.orig) if (any(!nzchar(names(res$random)))) { # no names pre 1.8-2 names(res$random) <- NULL } res } ## extract coefficients in a list coeflist.hhh4 <- function (x, ...) { ## determine number of parameters by parameter group model <- terms.hhh4(x) dim.fe.group <- unlist(model$terms["dim.fe",], recursive = FALSE, use.names = FALSE) dim.re.group <- unlist(model$terms["dim.re",], recursive = FALSE, use.names = FALSE) nFERE <- lapply(X = list(fe = dim.fe.group, re = dim.re.group), FUN = function (dims) { nParByComp <- tapply( X = dims, INDEX = factor( unlist(model$terms["offsetComp",], recursive = FALSE, use.names = FALSE), levels = 1:3, labels = c("ar", "ne", "end")), FUN = sum, simplify = TRUE) nParByComp[is.na(nParByComp)] <- 0 # component not in model nParByComp }) ## extract coefficients in a list (by parameter group) coefs <- coef.hhh4(x, se = FALSE, ...) list(fixed = coeflist.default(coefs[seq_len(x$dim[1L])], c(nFERE$fe, "neweights" = model$nd, "overdisp" = model$nOverdisp)), random = coeflist.default(coefs[x$dim[1L] + seq_len(x$dim[2L])], nFERE$re), sd.corr = x$Sigma.orig) } ## extract estimated overdispersion in dnbinom() parametrization (and as matrix) psi2size.hhh4 <- function (object, subset = object$control$subset, units = NULL) { size <- sizeHHH(object$coefficients, terms.hhh4(object), subset = subset) if (!is.null(size) && !is.null(units)) { if (is.null(subset)) { warning("ignoring 'units' (not compatible with 'subset = NULL')") size } else { size[, units, drop = FALSE] } } else { size } } ## character vector of model components that are "inModel" componentsHHH4 <- function (object) names(which(sapply(object$control[c("ar", "ne", "end")], "[[", "inModel"))) ## deviance residuals residuals.hhh4 <- function (object, type = c("deviance", "response"), ...) { type <- match.arg(type) obs <- observed(object$stsObj)[object$control$subset,] fit <- fitted(object) if (type == "response") return(obs - fit) ## deviance residuals ## Cf. residuals.ah, it calculates: ## deviance = sign(y - mean) * sqrt(2 * (distr(y) - distr(mean))) ## pearson = (y - mean)/sqrt(variance) dev.resids <- if (identical(object$control$family, "Poisson")) { poisson()$dev.resids } else { size <- if (identical(object$control$family, "NegBin1")) { psi2size.hhh4(object, subset = NULL) } else { psi2size.hhh4(object) # CAVE: a matrix -> non-standard "size" } negative.binomial(size)$dev.resids } di2 <- dev.resids(y=obs, mu=fit, wt=1) sign(obs-fit) * sqrt(pmax.int(di2, 0)) } ## extract the formulae of the three log-linear predictors formula.hhh4 <- function (x, ...) { lapply(x$control[c("ar", "ne", "end")], "[[", "f") } ## decompose the fitted mean of a "hhh4" model returning an array ## with dimensions (t, i, j), where the first j index is "endemic" decompose.hhh4 <- function (x, coefs = x$coefficients, ...) { ## get three major components from meanHHH() function meancomps <- meanHHH(coefs, terms.hhh4(x)) ## this contains c("endemic", "epi.own", "epi.neighbours") ## but we really want the mean by neighbour neArray <- c(meancomps$ne.exppred) * neOffsetArray(x, coefW(coefs)) ##<- ne.exppred is (t, i) and recycled for (t, i, j) stopifnot(all.equal(rowSums(neArray, dims = 2), meancomps$epi.neighbours, check.attributes = FALSE)) ## add autoregressive part to neArray diagidx <- cbind(c(row(meancomps$epi.own)), c(col(meancomps$epi.own)), c(col(meancomps$epi.own))) ## usually: neArray[diagidx] == 0 neArray[diagidx] <- neArray[diagidx] + meancomps$epi.own ## add endemic component to the array res <- array(c(meancomps$endemic, neArray), dim = dim(neArray) + c(0, 0, 1), dimnames = with(dimnames(neArray), list(t=t, i=i, j=c("endemic",j)))) stopifnot(all.equal(rowSums(res, dims = 2), meancomps$mean, check.attributes = FALSE)) res } ## get the w_{ji} Y_{j,t-1} values from a hhh4() fit ## (i.e., before summing the neighbourhood component over j) ## in an array with dimensions (t, i, j) neOffsetArray <- function (object, pars = coefW(object), subset = object$control$subset) { ## initialize array ordered as (j, t, i) for apply() below res <- array(data = 0, dim = c(object$nUnit, length(subset), object$nUnit), dimnames = list( "j" = colnames(object$stsObj), "t" = rownames(object$stsObj)[subset], "i" = colnames(object$stsObj))) ## calculate array values if the fit has an NE component if ("ne" %in% componentsHHH4(object)) { W <- getNEweights(object, pars = pars) Y <- observed(object$stsObj) tm1 <- subset - object$control$ne$lag is.na(tm1) <- tm1 <= 0 tYtm1 <- t(Y[tm1,,drop=FALSE]) res[] <- apply(W, 2L, function (wi) tYtm1 * wi) offset <- object$control$ne$offset res <- if (length(offset) > 1L) { offset <- offset[subset,,drop=FALSE] res * rep(offset, each = object$nUnit) } else { res * offset } ## stopifnot(all.equal( ## colSums(res), # sum over j ## terms.hhh4(object)$offset$ne(pars)[subset,,drop=FALSE], ## check.attributes = FALSE)) } ## permute dimensions as (t, i, j) aperm(res, perm = c(2L, 3L, 1L), resize = TRUE) } ## compare two hhh4 fits ignoring at least the "runtime" and "call" elements all.equal.hhh4 <- function (target, current, ..., ignore = NULL) { if (!inherits(target, "hhh4")) return("'target' is not a \"hhh4\" object") if (!inherits(current, "hhh4")) return("'current' is not a \"hhh4\" object") ignore <- unique.default(c(ignore, "runtime", "call")) target[ignore] <- current[ignore] <- list(NULL) NextMethod("all.equal") } surveillance/R/zzz.R0000644000175100001440000000351513117705477014165 0ustar hornikusers####################################### ### Hook functions for package start-up ####################################### gpclibCheck <- function (fatal = TRUE) { gpclibOK <- surveillance.options("gpclib") if (!gpclibOK && fatal) { message("Note: The gpclib license is accepted by ", sQuote("surveillance.options(gpclib=TRUE)"), ".") stop("acceptance of the gpclib license is required") } gpclibOK } .onLoad <- function (libname, pkgname) { ## initialize options reset.surveillance.options() } .onAttach <- function (libname, pkgname) { ## Startup message VERSION <- packageVersion(pkgname, lib.loc=libname) packageStartupMessage("This is ", pkgname, " ", VERSION, ". ", "For overview type ", sQuote(paste0("help(", pkgname, ")")), ".") ## decide if we should run all examples (some take a few seconds) allExamples <- if (interactive()) { TRUE } else { # R CMD check ## only do all examples if a specific environment variable is set ## (to any value different from "") nzchar(Sys.getenv("_R_SURVEILLANCE_ALL_EXAMPLES_")) ## CAVE: testing for _R_CHECK_TIMINGS_ as in surveillance < 1.9-1 ## won't necessarily skip long examples for daily checks on CRAN (see ## https://stat.ethz.ch/pipermail/r-devel/2012-September/064812.html ## ). For instance, the daily Windows checks run without timings. } surveillance.options(allExamples = allExamples) } ########################### ### Little helper functions ########################### ### determines multiplicities in a matrix (or data frame) ### and returns unique rows with appended column of counts ### using spatstat's multiplicity methods countunique <- function (x) unique(cbind(x, COUNT = multiplicity(x))) surveillance/R/epidata_plot.R0000644000175100001440000001567112420561350015765 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### The plot-method for "epidata" (via plot.summary.epidata) shows the evolution ### of the numbers of susceptible, infectious and recovered individuals. ### The extra function "stateplot" shows the event history of one individual. ### ### Copyright (C) 2008-2009, 2013-2014 Sebastian Meyer ### $Revision: 1080 $ ### $Date: 2014-10-19 00:00:08 +0200 (Sun, 19. Oct 2014) $ ################################################################################ plot.epidata <- function(x, ...) { sx <- summary(x) plot.summary.epidata(sx, ...) } plot.summary.epidata <- function (x, lty = c(2,1,3), lwd = 2, col = c("#1B9E77", "#D95F02", "#7570B3"), col.hor = col, col.vert = col, xlab = "Time", ylab = "Number of individuals", xlim = NULL, ylim = NULL, legend.opts = list(), do.axis4 = NULL, panel.first = grid(), rug.opts = list(), which.rug = c("infections", "removals", "susceptibility", "all"), ...) { counters <- x[["counters"]] type <- x[["type"]] n <- counters[1L,"nSusceptible"] m <- counters[1L,"nInfectious"] N <- n + m times <- counters[-1L,"time"] if (missing(lty)) { lty <- c(2, 1, 3 * (type %in% c("SIR","SIRS"))) } recycle3 <- function (xnam) assign(xnam, rep(get(xnam), length.out = 3), inherits = TRUE) for(varname in c("lty", "lwd", "col", "col.hor", "col.vert")) recycle3(varname) if (is.null(xlim)) { xlim <- attr(x, "timeRange") if (xlim[2] == Inf) xlim[2] <- times[length(times)] } if (is.null(ylim)) ylim <- c(0, max( (lty[1] > 0) * {if (type %in% c("SIRS", "SIS")) N else n}, (lty[2] > 0) * max(counters$nInfectious), (lty[3] > 0) * max(counters$nRemoved) )) # basic plotting frame plot(xlim, ylim, type = "n", xlab = xlab, ylab = ylab, panel.first = panel.first, ...) abline(h = c(0, N), col = "grey") # for real xlim in lines.stepfun (see 'dr' adjustment in plot.stepfun code) fakexlim <- c(1,2) * (xlim[2] + 2*xlim[1])/3 - c(0,xlim[1]) # this isn't nice, a user argument 'dr' in plot.stepfun would be appreciated # add #Susceptibles if (all(counters$nSusceptible == n)) { lines(x = xlim, y = c(n,n), lty = lty[1], lwd = lwd[1], col = col.hor[1], ...) } else { lines(stepfun(times, counters$nSusceptible), xlim = fakexlim, lty = lty[1], lwd = lwd[1], col.hor = col.hor[1], col.vert = col.vert[1], do.points = FALSE, ...) } # add #Infected if (all(counters$nInfectious == m)) { lines(x = xlim, y = c(m,m), lty = lty[2], lwd = lwd[2], col = col.hor[2], ...) } else { lines(stepfun(times, counters$nInfectious), xlim = fakexlim, lty = lty[2], lwd = lwd[2], col.hor = col.hor[2], col.vert = col.vert[2], do.points = FALSE, ...) } # add #Removed if (all(counters$nRemoved == 0)) { lines(x = xlim, y = c(0,0), lty = lty[3], lwd = lwd[3], col = col.hor[3], ...) } else { lines(stepfun(times, counters$nRemoved), xlim = fakexlim, lty = lty[3], lwd = lwd[3], col.hor = col.hor[3], col.vert = col.vert[3], do.points = FALSE, ...) } # add special annotations if (is.null(do.axis4)) do.axis4 <- type == "SIR" if (do.axis4) { finalvalues <- counters[nrow(counters), c("nSusceptible", "nRemoved")] axis(4, at = finalvalues[lty[c(1,3)] > 0], font = 2, ...) } if (is.list(rug.opts)) { if (is.null(rug.opts$ticksize)) rug.opts$ticksize <- 0.02 if (is.null(rug.opts$quiet)) rug.opts$quiet <- TRUE which.rug <- match.arg(which.rug) if (is.null(rug.opts$col)) rug.opts$col <- switch(which.rug, all = 1, infections = col.hor[2], removals = col.hor[3], susceptibility = col.hor[1]) rugLocations <- switch(which.rug, all = times, infections = attr(x, "eventTimes"), removals = counters$time[counters$type == "R"], susceptibility = counters$time[counters$type == "S"] ) if (length(rugLocations) > 0) { do.call(rug, c(list(x = rugLocations), rug.opts)) } } if (is.list(legend.opts)) { legend.opts <- modifyList( list(x = "topright", bty = "n", inset = c(0,0.02), legend = c("susceptible", "infectious", "removed")[lty>0], lty = lty[lty>0], lwd = lwd[lty>0], col = col.hor[lty>0]), legend.opts) do.call(legend, legend.opts) } invisible(as.matrix( counters[c("time", "nSusceptible", "nInfectious", "nRemoved")] )) } ################################################################################ # PLOT THE STATE CHANGES OF ONE INDIVIDUAL OF "epidata" # ... will be passed to the plot function (stepfun or curve), # e.g. add, xlim, ylim, main, xlab, ylab, ... ################################################################################ stateplot <- function(x, id, ...) { sx <- getSummary(x, class = "epidata") .id <- as.character(id) if (length(.id) != 1) { stop ("'id' must have length 1") } initiallyInfected <- sx[["initiallyInfected"]] if (! .id %in% levels(initiallyInfected)) { stop ("invalid 'id', does not exist in 'x'") } isInitiallyInfected <- .id %in% initiallyInfected counters <- sx[["counters"]] states <- levels(counters[["type"]]) path <- counters[which(counters$id == .id), c("time", "type")] # remove pseudo-R-events, which come before S-event directSevents <- which(duplicated(path[["time"]])) path_noPseudoR <- if (length(directSevents)) { path[-(directSevents-1), ] } else { path } pathfunc <- if (nrow(path_noPseudoR) > 0) { stepfun( x = path_noPseudoR[["time"]], y = c(1+isInitiallyInfected, unclass(path_noPseudoR[["type"]])), right = FALSE ) } else { function(t) rep(1+isInitiallyInfected, length(t)) } # plot it dotargs <- list(...) nms <- names(dotargs) if(! "xlab" %in% nms) dotargs$xlab <- "time" if(! "ylab" %in% nms) dotargs$ylab <- "state" if(! "main" %in% nms) dotargs$main <- "" if(! "xlim" %in% nms) dotargs$xlim <- attr(sx, "timeRange") if(! "xaxs" %in% nms) dotargs$xaxs <- "i" if(! "do.points" %in% nms && inherits(pathfunc, "stepfun")) { dotargs$do.points <- FALSE } do.call("plot", args = c(list(x = pathfunc, yaxt = "n"), dotargs)) axis(2, at = seq_along(states), labels = states) invisible(pathfunc) } surveillance/R/stsplot_spacetime.R0000644000175100001440000001337312700026640017056 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Old implementation of (animated) maps of an sts-object ### ### Copyright (C) 2007-2013 Michael Hoehle, 2016 Sebastian Meyer ### $Revision: 1694 $ ### $Date: 2016-04-02 22:37:52 +0200 (Sat, 02. Apr 2016) $ ################################################################################ stsplot_spacetime <- function( x, type, legend=NULL, opts.col=NULL, labels=TRUE, wait.ms=250, cex.lab=0.7, verbose=FALSE, dev.printer=NULL, ...) { #Extract the mappoly if (length(x@map) == 0) stop("The sts object has an empty map.") map <- x@map maplim <- list(x=bbox(map)[1,],y=bbox(map)[2,]) #Check colnames, otherwise no need to continue if (is.null(colnames(x@observed))) stop("The sts observed slot does not have any colnames to match with the shapefile.") #Check for legend options if (is.null(legend)) { legend <- list(dx=0.4,dy=0.04,x=maplim$x[1],y=maplim$y[1],once=TRUE) } #Extract the data o <- x@observed alarm <- x@alarm #Formula is of type "observed ~ 1|unit" (i.e. no time) aggregate <- type[[3]][[3]] == "unit" if (aggregate) { o <- t(as.matrix(apply(o,MARGIN=2,sum))) alarm <- t(as.matrix(apply(alarm,MARGIN=2,sum)))>0 } #Number of time points maxt <- dim(o)[1] #Process dev.printer options if (is.list(dev.printer)) { dev.printer <- modifyList( list(device = png, extension = ".png", width = 640, height = 480, name = "Rplot"), dev.printer) #filename format (padding with zeroes) fnfmt <- paste0("%s-%0", nchar(maxt), "i%s") } #Get color vector opts.col_default <- list(ncolors=length(o), use.color=TRUE) gyr <- do.call("hcl.colors", if (is.list(opts.col)) modifyList(opts.col_default, opts.col) else opts.col_default) theCut <- cut(o, length(gyr)) #Cut into specified number of colors o.cut <- matrix(as.numeric(theCut),nrow=nrow(o),ncol=ncol(o)) o.col <- matrix(gyr[o.cut],ncol=ncol(o.cut)) o.col[is.na(o.col)] <- gray(1) dimnames(o.col) <- dimnames(o) #Sort the o according to the names in the map region.id <- row.names(map) o.col.id <- dimnames(o.col)[[2]] #Make the columns of o as in the map object o.col <- o.col[,pmatch(region.id,o.col.id),drop=FALSE] alarm.col <- alarm[,pmatch(region.id,o.col.id),drop=FALSE] #Screen processing screen.matrix <- matrix(c(0,1,0,1,0,1,0.8,1),2,4,byrow=TRUE) split.screen(screen.matrix) #Loop over all time slices for (t in 1:maxt) { #Status information if (verbose) { cat(paste("Processing slice",t,"of",maxt,"\n")) } #Clean screen (title area) screen(n=2) par(bg=gray(1)) erase.screen() par(bg="transparent") #Plot the map on screen 1 screen(n=1) plot(map,col=o.col[t,],xlab="",ylab="",...) #Indicate alarms as shaded overlays if (!all(is.na(alarm.col))) { #Plotting using density "NA" does not appear to work #anymore in the new sp versions alarm.col[is.na(alarm.col)] <- 0 plot(map,dens=alarm.col*15,add=TRUE) } if (labels) #getSpPPolygonsLabptSlots is deprecated. Use coordinates method insteas text(coordinates(map), labels=as.character(region.id), cex.lab=cex.lab) if (!aggregate) { title(paste(t,"/",maxt,sep="")) } #In case a legend is requested if (is.list(legend) && !(legend$once & t>1) | (t==1)) { add.legend(legend, maplim, list(col=gyr, min=min(o), max=max(o), trans=identity)) } #Is writing to files requested? if (is.list(dev.printer)) { #Create filename fileName <- sprintf(fnfmt, dev.printer$name, t, dev.printer$extension) cat("Creating ",fileName,"\n") #Save the current device using dev.print if (inherits(try( dev.print(dev.printer$device, file=fileName, width=dev.printer$width, height=dev.printer$height) ), "try-error")) { warning("disabling dev.print()", immediate. = TRUE) dev.printer <- NULL } } wait(wait.ms) } close.screen(all.screens = TRUE) } ####################### ### auxiliary functions ####################### ### wait a specific amount of milliseconds (via "while" and "proc.time") wait <- function (wait.ms) # number of milliseconds to wait { #Initialize start.time <- proc.time()[3]*1000 ellapsed <- proc.time()[3]*1000 - start.time #Loop as long as required. while (ellapsed < wait.ms) { ellapsed <- proc.time()[3]*1000 - start.time } } ### add the color key add.legend <- function(legend, maplim, theColors) { #Preproc dy <- diff(maplim$y) * legend$dy dx <- diff(maplim$x) * legend$dx #Add legend -- i.e. a slider xlu <- xlo <- legend$x xru <- xro <- xlu + dx yru <- ylu <- legend$y yro <- ylo <- yru + dy step <- (xru - xlu)/length(theColors$col) for (i in 0:(length(theColors$col) - 1)) { polygon(c(xlo + step * i, xlo + step * (i + 1), xlu + step * (i + 1), xlu + step * i), c(ylo, yro, yru, ylu), col = theColors$col[i + 1], border = theColors$col[i + 1]) } #Write info about min and max on the slider. black <- grey(0) lines(c(xlo, xro, xru, xlu, xlo), c(ylo, yro, yru, ylu, ylo), col = black) #Transformation function for data values, e.g., exp or identity trans <- theColors$trans text(xlu, ylu - 0.5*dy, formatC(trans(theColors$min)), cex = 1, col = black,adj=c(0,1)) text(xru, yru - 0.5*dy, formatC(trans(theColors$max)), cex = 1, col = black,adj=c(1,1)) } surveillance/R/testcalls.R0000644000175100001440000000413010662666102015311 0ustar hornikusers################################################### ### chunk number 1: ################################################### test <- function(data = c("k1", "m5"), range = 157:339){ res <- list() for(i in data){ disProgObj <- readData(i,week53to52=TRUE) disProgObj <- enlargeData(disProgObj) survResults <- algo.call(disProgObj, control = list( list(funcName = "rki1", range = range), list(funcName = "rki2", range = range), list(funcName = "rki3", range = range), list(funcName = "bayes", range = range,alpha=0.05))) res[[i]] <- algo.compare(survResults) cat("\n\n\n", i, " Res:\n") print(compMatrix.writeTable(res[[i]])) } sum <- algo.summary(res) cat("\n\nSummary:\n") print(compMatrix.writeTable(sum)) } ################################################### ### chunk number 2: ################################################### testSim <- function(p = 0.99, r = 0.01, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K, range = 200:400){ disProgObj <- sim.pointSource(p, r, length, A, alpha, beta, phi, frequency, state, K) survResults <- algo.call(disProgObj, control = list(list(funcName = "rki1", range = range))) res <- algo.compare(survResults) plot(survResults[[1]], "RKI 1", "Simulation") print(compMatrix.writeTable(res)) } ################################################### ### chunk number 3: ################################################### makePlot <- function(outputpath, data = "k1", method = "rki1", name, disease, range = 157:339){ disProgObj <- readData(data,week53to52=TRUE) disProgObj <- enlargeData(disProgObj) res <- algo.call(disProgObj, control = list(list(funcName = method, range = range))) pdf(paste(outputpath, data, "_", method, "_plot.pdf", sep=""), width = 10) plot(res[[1]],name,disease) dev.off() } surveillance/R/epidataCS_aggregate.R0000644000175100001440000001702112672237564017172 0ustar hornikusers################################################################################ ### Part of the surveillance package, http://surveillance.r-forge.r-project.org ### Free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ### ### Convert "epidataCS" to the (aggregated) classes "epidata" or "sts" ### ### Copyright (C) 2009-2016 Sebastian Meyer ### $Revision: 1635 $ ### $Date: 2016-03-16 12:11:48 +0100 (Wed, 16. Mar 2016) $ ################################################################################ ###################################### ### Transform "epidataCS" to "epidata" ###################################### ## CAVE: this only generates a SIS epidemic, i.e. atRiskY is set to 1 ## immediately after recovery ## length of infectious period is taken from epidataCS$events$eps.t ## fcols are not generated here. these must be generated by a second call to ## twinSIR's as.epidata with desired f. (for safety) ## tileCentroids is a coordinate matrix whose row names are the tile levels as.epidata.epidataCS <- function (data, tileCentroids, eps = 0.001, ...) { if (!requireNamespace("intervals")) stop("conversion from ", dQuote("epidataCS"), " to ", dQuote("epidata"), " requires the ", dQuote("intervals"), " package") ### generate twinSIR's epidata object from stgrid (no events) centroidIdx <- match(levels(data$stgrid$tile), rownames(tileCentroids), nomatch = NA_integer_) if (any(is.na(centroidIdx))) { stop("some levels of 'data$stgrid$tile' are not available from 'tileCentroids'") } centroids <- tileCentroids[centroidIdx,] if (any(c("xCent", "yCent") %in% names(data$stgrid))) { stop("'data$stgrid' already has columns \"xCent\" and \"yCent\"") } stgrid <- cbind(data$stgrid, atRiskY = 1L, event = 0L, Revent = 0L, xCent = centroids[,1], yCent = centroids[,2] # relies on ordering of stgrid by first BLOCK, then tile ) names(stgrid)[names(stgrid)=="tile"] <- "id" timeRange <- with(stgrid, c(start[1], stop[length(stop)])) ### now determine "events" with respect to the tiles # individual data indItimes <- data$events$time if (anyDuplicated(indItimes)) stop("'data$events' has concurrent event times") indRtimes <- indItimes + data$events$eps.t indInts <- intervals::Intervals(cbind(indItimes, indRtimes, deparse.level = 0L)) indTiles <- data$events$tile # tile data tileRows <- tapply(seq_along(indTiles), indTiles, c, simplify = FALSE) tileInts <- lapply(tileRows, function (rows) { if (length(rows)==0L) { matrix(0,0,2) } else if (length(rows)==1L) { as.matrix(indInts[rows]) } else as.matrix(intervals::reduce(indInts[rows])) }) tileNames <- rep.int(names(tileInts), sapply(tileInts, nrow)) tileItimes <- unlist(lapply(tileInts, function(ints) ints[,1]), use.names=FALSE) tileRtimes <- unlist(lapply(tileInts, function(ints) ints[,2]), use.names=FALSE) # there are possibly Rtimes which equal Itimes of other individuals # => break ties by considering Rtime shortly before Itime (arbitrary choice) while(length(dup <- which(tileRtimes %in% tileItimes)) > 0L) { tileRtimes[dup] <- tileRtimes[dup] - eps } # now there could be duplicated Rtimes... grml (choose another 'eps' in this case) if (anyDuplicated(tileRtimes)) { stop("breaking ties introduced duplicated Rtimes") } ### add additional stop times to stgrid for tile infections and recoveries requiredStopTimes <- sort(c(tileItimes,tileRtimes[tileRtimes stopTimes[nBlocks]) nBlocks else match(.Rtime, stopTimes) .atRiskY[idxsTileInEpi[first0block:last0block]] <- 0L } evHist$atRiskY <- .atRiskY ### Return final epidata object of twinSIR-type cat("Generating final \"epidata\" object for use with twinSIR ... ") epi <- as.epidata(evHist[-grep("BLOCK", names(evHist))], id.col="id", start.col="start", stop.col="stop", atRiskY.col="atRiskY", event.col="event", Revent.col="Revent", coords.cols=c("xCent","yCent") ) cat("Done.\n") epi } #################################################################### ### Transform "epidataCS" to "sts" by aggregation of cases on stgrid #################################################################### epidataCS2sts <- function (object, freq, start, neighbourhood, tiles = NULL, popcol.stgrid = NULL, popdensity = TRUE) { stopifnot(inherits(object, "epidataCS")) tileLevels <- levels(object$stgrid$tile) if (!is.null(tiles)) { stopifnot(inherits(tiles, "SpatialPolygons"), tileLevels %in% row.names(tiles)) tiles <- tiles[tileLevels,] } ## prepare sts components epoch <- unique(object$stgrid$BLOCK) # epidataCS is sorted eventsByCell <- with(object$events@data, table(BLOCK=factor(BLOCK, levels=epoch), tile)) if (missing(neighbourhood)) { # auto-detect neighbourhood from tiles if (is.null(tiles)) stop("'tiles' is required for auto-generation of 'neighbourhood'") neighbourhood <- poly2adjmat(tiles, zero.policy=TRUE) if (nIslands <- sum(rowSums(neighbourhood) == 0)) message("Note: auto-generated neighbourhood matrix contains ", nIslands, ngettext(nIslands, " island", " islands")) } populationFrac <- if (is.null(popcol.stgrid)) NULL else { stopifnot(is.vector(popcol.stgrid), length(popcol.stgrid) == 1) popByCell <- object$stgrid[[popcol.stgrid]] if (popdensity) popByCell <- popByCell * object$stgrid[["area"]] totalpop <- sum(popByCell[seq_along(tileLevels)]) matrix(popByCell/totalpop, nrow=length(epoch), ncol=length(tileLevels), byrow=TRUE, dimnames=dimnames(eventsByCell)) } ## initialize sts object sts(epoch=epoch, frequency=freq, start=start, observed=unclass(eventsByCell), neighbourhood=neighbourhood, populationFrac=populationFrac, map=tiles, epochAsDate=FALSE) } surveillance/R/algo_hhh.R0000644000175100001440000016445512024073677015110 0ustar hornikusers################################################### ### chunk number 1: ################################################### # lag - which lag for observation-driven part? # y_i,t = lambda*y_i,t-lag NOTE: lag=-1 means y_i,t+1 # lag.range =c(lag.neg, lag.pos) # i.e. (1,0) for t-1,t (DEFAULT) # (2,2) for t-2,t-1,t,t+1,t+2 algo.hhh <- function(disProgObj, control=list(lambda=TRUE, neighbours=FALSE, linear=FALSE, nseason=0, negbin=c("none", "single", "multiple"), proportion=c("none", "single", "multiple"), lag.range=NULL), thetastart=NULL, verbose=TRUE){ #Convert sts objects if (class(disProgObj) == "sts") disProgObj <- sts2disProg(disProgObj) #set default values (if not provided in control) if(is.null(control[["linear",exact=TRUE]])) control$linear <- FALSE if(is.null(control[["nseason",exact=TRUE]])) control$nseason <- 0 if(is.null(control[["neighbours",exact=TRUE]])) control$neighbours <- NA if(is.null(control[["negbin",exact=TRUE]])) control$negbin <- "none" if(is.null(control[["lambda",exact=TRUE]])) control$lambda <- 1 if(is.null(control[["proportion",exact=TRUE]])) control$proportion <- "none" control$negbin <- match.arg(control$negbin, c("single","multiple","none")) control$proportion <- match.arg(control$proportion, c("single","multiple","none")) # convert logical values to numerical values, FALSE corresponds to NA # to allow for lag == 0 if(is.logical(control[["lambda", exact=TRUE]])){ control$lambda <- as.numeric(control$lambda) control$lambda[control$lambda==0] <- NA } if(is.logical(control[["neighbours", exact=TRUE]])){ control$neighbours <- as.numeric(control$neighbours) control$neighbours[control$neighbours==0] <- NA } # determine range of observations y_i,t if(is.null(control[["lag.range",exact=TRUE]])){ lags <- c(control$lambda, control$neighbours) control$lag.range <- c(max(c(lags,1),na.rm=TRUE), max(c(-lags,0), na.rm=TRUE)) } # check if observed is a vector and convert to matrix if necessary if(is.vector(disProgObj$observed)) disProgObj$observed <- as.matrix(disProgObj$observed) n <- nrow(disProgObj$observed) nareas <- ncol(disProgObj$observed) #univariate if(nareas ==1){ control$neighbours <- NA control$proportion <- "none" control$nseason <- control$nseason[1] } # model with (lambda, pi) ? if(control$proportion != "none"){ control$neighbours <- NA # no lambda specified or lambda not specified for each area if(sum(!is.na(control$lambda)) == 0 | sum(!is.na(control$lambda))!= nareas) control$lambda <- 1 } # check neighbourhood matrix if neighbours=TRUE or proportion!="none" if(sum(!is.na(control$neighbours))>0 | control$proportion != "none"){ # is there a neighbourhood matrix? if(is.null(disProgObj$neighbourhood)) stop("No neighbourhood matrix is provided\n") if(any(is.na(disProgObj$neighbourhood))) stop("No correct neighbourhood matrix given\n") } #make "design" matrices designRes<- make.design(disProgObj=disProgObj, control=control) # check if there are neighbours if(designRes$dim$phi > 0){ nOfNeighbours <- designRes$nOfNeighbours if((designRes$dim$phi==1) & (sum(nOfNeighbours)==0)) stop("Specified model is not in line with neighbourhood matrix\n") # if((designRes$dim$phi==nareas) & (any(nOfNeighbours[!is.na(control$neighbours)]==0))) if((length(control$neighbours) == nareas) & (any(nOfNeighbours[!is.na(control$neighbours)]==0))) stop("Specified model is not in line with neighbourhood matrix\n") } else if(designRes$dim$proportion > 0){ nOfNeighbours <- designRes$nOfNeighbours if((designRes$dim$proportion==1) & (sum(nOfNeighbours)==0)) stop("Specified model is not in line with neighbourhood matrix\n") if((designRes$dim$proportion==nareas) & (any(nOfNeighbours==0))) stop("Specified model is not in line with neighbourhood matrix\n") } dimtheta <- designRes$dimTheta$dim dimLambda <- designRes$dimTheta$lambda dimPhi <- designRes$dimTheta$phi #starting values for optim areastart <- log(colMeans(designRes$Y)/designRes$populationFrac[1,]) if(!is.null(thetastart)){ #check dimension of thetastart # must be either of length dimtheta or of length dimtheta-nareas if(all(length(thetastart) != c(dimtheta, dimtheta-nareas)) ){ cat('thetastart must be of length', dimtheta, 'or ',dimtheta-nareas,'\n') return(NULL) } theta <- thetastart if(length(theta) == dimtheta) areastart <- NULL } else { #set starting values for theta #lambda = log(0.5), phi = log(0.1), beta = gamma = delta = 0, psi = 1 theta <- c(rep(log(0.5),designRes$dimTheta$lambda), rep(log(0.1),designRes$dimTheta$phi), rep(0.5,designRes$dimTheta$proportion), rep(0, designRes$dimTheta$trend + designRes$dimTheta$season), rep(2,designRes$dimTheta$negbin) ) } #starting values for intercepts if(!is.null(areastart)){ if(dimLambda + dimPhi >0){ #cat("theta",theta[1:(dimLambda + dimPhi)],"\n") Lambda <- getLambda(theta[1:(dimLambda + dimPhi)], designRes) expAlpha <- expAlpha.mm(Lambda,designRes$Y) expAlpha[expAlpha <=0] <- (colMeans(designRes$Y)/designRes$populationFrac[1,])[expAlpha <=0] areastart <- log(expAlpha) #areastart <- log(expAlpha.mm(Lambda,designRes$Y)) } theta <- c(areastart,theta) #cat("initial values",theta,"\n") } #check if initial values are valid mu<-meanResponse(theta,designRes)$mean if(any(mu==0) | any(!is.finite(mu))) stop("invalid initial values\n") # maximize loglikelihood mycontrol <- list(fnscale=-1, type=3, maxit=1000) suppressWarnings(myoptim <- optim(theta, fn=loglikelihood, gr=gradient, control=mycontrol, method="BFGS", hessian=TRUE, designRes=designRes)) if(myoptim$convergence==0){ convergence <- TRUE } else { if(verbose) cat("Algorithm has NOT converged. \n") res <- list(convergence=FALSE) class(res) <- "ah" return(res) } loglik <- myoptim$value if(loglik==0){ if(verbose){ cat('loglikelihood = 0\n') cat('Results are not reliable! Try different starting values. \n') } res <- list(convergence=FALSE) class(res) <- "ah" return(res) } thetahat <- myoptim$par fisher <- -myoptim$hessian # fitted values fitted <- meanResponse(thetahat,designRes)$mean #psi, lambda and phi are on log-scale #-> transformation of estimates, standard errors and fisher (using delta rule) #labels for results D <- jacobian(thetahat, designRes)$D thetahat <- jacobian(thetahat, designRes)$theta #Approximation to the inverted fisher info matrix # cov <- try(D %*% solve(fisher) %*% D, silent=TRUE) cov <- try(D %*% solve(fisher) %*% t(D), silent=TRUE) #fisher info is singular if(class(cov) == "try-error"){ if(verbose){ cat("Fisher info singular \t loglik=",loglik," \n") cat("theta",round(thetahat,2),"\n") cat('Results are not reliable! Try different starting values. \n') } res <- list(convergence=FALSE) class(res) <- "ah" return(res) } if(any(!is.finite(diag(cov))) | any(diag(cov)<0)){ if(verbose){ cat("infinite or negative cov\t loglik=",loglik,"\n") cat("theta",round(thetahat,2),"\n") cat('Results are not reliable! Try different starting values. \n') } res <- list(convergence=FALSE) class(res) <- "ah" return(res) } se <- sqrt(diag(cov)) if(convergence & verbose) cat("Algorithm claims to have converged \n") result <- list(coefficients=thetahat, se=se, cov=cov, call=match.call(), loglikelihood=loglik, convergence=convergence, fitted.values=fitted, control=control,disProgObj=disProgObj, lag=designRes$lag, nObs=designRes$nObs) class(result) <- "ah" return(result) } ################################################### ### chunk number 2: ################################################### algo.hhh.grid <- function(disProgObj, control=list(lambda=TRUE,neighbours=FALSE, linear=FALSE, nseason=0, negbin=c("none", "single", "multiple"), proportion=c("none", "single", "multiple"),lag.range=NULL), thetastartMatrix, maxTime=1800, verbose=FALSE){ #convert disProgObj if necessary if (class(disProgObj) == "sts") disProgObj <- sts2disProg(disProgObj) #set default values (if not provided in control) if(is.null(control[["linear",exact=TRUE]])) control$linear <- FALSE if(is.null(control[["nseason",exact=TRUE]])) control$nseason <- 0 if(is.null(control[["neighbours",exact=TRUE]])) control$neighbours <- NA if(is.null(control[["negbin",exact=TRUE]])) control$negbin <- "none" if(is.null(control[["lambda",exact=TRUE]])) control$lambda <- 1 if(is.null(control[["proportion",exact=TRUE]])) control$proportion <- "none" control$negbin <- match.arg(control$negbin, c("single","multiple","none")) control$proportion <- match.arg(control$proportion, c("single","multiple","none")) # convert logical values to numerical values, FALSE corresponds to NA # to allow for lag == 0 if(is.logical(control[["lambda", exact=TRUE]])){ control$lambda <- as.numeric(control$lambda) control$lambda[control$lambda==0] <- NA } if(is.logical(control[["neighbours", exact=TRUE]])){ control$neighbours <- as.numeric(control$neighbours) control$neighbours[control$neighbours==0] <- NA } # determine range of observations y_i,t if(is.null(control[["lag.range",exact=TRUE]])){ lags <- c(control$lambda, control$neighbours) control$lag.range <- c(max(c(lags,1),na.rm=TRUE), max(c(-lags,0), na.rm=TRUE)) } n <- nrow(disProgObj$observed) nareas <- ncol(disProgObj$observed) # check parameter specification for season #univariate if(nareas ==1){ control$neighbours <- NA control$proportion <- "none" control$nseason <- control$nseason[1] } # model with (lambda, pi) ? if(control$proportion != "none"){ control$neighbours <- NA # no lambda specified or lambda not specified for each area if(sum(!is.na(control$lambda)) == 0 | sum(!is.na(control$lambda))!= nareas) control$lambda <- 1 } # check neighbourhood matrix if neighbours=TRUE or proportion!="none" if(sum(!is.na(control$neighbours))>0 | control$proportion != "none"){ if(any(is.na(disProgObj$neighbourhood))) stop("No correct neighbourhood matrix given\n") } designRes<- make.design(disProgObj=disProgObj, control=control) # check if there are neighbours if(designRes$dim$phi > 0){ nOfNeighbours <- designRes$nOfNeighbours if((designRes$dim$phi==1) & (sum(nOfNeighbours)==0)) stop("Specified model is not in line with neighbourhood matrix\n") # if((designRes$dim$phi==nareas) & (any(nOfNeighbours[!is.na(control$neighbours)]==0))) if((length(control$neighbours) == nareas) & (any(nOfNeighbours[!is.na(control$neighbours)]==0))) stop("Specified model is not in line with neighbourhood matrix\n") } else if(designRes$dim$proportion > 0){ nOfNeighbours <- designRes$nOfNeighbours if((designRes$dim$proportion==1) & (sum(nOfNeighbours)==0)) stop("Specified model is not in line with neighbourhood matrix\n") if((designRes$dim$proportion==nareas) & (any(nOfNeighbours==0))) stop("Specified model is not in line with neighbourhood matrix\n") } dimthetaStart <- designRes$dimTheta$dim -nareas if(dimthetaStart == 0){ #only intercepts, grid search not necessary return(algo.hhh(disProgObj=disProgObj,control=control)) } #check dimension of thetastartMatrix if(!is.matrix(thetastartMatrix)){ cat('thetastart must be a matrix with', designRes$dimTheta$dim, 'or ', dimthetaStart, 'columns\n') return(NULL) } if(all(ncol(thetastartMatrix) != c(designRes$dimTheta$dim, dimthetaStart))){ cat('thetastart must be a matrix with', designRes$dimTheta$dim, 'or ', dimthetaStart,'columns\n') return(NULL) } #try multiple starting values and return the result with highest likelihood #stop search once time limit is exceeded i<-0 nOfIter <- nrow(thetastartMatrix) gridUsed <- nOfIter if(verbose) cat('The size of grid is', nOfIter, '\n') bestLoglik <- list(loglikelihood = -1e99) allLoglik <- matrix(NA,nrow=nOfIter,ncol=designRes$dimTheta$dim+1) time <- maxTime while((time > 0) & (i < nOfIter)){ i <- i+1 #run algo.hhh with the i-th row of thetastartMatrix as initial values time.i <- system.time(res<-try(algo.hhh(disProgObj=disProgObj,control=control,thetastart=thetastartMatrix[i,],verbose=verbose),silent=!verbose))[3] #how much time is left now time <- time - time.i #print progress information if(verbose){ if(class(res)== "try-error") print(c(niter=i,timeLeft=time,loglik=NULL)) else print(c(niter=i,timeLeft=time,loglik=res$loglikelihood)) } #don't consider "useless" results for the search of the best loglikelihood if(class(res)!= "try-error" && res$convergence){ #save loglik allLoglik[i,] <- c(res$loglikelihood,coef(res)) #keep it as bestLoglik if loglikelihood improved if(res$loglikelihood > bestLoglik$loglikelihood){ bestLoglik <- res } } } if(time < 0){ if(verbose) cat('Time limit exceeded, grid search stopped after', i, 'iterations. \n') allLoglik <- as.matrix(allLoglik[1:i,]) gridUsed <- i } timeUsed <- ifelse(time>0, maxTime-time,maxTime+abs(time)) #algo.hhh did not converge or produced useless results for all starting values, #i.e. there is no result if(is.null(coef(bestLoglik))) { #convergence <- FALSE #cat('Algorithms did not converge, please try different starting values! \n') bestLoglik <- list(loglikelihood=NULL,convergence=FALSE) } else{ #give names to all Loglik-matrix colnames(allLoglik) <- c("loglik",names(coef(bestLoglik))) } result <- list(best = bestLoglik, allLoglik = allLoglik,gridSize=nOfIter,gridUsed=gridUsed, time=timeUsed,convergence=bestLoglik$convergence) class(result) <- "ahg" return(result) } ################################################### ### chunk number 3: ################################################### create.grid <- function(disProgObj, control, params = list(epidemic = c(0.1, 0.9, 5), endemic=c(-0.5,0.5,3), negbin = c(0.3, 12, 10))) { #convert S4 sts to S3 if necessary if (class(disProgObj) == "sts") disProgObj <- sts2disProg(disProgObj) designRes <- make.design(disProgObj, control) control <- designRes$control dimParams <- designRes$dimTheta dimLambda <- dimParams$lambda dimPhi <- dimParams$phi dimProp <- dimParams$proportion dimEndemic <- dimParams$trend + dimParams$season dimNegbin <- dimParams$negbin # check if initial values are provided if((dimLambda +dimPhi > 0) & is.null(params$epidemic)) stop("Please provide initial values for the epidemic component \n") if((dimEndemic > 0) & is.null(params$endemic)) stop("Please provide initial values for the endemic component \n") if((dimNegbin > 0) & is.null(params$negbin)) stop("Please provide initial values for the dispersion parameter psi \n") # check if initial values are specified correctly if(!is.null(params$epidemic)){ if( params$epidemic[3]%%1 !=0 | params$epidemic[3]<1 | sign(params$epidemic[3])== -1) stop("Last component of params$epidemic must be a positive integer\n") } if(!is.null(params$endemic)){ if( params$endemic[3]%%1 !=0 | params$endemic[3]<1 | sign(params$endemic[3])== -1) stop("Last component of params$endemic must be a positive integer\n") } if(!is.null(params$negbin)){ if( params$negbin[3]%%1 !=0 | params$negbin[3]<1 | sign(params$negbin[3])== -1) stop("Last component of params$negbin must be a positive integer\n") } grid <- list() if(dimNegbin >0){ psi <- seq(params$negbin[1], params$negbin[2], length = params$negbin[3]) if(any(psi<=0)) stop("Initial values for psi must be positive\n") log.psi <- log(psi[psi >0]) grid$psi <- log.psi } if(dimLambda >0){ epidemic <- seq(params$epidemic[1], params$epidemic[2], length = params$epidemic[3]) if(any(epidemic<=0)) stop("Iinitial values for lambda must be positive\n") log.lambda <- log(epidemic[epidemic >0]) grid$lambda <- log.lambda } if(dimPhi >0){ epidemic <- seq(params$epidemic[1], params$epidemic[2], length = params$epidemic[3]) if(any(epidemic<=0)) stop("Initial values for phi must be positive\n") log.lambda <- log(epidemic[epidemic >0]) grid$phi <- log.lambda } if(dimProp >0){ if(any(epidemic<=0 | epidemic >=1)) stop("initial values for pi must be in (0,1)\n") logit.prop <- log(epidemic[epidemic > 0 & epidemic < 1]) - log(1-epidemic[epidemic > 0 & epidemic < 1]) grid$prop <- logit.prop } if(dimEndemic >0){ endemic <- seq(params$endemic[1], params$endemic[2], length = params$endemic[3]) grid$endemic <- endemic } grid <- expand.grid(grid) grid <- as.matrix( grid[c(rep("lambda",dimLambda), rep("phi",dimPhi), rep("prop",dimProp), rep("endemic",dimEndemic), rep("psi",dimNegbin))] ) gridSize <- nrow(grid) cat("Matrix with ",gridSize, " initial values\n") return(grid) } ################################################### ### chunk number 4: ################################################### loglikelihood <- function(theta, designRes){ control <- designRes$control Y <- designRes$Y mean <- meanResponse(theta=theta, designRes=designRes)$mean dimNegbin <- designRes$dimTheta$negbin dimTheta <- designRes$dimTheta$dim #loglikelihood poisson if(dimNegbin==0){ result <- colSums(dpois(Y, lambda=mean, log=TRUE)) } else if(dimNegbin==1){ #loglikelihood negbin #ensure psi (on last position in vector theta) ist positive psi <- exp(theta[dimTheta]) result <- colSums(dnbinom(Y, size=psi, mu=mean, log=TRUE)) } else if(dimNegbin>1){ #loglikelihood negbin, multiple dispersion params #ensure psi (on last positions) is positive psi <- exp(theta[(dimTheta-dimNegbin+1):dimTheta]) psi <- matrix(psi,ncol=dimNegbin, nrow=nrow(Y), byrow=TRUE) result <- colSums(dnbinom(Y, size=psi, mu=mean, log=TRUE)) } res <- sum(result) attr(res, "colsums") <- result return(res) } ################################################### ### chunk number 5: ################################################### meanResponse <- function(theta, designRes){ # unpack design matrices Y <- designRes$Y nareas <- ncol(Y) n <- nrow(Y) X.trendSeason <- designRes$X.trendSeason Ym1 <- designRes$Ym1 Ym1.neighbours <- designRes$Ym1.neighbours nhood <- designRes$disProgObj$neighbourhood nOfNeighbours <- designRes$nOfNeighbours pop <- designRes$populationFrac #check dimension of theta if(designRes$dimTheta$dim != length(theta)){ cat('theta must be of length',designRes$dimTheta$dim,'\n') return(NULL) } #unpack parameters and ensure lambda and phi are positive params <- unpackParams(theta,designRes) ################################################################### ## calculation of mean #autoregressive part # model with lambda and phi ? if(designRes$control$proportion == "none"){ #auto=0 if lambda and phi are not used in model lambda <- params$lambda phi <- params$phi # no autoregression if(is.null(lambda)) auto.lambda<- 0 else { # multiple lambda if(length(designRes$control$lambda)==nareas){ # create vector lambda with elements 0 if control$lambda=FALSE lambda <- rep(0,nareas) lambda[!is.na(designRes$control$lambda)] <- params$lambda } auto.lambda <- Ym1*matrix(lambda,ncol=nareas,nrow=nrow(Y), byrow=TRUE) } if(is.null(phi)) auto.phi <- 0 else { # multiple phi if(length(designRes$control$neighbours)==nareas){ # create vector phi with elements 0 if control$neighbours=FALSE phi <- rep(0,nareas) phi[!is.na(designRes$control$neighbours)] <- params$phi } auto.phi <- Ym1.neighbours*matrix(phi,ncol=nareas,nrow=nrow(Y), byrow=TRUE) } auto<- auto.lambda + auto.phi } else { ################################################# ## model with lambda and proportion pi ################################################# # helper function weightedSumEpidemic <- function(prop,lambda){ # ensure region id is not included diag(nhood) <- 0 # compute sum_j~i {pi_ji * Y_j,t-1} for unit id # where pi_ji = pi_i for j=i # pi_ji =(1-pi_j)/|k~j| for j~i one <- function(id){ # nOfNeighbours is number of Neigbours for each unit id=1,..,m i.e. |k~id| nOfNeighbours[id]<-1 pi.ij <- matrix(lambda*(1-prop)/nOfNeighbours,ncol=length(prop),nrow=nrow(Ym1),byrow=TRUE) # select pi_ij with j~i piYm1 <- as.matrix((Ym1*pi.ij)[,nhood[,id]>0]) rowSums(piYm1) } sapply(1:length(prop),one) } lambda <- matrix(params$lambda,ncol=nareas,nrow=n,byrow=TRUE) if(designRes$control$proportion == "single") prop <- rep(params$pi,nareas) else prop <- params$pi # lambda*pi_ji*Y_j,t-1 auto.phi <- weightedSumEpidemic(prop=prop,lambda=lambda[1,]) auto.lambda <- Ym1*lambda*matrix(prop,ncol=nareas,nrow=n,byrow=TRUE) auto <- auto.lambda+auto.phi } ################ #trend and seasonal components nSeason <- designRes$control$nseason dimSeason <- designRes$dimTheta$season dimTrend <- designRes$dimTheta$trend # trend if(dimTrend >0){ if(length(designRes$control$linear) == 1) beta <- rep(params$beta,nareas) else { beta <- rep(0,nareas) beta[designRes$control$linear] <-params$beta } predTime <- as.matrix(X.trendSeason[,1])%*%beta } else predTime <- 0 # season if( dimSeason >0){ # discard design matrix for trend X.Season <- X.trendSeason[,(1+ (dimTrend>0) ):ncol(X.trendSeason)] maxSeason <- max(nSeason) #construct a suitable matrix for seasonal parameters gamma_i # same number of Fourier frequencies S for all areas i: if(length(nSeason)==1){ gammaMat <- matrix(params$gamma,ncol=nareas,nrow=2*maxSeason,byrow=FALSE) } else if(length(nSeason)==nareas){ # different number of frequencies S_i for each area gammaMat <- matrix(0,ncol=nareas,nrow=2*maxSeason) index <- rep(1:nareas,2*nSeason) for(i in 1:nareas) gammaMat[0:(2*nSeason[i]),i] <- params$gamma[index==i] } else stop("nseason must be a vector of length 1 or",nareas,"\n") predSeason <- X.Season%*%gammaMat } else predSeason <- 0 #intercepts for areas #matrix with columns (alpha_1,...,alpha_nareas) predarea <- matrix(params$alpha, byrow=TRUE, ncol=nareas, nrow=nrow(Y)) #endemic part endemic <- pop*exp(predarea+predTime+predSeason) #results mean <- auto + endemic #Done return(list(mean=mean,epidemic=auto,endemic=endemic,epi.own=auto.lambda,epi.neighbours=auto.phi)) } ################################################### ### chunk number 6: ################################################### make.design <- function(disProgObj, control=list(lambda=TRUE, neighbours=FALSE, linear=FALSE, nseason=0, negbin=c("none", "single", "multiple"), proportion=c("none", "single", "multiple"), lag.range=NULL) ){ #Convert sts objects if (class(disProgObj) == "sts") disProgObj <- sts2disProg(disProgObj) #set default values (if not provided in control) if(is.null(control[["linear",exact=TRUE]])) control$linear <- FALSE if(is.null(control[["nseason",exact=TRUE]])) control$nseason <- 0 if(is.null(control[["neighbours",exact=TRUE]])) control$neighbours <- NA if(is.null(control[["negbin",exact=TRUE]])) control$negbin <- "none" if(is.null(control[["lambda",exact=TRUE]])) control$lambda <- 1 if(is.null(control[["proportion",exact=TRUE]])) control$proportion <- "none" control$proportion <- match.arg(control$proportion, c("single","multiple","none")) control$negbin <- match.arg(control$negbin, c("single","multiple","none")) # convert logical values to numerical values, FALSE corresponds to NA # to allow for lag == 0 if(is.logical(control[["lambda", exact=TRUE]])){ control$lambda <- as.numeric(control$lambda) control$lambda[control$lambda==0] <- NA } if(is.logical(control[["neighbours", exact=TRUE]])){ control$neighbours <- as.numeric(control$neighbours) control$neighbours[control$neighbours==0] <- NA } # determine range of observations y_i,t if(is.null(control[["lag.range",exact=TRUE]])){ lags <- c(control$lambda, control$neighbours) control$lag.range <- c(max(c(lags,1),na.rm=TRUE), max(c(-lags,0), na.rm=TRUE)) } data <- disProgObj$observed n <- nrow(data) nareas <- ncol(data) # check parameters if(length(control$lambda)>1 & length(control$lambda)!=nareas) stop("parameter lambda is not specified correctly\n") if(length(control$neighbours)>1 & length(control$neighbours)!=nareas) stop("parameter phi is not specified correctly\n") if(length(control$linear)>1 & length(control$linear)!=nareas) stop("parameter beta is not specified correctly\n") #univariate if(nareas ==1){ control$neighbours <- NA control$proportion <- "none" control$nseason <- control$nseason[1] } # maximum number of seasonal Fourier frequencies maxSeason <- max(control$nseason) # model with (lambda, pi) ? if(control$proportion != "none"){ control$neighbours <- NA # no lambda specified or lambda is not specified for each area if(sum(!is.na(control$lambda)) == 0 |sum(!is.na(control$lambda)) !=nareas) control$lambda <- 1 } dimLambda <- sum(!is.na(control$lambda)) dimPhi <- sum(!is.na(control$neighbours)) dimProportion <- switch(control$proportion , "single" = 1, "multiple"= nareas, "none" = 0) dimTrend <- sum(control$linear) dimSeason <- sum(2*control$nseason) dimIntercept <- nareas dimNegbin <- switch(control$negbin, "single" = 1, "multiple"= nareas, "none" = 0) #theta = (alpha_i, lambda, phi (or pi), beta,gamma_i,delta_i,..., psi) dim <- dimLambda+dimPhi+dimTrend+dimSeason+dimIntercept+dimProportion+dimNegbin dimTheta <- list(lambda=dimLambda, phi=dimPhi, trend=dimTrend, season=dimSeason, intercept=dimIntercept, proportion=dimProportion, negbin=dimNegbin ,dim=dim) #################################################################### # arrange response as matrix #Y, Ym1, Ym1.neighbours and population are (nOfobs)x(nOfareas) matrices #where nOfareas is the number of areas/units and # nOfobs is determined by control$lag.range with default nOfObs=n-1 # Thus, lag.range can be used to ensure that models with different lags # are based on the same observations. t.min <- 1+control$lag.range[1] t.max <- n-control$lag.range[2] Y <- matrix(data[t.min:t.max,],nrow=length(t.min:t.max),ncol=nareas) # population sizes n_{i,t} if(is.null(disProgObj$populationFrac)){ population <- matrix(1, nrow=length(t.min:t.max),ncol=nareas) } else { population <- matrix(disProgObj$populationFrac[t.min:t.max,],nrow=length(t.min:t.max),ncol=nareas) } # observed counts at time point t-lag # NOTE: the same lag (the maximum lag) is used for all areas if(dimLambda >0){ lag.lambda <- control$lambda[which.max(abs(control$lambda))] Ym1 <- matrix(data[(t.min:t.max)-lag.lambda,],nrow=length(t.min:t.max),ncol=nareas) } else { lag.lambda<- NA Ym1 <- matrix(0,nrow=length(t.min:t.max),ncol=nareas) } Ym1.neighbours <- matrix(0,nrow=length(t.min:t.max),ncol=nareas) nOfNeighbours <- 0 # now matrix for neighbours if(dimPhi>0){ lag.phi <- control$neighbours[which.max(abs(control$neighbours))] Ym1.neighbours <- weightedSumNeighbours(disProgObj)$neighbours[(t.min:t.max)-lag.phi,] nOfNeighbours <- weightedSumNeighbours(disProgObj)$nOfNeighbours # Ym1.neighbours <- sumNeighbours(disProgObj)[-n,] } else lag.phi <- NA if(dimProportion >0){ Ym1.neighbours <- weightedSumNeighbours(disProgObj)$neighbours[(t.min:t.max)-lag.lambda,] #not really needed nOfNeighbours <- weightedSumNeighbours(disProgObj)$nOfNeighbours } #################################################################### # now define design matrix (for trend and seasonality) for each time point #t<- disProgObj$week[t.min:t.max] # if no $week is given if(is.null(disProgObj$week)){ t <- (t.min:t.max)-1 } else { t<- disProgObj$week[(t.min:t.max)-1] } #t <- t - mean(t) form<-function(mod=ifelse(dimTrend == 0,"~-1","~-1+t"), S=maxSeason, period=disProgObj$freq){ if(S>0){ for(i in 1:S){ mod <- paste(mod,"+sin(",2*i,"*pi*t/",period,")+cos(",2*i,"*pi*t/",period,")",sep="") } } return(as.formula(mod)) } if(dimTrend +dimSeason >0) X.trendSeason<-model.matrix(form(),data.frame(t=t)) else X.trendSeason <-NULL result <- list("Y"=Y, "Ym1"=Ym1, "Ym1.neighbours"=Ym1.neighbours,"nOfNeighbours"=nOfNeighbours, "X.trendSeason"=X.trendSeason, "populationFrac"=population, "dimTheta"=dimTheta, "control"=control,"disProgObj"=disProgObj, "lag"=c(lag.lambda,lag.phi),"nObs"=prod(dim(Ym1))) return(result) } ################################################### ### chunk number 7: ################################################### print.ah <- function(x,digits = max(3, getOption("digits") - 3), amplitudeShift=TRUE,reparamPsi=TRUE,...){ if(!x$convergence) cat('Results are not reliable! Try different starting values. \n') else { if(!is.null(x$call)){ cat("Call: \n") print(x$call) } cat('\nEstimated parameters and standard errors: \n\n') coefs <- coefficients(x, se=TRUE, amplitudeShift=amplitudeShift,reparamPsi=reparamPsi) print(round(cbind("Estimates"=coefs[,"Estimates"], "Std.Error"=coefs[,"Std. Error"]),digits=digits),print.gap=2) cat('\nlog-likelihood: ',round(x$loglik,digits=digits-2),'\n') cat('AIC: ',round(AIC(x),digits=digits-2),'\n') cat('BIC: ',round(AIC(x,k=log(x$nObs)),digits=digits-2),'\n\n') if(!is.na(x$lag[1])) cat('lag used for lambda: ',x$lag[1],'\n') if(!is.na(x$lag[2])) cat('lag used for phi: ',x$lag[2] ,'\n') cat('number of observations: ',x$nObs,'\n\n') } } print.ahg <- function (x, digits = max(3, getOption("digits") - 3), amplitudeShift=TRUE,reparamPsi=TRUE, ...){ cat("\nsize of grid: ", x$gridSize, "\n") if (x$gridSize != x$gridUsed) cat("grid search stopped after", x$gridUsed, "iterations \n") cat("convergences: ",sum(!is.na(x$all[,1])),"\n") cat("time needed (in seconds)",x$time,"\n\n") if (!x$convergence) cat("\nAlgorithms did not converge, please try different starting values! \n") else { x$best$call <- NULL cat("values of log-likelihood:") print(table(round(x$all[,1],0))) # cat("\n") print.ah(x$best, digits = digits, amplitudeShift=amplitudeShift,reparamPsi=reparamPsi) } } ################################################### ### chunk number 8: ################################################### ################################# # obtain predictions from the fitted algo.hhh model # # params: # object - a fitted object of class "ah" # newdata - optionally, a disProgObject with which to predict; # if omitted, the fitted mean is returned. # type - the type of prediction required. The default is on the scale of the response # variable (endemic and epidemic part) # the alternative "endemic" returns only the endemic part (i.e. n_it * \nu_it) ################################ predict.ah <- function(object,newdata=NULL,type=c("response","endemic","epi.own","epi.neighbours"),...){ type <- match.arg(type,c("response","endemic","epi.own","epi.neighbours")) control <- object$control if(is.null(newdata)) newdata <- object$disProgObj if(!inherits(newdata, "disProg")) stop("data must be an object of class disProg\n") coefs <- coefficients(object) design <- make.design(newdata,control=control) # in meanResponse the params lambda, phi are "exp()'ed" # log() them to obtain the correct predictions if(sum(!is.na(control$lambda)) >0 | sum(!is.na(control$neighbours)) >0){ indexL <- design$dimTheta$intercept+1 indexU <- indexL +design$dimTheta$lambda +design$dimTheta$phi -1 coefs[indexL:indexU] <- log(coefs[indexL:indexU]) #cat("lambda,phi: indexL",indexL,"indexU",indexU,"\n") # pi is on logit-scale if(control$proportion != "none"){ indexL <- design$dimTheta$intercept+design$dimTheta$lambda+1 indexU <- indexL +design$dimTheta$proportion -1 #cat("indexL",indexL,"indexU",indexU,"\n") coefs[indexL:indexU] <- log(coefs[indexL:indexU]/(1-coefs[indexL:indexU])) } } predicted <- meanResponse(coefs,design) if(type=="response") return(predicted$mean) else if(type=="endemic") return(predicted$endemic) else if(type=="epi.own") return(predicted$epi.own) else if(type=="epi.neighbours") return(predicted$epi.neighbours) } predict.ahg <- function(object, newdata=NULL, type=c("response","endemic","epi.own","epi.neighbours"),...){ predict(object$best,newdata=newdata,type=type) } ################################################### ### chunk number 9: ################################################### ########################## ## residuals ################## residuals.ah <- function (object, type = c("deviance", "pearson"), ...){ type <- match.arg(type, c("deviance", "pearson")) # fitted values mean<- object$fitted.values #discard 1st observation (to obtain same dimension as mean) y <- as.matrix(object$disProgObj$observed[-1,]) # poisson or negbin model if(object$control$negbin!="none"){ coefs <- coefficients(object) psi <- matrix(coefs[grep("psi",names(coefs))],ncol=ncol(y),nrow=nrow(y),byrow=TRUE) distr <- function(mu){ dnbinom(y, mu=mu, size=psi, log=TRUE) } variance <- mean*(1+mean/psi) } else { distr <- function(mu){ dpois(y, lambda=mu,log=TRUE) } variance <- mean } res <- switch(type, deviance = sign(y-mean)*sqrt(2*(distr(y)-distr(mean))), pearson = (y-mean)/sqrt(variance) ) return(res) } residuals.ahg <- function(object, type = c("deviance", "pearson"), ...){ residuals.ah(object$best,type=type) } ################################################### ### chunk number 10: ################################################### ############################################ # extract estimates and standard errors (se=TRUE) # if amplitudeShift=TRUE, the seasonal params are transformed # if reparamPsi=TRUE, the overdispersion param psi is transformed to 1/psi # ############################################ coef.ah <- function(object,se=FALSE, amplitudeShift=FALSE, reparamPsi=FALSE,...){ coefs <- object$coefficients stdErr <- object$se if(amplitudeShift & max(object$control$nseason)>0){ #extract sin, cos coefficients index <- grep(" pi ",names(coefs)) sinCos.names <- names(coefs)[index] # change labels names(coefs)[index] <- paste(c("A","s"),substr(sinCos.names,4,100),sep="") #transform sin, cos coefficients coefs[index] <- sinCos2amplitudeShift(coefs[index]) # se's using Delta rule D <- diag(1,length(coefs)) D[index,index]<- jacobianAmplitudeShift(coefs[index]) cov <- D %*% object$cov %*% t(D) stdErr <- sqrt(diag(cov)) } if(reparamPsi & object$control$negbin!="none"){ #extract psi coefficients index <- grep("psi",names(coefs)) psi.names <- names(coefs)[index] # change labels names(coefs)[index] <- paste("1/",psi.names,sep="") #transform psi coefficients coefs[index] <- 1/coefs[index] # se's using Delta rule: se[h(psi)] = se[psi] * |h'(psi)| # h = 1/psi, h' = -1/psi^2 D <- diag(coefs[index]^2,length(index)) stdErr[index] <- sqrt(diag(D %*% object$cov[index,index] %*% t(D))) } if(se) return(cbind("Estimates"=coefs,"Std. Error"=stdErr)) else return(coefs) } coef.ahg <- function(object,se=FALSE, amplitudeShift=FALSE, reparamPsi=FALSE,...){ return(coef(object$best,se=se, amplitudeShift=amplitudeShift,reparamPsi=reparamPsi)) } ################################################### ### chunk number 11: ################################################### ## convert between sin/cos and amplitude/shift formulation ################################################### # y = gamma*sin(omega*t)+delta*cos(omega*t) # = A*sin(omega*t + phi) # with Amplitude A= sqrt(gamma^2+delta^2) # and shift phi= arctan(delta/gamma) ################################################# sinCos2amplitudeShift <- function(params){ # number of sin+cos terms lengthParams <- length(params) if(lengthParams %% 1 !=0) stop("wrong number of params") index.sin <- seq(1,lengthParams,by=2) one <- function(i=1,params){ coef.sin <- params[i] coef.cos <- params[i+1] amplitude <- sqrt(coef.cos^2+coef.sin^2) shift <- atan2(coef.cos, coef.sin) return(c(amplitude,shift)) } return(c(sapply(index.sin,one,params=params))) } amplitudeShift2sinCos <- function(params){ lengthParams <- length(params) if (lengthParams%%1 != 0) stop("wrong number of params") index.A <- seq(1, lengthParams, by = 2) one <- function(i = 1, params) { coef.A <- params[i] coef.shift <- params[i + 1] coef.cos <- -coef.A*tan(coef.shift)/sqrt(1+tan(coef.shift)^2) coef.sin <- -coef.A/sqrt(1+tan(coef.shift)^2) return(c(coef.sin,coef.cos)) } return(c(sapply(index.A, one, params = params))) } ############################################## # y = gamma*sin(omega*t)+delta*cos(omega*t) # g(gamma,delta) = [sqrt(gamma^2+delta^2), arctan(delta/gamma) ]' # compute jacobian (dg_i(x)/dx_j)_ij ############################################# jacobianAmplitudeShift <- function(params){ # number of sin+cos terms lengthParams <- length(params) if(lengthParams %% 1 !=0) stop("wrong number of params") index.sin <- seq(1,lengthParams,by=2) # function to compute jacobian of the transformation sinCos2AmplitudeShift() one <- function(i=1,params){ coef.sin <- params[i] coef.cos <- params[i+1] dAmplitude.dcoef.sin <- coef.sin/sqrt(coef.cos^2+coef.sin^2) dAmplitude.dcoef.cos <- coef.cos/sqrt(coef.cos^2+coef.sin^2) dShift.dcoef.sin <- - coef.cos/(coef.cos^2+coef.sin^2) dShift.dcoef.cos <- coef.sin/(coef.cos^2+coef.sin^2) return(c(dAmplitude.dcoef.sin,dShift.dcoef.sin,dAmplitude.dcoef.cos,dShift.dcoef.cos)) } jacobi<-sapply(index.sin,one,params=params) res <- matrix(0,nrow=lengthParams,ncol=lengthParams) j<-0 for (i in index.sin){ j<-j+1 res[i:(i+1),i:(i+1)] <- jacobi[,j] } return(res) } ################################################### ### chunk number 12: ################################################### ## additional (undocumented) functions needed for algo.hhh ###################################################################### # Function to unpack params and ensure that autoregressive parameters # lambda and phi are positive # and proportion parameter is 0 < pi < 1 # # theta - (alpha_i, lambda, phi, prop, beta, gamma_i, delta_i, psi) # designRes - result of a call to make.design ###################################################################### unpackParams <- function(theta, designRes){ dimIntercept <- designRes$dimTheta$intercept dimLambda <- designRes$dimTheta$lambda indexLambda <- dimIntercept+dimLambda dimPhi <- designRes$dimTheta$phi indexPhi <- indexLambda +dimPhi dimProportion <- designRes$dimTheta$proportion indexProportion <- indexPhi+dimProportion dimTrend <- designRes$dimTheta$trend indexTrend <- indexProportion+dimTrend dimSeason <- designRes$dimTheta$season indexSeason <- indexTrend +dimSeason dimNegbin <- designRes$dimTheta$negbin # params set to NULL if not specified # intercept always alpha <- theta[1:dimIntercept] if(dimLambda >0) lambda <- exp(theta[(dimIntercept+1):indexLambda]) else lambda <- NULL if(dimPhi >0) phi <- exp(theta[(indexLambda+1):(indexPhi)]) else phi <- NULL if(dimProportion >0){ prop <- theta[(indexPhi+1):indexProportion] # ensure that proportion is 00) beta <- theta[(indexProportion+1):indexTrend] else beta <- NULL if(dimSeason >0) gamma <- theta[(indexTrend+1):indexSeason] else gamma <- NULL if(dimNegbin >0) psi <- exp(theta[(indexSeason+1):(indexSeason+dimNegbin)]) else psi <- NULL return(list(alpha=alpha,lambda=lambda, phi=phi,pi=prop,beta=beta, gamma=gamma, psi=psi)) } ############################################# # function to compute gradient of loglikelihood # -> used in optim ################################################ gradient <- function(theta,designRes){ if(any(is.na(theta) | !is.finite(theta))) return(rep(NA,length(theta))) Y<-designRes$Y Ym1 <-designRes$Ym1 control <- designRes$control mean <- meanResponse(theta=theta, designRes=designRes) params <- unpackParams(theta,designRes) nOfNeighbours <- designRes$nOfNeighbours nhood <- designRes$disProgObj$neighbourhood nareas <- ncol(Y) endemic <- mean$endemic meanTotal <- mean$mean ## helper function for derivatives: # negbin model or poisson model if(control$negbin!="none"){ psi <- matrix(params$psi,ncol=nareas,nrow=nrow(Y),byrow=TRUE) psiPlusMu <- psi + meanTotal # helper function for derivatives: negbin derivHHH <- function(dmu){ # if(any(dim(dmu)!=dim(Y))) # cat("warning: dimensions wrong \n") (-psi/psiPlusMu +Y/meanTotal -Y/psiPlusMu)*dmu } } else { # helper function for derivatives: poisson derivHHH <- function(dmu){ # if(any(dim(dmu)!=dim(dmu))) # cat("warning: dimensions wrong \n") Y *(dmu/meanTotal) - dmu } } ########################################### ## epidemic part ########################################## # model with lambda and phi if(designRes$dimTheta$proportion == 0){ # gradient for lambda if(designRes$dimTheta$lambda >0){ lambda <- params$lambda if(length(control$lambda)>1){ # create vector lambda with elements 0 if control$lambda=FALSE lambda <- rep(0,nareas) lambda[!is.na(designRes$control$lambda)] <- params$lambda } lambda <- matrix(lambda,ncol=nareas,nrow=nrow(Y),byrow=TRUE) dLambda <- derivHHH(lambda*designRes$Ym1) # multiple lambda_i's or single lambda ? if(length(control$lambda) > 1) grLambda <- colSums(dLambda)[!is.na(designRes$control$lambda)] else grLambda <- sum(dLambda) if(any(is.na(grLambda))){ warning("derivatives for lambda not computable\n") return(rep(NA,length(theta))) } } else grLambda <- NULL # gradient for phi if(designRes$dimTheta$phi >0){ phi <- params$phi if(length(control$neighbours)>1){ # create vector phi with elements 0 if control$neighbours=FALSE phi <- rep(0,nareas) phi[!is.na(designRes$control$neighbours)] <- params$phi } phi <- matrix(phi,ncol=nareas,nrow=nrow(Y),byrow=TRUE) if(any(is.na(phi))) stop("phi contains NA\'s\n") dPhi <- derivHHH(phi*designRes$Ym1.neighbours) # multiple phi_i's or single phi ? if(length(control$neighbours)>1) grPhi <- colSums(dPhi)[!is.na(designRes$control$neighbours)] else grPhi<- sum(dPhi) if(any(is.na(grPhi))){ warning("derivatives for phi not computable\n") return(rep(NA,length(theta))) } } else grPhi <- NULL # gradient for proportion pi grPi <- NULL } else { ################################################ ## model with lambda and proportion pi ############################################### ## gradient for lambda gradLambda <- function(prop,lambda){ # ensure region id is not included diag(nhood) <- 0 # compute lambda_id* [pi_id*Ym1_id + sum_j~id {(1-pi_id )/|j~id|* Ym1_id}] for unit id dLambda.id <- function(id){ # number of Neigbours for unit id, i.e. |k~id| n<-nOfNeighbours[id] lambdaYm1.id <- Ym1[,id]*lambda[id] pi.id.j <- rep(0,nareas) pi.id.j[id]<- prop[id] pi.id.j[nhood[,id]>0] <-(1-prop[id])/n lambdaYm1pi.id <-lambdaYm1.id*matrix(pi.id.j,ncol=nareas,nrow=nrow(Ym1),byrow=TRUE) # d/dpi log L(mu_i,t) return(rowSums(derivHHH(lambdaYm1pi.id))) } return(sapply(1:nareas,dLambda.id)) } ## gradient for pi gradPi <- function(prop,lambda){ # ensure region id is not included diag(nhood) <- 0 # compute (pi_id-pi_id^2)* [lambda_id*Ym1_id - sum_j~id {lambda_id/|j~id|* Ym1_id}] for unit id dPi.id <- function(id){ # number of Neigbours for unit id, i.e. |k~id| n<-nOfNeighbours[id] dPiYm1.id <- Ym1[,id]*(prop[id]-prop[id]^2) lambda.id.j <- rep(0,nareas) lambda.id.j[id]<- lambda[id] lambda.id.j[nhood[,id]>0] <-(-lambda[id])/n dPiYm1lambda.id <-dPiYm1.id*matrix(lambda.id.j,ncol=nareas,nrow=nrow(Ym1),byrow=TRUE) # d/dpi log L(mu_i,t) return(rowSums(derivHHH(dPiYm1lambda.id))) } return(sapply(1:nareas,dPi.id)) } # gradient for lambda if(designRes$dimTheta$lambda ==0) cat("no lambda\n") lambda <- rep(params$lambda,length=nareas) prop <- rep(params$pi, length=nareas) dLambda <- gradLambda(prop=prop,lambda=lambda) # multiple lambda_i's or single lambda ? if(designRes$dimTheta$lambda > 1) grLambda <- colSums(dLambda) else grLambda <- sum(dLambda) if(any(is.na(grLambda))){ warning("derivatives for lambda not computable\n") return(rep(NA,length(theta))) } # gradient for phi grPhi <- NULL # gradient for proportion pi dPi <- gradPi(prop=prop,lambda=lambda) if(designRes$dimTheta$proportion >1) grPi <- colSums(dPi) else grPi <- sum(dPi) if(any(is.na(grPi))){ warning("derivatives for pi not computable\n") return(rep(NA,length(theta))) } } ############################################ ## endemic part ############################################ # gradient for intercepts grAlpha <- colSums(derivHHH(endemic)) if(any(is.na(grAlpha))){ warning("derivatives for alpha not computable\n") return(rep(NA,length(theta))) } # gradient for trend if(designRes$dimTheta$trend >0){ dTrend <- derivHHH(endemic*designRes$X.trendSeason[,1]) if(designRes$dimTheta$trend >1) grTrend <- colSums(dTrend)[designRes$control$linear] else grTrend <- sum(dTrend) if(any(is.na(grTrend))){ warning("derivatives for trend not computable\n") return(rep(NA,length(theta))) } } else grTrend <- NULL # gradient for season grSeason <- NULL if(designRes$dimTheta$season >0){ ## single or multiple seasonal params if(length(control$nseason)==1){ for (i in ((designRes$dimTheta$trend>0) +1):ncol(designRes$X.trendSeason) ){ grSeason <- c(grSeason, sum(derivHHH(endemic*designRes$X.trendSeason[,i]))) } if(any(is.na(grSeason))){ warning("derivatives for seasonal parameters not computable\n") return(rep(NA,length(theta))) } } else if(length(control$nseason)==nareas){ #maximum number of Fourier frequencies S.max=max_i{S_i} maxSeason <- 2*max(control$nseason) grSeason <- matrix(NA,nrow=maxSeason,ncol=ncol(Y)) for (j in ((designRes$dimTheta$trend>0) +1):(maxSeason+(designRes$dimTheta$trend>0) ) ){ # compute derivatives of gamma_{ij}, j= 1, ..., 2*S.max grSeason[j-(designRes$dimTheta$trend>0),] <- colSums(derivHHH(endemic*designRes$X.trendSeason[,j])) # set gradients for gamma_{ij} to NA if j > S_i grSeason[j-(designRes$dimTheta$trend>0),(j > (2*control$nseason)+(designRes$dimTheta$trend>0))] <- NA } # gradient now is in order sin(omega_1)_A, sin(omega_1)_B, sin(omega_1)_C, ... # cos(omega_1)_A, cos(omega_1)_B, cos(omega_1)_C, ... # sin(omega_2)_A, sin(omega_2)_B, sin(omega_2)_C, ... # ... # and needs to be in the following order: # sin(omega_1)_A, cos(omega_1)_A, sin(omega_2)_A, ..., cos(omega_S.max)_A # sin(omega_1)_B, cos(omega_1)_B, sin(omega_2)_B, ..., cos(omega_S.max)_B # remove NA's, i.e. only derivatives for {gamma_{ij}: j <=2*S_i} # check if there are any NaN's if(any(is.nan(grSeason))){ warning("derivatives for seasonal parameters not computable\n") return(rep(NA,length(theta))) } grSeason <- grSeason[!is.na(grSeason)] } # end multiple params } # end gradient season # gradient for psi if(designRes$dimTheta$negbin>0){ dPsi <- psi*(digamma(Y+psi)-digamma(psi) +log(psi)+1 - log(psiPlusMu) -psi/psiPlusMu -Y/psiPlusMu) # multiple psi_i's or single psi? if(designRes$dimTheta$negbin >1) grPsi <- colSums(dPsi) else grPsi <- sum(dPsi) if(any(is.na(grPsi))){ warning("derivatives for psi not computable\n") return(rep(NA,length(theta))) } } else grPsi <- NULL res <- c(grAlpha,grLambda,grPhi,grPi,grTrend,grSeason,grPsi) return(res) } ################################ # Calculates the weighted sum of counts of adjacent areas # weights are specified in neighbourhood-matrix of the disProgObj # (experimental atm) # # \nu_i,t = \lambda_y_i,t-1 + \phi*\sum_(j~i) [w_ji*y_j,t-1] # # disProgObj$neighbourhood can either be a matrix with weights w_ji (in columns) # or an array (for time varying weights) # # if the neighbourhood-matrix has elements 1 if i~j and 0 otherwise # weightedSumNeighbours() = sumNeighbours() ########################################### weightedSumNeighbours <- function(disProgObj){ observed <- disProgObj$observed ntime<-nrow(observed) narea<-ncol(observed) neighbours <- matrix(nrow=ntime,ncol=narea) nhood <- disProgObj$neighbourhood #check neighbourhood if(any(is.na(nhood))) stop("No correct neighbourhood matrix given\n") ## constant neighbourhood (over time)? if(length(dim(nhood))==2){ # ensure only neighouring areas are summed up diag(nhood) <- 0 nhood <- array(nhood,c(narea,narea,ntime)) } else if(length(dim(nhood))==3){ if(any(dim(nhood)[1:2]!= narea) | dim(nhood)[3] != ntime) stop("neighbourhood info incorrect\n") } # number of neighbours nOfNeighbours <-colSums(nhood[,,1]>0) for(i in 1:ncol(observed)){ #weights <- matrix(as.numeric(nhood[,i]),nrow=nrow,ncol=ncol,byrow=TRUE) weights <- t(nhood[,i,]) neighbours[,i] <- rowSums(observed*weights) } return(list(neighbours=neighbours, nOfNeighbours=nOfNeighbours)) } ################################################# # params psi, lambda and phi are on log-scale # -> transformation of estimates, standard errors and fisher (using delta rule) # labels for results # # g(theta) = (exp(lambda), exp(phi), beta, gamma, delta, exp(psi), alpha) # D is the Jacobian of g # D = diag(exp(lambda), exp(phi), 1, 1, 1, exp(psi), 1) ######################################### jacobian <- function(thetahat, designRes){ dimtheta <- designRes$dimTheta$dim nareas <- ncol(designRes$disProgObj$observed) thetaNames <- NULL D <-diag(1,ncol=dimtheta,nrow=dimtheta) dimLambda <- designRes$dimTheta$lambda dimPhi <- designRes$dimTheta$phi dimPi <- designRes$dimTheta$proportion dimTrend <- designRes$dimTheta$trend dimPsi <- designRes$dimTheta$negbin dimSeason <-designRes$dimTheta$season nseason <- designRes$control$nseason alpha <- colnames(designRes$disProgObj$observed) if(is.null(alpha)) alpha <- paste("obs",1:nareas, sep="") thetaNames <- c(thetaNames, alpha) if(dimLambda >0){ if(length(designRes$control$lambda)==1) lambda <- "lambda" else { lambda <- paste("lambda", alpha, sep="_")[!is.na(designRes$control$lambda)] } thetaNames <- c(thetaNames, lambda) index <-(nareas+1):(nareas+dimLambda) thetahat[index] <- exp(thetahat[index]) diag(D)[index] <- thetahat[index] } if(dimPhi >0){ if(length(designRes$control$neighbours)==1) phi <- "phi" else { phi <- paste("phi", alpha, sep="_")[!is.na(designRes$control$neighbours)] } thetaNames <- c(thetaNames, phi) index <- (nareas+dimLambda+1):(nareas+dimLambda+dimPhi) thetahat[index] <- exp(thetahat[index]) diag(D)[index] <- thetahat[index] } if(dimPi>0){ prop <- switch(designRes$control$proportion, "single"="pi", "multiple"=paste("pi", alpha, sep="_")) thetaNames <- c(thetaNames, prop) index <- (nareas+dimLambda+dimPhi+1):(nareas+dimLambda+dimPhi+dimPi) exp.pi <- exp(thetahat[index]) diag(D)[index] <- exp.pi/((1+exp.pi)^2) thetahat[index] <- exp.pi/(1+exp.pi) } if(dimTrend >0){ beta <- colnames(designRes$X.trendSeason)[1] if(length(designRes$control$linear)>1) beta <- paste(beta,alpha,sep="_")[designRes$control$linear] thetaNames <- c(thetaNames, beta) } if(dimSeason > 0){ maxSeason <- 2*max(nseason) sinCos <- rep(colnames(designRes$X.trendSeason)[(1+ (dimTrend>0) ):((dimTrend>0) +maxSeason)], length=maxSeason) if(length(nseason)==1){ gammaDelta <- sinCos } else if(length(nseason==nareas)){ gammaDelta <- matrix(NA,ncol=nareas,nrow=maxSeason) for(i in 1:nareas){ gammaDelta[0:(2*nseason[i]),i] <- paste(sinCos,alpha[i],sep="_")[0:(2*nseason[i])] } gammaDelta <- gammaDelta[!is.na(gammaDelta)] } thetaNames <- c(thetaNames, gammaDelta ) } if(dimPsi >0){ psi <- switch(designRes$control$negbin, "single"="psi", "multiple"=paste("psi",alpha,sep="_")) thetaNames <- c(thetaNames, psi) index <- (dimtheta-dimPsi+1):dimtheta thetahat[index] <- exp(thetahat[index]) diag(D)[index] <- thetahat[index] } dimnames(D) <- list(thetaNames,thetaNames) names(thetahat) <- thetaNames return(list(D=D,theta=thetahat)) } # theta.epidemic = c(lambda,phi) # Note: lambda and phi are on log-scale getLambda <- function(theta.epidemic, designRes, t.weights=1){ # check dimension of theta.epidemic dimLambda <- designRes$dimTheta$lambda dimPhi <- designRes$dimTheta$phi if(designRes$dimTheta$proportion>0) stop("proportions currently not supported\n") if(length(theta.epidemic)!= (dimLambda+dimPhi)) stop("vector with parameters must be of length ", dimLambda+dimPhi,"\n") # is there an autoregression? if(sum(!is.na(designRes$control$lambda))==0 & sum(!is.na(designRes$control$neighbours)) ==0) return(NULL) if(dimLambda>0){ coef.lambda <- exp(theta.epidemic[1:dimLambda] ) } else coef.lambda <- 0 if(dimPhi>0){ coef.phi <- exp(theta.epidemic[(dimLambda+1):length(theta.epidemic)] ) } else coef.phi <- 0 #univariate? if(ncol(designRes$disProgObj$observed)==1){ if(sum(!is.na(designRes$control$lambda))==1) return(coef.lambda) else return(NULL) } nareas <- ncol(designRes$Y) #ncol(nhood) if(designRes$control$proportion=="none"){ # no lambda if(sum(!is.na(designRes$control$lambda))==0){ lambda <- rep(0,nareas) # single lambda for all units } else if(sum(!is.na(designRes$control$lambda))==1 & length(designRes$control$lambda)==1){ lambda <- rep(coef.lambda,nareas) # multiple lambda } else{ lambda <- rep(0, nareas) lambda[designRes$control$lambda] <- coef.lambda } Lambda <- diag(lambda,nareas) if(dimPhi>0){ # extract neighbourhood, i.e. weight matrix nhood <- designRes$disProgObj$neighbourhood # time-varying weights w_ji if(length(dim(nhood))==3) nhood <- nhood[,,t.weights] # ensure the diagonal is zero diag(nhood) <- 0 nOfNeighbours <- colSums(nhood>0) # single phi for all units if(length(designRes$control$neighbours)==1 & sum(!is.na(designRes$control$neighbours))==1){ phi <-rep(coef.phi,nareas) } else if(length(designRes$control$neighbours)>1 & sum(!is.na(designRes$control$neighbours))>0){ phi <- rep(0,nareas) phi[!is.na(designRes$control$neighbours)] <- coef.phi } phi.weights <- matrix(phi,nrow=nareas,ncol=nareas,byrow=FALSE)*nhood Lambda[nhood>0] <- phi.weights[nhood>0] } } else { #todo: check return(NULL) #hoehle 14 Oct 2008 - commented, coz it contains warnings for R CMD check # lambdaMatrix <- matrix(lambda,ncol=nareas,nrow=nareas,byrow=TRUE) # nOfNeighbours <- rowSums(nhood) # piMatrix <- matrix((1-prop)/nOfNeighbours,ncol=nareas,nrow=nareas,byrow=TRUE) # piMatrix[nhood==0] <-0 # diag(piMatrix)<-prop # Lambda <- lambdaMatrix*piMatrix } return(Lambda) } ## moment estimator of exp(alpha) ## alpha.hat(lambda,phi) = mean(y)' %*% (I - Lambda) expAlpha.mm <- function(Lambda,Y){ mean.obs <- colMeans(Y) mean.obs %*% (diag(1,length(mean.obs))-Lambda) } ######## logLik.ah <- function(object,...){ if(!inherits(object, "ah")) stop("expected object to be an object of class ah\n") if(!object$convergence) stop("algorithm did not converge\n") val <- object$loglikelihood attr(val, "df") <- length(coef(object)) attr(val, "nobs") <- object$nObs class(val) <- "logLik" return(val) } logLik.ahg <- function(object, ...){ logLik.ah(object$best) } surveillance/vignettes/0000755000175100001440000000000013231650476015003 5ustar hornikuserssurveillance/vignettes/twinstim.Rnw0000644000175100001440000016200613174125727017360 0ustar hornikusers%\VignetteIndexEntry{twinstim: An endemic-epidemic modeling framework for spatio-temporal point patterns} %\VignetteEngine{knitr::knitr} %\VignetteDepends{surveillance, lattice, polyclip, memoise, maptools, spdep, colorspace, scales, rmapshaper} <>= ## purl=FALSE => not included in the tangle'd R script knitr::opts_chunk$set(echo = TRUE, tidy = FALSE, results = 'markup', fig.path='plots/twinstim-', fig.width = 8, fig.height = 4, fig.align = "center", fig.scap = NA, out.width = NULL, cache = FALSE, error = FALSE, warning = FALSE, message = FALSE) knitr::render_sweave() # use Sweave environments knitr::set_header(highlight = '') # no \usepackage{Sweave} (part of jss class) ## add a chunk option "strip.white.output" to remove leading and trailing white ## space (empty lines) from output chunks ('strip.white' has no effect) local({ default_output_hook <- knitr::knit_hooks$get("output") knitr::knit_hooks$set(output = function (x, options) { if (isTRUE(options[["strip.white.output"]])) { x <- sub("[[:space:]]+$", "\n", # set a single trailing \n sub("^[[:space:]]+", "", x)) # remove leading space } default_output_hook(x, options) }) }) ## R settings options(prompt = "R> ", continue = "+ ", useFancyQuotes = FALSE) # JSS options(width = 85, digits = 4) options(scipen = 1) # so that 1e-4 gets printed as 0.0001 ## xtable settings options(xtable.booktabs = TRUE, xtable.size = "small", xtable.sanitize.text.function = identity, xtable.comment = FALSE) @ <>= ## load the "cool" package library("surveillance") ## Compute everything or fetch cached results? message("Doing computations: ", COMPUTE <- !file.exists("twinstim-cache.RData")) if (!COMPUTE) load("twinstim-cache.RData", verbose = TRUE) @ \documentclass[nojss,nofooter,article]{jss} \title{% \vspace{-1.5cm} \fbox{\vbox{\normalfont\footnotesize This introduction to the \code{twinstim} modeling framework of the \proglang{R}~package \pkg{surveillance} is based on a publication in the \textit{Journal of Statistical Software} -- \citet[Section~3]{meyer.etal2014} -- which is the suggested reference if you use the \code{twinstim} implementation in your own work.}}\\[1cm] \code{twinstim}: An endemic-epidemic modeling framework for spatio-temporal point patterns} \Plaintitle{twinstim: An endemic-epidemic modeling framework for spatio-temporal point patterns} \Shorttitle{Endemic-epidemic modeling of spatio-temporal point patterns} \author{Sebastian Meyer\thanks{Author of correspondence: \email{seb.meyer@fau.de}}\\Friedrich-Alexander-Universit{\"a}t\\Erlangen-N{\"u}rnberg \And Leonhard Held\\University of Zurich \And Michael H\"ohle\\Stockholm University} \Plainauthor{Sebastian Meyer, Leonhard Held, Michael H\"ohle} %% Basic packages \usepackage{lmodern} % successor of CM -> searchable Umlauts (1 char) \usepackage[english]{babel} % language of the manuscript is American English %% Math packages \usepackage{amsmath,amsfonts} % amsfonts defines \mathbb \usepackage{mathtools} % tools for math typesetting + amsmath-bugfixes \usepackage{bm} % \bm: alternative to \boldsymbol from amsfonts \usepackage{bbm} % \mathbbm: alternative to \mathbb from amsfonts %% Packages for figures and tables \usepackage{booktabs} % make tables look nicer \usepackage{subcaption} % successor of subfig, which supersedes subfigure \newcommand{\subfloat}[2][need a sub-caption]{\subcaptionbox{#1}{#2}} % -> knitr %% Handy math commands \newcommand{\abs}[1]{\lvert#1\rvert} \newcommand{\norm}[1]{\lVert#1\rVert} \newcommand{\given}{\,\vert\,} \newcommand{\dif}{\,\mathrm{d}} \newcommand{\IR}{\mathbb{R}} \newcommand{\IN}{\mathbb{N}} \newcommand{\ind}{\mathbbm{1}} \DeclareMathOperator{\Po}{Po} \DeclareMathOperator{\NegBin}{NegBin} \DeclareMathOperator{\N}{N} %% Additional commands \newcommand{\class}[1]{\code{#1}} % could use quotes (JSS does not like them) \newcommand{\CRANpkg}[1]{\href{https://CRAN.R-project.org/package=#1}{\pkg{#1}}} %% Reduce the font size of code input and output \DefineVerbatimEnvironment{Sinput}{Verbatim}{fontshape=sl, fontsize=\small} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontsize=\small} %% Abstract \Abstract{ The availability of geocoded health data and the inherent temporal structure of communicable diseases have led to an increased interest in statistical models and software for spatio-temporal data with epidemic features. The \proglang{R}~package \pkg{surveillance} can handle various levels of aggregation at which infective events have been recorded. This vignette illustrates the analysis of \emph{point-referenced} surveillance data using the endemic-epidemic point process model ``\code{twinstim}'' proposed by \citet{meyer.etal2011} and extended in \citet{meyer.held2013}. %% (For other types of surveillance data, see %% \code{vignette("twinSIR")} and \code{vignette("hhh4\_spacetime")}.) We first describe the general modeling approach and then exemplify data handling, model fitting, visualization, and simulation methods for time-stamped geo-referenced case reports of invasive meningococcal disease (IMD) caused by the two most common bacterial finetypes of meningococci in Germany, 2002--2008. } \Keywords{% spatio-temporal point pattern, endemic-epidemic modeling, infectious disease epidemiology, self-exciting point process, spatial interaction function, branching process with immigration} \begin{document} %% \vfill %% { %% \renewcommand{\abstractname}{Outline} % local change %% \begin{abstract} %% We start by describing the general model class in %% Section~\ref{sec:twinstim:methods}. %% Section~\ref{sec:twinstim:data} introduces the example data and the %% associated class \class{epidataCS}, %% Section~\ref{sec:twinstim:fit} presents the core functionality of %% fitting and analyzing such data using \code{twinstim}, and %% Section~\ref{sec:twinstim:simulation} shows how to simulate realizations %% from a fitted model. %% \end{abstract} %% } %% \vfill %% \newpage \section[Model class]{Model class: \code{twinstim}} \label{sec:twinstim:methods} Infective events occur at specific points in continuous space and time, which gives rise to a spatio-temporal point pattern $\{(\bm{s}_i,t_i): i = 1,\dotsc,n\}$ from a region~$\bm{W}$ observed during a period~$(0,T]$. The locations~$\bm{s}_i$ and time points~$t_i$ of the $n$~events can be regarded as a realization of a self-exciting spatio-temporal point process, which can be characterized by its conditional intensity function (CIF, also termed intensity process) $\lambda(\bm{s},t)$. It represents the instantaneous event rate at location~$\bm{s}$ at time point~$t$ given all past events, and is often more verbosely denoted by~$\lambda^*$ or by explicit conditioning on the ``history''~$\mathcal{H}_t$ of the process. \citet[Chapter~7]{Daley.Vere-Jones2003} provide a rigorous mathematical definition of this concept, which is key to likelihood analysis and simulation of ``evolutionary'' point processes. \citet{meyer.etal2011} formulated the model class ``\code{twinstim}'' -- a \emph{two}-component \emph{s}patio-\emph{t}emporal \emph{i}ntensity \emph{m}odel -- by a superposition of an endemic and an epidemic component: \begin{equation} \label{eqn:twinstim} \lambda(\bm{s},t) = \nu_{[\bm{s}][t]} + \sum_{j \in I(\bm{s},t)} \eta_j \, f(\norm{\bm{s}-\bm{s}_j}) \, g(t-t_j) \:. \end{equation} This model constitutes a branching process with immigration. Part of the event rate is due to the first, endemic component, which reflects sporadic events caused by unobserved sources of infection. This background rate of new events is modeled by a log-linear predictor $\nu_{[\bm{s}][t]}$ incorporating regional and/or time-varying characteristics. Here, the space-time index $[\bm{s}][t]$ refers to the region covering $\bm{s}$ during the period containing $t$ and thus spans a whole spatio-temporal grid on which the involved covariates are measured, e.g., district $\times$ month. We will later see that the endemic component therefore simply equals an inhomogeneous Poisson process for the event counts by cell of that grid. The second, observation-driven epidemic component adds ``infection pressure'' from the set \begin{equation*} I(\bm{s},t) = \big\{ j : t_j < t \:\wedge\: t-t_j \le \tau_j \:\wedge\: \norm{\bm{s}-\bm{s}_j} \le \delta_j \big\} \end{equation*} of past events and hence makes the process ``self-exciting''. During its infectious period of length~$\tau_j$ and within its spatial interaction radius~$\delta_j$, the model assumes each event~$j$ to trigger further events, which are called offspring, secondary cases, or aftershocks, depending on the application. The triggering rate (or force of infection) is proportional to a log-linear predictor~$\eta_j$ associated with event-specific characteristics (``marks'') $\bm{m}_j$, which are usually attached to the point pattern of events. The decay of infection pressure with increasing spatial and temporal distance from the infective event is modeled by parametric interaction functions~$f$ and~$g$, respectively. A simple assumption for the time course of infectivity is $g(t) = 1$. Alternatives include exponential decay, a step function, or empirically derived functions such as Omori's law for aftershock intervals. With regard to spatial interaction, a Gaussian kernel $f(x) = \exp\left\{-x^2/(2 \sigma^2)\right\}$ could be chosen. However, in modeling the spread of human infectious diseases on larger scales, a heavy-tailed power-law kernel $f(x) = (x+\sigma)^{-d}$ was found to perform better \citep{meyer.held2013}. The (possibly infinite) upper bounds~$\tau_j$ and~$\delta_j$ provide a way of modeling event-specific interaction ranges. However, since these need to be pre-specified, a common assumption is $\tau_j \equiv \tau$ and $\delta_j \equiv \delta$, where the infectious period~$\tau$ and the spatial interaction radius~$\delta$ are determined by subject-matter considerations. \subsection{Model-based effective reproduction numbers} Similar to the simple SIR model \citep[see, e.g.,][Section 2.1]{Keeling.Rohani2008}, the above point process model~\eqref{eqn:twinstim} features a reproduction number derived from its branching process interpretation. As soon as an event occurs (individual becomes infected), it triggers offspring (secondary cases) around its origin $(\bm{s}_j, t_j)$ according to an inhomogeneous Poisson process with rate $\eta_j \, f(\norm{\bm{s}-\bm{s}_j}) \, g(t-t_j)$. Since this triggering process is independent of the event's parentage and of other events, the expected number $\mu_j$ of events triggered by event $j$ can be obtained by integrating the triggering rate over the observed interaction domain: \begin{gather} \label{eqn:R0:twinstim} \mu_j = \eta_j \cdot \left[ \int_0^{\min(T-t_j,\tau_j)} g(t) \,dt \right] \cdot \left[ \int_{\bm{R}_j} f(\norm{\bm{s}}) \,d\bm{s} \right] \:, \shortintertext{where} \label{eqn:twinstim:IR} \bm{R}_j = (b(\bm{s}_j,\delta_j) \cap \bm{W}) - \bm{s}_j \end{gather} is event $j$'s influence region centered at $\bm{s}_j$, and $b(\bm{s}_j, \delta_j)$ denotes the disc centered at $\bm{s}_j$ with radius $\delta_j$. Note that the above model-based reproduction number $\mu_j$ is event-specific since it depends on event marks through $\eta_j$, on the interaction ranges $\delta_j$ and $\tau_j$, as well as on the event location $\bm{s}_j$ and time point $t_j$. If the model assumes unique interaction ranges $\delta$ and $\tau$, a single reference number of secondary cases can be extrapolated from Equation~\ref{eqn:R0:twinstim} by imputing an unbounded domain $\bm{W} = \IR^2$ and $T = \infty$ \citep{meyer.etal2015}. Equation~\ref{eqn:R0:twinstim} can also be motivated by looking at a spatio-temporal version of the simple SIR model wrapped into the \class{twinstim} class~\eqref{eqn:twinstim}. This means: no endemic component, homogeneous force of infection ($\eta_j \equiv \beta$), homogeneous mixing in space ($f(x) = 1$, $\delta_j \equiv \infty$), and exponential decay of infectivity ($g(t) = e^{-\alpha t}$, $\tau_j \equiv \infty$). Then, for $T \rightarrow \infty$, \begin{equation*} \mu = \beta \cdot \left[ \int_0^\infty e^{-\alpha t} \,dt \right] \cdot \left[ \int_{\bm{W}-\bm{s}_j} 1 \,d\bm{s} \right] = \beta \cdot \abs{\bm{W}} / \alpha \:, \end{equation*} which corresponds to the basic reproduction number known from the simple SIR model by interpreting $\abs{\bm{W}}$ as the population size, $\beta$ as the transmission rate and $\alpha$ as the removal rate. If $\mu < 1$, the process is sub-critical, i.e., its eventual extinction is almost sure. However, it is crucial to understand that in a full model with an endemic component, new infections may always occur via ``immigration''. Hence, reproduction numbers in \class{twinstim} are adjusted for infections occurring independently of previous infections. This also means that a misspecified endemic component may distort model-based reproduction numbers \citep{meyer.etal2015}. Furthermore, under-reporting and implemented control measures imply that the estimates are to be thought of as \emph{effective} reproduction numbers. \subsection{Likelihood inference} The log-likelihood of the point process model~\eqref{eqn:twinstim} is a function of all parameters in the log-linear predictors $\nu_{[\bm{s}][t]}$ and $\eta_j$ and in the interaction functions $f$ and $g$. It has the form %% \begin{equation} \label{eqn:twinstim:marked:loglik} %% l(\bm{\theta}) = \left[ \sum_{i=1}^{n} \log\lambda(\bm{s}_i,t_i,k_i) \right] - %% \sum_{k\in\mathcal{K}} \int_0^T \int_{\bm{W}} \lambda(\bm{s},t,k) \dif\bm{s} %% \dif t \:, %% \end{equation} \begin{equation} \label{eqn:twinstim:loglik} \left[ \sum_{i=1}^{n} \log\lambda(\bm{s}_i,t_i) \right] - \int_0^T \int_{\bm{W}} \lambda(\bm{s},t) \dif\bm{s} \dif t \:. \end{equation} %\citep[Proposition~7.3.III]{Daley.Vere-Jones2003} To estimate the model parameters, we maximize the above log-likelihood numerically using the quasi-Newton algorithm available through the \proglang{R}~function \code{nlminb}. We thereby employ the analytical score function and an approximation of the expected Fisher information worked out by \citet[Web Appendices A and B]{meyer.etal2011}. The space-time integral in the log-likelihood \eqref{eqn:twinstim:loglik} poses no difficulties for the endemic component of $\lambda(\bm{s},t)$, since $\nu_{[\bm{s}][t]}$ is defined on a spatio-temporal grid. However, integration of the epidemic component involves two-dimensional integrals $\int_{\bm{R}_i} f(\norm{\bm{s}}) \dif\bm{s}$ over the influence regions~$\bm{R}_i$, which are represented by polygons (as is~$\bm{W}$). Similar integrals appear in the score function, where $f(\norm{\bm{s}})$ is replaced by partial derivatives with respect to kernel parameters. Calculation of these integrals is trivial for (piecewise) constant~$f$, but otherwise requires numerical integration. The \proglang{R}~package \CRANpkg{polyCub} \citep{R:polyCub} offers cubature methods for polygonal domains as described in \citet[Supplement~B, Section~2]{meyer.held2013}. % For Gaussian~$f$, we apply a midpoint rule with $\sigma$-adaptive bandwidth % %% combined with an analytical formula via the $\chi^2$ distribution % %% if the $6\sigma$-circle around $\bm{s}_i$ is contained in $\bm{R}_i$. % and use product Gauss cubature \citep{sommariva.vianello2007} % to approximate the integrals in the score function. % For the recently implemented power-law kernels, In particular, we established an efficient cubature method which takes advantage of the assumed isotropy of spatial interaction such that numerical integration remains in only one dimension. We \CRANpkg{memoise} \citep{R:memoise} the cubature function during log-likelihood maximization to avoid integration for unchanged parameters of~$f$. \subsection{Special cases: Single-component models} If the \emph{epidemic} component is omitted in Equation~\ref{eqn:twinstim}, the point process model becomes equivalent to a Poisson regression model for aggregated counts. This provides a link to ecological regression approaches in general and to the count data model \code{hhh4} illustrated in \code{vignette("hhh4")} and \code{vignette("hhh4\_spacetime")}. To see this, recall that the endemic component $\nu_{[\bm{s}][t]}$ is piecewise constant on the spatio-temporal grid with cells $([\bm{s}],[t])$. Hence the log-likelihood~\eqref{eqn:twinstim:loglik} of an endemic-only \code{twinstim} simplifies to a sum over all these cells, \begin{equation*} \sum_{[\bm{s}],[t]} \left\{ Y_{[\bm{s}][t]} \log\nu_{[\bm{s}][t]} - \abs{[\bm{s}]} \, \abs{[t]} \, \nu_{[\bm{s}][t]} \right\} \:, \end{equation*} where $Y_{[\bm{s}][t]}$ is the aggregated number of events observed in cell $([\bm{s}],[t])$, and $\abs{[\bm{s}]}$ and $\abs{[t]}$ denote cell area and length, respectively. Except for an additive constant, the above log-likelihood is equivalently obtained from the Poisson model $Y_{[\bm{s}][t]} \sim \Po( \abs{[\bm{s}]} \, \abs{[t]} \, \nu_{[\bm{s}][t]})$. This relation offers a means of code validation using the established \code{glm} function to fit an endemic-only \code{twinstim} model -- see the examples in \code{help("glm_epidataCS")}. %% The \code{help("glm_epidataCS")} also shows how to fit %% an equivalent endemic-only \code{hhh4} model. If, in contrast, the \emph{endemic} component is omitted, all events are necessarily triggered by other observed events. For such a model to be identifiable, a prehistory of events must exist to trigger the first event, and interaction typically needs to be unbounded such that each event can actually be linked to potential source events. \subsection[Extension: Event types]{Extension: \code{twinstim} with event types} To model the example data on invasive meningococcal disease in the remainder of this section, we actually need to use an extended version $\lambda(\bm{s},t,k)$ of Equation~\ref{eqn:twinstim}, which accounts for different event types~$k$ with own transmission dynamics. This introduces a further dimension in the point process, and the second log-likelihood component in Equation~\ref{eqn:twinstim:loglik} accordingly splits into a sum over all event types. We refer to \citet[Sections~2.4 and~3]{meyer.etal2011} for the technical details of this type-specific \code{twinstim} class. The basic idea is that the meningococcal finetypes share the same endemic pattern (e.g., seasonality), while infections of different finetypes are not associated via transmission. This means that the force of infection is restricted to previously infected individuals with the same bacterial finetype~$k$, i.e., the epidemic sum in Equation~\ref{eqn:twinstim} is over the set $I(\bm{s},t,k) = I(\bm{s},t) \cap \{j: k_j = k\}$. The implementation has limited support for type-dependent interaction functions $f_{k_j}$ and $g_{k_j}$ (not further considered here). \section[Data structure]{Data structure: \class{epidataCS}} \label{sec:twinstim:data} <>= ## extract components from imdepi to reconstruct data("imdepi") events <- SpatialPointsDataFrame( coords = coordinates(imdepi$events), data = marks(imdepi, coords=FALSE), proj4string = imdepi$events@proj4string # ETRS89 projection (+units=km) ) stgrid <- imdepi$stgrid[,-1] @ <>= load(system.file("shapes", "districtsD.RData", package = "surveillance")) @ The first step toward fitting a \code{twinstim} is to turn the relevant data into an object of the dedicated class \class{epidataCS}.\footnote{ The suffix ``CS'' indicates that the data-generating point process is indexed in continuous space. } The primary ingredients of this class are a spatio-temporal point pattern (\code{events}) and its underlying observation region (\code{W}). An additional spatio-temporal grid (\code{stgrid}) holds (time-varying) area-level covariates for the endemic regression part. We exemplify this data class by the \class{epidataCS} object for the \Sexpr{nobs(imdepi)} cases of invasive meningococcal disease in Germany originally analyzed by \citet{meyer.etal2011}. It is already contained in the \pkg{surveillance} package as \code{data("imdepi")} and has been constructed as follows: <>= imdepi <- as.epidataCS(events = events, W = stateD, stgrid = stgrid, qmatrix = diag(2), nCircle2Poly = 16) @ The function \code{as.epidataCS} checks the consistency of the three data ingredients described in detail below. It also pre-computes auxiliary variables for model fitting, e.g., the individual influence regions~\eqref{eqn:twinstim:IR}, which are intersections of the observation region with discs %of radius \code{eps.s} centered at the event location approximated by polygons with \code{nCircle2Poly = 16} edges. The intersections are computed using functionality of the package \CRANpkg{polyclip} \citep{R:polyclip}. For multitype epidemics as in our example, the additional indicator matrix \code{qmatrix} specifies transmissibility across event types. An identity matrix corresponds to an independent spread of the event types, i.e., cases of one type can not produce cases of another type. \subsection{Data ingredients} The core \code{events} data must be provided in the form of a \class{SpatialPointsDataFrame} as defined by the package \CRANpkg{sp} \citep{R:sp}: <>= summary(events) @ <>= oopt <- options(width=100) ## hack to reduce the 'print.gap' in the data summary but not for the bbox local({ print.summary.Spatial <- sp:::print.summary.Spatial environment(print.summary.Spatial) <- environment() print.table <- function (x, ..., print.gap = 0) { base::print.table(x, ..., print.gap = print.gap) } print.summary.Spatial(summary(events)) }) options(oopt) @ The associated event coordinates are residence postcode centroids, projected in the \emph{European Terrestrial Reference System 1989} (in kilometer units) to enable Euclidean geometry. See the \code{spTransform}-methods in package \CRANpkg{rgdal} \citep{R:rgdal} for how to project latitude and longitude coordinates into a planar coordinate reference system (CRS). The data frame associated with these spatial coordinates ($\bm{s}_i$) contains a number of required variables and additional event marks (in the notation of Section~\ref{sec:twinstim:methods}: $\{(t_i,[\bm{s}_i],k_i,\tau_i,\delta_i,\bm{m}_i): i = 1,\dotsc,n\}$). For the IMD data, the event \code{time} is measured in days since the beginning of the observation period 2002--2008 and is subject to a tie-breaking procedure (described later). The \code{tile} column refers to the region of the spatio-temporal grid where the event occurred and here contains the official key of the administrative district of the patient's residence. There are two \code{type}s of events labeled as \code{"B"} and \code{"C"}, which refer to the serogroups of the two meningococcal finetypes \emph{B:P1.7-2,4:F1-5} and \emph{C:P1.5,2:F3-3} contained in the data. The \code{eps.t} and \code{eps.s} columns specify upper limits for temporal and spatial interaction, respectively. Here, the infectious period is assumed to last a maximum of 30 days and spatial interaction is limited to a 200 km radius for all cases. The latter has numerical advantages for a Gaussian interaction function $f$ with a relatively small standard deviation. For a power-law kernel, however, this restriction will be dropped to enable occasional long-range transmission. The last two data attributes displayed in the above \code{event} summary are covariates from the case reports: the gender and age group of the patient. For the observation region \code{W}, we use a polygon representation of Germany's boundary. Since the observation region defines the integration domain in the point process log-likelihood~\eqref{eqn:twinstim:loglik}, the more detailed the polygons of \code{W} are the longer it will take to fit a \code{twinstim}. It is thus advisable to sacrifice some shape details for speed by reducing the polygon complexity, e.g., by applying \code{ms_simplify} from the \CRANpkg{rmapshaper} package \citep{R:rmapshaper}. Alternative tools in \proglang{R} are \CRANpkg{spatstat}'s \code{simplify.owin} procedure \citep{R:spatstat} and the function \code{thinnedSpatialPoly} in package \CRANpkg{maptools} \citep{R:maptools}, which implements the Douglas-Peucker reduction method. The \pkg{surveillance} package already contains a simplified representation of Germany's boundaries: <>= <> @ This file contains both the \class{SpatialPolygonsDataFrame} \code{districtsD} of Germany's \Sexpr{length(districtsD)} administrative districts as at January 1, 2009, as well as their union \code{stateD}. %obtained by the call \code{rgeos::gUnaryUnion(districtsD)} \citep{R:rgeos}. These boundaries are projected in the same CRS as the \code{events} data. The \code{stgrid} input for the endemic model component is a data frame with (time-varying) area-level covariates, e.g., socio-economic or ecological characteristics. In our example: <>= .stgrid.excerpt <- format(rbind(head(stgrid, 3), tail(stgrid, 3)), digits=3) rbind(.stgrid.excerpt[1:3,], "..."="...", .stgrid.excerpt[4:6,]) @ Numeric (\code{start},\code{stop}] columns index the time periods and the factor variable \code{tile} identifies the regions of the grid. Note that the given time intervals (here: months) also define the resolution of possible time trends and seasonality of the piecewise constant endemic intensity. We choose monthly intervals to reduce package size and computational cost compared to the weekly resolution originally used by \citet{meyer.etal2011} and \citet{meyer.held2013}. The above \code{stgrid} data frame thus consists of 7 (years) times 12 (months) blocks of \Sexpr{nlevels(stgrid[["tile"]])} (districts) rows each. The \code{area} column gives the area of the respective \code{tile} in square kilometers (compatible with the CRS used for \code{events} and \code{W}). A geographic representation of the regions in \code{stgrid} is not required for model estimation, and is thus not part of the \class{epidataCS} class. %It is, however, necessary for plots of the fitted intensity and for %simulation from the estimated model. In our example, the area-level data only consists of the population density \code{popdensity}, whereas \citet{meyer.etal2011} additionally incorporated (lagged) weekly influenza counts by district as a time-dependent covariate. %% In another application, \citet{meyer.etal2015} used a large number of socio-economic %% characteristics to model psychiatric hospital admissions. \subsection{Data handling and visualization} The generated \class{epidataCS} object \code{imdepi} is a simple list of the checked ingredients <>= cat(paste0('\\code{', names(imdepi), '}', collapse = ", "), ".", sep = "") @ Several methods for data handling and visualization are available for such objects as listed in Table~\ref{tab:methods:epidataCS} and briefly presented in the remainder of this section. <>= print(xtable( surveillance:::functionTable( class = "epidataCS", functions = list( Convert = c("epidataCS2sts"), Extract = c("getSourceDists"))), caption="Generic and \\textit{non-generic} functions applicable to \\class{epidataCS} objects.", label="tab:methods:epidataCS" ), include.rownames = FALSE) @ Printing an \class{epidataCS} object presents some metadata and the first \Sexpr{formals(surveillance:::print.epidataCS)[["n"]]} events by default: <>= imdepi @ During conversion to \class{epidataCS}, the last three columns \code{BLOCK} (time interval index), \code{start} and \code{popdensity} have been merged from the checked \code{stgrid} to the \code{events} data frame. The event marks including time and location can be extracted in a standard data frame by \code{marks(imdepi)} -- inspired by package \CRANpkg{spatstat} -- and this is summarized by \code{summary(imdepi)}. <>= (simdepi <- summary(imdepi)) @ The number of potential sources of infection per event (denoted \texttt{|.sources|} in the above output) is additionally summarized. It is determined by the events' maximum ranges of interaction \code{eps.t} and \code{eps.s}. The event-specific set of potential sources is stored in the (hidden) list \code{imdepi$events$.sources} (events are referenced by row index), and the event-specific numbers of potential sources are stored in the summarized object as \code{simdepi$nSources}. A simple plot of the number of infectives as a function of time (Figure~\ref{fig:imdepi_stepfun}) %determined by the event times and infectious periods can be obtained by the step function converter: <>= par(mar = c(5, 5, 1, 1), las = 1) plot(as.stepfun(imdepi), xlim = summary(imdepi)$timeRange, xaxs = "i", xlab = "Time [days]", ylab = "Current number of infectives", main = "") #axis(1, at = 2557, labels = "T", font = 2, tcl = -0.3, mgp = c(3, 0.3, 0)) @ \pagebreak[1] The \code{plot}-method for \class{epidataCS} offers aggregation of the events over time or space: <>= par(las = 1) plot(imdepi, "time", col = c("indianred", "darkblue"), ylim = c(0, 20)) par(mar = c(0, 0, 0, 0)) plot(imdepi, "space", lwd = 2, points.args = list(pch = c(1, 19), col = c("indianred", "darkblue"))) layout.scalebar(imdepi$W, scale = 100, labels = c("0", "100 km"), plot = TRUE) @ \pagebreak[1] The time-series plot (Figure~\ref{fig:imdepi_plot1}) shows the monthly aggregated number of cases by finetype in a stacked histogram as well as each type's cumulative number over time. The spatial plot (Figure~\ref{fig:imdepi_plot2}) shows the observation window \code{W} with the locations of all cases (by type), where the areas of the points are proportional to the number of cases at the respective location. Additional shading by the population is possible and exemplified in \code{help("plot.epidataCS")}. The above static plots do not capture the space-time dynamics of epidemic spread. An animation may provide additional insight and can be produced by the corresponding \code{animate}-method. For instance, to look at the first year of the B-type in a weekly sequence of snapshots in a web browser (using facilities of the \CRANpkg{animation} package of \citealp{R:animation}): <>= animation::saveHTML( animate(subset(imdepi, type == "B"), interval = c(0, 365), time.spacing = 7), nmax = Inf, interval = 0.2, loop = FALSE, title = "First year of type B") @ Selecting events from \class{epidataCS} as for the animation above is enabled by the \code{[}- and \code{subset}-methods, which return a new \class{epidataCS} object containing only the selected \code{events}. A limited data sampling resolution may lead to tied event times or locations, which are in conflict with a continuous spatio-temporal point process model. For instance, a temporal residual analysis would suggest model deficiencies \citep[Figure 4]{meyer.etal2011}, and a power-law kernel for spatial interaction may diverge if there are events with zero distance to potential source events \citep{meyer.held2013}. The function \code{untie} breaks ties by random shifts. This has already been applied to the event \emph{times} in the provided \code{imdepi} data by subtracting a U$(0,1)$-distributed random number from the original dates. The event \emph{coordinates} in the IMD data are subject to interval censoring at the level of Germany's postcode regions. A possible replacement for the given centroids would thus be a random location within the corresponding postcode area. Lacking a suitable shapefile, \citet{meyer.held2013} shifted all locations by a random vector with length up to half the observed minimum spatial separation: <>= eventDists <- dist(coordinates(imdepi$events)) minsep <- min(eventDists[eventDists > 0]) set.seed(321) imdepi_untied <- untie(imdepi, amount = list(s = minsep / 2)) @ Note that random tie-breaking requires sensitivity analyses as discussed by \citet{meyer.held2013}, but these are skipped here for the sake of brevity. The \code{update}-method is useful to change the values of the maximum interaction ranges \code{eps.t} and \code{eps.s}, since it takes care of the necessary updates of the hidden auxiliary variables in an \class{epidataCS} object. For unbounded spatial interaction: <>= imdepi_untied_infeps <- update(imdepi_untied, eps.s = Inf) @ Last but not least, \class{epidataCS} can be aggregated to \class{epidata} (from \code{vignette("twinSIR")}) or \class{sts} (from \code{vignette("hhh4_spacetime")}). The method \code{as.epidata.epidataCS} aggregates events by region (\code{tile}), and the function \code{epidataCS2sts} yields counts by region and time interval. The latter could be analyzed by an areal time-series model such as \code{hhh4} (see \code{vignette("hhh4\_spacetime")}). We can also use \class{sts} visualizations, e.g.\ (Figure~\ref{fig:imdsts_plot}): <>= imdsts <- epidataCS2sts(imdepi, freq = 12, start = c(2002, 1), tiles = districtsD) par(las = 1, lab = c(7,7,7), mar = c(5,5,1,1)) plot(imdsts, type = observed ~ time) plot(imdsts, type = observed ~ unit, population = districtsD$POPULATION / 100000) @ \section{Modeling and inference} \label{sec:twinstim:fit} Having prepared the data as an object of class \class{epidataCS}, the function \code{twinstim} can be used to perform likelihood inference for conditional intensity models of the form~\eqref{eqn:twinstim}. The main arguments for \code{twinstim} are the formulae of the \code{endemic} and \code{epidemic} linear predictors ($\nu_{[\bm{s}][t]} = \exp$(\code{endemic}) and $\eta_j = \exp$(\code{epidemic})), and the spatial and temporal interaction functions \code{siaf} ($f$) and \code{tiaf} ($g$), respectively. Both formulae are parsed internally using the standard \code{model.frame} toolbox from package \pkg{stats} and thus can handle factor variables and interaction terms. While the \code{endemic} linear predictor incorporates %time-dependent and/or area-level covariates from \code{stgrid}, %% and in the disease mapping context usually contains at least the population density as a multiplicative offset, i.e., %% \code{endemic = ~offset(log(popdensity))}. There can be additional effects of time, %% which are functions of the variable \code{start} from \code{stgrid}, %% or effects of, e.g., socio-demographic and ecological variables. the \code{epidemic} formula may use both \code{stgrid} variables and event marks to be associated with the force of infection. %% For instance, \code{epidemic = ~log(popdensity) + type} corresponds to %% $\eta_j = \rho_{[\bm{s}_j]}^{\gamma_{\rho}} \exp(\gamma_0 + \gamma_C \ind(k_j=C))$, %% which models different infectivity of the event types, and scales %% with population density (a grid-based covariate) to reflect higher %% contact rates and thus infectivity in more densly populated regions. For the interaction functions, several alternatives are predefined as listed in Table~\ref{tab:iafs}. They are applicable out-of-the-box and illustrated as part of the following modeling exercise for the IMD data. Own interaction functions can also be implemented following the structure described in \code{help("siaf")} and \code{help("tiaf")}, respectively. <>= twinstim_iafs <- suppressWarnings( cbind("Spatial (\\code{siaf.*})" = ls(pattern="^siaf\\.", pos="package:surveillance"), "Temporal (\\code{tiaf.*})" = ls(pattern="^tiaf\\.", pos="package:surveillance")) ) twinstim_iafs <- apply(twinstim_iafs, 2, function (x) { is.na(x) <- duplicated(x) x }) print(xtable(substring(twinstim_iafs, 6), label="tab:iafs", caption="Predefined spatial and temporal interaction functions."), include.rownames=FALSE, sanitize.text.function=function(x) paste0("\\code{", x, "}"), sanitize.colnames.function=identity, sanitize.rownames.function=identity) @ \subsection{Basic example} To illustrate statistical inference with \code{twinstim}, we will estimate several models for the simplified and ``untied'' IMD data presented in Section~\ref{sec:twinstim:data}. In the endemic component, we include the district-specific population density as a multiplicative offset, a (centered) time trend, and a sinusoidal wave of frequency $2\pi/365$ to capture seasonality, where the \code{start} variable from \code{stgrid} measures time: <>= (endemic <- addSeason2formula(~offset(log(popdensity)) + I(start / 365 - 3.5), period = 365, timevar = "start")) @ See \citet[Section~2.2]{held.paul2012} for how such sine/cosine terms reflect seasonality. Because of the aforementioned integrations in the log-likelihood~\eqref{eqn:twinstim:loglik}, it is advisable to first fit an endemic-only model to obtain reasonable start values for more complex epidemic models: <>= imdfit_endemic <- twinstim(endemic = endemic, epidemic = ~0, data = imdepi_untied, subset = !is.na(agegrp)) @ We exclude the single case with unknown age group from this analysis since we will later estimate an effect of the age group on the force of infection. Many of the standard functions to access model fits in \proglang{R} are also implemented for \class{twinstim} fits (see Table~\ref{tab:methods:twinstim}). For example, we can produce the usual model summary: <>= summary(imdfit_endemic) @ Because of the aforementioned equivalence of the endemic component with a Poisson regression model, the coefficients can be interpreted as log rate ratios in the usual way. For instance, the endemic rate is estimated to decrease by \code{1 - exp(coef(imdfit_endemic)[2])} $=$ \Sexpr{round(100*(1-exp(coef(imdfit_endemic)[2])),1)}\% per year. Coefficient correlations can be retrieved via the argument \code{correlation = TRUE} in the \code{summary} call just like for \code{summary.glm}, or via \code{cov2cor(vcov(imdfit_endemic))}. <>= print(xtable( surveillance:::functionTable( class = "twinstim", functions = list( Display = c("iafplot", "checkResidualProcess"), Extract = c("intensity.twinstim", "simpleR0"), Modify = c("stepComponent"), Other = c("epitest"))), caption="Generic and \\textit{non-generic} functions applicable to \\class{twinstim} objects. Note that there is no need for specific \\code{coef}, \\code{confint}, \\code{AIC} or \\code{BIC} methods, since the respective default methods from package \\pkg{stats} apply outright.", label="tab:methods:twinstim" ), include.rownames = FALSE) @ We now update the endemic model to take additional spatio-temporal dependence between events into account. Infectivity shall depend on the meningococcal finetype and the age group of the patient, and is assumed to be constant over time (default), $g(t)=\ind_{(0,30]}(t)$, with a Gaussian distance-decay $f(x) = \exp\left\{-x^2/(2 \sigma^2)\right\}$. This model was originally selected by \citet{meyer.etal2011} and can be fitted as follows: <>= imdfit_Gaussian <- update(imdfit_endemic, epidemic = ~type + agegrp, siaf = siaf.gaussian(), cores = 2 * (.Platform$OS.type == "unix")) @ On Unix-alikes, the numerical integrations of $f(\norm{\bm{s}})$ in the log-likelihood and $\frac{\partial f(\norm{\bm{s}})}{\partial \log\sigma}$ in the score function (note that $\sigma$ is estimated on the log-scale) can be performed in parallel via %the ``multicore'' functions \code{mclapply} \textit{et al.}\ from the base package \pkg{parallel}, here with \code{cores = 2} processes. Table~\ref{tab:imdfit_Gaussian} shows the output of \code{twinstim}'s \code{xtable} method \citep{R:xtable} applied to the above model fit, providing a table of estimated rate ratios for the endemic and epidemic effects. The alternative \code{toLatex} method simply translates the \code{summary} table of coefficients to \LaTeX\ without \code{exp}-transformation. On the subject-matter level, we can conclude from Table~\ref{tab:imdfit_Gaussian} that the meningococcal finetype of serogroup~C is less than half as infectious as the B-type, and that patients in the age group 3 to 18 years are estimated to cause twice as many secondary infections as infants aged 0 to 2 years. <>= print(xtable(imdfit_Gaussian, caption="Estimated rate ratios (RR) and associated Wald confidence intervals (CI) for endemic (\\code{h.}) and epidemic (\\code{e.}) terms. This table was generated by \\code{xtable(imdfit\\_Gaussian)}.", label="tab:imdfit_Gaussian"), sanitize.text.function=NULL, sanitize.colnames.function=NULL, sanitize.rownames.function=function(x) paste0("\\code{", x, "}")) @ \subsection{Model-based effective reproduction numbers} The event-specific reproduction numbers~\eqref{eqn:R0:twinstim} can be extracted from fitted \class{twinstim} objects via the \code{R0} method. For the above IMD model, we obtain the following mean numbers of secondary infections by finetype: <<>>= R0_events <- R0(imdfit_Gaussian) tapply(R0_events, marks(imdepi_untied)[names(R0_events), "type"], mean) @ Confidence intervals %for the estimated reproduction numbers $\hat\mu_j$ can be obtained via Monte Carlo simulation, where Equation~\ref{eqn:R0:twinstim} is repeatedly evaluated with parameters sampled from the asymptotic multivariate normal distribution of the maximum likelihood estimate. For this purpose, the \code{R0}-method takes an argument \code{newcoef}, which is exemplified in \code{help("R0")}. %% Note that except for (piecewise) constant $f$, computing confidence intervals for %% $\hat\mu_j$ takes a considerable amount of time since the integrals over the %% polygons $\bm{R}_j$ have to be solved numerically for each new set of parameters. \subsection{Interaction functions} <>= imdfit_powerlaw <- update(imdfit_Gaussian, data = imdepi_untied_infeps, siaf = siaf.powerlaw(), start = c("e.(Intercept)" = -6.2, "e.siaf.1" = 1.5, "e.siaf.2" = 0.9)) @ <>= imdfit_step4 <- update(imdfit_Gaussian, data = imdepi_untied_infeps, siaf = siaf.step(exp(1:4 * log(100) / 5), maxRange = 100)) @ <>= save(imdfit_Gaussian, imdfit_powerlaw, imdfit_step4, file = "twinstim-cache.RData", compress = "xz") @ Figure~\ref{fig:imdfit_siafs} shows several estimated spatial interaction functions, which can be plotted by, e.g., \code{plot(imdfit_Gaussian, which = "siaf")}. <>= par(mar = c(5,5,1,1)) set.seed(2) # Monte-Carlo confidence intervals plot(imdfit_Gaussian, "siaf", xlim=c(0,42), ylim=c(0,5e-5), lty=c(1,3), xlab = expression("Distance " * x * " from host [km]")) plot(imdfit_powerlaw, "siaf", add=TRUE, col.estimate=4, lty=c(2,3)) plot(imdfit_step4, "siaf", add=TRUE, col.estimate=3, lty=c(4,3)) legend("topright", legend=c("Power law", "Step (df=4)", "Gaussian"), col=c(4,3,2), lty=c(2,4,1), lwd=3, bty="n") @ The estimated standard deviation $\hat\sigma$ of the Gaussian kernel is: <<>>= exp(cbind("Estimate" = coef(imdfit_Gaussian)["e.siaf.1"], confint(imdfit_Gaussian, parm = "e.siaf.1"))) @ \citet{meyer.held2013} found that a power-law decay of spatial interaction more appropriately describes the spread of human infectious diseases. The power-law kernel concentrates on short-range interaction, but also exhibits a heavier tail reflecting occasional transmission over large distances. %This result is supported by the power-law distribution of short-time human %travel \citep{brockmann.etal2006}, which is an important driver of epidemic spread. To use the power-law kernel $f(x) = (x+\sigma)^{-d}$, we switch to the prepared \class{epidataCS} object with \code{eps.s = Inf} and update the previous Gaussian model as follows: <>= <> @ To reduce the runtime of this example, we specified convenient \code{start} values for some parameters. The estimated power-law parameters $(\hat\sigma, \hat d)$ are: <<>>= exp(cbind("Estimate" = coef(imdfit_powerlaw)[c("e.siaf.1", "e.siaf.2")], confint(imdfit_powerlaw, parm = c("e.siaf.1", "e.siaf.2")))) @ Table~\ref{tab:iafs} also lists the step function kernel as an alternative, which is particularly useful for two reasons. First, it is a more flexible approach since it estimates interaction between the given knots without assuming an overall functional form. Second, the spatial integrals in the log-likelihood can be computed analytically for the step function kernel, which therefore offers a quick estimate of spatial interaction. We update the Gaussian model to use four steps at log-equidistant knots up to an interaction range of 100 km: <>= <> @ Figure~\ref{fig:imdfit_siafs} suggests that the estimated step function is in line with the power law. Note that suitable knots for the step function could also be derived from quantiles of the observed distances between events and their potential source events, e.g.: <<>>= quantile(getSourceDists(imdepi_untied_infeps, "space"), c(1,2,4,8)/100) @ For the temporal interaction function $g(t)$, model updates and plots are similarly possible, e.g., using \code{update(imdfit_Gaussian, tiaf = tiaf.exponential())}. However, the events in the IMD data are too rare to infer the time-course of infectivity with confidence. <>= local({ nSources <- sapply(levels(imdepi$events$type), function (.type) { mean(summary(subset(imdepi_untied_infeps, type==.type))$nSources) }) structure( paste("Specifically, there are only", paste0(round(nSources,1), " (", names(nSources), ")", collapse=" and "), "cases on average within the preceding 30 days", "(potential sources of infection)."), class="Latex") }) @ \subsection{Model selection} <>= AIC(imdfit_endemic, imdfit_Gaussian, imdfit_powerlaw, imdfit_step4) @ Akaike's Information Criterion (AIC) suggests superiority of the power-law vs.\ the Gaussian model and the endemic-only model. The more flexible step function yields the best AIC value but its shape strongly depends on the chosen knots and is not guaranteed to be monotonically decreasing. The function \code{stepComponent} -- a wrapper around the \code{step} function from \pkg{stats} -- can be used to perform AIC-based stepwise selection within a given model component. <>= ## Example of AIC-based stepwise selection of the endemic model imdfit_endemic_sel <- stepComponent(imdfit_endemic, component = "endemic") ## -> none of the endemic predictors is removed from the model @ \subsection{Model diagnostics} The element \code{"fittedComponents"} of a \class{twinstim} object contains the endemic and epidemic values of the estimated intensity at each event occurrence. However, plots of the conditional intensity (and its components) as a function of location or time provide more insight into the fitted process. Evaluation of \code{intensity.twinstim} requires the model environment to be stored with the fit. By default, \code{model = FALSE} in \code{twinstim}, but if the data are still available, the model environment can also be added afterwards using the convenient \code{update} method: <>= imdfit_powerlaw <- update(imdfit_powerlaw, model = TRUE) @ Figure~\ref{fig:imdfit_powerlaw_intensityplot_time} shows an \code{intensityplot} of the fitted ``ground'' intensity $\sum_{k=1}^2 \int_{\bm{W}} \hat\lambda(\bm{s},t,k) \dif \bm{s}$: %aggregated over both event types: <>= intensityplot(imdfit_powerlaw, which = "total", aggregate = "time", types = 1:2) @ <>= par(mar = c(5,5,1,1), las = 1) intensity_endprop <- intensityplot(imdfit_powerlaw, aggregate="time", which="endemic proportion", plot=FALSE) intensity_total <- intensityplot(imdfit_powerlaw, aggregate="time", which="total", tgrid=501, lwd=2, xlab="Time [days]", ylab="Intensity") curve(intensity_endprop(x) * intensity_total(x), add=TRUE, col=2, lwd=2, n=501) #curve(intensity_endprop(x), add=TRUE, col=2, lty=2, n=501) text(2500, 0.36, labels="total", col=1, pos=2, font=2) text(2500, 0.08, labels="endemic", col=2, pos=2, font=2) @ %% Note that this represents a realization of a stochastic process, since it %% depends on the occurred events. The estimated endemic intensity component has also been added to the plot. It exhibits strong seasonality and a slow negative trend. The proportion of the endemic intensity is rather constant along time since no major outbreaks occurred. This proportion can be visualized separately by specifying \code{which = "endemic proportion"} in the above call. <>= meanepiprop <- integrate(intensityplot(imdfit_powerlaw, which="epidemic proportion"), 50, 2450, subdivisions=2000, rel.tol=1e-3)$value / 2400 @ Spatial \code{intensityplot}s as in Figure~\ref{fig:imdfit_powerlaw_intensityplot_space} can be produced via \code{aggregate = "space"} and require a geographic representation of \code{stgrid}. The epidemic proportion is naturally high around clusters of cases and even more so if the population density is low. %% The function \code{epitest} offers a model-based global test for epidemicity, %% while \code{knox} and \code{stKtest} implement related classical approaches %% \citep{meyer.etal2015}. <>= for (.type in 1:2) { print(intensityplot(imdfit_powerlaw, aggregate="space", which="epidemic proportion", types=.type, tiles=districtsD, sgrid=1000, col.regions = grey(seq(1,0,length.out=10)), at = seq(0,1,by=0.1))) grid::grid.text("Epidemic proportion", x=1, rot=90, vjust=-1) } @ Another diagnostic tool is the function \code{checkResidualProcess} (Figure~\ref{fig:imdfit_checkResidualProcess}), which transforms the temporal ``residual process'' in such a way that it exhibits a uniform distribution and lacks serial correlation if the fitted model describes the true CIF well \citep[see][Section~3.3]{ogata1988}. % more recent work: \citet{clements.etal2011} <>= par(mar = c(5, 5, 1, 1)) checkResidualProcess(imdfit_powerlaw) @ \section{Simulation} \label{sec:twinstim:simulation} %% Simulations from the fitted model are also useful to investigate the %% goodness of fit. To identify regions with unexpected IMD dynamics, \citet{meyer.etal2011} compared the observed numbers of cases by district to the respective 2.5\% and 97.5\% quantiles of 100 simulations from the selected model. Furthermore, simulations allow us to investigate the stochastic volatility of the endemic-epidemic process, to obtain probabilistic forecasts, and to perform parametric bootstrap of the spatio-temporal point pattern. The simulation algorithm we apply is described in \citet[Section 4]{meyer.etal2011}. It requires a geographic representation of the \code{stgrid}, as well as functionality for sampling locations from the spatial kernel $f_2(\bm{s}) := f(\norm{\bm{s}})$. This is implemented for all predefined spatial interaction functions listed in Table~\ref{tab:iafs}. %For instance for the %power-law kernel, we pass via polar coordinates (with density then proportional %to $rf(r)$) %, a function also involved in the efficient cubature of % %$f_2(\bm{s})$ via Green's theorem) %and the inverse transformation method with numerical root finding for the %quantiles. Event marks are by default sampled from their respective empirical distribution in the original data. %but a customized generator can be supplied as argument \code{rmarks}. The following code runs a single simulation over the last year based on the estimated power-law model: <>= imdsim <- simulate(imdfit_powerlaw, nsim = 1, seed = 1, t0 = 2191, T = 2555, data = imdepi_untied_infeps, tiles = districtsD) @ This yields an object of the class \class{simEpidataCS}, which extends \class{epidataCS}. It carries additional components from the generating model to enable an \code{R0}-method and \code{intensityplot}s for simulated data. %All methods for \class{epidataCS} are applicable. %% The result is simplified in that only the \code{events} instead of a full %% \class{epidataCS} object are retained from every run to save memory and %% computation time. All other components, which do not vary between simulations, %% e.g., the \code{stgrid}, are only stored from the first run. %% There is a \code{[[}-method for such \class{simEpidataCSlist}s in order to %% extract single simulations as full \class{simEpidataCS} objects from the %% simplified structure. %Extracting a single simulation (e.g., \code{imdsims[[1]]}) Figure~\ref{fig:imdsim_plot} shows the cumulative number of cases from the simulation appended to the first six years of data. <>= .t0 <- imdsim$timeRange[1] .cumoffset <- c(table(subset(imdepi, time < .t0)$events$type)) par(mar = c(5,5,1,1), las = 1) plot(imdepi, ylim = c(0, 20), col = c("indianred", "darkblue"), subset = time < .t0, cumulative = list(maxat = 336), xlab = "Time [days]") plot(imdsim, add = TRUE, legend.types = FALSE, col = scales::alpha(c("indianred", "darkblue"), 0.5), subset = !is.na(source), # exclude events of the prehistory cumulative = list(offset = .cumoffset, maxat = 336, axis = FALSE), border = NA, density = 0) # no histogram for simulations plot(imdepi, add = TRUE, legend.types = FALSE, col = 1, subset = time >= .t0, cumulative = list(offset = .cumoffset, maxat = 336, axis = FALSE), border = NA, density = 0) # no histogram for the last year's data abline(v = .t0, lty = 2, lwd = 2) @ %% Because we have started simulation at time \code{t0 = 0}, %% no events from \code{data} have been used as the prehistory, i.e., %% the first simulated event is necessarily driven by the endemic model component. A special feature of such simulated epidemics is that the source of each event is known: <>= table(imdsim$events$source > 0, exclude = NULL) @ The stored \code{source} value is 0 for endemic events, \code{NA} for events of the prehistory but still infective at \code{t0}, and otherwise corresponds to the row index of the infective source. %% Averaged over all 30 simulations, the proportion of events triggered by %% previous events is %% Sexpr{mean(sapply(imdsims$eventsList, function(x) mean(x$source > 0, na.rm = TRUE)))}. %-------------- % BIBLIOGRAPHY %-------------- <>= ## create automatic references for R packages Rbib0 <- knitr::write_bib( c("polyCub", "memoise", "sp", "rgdal", "polyclip", ## spatstat, # non-standard author entries "maptools", "animation", "rmapshaper", "xtable"), file = NULL, tweak = FALSE, prefix = "R:") ## package spatstat yields a bad automatic bib entry Rbib1 <- sapply(c("spatstat"), function (pkg) { bib <- citation(pkg, auto = TRUE) bib$key <- paste("R", pkg, sep=":") bib }, simplify=FALSE, USE.NAMES=TRUE) Rbib1$spatstat$author <- "Adrian Baddeley and Rolf Turner and Ege Rubak" ## write to bibfile .Rbibfile <- file("twinstim-R.bib", "w", encoding = "latin1") cat(unlist(c(Rbib0, lapply(Rbib1, toBibtex)), use.names = FALSE), file = .Rbibfile, sep = "\n") close(.Rbibfile) @ \bibliography{references,twinstim-R} \end{document} surveillance/vignettes/monitoringCounts-cache/0000755000175100001440000000000013010420651021406 5ustar hornikuserssurveillance/vignettes/monitoringCounts-cache/pMC.RData0000644000175100001440000000032412716616370023022 0ustar hornikusersý7zXZi"Þ6!ÏXÌàÉ•])TW"änRÊŸ’Øáíbl$SÝJ ô!5?Ì;ìø•òœàWû* ™JÐ!!µ—äBÔ§á,É?}Ñä1[aà.÷Èü´ƒ«©Ê\ÃK•n ’erdÛInùÂ|Ū£AØ\x(LÔ¡!Ø® sql²a«¹gI¢c{òðÃRgø,^[œ×£Öy"À7I%@‘zñºdRnd­Ê›…C>0 ‹YZsurveillance/vignettes/monitoringCounts-cache/boda.covars.RData0000644000175100001440000002047313010420651024532 0ustar hornikusers‹íTW×÷ï̽t¤KGŠt;X¶=Jì½Æ ¢¢4)v Ø•&`GPQ4bF±ÑØ+4¶XöØÂûï&_ôI¾çYßZù^Ÿµæ¬õsßÿÜsgΜ3ûÌ9{O÷6}ýõûê+ Q¡T Q‰*ÿ •BÖ 8j¨Ú;$jŒ:&V!(-?ûZ+6N‡†Ò>heO…”HQ•>ɬ:šó Ôñ/ó„FG…ŒhÛF ©ÿñ«|’­zD|x\XdTD˜:¼g?eü|Z÷§9¨ EÇC5<>"QcÃYG±Že=†õÖ“YOe=ƒõ,ÖsY/dÆ:“õbÖËYç°^Í:ŸõÖ›Xoe½ƒõ÷¬‹X`}˜u1ëã¬b}†õÖ—Y_c}“õϬï±~Èú 맬_°þõ;Ö•]"jt‰6k=ÖÕY³6emÎÚšµ-kGÖ.¬ÝY{²öe]u#Ö¬›³nɺ-ë¯Xͺ ë¬{³îÏzk5롬G°Å:Šu ë1¬Ç³žÌ:‘õ Ö3YÏe½€uëE¬³^Æ:‡uë|Ö¬7±ÞÂzë]¬‹Xïg}˜õ1ÖÇYŸd}†õyÖ—Y—²¾Éú6ë{¬aý„uë¬_³~Çúw>!jô -Öz¬«±6fmÂÚœµk[Ö¬]X»±ödíú놬X7cÝ’uÖ_±bÝ…uwÖ½Y÷c=ˆõÖCYg=Šu$ëÖñ¬Ç³žÄ:‘õtÖ3YÏa½€u*ëE¬³Y/c½’u뵬 XËz ëí¬w±ÞÃz?ëC¬±þ‘õIÖ§YŸg}‰u)ë¬o³¾ËúÖYW°~Îú5ë·¬×è“‚FŸÔb­Ëºk#Ö&¬ÍX[±®ÍÚµ3k7ÖuYû°ögÝuÖÍXë6¬Û³bÝ™uwÖ½X÷c=õÖ!¬‡³É:’õhÖñ¬Ç±žÄ:õtÖɬ簞Ï:•uëlÖKY¯dËz-ëõ¬¿e½™õvÖ;Yïa½õ!ÖGYÿÈúëӬϱ¾Äú*ë¬o±¾ËúëǬËY?WhÒ'ƒݨàØÐ˜1¡pV±º4Ž€EE¨p³UÁ”g.4etk°J³åk¶¸±+#€(ƒ@ >ãæ¬eÏp*­@ÐT(tŒÁ}Ðà¤3 ã×ñP(´qAi¡Òµ7tæÚÒgäÓº².Q 76­øüà&£BǬ…‹U…2¨°•— "ìø^…sSÕÁ¶¦å_ÂÀMSé PVñÀþEt¬J 8¨7 %êB¹¿‡(ñ;-?€Á6|:¨Cm µp³ÑN5ñùäóE¹µQtÀ:FÇÐÆï´öbŸ”h¡£ÖÂ`I ÃFê^˶ Ö õ®’ò¡¬*8”ˆºÐñ(q³Ñ T9ÛpáˆèœÄˆ(}¯|ñù·ÛXÐZ:øŒ¼*éx¨%::Õ%ÍgÕ{” ƒMt®Ú;a1¨ÓÆKu«}à&®ƒº×ÁàQ7tÚhj£³ÑB{ja Uû™¤öB¨rA+ûQõšã+qŠØŸ€ëE…sÖÂ~”„Šå  ÍEéüÖc;:+%êN‰ß+q£+LJ©üø*¿…+Ÿ åÑF^í”Ût¼@:äéÀQtk”IÇÐAè <:í«ÝeAhIu 'ÖÂ5­…›…ê,n‚ª§š¶Ò€Z…vWuð%\Ä VD{*Ñ9©niêþc›àÜ•5לˆý(‘GÄT„/ˆ¿i>+¥ë3AÓv"®-¥”7•ÔµQÞ# …®]t\º¨[= 0õ0(×ëúеÃ9àZÔÅ[ƒK]Ô©n4¶IíˆßkK×Xö·ƒmÌ´–BKÛÃÂ?U68&6Ê«@%nÒ¢øYŸ¡†ËA!wEM—¡ø|£‹,‘êˆPiÎa¢É§îWÆÊ£WÕõøi¾ü—Ù—4M ùr’“œä$'9ÉIN“¤A„®©û‹Ñ‰ž´ýÿm4¢WÇ`Ì#êË£‘ÿª$ü—îûÿ×1ÿ7ÎáI‰ó¿Ø&ÿLÏ£9´j2DKùÉJf}ÍÈa½Qcñ“›EÁÊàHPzkþ>#Žó­ãß+X¿gÛ•óq$3ƒ#ʙƛ=„m´Æ.ær-»£±+*4v•3[>ÞjÞßêvlùIN^2ëÆlÐØ5*þžÏ7Ï[cs¯²å' ¹‘ÏY–Ÿ°,çò-çGxË82½tžÆ.áí‹ù‰A¶=[®§l›Om–/[ ®Î7Ÿ#¦³Çq}ñ”E\oé\é¼=#´i|üTÞžº™·sû¥r$:µLcS¸Üóø¼R¸~RSøw'øø\Ä‘üLÞ_Öi>_n÷9»Š¯“UYÍÍeÛ”-×gŸoï?Ûi5?‘XÍõ’—Á–Ÿ4æq=äqýUµcoïwé¶ÜNËùIž& öâý.áã.骱ÙüÄ)‹#ÿY›ù¼¹=òï5 ð=qýTù×S?9MãzIãvM­ÐØ._j_¶\žÔ÷Ÿê4>Ït®¿tn·4~2”ÁòE|Ýeárq;U]‹y{6ûÕ~²·Œëe·ÿj¾~Vó“­Õ\Î5Ã46ן-?9ø£]8_Õ^¹™^•–ëmåýߪü‚Ï'ÓžËÏù2ù h&—#‹ý?«j;÷ UýÏì¶|¼Lnÿ >^:ûIzWý£Þ¹)|üªöMáþ"…ý,EWcÓ¸«Ú%Û!…¯ÿ?Ú‘Û7÷›ÁÇIçë#“ë;“ý­ª_^U“-×K.·Ïο†Ÿ¼æ³?¬ã'1k²å'»kø ŚͻšË—[Õî|+¹~Wp}®àz®jŸeUý›1[ÞÏ®%ü¤s)ç_Ì~ÉzûÏ>Þ®—ÅÑ[ÕžUý\ûeZ•åvLã~!uˆÆ¦ðõ’Öý7¥âÓ|i|^é\žªþ2ý<•ï©ì_éšý%|ÜN.­âë{íY-°×Øue»žÏw=_O\î‚œï™Æ®àöËeÇv ÷cùUþ–ȶ•Æ®æúYÅçŸÃ÷-Í ¨w·OmU{,áës1_ÇÙüD+‹ó-âãeð› sø|h~ÿO IªG†† !Ϩ¨¡šI‘Bóò_ލþæˆ{´ÿ¸†ÑQÑñá기¨Èv1êªÑQ‹ ͹ËV¶²•­le+[Ù~nÿ©Ñ‘2BýoëFG…Yõ@\ñÙ÷zÑáQq]b††Æp>Ï  ާäüUáÿHŸ—Ç :&jdýظ˜°ÈáY.|­ŽûÙ9~~x­pu,2‰ΤlݽÇgùt¢Õ!£ÔÃC?ÛÍÉå«UùÙ¾ŒzDc,§ïúG=IÙÌ*ÿÝŽþÏ‘C¢"ãb¢07M¸^ø…&AèÌwd¤(¾À¼PòHG#€ 5æoö!`Ü.ÔfÀ`ü. Ì×k€ùˆPØ;`€#p˜·. p· îÀÔ˜/ ^óÁø\SæéB=€q¿Ð4æ9BæB3€ù¢ÐBzñ´˜w­æµB[д˜¿ @G¾@gÐtÝæKVÀó>¡ÀüU0_Áà0¨A0À€\Àä@À• ÃæOB F´•"A@Ó £|@À `+ă1`,Àõ/ŒÀD€ù0L Šsa*˜¦Ì'…$ fÌ7…ÙójAzñóEa>X‚ Ò@:À|PX2AÈÒ XKÀR€ù§€Iœ€y¢°ä€U äÕ` X òÁ:°€ `#^RÛ Áf°lÛæ¥ÂðØ vïš—Úö€"°ìûÁp‡ÁpTññ…1¡`^+üŽ+>¾t%œ'ÁOà8 ÎÌ“…sà<¸.‚KóJá ÀüU(×ÀupCññ%;¡ Ü·ÁÏภîûóUáð<Áð+(èš…§ójá9x^‚Wà5À™†MTø>£šÛƒ å“•AÁuCëæd6ôqŸ·©¦C²µgþ=ªµÊòâ𯫑æaZVØ‘eçÎ-ç]íH¦çZHÚèD5NÜ9ºó0™œ H|2í~oø0«ädôk™ ™?¸æï±ª5Ùª¼ƒÞž§Ú[¯µ(®½‡ì¿že[}o"9i+úç#3ž’k‘ITŠÙ0²?pn¤ú^#ª“[P§qÛLrÕ þuRmOrö˜Ùÿò¸p²îQ2Ê8hÙ+¼sÚ”lŽ|7®¥Ù”~]ð¡.Y¼ñyÑ*AÌb³B#z“Eê´ŠÒî÷ÉjoeNGÑŒl{kùG›N#ëã‹Þ_I\G–¶ )[^$ãÕ›í&l6$³­ ×Ȉ!óÔº³’—›‘É’-SÌ&R9cKÛÛo }õ„cC&R­¾Zõw«FvÛ §˜èê’£ù‚ésš ¥ÚÕ\¨Ûô]dWzÆ­MÀ4rÔ?ë‰÷4²-¿°åÐÖËärëÐÆì(ªcÐüÆÎÖ¯È!kûʧ\É¥åüÍ'ÃÉË8¡V|´?¹Mv¹¬Ã-rry2é»ÎäÙëì¨uÍÌÈw‚NŒõÖäsŠ×î'òʳ69h_H¾½M³ëN^:–›Ü?&ÿ¶#úw{éFu;?*о>yLy5õ– ù:ù¹_š¸“¼Œ.ìoõŒ|û+{L * ßÄ »uf»ÇƆ7]½²Éõ‡¤ÜöÕ“ÛmW¾qœNî—_‡F/»H.5Nm_“œ·>ðm6ŸÜìD?N&—ë£uÛë| ÇéƒíÓVô ë>Î/O=ZJµÊî»þõ82·nü²ÁÌ»d=áp`a=²2¼vβl,Y'„O¿è[29±¹UÆö…TkŸßÉÂ=]©F‰¯s}“-T+`Èá÷?n£ç¿E——SC΃–ç™òöþòL²,üùåžëÈt¢Í˜)šSÍa¯ÍzÏžJ¦S¨®¬L¦štîyN×d5»¸ÇôÇjr:¸{èü¶7ÈÊöégú’½¥ö˜ïG’ãÉ™âÕjƒÉé×ó³}Ú’“‰ãÖ¢Èþä<'¬ùñ¾KÉ-o·mjªSn¼ÌéÞBrêӸ䤻TGqpÿå¤ä}8*¨që.äûݴ«¾›Égàªømf3È/íÈݺ5É7ÚðÕÚGÈ7ßøÄtëéä_±cZåž{ä“_Ú:>¾;yz7 ã®’Oê÷ë7ï'¯]º÷k[—“ç#½ŽoBMÉk­÷7ï›Å’wâW¿Å帓—püåñÑä½Öß&`ØOäÞíg«±NÝÈݶ²sý‚·Tgœkõþk2ÈýॊoW’½qÞš³Fdÿkd粚äb~ >Ñy,96zUoVñrˆ‰>»oM}røe\úAõÉÖxrùZ/ô—A§º¨÷ЬôíMUÞ’ýì²À¡=r¸Õ/n]Ò"²/ò×÷Ù^ªYª·`nÛ!dÛÌçÚÕqdñl×:aÊh²¹­ÿ@¸Žþª»ã‹cíZÝDÓŠN{È®uùÎàßž“Ý>§rÿødµ ‘éT£ST[¼- ¤ Õìmv1e*9u-iuuyÙ®š[7ù¹Œ¸`wàõ{²{£4ˆû’kF#ëS+ ПèÜ<¥+ù&÷™Ü¢[y¸Z¬Y~ƒüš%úô²M#ßéKÜvH¾Cf§Ø;êšµ(yJžS‹›O|?›|[ÝLTD~áßçu66$o·îI5d‘GÕéT—Eä×=¥¼í£­äóUŸ!Ù Ï“ïñ½C=SKÈýæ–#¾ÏDrË\P1Óã2¹éÞ<Û2qÉÆùä¶0ýn“`r?4òÒOŽq>ßì1ÿn9TÞ;øÍ ôwv5:œ[JNݶGLØÛ’ìšF'‡¹E–be!Ö*²NkÖí‡%YÏ~üU÷ÀÇd¿.2ôûÓñd1K½Î=»;ÕØ˜•²§h4™Ý;õHãqTËú+ŲÎnr2"û°øMJ¯“MÂ+‹Æ1n˜º^1–¬²ÚXn]yŒL÷ŒÕ>×%jïéx2®~"ÙwLÐéáX‡,/ÕMYç[LvíÖVæ¾"³× G ¸LmÇ{”á~9îØåc1dëUó´çy²‹+ZÒÏã89ëš×|9m?1oœ+Æ“6œ°Ÿ\½KûNÞþ˜œW/¼“ëîEÞWn%[e×â£æ•’ëéW‘ó-&ç¦zí!¯ä Ým!ïÏ‚þ‡]Ék‚íÀÌ”qäyÌézåò±l·nÿEò[r¥^Yæ`ò § £iÇÉ˨òü{»åäuiúú; È»äÇaÉZäc¬nÝ‹ê[Žîôæ9^Ô[Vì­œ@uFwÞ¡u3‡œ¦;5YÐùÙ¿kp´çηäü$zÔ°7×µ>±ÅýM Yö {áTèDæÙ“fÍKŠ#kÓ¾umèr^—Œ/ëŸt;SBúv °éE¦AÅYçÕFd‘”Ò9éd™´i`<óâH2ßg¹îÒë¹dšhyǺ˜jñô?²ÆŸl¶,¡íïR©ö×óŽ8L¶)õÛt­Nîß|;káK²>ßmL«øTrhX|ñÊ-rî»ÆæDür2;Ü}Ð äпxçÝ{úͰ¯îº\º\û©ùðª¼ø_aWr?Ûøð$½)ä6ÚysõkrÑ¿iüôùMrëW?ylWô3?-<øKg"ï¼ÝÕ* ÈÿÁ Ÿfæ]'Ï:¿‚ñ±ïqËÉ=‹¦‘ÏÆA½ÎyKž<=uR“Ï«¢Î•䫟1À1ü"ùÄ4HHÚ0’¼æØŸUЖêV÷zg«÷Œ<,ÆöµQ]$Oçy ?¼jLmâ¦ÔxøŽêl+8àl®&wÓÅ[k%PíV—šL‰ ‡&AÚ=v’ãnë–ç:ÙýöåýõYNŽF¯,?Î §—ió×Zé’C´›ó¿ÁTÛ§µó¢¤T{Æ/Ë ôV“Áš©»{ù‘¹}Ó ÌŽ‘Ù÷ÇÌ#ü2÷šs‡SÍ•ö“„Ý}ÈD1ob=£ 2nÞ@Ý. ÕŠë[~[/ ¼iV¶ÎŸLfÔ Cç“õe'Ƕ¢šƒöÚù¾'ÕîÓ6Ç+ÉÞÍS§r‘39Ìžb»Í²Y­ÝZªJ2§ÚçVˆfdkÐâì®EÚdÔÌòÆäÒàŒsÕƒ Œ.•æ_%Ç»¿Ï:6á{ª3lô¤DýÑäú¶8­å³~äî^øÊàWòµÑ5j黊\[Ù¦î(}Eîk>ÌÙØ÷õÃ9Ú;¢ïoƒI󜗬!¿çOç¹YýJ>ͪǟ:5޼^–噬&ŸÓFdw± ߃¿Ê©K¾A &‡·“wTײ‡§®‘뙦IµŽêÇœFaÖ;n“kj刬>äß5fàª2}ÈìNäfn95߯˜ÜCÆÿ>DI¶§ÚœÚÓy ÙçžióÓXwri›ò|ª9ܵiuÝ:šìMË–®[ GfgξìÓç60¿^ªUIæúÑ/7M$Ãe~“N5óÚéLyA5ý¹è·Ù,JÞ¼»Kö ßÇ™íI#‹^oö߯ù‚Låç«mÙLE§†-1Ê&+—[]c’_£Ÿ3Nñ.…Œ¶wÿ.r›§*Üõ®œ¼<öÖyw×Í…÷?„Ù‘³^¡ó­—dWÜd^Ó 3ȹyRµ êÑäœd©“Ý(ìÚ–®7'kCçm 3V‘Í¥íë6'»I÷¢–Î"«ÔäÞÉ÷.’õ&}ãB»dóî¦Ååçq9¾ Çäø‚_ã r|AŽ/Èñ9¾ Çäø‚_ã r|AŽ/Èñ…ÿ4¾ðwq9¾ Çäø‚_ã r|AŽ/Èñ9¾ Çäø‚_ã r|AŽ/Èñ…_øwq9¾ Çäø‚_ã r|AŽ/Èñ9¾ Çäø‚_ã r|AŽ/Èñ…¿‹/TŪþsšýOxäô%%¹}¾ì$·Ï—äöù²“Ü>_v’Ûç¿#Éíôe'¹}¾ì$·Ï—äöùâÓǸ‚Ü>_f’ýçËNrû|ÙInŸ/;Éíóe'¹}þ;’ÜN_v’ÛçËNrû|ÙInŸ/;ýEûèÿù}9ÉINr’“œäôE&á?äJŸ.’©Ž­ZIO‡7j‡ûyˆøCù¢ê}¢êÿIéF†ŽªŽ‰­Z!0dDLXl\„ºjƒ~?ßúÑ¡1aÒ"ÌUkê}²XžþPuœÚ{X Jõùrƒ1Qc½«J[‡< @CÐHKj7 HKQ7ÒÒäÒCE %–¸n ¤%ÔÛ‚v =– ï:‚ -Yß t]@WÐ HKs÷Ò’Þ½@oÐHKŒ÷ÒR逴4ú 0|†5!@Zb\ZtPZê~8–ê#Á( -Ù"Aˆ£´Ü¢TÒ’éñ`  ¤%Ïǃ `"–Þž ¦€¦‚i`:–.OÉ`&^}•Ö±—–pŸ ¤¥Éçƒ`!H© ¤iéñE dl°,K´Ô¹´^¸´$ùJV\¤¥ç×€µ ¬ëAØ6‚oÁ&P6ƒ-`+ؤ%Ðw€ïÀN° |vƒ= ìûÀ~p‡ÀapÇ@1–Pÿ%à8 ~§ÀipHK²ŸçÁ ý)ò% -a~HK¥—iÉûëภÊÀ-pü ฤ¥ÑÁ# -yÿü ÊAx ¤%ÜŸƒà%x^iIõ7à-xÞƒ ÍÊ“•Ü«àAZ7T T y©Iy©Iy©Iy©ÉYjR„ÿ‹ð±ºfù^ÑH³ô­ÿkj–«áÿ"ü_„ÿ‹ðþ/ÂÿEø¿ÿáÿ"ü_„ÿ‹ðþ/ÂÿEø¿ÿáÿ"ü_„ÿ‹ðþ/ÂÿEø¿ÿáÿ"ü_„ÿ‹ðþ/ÂÿEø¿ÿáÿ"ü_„ÿ‹ðþ/ÂÿEø¿ÿáÿ"ü_lÎ} 4^¨ZU}–’ñÇϼ‹ UÇFEV}õq—UB=B]µqDˆwD|d|ÕÊÍãù³a¬:":<,rx§Ð¸QCÿ8Ëøð¸°¨˜ªãŽŽWGÆ……‡~’MgLhLpTlU&UäÇqÝß®¨¬Œû»U”«ÅÆÇŒ WG†ð.4ü&þ8‰6§surveillance/vignettes/monitoringCounts-cache/boda.RData0000644000175100001440000000627513010420651023242 0ustar hornikusers‹í›w˜åÇç™Ý½)JDcE£ÆŠˆ½ ‡`bÀ‚#ËÝzœìí.{w(‰Fl@޽Æu¸»¥ØÅÄ^Q,!b ÆŠ½+VŒ|çæ3Ê >y“ü±ó<ßûÍgö··ßÌÜÈá£÷Ýò,ÛrcÙŽN][ŒåZùŒKE-ãü²ÛõPYy4]®“ÞÞÍsO²¼£À Ž®‘œ•ŽM$¬)8v½azÆRÉÂñCˆGËcÂ?uªK°^¥ñò’D²´$?iÔ:»ÇêŒÏOÔ„ –Æü .?Å·q8 —Á“à?Àç×ÀÓáËáYp5<n„[á6x¼¾¾þ |||'¼^?/…ÿ??? ?¿¿¿¿ ¿ ¯õùÛçGÂp>Ü î ÿÞ ÞÞÞÞÞÞï ï …€†€GÁ§À§ÃgÀQ¸O€“pžO†Ï‡§À—ÀÓàËáJ¸®ƒá¸ Πá«àëàà›à[á;á{à%ðƒðRx9üü$ü4ü,ü"ü2ü:üü¼þ^ ãó2Ûçe!8Þî ÷ƒ7ƒ·€··ƒw„w†w‡÷„÷†÷ƒ‚‡ÀCááðÑðqðx$| ||<.‚‹á pNÃðdøp?¸?¼¼5¼¼¼3¼¼'<Þ>ÀÃá£àãàà‘ðÉðiðx,\Ãgà x"\Ÿ Ÿ__ O…/ƒgÂUp-Ü7Ãsáx|%|-¼¾¾¾¾¾~~^¯€Ÿ€WÂÏÀ/À/Á¯ÁoÂïÂÀ[þÑe‘—WKOŠi°Ú½¼}„¬*ÂÕbëj9KêhÎ¥’Çäv?g V »S*ÙÞ>HzDçZœC›ë\ƒ*t°t”t¯eEúJoH§JZ€"3%Mü‘]-+¬R¥‡IšÌÃ޹…ž—ê%uWÒ£ó/$-2®&æ:««<¸ŠÃíI¾Õ ævI¿»*›»“®")?ö§²’Mg ¤¼ÚïHŠßÖÄêxÒu´h8ª ç ݯàè¾Ð^’6amø"ªÃ°6‰!-6ጸPÚDçJS^å;¬£þâªÌ!Åãhj ]/©Ím¯|Wêº&+Guçè~G …½ZÒ†Éñò¯¯s¦t½o½ò¹ÊOXaÃmÊ£®Eö´Šh“Ñ@ÉÛTRž"J#¢:‰(?‘c^íÞWyQ„¼:Ö ©O‡´X¸Éjt?ôÛ*¤ µ«vwO”4n p[›Z[íéhrr_òë¾³MTvgŒßçlÅã(Œ­ ¨­±`îŸ;^ÿ¼Ào;[}ËñÂiq½6ØZù½ß²òÕwò4qå©nóµÁÌצ<ÿd±ê#o[•A}1O wž6—yªÓ¼”®yí¨ûÃ^+Q|×Èjó–ßj{×Õøt·RšÚØ8ÏHÚ:Z¤m»Ûœá•¨;XÞ~×ö§ «»“§ ‰hiÌó9úùá,o½ê»N˜ü`êÙËÿñ{Þ—ç&Ù½I!wäŽÜ‘;rGîȹc‡·‰ÈóžÔ­gw’ï]ÿÏv#Ñx4­=Ý#·ér˜ÿu~äø©ùû/Gîøi/TþëiZ?×ÌÓ£"•Š¥Ç%+E3TP½¬3Á‚¦k|[Ç“ÞjžxW?×WøÖP*Ë“É*ÞÐT½Šmëʵjö!ßù Ê9€zIùv.õÙÁ­y;ø6Ëò,Oº³ÔK–zÌRžì®ÜL¹çí󦢃7Ž›û¶'ЭÔO3ñÍ9×·-m\'½FÒo¦^šqÛ0ƒrÒÿëyV½Ø·ÓþSïÍ”3hÇê·&„¯"ÞÌVXÒŸõ&–û+éÿ3Èw&g+ˆ—v ÆS ã¶;›|6ùKQ¼Il£=Ûè÷mù¶ƒû;Èg–þßÁ8ì€ Ú•q‘å ^–ru0.:x3ØFú­¤ÛD}¶^áÛ }šhïzÚ-7»w½^G}ÕQžZÂóÒTúÅ,Â7ÐÞ³]ßV3¾«©ç ~3ÔG%å­,ÀZXâ±Ø·3égòŸY… Æë"Ò¡¼uÁüG?¬ã÷`|7âÛ9Ô;åkç ao ²MXžügyƒ–½Ë<2ŸòÏg¼Ìc>ÎòÆ'KùÚûû¶•þÞLùçLáz0Ó¾ôë–„ïËuê¥1E¹xóS׬ðítxVåæþ† }èUä'C~2Œ£Œ…eÝÈ>3–x•«¸N½ÎZD¼ÁøüŠô¸¯–ûj‚ö!Þ·Rîvò1ûçSï ÎòíB¾(XH}û.ÈR޼±[x;–ö_À8œÏó©,ëYûá¾mãz_>Ì¥}ZéA;µÒZÈw3õÐH>ê™f3Õп§qãàçÚ’ôJÄJŠÇkK’ŸLùN‘å¿„ü^Š–Ù@ŠLí'g£w*™ªˆGËK’‰#ÓÑÂ`wtØj¿ì9›³9›³9›³9›³Ýíϵ;rJ£©õ|Mœ—JÆ''Á q«Ûïù©x²|Dº(–&CݸãÆ%Ïõ79ëËü·G÷üôL¥“gïSVž.I¯7_ú9š..ëVÆîɇ ãÑ2²× ä 9ª[¸H*Z8!Zë]–¢"Éߦk»ÅÕgTJ{¹hüÄoëÉ ÖíEô]Ê…ÉDy:W˜~Ô 4™°‘´ß6 j¼§ø=%ùÉÆ ãmûHJÈl,m")#?Îl*ÉÏ2›IÚgU ÙBÚRÒ~Ýl-m#m+ ¶“¶—~%Éß6;J;I¿–äW™]¤]¥Ý$ùÇfi ´§4HRŸ2ƒ¥½%ùÝf_i?iI~Ž9P’ÿn–ä˜!Ò¡ÒaÞ‡çÒPIþ†& —ŽŽ”Ž’äÇšc¤c¥ã$ù·æxéi„t¢ô[i¤¤†5ò/ÌÉ’üTsª$?Åœ&.ýN’gÎ~/)•¢Ò8Ir#çÀ¨'ùW¦X’?oJ¤³¥ ’ÚÊ”J ))©iÍDIcÀ¨˜r©Bš$#©ÿ›É’übóGé<é|éOÒV§b.”䙋¥K¤K¥©Ò4iºôgé2ÉûðHþº™)UJ³¤ŒT%UK5’ü,S'ɯ3õ’ü*ã}€%?Þ4K-R«4Gš+µIíR‡”•ä¿™ù’ü³P’_j®”®’®–®‘¼Ô®“®—I7HòÍ_¥¥›¤›¥[$ù³æ6Ëÿ¨íIþ§¹K’kî‘K÷J÷IK¤û¥¬ÎÆÌC’ü_ó°´ÔêüèÊ,“–Kò{Í£Ò é1éqé éIé)éÒJéiéŸÒ3Ò³’ü|ó¼ô‚Õù‘Y%½$ÉO6¯Hò£ÍkÒëÒÒ›Ò[ÒÛÒ;Ò»Ò{ÒûÒ’¦fó¡ô‘ô±$Þ|*}&­‘äßšI_H_JòãÍ×’¦³ÖŸmã°äýŸ‡-Ûö>hÔø·½ª4þí|Vo Yç_0ºœw™ãÒçxÓ|ç?vÖØy4\°dz0íú<« à.ëE©&Ø’D4^öéØÇ³ºü¯G—_ûxÿ¤²s*]’LQ†vé>;ßZõíœõ¸˜Ž&4û ±ËÕòt,Q„ËbѲd"ø©3þï^y¦ÆGƒ¹µ´p`iE¢"X‹„“7¼,ZšŠkq9>V>>Yôm‘½b)L¦ƒô{O¬ˆ&ÊKâ±.Á"“¼weA ×+ƬNYù†Ö…Ê*´"—ÄãÑDaì»Âúæß/t=4surveillance/vignettes/monitoringCounts-cache/pMarkovChain.RData0000644000175100001440000000041412716616370024725 0ustar hornikusersý7zXZi"Þ6!ÏXÌÒRDX2 X  pMarkovChain?ßЀ ?¼ß]ï[ñ?´úÚŠ*H?®A©£˜?¦øŽV{ØÜ? ü…e¦?–©áœeù¡?R}áPS?…¸]î¤MÉ?}ò'¢àýÂ?tvÕdpÀ¼?kZ,HõS?bD Ç)ê4?X4ß³7½¤?P{9n¾µU?E‘Ó}×\¿?;â}µ¶ÿ?1 ûíI*S?&7»U2´þUè çÓªWÀ>0 ‹YZsurveillance/vignettes/monitoringCounts-cache/rlsims-multinom.RData0000644000175100001440000000365012716616370025523 0ustar hornikusersý7zXZi"Þ6!ÏXÌàœrk])TW"änRÊŸ’Øáíbl$SÝJ ô!5?Ì;ïÜW;]úâ ¥ujF©ÝË£²*n‘u[ôÿßJå¥CT$Ã/¿ D¿Àt«‡‚ RÙèó³jËa*DŽúƒbˆtT=pàÀŽN1ÝÏÅ?Fî=üpOµ¶XCQ·›aÌê)¶„uâféH,²‚^¥º€÷ë_ÿæžÄÓ¶s¿[R~³Ä „%sà=ÓYŽ,ý…_Ö¬ç”Vo«…ʬÀSaê³m»îþŒŸo™`ׯZX‹BßQxæÒÄ-ëW\¯l{=óÕ;eÿ` ‘æ*ç9 mB6ŒTÃÛlºÝÁÐ:/?¼Šmzó‚@ÒÔ92FÃKû¸s0X¡«œL …èóØH°ä§ Þëóì˜_>NQÈ‚ 7”LBÖ…g‰1”êLc½*þþ7Dk¨÷MÿÒéóJ·nY¸YÔÔã\#ŸçĦùFW0äbûÍ/¦ï›]H'‡5×ë*kXë’ö,»Ó¾Ñp/³+$œ†àƒ½l'HÌÊ)ç<37õ×}¿Î‹|N;\>fp½ úG[Ub¶ÖºÉ2˜:@ê-ó'ç!hPß³nù¥† ƒ­³¬ë)+VíV'$¾ÜüÊyw6)BžZôÝ´ü¡oн®šÿEÑ_z|>Mƒlpm]H$Y¥Ö¢LÙRL&ßý$7…³ëñ^– UæÅu¾mWa¸0 xI>>0QéŽeV;Y%Ë'ømHh'“XŒòƒ¡ö(žëu6NŸQE jS˜Ž'[<*”Û =åòÜ.’"BT½ï«±j÷øí\<áx¤ÅYreâ¾u/>á’ÎD!(I1º2" ¢[u¿Ze@é°Ÿî`ù i<ªux£BHÃ|·{/ê´ |bÈ#ötb„Eó›©—“9Ð(³ Mˆe\ P̆¹gÿ6øQ¦¸yŒÓÛ¨@௡-Nbc3'Ê@3଀±V“˜ü‚šPÉá˜0Ò²–æYé“„½’Cñ.$@àì*‚7,¥ÊeбåØ^q]ýTiÔžlbTˆZÚS†ì̹ã! ‘tUHך§<5º°íYÊÜ=;ÀLÖDw˜9D6ï@ž¯dç¦lyö÷v5?ÇwŽ„³àX®él£á9÷›LËøâç<È…Œé3X§$Ä–2¯U;^ß¿p—xžö›)V9ù&Õ1òåû H2´RÑ­Mæ…—ÿ–_/M\"ŒÍ MfÄOxD¸â,m®éuvÆprn"ÌLËz‰Á­ÛMÛµÿ Ã&Ä»°!ŸáDR’!ˆ4RÑ‹ ÷óTcú- ñŒkâ½>Õ )J'ÄóžÙ´·#öîÚ"RÀJ÷ xÂOSgûVÑÛ«bÏÚKn pá†C­œIýÝ÷ú„VøGŽ S)•Ó’N¯-E¢Í&&^­hZì»#Ëlc@ecIt\®Ð#¯ZA´eAöÛAî&·¯{–AÒDÜ Í{Ê<ƒ˜,€R¸¾=ß±ƒ¬O™=ð5’Š/'éÅ­ùë·ˆ½ô(ñ-K˲)–¦Í»=ÃY<=Àœ—p<æm–’5š +.˜HÌ»Òëë€Aõ‚ÞÅŽ8õJMÇ­,ÇGÀî´ÝçÉCÈq þ¿6ù-ã£Rጯ gäA®9˜~~/¼ÁB}}ßÖ/V¢´_ Õônð„žeÇéSí?-•Fy\ù‹Òo¬Ç êeÿ ì}èœþÕ+.ñ=ú“<8àú·ƒó¸Q‰´>0 ‹YZsurveillance/vignettes/surveillance-cache.RData0000644000175100001440000011222412716701621021453 0ustar hornikusersý7zXZi"Þ6!ÏXÌãl”W])TW"änRÊŸ’Øáí)-t¦^JiíÈ–o ÖH#Uõz‚›ã9‰Ò|¼®ëHëÏo®¸µ³ßeJ‰¾æÚò,³¸_ÞÔ +8ø9Ä?Ó-X¸S³óAŽ­ä8æ§v…ÿ1ð€§ÙÚA[Æé%ì³ R,¯É¿€^(ºÙ’Àƒö9ÚÎÞ’EŸ.<ã¹MÀ´»ã'Ùð&TÖ.¡Ó©®V.nU„““éñ·c&ö¡¶IC•óUo°°9ÞÑ †;}ÌX nG˜Xx>FþÚî^9­é´BÙH•ų ÷PžýÛ÷#¡èÒÊT›3çY §§¿»'•w‹ôJ}Má*(µžf8>“ôÏ“¹íb¶~q)˜8^!œ)=Y œÿ¯çÁVfËÄ"‰©ØúN—¹y„ŽŠùÜøn%%Çè µÕzÕU°öBá”´ˆšŒ¯¯©œ)»Ô±2€ËVs3lÊ eÑ☀C,Ù”‚»ž8쫪é Yˆ/ѱóέt"9Ϝ̼7ÚQÕW›ˆÃhkª¹ELJœè$„4RE?àƒiÖw]?,eŸ¤úŠ.G Geˆwd%}R䢻߇ƆÜG¤ãj·‘>ï_þZµôIï-|¿†VÏ@«%$6‹q–M­/¡¼5Ç1ýòu4Ù}Ðoêá1æ7Åøïo g |¸÷æ„ôgâ ¯‰*·í ¥ä*Pì.nûÚ»fß$ê†Um¾N`­ïßõïª,n¶H ' úQ®ç6u°kŠØ[a¾ÿCíÕ׳…¹íÖF€w[×)Hé0kT(&§rÜ^™l´ËS,z¡ Z}9°JéIèþEzÁ½¨5Û‘I 0ÛÔža©>©ñ6´ %HXË×W‚ÂÁ;@†Ö{pˆyóâqŠ NºTwaÝd{V™æ¹yálÊ£‚'Bº#¬6¶ à Óg×}4ž9)ÿ°(½K­M^öëDØ?Ï­¾º•Ðc6¹‰™©l̤n¶7uˆ©ú«”zm xZõŽS¡yyX‘¶íWÍJá𸧄۬K?aðË( ëÖC°C†^á×Yž¼W ,›ªà_ÒÏH~B/àü5ïÛ2Õ 4œ89“Qk_žÅ’_˜jÚ˜\01fA?†“ˆ>ìN/ ã©¿’&É+34'`wÊ™[ý?UYùØ;àZHHnÖïN£ ;è {¼æ@T(‚%¥Ôâ¬ú­íAàÏ–ÿË!¡©4T ÍÊGíÀ‘@—Ø¿w‹ ËN\õ»í˜8ç,Ì p“¨+ê;óP§âV=Îȇmb‘žz 2J%g?O£Hï (‚è#G_Ý_îÌ`4¢XU{PCmÌjbG …To4k¢¨{- RK¿…û\Èž;g.n‘²™ÒÉXØÙ8ø4K³®c›DÝÈ6äñð‘XBp¢¾ Šá®-MbùF%·þq›s;ËFEó˜ š.Nà a ”IOCð¬°~"d×…BJÇ„MDye“p¶PÁO°Zæ,$0[®‘QãQhž\ZQ*dÝsÃÁFC²*K_š±a¿DØþ'ų]Îà$ÏtU¬ÆÕ!:žGK"nûÑRœán€ÓLÙôZxa—x7ÝxbCßLåš]|1â¥Ð,†<ÈDPJ T(8üµaÀ›åï/FU ¯Ý>‰ƒ^£¼ž ÌÊÚÃѶ«oÑâ‘h¢>Š:w;¦EªXqºþF#!Uà¢É©=›±¬‘ÞÀ”Úf{ôçÔ"Ö£Ú~¶ÆqÙ<òP‚ÉÐÅÿƒ"¯A¥V#%•Xÿ^²C¿^7±Âý+>™ ,vwCÔ8?Åì'$š'Îc!»|î ~\GvøÍ4Mùúšˆ‹]˜~Î…~®×–Ÿ¦'æ“\-PÂ{ŸdìײNº:œ4M‹vª[2V¬¹Îú >E‰ú0ê«j$ìnYKmRò÷ï4ˆòÿ0­FÒÕY)m7rààbÑÐÚkŠ”ê’Pß!¾þ—½ØÊyf*\—žmÚ[T@>—«õDøŽ²'ª¹%+3) ¶^\[å£&‚ôÁìe³U¢¦ÒiÏ)Â0I¢öˆ·Ë Œ”Ôi bª©ô^El+¯ê9}‘büÛeÁš`ßdÅŽF‘&54±6W@·þ¤Õ)~M´Ñ¯åøDêjÀNNÖbîüãn4kÌßbòŒ³wÎÇ›Xë¢KŠe7®áú“"û?žuò7þ›% ófëÃB)À°v;t*ÁWrjT×€{6‹3ͦåƒÃÚËô‹Š]¾à3ñöÉEâ¨ÒK]ãRêˆi„h“NÛSðkœ ~m«?ÐE©+cö¿Ù’oG.'YƒŠ_AÞ¼ðþútÛ\$ó|Jû‡°Ç ‹ÑgxŸ]ç:=ó5¦ØØÃm–B¾¦:—aí'‘DÅJ^2–S²‚  £Úv‡0ó1%G‡ÏíHxðgéæì¡åxtŒ·|âIhmÓ8rªI3‡ÞŽs—÷ð‘¹öuè*³s·XÆDkx1 ÍÈbUˆÇ©3°Pì*N.‡³³$w‰šñÔzþq¬Ü±‡ÏÜ¥‹ÍÃ6Ä»ïP«¾–™‚‘ÆvU,LRŒŽe¸ìÂ!«Ru°e÷Üð$üÍby<åð4“'Pg%‹¡TùË$!_žØ·Påû/yfHÂ|† `£‚ìxðì3aƒ¬7ÿœ+Âá>:ä£hÞU³jû+²™q¸¦‚¢N.™VT•3£û¿÷ÉC~ßzïžÑÆ1 ßþé…Q^„ï°õ"¦;ëß“·é ’u—Èo3(c…#Ú·A‡!U—qá´{B\£ø=ëËO.P+^íYµ†Ùé0SO”D»*ð›Ö’_›Âdè•5 qªŠr)x6AÝ… ”üçVc´KYwÝîÕåÖ˱öÊ•×E¦ë±”y¡Ã7‚I‘Æ-ƒØûB.Á½+þK+°°Â9ÎD o¤>sçiÏ‚‹^õô_K„½’{kr‚>Ë£ƒ™ÌáÍ8~Êt¯¯üè_yõ%=^ÇîH¤¹§Ä¡6#CqÄ"IAy>Xä ¹ ŸpI ´3^Ÿå”œQßO¬3JTB`IBJ“qØÈʼnÚ(øwãa,ÜJ•ØmýÅÞÒ¹®˜ƒk¾pf˜¤òx²âFC9*VB!Ä_@“ñÍŠt ‚ÿ¾sù+‚†‚Ký{÷ƒ‹Ýs‘UHÏè‡ö9Wy¯Ü*cƒ°!yKN…rK„Úúpð KyåU!à Ùˆi GË-„?ßA¢Ø•úxŸW7²…+¿èOáÖ,'€rÙ÷A×kBÒZÝõ­à ·ÌLîyC»'iñ k)ï¨h,u4­áÍ=¦0‚;=ëXKˆöw{¶€8šó­P2½“¥|²3½õ]0#Ѭ„b*CËõQ|f£/†}‹¶• y"@´P‹Wjöl¼‰x}Ú’ 6,vOÌjÚ3K$bMDˆbüJž¤Šgæra·0’à$ú…“ØæŸ´íÀk4ÒïgჂQÓÅüâ†!“b·{îé\oµ7ðQ(ÌÌÒèÁlÚ%nÍ O¼HÌÅc¨¿†Â¬´0Pvè¹Idšœçqé\øöü[+DÀ¼[˜s¸éÚ§4œ)÷iŸášc!Â`õo%ƒrý€˜õó÷’¬dTÙd}u3óˆÀbtß¿¹}±7,Ãû …q §6ÅÐ’xnàžËÜòZŠ*Û`J¢ µÖÛOä'ÒnÈP9ûp17J~gC½tüÙ2ôùÈ7'ŠÄèY"ÒÌ&V½Ñ²üä¸pÛ«%ë㤺Àããjf°Õ4¦~)?Qö_/†ïw£ÃóòhæÐk£XÇ (¶pPíf1à íÉλùöíSužH›Ñî âÒ‚è³ûèGaðÿi lá($`€eDô%B\ºŠ¸’-àWõ®â"ßÓaÇX¨Yãëã Ba yÖÒy1ðå_GÝÿtñ·_'À5;°Æ 1ê°Û#V2”EÐÔƒa¨0BŸË”\¾+¬7J`ŽL«ƒµ VSGç–Þ)ó’¤ì*³g‚7V@qWÑœZLDˆ€kèïG:}s­3®Ã´V_°®§£I2Åí~*·D‡z$ö­·Ú@Pã"¦*à²ÿ„%„û.6¨}ŒSºÿ”SÌ|¬‚%ÙÎë,°õá[d€NÇÊó˽ÿ6AØè°±Ðmjs4ÔÙ†¨ñÙ€÷7<¬ÃQ‹Ë†¿ê7}GpÖ²å‡ÛzRsM.J €Œš¯[$˘"µÔö¥3 ¢®²·/åô+Û]Ãé#¾ÅÛ*µêÞšNZvûÎøC9ÉÇ^ Ýõž­lYaíÍñ`³.Þñg`y;‹p†ýó—áMàN5‘(‘€ÆÃT•§Ðî!ô@ÍÐÍ>ç!l7¹|â©›uÄä‚Mˆ#745:id,Ï,O¡1?³noØÀ‘ï‚øöÎþ4%EptýSz%©†¼ëÝX‚üÕ$VTe±¸gRc pBgºzj´ßHifþ“eq¾PQKZcXûãq›|™Z lVüÌmü«Ì ¯/Û!ÔEþbyFe’Sk÷áO…š¼{8gÔ/b(:d”lïV(®Œ~ åô5µ¡}ÓS˜vİòÒ9˜¡Õ­ gçâõ"Á.УÌ•…ÚoAjYFÍLYþŠ˜î,–”PÎзŠëþGxsXüÙ¶{‡Åc ¦þó¡vW ‡^^¥ø01&È9ÍÔ·°¯N\Ê#[8=„A¼²:ÖÕD}×Þ•™õäŠdÛâ§±v‡)ŠÐÜÙ¬a­–@¢!=öÑ}<1Äʖ̬Dîe‰Œ68¬aÝ@îšç Îƒi ë$#K›í¸Ê¿(Zd±ž3Næ‰tmƒû™Í¥@!ÿu–‰…¯E”Ab×ÌnðÀ%¥¾«žÖNäú;¤•ÊïUªžïÅ4ogaËž:ß=ÁwÒø“<#'¯íý [ÒD'–0ú(ÞÞDx{DY÷‘pÁž¥òÖ§´sàÜç(öÁ4&–niÖl‹½¹UÖ(Cf±O£¾Ð[c/î{¹=]àŒ? œÕ®Ìœ ¾4ÃêüÒü £·ôbSÀ31˜ ;‚ÙjÁo1 ÉÎ׋¶’=5¬¢88¯Þ2kU§®-õÓq]ƒÌ±Ø\]˧äŒ[X ýÜDÆ{h9‚omz<¦ü§´ŠÏ-¯FÔ‹ RÛÁÒVF”ÄÙ9¡zÐ*u”>ðð­ÞT?`_μ=J³\úÚYúZ_›lØZ`“…¦(à­Fà~œÿΠ¸0<-mîeîj•…,„ö6ÜGXä¯~seZÏß9ä ã} .@eïÒänÞ; Q´„ÕèÁ0hvÊxŠä´7H8¯éå#¿`Éb#DP­„æ%IÑxkœ£|áQ (ju«^yùP38*¦Ÿc}® ®ƒ£¼°Ç»¬‚üvM¯+ã¹xbM±º1™-¥úQÒ)CV¦Ì}3"H@N¹¢.·°…aKHàCYÜÿɼ¥0ĶSY’8öËÎIM­íÞz¯eè¥pç.=¹}oVú1e“)ì Lh,º:*ãgŽÃÀÒœ8ÄïKÖ q’õNö8QAŸ[û-gT -RúŒ\¼8±O¨¸UHUÇñeQté1ç)U?Ò«ûÏ[õ3uq¾b<•ǘ(;u‚’™¿t“÷,×B›A h-j„gr¼÷4àÅK±Úáf>/á„vª¿_,ÊBG€•bb‹>Y•è3áè"zu”N‹5b·=òÕ·ÛÔÚ˜ÿô‰b¬Êtï ÆÚ2G¡Š ˆ•"ãñϼ µo¤¦;Î2é7Ò5·ûKÝŠ¿ñrmuîÀ÷?ŒLþ˜–¡w£b·–"ÆP›é.*~Œšî›¤È<›6É÷]yq“ªÓÑ`é£x—*Ž9@8Óní{aˆP÷q1½èL9÷ó;âýO˜%<#hã"ã&ä¦{åµ 51Åa²ó!>µáã?qW¿|xR:’>ßêŠô_ó4›e ‹;\›‚ L-ƒªœ„ØU°Lÿð¯iHŪRùÊ1¥ib„‡þf¶³*°›Æ.ÚG9[K¢ä}ÅÙŸÛAÀ‚ #âƒb’è>kœïLá–Á±„~šmçJq’UYëØã•Ó=Ñ…™8aßX*¼Ñø„1®?z_‚ºS³vÎ¥<9i͈´™ÕXÆžcPg„óñf¢—¹÷^ž}®kéµÑ¯ýnfèëüy€”BoIö—ÿ#ˆÂS×OÖ¶#x›oO/²ºøÆ,«ØWN ¸QlžWµãô©ð7œ+AÀÚ©ó‰•Ï®¹hM =‰`qµ©’£´½©leútшÛãw‡àOZª¨4Ô'–†‹Ø%u¸ Ø>°È%w®wfu?—Ø¥Èâº1©”uü(DµŽN~¸æpMœ ë§Te›4„Õ»uý‡yR²_Êá‚W¤DÖ3\3Îîâ_Õ/Õgø{ÓÍ$Yªt¡nË·BS|=&ipŒw|Š{æÀ½wæX*ô½ûî’@Œ§TAJc+ƒyÇIhÅÅg/%´ëdëqái–Õù]z. ™\ ÿ0Ÿ¥1üR¥> -©¤ª¨Kn…Žgöò†1€muoQ¶*LÉ=/¸¡Ø ‰8¾º×­VWÅKõZâ&Óý=5À.S©Žp±ìàhTýií:P·]¢’Ú¡Öò»»ºË@W&|°äæ'ýÞØ£¡ïcôΘƒœ )[8Øù)fß^Ÿ?dh."T#”ŽšõÁò" •Y¥Žµg|„¯ek®¤Åc±d=¥ìSRÏç€?î¸ãçÌC(§;əާ|j]¸äd›µýñé;0W¾= 9 ˆÙ"Å~sŒÄ` ©Úo&C¬ _Ý–>G(<.N¼¢.áóg‡í:58+tÓüt £øã[Ò7É|L]X¢ü%«±2P¿õ2ec×2ÓÚµÇïJ‰D%¾VµÂ—KÑW—õï^Ηòå¨&½°´:ÓýÑìFDÁ?>õŒ"¯¹" ‹ò‰·ˆJúÏd]q„°5ô‚Hç•O›C?Y¢Åæo ¢Wˆœ§·l8 r =fâÇ“ nTâoX…rÞ™3 é‹Ñ´ª‡KSŠÚpnwv£ÃG3¾ÖìQÃ¥r12þŒÀ¢vú 2à*OÚèK»yí@]'²Üÿž«+…)uDˆxMå%”/$Õž—0‘â×€p,XÇpK0zŒÌð‹ç‚x äµÀ{t}êÛQð7ayp~· DÊ#ô’sdô§á½!Ÿòò6µÉ›Û¼"Œ\p“Fhëuv7!ª)ȦP&è n’ÌÑ…´3Û°×¢X³)˜^L; OJ㘬yÃ&ñˆIv7)Šõ~ÈPAŒ÷·\àãH¤”ÀµL×m)‘v=êpƒ1XØ-u¬‘€^5xÁ©8ޓֶyýrÖe‹êšûÆ™tcÌèMʰøå2þ‚BÑÁ”IOžý×ü«{ÖyÙÆÔÆ68ûóE¦–F *È\o(ýìä1râÏjÆpŽ{MRe¥¯¤]ü(30>Ÿþ ,v_o~U¦wƒÙ7}Éaÿ…Á`üƒqØhù¤ò-Âò—‘œ‚‡_ÖT½{ò½C¤!C56ãsìNVrùk]?Ò}ßϨ5öYuТ›ý(¤ çƒct ?5˜P¬ÍÛ@F/.ûïj ²Å|°/‘Bð…d þ¢½“Íü3Uý‡ÁU9½Δ"„‘·•µœŽ ’?}^äå[ƈ¿izABE¼‹²y BÞïËÂåk”z&Ý5–‚²VÑþ?OïÛ£,8ÿ‘.׸ F–EзW-‹¥“Eî~¨»4hKÎ ›cxXÕb„?Âõ¡*P¶É½Ûá@³aÁÈDßΜwúnHR å^)êÑ•µf>gñ[¾ß ¢eð?оA?­ûšÇß)×Ê)I%õSêS÷0ýÔϧ;ÓÍL†f4ûÈà™=÷ƒSãèËÕ ¡$›Ò¯ÆÜ¸ùè?%i1be¾ è=©q*EvójnÎæuù »a—Æ6†Ñh³¾p$õ𽾺æîˆ‘hÖ¡ßGÈdÝë¼Ñ—ÜØ(Ô¦ÜíöG>*ÂC'"ÇÂ[¹G“ðòȹåsž@Nß^YlJ \ÆrÓšU.MPW8Žx6 ÇȵåºÂšÙuéJË;¸|!ç„M…Ô(_–ä³:ÃdÀZ‚¿×Ž¢ÐÃаhÓüÊkÕ½(KâU…zÞìg*bÙâÞ·= XhÊ …¼ñ²‰î† jA,á£ÞìœbòŠ „©:7?ÑllUðm^ÇqoãÕ^4KðõJžB 2Ù–êÅUhô †™6)Œ –\"5ÚxÁ¿±2ê¦ £É±ûl¦øÜ…»ÌfUÅö+Ú×Ôõ®\ø8}ÈõvŽŠ4…×$•Pwö×¾ÝA[ê¹Ó†;ù¯ès0@÷HÐÙgNSȽ^Žéá~eŸ`‘ª½:»²«gzƒ} †\ç5ÕZÆ&dØDõÌP«xÃgüþ±™N[š¾C‚û×Yrðì´‡Èñk©Ý§€ÂWe“jF•ÙŠ¢Ü\WTs%ë˜ÌaK"’Uÿ-óg⊈+?¶´.àö¥÷‡û/¯%±,Ùdc7PÜØ !~!äEœ‚n“"/Ò&È®ò©ÐÚÊ55jiúÁvù˜ìilëÉíRjés¾Ä†3â!ê£:Ã& Úå=\Y¡1­ŠP¤-L¯ìe¾—5²3Êú9(pê-dÙy4Cæš—èA¡t¦öAÙqèަZîs½x oj”ÆÅÍsn›u\æhõÓŠáÆUI-㎸4jQ#CCž^Ÿ´Tw²t}ÙòÄË)†|ëRào9†JÊÔL$ÈzØ*ÂNQ‰Ý‡1P…§Š0×g„ ê…™BgJ ªÄIÌ7›B’¼Ì„ Š¾o5¼åHáð…ØB]ˆía¶Ká`¦•æIž²ï“YD€Ãã¹€ÕÌ©–jÿ™Tb¤X+`¢ùqÕCú`´£óñ¸h釰¯o†ö¾µŸnV¥(êFÜ\ãìQ{.‹ÙGiRùvtaËS¨þVûSYò1~Q_TDï!ftÝ-•н9 ÞG8R0Ûfþýê{€ð M8Ÿ|-•ušý¹f ;Ⱥ­²-ìkºK†‡•p¿whîO2(+À<ôkäÙßÀÃH ~±|Zrò7‚Ú.Ht :›Üzž|!úìݨõéVÅÌâÎݯL·-ÈZ‰)§oäAy £y€;m©¸%0¾i|n~ÑÖrí>âP*—ëÚ¢\¶3æ:ëÉk§þåȧwU±ùQ7ËnXû"Dj®ë«©Õ϶؎…Biÿs&žœ«Á]ŽC‹ÎІˆŸ Ì¡h.í©%—‘­E¬òÝO¸óÖ:‡Aý úny°`òÝss(T9 TØ¢³Ï×\‰N—í» µöØ,ÛEê¾U›¿Ÿt ú†|àÍè*;íxv2[»°wA[Ñáûsb™Ùå$[•4ŸTYgæîËh*ž§¸øŒq´QnMäì/ðU%hŸ3I9C‘³Uì¨è­õVëC½Í@kÒˆ\ÂQøV¥ž>F+]üƒÇ©ul6pT¸?÷®UþÍÙ»É3Awã§åáäĶ»Þâq¡r‘䤫àHØæ;ãÿÒ0³JRú5ó+ù…úq xqÒ¢hä´ý´…HÂ×3A¡Ü˨¬"š ÜQŒ“tâl¯Óe7Óë)úêàr£ÈàI^Ë»Žßðwä7•3‘£fÞQ…[EÇ/Ö5 Gç&­ùo;là_ßm¥Êôp@6Œ¼ÔzˆLoªáqŸø”)Õu%¥Ë+:÷ûAÿl:6[NÅŸY˜8»P+œqWÏJv‡ÕV'eÄ·öøCÓ4†ÄÇMú빸äªy_{\¿ñ‡µ¾x_H{7¶"ßU‘ŽŸ¹v˜©åJƒ–ãÎ&Ë0äîcU˜"LÍÙñ»k଩MéJ—}IYÍ·Õq/ù´6…O*¡¥uù¡£â=ž Ýß㯙}.÷Õú^ÁfÙëo\Ä)´Hz'kE¥Æ)w aŸäF®Í\GÃù”3õº¸Ý~Ï<-õkG«yº½¦ü3 Òè·Ï.¼æçvÒ‚} ÆíÃVÖÃb-÷‰ð˜¼ÕÍ5§°õã Q°åd„…“»Þ5:UÒ™€Í¯ÖBݾ¯ü5È3 ̤Ë?­JÉFœ¿¢¡„‘‰¼¬Ü•`Šu"ôÍÐŒQîQÆgYe(B!íÊžæãÖõ ¸Í\hjó©M„J?³]î8ãöAû<¯{‡lý?r”ÿã@W{Ø‚©Î_gJýïÇ;àà€¹q*Êtš˜€»¸ýÑPpþëP–¾ÃýÚ1D±yœ®–ÖhD‚âèD¬\8õü©Ò7Y°+&é;`(ï8†XDÖ}¡!pB(í “óñÔŠ/ˆÞ$¸<¹‰£Eï=å8¿Nyû'NÆn-Uy›0%µy¦Y°®ºŠoU6@¥§ÿ˜1Åð·wæ4¤˜#5$`À€6Ý>ïÁY_ÅdÞëK_?) ®PãÎ’ìéðÑP#›´”±qr.Zì¬Ìe˜¬Î@ºa2æ·þ Íœˆoˆ9ŒÛœÛ{&lö„ƒ>ô7Ó’£Mz¸Nódm?_±ƒày¿†˜äƒLyÿ‹ªUgüÖg"F’lp_‹0K9ËÐ aꙟ° —ãlA/€ªD.ý£Ò½ödàýo–‹'/[Âg¶¯¯¾¨(æpp¦¨×elsÿ—dUnzµ¶*áJ–»L´o7®GMJ3ä °GËÍé>aG^äÍ´øŽfMÁ_­M‡Xæ&Ó} z‹ýõ5v„hJÔšô8-Ì%Þ•-ŒÝî a¯âž~ùʉ«š.WØ ¯Û2誃ºå©u£ó¾SÙjõŒ  8üb Z`=N:_züÿ›è·éô°jÂçI¯×pPëßI4Ú'—K«™ŸªFÙ,B,§­NÑ’ƒNÓ&ÛüÜnÌ4˜ÈÔði8 Þ_òàQ%™IKöDÛÙãÝüÀuV3´MMEtqs@4Y_Ἃê&!¦Kkeɸ±_}GùNßléØšÞõŒ \×sž½?ŽÑ ¥ÃLÏ¿Mø¦ßЊå+}áêÆ¨(NB&ÌX$Ô.Ž o,“„vø¡,…-ÛÙ.±Ýreí}Ӫȓ_0 ~ÝŒÿ"Œ3ô[®`Û÷Y ^0<ÿV››g%ÝN*º™¤Y»˜‰“@Ñv°‚5UîV+â:êúÙ¡³é¼QT“¤TbãýöÆ}ðÌ”-Ýó´bØp2+4ŠB,1ÇXζ߭vÍ)±ˆLŽ^-7¼¾m–̆p`iÍè`P.èõݯà*v’O#©¼55j$§Il»€áîÿŽy—)¢ðNüÃw…¹7YÛ) ûñ6ÉêÿBÞ 0x–¥˜ðgWZà’Œåm½óáK×ïOm-ÈÝדJ»pª¢¥ÀȺ#D¨ ”„K¡É¢p9†î|èÌ…D\ÇH• ¤òêžêÆ{Çg³xž¸áÒóÿùúBÀéXLW¨]Z³¡_4'±í<ãlŒd¨m1(}Û\¦´„d›Ž³’–y«SÉµÞ fàŸùˆåa8í¹©ñß5‡]$PCÜ8¿¦WâHCò¬ü;q>ïŠ÷Z)ð½®Fv„צzz¾–l_ˆ'ˆSš§¦ÿÞyH´ö)FǹcT¯n¢Â:Ï޸Dz*ÇþÇ©êÌP]zl-n}ÿ°!Œ'aBGaqT£fÁ·â¢’¶õ 9z…ùK„AY“9ĽC÷áìêúG»6úåm…õ¢W¬ƒ Ð9üÌßVÞÛˆ¶­Ú–wÚ§Ó:Å;¢JÍ‘$ãÓ]ÙUe•Í#$â,t@Û`mú‡X$0•—I³PLS¯ÒMKq3£8HyŒ˜Oá}Œ™Äz&ü¾Á(bçnVƒÕ8sãŽõE®Ê›K¦PH»U¯ŒRµ[%Ç8§Ýèƒ=ªSGÀò½™AK…jÏzãg³ x8×?Ûè͈MÇ+ány&I;ÍéÅÂùœ ܧð Â' p§{»ÇE3Ì=ÔBÒ†ü:?ŠP´Áìâ3¯íë5¾_›HnR»¿hbR߀ ó>Õâå£Ò:6§<{’ãW¤ž(‚¨"[†Ô“›#oÉ;ß^ï/Ï'Å’G­* ÷Ë•¦@²W#t3,,” ?˜yl¾»Ð0MÂÃÔ]6]~GàiÑ¥›zÏ×>Ð¥ÀÔ1ÜwÃðÔ«iÌ¥79I¼CÉó\Ü•’§»ve*˜÷ñj‰É÷vr°ßDÕ{BìxÒ7 £w}ϯÇ;åŽ Æ4XäöêÉí"hï§Y.x,%¸HÔy¥[mY`^«üáœQwVÞ-؇on-G˜;cDÚvEŸ19Ë¥P;¯óÄA (ìÒå…‡¯‘ßÈÎÐ¥ðžñZNš>ß @¦ï›žÚˆºÊ ¥†’°(-’[,Ρ’†'Ï >-ìtçF{Zâí­wt–ŸÈ+o2Ÿ€Z¾M½Ï®p¹o8ÅPIé©ZUá¿.-å0íŒ#Ç®ÍdÐ×0Lêµ6°À¶ؽ¿T|Ö'6jDYi‰jN2UÁ]ÔÐG cÙˆŽe³ Ö•"dpHn®¼º¨ïvP‰íp¶ ÏíuZœ÷ rCaüÄ/9ÂOŽbW ðÛ`åjo/SŠn–g¡>³0µ|÷[õp…[í'qƒ ü¾F^ø¤y>@k¦‘ð=’å‚©•(•9²Ì5cG…éG¡þ+ðΧm%#}Ã7Ï!h9 êæÍœø éÿq‘Êõ<Òƒýþ‹l“ÐâH ’ÁžÜUÀ'ÜöL”(LÍQâ¥O¶{_=ýBüãb/¬k©Æ¦ÈÍ:¬ªô1ZA…°{(ƆÜaß¼Jc÷L=qèÁ§ˆRG4—<ƒBò¯ö] §wèòb-S«•~ØäÈPäÓ œnõ]ë“Oîä3sL­€ôÜ••—ña²9»J»!8ØM…3r6ÛÑ^KŒÃ…ôKDÝçùÔUuÛ2|NIõ¢t³´pYôH­[i’£gnW™îdçÙ9[9L±6ƒ%p—ÙžÛðu–ê{Ðìªð02剋ù {Ç@¤ ¢xRP;=–ÀôõpÂxÿþ~XŒ6üŒ‘ìQE ”a;×´!È?ïf,Qøš ‘*VLi~1×2þV»;2 Êà°k–‚‰Îß:ÍC½ö™~±§ç²÷ W£•Ѫ ¾Þ÷«é@ö–Þl' ûOŽT`µ`—ÙÝÈ„¢ëj©<žeAé¥t£’Kïÿ+)Ú˜úcf_heh¿#@“yÒ{“Eóm#áU^Ù™%‚ e´€hæ—ªê¡ÙPá§È?²9¯Z ßÏ(Åj_Ÿ¿¼ÕMÑ1Ö²Ï »¬_ÛS·ba4³y¡¤P´<ŸÊx[Ne†ø¤-E{rD™:žŸmh-½’P/Õq±±PöÉÆuÙïü¯]Ø™¬žƒÐ,´ ýòï,ßk3.ó‹1L¹à¥ÛL®WÃŽ.Ý5wªÎ~DiÒs*RN¢Þv–Vî:…†¶aÊ8ÿ­.‰ïÁ*Ïšln>øí¸êF>X+(/JäÝj÷›À½¸jËbÿ™Z4·´Ï-X‹l¤ž«í°X(×ÝnE:×3©§dž0`B°éúEd饕ÕÜ ;™ >gžUÆÊû³Ahô‰R“b>S¨ 4ú>ê íö!26V&y!~nɇxò¬<<缋J=Ò‘F~À%RÈU´:ÏF;Äe;@ÕSvï¥Ä4ÙpÂÏ%.(æLŽô‰d¥Ï×—ÁÛ½‚\e¬„Lð¥2ÆCË” 0*ø^d&äüš2'ï&зގƒd>·ÛÁ™e!º3ÔâƒA_I‡w ½ìÆ[i42UŠ(×Îæ¯–¦#Ç ;Å×è˜LÙ&Ú¹,|OQL[\ §`AIÍ&¤»3<ùÅË…¬ˆ¸ætC7rgÞ;ªÑí-Bßz˜×dŠ(ñĉiòÇOα$– ÷e|¬hÐîÜ'á0 ìæ7.BÀŒÊGѨ+ÖP>Œ²E[ç6!“‘GEzÁqÿßw†¯ž„}ï>WŠÃ(r´“?‹Ì¿J§g‹ÄWÝÓÜ„A¥ß3À´æ_ˆ :™có|Á*c‚ˆMA`Ö5ä·w¦Ô±õ±˜wLÄïu¶ZN`¨(Í5qØPÀË3ïR]gÉ æ!â»s$aF¥þiÞÊG\& ÆZ<'ËÔÂßüÓ9pSyaB¨ä·ûb`”‘¼|ƒÜonÛkÍG ŠÉE¬Š–’m/­ùÍ3[è ¾\9Õ‡nL"%™ÝICÂYß›˜km‹ê)1ŒóÍÙÙ$©zGz¨êSõe‘FUš(¥P¦!ÿ˜Ì4 ÔÒÿ–oCáOÊOù²UJ˜Õ®^pw9V¢À‰\~Þ3I]}j“sÑR6]!…‚£©Þç¢& !Aª#N@ÿsc0@Ù}'~©¼qöÎÏáòD!|&Hk«â%ºúõ–+íóVœN$¥2o÷;¸¬84 ÷2¶›Ž]|½¡ùIyºÇ¿ð(\"Ë}éÁÄ¡s2ä’7HÁånÌ0SãøDó<ì’ ªûŒÖNž,´æ¬£Œ+ôQÝ»§dÚ0Ì•n^PŒ„3ˆ `ñ^?6Òì‰qó›!ÅlF\µO,PôC¾ô™§¬Y^s¶ÁLB뎥#]W{ÑW ¿K¦/O5Ävñ>c“‹ykß ŸBÁ¸i“Ù+{ãm¥ÃD›dæÅÝ›’_:¥³“|Š„H&½oäM¸% ±Y+'ñ¡ò?Œ¾Xcդ怶v‚OzÌëõµaŒÅš×uV?wˆí_šÐ5¡¬þwè„ú"Ëdl“J¼*¾À[†›+Aã¾l˜sÜÆIºœt·x:ñz&<1¦>I˜3Q묌xŒo]åoxŽ>Ž--b)Á¾žÞñÅpØåźU+/áoÁ±‚JÄžÓÞê0fù”µZ²Ï9í\Sµ£TZòBIêXÄ^ZP³‘p 2Së|ð,èê¯îOˆ¿›+K»áÙÒN†w¢ cžVÜ ;.Të’ƒRÝ‘Ÿ‘šÖ8÷9uo¶ˆ»îÕgàù¾¯›Ní8+VKen…£\¼ªŠa&…~Öè -Ùý¢86‘†Òo¯pã»D$TPâöœ6öbSÎa+RÚª… ΃W%Mw3V¼õ³ &ŸµÝŒ~ãÖ¥è³üÌØû¾p½¥^_žý½ïŒWÁâÉ#3ËožÙGB@%H:txQ úIw•<¨²ÖEËù”Óž÷ФÖí‡Ä—ÐK¬ƒ§¼y%„é€DîYDÓs`ÝÆèé |Á[ ~øˆb8’ ¶aôµÅùòÛñ$›Þ–þç”ðZ½A'æ_.çÙöàèÞÙ¥¢±ë?uÎS†y€ßm5gºÜ̦póå•Öu ž¶m“ i |¾jÒ8_ƒÍR†ùw ïs‡ŸBT[¿Ãó¼ûzP[Р 21I©+¸=´!,E’Â\¡"ÊSÝ<¤^Ùæs[I^G@¶¥âÀf¾¶I:Œ3œõo6 | ŸÏ²k.Ñþ‡Åº–Í0 èRô§T Wz L: ÃLýÖ,žµÝ¢ mxc¢b±`ÑÖ8|Ìú/Ï´WJ`h‰L³ï ÚùŒã6tŽ, ÔÔ¤y(z{ëé.)àÿ} £Þ§ñzÕ/=9£‹ë>ò-½€DófyõÀ•Iu&n`u–L~®!½"Œ“à ÚPyÅç„3Ã)§7T³à(¨s~Ì«;¸Ï­‚̨– am ù,ûkjÃA³F\Û\¨Ÿ‡NÞYoS Ñð$³O­"+!S‚ÞtܤñuOTD©$rËÓ›èPúlsÇ’:0æ¡8£z6ääÿ!¥™JÀ¼TŒâ·ÃŽæ–›¤Ð ôÀ Vz ±û}¨Ý:‘V‰@¬ÒötwÒ#®Ì”@yS€Ìà6eRêS€ÈJå–|ÍÔ»çMµJù€Ïj`}Ú½ñUþò("¨¤¸VZ†ÜGá.˜Üž5b=Ëš€ÄŒI¡L¼ùñærð3% SÀgXJ$Æ ³€#›ˆŒH“VG”då†Õ;¨¬7:=}_`‰•ëÓǼÏ6 ønõE\´c.¿{ ei@Ùñö÷RK5 IÃ%ep¶\°üCýé`ä•0†¶<Dð†5ûz¡œõ`l«‚¦£P` žC‡5ò¨ï¾dJwýÖÇÒŃ9¦ýᄈgÃѶ·›É4÷ˆÏ±x¹vP"IãÁîýâµ%_–LñÒ&"`‚†*­¢­Žü!riIjï­hobZ!&Þñó †1t"?^¸STºéÆdÍÚÙøGþH“0¨Æ‚æÊn6¥3S-Õi”<­ˆŠÄfÆÞøK\@ÏÊýÄ<Ž½á˜¸–ξ½`H9䚬Æ|…4uâ_òÄlµ¼£{ròÉØípZ=Üö>§ÙcþÌLG+Ü·]õ”–ó¶FæVz¥Ý£Ÿ(èì*ßÊR‡ TüA{gvn6itãIàz ÷È>¹C%"Þ(pÃ"¨?aŽ?s6ãný¿Ôvv5ʈ~G5å”ÓËPObEšniíÈ_¥/ d2*Œ}†áKšODñ@ÄÙ'x”F¾'1£¡òdž&ÞB¿ž¢6¸ÒÖñª}äšÝ'-îû7rëf‰+Þ6šÈ\W@ƒ½'#ÀªÁ»UÓ)Ã7 êíДg¼Ýã,éÈnƒUe¹£)%£¨—5W6S ¸˜âx¥Wˆ™¾‘¸¾Ø(òYqBäz`AȲ×W{9x>i‚íg?©«ÔMnÑvngŽ Åà:˜3Ð'>ÊŒ©ê]ƒ‡²Û3¹L–Fé¹î”÷êÛs#ê²€}°hO×ñšUÕ=‡ü´Û]3a<­$$çrvÛôž|‡é7"®õ¦Í§yÞw5ÿ¤<’‚ ÍõÛ«Ú ÐæºôÅOBòÇÜÃåŶ £îkí­tŸ^BjøÛ›(ýHUÆ»_™e¨ý)‰Éÿ nÑ6¢Äæ°î§€‡ˆÕ•;ÙuuR›kQTÞ<ÓCà^,+Õ Û½þZcFÙ3Âï*ÙÂSlD2D¡Ñ›ÃdÉÅýFÃJ¶TßÛN¿5‡6§ a಑‘'Êa¬6©_žWëÏD:??ãL9™È¸ÅËõ¯ûN%&,/E÷†¢Åöûy†×3Þ,uÆ <˃pÑ'ÙY±T°ÛsAL@¢§Ôn¼ žŸKÀ¤¯¼+îß(ì[ÎÔ«¹@c’Æ-â?x×?`›ŒóËÑ Oo4d©è ”öÌíÁÒ bäÄ£+«º«Ruèªþ¥«Ts¸W°â`‹¯áøÀ;Ö¨dWW©¸ëÞŸ W7[?î Ë—ä"8á.Ôå7ó•ïý©no'êàÝð4„%€º«Ôš30æ%dЉ… x5i4(0ÿ¸ö¦f›=×;‹~º’w?.Ÿ¥!ÂM²R&¤@bïP˜ “¤¯ Ží»)3_ßé¯GVpš¹ÅA6gΕÛ<éÇо0¹ÙÄ?wéJ‹ä)—KIEýJj2¨™”œAÄGߦÿ ¡º–›&’RùºØ˜ªKw‘Åæh¾FãaOxbµ{††Ø´mV7oÑ?Ù²O€(Y·I³¡*•!lIŽJÅl–ÚÒK i%'ÄŒöü>ˆØ,¶av`4i°ÃD>wnû*Í„¼Q_xÂuÒ/Û&,O£Ô­Ÿ!†˜zøõ.Qã‚õºàÊ#=°µÔ kè Ïæ÷pâe«ÁÕß°êËh8¢¹_`½žš«0¡OÓã½€Úƒ=ø2+·6ù<ª5zK-eгX_Q4Ø|v? ÍÒ5 Í”1Ö¥±<û-Û M@ÌÝõz‹¢Í&Õô} Jc!-KúâßÏ¥HªÏ:×ÔœGDzô4Îv™:)B8Îå;çcÝÛÅ}õ)„[>ÜT¿id·cɉºï-Sa¤ù#~­Üô6j0CwP¢^‰—.[IÐÆ“’B¹z/6 µRPüõ¬ø¡@>Hêß ¹ÊkÅ„T5ÏŠ[ùæ‰+?¬/*ȰOŽß9…L9Ó?ÙÃXˆ YÄ(Ø©ÁNYÛÙùl+`Ys„z74…±+7QÙ Žÿ«‚kŸ˜ââÁû’½;МÅE÷Ri”©ùÏQÜ$ß•ùÉ{–¥¦Gg;ô ë΃§ˆÇß=)syð¶'¦7VsãÇœ«+R‡–þK\,0³T%¶cA¶‰8eÌJ©1¹á.+µ ƒTÜфЂzã´5" ‰ðmü-¤±;³Œz Â’w]ϯ¥NÙgÜ¿”îÉøä¶K4_¸þ•:ªLÉ~™®`±‹%‚ôΠÆòöØ,Ÿt;ÄylEîùˆr(¢g5ßt`èÃâ™ÿÒÀ¾¡ðOk®×êÜNo6¿Q…ò–_ÿHô¨˜W–z.“#ac¿»—@ß0d\ÃÑù;U©ÕþE6 ¸¹s²Úÿôsȳæ*çËh"“‰Sú½Y©•jÖ»¡X%Û‘ÀuòlœÝA»½<óÒ§›°Ê"Ü]oF£Ih–Žë\®‰‚YfwHL=úRFúÛÆró´}x»ôA Ô³þ?úXƒbÍ;QfØÒù-©‘*ö"-Ç’lŒH¬Ü=?Ê;¦5(/–©YÃŒ6 .†\Øà@ÞŸÇÙ»g±Òð] ŽHú^wKí9ùC4¼x¹ çÍÛÅ/²¤-nƒ}êUsng)2ÇõŠJóI›“Ê"Þø˜1a,~D<]"ô1WÉE³_åZ´æ hY–M.¿[Ÿì+ÞRïÞë^ç ySñT›»%ÄøqÌã뢾4 ÒÚ pZWž!`ìXzܵgÄë$¹údíÃpç& aÞ{_Né÷ ©˜À~fqÐK¬ïƩɠô·ô´“@^ÆÙýŒ$?0‚âu'AÅÁõ¥ËVÓ†“‚ê¢xÃÐuòŠ-¯@Nq‚ƒhþ¶ßN œlù5ʈ&è›ëØ^WIH:êÁLKé‘•Œ! ‘5Ð&z˜åèºd²Ùg?ñ‹-¿Š¦Œ£å--,[”*"h79Œ<¤‘˜˜ð\”?NМ™O÷ú±Š$[‡"ü…Õ“§î‡æs¹­”öÌ„%z­¶P0òµ&HKÍÿ2šp‹íßîÜÞœž¿2‡ŸfÇïc äü‰Ó­’“-ÊA„X|¡Æ÷. 宲d4 _èªidÙŒ…Ë nMôOÒ_{¾ º éµýªÒœTüÜ2ÆFƒø ‡[t)•÷ÂÉásùRRͱU°hŒ M¸áhÒû"’C ?3ÅÂv¾ (YgÙ[_þ‹Hm²ûÆLÖÄ•¶›BÑ|Ñ^jaÓYèüq¼‡Ñ¾ÕÔûþn…# òaÇÖ”µ‚h÷y|¦1:/ä¼qBà—#5Vh¶z;éÚü ²”^].ÃAÝ@Žƒ…]ŽÈOgWÛK”ª>éÑŠ~î ìš_Ê?­}Ö \¤Ö,±SFAGcŒ3þü5``UæW}ÕtçÄb’ªEp•œ»¶ÄØçtëb¾Úõl¦»ˆ#ýq#‚lÏ(yC…Ðþö㜻'»amªÔÿiYãç6W•´X[ Ÿ„”í¥¼Y–´éÐH%j· öt€ÒËbÓëØ¾)!¹[“.TöHƒ½Éã*b’Þ7Åj4O|Òsr„\ïŒ@#ø^¹êqI»óaœcý„ŸÎ@ú›ô:ñl‹ýå|Î[§(Ï—"–ßUæ¼6Ñçˆçј øA´%.F^ÝÁ˜u<6"À¹©c–ðNàðv]6†Üíþö9W 0v<(ó+aj(”„[¬)ÖœK²„0Ð+öžL k‹“Ž´T ý^3A7Uµé—@.@êÄþ+‡•¤V*³—mS+Ä×3¹–mÿ'Ó™á ÚÉ„¤]†uêæ $@7Ô É]žó •Ë0¡Ì§uƒ/¬¸d'¨S¾9Wzlþyæ¡+ ò§Í­ºŒÔË!˜ÂM}t µNîX`% HuË[Q,Ï$S’_?Šh±UA°,ßR¶ZAÒìx[lħ¦’«>Ê”dúËà&É=@ðì{X@C‹WüµxÊ5ëʹ¶Ôètû] ›gíozAsSuž{Â*¶­çݶ÷µëËñÒ¶Ú5cñtú¤fô€üpžï IpU kÔ)mW•#Û¬Æ ®¿UcŽï…¶‰’[Ç!‚ñ©°ýèÐi§ËþñèŸgF_+õëi–•.ñÛ8½~Á²O@—…õc fu|¸à)PŸ0µÅ.àÆà½{£èÑç™6ãÄDõèwƒ/9ÂåVþy˜#naÈùSí/Å=—;ŽÂ ·_FSP=Ï:Á?DòçmmÛdÃ2IG+ÿšÅ‘×VŽë9]i:øhW`­OºmA*T¯Ö÷áÞ*¸€ëÊ/†"¯ñ€ CÄ0Âõ«Vø ÏØd§ˆÑa»W§ˆ¹š[’û‘Œ‘ûƒ9Ë8$åøæè¿i]Éo49ŸbÜ:~$"¡“.¨þþä0™ïT8Ô¿ôg7ér#ÌÕò9üÄhoF~¾pQ‡Ëk¹&ÜIŠSÇrDup„4ö®{[_™º’ÕÅ6*_t`8Xa6v‰›æ±òufÙä9?`¬©'ί»™nk¢9zp¯€>²é§¦"0õ˜^êü€Á¸ÙÏÀ­Jgèâ#™â×á\wåJ*ðÄ~˜ghùQ$¦°T1`±dC«tàõ²ëW‡æÆbntñ Œ´ªÑÄ]©öT RSb¦4I’åïªwÙzšñ<1 'é-A( â#*$Ý÷:{ÈI4¬Fwhžk0õ0ßX;44ŽÊL‰”Ë×íÅ%€ËMˆ¡.y Å^âNõÌN®±¤î>‚̬Œávö„Ðé ÀS¢äyÕ'F·ñu(aÅÏ\|°$ž»o¡Ÿ^©³Ë6rQºpóÒÆžÄAñÆxÿ““^¶‡(`pBLkcÑ»:¨‚ã÷ó¬5à°$]›™-dzÐ<ÈØ‘~ÓfDó¯ÕHRžhT²D’Ãq³«KÓ PÞ>ºú†>è®*px‹ TSn³ÓAÔkスö¼ñ¶~2¤­§F5³) ~«8¨W¡r?ÐßœU­¢Žî¾ #°Гº5yOê“êš“:òásÿ†`ÜÆ+þ$‹¿Y‚ôü×IØœµR£X›±<OØÇGhãÔ0ï§²[' «ÔP+´Å$ĤGrçµí`¿x^3[gö³h0Ýh%‡h,B3Ï:¡JÚž)s4YeìYv‡’êßü'm(.¤• F|!DäåëÌ—£Î¥$S¬ßöuÐYhPl¯:8  £„TKMžT´K”á¥q¼ßšTø)­Öó@µëlÞ7o+9öƒ–íñN7 5‚Älø–@ç]qd)±°hv"yiRtÀc=²ÂHÆïå£"=‡ÍsÕIiuL3D5ò„slJ0²ï¥ñc½°z¸3'P.åƒc$ùø$“/ýH8êHI«Z¶Ç",òY¿[æi@„áQ¡V•“‰Þ ÷;=‹É3ÏšóŤiÒ~±BH‡`ÓJt¶llrСdy •ñß)´!Èݱ½·â°üöØŠ¾0+˜±Y ‘!¹^Ääú÷ë*øaƇ,Ws<“Ξ‚–¿Ú¨Î8ä©h3E2ó’ÃŒ;­Ížf‘À‹ÂHË ‡oÈ1þÖB5›®ñWw$™ÞvŸ11[‚ ÕŽÔ±‘ŠõŠ×oê; ¾¤%Œ” n†‰Á.]œvÒÓæ‡úÛãLùJÐrãKÏ&r–0½,ÁÀŸðò|§à9‰„àb ŠÁQTèÑŽ“_á¯yP`±ë­ÚTxöÔÎÍšÑoÏ]“ôq%!Xü … Ö-™ßwl‘õáe­_àMˆÚ”u‚,Î$б“NU<ÚhÕÃwV€¹x—h•«Ã,Ê*˜½<0y#m/€)³êdõ¾èË#`ýpÄ>[.(˜¦ˆ7§$wŸ¬!‰‡ôÞ0Jn^vúi`“X°‡•±¸ü°Èݰ<¶i§d•oxãäiVøÃG–bÕßìy\¹þ0½€è¬uL¡ŸAÀ¨Üܽä“=N¼©žG]ˆ?ø02ZŸA]QyÉØ&î8tÝØ§ ¼îŠåŠi„9½5íÝ™J)PØßÙM'ù}ö²¡‚Nµ\D“¡cÉ»—·Ó~A|„Ù¢GÊ)—,Ô=Ú’;ù×뛢vZ%l>ôj› fg•ø¬ÐCâ/([åò®¨–Ì]ÁÆ•ÀÊdR Õ™ržn+›ýÊúFÿoð?ûA8t QKvc6ð€Ip È'œë1öyQ„E Î±£Uº'Cà™“é¯‰]#’íþÎQŸßâU5KšÞPàÆG`îŒk^µæ ".Ó)}Øêùg§ïèjф˸ÉZcžˆyƒ¬¯HjUCO »ÿp9Æ1}êÇÅ;‡À–áU#¾ÜÞ¤»‹$ß}v^ep´9”+%@¬_DÁ×ds’L樤Ä/åP˜MíbXÎëý§a¡u ó4øÛoPAú[›G&ªn‡:$£É“UAb'í¦eÕFWÂ"Gàx•¸¤¶£åÿ²#®˜ÅˆÕ¹Ø¬tØõD·ëˆÑSowÙ“šÃ¡Î®w:¯¦”ÜøåÐl’Û`¶ª r @þíf$ âA¤•¢N2QV W.ÖäW+W œ q2ãWƒG,§|ßÝòèÂ_º’´Ê©‹¨BI$ûô¼°D²#س uÝb{%h»uKÁGer94I2§ÆGUÀÁ(xÜ£ŠÉvî=þ§¾jë®Ð·çŒ-³Ù²ˆ¡>¾£ï—&¸„êÿøªÖA`ï¨ý¨Áµ‚¾Ù?6àÀPì:8w•ñÚ4òáÇ[]žJé_/,ƒòU®éõ‘ƒ}¼×š£SÝÓãߟ¹ N”ÆÎF½k õ;½äö"ÄðF• õ.î™Xföën¡ŒD<&¨§\¸ñBaþÌëQ¢PsºmêP¶˜÷Å–œ¥V¡랇8ŸO`S2þ¤=ù2Ú@Ž÷¼å5Œx8÷ÂD -œ×_ÂÕV7í¦Øø-,9ÅÀ$̠ɶ‡®)¹G’0±s3l$ïÍÚ…òôC`EP§äï²T‘Mטç])Æä 1Ý,Vɨ„p­†’V‹àš“‹õÈcœuªí´$ƒJ›€ ËÔË»ÏI{ØÖ¯61¦Ñ³"dÛyöª0aa—|¯Ÿ/Oùdͽ¤(6ÖO¯Ùü¼q‚)«Í„Gü{¬’FOÏpF½¾×r‘£}ä”XèPU»ÙdïÀ¯`¾7ûά`erÍéüd+Îk²±Ù²õdÃ@æºbLŽ~¢'âúcH¤Ÿ›å•Fƒõ¢¯Z=2µAÀë§‹Þ#W¿á°ƒõýcµ[otÅìZ§òVºò ʯ·ëŸÒ±Ãm²Æ@ìÿÖ…Y®÷K#Irzý˜5jþ£…Ç`é0-#'räK^acÊù4÷àÀ|k³4¨>|àN²Ô^ET&rÅ^.Õ»z-}·\W¶‘šàûv»)³R ¹þ<\ùàãRÀ?÷a­t,VzÏêãäæÇÅ ¼&€>uÊÒ~`Šþ­IÞÁ^¹(P˜Qec¢TPí8„Ç õ`>çVö>ê5ŽmPRyfZzYN¿”T²Þ“+uÃdŸ‰n¼¼XQ#)ÃÿÉe¥/~õ¾;O,I ¬ŠÔØgŠ95N²ìiERb¯rº¿;÷åÿ.x–žCFøàOYÎïøb»^ s¿ÇþLËŠu'ÇŠ'ñZG̰ ÕQ°Ë+[X;å(ª\8xó@È›S­õ§Åxj؆bGÞF‰âV ­M%U礘:Ћ%29®6ä”›an‚îBÎ}ñ‰,7êÌ1ÅçØöÑ“¯ÚûÁèÙ~3èXg4”ñÁW0s6ƒ()ÆM Â"6…ÕØE-x4Ýèr">ý±º¶—?4¿Ùaªö|é–³«ÓQƃÖ1·Ë +`ý2a»N¡¬)-'S[§æ§Ÿ%Ô•¼ïr“Þ>~”ð·yð®O–J cfkÄ0$€Ê•&açWÄëМoŸ•—;ÆS” -‚óÊm’ÌVBc•sìJh ªOå¬ ÉæÀɱ%"0sYoàý'º†€1Ú?§þŽ«±Ýnž›¯>}UÕqWŸMmç³Y£õkóB;ŸLNm sÂu¸µ¶@| ³bÚ SæüÆýŒ,âðõ|Ú¾Yq®•7}¨hñU +jî$&zŸô«®³®äÙͲᤊgÄ 7´ì+wílÁfPq%w{Kf»‹¤Ðf6vص‡r<ÕåäÊڽįJ.úPà=.¬4 •ØS lŠKn˜îµ¸@Óff.›-®¤OçDr-–Ô bt,YølOãf>û銔áº)˜ñºìÎÌ!2ù×¾Ù•f›»Â¥;å+@"[õçîIX'“õSQ¸A€º™¸6Í@íçZ*pZUQ¡Eã‘äkûJ[ÙXMË Êå3R ‰ §–ñŒlçÎ0v°aè£EVsäÇ]b÷g=ô—É}`ßw¼ ~ÑŠdB9ª<8êO\UaÕà¢Uã|Ëäq¢tø›™ BYRªô=ê_¦<ù’ë%qÿúW{Ân¸ -5vœ+‚ÅÜC‰€ýgOñþ‚9³ƒÈd‰} ¬þËš+¾q˜ïú0EeŸ6 ¹–liü@xeºç£¯Êa¢WnMÞ-–ÎyÂý÷´§²ù=V&ñKçÅë ij²<Uµ85)¸æ,ï;ÅãTýpH0ï!™¬>¬’6mf¾Ñ¶‹æ3a[=­,¨t¬(h)ÍR¼oÇ1|`±Ìƺ…ÐL…Œ.-g×—Eï*y[7àážR…HËê»_«ä¶îíµ&a{DHÔU *òpUC¨`?C¡÷›lo>EârÍ|®A—‰)k?6F'†_Ú@Ý~ u>Yô“ªFÛ 5ûWŽenj˜{®²Ì ŸVQ{c^"·½gÈ=¢a¡C93ÖÄe2ض¶òĉi–V}7y.,˜êåR54Ϭ·˜ÂÙNÔ+?ÐNìþÏ’Iõ_Ÿ §XÊÂ)êÕS¸sa@"=æ_´¸†øBiÙºRø¶Dqú“îYåDè‰r:Š1²[]~[…1yˆ~‡©•Ž ' ;hìÒU¬@yÉ4%tÂÞÆR»Ò kÁ”5B€+ÄŸÊ9jU%ïóÉ(_¥D^œ÷E—–­ù)ën|HW%.öî܇އœžFLªÝÛÕ kù± ÍnaAÔo Ôá¼ö¾ ‹$¼Án0_§ÒQ‹—&oºyôµc“ß@Kü6¬9ã›úûÜM.,é‡rRó%”›Véïe7@à SŽ Ö Mb HGy\÷'¤¹ì–<Ú›ƒLƒ`îüáÑe??Ñ^½ Ãh2Rú¾WiE«T&\«Å[(|Y·½F6÷ÑTéÁ"§^Ô›µÑ•WR‰J}}ÝNž?¢£q…˜Ý?ÃçãZ›WÚŠQB9ð©J: /Ñzî3?ÎÍ{2Å ÙN–‚ ýLc,þ õ‹S';&zU¶ä¥bbóuîõ¯e‰×â/yºÔÉœ£[ìÍ R ‰ ŠŸ^}*÷¼KK~]«'&zá÷Cw°’ä²áj¾y'f*™¦Aº†}½îýÙñÊ9×+É>‰ljð—»вg*CÂ-Rø±AfÊ0hq§LŒÙ柳h€­L3n”ÂÇ*Ìœ¿³¸3¨WŸ¶#¯³â:}bòþ9 ü*þŸì9)6<ýÝ_jø> ýáÏÄ@Tô„wš‹Á.¡Gs¿jÆÇó¿Ý¹£é¨W¯‚WùȆRÄn€!ÿG±²…w;8 Òª †b•UQúÙ½O•ºÖÓq'—A9ÅAÊVN û0pen»õtøó6ø|É퓜–Ýìøî`T§) Çš›[›ÿ}¹2ÆHáéDÂÊ2ZîŽÖ¾2µ xÙk§D9ù>4³hÅÉ<Ž«´qÁšm·ËgtÏx탘:ìNi}Æ‚~Õ`pB¾Þ;³dÔ‰¼Ù`4ŠÎ•icÕ›Oç¦ÓºÝ€ÞL ­p²—"„T ÌëÞéäòá;Âæ™Y½ÊJQ'–C'zõ­ Ö+Ÿ1LA€æÄò5ÇžágGq”¬]Vwœ’‡Á1o“tçÄ šÈ÷Òg祮¯ç|¬.~kÜÅX­d@y5KfÞÕ Ò—+(íqW ॑ÂS³À Ô+][Ѭóp)PP{è`$ÜëZ€BC,Ç8ùö‹êÓ¡3$Z¨¨nuºó6ýոܿ,‚\ò.ìUŠ”šòyz‡Ïì²_Á@åökŸÜü_Ԙ˕uhîfÑIÈÜu¤©´A 5ä‚­ô{[äšû5‹µ~dû,Åâ…(˜íŒŽáÔ—lÅ Ddjr•sĬ¶Ô0§nÊF›¨Yš“»)ÝÎׯ1+î.‚(Wµ C9ÄM«!–9½Å4˜‘a–tj->à@æü¥v—SýÒ¼·ƒõba1àx!’H [3£oÒâ-Ð_B›,o“_t2,ÈÄÐQFí¿ú¤_heT¦ŸuùË›÷èC@Ò^û••=Æû@o‘½/ÕQÆG+Ø=c[dqûÇðëc êžð³”– *Ÿg`Q¹öˆ=†\ Æ­Oô åºÙY›óø}EôÓòYŒïí(_ÿh4YXçÌ}Ë„ nç(†ñäg‹ ÏÇ}á¹_2¹Þ//§Xèz’6‰‰ ŸwS=¶ kaŸä;&F¾-+ÑÎk¬;Á!7u.„žQÔÿ¦]ufZ5Z ý»€ƒÐàØèÐ@¾+;Ëß{†[ÈÔ°šŸ¿û§ èéiQ Ž&*—ÑfÒ-†=’ö”|¼Þ`gÏüÜ ~ËçÉŽücà49$$¦ágŠt»·`Ö£o©Ê£íçòÉ6–½3Á<¢ÕI¦ºÙtt.MÿÓû» æÐÛí+t)4Qn¢¿÷.^mR*„/ïìÎNÍS½å( ½çrmا¯gFâì.*õ÷–È!g¡5 S7O–RäEÃPw{«ë ‡é€™Åž銀/Rr.j,vß7]|q3ʪwÑcn¼GNŸÖ» ÜûÊ L aIÌb38º³ÅÂøfø ª)O÷Ј’©!“Aêr1$f$.VÏEM Í6|‡䉡ø È„8õ)l4ÚÒQ¶å }Ićф€êÜÀ$?À“´(Œ\Lœ)¦ŠÔ«F>¤)1ñEeh±ï} äöm%¶HåqÌïOZ{¦Ú›·Ñç6ªÂ)Ùn/bœ! e }º*ðbïñç¸îwæ¨ Í´©¦<¾«Ý{Å1ël5ù=pü\b$Àä‹™¸¸ViÞ×% i€—‚_-½9©g›ëol9¤Œ@É_(ÊKÁ ÇMTu¦fÿOîŽE 0´$î_ÛÒ~ °þÙÛƒñíoq‘›Õ_Ú“úŒüÞ —’—©ã£â( Š~ïãFø¬Fû'ÕñW3%¼øì’Ëb@~8ø•¨Õ!•:eJ ðt<† ì| Úîñ—‘G2,OÞ}Ÿ¸xþ>¨~Š¢Ê—ûþö2ê³<|ƒ¢Ž4µ¨ zñ¯ÃXÏÅY…¡óÂÈ û+õC5û¸qÉàä>ªä4É (à}”ŽgjÚ“àToðÀ׸¡×yÛ&?É¥4ià&¸h¬  Ïø!µ_×n-3«92ª©2n'èì¯7)^ÿù³bºU°MJ3ð ï _ÄäÚ]¯êeî¡úˆƒ‘¤ýÙ3w žø)öé0¬Xš®ÿ÷ø#rƒfc›¾¢ünâëÁ b°÷;ª-´Œ¡®N¯á…zÍFB}¯›\a‰!&êµq¾ib¶Þú‰æLãZéá{Íž@øVþ}!g žÝ5¡ºõzô-¿ÎÅëý$¹ÄàdÛŽo+o9iÕ‹C^~‰|±a†Ë~ÇHœ„âøË Þ'ÏôBOETÀL,g@¯B§r xÖ«-#ÿÓæV_¬ó6óEQeôïäáªÖ«”×’h…Ü%üg‰.Ÿò7³â‚ò6Ê<“jÿ“[јKÕÝA µTvÑD@?ÞÔ"{[’÷š$èê Îë8›¤«©7„+Y@¾`ÖŸ<ÄîUŒ)=oJh*´ÅgR pCX Ètò4 Ïx4a»Ð¥0›‰1—ßëÕH4zÞƒžÓç´]/Å©´4 ƒÞ¤îß#4,cØ›F1óc ÛŒ,Ç߬ý*‡ZNqÁÛÿòéKw²ó¢Ѩŀº\jº¾i¢ûÔépí/¯}u~«)ú,®NØFwÅ¿O­zÚ`÷ÇÄ‚/mQ­#B£@2œšl¤ñ ;¿qB×!,ð!¡?¹#iBUuîI¡ÿŸÞ2}$ø^o5lY% |.¦u@7F.3ÇBK;ª(×Jˈã¿D¹ Á’ÎQNµ3MÅä9eÏÆfzcc{ ЇÊ=¥i;_” ÕàlgaùÛà þò&UÔÑwcÉÏ;q\ÌÔ„"þl®“àNÝíȧ_ÏÙhl[áI{õÍКJ×SçVérkAò€âÑÅý'>©Šµ¤ð¾‰bsÛñ·8 8¡ÚaÕkorî÷£Pþ”þ«ð3ã/al-seJ_lJŠôxÓšžðLÍIú€†¨ÃÈ£ ×Àê6‘ªbÖõâ›h89åg _{€‘“jÖb‚Þ Wþ—Å,âG *N†&% ßñtÐO$qa³Ò™ˆç49._HR—pw°ã¤O)b´+ì½±ý+ÛÓ??­MzÓmü]ý5¤KU ŒfÃj)Ç!7Ël’Š`Ç6=A†„¡ë]~ÀôMDåô áõq™2ØHaˆ!µ XÍ„SWÎï¾t¬~´’ ëil¢Ú8üQµÙÂ2È·/‘“¼É¨üˆ<=r6~ M§WËkæfï¯ÊE©™“)|¢1¥.nq¨Rrf²Ò:w¶‡÷ðÖÊñ¥£§¢ú¡òY¿ ‚Ô¨*a‚S¬ÿà_kÐCY¢‹„ÙÑÂæ»‘†µé ÁI]³0Ö`#Å ±oè$ìw5mÊi½«>™g¡`§:Æd3yÙ^ˆ˜Aa ó¹Ç&eç¡`ø?,°TçÙ\cõ6Á ÓG\¦¶SŒKR4ø–ŸgUzé⌯7©Œè4/Y餢n~X6”´$†êúCB<£¥:_Pt@à’áŻۯÄÒ!Ò.:NR32t"¢ÚÊë¤ï°l:,¾«dT§)ŒþÜÓÊëq ‹âè°’–d¼k¹o<ý$o3µ Tô®4tßÇWáæår¡^ŽXŠ»¢ °ÏÙæ,# î œÒ?µG Bù£|%fÆ€š›/}£+#_Ô¨¶ÊBÄx¹ža š-Cƒ0hºÏ7Fªq&£)|c,ÕøXÔÑý, z«{˜¢6épYk2&ª3æCJ¤k÷ðßl`Qv"œá÷ð†ˆ\ÈþêRÍÆÙºzY¿à£'ÚÅË(”¦ëõÝ>* õ6oÐ÷åØS¡2I*Œ˜’,{*i…=)4ÆÁÍfÈSà‹eQбEïx<ßxhƒöb`,¡,È)´k³­@t‚—z6Ÿ(£2éäg׌N•;ÇÔ“ðâf{ÀŒÙÓr"o…11¨)­7¿jçse{Mø¥çT®|¶“†Ÿõmñ{1pÛ&X1äÆ_Øp}€ž±+³óéíð“èLM{OtìuÔÅà¡ý9â–ü€Þ”Ñ¡°ÊØÁ\é$>ÅÙ¼òÞäaÇ]4iÿ£0USE`7¶<¬ã›9“%ö=ÓäzbÙ{D5í\TœüÁû9vþ 8Bd\™>w•<1¢ï] N:½½¥ßlW«Å££¡DV–hä·ä„ƒ7];m:¢ÛW$Ǫ0ž‰¼Ÿô§1¬l(8ȇŸub–ÍÞž»9*¨SN…JÀQ÷"ŸÏt©(¶•›_äÓÔ<‹ %¼t.™¯iaz+ôÓ¯¥ZDv«.ÚUÍã䇉^˜1„^‡Å²:Â[ÓæÛ¯ë? šéƒ$˃ +ú¬KKtû¸1lr:Þ$2¼Œ›‘ šq±¢mŠ^^¡ f$R«Îؽ:ÞHÛš¾‰ñâ¨+,hû »}ïíÄlDe7#Yl2<Øðȉ6pƒš03 L+˜`¡k|¶ìå‰Ë\þÌb‚O¨YÝÖÒ‡þ‘Aô'hHÆ(lu˜&=·{@kÓzF0ê:E= ­n¦bþUI«Í €º7rò7nwÁBe6õÎK<­Föÿñüí¥Ü2Ò¾§G =â¥r­¸7#>†”k‹^×Úwe\6Öæma´•Ë”xK¦ªÈ–žCù×vš?Û7âI50Il˜^é~toØvM[´m eÂâS3}Åd3á&7ù7>Uowþäå ”OH´)ô”Vα'1¯”t§ÝdÅXcFñåQ€:ÎićÃÂj00à{MøÅ¾$ûÞZ”ùýKà¶í½“µ@å¡Òíë+ÙÖÖˆÀKI'ªz]âùï Ü&¤õë=‚"u!wÏ.Ú(€Ž J“Ñ™7%š­÷ª3¦>Ež‰B»-á©)µ‡PŤHŽõ$‚RGKÌ¡Žî á[.`­ Nv2= ÉÆÀy?]šÎÀ!D„¯÷çýÛÉŸô6,jvE+ëŒ D[*FìŠ?yÔ˜>Ž\ºxäy›„ 6›çé%í| ’ì‚I¾ßY„aŒWë7á; Çô¿f>}Z1œÌ¼_‚†Y(»Êíùþl.o7¿ïØ¢å§k-ì6yìŒzñ·næe“'ëyån› xi5Üp¢õt6Tƒ‰?Q9§cÕ,LÓP´©ŠÀ¦dÔS‡Kq¶EˆœßêdÀdןwuS­Œœ5ï@Šta ˜-[ U(  ¾g2‚X;î¡áÇ&MÚ˜ç./¶Ä~JUžáœ”Œƒú*b  c:VH1¶”½ˆ¶ºÛ]Î?F©ô1ð IÜgÔò’yýƒ_lÝ¢º£áo}Éøsq“Ì#¡ Þ닗ĉñ!šæ2€ú|n |´æ«§\™ùÂU,1‚Fe•sLVdêx†èú6"ÖžsÚ÷$Ÿ ‚dQ’üîa×ß ÂlsÃJ}ºÀkaÒmăéC~K— œ q‰ÔV÷ÐkqÚyD¶;ÇíÁõ{r@!lHƒ]íwìð¢Î‘Ôr„KžfÞþsinD)ƒÖ\úù•8Y.xÖ*Þù”Ø]Ä[ñkYlÑsÖ ( ;åµóÍýöÝF$”’ƒ°€,_i=Z¥óÜí±!S§vJe÷ºE%µ@—Ÿ†ñ_JàÔ¥YøXÍò$I¾Ù¼ oKߨ©T9©YÐq̲ëªnU¡Šï=.¤X›*9¹{$“ñ³àã &„JM•è]f¬„m¶,°ßšÝÒŸ«P?iÌ– I Žá5æÀxU{…pÀÐÅgS¼¥ë´IÜÔ’pßæ¿~àz´Ýâ2 ËÄô$ðj$¥ƒ—BËújŽ!JT<ƒ1d•[PÚu õšú@ªˆ‡3#§Ç4sœÞ}2¿ÔÜÔ_•K1q3¥ï3U L<³…AdÞZ6Þ‹ :Uó¨û|K† ô…_•ÎS&‡!p/cÌ$&ì¿dìQ7­³ßK7+‚¬‘@’”â¾ ÆÎÆ-£¶û0C©w6El:åøú´®©¿e¬kÕv“.wG¥EºLÓûÜ2ßG×dϼú_+ IWT“Ü2Âlj՜Æp)ÚÙ/%UÌY;èê=HJbëš7ÈŸ¬ñfó©Z„à,Ñcjo‡â%²\|>ífJ¥Ãlã'³EHiF[ŒÜ¨™à烠‡„…WMÛÞB«¤ï°·çáŸò‘ÒØ© § K\…f©P¡à…xoYõrÉõ¸/9[³çœ` µ|û»ž !¸tìÍ…Ø÷&½ØšÔB‹ßˆv,ã׺Wúª‰Û\¿iô wà#À D öó± a>_ŠšD´*Wþý›O?ò·(?»© K’ÔEG+Œ»Ò¡ 3+½î-‚UlËUDdY^Ð$×óý¬ïµ/cU”N;ß¼ Üw !î3ßó>´°÷ÿÙ~œX © Qhµú-\¦ÖHë#Œ|£§¾[/~Páÿ"ÅË=¥à°4jg’ôš€wÖ}÷0²î²¼å 1žA&ìo¤Íß]M©?JÊ•4ùWa `#}8éY$cuBÛ|‡Im¾‰†'[ãÊ/æ®Â«> 4Ï6Ð2‘9õ¸Ò¬ä;Ù&ö¯¹ª'¿0Ÿ—Ï+ƒLîXˆEj­?GõtªßòøÓGDVTÂ^˜-,ó›Qì«Ô¾™ à¢yûÓF<â¢-ÈpT¬1à|V§qZS—KØœì aw Øóya™‘îcç]¸Åé püzÑ‚ØÎ+<-jq®ûÖDLœ[sQX—éZ]ìyäoÍc8ídCÉš2H¹Î4±£k8pkÌy+LK3žËÐ>?¾¥¿Åy+0ô@’$éîF°Ða~­ãS\á±êg ê6Òï[Ü>m¤_l¾’rstÑ’E]G¥¦ÏRÖn cïM\Ë©øn¢æŽ'ð‰=àkO”@q:!ž×`47H‰j¥aü‡6õ%î_%ü_ŽŠŽa?D‘Q»p×Wƒ«)ñŒS¹¢øE›O0ÚÉá>.5!x:i*’¿ ø~Â-™%ô¼¹!:»¤d¢4Ìvê¨&VÉX!÷ë£þáHœácRMÄYÒK|2÷«u퇥`SkÖè3.kQ}JSR öù±›NüÁÁ&â$mùëÏå‡`¹ù~ÿìUaH…Bá‘mKEJ¡Û¨¢Õøu_ª]ËÄj2ULúì \KNþ²Ó;ôdN˜ªHðØB_0l|qÔúj†ýÆÒ6˜HbZ©9É×[P¢Êle¡€pZÀWõLäQæúmöÉ¥–$Ñ2—ÕL+m8 Yx¿Ïë!ñ)ëûž²……[j…’7]Œé1³7µÚ•C Û0ØÈúËE_V±‰Ù¿¢qµx!©,{ôfì­ k}»e9@ýpõï¥B…¶í—]¿5KÝU3åtÿž¼þÍÊ-}•Oé•R ‘sðu5n<¡Ð[ÒfÑ”¡\cΧÊÂTh·vU€ÃÉPFxúnd¯´ÿ¥tëV‘›µÜ£Û~Ö q.¡* T>MÈGø² è%QQƒØó…^©•gð 1ò˜dzi{>\v±‹W¾ PŸs‹õ…Ó6UËspù7|…ïÝ*—ø4ÐÇ/;)sÁÞòFh¢éR«Ui¤C’yò ¿7YCÑH3Ï-%1{Ì2·§Ãò¿¸BtúÝ×d2F‹ÁîXܺY©ÈÔý P)UER|øf³^9_Ðôâ>h¸c°+ÑÞûë/Åëˆ4ÑH…ÖUkÙ.YÂz]žbÅUê{fÈT(qÖ©ô¹´v#>°ö;i긒URvEȽ?ÉÔÁ“u1.æÓƒÎÅ ÈKóæ« ò Òô€å¿é¼8R¦ÖÌÂkˆ¸–Jå*Í-üÃ@¢vdæ­ã>÷å-8¦óF¾ì‘a** ÉÕ$>)Ý42¡rØs sO¿½ÎâäÌÄ~ÃdÓb,­ic²²ZÈíõ™«?¨•êü"(À§×"•?.¶l€/m#:–ïá¹iÐH²ß G †¨9«´Ói³SÁ¤Ùl‰*pÈ!#f5¸+{îMZñWÖ¼$Ú ßi…v†wÍÅ ÏA l² \uA–[§¬r@(9ž÷ßújN¼ìCÿ˘Ú]éD{ÄBOx:` …HÁ9„„¹å:yxÍatÄÄÑâ;<²€Y@Ûî¬h$;ÉÆ:Ðøp5Z‘N%²4é^P‹ êª¼ÞÍÜÿÄ `´ °plµÒ¥’";ÎFoŽíÞêáãš—¦ Öà÷ÖðÈsõ:ø÷žÇ7­+¯ “ý^/1—Ñ:]ofŽÓŸÁŽ­‰/áe~ê‚-îdýög`UQRÿxéYÂedçÑj¥­fàô—L¨O Êt¯=ÓIɇ§ DJ«:&ëžS'kúLŽ_EA0`UŽÞYžÀ£RöXÁ‘uÇŽä=xi-ünøVÓIpf ¤Îa;¤\œ¦ •ÄÅú6pƒp5\ó Ü•<½y•c2̾ç.'z‰vLX)½}‚9×;àâ‘ UüxæíhëF;$p­Oàã¿£'TR¢OY ´Ÿ†ÊšIšübõ²¶˜%1mS+<²>¥l<õå0X3¡j|½šd…qÀF¿†n-RHkpÁí†ç÷ãVÀ¸×d§n°HV¶Ôœ Üê«+¥‹,íþÚÁ"›üÉÑ…?r…DØŠ[£©ZÏòx÷ÌUž„M{ÌRø8ÚÔåÏiªPžãç˜ÿ·û—Uð`øw2_½ÌiÜÞWãAŽYuù¿ZzÂ…¯›€–øÎù³¡ 8_a‡ÃÜY ¯[Üc¤ ˜6×;³b‹Ç_¶¬4ÛC ùÙ¾£1 .–­‚Sþ Ä‚ h<ã>Ý(;„À—ÑF±#˜orG&m„'‘R*Ò³H©ÏÎEô9{Y¹8 Ó«¬< ÎUNúlIô°úEºm—Iz%¾éú6ó‚OÙÝ™™…¨ì!È ²B"`æ– ©*D±k¥[-ò6jÏ'sCYöö A4jW‚vû6Q‘0êEÃ]ôÐŽK°‰H¦†zªƒJüÃ¥ <A’®:©çGúÈ΀—¶]úù„’§ùœÖf­-3†Ê“ß&åô’å0:0Ø™ïšèˆ´gÓÞSÑ„™ðLªUé¨ :3r„TÁ„ʽhÎEFö)•–§ë1žK5 6Ãø)¥®ï˜ù—:#@{ó,š„h›£Ê@‚™UﯻÀîT?ɳas¼šü¤ÊÀ°5ª6A©v\‚¥±ê¶{öpù`]4ÆÆúϱV´?®–,•—DÜ“áaüË^8hž›.v%J? U…Á5}T”)E3 ³œqš×öd‘Ye÷¡©6:»3wÁùSÚËocô&ͱB‰'†É‘øÊÆ·²l1 {ô’ë{WC¾Â„+ó[¤i”OcBDú½ÐŒ£† :E.õ8K_ŠfÓÌt´§ëã%ƒ³…ú‚™ò‚ ‹Ÿù5‹–cQH¹Šû¸ŒK¶OÒ5ë÷`yJu8¦§9ƒ7Öñs|Z¦Os"Ìwcèø ¥ã3SóW‡8ˆq_õäÞÈÈmâ´ø·#}þ¾ÑAõoÆ$ónðZ€X ñ ËèÄH<>Ù¨ÃÓ}² mA—ó-·~ag°g?Ñ 9KQ-8+çµ?1±Û¼a[|ub–Háê~2ijÌŒ™Fœ ´‹†Mí~ƒM[kÙ5߯@y@ò²êâpjEù¡M‹DA1pb¬Kb+ËÝòϪ”X¡ÿ³€ODÚ¯¦”@x4É÷hùõ_<æc†)óׄªQjËTbd,/©ŠÚHš¾ÌHƶ/Â}ÆÎ¿z ‚¯yüobêÍ÷ýFRPÉTg´´àʾ”'‘ž¡¡.ˆíé 5ƒêÞzL{ Û< ßoLÜëXʵK7HŽM= Tî–ë©äo¡ºâž¸jG¢ú$âPü”i;­A(B>¹;|áÇy(.U³µø³u“„öšÙøcΓ~ ¾å2e'òt™ˆl·P"v_ù*Ô&RaÜÀZÄ"ì@åã£'{\ðÓÉß“‚ÝÄ{4í2ãó¾ØÇïØ.–W0ùp‘ÜIŠ iÏ*…¤*‹%kp8°M?no¥{㥙î‰ëju»ð  Ó¶4ÿÒIˆ•xB¨y‰mÓ,bPß¶–ñïM¿]B’°ˆ¼ÑþØ(΢ôø¥ØunåÎÊZN*2ðÊä!Á•óŒÄ‰ÜB*¨ÊŸ[%ÊSM—e½ð‡ÕˆÙò¶EâIf?¾«ÞòÿÐå…r,ðvÛ¥wÝ.;ƒ$Ö»¥âyä ðÞ ­Î6 dtz³‰ÿÅl¡á}nuà©^ÓšœH˜Û2Õì&Ûs~r!Fsˆ áz!XÓݸœJ¶¦QO:}f k\bi£ÞÔôT±MŒ$©È{¶+Ú2'‘[¸§†çN’ø(Èâ¡"ÅýÙd=;Ž®OÉ¡§U«IÞℲ¨SFtǵÃ@Ú7A3à)âÄ/,Jß¼»(ï$,1@>&xúû*&ÿÇ€8¡Úà‘Ta'$NCAw]øõœïm®¡Ÿõ΀óƒL5›2'jcQs\éñ—д²¹5ÈHA­q¢*òñŒ.SïÈÐU; ë+ç€SµGufg5i“ÀGKc c˜ì—cPöÍãiAÝíßP§ÏZ–xíûý5;S»%…ÄÇàIü9 ŠxÛe8y>l40‚ˆ9L*<þ–¶×ˆùðA²XoëÂR5cŒŠæ°ëÆI2tR›Éœ¬ô$]òºˆº/ ^›L™‘,oОvÙÉ8ݾ0âÒ£ðy”t¦eýE3`Ï=¶ÉÞïq‹åÛÕÙ4Zƒ ê“"¬†š6´‡CÞ°á9†‡.Ì~¢òH\å§Š#ÑqwDs¨Û-Ŭá8£ú+¼òø©w›~Y.æ+ÿâlè- Φq’gYË¿³à§«€žC{ûÒ¥i%d~51!R¥›¯ùySbÙ²?ç¥o@ëy¸gÌû'¿W©ýˆ›¢­Z4BŸµX_N9Û[,ìkZV4(th0 ‹YZsurveillance/vignettes/surveillance-hmm.pdf0000644000175100001440000001434213231650456020753 0ustar hornikusers%PDF-1.4 %ÐÔÅØ 4 0 obj << /Length 39 /Filter /FlateDecode >> stream xÚ+ä2T0BC]Cs]3 K…ä\.}Ï\C—|®@.m/¿ endstream endobj 3 0 obj << /Type /Page /Contents 4 0 R /Resources 2 0 R /MediaBox [0 0 254 77] /Parent 5 0 R >> endobj 1 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./tmp-pdfcrop-7467-stdin.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 6 0 R /BBox [0 0 595 842] /Resources << /ProcSet [ /PDF /Text ] /ExtGState << /R7 7 0 R >>/Font << /R12 8 0 R/R10 9 0 R/R8 10 0 R>> >> /Length 1058 /Filter /FlateDecode >> stream xœ¥W=$5ÍûWtÈ[¸ªüIˆ„È`6!¢EÁ Ò‰€¿Ï³Û.»wF÷1§ z]ý\¯üªýìù°;âÝÕ¿þ|½nßþ’öwÿn‰JrÌû›ÛÜX%RØS‰œîW D—‰ÃÎ’˜\ÄØŠ:¡˜ÇðucVOj¯]Ê”ãœ=Æ==ðqÊ>¦ûèÉ/éûøÁ?£Þcú¹ú×íïí‚e½Û>€¨­»?^¯û÷/P ï…J”è÷—¿¶C®EP©AÉãåºýþͯOÏ(E•õ—Ÿ0‰"”ÓêÔL’Ëû3“×’‘îOÌá'¦èKòÃËöóƹ(«¾#2$ÊŠŽS0E6¿Ëg&°U0Vó‘àÍX$‘T†;sù|}µé«šŽ)'.¨ãXÊ®©¿{zæ˜('>ÿë(y ³E£²î‹t5x!ŸF Ô§ÞÁÞ"E…$Ö"ŘòœÝ‡&Ÿš¼6¹«oÙ­?F?Vð‘àMýôG=|¸ä÷G>ÝŸ n,1Æi0 bÙc)Õê¯HÎcß ,5Â@±8—Á–‹Uµqµp¯Øžá –f†>îÕÃG@3aU#AÌ%QP£ãêâG†°ª{†ó*±Äðp¨C †¦ðoO¨£ »÷vL2:ŽŸaá)P”Eá0}²ä)^µW‰«¼‰á~21 å¥A}<åµ@§'0ñ:Å"o­À^[½}ú¹þ‡ì›q ”¯Ööž{cç…0µ!Žhñmïuñš¹rYä…õ%òa"D°ùgwÆØ–?‡>#ÁÐoPLyG†°ª{†ó*òïL¾È=…¿Dà“}Þ²/ï yÀï›ßosG'‹Àð®t´¤#4 žúØV?‡<#ÁoPLG†°ª{†ó*2`†–ù£ËCIéÓþ¼'®‡·H}^ëý‹—ãèý)Œãd  UuøÖ‹â ê² 3|´,l"pΤ jb:Ý ,tUi/ëµé:ÈHÂó•Dû…>RÎ5{Ãøƒ.‹èÁwPù¤­z,×L7¨Ë¦‚~s_Ž‹k=Êe¶yï;¦«9¹C|£ÃqRZ+ózuÁÁ‡;K@Œ3ŠkÖÞN®f/‘b¨½\ŽUŒ¤¦N‹”CÎö»¥Ýð\½I\ï À—ðc'ðÊW­\eå˸+JXù&Ÿùj,„•ï…ö)®þÞ/|ÍÛ$,|X7]Œ¯a”O|-æóÂw‹Bû<š…“ïØêiáSÜ©²`=‘´…ëtÁÎûÈ}ñ, endstream endobj 6 0 obj << /Producer (GPL Ghostscript 9.18) /CreationDate (D:20180123161350+01'00') /ModDate (D:20180123161350+01'00') /Creator (dvips\(k\) 5.995 Copyright 2015 Radical Eye Software) /Title (surveillance-hmm.dvi) >> endobj 7 0 obj << /Type /ExtGState /OPM 1 >> endobj 8 0 obj << /BaseFont /ISYWPX+LMMathItalic7-Regular /FontDescriptor 11 0 R /Type /Font /FirstChar 110 /LastChar 110 /Widths [ 706] /Encoding /WinAnsiEncoding /Subtype /Type1 >> endobj 9 0 obj << /BaseFont /ZRBLWS+LMRoman7-Regular /FontDescriptor 12 0 R /Type /Font /FirstChar 49 /LastChar 51 /Widths [ 569 569 569] /Encoding /WinAnsiEncoding /Subtype /Type1 >> endobj 10 0 obj << /BaseFont /EENAQQ+LMMathItalic10-Regular /FontDescriptor 13 0 R /Type /Font /FirstChar 58 /LastChar 89 /Widths [ 278 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 828 581] /Encoding 14 0 R /Subtype /Type1 >> endobj 11 0 obj << /Type /FontDescriptor /FontName /ISYWPX+LMMathItalic7-Regular /FontBBox [ 0 -10 658 441] /Flags 131104 /Ascent 441 /CapHeight 441 /Descent -10 /ItalicAngle 0 /StemV 98 /MissingWidth 280 /XHeight 441 /CharSet (/n) /FontFile3 15 0 R >> endobj 12 0 obj << /Type /FontDescriptor /FontName /ZRBLWS+LMRoman7-Regular /FontBBox [ 0 -20 514 664] /Flags 65568 /Ascent 664 /CapHeight 664 /Descent -20 /ItalicAngle 0 /StemV 77 /MissingWidth 280 /CharSet (/one/three/two) /FontFile3 16 0 R >> endobj 13 0 obj << /Type /FontDescriptor /FontName /EENAQQ+LMMathItalic10-Regular /FontBBox [ 0 0 851 683] /Flags 65540 /Ascent 683 /CapHeight 683 /Descent 0 /ItalicAngle 0 /StemV 127 /MissingWidth 280 /CharSet (/X/Y/period) /FontFile3 17 0 R >> endobj 14 0 obj << /Type /Encoding /BaseEncoding /WinAnsiEncoding /Differences [ 58/period] >> endobj 15 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 446 >> stream xœcd`ab`ddóñõM,Éð,IÌÉL6× JM/ÍI,ɨüfü!ÃôC–¹»ñ§Ú_Önæn–?4…¾' ~ãÿ-ÀÀÌÈžSéœ_PY”™žQ¢`d``¬« $-’*œô¼“³óË‹³3óR¼ô|õüòË‚™ ùy I©‰9i ùi !© ¡Á®AÁ îAþ¡ÁšzX]†"ÈÀÀÀ˜ÇÀàÏÀÄÈÈrøû¾ÿL‡ —ÿ_ÎøÃürïUæŸjß•EgÔuwÔvµ6´Ë•X'$%ws”µÏ\°hÂŒ¹;䧯Úòµû0Ç»9aÁɹr-&u't—äÔ•”¦Õu·qÔÍìî›ÙÓ·l’ܬcóölêæX:©´ ¢)­¥@¾Ô0û·H{]kQw‡déÜÆÙsgϘ2An”ɫ',XøTb≠',š¶¥wòŠ-Ë7ïÚ­›ãhOD…ÂoæêDù†üö¦î*ްíYûÞoÿ.7Kޝ|þç©S§/˜Ï¶œë2·KH>g7÷òž¾ž¾é=fLš8‡gmoïš ˜Ø;£‡‡—¨·" endstream endobj 16 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 599 >> stream xœcd`ab`ddôñ ÊÏMÌ3× JM/ÍI, ªüfü!ÃôC–¹»üÇ´Ÿ:¬Ý<ÌÝ<,~ìú!ø=ÿ»3#cxz¾s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kê¡; Æg```642f`bf{…ÁacØ÷5|ÿ™, º×ÿX²¾{ýòr¡ï“îˆ ïø‘+¶>•]½{ÆùûØ—uöäËyût%usŸHg_Ü}¶ûÐrŽ?“سºëÔåRÓÙ¾»õ³BMzðýÍ×ëO}}ôuçæ½ß½D3Ù:Jê›[íºk»9~û°}y±nùñ]W]8ÙýŠã;¯âÕß"¿ÌMô#¶µM]¼bÎú¹-ëÂåV]:¿pW7Çûý¶V&¾nÙéò¿[756uwvçKþ0`ƒØW¾úâwæïŠË¿³:´‚ñÁ§gß|cþ1í»£h÷M™}Ù¸ñZ÷ Ž[Ç~3ÿf6 µÎ\X±rÕüEËW”/Èé•[·ý´ Ý;N•š$ÖÆæÈg¥æwFvuvv·uqt7v6ÔNéž#íæáP…ßÎiÉÆÓŽ%Êï궦{ÇêâE9ùùUIºŸý¾ó~—ýâ½_ùüγ¾çM2Ÿm=×-n9.–|În½½=}½“z'­^Áó|bï¦þžþIý“û'ñð20%Êÿª endstream endobj 17 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 722 >> stream xœm‘ËOqÇw[0jQbcu»&ôA‰ÐÄ4*±j (>¢–åQ¶Ðú@ÚÒÚ²ììn[è°µ) å©h¼i¢§ê‰øxð`<™`"ùÑìŒ/søÎLæûùŽ•H0Ç]×jõ¶îk6½©Çpª¦ª¹Ó8dÒ[vZÇ·ã[G$[G¥ÅïÅ‹¥ —‚¼äC±«õ@† ôp?&Åñ;ý#æ§¥ÇØm#O×ÔÔVU‰µŽlw’ Õd“ÞÐg¶[ûzH=ÕA6Uk«Éf»(ö'ÌÙÞÙ­7u‘æ.R×ÙF¶¶\nn!¯4ßl½Õr²úÿÖþU1 “¶Ý­Ç°:¬«Ø…ÂJðR|ß@ËŠmé'‹E|/Rieb üÄUv‚w½”è“jýó/T¾4ŸÏ­å |’¤eqw/ &¢ :y#Èn°? Ó“Œ&Ê,N€F½n¿O8+4¨Î¡ûÁ$DfÓoBêcaV–ðÝþ˜=a-o×=`÷Æ YˆŒ E5¨LXŒ‚=d˜@P}ïöƒ‘6ÚÍøâeora™‡Eâ%¼¢_€,’€LÌÂÆÇš8˜‡™é™Dò'ÂTß~lþð(ø®Žqµ—ñ1à’yâ"P%?é9PO& ­QlK.ñà‹µÊ©`È?HÑ0@ôB7ß·KçðƘðd~bØej„'BF wðêÜ[ˆ¥b‰‹`„PIÿÁR爐‹òYD¬ á Kó^ Õ@„3A§[ÇÐç™Ã/Ž¥4¢1t.]eâ>pÀ0p.Í0à “ÑÕðóUtLN³üT±hM•J-,,¯¬‡Õñ·<“)¶qeƒMüë¦éÞ+óÖEY­•³æó¹\žP e·ãñ$êÏîÉ–ʉ²î‘|/È˳,ÇóQn&ÅN³rù»Âql„åN¾Ã~*UVš endstream endobj 2 0 obj << /XObject << /Im1 1 0 R >> /ProcSet [ /PDF ] >> endobj 5 0 obj << /Type /Pages /Count 1 /Kids [3 0 R] >> endobj 18 0 obj << /Type /Catalog /Pages 5 0 R >> endobj 19 0 obj << /Producer (pdfTeX-1.40.16) /Creator (TeX) /CreationDate (D:20180123161350+01'00') /ModDate (D:20180123161350+01'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.16 (TeX Live 2015/Debian) kpathsea version 6.2.1) >> endobj xref 0 20 0000000000 65535 f 0000000236 00000 n 0000005375 00000 n 0000000133 00000 n 0000000015 00000 n 0000005440 00000 n 0000001624 00000 n 0000001847 00000 n 0000001892 00000 n 0000002075 00000 n 0000002259 00000 n 0000002498 00000 n 0000002751 00000 n 0000002997 00000 n 0000003243 00000 n 0000003338 00000 n 0000003874 00000 n 0000004563 00000 n 0000005497 00000 n 0000005547 00000 n trailer << /Size 20 /Root 18 0 R /Info 19 0 R /ID [<43365F8A778E4195F0C42A374B573025> <43365F8A778E4195F0C42A374B573025>] >> startxref 5814 %%EOF surveillance/vignettes/hhh4.Rnw0000644000175100001440000010310713100645120016311 0ustar hornikusers%\VignetteIndexEntry{hhh4: An endemic-epidemic modelling framework for infectious disease counts} %\VignetteDepends{surveillance, Matrix} \documentclass[a4paper,11pt]{article} \usepackage[T1]{fontenc} \usepackage[english]{babel} \usepackage{graphicx} \usepackage{color} \usepackage{natbib} \usepackage{lmodern} \usepackage{bm} \usepackage{amsmath} \usepackage{amsfonts,amssymb} \setlength{\parindent}{0pt} \setcounter{secnumdepth}{1} \newcommand{\Po}{\operatorname{Po}} \newcommand{\NegBin}{\operatorname{NegBin}} \newcommand{\N}{\mathcal{N}} \newcommand{\pkg}[1]{{\fontseries{b}\selectfont #1}} \newcommand{\surveillance}{\pkg{surveillance}} \newcommand{\code}[1]{\texttt{#1}} \newcommand{\hhh}{\texttt{hhh4}} \newcommand{\R}{\textsf{R}} \newcommand{\sts}{\texttt{sts}} \newcommand{\example}[1]{\subsubsection*{Example: #1}} %%% Meta data \usepackage{hyperref} \hypersetup{ pdfauthor = {Michaela Paul and Sebastian Meyer}, pdftitle = {'hhh4': An endemic-epidemic modelling framework for infectious disease counts}, pdfsubject = {R package 'surveillance'} } \newcommand{\email}[1]{\href{mailto:#1}{\normalfont\texttt{#1}}} \title{\code{hhh4}: An endemic-epidemic modelling framework for infectious disease counts} \author{ Michaela Paul and Sebastian Meyer\thanks{Author of correspondence: \email{seb.meyer@fau.de} (new affiliation)}\\ Epidemiology, Biostatistics and Prevention Institute\\ University of Zurich, Zurich, Switzerland } \date{8 February 2016} %%% Sweave \usepackage{Sweave} \SweaveOpts{prefix.string=plots/hhh4, keep.source=T, strip.white=true} \definecolor{Sinput}{rgb}{0,0,0.56} \definecolor{Scode}{rgb}{0,0,0.56} \definecolor{Soutput}{rgb}{0,0,0} \DefineVerbatimEnvironment{Sinput}{Verbatim}{formatcom={\color{Sinput}},fontshape=sl,fontsize=\footnotesize} \DefineVerbatimEnvironment{Soutput}{Verbatim}{formatcom={\color{Soutput}},fontfamily=courier, fontshape=it,fontsize=\scriptsize} \DefineVerbatimEnvironment{Scode}{Verbatim}{formatcom={\color{Scode}},fontshape=sl,fontsize=\footnotesize} %%% Initial R code <>= library("surveillance") options(width=75) ## create directory for plots dir.create("plots", showWarnings=FALSE) ###################################################### ## Do we need to compute or can we just fetch results? ###################################################### compute <- !file.exists("hhh4-cache.RData") message("Doing computations: ", compute) if(!compute) load("hhh4-cache.RData") @ \begin{document} \maketitle \begin{abstract} \noindent The \R\ package \surveillance\ provides tools for the visualization, modelling and monitoring of epidemic phenomena. This vignette is concerned with the \hhh\ modelling framework for univariate and multivariate time series of infectious disease counts proposed by \citet{held-etal-2005}, and further extended by \citet{paul-etal-2008}, \citet{paul-held-2011}, \citet{held.paul2012}, and \citet{meyer.held2013}. The implementation is illustrated using several built-in surveillance data sets. The special case of \emph{spatio-temporal} \hhh\ models is also covered in \citet[Section~5]{meyer.etal2014}, which is available as the extra \verb+vignette("hhh4_spacetime")+. \end{abstract} \section{Introduction}\label{sec:intro} To meet the threats of infectious diseases, many countries have established surveillance systems for the reporting of various infectious diseases. The systematic and standardized reporting at a national and regional level aims to recognize all outbreaks quickly, even when aberrant cases are dispersed in space. Traditionally, notification data, i.e.\ counts of cases confirmed according to a specific definition and reported daily, weekly or monthly on a regional or national level, are used for surveillance purposes. The \R-package \surveillance\ provides functionality for the retrospective modelling and prospective aberration detection in the resulting surveillance time series. Overviews of the outbreak detection functionality of \surveillance\ are given by \citet{hoehle-mazick-2010} and \citet{salmon.etal2014}. This document illustrates the functionality of the function \hhh\ for the modelling of univariate and multivariate time series of infectious disease counts. It is part of the \surveillance\ package as of version 1.3. The remainder of this vignette unfolds as follows: Section~\ref{sec:data} introduces the S4 class data structure used to store surveillance time series data within the package. Access and visualization methods are outlined by means of built-in data sets. In Section~\ref{sec:model}, the statistical modelling approach by \citet{held-etal-2005} and further model extensions are described. After the general function call and arguments are shown, the detailed usage of \hhh\ is demonstrated in Section~\ref{sec:hhh} using data introduced in Section~\ref{sec:data}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Surveillance data}\label{sec:data} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Denote by $\{y_{it}; i=1,\ldots,I,t=1,\ldots,T\}$ the multivariate time series of disease counts for a specific partition of gender, age and location. Here, $T$ denotes the length of the time series and $I$ denotes the number of units (e.g\ geographical regions or age groups) being monitored. Such data are represented using objects of the S4 class \sts\ (surveillance time series). \subsection[The sts data class]{The \sts\ data class} The \sts\ class contains the $T\times I$ matrix of counts $y_{it}$ in a slot \code{observed}. An integer slot \code{epoch} denotes the time index $1\leq t \leq T$ of each row in \code{observed}. The number of observations per year, e.g.\ 52 for weekly or 12 for monthly data, is denoted by \code{freq}. Furthermore, \code{start} denotes a vector of length two containing the start of the time series as \code{c(year, epoch)}. For spatially stratified time series, the slot \code{neighbourhood} denotes an $I \times I$ adjacency matrix with elements 1 if two regions are neighbors and 0 otherwise. For map visualizations, the slot \code{map} links the multivariate time series to geographical regions stored in a \code{"SpatialPolygons"} object (package \pkg{sp}). Additionally, the slot \code{populationFrac} contains a $T\times I$ matrix representing population fractions in unit $i$ at time $t$. The \sts\ data class is also described in \citet[Section~2.1]{hoehle-mazick-2010}, \citet[Section~1.1]{salmon.etal2014}, \citet[Section~5.2]{meyer.etal2014}, and on the associated help page \code{help("sts")}. \subsection{Some example data sets} The package \surveillance\ contains a number of time series in the \code{data} directory. Most data sets originate from the SurvStat@RKI database\footnote{\url{https://survstat.rki.de}}, maintained by the Robert Koch Institute (RKI) in Germany. Selected data sets will be analyzed in Section~\ref{sec:hhh} and are introduced in the following. Note that many of the built-in datasets are stored in the S3 class data structure \mbox{\code{disProg}} used in ancient versions of the \surveillance\ package (until 2006). They can be easily converted into the new S4 \sts\ data structure using the function \code{disProg2sts}. The resulting \sts\ object can be accessed similar as standard \code{matrix} objects and allows easy temporal and spatial aggregation as will be shown in the remainder of this section. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \example{Influenza and meningococcal disease, Germany, 2001--2006} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% As a first example, the weekly number of influenza and meningococcal disease cases in Germany is considered. <>= # load data data("influMen") # convert to sts class and print basic information about the time series print(fluMen <- disProg2sts(influMen)) @ The univariate time series of meningococcal disease counts can be obtained with <>= meningo <- fluMen[, "meningococcus"] dim(meningo) @ The \code{plot} function provides ways to visualize the multivariate time series in time, space and space-time, as controlled by the \code{type} argument: \setkeys{Gin}{width=1\textwidth} <>= plot(fluMen, type = observed ~ time | unit, # type of plot (default) same.scale = FALSE, # unit-specific ylim? col = "grey") # color of bars @ See \code{help("stsplot")} for a detailed description of the plot routines. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \example{Influenza, Southern Germany, 2001--2008} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% The spatio-temporal spread of influenza in the 140 Kreise (districts) of Bavaria and Baden-W\"urttemberg is analyzed using the weekly number of cases reported to the RKI~\citep{survstat-fluByBw} in the years 2001--2008. An \sts\ object containing the data is created as follows: <>= # read in observed number of cases flu.counts <- as.matrix(read.table(system.file("extdata/counts_flu_BYBW.txt", package = "surveillance"), check.names = FALSE)) @ \begin{center} \setkeys{Gin}{width=.5\textwidth} <>= # read in 0/1 adjacency matrix (1 if regions share a common border) nhood <- as.matrix(read.table(system.file("extdata/neighbourhood_BYBW.txt", package = "surveillance"), check.names = FALSE)) library("Matrix") print(image(Matrix(nhood))) @ \end{center} <>= # read in population fractions popfracs <- read.table(system.file("extdata/population_2001-12-31_BYBW.txt", package = "surveillance"), header = TRUE)$popFrac # create sts object flu <- sts(flu.counts, start = c(2001, 1), frequency = 52, population = popfracs, neighbourhood = nhood) @ These data are already included as \code{data("fluBYBW")} in \surveillance. In addition to the \sts\ object created above, \code{fluBYBW} contains a map of the administrative districts of Bavaria and Baden-W\"urttemberg. This works by specifying a \code{"SpatialPolygons"} representation of the districts as an extra argument \code{map} in the above \sts\ call. Such a \code{"SpatialPolygons"} object can be obtained from, e.g, an external shapefile using the function \mbox{\code{readShapePoly}} from package \pkg{maptools}. A map enables plots and animations of the cumulative number of cases by region. For instance, a disease incidence map of the year 2001 can be obtained as follows: \setkeys{Gin}{width=.5\textwidth} \begin{center} <>= data("fluBYBW") plot(fluBYBW[year(fluBYBW) == 2001, ], # select year 2001 type = observed ~ unit, # total counts by region population = fluBYBW@map$X31_12_01 / 100000) # per 100000 inhabitants grid::grid.text("Incidence [per 100'000 inhabitants]", x = 0.5, y = 0.02) @ \end{center} <>= # consistency check local({ fluBYBW@map <- flu@map stopifnot(all.equal(fluBYBW, flu)) }) @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \example{Measles, Germany, 2005--2007} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% The following data set contains the weekly number of measles cases in the 16 German federal states, in the years 2005--2007. These data have been analyzed by \citet{herzog-etal-2010} after aggregation into bi-weekly periods. <>= data("measlesDE") measles2w <- aggregate(measlesDE, nfreq = 26) @ \setkeys{Gin}{width=.75\textwidth} \begin{center} <>= plot(measles2w, type = observed ~ time, # aggregate counts over all units main = "Bi-weekly number of measles cases in Germany") @ \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Model formulation}\label{sec:model} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Retrospective surveillance aims to identify outbreaks and (spatio-)temporal patterns through statistical modelling. Motivated by a branching process with immigration, \citet{held-etal-2005} suggest the following model for the analysis of univariate time series of infectious disease counts $\{y_{t}; t=1,\ldots,T\}$. The counts are assumed to be Poisson distributed with conditional mean \begin{align*} \mu_{t} = \lambda y_{t-1}+ \nu_{t}, \quad(\lambda,\nu_{t}>0) \end{align*} where $\lambda$ and $\nu_t$ are unknown quantities. The mean incidence is decomposed additively into two components: an epidemic or \emph{autoregressive} component $\lambda y_{t-1}$, and an \emph{endemic} component $\nu_t$. The former should be able to capture occasional outbreaks whereas the latter explains a baseline rate of cases with stable temporal pattern. \citet{held-etal-2005} suggest the following parametric model for the endemic component: \begin{align}\label{eq:nu_t} \log(\nu_t) =\alpha + \beta t + \left\{\sum_{s=1}^S \gamma_s \sin(\omega_s t) + \delta_s \cos(\omega_s t)\right\}, \end{align} where $\alpha$ is an intercept, $\beta$ is a trend parameter, and the terms in curly brackets are used to model seasonal variation. Here, $\gamma_s$ and $\delta_s$ are unknown parameters, $S$ denotes the number of harmonics to include, and $\omega_s=2\pi s/$\code{freq} are Fourier frequencies (e.g.\ \code{freq = 52} for weekly data). For ease of interpretation, the seasonal terms in \eqref{eq:nu_t} can be written equivalently as \begin{align*} \gamma_s \sin(\omega_s t) + \delta_s \cos(\omega_s t)= A_s \sin(\omega_s t +\varphi_s) \end{align*} with amplitude $A_s=\sqrt{\gamma_s^2+\delta_s^2}$ describing the magnitude, and phase difference $\tan(\varphi_s)=\delta_s/\gamma_s$ describing the onset of the sine wave. To account for overdispersion, the Poisson model may be replaced by a negative binomial model. Then, the conditional mean $\mu_t$ remains the same but the conditional variance increases to $\mu_t (1+\mu_t \psi)$ with additional unknown overdispersion parameter $\psi>0$. The model is extended to multivariate time series $\{y_{it}\}$ in \citet{held-etal-2005} and \citet{paul-etal-2008} by including an additional \emph{neighbor-driven} component, where past cases in other (neighboring) units also enter as explanatory covariates. The conditional mean $\mu_{it}$ is then given by \begin{align} \label{eq:mu_it} \mu_{it} = \lambda y_{i,t-1} + \phi \sum_{j\neq i} w_{ji} y_{j,t-1} +e_{it} \nu_{t}, \end{align} where the unknown parameter $\phi$ quantifies the influence of other units $j$ on unit $i$, $w_{ji}$ are weights reflecting between-unit transmission and $e_{it}$ corresponds to an offset (such as population fractions at time $t$ in region $i$). A simple choice for the weights is $w_{ji}=1$ if units $j$ and $i$ are adjacent and 0 otherwise. See \citet{paul-etal-2008} for a discussion of alternative weights, and \citet{meyer.held2013} for how to estimate these weights in the spatial setting using a parametric power-law formulation based on the order of adjacency. When analyzing a specific disease observed in, say, multiple regions or several pathogens (such as influenza and meningococcal disease), the assumption of equal incidence levels or disease transmission across units is questionable. To address such heterogeneity, the unknown quantities $\lambda$, $\phi$, and $\nu_t$ in \eqref{eq:mu_it} may also depend on unit $i$. This can be done via \begin{itemize} \item unit-specific fixed parameters, e.g.\ $\log(\lambda_i)=\alpha_i$ \citep{paul-etal-2008}; \item unit-specific random effects, e.g\ $\log(\lambda_i)=\alpha_0 +a_i$, $a_i \stackrel{\text{iid}}{\sim} \N(0,\sigma^2_\lambda)$ \citep{paul-held-2011}; \item linking parameters with known (possibly time-varying) explanatory variables, e.g.\ $\log(\lambda_i)=\alpha_0 +x_i\alpha_1$ with region-specific vaccination coverage $x_i$ \citep{herzog-etal-2010}. \end{itemize} In general, the parameters of all three model components may depend on both time and unit. A call to \hhh\ fits a Poisson or negative binomial model with conditional mean \begin{align*} \mu_{it} = \lambda_{it} y_{i,t-1} + \phi_{it} \sum_{j\neq i} w_{ji} y_{j,t-1} +e_{it} \nu_{it} \end{align*} to a (multivariate) time series of counts. Here, the three unknown quantities are modelled as log-linear predictors \begin{align} \log(\lambda_{it}) &= \alpha_0 + a_i +\bm{u}_{it}^\top \bm{\alpha} \tag{\code{ar}}\\ \log(\phi_{it}) &= \beta_0 + b_i +\bm{x}_{it}^\top \bm{\beta} \tag{\code{ne}}\\ \log(\nu_{it}) &= \gamma_0 + c_i +\bm{z}_{it}^\top \bm{\gamma}\tag{\code{end}} \end{align} where $\alpha_0,\beta_0,\gamma_0$ are intercepts, $\bm{\alpha},\bm{\beta},\bm{\gamma}$ are vectors of unknown parameters corresponding to covariate vectors $\bm{u}_{it},\bm{x}_{it},\bm{z}_{it}$, and $a_i,b_i,c_i$ are random effects. For instance, model~\eqref{eq:nu_t} with $S=1$ seasonal terms may be represented as $\bm{z}_{it}=(t,\sin(2\pi/\code{freq}\;t),\cos(2\pi/\code{freq}\;t))^\top$. The stacked vector of all random effects is assumed to follow a normal distribution with mean $\bm{0}$ and covariance matrix $\bm{\Sigma}$. In applications, each of the components \code{ar}, \code{ne}, and \code{end} may be omitted in parts or as a whole. If the model does not contain random effects, standard likelihood inference can be performed. Otherwise, inference is based on penalized quasi-likelihood as described in detail in \citet{paul-held-2011}. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Function call and control settings}\label{sec:hhh} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% The estimation procedure is called with <>= hhh4(sts, control) @ where \code{sts} denotes a (multivariate) surveillance time series and the model is specified in the argument \code{control} in consistency with other algorithms in \surveillance. The \code{control} setting is a list of the following arguments (here with default values): <>= control = list( ar = list(f = ~ -1, # formula for log(lambda_it) offset = 1), # optional multiplicative offset ne = list(f = ~ -1, # formula for log(phi_it) offset = 1, # optional multiplicative offset weights = neighbourhood(stsObj) == 1), # (w_ji) matrix end = list(f = ~ 1, # formula for log(nu_it) offset = 1), # optional multiplicative offset e_it family = "Poisson", # Poisson or NegBin model subset = 2:nrow(stsObj), # subset of observations to be used optimizer = list(stop = list(tol = 1e-5, niter = 100), # stop rules regression = list(method = "nlminb"), # for penLogLik variance = list(method = "nlminb")), # for marLogLik verbose = FALSE, # level of progress reporting start = list(fixed = NULL, # list with initial values for fixed, random = NULL, # random, and sd.corr = NULL), # variance parameters data = list(t = epoch(stsObj)-1),# named list of covariates keep.terms = FALSE # whether to keep the model terms ) @ The first three arguments \code{ar}, \code{ne}, and \code{end} specify the model components using \code{formula} objects. By default, the counts $y_{it}$ are assumed to be Poisson distributed, but a negative binomial model can be chosen by setting \mbox{\code{family = "NegBin1"}}. By default, both the penalized and marginal log-likelihoods are maximized using the quasi-Newton algorithm available via the \R\ function \code{nlminb}. The methods from \code{optim} may also be used, e.g., \mbox{\code{optimizer = list(variance = list(method="Nelder-Mead")}} is a useful alternative for maximization of the marginal log-likelihood with respect to the variance parameters. Initial values for the fixed, random, and variance parameters can be specified in the \code{start} argument. If the model contains covariates, these have to be provided in the \code{data} argument. If a covariate does not vary across units, it may be given as a vector of length $T$. Otherwise, covariate values must be given in a matrix of size $T \times I$. In the following, the functionality of \hhh\ is demonstrated using the data sets introduced in Section~\ref{sec:data} and previously analyzed in \citet{paul-etal-2008}, \citet{paul-held-2011} and \citet{herzog-etal-2010}. Selected results are reproduced. For a thorough discussion we refer to these papers. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Univariate modelling} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% As a first example, consider the univariate time series of meningococcal infections in Germany, 01/2001--52/2006 \citep[cf.][Table~1]{paul-etal-2008}. A Poisson model without autoregression and $S=1$ seasonal term is specified as follows: <>= # specify a formula object for the endemic component ( f_S1 <- addSeason2formula(f = ~ 1, S = 1, period = 52) ) # fit the Poisson model result0 <- hhh4(meningo, control = list(end = list(f = f_S1), family = "Poisson")) summary(result0) @ To fit the corresponding negative binomial model, we can use the convenient \code{update} method: <>= result1 <- update(result0, family = "NegBin1") @ Note that the \code{update} method by default uses the parameter estimates from the original model as start values when fitting the updated model; see \code{help("update.hhh4")} for details. We can calculate Akaike's Information Criterion for the two models to check whether accounting for overdispersion is useful for these data: <<>>= AIC(result0, result1) @ Due to the default control settings with \verb|ar = list(f = ~ -1)|, the autoregressive component has been omitted in the above models. It can be included by the following model update: <>= # fit an autoregressive model result2 <- update(result1, ar = list(f = ~ 1)) @ To extract only the ML estimates and standard errors instead of a full model \code{summary}, the \code{coef} method can be used: <<>>= coef(result2, se = TRUE, # also return standard errors amplitudeShift = TRUE, # transform sine/cosine coefficients # to amplitude/shift parameters idx2Exp = TRUE) # exponentiate remaining parameters @ Here, \code{exp(ar.1)} is the autoregressive coefficient $\lambda$ and can be interpreted as the epidemic proportion of disease incidence \citep{held.paul2012}. Note that the above transformation arguments \code{amplitudeShift} and \code{idx2Exp} can also be used in the \code{summary} method. Many other standard methods are implemented for \code{"hhh4"} fits, see, e.g., \code{help("confint.hhh4")}. A plot of the fitted model components can be easily obtained: \begin{center} <>= plot(result2) @ \end{center} See the comprehensive \code{help("plot.hhh4")} for further options. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Bivariate modelling} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Now, the weekly numbers of both meningococcal disease (\textsc{MEN}) and influenza (\textsc{FLU}) cases are analyzed to investigate whether influenza infections predispose meningococcal disease \citep[cf.][Table~2]{paul-etal-2008}. This requires disease-specific parameters which are specified in the formula object with \code{fe(\ldots)}. In the following, a negative binomial model with mean \begin{align*} \binom{\mu_{\text{men},t}} {\mu_{\text{flu},t}}= \begin{pmatrix} \lambda_\text{men} & \phi \\ 0 & \lambda_\text{flu} \\ \end{pmatrix} \binom{\text{\sc men}_{t-1}}{\text{\sc flu}_{t-1}} + \binom{\nu_{\text{men},t}}{\nu_{\text{flu},t}}\,, \end{align*} where the endemic component includes $S=3$ seasonal terms for the \textsc{FLU} data and $S=1$ seasonal terms for the \textsc{MEN} data is considered. Here, $\phi$ quantifies the influence of past influenza cases on the meningococcal disease incidence. This model corresponds to the second model of Table~2 in \citet{paul-etal-2008} and is fitted as follows: <>= # no "transmission" from meningococcus to influenza neighbourhood(fluMen)["meningococcus","influenza"] <- 0 neighbourhood(fluMen) @ <>= # create formula for endemic component f.end <- addSeason2formula(f = ~ -1 + fe(1, unitSpecific = TRUE), # disease-specific intercepts S = c(3, 1), # S = 3 for flu, S = 1 for men period = 52) # specify model m <- list(ar = list(f = ~ -1 + fe(1, unitSpecific = TRUE)), ne = list(f = ~ 1, # phi, only relevant for meningococcus due to weights = neighbourhood(fluMen)), # the weight matrix end = list(f = f.end), family = "NegBinM") # disease-specific overdispersion # fit model result <- hhh4(fluMen, control = m) summary(result, idx2Exp=1:3) @ A plot of the estimated mean components can be obtained as follows: \setkeys{Gin}{width=1\textwidth} \begin{center} <>= plot(result, units = 1:2, legend = 2, legend.args = list( legend = c("influenza-driven", "autoregressive", "endemic"))) @ \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Multivariate modelling} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% For disease counts observed in a large number of regions, say, (i.e.\ highly multivariate time series of counts) the use of region-specific parameters to account for regional heterogeneity is no longer feasible as estimation and identifiability problems may occur. Here we illustrate two approaches: region-specific random effects and region-specific covariates. For a more detailed illustration of areal \code{hhh4} models, see \verb+vignette("hhh4_spacetime")+, which uses \verb+data("measlesWeserEms")+ as an example. \subsubsection*{Influenza, Southern Germany, 2001--2008} \citet{paul-held-2011} propose a random effects formulation to analyze the weekly number of influenza cases in \Sexpr{ncol(fluBYBW)} districts of Southern Germany. For example, consider a model with random intercepts in the endemic component: $c_i \stackrel{iid}{\sim} \N(0,\sigma^2_\nu), i=1,\ldots,I$. Such effects are specified as: <>= f.end <- ~ -1 + ri(type = "iid", corr = "all") @ The alternative \code{type = "car"} would assume spatially correlated random effects; see \citet{paul-held-2011} for details. The argument \code{corr = "all"} allows for correlation between region-specific random effects in different components, e.g., random incidence levels $c_i$ in the endemic component and random effects $b_i$ in the neighbor-driven component. The following call to \hhh\ fits such a random effects model with linear trend and $S=3$ seasonal terms in the endemic component, a fixed autoregressive parameter $\lambda$, and first-order transmission weights $w_{ji}=\mathbb{I}(j\sim i)$ -- normalized such that $\sum_i w_{ji} = 1$ for all rows $j$ -- to the influenza data \citep[cf.][Table~3, model~B2]{paul-held-2011}. <>= # endemic component: iid random effects, linear trend, S=3 seasonal terms f.end <- addSeason2formula(f = ~ -1 + ri(type="iid", corr="all") + I((t-208)/100), S = 3, period = 52) # model specification model.B2 <- list(ar = list(f = ~ 1), ne = list(f = ~ -1 + ri(type="iid", corr="all"), weights = neighbourhood(fluBYBW), normalize = TRUE), # all(rowSums(weights) == 1) end = list(f = f.end, offset = population(fluBYBW)), family = "NegBin1", verbose = TRUE, optimizer = list(variance = list(method = "Nelder-Mead"))) # default start values for random effects are sampled from a normal set.seed(42) @ <>= if(compute){ result.B2 <- hhh4(fluBYBW, model.B2) s.B2 <- summary(result.B2, maxEV = TRUE, idx2Exp = 1:3) #pred.B2 <- oneStepAhead(result.B2, tp = nrow(fluBYBW) - 2*52) predfinal.B2 <- oneStepAhead(result.B2, tp = nrow(fluBYBW) - 2*52, type = "final") meanSc.B2 <- colMeans(scores(predfinal.B2)) save(s.B2, meanSc.B2, file="hhh4-cache.RData") } @ <>= # fit the model (takes about 35 seconds) result.B2 <- hhh4(fluBYBW, model.B2) summary(result.B2, maxEV = TRUE, idx2Exp = 1:3) @ <>= s.B2 @ Model choice based on information criteria such as AIC or BIC is well explored and understood for models that correspond to fixed-effects likelihoods. However, in the presence of random effects their use can be problematic. For model selection in time series models, the comparison of successive one-step-ahead forecasts with the actually observed data provides a natural alternative. In this context, \citet{gneiting-raftery-2007} recommend the use of strictly proper scoring rules, such as the logarithmic score (logs) or the ranked probability score (rps). See \citet{czado-etal-2009} and \citet{paul-held-2011} for further details. One-step-ahead predictions for the last 2 years for model B2 could be obtained as follows: <>= pred.B2 <- oneStepAhead(result.B2, tp = nrow(fluBYBW) - 2*52) @ However, computing ``rolling'' one-step-ahead predictions from a random effects model is computationally expensive, since the model needs to be refitted at every time point. The above call would take approximately 45 minutes! So for the purpose of this vignette, we use the fitted model based on the whole time series to compute all (fake) predictions during the last two years: <>= predfinal.B2 <- oneStepAhead(result.B2, tp = nrow(fluBYBW) - 2*52, type = "final") @ The mean scores (logs and rps) corresponding to this set of predictions can then be computed as follows: <>= colMeans(scores(predfinal.B2, which = c("logs", "rps"))) @ <>= meanSc.B2[c("logs", "rps")] @ Using predictive model assessments, \citet{meyer.held2013} found that power-law transmission weights more appropriately reflect the spread of influenza than the previously used first-order weights (which actually allow the epidemic to spread only to directly adjacent districts within one week). These power-law weights can be constructed by the function \code{W\_powerlaw} and require the \code{neighbourhood} of the \sts\ object to contain adjacency orders. The latter can be easily obtained from the binary adjacency matrix using the function \code{nbOrder}. See the corresponding help pages or \citet[Section~5]{meyer.etal2014} for illustrations. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsubsection*{Measles, German federal states, 2005--2007} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <>= data(MMRcoverageDE) cardVac1 <- MMRcoverageDE[1:16,3:4] adjustVac <- function(cardVac, p=0.5,nrow=1){ card <- cardVac[,1] vac <- cardVac[,2] vacAdj <- vac*card + p*vac*(1-card) return(matrix(vacAdj,nrow=nrow, ncol=length(vacAdj), byrow=TRUE)) } vac0 <- 1-adjustVac(cardVac1,p=0.5,nrow=measles2w@freq*3) colnames(vac0) <- colnames(measles2w) @ As a last example, consider the number of measles cases in the 16 federal states of Germany, in the years 2005--2007. There is considerable regional variation in the incidence pattern which is most likely due to differences in vaccination coverage. In the following, information about vaccination coverage in each state, namely the log proportion of unvaccinated school starters, is included as explanatory variable in a model for the bi-weekly aggregated measles data. See \citet{herzog-etal-2010} for further details. Vaccination coverage levels for the year 2006 are available in the dataset \code{data(MMRcoverageDE)}. This dataset can be used to compute the $\Sexpr{nrow(vac0)}\times \Sexpr{ncol(vac0)}$ matrix \code{vac0} with adjusted proportions of unvaccinated school starters in each state $i$ used by \citet{herzog-etal-2010}. The first few entries of this matrix are shown below: <<>>= vac0[1:2, 1:6] @ We fit a Poisson model, which links the autoregressive parameter with this covariate and contains $S=1$ seasonal term in the endemic component \citep[cf.][Table~3, model~A0]{herzog-etal-2010}: <>= # endemic component: Intercept + sine/cosine terms f.end <- addSeason2formula(f = ~ 1, S = 1, period = 26) # autoregressive component: Intercept + vaccination coverage information model.A0 <- list(ar = list(f = ~ 1 + logVac0), end = list(f = f.end, offset = population(measles2w)), data = list(t = epoch(measles2w), logVac0 = log(vac0))) # fit the model result.A0 <- hhh4(measles2w, model.A0) summary(result.A0, amplitudeShift = TRUE) @ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Conclusion} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% As part of the \R~package \surveillance, the function \hhh\ provides a flexible tool for the modelling of multivariate time series of infectious disease counts. The presented count data model is able to account for serial and spatio-temporal correlation, as well as heterogeneity in incidence levels and disease transmission. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \bibliographystyle{apalike} \renewcommand{\bibfont}{\small} \bibliography{references} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \end{document} surveillance/vignettes/glrnb.Rnw0000644000175100001440000005416313165505075016610 0ustar hornikusers%\VignetteIndexEntry{algo.glrnb: Count data regression charts using the generalized likelihood ratio statistic} \documentclass[a4paper,11pt]{article} \usepackage[T1]{fontenc} \usepackage{graphicx} \usepackage{natbib} \bibliographystyle{apalike} \usepackage{lmodern} \usepackage{amsmath} \usepackage{amsfonts,amssymb} \setlength{\parindent}{0pt} %%% Meta data \usepackage{hyperref} \hypersetup{ pdfauthor = {Valentin Wimmer and Michael H\"ohle}, pdftitle = {'algo.glrnb': Count data regression charts using the generalized likelihood ratio statistic}, pdfsubject = {R package 'surveillance'} } \title{\texttt{algo.glrnb}: Count data regression charts using the generalized likelihood ratio statistic} \author{ Valentin Wimmer$^{(1,2)}$\thanks{Author of correspondence: \texttt{Valentin.Wimmer@gmx.de}}\; and Michael H\"{o}hle$^{(1,2)}$ \\ (1) Department of Statistics, University of Munich, Germany\\ (2) MC-Health -- Munich Center of Health Sciences } \date{6 June 2008} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Sweave %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage{Sweave} \SweaveOpts{prefix.string=plots/glrnb} \setkeys{Gin}{width=1\textwidth} \DefineVerbatimEnvironment{Sinput}{Verbatim}{fontshape=sl,fontsize=\footnotesize} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontsize=\footnotesize} \DefineVerbatimEnvironment{Scode}{Verbatim}{fontshape=sl,fontsize=\footnotesize} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Initial R code %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <>= library("surveillance") options(SweaveHooks=list(fig=function() par(mar=c(4,4,2,0)+.5))) options(width=70) set.seed(247) ## create directory for plots dir.create("plots", showWarnings=FALSE) @ \begin{document} \maketitle \begin{abstract} \noindent The aim of this document is to show the use of the function \verb+algo.glrnb+ for a type of count data regression chart, the generalized likelihood ratio (GLR) statistic. The function is part of the \textsf{R} package \textbf{surveillance} \citep{hoehle-2007}, which provides outbreak detection algorithms for surveillance data. For an introduction to these monitoring features of the package, see \texttt{vignette("surveillance")}. There one can find information about the data structure of the \verb+disProg+ and \verb+SurvRes+ objects. Furthermore tools for outbreak detection, such as a Bayesian approach, procedures described by \citet{stroup89}, \citet{farrington96} and the methods used at the Robert Koch Institut, Germany, are explained. The function \verb+algo.glrnb+ is the implementation of the control charts for poisson and negative binomial distributions for monitoring time series of counts described in \citet{hoehle.paul2008}. This document gives an overview of the different features of the function and illustrations of its use are given for simulated and real surveillance data. \\ \noindent{\bf Keywords:} change-point detection, generalized regression charts, poisson and negative binomial distribution, increase and decrease \end{abstract} \section{Introduction}\label{sec:intro} For the monitoring of infectious diseases it is necessary to monitor time series of routinely collected surveillance data. Methods of the statistic process control (SPC) can be used for this purpose. Here it is important, that the methods can handle the special features of surveillance data, e.g.\ seasonality of the disease or the count data nature of the collected data. It is also important, that not only the number of counts of one time point (week, month) are regarded but instead the cases of previous time points are considered, because beside abrupt changes also small constant changes should be detected. CUSUM-methods (function \verb+algo.cusum+), LR-charts or GLR-methods as described by \citet{lai95} and \citet{hoehle.paul2008} can afford this. With the function \verb+algo.glrnb+ these methods can easily applied to surveillance data. A typical assumption for time series of counts is, that the observed counts at each time point follow a Poisson distribution. If overdispersion is likely, the negative binomial distribution provides a better alternative. Both distributions are provided by \verb+algo.glrnb+. In the GLR-scheme, an outbreak can be defined as a change in the intercept. The function \verb+algo.glrnb+ allows the user to specify whether increases or decreases in mean should be regarded. For each time point a GLR-statistic is computed, if this statistic exceeds a threshold value, an alarm is given. The function also provides the possibility to return the number of cases that would have been necessary to produce an alarm. This vignette is organized as follows: First, in Section \ref{sec:prel} the data structure is explained, in Section \ref{sec:glr} a short introduction in the theory of the GLR-charts is given and Section \ref{sec:control} shows the different \verb+control+-settings. % In Section \ref{sec:extensions} some possible extensions are presented. \section{Preliminaries}\label{sec:prel} Consider the situation, where a time series of counts is collected for surveillance purpose. In each interval, usually one week, the number of cases of the interesting disease in an area (country, district) is counted. The resulting time series is denoted by $\{y_t\>;t=1,\ldots,n\}$. Usually the data are collected on line, so that the time point $n$ is the actual time point. Our aim is to decide with the aid of a statistic for each time point $n$ if there is an outbreak at this or any former time point. If an outbreak is detected, the algorithm gives an alarm. Observed time series of counts are saved in a \verb+disProg+ object, a list containing the time series of counts, the number of weeks and a state chain. The state is 1, if e.g. the Robert Koch Institut declares the week to be part of an outbreak and 0 otherwise ~\citep{survstat}. By using the state chain the quality of the surveillance algorithm can be tested. %The 'surveillance'-package provides standard plot routines for the surveillance objects. As an first example the number of cases of salmonella hadar in the years 2001-2006 is examined. \\ \textit{Example 1:} <>= data(shadar) plot(shadar,main="Number of salmonella hadar cases in Germany 2001-2006") @ The package provides the possibility to simulate surveillance data with the functions \verb+sim.pointSource+, \verb+sim.seasonalNoise+ and \verb+sim.HHH+. See \citet{hoehle-2007} and \texttt{vignette("surveillance")} for further information. \\ \textit{Example 2:} <>= # Simulate data simData <- sim.pointSource(length=300,K=0.5,r=0.6,p=0.95) @ <>= plot(simData) @ \section{LR and GLR-charts}\label{sec:glr} Our aim is to detect a significant change in the number of cases. This is done as follows. One assumes, that there is a number of cases that is usual, the in control mean $\mu_0$. The in-control mean is defined in \citet{hoehle.paul2008} to be \begin{equation} \label{mu0} \operatorname{log}(\mu_{0,t})=\beta_0 + \beta_1t + \sum_{s=1}^S(\beta_{2s} \cos(\omega s t) + \beta_{2s+1}\sin(\omega s t)). \end{equation} If an outbreak occurs, the number of cases increases and the situation is out-of control and the algorithm should produce an alarm. The change is assumed to be an additive increase on log scale, \begin{equation} \label{interceptchange} \operatorname{log}(\mu_1)= \operatorname{log}(\mu_0) + \kappa . \end{equation} If $\mu_0$ is unknown one could use a part of the data to estimate it with a generalized linear model (GLM). If $\kappa$ is known, LR-charts can be used, if not, $\kappa$ has to be estimated, which is the GLR-scheme setting. For each time point, the likelihood ratio statistic is computed as follows \begin{equation} \label{cusum} GLR(n)=\max_{1 \leq k \leq n} \sup_{\theta \in \Theta} \left[ \sum_{t=k}^n \log \left\{ \frac{f_{\theta}(y_t)}{f_{\theta_0}(y_t)} \right\} \right] . \end{equation} Now $N=\inf \{n \geq 1 : GLR(n) \geq c_{\gamma} \}$ is the first time point where the GLR-statistic is above a threshold $c_{\gamma}$. For this time point $N$ an alarm is given. If the parameter $\kappa$ and hence $\theta=\kappa$ is known, the maximisation over $\theta$ can be omitted. With the function \verb+algo.glrnb+ one can compute the the GLR-statistic for every time point. If the actual value extends the chosen threshold $c_{\gamma}$, an alarm is given. After every alarm, the algorithm gets reset and the surveillance starts again. The result of a call of \verb+algo.glrnb+ is an object of class \verb+SurvRes+. This is basically a list of several arguments. The most important one is the \verb+upperbound+ statistic, which is a vector of length $n$ containing the likelihood-ratio-statistic for every time point under surveillance. The \verb+alarm+-vector contains a boolean for every time point whether there was an alarm or not. \\ At this point in the vignette we move more into the applied direction and refer the user to \citet{hoehle.paul2008} for further theoretical details about the GLR procedure. The next example demonstrates the surveillance with the \verb+algo.glrnb+ in a learning by doing type of way. The example should demonstrate primarily the result of the surveillance. More details to the control-options follow in the next section. All control values are set here on default and the first two years are used to find a model for the in-control mean and so surveillance is starting in week 105. A plot of the results can be obtained as follows <>= survObj <- algo.glrnb(shadar,control=list(range=105:295,alpha=0)) plot(survObj,startyear=2003) @ The default value for $c_{\gamma}$ is 5. The upperbound statistic is above this value several times in the third quarter of 2006 (time points marked by small triangles in the plot). In the next section follow a description of the control-setting for tuning the behavior of the algorithm, e.g.\ one can search not only for increases in mean as shown in the example but also for decreases. \section{Control-settings}\label{sec:control} In this section, the purpose and use of the control settings of the \verb+algo.glrnb+ function are shown and illustrated by the examples from Section \ref{sec:prel}. The control-setting is a list of the following arguments. <>= control=list(range=range,c.ARL=5, mu0=NULL, alpha=0, Mtilde=1, M=-1, change="intercept",theta=NULL, dir=c("inc","dec"),ret=c("cases","value")) @ \begin{itemize} \item \verb+range+ \\ The \verb+range+ is a vector of consecutive indices for the week numbers in the \verb+disProg+ object for which surveillance should be done. If a model for the in-control parameter $\mu_0$ is known (\verb+mu0+ is not \verb+NULL+), the surveillance can start at time point one. Otherwise it is necessary to estimate the values for \verb+mu0+ with a GLM. Thus, the range should not start at the first time point but instead use the first weeks/months as control-range. (Note: It is important to use enough data for estimating $\mu_0$, but one should be careful that these data are in control) With the following call one uses the first 2 years (104 weeks) for estimating $\mu_0$ and the the years 2003 to 2006 will be on line monitored. <>= control=list(range=105:length(shadar$observed)) algo.glrnb(disProgObj=shadar,control=control) @ \item \verb+alpha+ \\ This is the (known) dispersion parameter $\alpha$ of the negative binomial distribution. If \verb+alpha+=0, modeling corresponds to the Poisson distribution. In this case, the call of \verb+algo.glrnb+ is similar to a call of \verb+algo.glrpois+. If $\alpha$ is known, the value can be specified in the \verb+control+-settings. <>= control=list(range=105:295,alpha=3) algo.glrnb(disProgObj=shadar,control=control) @ If overdispersion is present in the data, but the dispersion parameter $\alpha$ is unknown, an estimation $\hat{\alpha}$ is calculated as part of the in-control model estimation. Use \verb+alpha=NULL+ to get this estimation. The estimated value $\hat{\alpha}$ is saved in the \verb+survRes+-Object in the \verb+control+-list. Use <>= control=list(range=105:295,alpha=NULL) surv <- algo.glrnb(shadar,control=control) surv$control$alpha @ to get the estimated dispersion parameter for the salmonella data. \item \verb+mu0+ \\ This vector contains the values for $\mu_0$ for each time point in the \verb+range+. If it has the value \verb+NULL+ the observed values with indices 1 to \verb+range+-1 are used to fit a GLM. If there is no knowledge about the in-control parameter, one can use the values before the range to find an seasonal model as in equation \ref{mu0}. \verb+mu0+ is at the moment a list of three argument: \verb+S+ is the number of harmonics to include in the model, \verb+trend+ is Boolean whether a linear trend $\beta_1t$ should be considered. The default is to use the same model of $\mu_0$ for the whole surveillance. An alternative is, to fit a new model after every detected outbreak. If refitting should be done, choose \verb+refit=TRUE+ in the \verb+mu0+ list. In this case, the observed value from time point 1 to the time point of the last alarm are used for estimating a GLM. Then we get a new model after every alarm. In the following example a model with \verb+S+=2 harmonics and no linear trend is fitted for the Salmonella data. The observed cases from the first two years are used for fitting the GLM. <>= control=list(range=105:295,mu0=list(S=2,trend=FALSE)) algo.glrnb(disProgObj=shadar,control=control) @ <>= control=list(range=105:295,mu0=list(S=2,trend=F,refit=T)) surv <- algo.glrnb(disProgObj=shadar,control=control) @ The predicted values for the in-control mean in the range are shown as a dashed line in the following plot. <>= plot(shadar) with(surv$control,lines(mu0~range,lty=2,lwd=4,col=4)) @ Information about the used model is saved in the \verb+survRes+-object, too. <>= surv$control$mu0Model @ The $\mu_0$ model is fitted by a call of the function \verb+estimateGLRNbHook+, %% Instead of using the standard seasonal negative binomial model from equation \ref{mu0}, one can change the \texttt{R}-code of the function \verb+estimateGLRNbHook+ to get any desired model. which is defined as follows: <>= estimateGLRNbHook @ \iffalse To include own models in the \verb+estimateGLRNbHook+ function, the code of the function has to be changed. In the following code chunk \verb+estimateGLRNbHook+ is modified so that weights are included in the model (here always Poisson, ignoring \verb+alpha+). \begin{small} \begin{verbatim} estimateGLRNbHook <- function() { control <- parent.frame()$control p <- parent.frame()$disProgObj$freq range <- parent.frame()$range train <- 1:(range[1]-1) test <- range #Weights of training data - sliding window also possible weights <- exp(-0.3 * ((max(train)-train)) %/% 12) data <- data.frame(y=parent.frame()$disProgObj$observed[train],t=train) formula <- "y ~ 1 " if (control$mu0Model$trend) { formula <- paste(formula," + t",sep="") } for (s in 1:control$mu0Model$S) { formula <- paste(formula,"+cos(2*",s,"*pi/p*t)+ sin(2*",s,"*pi/p*t)",sep="") } m <- eval(substitute(glm(form,family=poisson(),data=data,weights=weights), list(form=as.formula(formula)))) return(list(mod=m,pred=as.numeric(predict(m,newdata=data.frame(t=test), type="response")))) } \end{verbatim} \end{small} \fi The fitted model from the call of \verb+estimateGLRNbHook+ is saved. The result of a call of \verb+glm.nb+ is in the standard setting an object of class \verb+negbin+ inheriting from class \verb+glm+. So methods as \verb+summary+, \verb+plot+ of \verb+predict+ can be used on this object. If refitting is done, the list of the used models is saved. Use <>= coef(surv$control$mu0Model$fitted[[1]]) @ to get the estimated values of the first (and in case of \verb+refit=FALSE+ only) model for the parameter vector $\beta$ given in (\ref{mu0}). \item \verb+c.ARL+ \\ This is just the threshold $c_{\gamma}$ for the GLR-test (see equation \ref{cusum}). The smaller the value is chosen, the more likely it is to detect an outbreak but on the other hand false alarms can be produced. <>= control=list(range=105:295,alpha=0) surv <- algo.glrnb(disProgObj=shadar,control=control) table(surv$alarm) @ For a choice of $c_{\gamma}$ we get \Sexpr{table(surv$alarm)[2]} alarms. In the following table the results for different choices of the threshold are shown. <>= num <- rep(NA) for (i in 1:6){ num[i] <- table(algo.glrnb(disProgObj=shadar,control=c(control,c.ARL=i))$alarm)[2] } @ \begin{table}[h] \centering \caption{Number of alarms for salmonella hadar data for varying c.ARL} \label{c.ARL} \begin{tabular}{l|cccccc} \verb+c.ARL+ & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline no. of alarms & \Sexpr{num[1]} & \Sexpr{num[2]} & \Sexpr{num[3]} & \Sexpr{num[4]} & \Sexpr{num[5]} & \Sexpr{num[6]} \end{tabular} \end{table} \item \verb+change+ \\ There are two possibilitys to define an outbreak. The intercept-change is described in Section \ref{sec:glr} and equation \ref{interceptchange}. Use \verb+change="intercept"+ to choose this possibility. The other alternative is the epidemic chart, where an auto-regressive model is used. See \citet{held-etal-2005} and \citet{hoehle.paul2008} for more details. A call with \verb+change="epi"+ in the control-settings leads to this alternative. Note that in the epidemic chart not every feature of \verb+algo.glrnb+ is available. \item \verb+theta+ \\ If the change in intercept in the intercept-charts is known in advance, this value can be passed to the function (see Section \ref{sec:glr}). These LR-charts are faster but can lead to inferior results if a wrong value of \verb+theta+ is used compared to the actual out-of-control value (\citet{hoehle.paul2008}). If an increase of 50 percent in cases is common when there is an outbreak which corresponds to a $\kappa$ of $\log(1.5)=0.405$ in equation \ref{interceptchange} use <>= control=list(range=105:295,theta=0.4) algo.glrnb(disProgObj=shadar,control=control) @ If there is no knowledge about this value (which is the usual situation), it is not necessary to specify \verb+theta+. In the GLR-charts, the value for $\kappa$ is calculated by a maximation of the likelihood. Use the call <>= control=list(range=105:295,theta=NULL) algo.glrnb(disProgObj=shadar,control=control) @ in this situation. \item \verb+ret+ \\ The \verb+upperbound+-statistic of a \verb+survRes+-object is usually filled with the LR- or GLR-statistic of equation \ref{cusum}. A small value means, that the in-control-situation is likely, a big value is a hint for an outbreak. If you choose \verb+ret="value"+, the upperbound slot is filled with the GLR-statistic. These values are plotted then, too. The alternative return value is \verb+"cases"+. In this case, the number of cases at time point $n$ that would have been necessary to produce an alarm are computed. The advantage of this option is the easy interpretation. If the actual number of cases is more extreme than the computed one, an alarm is given. With the following call, this is done for the salmonella data. <>= control=list(range=105:295,ret="cases",alpha=0) surv2 <- algo.glrnb(disProgObj=shadar,control=control) @ <>= plot(surv2,startyear=2003) @ Of course, the alarm time points are the same as with \verb+ret="cases"+. \item \verb+dir+ \\ In the surveillance of infectious diseases it is regular to detect an increase in the number of infected persons. This is also the standard setting for \verb+algo.glrnb+. But in other applications it could be of interest to detect a decrease of counts. For this purpose, the \verb+dir+-option is available. If \verb+dir+ is set to \verb+"inc"+, only increases in regard to the in-control mean are taken into account in the likelihood-ratio-statistic. With \verb+dir="dec"+, only decreases are considered. As an example we take the salmonella data again, but know we look at the number of cases that would have been necessary if a decrease should be detected. <>= control=list(range=105:295,ret="cases",dir="dec",alpha=0) surv3 <- algo.glrnb(disProgObj=shadar,control=control) @ <>= plot(surv3,startyear=2003) @ The observed number of cases is below the computed threshold several times in 2005 to 2006 and alarms are given. \item \verb+Mtilde+ and \verb+M+ \\ These parameters are necessary for the so called ''window-limited'' GLR scheme. Here the maximation is not performed for all $1 \leq k \leq n$ but instead only for a window $k \in \{n-M,...,n-\tilde{M}+1 \}$ of values. Note that $1 \leq \tilde{M} \leq M$, where the minimum delay $\tilde{M}$ is the minimal required sample size to obtain a sufficient estimate of $\theta_1=(\mu_0,\kappa)$ ~\citep{hoehle.paul2008}. The advantage of using a window of values instead of all values is the faster computation, but in the setup with intercept-charts and $\theta_1=\kappa$ this doesn't bother much and $\tilde{M}=1$ is sufficient. \end{itemize} \section{Discussion} As seen, the function \verb+algo.glrnb+ allows many possibilities for doing surveillance for a time series of counts. In order to achieve fast computations, the function is implemented in C. An important issue in surveillance is the quality of the used algorithms. This can be measured by the sensitivity and the specificity of the result. The aim of our future work is to provide the possibility for computing the quality and in the next step to include a ROC-approach in order to have a more formal framework for the choice of threshold $c_{\gamma}$. %\include{extensions} %\renewcommand{\bibsection}{\section{REFERENCES}} \bibliography{references} \end{document} surveillance/vignettes/hhh4_spacetime.Rnw0000644000175100001440000015141213231650105020351 0ustar hornikusers%\VignetteIndexEntry{hhh4 (spatio-temporal): Endemic-epidemic modeling of areal count time series} %\VignetteEngine{knitr::knitr} %\VignetteDepends{surveillance, lattice, spdep, gsl, colorspace, ggplot2, animation, gridExtra, scales, rmapshaper, fanplot, hhh4contacts} <>= ## purl=FALSE => not included in the tangle'd R script knitr::opts_chunk$set(echo = TRUE, tidy = FALSE, results = 'markup', fig.path='plots/hhh4_spacetime-', fig.width = 8, fig.height = 4.5, fig.align = "center", fig.scap = NA, out.width = NULL, cache = FALSE, error = FALSE, warning = FALSE, message = FALSE) knitr::render_sweave() # use Sweave environments knitr::set_header(highlight = '') # no \usepackage{Sweave} (part of jss class) ## R settings options(prompt = "R> ", continue = "+ ", useFancyQuotes = FALSE) # JSS options(width = 85, digits = 4) options(scipen = 1) # so that 1e-4 gets printed as 0.0001 ## xtable settings options(xtable.booktabs = TRUE, xtable.size = "small", xtable.sanitize.text.function = identity, xtable.comment = FALSE) @ <>= ## load the "cool" package library("surveillance") ## Compute everything or fetch cached results? message("Doing computations: ", COMPUTE <- !file.exists("hhh4_spacetime-cache.RData")) if (!COMPUTE) load("hhh4_spacetime-cache.RData", verbose = TRUE) @ \documentclass[nojss,nofooter,article]{jss} \title{% \vspace{-1.5cm} \fbox{\vbox{\normalfont\footnotesize This introduction to spatio-temporal \code{hhh4} models implemented in the \proglang{R}~package \pkg{surveillance} is based on a publication in the \textit{Journal of Statistical Software} -- \citet[Section~5]{meyer.etal2014} -- which is the suggested reference if you use the \code{hhh4} implementation in your own work.}}\\[1cm] \code{hhh4}: Endemic-epidemic modeling\\of areal count time series} \Plaintitle{hhh4: Endemic-epidemic modeling of areal count time series} \Shorttitle{Endemic-epidemic modeling of areal count time series} \author{Sebastian Meyer\thanks{Author of correspondence: \email{seb.meyer@fau.de}}\\Friedrich-Alexander-Universit{\"a}t\\Erlangen-N{\"u}rnberg \And Leonhard Held\\University of Zurich \And Michael H\"ohle\\Stockholm University} \Plainauthor{Sebastian Meyer, Leonhard Held, Michael H\"ohle} %% Basic packages \usepackage{lmodern} % successor of CM -> searchable Umlauts (1 char) \usepackage[english]{babel} % language of the manuscript is American English %% Math packages \usepackage{amsmath,amsfonts} % amsfonts defines \mathbb \usepackage{mathtools} % tools for math typesetting + amsmath-bugfixes \usepackage{bm} % \bm: alternative to \boldsymbol from amsfonts \usepackage{bbm} % \mathbbm: alternative to \mathbb from amsfonts %% Packages for figures and tables \usepackage{booktabs} % make tables look nicer \usepackage{subcaption} % successor of subfig, which supersedes subfigure \newcommand{\subfloat}[2][need a sub-caption]{\subcaptionbox{#1}{#2}} % -> knitr %% Handy math commands \newcommand{\abs}[1]{\lvert#1\rvert} \newcommand{\norm}[1]{\lVert#1\rVert} \newcommand{\given}{\,\vert\,} \newcommand{\dif}{\,\mathrm{d}} \newcommand{\IR}{\mathbb{R}} \newcommand{\IN}{\mathbb{N}} \newcommand{\ind}{\mathbbm{1}} \DeclareMathOperator{\Po}{Po} \DeclareMathOperator{\NegBin}{NegBin} \DeclareMathOperator{\N}{N} %% Additional commands \newcommand{\class}[1]{\code{#1}} % could use quotes (JSS does not like them) \newcommand{\CRANpkg}[1]{\href{https://CRAN.R-project.org/package=#1}{\pkg{#1}}} %% Reduce the font size of code input and output \DefineVerbatimEnvironment{Sinput}{Verbatim}{fontshape=sl, fontsize=\small} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontsize=\small} %% Abstract \Abstract{ The availability of geocoded health data and the inherent temporal structure of communicable diseases have led to an increased interest in statistical models and software for spatio-temporal data with epidemic features. The \proglang{R}~package \pkg{surveillance} can handle various levels of aggregation at which infective events have been recorded. This vignette illustrates the analysis of area-level time series of counts using the endemic-epidemic multivariate time-series model ``\code{hhh4}'' described in, e.g., \citet[Section~3]{meyer.held2013}. See \code{vignette("hhh4")} for a more general introduction to \code{hhh4} models, including the univariate and non-spatial bivariate case. %% (For other types of surveillance data, see %% \code{vignette("twinstim")} and \code{vignette("twinSIR")}.) We first describe the general modeling approach and then exemplify data handling, model fitting, visualization, and simulation methods for weekly counts of measles infections by district in the Weser-Ems region of Lower Saxony, Germany, 2001--2002. } \Keywords{% areal time series of counts, endemic-epidemic modeling, infectious disease epidemiology, branching process with immigration} \begin{document} %% \vfill %% { %% \renewcommand{\abstractname}{Outline} % local change %% \begin{abstract} %% We start by describing the general model class in Section~\ref{sec:hhh4:methods}. %% Section~\ref{sec:hhh4:data} introduces the data and the associated \proglang{S}4-class %% \class{sts} (``surveillance time series''). %% In Section~\ref{sec:hhh4:fit}, a simple model for the measles data based on the %% original analysis of \citet{held-etal-2005} is introduced, %% which is then sequentially improved by suitable model extensions. %% The final Section~\ref{sec:hhh4:simulation} illustrates simulation from fitted %% \class{hhh4} models. %% \end{abstract} %% } %% \vfill %% \newpage \section[Model class]{Model class: \code{hhh4}} \label{sec:hhh4:methods} An endemic-epidemic multivariate time-series model for infectious disease counts $Y_{it}$ from units $i=1,\dotsc,I$ during periods $t=1,\dotsc,T$ was proposed by \citet{held-etal-2005} and was later extended in a series of papers \citep{paul-etal-2008,paul-held-2011,held.paul2012,meyer.held2013}. In its most general formulation, this so-called ``\code{hhh4}'' model assumes that, conditional on past observations, $Y_{it}$ has a negative binomial distribution with mean \begin{equation} \label{eqn:hhh4} \mu_{it} = e_{it} \, \nu_{it} + \lambda_{it} \, Y_{i,t-1} + \phi_{it} \sum_{j \ne i} w_{ji} \, Y_{j,t-1} \end{equation} and overdispersion parameter $\psi_i > 0$ such that the conditional variance of $Y_{it}$ is $\mu_{it} (1+\psi_i \mu_{it})$. Shared overdispersion parameters, e.g., $\psi_i\equiv\psi$, are supported as well as replacing the negative binomial by a Poisson distribution, which corresponds to the limit $\psi_i\equiv 0$. Similar to the point process models in \code{vignette("twinstim")} and \code{vignette("twinSIR")}, the mean~\eqref{eqn:hhh4} decomposes additively into endemic and epidemic components. The endemic mean is usually modeled proportional to an offset of expected counts~$e_{it}$. In spatial applications of the multivariate \code{hhh4} model as in this paper, the ``unit''~$i$ refers to a geographical region and we typically use (the fraction of) the population living in region~$i$ as the endemic offset. The observation-driven epidemic component splits up into autoregressive effects, i.e., reproduction of the disease within region~$i$, and neighborhood effects, i.e., transmission from other regions~$j$. Overall, Equation~\ref{eqn:hhh4} becomes a rich regression model by allowing for log-linear predictors in all three components: \begin{align} \label{eqn:hhh4:predictors} \log(\nu_{it}) &= \alpha_i^{(\nu)} + {\bm{\beta}^{(\nu)}}^\top \bm{z}^{(\nu)}_{it} \:, \\ \log(\lambda_{it}) &= \alpha_i^{(\lambda)} + {\bm{\beta}^{(\lambda)}}^\top \bm{z}^{(\lambda)}_{it} \:, \\ \log(\phi_{it}) &= \alpha_i^{(\phi)} + {\bm{\beta}^{(\phi)}}^\top \bm{z}^{(\phi)}_{it} \:. \end{align} %% The superscripts in brackets distinguish the component-specific parameters. The intercepts of these predictors can be assumed identical across units, unit-specific, or random (and possibly correlated). %\citep{paul-held-2011} The regression terms often involve sine-cosine effects of time to reflect seasonally varying incidence, %\citep{held.paul2012} but may, e.g., also capture heterogeneous vaccination coverage \citep{herzog-etal-2010}. Data on infections imported from outside the study region may enter the endemic component \citep{geilhufe.etal2012}, which generally accounts for cases not directly linked to other observed cases, e.g., due to edge effects. For a single time series of counts $Y_t$, \code{hhh4} can be regarded as an extension of \code{glm.nb} from package \CRANpkg{MASS} \citep{R:MASS} to account for autoregression. See the \code{vignette("hhh4")} for examples of modeling univariate and bivariate count time series using \code{hhh4}. With multiple regions, spatio-temporal dependence is adopted by the third component in Equation~\ref{eqn:hhh4} with weights $w_{ji}$ reflecting the flow of infections from region $j$ to region $i$. These transmission weights may be informed by movement network data \citep{paul-etal-2008,geilhufe.etal2012}, but may also be estimated parametrically. A suitable choice to reflect epidemiological coupling between regions \citep[Chapter~7]{Keeling.Rohani2008} is a power-law distance decay $w_{ji} = o_{ji}^{-d}$ defined in terms of the adjacency order~$o_{ji}$ in the neighborhood graph of the regions \citep{meyer.held2013}. %% For instance, a second-order neighbor~$j$ of a region~$i$ ($o_{ji} = 2$) is a %% region adjacent to a first-order neighbor of $i$, but not itself directly %% adjacent to $i$. Note that we usually normalize the transmission weights such that $\sum_i w_{ji} = 1$, i.e., the $Y_{j,t-1}$ cases are distributed among the regions proportionally to the $j$th row vector of the weight matrix $(w_{ji})$. Likelihood inference for the above multivariate time-series model has been established by \citet{paul-held-2011} with extensions for parametric neighborhood weights by \citet{meyer.held2013}. Supplied with the analytical score function and Fisher information, the function \code{hhh4} by default uses the quasi-Newton algorithm available through the \proglang{R} function \code{nlminb} to maximize the log-likelihood. Convergence is usually fast even for a large number of parameters. If the model contains random effects, the penalized and marginal log-likelihoods are maximized alternately until convergence. Computation of the marginal Fisher information is accelerated using the \CRANpkg{Matrix} package \citep{R:Matrix}. \section[Data structure]{Data structure: \class{sts}} \label{sec:hhh4:data} <>= ## extract components from measlesWeserEms to reconstruct data("measlesWeserEms") counts <- observed(measlesWeserEms) map <- measlesWeserEms@map populationFrac <- measlesWeserEms@populationFrac @ In public health surveillance, routine reports of infections to public health authorities give rise to spatio-temporal data, which are usually made available in the form of aggregated counts by region and period. The Robert Koch Institute (RKI) in Germany, for example, maintains a database of cases of notifiable diseases, which can be queried via the \emph{SurvStat@RKI} online service (\url{https://survstat.rki.de}). To exemplify area-level \code{hhh4} models in the remainder of this manuscript, we use weekly counts of measles infections by district in the Weser-Ems region of Lower Saxony, Germany, 2001--2002, downloaded from \emph{SurvStat@RKI} (as of Annual Report 2005). These data are contained in \pkg{surveillance} as \code{data("measlesWeserEms")} -- an object of the \proglang{S}4-class \class{sts} (``surveillance time series'') used for data input in \code{hhh4} models and briefly introduced below. See \citet{hoehle-mazick-2010} and \citet{salmon.etal2014} for more detailed descriptions of this class, which is also used for the prospective aberration detection facilities of the \pkg{surveillance} package. The epidemic modeling of multivariate count time series essentially involves three data matrices: a $T \times I$ matrix of the observed counts, a corresponding matrix with potentially time-varying population numbers (or fractions), and an $I \times I$ neighborhood matrix quantifying the coupling between the $I$ units. In our example, the latter consists of the adjacency orders~$o_{ji}$ between the districts. A map of the districts in the form of a \code{SpatialPolygons} object (defined by the \CRANpkg{sp} package of \citealp{R:sp}) can be used to derive the matrix of adjacency orders automatically using the functions \code{poly2adjmat} and \code{nbOrder}, which wrap functionality of package \CRANpkg{spdep} \citep{R:spdep}: <>= weserems_adjmat <- poly2adjmat(map) weserems_nbOrder <- nbOrder(weserems_adjmat, maxlag = Inf) @ Visual inspection of the adjacencies identified by \code{poly2adjmat} is recommended, e.g., via labelling each district with the number of its neighbors, i.e., \code{rowSums(weserems_adjmat)}. If adjacencies are not detected, this is probably due to sliver polygons. In that case either increase the \code{snap} tolerance in \code{poly2adjmat} or use \CRANpkg{rmapshaper} \citep{R:rmapshaper} to simplify and snap adjacent polygons in advance. Given the aforementioned ingredients, the \class{sts} object \code{measlesWeserEms} has been constructed as follows: <>= measlesWeserEms <- sts(counts, start = c(2001, 1), frequency = 52, population = populationFrac, neighbourhood = weserems_nbOrder, map = map) @ Here, \code{start} and \code{frequency} have the same meaning as for classical time-series objects of class \class{ts}, i.e., (year, sample number) of the first observation and the number of observations per year. Note that \code{data("measlesWeserEms")} constitutes a corrected version of \code{data("measles.weser")} originally analyzed by \citet[Section~3.2]{held-etal-2005}. Differences are documented on the associated help page. We can visualize such \class{sts} data in four ways: individual time series, overall time series, map of accumulated counts by district, or animated maps. For instance, the two plots in Figure~\ref{fig:measlesWeserEms} have been generated by the following code: <>= par(mar = c(5,5,1,1)) plot(measlesWeserEms, type = observed ~ time) plot(measlesWeserEms, type = observed ~ unit, population = measlesWeserEms@map$POPULATION / 100000, labels = list(font = 2), colorkey = list(space = "right"), sp.layout = layout.scalebar(measlesWeserEms@map, corner = c(0.05, 0.05), scale = 50, labels = c("0", "50 km"), height = 0.03)) @ The overall time-series plot in Figure~\ref{fig:measlesWeserEms1} reveals strong seasonality in the data with slightly different patterns in the two years. The spatial plot in Figure~\ref{fig:measlesWeserEms2} is a tweaked \code{spplot} (package \CRANpkg{sp}) with colors from \CRANpkg{colorspace} \citep{R:colorspace} using $\sqrt{}$-equidistant cut points handled by package \CRANpkg{scales} \citep{R:scales}. The default plot \code{type} is \code{observed ~ time | unit} and displays the district-specific time series. Here we show the output of the equivalent \code{autoplot}-method (Figure~\ref{fig:measlesWeserEms15}), which is based on \CRANpkg{ggplot2} \citep{R:ggplot2}: <0), "affected districts."), out.width="\\linewidth", fig.width=10, fig.height=6, fig.pos="!h", eval=-1>>= plot(measlesWeserEms, units = which(colSums(observed(measlesWeserEms)) > 0)) library("ggplot2") autoplot(measlesWeserEms, units = which(colSums(observed(measlesWeserEms)) > 0)) @ The districts \Sexpr{paste0(paste0(row.names(measlesWeserEms@map), " (", measlesWeserEms@map[["GEN"]], ")")[colSums(observed(measlesWeserEms)) == 0], collapse = " and ")} without any reported cases are excluded in Figure~\ref{fig:measlesWeserEms15}. Obviously, the districts have been affected by measles to a very heterogeneous extent during these two years. An animation of the data can be easily produced as well. We recommend to use converters of the \CRANpkg{animation} package \citep{R:animation}, e.g., to watch the series of plots in a web browser. The following code will generate weekly disease maps during the year 2001 with the respective total number of cases shown in a legend and -- if package \CRANpkg{gridExtra} \citep{R:gridExtra} is available -- an evolving time-series plot at the bottom: <>= animation::saveHTML( animate(measlesWeserEms, tps = 1:52, total.args = list()), title = "Evolution of the measles epidemic in the Weser-Ems region, 2001", ani.width = 500, ani.height = 600) @ <>= ## to perform the following analysis using biweekly aggregated measles counts: measlesWeserEms <- aggregate(measlesWeserEms, by = "time", nfreq = 26) @ \pagebreak \section{Modeling and inference} \label{sec:hhh4:fit} For multivariate surveillance time series of counts such as the \code{measlesWeserEms} data, the function \code{hhh4} fits models of the form~\eqref{eqn:hhh4} via (penalized) maximum likelihood. We start by modeling the measles counts in the Weser-Ems region by a slightly simplified version of the original negative binomial model used by \citet{held-etal-2005}. Instead of district-specific intercepts $\alpha_i^{(\nu)}$ in the endemic component, we first assume a common intercept $\alpha^{(\nu)}$ in order to not be forced to exclude the two districts without any reported cases of measles. After the estimation and illustration of this basic model, we will discuss the following sequential extensions: covariates (district-specific vaccination coverage), estimated transmission weights, and random effects to eventually account for unobserved heterogeneity of the districts. %epidemic seasonality, biweekly aggregation \subsection{Basic model} Our initial model has the following mean structure: \begin{align} \mu_{it} &= e_i \, \nu_t + \lambda \, Y_{i,t-1} + \phi \sum_{j \ne i} w_{ji} Y_{j,t-1}\:,\label{eqn:hhh4:basic}\\ \log(\nu_t) &= \alpha^{(\nu)} + \beta_t t + \gamma \sin(\omega t) + \delta \cos(\omega t)\:. \label{eqn:hhh4:basic:end} \end{align} To account for temporal variation of disease incidence, the endemic log-linear predictor $\nu_t$ incorporates an overall trend and a sinusoidal wave of frequency $\omega=2\pi/52$. As a basic district-specific measure of disease incidence, the population fraction $e_i$ is included as a multiplicative offset. The epidemic parameters $\lambda = \exp(\alpha^{(\lambda)})$ and $\phi = \exp(\alpha^{(\phi)})$ are assumed homogeneous across districts and constant over time. Furthermore, we define $w_{ji} = \ind(j \sim i) = \ind(o_{ji} = 1)$ for the time being, which means that the epidemic can only arrive from directly adjacent districts. This \class{hhh4} model transforms into the following list of \code{control} arguments: <>= measlesModel_basic <- list( end = list(f = addSeason2formula(~1 + t, period = measlesWeserEms@freq), offset = population(measlesWeserEms)), ar = list(f = ~1), ne = list(f = ~1, weights = neighbourhood(measlesWeserEms) == 1), family = "NegBin1") @ The formulae of the three predictors $\log\nu_t$, $\log\lambda$ and $\log\phi$ are specified as element \code{f} of the \code{end}, \code{ar}, and \code{ne} lists, respectively. For the endemic formula we use the convenient function \code{addSeason2formula} to generate the sine-cosine terms, and we take the multiplicative \code{offset} of population fractions $e_i$ from the \code{measlesWeserEms} object. The autoregressive part only consists of the intercept $\alpha^{(\lambda)}$, whereas the neighborhood component specifies the intercept $\alpha^{(\phi)}$ and also the matrix of transmission \code{weights} $(w_{ji})$ to use -- here a simple indicator of first-order adjacency. The chosen \code{family} corresponds to a negative binomial model with a common overdispersion parameter $\psi$ for all districts. Alternatives are \code{"Poisson"}, \code{"NegBinM"} ($\psi_i$), or a factor determining which groups of districts share a common overdispersion parameter. Together with the data, the complete list of control arguments is then fed into the \code{hhh4} function to estimate the model: <>= measlesFit_basic <- hhh4(stsObj = measlesWeserEms, control = measlesModel_basic) @ The fitted model is summarized below: <>= summary(measlesFit_basic, idx2Exp = TRUE, amplitudeShift = TRUE, maxEV = TRUE) @ The \code{idx2Exp} argument of the \code{summary} method requests the estimates for $\lambda$, $\phi$, $\alpha^{(\nu)}$ and $\exp(\beta_t)$ instead of their respective internal log-values. For instance, \code{exp(end.t)} represents the seasonality-adjusted factor by which the basic endemic incidence increases per week. The \code{amplitudeShift} argument transforms the internal coefficients $\gamma$ and $\delta$ of the sine-cosine terms to the amplitude $A$ and phase shift $\varphi$ of the corresponding sinusoidal wave $A \sin(\omega t + \varphi)$ in $\log\nu_t$ \citep{paul-etal-2008}. The resulting multiplicative effect of seasonality on $\nu_t$ is shown in Figure~\ref{fig:measlesFit_basic_endseason} produced by: <>= plot(measlesFit_basic, type = "season", components = "end", main = "") @ The epidemic potential of the process as determined by the parameters $\lambda$ and $\phi$ is best investigated by a combined measure: the dominant eigenvalue (\code{maxEV}) of the matrix $\bm{\Lambda}$ %$\Lambda_t$, %such that $\bm{\mu}_t = \bm{\nu}_t + \bm{\Lambda} \bm{Y}_{t-1}$ which has the entries $(\Lambda)_{ii} = \lambda$ %$(\Lambda_t)_{ii} = \lambda_{it}$ on the diagonal and $(\Lambda)_{ij} = \phi w_{ji}$ %$(\Lambda_t)_{ij} = \phi_{it} w_{ji}$ for $j\ne i$ \citep{paul-etal-2008}. If the dominant eigenvalue is smaller than 1, it can be interpreted as the epidemic proportion of disease incidence. In the above model, the estimate is \Sexpr{round(100*getMaxEV(measlesFit_basic)[1])}\%. Another way to judge the relative importance of the three model components is via a plot of the fitted mean components along with the observed counts. Figure~\ref{fig:measlesFitted_basic} shows this for the six districts with more than 20 cases: <>= districts2plot <- which(colSums(observed(measlesWeserEms)) > 20) plot(measlesFit_basic, type = "fitted", units = districts2plot, hide0s = TRUE) @ The largest portion of the fitted mean indeed results from the within-district autoregressive component with very little contribution of cases from adjacent districts and a rather small endemic incidence. The \code{overdisp} parameter from the model summary and its 95\% confidence interval <<>>= confint(measlesFit_basic, parm = "overdisp") @ suggest that a negative binomial distribution with overdispersion is more adequate than a Poisson model corresponding to $\psi = 0$. We can underpin this finding by an AIC comparison, taking advantage of the convenient \code{update} method for \class{hhh4} fits: <>= AIC(measlesFit_basic, update(measlesFit_basic, family = "Poisson")) @ Other plot \code{type}s and methods for fitted \class{hhh4} models as listed in Table~\ref{tab:methods:hhh4} will be applied in the course of the following model extensions. <>= print(xtable( surveillance:::functionTable("hhh4", functions=list( Extract="getNEweights", Other="oneStepAhead" )), caption="Generic and \\textit{non-generic} functions applicable to \\class{hhh4} objects.", label="tab:methods:hhh4"), include.rownames = FALSE) @ \enlargethispage{\baselineskip} \subsection{Covariates} The \class{hhh4} model framework allows for covariate effects on the endemic or epidemic contributions to disease incidence. Covariates may vary over both regions and time and thus obey the same $T \times I$ matrix structure as the observed counts. For infectious disease models, the regional vaccination coverage is an important example of such a covariate, since it reflects the (remaining) susceptible population. In a thorough analysis of measles occurrence in the German federal states, \citet{herzog-etal-2010} found vaccination coverage to be associated with outbreak size. We follow their approach of using the district-specific proportion $1-v_i$ of unvaccinated children just starting school as a proxy for the susceptible population. As $v_i$ we use the proportion of children vaccinated with at least one dose among the ones presenting their vaccination card at school entry in district $i$ in the year 2004.\footnote{% First year with data for all districts -- available from the public health department of Lower Saxony (\url{http://www.nlga.niedersachsen.de/portal/live.php?navigation_id=36791&article_id=135436&_psmand=20}).} %% Note: districts are more heterogeneous in 2004 than in later years. %% Data is based on abecedarians in 2004, i.e.\ born in 1998, recommended to %% be twice vaccinated against Measles by the end of year 2000. This time-constant covariate needs to be transformed to the common matrix structure for incorporation in \code{hhh4}: <>= Sprop <- matrix(1 - measlesWeserEms@map@data$vacc1.2004, nrow = nrow(measlesWeserEms), ncol = ncol(measlesWeserEms), byrow = TRUE) summary(Sprop[1, ]) @ There are several ways to account for the susceptible proportion in our model, among which the simplest is to update the endemic population offset $e_i$ by multiplication with $(1-v_i)$. \citet{herzog-etal-2010} found that the susceptible proportion is best added as a covariate in the autoregressive component in the form \[ \lambda_i \, Y_{i,t-1} = \exp\big(\alpha^{(\lambda)} + \beta_s \log(1-v_i)\big) \, Y_{i,t-1} = \exp\big(\alpha^{(\lambda)}\big) \, (1-v_i)^{\beta_s} \, Y_{i,t-1} \] according to the mass action principle \citep{Keeling.Rohani2008}. A higher proportion of susceptibles in district $i$ is expected to boost the generation of new infections, i.e., $\beta_s > 0$. Alternatively, this effect could be assumed as an offset, i.e., $\beta_s \equiv 1$. To choose between endemic and/or autoregressive effects, and multiplicative offset vs.\ covariate modeling, we perform AIC-based model selection. First, we set up a grid of possible component updates: <>= Soptions <- c("unchanged", "Soffset", "Scovar") SmodelGrid <- expand.grid(end = Soptions, ar = Soptions) row.names(SmodelGrid) <- do.call("paste", c(SmodelGrid, list(sep = "|"))) @ Then we update the initial model \code{measlesFit_basic} according to each row of \code{SmodelGrid}: <>= measlesFits_vacc <- apply(X = SmodelGrid, MARGIN = 1, FUN = function (options) { updatecomp <- function (comp, option) switch(option, "unchanged" = list(), "Soffset" = list(offset = comp$offset * Sprop), "Scovar" = list(f = update(comp$f, ~. + log(Sprop)))) update(measlesFit_basic, end = updatecomp(measlesFit_basic$control$end, options[1]), ar = updatecomp(measlesFit_basic$control$ar, options[2]), data = list(Sprop = Sprop)) }) @ The resulting object \code{measlesFits_vacc} is a list of \Sexpr{nrow(SmodelGrid)} \class{hhh4} fits, which are named according to the corresponding \code{Soptions} used for the endemic and autoregressive components. We construct a call of the function \code{AIC} taking all list elements as arguments: <>= aics_vacc <- do.call(AIC, lapply(names(measlesFits_vacc), as.name), envir = as.environment(measlesFits_vacc)) @ <<>>= aics_vacc[order(aics_vacc[, "AIC"]), ] @ <>= if (AIC(measlesFits_vacc[["Scovar|unchanged"]]) > min(aics_vacc[,"AIC"])) stop("`Scovar|unchanged` is not the AIC-minimal vaccination model") @ Hence, AIC increases if the susceptible proportion is only added to the autoregressive component, but we see a remarkable improvement when adding it to the endemic component. The best model is obtained by leaving the autoregressive component unchanged ($\lambda$) and adding the term $\beta_s \log(1-v_i)$ to the endemic predictor in Equation~\ref{eqn:hhh4:basic:end}. <>= measlesFit_vacc <- update(measlesFit_basic, end = list(f = update(formula(measlesFit_basic)$end, ~. + log(Sprop))), data = list(Sprop = Sprop)) coef(measlesFit_vacc, se = TRUE)["end.log(Sprop)", ] @ The estimated exponent $\hat{\beta}_s$ is both clearly positive and different from the offset assumption. In other words, if a district's fraction of susceptibles is doubled, the endemic measles incidence is estimated to multiply by $2^{\hat{\beta}_s}$: <<>>= 2^cbind("Estimate" = coef(measlesFit_vacc), confint(measlesFit_vacc))["end.log(Sprop)",] @ \subsection{Spatial interaction} Up to now, the model assumed that the epidemic can only arrive from directly adjacent districts ($w_{ji} = \ind(j\sim i)$), and that all districts have the same ability $\phi$ to import cases from neighboring regions. Given that humans travel further and preferrably to metropolitan areas, both assumptions seem overly simplistic and should be tuned toward a ``gravity'' model for human interaction. First, to reflect commuter-driven spread %\citep[Section~6.3.3.1]{Keeling.Rohani2008} in our model, we scale the district's susceptibility with respect to its population fraction by multiplying $\phi$ with $e_i^{\beta_{pop}}$: <>= measlesFit_nepop <- update(measlesFit_vacc, ne = list(f = ~log(pop)), data = list(pop = population(measlesWeserEms))) @ As in a similar analyses of influenza \citep{geilhufe.etal2012,meyer.held2013}, we find strong evidence for such an agglomeration effect: AIC decreases from \Sexpr{round(AIC(measlesFit_vacc))} to \Sexpr{round(AIC(measlesFit_nepop))} and the estimated exponent $\hat{\beta}_{pop}$ is <<>>= cbind("Estimate" = coef(measlesFit_nepop), confint(measlesFit_nepop))["ne.log(pop)",] @ Second, to account for long-range transmission of cases, \citet{meyer.held2013} proposed to estimate the weights $w_{ji}$ as a function of the adjacency order $o_{ji}$ between the districts. For instance, a power-law model assumes the form $w_{ji} = o_{ji}^{-d}$, for $j\ne i$ and $w_{jj}=0$, where the decay parameter $d$ is to be estimated. Normalization to $w_{ji} / \sum_k w_{jk}$ is recommended and applied by default when choosing \code{W_powerlaw} as weights in the neighborhood component: <>= measlesFit_powerlaw <- update(measlesFit_nepop, ne = list(weights = W_powerlaw(maxlag = 5))) @ The argument \code{maxlag} sets an upper bound for spatial interaction in terms of adjacency order. Here we set no limit since \code{max(neighbourhood(measlesWeserEms))} is \Sexpr{max(neighbourhood(measlesWeserEms))}. The decay parameter $d$ is estimated to be <<>>= cbind("Estimate" = coef(measlesFit_powerlaw), confint(measlesFit_powerlaw))["neweights.d",] @ which represents a strong decay of spatial interaction for higher-order neighbors. As an alternative to the parametric power law, unconstrained weights up to \code{maxlag} can be estimated by using \code{W_np} instead of \code{W_powerlaw}. For instance, \code{W_np(maxlag = 2)} corresponds to a second-order model, i.e., \mbox{$w_{ji} = 1 \cdot \ind(o_{ji} = 1) + e^{\omega_2} \cdot \ind(o_{ji} = 2)$}, which is also row-normalized by default: <>= measlesFit_np2 <- update(measlesFit_nepop, ne = list(weights = W_np(maxlag = 2))) @ Figure~\ref{fig:measlesFit_neweights2} shows both the power-law model $o^{-\hat{d}}$ and the second-order model. %, where $e^{\hat{\omega}_2}$ is Alternatively, the plot \code{type = "neweights"} for \class{hhh4} fits can produce a \code{stripplot} \citep{R:lattice} of $w_{ji}$ against $o_{ji}$ as shown in Figure~\ref{fig:measlesFit_neweights1} for the power-law model: <>= library("lattice") trellis.par.set("reference.line", list(lwd=3, col="gray")) trellis.par.set("fontsize", list(text=14)) plot(measlesFit_powerlaw, type = "neweights", plotter = stripplot, panel = function (...) {panel.stripplot(...); panel.average(...)}, jitter.data = TRUE, xlab = expression(o[ji]), ylab = expression(w[ji])) ## non-normalized weights (power law and unconstrained second-order weight) local({ colPL <- "#0080ff" ogrid <- 1:5 par(mar=c(3.6,4,2.2,2), mgp=c(2.1,0.8,0)) plot(ogrid, ogrid^-coef(measlesFit_powerlaw)["neweights.d"], col=colPL, xlab="Adjacency order", ylab="Non-normalized weight", type="b", lwd=2) matlines(t(sapply(ogrid, function (x) x^-confint(measlesFit_powerlaw, parm="neweights.d"))), type="l", lty=2, col=colPL) w2 <- exp(c(coef(measlesFit_np2)["neweights.d"], confint(measlesFit_np2, parm="neweights.d"))) lines(ogrid, c(1,w2[1],0,0,0), type="b", pch=19, lwd=2) arrows(x0=2, y0=w2[2], y1=w2[3], length=0.1, angle=90, code=3, lty=2) legend("topright", col=c(colPL, 1), pch=c(1,19), lwd=2, bty="n", inset=0.1, y.intersp=1.5, legend=c("Power-law model", "Second-order model")) }) @ Note that only horizontal jitter is added in this case. Because of normalization, the weight $w_{ji}$ for transmission from district $j$ to district $i$ is determined not only by the districts' neighborhood $o_{ji}$ but also by the total amount of neighborhood of district $j$ in the form of $\sum_{k\ne j} o_{jk}^{-d}$, which causes some variation of the weights for a specific order of adjacency. The function \code{getNEweights} can be used to extract the estimated weight matrix $(w_{ji})$. An AIC comparison of the different models for the transmission weights yields: <<>>= AIC(measlesFit_nepop, measlesFit_powerlaw, measlesFit_np2) @ AIC improves when accounting for transmission from higher-order neighbors by a power law or a second-order model. In spite of the latter resulting in a slightly better fit, we will use the power-law model as a basis for further model extensions since the stand-alone second-order effect is not always identifiable in more complex models and is scientifically implausible. \subsection{Random effects} \citet{paul-held-2011} introduced random effects for \class{hhh4} models, which are useful if the districts exhibit heterogeneous incidence levels not explained by observed covariates, and especially if the number of districts is large. For infectious disease surveillance data, a typical example of unobserved heterogeneity is underreporting. Our measles data even contain two districts without any reported cases, while the district with the smallest population (03402, SK Emden) had the second-largest number of cases reported and the highest overall incidence (see Figures~\ref{fig:measlesWeserEms2} and~\ref{fig:measlesWeserEms15}). Hence, allowing for district-specific intercepts in the endemic or epidemic components is expected to improve the model fit. For independent random effects $\alpha_i^{(\nu)} \stackrel{iid}{\sim} \N(\alpha^{(\nu)}, \sigma_\nu^2)$, $\alpha_i^{(\lambda)} \stackrel{iid}{\sim} \N(\alpha^{(\lambda)}, \sigma_\lambda^2)$, and $\alpha_i^{(\phi)} \stackrel{iid}{\sim} \N(\alpha^{(\phi)}, \sigma_\phi^2)$ in all three components, we update the corresponding formulae as follows: <>= measlesFit_ri <- update(measlesFit_powerlaw, end = list(f = update(formula(measlesFit_powerlaw)$end, ~. + ri() - 1)), ar = list(f = update(formula(measlesFit_powerlaw)$ar, ~. + ri() - 1)), ne = list(f = update(formula(measlesFit_powerlaw)$ne, ~. + ri() - 1))) @ <>= summary(measlesFit_ri, amplitudeShift = TRUE, maxEV = TRUE) @ <>= ## strip leading and trailing empty lines writeLines(tail(head(capture.output({ <> }), -1), -1)) @ The summary now contains an extra section with the estimated variance components $\sigma_\lambda^2$, $\sigma_\phi^2$, and $\sigma_\nu^2$. We did not assume correlation between the three random intercepts, but this is possible by specifying \code{ri(corr = "all")} in the component formulae. The implementation also supports a conditional autoregressive formulation for spatially correlated intercepts via \code{ri(type = "car")}. The estimated random effects can be extracted by the \code{ranef}-method: <<>>= head(ranef(measlesFit_ri, tomatrix = TRUE), n = 3) @ They can also be visualized in a map by the plot \code{type = "ri"} (Figure~\ref{fig:measlesFit_ri_map}): <>= stopifnot(ranef(measlesFit_ri) > -1.6, ranef(measlesFit_ri) < 1.6) for (comp in c("ar", "ne", "end")) { print(plot(measlesFit_ri, type = "ri", component = comp, col.regions = cm.colors(14), labels = list(cex = 0.6), at = seq(-1.6, 1.6, length.out = 15))) } @ For the autoregressive component in Figure~\ref{fig:measlesFit_ri_map1}, we see a pronounced heterogeneity between the three western districts in blue and the remaining districts. These three districts have been affected by large local outbreaks and are also the ones with the highest overall numbers of cases. In contrast, the city of Oldenburg (03403) is estimated with a relatively low autoregressive factor $\lambda_i = \exp(\alpha^{(\lambda)} + \alpha_i^{(\lambda)}) = \Sexpr{exp(fixef(measlesFit_ri)[1]+ranef(measlesFit_ri, tomatrix=TRUE)["03403",1])}$, but it seems to import more cases from other districts than explained by its population (Figure~\ref{fig:measlesFit_ri_map2}). In Figure~\ref{fig:measlesFit_ri_map3}, the two districts without any reported measles cases (03401 and 03405) appear in dark pink, which means that they exhibit a relatively low endemic incidence after adjusting for the population and susceptible proportion. Such districts could be suspected of a larger amount of underreporting. Note that the extra flexibility of the random effects model comes at a price. First, the estimation runtime increases considerably from \Sexpr{round(measlesFit_powerlaw[["runtime"]]["elapsed"], 1)} seconds for the previous power-law model \code{measlesFit_powerlaw} to \Sexpr{round(measlesFit_ri[["runtime"]]["elapsed"], 1)} seconds with additional random effects. Furthermore, we no longer obtain AIC values in the model summary, since random effects invalidate simple AIC-based model comparisons. Of course we can plot the fitted values (Figure~\ref{fig:measlesFitted_ri}) and visually compare their quality with the initial fit shown in Figure~\ref{fig:measlesFitted_basic}: <>= plot(measlesFit_ri, type = "fitted", units = districts2plot, hide0s = TRUE) @ For some of these districts, a great amount of cases is now explained via transmission from neighboring regions while others are mainly influenced by the local autoregression. Note that the decomposition of the estimated mean by district can also be seen from the related plot \code{type = "maps"} (Figure~\ref{fig:measlesFitted_maps}): <>= plot(measlesFit_ri, type = "maps", which = c("epi.own", "epi.neighbours", "endemic"), prop = TRUE, labels = list(cex = 0.6)) @ However, for quantitative comparisons of model performance we have to resort to more sophisticated techniques presented in the next section. \subsection{Predictive model assessment} \citet{paul-held-2011} suggest to evaluate one-step-ahead forecasts from competing models by proper scoring rules for count data \citep{czado-etal-2009}. These scores measure the discrepancy between the predictive distribution $P$ from a fitted model and the later observed value $y$. A well-known example is the squared error score (``ses'') $(y-\mu_P)^2$, which is usually averaged over a suitable set of forecasts to obtain the mean squared error. More elaborate scoring rules such as the logarithmic score (``logs'') or the ranked probability score (``rps'') take into account the whole predictive distribution to assess calibration and sharpness simultaneously. The so-called Dawid-Sebastiani score (``dss'') is another option. Lower scores correspond to better predictions. In the \class{hhh4} framework, predictive model assessment is made available by the functions \code{oneStepAhead}, \code{scores}, \code{pit}, and \code{calibrationTest}. We will use the second quarter of 2002 as the test period, and compare the basic model, the power-law model, and the random effects model. First, we use the \code{"final"} fits on the complete time series to compute the predictions, which then simply correspond to the fitted values during the test period: <>= tp <- c(65, 77) models2compare <- paste0("measlesFit_", c("basic", "powerlaw", "ri")) measlesPreds1 <- lapply(mget(models2compare), oneStepAhead, tp = tp, type = "final") @ <>= stopifnot(all.equal(measlesPreds1$measlesFit_powerlaw$pred, fitted(measlesFit_powerlaw)[tp[1]:tp[2],], check.attributes = FALSE)) @ Note that in this case, the log-score for a model's prediction in district $i$ in week $t$ equals the associated negative log-likelihood contribution. Comparing the mean scores from different models is thus essentially a goodness-of-fit assessment: <>= stopifnot(all.equal( measlesFit_powerlaw$loglikelihood, -sum(scores(oneStepAhead(measlesFit_powerlaw, tp = 1, type = "final"), which = "logs", individual = TRUE)))) @ <>= SCORES <- c("logs", "rps", "dss", "ses") measlesScores1 <- lapply(measlesPreds1, scores, which = SCORES, individual = TRUE) t(sapply(measlesScores1, colMeans, dims = 2)) @ All scoring rules claim that the random effects model gives the best fit during the second quarter of 2002. Now we turn to true one-week-ahead predictions of \code{type = "rolling"}, which means that we always refit the model up to week $t$ to get predictions for week $t+1$: <>= measlesPreds2 <- lapply(mget(models2compare), oneStepAhead, tp = tp, type = "rolling", which.start = "final") @ Figure~\ref{fig:measlesPreds2_plot} shows \CRANpkg{fanplot}s \citep{R:fanplot} of the sequential one-week-ahead forecasts from the random effects models for the same districts as in Figure~\ref{fig:measlesFitted_ri}: <>= par(mfrow = sort(n2mfrow(length(districts2plot))), mar = c(4.5,4.5,2,1)) for (unit in names(districts2plot)) plot(measlesPreds2[["measlesFit_ri"]], unit = unit, main = unit, key.args = if (unit == tail(names(districts2plot),1)) list()) @ Note that \code{quantile} and \code{confint} methods are also available for \class{oneStepAhead} predictions. Looking at the average scores of these forecasts over all weeks and districts, the most parsimonious initial model \code{measlesFit_basic} actually turns out best: <>= measlesScores2 <- lapply(measlesPreds2, scores, which = SCORES, individual = TRUE) t(sapply(measlesScores2, colMeans, dims = 2)) @ Statistical significance of the differences in mean scores can be investigated by a \code{permutationTest} for paired data or a paired $t$-test: <>= set.seed(321) sapply(SCORES, function (score) permutationTest( measlesScores2$measlesFit_ri[, , score], measlesScores2$measlesFit_basic[, , score], nPermutation = 999)) @ Hence, there is no clear evidence for a difference between the basic and the random effects model with regard to predictive performance during the test period. Whether predictions of a particular model are well calibrated can be formally investigated by \code{calibrationTest}s for count data as recently proposed by \citet{wei.held2013}. For example: <>= calibrationTest(measlesPreds2[["measlesFit_ri"]], which = "rps") @ <>= ## strip leading and trailing empty lines writeLines(tail(head(capture.output({ <> }), -1), -1)) @ Thus, there is no evidence of miscalibrated predictions from the random effects model. \citet{czado-etal-2009} describe an alternative informal approach to assess calibration: probability integral transform (PIT) histograms for count data (Figure~\ref{fig:measlesPreds2_pit}). <>= par(mfrow = sort(n2mfrow(length(measlesPreds2))), mar = c(4.5,4.5,2,1)) for (m in models2compare) pit(measlesPreds2[[m]], plot = list(ylim = c(0, 1.25), main = m)) @ Under the hypothesis of calibration, i.e., $y_{it} \sim P_{it}$ for all predictive distributions $P_{it}$ in the test period, the PIT histogram is uniform. Underdispersed predictions lead to U-shaped histograms, and bias causes skewness. In this aggregate view of the predictions over all districts and weeks of the test period, predictive performance is comparable between the models, and there is no evidence of badly dispersed predictions. However, the right-hand decay in all histograms suggests that all models tend to predict higher counts than observed. This is most likely related to the seasonal shift between the years 2001 and 2002. In 2001, the peak of the epidemic was in the second quarter, while it already occurred in the first quarter in 2002 (cp.\ Figure~\ref{fig:measlesWeserEms1}). \subsection{Further modeling options} In the previous sections we extended our model for measles in the Weser-Ems region with respect to spatial variation of the counts and their interaction. Temporal variation was only accounted for in the endemic component, which included a long-term trend and a sinusoidal wave on the log-scale. \citet{held.paul2012} suggest to also allow seasonal variation of the epidemic force by adding a superposition of $S$ harmonic waves of fundamental frequency~$\omega$, $\sum_{s=1}^S \left\{ \gamma_s \sin(s\,\omega t) + \delta_s \cos(s\,\omega t) \right\}$, to the log-linear predictors of the autoregressive and/or neighborhood component -- just like for $\log\nu_t$ in Equation~\ref{eqn:hhh4:basic:end} with $S=1$. However, given only two years of measles surveillance and the apparent shift of seasonality with regard to the start of the outbreak in 2002 compared to 2001, more complex seasonal models are likely to overfit the data. Concerning the coding in \proglang{R}, sine-cosine terms can be added to the epidemic components without difficulties by again using the convenient function \code{addSeason2formula}. Updating a previous model for different numbers of harmonics is even simpler, since the \code{update}-method has a corresponding argument \code{S}. The plots of \code{type = "season"} and \code{type = "maxEV"} for \class{hhh4} fits can visualize the estimated component seasonality. All of our models for the measles surveillance data incorporated an epidemic effect of the counts from the local district and its neighbors. Without further notice, we thereby assumed a lag equal to the observation interval of one week. However, the generation time of measles is around 10 days, which is why \citet{herzog-etal-2010} aggregated their weekly measles surveillance data into biweekly intervals. We can perform a sensitivity analysis by running the whole code of the current section based on \code{aggregate(measlesWeserEms, nfreq = 26)}. Doing so, the parameter estimates of the various models retain their order of magnitude and conclusions remain the same. However, with the number of time points halved, the complex random effects model would not always be identifiable when calculating one-week-ahead predictions during the test period. %% basic model: same epidemic parameters and dominant eigenvalue (0.78), same overdispersion (1.94) %% vaccination: the exponent $\beta_s$ for the susceptible proportion in the %% extended model \code{"Scovar|unchanged"} is closer to 1 (1.24), which is why %% \code{"Soffset|unchanged"} is selected by AIC. %% random effects: less variance, but similar pattern We have shown several options to account for the spatio-temporal dynamics of infectious disease spread. However, for directly transmitted human diseases, the social phenomenon of ``like seeks like'' results in contact patterns between subgroups of a population, which extend the pure distance decay of interaction. Especially for school children, social contacts are highly age-dependent. A useful epidemic model should therefore be additionally stratified by age group and take the inherent contact structure into account. How this extension can be incorporated in the spatio-temporal endemic-epidemic modeling framework \class{hhh4} has recently been investigated by \citet{meyer.held2015}. The associated \CRANpkg{hhh4contacts} package \citep{R:hhh4contacts} contains a demo script to exemplify this modeling approach with surveillance data on norovirus gastroenteritis and an age-structured contact matrix. \section{Simulation} \label{sec:hhh4:simulation} Simulation from fitted \class{hhh4} models is enabled by an associated \code{simulate}-method. Compared to the point process models described in \code{vignette("twinstim")} and \code{vignette("twinSIR")}, simulation is less complex since it essentially consists of sequential calls of \code{rnbinom} (or \code{rpois}). At each time point $t$, the mean $\mu_{it}$ is determined by plugging in the parameter estimates and the counts $Y_{i,t-1}$ simulated at the previous time point. In addition to a model fit, we thus need to specify an initial vector of counts \code{y.start}. As an example, we simulate 100 realizations of the evolution of measles during the year 2002 based on the fitted random effects model and the counts of the last week of the year 2001 in the 17 districts: <>= (y.start <- observed(measlesWeserEms)[52, ]) measlesSim <- simulate(measlesFit_ri, nsim = 100, seed = 1, subset = 53:104, y.start = y.start) @ The simulated counts are returned as a $52\times 17\times 100$ array instead of a list of 100 \class{sts} objects. We can, e.g., look at the final size distribution of the simulations: <<>>= summary(colSums(measlesSim, dims = 2)) @ A few large outbreaks have been simulated, but the mean size is below the observed number of \code{sum(observed(measlesWeserEms)[53:104, ])} $= \Sexpr{sum(observed(measlesWeserEms)[53:104,])}$ cases in the year 2002. Using the \code{plot}-method associated with such \code{hhh4} simulations, Figure~\ref{fig:measlesSim_plot_time} shows the weekly number of observed cases compared to the long-term forecast via a fan chart: <>= plot(measlesSim, "fan", means.args = list(), key.args = list()) @ We refer to \code{help("simulate.hhh4")} and \code{help("plot.hhh4sims")} for further examples. \pagebreak[2] %-------------- % BIBLIOGRAPHY %-------------- <>= ## create automatic references for R packages .Rbibfile <- file("hhh4_spacetime-R.bib", "w", encoding = "latin1") knitr::write_bib( c("MASS", "Matrix", "spdep", "colorspace", "scales", "gridExtra", "lattice", "sp", "ggplot2", "animation", "rmapshaper", "fanplot", "hhh4contacts"), file = .Rbibfile, tweak = FALSE, prefix = "R:") close(.Rbibfile) @ \bibliography{references,hhh4_spacetime-R} <>= save(aics_vacc, measlesPreds2, file = "hhh4_spacetime-cache.RData") @ \end{document} surveillance/vignettes/monitoringCounts.bib0000644000175100001440000004147213202616256021046 0ustar hornikusers@Article{newport2011, author = {C Bayer and H Bernard and R Prager and W Rabsch and P Hiller and B Malorny and B Pfefferkorn and C Frank and A de Jong and I Friesema and {others}}, title = {An Outbreak of Salmonella Newport Associated with Mung Bean Sprouts in Germany and the Netherlands, October to November 2011}, journal = {Eurosurveillance}, year = {2014}, volume = {19}, number = {1}, doi = {10.2807/1560-7917.es2014.19.1.20665}, } @Article{becker_marschner93, author = {N. G. Becker and I. C. Marschner}, title = {A Method for Estimating the Age-Specific Relative Risk of {HIV} Infection from {AIDS} Incidence Data}, journal = {Biometrika}, year = {1993}, volume = {80}, number = {1}, doi = {10.1093/biomet/80.1.165}, } @ARTICLE{hoehle-heiden, author = {{H{\"o}hle}, Michael and an der Heiden, Matthias}, title = {{B}ayesian {N}owcasting during the {STEC} {O104:H4} {O}utbreak in {G}ermany, 2011}, journal = {Biometrics}, volume = {70}, number = {4}, issn = {1541-0420}, doi = {10.1111/biom.12194}, pages = {993--1002}, year = {2014}, } @Article{bernard_etal2014, author = {H. Bernard and D. Werber and M. H{\"o}hle}, title = {Estimating the Under-Reporting of Norovirus Illness in {G}ermany Utilizing Enhanced Awareness of Diarrhoea during a Large Outbreak of {S}higa Toxin-Producing {E. Coli O104:H4} in 2011}, journal = {BMC Infectious Diseases}, year = {2014}, volume = {14}, number = {1}, pages = {1--6}, doi = {10.1186/1471-2334-14-116}, } @Book{sp2, title = {Applied Spatial Data Analysis With \proglang{R}}, edition = {2nd}, publisher = {Springer-Verlag}, year = {2013}, author = {Roger S. Bivand and Edzer Pebesma and Virgilio Gomez-Rubio}, doi = {10.1007/978-1-4614-7618-4}, } @Article{brook_evans1972, author = {D. Brook and D. A. Evans}, title = {An Approach to the Probability Distribution of Cusum Run Length}, journal = {Biometrika}, year = {1972}, volume = {59}, pages = {539--549}, number = {3}, doi = {10.1093/biomet/59.3.539}, } @Article{buckeridge2007, author = {David L. Buckeridge}, title = {Outbreak Detection through Automated Surveillance: A Review of the Determinants of Detection}, journal = {Journal of Biomedical Informatics}, year = {2007}, volume = {40}, pages = {370--379}, number = {4}, } @Article{chen1978, author = {Rina Chen}, title = {A Surveillance System for Congenital Malformations}, journal = {Journal of the American Statistical Association}, year = {1978}, volume = {73}, pages = {323-327}, number = {362}, doi = {10.2307/2286660}, } @Manual{epiestim, title = {\pkg{EpiEstim}: A Package to Estimate Time Varying Reproduction Numbers from Epidemic Curves}, author = {Anne Cori}, year = {2013}, note = {\proglang{R} package version 1.1-2}, url = {https://CRAN.R-project.org/package=EpiEstim}, } @Manual{datatable2013, title = {\pkg{data.table}: Extension of \pkg{data.frame} for Fast Indexing, Fast Ordered Joins, Fast Assignment, Fast Grouping and List Columns}, author = {M Dowle and A Srinivasan and T Short and S Lianoglou}, year = {2015}, note = {\proglang{R} package version 1.9.6}, url = {https://CRAN.R-project.org/package=data.table}, } @Article{sim:sim3197, author = {Ronald D. Fricker and Benjamin L. Hegler and David A. Dunfee}, title = {Comparing Syndromic Surveillance Detection Methods: EARS' versus a CUSUM-Based Methodology}, journal = {Statistics in Medicine}, year = {2008}, volume = {27}, pages = {3407--3429}, number = {17}, doi = {10.1002/sim.3197}, } @Book{frisen2008financial, title = {Financial Surveillance}, publisher = {John Wiley \& Sons}, year = {2008}, author = {Marianne Fris{\'e}n}, } @Article{fri2009, author = {Marianne Fris{\'e}n and Eva Andersson}, title = {Semiparametric Surveillance of Monotonic Changes}, journal = {Sequential Analysis}, year = {2009}, volume = {28}, pages = {434-454}, number = {4}, doi = {10.1080/07474940903238029}, } @Article{frisen_etal2009, author = {M. Fris{\'e}n and E. Andersson and L. Schi{\"o}ler}, title = {Robust Outbreak Surveillance of Epidemics in Sweden}, journal = {Statistics in Medicine}, year = {2009}, volume = {28}, pages = {476-493}, doi = {10.1002/sim.3483}, } @InCollection{hoehle2010, author = {Michael H\"{o}hle}, title = {Online Change-Point Detection in Categorical Time Series}, booktitle = {Statistical Modelling and Regression Structures}, publisher = {Physica-Verlag HD}, year = {2010}, editor = {Thomas Kneib and Gerhard Tutz}, pages = {377-397}, } @Article{held_etal2006, author = {L. Held and M. Hofmann and M. H{\"o}hle and V. Schmid}, title = {A Two Component Model for Counts of Infectious Diseases}, journal = {Biostatistics}, year = {2006}, volume = {7}, pages = {422--437}, doi = {10.1093/biostatistics/kxj016}, } @Article{hulth_etal2010, author = {A. Hulth and N. Andrews and S. Ethelberg and J. Dreesman and D. Faensen and W. {van Pelt} and J. Schnitzler}, title = {Practical Usage of Computer-Supported Outbreak Detection in Five European Countries}, journal = {Eurosurveillance}, year = {2010}, volume = {15}, number = {36}, } @Article{outbreaker, author = {Thibaut Jombart and Anne Cori and Xavier Didelot and Simon Cauchemez and Christophe Fraser and Neil Ferguson}, title = {Bayesian Reconstruction of Disease Outbreaks by Combining Epidemiologic and Genomic Data}, journal = {PLoS Computional Biology}, year = {2014}, volume = {10}, pages = {e1003457}, number = {1}, doi = {10.1371/journal.pcbi.1003457}, } @Manual{spc, title = {\pkg{spc}: Statistical Process Control -- Collection of Some Useful Functions}, author = {Sven Knoth}, year = {2016}, note = {\proglang{R} package version 0.5.3}, url = {https://CRAN.R-project.org/package=spc}, } @Manual{satscan, title = {\pkg{SaTScan}: Software for the Spatial, Temporal and Space-Time Scan Statistics}, author = {Martin Kulldorff}, address = {Boston}, year = {1997}, url = {http://www.satscan.org/}, } @Article{lawless1987, author = {Jerald F Lawless}, title = {Negative Binomial and Mixed Poisson Regression}, journal = {Canadian Journal of Statistics}, year = {1987}, volume = {15}, pages = {209--225}, number = {3}, publisher = {John Wiley \& Sons}, doi = {10.2307/3314912}, } @InProceedings{sweave, author = {Friedrich Leisch}, title = {\texttt{Sweave} and Beyond: Computations on Text Documents}, booktitle = {Proceedings of the 3rd International Workshop on Distributed Statistical Computing, Vienna, Austria}, year = {2003}, editor = {Kurt Hornik and Friedrich Leisch and Achim Zeileis}, note = {{ISSN 1609-395X}}, url = {http://www.R-project.org/conferences/DSC-2003/Proceedings/}, } @Manual{tscount, title = {\pkg{tscount}: Analysis of Count Time Series}, author = {Tobias Liboschik and Roland Fried and Konstantinos Fokianos and Philipp Probst}, year = {2015}, note = {\proglang{R} package version 1.0.0}, url = {https://CRAN.R-project.org/package=tscount}, } @article{liboschik_tscount_2015, title = {{tscount}: An R Package for Analysis of Count Time Series Following Generalized Linear Models}, volume = {06/15}, doi = {10.17877/DE290R-7239}, language = {en}, journal = {TU Dortmund, SFB 823 Discussion Paper}, author = {Liboschik, Tobias and Fokianos, Konstantinos and Fried, Roland}, year = {2015} } @Article{lucas1982fast, author = {James M Lucas and Ronald B Crosier}, title = {Fast Initial Response for CUSUM Quality-Control Schemes: Give Your CUSUM a Head Start}, journal = {Technometrics}, year = {1982}, volume = {24}, pages = {199--205}, number = {3}, doi = {10.2307/1268679}, } @Article{radio, author = {Peng Luo and Timothy A DeVol and Julia L Sharp}, title = {CUSUM Analyses of Time-Interval Data for Online Radiation Monitoring}, journal = {Health Physics}, year = {2012}, volume = {102}, pages = {637--645}, number = {6}, publisher = {LWW}, doi = {10.1097/hp.0b013e3182430106}, } @Article{manitz2013, author = {Juliane Manitz and Michael H\"{o}hle}, title = {Bayesian Outbreak Detection Algorithm for Monitoring Reported Cases of Campylobacteriosis in Germany}, journal = {Biometrical Journal}, year = {2013}, volume = {55}, pages = {509--526}, number = {4}, issn = {1521-4036}, doi = {10.1002/bimj.201200141}, } @Manual{ssas, title = {Microsoft SQL Server Analysis Services, Version~2012}, author = {{Microsoft Corp.}}, year = {2012}, url = {http://www.microsoft.com/}, } @Manual{ssrs, title = {Microsoft SQL Server Reporting Services, Version~2012}, author = {{Microsoft Corp.}}, year = {2012}, url = {http://www.microsoft.com/}, } @Article{noufaily2012, author = {A. Noufaily and D. G. Enki and P. Farrington and P. Garthwaite and N. Andrews and A. Charlett}, title = {An Improved Algorithm for Outbreak Detection in Multiple Surveillance Systems}, journal = {Statistics in Medicine}, year = {2012}, volume = {32}, pages = {1206--1222}, number = {7}, doi = {10.1002/sim.5595}, } @Article{sp1, author = {Edzer J. Pebesma and Roger S. Bivand}, title = {Classes and Methods for Spatial Data in \proglang{R}}, journal = {\proglang{R} News}, year = {2005}, volume = {5}, pages = {9--13}, number = {2}, url = {https://CRAN.R-project.org/doc/Rnews/}, } @Article{pierce_schafer86, author = {D. A. Pierce and D. W. Schafer}, title = {Residuals in Generalized Linear Models}, journal = {Journal of the American Statistical Association}, year = {1986}, volume = {81}, pages = {977-986}, number = {396}, doi = {10.2307/2289071}, } @Article{reynolds2000, author = {{Reynolds, Jr.}, Marion R. and Zachary G. Stoumbos}, title = {A General Approach to Modeling CUSUM Charts for a Proportion}, journal = {IIE Transactions}, year = {2000}, volume = {32}, pages = {515-535}, number = {6}, language = {English}, publisher = {Kluwer Academic Publishers}, doi = {10.1080/07408170008963928}, } @Article{rigby2005, author = {R. A. Rigby and D. M. Stasinopoulos}, title = {Generalized Additive Models for Location, Scale and Shape}, journal = {Journal of the Royal Statistical Society C}, year = {2005}, volume = {54}, pages = {507--554}, number = {3}, doi = {10.1111/j.1467-9876.2005.00510.x}, } @Manual{rodbc2013, title = {\pkg{RODBC}: ODBC Database Access}, author = {Brian Ripley and Michael Lapsley}, year = {2016}, note = {\proglang{R} package version 1.3-13}, url = {https://CRAN.R-project.org/package=RODBC}, } @Article{rogerson_yamada2004, author = {P. A. Rogerson and I. Yamada}, title = {Approaches to Syndromic Surveillance When Data Consist of Small Regional Counts}, journal = {Morbidity and Mortality Weekly Report}, year = {2004}, volume = {53}, pages = {79--85}, doi = {10.1037/e307182005-016}, } @Article{rossi_etal99, author = {G. Rossi and L. Lampugnani and M. Marchi}, title = {An Approximate {CUSUM} Procedure for Surveillance of Health Events}, journal = {Statistics in Medicine}, year = {1999}, volume = {18}, pages = {2111--2122}, doi = {10.1002/(sici)1097-0258(19990830)18:16<2111::aid-sim171>3.0.co;2-q}, } @Article{inla, title = {Approximate Bayesian Inference for Latent Gaussian Models Using Integrated Nested Laplace Approximations}, author = {H. Rue and S. Martino and N. Chopin}, journal = {Journal of the Royal Statistical Society B}, year = {2009}, volume = {71}, number = {2}, pages = {319--392}, doi = {10.1111/j.1467-9868.2008.00700.x} } @Manual{xts, title = {\pkg{xts}: eXtensible Time Series}, author = {Jeffrey A. Ryan and Joshua M. Ulrich}, year = {2014}, note = {\proglang{R} package version 0.9-7}, url = {https://CRAN.R-project.org/package=xts}, } @Article{dirk, author = {M. Salmon and D. Schumacher and H. Burmann and C. Frank and H. Claus and M. H{\"o}hle}, title = {A {S}ystem for {A}utomated {O}utbreak {D}etection of {C}ommunicable {D}iseases in {G}ermany}, year = {2016}, volume = {21}, number = {13}, doi = {10.2807/1560-7917.ES.2016.21.13.30180}, } @Article{maelle, author = {M. Salmon and D. Schumacher and K. Stark and M. H{\"o}hle}, title = {{B}ayesian Outbreak Detection in the Presence of Reporting Delays}, journal = {Biometrical Journal}, year = {2015}, volume = {57}, number = {6}, pages = {1051--1067}, doi = {10.1002/bimj.201400159}, } @Article{accident, author = {Anna Schuh and Jaime A. Camelio and William H. Woodall}, title = {Control Charts for Accident Frequency: a Motivation for Real-Time Occupational Safety Monitoring}, journal = {International Journal of Injury Control and Safety Promotion}, year = {2014}, volume = {21}, number = {2}, pages = {154--162}, doi = {10.1080/17457300.2013.792285}, } @Article{qcc, author = {Luca Scrucca}, title = {\pkg{qcc}: An \proglang{R} Package for Quality Control Charting and Statistical Process Control}, journal = {\proglang{R} News}, year = {2004}, volume = {4}, number = {1}, pages = {11--17}, url = {https://CRAN.R-project.org/doc/Rnews/}, } @Article{shmueli2010, author = {Galit Shmueli and Howard Burkom}, title = {Statistical Challenges Facing Early Outbreak Detection in Biosurveillance}, journal = {Technometrics}, year = {2010}, volume = {52}, pages = {39-51}, number = {1}, doi = {10.1198/tech.2010.06134}, } @Article{sonesson2003, author = {Christian Sonesson and David Bock}, title = {A Review and Discussion of Prospective Statistical Surveillance in Public Health}, journal = {Journal of the Royal Statistical Society A}, year = {2003}, volume = {166}, pages = {5--21}, number = {1}, doi = {10.1111/1467-985x.00256}, } @Article{stasjss, author = {D. Mikis Stasinopoulos and Robert A. Rigby}, title = {Generalized Additive Models for Location Scale and Shape (GAMLSS) in \proglang{R}}, journal = {Journal of Statistical Software}, year = {2007}, volume = {23}, pages = {1--46}, number = {7}, doi = {10.18637/jss.v023.i07}, } @Article{steiner1999, author = {S. H. Steiner and R. J. Cook and V. T. Farewell}, title = {Monitoring Paired Binary Surgical Outcomes Using Cumulative Sum Charts}, journal = {Statistics in Medicine}, year = {1999}, volume = {18}, pages = {69--86}, doi = {10.1002/(sici)1097-0258(19990115)18:1<69::aid-sim966>3.0.co;2-l}, } @Manual{outbreaktools, title = {\pkg{OutbreakTools}: Basic Tools for the Analysis of Disease Outbreaks}, author = {{The Hackout Team}}, year = {2016}, note = {\proglang{R} package version 0.1-14}, url = {https://CRAN.R-project.org/package=OutbreakTools}, } @Article{unkel2012, author = {Steffen Unkel and C. Paddy Farrington and Paul H. Garthwaite and Chris Robertson and Nick Andrews}, title = {Statistical Methods for the Prospective Detection of Infectious Disease Outbreaks: A Review}, journal = {Journal of the Royal Statistical Society A}, year = {2012}, volume = {175}, pages = {49--82}, number = {1}, doi = {10.1111/j.1467-985x.2011.00714.x}, } @Manual{testthat2013, title = {\pkg{testthat}: Unit Testing for \proglang{R}}, author = {Hadley Wickham}, year = {2016}, note = {\proglang{R} package version 1.0.2}, url = {https://CRAN.R-project.org/package=testthat}, } @InCollection{knitr, booktitle = {Implementing Reproducible Computational Research}, editor = {Victoria Stodden and Friedrich Leisch and Roger D. Peng}, title = {\pkg{knitr}: A Comprehensive Tool for Reproducible Research in \proglang{R}}, author = {Yihui Xie}, publisher = {Chapman and Hall/CRC}, year = {2014}, } @Article{zoo, author = {Achim Zeileis and Gabor Grothendieck}, title = {\pkg{zoo}: S3 Infrastructure for Regular and Irregular Time Series}, journal = {Journal of Statistical Software}, year = {2005}, volume = {14}, pages = {1--27}, number = {6}, doi = {10.18637/jss.v014.i06}, } @Article{strucchange, author = {Achim Zeileis and Friedrich Leisch and Kurt Hornik and Christian Kleiber}, title = {\pkg{strucchange}: An \proglang{R} Package for Testing for Structural Change in Linear Regression Models}, journal = {Journal of Statistical Software}, year = {2002}, volume = {7}, pages = {1--38}, number = {2}, doi = {10.18637/jss.v007.i02}, } @Manual{mglm, title = {\pkg{MGLM}: Multivariate Response Generalized Linear Models}, author = {Yiwen Zhang and Hua Zhou}, year = {2016}, note = {\proglang{R} package version 0.0.7}, url = {https://CRAN.R-project.org/package=MGLM}, } surveillance/vignettes/twinstim-cache.RData0000644000175100001440000032152013165711420020633 0ustar hornikusersý7zXZi"Þ6!ÏXÌãÕïþ])TW"änRÊŸ’Øâxù¹¸ë£8Og•Í0Ý8M¦3¦¤Š39µ¦6¢»›~xŽ÷)¾3…oײÑÔ†jaªîzÆ€Þž‰Àÿ72¦Qƒ8§‹JÈ/]¨5«©˜؉òÊ<õ]€¼_mg{ÙšýÞƒ3QŸó¨Ûã-I׬¨C>Ò ¿"~Ãó¼®ô­nš(Õs'áŠ&®¾çÝzG«Ô Á[Ší ʧÂ5ÞØÜÌ2ûÞÜV{ÀRº$¢E‰jüLãdÀ/"Léü ÛÐMğײ™)VlýƒsJ RCÛU¦È$xdÃ:²äWpžž=áÛNþÈî•xƒF>¸±Ç5ÙÍúŠ?ß‹òÖô˜³ä‚çM^“€dÿâÕp[(uM1‚:OÆï‘×£V7«€Fò5auíá‹tj:ãR x}Ò#ðrz9Ë;/ÎÖÒ¯Ë2k1 ª›¼¹;„9Š€VøN ûD#Yz£ƒ±­Â '=É,Ÿ…š­:NgIx×lÝ&Å#’U Ðw·,•ùÛQÄIt:꜈ÂMº™]ñ§ê"L‚¿õÊšBbˆ+÷kHô´¦ 3U+Mµ”ß2mžTNÖéþÉžá [µÔú&âóaï˜ö†B›áÐ¥†®ŠÑVò¡ÀûLYTjaid׊0f®²íü÷Â$dïÚaÍÂkǶAZ= ž±3uÏ7B 1„:ŠÍ-"óøUTÙ”\ˇ‡ò^P2é£Ýôeô£ƒ¡)z¶‘÷'f4ö‰(x é©åuE§˜œúJõòÍ3sÂ΄Km‚Æ›J—«ÅX.Tƒ²éª¢Âõ{‹4—ÎX{]ªN”Zé Ë ÃÛ«# XohmËÜU‚؆E¢CœýFª‡*BßëÜ‘Ê;l˸¾…T'<Û4:ú&ÙK]8¤e,`¥ä1œ.0}%þIÈÓF•wÎ'v‰.°8yÀ‘/S6[8†iÙ)1Ö»Ë ¸ H¼UÚ²ÿdÌ"ÒÃsÜØp«ìfÑáX럥s¶[ý¹‹<3ïÃDÃÛ6½1ŒPˆ™JØU õö–ëg‹Á´MÏÖèìIçã3´97ŸL)MÖiÌ£»—‚«9Nß.`¬”WA³SÄ -‘V æV-Ÿ—ݱI‚¤%E¤qâE+mÏ çYÜÆ¯–ê¾¢ÉD Ÿpqö¸ˆ0A¤Ï2KOM9p°QJ }eøPœó[À(¯ Ri¢ê Ü^+ÚräJ^ |]Ù€ºä°O‹³¿Ä(ĈìBëòúoqÞm\y&Ìg*Î4'X?—§ÿC‰O®†îú¥ÒÝ%«÷.,‚”ðŸ³Ñ4Èû\…´_ tó¡ ©)ñ¯¤âhåùæþ«D'36Ø‚›ÔáS#†l‰í è%JXzV²h*AŸ:=©îiˆDUBKÈD}è‚猢Ë?Ù—íת¯ŒrüŽ×†ábœÍ€iÞ.Y¸öׄ۵‘KåücÏÏѧ"c»œÆc´×+åGWÍrI „ÂËd£@Ðùšv;@49Õ‚½7þ¯*2¿Øj´¼¬\­]´,wˆßµ QXCû Q^Àe¥ÚÖ¸½"…ݰÞ©f’†P€³æ ¼+í¥@˜„ wB÷ejf_æ[¢©ñ* ÅzÏkô1Ï‹T¥®æ™%…«Ò1Í­…Þ£"X–Ÿ=ŒÔå{6÷]¼©µ€4"?2§¹²Úùà ×&Ƶ[`ß’â+¡Ë‡Žî %k>ù;?Ë—è0‹þ,ù–â.°2o_(1ßpýDëZJ ^æ†õ=€/\‚Ý )*Î8q’½i”n>Nc사ûšÍRù ¿qˆ‘]¸B L`¹Ø|Œ°½È;Aptubĺš«Ðk*àrøã‡Ì‚¤Ÿì=‰;Òk.¸êà÷º+…÷ptë{3U´‘òF 1×HBxЀ6Þšß…ÀW–ø)_U}2c€ÛWïÝ&¡ŽÔi÷÷¼Ã AÕ3ëjv\–혜Ö\;Égެ£b68=ËjÙ8€lQÏ 6Õ«º"pìK¸Sé¡Ë4ï'Šˆ™¨õoÈ¢õQ¬ûI¹þòG,[˜mÑM4s”<¨l¨sEØiw»DʉóæZI:Q`/|ñ‰AL2¨à®‡0úƒ÷ãÁ²VI´·*°lêmoט% ÉÌö¸ (dÄ4ÇåÔ§€é¶°ÍÍ(æãÚ̕ڳ(õ¸7•æs¹>S›½›ä? ïAÇÇüà Bž 1ÇuN©öipe•6†Üß­úÑ?wú¤©÷Œ¨Ê%y(çØCŒ£Ó8æ m˜Šm!¸À˜ú'oLÅ¥í“E£u™þ£sÿ÷`φ*C p¶Âß¶ýng¹šI“g¤¯˜hÏHúæaw8ô$Qñx]p _iÜ‚ÐߤȹثV´ŒÄ.ê™T –j"1…eÝóÀá˜7Ð 9£#º&.ÄÀ-çá+]l[² >í$ı‰çmðw‹5ú5ûÎ4^‰±Úœ‘ÀÜ„¨HõÙü;#[Cîè|ý à‚ãæ$‹+E“§¾ÂŸ`¹ŠÄAx-^3OÜTõ¶ˆUžè~g4cUç`|‚Ø#·tªV®ýÔÒ›]Ñ™î Ñ•·Sðlìu˜uäuÎdc¬lRÓÆŽž“ß?‰ö‘ñ¦È’Î2Z¨{^üU壼1"%’]Z׬›SpCÆÏM+¸õܯ»Þ¡Èv O eå2¥Ju!Û5 ds_ß%Û o[ZT¨ef]`²iÿgè¾jÀ%êž@m䊭DWÉ3]¿q3'$(ÝUœÐX\F« pðÏ›¶8€©Ë~×ï|®F䯂XI©#‘¿ªê)[¨ „OÃÑ›¤ÜGýÜÂñÚ“ÕÇîN ]£Œ1EÈ›°]™‚ùfÛ°Q œÿU„µI!/á¹aSNÉ'áé}Wª`Î-™ÃKʨîä¯á‹jÚl .DdàþVå 8Ý<ç}ž±MÅuPÙ0Òç[A¤b¸¯À=h¢á᯴“á9U åWÁ‰ë…ÎðÊN\†JÜGœÕQ?°aSwªúW‰S¨»Ì°t$IBãÆ_O… ݤTËtÔ;þñVÿo"¥]_Ÿ:ž×ãÂ7‚1Áz!`n‘¨›æ„`ûåj!«•ƒ³§F ‹'ÛæMêÓkÄ*ˆL·Dgò<¸—®nÉôæú|ìŽ nc4LPîÏŠ]qf̾»„3/f6{¬–ñ=efõ» ô>Ñk›çï¨n\ûîXRóÒ‰ ˆó9>º¨/¨gJ­ppØ­“ì›°…ûë%ääã·\”ïÉÃ'@4îÎÀI££ pŸ€×ùèd-3Ø¡Ëa±ÚÊ`o†H0•ZFS…ܼÈ>5ƒ"ðT?¤äŠÛ6 ¼z¡vj STg"¶|àAŒº×ΉÅRPríṩýžm§­‚‚ J‘¤*IÁ¦½©BR’ÈSYõÂß? ç¸0¼ÉätÍ·?Ü뻓•óÝf]P½•S`@BcJ2ÌêÆTKú 6j%Žu?åüšN‰¹íÅ *e}ÑÓ`é³çXD‚ZšÖ´Hgä2_°y!ñʬù9,žÊÑZ¯Gr:!eù$Èb„D|IªoèÂ\Rž'}‘s`½uºÑ>'b¿kêkAg^Í€)XªÃ¤´úq÷p²B-¾Ë hX@Ô‘]ÀExXg.˜%aó½»?;ëͤ{'ƒVƒUùôz¶z™yªƒÓRóË £);Jã¢RÂH"nMWS_b™»Xå•iFÅô¯ÏýF°Ôð½ñ‰ÊAS Ëf­š"gqÝT‘Œä\—¨¦;ŸQêïï›L¹ô5û†¨.ø1FƒH“k â]ý©b¼–ëP‹4ç’µ¦Å–ìóN¨ŠÀã"¿È¸=´Üºõ¿ÌÒ3š«(ž²§OF!±ÝàPÈË$;B<è…дž'98*2úÇM$Ï×UÕÏoKù*¥VCÔzõÄ0ÍÓ †-WM ú[°ºÆ’tû2ùµˆT‡ 0+Ñ4†•¿3€Ò'§Y|À¶€Ýqê0/{ýGCž¾Dãüi,ZCQÔñªôCØGÑá[Æ òCÏ C3dÁ/>Î|*4N088Õ='÷²Ý0‘ Šãï¨8ž<¶âžÒâAD:\Le~±­ñ)0†Ÿ¶"ý'‘.ÅZ‹02Ç¿št²%ó¾[É3nëk¿ã¸hÅ?Œ¬@þÜþؽ•zºñ´-(¤ÜlÈtVë}¹æì{ЫÜÄÚc,ŽêØ]†]]?4\%QcèíDL“µäñÓÇDعÄo¡ I0'èȇñf7#ÇÏ)<ÞJh’Uu³‰GÒ¶÷öN«Ü7 :]¦<«¿¬äªE^ç±jÀíkÎNòÉ3‰Z5ºù )©ÎEGÙXÿR¢‰:;6*æ˜Ï€N>d‚Œ·[ü%š±ùe ™óþÔj6¾N©$Ç^…„¡+Æþôjé™Q­ÕŠºж…E¼Êa3z]ÄÖÛÌr‚hÒ˾¶ãフ,ˆÚÕ²p÷>±%ˆwÌšwaF]¨ €[DT–SÓ[Ì¿mGŨñz+#0S#Šßç!ÙÍ'è­Ôú Nn–ž[¯Ým–žÈ-\|åî‚X¬I>@þ¶u¤œ›çá×%iO^(¤å}ÑCÇô’6—¨K„Rû#*ìª/{KÕ´€ÐõH`†üj•ÂÕÆÕäË >Ù=KŽ{ëÜvûUdŽšƒ»}Ó¥ph†‚¤h©{«¼G­F?:%¨nµ¿ö1ü1Â×ý¸= @£åóôÑ"ÛÚ´³èûn ‹‡PÍÏÔŽ;¡rë a5YÇöÖ1•<1[zˆÐxÄ)»í"«tgk˜¤X æ !ûrN¨ƒî…]m쯀C,¿qÅãSH/5gAŸ!î•\³gã7‹nGL¦‹× ”X©Øs2ؤ¾Gs ²rζô•瑇ÛnÒE.¥!^ ð3þ”d§§v´µÉ¶l·?¾‚uÌh‚›ÃÎÞNÊínóZãËbÜùGóÝÞ•nº„÷x®5w’ZÅáIÇøaFkêêåvpÖ8ì#Â1Å .ô +ú›ÃÞOYA¥À{¨šà.þ|q ÀÂøÈåØ:tRXå*@*ú¿jErhq,yŸ§þt²‚Ѧœ*tÛ’8W mïã…ô…2Ç\6X®#(Z ®Ü+ŠZ*é\xb½®%ä›9 4e‚#š¡íåyûŠ´ZðЊtl­N¡p ~#ŠéJÐT.LÕ”—šÈñp‰l¶—HdˆÓf4(^}½SØlYÔØÐ´Íš{eÓ Ýæ4”á‚—•¼7¸GÝÇ¥ËLíSÍéÁÒlîuŠùаçnß’cs)+É,?¤Ý;þj¯sƘ…ÆçÉX°£(ÞeÈ©Y†·³Š&ß~ß:¿†‰ÙΜÌ;MjSðé­9 SÃbå½ÔâÜŠì)Ýÿ)T—ÿ„œ–UÐò«]^ dEùTSºšN°û’ÓI'^]@ÏsD(‚O[$Ó1ÖëtÈZ³g0 ë"ˆYå¦Ò7’?ìÑñ-Ø8æÜ=°Ô¾`b7 “=…³?ÆV\Þîà}àqB„aE—.’™Ú°‘ñ=ÄÃh¥á†vÈÐ@¦Þã<ßF¿¹ÍK{Mƒ¦vmO;2\‹àá¿hF§ñ;ÿYN¡Hê6Ägø8™ Ë®ÀÚ¦ü´ÐnvŒ*>‹a†"nÿ~,¥ErÁDcŒ“Ωø½Fÿ8 û5ø 8ˆ‹Ë~û­ÄÍq°xx|¾[ØÎçr=ŽJ“eôÊ“¸@Hfò´­#«Êü5iË^•MJ¤JTkáMP;\òT n¨òÀ*BIµ¹lŸœÝaÁ6®€Ëïq¥Ÿ@LLˆ}ç Áš €Ã€IýÏ̃ÖÜ3 À‹åšÂ]DøŠ_wÿã'y “zO}˜ñðdÕ‹áù—w~ô_%1TJ‘kîô@®ÂȤjíôÒ3„…KZÎü䢩éjt›hv 7ê]ÅI´-ú¼fÊWг‡vÅMW0è5GŒ,Â`Iˆ”)øÖAD•±ÓÒen%­†7Þqt&ÐT#Bx·––uëŸe9^[ÚeŠTí÷'NS6‡9›xå•?¿c’»mIÎBþÄ`½Œ ',íqõrWŽ{±¿m¥9o~‚…ú»R%³F:”T‘\T+Ú¹a*´©ÆÂ³j¥ȨñbAÓ3dn«6ÌmpÕ f kå›®ÝqŽp­=Hq7ÓéS7¶t0a•Íçºn^TˆQ\·à9â¥sÔ}ÿ>Ú5*CçâEúa}C¥e~\¾Åϰ´‹îÂàq&ÃVPïkXáÈ ðßyþQvgJß/°ò€ª¡…ݸ­šŸŒmÃmÖ¨´eqѶZã|L¬¶q ‹vÚ îCk[œcˆêÎ29d-°¢ØDÆj:ágW[a3í&{×Åù¦ofx”|Ï?È8ôOÕ^â…ÐÕ\qêÍ`çso¤{‡^Èûáâ~A¤rÄRV©š_¼ ±áü‡‰42¢Åcjèæ¾Uü Pf»ªÐ›ömË€«)§Òºû%·äJÀ$%ýß-è+ßùò3-¥oþ’’,žI´DC¸ðs4÷‘ÃBQ×ËÖŠ6êa¥kE€<Ôí†úÌq1 2>dT§ÞéŸmA^n3ï2/×xê¯&JÜ«ˆqÚ€t~œ3ZŒyZC…™6žÄŠmd ÐÉ¿ù؃CÙ„®”NšÂ!³[XÌW}ür±ÈBÿe$,Í Ð¼˜·‘OAر˜Åñ)S¹RxJ}åCÿ]Màôà;ÖÊ xêk!ãÎ#úÕj»{¤Q(´Óø`'ùÆ?ÄŒ–îÞ~óÿw6ò"ÙYK9±tfînÁº5Ö°ª¼ð]ê§Ü4Š0^t5§^¥×Ètóœçƒ¡d’Ý#ítZÞ|<*hÅTcÉg÷1s‚<§®~ì‘jS‰~‚g©\ Vòƒrp GNÂlƸÝvPÛí²ÂºŽuž*ÎzyºV5kñK±(Ñ~šñÉßžY[¿Ñý×BYO½ ñ•ÏlÃ9è,W2œÎ- ;V­iÙÁx”Ü ›Y€VŽ¥½4s_Lû e‹E6ìž—nå·[&Úð V~XÀÈI½5ÉsL¼à†ü.Ò!;©… ^@j“Šù.7.^á(õLªç(2IÐ m•—"#ÅÖï¤vÄ¡mœìÔ°ËDæ}|Ë¿ÀàþÕf~UÈé@¦U<\§&v ÷ÔâTZýuáÚ7übW ?ÅAö¼*Ææ/ÐñL¯˜§‡éÕ}•g‘äßNC¶aìÙ sm9&©»¤J~U8œØY]Û÷y¥žë(B×rX™†en7»=mBVtá¸øvë/týÅævÑÚsŸ—¾ džÐMs±Ýñ<±wœ½Ç5㲎Œeç0mdÞ¶ªzG’¿ÈBñ3 | ãwÜ2nÌ!7¢BN¿ìIp“°…¹—›º‰•M¾-‹×¬ÐÖCΗ ~ BˆGÙ¯ám½r‘Ÿ ÍËðörg#ðœHOªâ®)ËsØØ'T˜9Á©PõøžiµË]›?ö™YMÿ »h|’7ÁjÇS/Å«ýEl¡P8³`%uÿüæ-w¡läÐl)‚›{ZbäƒÁæ³)üc¦N¾³5ë  røïcÈ]º­-ðùt ŸŸÒ ¤‰º§å6Ý|™ý÷wûßkçoÔ±ÉýFá¿W=2hùÁž,vò7¾µ×ц „’Äq×% ±.ï·oöZô²È¶°ç2묾ø×2Ñ ʵH§ ôÖOpûú`Œ}צ6³ö6‹{µ8Z‘Õ³l…²cî ë­ó,ÆãتúùgÞW‚ièGŒcE¿'Éb±Îº'iJÊ>éàd:ŒÐЏú‘ÿ7IÒ!#‡»ß”÷åF½˜Ì[̼À½šÜ*}:}¼Œrò›[ÿè/jב*¨K]4kG1jöôÑ ýCþxZ@™>ž„È>øâSHãá꘱· v|Í›ð Kq…s¯êü ši3º| èE–óH–§ v¦D $H­°úáˆ@'à•ù¡o´|Pâ!ifß«fmÇP³\ëÙXNÆó;aüĉéD-_õ"•š(“–/†~îº ðÔ0M„ÑkÙ\ºë“¦™’Èv¬ ©á€@ù‰NËú×,ÚÌ7c¯| èÁA?Z¡Ž‡ë>Òx].†ËBkèUÉÞ-ØæB] ¸bãH_qaÑPWT‰$€ÁÇ‹S^äÑ# €b[6ÏdXkm†Õ«*Ù.zu¥#›{“Šóޝa=hÁØìõpñ10rÇ[Jö*öÅ´Ù*Ú[MK»6D-Ðàä.cU©§)T`ÿIkŒÜ²%d†=# ‡,è±ã«¯{)Ö@cE!…?ZÀÛu#¹Ñ?k¢¡È‚IXH6IŸr£õé ší=Òá¹ͲYÄ-JO[ÿ‰36ÖšZ!~K‘l*_â<Ý€“Ë -Xa+Èá<3v™a§?©Ÿ«à#â¶dQ*é@­—Ú߀†uù˵ÆÜ#Ü`ÙáIÉ ØJox7%eI[¨I Œ±¨5ÒHÜÏ¥Ú½ ÐîySru!õþª âÚ±|*$&U=z#ýA‘pÌ5{L ‹ˆÐeH×Íoéà»a?#ÓºîÏõÖæ8èøm+¤ü3‚èœmèÛÏ|Îʆ@>sdà»*G[v>m—`{wÜðkúgâ 9ºy¥]ØïÕñ£¥„›Pî;)æ_éw5´çîàwGh}Å5ªEÔŒqó¡/%\ùÉävñ˜…%r_FèÈô?Ltì%{îC•ô¸†XJ7E°ÀZí ÄþAᨑ¯?–!Šdßæƒ‘Ë‘ÓN< ÙoSâö0=·'5ñ¾Sìÿ‘å‹.{ UÛKÁglŠÐ™¬‘añ3JsݳÕNî rs´!ˆ<=ÑIÛçt%ñµE:qû`EqCŹþ8û­ÁP„LüÅ@n;â‘Ó;¨ƒ:ù»Ô±§â䚘ÕÝ~ò‘xØs§1̦ٔ­*ñ2lDî܃™ZÚBjf^†ç"Æt(M7xáßmÛ§aþRr,„“rƒÇÈ{ó«î·êfþã 1>æ?.æ.ƒ!9ëK”ŽÊ!Y£8üÒã&Ôä4s5õ÷‚UUÚÎ Õûg¦´áœ%m`vÌ$RúVT€WÎ’ó@„œ¯{ŪžýÞ*¦ë_ZÝîçÓ˲¢ž° _C¼ŸÚQ€Œò>мìçÊÆ+ËêHy=u™¯Ò'_M?5E©Ú_ùØ*Ýmõ­«=a][ßçe^8õ-sMäÔÒQóˆKŽ#å[ê ã¨*Põ(nÔÿÚ«ü”oÖ¡MC–•ÿܯ-bÁç³…ð²mGt+©(ˆÖ‰þ]Xî’Pø«m³’f¾ÕÍ6ùœqW¶eüÔÍÏÕ`LN­?HÛ猌ðcQÃö cêék6)vᡯ¿‡¢ 3ßZw\>‡HÁ*¨Ëå¨ïj)³û9±s¼Ú§m÷Ø£ABïÁžyÖ- 8ÎúYùrt/¾³õrëݱa(¢6S~µÉW€6$rþ!ÄàÖ,¦•ˆë ÒëZ¡3÷vWwßx æÕlÃm[D®ô1/ý¶¤ÍéŸPÅþ‹ƒUdÒËâkÚ‚˜.þ”V?²Ö¿<öz.»‡¢ÏúÁ!Y]wûJù̕ϛzPJÜ"~ã|Pq=>¹ö‹+ çzwêãSo¤A] 9AèeR;…ýíöîþÑ çñ¨gW5h‰—oŒ*äÐk$Œ >âÖVOeæ‘MJí‹ÞIf,²“žßJi2h¸dÜ~#!bÝ«ÎP™GWnÿƒ/iÐìíÒ>_Ò̬j¤G^»ƒnÑÞd&‰ƒîü÷ÀH·„hT2dB{ËxnZÿºDÈ"ö¡ÕHrVç#h—·£hŸ@ß¹vÙÆª ¸LHÝý¡´Ô:RÖl°C¤½÷_.oÑ· _QádO+_C ŽäP}*.T±¢Ü§éÝ(gLìÏ7ŸbèRѹã”ç*L±hYË+Mþ?æc`¡ÒÄ¿¾Áë-tì·]õiUØ4NH§®íjÚчlÕÝψ£x 2ÆÜ˜(‘÷ƒ=þ3û½KΒdž]h7§O½ÀJoCÃùÅÁC6ÈYᯑhÝœ¶¦MX°Q\DPÍ‹—~ÎTDÁÛûÕ“"\(\ÑÚáÔ0“³©„÷ ð«Ó½(”ÛY†/Ùku$݈=}NžÃ¼ÕÜ™ RŒÞvÔ–/Ú²ë•- ¸Ñ+(âyÃ7懵g;¨ï -%7õ«Ä¸¢"{Ñèã`l^DûÈÀóÏxd51 fçúê)׿9c›´~Ѹ¦vc²N±k·½4w dôð}þT0ùŸ 0øæ®Ÿj?„ª¥¥eŸÙécÀˆ0öl•T4¡¯þ^UxKPî/&ýfÂaXÂí_"x7‘p.Q«ç°*¡&|ÕµÇÜhúLL¤§Yñ5öÐÙUV¶$®ýšBhƒ¬suzE+@b±šíÌ£ÖÔ 7†oÃ]"Nç‚Æ—œ‡·ÁšÒ ×÷¼ö{ÄðT-±%ÇÒtâ÷œ´Áf2–‰v©I¦j|ì’æ UØðÔñ‡Îî šÃ®l\æI±&yù„oaÐXÖVÊœžÙKnð!âBèLY/VáÈ‚âi]Í ‘¿C #kc_¼‹`[>•àÚnŠ˜^ÉѹÚáP_kgìý{ÐÄM^Ð?©¾?~5{4©¿.Z*Ìp'߈[¨äZúlcñ]@è#iÜ|cš[úq€Õá—â/¯'~ F¥G„[èþm]‘¶ãû-ð (°vжc¾SêNGÛUšŽ7´ëiÁÌh‘Rù}WõtÒÚZ†••ØÐR¬¤Š˜òÅÄ=dcÖ—–‰{./OÐxÿF–šyðÌhù3Öùåîë.íÚ¼¥Ž…³.…¼-5ŸY‰N"ÕvŽ—wnãOÑ¿&u }²±Rñ­˜óq÷çþ± ×½@–µr•£ Cz÷[oq6}ó†.;N-þêÁ惼FÕ!¢4#[»ðfççÒµ 3£Å¾¿mu‚ßmýÊ“Œ/åsˆÎÔyõ„ŽÙ"ŸL ·ÑÝ2..ƒ˜þ;ù?ªV ©9ÞŸÒZ?—’4 Œdpµ§:Žgm;9—[4´*˜I|å6`n‡õ€ü´ÖE¥'ÅŒ ÏÖút{Wj²=u‚ÖãêÌš9¥ `ÏÅ‚¤Úû›ST^@?ŠÐ}J<Š=$à@L”f‰ã¢â+Ž6pŽ–•òÉ?áWJ“FÜ(Iö;â ®‰!àÒƒ]o©ÆT-Ï÷Ï’8¯ä„ŒoMRAʬïÚ‘ g,ÕW?R®ŸYÏBO½šžT‹B£OG%6Ã;aqο…ß!:ÿJGQ0agH{C›Q;n¾ ­;\ï²R¶„¾ž¶>ì¸}„(”;Dn{H*ÑVùsÖàÌVE³/+üHµÆÄ bx Ì9ùw£nG™¢Y%­œ'Ña1Q˜„ãÒ—mÕ á¤¼q g;~ôàIZ”¢NǬ5±bhüpIÙ¶A£bd›Û—7{P´[ ÔÍÎ |ë£r]P5M;²ú5Ý {…ÔZè»§®¿¼8ÓáŽ!äU" ‡umí4oµ¿aÇ@%£ùýH¹f·¢ŒËI‚ܬúj™mê¹™±{ÿ+Oß$WÏò _óƒtÐÑ'#qœ8QD§åÊ8W9ͺ]üÿý?L«¾ßkÉn7i©N¸qI—t@JHÆöuOÖÙt¿¼ÕuÊD²çZbé-ú M¹½Ô%~+›$盤÷+Bêp«Mv0 ÈBÜ[ŽPq½jFjÒÒ .wµ’]Vs7RÂAó=Áà±¶gÐ>“™|Û&]ªøЍa6%¹zѪ¨´Ì¥Ëö1‹3ª$A¸Û\‰1|°¼€¿HÓãÿ°¨Ú½kňs1Ž—ª[14›•Î[ô?u± OÚåá>S=:ºñoZPó>žÃ3Ú•œÏâ?ò/§8‡ü;Ž×9 C‰ø£UPdyµÕ68ª™Ì‘r?RcKòJ)‹kaH2žùºv±˜œÚ½¾"}Ñ{¼q-›î.AE ?‘ò#S:‰ ,ùá½aƒ¾+H­ÿë(ä‚ád 5J°¿ï Í`ɾ-ê%}ãµÅÞRjº s¸¯È¼`s‹Æ›9½@ã[‚ {óÚž¾zA›Í5cìÒ×½Ž˜øT½dã^”ß¹ÿR,ŒÏo±hbúª ÌÝ•)±)òCì:W&4P[12:6èCx× [žôjs€ÀÆ› 2¯ Åðµx€¶òeM0›]€Ý;ë”RiÄJ0éÙUØ0Þ˜(…³È_FýÒO6)Ð#+B²Qv®qåIáæÜÀð¿fáÈ›‰Z6芯ÅlŠ!ƒ©Bº®ˆòæÔ6Dà~{ùÕ+E˜ b–¢òeRŠ}Û¼å…8y$ü†Ó žù¡[!ào)céÎÛÝkóðrHM»¦µ.ù¹‘ªÎâ‚«›uí!õ¾êGŽà\'  &ƒ˜†&w>ÄÅó+äÛK+Ö-óGÔ?ƒL¿^HåÕþ8;+)ZäIÚLË¥rº©þmèdu­Ü ¹—Ó”%»´4Øz¡'%»–€WÿI´9yÞ0;êåí&a÷EÒe6óåòÔº ÆDyQúêé„<~{Û¹3<è0\:Ãqˆ÷,£¢± Ò͆³ÐWÕžÊFƒ£ú–)ÃØ<½o‰¥È†µA?hEÆQé‚ÂàC£iûÐç ÛÍ>®çkôé»6ÌÓkvÉ–é‹Ü´X8aÞCDAn„fhZ©3R‰æÇàMê¾Y”& ´Ähü†‰‚?Ò¤¡¢1¾ 6 ü艳]òA¦¥¡ñcpvèŒu.²–Ì[r|<aÞj6ÞâÖ­^§q 8Sqé·Ž»´ÖÕ¯ ioãËedK'ca³Vdù~¤3ÙÖVhG«>JeV/]ô¶í;=±¿%+›˜Äj.ª%$•¸z@õ„£RbK8Nø&NØz8Eˆ™uÄjM_[=$h¿RüuO ôqÏÙUÒ147Hðª…Âo M¬mÃEºÓ³ðü "'ã‹yT™ÙT¼”+£ë\Píœé„Ù@¿`™­™ûüo·`àX¶ÁOýð½a ?˜Ö;vèñ *&©FEC`_:K\sŸÀó7àÏ*Ë%_ðl†´,WS@<Æ/Nµ†>›ŒR}•ñÚUñÛ©NjlqS¸„Çæ³ÄÑÐ raQè•»*G@ÑQÒÎpK1 ]´xhËWøÏÒ׬†®ßQæôÝÕMÔj óp¸…Ç9L<È^ÙNAà× °ïZeÈô‡‡£éúd æOŒ@c½ÏczJNuÈ¿¦Ø–ɆØú‘Ý·a[n”ø#)6±ÈºuCqÖl7%ï²… qÚ+TìŠå¬CÚi,UP÷'°ÎÝ¥‘Âõ´&šöX%nèu¦c™MÝä,]j‡*Ÿ¬ÿ¶µïìÄ'ÜñO¼û@X™s´Ãý”{ë±ü&ÌÑòh”£0ïŠ#h[-« ‡XÃ^^ù¡«ÿÇWÜ5`i},ÀÓ•wW+Ï;OÉíá~ÙfSý-º|ñëe©'S¶Pb[®aszXlËìãç§`aÌOþ5Ð¥†æ„{ ÄÚ· ¾’DÄ÷k§ h Ä4”ÉÝ·~™ð_¥µá#Wd§ ð‡¿SnŸk¸ €aßFîÂ-nòdó‹’`‡TÒÿékbHߎ5z‚„ˆžèĈüŠ(CëÜWeÐnD0\8FrøNV—& çΔÝtµ =‚ 4Ã-Ù¡G£ÿ7 jáÓ`}»±jÙOñ¶úã²"ž+ g¢‰ÁrAºf«2)„ß~«) ZÙÊtCÜ_xf¡Q×!¡T§ŒžÌ‹=À7”ÇÉ\Ï6{âÏè`ñ2,N Z³ *6¡ ¯²]¸® RÌqÛáñ†\çóž«XENºsLá§è@×¼š|»ËÁ;}Þ ½’…‰2eãÞ–ƒVÒXI¥I€¥ìwuQë°B¤­hhGOç_±à9µ÷¬õ†Ãܱ؅Tp¢Ø=¤Ør‰m¥kì™âWÍØŽIÚ½`NmNñN¹dLoâ‹9~Y%¶ãõKùI  Å®øÌ—ºË—pBC¤É¹WMÇÑ'8v=Bð™3äÉsFqËÈGe0£k¥Å¹ê"l#Ìù“¬m0t-ªbïl]„_7€ƒÇ5Æ4ÁÒìiÞVvΑ¿Pæ¼ûañ6Ò‚õ7f™ØOª“|µµÐH½ ÿPB‡Õ‰Cx ÅI¼ñ7iQŸO˜Žeñ„Ô)ï\•"J‚£NûŠg“‚gch,ÓÖÀØ—“éq7%èæ[E,cQÀ$!,,t ‚·¨)D ¨[Òð¨KE!æd ï x}Šg!PÔí¼˜7ÚTÙ7¢¹ú¦ ù3…]\Ú#W‚~Ve ØÒ‰ÆêšöNQ»22…« ¸Ïðr<¥ìÉQ?Tzƒ¦•Œõ÷¹ßÎLýy¼}ÔTLr²¬ð‰ŒêëóñËxÚÄhݰ½-”eœ¿¸vÿóè4ôMöÏó©È}OšŽjÎñç09<½™|úÀ#Yµ UÆ¥€§ › ß<¿E‹Êžó%Íí«g(;#H+ÈEˆY˜1˜•¹‡Å8Æ ’nƒ² FczLÔŠ†‘y¡cñ¬Äþß›™VÛmª\³ ôM±á„¾–cjþ§g+VWiWq~Úwuâ$¼éò~oS¼ñE0£™å'ÃVŸ[Y/½á’{Y ùRÐÒ@m BîÓ§z@zÚ§ù;ÓcZ ¸Y¿Æ‡ÑQM‘HëË’a¡Û®òæø;8æ²ÁòQÔ²)Œ/{ÿ‚Fqæ8™VvT© Cšm[fÆ!cot˜§2é}•œ­ÑÛ¶(!yt»µÁªÁg°ÞÁ”¼†;ž­qU“.ƒdàì¶Ê ç…³¢Y­r¼<™å^¡}ò€–ß)¾Öq½ý\¬{Ii øæDJ=Ê!†Â⛨Q[Üér“ÐZÆhÓnw÷{ažšð>,äÙ]sô®û®sº3l9¹E¶ ª…}.R@]µlR¨·âÿ¸È°§ÆGÎ7±fç-náø.Ü$ð°˜Õ£On’sÛ)Öì³£ôþe.N7çX)=ÖÅ(; ¢qO2‚ÒQ/3òJk„úQ&¥h÷ï.=~zj2æ¥ÂÊ.¼Z3L€Öwà±hFcæºòЦÍ>(7¸¬àVgп,y¼Q ²w1ÓX²oùþºg‡'ó/èŽñöŒXP"çó4Xy¶¸q&»1¦ŸS/”v…ø"Ür=)UýH QadôŒþý-è –þwØO¥•C è»ÚˆmæÌrae¶öEÇ?ñ}˜‡^^hqÈ•K~"Qt]óÄ›}­z£kGŠP—ÞácžHüýZÆp²4Þ&V0Ÿ2Öì`œ  ç€?A"ÊlMâ°— 1BJís;ã¨>aQgaÃf…-'A6/q²ÿ_®Zþ1­'°Ž{VÏÕZ¢Ç,-‹ç»Jè®Ö¶Z­tï|ÃXÏÖÓ¡…9Ý›Ñ÷Oìuým h–ôÞ\\þ=]ìnÒÆ]j¹Œ€w‹6ƒi 3«Ànƒî®¾«Ñ€†—à˜ºg¯:hoˆŠäó<Œo?êË ûÞ(×·7"j=ìéjß$ÄÆ·TÌjÌ.Õðémù.ô‡ÀPºIÞXÞ¥Ö³›˜pî™þ§ÒÖwQ–`ÌfÞ®á $L`œ1°.ª•ìY%§!m0 à­ªÌÛ"Ýq‹žÅ_AÑ7DGüO)¼˜#Üó-µ÷é% QÓ%7öÇýO´3ÁSñŒ÷Ãõ÷–õM?XçNV/ǯYI»åüü•Øêàþ•r+VŸŒ_ Åe^^BºTäØZ{¶âLq7e‰XƒÏ'9) ЮRŸ2}vUáñ€EÀJ\…:¿…ÒüW+:‰Iû»gV—GßV+{žX?q8@kD7Âà~÷å©’HŽÂALÏÑ7в~šŒ­‡N´®#Âðãá>•xMꣾÌ+TÈ#¸.nd»cáZm¨ŸZD¬Œµ¹WKɦG\žò…H…#†‰š·áåuts/‚<Ÿeˆ¼Øu5šÜ{_èÐ'¡ÿê½@ ª/[ßX““È~ëY¥÷¤Ñ°Åîð“BXÔç”}ˆî…îÅ{ÖÌh›ðÉLZf›þ“†.B®K¨S IR2õ©õèD€¢.ïMÏœà5ºõî-T¸ ëÔ¯ž‘46:ž´T. NF‹˜™ºý…ÇŒ|˜„?`¥º)EÃjQX)ߤЂék)ŠœL —u½'Ež`Ü#å eh1ËÇšÁ5€hl޲|–9-ª£ÄÊ„:ô’E8½ídÂVR èf¾d¤ÿ¤Æ+¯|Èï¢d‡¦oï‹Ö¤¶¼†`Rõ3\»ÈûWó }˜~,ì嵊ûqt;Ašß#Ï‘Ï0qô^zr®ä|:G–þk@{Ò¶s 1ÉI‹„u¼–j²­RNAG–HšÝ¸.Zw”¶ÓŽýÖïzÞ<“‰®>óýp¨7«±_Åæ÷œQ…}RI?™ã"¶’xÅvô 7ž!è ¤Aœ\x»w°h|»áÀ _ÿ•LÙ¹ëýÄ2N{? ²'%+¡hþÇWǼöqøƒkfÉÊÉ…|k‚ã3Ë¸Ž¡–RȺúê•%ªû•'ŒØmåRRCI®YI ÜUW¤r ¿ña¨IÅ9„–ul°â³÷XvΨ¯w ÂYÿËÅc}IVN‰Æ1æ˜=O1…b ‘OB^ššÐ»GÁéŽïi†û4à ÛsL£$r“`ý<9m´>KæÜüEê¬#_ÏH†¼È2)V¥…ê"«ÈëÆ]LïBæ²¾ŸEöQ­‘ÜêdV#%nÙ:¦‘-LÁÐÄ¥…éÅÈ"‰àJCf²¦®ôBt)¸Ü¬[OósóVOÌk¨1\Cÿîl÷°z5’áæ‡ËQ›<¼©°'¯2õbzßÁ»£m¥ÃPJ¤VHàm°4dF&€Û))þ8`†¥êtŠ5¥Ç›fºF3¥å->Û:Úö÷pgâÌ‘p—ýñ¥À-ßm—¯IîoݹF%ü'X°§2&h‘,Ž_Y8¦^M`ä'q‰ò÷b­ÎŸ´üY¨Lõ7Þ Ô}ÈJ1Z*Ë(}PZ…L ÊèÒ·²×rR¼N«^-òèÏ^Bv-fsƒ}ubä³ç¬™Å/*×Ã7=ÓQÓ§—Y‰Î=:´ÆZðëêVÚ÷eñØ>0¾`gm㮥ôÀ(Vû¥€¥óEe½­~å ±¤¦h#’Pp e¨Ñ!÷Eàr“/4üÁ}œ›+Õ46’½ÕŒºƒš˜r:Âüê|;¤ëó¬þ¶Y•~É ._ù™PÃÿ"‹ŠÚyF ¢¹Ž†L¸sãÜâb ²æ e去š (Ô²3c¿›šFB“ó¾è€tWÿùÀ‰Ý"Ò{çÖðÆ)¹maï¶2ÑÓÃçl|eÁj¬Ô)Ñlaw¶è!yJùš`LlF'>ŒÝÛ˜I°hÚ£/?>pH׫ >Þoà«UþGgbçCÂÄm±à¡ní7riiT/ÕÐKªÃêPìÀœmbnÙDbô„y¯(>N_Èu3Û̙«v±Ê&4„±¬½T56=V\`§œ$s` 3Ñ‘([<¯ÓU ¶·–^ƒÊUo¿-ß’43Ä6Àé°H9ò˜¿Š.sêÎï¥;§q;е½GߎFÜyÓbŠaƒV3[~üEï,NèðŠ²¬)nZÔì4ìŠ!¡ƒø¡7÷ã+ÇŒ!'3SàPî/Ërü„s±ñ%Ïïüt€1 Spû«7ÎP¿Y#›Söd½USvx|¸«†qQš€6„\\£*QØ>€Æ'ö†›–c‹VýZMxh@sÒÃühµî'š:ú{Âý—q—³D`5Ä@lR1º„7 ’M‘š§‘ÔÔKã]$MÒé¼ ±ÿ×ô~KQ“4QÎz  X?ßb  2T‘éìb_3¿ï‚1Æíà8¼¥ŠÕ÷¯sû™¡ªBÉ臬Æ>§wgD z^Íu•Ò…²«÷¶ š!ñh…æˆÕYÜxû¬_~gö«GÌ´–¶Ò0B'«ÚM 8,üˤ ËLµ|Ku‡#¹Ì(ÖóàS,ÉÖBTìƒBmô Š³té£N.)R3ñˆª(BÛˆGfÿdsÿ K §äM”ZÛWUâtÍÆÚ9ÕûâÒªûI6ÿ>Nµ‚ûjlñ”Sß²³­5Ý8.!¦é=Jn=8UZª’¨Ó{ÝÎØŸ™¤‡c×õð}gTJaŸLu´®8xAæó­ç0ÐWoHúå¶¹9 ÞGØM0˸§t[C½G˜ôá½€[y±a pó„ŠcU{Õ#&\þyÑ z=ù¼s]âu懧ƒ_þ涳̆åÝ <ÆÛgÿŒ´gM,9°¦÷@µHôšÈ™‘rcí™eó®¦Á½{ =èdçí3òz䎅B"-e`¼GDŸ¿'ì×8æd/öf÷—³…Õ¦#4 œ¬4èf‘®“”ÖÛߎ/û_µÔ¯øÓ 쿚m 눰œãY?ªÛk¤.Ÿ›6|ÿÔñ >×¾ä¾Á öˆ×ÄHÄG¸$…H;#j7c/ÕcŠBm!ú’ üÚÏ}‚3à‘»6TË/þ\߃¾#b^ïAÏ|öøÎ5ažÇ€hÈ‘ðDÅžœ‚€[€£ìƒV| Lc}dW:±ïÖSV:„]h’&½ÄË(T=`QFS“gÒÕ§"=4‚œtO…´…dÂ+êÐ#С¾ØÇÏ´!žG2’d‡~¯¶wú-®gG‰^ø¡¬±f J!:ZdðV€8u„2MØ”ØOn ¦ÀTõìuÄŠå!ס¤}ÞC!•¯<}©3 W+ ƒð' þƒÓ6ƒ5ä^/ÃîTv‰¢€œ©/qÛï}ô¥<$\§úi:¡OâY£^¿!ІY°\4¡cHßOô䪯ªs}4‡=àÒßÿ Kš||ñ+‘Òñ¨x tE¯&àóMe48s ¬¹Ó*@-Ñ ˆ/YK7ðe\«|¤ Ú°((p;Ð*¸y.ÅlŽ0 ;@np„³³ªõ¾¥D†<ÑfˆK€~K£Ÿ?“‘ôÝR 0]{è<²t,ÿ3æevýŸê¿#@‘Á;SWnÊu[¢¤»’?ÁÌÍú^)qÜr+Ãyàq0É.ˆlýåä‡]Y‹@ Ž“@œXøŽâÿ’Ëø¸Ayx—Ïg§Œ76ürìë½ÏÅÓg„Vn¿‘:´±w¡3wd€X›¿+@sŠp~¯›T¯¿Iõå±³åY*†gxVà†Ú \xÅ¿•¯OΗã3_îM¨˜U#–³ÉàÒ8èø;"RfF÷é~‡Œó ,.hàË ÔzÔ/"š Ú’¸ÉvT-ú‰*’rH‘z6]ÑÎÊ7­qU Ë䤆‘UX’ù L‘ÕìˆÄã$4&_ Å„GŒ¸y´È­sR|f•)M7 Lhu.°~R>Ñ3Ôû¼ÖGJ´õIŠ0õ?ÚrâYmH&Ä&.v2ÑæVŒÝ”&žßU·¥;‡u®`(Üi5+Ù.•-%ÏãGpÇ›C Á½‡˜d£‘Øö´Q.꘰ˆœf~kY†Ý<0iH¡Ì¸‘)I00 –¾>ÜšòÏk£¸í¤Õî$«vN&ͪÇ**¼°gÚAý­/OÎÂæ._Ÿ‡ Bþ”Q!ª,.U()>º`ÅMrþc#º}î¯|zí][?‘š†eM¾d†l„–­7§9 =,¯|ÑYE£qù€Îêå Š ‹‘ïöî¤Û¹˜µô”È”-)´ÞÒ)R’m1q±ÜˆåÇ{‹uì6îÜ6{ê}Œí<‹R"Íø)“ð‚5£j1ÜK( Òy’#>!+»™“µöå© œ"!×·>-TŸCgc¦ö×LŒÀüy6E#[6QÍÉÿ>L€m ɵ\s«òkÉvg¥CψS")púøÙõ[W‰8B±sëí3 šÅqå‹Í,7à÷h£ÜH `ä wÂPÉ•<0Q‰üa5p×£Û¢Øù2~Û‹Úß,F_å¾ÁV+ÓØŽN7È&ž1ÂpŠ3懼ƒ þ°¤ „2^Êùjˆ˜!‚šˆ¾u,˜$ÞÊZEœÍW|çåb«¬àž7`aUr `ÝO¦yñÔ"œ!BBl9à­j 6GË`ÖŸ§¤œ1ÄöIi*Gú“¤'l¾²euD1pÂA)››XënÒÇÑé`˜†ykMý¡£É8¬~/ÉŠ°ÈNKz¢ô“ Ì¢º‘X2£ö¢n‚ã&XdTÚë¶ËÎÍ3…ë›P¶8‡º¢n“9xGÀOßÚ=}΢[Õ¦Ñüî[¥åÂ"ý|r)ÜV‡:(„}ÛB+LÇŽ1+¬ÚÛsíì|ºæ_ÞPPDP:'˰×ýoò\œ’;ƒËorç˲´j©E+ZÒÇaX`x ¶óê)½©rñ`* Àƒï‹¡—™r󲙩ƒN Þp=uesüÓ)J~`a¿™ö¦ œwàÅÍë³¾û_Û‘‡:ˆëŽN;î.ÄÎðþ៣Ñ×Þ’Ù‹»äý:À––bfÌ%½V*”DzǃgÏ©ö2&lâ[>Ôß'à], Íï+çnn£V?ž-pқɮ†ñðòÛêÙ¿0çò.ü.á„,ÿ‰2È,2YtÞ5l3^ \¤« z ÞRÌÚ.Êi2YW?©ÛÜèh´Ñ´ÀhN2sûëîé(ÚøàJ][2£íOiõg·d–-{¦/¹òljÌ1úP¤vM>hTl-Þ©Ûšµãp(½“#ûµÿ¾tËÞË®;ðf˜VbÒ/Ù%Œé™-P€V¹6@—=e¦„^O-{¸X—` œ¥7|h&àx¨ÔºEì¡O räß9j…¶{? Õ«î÷ë°0‰Ÿõ;;À¦ 㜨¼Z˜q€àÜ ¦5Õ¯ÁCv“F‡íŸF$Ž.±±ro›â\’ h¥Iß©"xò«Ë• ¬Ö–úô,£ ýk¾Å!'#r÷S‹ÕM…ÑŠ 4ÚGÄtêh]µj«”¡AF 7­çÒ°Q¾/ø T+Ñ=Zv'º«·2L”ßV £ó~Á uù†;ÇÙŒu™Áj™òkäÔ ˜`v\?uð3ü#^èa°oŸ1nàêœJUiNëh ƒ×]`¬´Œã@Ó¬òWż³ÓVPCó>q–W?¬Dœ¾Õr5·Àä# ÔHZfˆ\(Ò„¸•º{Ü R\†³ƒÅ7 / Ø0¬¥ ²¼äiOgø¢i0ÚptÏÊ=X2ê 'îêIi8tȸ`ÇÛ¡|n^2Ž˜¢Æ@)Ìh% Rÿx|X~–†5+’–‰ßNžÒB´yˆâCÁD{tbcÐR•Ï\ùÍîÀŒ®¤E”ìžóŠŸ5†LÄ;pôyçˆ Âж#±£ýq›mê©PR÷Û!‹6Åø:±—¯Ùç¤/¦kÈÙ ÆD)UºÚÇ 'A |Uq9iŽŒñOa°÷p¦ƒ¥.±¢zß½Âþ˜‡!UUƒ¬¶.‹lÖNrCöèÞ+»ß¶ÅNMüé8_Q¼¥N¥9ÜÆmÁE²‡µD«Du©žÀßc3Xú欮$öè¸þ)·Ü`¶‘Ínn7ýà—÷ÃsQ3˜‹ÇDöŠ~Z(Y“\¿þ!©Kõ¥‡@[o©Žkáß/ݦ:´>Îx›;ßÄa2,—¯ø} ©-Uj¹ï %)à<2½X×ucí.‰C¬`Qøï°ª /¢É³_Sî‡fõÄ¢Œ+Ïk_XÞ¢ ý8aC–êÈvœ×¦…ôw)h¼I]l›½Ô"ÖU:˜ßIÄ ÛÔÀ)€A“ÝCöêRá!¬öŸ`ZÒà³™34Cj• 'ï¿wmuïœGYšœÖ·þÚroéÉó”cLL…’Oj0ÌÁþKÒSˆ¸Çã—èRÔºù¨Œœ"7ì†-vA3GL/CÃ$·c~"]…&’~kµ'Fö¾š€}ލ&V ŠÞ6Z•³½ÊPLÒtq/Ü¡Qàýï!‰`8ò0‚Í*#ž˜Õc5&ͧä`(ÌÊär4ý°ÜÄqË=>™_±âÑII¢ƒ%í©h.'Öªºf—éó1É¥‡òèG©Ú8x¼mî–E°iNõ;P¼^˜1Âù¨ƒ§äWþ}îANÒáݰI§)ÆL|aQ&Šòu mG|ºûP ÌìDx]¦ÍŒùÑ÷±3 ¶²[„懥ÙV3T’UÕ‚„TÍ+ˆ-}æñNVÁwí½í r‚!rcÏ+“º¶0i/ªWÎúP:ê¶KÚ?pÚË.Ñ‚eƒœc½-PBÕAÞvy /j¸Í-ЀËG"èÚ·è9ç˜Y#ÚÛ–~^_ÕÁÑDÏ,ˆŒ>xµ©*ÎHÊÏJšá=Õöà/º‰öý"ÃgW5JîR¢g5 j3òᙨ2Žˆ°ƒ ”4ÙŽ¼¶KE0U‘多é*ˆÉ‚‚ò^Nøo€‘›he±XØùšÚ Ûü…ý#ÕWS'hP_u™ ¶èBòÌV„)8ùØöÝþÿ W]ý(jï//©N2¹ú vzëWPdaeKP|³ÑŬ¿v½Qh,¿µxC‘þY´. Öò6q((ýªßóóÿ$@bZf¹bTÎ%óÔÇTP9‹ʤZœtôŸ7 ‰0/•ÀfŒ/*G,Э†Jó¥gô+C¸&uƒT˜®þÙ\ߣVÇ×/¾LâÈ 9¶0€§W¶j"ºYÑ0Ùò?-'·A{FX5¥õW ‰%ô›G Jã5ÐóVAËÄF¬#³ÅŠ Oëx1‰Ì-É4-‘¼<õ tKU8 ™‘Y%pÜUmv“šé¤rÌ9p¦+#Ã]$]È,Ò%1Y†ýkF”hÑŠ(6>v,»‘”Ú4„ÛõåîÎë:e©È÷bìø6Ç,æYÙyó+ÈÚÿ}©ÜxkÆ¯œu4[¸ÈG“O°d¶ñ-9ƒGkc~Û\׿ì"Uþ_©íœºíÐ!o¬a]».1’ÿ¼êªÝû7¿Wÿúx)®ÂuЦ¡¶“7ê-1}ÓùÆÓ ]Bpò޶Qqí²©ºZƒ±¬Æ)˜Â&u;ÍšYä¶.sîoÌÄ»]§ï£%,­õ÷/-gYõ߇„õ³M_¦Û! ¬1¹@ÖxlÝAŸ˜­åÅ¿]ŽÛ«! Õ4™œëŸjë¡–£GÑͱ÷a—µ|ÕþûkAÕ&½øJÒ /9!µ‹»œŒêlRÀ£VÀ±ž À¢J«V(VÛxDeYÔŠN!PÍ7³oü^ô!£ÞYßðY©™ìNžš}83Fé» Y"ÃÇl³¥¬Rê(rx#–lö'þ™©yN`"»"¿.ÔCz1Êñl˜;o9õ(vÙdÿìŸÊGX® ÓŒ¹¢/ü¿Qy}ØûãæxV£XªºvU!ÔÄØŸã²vCû‰¡dÛJQŽ¥Ùt‡ÃæwÕúŒï{±Z,¾0J°³˜>‡Î¹Áüã³)$ðð–Þ ’ñ6¼â§,§=xï´Ðæ6]·)‘ïÎÀW慠øLÚ€«-(Ù®ØüÂe›»ˆþÍ(@ŠyÓñÞyNU$Q‘¼àyü€Œ¹ï_lí{VŒo.ˆ­x²«P¡füñµw:Gñò—-9w“‘áᇢJ9xªMz\Ñ }èðœ5C÷ sžØq$ uŠ.vt¼¤`ý‘›Òº4Å»ql)1DÈhŠæÎ"üÞÕÈG<]º|Ôá#&V]¯Øé*۷ΓÛaa$=jX¤áU‚DÙ ýËß¡Xúù’¶ð†îþ>h!a*ð—ƒÑ–û-жïÔFqÑÛ39n[÷pì%³: @rôTVX²~]CAN Ú”€)˜|p»ma]EÓžs¿CžWê2((HÏ¡,³^´‡ì<]tè4ÛNï×ïƒ0«¡nÅä´P" ±V6ñ]1ˆÜ aõYŽÚò`´ˆdœDkKì¨,8îB˜Âlñ²U•Œý63F1Û+MfgoqÒƒâÏßS³57ÿʨƒ©f8Ò ûeÝØê¹Îi)(‰ ~‚ÿÎn»”²Á²}GäÎ`üi9¨ÓŒG5EP®ê†ï,óøˆ>v><ÁdO}Jì5ê!mò»û‰è”ÁPU¹‘Ò¯ŸëЧ¹þ>jSl¥»ûÇOÖdúZuœQoªu=v»ðóv„\€ —aÀòö3ª•/ÛÃ)m qëÃ]ýpw¸ù²2à›¸‰:ò9=ÉJ·®/{°JuËô™Òçûøn{™Zc*•úí«Š˜3)Íѧ釩ӬH\¬F ìçq»…%#„ ³´{Ž¢â ÍÏy6½-µ/3xÿ5ƒô.Òqkj4d룟 ¦‰4@/¶—ç’W”R£Æ½ú5èE'nó——†·ôùd;©þºÁÃA"Ê@7^'ØêlS§¸0-À h”†‰ÈõŽ@ÝéÔé7vëšÆÂ3 ®°E´=»ä>\e&¬eƒd[æòÄãHö¾F/UíS+<À,µ¦Zqžn6Xþ%»Ñ—d¸Å£å_ûŒè 0M0·KÜŒƒ²ßlK44¯ûøû±é,w}Y¿·X.›¦\ˆTð=Êsf×î¼Ú\òzg TÊàà«€ÿSÛq2 ¿D‡Å..\“”Dé¨gÁ|Ceõõ\‚ qŽ[EgÔ€¨h𠘳à™å¯Û)ø¦ÜÀøˆ÷ég0Ï®;ØIFäœ Q½*>Ë[Úf.Öü{¡ŒE?Þ¹á*(ºGy®€¬³¯£ÈñJaÓ`qFn1Åžúq;†Š€>+ P*/Z7NçãÓœ¡€„k\šÂZµD³«/rÛ–1…Š´7x¿‡ù‡ÏHÎlÀCÍ«¥N¤*^H¹yòéóÆÜkxÑU= š%G¶ûÊ“vœ°Ï4$q¦Uˆ=õœF/ºG€{&Øè"¬\]Þ¬3oþBÍ)Š`(n€Ù~Ãr^Ê{T¿•þÆ= í!´Kí6`"²#'ÍSÉHˆßèÕÕ“{˜Þ? ´ÊÐk6Ÿ%Œ¿ç!óSZmì—«Jp>ÃW9Ú!•/¢–qÆ«%NÂ.ÊAvÖ-$‰¨fëâ_ ×4·)Ðð€4…ÕIüã®ç4“¹‰ÞÏQAðHÛ£söK³:Rªµ&‚ÏæL%5'_€ÔQ•ÊŸ e£>wT-3ãhSÃ+ÈÁv0)s ©P³5ã-‚7e# Á0ó˜ów’? óY¸ìÍR´ãXûÍ×íœ0ÏÒ35um::ïµcˆòXâa…Íýäí;~—Œ9–š|2ËßT¤¼kçSKÑÆ` –¢ ̯•?Xxåu<5ÁVšŽ*ÜÖ£ñ‰Â™" pÑ­!o:3O ½ûüñëùPÅRjFÍäh[9%_ÙyGà64%p=#¶úÙQ´êÈ{Lª s?û(R´$Ù›W7{p¤:£ì >ƒ›õöHe™_ š‰ŸD쯈BÔÊÞg”2ÚT?AÙ=æ„¢ %™üÁrDÕMÒÝW“Ãêú‹æÎ6)¡?ë¹¹ˆ1꽜$ ïTá§;KfÛöŒÌ‹,ŽlÁ÷3q¾€`N àÆ‡|GºÓŸf9UhF.ié”"pä2‡£@•ƒÍùaU¿½°ˆ¯XF¦{r°0ÚÆ¿ •~Ÿ³^ówxQ]Êý6ФŸö3oÕ§Õs\gr,®Lrõ¸%––²“4}6-V ư¶¿ÔO"øu‚pEéá{.ÿÑó„ù´LÓ‰;ºç5u…§¨§•5ÅéV…a¯#j:³w$·­WMÕ©õûv ôc’ nòúù: ×„ãØ™ ?ô*[ÆnÎz:¼?‘àfuUw—9†Û/¬¨E憺À—ÿVµ‘@ø9*jo¡æC5¬û£­\²jôŒD›5¤¿'î ÷=ě!‹–ª:ÏØ§].Öä=Nê?/NÓNàOpïÚà¤uûƒ UòªïËŠ·Åù4J9¢uäâ<àIÍH ÕDobNúq€2ïŠæ¶ÊÀ‰À»®]W…q§¯¥¿e¤å\t~˜>>í¹Ìt3ãŸì4¼i ^,¾Ô6²U¶`%—pý¡…ßF­{Û…cJ!™cDÛ]¦1:¨ý¿·”¦!ˆ–‚],ÜiYÙ9 ÙtÝ&ZvÜ ֌̭'}É0ÿZ ªZzÓE<Nk)š”6”n;»Îàˆ\û_iÙâMq4D§wDß½Šá½1®Î>ñL¼I~Ë„ëK””ºQ!dŠ÷p¦Ö_‹Pài‹6S&äñä ÏzŒenøP@©%I¦_:ï·K³ULKÝ/ýkPS%mB”6¢=ß›(ÔCyê5TÕ·P pXYîI°L÷SØÐWÖX‚­C[ñÏ‘ (q’3η͹Û~F¥ÊNâœêøv’à®Ü³%Õ˜3Ï¢+u¬‡ë£ÈÔꈡx šàƒ}Œ"‘q›>-l\Êë-³V-ëàŒ/ë¨ËhmÍ~[µ‹k UMƸ7˜¼“²_[pF¡…;¾ÄF{d êÿØ5q¡h»·è\>œ]±-,±ŽÌx{¾€ÞtÌŠ¨[4ì]«PLU—9ÁÜ1?YYé¼*ŽTíÍÛ;ƒ)ü÷®÷È Ï2T²¦©„éç¢×w/)ÛäÄš%^£À}­yÖ&­…Ñìß ÕÒGARy54¬ö ‚î?aR}º£6ô6ÊÐ1íM’Þ,\ñ*Žs퇎³ ˜b¥ígœŸ‡ûk4™J˜Ž@‚ÿ–;ÛœûΤ°îêwL»òW[OgMÓ&Y¨5ßFý±M†BA,–l8z69ƒî>YJÞÐÖó×€5üš,Ö_Äãþ!§k«åO™Ü“?^ËìQS•ȇóó6èQÏŒ»jX¾ýƒ"òÕZ=’¾õÊG#ñDÏô¹n'ݱÉÅøo¨ 5±tçé¾ú×Q€[eÀ!Pˆr9–q ~¸¾‰Ù(ûw|>W2ô¼4§Éb˜Ä†)" Aç$GSSl²”"±€­‡YŸ—´=áÌà‘§:øÓð—¢R/Ù@Bë$ìû•ÁmãÃaÝÈI19³·­[’t ŒXï3-»ÛWJ$H0%8Å·u;—(@Sõ ܰý˘XÐÞ½óô@ŽXà.œÿ…áVhP4÷°ãšôv%¥AáÓ»ä÷é_Þ£@:Ÿoù׿Xç?jÉì{Á½€YE¾{|¾LZí½OÚn± ÿñÁðÑËI‹~Ààé³è]ì"_€| îÍx}:6‡(zì1‚‰iA=g>A63 òýa7nçÜUkw0VsÛ—¶y?X ¦Dr2laÐÎd[Vÿ²lpM Ðp“5eá N¾ã§Ôø‘B½# §h.øÐÍÀ*#ÿSó'×y F«®'_èŠ£Ê gÍWœá|§þ¤·ž1– ‹Î‹ÇŢˠà›Gÿ±é¬·Qã¿\ÎÛ.(Þ 3 èw8õÁßìy°pl·Í“´/ ýd+ÝuºÚŠAŽ-ÿ{tÄÝ Uºû„}:^PCH´É¢…A ¢Ÿöâ8˜Öbˆ¡f]6J“—j”…B œÙã˜ó»u† NDžÒô6aðÐáU¦rý¬©å•޾ìè„’žW«†{´g¨8®¥«ûM]9ßì” Ñ¤ÊœÔgS:³ö%4wgÙqËb};eƒZSo±ºÐé0PÀþNÁ§—²§{ÍbüLFöœ|ð¤ŠÆ5±g9 s»a¯jÒ݈Mgº(CA»$ȪÎã7·‰}È/°hÉòë°¾ X PbÏ)HÐ8øš ´E¢vS‚Ñ,ÔdFq‰#q­¯É <Ê_9-gô7×ßÈdGk5qEÛ\ÑgO3hO ýf­ˆG˜˜›±Á¨ ÇWÏw“¦·Ã’S=gˆf>Ù-§Ë¼*êCÄ ÔýóÈo×ËVÝìèl:œç•„JÚ ACÍ+^‚ØITÉÔ'Nƒ”"\iŒŸ?·h@½9´%3½„€l9k€hΞù%,#·Xˆ\É~Ë>,É£éQ–Zñ·¯ÁªÞWk÷¯°'ßè_aKHéÝ4¢×=nN±FýàGa0‹½˜}dûðåÌÊÓœ†-‹°ªGÊæÃ3)¶|MW‰ôK«’+€ÇýzòïžÈtß.Ðùµ 6›õG8ÄGb¼ÝOO|?)bŠÝÿcõh·“¶±EHÓ¤–)\‹:ëÀ;m=Q#]¥™[¸L{=­Qòv¥oÏ>K;ǰŸ¼ÄÐþØ'@åEKó «tŽÍ&òV²I†ÒóH§s~¿ž =·šÊ{T-½;I­Ï1¢ÐѼÆÝÊBéZŸ#éb.ÈBë“*g…Eê+šÈÑcLkÇP'o/|Ȩ EcB(Ðû²´·›É gÞ‘tºeÆZìã;-Ij+Nçßs¨íƒ!ÅÍÊÁ›ú62)!‰¾­o¯ xULf‚gˆ¨Äöòõoª/‹±G':»BJUÞÑÎ|N?tÔ€Ä$ >¡Va«›”}ŠP\¶„)LS‰àÐÆY›UNó_©EL¬³:DÞ»6I>Gª"cCo’p¿…x±„Õa¿`VB©Ÿâ´Åþ'ùC1ÒüX†iÈnˆ“pŸk$#;‡ŸU %1n©ã…<ËOÏ9À__¬¹`xqdH2³[zÈD÷°¬h6[þ^^íB |Or=@;Ùj»T«-dÏùÝÚN»ï±Y·?Óªë]+× Ýrå1“=ÚŒ±z¬Z~ž,}éÊÃ…Ô“8®Z÷á§zDKöäI•â8B„%Gª  hö7#¶¶é‰TW¿ÅÒóÿ@Ž )(x~ý«È¹nØ­ Ṧ5P„ƒ‘&¬Í.'ÃÞ‹(ÈÐmX½bÖ¤­fÐÕûY ôHϯJ:%~ &—>ž-ÔšÕ)®·_…c ÞžØá̃j®t“×O­²Ç3HÕÀ."˜J`4&(Òx b¥á0¾5Ø"›n‘Œ6¿Pm_@hšóý›©˜ BÄLÜÅ;’òatœ} c0…fa§h¶ÖÞ•ì>lØÎGܹž ¹ðë˜È™q©qŒôòLœÿZ+$6)úö–a4 ¶y€³åÏÇܦ‹{•«‡~mÅzÖ¸Ö>‘ ¡‰$N•l¼2fRºK³­ä½EÖµJ `öÖ.ŸÏÖ(äd«Ò²Ž¾…•>R÷ûPèPM…äR„¥óÆÁ•H®rsÐ$¸h²Â¸à'¿‚iëà™øy‹<ƒ FÅ©¹“[ªãt|‡÷‡ ä΂þQêä]æèµ5î*cfÀÛžr(äT¬¾õÌࢣ;Ð#³”fT\ФŠÓ¿œ·ºQqÖ…“§—¹‡rÇ8¿_íÂû*–ß[$1[³|ÑŽùŽzN~…"Ë*ÁÈGº¤¤\$ ]R†Vt®•‹0Þv•'ŸÕ’dëÅ\x7ŸßÐY •ß ߦd%X"\uÎ; 羺>àyAÐ8=ñ%¤›¨Ds'h4ìgè4¸+¦ã ð­œ<=?ÝçéNfkÈ9Ùª2 @e»{ Šº tYæRÀÃÛ+þãG I‘îNo7¸8½©mà³q…Œå³r±æû¨³°öF˜Ì²w’¡NuL(Õ²ÖBÃØË©Ül·äû“:"U‚÷£Üäo€UÂ. óMbKų¾æÓ†‘Ĭ¨&"xõÂë¯ÄõG|AÔg}ap:`ÝÙC¤s†y ½B`À%žÙ²;êb x2@ËXwEÿ ëvKPƒç Ä!ôfÇ/+:žt½ý£µ;´ÀùXº<ñøWGjg¨:É`"9­pC"*ÛÝž €ÎîÛ n¡è@¢qßϦs—䨥C±½±bh–ÿ`^›‰`5bjìÎ0£¸þ“£– Dq×É+»g”Þ "Ö4w”¢sb‚õÚÛk¼ëÜ>Oü«$_Ø~®T ÊäÁd?™S‰ãG™jŒRþye:ÊS=6ó½ô²9¾è_õç $’ kr0¼éÇn¹˜zN>Ô7(Žg†·Â#©†_AMC¯üÝáæ¦x-“3r¤<¿¤µP¿è„\f‘5+죲4Ê÷“tã1`C"É{°Iúi»¨]`îuúDEm­ÁšÙBý9tŸáž0EÍqÍSšeéé•FF¤‹w´‚â÷nÃ1u{ à•âî¶"âüø˜AœÇ`œoscµštD–N `MôŸu9°Rì¥Kê§mKv#P–ºŠòa‡í$‡T oŠÎk¿‹müJNǸVÔ4àXsY%C-&¹=æƒmL½oM mæƒàË::A–äQ‹ÁRÿ_fè¿Ôc0áÕ|— €‘"Þ§˜ßÃ{{@—yÈ¥õ…|Gèƒm©> €—žH Ð “®2°3z üâó} –ÞYoÀåô7®Ç‹]Ù ¦ •Tççò’“ƒ;U— ÿøHµã'x/V„JYçé™ñêJ_Æñ2&ïœîu"û•^=k³Åàqu2‰¹ÛvýXžÙ×°î-F„á\A€}ÂÕµô´Lе‡ë]ÃTʺíÚVS›öØCsAð>> LWâÄ,­Å l†8Y[™+é°y]½E§ÖX ÷â sømä]cT*µ5» —ÊR>*ŠäKÇȾñCºõé ó9ß”x%ݽî”K­ƒÿ¢ƒVlvCjÑx&yŒk®V‹E¸ž†Ï½aŠ9íi?»*òÖÒlͳÄ% #Ó…½“Aàû$  æ¹É©ý›xä˜ñw¤&Ë0˜É2)»åSW‰UÑ\:ý/¸Îv(Q_ØktSû|ãIe»!©=d®wø»ýè"çmŸÃ3T÷åþ« XBH€ª3©ÙÉ[ƒ‰0‚›³# •ð§%-ÂuÖo½Á “ç_±r»•%Ú8ènvóBYHþûþÜÉA¾ÿñ’ü©…X3*ªá³/çs—òº]Ó™«)VXoç•wR5˜Oå© ß½Y]x§€fª–ÕDù.ô@ßþú**QùÓîg“VGÁWТ>¥E5ØVÏ‘}Ѷ+¤ÃT±ÎS}Hõ»^ùEÁÝçdàyóæS[ÊÖº´ T¿›:78©"±òÓ­VgKª9, ïCP;Ü6yÊmÔ…'¤9ãh5Ñâ›+ù°|¤í|„kª†þÔF^l[31‘ug “­ŸþVW1?M5dcH;yØ_vQï@Øý’øØ<܃ü÷™¿š©¥| Þ¡$ï‡ãJSÔ=hµ…Üž ÙÚáUeMu™f´D‘Š¿¶Ëñ$å7 ÑáñíÜØð TM€DA£à²òhÕ|n²ËvêIqA»³X ¯XƒhYd1é ɘeV³3X2×}Ôâ0ËNÛðç޵ò9‹|;0ÝV-­ØÂrð›{«⟎Ê-íœqr·ßm/ÆF÷xý Ý«áYH™ ·2XWZ¦ßL°¼éåj 7bOÓ Œ¢è'{ÒAïšÊ¯;ùDÝÜâý4÷%ÁÀðƒRA ®äÒº ‘ «éÙòýÐÈÃ-6‘ ˜- ð=:ó'gÿÅSÀÇ**¨öƒ&Õ®[2xíÃÕ6Cùj§†¯—[Ïà……Ÿ†hÞ,F¾Æ'ährTÌéM ߇í”ç ¦åL³5Í<>i–Út!j*ÜiìË”Ä?0õ„Yµ®<¯À‡àeæ5žs mõÊÍVšqËmڦÊUšø€œ¯¿®TÛ‘´è؇*ˆ´å>)é ߨªu;Ñ ÅË ªr…MÊ׸…ÑÊÙçÁÿSã‰û:ðÉžâ–'p€¡¢ãu¼¡áHõ³ñEÿIþô’û¤9»µZœ °O¼;c >é·RÊ3y± ÂHu!`ÈÆñ‹¦[Œ‡ >‰Õ‡„“MmØ^³ªNK^âyªc|±i=ùsñà¤ÇPÖëÒnØ"¸yDØAP’&š~(Skèì`Žü¾& 8«¢{Qk`‹Ò2vOÉ¿p¿üö ^´x9iˆrŠº¥ðyuvÖãQÚ…ç¥ØOÆÝ®é„tÍx–m¹sbºNíN224ˆ½ˆ’é>MVÌ @o;­vŽÓ²ãÂ5Š€Ðç Û”Òf|°5ÁãØœàÃ=;ïØŒÓÊ6ØvÿÃ}%3µ~0D‚çŠC]à©‹•šˆ¾´Ç›eŒ,ðX>ëk £k¹ÉuÔ«£>qTLŸ·EnÔk!Ïúd!²åÒ†ü˜0°6˜§×Ô©à¶¾©kÇéòsEfÝP,ËØ˜gÍÆÄjEN“iäT6>²’¹O~&OAÊôá0œŠSά»0>‘a†w.ÄL<Ìps>D!¢Ç©‹e hAŸ–…%g¼%n/‡Ù9Ñ™êuœ*i mQeA\|ªuì{ >v÷möÄЭ¼Ùþ—;|]¿¾½‡›Å7²tp¹Ù àÚ{­gäI"fëØåêz 0£Ó7vÏö–o=Á/ùÐâ­+CPÓo¢8³ýzyºÀ T†…û’„ ?¢_ÚŒ±XV‚l–ïÀ!+ÑsÆ»íV:åÙî Išåš|ùqЯû5Bpå$z<5<®qÍ|ç*(uq2pLøWtìñ›{'Á4×èúÜ5žˆnÞÔ?ƒ¸®äèÚÕ_ د)nÕ4ÆÖI„Ü ;Ò@‰1qÃN¡6œ.¿¢ŸHí¢b Ç©T†ÙÄ ”€qž¼iNåj­¾VUáê˜õëÏðßü¼ÑÂMR.Ñ$gaì¨HÝ™A\oàõàcYÚ¬L¢ß”×Kr-4Ì×(äKØ W…I ¾‰º½³eCöágŽÙ×@Ù%<ƒðîøŽõlk½i¼pú°R=Òh"@¬tcÒ:R#t8>Ï”Uu°Èn­/ÜD)v,GÛ qžÆ5hÌA+vÏÐ"cH±C#“$:Õ*ºàCŒš©Š]8§Š5bòØ~X_>VJ8H¸;²7LóÇ} -˜ÎCÌí÷SÖ„ˆN ‡¬M,îuóßo¡Oùïá¿SVõûH?²cÙ˜0GÅU*ÂÊrr8Qè×Í{  MŸ˜ùݶÛá˜ò‘ D£ëEK0£çt”ã*Vs‘“và±wC)I'Pêd HÿörQÆ¡š²â·g‡ („‘”øÐÝÅrôQÆ"^a÷¸•{7^/¼¨Â·æÀ»p¾úcf|/\Y²b©Ë:–—ÑÛÍB Ò LÇ_¬Á®­„„é8²ÿöÑ Ãˆ[f0ß}ôê—¸™_µ.O†%¼O˜»Ÿ%?5ÔæÂ'¼ —‚bñjj"»©E/›)ݬÿ Ž7nÔÑjN]?lðúH8D åhI‹§ÝÁËBñ™I0•i‘9Ë héÅ3ÿeÇ:¢ƒë$=[r~‰9RLýáàUsçlrÚâf* êÝa´[ d#·Ü>תy)W¾i¼õ_. –ñ+8|¶ÇH;)ˆ³/ sù»žt×Õw'4DÌðJÐoûÙѱ'¡TI=Aï2Y©ƒ•léTCÀRÁ»åýsøË$¯¹Ž 04TÍ·x*Vü08Q]Oïo÷኱ÊÅbw ,ü,úéê§ 8ÙY …v­Ê†f)œ”÷#xRŠ (#y»Å{𠚸Ÿj`?,Ü4ðvø5iÞÀÜÉ5Ôêè¢ÆŒáLð Õ=Ð5„ü‰3›?æEÈÊ.SŒe«”˜ßîÑEÄoœ*­ª²ÙÇqÛ'ÈQ¼ åw± %"ÇH\€µôè[X"Á/GŠKYCëxõèÝÌ[3×m%ͽê««Íí‘c_ÒBT¿d;Å«¢[Þè³e‡ŒÎTìZª:ÚÐËp‡ÓPœj¹¬ÜhHÒUàÜQ¸Â‹*ù9ÚîÌ+Çåë(ýYÜüëÉ¢— ÊŽ˜÷ÉŒdøð3g#ÑTš`›£ãzÜÁ˜ÿ2ø»Ã{hëêŸ=ê5Z‡´ÓÀù5â5^" >ÃgÁêŽge‘S.;Ÿì†ŒmÅI”rSÌMbœŠÒp“Ë_ÞÏ›`_x§¾‡îg§é“ üM8&UŸJ—ÿ> ÔD&£âl(2ýxþV$eÂ\ÝYëªÉ%¹3ew+«÷p<Ì,*È=Û6ÓZ.€ªÄPaqW;g“U¶É!Ír̵›P—sxÕ•ƒ­RT7„˜`™Â«Ò¯xò,Ž(GU«iJ²¥$U«Øw dvÝÕt„‘ߨ„**hc]v"¿q~|ü 5œy#ù6ýX”ö’¿×u®,îFôé¼]úíâ$k(Þðpmîþc±§I¾Y¢žC³ÄçâúÚ¡#E¬¸åìÇA ›bð‚Ù¡c¯óµs²Áé9OaFŠN*hÈú_!Y̋–9Rp^ü*º”¹ß7µr¯ÇR®8ý|?Ac¸*ä£Bѻɗžâ›p F&/Óë½Öۨ¶“ŽoD¥Ÿý‹î¡ñUµ÷_ÛcE»Êcìa·DfNºlCg´æKfâØ®òǯƒ¥¤¸(¦ľWh@ãPk΢ 5cÉÛ3³ÛdÈ0„Ìs7\{ƒ›óÿõHÞù¿¶º|øÜî?);œÊk$Ç.q©.,aÁ;_”Œ®daó‘; WäY ¸-/h-dg%0SˆÚº[ÖÙ@‹GsÜ¢+p×ëÖƒ=Œüoù‘?2nwzpï0§$ìÁÜé…mµÛ ú”‰/H Pã¡+íøÏ¼c­ügÈŸ€CÑ8ø‰Éx[/ÚÜx)žÄÁŽúèØœþ¯?UÂažwùÓéË”gøGÀ±1\j‰±0nã5"nÖŠ®ˆýØ Á0Ùª[Zï‘V®¬ÅdŠæÊgõov?‚±‰-ZöYnaçÇ¡è,p¦Mý]Ǽ¾/îç§Ì½~´ð®µÏؽDU^1·£:'µ#,ǘ™"'³ˆ. ¡}àËšÝ褋Ug’„+±H¯×©2RkÞ:KÚV'Ÿ×eÐM©G‚@IÈ:I¶¦Ç\×D‚àx®H¬Z¤A¥W—gºÖ2wæËÁ²*-hÕ†ð3²iëyÅrù8¯^4j±ÏÅ—N‘nb†°»!@Öóÿi|ãi˜ÔÊ‘ÇpþÝíÊÒ蕉)€1Yp'}—Uìí¢.øŽ.Ýãñѧ Àau„©ÈeÃk¹62µ?ê!°·:Ö€ ‰EÔD6Y ª©ï‰ØËP`_@r7•ôNi؛݆t!rÄn‡š¨ˆ‡*Xä·ØÆ·XªmO*î?8€vžûÔ*^ÎR˜?ÇóºúôD~ß«”t¦åÒ£|Ç%ƒƒqxßRï­¾ÔYÓ¥$<ç|hµt|i£•«ý,Üé.¢ù–QбÜFOÍÎØsÏóÙ1CyU’ZªZÎÚš/A§Ä0Ot&ü£8&« âROjÍ"R wÁÕ÷ÙÔ)zö¿²ŽLÈá¸!šr°ð/+Èö¿ÀN“>˜ŸÕc×[dûœGäœ(yÙʧq/õÀ{Üš°)Wì2¨eá¡…™]j©t,yZÁ3² ¹~ø‰ü¢OœFhpNObNÿȰß:† KÔGó&Kó¾%%BQ¿vã©r1_û麑¤TçZ‘Yõ‘Úá…­w`¬ù`Íhw×÷'w Šo[›.P÷–uë¾òù¨ ߘp³£µà`Ååg¦¾×ÏöŒ?XídØVÒæI|#¿_–ñúXË GÌw~6Z@VÌX¥èqkƒijAy »ÓùÓI„º¤¼1imDªÉ/#Oˆ\ƒxŠõO*`|÷HùZN`´â 𯇫íÉá첸_èý<#ãÅHÚ‚ÿcº.´0ªº•Éy“ŸâÚš}‘ˆ6›»hþ>Šyt÷ëeW„¼Ê´eÃvƒŠ9–×ÄÜíG`cŠÚ‡¹â*?v.]ÔíŸUãL:‚AoUŽÒ\õXÆ8ŽsõÏ!Rôyÿœ’U‹ ×ÞT%Ú:€=éÁ.u¬4¦(‚y¾Q¬‰ÓliuIÄ:C£¦í²rTâÉ×þÖÁúò‡ Ó6ïë2©r²ëk:øÿªñŒlCz,‚ÿ\cI7C‹™èq²»k ˆè¡9TÛµ ²ù¤ìÑËtM‚~1…¢)ãWF›`¤`Œˆ2|£g—/pÑî dJËÞugÿ #•­m y – »$Êx ¨ŠíH hDLˆÖÎ×ÎÎÞ†z™%üjîr*D6$´³ôi]غâVØ`vhÕ®¢bsºAŸŠààRY2â\EMs™læá^¼†>; %;CÀ¤öYµªnÇki¹@BymÚfϦ_cÇIHn™|­ÆªIÑgz,EÜš[‹=?PÕôí󤢮Áb³‰Ò[Rã›(­Þÿ6Øÿ{´B‡Ì$ ¼ä¸>çºw‹i7=^vu+ƒ½ÖWÆd¥øPK°ó4`%)ZÇß°€=ÁU1J~â_Ì` ï Ñ´Î7¨¼ÁÕUµ¼@Àt@0d3׎‰„pVïÖÏvHó¦² ‘@)ŽÀ®(X«™£s‡,SÕã÷ûoAtÍa•ÕãÝÝ#†¤ËÂæM÷HÏýGéØîLÐ뺟LüŠvýŒ‚D» 'åñÕßÏüý:o%¦Mòqù0;šÙ¯‘öU‰rGž5ƒØ$5ޱ¾ÖÏÇr·ß!ú Ñ*akO îÕX‰¥‚!aÿ‹üË;0Ç Må¨ä{tä’Hu¸gcgo¢‚=Dj8Ù"ÊK9Œ ªÜðÞHÆ‹¸E@-(µ 2Öö‚žÎƒÊÿ‘¾É ŒÚ'½»è;œâ+ùídØê÷¹»Óý#yb|ßp=Q4Ø¢gˆ)žüfÙ#§·t—$šOåã׿mZAÕTm«(æÂNº±¼…þzÕ…˺ ÙToäðc„[ ëhoßÁwãëøÄß´{¥ÂŠÏ ÈáÖÀ¡×êt¹'’É~¤ŽúG¤](œŽ:z¯£ïÇ’¤¿J¶2Æ/ÐÇŒ Àf@xúžÑ{íA˜\=¬¥EJ]›”4w­²ÆrWZ­šÌäj/fh»šP[ÈhÆž œÑÐ5Ž™+0Ú£FÅ‹>„ozíŽi¶ÔPó3k×!V_ë~‰YVêGáPŒß–GA*è5ïÝsY+‰wDÛ"íš“­@ñʵ´5sOÊäA‰Bä¨|g6‚„,ÕY…ìWˆu¹t…-SÆÔAD  Bâ’v|‰{^߇5›6uÜŸ^8 ,jQ¼i•ªQÕVƒ.ìDÈÔvÑŽC°µÜ¬{ ¬6Féh“¼4ß'’‘Óš…Iy/+T]®X~kH•”*Û÷€Ìie•{?°+ŒOM^ñ`³‚xÝf(*‰¾„"«¸ ùÛq[ŠÛC¤-jce¹òOüW¬|Ä8Z}ËIm´ôV¶uåšáZAÛáFÓLY»ŒÞhÀS[÷‘àC UUÃÊ÷G½¯MïMDþÎ S×öÐõO¬Ukãå­P¹îe­b“iÔ„@r:*PIh×îï謚h•dŸd¶ñT¸ý[®dƒ.¦ÕKõÛ.¤Ð±O¹YÎoãºãÜ&JŠâ··~ýhG%6>ªü PØŒbÏ K„j‘†Ò¥*NN›622u‹R¨šQY4HÌ53‡>ˆL%F—£v6̼x†Ã-Å‹áð©ðÑâbž’»<œÎ&‚« ÿ]\ sw"¼H—ÏãF;Í ØÙ - ‘£öv={5+Ÿ0à“6È—Ækî‡ÿHoz3*¯Z¢§Ù!48Sáý5=D›nV÷?ußreÿ?šƒŽÙÈꣷ…3ÌnAî.Q7‰¯ñ׉o;£ós1Uâ¦L(s#²†€þ±ÐRŽ™Øx)&8QL§L¯ ™ëùLÏ£UQ¥¥`$™gHNoÎÌ›B .³¬Tî´„‚óUùzðy +nëòõ¬«Þ°… ÙÒ/㩘ˆéYAŠKðƧSl¯wxÆ`ý-Ê„;AŽ[äÄ0 ƳÏû*fFë½5õÌÜœœë€Ÿ†‹œ¾VP>eAù:–G7ïçUt +b€"Ö?Òú;{áºÙwR×¹ 2—! œ^áEvNvÜ9|vm]¡9þÕšM}U5‚îÊGF¤ÆI‚˜WÎTI²A"‚#Õ¹ðñŠ@$í46þ5×°¦tî ( Ü|€®+ÁtSæ-­MXSNâ{½ây‚;ݱÆ:ÝR^ñdeôc²ÐV ñ§§0\[·I–,ÃÿÍç¼6±ÙÙ¶Wx ñ]@&UJ­R†•ˆ\»ÞG vŠ>xÑ4óü͸µˆrorÈy˜ß*ì#®?ÓkQ]aëèL<‘0öN¼‚ŸµCXÚ¡NzÁ‡‰— Q}zQ/±T,¯£{¯œÒV8»¬ÚçŽâç V Q =›åù—®awØiÞR%Ê¥ºñb3›‘„ÍiÕd:Íãâ „ã]7Ðb%ÐhÏ@å;ÒÂÃ÷XW{pèPÛ±a€ImP Lò¥äPöÄ«óµL„hA´àÿìÈþÚÀ·Zî?ºÑa[¬&¸^õ¨sRŒáB3$3[Ÿ‡wC&WOUó«Žòg¡' ,kè,¨ÅP=…˜[½´®ˆ: mûú Ð@`Пže¿òéÅINñÖôSlËw@¨œI‚,&ãT^z•VµB¤ì‘ÔC·ÖŸÝèoY0¦ã:Àð®%nT|=xW%¤Æ®õ/tä›(+|–sÃòž>D§è'<µhïá Âr—L]¤6Èq²(ºÄX)î}§›bRL1£É9Ý—)É¡§§BrUùÛÏ…fKð8‘ÏÆQÎ×Ù÷*5._fË…‹¦ ´¡•°˜¨R¦AÞ³&»"âtŒÄ6 š{­õHÀýW%‹_s‡粈X&k_¯}¬RÉ"*G³—’;œšwHCÚ©:Þ™óhÙ*ÇÛH¤(Ä!!ÒyÄ®Æf© ظ+xΑŸI/îä)€°öcö™XÛ$4eû£§É c¢30é¤$–×hÓPt2/_J±xOö{{'=Vöö²wÔã׋EÇÕѦҫÿì þÁ¨Ï“¥7KÝnrëxµ²@Õ0%¦»f*èAÂGÉM150˜¥ÒKì¡$Ÿå“z™ö¼X,ajÇKC%åÍöóC+ÔÜÕ ] O4s©´”$&ªLDew­›=ºS]†Hÿ82ª§6à5jñAxþxÛù½×ƒUÆõ@BcêJìª5~È#úUê[­éi {νòå@;)ˆÚ<µr¨Ñ¼4žôé:”€ò:Sçü!«z‘Ì{š´÷ˆ³!ÝppH,Éí­Œ¬÷\‡å,3–ã䥚ي»‡C"-#Åcâ3,éÁEb•]š²»0O9Ýú™ƒ$逑|ä¿u°èÿ2’dœûÅA%\î×fz‰›ÿ^Ï’¤͆$sFØéf$ä­%0§à$(+2ùdþSÀHÇRL­l™v@šÇHjþ#ç¥5K~±7Ч“ñ«›Ð6¤ÏÚ”¼–3’™z4‚åÀés—Umqp­Yê½5±¹^ÊCQ6”+Wææåd>mÜ=Pí[®‰,F#,‹kƒ¬§ù"IksÆ •ÚÕêaQE‚ñ |YÿijÔr…!|zòb ƒØ.XÊð N7RŸŠ3  F»ƒ½KLƒ‘|÷§ŒÂeqÌ%{©müHÙ4}N\ˆ”ß¹Ÿ¿}P  Ð—¯éKKZgáŽÂvˆè5$RÐt8§ÓUÊS¦Pnå7 žæ— jµ´œ§ëNQ$kÓˆ~7Ù¹ ZÏ¡zÙ—s¬7Aøâúìøz>‚TŒôné¨ÛC2è‹<7hª÷lj1À¤4&& U†+×xüOy¨b`Å•dj®§F§;îDüM'Gå…Þõ“öQ,°I•ÿ3ÇZÑÏȧÝ,áL±õA"»¤|ÛíH&‘òx¸ ƒhÕ.Þ< r‹åeáɳ*ù¤2‰ýš]#¯U…žÖ[^úÇ%’îãýC¤ñÍsÆ)ªñ΋ŸýǵÅý3Åœiá÷š±bdù¨Ó5|ó<°{“ê}x8rÎw)~¨f) T¢û?ÛÊa.­)).2 9„_æ²8ªc²‰ñþh…Í+ù%D‚!½ã@4ðd-ªDÄ8‡Sƒ-À4CÜô›÷‘†Å çðÀdg<™N3Bê¶FQƒPâ+ gYû*.Ÿ9IOt>«Ó4¨Î85â½ÌTsK¸ü¬™É´WéÈá¦Àÿ lîéÕ’¤¨3¯ü}Í ÛÛ¦Èâýü‚< ÜéM–’Râr¦¸^ž†^æ1يѬd7ÉŒ‚WûÜ'r’‡õaõÍpÈ*1–ÉØï§¿‰363÷S µ8Ó(ÔÉ›e%‹-ïqìzî†/4¹—Œ)7aæ¾0kÖéC.0Pr)',RgáŒñKP´¾‰rv‚°(ôf¬9EÎ^èØB]‘{!ž ~Ù[ˆ/a JLLÛéªè™[?§5•‹dº±‹wt(ˆÈÀVбŠ)k“ _ði)—½ äç´]Ñ1à‰ÔÄo.9+Až¼¾nbwÜNƃw—od:R†É€võªAžým̬†oR ™è’lQˆ/l+k‹«ag0˜1<Úx7”ÊÉç!Ú7ùÓÜ.ú7ž×´‚~ë»u}^ð6 ³Z°]$÷{ë‡mBXçÀøWA¤ŽnJù¸mÐæ‰Ç9‡r¡t»ÝÊØ»›x°ßjWdm”Ñk‰X ÚD—ìÛ¬-?c’%ùwIxô•twÌGg5ÂF–þƒ?™J0$ø/ãë‹b*l9©ð’°šä¯•K³D˜ô|DÃJïê°j‡jè™\mmYòåö1%r4ð½¤î­U^£˜¼ôV 2l"”Èçž«Y…#d™ÁÚ±§M <ýÍš[‘ìM⛆˜¨Lãj`ÁÐ"mà ãP$¸MÖï÷§Ùq!Þê1…Œ8Õ®«»¬P8¸šTFW‘÷¿-}NеQ¯ œÕÊd‘~BIèG67OÊÅïdÕï»7UM ‚ŒÒôÿÒ¶B`Sâ×>+¥‡â×  áCb­¤e]9;PòÑ;k¦«øå›êzW¶ºã»¤Äÿy“AÚÇÞ1'ùsu*¶Älî0Zæ1íﺂúF3³ØVÁ'G¶ñ&ÝÞ:\Ê´s†çB01GeÑ ø—€N) Ô•9µ6Ì7äçñÔÚºëä÷g&ºÎem;±‰Ác ¨Uï{ Àu„vDì’D¾ôÏ’ò(­`¼×EƒBžþ=jîe‰w{ó¾´<ÿ¿!߀¡D²ç­çùêB’óݲ6â†â±Ñ'Aü3³Cf¼«Òÿ½É†1Î ¨’h¬^>V>n ý÷a?iïY—2õ<þh«JÈåé-ºiÛßrÙR‚~%Hd¤ &¿­ö|U{è¾;XókT$jþcóͶi¢fkסû}¿óñÆ<ì×Ý`‚¶~ž~ì Ù¨Òõ§+¿ÏÚ…M–ÆàTyíª9.¶S“ÔÎ>7˜‰ž†XÆo·n@ÛÄ›íÖûë[¸üÁh“çþv3Q§•ÃßôjFÞàèów A7dv5â´ñ•÷«ëD8ÇØ˜f^y¶ªIø( “’æ£Éë—¡4¯<õø—“æ,ÄäŸ Ž‘Ë.¯ÏÚDþöñŒ7´•Ä×Á-Á²p°²?*õÄŠ:±úœ‡ð¬÷19'ºÛÈ»ˆy)5)ÙõNî–Ù¥¾—i¨Òä±Ã! .,\ s7ƒÏ,bŸòño~X âSïÛ,]éu*êëþB«¥HLýÆBï’»vpû›h·¢e¼E·ŒI~ã2B¨¨1ëA=ps3(¼Ý;‚‘›£™Ü~~®» F”XàË­^áBI»«ÍèfD…ÛÂŽOS§7ì¿‹²Š\QDþŽ÷8ûØÌ"Èkn\9PÙ¿Ü4Ž7·Œ³\Pc"‘Ì9«»±=s' ’‡*öwûüÒÌ_ÜeÍÁ¤SŠ2Çï9RaSb\ë%÷Žo¨Wûú”–c¤å>Š#N¼"kÒ±˜æÛt!'“6=¢Õ‡¶Ña¤y彄9œˆ80ë‰p×À /Ù¥²\4ìØ§ÛÉz˜-hâHWMYü ¿4¯R-÷5zÀ]'°L¡ýŒ¡hÝ«#ˆ0šu+<d3¸¶^u¬Ñ6—¦AÝ^j³q#™É™B`AÙ°‘Ùxûè̇‹EÉþz†jÁš‹]ö™Hîú-=|àÇYä—´£Â ËƒU„buvø³E©2¬£0 ¼m*$®Þô ˜žséÔª[ŠVÛºÇÙ‡<}6‹BXÕìÞûêÖC¨\Þ}‚ØtbØÑÙñ7É ›ôÊ76»¥PËÞ¦k»šFÒ¡7ĉev²%Ân$ ´Ò<Òö}Ÿº„j ozCpà{ÿ£ñ#ô¼p^ 0û…m)+*“~f"í Á2géè9‰1}OÉ\ÙÓ-†‰æ`h<®t åäʬ‰²v~G*7?ŽD?V¡r®3q–ët-ˆÿ(8¨E+M;çûÎppÍû‹œ|?=È Mr…Æàbk\Œ(òQÊDcÿ„fŒÆ yu5±JÖŸÞ^µTçåç´á„Ç€×JeåÁZ%GŸÈn,„óú$XmÑr?coIøù•Žºnûéë5ui0O×=Gñ¸ù¨‰î)‘¾üf‘Á‰á†—¾¨à1f@é•[=ç•ÅmE‰‡-e^ymÂn£kº2”Dš<5ÿü#®a]4í¤‰¡)XH˜8bÙÒEhÍs;^`¸ö«•Âñ¨aRîñ¿‰Q$°“~õØ}‡ç ¬>< RXH(‘šgÒJ7Q¬](2££ ûmüe•~¾š6µy̼ýëå`ÃÒµM÷Ü5pë <êO²à^»øª!¢¹Óòµ‡"*"@þ°m QóL(ÍäØVœ°Œ¾ñÊ«Q‘ø¼Az!g؆Ë1ïNbLf슆ò9ü7\s\²ÔÖi)nß'\Ú´E+ü{7Œí{>êí7ÛHt=F/ÔH“Á{Î%&Ыª0µ|Þòl¦úá1®Ú¹UsNQ[ ù MZ÷ Š9Cލ¥3ÎûêÞ×X7Ô,ËMFs…«¼W2-æµóË%fß FF…æápºF'4ߣªôÇ¥ ¶ôÔkäC45½9”QGŽE6ú¹­}ÉÙÒ~Ö¤7ÔÂÓ„§ìqËô&w{‰ÀìÜc0y(¸YwZrhîBw>$9×›mú(èÐK«–¸”ì–ünIW Œr¾ýf8. 7µ±õ>¼åÛx}ÊÚ§²)kÓ¶š ®rÔñâ%ÎOàH”.~ßÎf¼4…šÇ뜘5úÇifÓÁÒË¥tÄðsaÁ4ÿUÕuÖƒÄÁc¿ñÍMŽ¾íš¦&ߤ?+‰°\Aì,ÃùñŒý›ÜÑNãý‡/µ~ßíõŠºF|j^ù#Ù®<é“oìÌ W&s©˜ ‰"ð:cË:ÿ~ïs ½êò-Á.z(3oPæµ1é(ƒÚkƿ­È~(Æußè„RÂùÚxÚdŽ N²›dS¤¬®tUoVOÔÝO„súÓùŒèa•'¡£˜_vS‹}‘7 ½êÓïÀëX[s&šÙùŒŒÆj wGÜðY…Vc0ÄþJÉäøË–ãålª@}~ "u, dL§ÌPÞZCpì;R^Å%Ñžãeƒ=å_.yˆÙRwfÜø${ÆqïDöO¢®fy3dÀ}FÖ,YõT@'*${íƒåïp¾K@ŽÍQo‡Z‹~,ÌHä§ÁK}²?}H¢R“›$9ýí¼UÿOD^ÝJ?° ¹Çzèãÿý­ÿw~þÄa˜áUk=à… ;5{AG깃¢+ƒ¢ÕgZ«—º-!“ç¢ò_ÌK§. Í rV\óî=-#ÊêóCín,÷«ƒåŽtööÊa ”Ù)G¿ËæfÇëÕë¦ >›;VÞ"‹BAz …©­ øÂMè*acFŽåÜ¢¹Îÿñ`+Â;/Æ)A0ëNŽØÆMÿu—Á¤ ñ˜[xkA§B¹K^‚‚~[T‰÷èÿ³A½¢¾ÛmÄm›Ut=´4´Çe½Îµƒ÷—PQ™ŠEf””ñ€iÖ."1ðm¨ Id´ƒ  ?’ªñ5–L/h ÃèAWLX“^¤?:8‚­þêbþ¬ò-NùÒ·]è •@­Ë¦÷‡K÷LtðÞêlÕ䉊áö¦ã÷"<ÿÌ×Ê™”žn¤–ÑI g&‘Fºö$ïÚÖ¤üEË|w_Fow¬$W3‚’)ó»åT"1"ìnŽŽf’œ §6d­˜ý‚ ÙUF\.î[G„*%í]…Á qEí ™QÀá½^åµ¹Ùµlq{ 5%hWí쟫hÍ™7êÚ7£Ç¯›s뫃ÿ'´aš‡¼Lf#Zj·žK•p}âêúIàÐÍ@£¸ü]‘„“ü¼ñKµ#|ø’nÔÁJ:‹ŠÇµbº!qónÂz;_47º9î ùLqZ[Áti^éÌ0·Joý-°i }íêÕS1 Gœ‘ç䓉:P\~ÞÐn£GÆÃA\hµégŽ 8:ÉÑþàn²C…Fë‹ø¬±Ôž+ ù³Éùä(3¦wìu…‘bÊ“ŽÃ÷¶¿×¥‰Ã K:°{ص9S`ŠL€3šŠ—Üõz8/Òßf5NSýEݸ0ÌLùŒw ”u`ƒ. l låK*S1åõæ±Ø#6œ n£‰$2JAldçpfO×e§ãtY 8'hÞågH¤vÑä'Ô(¬ÞÜYðùâ²þÄç*ÆRˆs:×gò©ÝwÌóz€ï!¸Ö.—f¥®š Fµ[†ÐûX$‰Ò¿„#‚xÇ\¯Œ b®P¦}¸‹¢…èÄAu’÷hþû*||Â@×ÁíÕ¤¤MÃÁôÏw“ÓÈ鿣6´ yµ, –\3Wà6.¡0ë§PÚ-‡VŠ+ü%ÌMZ ¥_;딕é³`j”Hö_‹ü¯¨Dç¯nÅV€æµžÂáD¸3_ìAHÚ!'-ôÏ$J‚ôüh|–ÂÛêsÕ®9’H¡’rh>z…kŠË¾B”œƒ<«l9a‹ ·àžÜyã®Ü? à¶H IH»8p¨û%BœeÑõ°¶5Ÿe™ÞÊÅ Iœ ¼BÖ°h»{t‡\ÅÙik¿òz§@ëÔ$7 Œg¸Àë¨æOÏ9©k¸ÁŒz¶ uú²F–M²=כŽáÖÿ)¡‘‘ö"è—  F™"üø—óµö3í@ø°™CÃë,ZTŽÁ%$žQ`ÇØŸ¿å‡^,H¸ ')Íh Ž‹Ã|"AÃz@—ì&Þ‡bqLp«Ø qsVp‹-ü»– šíUЦïü÷â¤\®ìN&(Ì*N¡Ðо›1©ëòJÌ,·ç(–Ð"þê-'ÒÆ‘™lxè%.¼¼@C ºæjÛøü@+ã¦ÐUmE!? ‚}êŠÓè+2òABìâµlhùØÿ)MÊØ°D”è¬t&=ò£Ù€œ¼h—W âñØÄ´CK&¢(ûm^‡;Ó+È…àtv8Äê“HÖvDz¢°\ýá—VwÊzŠ (ð…™PñÅž2=eK[Ö,Í¢G;®ØzGžÚîn XŒ~)¤Ôþ¥ÔŽr ÍiþÍx‰¿º#¯>ôh4ع?i¬ÆÀm&Q& Dm–eÎ*»¡û«4?ì|–¸™uT€Ÿ“@mˆŽÓ•ÀWŽLnHšùP]’¨ÍðÕ£+÷‚ÃÀX†KNA%w?&ÛɸçX_ø°û^“`«ÐJÏ>½´šßAF0ÉÖL'»Ù4+±ò«,ñOª“ÌŠÕ8ä4:1ã‹ÛÝoºe9áû-›÷Ô™´ï¦*±ß- 7kÛÑW'Ɇ3Ö9Up"Dl!D+K=ÖgÖçÖÞc~Jûìî=Òäœ<)QšþÁóqrßÔh8_ÚO¿žÍ7o» :%˜Þ«Òiÿž_bùÈÇnKԀ옦ëÍ:äý//ì®™Ô(ð„´mþç]qøççÂc_—­ø,˼R‡’y)ßiò£­Ù:Õgòü© Ì>[Ëì8¥#ܼôs©~®î›b> ËZro¾(¸ßÃd¦¤™¤#ºA½¬í ònYŽP°mØ:?Àkég«R9"61–}›˜{N±º~¨V’1A‰ø„ç%yGÔ…aµf‘Cs¤Dz­¸«É~ø]¼P×ÁG±¹Ñ×½}íåÀÛžÿ‘6=g¯°›œÌ»GôHp¨Aò]e«(¼»$à«ê£ð~¹,'úvÍ9^I=Ï#r¿˜ËøÄ ¿¨}Iñ+?fýfµ–uõÌsw…o;¯ŸXÏ}oEÌv[îKRZ^0ÊBj©ÊW0 @˜$Ý]±ã8G¥Ù3a ýEð!WP)P;‘¡ëXJýÞBØÁ; ‘6(E%/ù?؇?®Ï ±fØ )V¤#Ð;6>aTÈ'Ýy À^"ÜÐüÚŽ^ªž±*ç)©²áÝqFj#'ò‰$´c€”|!•q¹<ÍM,P_oÏ“i*ir¿fÇ}«“OÝRφ^Ùíoá—î]œí¸r,%â fO”c f‚og"År1j‘ÚZ½={3ƒW͸j#%B ã"—$Š’$»)…½*Îû"õJÅ{2ÎéòÄuóç<ý}Sª—„¢³üãØoÁˆÁ>×F^ðWÕ¨ÚÖƒ©HÓŽOQcž#¨–ñu;ÎÜd/,Æà¼•xV‡ÑŽŒXeX_ú€dyT†9þÂq‰HKkP±Çò%PJYíNÁk ÑR•!ìl²^ÿ{uL‚xeéiÌ}¤äšOMTþžU¤’® VO2d¨ÞbÆdÒ9üª Џt;ÍÝö&-'‚^”)ŠQ«(?aNé^pÌÌeÊ^‰ðÞíƒc,ì¸#×JvJ=äI¥Ë*Š¥h·2°ð´é“ \ÓL³6ç(¦,Ix‘/o~×.<ºB)¬Ðó[`‹ Hþo~Ir¬OzŒkŠÆ«^‘cäÜn¯P): âO/m“”ÅOÎÕlVC¨Ö/«_¨}Ac‘W'o¡âŠÉ;Pƒ*a8Ýiñ£y»K-Y“¿µ‘3kÂöçn¯ÙtH2ðÄ?0=KqÓD 8Χ¢ôGßäV88éªòÍ&ÜD‡[nÀøª×ÈÅ´Çâ£1‹$eë3ÐAÐ9:‰ü•P?%¾¿ jéÀè ¼/V«ÛsÐp“Š,åÀ‚œ–Sж"Â!FŠÓDSzz°4ßÁ=yàúÉ€yËR&;´Þ1¸Û¹ŽÐÖI¼v™¿@}eev°VÑÀsñu—e×¶ù³3ƒÀù“ö ¥j¯­ÇέÊÿ™d ¡š‹¨|9¸Ô}¿tí¾·ÚyD€Kø‰öýIÍuêri¸vÒ¥¥n ê ['¿¡åYŒ÷=ƒ\tP,%BâcÙý@6óZÄ­¥¸ÝÙMÜå~p,GöÄT§`ãçÇÁ—º(^¸»¨yqó© R‡ÅÛóéèöµœ¡$Þ€¸÷ÉË”˜‚×fX„½ƒðpܱ HÖ%+nÔÛD±?ÀçÈYAÉ´?舞EáÝ@GÞï}ÖD~½ø´ó£*Œ(‘!‘ —Ó¿`¤/Û¸,¢¬«– 죗¦i¥”¨áÜ|§³eÿiWã#WOe³=Hy»7àüLp• ܃éš¾Ly,Ñ‹lë[ð-ä©LÖÀ­$úÀ‚á´|ct‹ÜA5ÖÙ¹ ;íµ¶ÇF¡oìgbSûÃêXÇÌÛ7¨jQÉ2’é^3F>™ mø2h$vŒWë °—u‚ôŽ©’Ε‘´¸óp"4é-m~þ”Ψ$Ï•¶»!?ƒ‘bD*.\\çü Ä¥¹÷Æ]‘uËÞÖs§˜“Ї¤§Þ(î×#\ ^Pô®È¨‘©‡@ 1ñû¸õœÓ €#éµýùH î¹úø,]=Då?] Nã'¢Å¬Úõ¸€¾Z¬.P±fVˆÄ_> ¡Þ¤òZºÆ±…Ob©jyyTD3…ižºøeËþýq7×f –Î^k)ÉÕ^س,èIäu±ëû×4ˆÊ¨y®&h€—ÿ9ƒ¿èÆœÅÞÆ]ý±¦û„ZáàÈgø»"Ï{tH2Ÿ>ÞðÑ—óEt"ºãÖ]å×¾ÔlOnv³a%lɬ§ÀÂ^°ÝZ?Ƨ#Y=ò-¥"²EA8w üÊ’eeœ6y ÇÃÙ:˯êTsê-‘¢×¥·º|4˜#è a ½î_fAa«ÓX‚j²cܾùÐ¥êžÊz&AF¨F¿CW†Y TÁ¡ªP ðzsT¸[uÃr΃`—ØQ›,A*;¼Y»ð$ÓÒÒM4…@ËC©ý€é#ND|1_„Ml-5} ²CÞŸ¡V>¾'”åYcÙ>IàħÿZkšŒ¤š`•¢6R"w‹âxN.Ëç —¥jp qAL­ãXfÍöJWýkí  Älóð ©Çc.&I"þ‡2·Oé—|wƒ‹zþcf•¿_½\±òܧ÷ÌØ×V§HËC ©ªêôÖ„n=¹$Jr#&Jok?JΓ’|£ØÝ²Þv­’鈃ƒ¢yqC;°V)½e©Ê¹5¿㵇‘7íMÛ;Is6ƒ@ñ[nÑ"±ÝI„ p ú±Uƒòk§2k ¿bmQ:µÔAvè—'ˆK#@(ú*xø<t]Ìz»ÄôPø Ø}]ÛLØppQ*‹ö}ù±»_ýœÉ l¡ y¿>°5©5ÆÐPâR‚½ è6NÓÐJ4r6êDË€G—[¥L2 ú€¿ ·^I‚?~(E³k¸ð•i]›ÑF‡OML¡ƒ²ÛËÜN9-p¤ùc+_½;Ê|®Y:Ñß» 4f^rKœ¼»=å( ƒ¬ó›{Ž®Œ}+º¡¨f\»Y´[ê"ƒ-¢ lnl¾Ãs/Ûïv—@áÞýÐ,_îk=‚ru 7P¢( ÚXá 9§o¤ìgêcE Át”Ñï‘Ó u’gª&äGi.KïXšQ$¤üÄKú¿ëV‰Zµ‡d‹ˆ}_j—Ûóûel… Ï)Ç s–æÐùß±„‚ò“` 6O¿GÖimè12õY!2‹š¸¤yõyrwE%&¿¶È›Q=}€±é9$i@ÕȆxáƒ!Y¬x©&7ÜN~ò#š}Nev‘è°,:Н[Iš¹mmªI/FïvrÅ –<]¬cÃ{'‰]rƒ9þØRþ©ýÚW•#*+–j“@fhÀŽatj³Ifg-½\±^Ê@|“ {u>RC…~œUU㞃ø:¾ËSÙª¬›a ì¼þ”NÝ•çù#5¡›ºÃ–ä=ƒ€{]9?'á_ZÎbkj™ ÐÃn#²ó5¹‹¡N·FŽN¿¸øÛ·Åßg{Ç»³4xo€ôo¢¼zMIxfg†c@šþcô‡\šVgDJÜüE\ggZEAæ‰Ý»cIW4Ñß4T©=AIUèCÛÚ¡T÷ð=öÆwC[Ñae%\GêuÄ$kZÂI¨¬c‹·‘šÁD¿ç8^¡Ë뉻ÙçvŠÎ*wŒªÏ7z´«©²}ij3;…èþJú"¼3]aN¤Ç˜jŸÙ `¿µM$Bn†ýwR±q¨j¶8X·—çŽ8{tÎÑèLÝ{I»ذ`žàÖ‡›È‘mSØœy†ö2vã@8¿YS¼pÊÔ:”Þ¾:óG¥ƒè(üNÁ¯¬HÁVú¥âPÒ¦¤‚u¿¹ìá£7'•{„ ‰sÃuDò4_$¼ÇWó^²=8À¢g`笴ö'|À-·¬ò±Ò £ºßÔ38éI‚k¨àK²óIm)¡¿4Çx2n”¤XÐ:°Ú1 A“EÄ­Cœg¤ØJúV·¥òkÕFJ×â{!EË•ÌÕø7o5Ÿ#¥(Yñâ›üÀ)Á…$ͶÍPŽa.PT-ŠOëèôs=êTÊð,"b¥^°' {@%ÈÆ•¼Š—‹‰í°RQoªb®)"óX"ÿì¿ËLýª!´J¤üGع˜*ÕÒqÍ s&rmˆŸÙ…4 žèñ+ëž-¨ –Lìë”caŒH‹_¨(1‡áh^*ÑgÂÚñ7 gÙ!ÜÕÌFåûàQ`‘°Ñ´ÂiîZnšOå½ ŽØ^ànxŒÁ`Ý”„Løf°qžÈ†¤GCûȳF*_÷¢û³sQA?ás•`„!©å æÃƒi‰êw—š*1¡é¼&ã‘:Rû”œ¿W› ªªµ¤$5d+/ßß¹àmª‡Ý;SEðen^{“§b'¯«Øº±”E­ fÒVŸµm¯ÄNo(~\îî%Ì¡NçǾH€U±Ú‘¾£÷â7©R»Ä¿E–²z=Á¦²uίìíÒB!?œÌƻ̰T½p ›ñ@Ê·2’ºN¥w†šˆ äâ"ºJ6‹%ÈU®â^JVõBZäQ#¹"¾vû?•Lºú˜Šë"l‰.‰ÐL…D[Ûë%ôO\¯ð¿/†Ñ²8§=›Ô†>x\C:ÔŸID$BR˜s.Q"þcc½¦?Ìfß!88ˆq"Y|·ÃoîʘÁ/cW=Hù[@ÞLJ…iCäÊ/Rí¦V‡à÷†V`¼+ªÁ-Ͽ¹µxqC@ÐKäåì8!S‘C[À¨øD‹2QQ ”®ÜáWŽûõÙÅû¡jò= ¨\S3ÚA&µ `õ&EãíÃßž¯yWþ­!5Þ£“Hf­­ý³­‡÷Ä£ÑÊàN”$hUgÌêLJ–¢˜_|™Î‚D '“I¡^Qc)ÁEÛ¢œ¡{Ìb´=Ū‹… Á' 1¡i1 çC¬¹€ #ÎŒ›X æ¦c½­¬žÏ¥Œ|<2u¦’löYzd-ϓ٫wØØžZÒ`á oZï H§SÃÖ¢’Ô œ<Ç¢è°Ñš¶I†ÿ™yS»8¡"ÂTp·°8Ç´y#=]Î䂨QÝTG—h=ƒ_éó¹èe™U$…£sÛåQZK¿÷ÌzÁ¤+ªœ|O0·—ggª€à¢“Å Õ`Çþú©Þo=ÙfWˆI.‡ò+0÷C©9«ÏYÍ`J…¡°‘­ðEO[3†‘Õî €†£i£ì‡Ü̦€ö㥵¿?5‰~ßVøRýï9â/$@Ns]¸­Yé}ª,÷§+Ýk·ðZ™;1¾ç\€dëÜ·B2EÓ.F6N˜ Û:Èï8 ‡$g–+eÏç·c\=Ö þei= Þ >br‹öù’ä3øîª#Wך2jA~Ï);öš cjn_W£µÓ¶˜ýs‰;µbþ“Ø# ðÈvV8žùœf´ôFŠFžµñÌf‡Ó8Fе%µ±Ã;m8t`'®Áíïð—ïC§¿õ±y¾ª+’2Jν¶ H ¦ëéW¡nV ÛDk°V‹7Zô^0™Ê«ø-ԤǘxË lV¬ à’îÖ:Ç??ý€*Õâû•˜…%…ûxBð²–’©U@GÕûˆ ©æÆ§8Óg©õwÏÜ>Hó¤G­ŸžÞ£ÀVqL1¸ŠITT vnÍõSÁ.Yú#ɸ‹ï· -%&¿‰©õ³§Í¸â¤çŸd pOX™L—•âr”„ʪ—÷R“Iru0”f¼ÈÍÍ\Vê/Î$‡¢±°]wViQ† š¯v6ãc/ET‘g|+Wv ÌØØHôÆSDùp'ðL6§U¯ ÄìÊÚDïýC–‘H”6‡@V±¨ÖÁÄ@ ~œZXôWÂO´ŸJä@ÝìANÍ /ìü HÏI0ó9q’©ž>SC=œ®O(Þús…XÖÙð)ϵËÛ{D³¬¾rðë܆ëÅpzë þ¯Ql9é<^YÔD™{h¢@Za7Åj¹SÏG'‰Ž\Ó ¸ZÙ²÷!ø%!«ðÃõ ±(^ó“D6…aSnV“b2*'„U_ McçÒ‚Sì0Žjm‰èteW†¦÷Û_£(Xÿ8³Ä&öàu.‘q’ô“þòÞèé×jŽ~¿ª£@íJ{†¯rôSÎ2`øYnÛ–|™”6­(Ð;â܇é³aVñtKM nÇ^oÔ=›ÈuuÝG\mºfèGòÒe_ÈÛNˆZ£TÔºªénÿÏz˜ux‚¿~`œU»rí¼PeiŽ¨Ó !rÉL™ÊûK•Ðê*B‘"€•rR „Ý*0æ)¤UºrD­yÎY¹Õ°_ÅìÇÌñòuÝ6ÛJp„t .9Å—$ ÉŒA¶FZŒå¬§YE_9»beîëé/ü )‚êïAÓ‚·A5{8ô–ür¶ ^« s¶HíÏ2áÀJŸëÓöJ;<°ó @z‚uŠ0k&iL•µõŠTq¡÷Jú¢n á&ζԈºÓmôeäênú°È{êh“ {¬Ü«ìvI[×øyjn0º€µÏ æûFH/Àîy¶×v¡®4· 5ÿ áoIŸc|Í…¶QÂçnxfu"ê5-å³ã.ĵs½Ð†ãœÒ4ñBÜvãÜÙ¾ÉáH³ÿTýRir‘Â3ÃI*=$-xÎÿ‰õìËÈÍ2çN›6OˆúYn§.¹§AÙ‡yµHÖ¬qù†nšÁAB“¼ñᲊzôN»üaÔß¶ zoc½vÉá§ T ÂüÁ i«\°Míw4$˼ê®"­”-t#äB.Ô]êÀÓ5WÝ—ñf‘™šó¢þÄm~Ã5Roà÷]M• Ç<øŸ Ù4±S"Œß·—c8¼/BNtÔÍ£7rû6QXOŒ¦hseÜðÜWÒÀgkˆs›V‘¤)ˆ¤€gÕ­ gJ†áj\ÖezysÞÙG– -N?zk¼ïØÙÅ“ ÎT$ʾx<쬻üÙuUÒòÙ—G„´¨ƒˆ`À/–±«Mí¾¤Ô,q¨U½Štúù˜ÿÜ ³Ãgë’ë?«È•AÂ\ï,Štw‡“LK«v.à&ë–ŒjS§ÂƒM@wùâ0>Ùd…£ƒ €M²í9Aè¨jWôB=^ù<ÐBKŠÂÚ­e báËm;i›žF¶—i[üE$ªo h'²eÏѲD?Y¦¸m†hùZw`œ‡¿¤/É\ï*ÝÉ«e„ô1.SËKV¹ˆµ\¢h´ ?iB®d¶$l"õ­•‰î»°(àÝ/©‰)œâÄ²Û p5­”&'Ý +` ^eå/.¥pãZ¢Uî(6°ííLK x½í7¢4ŽÚjÇsž†gC…lªÍ‹òÃZÙËÕH‰Ï¬4 »B!OÉJÝv3¾8sô?ÆÏÚ‚aôÅ»sAróÑ?lɶ¸Áƒþ®ØÉpÛêNÓ‹M/òOxÐèâÚv,}A vxŽ¡²S é 3VÒïÌn¬¶jÓNd4„8ÕÒ2ìÝz@&§'pÖ¼”ð›Nî°Y/Æ0OŒ1fí$=ŒÔφ,…k£ ¿¦@â +G3‚`^Tc&ü·…§Rv1Õ»´ß/xKž<ßèn‘¢jo‘êBó—@tÙ3?˜¼ØÞq9©ÁbiWâ"uõŠÿËÛ…~¾š—@ÍT‚Sá':ƒËý¯Yì_£$³qõ ßÍÓ¹ÄÓø¡úY©¨W6q¨µ-lF®µ<¯gôuÞú7µÉzÓZNOÀ?\­´ìÇ”_Ô‘ñâÝEÍä¿>™w#40h‡fÈq"<šfht@ÿ×( ïòê =Î(¡óž¢µ 34öF¿èièWë]C7dWjÖ“iý2+¼)¡ˆɳÅ|ôª2YŽ)ÌÇÃãêCÊàÙ„ç°Õùò½5ezÖY¬×VsjŸ[”Ì`3Ïý°T"-¬Ó1½á¶SD!ˆÀK+;UO4·PÛ$Ö’l¾×^z¯¨É¢ÅSI°Úˆûì)ç™ÝFŒ0YöèWm£Ín’&rÚùiFøzÙñDqp!­,@H=ãýºZ( Ap"¤ÔŽÿUsÛü _²Änôƒ½Þ¿]—Ð7ê÷’ÂN³éîÖ ' JtXymO¹ÙE–8‚ÙvÉkqŠˆiaäi˜&,¯U¢©>@Wú6íŸ=%Ô5 7ÔlnUuôI*›µ ìÐrY½V›ÄO¹-u(½;‡b–xtºÍ€“‰qç± ²»¸—¤®h LæÁƒ±¾m±3¡ËyäðTÃÄG`cm ×˳¯£ç¹sÍζ:Q»Ú—M]ËÊP¸ô•pTNº_äè.elL>)¿‡Î`C»žÉÞYkŠ™¨ÊÈM¦ ^S3“²°ÕóƒåÝ%ö7L8PýÃæ§Æ VÌÜJ]"l¯F4+ÃÆ'8d9oG`r`p…ºCz$%­KëÞ¤‘Mz[ç—B@X$lù 2hobyøä‚'Îx‡ªG?I –½&õVÛñ4©º(Û0¼èç°hË#õµgÂÜs¯è¾¯ž?w¸ÉžÿÀ÷Û‘:]7±*Lxš)2uf–£i^–™KÌc»ý_Á —U¼‚+IòR+}CZz'Çí’—ïC¨Äjµ €N©G fzÚvrMØA©Žú ÐÍjíž“3á(“ñH!ƒv¹ôå 8NOøÕ§ŒÚü‘:EÀÓ\Ô†ñÌm€Ä?ò¯à¸i]á‘Í‚ƒ|ÎZ!Ãë%üðö T…ÂÇú?ht{Y;Ç #ôÆ/÷ÃEæŽÌèY;cò³jÊmFo±èANdÍÞ`9æiuΆU>Ò_hm£0¾vØ‚œÁ05;S?-æ5³!ªÆòù"iÆ!ü”%=çCÆšúÙî›ÞZÇ$â¦pÔkÂm8lgŽ6M/Ìr¢÷}N¼ïìyL}c%'àÍ:ŒFÔ„B ¬·u[X<€<¼7Ã#$ ª#ÊS²²EQ!åÊ¢ëÍÌ]™kÒMõqÁêXW˜¯Yªî@ò¯¥'N52§ÉˆÂM6Â3ªkþ¬NÆ!†µñï|B;$…†Mf©ûí”ѦH9â8ÿ,Ë+Úë ;OžNZl’·æÄã^–‡ýëàc¼âø £®5êù>¹ŠÇtþqâèC?aD)ïH[OÈ0ùÇÑQoÔš¶²^T°JÉHR{}Îõ(¬ƒçuí} [—9ó©’³ŒðçàZ¾«ì áÞgE#¹’Ö±Îý±°Ä¥Ýcx:—ôwj±“EWžØ‘›Ý15aß¶Z6"‡Î8Ê$I[@²Ù¡µ"i„,*‚€ÀÌ|ïí,*š#Ad téñvöÄtÔXéò©¢”ªÓT9/lbš‘‹dÉ)¼; ä/q¬îêmr˜ùöGm/Iˆ{˜múøú NÐŒå»ÕzãÐGŒ‡Q•Tae'zÝA#Øwí)Û×+)‚6ßv:ƒN%û!˜ô ]ôX=Žalk†â[2(ˆ5† übÉÀœë ÖñKãÐ8¤“Šq0/\Ã¥Êï˜÷´Ä%Ÿ«µê,E³ÛDÿg¯!ŸI„[¦,‰r½/¹Õ (Ï\™îI/ZÄõ2>¾np?Àu² Η´ýHÍ¸ÂæÃ*µÞÓnÌ Äîæ §Ûuø˜² ™ §Õ<ñ—ÁP×Uú¼|lu¡—lé {Å=(ÚIàËîñ¨(@ÜjتYM6ÒŸ’?´ –¸BôÈÞp&À8œ2ä!½Ý¹¾Þ)¥?¶þ˜½™÷Å£þžëÊíIQ1VÉÜçD¯ðJ*'eÑàkÁ4í[6õ68æ)Jø:_j‹„¸”Q7Èà‰ø8ü£Õx.ǽuž8¨í„‘{ÞJ|;N”\ô¹ç×׬å¼µ¸ÔÇgßÓyW°L\¬–¯q5e+|Ûi%fœŒ¢”âe·å³8x‰¹Îc!@§eBåõỺ¼fø½Ö1ºr•²H¤<=œôÈUX̦´!"—Þ*”O"Ÿ=ŸÍ†0]cQ`q//±ºŸì\’Á­x:L/òõ©K5°k%ǦW¿‘M£´ðJ;q9®‹X«öKÒØ­å À n3œ$(É>eJ0s$Ñ 9?&ÿšPû¥àRöéOÍ¡×tö¯ÄGàÛâѲԹÁò´»½~ •nù7?jAöPM /Qíl׆n¿³koOó¢™z£² s*ºÊïæØ>ÙE§Úý«*^'ëùÎ?ý¬íàcWë3XŸ"]ÚÓY£Ý¡krõ(þ²`J({!ªZÍ)t¥†Ïy«2°"õ›Ôy(âŸV»7éšž:nèŠvˆN‚m¬„ûãA«Ñ-‚ÐáÊhO/Á5Ò7¡kT4™l ™P3¸‹°èUëÈÑKSè¥S‚ 1úÎ=¡Yò"B³¹„÷ñà 1Xb˜«Ùò_§©† ݺ7XÈl§K?±^ºåz€Ù­–·I?Ì3P…±‰è ›“ïSéGâY½¹€üµ».É–±4l½¦ç}ì6e-z>5ÙäW´ZÎUÃa,h§Éuµ!¤c%ÌuVæ I?Ôš,óC,ž–ÔÖsÙ5SSíìâ‰!%Ñÿhš.Â¹Ž ùÇŸÛwuA9´¨ b¼s„ñûBp9ýƉYþåÌðóÙ§¾ŽÞ¬ÆM¾¥nËR´óŠL@šz0b§ƒf7{1ó 0î7„= 6XPBS,À윴±¼ · ÐÖm~{§)š Ò—!ÄKÍcËòG5„HòµR‹dq¥Énùý§0ºQ£¥“îvзxt·cß\¢[Ó¢,5õZt€äÀb:ÈÓû—.ß1Î˳8ò–2ÞE“ÌLì:­” `6B œSÐúJÿ€“Ïœ[3øµqL}‹Ÿ–õž¥ö؃p8F¼ÓzÎ ² niÒÛÁRF…݉¦'ïncÖU¨ÿûâ@è™UÀ:}ô1©¨xp……˜*ø.WÈ*ì²ÍJNÃÂÑÜÀÿë<óªÖºîoAî…ãúb;ng2[B ?([`}^óM:³[ÆïT³†@µqéöï+dûj0lî/Þè@–MœÅT”‰¿Ï´Ÿ!ÔQ~©ƒ Q ­'$йšÏÁ•B û‡\Úó¢,üÓn§³ žsf@Æš¿ ³ … Øò˜Ï20Ó·Aø¯që[wT27„:UÐ2›2fsTý¾VqØCêü%dÕÞ=Ý!¬$üÕ©ÙãíNQXÌÏvÂ’$'Õ­c“S2ú¸0ýId¥4k~pá ×ÇgQÓ+*%™E.ö¿Ä þæ›~ŒÉBŒC0é¼#Ð}@L“çßNIÈ<™,†½D굩pY««,_x½ 3æqF+F“ ÉòÙìäø:KLtaìñ ytÙ+°±°(s#5°—âà4=¢éŒ§QïxõŒ®E£ZCœ¹¬Wʦ §Þþ¥MtÔÙu‚Åu¸ƒÇdøvù‰üQ;ëª6PÁ\¹‚O{aÛ˜¨"ñ9 Ã4*ˆ·û™ Õ©uÌ=5`½}z¾UaÏ;•¸ªöbãåĦ³)çpõüÉruekT‚5wÅ€­ó ©P¨5d*Rè7%™Œ€;~ùtŠç¾iƒËÃ;Úû&Õjý çÄ»oW´Óí-¾˜'Xå¹® t—*ç·'ï¹eà-öëy¦T>ÓŽŸžæ^Ü1\x»ïJ™èH5ÃPpUu~ß dÚÓ2ÏɤŒš™àÎÙ¢£Q"2w)!päµj?–&‘¾©±=Û‹o‚”v¼×8¨¥+¼*èš®„Q¨ûÿù]ëÚ¤äX™©z_£ÿÏ+ÀŠÆ5²Ý7C óS?²×pÓÉÈ6üÓD7“.H("$X•/TÈUÉh©[û’[ïð_»Ð„tKþ óiÍ“‘fT5(ZîF÷ · ¤ù§P%T½vXõâçƒP¼Þiâ…kˆÄóÎb‹ûJ FU¦t€­^ä}-•÷Ñ5[H¢˜˜ ˆ°¡#Ä-õ¿¨›-:sÊlÓ 9EXäxM%,ø@h ^w`ÂHWÐÕ¦ÑÕî¿RƒÈ¡bÏÉ'µÀnS&n(")kº¥7] ö5М ÃÍ.äí^<ÑJ\’ÞûàNJM`åÓѺ“·¡äÊðw…›õ` K÷VEÞÜ3½­Ä:ïTéîüú(¶|%Ký„'ÔÌÕ †<;{ù .¼Mr€·ßæêÞ¹˜÷†±ùàÙ»ÿÄCùëTQ±m_ø:þ”öPÛ`ƶ SŠuaØ‘ÎwPé%Sõ6¿q¨Ì@×KBS«`Ø“&ß M~Õà"^A;ôG¢ÂÌ5Ç+-ÓôðÉ îKôʲ\mch½­— XÕ‹_Ñc–×7#šáÊ#ãA…°°‹Þž÷œà3™5Ïló:º,„17 J=U' LùHÜ?£÷&+_i2tÎA[¶>àȈ¿ŽÈ·D-ÕPö²ÉñÇ@ÖŒŽÎïké=ûC â#jvCX~>|­±ER‰çGÛ=Ѻ”ªKJ­fhfNÊî”?RC‹–%]Õ¶VðŠ(§Zw½ŸJÀ9Q†p€–޾6ºtÓäNRºb%CM±(>Š*(Îñî'å6*Z‡$lOÖƒ8–éãr4½àÕ”#%—Ú² Åv‡›÷Þ.Шã!ä¡6ðÊa ž˜6ƒ0pº!ãƒØ!€,nìÍ« ‘O5hQI–Œ¢æã<ã k£‘£ã¦ÖR{ÿT·ŽÎ¾ÝeÓðUÚ²M‚>õcÎwjð£cÍÚºÀšo±ƒ¶¶šzýäôY¢g'i¬÷Eî?Ò¡è{wü;ðšU´–Üh} ¦pµw°ÜÛ©^xqP›H83'öôtŸ2iÓ\½a™¶ÎrÙûmó†ÉÐ2ÏK(’Š´ÇÙ¸JʾúáXØÇŠVbds‘štà«×X8€a3 ›-ãQΧGŒ¥hPµvúH€ÝËŠ„f”¬ è³Ôßo ±›lßRaıš;ê«%ÍÒB±T©¥ãÈâÔ¶}ÔòdÃ…‘­“µ ÛþUi¢ð %]3i¾¶w¡µué\ÕÞì†(kÞHÙÛÔÙÃÀ5kŒJG¢)fŒ{ŽDÉñàâ¬Ñéä _^# ùÀ‡¢3V‹/¶×\0ÙÇ:0k®r÷$œN-KB±0²ç©1•>Ólø¯ dz²´è·ÃrZXs¼[Z.)¦Ú &7‹x°ê½²€§*к¬¸2Ý,µ5¶òÛ™ ÊÛ§ÀKK “ا] œ¥}ݹàïƒ<7+( Ø´.„)¼VØÓ‡¹Fw÷¬;e û~§à Ú˜e˸ÃWDq }~rr‹ßdkááàôG·:¬ÁÅmE)ƒæ;„·5ÚŠØê•ÒŸ®÷›N¨!U¶`.0ÜPÚÏ®Zvw¬6S¥ñL¥â¹=bX0,b~{üÉÏ;aµJV`Ó‘Ò°\Ú»`FéÀÄiHmôEè,芙:Aã&õ±…º7™FÿÑ`{Øþ’A±á*>ëi—@Kò (8ÝXžþØ÷ßdàÙÑçQs”¨lÙ‹×Ñ9„6¾ö‚»ÉGZñÔ¡ØQÿýVäñ¾Á0²œ4»Ýi¾o!Yñâ^‹53)ÁÿЮ¦$r½¹¿­ãÞY×U´8tMé† wu™Þmêå)*ØpEºï…|ì§ ëyøÖ8³å:ý†¶YS°ÛULºÌç‹7`ÝI<Ãà^™ôÉs!§uº£öbò:1Mà ’.ûøVh_‰‹Æn;G~2²´…ÚŽ#ÚvÁS÷N-]Ó&žW'׆(ØÙ¥† †0¹ †ë?Ž÷’Aبb*˜÷#rh¬»6€8š±un‚(MhúcWvŠ·<ÕóójØ9Ââ/z•X œEà}ûÓå‹Û3sH™F.^©5Ë® §ü…?;–Â~ÅÊk¥ÌË¢Õ$mE­°)K|NJ×áHÜòhÍ<£ã2ÔCY±×ØP6]Òqµýg¸Ûo™ú™úSé/y¾LKÜ©p=@n,Ã/º`W)Ù¢&rÓó€YEÚ¿„‚}B£™ÆÜªó¹§‚Zñ#§²ËØZ÷ÉBƒÙ—Ÿš£rÜξ' …Œ%¹fN7ÎßuÔßMªÍ÷6P*ΠÛ($ Óž^7ê4jŠƒ m̰c»õðDÅMn¿" K”¶U²Mè:ï} оæôàcêœÙR%_¬LŒÒ«î¶ ¢Ý´ƒÿUœ*0XçSœ£á{LSG¯Ì˜-Ï@ɇÿ]µ7gÉFeÎxxÖß‹6ÌË˸>s·à˜g`U|—fmË|9:‹h|äÀ6Q‰“Hp{ç48$¯¶®ÙB8×K.öDuÅ©þ®Åù’v.kCÛçK%B5Ìkã4gÖ¯ˆ#¨zF;F|áS­J¢Ú¿†úŽó%)A±»„­ –‹Ð·"äU˜i±Ò÷>!„N8oÖÅ=·¦ûÉô5ð7p¦°Z¥í¼Gø´c(ò&¾§h¨¥3ž¯é¼g¿5ÍA—v%âè‹}mÖí:ö²Î ÞØéÚ5: @Rk‚Ã5¨EioOÙu1[­+Ø/¬8TK°ÅÂXÍ0 ›¿¦ÂšíϹùÌb¿ÓÖK£ÃGSåÛ¨ïa¼ª¬½ :Èì‹IÒë “=Dmü>~{ €sµûöšÝV½ î¡í×wH³mª…jÒ`üzåMqíTWΪ^ Ö±>&¿Øûúo|RaãLÃÉè¡øó ©ŽeÓ9ìºÙÔVqGc–>¶ÓRUiØÎ”iÃŒò)ÄVw¼ô…‹¡ó` ªy²“þnb-Ç&™GÕU³‘g>m©Ê$/„žÄðÅ üË{ÉEŠî+[bêVš_Ç“º¢VQªV=¦¢½Öµø4#¤Xâ#—^ÊQÔÿØyv|âr™jÕhw_3§ˆÉ"6õÖ±é‰5Qà2ïêYƒ#K«ñØúO5¤±=›”<ù?ä®=;bR¬?jÈÊ ŠfO7çÙó²xúv'¾ ÄË…Šh>sû~VTNÿöojE„ë¹5kN¶X/^)Ü ëmã7k7ú‚šŠr*AŠF‘¢BÉMi8ôKV¯7×f¨íx¤W°4–‹§D/ sw¤ì~€û@ö¬ò¶Ûèß.Hkc>@–®dº¥½Ä}õNJ¼NL5ÃWòYX~dÖQÖzè©èwªæìÄÌZòƒ¢ôŽçd™&85@«à |HýÑȵAÃëiÑ»dS—ç¹ÖÅHä„õõL‰¬«9é1µ!¸âC!§­ôýMY´É#öbÞQÖ!l/î\e­ÈÄ'öB¨kxÁ¨W7š@“ÄT|Üu"?/%†uS¾Â(Ë|Kô~|Ë¢ŽÀ戶ý%;ù™\ŒUF×È)l¨†\UÀCºQ‘›`}–)ÏHw0Ê^¤¯½GFzE£¬½¾˜a³Éð/+šåþ–‡Çdõ¢ÑŸ|ž1¯ýNI@€ÈEŒi²zH‘q_DéŽ(x»&Úé_º>R—ÙÌ6bbö9ô’ j*à%=WÚ„ó+;» ®â"1=c GBÏó£-¬®{#Ýk:@ƒ4+O‡Cd—bÎ9âÉÏyðzñàäg.nÁb$Ò×]RÜþm4húa`[]ÆÖêú§7ϼp©ù!¿P ‡^õ¦#¿ÿ&}î²ñÔTqÚ#c®RˆØ•‡¯ù$ù––Ý¥ódžÈpY52£ ¤±j7”ž¹g^yàöãÙ’xŠ 1k­‘ºÁ¾ ”Þs¨'ÛÕFè6¿ÎOüJ4 ³J読É~¡«DëEpd¤ñ¸½!1ö«ïjp]ÿ̓Ï|@äCiô˜$A@B>2‹À”±!½•>öÕwþ¿ÇUœ\¬Œ}ñfd;5Y¢¦›l‘u^—9Ÿˆ”Ý3ôê‰câ×â’hÍì—|'Rc·Bˆ·Ö°]§‰©tŸË÷2^ Åû_QhyÌ%·žÛ –¹¸nƒ•E³Û…ü‘NÞXŽé6ƒ.¸û•ÈSܿ־±v9† 0]\ö?"„JvSÀƒܰ-/=Þb‚öõtD_8Çá³ÂÏ9ªt,!c˜+¢ˆþã‰ty*FËum ÑÁßd÷#_‰ÞÅUµ+ø3 >‹[(Ób£ÍxCG8ÇbćèRSAunÞ© ‘éôÑf^ã >øÞ‰W©ušØþ¼zÕh–•N@3¦­=£„ Í²ŽºïK®ˆ^hÛÇpyÎ2¬µßÃÚ¡ÔžMEïõ¢MÁoFâ—¹šœßìÚ«A¢y×_¯"§ô‚ïØ„´ÃúT8‘ÝHø­U–žÈ»k]U¢‘å®Ä¿Â3]É:2^‹¢e¿…í‹p—Š|øÛëÅZ]ìÇ?-·”Änl?_~¥|ùøÑ+bP‘p"®šÞCG:£G®ÞX‹©†ÑZ˜æc<ñ+߯E«êÄæ¯%âVSb¸äö]ºé•Ò‡e÷÷$Ne±‘¼ÔÑ)©Úl ŠMý5­½o2,Â1*G¶¦ÑލÓ0H5‡O{Œ›€.¨65X<É=/D‹îo7þA(ŠÒµ£Q$…MäÃYÙtÈ&n;ž‹!²’•ð6øÚ±NaÍäó?_‚êE^›"ÈÁüÌñæ8ŒP¶˜7f(jzíÿpì߯•hSCy?üsŸ_EbŸÆ@“V¼9o6FeE%;psáãÑ{‰Q _#íDý«†'wÆàÁ¥G+ ÿ(…ÃHy D¨Á%yÿ£FO•}û—]HЊú$8›ã‡ âÁ€aÏìgHca¯“j-f©õƒx/CgZ|L±6ûäé;ƒfSä%“ý…¯Í…D”­ík²o Ðv(-LÅƒâ®æàá p«3KÂèÁ'**^)˜Hto×ô;”ïåèÞa#é6Ðy&®–î'VÕiþâé?Rü©Z¹ÓEÇ:½½¤ƒþÉ{l{þÔ¶~_ʾQhΫ£Ø5Ì E¼‘Üï‡xµØâ4å©Â=gE‹‘¯€1Phu 9_?¸Vª=¥yeÂð¨ÿƒÂ¥xüÔº -¸°ÉÔª[|«A0´Òh’šL°óšù´ax€?Ñä(Yƒ{ó<¾Ô ý¿œìCd¢M2 s‘|ôr ô°‰gÏ}à€“ñ•Lb )·pt`W|@GJ±µ' qp¼ÝCFWË‚H\|áõ\*æë˜N¯ì.ãÆö}|“>v®ÚŒ×«ˆe«Ð ¯–´D2Y7èHÀƒÚ«mBJçÈr¦qEÛ¦?¤‚‹iÐÃ"€ö•¥×F £¾åyæ¦VSKвÔ˺+ÜŠ€´Âûgù B¶8l¢Ø%5x~e¿&UY<æ9nüOœçK¯™QPç)Ê0ëu¾Çð•ùŸHåëhT¹8è ÝŽ§Ïg¹”e²£‘»°ä³Iù†½ ¼jN…5CâUíDŸKw·Ù}uâr­e‚(QWò¨Š£|•©*šß¹ü/ ޼°*CEwÊ­Ì7Í)&0nÉû|3&AA<,÷~øÏ7 Wì5zÁLµ–ˆ,sѧ;×g‚Ëò ÷A¨ Xœº`‹Ï¬°Š‰2{=â]Ëp *¢âÁBê§k¹ñ“ÖÔ³A”„[€¸XÖûÈ=²êòV$TЂMƒI“k£© ·Vô/É·v¡”}ã¬Ý®}¸¾úMDô«œ²Æ~ ÐuÎêíD8*W:söC¹êœˆîª!Pcu(£\{åBú—º&Ýh×nòàí·ü ô²;,ÅÀE’}ÛÁžÓ 8àY©\¯;Á»PmʵCµö“>h=u{¯y$YXŸFVq[y A¡…º`'1íµoƒ¸'ÅöVÑQI±Ø‚àÇ$µ,šwËšAëŠ[™‘¹BǸ‹¦X (Ë"æBQ`^žî°<ߓպ>½YÁO[áX§‘#&è'ÔãmsSÓ?]ú‰V%ýÓ ó¿óQºo[‘ ‡iT@=\—DR(þX}eá “^>–ìj¨{€)ˆÄU÷&|Ò¼´Z(6«E•òLµâÖží‚¡y³ 5vÁ‰Ô‰Á‘qœ½_óŒ7‘RùwÿfÍ0ž ‹“æ#]t_Œ%sbnYÍ+‰*½$C—ZäPºãp[p+H«]äBùJ®× Š!¶øµ4H°¯…s¨ñ½à‚e{Ø–‡–4ÍŠKÑsí ‰n÷e¼㌦õ'Ó¬•NKwï’kդӼޡŸI";57$l4FÑ‘ÂÃæXªTH¨”Û G k-F=ê½9ã•],=í£XÁ¿T½IÑ'ýE#‰{¼ëpõ|~JÙk¢t­ùí,¯9î¿T*¨…ìoeQ£¤v$´—¨?ÖçfRÈ—nL[>‹oœÞÉ™ÀZvD“‰­6ÿl?ã9çÃÐq³RfÃûÕS½¼w^-_Ú7˯²7õ{(žx´iÏÏ7õ;}ŠŸ°xÓ¦8ŒDE—;¾&i\-à•açkºZuÄ&LA+ÜãÔ³çÚ¨P\ý¾!X8|Sp¦Jj¾´í)å¨3[UOíÇ'È‹Õi¼9è|{P½Ú7RŠ»Ë!#HÙö¯óqt¡Œ6s\’ÅgË£ ‚ʤ`Ãל‹@ïXð¼©Å%sº|œMXû¿Žå+øÜãÖãpýy•ÈÉç€tε©ÿ¤OzºQ½„‚×|ûNe%ó3ß÷œéÉk´©^J³ÏGV” -Ì: ÅH¿K'9[.aj^Ú•W]NÓß_cèCd¶ó œòYp<òe·þ„ÖÅíAMª£K†zN2CFh&?µH"ø*øáL§‰³â*™(3AšÇ7´’¯.†ïÉ.$ÁBR)$xÇud·š¼ɵÌx¾EHˆ2š6žB…¨_©¢ÎwŽ2ß:ï­â¡ðËû}[h¼éĈn²Q-‘Å{ùãä7ˆ5UVýÂáJ Äc4!ÙZ¿6•nØUcr‚ö :—9bŸ?C£…ãÃ*$ÑpeçbîxÎF^«™ä c „6ýkïP`A0ÔçÇ¿SÍ(fÉöÉæ97„bëÄ+ÍgëWš5-¨ãŒ­¨P“µºÅ±l“éƲŠô|ô}dù4Óîû, ƒæBF²ÅHO®rÿÒ(c²æ,t }äx÷“Md™Ëëa6ÝЫ¡ #ÂÛkRa˜]=»B+d ˜Rੳi• åøä¿ÅUYÐYÒqùÅ‹t’æáY ß?¬ì%ùŸ)åV¾ó÷”Ù¥­åã¦/݆ôÊj…¦55‡;?yßZ—qª [þ{…Ië)”™YS%„®S{xV> Jìõ2éø Ôü„<ÐA„ÅÛd죣½öÀЉ8*Ì31Jò>f÷¿^;ì×ÍI)wŒ–ã ß¿]Pª—ã–Ù­Í'½Vþý£ù="i'¢[ºŸ²¸öj:e~ bÛé…Ø#RÞ öx&FwŽÄþ³´=Éï´²²WOc÷Déstcé T—^u={C| ¿xç×V²?Mtâ“ä:5ß­2€ûª»+M—è 1Ðôç4à]þ¼Ùµj” IŒ©Íô^J†à_ëy‰–ËH·ìãO2ÎÝam'×i×D£r´6ŽÔS¹#Ûâq jDÙ9Ðkc*§fžýÜO0B›A=bŒÇ '׈Ù÷™1Ös± ýM…tþÐŒ†LI’cë`4aæ.©Ä OÃóß<À]«OçG…&îëâ QñÓ¹Vˆ«|¡¶mµž™d5LIáG#3€d‹ÕNð–[ÿ/cqCCïÕ‚+Ë™dbŸa Á#“}6¶QçOªC+~þ[ß5;+`Ö…ÎsbG8úÐÁ\š`5XùòÉþ²W1ù\+pðmjÇD»«º|qqô‹ƒ4 Ôø“ö®D•™dH>±”IUÈ@B$³€”d~y :¤è-ׯÑGoäI¾ËdáOvËõ©¹®‡¥M¥'1ßqÒxjÛ¬œï0210sÀa’K>§Òiþ»³ðmaத¸—z@àbªƒ¾È¢òëèQ=#Ým7|8ÍV‹W¹ípo!ŸÀÜ‘CÁÔT><¨ì¼éŽ>k@(/°‚‘t–JBœ\ŽÅ$§ö_pÒN·%Ël" ";uí®T…ªnŒ¸®÷¸ZêÙ–ÙP~-ðãÈ'‘L5E\㙕;P—µ€Ú¶èõÍ”9½j窠ÝÜÄQVH]µl·”´Û½MW}øO7ójæ·ŒŒây@Ðü˜Kn»ëÁç .’³îªãM´M˜BäÆ(ÁuÑ¿=š-Ú\Z Ù›aሜÏØV€ "I¨ñ$Ö»SlF`;uΗ< …[Z0µ€šw$áU–]°å\² =lW(îÌ8Ù`I¢h¡ò`O] B**úǬ\œ=~,¡^öŒãM3wÈX3ª±X”êïJ>5NFFãx9Ãè†0yò‡¾‹Ÿ?ÖG€m)ý(_¤GqfÆÔùßФŸaÄH` æèS ¸Žo¬ŽáG„Ó¸ŒªM÷©ˆŠqësQ8Ÿ;¶?!³–8%ÁØÎŠàº;Òák÷È$4áÒÃSð@Di/-R™"öæÀBlÏåð¡ZeÞšçƒ4NOŸÌ'Àzõ/æu‚`²&—MÊ¡lO·,þ>e+Ìxz ½Ç^7j§·SLÇ 5¸¸ÛHºÀkþ¶li¬w%ßß5 ü™ KÏÂæìÂëò´¬ÉÒñ²Þr g6Âàýà*>²]»ŠàtµPê?›1Iù˜t è$¦žºÕ»=6uÏ> ~{‰£¥ðlŽ+ã®OY ßj*òÛ•™×³ùM›IªËn²ÌâåË;Óµd©Ĭú3Pá?ÊúÓïˆtØf‰CZžË_äo~¨½Æ;Z‰I„çÌÉŠà•A¢dTàŸ¡:"ÂNÛýº‘·§9ýð©yuA¤À†Ò‘'^Ò–þsÍ,]–[ƒÔ|\˜¾}mZ·l¦‘ô]ôÜŽ8ý„*KL«®2-kql­~Šå+C–Ê!³çd‚¿_—“XjÐÆÂ¶*zÊL]‰Úa*Æ)P1…öqëY´%ÎD·UÉ FÙËŠw›¿ÛÍ‚¿í;J’2óí›<ÒloF‡5½_Ňœ’\PMhµpèôêþÏ€L5+)çtð0CG¿ëÁ_š_I„“ äÛn(ÃÄjlÂÍ•oöí!9ÏÈZø­›¡ó=XkµN1Úqàè}âôfæñ’z$n•Þ(ê:XÏ–ñ'%ĬëÎà óôÍqAWsÂ#Q!è‚8­_Q€<Ÿs&ý3_#BK¡Z¥‡òçB¨0ˆùÃÈò#‰C(’ëàçÒ}`x]—'nîÔüÇAõ®8s=#1ø—“[,Ò ^©w‘·G˜‘p®É›¡O_Ž{TÍV¡m?Fڌг›»„݈ÂÕó ÜÔI¼º).P8„)‹[Ÿ+×´‘Ø ó¬JÌüxtRÛþ@ôÿ¢ÅdW) aʯ’¨4ä„÷Xx2ªÀ5â…é/•vV ÌÝN¢e'‚U¥‡‘G |mЭ¦À"Ù ©y¬d0 ÝR ý©¢¡Q¯\÷†‹š,cÜX}e‘ƒ¼Acùdp-aÛÆôpIð=è›é™ ÷«ºQ$²þC¦ý7­«Õs)žÙÞ¶ò D¦@-Ö¸^éÀ1­™®ó@ô±Üù…JÑuc¨LŠÅ°¯°®Î÷t43\rc9ù=²¿ŽÈñÒéZk,´®Ëx§ÀvQèNp Oˆžv ÄÎ]¼š¼ äm3 õ¸Ž í£áw'3!Ðó³OkÛÄþÐY[3XÑàNâÁ‚NN0´¤eY˜tØäÈÓŠ»£\ß:ÂzWeÙ¾§˜_Fex†3b·çý˜²;áaö‹X(^Ô€›y`q¡ñ¿ú†£xu,Êä÷ÑÙpM¿²ûÊT‡qO0ÕÐ'£L"ÚPßÂq1p²6Ô¢°l3ã8˜·¯¡îìQçܪ·r-u¶r³dü¸Ì®üΘËjøï§…ã…ñƒÁå'Õ&^NT “zºš„Püî!²¥a×;¡2m¡˜ –Jò‰˜ÑY±ö?óÃ;k“ uD²:OïÚ0Xæ¹÷„­Ý ^‹’Y@/Äí"ZQ§XK¼£÷ÒÔåÝ3ïQ`0Ð)µj¥IXo:žprP“ÎÞRñ^6üz†÷¾ìŒ–¬ÝGGøhîš@| GyqüÑ›éÈä¢;püCBÀ-ì¿÷ŒíLͺýHƒŽ÷ÁºXO! ‡pºó…uÏ–WXÇKZG'ß­E°@í…V°ˆ_øÜ@+ù,¨ëÛRÈÞC˜»?u¬7.ÇÁ¥H íæ¹è·žAêý)/ÇŽ@ôAZü·ê<;#õr*-èHFà.dôÄsõEÎÊ¿Á¼ô«Íko£A$u4«^6Ç/@Iw°“Ì^¿¦Ñ- \½«U¢¡™YÆÝz®Á<2•Ü™O~š¨ÚC.dØ–9ÊŽîYNɳwÁ¸p³”ìRƒº$äV~'é'¡ø/ YnÑ·Ã/±#`o ‹>*5HØGíI¹…NAZ»` Òíj¾Ø¨¸yJÆ<׬ -têµ»ºiv`ÚBYÌ“®£áëf¯´ßÔÄ€ä];Y‰܉ÿì«©ÙbºÜ͘ ŒT<Â|Oá~j³®ƒÌ˜Áj\q/uš‰i8p‰ú8k€“ÜT9öܧ]ß`+Ôd¾ ÙÜ¿ ÅÒg z°êœ\´é×»Y0ãKÚ¨ýA 9ÞŠŸ¥¼`ÖÕ¶”ÀÈŠOÉ}Nñ¼ ÍTúð·y^Â^ h ‘g\sðH´büëÀRõõßžA)›&¤Eof‘‚H+•;«ˆ3†µÇ`ôa; m²'\µܶøÕHÓa@ºÉÚ ®×;³éx/ùû¹×Bnâ%NÝR2L¨÷ñ¡’7–&`_gëÃTS§îSçý…~j‰¥ÉJøü­Í¢"(á:Ë$uD%ýáÞ¾÷»uispH0ês_—|³, ª,£ÃAúvS‰(Šoë­ ›úɈr ‡x ~òĸjÓ1Wüž± C]Yبžt ±èå'<’ ìJ}× —Jbƒ³ØóqÐëGÅwîÑOèÇaêvà8øë‚ ÿž‘nñiMXzç¦_„yœoG Ý9êV ™ü½îaŠ1qÅé¦ÀkIÃŵO ˜€|Ø×2dGR’b”Z§wÀ›µŽ:ÔÊn3Ð-é7=·pbmi?…ºHî³Ä8ÅøjI°ƒ‰‘†ŽnÌ4@#ȹT ¦rÊ¡ÞΔ@Öýµ¥ùi9ôaÊ]gP‹sõíb^ÉïB=8ÏŽŸÀMö^ÿïª:Pü¯E‰$«ç£ÐNÕê¢~ÈÓ¨™D*jm%Ý6 ß<…¶a'ûj_bX†wF:+³Ä°auþëÙ´K%¶õÄÛVå»1žÕ±huæZ³íÍ~[ÔMðÈr.¬QD!îp8`¹ûJoòDv=I7ÒQê¶Lž y%ƒï hÿz|«¨ªw.a!²K|4ùr»eÚ$¼&N„jŽo5«áò0tkê|µ52g›;¼:Pq·¾l9÷#D–ðšÅQ^:)é–.SñL$‰¯]·ëäÖe»™-ôK¤–y<$o̳âÿ7#ªe0 ñÚQD^üÆÓƒscr`^o2C«”“zR5®i§³£ ¿ýħu¯Reùm‚À9IáËà)^^¹?o èB§ÇpÑ”"`™O\s¦Ö«Èâ¶t¡as/qÃSÄJð=¢ìƒåGu½Î“›kè@1þ³qLâýdüv¼Óɨ}¸ô6°»Íž›ûÛƒ&FþÆHMäÌt Âf¨ÿ.QwpÏÿR•|»×Á¤mrFëÅ‚ó±) )r}àƒvXg{„ر:§L2x¤^ñÆR[žJ?”8FúìË» ⎔è–\Ìú Ú¹uoX ÉJÂÐWÍß”Tl"Q|üÂÙ‰Rù’ûúâã}Kàÿ)Žd¬£§µV9µATÌ ¤Œ›‰ûªbŒ× èMŸ.ãã‘/ä}b)ky …iYÔ&,õ–±q.ºµ¼Q¸Às m¯Nµ˜Ú&M'1•¼Dë5ûQÚô³çþ—Lvc-ì.q1âvpÛ™B <(ˆ#¢ü¡I‚ÙÁ<¦’“•ìr÷Èxº17uT 'Á”ÈZ-ô ã›ñÌ—°&'a¾YoèFŽ)ó^Û@“çã&G+¢à˜J޶äc :âãЧ¨ªB»ŦC4/ý/9‰mÔS1‘LFf:<Ó €®x1œ zÎÏž>}gHû…›þß4Ä)*tÏfiOΚà õ1© °Ð dô9nCÓ}Á„sòr¢M<-Jaëu,Šâ›ܯ×$Ôä;é…AÕLƒ±˜b”ùÓQm ݶ¼{¯´6 ¦éÌ—©šâš'!¯<„ànØ„¯VQ/Ù!£¤ùnR8ö=7wÛÝÌÔÀ¨‡ª+OG®¸›èn6â>:~º5ŸH„&ÀssÊz¬š-S÷t.’¥ cÌMVVÅ01ÍäEunßó Z¨×¢èRôÂ8Ls6ÛþI{ùØó§@<çfI üàÙúƒ+¤ÝÏN,Ѻá9îfñSÇüêÙ›¼®¥t]Í`΢?&ó:Ë òÖzÿGk ’ó£W SVƒ&L6ð©¯ó)ý©4•žÜ ^MßÎú61°Ç®Jwº8ãïâO_ÞjŽž ï {ý?õyðT¥%t÷Ð1» Æx¥'ªzIö†J7È9lÌ@YÄÄL-ëí€ø0;M0v!؃jùö¢ºè`Í rF;ó#îLÐÞ¿ÆK@âš‚´˜±M €ChߺÿU¾nÙGݘí9áœ1¥T×¶¹…HÓ?#…Œ¼µ %>-a=£Õ[©òâ{¢ü/w‰@´(¶*J.Ž{Pj©”ÒMÅác7_µ"ÙăŒ0ÍôMS·ï §ÓÄÌ€Q Ao§Ž¸–S\Õw-…j„(-Á¿Ž è<„€`¿æí< kš#³:kÒ¿LZ£ecÁS=sþãfFBþà «ómóД¥÷XŽ1~†`D0 ­$p]íÁGvºT+¡þ³®öŒ¬lïQÍ\ŸN…ŸýÜäfvÛó¥if]ÿùjæ±×#% wyùf Æµ•ˆ×>sUÐ/økoÓÑSwÍâùÞÜâDÙ§HDÀ *ûÔÿLƒ‰r`âo¦q‰À[[œ;“û÷è˜ËrtªÕ€¡/Ñ ƒ×E®¶Õ™^Ãó³CZSò™Ç€d9ñ–Šýbf^&ê]ƒá£ –çmÁ’Ÿ9Ø×^ÔºÐvá“ësœõoèS9Ê”ç˜ÛÉr‚ô'ä<ðnæÂžxLÉâßeÁc)x¦ €÷q3èÊdO»/^Î4Q_pUÁI{MV²Ak…¼DÜÁ‘à´™®­hÅ;Áš7b•˜ËTO[xY”}‹qÉ€ ÙœiL†OãdÅÓ?yaµ¨è\­¼ØÄ~‹žaÀ}:zÓàRþ,†O‘7¶@öHêÂ<¢£ÉB ;Rß&©Í ø¾ÙS?¥i„qR{]•t´\”æÀhÇ*NV-õÖ­YYË 9ü†Û•&ÙÜnÈè¼\GAK(cícZÂy½ñ@bá¶ÖÓš¨ðDŒ1öN¾4[J¤DÆ2ÐÞçßC-Ì™óIåFYIÍ`¶Áâñ›Ù% ï¦4ƒºz„§ðhGv¿j àLþ?™Êüæ>s(O¶H6ðÿ¯¦æðjÅX·î—-jg?¹ÊÞ¿2õø™ ó=}º&ªý5ðËFôCz˜Ô““Ûï 5²^"Ð" :™­ñþÑCxAn›xÁÿÙ?$¹ø„y¦°‰qŒ!‘;~›¾ņ ±«¸‘°·jN Žìs /²|ßDëû­ ”ÇúøeEÂøE1º˜öO˜üö¢çã`é6fÀ<$fÅÚC(>]¥Eу9÷„x8ýÞvÞsL»ðüÆ‚jy’Ûm†FÿÊ+]„Þóa÷€à»Rnì5Úò$sé.Ò€™uó´¬ñ½ ù/ØÄ=ý R˜ÇLïº"Ì #g.1ùŸÃõèxÑ-þZ¥ ÃéöIjßøyËÍ(Þ§L5l·CYó5 E7ô)&üÚ”é_#j͘gä¶XỈ÷ ç¢À{‹/× qmoI>â›ȃ ¢¬øš1îß×ÔB³Cv!œ/4ŒQÔzÕþ:»‰^/1[e­&ä`s©¿–d‚ì–]|ÕÈ\ùA4è°Áƒt¸ãèW}Œ0W÷€%= ]z¹:3Ë+ñeiÊ©d%sÜ\-ÁZଭW{@¹øðëB*rWÇÚåS’¼^œ\@±(üTb…ò­ó §"°oh¨û^H `²û ïH‘¯ôÛÃz6…g¬L} “ÜI…‚Nu°YhÖÒ!·¡ÇSLèq)uK|cH7’0³>1EŸe0 <¥‡4'ãêt«<@F /à˜gV™bÆÐ8ðF5 `Â=%P‚ÿ߬¦Ç‚@R»³¨qs1Gm÷{±–Í ÝwuÞ•À¨Uð¾[˜,2Å%ÿ:vÿXÿ%âüºã¤‰íħ€nán%"´n‚¡\PÕ×.tc¯×öR'd,€ZÖ« ¡Ý°X‰Ã(M  à>÷`Z¨»/™.6+»*ÿäÛ/_<¤ëQJ)2¯Ä"¯EªÌªos¢ï³ñ#ö ­w¹€J~zMèd´ºNe4-÷»Uá媕—ðHT@"+˜TJ¨ò‘Áô<]ȱØû?&:¤fT}¬éu¼_ö…ÚÞVÆNœP>“Ù,í¶5²tî@@uÍ7m¬‡lX/­‹ˆÄ|ï‡CVÂ6%òÜ'«J?ßý«ÍU¬7ÚêQ`tÐÈÇÂñâ é†jç°§ÊJ^`mÊJX @eÖJD¤—Ì`ú…t“UÌÌ qiæ1QDr˜à*eÁrDš@‘WÇ;bS{Mz×`Þ]o©­#ð_JéÒŠ R¯Üü&ÛZò8ŸR^Èz¶ýÅáÅWY¾ËßOKq¹ù]ÖÔÎ B/"Àkȶ‚mÏs=ï*¡#h>ÂR¥€Dõ2N}$¸¯3ÊM,ùìJv•¨^â@C†© 99[â‹ ˆJ›ü®Ë'L¶ø¤SËbYóñeßíÔáÍ!æ“áa£Èù¹½™_éc.‚þù[ÙÎx©þ ×@ì™ÍÛÇñ1vî²rÊ›hoúDÞ7RË»XÝX©\·@Ûˆ¨ßêo¥ ¡Õ¢wŽlJo:ßiaï%9@ä¦éäȨ́€‹ 'öˆ‰f OÚÑ¥©‹ÙH”÷·?´tnG3é¼POK*-, €¶¨¾OØU/ä² «½5êR;E¬å΢+V‚îØå°øúôÖ”?=O\ô\)•pZ›ŽõÞ—¿E+1kOF˜–nTÇцeÄ¡ƒì€Š ¢ØõƒŽ4‹³ÃÐ=å-’dWã†X ËP£’/úo¼aœ- Oȉî\lqxP'ÇÝZ­ƒ–g/Í¿8>öÅÑþ\…O%5V¦8 ×ò €T@Ú«±WœÀbXq˜9TìÐ 4]å}Ü t"?†¬¿ †bS–cöêè^DµØ2Er èÇ”!Ô˜ Í‘2ØFͺAü”½]‘Zg3(DýmIM¹èº²£ [Q„»GëDp!Šíð¤»P/ÂÁ^mÌÔã^Ü\–Þs¾pî.Óý ±öG–e÷Ê@¯žI‡Fö愚¦x±œÄÀþåòp Ðv&œ}i~Àà¬Æü­#ÈÊj,Ú{ª‡ êÉe»Þt„dÆ×r½žøZ±ë&Ñ«U­ˆà†V6›Xº‰†ªÉŠ=»ÇqSñpƒGùH‰Y%bæÿ¯o¡ßåaC?ƒK¹À®Ò„5aPÃÏI°ˆK€s@©Jø8u&%¥¢`ÿ'£¤ŽÇè˜pÍõOã¦ÌhîÄÕÚôÁTIM°!ГÑ}kê1¼‘9S÷çJ¶hø"\ãŽ>þúd 2£0ðZ':…ä ú¼eÍì°ÙM9+†>3I®Þïç_«ÒV/»j‹$]¬ÑB‰bØÎ =ÓÄb£ùÆiäƒbJ½oü $°óû 8QsqhÂLسk}ØpY h—Æ5ûZŽ,dº™€Fæ˜5 ùF§éÛ7{m®žIý˜^Š›*ÚÅö“øÍãƒT¯ë% Ï~ãžÖ~wõf‰]Û"ô9þ‘€bz0[ÎÖw:O´Ù“,ó)–«¹Š‡MZµ=ô76„R˜#Ë-áq1KèÒÐ0½P .}9j€W¼`TkgÚå©@ôYŒ"i•P”Gÿ°­^*&j# Q6Ì÷œMVéa˜½>ì­{ëDpÉ_ dxêùÙWíõj8Ê ¢Êú¦ ¦éth&ÈÓÊS$9slEmg(½åÅDôiæëª+z4+ßë{U…Ž««á’)ÅPšä¡ËGŠa½"­J’)ÒÛ_A¯]ðSýoÍô]ý¦FN®Lþz®xìÔéÚò±ØëÓW/’~¶’‘ƒ§&š¼Ý5$Õòªœ­Á…Aðq¬8iUE¹ÐN÷fÜË:ToC¬R·/×q¤É§Šjä-“gÕ=«+£|¨JP¶Ö(©m‰F›„W†Ø{Ô´d»&? ›ŸØÄ’HÇžo«Èbº¶aÕÉÔÚ2u]í£ËEâù ¤3k‘“Ò1\$Ž®ìÝ40Þzú=Ÿ™à‡MnŸ …Óx¦¶žøŒâf °¥¼pÖÆÝȳu|%å~äÄtÀ(SæA¤îî@7Xñ#ìXª¦Y·ÐÿIC„V€´*óØ2ö¢0°FR>$ë(ÅŽvŒvÈ )Wâß00ƨH¼ç4 <'ê/Ú8,àäÌ:lO åþ•'~9ž}7ct÷?Äb`âÿ²ÎºI“×–Ã5œø%æ g£¨P¨ÐÐæÐqƒ\¢‹u‘ŽI';Ù]ÀŒÇ5T´,-ë‡Ú´=þnËÓ?_¯+ž'§Ýñ˜W±&uÎcGjv)2Z|FŒ=J›‘€ëäQE²éœÇ;;ù¿F%4^b„CnmvÄÔGPþ¶­…6¾ÐõxÆÝ;lT‘鄈¨3/½Ë›9ý¦è~¡ŸÛ6ý\ŒHñ†|#=(é¥á$­WŸ4h1T’ÜÙ}ZðÖè˜Ï÷1b T}y6»œ~¸Ñzʃ%-† å¼Ú3F'0í kÑ=•6ͪ=>êʱ‘YíºäŽu#ܶ:lÓAíET¼Yô¹øÀàŠB™¹ÏIûæÕü#ÝËú!’rl? –O3€™2”Ç4Ïuù¯ÏG%7ÂLa ƒHƒ6ñ`F—x¦÷åÈB;âuµª»ŒÎðòÃÓU«á‡Ð¡Í6ì>¥¾7w ੾yÜ”¡ý’Û>ó·ÇÒ÷ÔÙ40œhU%ѹ[K= o£Lt¸%7ÎýÉ›§:#ªGÒ€d×€¾Î}ÓEƒmÿ~zó ëõV§jx^°ÙuŽ›’Ï_nD<êCÅõÝ Öƒ&c?,–ýr+îîvËð®3¿•Péõôª>íªGˆZ¨§«¥¤¿Ógë÷#}ž°­á]b¿ø"Æ®kàe2ý´Öá9ð³ßž!]Ö„®ö"«,­(Ž®¯gÝ p#´ÔÀÀ-Y̸÷ªü¸ò:ëA’\“68 g©EúD9¸’ª)Éj˜7ÅdÎr¢%x¨ £’Ut†ý×ãF[l¥nrQ I·ø×”}Ò¦vêüÒã½"S  €òùMˆBAm±Àíæ";FÔÿÒˆ³õô›I—fôüÃ{6+Vˆ=ìnEÀƒéaƒrÏ£„ÌÿJÞD0ñs ¼©C÷4ÌŠ(¶Ç?MA„ÚÜщ9DºÒ: ˜Þb™ õ°ÊMF  ~ëÑDñã0JaóDºSH•³\ºfĵcñ-U ¼ë )Oö¼mšò‡¦“-ɇ²‘&Ê{©Eö»R>ìš® œ´æÛ׸!Ç®ª–~"N‘‹‹˜¥ò1•:Îêé–Aªeé8ª¡£jU÷ê±.ËÑ$Ð_oD‡¥ìFe§gœ÷ø¹r€¹Î6zèÁbpê(A¦ÚƒT[åD¼wA­2Ûzo¬{¿ˆZÁ‚8(ñ‚ þnzFÂ9)aº+%ûWLŸ)f%ƒ3;ÈaFô™¹$Q8à{jZ¡ÿîu»8˜Oú|\ÔJ!Ÿþ¨uWˆµD¤ ®`‡†0¥òÁ¹c\‡úñ“mí¥ú1„]'([3{þ¿c´éÔá&'¦%ü¸tV>W”nè‚ÇJ`tÓ/³³³É¢â¸> ?ÖÈ[K{ßÿŸæ)¦ƒƒõýŽážK},VçŽ@:Ó«­"M\vضUŒ–ó¡”HðáóÓA¨Á¼¼+5‚`c;ué *p¥üŒ5ßàÿo_DeõBuëçŽÈëÝ8"ˆ¼Si›…÷.uI±å 7‡wü¢ý=ÕFX•úÖâóV ,·ø nÇqh_Ùž6癇íA—³ùssàB3NfÕA.Ö*@óÅø:çtIÃ6•B£‹ÊÆì›³ËÎ[ù$\†Å¾Vd„U+¢ )ìê)H²îè“™Þ ð¯`hݳËY—è+›( .òë¼Óñ„×AAfŒ„˜ât¥ÍÎN;ß© \s¨Þ É:_@î¾,q{PI<á£×O:ι;²¾FwW£šÒɸìT‡£U×ÌÑDŸO‡ñäV×Áß»–F(Ý#Ûg@ñ€¨phµÝ‡ BÖq)+þìaçÑ4Ò å •Î:°è â9×ÿ•°FųªxW0 rV”EJÒW,Am™!ü³§˜ÖTú´‘åHÐüdÚë0I^C_ ØØ„§Cââ9Mœ '­›°ëÑ :i˜v{Òâ;·-} YܤÏ]id`EØXû}Nmzɇ‹æ9`‚·,9Ë· ÕÐâ XtìIB¹Åö&{OS¯h‘Ø ;ø¡ËhÚÂ>w›lÀ*³õˆ§ê‹1Ñ“†ZÛ\¦ÂÓªUDC‚PMERªÌôÕ±—\㎷¦B¼“Ò—n#ÎEq¢nÞIJã/šÌóœS> ëõoÉEÁ„³tRQ”úA±6ÀX¢œ³1'3·µ€`ÙÄò¹ÈÄnNøi‰ho÷D‚²Ú‰GüþM›ÑSgaUåµÁùV@ ¤,eúå ¼ÖÉmiP,´g({óvùņ`A:U¸!‹ù1šuȇ‘–á]œ‰„EQæ`ðšò\C³RFœak,šÕŒÌ¤„e}¬í–ݧX CeŸÒlÉR W¡£5ïmmæYÔ5A¿~úÐÌ~P ¿Zå…0½ûš+Ÿ0ãòE(•WtRn¹-2 1HÁÔÂÆ¾Tq±]D{««ÈÚßüÚ§bv\ÿO?l°GÄ")iáV ϦZ7ϘS%P"ÝØížøà!2"W‹‹#˜üâÄF™O‚ªÇÐwóÑ*ÑÝyÊәŠàŸÏ×J h— |Y ¢øâ•µ¨Z™³PØ<Ì(uÖßÒ¥°SÙ Þê¬'Ãq¾Ÿ …„T«:]Z ̃ö>@Ž»Åÿ…(6åAß°Gû©1Z£{9ã;4'ùÈJZü¦Jšv,+™dÞë³îx\MßÓ˜Vu¯Á’HÄ ^võ„ÀnÚì?to'Lç 9·+`ÿµ©!“ÖÜï7[…K¼¡?5ý¶Y]2k_æì÷'û]žç ?h}ÍÛ@sZ«Ñy»8÷ØTn\1x »- Œô:šH~z9céú}ü€Jt]A5¥J!jÖ“ËÛþ+8a€]ƒL»ÕW±Þ G(‡yEJO>ÔùÖ#$_->câÍÈÑ´åÕÞƒ<¿¯KÍ=f~ÈG=yÁ½wç×õÁ´‘>âïåHà6žþhT™@—ê²S5S6ìI*ÒÊðBœdºýXÞ‡ûvùEõ( ü›¾ŸKϤ¦v˺(;€[ñ{†‘u²ª¾öV€%>E݇uCôË*‚žEX/…ö Y–+^ee0æï#!+‚¬ÛŸ|Óÿ¯ú ™4–DÁ§û Áéô÷žYeŽœß¢Ÿs Ë_îE™Ú²Þ°–¬|ŒRK0€î^’Ìyw¨OE¡`ŒŠâ  çϽút§çûõJÂäfã’ËñÆd­ilƦ¤çþ£ é9ªÖ—%‚Wb·mmÌ„>WÃ̺jhVó3ÊK¥ƒA·Â‡£Â4 §ÛLͲ×)"Ùíì€+Pu±nÿ©õÂÔ„ÈgÔ§R8ù¿ÉqyFù—qÌ`ŒY^(ßµt”ˆRý3ù]Zæ#;z ×F¡Ü @ùœ¸iÈuöDzDN Rf‚̘drÎÕ• Ѩ¨†I‹\Š—ûüí+÷R¿²8uáD!ìÒ¯_Ûâ¾é ¶1lƒgÆ™?oÐÃ÷©¶E›Õ™¶ë³7§¦Á”7RIÉ”?Ê2pÄ~S‘;söÒrÈãŠÈ½]˜íÃR!kðß±>‚tÊmM… {jÇ£¦ó«¶“-Mœ½&H§é€Gø¤• Î=ÿ!ÜŠ¸­Áœäw –)ûz{XN:nÇ–oöaB!øþ¤jÿP;ø¬S”5ïžÈ•U Œà©˜QJóÁ ‚ºà­hŽD½Qçlµ½{Dmà(Wxââ!ö3Œ¬ûÕigh¶7¤±œjÄ|lu±à퀫TTcr'ÌLœ‰Êi¾ê•§?—ÞáÌ…ÃîŠW«Rc€±3¨Â?ÙµÀ“¥,Áy‡G5}hë;Ê¥é;Y2i€kS2w_K£m`¤)ï¦ÅìR ‰æ•²L±m¡|ØŽKÏ $c}θÉÇs¡Y ǽ^šFäT–õ¯£‹ Km7³¯åJ[ë£:êÁëï@ê%% %a¤wöž×¬'2ˆ–ì§Äh‹¯Ê` Q÷ûþ¹rU²ôœ>Eå{W Âè½zoAáxÔ—Ue\;l ¬€2•ß Öi¯7I6ùx€Ý)MñLVa6P¸¸öŒûÂóÆ<¯ŸiÞ_ùóm6DkXÔŸh…ì4í¹¾áuö–=kN¨âŒÕ‚®C0d*žœ‹ªö‡1:b™é-€¥¶ðÎ0”2€[C·©¿š1æÆ~hvø„iÅc ­Óðük¡I³«£•)ŸÁ:Ây›Ï9Ë£ºè¯æo·j€Qxtœ.+c€ Ãr%Uã'맸3ÝÑÆt:MÇ—¦âI)‚ª¬;¡ê|ý@ذSkMú¬Ì8RÐ/Uu$‚ñ†wýæøßLEæEBeæ[ƒÓè*ŽÀ –剿ùΤ»Œm§`Ʀf%µOàpsÏÕ¹&à5_Dw}†®M& ;ï BÁlXÐ9®*í·ÈéÂ30Ȥ–<ÑýDÛÿE“A´ôÆRŠב§™k7‹Œ|š8 ]é IkÈ=#ÿ“‹£ÌZ‹†¶Â±Òüþ±Eš)HN]4ó~«Õƒåž6Û4{X_˜ Fÿy ðCÁ†q\ªA¡ }• ÜŠ FDº&¾T+Y‰›ˆsÝ3îá¹%k9\ðW©±º_‚Ô03k¸KîÚ*½›‹µ¸ó1ÀÈßPœ©±h“÷WßíâNkH9ìð§KªYq@YbÄx<³R®†Ak¼èí 1V«î.Ë~#i”vdñ5jXòD°#´RInž°õBÑ )ÒÌ õè98ëEøÀÿµÞÛ«Òàýê¦4‚¹*èÕturlÓyHd~ ZA! —Å ÿ/>ñDÔ”¸üÊuøæoRÉßÜ»OÈÿlÙŠo7ÛõÜÒ¹»¾¹>ø<-— ô¾WZÝž)`tߟIÊ3íÔU;Ý.j¥b1½Ò\ÍÉ}ç{ŠàÄ¡àˆDCª*;)Å],dÂÖXV@¬¡éå}^îïqÔªð¢æÂSø³ã9Gè¶é«€²"Épn\»ùqi«áüNdŒPöFqÓ`6Qå ðº>EÈ=$’ €EÂ\Âï'8pÓBáýb6¸FÍm¹îé¦m”ë_ö24t­m:÷#¬<0uG6‘ϧG„maûŸ˜¢B”ÒН¦\ŠEîš|°ã•‹ß ø¼gÍ«5LéòŸäÝ\øÁ¯IZnjÙ‰w_"—{-xBUÈz¯É»½ï¨omˆZ[ìSü”}> Cz™q~éóŽìâzÖÖV†l<9ýÁw]‰+Ðè¹CŸ_´åÔÜ"ëÒŠ.7mT_â#¢[2çîƒ[[Y8-f*‹Db;–¨Ìk^ë|Ìšå§Gꩊ4I b‰ ¨W#îÿµ€…K©}üÌ&‚ÿ¥Wc[ÅZ{±+¶jHÇ/(öü•S;¶Ždó<õYœ“Œá¶÷ÉQœÝž±Xú5÷Cr ›Êýyßc©¿+Q ͵5äf„d_ýÂ+Ù<\¡òµaÄÚ–(`G“B$˜AøÞl—ó÷£k:·Wîz=Fž Þ¢ÏÝÃp*œù®Ì Ú¥<žßLûQØÚ¾aœ(× hÔ"²šé•©pȾ÷¹o~û°Â«èH ]ÆöF§òaOko†Ü66t®\žwî€J—R÷Nx ¡Ú&Ìǣ܃ÌWQÈÓlßUÜ$v<Çr ‹Ìäa":²¨wƱHÀ„Цoœ q²ÇMæc„sâq¤òü†ÂñÑk&QšQ’u«®•9B5áèùÅUgôøðpñé’â[˜eÖFý${°' ž²„¹Ým>¨>Iì^̽ƒ&¼X’ÔvQx¨a°Ø‡îÁ…Ò*Ï7Ê%¾Ê,Ø@[“#¦)KpÕØbÙ§õàò,q n4+ëkÕÝXðj}ð',õÚidíû7.’/³Èµ ½XQ]‰ ìǰ´™¯rEUoZÉØŒ>…iyA2æð rÓíý[NÕXé²Xÿ`V |ˆk¸Ÿ'êøð&ÐʘQÞ ¡‚G;4Ô¬ gË£Y¶ò›)¤¤2a ."›ðæžO¿R{§ý2p5c/.&÷甹³òt)ia‹‰åý/qû_R¦YÏÛ~ÍsT;åø™ýWÁoÅ%dÇ?:¿¶ê}õ¥BöÙ¿¯Rÿ¼´ëĉ¡‘„€B­¶¥)A.›Ý ¨<˜­'´P¯]¸–“wQÑ·:út&¼vS륑?¤r¥IÇ6ÝUŠ j%FÌ+ç (®ëf2{p´Fï#RŽ_i”UZ‘uš%^“{™²0¦öÈ“¹È—Êñd'îuŠBCäþÈžèÂ,ÎL1+608ŒÑçç{!oA^‰DZFÒ¬J­ Û”Z– ZçäwÐ`)³1õ»¡® Ùü‡B0A%M€’îé˱ô% ù¿Yn£S@à$!Òh”´-íIÙæçP©#HÇz1ÿÙDu¹‚Z&£ÁûýF‹GFð'ÊHºöÄt¸C‰KÍ[Tóû{ã*Åy%q„wM×`׸H±+ð•v¸;#ùáU®ërñ޽!Þ‰gb¡~‚ìˆ&1áÜ®‰ RÐ@‹ý1ÿžlà)k€QçÞ¶'4w( cØÚöܧ©ìeÅÙ¬X7 ض'{\Âf;!ý鼚âŒ'S˜1ûi¨ë£;$'èœú¬œzž>•)4–Æs÷€@&$ ÞÉ%ÃÖÿ;šË·x¬„sœÃ„ð©³xõã“ùl=¿ç›h<‚Ïšp_Žã®2T %4ç}"›òÎQiÍE©¥z+,4n§ÐQˆ\«Qç„^}Ã蟨pPe‡Â´oŸ"h¿‹h.%‹Á¤¬¸1§ÂÐ4‰%âÀâ›åÙ[B)9ÐâtP²ð3qn$ÌÁj)ÝäŰŸâ­ðQoÆï¨wP 76ËqGÎÎRuþ¦¯Ök`?›Ìg; ×ôÁMý®Û¤ B}°ñs—›×##VƒG Á÷ZDµj1 yrN"œØé(Ý«oë-ïË+`,¸âwNò‰Ãõê²A5KiØ€É À¨nÕÉ…ã¾þŒ†&¿]iè5ýñ(Ù¶¸ð•öʘd½Åüid¶ÏDêoÁë´bñÓ:=ûj+æ'ÕÉ*u­äýMͲ/@·ŒmÖ ä:0õR¶+ˆš´NÇ‘$ç›2ž6Y"áÿäcÐ3‚7_ ÄV‰Ïi èô¥¢w;E:¬’s¸Emžš[!jJú¬6¸«kBQw±ˆüþŠ[­Ã* °‡¤·F€9Ñ¥ÃUi›g 쌻õ«µìFäkacÇÇÐÀÞ©t ê«"|#4'j3’‚<2V/ƒ[Òï'@1*Väª5bÁ7PÉÓ Ö+9Ç:pF•£íñ<ÈJþ¶ô2fI1Ü« 0òÅQ,Ïn$I? '7þ}&P¯äHØ«ý‘#ÒJvÊÜeHQâÓ˃v¹o!nù€èåê³A½~SÉ{zAúý9W´5€E§¸: ó 3Ó4ÔªÜõm$ÄÆô‡…ocâ‹”v!2Nv{££HpC°œe÷ÚÒ'Aú¿`AªUøà{BÃì„óùÏ(u•äšsP°Á2à AË ô±Û]ö®½ oO´Ñ3“Cÿz.Ów8äýŒoŠ:M@NG”)aF0¬ö{ONgVHÇÎPÐ+EcÀ:"º…»:cæÑS ªÓÏnoR.oäXÔM+³(íñìSk:×+µ#‚ÞÐ$%€¸p4a>ky8·H‹QËŠ?=PI®Û÷’Ãǰ4¯æ§u[ñ³^¦•„e5Ùÿ¦&í¬(žöudí/jª¶ óìrü$b ¡Þp—xÓêF$¬%×>vÅ–mýñm½Ú·‹¶™©‘™°†?:ºª³Þ2:îC Ç¥meGšÒi˜œ'C¹]xVÐü*èÈv¡õQWa(Le¢óÊÀ,à?|`4Ž%qÅšA¦–š8Œ\XHÙÀAÛQ`¯ã)&|˜Gÿ(DËs‚ ›î\‚ *䛮Ǚ¸™mçå™8B^ !+qðéùx3fĘ`v^”‹«X"ÁuBÛø+uÔnâ,ŠuúéÄéd·Ãþ±(Ì‚ àHºÊDëbøh|šø÷ˆ|ÿ®¹‹4,!ÿ"£Œzssà™Á#/ëIÛ²_Ž'Ï •Á‘9SbzóΠglðö*∂tžÐÖ»,•7=>}^÷VuŒ€ª¨à8°iÄË•àþ U¥ˆ+`Ì1—~ïÎ ²HrZ$ÝÀú†û’ßó/)ÿ…XW0ðàuxú"°³ópôFtœ¯g¥d ¬Fq fÊÎåäâà2½¦71‹ò$/šóç#¤ôÖ¼†#Ÿ#§x×e:æBwÚN .2ÇÝ~Ý'.ÑøÍr«·ls1³[`b#gyzj<_1ã)¸Æ.Zî—³8§‰Ž' ×gé}' ,í^»–àØÍ«´_Ü)ƒh¨Rb寄k H˜@fÁØ–n=† ÊÜzl—}“æ¬Ó¶VPEéd¼¹õ±œBçb€¢^Š¸È¸ñTìèÜ/.CÆ™Áª8¯R¯w—Y²Ê®©¢ç#ûŒ‚™0…Ò˜†l•ç¼£©¹ÄJ'„#Jì³{r±Uô¥¬„{"nn®Ðyî˜ÚÓ‚À/`;yª[´%약8ËÀ ™b­Û/Xa`­X(¾Ä=Mëi,( óºcçX|X/¬Æñ뺛sÚ…þ7䯻mÿ|•)!)à{hçºO$ŠÐÚ=uFØñÚM(S|‚_¹$¶·­%µk ¡ä2§ Ô¯Š4ýÖŠLLÒºCU#À(Ó=ÖSª¯:°?a¤P]iþ%t´I¥NEnü.ÈÝx‘¯t 1?²GŸõ(”ðx#;hWŸ½äiË.Å[4Þ¯Áœ Q—&*­gô¯Ò\wÛEð>–lNVXÛcÞšSx A?üŒ&òêæ¶,Z£Ã¤‚äÛåy*ÍúÛuÐÖÇó Â!¥£—bg9 ;¯ÖGÎPuv±.âôÍTÝñf…›‰àŽR†Àέ¦ ^+ùüÆá™ÇÃ)ðÄÔéÙâ,É‘G vñ‰jˆ"†'Ø…Ÿö´†|öI×ÓEûÿCœÄPù€#ª(¤318üÏ(Ôf³c“sOÒçϹl/+Ĺ YÄ™Ž&ìÚŒÔÂeK<úvù« Yà ôå¸Oä#¶1Û¬Î{B™,NÇ©YÜlŽ«w7XÌÿÒ=;ÕÚR`m(\‡bíúxž 2s F"¾Š©EM€œŠÉ¿ÌÈø S‚¦²!ý zrbÊÖ|íð+±É…(#YbóþƱƒÁ„6Ì[áy¤1äï˜B ñoòrœú„c*q"Õªp²¿ú ·Ò½|«"†‡Ð¹U!ÀGÊ þ¥¡MWçÔè,ý£ÂäîÓ=ó up‡ä¢ÂG¬S£›}?Sþøfúõ†­¥N¨¼r ÒzÄQMJ´:`î'Z¹¾GóÒMgS´®ÊÙnƒ TÅ€D΄ºú áË-ò¤švAÄ© âÚ‘R<Šj†Í¢—Åv·u¢·ï‚9†[ß—Tâ—ý³}ºd½c¹Æ¥±*¶ûË_‚­W‡º¢Þ©„÷ƒ£^RRý¤ïN‹p× ÿ”Ï?h¤nD/Ä7ÆÛ…ŤP$ÊÄ{é³ùŸüÔk˜(e"} ˜&–@ò5Œxç{GW®.‹À¬ˆL ­à´#~GŠ9t % õìŪžÚ™šÿße¨÷O~–gͨ¬t ÏÕR`}’6SÏm0ªÌ;du—`#Ürˆ¿y÷‡DŽ€²Ôüä,µ18t J‘+BÚšÌûO‚Ý<³ŒÀx¢ïNq^]Þé[å|ÍDMð 7eø ±î—ÏÚ1º ¢Ÿ3Ó¾Ý%åYÙh”º:Üʘ^ÁDpûóù\jÑÑ2Zr$\·Ên ÷0ë…í¤Ë„‰@¡|ÈsggÐDû?gÅœøª Åu9“jµþ‘‘H<ÞYuei‰‹a¨øj=Z30» süŒ°º¼0§†€(·ÿòqÎóA‚aÏÎG¬«Óï›lë‘{©v—ÌŸùVUÀ`qʯ¯óæ¢í›Äª¼0>,€´“€”,;òèþ&í«Ì­SÉÀTazÔõÅ„idJ°°hô¾T› Á­m;Áev„7(¸êÞç ãteÒÀåhA‚.;5GÔä.Y¸ˆúGõV6îÞOên\ Ò²‡¡ÝŠƒD²L.VDÇe Ÿ"EÆ/¡LÉRW 7{oÛ­¯úr¬¡ÑD%^”c±æ[þ\ °“÷»Blê¯ýºÇ:œuþZISÆx}O º·6ÛCæˆÊ•`_b'–§D–'x67©éˆQ?hK°lúcâ}ÏRhßP]€íã?æL;Êy0ÂÑVò}íehdLÕáOgF•ؘj±0ÁŒéØ åf6U£ª¼‹×Â[ÂÎn'Þ<êêwLÈ çx’HÇÉ/Mœvër‰tPw÷°lôŸ£-®zp‘5<ëµ)ùÐ3kX¼bS•äÈ×y«–°Õ¼MÙ]òíaeâ4ŽªJ ÅäRøÆ´ô\J‰êÏ¢O¡®; ¡½]Œ‚;¸5–ͱE)dã¸r(Ð"ª›:¼¹’{mŠ ðüW@=ÜV8ÁÕ9‘é—ä°ˆQ†Hrðèu³…æB›';õÄ+(í¶ ¬'¹«J Ë88ýî=1G¹Á<ôoÒòI*Df$?§‹4¤¶¬e`§¿@t ?’Š Z㪻±ŸTšéº)à1ôr¿ðC q׌O…&ëKB[rh»¨=hr_WPâ<®IsHFh'v‘ê?¨`$’p|GØ„¸.,Å«Dyoýñ(Vb%¥hô¨ûÎŪ®sLÀ|y²8€h |õ{H;MJ$,•oo˜îô Aœ½¨à¤+Ä í£]â2¬Éö–MgÙ€\f¿tœžý섺ĶšÚòž"7<Õ”ûmO_DȺ]œËr C)M1|C£5ðrê\ä&šÜ8‹„Q`‘ï#-I’Í)æà‡²VD¢Äßiœ'¶[¥e6·½y²†Ñ¬¯É¬î0)¦+4Õî|T¼½öxŸïaŸº¼“‚£(t™³£Mâšmƒß5~ÔߢFRwD<õF79bD¼Ê†iöw¬á±¦KÁâ'xlÒPTQ™>Š@gr£/‚`',¥Ï_Ź9ò&ü¸IAVú‰Ýæ§’ç­tµˆ¥£©€\LQëo’»ŒÃæÃÆ^:Ii[VÚüU3}÷$-Íú …ªhïé¾ëÊ~>¿Õ7Ч¯gy¡ÍÄDØRÑÎÕ¼©0Ö(•e˜ý€Ëf“—+¶¤}þÞÍBûï,æÿzµuÈ]€-"g)ÌËÍ]ð‡öÍ<‹ £rÇg–:<9{Z¶z:‡<è£Ü.pSòÕ)»Ænž‚H+êÝTæMЪÆ,û|zCeÓ¸l8€ãìÖs¬¯ÉÄÄWobQ¬Þ9DáÑÑ£rv°öÅdgÑ/ßY+ƒÁ¸kOfJÌÜÝ+óþ €>VáÌÔL2 Rò?>¿ùõÁ®Nr úý7ôÄBs=z=qÃ= Áä"¶—ÃYüvo_®çHF탠I%ü —,ÝnÁvìdIôýM 2[ØŸ·éßÈiõ[•ó„äX©vôÔj7#æDsù‚þ¡L‹ANLËœ›Œ$ÍÛÆÊµu뿊†€[„Ï4A³•‘ðñ@¿ÑVÜÚÉY³Åeó„àXÇnìô‰ƒŒúXÌ:*Þ,°G%ÖYjøb²9‹fb*ÙC…ÓõcÏapd`ØÈP°Š °“o…Ìe?jY§áU–'ÒMiµòžÊazÑ[·“rëR¢±°8µ!g¶E¾É2f æyæg?ÍeƒäcÈ“™[- é/N£?Ûkü÷¬¦ü* áÕ±ÌîôE cÔ©!Å£œðËð<ò!<¤› Â]°÷³#‡+±wâZwa«Ð)æ³ ^"Z Ë'Ud+fшåÒ†½‘$³xòRÚ.24=^ä³êŒ„f7˜šDæª þ¿èñ1 ©<š{Ù–OdûÉ$Ó…Ä&¨ÝûkRÔs@H[ l?É罩Ϟ_ga& íØjm¸b?’™žz¡»®c>3¿iNÿHÁ}{ÉEùqq­ñ ›™Ë|êƒÆ®ȧìKá"BØ“9¡6% *+ftÝ!=¿¹lHŽ#Œ_ZÑIzY6þµuõz9Ø@«Ä=õ*Üs£óë—óÿ1ö÷?ê :¸KáåQ­°Ö!’ôõù\“ªÀéiNw¸‘i>cøà0)0h-‡ûÆ" Pµ…r39GH‡gÚ3íI]齘GÂ^ŸÆq¤Å)ÖbÔ]ÛIKf ì¤Ò¤å…°ÿ$—ª÷oz%ìû¶ïw`|ø-'Ń] ¿€ÅAÇצÐGh@¢Òvp½°KaÜw.dˆPOêž–ºVñGeÆ8¥£ÐÿRž`_oÈüï ÒïæóãÏhÞ@)ßULlLfHÅÖE¨¶;8$S“–†RYH²øwÀofp ®gŠ“TË5åLdzæ±yžÂHõæ™®s•Ѓ¢ö¯=äU~ž¥¤ÌójôY2o ³(Ì1.yMß;3ø-¤·Á‚ÿØ1`Ÿƒ³ùˆZÒŸš`GǬ¡#ÖgIygoFíØ¡¼ìÌ@³0ržä`BˆØñh„ûr ®ÿ™ƒWOÇ›+o}x',Â妺\b+b´|Â5uÜ1‡O­²fD¡-?¶pìl5ÃYÜíEn ÿÃËèè]¶Ö8;Ò· =Ñ( XQ- €äö3àJ"þ!€í熳EF¿ÎÓ—À>;îXøÌu¶JëÃg£Q^ày ³ ŸC¡Ílšºähˆ[j,ÇÑÞ1jÔ`ŽXLzYg"¯òzË‹õTOͨ—÷± ¬ÎKÏJt_k¶Wý=H¤'‚Ô^öß»yI¬" nS#HeþÆ„5ä}°(žuqð!'£ØíiÓãuÀoQÎb÷ïŠuÀmügy͸ƒ¸DP¢ÐC¢= (àfuùØksÒš\~9®Ó•]3"]Þn­¶ 9ØÉ$SWœTßÕ/“õ+,÷’â~„»l%Ù äö=ÖX vÜ¿ÓýY’H h,-G6C«Ý5lŸ¤†ÔÁÊÒüËÙJ‚+ˆÛÒÅQù+ý²Ó õEŽKsŽÌ€Iã6ljÇëEK±#{ 9p¨w÷ÿfÁ<EÿŸ>BH#òîõ˜XESX­ÖcQÀ?”tÂoFÌ㤠‹ÃÎÛëí:?ܯjå2«ë8¯{ÍQQàOÄ$­g¼¤G¶Þ- ;+øó×Ü»% ÍÅípQO›fkcL¿xQ1è ê‹á­¶£À÷C¬KaÍbŠ p(£X¢NÄ¥mÒdSÓÖ—+1ºÎa,Gl½`¥2/g>6ò¡žùÿ·þ„ù»ŸU7Ú`"WÕ½U'Ë.¦¦QW¦¼½\ ÞV‰Ii¦ˆnZªT…ÉŠ)¹{7ÜfÝçfÜZŸÀÕñÑ›)Ë«MA Ôi­§ ©´EDJ]ÀT#Ù׫ Ÿ´KªÂmQv¡É"Ϧ…Ú—ÐȰd@ ³.Åõn/r+×[“í}M¨fîGê˜FÌ;:{*=CrÒ6>îx‘Ú‘õ{‡bôt?”mqu«DÁ¿ëõ¨FWjÒ;ØCÈ6Ý='<™D%õ1n‡"HB_E,€7“kÝÉRa‰Ìjù³z”¾Û°2êD¥5 ÍhÓÛlÿã›ÄzÛ˜B­uÝg<å³vž„Ö;;<³ þ ÌRä[™œèû’9‰‘ ysÈ,Óop—úöÒUZbX„0{èÏsYÀ9» ð4ø‰f‚Æúo/éŽNbàÃ>vµ œŠÍª/zmÃoAûæ=îyÅ­M) ]ºùìý¶]qrÊ®t7I*Y®â­Mòes`ˆ|Ÿp¢ÓÄCák×q’Ö9zHl¢5UkfNëlŒ®ôÒD0Æeû{+´Ú@÷Fmoë%˜#/!å³GýýS2ì¼Â©¢ý…®ÒŠYe ^îÌ~Z]ŒŒ(–ãÏj¹sx™Vû¢)ôü :†æÓM‘ÁƒÆuæcá?¹ÙãAíZ3¹CQë¥OTGâ1’Ó$úd“¯˜ø­.Ë ßñ°þS8˜qDN}éøÊÂ'Í@ƹïuÏQP9w ƒíÙ˜DM“žµyQ¬o;§¹E›“=Ź\ÔÏ¢7òGöRïæ/Ö%M'Í娉ÄÁXþ:Ó—öCV±.¾ ÈH1‹ûòÝ=…# O¡ ϸî+¼EU µW^ûQ‰à”w[©Iî©&Ië‰ád÷Û„‘é9¼ÏƒƒK±5ÅhOÿ–€¼«Ç¬"S ½é °s}9¹*§ñè\ {öª7ˆìîÝl,„© ãýý+šÁ —!Ÿš¾Ú®ƒ"ÓÄ¥äLôùPjsA±˜e-Õj*Œ±ò˜É,Vý¾$º}¡án3ë±ðw g7Œ¡¸bé.^ØI¸Ÿ¸â2hX܆ŒIûW?†0B–¿ÔÛ¤½Õùx âV=^ñ%>ñ›WŽOü&€üJz5éþèÞ%;ëªñÛ[åçíTGàyÇ0ëŸüéÛÐnÀðºë“àݯŽÍ¬lS¼Œb’y‰º“§@}5“»š á_Èck%_j06ƒþB6Ötv© ©ž ¦j‰‘•ùfd@@XéÇâþšÒǵT3×}%^ÚRq'[ÓˆþV¦A7Cqn›pq‚¦ÀÕ—PÊpA¿¼naÌÆx æ—5òŠ‹‰ÄìáñÀ™µÔ6Ì)õÞ.Μ§Î1'Ã+å×ÄE­®Ïá Õ·Œù’ìÝ Q?cMÙ‚ ˜øAÓóõ½©ãeO¶d߇Eáw ¾(¾¤º=j}1£p0x[þH(ø‹JUŠû'õøzŸhˆ¸YÇSÕŽû!2„°Q‡m 2«¹l v&ÙW ÁÁ¨Ô/ŠñØ6x´…z?uwz¥~ Ë&岇œª 0¡Àßödìèè.|íK]êÉúé©«çø¨.x!Iíh u@Ú ¼wY™k„xXøŽâiùˤª>R:ªm‰øÃ}#D\ûou9©V=}ÌùÓÇ<14ù˜ ×÷H{eŒ¤ê EËŠ§Ø³ˆ4Ñðûfi]—‹+7-˜Hj¨ï£ah‹J.Å*VMˆ\¤IÖ'FŽíµ5Ïé¥Y÷¸—“@þk·ë‹©] [KYzö;ýñY×påöÒÅ–¥íVš³MóÍÇñ¾1Äx‘pà½7=;ø»aîT¶º¡£Óþ©#tEâ^*®ÞY pÅ­>ˆ¼[vÐZTC—?ÌLÒ§ ß¿ÎÑ:ߨ2ä‚ÿ{*\‡(é…Õ˜¬œ`\½P¼ÝXT˜®>èÍÑÀ‘w6âvÄÔªß~þkÂî\Í ÔžE ¡Üœƒ·8#_í‹æ ßc¡a\+æäãò}zþœÎÞ}µ(¾IcóreÞ™^÷“› Ÿ‹¼K+¿‹qŠ@}Ö “f˜×mWÕëXOê_–Ï53”õuÜÒ·\¡“ø”¬Ñh©Y8dþD£HRHuØÉ BG釩hÖÊ’ô*ñ|†—{Õj5жkA¿L;*P0Û;†Ó[¹…øÝ#+ñ©­çODÎR"}‰¶ÚÕa¯êì(}î2ýím":‚†ÀйÌz*ýØæ(Y—Z?r7l*ñ`Û±#!6!WùB[8»RÞ¯%¡‚Ñýa¿®P\ɾô›FF¢®˜9çIÙô| ë£0…•‘0Ü;‰U¸8”Zä^s¬XJTÌûiAžaÞ¥0ŽR#•¾á4P#–æ2T )ûTæ·™RwÀAÎd׊eƒíÞTèØuó^‡ c&Rð‘«ZN@»p‚6"ñetêNÇ.»ÿ‰V8ð¢AþAór€ ößïø:íø)[û-SB”I8õ–Û,MMòc«Zaúk¨o“BQ¹£»ÑÈðF5E„ã"ÞnîëÔg6$@ÌáúL¬½èA´¸ŸRä<‚o(wžè+“9.ÂÝ¡Çx<êyÏØë^DÓ“…d0>(k*i^²³Yjõ~^OþÚ+|÷Z­·lÚ¯”5ÙLø'·­²¸=ý†w”ÿ5À‚ö.ql ö¨vXÿÁ• ‚$4û?Æoh¸edO:ÂV¶ág—:~ªˆCF~Ö¨¼>26Öô甾«—Ä«ä¹ò榨E˜£Ë_E@&¬¹s†Pdí§ 9`L¹\:ØQlºLRª'âÆfc<۵KYeüôü%Eθp­*½@ß”KÑg¨N¢ü|ýùïÐr]£ÞÓ"CÎÄö:“æ›°æÀ©^¹›I£D­­‘Â;^Š`WåõöÅY‰ 3CÁ¹n†øOê…Ê \¾+Ýÿ¥ÎPØŠCÿÅy¸q+åÜŸkøÔö·§ç×°{¹öQ¬îÿë ß?wçÚ×6ÈÊd é‰‡4~¹”Ú Zò–¹ S[ud¡®.1(DÁí§¤ªþœ1€µ¬?ÄB¤›ÚÅ©ä 'Ç¿3Ó2€õÒ$ªù×Ïæ(֑DZ:ðÈ|³Ðó'IPÆ—%MH‹°cöœ~qP "Ï9X›œx€Ú`’G€€JÉöÚó¢™Ù Ú ê Vø¨qªöñ&«º‹'мù±øm6μ(l‰¿á™Y™;•HTå*gTþ¤mý颊"ÉÉk üŲB@`¨ãbãT\6¶Y›Ã#CmW€®ÉQUˆÝ ù!OÍF÷íÒY‘v)û¬ÅF­?¨®â¦|N’Ɇê¾Yý²³%†Õ€:£:Gh 9R¤t7:å×:Lð5Bbñõ: ÊÅðqíë˜Zu²<’¼oJö¿`€4û¸žç/Ž Bå{6£ÿà€£¼&w]p³]+UèVÇq¯$—w ´äÙÆ•UR$Ê–p°Ä0|qÝ?sp3](#Âq‡…/DpÒ\ÜZi½™©8-ƒQ‘#‰ ”À´4¯à(yýïÒ/¢#‚ xþ ‹àBuÂyðŸ^ì@ð.–ã—w©ðfÀ(¾ïÜÁ;$·«SÆfø›ía¬öM埤Fž¼Ö‹g•hž/ç¢+„ó,=žP=3Ïp õ뇾Äke»˜÷¦%j}<‹Þ'+/›+•Q½€ŽÊÒËÂ6ÀýÔiYvÝ`¸´¹·ûêÓLB¯°FÉÎ{ëcÍ®Ê'÷¦¥¿Ö"Ù”¯(àXÆ;îÀppŒ5SÍë33JCÏ)MU–ÇóåýÔí~p!öyš$±²+E*nù–Äà†„½ÑÆVþþ‰-Íð`TõD§œ)iïõ¤ÐÈÏzƒætÞÏô<ÌÙ~Â_yÆêöâ5ÜJdFÅúà]½èkI º ù„²è|áF7 û("ò’®ê_µÍfÓÉ·CTïz¬ÁuU²l_‰ÓÜ`îéIx¸øðz‰Mï»á†Œ±%Zú`h#âÌæÛö; ý¯O{Š9„’š²´Eaä‘D01”=J ÿŽä1—¦ÛšŽÄ߀C%Gi!9-ˆÌFÙÍ’èØ¯ o.µ?Ž.ˆIåÒÁÀ-%¹Lïô¿Ê› .ïÌàÔè)Œ"VÛèä;và8ì†QŸ¿‘¨É`.Ðßé„\ÐMBÙÙÿçôáXò³*«¥~Â#<Êcø¸J¨áºp‚&ìNx¥©~÷‚ê§Œƒx`}­§–ªÏ$´’§¤Žj&E“¬\ëwÈ4½ØYRx™Î¬pY çX°¬s!òkÃQÛî"¨Š™¤4䯻WÔƒå@ÒŸËjôó‚ç1yŒ1µ#¶û:)ðãÔÅ~  âžlN–í=­Å게 /ü? Jw‚Ÿ9Ep¼¾±nùmø'r»Ì%€â«ÂöÿË¥]uÊlª› jP¡·h“1À»Ù× õJI4»#^*Ýd=Î.“ÎâN*æqÎTKõ3ÁÌŽ5÷Ù„6Æ÷ñ¤¿©Å!Ö‘8M«Ñmì!,‡BŒ £~qõÚðgTfAø“¥ãMÍÔã)Zbå$âqyìa!2h|ÙUUÜ–ŽÎ¡á"TíÇHBìÙÖÉB™­&LâC•Òµ÷/̆̽é)¾dv¾a†â¶Æžk\ilýG–cÿyR8Ê*pg•œ&¶ç¹Œã§±jq+>†±ô¶i^R<8¾½]lzŸ®×ÏU:êWôA Ý@m±±ã…(©}‹Y»®áEGø¶UæØ~°&É™­Úû ÂF±¬·8N…Ý]‡©”+œI'­ýŽÜƒ!Ž•K‡)”n€Q#·©tf}BKêåOCM’Öº¯jÖúÇ›š—‘ÚpÃÜÓwÄVvdS¤ý~Žê/Á´÷XŽä1 ”[küѼ/Ø“ùËy„S¨—ÓMÀÊ#A]ýJÔRí‘T™¬ŽÚ, Ä ƒ‹ú]"÷ºŽö æ øÊ™ûƒò³ô6ÚÇFA¿§ßƒ„E|{ƒlô\y}…Ô–Añ±‹BúÿÎñ™Qôþ¥¥Øéª?€ØNÎO4Øæe¤%°¹¯Ku¢PÞ&ÚÏ—õ_ŸÕ—8|ËkbÝ*í2›åL•ŽÊ!¯ÿ;9Ƶ´ ô)¥B3ªÞ«W¸P‹å%Qèîµÿ"{b<ÆP¨áeYÈ€:´ëfKœzB„Omá‚MêÔcAÊ›ÑV²Báy:dP[½g9oÁȬ%ÌM™ã>îf¢z)6ƒ¬ÏTª˜ŠäÜ"40qxmùÆ…wz–ѯH0x#$làÄøö!¼¶Þ«,?:X¾iß v.éC&_Åawñ%ÈÈ0©]Y7ûª‹¿ÙWÃfè^ø³®ã5i-ùŽ",žN ß9J,;r!<^`ù®þÁèÄ|‚ÒOåß³‰Î‘2û®ØÜßt mj]c´õ‰•›Ó^â KÎ`ŠÔår´ÿàU”[¥ˆW¶7DE±èÛ-ø'öe±‘Bz™˜¯´§ßO‰˜ìAJ®Ã™$¦òO?“µ &+‰'Õž@©™i´5ˆt×Ö2ÛuÞŸëjB«Èl˜·P»P‡g­HªÆA[N•˜÷kÓ@’!¼Ý…ˆœRÎÉ‘ ±ëv×·×Úxm6\ZU«À‘ͼûØŒ/ˆ ²Îð“,3^·Þ@Fäƒ+…Â’‡ÎÅVm °= !¸M([N®ÇW^òAët5,ÎêÊU÷윓l#¹júHQgü.¦cçFìcaé’ÞþµHÆµÈø†ê¥Î¾õ¿éù–oK1²?ßÜp’MIÃïÔ2䟨ó¹GÀ"øõê­M¢`‘@ºÛZʹEiÚò±ò5ŽlÔ” r¦ó£þÚ®ÇP¡ö+ë³Î㸉!kˆ2-åø묩“Ý”X޼)!·A€P éX‡ö@Y{Yvnúü)Üdö7%—uÜßËË‚ãÀ×´#1ùÁÅ!² ‚àÿîKŠÒNÈžÃÉr=ŒÊá/›¥<Ä”e2ysGVޏ™ŽTì´v~;ýäô²Ù!8Ÿ!èÿ†JÁÊ^—×8¡Õ—@e™Ð䌾ˆÕ’W³¿ 8þÐD1%²€GÎÎÌË|Í40l£ÑÏu¦rdlMÜ×F]H˜ßAüH&Óc'»‚c‘áF~‘ä×ûN;†z îq9ÞÎFtÉïÅÎýÊ,tõÑ~+uÀ(ÿÀ­ DëNˆ ìÉbê }9¤<•jpdÒÈÎÜh'€O£¯YQuy Z Õ:“a!«¥wøé âòÈðËDö5E6ø ›ŒÄW¾I°3X-„Óý(:Ñ ·˜‹Óm¸»a÷Q÷ÛŽ²•úµBÆ6ób% d¶n£ã'¨h?ŒŸá j™æ i¶ä‹5ïø{ycœ«eÊ™<³t­¾Ø•E 'f3¶L³9×–×±::¢/Ê3÷IYݾ6ÐWOíƒáÓ‚»¿~¡2iåZ†å/wqƒ;r 8Â~`6²»ß㙸)Û×° KÓ†j:eQ<ÍPc¬ô.dC‘ ¥ %S+¸¢k­ 7"qìÝQq;õ¡5íÝ‚àuE©_–RÒ¼Óº`,á¡o'I=‘3>»—4³aø€WÙÐVûv )S÷ÔY\ûÇrø.™LcƒƒyØPw”Š®ãÁioL!–ätL/Ty²# „D«i8Ø úB! J;´ÓîæB ûþeª¶l× 'ÁL+ë¸MúF4þûQ=bRµž“&ЧTÛ: Ö2›u!iF„IõbybÒÖó€3ûŸ^úcÐn-/ß©Þx;Â~ôfÖU§1ðif) p$6‡2A=­j.vWÂ'”‹Òê)”Ú!?ÚóÉßd~‹u¯tw‹e°G¯õÜ£ud®L\7þ7³¾Z„B…øòÛÓqW´WžÕ:Ķó a /¹MJ½IBE| Èô1ìë·éí.œÀð•fÖ²1`ÿH«ÀB €;E×™0¦kßâ~ùžŒTáìž%%Hšqé­ØÔüÔŽä¾­3È¤Ý à?Ÿ‚Ð6A»(w$Û]>Ê€ã?£§¶½ÜŠºÉºòuÝô  ¨U-‚§5ýZifî„òšû™G$éôR­'iµ,ƒêè†=]}z…þV”¨.)ú?|ÑìS’';HfGÎ"?'ûè‹ÚqQáh‹]Í‘I"»åuü¥HXº9™zÐÂå­J´KR¦°x‚¢1Ïͽ:T~v`lÌàï0¡J—Õˬ]»2ú=œ›„ô€ç·í_rê7Ç'̓-ÓWöüSÏ–M:Ä 9IÈXÑàMSvãÿÕT¥†øNæÈ#„sSÀ«ôÉBm6² éˆÚ“]ÙÉÔ2%_ÀÛ×ü=: ˜øy öXµµ+¸«fñ#K£;“i¬mæ©AäŽ[ìQ õÉU^×4êÛùã¿Õ×øM÷v1j`к¢C}zŒWöÑÔ¬öCåXpÕaÐX,ƒCô*b´'LÌ ™u”McÔ¡ïüûnµïw^ïí »J±’¤|p6ªê+Ô¬%}…®"XËSíþ^pàïÐê:b¦Tn®ݶ±‡.z@Ô|c"ØõU¡)®W] ëgBŸ´ùGiP~´rT±¯øæ²&îaóÒZ8×@´81³!Å^ðd;¥¾4 ¶J†PßÕ1©è;qÂý° Ì‹P”ßdÅbí;9£Õ‡J6G2µN"‡ñg²j¶$ѱ‚ðËÌ0íÔLÏNtV0îò}ë—?,èë¨jú9j ønÈfaú÷Üñ8Ç‘²>Þ?…—Ú¼Ç Í…%ù*ÅÇõÆH'*3˜lí³¼cò—Õò§Yÿƒ¤û¾ªmxÔøŒu•&åZOœÆœïâlIÔ즘˜TLù„X´HÏjÇ)´I÷'ˆä2To0¾ëÌö1ÔÆ"7ô, x„f ´¾^ÜÙ&"LöЄ9'”®ŽZ XÐjJJà“ôÄ~­û„Nì(RŠ}Í ØX¼Ý±:-í¡Á4KøÃgœ8èœV`è·äˉèÕ%lª3$B`q9scw\û_ñX ÎæNÇëV‰Z4å!3‰T¥$¿f¦ÖE ¨àñJ ôŠÖÚõd‘1¦ jåGØTÐÀwõ’2òh5öëX–ƒ'áð‹©—xªN ö²Ÿ†ò»R3ˆ‚ÖǸæ€8ËÌOáùÏJƒ½YQW9c'ã6ÿMlŒE_Ï´÷v`H=Ð¥]Éžž•(F¨ÎÁ€Çˆ¾Í}/£€pAaièT‚UG `L$%¥À3a !—‰ ÝÂØÄÎz¢FöMuç1'i£"+[aÐ"ÀÅ£¥è«T4’\ìªÐ2³Cwa·1¿Šœ WõH2ËÓD`«¡õ:© `ïpÛNêÌ“„ ZÿÐO)¾¬9LÂz¤óþ¤–·#¡ @G…€8ݵÎüp:oÁrˇÒ[ì$Ê“c…ÈULáCî÷ˈщ ¾2ó¥MúXVZï·+åÃãÔZÛM°Á<öªêŠ#1>k5}EÄó²á‡ÌAŠnüÎýÇñ«çh0õ}ܨ@”bVåØUi-Mô ›4´È)YûÌÇW#†îrƒ=¯rÚÑ«2x ‡^½8s÷ÁímËsž§åB³ Y‡Å“©zЦdW0#B‹~Ÿ9šÀfHV¼¾ôÏÌ´æ`l¹ûÅÍøde˰¼ìZ €ˆü^“ˆÜwá:k‘^º¦…=«³Æ\°ÞKeT_jÖ‡øB#a¡‹GâëÎ ÖТ¿êo<2{Øžb„(wEÙYðxóîÐó¯üTT]ð+Ù¼8©Lß_¬c‰n|\ŒcœFyw.&?Õ,›úœ˜Ý‰dsâ?Èž!{²‰ß¨ _•«æ…šO“ð\Yø44`©'+ÌjßÛQ ­æ¯±2s¾×-?Ý‘®¨Oô·+ ¤\ªÂ1êüéð‚€‰€ÔJÓ~ŠJ¢ÔÓ-¸˜„ˆ$l³&—J¦ZHžôHÉjIªõ%ƒgwõ„ÔŸˆûòÞ|-ÀfÇ·~+Êä €zÇòħ»—˜½?&€QQ –§ËiÈÚ« Iu•Ñ%Ýqn3ò)«y+â)ò;òï‡Z E2GÈð®vÆáWåx¨RÆï”JOÉ¿*23!GfXãS‹Ô`LÊzߤ'1L›{±UÕò¡ßßnœµ÷†º»6iMƒr½ÿçuCXy@ïq$nµþm¤l è'¨üWGwß:jߨËwZóºfãþ&¼°«Ë–)!Ï™n,›æÅ¢½¦ŽØAßì€û;ƒ3Gaf_ÕQµÔuTù”\ÏCÏÛH{P¦ŽBØ«í¶Å¢Þ¿ém´FÚd¹ˆ3,âÐY«Mo+oj†e÷p‹ˆã„^ô}¤¿«K{Û‰¬…wi«èSüÜ@³ŸÒ}§UÒÿ¿§\y×n àN>BŒ:®Î|îÚˆ!¯crî)¹Ùó¬@ÿSºú/÷df©ïxÆÝœïü“,™}Ï.|„°"öñµJYÚA„ªP{µŸ#„7ÕDìÓ.ZWõä©ÏoÑp¯Þ\‹V7¸NÂBqÿ j®&’€–¿G›0wQ­qñŽêÙWpËàØ·MY•1N_0±÷Ú`oAf’Y´2wšì9¼·7*ñÌÌÚxlJ2±pÕv˜ÔmÛ«­R4ÌÑMϬèiŽºØä“jð:ïÀ—[OÚdº'tÓ/¾Ýˆ8Tb}›åÖ§Ì<ò}È÷·ànÏ0 ]Ä[n½ÜŒ¶“„Ê[1óÂ%‰nìˆ÷i²ÅÛä`ØÇ¿óT²Ç[åŠüÔ“ç9éfxʧÅüB½Ôíß˽<ÖF€…©>Óîiå²È.ÿñï17d¦ƒ­pä—>GRi…ëÂTk,¤fífú-ìï:"Ø£–«àK‚{F_XÇPÈдçÙ±Øoo®«ý´peb«[Ò¾£ -vzQ†5ø[IÅÞ…Á^ÝõDŒ3Öñ}0ò“íx-_ Ö*±|´¹õ M"9ýx ‰Èü~*Ät€5nŠét«]+–%R¼cÔŸÞ·¸²$ܯ֔¶È;Î Þá»ë@êb¹ÉÁ¨ZŸ;zˇº.Ÿ÷£ä.Ÿsºzb]C¸ÁÄHQë—8ðGÔõ1êcŸ“Ú®ÍÇ\ÒŸ•äŸÙÙéÒ* ª/OÕßênÁðä¬?æ„UX¤ 2PÜ4&uÂUyKv‡š}KŒ ~UxÇD²êmã©_½gÞƒð/„7Nêç7L÷­ÄtÙ2|kµG¸R¨ªNc¶iܵGÖ(Ü4zŵ Q$Že;Ì"q€%ÄE(½ŒE‡ë8³KªÑs4tˆ¼nˆk êwN5‘kEÑm.B˜”ÊVË câ¯KMÁ;íæÜq ÑÔ”>ë—²¨ ¸…rm˜-„@t{s¼Qäß§ÆeFå ìj§Õ%`à'@«mIiEËÃW˜+¦o¯\@ÌŽoä,0‚_ ^ý9p ²U:Fóð~/ñŒ`2©äÛÇ;{y^xº³jµ} ¼@‹©f5µ >Ýu– 8ÿePò~Y'S)o$ÕK•‘püŒ±£o^›C²=ì˜Íã¯ÈöF‡Ô Ísû¶ [¥S¸Ý´}šßíÇ2c_kÉ-fO±ìú ÜÙAȬ¡GÚ-ÿUxXÉæ­ëú*¨ýý¹³ª0¯Ï7꾩®Š23µîu­cmWut/qªÌá»üŽˆÐÈ?òJaQm" »—çJ‰‹gãì•{‹ž^d¿$èq=žÈÔ­™}Ö)¯Á›áIIRK•¯9YG鍿qòF¼¹„ÿºSóHOM‚ÉŒ.ÖVƒSý)úXÞD'$£#]@Ѻì:«ô¹=¶O©ì¶ÿð@'†Š·ÿ0±Ã´òÊ‘'è=YákÚ!é’AÉ3B»ÿƒ}ó ils@qöMªAÀøÿ½ÔXqÅP Ãøï1Ϧl©I?c€ƒ‡“ð»:ÛÝø^Á-™BFÓ}”C««xDaß^«Klm…-¸Bš\èókþ‘µ´Š›”z<_φu‘âÝŸdY*¢Ñ0ò4hbCWƒÊ)É&¸èÕ~‰(¥¯ˆzoT+ðÎ3-MÐ÷³§ë‡Ñ5ŽÝ(Îí½o<,‘4 U ÌsêÝ ãe¹3%#ŸÅé[$cªÈ›ÓDæY~@ȪŽí^) ^¤½4­?t76B'®P>TìiÏ’a +`"Êžm.Ãålp§ªLy”ÕvÐìr†Ÿ5íAž"6bÈÞ&òœ~ÄCsTz¸––7ø³"k ðT‰—g~I‰”4*å÷Ç?*1ë’Ö‡ ^@'¸ƒíú´Äý™Þ&)­bñµ£æPq³@¼~oà™1èê°s&gÄ®ë¹aµíÅõKÖÒlþ -í[$m_ò~Ò—±Õ·ÎÝ&ÞìDDOEå.{øß²Ñ Kúå{x|äžÚcðû…Sîßú.¤Hݧ¶ ùzƒŠ—M¸Žª–$ ·Ä|ÅF{`•²v&U}Ëö@vçN^ã9¶QjAãkäü;mÆýÓ·ø»¯d 7)xZû_:]—½mת#îºTr+©3剓Z*Ê\–ðbç”»©’DÙ ƒøö™3 „P–‹0ã4„Ó» C§+o¨™ÃÎK‹ªöóyÿ—‚RðÑàNVbôùÔÙÜž d’±óxˆÓÖÍ™ÓUæÑÚ»÷¯QÖ¢¼mœ^%[žÒÓ*rAsáäZ -ëxË–ƒ­ÒˆD¤ÒóáF·Âr£Ê ò"òÅ•µý•·-z€Cô2„µmŽÙ(lþM×íƒöºÌà G‚äoþÉt} å ï”t¿{Îø!ážfë ÏMK:äƒÃØšÐ9ê*KÌ(,¥\T¼öUÌb¸"¼T#ð#,BeÒ}*Ü »9b5·í‹¥¶`.G¼—–w6òõ» ô. ›ôEæ˜ãôEïÉìJ/io÷a} ùûeˆ t"m…|¬Ùðƒ²Œ0MÞjÔý4š¸—²îißâQIåéG¬)t³%„DÏyã]áòªhÎÀ†”µ 8 ø[Ѻ–ò:¨/1oº œ![¼!‰±tÀq§­"Ÿo®(T¶Ô —w]º&3ÉAÖf)½ƒŠÏSZfFFäC \u9a%ô@:²¡z§W™ÜÉï ¨øç ^¹·âgn—$q> ¾æ'<Æ~Ñ@a¸#É^ä¬SH¹nØ55Ãÿ s<*¦ f Äö” ©rF4Øý“uǼ^A9ßÕàyëõù…7çΦ;–…ŠH*Åïû•áƒw¦)ù¾{ ±­³´ØNe‹S$ê‡3dã.úÖîìÄÊòéIþÔ@Q¨Ä¼çˆ dk`1PƵ„E.Ã’xmŸpѱ¹ FÈa*»ç-¢*L3ê[úbð„ä4‚|viánI/æ‡äûò’}ÿzÇu–-DOgÝðc£)çvi'n·´|$ç– tºsÊ€¡‚&‘vÈýdP‰Ï+R ‹ÿû´Êö×å¼î“臣K]8{’\arû“À–õÆ!§«É:Ó?U°Ûÿ–ÓU(ãþ˜ýcá äJQ_{ýJ&çÖ·Šv¢¥€sã†TÎT‰žõÁ9$„ùRއàWS¼kø6Œ ‚ çgLþ³ÆFÅé&UÅl(óL:ä*ÆýbbtñÆì°ÒîøHŠá̸;6¦>؉‘8„gµ4+ï[»!œC˜ö·XEZxu÷pŒ–<ž1scá¬2®…P}²^°g6?GiãL á€X–móbï-ŽéƒêNþC’©ä¬G‹çVäï q¦†QWmh0ýLÉÑ}è¦n+ÉPë/¢+yޱËÁ¥$‰ÚC#¤ÃvÔÌåØ5×¼ƒô;j?ƒá@ç¦ìÒTR«Æ}-MÀåÑÇ}ïøa‰*@ª•,!}–û+ØcN€ÇÓJ|ˆ¨ßÓË„Ï#ž8€ŒŒ¶€8µê€™ÅÌ|ëQ¸‰Ëƒ­º’¶'£i}<¿ñwòÐTÜkØL}gR1{×ó1·‹£¿aX<Æz­æyOêÌ‘4ù ¾ótFÔŽ€{S1 P¶ÖlN47G˜E¥i`·ÎækˆÔ» ú|Y‚À¹**ç AÑIë «d!¤Vn UZÇZ\þ0ß=' vJ¡÷kdVë~çUçd^Ó& (l”vUg{ôû£_/¿:ÿ]ö>1³gß  láÝÏ …¢² ͱaËøíFCU(:ˆµ¤hþ²%“»:CGùeDUѪÔ:€N¹<Û1‚dw'£ª\(5žÝà5ŒPÌuB凞ÀB›@‰CÊ-âFz'À$K=v# ¢]ùô<œâaðè±kÄp®–áVÛZÀ½GãFF˜êÖíÉf͸©\ìUß`3’¤oË_RÊq$f-DœÖ+‘IV’Ù?PC*ÿSÒ+“¦†þ÷ÏYDZ4±ëÞÞ,$Áá:£Å õWÓ1Ÿ3z#‹ÓÄŽ_ôåUc$aHIµÀíÞ¹¡øÐŠÃ­˜W´ïe1¦7ÁÔeC x†>ÃíL…ÂÝAø)`dL¿òDmÕŽz×úloŒ±Md0~v(UÆCµW´±y?PaSñ¶‚Wöœ­&|ií‘_¿¤µ-Ûz䩜)ÍŽÌáèûTÎôp™÷ %›¡g_†¶ŒÃ$"¤ "jΘ̒ÔÈgûý6ð]Ê2Ü‚¦“,Ššüè î9 ¬ñ„yMÉûi>Õ•½êÓ4cR*z0˜ž7`¥šc´°Ób>üã÷å˸(ÛÊÒÜV$ÇjŸ   ¡Æ®ï]DÐ#€ ô)¦ 2Ÿ‡™Õ¯ä¶]ñ!\çò´QD%/§¹¡îéœ/b%ÚmÈäµDŸ@§ â´‚ÿðÎV„<Úswì?ËCÆ­ÂÞ` ˆ[ÄF$欜=‰Ç߷Чɣ/ùç¥:6H%T¡¯Ã¬¤^¯ç…á )ÌËFzîýRm[8œÊ …³ðŽšDê |Ù‚ø‰ÓàŽ4Û_À)°è†þO÷ bþ}â¬ù£_ å° &™wù~¾HfÉû$šµéëq[%M¦»‹¬I¨ŒŒ½ÙcNH¬åXdõ¶yc·ëU,ü`øÝŒ‘>æAÉhF¶Ñõçø‡•ÙW„;?‚¯«c®3àgÄ"ƒ­í°GXrîJhÑc’©E¹r>z*i‡I¤p·^)ɽ£†þàâÄÃ/ㆅ͹~؈ê*€“Ð0ìÎa—É‘(¹5ÇkzO+RmÄðYKi—néôñÎÛå‚p²4Øí-ÁÞ¨,ë ¯Ÿrë7|@ljU”È|ÕV^’‡¬}fa39¸9C=§ÌEcOø…Zr­Bq¼ÇK¿³B °Æ@Õ0AçŸmfÙĶžþþÄÙÔîßTm…‘q¢qmŠý¬áHâÍ{vA åѤI6¤ j®áïz~WL„+N¯N¿ÛK¶°ø©>º~‡š7d³‚?<«²õ¾lÞ⊠φNlIeX÷$¦‡é{”!Ñù´F§f ïz§´Îü›{k³ŒÇBÜc¹*P(a =iP$cÌÐôrü>úBv¯¾Lò!²LHIÐh;Ü,æhÑ}MŠÄïöoéœåLéDS-¬„L¹¡»î 0z1Lš)´ðì5æU$‰½=®欰¯xHk>9\ö“&SÚÍ0­Îå% `f³CþGé}Ÿ[S@(îè¹µænuC•ø¡Š’YIÛf9 ßrFÞxVÏ¢ÓË«`l«™1Â&è¡"³~Òÿ GJªÃàÓ··m³Q+9XGÜíT2»wx •^6ž®¸k t~†ÄÔwô}Òˆ]ÑùÓ$JÀV{ÝÉKÀaÒõå–)Ö˜5›ÛÇ#mÏéAÁŠXmê óü¯Œ_‚ßQ-½—øP†MTc-õ­fûÝ’µÁÕf\'bð¡¿žå-öëSÐåù<õ›Êò£%û…@]‘ ëÝOÿ:8É}ljhVô+XÆ$_i&·M!€cb5pJ©²t„uèoˆÉú†ÃßcÚ¼yá /•w¦m0.Üô¿Æ×å¢ñýåo_ŠLW k-Œ6(ŠX¤³§/Ën?‹ˆCŠ[Hس‰%9]ë)sô”/ ztb]}‘ÔÕªÆÈ¶'EW[ʾFfPƒz‘ãAìR/*î§?[÷oà.ï‡fÊ A`}|%¡‘;Gœ1£LÞ³Á˜üÜdç!ðÆ…œ=¼Ãb*r5=|ú¸ö6èÉn°0Iüž:ð#TÅ)”84«rFß4ê…_æQzÎâfÝF,•¤gj ˆŒsu÷—¯1€¶Miĺ:ÕoôÿN½Ñœ‡á+j N{&ƒ(VOøöh=ÐxÜu {Åïe…ýj­þ¿Ï½k{â41!ÈhÁȹ/-Ž>D]ÂaS–ùèïY1¾½±û‘gy0ߎ‡õ®s<0™¨Z…dÜ ±±,²Âž{¹“¯œ©hEþ]†q­à÷ _K‘Ú)Ï+¼u#0›ƒœã:~o»zˆD¹EÿDúW¢ý·½¼I<2ÔVîüÍ›Êu—ìÅl¨8B\Ê xV^Aæ9¡ó9:”Àq|J*ZUø~Q aÍ„àJˆªC…p,y=ÿ‘ò–÷á‹€Ò³§<ÕЕ¾¬«Ýä§àÇt¸É~kˆdX3LF2Ö¤÷f\B5ʾTQ…ýmÀäí‰~z\á´F%ïž]ì_B©m¶Jº9Fé§äö;ÉÅ´Ý=w¿ÌZa“B(3ÊK¨7„Gô&@$­muosÛ>díp+<+lêmÄxS™7<òñ è(«NÑšö P›7 [õQ õ÷åaY/lµ~gÓŒ³†9";”¢âÓê E¥IÄòp8™ £ÀmHAxc™BÂíiiìzUО“ªÀ·±éZÆ‘µ„þÇ—•¶”_"Ä¢8æ1GƒñÀñ^ o ÷ 2„n?­Ù×P¹‚ê»-Öæmÿølâ;MèæýÀ 6T MœgŸÞ‡àŽm1¨¹¯ñ7=>¹>Oï÷7Ž÷vù¯õÃ%Þá1=߯ƒXwÜm8XBÆ<Èw]º@¼2m¶(µæ|~—º àò˜ç•Rã<ô  ˯¢”œ¨–)¥Hâ¤Âã±â°LBfŠ:wPŒCÜ÷À«NGk€þv@©‡ÅýXÊ!ëí õbn}RìRß=kpĬ;ºbÅD/ ¾Jî ÒŸ¨C)šùlPýÑÎyl¼¬ÚõeÜ\4È,Ê™vD&ûð Ô®ï+0ù~ÉÍ2Ãø¿lÕ úK2¤M·Ì‡B¼UQ$@”—LEØêŸÖyߺ5ÕfÖ=€qU ­b½Ã|¬;à`Êå cTù7ÂÝÒJ":T>(—D×dU×so¤GÔú­ÐâíÖÆ[Q7‘…¯ÜØ=ˆó°¼ë–:é9D·|Ø ’oïlé0ŸAi.²Brá êQLîý¨#›ÉÀà#Ú°Ü‚5—%\`¹GL]Ü!(_’¡A%ÙÓh™¸—((s)bhâíVÍäÿڪĪ=24É/'/f²þ«ŒEYÖ³V^œ¿Â¶Yt›þûw†ç«gWÞ‡' 6†U13Fehµ{8)m¸Ã"î¸ÆCþ'lå:ÜÀ!…LÍùæhjw EÕ™ðóãbH 7o]þäöŸ²\6Öù½ûa¤#àøÄt"¨Â0â<šDœ4pÝÐÃ(È‹$$9XˆÎõÚQ Qs] Z.».Ì^´Å©NÛ±c×| y_3óøÓï~A§TÅì†8ÞAØq”ÿ%ç#Áu`1ÊYpɆ†8:eø¼¤Þz©—݉¿ (3Ý"Y4±¡ß îuÌàSäEð¹Ç´|¥ì²ŒºþƒàíÌÁ³ˆÛ§Õ¿­¥4{:…Ö˜ËÚ»!…1ŒõR3.ÉVjÓÎc FÉ,¡çl¹äÛ·Ú":BPcEäá$¨ÄÝõäYØ’eÏh6…®8J´½cðÈܨM#m–`ᵠͬ­ÚõùM©ûû5׉mPÃ>Ütë'¨QI˵èBx,1“%8¸Ä4eÆ{ QňÑïu2å¤ý_ eFkN½Û»ôeà­ €Ð‚ÂrTrBëål 5åÏ9~˜w„ìžv@n~pbÒ“¢Ø&¬°õÄ÷€7ÂÕÿ³áý™dºSþ¥¸Ð稫@Ás©Š- ­±½9ÜØjÆ«¬œò“›`?—/)Jû ¼,?A†ßVdv‡GnÃ_\J.Äé,ê­ùúä%cC\ôsSV>ç—8ϤÙyÃE6¢¶þÄU{jG5:"ó6gƒA_â|eØ9Û›ÈüL)žC,ÅíAz¨¨}¢Kì/ò-ÏŠžFÊnvv œ ÞZ OÍããƒD&!·?°Ô&¨Œ¢ûCEKÜX4ÑØOƒät• 5NÆ ¯÷`{ÁB«mŸçå!¡§H0cP:éÀþky5Þ$=ŒdT2  *´°”ø³Œ–û(3Dž#Íñýº”rXüwBiû¤PÏõÜHÚî6û+ÃÃÄÖ2Ǩ¯»9˜G¹¯@3¶Ôú߇¸{Šçæ“OÂ/9>%!­ß¬é,Š0¦Û±]—qO.§4ÄïCsò”¨д~‘®¶¼A¾à8¶=`ÉúTL“M{âT÷HZ窓<ރɽѰae¤.lðq*µ•ó±|R&ƒ9_ûºÇf;~uï÷D#w=uL çƒÑüñ²C½Ðwcõ)`«WH6t„KGV…XDy ((ÂoÞê‘¥÷)—ƒšÎ¥TVNC8Ò8Õ°Ù;«_Ù£”»ôʽUç˜Å\©:tNjÕ=Ú†‡q3”^=hK2ÀÕíÐÕê÷*²óS;Á,fvNö»˜eÐÉQ^­»{kJæf¬VPxdÑ'ÿ”78öpø—b†qÑ9iŽ‚’IýïØmìªcÝÜÛ´š^Ûé"º‡ €p"ñœ½,A¢ð‘E-ô{Ï:ô%ò° FeÕ\º€Fì´ŠÂÏrš€O!É=KÜ,’Íyz ¨úå4Š>ï1w‚vg½¥aK³ÝÔ×Pò¼•°´bÑÆÎWÁdãQ×0´o=Ôë—‚ûl%c†­ÒÈfxÖY.”z §Â…Û¥ßS¨GS~G:£pÊ«Óý”' –Q;#û¤àµvN2ý/Ó/ž¯î¡ŒØc!×{‡çýìù  ËÁ¸¶¦1æ‘ùÒanãùà¨vÎ&Ì`6®°VhRœuÝÚ| >máRÝd–å±{™ñ£j䢄L½lC¿|¤˜˜ÝìNÏóÃõïz,—M,wr@ý0¬YÒDâ· lˆsÀÙüÞ×=4ê(•e¥@ «ã:ÄÅO<‡Èã2Ñÿ–pcºËzcçÕÒeu=”ëOæˆgN°ãgsˆmPñ‡Æ«÷ÿ(­oØí(½¡µ Â4ƒÝhˆ•6W”ð8e˽ÁL@žµÇ§Qä%øZm 2;ÅiR¥±XÍË¥Û·e3‹¨Ex©÷áéùß!ÕÙ]kÆ'O/½ºùJ›“.:mf'œró©Üó/TÐÞ!7‰?—C2…}6·Jw%ÈâÀX Ò¯ìitÍGCò…²Ó1Ãè»Gá5xlJiù²Ïär0g‡º×¯æK²;Òã¶3ì}ÅÕ‚{nüÚjjí, Áþ„‡³ IŸOŽ”‹‰©-óí¶9úÞ†+ÇžÞü%+–*lúáþ ]Má¸@%5_©¦ ±kð%K ÿWÏÆÿ}ÀPRS6üï Â.ì–pÊÛáaë©Jõ³¼ˆñ÷TŠø]´LbuîE8XÍ̘3E0/c¢¨ÙÐýÛeÌÒ…Ô«1'Jo*O\4~™#¨vîœ~ù¶WCNÛ8~â«?ä`$ã®|d!(Å‘{ä [—ÊúÌW» þeúJ+fhº,¤sý‹bm ˆ{ûa›•¢gdÅV¯¥ý‰¨‰Ùs«Ô£¯ð½¡ž¬-ñÀå´S™R,ÀŠ¢ùµ>^Ì€ãR€/C €yõ˱&l°öR1Š!þdkŽz©„ …Ï­Ÿ¿pñouÉ«Šò]³/Òá‘l~†©™%1˜ÃÌ}ÈCPäÏiH¥g;²„v[îp¶Ñ|ÛnÚLÏ¿²˜ÔÆÔC}ê£!¤3çŒðätÍ~ýWô|±JfÑ—2[Ê€·Œ! Í–Èös¸À²=®UÅͧI-F2&WÕ—&=ÚuèKb™%aiçÊ {òzødL­qýð—ÈŒ€0ØÕž·x6ZÛ—[³SÄ_%¦JL³öA¯o‰–±HR‡p¨ÒÉΦǽÒôÝ#cÑ‹V}y"ÃR¬XÉ#4?ÌÉ1¤ßgEò´ú86ŒÏ½XgÒtbùFœïKÀË“m¥'@²y·n‹«»®óÕòž=Sp¦LåA…¢o]á¢;'†©ÝÁ‘GOõèu#=þ'SRuqêt+"pÖ&f$í¿@Énü¥ôíÝçÁb.¤ä0> ÇÓZ¥k[ÉAN ÷JOΤÂIÎìBafE2_¯ÎjÎÔ‡{x›ñ£gÍï”+b”­ÙůïgíÌ ‘šB f‚ïÆÕÏ-Å̃€2@c¡R·¾Ou)a´{m {áÊòPáâ¨:PùC¾›€ ?½™^˜Ðƒ ~Œ%aYÎÎ ÁHôà •´˜MŠWHt~%+Pµ†Liõ'ZiäcÙÖ‚† ZCÊ*H2qØ,7€QýÓ×å’$55 1DQˆäcäe’«ª ¢”½|š-4HËù ÕuãÞþ¥$ú_Á•xW´QÙWu8‡<É ¸¿·añ*‘–n ¼&¸‰ãɉ»Õ‡µˆñ§rn¨Â@3ž\ӾʣÁ,‰ÏKéŽJcªJouÇ…3Ñ\ž˜ô>_·@™±YpÌl‘ÓR“åà>¿Úm“RüI§DgY oà©Qî ç"һΈÿksm«ÞÖÞ‰ˆ«â:«¤.è23;·[jFÞOPC"ÑŒ†‡»ÞÅÌÉC`’A¼Åf(fð49pà³B=P’„ºúyéÙ™ãòŒ0 9ÓËÔP‹kC>l°î›v{ôçƒÛûHú%Ód§¥„¤¾?¹¥Vqc&€‰¬û:|”LótãÁsÑ%©]n.e_¸ÖZæO貇wêT®=ç=ÉX¯ýÎî<ð(î/K7_"e@™býX–+‹×fÖÑ„ÑW~`ÚÎy·nQYûKÊÖ,|fbõ3I+Ý™vÑ`lÚ’8ê6Gœü‰?A‹ÉÏT˜Ž|B˜k*Úh,ýt¬¼³d•n‚x Óódj§¦/#ªòÐjÃÒ¿Ó“’b»@îõš¢ïjbžÓáPÕ=¸†nè"yp•KŽrm¦Znnô߯Ü,ã·íUúv£ ˆþ~_ŒGﻫ¯ÚD¤cƒ«e’Ÿ]jWÁƒÅÃe"ÈÑ©påç JTøµ ya¢<§ûWˆuà6_û¢”?••¿ƒ¨nÁÚÛ,ê“‚þ'’Eûe¨ËâÄðâEa’‹hžEkó#ÄØh"×d5X­/÷‡ƒœRa,¯®Ètù~‰zêÚ)‰­H «§@ªüæ«G&‹8­ŸxÀý7YsÜHpÕ{zµ¿¿Ÿ”»ª‘̼ùaÛlÞÅ FÂJˆŽW'Äì4«?µ…÷ñG,WYò¿í Xkhó(–C¯á¥ @X€KoD†Ÿšq_ÅÎd@«¦^؇Ù[=ÌÊ{U»tuŸë9,ÆH°­iôí£E€þn0’ÈÄ™«ÎsÕÊ=B±®$X2àÆI­™.d, äþ¥ìõsGÏ?µ5~±­ÑÙWEbhW¸ˆ6qvÊUÁéÔ8rA,»™‹z~£G#õÝèÚK-àÿXõVÚ[PÛ3õ‚¡F '3ž£î2¼¸[âC–…g«¹c—uì¾mó¦XÌÀZ—\#Dµ\öF÷úþ"ÞbÝ”²,dqQ7d[!îÖHÒbéeTÁ„(ß@¬ûM÷ÀÁ›€Ì Ä{JÀK¨7]ûŠ$ó]_ÙÐf8è­ÇÕUÞ€‡s£%p6³‚*ÜY‘¿HiÁ=u™SÙàýì¨îò½‘$ ÞùÖç‡yø·&€E^ÿ$OÌ(ÌOa/¹´x áZ P†o®ó¢™ óÌžçøp™omn€ù%]·×Oú'TS$Ó°EÔ…Ôl™Ñ§¢Âzúу¿ðÆØ„+0_ÉÔEªrŒ¿x‹! ðw,í½îú˜²xM­W¨÷‚)pQ¥›eÝñ0«³•ÎGo_¾4¥S™mêíÜ‘² £TÜï¡m ÃîÖP€‡ÈßW »M¶D¦–â´|ŽÊÞn¹:ºibR‹øb?~±Äç!qõ¶‚‹œtýÇ# GiÈææS/3¹ut.®y{£κœünýD»Ó}š}HŸØ¬ó×3ŸÌ/8×Aì&{¾Ê/f´a}Ï(‡:hÄplÕ:5›µ•ÂÛ¿²j±ìáÀ$ŒT™{”úœÃÁIû­³Økʼ+ ¹Ý 3m½€ÈcD]—%)Zº™#€vǨ`­’¶Kà2\™,Öò’¥Üñ[y/ç!YެµäØAû½¹ ¥ƒ4'mPR†Uó ¹öÖ¸-“w¦³É1FÕ'Âý«Üw/`ì :îÊd&ZvŸ"ÙÆßQ¹T9®G"§é»¤ô&Wè©ÆÐÎý¬\’>0 ‹YZsurveillance/vignettes/surveillance.Rnw0000644000175100001440000006716113174706302020176 0ustar hornikusers%\VignetteIndexEntry{Getting started with outbreak detection} \documentclass[a4paper,11pt]{article} \usepackage[T1]{fontenc} \usepackage{graphicx} \usepackage{natbib} \bibliographystyle{apalike} \usepackage{lmodern} \usepackage{amsmath} \usepackage{amsfonts,amssymb} \newcommand{\pkg}[1]{{\bfseries #1}} \newcommand{\surveillance}{\pkg{surveillance}} \usepackage{hyperref} \hypersetup{ pdfauthor = {Michael H\"ohle and Andrea Riebler and Michaela Paul}, pdftitle = {Getting started with outbreak detection}, pdfsubject = {R package 'surveillance'} } \title{Getting started with outbreak detection} \author{ Michael H{\"o}hle\thanks{Author of correspondance: Department of Statistics, University of Munich, Ludwigstr.\ 33, 80539 M{\"u}nchen, Germany, Email: \texttt{hoehle@stat.uni-muenchen.de}} , Andrea Riebler and Michaela Paul\\ Department of Statistics\\ University of Munich\\ Germany } \date{17 November 2007} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Sweave %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage{Sweave} %Put all in another directory \SweaveOpts{prefix.string=plots/surveillance, width=9, height=4.5} \setkeys{Gin}{width=1\textwidth} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Initial R code %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% <>= library("surveillance") options(SweaveHooks=list(fig=function() par(mar=c(4,4,2,0)+.5))) options(width=70) set.seed(1234) ## create directory for plots dir.create("plots", showWarnings=FALSE) ###################################################################### #Do we need to compute or can we just fetch results ###################################################################### CACHEFILE <- "surveillance-cache.RData" compute <- !file.exists(CACHEFILE) message("Doing computations: ", compute) if(!compute) load(CACHEFILE) @ \begin{document} \fbox{\vbox{\small \noindent\textbf{Disclaimer}: This vignette reflects package state at version 0.9-7 and is hence somewhat outdated. New functionality has been added to the package: this includes various endemic-epidemic modelling frameworks for surveillance data (\texttt{hhh4}, \texttt{twinSIR}, and \texttt{twinstim}), as well as more outbreak detection methods (\texttt{glrnb}, \texttt{boda}, and \texttt{farringtonFlexible}). These new features are described in detail in \citet{meyer.etal2014} and \citet{salmon.etal2014}, respectively. %and corresponding vignettes are included in the package; %see \texttt{vignette(package = "surveillance")} for an overview. Note in particular that use of the new \texttt{S4} class \texttt{sts} instead of \texttt{disProg} is encouraged to encapsulate time series data. }} {\let\newpage\relax\maketitle} \begin{abstract} \noindent This document gives an introduction to the \textsf{R} package \surveillance\ containing tools for outbreak detection in routinely collected surveillance data. The package contains an implementation of the procedures described by~\citet{stroup89}, \citet{farrington96} and the system used at the Robert Koch Institute, Germany. For evaluation purposes, the package contains example data sets and functionality to generate surveillance data by simulation. To compare the algorithms, benchmark numbers like sensitivity, specificity, and detection delay can be computed for a set of time series. Being an open-source package it should be easy to integrate new algorithms; as an example of this process, a simple Bayesian surveillance algorithm is described, implemented and evaluated.\\ \noindent{\bf Keywords:} infectious disease, monitoring, aberrations, outbreak, time series of counts. \end{abstract} \newpage \section{Introduction}\label{sec:intro} Public health authorities have in an attempt to meet the threats of infectious diseases to society created comprehensive mechanisms for the collection of disease data. As a consequence, the abundance of data has demanded the development of automated algorithms for the detection of abnormalities. Typically, such an algorithm monitors a univariate time series of counts using a combination of heuristic methods and statistical modelling. Prominent examples of surveillance algorithms are the work by~\citet{stroup89} and~\citet{farrington96}. A comprehensive survey of outbreak detection methods can be found in~\citep{farrington2003}. The R-package \texttt{surveillance} was written with the aim of providing a test-bench for surveillance algorithms. From the Comprehensive R Archive Network (CRAN) the package can be downloaded together with its source code. It allows users to test new algorithms and compare their results with those of standard surveillance methods. A few real world outbreak datasets are included together with mechanisms for simulating surveillance data. With the package at hand, comparisons like the one described by~\citet{hutwagner2005} should be easy to conduct. The purpose of this document is to illustrate the basic functionality of the package with R-code examples. Section~\ref{sec:data} contains a description of the data format used to store surveillance data, mentions the built-in datasets and illustrates how to create new datasets by simulation. Section~\ref{sec:algo} contains a short description of how to use the surveillance algorithms and illustrate the results. Further information on the individual functions can be found on the corresponding help pages of the package. \section{Surveillance Data}\label{sec:data} Denote by $\{y_t\>;t=1,\ldots,n\}$ the time series of counts representing the surveillance data. Because such data typically are collected on a weekly basis, we shall also use the alternative notation $\{y_{i:j}\}$ with $j=\{1,\ldots,52\}$ being the week number in year $i=\{-b,\ldots,-1,0\}$. That way the years are indexed such that most current year has index zero. For evaluation of the outbreak detection algorithms it is also possible for each week to store -- if known -- whether there was an outbreak that week. The resulting multivariate series $\{(y_t,x_t)\>; t=1,\ldots,n\}$ is in \texttt{surveillance} given by an object of class \texttt{disProg} (disease progress), which is basically a \texttt{list} containing two vectors: the observed number of counts and a boolean vector \texttt{state} indicating whether there was an outbreak that week. A number of time series are contained in the package (see \texttt{data(package="surveillance")}), mainly originating from the SurvStat@RKI database at \url{https://survstat.rki.de/} maintained by the Robert Koch Institute, Germany~\citep{survstat}. For example the object \texttt{k1} describes Kryptosporidosis surveillance data for the German federal state Baden-W\"{u}rttemberg 2001-2005. The peak in 2001 is due to an outbreak of Kryptosporidosis among a group of army-soldiers in boot-camp~\citep{bulletin3901}. In \surveillance\ the \texttt{readData} function is used to bring the time series on \texttt{disProg} form. The SurvStat@RKI database uses a 53 weeks a year format; therefore a conversion with \texttt{correct53to52} is necessary. <>= data(k1) plot(k1,main="Kryptosporidiosis in BW 2001-2005") @ For evaluation purposes it is also of interest to generate surveillance data using simulation. The package contains functionality to generate surveillance data containing point-source like outbreaks, for example with a Salmonella serovar. The model is a Hidden Markov Model (HMM) where a binary state $X_t, t=1,\ldots,n$, denotes whether there was an outbreak and $Y_t$ is the number of observed counts, see Figure~\ref{fig:hmm}. \begin{figure}[htb] \centering \includegraphics[width=.75\textwidth]{surveillance-hmm} \caption{The Hidden Markov Model} \label{fig:hmm} \end{figure} The state $X_t$ is a homogenous Markov chain with transition matrix \begin{center} \begin{tabular}{c|cc} $X_t\backslash X_{t+1}$ & 0 & 1\\ \hline $0$ & $p$ & $1 - p$ \\ $1$ & $1 - r$ & $r$ \end{tabular} \end{center} Hence $1-p$ is the probability to switch to an outbreak state and $1-r$ is the probability that $X_t=1$ is followed by $X_{t+1}=1$. Furthermore, the observation $Y_t$ is Poisson-distributed with log-link mean depending on a seasonal effect and time trend, i.e.\ \[ \log \mu_t = A \cdot \sin \, (\omega \cdot (t + \varphi)) + \alpha + \beta t. \] In case of an outbreak $(X_t=1)$ the mean increases with a value of $K$, altogether \begin{equation}\label{eq:hmm} Y_t \sim \operatorname{Po}(\mu_t + K \cdot X_t). \end{equation} The model in (\ref{eq:hmm}) corresponds to a single-source, common-vehicle outbreak, where the length of an outbreak is controlled by the transition probability $r$. The daily numbers of outbreak-cases are simply independently Poisson distributed with mean $K$. A physiologically better motivated alternative could be to operate with a stochastic incubation time (e.g.\ log-normal or gamma distributed) for each individual exposed to the source, which results in a temporal diffusion of the peak. The advantage of (\ref{eq:hmm}) is that estimation can be done by a generalized linear model (GLM) using $X_t$ as covariate and that it allows for an easy definition of a correctly identified outbreak: each $X_t=1$ has to be identified. More advanced setups would require more involved definitions of an outbreak, e.g.\ as a connected series of time instances, where the number of outbreak cases is greater than zero. Care is then required in defining what a correctly identified outbreak for time-wise overlapping outbreaks means. In \surveillance\ the function \verb+sim.pointSource+ is used to simulate such a point-source epidemic; the result is an object of class \verb+disProg+. \label{ex:sts} <>= sts <- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) plot(sts) @ \section{Surveillance Algorithms}\label{sec:algo} Surveillance data often exhibit strong seasonality, therefore most surveillance algorithms only use a set of so called \emph{reference values} as basis for drawing conclusions. Let $y_{0:t}$ be the number of cases of the current week (denoted week $t$ in year $0$), $b$ the number of years to go back in time and $w$ the number of weeks around $t$ to include from those previous years. For the year zero we use $w_0$ as the number of previous weeks to include -- typically $w_0=w$. Altogether the set of reference values is thus defined to be \[ R(w,w_0,b) = \left(\bigcup\limits_{i=1}^b\bigcup\limits_{j=\,-w}^w y_{-i:t+j}\right) \cup \left(\bigcup_{k=-w_0}^{-1} y_{0:t+k}\right) \] Note that the number of cases of the current week is not part of $R(w,w_0,b)$. A surveillance algorithm is a procedure using the reference values to create a prediction $\hat{y}_{0:t}$ for the current week. This prediction is then compared with the observed $y_{0:t}$: if the observed number of cases is much higher than the predicted number, the current week is flagged for further investigations. In order to do surveillance for time $0:t$ an important concern is the choice of $b$ and $w$. Values as far back as time $-b:t-w$ contribute to $R(w,w_0,b)$ and thus have to exist in the observed time series. Currently, we have implemented four different type of algorithms in \surveillance. The Centers for Disease Control and Prevention (CDC) method~\citep{stroup89}, the Communicable Disease Surveillance Centre (CDSC) method~\citep{farrington96}, the method used at the Robert Koch Institute (RKI), Germany~\citep{altmann2003}, and a Bayesian approach documented in~\citet{riebler2004}. A detailed description of each method is beyond the scope of this note, but to give an idea of the framework the Bayesian approach developed in~\citet{riebler2004} is presented: Within a Bayesian framework, quantiles of the predictive posterior distribution are used as a measure for defining alarm thresholds. The model assumes that the reference values are identically and independently Poisson distributed with parameter $\lambda$ and a Gamma-distribution is used as Prior distribution for $\lambda$. The reference values are defined to be $R_{\text{Bayes}}= R(w,w_0,b) = \{y_1, \ldots, y_{n}\}$ and $y_{0:t}$ is the value we are trying to predict. Thus, $\lambda \sim \text{Ga}(\alpha, \beta)$ and $y_i|\lambda \sim \text{Po}(\lambda)$, $i = 1,\ldots,{n}$. Standard derivations show that the posterior distribution is \begin{equation*} \lambda|y_1, \ldots, y_{n} \sim \text{Ga}(\alpha + \sum_{i=1}^{n} y_i, \beta + n). \end{equation*} Computing the predictive distribution \begin{equation*} f(y_{0:t}|y_1,\ldots,y_{n}) = \int\limits^\infty_0{f(y_{0:t}|\lambda)\, f(\lambda|y_1,\ldots,y_{n})}\, d\lambda \end{equation*} we get the Poisson-Gamma-distribution \begin{equation*} y_{0:t}|y_1,\ldots,y_{n} \sim \text{PoGa}(\alpha + \sum_{i=1}^{n} y_i, \beta + n), \end{equation*} which is a generalization of the negative Binomial distribution, i.e.\ \[ y_{0:t}|y_1,\ldots,y_{n} \sim \text{NegBin}(\alpha + \sum_{i=1}^{n} y_i, \tfrac{\beta + n}{\beta + n + 1}). \] Using the Jeffrey's Prior $\text{Ga}(\tfrac{1}{2}, 0)$ as non-informative Prior distribution for $\lambda$ the parameters of the negative Binomial distribution are \begin{align*} \alpha + \sum_{i=1}^{n} y_i &= \frac{1}{2} + \sum_{y_{i:j} \in R_{\text{Bayes}}}\!\! y_{i:j} \quad % \intertext{and} \quad\text{and}\quad \frac{\beta + n}{\beta + n + 1} = \frac{|R_{\text{Bayes}}|}{|R_{\text{Bayes}}| + 1}. \end{align*} Using a quantile-parameter $\alpha$, the smallest value $y_\alpha$ is computed, so that \begin{equation*} P(y \leq y_\alpha) \geq 1-\alpha. \end{equation*} Now \begin{equation*} A_{0:t} = I(y_{0:t} \geq y_\alpha), \end{equation*} i.e. if $y_{0:t}\geq y_\alpha$ the current week is flagged as an alarm. As an example, the \verb+Bayes1+ method uses the last six weeks as reference values, i.e.\ $R(w,w_0,b)=(6,6,0)$, and is applied to the \texttt{k1} dataset with $\alpha=0.01$ as follows. <>= k1.b660 <- algo.bayes(k1, control = list(range = 27:192, b = 0, w = 6, alpha = 0.01)) plot(k1.b660, disease = "k1", firstweek = 1, startyear = 2001) @ Several extensions of this simple Bayesian approach are imaginable, for example the inane over-dispersion of the data could be modeled by using a negative-binomial distribution, time trends and mechanisms to correct for past outbreaks could be integrated, but all at the cost of non-standard inference for the predictive distribution. Here simulation based methods like Markov Chain Monte Carlo or heuristic approximations have to be used to obtain the required alarm thresholds. In general, the \verb+surveillance+ package makes it easy to add additional algorithms -- also those not based on reference values -- by using the existing implementations as starting point. The following call uses the CDC and Farrington procedure on the simulated time series \verb+sts+ from page~\pageref{ex:sts}. Note that the CDC procedure operates with four-week aggregated data -- to better compare the upper bound value, the aggregated number of counts for each week are shown as circles in the plot. <>= cntrl <- list(range=300:400,m=1,w=3,b=5,alpha=0.01) sts.cdc <- algo.cdc(sts, control = cntrl) sts.farrington <- algo.farrington(sts, control = cntrl) @ <>= if (compute) { <> } @ <>= par(mfcol=c(1,2)) plot(sts.cdc, legend.opts=NULL) plot(sts.farrington, legend.opts=NULL) @ Typically, one is interested in evaluating the performance of the various surveillance algorithms. An easy way is to look at the sensitivity and specificity of the procedure -- a correct identification of an outbreak is defined as follows: if the algorithm raises an alarm for time $t$, i.e.\ $A_t=1$ and $X_t=1$ we have a correct classification, if $A_t=1$ and $X_t=0$ we have a false-positive, etc. In case of more involved outbreak models, where an outbreak lasts for more than one week, a correct identification could be if at least one of the outbreak weeks is correctly identified, see e.g.\ \citet{hutwagner2005}. To compute various performance scores the function \verb+algo.quality+ can be used on a \verb+SurvRes+ object. <<>>= print(algo.quality(k1.b660)) @ This computes the number of false positives, true negatives, false negatives, the sensitivity and the specificity. Furthermore, \texttt{dist} is defined as \[ \sqrt{(Spec-1)^2 + (Sens - 1)^2}, \] that is the distance to the optimal point $(1,1)$, which serves as a heuristic way of combining sensitivity and specificity into a single score. Of course, weighted versions are also imaginable. Finally, \texttt{lag} is the average number of weeks between the first of a consecutive number of $X_t=1$'s (i.e.\ an outbreak) and the first alarm raised by the algorithm. To compare the results of several algorithms on a single time series we declare a list of control objects -- each containing the name and settings of the algorithm we want to apply to the data. <>= control = list( list(funcName = "rki1"), list(funcName = "rki2"), list(funcName = "rki3"), list(funcName = "bayes1"), list(funcName = "bayes2"), list(funcName = "bayes3"), list(funcName = "cdc",alpha=0.05), list(funcName = "farrington",alpha=0.05)) control <- lapply(control,function(ctrl) { ctrl$range <- 300:400;return(ctrl)}) @ % In the above, \texttt{rki1}, \texttt{rki2} and \texttt{rki3} are three methods with reference values $R_\text{rki1}(6,6,0)$, $R_\text{rki2}(6,6,1)$ and $R_\text{rki3}(4,0,2)$ all called with $\alpha=0.05$. The methods \texttt{bayes1}-\texttt{bayes3} is the Bayesian algorithm using the same setup of reference values. The CDC Method is special, since it operates on aggregated four-week blocks. To make everything comparable a common $\alpha=0.05$ level is used for all algorithms. All algorithms in \texttt{control} are applied to \texttt{sts} using: <>= algo.compare(algo.call(sts, control = control)) @ <>= if (compute) { acall <- algo.call(sts, control = control) } print(algo.compare(acall), digits = 3) @ A test on a set of time series can be done as follows. Firstly, a list containing 10 simulated time series is created. Secondly, all the algorithms specified in the \texttt{control} object are applied to each series. Finally the results for the 10 series are combined in one result matrix. <>= #Create 10 series ten <- lapply(1:10,function(x) { sim.pointSource(p = 0.975, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7)}) @ <>= #Do surveillance on all 10, get results as list ten.surv <- lapply(ten,function(ts) { algo.compare(algo.call(ts,control=control)) }) @ <>= if (compute) { <> } @ <>= #Average results algo.summary(ten.surv) @ <>= print(algo.summary(ten.surv), digits = 3) @ A similar procedure can be applied when evaluating the 14 surveillance series drawn from SurvStat@RKI~\citep{survstat}. A problem is however, that the series after conversion to 52 weeks/year are of length 209 weeks. This is insufficient to apply e.g.\ the CDC algorithm. To conduct the comparison on as large a dataset as possible the following trick is used: The function \texttt{enlargeData} replicates the requested \texttt{range} and inserts it before the original data, after which the evaluation can be done on all 209 values. <>= #Update range in each - cyclic continuation range = (2*4*52) + 1:length(k1$observed) control <- lapply(control,function(cntrl) { cntrl$range=range;return(cntrl)}) #Outbreaks outbrks <- c("m1", "m2", "m3", "m4", "m5", "q1_nrwh", "q2", "s1", "s2", "s3", "k1", "n1", "n2", "h1_nrwrp") #Load and enlarge data. outbrks <- lapply(outbrks,function(name) { #Load with data eval(substitute(data(name),list(name=name))) enlargeData(get(name),range=1:(4*52),times=2) }) #Apply function to one one.survstat.surv <- function(outbrk) { algo.compare(algo.call(outbrk,control=control)) } @ <>= algo.summary(lapply(outbrks,one.survstat.surv)) @ <>= if (compute) { res.survstat <- algo.summary(lapply(outbrks,one.survstat.surv)) } print(res.survstat, digits=3) @ In both this study and the earlier simulation study the Bayesian approach seems to do quite well. However, the extent of the comparisons do not make allowance for any more supported statements. Consult the work of~\citet{riebler2004} for a more thorough comparison using simulation studies. \section{Multivariate Surveillance} As of version 0.9-2 \surveillance\ supports the visualization of multivariate time series of counts. An (multivariate) object of class \texttt{disProg} contains matrices with the observed number of counts and the respective state chains, where each column represents an individual time series. Additional elements of the \texttt{disProg}-object are a neighbourhood matrix and a matrix with population counts. However, only modelling of the time series as by~\citet{held-etal-2005} is currently available. In the near future the surveillance algorithms will also be extended to handle these multivariate data. For example, consider the weekly counts of new measles cases for each ``Kreis'' (area) of the administrative district ``Weser-Ems'' in Lower Saxony, Germany, in 2001 and 2002~\citep{survstat}. Figure~\ref{fig:map} shows a map of the $m=15$ areas. The corresponding $m \times m$ neighbourhood matrix has elements 1 if two areas share a common border and is 0 otherwise. \begin{figure}[htb] \centering \setkeys{Gin}{width=0.5\textwidth} <>= data("measlesWeserEms") par(mar=c(0,0,0,0)) plot(measlesWeserEms@map[-c(1,5),], col=grey.colors(15,start=0.4,end=1)) text(coordinates(measlesWeserEms@map[-c(1,5),]), labels=row.names(measlesWeserEms@map)[-c(1,5)], font=2) @ \caption{Map of the administrative district ``Weser-Ems''} \label{fig:map} \end{figure} In the package \texttt{surveillance} the measles data are already available in the form of a \texttt{disProg}-object. <>= data("measles.weser") plot(measles.weser, title="measles in Weser-Ems 2001-2002", xaxis.years=TRUE, startyear= 2001, firstweek=1) @ The number of counts for each area can also be looked at and plotted as individual time series. Here, the x-axis is the week number since 1st of January 2001 and the y-axis is the number of measles cases. <>= plot(measles.weser,as.one=FALSE,xaxis.years=FALSE) @ \vspace{1em} The data are analysed using the model proposed by \citet{held-etal-2005}. A call to the function \texttt{algo.hhh} fits a Poisson or negative binomial model with mean \[ \mu_{it} = \lambda y_{i,t-1} + \phi \sum_{j \sim i} y_{j,t-1} + n_{it} \nu_{it}\, , \quad i=1,\ldots,m, \, t=1,\ldots,n \, , \] where $j \sim i$ denotes all neighbours of $i$, to a multivariate time series of counts. It is estimated by maximum likelihood using numerical optimization methods. The $n_{it}$ are standardized population counts and $\log \nu_{it} = \alpha_i + \beta t + \sum_{s=1}^{S}\big(\gamma_s sin(\omega_s t) + \delta_s cos(\omega_s t)\big)$ with Fourier frequencies $\omega_s$. For the weekly measles data $\omega_s=2s\pi/52$ (i.e.\ \texttt{period}=52). In the following, the model specified in \texttt{cntrl} is fitted to the data. <>= cntrl <- list(linear = TRUE, nseason = 1, neighbours = TRUE, negbin = "single", lambda = TRUE) @ The counts are assumed to be negative binomial distributed with mean $\mu_{it}$ and variance $\mu_{it} +\mu_{it}^2/\psi$. A linear time trend $\beta$, seasonal parameters $\gamma_1$ and $\beta_1$ (i.e.\ $S=1$) as well as the autoregressive parameters $\lambda$ and $\phi$ are included to specify the mean. All in all, there are %21 parameters to be estimated. $2S+m+4$ parameters to be estimated for the negative binomial model. In case of a Poisson model, the number of parameters reduces by one as the overdispersion parameter $\psi$ is omitted. <>= measles.hhh <- algo.hhh(measles.weser, control = cntrl) @ Depending on the initial values for the parameters, the optimization algorithm might not converge or only find a local maximum as the parameter space is high-dimensional. It is therefore reasonable to try multiple starting values. The function \texttt{create.grid} takes a \texttt{list} with elements in the form of \texttt{param = c(lower,upper,length)} to create a matrix of starting values. For each parameter a sequence of length \texttt{length} from \texttt{lower} to \texttt{upper} is built and the resulting grid contains all combinations of these parameter values. A call to \texttt{algo.hhh.grid} conducts a grid search until either all starting values are used or a time limit \texttt{maxTime} (in seconds) is exceeded. The result with the highest likelihood is returned. <>= grid <- create.grid(measles.weser, control = cntrl, params = list(endemic = c(lower=-0.5, upper=0.5, length=3), epidemic = c(0.1, 0.9, 5), negbin = c(0.3, 12, 5))) measles.hhh.grid <- algo.hhh.grid(measles.weser, control = cntrl, thetastartMatrix = grid, maxTime = 300) @ <>= if (compute) { message("running a grid search for up to 5 minutes") <> } @ <<>>= print(measles.hhh.grid, digits = 3) @ <>= if (compute) { # save computed results save(list=c("sts.cdc","sts.farrington","acall","res.survstat", "ten.surv","measles.hhh.grid"), file=CACHEFILE) tools::resaveRdaFiles(CACHEFILE) } @ \section{Discussion and Future Work} Many extensions and additions are imaginable to improve the package. For now, the package is intended as an academic tool providing a test-bench for integrating new surveillance algorithms. Because all algorithms are implemented in R, performance has not been an issue. Especially the current implementation of the Farrington Procedure is rather slow and would benefit from an optimization possible with fragments written in C. One important improvement would be to provide more involved mechanisms for the simulation of epidemics. In particular it would be interesting to include multi-day outbreaks originating from single-source exposure, but with delay due to varying incubation time~\citep{hutwagner2005} or SEIR-like epidemics~\citep{andersson2000}. However, defining what is meant by a correct outbreak identification, especially in the case of overlapping outbreaks, creates new challenges which have to be met. \section{Acknowledgements} We are grateful to K.\ Stark and D.\ Altmann, RKI, Germany, for discussions and information on the surveillance methods used by the RKI. Our thanks to C.\ Lang, University of Munich, for his work on the R--implementation and M. Kobl, T. Schuster and M. Rossman, University of Munich, for their initial work on gathering the outbreak data from SurvStat@RKI. The research was conducted with financial support from the Collaborative Research Centre SFB 386 funded by the German research foundation (DFG). \bibliography{references} \end{document} surveillance/vignettes/hhh4-cache.RData0000644000175100001440000000775612655465227017642 0ustar hornikusers‹ÍZy<Ôë÷[–6QR¾¥äJÉ2ŸY¥Û‘öo‹"•[©‰©†jÈM ]i¿r•J©+Wi½m”Ç–+!²ïÒPdk•âö²Îïyîë÷ýïëÕ˜Ïçý9sžç¼ÏûN›9«)µÕj4Mž¦ ¯@“þ£Ñå¥ßähŠ4ÕÎw+ŠFSД^“¾õ¶e˦Œý wwëÎýåMÂíVöV«d •Ý\=ÄnÂ~ŠÈ͉/ìZö·ô¥Öõ¬ë%ß¹¶¼¥­ëËr›Ï÷‹.•\y"¾»ôB½+ np“`ß©gwbž«“›¨Û§O¹„çV¡Ÿž}ë½ßîÅ¿Y©öPêah—›Þ=t®¥üMƽyûž ÄÞtç,õÜØ¸¡ú¯bNÕ¡tk_N©NzJ/¿þ9Rî~mŸRpŽoþÅ9ûóøšP¬h}b¯:ª¿ã0û܆Äܰ+Á“Lзèì;ž‡äAjÜ|ÓÐôT:eLÔ˜¯²´ªöoÒȇš±CèñÑn IÊ¿L¸>7ØnžÍÚ¾\º3Ñpx9´Œ¿¥S ®Cï<ãÓ· ’ƒÊ1•YZ•³QaǼ-ì ¸WÞ^²'Ü ½ýh5=æ·½èí5IÖõfÔøæ.úL2Nm¸ò^çX Æ–Aù² —×L˜„^+n<¦û- >ük{ûà"8QvÄf…' â–4.Úk:êf¾_ã0}3¸|T«5ª>h Y çN骔…¡šáÙ§$·£–pÇŒu®¢¶à¬­ûJÄèÕ“½£~ÙŠP®Ýù±áö# $ÍÉ*ùÔ1(Ð>epSÉ µ,N*^Þ|*+ƒ'¯C¥e¾í‹@r#,Z`i)[©;Á ¿‹¾5ôhh^8ËÔa.Š0»àçÿ¨¥…^­³[U©{„r'ø’È$¯;•™ÌŠ:yÉêmŠýL_¬G Ú!âOƒdÎ¼ŽÆÐmP»eH¹©G$z§y%dÇ`(\þ9«X.5E¦WfÃçÆåsUth‘'wÄY@ÙÞèp»¡»¡…M¼¾Ã%]8cÓ<=½Qßt';ë Êfh^×y¦-¦]âù£¼QÈQÿuê°*޼Ÿ!@’]Ÿ"Œ´w¢Ü¾8ŸÏ "wZ£·zkì®îŒŠÁWBUª£j‹€’'.Ÿ ¥Õ°mÃ\ 5™îþ³eä8÷›JX[Ñ8¸sô¶uÈÕoà>(¢… G/NÄÕFIÖ¢7÷Äo8Õâe3¹_‚¶ãAyÛWéAõäMKå¡ð~€žm,¼ò ±· Zƒ^äc«~^m®£Ñå0?È|x'ºêƒ4̈Ùù.†—Êg^Õ´…JzSÖx¡¤U•Ž…I¨îÀØ•ÍF\¨¯çß8lßhI«8P“°QUªN»9bòY¨ÑfiÛî€zŽÃ®ºKÊPµ³¤¼Fá+…F˜ Gµ9©C•OL†òzç)¶Æ@Ép*éCú.¨VŠ£ßÕBïRË.69–¢ú ^IÒ<[T?Øÿ¼ÄúúäµbÑK3+Ô˜iÞ¶;íGôñô=ÇÔg´]kam†åT-dæç@ý~ã›ú£uVÁ4Ýå:û‡¼¯/”{‰37tF-ž‡…SQÍòfŸ‘ÞzP–'¼ž‘”ƒjöO¶d¹¦Â§qïUò¯„Cvuµ8>î.<Ž~ƒ%{=ývˈMÇçË2_@YGüš5ÓêQn`Û—ó"(žaܶ¹OPåQÅ RE­Ëf4,™ U’tˆNÕD‰6®y_€f+Å7:«Ðe¬k=|ÅI#óE£úÙa2zÊ·•ŒPMþÅRÞòoPu2eY0g'p˜pð¤Ûz=®.ȇìfí¤?ûZZ•1Úà$ÜžedãÀ…D'¹ai¬6¨zÝÑÊxeŽ2^X0å0¡ÍŽc/o*€Rå¿7z:º‹-æ>e¡ÂBeƺ#¸1pèÃ2(nº+as¯AÜz­È3 ’À‡Ã©·Ì ƒTU§Ü_7=…BÏóŸOGíg묢íÑ}Ξµ£ÌÞA²Jehí¤C(ß;k½7X¡Š_ùõ¶%²Pˆ÷æ†àÃ Š›æQ(#}Ùu£øLô6ÙAU½¡ 1Û.‡ž{ Aoâ’râÎAêþÑéÙ±?¢çÆG޾Ô=‰ª"Ê|¶®å¢×ÎÛ¢þ-9£uª[PÕ⼨3ûàØ5­‹Ò ³4ÍÑkMª*.óŽ!B{hé_Cµ{ôm“àé "FÙõíð)¤0pÄÞ¯P?ñ÷’?ðѥحºá¢}õ_ý£ò\h ù>‚Ã~ɨÐÃ)Fý±-ä^z¾ÿÄP”µnƾ¥æ†ðv~HZ&kTÙ?©ï‘ŽÚD?³N [í¦«vÞ‡—GÇf„*9£×úþW T]q_ÀØñPºË[Éö.D*×Þ{åãï`ê¡ú(¶MLopôºI¯®h(AõöfWÝÈÛhÓa6•è¸2r|†ê²Ò|𝡖ƒ¦·8æ£QÝêR–ó6wÔ2éíèŽÈ3¨ùø/*ÏW†s±ËvïØ‘ƒ’"ÃnÅêƒd쇊E¶+Qpî5»cÖ7 Ú£hzB DØÝ÷¿ÿ“z»½JM^%ŒÂ컡ø¼âˆůÑås­ž ͺe?üa?ðk9íž_ û~!4á2l<ÌÁÂt¦c`sŠMá`:³8˜ÃÁmМƒµæ2ø ` %…焎‡)œosŠƒ…é\s<'Xé\Ü¥0X,ƒtüN8l&žA<ß\3¼üNðÖts<ÌåâõÍÁ†ÃeR8¥á`SÌħ˜I'È Sxß¡ð²§ð™§ðÕ@q°ò¡8XPl‚ªð:áâ!•Ö7‡ƒM‡`MÚ ÆGIç`7ÈÁÂÒãu‚¯b&¾³Q ¬ªè$k<Œ_’¢-@¾(|(ûÆYœÄ3žO:a?}£Š,Ÿþ{ÇY?„ýìûæY{.A'xÿ|\ýfÙ¸ðygòÞ7¶ÈêSÿ©^uAô@ê¥oz‘Åñúé›_dù'臋ÕI¿F6/øé„:¥x¦ãë´ß„#cOè3}3ŽŒ‚=…×I¿1G&¿Þ„>O.àóÈ"ô±ãë‘E¨wa?,¼~úM<²‡6ï=…ƒêà[=»}öÁ·]½ßŽ© ªæs¦æ¶ˆ¶X®îYÁ(|ÞGæ7C=™òªó¼0|MÄ(h¢ÊÝ^?¾‘öÊ-¼‡ž…C¾pÒE„8-°3žê‡+Ö£ð-8ø°ð5¨õH;JTÕÆBY&Õ»¡‰ïÀ í¾mPû-tJïÔÎ ½g€ Û.;@6„œIh¤‹9ªcÉÑÆÐ0# E«†C$RûŸPçš+®×ˆ[ð4’©Šï?A­šjL~jUE¨« /AÝEiÀ/| žgàº:†™\B*ôs‹nå;( ­ßUâÈÎvA é6¿n Cht0nY¦ ã”WU¾sž?ªÂ/5ZQjÍ—PdsUäY†dœÂ—kWA¾ï³oÅÊÂPbÚòõ ç(œ¾ÈcÌ…òå]éáóÖ2±À~(Û›ça¦ ¥1Co†RZÖ­å+ äÙ~Á™«PÚíqœÕòßËiø¹AËY¬Ð 4S:²; BÓ„V£\zôZïì þóQ¡ Ü4T7*‰Í«„†·É—/§~¤mß÷¼!À;$oz’iãhO³Yð±ÙÄ#:Ê€z Ñ]•˜Š|?†yD×3¬j ññ©Oyd`26)„ç¢5 µûm¦&n³úÐÀ¸Ì ±… {èR=._KÁ]§¹e»F`’ÞХ߃Ûû†‰€ •¨§F5 yw:î®`À··Èn3?½® ÷ºê`bÂÏå>¦ ºÑ =…9Ýc1œÁWa;!îvÚ«ë „ÁØÜ髹ì0PòœuFê4t5¼ð7v§@OOjìAD’Ô¨èìÆ¢)@~šì¢C¼—Ü5ÝÆlD=—DÜ3^Œ˜o} âÒG›½:/~ܶˆ°÷™É}9[Ù—ª#;}àfÖjm$Ä%7¦«ð»4çòÄ/+íaQ‘GÉù8€¸“Þ>¾Ëј÷î¨üè ø;,E½Þl€¿tâs‡g)4Þ‹}ËZxv9®(µ\•Œ[5\ ê˜ÅŽÈ¡¨sàÊïÊ)†úÎí£D¡Îo¿`ƒš*àuÈšèÞêŸEŽÊÏ/B>.b®x> ÄTÌ4# ¼¹/C£*µ™.lƒ€7;K×]7[øìEOq‘޹Ušö9·N°A÷É÷­ºEQÐU*.ÉÕpZ6qÌ…V€Žj½0%{e¨7%’ÝÇ”­»C/¥U„B½Æ—c9-/›Q!çNá`ÄÞ}8¹J¸ŠüRÏsÓ"aÉ‹N"3ĨQX[yX‘ 4¶¿¨¸È¹²«‚âÖóî)å´ÉÆƤž &––óýßbà{Þ±¬~3ˆÔõÞ¹ý'›`¡w ½­OF>¹a*íÃ5!sñüðQ¿ˆ&Àä;"Ž3n}w·ª 9è¢ PÙJCA+ã'nž²»ŸµÁ.Jž÷—ÎÕ¹‡õoÂŽ—ß[z>ÏÇû‹.íãâêLJGøìHJ®ó2 æ¦U›§² ß=¾ó7fô}+dâD1ö·Â{]D„®×´î›ƒÙ Û·'®ø"a•¹ ‡'Ñ&Ž©Þìé DÑw¿´˜j?,´<9–EˆZŦ˜„ `$B!fÒ·ú9Ì&ÏíT‚š˜dÛ(/¨Ö~¡oüè Tt˜ZWÒCã]kGõf3¨ J›ÞÊU¡:\4 ˆ†7”Ç<ªêð…6)PßÃ)-4êoò]û¸wé>çꇥ& Úñ[¹…ìsøÔi¼­½@ *4ÂN-Ýk)s…Í·,(LäuË…bübO®ku ê\;Bwy/å¡Nr] ÔUç?ÿà“<ÑÛ$áó¡2z1[(ÞÊ^f3 e…„º.YžËyhüÒ>iE=" ƒáE³.ÿé2(è7±ÿ¬nEÜïÒwx ÷^u\=}غ—#‰‰…ÕïïÈåêwdX×…r©ËJݱRjaÿè»\µHK¯j2«šìª&·¢Éˆ­j⫚ζgU“\Õ¤VµÕ9dVç‘]^ ÃJq ¶GRL|­!±ÖسÖ\kH­1¤ÖZ@jm©µ¤~ ½ÖYkÈ®5äÖÒbkµ+–ø³¤ù³JÁü7 ZAì2nþÕc¿â·¬ŸQ®³ÿÉóý_•¿ºõ÷»’ëÞÿÞsZßÿïÍ+´‚”ÿ¾ýúW¿·.ãr^¯|ý!±e_F®eýu$¸.Þ_[îÿ9A|˸²ß=˸r~”ëpó:\é‡Y×oÅÆþ‰ëy^‘ÿªçp5/0¿âj»Ä2b]ÏúqÿYY‰ÿÏ’¿úœ¢uø·Îùïõÿõ{û½!ÿ‰ùwKŠßÛ7J‘ÿÑR„7R®ZË1½í@*UŒztíbœÅ+ܗ볚ۮñãú¦I‹RLqýˆÆîon`rßÉ}ޏ‡§ÆµÑ’ßËkˆ2  ×w0€1Éï)®×—þŽ=®O,|Ǥ"/®wÁ³\®œø?H¢¿™ RÿcIñ+;E¿ËÒæ‚ “©½‰…ƒ­ÐŸgˆ¡þs+û þ¹<Šty©­ý*Gicì`jï´j“Ø:X,«´F––J6ÖKÁgýþEúsÝhm¬M_6µU4752ùsúuÜW,ýh…ëuˆLŒŒÛÇNá-AöµÙ*˜ÒS•d´b¬†zÓ£t J|à=M0¤M±7eM@ÿƒøþD~H ±8xÛ;$\%/öç\Âè FÒ³e_T$BXt„ÈÓ ¼~Z³°˜̤´˜ &Ì9SqDZJ¦ ÷…*D¯™h¥°‡€°M\Ú1ݽ0¦ÐÜ­êóÎ'4¯\ ³¾òŠ&èÏ9¦lõEzã(xÞ*øCFK*”Wº¬Cº÷OÇ@öCHj),În¾gf=F[ŠùxA׎xÆÄ$ð%TŸ¥Æzu åvôêB7Úª¦÷ÕúíË¢òw{@Oú!²ô1Uè:xîÓq1~˜¨µÒá×È€NåîX­DÜ Ó&aõ šº©ïO œ^ÙIê…è¾ cM‡ŽFµ‘X ô«ÚØ’›PAÏ郄›ïÍ ³øN|„ Œ‘‘ùvˆz³Ú¢>‹C—Îå›™™áÐ)vðæ”Á!Š\5¢îˆ©»BÔÏl 1ᱪ\ÕÑ|ê‘nm Z¬}Ý·}¹ÒN"†ø=%%ßFä!MN©ªtÄ;ÔlPrD‘¸²ÔS@œÁ”®µT#†Q_êqÕ0ñ€9ã²}ŒiZnoh‚Ñ­‡k¨ÊaòÑa¶4î µª0¢‡;%Yuì4|u½{¼£ˆ†ÍÕËp¬‘0pë¢Ù°<3ôßàx³³ƒÞ[焦È ‡ƒÒ]Z^:½ùê”aÙÃŽß'C·Hô×xH½o†69ë@º\ᦩoôtá§œ¼×À °uAYâ& ‹¶p(m ÿ8X«•A*( *——§ö‡ÄË,ã)¡ÎŽ`“ß ˆ-)/Á@ÜÑ‘ èwÒù ²ýÞ^|“±a4¨õµN¦B~/yÀwæÝÇn¯i|$†s+ÄE Š©Z"·¤@Ámuó2¦ÓPB/v¶Cù ft±¾%¢áí!ªfCçT7Q\ˆ¼yˆ wÁ`È ¸äÉ)X ¡IÜk°‘$ùyqE!¢¯ÀwÏ aQS§'óÚå•:˜ò61‡ÕK!ê™#iÆ"‰Ød¶ÑˆÜ',oö=Âä²Vˆ=†É²È ÞöxõùtL „J·¶ðÄo‡7lDþ8;H‰<~ó'oD0½9¢vBÉÏy¦‚8"ó㈣˃”ö€=2¿ CÂÑQ¿Už€D QÊ9H~zr¾:é„Û¿±¢5i€½*ÅÒ‡ .búSƒòO¨Îзûä&•·9î&Lþ8ºú³Fj:‚èÚ`haöëÅY ÔÛpv£(ZÙ=Ž’Â04¢°+”Õªzúw:Ú©ÃìY9?_óE˜ ãú,[ _‚'︿փ´ä„Æ óû ù…çþÃ|D¤Lžb«ýjŠru}o ugÑé}jHrzfiïv–>Ï }oGãíN@JÞx]´÷vèsÚñn—$‡çI+6AR7/+'=Äy‹²œTîÞ¨*ÿ·W•×:Ù ¸þ1Ù ¸–qƒàúK²Apýºž ‚ëóo\ÿ_J:\ÇÝ9¼Ø +®CEåUŠZ®M@ñeF?Ž ¼ùÁ€ž®)[Þ¸°ÑפPFb‡¿…ëˆõ‘„ë—¸ä*ˆkcwÖÝíˆk}HséÂü8ŽPI$²M`×–Y¥£’ªŽk;{åC¿Apýó ®8õŒ•vñÉ´{ÇNƒ[fqûÉ`D¶XLÚúiCxCßv6Qxóý¾ÇžC)ðöâ\Î÷xÓû,:亄¸x„šKCˆ /_µÜ¾øõ晟ºðÒùº‹ÒQ"Ì:}åp b™ÿ:0þ5a³‹¿ß8†˜Ø\ka¸ŠØ»¹ÜæO#ŽnÞëÖµ‰ˆF-¢tÞë–]&+µAtû•ŽŠîHE¤§8lk°ŸqU{퓪Ÿ30£QØi‹j~2ÌÊm0ÇÝ8&5øÆÈ„‘¦+C{;~¤Ló 4³Fk…ö‘RÚÊ>hV –ûø ð7Ò¬FDÍ ‰çEããŒPWªû|ì„ ÔhÇÔGáñXr!=ÔØI°ÈS²Á@ªóÙôÔ½Vu€º,;õâØL¨Ê“Äð©WÂ糞’]ÔP­ÏÁØ :Þq% ½PVÌåa$d-Û…ÒÝK…E–£ZqP|ǹÙo tšƒ4õ„ A…sïûÈœ¢sòfsµ”v{HÁ»^5‰†¤½N6w!Ζ›ËŽš’´hZÏCü]Ô¶ 5E]ÚA%±|û5D|¶BäέƒÑ,/!ÜÛq? Â)-Jo·ƒÐ¾ý³”uðæVâ‚ W‡æçäOCÉÔV41[ùìì¼.ÖíðÕ¶´øès·ñ\ƒì cŒCº’íãO9ŒÕ»%cS>3¼ßõù $¤ñ°D»›A-…›T~duîÖ,‡,&V’×íæBnl'¢’†¿$Æäð J±³±GòDÙ±ž÷\§Ó¢ˆ¯YMˆŸy²©‚ a~ŒGÔš"Œ0k¨¸‚…[£ ³Óx˜‹Á©ß¤gƒiŽ‘…é•Â*‘ôáÛ¯î„^Ù`ßçŽ@¯Z»® Ðïê`s¡šf7ŸòF Âàõ:ÂÑ+òÐkxòiFl4£®x,|ygÍ3†‡ŽŠ\ýžNhxöˆ)‹ß^.Ì\Éawñ´Ê¨QhÊýØ|áÔl¥1ŠÊG[t ' <)ˆdçWŒ´ß]ÄPë$ö‚81:“7…Œs!ŸÓYÇÜÑVág¯-^Õ ¡‰ž[Ò»ýPæ]™´áÓhköí—ç93 ºâ5C‹qD6:ÊÈÜÊŒønbÉ÷P°£-áN£òjôP'<â Õ‚[JwûwÂg¬ ”ÕS¨f|Yç펇O†„E@©À‘‡òP*ÏDŒë=EJFR@>k'í‡SÒ§KЫæ<8â/¿iml~ŸóÒœYn¬Àï«g ÅÞ>Z¼„Ès­º¬\ör/i$ðë¤B[›Å”š6ä^¸%q?QpV-u¤>JP†]iRv@ÑħGÅZœ=D5ä~ òø¹I÷˜pAí[NWjøP£OÒxºRxÛ²¬ç³Ðî3eW´ÉºÑ.s©={%‘èî!O”môÕïÈÂSñßßoI|mÇ8‡º7ˆ".“Ç4´¸!ħ~öˆm'â’8'õPû:âN®ÿA4Ž6³ÕÔ•@[6¿¹ ¯ŒöU¦>ž~ ½bî4:AO|š‹e|ÞA㇓>3ãÊ4&» Åp—¦)Ï hÄqo…~ǧ¬ò)hô«½=żêOÞÍÚœ uɪnóPS;-œ'Õqþ¤âšìðñè™^ÇíWaö0ú¥ÃÀÙíQ†\0}èFÙ§z˜ŽåVÓ„©Ž+&ÞoãaòÒ‹òK݆hû”Ð3'o„åâœsßœ‡ˆÏ±d’‡"ªôw·¢¿-åý=ïw¢­îˆHÎ:>= ## purl=FALSE => not included in the tangle'd R script knitr::opts_chunk$set(echo = TRUE, tidy = FALSE, results = 'markup', fig.path='plots/twinSIR-', fig.width = 8, fig.height = 4.5, fig.align = "center", fig.scap = NA, out.width = NULL, cache = FALSE, error = FALSE, warning = FALSE, message = FALSE) knitr::render_sweave() # use Sweave environments knitr::set_header(highlight = '') # no \usepackage{Sweave} (part of jss class) ## R settings options(prompt = "R> ", continue = "+ ", useFancyQuotes = FALSE) # JSS options(width = 85, digits = 4) options(scipen = 1) # so that 1e-4 gets printed as 0.0001 ## xtable settings options(xtable.booktabs = TRUE, xtable.size = "small", xtable.sanitize.text.function = identity, xtable.comment = FALSE) @ <>= ## load the "cool" package library("surveillance") ## Compute everything or fetch cached results? message("Doing computations: ", COMPUTE <- !file.exists("twinSIR-cache.RData")) if (!COMPUTE) load("twinSIR-cache.RData", verbose = TRUE) @ \documentclass[nojss,nofooter,article]{jss} \title{% \vspace{-1.5cm} \fbox{\vbox{\normalfont\footnotesize This introduction to the \code{twinSIR} modeling framework of the \proglang{R}~package \pkg{surveillance} is based on a publication in the \textit{Journal of Statistical Software} -- \citet[Section~4]{meyer.etal2014} -- which is the suggested reference if you use the \code{twinSIR} implementation in your own work.}}\\[1cm] \code{twinSIR}: Individual-level epidemic modeling for a fixed population with known distances} \Plaintitle{twinSIR: Individual-level epidemic modeling for a fixed population with known distances} \Shorttitle{Modeling epidemics in a fixed population with known distances} \author{Sebastian Meyer\thanks{Author of correspondence: \email{seb.meyer@fau.de}}\\Friedrich-Alexander-Universit{\"a}t\\Erlangen-N{\"u}rnberg \And Leonhard Held\\University of Zurich \And Michael H\"ohle\\Stockholm University} \Plainauthor{Sebastian Meyer, Leonhard Held, Michael H\"ohle} %% Basic packages \usepackage{lmodern} % successor of CM -> searchable Umlauts (1 char) \usepackage[english]{babel} % language of the manuscript is American English %% Math packages \usepackage{amsmath,amsfonts} % amsfonts defines \mathbb \usepackage{mathtools} % tools for math typesetting + amsmath-bugfixes \usepackage{bm} % \bm: alternative to \boldsymbol from amsfonts \usepackage{bbm} % \mathbbm: alternative to \mathbb from amsfonts %% Packages for figures and tables \usepackage{booktabs} % make tables look nicer \usepackage{subcaption} % successor of subfig, which supersedes subfigure \newcommand{\subfloat}[2][need a sub-caption]{\subcaptionbox{#1}{#2}} % -> knitr %% Handy math commands \newcommand{\abs}[1]{\lvert#1\rvert} \newcommand{\norm}[1]{\lVert#1\rVert} \newcommand{\given}{\,\vert\,} \newcommand{\dif}{\,\mathrm{d}} \newcommand{\IR}{\mathbb{R}} \newcommand{\IN}{\mathbb{N}} \newcommand{\ind}{\mathbbm{1}} \DeclareMathOperator{\Po}{Po} \DeclareMathOperator{\NegBin}{NegBin} \DeclareMathOperator{\N}{N} %% Additional commands \newcommand{\class}[1]{\code{#1}} % could use quotes (JSS does not like them) \newcommand{\CRANpkg}[1]{\href{https://CRAN.R-project.org/package=#1}{\pkg{#1}}} %% Reduce the font size of code input and output \DefineVerbatimEnvironment{Sinput}{Verbatim}{fontshape=sl, fontsize=\small} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontsize=\small} %% Abstract \Abstract{ The availability of geocoded health data and the inherent temporal structure of communicable diseases have led to an increased interest in statistical models and software for spatio-temporal data with epidemic features. The \proglang{R}~package \pkg{surveillance} can handle various levels of aggregation at which infective events have been recorded. This vignette illustrates the analysis of individual-level surveillance data for a fixed population, of which the complete SIR event history is assumed to be known. Typical applications for the multivariate, temporal point process model ``\code{twinSIR}'' of \citet{hoehle2009} include the spread of infectious livestock diseases across farms, household models for childhood diseases, and epidemics across networks. %% (For other types of surveillance data, see %% \code{vignette("twinstim")} and \code{vignette("hhh4\_spacetime")}.) We first describe the general modeling approach and then exemplify data handling, model fitting, and visualization for a particularly well-documented measles outbreak among children of the isolated German village Hagelloch in 1861. %% Due to the many similarities with the spatio-temporal point process model %% ``\code{twinstim}'' described and illustrated in \code{vignette("twinstim")}, %% we condense the \code{twinSIR} treatment accordingly. } \Keywords{% individual-level surveillance data, endemic-epidemic modeling, infectious disease epidemiology, self-exciting point process, branching process with immigration} \begin{document} \section[Model class]{Model class: \code{twinSIR}} \label{sec:twinSIR:methods} The spatio-temporal point process regression model ``\code{twinstim}'' (\citealp{meyer.etal2011}, illustrated in \code{vignette("twinstim")}) is indexed in a continuous spatial domain, i.e., the set of possible event locations %(the susceptible ``population'') consists of the whole observation region and is thus infinite. In contrast, if infections can only occur at a known discrete set of sites, such as for livestock diseases among farms, the conditional intensity function (CIF) of the underlying point process formally becomes $\lambda_i(t)$. It characterizes the instantaneous rate of infection of individual $i$ at time $t$, given the sets $S(t)$ and $I(t)$ of susceptible and infectious individuals, respectively (just before time $t$). %In a similar regression view as in \code{vignette("twinstim")}, \citet{hoehle2009} proposed the following endemic-epidemic multivariate temporal point process model (``\code{twinSIR}''): \begin{equation} \label{eqn:twinSIR} \lambda_i(t) = \lambda_0(t) \, \nu_i(t) + \sum_{j \in I(t)} \left\{ f(d_{ij}) + \bm{w}_{ij}^\top \bm{\alpha}^{(w)} \right\} \:, %\qquad \text{if } i \in S(t)\:, \end{equation} if $i \in S(t)$, i.e., if individual $i$ is currently susceptible, and $\lambda_i(t) = 0$ otherwise. The rate decomposes into two components. The first, endemic component consists of a Cox proportional hazards formulation containing a semi-parametric baseline hazard $\lambda_0(t)$ and a log-linear predictor $\nu_i(t)=\exp\left( \bm{z}_i(t)^\top \bm{\beta} \right)$ of covariates modeling infection from external sources. Furthermore, an additive epidemic component captures transmission from the set $I(t)$ of currently infectious individuals. The force of infection of individual $i$ depends on the distance $d_{ij}$ to each infective source $j \in I(t)$ through a distance kernel \begin{equation} \label{eqn:twinSIR:f} f(u) = \sum_{m=1}^M \alpha_m^{(f)} B_m(u) \: \geq 0 \:, \end{equation} which is represented by a linear combination of non-negative basis functions $B_m$ with the $\alpha_m^{(f)}$'s being the respective coefficients. For instance, $f$ could be modeled by a B-spline \citep[Section~8.1]{Fahrmeir.etal2013}, and $d_{ij}$ could refer to the Euclidean distance $\norm{\bm{s}_i - \bm{s}_j}$ between the individuals' locations $\bm{s}_i$ and $\bm{s}_j$, or to the geodesic distance between the nodes $i$ and $j$ in a network. The distance-based force of infection is modified additively by a linear predictor of covariates $\bm{w}_{ij}$ describing the interaction of individuals $i$ and~$j$ further. Hence, the whole epidemic component of Equation~\ref{eqn:twinSIR} can be written as a single linear predictor $\bm{x}_i(t)^\top \bm{\alpha}$ by interchanging the summation order to \begin{equation} \label{eqn:twinSIR:x} \sum_{m=1}^M \alpha^{(f)}_m \sum_{j \in I(t)} B_m(d_{ij}) + \sum_{k=1}^K \alpha^{(w)}_k \sum_{j \in I(t)} w_{ijk} = \bm{x}_i(t)^\top \bm{\alpha} \:, \end{equation} such that $\bm{x}_i(t)$ comprises all epidemic terms summed over $j\in I(t)$. Note that the use of additive covariates $\bm{w}_{ij}$ on top of the distance kernel in \eqref{eqn:twinSIR} is different from \code{twinstim}'s multiplicative approach. One advantage of the additive approach is that the subsequent linear decomposition of the distance kernel allows one to gather all parts of the epidemic component in a single linear predictor. Hence, the above model represents a CIF extension of what in the context of survival analysis is known as an additive-multiplicative hazard model~\citep{Martinussen.Scheike2006}. As a consequence, the \code{twinSIR} model could in principle be fitted with the \CRANpkg{timereg} package, which yields estimates for the cumulative hazards. However, \citet{hoehle2009} chooses a more direct inferential approach: To ensure that the CIF $\lambda_i(t)$ is non-negative, all covariates are encoded such that the components of $\bm{w}_{ij}$ are non-negative. Additionally, the parameter vector $\bm{\alpha}$ is constrained to be non-negative. Subsequent parameter inference is then based on the resulting constrained penalized likelihood which gives directly interpretable estimates of $\bm{\alpha}$. Future work could investigate the potential of a multiplicative approach for the epidemic component in \code{twinSIR}. \section[Data structure]{Data structure: \class{epidata}} \label{sec:twinSIR:data} New SIR-type event data typically arrive in the form of a simple data frame with one row per individual and sequential event time points as columns. For the 1861 Hagelloch measles epidemic, which has previously been analyzed by, e.g., \citet{neal.roberts2004}, such a data set of the 188 affected children is contained in the \pkg{surveillance} package: <>= data("hagelloch") head(hagelloch.df, n = 5) @ The \code{help("hagelloch")} contains a description of all columns. Here we concentrate on the event columns \code{PRO} (appearance of prodromes), \code{ERU} (eruption), and \code{DEAD} (day of death if during the outbreak). We take the day on which the index case developed first symptoms, 30 October 1861 (\code{min(hagelloch.df$PRO)}), as the start of the epidemic, i.e., we condition on this case being initially infectious. % t0 = 1861-10-31 00:00:00 As for \code{twinstim}, the property of point processes that concurrent events have zero probability requires special treatment. Ties are due to the interval censoring of the data to a daily basis -- we broke these ties by adding random jitter to the event times within the given days. The resulting columns \code{tPRO}, \code{tERU}, and \code{tDEAD} are relative to the defined start time. Following \citet{neal.roberts2004}, we assume that each child becomes infectious (S~$\rightarrow$~I event at time \code{tI}) one day before the appearance of prodromes, and is removed from the epidemic (I~$\rightarrow$~R event at time \code{tR}) three days after the appearance of rash or at the time of death, whichever comes first. For further processing of the data, we convert \code{hagelloch.df} to the standardized \class{epidata} structure for \code{twinSIR}. This is done by the converter function \code{as.epidata}, which also checks consistency and optionally pre-calculates the epidemic terms $\bm{x}_i(t)$ of Equation~\ref{eqn:twinSIR:x} to be incorporated in a \code{twinSIR} model. The following call generates the \class{epidata} object \code{hagelloch}: <>= hagelloch <- as.epidata(hagelloch.df, t0 = 0, tI.col = "tI", tR.col = "tR", id.col = "PN", coords.cols = c("x.loc", "y.loc"), f = list(household = function(u) u == 0, nothousehold = function(u) u > 0), w = list(c1 = function (CL.i, CL.j) CL.i == "1st class" & CL.j == CL.i, c2 = function (CL.i, CL.j) CL.i == "2nd class" & CL.j == CL.i), keep.cols = c("SEX", "AGE", "CL")) @ The coordinates (\code{x.loc}, \code{y.loc}) correspond to the location of the household the child lives in and are measured in meters. Note that \class{twinSIR} allows for tied locations of individuals, but assumes the relevant spatial location to be fixed during the entire observation period. By default, the Euclidean distance between the given coordinates will be used. Alternatively, \code{as.epidata} also accepts a pre-computed distance matrix via its argument \code{D} without requiring spatial coordinates. The argument \code{f} lists distance-dependent basis functions $B_m$ for which the epidemic terms $\sum_{j\in I(t)} B_m(d_{ij})$ shall be generated. Here, \code{household} ($x_{i,H}(t)$) and \code{nothousehold} ($x_{i,\bar{H}}(t)$) count for each child the number of currently infective children in its household and outside its household, respectively. Similar to \citet{neal.roberts2004}, we also calculate the covariate-based epidemic terms \code{c1} ($x_{i,c1}(t)$) and \code{c2} ($x_{i,c2}(t)$) % from $w_{ijk} = \ind(\code{CL}_i = k, \code{CL}_j = \code{CL}_i)$ counting the number of currently infective classmates. Note from the corresponding definitions of $w_{ij1}$ and $w_{ij2}$ in \code{w} that \code{c1} is always zero for children of the second class and \code{c2} is always zero for children of the first class. For pre-school children, both variables equal zero over the whole period. By the last argument \code{keep.cols}, we choose to only keep the covariates \code{SEX}, \code{AGE}, and school \code{CL}ass from \code{hagelloch.df}. The first few rows of the generated \class{epidata} object are shown below: <>= head(hagelloch, n = 5) @ The \class{epidata} structure inherits from counting processes as implemented by the \class{Surv} class of package \CRANpkg{survival} and also used in \CRANpkg{timereg}. Specifically, the observation period is split up into consecutive time intervals (\code{start}; \code{stop}] of constant conditional intensities. As the CIF $\lambda_i(t)$ of Equation~\eqref{eqn:twinSIR} only changes at time points, where the set of infectious individuals $I(t)$ or some endemic covariate in $\nu_i(t)$ change, those occurrences define the break points of the time intervals. Altogether, the \code{hagelloch} event history consists of \Sexpr{nrow(hagelloch)/nlevels(hagelloch$id)} time \code{BLOCK}s of \Sexpr{nlevels(hagelloch[["id"]])} rows, where each row describes the state of individual \code{id} during the corresponding time interval. The susceptibility status and the I- and R-events are captured by the columns \code{atRiskY}, \code{event} and \code{Revent}, respectively. The \code{atRiskY} column indicates if the individual is at risk of becoming infected in the current interval. The event columns indicate, which individual was infected or removed at the \code{stop} time. Note that at most one entry in the \code{event} and \code{Revent} columns is 1, all others are 0. Apart from being the input format for \code{twinSIR} models, the \class{epidata} class has several associated methods (Table~\ref{tab:methods:epidata}), which are similar in spirit to the methods described for \class{epidataCS}. <>= print(xtable( surveillance:::functionTable("epidata", list(Display = c("stateplot"))), caption="Generic and \\textit{non-generic} functions applicable to \\class{epidata} objects.", label="tab:methods:epidata"), include.rownames = FALSE) @ For example, Figure~\ref{fig:hagelloch_plot} illustrates the course of the Hagelloch measles epidemic by counting processes for the number of susceptible, infectious and removed children, respectively. Figure~\ref{fig:hagelloch_households} shows the locations of the households. An \code{animate}d map can also be produced to view the households' states over time and a simple \code{stateplot} shows the changes for a selected unit. <>= par(mar = c(5, 5, 1, 1)) plot(hagelloch, xlab = "Time [days]") @ <>= par(mar = c(5, 5, 1, 1)) hagelloch_coords <- summary(hagelloch)$coordinates plot(hagelloch_coords, xlab = "x [m]", ylab = "y [m]", pch = 15, asp = 1, cex = sqrt(multiplicity(hagelloch_coords))) legend(x = "topleft", pch = 15, legend = c(1, 4, 8), pt.cex = sqrt(c(1, 4, 8)), title = "Household size") @ \section{Modeling and inference} \label{sec:twinSIR:fit} \subsection{Basic example} To illustrate the flexibility of \code{twinSIR} we will analyze the Hagelloch data using class room and household indicators similar to \citet{neal.roberts2004}. We include an additional endemic background rate $\exp(\beta_0)$, which allows for multiple outbreaks triggered by external sources. Consequently, we do not need to ignore the child that got infected about one month after the end of the main epidemic (see the last event mark in Figure~\ref{fig:hagelloch_plot}). % ATM, there is no way to fit a twinSIR without an endemic component. Altogether, the CIF for a child $i$ is modeled as \begin{equation} \label{eqn:twinSIR:hagelloch} \lambda_i(t) = Y_i(t) \cdot \left[ \exp(\beta_0) + \alpha_H x_{i,H}(t) + \alpha_{c1} x_{i,c1}(t) + \alpha_{c2} x_{i,c2}(t) + \alpha_{\bar{H}} x_{i,\bar{H}}(t) \right] \:, \end{equation} where $Y_i(t) = \ind(i \in S(t))$ is the at-risk indicator. By counting the number of infectious classmates separately for both school classes as described in the previous section, we allow for class-specific effects $\alpha_{c1}$ and $\alpha_{c2}$ on the force of infection. The model is estimated by maximum likelihood \citep{hoehle2009} using the call <>= hagellochFit <- twinSIR(~household + c1 + c2 + nothousehold, data = hagelloch) @ and the fit is summarized below: <>= set.seed(1) summary(hagellochFit) @ <>= ## drop leading and trailing empty lines writeLines(tail(head(capture.output({ <> }), -1), -1)) @ The results show, e.g., a \Sexpr{sprintf("%.4f",coef(hagellochFit)["c1"])} / \Sexpr{sprintf("%.4f",coef(hagellochFit)["c2"])} $=$ \Sexpr{format(coef(hagellochFit)["c1"]/coef(hagellochFit)["c2"])} times higher transmission between individuals in the 1st class than in the 2nd class. Furthermore, an infectious housemate adds \Sexpr{sprintf("%.4f",coef(hagellochFit)["household"])} / \Sexpr{sprintf("%.4f",coef(hagellochFit)["nothousehold"])} $=$ \Sexpr{format(coef(hagellochFit)["household"]/coef(hagellochFit)["nothousehold"])} times as much infection pressure as infectious children outside the household. The endemic background rate of infection in a population with no current measles cases is estimated to be $\exp(\hat{\beta}_0) = \exp(\Sexpr{format(coef(hagellochFit)["cox(logbaseline)"])}) = \Sexpr{format(exp(coef(hagellochFit)["cox(logbaseline)"]))}$. An associated Wald confidence interval (CI) based on the asymptotic normality of the maximum likelihood estimator (MLE) can be obtained by \code{exp}-transforming the \code{confint} for $\beta_0$: <>= exp(confint(hagellochFit, parm = "cox(logbaseline)")) @ Note that Wald confidence intervals for the epidemic parameters $\bm{\alpha}$ are to be treated carefully, because their construction does not take the restricted parameter space into account. For more adequate statistical inference, the behavior of the log-likelihood near the MLE can be investigated using the \code{profile}-method for \class{twinSIR} objects. For instance, to evaluate the normalized profile log-likelihood of $\alpha_{c1}$ and $\alpha_{c2}$ on an equidistant grid of 25 points within the corresponding 95\% Wald CIs, we do: <>= prof <- profile(hagellochFit, list(c(match("c1", names(coef(hagellochFit))), NA, NA, 25), c(match("c2", names(coef(hagellochFit))), NA, NA, 25))) @ The profiling result contains 95\% highest likelihood based CIs for the parameters, as well as the Wald CIs for comparison: <<>>= prof$ci.hl @ The entire functional form of the normalized profile log-likelihood on the requested grid as stored in \code{prof$lp} can be visualized by: <>= plot(prof) @ The above model summary also reports the one-sided AIC~\citep{hughes.king2003}, which can be used for model selection under positivity constraints on $\bm{\alpha}$ as described in \citet{hoehle2009}. The involved parameter penalty is determined by Monte Carlo simulation, which is why we did \code{set.seed} before the \code{summary} call. The algorithm is described in \citet[p.~79, Simulation 3]{Silvapulle.Sen2005} and involves quadratic programming using package \CRANpkg{quadprog} \citep{R:quadprog}. If there are less than three constrained parameters in a \code{twinSIR} model, the penalty is computed analytically. \subsection{Model diagnostics} <>= print(xtable( surveillance:::functionTable("twinSIR", functions=list(Display = c("checkResidualProcess"))), caption="Generic and \\textit{non-generic} functions for \\class{twinSIR}. There are no specific \\code{coef} or \\code{confint} methods, since the respective default methods from package \\pkg{stats} apply outright.", label="tab:methods:twinSIR"), include.rownames = FALSE) @ Table~\ref{tab:methods:twinSIR} lists all methods for the \class{twinSIR} class. For example, to investigate how the conditional intensity function decomposes into endemic and epidemic components over time, we produce Figure~\ref{fig:hagellochFit_plot1} by: <>= par(mar = c(5, 5, 1, 1)) plot(hagellochFit, which = "epidemic proportion", xlab = "time [days]") checkResidualProcess(hagellochFit, plot = 1) @ Note that the last infection was necessarily caused by the endemic component since there were no more infectious children in the observed population which could have triggered the new case. We can also inspect temporal Cox-Snell-like \code{residuals} of the fitted point process using the function \code{checkResidualProcess} as for the spatio-temporal point process models in \code{vignette("twinstim")}. The resulting Figure~\ref{fig:hagellochFit_plot2} reveals some deficiencies of the model in describing the waiting times between events, which might be related to the assumption of fixed infection periods. <>= knots <- c(100, 200) fstep <- list( B1 = function(D) D > 0 & D < knots[1], B2 = function(D) D >= knots[1] & D < knots[2], B3 = function(D) D >= knots[2]) @ To illustrate AIC-based model selection, we may consider a more flexible model for local spread using a step function for the distance kernel $f(u)$ in Equation \ref{eqn:twinSIR:f}. An updated model with <>= .allknots <- c(0, knots, "\\infty") cat(paste0("$B_{", seq_along(fstep), "} = ", "I_{", ifelse(seq_along(fstep)==1,"(","["), .allknots[-length(.allknots)], ";", .allknots[-1], ")}(u)$", collapse = ", ")) @ can be fitted as follows: <>= <> hagellochFit_fstep <- twinSIR( ~household + c1 + c2 + B1 + B2 + B3, data = update(hagelloch, f = fstep)) @ <>= set.seed(1) AIC(hagellochFit, hagellochFit_fstep) @ Hence the simpler model with just a \code{nothousehold} component instead of the more flexible distance-based step function is preferred. \section{Simulation} \label{sec:twinSIR:simulation} Simulation from fitted \code{twinSIR} models is described in detail in~\citet[Section~4]{hoehle2009}. The implementation is made available by an appropriate \code{simulate}-method for class \class{twinSIR}. We skip the illustration here and refer to \code{help("simulate.twinSIR")}. %-------------- % BIBLIOGRAPHY %-------------- <>= ## create automatic references for R packages Rbib <- sapply(c("quadprog"), function (pkg) { bib <- citation(pkg, auto = TRUE) bib$key <- paste("R", pkg, sep=":") bib }, simplify=FALSE, USE.NAMES=TRUE) ## "quadprog" needs manual author formatting Rbib$quadprog$author <- c("Berwin A. Turlach", "Andreas Weingessel") ## write to bibfile .Rbibfile <- file("twinSIR-R.bib", "w", encoding = "latin1") cat(unlist(lapply(Rbib, toBibtex), use.names = FALSE), file = .Rbibfile, sep = "\n") close(.Rbibfile) @ \bibliography{references,twinSIR-R} <>= save(prof, file = "twinSIR-cache.RData") @ \end{document} surveillance/vignettes/references.bib0000644000175100001440000003177313142676370017617 0ustar hornikusers@Unpublished{altmann2003, author = {D. Altmann}, title = {The surveillance system of the {Robert Koch Institute}, {Germany}}, note = {Personal communication}, year = {2003}, } @Book{andersson2000, title = {Stochastic Epidemic Models and their Statistical Analysis}, publisher = {Springer-Verlag}, year = {2000}, author = {H. Andersson and T. Britton}, volume = {151}, series = {Springer Lectures Notes in Statistics}, } @Article{czado-etal-2009, author = {Claudia Czado and Tilmann Gneiting and Leonhard Held}, title = {Predictive model assessment for count data}, journal = {Biometrics}, year = {2009}, volume = {65}, number = {4}, pages = {1254--1261}, doi = {10.1111/j.1541-0420.2009.01191.x}, } @Book{Daley.Vere-Jones2003, title = {An Introduction to the Theory of Point Processes}, publisher = {Springer-Verlag}, year = {2003}, author = {Daley, Daryl J. and Vere-Jones, David}, editor = {Gani, Joseph M. and Heyde, Christopher C. and Kurtz, Thomas G.}, volume = {I: Elementary Theory and Methods}, series = {Probability and its Applications}, address = {New York}, edition = {2nd}, isbn = {0-387-95541-0}, } @Book{Fahrmeir.etal2013, title = {Regression: Models, Methods and Applications}, publisher = {Springer-Verlag}, year = {2013}, author = {Ludwig Fahrmeir and Thomas Kneib and Stefan Lang and Brian Marx}, isbn = {978-3-642-34332-2}, doi = {10.1007/978-3-642-34333-9}, } @Article{farrington96, author = {C. P. Farrington and N. J. Andrews and A. D. Beale and M. A. Catchpole}, title = {A statistical algorithm for the early detection of outbreaks of infectious disease}, journal = {Journal of the Royal Statistical Society. Series A (Statistics in Society)}, year = {1996}, volume = {159}, pages = {547--563}, } @InCollection{farrington2003, author = {Paddy Farrington and Nick Andrews}, title = {Outbreak Detection: Application to Infectious Disease Surveillance}, booktitle = {Monitoring the Health of Populations}, publisher = {Oxford University Press}, year = {2003}, editor = {Ron Brookmeyer and Donna F. Stroup}, chapter = {8}, pages = {203--231}, } @Article{geilhufe.etal2012, author = {Marc Geilhufe and Leonhard Held and Stein Olav Skr{\o}vseth and Gunnar S. Simonsen and Fred Godtliebsen}, title = {Power law approximations of movement network data for modeling infectious disease spread}, journal = {Biometrical Journal}, year = {2014}, volume = {56}, number = {3}, pages = {363--382}, doi = {10.1002/bimj.201200262}, } @Article{gneiting-raftery-2007, author = {Tilmann Gneiting and Adrian E. Raftery}, title = {Strictly proper scoring rules, prediction, and estimation}, journal = {Journal of the American Statistical Association}, year = {2007}, volume = {102}, number = {477}, pages = {359--378}, doi = {10.1198/016214506000001437}, } @Article{held-etal-2005, author = {Leonhard Held and Michael H{\"o}hle and Mathias Hofmann}, title = {A statistical framework for the analysis of multivariate infectious disease surveillance counts}, journal = {Statistical Modelling}, year = {2005}, volume = {5}, number = {3}, pages = {187--199}, doi = {10.1191/1471082X05st098oa}, } @Article{held.paul2012, author = {Held, Leonhard and Paul, Michaela}, title = {Modeling seasonality in space-time infectious disease surveillance data}, journal = {Biometrical Journal}, year = {2012}, volume = {54}, number = {6}, pages = {824--843}, doi = {10.1002/bimj.201200037}, } @Article{herzog-etal-2010, author = {Herzog, S. A. and Paul, M. and Held, L.}, title = {Heterogeneity in vaccination coverage explains the size and occurrence of measles epidemics in {German} surveillance data}, journal = {Epidemiology and Infection}, year = {2011}, volume = {139}, number = {4}, pages = {505--515}, doi = {10.1017/S0950268810001664}, } @Article{hoehle-2007, author = {H{\"o}hle, M.}, title = {\texttt{surveillance}: {A}n \textsf{R} package for the monitoring of infectious diseases}, journal = {Computational Statistics}, year = {2007}, volume = {22}, number = {4}, pages = {571--582}, doi = {10.1007/s00180-007-0074-8}, } @Article{hoehle2009, author = {Michael H{\"o}hle}, title = {Additive-multiplicative regression models for spatio-temporal epidemics}, journal = {Biometrical Journal}, year = {2009}, volume = {51}, number = {6}, pages = {961--978}, doi = {10.1002/bimj.200900050}, } @Article{hoehle.anderheiden2014, author = {Michael H{\"o}hle and Matthias {an der Heiden}}, title = {{Bayesian} nowcasting during the {STEC} {O104:H4} outbreak in {Germany}, 2011}, journal = {Biometrics}, year = {2014}, volume = {70}, number = {4}, pages = {993--1002}, __markedentry = {[sebastian:]}, doi = {10.1111/biom.12194}, } @InCollection{hoehle-mazick-2010, author = {H{\"o}hle, M. and Mazick, A.}, title = {Aberration detection in \textsf{R} illustrated by {Danish} mortality monitoring}, booktitle = {Biosurveillance: Methods and Case Studies}, publisher = {Chapman \& Hall/CRC}, year = {2010}, editor = {Kass-Hout, T. and Zhang, X.}, chapter = {12}, pages = {215--238}, } @Article{hoehle.paul2008, author = {Michael H{\"o}hle and Michaela Paul}, title = {Count data regression charts for the monitoring of surveillance time series}, journal = {Computational Statistics and Data Analysis}, year = {2008}, volume = {52}, number = {9}, pages = {4357--4368}, doi = {10.1016/j.csda.2008.02.015}, } @Article{hughes.king2003, author = {Anthony W. Hughes and Maxwell L. King}, title = {Model selection using {AIC} in the presence of one-sided information}, journal = {Journal of Statistical Planning and Inference}, year = {2003}, volume = {115}, number = {2}, pages = {397--411}, doi = {10.1016/S0378-3758(02)00159-3}, } @Article{hutwagner2005, author = {L. Hutwagner and T. Browne and G.M Seeman and A.T. Fleischhauer}, title = {Comparing abberration detection methods with simulated data}, journal = {Emerging Infectious Diseases}, year = {2005}, volume = {11}, pages = {314--316}, doi = {10.3201/eid1102.040587}, } @Misc{bulletin3901, author = {{Robert Koch Institute}}, title = {{Epidemiologisches Bulletin 39}}, howpublished = {Available from http://www.rki.de}, year = {2001}, } @Book{Keeling.Rohani2008, title = {Modeling Infectious Diseases in Humans and Animals}, publisher = {Princeton University Press}, year = {2008}, author = {Matt J. Keeling and Pejman Rohani}, url = {http://www.modelinginfectiousdiseases.org/}, } @Misc{survstat, author = {{Robert Koch-Institut}}, title = {{SurvStat@RKI}}, howpublished = {\url{http://www3.rki.de/SurvStat}}, year = {2004}, note = {Date of query: September 2004}, } @Misc{survstat-fluByBw, author = {{Robert Koch-Institut}}, title = {{SurvStat@RKI}}, howpublished = {\url{http://www3.rki.de/SurvStat}}, year = {2009}, note = {Accessed March 2009}, } @Article{lai95, author = {T. L. Lai}, title = {Sequential changepoint detection in quality control and dynamical systems}, journal = {Journal of the Royal Statistical Society. Series B (Methodological)}, year = {1995}, volume = {57}, number = {4}, pages = {613--658}, } @Article{manitz.hoehle2013, author = {Juliane Manitz and Michael H{\"o}hle}, title = {Bayesian outbreak detection algorithm for monitoring reported cases of campylobacteriosis in {Germany}}, journal = {Biometrical Journal}, year = {2013}, volume = {55}, number = {4}, pages = {509--526}, __markedentry = {[sebastian:]}, doi = {10.1002/bimj.201200141}, } @Book{Martinussen.Scheike2006, title = {Dynamic Regression Models for Survival Data}, publisher = {Springer-Verlag}, year = {2006}, author = {Martinussen, Torben and Scheike, Thomas H.}, series = {Statistics for Biology and Health}, } @Article{meyer.etal2011, author = {Sebastian Meyer and Johannes Elias and Michael H{\"o}hle}, title = {A space-time conditional intensity model for invasive meningococcal disease occurrence}, journal = {Biometrics}, year = {2012}, volume = {68}, number = {2}, pages = {607--616}, doi = {10.1111/j.1541-0420.2011.01684.x}, eprint = {http://arxiv.org/abs/1508.05740}, } @Article{meyer.held2015, author = {Sebastian Meyer and Leonhard Held}, title = {Incorporating social contact data in spatio-temporal models for infectious disease spread}, journal = {Biostatistics}, year = {2017}, volume = {18}, number = {2}, pages = {338--351}, doi = {10.1093/biostatistics/kxw051}, } @Article{meyer.held2013, author = {Sebastian Meyer and Leonhard Held}, title = {Power-law models for infectious disease spread}, journal = {Annals of Applied Statistics}, year = {2014}, volume = {8}, number = {3}, pages = {1612--1639}, doi = {10.1214/14-AOAS743}, eprint = {http://arxiv.org/abs/1308.5115}, } @Article{meyer.etal2014, author = {Sebastian Meyer and Leonhard Held and Michael H{\"o}hle}, title = {Spatio-temporal analysis of epidemic phenomena using the {R} package {surveillance}}, journal = {Journal of Statistical Software}, year = {2017}, volume = {77}, number = {11}, pages = {1--55}, doi = {10.18637/jss.v077.i11}, } @Article{meyer.etal2015, author = {Sebastian Meyer and Ingeborg Warnke and Wulf R{\"o}ssler and Leonhard Held}, title = {Model-based testing for space-time interaction using point processes: {A}n application to psychiatric hospital admissions in an urban area}, journal = {Spatial and Spatio-temporal Epidemiology}, year = {2016}, volume = {17}, pages = {15--25}, doi = {10.1016/j.sste.2016.03.002}, eprint = {http://arxiv.org/abs/1512.09052}, } @Article{neal.roberts2004, author = {Neal, P. J. and Roberts, G. O.}, title = {Statistical inference and model selection for the 1861~{Hagelloch} measles epidemic}, journal = {Biostatistics}, year = {2004}, volume = {5}, number = {2}, pages = {249--261}, doi = {10.1093/biostatistics/5.2.249}, } @Article{ogata1988, author = {Yosihiko Ogata}, title = {Statistical models for earthquake occurrences and residual analysis for point processes}, journal = {Journal of the American Statistical Association}, year = {1988}, volume = {83}, number = {401}, pages = {9--27}, } @Article{paul-held-2011, author = {Michaela Paul and Leonhard Held}, title = {Predictive assessment of a non-linear random effects model for multivariate time series of infectious disease counts}, journal = {Statistics in Medicine}, year = {2011}, volume = {30}, number = {10}, pages = {1118--1136}, doi = {10.1002/sim.4177}, } @Article{paul-etal-2008, author = {Michaela Paul and Leonhard Held and Andr{\'e} Michael Toschke}, title = {Multivariate modelling of infectious disease surveillance data}, journal = {Statistics in Medicine}, year = {2008}, volume = {27}, number = {29}, pages = {6250--6267}, doi = {10.1002/sim.3440}, } @MastersThesis{riebler2004, author = {A. Riebler}, title = {{Empirischer Vergleich von statistischen Methoden zur Ausbruchserkennung bei Surveillance Daten}}, school = {Department of Statistics, University of Munich}, year = {2004}, type = {Bachelor's thesis}, } @Article{salmon.etal2014, author = {Ma{\"e}lle Salmon and Dirk Schumacher and Michael H{\"o}hle}, title = {Monitoring count time series in \textsf{R}: {A}berration detection in public health surveillance}, journal = {Journal of Statistical Software}, year = {2016}, volume = {70}, number = {10}, pages = {1--35}, doi = {10.18637/jss.v070.i10}, } @Book{Silvapulle.Sen2005, title = {Constrained Statistical Inference: Order, Inequality, and Shape Constraints}, publisher = {Wiley}, year = {2005}, author = {Silvapulle, Mervyn J. and Sen, Pranab Kumar}, series = {Wiley Series in Probability and Statistics}, isbn = {0-471-20827-2}, doi = {10.1002/9781118165614}, } @Article{stroup89, author = {D.F. Stroup and G.D. Williamson and J.L. Herndon and J.M. Karon}, title = {Detection of aberrations in the occurrence of notifiable diseases surveillance data}, journal = {Statistics in Medicine}, year = {1989}, volume = {8}, pages = {323--329}, doi = {10.1002/sim.4780080312}, } @Article{wei.held2013, author = {Wei, Wei and Held, Leonhard}, title = {Calibration tests for count data}, journal = {Test}, year = {2014}, volume = {23}, number = {4}, pages = {787--805}, doi = {10.1007/s11749-014-0380-8}, } surveillance/vignettes/twinSIR-cache.RData0000644000175100001440000000324512674766245020340 0ustar hornikusers‹­–yTSG‡‡$@Q,⊶ -E°€ƒ– Ö‚¶¬H @¢a1€á(•TÑ⪂;Ä­´ŠXæ¹àÑ£‚[\"*–@ƒ t’¼—ãé_}ç$3wî¹÷7o¾I‚¼ƒ]Ì‚Í4@§1Ž» þ2 ÀÒ âøhèÖ¸4k], Yâ–7Zì¬ä'«azÎÊ’²+áÏ.3äËþ8·Vз4¤ÃÜ:±÷›0¸ëïËçÙy@YyiÞù6ø sJVÖ9 ܸkûˆk|¸÷à?i»já¾æð$³fO˜ýÅmÁ–žép¿ÄeÝd4<@ Le™18ýjxxiìl‰G#ËÇ:×­’z¬c½8ù| ®[Ÿ‡°Ôå4"X¤Í€CÚ‡ êÐHµ uê†ß 6];ˆ”¤_ô~ý”£ówK :ô¶ÁOÅSó©õ¨õÉ|d~º¡}}4²^cªþX¢ó…±¸a룵þB˜8$Ž•ˆû$j`¬t±$’1b!Ÿì›jñŠ¢H“•˜$Œå%EQ~†„'âë× ‘å4ú†\ÜV ¬XÎA…ÚEm’á2·›qëò!÷‡Pë|•Áᵇ+RUÎEEm0|Ñö ²òêê6¨.ÂHÞæ¾€®,Èow‹ëî—Àè”–æCŒ`(`d‡.`Ï‚B™o•Êf \=VÑMx E'N^qwh€q®!ÎOœKaI¨Ñsä‰íQgÚº§bT‰ƒý4|„å‹* FVÑË÷ÐÁ¯ÕZdŸ~=}PõðÜ <ïq«_ ¶[^{GgÔ1G$ÛPO©ª¯#Õß9ÿÏO/ÂHÀ.4މћª(tJËÝÇ~&F‘½[#¾ÃÄøF:Ï#;¾´Á·LJX»^~¹ë1 ,fq1q·ÚxúĉÛjð‘÷\\xëéq ñ}P3·©lÉT€pJÌ× ºî×:ª×›w÷‰Ý-ê c;÷å`—£z5Ýš½ë­áÐE%·R^»$ÉIHuÌ¥7YP—-3ò$Î3ÉáNw0@ƒmSÆE`TcU|Õ˜z©•gæÂ<÷»¼ae;õôé[dßC#«¿6HdŒH„ŒPY—J×£§ºi$‚ I:’ë[²¤.¾ U“ó¨ùzd‡ ëkÒtãT~ÙA‚©'ëí#ë§éy¤ }œSúÐÿÏå{üSð[é’èi‘3 =—w`¶ð"7Å‹©oánÇ7r³;KaHõ¥€éÛ_ÂÜV¾*æü8(Þ“zï˜b/Üq•Kû~àGȽû,&ŸCƒ¹>Çú¼†âáaÒ9Ãï- ñG6Cû1ùÈfüW½Vº9ä(ä§]ÈI/¡”c+9ºµÛóŽÓTgÜôX¼³ú@å×îƒÚÃÿò÷Ýk }µ_ÔeH^*oã´úCdítJˆ*À8Rè$‘†ù®—D¬úðmFŠx‰ÔÛ¤‡‘áNIaÜÒ…A¤Á%^¼oŒ surveillance/vignettes/monitoringCounts.Rnw0000644000175100001440000035435413231323241021055 0ustar hornikusers%\VignetteIndexEntry{Monitoring count time series in R: Aberration detection in public health surveillance} %\VignetteDepends{surveillance, gamlss, INLA, MGLM, ggplot2} \documentclass[nojss]{jss} \usepackage{amsmath,bm} \usepackage{subfig} \newcommand{\BetaBin}{\operatorname{BetaBin}} \newcommand{\Var}{\operatorname{Var}} \newcommand{\logit}{\operatorname{logit}} \newcommand{\NB}{\operatorname{NB}} %% almost as usual \author{Ma\"elle Salmon\\Robert Koch Institute \And Dirk Schumacher\\Robert Koch Institute \And Michael H\"ohle\\ Stockholm University,\\Robert Koch Institute } \title{ \vspace{-2.2cm} \fbox{\vbox{\normalfont\footnotesize This vignette corresponds to an article published in the\\ \textit{Journal of Statistical Software} 2016;\textbf{70}(10):1--35. \doi{10.18637/jss.v070.i10}.}}\\[1cm] Monitoring Count Time Series in \proglang{R}: Aberration Detection in Public Health Surveillance} %% for pretty printing and a nice hypersummary also set: \Plainauthor{Ma\"elle Salmon, Dirk Schumacher, Michael H\"ohle} %% comma-separated \Plaintitle{Monitoring Count Time Series in R: Aberration Detection in Public Health Surveillance} % without formatting \Shorttitle{\pkg{surveillance}: Aberration detection in \proglang{R}} %% a short title (if necessary) %% an abstract and keywords \Abstract{ Public health surveillance aims at lessening disease burden by, e.g., timely recognizing emerging outbreaks in case of infectious diseases. Seen from a statistical perspective, this implies the use of appropriate methods for monitoring time series of aggregated case reports. This paper presents the tools for such automatic aberration detection offered by the \textsf{R} package \pkg{surveillance}. We introduce the functionalities for the visualization, modeling and monitoring of surveillance time series. With respect to modeling we focus on univariate time series modeling based on generalized linear models (GLMs), multivariate GLMs, generalized additive models and generalized additive models for location, shape and scale. Applications of such modeling include illustrating implementational improvements and extensions of the well-known Farrington algorithm, e.g., by spline-modeling or by treating it in a Bayesian context. Furthermore, we look at categorical time series and address overdispersion using beta-binomial or Dirichlet-multinomial modeling. With respect to monitoring we consider detectors based on either a Shewhart-like single timepoint comparison between the observed count and the predictive distribution or by likelihood-ratio based cumulative sum methods. Finally, we illustrate how \pkg{surveillance} can support aberration detection in practice by integrating it into the monitoring workflow of a public health institution. Altogether, the present article shows how well \pkg{surveillance} can support automatic aberration detection in a public health surveillance context. } \Keywords{\proglang{R}, \texttt{surveillance}, outbreak detection, statistical process control} \Plainkeywords{R, surveillance, outbreak detection, statistical process control} %% without formatting %% at least one keyword must be supplied \Address{ Ma\"{e}lle Salmon, Dirk Schumacher\\ Department for Infectious Diseases Epidemiology\\ Robert Koch Institut Berlin\\ Seestrasse 10\\ 13353 Berlin, Germany\\ E-mail: \email{maelle.salmon@yahoo.se}, \email{mail@dirk-schumacher.net}\\ URL: \url{https://masalmon.github.io/}\\ \phantom{URL: }\url{http://www.dirk-schumacher.net/}\\ Michael H\"{o}hle\\ Department of Mathematics\\ Stockholm University\\ Kr\"{a}ftriket\\ 106 91 Stockholm, Sweden\\ E-mail: \email{hoehle@math.su.se}\\ URL: \url{http://www.math.su.se/~hoehle/} } \begin{document} \SweaveOpts{concordance=TRUE} \maketitle \section{Introduction} \label{sec:0} Nowadays, the fight against infectious diseases does not only require treating patients and setting up measures for prevention but also demands the timely recognition of emerging outbreaks in order to avoid their expansion. Along these lines, health institutions such as hospitals and public health authorities collect and store information about health events -- typically represented as individual case reports containing clinical information, and subject to specific case definitions. Analysing these data is crucial. It enables situational awareness in general and the timely detection of aberrant counts in particular, empowering the prevention of additional disease cases through early interventions. For any specific aggregation of characteristics of events, such as over-the-counter sales of pain medication, new cases of foot-and-mouth disease among cattle, or adults becoming sick with hepatitis C in Germany, data can be represented as time series of counts with days, weeks, months or years as time units of the aggregation. Abnormally high or low values at a given time point can reveal critical issues such as an outbreak of the disease or a malfunction of data transmission. Thus, identifying aberrations in the collected data is decisive, for human as well as for animal health. In this paper we present the \proglang{R} package \pkg{surveillance} which is available from the Comprehensive \proglang{R} Archive Network (CRAN) at \url{https://CRAN.R-project.org/package=surveillance}. It implements a range of methods for aberration detection in time series of counts and proportions. Statistical algorithms provide an objective and reproducible analysis of the data and allow the automation of time-consuming aspects of the monitoring process. In the recent years, a variety of such tools has flourished in the literature. Reviews of methods for aberration detection in time series of counts can be found in~\citet{Buckeridge2007}~and~\citet{Unkel2012}. However, the great variety of statistical algorithms for aberration detection can be a hurdle to practitioners wishing to find a suitable method for their data. It is our experience that ready-to-use and understandable implementation and the possibility to use the methods in a routine and automatic fashion are the criteria most important to the epidemiologists. The package offers an open-source implementation of state-of-the-art methods for the prospective detection of outbreaks in count data time series with established methods, as well as the visualization of the analysed time series. With the package, the practitioner can introduce statistical surveillance into routine practice without too much difficulty. As far as we know, the package is now used in several public health institutions in Europe: at the National Public Health Institute of Finland, at the Swedish Institute for Communicable Disease Control, at the French National Reference Centre for Salmonella, and at the Robert Koch Institute (RKI) in Berlin. The use of \pkg{surveillance} at the RKI shall be the focus of this paper. The package also provides many other functions serving epidemic modeling purposes. Such susceptible-infectious-recovered based models and their extensions towards regression based approaches are documented in other works~\citep{held-etal-2005,held_etal2006,meyer.etal2011,meyer.etal2014}. The present paper is designed as an extension of two previous articles about the \pkg{surveillance} package published as~\citet{hoehle-2007} and~\citet{hoehle-mazick-2010}. On the one hand, the paper aims at giving an overview of the new features added to the package since the publication of the two former papers. On the other hand it intends to illustrate how well the \pkg{surveillance} package can support routine practical disease surveillance by presenting the current surveillance system of infectious diseases at the RKI. This paper is structured as follows. Section~\ref{sec:1} gives an introduction to the data structure used in the package for representing and visualizing univariate or multivariate time series. Furthermore, the structure and use of aberration detection algorithms are explained. Section~\ref{sec:2} leads the reader through different surveillance methods available in the package. Section~\ref{sec:3} describes the integration of such methods in a complete surveillance system as currently in use at the RKI. Finally, a discussion rounds off the work. \section{Getting to know the basics of the package} <>= options(width=77) ## create directories for plots and cache dir.create("plots", showWarnings=FALSE) dir.create("monitoringCounts-cache", showWarnings=FALSE) @ \SweaveOpts{prefix.string=plots/monitoringCounts} \label{sec:1} The package provides a central S4 data class \code{sts} to capture multivariate or univariate time series. All further methods use objects of this class as an input. Therefore we first describe how to use the \code{sts} class and then, as all monitoring methods of the package conform to the same syntax, a typical call of a function for aberration detection will be presented. Furthermore, the visualization of time series and of the results of their monitoring is depicted. \subsection{How to store time series and related information} In \pkg{surveillance}, time series of counts and related information are encoded in a specific S4-class called \code{sts} (\textit{surveillance time series}) that represents possibly multivariate time series of counts. Denote the counts as $\left( y_{it} ; i = 1, \ldots,m, t = 1, \ldots, n \right)$, where $n$ is the length of the time series and $m$ is the number of entities, e.g., geographical regions, hospitals or age groups, being monitored. An example which we shall look at in more details is a time series representing the weekly counts of cases of infection with \textit{Salmonella Newport} in all 16 federal states of Germany from 2004 to 2013 with $n=525$ weeks and $m=16$ geographical units. Infections with \textit{Salmonella Newport}, a subtype of \textit{Salmonella}, can trigger gastroenteritis, prompting the seek of medical care. Infections with \textit{Salmonella} are notifiable in Germany since 2001 with data being forwarded to the RKI by federal states health authorities on behalf of the local health authorities. \subsubsection[Slots of the class sts]{Slots of the class \texttt{sts}} The key slots of the \code{sts} class are those describing the observed counts and the corresponding time periods of the aggregation. The observed counts $\left(y_{it}\right)$ are stored in the $n \times m$ matrix \code{observed}. A number of other slots characterize time. First, \code{epoch} denotes the corresponding time period of the aggregation. If the Boolean \code{epochAsDate} is \code{TRUE}, \code{epoch} is the numeric representation of \code{Date} objects corresponding to each observation in \code{observed}. If the Boolean \code{epochAsDate} is \code{FALSE}, \code{epoch} is the time index $1 \leq t \leq n$ of each of these observations. Then, \code{freq} is the number of observations per year: 365 for daily data, 52 for weekly data and 12 for monthly data. Finally, \code{start} is a vector representing the origin of the time series with two values that are the year and the epoch within that year for the first observation of the time series -- \code{c(2014, 1)} for a weekly time series starting on the first week of 2014 for instance. Other slots enable the storage of additional information. Known aberrations are recorded in the Boolean slot \code{state} of the same dimensions as \code{observed} with \code{TRUE} indicating an outbreak and \code{FALSE} indicating the absence of any known aberration. The monitored population in each of the units is stored in slot \code{populationFrac}, which gives either proportions or numbers. The geography of the zone under surveillance is accessible through slot \code{map} which is an object of class \code{SpatialPolygonsDataFrame}~\citep{sp1,sp2} providing a shape of the $m$ areas which are monitored and slot \code{neighbourhood}, which is a symmetric matrix of Booleans size $m^2$ stating the neighborhood matrix. Slot \code{map} is pertinent when units are geographical units, whereas \code{neighbourhood} could be useful in any case, e.g., for storing a contact matrix between age groups for modeling purposes. Finally, if monitoring has been performed on the data the information on its control arguments and its results are stored in \code{control}, \code{upperbound} and \code{alarm} presented in Section~\ref{sec:howto}. \subsubsection[Creation of an object of class sts]{Creation of an object of class \texttt{sts}} The creation of a \code{sts} object is straightforward, requiring a call to the function \code{new} together with the slots to be assigned as arguments. The input of data from external files is one possibility for getting the counts as it is described in \citet{hoehle-mazick-2010}. To exemplify the process we shall use weekly counts of \textit{Salmonella Newport} in Germany loaded using \code{data("salmNewport")}. Alternatively, one can use coercion methods to convert between the \texttt{ts} class and the \texttt{sts} class. Note that this only converts the content of the slot \texttt{observed}, that is, <>= all.equal(observed(salmNewport),observed(as(as(salmNewport,"ts"),"sts"))) @ Using the \texttt{ts} class as intermediate step also allows the conversion between other time series classes, e.g., from packages \pkg{zoo}~\citep{zoo} or \pkg{xts}~\citep{xts}. <>= # Load packages library("surveillance") library('gamlss') @ <>= # This code is the one used for the Salmon et al. 2014 JSS article. # Using this code all examples from the article can be reproduced. # computeALL is FALSE to avoid the computationally intensive parts # of the code (use of simulations to find a threshold value for categoricalCUSUM, # use of boda) but one can set it to TRUE to have it run. computeALL <- FALSE @ <>= # Define plot parameters #Add lines using grid by a hook function. Use NULL to align with tick marks hookFunc <- function() { grid(NA,NULL,lwd=1) } cex.text <- 1.7 cex.axis <- cex.text cex.main <- cex.text cex.lab <- cex.text cex.leg <- cex.text line.lwd <- 2#1 stsPlotCol <- c("mediumblue","mediumblue","red2") alarm.symbol <- list(pch=17, col="red2", cex=2,lwd=3) #Define list with arguments to use with do.call("legend", legOpts) legOpts <- list(x="topleft",legend=c(expression(U[t])),bty="n",lty=1,lwd=line.lwd,col=alarm.symbol$col,horiz=TRUE,cex=cex.leg) #How should the par of each plot look? par.list <- list(mar=c(6,5,5,5),family="Times") #Do this once y.max <- 0 plotOpts <- list(col=stsPlotCol,ylim=c(0,y.max), main='',lwd=c(1,line.lwd,line.lwd), dx.upperbound=0, #otherwise the upperbound line is put 0.5 off cex.lab=cex.lab, cex.axis=cex.axis, cex.main=cex.main, ylab="No. of reports", xlab="Time (weeks)",lty=c(1,1,1), legend.opts=legOpts,alarm.symbol=alarm.symbol, xaxis.tickFreq=list("%V"=atChange,"%m"=atChange,"%G"=atChange), xaxis.labelFreq=list("%Y"=atMedian), xaxis.labelFormat="%Y", par.list=par.list,hookFunc=hookFunc) @ <>= # Load data data("salmNewport") @ <>= # Plot y.max <- max(aggregate(salmNewport,by="unit")@observed,na.rm=TRUE) plotOpts2 <- modifyList(plotOpts,list(x=salmNewport,legend.opts=NULL,ylim=c(0,y.max),type = observed ~ time),keep.null=TRUE) plotOpts2$par.list <- list(mar=c(6,5,0,5),family="Times") plotOpts2$xaxis.tickFreq <- list("%m"=atChange,"%G"=atChange) do.call("plot",plotOpts2) @ \setkeys{Gin}{height=7cm, width=15cm} \begin{figure} \begin{center} <>= <> @ \end{center} \vspace{-1cm} \caption{Weekly number of cases of S. Newport in Germany, 2004-2013.} \label{fig:Newport} \end{figure} \subsubsection[Basic manipulation of objects of the class sts]{Basic manipulation of objects of the class \texttt{sts}} This time series above is represented as a multivariate \code{sts} object whose dimensions correspond to the 16 German federal states. Values are weekly counts so \code{freq = 52}. Weeks are here handled as \code{Date} objects by setting \code{epochAsDate} to \code{TRUE}. One can thus for instance get the weekday of the date by calling \code{weekdays(salmNewport)}. Furthermore, one can use the function \code{format} (and the package specific platform independent version \code{dateFormat}) to obtain \code{strftime} compatible formatting of the epochs. Another advantage of using \code{Date} objects is that the plot functions have been re-written for better management of ticks and labelling of the x-axis based on \code{strftime} compatible conversion specifications. For example, to get ticks at all weeks corresponding to the first week in a month as well as all weeks corresponding to the first in a year while placing labels consisting of the year at the median index per year: <>= plot(salmNewport, type = observed ~ time, xaxis.tickFreq = list("%V" = atChange, "%m" = atChange, "%G" = atChange), xaxis.labelFreq = list("%Y" = atMedian), xaxis.labelFormat = "%Y") @ which is shown in Figure~\ref{fig:Newport}. Here, the \code{atChange} and \code{atMedian} functions are small helper functions and the respective tick lengths are controlled by the \pkg{surveillance} specific option \code{surveillance.options("stsTickFactors")}. Actually \code{sts} objects can be plotted using different options: \code{type = observed ~ time} produces the time series for whole Germany as shown in Figure~\ref{fig:Newport}, whereas \code{type = observed ~ time | unit} is a panelled graph with each panel representing the time series of counts of a federal state as seen in Figure~\ref{fig:unit}. \setkeys{Gin}{height=7cm, width=9cm} \begin{figure} %\begin{center} %\hspace*{\fill}% \hspace{-1em} \subfloat[]{ <>= y.max <- max(observed(salmNewport[,2]),observed(salmNewport[,3]),na.rm=TRUE) plotOpts2 <- modifyList(plotOpts,list(x=salmNewport[,2],legend.opts=NULL,ylim=c(0,y.max)),keep.null=TRUE) plotOpts2$xaxis.tickFreq <- list("%G"=atChange) do.call("plot",plotOpts2) @ \includegraphics[width=9cm]{plots/monitoringCounts-unitPlot1.pdf} }\hspace{-3em}% \subfloat[]{ <>= # Plot with special function plotOpts2 <- modifyList(plotOpts,list(x=salmNewport[,3],legend.opts=NULL,ylim=c(0,y.max)),keep.null=TRUE) plotOpts2$xaxis.tickFreq <- list("%G"=atChange) do.call("plot",plotOpts2) @ \includegraphics[width=9cm]{plots/monitoringCounts-unitPlot2.pdf} } %\hspace*{\fill}% \caption{Weekly count of S. Newport in the German federal states (a) Bavaria and (b) Berlin.} \label{fig:unit} %\end{center} \end{figure} Once created one can use typical subset operations on a \code{sts} object: for instance \code{salmNewport[} \code{1:10, "Berlin"]} is a new \code{sts} object with weekly counts for Berlin during the 10 first weeks of the initial dataset; \code{salmNewport[isoWeekYear(epoch(salmNewport))\$ISOYear<=2010,]} uses the \code{surveillance}'s \code{isoWeekYear()} function to get a \code{sts} object with weekly counts for all federal states up to 2010. Moreover, one can take advantage of the \proglang{R} function \code{aggregate()}. For instance, \code{aggregate(salmNewport,by="unit")} returns a \code{sts} object representing weekly counts of \textit{Salmonella Newport} in Germany as a whole, whereas \code{aggregate(salmNewport, by = "time")} corresponds to the total count of cases in each federal state over the whole period. \subsection{How to use aberration detection algorithms} \label{sec:howto} Monitoring algorithms of the package operate on objects of the class \code{sts} as described below. \subsubsection{Statistical framework for aberration detection} We introduce the framework for aberration detection on an univariate time series of counts $\left\{y_t,\> t=1,2,\ldots\right\}$. Surveillance aims at detecting an \textit{aberration}, that is to say, an important change in the process occurring at an unknown time $\tau$. This change can be a step increase of the counts of cases or a more gradual change~\citep{Sonesson2003}. Based on the possibility of such a change, for each time $t$ we want to differentiate between the two states \textit{in-control} and \textit{out-of-control}. At any timepoint $t_0\geq 1$, the available information -- i.e., past counts -- is defined as $\bm{y}_{t_0} = \left\{ y_t\>;\> t\leq t_0\right\}$. Detection is based on a statistic $r(\cdot)$ with resulting alarm time $T_A = \min\left\{ t_0\geq 1 : r(\bm{y}_{t_0}) > g\right\}$ where $g$ is a known threshold. Functions for aberration detection thus use past data to estimate $r(\bm{y}_{t_0})$, and compare it to the threshold $g$, above which the current count can be considered as suspicious and thus doomed as \textit{out-of-control}. Threshold values and alarm Booleans for each timepoint of the monitored range are saved in the slots \code{upperbound} and \code{alarm}, of the same dimensions as \code{observed}, while the method parameters used for computing the threshold values and alarm Booleans are stored in the slot \code{control}. \subsubsection{Aberration detection in the package} To perform such a monitoring of the counts of cases, one has to choose one of the surveillance algorithms of the package -- this choice will be the topic of Section~\ref{sec:using}. Then, one must indicate which part of the time series or \code{range} has to be monitored -- for instance the current year. Lastly, one needs to specify the parameters specific to the algorithm. \subsubsection{Example with the EARS C1 method} We will illustrate the basic principle by using the \code{earsC}~function~that implements the EARS (Early Aberration Detection System) methods of the CDC as described in~\citet{SIM:SIM3197}. This algorithm is especially convenient in situations when little historic information is available. It offers three variants called C1, C2 and C3. Here we shall expand on C1 for which the baseline are the 7 timepoints before the assessed timepoint $t_0$, that is to say $\left(y_{t_0-7},\ldots,y_{t_0-1}\right)$. The expected value is the mean of the baseline. The method is based on a statistic called $C_{t_0}$ defined as $C_{t_0}= \frac{(y_{t_0}-\bar{y}_{t_0})}{s_{t_0}}$, where $$\bar{y}_{t_0}= \frac{1}{7} \cdot\sum_{i=t_0-7}^{t_0-1} y_i \textnormal{ and } s_{t_0}^2= \frac{1}{7-1} \cdot\sum_{i=t_0-7}^{t_0-1} \left(y_i - \bar{y}_{t_0}\right)^2.$$ Under the null hypothesis of no outbreak, it is assumed that $C_{t_0} \stackrel{H_0}{\sim} {N}(0,1)$. The upperbound $U_{t_0}$ is found by assuming that $y_t$ is normal, estimating parameters by plug-in and then taking the $(1-\alpha)$-th quantile of this distribution, i.e. $U_{t_0}= \bar{y}_{t_0} + z_{1-\alpha}s_{t_0}$, where $z_{1-\alpha}$ is the $(1-\alpha)$-quantile of the standard normal distribution. An alarm is raised if $y_{t_0} > U_{t_0}$. The output of the algorithm is a \code{sts} object that contains subsets of slots \code{observed}, \code{population} and \code{state} defined by the range of timepoints specified in the input -- \textit{e.g} the last 20 timepoints of the time series, and with the slots \code{upperbound} and \code{alarm} filled by the output of the algorithm. Information relative to the \code{range} of data to be monitored and to the parameters of the algorithm, such as \code{alpha} for \code{earsC}, has to be formulated in the slot \code{control}. This information is also stored in the slot \code{control} of the returned \code{sts} object for later inspection. <>= in2011 <- which(isoWeekYear(epoch(salmNewport))$ISOYear == 2011) salmNewportGermany <- aggregate(salmNewport, by = "unit") control <- list(range = in2011, method = "C1", alpha = 0.05) surv <- earsC(salmNewportGermany, control = control) plot(surv) @ <>= # Range for the monitoring in2011 <- which(isoWeekYear(epoch(salmNewport))$ISOYear==2011) # Aggregate counts over Germany salmNewportGermany <- aggregate(salmNewport,by="unit") # Choose parameters control <- list(range = in2011, method="C1", alpha=0.05) # Apply earsC function surv <- earsC(salmNewportGermany, control=control) # Plot the results #plot(surv) # Plot y.max <- max(observed(surv),upperbound(surv),na.rm=TRUE) do.call("plot",modifyList(plotOpts,list(x=surv,ylim=c(0,y.max)),keep.null=TRUE)) @ \setkeys{Gin}{height=7cm, width=15cm} \begin{figure} \begin{center} <>= <> @ \end{center} \vspace{-1cm} \caption{Weekly reports of S. Newport in Germany in 2011 monitored by the EARS C1 method. The line represents the upperbound calculated by the algorithm. Triangles indicate alarms that are the timepoints where the observed number of counts is higher than the upperbound.} \label{fig:NewportEARS} \end{figure} The \code{sts} object is easily visualized using the function \code{plot} as depicted in Figure~\ref{fig:NewportEARS}, which shows the upperbound as a solid line and the alarms -- timepoints where the upperbound has been exceeded -- as triangles. The four last alarms correspond to a known outbreak in 2011 due to sprouts~\citep{Newport2011}. One sees that the upperbound right after the outbreak is affected by the outbreak: it is very high, so that a smaller outbreak would not be detected. The EARS methods C1, C2 and C3 are simple in that they only use information from the very recent past. This is appropriate when data has only been collected for a short time or when one expects the count to be fairly constant. However, data from the less recent past often encompass relevant information about e.g., seasonality and time trend, that one should take into account when estimating the expected count and the associated threshold. For instance, ignoring an increasing time trend could decrease sensitivity. Inversely, overlooking an annual surge in counts during the summer could decrease specificity. Therefore, it is advisable to use detection methods whose underlying models incorporate essential characteristics of time series of disease count data such as overdispersion, seasonality, time trend and presence of past outbreaks in the records~\citep{Unkel2012,Shmueli2010}. Moreover, the EARS methods do not compute a proper prediction interval for the current count. Sounder statistical methods will be reviewed in the next section. \section[Using surveillance in selected contexts]{Using \pkg{surveillance} in selected contexts} \label{sec:using} \label{sec:2} More than a dozen algorithms for aberration detection are implemented in the package. Among those, this section presents a set of representative algorithms, which are already in routine application at several public health institutions or which we think have the potential to become so. First we describe the Farrington method introduced by~\citet{farrington96} together with the improvements proposed by~\citet{Noufaily2012}. As a Bayesian counterpart to these methods we present the BODA method published by~\citet{Manitz2013} which allows the easy integration of covariates. All these methods perform one-timepoint detection in that they detect aberrations only when the count at the currently monitored timepoint is above the threshold. Hence, no accumulation of evidence takes place. As an extension, we introduce an implementation of the negative binomial cumulative sum (CUSUM) of~\citet{hoehle.paul2008} that allows the detection of sustained shifts by accumulating evidence over several timepoints. Finally, we present a method suitable for categorical data described in~\citet{hoehle2010} that is also based on cumulative sums. \subsection{One size fits them all for count data} Two implementations of the Farrington method, which is currently \textit{the} method of choice at European public health institutes \citep{hulth_etal2010}, exist in the package. First, the original method as described in \citet{farrington96} is implemented as the function \code{farrington}. Its use was already described in \citet{hoehle-mazick-2010}. Now, the newly implemented function \code{farringtonFlexible} supports the use of this \textit{original method} as well as of the \textit{improved method} built on suggestions made by~\citet{Noufaily2012} for improving the specificity without reducing the sensitivity. In the function \code{farringtonFlexible} one can choose to use the original method or the improved method by specification of appropriate \code{control} arguments. Which variant of the algorithm is to be used is determined by the contents of the \code{control} slot. In the example below, \code{control1} corresponds to the use of the original method and \code{control2} indicates the options for the improved method. <>= # Control slot for the original method control1 <- list(range=in2011,noPeriods=1, b=4,w=3,weightsThreshold=1,pastWeeksNotIncluded=3, pThresholdTrend=0.05,thresholdMethod="delta",alpha=0.05, limit54=c(0,50)) # Control slot for the improved method control2 <- list(range=in2011,noPeriods=10, b=4,w=3,weightsThreshold=2.58,pastWeeksNotIncluded=26, pThresholdTrend=1,thresholdMethod="nbPlugin",alpha=0.05, limit54=c(0,50)) @ <>= control1 <- list(range = in2011, noPeriods = 1, b = 4, w = 3, weightsThreshold = 1, pastWeeksNotIncluded = 3, pThresholdTrend = 0.05, thresholdMethod = "delta") control2 <- list(range = in2011, noPeriods = 10, b = 4, w = 3, weightsThreshold = 2.58, pastWeeksNotIncluded = 26, pThresholdTrend = 1, thresholdMethod = "nbPlugin") @ In both cases the steps of the algorithm are the same. In a first step, an overdispersed Poisson generalized linear model with log link is fitted to the reference data $\bm{y}_{t_0} \subseteq \left\{ y_t\>;\> t\leq t_0\right\}$, where $\E(y_t)=\mu_t$ with $\log \mu_t = \alpha + \beta t$ and $\Var(y_t)=\phi\cdot\mu_t$ and where $\phi\geq1$ is ensured. The original method took seasonality into account by using a subset of the available data as reference data for fitting the GLM: \code{w} timepoints centred around the timepoint located $1,2,\ldots,b$ years before $t_0$, amounting to a total $b \cdot (2w+1)$ reference values. However, it was shown in~\citet{Noufaily2012} that the algorithm performs better when using more historical data. In order to do do so without disregarding seasonality, the authors introduced a zero order spline with 11 knots, which can be conveniently represented as a 10-level factor. We have extended this idea in our implementation so that one can choose an arbitrary number of periods in each year. Thus, $\log \mu_t = \alpha + \beta t +\gamma_{c(t)}$ where $\gamma_{c(t)}$ are the coefficients of a zero order spline with $\mathtt{noPeriods}+1$ knots, which can be conveniently represented as a $\mathtt{noPeriods}$-level factor that reflects seasonality. Here, $c(t)$ is a function indicating in which season or period of the year $t$ belongs to. The algorithm uses \code{w}, \code{b} and \texttt{noPeriods} to deduce the length of periods so they have the same length up to rounding. An exception is the reference window centred around $t_0$. Figure~\ref{fig:fPlot} shows a minimal example, where each character corresponds to a different period. Note that setting $\mathtt{noPeriods} = 1$ corresponds to using the original method with only a subset of the data: there is only one period defined per year, the reference window around $t_0$ and other timepoints are not included in the model. \setkeys{Gin}{height=3cm, width=7cm} \begin{figure} \subfloat[$\texttt{noPeriods}=2$]{ <>= library(ggplot2) library(grid) # for rectanges widthRectangles <- 10 # dimensions for the ticks heightTick <- 4 xTicks <- c(15,67,119) yTicksStart <- rep(0,3) yTicksEnd <- rep(0,3) yTicksEnd2 <- rep(-5,3) textTicks <- c("t-2*p","t-p","t[0]") xBigTicks <- c(xTicks[1:2]-widthRectangles/2,xTicks[1:2]+widthRectangles/2,xTicks[3]-widthRectangles/2,xTicks[3]) yTicksBigEnd <- rep(0,6) yTicksBigStart <- rep(heightTick,6) # to draw the horizontal line vectorDates <- rep(0,150) dates <- seq(1:150) data <- data.frame(dates,vectorDates) xPeriods <- c(15,67,117,15+26,67+26) ################################################################################ p <- ggplot() + # white theme_void() + geom_segment(aes(x = 0, y = -20, xend = 200, yend = 10), size=2, arrow = arrow(length = unit(0.5, "cm")), colour ='white') + # time arrow geom_segment(aes(x = 0, y = 0, xend = 150, yend = 0), size=1, arrow = arrow(length = unit(0.5, "cm"))) + # ticks geom_segment(aes(x = xTicks, y = yTicksEnd2, xend = xTicks, yend = yTicksStart ), arrow = arrow(length = unit(0.3, "cm")),size=1)+ # big ticks geom_segment(aes(x = xBigTicks, y = yTicksBigStart, xend = xBigTicks, yend = yTicksBigEnd*2), size=1)+ # time label annotate("text", label = "Time", x = 170, y = 0, size = 8, colour = "black", family="serif") + # ticks labels annotate('text',label=c("t[0]-2 %.% freq","t[0]-freq","t[0]"),x = xTicks, y = yTicksEnd - 10, size = 8,family="serif",parse=T) p+ # periods labels annotate('text',label=c("A","A","A","B","B"),x = xPeriods, y = rep(6,5), size = 8,family="serif",parse=T) @ \includegraphics[width=0.45\textwidth]{plots/monitoringCounts-fPlot1.pdf} } \qquad \subfloat[$\texttt{noPeriods}=3$]{ <>= yTicksBigEnd2 <- rep(0,4) yTicksBigStart2 <- rep(heightTick,4) newX <- c(xTicks[1:2]+widthRectangles/2+52-widthRectangles,xTicks[1:2]+52/2) xPeriods <- c(15,67,117,15+16,67+16,15+35,67+35) p + geom_segment(aes(x = newX, y = yTicksBigStart2, xend = newX, yend = yTicksBigEnd2), size=1)+ # periods labels annotate('text',label=c("A","A","A","B","B","C","C"),x = xPeriods, y = rep(6,7), size = 8,family="serif",parse=T) @ \includegraphics[width=0.45\textwidth]{plots/monitoringCounts-fPlot2.pdf} } \caption{Construction of the noPeriods-level factor to account for seasonality, depending on the value of the half-window size $w$ and of the freq of the data. Here the number of years to go back in the past $b$ is 2. Each level of the factor variable corresponds to a period delimited by ticks and is denoted by a character. The windows around $t_0$ are respectively of size $2w+1$,~$2w+1$ and $w+1$. The segments between them are divided into the other periods so that they have the same length up to rounding.} \label{fig:fPlot} \end{figure} Moreover, it was shown in \citet{Noufaily2012} that it is better to exclude the last 26 weeks before $t_0$ from the baseline in order to avoid reducing sensitivity when an outbreak has started recently before $t_0$. In the \code{farringtonFlexible} function, one controls this by specifying \code{pastWeeksNotIncluded}, which is the number of last timepoints before $t_0$ that are not to be used. The default value is 26. Lastly, in the new implementation a population offset can be included in the GLM by setting \code{populationBool} to \code{TRUE} and supplying the possibly time-varying population size in the \code{population} slot of the \code{sts} object, but this will not be discussed further here. In a second step, the expected number of counts $\mu_{t_0}$ is predicted for the current timepoint $t_0$ using this GLM. An upperbound $U_{t_0}$ is calculated based on this predicted value and its variance. The two versions of the algorithm make different assumptions for this calculation. The original method assumes that a transformation of the prediction error $g\left(y_{t_0}-\hat{\mu}_{t_0}\right)$ is normally distributed, for instance when using the identity transformation $g(x)=x$ one obtains $$y_{t_0} - \hat{\mu}_0 \sim \mathcal{N}(0,\Var(y_{t_0}-\hat{\mu}_0))\cdot$$ The upperbound of the prediction interval is then calculated based on this distribution. First we have that $$ \Var(y_{t_0}-\hat{\mu}_{t_0}) = \Var(\hat{y}_{t_0}) + \Var(\hat{\mu}_{t_0})=\phi\mu_0+\Var(\hat{\mu}_{t_0}) $$ with $\Var(\hat{y}_{t_0})$ being the variance of an observation and $\Var(\hat{\mu}_{t_0})$ being the variance of the estimate. The threshold, defined as the upperbound of a one-sided $(1-\alpha)\cdot 100\%$ prediction interval, is then $$U_{t_0} = \hat{\mu}_0 + z_{1-\alpha}\widehat{\Var}(y_{t_0}-\hat{\mu}_{t_0})\cdot$$ This method can be used by setting the control option \code{thresholdMethod} equal to "\code{delta}". However, a weakness of this procedure is the normality assumption itself, so that an alternative was presented in \citet{Noufaily2012} and implemented as \code{thresholdMethod="Noufaily"}. The central assumption of this approach is that $y_{t_0} \sim \NB\left(\mu_{t_0},\nu\right)$, with $\mu_{t_0}$ the mean of the distribution and $\nu=\frac{\mu_{t_0}}{\phi-1}$ its overdispersion parameter. In this parameterization, we still have $\E(y_t)=\mu_t$ and $\Var(y_t)=\phi\cdot\mu_t$ with $\phi>1$ -- otherwise a Poisson distribution is assumed for the observed count. The threshold is defined as a quantile of the negative binomial distribution with plug-in estimates $\hat{\mu}_{t_0}$ and $\hat{\phi}$. Note that this disregards the estimation uncertainty in $\hat{\mu}_{t_0}$ and $\hat{\phi}$. As a consequence, the method "\code{muan}" (\textit{mu} for $\mu$ and \textit{an} for asymptotic normal) tries to solve the problem by using the asymptotic normal distribution of $(\hat{\alpha},\hat{\beta})$ to derive the upper $(1-\alpha)\cdot 100\%$ quantile of the asymptotic normal distribution of $\hat{\mu}_{t_0}=\hat{\alpha}+\hat{\beta}t_0$. Note that this does not reflect all estimation uncertainty because it disregards the estimation uncertainty of $\hat{\phi}$. Note also that for time series where the variance of the estimator is large, the upperbound also ends up being very large. Thus, the method "\code{nbPlugin}" seems to provide information that is easier to interpret by epidemiologists but with "\code{muan}" being more statistically correct. In a last step, the observed count $y_{t_0}$ is compared to the upperbound $U_{t_0}$ and an alarm is raised if $y_{t_0} > U_{t_0}$. In both cases the fitting of the GLM involves three important steps. First, the algorithm performs an optional power-transformation for skewness correction and variance stabilisation, depending on the value of the parameter \code{powertrans} in the \code{control} slot. Then, the significance of the time trend is checked. The time trend is included only when significant at a chosen level \code{pThresholdTrend}, when there are more than three years reference data and if no overextrapolation occurs because of the time trend. Lastly, past outbreaks are reweighted based on their Anscombe residuals. In \code{farringtonFlexible} the limit for reweighting past counts, \code{weightsThreshold}, can be specified by the user. If the Anscombe residual of a count is higher than \code{weightsThreshold} it is reweighted accordingly in a second fitting of the GLM. \citet{farrington96} used a value of $1$ whereas \citet{Noufaily2012} advise a value of $2.56$ so that the reweighting procedure is less drastic, because it also shrinks the variance of the observations. The original method is widely used in public health surveillance~\citep{hulth_etal2010}. The reason for its success is primarily that it does not need to be fine-tuned for each specific pathogen. It is hence easy to implement it for scanning data for many different pathogens. Furthermore, it does tackle classical issues of surveillance data: overdispersion, presence of past outbreaks that are reweighted, seasonality that is taken into account differently in the two methods. An example of use of the function is shown in Figure~\ref{fig:newportFar} with the code below. <>= salm.farrington <- farringtonFlexible(salmNewportGermany, control1) salm.noufaily <- farringtonFlexible(salmNewportGermany, control2) @ \setkeys{Gin}{height=7cm, width=9cm} \begin{figure} \hspace{-1em} %\begin{center} \subfloat[]{ <>= # Plot y.max <- max(observed(salm.farrington),upperbound(salm.farrington),observed(salm.noufaily),upperbound(salm.noufaily),na.rm=TRUE) do.call("plot",modifyList(plotOpts,list(x=salm.farrington,ylim=c(0,y.max)))) @ \includegraphics[width=9cm]{plots/monitoringCounts-farPlot1.pdf} } \hspace{-3em} \subfloat[]{ <>= # Plot do.call("plot",modifyList(plotOpts,list(x=salm.noufaily,ylim=c(0,y.max)))) @ \includegraphics[width=9cm]{plots/monitoringCounts-farPlot2.pdf} } \caption{S. Newport in Germany in 2011 monitored by (a) the original method and (b) the improved method. For the figure we turned off the option that the threshold is only computed if there were more than 5 cases during the 4 last timepoints including $t_0$. One gets less alarms with the most recent method and still does not miss the outbreak in the summer. Simulations on more time series support the use of the improved method instead of the original method.} \label{fig:newportFar} \end{figure} % With our implementation of the improvements presented in \citet{Noufaily2012} we hope that the method with time can replace the original method in routine use. The RKI system described in Section~\ref{sec:RKI} already uses this improved method. \subsubsection{Similar methods in the package} The package also contains further methods based on a subset of the historical data: \code{bayes}, \code{rki} and \code{cdc}. See Table~\ref{table:ref} for the corresponding references. Here, \code{bayes} uses a simple conjugate prior-posterior approach and computes the parameters of a negative binomial distribution based on past values. The procedure \code{rki} makes either the assumption of a normal or a Poisson distribution based on the mean of past counts. Finally, \code{cdc} aggregates weekly data into 4-week-counts and computes a normal distribution based upper confidence interval. None of these methods offer the inclusion of a linear trend, down-weighting of past outbreaks or power transformation of the data. Although these methods are good to have at hand, we personally recommend the use of the improved method implemented in the function \code{farringtonFlexible} because it is rather fast and makes use of more historical data than the other methods. \subsection{A Bayesian refinement} The \code{farringtonFlexible} function described previously was a first indication that the \textit{monitoring} of surveillance time series requires a good \textit{modeling} of the time series before assessing aberrations. Generalized linear models (GLMs) and generalized additive models (GAMs) are well-established and powerful modeling frameworks for handling the count data nature and trends of time series in a regression context. The \code{boda} procedure~\citep{Manitz2013} continues this line of thinking by extending the simple GLMs used in the \code{farrington} and \code{farringtonFlexible} procedures to a fully fledged Bayesian GAM allowing for penalized splines, e.g., to describe trends and seasonality, while simultaneously adjusting for previous outbreaks or concurrent processes influencing the case counts. A particular advantage of the Bayesian approach is that it constitutes a seamless framework for performing both estimation and subsequent prediction: the uncertainty in parameter estimation is directly carried forward to the predictive posterior distribution. No asymptotic normal approximations nor plug-in inference is needed. For fast approximate Bayesian inference we use the \pkg{INLA} \proglang{R} package~\citep{INLA} to fit the Bayesian GAM. Still, monitoring with \code{boda} is substantially slower than using the Farrington procedures. Furthermore, detailed regression modeling is only meaningful if the time series is known to be subject to external influences on which information is available. Hence, the typical use at a public health institution would be the detailed analysis of a few selected time series, e.g., critical ones or those with known trend character. As an example, \citet{Manitz2013} studied the influence of absolute humidity on the occurrence of weekly reported campylobacter cases in Germany. <>= # Load data and create \code{sts}-object data("campyDE") cam.sts <- sts(epoch=as.numeric(campyDE$date), epochAsDate=TRUE, observed=campyDE$case, state=campyDE$state) par(las=1) # Plot y.max <- max(observed(cam.sts),upperbound(cam.sts),na.rm=TRUE) plotOpts3 <- modifyList(plotOpts,list(x=cam.sts,ylab="",legend.opts=NULL,ylim=c(0,y.max),type = observed ~ time),keep.null=TRUE) plotOpts3$xaxis.tickFreq <- list("%m"=atChange,"%G"=atChange) do.call("plot",plotOpts3) par(las=0) #mtext(side=2,text="No. of reports", # las=0,line=3, cex=cex.text,family="Times") par(family="Times") text(-20, 2600, "No. of\n reports", pos = 3, xpd = T,cex=cex.text) text(510, 2900, "Absolute humidity", pos = 3, xpd = T,cex=cex.text) text(510, 2550, expression(paste("[",g/m^3,"]", sep='')), pos = 3, xpd = T,cex=cex.text) lines(campyDE$hum*50, col="white", lwd=2) axis(side=4, at=seq(0,2500,by=500),labels=seq(0,50,by=10),las=1,cex.lab=cex.text, cex=cex.text,cex.axis=cex.text,pos=length(epoch(cam.sts))+20) #mtext(side=4,text=expression(paste("Absolute humidity [ ",g/m^3,"]", sep='')), # las=0,line=1, cex=cex.text,family="Times") @ \setkeys{Gin}{height=7cm, width=15cm} \begin{figure} \begin{center} <>= <> @ \end{center} \vspace{-1cm} \caption{Weekly number of reported campylobacteriosis cases in Germany 2002-2011 as vertical bars. In addition, the corresponding mean absolute humidity time series is shown as a white curve.} \label{fig:campyDE} \end{figure} <>= data("campyDE") cam.sts <- sts(epoch = as.numeric(campyDE$date), epochAsDate = TRUE, observed = campyDE$case, state = campyDE$state) plot(cam.sts, legend = NULL, xlab = "time [weeks]", ylab = "No. reported", col = "gray", cex = 2, cex.axis = 2, cex.lab = 2) lines(campyDE$hum * 50, col = "darkblue", lwd = 2) @ The corresponding plot of the weekly time series is shown in Figure~\ref{fig:campyDE}. We observe a strong association between humidity and case numbers - an association which is stronger than with, e.g., temperature or relative humidity. As noted in \citet{Manitz2013} the excess in cases in 2007 is thus partly explained by the high atmospheric humidity. Furthermore, an increase in case numbers during the 2011 STEC O104:H4 outbreak is observed, which is explained by increased awareness and testing of many gastroenteritits pathogens during that period. The hypothesis is thus that there is no actual increased disease activity~\citep{bernard_etal2014}. Unfortunately, the German reporting system only records positive test results without keeping track of the number of actual tests performed -- otherwise this would have been a natural adjustment variable. Altogether, the series contains several artefacts which appear prudent to address when monitoring the campylobacteriosis series. The GAM in \code{boda} is based on the negative binomial distribution with time-varying expectation and time constant overdispersion parameter, i.e., \begin{align*} y_t &\sim \operatorname{NB}(\mu_t,\nu) \end{align*} with $\mu_{t}$ the mean of the distribution and $\nu$ the dispersion parameter~\citep{lawless1987}. Hence, we have $\E(y_t)=\mu_t$ and $\Var(y_t)=\mu_t\cdot(1+\mu_t/\nu)$. The linear predictor is given by \begin{align*} \log(\mu_t) &= \alpha_{0t} + \beta t + \gamma_t + \bm{x}_t^\top \bm{\delta} + \xi z_t, \quad t=1,\ldots,t_0. \end{align*} Here, the time-varying intercept $\alpha_{0t}$ is described by a penalized spline (e.g., first or second order random walk) and $\gamma_t$ denotes a periodic penalized spline (as implemented in \code{INLA}) with period equal to the periodicity of the data. Furthermore, $\beta$ characterizes the effect of a possible linear trend (on the log-scale) and $\xi$ is the effect of previous outbreaks. Typically, $z_t$ is a zero-one process denoting if there was an outbreak in week $t$, but more involved adaptive and non-binary forms are imaginable. Finally, $\bm{x}_t$ denotes a vector of possibly time-varying covariates, which influence the expected number of cases. Data from timepoints $1,\ldots,t_0-1$ are now used to determine the posterior distribution of all model parameters and subsequently the posterior predictive distribution of $y_{t_0}$ is computed. If the actual observed value of $y_{t_0}$ is above the $(1-\alpha)\cdot 100\%$ quantile of the predictive posterior distribution an alarm is flagged for $t_0$. Below we illustrate the use of \code{boda} to monitor the campylobacteriosis time series from 2007. In the first case we include in the model for $\log\left(\mu_t\right)$ penalized splines for trend and seasonality and a simple linear trend. <>= rangeBoda <- which(epoch(cam.sts) >= as.Date("2007-01-01")) control.boda <- list(range = rangeBoda, X = NULL, trend = TRUE, season = TRUE, prior = "iid", alpha = 0.025, mc.munu = 10000, mc.y = 1000, samplingMethod = "marginals") boda <- boda(cam.sts, control = control.boda) @ <>= rangeBoda <- which(epoch(cam.sts)>=as.Date("2007-01-01")) if (computeALL) { library("INLA") control.boda <- list(range=rangeBoda, X=NULL, trend=TRUE, season=TRUE, prior='rw1', alpha=0.025, mc.munu=10000, mc.y=1000, samplingMethod = "marginals") # boda without covariates: trend + spline + periodic spline boda <- boda(cam.sts, control=control.boda) save(boda, file = "monitoringCounts-cache/boda.RData") } else { load("monitoringCounts-cache/boda.RData") } @ In the second case we instead use only penalized and linear trend components, and, furthermore, include as covariates lags 1--4 of the absolute humidity as well as zero-one indicators for $t_0$ belonging to the last two weeks (\code{christmas}) or first two weeks (\code{newyears}) of the year, respectively. The later two variables are needed, because there is a systematically changed reporting behavior at the turn of the year (c.f.\ Figure~\ref{fig:campyDE}). Finally, \code{O104period} is an indicator variable on whether the reporting week belongs to the W21--W30 2011 period of increased awareness during the O104:H4 STEC outbreak. No additional correction for past outbreaks is made. <>= covarNames <- c("l1.hum", "l2.hum", "l3.hum", "l4.hum", "newyears", "christmas", "O104period") control.boda2 <- modifyList(control.boda, list(X = campyDE[, covarNames], season = FALSE)) boda.covars <- boda(cam.sts, control = control.boda2) @ <>= if (computeALL) { # boda with covariates: trend + spline + lagged hum + indicator variables covarNames <- c(paste("l",1:4,".hum",sep=""),"newyears","christmas", "O104period") control.boda2 <- modifyList(control.boda, list(X=campyDE[,covarNames],season=FALSE)) boda.covars <- boda(cam.sts, control=control.boda2) save(boda.covars, file = "monitoringCounts-cache/boda.covars.RData") } else { load("monitoringCounts-cache/boda.covars.RData") } @ We plot \code{boda.covars} in Figure~\ref{fig:b} and compare the output of the two boda calls with the output of \code{farrington}, \code{farringtonFlexible} and \code{bayes} in Figure~\ref{fig:alarmplot}. <>= cam.surv <- combineSTS(list(boda.covars=boda.covars,boda=boda,bayes=bayes, farrington=far,farringtonFlexible=farflex)) plot(cam.surv,type = alarm ~ time) @ Note here that the \code{bayes} procedure is not really useful as the adjustment for seasonality only works poorly. Moreover, we think that this method produces many false alarms for this time series because it disregards the increasing time trend in number of reported cases. Furthermore, it becomes clear that the improved Farrington procedure acts similar to the original procedure, but the improved reweighting and trend inclusion produces fewer alarms. The \code{boda} method is to be seen as a step towards more Bayesian thinking in aberration detection. However, besides its time demands for a detailed modeling, the speed of the procedure is also prohibitive as regards routine application. As a response~\citet{Maelle} introduce a method which has two advantages: it allows to adjust outbreak detection for reporting delays and includes an approximate inference method much faster than the INLA inference method. However, its linear predictor is more in the style of~\citet{Noufaily2012} not allowing for additional covariates or penalized options for the intercept. <>= # Plot with special function y.max <- max(observed(boda.covars),upperbound(boda.covars),na.rm=TRUE) plotOpts2 <- modifyList(plotOpts,list(x=boda.covars,ylim=c(0,y.max)),keep.null=TRUE) plotOpts2$xaxis.tickFreq <- list("%m"=atChange,"%G"=atChange) do.call("plot",plotOpts2) @ \setkeys{Gin}{height=7cm, width=15cm} \begin{figure} \begin{center} <>= <> @ \end{center} \vspace{-1cm} \caption{Weekly reports of Campylobacter in Germany in 2007-2011 monitored by the boda method with covariates. The line represents the upperbound calculated by the algorithm. Triangles indicate alarms, \textit{i.e.}, timepoints where the observed number of counts is higher than the upperbound.} \label{fig:b} \end{figure} <>= control.far <- list(range=rangeBoda,b=4,w=5,alpha=0.025*2) far <- farrington(cam.sts,control=control.far) #Both farringtonFlexible and algo.bayes uses a one-sided interval just as boda. control.far2 <-modifyList(control.far,list(alpha=0.025)) farflex <- farringtonFlexible(cam.sts,control=control.far2) bayes <- suppressWarnings(bayes(cam.sts,control=control.far2)) @ <>= # Small helper function to combine several equally long univariate sts objects combineSTS <- function(stsList) { epoch <- as.numeric(epoch(stsList[[1]])) observed <- NULL alarm <- NULL for (i in 1:length(stsList)) { observed <- cbind(observed,observed(stsList[[i]])) alarm <- cbind(alarm,alarms(stsList[[i]])) } colnames(observed) <- colnames(alarm) <- names(stsList) res <- sts(epoch=as.numeric(epoch), epochAsDate=TRUE, observed=observed, alarm=alarm) return(res) } @ <>= # Make an artifical object containing two columns - one with the boda output # and one with the farrington output cam.surv <- combineSTS(list(boda.covars=boda.covars,boda=boda,bayes=bayes, farrington=far,farringtonFlexible=farflex)) par(mar=c(4,8,2.1,2),family="Times") plot(cam.surv,type = alarm ~ time,lvl=rep(1,ncol(cam.surv)), alarm.symbol=list(pch=17, col="red2", cex=1,lwd=3), cex.axis=1,xlab="Time (weeks)",cex.lab=1,xaxis.tickFreq=list("%m"=atChange,"%G"=atChange),xaxis.labelFreq=list("%G"=at2ndChange), xaxis.labelFormat="%G") @ \setkeys{Gin}{height=7cm, width=16cm} \begin{figure} \begin{center} <>= <> @ \end{center} \caption{Alarmplot showing the alarms for the campylobacteriosis time series for four different algorithms.} \label{fig:alarmplot} \end{figure} \subsection{Beyond one-timepoint detection} GLMs as used in the Farrington method are suitable for the purpose of aberration detection since they allow a regression approach for adjusting counts for known phenomena such as trend or seasonality in surveillance data. Nevertheless, the Farrington method only performs one-timepoint detection. In some contexts it can be more relevant to detect sustained shifts early, e.g., an outbreak could be characterized at first by counts slightly higher than usual in subsequent weeks without each weekly count being flagged by one-timepoint detection methods. Control charts inspired by statistical process control (SPC) e.g., cumulative sums would allow the detection of sustained shifts. Yet they were not tailored to the specific characteristics of surveillance data such as overdispersion or seasonality. The method presented in \citet{hoehle.paul2008} conducts a synthesis of both worlds, i.e., traditional surveillance methods and SPC. The method is implemented in the package as the function \code{glrnb}, whose use is explained here. \subsubsection{Definition of the control chart} For the control chart, two distributions are defined, one for each of the two states \textit{in-control} and \textit{out-of-control}, whose likelihoods are compared at each time step. The \textit{in-control} distribution $f_{\bm{\theta}_0}(y_t|\bm{z}_t)$ with the covariates $\bm{z}_t$ is estimated by a GLM of the Poisson or negative binomial family with a log link, depending on the overdispersion of the data. In this context, the standard model for the \textit{in-control} mean is $$\log \mu_{0,t}=\beta_0+\beta_1t+\sum_{s=1}^S\left[\beta_{2s}\cos \left(\frac{2\pi s t}{\mathtt{Period}}\right)+\beta_{2s+1}\sin \left(\frac{2\pi s t}{\mathtt{Period}}\right)\right] $$ where $S$ is the number of harmonic waves to use and \texttt{Period} is the period of the data as indicated in the \code{control} slot, for instance 52 for weekly data. However, more flexible linear predictors, e.g., containing splines, concurrent covariates or an offset could be used on the right hand-side of the equation. The GLM could therefore be made very similar to the one used by~\citet{Noufaily2012}, with reweighting of past outbreaks and various criteria for including the time trend. The parameters of the \textit{in-control} and \textit{out-of-control} models are respectively given by $\bm{\theta}_0$ and $\bm{\theta}_1$. The \textit{out-of-control} mean is defined as a function of the \textit{in-control} mean, either with a multiplicative shift (additive on the log-scale) whose size $\kappa$ can be given as an input or reestimated at each timepoint $t>1$, $\mu_{1,t}=\mu_{0,t}\cdot \exp(\kappa)$, or with an unknown autoregressive component as in \citet{held-etal-2005}, $\mu_{1,t}=\mu_{0,t}+\lambda y_{t-1}$ with unknown $\lambda>0$. In \code{glrnb}, timepoints are divided into two intervals: phase 1 and phase 2. The \textit{in-control} mean and overdispersion are estimated with a GLM fitted on phase 1 data, whereas surveillance operates on phase 2 data. When $\lambda$ is fixed, one uses a likelihood-ratio (LR) and defines the stopping time for alarm as $$N=\min \left\{ t_0 \geq 1 : \max_{1\leq t \leq t_0} \left[ \sum_{s=t}^{t_0} \log\left\{ \frac{f_{\bm{\theta}_1}(y_s|\bm{z}_s)}{f_{\bm{\theta}_0}(y_s|\bm{z}_s)} \right\} \right] \geq \mathtt{c.ARL} \right\},$$ where $\mathtt{c.ARL}$ is the threshold of the CUSUM. When $\lambda$ is unknown and with the autoregressive component one has to use a generalized likelihood ratio (GLR) with the following stopping rule to estimate them on the fly at each time point so that $$N_G=\min \left\{ t_0 \geq 1 : \max_{1\leq t \leq t_0} \sup_{\bm{\theta} \in \bm{\Theta}} \left[ \sum_{s=t}^{t_0} \log\left\{ \frac{f_{\bm{\theta}}(y_s|\bm{z}_s)}{f_{\bm{\theta}_0}(y_s|\bm{z}_s)} \right\} \right] \geq \mathtt{c.ARL} \right\}\cdot$$ Thus, one does not make any hypothesis about the specific value of the change to detect, but this GLR is more computationally intensive than the LR. \subsubsection{Practical use} For using \code{glrnb} one has two choices to make. First, one has to choose an \textit{in-control} model that will be fitted on phase 1 data. One can either provide the predictions for the vector of \textit{in-control} means \code{mu0} and the overdispersion parameter \code{alpha} by relying on an external fit, or use the built-in GLM estimator, that will use all data before the beginning of the surveillance range to fit a GLM with the number of harmonics \code{S} and a time trend if \code{trend} is \code{TRUE}. The choice of the exact \textit{in-control} model depends on the data under surveillance. Performing model selection is a compulsory step in practical applications. Then, one needs to tune the surveillance function itself, for one of the two possible change forms, \code{intercept}~or~\code{epi}.~One~can choose either to set \code{theta} to a given value and thus perform LR instead of GLR. The value of \code{theta} has to be adapted to the specific context in which the algorithm is applied: how big are shifts one wants to detect optimally? Is it better not to specify any and use GLR instead? The threshold \texttt{c.ARL} also has to be specified by the user. As explained in \citet{hoehle-mazick-2010} one can compute the threshold for a desired run-length in control through direct Monte Carlo simulation or a Markov chain approximation. Lastly, as mentioned in \citet{hoehle.paul2008}, a window-limited approach of surveillance, instead of looking at all the timepoints until the first observation, can make computation faster. Here we apply \code{glrnb} to the time series of report counts of \textit{Salmonella Newport} in Germany by assuming a known multiplicative shift of factor $2$ and by using the built-in estimator to fit an \textit{in-control} model with one harmonic for seasonality and a trend. This model will be refitted after each alarm, but first we use data from the years before 2011 as reference or \code{phase1}, and the data from 2011 as data to be monitored or \code{phase2}. The threshold \texttt{c.ARL} was chosen to be 4 as we found with the same approach as \citet{hoehle-mazick-2010} that it made the probability of a false alarm within one year smaller than 0.1. Figure~\ref{fig:glrnb}~shows the results of this monitoring. <>= phase1 <- which(isoWeekYear(epoch(salmNewportGermany))$ISOYear < 2011) phase2 <- in2011 control = list(range = phase2, c.ARL = 4, theta = log(2), ret = "cases", mu0 = list(S = 1, trend = TRUE, refit = FALSE)) salmGlrnb <- glrnb(salmNewportGermany, control = control) @ <>= # Define phase1 (reference values) and phase2 (monitoring) phase1 <- which(isoWeekYear(epoch(salmNewportGermany))$ISOYear<2011) phase2 <- in2011 # Choose the options for monitoring control=list(range=phase2,mu0=list( S=1, trend=TRUE, refit=FALSE),c.ARL = 4, theta=log(2),ret="cases") # Perform monitoring with glrnb salmGlrnb <- glrnb(salmNewportGermany,control=control) @ <>= # Plot y.max <- max(observed(salmGlrnb),upperbound(salmGlrnb),na.rm=TRUE) do.call("plot",modifyList(plotOpts,list(x=salmGlrnb,ylim=c(0,y.max)))) @ \setkeys{Gin}{height=7cm, width=15cm} \begin{figure} \begin{center} <>= <> @ \end{center} \vspace{-1cm} \caption{S. Newport in Germany in 2011 monitored by the \code{glrnb} function. } \label{fig:glrnb} \end{figure} The implementation of \code{glrnb} on individual time series was already thoroughly explained in \citet{hoehle-mazick-2010}. Our objective in the present document is rather to provide practical tips for the implementation of this function on huge amounts of data in public health surveillance applications. Issues of computational speed become very significant in such a context. Our proposal to reduce the computational burden incurred by this algorithm is to compute the \textit{in-control} model for each time serie (pathogen, subtype, subtype in a given location, etc.) only once a year and to use this estimation for the computation of a threshold for each time series. An idea to avoid starting with an initial value of zero in the CUSUM is to use either $\left(\frac{1}{2}\right)\cdot\mathtt{c.ARL}$ as a starting value (fast initial response CUSUM as presented in~\citet{lucas1982fast}) or to let surveillance run with the new \textit{in-control} model during a buffer period and use the resulting CUSUM as an initial value. One could also choose the maximum of these two possible starting values as a starting value. During the buffer period alarms would be generated with the old model. Lastly, using GLR is much more computationally intensive than using LR, whereas LR performs reasonably well on shifts different from the one indicated by \code{theta} as seen in the simulation studies of~\citet{hoehle.paul2008}. Our advice would therefore be to use LR with a reasonable predefined \code{theta}. The amount of historical data used each year to update the model, the length of the buffer period and the value of \code{theta} have to be fixed for each specific application, e.g., using simulations and/or discussion with experts. \subsubsection{Similar methods in the package} The algorithm \code{glrPois} is the same function as \code{glrnb} but for Poisson distributed data. Other CUSUM methods for count data are found in the package: \code{cusum} and \code{rogerson}. Both methods are discussed and compared to \code{glrnb} in \citet{hoehle.paul2008}. The package also includes a semi-parametric method \code{outbreakP} that aims at detecting changes from a constant level to a monotonically increasing incidence, for instance the beginning of the influenza season. See Table~\ref{table:ref} for the corresponding references. \subsection{A method for monitoring categorical data} All monitoring methods presented up to now have been methods for analysing count data. Nevertheless, in public health surveillance one also encounters categorical time series which are time series where the response variable obtains one of $k\geq2$ different categories (nominal or ordinal). When $k=2$ the time series is binary, for instance representing a specific outcome in cases such as hospitalization, death or a positive result to some diagnostic test. One can also think of applications with $k>2$ if one studies, e.g., the age groups of the cases in the context of monitoring a vaccination program: vaccination targeted at children could induce a shift towards older cases which one wants to detect as quickly as possible -- this will be explained thoroughly with an example. The developments of prospective surveillance methods for such categorical time series were up to recently limited to CUSUM-based approaches for binary data such as those explained in~\citet{Chen1978},~\citet{Reynolds2000} and~\citet{rogerson_yamada2004}. Other than being only suitable for binary data these methods have the drawback of not handling overdispersion. A method improving on these two limitations while casting the problem into a more comprehending GLM regression framework for categorical data was presented in~\citet{hoehle2010}. It is implemented as the function \code{categoricalCUSUM}. The way \code{categoricalCUSUM} operates is very similar to what \code{glrnb} does with fixed \textit{out-of-control} parameter. First, the parameters in a multivariate GLM for the \textit{in-control} distribution are estimated from the historical data. Then the \textit{out-of-control} distribution is defined by a given change in the parameters of this GLM, e.g., an intercept change, as explained later. Lastly, prospective monitoring is performed on current data using a likelihood ratio detector which compares the likelihood of the response under the \textit{in-control} and \textit{out-of-control} distributions. \subsubsection{Categorical CUSUM for binomial models} The challenge when performing these steps with categorical data from surveillance systems is finding an appropriate model. Binary GLMs as presented in Chapter~6 of \citet{Fahrmeir.etal2013} could be a solution but they do not tackle well the inherent overdispersion in the binomial time series. Of course one could choose a quasi family but these are not proper statistical distributions making many issues such as prediction complicated. A better alternative is offered by the use of \textit{generalized additive models for location, scale and shape} \citep[GAMLSS,][]{Rigby2005}, that support distributions such as the beta-binomial distribution, suitable for overdispersed binary data. With GAMLSS one can model the dependency of the mean -- \textit{location} -- upon explanatory variables but the regression modeling is also extended to other parameters of the distribution, e.g., scale. Moreover any modelled parameter can be put under surveillance, be it the mean (as in the example later developed) or the time trend in the linear predictor of the mean. This very flexible modeling framework is implemented in \proglang{R} through the \pkg{gamlss} package~\citep{StasJSS}. As an example we consider the time series of the weekly number of hospitalized cases among all \textit{Salmonella} cases in Germany in Jan 2004--Jan 2014, depicted in Figure~\ref{fig:cat1}. We use 2004--2012 data to estimate the \textit{in-control} parameters and then perform surveillance on the data from 2013 and early 2014. We start by preprocessing the data. <>= data("salmHospitalized") isoWeekYearData <- isoWeekYear(epoch(salmHospitalized)) dataBefore2013 <- which(isoWeekYearData$ISOYear < 2013) data2013 <- which(isoWeekYearData$ISOYear == 2013) dataEarly2014 <- which(isoWeekYearData$ISOYear == 2014 & isoWeekYearData$ISOWeek <= 4) phase1 <- dataBefore2013 phase2 <- c(data2013, dataEarly2014) weekNumbers <- isoWeekYearData$ISOWeek salmHospitalized.df <- cbind(as.data.frame(salmHospitalized), weekNumbers) colnames(salmHospitalized.df) <- c("y", "t", "state", "alarm", "upperbound","n", "freq", "epochInPeriod", "weekNumber") @ <>= # Load data data("salmHospitalized") # Define reference data and data under monitoring phase1 <- which(isoWeekYear(epoch(salmHospitalized))$ISOYear<2013) phase2 <- c(which(isoWeekYear(epoch(salmHospitalized))$ISOYear==2013), which(isoWeekYear(epoch(salmHospitalized))$ISOYear==2014 &isoWeekYear(epoch(salmHospitalized))$ISOWeek<=4)) # Prepare data for fitting the model weekNumber <- isoWeekYear(epoch(salmHospitalized))$ISOWeek salmHospitalized.df <- cbind(as.data.frame(salmHospitalized),weekNumber) colnames(salmHospitalized.df) <- c("y","t","state","alarm","upperbound","n","freq", "epochInPeriod","weekNumber") @ We assume that the number of hospitalized cases follows a beta-binomial distribution, i.e., $ y_t \sim \BetaBin(n_t,\pi_t,\sigma_t)$ with $n_t$ the total number of reported cases at time $t$, $\pi_t$ the proportion of these cases that were hospitalized and $\sigma$ the dispersion parameter. In this parametrization, $$E(y_t)=n_t \pi_t,\quad \text{and}$$ $$\Var(y_t)=n_t \pi_t(1-\pi_t)\left( 1 + \frac{\sigma(n_t-1)}{\sigma+1} \right)\cdot$$ We choose to model the expectation $n_t \pi_t$ using a beta-binomial model with a logit-link which is a special case of a GAMLSS, i.e., $$\logit(\pi_t)=\bm{z}_t^\top\bm{\beta}$$ where $\bm{z}_t$ is a vector of possibly time-varying covariates and $\bm{\beta}$ a vector of covariate effects in our example. The proportion of hospitalized cases varies throughout the year as seen in Figure~\ref{fig:cat1}. One observes that in the summer the proportion of hospitalized cases is smaller than in other seasons. However, over the holidays in December the proportion of hospitalized cases increases. Note that the number of non-hospitalized cases drops while the number of hospitalized cases remains constant (data not shown): this might be explained by the fact that cases that are not serious enough to go to the hospital are not seen by general practitioners because sick workers do not need a sick note during the holidays. Therefore, the \textit{in-control} model should contain these elements, as well as the fact that there is an increasing trend of the proportion because GPs prescribe less and less stool diagnoses so that more diagnoses are done on hospitalized cases. We choose a model with an intercept, a time trend, two harmonic terms and a factor variable for the first two weeks of each year. The variable \code{epochInPeriod} takes into account the fact that not all years have 52 weeks. <>= vars <- c( "y", "n", "t", "epochInPeriod", "weekNumber") m.bbin <- gamlss(cbind(y, n-y) ~ 1 + t + sin(2 * pi * epochInPeriod) + cos(2 * pi * epochInPeriod) + sin(4 * pi * epochInPeriod) + cos(4 * pi * epochInPeriod) + I(weekNumber == 1) + I(weekNumber == 2), sigma.formula =~ 1, family = BB(sigma.link = "log"), data = salmHospitalized.df[phase1, vars]) @ The change we aim to detect is defined by a multiplicative change of odds, from $\frac{\pi_t^0}{(1-\pi_t^0)}$ to $R\cdot\frac{\pi_t^0}{(1-\pi_t^0)}$ with $R>0$, similar to what was done in~\citet{Steiner1999} for the logistic regression model. This is equivalent to an additive change of the log-odds, $$\logit(\pi_t^1)=\logit(\pi_t^0)+\log R$$ with $\pi_t^0$ being the \textit{in-control} proportion and $\pi_t^1$ the \textit{out-of-control} distribution. The likelihood ratio based CUSUM statistic is now defined as $$C_{t_0}=\max_{1\leq t \leq {t_0}}\left( \sum_{s=t}^{t_0} \log \left( \frac{f(y_s;\bm{z}_s,\bm{\theta}_1)}{f(y_s;\bm{z}_s,\bm{\theta}_0)} \right) \right)$$ with $\bm{\theta}_0$ and $\bm{\theta}_1$ being the vector in- and \textit{out-of-control} parameters, respectively. Given a threshold \code{h}, an alarm is sounded at the first time when $C_{t_0}>\mathtt{h}$. We set the parameters of the \code{categoricalCUSUM} to optimally detect a doubling of the odds in 2013 and 2014, i.e., $R=2$. Furthermore, we for now set the threshold of the CUSUM at $h=2$. We use the GAMLSS to predict the mean of the \textit{in-control} and \textit{out-of-control} distributions and store them into matrices with two columns among which the second one represents the reference category. <>= R <- 2 h <- 2 pi0 <- predict(m.bbin, newdata = salmHospitalized.df[phase2, vars], type = "response") pi1 <- plogis(qlogis(pi0) + log(R)) pi0m <- rbind(pi0, 1 - pi0) pi1m <- rbind(pi1, 1 - pi1) @ <>= # CUSUM parameters R <- 2 #detect a doubling of the odds for a salmHospitalized being positive h <- 2 #threshold of the cusum # Compute \textit{in-control} and out of control mean pi0 <- predict(m.bbin,newdata=salmHospitalized.df[phase2,vars], type="response") pi1 <- plogis(qlogis(pi0) + log(R)) # Create matrix with in control and out of control proportions. # Categories are D=1 and D=0, where the latter is the reference category pi0m <- rbind(pi0, 1-pi0) pi1m <- rbind(pi1, 1-pi1) @ Note that the \code{categoricalCUSUM} function is constructed to operate on the observed slot of \code{sts}-objects which have as columns the number of cases in each category at each timepoint, \textit{i.e.}, each row of the observed slot contains the elements $(y_{t1},...,y_{tk})$. <>= populationHosp <- cbind(population(salmHospitalized), population(salmHospitalized)) observedHosp <- cbind(observed(salmHospitalized), population(salmHospitalized) - observed(salmHospitalized)) nrowHosp <- nrow(salmHospitalized) salmHospitalized.multi <- sts(freq = 52, start = c(2004, 1), epoch = as.numeric(epoch(salmHospitalized)), epochAsDate = TRUE, observed = observedHosp, populationFrac = populationHosp, state = matrix(0, nrow = nrowHosp, ncol = 2), multinomialTS = TRUE) @ <>= # Create the \code{sts}-object with the counts for the 2 categories population <- population(salmHospitalized) observed <- observed(salmHospitalized) salmHospitalized.multi <- sts(freq=52, start=c(2004,1), epoch = as.numeric(epoch(salmHospitalized)), epochAsDate=TRUE, observed = cbind(observed, population-observed), populationFrac = cbind(population, population), state=matrix(0, nrow=nrow(salmHospitalized), ncol = 2), multinomialTS=TRUE) @ Furthermore, one needs to define a wrapper for the distribution function in order to have a argument named \code{"mu"} in the function. <>= dBB.cusum <- function(y, mu, sigma, size, log = FALSE) { return(dBB(if (is.matrix(y)) y[1,] else y, if (is.matrix(y)) mu[1,] else mu, sigma = sigma, bd = size, log = log)) } @ <>= # Function to use as dfun in the categoricalCUSUM dBB.cusum <- function(y, mu, sigma, size, log = FALSE) { return(dBB( if (is.matrix(y)) y[1,] else y, if (is.matrix(y)) mu[1,] else mu, sigma = sigma, bd = size, log = log)) } @ After these preliminary steps, the monitoring can be performed. <>= controlCat <- list(range = phase2, h = 2, pi0 = pi0m, pi1 = pi1m, ret = "cases", dfun = dBB.cusum) salmHospitalizedCat <- categoricalCUSUM(salmHospitalized.multi, control = controlCat, sigma = exp(m.bbin$sigma.coef)) @ <>= # Monitoring controlCat <- list(range = phase2,h = 2,pi0 = pi0m, pi1 = pi1m, ret = "cases", dfun = dBB.cusum) salmHospitalizedCat <- categoricalCUSUM(salmHospitalized.multi, control = controlCat, sigma = exp(m.bbin$sigma.coef)) @ The results can be seen in Figure~\ref{fig:catDouble}(a). With the given settings, there are alarms at week 16 in 2004 and at week 3 in 2004. The one in 2014 corresponds to the usual peak of the beginning of the year, which was larger than expected this year, maybe because the weekdays of the holidays were particularly worker-friendly so that sick notes were even less needed. <>= y.max <- max(observed(salmHospitalized)/population(salmHospitalized),upperbound(salmHospitalized)/population(salmHospitalized),na.rm=TRUE) plotOpts2 <- modifyList(plotOpts,list(x=salmHospitalized,legend.opts=NULL,ylab="",ylim=c(0,y.max)),keep.null=TRUE) plotOpts2$xaxis.tickFreq <- list("%G"=atChange,"%m"=atChange) plotOpts2$par.list <- list(mar=c(6,5,5,5),family="Times",las=1) do.call("plot",plotOpts2) lines(salmHospitalized@populationFrac/4000,col="grey80",lwd=2) lines(campyDE$hum*50, col="white", lwd=2) axis(side=4, at=seq(0,2000,by=500)/4000,labels=as.character(seq(0,2000,by=500)),las=1, cex=2,cex.axis=1.5,pos=length(observed(salmHospitalized))+20) par(family="Times") text(-20, 0.6, "Proportion", pos = 3, xpd = T,cex=cex.text) text(520, 0.6, "Total number of \n reported cases", pos = 3, xpd = T,cex=cex.text) #mtext(side=4,text=expression(paste("Total number of reported cases (thousands)", sep='')), #las=0,line=1, cex=cex.text) @ \begin{figure} \begin{center} <>= <> @ \end{center} \vspace{-1cm} \caption{Weekly proportion of Salmonella cases that were hospitalized in Germany 2004-2014. In addition the corresponding number of reported cases is shown as a light curve.} \label{fig:cat1} \end{figure} <>= @ The value for the threshold \code{h} can be determined following the procedures presented in \citet{hoehle-mazick-2010} for count data, and as in the code exhibited below. Two methods can be used for determining the probability of a false alarm within a pre-specified number of steps for a given value of the threshold \code{h}: a Monte Carlo method relying on, e.g., 1000 simulations and a Markov Chain approximation of the CUSUM. The former is much more computationally intensive than the latter: with the code below, the Monte Carlo method needed approximately 300 times more time than the Markov Chain method. Since both results are close we recommend the Markov Chain approximation for practical use. The Monte Carlo method works by sampling observed values from the estimated distribution and performing monitoring with \code{categoricalCUSUM} on this \code{sts} object. As observed values are estimated from the \textit{in-control} distribution every alarm thus obtained is a false alarm so that the simulations allow to estimate the probability of a false alarm when monitoring \textit{in-control} data over the timepoints of \code{phase2}. The Markov Chain approximation introduced by \citet{brook_evans1972} is implemented as \code{LRCUSUM.runlength} which is already used for \code{glrnb}. Results from both methods can be seen in Figure~\ref{fig:catDouble}(b). We chose a value of 2 for \code{h} so that the probability of a false alarm within the 56 timepoints of \code{phase2} is less than $0.1$. One first has to set the values of the threshold to be investigated and to prepare the function used for simulation, that draws observed values from the \textit{in-control} distribution and performs monitoring on the corresponding time series, then indicating if there was at least one alarm. Then 1000 simulations were performed with a fixed seed value for the sake of reproducibility. Afterwards, we tested the Markov Chain approximation using the function \code{LRCUSUM.runlength} over the same grid of values for the threshold. <>= h.grid <- seq(1, 10, by = 0.5) simone <- function(sts, h) { y <- rBB(length(phase2), mu = pi0m[1, , drop = FALSE], bd = population(sts)[phase2, ], sigma = exp(m.bbin$sigma.coef)) observed(sts)[phase2, ] <- cbind(y, sts@populationFrac[phase2, 1] - y) one.surv <- categoricalCUSUM(sts, modifyList(controlCat, list(h = h)), sigma = exp(m.bbin$sigma.coef)) return(any(alarms(one.surv)[, 1])) } set.seed(123) nSims <- 1000 pMC <- sapply(h.grid, function(h) { mean(replicate(nSims, simone(salmHospitalized.multi, h))) }) pMarkovChain <- sapply( h.grid, function(h) { TA <- LRCUSUM.runlength(mu = pi0m[1,, drop = FALSE], mu0 = pi0m[1,, drop = FALSE], mu1 = pi1m[1,, drop = FALSE], n = population(salmHospitalized.multi)[phase2, ], h = h, dfun = dBB.cusum, sigma = exp(m.bbin$sigma.coef)) return(tail(TA$cdf, n = 1)) }) @ <>= # Values of the threshold to be investigated h.grid <- seq(1,10,by=0.5) # Prepare function for simulations simone <- function(sts, h) { # Draw observed values from the \textit{in-control} distribution y <- rBB(length(phase2), mu=pi0m[1,,drop=FALSE], bd=population(sts)[phase2,], sigma=exp(m.bbin$sigma.coef)) observed(sts)[phase2,] <- cbind(y,sts@populationFrac[phase2,1] - y) # Perform monitoring one.surv <- categoricalCUSUM(sts, control=modifyList(controlCat, list(h=h)), sigma=exp(m.bbin$sigma.coef)) # Return 1 if there was at least one alarm return(any(alarms(one.surv)[,1])) } # Set random seed for reproducibility set.seed(123) if (computeALL) { # Number of simulations nSims=1000 # Simulations over the possible h values pMC <- sapply(h.grid, function(h) { h <- h mean(replicate(nSims, simone(salmHospitalized.multi,h))) }) # Distribution function to be used by LRCUSUM.runlength dBB.rl <- function(y, mu, sigma, size, log = FALSE) { dBB(y, mu = mu, sigma = sigma, bd = size, log = log) } # Markov Chain approximation over h.grid pMarkovChain <- sapply( h.grid, function(h) { TA <- LRCUSUM.runlength(mu=pi0m[1,,drop=FALSE], mu0=pi0m[1,,drop=FALSE], mu1=pi1m[1,,drop=FALSE], n=population(salmHospitalized.multi)[phase2,], h=h, dfun=dBB.rl, sigma=exp(m.bbin$sigma.coef)) return(tail(TA$cdf,n=1)) }) save(pMC, file = "monitoringCounts-cache/pMC.RData") save(pMarkovChain, file = "monitoringCounts-cache/pMarkovChain.RData") } else { load("monitoringCounts-cache/pMC.RData") load("monitoringCounts-cache/pMarkovChain.RData") } @ \setkeys{Gin}{height=7cm, width=9cm} \begin{figure} \hspace{-1em} \subfloat[]{ <>= y.max <- max(observed(salmHospitalizedCat[,1])/population(salmHospitalizedCat[,1]),upperbound(salmHospitalizedCat[,1])/population(salmHospitalizedCat[,1]),na.rm=TRUE) plotOpts3 <- modifyList(plotOpts,list(x=salmHospitalizedCat[,1],ylab="Proportion",ylim=c(0,y.max))) plotOpts3$legend.opts <- list(x="top",bty="n",legend=c(expression(U[t])),lty=1,lwd=line.lwd,col=alarm.symbol$col,horiz=TRUE,cex=cex.leg) do.call("plot",plotOpts3) @ \includegraphics[width=9cm]{plots/monitoringCounts-catF.pdf} } \hspace{-3em} \subfloat[]{ <>= par(mar=c(6,5,5,5),family="Times") matplot(h.grid, cbind(pMC,pMarkovChain),type="l",ylab=expression(P(T[A] <= 56 * "|" * tau * "=" * infinity)),xlab="Threshold h",col=1,cex=cex.text, cex.axis =cex.text,cex.lab=cex.text) prob <- 0.1 lines(range(h.grid),rep(prob,2),lty=5,lwd=2) axis(2,at=prob,las=1,cex.axis=0.7,labels=FALSE) par(family="Times") legend(4,0.08,c("Monte Carlo","Markov chain"), lty=1:2,col=1,cex=cex.text,bty="n") @ \includegraphics[width=9cm]{plots/monitoringCounts-catARL.pdf} } \caption{(a) Results of the monitoring with categoricalCUSUM of the proportion of Salmonella cases that were hospitalized in Germany in Jan 2013 - Jan 2014. (b) Probability of a false alarm within the 56 timepoints of the monitoring as a function of the threshold $h$.} \label{fig:catDouble} \end{figure} The procedure for using the function for multicategorical variables follows the same steps (as illustrated later). Moreover, one could expand the approach to utilize the multiple regression possibilities offered by GAMLSS. Here we chose to try to detect a change in the mean of the distribution of counts but as GAMLSS provides more general regression tools than GLM we could also aim at detecting a change in the time trend included in the model for the mean. \subsubsection{Categorical CUSUM for multinomial models} <>= # data("rotaBB") data("rotaBB") @ In order to illustrate the use of \code{categoricalCUSUM} for more than two classes we analyse the monthly number of rotavirus cases in the federal state Brandenburg during 2002-2013 and which are stratified into the five age-groups 00-04, 05-09, 10-14, 15-69, 70+ years. In 2006 two rotavirus vaccines were introduced, which are administered in children at the age of 4--6 months. Since then, coverage of these vaccination has steadily increased and interest is to detect possible age-shifts in the distribution of cases. <>= data("rotaBB") plot(rotaBB, xlab = "Time (months)", ylab = "Proportion of reported cases") @ \setkeys{Gin}{height=7cm, width=15cm} \begin{figure} %Remove this slot as soon as possible and replace it with just ROTAPLOT!! <>= par(mar=c(5.1,20.1,4.1,0),family="Times") plot(rotaBB,xlab="Time (months)",ylab="", col="mediumblue",cex=cex.text,cex.lab=cex.text,cex.axis=cex.text,cex.main=cex.text, xaxis.tickFreq=list("%G"=atChange), xaxis.labelFreq=list("%G"=at2ndChange), xaxis.labelFormat="%G") par(las=0,family="Times") mtext("Proportion of reported cases", side=2, line=19, cex=1) @ \caption{Monthly proportions in five age-groups for the reported rotavirus cases in Brandenburg, Germany, \Sexpr{paste(format(range(epoch(rotaBB)),"%Y"),collapse="-")}.} \label{fig:vac} \end{figure} From Figure~\ref{fig:vac} we observe a shift in proportion away from the very young. However, interpreting the proportions only makes sense in combination with the absolute numbers. In these plots (not shown) it becomes clear that the absolute numbers in the 0--4 year old have decreased since 2009. However, in the 70+ group a small increase is observed with 2013 by far being the strongest season so far. <>= # Select a palette for drawing pal <- c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00") #= RColorBrewer::brewer.pal("Set1",n=ncol(rotaBB)) # Show time series of monthly proportions (matplot does not work with dates) plotTS <- function(prop=TRUE) { for (i in 1:ncol(rotaBB)) { fun <- if (i==1) plot else lines if (!prop) { fun(epoch(rotaBB),observed(rotaBB)[,i],type="l",xlab="Time (months)",ylab="Reported cases",ylim=c(0,max(observed(rotaBB))),col=pal[i],lwd=2) } else { fun(epoch(rotaBB),observed(rotaBB)[,i,drop=FALSE]/rowSums(observed(rotaBB)),type="l",xlab="Time (months)",ylab="Proportion of reported cases",ylim=c(0,max(observed(rotaBB)/rowSums(observed(rotaBB)))),col=pal[i],lwd=2) } } # Add legend axis(1,at=as.numeric(epoch(rotaBB)),label=NA,tck=-0.01) legend(x="left",colnames(rotaBB),col=pal,lty=1,lwd=2,bg="white") } # plotTS(prop=TRUE) # Show absolute cases plotTS(prop=FALSE) # Even easier rotaBB.copy <- rotaBB ; rotaBB.copy@multinomialTS <- FALSE plot(rotaBB.copy) @ Hence, our interest is in prospectively detecting a possible age-shift. Since the vaccine was recommended for routine vaccination in Brandenburg in 2009 we choose to start the monitoring at that time point. We do so by fitting a multinomial logit-model containing a trend as well as one harmonic wave and use the age group 0--4 years as reference category, to the data from the years 2002-2008. Different \proglang{R} packages implement such type of modeling, but we shall use the \pkg{MGLM} package~\citep{MGLM}, because it also offers the fitting of extended multinomial regression models allowing for extra dispersion. <>= rotaBB.df <- as.data.frame(rotaBB) X <- with(rotaBB.df, cbind(intercept = 1, epoch, sin1 = sin(2 * pi * epochInPeriod), cos1 = cos(2 * pi * epochInPeriod))) phase1 <- epoch(rotaBB) < as.Date("2009-01-01") phase2 <- !phase1 order <- c(2:5, 1); reorder <- c(5, 1:4) library("MGLM") m0 <- MGLMreg(as.matrix(rotaBB.df[phase1, order]) ~ -1 + X[phase1, ], dist = "MN") @ <>= # Convert sts object to data.frame useful for regression modelling rotaBB.df <- as.data.frame(rotaBB) # Create matrix X <- with(rotaBB.df,cbind(intercept=1,epoch, sin1=sin(2*pi*epochInPeriod),cos1=cos(2*pi*epochInPeriod))) # Fit model to 2002-2009 data phase1 <- epoch(rotaBB) < as.Date("2009-01-01") phase2 <- !phase1 # MGLMreg automatically takes the last class as ref so we reorder order <- c(2:5, 1); reorder <- c(5, 1:4) # Fit multinomial logit model (i.e. dist="MN") to phase1 data library("MGLM") m0 <- MGLMreg(as.matrix(rotaBB.df[phase1,order])~ -1 + X[phase1,], dist="MN") @ <<>>= # Set threshold and option object h <- 2 @ As described in \citet{hoehle2010} we can try to detect a specific shift in the intercept coefficients of the model. For example, a multiplicative shift of factor 7 in the example below, in the odds of each of the four age categories against the reference category is modelled by changing the intercept value of each category. Based on this, the \textit{in-control} and \textit{out-of-control} proportions are easily computed using the \code{predict} function for \code{MGLMreg} objects. <>= m1 <- m0 m1@coefficients[1, ] <- m0@coefficients[1, ] + log(7) pi0 <- t(predict(m0, newdata = X[phase2, ])[, reorder]) pi1 <- t(predict(m1, newdata = X[phase2,])[, reorder]) @ <>= m1 <- m0 # Out-of control model: shift in all intercept coeffs m1@coefficients[1,] <- m0@coefficients[1,] + log(2) # Proportion over time for phase2 based on fitted model (re-order back) pi0 <- t(predict(m0, newdata=X[phase2,])[,reorder]) pi1 <- t(predict(m1, newdata=X[phase2,])[,reorder]) @ For applying the \code{categoricalCUSUM} function one needs to define a compatible wrapper function for the multinomial as in the binomial example. With $\bm{\pi}^0$ and $\bm{\pi}^1$ in place one only needs to define a wrapper function, which defines the PMF of the sampling distribution -- in this case the multinomial -- in a \code{categoricalCUSUM} compatible way. <>= dfun <- function(y, size, mu, log = FALSE) { return(dmultinom(x = y, size = size, prob = mu, log = log)) } control <- list(range = seq(nrow(rotaBB))[phase2], h = h, pi0 = pi0, pi1 = pi1, ret = "value", dfun = dfun) surv <- categoricalCUSUM(rotaBB,control=control) @ <>= #Number of MC samples nSamples <- 1e4 #Do MC simone.stop <- function(sts, control) { phase2Times <- seq(nrow(sts))[phase2] #Generate new phase2 data from the fitted in control model y <- sapply(1:length(phase2Times), function(i) { rmultinom(n=1, prob=pi0[,i],size=population(sts)[phase2Times[i],1]) }) observed(sts)[phase2Times,] <- t(y) one.surv <- categoricalCUSUM(sts, control=control) #compute P(S<=length(phase2)) return(any(alarms(one.surv)[,1]>0)) } if (computeALL) { set.seed(1233) rlMN <- replicate(nSamples, simone.stop(rotaBB, control=control)) save(file="monitoringCounts-cache/rlsims-multinom.RData", list=c("rlMN")) } else { load(file="monitoringCounts-cache/rlsims-multinom.RData") } mean(rlMN) @ <<>>= alarmDates <- epoch(surv)[which(alarms(surv)[,1]==1)] format(alarmDates,"%b %Y") @ With $\bm{\pi}^0$ and $\bm{\pi}^1$ in place one only needs to define a wrapper function, which defines the PMF of the sampling distribution -- in this case the multinomial -- in a \code{categoricalCUSUM} compatible way. <>= <> @ The resulting CUSUM statistic $C_t$ as a function of time is shown in Figure~\ref{fig:ct}(a). The first time an aberration is detected is July 2009. Using 10000 Monte Carlo simulations we estimate that with the chosen threshold $h=2$ the probability for a false alarm within the 60 time points of \code{phase2} is 0.02. As the above example shows, the LR based categorical CUSUM is rather flexible in handling any type of multivariate GLM modeling to specify the \textit{in-control} and \textit{out-of-control} proportions. However, it requires a direction of the change to be specified -- for which detection is optimal. One sensitive part of such monitoring is the fit of the multinomial distribution to a multivariate time series of proportions, which usually exhibit extra dispersion when compared to the multinomial. For example comparing the AIC between the multinomial logit-model and a Dirichlet-multinomial model with $\alpha_{ti} = \exp(\bm{x}_t^\top\bm{\beta})$~\citep{MGLM} shows that overdispersion is present. The Dirichlet distribution is the multicategorical equivalent of the beta-binomial distribution. We exemplify its use in the code below. <>= m0.dm <- MGLMreg(as.matrix(rotaBB.df[phase1, 1:5]) ~ -1 + X[phase1, ], dist = "DM") c(m0@AIC, m0.dm@AIC) @ Hence, the above estimated false alarm probability might be too low for the actual monitoring problem, because the variation in the time series is larger than implied by the multinomial. Hence, it appears prudent to repeat the analysis using the more flexible Dirichlet-multinomial model. This is straightforward with \code{categoricalCUSUM} once the \textit{out-of-control} proportions are specified in terms of the model. Such a specification is, however, hampered by the fact that the two models use different parametrizations. For performing monitoring in this new setting we first need to calculate the $\alpha$'s of the multinomial-Dirichlet for the \textit{in-control} and \textit{out-of-control} distributions. <>= delta <- 2 m1.dm <- m0.dm m1.dm$coefficients[1, ] <- m0.dm$coefficients[1, ] + c(-delta, rep(delta/4, 4)) alpha0 <- exp(X[phase2,] %*% m0.dm$coefficients) alpha1 <- exp(X[phase2,] %*% m1.dm$coefficients) dfun <- function(y, size, mu, log = FALSE) { dLog <- ddirmn(t(y), t(mu)) if (log) { return(dLog) } else { return(exp(dLog)) } } h <- 2 control <- list(range = seq(nrow(rotaBB))[phase2], h = h, pi0 = t(alpha0), pi1 = t(alpha1), ret = "value", dfun = dfun) surv.dm <- categoricalCUSUM(rotaBB, control = control) @ <>= # Change intercept in the first class (for DM all 5 classes are modeled) delta <- 2 m1.dm <- m0.dm m1.dm@coefficients[1,] <- m0.dm@coefficients[1,] + c(-delta,rep(delta/4,4)) # Calculate the alphas of the multinomial-Dirichlet in the two cases alpha0 <- exp(X[phase2,] %*% m0.dm@coefficients) alpha1 <- exp(X[phase2,] %*% m1.dm@coefficients) # Use alpha vector as mu magnitude # (not possible to compute it from mu and size) dfun <- function(y, size, mu, log=FALSE) { dLog <- ddirmn(t(y), t(mu)) if (log) { return(dLog) } else {return(exp(dLog))} } # Threshold h <- 2 control <- list(range=seq(nrow(rotaBB))[phase2],h=h,pi0=t(alpha0), pi1=t(alpha1), ret="value",dfun=dfun) surv.dm <- categoricalCUSUM(rotaBB,control=control) @ <>= matplot(alpha0/rowSums(alpha0),type="l",lwd=3,lty=1,ylim=c(0,1)) matlines(alpha1/rowSums(alpha1),type="l",lwd=1,lty=2) @ \setkeys{Gin}{height=7cm, width=9cm} \begin{figure} \hspace{-1em} \subfloat[]{ <>= surv@observed[,1] <- 0 surv@multinomialTS <- FALSE surv.dm@observed[,1] <- 0 surv.dm@multinomialTS <- FALSE y.max <- max(observed(surv.dm[,1]),upperbound(surv.dm[,1]),observed(surv[,1]),upperbound(surv[,1]),na.rm=TRUE) plotOpts3 <- modifyList(plotOpts,list(x=surv[,1],ylim=c(0,y.max),ylab=expression(C[t]),xlab="")) plotOpts3$legend.opts <- list(x="topleft",bty="n",legend="R",lty=1,lwd=line.lwd,col=alarm.symbol$col,horiz=TRUE,cex=cex.leg) do.call("plot",plotOpts3) lines( c(0,1e99), rep(h,2),lwd=2,col="darkgray",lty=1) par(family="Times") mtext(side=1,text="Time (weeks)", las=0,line=3, cex=cex.text) @ \includegraphics[width=9cm]{plots/monitoringCounts-ctPlot1.pdf} } \hspace{-3em} \subfloat[]{ <>= plotOpts3 <- modifyList(plotOpts,list(x=surv.dm[,1],ylim=c(0,y.max),ylab=expression(C[t]),xlab="")) plotOpts3$legend.opts <- list(x="topleft",bty="n",legend="R",lty=1,lwd=line.lwd,col=alarm.symbol$col,horiz=TRUE,cex=cex.text) y.max <- max(observed(surv.dm[,1]),upperbound(surv.dm[,1]),observed(surv[,1]),upperbound(surv[,1]),na.rm=TRUE) do.call("plot",plotOpts3) lines( c(0,1e99), rep(h,2),lwd=2,col="darkgray",lty=1) par(family="Times") mtext(side=1,text="Time (weeks)", las=0,line=3, cex=cex.text) @ \includegraphics[width=9cm]{plots/monitoringCounts-ctPlot2.pdf} } \caption{Categorical CUSUM statistic $C_t$. Once $C_t>\Sexpr{h}$ an alarm is sounded and the statistic is reset. In (a) surveillance uses the multinomial distribution and in (b) surveillance uses the Dirichlet-multinomial distribution.} \label{fig:ct} \end{figure} The resulting CUSUM statistic $C_t$ using the Dirichlet multinomial distribution is shown in Figure~\ref{fig:ct}(b). We notice a rather similar behavior even though the shift-type specified by this model is slightly different than in the model of Figure~\ref{fig:ct}(a). \subsubsection{Categorical data in routine surveillance} The multidimensionality of data available in public health surveillance creates many opportunities for the application of categorical time series: one could, e.g., look at the sex ratio of cases of a given disease, at the age group distribution, at the regions sending data, etc. If one is interested in monitoring with respect to a categorical variable, a choice has to be made between monitoring each time series individually, for instance a time series of \textit{Salmonella} cases for each age category, or to monitor the distribution of cases with respect to that factor jointly \textit{via} \code{categoricalCUSUM}. A downside of the latter solution is that one has to specify the change parameter \code{R} in advance, which can be quite a hurdle if one has no pre-conceived idea of what could happen for, say, the age shift after the introduction of a vaccine. Alternatively, one could employ an ensemble of monitors or monitor an aggregate. However, more straightforward applications could be found in the (binomial) surveillance of positive diagnostics if one were to obtain data about tests performed by laboratories and not only about confirmed cases. An alternative would be to apply \code{farringtonFlexible} while using the number of tests as \code{populationOffset}. \subsubsection{Similar methods in the package} The package also offers another CUSUM method suitable for binary data, \code{pairedbinCUSUM} that implements the method introduced by~\citet{Steiner1999}, which does not, however, take overdispersion into account as well as \code{glrnb}. The algorithm \code{rogerson} also supports the analysis of binomial data. See Table~\ref{table:ref} for the corresponding references. \subsection{Other algorithms implemented in the package} We conclude this description of surveillance methods by giving an overview of all algorithms implemented in the package with the corresponding references in Table~\ref{table:ref}. One can refer to the relative reference articles and to the reference manual of the package for more information about each method. Criteria for choosing a method in practice are numerous. First one needs to ponder on the amount of historical data at hand -- for instance the EARS methods only need data for the last timepoints whereas the Farrington methods use data up to $b$ years in the past. Then one should consider the amount of past data used by the algorithm -- historical reference methods use only a subset of the past data, namely the timepoints located around the same timepoint in the past years, whereas other methods use all past data included in the reference data. This can be a criterion of choice since one can prefer using all available data. It is also important to decide whether one wants to detect one-timepoint aberration or more prolonged shifts. And lastly, an important criterion is how much work needs to be done for finetuning the algorithm for each specific time series. The package on the one hand provides the means for analysing nearly all type of surveillance data and on the other hand makes the comparison of algorithms possible. This is useful in practical applications when those algorithms are implemented into routine use, which will be the topic of Section~\ref{sec:routine}. \begin{table}[t!] \centering \begin{tabular}{lp{11cm}} \hline Function & References \\ \hline \code{bayes} & \citet{riebler2004} \\ \code{boda} & \citet{Manitz2013} \\ \code{bodaDelay} & \citet{Maelle} \\ \code{categoricalCUSUM} & \citet{hoehle2010}\\ \code{cdc} & \citet{stroup89,farrington2003} \\ \code{cusum} & \citet{rossi_etal99,pierce_schafer86} \\ \code{earsC} & \citet{SIM:SIM3197} \\ \code{farrington} & \citet{farrington96} \\ \code{farringtonFlexible} & \citet{farrington96,Noufaily2012} \\ \code{glrnb} & \citet{hoehle.paul2008} \\ \code{glrpois} & \citet{hoehle.paul2008} \\ \code{outbreakP} & \citet{frisen_etal2009,fri2009} \\ \code{pairedbinCUSUM} & \citet{Steiner1999} \\ \code{rki} & Not available -- unpublished \\ \code{rogerson} & \citet{rogerson_yamada2004} \\ \hline \end{tabular} \caption{Algorithms for aberration detection implemented in \pkg{surveillance}.} \label{table:ref} \end{table} \section[Implementing surveillance in routine monitoring]{Implementing \pkg{surveillance} in routine monitoring} \label{sec:routine} \label{sec:3} Combining \pkg{surveillance} with other \proglang{R} packages and programs is easy, allowing the integration of the aberration detection into a comprehensive surveillance system to be used in routine practice. In our opinion, such a surveillance system has to at least support the following process: loading data from local databases, analysing them within \pkg{surveillance} and sending the results of this analysis to the end-user who is typically an epidemiologist in charge of the specific pathogen. This section exemplifies the integration of the package into a whole analysis stack, first through the introduction of a simple workflow from data query to a \code{Sweave}~\citep{sweave} or \pkg{knitr}~\citep{knitr} report of signals, and secondly through the presentation of the more elaborate system in use at the German Robert Koch Institute. \subsection{A simple surveillance system} Suppose you have a database with surveillance time series but little resources to build a surveillance system encompassing all the above stages. Using \proglang{R} and \code{Sweave} or \code{knitr} for \LaTeX~you can still set up a simple surveillance analysis without having to do everything by hand. You only need to input the data into \proglang{R} and create \code{sts} objects for each time series of interest as explained thoroughly in~\citet{hoehle-mazick-2010}. Then, after choosing a surveillance algorithm, say \code{farringtonFlexible}, and feeding it with the appropriate \code{control} argument, you can get a \code{sts} object with upperbounds and alarms for each of your time series of interest over the \code{range} supplied in \code{control}. For defining the range automatically one could use the \proglang{R} function \code{Sys.Date()} to get today's date. These steps can be introduced as a code chunk in a \code{Sweave} or \code{knitr} code that will translate it into a report that you can send to the epidemiologists in charge of the respective pathogen whose cases are monitored. Below is an example of a short code segment showing the analysis of the \textit{S. Newport} weekly counts of cases in the German federal states Baden-W\"{u}rttemberg and North Rhine-Westphalia with the improved method implemented in \code{farringtonFlexible}. The package provides a \code{toLatex} method for \code{sts} objects that produces a table with the observed number of counts and upperbound for each column in \code{observed}, where alarms can be highlighted by for instance bold text. The resulting table is shown in Table~\ref{tableResults}. <>= data("salmNewport") today <- which(epoch(salmNewport) == as.Date("2013-12-23")) rangeAnalysis <- (today - 4):today in2013 <- which(isoWeekYear(epoch(salmNewport))$ISOYear == 2013) algoParameters <- list(range = rangeAnalysis, noPeriods = 10, populationBool = FALSE, b = 4, w = 3, weightsThreshold = 2.58, pastWeeksNotIncluded = 26, pThresholdTrend = 1, thresholdMethod = "nbPlugin", alpha = 0.05, limit54 = c(0, 50)) results <- farringtonFlexible(salmNewport[, c("Baden.Wuerttemberg", "North.Rhine.Westphalia")], control = algoParameters) start <- isoWeekYear(epoch(salmNewport)[range(range)[1]]) end <- isoWeekYear(epoch(salmNewport)[range(range)[2]]) caption <- paste("Results of the analysis of reported S. Newport counts in two German federal states for the weeks W-", start$ISOWeek, "-", start$ISOYear, " - W-", end$ISOWeek, "-", end$ISOYear, " performed on ", Sys.Date(), ". Bold upperbounds (UB) indicate weeks with alarms.", sep="") toLatex(results, caption = caption) @ <>= # In this example the sts-object already exists. # Supply the code with the date of a Monday and look for the # corresponding index in the sts-object today <- which(epoch(salmNewport)==as.Date("2013-12-23")) # The analysis will be performed for the given week # and the 4 previous ones range <- (today-4):today in2013 <- which(isoWeekYear(epoch(salmNewport))$ISOYear==2013) # Control argument for using the improved method control2 <- list(range=range,noPeriods=10,populationBool=FALSE, b=4,w=3,weightsThreshold=2.58,pastWeeksNotIncluded=26, pThresholdTrend=1,thresholdMethod="nbPlugin",alpha=0.05, limit54=c(0,50)) # Run farringtonFlexible results <- farringtonFlexible(salmNewport[,c("Baden.Wuerttemberg", "North.Rhine.Westphalia")], control=control2) # Export the results as a tex table start <- isoWeekYear(epoch(salmNewport)[range(range)[1]]) end <- isoWeekYear(epoch(salmNewport)[range(range)[2]]) caption <- paste("Results of the analysis of reported S. Newport counts in two German federal states for the weeks W-", start$ISOWeek," ",start$ISOYear," - W-",end$ISOWeek, " ",end$ISOYear," performed on ",Sys.Date(), ". Bold upperbounds (thresholds) indicate weeks with alarms.", sep="") toLatex(results, table.placement="h", size = "normalsize", sanitize.text.function = identity, NA.string = "-",include.rownames=FALSE, columnLabels = c("Year","Week","Baden-Wuerttemberg","Threshold","North-Rhine-Westphalen","Threshold"), alarmPrefix = "\\textbf{\\textcolor{red}{", alarmSuffix = "}}", caption=caption,label="tableResults") @ The advantage of this approach is that it can be made automatic. The downside of such a system is that the report is not interactive, for instance one cannot click on the cases and get the linelist. Nevertheless, this is a workable solution in many cases -- especially when human and financial resources are narrow. In the next section, we present a more advanced surveillance system built on the package. \subsection{Automatic detection of outbreaks at the Robert Koch Institute} \label{sec:RKI} The package \pkg{surveillance} was used as a core building block for designing and implementing the automated outbreak detection system at the RKI in Germany~\citep{Dirk}. The text below describes the system as it was in early 2014. Due to the Infection Protection Act (IfSG) the RKI daily receives over 1,000 notifiable disease reports. The system analyses about half a million time series per day to identify possible aberrations in the reported number of cases. Structurally, it consists of two components: an analytical process written in \proglang{R} that daily monitors the data and a reporting component that compiles and communicates the results to the epidemiologists. The analysis task in the described version of the system relied on \pkg{surveillance} and three other \proglang{R} packages, namely \pkg{data.table}, \pkg{RODBC} and \pkg{testthat} as described in the following. The data-backend is an OLAP-system~\citep{SSAS} and relational databases, which are queried using \pkg{RODBC}~\citep{rodbc2013}. The case reports are then rapidly aggregated into univariate time series using \pkg{data.table}~\citep{datatable2013}. To each time series we apply the \code{farringtonFlexible} algorithm on univariate \code{sts} objects and store the analysis results in another SQL-database. We make intensive use of \pkg{testthat}~\citep{testthat2013} for automatic testing of the component. Although \proglang{R} is not the typical language to write bigger software components for production, choosing \proglang{R} in combination with \pkg{surveillance} enabled us to quickly develop the analysis workflow. We can hence report positive experience using \proglang{R} also for larger software components in production. The reporting component was realized using Microsoft Reporting Services~\citep{SSRS}, because this technology is widely used within the RKI. It allows quick development of reports and works well with existing Microsoft Office tools, which the end-user, the epidemiologist, is used to. For example, one major requirement by the epidemiologists was to have the results compiled as Excel documents. Moreover, pathogen-specific reports are automatically sent once a week by email to epidemiologists in charge of the respective pathogen. Having state-of-the-art detection methods already implemented in \pkg{surveillance} helped us to focus on other challenges during development, such as bringing the system in the organization's workflow and finding ways to efficiently and effectively analyse about half a million of time series per day. In addition, major developments in the \proglang{R} component can be shared with the community and are thus available to other public health institutes as well. \section{Discussion} \label{sec:4} The \proglang{R} package \pkg{surveillance} was initially created as an implementational framework for the development and the evaluation of outbreak detection algorithms in routine collected public health surveillance data. Throughout the years it has more and more also become a tool for the use of surveillance in routine practice. The presented description aimed at showing the potential of the package for aberration detection. Other functions offered by the package for modeling~\citep{meyer.etal2014}, nowcasting~\citep{hoehle-heiden} or back-projection of incidence cases~\citep{becker_marschner93} are documented elsewhere and contribute to widening the scope of possible analysis in infectious disease epidemiology when using \pkg{surveillance}. Future areas of interest for the package are, e.g., to better take into account the multivariate and hierarchical structure of the data streams analysed. Another important topic is the adjustment for reporting delays when performing the surveillance~\citep{Maelle}. The package can be obtained from CRAN and resources for learning its use are listed in the documentation section of the project (\url{https://surveillance.R-Forge.R-project.org/}). As all \proglang{R} packages, \pkg{surveillance} is distributed with a manual describing each function with corresponding examples. The manual, the present article and two previous ones~\citep{hoehle-2007, hoehle-mazick-2010} form a good basis for getting started with the package. The data and analysis of the present manuscript are accessible as the vignette \texttt{"monitoringCounts.Rnw"} in the package. Since all functionality is available just at the cost of learning \proglang{R} we hope that parts of the package can be useful in health facilities around the world. Even though the package is tailored for surveillance in public health contexts, properties such as overdispersion, low counts, presence of past outbreaks, apply to a wide range of count and categorical time series in other surveillance contexts such as financial surveillance~\citep{frisen2008financial}, occupational safety monitoring~\citep{accident} or environmental surveillance~\citep{Radio}. Other \proglang{R} packages can be worth of interest to \pkg{surveillance} users. Statistical process control is offered by two other packages, \pkg{spc}~\citep{spc} and \pkg{qcc}~\citep{qcc}. The package \pkg{strucchange} allows detecting structural changes in general parametric models including GLMs~\citep{strucchange}, while the package \pkg{tscount} provides methods for regression and (retrospective) intervention analysis for count time series based on GLMs~\citep{tscount, liboschik_tscount_2015} . For epidemic modelling and outbreaks, packages such as \pkg{EpiEstim}~\citep{EpiEstim}, \pkg{outbreaker}~\citep{outbreaker} and \pkg{OutbreakTools}~\citep{OutbreakTools} offer good functionalities for investigating outbreaks that may for instance have been detected through to the use of \pkg{surveillance}. They are listed on the website of the \textit{\proglang{R}-epi project} (\url{https://sites.google.com/site/therepiproject}) that was initiated for compiling information about \proglang{R} tools useful for infectious diseases epidemiology. Another software of interest for aberration detection is \pkg{SaTScan}~\citep{SaTScan} which allows the detection of spatial, temporal and space-time clusters of events -- note that it is not a \proglang{R} package. Code contributions to the package are very welcome as well as feedback and suggestions for improving the package. \section*{Acknowledgments} The authors would like to express their gratitude to all contributors to the package, in particular Juliane Manitz, University of G\"{o}ttingen, Germany, for her work on the \texttt{boda} code and Angela Noufaily, The Open University, Milton Keynes, UK, for providing us the code used in her article that we extended for \texttt{farringtonFlexible}. The work of M. Salmon was financed by a PhD grant of the RKI. \bibliography{monitoringCounts,references} \end{document} surveillance/MD50000644000175100001440000006205013233121462013274 0ustar hornikusers831e216a8fc17744e35c697b610a52b0 *DESCRIPTION 0f5450b1f0f145883d26e5e50c40988c *NAMESPACE 24b3d2fa9dc756c4a67e805a298aa693 *R/AllClass.R ee2dc6e882782a1dc60a5c44fb31c5be *R/AllGeneric.R c18cc82eec3698f76db1ceb2dcf157bf *R/LRCUSUM.runlength.R 411366bcd222b48821c7bc12f24b9c52 *R/RcppExports.R 61d58a61ff4500831f3be0fea209afa9 *R/addSeason2formula.R aa76ffe9106f413caeca6e046077b167 *R/algo_bayes.R 2c46dff7297954e6c2702502b8790c9d *R/algo_call.R be214ec6475829e4205744ac732af81a *R/algo_cdc.R c9ca07b4861c4273ff8331615a435e82 *R/algo_cusum.R 2f2f2f54604d1b33742346e1f747f7b9 *R/algo_farrington.R 162ac37df5b177dfe84a932b6f45bc42 *R/algo_glrnb.R 3b039ab8fbd280448ea8ab18cfc842d0 *R/algo_hhh.R 32bbac6af87327df5953f881a46158fb *R/algo_hmm.R 54a7ff43ff4ec43f830a636ef4f38677 *R/algo_outbreakP.R 7e59e5a1fd0c57754e6f123e04014da9 *R/algo_rki.R e33c4e91fcaec7731e2b9f48b3c0042f *R/algo_rogerson.R 903711545e0576a88a63ccb7379d4489 *R/algo_twins.R 88172bb94a613e34c473ccfb218e1c92 *R/backprojNP.R 828fb0995bee4632ad4423f3d7c61763 *R/boda.R 65eedb802a675c0096f60cc382510f39 *R/bodaDelay.R 2e430d7da51598fc87d26505ef70140c *R/calibration.R 51d65e4566c1924aa1f309a9b911eb96 *R/calibration_null.R cb17c08401b9b954f0c0a2f0b51f613c *R/catCUSUM.R 09b2e1ae80408fc68c5f9d6b7e87de71 *R/checkDerivatives.R d9b04a88446501b386e9131b52de7daf *R/clapply.R 2b42bffe99b6544f9cb964972507b606 *R/earsC.R 9fb49d7461b04051a93633cb08cb904f *R/epidata.R a45d36f947f5c18251a38514663be3c5 *R/epidataCS.R 117f82f6e97605811922d7c8644b98c8 *R/epidataCS_aggregate.R 707878ace5fab773424dc0f152f06ddf *R/epidataCS_animate.R e26b24371b7b7d9242aba01e4e545a8d *R/epidataCS_methods.R f0d0c989a113377155bbfde8ec9d742a *R/epidataCS_plot.R f4602b9b53045e2af65a5d2e2f49d59b *R/epidata_animate.R 82fe3b6f16d0ddc0774e52dfdd98433b *R/epidata_plot.R 19ba1be29565101e771cf490509157c0 *R/fanplot.R 23456288a99e1860a1cfa1a238f54bce *R/farringtonFlexible.R dc25e670264995ba857dd2d1252c1686 *R/formatPval.R 3b2b41811955b4d807ee2bf331fee0c0 *R/functionTable.R 9f7ac36012ccb60b1aaed07dd8d69ff1 *R/gd.R 3ca2a3350552438778d972bdf9f4e336 *R/glm_epidataCS.R 5a9797f6921b53e03e4368b3da08c82a *R/gpc.poly-methods.R 378e81cd40da5e64de2bea6d68a57134 *R/graphs.R b7e39524c585c78581914f01cf933041 *R/hcl.colors.R 68e06449c428e9d37db2ca802372b6d4 *R/hhh4.R 3bb545ebfc4c2c2bb61e76e443c17214 *R/hhh4_W.R 2e29adf62fc0fb8d436917580b4a2a43 *R/hhh4_W_np.R 0bd5cf8af546c99f5f922c86aee073b2 *R/hhh4_W_powerlaw.R 480fbe593f41518f989aa14c24d847e4 *R/hhh4_calibration.R 8fe198776933e888f3e5661636127163 *R/hhh4_methods.R 236a816dbae38d5dd6a9dc5a939ee4bf *R/hhh4_oneStepAhead.R 68b990cef9af3af31b1e7237cf8fb59e *R/hhh4_plot.R 55b0d881a0b2bc3a24db7fb7012405e0 *R/hhh4_simulate.R 1acd27c0af4fe74a105208e63db85ca7 *R/hhh4_simulate_plot.R 06b3c6c38ad2153300e43b14882dc00d *R/hhh4_simulate_scores.R 13a43831746902664c4e2c6507b7c671 *R/intersectPolyCircle.R d2343ded6d3d37b1f9eff2fc6803de16 *R/isScalar.R a88f139b35ea30b5c3239aa02fbcef24 *R/isoWeekYear.R 97c5fe6d659c4bc619ddfe61900f13c3 *R/knox.R 9dfa1650025a4ef8cf774960c750b12b *R/ks.plot.unif.R 497c59cfb53217f850f7b74a1ae8ddf1 *R/linelist2sts.R 3475e7006be1293a3ab43ab1cedce63d *R/makeControl.R 54b4e5a8c54769aa9952173f7f4beeec *R/misc_dataProcessing.R fed4a7a664669d1d97a8b33a3d4680b4 *R/modifyListcall.R b6e047c499661bd2c2ebcec29f2e23b3 *R/newtonRaphson.R cd016a09d22003033b998e40b5330365 *R/nowcast.R f4fce463df5961fba2cc72e9b1480275 *R/options.R 5ac097dcfabce2f22dda5953d31f6813 *R/pairedbinCUSUM.R 81c00325e893d5142480a3c48d7e2236 *R/permutationTest.R 6c338ff8d98ee2728719e86ba5dc6a2a *R/pit.R 7ef218f14a59baa2b79c0fef7d55ec8c *R/plapply.R ce260573344c25b486aed2d9a7f2cd43 *R/plot_graphics.R b8f1263487a1a4c00fca3489e54d004b *R/plot_multi.R 09197f8ab423db066604ab32d9417970 *R/plot_xtable.R 5e3bf6ce56e66fd249bc1822ef862d6c *R/qlomax.R e4035ece08e1872c9f05cbb7a8179890 *R/scores.R 7a05e6653d764f127813157b00f1f576 *R/sim_HHH.R d76738240acf75767e17440185a3503a *R/sim_background.R 064d3a73fdd755280188e83d8f858945 *R/sim_pointSource.R 242755258433d782a7fa795806c18e8e *R/spatial_tools.R 5be08cde0378959bd22199f0bffada93 *R/stK.R 586867dd964e87bae8dc1a276c4ef094 *R/stcd.R e501b65ece3cb52349e25fc9bde8ed74 *R/sts.R 51c8d382619c1f5398f98582f1a0cbaa *R/stsBP.R 92650e87fbe44030becb5b45777cd2dd *R/stsNC.R 84c91795860f65013a2e0dcb7348df80 *R/stsNClist_animate.R 5fd0c4f0f72c5dae7ae6063a0bbeb9ed *R/sts_animate.R ef663574d21cc2e1d0afae5499018051 *R/sts_coerce.R fb4d9d6ae5eb262ad708ad64c45542f0 *R/sts_creation.R 8922f269f1e085630a93c57b8817a082 *R/sts_ggplot.R 7a0dcd822c39fd48d144be3b9040479b *R/sts_observation.R e3fc5471a0507efecbd96b6abf8d69b3 *R/sts_toLatex.R 05f4dd4e177ace5e22ea3026d408c168 *R/stsplot_space.R a6230bb9d9de5a65d2842103aa735893 *R/stsplot_spacetime.R 99a0ff793281139487d8df9bfb1bf829 *R/stsplot_time.R 5f4d4a6dfad22b79881f9df0bd554a84 *R/sysdata.rda 692aa77b1ee65f1269d73aaf2ea9905a *R/testcalls.R 21b332280797c16407eb0d476b47e41a *R/twinSIR.R b9b75d193bf403aac831669a2b6c7975 *R/twinSIR_helper.R 0c251c18648b2a2b03eff1a432d49698 *R/twinSIR_intensity.R 4078d9a93052f83fdd9d1dcdab1cd485 *R/twinSIR_methods.R c3ecdbda8349faefe3c704461669f4af *R/twinSIR_profile.R 2b41220d990241c30de025eadc8227f1 *R/twinSIR_simulation.R 3223ff80d852bfbb756cec5f19777bad *R/twinstim.R 99a158d8566255fac424a2596b78d695 *R/twinstim_epitest.R 0adcd783b43d10036e6e51414f3473d5 *R/twinstim_helper.R fb609b909569717c962729486d90251e *R/twinstim_iafplot.R aa5b34374657036b2f51341267c53e9c *R/twinstim_intensity.R 7e9f448e1d08e271c3b8741c5788bfa1 *R/twinstim_methods.R 4721f06b402664289a0e5635e37c01fe *R/twinstim_siaf.R e271ccb24d65210ff04c40e0a976a12f *R/twinstim_siaf_gaussian.R adbc8557c9af345cee76f4de74f533cf *R/twinstim_siaf_polyCub_iso.R 7ce826d19f265d7ac099e6f10f05b36e *R/twinstim_siaf_powerlaw.R c3310f8d58b327255c8f1ee8995db11d *R/twinstim_siaf_powerlawL.R 101fbb1c13c85356b91de13658ea4604 *R/twinstim_siaf_step.R 492ae60e071ddd690910f1137a85067f *R/twinstim_siaf_student.R 36424aec5666e5e5b608178982bf14d4 *R/twinstim_simulation.R 848e68f6b19e146eb0d6f6fd073de56d *R/twinstim_step.R bb161cec90325a763709d2e5fa86d7a4 *R/twinstim_tiaf.R 1bbf034dc9335443d9416e371239f4e8 *R/twinstim_tiaf_exponential.R c007fba9f8232e06532b1021ade92094 *R/twinstim_tiaf_step.R e21d2f4625b12923af2f563af1cc824f *R/untie.R 339a9b5872a2d937bb4404e1c4b5472b *R/wrap_univariate.R bfed3e4106e10197db51a90a6e2f327d *R/zzz.R 475ae21b4a8f29095fcda411c307272a *build/partial.rdb ac169805756f4cf538ef8a358e29e907 *build/vignette.rds 39cd4adbe3c05e3bed5a29e962a30724 *data/MMRcoverageDE.RData bc57ed2de6c59d625e8ff1dc4bcc534d *data/abattoir.RData 8f11226dce910b95b8ef780e1e087340 *data/campyDE.RData a5d19dc926e0079295e7bbb807b71183 *data/deleval.RData 74396784d70b77ce6f94f6895118168f *data/fluBYBW.RData 1a1a9a313becf102d191c6c80809df21 *data/foodata.RData 7f00d8ec6194adc54678c9ad5aa684a4 *data/fooepidata.RData 9f87d4b730164ab5cb0c7cbcf1b22670 *data/foofit.RData 154bd5f0caec21664a3b42caf7990582 *data/h1_nrwrp.RData 731c70fffa23b3683391557f47000132 *data/ha.RData f13e5e8fff2b55cb8df0169792c821eb *data/ha.sts.RData 836e9f6eb2993c4dbf7f4b975d78eb35 *data/hagelloch.RData d86889b540c46c9b9ea2b42e5dfd3bcc *data/hepatitisA.RData 2aa9e24781d83436f2daaf4db6b788b5 *data/husO104Hosp.RData 355646c5dc107c6eec18360c7d4ff67e *data/imdepi.RData ce60276190899bc8f3f0a06590277f61 *data/imdepifit.RData 3723c7f472e9782de2011d7885218586 *data/influMen.RData d7e124e76fd06d35ac3de97cfb3ca0d8 *data/k1.RData 1173ed2c8b616486e274967c6a97ce8f *data/m1.RData f4ae714001625bb89963fe0e4e2e9a77 *data/m2.RData b21b89d9b8dab8750e93f944fc30cac1 *data/m3.RData ec915cd8e2ce14bfd9a8de11bdba92ad *data/m4.RData 728cf151f5516831158588b57d194cd9 *data/m5.RData b1313db9d37f054c5185cea5fc215ca0 *data/measles.weser.RData 9b38f5dd970f407ef6eb0197c9f428f8 *data/measlesDE.RData e94e8e0396dc5e5c49abf9d28d4a092b *data/measlesWeserEms.RData 6e88fa261848741a2927e8a0208c176c *data/meningo.age.RData 32eef47d250194f5decca9c2e78126ae *data/momo.RData 0c08f2d5d556db1d91f1c6a3d3125d70 *data/n1.RData 029fff2b44242b6fc032dd4abb839207 *data/n2.RData 9b33e305674dc2bd24e465592a88e4e1 *data/q1_nrwh.RData f19779c068198733db7f1c95cecc19db *data/q2.RData 8f41ddc82674072f51517b573007112f *data/rotaBB.RData 66338d480d9d6f7541d6b7f5690f1c94 *data/s1.RData 08135e0c5091d08becc0ceb7bb3bb3c4 *data/s2.RData a24280cb563d545fa1f547b5c0959962 *data/s3.RData e6867f5f8b49d82d5d56a6ba21bc79bc *data/salmAllOnset.RData 9936b098fc80b9477d114e4f169ba2fb *data/salmHospitalized.RData 177f82cfd139402fd4c68014c65faf46 *data/salmNewport.RData ebc818bb58803591f7ade0b04d956926 *data/salmonella.agona.RData f976fafb219fc04b750e0e4117ba054c *data/shadar.RData c68d5433a3091d766465ac1990b4f697 *data/stsNewport.RData 9b358dfd9210aec26b9017eaa925dbdf *demo/00Index 150489e6ef221568c2edb8ebc24ea661 *demo/biosurvbook.R 9a0f5af9df8d008ee9d5a3e5d2da784f *demo/cost.R 897f8e9c7987e358e5769ea294cbb8a7 *demo/fluBYBW.R a8b6b603af2579f40751c75d9abc1c23 *demo/v77i11.R cfff3dd3f593b008473c88f01328b05a *inst/CITATION f6c0b210a7deac994e1e7008eba01d76 *inst/NEWS.Rd c1551062b97509a3ebe029422da69922 *inst/THANKS 7f1e3893af66b7dc39359827748d7504 *inst/doc/glrnb.R b9e65c5257f69be0c644053a4d53f414 *inst/doc/glrnb.Rnw 8ac75b4e2c5e1a8968ef1110630b3931 *inst/doc/glrnb.pdf 4dc34c5cdff8e50a2746827d1e50c13c *inst/doc/hhh4.R 5ce9bb45a94b620a94c76a25b8a939a1 *inst/doc/hhh4.Rnw 6f2f8ebc4a692f6234a8c6f0c59dbcc3 *inst/doc/hhh4.pdf 830a822ea4a9f230063577013d59779c *inst/doc/hhh4_spacetime.R 3a9e94c30a5bbb6bf908be07ae320148 *inst/doc/hhh4_spacetime.Rnw 0d1765f9ef4e8e26f9336c011784ec7b *inst/doc/hhh4_spacetime.pdf e57ff2aa59ff2e4085fda8fd6f8af283 *inst/doc/monitoringCounts.R f6d76c5ecf468b2a7b4ad8cf909358f8 *inst/doc/monitoringCounts.Rnw 2d2966412cb586661cac67326b2a2c53 *inst/doc/monitoringCounts.pdf e4723096379b7f3398e761e578ae0fe4 *inst/doc/surveillance.R 1724f77e3e5d3218c5e431dfdd0fa2e3 *inst/doc/surveillance.Rnw 0525354a4aa46f35758edd0e1141599a *inst/doc/surveillance.pdf fe0cf08a224669c084910c5c19f6ff4a *inst/doc/twinSIR.R 94b68bd92d0cccf5f98395adaeb8adcf *inst/doc/twinSIR.Rnw 192f5cba4af15fa9d4c2da7b2650adc0 *inst/doc/twinSIR.pdf ffb6aefa4a862e206336d0568bfda656 *inst/doc/twinstim.R 25f02b9eb99691637e1164c49974c360 *inst/doc/twinstim.Rnw 21859a94ade57b5e13e8f916b90a53c9 *inst/doc/twinstim.pdf 01e880f0dcb85b78a1c2be29862d464f *inst/extdata/counts_flu_BYBW.txt 7475135b03ccdf173429ee21b85ca4f8 *inst/extdata/h1_nrwrp.txt 6b1da7976e5a3a83fa4aef34a85fbc3b *inst/extdata/k1.txt 8df0eec6b4370d8fb4474939bd468f75 *inst/extdata/m1.txt 36acb8eadf4088b4df254363e491c93e *inst/extdata/m2.txt 7dcfecd167561244cce073f26508cc65 *inst/extdata/m3.txt fa4c5c3940fadaa326d71e557c0fa769 *inst/extdata/m4.txt 987da7f7150baa5224cf002ff433cedf *inst/extdata/m5.txt 695773a46addc3189753d7b00bf2cec9 *inst/extdata/n1.txt d1cfd8d70ad90c0588b5ecab843d6a44 *inst/extdata/n2.txt 7368155ea8525f22a4039c99101fa209 *inst/extdata/neighbourhood_BYBW.txt 57facd5cc2cdaadf18538e6742158b88 *inst/extdata/population_2001-12-31_BYBW.txt 242a2683b7480faf8755ecee88e640f2 *inst/extdata/q1_nrwh.txt fc7bf5a597d4ddaab36faa6b02f682c5 *inst/extdata/q2.txt cbe1b1190400f7029f24c761c100fddb *inst/extdata/s1.txt a8cf8716b32896d394ce1a1528763d2d *inst/extdata/s2.txt 403ff1cd7ad4649f141448b45c244036 *inst/extdata/s3.txt 3cfa159d1f9810e948068fb7831fdc2c *inst/extdata/salmonella.agona.txt f4730e000238c07501367e4aa0ffd42c *inst/jags/bhpm.bugs 61faaa303d7c5e4e88278dc1026f1463 *inst/shapes/berlin.dbf 6d61b4a4e2ba0197aed611390250f5a8 *inst/shapes/berlin.sbn 4215c8c5fc9aa22fa9277267cbe20746 *inst/shapes/berlin.sbx 57a46753e569f12f8aa48540429444d4 *inst/shapes/berlin.shp 2a29a0fdf04dc5a01a3614ef1096f7e5 *inst/shapes/berlin.shx aaba0229b93bd6fac056f5081a3e1f35 *inst/shapes/districtsD.RData c59d6f0d74454e2e3f4fd851fff8527f *man/LRCUSUM.runlength.Rd da3bc824858d6e87e0431999212fd5b9 *man/MMRcoverageDE.Rd 5fa13c200349d09fa928812b69c086dd *man/R0.Rd 050377f810eaa62351b28927e9374dc7 *man/abattoir.Rd e3726fd4ca78288fe89db6e3a62a08ab *man/addFormattedXAxis.Rd 81ed4b504edd3ff054223a111a598e4b *man/addSeason2formula.Rd b65347920ac7f8914c5eb4b50a602f79 *man/aggregate.disProg.Rd 88a75c42b99a537c63e7e4a904560c12 *man/algo.bayes.Rd f8b6ab06e4d27d44a58be803b578faad *man/algo.call.Rd bd37a85505aa53d1e8007be27e8cfb0f *man/algo.cdc.Rd 8a2406825225cbd7b94519dac6ce3820 *man/algo.compare.Rd 5b937a700198de09efdf616cf95ea079 *man/algo.cusum.Rd af69fa541c543b390986355df2a3ea59 *man/algo.farrington.Rd ddcf60189b825884760b09415b2f3ab0 *man/algo.farrington.assign.weights.Rd 7bb1f601a5b9c9f0066794189b8b9e17 *man/algo.farrington.fitGLM.Rd eb25344d041f96e3caa276d0f03cce9c *man/algo.farrington.threshold.Rd 714c9e6d7e0b1e2b08adfcf5153c04d4 *man/algo.glrnb.Rd 328f9c86d5ec8b9f03a044ebdde890d5 *man/algo.hhh.Rd e758fbbadd4abae7868b50bd8a04cd80 *man/algo.hhh.grid.Rd b506a2cf3085ee2494dda7d51d96346c *man/algo.hmm.Rd ed32a5602594e19194b0b7e16a4a9be2 *man/algo.outbreakP.Rd a03ce41b3d94f8e29938eb451f65e540 *man/algo.quality.Rd 9aa31b24d5cacb427a415a9918ae682a *man/algo.rki.Rd 5c38f42e4626e55e202f0dde78124994 *man/algo.rogerson.Rd f4f6d4df5bf74c1f371a618c27760603 *man/algo.summary.Rd 3a822ba5ef9fe15475276f2055211def *man/algo.twins.Rd eeaee3c5d0e839ef8d6ef83358ffc575 *man/all.equal.Rd e67c69a89d7f343368d411318ea15e3f *man/animate.Rd 2f342e80d91a6dbe78e7e24537c6d3fd *man/anscombe.residuals.Rd 785860fc36b43605c8b250287cd51081 *man/arlCusum.Rd 5ff29bdf07927ab8ca564e6e360f0e9a *man/backprojNP.Rd 09fb22575940aa22c3c155be4ea1ffc8 *man/bestCombination.Rd 7ec4a17e16648b157e081de39f5b1926 *man/boda.Rd 09f01c70117c863f0b5f405aa72d1b05 *man/bodaDelay.Rd 0874769b413334054106966019cf51b9 *man/calibration.Rd 342a179dd90701f9144a1f0e0dbeb3fe *man/campyDE.Rd fded4893dcc824059ae6c8d36369356e *man/categoricalCUSUM.Rd df6455aa6be9dfc476040bf1b9fb999c *man/checkResidualProcess.Rd 5d88a6b64a591a16ff7ae3bb6d0640d9 *man/clapply.Rd 27ef79270ab1c247cc00247a25d96b65 *man/coeflist.Rd 0234cdbffd05f89964e8a55d2359f395 *man/compMatrix.writeTable.Rd 546e42ec52f56113f05ec066084a618e *man/correct53to52.Rd 0e12d409a9eab25d226f71311603d264 *man/create.disProg.Rd 6298fa044757fa92b783fbdfd1506c73 *man/create.grid.Rd dda9e5df2c4f4d37b805888fc3c98896 *man/deleval.Rd c629a963f9544c4a04d5317179f49c89 *man/disProg2sts.Rd 80329fe7efe094d8833545c66af03bae *man/discpoly.Rd 7e557bf7fb1f3dbe5a489e40d68a325c *man/earsC.Rd 128836aedbbfe59b4db9e531034acab0 *man/enlargeData.Rd 619944e0815928dfd76a5cb1004facc9 *man/epidata.Rd b78e1fddfe41877c3732557279b8b314 *man/epidataCS.Rd d45186837109d5462c3d866dfc6d5177 *man/epidataCS_aggregate.Rd 3500bb6ef894b6898e1fae3ca8c45ad4 *man/epidataCS_animate.Rd 13db8505c5a7bcf6b345fb2d17529412 *man/epidataCS_permute.Rd b618b6f245ae23059c927a121f3c969d *man/epidataCS_plot.Rd 7bcbfeb759bc26af095d44f5f91b4352 *man/epidataCS_update.Rd f1c76e4069650e3851d137e0b2c3de15 *man/epidata_animate.Rd 8ca4152e399c901f20b736cf1d9ee5d7 *man/epidata_intersperse.Rd 52ca198e4209900e91aa5ca1bdc62255 *man/epidata_plot.Rd b1c1a7796cdca7984d7d0a1091f9ab1d *man/epidata_summary.Rd f660b9a5c95cb8dccef722142b27d61c *man/estimateGLRNbHook.Rd a9934b7518da4da1af954c205eb0ed76 *man/fanplot.Rd cd8d6bd836b367c1677fbf4d29a213f1 *man/farringtonFlexible.Rd 08907427c5e4283cebd965c020e5c314 *man/find.kh.Rd 3c3d71c027b25bd7e483d9a1d67bc46b *man/findH.Rd 02198b044625da79eea751c4ee82481f *man/findK.Rd 33cfb6c5c1247c3cb5e4287902648bb7 *man/fluBYBW.Rd c5abd4fb24364663f13b98295ac4c169 *man/formatPval.Rd bbc2674f910b27a89531cb996da4bd83 *man/glm_epidataCS.Rd 8db35442a16ffe91262acdcc807aa91f *man/ha.Rd 9dc97327372e2156f059d2d7ae8be832 *man/hagelloch.Rd 27b4d245e1d15316d0c8650e798ea38e *man/hcl.colors.Rd 7a992f9f050d817daf9f0246b1e3fbbb *man/hepatitisA.Rd 2a890f56344315c35c21009955d2e42a *man/hhh4.Rd 47002640e34e9b0bf744e9e184c77c9f *man/hhh4_W.Rd f9e8e43bedfa2dfeb84960c46eb1d3f9 *man/hhh4_W_utils.Rd fdca3cebc9604fb81337f01f95814376 *man/hhh4_formula.Rd 55cb7018dc49e8f0e6e49b6749488d3e *man/hhh4_internals.Rd 0441897313e50b0819a1290956315d63 *man/hhh4_methods.Rd 4e9dd524f75e70f133cfcf5de8f54f33 *man/hhh4_plot.Rd 4a4fa202f05de5855e78a9fa2269ade1 *man/hhh4_predict.Rd 62f5c7765bd90e5f1fa36de3f81bca82 *man/hhh4_simulate.Rd 37e8818db7bc3b3eb7bc989df91cabb9 *man/hhh4_simulate_plot.Rd 8206030a3e132264bb891f0e033a2a24 *man/hhh4_simulate_scores.Rd 7ba1bb375aeab457b03623aedbad22af *man/hhh4_update.Rd fd54c31f3813bf88c600658df5b897b0 *man/hhh4_validation.Rd cab05dc600878bc5c88de81bc11aaace *man/husO104Hosp.Rd 0f80dcdc6ab837917499532bb66155be *man/imdepi.Rd dc60f2ca5eae07ed235dd063c28175af *man/imdepifit.Rd cc422432b310f004e3d5991bef193c17 *man/influMen.Rd 0a357ea0865d70111f7baee6b09d5f7e *man/inside.gpc.poly.Rd df35457995a21853415e9af9e3ada813 *man/intensityplot.Rd 297c389bca1394d4d9e45f469f9c9528 *man/intersectPolyCircle.Rd 9d04dc30b863d2a5961247f906ec770c *man/isScalar.Rd 2f6b29fc3737a7c1483a19dac5a2d546 *man/isoWeekYear.Rd 31b3498c683c34927435997348371828 *man/knox.Rd 679aeaee52f1b1a521cf846ebf1f8ec9 *man/ks.plot.unif.Rd 11a9c37d74443482dfc40621e25a9bee *man/layout.labels.Rd 9bdc53c14ce1a1221c02a710b3298a5d *man/linelist2sts.Rd 9e4c3c24668d0df6db81a71e134f28c9 *man/loglikelihood.Rd 0b9a5fcf6f5c3656b4b4ae443f77f18a *man/m1.Rd 0c62e6c940083da35c3fb5bb57405b10 *man/magic.dim.Rd d3cd5027d6855d53fa673df3be1a79a5 *man/make.design.Rd 3460786c170f7d4f1ea700c089a90843 *man/makeControl.Rd 2df1b0730b9b1d167f59f6b3ce7198ec *man/makePlot.Rd 098c1e1193138d967f8f56321dc0b2ff *man/marks.Rd bef389c9a09e6869c4940dcab30a2f39 *man/meanResponse.Rd bf6ae45afda840d3bccc78505d4b185a *man/measles.weser.Rd 05762d3db1664ce2a4ac72ef8dd7f212 *man/measlesDE.Rd f4a18ebcd09b7ef61ef79b3a1c6f4037 *man/meningo.age.Rd a7cae0c53967b9bd0dc517e722f1f82e *man/momo.Rd bec2e83ec1953e0fe360232444e9467c *man/multiplicity.Rd 5e06f4206765bb00b93758db7df46ec6 *man/multiplicity.Spatial.Rd 0c66f14de0b9d7713536fbc4d621319b *man/nbOrder.Rd 09285be24cb7467c784296e17b812202 *man/nowcast.Rd 2684bc74f6898b7f6a8ccda0ff7325b1 *man/pairedbinCUSUM.Rd 897395823d1a865d57bf5c2be2b6bb4d *man/permutationTest.Rd 02e96803eb1a617627ca2eded466a414 *man/pit.Rd 44d63f2f2c26cedc8ad8870cee11f5d3 *man/plapply.Rd 1132b404312195dc55bc1e05c602431f *man/plot.atwins.Rd f18ea46d3d51816c6f6584d2524e2533 *man/plot.disProg.Rd c9d6e437fdc9826a90f40db3a151386b *man/plot.survRes.Rd 5b1ff526f5617d7c35627cc7d26b9298 *man/poly2adjmat.Rd 48cdc7c2ff6188011fdd8d2b80c0b1af *man/polyAtBorder.Rd 0c8a9ab7280fcf4d54fb01e3cc3cd035 *man/predict.ah.Rd 8fcfd9d601274b15b0a2f2caa71b218c *man/primeFactors.Rd 747966188aa39b5600347f2d98d32aae *man/print.algoQV.Rd 78f3fabce93aef267799a0528c84ed69 *man/qlomax.Rd 172a18b1405eeafce04a8e024987d8a3 *man/ranef.Rd 4d515b6cb62681668ceb8ea7c623a0c5 *man/readData.Rd b46adeab66b32aa5d6b491505fc5e2a3 *man/refvalIdxByDate.Rd 07534c84bffe65b8388cc28214b50a7c *man/residuals.ah.Rd a2d53834ab2cc44be0e0cdd4d13d836b *man/residualsCT.Rd a1250eb509f187d201ee78fec0493dfd *man/rotaBB.Rd 8e2f897034179b074dfc583386fa89eb *man/runifdisc.Rd 0ff1d115b9bccf8173562c946911bc56 *man/salmAllOnset.Rd 6b358e25a5c89bf0c0ccfd9d5242a614 *man/salmHospitalized.Rd 9f591f22a9787714196f8666077d70a3 *man/salmNewport.Rd 88281097eee429efba0848a940880151 *man/salmonella.agona.Rd 13b2a4a417b50c7b4dbb1903dfab6f68 *man/scale.gpc.poly.Rd 5917b743a31ee99fdd29ca14dd8ae405 *man/scores.Rd 360616c5ec2d33ffd151c4bcd4475bfc *man/shadar.Rd 592d20b928f1012b932aaac27d3c1d5c *man/sim.pointSource.Rd 7b234e3fd1d07a268a6e33ffe065f21f *man/sim.seasonalNoise.Rd f390eae983d4b6046f3432b87fc9d12c *man/simHHH.Rd 019130af35b4f79d4ac62189121d778c *man/stK.Rd bb60b62230fdc91b7f6ad6a09d9bfc02 *man/stcd.Rd 1541cd96e24e49a63f5af6139ef13b0e *man/sts-class.Rd d63a150631484b98f7d9672ad1fbf291 *man/stsAggregate.Rd df53a0b596017c56bb4250406a18caf4 *man/stsBP-class.Rd d4bc0f219c87e0f18697449e89115793 *man/stsNC-class.Rd 3ce59ca4c559df7119fb5135ea0982ca *man/stsNClist_animate.Rd 77a5306de5c8b7f6ce4679920f3e952e *man/stsNewport.Rd 12f381b8971e40942556064737297adb *man/stsSlots.Rd bd422b571337f471e6277b897c6251cb *man/stsXtrct.Rd 14d0070b6ce87409feed6d4aa4ef6e3e *man/sts_animate.Rd ec3c953d05a8f16d4adb6c425c90d3f4 *man/sts_creation.Rd c71b9b8d4095a4933ff4dfa958726cad *man/sts_ggplot.Rd b07c08895d125ed0a44471254de3a621 *man/sts_observation.Rd 316f704b6ea1c2302eb63189b306f4cb *man/sts_tidy.Rd 39e88c87c206f179e2ebeef20d201076 *man/stsplot.Rd 3210146e5e0abf7f228a4bc0023ed1d9 *man/stsplot_space.Rd 53ff4e9c5cb0828295d4691c9eac102f *man/stsplot_spacetime.Rd 74befff7815fa10e4700c960379a1d3c *man/stsplot_time.Rd 7a51052cfe961bb040b176c81339441b *man/sumNeighbours.Rd 1f37e8ecc8ca212c52f1ce28d38ae11b *man/surveillance-package.Rd f630ff7277dc3556bef3d06b770d8725 *man/surveillance.options.Rd af44891ca5ef10e1877cb70fb8257919 *man/test.Rd 347bc3f27c4373396564176975670ee9 *man/testSim.Rd 2a85f9252fe5f3f0ab21e15509ce5a4f *man/toFileDisProg.Rd 08e59c722bf3ff72c4322cba99bf78e9 *man/toLatex.sts.Rd 0c2e87c855bd26bc51869acabbf9c3cc *man/twinSIR.Rd 7a7c977c0e0b512e2c30b096d05377de *man/twinSIR_cox.Rd 6280e2664c88cf671dc5414ac37799fd *man/twinSIR_exData.Rd 2839801c44661621a9f766ff855bef0f *man/twinSIR_intensityplot.Rd 988f4ba0b08e25e156823c30978f8618 *man/twinSIR_methods.Rd dc7cada5e58e3a181d27b5f18f4e845e *man/twinSIR_profile.Rd f03ac9a34d8a4fe346755f37be68dbea *man/twinSIR_simulation.Rd 167cc55dd93c694f40c8b79fe1948509 *man/twinstim.Rd 661943a30f4f30e30e749ae3b6558e2e *man/twinstim_epitest.Rd 6fff23002cc5a0580577ef1ecc7c717d *man/twinstim_iaf.Rd 64af818d69a2d1b67801af21f612d705 *man/twinstim_iafplot.Rd d41fea183c36d396623c5068df3116ee *man/twinstim_intensity.Rd 112eb274b4e4c4c8156d98f5d95058b4 *man/twinstim_methods.Rd 30954d87702654fac94fb92a7170e848 *man/twinstim_plot.Rd deccdbc7fadc8a8ab8f543917de0df87 *man/twinstim_profile.Rd b855e3b6b307ac0933aa0e1f4e473944 *man/twinstim_siaf.Rd 915638d0d0866d5baa65c760c942e937 *man/twinstim_siaf_simulatePC.Rd 9ada82cd81353b36f1da8034e3a8f628 *man/twinstim_simEndemicEvents.Rd 877fffeb8732b910e1ebdfdbb6ff86ef *man/twinstim_simulation.Rd 779060593a223d40c3081cc5ce97d401 *man/twinstim_step.Rd 3977925a2d40feb47561093bd350f57b *man/twinstim_tiaf.Rd c69279fdb57e6373842394a5b4cde78c *man/twinstim_update.Rd 6df6bf11745b7358ca3c3d9a3f5ecd13 *man/unionSpatialPolygons.Rd 29cefd90ca41a27173395cbac785a99b *man/untie.Rd 8551613f7522ada65503a8842aa22898 *man/wrap.algo.Rd ce6f1e7c93f38a57ebc8d23784649d77 *man/xtable.algoQV.Rd 382c0cb7667e12641bbe5fd11a082880 *man/zetaweights.Rd 95d071f4a7327cf317d43a3a188e7333 *src/RcppExports.cpp b03b552e9456a164ef4b99a3a73f1e24 *src/backproj.cc ae5151fbc75f1dc0886caff8ce56db88 *src/determineSources.cc 591f53f4e940f79fae3422b45238e815 *src/gsl_wrappers.h aa191af5683bfb3c220bef07e5ea741f *src/init.c 5fc6609f34a21da62930ea7f90fefaeb *src/ks.c b88cfaeae45fcb3d8c9d4a5e3e2a27ed *src/stcd-assuncaocorrea.cc c7e10733c5a4a27293f72ae939935163 *src/stcd-assuncaocorrea.h a84e49b0891032b6966245d928d3ad18 *src/surveillance.c 3d2fd19412d9ebc374e6d3197680ff94 *src/twins.cc f555ee80b31296f771df2ea8b6852589 *src/twinstim_siaf_polyCub_iso.c 00862f9b1d4e443d92f7a1c1426d2f87 *tests/testthat.R 0a5ff8b81a012b221245d3ed117e00f9 *tests/testthat/test-algo.glrnb.R 60ef91ae1644f77a78421bc167836b0a *tests/testthat/test-bodaDelay.R 65fe94672dc5a141562bf5800b112adf *tests/testthat/test-calibration.R 9492931b3e65b4bbceac4be6222e163e *tests/testthat/test-createLambda.R 220d17007747ef51c8e3d04f04bceee3 *tests/testthat/test-determineSources.R 192d042f92c8f67fa4a4ab3c1153044a *tests/testthat/test-earsc.R e2415755d81be3201b5565e4a69455cc *tests/testthat/test-farringtonFlexible.R 9815b459b6e7a451cc98e4fedf2d7bbd *tests/testthat/test-formatDate.R 4d35c92b751674782ba28b4cd74e3824 *tests/testthat/test-hhh4+algo.hhh.R d2ebcf7c1c9a723b6c9ba8ab1d618352 *tests/testthat/test-hhh4+derivatives.R e14fb292c7c8d198cdb4ba419ca1ec0b *tests/testthat/test-hhh4_ARasNE.R 16afff9a2c16f9c280568fdc7ca7ea28 *tests/testthat/test-hhh4_NegBinGrouped.R 96ca6abb7df9823cf14ca582882c5db8 *tests/testthat/test-nbOrder.R 2859de753c985ea8a85bfc1ee268c804 *tests/testthat/test-plapply.R 62d68e69aae916528f7adbd562092dbd *tests/testthat/test-siafs.R 451d38c448673f39b471786a1e7a465e *tests/testthat/test-sts.R f967f1699eea4d3d2cb1ebdeb2795213 *tests/testthat/test-tiafs.R 8e3f86ab6f83cc1479feb44ef5ca36aa *tests/testthat/test-toLatex.sts.R 48a8bb6c518e33e8fd5c43af73e729fe *tests/testthat/test-twinstim_score.R b9e65c5257f69be0c644053a4d53f414 *vignettes/glrnb.Rnw b1c985ebb611614fc547c4c9ce227985 *vignettes/hhh4-cache.RData 5ce9bb45a94b620a94c76a25b8a939a1 *vignettes/hhh4.Rnw 71a631c17142aaba9f6efe3c2a848215 *vignettes/hhh4_spacetime-cache.RData 3a9e94c30a5bbb6bf908be07ae320148 *vignettes/hhh4_spacetime.Rnw 43c3b4074388679a849f509aebbc8a7e *vignettes/monitoringCounts-cache/boda.RData dc51a8fe04b5371505ce0f4bfba469d6 *vignettes/monitoringCounts-cache/boda.covars.RData e96ace90d8c7da6ca841b64e38c6fb05 *vignettes/monitoringCounts-cache/pMC.RData 4a4e3a07341972e333a16615c1687f1e *vignettes/monitoringCounts-cache/pMarkovChain.RData b17c5546c383d603c5a9824db248b1d5 *vignettes/monitoringCounts-cache/rlsims-multinom.RData f6d76c5ecf468b2a7b4ad8cf909358f8 *vignettes/monitoringCounts.Rnw b9d206e252b0a0591d7debf9f0d51e8f *vignettes/monitoringCounts.bib 21f907356b5995f2428656d05d432801 *vignettes/references.bib 3e456dc01a1189e7f6f2005b0cc4bd54 *vignettes/surveillance-cache.RData 848ffa366a566828d226f4ef82442edd *vignettes/surveillance-hmm.pdf 1724f77e3e5d3218c5e431dfdd0fa2e3 *vignettes/surveillance.Rnw 01099bf54aeaf8a031440283443e994a *vignettes/twinSIR-cache.RData 94b68bd92d0cccf5f98395adaeb8adcf *vignettes/twinSIR.Rnw 0dd02c44cfd5056d4b87e4af3e5c8333 *vignettes/twinstim-cache.RData 25f02b9eb99691637e1164c49974c360 *vignettes/twinstim.Rnw surveillance/build/0000755000175100001440000000000013231650467014072 5ustar hornikuserssurveillance/build/vignette.rds0000644000175100001440000000134613231650467016435 0ustar hornikusers‹•UKsÓ0v“4/ Ó¡üÝ€Cs`8åÖ¡é´a˜81н±5‘%!ÉMˉ¿Í…²r$Ûyƒ%í®òí·/åË0Š¢VÔî´£Ví#\ºøâ׋:Ñ÷Aʵ˜ŽnÄÂ+úY–½mÈ/r)˜•š‰ô,„5 Û¡)ô0Ωˆ¡¡î0¾Ec°,oZžØ·—7 ÕS¼WêVÙ}¥<•£’☔îIB-%R Æ0)HœQm ) $6’‚M9û álœeR&DSË$17t{WŽé˜œ"œÅÇ Xy ¹L€s‡:Ó4‡…Ôs2“š01ƒ± Cf€ q™ùiR%li .Ä€f`ð×äýMA—„IÀ–p™T1åè:ÊmFšÙõà//ÀZ‡Œh‹.^”…j óÌ_¿vá‘WX T[È•ÄÔ¼“³­Ñ:`9#±ø&wùÙ—pL.EÂîXRP~Ìá8ÙDs £dÆî‘ª’ªàË KÖs!Âåкümh‡UÙ,ÊZ„è‹!yTZÐÂlïy•ÌVz¾–7{¾¶­ö|­_ïùÚRõ|­ª{ÞéVÙõüDz±»œÇàes½åÙê,¶ë“RPÍ¡W ë)Dé¨ä³äù½¸oiËî„ZÍîýÍý]7SšsŠÝ¹|}Γ‹ëI•ƒTqi߬Q8ØÜÃÖ¹â¾Q (/´SÃCœ±äR— Y÷å3CËic†©fÉÙ½Õ4„`bÊ«~êœ*“Q:Ψpˆ¬+A,…¥± ¸+—ýïM”–©¿;ø÷ ûJò‡˜³w/‡\âÌÈÔJÉͶm&æïqnoÿØ;-\ö “2Ó ÝpÎxUËÌVBûÃé¹?î…æí‚—"Pí_Á¾ (¯:h¹gO]~âòøøøkQÌ© Œ‚rèþyF峃Òï?ž%áq^surveillance/build/partial.rdb0000644000175100001440000131521513231650365016224 0ustar hornikusers‹Üý{|Kv&@‚ø ¾ßA€—¬" …*€O ‚ÉÛ|5@Þî¾÷²U /³*ëffÄ¥Ø-YÖòdÉ’lÉ’mÙmÙ–,?%ÆöxF’µžYï´vµ¶¬YÏÚžõcv÷·ãÑêÝÙ¤ÍùeUV¡—‘Uhíýuöw€*â|q"âDĉ_Ý®iZ·¶eë­{ ‰ûüÿ;©i[3ø¹ËÇ=·jý>n³tÏ,ç5mkwô·sÅž¾ìKÑïn}6óÕgÍßt‚c,ùZvÑOmpä=Mÿª×ÿWK¦eÐÕ‚ÿ~¿é+[fÊ…&ý=ÏŸÍŽ\mú^ŸQ.ØE³ÜL¶õ‹õ{fÉp=½Tñ5즦~·úí»¿õ§O4}±§`鮋¿ÙÒ~údþÁW ^¨‚ÿèùÒ4“¢—+ë%£‰ÔµQ¯TóÿïÃϪ—îçG竦UÌccF~|ñâÕ¥Q·ê¼2LËÒËc´¤—GçrÙ¹b“‚îÕbÓŸüÓëyß6ý¹H Å}¥VõÑ?ÔÕü­þ…zѺÿ°ÉVÂgoé{[üïmýÃwUÝ`Ó]Ûc¸D xÁ①Ѫ‰uÏåâø|03w§ªé^`ä>>-µö,–ÙRm°rçkƒÔo žM«-¨…-(–>Ùbi©uÛ‚n™º£· ¸²\9(U©ßA< UÇ¿wóVͲëwÌ‚õ²uA8YªÕ ÖËVÔ!^‰°ÓõBê÷GOBõ2à׋k–f*fQ÷ôéyÁºéA}„|°uÓƒú <ùPçë†ÔŽ ž„ê¦Ï¯˜ŠewdÛP„:P)á»­ö/ja'+…ž½ÄÓi½(ñ$d¹i»T©z†Ë£âØÅjÁ3í2+WK‹†ã²%Ç.±%ÓóŒ"+ÙEÃrÙ÷Ež+uL̆<Ó³Zù&}()«¯v¾òHýµâé4ˆw–€ íS¥CÞÉîâQ,•ÃÏV 6?Ζ²á˜¶T-Æ,È.œŒ†œ\gïOöÌM?¹;CèAf‰µ¡žºÕª ‘º#ÀÓO+×Ò~V4–̲ߟ˜eVÑ /õeC¦††€— _J¬†v6N{…™]ÎBžM¬ª¶.T^¶š“¶ËÀ{ï)×Ôfº~%yF¹è×–g‹¶rbsøÈ_Qf5Q¬/¯ ß5J~G \YQþ;Ûà8yB™ÿ(õR¡ÝªŽc”=k Âe:+ÞŠ]dK¶Ã¼ᦱ D G!J7-Í=ýhßµ æ"ž¤<Û/š nPJ“À»ï&Ø£ZfùeŒÚ+ÀÈ3êÞ€T¥ÌFO»Âðdõnj7ãK¯¶ºbVD9á}àsÈÏ•9 ¡Wm¼®êÂÊ^òûÔ%ƒw[.+èU×ÿpq ¿äÃbÑ|e«ºåú½BÅï}Íò2óû8ê ŒW~wÁ¼µŠ!ú¢»ƒæÃ±¹ ü¢_ÖËþÄ@w^ú=—çé…>Rpªõ÷@Õ°‚]ös‘:ïÚwP¬â®?î ¿Ö^…ðË¿¬üZiÅ!>½¢Yðü>Ù¯?oE÷£Söhµé¬–†œV¦ûž?¦8 ×¾ÑØcˆ?÷¯Z:– ÕÈúºöä÷ë¹w áR‘p÷EŒ2À˥Ʊî‹Ô^,5•U›<‘ú«Ä£:yJ}Zu=ßtV½R1Yÿc–B˜üäiûP8à  :LANµßhHÝ`²zƒß>´ð´pD<ÎÇ!'V ;І[pÌ õé-´‡Ûá2¸ü:„R"õÝÄÓiûQ!ª­ÊlW:±Mä€,T…ˆGu9—KÙ‹Ÿúã|†e³Ù´0­ƒ(šƒZÃøÙ®ÚŠåÙH ºBûØoŒ1#êfûÛ!Kíûµä#;Å"6»€û!Km7µÔÚ»t€1Š1êpKî PÑ\®Õl¸l¬r/ÜŸqøÞl©ä{V“ìÙÜóþQÁ6–üŸ?øPÒÜÃÔ C~ü`fG`ZGÚbf;ßeópf»€³k¿©yi”MídÍÔšíKÊžˆØQàÈmt[cyE…˜ÌØ5ÜÛ¬šáé~Q;įÒ}4ddSʞጊ—úøãŒ0ýc L˜Ü†Ò%þgTܬ[ë9è'¯öSc¿"nÇÁ—ðd©õò–j·-T]}¹•óv¿'­ra?‹ÔwGp“ܽ“(Õü‡Cªth´3‚xK¥›1A EÁP3]Òµ³Ñx·-è $¸õwC–Ú¨ÔZ­¦g¦ZoU°€+Ÿ‚+gºð&&1Þ ¼ù†t©&°‰ID¦w!'¹ä3ÿ&u“ÀÈêKîá ›ñÚt=7+Q9³ÀgŸ%X¦g”bÔn>‡¬¾Ö-Üñú"ˆ§ãÏéÀ°9¶¯ãé¯Í$èõ÷B– ?â´îªÖÑØAùðÁè§{Èõñ{7›¯é–h¡Þ†jß—]h¹ÜHÓ‘ì’S ~÷îŽ2ȬýÝÝŒe(b8ê1gi×#0âÈ D«ÃÑMxQ‹Š<÷ê¨Èõ>YT¸Ùæ®ØU«È VЭB°’eìÁ³K|äÍ0Ó£}“úÇá·èÛ ÃúïC¾¯ü6émlÇ\6©q„U@ATú¾÷@oC{Uü\ß%QægÀ–ð"ä‹ÊÌ·sA&‘m&-5PkÞÝ8mÑDjð°V kw‹&u=À#Õ׆YŠ ¨h,éUËKgИ]ÿj´$jFDð(ðd9SÕŒÎÂtζŌúïüŒ¸ |VC¸²ÔA1 : «!ÜY}äÞ}­ØäÙ8ÔçÈTÑàä¡Äªh ÞÒg§Î 7ub•Öj;¼\N.hyÊ^…¬¾Ä´3hÜ|f)Ú¦‰É5à]ÈR“¶FC|½«üÊtìr‰âYLŠ>ÿ¬j:|@ÎYQs:LjK˜9m¼vkEç`9„YÈÙö[Ñ9Xá(äQå:;ÄJ°¢¿2|wÊ(cåBÔ ˆT8 yV™\?Ԫ魈ÚM ¶Bع?1»Ù¬æÈ¹)|‘ðäcí·R·xòqå êŽS ý'€'!ŸTæÑC†"J% à ŒœS행ʬ\Íy° ŒD)'d¶_´ãk²Dgð(ä£í7YR· x ²TKiêS‚%¾ŒLåž|&9ïó‹–“6¬ Z-â‡ËÉEþlX;ï/BVŸ]Ñî1ËÐÅç*Dæpò´2©ajÒäª#|tɶ,{•Âw ¶U-•Ý Q¢àYaP$ÚGD%ú FØ%dÚ[)׆¨U•à äÁö[5©ë~¦ûL]Œ0o7pÜ—twüJwL}Ñ’ª³ýÀ+å¶ÿ[×ÙZEªÎn§ Ou¦Î®ï@¾£\gÛ22«…Äax²újá!j×tbËу¨zG//®¨ÉŒÍQíP|+“éá± ¢6C\N‡ KÍðÄl†ÔCVï{›¨•3Àd©æøZö)ˆË(pr| R—^„¬îSÈ0Ýe«†ebÄmØDéðäÊÔnQÃ#òƒã6üÜPó1:vd—iI â _"Ç[o%fj AüDhøò“öÛ©» | ù©r¥ oÁ’ú/G" ™öQaò+ì’ëmDfpÖH®ÆAêz€{!KíÓ7jôû ×wü‚V.Q?ƒÀSZíðKBõsØï‰èPY_y&ìdjì,pòdgjŒoB¾©\câk\¤ÿð6äÛÊ<îQ{¦CæA½p$çn0sö[°«ŽK«¹üsW/ds|\ñ+Xôer¡„‡z¹¬¾›¿—|þ æ¿I–/— ÒʃJ^SÍت%ôb£IÔð‰ÍaàIÈR«›b†OêjÝBôÓl.ç›—U5\áŲ<šáÈ«ùÅ2â3œ€,•ûA¼‚2Àë¯+WÐ>,–‹fee­‰¶n"tøòcebÇšÌjþ«ðœu,¨~Ž‘Pý„ iOÖ,/ù^.sÆrílã»ÛÑŠØÔP€í¶'Rw‘•íÉŸ¾ò]ÿªK#ŒÄú‘Î@VË•qeÇa,„É»²½³Ó)XÂKdÄfp/d©aKÌ^H]pò`¾¬?L^†³U‰ ÚdYb´Õ5õ%™Ú9§ÕPŸ °µsZ«ïÞœÖdË觘[1 æ’YÐitÈð¢í™(e€·!ßÞ”ö‰`lÇÔ4»X4]á©)‘ÙÜ£uljJêz€ÉMMK–²¼)¯˜Å¢Q×Ê$8±F<Ô¤jLÎ$2W“;05%ucÀ›Õ§¦Â+M¤þVñ(Ò8¸{‘%JžDGÔ^"'Û°=¡’˜††+È1BêÓÓʵµE<¹H¸¥N˜œQ&"~²ç2¬‚°rw‚õs¾ŠÆã-P»¥þtºñ’ú­ÄÓñZ¸‚’¿¢Z ž¯ú‚%˜Èõ È㤨ÖÑŒ Å:ãga,{Ùwí,ž\<Âf.5ehkL³vzFôm"çã< s›õƒ:ñ9<ùTû &’~!š–A±’ŽÐ©™’éÒ l(6'‰Ú: ¼ùZbµ%‘)âÖ ôm­#á¤.Ÿî@¾ÓyïÔOG"Ô¤ƒ=:ù¨‚É ~9ªeVK0êƒÈž†|ºýÖBê‡ )WÓ0Ó:‡ëU2TFMšœÛ’¡—]žxXÔžˆà°VK|Âeõ–i~„/8Ž^6ô 0-å{žéÏ&(PÍ(UlG·ÒÌ(R*¢"ޝè‹Ü„ÅÝD£èJ¤aÌð±.ð“øá6Ë^õ§ -çC©‚áùκË*:¥±vÓþÔˆ'ð}•[  uÒ•H܈ԉ]õ\*Ô\æá›’••mù–&ú·µÚ|(:Üw|a º •ÖÄVzhš¾j7q¥‡Ôoàf­ôÜAÉßQ­…WzO‚\?p@S]éÙ­ZgDc0‚xëì^8 Žœú”^¢ÎÊ¥Lû~åÏ iŸ‹'4¢´êá„»H?œtÐ׳zz áyë]P!L>èk+%auSˆÊaà1È8Î{Fx²úqÞýiš|À²Èê=œaut˜ƒœK¬ŽvFóÊÔÕàÈR3ñºÊkõìxy- G<,õn䙩£"ÛA£¦;*œå*Oû@®ˆµÆ¸ â"þ«ìz:%ße|d—=ƒMëŽ%‘ñ«\½=‡ˆµ%ß¹*Œà°Õ+ºªeqÍ÷½ü Vл ’AÂH.‹Í›ƒ‘,pòhû›©KiõÔ)M¶Sˆ~zˆ©‰ì•A'*…öÌ¢MÞƒ¬>Ø="‹ruJb\¬göÒݵRų=J ê€&ÞöÈiwJþ‹bPøM:h'èƒc³ǽRdÌÖA~¤üJƒü• ƒÍ¼æï%îWD6¢7Štܱ}Ý„œ^Р³j7qzAê·Fp³¦ï£äßW­…uÓ B-¶vŠv¸Æ¼ŽN?pä]ÒŠ­Íûƒõ0íÚHI+®\­d¥oRïã{„W «§?AM}ºv‹aµ‘ ûê–ð䉂ÒiMˆÎàÈRa—bc!©; Ì@V¦éƒe%êfxQ«½mwOHÖºj/A¾ÔùžÔ_Ž žNÓxˆF"žŽwÈW¡ë=[ O— ÖÜy‡t×ÜLèŠl¡Ôú·Z¸‰eòEðÚ-îþý0-áìàD~7ð.ä»íojмg «Oû„mœÔÏFOÇmü1ìúq[m|O»Ù(%ÆFûJ)hø¿îi"–ágBƒýœÑp3‡9zѬâÓZ–aW„NA–Úàm\&Wäp°ÂÔ-a/äÞÄœ©µB¢²¸rÿº>à dõI×ÅV™†k­ÑŸ†Ó^Š»f¦ðÌü Œ˜p²zŸÁ÷Ó‚4KA†mÿÕ²ù™Ï˜¢õô23Ç h-tűWý©¸ÿΪé¢}þSX¡Ò~šXŸO-p ÔNBVîóIýÍâIèí·/ÔæQ-tŸBiYKÒ§.RßA<¦1‡Q¾4¨ ¾P¥3¯HCÄ£:’L»ù B¨žþnKsá ‰ŽÄc ‚x:4_Þ¨”O@–šÅÇte¾¯ý2FíàIÈ'ÕT¥œŠ žvÞ¤®È´Ú­UНŸNhešŽ Œ„'Fk×Û‹6l¢yøòu0ØÇf‚džÖÏ1°¥«ß³Pª¾ø4ŽÚ3swb¨íî…œœ+¸uÁø¬£µ˜œ'˜ æ KŸ5Ð}%ܹâÇ8jQR<€)-S…û€7!KyVa—LõÝ žTß-àŒV 3ë´/Aêg#˜ÌLþ¾?(Qd›éñ-cÛ1<~¼)U-#:Ì[í‘È´µ¼l4ÍZEßæØargšv-›¾½ó6 žóä+ A¸ ²ÔFD‚y:‰Ë~`xõsnÉ!u»G Q®náÈ#Òx ²RšÖwr/øucZ±ihâº#bu˜‚œÜùä¸îˆ´¦!§•ëf[Z&‰*q8…<šl“>–B\.' w ש˯CVÏ5% ‡;¶œò§EÅ.¯Æü¤•²ÃÅt±ÅÖMèkµ‘;Ø;ÝÅ’úÄ£:ß7C8áãŠa?w˜p?;¸Þà-†øíž€œÜ*V\ŸKÚz'!«/bùMÆ(Ûbl‹¦[`’M‡u¥r™\ú¿>KÔ°ˆæ)à=ÈꑽØe$ó1ìác­«8r#8qÚ„<Øvk"m}À}¥vˆ'EÂmžôtn4¦fø,Q3Ç€ 2ëHÍž†|Z¹f†ƒÈâRD[8Þ…,µ€µaÕm¥q]°â>‰`?äþ¶WÜ'x ÂíÕ7¤.„W[±Š^â²T-™Q|ÂKDw/A–  Û¨wDœI‰z¼œ,å¨ ×ãeà,dõµIaÏŒÔß‹ E×`MáqìVÆ$S×ÝßTÛÎ¥ÿ&Ax ò5ãJ&`÷ëZà;Ao?fAåë(ÂÈÊ•y•o¾9uz9’Ä;¼, FÄÞ—½œ­Ë¯ã{_‡îIÄód_.[]1 +¬àó_4°ìüðNÏÿJ6¤­£  óó‰÷oÂ?DçJñ´¹W#mcÀ«Õçáý|Ü‘H F4®§ «Çù]lÕ¹¬¤¯ñ«,¢ýYxŸ“p„â"lð"d©hwµá¡Õ!&›ôÞ”å`Ù^Ö)á>ãgÕ E„¾h¿2„Å"è¾ù=eª[%¢t h'Ü YîÔ’DºÉØ1‰ØìîÕ:–ÐÔõµ¤ºŸf©0sHºe"Që!zû€‘|ïŠ4g)͉½Èo—hJ愬e@©&T]$I sÖˆ¾ËlŽp²ºky¼#áf˜™5²µ÷n!Ë`E¨¶,¹á˜¹$8f¡âió˜IÚN‡!+W×ɺ…ñáÊ5 ‘³º¢&EÜΧ «¤#µ;MÂÄ£´¸.e>¤¼Ë <’X/ÜõÑþ—x\Œ žv÷¿¤. ¼yί‘úËÄ£HcGŠ÷CÜÒ ™0 Â¥jmØeÞ°¯°…‚^a‹µŠŸ†[lá-aõß öWÄ}/ð&ä›mï¯HÛNà-È·”«²;-jR¤ÿ6p ²zŸ´Ub‰ëSXa"_ëálYÐ<ˆÎöJÇ® ™iëî€,×°¢ŸÞÜp8kéD!­µÌ¶Ò§0kÂ(¿Ã¡æ ɽ„&rûDë\g)ïEîú³mŽH*93B6GÚÏ@>£\_;Y}xµ bò09—x%I害…’YN=ñhXA˜BZ´Ú¬ž„|²íÕfáÕOA>¥\m׆‚,åø«9I%”AˆÉ¬¶ì¢Dvá2¤T Âä#|û\“Òóˆg‡":ûÇ w ™©Û <Y=œf;¿’¨ê«Äãð,ä³Ê½LsŒÙÞãu%E›Ûi¹è,[ ¶@A–±¢Ÿ^“Œ-c¢ô+(Âk¯)Ó?Q .{vÛokáeAŠŸÖgšb⚘ö^fGÔž„,5l¨õ›¤þTñ(ÒØ¶Êw½¹8(?·'¼lë©Ibl„í@hûOÚz{ ïQÓÂãü< ¨D힀,¸ñ‰e½TÒ_ä$ªixrrW{nTM' «ßìyŒbýcYwøEðzy­$ÚÆ‰X8 Y}Q;c,Ñ|1XiçÅ4ý/éÎK7ËxAT å)‹ßXíÂ8\°íÒ’HŸu­šž¾h9€ÿ©n%HÑ-OK*ßY’ç¸=´Â‘L¯A–s[[®}VÒ=Ç|-So·³¥úqñz›ÞÓj )Ö[·p”é¿|Y}eñ<¡À³Ìõ–½–1wâI;_ÁÆ “¿€Mzþ¿ª-žp·Ö±»U”ád)º¡ކyÈצë¹|`§¼ö‹kL°¶Vñ=Â4ätâãy¯ßq{Fìä‘» ¼9É S1Ã9©Ë'!OvÆTÎoB–Ú›SÌ¥OúooC¾­ÌCxŠþ­%Äd–6gS«%áô iö Œ®ñ;<“oÿø ‰®£3^ûÝ ß¼t—«NxSë’é8K¢ï²þ„³å¦"-O‘ÈÝBö¹ô‚„ÉÑ5óÏñþ„jëÃÑO2¼¤YƒNÑ!‚DdvÕ–i[Uо ‚ÎøšçØVÖ5õ%™Ú^‚,•!^['€—!_V¯-jnŸUývÈ3Š6'"s8Y=YÌŽ²Q0\×÷ …»Ì7°cB¥Ð–Zû•·…æyhû.-É^R¸³&õÝÄÓioQ!Ê—5ãU:ßЂŒ!âQ,•íŒI&ü&Š„Pí$XBW¶‘½ÀAȃíïÔHÝà>Èê‡L·‡÷OñˆÇ~à Èr‹jÑOgÓ)¸™¼Üìк¿Œ¾å…‘µ¼¶äíˆ'Éûn˜ar×Dö1\'Èæ{Àà{Ðøº¤`‚~‘î‡,µ $fô¤®x²Ü‰æè§'YÁvíØe¾`“åE±…[·ƒÀqÈr+š­êKþnâ3¼£)ܳ,^eÓÕoWëa)q—‹(ÜÞ‡¬žJî1cnµR±L:”1­–g;è€ÂÛaÍrÁªr ¯‹ âø*ޱbÒõÐâ^Û l„ãcÈ;ï´|/T‡˜Œ ·-ð¹üqèÿãZB{ÑÉ,Þ]Àý;Ðe’º^àÈê]æiZºw}K¶j`S‘«7ÄcшÞAàeÈRs´–Z·-ðäW1î-È÷%j¸Âí‡ÔwGp“æßQmî±[•Π™„ˆG±T޳ ÑY†Íg3lÆ2u7ÃÞÏò=ðû‚ …D¨~¤‹j½±ÏѾ›ÏJ~óW%x ‡5…3]-ƒ<ºmC‚ÏY ]´ùž&²×Zë‚Q.Äh=LA–»Þ3úéžËȰGY–’K‘GlÒÀ«`¦~#Ü,cS”y¢`Œøs#~¥k-cmŠ•]Ó[à $Xe|¥»æ+ßð•ý~Ü.Ø…‚n‰¾ËŸ€Íª- G?=È(‚ÆÐ]ß“*ø-w#˹ýø„|01?`ûÓöçÊþ¼4Îßˆ× àYM!|5Æ0J••µ‡€ç «7ñ¬T?“ÿ!4ƒ”¦º[×ÀçòU >9`r’ñ6…£ö

þdP«»!Ë»BÝøôÚ¼ñºâ|äOó)~rÒ)f\O_6&«¦UüøgÛ–;111W|Aß{Q´ÍÔÐp~(ý€åsÙ¼ÿßè§Ùü¥‹ù‘Üű\ÖòÙ\þòÕ‹Ù¸þçó3s¦¦çžÄ¼ë` ²pbè­ÝQ{+éÇn.êÿu‚/oA¨{ëøZÏx-º¿MÕÓÜ 9²§ÑÉ@úï÷ƒßõ¬k ÏŸÍŽ ÍnkþP ~ßK i;«ë›¿G¿ëýVS¹„µÜûôÉüƒ¯¼°˜ø^½˜ú›ì¼á“åàTö©·7gtÔ+UFçüÿûð³ê¥ûùÑ9n3ùqclÌÈ/^¼º4êVW†iY´o§5ôëê®×¯»%Ó26øÊ»yaT©_h–,õ|îá[ñ¼ÊÄè¨ÿO²¶³<úEÿ*-aÀO!Z·‚âþæFvÚcé¾¥JP ãØÖ ¯ISl>-²•*C‚Q¸çõMÈß”aÔr$X(Û‹Ž¡¿äNá›·qäb²£“⟀ü2äb ÌG¢^þGà„ü«—î…‰ùÿgÈÿsGjäþ'ÈÿI¹Fö¾sKÞ rþàBþÃÄ £ga…©¥Ú? ‰$Jv ÝÍ£'÷ÄK¢k °7»z¥Ító:æ®ÝÀÜuCº\›ÉËÎ6*ò[ÀO™°Æ×…}æ®L˜ÚÞsɰÜVKñdâ%(þz ¶_1;ÒZ}†U …Yض¹"\üè÷[L6ÖýÍî¹¢–ÀB~ô•Òõ'¡E þw ¾*×*žëP™? ”ÚEh(Ïŵ²^2 ³–N¹¸ÂËmI±ìŽ Åua?‚w QmëeÝd`ÞXÔ]ÏÔËÁÞ‡ ¹?¥{ÂC¥Ž²Ç4M½ê­ØNŒâ.àaÈRך©U©?A<¦ñ£(Õldô]éÄniÿ˜Ä…ˆG±XÎ3ËÖyê[vÎ,Šy.¸¢œ_ÿnb˜±b ÿi¡Ú¹žè§Ç‰[j(`:”a|‚C±é½b)þ8hvàîšX?Ý!&³1~˯ۂnª´‚½´v”«–CX$¿iì[ü$˜—"T|‹s9—Ýas¹T­ªÅk>ÇÕ#3&=½R±ÖR>Å Ø ¢n“™~䣆KŸ¦}C¥ú8ÃÜj©¤;kâïðgÁ›p²ú¦¸µþt‡˜Œµ¾ç[kízS¿¶ùÆ©Îê·0o”ð=–ëOƒar)›'¢Æ˜aµ0ÁI~¬¥?ÊgüêÆMÎN=œŸ¯ô?Ò„'6¡ÒºClsìN,p­ïg呦¾2H‘äÝ#»ìã´îX6íí/™EžA–Ÿw}¿qKúσ(arv ï/@wˆÉÞej¹®ÁƒÔ(\ÏÓÀ3íúÅG'¬œiÒݵRų=ß÷,U-ÏäY/ü.¬l;%…ã~q ¿Ç/€;áä)å÷¸{‡êýcÃlzꃙ ¿Û¥|üÍN³eVá¹: Ô ›.[Ñyb³E¿?®V˜¥;Ëñ9hc_åAŸð.ä»Ê¯²ÛW³®ï$¤òcãâöú7@„[r©;H½_ÑÀNxWûhj~~b¢ôÊ!{HÝñ;¥ê$5²zìOúæÍå’>ùª`¿ŠüZü…~ /Aø>ä÷7¡þMè11ç›»…†îÛ!ZbÔ_8íËÎ “þ[ J˜œó :Ûi2…`(«›G†å3 °xÿmýÛ‰’¯ñ¿Ý!&Sã´ê¸lx¼v?«ú³ÓB^¼Šc–ƒßÁƒÂ„ÿ.H&·êø°`6ÔuaÑ,kãmPÙþÒ¼æÃ7Êøoc/º“…T.›»”Ée¯]¹$Ñúÿ^ƒð!ä‡Ê¯4Ä‹:åð7ñ_b²þ6üe%ˆþ2ÈAÚ£ýèq³Ö*þ>tÿýDy ÓZE}}¬)=#Ÿz 3ýÏÀŽp²úA‰)­ØU¯ÎÐ O w©4tPÛ×—T˜’ù -À7”JÓðÑÜ7¿cßê}íຬºúrô=­«ß¥lÜ£lYhðZ±ÙºPyùTìCóDL]ï[¨è…—þ‹ÜzÝ¡ª#1“¸F·­±Oöß×,›hïÑt÷ݳ›€Ô‹ˆ_&:Y?‹;å¸y©>‹‹Î²èwŠÉ=¦~÷/x;ü½zr³£U×uWtÇ ±8ÌGÝ5×áìõ;2íÇú‰èÓ9)*4åü:‹YŸçé\j8ßÒ.Âo@ޤ-¾óŠÂ;ô˜ÓsSy+Mâµ/s/ã 3v'FGéogçF*ŽMIù‘c´ÉáüÛ7Ô;¼ñ…VE½ñäG²EÐ< ò”‘7>,ÿÆGÑá¾á9Süw²«Þ›o¼}û†µz«#xÂäœjÅ6O%ƒ~¬+$Q«7Å»?¾ªßñEN^iBþ0)ß°|ÂòyàÏ}¹{–D Ý/!3Ð_F‘ÛµO ¢RF1ÃçÌüô܃§Ï)J¦ ê%öíü·¬ÌpÝ®em†ÏÞ:†µiwh«‘ÔFdš[p/d©âi©µ¶ ßRo0R.®RÍ»„'¡jÙVKÅ6c#&b*f *#LõØ'ËL°bËŠã~Èû;_1¤þ@ñ$T1 ½ð;s¢Žpä=‰UIt逸ê.à&öb¤~0‚ò½˜”@ˆx2ŽãÓvµì±»”WeÎXöÝBÚgÓ+º{¹PSzú€Ã‡3™Z BK½]À3Ït¾¢B?8D<¦zs!ªÙË6U:d»#ˆG±TfY`·<S·Û·[~è¶Ë¦g;ÁU·,êªñó”¢ïÒâä Ï*¿Ë!æÒõ¡.ÝÑ[qìŠíE‰û¯#× òì\]ZCv.Áz}„z\B²íþoþêJØ …¸A>-íeÊÅm÷mCŽÓ{@:E=G:±Þ*î2Òvxòyeä‘ýOõªEב䮊߼D|2ÀIp»¡Ìk‚=ó[!¦HŠÚýÔa¤W‘™e6¯[~;e†Çt+¸Nå²8ÿÈ]µ­²Ñ(ÖfSPËNŽ4îÔTûÜè§Â}íN4Üñtš–©j¨6mW:±ÑúÑá§Ååµ’År£> MM÷©c/?Yü4Ãp56›d–éz)~^b’ÿ¿ÿYvjîáä%ñ#N(Æ­åV›ä+܉žnªæ=F·*+úd.Ãy¦U4&ó¾49âÿ¿?¸Ò» ñã  qVkÈÞ|GùE.D^Ä÷=¯R4ÉBÊ'\Ê ÂPZœqdÂ{Å®g#ŒÃ#–Ý5\Ÿ'Šô™²×ôדyã¢Äá A%ÌBζ¯'ˆåÝM®c¼]jh㋬ h7!ßT~‰ë‡ kͯ­.’X°ÕY1É7ixƒ¤Û]4º`òˆ2ç\ç6´¼ˆëÝjï\yŒ¨¨–ƒé óãn’ Bê»#¸I.È”@ˆj.HóåÂtŽjS"žÄæfX¯÷„‚üŽiÁzÁ1­å.àülk¯=Áíâ4çgZ˜»}À!ÈCÒ¥×\j½(5цNlÒÀQÈ£‰5ôØ›|IÝ009§ÜÀöSÆ¥¢Ý°D"jäÄ(¼ ù®2³^꧗´àïL&ºYK¬v‚Èî–eª '…êS áþ†Ô÷GOÂýM/¼-Ar'P%„» ï’îlšûæ±)îú…ž ¦BX4VôW¦]uÂühäC:¦·R-Üøáä)å:ÞJv.Èä$,Œ0²i"YÍgT­Žh DÏ&Ì)Æ©D &jÿ-/¢ã Ññƒ¸í€,µé'6~ºÀƒJ·¾î¦¢H¿òzÛ ’ŠðÈAZá£æf/º†?¶Yð QÛ"ºG€SÕÝùÚäÅ÷ XÊ]±«V‘òRŠ`£PõÌWFZ/ƒÕ¶ÈöÕ®ñ‡Š§j/@V_¬î H}&‚x:Mã4 >ÄdæD2Ò´¶¿CÚRªæD»#b¶W«;Ø{µ$C0b»#R·¸²T'o*ˆü‹vH#áòŸè»¡'ÀÓ>²¨…íCÀ{ï)[Ø™°[zj›®k—Ù(+Ë:õClÑ,Û%SüŽöHò´7ÉkK@þ$ÊsÌÅ*ßááùÕ©dy‚ Ë(/û?ëÂó¾MÅ äFmârxòÕö7R—^ƒ|M¹öz²ìÁ’¨!… àMÈê«¡}¡! ²‰«M¸Z^…MË™¢&BT€ƒÛo"¤®¸²\t_ôÓÃMÎ[Ðqú>D=í^€,瘴ª§=ù‰TÉ,ëýé‘|œ·¶a§ K¹—âu–Þ|G½YSžJÑfM¦÷ «d³a³®RP‹ïe®g–täO^4<= ½Ç®.ûÃ[6ʆ£[æçÝÒP6táÉÂÙÀD8&§3Ø2ËžÙ¢¼Î á d©ž¡ñJ‹×’_X#^µŒË,xºJÛÿ© Sn>×3ô"n-.ŠžjºùbbÍWÆ_%&ד'ÛßbIÝ%àMÈê£ß6òŽtQs"·€w!«/¸…æÄ—ÑWn5¸'Å7¦²çNˆòLÃ`#¡Mò"³ñ<†>Õ9*ÑØAù üè§Ûë{œ‚|"!ÑÂ6ÍT»æEÛ=ñ:A<ín÷¤.Œ9 ù°ŒÚ–ËfçhsÙppÃ!MFWt‡V¤ ü. ³\°ªEá1ÈNAV_4;ZVÊ[«P†[kå™?„‰.’EÏ…|4ÁºŒY$£âØµÇ S.á–OêGϦµüÈ»-¿ÇsŒð”ê»·~âvx ²TÕ‰µ~R·x²TUñ"ÙÒT£SìŽm[wÓŠ~‹òhÓjuÅðÝ8'Òü}ߨ3œ’L½ž>‚ü(1ß­Ë“©ÃgÄÓ‰:| |ù¹rsÛîoÜ{ø(p¹%jçàä¥ö÷¤npòrçû@R¿A<ª4úidî¡ôFAK­Ñ̦-ý¿~¨îÖT¶ê•*‚Ôo‰àvM¶ó~:ÔOñÿK¦Ç{4Ó­íÊ'\¨ÝòEí†s‰tbÙÞpyâÞùNj÷mû¥hç6ªÕ"øBmÎn·¿s#uÃÀ X•º§'lE¤þzïhI¬gÍÔ8páe68VRßÏá;8Á‚‡odŽ1B&çÛ˜¾ä˜t“§³&ú*9á äåWÉ÷ë–ïØ/’œ·ËWiý_ÚUºÞÞõ{>¤Õ|D–ÚŸˆY¨±…]¶|À€#™æ-YÓk¤n xQÝ·úV'jIÄà^žVVÕW#wFâ®Ed †AY’G ‹5b³xò‘ö ©Û< YjÚP™kÙ: ª"š' Ÿj#NÇ€9­ôÙén}6b2qûÛž1Á,ù}ßXâçv¹EV£kGN$fË=ü0”¨%_ 8p¤ØÚ*Mµß’IÝ! ùF'5Yß(úé)R—ÍWF9C†ÌvÌ2%Ð7˜-¼}L䆴&EžÊ}e’g꽡Ï60&_à»NþXºd¾öA¦—`M—4Õˆ‰Öët^FÔ²ˆËà(äÑö[©{˜ƒœS®´m4wÞõ yàeÈ—•¹Èî&\†a&Ðr^†ÿdÃð šÇ€‘UáÄì&ȘMÖg½sÅaZòFŠ.(–àx²Ôò{Ë¿<Ì@– UkQ¤®8Y.¶)úi—Œùf#ˆ'©é²UíáˆIØ´¯@¾Ò™ú^…,7oŠ~Ú-ìñ‘þkÀ ÈRy xì{7ß×$t%¨WŽ‘$ YÈnÓÍ–«–•â~VZÔXˆÔ ðäSí7R·È 3åJ:Tw¯*º£— š:˜±·ËnTa§Y‘ÜéЂÂ2îW­–ÅRÁ}£‚4¯Â–®j qÚ œÛü(Ÿ'pnìä ð¢&mù…£eå‰fV«¯²dL`p¤¿˜N@N.«Jlû"uCÀëÕ«÷¤ÙȈhk" 7€·!ßV¦R;ûï.ê­¥— "ÑýÉK½ i1néP®¡m]Ó’<ú¿MÊYŽ$æá?w˜˜9Åìu‘ùô@m/d©³ j«(¤¾/‚ɤ¡‘9±­Çã¤ÖPˆÛ^`Ç‘ºÀƒšêñ¸ãÍËÿ´ìŸzY¶WËi:2Q n!Œ4uI ç{¢6F´@~ lc÷Ãî*œ}6÷È03kd£~‹c~®×»2ù·‰d:¢5".«¯e×½ßÙºÕYÑ=Nø•î˜L˜XÄìÈPq÷@í]Èê'×…}/R?A<Š4dvd"½R'vdx*tÑöBÜö;¸#CêvÕwdšÏ^óVÃ]±­bý ßóüñ&6cùFux8Y}ýcWm̤MAJ`J„» ïJĬ¢ßÞ^xñfaY/•ô·qübÖÔà/×j{f’u»þ  ÎJ‚Ô)à{ßKÌÎãúIÛnàYÈR+‰b=1kÔžƒ|®ó=1©OEÏ&ôÄ¶¿'ÞÜö Ú¹½Àƒ¥úD±®˜Ôí‚,•{#¼ä³¡,RõäA¾1>+pYÙ0Št^Ôð=fƒ­ {ÌÄö(p ò”²m‡ýòŠþŠNæ/U-‹9zù%Dƒ¹†W­Èºú_‚ùFŽà(ï‰ Ò‰Ün4rM%©xsKè¯Ýo"Úâ‹„‡!w`ROê¶@VŸÔ÷ñU^™º9 dšÂN\ë8n£bÊÔÊ9`rº3µrx²Ô.}ãêäPx³¤x@1¹¼ Yn•°UÕô…×ÉÔÏ$ð.d©)˜xý\Î@–šr‰¹9Ô÷÷@í,dõUa7‡Ôß‹ žMps¶Ä±ýnN×#Qó$^{#ˆ§ÝæIêv!&æáŒÔ=º~–'e¤03—-ê…—|üZÆ[ Ê€áf®º›s)ôVÍrÑ^±Ì’É——+ÇÖ +‘à?Kw½àè¥(õÇ0@ÂÈ©KEêCê”Æß,Å wßOÀ‡ð d¹êHÜκ²c¡¤¿~“Ï”G‰Î¡‰ØqàYÈÉM㦫¤íðdõyãAʪÊtkU_s™eÛ/yÃ5'â”Njµ¡ŠÜR¡9UËþYêLV(MÔÀžÂ,žj iVò¶Ò%‚¢/QŽAkçKêÒÀqÈêó.Ñ5qR1‚xÚí¢P¿Ýµ— «w‚Â. ©¿A<›à¢|°+1Á=›¢M…Èívp%†Ôí&¿sFguT^ÓE‡—hykCrG™˜NBVï”k«0ºåN98#Ϧ«Žc”=+È0Ƴ¯Øü2"‰Äès0=ÂäVadC+æÁ`^kGh…ü" ñ‚Ü´¼¤®x²ÔÚz(0Q8<ùDb5#³CLÎÏBNrKaƒ:9 <YÝ5Üeó8,9?{G´—0Lß®>¸¦ÃF|×t U—åzªWüÞ¥\®áÔ¦ ÝgpLCNrñ,Æ¡¾¹jÏCV_<vAHý…âÙä9Êž°ÛòR)ˆÛ^`·åIÝàAMu[~gswg Ç7‘#Àcå²z·œGÉ„•!à{“ÛIÞ°jŽ•VJàp=¶žB$ÜŠAkUÂAôÄêð&ä›ÊìÔfç®Q¤ZV¶…“g~T<Ç¥šRr&ôêðäSí7!RwÈ 3åJ:v:F0­0à ¥dŽê³ÓÀÕÃèdÝò¯ÀZqË[®n[x©W*¢ñ,Äi7pd©³ƒ­µÆ,’¶~à~ÈRz›qñ ‘ÄàP)w؆uÓ»`é¥Å¢L圞,•dP¸rŽßƒ,505aÊEÊëÇ£Pu\‰cÿÄê,p²úRÁ{aÓ® ^¶ºbVˆõ’îú߬p»ÿ*,â«ZÃU„ívÔiììÚ³ÕGxaGÔŸ‹ žMpÔ¿†²'l¿£¾¥h:¢91Û Ü§uì~]R·¸_S½_w{SAäâ ý2 µ tzƒòÿ § Ö‡€³g• ìHØÔýØ,ûŠÄ©†ai„G IÌ_ì2Ë…!Q;#. xrrJ¬‘º£À÷ «(û‚£2~98†îJ]‚f!glïEC¼½—KÀk¯µ¿½“ºQà„V»xD±úv0¿‚¦.jODä:p²úYžZ ÛsŒeÝ)Òò‚ ·Ø áAÈInÆx‰4jö@í!ÈR{2j^"©?A<›à%~Œ²'쀗èÂÛhÄl/°ƒ^"©ÛT÷w4û‚ídQƒúöLxòeeƒ’]úù†D؆ÃîÕJÅpéR Q["BÀv'uýÀ#ZR‡Ý‡êcw¦ßóäU2õÇ伋Zñ; ¼yóR&¼€å¼h‹õhLv.^Àl;˜è̆ð –Tr óA^ Z./’À˜VíªU Nò,†ð4•xÞ†|;9_¶l ×Õ5ÊÚRqìbµ`0½ÌøUbLòDþ×ad„Éû²½C|a_ØàˆÍ%àuÈ8“OêF7 «o&ôÈÄI…Iàdõ0îš-5Ì‚‚K•*Et§(õ¢aÙ«é¬ gö£«Ú’˜KãÔŽBí¼KêsÄ£HC.Ãö"J?wØ&wëëGzÜÂGl_Ä%<9ÉÉPL'u»€‡ ËGLnk*‰¿ ÌRµ„ýLJâæ)^^ÓÔ´L¤uß1'ÊG³ÕWAo‡]Šu/s݉s·.}HŽ{8ðˆ¾EæHxòmå·¸¾Eê®±¤W-o‚å‹élÙ–¯ꕊeú/‚S¸|Õ7¸²‚~zl,ß_˜.â#¹m_¦–ëa•"-) ahIäzXw@Åw¶'%½Hb´xòÉö·xR·x ò)å:ÚC©…©=K†ö…,5h‰•ÔwôBmr®óc%©ÏGÏ&¬-¡‰*­µÔºá•ßÔz º§þtº.–š"nášXFévCîn‹8Q»ò–Î×Â2ì/Ä­‰ÚáöÝY®–Œ²ç¶Ð}¯½ÄÓé"XAŇØ-kj4L”@ˆò¥Aè)U:ŸjÁJPˆÉ\#Þ<_¢(^jŠÍ3ù¼¯D©¨c&æXº-ÀåÂD£Ÿîf®Yªøþ*åç>¦L\‡!'—W!»3:‡,u|J¼ŽÎ/B–:ÄÙ4)_•Xi&—€Õ÷JÅ[²Ô,Çä[ò.dt=#•Œ“8õ@îÀJ3©Û<Y}¥yå}¢yNøº6"rxòéÎ…%˜GˆÉxâ&[†îr[LV¡[+ÃF !¶ß^˰QB¤³”¼&úél¥¹Lg–éò¤ÑKw…WªˆÖ~`²ÔeÊÊÓ;ÆB¨¾Õ¿n{í:¯æ a‡…Øìî…¼·ýVCêz€ƒ¥Œµ¡ò,EÅ`˜–ÅïJs ·jyéZTu¹`U‹Fp{“ÔŠ¡ #'œ†,•œ¸6¿Xªvì„¢Ôíå²ù9–6íª·èúK–Êó9ñ Ns–íàç´pnØ Lp²ztÒ½pù¶žÄ¶õ‹Õª€l®ÓªT)uɧFÁ}™Ïð„É-~¥— ;º÷ä©c/Ó:®pFœÃ)îÑä ùˆ "t¨”œN¬ù“ºcÀ ÕÏÓf®e‡÷ À’dA‰U8 Y½•'kZò»&£lÉBBÔž\ØáqÈRYŠ7>Üuïá\ªœŽãGLœ†€ç KÁh­5&Ž˜´¦ «§ë=Þ+Œhh×5+¢–Î@Vïq§ylq=p„ÂB7Ï /•ׂÄnÛ, ÷¶lÆÓîàÙŸª 턉øT-ÛÁ–“eÁF@„¶wBÞÙöF@Úz€» Ëm¸E?ÍfÙÛ7~ËЋáe`®^ Ço²#nFn†-V…‰¸î^‡¬ô&cL¯`¯’2¦DÞˆÍ`ôW0ÂätÊMír§vñ•iWéôŒg8®Ü·#j<¯Ðb Ç %V8ÛxïßBï§0Uà&mSúîâé4×(Õ¶)æUé¬iA"žN—Êç(‰“±‘;,ˆ#Yª–ƒÓŒ´Boðí´ c6t×.ë+øÓuOE³EÝå—U‰¾Çp'¼ùŽò{\clÙ(Žn™Ÿû´,ó¥a™+¶]du,åûžiº2,ܵ®š¤ÿ] Lx ò5iã¤ÖØ»kßÍ¿}ÿ7uÅ2$¸ÝÞ…,åHµvßïÛ†§{À07õ—’ô\Ê…­ÀG*Ùv¾¸ðT¯Z¢FO<¿N(ó™d,5–Ë]M³ åäʲ)V²_™åå‘ —ñ†MBôÞÂØ '!O*¿Â8£0#ƒ_»†Ü ‘„˵h˜çùhmñE¶o€,aré »Þ‹¡Ñ;ýäÑ£™Ç­˜|ÚCܤažÔwGP~˜va[›h{Ì&Ù‚Y^Z°Œ%oá +³ FI _¼Éû¿úŒ½d±äcfBß­¡]„#G”Ëð<Î!¼eœíGlÁ­–^¼ñ&_¾ý¤ìÿÎ^fx Q¾ßƒz&<Y=ãÜLG¹°äè…7K/Þ,ðÔj/òoS¯_xßõù /ý6òë\ä×lÁ1—W¼…·¢¯òÇ@Ÿ0¹%^~‘o@éc¶°ìFáEp×V($ú½ G8 Y*T å8xˆ Û·ëTÖŸÉÞœd¸ƒKt]‹ÈÞ€,u"#f"Vl=§ÿîHÙ$× ÷A¤þfñlB§üÇQ!nR§Lê»#˜ÌÜkïêŠá×0Ðj‹øê߇!Ü Yj¹`ÃûõvGG&º8FÜÏ@–JÒúî¿üIŸ™ÿ2¼ÎssIº¾-8iæ!« ¬§EŒœ­5râ4¼Y}_moí„W°Ÿi‰ù÷ð¿¿­F~æ%¹CláMyäQÆ·ô¢MKœå‘~¿Ñ›Go/äÞ šØ÷ÃÜ ' K^µd|*`ÜL8¸éB^†ì$ðcÈ·½=|?Úá'?Q¶¹ºÇCÔü‰Â `rAÝÒ +¦ñÊh¸–oÑXÑiIÔ ®í$úh„JÔ† bz}©NŸ¨¥— _úèô‰ÏUàä©¶9i;¼ùŽº‘Ó|\ÔȉÂ40¼t[®oU1Ò·Áý Ì wCÞ »³ïñƒh=„¨‰ôý?ˆïî‡,KžÜ5£P[à%ÈRë µuxòeåÚÚÃÇ(§Zf–Q^?ÎIl®g!ϪwÏÇ®¾»c„m?Ëî]âFÙ… ƒœÜMHrC)qž…,eàb4©;<Yý†‚“ÔÌíEOç÷\à2›ó‹…tá/â–Î@N Rç>Z4ÀÓïšJkì‘]öý´iݱl:m^µ‚[‹½`Ì¥N˳ªS0»è‹ül0¹HõÞj¥¨{ÂàOƒa/äÞMnÄe7pò`û©ë~hô2Ó«ž]ò-ˆ¬1øþ%›Â#³lÊrí ›}0ÇS†¡JÂóKâ¼øòeîÇK:A­cÕv¼•Z¶x®)¼Lõã0.BµÓAÑO…—©~ªCLf™ªïA™wm}? ? sëÒd“—´ô¡\CR‹ÝDá$p²Ü:@ËÃ<ÄÍœL½¤£G;S/ÃÀäœr½ì¤éöªaY>жeb’Þ€,—Ž6éT~F FS½¥bĪèϯÁq²ÔÀÙ4‚ñ-u¶èT=cdÉv <¤ß îó…bµNºÿ[šÚ‰V&qÞ¼ù¾º{,Nû¨C×Ö“`;þFž) ¶NÉ÷ùZ&¼®W}‘?‹‚'Lν»%)=²BÍsòk<1ú„ï}Ç´ö©lIwØâšTµüÞà§P-]ÒÕ²ánŠ'8Ñþé&ÄÓæ‰öOã~ZSu–£ŸÉûµÃ3µkœëŠhõd–x]m}ý‘÷±Du¦!§;R]§Jyã™Xµì™V«–HG˜E‘»|YÝs?ÄW×ÐgDvéÉý9Øá!ÈrWã$Úú‰Î‰âi³9‘¶ÃÀ“OªÏ±p ózcò{l‰ê:œ€,—A­u×HcNT¦€w!Km|ŠyB¤î:pFKêš«½~_+å€ r0ˆ6v¢3 üòÊ´&}§%o\»V۵βy³dúöd­ehߪÖUEý8¢6ö3epT ýO´K :ÓÄÓæ.´ÝÞ…¬¾­/u!ÆÏÀÒ @VGîÖ¼~t×eE{µžö³'‚³¿ÔqYö*3^W ǤÅ-~Þ·hœ}“Ÿ…]ü¬–d¬„ðJÑŸ‡ê“Y)bSÑõ?º_‘Ÿ±´üöJS¨¯]å_3B™%Öå÷óT£×cû}âs8 y´ýý>©; ÌAÎ)WÚásç‚óênpùQÙö¤.@"Vyà}ÈêsÜ»ÆkÏ(Ó âÖ¿D˜;¢Ežt§aµ™óv«•Šíx4mœriS†± /½üE˜Ú_L´ÎA°2]·j0”Ñ&¿m¸ås~™Û´ãÏÝmVªVxÖ3‡û¸40#+’p ¤ŸÂYÈr•‰…´þ%-˜`n‡,¶'ÖzþÞžpd©@ž†Hó@kU_«_{äÖCß‚¶%¼¥@4w/B¾Øùâ/£¤B”(Zjí[À -4¯AÛ·T5«©ïŽ žNÓø+(åK)cí ßgûóZ°{ñóhNýÒÍ)ù,Äi/ð d©DÒ fù .G€á;Ñi}Ë,¤m'ðdõi= róñdßæb•\h—¦\Ð-œ¥’áH” ÞÓ›‰•Mï‚^õVl'Fqð6ä[oܤ~*‚·ƒ§Ó4þ*J Dµ>æâ»Ò‰uþšt-!âQ,–Ôðð|öbÉš¸;Y¡[‚¹Ë¶ã[wl•XºEF˜‚¬žó½yvc„åÙuæqa"?–ó(ÑAìZÊK sýð#|ò{Ê\-ú£9+¤òÙK™\ö2=âì~ŒÕVf£Ÿîõç ËœÞØùŠ9ziL˜×ß½¥v>#†)yJ©úâM.ãŦ‰%õK B¸òneRw(y•UéGùÙ…@û˜÷;~7Å ó¼—?§\³\û@øEþ&ÈÞ|GùE.ßã)žüÖn¼Ö)u[Ðêƒl…6NƒÝ~F¯Nú0õ¿º„!«;ë;|*¼ÍçrÂŒþ6X&7ÛÙõÒï(yÊe/ sú;àA¸ ò.õf]ªæˆ‘ñº’"£7¼¿ .7Ñf}´TÍGy1¿¥ðâ'ø÷@ŠP-™yôSñù—¡;Ä6OÉbyü tÿJ¢<ö ³§¶éºv9ì*„™ý}°!Œl(2¨÷aÔw ³úÏÀ„pò€zgà^Ö5Œbê☸Mÿ*x&×ä^S“㉥jÞQÆï!Χ¨íï“”w“ºùtZœöª„9È9eÚÓnÖs¹ãä~-gqóAjÕ0^Næ'êob/º†óÊ(N¾ÎÐ)Tc²ö*ÂoòÀž0¹Pžá§t#OM(cªÿLþa¢¦š®ø¤RTÈËX6ÊÅÉÇÏ>̼Ö_›nvÍÐwrvêáüŒx)þ#p$LCN+óíž«Æ.ÀÇrù/ Ÿ°r2—|ÁŸå[l’ß ”â‘f“^†Ç¾O^ʰ0ÛDÆ÷`s“þ{/J,ï ®„yÈyeÞWXô¿ÀÓ›ª­Ëex$_WÊM‡>+ ‰[À Æ„W ËZ~zaÙrÐ'DoG l·¬Mòšgü_%áÈêwœâm, DËú50#<ù”2Ë«A±~A¹¦xÉfxhù¤ïêJt¯¿Ê„W!_U¦’rbeü Fx²úò ¸C÷O ;ÄÍr,º3Qƒ¾c\1/íWþo@†pòà¦û•ÿL¿SüÊÿ<“ó+wñã ÁÄW|Ýè¿ÿ&QNw_·¼h–íRƒ·;ëðf\ós°å¯#^¸ÿ['Ln‰f3¼ßö„Éy¿â=ÎÿºCL¦ÇQõÂÿ[0ùomØíó¿ Ž„Éyáâµù[Ðb2µy„f<óPp£DpÒŒ¿X"–ßÿœ@>¢Ìï¦è ñîg’ÿ¿øtáÿâ„7!KínÊtá·Á˜0¹éBfýt¡¼ØÒ©•è+ÿ I˜¬~£kÒó…f„ÉÍÄû€Ý!&Ó\ž~>ÿüó;Zóö0õÂË‚nøŽf±ù¨—0ýßeÂäæ-·¸íu¬ø—`Nx ò-u‹½S'«¬w˜Gæ³îìï‚?3÷hjzîIÌ ŽCöè;Öû>íàó-8Ù:'”g¼ŽÍØS-]0Ê.TI¿Ö0óôÿuðßï¿ëYg‚ÏŸÍŽ`Ù}[ó‡Zðû^R¸›~ÿÍߣßõ~«©(ÂÚì}údþÁW ^X2üG¯^2ýÍ vÞ(Øår0 bgm{ówFG½RetÎÿ¿?«^ºŸã¶‘7ÆÆŒüøâÅ«K£Ñqª±Í­«®^¿º–LËØà+ïæ…Îú•:ÁZšK=Ÿ{8ÁV<¯21:ê/k;Ë£-¿š–¨ïà3ÈÏêõý™¸g½‘EöÐVO\¶¢(¾¶¸ZObó â­T쌖€&dS†QËQe`¡l/:†þÒ­èãÍÛ8r19wˆ” | ù­ ¹˜y‰]õb´~ üäoHÉúÙcðí3ïÒ$Êëû€¿ù3¯¾¢„‰…ä~ò/'fb} ®¥»+R¶†ßÿä_ëˆm…'f~ò¯K•EôÓïb3ÔÎo¿ ùÛ‰•CÏ ÿRKµßþäß’6ÕîæÎ™@%ñÛÀßü;dÚ}¸_öÿ@iä‹~KÈÜ p»°ZØu »tÆÌ‡Ðu0 RÛ»`.–Û*Ó )þ  ä®CPL>úE­î«_Ô$}õ]ïà‘®û+ÝsE-uæèK\¬? Í-w,øß¡; -÷ãÿ5ªïJ-rÓ7vÓ7ÂXãmI” QêŽ ¹ri]yët†ÿýßð"ZRÅA¿ˆLÄöþ¡Vï„NÔ¹vúiiüS‚S­Ñ’^­‡õdâ-ÓæÆ[¿W+Úpö;ããl]´‹ºÄ˜¦n‘áKxöÛ¸Í@Ö”óÁ§õRÖKÔ¢ƒfÊ»h–—ë…[Ÿ4OýîwýöÊ¿ëùÇIMš¯ËÔn­~¾çØ1C•vLŇO‹¬®œ‹)ÜU…«.!â‘ ‘T‹ Síî€,U0-µn[Ð-So5žt£ºµ–×HvªBHý®6«tŠÆ”@ˆM£«¢]dîèk†kêeö¤êñ•v·¶—4¦b©;OîN‰®/m…ÍŽCOÐ~<Ó³Z5è­(%‰M:Uq¤þRñtšFäPuösP•=»#ˆG±T0Ê—‰%ßÙ£µÌ¢<~ªÄ’ïÁ_#< ù ·cÉé;Ç€~Yó\™R~OÜ@Ù2–œ¾³x2S6œ!G>žævcz.3é '¿z»¨Ów†€ÓàzG™ç9¿·¬ª?^òãçfç)˜áùCM /|èd/Ìðäs‰UåÎ…¢á³BEÙB{¸ˆ<”_è‰~*ìûúîâé4¦»Ì—½úÞ•NìÎ&CÄ£X,GiôL¹ž›a8f+&Yñj•¯WÞgeÁM¿AÞöU çP.~>Cw»v? 3?¶„É9­ļBóïÉBêœiÏeÎ9«yþÿcçÒa®‡\6w)ÃJ…l©Z®Nú¥L¬Oû‘ ü–È.­á–Hɸ@/à[óYeØ+ÃY´]e\ªZžY°còÙÜs‰"? –„-²1ª0véÜ¿Y^~dx+v‘ÊþSZÚñ˽¤;ËfY·\¿ô…Ë#‰2æ)5ÂIYñУé¡ÌУG™v"-¯UzIš[$òaƒvÂÈTBƒÙ¶…ª«/·r²÷C×qmS‡1RßÁMÆN BTÆzUéœÔj×ñ(nRG?_¤;…¢8¥µs‘nƒ…öˆõkõ¥¯~MrÏœÚÖDhØ^üÔŸÏóDI”—ƒùYÊ,¬*EŒð5 »9ȹÄf÷}aöCÑÞ‡è\Ñj·*qùfûgø¤.¼ù–²}÷÷tˆ¯‰ÛÀûÕî·Ò %È„iµ±H‹ì¯'d&=<3¦¨0´1ÂÈí·R×Üyr¥ìŠžpNKÔÎ^à È', Ó3J1æ¹jOB>Ùù1’Jˆx:>(F» lß Ô‹‰ž¹~àd©Æ¢µr$ŽNcö‰Š_zNëýºL!/@–óÓ[®6ÓÜX´Ÿ!*cÀK¥yÄúR—^†|YÙ¬Ïò…Ý,‡þÂ’mYöjh¡T±ËFÙs…ó@Ç+ÀÈ ›2P ¡áªTê}Óš[ˆ²Í®q¥9Èå(ÈeÅ1¬Õ ·%Ò?%ï4Œ¿JxHSX¡kk¤nð0äÃ2j9ឦ¢ÈÌWŒ‚¹DDÁ5ËEã5²,>êóØ—­®˜…Q#ÆÇ€³g• ìT¿»bW­"[4py–öly•Òn• É3°6ÂSÏ&שӊ¢¨¡ (pôÝ-¾³™k¿¡‘:<¯ÛyåêÚÍM©b»®¹QÃFµsHÛš4¾ÝRæt ?bÚºcð€¬ µ÷`,„áµT„‹˜cK©jB–ò§›‹¿"žv7hR· ¸ò~é‘CµÔ³°Î³°”^Mr¼TssÎÂ@Cij)†Ùyí„›Ã7²Dõþê9­£nÎ9è9- 7§»©(®Ý±mËÐ)YÑ,зeß§1|—Çñç–Y6t'Ø÷ó} §Äj.†¨µýcÀyÈóÊÖvµ?XH ‚›¡&Ü4^û^ègË^q ºpÀGäšíZ²z©áV¬§ Âê…Úkow¾§ õœÒ2v´§H£ôÓZ'zŠmÁ.·hW‘ÆŸMkõ˜%©6+ÖUº]À#$ÖUd®³ÃÞˆô…µ‚e˜KÁ½1>¼Y=ìsdFö¢ÞìyØa¸Íy¬ý-Ÿ ¢jhµ3Enù¤þ`OhI8Õr-?Ð ‡Šˆ6ü ø«„ôHÝ.`òK!yŠSöVÃoMVp†§h,gzõûƒp¿Y_uá€Á A›âø%Èê'ÁöSz=ßj^/ju‘{ˆjAKr- íGKˆâq`N fÄRÖm8ZBœÆä>!µ+ÚZkÌÑ’ š!¡ÏŠÏÅt¾%õÓ|?xiœíoHî PìxGM¿jC¯7Ûùš"õ©ŽjI’ï²(ý¬Ö‰ñ®á¢#^—ðd)ŸSlÄ#u»€G!KE¾Ê-ádë&Ê}¢d…͕ԟŒ žM1×Q˜èhGÌu+ÉŠÚê(þ(áAÈÛo«£°OÂCåO°lkv×.âsƒë·H”¨¼£À°IÉu¿y9]q5ç5‹lJ‘¦èÑHѹA»¬u-©GÓè!2tXÛx]±t³ÀËg€¤By ü÷L˜˜7¤’’8ý?€ÿK wý§Äær ‰Ëïÿ?þóÿòŸÿwb6—’´ýàÿȤ]Ñ„1žò:¹jcM×ÿ7Àî€`÷î¦û ð¸ÿðŸ,Y^}ÂAt«Çoÿ¸Ê ÓÒQ 7ÙÍ×^ÕiÊG,ˆ.šnŽ˜²dÐO™þp§Ñ,*“À¿ƒ²ùÛíŸÿÒ(Ø µ7I}§ç¿¤þïÕ‘¨Ð£ <¥%•e ßw /õe©¢`ÀäTr³LÚ>“`”æ!K%íˆqÐ+/—c´¦cÇ”«å@ÄíÂÕ=Öšhƒ"JãÀ{Õ·cÅÇ»›h)„Jã]ë{¶Êv\®°õ•ÒÆ Àþ~%FíàNÈêiYoD6Ÿù\aznêq–=ðXA/SP‘½èËüS ­-Mê Å/Ü"滀÷!«ï¬Ÿ  ·üÙéÙέp„®d‘鞨±Ý‚ªwÑÍÆv×ܯ®®fŠ-ã·ÝíÕ²eë±›=1‘¬Äqxòí{¬ªcÅh= œ‚¬~¶¿[øÒØŽ}¿_h5¹£¸­mªHê»#¸I>àJ D5^¢åRÎWt§Ì/Ë"G±¸òrá­†jeu(DéÜEMýw“ƒòy:Çäw³X§OS¯®[®ÍV ý•)îL£†§#í@=`{/ó{ìŠQ.ºáþ— ­» B¸òÞMõ%‰É!àQÈRÛðB¾$iƒ,µrÙt_Cèâû†SX¡ä€|òã<Ö—–(R"ó5=œ…<«LøcvÅÎðëÓMËôÖj—é… %ËæM~íJ¸ƒÂÿ…p.‚XaÄ{P|‰YVKIT»ðíÞÔ#-èO@=Úþ}e[”D¡h3¬Bæ¢Æw}—YðŸm”ßå.£mïE¾Èì™…ª¥;~×DËÁY6[åËÈNÙ x¶ˆB•÷f©âدÁVôMîý½ÆþAñM1æV £˜aFv9›á»o¦ëVéÂDš´GÿÒhÚ¡çïgú¾3sϪ~w,q]mäRWŠáÔ¤c9^i£šX¡!JèHF.TM¨—ë[À6BÌPJÚÞ×6Õ #õÝÜ$'ìK(Õœ°uο„Â\$õP ®‡š¢óc/5¿Qc4wÕÜ¥Z!õƒÄÓi‘ž"ãØò®tb·WkAg"I>‡ß¹xbæÐO`š!âQ¬¥‹Œ 3§ZFv“Â.‚cÏ(ÂÃì*ÁvjÉ,Sô†(ó§¨LÂÈq ¶ÙW /CuˆÉtÅ9¿Úz1ðÎü’[³ìEyjÚ.]¤ª{:wî©e=¦„9È9eÖƒŒK qÆwg⯋ã5.„ƒÕ;ó~i>"§Äw"é2!ÜßP ÒÙ% åû  #‰ïÔF¿³DõÆ#Ê)£bV&u7[®–|#(¤PÄg|îFÚ÷Çèó)÷®ÿÓÆ·ÝŽÉs°'LÎa¼ÉÖý&?› ß  »F†ñËqj¿ã? [ÏàMY5ït—ð¨1™.á¸oÄw%³L‡YË´ØK}+-oØEQ†_+Âð :õ`›kø“¬–ï¿f›‚1§o’“‰¦†Ær¹+#¹¼ÿ¿¡økûâè ” ¯A¾ÖaúùüH~l$Ÿ“ ÿ!(˜(ý÷"ì=Ý´Rù‰²c¯ÖØgÊ“cÂT?=ÂHšúN·¨¨1™u›Õî“õËŒ_(\âÊÿ¿ùWÞ«†—¸Ju±ƒ9ámÈ·•ßâÎú.6¸Ð5¸Îµ~ƒëXó®áµ©¢ïñ ¸†3Ñ;Êï‘Yÿ‡øØ$âÑÄÝŠ`IÉOÙi3þ:T‡˜˜OU*Ö÷eè®d¿Î—ýáÁ[)Ñš ]QîšAšße,e˜™5²È;¼Ñmå1o¡ƒ¹ž¨_÷ߢ¾q¹¸Æ|륭èûh_a "3˶?•ðš@¼ÒS—˜9,‚4a$ˆGÝÉ´ÌEGwÖRC´d>”ö߈• £èbùO÷<½°bÖp$LÎÉÌN&ÙKžú?~É6‹ÚEÛ“@áWOÂ,älç[œÕ!&Óâù]¬e{©ZùeØkK_œ<Ço7ühÕ0^ºû]ïÿåc;Ë7èÏ þ¸ø:[­T(-IÕUrÂ%»„× TZYX*RW[­:>¶åD S| …ôwGOB%п€¥ŠVñÚ+)‚¸E­¼uˆÒ% FÃD „˜ìÚÚî÷³8Ÿ“a²LÛ§Z˜DxòAinTÀÉÏ!Nǧ!3n žÏ!.g€i-¦‘ Hl­5æ|i;<9­lÈ;¸ÁÌëV)ö&ŠŠáðHI­*¶ÔÚ» W}WÖ‰Qܼ YêþMµ&Mê¯Dð²–Ä}œÂ4^¢BTëY©Ò±´ X/D<Š¥²—Õú7¿«“8ƒXBɪ~$ÛÇ•‚rçx²T0F‚}q9¤¾î¤–pêË–}i¾ùŒ²ñìâ}\ŠD¾É–¨œŽV^™ÒVÕ°«Þ¢cè/Y†‹³ê“RÚ¸ˆ¬a†Î1£•`JÆ,ú:eØ>áÈ”_ç4kµóâO¨±ç"/`ƒáiȧ•ižóKÝ´K†{~ß®:eÝʰK—RÓ>ä®\»,L¶‚„‘Ëæ:=|Õ!&ãpûUxÔˆ2l¾°R-ÑÔÜɰ»R=±jŽrÕ&ß;¨A d©Œ{ öÄÄeH›·´D0Þöž˜´ /AVß2®÷Ä—Å{b¢rx´¦”) ùžE½ nâk®ß¼äé¨]­áöqI×b´·>ºE:‡g « §'ØTý®£ú0å—M¥ºh™Ѫ$zïg Ke‡mÊ5@ÑÊ–·ÂܪóÊ0-K/ áé°‡:#<YêJ…–1R§0êP8Ç<Å‘ºŒæí%oUM›ºÙ“À¥â¬[¯+Å0"u‡“'•+°;~eƒ×¿ ¼ù–:áƒgUØ a7äîÄl¦ûJN‚O?p;d©X¥³X´­Vñt¤n pd¹ˆ­è§»X*Ÿóý³üÈø%áÖLTvC–¿‰¸Ÿ^[˜7^WœíZž;é3®§/“‹UÓ*~üƳm˘˜˜+¾ ï½(Úfjh8?”~‹?p ŸËæ¯^¿2ú©ëf_å®ä²f>®–ûŸÏÏÌ=ššž{ó‚G€ã…ýúÆŽõ¾O;ø| V[ú5[=ãµèÁÈ.eª¤_k8¡¨ÑY}úï÷ƒßõ¬3ÁçÏfGpSɶæµà÷½¤p7ýþ›¿G¿ëýVSQ„µÙûôÉüƒ¯¼°dø^½dú›ì¼Q°Ëå`¼|g{ówFG½RetÎÿ¿?«^ºŸã¶‘7ÆÆŒüøâÅ«K£Ñqª±Í­«®^¿º–LËØà+ïæ…Îú•:ÁZšK=Ÿ{8ÁpòÐÿ?rØò«i‰ú>ƒü¬^ßUqÏz#‹ì±tß&%(¾ ¤)6/Ño¥b—`îa™MF-G•…²ÍÜŠ^0Þ¼#³¹NÏ ßB~+C.f^bW½­áúï7 CºHÖσoŸy—& Q^ßüÈ¿˜yõ…%Lì—€¿ ù—3±¾×ÒÝ)ÛúÀ_ƒük±­_þ:ä_—*‹è§;ßÅf6¨ß~ò·+‡ž…þ¥–j¿ ü-È¿%mªÝÍ3€$Jâ·¿ùwþÈ´ûüÈ 4òE¿%äGnP¸]X-ì:È]:cfÿjr×ÁÄÔö.˜K†ÞX´N1"Ž»rסN(&ý¢V÷Õ/j’¾ú®wðH×ý•î¹¢–À:sô%.j '¶ÔºcÁÿNp²UT‰…ê{”Zä¦oì¦oìÂ_Ø–D¹¥îâ‘+—Ö•·Ngøß*^DKª8èw‘‰ØÞ?ÔêЉ:×N?-ÿºàTk´¤—G)-j™þ$Ÿ*Þú½Z¡†ó^ãÝì¡\Ý´QWЭéçóÏIŒ ½Àƒ#ýŸÚx›?2Ëùæ™ðÔï~×ÈL¿øvR3á{2Eß\nµjøNœDÇŒie½7´„O‹ÅãU9R¸/"µ‡#ˆG‚F; ŸzÆ>à!ÈR…ÔRë¶Ý2õVƒG7J¤»±t:]9¤þHñ$T9ûüÊ)TÝj)ûðáòò ÖÏÔ áQÈG;P?[P'„Ç ë|ýúãÄ“Pý4tÌï̉ƂÀ=÷$V%ý´ lky“Ö©î¶êT­úÁâé4”@ˆM¨¢q\áÝ)¶Xé)Jìb–Œ‘Wº³Æ7¨ë=ot›Zð%èéÞ„|3ÁÕjt ‡&Â[ou¾é¹A<’u¸C•ù}»#ˆG±T26&úòlVqlºñ• rëC-Ôj¾jBæ¾ÅõâL7öH19<ùTb¶›t> G™)WÒpxÀ~q-še»dR<Ú¢áé#á¢ÖDO§!O+=Çè~¹k@‹=UCMÿ%Éöä¸ Èç¤Í‹ªä‚Áè³àä¼ ·ƒÁè³K@ÊéMk/×3þ¸`0ú,¼yBÙ¤úy X.-oIŸÝÞ%u e졽ÌÃq2 †nÕ~ë÷¡~+•Ðv;¬›pò¨2é~³,R6D‡Ýqô¢e¬<3g9Ʋãw÷ÔùÓ}ÞVpyl•.òºÒ\Zcfy§E_'’Ä«U±äëœf<¢Ô®z#öRH-rሰ©ì5ÂÁ¦’4')‘¦ÁøAaž03̦iZVÕõÝ ®L g™A©4ðGáWå'!O&Öäwâ6JLú´p}j·¦êîF?v‘H}wñHŽê©©´`€ b±Ün^WIùþÑ“ÅO3aK˜Œ¦^àV&/e*f.øAø5ö F oC¾­üÓë³,˜y$ˆ(.UËÛ,P$×p‡2CüÒ²¡t:“ÍfcOúƾIdbÍ=›ØŒ¦êêË­ÜÂèÜÜö1ˆ6¢ZûPÎ_Œ[:jˆG±TÄÃ2÷£FökZ«°Le÷2ü6o¥Üú»!KÍúÂRn\¢}Ì+ì%Æ“2Ê”Ü^ ƒÌ6uÞGLÎÓÓíŸ÷‘ºÓÀóÏ+›òQž5B7‘ôÏ`åjiÑp$t¯ À»ï&À±à0?ÁïÅun‚ü Ù…,µ–RË&Øõ2ŽVÌ÷ØuˆLÖ¾ã&RŸµò¦HÛ1àiÈêîèñÚª ?Èk)¼ TÔœˆÙp²”·¹>aÏA³hYöŒ.ÃÍšå‡ö&È8²*Õ*aQB¶¥ü"6Ä9ÆÄˆÐð"ä‹m71Ò6¼ù’rò[) u®e{¢†E|.ïA¾§ÌKæzÂȶlto#¡¡mwÅ®T->#œuô‚è(G¤vC–Ú¢åH]ðä#ê›ði Ü~ç²Ô`ÌëÇ\XHƒç¨ìüuÚ‹'õ'"ˆ§ãns4r }ns/fµäú¤ýææ¥€Ô4¦ÚX—¸i®ñÊpt‹‘ _ý@l× K-Ü*wGP¡„êÝSµy¢±;‚Él~m Ö¹DüÓèV¥dÑh¢½©íCZ}WÌÕÃWDÇ¥£h/açŒ\1í—HÝ.àaÈÉ ‡[>˜³ƒÀ#åFÃ}Á_lÌeóA°·ï{¼–Q^öVdÌ4/@¾ b'­»gïÅ›’þZôè‘ʯ@¾Òv¯—´e€W!_UîE°UÓ¯³\4 µ©•hG”®A~¤î[ô ÒˆÄSiÉÇ­ô…©ÊEû¢ÓÀ#_ Ö¯ºn ýú²z˜æ^>3â÷ú)%²•´W«­ ð./•\ãÙ » û”!ÈR+kjž©Žày-‰•69O ’é}3<RÛ lŸ'е"ÚZ‰Ï¾âiwk%u»€û!ïo{³ m; ®„­M…Ÿ}¶âîŠmñ ùªkÔ.q«§ûʲ'¸vN´-…iäÂ+ópàb[JõA?n˜·Ä¥e!Kw–iÏaÆgU K´E[Û ´0ÂäÑÄÆ&q3?è¯áe­!³c»ÌœÔ¥9Ë|iXæŠmÓUj>ûZ$]¡‚=(3•eÿ³WÂËqÃh€„7!Ï(¿ÃáþÅÆÃxüöhS8‚î Ñê¡§”Újô[½Å2§)ÚLÏ,8R~賚d\ŸX3%uG€¤Ò/LŠ¡S¬ªƒŠ›ÓYc…‰šq:¤pþàœÀÁ7á­ÄÈí¦Zò[‰ÛŠRæBdú€ô»-É=‚Xs!uÝÀÝZ°‘(·Iýô8?Ç-fý‘[‰ÚÒ– yRŽvËÚê/†e*,$O‘V•ow¦Â.ÉU¤Y€º«¸-K'EÛ3q¸ô_û‹ê1±£ýµ¸Tu=~æ¢eо̊oVV0ÞéÎr•Î. g+à8 Yjs¤õfÍš¨ ô×pRKò|d¬‘ºð ž›Êu'žÿ,šÎY4£[²ÍHmLˆÞoذÕ5?Y#*}@š‚P'8Ø~à uÝÀ0³¹Ôy“a0‰Ù¤‘‰6Îå·¯›k¤»T•©@„hƒO*ºY¼>€‡ ú¤r}ôÈ\}DéíɽN¬J¶Xö²L C¡Nö¹ ê9RÇE­º“},˦\F×]—]ã³*­ce˜Mw—E{Õs‘Ç÷¸§}_™à½~yéÀ³?¹Ì0#»œ ."æ{aEÓõs±ÊGð_‰½ê˜þ ùÑ´% çGG?=BKçä.Âv¸!¹Îc&hLé6–k;=%‰„˜ì”|p}êQë!b}@²¢-É ±ÖCêºd9ôeõ$ ÃYöØöŒ 6‹0îš?ÿôÑ,3=߸Díh­Šp2hY qOõWl×5±"Xßó?è:×Ë,˜žµ–a«+fa…ÚE©êã’îz†#úYØádõ¹Ôe.¥—ÃÜ)†c˜kèå)ñ笚þ$ËŸ«Ï(òí;>ïä> ¾„—!K-.&·}= k ¼X„Ü¢±X«!uW€T‹7©Eái©¿ÁZyôs÷¡`;AÞ”¢+qŠ!û ³Þ$˜6\n[,àHa)´Ø“܉²Xk!uÔmÑp˜V®¦Ã—ç§§{Á:‰ð!‡‚ ¤= óZ"áB¢tFb²ô.Ó½ƒ!ÈDí†8õir@cs’‰8bì†Ôu© õK·¡è§ýµ³U5tP«(’¿·¹Ý¸eJH zädŽv¦bNiÉ Û_ŠÓ‡4¢+‡Äâ<0|¤Ž{ /†¶1­–Ë£ÓC ©à„–D6fñ,1cIsì†ÜX%ôñÕÂڶߺœ!=мò–Û@Ì:åa¨#µ[!ËeNQªÿ±ÈÛ÷ÔŸŽ×ÿ8ê|\µþ×e Úx¹h‡É#×Ñéî‚,µÖÖ2/›*Í ów$t‚Ö,rQÂYÇ÷G!KuãÉ,Då2ðd©îMld!u9­Þ•å´$º³.Ñ!…Ô_ žv÷)ã­q¼9µ"Ñ>…ÔOF0Ù ší µ&ÓBwxÒ䢦ê+©ïŽ ÉÙœW˜-n ÅR™2××Ät˲Wݦ´<gë{†˜.¼Š.›NCVZ½ÍïYß¹ü1Wª0[xë ˜Þ†|[ù-¦XC|gQ÷tHÈèþz‡™å‚U-Òìr¶å¢¯qÔ Ãµ8õ™ï,[_þ·e·T fÖ]Vü^ô]®?á,äYåwbÜr*ºéø–EË£ºcºvÙͲyÙDN€áä¡Dü¤àÛ*wÜ'ÜæÂ—™1£”tšÖ­YIÝqqxïGîÑÅä&w1wܶaàeÈIäÍ î¸©Ÿ¬µrâsx_K*oîH`åKU‡Ëé¾9ݤ;bíj°¶V2¼»hûýÌšð%×aä×µ†M¨Nè7 :Ädü ¿ËæIyêQ abäÚ~3s +†?dúŸø}¢á±”??øÜpì4 оÆ$¨&×e³è€OçVÍ2ív.9v‰ÞÄ1„«ý&ÈÝÔ<%¶#ñ•HÛ­DkZØàH}wÕ<È®ýWï| o ÛÛZ°¶Iød©µÍ˜ e–_ƨÝ< ùlûg™¤n;ðd©‹æbŒÓ5 ÝríÍ𣑘6NRŸŽ Iãl¾!fËT™ ¢¾¬¸²Ü§e4‹Ä #Äd/päd·#u;€û!K\kÜþ 3Xó¦usxZ«ÝW‘PÝH' B"…<Ú™ æ ç”+HüDéÏÇ´Ú>DBµÒÃÝ™*¹œ„œÜÂцU2®Õ#ƵÍ9}EúookI¾:Θá²<›¬Ë<Ç,•‚{%fŸw‚ªæÉjšÑìBÆ“3RIʼnӰVèÖ:ÒžIÝ `N«å[T¬´íažhaÇ™xä¥VÀ[jݶÀúbŒ«q›é6“ú͇TéP<Õ®âQíZ„·×fP#3ZÒÛkÁ·U–ˆSpd©ûý\6šÁ÷É_ÐM³lDÚ¶BV?ÿ¿+Ãe±t4!jÀ3A+à8 ZCÊ”nк‡?§3Øô õõ#Om³ì±»†g[ f™MG6 ø_ó|Ó@¸CŒ¬æFWqß`”±å ö,˾T6ÌE~€ó^–=«zŸ³ÔLÑͦ3l> Ñ¿à9š!m¯f5î±·¹k&mCÀK¥öbºæËâ]3Q¹ ¼Zêk¹CÔGDÖr«~¿ݳ5…×f¾£þ’–Ä–•£½{a.F÷0ð ä3ê}À›Z4'¸ª½µ*ÕEK|'•轜¬žÒëc+†ny+Ì­:¯ Ó²ôrÁ¾Fï!êŒ0rÝaB“¾SïÛU‡oê.EL6o/y«º#Ú;É“À¥Fû˜Y Qª¬Ä¨= œ„,w´£Á¦…—HÿMà-È·6a¾ñvB¨>ßh¶™î+9 >ýÀí¥Ö‡cÌbѶŠ1j·w@–;ŒýtKù®|†åGÆ/ ·f¢²¨–Ãq¯ÓàÓk óÆëŠó‘ï>V-ÏtŠ×Ó—ÉŪi?~ãÙ¶åNLLÌ_Ð÷^m354œJ¿Å8ÏeóW/_ýÔu³¯rWrY3WËýÏçgæMMÏ=‰yÁ#ÀqÈÂþ}cÇzßÀ§|¾a-ýš­žñ:îôk\µtÁ(»´z¢ŸÈ$X£aúï÷ƒßõ¬3ÁçÏfGµ¾­ùC-ø}/)ÜM¿ÿæïÑïz¿ÕTamö>}2ÿà«/,þ£W/™þf;oìr9±rº½ù;££^©2:çÿ߇ŸU/ÝÏÎqÛÈccF~|ñâÕ¥Ñè8ÕØæÖUW¯_]K¦elð•wóBgýJ`-Í¥žÏ=œ`+žW™õ¿—µåÑ–_MKÔ÷ðägõú~-îYod‘=öZ‚â `rAšbs ôV*v FK@²)èå¨2°P¶CéVô‚ñæm¹˜äDʾ…üV†\̼Įz1Z?~ò7¤‹dýì1øö™wiåõ}À_€ü ‰™W_HQÂÄ~ øË91ë[p-Ý]‘²­ü5È¿ÖÛúà¯Cþu©²ˆ~ºó]lfƒÚù à·!;±rèYXá_j©ö›Àß‚ü[Ò¦ÚÝÜ9óH¢$~ø;çL»ÿWÀ?€üJ#_ô[B~ä…Û…Õ®Üu 3fö/¡ö` &¤¶wÁ\2,·ÕÞ)þ  ä®CPL>úE­î«_Ô$}õ]ïà‘®û+ÝsE-uæèK\¬? Í-w,Ô¢}[E+ÞEõ=J-rÓ7vÓ7vá/lK¢\ˆRwñH®<}W:±O´`"ÅÉøs‰¥㳪é©¡e½d¹îP:ÍÞó{ŠÂ'<ùˆ2¿ÇŒ '÷ŸðK}/òåˆ>V~©{þKÝi8„ÄJó i‚¼–Ìx­—*ÏÛâéf™V³)â…Ö²G^éΚÿ á·™ÃF¶èßfÊ›rµ´hðkÜ+¶kÒµÌ3\î¢_ê ¼YýÛžíÅï.ƾÇ<¸†ê[ýþ{éØ ÃX>ÏÀ0\éWæsþM_˜ðs$Œ$¼T$,Þ§}Ý!&³ÇyÂ/¸‡¶^d%C÷˜Yv+Øà 3eÂáYp<ù„2Ç}Œ³I 鋺çÙ¦3”föU°! ŽJÅè*Öâ× ;ÄdjqÔ¯Åç®ÁîM=z8?OK¦W;»¸î0ëÁ”pò¨2ëŒUVt×ȳ#,?‘;iL¼f?Â0}’z$MÜÆ‘K•ôש€kúB>Í&XÙ±WS¡=Š“^QÂ,äì&˜ãÇÐb2æ˜òÍq6b€Á¸ÍMU]ÕC¦û (&w&"ÍXX“ÙâÕ·îfù™Ú%G/ Õü ÓÓ›PÍ_‡î“©æ‡~5ÏKîšgax>1*vaÅ÷Ȭj©ÌÊ:¿ð‘2õÒA²€’íp‡í•Q6²'üJ:^ƒ0²m­øJ×ý¡Æ,xd…ÔPøBC“CkC6ÄßÉÿÁ£*v¥jñ°ÿ7e‰!i¬ #GÕÙAø/A/ó‘_ ¼R+O,Ì·Ž…Dy†±–ü>:mºÙ²žÂˤ?¦×Áë>~—"øFf;Þ0 è1™†y±Rv‘F~¿Ì‚yjŠüŸ‹©µLyd-;ÁòìóØaÆá¦ a$Mµ"ã Öò¿ Ì-|¿ bŽ^;ï¥ý_l·áÂ/° Ò„‘#öŠ/ð¥^àbó Ô‘ñ¿°\òGÛ)ùÝÉä7ò± ±o´‚· ŒD`)¾Q®Åë,é%ÓZ›¼s'°¦³š“C–½<”§m‚*arN™ö´i,ŸŒt.®\ÆïâËCêÛý.=ý±xnÇ&p,Þ¼„î“éFöûã{°ØRÑÉò '6ÙF,5 t÷CV?¥x‡±9êÜÆØp“ÇtV´) /HCÃÝJ,ñõ•Eƒ> ×\„_¤ò„w ßQ~‘ÓŒ­Ð‹\dÃÞŠ?I[±­bø…ª[- ó,ƒáiȧ7Á&mè1›Ì’M"÷´Y®]œM'ÖÏÂ_• =6{,é ˆ&7/{æO&ÍUsÅ1È%KÃs¦l¬¶î›Æšû¦Œ·V1&‡‚4î!án~†×!Œ,Â)¾Úz5>¯ðÜB©Ïðß7}ÁSsiqªèž¬ÊKk¯ÓŽ¡û–SÒ=Ç|qö½¤ ¬¨žŒ(þ8Jì{¸àN˜ÜÚëûôõkØuuw2ÏÉßÌQîuÃÁÝľUQ:(7æ’váòð„‘à Š/tœ7wð¹“êÿD!dC« E¨vnuÅ|Å|@1/Nñh½J”¢x½ Ý!&ÓC‹óx ݯåñ ©Ý0á÷YÃ;>€ü ‰Æ0£E^žf)’Ó-IY¿S=³ƒË(Ï(¿F¢~}’ð}Ž· Ln†A5Äï’:eº&}µ¶¦¡ˆìéñ*.ïè"÷?-Å'å‹}Ÿ7x‡7‰ÖÐ ½¡ÓU÷rr¬–Ñp³üŠÅhÒ¾ †è6<Ýqù5ßâ aßþ„É-e\£wñ•j¹¨—½ [ô‡Åe£l8ºe~N™u×ô‡¿ö^ÞlxIaþoÁ™ðäk„[ÿ7ðßHÔ¶Ä{ÕoBwˆÉôª3õµò1 ]ÏMñeÑÉüDãžHÆÿLw¼ÉBj,—»œÉû¿XrŒÏ&/‰/|7øw¢6>Gkáïd°>Ò¿þ>S{ßÛõßYG/Œ¬ûªÄÈ÷àeç Ï%³Õȶùõ?ÍÄü^âþÞ‚0áÅ(º͘ |÷T.Cæ6Ùdså‚mMŽIÐþ^P%ÌAÎ)Ó>L´#cõ³ùÉgsÏgÄ]Æ?J„‡!Ëå‘ïTÂ(îÿ¨»jßw L®³§ýÏ0U²?DV}¯Mw%WÇ唬9 Ÿ0ó[ÂHF}Eæw}æ)~YŽÎÂkz‘?¨xçNÍ»L—–ù¿×½ õã+6žÍä7ºx3öU~ô à GõûÊ®û¯²d:ô*H"Nn½E'¢ ¯Øå;“Á ­ Ñ«½:-ü¬ “ÛÊÛ¼fñCx‡J´YLú}áš_Y¾°IÞChO©µŒßMb/„às#C¹ªÙ$›z8?#cù'Á›p²ú9ÝÔ£;üJÚ”ÿ*©µò™‰¼OµT ~àoáÿŒ·Y,r¹þJþÿK,Šý0Þᇭ“­Œ½¦ò#PO¸r/4‰åñ§ ;ÄÍZÀøQèþÑDy<¨¯W†«‘˜Ó¦FèU»|R\Åâ€òØòcx‡KÔÔ¶û龜&ô§A‚p;d¹œŸÑOï²ZÁú}‘eº^Ч£›ÄüÊäJ¦bæ&iq2Cë“´˜¡æ?Þa*ü*?ú„É v‡úûiŸÓïO'#]¬x'ó`D&€xO™ÝÆ©xTM“mÖ|÷±LX“@ñ²ýI0&L.Ñ™~^¸¼7Ÿ4^W°ys&Ø/ØÆ’Doþg@0ÜâP_õïºþ,t‡˜L×µÇoêó+ö*C’aZ?*?Uûif´Kå¥È?Êä?Î_gëw¡OJì6ü4¸&·Ùz„1ʘÆwÑ24£Zv C&ÆìÏáÈGÔ{›:¿|ÀÏ1Šì~ŒÕÒͨ5‚Ÿ…î“iýFð \4^‡ËÁ}Îð¿¿‚×Ö4‰>”¾Ñ|â›~7@¿C®©½¨Õ»u®~ˆ×ºóý÷³I–ôòhó<3p™þünúó·~¯VÀ¾ê-xõÖwÐþütœÅlý¢¸rdÀ Ë^.Ï×6Ú¤+çƒOëÙ¾¦~wÏßù¹½òcM†!íë†LÙóªøwbv°Ö>åmÄTdøì¬cX‘Ÿw¨"µ»"ˆG‚Fb&N^Pp'd©’i©uÛ‚n™z+W;âÙG‹¤Ó5BêwGOB5ÒÐÄß™òNrÜyObUÒOn›]4ËË1ª»€{!ïí|­úÁâé4ÈÆH«  q4O€nÏ7DýñSAç ®,’Æ98qK 3Ssól:ŸaÓc¢oÓ£­›ðä{Ê…zšÑ¥®Óã¸6’ïbЮ¬ñÚ3Ê䥯ÝÅG3ì' [¬Ç)wHžéY­†ˆžˆÞ!ÈC·9z†#ˆGÒæö¨Ò!gwåûÇïÅÍÔIˆòQ©@±2D<Š44]Îíé/ýf/H­¥Âÿ äÒ¦³Î»ºç‰><dYb­9öž'¾x < Yªiêëø}Jn¸Ü¶Mýµ¨1ÑgCÀ;ï(Óìgá¸!H'²/5¦„ Hæ^Æíø"á d)G@Ì|¶GžK%’õrŽ4Ðós>ÀWøU:…à8Å×ÒÉÊê飂èyQ##òûBþPùeÒŒ±EÝ5ŠÌï®Ð,„™c(X«¢o^*ŽîarZ™nŠ:XÓÅAª2nw¯_­‹²L&[¥3‘¶”uµže–"LƒË,L~o÷+:xAYŸÌ%³À>«êeÏŸLûÿTôe¢SÓ Ó$_æÆyãÜdpó†G¯`e‚ºˆÞ§íè¦oSYÔ|J:ÃßO·¬5Š‘Yª ßÑ´ïCøä”ßíÃà2uî°ÓQD:zXÒËkÌgO—²Ð4(¢Œ Óó›‹ÿeÃ(ºái˜DšÍÞi@kÈõ´ ŽÚhq“5úNw¥µ–Zw. ·à˜¯¶¿ÎoÆäy3 a/^à³÷Κo³|€åd"³s0WÂd¹$‰WÖ(ð2d)×L¼²ÒZÝ KkI¸b') vÅ\¦1ß[ÑË,—á]Ñ4¿ÖZ´¹·«Àç¥bô8>˜ã)G#Å[cŸOñCêçëgëÃ1A¶ÃA&å1—6º-îuòÙp|ùòëÌ×6Â}ÒŸŽe÷íUÝ)²;Uç¥]bnuyÙ ËAþ@=HFBѹì%JÛ—çUäVtÇ8(‰‰è¤f /C¨á,6(ä"jŸA~ÖùAa ÖâóD¬Tæèà8 Pýèà O=<µƒhwGÜöhë2ä·«»#u;€!”›¶7ű©2]þìØ¯Í]ó•òVí×,Å´LFdùQª¥ïx •Yàõ—^(mås¹…¸,?qIƒ‰Þ5à#ȫʭ Ægå­!?Vnn;#™©D;bòø!dõ¤Køl4L’E{èÏÓÁ´ˆ3d {Ba„‘Å„ Ãyå"­î Ç|v˜ ÙëÃºà ºü ÞOÑÖ³b»Lë“”û^¾K` ïCøä”ßí.›_1VWtÇ«¥o.ÐOn€Bgn‰²U¸üÞÞ–#‡x$ɰ'¼ ùnç;“i¨±ÃÉ4:éD;“Û¼3éEj·FW¨”xÏÁÆ#ÉHDër]á,dõe£÷YJw]Ã%¶‘3²aÇá­ÚÔy¼2íªù<¶É¢éO•ŒŠ^.¬‰¾OÄyv’.-‰Ó¢üÖï­F9šâ%xŸz'èf¢?øÿ‚ºÐúò3o¢¯3ƒW |ùòëì |4°B<¦(­YP!Ü y¯2­ëÑ‹+Vt—¹fÉ´tÇô(‡"ú3~Ÿiø¥¢ß,<›™Â™K#Wtp§¾KK"£×¼^äãfÝ~‰xh:Qã Ëi0%Þ]ƒ\ƒhn¡Ø\õq/v/C˜\Þ¬¹ÅªGýOÙöjUÀR-; Lð¥B¡ZªMMè;:[]±ý!ˆçâK ¿WÄøyFå.-‰ŒÊæ—x™6ƒL¹¶oUþ{ðüf~e¹þŒô~O[Xn#‘Þ';›Ð,¾Kæç­–“ÈɧÑèKÐÚ­ÉŒÑO…ç_ŠÐP›ÃG?¾ïû_TC¾Ó,Š×n~+Ú†[¿# '6xØ}Íò Ìѽª#ì•>D9FœÅ9Å|‹«:£1è†ÂóÞG Fx ò)ioèT+Ÿ6™wFPíÎMÔ9‹L\É;ÁfƒýÆé6kKèI‡ I—PbQ¿D' Ìiµp·„º­ØíKR7 ÌCÎ+WØ5– 7ü¯¤£žè¢á·¹ ÚÖ;ªÌžˆöðSÈêûL[˜7"Hä)Œ0<ê´eó­Šèlî…,å0ŠY©Û „<¨\-÷ùÍw#y¾8·Öcèåæ…“,kŒx52z‹}À!«‡Ììf*‘W_†[ÅÞÚyE÷S¥B™[k‰¼"mÀ4ä´r¥åZ.¾5„;5,ˆš±=üä¯)³~BW[QD%¸©—<8Løƒ ‚Q›-Ål"¨\8™7$¸ºH/ð+𝍠±Åµ`}¦õ¢cdÍ·Åb«ðÈ™ä%øR;‚œ¤–忎 ¡HPqôBÒ„{„mÓ/ò)/-ا½Àƒ¶½ m;‘»À«è*°,{•®¾­ÙZ™N Z´á9¦?kú‡ÀÑñ›ßÂD ŒX>¬n`ƒH/nW½EÇÐ_ŠOxžÃ:!ËíÙY:°³I¶°äè…7_óå‘…EÝyóµ·üƒ·oæŒM cŠ´Ð ÕjGÞ󈊭m1²óP; ëüÚ©ÏG"m<àN”ËWP _Ñ64¤GQ« Í)ÿö w]ß„.âÛ·lÁ_¼1'}óí'o¼‘u_øZÊí÷¾ #œ‡œäY“cû*ʃpÏšúçL謉ÄÙ¬¯¡ÕϚęÚS6ÿÉX³]~ËúˆL‹°º©šé?Ë ZÛ‡°°µ†n®ÝÖö!ŠäÃÆ6Ýikû–"E£Ïèd]µ\4›í-‹­¬Ulÿ×ä15e»6š {‘¡¼G!KFj[º P¢Ú–n\ûÆt¶àOÂW|'—-ÜôÛ†Y"|óøm*—É‹v°D¸xòùö›<©ë^€,w&EÉäI}&‚xiœZw¹½Ä±ÈÁ÷ÚÅR.ÿ†&u00©…eƒ}þâM¸XñVЊˆã àä±ö[©;‡,wzNÉŠHýÅâQ¤ÑÃ÷©|‚ª&TÛ>ØÈhv*˜ 1Û<¨)ÍšÉ~ÁCÕg²=2Û'Dá0ð8äã‰WÑ@}áÑ÷˜Vdji˜ƒœëH-æµÚõeªŽþ[F¸®½Ñ¢CV¦>Ç€_‡üuéúÔb´Ç$¸%¥:°¹ÐùÔ#ˆ§Ó4^ A„(ï…54%Ú,©V*†³hû~¬¨}|D $ÞÞ·=—YV$N€G!'—¼/®™ß#<Y*w_ãVK-GÑXò§…´œ-¼6G”ŽssŸNè¨éÛ38ÿ<œkGVxØ…G0X$Hï>`²TG.æ’ºnàd)7T­"õãÄ“ðˆB²ˆ*'L.„äE]ú-ì•ᬅñ´Lç*ÅͯÑÙØHQ_c–¾®Þ×ÂMx³4ù+Z¢‹œÓj›bНtöA™Ùƒ „,5ØÐ˜ÆÔæ$ê"ÉÀqÈR;;bfDê/BV06#R)‚xiHÅ99¨kÂïÌ8'b¶xPëTœ“ÁMŽs" ‡ß±qNDn˜Ó:çDÚNÿÈÄ9Ù1à×µÇ9‘R¸‰qN¤¾ÁMŠsrÑ BüŽˆsò@„pò@âí½ïù‹7coÅ׉ÕàqÈR½‘PC÷ð=ÂO(WT"‘NDé$p òXçM¹Šº1SžÒ¼‚êWÊ462Þ\h¼õ«àçuAWÁ¯E§ôľ¦jOòÖæ÷”Ôu¯BÞ„[›Iýµâé4U@ˆ›dѯ¡úµ2 © ´×°ƒ×ø¹[“]Â~ú>e˜ô;¿Ïª¾ÚH¶i{&h Bº–:Ãx8¯! åô˜p½G/ð)ä§Êﳇ=( š7{”âT8Öl »Vû>Ç„»-¹=âtx ²T”¯ÐˆKÚöC–›uD?‡…Õ¶¾(%¨°áÀ'Ÿ(¿ÈšR/7Å7ò”ÀtO æ ‘:AæŸÃt/B–[Ø0àÄI5-†_¸(j“Dqøòã¶Û$i»|Y½je¢ÐˆÁSàŸãÁp®§{~;7 ¢¶ò5Lؾùœ?¶Œ‹-Äé°sçVÞà{„É[¹(ò¬´K19x›Ó7‹šq>ü2ä/+sßÍ ,löß» Ü ywâ–,l²¾µÊ7VÇÞÒÎÒëT.3ÍwPG„÷”ÞjH8ªu,^ä-Þ•09×ùi©ÏG0™x‘kïê7P`ßH¶ð˜ oBuˆmÛAOl•¨ö;¸ƒJ꺛¸ƒJêÏFð;iõ»a„mÝAO`•Hžvp•Ônâ*©¿ÁMÜAýÔ5áwæ*1ÛìÜê÷Dp“wP‰Âaàwì*‘æ´Ní ’¶À?2;¨Dv øu­Ã;¨¤Tnâ*©/Fp“vPÿDˆß;¨ß "„oïÛžË̸‰Ó`çfÜß‹ï~‡eŠ JÇ9mÓ2EüqÔtˆí™I|ô<œCGBæÙœ´X°Œ%/éGš36¶˜m/8æòŠø'½hpòbûHR× ,@Þ„î“Ô#¸IÝç÷ÁVB”¶º–Z·/åj‰î¼i•Qà1ô}¿²Å+Á÷ÃBÄ“Pô-à:šÃk¿~`s àðÒ!JïyúUéü ô!&sø~: n/~j<~RÔÒ]áý±?:"Üy¿JݸÙâ†×a¿{.br x²TXRL“ „Ôž„|R¹Šö9?‚ƒ»¶øö%±9ÌBÎ&V=Ûëî L-]Þ„|³3µ4 ¼ùV`]Ü!& ·w!ßM¬jzøÒ›L­| øò“ÎÔÊ ð)ä§ÊµÒÇ–L:Q.ÚÙ‹/¿ Y=Uô¡ðœ~aÅv}ï\òŽÏ êšã!ÈR+8-µn[à©bF Òõ'µM—I}wÕÆåýïJ'¶Áü°,Ý…˜Ð îÂ<~Ub2ÕsfxÞ,±¢î鼃+ØåW†ãQh­ážƒ0Õ?z„g Kíµ4P-šîSÇ^~²ø)»1B9ܲ<àgž_昪°I–Ë^»–a—.e˜e”—ý¡u’å®fØ”/äcwÜb_æGñ„³g•_æÛð?> å|i¤\†UVL.¿Â6á È7”_áîÆ¯°äŸUra-x Šã0|ññó‡3ìKôËì•´ð«üiÐ'¼ YnH~:ì;Ì F6æÿ&Åê'ÎôÇÁŽpòð&ô?Ý!¶¹[åñ“Ðý“‰ò8;̦uËb†î¸Óõi©/sWìUænÕïÁþ ž…¬¾_:í³É“‘q¶©Àè2ÔézŽmùMÂ2]/Å/jæÖï·7brh:?”7Ã? ö„Ó§•ßäJÅŸª¤èu¨—]6ÊŬ]ñÜIþ+¶c~>ùlîùL†½žòì _*“aÿS`Lx²Ô‰Eãýièq³ÑŸƒî?—(ŒßˆìR…îÓl¸¬hTüº¥dRÔ¨hP¦ü3 I¨twå§¾í‹6¥ZKÊ„#l.›Ëå%,ógñ*„O!?U~­Ó¼]Õk€šØx:üµŠ1yÎ:'Îóσáiȧ•yÞQ,~‰ÿ Oxòõ‘Ÿ"±Ý%^°­ÉsŽQ”(ò¿v„›9òÿt‡˜ì*wÿ‚ñZ/U,£ÕïCÝ_RU­6—$õÝ”ŸK*ÑøË(•7¹×xeÙ¼n•ìr†Ýϲ;U祷,Çð[_ÂæxrrÇK{ôªßôÅ]ÀÕO˜ ש?A< ÕP/_w7—Iý-¸¯û¯àûÛL¨Rú^k”8æ'?™k8tÜÈïyþ"ŒúQl]J¸£½{a.F÷0ð dõuòÓljÑpœ ?t}ð˦R]´Ì‚hU½÷€3g”iblÅÐ-o¥aÔJý¨3B¥Ý²–žÛ©÷íªSÖ- ž¨?þóö’·ª;¢½‘< ¼Yj!¾õDpÁ(UVbÔNBžT®ÀnaGôßÞ‚|Kµ™_‚vC–›¶²™î+9 >ýÀí·'h‹¶ÕÊË'u[€; «ïlîb©|.aù‘ñK­™¨ì†|XšR7>½¶0o¼®8›î¤S̸ž¾lL.VM«øñ϶-wbbb®ø‚¾÷¢h›©¡áüPú-þÀ|.›¿zyüÊè§®›}•»’Ëšù¸Zî>?3÷hjzîIÌ ŽCöè;Öû>íàó-ûP›­Ìs«g¼ö«¥ FÙ…*é0díÿëà¿ß~׳Ο?›AJmÍjÁï{Iánúý7~×û­¦¢k³÷é“ù_-xaÉð½zÉô7+Øy£`—ËÁ(x3øÎöæïŒŽz¥Êèœÿ~V½t??:Çm#?nŒùñÅ‹W—F£ãTc›[W]½~u-™–±ÁWÞÍ õ+u‚µ4?–z>÷p‚­x^ebtÔÿ^Öv–G[~5-QßÀgŸÕëû¸g½‘EöÐí"¯%(¾ ¤)nin$T쌖€&dS†QËQe`¡l÷Tô‚ñFô˜‘²o!¿•!3/±«^ŒÖð~€o@þ†t‘¬Ÿ=ß>ó.M@¢¼Âèð_€ü ‰™W_HQÂÄBçå—!ÿrb&Ö·àZº»"e[ÿøk­#¶õ+À_‡üëReýtç»ØÌµóÀoCþvbåг°Â¿ÔRí7¿ù·¤Mµ»¹sæDIü6ðw ÿΙvÿ¯€ù”F¾è·„üÈ · «…]™°fö/¡ö` &¤¶wÁ\2,·U\*)þ  ä®CPL½ëE­î«_Ô$}õ]ïà‘®û+ÝsE-uæèK\¬? Í-{\}ÙBñÏ£êþ&Pj›¾±›¾± a[eB”º#ˆGqâ+LãoáBTÚŸom?ët†ÿýmèÓ’ªúÝýsÁ½¨ÕûÁu®~Z¶¿‚³½Ñ’^å¡.Ù°TËô7ùtõÖïÕJ5œ{_Û6*&ÅZK J½À]w)L¿÷9üÙ—YΟzÍÿ´o¦\°)¬^šõ‰úÔï~ïÂÿšú™’š¨ß”ª– Hkó8µiËz)nÀ ŸÝu «ûm‡º§è"À@ý‘ Ñò`™îfåZõÖ}À½÷Êðj©uÛ‚n™z«˜¦n”á äÁÎWKè ‡ˆ'¡j9P¯–,ÿ¿%§f¤ï\C[P+„Ç!ï@ mA­¶&êT ‘ú“Ä“P Fk(¸D^°z¶¢J@>ÒêÙŠ*!< ùh竇Ô‹ ž„ªgWÅ1Ëžd×ÖƒÚ Üyj&’@‹Ÿjî °Ó5CêFOB5Óÿ‘d­lCMlÃ÷ûl{­„ƒ0a‹(¼NÕ =ƒÄ“P­ì®Vü*1$«¦ÕÑ Ãí“5\Áª ½ñ^­eÎÂNU ©?A< Uäl%’½‚»¯À¶×Iê0â·vºNÐ;ÔO§iô£BlZ\4nU:ÛQ"!6¥7‘,•«ÓvÙŸ¼Víª;òŒÂÀæ̱™Wt¥Æ}Óõlgwt6k¾6Šì©]©Z<*J”}äÖy~CL—ÖpCŒ²I{¦gµš n‡®Ê•¨Ty; ¨!žNÓW›BT3éwÎ GgwëG±TO{_;É*H*Òñ)v‚r“öØÃHDæ ðäS‰5¡Ø¼#ø"!ƒÌ”+éeà«Rܼg³e£Ìs}![‚+jGDí4pò¤2ÅL:áÓØ a¤çKÊ ‚ ‰š}ix²ÔüQÌ„èK;Ç ËÍL(ËØ“À`‚d­¾Eµ¥;†¨ ÑwޝB–Ÿ(>dÌ­sÉ,BøZËOyêf™"°)ÛÁÇÛ•Èx[fTÅHñìeƒî³}£È|G{ùaoÄ“m¹¶ï+èÅ¢I]¬n1Ý ²ân–w¿n­1Sm„ù5´d;lÉô|ŸcYôñƒ‰¾ÑMª#òiF<£T±ÿejeo–=£ìšÞ+ù–m¹õDcáè"úÑ›7!ßT~ñÞHºV¼=TËù·j–}R‚Üðä俤= –Y~£¶x²Ô”T¬w$u[€‡ ËMA£Ÿæ‚vh:̤#Æ%¿‡ Ž3ømд¬ªëш[¤3 Œ5ñî…ØÞƒ|O™5cÌð˜n‡f®dØ<Ž^\Lg˜k'P,Åqç¥K“u^Z™÷¾WærÙð<#5CJ‹ÉÄìðäkí7:Rw8yB½>KHú¯o@¾¡Ì#ÏØcÛ£aG÷‚¼ÔÃû=»Y^¢4îACð\ÃZÊ03+~2²bųÏwi Ùç%i‰q²Û5ƒkžƒÞ,ÍWf±ª[n†Ú¯ïãTKë¼Üãçé¾a¿¢+süI¼ßôE_(rð‡'4ì Pñ…3vÇpýÁÔ­©äX–½ú>´ÞPàq=ÞGYÁP›ñ;×&»äOø°Ìa¼ácÈ•ßé<#Îóü(èüƒùÈ‹•ô5ª·Z©X¦!ž¶ð8ž‡|>±®`ç‚_ ǬiÅLƱŸ´™+%¤¾;‚›´Rr %¢ÚJÉ;œ&"›À ®þ¬¯F¤èÿ2,›ÍЧk‰ìwb-?–ÇIèQyŶeê;Ä]ÄÕ)-p* !ÊðkÍë‹£ 6àuxR[—–Y±ãé]R#Ä(îFdÕ…ز'‘è‘X0àyÈR}pã*{$«£7“-Øþøæ=Îh,ضStIvÅé3­æãª-³7Љ&¥ SSùùjD¾ëËt7Ž8çÓàI8yD™óx„sIågÜÃä™/ £ÂKØÿMeOªß[ÂqÈãßAý †ï&ßßô~Aì̤A–Z íl"‰Äø0Ú¥IÆT5¡@g6_ßw¼P´¹•‰7 ¢xxòmeªÑŒ¹º7gº/¿åë8‘•z¢3(aÂs%_aZ¤'bY:éOŒ&ÙìÔÃyÙVþضÈÿÙ1ïæ,t‡Ø驪G_ ¶iZ´è+¹ŽF®÷;‡ï„œÜrÞÍ9Ta‹„’ÓŸz-iÀÄã0Af‰N×G‚õ“‚¡„ˆgs†ÈìB–2E&’H+ºI h4{ÈhÌ û4ÊŽ]·¢³8 y8qÛÙ„° ÖUFC¸²Tø@’DdöA–jü¢”†ÑFV¾ (— ¶ñ2ï2ÜÊtND÷ð>äû‰•×¶…ª«/·Z=Àp¡m“–»Î£U„ˆ§Ó4. BTó-®¨Ò¡\t;#ˆG±TÄwI#ÓÑvIãz¿­Ý 1ê¶È'#Ø÷½¯ZaDc ‚x+l'¹ù³¶#surÕ•ÕêÁr&$·ÖÛáeQæ„Ç!'w´'vÃÔ힀¬~²çÂH0e˜ p Â$tÚ)¯1Ç^¥-+Q“"¢'÷!K „ïó%¸Ã1x\Jdgvƒݷ0Æ•oñðu# \-•]þõ‚.»2 ÅÛt%ò6·èmVé[C/¬DÞ†-ªãuŦ »”] uüÛ,/ñMõªp•ä@œðä[Ê/qŒ^"U¢k¶)þ)ë+èeÚK$ÙŠîà$Ôè»O‰6v"2†,å>‹5vRwxòåŠæÁ[e»<¢/‘ ñè‘ZûISsµ("øðdõ(’Y²(Ç(Ù¯L?Û`ºè±x@+چ뿟Xö*ýVô]Æ`p„³g•ßåRð.#a«-³m?§kÓÈ+ÝY r¹ú’©Sž(õÈâ5O3Û "õ>¢þL|辄‘#)›?t¡àaÈRS,±ÖLêúG Q® ÝáunS¨‰oqEƒ}Py‰Q= œ…¬Þî·¢ÑÀæÙœ®eû†ß>ËàGií=lÚ¼¥Ð ¹dE½Ì*îm"M"ÁÁ{’ÞÆ,ãM°™^yÉ,ùc e…a2’XÍô…GQe*†ÃãcR»-âƒ!¾¡r4@Õé‹èÞ(©OGOÂBÌÞ()=Ì@V=žÂ‘ú‘âIbŒiHÑä‚”?‡"0}1ð_ô2ƒUãT}ç;³<¼S·ÒÜ]}©Èô-Á1†N¦­z«>J>ó'¢™À¥Ž~’ñßËZ ^®ìKá4∾H$-Á³É2CËh'lÃÐR;–.ÚƒŸÀ-¤®¸ÉC Q8L~hÙ>§T5 ˜†,Õ½ŠWÍQàyÈê)^†Ãô_yJ]f1›ú´ ùiŠÑ>nA/A~¤Lô.wï«~O$bsqêÅwÃefVXѽà»Ä¦ëQ ÚzMïS¶EßäýÀp8Fü{Å7ÉÑ›ìr¡ê84@pCt#ã„(Ü´ð‚_$^ôè‹"kñSˆ‘9ƒÚ)ĘvbzF©…Zé·@í–úÓi„Ôo žŽ×Â#”ü#ÕZØð,è/— ÓIìîƒ,5Òñ}PµÞ¤†xë-Mm~ýR–=(Çp«mŒ‹VïcT)a²¼¯¿Î‘NÙN|rÀ«“»8#v$uç× K-¸5ZwÄJÆ-jNDdx²úÂ3›¹Ý2j{ªŽA§?_ÕŽ˜‹@|µ\rdf¡˜Ø,¡pm"rx ²Tü¸˜-‘º,ð2äËê=¸ðxNú¯#‘ÇŠþH ñ(Vá­ÈÖ_¹Zâ©üî¹¶ŽÎ‚dµ]š²J‰¾Ä¨sÂ[o)¿„̶ßW ý+h ÉnûIL%*;€»!KMÄR×€,å]4¦ÿ¡@1³°‚{ׂl_M—5eûžÄ~ß#¼ Y}mí|¦&ã[—XÉÐ:m…>xeXkƒáWah„j‘ͪæÿ5hÿZ[Ì[Ћ6€¯Á迆°C“t8ÅÀ×`ô„{!ïM`ò!±åM!Ëí=´®–ÆÁ «åpòPgªåp²\çè§CáùZvŠ‚íP£¶ýn‰‚*…÷ˆ‰ßà dõsœG©QÏ?˜Ë°ù™|Ê4ÿ€µÈŠÚÔ‡%p ïÈ:º™'"r8¹öDꎇ!'aOeúRÉÐËõ‹ûêㄨ=}ú0Q{â‡ØpŠY¦Ö /ÍìC(F“ 2þVE˜ü!¶~ÓÍ–õ”7“54â3¼9¹#©±†FêF€7 «ŸIíç÷¡ú†&jODc8ysΙ/À6Ûj;y l'Äg°ƒ¡v¤®¸É¡vDáðˆ–t¨]X3sR5À)ÈRñÔâ5s˜†œV®™mÙª9…<úÒh.oj ¹ÌÄ«&¼¥ÕR:oVçJ4nïCV߸é\?j—cû:Wñ&L|v;ع’º`rëK)é2r 75 /"?¤Šl¯Ì"RϦ³5x8Y.@@âÔ)½¼ Y})Ex•“ÔÏD"³Ôž¦§>˜™`óÕJÅv<^e¸e-ØYv…w ?A+#< ùlb-Nr …ÈŒÇ µ¿¹‘ºsÀqÈêiDö¥©•¯©†‚K¶O‹ºœÕj‰‰‰ï|¼€vCîN°^böŸh·` Ônâþ©ßÁÍÚú:Jþ몵°ñ­`ÁšÜú»5Õ[Áv«VÑØA<Êè»ì7…»M‚”uÔ(aâVÍ¢hgLD.;·Jê²ÿ?öÞ¾,½IIEI©“:Ÿ¨ @ðDI”(‰:(Q­k$õôÌ4{zŠ@‘¬€B£ ¤8==3¾ï$¶Çq'qâ\vœÃ™‰'vâd&v.oìØëØÞ$ÎÆ96ÇfÇ›ÄÉf³ñl}ïý (B(ªß ½¿ÕLõÿñû×û¾wï{À‰„©¸Õ^ìûÑ‘?Ã\NCVÙÙl#*w¯AVÊ["ošÀûõÔˇ“þÀ‡jóP½8c^X•£ù‹3*.é£ùÞAêz€ýõÛ܉jÅÍc(gÁ±ë¯Ì¨Þ!UËå$íQÄyx²~–©3ÈÌéxáuÁìÊw)ýfÐ_=Çüjõº IÂY8aäA §k8<¸]NAž2è1ÉeIÝ8ð*ä¬éº4ðäkú‘bd<±¸¼Yß‘'É‘+Å ]j–·—í¼8b‹lЇtü깋Ë«z¸tEÌÁ— #I”[>Ö¶¡›°…3žO%Ä,ÇN´uÆCê7D°]3ž”ü‚®Öñ¼2ƒÎzôz€Z=§µM×jô wE¦ÕöE&=:ó›EØPï¦ä†ù͸ eGJÄåðd¥]u¹.ƒÔ C>ÞÎ)9<ÒÞ)Q™^‚|©5¦NBÖï2ŒÝ‘;X7­ÛÄç2ð>dý©¿ì&I£Pá9"­fjí¢Fôó`l-ŸÑaIøÇ Èú3zÕéš„æ§kjíqéî„Ü‚m&R×ÜY¿Ã˜ ½w C!?%¢°yæ“j`ö¼½è‹A#½…IÔw#G5_'Ê·Hêúì­øÆšë2Â) NÑ)T "GªìK½·$|ù‘öKÝ‘ÁbÿO˜HL2"îã.zKn%Ÿ£lTºxŽw Œ$¥iùp2Ý„-ÔÓ?ì‚Ú6êIý†¶kP_@Ét­°î þUÉ×c×ÜyGûÆôü¢ñ|HÆôE˜Ðü˜~™P¶+%*G€C‡šß•’ºAà1Èúñ¹Cz"r˜œiœ^„Ü‚¤:¤nx ²ÒLÂðžøL_ƒ¬Ÿ|¾5CzWøÇöéK`@h~H¯Ô •>àäæû:©ëje#[SäGôv1'=–'Ò»€÷ ë?¢=–¯]vÀïX“}­wá‘„¬?E9ϯbȯX«t‘-–m‹j6ÏÞ[Ï ÖüB“²»"]ÍË Kx²R€æÑƒnÂÜiÐÕµm¸“ú l×ÀÝGÉûºVX?£å?q¼çW»± ~.ƽºv#{"ˆçC2v¯À‚„æÇîݰ¢l¿IlŽO@>Ñü~“Ô OB>ÙÎá;9ƒ<ÖÞá;Q¹¼ ¹ÒHÝ8ð dýiúÃwâ3|ùáïáû²ð Ží¾¯€¡ùá»jKDlú€»!ïn¾»“ºàÈúF²Öåœl0Rô(h£îf ÜP0Ý^àUÈWMšn¸ØNÔàÈŒYnk«Há5àCÈúM‚ô¸ƒÔ?Š Có¨y;ë(bM$¡óBµÖLªX’OB.ó Ô[HÇÏÂK_¥oÝx!<„£¹y?]ïκ‚¼»H×¹òoE6:26ÔÒàݤØUð#< Y<±»>é­JžÒOƒánÈJíZÃ*»­-›šb£²M.Q:<¹÷‘º=À$dý{N…a© NÙóëkF‘nA¦{ƒe=‹H¦€ ëWîð¢6åô·ïÁ• s«-b9CÅ©ˆÐ pòPóŠÔ탬¿!З◾õÜ.2ùîšÈŽC7f¤]NÑñîÕµT /ïCVŠs‰±VÌÍͤî,ðd¥!ƒæÉÒÿø²~í–_êùŒ0/ÇNÈͳàF+%]PÛÆ7R¿!‚íZp{%ÿ¾®Ö}ÕURëÑëꇿöëZhìŠà‡+üõ³°aÂ_¹ e»FârØÂðWR7üP„¿‘À‘ć"ü•¨L/%ZþJêF¦ðWâsø;-üõsÂ'8¶±íó`@Ø„ðW¥vˆ¸ô[þJêz€æÂ_Ï|¥6¤ŽU°Ýnà5È׌Ùns¸ £Àjø²¹å¶Ø!;©»|¹ ‹m¤þQñhwf´»ï« 4¾N˜–c/ä^s™J0 Qî†Ü‚¥tR·¸²þRú%±”ã†uZ¬è¼´ºùò’¢¬gí½ÀGõ=k'¢À57¿^E1d$?=úè&lá$•æ]PÛÆI*©ßÁvMR¿%ÿºVXw’úê ×ã×€<оY*ÑØA<’Yê7Á€„æg©›ž( ‰ÌàqÈJóE¹îƒÔ O@V E15M%"'£GÛ;M%*€“•æ‹ò¦^†¬ŠbxšJ|®@Ö_FnÍ4õ›…Oplÿ4õ[À€Ðü4U±!"2}À]•&ŒrÞNêz€»!ëwÍ !–{€S§ŒY®§lgÝe»,=K%:·€÷!·`c‰Ô]>€l`cIzÛ˜ô?>J˜ÚXÒ˜¦~«0.ÇÉ4•¨ [8M%u[¿§©D{/ðQâC4Mý6xa;§©ßÝ„-œ¦Ò£ jÛ8M%õ"Ø®iêw ä¿C× ë^Ⱥn9çÑ4U6òˆõõ/œÑµÑØA<švëÕ:˜ JÒùN˜ì;Q2 u¶¬µ¾ß#쇬´÷-7œ u[€ ÒÕV ¾ÎF¸²¹Ë™6‰º$Û‹™£À“O6¿'u€§ «]Õý´ƒtÃ$Èc†éP©,ç#ˆ§•e8YF»Aaå†\j-“˜[¹!*ÓÀ[oµ¦š\Þ†¬EBO 7²½ј>„¬¿‰Èï¥ „¿¼p“^gÙ†_–'ùß%|‚ã5È×Ìy—Ê¥ïß…²$œ…<Û|ï"u×÷ ëŸ —;‘ú×"ˆG“Æa¾ Xtï"-Ù¤™Y̤n¤ÿ]pÂÛë"nÉz ñ8A<ÍöRwx²Òh¡îP‰C9pKe{XÜ ìÐ1Çó­b6˜s[~Ùy!¿BKOïCÖ‚º‹Z¯v56Ò<ÔçÙ>µÖóÄ É9;hÆ NQºéýÝp:»õ/Ÿºd¨+íê-Gáχç-Êfœu %·hG2W_ÌJ¿ÌïÁ Þ¬ŸvùŽ\…ÑôE–ôl›YåÅ ](#[å¿ľ~Þ!ÐT•_­òß:âIÕº'WåIž‚¬?RJeØÕ :,X•¼Ÿf·+Ù¼“£[UC“õ)â—ÎBVêC×ðäWó­Ïå­åNß"45¯|B<ŽFO³Ý‰ÔAÒ6S§ôl¤ÿð8dµ¨j2G"F{Ìl¤ôðdý:%=ðúT“ñhÒ8EU¦v¿0ï$*EÞ {¬lÓElüZI²ß‹:ó½(³å2 ëOÃ3ÔþŠS|:ûDÜ9à$d“û1w8º ð2ää˜ø^ø áÈrL0~9uÑϯ2Ëó‚FVÖŸ‰ÏðaÂTŽ • :¿%ÜYm¿‘“ö-8/‚:Tr=‡×*r½ÀAȃ½&f}‰ÔmÖF?½TÛ³«ôޱ_Yró6³KÁà¢àdù†^Å£Ëye‹h>…üT›þ¬ð‡t_;ÏGFñî‘ù­¢ÙËvy•ÍçÝìóà=f‚ºÇo²Í:þjšþ•ì+}<“ðdýÝvž :Jß}b—eº=µìêyó7bn1¨÷µƒÞÕÓÕ²/õ{ñ"„ ?Ò~)¾£rÐûûAÐüNŒÆAïïÇ¿­Àí@LßAê¶÷CÖoäÇß*LxòÁVÿHé!àÈGZ?þ#õ,‚x4i¨Æ°ý>ÔB31l“ä‚棑"w 8 y¸)¼Ò×êï˜å õbñ{ëQß <Y9ø¥ßÜÌ@VÚ7“kBH]pòˆ¶Û.Øþ’› ¦(ïVœ²íEû0éÅGâ6 |ÙD ›l¥úý¨H„; š(&š†Â º ¶Ñ4¤~CÛMóPò@× ëFÓÄ.)®G«'‚xäiq:£ºÖ"[#ˆGÓZ›xÐ¥¬Å~Vúü½C ¡aÛFÚ¼” É%*Û€ý[CCêº Œ§óŽÇ/PQ(…À˜O/Ût£ói%ë Ï@VºaTÞ:iÈimëôGVìh'È’­ÊDg8Y-ª=ú)_Y¬Û‘âûOkv}¤ûê?(£ÞÊbôÓ›á0¸V”zûÉfÛýÍÍ¢7ÌÙïc´öY5êB\svQZØÌ³ýè4¨"Ýæü ”2áh¢º¦£ÉñèÚ N½#ŽPó6ä?—¤ù'á„G!+Å-­ëZq§ÝãüŠèœŠ ž&ûi&!ëGðÈ'â%ý)àiȧµy ¢í,¦ù*Dd›\’ÞŸ‚¥ !š÷GÒgˆÎ‘âi²Ï¶ý@™˜[¾R}&G)È©ö×g¢3A<-°Íià(äQmÛlRŠ!cÀ Èm™mþ0 Khd¶ÙØE ’.Bt¶DO“]„´möBVËýôà)©6x®†!)ÝÇN̶OAÖ_OUqœ¹ĈãtÆ8Ρ9¯Rxû½wØ\0·¢!éûláíB2÷ö{Î;ïËŽOŽDxòIÊœjW½Ÿˆ¡Ó}óу·Æb*‚x4Í¿;¸NÁœŽ MIþ X³¡XÎ̽é¤ßyKÖŒÞF˜„¬40“j¨l6Bk ²¾©:Ó²-ÀŸ†}Ï@VÚ [»9Çcð‚Y¾ôãGaE…êH(¶Ôë¶›D—ô”Å÷wCVJ£É»¯§}ÀC5Ý{I[/PkŶ®†‹I²Çì¢_vj«tuGÞd}œXÎ@žÑf;&¯Ãɨ€©Ã×K¯õÊV„?ç'¬4ª]w$µí3ŸñÞvØ0óÞ~ç3Ÿ‘ô=¢v8 yºé¾GÚF7 ßhb'·Ž}nF&õÖâëN©ÎW|¦sÊíÏÂ-õÖâÍlAÿYØ3Īvm¬6nˆÔ]Þ„¬oÇ.ùCÐDàp²~+%÷çà „; Ú!&‘Bɺ ¶qˆ¤~CÛ‡øçQò^× ëÇ!®(Ðê‰ Å!Є®µˆÆÖ¶3ñÇ`¥Ãß?qˆDe°…qˆ¤®8h{âÁÛ?LqˆÄgØÂ8DRwh.qO]¢ýÂ/[Ò'ˆÓ0ðdý±ÝAqÌ +fu»º’ ÿ‚pŽ!«FŠŸ®¨ÌOÿœˆðd¥Õ¼Æ[¸+o;ï(0: †<Üôi;Ì@Îð"ÄcTcFª)V¤ÇzÄlx²~:§äç·­ìRµ.2·d—y [Å= ´÷3œ jj01õ#KÉŽôIÛ/¢|õµÃH}UY?þ´šsSJDGTzÛ!ooþ„†ÔmöAîÓ¶É¥jX[$ž*ÇæW«1HÕ¸+~\8œ•JGÇ| ß#¼ Y?{ÒHÛ㯸µÚ’¬†OÍ‹WÉÉzß_„ÇýÅ„¡Åšµ#Ÿ ‚­Œ#ë‚ÄgxòÕæ» ©^ƒ|MÛ†™UÌɺQ¸¼ùV[Z¨‡_6!¤;ô‘¸.:ÖGˆO/°…!ݤn#Ð\H÷æ´Ú¶±Ø <Y}X÷ÒIfGÅ4Ç€)ȩ֘æð4dýý»^ê:‚á’Â Žˆœž‡¬”f·¡uzy`j’ºø”Š…®g +-ÚÉ[hx²~V>ù`2Ò8 yV›D|ꜼU¦8sUDÒÊg)þ²°:G#ˆšù‰G2‚ÊÙ¼ä¼†Ô S•š“º=gsœêí97ì óvqÑ_J®HWfâ3œ„Ü‚;¿H]x²þ¡ˆ-Õyªl¥&W€·!ëg²_³ã±'O·³E»È§¨¹—;HòþKÂ8ŽC7çVCÈé1$ëVÄçp²¹mÒX·"ug7 ëÏÍ»ÅIÖ§ˆÄMà,dýŽ¢Ÿ/Ôg³|WtQ!SáOÀMû!+-7¾wZ ,ä"¢³xò‘æ{ ©2ÈLÛH§›vV‰xÞƒ¬¿Š6²þY%‘ÎM=Àý'áf„# Kf܉Îùš½É"n¥–´' Oh[°à.ëPDãðäkÚtT þ2lKØÄ8jÙP{¢³%‚­‰£&mæâ¨E¨½Ša¶û!kõf܉ÎÞâia€û «]ªýô(¸{•¬±(w¢7¼ùR[ªõ_Í ›W­Ï¼å¾òv!ùéO¾—,¤ÞÛI³P|'nhçgD| ðäsM÷3Ò¶x²ÚúOôSù`iÒ?¼ù‚™šj°ôOÁ ~*a"X:κá-’®òSøáÈ{šî*¤­¸²RCXw¼1ŒLî•_‰"Zû€£GM8”¶) ÎL8™hÙMç¤n hî¦ó­”ÜÍRŸ!=G%&W€w ë/ª*§#þ«ÂÀ{ ÷s•M+üÌŒ¬³üU|‘P넜³º-À=•ÚÍõnÒ¿¸²þ€G>:ô¯Á;!w4CLŒîŸž.¨mcŒ.©ßÁvÅè~%ÿ]+¬£I¿­žâ‘§Åé èZ‹hl ™]ž ÇvøêŒU‹èð]–µòÙ ]]²æèwªBöu¾ CÎBÖ_É<\í%ònÖa”¾õ< ËÓðKrüëàExòac]Ç~ e½› c»"t˜œi~÷AêŽG hÛ¬Ÿ%¹‡áø—|’8¢3 ¼ùº6-~N¶Áù³eÇZ“KÖ©~ŽD¨uNvݤ³óÀ‹•*ÅxUÌ•>? o"¼YiYAΙI] 8 Yi¼¾v<˜R‰®"—×!ë{p*¼êPlÒ­ËvwQ…y¹?KÒý¸íÏ Ø:š LïZ^FpT 7¼š0­ãǤnx-¡­'çǤî4ð:d}ß‘_Ô!ýÓÀohó8Ão¸,ã®ÔjÚ¸úË;U&†žKx²¹ð‰Í9§Àw¿dûv¢3¼¹Í!©K'!ë7‡[ëb⢬C“ËÀÈ3ÚŒ†ÂF1²õèä<–´X6oyž|Ðòß„ïARö£—ò— É:ñHE©*M2q¹¼Yéþ¼†Z·ò&ùé9nÀí§S§´=IÍ2W#ˆ§ÙU›Ô^ƒ¬Ô1­yý<§m¥TriH!N›Ø\>‚üH¿ß’^}ø[ÂÉ9vBî4h”˜5 ¯$ĺÏßJ´u ˆÔoˆ`»Ö€þ6JþoëZaÝ5 žç¶]Zoƽ½`?d¥íjNk‡®ÕˆÆ®â11_È»‹N–úD‘v›âÁœfåóÕËßåwkþ Jhf¾°F«Ên Qž…|¶ùM1©; <YißWÏHýù*G)­¡qŽü§v¬lÓÀ.fÄï,Z¾[^•u¥Ÿ…ûü, °C¹Í§ŸËÀ›•ÒŸÈùÓÏÂx„· ëË’ö'R;‚x4i\¡Î¼ÕI¥©Ý)Yeß¡Ué`BX\eV.ǯ¶jŸÊÒÿŸàH„— +M¹^ŽÔ^{F¸6çöJvÖYà§Ÿ•ó·ÿ]p%‡<®Í{'ñžÎûv¹´ÿËv~UúdÂÏ a$$ÂT-}U/[K‰Ï~àd¥©š\-%u»€Ç Ó¶ÓI–µŠÔÐZ¬X)ØåÀ—Ü2Ë.Yt×’]f"¡†¬OÇãÀYȳÚ\÷!'ºý‚ae•?Áöóp&Â}Õ6Ž$ˆÊàäø©ƒ¬ïS[hi˜W/Y¿ùyø á0äá6L$þ¼‚°…Ó9‰wAm§s¤~CÛ5û”ü/èZaÝé\w†ö§‹²û\DªØ¹Oy2·I×fDc ‚x4m6ÃÓjò«÷‚ñQªÑ¼neÉæûþ´DW°ð„C¢DY)èOÜœôVì/ÂÖ„3õ×lïðw¹ý±Ç·ŸÌRÊæéû© {DÜùU‚Il§Òk7f—ƒwXpx°¡åFÙ—ùŸñ„w ë²Móˆ‹e*䤓±3iæƒÖìN^Ñ̲`¸èÛ)1aZ²J%›†¶K"êBö5~ Ô §!+›[óSôe›†±4H\³œîÑÁ‘²ã=ßGŸâ½¤;—¿Ú„Sõp囵_†nÂv.Ô2tAm;R¿!‚íê\~%ÿ+ºVX·sÙü"íοx·»àÈ;”{—ºFûü¢ñhm/?1Zd¢„h Ï÷^d-ù«°á^ÈjQæfWsˆÏaàIÈ'›?¦'uû€§ ë_#!žKú“ÀdµõÚ5<¤+úÿ— lasKU¥ jÛØÜ’ú lWsûPòÿ@× /5·„‰Xëä\¿Ñf.Ñènƒ¼M¹}ݬk¥€ï…ˆÇÄzI-­ZI&ÈÌÿ‡°¡™õ’F íŽR9˜hd¨©Íðk5Xžžƒlî4\lÀ©;<ÙÜYíØVžÔ ' Oh{ÌÎ »Y)—w ¦ •bÅ“?¸C„.g!ë/ýõF®`•$ôౄ½Õ,7Œ¿¶¼ ²ã"4<Y)²œçº­ÀƒÕ²«­)‡á‚í/“}éqñ8< Yi˜¤ÙCý|ƒ°…ãjò» ¶ãR¿!‚í'üc”ü?ÖµÂúÓ2'ýN:WvK ìz€;mŸ–ýcü¢ÍLËL þW˜°yÆ­oªˆÙ à(äÑæHÝà䱿7ü¤n8y\¿ŠK7ø¤ÿ,ðdýðù¦æŸÀ' [ØàSeí‚Ú66ø¤~C•ü†Z·ÌUºÓ(í_âiuü: b§ªèÑø§(ÕKƒÚǤ.–GºCTN+´6â[dü–äòÏQÿïhh쾑Ï8e‡íÄe°?aþ—˜Ö›Ôu¦îq9ÄİïÚ‰uXOy!–¨íŽ@1f-õ…Xâ3¼šhYâuR7 ¼–0•x½yN¡LϹóJï­™ëÀ‡j“z$NÃuˆ‰:‹y ú]²­OÜžâáßæ·ž—­âbõ¶wÞ³ËËòkÿB¸ ÇGi¿ÔV»]„‚OyÎÄJa>x“€¯S\* Ï”Z=¾žaìu/(ØmmyHÛéÃk>€ü@û•’4°·Ù»•`lÂònq1Í<±[ìU «¼6’lÿ%6ï8rH¾bÁe=’ç7!›Œ®퓺à-ÈJѵr­©KoC֦ݠtS›— 3ÀGõëè Æ*ž½PÉg(ÚÔsÓÕøÀ¯´&¾Jîâ&<ùć #>ià9È&W¸c<‰Ôž‡¬翇­¸åç³_XYZm¶øUe²^Eœ&€¯A~­ sÉ 7!ÔšK®ÛnQ^é ^‡§ +m ¿²í+}­Žô¶)âÛ<Yyü¥ßÜLBnAÚR×LANé7ƒ¸‚Øç‰ )tªÈÜ•"zsÜ%[·ˆâiàCÈúCÅSŒ²ÂUʶGãAÏñ|»˜] G€Êùæÿ *Ý¿ƒw¨:¸á6›ød€•öéäÜìßÀ« /@ÖOŽ9HghÙÜ÷«óYbÐå.ȺѺ| ù±6½mŒí¬íy4F”¥ô¿Ãi·AVŠ0°ìño¡ÿß&š±ì±©R \9®%Žõä‹‚!€¬´!çɤ®¸²þÇylW†§_*Øâ°r9òñ²]Ê[ÙZÂ2qM©¬Kå]À»õoÏëb,)Iäÿ€vAV[rn˜oAÖ•ˆÇ–šÍ\ëJ¤n°²~êò=)~bªîF[m…|Ôœ‰â®_×DɶèV$R7L%LÝŠt U[É óó#èòáüDì4ðdý³²½,˜mÂÀçß ss4Þ¢>ð!>Àý÷7ßþêáÈj÷‹¯)¬K*ˆÆAàqÈÇMt²Dþ=\ƒP¯ ˆ~z±§³O«•Ëã«‹´cgÂ8»—ÎsñÕzZ©ŸÏ»ÙçÒà7ñ„÷!ß×~£G|X|î–í´XfÜh­+.YË6 é‚·.•ÝÀJá­fAÿ® ‘TìÿÄ‹>‚üHû¥äWþ#tvBî4Öö÷•<»’s‡á˲ÙnˆT/pò ± {.÷‘Šë7êHap?d¥žgí±îŒ|£K C>l¬6Ïå(9J¾Q„Å?ƒ7ü'`›",þ3ÄNeÕ¢ñŸQ!êEXìÒ¥ó[ 1 f© ˆ¥‘A\/Éë¿ h kNº‡nÜtó5é$±|¤ùIR·È 3m#ዳ´ÌÉ7º¹™Â¡,vÕ²^ED_ƒ¬¿Œð¬uVÅw –OÇ¿iÌ&öèŒt¸;^[½]  ö>ÿHhn„w–1çdó«XÄÅNïüÈÉa'1rE¢$ñÿ d ÏBVÊ Ö8½È““®CDe8yªùuˆÔ^…|Uœ$Iˆô_^‡|Ý`ÃæùVÙW2ÊàÈJ!òF™>„¬¿­#Ÿê™ô?>†ü¸ ƒèÿ&LÊÑü zSànIÚ7ˆLp;äíÍ÷ R×ìƒÜ׆ ûßð=Â~ÈJ1–1‹Z–ÿ$˜\É,û€ 2kY€G!«-ë›ex ²Zº¨Æí(Ÿg*å4pòhkŒr8YéÇÚ˜d>Q°Ë8p²Ò&sã$ôCOÔ 3¼¹‘o¤îð6dýÈ·´¶)ÛÇ…à=ÈúcØ4«M (nCï0‰N51^1/¿ þ àÓH´Y±ñšÍoAÕOèÎУŸJÏÌI}gñ´šÆÿƒQo½â¼.ÿ‘à)ªˆG³T63K&Éä·Q„ «RU ¯‹mêè×öwAÞÕü¦ŽþÑFànÈ»µ-3 ¢÷ý¥Z[¢`§=ÀSÍEc©®$ÑïÌÏAnAü,ý£$ðšvc[Ÿ”µ*N=sd°*3ÖýïË& N1É·0SiV°^$iç,%=Ù z§€W…Ü‚,”\ÝQà5!êÖ=é–˜ô_N ÙĶ„t°Þ²5ÑÒ–˜ªPÔ¶±%&õjض–x¬°M× ë¶ÄÛ†øv„ǯy–m‹ {€»…¬¶†Ã©mеᾆ¦å6h‹ëÒ´â|¿òÓ®.^7Øçqd“it`©®kí ¬½k¾Óa~ezÌq4év« ƒãá6Ô˜à±C·ÆÈµ[ØÑájÛØníU(͵[ý°B¿®Öm·º†d[+"Ôì²Z3#G¢±½†á£i¯C¢f;^˜–ƒ¯á¢YSÀ”„‡`ÊCƆò{Äãx çÙãCRwxBÈŠÉn×Ô,év–ôŸž²‰k+¥k8ŒÙÖϵ³ˆÅèÀ N»ÚY UBl[;» VØ¥k…W´³+²í,Öç: ÿ6·³Dc{ ?Œíìn˜’° í¬lf;Îãx [ÕÎ’ºÃÀv¶³¤ÿ$°íì¸ÅžDKÛYª(]PÛÆv–Ôo¨¡z;ÛP릹e+_iú?Pêá=ÙxZýú{…±ClÓ9»ÜJ¢Fi —Ñ£3˜} 0|4KeÇS{Þò|Ç*²öª-›b¿c? iõû ¹j÷œUñ—ÜrLqâíõÕðÕíõÕƒ(ƒF|õ˜.êÉ·ÔÐÐ-a‚5°(ÃÑ̙ІAFK֢ϻÙ%zýÀA!Lƒwë W× Ü/ä¤_åê6Ù@úÕ­XÀsËÒG†9“ƒÀSB6xuCÙ¶ò ŒFg…¬vZ%¦AKŒÈ&ç„làâÍ‹œ¯aø²ˆrÆbÎç ð–[®‚«›Þ²tª‹9àC!X“¿+RæìjŠHú8:".!㩃£Éã¬ütö SI¨ÛqDxÇ»B6‚{05¦ƒ¬âÉgì¦úÂ9n'µ9{#ÿß]»þÕ×îÄÖ⶘²Zv¹º@êú€§…L¨i®mµ@Cù=*¢rxAÈOÍØ/,òùdux‘’5mèw÷ YmcPÎT8|Â#uµqæzéß< d#éñðŠhh²¢2>&„Ío(å]_BVKöÊ¡pƒKȈ¯ÚÅ‘œo?ðÕV0þæ^àq!·b-’Ômž²µÈžð¨lÝ!'!öØnÜ*IŽÌrxBÈje%ï´;¦´.<å”· ™Ð€ßÒoìž2a³ýö¸0+G½KÞ¢ŸDïÀV¹øšóI/ ™°í3âsxWÈj£_y3Mg…LØò¡é¿|MÈN*”éžÅ¿{"z”RÖmNÀ ±ÊªxQÁzí^ŸUt –o+6"'DãxõNi¶þÊöï%µGBnÁ½‰\Ýà!¸7qOuÖ+lA¾âÊ^šÈ9]>²“ĽÕS¤ë×Iø/¡ÞÕSÑO¥‡Þè B44ôî™Q¬Õ¸ÿ¼#¼T¶#¡º‹³îhÆ_qŠOgŸ(Û<(dõ!Á¯ÍIñEއð”Gм6“º-ÀÃB6»9Êkó‚#î÷JTŸ‡}»PrËV¾vþÞ)úvÑs|éŒÄöð¡ ¬À ‚2¢P·F‘¯ÉÒKÁ¿ ÍMü¥kýiÐ8ýá¨õg@çLSkýÏ)ÜVêÆÏ âŸCíI˜½E%¦âŸAÅ'døG¬ùÿ *>áQTü£ÚÎq²Úf¨äÃ~\³>Ç!à!*¢Ísžm[yÏm ÑXažç6m°“úζkƒ}¥1¬]TswêÒ¡…m5 ÝÉ A iö4“fwí|.ÍîgrÎwŒ ¸õ'/‰úÍÄçù·ïþÌ——òqÛëqcÀBV[Vk5ºé®k«qJÉÅh´j.±ú†9»˜Ñz˜2i×ô¢miö Ã’ã£cR“²ŽMTF€—AkR›ÒeÆžÖĬ¢•_õoM]Z²‹nÁ.ZØ»óåØGáù£xŠžŸˆÑÞ9÷$F÷à”Õ.rª[¹-YÙçÖ¢ôÊ-Ѹ œr[Ž×Á$„0‰ZÒ0·ƒW)/ÛN>OWÁ+0Û Ü)dµÝ1Õ¾ô|1Fk¯j%4WàHÿnà!8@.ïãðñ¦øÇ‘{n¥LykèZ?h„<~M{ê.ø+VYÖeˆdð”ÕV¹cÆÌ1icÆá3„IøŒZ’®5¶’MæËõ§€§…¬ÐÈV.(ðB&4fŽy7Ÿ‹Q{xVÈŠ9£Ÿncɱ±Tš Ÿ?/]›‰Ê9àu!¶¼6ŸEm>«]›wð)>½4÷Ô~Q*¿)N {Så\Úóƒ>qj¾âäso½ç»nÞ›œœ|’{›¾÷vÎu’CÇÆ†RïãìÍŒ]œ8{aäÏË,^¸qÆÆbÞ­çõ§·Ÿ<˜¾ùäQÌ v¡*J/—Ñ7z_î0Úâó®ð¨YÃí}ß~!¹½.ypl6AÁôç?ŠŸm|©*¼þlfyð6Õ˜?ï&…ÛéçŸûMúY÷ÕEhÍîÇžÎ~,ë‡%Ãÿê×J¦§^ÁÖ+Y·X¹ˆ®Šïl©ÿÎȈ_(< þó‰w+çïŽ<á¾1vÖ·ÇÎΟ»¸0²v¬­û/™«;0ׂ“·×ùÊ›‘ÌFd Ý%_r’-ù~ird$ø^Æ-/Ž4üjJÁÞ}ÀgŸÕìýYùYÖz¹1o>©@ñm`rV™b}f­ Tì Œ€dG…Qã½¾¹¢;_¶­ç^0 ·ß{?ŽÜGo?¹Cξù}r1ƒU·âÇh}øYÈŸU.’Îÿ9þAª€By}ð‡!ÿ°1÷ÚRTp±~ò¹Øæ9/oyKJ¾õÀ¯@þJK|ëKÀ¯BþªRYD?ÝúA|fëüuàÏAþ9cå°qn‰©¡ÚÏòÏ+»jg}ãÌ; …’øEà/Cþåß1õþ×€¿ ù·µz¾è·¤Æ‘ënõŽ‚ÝBîØÝ7û¨Ý#äŽ=ÆÔvÏ9 vÞkt°•¿Å{…ܱ·Šùýpd¬~8¡8VßöF¤/ý–Î'¹„½èK®=†æ¸½sÁw첌ˆ½Ê30Û9˜Qiã…¾±¾± ¿a“‰r!J5l×ÖÔy”Ðyª¶”‡?(ظ‰„[†f±\9Æ<ÛfKv¾”ªž‡J‰sE†£âš‹ÑÉ;qTȳcÏžÂ)á长Y6–ÇEð¸¨mÚè§'ÅX¶éÜKPpVÙwœ¬CÑ)tˆŠáø’4ÙK KxdOj“ÝAFL-¸.rMIÓš­Éê?à¨Ik›ç—“ %Ï CÃ&IûVÞ¿àÛ!ò¯sÇp~Ïçh¼ú.ùš8uH+á"’º»{X,õ)P' ûýãªgŽ1 ‡¯Oá!\nÁ®íf]~sŠoÇÞŒËø*" Hí&œ5ŒVóî ³Úñ¾Ð9åKöxOýð˜ Æœ¥ÚdSl,ÍxÆ\ü7€ÒÝRígnIÁ-®ƒ<áÈOh“¿Ç._ éY~9økÀ™·™áOE¾r;üüÉšÊvÁ]¦ŸK¿Ð4^ˆð^Hÿ’øƒŒE’Ÿ ³É¡Cé¡Õ¡”<Å H& P ]Cqб…€]ø“¼1Ha }²’bv…»Ññ—>¸ÊÆRò-òM¼!š[çò-ò-ðšk‘y®àÿKî «v©aó›bK–Çæm»X»8JšúmP'4×"ï|™¬4³0#ÄœZm›} ³45QÎBÑõ“V>ŸáÉÐ’ÕÖ8Íj”üñ(†xú÷—Éû#ŽÅ‡hȯ£ ]jéð¼åÙ9¶b;‹K~5Ž2À¬½æˆ ¹Í,fä[¨Y¼!º7BÍ·¸yŒ†5=–qÒA9gÞIÑ65%þ&_#ïãÍÝl'_#€Ç£5ræ3a‹%Më!h=¬þÓ¬#^e>˜ÀG]‘ݸÿèækdÈ1y–À’ðXiƒƒÇc£F<ÁQCÖª‰X@9Uwjø”4÷€;a¸æ¤–¡'úé:‚ߘx{ô˜þ)Þ¶òÙÚ©ºCŒòïôïDV,ýÓs#ÁÄÆ·ë^,͆ÆÎ#®ª=Âïȳ~ Ö„#`=¢Âº¡Úž9¬©5Z–Åܪã™Q–^û$õ5l×ìë(×µK£qnŠ]–Î$öÑ„8æòQ|KB±En¨uóÜs{u%˜BÆhîö£8ú[oR?PÃð1e¾„%}íß°Ê-·J¸öF{­ò¬òFS¬²±ô%IJƒM·Ã&Û[b“Á&„}°I_ëmò1ñ½ÃG­oCÖë ÿt|¯H(´™ôú=úYý !…ý_KÔ¶ÓÕ¸¶ú!^/mã^•  ü{$Ìà–kñkpÜŽk¿Y-Ø@#✉©)›èˆbQ!r zš䈧„e®ƹ†R-˜súW?sþÇ:þÒŸ®så`Îëe~óiµÔ?Œ q¹bÖ¥ëÝc > z…Ï·¦âj"X×+HÐh˜$§j½8Z1±<4ž ¯†íƒÜ§B«ñÀ~®X;ø’ÚàŽZmkµQ:á!ö+û†Q£PðfàÈJ¥ÓPë¦9+ïX æ<Ñ‹ÇÛYUºP=B4[U¶Ö¶¥ ³Æ lpœ­i†‰$2äÚ:k´µÊ0¤~wñ2L_©ì}eÛl„=÷@ÞÓÛl„=Ã{%ö¶Þ6¤~_ë.HÔ´Íö¢;¯^m6Á›à3›UýFÒ4a¿» .Ñ¡êz¦ÙϱîFq]Ó,ÙVNÙ4Ý0Gw‹Mƒké9¶Ñ4á%ï1—½ëšÆ·œ¼²i6GžVš—Ƈ h»L³æѬizßT¶KH@VžHÚ¥¶ l°Éß*»Ðg»"ˆÇ]vˆý0eãlA¶¬õž¦g BÞ§¤Öýj‡ÔF©ZÁ*?Wô„­¡E’3¶s„Ö ×Ñì­¿nÛSÚ:[a‘­ ¶Y•ž¤up#=ÇAÈj.«eR¿?‚x Yg¯˜ÛèÚhìBxòáØ(ÂÝ(ª U6"dÄcÈF»,/ãùvi¡RT6Ðv…ðä-0Ðv…°A„j« DêE©áô¢í?u+å¬}ËñüØ}ÉÓôÁ„­N÷Á„mN“ú½TNkÑØ±.@ÒC:uéôÃBÄ£Y*³ŒÝt‹¾S¬¸³eíágNÁf‚ñ“cÝ 3`-ß·ËEOœèºSvrÃ7xtåÍWÁˆ{”(á,äYƒ>î;~¾Ñr~¸XNKÔ­ªeÍèAèÎÚÓj‘Z>¾O—5vÛ#ˆG³Tv3v‹Ÿ>ôË•¬_)‹«Í$©EÚCN¯#arA¹#«@çpñª>ÝsAY¹ ÷(÷Dž#‰—Ò+šhK­ R(LAN™³‹dH§1A<­±ËiàYÈgõ«N}Ît…«ý8¥sÀ»ïjS»Æ˜á¤cÌ)æœe'W 8fƒž‰•퀰Ï3ŠòãâÐBà^9Ç£ƒ²)Õ¢³ñFÇ_bcÓ%«ì×nV´‚*x Iv‘uÍ5†á)ÜìqU!.$–9<ù¸±º—Rœ«ž€|BÛRÄ 2â¬,Ï*î[E;ð¨¼ìµœØIàuÈ×µ N3¶äæs³^ºé`1°ñܺÅúƒ³,¼Š“·ÊÌwe_#²’˜†<­ý7YXEYÁ*•œâbJ—S•.Û^àˆÕtîdwÞ³ËËâGe{1éªIŠÝèO«Æbáíé1·¨+ÒØÄ˜üՄщytkÒP{Ò;T]´’mT"×£ñ¶x[Âäªyl£Bêº îîT4ÎQ´'ŽÇ}yÞ¢$ØÑ;Kd}è ê#á%È—´iΰ—/OMÉðË—¨0\_§ŠÑK·dßåüŽpòŒö»H'1åCë`'dµ©Z4{b}ØL×y¾SP`×—¨Mú&w*â® áêz€{!· ’º.à>ÈúÕp/Kò»˜í3+ŸI³ñѱñ”t?rŽpòˆ6¹Û¢çnª½_ÐNäl/[væí_òùþÓì©8¨ËÎÆçˆ{•#ðsBœ%^u®ÞÑ1+I. úY¢}Ñ®eg±hû¾ kàPJ¶S"jÑ•~ÈÍ® ¤ªxòQýRÚñIÿP¢zM0—{ý­sÂÓKäÌ ´‡«1G&ÇMÒÃ7RßA<­¦1„QoEïÈ¥[5È6GÐ̲õÅhdlRLO)g ÍtÒì4{·@Ya^°©`6a-&‹ÏVK¶'ŸO…Ï[;€a毋ÚôϬ9P[¼é”³y{ü±›_ Ÿ¿ŸfÏááë÷ïË3Æ]¥¤6Rd|w ãlÞ)•‚þ†çª)´éCi6T^´]o(•fËvyÞ æpS|`X¶‚žhÙNÊõf/K„‰/ôäý8r‹±zECÃ#s|ó]²Ê‡÷Wnƒ¼M…ZCJ¯>°­À}ÍEitω» cw#‹š.3’|‘fÅÀ¡'‚ê™sŸr5-Úþ#Þ1%‡ÄÏÈù3™Œ¼£ÛýÀ»Ûáè)”XˆÍqô ¥-éP§áÛ„ ®-h—Ÿ>`dÛºù~~Ö90È·=)2*ºñiT:“OšwŠ$—´Sxáç™—ûœËœiµûDݧ?ÚL*yÐx a rʼQÀ»¤©Òðšô‡ËƒÒðšt«=(’ íCåAixMº©Ôñ¦¤†á2!âi·û Û wAVŠ’—uŸa¸ ¡^HEôÓƒä>Nš½Ã'ª•ÝRàLÏž¼~[Þ“ˆÚàä1ãž´Iœ$´[.D¸òöö»ÑéBV}˺S.DÙÒÓt§“äNÂ>Úy>2Šø”bE$¯C¾Þ†Ñþ *Ä&Mkùi IG…O~ˆ¦µ£øaK§µ£0ÏhÂä´vù·È?¬çÑDk?p ²ZS©çÑc(š›ãÑÝ8!é<ãðcÂ>È}í÷i¢3ÜY©é”õéqˆ0ÿÐÞ),‘9LA6?|TZê; Ÿ!4ß&~ðƒYëÐÛdY+üè,|‡0ÜÒß ë¡¶QÉ…ˆÇP¢‰9”Xs5nËÃHîï&6†[jÇ‘$æ<|˜p Q=¨Üîöè사t8HÖ#9\£q'mócâqx ò©6øñÊ"D3{¼ÖžÒªö9§@±LnQlpñ+:iwË~>¤°‡…+Œ8FdCî´i®âY‹âŽAWÌ•E­Ú’&õÄÓj—P!êµ…·téL&ÄRKˆx4KE>¼ ÷q섬fu—8Ö !_[P‰ã¤®ÉˆFñhšlí¨[²f‹\…f *ª«¾h†dÛ8â±-‚xùԻϞ§"í2?ŽèÑi®™r5]ŸT™ŽB5Öoå±’OÏñÞíÛc L•,5A<†J!6XÔuÏBÖ? ´“_`fyv-àX¶V¡sÀÈ3ÚÄxÎü7ŸwW(ÛÏ;‹ÝåDzn¾R(z,éy|´$Ý)Q=8¦ «ÏNë+Z¯h§¯Ó°YÖ±¦P­'!O6ß±HÝiàeÈ—[?¼˜‚ …ˆG“Ær#I&Wá„‘tŒ†ÏæíðQ;ǯeÅJÁ.;YY;_‡nÂÈú}í®0.•kœÏÛl~UÖêÓ°ôtB7omÜ ŠL¶Ñ$B€Ç!·à-©Û <Yÿ-ËÐa–²Í¼%·’Ï‘c]ò­l¥\V8ZNìNoCÖ?§²/ô'1bÉùНrråüˆÐÌ©ì† •¢ïÈ6%7`VÂd¥QdŒWÅ#uG€§!+­‹Ë93©FÂË4Ýä`í¾ó Ùô|fåÞ©x>ÒŠ]#\Ïi`xÏäm†#¡#Ó jškˆ[Å©¡÷X!à*Zö aÚuù63rXºÑWºYÄqÙö’ÈL/CVšȹ©†ë úÃÿ®´ô“L¯A¾ff:KœŒ ¼&ï“Ú`$@NÅÇ ü˜Ç²|æŠ[ðB#ÓÙÆÛõIÿíÑô³·âÈÅ$b»Ç&<ù¼1_Ú0g¿[ŒÑz8yBÛ‚›Ól…w½ º¼ ùªquöQ0NøÌÔ°ƹ¼Y¿¡–ž0‘ú»Ä£I£·ZË¥ó0EN G³Øê ú N1)úƒãü†ú”l·@¼€C‡šß-º­Àc•ŽÆ®òñ]ÁBÇIÈIcêx¦b‘‘âi…ERÀQÈ£¦ kNäS¹’Q0Ððä[ ÄñíBµ×b1þ6È­nÑHõLñ´e hF88Ǧ.åeçmÄhpGBw hC£ ~/ºØjC6%–$–)ŒjsˆÀÝónÖòíœtº€ÈÂï·v&Lô]G…¥Ÿ-³`öéÕ†§y›'‚“¤y†'Ô‹)38»!2Ià0äáæ7š¤n˜œÑo#d[HR?AÓ]FL IŽÚ µ£G[ßB’ú±âiK 9ŠßÔrµ$ÛB£mÀ Ýrs£c.?í4D­ºNN)x,V9“£ ä“Ì ÅI¦R^©Ø–†è\†‹JYñäZR7‘¨Mn&Šƒ ½ºFêoG&k=<9Zì®Ê‚•õÝrmƒÎQ DV)V<;'û³¨˜„×Õ!æK̆“Ä|àúy/ÃfXÁñ¼€gšYù|¸j¾‚w´|?W|1z ¯oFµGöuîáî%4S†¯­ áëH²y #÷Pª¶]CcC²5–˜ôû!+…§ÉÕXR×HhÄpë HýÎâiöØ€ˆn¨ÝYmßpÍÛËÖ R¿;‚xÚ26¸Úp?Ṉ̃ÁF»äedÏÏ¥mÀ~ÈJU„Sê®oJ Ö §P)¨Ø.àÈj§ ´SÕ0Yie>¦B¬–bÔž†¬tfˆr€ç+v1k³²•s*KòÄáy»¸è/9ÙGüÎ#²&ÏéžH®ò’]vÜ\Zl°„l%Ÿç½¬íg3©ËÕ¼’ë9”_‹Ve_ã*(a¡?ï ;Õ‚µJ %I=Â>È}æúÖÙâ‚lßJLö÷A6wê7¶o}ˆ/Bl}ßJê÷GPùÆ1¹¾•ªU7Ô€¬:´SzK•ô‚|¨Më#T‡G‰¦w®²§5ˆÒ6 ~çZ?óVí\‰Í. ùε«¥ ¤†€IÈJ{1r}ë#8/a*¡s²9ú鱸¾ult”½ù¼ðVê²l#‚§á@@¿s=^í•tœŠ]ÕcÔAÂã•ÂóŒuUÄä pr –ˆIÝ `²þñž ›fY·P²²~ÍÍd݉8#1šÜfBwÂNIÁrŠùU¶dyœqE¤ê¶òÌÊ-[EßZ´½4£P‚³¸D™º=7p8ÙwùœŒ0²O¥ù.éð]Jy«â9´øDÁm^ÉÎ: N–Y¥RÞÉòòdGOÀ’0’2¬Ù£j;º¡v²R=Л™?A}1c¤^¨Äü?EÙjÅü7ÔÚ3n7P}-!Ž]<âiµ-žÖ!M›Å¾£t×ñ 6 4¿‚¨qN‡õ÷AnÁd‡Ôõ!ëOvÎðŽ=ë °S¬¾ã‡*eÉ.ó}Oa €ˆîÞ‚¬ß­L“;U7Ú=\pæÙ/Ò,èBhËI,ð‹Â[Ï<Šîs²Kô²²¯ñ:|0r Bó5®Ñkã)Ú¸`A—X½)&rûTØ¡ÓGmÝ£h{žtPÁGAœðäkflñÐå{–Ï<·Œ+/œ¼cENrVw:r9zWÛ:žÂ¥7o€úFmq˜^ce‰²-Šý¶ÊtEÝœeç&™$Çáaȇµ[}CwÞ Æ½÷ùÊÜlãE¬NÏBV:g,×x‘º#ÀsÏi®SúæÒ8y¢-ÃÃ5ÍCÝ<”™Ï9ž/íD§8y ùþAê6wBVÚžªó«ì¶QÔÈ*C™ê$í Ÿ)Ùç pr ¦¯¤n0Y˜¾)­©KF€ç «µ% †C'=ò”lsx ²ÉÕulsx²~0†|ÛJúg€w ëÇþó½’`€´b£K:ðþÂÄû ÷s–î!n/í)Ÿ@"<ù`ó=åø"á!Èú+õò­,é? <ùˆA£Ü¸ÿèækJF9 LC6¹³ŽQp²þBÌ€hZyÀ‘¸ŒR¶:Ÿ ðdý)Ã~ARuŽs #n~Á³$Á7…í9êeG5Ld†€§ +¥”s"Rw˜„¬vz%ú©ü]w¤?< Y?mÛü°r§A3Ä,ªRßµ]µGóõ¥òHý†âi5·Pð!âi¹3|º?©ë ¯¸¦`½c=n=Àí Ý~Cº&#ýÄ£;ÎWÊá÷6LõvÂÄ^~\~ˆW/¯Ço'ð d“ƒ¸˜$¤nðd¥Aœ\C꺇!«-kE?M…§i•è¨K*ù¼¬#Í#À;õ'#·È‘ë/ûÆþæ‹Ú!jÄ&?eËõü²“õƒÏWlû¹üeß‚ëÞ‚¬¿Œ~A¬yÒš¸ãeœ³iS–oøïâ.ð%vwžÖ@Å•ÊxKIòjåöm|ªö Ùáñ¸A<Í®<¤î"ðdý±ôF•ˆF¢px ²¾;ñ£ñ" SÖEæá„FŽÆ7Ùâ.â¨ÅäP JýÀÝ•VkÉ¡@Ú¶÷@Þ£m¡³qø³`[EOì×Pƒ½ló­šBÐ[aÝGÔ–¬ká½ÀYȳÚÄoFbHx¢ž5ùT|~ð6ŒX²_XY?¿t6+»+Œçu<ÙÉ‘#Y|4_De— í„æw 46Ás¨­„»-KVIê6Í%«N‹ A}^¥éÃÃÞâ´ý.m%Ë:SÕ˜ðämq&d7Å™ä;c~"žfû ¿!Ü Y?µ|*ý²û¬iªBÿQ±Ú6àyÈZ`ÍõDé2ðd¥aTÿHÚ&€×!_ן£¦UFSÄa8yF›Ë„ˆq Z$Ñïy,I=_Õ“RŽ’µ´í„æRÄÜ ƒœ_}ò>Ywô‡Ý™³Àé,µïÀ?ÞI¬Iœ¡ù6ƒÕäžù²måVÙŠEËIv*#Iï9(B48J‰ÙJ ÛvCí~Èú÷µJ7*¤þ@ñ´¥QÉ£ôó‰f6*½|K?Í<ß-)ÜÜ YéªqNl ŽX: ¨Œ,™RCÔUÏÎVøIpQRÖÌyxámÈú1$ç« «càäš–I¿« ‹§f·O <Ù\‚ÔäDè ð6d¥2•›Þº à dý!iWJz|Iîg!ë/m }JáHAîA¸²Ú̯áŠ7²^B\v÷BVj3伄Ôm–|=úéi1å F@V±¶FW]£ù/òÎÉ:ñÞHTó•kòUÍnãÂyÍŸMÙ°N×ëGD¥8y ù~Dêz€;!ëî¯úup¥²½Ì3>„•Q©üÄpðds[QÊ6» œ†¬tœAÞf7 ë×¥­˜Ò«œ±!&7!?Ôft£'htª¹·œ"ö;é>´`šR;—RñÝáE»h—)_§Eã8[z*SžÁñdý.oC|zÎw¡0\›0—pZ­«{WpàˆæImcKÎÝIÝF ýêù•zØ:w¢ ’`'&ý@Š¡X-íµ™\Óï ýUÈø‰jÍW\35³Áí ýU<šPÌ‘.çø¤n0\³Ò¶Ò­Dá 0ø·|t¡t¢ñu¯M_×,§€ÔÙS3Ù‚3Ð><€úÐ9 ý3Ð,iya&žô@¶:û(Âk Ñ<ë/v÷5Ù)Ë:LE˜™c7äíZÓp¿Tvß9G;qÅE‚»€‡Q¹Ntž˜¨ïŠ(ŽG"øédó}–Ôm¦äÓ6µúýô”—¦­ÂÀA(Ô2­ð¸ïˆœY×-ç(Ñö¤wê*¨`„áMJ«rù2\•Ô†ù޵~ Oêg#øX<ºk ÃøeQã8jÅE4Ôºn&%Š}ØÕm̤´\‡x4iŒ‡Ûe›’©Ñþ_¸%Hƒ»—OHTW`-ÂqÈãÚ¼¯M#ö,ùR!þ”õ®àExòacC ÕÃÃÄæð d¥µ ¹ö™Ô¦!+­]¬)„mt&$L€#ëCDex ²þ´‹gLZ¡ãˆ•ܺÌBß-s笕ϯòàv'¨/ÂmrÚQ}—Uøá dý¡QÿÚ-qùyΧA…°²Ú)=ƒ'Ÿ‰Ì>à!È-8—Fꀇ!«5kÔ¥2L:2ñÓ¨€„Ç ëßf(Þõ=¸a'äÎæƒ><]PÛÆÃϤ~CÛtøù3(øñ´ÜÞ‡î÷uaÝ5ÕØµ‘õhõD<-NgŸ®µˆÆÖâÑ´Ö^Xdî<Ín¨¡Ïæ-OúÀga6½Õ6°…¬vHuˆÇáâ1Ôýô= àÝüê¢[”M³N¤ÒÀIȓƿ­|~þô·cŒö#ÀË•®W7`¢+ÄÓìÎø³¢.rœ‚<Õú¶—Ô_ M)q±Dã¢+_>#-=ëúœ¨SSÚt÷ÝY_¬÷óU¾»¤0ãú<8î‡lnYý¬Åź91: <¹³.Rw˜†¬?ëÚ ÞŒ G!š› ¨­¯™ À+[Ðøº1àä64>¤þjÍ4>Cb(‘‹^!îäѾ™#šáë„Á9A2æ:ò›eÄ#A<ÍöRw x:QѧKw¤ÿ 0 Y¿M9Hnó¸ìÐeN¡”§Û ªÇü%~=œ„ð d¥|7†æëa­ñ4ÛaHÝ!àqÈǵ u(ÌÃî99»lÍçWƒÑD®’µU‚¥‰Ú à4d¥¸Ò—O¥®½ºc¾RÎÙÜ—òÎs;ï,¹n.h¬|EÜ…¡°ù ð, ÈúVùmŒo„vB3Çåß?¸þ Äë±ëîƒlò‚˜}HR× „<ØüJGê6÷CÖ? w”ñ ‡qß§F¡Ë|¥˜…è^†¬?ý;V]/¶²¼í^¨³¢~%=[Œë%‰~ü™ðds¨h³GQ8yĘcuÏå>R©’zIñqà(äQm›õ3ÏÆš·óîŠ|ÐÑNCÖoÃå׿ÞAØ ¹Ó`…YL¦…¸.¨mãb2©ßÁ6-& >Äv-&+t«®3¬»˜ÜýnÁ â äz€}ûTÈ5ŒÑ•¶Ñˆ M›©4ÏI7Üd)Ÿ%Æ’£#cÌ•Žºú6Ø’ð$䓯ºƒ3Ó÷ŸÞ–Þ—aà䱿4HÝ)à8äqý?¢`‘³Äcªƒ~öäu%ƒL§ +­¯Èäð*dýõ”¾(¹¿ÎO¶r™kÀh“â8ü²Uôø©5>xðWl»X»ðŠù«%Û QçÃ(>B,RðƒìÛ|»pŽæ2pô‹ùb丿$­ïBóaÝyw‘bEd«±Ù< Yi÷K®ºàÈG´m4–a·ì«’÷=žé¥ÈcfJJøšW¢Ô)áÁî²®Etð1äÇfzA^ÒÌÉØÎÏ!ÎŽ¿Šz‘‘ŽßøNø¡^/ýT~”õ]ÐMØÂ!7 Tº ¶CnR¿!‚mrÿ.|ˆírÿnèþݺΰî{kñ¦SÎæíqÚuW`ØÜy—ò¸{“®áˆÆÞâÑ4Ük|ÜÍVÊVv•%‹•¼]¦–ÑÎ-Ú^ªšª@-ЭƥRÙ}᪫íËò"–Nþ{`uÂ× ¿¦ýB<õ­I²ùn0 4“ú¢áªhÎñ²%y_$V»!· '?©ë‚Ü‚ØÇïFm#< Yi(¢¹wEúdÖ†¶ò{à„-ì8©¥é‚Ú6vœ¤~CÛÔq~/ >Ävuœ_€î/è:ÃúÏhõDbo¹]×ZDckÍ>òP©`Aý^4@ 7$ù˜=oy¾¬Q¿†$LAN›*%ñ!*£À³[pš”Ôžƒ¬š´'L¼$ëGDã

|pdý\˜ò#Öß§ láô…†~]PÛÆéËïGµ±MÓ—?€‚±]Ó—€îÐu†õ·Ú³y§ŒÊÈõûº[í»êÇXEcœœ¸pÑ)Ú´CQñl¾q—µòÙJÞ aÈZ™ˆÍ/Tz…?ÛþÁD3z…§¸¯ØÅ¬ý„N‘í!ˆV/p?d¥Ž\Aê6@ÖO;†¶Fô|5tÇQ7\‹ˆÎ@žÑ&¼“ tt&_!ÒïÁ§þP¢–K=Ao'>˜[ >|oÉ÷KÞäÈÈÍ'Ó3O†‘Æ%ã–GJVö¹µhO{ÿ½¹ÒóÅ÷áýpu—*8Uî˜wéyýéí'¦o>yóB»€' K'à¡oôÖcó½GÀ5ñê†óÌxõW¼eÜ­Jôb'#/xRå«kì û«Ø­ãOFØ5Ö:Ç‹¿ÅZ7ron¦Ú5E¿›ÁCX’rUÐeÇ’mp¢Ô&!+sÕîÁþ°ð.ŽÍ‹“ßÎÃ[<^ÇVœ¸~l=ŽýÀÕvJbü'f_ˆÔõ@>ÒüÞ“Ôm2ÈLÛ7¶‹ÔØ¡ï*Xà(09Óî~ˆÂü=ßòUú!z‘àuÈ×?”ýÐ+Þ2®¢›Ž¼à´Ê ¾ºz»uüÉ;©~¨¹Zcû!cjuSÙF‰Ü„|S›H7?ª.½ûƒÂ8†¹"»M¶z•ò²íäóV0yR`¶ ¨u»Š”s’¶ÍÀAȃæ W¦ØXfbx4­Úö¡ýÀ4dµ³­ WËKÁ8v^Ó8ðd¥ë@¤M4 ¼Y)v]¤-]nGñ¥Ef4ÙjMt.g!ÏjÓºLÕz)`fQ29~í!ÝQ–w²vѳqyðÿ¢ËònqÑ.ó—¢…3’/ðG„_p¼ Yéà]L»³tJËG]P{²~foé5KR?A<­¦ñGQð!¶kéô‡ ›°r§rs7òê^¶Ëó®'Û5©`_Bwé´»ŽÔEµ‡'ƒhyÔY MY¿â±‚íyAóí1oÉ­äs´[*Ó¼J:É#±ÎBÖo02–«”9çb©â³ì’}NUÈ<þÇ`xBóÙ z‡ì’“³|ëæÓ¡¸F#nI•Cnþ¤Ôf «OÀÂOYmwVœJɉåJY"Z#À;ïhÓ;Äø²©Ër.ó\Ú诞£^–Æüq¸ÑGéu$£<¹K%b´wÎ=‰Ñ}xòíâÙÂ<›4òd;\âÁ€)È©æw¸ÔÞtAíiÈúÙZ¤{:R&‚xZMãOÀ ClW‡û'¡›°yn‡ì`¢ÓA<Š]í¦úy‘~bG"¶x²Òª¤ñ>ŠŽ@i~EêŽG!j;ôæ–e«1žƒ¬^©²¼þ§P¡Íoïò*…‚U^ͨ; 1ë‚܂Ӥn#ð0dµÚý´/M“Õ’ÍGùUÙ~ñOÁk ‡!›ÜÅô‹ä¦]P›¬?¸“îHýHñ´šÆ£š„Ø®~ñG ›°‰ýbQVOõúÅmutN[Œ.\Í‹é‹v9Ãfè ½C5*Ícœ²çK_mG|·ÏC>o¬%ܰd[Ò!·Då ðäkÍoúHÝð:äëúžVqðià È7ŒYd#_œP1É,ðä­1ÉMàÄ©+Œ;S²mé| ù±6­4pGvd«íŸ¦å¸²Ú£†ÕÖ·éDe'pä=Í÷R· ¸²þÑäÎS°È>à äAc‰íÖ5‹ žV˜c?ðh¢zE£¦9އ†üN¦>-6Ù9Þ íE‹w‚²•šoC¾­Ít?ÓNÉc*¾Jhá ãsÜyGÝèGQ­BT>ù/çF¤®¨•‰³.7%$ð&·¡G)Xkx ò¥æÏL¨ê‚ÚIÈúqjÒSR9‚xZMãÏ š„Ø®™ÉŸ…nÂæÍL6åœE'6üzÜz€Û!oWžžtÖqš(8E§P)°Z ÏY,òÄØEŸ Æ´cPÛSÈbLÜû3g´íÜK 6eW¶¥×ëÿŒLØ ¹·ùµŸÞ¿ j·BÖ?^.]íHý¶âi5?‚±]µÿÇ ûÇͬý›ô;é\9öTâzìz€; ïP®ÿÇuöcøE!âÑ4OÌo•+Þ³—,Ï9ò3ý˜Po«{6…µê/B;aóBÁ7¿9\°ý%7nµf=vg“Í]  /}­Ž2›z3]½×*èT¼[–oÍ”­‚­þ*ýÀQÈ£ª¯òÒoî^†l2’*fMê6¯@Ö¤ÚHge«Q˜NCžnKuúªÐ—ŒU§è·vG²ê²“®/ÁG$ZvÄáKðB–0uÄa·Ç—z•yÏö«W|)Xí(ðnä–äô…‰9n‡¬4Ù1™H„Èìî‡Ü‚C¿¤®x²þ¡ß*уDá AfÆÌ"×ñ8A<­°ÈQ`rRÞ$;y%õ©âQ´F"F{×\¶£ü40 Yÿb.éi©Ž í–”NÞH_öã©9š?yÓC“Æ)•õÄg;päìëºÍÀ½õ÷uÒ,é×âiSéhø`\bùü2®¼íÛò߉é>àMÈúç¸v“7åÏ*•l«Ìr[!ëû—áO„»!ï6×ô:²>E<FO³}êËpaÂCÕ‚£ŸžŽŒm˨º•ªg‡pïœ'ëRDô0ð.dýKT¦M ^Ch~ÚôŠÛibýˆØôû!÷7ßHÝFàäm³æƒ*Êceéþ™|Ð8å½0 ¶‚ÁvG!3Øj1U¬u8 ÙäZÑ:Ö^†¬¿Mµ9è)ò•BQvÜE,®oBVë%Æ]¤ôp²þŠô¸‹Ô߉ M|'çÆªJeù áâµvr÷ïÈÖâ1A<Í®)¤n+p'dýeùQ~ÿÉ‹`¬UrrvÁÉ5gÙ*;–Œ¹²¥‡ úÇ‚»lçx6 Yo"¶»€7!ë»T:ÉŸ„ëšï$W©~>ý“ø-J“Kê6û¦ÒäJOsµ'DÓ5)föÇb_ö'Q“ºŒÔ$é†ö'QBÄÓju!ÄvíÑþè&ì„Ü©\?;k³°$b$ç†Õö%:=Àm•vÐÃýÓ5Å3Y)Rö–¬íˆb$ÉO—:Y/%îèµØ‚½ÂìY»Ä/À”5ï_Á÷g!ë¯óËTžÉ÷å?Ú¹Le1•⧉Kp'd¥æ@® þ)8ᮄÆ-BuqËb{•oë(g7AfÆŒ£s:ŽAk‰ŽÇ!¨;<øAz½Xœjíæk¥þª0/GsQ Ù&šÔ÷û ÷5ß+HÝFàÈ; x…ˆ…Q±E?P/w½”¼eÍPõÍ,¬³k¾ËÀs•N—Ƙ*&!©;<YigZÞC'´=¤M{:\Š’m@ˆÎàÈú3{•ä¯ ãh~.¦6 .½À¶&¤n#pGÂTk¢3 &ýÀƒÍ%’1qþš˜ž‡Ü‚jMê' ëWë0+—shŒoåe+6ºœ…¬?Æï_±)¿±õa~ŽýÕVÖëšzE×ä[óyÙ^‰ˆ&!+íöËõJ¤n09Õ|÷%uÀÓ ¤’‘]ô!õg"¨œJ&æíc}hþÛµiÈmˆj õÃ4Õ Mã«¢"U±]‹>º ;!w*7ô5ÛÅpšyvÞÎÆ ÖãØÜy GÎms·Cµ¶‚ˆxÁVe2@ç!·=“È\¶0“ÔMo$LEbnRÚ!7w!ë‡ ðX&K:‹ðO£žšeÒYæ!FÛû ›Ë"ë)?-ª%ÇAȃÚÖÙ&ËÊ;Ïm…÷ˆÍ~` ²Ò(aÝÑS¿hlÔgö?ªE8Yi×Zn EêFw +Íeå]å4ð.dýŠ,=†"õ³ÄÓì15_]P{ò½Ö^HýkÄÓj?#ªSÛ5†úÐMؼ1Ô¦¬ë–s²G›‰Sp{B÷hs}òßs“ÿò Ò =c¼=«Þ€Å Vù¹ôª;1ïÞ‚|Ë@ç ÎPTÊÅ`Ì7¿*kó¿ ;ÿÍê÷UWž7ä%•|‘’íÀ‰Î^àaȇ›ß*ÿMØ…ðä#Ú6Úf^²–ÅÅiÜdˆH1àdýU#žjžWI§Ècu(¹˜ œÉòDÖ"ç!ë<‚ªU–qþü‹P+Õ|ã`E•°w¢rx²Rz9?#uW€3•Æ:z½?©¿Aå=¹ÞŸZÀ.¨½ ÙÀØG¶>‘úÙ*}ôhümÔ„ÛÕûÿè&lbï/æ2 Üz€ú½Wý¹~>b"Ö<ù؇b*LŒNÏA6¹aÓ‘ºãÀóÕÖT.ÙŽÔODO³[¸¿#¼ŒãÈJWäè5-¤þbñ´šÆÏ —®b»Z¸ÿ º ›×Âõ䜂]ôâo ^^°²Ò.WÃ)ΟÌ8žO—rñ AÊ_‡ôh"bÄ)³’ë?p‚™çVÊYéÈâ¾ 8 Y¿OMÑTJNø*"ó€|Ye™ûï Sõ–Æ¢ßêòJVÖ–n²‰Í(p²ÉF+¦É&u§ ë7Z”B^Å,—!››(lòƒªd•À;[°PHê®ïBnÃ`™ÔÏFÐÌ`y»8öŠöR¶sÿ9a\ŽÛ!+ å:wjÛº ¶r_ë-òsø^ˆx ½ý–¹êvbÝ“(íŸO˜ìÑ¥‹€ÔwFO«iü=”@ˆê¥AÍÕ)]:¿@æ‹ ÍRéaú •b–b‹˜$©_D¹ü"*M‡r¥iÔ¤oµ¼Z˜lÃN”öB>Úü†ýñEÂ!ÈCÚf:I·v…ûÿ¸`ÌÆìÖ«Noe]Š8Þ…¬ß Éàÿgx¡þÞä4›õwBnÁÙR×ÜYÿìÇ™0¡Ýîx~¹’õ+e:ÆùnÅ)Û9•qDt7ðäkmð¤_‚÷ü’1Oj¸ÿá¯8E/n*°ëî¼Ç 7Åì…ÿ—p/ä¤ÿ%8.á>ÈúiÀ{X!P—÷¤oê&ƒÀ£•ú½nüïÃ+C43ÆÝ8r¡SG‰ïVZúüep#‚¬Ö™n“‰Q xòÙæ»3©;<YiÅUÏHýùâѤq‹±`²ôH¤DÝãVÑÃô8ËVÞÉ¥¹kQ3H+OiæHo|þ ¼ŠðdýóàM*¥ßò¤—°*/œ¼c•WYÞñøF@m-,¨+E¯àðû>YÉò—¼ 7tËò—ÿþ*ØÿªÑ7ÙÃhŒ^B”?vj%¹ý/àC¸²RŸÓ8;Æ›²µ—xŠ žf×^R·¨y°¶ÙE²bQYyOЛ·àÈGš?Dÿ‡ðaB™5ߟÿ!|˜ð(dý1qüYzˆN4†€§!ëŸ@êbL–È?‚ƒþ#”I‡@M"›”RbüôÿþÞ!ÐPK¬v–¸löCVÚÓ”sWR× €< m³°Äd'ð0dµa…éY1:I´ìÂjRw8š0uaõqóP0>w 6™Ë¢R‘­ÕÄi 8Y¿+¼ÃÂÔ²/ó…¿p¼Yÿ°þmÆ<ºÁöíBÉ-³$Ê—.8‹D»a¸´WÍ3ŒLüà‹Õû£d_å}ÂÛ•¢5×¼ÊH[¡¼‚ˆo¥yª©Ã¡j—ïJ’þ' úOP¿:TëWãf¹È¦Ø„l'.ÀIÈ-ÈÑùOP× /CÖÏѹ•ÝÕÚAT®Ím¯ËzžAh~¥xà’Èô·'4Â.åÜ„Ôuû¦6Ø;¥G™¿ŽïöC67xÙ<—£«/òö×ðOmÚ_ÿ§pÆ;•R‹Æ?C „¨·¿þX—Î?Oˆ“!âÑ,•ÝŒMk‡!ÿ ”¡ù ð:£LbtxòÉæ7%¤nðd¥Û?ÖÄ~¾Œ'гn1¼ÀF¡û!^Ià4äim~ƒ,˜¢äóî ±¢HI·HÍÿ¤ôôöƒBÖ_Æ’ïÿ%tê÷Žôä{Éõ¸õµ:Éð.õµee©”U?p²ÚÜ·ÑY‰éšÿ/á;!*ûP#›íi|7 B™^¬t‡^C­[ùbÞÓs¼IѾ8yJ¿›U²ÔÕâivý/áú„× _Ó~ý-,éÙ¶J›L<®g!Ïjó9ÆC]m/[vxÞp- ³Le¤[ç%êÇcÕE?ÝfäuŠ¥Šôl÷_ƒávÈJ­¡Éy ‘Ù lá­l¤®hîV¶¿Ì>»dgŸ‹¬0Käþ¡¥Ï-ûò›ÓDó ðdýÍé ~¾x©ì]²Ï¯f¸á\1ì_WG-²Üÿ \pò„6÷«ÄÝ-çìòd02Ï;‹–ï–W‘ôÓÑœbù+|1ÉwøßÁ›ð*d¥æ·ñBÑûn¾&[sˆËmà,d¥¶P®æºkÀ{õóƒt¦eÝŠô¿¼ù¾6•D§ÿA¸òsÎáùVYzs‡¸ôû-KtJê6w$L%:=Î[NÊ|Pw‰[rpg‰ŠÑúç «E‚5ì Õ®(%2—×!_oÕΧ!ëÏtå«4鿼 ù¦6´È ¸‰S¤.Í–œ\Î.FÂʪi4dÿÂöÓõNž‡yVŽ'û¨çIݲôÿôO@>Ñ–öòßC;¡~{¹]wÍhôEfÁlbL¡h~Åñ qÑÅ”F­Ô¶Œ;ïÍîÛÅEI¶±ú üvÂ#4¿±"uÛ€ 2SQË o¨Á‹½Þ Öåy¡„SA§¸`SLvÅð¬—ÝcÀ× ëç3Ûß“œ·i%±ŒØ›£égo¥ÒÌÉØYÏûð6ÂýÕ¢ˆ&/œbòÙ0î¥kȼŒŸ’õ·ÿ q¤qZmÁÆ(©;¤ÂPÂÄÆ¨t¶ R>‚W&—ÁbÔ’»vCídë_²µ‡Ô_ˆ òò—6ú7Q;~3ÑŠ6zsFd{^XùMübÂý[°°Bê¶@VZXi˜hܪ(V t‡[¶éªVoí©”™B ñ> |ù‘¶§Ýeøö#E–\)ûèZ|;<ðS¶Š‹mj År‘h*ùR’me—dßæÿ„Þ…¬B1¾ _^ɰ'î ‡ÄŠ?ãjyâÖIÙ†î?‚&á0äáæ7tdïn¨Í@δ¾¡#õ#ÄÓ–†î?¡ôÿS¢ ݦÌ<¥À‘mæþ~-á>È-8D@ê¶!…Ž£%§´caR jt"_ÏÌ»YŒè)' Ò÷ ë/á[…’›_]¤+Nؼ[)æhâ*Ið?ÃÛ@V[oxÞé Y'#CÄÓl'ûϰ á1Èú›HÒCOR<‚xšÝ"“wvCí Èú Ò-2©?AiZlµù-(ø-T™­©6¤nðd¥jà ï¨+•3µ!hµxX™—`©l{âÈ×üª¬«ýÜ‹ð1äÇÚ®¶7l—#™Fò±ýøá^ÈJ Os(b=èëâúÿõX‡l®mÚ0Wz¾£uðdý¦©[-°ð¿ÀSÓÕÖ gd£Mß!ÙªOdÎ/BVJo)WõIÝ0ðäKÚ†éͰÅ ™Þ‚¬¿qfÍŒv¶é¸©W›Nz˜dU]’ð>Àñ d¥›» ½ˆÇxñ4Û‘þ+*Ӆ力ù)Ö¼þ®ð¾ïduŒœ’õ(btx²þ™¡ÁУ²N9›çó²•s*Ò­ÑÿŸ!„¬41j¼ÎWFd}ˆ¸0àqÈ&°1>DêöO@Öï%ޱ,/(Çr|ðFà”WJï»Á“À»õW‰¦C—ò–œ~¾’]ªe&Y;•eóvÖ- ߇[v¢ô™ÿw#œ†¬¿½;| Úå#¿%KºVüß Ch>økñ&¯µãƒVE¶r¥ƒÀS•Âðå*©ÛLBVº–³ÎXt©žEk§AíðËÎ|Å·eç»D)œ‚¬´ç!7ߥQ7Ô^…¬¿Ç!=ß%õ×"ˆ§-óÝÿŽªòßšó݆Z{æDÌï|#ÿ¤h€PÝ Yí=-kúÍ4s Iþ”ÇÿƒÒ'ì„ÜÙü:AqÞ]PÛU{ZmR¿!‚xZn…ÿ’ÿºVXÿ¬ÍºÁkëqënOèžµÙ^_VÒgmˆG?p ¡{Ö¦¾Œ¶¼29Ml‡K„C‡šßáþ”,á1Èú‹ÉÇÅQŽuOÈÖ6bxx²‘¬b ×(7Oˆðr|©ã!^Ÿno£ØÙWùmTRBsYÒb'Ù§¤y–äÛ¬àX äï0Ÿ—^æûXêE4š‹t§/ž^€¬tû\¡//BÖ¿¢e[Šoì‹cY¢ï]Þ†¬ïOÉŸ’rTÈ/è?7ÂQ6s” ¾“—mY9•­À>!· è« q µCÛ(;R6ë‹ÓÌ •|ž)اÈ„¬'i®"s.§€g„¬¶¸(o £À´ Diw±*6ŽÙ`¾å:3¼$dµsy“Œ'…¬ÌY7ˤÎ\r¾Ï9\^O˜?u3·¡áMÔN ÙÀr•ì܆«¿QÃðiõܦ£Cxtæ4MšÛÄn@¬G«§†á£8­©ô‘žÖp[Û„L¨XLÚ)8]5 CMZ_5…ß.‘ÌÿÀI G…¬–È®¡ÖWäèÀ"/Ç1!êVp%×°E[h\ÝvàY!ØBÛæá©†ZÈIæ”Îï ÙÀ†€«Ï(Æù²]@ŽZpR]/.¨=(dÂVwI¤þP ÕÓ‹kvIÈ˱y]R÷»Ë/;/Èõû„¬6Ùix%åt0kÞ]^w}‡' µ0‘^²ÚK÷0b v„˺5ú¯†;tt'µhg Õ¶RŠa?ð Õ*eL[Ð8›5W× <$ääøçê6 Ù@Žÿ3µs|9'K©"˜¨t|‰Ïö))0d]™ˆÎ Ù@Jš­á¡eùH½¬ÆpÜ —ÞjlH¶9çŠVAú@§³غI\Ý6 Ö¤5¥pštçòö²÷ÖÆéó\»²]ÿFQ½9ÞF•WZâ“ëú±³ÆÕÎÙ@^e鮟Ôß©aø´š6›C íå …ÜñÝàÒÐÜo¼hT F«²U¹uªÿ`[BqÅS®*“ºn`¿Õ’¾®)“áý/eÛ¯”‹"©š;Ì?-ëAHkÏñ‚ÛpÍ|Çf8Ïæ#÷€KOsyɶd®p*Û€-tä8rQGÞÈ FîŸî1gÊ¢¬b”C@&äÜ£ÂÕí²{T’¸˜ÂÃUlk.·wV<…% úl8+dÃÎA±€ñò„²»ƒ[P× Q×¹•ôeœ«aø4Û§HÝ~àQ!ð©SaŽÀV«è¶(â±.Cµ¬KmKÞ…Kµ!ß~G/|‡°¾ÓiÌw42esF=À‰VÝ$ÌÕuw ÙÀMÂ#áUen1¿æÊöXÒ¢ "+~ªv­ÆHàM²7Cr²»7…l ™—¼7aÌѼ7ue}h+|>Íö¡­ð!Â-ð!ý›ç{T‡ÇD£¸SÈj5Iox¼ Î44<ÞÂøy1…¥›íà³VêP¶’é¦õÙèŽDŒÛn‡Ÿ„ŸèïHœ¤H ‹Vní"O+³P)ò¬GÑCÀ;B6°€!ßìõÁ“Í4{ Àxj]jƒÀCB6º²\[Ð.}­~ñRí˜1§Úܓмôý¥ßÜ<,dµõn¹zE꺀G„¬–¼omÌ]Ñåk±¨ ÅÌ€#B6¥cüóÀ+‰jú5C&Š9cε§„l óZ+YÙçÖ¢ôŽѸ œ²õá­¬ºê& #¾#Ðü6‡z€?'´xPÈF7ìbª4}ið ìš[»¥ÁÛû`Žõ+”K—_Ã'ëJôÃÀëB6°ù{“Bâ³ùJŽ_÷ãl¾V=_} /˜?ç¯l/Zeþu„þ˾H?<ð& QTlŽ“Ž=hgÑ,Ìj¿Î-¼†çÛ¥êzQØÑÖ"©ã)úlÙÉCçà–ƒΔv ùÇ[x}ÃtÉŸÜ"„•U<œßp¶~<ëV茫lõ%:[€ýB6x5plõ%u€BVà>!Í(oKêz€ÕvÌåÜvPTZŽûQ‘•ÆÑk×u˜*J\®Pþ€'…¬˜pÕôœcPÔŽP‹š«;¼(dçÐûÓÕµÑWɶ'DçpVÈzÔ ,.“?óËVÑ+8žGÝl˜CÙ¾ Wœp¼ dÅð¼FNÖs¼øTéÖÎç*Pk™UÎÅö —âxnf`×JzÐIúïg…lÀ§.1D:8›·èrWÜi¹èÎÃ Ö §P)4ºˆA’>Žjq¼¯ºdn6Ã/ƒõ(ârxKÈjÃE9"u“ÀÛB6©Bze
?!†þÊ„B¨åAxÇÁD3V&”Rcr.Û€ýBnÅ`™Ôu„l`°Ü)½~†íŽ»„¬¶>ÒP릹e+_i”ZæŸÃÁ Ì,˜I×RßYÃði5Ã(ÃÚ¥AöcºtŽÀ9á£Y*G{êP®øÆ'„™$I†2#<‚2;b¬1‘ÎÓÌyœ¬¡ú5 r çxJÈjÙK×¼>CC-£öbY+ç,G:(ˆX%w„l`xuŒ…ws—Ü€#+•Ý`Äé±¼óÜÎ;K®›“^%; ¯"<¯2‘$NZ¹e:ILGìx‹´òyÊ) gJxLÕv>Ìø?ñ8SÃði¶ÿ“ºÀ´ ¤6ÚÇO7òcn0.3Çg+N^úl,±Þ²¥Ê;YÏm:y¹“Þs€csÜ×Ù¡å: ×/ý§èùNAÝ!àñ„é-b—ŸHÝ^à !«%+—ó_R×<)d·ëìΰ»îÄVnÙ¡Ÿ/¦B”N/ ÙÀ~Ì4cž•-; N0ðÜBðŸ%«¶‹_×ðJ¶¡+Û¹J–dzÔKÙ×@ãÈqÞ>­ý‡qÈÛ/5-Vc^Xô¶ìH×ÈàH¯‘½ïmÏ 8: « /§…¬Vˆ¯¬”/…¬n)¬÷‘²é3ÀsBV»â¾áo>¼ãFó RsxSÈâ­6ñH*ÙjEng…l`¥jS‰Ò9‰ês2¡»°@ŸvâÓ‰¹¥àÃ÷–|¿äMŽŒÜ|2ý0ód8dòH·¼8‚PÒ©ccï¿GQ¬ïÂûØm{^zûɃé›OżR7p¿å·%è½õߨ£ö4p\Èj—«¬ÝªN³‰Ñ ÃcÒ0"r8%d) äy¢Úv¢Úª…ÂUKsOí¥ò›â$œ7UÎ¥ƒá0óŸ¯8ùÜ[ïñŰÉÉÉ'¹·é{oç\'9tll(.„°±ÑÌXðgäÌØùscãçÆG3A0–›¸x.w Ǻ $ôŽ]ÀpµRzôÝpdÃ\ðâó®øÍêËß~!9 J ™Ç0a$ŸCПÿ(~¶ñ¥:ñú³™aTÓMõ&ÄÏ»Iávúùç~“~ÖýCuE¶ûñ£§³ËúaÉð¿úµ’é©W°õJÐ5ùÉÚâUñ-õßñ ¥‘'Á>ñnåüݱ‘'ÜMÆÎÚããöØÙùsF¼JyÙvòy+è›k—ÌÕ˜kß±û•6ð"£N¾ÒYòõ'÷'-{MŽŒÿ„/u½ê_¥¼ øäwj^ðuòCÌõütcÞ î£`—üWÿ•1»tÎ +Xäßÿ=äß‹ükào@þ m‹ôàš¼Žqþðk¿f¬0â¶/¸ºïH"ɄРHg}ïÉÇ ò%Q½É®[ÈÝÊnÚ¾†¹šùŠ;®(—k=yÕIÁzE~ øI!¶Àùª¾¼-dBCj»çœ;ï5:ÎH.^€âO ™°éŠù„+•¨M¼°!?ñÚö¦/ý–Î'¹„ÕúèK¤jæŒ]šâõB Mû׬Òßµó¹4»ŸQ «?B¤oP Ñ\o~ÓÝŸùòRì5êëqcÀBV ×lØš¥2ÀØS{Þò|Ç*ŠM*Y^“(&ÂÓ@ë­…=5¬ýtŒ±›nÑ/;ój<Ê·ç/9˹ÙJÁ.ú"#æü*{àd—,[úÐÁÐ& 7Ç´iw1éÓ?S B¨ÆòåqêéŸ)¸=á·7tú‡xlÒ’ÈÖ„â9®˜uãEÒ¶Ø'dÒ®é&û—òâ†ÈÖª]ɳ׬ÊÂBÁ*¥)§Ä÷8¦ÀQi;f `Uü%·Ó*’Û^5Zí¥[Ÿ«ÂçClW—u ¥qM»4¨²0]:×E 1|4KE~ézÅ2hÆFÔ®eg±hû¾ ÓÅ­êŦÎ%j=ÀƒBnÅ}¹¤® ¨¼æm`Ë’ô²«¸¥öå†výÑsØ›àqÓ˜Ã6rÜí¥¼ëgªW)pì²QÉÑ{å&<¶GÕcå*ÊMT”›pή„jvÖè§;ùñU2ƒïùeD².{SÔŽc¨=úHy—½—½ÕT—í·ŠNÁòme¯½¯½…¢êK(64r^{ ^KÈ൬ù^{ ^Kx^{TÛ9’Ükù…ÜܸñÑ«d—‚ŸT£¾¤;b9œ²t²;ù ºe›.>¢›Ú‰¢$±ÛðmBx¥Z8Ѻ¾½©R \Zv>BœÎ/ Yíb´W:ôK‰gú§cåÊx[ÔŽ£¨£ªÜ_úÍû—„¬v •\}#u»€“B6e¹ƒE.T¸ô’Ø\Þ2aË»ˆT#BóÃpK ‰Qp§[q35©ëš Ü̲yËó¤›_b±xPÈŠù_¢ŸJÁïÀK€†ÆàÛ{@ùB<•Û8ï‚a¸Ò­´æcÜqï áx^dn !ÖqIÝvà!˜®íbÙ ož·éFßαÇ_R1ž²bßz]µê½&Äê:ðŽÕî@’}’ºI äÄÝÖxÉ9ଠŒçäHÿ=àkB&Ôä1ÌØ¬_T–\ÏsæóüBž¬[\¶Ë>!S½¦ŸIRžNÇqXÈŠ'HÖsãn4< ä&×áN×›ïÅp!ŽÓp§éæ{1©ËoYíž½n‘Ô߬aøè;±;Od=–Ì9^ðMß™·R¼£¬žæQi‹ïÁ‰ï5׉©-~:ûDÜ$°…N|N|¯µN|N|¯½N|N|Ϩw3–ôlée¯Á= »ážjW\®çž»,/œ+Ï“‰á.à)!=›㫤n;0)dƒ›z±¾Jê6SB6pX!+8 L ÙàáÑÍsÏÒØ¡æëpÍûpË6íj’úζkWóJãviP½ùAéÄNºØ[ÃðÑ,–»Çޱ¼kåØSÈ-ÅPõ29>†LVooæH¢Ï¦EW>Õg‘dìuó±¯óÅKˆ™®Úì`mP<ñI†ï"Ïê1XöU_ó|/–ÇGÀã#F«âîÀØ¥2]XKá^¥P°Ê«ÒÜž€ánpÛ­Íí'––K³âÔù4Ë9‹ŽïMËÛñ)8Gý惂£Ç® ‡¥Â)yŠÏ@‘P/ñqôÓQÚÖKzdzn¥èSîvŒyVÁf–ÇNƒÏ·K •bHû”4í×A›p´GµißbôçEÞšgSlè¥ß}3g­zo ¥ÙjðÓ©¡‡•¼]¦ÆÇ).ð@ÙŠˆ9gÙÉU‚m(öÆåØWù(^…‰®Û¹Ã_…*YÅg<Ù„+eÊÆ»À'èEóoFD†«˜ú7]‹·‰ü ZþJÒ)=B„|É.;nŽÞèì(#Ó–óìÒÔÐ\qH¡v| oó1£os×ßšÏÛA)> l’µ½Tš{^ÔÇæ†²y׳ç†ÂW\¶5Íóq¼!¦¨¶Cs›Ô×{Ù.ú*$?’„‡AR?ÞàæK5â–ãU£[_®%×ø;VžyÂ@ oò&Þ„q-æ|¯ª A‹kñ~V¶Š‹¼¶Ž²çÞáV+†ôÛÌámæŒÖ†õo£Q_ßCÂ`x@›áÙ`ÀB¾Î6fÝ¢x“Ç*åàcJžà–EL€4óO‚9!Ò½8|ß8xÒ“/Ç·Á†Poy ú©üôSà44½ØÓbKAíwËV!¬úž¸ŽRÖût–š¼×·hÕ¤ßÄ›Xf[‚àM’NÆÎ¤‰« ¾N©l/ó>Ñ.y Õž/f:EþÃ`LË›yÿ˜ÇÛÌm ΋"¦fÙ{›/ÄÒwÑöŸÖ~^šñ/(L®²àNˆ,-„º#^r§äK/ºÌÊ•Å?—¦mÂÑ„©¯|•´ÁÃ6Z%GGæ%µ ­JÖ¯”yÏôh‘þ°h{¥Y/€5áXh³¤æ5tÈ‚õ"“ª`~ꜼuÁpüµù J•‡—ì|©¶Á77 .E… † ÕÍ:Ï–/Ú%P'DV,µ[æ5ÓǨcRÚ/üp@%‚‘¼`(0”/¸S¢Ù=Œ %·ÈÒÔ‘‹€£¹"œ¦Î&6]êl=§ñaÖ*WgËVÞÉÑe2ø{µ–a€#?@|Ž÷ œÆ{(mð¬y‰à=ÄM7¢_æd—œ\Î.2«òÂÉ;4(˺ùJ¡È2¬ËWÁ<ÈN€ü„6ù~QëÞ› zÛô[Ò¼ àEØ^ýú#‡`蚬sKEFàÇXÙÎUPÒÕD†üøŸÍòÁä‰Sñ6„æF—D}¬¾¿Z²§¦†n ¥øÛ¸Å<9HÑ Þ¤,˜ó¯°Òü]ð'¼þ—ÚÐÚ•À£d´µ»·¦ÃX{Dð(:T„ôùpØ"Òg‘ŽZú…ÞÅ š[™/Ø2x”¬<<<£<6;vLšŠ*„@eƒ6•‹• ¡jÉÇ{¼q©îÿ`޽Pv Ì &5ÕÎU¾ÉÁÍ!ÃóìJQâú%¹ *ËFKRÞ¹VÀcŨsm¡±’Z·ð„·€þiÉ}˜³È‚U~NåÇ« G¸ôöiÓ»ŸuÝrÎ)Z¾í%ÕqÍ&‡^ 3ÜUê¾h¯Ì-¸>®³ØPõšú`ºäÝ Û™²U°åÛÛOã•íöûú¯D—rŸ£eÕâbô•¢?F8~9n?{òôâ%†[½UÖÐÞÃ+½gô•v„{l ,M ÷qÜZ;ÚPéß÷Vú=Té‹b„˜u—­²Cî,Mî³ G¸äöh“;¶d[¹¤ç/–¹!\OüàÍôðØ[òæü˜Ócm0ççÁãóFÍ9I“Ƨâ2pÇÎ¥‚ŽØ³ËËâ [Ù^$HZ^¤ʯ.]¸ÂBÜ×á‘HÅÀ¡»G’ôV=ß.d(×erÈ[²J´}Ær|Ç'4œ™'Ôv?Cò©¡hÍ¡”üä÷ëñ:„æBIvóÖqÙ.Ï»žÍ¦Ø³'¯ß–/êo7BsÁò>ûàñF}ö”s‘F¾Êcw%H´ÈñØêß´:%b#ü ™¼•fÖ Û›âF½Ì|ÇÜUl¿`o>/ÔâVÅ_å-ÿÍxÂ)¼Ã”nž?Ð%•(»4U)òx,üì8ͯSi–µ_LfΧi}¦áWä_é[ðJ„æºùGy{1èÇ’C¾[*;‹K~PöâGS|U·þŸ±¦†ž069.^3äßê[ñV„ðVÚPE¿ <¾Íh½Ð¢¹Þ·ƒ=a˜ÝMÿNîË…UÁ•Ƶ˜æ›OáA»ÖŒ5¦ Èw#ß7 Ô»ë#úékõ›ìÕ?op®¢1z·`Ýã‹à'9ÇZLŽn^¼é”³y{œúùàçcòžýx#BÄ8‚ôZàQÃW™ýnÅÊÓÔè”°Ð) 1Ë» áq/{yW©ºCjæí\ÎŽM;ûFß…7ú.ãoüáMd@29ä®8EµÔµÒ,“ɤxÆ þY+Ÿ­ä­H‹ôý.¼Ñï2úFçÅ9Å…|…r1¢Sö(gÜP)xlÞ) ±œËŠAï]¢h•ØÛ}b¹ÿnp'4·¡›9vÌÊç3Ü¿j{|«Õf7o—i¨85v{X¡Rü&Ì€tF…tCµ=sˆŸn”ýò!TwÂd /ÙNê;kØ®ûïAi|vi4< … IRß›Éþßß’P\2h¨uóÜs{uÅ-7ºä{Q„æv›¤­Bêj>¦¬‚6V’Ô`•/´Ü*_€U¾Ð^«|VùBS¬²±`’$¥ïƒM·Ã&Û[b“ïƒMû`“¾ÖÛäûÄ÷B µxé[<Ûs½ÎðOÇïÅk' m&}£>2ý¬~†›[ú¿~ä/‡j\[ý¯—²e_—¼›e$ðï‘êÔ!–lñkpÝŽk¿Y-Ú@'¿-çhL]X°Ê´˜î»Å™¼ý‚NßÇùÍ:åÃÐÎ}#[¡ÔîÎÙD£Ñâ˜ø´vƒÎô¯ü½ò©Ï_ªsåtfU,ðrÉUMña¼~§ñ°r®hâ’Ò‡Ï` C«~ck%®vñ(ÐhŽóÓXs3p²R15ÔºiÎÊ;Vƒ¡w4óS£+l[eR ‚x ™gMåÿÀœ(ÿS/päÆLÒC¹¥Ý\à41ª;€ FW­² ©ˆ`ÝèªU4"q &DšÎñ¹§‘æi6X¥è`ãñƒÈCÖ<»ìØ^äê\§P*»ËvŽÍT0E\Îö²eg>øÌ)²‡neÁrò«Ìö™•w§2’…±1!Âo†üÍ ¾Š£·ˆõnÂVû©ÿÖâQô…>]:ôl ÝR9C£ûæ£n?lÄ$r(F³’h©ïŒ M»yÖP¶P)Š gßzTAIj›Q*„ ¶5›‘üd[Üè(fÑs9d™±Ú—Ôƒ«Û< ù¨¶•ŽRw¥¶š‡ò¶SÖ™ˆÞðäÚ4{X؆KÒéÓô¬• 9P—çÇ-ÿĺO¾ÈÇ •:h9÷¡·$ª‰9¹¼SÛ.7ùöuÀ¶•]-ßÕ úÚÀX{ì:žÔþ;÷ˆ]ô ×-ç¯d—=Þ*¸²FŸí~òGµ_䣣n9'ëó¡D)àÇæƒQD.<ÙR;ÒËÁ»e³<în1 iFY;GŽæcQĽT$Z±Ñ¾­âK-°èø&ÂŒ]º4‘âv›_àM·ã¡¾VäªVPFáûŠ8‰ø¯¸wíÅû.@^Ð~×gì%eØìB„©ØÚ¢ô/óòø ¦Åëf·òV¹@ß([ŽgçdÓñ›l:€H‰½YVñͦDGJÑTví¤€eÐLW<¿lùb¬úÔÊ"f 9!±)šœµQ¤G GÛ¡=Ä6 ŽH}g•G µnÓÙ4f¬Š%ávB^èüqèßÒ$#‡X¥ØÑi0Šîcž„‰,?FñÕžÿ†m?÷ºþl1›¯älÞdLÈ“ÑA£ oŒý°Ž=K‰gäì¼o)$¡Y³ñÁqÌšaųÍw@W˜ø¦M#ŽèÆ‚þˆc£.ZãÙA<Štèe$—âˆÑvvw¢v‘WwBq}#ѨœŽÕ§Éô(͵Ã+`¸”®@x+0Y­ú5¼V œ”ÊV7¢sxò•æ¯ÊºàdýéVO5¨SÁ8W3gŒg#V±ÌàG ¤5–¹|ù‰¶e¶E÷£R Ö “€¾ ùmƒ%áøv!FmðS?ÕúÔ[Äc¸ îÆ\O’~ºÛ oSn†ëo:ßP4Ç‹Î2-XÑúªÏÀdµÙG£ÂÛ@ÓcÙúMTFg!Ÿ5èÕ1õ›Ôžƒ|NÛ«O†ùüÂÞqÁÍç)1r%68}=«~ò'´¹n !«$“#Âê¤ôŸóºmÑè‹ ž6 KT‡è &Ú:™Û¸$nýÀÝ•6Såj©ëî¼G¹mÜPWé§%;K§ŒÃƒ:9ûÏø–Ïó¾Vœ1d<÷»¬{ãAà-È·´Ýëd5Eé’[Éçèº.ßö|;Ç÷+Ä‚ž#½ÑyNGxòIs-;­/ÊúQŽBm¾¿‘ºSÀ1ÈcÚVâU»¤ªæZ” ­BÛE >…ü´ùÃ9ræPû ²þ&•tÓMê_ ž64ÝC¨-„Íoº)Û©\5"^ýÄÓìjDêz”›íÎúfû®»Â Vq•­ÚVÙcóVö9mbòé‘ï2±Æ`í¶›Âe=ƒî^‡|]Ûµªg])=s8¼›·<;Üm–dÉúÑ„¾ØêO…²j&ªMA««ÿ1P Oªÿq”=a ªÿŠlõ'^ýlQõ'u½@óÕÿÜÁ@Í]9å±%+¿0ì9Ÿ¶ÓŒRPG‚8Vh½?ÒȺ1ß ¼ ù®¶‹]›y{²ßÒJ›µàÛâ:÷l¥\¦¤†Äš3E-œlëpžHØ A³Z*«P{²þöžtë@ê/EOZ‡ÈPº­ÃæpŸ\¶‘ zýÀ}÷t—˜F‚Ôõ!*7õ¥qá†ëæm«È<>Å[¥N7ð[(©¾]¦®¸[@Ó•@²UÈ>ü¤ùUí$ªáSÈJýªFêŸE&L¡®E²#E.4©®í¨A‘­sDs Q›k$GRruŽÔmAV95옟޲œ"SªûÙ<Â7ZÏh?ž¹¾l[A'9Y3]ô²nÐ…_÷ÄC²I/v¸yEÛ#¯'Çøü‚ÂAË΢CÉ\ĉŸ4Ã/UO‰/IŸù‰ÄyñIHGBq"תœŠ¨Ÿ†<ÝúV…Ô߈ M›˜J³’Bé§ð÷MjVº5&Ûš¤ð{ !+u¥r­ ©ÛÜYé,iÃüÚú=xж¬ˆ{XΞ¯,.Òç‘ûdë½Ä!à›ßl~#uÝÀ9Ès­¯s¤þ­âià9gׂAso$,S¶ÖÃ~àÈJg˜åj©ë„|P¹ÖuÕÈÕWŒ›ù­©+a +O˜‡`<š‚±ç «yèÀ¸*FÍmÈvkŒúpò‚~3 Û’úÅâiv#Hê6— /µ¾$õNñ´¡<#¼™c v„yð·lM!nýÀ^ þŽp}´Ìé"³JÁèý…S dI·hÓ¥-¹”Š g!+Ŧ„6k8JÚžãöKÍes®ÏÆFGçâNLÅ%#!Š—€ ?0fÊ sö»Å­ç€!?l}­'õ"ˆG“Æ·…K½8ÊÝQ"Ðå`îèxÕŒ™Á$±RÌ;ÏíF³Kêyé’4êq)`Ë_q…3VU†ïGNùq›øá²Å‘†³~äoÓ.Žþ°8ø:½Bté0¨öCVÚÉh~m"Š{g Ÿizm"mÀ4䴶݆ػ«è;ywºLDz½ê!g~Vvˆ1yÖ°ÙC 2ÄF¨{Y¿–K76¤þqñ´aˆ‘A5 lÁƒŸ(“b·~` ‡¤®¨?Ĩ?q#œaÑ=êYËΰ,œ¼«Ew9á%Ú+|n—üà'²NGï1üdýÐ[a“ž¥8> tƒ7òyze,„®É ágËKõU÷Tˆ¿ê3îMF਄· ëÕß$I7Ïï²íUò¾—âQu’GÁ‹ð0äÃÆæ´¬¼ü!q9LAN5¿"‘º#ÀÈT_Ó\{DÎ…‡PY‚Á΂ãËöCÄé ð:äëÍn„ÚiÈmXc'õ7"ˆG“†ÒÎÝêÈX¢;w}u‡™ek±²Dõ¼{³k©Û < Yi¿°áÆÝä³5›u9;ëäêþžÛv)¬o¢m/L¥gÄÿ8ð-ÈúëÌדt =v‹nÌôþÜ8Ü”ð:äëÍo;Æ"êÛ¸?GêoDÐLÛ¡2†=‹²'lþ¶Id› b×Ü yoó› R× ÜY)¬‡Ê®ºÂ8òQ;ë‹Ëx«G–V\Dày“*–<¼ù’¹A Q¥÷wˆËuà-ÈJƒMy»MoC¾m k¦ „‚Uf€÷ ß3f•M%ž¥AÅ,~òG[c–×€o@~CÛ,öÌeÖ²ëäD1>uâîŠÅ?KÉCK7‰Ë¶ØÄùcÀï‚ü]ÚÜçÃiÓ’Åó¢U(yXÁõ|Vtñ èoÅ^¢“¡­ôJzRvü¥‚Èõ·ö´ã’]);žïdeßóœð2ŽóçµßóNu¢0&—-ЉâSqI,;›¹fÀŒÌwù<7%öL]?øªìËœÇ 6¸§^ñe®†/c-Ív`« Ìqa’ìVMcçÑ⠙؂½ÂC”-镇 ð&¼ ùªö;lßA’M$:šV½9k¸†¼· ïñ ðþÔù8Ž1‹ÇÄm;ðdsAq‹Ç¤­x²RLÁÚ ¬l—Ü2 ¤–¬lgmg¹6 çq€ &<¼ùšqö Šþéý©¸ßz6¼ | ÙÜá¼õlxø rÎæ‘ú×#hæl^_XåùÁŽŒ¬ÛD²5º)Gs ³ƒ©l’×ú´pœ”ìȆØí¦!+máÈl.⋄ǵ-¶ŸgKeËbš`…}û:W®g¼ ðdýŽðièQÁ„¯pˆËÿˆ fì íaÐwO²ižãzy‡G3—†/„]>noVy±KðD§õ£ø¯‡/ŒU l(´²CLxdíd¶¼— ˾Å$˜^‡|]û-ª» .­@­8d“£Z®ZrƒA«>\¬š.¸È¾Iä²Sƒ» #U{ðAn¥ à X0¬òùvˆïº4“]‹º¢„#G 61kQ4•ص£‰êšv«{R?A¤YëtÁ׆ŠnÑÿ¢(}GÁõDµ58ïß[í…Ö°•ím¦Aˆ0’f¶Ù½ÍT¢ºSÊײ7&ײõzR?Ah¤yâz,BóVOö=fà–„‘žØTÓû‡Zg/ïJ¯šG†‘š÷4Üðð|ïz­€e+‘^…¬´G$WHÝà5Èú=î!ž_W,«E|N¬‚ÊöHDí:p²ÒéH¹é¶h¸Ú· ëÇhI÷H¤þ“ÄÓ†é.ª aó{¤žêõ²5‰øõ!+MOäj©ëž ~¼=ý°šÔ+o/ÛùjPÁ‚U·³àÒ¸–hQ•Rëå¢MñÛ²~G¯qød}÷“üÎ~·bñcÒc´˜àk ´|M§ÂÊ6 K‹¨ ›Ÿæ ~§ ųvxÛfð½O´’£Ã8òÇfá„oBVÊt°æÒ Ö/áÂ@Ù†ïX„¬´-×ð‘Å7Bí!ȇZßð‘úÃÄ£IC)6;²HØ‚Øì]nê‘m‰êðäÍoIÝVàIÈ'•Áú’¯5‚•ñhÒPËqù•è1þÞ!Ð%zæÂ&©ê#°©î†ÜÝzkúÍ4s%¸J¯ù”?¡V¯)W+GÔêÍóµìð‘:ÜdÔ·ÌYåÅJnQk ;\gzÄÓê" õģػÕOm¤é<¿¤Šx4KåºØÊªø¢Ôëbæ‚Äì´¶™ÍºåVv×®’}‹g°gx,ÂLˆò^¶v°.Ž|IO _!B­ªN¤Ö³øGbñ*D½Ûв-Ñ(Bs-ÑE6¦F£Å2Çw(=%0Ñ•e´ÔŽV²}gÍÐ1èNlÊC–µs•²ô9øOE0 9Ùºr²P6–Ñrz§Ñ»Ö÷òXëÈÕ”b±˜ÒĈcù̪݌f‚ÁMË6 j²_væ+¾Ê”ÆŠ  ÙÕ~ßÏjûù<¦-¸I1G ™$Áyðds“wݘDb5…<Úü!©;ƒ<¦ß—¦Åm.Aó&Q˜·'™ô‰5b5œ…¬¶od[‘nUë í©•ü†{þKh6Þ6úíW„@®G®Ø¹_…'µ¹ŽÔƒGÅ ó¼JX³ü5­…"–ËÁ $éŠ{)Ö&¹X¨û²¬Ð+í~ ò§´=`§œFÛÆ Ò­› /°Áª#¡Êe:q:<ùxó6R·x²Òºèšr¸›J‹\àQùüj­Ç´s" ÁšŒ8¹`Ü’ ãÏÖô¼²~GoqX€¬?qŸå´x™5dQÍC{üWÇö‹’õå3ú,ÀA g!«µëÑO?ËÂò£¬E6¿J‡¤ÅÖ Qå-+Wò¶0TuXÉ|ë9ÏùKi—²âWÌ»þ’xÁÚlÍJµ<Â"ßp˲e°ˆ÷&ü,äÏj—ÁreD’ÜȱñTµD^n2ëß­þ)*:‡åã'ý*‹‹ôúòÍèÞ—pò²ö»\'$=#ÉÐ+žå£~e#ÔJ´í,©?AÑO笀٢Åg’óNÑ-8õ½JÉ*[Á\Î.;ŸZ¦ …nÐR…­“ÞÊÒs¸ ad Yó ?ö¹5y8$ú}1- Þ+ÐâkN¸óx/ÂȪŸæ;.ðž÷ŽgZlZÎy »C𿹕Å%ô áõŸ–'æê‘³i½°ûÞ02xhvsLd#Ô.BVºXZ¯9&õKÄӆ済²'l^s¼þi–õ¸õw@Þa¬)æMqÞskW?ð†¹X†íŸ¬‹PJx ò5mÛÕVس ¥<è×4ǰœk‹éRÐý…­ZÜ0?ìu¨YCë'DçÂk#sVÍWÍÑ¥¶• &ζ0P¤Ù­òµ¼ÕÀ^®ïdNz¿mµÍ—}ÓÞŽ0²^£ù¦Ÿªõ<—É^n9'²[Ñ4æƒÎbâ¦ùá]¼á§ ªù-3Õ”P®°[Ú…«zE±˜:c…°îY¤l¤ü#ƒåVwQ¤þyñ(v Yw(ãÍË “›-GÙM¾mR]<´_dm;'Réf]ù-©rOB>iÌO¶ÌÙÅ`¦P«º?Šbñ€m:)Dê;#ˆGwîñ†U¦¤¦“¬àý%Z™£4ÕuÙNéRàƒUnJ+»$¾LéˆrÔÛÕ®/¶ŠV~Õ “XK¾¡Â%Ô›{4õÛ%7»4íÝ OÍLß*E¼²@²g°ÅŽY%uo#²v‹þPÁHàg Ƙ‘º<_zœ˜|ð› SkÌò>ð›!³¶Y^gîü;Á(*ÃU/˜±çË«¼Ê bÁÕ§ M]Ïã—`Ö‡®w v$w?ÖTrƒa'Ÿï’^é[€¿ù׌•èæ W—|£S™áµ(•D[ÛZRßAõ¶–œ¼O—­ônŽ ™óÊ;§‹p6jÖ³A/¨ºF.Øjcc@LöB6¹üÓº]ÀCõ—ŸwˆnÔGX%óC6fž-µ¼H*V:œ‚¬´Ž*o¥ ð*ä«ÚVRºj•(\Þ„|Ó˜i6ò‹“T¬røòÃÖXåðäGÚV ºÅ|^¬–[¥RÙ-•¾2Sñƒ‰I¸dQ½—Tz™Ø>~òç´Y÷¨¦|~!¼€cäcþ¤îý_$ÜyOó=ŠÔmî…¬îí|¸}[ñ(­kÞ æD´ÈÛhž†–æØe¨Ùk‹‹òs ¢¼x²Z¢˜FvÜ&H%Ëtõ]JÅšOoC~»5Ö|üäOi[³sR¶Æ“~ 8y^Ù4Ûu…« ±R¢zLÝz; ëæ ˆ£öé„8âúiÐêV¥ÖÒÇÖÜ4Ô4\^@¡(9'kùÑÛ ¬h‚Ú_£“ ¸ …o)Ö&J²[kŸVähCVZ©1+vŸEÂQkGOÏýHýbñv¿^n¸rSK|ŽGØY=˜²žØçÖ8ᢳ.•e]{aÁÉ:ü2…ÚuîH1R݃hèlv2…¿ä­âøC5øÃiY_¥BØüÈßÓ|_}þIø½¿·õ¾Jê¿A<†}uS‰"äö¸&áVÈJùwrZŽsÓ`@<ϯ´óù¢®;ïÙeþ¡…£–Œ`hÙ·êu<¸„O,ëÓ¬"m`± y–VKtw«(”õNz÷>à7BþÆæ{çgà‘„ßYiáPÏ;Iý7GaïÜîÎJ²{>I¸òveÿì¬cõFŒ{ ² cÏëŽÛðv”ïIP;ŠfTÖôrýÀEÈúá*Ofy³ÍïW+Ôʼ)_@7ŒUDg~ì×rxà0%kàwSn´‚í³¤]¤8!Æ/—Žþù,¼šð ä'ͯXïGÔš»èZºb‘úgÄc¸bõ*£J”Ï¡6öAî3V³ÜF-ÿ EBRrQ\5‹áÈ+¢ƒ¶ÑöëR¡Óæ_$TDÖ6ôÒÀÏCþ¼¶‹,$qhÊâa9ÃÁûEcn?Ú¢Þ¬ÇMœãÞõó¨„Z#v¹Zø¹ˆÚHÌ|«k!©_Š z Þºµ°´ä(Õ¯CÍû:#µ°žÖ­¸ñ×Ú(ÝÐÅÈGƒZ×)¼ÑðuÈJ9áåÜíëàb„aÈÄG[ïn¤þâi5¯G „¨¼‘ÙPëºM«P÷ ºªõJàP[CÄc¨6ÍE&[/m–Ò+c{_ÿñÊ!*¿¾ȼF³4ï Ю±³ IŠf8[€; ï0æ›çžÛ«+n9£¹ØYiQHÏ*¤~ ‚xZMã[P!ê9Ç™J'vƒá[b½8D3ÇÄåy|Ê"D3MHÿ±cÇØ­égÓlvä þ"ÍëÛÁåÛzïÁcO(ü©•/¸E;Ÿ·Øô¢[´x  4Åï-B½DªÑO‰KrÈ«RÌXDq(%Íï;Á‰pò`\ì» ;D3.vã»É¯”ÄC¹l{%WœŒ÷(— ÷©N|èØU0 }\vñ™ô‹ü.'¼ù†ö‹œ$S³+Ã!»ñ€}²ÞüòÖÿÝ HxòÉ6Xÿ÷@wˆf¬?K ̓ײgwo³éûw=™}v÷ÁSöFìÙØ­Ù™™ÛOn?|ÆžÞ~ö”=ša?›}ôð)µF‘{§¥ßç»ñ„³gµßçð±è©d¾ÍN늋ϤI~ˆ†|X›ä1„FŒ‘·ò ±»>•Ÿ<»ÞýK±L#[%<ås‡@M¦/_0^½zxj,]ŸãXÄHË“ÿN@žÐ&åeò Ž?S)N Q Of¡ê(™àçtºt!o¿ Ù!ùWø>Ð&¼Y-M_ôÓÌ˯0?u.½2u6\¯Ï³°9¤Iÿ^%Ì@Îh“npI}£[[ƒw&üý Ix²Rró5„Ï6 \-×g´±:5š=Ÿæ{¬S” Užùï[³Ïj3?ÿ2óºÔXSH+”¶ò¥%+x1ù.ð÷ƒ/áyÈçµ¹¡§VÐL#ø@ŽpòPÁH8j¬ü&4×^naøÁšð2äËÚo0úÁ›ÀñÌù‹ò´ÿ¨ŽBmB+ذŸ'ü‡A’Ð\+8òÊFpL«üA0%<¢Íú\+À?º„ç ŸÓïvhrÂÇ€µZ8ƒÚÇ'.i´SáxQžù[BsÝg>.Á|\žùíe.?ïúcТ™y× ÍžßôŒO¼žÜ~úúýgO•xþ88š[x°š)X/ÈÂ$k[¸Üºc©´걫¯ûFÐy­L¹À› yÛÿ ¼áÈ´ß©S~’ú'¡œ°r§~á–ò®/J.ÍVóNa*›MóO¥ƒwŠS§žfØC{…@hÇýŽ].XÅÕSi–·ƒ&8Lh½©‡¯ß¿/_¸ ïñ§Œîá¼S´½äØd²XvWàgÆRã™óiù‚ÿa#47ñÆ`(ÛÀ¡_úÉ›‘÷xKa,ú#`Mhn0t}ÜjÉžò†‚v6?uÊw)ÆàÜ©t~%PÈ{ÄŸ=Â㕲F¾Ê#Æ5<âGAìG[âã š´7#ï¡â¬ÿŒQ8ÕÀ#†æó{Ùqó¶?¤ê OA>Õ†þ÷ÏAwˆfúß«¢ š]LáЪÍð©i ¥;•>õz-j©~ñ”¼éÿ<ˆ^…|Uû%.¼<ûç^"OIìBò Žûc`Lxòmö'ÃYFv)(øñsé‡ÓÁÿS鼿ü=øËXzLì_ABsëõ·Â©çâÔÐÊ’ãÛ¢^¼ÓÁÿR¼ÖÞS¶sïTÛãh=LÉWÁ/‚>á-È·T^¥¡Úž9û¥ª²ªÿV¨û’ÑZ'½ÛLê;#ˆGF£xÇí2ØÂL³@”äöâØ$áÈ{t¸ÕEƒ%>Ï¿}÷g¾¼”—=!@œBf*ÜŸZ¸ëÚjœŽS ±K¡tEDc­sv1£u/ð4ä”1­ÝsVÅ_ _RÜ<Y‘Fº‘útÏ$t®}éŠõ4òŒ=%9ÿ8jÔƒïUΛ۹``ú2|²¹øÜÍsžmSºÍÍÀBþhë›1RÿFÕCt Æ$~9!jë—ñýÖÅ$~– lcL"©ˆ E« êÒùKÁ³-‚x4Ke–EBJÒìfæq&ͦ‹¹²½â¥ÙÃ̽4»Ô›Mgnex^—›–Ÿ]*£~VN‡Yñ¥“ü K8 yVûun06Í<:'çùNÖÊ×ò™àx±Íl«LIýl—ÇÒaÏðÚX…û4~Ü o@¾¡ý—sŠ œa…çζ-Ïΰ{ö$Õ‹÷ 7›aÓÁ$ÿü¥4;îÂðù‰³Òy[þ2Hš[¸‘vï¿Õ!š™“Ýa‘¼áÓkß.>wÒìVæN ¿ìøw¬²¿´b3à4‹VÙ—ù)¼áÈú—E_gT!Z7—¶}Ÿ^ iÐ'®”¯ì.Û¹:¯Ý[ö-þ*˜^‡|]û-fX¤ò9EV¨ä}'˜¨3¯R^¶|^$E]õ(wLÕÙ,ÒcèÈ«S´¥-ò×ÀŸpòŒö»ìfìì8K^Hup|tbxl||\º~twCÞÝú øU¨ÑL<Ê"‹iö4»T)XÙ%»L•P%OØ_5£*÷Êf&ˆÓ)`²ÒÔÎàÂqÒî>Í|”vš¥&HÛð=À-·t‹ùê’ØKj»€½õ»m ¦¨£4B>{^º6•­À}÷)Sêħ—æžÚ/Jå7˶Œ~½©r.LZí©ùŠ“Ï½õžïºyorròIîmúÞÛ9×IJ½<ÇF3c'Î^yÇó2Ë£F3ÎXœ•{^zûɃé›Ożà ð,déñ}£÷å±A@[|Þ…åõ†ãš ¾ý—4KG¢–Õs+äH’¨à_‹?ÿQülãK.øú³™á‹âÃMõ&ÄÏ»Iávúùç~“~ÖýCuEZ³ûñ£§³ËúaÉð¿úµ’é©W°õJÖ-E/ˆò-õßñ ¥‘'Á>ñnåüݱ‘'Ü7ÆÎÚããöØÙùsF¢ýÔÚ:÷’¹ºs-8y{¯|°QèL`ÔIÖÐýXòõ'÷'Ù’ï—&GF‚ïeÜòâHï¦ìÝ|9²2ýMò#ëõ~ã …î¡¸ r$*@z"¼vÇNþÇħ~ý?Ý|»˜u)“J­hkSæé_ýÌ¿ý©Ü/›š2_U²‘(Òªa>Œ“ì˜>¯h⺞ðÙ^ÃÐÜߢ6Æ”n«¢Óñ¾Ú£@Ã`U s3p;d¥²i¨uÓœ•w¬F}J' ¢sm¡´Ú&Õ*&!›l „S’Œhye pämÆ ²y.çfŸ­–U“.˜¡«½Õ¤ ¢z5Ñ¢±%bÝ GÓ3̓új?mцÞÓ`n¼d—«‡:%©nLˆzKxòqc.³iÎwü|#‡Ùˆb!<ùDë-EêOFO«i„M|]£è0›té Ã~ñh–ÊUÆ(_E~•+…y›_œãT]yšd7D’ù0)øØ¹Q¤ÁÎú±É¶âÞa3Š‘ð*ä«Úïp‹U¯TYqëëƒ èß°–­²cñ`›VÎ.¿Q±Ë¾oÓ[/JÛ.\?ä[ÚorU4Wm«ì±ñÑÑ1J´àÅ {¶d{ubüZæ%‹’´ÛvQö-¶€9áuÈ×µßâ&>ÚÎ1·ì,:Á_›_e­Jž[à®Ïñ–±ÿ;¿'­lgí¢Ï¿)û"½ OxòMídì½Jy㣔ϥ¤ƒÛ¶‚á äAc úV¤}æ§?cZŽpf¤×E?•nÀ;#X7µoÈH¨ ã€m<%)†î©¸‰MÜiPmË`Ç_ñ¬ÅFtÓ ø²U¦!õ{"ˆ§Õ4v BÔó]ºtú¢› f©ld+-Ie¥A,ª;*;“­ÀíÍMwck D°¯æ½š6Ùf⥔J–S¤`J íAR¶5Ñ [¹scsàéÑx0ŽbÌ QKÏA>§B±ñ5öB‘Öà5È׌yÒ†9ûÝF}3i;¼ùzë›('lwÛ™˜6¡íè*X%ÙFƒ˜löAVeÉ5¤®¸òm£ Õ5V1íŽÌ§Ë:ñëŽC׿)·¿ÎBØ ¹SÙqêƒò:†d݆xôDP}ÂÔÈ‘÷=-M¢•ìæWƒFþV0áŸ)W7*¥Jm/09c̹·òìOÏqNJѾ8yDÜ©d«Ñâivß/ãä1ýª#Ý‘þqàYÈg½~÷ÜÝ[Ù(L³_xvâ°Mk‚¤¾3‚xZM#r%‘Ÿºt(4¨'‚fV|†{âÎÛeŸ½æf—†g‹Á°Î¯ø“ìi¥¼Lã<éxÒÃ(*Â!ÈCæZŠ#õ&Gxì íâdÊÏLΉc3±'vIà5ÈJ£ê˜‰}¥œÑz x=ajbßyYÖ—Hÿ4ðäÚ<0ö‘ íͱ`Â3ÁXå`zL&.I7Gà8„aktÀ`蹕r¶QpÊX¢­M ©ïŒ`›šÀ£(õšÀn]:Câ—Tf©ô2ö¸ìЫË$ C™Fv µu[ׯ×I3ë„|ÐXÚ0Wz¾£u+ðäCÚÚÁ–qõñXfbx4­b¥°å†¬¶(h~s8KT{._oþP—Ôe€Óõ—v¥+4©¿A<š4®³pBMù~XÙÎUŠ9«è³`Úã³²»Â’çÆ.¤ØBPµldJþ´]vm/è·òò GÇ…Wp¼Ù¤ ‹®ßȆáà* ÊjSWEê;#ئ®ê$J D½®jë¥[±)ÁMoëî§Um Åå¦hmî4M¢h’Õ`bkð»ùR~ºìBš_ œ#kšüNò‹7Pjiž3ŸM±ð.öYÎ[¾0#w05J9®HvæX0r.Ñ ’Û1§˜urtn‡%Kv™ÒŸà§Kּ㠛—Z!ƷΤ_&ÌUL8yFûeä+EÇ~^ò‚Mžd×·ò«¼H?â÷Ã)dƒOã ¤™S|›q‘¸¾¶«3Åðj× VéøÇÎŽ½=6þöè‘ä}*²kÉ~:&Öo¯wø.ÓþMž•éÚ_rJè-¹+Å0”sÞõ}·ÀÊtÃÝ \ Α¿@5ê„×}âÚ N¯RHV¯ BÑ¿ÉÝæ­T*(uú¼¡ERì4L"ý*# Oh.ªS¾G…îõz¸ÞÜáÆ¬ Ð é–âÑ,–Ô1vÇ|Îâ!V1ø¿SuÍ·ž½ŠÅV–œ¼?H‹¡©KÑNF“îô1v×.ÛlÅæôx ZpÊÁ0s|”Ç2PÞTQË’å ƒ º™IöÙ³¬à+¾í­4ógAp²þÀýµc|op¡’ÏG Ü J{ÙròÖ|Þæ*¥RÞ.ØA??M¯Õ0 Vö…Îá%_ƒüšö t‚·ß­8e;9T}¥¡ ‘xO–áy°"lpM½j‘SOâæs+9ºlͳý•\Ò· ¥œSN,Ù1ZŽ(ÒÞ`¾âûA9WJâ¢öJ¹LXqËÏ©Šß—}¡ ¼Ä„Ñ"?C/äYËöÝgî'E‘Û‘ž=üøh|oG8r÷Lt˜¢IøáÚÛ#éøËÔÐíe7(o$?v¢ÇwnX«t€ ñQøKSãÞé"Þƒð!ä‡Úï”^óN2+NÎ_š:?:šæ]âW§NM¬34‰c| , #Ã+MÆýÜm¸ûóÚ MkTà ¬~mZïËòˆ$ˆÖÛðn¨•Žôý  ‰é‰I[xýx“b(Wðæ!*¯4T»îµEáEeS­)‚¸Eˆ)¼uˆÊ% Gã*J D½‘â€.k ¥"ÍR¹ÍøÉ!ž÷6ƒ¤ÙýLx‚èq™bûβÍ,ϳ=\‚VÝ ºÕâ0]RhÅw1¯r=QÊðôª‰5éUÕ_…s²b.˜x1{’Û{¬àæì<Ÿ¤ñ4àü Z0k‹®°ˆ. ©ðe_%2z4ø*¼ ×-xÎßøDåL’ñ °$Ô뀦=;ªÀç,ùfÔbÖ7³q©@IÝp¢–©yX ¦á¶¥ÙØØØÅá±±³Ò+àDe"Q[ÇÜêv/rÈÏ`/pþÒìiƒ–æœ|ºíÈ"B£<íŠ4ù…èÝ»<œ·VDóáñöãåë2˜W*ÛVNÚΑv¢Ñ}èŠÌ7sI&‘ÊDä¿¡¶€Ï†§‹E+ÏÙé`ÞKQ µvLm/ð4äÓ*lcZŠ˜\Ò¤n#ð dýyS§tÃMúÓÀaÈæ6`;.*Ð9Áº4[Íj·I]x²~»ÝÏ’g)ƒóÄØøðØÄYùP¢3ŒÈm¨Ó‘uzÍ:MŸK(=@‰ÇÇÎŒž~4ýô¹³qS”õ²IßA$<Yz‰¾ñÿg“KæÿÓÙ¤¯W³I¯õ½øTÒk¿—R°tð!äȂԷ~àÚ×Ü<Ò¾ù-eЦòH ˜…œUaÔ¬<ÒpòŠ ¹ÆZ×Éõ›¾€üB¹H:cüçè+ý_¡°>üAÈ?¨ì[õÑÞÝà§à^?üaÈ?l̽trHÿ9àCþñ–øÕ¿ ùËJeý´SÉ&a®ÔŸ€üÆlÒ97¬`¿ü 䯴Ä? ü*ä¯j[£ûu÷$óþÛÿ¶±"X7Ëò*ðï@þ;ÊMFg}©šÌûïò/üÎh|ø_ ÿ­±Gô[|¿^±þ7´(ErÇ–Ö8Ø/Bm¯;z©}Eï@ñV!wlm…bšJÔ&I‡Š“¤v¦ñ޾ġÚch}ái¼¯Á|ááz¥5Pú†ù4ÞD©3‚x4W¤iÌâBÔÛ{iPEºž›´(ŽÕ½„¡"쇬´ÝPëzwŠßC@h½YHýÎâQ+€ÆUû%áŸ0 &aª²ÐÏ~Ç$y7’@|ÝÌʲ&‹ºTož¶ÚyGÍjzkRk(ÕV¦¦uåÝÔñ‡êByeê²J™/--û—±½‡.ÂE6ü†¶ ŸÑ;ßÞ¢Æm^ñ(Ðh¸ðJ†“SçØ Üy‹ £˜!gLýNBg¢á‰ÆVÙƒÔo ž6Úƒ27{!+LC­ñ)ô£ùÚ#c[m0Q}ˆu1<­¢Ùj4vÓô‹3ŽÏãÎï޽ˈ t~:ð‰ˆÍ¹Ð xH”ón¥¼äº´3\®dýŠô%ÃѤî³g zÕIêÿµÚœ¤þµâi5°¨ë½ê€.W$uW,•+ŒîÍSLYß-Û‹eÛó(<î±ëxE<—YÑ^´xÈܼSt Ž•q$:)ÝèÔ+Úop‰QL¼EGÆÂh¸WDÇ!M'û%È—´é3‘€-»dQ*À€#E’°Û¢vƒØJ²ŒæigYKúÈØ`¢r xòiJ1ƒ–˜Óì¤î(ð ä3ÚöÚÆP9"™£•Ë9T7Tòé§7!ßÔf7ÌXÎκ…’ë9áy~>Ä-æø¨îÚë“ÏkÍœ9hȵ6Û%'gœ¬«sÀË/ô®˜(*R—^¬ß˜m¤Q„ÊSÀiÈÓÚTä“ûE¯.ˆÌ ùG·]TqHx ^èI¬I Ù,÷ uáà|ä: ^·‹vб$?_gûÌʧé0áyµË&ú£GµYÞeì¾»ˆXzV÷n}/:e1^Fx{ÐÙå¬]¢HÐëYù¼»bK׃p¥°AYÅ·I3 O§óѵ²¿Œ&ıÎ[¶o9Ao0o”¥Ë;X6ˆ]WRL³E~^6OE[vs•¬8,ërÒ’,ûÀŒ%>C ¢r ØÂ!©; 47¤8(†y~¶¹T*»”™j‡#mR<‰ðN¢šé@“áÑ pÊ·z x1õTHÒÜ7Ú‘hì®éR;–Å¢íûvrˆœk(%ë^ô¥0ÊÈšï^ô¥!àEȵ·=ƒ3Ù¼«P¹áäpòŒ ‡¢cÒì©Ø|eçÓ‘cå–'ëP‘Uâ&8Ôþµõ6¼£Y¥¼kõç!+ Öä\«îDxò ý1bü¹Üuìtx ò-m½4í¡{­æ¥[¢8 ¡ÞÒ¶±Îm òì®a³]„Ô„÷ãì¼ÇÀð)ræ(ÜCc‡‰é^à ÈúN=ðÒQEûF"þeÈ€ô·]@õuËè§Ò땤¾3‚xZM#z͉þ*îÎJ'¶rSÍÚA<šÅ²Ú™¤ç{æß‘O‹½ã"2‰Òä´›g› œ‹e7&í’æ½ö¢ÁýŠÜÎÖ²a”Cj ðY6Lwœ,,xÁ`iŠrÞZ$A!ÙØ ØFôh2¯2/Úˆ¹<ñè% ãǵ‰_b/ÿYáyG(L1ºqGN±)%þ‘ÔÐêÏ7àïe­ç#Ô‹QŽ~º9¤,Éf õÖä.çX‡ÎÎÖ¦V,œ®ér‰ÞWeS:Ƹnÿ¹9ÜS`·ØgŸr¥í¬ßµ¨Â£T Ýå*ù¼Å]@šGÐPpÄxÌåÝÅä\Þ*Ì笷ßsü÷Sq<×¹˜$¼–3®墬ç×¥çø*än'ÄQ»7Œõ æìw…g¶ð# Ѹ~¬ù#xR·HÃ(ŠuÒŸÙH7A¤þi?!žÖ7Aç„?ql^´¥¶·ªÀo ~35BJ› ³¦ÝRxˆ¦Ë¥<³/ÛØ N3;è–éR9æJgÃ'Æ{€áH“4ý0üS=ÔÿZ¬`ùeçEx®É³‚™t.˜Nù>Ÿ|ÜhôŸpõ>£ì/"Wo%Ãίì°5’˜ïÕ*…KÊ [IMH›W4ŸmPmLE³j©·@rìV·Q¤þzï$L {Ú¨HHBÛ¨n )Û¤ïSµ×X5l1q†qÙæ§ƒƒÆˆ.ò3‘yq,ÊxJ'àgûøÙÆ…Bô«ðø½VJ‹†&î] Foi8°ôû’ƒ$"Ö ƒ‘•Vþ¤I"H} ý\i¡O®"‡Øµ{ñâ‡[ß‘ú}<"]=’4¢—‘imP6ÔÚ3†ìÇÌT{ ºrOë Aê»"¸%¡Ú¯ùTi-á,p)¡¹Ä&W%F"¢üO«-Aê7GÐLØ´š%¢w˵`±³—>&vÔ8‰_IØÂÅNR· øÿ²÷&ðqeYyxY²,—eY–¼Êë³¼•ìRiñ¾È–å½Ûînì^f5ž§ª'鵫ޫ~ï•eõ¤g°˜@B2!Û$$¬Ã0À –°H€@€²“d€„%!ðçÞïU=•ê©}—zjþ¡¿êïX*û~÷ÞsÏ=÷Ü{ÏÕìœXì¬)y,¼©î$Þ»w!ßUÖ±“Ïí%\°Å ˜iͱ³ajóDUÍTÍ1\³(gìpå»0Ê9ÉÙ0|—F9'¹:0l_”³G9« ¶Tˆ“È€¤r´j”JäÒ’Üæ:7ñø&1º ¤t^á‡"ŽmvÝ©´a eîËHî׊ù)TÜzའwݦï§Pñ÷cø2ÿ¤o|®pebønŒo^á|þéŠoãÀw}|ó*ºžð]ß¼ÊéÔÍTJñM*.L1¾IE­G±ôY£ø&=Ã5‹oNA! ßuñÍ)N†!}_{|“Þ®gVlŽq–¬*å»rŠKñÍ)uòÆ7¯¡[ Ûß|C.¾IÄ¢ÄiéÅ7¯Å0Åø&)Äz»†ñM*~w ftÄ7% Ð4tа}èȳ\s–`¾)Óxö™¬Óiië´KµG‰ÆX Ïe$OÖ/?7Í,β6«_$x½K›ÒÞÓC;d‹š âtx,Ã=©3k­ß÷\|ô†-Áh8ÓHLJ]*•º@È(Riû€¤Ó‡euº9ý%Ø-Ysf¸UlâRR˜íLFGŠ™KY~#Àó,¿ê:%?ÊÌçzö¼MËOØ9êÙ%£‘êQ´7 ì72x¡z®± äXÖɼa¬Bž¯WªDy$œ}ª.elem'¬.ý§~­FüñȧP_tM²jÔnT¬’á×*†ûÄâ!æÐ›˜V4}ž¨ˆÅmmÏF\¯d ¯o6aTO}um¹ô ÆCË2^ uë ë¤óÃì0>O=V‡êE«Y_OœdÕ`9¢Êå9Ü+^vŸÀWí…ùBâ­ÜÕ˜Éz”|bm¼á»(žP‹7ÜrU¾éµGUwÑòÊæ¢¿ Í’ƒÉY2Á-¥ r ÅnÒ@•:¬±Ø„(ÀÝR‡~~DY1:„Ó…Qù€ä Ó}ûcÊ<Î3}Ù®X#OL…ß#߉rìV]ß·)×b8»Ä"ôâ–9öPDý¤ÀUõY›‡Ã<Ï\’H‚½ÜE¸²\Ò¨Vã««dWr¡®ç9†ƒPt£ýJNÅõ)@«ÍCêK>™ÙጊÿÝÜ#»‹9çÇÂ)¢Ž¤ùR4¼áNðT:´H»Ïäù^Sî¤ycqÁò„Ÿ& —€ÓøÜ]› óïl†z&Ìø·¶qe™ ]Ó²lûgÄŒ8•s´ýs/†4gÐÏÕç öü€L@ÊvCÛ r§ZÞAay2ž>K¦‹Ni‡6tþävhÅ»è(ü}ZH«ûûë Ýs%†73©ìuÑXbCw`­ö:¨ø©®Ù^Ç}®Û ÛjÜÏH(Áp )JE³^Õž#»cx0£#H<Êf¡Æîð*»­¾Ävë èYÂQÈgµÙÂn8ð¢ð΂!@²F)@*n HERPXÝv9ñ={¢pH–‰Œ ºK³{öO,zß„´¨l9óÁ‚¨Ö¼My1ÓÈw+§ê-m‚Š{ó"F!%ª¢øôxûU‡ŠÒÔ¶¨†˜Mß0ÅY¹‰ Ç»¨™<¼tºÃ¨î¥KùÅ/AKõûŲvæ%΂á@†ÏƒíW–—bˆ©GC¾Èõ†ø iÄ`;öWi¥+·¿Úò "×܆B÷’ÍèÜÕYµ{vi[‡Ì‰ú¶Žx˜Ê/in¦­¹¹9þ[ Wðsxß2TrÅμasÏ<ÇL_iX´¢_ £¬§£k>O>ä, É%Ö3ÄTÜ0ŠËèHüÜcø n­\2f…*"rH[‰ä¡«o%øŽh4ìhS·H—nÌÀ°èe5Ï]¤}^¶ç>.<‹¼ -",@VOÐ/a¾^Aá„)Î"4î×£Ø5œE¨ø®ê™E„¯>½Š†PúêSËRW½"K ùM˜Í¬ÉÙW¡~®åÙ×ЯáÏë8¶{HÐZ°Å®áY*~c ×òŠì{ÐúïQí‰gº"Ûi9%Ñ9ø=ø7 w@Ná‘5*®¸òNmÞ\aùY¼˜Üâj,»*ª`Äyx ²zHÿ`vÕK±¢$ß m#<Y}cLxbø\¡ôÄÀ~£ªm ›c¸fwb߇¶ l㕼m$An¾¯v壣‰”–+±ïÃ?NH­´",ho¿-üJ¬S“ºKÜF€47"˜d3®¸ëQ¿K„&´Hgb_Ðfó“Ž5Si9 A¤•ß‹í÷J¨¸õÀ»”¾WBÅ?ÃÏÉH^BVµ<3\—¾/ÄÎp> Õ/Äv5ϲ«_ˆ•iÌ@Þ º¤½17XÌþŽrâtx5Ã# RnJëëVhx$M±ó˜¹×v»C¥’»F ÆûÊ#¯Cøü5•Höö`¥ìß2§X”'v[ÿÝé×y÷3<YîÅŠ¶Ü~zþ:4Šôü¥ö¯`¨¸Ó@2ètRPÊ ‹Mg¤=ëQ,L¤éìAúÓ/†3ZÒLˆ./>êaŠq'ZBt hÂ5Š;Qñ1\˸Ó#ôÀ£Lªq'Z‡w£Ø5Œ;Qñc¸–q§÷£õ߯ÚÏwÚÀ§5ÜïÇ?K¸²Tæ%1ÃMÅõ!JûE;›Ú¸aûáì;[ƒ›‰w{GF¢9Z¢'÷/A–÷0›{.[KX¦ó¦ÏA~.λ |òókàÌQù÷€÷!«;•—³ˆX¾娶·b‡zTŠ©UÁ¸åFW3ƒÀòò2§¸L® £ŒuR‡!—Õ`*K×FC²UËcîfÕôBÿ3$iMǘµBÿÓ¯U¬í:ÎZ •_y¾Ö; æ„SÕÏ5÷EïœÔè^„‘$UÂ>È}Çlôè·è˜%>; hÿ˜-â‹„!Tî£CÃyÒ!ºÓgÌy–Yvc9T"Þm¢ªDô àä)uÓ’Õž4†°²œc¹šöÜÖžçÁ°)…隊ëd¸ƒ+5]/?ÿjÙPf„üÓ -ÝuCS„AK×좺Dd·i=Jáiõ{#³d†n…ÚQk ŠE¨ô~¢þ£ÖDi8y¤ýzFÅí Ëí(Ä;;uCZåÔ*³õ›¨F­QàmÈêÝúdÖ«ì%š©+¶cù<¹pÄÖHšÕýaá“CsP7ÂXVÅš D5yÁ ,ÞÞ‚¼æÁ…pòÀ»ÀîŸAà!ÈRÅÆ· 8yHC7Ù¾a½Y³Ÿ˜eÚˆ\Qõ!>‡§3º²ãȾl·E!TÙ®YiNq3Ÿ ­©Ž7?2©ùh¼NÍ¿6·Ä¼x ²Ô.¥˜zQqYà4äiuoKØQù×7 «[#¹¨ ²3©ÆÏÞŸá13;³¦ñ3C(µŒŸ½ÖCµ'ž-~æ×f}+i7-qä¾–0Åø× TŸ­oÞ8~y©J‡ßÃåœDŸí…,• eõL\dwïÝY_ØÄ£<ð,ä³étÔ1à9ÈêÉ·Ñ]þÌ5Þ¾^i¡óÀ(]ŽTìpyÐ&»üA,ARy§3샼³ýÆ—Ú Ån…,uÖJÍøRñý1Ü‘´%Œo­_Τa|³t"¤b¿ey¢ÃºŒ™p/d©5´Ø°¦âzû Ëç'8ÕÔy¼kÏx–ÅþÄÒþ­xÂ^Ø×"ÆÏAV÷YQ(U%£a[ÖaYʯ)HÅAñ„ú/0oò·*¼ât8 †ý™Ô '†ÇbyFE®ÏQ4Ï7‚E×(z¡9öl³~DÜ­â™,´ !§¤(ŸúÚa:²H<ëi8òbTÄÏèt/§³×›ðº÷BÆ»lõ• OmÛØÀ´™"¸ês z³|EAQká‹5Ð ì…¼]ÛHÜ<Ôð´„æ§ÂæÞŒä…;±IÅmÒ`¤;œÇÕ×22 0‰Â! Ú:gÓPä÷JuMH7è{ y&j\Ò„Fóú¤º=¶‹Tþ9 …Ú®dØ…´ý²'¼Së¨×/ë ÝÙ·49ä”+¶3+¬#Äj#pg†;`ûÛ¯#T\2eÑ—hXóÚ|¯}4f6e̺Á‚‘ ÌÇá´!ªLDt7&2uꓬYzb:9oE×VLÇ,/,Î-Û§“³¶C÷Fùª˜]q)ZþpÞXp­'–'ìs.B £sêGI»²xè)Š'lCˆ Ññ”“`˜bèi ÃE¯¦(Pwè,ynE¦c¶Éí¥¡Ô1-WlxJP;¤Œ”4»Œkìž„7*žò`H)éòõD:Z±HS9ùR9û–5ü®ÐŽ,fÙçÇ#YÔ’TÜ`8Ï+lR«÷ÇÁˤ²Z¡â¶Œ®ÕJΘ­üÌŸëXäû8n`xVÑ­T(÷KÉ çÄO*ËC@º±K š•Ù^ÍÞd–†qˆVðõ˜~­Z¢§ÁòÆ V¹dy#÷-³dÄ7D+ñ/ ¯B¾¥¾ >Öþ”MØY.*ÒÊlÜÿX³ ŠpJ ÷á/nÿ  â:dŠh§A=•¤1LÁt 3<³ÈnÅÞ Äî6»h…¯¾Ùu&{-œß\v3Î*[<¬ÅW¾Å¶êx´ˆ=Õdú~8–Máó&êFx²Ôú_mü6ŠŽPï¸ûó¢JOl6É4÷eRIFÅuû0îv*÷É`,8Ч$‹ ®o9†D_m’Ù§µùèZ¯ÈÞæ$’IA%©» â]5 ¤á3¦eøôàCþ ñ6êN8•áæHý.„ðxþ ïÙ:¾»ZÄj#0Å€×ÔÐÚh˜¥’Dš0b±x0Swu5uQmV*æÓÉ3c2Ýs HŠÖR;žâÝcÇ3|ù~^¹{¶Ò³¶žÅˆ%›+: ‰Íî \ÈèyÕ¶iÛ7ô+lÇY¶ÉÈ£BcF¡Rö4Æ™1a÷èC\?NB^«{FùÆŸSºG@ÇúºQìÞ# â7Æp-ï|>ZÿóU{♎²v?±¼ÙÐÛµEŸ—p0“Ú{%T\/pOFá½’–™ÞN:®3âDyl'°æÃ‘Ÿ«ù5¶ðæ[â†G§ŸD5ŒïÞ†¼þÇ@¡"Ô|^nìâ)QEú 7ÂÏË}Æ¡¾órg†ãùIÙ–TÅ­9üht¸¢fÏ2ͤØ]rQU"Ê›SÐduUÚ—ukAµ¥šG4ãñ£‚ Ã?Í"ÜYgP$a2¡±Õb÷CVŠO&TüÍèˆ×ÊM&_ˆÖÿÂL“I—˜žð´/Ä¿J¸ ²Ôu1 @ÅõwC–Ú«Œ2B/kŠ‘ÆÛ±JÇÓ8@ûÄ,×B·×³ªefD5Œ(ïÞ†¬nvg#¦àGÉMŸØ¦¨Î}zö‘Œ®£­t­c.ÉgY×Q -£hOpD£ž%lß|„WŸáq]h¿zSqƒ@ŠF…½(ZVœÌ!/¢0 ¤5ëXFöúýª áÙ¼.)O-#§ÓQˆÓÀË(ZêÌ»¸B€´Ú¤°œújSüh•x5óúªo.ugÚ´&H拸"1솼E›?¼Ù¯yO,»\¦m: f½@²¢´.eE[—:S}<ŸPêF YòÆ åÎ2Æ çG&ò8ÀËß|å4¡#\\?>AüöiüЖ«ÔÐmŠþ˜ót99à»®57gmÊ9ÂòeD @~“9·H;ÄFÍ‘¬ÂCݾ8£3ús5Ë|°h ggºmJ›Bë×yÇõ¬ÒpžqÇ »‚6½g-öfH9tM„Ä} ˆIFçNqw–‡ùÉ|)|i[ó(oØIæ×åæì§aóMÅÜнª%; 8V8#~çK9[†4-Ð9‡¦…/ňÿR¨aŸ5^4QñWbx“ilÏF1Ú‹ÆÄ0O)ªU_M"ÜYß1¤${4¤S4~'Ä|ÚðHãmÚ/ƒŽ’WG }I•˜uö*ˆExõ Ç©ì]‡_b7ý€Ìfhîù+Ë_/¯Ôê·…—økLµr™–O¢µørèádõ…Ý‘l¸ m\ü¥£5Ÿ'/¬Og¢!ž¿v„G K]ê ñЊ·Å…,w_$þ[akEÅ‹áHFr)©!Äóhý¯È¤âY_2SÔB}þQ™zìv[(*®¸ ²ü›TÍž&ÜÙ(ÎStÙ‰¼€mhšó½¤¼Äwð:dõKÑF6\ •k%vÊàþKèà†Œ—ZÂK§¯„®åÎeê ó|%Æ#!Í´Ô–ºŸ,¶ªÿJ^}†£(úlûuœŠ;ËðPú-èaZë˜ÎRt³æ”¨Ÿq`¸0c—Èî*óÚ‘m¼ÇˆáÄO%~”•pd©d8˨ÌN/Ew§Xru#°+8¤;[]1ƒió:× é?Ê˯£ôŒ'¦ÞTœ<ŽTð´))2s}bÚeÖ5´fQ¨R¢ÊôQŒ¹BÏGµèùþ¬o™>{ "2ÑtV&àN› Å¿õ!ÜYn[l5CÝo–Jé ŒL š'€•%ëq­ývû/òÖ`H‘¤“½AàŦâiµOάú/¥ò'´î¦[êëî+´nš·Ë3Ëù¸cÄ"h6C7zÝœDQAñ<×_ ¥þjÔa–:lÌÊ¥Iÿ0 ŒÒûöi³Ü›YFIÉ4é_é0$§’|ñCí×u*. Ü‹¿4¤Ü?‡Ø¯êYwii¾¡·èøÂlMxñMôöiHÖ2$¯’ËR¡4\EÏõýÆ[ì1èNrâÃ{¢•øKÐ8«Õ²ÛÙ å’M³E‹ktX^Ù_Býq4å'ÿ2”“ðWP­wcÆ·x 8¡Ü_ëDÃ9T|>†§2zcˆ áZáv£ØÈê1Dáp_ˆ!ˆkÎùZ ¯Í¤ÎÙôزªzÀÁ0_‹úk¡µÛ2’Ë(±CÅõ÷C–º£½¼¬=Ž—Ýy–?ÂvJì™_:°ÇM3k$Ã}#ôSDŒÈÀ[Õ­òÕ,[µ`WrÎX v/ý±U hN¬R”sK8QÖ<'ü ¼®â_6ê›Z.f_&‡Ð¦˜4?fK{’ŽNŠ~8—ç)QUÑZÑá_åÿWÁ™ð"d©Æòi÷Å74!>Š4Ø‹¦ôl†Y{j—mö–oÍ)²ût‚ÿ:º…PÏ‹¦-¯üWÌÇÖõUgÄÕæ€'Ú¿ö¢â†€§2©(¤âöOgt(ÜnTìùv̹æ[sµ²Ä’Äè ðdõdÒd¾¯ËŸ|5cg‰xÞîÆ©=ápÍ7B¡ ¥ÖíËw…íà7¡lÂÈퟨÊ(¶³ñIÛRñëcˆOê½ð7ÐòCµV„•ãßî/.XÅÇ…F^Ñ`ÑË!ÊÐdô¶6¯­£ènŽçO(Jl8»}ÀSÕ3‹Ê8ߌ®ü挢“ÑræÚUÌ 9µÊ ˳Ÿ 塊ùôžýxhXÔ1'v=ÀCSØw¦âº€C‡”»éøp¾iw ·à.³UM×h(•˜øÂŽHÞ…|W™,{¬;–Û/ºájÇÖéÜSRžì§†¿àÖÊ%‰ã«zHx²ú’{l²$óB»ý¸¦*g¨›T±é(ËÛá&¿¿Õ¸oÍëSgñ[Q·œþjAxò=åí¢5QªšÅÇæ¼%¼¯þ·Aˆpd¹× [™€Ñø—`µx²Ô¡³Ö¥&\_¤ÒvBVO½°‘Fʨ+ü±8ÉÔÏMê ’pk,ÁéðYýˆ[¤UñIŽí$º•p’³ýpÒÎ9®qÿžaùiœÕ8\ôV-æv«4\N²÷w¡‹„· ßR®ËmÁá»þ•° Xn­€§Ý¦z±ƒ}tø9\°Gê˜Ã6xb•Ý*­ˆ+óqT€ð6d©Ëub QZ$t¢Ø;Õc Q*þn ñÑTûM3õ$º-Ê>‰Öþ{@ùÝ¥& â;bˆOÚ4þ>Z Bµ½“ëªt¾%ÃwM"Ô“ûPöB–ZÆ´¤t¶a½#o¡î¡kⅦݭD÷è%ê°x²ÔÕb1%ÿ(6á-Èêq7a%§âoÇŸÔ•ü;¡ØßÙV%ßÄ”¼àzö¼¿,p £L>~I~J]½ãÞ·Óˆ—úE³ÌŽ9 o?õÀ»¥ÂƒMg¯ÂÿhƉg“dö]èpÂèÞ°ÎS½ Cð;1ì¾ Ñ™ÑqªWxRñ;cˆOêCðhùO´ufù÷£>QGع_zv6Ñ:m;O¡ÆÞ¯˜Þ¼í´~a<‹¢ý ¨7ámÈê¶ö, @fèÔJÁ*ðÔD¦¿T©n`–s¦ ÷ï†Bž…,“³Ë‰!A"4 ¼YjM° !A*îð6ävš>ÁU—»†;MTüÝ⓺Éú$4‘°}&k}8¸D£^Ä( TÚWhÉh€GãxVjƒèÉ´\ÐÈ(dÓßOBg A–:&¨¦¿TüP ñI]¿:û=mÕßÎ’]‘ –êZL.‹>7žáã+éhÆòÝò¬ìUÙ|òsí×ôïv>YýŒˆ°¦Sñ÷bˆOêšþ)h÷§Úªé½ew¾l?¶Êö‚›øîj³À…K~-©rU+ôí·¬Ò°±Œ¦aÑ™U¶øÃ±Öû÷nJpß ¼ 9… Ƨ Ø„kÄ âoÇp­‚ß ÅþÞ¶*ùZŸ;$ß &Üy‹6í~Éșժç>eQ ¦àeTLÕqâ¼a̱ÓÜlðeZ¾ø~Èïo¿þ/tžÐ„l¦¯ÿTül ñI]ÿ¿:ÿ}mÕÿžPgµú¼%þâÎ÷Añ¿ÿt–£¦A`àîQÁ¸a—¢x˜Eg89ß«lwÏ@ÖyÚ%A©¿ŠLx²ÜR_I©©øs1Ä'u¥þGPäÔV¥î³ƒÐ(ðë+³@uÏ¥£‰Ú6NͨX¦=:$Ap7ðäÚÛ0;S©=ú€ÞN¢÷êÍÓ ôÆ€ç!K«j=_-;àt 8yJÛà_?c½é$”zx r g¨¸Nà4äéôM=†ku–ás-bØ>“ó)|V#—öAîÓ6X£kñã«È|(Asx²”ÉÓä íýÇ<ÉGsÔ4™ŠÏÇŸÔ5ùû¡½ßßVM–JzøýÐ]Bõ³ š(Y‘ÍrE"Oá=˜ïÇ÷OA–»“Þòb#O¬1i¼üà•¤DâV ñº|²ÎH[ÂV wø<ä5ˆ´Qñ÷b¨'Ò¶‘ßî~÷0Ø£õrW>Zðʽ{¢êATú€Ú¯T\¨´æ[¾ci¸ô¤Á¢-|â•xl¿ý©e'Š=ù@ú£„Š?C|RŸ˜>1Aؾ‰iõš«qËÕCuÍ'¶ðWjÕjÙ¶„í qê€,§Fâí•hYˆÌQà È:}½Ëòiè/áIÈ|=™.ÉÇPÚ×3(ŸæºÅpòHú…Š/ÄŸÔ Êg¸:3lŸAY_6çE]b”ªEØÔÄè¿NDg¢æëOüв Oë‹nóu2ªƒh7ù>àMÈêåùYp'¸YU»dUØ¡©è¦›¨&ü zŸð(d¹ %-5`Èô†D $QÉG!¶ß@RqÇ€cÇ”;­KÆ& ãÀ3åÞÿhÝ)Ž%Õ)—W!_M§SΧ O©LáˬTþ5à4äie'iD{½ÔLI4ÊK–H´èzôC×)‘ ]v$üC¼ãFéä¦û–Wç^¸&ª@Ddx ²T<@L¨¸<ð4äÓÊ7=ÂR7¼¢ E|ÎoAV?Œ0D µhúìÍ’úóºñIAž? Ý!‚<Ô~í3î£Q±‡!Nß_£âÄŸÔýµ‚–'l£¿æ¼8+ꯣ,PÿÑÑñÆq;þž;×î7¼ Úí‹<5™ûÞD»x²Îi-A½ÿ Tšp òTúêMÅ_‹!>©«÷@¥¤­êÝå¼lWD`?&T¼7Sšˆ'eÏ3W]›œødý–iÚ­ÀkSØ#ý(5átfÍöH©øë1\«=Ò…Rÿh›üGxëñG¡Ô?Ú?Spöʨ‘³ ózƒÄô‡õÙñÅ÷oCNá†ËBµ ×ð† 7†ø¤®æ?Õþ±¶ªy·WsqKþcPn¾ŒêQ€æ-Ôõì“àÈrW:£fjyШê¹Å‚dƒ £huª{ âö£h¥V®b E*n'0YýÂö‘7k–G[lzÌÇ–#:º‰Ñp ò”2³;´T \¶»_·ºÑLÓàR$](=SOÕ&Z›ç*Êðdu“)“äöŸ¢tÂõ×+ ¿ø·z†hÜ=¢nJÒŤX 1ê»cT\p'äíŸDI¯;Qì.Èr Ã㿞D©øÝ1ÄGSí7̰è-Êý¨ÞOñI»úT|G ñI›ÆO¢"”o ”¦*ŸÊðL_â£Ø*7 ãšcP~áŠ]©ïâTjeJîÙôŽŸæ+?ž‰˜®œØnMØîþ4“ðäÊ5é7Œ’퇾<…BkûOÿ Tû!÷kw7¼÷Ñlá“ÖÄipd©Å[GÛÞ+~Κ˜AÒf£’ÎYSiÀÃÕƒ±›9Ï­`U(¡5G€£…ǘ£©»õÝ{r…þŽU.V`ÐsWccg†ÙÎxø-Q½"¢û€· «oÝ5Œ²IóXO‘ùߦ—0‡«ªIIþÜKf­Ìë‘7Âzœ¿d°ŸPe¨ŠÂ[Ë? e"¼ Y=xsÚÉ_âÍNäˆ%1Ÿ¸dÜ·–,¯A™~zzXøE¿Ÿ[ÂÓÕ÷V' ã®cФPqýÀ˜·Ë3™÷úGlÿ‡rÙ¾á»#”LDüXà?W ÈÚ~R™Ý‰ÊàeÈRéÅV|TÜ)à$äI 3;½gwçÎÃõDuŠ˜\Þ…¼¡Ì½ ì€,·Zm²è¼óy§' "´¸ ²Ô,&4IPiÀÈR)Vš²ÑA6Ï®–­‘;ÃX显_«„&7X0ƒ<Æ+Ù4èCÀÒÃúÂG-ˆófà5È껜[e[ÒyQûy¨ÅÏ׿Ïð]±ð!N;{!K¹Ú>ÄäðäCm×z*­8Yj¹µü¶•±`Òã/¹¶OO%…cÀ±æÙ3JƬí¸[<[1< ¼YÝ'd«ûp€ÎÖð„S°ÀnV‹Òû(8á äÁ5°ê¿ˆ²1£sƒªùÒÂQ~µ;xÛ˜4fÊfe¶dò?.± ß#ão'“Ÿ¾JD9 ¬~‚ýª±ò¿™ê‚Íù΄–øÑÞ˜q¬7 ûmc1”mV‹7P ÑJüK´9áUÈW5 ¨•ÿY¨ƒžHÔ”¦¿v„G KübÒÕ‡<š@§ûú‹÷ïß|¡•î“ã1ÄG±í’#¢«4L.†ø(Ò8^W>–~ 6pÂ?,=b£FbÐü2zî—Ñ^ë´´Ù™ÖC&dJã%÷†qhÒ°‡Ãáò†rƒs¥þ¯@—ð d¹3àñß¶)áP ™Ó@ At˜ü ˜ ë–R뉙Œ`'Š=YÊPÛ â‡bˆ"I¶f§‹Mžã×\é DûµürÃG­Â¯¢Ó'!«¯·Ôàâg× <·@Þ¢Ý5ÞÍÒ¹ñ“3U?¿Ñ†ñÜ,55·ä¹‹›Ä:ËüÏ2$Ç€· KyˆB4•Ö¼ YG²;Q5§òïïBV+2¸Kì>±¼ÐQ¦øàò7LD5ÿ_CÛ A–³k«E6qE2®c‚JD¼ŽÇ µ]‰¨´!à8äqåÎ0rU×÷íÙò’á/˜žøÄgx²úéRJ¡PôBfáÚknÎò,'à›dyƒŽN ~š@hd¦èU­éV˜PëÍšý„dAÍ"vÇ€g K¹;­7e8»IIbçÓ§Û®òTÚ!àuÈêªÕ)ã'7€· «Æ+β£±¹ƒÿªMx²Ü&õªÛ÷> ]¡aàIÈúÎ3&)•v˜‡¬~œq/Üfé\¥öE«LÇ…CBDlx²ºgÐ=Ê\gAJÿOØ Yê(¼¾}!¢²¸ ²ÔÙ¸„õU¾·¸²ÔY¸¦8MÑtè x/\Íx%®?áOØŽ+óœÜ9Q5"†ƒÀË×âݳ}!ì€Ü¡¤;-ÃùóåJÁ™•ම²¾sñƒÜÕ?iVúû×>” ÛÈ(¦^Zñ/g{!Kíkˆ&*®¸²Ô9²&?1pCO‘Í–ìl Y ÜÆKŠÂ3=±Û¼ Y}$MÆCËbaŠ›OÍJµÎñ³VÙ]ä”ÙêÐ `û sÌàT¤ë”—D«ðx„ú‚âÆà7Q6¡c°¬T™‰ä7¡î„)>ÿ›PwÂ^ÈrSjü·û°UÌßfS¾‰¾ÚÎh:~Uƒ½joS|:žŠ;<›Ñöt¼°)¢òÏõ=ßi‡þ=ïR†;•‰œ4Xš`Á -cÍy츋ŽñfÍt;ÀˆÝȡւ„ÿHª§ý ÛÕJ«7F‘RÁ¥±ž‡¼Ö©«‰Ë%àT&­ÔÕTZx ²ú™ñ¼6Tþ4ð:䵸 ý¡«ÿ1£cÆÜ¥º±C46ÇŸÔ›å?¡)þ“–fÉ$Î 7³¨ØN`7änåfÎHÅoŒ!>šÚæøQ A#B̶!j3l›{á¼öB–Êî&dܨ´,ðäcÊj³;Êc_ç<±Œœ„6^|E›Ã×az¢Î¹ ¼YßÎ\¢³GÅ]Þ†¬€Û2Üȉ•ö·ˆËà+_Y»ûŸyÏ2\»KÅv×ÐîRñcØ»›­Ÿ74nDk p'äÚŒn7ÎôH„|°í—JË Ȇ²Âì‰,®cÙó ³nÍ)y¡Éu„m.ñ:¼ù¢>›ë$¥¶H´¹Däp:£ÏQÌæRq—€×!«»ÛýËl®éodÀ—!¿¼f÷¿ðÎe¸f—Ší®¡Ù¥â7ư=fwct4VÐÀ«-Àõ=<ºŸC”à´¸òþ¶]*- <ù€ú`ŽŒ.á¶–èŽBÕfk;CZ¢Æ–˜œž‡,ö3¶TÜðä ÊýÓ7¶¢†–¨\Þ‚,åê+ÚÿÊ{–¡’¡mYêFf`í·Zu ET:Qrgã£jcE;‚Š_C|i\1Øùˆ²;?R¶ËôŒªg•lÊDÏ‚]¯êz&OtGé=Fé\×¥¶çì¢h~ Gx²ÜB6þÛF¨ß8™ã³|ÔKFÅ\2̲_Ïo,ã=‡KYõ½¢U „otÿ7°'Ô—›äºa4]A_vQ›n¡ó”Û‘±e1w›pÖ̲øäyÂëÕý» ƒïwÑUgV‡½i¸©/ܹ9ß DíÁÿW ÈÚ]Ž –ŒÃAœÎ'!Kmê¶¾Œh‰»Äd x²T/ ¹TÚ)à ÈêƒDØrRñ7cˆ"›O š7ªn×ü‘:Ô§ ’sžYd÷l‡/ô]8®ùÙ]‹2‹Vå³ÐôÏ¢ë´TeÚ0üZqgsª–í"¿¸Á¦_÷îZ<ÝÓtÂÛ¥¿ î„Ó¥³ËG+ߥäò;(ÿwðçuu[~QpܧÍÀ~Èýú, Ý÷’`´¨ÿx_’%¡Òº»!«Ÿîg¾O:~ÅfGBm¶çBÅÿR™Ò–!Áïÿ?êGtw!ßU¦½Ë¨'UsüFJ*Q½ÿ]èúï¢'×ÉöäªÇ×%¾Î– `Dg ñi³‚ý.‹ðdõ•q–L½l߇,w tÕ¾üDg$†ø¤Ð79`rA} *üª„åvÅ Ä/'þX^†¬~œû9#ºÝêQo”—Øc®æ0Šá.½a-§¸®Û¾0rz’Íý>ê@ød©÷ºÕ–¿€¢#ÄG‘F>\þ¾d9fÙ~Ë* ÷ìÇVÙ^pÝóM=‹îÑÓyy¶°dü‡`ù‡0ë2²7Á´ÍjDåð,ä³íŸÕ¨¸à9Èç”û®Ÿç|–ÕiÖÏïOtÎï@VÏ“zÓ ÛaΖm!9úÉÐ×/`ùLË#\´*ÿúE¨/¢2a4N °AÙȰRË «•„qù?àJ8yBÇÔõ0z¹šµ3;½Žò¥€Me~Ñ WÌuÛI•¸E½ÅÒ|»^…'»­Ë?¡¾©«ÏàK÷ˆ¬ ©ÿ "„}ûÖÖ•ÀAȃí7Bÿ_$TJòÛ4„c¡dÍ…C< W•|Ö[oÖLßyÁZ H½Êó®jaET¡ˆé^à-Èê µÝ0Ì'¦]6Y wÁskóÂSÛC“·CÞ®¤U-ƒN¹b _º¤ùðäcÕ+áõœ?F‡,ëÓjúK;€9ÈêYÁQħb>µi3™¿ÆÍ¶V#ïHØÎS!ÃÀ»ÕCˆáT{ÝužXÞ¼…„GØ>4æL?0,:1Ço;–Íð;±'Ñ™b„«ò'ÐwB}Síuø;{m¾~´ÇkÍQ¨k÷jä±²©«ÖÍv„SWoúC}{¦W&]ñYx:R¦2–^áÂË ÷ÄX]£>íuX0¼ŠJ\Õ6ì6Δ¬°Ê~ =ø)”ܑѹ ]±â;¸FÏǬÃ%½Zƒf‚>U:t¬dS5=³¯q§šíûSvtøe¢iSÖu¡Á÷¡Áä6…vÌ >>Çø Op9…ÇçXq‡'¹œÂãs¬¸ýÀ<—5dkéÍÅʸ,¹9°ª6x¶¯KÀË\Öšm8œä²ÜÑqm^ᲆƒ]Ù(d*jĈÆU ¾‹B— ÃZ™b!ÄÐçãÇ™–šÎ6Áùžœqá%.¦=7uƒPÓL:Ÿ·j^@Q8 ”'¿îÁ•iÓݬV=×,.0 °ËåšxxI=tBmá{ë6¢*„úœÏC†a“BPÀžŸB|έ9ì=AšYÐdÿ8hR2gñom}bÏ;VX¹!Š? '󄣕žã²\H ¡GÊãy<„Êg&Äb?j@¨Ïšo`5&sdð?32tLŽõP¢iø,¸Ôœ>*áeáD jmÎûŒÌ8iDÙöƒœé…½Í$®ÃyººÿkÿðÇsfÅ}‚Icèk~ÚvÆ%&2u"¼:ÝW®Ó°Wæì€?âË·™ÃŒ"–4w “D`!ÔHÃe#Ôju ØÄìnžoË!Ð$D»jHѳ—4¼V©„.ÍKŸˆ§8M,s]ÉQ¨ñäÌÞ—7†búXó‡^æ:®„°†rñúå©«@K˜Nt±…)™Y+þÛ-Ì ƒ“xÂÆ2Œ¢¡[Ö`XŽÇ˜Öay;4sæ<åŒIrÀ¹{Ïè%cQYŸ!~Áð6j£~há zùVè¾ÖÃÀqöp¾ÅïØ›õç–#¯\˜û¸žw©-Šæ‹î”ž¨yý ÌîØê‹§^g/Ñ._Ê$­[®%jr5!Ôwò”µóÊÕ—0;ôó†oV¬‚v)M·®Ý{(1Í"—$C„‰%Ï.û-9x‰O$’Á9Y†ú¶8Ž…ÚE«3i#ƒ-©„ÉÞYB5<áAû1#Íë¿úÔ‘$¡C`5N|¿sJÑÄ`ÑÇPß~ÌuVƒùðcu w —gAc‰HBµf—“Ó$ÖäjB¨ÏY|™Õ$ZjÇ*ðpò³«'Çûc]£jÚÏ@uåÍÓ>I•,.e0®Ú]TðeTM=ñüQVµÊä>±¼ð‡á¢‘ºE˜+’Ž0ÔË7¾ÏƒP—ñ}­§\–l!'§¼ž„úŒï ð|_Sl2?T÷ †^§JŒ Æ'Ã(6-uåly°„…é¼:„ú‚•ϳýáGÎN²#tÔ`ÎÊçñ¢ö¤QÌñ•/[óJÄ[^D#í}^¹F—wüï!#*oÐ~¹Ò¡‰—PB}Y•zã"ÌésÀ‰‡Œ5¼±z‚³‰G:#×L5¾ù„hhg[Ä7ãZLwÉFsÁ¤´?yB}Q†“DÞ±–“§¡‡L7“̈cL¬ ÕÞÿv¨EÀ6®ÆD_QÂ!R_p·ŠÇÞ’ˆƒ¾ ~„úÜF¬¸Ø1‰‹§Äi¾š„hÊ4¯ÆVgÏÃノbõâµxjAxµ¸º¶µ˜/Þ‹Z¼Wk-ÄÆÏ &§QœÇûÀã}ZyÜI8Laúe:&óšå[ÞÈÍŠä‘ôË{î¢åͧ.ªÀé áêÌ :„X¦iHÝ&Þ¬¯ƒÇëZ›u7?Rvd­6¢Ddþó@'¶5¤“ÝÚDL˜Ö#ÐzTÿ iMa·c·aÃ8l8nÀÏè‹.-O)Ã^¨ªlÏû-Ësù- áj¼Õ œB5¦Ö@ Mð0uíph#½+?6j±à`tœ€G¹Lšà¿¬ß7` j˜³áÒ_¸:³¨Î¬Ö±½µé@¯0­"hµ*­®Ã%°#Ô·i}ù™D‡ãOX¨¡¾%ž®Ss`7§µ;Ämú<ˆv€H‡2‘<ìf|ÙÙdJå`/€2¡¾ËB±óõ¶Ÿ°QB}!aq“ÿx5™üçhç¯Ù÷˜Ý¯zî¬9KÙ¦£lQR½šofü± <|µüñDá =F…ðÕeú.»º‡umxüAcrÿ¹tqÉ­±âìK!X¶žPFa—§â«» âÆ¬Œú"Ø®!áá t¨.Q™·ÍSSãÍ…’U¥Æ§Zä,Ï2Þ¨±î¢<4s¶ç#<-x=M¸¸öWP)BDI Uñ;A¶§V Ý_+>ª…‰: J¨/ q¶i6„æOÆFà ÷SbtAžP_ ëV‹@ײ8×ò͇nô$ÄU¦ŠÊboSCÛ+MÿDÛmÿ›¨ ¡¾ÇGã«^öFØ#/¼rï^ÞXMÓ˜N…Y{`M8 Ö£k0cùàÔ4cÑõÓã±Æ;š{vF]§äG·Ûb_x4kúvñ8Ö.¶xÌ?@5§P)õèXXä\E…(ë¤Ç#˜CÚ1~4Ç’˜j¨áUÔâªr-&ÂZðiÎyNR¶ƒtb´lÎ[üÑŠú3§âÄŸ€8áˆO(?î«òi´Jñ©‘²¹™Fö°ûʧVS(%r_wB}§ËÅGâSðxªu$ŠóX%e”ÙãÖ³òIxlÝ[ž2¨)e,»nV&Ç™kÇ…*UhƒÂñì»Õ…p>¦·™¬’‘c™"é…â¢ë„s\8Ž-~R=>€f%œF³N+׃ ŒŸ\õmdçnÆOÅBmÉ–6©Õ ¼†j\ÓÓÝÙO'Š>9׳Y mZèp£ºòáö~Îxò« õxõx[kwÜ8Œ•€g=±};à|ÙKôSž¾+ä;Á­WË—€DkòAÔ„PŸÿ#¸×cíçJn­ððùpý­\§Øé”p±gÇ—,Ó G~# P ËøØXall,üé‚9k&Y¹ÜyöÝäéIµøó¨áTF—×ÈÖ£ñP̤柪˜Õ#ï95þh|âÑØ¸1Jµ¡Êœ0’?'qÿBp'Ô·öhö×è/¶/æjå²A zÚÂä/K‘·Ýd˜ Û˜#D«ñE¨¡¾i–A­^™ÊÇüñªg•lv^´¾s®üÕ_éK¨Å£_¬UŸ/‡µàñªªçÒ¤wšè^m'ûȽŸ£^-tÄGÈwè0³°V j@¨o³²‚”¬Š×¿èÙÕà¢(Á/AB}W.;ΈBmþ’X•œ]¶rô¿B¸ZÈ Ñ—†òFT‰Âƒ¡ä0Vÿ/B\#Tä:ù¬a¸^~LKL:SR §»\6Cc.>•9˜â¦jæ´2óžFË‹ú D¨/³Ù®Ã¬Çýw1×à&ÜZ_r„)dyL¢ñ• Ô4=Ü Çó »,Zõ-p»Z'òh‘nOÃi£å£x¢Uù*T…wW4äx¬p'ùmïwDëóQÔ‡PßÖνw¼Ò¾ýEÔˆ§í 5LFÈ1æÐÍ{æ;Xâ'Uz™?û´"H%Zƒ¯F õM÷’®¶´ê žwÉ©•^Dkô5¨Ñ×hí“k¬F+éÓ“V¶]bAq.³øÍ¬,Zq-®Æ_B5õù‡{ç Ç[_:%ø—APŸ_rŒfð²C㞣µãäPؾìX¨çM™å²„òµàJ¨oñ¸;ºÙðŒ‰ “Øý°#Ôw8ï ; ^xxJOwÿU$<’•Iž{–îy7— F&ÆÎ† XñþÿÈF¹+ÔS®×ûÿ”ZÿØ}Öþöœþh5yN´"eO¯ÜNY¤ÜŸô ?ˆ€çÊýèºzF´_ZN¡SêzŠó#µ zמ<ÀYÛ1½¥Ø{ë¶S¢~XÝŠxöSQòßòß UO;³/RËŽ·¼ZH ;a•ýë Jˆ¬•ž#kMŽÑæUÈEUÉãg„Y#XŽõXúí›@ã›´´}4Ð(rÅ!Ñ¥[æ?Š2ü`H¨ö&aü·t냑{§³·I¼¾¼Àk@™×àÊ£·ä&‰O3ôAoP™Þù•vøÉ¨Bý¾hÈ6o|Ð(„3eÙÏ… ‡UÎ%±ÿ[`OˆôH^¥º½<8»N÷ˆM ጫ˜OËæüd¹Ö@¼2•!Ô—}îú;ßtm¬ÎpR'O]òÎד*òwPB}M[çŽüżÑê<›|Wü]Ô€Pßsªõqî<~Õ ùëªÅÇQ ©Œ.¿â*Õ­ìIäºb§bhÿ ®XÁs.Ãj–ÃÙoä¾e–†$*ñ÷P «¨ÄUåJl§J<±¼Y×·ÞéxZ³¿f„jÉÇ+<5 h5MÍtZ÷úµWo^lzÄ›îqûvØ¡ìdµí„ÿ„éó­ ^Ä®Xõ-(ÃòÃ?KMæÿu"|uzA¹NÏSR¥»Aü­u³ôÄtsž¥\~ؘ…KÍxrQÜzçÌ2Iú‡¨¡¾,´P I»³ôܺáņ̃³!Q?0½Àxb–kV㊓ËÞÅ^ÖøoE-¾U«A™ wÁWU¹qvãmÖ*štR?!råØtÖ…ù7’SÈ$ÕãÛPÂiÔcZ¹´åÔ”ù€'ˆ|Háöþvð$Ï¡ô-Ìw€Æwhµ0§bWØŸíú‹pû}'ˆ"-aÚí÷] ñ]ZÛï@tf¥Õ•tá¦ú8Çé7ÕwƒÆwkmªK-›Ê±àÙ‡XèÌÏÒÏqØoÇO¢„i<@ã{@ã{´¶ãà¼g—n> <óâE ¦šàyKxQü)Ð#Ô·ê¼@NݼçÎÒZ­lV«å¥\17dztÀ±èÿ,Ilh‘kË÷Ècwò÷‚>áп LÿZý4@+mõìxž ÊMÊt)Äv¢?ˆVãûP B}û5§–--M¢ê[oæF& góû_Ùr情‚[cY>Έ¯ þˆê³ëùeÄ‹n¹À3?6+…ð®ççÆOK¬bþ1ê»EÊ¢ùŽç.ò §Èò+%gIb÷ý`G¸†ÑüÐj´ŽpÕrP±+U«dõIbúi0%Ä B„âL[–ºq¦DɲjN‹’ßBÉŸÑÚFâ ¨ü޶ûMéD?ˆöøÁ5nÒÊãnRÞgÑÿ„ëóèá]Ô箎úלè”ÅK{Ê®Œ aµMhô˜z¸ŒÂá:¬¼íáÃÐï(W άp}þ êóOt×gúçGPŸÑZq½ÿQðøQ­z{R3ýjC¨/¯-%Òƒa ót" ÿTk§Áæ*B˜êO€*¡ÒL½boYÀ³~'Ôç êwÇbi„Ùö„0ûŸ{B}›ëãÔ s«%KQMÖùSàM8ÞãÊ¼ï·Øz†Œ>Mµ›šó¬7%Rü4êDxuº¯\§³M[qmÊËðÏ@žð,ÈŸU&?µrúƒ#ts£)WûY‹/ájü ªA8…jL)Wã(UïÍò†¿H+ª.ÌõgÁ•P_êo™§˜~Lõ=ÅÔÅoaMÄyýsð"ì¯þ5˜Îþx5MgÃõ‹‘zŽ{¸|ÙŸ_ÂaðVæ{½IãoЦ4Ãô ä¿æhßhåTØ¥%é¿€šê;)pªEMŽ°Ù®)ëÌpGJìwâÌÌ õ… ö„áÌbjŽëˆøü/ApîQ&ø™J$9Š&Ühü §æ|üÒ,íáóYG|0£­AK¬Ð/¡B„ú®b¤ áüE µfùË`Ix,*³”Hµ÷¯@„°DÔ4‘ÑUœØ¯€ሠ¬ÕÿUðj²útëêž²Õä¶ù "ýw:†€?xl7ÛvÂoúVyI<=˯¡.„ú®]ëòrXƒ²ýØ*Ûtº­oª®íõè ß•7ËåúD'Nÿ_ƒ>¡¾c|t£çŽ»h…­šgäêg”–s/Ùss–ÇîúØŽÁí-ÿ ³ÂUúuT‰Pß•ž‹”9ˇÆÂy¬d“M5ˆë´R¸ðGáì-\ƒ ê»+>Lÿ-xü[åaJ™v²Ê|þ]†]`0ú(¶K¸U{Îq%Û¿úŒÎ+¶lmW.¬7kf™&ð{öãú\ÏNˆÒêó€ÄŒþ› N8âÊÄ_ZN||´èZsuâï{ßP4>†^=oDü°a{·ly8È8nœ•¨Ö¿Gµ_Bµ^ÒÝË+5~ñôëµ VïqâÿÄÿƒÖþ¸´<ÀÑÜÀ!í«ø¸`á48[#£=Ý'^ƒÿˆê;}q±©ésžåÛ¥Pôë=0ÌÞ4úà?¡„ú¬îEé.®ÀFþ³Ö Hø¿ÿD•üß–ÅfÙ-åH˜"¨èÿšÑéYŠOUÿ•W9Bù=Ú„&ˆÉmQtšà·Òi‚õ/ß|ÏË-hüZà·T[@ÆCkü7åÖ æ¡*ÿžao}E}[e³m÷ yCÑÿ@nFm–n êåmü_Ã̇ٷïüð'Ê–·à..gvÊpkâ„oÝq-9N{€3ü Ým#{ýŒåJíЛƒÊz³?oÜ/ð¼#î\ÅtöçÜÄØØ™áäÌC«4Ì!à$hª_ܹC³æ5:Uð|—eƒEC]ïqýx}<Ád%þ–xôºt-ùÖ@Bm>‹aA¨ï5‘C,äÅ:5â醰מ¸VL¢ùÛ ùÛv®'š‚L~L׃Ézi;ÒÚzcÖ-—Š= <Áe Yö¹SáBdüü¹‘ñ „‡1‘9 ¼Àe §še†ñïbÿ®ò0¦ßvà·fZO«ÞûÂ…ZhžýI¯”÷éê×älÍ.—^ÿ@àºeÿâÅ‹Jè{J®:<>4ü6þÁñ±Âøø…ñÑñÓçÆÇÎO¼g쌌]8ïšI.ò+o>¸íúƒ*Ù<Œ)œ€¾Ñ³rþ©óßwÒ(¡=ßV£e}`= ĺ†uE6S÷иç×`ͺ‹þûþ³®Câ•—o ¶»¡ù—þón*p ýüCŸ¥ŸusSSD=ÚýÒ‹ï¾§D-Ãþ4Z&Û\ÀæËE×qØlì\áßÙÔüÑÑ R}þïs߬¹3>ú€éÇø)kbÂ?5{úüÜh|ÖÌ,³+º«;ì.JV·ÊWžÍS|!ìÔ‹F¢ ¹WÜ»h,AõâèhøÝ‚ëÍ&~}X¢ß±¨ËÌ@žiôû—‹{Á«if¥¤z*ALeC~,M±³y°PóK0r€oB~S†QËÉ®oÆqg=Ë|Ìž[øÀÛIäZŸag¤Ö?óÈ‘!—°†pkAB©ð‹ ‘t“¬\éñoçžuH´ÙW?ùÚT¬4%´,ºçõý¿_›–mœñ˦¿ ¥^8Džù È?‘Šzýð'!ÿ¤T[ÄÛÿÌz³JáLdæW!ÿª¶ÆèšY`_jY,Òg~ ò¯I«kG³‘f’DKüàoBþÍ?UãQÝu\&T˜ãßö/Wiäu;€#\&LCݢͯ— 5Û=cÏYeßJ(ø å2aÛ f¾û‘˜$#éÃ÷>ƒ§ºâ_éxPÊhˆNÇ+q¤ñQ\÷uѺO”ÊÿD'v¡c»”©ŒxTä~!_Q³ˆãË®_\xlåk…(èx^<èø¿Àšp ¬Ç”Yß ¼$V¢ž¬AT±u,Ù­Éï¡&„úžI‘ ü>˜êäí¬Gòèyã>½.`;¢QxâÖ4¸,SK0³ ¡¼ß烂á! õp«x(Êæ²dBÅV]Ô1qN‚Ï àI.j뎄Xw˜ç²†«Ý¡1º0œ7ÎNœ9;qöœðX&>#À+\Î\Y“±üË <–é·ÚÂy[ÉÝ›õíJáôø¹$}[5Š÷Œ„{0…YÓ7þ,Š÷ÿDïr=Š×¼äà]ü[*1»ç ÇNÌÿñÕJ[bv¯ß ù½ÒuÅìf€ ?’aÔ®˜ô!û2䄃*ïé&IZ³|í—h*<'™ùäiÓ¬n°“P.dûÎ|3äoÖ¦\*¡:ä Í|äoKE«}8óí¿]ª-–µÁ;©Ë*=óÀOAþ”¶6X5d‚3ß ù{¥µ´CW„éŠ2Ÿü™? £ÉXêÇ8*Luño=«§¸Z“âdoæ÷!ÿ~:ÊõƒÀ?€üÚŠ}‡x\tEþ!ÿa 3/|oÌß›‘ôÆ×2¯ÄÞÆGqá&LãyF}iX\ìMß{<ú({ûß`Ih€¥¡Ì’%M©ñè$n’^›¤Ð›i8®3R¶ËôšÓ#óKÞsnò»\ ù?¨¡¾«ÐìòŲӈ,c‰oy¶å'„%Oþ*@¨ïî…L¼áÿ‚ á»5vHÜz€F&µØ!×\ËØ!•?lCìðÔ˜ŸÀc‡TÜ ÖØáø??2>~ê¬ðX&>#Àµþ1Æò+eúí»+vøÇŒ„;ü³ØáŸ¢ØáWˆ/¨ÒŽ RL!vøìŒÖ vøìä„£<ﶈ 6IŠÑ„Ub‡ŠšÕžØ¡¢rµ)vØF­Z%v(ÐËÚ =±CÅ6 jiG ±Ãwïh_%v(1ÕÅ¿ÕæØa;•k•Ø¡b±ò±Ã¶̼ð½1oüOeì0^‰5Œþ ïÀ£" ÃX~z¯H¤Øá„pìÌ ®„XÊ,Y–Zv;”Nêñ÷x̲ÐkisÝFX ®ø:ÐÐñQt_¹J ÷Ž0!Ô„Û6m»,q]Å}έyaKìîç2¡¶Oë+® x€ËZŽÀ±ò .K*ËÜ™Ó|Žs\&ÔÖ­#p¬¸CÀa.kÈ¥ÚgäÎçó§GΟ>%<Š‰Ì ày.kȇ'3Š‘.˜á»(ü¶3rªfíʲþccc§d‚p¬f]@##y1ž¾ñgA¸ÿ'‚pw–á–ëß꡸åßU Ƚ ùÕF¥ø*¥-9hA¶¤)ê È-C~,è]¹7‚ü!r¡“2ðÃ?,Ý$ úsô™Æ€DƒE׿ò·hÓ/…°Ü·?ùÚTL%,‡çýØÒýû8¦ [ÑË?ù‡¤Ú"þÛ-Ϧ4«ôOtùg!ÿ¬¶–X5~òùÀŸƒüsÒºÚ¡+8÷óÀ_‚üKzFþ¯s\×ÉeB…É/þ-1orµK·îåòº½é(Ú/£Ø}\&ÔTì;êÞ‹‚÷syÝþ fžú¡˜Ç~(#鱯a nY%5>ŠK<™K·X×1ÔwéöaÜ·–(õúÃ'ýN‹Gë@­G–Mõ;ÍNúÑãq#es‘ßóYN¿Vñ¹jèí•„—ó- Oƒùieæ2Ëùn0!Ô”c\s³ÌŽ^«V˶U2çå$ØöOpY.KZ‚EMˆÐusýgxcBê,˜b„ŽÊÏG¸L¨©³Ö— sºÑG[o$訸ð —3g”{£©òÎŽOŒŒŸ=%œ,Ñ9 ¼ÅeÂ5Óѹ•Ç4ýV[ˆn€œª‰ñÓ£ã§G®½xíá¹Ó§*¶jxn##á> Æ}¢µ£oüYxîÿ‰ðÜT=<·\÷’CsË¿§–{ò žþ*ñ•I[ÂrpÔ3¯C~]𢮰ÜûEÈEFí ËÙÀEÈ‹2ä„C'%àSÈO¥›$iq~èõ_¢±>üFÈß(­[]­Br!? õúfàÇ!\›z©„ä¢@áwCþîTôêï? ù“Rmÿm‡TŸDI ?ùSÚú¤cfD¢7~øiÈŸN¥7¾øÈŸQîîw»«tÉ òik‚UVKÀ‡üãÒ&£CWdOmg~òÏüé0¾¿ü=È¿§ä{Ä¿õìüjÍú‡)>Fr'k·‚ý,ŠíáòºmžCDôsPðf.¯ÛœBÁlq´?¶HÚŸ‘\$­eD4^‰ýâŠZ˜–mFE{bÑЦ„‚ü6¡Ú»¾­m•ÂS9Œ“<Êe¹L’úžÊa\r@Š¢Ñ¹2©+– }˧rXi{.KÆîâ¿í­Ÿv='?'*£ÀK ¥þ2Û$E¬VéYç‘ÀªT]Ï,/{ ǪÚ%«bê‚å¸Ë1ñ:½™#X¼nÉpº?)­û™„Ò;f$”}x•Ë„ŠÍ—5Â5êcsÞíM¢1¼Ãe OÉÄñ^Cý{ ›—‘„™mîà2¡¶¡_}<ŸPjp'—åÞ [¾ÂŽPSù»€»¹L¸Ò‹~ím‹†Äño26ñšºsÁ¢é‰* ap˜ËZ_JØtê…Öž€Ö¨¿$¾éDx˜ç²dF‚–ëtÑëOŒÇ)ài.§±ëD8<Ãe »N½Fn|œ¶FΜÏ„gÓ\ÎL¯ÉxÞ‚žÝ¢<žé·ÚvœvЂõüÙSçFßðý“±sç öøxBÝVÝtÚ‚ÁHxƒñ ÌzêÏ6¢–ùÿõ¦Ó­ú¦Ó õKÞwZñÕa‰þî¾ ùåFT|µÕ–­§GÀ"ä¢4E][Os@²-è][O.ðmÈoËKpX“ƒÒo?ùƒÒM²2¢À¿}äY†€D{}øqÈצ^#Š*ö-Àï„üÚTLeûéSÀOCþt*ºõ]ÀÏ@þŒT[Ä»ùYtæv=~ òOik‡UƒÒþ4䟖VÕŽfã,»ëñ³ÀŸ‡üójÆý¯ÿò+Í|ño ù‘«Gè˜=¿LCÍ~ÅîäòºÚŠ}‡½×Pð..¶½`æ£1_ÝÈHúêk¹÷¯„ÑøhZåȫ߱<+ôˆý•…¯ûï‘/)µãAߨBß@°‡)…r»¥ŽFÅ5¯0­™¸•l¡ä H z0º?Û„=\ÎôhS—3­¥E×kéB~ãkÌ´:¤Ÿ+Z„ÑGS‡lò¬yÏòýpÜ ò@ÇnCÇlK¥cPÂíè˜íéw ¿£ÑG®Z[ÛSþ‹º’ý§Å~ÑÏúègˆœôÿI¦á5ìopMûÓr¶º$­˜ÎèÂÂÂéBÔ¨ý“,¶sõ³õVUÇÆÊú'½&áÀá. 3#ݵPÕrJe3°8lÁŠAtÓ)º%Û™o´e#¨uí~êýÚ…;ŸlÒé Ö¤l§`„ò­A£c¯*2-[b(ï!Ä;m­À¨UjýžyhHœeg1fbèdœ7@¢õÈ¢)Yé¥FxSR;£èVª®ƒgpIáà*Ã>È}J–PÔ"®Ælð äƒ bÙv'»h@6Úo‡7á‹„‡ RVŽÂR'˜¾Qõܪë[%cv‰Ÿz®ç@îѳ/ŒëðEÈ/*s5Œ×ì`Á­á`ô*¡[öcuò±KÓ=¢™ÁiU†£G•Iwˆ׉»’qŸ_ràEnzóÀÛ¾øèoØo“†Ë„ÏûÀHIt’nî…¼W†iK†[½a3~oØŸ7R’àvxòIm£uýŒõ¦“Pj´ÈCÎ+ëÐÆ¼±¸`y¢ç¯‹àiȧµkÒ®@ýsxòUmº³ž”F‚Ñ4ð&䛩hÌà-È·Ò÷ì¨øÛ1ÄG‘ƘaØ>ó\¯Î+¡²ÌQ2f­`ѲóæCCî‹*x,:•ƒ<¦â£´T¦u¢š„£Ÿuħ͚D8<ùœrvI\zbÎ/C¾¬¿_Þè—éâ“B¿L¯CV_HwäE‡8á àMÈRöm¹õ7 ßž™âqÝhi½Aûâ¢Û™}‘쎹mÀAȃí__lAßî¼Gc± ë *®¸²”·\-ò2vƒ8ì‚,·ÖYÕnˆú’Dçx ñi³Ý Ò†€9È9åŽÙÁfd7œy ËìŠXÂò¥aà$äIejG ã®Ã£)Ëb-sáb¯VÆROiô€ðä#*µÜ1¯˜OËæüHÒi³Ä˜.Ñ9 œ€<Ñþ±NÅž‚|J¹ß¶rïnįZE{Î.Šj±9 ¼Y}‚¼aew~$hV{#Gº6g{~0ÂýSþe!fyÑ\ŽRo…†Þ€|C¹&‡äÓoÈœçº,YN6µ9kÓK5✠bxòáôW(:BéxrËR7Ï”,¿èÙÕ ~2hEø86GÈ—®ÖñµuGã“6Ø)$ÅÖØÆÿÅg£“h"w ‡"Ô³x´±íŸãÆ;_&ZƤñòƒWn&zÖ‰\w¢½B>ªÌõŒÑø/4e!»[×î=¼™7lÇl³þÀž3rᯆ1ƒÎÛãÃÂÜw/áÈgÚ§~‰ÈûdH‰-3 èá~Èû•{(oø n­L›†o1u¢õ[Ø2v¥VQ;a`tÞ…|WG@ÃÀ µذ‚E×{L!Øò(2=Ý"T h$t©X•Ò‰bBV÷p…ç**þX ñI}®B˶o®ê ýU bY`d©³°™È·=¥›hŒˆÒvà.È»4jn‚1¢â¢PênÈ»•Uf$¿UÏò-'ð›Â_ËÂNµjh§Dµœ¨oBVß©ÙÔ°F‚|b¢ø±°µÛˆL¾Ú ygûÕé0Öahq¬/Š¥`Ü †¼;ê ®œ] ¨9³VŒœD힃,·Ü2ìÚ¥IZ3ËôÙàMÈúŽX¬Úgç· ßRŸ5×ß«õÊmàÈêž+ó2L߯UxˆxÁ|bcQ,Û”:ó,Ú°mòÎwo5ˆÈœž†,u¤ILƒ¨¸£À3ÕƒdýãZ9°<'\1=±ÊKÂ[úDç,ðVfÅ«6’´$rŒÅ£ž™9Æ&K‡?Eõ…øô·A–º­$¦/T\p;äíÊs8t:Þ¬Y~@gªÂÕ3­(¢aÈMíDpðd}…äÔNd®¯C–Úï´óÀÕwï„×8TüÍâ£Hc”uc]4={ ç†EÓãóFÜ]–ã½Ïpòhû—¥ä!w¢Ø1Ècéw?C|R_–G˶oYš­oHÐËû!÷K/N›o*ž ×],“¬í”BdS{.f$ý˜þ׫ *"òÛÏA~N¹¯§Øð¬–ÝsYF¯˜g? ¿WágrXˆÈA;§ O)×âÕâ7°x-–ÝÒ0J®ÅãÀ,¶h †í—M§äç »`òQHL´.ÃàOx ²º´‹ê²Ý7‰‚‹Â†ñƶZÛmI;;QìnÈêQaÃHÅÆŸÔ cl³³ñºÐIËÕãuÍ&ñD²I,YEsÉÀ);q¿‘ønžƒ¬ä7ê9©It&cˆ¦Ñ–tR“J;¼ùв–÷4¦+ÑaGD®ïB¾«Lˆ½½Ü8=çò- Švú¡Ž±ãu–ã×<˨º¾.ií`IÔ\æ¡ „§!ë\ß'˜Kj(ÜÕbëûÎL[Á¬Vû³1Ä'us9‚–'lŸ¹ìÆ! rY`ä>i“ÙLêXtòæ‰Y®Y‘ÿÕ°“O¬bàz¢jM\€ç K™K1µ*ž‡,—ÍBI­©ø 1ÄGSí7͘Þ|­B;1-ÊÞõ-×èèQã Âé¥Dc-¡ÚÑ£ªtÆø?RG=g<¯ìÐŒ®4ìpEU4ZòUMŸ.¹›~øÛh¯Ž¯LÂAÞ¸n Z‡q4#áÈê“ÿÁ¦£5õ%,’œ1ƒª¸kËÈ]'ðÜòÇ:žI–*)äGÄŽÏAÖi B~Tœ<YÝ@ö‘E’8¬ET.oBVÿ‰û§ &„ê>ÀºÕ‘ÉÿAŒú€4êJÂý<*. Ü9…­*®¸²úV‚ðûT¬üÀwj«þ†æo%ÌX¬å~à Â5šÀc'ô5Là›UéÐ¥7†ø(¶Ê¡Øë›õ\4ìNžFô-E6£¬ÆÐ)ÒœˆrÒQâ¤Óa·³œ9–…¼æ%Û·Lß ý Ï2ÅïYÆ2ÐŧðÔç‚ (ûBF×\ÿ–ñrèÐ\s³ÌâÝתÕ2mMÕ‡Kr&Vc›æ K]œM0Ô­Ÿ„cÅu‡!«w–ðId*ÿð$d¹k)-Crç%èÄ}š YNèÖ/±âòÀSÕ¯ºö¹Sô ÜÙñ‰‘ñ³§.h¢sx²ú³øˆ¾È»–¡ÚˆÞÊþ&ÿ­ò›pÏþˆùj±Zu÷@N¥@ßø³ᢖùÿõƒpSõá–ë^òkpË¿7,ÑÓ}À ¿Ðèé¯yæÑ×Þ§àÞ |òëÒ;›‡‡äSpï!eµë)8¸yQ†\ëRWy®«| ù©t“t$èÏ¡wÔ‰Æúð!£´nu5o+€Ÿ„z}3ðã?®M½TžûVàwCþîTôêï? ù“Rmÿm‡TŸ|ðS?¥­O:fF$z〟†üéTzã{ŸüåÞè~‡±û ïñýäÓÖ«>”¶üqÈ?.m2:šgHÙ÷ø~ø3æO‡ñýEàïAþ=%ß#þ­gwàWkÖ?äHá(’£°T»ìgQl—×õh+ö^âû¼™Ëë6§Q0-Žöf‹¤½ÉEҾķ¬{MÑ…Õ_âcQOê¾K@©`,}CûK|ŒRG ñQŒ3Ó¸Œ:E¨®n6ÛÂtè8X6†ø(¶Ê=0kúm:ÚM8yH™§ÄпÂo ×qL}èßDÙ„íú½¾mÎÞéA¾U(ö÷BÖç&*. Ü9…ä:7¡„û!ïWV ¹|ÍÄáð0äÃÚ•#˔쪽1àyÈR§»ÄãD¦qz ›±i(ÆàEÈ•£i`§Âê΋š1"s xò]eR§ :YÐ.²Ð3Fd= ¼ÖEÚbÌÕ¶¥C“¢ÄoqEd; —ºý½² Ûg7‹¶C7;$ØõwBÖé%Œ0*. Ü9…TBT\'Pߥº!ƒm9„­O7gl' ¹Š–ïãP‘°Cü!KY‚–¥nœñ-Ë,ûn‚…44ÊË·FëÉ;,®Ñzò.Z Bµõäþg¥“xÈš®+÷ÄÅfÙ]237T±L¿lù¯Y¾åݬøCâÙiŸG=ŸY– ¸]½–ÈãÊŽPß=|Ø –2è°¼ZÛ–ë*šÈ(ɇíñä ÆÊ7'…ësu¸¿\%ë“[F?×ÔýÃï¿x6~^¦û(Æ®©+Ò=[1Ÿ¾åaÃ8Lé$£”¾qF˜ü‹ L…‡Ï®¿„²#Ô£Ãc¡ÏÙA¸Þn¼¸Èý/·‘ø•rØz&s¼„ic#„áä1eÚ/„´CÐ4貟Tyþ:œë:&½¡À–?^ø?·ÂkP´ªë6”ɶÁp4•z€Š¾˜wæŽV¥êz¡—Mux]Ù¥¬RÓŸ‡®Â#Ð&Œíú«.2Â*° ÛõP^ëý(aºïEB}‹ŒÃÔÜ1ÝÍÁRÕšlh¯Ä`‚áaÈr1öøoÉ%¾Qc9[šÞR÷ÃÑ‹®FI»‹"R¦GSZXA‡W+1@•X©YT„PŸK|;¬ÔËì¡löâ„a=±ù´6ãâ–«îìÛâ ì"j@‹×*ÖætX?왲áΆ6û ÏUÀs¤ñå‹ë„1~Žõ–gƒäHa"õèô8¡R¾eÔ¯‡Ô¯Q ßž-‡¶Ç®TËv¨oâoî5Þ ‰ÒÀÕüU6kb=alW±&Ï…59ÞX¬@0&'ñãÑšñ¸c7ŠnhoË‘#s¨ás¥ ¶,6;c=5©[Zl‹Š›Ï蜄ã§T|G ñI›ÆZ Bµ0îŠS/°D‚¤ì ?dãû›8jÒŽ3­¥Åp€&”¼¨Ïçî*~ †øhê• |ëEÓèÂ>È}©tÊèˆ7êGRÔ:å èD„ýÒºÑò @- ÷NmK´_£/CO6ÉêŠp¿³ìµò´;†ŠßC|4uLÖqg}™^éBOtáû3Ëfî¶õJz‚p g*~ †šgìœÊtÌtƆ”‡K4çnXÛá²C$B½Ã¥§ìÎß³ËôK7ú³=“õÍúÉýÒ¾èάé´ß µˆPï´Ÿ-ºÖœL¯ÄÒ§jÆ6¢'àe¬•Û¸\5›±ì“¢ûD¦W² ”M¹W²è‰ìÚöJ=¡Þ^Ù4g?•,›Ð›2éºÈ›Ðˆ£­•‹LÅo‹¡^y“g:rÝÒƒ®èI¹[¢ÀMÏÚv ÞX¬£Þn饙…ζÉôÌfôávÈR“ž`ÏlFoî€,ç)õ ¿3†øèr’‹®3'¹ØïEgôfÒu’£°rofMä^èE„òNrü·ù£Æ­»ï¹óbýøŒ_ѬäY†z~ªÀ ’n~u_ñþý›/´"½íE{·'í¶£âGbˆ"ýG\k>À#Xñ€ÉÛâÕ‡"ÜyúEň!>Š4v4‹Rø²´ ³5³¦f’¾³3†òf2þÛÁF#y–o—jfYº¡b¾0»Ý·.³ì]½´ŠŠßC|Ò¦óu2-hNkëUéÄæ¯V¯ÚH¶Já%2Cyã!·C쾊Ћ½ƒP¦G|ïóÝ™ßcs_ý©¤‚6Ï`ÃéùP§ÄPDæ ð"ä‹2¤Z›tÍ—Š^‚|I¹ÿ²Æ‹³oXÅäû{«uÍeà È74ºF”[5C›Š ±ü¨RMT|G ñI›ÆN´@„j6f«*ºõ¾%†ø(¶ÊÆiš˜,ßd»š¤i²]Ì5Ä¥ˆt\W‰ÆƒŠË·CV_PtÉdgÙQC8YÎIh}n‘OD2ýbA>–N¿ì‡|\¹_Ž8q@'~=‹Ý ¢Ô†ïV,ÃÇÄ,:¸‰cxò}e®cÖÓ :é±.Yá‚7Í]>=ÑáøbÙô…@Ìmuwwm\"sxòåök7œ„<©Üƒ=XC"¹¼ùŽ2¡>d_+Ò-…ÀÕ˜=ÐÂ>È}JÓJsdž˜#Fû€!Ô¨6 ym¨¸@²Ñ~m݃/‚|HY9ÄŸ˜£ò‡€‡!Væq“ž—b7Pñ.Û7ìr¹æ‡‘ž²¶‘·Õ°‚Ð|ógÆÎ…K-žÂØ8“|±8©*{¡Î„±zŠUYï[ÂOîC鄱4šÌòž'ö¼c•cöùKeD™Œ††EM5ì|¤ýÊOÅuB>ºÊOå‡,å ´,uóLèÖ=»J °ž@Hr-{T|G ×h±w-¡Úboÿ³ÒI4mŒ¡|Diµ§V]g%5•‘ákÂ^Ƚ2ÔZ?£%1wøžskFç¯{†ûÎ ¯êÛK:•{š7Jö¼Í. R£SycÞ ^dC97Ä54lŒô4]¡P¿cLŒwoC¾­]¿ÞaŘԟ‡ U„}¥¼DmFL€; KmSˆjØ!ha, ¥¨aûs|é—'íºùj¨e,©¤.·]ÀSO)s·™ChŸÕlx’N¯§Ó‚êsJLØâ¿5PèÃZ‡3-_ÔnŸBÇh< 9\Whßjh³g±T!/ùvø3žÀIX©ˆçv`“— ',O×Â2Ù¥§7ŸVCr/¼rï^Þ ÛÙvP+Yì¹@qTAãN@žÐïA°“l‚ÊwC€ðÝáAÅ÷ŽfRö Ž¢gŽftz[êÃAJuˆÌàä!ýªÃNÛ vÔ1¨Ë±wêÃ÷Ž¥­:Ç .Ç´ªŽQWÀŃjvèˆð4äÓÚ•ictFP°÷ŽC‡ŽãûYŽk¨OÇñoî„,åñ‰êÓqèaØ¥¬OYZÌH)ñˆönŒL})u·2–,ªne7î jË0t–ðݱT"&ÀT—JÃè›áŒÎ¥’¼þc„|Pÿr„n vÑ ( á»c9rê{"“òräåDFçrDÑÿ"2Û‡ Ëíά¦9øE:Áž: }!ÜyËšê1én‡¬ï„ÿ*ºsúB¨ï쪢î™ÀÃÕwÔÄgÍØñðvcèz› ¾Œ@k ßÖ˜ôSµ~#蘑ŒNë׈.êÀ·íÀ1ÈcÊSÀР„'ôû¸‚#¨r£PüÑÌ»Åo…ò¦ê7Ž¢oõùêƒ •¼Q¶žXåP£Æ ÎHŒ"· x²Ü*:þÛ;Q®õµ­cc íL½$u8©e±fj¾9ßjëÿ ÊϨÎJñß ï6Sñ1Ä'm1«¤aŽR¥C{G›cˆb«ˆ?ÀvMq=³NºwV3ÜÙp]ÉM„½,°?S¿)/iº;›hm3Ð’>JĶ£àä1éöÓt,”ÈŒ' KÍÆ­‹M:kDÅž‚¬ao´ Ñ%->ÚjoV%¡ØNàÈgÒ·sTüÙ⓺a9ÃÕ™aû Ë~>D‚[¨¾®ïhât–Òc;µÊ¬å±Tìö¼cÏÙEÓ ¢ƒ.kÔ|ËX\°ƒJ’8òLÜû· ßZƒ~>‹¾=«ÚÏb£-agø¤=Ú¨øõ1Ä'õ^8‡–?×ÖÑÖÅNÐHPËÕw1»›()»óáØ¢—J!ÒH2ì9þ&®’ú n­\Š&¤_‰öò9|ðäʽ|—#9Ïtæ-²!¯a£äVl‡,…eÏ[γ\³ø !”Œ¿æE_¤ß®Çß°pçD«s Bxò]=ë+öš\ÕæÏÉÕ_ð ÆôÝÆ1keÚl ¿Ä«fó×7Âþ+Ò«WV)¬¬hm. „JË«eµ¹Åk¬˜KF`>¶péÉ õˆ]-¢wHÛ\þBÃà7^º®Kì¤øÍŠuégÏÕ9%£æØüÑ?AZ—@…°²”Þ:å wÁøÿâ좾.qÚ <9…sõTÜð(dõsõ¾.,†ø´{ö%C؉bCV¿n(<ûRñ¹â“úì{JóìK˜Iì’¹¾+èdê3î6Õ^ºŒïEˆb/m&£vËõ˜ñd4‰>"Œå®ÒdÏä.tO¢¹ wA–:‘"fÇ&¡#„»!ïVBy™.î,—kEçmnbsx²¾[K«vÊ^`²»&Õ)ÃÀOè'«§]µKÆg K…YÄ»ä$ð,d a©.9<ù¼¾.Yí˜êª]rxòõtºäðdõUY‡ðeX*ÿ&ðdu§}cä´ ²¹Â»•¡þd%ïtô4QGˆNp'd©G1¡â²À]ÕÏyˆ2L\4Lož%ôªéûáVšjNÆP.UQ¸kÞr,Ï. _;¿ÊGÃkåº2þ[ñâÊ&TZ!Š­ÓiÜv¢Ø5Œ’Sñëc¸VQò˜´1J¾©qÀD‚_8©'d—\¸7‡Ê…»h숡ž´½[É j_0îΉvâ4:nºþ}ÙpBËé’‰N—Depd©Å«ØtIÅõ÷BÞ«Ü?§Œ"õñ¼’íW-ϧt1éYz$ú†¨bá}À ¿ Lü>)–cÍ›ýÄ2fmÇ­ÐØüùèÙZ”'×8>]@¡Ä`TöF¶~Ó5Ò2r#¡r&žòJªÒuh"á}È÷•«ôÛ…pë©Ö8Å<í{–ñ–å¹FÑõ<˯²M‰ð›¦ñ’kû~XÕx½ Â]tu ŒÞK~n Lv,»Pš'™¼N»†'¿>†k5qÆö¢Ú8qvø–¯,päMÒf3Ÿ ÑÞ²¿hÅ…¦-æú˜´<Ïõ|–ѳެٞU’¨Fo¦=èÍH:ÛbJ~ Š}k¹œ¶’SÑ·cˆOêJ~Š}»­JÞ³Æä²À¾ŒêöÞ&R9šçÃ)ý‰U Âå™o•)9\¨è4½×g|áýlb;¼ù‚rמ¤YqqÁ‡$ÎvÌÒÐ j%û §>ëiu„Í”ÂëÅØ‚ø•'EÂÛˆðµ2s3È9)/ Ç}ï‚ÌÝŒêí•VJ¹¥q^Æÿ%R{€JÙgÅü_*n;0Y}›d·±h—ËL‡ê®¢a–Ë¢ªD¬†S§”Ù‘*5dH³hU–á6Xp}:-ä»E›¥¡ÇPDõ,æëµ!ÍmW8£æ†EÕ‹¸œ^‚,•±^L½¨¸qàeÈêÙp6‡ûÓ£6§Ädx²úQ§½¤R¡þ˜eÏ2KK†97ÿPf—Dµçyh a,G¨&íyçÀJ¢ ¡!àIÈRv]L…¨¸}À©{ÿ÷¸Z3lŸ÷ÿle5ŽYàNÈR›¨ŒÛ†&nãÉËÝÅ‹½Å£¶ ÚƒÀ»ï*wõÙpö"÷Ç·k´èì™.£ûr™øû–é»⫚yá¾p<,Ó‹_yPäN›ü9‰¬×/€¡žMþVÊÚo–JYËMÈ%ì!z;€±½}íY%Qcò>y_Fñ䉘1y/×,VìvÈÛÓ7&TüŽê9/nLfÐò„í3&],s§µ,°7£û™’´Œ >ž[4:h)ªÌ3øád©¹AL™g À„È…ô•™Š!>šj¿i¦~²EÙ§ ´¯ñI» ^‡öGØ!=Ž”h|Z BùÖ 1óœ*G¾¡ü œË~k/‹'çx?šãýøó:Ž ëXÑk±«1ÛÜ™ÑýZMâv&× Ü9…Ì T\7p7dõÌ 'GøeÏÆbšÎZú]aGsá (\MÓE#á+8Dtx²ú2mû²ã–x^™ 5&ÜYΗYU¥%‘£CÀ#ufÏJPi*n/ð(d;¼ *MÅíËÔŸêRÔü ‰ðYsbqX€¬îÜ0hQBNc.VŠåZÉò›Â#y.š­q¬§g£Câ5™…NÆ.Ž¥î$Q6¡º“¼Â9–JŽB\²@%ïXLÕ©¸NàÈR¡×åûl¸zh çÉ&}ÀÝåf}©„ˆËAàaȇÓéšAàÈR6wY¬Ï¨4ö©=J±‰KØ8¹£ÀëÕ'S9°Ä{œ¡0þ-é”6D§¸²Ô¬.¦>T\7pdõˆÄDä—a&ðcS5М]´Yš¶‡@Í%ªQÄw'ð6dõ}݆‘›]Š]JŸ÷ÜZU•N·ä€§!ŸVî–^à xâFK1í²9KyciUA…°²ÜTÛÒñxáÚ#Ï2ËDm)ÑÙ <ù`ûm)74 ÊÔ)¾DC–Ún>Et.Ñ1lëÍdNø&”„°}§ˆ:¯Ý½.AìP©ÉÄVXTÜ^àÈ:Ï.%h*·¨”ÔDÝ# Ç€' «½ÏÔR#¦¥4âðä éhÄ8ð"ä‹éhÄIà%ÈRù —Ÿµa÷6\§,|ñŽx\Þ„¬¾û6a‹V¹LϸÚ¶™è³ÕÎ×ËÝÃK¢¼=®| ' O(ó>l.]\´}‹\ðÿs5§Èc‚Üßw>Ȇ,7Ghº‰Î à8äñö«?w8Y½ÛÄw¨üSÀÓÕ—cÂŽs…ˆp-pÔP~-ÓÖÍ'E÷‰³mÀ7?¨¸^`Š›T\7PßæÇV›õ³ô¢zKÜg!ŸUæxÄ0X¶ÛÐáAâ[ºÅ…Kèrñ‚'ÐdÂ#åP¶Ì%Ó¸‚ Áë$ð4d)$0 âŽÏ@>£Üq½*§GŸ@‡§!O+Sšâ6°q[duÍZ‘~I´‹Ð-Â)ÈSʵè3bAñƒÔOA„°rŸ6åߌ·ØÚó•¤#y‰þQÚ <9…èøS|‘pòÐøTþaàÈêçºå&þ%hÆR¦7»—›øÖõjä¶3©Ý¤âz)žÝ¤âºúÎnmžû_3Ë¥Jƒ»,-ªÁDqp ò”2Õ£‘1ßùµ %0ý¥J5p»h8®W1Ëv°$®{ ÊM8yD[§n˜aû-Ê}„²>Ñéå /6¨øŽâ“6?‡ˆP¾5ÈlR¥ó6ÿGꈺ%–pV?ˆæø`¦­K°jÙ5ÃÄè p²Ô¼ùŽf¸ú'Í>ö$ñ-H\X%²Û€û ï“%½â_Âm0*®x²º× „¡Bx £”¸å¿Ü <9…·Ÿ>„¡B˜ƒ¬þöS6zŠZtøaà8d©ÐkÓœEÙ鄨%<Š>Œ‘óatʺŒìýÖ'uH ‡D—ˆDf;p²N×?A[¨¸-À=ÕOEf±ÿ!ì´½ÀÃõM5g|Ë }m7Á3"EøüÌšº­T|G ×Èmý´@„jnk‡*?Ÿáç<#ÄG±UŽÆ}»¸`ZeÓxɬ•ÙŒüК5ýÀ6ã¾µd 'ÿB4¡R¶e©Ý3f-´Â^BQaY[ýýt6Â5Òß/B D¨¦¿ÛTé|q†Ï4â£Ø*{ ®£yãa!oܱʥ¼q¯ ãW~ šˆpd¹Y u½Ì‡Ù·ïüð'Ê¢~%q2€G!K¨–Iô6Üq-9N9 ÅVȽ“ÊçÚºÔË)&”ºX€,ÑYîJåû#716~nø¢¨b•Qà%Ð’:W²Ž_óžXv¹L{bÌ6·A–ºP›0ì«çJín‡,wºqY¿ûæTþàNÈ;×@?¾:ñåmуϹ5zv† ÍCÊ\:ƒôôßCw.X4=Q•!’Y ÒÓg ˺„ï/‡žæ «:„OæRùÃÀÕÎa.ãsqàä Ý1ë–K Åžž‚,u §)’Îã#gÎf¢r8yj Fó_àýÊPm4oe“ÿöÂÌCëiÕ{ŸgùµràOz¥¼„sâälÍ.—^ÿ@àºeÿâÅ‹Jè{J®:<>4ü6þãc…ñógO}Ã÷ OÆÎ+Øãã u˾òðæƒû×®?x1¡‚Àý÷‹V¾Ñ³rÂióßwnÿÜr $°žŠnP7d-Òg„›ÿ÷;üg]+†Â+/ß9Ϲ¡ù—þón*Në>ôYúY÷775EÔ›Ý/½øðî{ŠAÔ2ìA£e²Íl¾\tÇbGY¯ðïljþÎèhP©Ž>ÿ÷¹oÖÎÜ}Àtcü”51aŸš=}~nt¹¯û+º«;ì®9»l­ò•g[‘Ü ;õ¢ÑRýŒÜ+î]4‚ zqt4ü^ÁõæG[~uX¢¿û€/C~¹Ñß_+¾ÊZM#»Êf¨“‹‹Ò;› 5»£9  Ù–aÔrvë›qÜYÏ2û¡Co}àí$r¯Þ|0@ξ ùmr Ϊ[ J‹|ò¥›de$‘»gíÏ>ùãÚÔkcDQBžø¿S›Šmœñ˦¿ ¥[Ÿ~ò§SÑ­ï~òg¤Ú"þÛÍÏ¢3«ôÎ òOik‡®™ö¥–Å~øÓZZU;š3›€$Zâg?ùçÿÔŒû_þ1ä?Všùâßò#WiÜuˆ`¯ÛÁåu;ÒQ³_@±;¹¼n§¶b»gì9«ì·Ú”¤‚ñ´Øº]\^·+‚ÉG?iøê2’¾zï3x¤+þ•Ž¥Œ†½x%4>šÖ¸=3áw,Qú- ÿbtßW¥6^è[èÑîüíB”:bˆâŠW˜ÆW¢NªmM5Û›nÓ$õU~ð«ðýM5éÌÆ™ÇÖ񢑵 |š€°rú½BÅÄM½ÒUõăý@¸ò–Túä£èÂ>È}é÷ÉGñ½·ª(ekk»¢Ìè¿¿ˆjg2šìý¬~†ÈIÿŸd^Ãþ×´?-g«ë‚±‘ÑŠéŒÒ±§G0?…¨q?ö®»úÙzãF«Ó Ã%ûŽg`Wñåº Ëä˜â G­š’ì™íÀw VŒ§›NÑ-ÙÎ|£Yñ­k¿ø±|Íöüï&呎oMI÷kÙ¨sÞ1±•žÈLèðè³µQ‡ÿÕ”,&­:â#ACëp g#p+d©ÖiYꆳl›­œÀ4EG¦åœžV¯Pñ1lšÓ{¥zåÎ;§ñS¨‚}Ó‰þ Ü yg }Ó‰þ ÜyWú}CÅïŽ!>šúfkS߈ÆÖ£CÖ£‘6Ê6’`ç¬G‡¬Ï´|k#­Î¡âcˆöã[¦Ÿ|—<¡oºÐ])œ.ôG×Úœ.¨F„zNß¼Ü7ŸÞ|U®o6 ?6¤Ü7Ѽamûfú#B½}³¥>n*ÔC‚]ÓîÀ£HLÞ‘B×Dîx7Tb¬J¨uM74#Â]ÒÒr%6‚{Q–­W€mï”èˆõ¿±&n3ßC½nsol¼Tb =“-Âí·§Ð3YôÛ;€,5LÕz†~·3†øhꙞzÏx¶`¿lB_@–òéûeú‚UŠýL«_6A#Ü.«–-ûe Þ/޵hÙó è°éA—B–ò»§]BØâCZÝCÅï!>iÓØŒˆ°i‹APKš2ô¿j‰Ïî_Þ’ºÙ Å Ü YŸ›´Úcω·/ ‡2+nü+êmâíËÞLã ŒÃ+ëK÷¿})Ñ-G€' ŸÐÖf;('5Â:àIÈ'Ó4„ùâ“6-hÕÆnŸ*>P‰ÅVÙÊR7yKäêÛO AV[3uŸUÑm}^v©štÎ?тЗv÷@–šÄ,}©¸²úŒ³“ݳªÖí¼Ü={úÎ>à8äq¥^µ÷«1»¼ùšÆÎJȳE_:œ†<ŽŽL¯C¾®¬#Ñá;ƒôÀ{ï)Ó¿yß°é€Ü!­ž9UKK46ÇÅfYo 3€Æ ŒE¤%&“¨®v`UŠïf!g•b“An«ÌQâ-7‘„Kré×2t4Äëè„CtöA>Ô~cBÅmA–ò”—'í3Šn¥ê:–Ët|#N@¾U¶Š4ñÔ;ð‡EGQ< ¼ ù¶2ÕQQfÙ¥ûÆvłȞñ"åâ+†œ‹nÍ Ä3 Ä‚ ­žüIÑ lGé„k`¨Ø. >3°½aÙr%& À쇼_ºaV¾õ"lˆÎàIÈRë(1ƒ@Åæ!«¯›²¬—Qlþ¸yÝDˆ*"7|òók2ªbAݵU;0’vhUãQE6q$´}ž_ô¬äVlÇ -»eÏ[M¢Õ6/B¾¨mÈu±5áGl®oC–š`ÄFw xòå>O@åß>ù¹5T±ÅµT;3ãúÕ˜q—æýDƒ©èzžå‡vΕZ9°Y†÷@8ßÇNŒ# /¬I÷Ŷì5t_s¼zð¸&=1ÄG“µéô“·UVi Aà^ÈRQž–¥nfñЇ§ÙkÅ ¥oOYQäºe ñi·¹¥â¢C? аâÁ3ÑžU 4-|Jö»YC?›§G˜ò¢Cš(^‡¬é¹DCšöÐ#„p -ÔbN™a>±ü… |q$úôcìÐ[«tLŠ#oÃÕBXïˆÌ4ð6ä¦y*î2ðdõi¾sXX«ˆÀ]àóÕ糤UìíܰSXZ¯úzŒ«ÿˆ_µŠöœ]äIò‹V5Ô1Q…„ž…|V›B­òlau"*“À)ÈSíW'*îðd©˜÷r×y˜ºÎU©A £Aèö´Ý.JÕƒF,<‹+Ck5kUÏ-ÕŠVIØÝ+`yîÖq\i/J'\w—Šíêswó5d®n † ‡Î¡Ì†ëIö&2N¥ˆv1Ý<ùŒ2ã.ê:Qƒ´ýµ/³ìH±&ƒÔ3T?¹#l—b®[lÎè<¼›h—öÅpW¦îÇ(öÍñazAʬ?hIVj¹*¹^I<½/‘Ü ¼ùŠ2ÙÓL‘ü× BÍ©šÁBè ú{¶kÖ -ˉ|Âá¼a¬‚p&¶ýÐ5ÂÓOëÓ»ÅGoØÆ 7Q½#F—€7!ßl¿ÞQqg€· ßRîJñ( •x²†hŽð¤rJAعC[7ld“‰ýV«ž ÏN”ÜÙø¨®/E;‚Š_C|i ¬Ìe+Èë :ƒpò€Æ5‘ÔsDfx²Ô¢XlÐRqÛ€1Y±NFÏ5Sêlþ2?ûBÇ“ìr¹æ[˜ØŽ¨RIødõé1dþ6¬À0ËÈÞœ7òü"Æ™p’ð-á »å"<ù˜6EÛóÄžw¬ °rL㱬f$U>"8¼YÊt‹)wx²ú~²øŒAåßÞ…|W[õ7Ï”,¿èÙÕ þÎ늤‡€òã¿¶ÖT|G ñI›ÆZ Bµãšùg¥“84èŒÃÆâ#ɇµeÜCâQ5ÚŽÎ[d}vf­Iœ<m&€,5±¶,µ{†çÂH(xPße’»¹§yƒŽ®NsÑ¡¢¼&%¾ÉÉ„ªOèÙôÿÆŠ1œ6 …Bâ9›D¥‹NÎ@žißXLäqm¡Ó”oºLNÍÌ·ä&ñ¼A™)H|á•{÷C«‰”có,;=±.£ãôģ鿢[)†z1ïYKçÏP·Ï–kaè’:óá$,Îý8øž¬U9Ý̽Z\ –¾7ªA¡h= ÿ0V8ËÿĪ5.N=º„j«áøo¯ nz?ôylgžT¤®és = †ÃË]·’”­y+t€'—¼r3?LO‰û ð=¡UI†[s/ÔOßM·®Ý{xSœoìJ¼ÝùÞjæ[²X`:\iÀr˜å:o¶¹ú¯¥ sÌ¢0Gy]FGŒCÜ0 ìõæ“ÍY>"ËÌ sÅ´i» ðk¼”t¶Y Úc˜GA˜PmÓ+þÛ+È?ƒe6fYœ•êè–ó†pUÆ@ŸðäÊU¹¾¢*~`z¤7OøÿâìSìyƒD>ŸšOmù™~ì ¯CVß›¿¿¢&OËv¥Ny)þ‡§es6üÃÐýœ‹/¸ÃvæØ†Ùx&PÂûï+×éÁŠ:-Ø%kÌoGAë)n8O¡2„ ?XÃóM4ÎKMxráä’ŸäˆZµ¾ñ.?ŸÆæ|Åñßžxf­&3˜qçE·³…Á®L¥YëøžËèt¶®¬°û-ÝÚzÀ2Õ)zŒçAœð dõ=¶do—wo÷ø^ÐÚãÍÜï–mÇjb[÷}ÄíÝEp%ŒMTм·5e“Ê=g³i$ÞHäqeG¨Ço_žÓ‰baj“ C»´£Hm²IçZîU®Cl Çë£X‡£-Çür®â*yüc!'E®›£Á"3J¦@ƒ0–ý#õQr eG¨g”Ü[–ɉVy‹ 6[{„ 'rõh¹v,= ÊĪ]pH¬ŸûðeSÓ¨á=ÈêוÏ5ͨž[y¯Ü`•Ìo…¦AÚ#ˆ­4âÞjHt9ûpiWÀñ”èB±LË?×ósãc [æµ/$:\´á[or¿Z(›Kn-ˆ\Ĺß_B}óÿD³%®ÆWªáÕ<±èP|U—º¹²#Ôc@.ÇŽ‘ù¨/uòï¬ÂU¸ÚÑ™mx ŠU¸×€yòÀ+¶Ï^=ÆDÆ#.C%Ó{L±¤Ðø•ƒ¥ð'¡°H~î„ÄX¼ þw—ë¶b]úãu‘ l>.„ýû×@]ŸGÙêQ×ÂÊ£¬´ö°ð9*¾#†ø¤MãE´@„jÇ*ªt^Êpw7B=9SÄÏN~šâsÐ3ë¤{gµSëD_Ì$:Ùâ#N«å“†YS2/Ôç §·CVKb©ëD1:<ùˆ6#“˜ŠŠÛ < YjA™PlÂy6*nðäcÊ£g#.6$Úþ8°YŸO¼Ìò9\³ŽBMß°Rñc1Ä'uKö€$†í³d«eØ[Y¨~~lO£Ä(JzwѰì`!ô´$(öC–Kç©5SÑ9‡,Ü3/TÜàdõ%åö™¢Ü9ÑÁFŒ¢½[ÕEô’Ç[¿}(Hé!Æa/ä^mªÓÅΫ‰ê qÙÜ Y*O¯˜ÞPq[€ƒ•{gôÙsvå Wøb‘ݼYýÌåЗ¡=„ê—CW!ÉìTD§8y ýÊDÅu·AVß>:óSñK"HŠÐtݸ~™Ä°ª6‹L‹ªÔËr/C¥¶kQ©»¤R­22åxL½b.…ÃÃwÙUip(a¸PV³\æ#hvI´:¯@ ca¥5!¯¢ôWÛ2B6³#Ø’¥^ÅÈ Ü ygûGÉ«„±t'Š}3–7,–Ã!Ôš%Ã^>LœÀ´ÃÉ›¥ {bzK¶3/ªQÄv7ðv¦žŸC‘5;íÐòÖ9e« ‰´‘˜"Ú†5Gg¨|ñÜxæš¡¾ÃÝTWØ}ÆÞíÑ40$³¯™-Àm¥,¸Ø â6·CVßT?%œBGX£ˆðàíL=9"ñqhÔ3dkñ‰ϭˆÒ~/ôPß ”­D[!}Ìç‚ÉçÖ¿ÏPÓˆJCTvSL4OÅõ5&šçécŒºòðéA¢—öÇ3:ÍÇ¿•­O™®:œ‚<•NWM¯A¾¦ÜUâ÷T©üiàuÈê'ž÷Ò~94¡e“톋nh‚Þ¬Ùžð…ç÷ñÞfË©£k©íЋª ÑCn¿Ú¼#‡ðdõƒ¯FàFîŸ=DÃÄç$ð2d©ýô„æH ?Èð`0; YýDšp`˜Š¿C|T³ð¢iヰr‡ôX¡!¾y“Iì’®VÐÉ{!KÅËÍó-qçyß›Á¿¹5£ó™€g|47Ѧ«=Àä\ûmJì603eÛ3:nÓu±ØŠDÿœ Kí/)<κj÷œNCžN§{F×!«ÏÐÂk*ÿð&dõcFÌù7Z·T\q÷àuÞÏ ·ft8ÿºö©‰Ñ~ ÙШ. ûÔTÜ.à!ȇگ¥T\?pò²v „kpë§õ‡íÌ—-v+tßöw‰ßaà ÈêwÙ9üi;rÑö-c®æ±­IÓ›¯UXÌ jú>E ò´\öË(ë/êk}ÔœPíþj³zçLÑK(ü p òTú-†ø(ÒØLÝHn…Ä DЄj§ûE“¹$NXDep'äÕT\/pdõ@õ±žª¹¿æ]IÔOõ°5‘¨ÇÝÀIÈê ™ ÷CgõoxH=—HTz€[ oi¿þPq]À>È}Ê}²©npEííûñ=ÂAȃiÙ[*tpd yýEÇ ¿?†ø¬Á81¹v3Ô?NúšÒUˆÃÄ„®ôÈêŠØ11LLhHWFÇÓÚ[¹Ûâ“™­¹•誽Àå‚U­ºjksf™¾NAžJ§¯N¯AVw]¢ûv¶oÍrÙ*‰qâ3 |ù¡2¯ÃüÀÕ›µÐ æ{ÌôV­õÄò–øUhÛU«Y® £“ÿúNðÉÚ…Š*.Ät‰Š;…<ª>;ˆÎTüX ñIg†¤Bǧ ŸJ†¤âOÇŸ5˜!‹„úgÈÞe÷|EÇ qêÆ^pj÷8¡âº€»!K’Tq…Aà~ÈržTËï±K”2}sX€œ‚ £âG!«Û°Ìw1ÌRÉ&Ÿß,Ç‚1+:¸‰Ûð>äûk2¸K¼ÓêÜ-ùU‰ì±Ä©¸²ÎxCBÄ“Šë¦hS¨¸. >›²!/cTˆÃ ð@F!Ó{KmXyÕUÔ¶±£À³Ï¦ÓGç «gV؈Г¨!çW!_]+bñ^f¨ßEèÆ%hQ%!6=À~ÈýíW*® 8y }'šŠßC|´Õ>ámçu¢ØíÕÏP »ÏTüŽâ£HCüÅFaäé‘Ñ‘i}·n[dæéÿü²ÀÈRÊÊxíhâ5FÇ0ç-6ÜŠ ¦géôÖ«„?àv:^ߌíå9ô,á Èê»o2p}K؆pû*=›hþˆJ0Åp;×ìËè ·ï$ªº¾oÏ–—øÈÕ²ð¦Ú<¾Gx²\/}¡â’ŽAK§›ŽÇ!«Ÿ½ÞD® K':”‰Çðdõœ¡}4”ïRT°d=µ|Q}Yà½Ì°²œ.·ôƒ‹n™½$‹N‹*Û <Y*K¼˜ò,à‹„9ÈR'ËÔ\*~8†øHvO&¡ô„8!z˜‡¬ž²LØÑ¡âGbˆ" v™è®p(ÝÆ!Ô™Hu3Xmîƒ,µ÷)6X¨¸ÀýÕ÷:;„_ƒ¤òB>¨­s¸ :IéÓdúåpòh:ýbÇ )÷KôŒ\¹Ì_Œ5jDgx ²Ü~ž„Q£B§7 «;ÔÂFŠ¿C|iì‡Qc§|Ø‰êÆ•náã«oð1Àp?dõQ}µ‘OØšØÖô × =_/üݺÅÝòj­h%ƒ8áUÈW•+ÁRW.¿4»ŽG+¿Xã‡?¯‘2¸N@žÐh1bô;Qì)Èk°5HÅŸŽ¡ž­AñØF-OعCÚRÑ¿Ðrba.ržòãJðË2ª±mM¼²Œ½”­œ?ÌŽ!pÓÁˆv*‘Ü<Y]·dBº’ð]Ê *=ÀCT\°/£+”±NôB²ƒïEˆ¦Y'± »bˆO½ÑÜ Y}ƒlý°1*3Bû Ë¢lið¹dzæ00YjM*Þ3û#Õ× ]ãîœL×€¥<ƒÖÆKfyCT./CÖy—u•N9œ„¬~}³‘+Ysf­ˆç=!&W€w!ß]“)Îå}ËPÿ§|’”hõ÷@N!Ý×Ü Y=ÝÃQcѦµ°o1ÿȬһžm–ºJt‚F"›QÜœ‚<µ&ªT…úTÛ¢JBÄU(PÍÔ“I%êU…¾>ÞDÇ’-/\?ÊôÓàqÈrï©¶ãª6±*/CNaŽ ârÀIÈêsÄì±âpx²ú½äm,õŸ±øbM8Øð&ïo†èû4RÐB°Å®áA *~G ×ê …‡–'ì€Ü!=~;2 Áz±”?_*Á/ Ȩ:›ã‚eË™ŒS8<áÇOOðÜbáK'ýðö*Œ'ŠJˆvº‡Ž&|YýîÆö<²)o˜µ°Ö¼gù¾ýÄâÇýªØîH8 ª®gÆ2kU·¼4Oo ålG´6>Ô…0öP‹bmX¦`³Ôââf%“ þ}ÉU½˜Yñ¸v±bû!KŠS3+†I„²ÃEѬÔÐò„í3+ýÕâBž¿—œç%KÐÌ!J[—õMôÎøÁR¹qóÙdiêMÊÆc”*Àä ×DÝB"cB–:¯$æRq{€Ç SîªÃFÑt(ÅpRW„ªT²}s¶lá>©™¨ %‚Çw!KEÄl(©p'Š}òséÛP*þù⓺ ]Äp!lŸ ÝX‚a¸²”/e£]ÆìP”BfÞ3« ¡ý,ÓkÉáª=°¸ &Ú±Dsðdõk2ѧèNÂö]ê ›K‚X?pd‹²„»AT\p;d)E3ÈT\pdõEØî‚ñÐrèD­-‘ù¬/Ñ;#åÂÿ-OÕVæoAeÞj‹úì¿€kÃcÕw eVy¥ê_å`®§“C‰ž_†B×Îñ­`r¬06!ìŽÉ`r /þPq]ÀaÈÃ곘èNÅŸˆ!>ížÃiC|RŸÃ¿ƒ„°}sxæðèØÉ,pd)w/’ËÓ^!AigØq* {͵_àÞ¶hWë=À»ÕãÈ:šF8…ZËÏ~]/tü«nX:mê®8k%Hÿ#Ð Â /´œ~!Æ&{²zäPxœRñ—bˆOêãô‹Ðò_ÔÖqš-Yì¯oIÐËû!KSe´66ïQÚÂ7 ‰ÈvàNÈ;µ9ë_~ðŠpt¨ìýO‚%L÷TÜ.ࡌ“`M ùÐæäL£jy•Z`"ÿŰèð"RCÀó¥~({Ž_ŒAEø®¼FÄz€)Þ £âº€ún†ͯxc=Ú…¯› á#Dñpò´2Õ[x œ¿7E>€gÏÖpèÚs+†e¢çéXö ŠÒwqy‚Ž s¿*Hx ò-åº\çuñË,EïÜG뿈íIãÚƒð¥zžukž_ï[æý¤/yÂë¥âˆbî”N{²Ô&5÷Š¿C=©‘Ä݇/C˶Ï}è ÜÀ½,A”²ÀÞŒê;Á›š(Mvîa|ùÛ”¢ÝüeøÞ—¡‹·jéækl©V©ÐÛ‘OèEÉ(K¹õ³£nzáoí`Õ‰u@Ýã­Æ—C3¯A¾¦\!ª_{fÀÍe`W,£ê†fU&mÄ_7Â!ÈCÚæêM¬'e\<"4 œ€<Ñþ9šŠ; <Y=ц¼Ì‰âpx²ÔrQÙ£û h¡~N.}0qéöAîk¿‚Pq]À­·ªÏ†£=ÒC|t-ÊdrU•ÝÀ½¥²hˆwÈpdõ‡wÔ·¢è|=ï¸áä ê°¥ýÀqÈãíwØhêìD±¥L§šÃFÅŸŠ!>©;l_Éœaû¶¬„k“¼øÎ ÑÊÕã=š6æx¦3oEʣ뮡³3»T¿V.apÕ>X>á@Ü·ïBVËnåK,îaº^E´ã¿ ýUõïËšêV¾¥˜[²L/ïÔ*³–'ƒ R»€G KÕ³–_-#< Yî!€e¿Í¾%ü(q8< Y~¿¾9sĺ!™.™ˆ!>šô¥ÓOôqVk )à4äim:²™xxºX6}?¡ôSÀëÕ-ÉuËâ“ÆHÉoBV_ˆ ïíRñ·bˆO»}ˆ¯ä#Š{²ú™ a‚Š¿C|R÷!>šáÓaû|ˆ®§æS[ÔH¥,P=è³¥‰Òá!Øg[¤~`äšÏi‰vêGñ=ÂSÕC™uí_DW¶ï–w¿Y*Ý ý“‚dï¹&ÞÅD¯x²Ô¾S‚ H8í*½9tfh-ñˆÚS‚á>àqÈ:ŸîIÐf*n'09…#b_/CVŸÁ„Ÿ™¢òOOBV?¬5BÊú‚P.3à‹µp`Mߊ7ÉG¨¾êK8yD›?¾uü¢ã¹‹ò»ÈDë4ð:dÛq EÅ€7 ¯Áv3†z¶ãØq´}ÍÒ%™¾ñtä‰Y®Y~ `Ï–à.e¨l%{nÎò(RÇö%í ÊE¨o‡x/» á:ó#~`ò#dѱh"ü¿ R„{!Ë%(niÌ™ÛiL2I¾‰Òp²Ô TÜ>`rA¹Ë‡ùþŸix–YæÆË/šeKtÕF´F·!K-ŸÄVmÍð•{²úrIØ6PñwcˆOê«¶¯ÅP!lߪmýÓ²]‘`–n†¼YzѶ¾‰Ñy'\œyv1º„ÛˆíN4§O}:ÂÆ>  ûľx ²ºÝì'»ùrì8¨µü+èjÂ~È÷Æd¬$QÙ LqoŒŠêÛ;:Œ;·l7åªTËVw+“D§í^ƒ,u`BÌb’êv¢ØiÈÓé[L*þz ñIÝbþU Â6ZÌ%q‹IŒ²@u‹¹³y3gIŧ>à>ÈêÃl#ÙÁ[â× ?†~#Üy£6ó×,U­É!~âkHÔ~ ­C¸r vðcP˜¡ƒ²Z:h{ž¯vë)C“(ª:Äh?p ò˜23™Xè×AUõŸñ9\Ìå+æÓ\t ®±î~_žN›¼>,¼'¦=ÀÈ),=¨¸.`²úÒC<¢CåÇ ««Ž¬ÕùkP¶Yþƈ°Õ!N}À­—ê³:â91©üýÀèó‡W™ÌWí‘£À䂱TÜAà0äaåÙcTj~ÀÒQ"¾ÞÒÄëð:du7Pf6øzÞÓ Ûp‡9¾Æ…?ë¦x‡‡ŠëîÏèºÃs¢yYÎlÑeTë‰å-5NÖ‹jñ<¼ Y}ÿ6iÆMƒîc•¸î‡>P1 nÅ~‹g6 í×ÂI?À-ßbçÔéW¢•ù(â7 2ë´T†Íxa㊑¿„úg<)³JTú€Ú?(¨¸,P)9̲8É’ÇEgó†Ôw<«¸T,‡*G#Ä, ç½#¢ÛW _Y;ûPBývVáEU"ÔÜžI-á;×Ô—ð½›+áûúDb'pdsLBLŠÂ(v?dõ9F8&Eň!>ªî«ðù& ÂÈÒC„þ…–ç·Ÿ–ÍÙüRø? zY úùííÍÁp–b'Tü‚Ìºì›ø?Êðd©sÆmyþ‘X^€|¡ýV†Š; ¼Y=#†øÊŒÊ¿¼ YêõË$"Q›Wí‘ëÀ[¥ötÄ{dxòœ7¥âïÄPÏyÓ;ÒO†gXE¼™ìÈUŸ¿Á;a²Ô*Z·ó@„Fç!§ð 7 ¼YÊš,¿Ü@çNLQM"W!_U沃)a§på~3T…pd9KÛÂ…¨ì„|°ý CÅí u…–¹‰MA>¦¯Wdv­‰Êp òX:½r8YêÚdÓ±JGîD[Õyá­¢3œ†<­Lk4þNsÅ ç†ð,Í‚õ´ÊÞˆ¥ì(¦Çà oüM® G!*“>C¤Yây$k¡P<×{(èì^<-Š õ¿º„g ŸÑ6 ºÉ9šÄæ2p²”ˆ *î,ð:dõÈp—‘ „/{…À;Õ}¤<‹ÂUì`¹k4Ìâ>áÙaPI?éoC{óå2Djö“ˆÐ)àeÈRþ¿˜2Qq#ÀIÈ“êζhx…Š¿C|Ú^ù¦ ©P±W!«{fÂK *~*†ø¤^ù;„;¤ý ­Ɇ»d‰^|"NYà–Œê[=MœN·NhÄR’¥yËòV¤üíebÞ¼Yý´þU¶ ¬¿Cf3ã&[d†r‰ìå\­ŒM¡÷@Dມ‹á,‰Ô¿ µø»1ëdGŒØ@ý;œ££S˨Tüµâ“ú@ý8Zþãm¨Ý”AðÎ;ä²À>È}Ò#µù@óéœí–ç˜åaRìØ•úÜË2’¿iÒ%×¾BÌ€7!«_hao¾X~`‡^=ÝfqÂÏ3\¸Ó۳쾊 Í¿‡ž'<Yê.hK_fÝSQ†xäbˆO»]*n8 y8}†Š?Ô2¯“Žv¢Ø5̼NÅçc¸V™×ÿ>Æaû,ã;ûù«ñË HÇmÍÆ±¸`zf1h<:èÎÅì"Ë•½›Åíib¾x²ú𝛭ù„#eß‚.&ì†Ü­Ín/æ†Lo(o 9ýßrJCâV‘¨m‚¬óÆ~‚U¤â6‡ )wSØ äó —ñkõyMTˆßaà Èê^ñvþTíCše;X’‰ÂþèávÈRÇôEa‰Ê^àÈRûðbºDÅí„|P¹Ž¹XHp8ψÅÇ2-Õ'âhoBV÷ݳw!ªUËôس%z®„MVf÷‘‰þC¨Ô?„Ò¯ËÈæ¶ˆggÈ$ö-­ehœ Ú¯RTÜà(äQånêek[2JxŠF¢2¼ Y~>©#:gŠ^Bá“À«¯¦ïÆQñS1ÄG‘Æ%=×âö˜OBVÕæIÒKnÅvÌÐQ±ìyËa7ýE+ð­I„— «¿,†?¥=*ûnlÑ6»D»Hå»Ð/HôÛ@ŽPÏð«{¨b>½ùêèClNÇ µßPqG€ãÕ·ùÖKXeb0<YßN“Âþº ¼ Yj^À[o©¯ë„î£òoï@V_uÜ q=[ hc‰y´iéz¡ïiR@¸áïë&ªè>1=;ttýQwn.\> Ÿ$ýv® o@–rxÅâ´\ëD±7!kÈa(Úß=Šð–}Ž|Zž°}q‚,‹U­j A/ T?IÚü|C«ÝŽÅ‹v™c“µé‹z"æÛ·!«ŸâcO­TÂå‚]-3æOB÷anÎ*Òøå×e,Úø`¿h>â ÑŠ|'´ƒð:äµ¹ˆõ](Pÿ¾º®Ê=óM¬z€ƒÛ?AQq]À=÷(wÏÑa~©TbÏó°m´Híx²l‰ÜRDq/ð*du?$þ¥Ÿc&Ö|lùáàøÖò}cÇ5æj›)rŽëŒ-êR«$üFÝwC»ÏA>§L>ÇC³¥‹«Ï¢NÛ'ÁPéxµ˜ÓF“g'І<œ¾ÓFÅŸˆ¡ôÖ–¢Óö=hyÂö9m›+f@.PÁôæE·wˆY¸²T̸¥ß–¯_)§÷iý`©lEw Š&;¯jút:Nü(1Þœ†<½&nΧг„zܜևx/Këî‚,õhr‚!HÈXKÅõwCÞÝþ©ŠëB–òé–ß²ÎVa¾ |EŠX사ï¼Cg9XõHˆIx²Î=ÿUºex²úž¿ø5*?<¢±CK2rxòÙt:¤<YÝ™‘ëóÀ /è뢛ô åª2œ†,5­ˆwÈEàuÈê‹vá3ATüâÓn·‘æðN»†±>*þV ×*Ö÷½\—¶Ñm ¿J~™ŒÛH̲@u·±¿‰Ùð;»96!‹v0Ñݼ ùêšøŒß‡n%Ô“q ˆI°roû ×Üy‹†.Ï6@ ú€…4Úæ"b2Ü 9…ÜoTÜ6à>Èê¹ß67Öz2]³˜ƒ¬vY¼å=s– Ž·3À‹¥ò1ˆ-°¨¸Qà%ÈRçÄucx²Ü™“e¿¥ÝGÔš‡Ià4d)Wmƒ]jõÌÅz>3‹×/Z|:Pÿ#®i Ȇ>³²09.jVˆÉqà0d© ˜êPq‡€' «åS¬”¥H"!ÚÄ&›ð'"wxò]e’,M[Î>Ñù¡/„úÓ´©n «>à~ÈR{/bzDÅe PavÁ'¼Zì¾¾Nü§ O)ó<½0Ðd–l?ºJgˆëÙ÷C·B>ªMÏže¡‘¨dD)<Y*R!¦dTÜ1àyÈRY`–8ör› ÙªèêœÈ\Þ†œÂË,´ZêD±kø2 7†ø¤¾:ÿ Âö­Î»Øar jY`oFõ=ÍÎ&JLcÅu¦Ü¯±ÃðÑqsËvì~ßû(ÜV- ÇÎÎ-¿ â¹¥Zh@+fÕ/ÓKщþü›ûÄò(aÕ€_~OÖùiè¡ÒÙ¹å>Õ$Xð¬e N»Ýþ‚»èˆš•Ï€áAÈÛoV~€«+Ö€l¤oV¨øC1Ä'u³òƒhyÂö™•õ¡ÎW%˜eêÏ—t41:Î…«œî‹6P‘;@´›‰|ð&dõ3{ó¯dûÕ²¹Dæ„Îâ²ø$¬_à&,ˆíøe2ÓœõÝr-° §V™µ<á¹?õ ¼Y*N-6`ƒ”Š]Ãwµ©ø;1\«wµ-ÿÃí°oṲ‹í«1ËÕì†&F{M#ñ6 ¢}ÀaÈR‘ˆÖo S?›ï‡EÄi ¨t»JláAÅNBžTÖî#ånDä ðdMΘ.†¬¢åû¦·4w%kÕjhûËv¸ åélø4P¥ÇÖRd]EkòO0H õ9c·øñCò ãÿñWæ(áq÷Íè5ÎXuⳚh]~ü •¦€eu¹Âz…\]÷ª¡«4³¹2'3røãN²è4ö£àý£Ðªu™Trh‘"w¢Ø«¯¦?QñS1Ä'õiìÇÐò„í›ÆzÂÑ[ð¬yrŽ$fÛ2 /4´LÏ3b.Ë<šäë G¯å‘fzÎߌíc¢¼8 yZ¹ù™áåɃr¾%ü È£» !*M¿-ï•­'VYâè"Ñ:,@.h´ ;kTœ…<Úþ‰ŸŠÛƒ<¦n†E­2•?œ€<Ñ~«LC¤Åž‚|*}«LÅŸŽ!>©[åÊÃöYåÎp:— –ö@î‘¶Æ›í Êîìt=ÎvÂõ¿Í‚2¹ÆˆßàqÈÇ¥°9ºnHt9A< 1ÄGÓR§ïaÕ l³ü’[^šŸb‰ÔeàsŸÓ6æ73Kûðt±lú­2zP©£Àç!?¯>ô¥ºè^ ñi·á§ârÀûï§où¨øbˆ",ù*t)ݤó\Ëf!gµ—¬ç.Xv1Q%ù |‘p7ä.6Pq›€ƒå\µøo7ÑÕ³ÐÊŠg!{€‡!ëËB«Ö;¹§Âqbtx²Ô .ÞAG€g ËåáˆÿVø76†ø´Û{#£Ñ‰bÏAV¿O lèøó1Ä'uïí'¹N3lŸ÷–­¯%èeêɺšhh,M5§Þ#¾Û“Õc£,EMŒD§ÌéÓRètÖOHùã>=”[5½€'©kÖ‹ÞÞtçD+òSРµMÑðÓ(Pÿ9ôCu;¶§5—{š!l8Ï~Ê.Ô‹¿›N<{€'!KÝ$³î?Íõœa²z¶XaëNÅÄŸv[wo(¶Yní²¬ö¢£†Š!>©[÷†qBØ>ë¾?""Á- Ü’Q}u 9X:Z²B{X±˧S†´S°à.Âxò(Œ5=yë[Â4DºxòÕ51‹?ƒný™Œ.³ØzƒÒ\rkAAª§ D¸²ÎÓ· ÑQ*®xòö`*® xòÁô 0oÄŸv`(ödõ3JÂ˜ŠŠ!>©àŸåc‰aÝk¿ZàT‚^¨î^7Ûà‚[垌è–d#é“Áù¤F¾” &ÎÛ× _[üsèØŸË´Óoð«;S?‡ž%Ü ygûm/×ÜYg.ÛKÅuwC– y©Ù^*~0†ø´ÛöÒHèD±{ «çk¶½TüÞ⓺íýç|1lŸíÝ<.´ Û§7%fêwÓ³ÍKÚÈêÎ{fu[¥ƒ2rŒÙY%ÑŽ%š»€ç «‡Îd,î¿@w¶Ïâö„ÓjUn›Šˆõ÷BÖy:ÁìRq=À}¥îC‹™]*® ¸²”ƒ¿¬ùwäéY–2p£•›¨Î¥À‰Œ® ƒ7ë{Eø+£pÑ[0t‡Šg2§ûnNãaá[z?E'¼ Yý\øIªÊCzGÖzxf}…¼è:Çzö)ÿÃU´(á_I“Õs)ÉØ‹_Dé„úc‡;Ù~Œm.> –Ѐl´ðþ",á!ÈVl¢>?C雘ÏDsY'Š= YnwpYíE‡ $†ø¤î3ýK ÂöùLÝܦxä²À¾Œêë‡[šH!ËœcOlÓJuؘ«9EZ¬ÖYF—ðè‹xdC´Ÿ‰úðä[Êý|›MG–=¿øF®ùÒÃ0K2Þ¨NX;‡¾;ëÖ¼×-®W¢œ³ÂyÈ Bx²ú-›cìò£Éº²d³³ek¸`ÜeÕC'¶L< û¿ ~„Ç [“¹è_¡tBýsÑA ­ÜkLŒ7‰ÉtŠVÞ( “±ìCnÿ¤DÅuO@VÏÀÑÏöpïÁ—ÈäJtN/AVGF‹~šó+Ú´¨¥¡žuŸJˆT?0ÅL®¿ý$L1“ë¯@? 3º2¹*×¢ç¥Í2{–—½¼`ûHñ*ª»Doð"d©ìOʺû«Ð×_m«îfýÀ³eB¦¿ ýUôg¿lŠiï¯Bc}Ó“‘ŒÞ‰iï¯Bc ÷BVÖmá'¡«fñ±9/|Ûƒ¸ìC–štZ5zÀ.ŠfO#2£À3¥ŽÍµ.u¦úx>¡ÔÀ³Ï¦¿:£âÏÅŸv¯ÎÈMîD±ç!«Ÿ’^QñbˆOꫳ_ãṴ́«3ë) WIËÕWgšHj\}k±xa7Xg-ÌKÌúˆö2Þ€¬~év7MÌ)§0aN:±ä¿Fî†,·µµê&#_xIp; <Yg®ö„“Š;< 9…vTÜ 0Yý„]ç°p@˜ŒG!*¹L Ûœahù˜ã¡vf–ÇÆ-L´¿E&¼ Y=G'{©†åÊãL¯M7ekì0ì[–çÒ#Ëæ’è$øoÀ0Å—jÈu¢ØaÈrÞPü·Â“ "†ø¤> þ[´šj¿iÆôæÃ)µþ²ø²²_Bkÿ{ >i7ßC|Ò¦ñÐÊ·ýGªtþc†yQuÄ'uŸõ?¡)þSF‡ÏÚlõ·RxáÎ;§ñÜ?ã¢æžhe»!§°qBÅu!*÷Î ÃvžØ¾=Ú|Ï j]÷Y’]ÊåH"ž{€×!«ß…<¼2CR”ÂÌ·ÊV‘Î^ ýÏP1ÂÃõ]y__sì¤=•D#*'€#uÞLP1*î°¹ Üeòl#Y¢WF§!K]÷oW¥ÉÈtÐ%à]ÈRÎx>Y*Ÿ‹ÚDAÅ?C|i u gzïÙA>}6Ä)¡ ÏÿÂ{žáä!m:ÔE#[8ÏqŽ@NahSq‡ÈêC[xgŒŠ!>’=’I(½s¦è%>œ€<‘þè¡âOÅŸÔݬÿŠA¨ßÍjXXþtè8!VYà.È)܉¢â:»!«ß‰šháeEç"ÉcYaOÑà¼L\â;|²úÌpÊ0*µr`WË,û«þ“,á)&v²?4Õ–Ii3„C<¿Íû-Œ„uÒ£¡•nj¼£ ª€Dè"ðzFáåV1¤âNo@VßWíÞ.£òooA¾¥ÌãŽa¼àt(ؤœ1¶jO¹]ù`c¢~)¤1ŒªkÓ›MÈ/#q’ø¿A³ï@^‹Üòÿej±¹-·cöYO«¹z;'ã£v8‰ñ«7L'0Þ< YjuÔºÔëM'¡ÔNàÈê'üik3²¹´&á¶Ø*‰º1Dë(pòdZn z8y*}7†Š¿C|RRÿáèRËݘy+¸o>½ùª¤C¬²Àݘÿ1C¨Ï9 ±u»Ôg•-îU â6< ùì(Ðg¡4Ÿm‹mªú¸ú ‰êÏg¡3„;!KíˆéÏg¡3Ÿ…ÚvʪíòЫ‘3xVxKé³ÐfÂãÕwSÅ5æ·¡%¿ÝÉ5­œr…B!{l’kÔPÒLž¨K¿ ý!ƒ<Ö~]úmèá8äqõ^>ÒOåOOA^‹u÷ï@c~§-ÚÓ {St?67¿µ ÜYçÎh‚ŠüÔ‚PßÎh—LÜ™(ìî…,w¿õlpϬ̖L…îŽBM§{öÇ )wÏn#Gk;Þ Ñ–SØc¢ãšXï@V_Û3 z¤¨ÅƒÁ”!/\ˆZÑSÔ,=ž=︞U~•áw¹’0<Y.KˆÄJ‚ =¼Yý’“ðJ‚Š¿C|R7ÌÿíOØG°>­3-:ô‰T˜¢#HÅuõ9‚ýF®–±ÒDg70YêpqË®Ú-úd:ix²Ô’F¼“†ç «§ڌ՞L8š˜œ^‡¬¾ù¿ßhiqLAâÿâÏp?äý**Ô:Ùà Ÿß%Þ«Lˆ»­ÃÀ“õ]×HŠ»Qi€yÈê·5öE³{´Ë¦OÔŽ³àÈkÉý=t:¡–É¢¥ú¬U¢³1†Òg¸„Ô†Jëf!g•;e½Äv1Øì…Ü«obˆÎ‹N Dg;p/dÎ&*n pd© gj»þTüþⓎ“K…ô\*þP ñIÝný>Wk†úÜÞ˜“[Þr%NY`ŠÑ*®¨/úÐ –KôÑ.à!Èrº²Úž-g•˶_à³Ip,/A–Z´%ôUÂ=*.¼ 9…×›©¸!à$d¹ ¿em+‘&\^ƒ¼ÛnÀ5Š¡~;2°ì‰ocrÒ>¦MIJÀ=SÈBÅu÷BVÏÒC‰Ê(ObYxCDöA>¦Ý˜ÈåÛ&N§€ç!Ke¬3"TÜðä 鍯qàEÈêá¶îá¼LÔ”H\^ƒ¬nGú à ×âÞ¢í[”ÉÕÖ?äºÅ°r¿vmÝ<ïÙ¥‚éy¦3/š¹ƒ˜ OC–:˜þŽ:[ý“æ`ѾI‰g%8ƒ,eZþË»g ëËó“8”¨¸àYÈR¶å§y&‰xñ8œ‚<µ³òÿÆ!Ô?+KëÑÙÜ y«6-IÊE¥uû!ËÙ’øow×ót®"s9áCm ‡!ë[ˆ-s D}'â4¼ 9/›Š;œ„¬îe /Õ©ø+1Ä'õÁüx¿2Ô3˜õynÄ©¸òöö{nT\˜b„€Šëê‹l÷ —®8Á¯¯†6Eø˜61Ú<y-òÌüôó´éjü[=õ°’g‹Ú²?‚šnƒ¼­ý*óGP“?Âé” ËSV,»>2o9–gJ\yý# “åÞÐoYˆÓyà$d©I@̲PqÀ+¥Œ¾¸šäW!_UV“xOCÔš‹)àmÈê9Ê×â!ÐÿËõ‰ázÈëµk¨Z”¸õ@>Ð~M¥âz€!l¿¦Rq]@²¡îœ‰î%Qñ‡b(¿"±—D…@V¿–"ì RñGcˆOê“þó!ÅPÿ¤?PŸô Ï5ˆÎýôÏg)Æ€é/uõÅ€ ë‰å<1#=í \£upòˆ¶þz‡wJVí¤ÓÀ‹¥Â¢âT*m`­ÊÐxhÍš~`›ŽqßZ²Dßd\׉f"@3 hSÖî³,Dù W4¹²k¤­ë¡­ë×V[»Ð]Z´õ *2'½ Œ>Š­rÝ0îXåRÞ¸W`'œ_2kå¼q¿`ä&ÆÆ'†/÷é]CJñÏ©`;†_5‹Ö‘­H7Ú•ð:ÚUýÔmÎYÑMÛ g“’Mt-ïyO,»\¦Ç’Œ’˜¢3Ǻ`K¨” ZÍ‹]—l¦^ì¶iÛ­XÇ^”}Î g]³,A0 ÜËe­‡­Ju!¡ØNà>.k8<Ø‘—éŸýÀ\–[f·ìŸŽ3§%øã²ÖT³n¹”PìAàq.k¸üÚ“7ÎOœ9ú”ðøÍòñÊpcxb Æï&ŒßMÊãw+û›ü·fZO«Þû<˧çÏ&½RÞÌykr¶f—K¯ pݲñâÅ¥Gô½G%×Î ~ÿÀÎñ±ÂøØØÄè¬]y£@6llìÔ¹„Êe_yxóÁýk×¼˜PÃNàŒDá@ßèYѦ3!oþûÎmø—[f1 ¬§¢á1êØÖÌfÈ›¬YXþûþ³®#á•—oà4Іæ_føÏ»©À-ôó}–~ÖýÍMMug÷K/>¼ûžbµ ûcÐh™ls›/]Ça³žƒ8ð¦æïŒŽ•êèƒðŸûfíÌñÑL9ÆOYÖø©ÙÓççFãódfÙÐ_Ñ]ÝawÍÙek•¯¬ÐÙ–½u'ìÔ‹Fký3r¯<¸wÑX‚êÅÑÑð‹×›mýÝa‰ï¾ ùÕFì™Gb&´MÒÉ®r¸ž}*AÑZ-iŠÍÄ^‚Ñð1äÇ2ŒZç/™qÜYÏ23¯òo'‘K¸NB¤Þ~ò‡dȵ.uÆ­ ¥–†üaé&éHП£Ï4$ì‹ßù[´éW78J¨Ø·?ùÚTlãŒ_6ý)Ýú>àBþÁTtë»?ù‡¤Ú"þÛ-Ϧ4«ôÏòÏjk‰®™ö¥–Å~>ðç ÿœ´®v4›g6 I´ÄÏ ò/ýéù¿Î‘Å—~£Âäÿ–˜7¹Jó®‹p/—×íMGÑ~Åîãòº}ڊힱ笲ß*HL¿ïç2aÛ fžúÁ˜Ç~0#é±÷>ƒ_ºâ_éxPÊhÓÅ+q°ñQ\à ÓèA£"=!燅üòH ¿ÍàG¸ü¤6lVæÃìÛw~ø“ eÁÃꌓ<Êe¹ ëÖÏ~Ýq-9N9 íBR0CêŽy¼o9Å„R÷ \–ÜûŒÿ¶·Ñ=7|QT±‰Ê(0ÚT¿rÉ0VÍÐ<ŒV¥êzf9Tj³¼äÛ>ݧ¶ªvɪØE£º`9nÅrL£æË=4¶®šß‹ ¬ËÈn¡®v£cæABÙ—“\ÖpV8îíKÂ+À[\Ö.W<¶]BØ.éî’æ¿yy4C˜ÙFà6.k<‡™p€•Ö Ôw S82+p'—5œ ×>èG_[ôã 68ÈÐ< B#älßã¡;,šž¨ÊÉ,ð8—åBÞ îjÂÆGt†0Ѱ1%¼ñAåOpYòlwËs‚«Æc8Áe¹€Bw$l|Pq'§¸¬!oc¯‘Îã#gÎf¢r8Åe vÄGóVŒæ­Ê£™ÿ š¶>vÐbõüÙSçFßðý“±sç öøxBÝVÝùØŠ¡H¸Cq¿hé¶óñÿÄÎÇ­úÎÇ õKÞøXñÕa‰þÆÄšyòËþþºg†íÝ÷x,B.JSÔµï1´!Û2ŒÚµïá߆ü¶ ¹g596ýðƒ?(Ý$+# üÛGžeH´×G€‡üqmêµ1¢(¡bßüNÈß©MÅTö=>ü4äO§¢[ßü äÏHµEü·›ŸEgVéþäŸÒÖ«£?üiÈÿ{G²‡‚€ ‚$¸‚;,n²P@a#$’ ÑM²y öí»àÞV¢*d3+³:3‹ úêêJ¶e˲%[–¼È–7Y¶¼[ò"É~–-?ùùY¶åEOּόäyÏ~~óžmg±=‹ïĉü³*VâvDdZß ¿ÎþQEœ?#Nœ8±øEeSíLkÕãŸò/ÿ†i÷ÿø_ ÿ­ž/þ-©8r»5Lw åŽcí1³µ¡Ü1šÚo±æñåŽãmP,bôs±Xý\F1VßÉ5øKœk<)qû–øwLÏä±ßDyd®‡PJ+ôô ÌÎF'LôÊ…(u6p§vŽF Ö)¡º§Ü­K‡~ÉÞFf©E%V1ƒ5·Þp,Éì( вâ¼gÓAñÚÚZÒ¶Ù¤s^‚Êià¹PNõ¸lós^BÝ1àùPNas?ÝŠíç™YX-HOì̇²b–åm“\ùµJÅð6 ÛTÖv §€BY턺j~´Y¨> åÌÃö˜Èp>”ÓX¼‘žV$ý€CY-·uS­|¼bš†í» Ž ‘¦_*íOI}gwª—@i h—•ëÍOK'ÑsR××ÀèÑ,–tj'—­˜†o›þ¦oz+~vPšÞ !ä.›“/¦“àq2U#>}ñ"ùz‘§§RµMFî”Uèð–4Clx õ†  Å2v{HÜÍ—“&B#Ë×_¢<ÁøÃc3!«.|+&¦&I¤wôΤjeï=Ó)Çùåò¢8’7ʯJÍ6rß1®3ÏÊUs&kYåì`ž-Îó¬jz–[ž™Ux£³x#ÂwñFïj¿Ñ$ÛüÇ]YñÍ€¿VÕ­òw¡1TnK›T ä 'A~R›üqb¼bT,{ƒ3Î>3Wç,§˜•fwìƒþµ5»‰¼d Ã2únm2£¨Äyî›x›'¯´µ^ó,îä‰_qÂQÝÇž`JŽýbèØ)}Vxûzx=I”Ž­æX4Ó‹`JYí¶äÍ{)³F®QßyAΟ•¯ÒK H¨·YQ¯J/ƒÇåT«tŒWéÕ7ÆË¿ÊÜ*¹:Ô©c•LîRÈŸ¢ÆÅ 4ôEiæWÀœp Ìõ·#\áÌËæŠQ³έôŠÙnIøj_lIµeÓöw&’½ ²„ ®˜ü;þél’=æ™(üÑ•šU·´æÏúŒÀœyùâý‡yÞÅ:æLqPÞlq>\à,Þc6•B7fØé9¼´_›áÆ× Ö¸¹PE(ú ȦZè .·hŸ\}|a½š¹Ÿóÿ%§;o”×óyçYÊe/W²3#…y–½üÅ,ÿY±0¡Pø×ð>„éÅ)7HšþuÐ'¼ úJIæ7Ñ¿A±€ Z 3™÷ÌCÆ¢Ôàþ%K¾þW…8+ö„S`?¥Í~®Á^¸–8}Á÷©Y¶ g0¿éKÂ{ÎÐ7¬h/Bø/¢4¥´éEÎ4m ¢©ÈS,€"!†i\—$Íc<€)uŽEîí¨Í‰Þ|XXUÛ*…n/¼Ê”¶mÆ’‘HóoÂ"xµy³·E8 ÃêòÕ jh²¨f„Ô¦TÍóI$ß’¸ùºÝ\i¥ ¿ÄRÔˆô4Ò/ƒPHà<^FõAtg¬þ»ÈÖLÏ 'd6˜¸K™Þ–ÞÁü¸fØ”šÝ|SÍ^¡(ÿ*ãx•ñLšžj<ÁŒq™;½”ÃçkÓÛàÜKVÀ‡!ÒÔ'@¯¡v9…¦icF ”L{ª1bãåèðНT]ÇtxX´¼A™‰(Í7^†Æ*ÿ’KÙî¶K¤”ÈW1 L¯×½h­°ïik–g>3*¦Ø›–ËÖoUPéVÑLoÄy“âƒDƒ­úÙ<†$aÐP2ßð@sR!¼Aá L/8{ZŸýª–3ÃCá—n`ØÙ|ö¡#N?qéé[NÝjøOæéòpå5ú©¯R%Óx'§x§§;Ðq$+”a7B{Z^V–ÃN%“†%è]̰x-Sšôm&D+ÏLä! oÌ›™làViQñ ïgf²/iv:·nš¯ìÁ¬ük`&¾…Pó5‰×X³Êæˆ Ý Ûªððj$ÏG1Éÿå|T1_QYj|„·!„œÂ­÷ÅÛð£ð7ÍÓy@ª"üu”´¬ÊǾÐh,ª,ã ,•(à1Þ„0½­ò~~<€)ùùgÑu„¶ЊKÙ½¢ ÙxX]+5>xÏÕ|“IèúÝZÀ®:æÕF*_¸ðïŸá¥žµ rÜâ9e{ÆãÃŒew=ö½KÎûücn@õMFþµ0ã.ðyfç"Ç'àñ$U›Éq›ñk•(>ˆèÅàîÕÅ,M/ée>ûvŒHKŪ…• Äfùó‰ûýz—Ì75Äf[ͱ)¢ã½TkSz§©ïlàNmøC»ŠP£4šØ\“¿«ãs™pk9áP&LÉ6ö,½27Öùè+As°…Ñßþ:ù\ø½£G­Þú–8.²Ugô§ã^;£bô­0ègýô3ý>ôMð#{9ÛàÚî‡x½uÜæžäáîáŠá Óþ£ÉÎ QÉ:ß„évÜýõzÑrâ¸ýTB[鿇­²ñ%Í6çÑ_lôïÉlº2*þO}ò~óö/Ú=ç`A+x«I=tJn™‡‰’mœÑŸý•þ§—öÿدn±å3úóÊUÔ(ÚzE}O÷7ïH—hü—PíÑ3ÐÀ¨Ú¤=.K¨í6ŒMÏsðÀh10«³k¦Q–lÔ¯î6I¾ôé™5Õº{‰•Ñ$̈'%iv ©]CêÅOJsìãšáÜÀ 5Ô…ZÁ- B>Ó†•8Qf•­1h»j)íëˆ'¥:ZrË t*h*…ð4äÓm¨ ]¨”]™¦›RÚUA»`žU¶“ftHDµÓ!<ùDj'ºÂˆð$ä“í¯R*†xRª#~ÉõL_§~v£NvƒÜU‚’õuË„MNÜ´«~è9C<)ÕOêg»ƒž õÒƒº < ùpê% Ò ñJj‰^½ú£1Ä“R½œ)ñ×_öD´ýÒôµÜžØs±-¯(ÜÒ%‡â„ÛUQ¤þr ñ¤l©(…–Ô v„íŒzQ)Âà2;ˆÙѦ¬ZZ­g/*„ð8d¥‘™dåàn*M-¶«rHýÉâI©röPå(´˜>Ta?äþ6TJ”H¾¯þ/6Í,¶«RHý¡âi7 ¤¯¯ã–¹oIÛØšº=÷̲U›ÌÃóɳ¾oú~Åt…¼&bNuð*ä«©Y²J^A¥,B.¦fƉ÷W怣™·®ßS4Ÿž°–|…jNAžJ±)V`'BÛ.ã)ôÛÕ†oÅ¢Ufuéhþh–J?c/×ÌÆf>IRý¨žþLÓe¥6LŽ&¶`¢3¼ùBë[p?¾ØÖ¹³ÚÕtI,¢×Óg~­Tâ¾–|//ž!Ÿ—ÏA$kPÄð"pò¼6Ó)ƪèh `xR7‡½Åá‰$=~ü{-±G`yCÖôfê|³Ýü ¦'ÛylÇl¸y!EËkžgI|éðÈï´ÞàéKÓÀw!¿«mFÒy–ÄwžŸB~ªÍã¢ð¾ÉJ†Ã–Mf9~•›0·XÕ VDHØlr¸C7nÖ-dý%ѹ,BnCÄCê.G!ëG<Ò÷2ýcÀqÈã©ÕJÖ*T*åpòl{*e8yN»Rv17ñXÀvÕr8Y¿“’¾”AL£v;!w¦7DÙf/Q¢m•^`“ Ze¤® ¸ò~íÙåÅ”öûÄãð8dµõùø§‡Â¸Øð}·däï%iÅæ¿ã?åðdw¸H Àíð"äô¦Rwx ²Ò¬³œÁq^†¬6Ëÿtx(4ØF`n0§VY6=:• OÚƒ<v«ÉÇ¡¶«¢+À—_j“žfŒ †¯fsÎËmâæã>>ªXÛ2žˆÇñ·dùÇö…¤8†Ïqþ¦)Ž´‹ÃDâ;]ÔW#²Iwä}H”!“°É¾b-âq/Bí»L’Ö¨¶Î‡ôoY'Q y˜‡œO±U'8Rw8y¨õ΄Ô ´-¥[áŠRAa8y,uëèªZ*q8Y)z”·ˆià}È÷ÛcãÀh[„ôô ©C<š40|å›¶M€¬6e™úì Q:dYë…Ôõ/dê““Úµ몥;?â’CÖæÔŘ,‘ØZj|£&º:WÉyëèØ‚ðDòó…—lÍòwÕ3*¾˜èõ²ì}±ñ½bÍ®ÎU|«,Š1Ëõ3Ö›O^ó€Óžº%ŠÌ £àN/º•°‹n¤.ͤ·è¶m:éíªe 8•ÑXtۜ߃±œU0 yf9C¾8@6ÐùF Ð)kf’-‰¦1(íAb{ðš¥÷Ь·}KeÓ/yVµqtä­…1ìÉè­uÇ?•î€I}g ñ´›Fl»·fiP³>ÿié$¶iì‰!Íb¹ïûsá¦yTÃôa¢Lϵy¤¸šÍ³ìŠåùA(8†•?®..éÞƒ|Oû5F7%õ^_³Jkqx=|ƒRÍóLG8YÂQÈúÎíÞ&â¯L³Zàý©U1h"d†ÍÏ>Y|˜§´gË®OÕ&Ý0e,•>UÏ9‘bùË›sº#Ôk^ä#Tq’?MæõB>¨Â®)«OuVifñéFLA¦ÔEô,…£”ÅXa‹7bMÃνÉÓÌÞr˜”w´0‘gÅ‘<›àÏ=7 ƒÃÅ. ys¿ˆKø ò³ÔÍì[¬J%Õå%Xa?äþÏ„•£ÃÀ³•ö«ÊZYlµ0ïUóÞTÙœ»ü‘Y DÂ’ ¥˜ymÚÜàF SІu Í€ð^¦ÞŸ¥lXÛ­g%ÕÝeX¡ÖrVêVuvNx rzÇ\¶±ª(>azç\ù.Ê¿A=q˧§¦„Ç’¶)¢wx ²þ°÷z#•g÷ìý'OÄÍŽ/R,Õ¤Ô ® 0 ‘Iœ°íÑDlÜâÐ%OðrÝ–[6>[$M9¶<’AsµéþmˆÚºæ`&t„ +Í7¦îBˆÑ!àÈéÞÆ… ¢ŠcCC] #"†+á@ÅvW){lÖId³e_·@• Q=\€¼ M9ʦø‹¼‡o­:ñŠå”­×V™rM׿ñ>×cü@Éáà¶O!«mNÛ®Õh®ä]G“!<Yi'Eê͇F½°Ò¾ló‰uÍnýP´ÅãQ¬Ù««ÀÈ3©[• `ÖCعï3aIÄèð$ä“í°¤X_Ù쎦¶$buX„¬4ó® ¡d"L' ºóV@Dk(YZ¢È6¶¡³\}n<!Éfl ¼Y&ã ‘†Ñ‡3­‘TvË“CÀ£•Nk˶ÈaT alÐg94"ªÑ¶YÈJÛ7Q~¡‘_[/•|s©ä:çÚ—Â5\Œo~ü¡m:¹7õL˜›#(%ç3‚Â'|ò{Ÿµà¨ˆÆB˜~p¤ÒpˆI´Rzr[&»Š¨#Âô&»vñ†#m:Dá<0 9«Må-·­ªµ ¥¶0Šò$l’Û|çBº1Øä6lÖ&u7 ëoÖî,(ÔÉCà<äù_ß ÌJ‚Ú.à#È´__º›!õcˆ§íÝLìnºv3AUW/p/ä½Ê]ÌQÝê"ûcˆG³ºn‹«jÓ³JìµI7\ÓÌmWƒ56Ê蜽µ²²w»{tß2³¯ŒJzƒ)T.!î¢#Ô|ƒ‡õM{t5)öhosˆŽå¢íÛâeª®å$ß‘ô*±ÃtÍ.ŒR>šÍ¤[Ol‡;ÿf(ïJ­_é ª_.~åzQ¶c!6}™Æ©y$âjuÇB꺇!ë åÓþ#À£™ºP¬”LâðÎ.»A³4l¤÷ðdýeµr8iìG9I37+稢q^BV åó,ðäkÚ•Ò%P€\AV:´¹y愜× 3¥d±á^-§l¾a–ŽÄ2ËyfôqÃ)÷Ë4Î2¤p¬ÿÐ\ÝÙ¤MÁÏ@;aú¸[8`Y '.}ÀþL= d«-œÔuB>¨])»ó*çr‰Ã!àäT«eT©ZÎ/@¾Ðžj9ÌfêG 5«åŠhÕf@QESUÓ©ÙááƒXd%Û®‰ãEàcÈúƒ’j×<¬•$s,ñ¬Ú)Ùбpâk˳¬M·À,d¥Ê•³)R·x²Zú¬ø§òùÆHÿ%àeÈúiEä±wa„ZƒX¹© vAmWãi÷T©ßC«[aD£?†x4+ì ¹YJØT6W îÚd«oU6[ÿ¾jüЬÚzëge},ñ9<ù|ë},©;d™v%¤³%³LÅúæÇ5Ó ,ö7¤­ À)ÈSÚô dCücZf¥°"œs¯U)Ì0 šä©Ç|!kas°*ÂäBj–<ǘhZDyýÄzßDˆ­6-R7 ¼Ym5"þé¨G©¸d퉸Ü>„¬?§&nÖ&CÚfF0šä¥¥¤¾Žù&ˆ™št\rÆEØäbmÅ—99XÃæƒgÇT%™=£Õç¦dúÆÄF@TNÏA>×úF@êŽÏCVrë›J`ЙÆ>*òjÛ™¬IM| YhtŒLj¹° åž[18WoZ–Zl <ÅMœ*³1óÐNØ‚épä05pbÓlãt8©ëΤ5>ÌÖ-ÛûèXÝHŠÃKHc€ÈÎBÖß]«bK1¿ý™™Ù{ë!ìÏ´mfï¬çQ&Í™½"÷Ž<𤠡æ›ÜzóÄ%q€ô »T³iR‰©²¶ôííQfS4­IûR}3ªˆžã>6›ž)?ŸýöE;ƾV¿í -±úäP‘µûØúB¦­t¶N˜ží=èG5î(Éðjèðd¥iäæ[‰¶Ý·må€C••ä+( ,@VÐÅ?=¶Ùót÷€ô€( ïCVÚ\µ‰ÚL4àÌx¨ÆY ÏYóÙ* ø<îänÔYe¦-~Niô¢ýÌîŠì+Äö¾Ç×¹vÀ+½ í„é{¥£˜Š·}„~²-€¨õÏAnÃ(†ÔuÏCÖÅìa֊ʵÄ‚¯BN/Ÿ¡Â )‡!·§VrÀÈ#Úµräj8¸¬R:Žð¥l“&BEà}Èú^é05ilš†·‘äõ$¬n‡!«õ´­[k#n'CÛÐÇ‘º#Àdý>N~­í šÐØôp*6-¿ÊóæAØ ¹3ÅjHXk»— ×מfvt­ÔïŠáN­µ=CÉ?Ó­…m×Úúbéö@>¢B0º*C¯ÞˆÆ@ ñhÖÛr¼ˆÝ¯–cÑJuFŤØ‰‰ý5·f—éÞ¬Ý3ÁG¨Nìþ:{CöMÞCmÆf“5ßd¶¾ðD»Ã‰%ЇîÚrˆT¹¹pMH}¢é9¨ÆVw ¸ý´.ÓŠàVm¢‰¸ôû3m›h"uÝÀƒ™´&šö䱂¨P1‡€' «Ý1ææjbsxrzyx¶­š“À+¯hWÍÞðä, 7*ç*pòHj•s€²f”· ©À™úQ§vÔQø²þjç]YßJúç ë/î'ßú{Kr’”^„•,p?äý©™Ko=M´¬¥Ÿ£À3ÓKJ—h)¤îð,ä³Ú544H»B¹£ çóÍX0ÒÈL½â¹•¡+Q=|²ZV†ø§gɨªžùÚrk~,œPÚu¼ÃZÌè&úKsòœØ\^ƒ¬tò@ÎÄQG„×!ëç÷<æ%#3ìucCz©…èä·!ëC;-ÒÂê·Øº$Á—0B½„³)Îï™,ð*ä4O'Ø©;ÌAÖ¿î(3üúx)%Iφ£AàmÈúft„Ìh¶±»ÇÞ>tõ>L† 6îmj>Ÿb@žhCÄèðd¥EN9"uG—!ëï?]Fm0Ûò…ãÄç ðäôRt+WÑàä¹öTÑMà}Èú³ÒÒs4¤þA ñhÒ8Ems1Üï˜opwùò†¬Å|>¬gzé+ÓN0BŒ®¯AN3ÄHH0Bê.¯CV 1äÌ•ÔÆ’vjÚɱ(ea@3tžYµ’tL”†€³õgµ.G»hK®G»d]§,™µâœ`Á„—!«ùåãœP¥„ÅL=k«-ŠÔ]ŽBýLÄ9Äh 8y^›Ù…pƒE뙫5‘–ί:®‡ ö$i~Dxrz›bú×Â\±kÀqÈã©TÏRùs57hfR¤0 œ€<¡ß§ªTÌd ñ¤T1JûÍ‰Ê ðä{­oã¤îp²¾kî’oÒD`ø²~˜#¿„øÅ°BvBîL±ri® jwp!—ÔïŠáN-ä~ %ÿ%ÝZØv!÷Àæëé8ö ¨pÜvéVÑ8C<šU'Ž*ÙîªUâ½5Ý‚Q2ÄR¨µÒt•¦'ù·‡lë•i[k®¸š‡a²/óeÔ9azG•òQÄØXifâP_c5Ú3ƒšç˜eiÿµ–„z·ß赜¯@÷Wt[Žœÿ"«ë‚Úô__ [RwÊ}%ÿUÝZØþ–>\£©@®؟ѽ¥ïˆnÃ1Ä£YgÃ"‰s5<“HÉ}V¹·ÊÕüš8\l9á K‘:N’ô‡¨TÂaÈéE]#Óc²$1™Þ„|³õ$©NAžÒ®½ýƒ±,²ET¦óõG‡Å¨ó0*n w…xFIt†Vp{¼ËÜZP­ÉÏý6˜a²Ò(ó(Q¬O×<â)IÈ Â>ÈJ‰ÝÓ»ž¨ƒ¬t¨SÎÈIÝ>àd¥Po‹EE‰Ê<åãŠ|@ï®Sm…ÎÝ 6h‚vÉI%ºÇ ëGQ*»É–a>„éï&둵£e˜t„}ª¦-gG¤®¸²~õ] •ˆÁ~àAÈS«Þð>ï;LzÙ2Ì”ð|¦miMHÝ! ˤ•Öd_ž¹¼M{ë–ü:br˜‡¬~›æ[„ÈqH©‚Æ€· +]é*_ACÀÛõW¶÷âD‘'½¤A£‘÷]säZ†Avf4F®ró4øë‚Úœ? õ»b¸Só&JÞÔ­…mçºUî $J½Àý•ö¬ J·PºF1°S«,›"ç{G`ï¦8$frRšøádýêp4*l–»)<àÏé.k+¨{ÂaÈé¹j…£«ô+'7 +í’óÒôG€7!+MnlÙ»m9bÛ¶Mé<+°#‡õ·µï%{Ê­[Á𬩬Â<÷BVºbÛ}8{*%Û¨Ví v€9ÈiÞºÓØ‹SýæVÊQ +P><ùœ*å·~ó!à`¦~ÿ{«©ë^ƒ¼#ÉÞ‰ÀuàP&­dïâÒg®Èaõvm}NÌY"÷þo-Ûf4û¥å¾Z¥WYCK#ŒeÛ) Ú ÓŸbцª(0ëê_*±•Ñ…š#òÅäê;ô‘~eÕtèºHé>›hö‡!·Þœ+0aÂÈ#í7gR_Œ!ž¶›³vZjÎݶùZzÈ êOwo¥4á™×,:^Rr«l:%“ š‘a7æ•ÃÛé^¶¬;øáÈJK\r6îÀ® BÖŸ‘¶qR?Cœ›æÿ•y0õš¤+¤7`4„— _JÍ€:ÞÈÚ ñ¸C<­¶Rw˜‡œÂa=é…pÒ?,@.ì@§Qƒ)jur]7yÞ.¨ÝÁM¤~W wjÓßk”ükÝZضëÞ+RÕ oUv˜H¼z‡!Þ¹þ›h‹!Íj».¶`¯D´r¼÷^õŒêš8]?ò쫤YG^‡¬–{p»ZݶåHoê$J7·!+m¯Op ©’HÝ(prÂR—Þ¬6t æeM˜ÜÎBžÕ&Âê{RÅ™øÎÔœJÐð¶JÈ ³Ô‚†Ýo.CÙÈÈ\æ!+uár¦Cê.‡ ëo];9(®P1Êe×Qùh.kPD«œ‡¼A0Â6ÔtAí¤~W Ó (º˜ôuØŸ è?AYt¤Ròæð5èþš®9lÙ$?¶£ÕC<ŠM÷:)ìƒ bû€ç ŸKÍójîƒ R—£G[ïIÝyàdý}F»˜|d¥þbÍ+â:jnéD̫٦?Myá Ï Ö*V)lÒ×¥|ÌŠð ä+)v¸œ¡/Ýá™!à(ä6„A¤î*p ²~40˜§|X¯ø0´±GCú26â4\€¼ Í­/²)yÃùŒ…0ýLFÝY¯*o7Äå0p²ÒºµœÝº}ÀãõשOs»y`¬[å¡EsÙðËp,º:…¬Ôžêªì«ÕÕpræ)IÝðdýyÊžAql£&w!ëG'E£þ¸fÐHÓóxȤf6ßV¶À“O¦h6¾)o6Ä…/AVZm•3Rw x²þÝ"ƒ:”êζ>áõµøpQÖŠˆÓà-Èúè»ÅR¹$•ï‚•vCîN1špTL†Èì‚|¨õ&ó]1< ù°vµLˆ›× Ûw™ñÚ°lƒÎ]/×f…™õ+aÈ*ŽÓ®‰­ÏŽ+}e*Q>|YÐ{‚, 4q+ öaÈNHü&á Èê·uf´w-•¼å'§!«]ÚÿTzZ‚ÔŸ‰!M#TC Âêgúù Ú1*&s×Í£ÚW,Éú7£¶G ¤×¡l7y‘èˆË à-ÈmH¾FêŠÀÛõ“¯íý‰ümb1|YªQ"•šP𕚃Sù´~ lå·dZˆìϽÉsšyæóxPÖ~ˆæ!·aÑ”ÔAÖ_4=—Ç$›ˆEx7l»~s‹ô ŒÄ­|ò»Ú¯ŠÀD$€znþ®g•L™oJf5“•H’ýnØáUÈJ6ÏÌK¶%kZß2#,BNóð{‚i‘ºp²ÚhqS P¯¢P'cÀIÈ“éՉʮ\¢2¼—iÛ2¤îp6“Ö2Òa©Ÿ‹!Mbs w6%Ã[» öܵ|ßuÂdÎÒ“ù¿5¬l 2Ófy“X.šáaŽFì½9&¢-l«5«LSêyfV Ò÷zþ60&¼ YíPúv[ںʾì†6"ôø²Ò¨ Áô6´‘º»ÀÇ•Žçȵ8R7\€¬?á*¿Ÿ™ô¿|²~'*¿ù=0EÂNÈ)VCÂ20-ÈuAín?"õ»b¸Sû™;Jþ·ëÖÂö)PüÚ²oÊžE"N½ÀÝ(»t«ŒhŠ!Í*»-&WEñlÍC?ƒÈû2»T³ ì.ÂjÙ7ø^T0ámÈúcDqýTŽ3™|dÆyZËžHç—§ý:ñ‹Ï^²5ËÜUϨä]J§.é¶jù…¿/@˜ÞõS"»÷ƒpɶy¢zDV ª”Kä!Ÿ……$÷ß ¾„“•âP9ßG–Ûµ7 «m†ÒjH¤þf ñ´Ý÷}Jž°u¾¯›†”²¡QêêoÙšýiªéh솱œ²ù&²nÁ½áˆdkúûð=ÂÇõOB/ˆ½óõ½91‡º!ºn¸á…B·„Ÿoö@²¯óý0ÂÈú!œlö…l®>™S&a=Ðþó’ëøVÙô̲¬Óù]`ü»2šã9§ó}¡ µS§ÚïtHýt ñ´Ýéün”€¬?﬒ôP·„» «øÍóúͽªÔ¤ç— ¬G!MÑ $ I]7ðäNæ™U0 áµ\T&ÑIþ²µ²Â$­W.›ÁºiJ›Þƒ|O›ðèÜ—ËCJïµH*U£`ŸÖWyFý€Ë[ˆØ+X?&ÿXá Èú‘Þlýòõ²k†©º=S\ÓX1^ÑU Nt„ñÚôŒUz —K¬Â;2«jK/#ý ¨ÎBÖŸ¥TiÎ?í?Ô’æ¼mŒ˜Ø’­—°rë[ò¡õþþAwˆš•²›©\¨@ ¤V-©¯zm•k†=3?ûdñ¡J æ!·a-ÔAÖ_Ë“>èAê 1ÄÓê€ówg “ÔCnÀIêGbˆ§íçï [`ëν¦¢À¯x8£›± w ¯±ä°³Á8=†±ƒlEñcÀGwæÏ߇ê%ü¬tRÄ¥ØÆNŠÔufÒê¤.4»…>6X—ÞßHô‹•Vä›×˜R§E\n[‘gb›Îd4òL¼µ‘Z¡M‰;ÀõÇ‘ùp]z«ÛiDÀ̇"^¦)IÆ¿?¬yÈéÝEªÖö‰Ëðä6da'uCÀ›w ;©ŸŠ!žV‡?Ô uAífa'õ·b¸SYØÿÚaëŸÏäí6ñBÕíÈõû!+uŽ‚Ôî­s ɱç®ûØó.66z6Ùš&ò‡!§4ÉR-GqoIû»ÅÛuV‡üÀ'KhǺ±þjÝðÊõÎxÝð²·þ0Œ„pò‚öë¦×)»Ìwë7OJòúƒàòQÄÕíÿMÏîÆÓLÈúy¢tx rÎÐüAØ=áåLý´·fMª˜Áš[.„3]k܈Jk†³*¬PÖ˜ˆÚàä9mŠâ=j4i^,' #y²¬øæ *W´PÔ’ú)‰?›#|¹ iÈ«tAí<äùöwg¤þQ w*màä Óíζ;»Ò½Tv£ðï-:½@ýuêë[ŠçÀûáM"Ühæà{„g!ŸMÍaîù¸f8eKoÂ&:—€×!·!*©;ÌCN!ªônTÒ?,dtÒ©6ÃÄNÒN³m+ex ríºaàmÈú²ºUŽ…à,äYjùÃa½ Lk·¿Ý…ê‰Bdú€!l½ºnà!Èú{{Yâø²1Ñ8 <ù”rÕd´'œ”$¥§g!«ùóø§Ò‘©?C<š4öD™}$Ùü4Â=÷¤ÖXvQ‚KÙ¦BTú‡!+ Täš ©ëb%€P³^r °ªáût£æñPÄkœaÃQY+"–G· ëO¨¸Û? «!LÇÝ6í˜W gcÚŽÜ!àqÈJ™Pl)ሩë¶ñ*lR× <™Ië*ìCõ VŠˆˆÎ)à5ÈjwÒ7 ¤¹el—é<ÑÏ"ð&ä4÷3nSI×S•¦u·Ò²„ôOoAÞòÇÂZ˜~À¶?Ú)¥d$Ä©xrš$ÁHH]7ðdµ”›>Í«ÜjONÏAV Xš6ßWæ†rÍ\jÝï!_3çCõ÷Æœf%áUa1_ÁC‚Š[¶V6T""V>†¬?~DÜÆ;`± à¶)üÿñ°öÂ,…àŸ”@hðOêÇ0ÄöQåÌ«- ü(j‚pd¥]ÛM[wì ÅKÓ— ü(l…ðä ­oä¤n?0 9«]MW0È7Ðt»"HO¼Ç‹ÀÇõÛ{ÎÈH’ù° ÂÈ=©Žo±ª–$È^ƒ¬—Ê HÝàuÈm˜À%u{€yÈú¸{ÇÄb8y<5·£–y‰¸ÜÞ…|·=3¼ù^ ¸üÒ51˜>€¬¿ké”8¡,.HeƦô²Ä…U-ðä¶M’ÒÓÀœ>$õçb˜Îô¡Nñ'Q„éG]ÕÄ{€219<Yé¬\C&uûõcÌkˆüíÃ…æN<ïA¾—‚㑟øS0ÂÖÍ!öqSR ˆØ!àiÈJYåBR×<Y)«¢œ!“ºnàYÈ)¸:YwOêÏÅPÙÕ%¼}ÂŽZÁì‚ÚóÏ·ßÑ“zC<)½ýÞ¥ºi¢{2l=™âiwúÎâi7?ˆP½4È+=Ð¥óg2að!ž”ú[­|6ûC>ÜzõgQ)„z3KñOOሆ¿'TéŠ/âu8YmΰYi^ñE¤Æ³•6nÈ×Y8yN»Î:e[é¿|YÌs^FÝ|w ¥á5Å=î´,É?£&<Y­KÚ6éÃ6wt&1ûó™°•î…¼W…YÓ¤7xy ùÜ´‡ ²íMלR2Ø0Óê›<ç‘°i”ÖhkºlñùýÀûïkÛÀ};/ÖùùÛDùâ[m=óãšéSò×–fsDß,û"¶ñð"©¼ˆü.Ó¿ÝÖ¦·Ët«vUY'GDz{!+™©œ“#u]À>ÈjwÒÄ?=.ã…©Ýh¹Bí잆¬–2¾YíqJ® OZ\òÿ½åUª+ ‡¬4;(_]g€'Úo’úÉâѤ±ÀD¨!Êe­X%îœìZÅñÃÓ0ÜkRV}?:ëfÅ‚¿¥Ù…†¿’}¿‰ÀÈ Ú¯“c¢ˆd]âEXÈŸfD¬2÷âä’ü ÆO€!ar.µÆqœs<5±>„œæaŠ„BêóçõˆìÄ©CåÃr>f!믴I»‡Ÿ@;ŠpA¹=m ÍH²ûÉL€|@9 ܵ…Õhð…¹^ÞJ4qZ²¥K¼ç ëKFœg®3¡>[$œ¢{LÊœ¤ã‹–¼˜t§þ—a„£GSó[Û Q™ކ܆D¤n 8y¦ýNŠÔ߉!žV;©ŸŒÙÁ]ÈwÛï¤Hý½âIÙIuU}K’Ø_É„>‰°r¯²êßBhrÓ­޹jPJΡeËq+GD¶ß|}ઘ1†¸ïÎBÖ?ks—1> µ83¤‘([Uä³Ï­à¬M^ÖÒ‹~ùƒÖ»Ó¿‰¶JøÈ_h¿#õ_Œ!ž” nZ1 ®g­JòûY˜ØÏâû=!¦dn³ÍÌíµáYt£i+ŒígA„pòbëíga`„/!¿l¿±‘ú÷cˆ'ecëá± m½’ul ÖE¸²R|Ó4ÝéÑøÚb4ˤÀð ð"äô¦˜ú³a¹™¶µæºò[=‰Õ5àMÈmÈxAê.§ ëÏÒ*e)# ÓÀ;õ‡ òÆ;¬];S³“=ÙŠá­Ú¶´^àAÈ[o ¤® xò!íZ9Ë¢M¸–ÇÜå×–[óYÅ4 J÷ Dí0°¹Ðú^áoÅìdòpû{R?C<í¦ñs(ÓÑíRH›öw 0ý”5ʹA‰Nð0d¥È_®ý’ºnàÈúç/ŠQê4ÜÓ鳨X¢›VØæíá²æDt@ÖßúÿpÅõ̒ዽ>+ŠZœ²coˆà´ 3Ϭ v¼$¨²7tÓñr´¡]öUþkØ ¡VråM¯rÉ%öë–oF‰{DÕðhš:‚l[:q¹œƒ<מZ» ¼Yÿ¼G7óMé£'Dáð1dýͱy£Tr=qCîR§Ã2–'6}òöU7tÚækÓ–öDÿMXûõn¼‰*Ôü=¨Ž0 fÿËøÅ¸’”þ[Ð Ô[GhÖÂ3(™£À“O¶¾‰‘ºÀSÕrŽÄ?j5ÑíãQRŸá„FýÚY‹"ª§ ëß5ÐJ“µ¦¿ "ì…Ü›ž¿VJõó÷ñÅ¿C:˜iË%Ƥn/ðd¥Ä$›§¤]釜ÂÞ,îF7õÊÉ/À0ÓO"£výq9<¹ ûjHÝ~à Èúûj‹å°0 ÷, y@‰ÏIà5Èé¥ñíÝ•«²„I¬ŠÀ»ï¶§²®ïA¾§]Y»•.$³ÀyÈóÚ\.„'ÕD>~7Ž­ÈÒüaí ¼ùBjv”-åÏ]ÏÑ•Á¼m:«ÁZN4ÿÁüÄuºâ}PÖ´þa&\j ÌAV:(gZÿeC8yP»:÷°\­ªp.’X\!S«µ}~Í{mZ¶M«z Ìnç §7öÚµT}µš ux²þÐKzô@êÄ&¹báæÐH>Ü=ay~À‚u7~Rm&µJ.¯¯*¯Òzkt®eP:"ùG0ð„JìP­ÄͧAÞ‹&°ò±ûÿÂÙˆøjŸ$Ù_AÂôOƒìmø/YOE„ ÀÛpa*©ËoBÖ¿0uoxˤÂ*ñ˜ÎAV3¦¦ã×°‘­›œ {Â}ÓܘP7ÿöI˜ÞžÀ©Fö€¦sÜÍ(Å4Dûp²~Ls-tju‡FÜËž[­†cîe—v¾éKû±‚"&¼Y-HŽ*Ý-üS¨Ž0I%iÿ ªÿYª4T&û Ú Ó™ìo:ˆùtéη#yxòù]DB–IR×dYë=©ë^€¬6ØôéÊØ–8dW!ëõè’¹l·#6œ„<Ù“(ÛHº0½@b”A—¦@d]Q™>„¬¿²zï£ïÞ^#Šn ym(u˜Y¢äõ+©£{÷dßâ¿ ­Qà=È÷R«ÏÝK¯ »Ö¬Bÿ týrfGû!RßC<í¦ñÏQª—y—“ºt~%†„âÑ,•aÆîb”Ý<»_ȳGŽiÑQŸ<{YŽù±i—óìIåFGF¦¥·ßÿoPn„ǵIPÒêçÈ.ÈÛ›8ƒÈÄ•}¾Xó K×EšV6Cºýý÷`J8yD?RHµý¿…vÂôw=ì³\î£<«$»·—øôBNsEƬT×ÔvANaEFú> Ò?Ô[‘iš1qrBÏ9àyÈi†¢Ë®]NP{È 3íê8ÄrãƒyV*ŽN¥›/ѹ,BV›üܤM¡ùþïÂÚ¨×|éÓÎh8¿´h¾©z_çÇü¯œ÷cÕœY®Yvù+_ \×ö§§§_”?¤ï}Xv­\öb1;øuüV)ùŸá ʼnñâÐÈøèH|a¤Xœ*Þ$¼fïû‹_<½ÿ⽄wí^ƒ,=–¦oô½UºKü ÂÏ»¨½Ð†ã¦‡¼ólÄŽåí V0ÃéíkQkôç?„?ë~«m¼ÿr~Aïî­fŸ÷Bš éøÆ¯ÓÏz~tKQDÛóü½Å…/”‚¨dÄ_ƒFÉônU°ï6JSl¹~gïÖï •êð þ¿/}\›x\~!̤8fŽŽšÅ±åñ›+ÛçóãÎà­êêáÕµ"6»&~åÓ¢Jþ––Èrï¿x2ÍÖ‚ :=<ÌÿIÁõV‡¿Õ¿T°‚~àG?jXÁþÔí4P&Ùi·mpKU Xn@ÞP¦ØµµéPe(0úvà7 C…QóÉ™%Ç]öLã•_5Jæ×¾žDîó_Ì%ûnàBþAr͵.¹µ Aëwò)Ig‚ý K¶…¢ûCÀ_€ü Ê–Ö½…|Ø*[´êôK)5cÛ³äÛ†¿¦deÑ`áW!ÿj[¬,š"ø5È¿¦T›> ÍG¡^þ%ð_CþשÕKçÒBü¯À ùß¶¥Fþ'࿃üï´käЧnÉÛTο~ò7S+Œî¥5ñ¥¦joˆ$’,_5Ò¹µ÷qƒ|It ™CGO(wô(›éÎ9æŽÀÛ¡Üq[¹\·’WlWäw_ eÂ6_Ò}u|Ê„)©íY²VLÛo6yJ&^âo eÂÖ+¦×õLcàu=£8ðÚÿ)†oý–ÎåL “­ñ—¸Þx4ÇìÒ4þ*2ÂtfÀi¶Ò¨ÙyöôíYÕbQ~Võf„ 2Ófyˬjl>5Ìë:C¶å˜†Ç<þn…™++Ü8|Ì¿®¸žì‹ü@ž0½PnÑ‹ˆ­Í"óD€û[|Ó³ÂÈ–³"Œºæ³²å›”8LJ.=ÕôiÂ[oi¿€ÊTÓ¯fahú3Å‹X~`•ÄU>OÉH¸)(pì²LúK× ³Æ¤®˜ÞÒµü¬1éÏ/BN/ÝDçØˆŸk@t©^m0kLê.óõOrf¹âM‹7‡ŠÅ±Ié¶L|†€w ßÙ‘¶ükaõ ü M¤qddtØ·*…ñâ ¯µí4ñ¯¡ž‚,}B‹¾ñÿŸ&þÿ‰iâÛõiâ¸å%O Ç¿¥3 üäwµüG>u»kí4ðûÀ/Bþ¢2Å´¦—€BþP…Q«¦M ÙW!'=ômÀr \$I³ ç¿…õ+Õ×€? ù‡S³¬°S0®þ(äM͸t¦}£ë…ÿä¿Ô«úÀŸ€üJe±© ¾•¹lS3? üÈ?“Zl;·-ƒýuÈ]ÙJ;Sš[¬'Ÿü9È?÷¡µG‰þä¥ÕÕÅ¿õi#ÅíŠôßÿ#äÿØãú;Àÿù?¥¦ö[Ì>þgÈÿ¹Š-& <Y)ßÉ¹ÃøKœn<)cû–øwLR—øM”ÿ ª-ZSš1¤o oDg~v§Q.D©3†x4´Ò4þOx§ÕçT›¹li:ÿC&¾EˆG³T²‹æ²á–A“c¦'æyŸZ¥5ô 1û+ËóDQf!gS³êž%£¬¹^BEÝBzsàÒõô¯`±îõþk”@„zÖ»u7„4ZYÞC<ŠtÞê·_[«Žf.»¶¶6žM@'›¤Žº8y 5£M<‰Å „Ç!ëgHéV9›DNÏ@VJÎß´‚Nm® Ũ˜V7Ôªê"ð6ä6ÜnCêÎg Ï´¿Y“ú;1Ä“ÒÛó¥i¶ï&´`²Ïÿ9³£î•ÔwÆp‡Üëÿ%¡ž{]ù´t[Åÿ’ —¥"Ä£Y,£/^¤lœÑz¤oØ×1m«®cà°Jl™Ršx´é‰pòhëê3‘Ç¿…îÓ1ï“tŽ'—m”[A”[vPšß¿'“Ojó+òú ï « \»Ì²eËYʸá˜ë,ë~–•lׯß®„EÈEmÞù˜%Þb <Êyæ¶–µ|Qÿ:h¶!ec"ÿ tG˜ŽINð*_5Ó£½âz•/C:x˜•ªë¶ˆhw¸Á&à#Ȳ|µÿð%œ€<¡Í}l¥ÀÙPåò¢ 8ŠWÈ}G‘]gAž-Îó¬Ê‘[ž™•¯ýÿ+ØŽAÓfþ$Ük™ۖä Í„Ò ¾£8˜gôb±Ÿ‰7å?^1*–½ÁP¿½Wþ•þox Â'Õ.ŠzˆÒŠˆCÄâí¤yýßÁ…ðäCúCZäßáeM±fÌ!äCžòøÿ9B­1­¦GøÐa:a–WdÙåMþãšétøæŒçQž‘“Ix ^ã¼3Ø[7ÍWòÞá?;á,äYý÷ žTíœþ"g?Käs¡5ä™ÈwÔ°…Á¡‰< 6ªæLÖsmÛrV³‰ùÐßã?ƒûNõ=¦X³?"iÁ /˜É®XÜ7góŒwÜË®oÎÌÏ>Y|(o×ÿOp&œ‚<¥?þ¤zæòÿ‚~ÂnÈÝÚ\ú£lþaª+iVÿo0!ì‡Ü¯ÍêÒ¶+’úÿ€áÈvÀýèŽ0w4ÃÝ‘oU(½kÕvƒè†©‰ËÂ/‘ÇyË/1^˜¦÷Ú Þ„3õÇõÇù;P%RR±ú] ²ìˆ ýO`zDST®Âöòâ’Ÿ‡¥Üha"?u£018\É‹;lü‚á­úQX2(m©°ˆ8–”Œ´¥vt‚G§¶¥6»ÓKží­ék`JÃõ<·ºÀäý2e¯çA¤­ç͇mÓ¶>¡[íÂ{Ò¥)cCŸÀôFE­–+<·€âøKï-¨Of3<Þ­9Ö›,»r…Y>¥êÍEo1=]6³ܧüî¹Av‡,]ŒÀÇxý›ÎQOínÕZqx£›ºŽ8llÒ$±Æ*ðHžÓ“¢¢]qYïA˜^œô@1NÊ3q5ÀÌè ‚ÝDgtàU”R¡6UÛ»TvÀ_sל©îÕvbz΋>ìl`«§`yìEyìMµ<æ¸åmלÞÜ< …BÔB£d"»–è&iÞj×äç@;úð"„sx‘9í9ÖÌIsCš|ÇÀM?uÍ8µÔšã3÷i½4ulJ8êãÚÔo7õ:üOÜ8¶ŽÌ.…‰Â¥_ѽÀÛx¥Å®M¯p%VúaÙ¹Ð|Qøƒy61¨â1>xd¯ì€_8Sõ ò<0¥aJ<ÆÅ”½¸Ö……wÜ4¿§.>k#Mý0¨NµéËù%šŸ i‡ƒ_y3Ãú²Àô<’|õ£©VïŠáyeËîk“ÕüØÝ=¦]tF“pÙ¸ßÌÆk[ÞÍ j5›^å&…©Ð1¦.e‹¥ Üœw2ñXi"ýÐ'¼ úú =ïÁLßðñ/•î%>P6½×4h®Ô¢Ÿ…ƒhŸ¬øOÌ7Õ\øSßR0l ðÞÃkÜÛÃ>'R5l²ø+‘ yG£×6EPá-2VŲij¹‰ôO‚þÉT­á÷]ó!dž‹¢¿ÆM#àðVØ’ŸQéKOá%ïà%”öyhÚÂið8­m éLœÐÖ¤¾¦4qò¹hâ$X3V¯hî¶ê3)ÂPQíÍ´F‡¡|}ŸE9~åü¹4‡†møË¨ 0ó 0½÷€˜*AQËwYçAŠ0½9ðÅÔÛµü­gGšþ 1?Û.â͵ßì<½YiÍ,½*AàYËâZÀšÒ,/€%!ê"ÅÔÛ΃œê¬¶OÒóE¤¿³;6råqq‡Ëãx\J•ÇTä›­o5ÊQCt7‚ü dÇeð'Lo±âÒ–ÛÂacY•7¿‘ÂÍã“ÒT1¼÷¥¨rÜKaJUþ´ùhKA¶j0”Ã;F‡›žþÆ ‚>azáïÂV+nÛ¨èÞ‡pï³°¦~<®§jê´oLÛa´ï:ôt±²Žævô&˜±^'0½Ýx4UóÅ­ÙߢuŠCôòÔ‡@0½™¨©­æüiGrÒü àO˜^§"o¾Ãà1œªùÊó‘TyО±YÄ`9Ê÷&ú¢õîAö|á%[³øHhÕ3*õýk:³£E¼az{FöV-Å A£ D­†©®Ò«\ì—0¥ÊmðâjUG#pï1û'€‹˜^ð9²Ï&Ý~µÌígÎVeËq+ÙV…“x/Âô&IäÍüxÜHÕÌåy n#L‰Çu:ô³) aÅ4|›·:íÓ>èF”~ºÌ;œpŽ»û€îÚ´lߨzÇÄí‘Ë^™f•yüEè5lw]Þ §ñ„;97‹Ä¦Tý'Â#K¨óL^Ó+¾ü©ƒ¬W Œ–ôo˜—/&ôЦØ)ÑéC2@*Ñpacs’QË>ÝtÊfÅ*‰¥[n¡N ý05éuJ¨è§›Î§H“» r„XŽS;@ýö^‹-cšœüa×™gåÂyXË*gUæ]ïáÓÛkqœ^áíã>ÒìPãSÜ Lìs3»<‘Z«kMðaÕ]7=ÛXÏUŒ7¶±Ê6¡RºsàO˜Þ8èñOáˆT²ø LÏYÝFãš·Ç‘¶8VÚŒèžksþñ¦(ÿ X¸˜žýÊûÛ‡àLÉßžFx˜ ¡}w g*‰Ìƒ%áy°<¯ÏRì¬oÔzžNO‹†ôìý'OäëôX>J•¥|b‡t„)Õ)Åma¶nÆGv´»›å,gÈ7h`4ØlLt³yfÌ‚¼ Âì¡Àôâ6Ú/-M`L„¬Üb=BœªŽÍà….Љ1-©lÅ/B¿šÂ~Ñw·Î‰5Ìx]¬JùØõÁâ"M³̯Y±l‹sÄKãÅåíü]¼!d´gùâ 3‰óNëòè6¶3:yCš?NÕ L¯w»ù©øÛî*½@ÄrL~9 ËÓ›0w3ÏÀãYªnFl©s#O÷*ˆÍ}“÷Áe¶AW%Œ¶&Y+<\ÛiI>Z¯B˜Þ–º§ÛYD}îzblº82Þè{²#cã£Ù­6/ýNÏñN„魌Ҽ’Ì{ÈÇd‘ÀQÝû~/RµoyØVaJ<&iâh^´ŸŠKøÜꚸ{Á[|FÉp {÷hë²4ù— OˆAµËê·Æ"©Ã¦”oݺa×Lç#êÖ‡X8EÂ<÷ʏï’~‰÷ñ„éÅ"Sô¾i ¯–Ã.qoˆÇ:¾õšÇTe³âÆ™û%ϪòSÌŸÂô:¼i¢R»,7üÀ¬({ŽþW¨ÁZ.K_âÎ,z‹Â‹¬Âxô¼!&ô5_`<épcU£ôÊX»ãùè¼Ù@0½%ѾFÙK3ú"â0S »2_•N»Àr ròåõ%°#Ôš:iª¶wÉ|#,Ͳ¬þ/PýåL[~B¶2¡¾³;”4­éö#Ô(f9w‡‰Ê$9}%#–Jö‡²Z‚‡¦Z÷,½27Ö]¯É}2Bcð Jã`û+…Ôj`ô¤T)Ýk´£E’ÒWQ'„P'ÚR'_E|5“fºé:ùjø½£'­:)Ó,•$¥Q'¶½N>D|¸³uò!êäÖÔIgàKòù6Ta*D©Ï•®oC…âxpüR¡vU©ßßÀèQ+€·¾%r¼¿ÕŸãO‡×Îdz0úÆÖ¬éô³~únd:ôMð#c9ÛàÚî‡x½•#^òÎ¥áŠá ‹¼¿¯ Û*‹Ù‹BT¾ývò(w½^À\³¸ ëJR_oó_âå,& K£žVȵ•½ÚmX›(5îÄšý•Úwü›Zf‹a(߉5£RöV¥lV­z‘/ÑJŠ­’[¶œÕ„ÚŒžC ŒjóµÇ µ‡cˆGFÓKßhªA’E÷{û!ïWa”Ð3”ÝÒ˪™ ¹xòöW ©ï!ž”ªdwØš’8%\\CÉ[z€û ïK­Rº—(™C‚Ú`ÔÝ(Ù‚^tÁ "< léÕyû=ÀýÓk&»—xWg4›ˆÝŒ¹“dF„êD‹F,Õc³9IËèÔ¥³†!ÍR™fì½R©æyQF¶çµA²ì©éðÞÍ-¹¥’a³¸ÕÙrØ#Óã=÷†,dÚØdZSÛ¨+°›ù™¨'Ü£]ZÕ·'´:âi7^”@„zFݧKcõ:ª{ßø§Ò÷Ǧ†ã¡B[zÄ }¨§>L¯já$tÌ ÷‰º(ûc?d}÷;)v“–ã‹5*æb»Jc®¡z†wÛ-Õ·Õl³_`»z<|ù¡6÷GŒ• ?Zsƒ¬lòÑ­÷¹…§hPÍ7ËlyC¼c°î²Šë'.^$½Ll#ƒíV„š/3ÄhsZ…ñæ7X±“ö©ú1/}!{,Ëà|aJí¨núy±pch4?>=_š «ÇsçRlO´;,Amxò}íjìf¹äêíªçð1äÇÚTŽ0Z“vW=·Vesƒ*w<Å¢ÍèúK”ìfÿ}²›‰üèôüØÐ˜¤Õ¥SÀ+¯´ÞjHÝQàUÈWS¨*n5±Úº?Xµ!"”NCN/ŽÛ·T6ÃÕTÞ $ ˜fßÉhŽÔÇÇò;ÍD Dئ!JbÄB“]{b˜Î¥?ÜÔQ —ŒFÉÎ4]¦ÑyÔ|cµY MýEm‡l5~òÚj”Œ0!)¡¤­Ô¥Cé¢zcˆ§í#Å@æ34ò@¶qäA꺀é<Ž‹CÍ|D±üeõãýß¶÷…mWQW +ÅšÛ'”‚ÁtmmGYY[9ûˆP½!53à^n½äþï/*ÓAà È'R4aÛr^%¨Ý < ù¤¾³Uª•S1ÄÓê|<4)§!ŸÖ~ý“,gˆc€á1ÖÆÙ*•¶s8y<5[Ým¾&R*Uu xò½öTÕpò¬¾?KÜïº]ÌïCÖËûÕØÙÊVtÄ~°êYeYÛ 2½À6vĤ® ˜^GÜ)=sÜ"š>˜Q]HoV'´ÃZ¾:š<í¨ŽÃÀ“õ;¥Ë¸‰Â)à9ÈçR«‘ž+FàYoTêå2ð:äëí©—óÀ<ä¼v½tÉÏÉ!à0äáÔÞ¿g‰òAÂ(ª#Ó¸÷w‡†¸¤¾3†;4Ä=…ˆPoˆ[Ó¥CØÞâÑ,•ÝŒ½\3™$dÆ­ÈîÞéa.‘Ù< ùpëÝ©ë¬6Ùÿt8\Wk$ð²V¬Æ¥j4ì]§âk†Ï–M3ñh÷vx8yN›ô Ü}®–=57L™3ìËŽG l/ƒ…A«i–~Ù×9 $\€¼ ý:gYã®jÎϵkñ’ÏÖ¹Ítw6 %2—€ƒ[ßdÎÅžk Ô¬®Ó,GG—MJ¶E†´,’ø•™%Ý<ˆÐuàCÈú Ïò£˜ó0ÂtF1ÍŒgO°n9~`UØõ£I¾­'aR†ÔõcÓU­6ZRוi„ˆQiÚÄ™«~=eW˜Û«>"7³“ÀqÈjó!ñOóŒ-8ao³âÚ¼mù”·‰… {Ëá`Ó6+*38 6MØä®Ï™Á!2cÀ›o¶Þ¾HÝp òT £tY+"ýÓÀ[oí€ï»{ LÇ÷mþ–R‡IdzmœÁ!u]ÀþÌÎÍà\À÷? 38ÄãD Û4ƒCêÓ›ÁÙW™Â!§€ç!ŸO­JT§pˆÍ`²’c—¯Œ|©Ú†µMEO!¿Bµ€EÈÅ!™›ÀÈ3í©•QàÈwR¨ù¸žÜÎAÖöflÕ3€vË&Ýs*¹eÃ:xòam^ÒSLÑÅ> ü´­ëÝ4Ó‚®Øx.©E‡Ä©ÛuÒê6D꺀•ÆZ[fÿÄ“BõFë¯g”«GÏÂ%˜l„xR2—EÚÔnØÏ]‹›Ë#0æ½ú8©2+ç!ϧf6ûÄXyq\l…IÐ=¨ë_”jêq ñ´£ñœ.dêÓ„ív¯¤þâѤq›E{¡r_¾X¼9ŪžK·\'Ì`Ê>_|ĨlØØÈØD>œq¥dwLò ps™À&©5[Zç+Ù(âñ89½Vճ䮿Í,ŠÎAÖoP‰»a·+€ÇÀÈú–=Í¢ã=tÏÁäØ$ ûÊ<3ÒZh>"Õ¬˜¢ïðO)]b~·$þW`D„ZÇ5#Žè^9Býˆã¬®§ ûcˆG;bfÒƒKêÆ+ mÓLA” qZZ°?S?á&O-Z¶ÛDéÆKÊΈµ:/ÆÜÆÉZÊ"ZóÄÒsj•eùóo– é}¨Dþ0ð1dý3<ÃT€¾%Ž{ÖªåØ3îÊ‹‡ ö~n$_ªg‡æ¯‚ë$ð:k†ô« Â<£œìú‹&óá«Ð"'%l <£DlEºkáPEá[vèªDnMŸå¨Jh-Hö]®?áD©¨ßùto¡táa8HâÄx(ÉVø˜ÊõÂy›{ [z#Ñ< …<šZÇÓ•ËÊö:Äd x ²’Ë’ëuHÝð6dýÈJépQ˜ÎBV;Ö¼Nî+ÕÉcà;•&Àåëdø.äwµë¤CvÈAêŸÄO«½>©ë>…ü´ý^ŸÔ?‹!žðú£¡5 l×ßmVýB ëö‰Sð`æ­ÌÁ’n¿s §Ñ§Æ«R«4¶µÓ-4£FûÚ=ÃY5ë÷Ö‹ÀQ:Æ…fÂh×ò©0P|LA-ÝØÄı1Ý*Û£ ã cç{ZÝGÑîHíiÈú©¥Û ©?C<;ÐÇQöã­oƒ¾lG»oI,Fmз¤ÞÇ¡˜ð>dýqïÉ·›àèÈ{U‘m¨m“O¶¾Ž£Õ‘ÚS•¾^ $õ§cˆgZà$Ê~²¥-p—o¾‘m“hs„2õ„™Ší¯w £ë‹æ›ø²¶H¤1"‡€· «Í’4=¥“]1+†mJGÝDg¸y¡õQ7©» |²þnéGêß!M{Cw¨0*»¶F¥¿S;ÆÛ´ÇË*™È X+áäÖ›©ë‡¬´@·ùHU¸Ô=-úQß­˜H÷¬YÒkÚÄìp ò˜6ÃK¡õXNxç`é¢cãµaÙâ¦cÙ©ÿØuºñý³)ÙUç³YY›""×yÈm8@ê.‡ ë_`$ýà0äáÖÇ9äæº¡v$SŸïÕ}}&ÛpH8š©O î@ 3…Æ@غ@§ÇX5W½ªl¬C¤ú€‡ +¨j:Í;8Æ4«ÖkÚ¤G!Ý &‹Ç@²µKtoC֟圄[¤xldh4ÏÆ†Š7çg¦8wê´:$¶d©¸ôØ6Ãf×ú~†\zl¥í³áÒ‰Èu`]:©» ÜI—Nú£Ð6ºô©L}ŸHŠ.]:&õÅâÙÛyÞB¾îÉ{÷ßÍ3?0<éy\¢ÖÔŠl3ÍŽÈŒÎÙném¡ˆ ^&ž³1-ºiç§ÊŽâ} ø.dýQÓãÐIŠnÇ´í¤­/oíh›ahWƒUZSI3#!| YÿÅqì¿K©”uÄY¥½ ²^åÝÉ4½5ºU^…j¶jO@Öߥ((’þ“ÀSõ'æTÜÊ]>aëÜJ_Õ­–MÇ·‚ Y§BÄú€Ç +=lêT®=w«5; ]@åª&B\3<“½ª 2#Pi~wab„³Õ¢ãŸbcxüŠ™Æ†§Ü–ýDÕ·ß-ü¾ì»ÜƒaÎCž×~—ëá»DÛœšíßïi–¥ƒ–Y$Œíoµ{¡ºî†Ú|¦¾éµÝA ©Š!m/Ç$yÌ¡ä ;!w¦V ½KQ6ž&ª¯†m]¨îj<í® R¿+†x4iÜé y[!µRóx“ñ˜Q{cÙ–ámð®UŸû­À(­™e¤—Ãq¶«"Çžì‹ÜGõÝß,k¾Èƒ0,¢Û5ý0»Å:Ë&ßÂ% ƒX®ìƒÓôÆ~øÆ%‘v ÌÊ5Oáɰ°YÖ|“£âð`”¨.É,v|(~ÓDJ#ß¾l= }6ɯ% ‰ÑéLãÔéé[=&uÇ€W _Ñ®ª³áÝ bAæä˜%Ó÷©á¬¸ž¬5µ«ÀûõÛÅ ÆV¬ ˆ¦¯DRLÑ$ÙÅújÍ#S*ô͉èœ^¬T¯ræDêN¯BÖ¿Žê,,›aØ»öI1Ð"j9àÈúÎI¾çŽ]Õ÷™¸ ƒxôÆOJ†¬|AÇ#|ïQ¦­tº½À“™» ƒôŸŠa›.èxš”Àô.èØ3$ºéGÄâ ð"dµ<,ñO{û@ÁáÇæyâ—§ÔNN•\×+[·ÉmÊ'4(k:Dððj¦~E`«M‡Ôíæ ç´+ëBxrg9¼–z‚Ü›üÆ`}”.½ZCô3õÄB^Цyˆmš.7õXá!ÈJëvzƒªw :B<Úa¡È _Ÿ°Ê¼Œ(ÿ¸G3¶’ß-³ϦÖwÑÁNÙGT.¯BnC‹#uç€9Èú-î$MYNÙ|ÃÇF©$ÜÒªBʃwѺg!ëÏÒ †ãÚðÌot+V‰6½Vjª†M3q¯Ì –“¥û¶ô$³)óDÛãçÐM˜~|80[ l«D³ÌŠIõì—ÖlŽ}@™)s¤·ÜÜ3ß)Êîçÿ¦¯+À«•F?MgÚ;k² #ˆÇ5àuØ•R^úæZ—L§” õ0Yi†vËÎ[ßT±“!àØ §öþ=Kå¤tZOCÓX„<¢9Òu¦ôÈ“HŒ£mLJ™14=˳Цê{–­­cf-ªÓÃÃe³°n½²ªfÙ2 ®·:L®»ãnçòý±Ës÷·3¬„[·éöç!+­š$4¬šg'híÆFJíÒHýã*'=ÜD£Ÿ‰­PaÂYùö=a?ä~mR]Lzý÷9”?GudÒXž8†–¦ ë*È6ÀÏat5–ÒzkšÙ4ˆÌàÈZ¼’º`rV»š®Fi)üä(| &kSDò"p²þ q¾I®ø†¿Ý“a”ËV[ø¨ù5þ"Ë®ûê•iVi^ÀðÓ[p>͘xƒeãù‹”ìZY!…ã"Hž†¬?%ß]¾„nBýîr®×'ûcˆG7ªSØ×ò> ƒ°…Y. Ï4dw´¥>`F7ËÅÖÁÓ±YN)šè©Ïf(P< ¼Ymå-µù ¢2<Òú.€Ô]!ëo 9¥h‹‘e»30=ésÝÄiø²R¨—P$ »\H]7ð1dýÐNÚ×ú…âÙ_óùÐÆ~&÷б> þº][ˆ]o¶‡ÎrÖŒe+0è~¬Æ~:Ù:&Â'€sç´ë‰bë oPD˵z†Õ_ξ\Xd¹y³lRL¶ð×ó«Äå÷h:Ï”NZý ƒ0½D±³oŸÀÈ=0èÈÈX±P-ŒŽŒÜdü§ü iúQä_}YîÉìû£Ò¯ñP'Œí²Ó| l4VW=sUlîá‘d½óßgï¿\“Þ øE$lãV@²Øn¨Mo+ üNcÒ?,@.ì@ ú%=¡V ÚTë¶{)í‚êÜ HêwÅ0½€ûÀdkÆk“¥€»ì q #›23œ qLb¨lVi$籤‰Œ¶Ò͆²/óeT!al³ˆæËÜe죚0Óø ÍòÅæE§‰11væ<³\+ñO†î°Ãë‰}d_b Ä ïB¾«ýÙ–{s%Y}L¾Rÿ¾À”bëkö†©ãÀ³•4¼(¯Áµµ‡€ç ŸÓ®¡\˜~æµaûÌwÃìðët¸ÒÁm¤˜ñµ'by8Ÿ©ïqÓd;ÍÂcNgÒ¾~qøÉ4|× ×sâ<o#¼»ä¿%°èjúƒÒÓ£_…µ¦w/…Âôè‡PN˜Þôè¾pz”níØm”ß„û ïK­QÊßI<ŽÄO«Gän?ð(dµ-ÊñO¯lžu—}jœÂ}®[NÙ]g·{Y#"ŽÇ€Ówâ–æB¨ù¤´—’xôÆOJ¦Ü_¿8ÌÞXu_¡°Ž/CNo§ù·º1Œ´î^¬6í¥_EWcˆ§Õ­ÛíK`²þ^S¸©+Ï¢ž Y ¤ƒNâ5œƒ¬?glÙ­9eƒîrЧÚf <,àž'ÜØG¡´ôF¾å°…Ô»ê;þ©¼*A7¡¾ÚÚæs<\ÌìöóVMןž^}ß1¼÷îÂsõ4æeÛÑíŽ@i};(Áö £ús¾ò—’“þQàdýR²¹¤½=¤-¼Yÿ´Y× ´g"€óõGºGéò¶JÕ¦]×e¶¼¡rˆrC˜þ!Ê£·²û¼å¿æpgÕ¨(0< <’šél³ßþé1`²~·v˜ö*oúÁZ…åÄL½¬1ÑoÞ‡¬oÕÇ›,L^Œ¥¢2¤×ÁWaA„R³¦ýOêâšQ5=Úƒ(éˆÒ`²R°.åHÛqà äAíº:Àr¯ l¤P,oÈO[—kÀõ·®g‹Â±‹tVÜ5 áÈ> Á:<YiFU.X"uýÀóÏk×‘Ò !D/A¾”ZÕìÇB*Õr8y¤=ÕrX„œJ—@ibwoÉ6iâ3 L¯K7[a LÜ<ëoøY)¬X¶™ËúÔøÙ<Ë6ZwáÅ#0øÏªF镱jÎdýš÷Ú´lÛpJfVz@MïÑ \€¼Ðz3#u]Àw ëgÅî”î)Hÿ»À'•.£Ñ]àø¶ôQæ³²Àñ ,Ó_àèù¸bp“~#k¯Äæð$d¥1¶œ½’ºýÀSõÓ³í¦C‹†JÅœ2ÈL¹b:3Í7—õŽ.…—GJ†¡Dë °¹ B¯ùþÚQöF‰R8y"ÅÈØüØIÐz8 yRÛfár°ÁÂ$ëiˆÎ à#Èú5Ñ–³²EÇÛEŽ>²r\x†ãW,_ä@Z6ƒuº¾œÆðÁºËVx(@Wïùb]\+/í¿íÐDjí:iªuÏÎ5Ñíñ¯ñh£ô¢ šp„xÚMÃA D¨^ÔèÏëÒq3a$!}_xú \¬ò̪ëþtt¤û…¹bz&e›½O½mx{ÑSÓá­Á-qÛ¶XîÙ‹/=dCC²/SEyVum|ÓËÜdlÍõƒÆ´Ú³jxA…¶ƒ¹+ìñƪe:¦N=µJž»l¹¶»º!=1ø1Æ.gÐdޱwj¶Uó‡Ä=R”çÎñ‡Þw,‘p-äèá9ÈJCàoq0üÇx]^†¬40m~0Ü=N]àE•:ý--‘åÞñdšEÉÑ]K¬]}«5¨`ýÀ Ô°‚?.bng§Ý¶Á-Ub´V¸yC™âÖ\»¨2ECÍo@þ† £æÙ:–wÙ3W"üÚדÈ%Ì ©ïþ äT!—¤»µ Aëwò)ÉÛC(´hÉÖ Ptø AÙÒº·ï[cûGÀ_‚üK©Ûž%ß6ü5%+ûï¿ ùWÛbeÿð× ÿšRYlú44…zù—À ù_§V/KC 5ò¿ÿ-äÛ–ùŸ€ÿò¿Ó®‘CŸº%oS9ÿøMÈßL­0º—ÖÄ—šªý½!’H2¡¢éÜÚ{ЏA¾$:pš©£'”;z”ÍtçsÇàíP&ÔˆRâßRlWäw_ eÂ6_rÀt|Ê„)©íY²VLÛo6ûN&Ž3ßÊ„­WL®ÁLcà…‰ù×þO1¼xë·t¾(gR˜­¿Ä`&íE“¾¥úÂR³#4ßêûÍ@¥¥úÆúF´mhwåB”:cˆGs&CšÆoÁ;E¨·˜Ò£K‡¢ù½1Ä£Y*‡»q»$­ßŠ’!<ùr)éçS$'bˆG‘ÏÖCùnj¢sxrš9î¦&u'9È),+ÕÊ` Óuu‰'‡IÝaà5ÈJ—)n¦çÅZãJͽ„lC&2×S§´IÉOÔþ¶Ð¾vBVs³ñ  ·†™ÁºåøUQ`×€¬´ú#×`H]/ð8äôöx&*©ëž€¬¿Éó˜X)Äš¡Ðéà‚tr¢t8y(µÙ³ä›&í]JèñÈ(¿'£ÛÇ?•îx¿í# G~;J B½päÞ§¥“èÒ¿7Þ\!]ßJ½k.^gŸM¼%‘Õï@ÉöCîo]e%òøÐa:¶{ô"›3|«¿aFšÚ÷¡Þ6×ø§g«žå¹°âòÌ™™ ]Œ«VàÏ$_k“ÈñûÁ‹ð,ä³;P¿ º#L§Ï_dP’Ú è°zH9f7»+ÍòwƒáyÈçµYžô¯^ŸãMA¤œ—¯Í'“Ojó;åÓÃKœ›ø÷¨$å þ"<Y?Ã̵‹læ ‰…ç+W[³Êe“î²k'1‘u"áIÂkõÛ¬oT«öF“"͇ƒCù’ý!#ÌBÎjºÈ Ò{µއUÌ`Í-ûÌZu\Oä3÷MfÔÞPvoC¹ 1§+p ²~°.ïˆ~tG˜Ž#:u‘Ù®ûŠŽ´Ñ,À£”0Ìuì i‚¿¤~ªMèjhŠs”Ìܯ-ûf£‡TgfXvN!Lø`H¨—Ô8þiñb¦ÈÄC­‰²Øc¯þÕ°A]mÜ-Íû‡Á•°¹¨Í{JYšÎB½$äz­#Zº0Öqá"óM›÷È¢Eˆ*äN0`Å8uiž?n„ _ÐæyŸÎòÆ"¯âÈ cì"æžP7ð]F—{žéWic)7Ϋk¦Q¾ ¿)ý&ì ïCÖO )_óº#L§æ]d³¥’éûaE‡4·? >„Ç +Ýó¹‰Û Ë!Tù ¼ûûc`CˆIµ“µšµ÷Ç¡;ÂtjïqÜôV«Ò‘»¡ÐÐÙúeãà±LÍ׎£ë Coæ™qñ%—o?ŠW L/AÇÍ‹tC×(‘o¹UƒÂHº¢˜ÙÖ+“ ü‚ŸÀ]•Ç>Þ>7]"ý?Ê„ée‹:–Ý?…4gØèˆ¼ÝþX¦wÏ»¼ÝþIèŽ0»Ý{‘-Ö*¼iËG_ $÷BÖ_:æ‡q—àyin?>„é¹ÁNyü§¡œ°r§6‘òÇ #£?„={vÀ–ÿ,tG˜Ž-ç¸-fµ¾HBù4œZeÙôH²œZamÊWâŸEÂdý­+UÛ rþ¥’[£»(óìm,s'•}Igq¾\66ü¯dÓï%’ýó Hxòm²#âvæ 0|¶µTÝš/Ò¾¶Ê5ù)Ðþ  J8yD›vxÏ7õ¯õ‚õÍè–/ÊíHr…:¸±F%¡*ÿ¦[VéýEð'|¹…Ç›yü%èŽ0fvëâæ£â›ZYÕ (Y­a³ðø¬7ùyãŸkÂ[oé²\ÎP7Ã!WYñÜõ™R®˜ÌÓ`k¦(_ã? n„é ²NÓRZNL:p.å²sÙ|ö~vp}Mšá_+Âô˜;Œ /V¹VõÜjnm6sáÿýKÎbh_öɽ—”ýwf†Þè+ƒÉw%¾Ä_qÂ;ïh¿Äã®×ªÌx<Ö³l¸ägM œæÐéŽàÈÒœÞ_Å;.@^Ð~ŸË Gýœ×‰ëEÍÓÂ_¾ü§ö×À0½~¥óëÒD~ Ê Ó ©ö’/ ¿ _2? „éÂòîþg ;ÂtÜýí‹Ì`kÜáSÞ¦ ™]FeØ.å§6WóÜà‰×{&¾Â_mÂÛo§ñ 䥢á8yUz‡Æ"˜XhÈóÐÀdwé›…úGòÖð7@ûo¤ú gÞê²xó.åFóE…©˜ÿ ´õ2Ä?½'z‚hÈ%SÈæ15ÍÉÆæÎóõˆl)á™Ê„úßuÂ{ïµí5î7{û ¯ñ³ þ³©¾††?û[ A¸“þìoCw„éø³±‹ì9¯aáüð¦ê·âYáB¿Æ+øiæ?¶„cõ¯m}g³eŠ{t1kq¢Ã[õ¹-ÚüUr%׿m–Fd†ã™eq¥á½Z¶kfV%ðú;x Âw ¿£ߊљñÆ$â/_¼ÿÇßëeš§“7Úÿ¬Ó‹osðH6 ß°/¿ªðAy=¾Ú O÷çA‘0½)ù6öw¡;Bõ6Öìbò†³„£7ÿM&t9¦³á|ú"MQW §&®¦Í9.³ÍUÓ)ó>ŸËFILÁ„qÝìi»%±Í)y†-‰ÿßCNCÖÏ~8kø—>d› NIÜþ[ð!€< Ím&Î-ô™Ü%•Ö¸ÿË~yÓ'—ÄÈ/ÏJæ›™‘ÂÍä»%^áïƒ6á äíW¸/ÜÐö>³ù{åò ù-éºø'ÔZÊlªuÏRÙ¥\NB #mÿ@»Áª†žèxHg ñ´Ç?DD¨çwé:@:o½7†é8ÀÇ´4¿¸Æ +o8ÍZX¶]ãQyD<äf¥êz…ßõ£ÏeßæQ „é-NÎÓÛøUÏ4ʬ\ó0Öd+–çlÃ4İ4U„Ù æÓº€o}"rlß3½²ïòÁŸpò¼ö»ÌòøÇ±*Åʹ¼H½å½6ÈäÇ&'ób\] €¿ìÌ >±M³Ê]hòTeÒküP'œ…<ÛÏ¥ø§Ú-M¯Å“þÎ*{ž¦j{—Ì7F¥j7=ù½xíÖž"HÚÖÿÏðÖ¶Ø÷&Ñø%”@„z®·c =4ÃÇ첩Ö(ËÃ^à!ȇRl ¯Ìu×k–Þ+Ê5AxòáöW ©?CåøM¿%Î1¿¥3úóËx팊)Ð7¶ž ¦ŸõÓÏ`êÐ7ÁÞêlƒk»âõÖ9ðÉRÃ|H3v…¨Xú¥è—Þýõz±r…"£W.¡­ìzå¸*ék¢={!Ç"•¨À?uF¯ÍIRlºW²~¼Õˆ:%—66ʲ‘ûköWÖÿá/ô\ù¾-£œûë–J¥Py֫䳘*¬y—¹DÇê:zúÕõŸh“g"µ±›‰£GFZ€zÎ=À>ÈJÓTëî%ƒ2 'èźW³»šÛU!¤~ ñ¤T!½b)F¡VºP]øþž[^+È|#ðäCí¯R8†xRª•}û„òê©TÌ.TáÈGÚP1»P„M޶«bHý±âQ¬˜N]:ݨñh–Êåw¹]°—¦N¨.ŠôÒbçÕk ¥ü‘÷'¼ ùrІ#¦ùŠ(èl¢´ËpzÂê®ã–[»hÄŽÛh–Æ‘°êÑ¡ÏÄf©+¾ÌÉ`s[sí²ÏÊæŠEiÛÙ:@¤‹úš§ÕìSºK¶åÜ’¢”^|E…RS­=KåÏÕÜ ™S …§€W!_Õ®ªc¬bŽŸç2ó¼¥ð6äÛ©UÓvrât…§=À&ãDÍjJÌn'¤7d™¡MÁ”Ág¢›Ë§&ÇòŒÿ|» ôy±+¬FŸ']=6ijç@ÍW˜{¹fnñYա׆]ã?5¶L`—j”;¹ÌLK\݉㟻–ïËe4C8yNû=æjÕsßX¬`–{êòg÷ Ïv©®*µ ü\|Û(­±ÜSƒÃ•v#yú<á]€?a“UÅw¹&–)üZ•6k†6¼ï±M[œÛÞáµe0I¾ýàHØäо‚Chæzª¶8ů@îpòLŠ®!!ß©+ï@¾ÓzDê®ïB¾«m:òÚ‘þ{ÀYȳÚ<¿¬d¾E ²¦zæIxrzÃÖ]4™ ÛwÑ—NÏ@>ÓzK¡/žÍÔçªuk(ÚÿÊãÁu‘*@¥†Î‡!§îLö^ͤ Ç ìnïC¾Ÿbe%xúÒ$ðäí±‘àCȵmdsWdý }g¸yA›Éc±Áª qjö–mš»jŠàDôbÇæ›ªY¢/ÓÍ]öMïµ)}_}lÞ®Ù–Å·Ù#,ù»Ïc~°Y² E6^òæÅ„“®˜N°i ˆkE$Ë¿R®‰K?ÅÕwÌ ˜a‡7˜MJ¿IìÈ¿h&©6“}KeÓçCï*½JÂT&ývr‡ÔwÆO»iÄND§0ó©7}&v³°îÓ™ˆœ£Ñj®äY9ÊTòDŽ¥P-„CŸhÿñ—¦¦¦ò¬P(Èïê=ŽÂ$Lo¤#_ ' ;B½ &+• ©’Lï$#a“{ >=³æŒ¶[“؆Q?ð0d¥°3a) ºc­YBEcéͽQ4^âq4Sr…œ^°»{©æ«Í"™¼{”Ák‡|ó)Xz„;ä›cgRhºGté!ì‹¡ú’{üSùÄÑgQgQ3ʵ³Gëæ½EYvÃQê´.(Ò­±³™ÆÀñ`ãѬ±§´EÞ©ULÏ*±×<Ìv=ZùàÁc¸¦°ýrIžÑlc˜~ÃÞŽϡ ŸB~ªýJóôJOÜUZ­©¿mÿ§Ã±WŽ^G,R8”¡«bl„ Ζ¸&½Ëyð'Loñ ½ ÍÚ–Y¦ÄÈ9U¢ûp%2°"lr:Tw©Gb²}q¹¼ YiÉEnÍÐŽ£Ë sÚ•Õ1¬P#ƒ1Ä“f$9½mkd8y¼=5r 8yB»FöÓ`7ÌâZ–öNDe8Y?è@-ú¥û­•¨©Ó„«³j›áIPƽÿX è%ßäBhµÆèñÑþV{ëp’h%ì":ïÄOJ¦¶kÉü¸Ù”i{|ò»íIý“âѤQ ëŠNë…y‹£Ð_skv™Ö¹Ù¦³¬ÉÚQµOX€\HÝŽzk9g¨88<*iODkx²Ò"¹”=‘¶aà d¥Å®ÍΛ.Y›" w€sõ=Ö|xŠR„„b*±jXÞºåã(}lóLÎ,¬Â¶»nz,ð,Cx0ùÙç‹°Âôâ©Kô.â’*fa~KJ!Ry’ß•dz ì.m–[…þ­UÄáz ñ¤Uì*˯à“Qàd¥Î=!¦HXÁ!uyà$äI}O¯T!7bˆ§Õ!©» ¼ ù¦öë÷!½­/¿T@D¦€÷!+-ämž¦&ýÌ ÌzÞp¹Úq Mi€·Æ}©MC?Þó…í7ój-ંYH>­žð±ª)Î÷Ð{XÒ±Ý l’úS³µw–¥‡tDä°rë­ÔíÌhœ غnê©ÔÈ!àQÈj›Ò›×ˆôŽˆœžÜ†Ý¤îð,dýÝ—™á¡×P†m33\ïôÅG5_~q˜(žÎAÖoÑ÷¨Eç–kÉ­ž˜OãŽiUìCæ-ï6*“Þ¤î–h;o V»åýkìò ±ù§#DÍ·ŸÓå½Ñ›ÓM°7+0+MÔ’uAmWãi÷ÀŽÔïŠ!ž¶× J~P·¶Yï ×_·›jÚŽ`/ðd¥u²L*wââѬ·ò÷qv 6TªoÚoL>ÓèŠf0Ó^2¥“ØFÐfit_a^aÓRŸ³–}‘aÔ8a“àYÈJ£[¹A5©ëžƒ|NÛ2ˆ#Htì›À“>>@\Îóó©…CÝÛEâœqހ܆9WR7¼ YÎu?WWk4ÅÁ}¦¬/!*SÀ‡õ †ƒ‚ªç–k%kÙ²­`ƒf/<>°(¤ÎQÒuHÒ M@`l«hL™Ä ,»Q±·Ô_ «-qÆ?=R¯@Ÿwf|Ì$?¹C„†³gµ‰‰IçéIçXîëL:Ÿh²‹{~öÉâCY'@ô/CN/»D¢ u{€±iiͪ:ŸŸÕe›OÉZÉi/·©Â«À‡õÝÂE²'š ç=#àÐòŒ¢áþc‹ÂmPL@7a‡u䄺 v‡u¤~W wjX7‰’ŸÔ­…m‡us ´zcˆGq÷ÖÙÚ"ûb˜Îîî)ìŽnLjŒÖüúÝ+ñá\t4_ºÉß@Ŧ7ü‘7¶ØÅ¥ílò“¡ µ;ØäIý®îT“Y@ÊM^)B$½ÀÏÀ±€)|/B<šµt*œ$bÖ’ë¬X«aJnI~±Ûê'Ni…Š)&ª RWC‡Rlà s¤î°Yi!—’ºÓÀaÈÃú zZÖdIÿ°¹¨ÍCev+võdJ³[ñoõ¢l/²âÓ<9½|ЉBêºG!«í\Ùd y•j9€¬¶›Þ„q9 ¼ùB{ªä80 9«]%»ób•Y¡Z.sÕNÍ4MRxmzËÉéâ¶­™aà$äÉöÔÌ ðd¥FÍeOÒ8Y?X.’7ÛˆÖ6Ä}J‘7³>‰&â‹!’´cW(ÆR2¦ýu×ËfXQÖ¢n£ @V:/#gQ¤nø²þ”LWòµpÛÕÍ<ð1dý\)DLÉÝŽÁø¸pÕ£=/ˆGfD™‹iŠmqiv9³¦ õGþ9$dˆX倓Ûà–H]6ÓÈ»–ͤâ– •s¨ç–¶¥u-•¼åÓÀÛÕÒeÆ?•›Í44iì£v4ùIFwÐLõò˧–‹¨@V öäÚ ©Û<ù¸vÝ\F.¶<[©y"‹Uc]5|š\Y3"Š'€·!ë[³Êxé.L†°u»TÅ«CÀ•6ÓÈæI]ðd¦žJ¹ÕL꺧 «M¬Ä?•?Iÿi ÖéÍiÂ{°GÂNÈ)VCÂd-õm]P»ƒ“µ¤~W wj²v%?«[ Û¯ÏÈ&ƒ":½1Ä#O+ºÞB¯¶ˆÆ¾¦³>s< °q@–hJ6ïsd«pÕFK|–RŒ°;K¹¼²²Q‘9¼YiXÎÉ’ºÀKÕÎöÆ?=J=3¨yÂ$ܲ&DŒ¢ˆéîT bû+[0‰ª”›ž¨ô@>Ðzk!uÝÀ~ÈýÚuÒ#öÂJ÷Ë÷ñ=ÂÈj“¨ñOå{„0 Â6öËäZ» vûåh*÷ËMµî]ª/šèŽ’<=âiwÙ7y³ Œ ª5ßä„È0¸ƒÃ8d×{Áˆ0vMA«‡ùŸ -J¨= ùdû#,R*†xÚîF^¢ä [çFzËF`wÊKÑë‚|HÙ“ìÞBëjO²j½Ž¼H”F[¥L§!O§o(dX#"³À9ÈJ}¾\¨AênïCÖè+%:% €!ëoPR™ü~Œ0ýÉo…doD¤Ý‘ª´´$g¤®¸²Ò©ˆ-É&ëó›²ý9<¹ ýYdÔî`DêOÅp§ú£Ï£I¶°?òiö̬’½^ ~´•Ö)qôµ~^NÌ®†³š²ÆLüއ §yN%Á˜?&,@.´ß˜Iýp ñ´Ý˜?€ÐZc¦Ë|œfz ôzúÆÜ·uJ@>5í°TÂÈj+ÍÊéxÂ]o²&±; ƒ<Öú“ÔŽCV›ÅŠº?L:ÙvFT&€³•¦°´£ª/ u¦U%žîN´‘/„ ¢ŽxZm#¤®¸²þ6!¶õðöÖµ)…ÊÚÌCN/ýÏnÛ¨,— •Þ„¬´=F¾Æ†€S§´kì«÷ 7)—ià#È´9D7)DS]ñK|‘X=v´p+½óÅÐŽ@IͪöÒ½ÃÛfìK´,"txò½Ö[©+g!ë;çÙH”ÔÏÅO«#Qê’º ö>dý¹éH”Ô?ˆ!ž¶G¢_Bƒ l]$Ú£–Ó’Hõû!÷+Ç¡[ó:gž•¡0â‹²Žˆ rlÁ÷âÉV*ñ< ƒ¬j‡=_FU¦ö¤0»>àÈmXŽ&uÝÀ,ä¬v5!«VÝ h=:Ö«ÉÚ‘»œ…¬ï¥ÇÅÆî- ¿˜X¶ÍŒ 0Jkf™ºXῊNX:Š[‚½ŽCNoU½7‹ÍÊZñ¹Ôšu–³6R7|YßÓKw·¤þa ñ´º»%WصóçÛßÝ’úG1ÄÓöîö+h„­ënû ›îw4(ɾÁ^à‘ŒîU »¶;&²ùo]YS 8¼ùZŠþeÕ3y׿IûâSNeêéR[í_HÝuà4dµEÅø§ûX.X£+Oy_ ÛØˆÉ-àÐ|SW35_Ôa¸ÓXöMºYR~¦æCXáäíª>-vø4½eX¶%~êð4d¥ûäZâ‡h}¤ö dý#ÆÒ-‘ÔŸ!ž¶·D%o´´%vƲ-Û 4<ÂýÝ䈻·P:)ס¼‰m0AQáBlß#ÌAN/“U_9`·g˜¸K6!FÃÀ)ÈmGHÝ p²~8¢´·‡(ÜÞ…|W›ŠÊtÌ2ÚaúÓ1}e?²éM>Ĩx ²Rh"g%¤®8Y?‘“úã1ÄÓê^ˆ ² jO@VÚQ¤× ‘ú“1ÄÓn%4ˆÓ9aµ;<¿(É¥ ýeü½#Ä”ªRV#¢²xòÁÖ·PR×<YiÈæLÈjÄCÇ×–o-ÛÈ^ ½ªG¼¯CNñnògï?y¢RS£À‰Lú—“oSSyàd&­ËÉåÓ÷þÀ›õóHH»3¬Î:¦ãNx¯?+k¢+ÐN˜~¯ß¸OŒÀ”ÎhA¿·x²RÖ³Rú‡ÝÀÃkWËXäOÌ7–øyœñâ1=˜¦Ïž/Í/0â-ñÉÚ©>|Yÿ8Úk2ü0|ß-YÍ ÔϦ½ë¸oÔÒv¬ÂäÇ §·m÷Rljå­C¹¤k-Õ(íH}g ñ´›†…ˆP½4šM&IÓù(¥#Ä£Y*‡[4— ?° ‡=57äw ¾Bц¬äšjíY2jÜMx BÊìµVáYk%¡žµžÓ¥ãðgo ñh–J84X©9bê’I’rQ.„ýûSëÖû+†˜vÁ3œ2¹}ÙîX /A¾ÔúîÝÅ /C¾¬]Sûh&¼j”^«ÒC9brX„\Lo€`”ÍqF7€Ó•¦Æšk]ª¾ZMÐ: ¼Y?™‹tS&õ·cˆG“ÆÆÆR0i¾Í}Æ(§’ùšî Wµ ¿¾ÅŽÕÏY…'Þ)¡±OUÑøÀ°e_ÄyÂôòGÝ£Cí«ŽµÂ)Ñbœ°˜m®›®ç]â¯KQ¼ì[ø`Nxò=í·_  ›°²ZDÒÌ~ÚëÎû9¢Õ Ôºï\®Ÿ#u]À“õçL÷³5Ó3£e_…Š:¼ùJzJÖL¢2<Ҟʹ ,BVëòãŸöÕ#Eé!8ÆîäÐ$4ÌãW—RÕ,[ ¥ }ØtZ¶VV¸5q·ës'jJϬÖB+8 y85{êVZÌ$.“ÀiÈé…N‰UƒýÞ‚¬;)-fÖ`B„÷ ßÛná5,‚0ýn¡[i“¸ôµö ÈY©ë€|@»JFi“&mßekÜRlŠ7Ì2™¼a—h–q ‚[YS"¾ýÀ{õM‰1öîP}L-‚<ãµaÙbfóµeÈÚ:Œ‹AfZ†ÖtÝÞÝf˜½¹!àä4ú&\Aê®Ç!+m­—3tRw8YiakËYDPó¡M˜$JÖˆ‰Ë$ð>dý`¿±yÅi¡7°QÂ>ÈJ'{··W³j)Ø+‘:<ù\ëí•Ôž‡|¾õöJêöd¦m'„Só¯²Y±JV°A»ôöè7hA„7!믓Ê÷ä0RBýž|k2¾Ž¬l/Nï.Jé ð8ä4·%´R·xr [„”*åd ñ´ºo„%ðdý¬C¬êZ4å¹%º3°Â•ÛÒ=q: <’Z‘ìYòM“b¿&šÐ®3Ÿwh­ŠÔwÆO»i| %¡ÞZÕ¨.oÏ„ƒñh–Ê&väÙ£‚˜Õ”NLûu” !<£Ú‘®MÄÞcì˜a¨ä®0Û]“ìŽOýb¬œ¦Q[$a¥qËJ¶¹0ÛªŠ™ßª!fe_ê;ð"„ïA~o:Ño@÷72­ÏQvk½ãÖ<ǰ© Ÿ{bNÝzm²+l‘ö‹Øì©YæeíÈî±'Ò½À•nøLpîf¥º– ¶ xr ôåठ8 9ÅtœÅ |fs™ô³q.»v9Aí-`zÙ8ûò¬8Z*ŽÞnÛDäðägÚ„º“%òaµ ì‚Ü•B—þ°yõqy¯þ]àC8y@›[>ÜQŽ{ö櫨¾tµþ&°$ÌCVËî´©™I»ìß Ý„ú.»s ŸÛ1WMÓt/Ü þ—ÅÆª¦ðÙf°Q`‹¦g™>»Ïr³a>aÙ¥7è>€¬ŸZ Ÿ¸Ô ûƒ’¤~ Š”°rë;•ߌ6ú[ðºBl{§BúC>œb§2¦Àç$ðd¥‘”\§BêŽOCV:ß¹ùp~žN Hû¢qx ²Ò®(½1Âw£=D˜Înw(ÑÍUyö´°ùö*ö¾èc¦¦äû˜ß Š„ƒµéÞ û±±»·‰°^y ¦Øh«vÂ9cÙwømàMxòèu¾º Ó(ì³\^–÷× ¼z‡3‡ÝåÜ5©ëbú0…A©¼»&ýGÇ §wMSçÄ„Ÿ3À³Ï¶Þ]“ºà9ÈJë[ÇããC£ÒÍ–ˆœBÖw= c€ßV«ÀôÆÇ6+æÙ³¶+J»çïïÍè^1ÿôi“!@ÙòMÃ7YÉ®ùÜ‹ p´kmlë³ÌȱëUø¿ÿü‡ðgÝoµ…÷_Îa |÷Ö3áÏ{Háúù7~~Öó£[Š"ªÒžçï-.|¡D%#þ4J¦w«‚}·K®ã„£}LîÝúáá R~Áÿ÷¥k‹Ã/„ÇÌÑQ³8¶<~seدy¯M˶ip›ÙÔøßª®^]+–mnó•OW>ç•:Í’måÞñdš­Auzx˜¹àz«ÃÉßT¨ù~àW!µQó?&5og›Ýö6_¶£h++Ê·îóÜE À¨ ô!û*ŒšÏ®,9î2Þ^‰¨õk_O"÷ù‡/æÈmäߦB.aÜáÖ‚­Ñ‰Ëïü=ÊEòö¨+EŸº(ZÇÿ4äŸNÍÆzÀSÁÌþðç ÿ\jf¶gÉ· Mɾþð!ÿb[ìëïÿ1ä¬TñOzÃÙ¦Žþ ð× ÿZj¥Ñ½´&¾ÔTíoþKÈÿRÙ^;·ºiÑ))”Äÿü7ÿÍo,ðïCì8ÊÇ•Kt+mù(s›bîÀ´[ÇX(wŒµÇàþg¨åŽñÔÔö,Y+¦í7ÛIOŠ (ž厉v(¦þb¦É_Ì(Fòû?E¼úÖoé|QÎ4uIþâoq)£1 ¹y¹ž±‡UÏri/ñƒ¨R½Õ2"5kfçá ïõZøcÙ.NG #S#²>áñ=Âd¥„®®æÙ Zû€Ã‡µ«LÞtHÿ°YiZ©©Ö¾%þ:æ_2ý&Ê¿¶ñC@¥UúÆúÆ~ü†ÝM Fz†(uÆfýHÓø½x§Õ׉¨%ÿ´tOZý>˜j„Ê7Ãn •ÀÈe­JÙ¬ZÙAiV¿%Cع_›ÕÕÏ»=ÄüÚ²o¹ð'ylTM63òs lÿ^…|µu¦•È㇡;ÂtÖ o^¼Èž›Þ .–«gÅ:Lü ÕMW¼IÓÿƒ Lx²þÔIFðåµNrNšØÂÃkЖ6#ÒhÁç.‰c6þ%Zõ̇w0ð¯Œä¥iÿ¨Ž@Ñ7AÛh—\×+[e½Ýò ƒ O_P ÿ‡Aù§jgÅe2o_$9?ûdñ¡4Ç?^„g!+í›ÛÜéË» ? å„õ{·Þ¨íHóùcà@MQ÷jó™á®èe’¿aë®÷Êgë¦mGI—}“QGÄë›Ç+ÒïðÇÁ›pòŒö;Üáï nìôܪëE[Ý6]Ãä3ÏÛ’ý %³ËŽŒOLŽÞLŒ_âGAœðä;;Ð7ý èŽ0¾é/Ì·Z[N˜€[šäá9Èçô{ ¤LÏE­I¾yÿI!L¯’¯Å?ݦS‹ò<~º¯y1¿ïXo† ÛzeúغŒ½Ìôá–Sv×ý<óM“Ý­Ú´khCÞ7ü9¼az›—OÐ;Eëé}õàùσá ÈúûwÅÒ­ ÿèŽCVÊ{µù¨fz‚è¿Ú„·!ëïj¹½BÂìy6Ç¥©©)y $ ¯A¾¦Mx,"\ˆ\ç7šgÞôÊ\,rñµé-S¦:ø °%ÔºøbóÝÄZÞ)ü$üd¦1¿[Zg³Sfõ—Á„°r¿6«cÄŠî¸Ê5¨É—Ø_Âô޵t~]šÈ_…rB­¡\Sµ½K&☄É@R÷×2m ï’æHÿÞ<ÂNÕУñS(õ¦j·.zt¯)$Ô£M{ HÍ6ö,½27ø(ºÙöÈŸF¦×t¥ëä§ñ½ñ¨@óå»·tF~¯Q±úÆÖE úY?ý õ}3ÓX‹>ÛàÚî‡x½µüyKr+ÞpÅp†É!¢Bu¾ «í¸ûëõBåêÄ¾È Íd7ÝEà%Í„ 8ʆyrÌL¢WÛ¹‰Rcäì¯ÜûþõÓ/~u‹5(ï| RàÓð¹o/¬›¾éÕKþ³¸¯2©wrJ.…›])óÁ"¿0ªÔ?Õ&„¹—:âQ ÑÌÞ÷oªÁ$j +ßÔQödÛpz2›Ž·zjÍ#–%Ǩ4Ûs‹RÄIöŽÛ]1¤þX ñ|*†vÖî…¬TBMµî^2lËhÐÅŽŽ7 jÛU3¤~ †xRª™~ÔÌT1+‰©(êfêcˆíQ%'Y7»P„Ç!oÝú1Ä“RÝì¢õIFtGç^à~ÈûS«=Ke·ôr£ÚÌ‘u£@>Ðþ*!õý1Ä“R•ì¡*ñÍ@6eËnTá!ÈJݯôØ#6Ñlõ£]ÕBÏ‘âi7”@„[†¥šÖqÿièL£[„Sâ^•m`±ò‰»nzlÑxã:yöÈôxä¹A'øGŠC£ò{c÷Äžw˜š¬ÀnÖÚ÷ ðß…ünûë“Ô?‰!žvÓèE D¨gV'té`f£Žx4Kå.ãm¾²7XÉ­ÑÝ}Üšs!‚`%îýh÷+Þ§´Ë<ƒRßʾDìB†Ì]Èwµ_"ËĪg•ø äž½ÿrqhŒÙækÓŒÒ?JòÜn„YÈÙÔ\Jo݇(кƒ<¦B«©Öž¥òçjnÐÌ3‹ÀqÈãÚõvh« •5'¢3|ù¡6­ÇìmW^®‰lKäÑź%yõ<]-è™´i…ò4¸È3ºlz{×-Iß8M„6IÀ ø6“Œ‰ ‚Z`2£T k«Ýg饞{n”ij¶”¸¿)‰{,8WÀt„¨É½‹±œ$‘~('l’'L³åPy½Ëð~i­|²Ê[rð‰Ç}À /´£“Â]À,d5·ÿT>Ãé¿lršCwˆµ°²øHQX„\L1–7Jw(•Í—£Gõëd° PcÀqÈj.žê$“ ½k©ä%(ŸÞ€|C»¤c,R3†xtëB:ÇDøhº<”;SkÇó[&‰²ƒ $×eéK½ÀóϧÖf嵐/!«´HŽÕ•Ù” K±’NÓ.S#¼í¹DýùkÓóÃØDÖŠè;€· ßÚ+Š- ´ÀŠŽm²¢pXÞ†ÁnÏB>Ûz:»!<ùœve9Ú¹6/îe>¢©eÓvד7*oW{ç· ë[Q˜U4ÚnÐeÇ6mÀãÃ93Ìÿl8†½ñI¸­P¤ÚcfÀ ;L’v#ÏñZƒ‰{™’^é0Œ°ÉÆ<ÅWÚÍÄ~AI.0éúüÕ–ý@šãÔkkÕ1ƒÀÌe×ÖÖÆ?)0hž| ¡_¿xò•Ö·Øj™8ÂÕ“Ùt„KÕ‰I7ÒŸBLíõ÷-•M¿äYbWsíÑÑÞhO}(þ©t\Bê;cˆ§Ý4b f)̈mÍ."¿é=¶8Ÿ3Õ,–¦›4¹Ø V³‹aÉHˆÝ¤éÅv7Û…¬=Ç\óÕf~%*Š“;Û¢N¢E¸C-*–x6…uT—eYí!ž¶G®gPg2ŸÝÈõ Ê7´+r%u]Àô"דbôÃ;Ëñð.š4wí²JÍÞ€¬6o:qž-[þsÏ]ͪÔÖà<äùöÔÖMà#ÈÚïfHýãâѤqˆ±’mø~><¨dø²Æ; ¬¹­•ÓÄî°¹ÐzÓ!u‡Ã‡µëì5t4oZç(kNDiøòmjòÝÄ9Ø ¡~7ñV<*ídˆGo Õ»ÏföÜåKïP!"Ç'!ŸLqðD—f/Ž Jоx ò)m3Q«–Ó1ÄÓêëã½vÛGФÿ,0&·»:štÓ üo16_ó(7@Åõ̼ðk+®m»ë´ÈY«–é![3^›lÙ4‘ˆÞ,ÓŽÙ` Mx òNLë^€nÂôƒã´zMb× <ŸiÛâÀ4´ ™4:¥/S¸{²™·.£i›±da ÙTŒå]'@4öÅf±ì¢óŽ’L.¢0c &“h§V`6[õ%µÝÀ^Èú#íóÌ ˜å”ìZ™{=ò…ÁºÛ¥PF{9ȹÔ<ÍÅwÙÓ®˜ÎšëIü#NEàÈwRó/Ûì¡ …ƒÀ»ïj×Ü~–)ÒŒl«"*÷€O ëo˜TiU—Ð’.¥ÒªÞ:×À-æË^3+>õ莹ýÀÓÓ‹·1RØiÜxÛI# Mfb­[ÁûÄô\l⤹UZ —÷VÑjž¬UÛ³À'wƪ.Ã’.·ÄªÒ™$n}ÀóÛï\†92Èl¤ÿ0½xG:¾¸ëˆ0A†ŠÍÆÒ^îD|q¶@˜^|1Mñ¶È ¾ »Èlc•™žçzb£ø†ixb,+5ºÁlyƒ²I¼÷ïC¾¯ÍÿU$÷†5§lÐ]i¾Y+»Cë¦ùJ¶zs¨RÂ&·jº¤Ž:cˆ§õ])< ŒúUµœñO†]ÚHýP‚coÈZ1º ¼ Y/ß~² Y¾ç®ËÍ …0¶Ù;%£9½©»ä.óÿ¿6Ë_žËE¶7#†GÈm˜ó&u€Ã‡µë¬Ÿæ¼×ñMþŸüF,"3¼Yi¤±9Û ’,•Xþ§øÑÌèÞbûv¢{»Ž L¯{»DÝÛšAþÆd4Ÿ(Ž?1#àÃçåy(Ô^àä¡ÔÚü¾'ï²÷ì²é,×¼Uf“ÀYȳíè3Ha8y®ý±"©¿C<š4‰‚Ì&nÆO @›'­‚YȳQ«£s9¦Q¦õ¸b½\£<·æŠMÁ•ìËäÑ AÖ_h>C/#v¬¬X%ºi4Ü6*–%alGJ aÿ;Æš·\ãƒ^^Ø Ô.‹Ó;ü±MK …g£Gµkmo}A^ÖŠˆÇð6äÛÚ|Tú—,„ð³:ä'n}Àó™¶ ùI]7eÒòï;€T6ñ¸¼ùZjUµ©a+PÞ…|· ;êÞïA¾§]GòÓ2¤6Sïb…¼]ípX±uܹi™h'ܸ•Ôvg·j§·^ §eJyM‡˜*F5ÚãƒÖ9Þ²¥ç`ˆä^`LÞZ+¢¦Š©ÔšþFâÑÃ-wiº¼¸Öý¹ko¬òaëÞYÍ{õLcR¥v2Ó¸ôê¤jý5Õú­vÿÖ}À˜¬ëz”êj4†xZÝK“ºnàd¥T ›,ölÚæ"Û®‰Ò8ð1dýÝ "òkÃ³èÆ _zÃÄhØöCîßgKU‚³ÑÞ“ÉŽ°?•‚Ùfÿ–ä2ŽâÇß;BT,þÍM·m¿µáñÑÃg²­}¿“ðd¥ü~r­Ôí@PQÛôÖÕþh³eÓ.(ÔÚIàUÈJGùäbR×ÌAVÛ=¢Õ~Hý` ñìHû™@›™hKûÙ5ûâá¬lšÀ/€%Qµd¹4FCx²RîǦ èX½žiÐÉæÊWGe›Q;,@NsM$¡M éCn3"õ#1ij#ÍhMg²-Íhïó÷ž¿ÿdöåÂ{Ò½Ñ$~5áÈJsžri ˆð,䳩5¦A§VY¦ {VxCZ3–­À 5Ú\8y4V.ŽŽŒŒIg !º ø²R\*×À&Ѩ /´¿‘úwbˆgGØ 4ªmi`û^¥RÙ-¶™áKlb7ðË ÏA>×ú&vÍ*:ã¸?£8÷›A m*‘‹±»ÅxÏ`TFt!ý¨dxÒ{D‰hø²þ™­K½FÅuV™Ï¿c:”AdÙ,™e:>e —v±«MëûI¯·Þ PÁôd{EHÎ·ß ú+1ʨ®oúTÉ L¡ô§2mégÉÄ‹JN` ¿š°ý,©ÛÔïg·NK¾åøøÏ4ü@lOˆùY#º ¨ÕÏn¢;×k¬ÒüsPϺ†M¡ê™¾)n'MÁ¥Åî+‹$ëwÜ{zÕÜVìHX=‘rëÝUbÔöB>Ø~·Eê÷ÆðP&«HÔÜVìZ¿v¹­Q%·u¿š°n‹Ôí¦ï¶¶Üã\vkËöF½­›Ò­œX2à]ÈwÓðVq¿º*±ÓÅ17¹)þ3Ë{ËUq_,û3°DÂô¼Õù^¿´æº6ãt½(G}´{\Ö‰Ý1Âó¯´Þ‰QÝö@-ˤ•lLÚ‰‘ú 1ÌeÒ˜±TYƒ¸‹²'ÔZƒhªµYÏ–›y‡h±ê.O»ëâîÄÓn÷PøîÜÎ…YhŸÕ5 µ ³0ÂÞLZ;nÓÎ…šÃª8YB§H(ftë@cóa4‹ûÊÜð¥³Oó½À‡õ“Å‹%ÜÖ9Á ®Z4f9-à³ùÝæQ×@È ³öÛý}¨Žpçìþ´?Ø»[ªÝÏ3²#ŒÒšYfŽi­®-»5wåeÆmß³ÞÐ~<±}ÕtLϰ§ùˆ‰Ý>ˆ¯ÈVêX=á{ßÓ~—±ãyó+¸^ÙôüÁøçj|hh8Ì(d”L§DÁJÙ*oåj¯óÖ@¸I+¢:,^ǯšÂ划¼æÁ…ð0äÃÊûÖl©³ü•.›™aEÙQ: ¼Y鸖܈ƒÔ^†|Y»¦ºä½+¸ÌAÞ5éØýö®±{Fv»’Ún`zÞõ«ºÕš×VHªL>Q •óÃÄg8 yV›×u2¥Šåð §l­¬p‚<œó£Û˜Ää“83OcIÂïÀ¬cÇ3S2±tŽÌ·Qà<äùÖǤ.|”©Ÿ’ÓuOÒáGäœß]=Τ±Êg‹],¡£ ÞÞú¤YMd3bÆXhîj<íÀHý®âIÍÛ…3MŸFi?ɤùI¿ÿT|„ª Gã)J BõÒ —u]—E ½1Ä£Y*‹®E:‹uê—Üe:®C®Þs+ÂûWk˶Ub‹5ïõb`„Qê2?ó<²oó ”0½ëO²ø‡«§™$½ç DxòÉÔº«kAPõ§‡‡}^š>/Í‚÷Ê*”Íá$– w¡»óÀIÈ“©9Š]K5ÏNÐz x²þuhòýé¿ œ‚<Õ~7ñ9˜G„é8MÞ.g™¿fTÍË ·}^õc)ÃQâHq˜ÿÇÃê)¶N?‰·]Ù·y7x‘j»ê/šÞk«d²û|ŒbzÒCÚEð!€¡ËZ¥lŸºI·3À"äbË›$i;…<ª]k뇶'kKÄf 8yN›U±y³L“ÎlvULÕÒpä¾áîªgT×6ÄEaxEšþ†´½„] +4›çˆ$[~µZX®9eyã"RãÀ9ÈJ*e\¤mx²~*…ùQ"ð8Yi|¶‰Èeqé\üXrñFÌŪ]Ñý>L‡0– 2%3R¾¢û}X5á$äô†mæQHáà Èú1Ü —5$bqxò]}‹–¿úó0 Â.ÈjΦo[ò¤ßã6ž@0qN„˜ížÜ†]`¤nð,d¥]`› äÂ`xªoUª¶µB©öýÚ²oâN!K:% Ñ;¼ùŽ6ÍwY,ò«ùá~Ô±‘Ë"9dx¿åkËné[[µ è¹Y+½â!Uã3Xs¥÷³}#$ŒfôÓêe©R¡›4=M;ñ¥ç¨¿6„G!M­©ìjT©Ì½‚›œ«,¡[&J§€W _iy·LÚŽ¯BÞ‰;0I8˜Ñ¸SoöEØD„é ÃÞaìycµ.<[–8E…¥4?Âã«Äå÷h{©pOó—ð„±ÉsÝž±'.§Ï7®#L¾\ÿ¾À”ZaדÅg „NÏ@N¯ÚnU‘4žÍÔ/‰Ö‹¥“Ss@™é;éyû%Øa'äÎÔlã{iÎlzx˜FP>Ø«‚cQ›óÒšo:4ƒÆ?òß´s˜7IÞÛðkZ¥5sxÙ|íš6ï$kÎêæÏ†â E¿ÞçÿŒÆÇk9tóÆä©ÂZP±%»*=À€ü-ïH[ð÷@þ=íwˤþcˆ§Ý4¾{Œ0Þa±ÏÇ÷Þ»¯¹ÿ_5ßž…‹Ï ¯™†¬±²Yå–*Vëå;‡¯â /¤Ý9H;¢ÁäÃŒnçÿ´—±ga+—¤óm @Ø ¹WÙ‘GÛì—2ß)üäÏÿ˜¯~àÁŒFΜ¦à; ÙL\߆ßDH‘õáŒâîÿd:¥­{Ç «ÅóñO'xG ü¶ÏžNÙôWM¿æ”×x‡à•@úœf •êŠgÒI 64$kçDyøèë·¾Œ=¨y¥5>LZáý{Í=Ê»ÏáC'öÐrø{Õlþ‘Ïo¥–5Œ°ûãß’}Í‚0¶•YóMF{è­™ËDõ#cÍ[5Â4Ããöžcs§ÈŒ×†eS*.¥5Še0%<²O º Óxj±€Ç±W·c˜mGQŠG±K@N“‡­ºÕ/¼Ôc›âÔØÍ •؆^}ðÛ!{ËcÒÖü:ä¯ë€ô†>ÒÿÀo@þ†6,c†í»4ebðFMKe´IôµÉxxáó@Czˆ^†qf!gS«¥ž%ß厫Ù4Þ3(33i†]ÒÑŸ‰a§rCÕ¢±‚ˆPoCÉ]:«™ðtm„x4Kåm(Ù0½<[,äÙcÓ.çÙ“‚X““ä·†""Ô¿Å&)~ÛýøçjÍ–™ˆF·[)UhÃí~ìšjœrÀ¡L8)¨”#D*Ž#m§ÈCÚV´?Ïž(Z+ÞŸ!*ÃÀ[ 5­Méc"õ­;˜Þ‡67jÃÞðÃ;ËͪU6+||W]3—ë LÝ+¬Z°v+£{™ïvç:—^$è¾ œ<“ ®j”^ñ±±l];ÀyÈúk¾ò±ÞG¨Âôc½}´Ì´l›ÎÏ)0Û<9Íá[õÕj‚Ö.àQÈúÃ7ùÕÒ 8y`ìãlâUKìãü;<ÂâΆM|uaÑ] Ö OÖdˆd/0ºƒ/Íœ«Ü?®%¨íæ ëŸoëÌ«ÔÕ ðäôî„è¼qCO8š©'O­:–]»œ ö:p ò˜~ÏÍrÅâ`ž‡&&¤[3QÞƒ|oZ³Ö«@½Ö|PüËðÓ©¥EóMÕû²Ç‡ævàÏxå<®¯š3Ë5Ë.åkëÚþôôô‹ò‡ô½Ë®•Ë^,f¿Ž_p¬8R(Þœ»1ü‘ï^ܸQ°ŠÅ„wë}ñá‹§³÷_¼—ð‚]À³¥¯è}owœvøy2ð4qwæ›@²Z0ƒ+päØíÚ%BþCø³î·šÂû/ç‡pÍâî­fŸ÷Âôóoü:ý¬çG·ET›=Ïß[\øB)ˆJFü5h”LïVûn—\Ç1Åö lÙ»õ;ÃÃA¥:ü‚ÿïK×&‡_Û(Ž™££fqlyüæÊðæX!Þöߪ®^]´‹d›¯|ºÉ<¯ÔiÖÔüXîýO¦f«ø÷hÅpÓ¯*Ôw?ð%ä—úþqùQÖvÙmÜ&(~,A.)SÜš®j»£h†Á‚l©0j¾ƒuÉq—=Óxåó€ÞüÚדÈ%Ì)øuÈ_W!—¬ºµf皢Àð; ‡r‘¼=“~ûÒ§i åõÝÀ? ùO§f^{"Š &öç€ò_NÍÄö,ù¶á¯)ÙÖÏÿ6ä¿ÝÛú+ÀŸƒüsJeÿtß§±™mjçïÿä”Z9t/­‰/5Uû à/BþEeSíÜêœE¤PÿøËù7L»ÿÀÿù¿hõ|ñoIÅ‘Ûnf°;Ž…rDZö˜Ù?‡ÚPîHMmÏ’µbÚ~³µŒh[,)>ÊÇÛ¡˜bôs™F¬~.£«ïÿé[¿¥óE9“ÂÚGü%Î5ž”Ƹ}Kü;HWÐDù*ª¯TZx¡o oìÇoØF¹¥ÎâÑñJÓpðNê-Míý´tP\ØCõ;ì⟞¸x‘¹v™eË–ÿÜsW³Ì]þˆ›¿4½*ŠˆðäÚôšf±&÷1@ÖŸ=°‰–4)D@> M*[µÝ ·‰Yž~ÁuÌ™ùÙ'‹åKÏ9Â,älëd"º#Lgéü*oŽ¹Î²~àGÖÏr";ò[R2*ùR«!áUÈú‡NljÑ1&…&ñ”^§Ú^n!&MkTÖëÿ@ ®‰7Šˆ›|™½!B-7ÒTmï’ùÆ AÍúkê6Rµ}éN‘ÔwÆP¹oN¬ÞÒýù¯Qyõf¡ ý¬Ÿ~†IÒCßÌ4g\Ûý4 LHNƒW gxS7PˆJסß-zœ»¿^/Ýhrº˜0±›ü8*ï¾L½ ù`£îô¦§7QjLRÏþóÿáåÙ÷ÞÝbÊ“ÔwTJÞq×K†ÔËü³8­ä…œ’[¶œfKÜ1Ï#÷£êü3mòB¤öp ñ(Ðhfé=¨;Éù r…=Àý÷«Jü;õ ¥ßR‹µ¸fQd»ª„Ô÷ÇÏÎV -k쀬T6Mµî^2lËhÖYÇέ7»¹]uÒ…ïEˆG“Æ‘Ë ´ÿ–¶^¬Ôœ0:N Ösÿ½§O>kÆmŠ…°I~Ív©?C<š4Ž^Mãk”3£P1Ë–á$MÝoSFÝ(—îLÓóÝí*#R,†x´ÍeäÖß*›…’¥PDQo°{gÍh7j(ÂtÌhTD¶»º¨P8=(ôDBVê‘ô ‡Ôˆ!Mû¢Âyñ\¥l¢¿÷AÞ×þ²Ùƒª‰pˆóvÑèE D¸et)Ù{o]S•¦³%!ÍR™bl¶ÞjÀjŽõš®’ LX“ñá‘eŠMËHùH ´Üeþã×ò7`EÂ)ÈSÚôÏ1¶\ †7Ú0ƒ¡ðÐ’Yfæk“–å³y±ðБٴø V`7 W÷fê~HÓÒ´,Œ°3†xÚM#°§ÐîöèÒé•ÓñÔ{†ï´÷¿d8lÍ´«”B;<ÎjÕ¡À¢$ƒÌrÂL¼â2:‡žé”}V®yüŸÊ¾ÍA(a“¼êoCÙ’‚ZHr]ä,£ÏŒeÍ E2Ãó脚˜I.›¶±Q`óÜ«`’OömbÃíßf’Ñ™ÙÍÇð×ážßò^ñ ËÃe¹ÇÇê“'µ¹¿Ã7Òø,ç×Jk"ûg©Tóĺ§pç†oúƒ"©|Õ£{X¹Ù-›a}pçY®ÑOdß'i6KD£ø>·˜èu`¬b85>Æú˜ÿÏ 6XiÍ,½y¯œr£Š˜¿á¦ôqáØh¢ÙiÅx—±5Ëô :±mú6kîª¬Ñ ù…ðká: ¯ #ü9ò ò.Ž7+éc§Çð„±déš/t•ñömq³ªp~âÚ£ Æû_ÆCþ÷צ'‚é-ݱ¥ƒf+Cš}ï>\X¥‚Lpò¤ñxfG{`RßÃêcK_)ôÀýÚkœ'3a¸a:¡ïæÏró¼Ërò´Œ˜/?¤žê¾kÏdË]¿j†Í—_ïþ8”³‰ 2ñEbÇSãwäi¾È3†?a.¿™R.»Ì¹_àÍÒ«9¥l~óß ËÎ2ÿ™m¬Û¦ï×?Åw¥_*º €ðägÚ/5ĶþÉòñÉÊf¶…r¹TÍÊs>ž„C‡´9Ÿ‹¨««ž¹Êc·ÂòÆL¶ÈÊÆ†BÁž±h3—òpdkŽíðσ™âDžUfž½ÿä‰<¹¡f˾ºäJ®x¼±Ù¼ÌI“;BçS%WŒ[cù…ᬚaávu͘)ŒLäÅpµz¦hŽÉ*WÂ"ä¢6ïqÞÏ Á‚³R¨z–ë‘§¨º–¿jT*oY$síL¡Q]cÂoh³i¾b¼™ɳÕrø&…WFµJUP”§UÂÈ#Ú´¯m2î¦BS.—﯑áð¢vŦw$ ¯A¾¦MøÖVk»«OŒÊrÙ 3±¬òwõYIP%#ñÖ‹âÿ£*–r ¬ Ó µon}ƒÀ¨„mÏóf`*µ°Äý¥ê™%Å ˆeê9¡;BÔ¤?½•~¥T)ñ²_®yŽåÌŒNpƒ÷…w™)Žð?ù`ÿ¸8¨PþW@špò´ö äâäý’ëas]žuùùÓylµ“ßbˆÁ™M‚µçåj¾±Úl^îdC×NŽ H}g whT0ˆˆPoTp^—y¾}1Ä£Y*òg€c·Ô5;,Y,ôš¦¼åƒb½À>È}*Ä¡>Ýú"b˜Î<êqn;ÑUšÜ² ß—­Ä<*Ž0š8®\‰[+o×#ºíàÓ;=¢rxò…Ôœ^bF}Rw˜…œÕ®¦Ë¬lòÑg”熇(µ{8¸¬ìªÜ F/fê! ù‘6Õ dQÑN5örÍòÃ-Ï~Õ¥iwÎV’fl|‘Õm«©ƒèx™D+aѹC<)Ù×®%óãfmC0+Âd¥®|ËÅ–# ‹ÛÖI¤så£AàmÈ·µ™©\g]@5ƶ¥Ö£è$4#N{ý•¼xŠ ÍˆËa 9oZ Rí'YrÓ„f¤­x²Z—ÿô´XÊàZÙôØcÓânS¤7—¿‰ˆŽäèHÃ0ááŒf€”Б%ÜÊNqFÔv5žvGͤ~W ñ´½FPò#ºµ°m˜º‹æÑ˜õ›dk‘t)[Ïî3ØkÒΕ•2ëž‚|J¹ÌR‰ ‰Êà%È—T(ÉE…¤î4ð2äËÚV|a»ÿVt˜óź¯ˆe›‘¼|ù‰6Ù91£´&–Ì?Â8±l‹Ås×1)o5AL3ŒMǯÑçk<Ô5 ù÷ˆÍ§¸ZÔOïa†7,QØ$IjDF3ºÛ¸eýGb› *À“O¶¾MŒâ‹„§ «y‡ø§'èê1¿bØ6hçíuPuŒ¢•Žn–Sª§m¦#¶­¦)à-ÈJ“¾òÕ4¼ Y?®—Ï@Iúg€w ßÙ@`,¬Nm ÇF2a6–ÙÑpŒÔïŠáN…cã(ùqÝZØ>£ ÌzúáØ®-ŒffÅðlÅ3*ØHÐß<…Ù® X á#È)Ív9.:Á—áKH»¹IP#Ô›íÒk`±èvº92µ.¨ÝA7w#lzuÜ)7[m¡›ë­ïÙR × <ù²¯ëÙBëÝM'T#·PríZÅQº‰ßQàdµíJ²½Db4wÆ~V6žQÜì!Í‘º0&köQ,EЮ#Ãâã:ÿLl¦€O ë:'Cÿ˜›º– Ü½ï{{f°±PK§Õ­ë‚ÖŠHÞà S˜ ì*ƒ¦W8| Y¿wYˆ–úÑî{æXÄ}.Q³by~ΈÝK–Ï舭)ʾÎ=X áäí×+…îÊŠU² ÛÞ%5 "„ýûÓ)cÏ j]š¾¼%r.Øcw½<³ZH«º¾oÑýÁ˨S·V6˜O_0lÙ׉uÞ)–ñ;b£?Ì™ŽÍ‡Cû<™„ëÑ& μäVªâ€0í©gækÃÚû–ðXËöö»ÝÇ;¦w^ûBÔ¢w"ÞáÙÛe^_òñúP#Ôß=ù¶CÔÙ Gœ®ó¯+;Ät6×a &h‚l,µn’Qܲ+×à`3„W _Qnð[³&^œe+|`f«'¢ƒÀw!ëošŠµzÅbÙ°K5º?R,13C¤^;q«¦7D‰“dédžnõeÜ{Úô§{sVÁ,Ô •¹”± ɪc7Ö;”æ„fÊ—-Ç­X†-ëâb‰©ê«Œ³­wqTÛ=P{ ²¾¯—vq¤þv ï‡Ïޏ¸'(ý'™v¸¸Þzþ!YÇö¿™ð4äÓ­wl¤n?ð d¥¸i$se–r½ñ/Ö'f™½6=?<Æ(ZÙ#£æ“»“5/âzøòmóšè¥„V¸BÏPÇüÚêªéáDÏ“°~Y®85ÅGì’ÔŸÂ £­JÛ¶åü•TO¦±äHòLûý©¿Ã;™46‹«ù…g(ýg™vø…ý›²‘Éú†gøíÏ`ìÈ4Ñjß@êöd¦ì¶î™¬G;á¤*[6|ÞİíxÕth:›Ü†¬•Ý‹Àw!ë‡>{Xvl3Øœ¿1åc‡óQr¤1‘Ái¨êÒB;—ĪŽÂ¼÷`›„²öÛ¼‰“=:ÏjÍJzÖêZ0„XWŠHÐ#2’úÌ_s×Å•ÇFù±ìÛ<Çs³›$ŒV€õwÎ÷‚x#ɳùû”Q9ŠœÍ!ºÌz-¿¶ûD ‡!Oj“žì­pÛ´©Ã«Q‡~­Iáë¬ã¾¾ïg{·õ#Ö™Þmq©G‹–âćé0SNød_áó ýùLc—šþ0åV¯g~\³<1ׂ­}ïÌ>Z$ËYõŒ Õ‹åøµ­GSaêpÙî÷} Œ6é*Í&Èuä*z ö6dýÙéîñT[„R©>•µÕ/ ì µÖV›jí]ŠÚ@Õ´~Ú ÕݧÝuñ…-ˆG“†ü>¶/¢ô ;!w¶¾EÜ͈9c¡vw~öáNí&üJþKºµ°ínÂ}ñt× {G!+-55Mþ2òRÜcT2lssÌ­‡Ç†]ÏÔ­–3ŒXÎCž×®ç3Ñ*Ï,¹^¹´ÑÁiI†_F­Æ’ž+Z@*LjÊEàÈJ+DrRwx²R¾»Íƒ¸[4¥§*ˆC8yhGzÌ%Øa:‡šzÛrLÚÜ:ê¾ÃCÀ3•,8Á\8µW jû€g!+í4‘³RR× <ùœ¶et‹%H…‚?¼ùbꦱÇ7?.l“ k;v#ÀÓ<¼Y\Þ„¬tþXÞ,.§ Oi›Å~Ñ®ÔàäÖûgR× <žI+lÿ`,¥CqBÖ™À+Ó ´¼!ÙgÔ^…¬hK{CRŸ‹!ž¶{ÃoC!l¡7¬(Ðꡞ7ÜzVzÑú¤~V¿â¾¦ ûuË)»ëõ!¸éV”@k¥1/.[ÍÄð!ä‡ÚÕ|Z¤]Ù2C¯–[Å@Æ®JKkN7ØÈ:I¢’^†Ü†­¡¤î ð d%´yxž‰­Šñʤ8FÇãÂÃüüo²æDÜ®cÇ»49N0q)¦_`ïQ¨½nùæ4k²œÀ\5=&®i‹ ¿â¹YC[†qÆ’Å¥dh}tMâPepZ!ó'1º œ‡¬4T³7R7 |Y?cžtGDêÇ&>&VåhVS6.(Á8cײ·:.ø¶L Ú}õ/ì‘®R¿?†xÚ”Qò„­‹ zp‘¢¹^`?ä~åè`÷RùÙð¤»HÿIàËÜ–WkqC8ÛØa.[½Äø0p²þ(é2ÅÑ)óðîi-±£þ²TMÔ:aìJ¹Э@;¡þ€î¬n]ÕEدj})ì·ZEq¬âïéí·Úôíð:Qnû‡!Vn¥½[8õªF¼Dçð,d¥©óô"^¢r xrz—%F ¤î0Y z¤À0D¤GVð’Dhx ²þœ½’4ÖР"Ä“’¥|Ë´°‰æB|öéRšÎ‘3R× ¤e.ú²ÒÑòMÅP¨'ËÃ>4ºšâMॠ–‡†ˆlÞ‘ÉZq= ¼› Ϧ§° Ðk¼6,Û yTùœ!L‰0ZP;8šÚ¢·RHóp4ö=ßz‹²`¼V¦q5Óoç²#R*†2é>OqwëÚÓ³íqX¨ï/fTR7}ªÎ|„æðQ¦•áL·¸]Ú~à!ÈJ»ì›®Ï|^¤Â½ w¹â»£À‹ÕWÃãÀ¥mK.á*Gâ4,@.(—œ\enC©œ€¬4Õ\kÂí’¤ípò¤vK;ì¯Ví šPð©.l‹AVÛèÑÌÎn=y*kmnHG ƒ+­ÈY©»¤8æýîh×Ý­“ åˆÅMà]FÒü}Wþm ÀfyçiñŽÔu”ûPâtHMõýiŽK>Y¤ã^¦-vHÝTÒpH¿×ØÃÌ7%³*½²A,fѾý€^ÚÕxa½Ö1Ý52DYáÿU¢,¢µHƒêþŒâ%9S!u@ê«èËçSˆé‘ñ@œêãv#æhp¸æ®‡™øÅæ•%WbzH; Y&dK'{7u¨UƒîÕ LÏ— }˜–šÅ•"¹@‘Û›è§Hí)ÈJ+Cz"©?Ãl&•"µ@1@é™VŠßz¿¿ýÀÈÊ¡E÷^'žX+ˆvWùµjt'±Ë“ÀÈ#Ÿ¥ˆMïA¾·ã±¹|'S¿¤Åi+ß…¬ïw+ͽ‡'ÀÏAþœ6—ù^±³;¼Çœz’e“­Y«kÌt܇Æp‘©FÜ$Ú…–¶Ô I–j¡eüÿR÷&€q$Ùu`Áâ¼oÁ«@ (ðHH‚Dó=GZ=‰ªͪÊêÌ,€èžÖHF^_²%y×§Ö’/I¾mÛ²fåCZ²åµ,ËÖåC–IcÉëµ½kÏæ|Y(T¢YUcJ9ïUÿ3þø?"~ü˜ýXû]nòÚ@Q5@}ÑëŠâ »QGGeÓ ä&¼ Z逇œc"õ÷€í­DõòƒV;&b[Àû‰8Bb5Ç´ŠÖ_M4Ó1õ.åƒÕ‹ÌK£\–M" Ùv€>¢<ªn­“íü»”3ýÐXmU5U+_Êê™ä=œIT/¹ÐÔó™dY¬¨Ù òŶ’¢¾‚ê ôå´Î„¤qâúh:“ɤ#ùFø/ê¼Í©ã;Ÿ忈ÛY qNÄq<ÿÀºmü,6³d-‹dº¤),MªŸÆàÏ^pP­¾ï²÷*þPÊ\³äZÜ+𺃭:'¡½[ž±Ê½Ú¢¹*û.k0˜µDœþl’„ r(ªi‡²nê}ˆC¸tœeJ"Ü=`{´Z®µø©´›"ö<‘ˆ£l‰š›ú­ÿA¢™nªk“Å’Í$ÛÜ z·²sJÖIt§jpÏa¸»Ôÿd¼þ' R®s²ªþì gÕ;F4U}?¹þ´­PM’ê(W ù`ÐX@!/kÑ—É|BÁÙ—ù,ìƒ0¼Ïé‰öËj5"²Û_ü<Ìå`ÌæÑí?4G2—~Usix”âXÉV̦û.Ì {ZRY¡$ )[ŠŽVÜÔ¶¨î¤Â¼á›aG„Ý Õê4²¡\jвòì¥ûÆ`zÐ+»þÿ:«Yþ¿cƒQëô‘–õÍtÏCQÙæ[Ö7 Hë,ôû1ýHv¶MìÓ^LÄyËuä0üù 7p¶´ÆCÃð¥ÖÃÄ>#àå„j¥ñS…aø è&„-†=£’Y2ŠEéaø ø"a ‡á/ÍÁQNÈZë`­„Ç`­úyOÒÖJì x:¡ƒêZë·ÀB¿¥%ÖºÕôŒL±"kªß‚/ƹŽaªßS%<SUZGT3Õo©~K¢­ñ-±?"`ÛâÛ/Â<¿ØSÝF¦ZvÌœ¬±~_ü" K¿Í6Ö/ÂX ÁX•†s5cý"Œ•ð(Œu°õÆJì ϱrcýVè·¶ÄX»Š¹¢´¡~+¾ø­øãd¨JÛÂr†ú­0TÂ}0T¥O ‹lžâų\œk£e˜‚YZò–ÙEማ¬Y}+š‡ õÑVÎm³ºÏgd §4l•Ò¬T=Úë¤#TÞ²U*áú´àšŽeÇ4Ùã;ïКU’^Qþm0GÂøÖ÷GùËÔ|9F)XKOú¿+nxI§ô¾ÿ’Ž‚Vªm¿yå}§Rʼk,É.‘T3ÀÇx^ÄØ—j•÷Ë_­O ðEV”xH m´¬¨œÔ¶á/_úvÅ”Þlþ¸Bì²À§‰à„×ǵͺCº‚ñ¤\9ºì“Úrôòî¥Z}ì·£Ãö‚ޝøÏ`.Eƒ˜Uš»<:šF¯Éì¨ÿ/MÃ×dVz%ç·r¼’|ùdómˆØõÉ„$âXy“^Éùí0ßoOloÑwëÛñDÃÝn} Gì'œJÄr?))Æï@? Qy‡±!×MïÍû†Dòý`2¡X‡\OľSÀí ÕvݧJ ,¿ø ͹.A =`ÛS{Z­ b¿M@¼ ú®¶–³É°®¼vA«”·V¬<Õ«\ôÇOª/ï²”ªïý=0Â,h¥#1úÞßÈÀ‘iÈPZd”?‰Ý„ÆcÑ`Ï’ó%!nÉœÈë'ºK8Ëùý`AÏíþ^X axy°zÍÓ CÈæWSDÚÎï ¤àH>þ·Ù¶C쎉åéDÕ)Öù^>Xy”².˜»¼CÔ|üm‰ÀíÛÐúgr¤]0±¿/à“D+ý*—i|;z aè®Øô°éb ýÇÝ`Ý]{Z­‹o¯C<šbÈ_±óh}ÂÐÍïùD°†ô@<­ÖÂwÀþBìŠÕ·ÏW¯ìiÀû«¬¨ÎzûTQѰ€xb2œn×sŸÜQh¢ëÀ[ oÅf5;y>ÓóK¹‚á6n‰kxômýqNI1S*g"È÷sÀiÐÓÚ¯¯¶F2Ü>­¿Š/?¸þ‘À²9Æ?¸n¯”˦³@Ë‚²6B%{@ïi¾»N F¡œ_VÞ(ë7Õ›y˨ÞG–Ÿàõ4,º¤Vº¬‰¼ø´¾I 2áâ¾²Mõvp³Zà_RÎï‚™‚ŒÍä¶-)kn$Ì0“иÖJÎ܈Ý)àèmí2„¹Í)(g8z"6åt”-ÅL§A+ Úòй¼Z?3}+K-ÚŽlÇ&îgAÏjËr —Œ±ðv¯!Yáþ÷@Í‚Vº¾´n†»~°4õ.Ôû£Œpô€²U“Ÿl8ô(]¨G2ž}^E¶ø.Ô#Q†YÐñeœD¶#n 8zLÛ’ô/Ô#y.ïÖO\zÀª}ÎM ç;jë±#<Õ]U:±à»aþ„aÝ&ý(a;½’ÃùÈ@Ö=R?Ð%™:éuHš~àAÐ-¸”™Øí­)³üY âx´Ò¶ºÜ/6Sq(Y¦h;fZÉ\þL„ph¥eÜÆszÏ©x˲ÆB²€Vò.rÆBìöh¦­¤]5ÇkH—k%QN‡AÇ·âÒéF–PÚT7—€W@_in2À« ÕNÕ‰ŸnÃÚœlw&)®o%ªg_4¥yƒÕ_nè÷S8nT:MY‹4ot-ª:ȯµ²½-¯êàdßçÆÁñ ÐJgìÖ fºtãºÂ=ðrö‚îÍô•î'QöVò&r¶Oìú€‡AÖÖÎî ›±JF¡°¦æ8Hš#À!ÐCñMlåÓºIQ`6Ѳ´nbw8–ˆ+­ûÀúéZ(›’L@ëǦӬzÆ»ìØelZwЄ¥viQn÷þ¸0q¸?hÉo¨þÉÀB8NƒŽoÍb뜅ðúcøcùŠÆ™ëêB?E]hŠÙîûSK£äGþûdý×±ì¢é9VÎM˾ƟFÏ œ­´E¹~1б«£©KCãㇳ££cÙÞûg áÐ{”åêÀ§ãóÏÍWeçÓðÛ“N>ízÆ’9¹P± ù·?ðl»àNLLÌåߡs·­Ôà©ìàЇá‹eG3YÿßÈ‚ßä™ìXvüRÄ‹%ß|~oîñÔ¹§o·š”^ ¥oìØØÏ|™ƒÏ;…}½¶g¾ŠÊ‰Ò é Ü Zµ” Kÿ~3ø]÷†XíÍ3Ã8%³µþÃDðûbÈçŸû ý®ç»ëš"Teϳ§Ïg?™ó–á?zµ–IÖ3ØyÃÝJ&_½|g{ýwFF¼bydÎÿŸ·Þ«\~™ã†‘½hŽ™Ù‹ —®-ޏgÅ´ £”3ë½ êêñÕµhÌM¾òz#úm_©l£í±Ô›s&زç•'FFü/elgidã÷†4Ý|úIMÓß'ïŸ6³ÅnZ–½1DûðmÐo+‹XŸ„ÓE ® Ñg€9Ð9‰μúæK6ÿݲ‘3?ø0J¸ˆ­Ê®‚^U.»Û/‚kø ô+å&Ùƒß>ù‘ö¯ÐXŸ~èïŠÍ¶z Ÿ‚y}w¢6ñùîc2¯mónÁp—•ìêÏô´Ä®ÂéΗ@I©-ÄO·´Ál¢›þè‹­ºç—ù—²]~ô—•í´£~XæNG¡%þð'@ÿÄÿ=þ§€¿ú7´žø­×7kÖß pKg@oélý$Øvô–®ØØöÌ[‹fÁm´ÂCŒ?ÆÝ½¥»Œ)"¿¨Eæ¨!™ïzøsÃ_é˜Ë'¬e&OÄ£¸ô‘ˆàÞ9Ÿs"˜§Ðí¥ô2±¦Ç›¢…²C7Y¦dE ý&áqÐǵE”_)ûsàMغCÙ\ê¿)ŒÕeÓ.ÌŒ[ɸæÈ×——GÊ•wd™¯U½c”ò¦³Ì×ihf8lãL9¿(9–Ókl>­´2’TœB×Nà,èY}eJ¯Éÿ7€A+ÛkÈuǼÿÓ1ý¹o£Äûïƒõüy ÒR4}£—¾± akƒ†‘þ<Œ;Äe#×ã/àBÔ[¬ïÒç/&‚eœñh¶ÊvÆ[¹eÃ,0Iyþš„P?Kjcø¨³hÿ—ð=Âý •Èc\´'YÉ…Ä{³AÔ¢=qÛ<ZßqI/±ðD"ÎJù=óFÅ[¶…8–ù—ºXëýÿ2L<Ä6 i?€QoH;®+­ôOÉÍ,¸)š8”(\ Ü :¾K°v/ÐfVÆs*¥\f“ t#4H¬½ÀAЃ±u£È b· x ´Z!$ñÓ³t•mœñÆÔýç̵½UÊ7ö쥠~Ùªå-ËÚÉx8 Z?¸ÛÊT Hý,臵©òÖØ'wós¼{€Û@ë•N²²‘{i,)5Eغ?¶Ž¥XŸ„9 ]²’sŒpÉå—K\÷O€Vò…u‡â<›-ûs3Ji¤¼"Ã1 ³`½Ïo†V¸›äÞ}[[ÎýAOâ—ZTÜpû\R´Fg" o›¯ÈýÎAçݰùe‡héðèsÍ¢‰Ý` tJ[Y;ÂC òÖC‚ /‚¾¨-üŠÉÀ<;@«E^âþè†=ÅËDHªCÀÐ1ZKü—‰¤}À0÷H©ë5üËI Íšßsˆ]'ð$è“úÃqõU>ÏÏ'Sš0«¥uÊÏ'ùw@ëÿ”ïPè¯ÄÖ¡Ö©ÉQ°IepgB#GOÊÿ á.ÐúÙ“çÂ+Ã>eWXÉ4óäÙ‹F©ÂMÈ*¹žOÈZ Ù ¼Z© Ò:a¯² t÷ã‹5»â„)œZv3¢Eÿ Vmç%f®)múfFx´þÑyÓÿkàýךbúáN)]ð6L½ ãúmš3ý¶ô­¡dz#QâF¬®ÿ5tÂh¥˜ ¢[4^]ÿkè „C ‡´•%½¶@ìÏ ˆGSŒ£ 7µ™,oçx­‰0¼–5¦…­t9^œ3"æ$ðèø¢×¨‘”¸¦@믽|B¥7éÍ™…ù^}¥õfü×a!Ƴ~ù@\" ë¯Ó©ëY…«ÐŸßr+fÁ.óz*dôEkiÙ£‹KK&*j˾Íá ã;é}ŸùïàUße¾YòuîUJ†gÒ©¬‚åyþ|Ø,–— ×=ÿ™k³EÃa ¦Yb¾³"ßU4^*¤•/@^®¨ù· •bî¹O®ßõóTù<-I›ôÿ! /€VÊ5ˆ°K¾I5`û%°úñXMXº'ûñ´ZŒ0ã*D½%xöºâD®WüÍD°)"ÍfÙG‡CSƒË—ÎD<°Ýò`d—HÑþš‡Pï`½^ýmð1;uï•ç9ÇËþÀÅ—ÃËa)KÅvÃê[9–7Ö¤ÿ K8zL†âe|i_„bÞf†›¹ë¸©A:ã2„#=؆~øSàb<ýðð©çËöjƒ®%-ß?€L„‡AÖ–ï@U²°ã¤J9y%þCDxô6(ñ§Á;Äx”ø±SÏLÇô‹µã¡Âj¸n¥î,åÍ‚±¶®>U0Ïበö Ý’eå•ÿð.„È~&Ô]O+å2¸ˆ†×‚/uêIÆ›--fÊŽe;“þ[Tr4ÕI –mË]2ŠEcP~,ú¿ 1a| jSì#þM£”)Å…¼1yy4½b8áOGGG‡äßãCvÂ)ÐSÚï‘ù¨÷(=ç÷^»“YsL¾kþ %̀δ¡kþð1ž®ù‘Ñá•á쨂WúYHH_tx•âÒ5ßK­“|øbº`––¼åŒ]ñ&³£é…µÉÁá,Åá ÒÿSHüOcíp^+ £ÿ‘ïZ?) µ ¾&‚¯†7 Œ/øº±Ið%¤z ¦1¦OÖ†wyúç›ðèm6~¼CŒgظ„eä‹ý¾èXt-N)OUº<“<_X›:¼rF/-þ/@dÂk Õ®ƒ?(l¿æÒ¯ŒW–¯v+÷rÆ1ß›ä|ðL~pÒðîð•Óôà™bí'Ÿ÷‹úcµƒ cÒŒ³°Aü±R>”Yüš„Þ¤ÿá3 ‘È/á ã«›v9x_ÂÉÁdR)Øv‡Óom2—ʦùÿ ¥ «yü86$ß#ò^}¹ =ò_€wˆzKЇ_{…3bÛñ_&‚!âÑl–ÉS§N±7Ý FßÚ¢Uñ¼ÍŒÚ hûÑ>ÏÅ6…#—¼”]A:âþZ‘pô¤ö+ Ð+ ûÓì¦xÆKÓƒÕe+z%俆`„ ´…<_óQ®_!ï¯@FÂó õwd‡è|ÜZÊ“¦ÌK£\6&G3Yi‘ÿ Ä$=¬-òÃȉ5x0èæ1Ør ž Cè\D_»88í=¢^èWñ„ñ]·ù„©`/= fyƒ^ÙöQ2ÿ[ÈIß|éü¦2{F%Ã'דòFóï ã¿‹ÕÎïo*/åŒøžl¡â”¬’?[M»|ŽÐþˆãÿvh(ÚÉE½Ì¿Ç Æ8Kû”ÿÖ!ÆtŽâ†î$*Jê_ƒ¤„£ Gõç¬õƒÆëM¢d…ÿuLß”uƒðõS;f,-9æ’?ÚehÆL¸¥…ÿ ü± ?Zßë6Îõ¸= ¦ƒ¹ ¬Ô_¤_‰Õ^Ò Æ‹R.¸ôðð!%atºõÃÃo‚uˆñ ˜Ôñ¦IÌ%³”ÏØeÏ|òæ£GÒÚý-F_¼t¨Ø¦QÂÿ'L8zük}Öõ2ÿ7^€ðktÒ%ú†¸„-˜sF‰ñÿ€uˆ1í‘»|ÑØóœß»¹sw&ìƒCŸþôƱöí·Óƒ|â78t:øïe_æ¿àã‹qî»ËöêlþU¸ºÌ¤XÑx•¢`bˆMN2ß5û¿ ßnhˆ¢o–rv!¼Š¼üW¼ÀõeùÝ­`•L7ÅðZi/ñÓáoÞNç(âXrÈc‡V>ÆMž÷€15“ÿox ÂG i¿Ñ'ƒñ<õÊŸ•Øþ<ÑŸ¦s)ª%jº®e—ðz)ÏŸf Ž_>ÃîÌm|Cáý”ÞîÿÅ~ ô§TÞ®!×móyrï•RÄ: qûÿbíÃòËWÄ¿C@<1µ@rÞ|ìÖ5`ý7ñÚÿ½5M•øßñÖ!*·€žÿ-¢Þ:â–:q¶òAZ6!¾·Øº/ÆîñÒ\[µ|ç-ÀÝ w·^)ô½~ñ¨5@ã*fxâß–êÿ¨}£¾6ý®~‡úÃý_…|('ÊÚê‡äÚPî¦d…á‘¢Q ·¥2a»–è¯öÒ_½õ•jÃúyÅç“]¥³lE|Þ¤*b0 :YSYØà¯]ðy}×-žUÊŸz:Ñ=?`É[¥¥Z[ÖJCOýÌØÍOýÝO}¦Îb”KCO¨(ÅoΪB¾ I7ö—ó%£Up1|^úÓ-˜ˆíëÇ%Ĉ© ×ÜÜZ©]r¥›4-£QÑFèXß ­Ö±ß) ž˜ô±ƒúPÞ\4*Y½tB„{@ïi^:¡ ¡–¹xov«ôBì÷ ˆ§Õbt¡B¬ î$Í£CWœnBˆx4[eò‰]ž3Jy»h½oæÙÇMÇÅéLÊ}6û‚=°\Ïö'pE~ï1»cWJ»kx†ô5Ãá HØ`“XÛ®=Ë+4ÿ»ëݽº&µ4ؘAë&-­cZ Ä6Û5}Ö+ ÍV9ÊØsÓdwÞ7ò63=f2tAÎè¸üE`BÄÐèØ±¦ÕîœÏ›nαʔhÑ’û@¢z{§ŸÄèË+®±ÔÈ—‡k#»mw£o„ئñ°-¢Þx¸WWš¬ìP}F%~*_vF˜¼4*;Ó¸EöZ'ú#Iñ(Ž€õWïHkk/4b<Ú⛺¥JÑt¬[1sž?g z÷¦k–¼ðŒ™½àšÎŠ?ßÈÑlB¾Öˆp¸½Ñ¦nË M¹õ ­ñà;oyf1Bs`ÛY{Z=úû.ñ´\ Ðòtµ°iwßøUÙ’@aš£ØçÏ誌Äè°nsDQe3ÔçM‹— 6xHA ~ŸÏ[9yä*Å ‚uKâ-.S‘}—ƒP5á èíwÙϳY«c”ˆ')Ú!ˆÞØ®ÝI9žÈhä8& žØÆ©ˆJ‘‡`i„ÇA×ÖÐ…4ó}JŠtD þ¾© QÝ‹ŸŒîÎÝY“"AO€~ -p?™TÅõÝ- é›#Ä'Ö…|m3§Ãh¢ñ4ÛœˆÝ @kjç Kñ0eÛ£…׌\1œ5~0ÞYâ%ë¤ïð&è›±i¬ÓŸÁ©èìð>èû­ÑÙ-àÐú=ªS~˜>ýP[žL:ËoËÊ-›¹—T{tيѬŠü Ø«8¾+¥:E’ Œ€cƒìlMsêz59œ•µ§#‚eOžj¾=»kÀiÐÓú1§´9ÿ;À» ïjË1Næô¢æØ˜å=‹–ãTáPÄrF‰-PµÈ/«òØ¢ce JXÈn”ÜrBrÜO³­‰ØM§@+ñúÚæiff–2Ò÷Õ…M΂žÕ–¦‹lJR’c0 Ba4&óØ̤&Ë¥«de­…ÄÚ<úHó­…Øu‚VÚ Z×»Èy”m×µ f”[ßLQáÓ ¬¤¢Ü#nÃ$fCÀ  /h·‡ôœ–اÄ£)F÷ìÒEŠ£·†ûÍ=±õœÍ× "û Ó Ü Z)±C®¿»mÀ} õ9RüjÒp¾W-ûJÅ/J¶p{€Šæöo€¾¡¥¹ÍºT÷|Þö%áû;Àû [§»IàÐúqºt_&ö³âÑãõåÚ\Ž®Ìr+årÁ2óiY39(—£à&ÛÛÁI˜SÀh%7 g4' )Â!ÐCÚÚ:Á;8•¤ nrðƒÝ`2”¤ƒ*’í<ð>h¥þ´NÆ“dQVÆÌ¤ý×dzŠåšœ ¾Ô†ô‚ÁL‰ð$蓱™U20«Ô«!YË€EŽ‚m¾e»A`tV[kÝÜK(hf xô•Ø4³#ÔÌpVI7“Àû [à*ˆÝUàÐú®B~ Nügo€~C[¾—ñ”¶2V-×L7ZɡŞ Ÿ»æ{•ê¢!ÙVÞ6]? ‰¬²õ.,0 Žñíeå{±fƒaTº±…1I/ Ns¯o¼ ;@wÄhó;®´sÑ ¶mÜq%ö]¶kÇõZþ”®6O°xCA¬¤€xäÅŠ'Á‚ÄØ)`< Cáe©R\0Z%\°Jn˜²½¦kKwñÓP$áhýhN޸΀÷]ã’ëâ§•s¶mìâľKÀvuñ³hù³ºZØ´‹o “¤KwƒÞݾž~(D<šJ{J=½`/Y~´Á¬’‚<ƒÊZ¬åt.:<É­1\ —7K®å­QÕJ!O^Ÿ2==—/ N<ý´ –˜ï”®%ÊgÃàlÛ8û.Û5!æñ@i™ŒÄHwÞ¥<ìÐÕÒ¾"M-õñU†¥’íÏ?¨×K %ÔÒóÍcš¹*.U‘0€GAÇwœ&rÒz_$<ZmÙNüô\°MoqÒèVÖ]d+kM$äq`¸|G[ØÌÆUPž”d•„y,ŸÙº ·3 %Ïl±‘0— 'šolÄnxôumýu³+ºTÓ&j¹¼ ú¶¶(*{ÊBµ»„þžrG”¡r¹°¦ [?ð@¢š"›ÔnßÀvð èƒÚÊÙ Oá ™l¯!qÏ>×ü^Cìº)Ðj{Ùâ§òëŠÄxôy}9¤;Ì0:Ép¢¥q/½n'ض1î%ö]¶+î|YçÁ]4IS, Ü Ziy‰K´UWa$FŸ€x4lÝVÏÔÂJ¥–”pê#Œgë¶‘*{I•™ê2œ‚ŒCÀ+‰ ·(7Ë»SÀ« •Lå†|bwx ô5m›‘ò‰ÿ8p´Rœ¸q¥V˜”ìàÔí*]M 3ޝäVfFa¼£‰ö®ÔfÁ›°…ŠF˜N°m£‡"ö]*{¨†\·ÏWǺ¼÷ µÇ€m:=Ňءjzb\D „¨w z»®8—A®[ˆñT…ØïûÁ³Þ5sÜæ †+f"–mÂÁ´îÁ²å ÊN7H–c@š5ß÷»À“ Õ2nÄO¥¯[̬’?îóô}JÏçÊ’µ#’l8 z² Ãü ¡~¼!f°+I›I” §ë›m:Ä®¸´~bëV–rMSE9ûG@+åÂoÔv‘Ž$;<Zi-Ê»“À  •²Òåmâ(0 Z? ]á  0 =¢-ÈXxÌ-8ÆÆ—W,:³°F;FÙÒIÕ V8×V kÆbÓÛÖù£Pi¤¸KàÞmئPŠØwئPj-¢^(µSWšŒíf«Œ° 2\šÝɤÙý’iѾzš½Èð$¾f!ŸfŠq²B_G»…Kÿ[béü.gµLÄàî>?¬0]— ¤^O…ß$Ýÿ„«1Ý¥Ó‚Ip'ŒÿôÙöiË.šžcå\¹v÷VrûžÅ,–—#Øv÷ƒÖ/Ö!}òø­¶[ÑH-W.+Ès"QK>‘Xw=¶:ìB>‚í! Í´ÕÑÏR—†Ò,;vùÒpvìJVºû’8'YÐúó*Ý÷f ]ŽzÝ—> ŸÏ?§«F>í˜n¥à¹“N>ízÆ’9É‹¿ýgÛwbbb.ÿ}ï¼m¥Oe‡>Ä`ÙÑLÖÿ7òn&{ùRvxôÒØh†øÌh6;žÍDYN¾ùüÞÜã©;sO#Þµx´tŒKߨ±¡uçý7>ï ë=5ŒÌ=ó•ldNIìp­Ñ¿ß ~÷‘µï×}˜~_«hÿ¹¯Ðïz¾»®)”+Ú1³K%“û»|çk±F}Cm‘R'>ÒYê͹GlÙóÊ##þ’±¥‘ú¯†¬ ø.èwkVðg^»Ÿ®Ë䊲Óî‚á[ª‚ˆàè5eëÓ<»H }ø9ПS‘¨¡ì›/Ù Ži¼tËFÎüàÃ(á6¹Óâ Àoýí*Â5æ:oW¼®ßüÐß¡Ü$ö3"ÙšîôO*[Zwð=VÁØþ.ð§AÿtlƶmÞ-î²’•ý,ðAÿbK¬ì ô/)µÅºOóQÐË/ô¯Ä¦—Žùa„ýþè_k‰FÂû¾ô¯kk¤ÿµ{ò&Êù àWA5¶Æèž_æ_jÈö;$’høª õÞ“Ç ò-±¥ØÐ[z”Í´}ó–^à€ÞrC¹]ë…WlÖä·€_Є-0¾-¸ÏaË;MÛžykÑ,¸QW+Áø3MØ|Æ4ẨM¼.$'^n1k0½ØðWø-pú‹­âK\¨=1­`ì˜÷¿C%Âr ¯rœ€ú`®á#ß‚õwÖé· ‰Ô! ͵ i1nãBÔ[ ¯ҥřJ3õñh¶ÊiÆ[¹eÃ,ì™Q)ððçæ‚áz–QbÍ5Sº2ï4‹P8U“]÷ÌoÙv"šˆ˜ÝÑÖ˜–¦îÀfCl“ýÞE „¨g¿{_WœÈÝz*9ºC@õ ðÄO'NbÏ­ ¾´]b¸¼–2d6Þþ“ö-;(5–¹$éÅ ‘0>õÓ{]Ó˸¦™OeGGå…î¬/Ñø5ÜNP Ú.ÍŠ6É.§™k½Ow‰ŒÉ‹úâj ëD½wpI`~Éà“éÔåôèÐ c¾œÕ a©WC¬\¶-—.I ¼<YP(ò-f!9aè¡ek¾Ê}׳ËÖbÉöRVžŽcûï’¨T­•¼1«Þå63õèù=… àãxB!šÔ|›ñú `Ãë­c4´®_a$úd&=Ût39)E£E”0Îød¬6-=Ó#ö¶iÂù)´@ˆzÎ ;Èy…C’o%g@Ø ZivÔë¶ù—æÚªí4Êz @غ¯õ:y ß Z4^ÝÀ3ü÷i¼vBÅèõK‹ô»>ú2Tú¿š¨­í¯ÉÚê‡äڰ̼ôùåÝP(¾­)í~^ËÜp,o¹håYYJR´~ˆCØ ~M'A‘»$Ê1àèØ†ÝÈzÄîfÚJêŒÞ>ÚL%'§@ŸÒäcŽQ¢û”ËŽ½`,X^Ô^ÉhöÀPö$ÖýkÞD-Òfö ­Ï€>Ó|›!vÇgAŸm‡Íç€C ‡´9ÂØ]cÕÊWÓW-E‹ž96H†iÞT2Òbö¢gíÕíerCìŽOƒ>݋ًž²Ör&±®&±¢ sß«T^ßtÛQ4—}0ƒ ã[šÛd¦i.$É Íšo.Äîð$è“1˜‹tÀE OƒV²Û†\wÎb™Ùˆ ‘I;gDľCÀ6͈„5ófD¯]R(²oPÝ&`<3þ¾ øN¡æº´T‡Ð2„Ât¡YÊŠ”ã0x‡¨½<ÓðÜÝGlÎEX¹â$°´Òd¶¡L=±-µ‰PýÀƒ •ÿ†\{拦·l7ʲÑzt§iA&v5½ìÉ›ɧ”ƒÖ–mYdA…MJl¤Û`š úA8YøsP!N¸Ø²Qá.õ°”ÿs­¥R˜æ¦8H³͸TüT~8Þ!Æãà“2˜Ÿ|;€L'ë4MùîûFÖ¨w°—>ui4Í<»`:”ááÿì¾çx©Ìc#·l•ÌÓy»²P03fÙUÈoÀ6ÈÏT|›C~_‰¥±D"Œo:äšñˆw"Ô¯!Û­ó×Xj ‡ÁXûˆÒ•±¶)<…Q/¬8¬+Í v Ï^XìwÆmm‘-c@â$Ä£hÕWÃQºu§€ñhëpx‘®½àšÎŠ™¶\éÉæY(îl"NoÃÑM ÕãrÁÂ~ío~RÛ(¸63r9³ì±¢AU-M—¶^ Ç1Öä_E¼ó³Á:ÅW9A¯r×*ÒÕ¤á{”ý🷺´Œâ} ‚£oyßï!ݾ±Æqûu‚ÎD힦ºÛ/Z5 û.ñ´\ çÑòçuµ°éÚQ¬(È•n­”lÏíL$Æ.Õ“ÕÄO¯„ChÑ4jW—kEŠù9k¡Œ_‹ÁŲ²‹WKÆ·{ÚO²C¿ˆ')–x¡¡°/©hy¯í³_ëÚ¾Cµ'¶ñh“kûöƒÖ÷~j×öIÔŠïI¬»X¶eÒ0L°…n:vg"òÚ¾V¹bß•ˆ¼¶¯eZÈ å3ºZØüÚ>š™*H–LD^Û'éúuFbô%"¯íSTØ\M‹î>“ÕÜ´E¨—-ÙPc´ˆ ;²’({€ûAÇwò`ÓÛñv€> ­šË,……î¡4³J¾§¦ÓYKÕ¼-!E‹­úä¾]ÖªHäƒÀ‡ j‹®R|&D(ˆÉœ¢ãÂHc…]B£;Šý_Θˆ]7phýðDš&›~”W6šÛQ)£hzþO~4(k5$[/ðè 1¼ÿoc*¢Œš9Ãõªa©V0˜…i —¬µ-$9nˆ§ÙVFì®'AOê»étâx ô-m9ò…c Æ¥QIáÆ`„ñ¤‹4ÞÎ *F(wxôù 'âÖ.bwx´R×—³Wbw(ÌŸ4í¤/pœ+†cÑn¬ñ’0ÃÀë ¯k ¥âEÂÓ˜’íÏâÈî /†$Ô;Ó0n°DÙJ²Î„^}©ùÎØ /ƒV›æˆŸî¢›Cƒ­ÌÃ* é é:á,èYmÉ&x9ŠÇ,~¹©UD? ­×eª¬î›Çrv±\ñ;[¨vé>1Ë"lP[¸eŽDàÝJwNÆÔ ¶mtçľKÀv¹sñ Ñæ¹ó.JIT, Ô_¾îÑU‰Ñ' M…ݼyÁ^¢Œâ*©lqVK»Ëv¥€4ŒàjdÙ7ï]è6Ìö&Á}2ÑŒÙÞv2¶Ô«ábEz¦Gmrñj³œ±ëND^¼ª¨™ ifeÌLšÛÏ Æ¶yÞZÄulÁôVMSÚ”HÐÀÛ oÇ6È“âNШü€°l—¨‚›¸w íoÂâã å‡Þ[àMØBHX'ضÑû.Ûåo'ªsš˜ a"R;yÛkTÂ…ÄHõç°ºZºï…ˆGSKg©£WJ×ïâ©°pr8:-™%Ó±ròGñ¦ =³ Ï¶Á¢¦Á{Z×¢äúõí@ßœmû5±ï°]ýúZþŽ®6Ox~© VR@<íZ£"1v OÂ3Ï(vý€ÖpªuÑ}^ò»P ÷Í#[«ä[2s+EZ™rìWV1¸XG1yï.”L_F±Jx+poBx«RB¼ih%¯"×»n`/è^m•ì 6½<ÇŸcx**ꂌME{r¦Evž*VØöò¼›—ž‰`CÀ ÐJ«4ò;¼ZGP~ωøßN‚Ža{_º+ÏÚåØB_NÃq'ضїû.ÛåËśǚçË“ÕS• â%ý •ò³¹X}ºZ#1ö ˆGSkøJÕ‚k*¾×®@ sš"ݹY,ìµ Ä™‚[¯rè6¸õYpŸM|­¸u’d°…nØuãsëãÕ>ßj2lŠ­N‰¯„º ·¢åÃUÑu&kQ³A'ãx´þ)ç$¯@‰¤8oÀ”“ •fú¢&(›ÞÔ·[@<Í6*b·ØZí‹øiš¤¢QÊ»|W­äV»˜ªW°qn™yY;"I÷'AëÇ(*#“x!aü#ÓGúÅM/JÜÜ zoóM‰Øu÷Öw€‡3l–<˜oG9Ã5)¥Ýÿ¶O©hk?pôp;<ÉqI@<­ÐRx´þÿNÞ¯—­¥eùÛ¤I’+À)ÐSÚ]๼Ž?Èð¼õ”/^Å7ƒ gÉtj¡”üЧx×§pv±åñùcð&lá,‰œw'ضq–Dì»Tž%5äº}¾z³`Þ§ÑÚO€xZÝO ø;T @OŒ§hÕ[ƒFÖ=ºâŸ[•>Cr0ñ4Û­»#À“ OÆàÄRt£¯ç?X¿·è4 m0à ß›®¼#A@?Ò¸“1YAžÃh;A뻓ޠ»"[OÖ¨_@Â^ÐjSmù∛ޯ»x´Rq89Ë&v}À£ õÏ!œêòôh‹2¥ip5 fŽò,eSxI¶cÀqÐã±ékÓ¬øMÕuxôÝÖ¨kîbèïÇuDÖeÛL%3Àû õ—{N³8Å•Âtué£o*çv§c3´8èðè̉ÝàeÐú3Ä=C<Ÿ,ˆ–\•%i’ç ð>h}‹:Ê|™\ßGðàÇ(•µXjÅ2d éã0B¡Ô¨†!5ŸýdÎ [†ÿèÕZ&YÏ`çœ]*™|~~3øÎöúxÅòÈœÿ?o½W¹ü ;2ÇÍ${Ñ3³.][q+Ίi Á.¸8lPW¯®E«`nò•Ɖ_õÚ"¥N|¤%²Ô›s&زç•'FFüÿ$c;K#õ_E-lf}ÀwA¿[³‚?ÿÚýtÝé˜(;í¦åÙRâ$Z¸zMYÄú“3]¤ ‰> üèÏ©HÔÐ öÍ—ìÇ4^ºe#g~ða”pwT“P_~;èoW®1×y»âEpýàw€þå&鈰ŸÉÞ Ðtø“ RÙÒê‹Ö÷@Zcû»ÀŸýÓ±Û¶y·`¸ËJVö³À_ý‹-±²ü%п¤Ôë> ÌGA/¿ üп›^:æ‡4ò€¿ú×Z¢‘üuп®­‘þ×îÉ›(ç7€_ýÕØ£{~™©!Ûï H¢yà«6€tÔ{O7È·Älzné hÂÿéæ-Ø%Ýr# ·ÜPn×záU'›5ù-à×4a ŒoË6à;MÛžykÑ,¸OÉÄ‹`ü™€&l>cšp]HÔ&^Н]¯1½ØðW:æò‰[Å—¸P{bZÁØ1ï'¨ Ñ(Íì-¨ï ÒJ/}£—¾± akíB"uˆGs-CZŒÏàBÔ[ ×®Vc$‚ úñh¶Êî —eŽù3Ž—Æ’tæóf¡ú}Žš«=WøH÷¹×÷-w榞dæ†ËŽý®ß1¹›¸“§²~0_~¹ôO„K=;±?Geò"ÞgÓez™~àYÐgUúƆemóô.¾¼‰×ô¬ñú¯ñ¦Qž•^îœð’çT^rÃü¿þ%^G›ÙV,Fĵ\ -æéÃcc»®ùQÙ¹‚Ésƒe{Ép,o¹håd QÂiÐÓÚÞb(­H[o$aŠª X¥Š]q‡˜c”^šy:,¶`,XË[÷i·«h”Öd_"Ø(GDj„š/ÑÏÖßV$½|Ÿ‡(„ý ûc3:ªošTf,­73¡ëåÄO¥½±ï°M>-¢žÏ¯ŸÆI‹Cn") ÍV9ÍØssÁp=Ë(±ÇæjR>¶rˆY0Ø3£R•tE¨•è10*Þ²íD41³Úk¿l6Ä6Ùï»h[”¿™fø2쓇ˆG³YŠvc˜åRþì=Íüÿ¿˜fWÒ¬lù?ŒŽÊ_ó[@K€Жr'¿zØ—Ó—RZ$̪9î­_Åg§kzßäSYùV*AŒR¬"¬Q9Á}©‚YZò–SÅÊÝÞÌ&Å+œy¡i©mHJ8zD[jd¹¥Öâ³ Ñh¦-æx´˜Ù!ÆN1×t™µTâç‰(øú¨k'"å2Žƒ×ïèuòg5[ÙdN¬]~XtÁ;ÄxœÖÉS§‚ŠðÌÀçÖÕŒ—–Óƒl„'AŸÔïò›wž4ªÝO²A§ìÊk9Ü2®ÄÚåûÂÄ×ßW áqÐÇc‹—’óæ+ƒ&~Vþ^‚Ýj¬Æ'ªûÛ1½B „¨1Õ/l­”,L•”i-,ïöî‹q6øÒ\[µFÙmkhµê£³œ§¬bß/ µh¼|¿gøï}¼vBÅèõ âô»>úòªú¿š¨­›¯ÉÚê‡äÚ°ý1)™95R4JÏ3a³–èöÒ½õ•j³ú y"Û©ˆžÒéz£¬d“}ï`´0;ÛûµóØÖ÷\ªZTBj€·¡Ý+ål*[]kÊZÆÛÔ?þÛÿä?þοúVÁ(g¼M(éÄ{XUÈ×b~\cw9_2ŠQá³½†¡ªÿb‹Æ%b+Ü+[?•£Qèñuæ™nd:gD7 ǹ Ø ºWE¨†\·ÎËhGt !û@÷µ^'Õî ž˜t²³\°ý)³’b:¡Œ0'r[b]­¤¦)F8éÎ*lI¬;¨Ð*ÅûýâQTL‡®8]Ð@ˆu¥;[åæ]ki©`2ÓcF¥²ãã—‡ØÃáêd6|³‚§t{VÑd¹BÅõLš•ɾC7´IxôÍ-ʳ¼B£á7Ì㯊[mQaw±nÊÐ*1˜#DõÖ@5=q0ÞWf«ìz!^U#)R2Q‹ÊÂHx—r IúÉÈ97}¸xô‘ØzOäAá$tBxôQmýc«ŽQv…RVI5‰ƒÿ=`ƒ£ÌÚê*S)»ûÏg#‰ZiýÉcÒVÔî?}v xô]meu1Ï–íÖôÙ=àд%™-›ŽïŽŠ|µWðS ÝÜñØ.y&»c8›ù_,V<#ʋɾ޵7*5¥ø:§k¾”¥DWœf+&¡%%ü[™š½aÇ Y¶è„î烲ItxôåØºDäFìί€¾¢­:ù òÄÿ*ðèkÚrŒ‘£«fÉön¹,_¡’ØØç&Å„g¯È—Ã6ËÄûÛcRÛÎù¼éæ«L’G„ð¿íŒÝ;lSìÖ‹Q/v{íËZ"»t4b<³’ˈRö¥ ¦™Yv3.›dOÞ|ô(øÉ«þ4MkããiiÙw£ý/ƒVŽê+ÿ‚*‡Á¦Ÿé;§PÞ²]Xó^íô'ä÷^„«F¥Fâ6ÅH9ö€wˆz¶Hªá aZÁì%ôw’À'„__²†}Ô:×&Bõ÷ƒVZOhȵg>(Áx ðèÚö2zUÛéÌ¥ï¦ÙàýÏã;ƒCò½‘¤;¼ Z¿7>ä]Ñp–ÜÌ]_΂å*CiübÔÿM@á7sõ_y|§öé7Ö®ÄzèšoÄ ©°â¢c¯Òî­íx©Òÿ1Ì>áJòß!“ÉÈ/û!*á(èÑØìtë|Åõ§x®d‹`¢mrôľCÀ69úƒhõ×A]q¨LÈNëneS¡¥«sFSN¬[ÀÙçl œ³‚lI`¸`¢´Õð¸ÿ^£„˜ªç †+]Í‘ëž}êkbfH^}IE2¹™!±; ¼ ZßçlÉ(è劀xb{ûˆbõ‡+ãx´Ú²Ùº·—Zˆý5ñ´|h9Ø4Çæ -;ùTs “‰Úâo2¡¸1Ï­^$ÆAñh*î …7¥J‘nÜe+þpg;.Õª®–ù¦E<Ï2 Á‰³X¶C:ß_¨AÊ»ÛÕ.·Nö)’}ɱò.£˳r¾ t¶†Òüß®˜‚fÏf&u4¼ V&Í(¤—fŽAtÂ)ÐSÚ¯ÑO¯!–—­9-d6:¤éhºh-ëaH”CÀ£ •v1ä< ±Û<ú˜¶‚RCta‹ËÌ÷*V`\ãB]æOŠleMeÍé¸ðÜ­¡¦´»øÝ»E£P exI‘NÀ|ãßŠëæ£±¬-‘,û€‡@j¾-»^`cÖ÷×# 9" ž85"½5J²œž}¦59 < ú¬¶F¶}YáÂ’ãpôhlªÙ…%Ks¥võœŠ®o?tSewAëi‘«A›©æpôŒ¶whh]¨x¬d{ÕÛ»–ý™â²Q¯°1óaÔ4FL,oÓý)Ò!Ç@`ï€VÒ£f¸ÎÀ›P+\—›4Ñh× ¶ nøjÕ¤‰Øw ˆ§åZ8‰–?©«…M'M[¦ÄJ ˆGq¦T/ÎQêXþeÁïm~œ/d¸²Sp'ð,h%"gÅ'a¹„ç@Ÿk½û”€xZnѰÜÁ¦Zq÷fWm&Z¸+QMIS´ä.] â{!âÑÔØ4¹±ºNe84a(Pí æìn˜ù˜^}½ a×ùÀ’8¶0ø%gØ ¶m ~‰}—€í ~/ å/èjá#RNméá$Jõƒß^]…‘}ÆüΆótj %»dÄ+ÒýHa‰—§Û¾ŸvY-uiÙƒ f^öuÒÐ5á,èYí×éá«çk²F8 …³”1»©­¯Ö(ñTA¶}Àà7ßK 6ËñèM$vÛ€GAëMìÊè\Nž}^Ë<Äom Ï ÈÆ—$Nx ´’G—WÑà8èqmífEki9ØöZµ—²ã I3œ­?žìá‰V)gªždÍç¸ôžØlGñ$+ sxô‰Ø,'ê$+qÛ = ­¢ó,oûó3²·R.ÛŽÇŠ~·†áÑÜ ›-ùîËreMŠädÀYÐú&ÕËO®™æ>UR¦˜a/èÞØÌi³0)r"QönAî ±ë­ä×W¬­æügÁ¤´¬<-ÿõ y%ÃÊ‚ëY^Å3¥ç>$ìàÐúë>òQ÷(L‡°…sr`ÛÆ¹±ï°]sá¨_3·Úeï "q’âQœøÔŸzè4¤“ HÀ^Ðñ zÉAœþ”ùHžýÀã •VÚäF>b×—¨%Aõ%½·Þb? žf!ÙÀ¦82Ьõc±?) ž–!cEslÞÒÍ7éDKõ´PÆð½ñhjìß=d¹eÃ1ržéà€³Jy+G—à·Œ¥’í9FçŸ]Š)‚mù0â"Mxô=íWÙX¬ Ì5=ª:!)™°%¤Yé­‘ O%ß]w6Yvà&鎳 ³Í¸‰Ý~àè1ý1CÚ|.Át.­§5å8š”rž%eÊ6hmod@ýÕBÞ®Ç;¤´Ï'¹Ž‡A7ßt„óó|>z0@M•íeEÓ(ñ¡(gø}^!íŠNÖ?¯ÔÇGU×µ}C¢¼+I¡®Àpû@÷ÅfDŠ‹.$Ì~àQÐñWŠZt¹‚ï­\i»r!¾+è3„gAŸÕRMDAÞ½„»œ=cç®­µ—¿ŸQ]ŽƒVZŒmø—‡w@·àt±;¼ :†ÓÒ>’øßÎ$â:Ý!ß_ ¬›£V|/7Ë¢ð§ÇÛ¹RCì»l×JÍ5´ü5]-l:Ë:ŽÒ5¨eà\ukDNÏ€VÊû ëøèi’ÄH ÏÁ€óër7iwÕåœ|GÛŸe ÅH%凖 …L‘˜ýTwÙtܲ‚hWÕÄN+%Ð|¤—ÚÀ6 ¼úFŒl#±Ã#¯¸z!@MÃÙÊR¾È1Épx´þI¹.2bII&`’„] ÕÆFfÙéϲe'F$Éà.ÐJ«=ræA캽 Õֆױã¥(tÒJÃŤ“.ZôPQÊàqÐ-X¡&vû€'Õ£õšJéJ«¨dx´Ú*íf£xp%’K$ÌÇA+ð¯?˜»P [aƒÀë õs?¥ƒbC@<Úƒ%±KŠr=°'ŽÂe ± äsÒcI²¨µÛ&g×ìݧ­“ªû(?”_Ç÷€Ö[…l˜ùå9sY>%¤Ž&ª‰ì­X¦èz<õü¹‚¸§€gA+-ù4üËÇá&l Öñ‰ÝAàè1mSíP;.õÖñï( ás³†­ÐÈeà-зâ8d= p8 zZ[±à2m¬xÖŠYXKÓ’}ÑÎSB’'$¶º¦G[Žò'’oÀq ´¾IóeüY~›o^á`×$!ì­æš³Drž­<°½¾±Oâ‹„ç@ëŸq”_"%þ)à衆AY3¹ Ó ìÝ£"–Hi%«lÛ¸DJì»l×é-´ü-]-lžˆÂëb+ˆ–ê'¢l×ÕØ-|/D<šSYEº =݆Ýè¯"5œ„”¥ï&ú{A+-¥ÈÍŠ‰Ýà>ÐJÙ+r:±ëî­v/¡øé‰aD+Œ5»âU×Åå’íð"è‹Ú2î…Ò S0Ú©ê÷U»Rs"’ë ðh%W-gPSè2„)Ðú›-}|&í‡q”æÛ”‚®†€WÕóÏqÍVTJÈ’(7Ý õ\NƒÖŸ$ÈpÄÿð.èöÚ¥ÝÐt OŽ- àÈÿv‚m8bß%`»8¡ôcÌa"R;y;,=ºAœ$P?h«.-8Tu÷‡œyý+7”Qh¾ÝÀ,è8×¢"Œø —p ôXë˜Ø_OLo¿}>ÔR#K9c½ ÄÓê&¸ «±C¹ÿh‰!äƒk¶õ›”®83‰àwˆñ\'·Ÿ1ýËSî£u…+’b HÔ‘<Ç€§AŸn~TBìÏ€VJª;A²JË&]œàÏDx-{5^ã]ÀƒËÊJº ¼ Z)v’WÒ5à=Ðú'?ºI€àÐú'Y³ §e,—<Ÿ‹­ZÞ2wÌ‹v¡`¯’åìbÙ.‘7˜ûA`³ •¼´f°5 Þ„ñ[ë¾-Þ (%[؛нõª^¦qñ°|õ*–⧬•MŽÑí¸ÚÌËd$~?P ›«Nà ßh}@ì ˆ§å†þŒû¦z’n)Ë”Œ¢© ^غ_ÙÖëÏ:Ÿk`ë¾Õk*årÁ’?ÞBÂî ©V1yÄͯʋtˆ$ÌpôLó"±»¼ú¾~w“lˆýñ4{°qàiõ`óFã§åƒp'k3—ê~ÓI^ñ’@ýÁ¦»N¬mÁ"_“4û€GA«•ÜBc5®Bñf”X¿77!ÖIñÄÔ£ºæÍ÷J\Aj[ò@¸¸D{å 'o½ïúŽéZùŠQž¸’p§€S •–­7ÕØÖ¹”›ö†Ôvøô£–¨møôãÖ{bÿD@<ÍöÄ®øôÓÖ{bÿL@<-÷`Ô„MôtŸ…?¿2ñ’ÀøCÎÂ¥ ‚ížHèdí7tÓ²%ÉqF@<ÍŽ(‰Ýð,è³Úfܯ{¯‰sxtœe£#Æ–Gq 3žôËFK-Ä~\@<-[–ͱycKO9Ëg(—öîSYê…:Ì“G†ƒªá!K~Ç­‚˜{€çA+­”³äǰ^°Ý…Ö[2±O ˆ§å–üÖû¤©–ÜY޼Wr3Á’À w([qW@cdµ9Ûöcð]Ô\4<Çzµ®Â5+ع`ŒV:$Jr÷o¾¥­`•ô¾§PëÓ ÍIïS¬µAB2Ð,ÆQ þZ$i?ð h¥ÛÑþåÀ“ ã›ëFF:Ä®8Z²+=k"ö§ÄÓl@ý3%¾ÍÚ™PÜfÕóÄþŒ€ÊQ®¦?x–Â&ú×{¨ X¿?Hñaßõ¬"/4õp¸ZØÈp™cz§äÿzaMV­$m/ð2èËmñƒ2?–h¦Øêz/— Ù“Œ$Óàè¯i'@’öãuƒ}2ЬùN€ØuO‚Vò=zN€Ø ˆ§ÙNàY"ø‰í)ÐJ¾GÏ ûÓâi¹˜Kãa3€yWA°$Pß l­è´¸6ÏLDZꌠê$îfA«ešlºHWe‘ždº ¼:¾R>Q‹ôÄm 8 z2—hHßì@Üjåýo<Ì"„ ²óz~^ý>Çø§k®™3 ¦A+-[´ÌS“¤Ç§@+O+6üåƒÀaÐÃÍ÷ÔÄ®˜i½§&ö#âi¶§¦¾Ú ¶£ G[爫}V@<-÷Ô/ÁAØžˆã9µ5¨õ/)Ë'ÀÿøyK€×:®t´=ÊX¢² H”]ÀÝ w7¿‡»`?h¥,u-pd8ÈøgViÅr­…ÂÜŒtŽɵx´ÚniCM©œÖ&QÆ€—A+-©Êk* ¼úŠ~Ä'}Z›ø_^ßuŸ[ç…Œƒu|gý%>™ˆsüƈ}‡€xZ-ƧÐ!ª·õ‹cºâ¼•F¬ñh¶Ê)ÆîZKK3ÍžeØ™ëìβ魮•òi6•a÷ý_<ôÓh+ÂS ÕZÏWßÀ{Õÿ1¹†€çA)ÏUêǹC6‡‡äÒ$?ˆsm¡kÞ,å"¸žŽ€Ö_Z8»´ôÒwC^šÍeøDí±í8–›fÏ3ì^†¥²ãã—‡¤ð‘Œ£À7!ï mY³Œ=7sv)?l;yÓñÅ5 k®Åg’nÙșÞU4Y®Pq=“òÈŠ=£'Ì‚nÇÂÁÛàýv"Ž…ƒzƒ?÷<œâö˜Ç"®ŒødžÿjÎtMѾJŽ„MG@ÄèúÍby9‚m'p4ךS‡të·a3„c ÇbÓÙ–K ⌠ˆ'6m,Ø…|Û‹@­u…õ Ói–»4œ½xE:"#A®ïÖ?Œ-|] Ó*Æ a~§]3­Óì†Sz釳>=')ß;‰ðè#Mpý_R‹O‚fñ¹~[Öõ“§”t*g݇(×OÜŽÏ‚ÖÏ?pÝÙÎ'ÇÿÀ,ø¡ã#ßçf¯Èû|îðUª¶°NȾ‰ûs¾Âð‚Á/ù¦½^*Ra;¢Ë·J¾Ã7‚œ ŠK_(ÛþïèòΜ麦|‚Ï   4ßf†±©3èHq¾Êou×rËå¸æØ²í–-ÏwÂF¾h¹.Opõ]³á¿–³àÿ¯á˜†ôh@~Âp¦8Ó†°f¼ ãkRÏË~“RÓùÆÌi{ØóƒÛñw¯låÍ¢eì¥5©“ÀQУÍkˆ]'0 :†XT:®!þcÀ‹ •ªF5TZGöª‚<Àë‰ê5ÍlˆÝ%à Ðú«õI?°¹<Êܤ™·`ÙmËÅ€Þr±5÷oÁöR@‡ Í1°í™·Í‚Ûh¿:\ Æ—zËåV0¦þT¢ÉŸJ(Fò»^#^ÝðW:æò‰8Ò Ä·8ÐX…\'ÇvÆî•«äIy¨”p;èíJò4êf 畵ÂÇcÁÉ^ÎŽeFÇG/ËŽ y|0Zi5ÂÕUœB×ÀÐ#Ú*“7â? Ì‚VZVjÈuǼÿÓ1ý¹–Û€ù[° ¨´ Bßè¥oìÂ_ØÚ a¤7hH¤ñhêGZŒE¼Sˆz©+õ!€´8K‰`Ù D<š­²û¹¹`¸že”‚í+Y©–Ñ0ËÕïsŒÉ†{抷l;Í!N\Û”feÁ>Cl“­¾‹QÏV“ºâ¼LÎ'D<𭲋E­b¹ J[@«†£•Zæ×fgº^–lÙå’èðx"þKÇ#.ï"vû€'åË"ØF¤‡»^àèmÓØ¿¦í¦jA50àè±Ø ¤Ç,[ gDH¨[À{ •öämd8Zi·RÞF.¡H±ì(Fì¨\¤x½,¨†ÝsI™ŠMqìÝ«l¥õëh[£T•dNrìOLÓmÞªU¢å ­t x ´òYÖ×ï.Äîð4hý¹ šRÎØ¢JÄ®xôYí×OÒÅÍfAþ FãpôHl­°mÞ5M£àÚáuÌR¢­±)±ï°M±©Q/6ÝÿºâDöŽr"˜ò‡ˆG³YNY‹,å˜ïU,Ç|bM¾·”ÄËÁ¡!ö´¤ï¡µõˆŸî¥£µtDjÐ*æýxdpHZ2Ò õ64%»@’2M³ÃÌ­,¸¦— ~“î9™œdƒÓ »’ðhýr–wHâ¢a•ÊvaD®•Jt!÷ôéOܦO—ì’ûéOgß~ûö³êO—ß~[þMÂ]@Â; ïh¿Éo{߆ÅMúŒ]æ…SƒF¡pï•A/E[®@RÂÐJ£ñ:©/3ü{~nö.W@j4Ͳþ3v9Í.ûxõ2ýL¿¤ŸÆFGå[|ò^­_œìL(û‹u²_õ%½ä šõŸkò²®B>Â3 õóSw‡²ò~9>.-Ö+ˆòªú(®mÊèß§s÷ž“hcÒ’­AÂø†²‹$Õ‡Œ¶>ØìËWŠÅ5†¦]>X4ü빩',·læ^FV剔ü}HKx´Z: øé‘Æ]ê²B¿ùBêe²7p}¿¹¨ àg!Ôgc°o}g‘–êCHBغ¯ }%+-Ù×C𝵝lå}EZ˜ÏA€Ï%j™[µ…™E 2ë(y¡CO3³ìf\6t‘àGÏÿñEðã´ONGÞù>߀w œ=«ý>Yô¿œí˜ôÜ"ÒþèdæýŸ|Çã™I~¡`*Œn†ä»×7â-…»†4ßè ‰Î7GS‚žä¥û&HDx´RiÊuÒàÒlMá>€> -\‡|/ûf0'ì­4‰lÈ69o"ªŒ˜¨»/Û4þÞ<Ä6M£¿-¢Þ4º~¥­{YaUš²·{A+-FF¬°¼4×VýéTç-Àø\¤´N¾ˆï…ˆG­§¨làþûV¼vBÅèõ÷ô»>ú’Ñû¿ ùÈ^Ž×dmõCrmHñ™L7)¥4΄mZú*ŒvË­¯TÛÔçÆSÿÏDô’®ç¾c”x…Ó(SÙ$ý­ØŸØPÀ&lô×>°>‚*Ðm°Èñ6t¤{¥œ÷çµö¬˜ú™Ý;~þGÿaªÎj”Ï L«)¦Ú¬U}-ž0hì:çk©nPyøì©a¨òhÑ … ½ŠxÄhØ%B½¹Ñ7—Dt r¤Û€{@+µOC®[ç‚e4Š+„0¦Ñ,¦Uz!öûÄ£¨—]q:¡ñh¶Ê-:e‹ŠÐ²Ë·è_Ð9áç¦c•'ïZ®i¸&»cWJžÿ‡Í–rVž2×d_¢ ê$¼úVŒ&åY^¡QWï¯îDÃà¬U&Õ s ±.Tm•Âl\³5ȲtÅ!WÛ+ ÍVQ«è· ͱm}3Å4÷l›DNòHš]À½ •Fıa¼ J!ÜZm?Ýõ£EVõì2ÐLK=ÔÔ¹‰¯ÜD°KÀ+ ¯Ä¦¡<£áù¥\ÁpyLâzØà2ÅfÚÇIà5Ð×´í#ɂۥËà“ãÀ)ÐSÚâô3ºØÞt\3ï»CO~HIü±Du†³ÍRüMê…n&Ü àiЧc´œˆLúðð è3Í7Xúpð,è³1x¾ó­Ðòç€iÐi-³¿µ/¬(þõÙÏVJ–wžj¿Èºúð"pôLk´4 ¼ú¾¶–¤Ãúì€ué…Šbœ Ý‹rÁ,š%/(–NCŠjR¬p‚ˆwÝ-‰uIÂ1-ý[ÞáI3›XÒfb^^}=FCŠeˆÝà Ð7šo¿Än8 zRÛpäÏ/ÿ›À[ oi˱Å%³d:†§TðL•phõ©u”ÙîZg¶ "žƒn¾É»£À èLóM–ØíOTÚqzDÛTº©—¬Õ’£ÀK /i‹2åGqæ{еŒBaï’í»´Äxa´TLÅ?v—íUÊþÎUŠZ»]‘~0kÂ)ÐúÁè m Ó*̈.Á ¥Ùªå-Sݳð‚÷qƒœÜ²áxlÁ,Ø«ÜÕ²ì»çqES|—FÝ<ÇȽ ®& êŽåüF÷éÑ®‚€Ðrˆ±YY.[µ¿‘ƒ‚y¡·6 –·ÞÍ")nD$=[ø— |Ä^ßL²k¾ür)‚ëyà5ÐqL$ýqÿ¥±$ÝwIŒq`|É$c)3³”‘.+·æA(L&cö–Û\cÅ|ðâqÔ=›Iw˜jŠ£Üp=޲•ÓwO€V ›þåðªa³ý7}i;ð<èóÚ{xˆFè¼å˜9ÏwŠæ«²?Ò`'Û¡è;€w@ßÑo±ªPYS›þm.V ´´èÿ^Ú‡Ë3¼äŖĺ’ŠrNS-v38¿]-ËKÇ^J³ç•2fƒljˆ/‰úŽI7cWhï=pô´þ Dºä¡¸­Ùº#ö‘«g±P™þÔô'„ëî½?Æ®áã7Ç 4„«Ò}PÛ$zøAé~FBž­<þ6X-Ï›nαÊ5ϰa¿ 3ÎD7ŽåŽÚÓj1ö£BÔÛ ÜúºâD.:RŸØ& ú>÷fe´>b'.ª±¨ç$} ûT„‹¸HZz߉ÙÜZi%¥!מù`«.‚12rEÒn¥‚½Ÿ4óÊ”ùL÷j¥…Y¸ÿ«™©GÏïÉgo„IÞ}3Žéað¯l—¹ˆ~$JmPÊ9tÊd2òòB›êÍÅO«ç±h…€Ö@Â,òeÓZZ¦ŸF3ÓlÑ*¦’—ý0ä%lpKQöë¡ìnÁ4Ë\ÔËi¶b: ¶K†Q-l¿b¦†Ò,ï«”ó?÷æ=ùôná° _°Þ’ˆsÁzë|Åõ§¥ƒñ:šh«k"ö¶É5C „¨çšëŠC9¶;ÄÓò¨ZØè‰!ªŽò[ƒ‘XA¶$°7±á®dI¹WWe$F¿€x4UÆO¸Ðz+o!Z䉲z€îp‘Ô£~­4Tˆx4fkâ·‚$ Ì€Žo3䣒j„g¤†ºƒ ’ZFÄÓì #±;Ì‚Îj¿þ!J5X‘®pyÅ{ßΈŒ1631à,èYmé¶óÃ…S~–ϱAYO;³;ÌæHùèé»C²6Dbõ'ªwB…t³mˆX톛©'µµ´7ÍV—MÇd¦[6s|?OÖ|H Aà%Ðú›Œ]d>’’œ„± ÙÑ1ÎŽœ] Ónê•´Í «î ǹ>a3Ä®x´ÒúØú¥l¶løÓGÏf ¦?æ”<Ã*™t¯´Š¾G@«y…FúêuìÕL °¢QVRÙàÐJëìò*Þ}W?0–^V$þ÷€3 õ÷©÷S¯ž]¬z­´Êvï` lŽzË% c+ßXdm…$9<:¾5ØH[!v€ ´ut>ŒÅ— ¼ìØ+VÞïãæ+ºB΢¬”!Tz ÂYÐúÆN¾fD‰~$)‘PiJÌ2Ñ0%ÂD¤"ó¶×(<&ö{Õ…fÛ±Û<ú¶>:‡¤à0ð(è£úƒžtq&@غ#F=XžYŒ˜Yw‚mgíÑÉjØw ˆ§åZJ95qM¦Ó+ËΡI $pè*‚q¶éê‹Ä覾Þà 2¬T)št3èŠï üi¦?´Ú%“&œEÛŸ-ð¤8~שKkó«ËVn™ß)JËàÈŒ“ÎBׄo€~Cû}x9/:½–7JÁ“µÆsä\õûcŠ6¶ùV8I{²!‰sxt Bb×­rgEÓ('‚V—íBh`¾Úy…1à ÐJ™êgÙ‰’?±ÀÞšô¬‚„º|úYkÔ6 üèµaVAüç€ÏA?oƒ‹IšåØBGO#u'ضÑÑû.Ûåè‡ÐòCºZØÔÑo¯my+È—îIT¼)úûºj#1ö XW\QmwÉ?ì%+g_\\£Äl+HÅòê³å™½b:|¤–}“óP6á]Ðú‹¼@­»lW y>i Ž%d¸ó^£&¿å2ÇÄo)}^>9P¨®Û¨>­N&„±èØÅàh›å¸ž|Év¸4DL'š‘(¿Õe>}[Ö%’0£ÀË •2ä\böGxô•¢MoÙ±+K¾*e÷’4W3 õ—ÝŽ’AU5Ë—þ-ù»e†a6„af…ÚT½áæL­ŸNòŒYc"±YÐJ;mrÆDìŽÇ@i«­×r‹åŠœ•—5%’å"ð6èÛÚ2ñb¿µ!´:4å*ŽC‰×°åO!LGþ2ƒ Ì*“hXë·eáÉx¶0H¤¹lÛ$û.Û$Ž¢åGuµ°.Hì¨ïj5»M^ZAÆ$ð@B#]mù˜Ø­4&ó¦éֵ㄀x4-g_—r–*t¾ÃU)x“…õî­Î7ï¤4‰6¼ú‚ŠˆqŽ‚Ø¦A+ÕÏóšYXá0èaý!FÚáÿ pôH†º1%a Îh"p2c‰¶:bß%`»Žr4qUb[˜5® ]¸ônå±þ”®Ò.â…ˆGSiWxIi”PÏRöbÝÈO'ÏQ§úárYÙ/A¹„W@ëÏU—„ÄþDü‰K{BD&÷œWÌ‘V‘`;€Ç@k¾ƒ vÝÀã ëO«†øÉQhWÑÕ àÐJ.ºq±%ÇÊß{å9†‚XYà8èñØ4Ul€¸…ë6 '´ÔG+sÆŠaŒ…‚)ÏJÂ\΂žÕ*ì‹n,‚šÁêhPEVbaô×è4%>Î'Ñ-ÂfÁÌQ…qÛVRÄ«ë*ºâå®(¹9&‘$§gAŸmþ˜DìN$jµ!O¨©+ÆVéœXmÙz}•é–¤KïƒÖ¯ûÖÞXÖŠ®ÁrûA«!i¸œ¼“5$æð8h%Ó–3$b·x´þ4ù[²VP\³º¹‰©TvlHÈà=Ð÷´…ã;6Á`ÊSGRHÒ˜ ³“CAvh¸7µb*ÒÞzFF(L¯b2¸.:Ü)knãÂs£†Í67bs8 zR[ƒ;ü0<ï«Ç3¥³AI›À õkBÞ ¶:LßrÚÔ+/MnFe£d˜á²k‰ l»®å‡‚Í}Äݨ™€]Æ· ¸'ôÞµ™¤\ÂaÛ˜Ö»Äom³JÁaYû'qhÖ|û'v{'A럟馩„¬ÁƒÀ³ •"í‰ç ˜aüÏ­jBÂìî½»ùBìºý ÕbñÓóT·‘/cðû–£¼ÌÝYÙpŒ¢é™Ž«XÊŒäÜ »¸Ò¹úÆyΖöl$É4ð.h¥´yŅϽj*®#²ÒÁf ™Þ­s? n'C)Z%JÌá>¡\6}ûáI8AP·`Ô )ÌtõUh;4—^rLéc}“Qp|Zß=Ÿ‡{¦"cÁèÀ×b T¹’ÿ>ø­¼¾  …ü"My÷ÇÓóAÛvÁ4¤¹Ý‚4„a$¥º2÷`¸™» ÷`4G'A+ùC¹ÎJìöAj«étµ‡ø3‰0úËSTZK“5(’ðpôŒ¶¤gynWÅŸŒ•¸M½6^ù=4e•\Ï4òŠPoìÏ‚V‹(âZ!IÂÌ“Ð#Í7/bw8 z4žYŽùÊtå6‘ YàuÐj^ZüT~Wk VAغ#F}Dì-Ò,³lÛ¸·Hì»l×Þâ4Z~ZW ›î-vóªN ¢%»@ïR-žÃMÓø^ˆxb™TÓ*¸g³UÃòXJR.a‚ß„Iuòùš›ÙL{‘ã-Ésxt Üùè›p´¾;O ùþÚ[5ýpЭ, Ø e—j×¥¼Záš!ª¾S²åoây ) ãË.­ÖÕqM·»¤TO É“ê÷Uøõš(Y¯tˆ˜D:=Ø|wGìú§@ŸÒÖ£˜W9YA§U,ÊŒ²e­‰¤; ¼Z?Ûi–¬©h”*üÊHÃqŒÒò¶¨û¦‚R.…QX5Ö¨rƒWq‚º£+er­QÀgȾÎS˜¡þi¾Î^>6ÑÙ?œ.˜¥%oY¶<ƒ0„°pÅ“5 cÐ@¨”Wv‡d»Itxôéæwb·xô}·/=œÿ³Às õÀåÃÁ([’ïÛ6ľK@å °!×íóլ˼Ãós@<­n‚9(>ÄUÐã9Z DõÖ ªWWÿwüž«Õï¼?=Æ(EŽf(<˜¨–¬ñ&‰0žu?ñ[:#;It 8 z¸ù#û›èS„Ðm•n©N5û¤ÕI¬à}Ðúÿ¦|ÙÉÇa4„ÂõïŠÔY¿ü?Èõô¬ñ4{€‡@«Un˜K¼äÑa@…–:LƒŽ³°Á&êª << Z9¶Úð—‡A+õíõaˇƒ*v’Ž$4ª-È 2Än'pôhë½%±Ï ˆGSŒ^rO8Ý%ï>ô7޽ {cë¹Ué ÒPHœýÀc [pèœØõƒV:¸®ñ3ÍAn3 *ó±_Ö~Hª@á(zËgŸ„jÍ>bõA$MØ—ÐØƒnœjí9fÁüšêptœQÕ&N¨o"g”n #‰OƒŽÇ}ÿa´~È'!ñO³Ç˜O6Ïqôhë±Ï 3êó‘Mø«–kÊgL*èyû@+õá†\·ÎósÄGâõVBw«¥bß!`›fõŸF „¨7«ß£+Î|"ÈJf«œdì±¹f:iö<ÃOù<0 ù4{”a©±Ñ쥡 Y1ßFKž­ŸC8ÆØ3{Õt† Æ*+ú#J!¨‚d•Mª|TqYÞïj†k2·ì˜F^ºÏ}d%=Ö†¨âð~'GTQï¿ùvÕT©døYÌ©r¹`™yöÜ3<Ëõ¬œ¬c')“ÀèTŒÎÃ,–—#Øv‡@é+Kú*ñ?¼:¾JH[®)ˆ3&à˜ª GhcÁ.ä#ئA+åÆÔ匥¨þEöJvl8{åâ¸t&q.ï‚V:‹«Ù£?¨–£^ÞÍÿËàÓñùçæ«²óiÇt+Ïtòi×3–ÌÉ…ŠUÈ¿ýgÛwbbb.ÿ}ï¼m¥Oe‡>ÄØ“ÍdDz—F²—†§žN=¿zébÄ‹%ß|~oîñÔ¹§o× <úˆìÛÑ7vlhÏy_æàó҇xæ+Ù°žt6H¡}þï7ƒßuoè o¾˜F÷ÜZÿa"ø}1ä‹ Ÿû ý®ç»ëš"Teϳ§Ïg?éOMÐ2üG¯Ö2Éz;oäìR‰;¾ÒÍà;Ûë¿32âË#sþÿ¼õ^åòƒìÈ7ŒìEslÌÌ^\¸tmqÄ­8+¦U(Ð)êĺοA]=¾º­‚¹ÉW§ÎÔkë¶¯Ô ¶ÑöXê͹GlÙóÊ##þ—2¶³4²ñ{C šcè' ŸÔ4ý¥×î}Õ·ÙÌ» †o "†!ÿÛ ßV±~!¡‹\A¢Ïs s*5>“3_²ü í%¯üÁ‡QÂ}üÞÜt„ppôªŠp¹ÎÛ/‚kø ô+å&鈰Ÿ“iÿ õ9àwþ.eÛª/ŒÝùÌë» ôŸŠÍ¼¶Í»Ã]V²«? üÐ?лú^à—@I©-ÄO;”tòƒÀýC±é¤c~XA? üë ÿzK´ñÃÀýcÚÚèùˆ¾»‰J¾ üÛ ÿvlMÐ=¿Ì¿Ôíð'@ÿ„òÑQï!¹ÿWh‰¿ü)Ð?õ?Çàû3Àÿ ú?kÅâ·^?€ß¬Yÿk€´Et¸,Õlû`»# ·ìˆmϼµhÜFë›a®1ÞÐ[v¶‚ñgÁiÂ# •&I»^c*°á¯tÌå ÖC3 óØ£âQ\ìHDpïœÏ9ÌO$4î×[„%öâÑã$cÏ+årÁäe§ÖÕ~æ÷ ÉŠiÀØ ã[„•_úXoÂÐÊ&S?žÇx½ººšY°l×3¼LåýåLny„h+7R¦5ケ:"9p“¼Û€YÐJ»BÁGÅ)DpíŽÓךôÂñ¿¼ZéÐYC®;æýï˜ÝÕ(³tf’*íºÐ7zé»ð¶6héΟƒ‡Ø¡lÍZb„³Ðõö¥êã3iqhI() ÍVÙã‰æ‚áz–Q v¨dåZDÓî½'6+î™7*Þ²ÝÈU™`¶¤­-½,ÁBCl“µ.£BÔ³V훹h±h»€x4[åLP§˜oùãøµ²é²¼ã)ôüŒ“õ]´áÐj§=6;ŠÝƒ«Q„^­T' bêq ›Ø¥ã Çcd‘¬BìÎ'@ë_ò±“oa¡Š¬“$×3 g´%:ÁÖÝîs£¥<]À Vü%Œ–ðh¥˜½!×mó®i׎èåÄ­hëLì;lÓ\D „Ø¢D–ÈŒ³R"HÚf³Êž‘,š†[0ÝO˜¾ ß+ºƒ‘5Œ#ųÑD„‡@«eñë5S¼CŒÇˆŸ:…Ê&A¢ôªi¾,¬…w÷Ø‹ ÈR(ŒB_pß„gTt.ŒZeÓÌË·í{xÂÇ k¿Ó1k‘¥ó½Šå˜©ÁjÝ–Á¡!ö´ˆÄ"Ô;›$~úŽÃÚ…üjžÝ¦ã«ù”gËyËIùb²ST´¥ä¹BÅóü(¢R^w©ðªí¼$møß—~#oA(TlÐ|£àæcÅ|ðâñ£L*U×ýÒÌ+»“Ù±‰ì•èzÖ‘‚{–p ô˜¶àϘøÏ³¼‚99xoÅö^¨þv³låÍ¢•£Ž~ÏßlØ5æ˜Kddò¯UÁ«>ýLûµÒë^Ë×GfÕÊ{Ë“—GGÓüÇà œÉ+££òývbÆW@¡?¸ü†úïòr­BÂ~ÐýÚru|(-È+0'ìÝDW)Çx‡Ó˜iì4j— ‹~£ì^ÙÑÑs£££þ7–Ë3|ߢÐÿßÇ ΀Örïð—ɳ‚±`ª×A­»„iÕò–Q<**·ËY‹”)éû>¿¤ßäHO(ÔÏÕ|“Ó=êÊ7úg!áiÐJ'Ö‰z3˜j·Œ³IV'÷mšqúÙÓgo>šz1ûô !;òÿɿćœð&è›Ú/‘ª9à<—ÿ t :… ü_̽yO^ܯ‡ˆ„)ÐJi´ëĽË"þ¹9ƒz*„mû? ž¹?ræã~ø4$?"âN·Ï6d›œ7_t}k£¥ãØ}C"αOzºEì;lÓ¬ïÑ!êÍúê—º—¾),¸ö‚îqAॹæÇÉR”¿ @غ¯õ:ù&|/D<1é¤'¿V2üPUR¨ÏCŸÇ÷·« %­•ÏC„ñEoÒZ!ö{Ä—VܲA$…úfhâ›[®•o†&¾¹½Zùfh"De­4üωØÀ3ü÷¼v"¡0fÒ7ê7éw}ô;$–÷5QKì9^“µÕɵ!§dZ2u|¤h”F\Ï}áh&lÛýeè·ÜúJµm}®<¤Î@öŸ™ŸË?-{îÂ9†¨Ξ;O?¾÷$*©)|ö×0Ôa¨µÔþ­º– PKðŸú™5ïûõ;ÿFy('ø?TÒ€ð‹a\í^UÅ×âù½ñôz@@<¡žHqrx†=±ýHþöÜðÅÌhfŒÏù—2cì9*=62U¶T°¨xŸ¼Í +¦‡Šï"ݤÄþ®€x4Ÿ{†åmºA«›´ŒIWÏš¯Êü>ö4U©^5Ù²±Â/¤ &ÚkÌòhâÍË•çœäÛ´íØ™Xw×H«ÛT¼»á^íiµ]hëfb4,M$‹¯-]/²¸;±á–Ó×—)jªXÊÙy¿·F°Þ’¨ÞpZã´J+Ä~€u1ަVö5òQFdÂÑÓ<úHl:êž÷',6ÜÞ°AúV釞câùÒécð(h¥†jÈuë¼Q°ŒFk-=PJO¢á.Y«Dì ˆ'&í\I)F(¼^'¯mšb¶A„û@ïk½bˆý~ñĤ˜žè,BÑgÛ»æÔš:Ù6Ÿ·s/ÖÊÆ³$4AØFCŸíPÝßh‰±-¢^0²]Wœ°Óëê¥*¶Š|¶üN4¡0#Дãf±l;FOežÓb”=\ýÝcª¥B3úð±]²<›g}Ø‹ì^¸óýlÙ,ÙE³d(¼O'pô|ë­Ø¿- ž–«7\Ú«zß<ÃfÙIËÍ”ŒTñ¥é +g—VRCü  BôA–º{ïù¹Ùg´Ã6Áî…ÿ;΅ÿý9ùéÖ.(˜ð ?Ñze~R@<-Wv/Ü«²ß9Ãîòù²cò[J¦™÷éáPoifeÌLš…?O†ZO“z‹tsíwSêsn0·KìV)o¯º·äÕÞ U Ö«Ø/ˆ'¶h‹g E¸ì%©{2úFü§Uú`y!vÄbÒbìÆ;…¨çëµ/â金„ˆG³U¶÷ÀHʲͱ'±nÂÛÊÉË&’í}0¶îÔ5_~ÙhQ†¸õ$ªe³9}H[7£ “fqÄÒ ’î©à™MoÙÎõäüÑQÖ¢HÚÃÀ èGmŒ®wqlZ¥Š¹AÑ»0P+¯û@ ÚªéŠå0h“}á¦ñ–5Í÷I3ž@)†¢nŠVçG+TÉIþœ0Ím”œ¨(ñ=Æfì\Å¥Ó¸¾‹L9vÅw¥&Ï•.øêõ+W ~c/ûîØ[fb£ô1#2(êU„ +ñÂaÍW™fl¡â!­50öw+®G ñ«fÁ×F¹ì¿ÝéË„‹fiÅrì’ÿuÇʹÒï!nÌLƒžÖ~YÆèiR± Ã2×ÎÑnÎâ‡J3lÊ¥‹”Öª©¼µ‚×—}ƒxÂYгq¨Å!{ò­KüÎí¿…Ëûƒc‡ã“]°—ÖÒÁ}Páx&ýÂq†Õr›1:‡C/c®%,齊Q°¼µêKP‡÷?·Œ‹ÿÞ,-ùÉ$¥H÷÷Üð6èÛ±y§óyÓÍ9V™r#"âx$¡ЈŸv0ÙV þ‰ZѽŽ[ß «ó1ÄwOtÅ¡µèíÖïlÙüï8šâxBwþ·YÅšŽ‚lZɳ¸ ô.e¹Néªë8¾"Muí¢$×gÁ()]kè´u"±nÉF±…‘1°g,Dpï sÝ^­Ò{Ä£)†Î”äºáEÐcWKDõbz xô•ÖµÄþª€xâè-7ºZº·  ‡ ´¥·  ‡ ´··  ‡„OoÙšÍd¯dFdÙ ly?@ßho?@ß1Æ~òÈÊ™%WÞ«0ô Ö–~ÂÐ7X¢­ý„¡o„O?é¾ÿìÑð˜‚({-ï&Äô°Ý„Ø_0žnÒEÝDR’“‰ G ™jš’\>ÃKJÓ?êŒÊn}€²éëj¥û3lã´ÿÝ?¬êKf„¤îŽƒo½:‰ý„€xÚ ÎA¨p0Vu¾qWüx¦Uâú¬K-MÑ:œ]YZ¦ Rú[ý²Y4¬[0 ö꼎¡WÂ' Ÿ´^ÇÄþ©€xÚ ãSÐë©Xu|ç _)ª¸´XW»Ú 8;8ïÿóu>8\6\ÏôU_Y sŒÜІó²Rf™LF^¹§ PÂû ï·^¹Äþ€xâ[ª¡¤HÂà6„-ĵØÆ°…ØïP=lÙ¬Š¥87ÎÌ /Úß.;6][Ç GÉ‘‚HòNžR‘;Bi«X·½ÀiÐӭЬˆéà=Ðmȶ'ö3âÑC~R(§· Ißj”¢ÐPšmÔ+£‘‚h¡¯uÖ9‰¢¤ÑS‰Ô% M¥u2é•ý³x«³hŸ-*mÔhóì…¸yTÛ ç{eÞZ™ï>ÙßÍÁò¦”•6¤òß3·’[–}sxÂYгگóÑöåsϱ}¯ozÌ(dX*;~m|(Íf ‡6–<_öà“4}4~ÅÿhÎv]Køþøxt]’¨*44ª§¤øB—˜/ܒ鸾Ô}Ê(yƒ®áÍú‚lÚX3]*‡j”}ÐѨÔIɇ -á%З”ÇfQÖ{´Ä7ðqêÇ¿¤ ×ðzBcêÒx—Ä–]l&9noùÏdb]ùmÏi–r\/oƒ¾¥mW;— fšùVtUÞÒI’)à#H¥oé§+™KÏ^Y°Jv‘vïï¼ùüÍÇÕôiË>k&‚Ö¶[öyá¹P£ÛfÙÄ?ôãI~s¦é–MÜÎGAhÛÑqß²ƒ¼uã}+÷’9 ÿô+é´'- | 1Å1¨~ÔvØ‚ášyJöX2K¦c¬÷ý ÖK³`-Ûvž9”¥`ú`î„_Kƒ:É3üZÔIŽ›ÀÖ êÄí2ðv"®A½Ë7}Y ' ¦€w!þ!óYÆûÛ3£RàðÚP†=°WͺS˜§ñ‘½š^¹.w1·l”–Ìá²m•"kªE½ŽécX9ÄÀ×*UýSš-˜ž1\uW¼(r¥à…?‹%ääó²†!?á hýùâmÆr¶¯˜‰{J¦áT3K34A°¨â]®PÉ›òIHžq)çemHúË,ù!|Ù°ø«X%ÃYC¼¤j-Я×üɀ鿑³>º§$Áà¿”}¼ÂH¬6FJ)– Ç¢@Ú1òsmø…éøïTÍñ­½–o‚²þ`²Žûð$Ï5à8èk*rÅäHŽ@ò׃Ÿ›ìˆÛEàMГmñ$Á-à4¤QZ\'ÉÆoŽõÝ€¸Ü@y †Urý1r… ~‚ixÕv yžuìšžd·"CTöm²°t õÏý·¡ª$V‘jVšÂâ%w³Ë­ð±” ŽíŠYÇVIöm„~ãÛÜcÕ ü4CY2Æ‹y¯ÏÄ_4ÜeßÿeØlÉŠ >$ñòr²¯râÆ—Ò~Ÿ…Þ6Pµøb¥”7hIËžÉîzN%çU3ÔI-sšÿøü’ìËñ5ß)Ú’ˆc§h›ï †ë2Ii.CBáÜ¿âH¿%bƒ¢Óõ\Áö‚ŽïüPäí Ä®x´Ò¢¶·ƒ»$ð0èÃÚF1ÂV£\æçz|[_áEsýARXÂ!ÇFe-™„=|Z„ñcH*›Ìü¸>χ Šúyœ¼âG<¼|t-P–Nü¿'‚MM™o26å·dŽÊìS¸¼b™«á€Q»†Ohua=\>Ô¿ ¹ o‚Vš…®{‡“Œ-ùªƒB±ºòÍñ•!馾Ñ…ìM1¥÷dÆÁ:Äx[LÑÑ.N[8>0ýy[ÍÃŒ^Jó%@ÿw²¯#8Á—Y°ªl×BÙhðà‚“O¤=UþC¸zÉ;†í~ã¤JXu o@ßÄm/« ~ÉŸY?7¥‹ ܆0„ÂoQFüÖîk©dzž™¤qfp(ªóE]@bj~Ÿ'vû€çA+mÏ­kc¼káb«ßõý #_áÞAÖ H²pï`´þÒðÖ`Õ^RÁe6¡`Å‘õ6ôŽë[& ?òÖDîž}¶ùÖDìz€ç@ŸÓÖÕXSÞrs—Ni© L$S 8 ZÝñcV¡Pq=Ç/Ï ×•$囆=†G«• JG?‘VD¢œž­”S gEÄî(ð è3ÚšJÂ{KÇÌÓèC„Ðú“î  Vqè¾Ü¢í˜áúÕ´Ú˜æDæ_)…‰¬üB=mq¦)ÿôú›R}»Ç мzF}xteˆ–«)w¦uH/Ü…ìwqÖnØÁ”ç-ÂbnµÖ­Û¨çn7 KvÆ[µJ²‹$×!àIÐJñ¼Üì…Øí‚lþ¨AìvO>¥mÒÃñ³¯Ï€Ö½îÑuð…ÅaóUÎâøyÊ@X*ÅƒI~ßò–~¨~5DöU„øw.NÑp)oQ— bC³äRI”°ÊÑÂN„x.GW÷ÒéæÂ„'†¢Q#B Ïgç„ëî­T‘Xn8 vIàК?»NàAÐJ;0uÉìÒÙi$À¡DmáPB'®#«Š'äaÀ“ ™Š\1e#§4nžJÄlFe#·£À³‰¸bÍaÊñøP¸f¤°ÎE2Þ€|úkΓŒ¹7g–=k¡`ÓªºwØ1Ãl©”?º 1s…v„–-׳^KÌ>É!¬g‰Ë¼ú¯°h½òå¬Ý¥™¦©tuÏÂ÷‡9ÇvýhÔpмNš?±æ«ÿ×e_A(ã+l¥í{é5,á°EÖöÖÖàaäH²]ÀÐÍí‰]fúÝ8Xx(­›âK'$ÓIàÐWÚœ<‚Á6/8ÙÆg*þÔPAº>àÐq† Ñ ±K‚Ž3Q#Â^‰]'ðhýJ¯Y– ÖíÃC_|Aß+©àk]Š“RÊ1‰{8 zV[웬Zò1t–v8¿1üáÈ)ñõxª3pLn:H‹•}‡Ç0}Âøòf‚åa×3Šeß3-™¶ïO±á•ßX•ñìêÐõÒÒ¦i¸ÒÂÈO(LÖ4ßecv.Wq¸ì×UüÔSÈB¸ôžØüÔ¾õ~ŠyGõæK˜­T3W®ã»½ÀaÐÃ_#ŽŠdÊï€ÖßWÙ$»H\ä»Ã|M±AÒ†ì»<ƒÕ=‹µgL0ÞÐkLÓêf5ÿHƒùŽåUùô£AfB­EÛ†\·ÍçMϰ îO /³š*eÑ7â? N"uˆGS©Òb<Ç;…ONÖƒ3gØTÅ[öíËw ü&z~ÇwÁ­Öü ó•ß»©ôv°ÎNH¸Î„76|›MÊ¿¼ÀKÆ·g/Ý®Ä~V@<Š^c¯®8o&‚p0D<-Û?|<¡·‹Ÿ&¤è Ñk«m„Ø?OË•ò (âmUŠpÏPâ‚þ‡­W ±ÿiñ´\)Ÿ„">“R‚¥ÕÌc+·l˜öàÇ¿Ä×õž› †túá÷ôi†/­…k•·¤·Àû­˜,I­{¿{x«½¶ñì!Äxl£—±Ç†ÅÅ™Žt9ÙOC)„½ {µeê«ëÚ Bõ¯ƒÖ_°—.×Fìoˆ'¦Ù÷n×\È©un/•L^vŸ‡¤º \½ÛÌfkPæ2‚ï$Ðm}mÌkH¤wÄS“ôÌ|ZâÒ[Ì'4†Ûæ´ ‰Ô!`›æzoãBŒÇ!Mús½»guÁe1ÖBų7Î Þ×Aò¯KŇ%ݘÄþ¦€x4Ÿt&¨™Zæ¥ÃÐn´,8òâÁÔ“‡Ïƒµ±ÜË’½Z0óK|½iB¾ ßA»êU™ÑjCbY@<Šƒ;õª†ƒüÔúö’M=ûL"¸y†ð0èÃÊRÐm4㘀êר‹Ÿ¦{^Yp=£Äó}«—R˜‚„ȼÉÖ&d¥5`]„B©½–Á à½hgLÜ;EÐÅÖ÷;b_OË•’ƒ"r1)%˜ãþü{Õpòlºâ¼´‹iöbÙ°\vÇvÓH³G¦]Z¦)­×ŸîÞ²e¸ì½X4J¥4»³ìXAÔüÈ ;xߨüLÿ‹%Ë{?ͦJyÿï°9Ë\(Ð|ù®ÿ{>ýÜX0J?þ½.›¶W~ü{éïþø÷ &Îïú_³œ—ìyn¹R4rËôß=÷ÌEŸ ÊÜмûåK›}Ürü.húÿÁ'L‹ž4û¸Qð-‹îõ-¥Ãø¬Œðhµøyª¥÷ˆÿ$ðfB£^—žåçae!ÆÝmÿÄ©t+s¥T†£`oÙ(½ òãíBÁ^åÙ¯¦]–/øbBzB!›\óMFƒM!+onZ8¤Bå\L× ¯,]4Íü‚†H»ƒEHJ8 z´ #Ïx/Å4ò¨¹ƒ%tHÂ÷A¿ßú96±ÿ@@<šbÜ<ãÛ¹?ð†7š›nÝÝõ¼;˜,Øœ÷X)¨!Þv.Ô’øŸþ0ènýCìD@<-7ñe˜õrL&Îë–ëwmß?²©‚¸Ë7lD+ùºvàØîÝj°»&›6r9[øÒ]Ç4]ÿ?~uÏw¯.ùK'Çî›Va¹²è oXtîÆõè>ô‡Vß?;%ë%}oͬØC£²‡ý)ÿ}¯NÕ£ /øC¶Ëžù?˜þßvÈ•ßÍøÛd×ü_TœmΟøFæÚUo—}éÙ'ü/®‘| F…*RÎËÀçÿø÷†Kãì…íæ–_š‚¾oRö ÛöCЩܲ/ý[þ»˜I@ƒæ[TQAÀ/€þB\7ñÿàA± mÁˆ­˜ Zm̶  Âhý ô(Cì‡Ä£¶Ì&q€TÓŒ˜—ÒÿnB#´jÎúÛ»°˜;b±i1^âBT>i!¡WWœš9D<š­rš±¹ðêèjÒ`p¤«à³ALII‹h,ÂÓ •ŽS4Ü8,&4NLLÌÝ›¹7wïÉ{Ï#ÄŒÌÃ#ù.ï€VJ:kÌ6*ØÞ­?èÎF%þ÷€3 g´åP«nP‚™”ðs¼§ XÎòxJS 5¤&E#’Ïà,¡ÿ¦A· ƒ“Øõ‡AëgpçéƒAUFoÕfEÃïò®½è­ú£€¬Q‘hà ßÐq†‰ƒSXͺš«¹1õüê·Âõµ@eßņ!Ú‰89‡K­+Ǿ2T=ƒj,O¥B_"VŠ1êŽJŸ¼zÌ ã»C§Ÿ±ÙE¶fWXŠоJŠå@Â~Ðý±1:÷k“Dƒ cNºæË/—"¸îž­ry­Ðk‰´å0{Uºð‰tx ´R¹êu¢]eüZÊ4ó§–†Kw’cl)GëÍn™‡Ó_e¡`å µá.l‹P¨8“6wÌ×Fˆ(‘z Ý UüT:X%ö¶)„¯ BÔ áë»|²jê’b­$‚mÉôºí Å3*³¾—æšoèùÎ[€z•È´ôBì÷ ˆ§Õb¬¢BÔ3î×'2¬|•ª¹„ˆG³Y¦NbSùjÑ‹¼«ðBݪY­;¹S+¡ŽB‰›Ä€‘ﱆ¶$œ=¥ý·ý÷¨Õö½K°/ãIä°'†ç³x]f–7‹6£ëÊž¹ùùïCtÂÛ ok¿Æ©ê²PæIV7‘–ôHG_’j¾¥ü,$#=Û°—œ7_t¨«‘[|vj÷ô×êáQ±ïPÙ-6üVÇ\£!?ü÷õxí„Ê«Ó7êúèw}ô»®àöòÑ`x¼&k«’kWýÛ<ñŠå‘9ÿÞz¯rùAvdŽß?Ÿ½hŽ™Ù‹ —®-®»x¤h”Öýbý 6r‰Xô‹[_©6²Ï¾“^?2l vÓ$͆<¬òµôîš C$~3ø]÷†ùæ‹™aÄÏ[7èY©‡Øò—šú™ÕŸý¹ïy9RgáÆÞ³§Ïg?™óÂ?Âôj HÖ³¹©¢Ô‚¨¶ùöú¿:"ùW×[É›ïñm>HsŒüÊkFë6F7¨3|LD¤Eƒ±Ý# 1T*EEÜ›M#bpè]*BE¬¬•Œb£•µ´a/èÞÖ«„Ø÷ ˆ§½*¡%œmÀ^ÐJmÓëÖyƒ¶”#øbé¨QmöVé¤ß O«ÅèB „XÁHšF‡®8Ý0„ñh¶ÊË£ZÁteÅ~LUÑËÁZÌŠÉf«ûÓÚ/_ ö šÝ5<éKG…mñn‚ØÌÚ³¼B£¡¦¼z´©¥Àp ±.m•ÂÕI1˜u¯®8ÉàTOkàȉÓv艰N1b»i;ô±=§Sœ¤ººÓ³©>3ÂÎ^\ßÙkÕ9QšÇïí²ú$Ñû€A?Ô~…#B­7wý…‘’ò µ{UÞ–ÕVhÜVÏ€>­"[Ãc[ئšL) í€RÂtl=!ªR#q; Ì€Ö¶"~YãèøP†±{TH¨VtÃáå\dm¤>¤µ¥œ[Xc©²Y î­bEã•U¬×ßÜÏ$–êçðýÿýž–ý÷ÃõBÒïµý‚pôœö{=Kñ7PCá²§øªÂ+Vëtûê)›­:÷ÞM#X3•}«p!…ðègZž¦Q/ë¶Ëòõðz!a?h¥ùi„»‰¨‡Gìz€{@+ÍG弜àÙm‰(š—|Þ&ñßÜz¿¶÷^ˆµ®ªCLuÉ?ðZËFQ©‰Àâ/ Ig ³µFÅ»_¥K¡Ünp'fP1ÅsqT-¥/a=/šî°ÙVO_êž}¢ VOß2Ð,¶×ß9gåˆ$Ø$L"\…kÓ\ŒØwئ¹Ø´@ˆzs±.ííPú+ÛŒg!…®š"'^)iÜb¼jZKËTÚÓ­,¸¦9èEŠ»MFØà쬢¸3 ÿ^–lÏe“ìÉ›¥Y‰–Bœ£@¿Ê¦YÁ(.äŒ[´moÙÿÕhšñHÆŸ=ÑçÒ/³/@8zFûen†/ÃÃ’Œá,‘ø”hœJÓ<ÿçsoÞK³—¦YÎðz¥“lfêÑó{òŽ 8áMÐ7c\¶ÎW\c©Ñà†µ;’V&ö¶iX9„QoXÔçp"˜J„ˆG×óIŸ¦ûÎÇhOý±ä„QNA¸$°tŸŠp\¨]‘{Ä£©³ƒ4%f/¼ëǺ¼l‚ÊMðG¡<°ÇTVdg}[ ÊŽz$Ç ñÄó*.·àxô…æÏ)‰Ý0 Zi½( ˆ§ÙQ>±;Ì€Îh¿>c)Ûav‰2g åü.´@´¦“㫺²½›¤>ýD[Ê9êÝ€Ô«‡&˜Áܵâ‚]°rL˜T B¯_n¦Õiÿ­Ì`eÎÌgäóàÃrÆ„s ç´ßë½ÍêQG¹š°Ç¥¦ëÔ­Eä.óc\¨ mìUéÙÙqHM¨µG¦é+O€7¡–¯Œè>–g#ÜN'ØvÖžVPľK@<-×ÂZ~@W ›F,]ó+H–î­Ó%¤y7§O@<š ;½>\±J˦\ÈÇ 5(Å. j$lpT³å± ÉqA@kÇb¤‚pI`_¢í³vc€x4uö,tƒehYñ½!ÍGÃ%\„î<Ç$<&byÁÕµÁî´Ì?_敾¤O8 ç+47n×q£·’”Dp؉ø7·ºh¡YÖW(;€½ {›ï+ˆ]7°´~Àuƒ¥<>ÏZ4*/ͬŒ™aF¡àG`.­½祖“®H÷`~Ctå£t6âi|ð!hýD¥}dU¥JÑsè'Òþï ,‹PØâhùÈ{¼ [èÿhðêÛ6ú?bß%`»üß9´ü9]-lêÿ¶{p ²%½‰jg»Ü‰Ñ/ M•=ŽpÁÂÏ/ùˆ-Lr‰ë†ª ~Qö•„mMñ2CÍW:I¯´ÑCÓ^DRÌ!ˆF(„Í19Ɔ7g¹/?Å&'YVÖA¡õ/‚¾Ø|Iì—@_ÒVÜJ%2*žM¹‹A9ùܲíš%éŒ!’ë2ð hý%à[dX fÎ+†}vÉ—6o–ÍRÞ¥1=|]w‘ö”çaj„·@ßjÃ}¼ [è)iœëÛ6zJbß%`»­ïUî’a­.›ŽéÏøü¥\&Ïá]žYå-ØKà †KåÉü9#û„å-¯«ž,û&˜á]Ðwµßä½Éúä`^ ÝbÅõøþç++¨#.)ð„$üQLýfë U”í9$Ìð*è«Íï9Ä. ¼Ziÿ nnÏ/,æ§.\Åxž$>ýH[²]dV¾í›ü²XI‘Fa,„‰¸ gÓ‰e¤á0û€‡An¾á»^àÐj§ÃÄO·…ƒ”‚fŽAÆç 7Ù˜ÛT/CÀ4èøŽƒmª—SÀaÐJÙ<ëZ`OÚ÷*Vn™Oª «ÆšôÍã$Ox ´þdugÇt=?ò‚c›’re}sÜzOl–£5'‘OƒVÚ—³ b·xômMõ0Ç^•Ÿ·’giÐúIré0Oɪfªó‹©JüÖªu’t84#K¬›giJ|˜$^6Þ§ë†èh ’A•¤x!ÒEÔ–„¢»í½áÔ¯?U´J/üà:Žßɾ%fDao8z$6Ûïš7ß+Ep==ª??O«() =Ö%A9PÒ˜Š’®€~Ð%…Ïl µ•$ÛщïÀ‡ õ·ÅT6[/AÉ„ú›­‰î[ç ùêzÎþÝÀí ··¡ÛÿÀ ÕŽO¼N·yx½h¼¢1N¶Ûx{µÅî= Å`UªÛ·]ÀS Oé+IÚ£ÿÓÀ3 õà ¾›<½VÛW˜D\†Ò õv“¥WC#c@’å(p Q=4ÐìØí2ÐL[I°4Ú”a†Ç5ö^…n -˜ÉÉz2QÝŸá´þŠZ*HÕ§Pq§Îŵ ·’[2ù%¥½#Ô;‘ÙÈØ¶×Î`ÊZ 4¼–¨® 5ÛâˆÝpô¸¶öö ¾?MôGéñŠš>Ó:Ô»4L«ì²¶#TnoÂ:”Ú@E²ì}¨ùfCìz‡A«MgÄO0Ïxé÷qÇÌ™y*gÏìSz†d:­4‡‰»‹_…9Þ}«5ºÞ}» ñŸNƒžÖ—C:l¿h•cèŽÕ±N‹`ÛÆ½pbß%`»öÂÇÑòãºZØt/ü£{ëfò%{@ïQ‘/!Uùb3qö ˆGSmÃ(«T).˜ð3h7J¸ˆU.ê0 :[ÿZå"ngc Ç´µw,#..1Ë£}ÐÑ`t—µ/’ì"ð hýeв¯‚i乬”ª¥"×ÃÄí\ÒNåìƒp´ÚTFüt' =[b9ºñLR¢Û‚P¨ÂÓäj÷ºmrXzïö6:á èÁæO±ˆÝ.`|‹¼§ƒ«ºp×hì’µ(’ð4ð>èûÚ’^¯¥÷ÐJ…V”NÍ V´^ùdPˆÂ(—Û²ø‰ƒTnQºKLÁè…˜KóT¶¦ÁPûg£×)ÔL2mö%ªõºû†”)¥BÍ$Ë eŠÒá—qz¦†…š‰[7ðhµRLâ§Iº¡• 5Ëš/‰qx"±6¨w`°w-&Pt× ¶mœ&û.Û5Mòv›yte„KûºGÇwêêŒÄØ# M}Œ~Óòý¬CùÚ¾o-TWCòfÉæ‰Îä…m',ðÜtk!]õÚ‚0ò“}-¡râc ?¦ýZOÂ…u+9Û\\´r–I[h©¼¸z3”æg”}Oí˜ÕŠQa½PÙwšÁ{>­kï wò!Çz%ÛÏîCBá~…˜gl[JÎÕHœ~ñ4y®v?è÷€ÖïH'ªw°×æÕneaÇl¶8 z4v…uÏ/˜Ñ¥6QÚ`¸A_í›Í”–^­öîÊTçòÿ$Ê àÐú+ž|ý¶d—†Í÷*VÞ ÖkƒBÇÃÃþh[áé üà ‰½Jù˜·«I ÁôCöm„5Û×o„ešý—‡Ókð“¦˺üJÍ¡¸Õ"Íê :É!û6³xƒÙXßf˜ÞfÆXvЦåðÛt~ÃÓ%Ù!~‡@xpHaý ˆI8 Z?ƒ^>&{Þ„-ŒŒ)¬éÛ6FÆÄ¾KÀvEÆÐòtµ°ùö`­è¸‚|Iàž„îö`RWm$Æ~ãÙäIX/ÆÎVé¼¢ßPü¢p2\¾ Ân_LIX ½»ÊE7$Òeà8èñ{Da?b7œÝ‚‚zÄnx´~T±£z7’´ Ang@Ïh ”!;¾Çg5ñ´¡až¡1žÅÒ0¡7éˆx:ýPTOŒÚ¸x48G4¾Ú•Sr±ÛÜZ-÷z¥L(èg¿€Êî‹·Ý!]Ã}ü‘*Ƴ}?¸çÄw™(ÌäÇõ–çHÂŒyÅ(TÌ Ò‘-¹GÉB>W}aQI\Ñ|™­ÁËHÊ2þsøyK€Ž_üÖž\Ê(”—4[M3šÚÉvClðèÍï†Ä®8z@ßí¡>á¢å¸Ažÿº@¬e†—ÊÚÉÊ€Aë§ov•³W Ç2<3,cÀ\º;2˜,û3bÿ7k´ŸhNøIñŸÃüÇA+z*WbDÚIs8Z)þ‘³?b7 ×µôLj¾-½vAB<>­¿z|£oýšxÁ\¡‹„}#Ê-;vÉö?¤#2¡©•ò~÷)…kN²¯ò†Eß­‡·Â>Ò 3—x_Þ´ÿȾěœðè[Ú/q,x‰XúòÇ!¡pÃFL}¹3g¿’íÇ$É)àÐJ)brý˜Øž}V[U½ÌMŠ®b’åðèKmhIšëÀ0•dª5 º œ=­­ ¾Lxý ßÑ“íà$ÌàÇ@ëoAÜâû‹®g8XCÊžã×¶ËšÑ'ås­"5\+⣬}ÝŒð<èóÍ7"bÇ€ÂÍšúÚÅݨºvÒ@½zV´Ó±<ª¢š[ÀÛ o·F5ãÀ)ÐJÃÊzë$ÕÈöja8Z)MmÞ÷É@©ãŸ÷um²‹i $Ê.ànл›o Ä®ØZiË_ó0ñßÜ Zi½I{mîS°B­µ¹EDì·=K¹€ŸâÑl饦OÕáVåž¡«‡·ÐöoéêáµÖH{rvÉsì‚l·} ý†0L"UJç”ë¶ÄnðhýAéuRbX@<òbpÝìÖ5^㘀x4[åPàb( áÙhÁ¥†òe#? #þtbÝ…ÃqEŒžcä¢R #Í—dž­tP@Î|? [!<Ð(i·® ŽÓžY˜G8Á“’Ís)tux ô­ØtµuîÞ³§s/T”5|Z©Ò”¼²nÖ¯|ÑMÊ’íà$ÂcàÇ@ëÏ ÷¢ƒ;æ{³”[cÖ¢¬½ÌZæ(døµµo“,G€'@·`ï€Øí€ÐÖÑ)š¸—m×ò¬Sìã£~'_¶–ú8 È€Ó §ãÓYÑxey*:›>­´‰!¯³;À' õ—¸¥ý7±* M1nÝ;E )VŠbmÏt‚$È4«ZÔÅÑÑà~,5Ïñv` o‚¾ŸU-9Ï‘µ*’åpôló­ŠØÝ¾ú muö›Ò²¶EB<~ ´¾ë¸ÛªGæÕ4¥¨Ù«áî9Ê>`Œ¢ZB–뛜üQ­¯ƒ5ÆwÓµÊÔìp'lá™Âún°mãù:lßù3hûÏèêᵦÈ[‹¦·lçe®x ÷1ËÈÁ‡Øí­ÎRz†Lì ¨œºÃU³C×vIŒ£âÑl•áÚ^6ÏqµÞnF1 K¶cyËE&ží’Ù€aêåá7̸|4<=sÿùðô ¬a“@—€“ '›oØÄ.¼ Z-ÀX÷)K-ÚÒ[ñ$Ã-à]Ðwµe¹˜Ó‚ýj˜WHr «Dç÷Óòƒ~‹ïþR!QzJkÕÄ!–¢ã:’o²ËZHèÞ^×–=Iòøt ¦Äîð hý©@Ǭiÿ§Àg ŸiËq&0-žŒ²P¨e£ð‚i¾ã(?Bå`/„±ÔßYß3i|’H˜40 :Û|ó!vgc‰¸ ïìd|.¶j¹ò5kH’‹À›‰jÑ6„kyØa ÃæÏ$‚P9ŸhkØœ¯Ãö…Í&ÚÞÔÕÃk…ÍÝ|.(Û}I¶~à~ÐJèrÝ—Øí­¬ëEÍÄþ €xÚ5“GÄ£Ù*I$$I/6/Âf “ “±ù›½Á4M2õÐx_$=Ø|ë¥ÿp;ðhý²WçüÁri ㇡.2viygÁ®Ðͼ¨3 kTÄî4ð Ðú«c£ \‰¹™õ÷"PùQÿC3çÏÉ$_‚É^}QÇü×tšß,.ªÉ4¼ ZÉÙ7æQ ¸]Þ}K[•»h‰Zõ4‰rߦݓúð™æ^ëï][0yµ„’¹dÐVM†ÊÛ;EJXOýÈÿó•‘ó Òe\–a.„O@ëOMðN«tyƒ]2Ùª])åéu–3Í*&›Eki™rLÃ¥ê Ôûƒ>(Ⱦ“…÷°b}§ÁpMTš¹fp°ô‰í™¾ì¾ ÒQô»p´Òˆ®½½wÂFÑäû»Á¶QôË:l_]@ÛtõðzùY˦ëZFI6!éú-ÌÏ"v;€mÌÏ"ö‡Ä£GoÓ5^㘀ñäg̓ÝT‰ùŽÈ*®»”ûÞ«rpÅïŒåÒ=[¢óÁWPϦz•©ôEX=á,èYí×ùXð:e: €·pL¯â”°ˆßUK06ëÕÜ/—o÷aÓ9SþæÊ^…P8¬Ïk‘èO\ÓYi¬”Ô$ Cö èòá¥PØ¿òãÛÎH¿–W±c}­tðZ/(² +öù¼E/ÃOéºó_V~žW†”„zWˆ6Q{1¢ú½soÞ“XI¨‹ÀÛ o7`%vÃÀ)ÐúäóÕ‰ÿ4ðè;mñÃïÁ2[ÑÞ ¶mŒ‡Þ«ÃöÅCÚÞiŠ’óyÓÍ9ÖB£Nñíï´WNÆ£ ùZ].ZŸ°tGó{M³;Á¶Ó\Ø_ˆ]ªv¨©-ïéjaÓŠiÝ|¥KA´$pè]Êa±vyß ¦Æ‚« P=À*å-ª÷èG…Á¾9V©Ð‹Ò-©¨”pôHlÁIϪImT¼È¨„¤¹¼Z)GN.*!v£ÀIÐJ© ëûœôVÄÿ&ðè[mñ†+0 BýÕzóx­‹†"„dÚÔJ “3b× +ÿë¯ ìzo]‘VmƒÖÊ±Š§5‰sQ@<1)*j5Ÿ¸e€—@«ˆ?=$—Ðæ•¯ôgñ…ªÀ$Óeà õ7Rjçj+ ÒC«Ðý*úÕÕ~Õ°ÏoY”íç$Ç ñ4»Ÿ»CÀÐÚ:êa©EÇ.ªè„Ï‚>›Nvž?Ü,T<ÓMå …úf$Ö0ðèøkbw8 Zß_ïbî2ß=ZÞ &IngAë¯%^£Ž]]¢­ªÅŠÃ7«rv±\ñ ¬ ¾À·jŽî«À68 ×ÙÆde]*ëS$Ê-à4èéæ[±Þ­¿.” êRY®¬Y‘w@ëoñ¼aÕÖ·ž’™3]×pÖ˜™YÊ(ÎZƒíŠoRQvìE+òž¨HS"iFW@_i¾)»óÀ« ¯jëŽ×nQÑË5à ÐjGöïrÁ–>)¹†F8z¦5J™Þ­_™°Cz7ƒø?΂Ö÷»xîÏÿr¥—ÄßTËqh¥UÍ…§À›°tGŒ–±üG«7`ÛÆå?bß%`»–ÿ>‹–ÿ¬®6]þK¾4Ír†BOñ’À~Ðý*âq±tµFbì¦ÖNl¾()ã‡Ð"á ÐJÓ©†N 9H©n¾"e=És8 ZiñBÎ|èct&†HÏ^x×Ìy,¥ àUÐjÑBC½IÛT17S •öjås 8 Z)ò×<ÁDüïï‚Ö?ÇÓ«ÓÌÈ4‘L0§óÿŸßíT‹ÎiXqÃ4ÙwúúÀ68>ýDûT˜?î„ñ,07²ûm®EÕ\½¨9ÃfÒ^­T3Âôk×¶”¿Z'rÿd(sÆ[µJÏgçdïž}RUö y0 Z)¡En@ vÝÀaÐj«Ûâ§;‡qPB¡<)I’ŽƒÑ•BñÒ®”ä¹ |Zéš6yMgAëOf¤ƒ0bÿ†€x4ÅàGN§î¢.r;ÎK/#¹MRÔoÔÎ1þ#§=›‘æCÒ¤c Çšo>Äî,ð"hµ)⧇ª! õ¦«R÷–¤º|Z©jÛ:éó0À³œHrìU7¨g-)Þ7Âzƒ>›%í4¼9Ë}ù)69ɲ²æD"1 V]i9s"vG€iÐji—â§Û—DIŠaà%Ðj»‘Òé3›*æ:ðè[­QÌeàmзµ³›ï…Ø%³äñƒ>²ý›¤™>ý,ž0?¼ÁòÚKæj­ÖÍËø±¥’i惡`uÙ.˜Á®¹—}§o L…c|a>¿'„ÒRÄŠ•¯ÁE'æŠéOL<«h²…‚{¹þö¤½[ÒÛÑŸ‡àŸ‡•nQµÒÆ=gfêÑsé])’eøh¥C®ç|=†ð!h}Ôf®-kZ$Â#à3ÐúÝå0NR¯Ù~¢äÑ.&Ís%Åûf aüîp÷kNÍ"í‡ÄbÀÐ#Í·bw8 zT[iGÒ\_tÄ28«â'D=i£"¹²À7@ëGî*Ë_€ÍÆŸ÷¦´N¢ìö‚îm¾Í»n`è>mÈŸÔø¾GØZi¥_sCä[` „ ;bTCĶí(t‚m·¥¾ý!Dåm©†\·ÏWo‚nÀ;Ç¿ÄÓê&ø"b‡ªè‰ñ­hÕ[ƒF¨uât2é­ìß–*uî½S»]N16…$wߥ7œZT¢`Ù±+KË*S±ÿ­Ex ´Zy‘8o#iÎGA6x'v§YÐYm­íOûÓ+·ì.îÂvвE"g@Ïh‹¦`Ù¿FBØ Zì•w=¿¼ µ\O¸¿NžË__޾0b–]X÷ó˜ÿsÎ~•ÂU7œì;Õ”‘fN²'“ õS6÷WŠÒ ÉŠö;Ѥ„û@+mÞËõÀß«"¶ûA+•ÓñíèS„7:•®§Âù ´V Ùb $Í]àCÐñÝZ×5_~¹ÁõðhýƒOò«ÏÄÿ1ð hýT…ÉÑw*åßäè!cÓ†KùåA}ϰøÕŠ9ì;]Ï*xÎùJµÞv´­•žåGÇh·Îµ<éj ß‰—øNØÕU»Ò6xÆ2l6<è°s>(yðŽ•ŠtºQÇèI²m@ÔñS‹º"z`ãcô¿†F¸´þ‘†ÝÜ„j *ÚÚ< útìÚÚb)¨è¼€xZ ¢3À  •¬ê¶MåÏ©’iàè‘6tæÿJ%l^g;3›dŸ ˆó,eÔ¶Ì ÙžNb'Í…òíˆØuã …¤w¶ˆýE•Ë…Ô%îùA¾éHÏÿ7á6ÐÛÚ`Ò¿¼,&­}—‰±K@<ÚcŽ|ªÆ@cê§jPÓ6ÜÖûÔü¦>{ávûA+­ q¡véjÄØ'`<çÇqF°ˆnxÃŽå¾ *ÚNºîÌ¢º×ÿƒP/á8èñö{}ç–€xšìõ‰Ûð6èÛmñú$Áð.è8Ü™Âhð‡ Ø?„Ÿ·Óä¹Çð·‚P}Àý ã»¨g>ÿ±Ší5ZÜ †=À hkæ4­É.˜9»È{4ŸÒæƒ$ÿ–m2¨¢·ƒÀ ÐñwmO²kÿ!t®o«v2©®MÜ®§@ǰÝ"½êAü§wqUGÎ µ¶Ã,~-¼p–¯)2ÿ¾ÿX“µ¥? Ì‚VËi‰í 5‰r xôõ#úˆÅMb7¼Zÿ®iyC"þ“À› Õ–4×qSðö@¨-F(""}“®n°mciç?R‡xÚ ‡ïBÛ—®6ÚM¥¨„ÚÔÚ/èjÄØ'`x—Í[%6ëÿêC¶˜úìgÝw,6ÌÜwÞýìgeŠHð]À« •ª…È-»à5Ðjuµú±¦;ËÄèž0I‰¾f@¸´ZôfÕ5+¿y@íîß$*ýnØ$áÐúó«á Eéöbu„ª¸ëŽ$¾[qé.EÛ×#MLdÍ‹„>| Z?Kæ¥4IúÅ÷4Õ¼¤'Iß{ O“më{`Oß“¨.ŽÅ„Ô‘VQÊ>à~Ðjù»›)¥Ó÷ j9 <úxKÔrxô mµ¤Â.Ÿ³m'o• Ïd+~§§[uVIÊà è™ø{”Šê ˆ§ª»| ZÀ“vëÄþ‰€x4Å8Œ»aõöjQIáþÔLKqôƳ(i0$Îqñ4Ù`ˆÛ!à Ðú}½U¯iV™`0ÀaÐÃmš`üqèø'š9Á8µ˜ªÔ¦ÅÉì‡_WfÁ½ËïÙô;EÿcI{"wG@4bAìz€£ G[?û¬€x4Ÿ€‰U÷©”^–ìÕó£ä-×¥¡¨lÐ5>žéH×Èø°  Õ2@6³3µ»¼ÿð è+Mšˆ[x´~Õí}ܪ /Ú5.’èð!hý„·Ýq)_úñ'¡÷?Yý>Ǹ£X0’4èðh¥ëv¤Ì‡¸õƒ>¬­¤«(ç‰ykƒ«ZÓåw7 ÈTðEY #¡Ÿ~¦-<Ö « …µÃG%Ü ÏrF!Çë¢äÃG9»´b:þ¦|ôèOÁœÛ½^ø½àÿ½‰¸6—u’톛AeùöVº˜9ÂkGœB"v»€ÇAÇ|Fnn»à ÐúÑçÑ4-°Šʯ^~¬Šðh¥s?ráè÷Áª/ƒ¾Üúp”Ø_¦;„pTR ï‡ î½#vc­ZKíš×hmžôýÀÛ o7=² n;S õs;vàܯB-pdø´þµQêOÃþt¢™£ÔÙôOCO!âi²¥·à.Ðú)¶gÎùý}C§yƒD쎋_o²Ë¨$Î5ñ´@oã õݾ|Ò ñŸ^­”s¤ìñg TÂ&Ý|W"H´ù3‰¶&Ýü™:ÄÓ=üY´ýŸÕÕÃæI7ËJI7$Ô ~ÒÍ1]­‘ûŒ'éæÀú¤Té½$æÏAw„@Ðn_·üEd~#Ir8z ùS@bwÈ@3m%ÉeAÉšI{ø ô3m©“Øà’Þ0ùó° Â$èd›À¿þ!ÑÌðÌrušj¾*§–ß Në½Ï}ŽÍ/˜Ñ—àF$ò.`´Ò¦Ü•ØõÇ@«…^â§ÒÃ%±¿(`<‡ötr±þ" €°yÉ2[ã‘´’ið èø®® Lÿ"¬’ðhý›ëφެ`/ /®YðÇD¶l¼o8ùꪯtV ÉxxôÍøµ÷¾ÊA|’é.pôlK´w øhýú2ÒØ?¦×ÖÅEµÌž0BÊÙ|¦ê™®^¾Ï_‚1ÆrÃu<Õ¿+ñ¦ªµKYqÞ}K[•J7“·wA«!ÜL/Ýܱ+èæ àÐOZ¢›{À§ Ÿ¶¾·ûgâÑc8¢·‡Y9Û\\´r—^öøË0ÂaÐúù?OphÍf‹VpÕ¯„“þHÏGoi”ËŽýÊ*†;£†ì;ýÞãq^äò©È–™3W-—ïÖÒŽ´WžïJñÿ×sùÕ:U=̳àJWšýÞ€ðh¥ëéÖ½ÍÓ0V¤Jn( ÈL× š=ÃK ÖÍÔ ŠcúZ€^ö¥~/òƒè°[bé°j³¨ÿJĵO-~«›[BÔ<%j…€dÙì­´¼#·B@ìz€{@ïÑVK“¿,’$Ø <:¾E›í¥Yª;¹b”4sxôÙÖhæ ðèsÚš‘_&'þ)àè¡,D¾Ûþp WŽ-\&§În°mã2ù×a<Ëäò…v~-Oغ#6-$çó¦›s¬…F]â÷ûO'XwÖžVkâG`!v©Ú¡n±Ã¿‚æÿ+h‹-±´Ç~Æf™Á¬%VªL{JŠöW!á~ÐZ§~bp±$Ë1 Íš?»À“ OÆ0LÉûXax´’+‹ÛÇ’@ÃÀ+ ¯´F5ç€WAëgA÷Qèœ[¶]³”VI9!q®€ÖŸ< +@ÇtËv)OÉ0ë¦eBr}Î(ÑÜÀ¡Å%Çý­¼ðû³ž± æ÷×SáßtÆ›àJ ^½l–Œ‚õ¾/lÁzé¿Ð²mçùž”ÿ93ÃØ”ÇÊþ«óJÌþSëwíÙ·ùQ¼ÁÆú6÷X¸‘æ¿U×&óñí‡ùª0ò”`Iúø ¡øž[´mo™ÔXÕœì«üuˆOxô½6D?Þ„ZEÃQiWP„24˜ìÀD2%ûAÇw.aiù]«T)šNpyˆì‹üŸ0Â; õ+ŒöÓ‹T;|F~áñï@Â~ÐJ›Uš¾öï‚7¡–¯mÈuû¼ÉUg4¬Lµ¼Û¸M컌g1úcwMßiñu";8lM3Å´¢ùA>Ýê/ý^ëP)øòD\Òyméͦ¿%Æ·º"ݨ¬CÄ£)†Â ÿOùO%â\áÂØÛó•Vpm_µ†‡%±J‰§9x6³J¹B%o6Ê/ã)Ë•%¬Gɧ7ü¼a|ÉS”ÚMvºÆŒEÊEGZzŒnQb\`Ææ« ”¡û>]P6YÊXTX=û‡p ô”ök ùF¸QŠ&ÕAâEÍ£ HRÜŸ†ˆ„C ‡”C‹X3ÈH¤àEÐJ¹Ñ¹Fd·óÀK •ÎL¯ïãCÒc px´þ&Ä)Æ>A=µàÇ+f­ÿ†V%ªúGP<á)ЧÚàõÿ/ð&ÔŸao0aE…ÎQë|$K¸ ´ÒBnØu{AëÏî'™?Ò,ûí`8Ë 2ÆxÌëG¦S j æ+Ü]tìgÑ*ùž_ÚÅ‘è}À‡ õ'„WßÞ‚tÈtsTë´–yX ®‰®Æ+Ò]÷Ãú¯€ŽoÛrÛ<ópþmàö3‰8#é@égÐCìPîŠZbü´@ˆê­A#˜®8?KÊOËÊЦø§‰f ”=ÞªUz>;';T’4I`è¾æ•Ä®¸ônm¥cŽéUœ’Kc ½ð.žþ(W0\éY’¬˜nƒÙüLåçšb6ÉAØÍ ¬áüŒåçÐ6ÉDKRdÆB¸ômµ\.Õ6|Çêz4µö‡ûRXV©¶wS[~•Þ!¡÷gA϶c&ûÏ`Hÿ,çLVÞ¸ÿ9xÿóXŒ»#q­xDCAÂ$ph¥“õ %0XÉŸHæ…c%뎓({¨•Ñ'#Vªÿ9¬ˆð h¥ÀKÏÑû«âi¹Qÿ< ùç›jÔ[ýˆÚ¨dK{A+MQÊt•52^YÅJ1LJUwÛ†ê'aì/kæ$|?ð>h¥}o93ÿy˜6áÐmX%ö³âi¹™ÿLûškæ9»"?jÿLûšbæ7È®kÉØuVMJëæ¶&­ó`^áMú@ÇW\?ÒÖöMøôãÖÛ:±" ž–Ûú/¾±©¶ž ·sò â%Z±xâ­ë¢oà´a*ÞŒ+nÝ‚0û_¾ Ûfû'¶+ÌþW°ïÕT[ßì§*È–Æ?¥ÜA×âV:„–—µg’²8 z´ùöü¯`ÄYÐÙÖÛ3±OËíù_ÆÿuSí9i}ÄAßÍÄKõ§õ!ë#̵ W·e+Ç’\û€g@Ÿ‰-$<’K­Ò «h¦ÃrAEãý<$'’€ià=ÐJQ´\œHìÎg@ëÏš;†d»ñ¿|Zaô.M"ª§ÄÂ}8ªúdæ*|âSµû`ßå ÄƒÔ²Ã毠“Þ}·ùÃ&5\'ØÞ­? “6vâL<ö$=lþ´ißKòŒ¯Vº>Qnx!vçã Çõ;˜ŠV&Ä“V63èM2¼ :ÎìšMrxt Ù5…̈§Ùã=±ëÞ­¿B.=Þûâiùxÿ›1slâxOõE$KõÇûz‰úƒ£Ù^nÙàI:Yó%±ú€ šo¾¿ “%d YëÍ—ØŸ°]ù¿“ý­¦šo¥TT ²ËoÁj+Gj\gý.·Ö,É´8ZÉ|ï§lÞ`‘‘¤9 LƒnÁ’Ío¡3ƒÖ_²‘öˆÄ># žf)¿ÇÐ#­Rˆý¨€xZ>¤ü§Àž96oHé¦2…²¹¶$R¨ŸRV? tÑ€¢ Ñnà^Ðj§¥)r!YŽO€>ÑüA„Øí€VQÅOw…uÛTN=‘( ˜çp1 ü§À¸8ƒŽa8•Pˆ}FÀx‡Ó­ó¼Xm¾?Xrâÿâiõëûñ´ZŒÿŒQ½5h„8®+Îÿ“†Îñ´ÜËü4ÅI4ÇË$¾ûÁi¹`*ȶ ¸ t|3¯­lSM¦Ý@ʤxz_l¹kÞ,å"¸v€Ö¿¶iWš=Î°ÔØèèøtzå ðÄÔé6cSù¼EÇȆÅï+ënÚáÛ1.¿QÄ-SŠù°ïʶcdßâ¿Âä oƒ¾ƒ³¬îq¹Ò™ÿ bü·„îE; +ªL[vÑôøM+ì »â” Ù‘ÿ˜<dz ÏÆèÍ}U.G°ížÃUïJúI‡:W½7ÒOÇå¨íºÍäfAgcTÇ‚]ÈG°==¦­Ž>–º2”fãW²ÃãW¯Io “0S Õ²†ÄO¥ûÿ(¶ŠñD^G{l®ÑeiÏ3iöÀ,äÓìQF%ãÿƒL„G@«¥ãÅïôI&<út›>É’ÒD‚†Ÿøæ/QNŸ¸f@ëO_ªN?{uHºP2‰2¼±Ô6¯ÄO¯3ö|½÷Ú(¬¹üRÑZºHyÙ,ùΫdà~=…u‚ÿkÿïx- żŸMïŽë˜Ÿ‹à}8 Z?ë&ÉÊF$}Q ‰q8ZißKsò? BýȆD:=gZ…‚QÊÉv{ú»ÛµÁd[BqQ)¢Û—_.Epíî­4ÃX¯i_Je?ðèm°¯Â&¾Úû@ LÍsºóØõxhüÜ^ô(LAØ$ðh¥ U.6þ*ì„0:Նؘ¾7<:¾ŒúŽ«WäÉÇ@+©r±1}ñð"è‹1Ì*SÙ¬g‡/_–îÍô½KÀÛ o·¾7Sç¥ÿá¨×›wóÿ2øt|þ¹ùªì|Ú1ÝJÁs'üÿÏÞŸÆ‘dçpA$@€$x“É*²P@éyÙµñë׳v.n&ÖûöóÏžÌÌ={#æ;§ÐO‰> }£oû€Ðæ?ïľIã$ßzå ºÑí6HrHÐI&úï·øßuok o¿˜E×î­?Lð¿ï!…4kßõ¹ß¤¿ëù–WZ³çÍ7ž/|,ï‡o†ýѯ¿™Þ­ öÝÎ;å2¯ºr‡gïÖïŒù¥Êسà>þ^õê£ÜØ3æ¹IkbÂÊM.]¹±<¶9Vˆ¶ýmæê ̵l­¾òáf$óQ§Œ†îg¤Þ~öxÊXõýÊÔØXð½¬ã®Œ5üjZÂÞÀ_Ôíý×>t3¬=ÓNÙ]4Ÿ” ø.09/MqÛ&#½v FË@²-èñѾŲ³äZæK/è­O¿G.æ~H"å߇ü¾ ¹˜`Õ©ú1Z? ü,äÏJ¿’í+ üÛç>Lx_ß ü"ä/js¯=!E ûÓÀŸ€üÚ\lÏ¢W4½U)ßú)àOCþé–øÖ_~ò—¥ÞEô§û>ŒÏì`ŸþäŸÓöºWÙ—ªýð+¿"íª[;g6I¼‰_þ2ä_þši÷á5[¿ ù·•F¾è·„âÈ^î.,ï:Ìå]‡[ãf¸«s×0—w kSÛ³h/[E¯Q¢)þ(áò®#-PÌbôÓ‘XýtB2Vßÿ!"Òm¿¥ãY!¡¾Ù°é!N×?šæ¸}‹Áw,—.ñ˜î?mv×ð#þûéávçnï3ËÛ”w² “ÜåÞP­§ìR¥C!zoÃâ[ÙóÄίšVÑdƒ ÷àåÈÝ«}#Šqê䲯úRQŒË0¶ƒhMVjã.&k¸Å´õO&®PÙ岆ò™]ª8Aø nÁH÷Ñmó—`ÎâÛ²ÃâFgÝbãüª¹f±.‚EDùøüý¸p}Ù]ü;ŸÁ¿ž)?×›KVÞ¬z¬4Z0Î[ƺS-ØcÀ.Å6"7ÊOÿ6Ý«àWËAøRÜÈÔƒç|0S}ªA<á›xª7•ŸêuâO×>ÙËåKdªÌB•jàcö²áSÏu“®\¬²l“Iy¥µpö)ú@Cx Â×ñ@êÅ2/n™'g¯|×)Ö£1C,ú'†AVî@K㜋 ¸¢³búMYàDB¡R£Ø¬˜Ô¥€“\Ö0wÄ(U=ßXŠ–§°Å[ ‘º|Ër…_Úi/›gMwEô€ù.&{€¸LØlc‚ߢ‘»žpÓ{3<‡Oز벩OçG0X#;˜1¬ìŠhþ##;¼ÇeBMF­јf×Û¤Xó þOgƳãã¹ðÓqSˆX;†£uôȶ1;†ÃçwqT´ó > gÀÀžf¤µ)» |ƒËJ&öà‚7A2Ãx[Ã0Ю„ìšs#ë ^’¨Û“~à.·¢{ u{€ƒ\ÖÐ=œæ}9…K¼”ì§,×Áe|½Á0zÂ1ôc_M@³Ñ«_°$‡6n‘úŽ:¶kÓk !*¼ j1GUéÐâãÞ:†…Üp¸7½, g ò£™ç~à0—åÎãÄølྌQÛ<Âå\ú´ ÇRª-–Gšf5Ø}VÞò'ðB÷˾P1÷9÷9—Ò“hÅ…#LÝ. Ú çèO'™ûj÷WL5~E{CØ‘ˆð à.K.–îäH×¡Ó ’¾t¾t÷'$—§Ä|é$|‰r ®4dêvOÁ—„³·ùÒ9îKÜÁ”á¥U´W‡Öç‚©Û#kˆáià —5$ tI¬æâ=1D’¡f7>àÙ%¶‘'éÇÄnhpY®ˆ©˜“º>àY.Ë-ócR× LrYCŞ˵!Æ þ/rjŸÊôÐ’lÐaŠº3>ᲆ£!vC…íûV¯6 7³ÓpnÂ!8÷Pëãç3 Ô4›¯ºÁrKNq»ú&m£=Ó+ß5ùÌ×W‚'JÙeÂQPÕÞ-t­å5AfÔOÏpYkåzWPù-t÷O_É.Œøîã²||µí7÷ .kícz©³pBÈ:*:‹egú“À.+Þ#Õ0[§è¬<¶_Jp›ÎsYkÉúœu`š3Vp×qà.ËÝÚÓð7_>ä²\=}qw=|Äeõó…ç ¤ø—7).CÎ,Ì £vsxŠËrѳ¸¯î›èJ:*ÑÝTž.oûÍ=ÀÓ\nAY`¦n0Œ¤¸í©¢¾J ไB‰¯WÚ®ˆ»,º{†—¹LØ —=8]g-é¹#ðÜz¿¬¡þæ`žÛüªøLÝ. ZÐýéa–Ìf—*E«d•i2ÌcD=™(e³\&T¤6ÈKm³LÉ|Ñô„³"ÏáªíÐ6jX½I8f2Î’q;RÄç(Ðàr+BJR7<Ëe!¥ð¼‘ô'J!eC­{=Ë2‹žÓ@ó18Äy8C›6žH}GÛµñtoã‚òÛ@ºÌ‡£Û,(ù§¯ŽáGñµÜ1‡0Ö앲åûVªÖjù&ˆYæó&u<ÁÜ4ÜÀ{ønˆgù‘ÂK%¼ƒ—*Ù+¾Ì4x¤µºú…ƒþ²=zq¦ëÛË6%Q"mrÕö|Ç=àKöȆÞxA™ìA2b*¹ì8á}iaf—ÁŒ0’P«ÈìW-•Lw#Uç&N-j„ÈEÒP QÜÓ‹„¨ÉÓÆFx&dÙpÖ,—²W)•Ò7/kt\O˜u¬ ÇÀzL™õ€sθ=j “I}֘͗ىàòΫԧ&ÒÞ¹L*Æe†7@_êòÈÍÓ¢/Ìe\ÃsÀÝÊ\úkm$à$þ‚r EØRýmhà1¡µuÜb­#Gýð:å È®”6=£Öé_Æ8;h@´ŽŽr±kÕ±O0‰' T«ýéÀfžÂ¬‰Çp¬”YãWÅ^.;>(ËZïUÍ"sÀŒÁ™¦Å™â<CÌá$WPÕ<ñx\Óê‰ÐOÛÊ[ë¶gíÜQó(k’Ÿ¦^ ât±~œëxÂGxõÇ#Æ»Õò»µSˆÆ“Ç8-Âv£érJÇZöŒe×)ñ&hRn.EBÁCàdŸð³ gøÏ¢~죀߄ø`”1Ê 5ãL“±k°±ssS«ižÑôÛŒ+¦;O‘UøHñ‰ÜÔÄ;תDÿnòÌd:ù‹+ï¤%šòŒðì™–QwB˜ ºb†Íu'Ä_Ðm"lç¨; ÓZûº©¾îf½¯~Ì Îà9f”Ÿcan½Ÿ{·5Ý]<ážgAKG7©ÜÑÝïèîáqõut7©£ãG­³^É Â·€Ýx6ˆA˜¹üàÁ¶w…ÂüáR Ñik¸ ~ÞÀ»fc{ß|30rç<‹‡!œÇÃHíoëœ'…¹Ì as:çIñt¤ÛÙ9# QSçœa©,U§Þ‰•ÑZ×\´Ö,‰NÎÄ0\NK+ó}HlS¯¦i =W!2ÆÆtØ&ҟȧ&3“SWÓA«ñ7*Ötòy2c¼*Ú¥i:O•—h&ñ4„å6=Í,½`?ÎdãÇ™ '—ÛüÊ ¼ZBÄ„Š2@R_6fõ6X€Õ€2«×Ã9XÑ*¯ø«© wµ Õ "‹6’45ã ñDþî=ÎÑ÷Î1ˈ7¥à‰õUÙMO#N&,¨þQþgFf· ™†j{ Áå­:ë1M‡TL¹)«5aÒßQGùt“˜Wî,5Pz.»¾®5¯ .Óåëð¾Nõ ¨Ñø8ÞÆÇ•ßFÃz~¸ §O$øqoÂ.Ëu? µîY|im¬;n!Fó.༭7 ©¬cøÑd”=(ö*Zá|fY£½²¬„Ͳ³Á,C­7 ©?XÇð#÷¶}‹Ý9±Ugøß®wðØ‰„Dû¤ol½Åþn€þ®‹ÿÒÁß?zªSu®­þ¯mwvܼ!n¬d–Ç0—ȆïµL¿•-2ÞýÍÚ‹ 4v†©‚O™¾]Ήy {Ǩx̾ߗØÔ„ï\îξM”ê7÷ÍüʽïZ?ñìW·8„ôÍ}Þù»µÅ¶Z`ïV_7ÿÅå¼Sfþ1Æ ?ƒu û7ZÓ…` ñ‘ Ñ𶤆–Œ£s¡Å4=@T›ˆ#øð—‹e³ÔèÒ¢¼BTˆ#h•Hý©â£É@ªàHŒ]膌=Àƒj³ •9·ÍFWáfŽðÞì­ ­2 ©?A|tµœÍ}Ÿœ…º`•ð^—=².,h¡HAˆF5Ze!R:‚øh²ÐÑÍòìÒƒË>Å©†!<ùL ŒÙ½eguv%6Õi•‘HýÙâÓj‘”F3XA_éR¥ÓGÅ·’5Œ7ÃÚFošþ*;€¶P+j´)Ó¿,\ 1Zl“ÛÅQSsëÙ¹ Œ[#bl®oA¾¥­yÅIcêÆ€·!ßV6àã [ u'b1 ¼ù¾¶—°{Ñ·ýb£·ÖÉìUnUJ­‰MŒ#ˆO«iìÅQ­9 J‡¦“ýÄG¡½6j·û?TèC‘îaÙ<–ØVüD¹ñ6®ßÄÔõQ1Z\®Y}îbˆúvrM¸Öò¡óz"ÑšS¬†¥œè/|Ç7‹õ w¢ÎDœOß‚ü–2÷Gõ:{†í{õ ôŠëT—ówùÊÛ²Fåéí’%z·¶ÂEØ ýQòiöÑ>kÙ¬}CQ?XôoöMƒk×m3vd%*ὙÇ›ßJúaÂ#(ÛæZ |ç3jGW _Ñf,éãùŒÏ-àä¹ÖXì*ð>d©èCm¼#õ"ˆ"ã¶g|’*W›ÆºkV*A—ÖËä7ÀmͰAISE¯ùPãp¬ç§³ÀQÈ£Í÷Rw˜…,7¥ØÔ€ÐÖ…‡¢1¼ùº24,Ôê”ðúŠSÙÅbàV.Köµq{®ÁîMÌ©‰ñÜõŒñ·+iÑrRÑ}ÉF³$¥‹r™D¿£ GšÜþ`ƒò¢ÎOÌú€§ K-g‰9?©ëž†,·|ý©pU¦ÿL¢V<•Ɇ¶Çß·X°¼¼kWÈ“cf)ÑMŠ6M!I}GÛ4…Ürõ™â²ÿÃÒ‰m´þ¾'‚òëTñREÃÓ¸7EËñ½À}¥憌>`5j'R‰ú~dMM©g‘k1Šw‡!KÅê›ë§^…WÉÑ=8ÉÓ3:M°}j–NÓfÌß‚¬>Á<ÍR “áäyÈf³Â9yÑW˺ì] ]¶x³ ‡DS³TZÚ9Š6yts[moû<ùœ®cóÛgäŒFÅ¿Ú'J½1ü8ä+?Á¬±é¿F Õ\Yq­:”¦J‡ú´}ÄGuÃ0yDº¸hÖŸæ!j×+ Z½ÄGrXêSµV QµŽPÿCµÙ–‹ôŽK¤üXtò#iÂέï*)ÚßÓÄG’¦Ù ‘9¼ ù² ©Æï"n7=¬SV?“ØTU\¶ó“²ÉhñÑöø1˸¤î(0 Y}ã ‘Š^q”6„k›3BcÀÈ3Êĺ¨A 2A9s†ê[ê­—xôEpËÑ`ÅÖ+?!@s†' ëÌ„iÀ¤n0ÌñÐ /e–S”N…kÀ¤®¨ofŸ‘ /·½|19¼ùR«F—Í“^‡,µ;*nžËÀoh0O8=ß[%&7÷!«ç;¤ŽÕµ¨<Šo¯YÅll•º8bç¹µ6¨ùݲ€ût*Ü1žbûV)&‚í„ÚÎú§Õ³0RßA|ZnagؼiO7[ñ‘ Ö Üy¿ôÔçªÅ.â{!âÓ†H —00ÔŸ,q¸ášœè8@Üú€g Ÿiþ8@êºF¢v®EµY‰Þ+ÈôŸ&!'µ™èP£õQ ¥·!KN·Ðpò´ ‰6çð»ï*óèaUœ…Oͤ¹‘†Ç%z´¹Ëà¶5jQ_!^ýÀÓõm‰Æú ©Û<“P8·éudèUú ^IÉôó«tŠ®|©TжU~zßò-·D%E½Š˜À×!¿®Ìø yÕúªÅn:ˆ&ðGï¥ßbcQÄ%5 ¯@VJWn¼¶È+ÿ¦üt¿˜’Äk 8Y_Úr×¢õ^9FëU ¾¬åÞ𼂨{À'Ÿ(Ó9GîUôjÛGᆀ›…j“2¬ì´!ZÂEB Õ£¥¸÷Èâ²kæ?mŽýþ§ëNþ¾ —ɽ@²!ón%ÙOôÆd[ q —oÇ!7½’¶n`rNƒ#‰/•ƒ àUÈWÛâÒ£pãÑV¸ôª¢KÂG›ãÒ«*.Ý hKÂGµºt§øRÐ(¼˜ð d¹1?úSñEˆ,|8›héRÍä;¡¶KA¤¾+‚íZ ÛSµÂ޽Jo-9F‚^/pò t?Ò«j5¢q(‚ø(ZmŽ5uVì<ð©ÏCjÑ?+Dϯö,R´_°×XåSùC»ã05aƒÒ×’r–ÄŽÔ’ðVj±`,YFÁ5×ËFJfÔÏB–ʃk8Eîf©NqHÜ´˜¸¤€ÈR›ÚbÓbR—ŽB–ÚÃÞ¼¨DÛÇ4“´]ªšË ©‹ú1Êg «ï&w“/‰úË|„°Á%ªg¥)MNÔ]ˆÊ>àäæ»ËD@> l”,©1<Éž>PFlF¢v°¬å£^äþ„VÆ4ltBmcRßÁvÅ‘§fnC±4\ j½@õm¨¤ªÅ®à{!â£h±,u±åjÉrí¼±Ta—mÐ7t6ݯ|qaYÔºWaQÂH¬¯©/ŽÍ©Œíˆ¯6þ4»#&5cÀk¯)›n?­]‡)“¢ÞDT®ç «2k×à„ú75åËeŸ> Rh5¸ŒõR× <Y}zÑÃí²ŒmO@–«IÔÈ6Ãááˆ|Ê,VVÍL0Ið͸¥œ •^‡Ü‚Ì#Rwx²zæÑ:$c¹ÂuˆÅMà=È÷ôE½KñÃçŽvy| òk­±Ë ðuÈê;qÂÃ5©A|i¼E,]Îj{¼B…âÑa:ü»W¹nº3p¹Z–Z4ÀõÔ ß‚ü–òc¥ù9€Bìã„S¢“AÜ@Í0 9­­Ytæá„˜Œ' O4¿UºKÀIÈ“ÊvLÓg›ÂF©‘è\Þ‡,·Íª'@$¯GŸVXçð1dõ΢+EÛ71x|ò›BUÊŽ‘<Ýs“[–á~ÈRó°Æ5Гõ„|á‘(ž|¦ùîBêúd£]1"‘8 ¼ù¢6óœÚ#æx˜èZ^ì®ßŽöÊ_ƒÜ‚„Ô¥€¯CVI:3Âû~Dà1ð)ä§ÊD^C–RµæŒàk–˪Ҹòݪ•ÞzT=^ÓŒ~ŽCTÆŒ†Ñç™âÃ0¼ÍUʞʳØ[ÐN¨»'ôxQ‡':}À!ÈCÍwxR× <Yý¨Á4-x×Ôשê÷¦R.ßN‘£¨kõCÀ7!¿©üR;·áO·ÍØÑ b‰É>`?äþæ»Õí@PN¢A¬¨›ÜÆ÷OBV?7Hn­,ê2ÓpÂAÈR{æ—¨š…¨Ï•£Àu_ŒñR7< YÝ@™´Q²Ì2uG&ÏÈÅy\ÚI †<£bºf‰vñ=áubz ø²zùic벌±n‹´/O²°ãßW e–âHw¡›°r‡F·ŠÙÆ£‰j'Ô¶qÔwE°]Ûx÷ðæï©ZA{%HbÔ T¯©\Gƒh DEƒÝŒd±Ü ¼É®y±— “"§‚åÙÁ8— ¤ ÒŸm #ór]ãŠLrÅ Þ&áä”5'uSÀûÕˆ×ç%ý€óç•y<&‡zƒÏh 9Ãr‚xÚ‡ÌÆÃ5fr¬pq-¿ê–Ù)š4ÈØf1ø'ë¶¿*úD³ð+ÂÇu,†‰Oê"YqM˜Ô F«…I¥¡¯>à È-©H]7ð$dõj‚­”ÌòF$»1˜Æ•-£d¯¬ú†•]Éò½? %êXÄ÷ð)dõÕǵj¦Á/›ÛǦ$ÍðtV…ß¼Eí)ˆ Žá9%ÚŽq©±‰>Ñ}8å}­MåÛd2‹y,ÍxcfÙ,nx¶W²ðÖ°H¦§pש<ݨiyð2Ý„- !ï%xØ8ŸhkIê»"Ø®ò!ÞüCU+ìBvš…‚±^`d©z@á=©jö"ýÄGÇŠC-ÿ\b'/rQR3Vd"C¢rØÂR7Ô·â0šÁÐaºUé´ á{¾êºVÙgcP&˜Ì¿¨OE– Úr-Àuõ‡\Ýì…¨—>àd©9›˜‘ºnàÈÚ0à ýƒÀ!ÈCm "<­¦©Ÿí„Ú6Ó¯¡A„Ø®aúu¼ù×U­°ã0½',=,Á®x²T›a¬N©íuü¢ñQ4Ú5vlßfÇÂLV™™ârÓ]©–ØÎWÅô¼úðfz‰:2Ÿˆæè*ôÄ ã±ÀÐÄæõD™¹„äåU1ý@LDR7 œ‡,µÐ"6 ºëÀ‡*»PwFârïÁÆ–h“&·sÛsŠöMnT†MX7 B»TZÔEˆKp ѲuSR× <еnzº¶^c–wʾi³@aÇ!nƒÀ,ä¬2Ça¾‰“ç»¶²7ÑGŽõ)Þ«k–@LNÏ@>Ó|G"u¸h–¥8IèHqÌÒh½l¿b‡ |Ë-³DŠðòf9˜Ôù4(9{Ù–˜A׳À§Ÿ*s¾æ#×+L¾¯®°)VˆÖ.SÇFö}-I@<3àÜŽðä{ÊO!¾Øýº ; wht¼˜-Š;¡¶[¤¾+‚íÚrx7ÿBÕ Û¶±Ö)8áþÃ6:½Àý Õº0U­ôß E+í£?/7€¼ îƒ,wW\Û´¸’•¼¥æm¼uÂÓO7$y®Bx²Ô¶e]‡ßáši´÷#êFDÍÞ†,u+€r(û¸ ¡þPö𦻂eýˆ¸õÏ$ZvË©ë m·\Ϥÿ,0™P¹å"úS•>ç£pBý}·º`:ÖYˆÓAàÈ-pR·h@Vw–‹èt¼L˜´j¬¸fe•=¨Ÿzõ¨Â‹BVßæ<Ársµl‡ NE¹Õ\ÁÁ9ZOÉô%¹©0 Yj:ãa1[â¤. ƒ<Ö|Ç&u'ãÇ•}Eâ8=È'!«Uéeé”ì.Hçëà–„½{µõEC´çû:|‘pòPó„Ô턬žv#~é?< ù°Fƒ¬Ç¥2ïh“ÀÓ[ÿ’ºaàÈêñ¯œA àYÈgõ$ïe ’^‚,u™§¸A’ÀË¥¶K5$…<ªÍ ]¯Šæ’ŒE®¯CnA9AR—Þ€¬á0Œ”En§ Kíë4¶È†¤Ef€÷µ#—­°È-àÈRy†[R«ÌrA4Ð óÀ× ·§ÎÍǹQ6!óŽ*¹ˆºQéö'Z–yGêº ]™wƒÛ6Œ% th@6´èæ';Úè"p²T?/n£³À,dõm¶¾Èz›„uÆ€7!ßÔfñ]|âq/‚ø´Â.SÀÈAú–v¤8Ynÿ¾¡9„çKÄãµâÓ sܾY½>øÕ¬¤ÿ1ð dõ )™aîÜœ ›0Ìùá G¢Òlá0Gêºú†¹n™”ÆOà{„úÌw8¼£MNOA–J†·ÉaàiÈR³øÍ'LÙF¾]ªí¼íoÍH`5=(%Á BÂ;Dõ ðuȺᆽÈ-ϰr‡F‹ÅìèÓæl'Ô¶qGŸÔwEPzG¿¡Ö½‹µ¸¨î³xÛïñiõ+x†±CÖÔh|=Þ@ˆòo»IjtÞM°Ê5ÄGñ­\¬_-Ì\û«„ry®çy§X- oÅ|ÞáEÈú*ïNz¾SIŠD& œ„,µ 6ºð ä+ʆ;ÁzÓãåx\gÝ£?ÐfŸp¦#» |òÊwl°äbÂYLüyÇö:‘Ù‚<Ô|Ç!u=ÀƒÕ÷H’›’QäÙZ£|÷U;x=®ðõôÄïð*ä«ú¦hÂ3fâq;‚ø´Â\×€Ó§•ÍÕŸåiÛÇmÚÄåðuÈê1ÝYÃU,¬XA?䔕NN,q»3 ƒ}›>x­m¬'Ÿpòxó=‰Ô%¹DíBQÕ Ý›”°ÌðäkÚ,#uúh í‹ðä{­1Êuà dõ±Þ ³…[6ј¾Y}¿á,;¨ÆKß•ÃN!`Ù,Y ynu†ú[v7;æ!ê@Ä%láÕÀ¤. MèºØhtÖÅX3‹U‹¥ø‹ú±ËŸ@V_à_(ÀY; ËMõ9qé*¥•‹9©ëöC–ZVÜô ؽªW—±Ñð,d}[2X'2)à(äìc‘º$0 Y}ëT4XÏnª÷k/‹6m¢6|r;ø,nl†ú›¶zÍ^âÕ <ùXó=ˆÔuC>®lžÉ0À°y¡^ ætðÐ2ƒa£^7ÃÿÂö+"|ø$Q+袊ÄKá¸FµÒ·T줹 W#üj Eè·¦€- Eè&úB # ýê,ðä{íQè×>†5¾¤ŠSˆiø²z³^w¦_ô4‚ø(Ò06l¢¤V¸u@Ðf’Ý‹,~n ÷]èZ¶i‡„ÔwDŸVÓ°ñBTÛ!9¨Jç“ –‡ˆâ[9nO¬ ËÍϳã‘U,dŒÇY™Íñ—xE„Ç!Ë ðër&>Ͼýèg¿´ZŒ[êÚ‰›<ùœ ·†µBw?r,9N)`˜‘¦opìZ´Êù­'€YÈêcãþŒñ$k¤&Æs×ÓS¢ŽMTÆ€·@K.á7úÓ[†ñ¼B¥F}«TqÜ ¢Š^"`Ul~-_eÕ*;%«lòÂÕ2Ex{1±éFIÏOÄhïX|£û6p²ú²|¯Q1ó/ÍáÍ6¢q8y¾ “°Ì@¨¶Ï«ºk–],šå¼h³'F{€(Ç/·íÓì+/Wb´vA–Ë\ÚdáȆôCnƒ”áå¦øÇ™×œ*•U¡Žæ¹tBžÏN§>w–ýuÓu"Ù ¼Y*Ý &BúÇÕµÀ䔺­„sdIx ²Ô ¥Æe]¯_—à“N@žÐhŽ%§XˆQ{8 Yý¬ç~#•Ë¥3FnôêUáÖLT®ïA¾×†Öìp»2TkÍØ¿ä?½¹øÜzUq?Ì÷鲺i·ñü`Lœ^ªÚÅÂ;Ÿö§èMMM=+¼Kß{·àØ©äH.™~¿àpn<›»qmòúØ'=/»6~ýzÖÎåbž­÷íçž=™™{öFÌvOANó¤oôm0Úüçñ›g [¯D…ãø/Ã7&(ùþû-þwÝÛšÂÛ/æGqm÷Ö&øß÷BÚ6Øõ¹ß¤¿ëù–WZ³çÍ7ž/|,ï‡o†ýѯ¿™Þ­ öÝÎ;å2/ u‡gïÖïŒù¥Êسà>þ^õê£ÜØ3æ¹IkbÂÊM.]¹±<¶9Vˆ¶ýmæê ̵l­¾òáf$óQ§Œ†îg¤Þ~öxÊXõýÊÔØXð½¬ã®Œ5üjZÂÞÀ_Ôíý7ÅgY;ydwÑ |R‚â»À<ä¼4Åέ„^»£píÖ†lË0j8º ,–%×2_zA@o}úý8ryðl6†\ع¾ù}r1ÁªSõc´~øYÈŸ•~%ÛWø·Ï}˜& ñ¾¾øEÈ_Ôæ^{BŠ.ö§?ù'´¹ØžE¯hz«R¾õSÀŸ†üÓ-ñ­¿ü2ä/K½‹èO÷}ŸÙÁ:?ü9È?§í=t/®²/5Tû9àW EÚU;¶vÎl’x¿üeÈ¿ü5Óîÿ ð·!ÿ¶ÒÈý–P¹ÃËÝ…ì]‡¹¼ëpkÜìCí0—w kSÛ³h/[E¯Ñ^)FM®]G¸LØ|Å4FžNÔcõÓ ÉX}ÿ‡ˆH·ý–Žg…„†½èCœ®4ÍqûƒïX®DÄê„c(µñBßè§oìÇoØ­ã½¥Žâ£8ã¦ñž)Dµ­©­·07Á'w!â£øV<·–LÏ·Í2ߢeåáÅxµï3ÔäÃ=‹fÕ_uܘ×AÊ|eë(Y҆Ø&_­â „¨æ«Ê·×®%x9®ñ‘¤³+S¦b粞qäÖ¼¿"<Yßæ@l=R×<Yjw FmL È:¼ð0d¹êdÑŸŽ±ì/Ó(X^Þµ+¬ÔbíÖððôRÀ¨˜‘©„Cd‡÷!KÕÚÑxv‰.?·> >lËWp“uÞ<ãH¯à<„§ Ç>âŽô ÎCx²T´²Éçk÷Àð¤ÚÖqÁôMQ÷!Šg€så ~D:`æóŽ[`û×Nàû‚¤6ðÎ (ùtô[ÐÆ&¦m umÀ‡‡5ûpŒ3mà‹ðá²>¼¹A‡õ øõÂ[-pmÂQÈúò¾÷,z–e='fÀ$‡øT¢­Ñ ©ïˆ`›¢™Oã „¨Íœý°tbÉg¼Kˆø(¾–ƒÔµ¥’ËŽC] 'ÓÂÌÞÇÛ!D· á|ï@Ù²íK°ú,˜ªuujvût‡¨§U!á¬Yîšm­‡aµæ«Ñ8(Á„YL Ç )³¤‚n©º³‰[õÁ…pò`¬úMТ«a&5‹Å`t÷Íb=Ž&øÍ E¨–¤ýéÉЀA›Ä½é$£*ÑB¿´OB–ömîㄨǖ§ë¶¬§ ºNÅq© “ü] F¨/ò½P3n̲–°ì· áÈÚ`Ùo‡îµµÒ¢ã¼¤S"®åWݲUÀAUa‚ßRß¡µ•î]µÌB*°Ÿ¸å¾$÷B–[4Q³Üï†îõXîa0j X!§gÕÛhyk5¦œ1ª¥ñþ<áCÈêWN\'α­—?O2COp"<ù˜2¿§~©×¶xÀ´¬ð„î4;ŸËMî®,¥Æ3ôf±²jNgsiqýýx§Ÿ*?Ô¹'¾ž¦‚üHùa®Ž ~àÑÃTX¹Ž]h¹­ilÓ_oß¾„W!ËUµŠþ´×óÝTÐDÄßåÂ^ȽmèÖþ t‡¨§[»2ÂzŒ-Vã•hh‘¹nXϘd‡ïnÞ¦þ Kx²z%¾×Qp=õj:0ì'2¹w2ÆÄËùÔdææÍtðWTPx:ù<èþè‚…éä¼ãæ­M—°J È?ˆ§ Ô7 ? {ˆWŒ)Ô hoëÿÞ¤vUß9ÒÕþ!<áÈOÔ­Ô¨lØN²~ïRÀÜ,x‚ð7oò~Pø‰~OñCZ­ôfúNeK,X1=ߊPÁà‰i>ÚæS¹ÌD SÌÅeñÇúÃxÂ7!¿)óX Õö.Z¯ÌR¥Ø0æ3P÷ÃZ;!áµnRßA|ZMãà „¨¶ä¾uwª{U⺻Iðy0a?ä~m¾±gñ¥µ±î¸Ný^áäÖÛäGð½ñÑeSÂ&? ;ühËmò£°Ã¶×&?Šï…¨Ù& ›üìðc-·ÉÁ?Ö^›ü¾¢^›ôà&TAR_€%¾€ïï•%%l•/À„-اÙé E¹Ð8w›Îð¿Çc'£}ckR+ýÝýŽÓ þø‘Çœªsmõ‡xmKa~,x`n¬d–Ç?òîæ‹³Ã·\&Ô¹ìºû›µ·ègÇ31-g7¥ó”s‚~Co¼xòº C ÈhÜD©~¬qæWò“¿ôÃ?ùË[ÜCúXã]Y xÁD©öÒ¿OBÆÅÙå¼C™Q1ö ? º£/·¨;"µCÜÒ Ðhx>+4^«˜3-í÷û!÷˰j<íZ¤‚»1jw Ü­²IG­5¸Ûd: »8Yêå4Ôº{Ñ,Úf£ i' ÑYû²oCÉ(¤~0‚ø´šFÞ@ˆ[&¤‚¾Ñ¡J§Žâ–«S$ßÊ”aÌÓ%LÆ‹ugtÎ)Uœ2•¾GM¥aM¥7©Âñ¦ëä-Ï3žPZµ(ÿ° $l°' ìÔ¾íõ4ÝÐÕ£lF%ó…}lˆø´šÆ¼Õœz¯*úYñQ|+]†1c2‰ä;D[~‹F‚ØåI¢Ó‚,4Ä Ï1ÙÑ{ÑpB>¨l—ü@ÝñÃm,Yº¼…û2¬ *òòriªô»lû~ðßõ*b}ø:äוÙߣÝS÷eÀÈÛRqŽÕÿ¤¬Ö;RncÖx±úˆjlÓä¿¥†z"úù°­¦K—©%Îe Ï6—3†Ïþ÷=dœL³ëþ˜aßÄ %œ‡<¯ü0¯Õöµ½ê’gù÷ñ°ç¯¸v!Óõ?Aù /‚Ÿø¦]Lmþ±SÉÈ$aE³°»‰v%6ÝM$ù@Óµ*›Y3TÓ@^ˆö¡‡ þâéÛgŒJð;Œq„ø3oÂiÈÓÊÏPÏB‹Žˆ“Eg…öç²ï:Å,ùYð·EÛóSó¡Î÷-×^«ýYÂ*‘IJ$Ÿh¼öDN…Ö?MwÅ‹°^¶ƒa°Z¶ä 1 ª„ãÇ•iÏÕhó¸:¤gä«¥¹…ù­ÎV–‚¿¢ÈÎ5ÙÅ) {Â9ÈsÊOr®ö$y'ˆM)û:c¬Yî’ãÑ[§ fñÔŽ£ Gxò9ª1+UÏ\i{„kÌÇmuI}GÛ4êFN6hu§UéP%ô}ÄG50.f9óÔ¨˜©øêbÚR=ˆ$Èõ Èc¤úUmF4†"ˆ¢ÍX>4Ë9]¥$9/’hLEj5¬W|E”†áÔœój´h¿.—~ ö%TZúÜÄuüÕ¢oWŠì¼ùš•®dɇK¹Y㉹Þ?d8ËËAå)ß1–,¬gˆ>Îi<áäåÇ9I³´Á+1Ð!úà×Öž«3‰†‡ çÅ»ù[ŽˆÌ09%CJl&|ŽG˜†œV¶ÖP:k ˆSâ‹tAs‘°Ñ%à-È·´Ù¨ã³ã2ö™MÔju0Y*²·Ïmà}Èê‹cÂ},©A|T'£Ô¨ùÕmëv±H}NÙÙÞI…7x³06K«÷”h>ÖÒ}ƒ;C}sQ6u ©³(:oU|#o–é±\뽪åQSú0»œ/V á=#Á7K¢p´ õÍܺè™$¡° #©ÜgÈÖÂëŠD§8”hÙÆ©ëêÛ ÂáeF¢sx²ÔTG1ªƒ*Eµ1V±}« vBmgýÓê>tM$Ä.馢f…Èd·‰s‹=á²¢»^àȤ'Ê•Ïá…ˆŽ¥™p2áZtÞˆfj'™ùºMm²±|GzÔ;Kê[™¹ÇeÖL×6i3Es/m,Öø•¦86µfûYã L1L—Æz_ô).€9á=È÷”Ÿ‚­/Õv ƒAšB’¬Z{ì.&——t°Där¢vÅ“32„Ćċð9ÂQÈ£Ê;Ñ lü€zF;* |ù‘2Á“¼a4Œ`E¦à>„jóÕM.$]¸•5Þt<Ï^*Z›«=²1Oø^Ì˰0á]ÈwÛ2ÓË@{&¡c¦wJÕºD£?‚ø(¾˜Ý|›IË(^ÇhBG¢MB´ƒ$µ=À>È}ʯb—Ì[ØAù½“†mz‹Æ±¸¼YªKë,I]¨o$^K%õ÷"ˆ" ™Eækh„J‹Ì µîaÝ ý©F¦ uänhî®ZmŠk[E‡È ËÆ†S5Ü*«_ꈚ&RÞ=zrH!ÒŠ~kpÙ,ze"¯YîŠÅŠ Ó;…,µÏÜPkÏbá­ªã7rRx˜…¬>;l¬Ûþ*£Ny4\»u&¢4œƒ¬žó!Ó®oÀaõ§ î´lÛå•>`?d© $±.ŸÔu hˆ¸6í5fX¼‚Ì,f>_uÍüF¸vš¯.™~Õ>ªpß#œ‡<¯L>ÃŽ*ð*†tB¿äx¾A')ŠA¤èEgÝHÑùw¢.Èø&œ0²ƒ©ÉñöEO4Š: QšÞIÔ¦#Ív@R7 ¼ ¹ 1©¿A|i +™îJ•¹Ò™6‘ã7뎉çxÜ‚nÂÈ]#f6H™PÛÆLRßÁveÚDöƒš™iã‹ï9£^ z¦ÍnUƒÝFs q@K³a¹¥µ*:ÍOµ‰¤Ð˜[*-Ýö; ÑÒ1Uóþâ£øbäÖËîâuÜM´e½ŒÔöÛ˜jCê÷Eð« Õ†¨'Z–jCêö¿ZSmˆÛQ`»Smî%j[3Rm|µT›{° a SmH]P_ªÍÙpéØ.Yµ)|4«EÔˆÞ)à4dõÍn9?šïÌhñ£„h?<+~Õ媩}Àd¢i¹*q#1N$Z–«BêÒÀ檺àWA® Ѹ üZÉU™åŽÇ0 Y}qS®Ë‰œZkâVÿ6„E {H°<LB–jübMŒÔíŽ@ÖWI0¶‰‘ºà9Èê'‹…g(¤þ|ñi‹›Þ‡kÞ×⦠ёñ>¬@ø5·£O¤Ã2°³‰¯Úý0+awô}É}¢•^K´lGŸÔ¥€íßÑ'7€w-ÛÑ'uIàÝDÛvôIý½â£HCf-k탰µ;údõnhnãŽþüÄG‘†øjv¤u+÷hM¸jÛ¸§ðîb»ö"WD7³°ÊõJë$T ûPµÑŠ >Š6cż÷ªT‚®\ΛÍ Úqj|,'Qìa–$Ô_ì¡›Õi‰Ëeà䱿€¤î0"+²äDXº¿‚FÖcØ™pò ¾¡®GmÓDå(ðäìÛ‘º!`¤ ´jP/œ6FúOOC>݆ÉÅxa §xŸwBm§x¤¾+‚íšâ=Å›ªj…ÓÆvh§;1몧u«Œh DEƒa) eÃYú¤•gÕ"òEÓ^ã}–#ŒÜj!iÅέï*)ÚÅÓÄGS¯ßKÕó‡š{.ñšÎG åýbºœ˜µfRw˜…¬¾/)g•±âÓìÔŽCoÃÀGúsÀ Èmèrßä.Ͱ…u\PÛÆÔwE°]ß[xóo©ZaÇo7¿ëK‚[/°?Q»RVrèT5Ù[ü—ÔE“݇¾ îéÄV­µf«¦}ZÌÛÃÅOú[¨£¥è“<ƒ¡ #[ߊO"³ÓôÚŸ£ ¨eMou»>vm[CòDG bÔ< ùpóG R× †<¬lšSäC/-«’5žð YƒÜËbI÷¢ÞCÔŽ'!Ke†m.×ÁN˜/­²Äæþ ¸á~Èûµ¹‘ÜZ>q9< ùhóˆÔõA>¦l+|õÕzU ï¶½°‹â "숢Sö­Waµ7Q¿"ÆÇO ?iK¯ô6\ˆP¯t Ò+Ý“Y¹!Z}Àã7ß³H]7ðd©#µs¤þdñÑdœ½ì®ïe×,ÅfßÑ,#À äk'u§€£ …Cô›gäȸÊ;Åj©ìñ&m 碩,ð>äöDáÆf¨¿M+¸ ê‚|¨ùnC꺇!KÅ7›ÞÃy£dnðË“–-—JBŒ‚í!mqƒ°ËÁ ž±ÅaàdõŠ¥âs¥Âm[8c¥ùF'Ô¶qÆúQ4œÛ5cýÞüÇT­°ãŒµÛÏ/$¨õ÷C– CÃ+kÔ,ö1|/D|-öˆ]šÆ¢cÕ\£¹„C¥*\jêU—þœ](/ßòÇßaWƸ֊邟q=Ý-~lMÉÈR|šÄƶ`Ö-|lèã B8y@eTièŒÞ#³L„@–Z o¬5f/øãøáQÈRsžM?–@©¸N>˜~d7ÊÁpôWM¿î|&"ê[Ä÷ð5Èê7Ã_¯å…¬Ñ]³þø-ãot²Ð.Xu¼tнê8ááñðÂHÁ'Eò‰<Íùè(¤Qq‚çm‹ ³XwkÉ{¸5Š?®MĆZDä8ðäly“ºCÀ“uÜ”’°Ç)àé„Ê–wÃt•¸ÑrGsœ ô qsœ^€|AÙ=i£T¯eO$.Gµ+·É¦ÆDáfÙ°øiÔ… R{‡™áaÈr3„†ÅãØ*ˆç¯¸v!€ .uŸwМ3[0ß&uÃÀQÈêoͤ? ƒ<¦Í<6›Ç©ÈXç0<Ôô 5ÖÎCžW¶N§xY*"ð¸yA™ÈL8*x#]³¼BAÅšåz,šX_uX}ª¬3Z+ÇC¶}Œ¯ç¾ÁpòŒòcœ Çz¤úµÑám”Âïù]"<Y}UR|Zú ÐMØÂÅšÛuBmH}WÛµ8`âÍ›ªVØqq ·lfùa} z½ÀAÈR[ÈŒVŸªÕˆÆ¡â£hµ‹Ô¸WuÚs,XA¿Ãª¢–6ï;ЧÐ.Áœ„‘‹Z5w*[ÅÄ( ¼ùFó‡:R—Þ„|SÙzûï÷ºæ×¨zÂóh¢2œ‡¬>úÊ,÷çá!„z–ûž§:‚ŠéÅyÌNäG ë[œ‰MÀ#u}À£[°#MêºÇ SvŠÑm© XIÑõÕãÀyÈíñã|· Í£ßê‹Dù¢½^DØÂ™<ˆp8¡+Aæ`x¹9•]¶*¾%¾ G„ŽÓÓm,x a QŠ!:¡¶¨…vb»Ñe¼ùeU+ì¼KµÓÂÉNÔzê»TT-¶Œï…ˆ¢Å²´J¶ß\S*ƒ §]¶Ù%Ð2–ƒ¿ME)Ó|›Á¤}|?˜L w+05a¤xƒâÃäÂY?=ŽÇÖi !`_ O0²3§e^HW|©oT sõ¼Þã¯ÛeÏ·K¢C ѹ¼ ùnó‡R7¼ùž²{ÈTâG–‰Ä ð!dub[SAàj¯”ù1eîC.ej¥àµÀÿK^Ö˜šˆ]æ×¶fDÉÛð%B}[S2qÔ'¡P5\ͦh§‚‡tRÔщUðd©YÌÑI]7ð8d©DÂM/cؘ®-ìÙá;vât8y¼-®óîò²)®s p…ÇÇ&¯]÷—ð——‰–fƒ¾„¿¼LèÌ5ßÉ;Öò²·±kEå]Ë–é²¥nQ/"v'· KÕïØ^ŽÆw''õ…ì/B™õ²"<‹ðäsú&z—-›Í ;1º ¼ ùjóŒÔ^ƒ|MÙtÆ´¨ëÀ›Õ×Ù®‘mqu–b­ƒïløGn4ƒmP¥Aî%xR)±éž6M^µ›³u("3 œM(T”s¨lG8—¨Ý°¥<¢ØeQ"÷!«ÇtlS-ÚQ}a› $Ü•á*„j›j£%K)Z"VIà8äñæû©; ÌA–›$Ez„¢¥Š­.© à#ÈêÙ‘2á’!Ô.õ¾ó‘™gÂ>Clú€ƒ¥vÞÄ|†Ôu‡ iˆ?¶EI¬Ý‡nDS7³^ƒ¬o¤è l&c²ià]Èw[c²ëÀ{ï)›¬C¸E“þà,d©QR¹EW¸A6áèLТÙ=Èšõ[xt†ÔuõÙ4jÏÊ;Á¤BÂ>ÃÀ3Ïh³ÔEDå0 9ÝËÀKÕ Æí«¯ ·bbrx ²ú,F¦¿Çm˰9­˜Õ>Ï ·b"Ôla+&uÝ@}­¸7hÅ˶ë 'Ëaàiȧõ5â.žÙÑ0ç)È©Öæ 0 YªïˆkÄ»:Ääð*d©í©ðôlÏX_µó«FÁ)_ô©ô!ÝüR®ÝýËWäëûRl·Ú^);®ÄFµËýƒ¡¾ƒTÂû~T‡ˆ" vle¦Èj±úöšUÜžüú C¨ÿØÊŽ[¶±M‘¸ž†,Õ;ˆ5ERwx²\dýiŠ6‹žÃÎ(`“–]âÅRqdAø°9±4€!«/«ÈŒµU¸ ¡þ±¶7‰á¡–øô‘A*çÚbnD꺇 «ç™vI}'‡G!ËPl8ËM®J™ä ð,ä³­1É1`rRÙ$Â-鞃¬oÛ#ˆJ±&"e—ËÀ+¯´Æ.çW!«‡²Måð&ä››Š%e’{ÀYȳ­1Ép²ú¾ø‚é¿|YêD•òð¶Æ ÊPÿð¶;I+ÂÞAdú€ h¾wºnà d©…eåK †€‡!ë;¯¹ËtRv9 <Ò» ÏA–X6ý4LË„èˆÃyà%ÈrËRÛ‹/k—ðd©•)q»\^‡¬#%L®½Ü*ÝíÛ^¤í2 \€¼Ð»Ü¾Y½†ø(Gú_>†üX™Ç+ZcæWiE…/µP±BÓ.óRª| ºå¶L6¥å¶ŸV4—¬¢ðœt»ÃÈRÖÜô8xú&òS¬R±uª> ¥XËö+Ññ ü/@¾ ­At%W³Â¨ŒÇ!7¿1º‹Àdõ­~ñÙéŸNB–+µÚØ"–œE¦€Ó§[c‘+À;ï([dOưü¼øá~bq8y^™Í^žæ_õ„ýdƒ[—á^È{µù ÏN¦ºVž¦ó©d4…gz47žN‹úÑހ܂ƒ³¤®x²ÜÌ6úÓV÷½ª½f­²p!˜ ´%ÂGÕWå{XN˜ð-dŸ‚ö@îÑæO'¹?.´9kž9‘¨Å~`rºù>Dêö/AVßi¿Íô_f KÁQ<ïöix aäfˆ9uHÿ°jÛxêÔwE°]§?ƒ7ÿU+ì|S-Uq´co܉\/p ¡zSmªÍˆÆPñQ´;wØà¶›2à½EŠýž]²‹t¸Á2+× ¦)¢ó>ŒM¨ïÜ!;%¶´aÜ·WVŠV*f1k¤&ƃ~Úð‚ÙF±@;xU/˜;¥ÂŠD¶põþÏ‚0¡Ú)1}Õû‰Ëà,äÙæ+¤îp²úZ³Dù*"p8Y=Âe)OßâU;qØvk›°K¾L…ØMt0Ý*Ò¡DOælþçàU„úRÄûçÏC7a GIêâ:¡¶£$©ïŠ`»FÉoÄ›ÿFU+ìˆÿ Ïg…£ ”ÝTâ‹r¼*nù¥±\-³Z[üü4mèà¾Dßo‚µ õõ2[hß íߌv w mO¸í-:ì>àd)s‹ {¤®x²\ÊUô§áÉÑÚA(Vs])^2Ý—^Ö˜Ý+)fdü‰ø>€¬¾%;‰r”¹0ü‘Ë×.à±\›Å «¥¹‰ÿ¸á$dõ;œd·Bû·6¥!B'lLÉ E”}ÛßHŠ6ŠoEC < ùtóÅ·¢!ž|FÙFûužKQd/a,˜,·Ú°cUµÀhèI» ¼ ù®F3ÅTUûV4!Â{ïµÆ;F3g”½£'mKx—‹HÌAVWÙ\šBÿ•j'”}ËâG¢7oñb>ËV42¨8žMaÖXà·EË,?Ìïâ.ÉPß\z+±¦Q¶VXŸüÉg‹¾Uˆoáâºq¹v”/á“$*¿/úßî߃ìJè8@v›_˜Á.bØ45 ÆQ›ŠÉ¤XàÆF¯ÚŒnݾ ^ûæÛÁšð6äÛm¥¾Ú õŒR “âžšO%ˆ BÖ™ÑÓ鑺>` Ïìºn ¾3;Ë#D`x²úE'âSÙï„/*MeÅh6Ø µm\P õ]lׂÂïÆ›ÿݪVØqAae¬¸N1»ÃÌöA–j¯ŒÙ›ª†#G"ˆ¢áŽñU…íIDíù{`CÂci›“t&ç…§ ÄÄ&!'›ßß’ºãÀÈR¹››Wäer(‰Â9` ²ÔaƲ÷ƒyõš”]Æ€W!K¥ë‹Û% ¼ùš²]†2H£Ó…ÔŠ„Cgâsø²ú<`,¼-â•ïš¹•*oÕTy»^½0\&ní¿—ûÃ1ÈcÚà37á×*òû^¸1áqÈr¥Èwr齡K?ÿˆ¿‹ÀqÈãÍwæï…æ KDsfRw8yBÙ[†2OÛ ý¢TÚñ™Þ‡|_™× ßš+Z.]r q}Æ÷Áa !ËßÉy{i§p%hi–½ÓÀ /4ßwIÝQàEÈR“"1ß%uCÀdõIP—Ä…Ä Ì@ÖŸ-Ñöi¶çH¼ œƒ,•m,î“@¥V,î£ÀÕ“µv‰.TúùâÓš… Rú¸Ðu+±ðl€Ô¿A|TÇêÇ7ÝWcòú~Þ¾A’¶MGL‹ÝÏÊÝ® ’“ xxòåæ·YRw ˜¬~Îì`j>kÌ K‡™6^<{ûA:ŽYܼšïB¾ÛüÞ„ÔÞƒ|Où…ì¥Ä„¬žh£ÞwQó£ì¬©ÚŸâu¯Q4ͨXî²ã–,á Œ{Ãd©Ö´ý8ø.š*[TÎt7"å7BÞ®åWÝ2Ÿt¡*Oª^î^ôaþ8à't?Êm`²Ib°p`ÿ'Àˆð(d}÷ ïã÷¿óiÑæK”Î/A–º©D¬ù’ºcÀË¥ö5UKµ 0 Y}Þ.‘|^">Š4æÈÊ6+¡ÏR©jVTYß,QAmÝ·´È{Í*ÓžkŒ¨Ž%ú ä ç KM•×Aþ´ê_é ÞŸh[#&}Àý¥vØÄÚ©ëöCîW6I¸Zæ¸K8!.@¥uø†Æ9ÖJÍÔJ¥f ZþÈté¦ðz±Î@nAŒCêNg!«Ç8âùo¤x²új «ò¿°L½¹‹¢c×Y ,WÈy·Z° Ë bÓ·êDXé_ôiþ4w†úªü³¸‡šCX¥×o.«e‡‡ó‘ž1FoÖzãÐMEæÏàõÅ=7èajÀó¤?e¹Ndøp­®G­$ÂŽõgÁ˜ðdõ¬¸sÄ~¦¼±Õ­øø†^KéŸ;ÂsåöãNÂÙ•w¢½q¹ ƒ<Öü^‰ÔŽCW6ÚÞÚ²‰¨p ²zê9ËóöÍ—ì¶Ü¼U°ØÙÿ5‹¼ß ¦câç½ÿ<܆0 9ÙÖx„˜¤—!· ¹Ô35\J(ÜûþQ`²zèßMŽ#Jå/À»!wkÑ6ݧ%Èé¿Â~Èra£ðºc¬Ç—ÃÀc5ßcIÝð8d¹ã}ÑŸ^6¨g %‹%(ü¿¥:>¸¢þDDO@V/fp–÷-סR>»Ø^fјðúŸ€[ê?±p¼¾]qi)ç–Ë^Þ,ÆåÆúLg ·`@ê’ÀYÈꀾú匢~EDæ€O ?Q&tU]Äõi~•‘ ±¿ï!Œœ}ÔäI=«ÖNÅb݆Øæ» ©;< Y®YE:\ߨBŠƒ'±«õáÆ„jçqî`È,•;Àî`ºÀÙ„®ŒÝ™jÊÄaø²úœ¸O#eæ[‰—¡–“ЛÛ3†QO!6C@ýÕTc=…Ôíƒ,õl~ lWxÌ&ÇFB¡Okú®™ž‰ËEàeÈ-˜Èº³@¥Ò ›3ìØ…Ðža•Í¥¢U`%3DÛ31Þƒ|O™™Ì*ü_æFf¨~ϳo¾ñìÅtNÔcˆNp(Ѳ›,I]7ð`B×M–Géô9Ædvi%N¢‹z ±:¼ Y}SNÆk¾OùRS¼ædƒ‰ëwŒic\Ô“¾ï!¼ùBó=éKð‹ÕkÊÑC±h8U¿RõY]v™ÃmÄ)œ†<­Ì-Åîùˆ¦@„‡™‚ÎÒ«V*®E™VÂË@? ÿúI0Ý•ÐQRxø§ :D=;Àû¢w1Ø_ Âf´çW»‹¶7bsx r –€HÝ~àqÈêK@£‘‹íy ³l7|;oxyÇ­_[#ÔÕÀ‡Õ÷†®yÛ[µ¨š"¥ñIwtã£]ªðì |ÙZcÇf³F‰Ãß.H¸yAÏÅu–ªžðé_ Býs”C%Ë_u ÓɧV±`¹£O,³m,Dmxòùæ7R·x²Ô˜¸¥ÚE´÷îç‰ÌEàUÈW•II-÷ÿux ¡¾åþs¸‰%h„Èè1˸+ï”*NÙ¿)ão€aö=—íWVAÔ©‰ËeàX¢eûžmˆp<¡kßsHD]ˆXä€7 «oËÄênA¨?Vÿà3±~B„ú€‡-»ÿŠÔu'tÝu «5<#¸@ù%vyÿ‹H6÷½ ˆx)êUÄyø:dõŠˆ7p¹uàæ¶»%+#Ëd¢¢Zí@ÍhMQö? ïûé„Ît’Qb_tV¨â¤±få}Ç /Œñ‚wn­òŠÏj)HÄØ_MÂQÈ£ÚLR1¹¼ùZó[ ©Ë¯CV¯Ó5Tù2Ì¥„“û¿ _"\€¬už ¬V‚>e— Ö+‰ú?·!< Y_*¥Œ “àyÈ-ˆ:IÝ)àÈêQç9:¦C®cäWƒN6ï×-¶ì‹ÎºÄB1¼| ²z5î=áÌLÍß‚Óê/رÇ_§‚ûâ¹Dg8 y¸ù^DêzG «_>}Þ(›%jÜy§¼ôFt&kÌWÝÀ^n)˜éS…¨Å£ÀÛÕ¯c•‰nC¨?Üo{´¯›b³…´¨§>àÈRó#R× < YîÌOô§9¶JTf«´‘˜^ØÛ1Ls˜%êSD÷p²úxÇb¨0»»\Øv˜-ˆkçØ„'öÿ5ŽP-†ÚdX™‰ý߆ú¿Ð9±?Ì2åƒ8Æ¥rÅŒL/ÿw@‡ð0d¹iI£&º›¯V‰¶M"sx²T¦ŠXÛ$uÃÀ$䤲™ë 2rIDg8 Yê®Ý3i"4œƒÜ‚* ¤î ð>dõs'Â;3¤þAñÑѨÙI;Z¬3‹žC`Aj—Û™¡þF½'Y.AËRRÔ_ˆÎIàäM$uÃÀs •K¾7ý”΄ Äá<ðd©sµÛ3%#‡Â%:™¿7!Ô“)Ùp<àž#ÁÍž‡¬sâSW‚Ô^€,5qsWRwx²úþù0²¢½9Ve¹€56ª|FÝŒÄj3QLC~¬Lõ2ys¸/HiîËÕ ¬¤¾ÛåeË¥“7Â1á߇g^†¬žÊr‹Ÿ§Þ [²ô‚Ymw:åâ_ܼgKedßøÒ„· «—#”™Ûýh'lB—õªbåýØ] Xõ‡ú¸¬Re5Fm7P_×F›éXgÇ\ U—6Í™R¦p13b}ø:dõåýäTáù\¶rÏJf<¡üŽrÕó,–½`<ÏóÒ—–‘š¿–1*YãÚ•´A×8É´Ÿƒ'>€¬”É´¯@ûWšÒ>Ø!§ÌöK\›[¾â:TWE‚ç~àÈúF¹žÅÂ[UÇo4Î}í„P_ªÚYV?ɳ,ã™é¯.Uƒ‘»y3p,ë½*{M¢EôRÀGÕsàgÉ£RW²×Óét–ƧêÔçÑ-y‹%+ìØ’åÓâ2[!tWðSñ‹$œ…<Û––ñóÐþóMir'‰Kpò@óc½Ÿ‡ßÿ<þA7GE£ì»è|áEüì=1ž„¬~©Úž0ßPÍ/À=õïA „¹T’óÙ_€³ž‚|ªùNCêz§!ŸV6Q’/Ö6¯¢ëÈ|_[Ô•ˆßà=È÷ÚÒãü#¸¡þgh{Þ¸¨'±>` ïG!uÝÀS ]÷£œ¬¯_j9p¢›½ÉTeùGðq›o¶Å‡~~ó‹Mñ!¹Qëá*„-µ~®ò‹ £–Á¦´eÌí™Ó˜• ¤­Pxk7¦D]‡Ø Ç!·Åu~ îòKÍq’ùÊ®óKp—_j­ëüÜå—´ºN·‘½#c•AàaÈÉí`ä̦‘1ÌI` ÉIÝ0Pß"ygZø )8¼YnZØpšŸ ”1J8 Yj NÜ()àÈWÚ×Z®o&.Öx¾—¸ÜÞ‡,µ(n•)àÈêkLÑŽôÏBV?È3Y}Ÿ2râ ø—¹}BÔ×€Í%Oâ*0"sx r ¦j¤nx²úTMª…3ÀÈRãJãc{Yd®h#6—€ãÇ[c—sÀ䜲]zÒRU6ˆÄðäöœÙøÇܲ õª»]«(á"D¦xò滩ëB–ëÆ6©“iºDa8 yX_Ó•¼]‘ØœŽ@nA JêŽÏAVTû2õ1OÂ:çcÇ´Y§+g^“1Í5àMÈRÁš¸iÆSÕKnJTo'·€Ó§•‰È.bÿ 7+Cý‹Ø;§Ôĺ‘‚Ü‚Sp¤®x²ú)¸}º+g±$¬3 < Y*×Tk‰8b“f!g[cž$p ²\_ýé¡zl*ìeE›41ÎA–Ê5U’þ[nf†úƒ$©RuD¥Ø¹¿ùÞB꺔mr2MgÞ‚¦LUÝíåÍEP%lux²\¾—Î$%b3¼ Yçð“¤Dê2À)ÈêÃó$)‰6hbq 8 yV™Í?AYO— Àµ_ÕK›òÄ)œÊ}Ä;çFyT¢óßqÿ`¸yAùq&YšˆC§ÁÖmÏ F¹rкlœc»#¯ìRí¨ =™x¬ô߃,á$d¹ÓÑŸ gÓÿP">Š4èý=ç×GÑARÿD Ëupº}‘ôƒ¤h—O”†Ja‹X—ÿOðEÂ$䤲™N…퓥Ů;îK–$øtÙ.üOÔF€w!ßU¦xœ²òN©DWy *¨’•9 ö?‘CV/%~9èÿÝ„;4zPÌ­?|:¡¶³þiuCê»"ˆOË­ðOñæÿ©ªv¼¢uϲ]¶üj9n‹e'v½ÀȰc¬ö©íŸâ…ˆŽ˜!œ="ôdÅV—ƒñÖ š|¹`Ð{ÉöøX[&j§S¥Ê±þ*ìM¨/f8)])&꘿B„G Ëx×—ïB\N“¥F±AÔŽ@–Û:‰þôp°‘›ñk“¼`R,Q2‚(Þ€¬¾wÀ.Œäÿ…?eÛe™]‘Æ„Òìš"–2èØeŸ+}_‡‹ÎAVŸß°»—kÇo=~&'hÑž´ ©K;ÿÈý38Ã.igh˜’Šò—Æ´1?óø¹ðJ±º¼YÊÄZÈ?ƒëÞ„,5£Ýô2zÃ*‘¢ÎD4¦€³Õç–¢çÒx½J:æEãC5ïo+Âã8v0u‚FCçÂ<–×/ú4ÿ3¼ŒPßÍt¬,`înCiN×Y fLJŸQòøø\òŸƒÝ?O¨–ŒþT<¨úÐMØÂЖ’N¨mchKê»"Ø®Ðö7ðæCÕ ;†¶Ýìšc j½Àý÷KǵçT-öø^ˆøèè¯ǵÔÂùõÐVyÍv2ëqíKº ’BZ™Þ÷­ õõWI>§8),wÈnß~¯j»r7~þKp#LB–Š&•·þ´êÙRh\/©ì[AäãoTŠN\ÂðN/¯A¾¦±K­ŸÁ¯üÎÖ Íô&âÙ¨¶Ó /B–J,mø›û€×!K) ºH]7ðdõØ·'“ÃDnï@¾Ó–¶ô¯Ñ~þµ–¶ÔÓ–:žKð:4 ­i@û¦ŸË¶š–B¨t°áoîž…,·ñýép*›Íf ßµK´,ƒiTZtE¤’@¥ûÈÄš4©ëêkÒâw ’þ›À)Èê[…¬¶Ñs^Ë—øod$æßÿ†·F†úkíeQÑ´Ì&ü¿A !<Yg•š—!uÃÀ /(›êlëR~Õ-ó}ü†õUsÍ’ ‰ÞEàCÈêÉêX ¢ÇgÛ›¢Y˧Å)Û÷D]ìß­þ-^é.éWºS8Ö!+Ap8 Y*¿íÇ’mjGw K òbþoá.„w!ßUï…Ï[þ{ÀÈ3z:Åð6ÞÞ,áÅú/%Ôß)ö†¥‹„+Ÿ“Às¥„Ä<†Ô ÏC–ꊷl[üúÞÒQoSî–âux²ºGßÇ|Ó-ÑaÑ©”ãáÚrÌwdj ÿ{8á}ÈRG°”ãþÿí„úÓòúëëò2±‘ê…Ü‚BI]7ðäcÊÖåÇ\Œ°Ѧ*gaO¦Æ‰:Q=œ‡<¯Lyž¥no/¦UëØŒ­‚/ãF´ZC‰ÜÂ%1)þM¸áoâYviyvwÛÇžÿW° Ôw[—g›Ë¢Mƒ¨Cn~Ó uûG «×sïfþ/a”£À“õÝÔÐåKex²T,n”SÀ‹ÕK‚¡ÊhkvÁB*1I3Ý ÑÖL¤RÀ;Õ—¸pÜÖµ×X‚³—Î Òú-ns†êÇm1Ú;ónŒò!à!ÈR§HÔöOHýáâ£#žzêø¬ÞZ08Ø>Õ1t–> lß1좔ì•U¶+ìUK‘áÿ ê‹§rô$ïUmšÑŸOJVÉq7 Ïæå¬h@kÒþßA•0YîŠ&Žîŧdÿ'˜Žp²T¬Ü8'S*㌸œž…Ü‚ƒ¤î0 9©l¦£éh¢ÄúªE'o ßu"b5œ‚¬¾Â**”¯MßBB& J‚†GG'äV\§Z.µ-sºúÇ¢»¥ ß.YâAÿOøáÈêÕn.ðKiyùydÀÚ…jÐ8PÅ8Ãjø rýÏàGؼ…û¡«'»©Jü&÷!KEy1m&fýžÔ@–2¥XS%uóÕ—AÄC"Òÿø²z^’ø`üÁ3 [Ñ€Ö µm ‰H}WÛý¼ùÿ¢j…C¢^e+Kôzƒ¥ÂFk¿ªÕˆÆ¡â£hµ›;¼ ‚• §õŒ%Ó¤&ÒºðéÜÿ&¼ ù¦2ýÓl톟¦1,šieÙ^›ýÀ‹ð4äÓÚ‚»cóØèŽÈœ*ÝW$6dº3ÀËÕïi9ž5îóÈ›%ïÃsè'ñbúÄ+|Y=(:^ÿK÷ÉJT;ømxÍo×¾ÏPÒƒ1Ú;ŸÅèAÒ0mòèˆ>íMÒÂ:Ûw¿-ì SSmž6ÑoNBnAEQúGiàÈW”ÍÔ%±E¿ç*ðd¹T·†y\´ég§œŒeîA– Å-s¸y¡ Q2ý–×€¯CV¿ H<>ûnU†-Œ’)Àé„Ú6FÉô½®¶)J¦—NÿðyQr7k­ÔzûªgxŽ*ZŒÑ8PÇð£h± ÊÕÒ’åRH‰Å‹Å/UÏ¢è…Îé‹VÑp*Aà@ÁgÖ˜Ý*Š>Æ.œpWOr“HèÙwc¨?¡GöþyF§8”ÐÃ\ãá©ëLèºa.k¸Õ²G^DGÑ‹ÖèÜ›o³-ͬ1Wu]‹_+^d(êKÄõp†Ëmò¥NøRgS|©·D‡÷©“ µ8Äe¾ÔµXy¹£µ¨Ï•.ú‹uRa‡”wJ•*›Ð¯Ù&%W½d“{ÑÐŒè!àø‘ú^æ5ò#¯Z¡ûÓ­BäL!e‚™k¦]4—ŠÁ•Ú傳Η¤E¹ÃÛ^ƒç]kKè“nmm a¿ZÊÍJ¥¸!Áî0Ée­¥=v8µ'tX ʃÀ£\–OêÜö›û€#\nAie¦®xƒT¶ö–|E¤ä_š+¢3wÆäœð. ~Wù!N°ñ¯¬|•/G÷» â|à xBÛ (sÏ£’žçr J,0u'¸¬£§1HÿE`ŠË’ûØ›x÷Uûá„-1¨¹wBmG ®:Ê µî] Ë•zÛu‡ípW?Þ:>­~ýÜà!†ŸVÓÀÛP~ÔC]V¥CßÙ[Çð£øV®Rž´U?È’Ó/3Z-E)Ó8e¹VR‹RÇÁA†Wñ&¯*SŸ5j'ªÍBÁ¦”¦Q¶UR)²ÁuÍ2¼ ª£Aƒ¯8.wôuj‹>ÇžƒpÏ1«ü:¡éå]{‰Í^Œ'Ö†åt˜®˜5R㹉tÖXðiCV´ÖÌ.Œ 3`œQefÿíxIØNÜnï$Šº‰­ŽºIà].ËEFb£<©Þ㲆uÍ=¸kFÔ“‰Å ð—5Ìd'ëŒqÙMàÈ”YÇ ÏPé?p¥¼|Ñô„ ¯ 'áÐR‰mz·í‰Îp†Ër{ÑbNEê®g¹¬¡CêÌŠÞ:ÂÌpYCÆê!Ãx^ͯÖE³ê`‚ÌP¯ˆ¡þUûn6Kõârx†Ë„Íöœ[ghpYn¯`K¥+“œ&¹,y¸n§A©K¼ -ct8Ëe¹öôCÒ¶mâþi…곌ðð6—åÎ…7üÍià—å–ÑÅ}uxŸË*tKÔÙa¸¬#uVx^<Ìœ¡Ò¼xÇfÓãUK%ÓÝ —¦Ð®¥Ä[Îà4(Ë6â<<ÃeùîxÛoLØìÆCê:—¸,w¬fsÒ»Áo”>äËx\^ᲆc‡øÔÕ©ú•* (Å+‹ìÂÕC ›°§¿s[ŠˆÍ àY.·àÐ;Sw˜ä²†Cï{Œ|ö/ OQˆÅð—58ñA£–å\0–6d|æ(|†V—LpܱöǦo½’ w 8Ãe­‘úácÓ œU쉻¼Áeù´‰m¿ù8p–ËZ㻘†Eê縬!Ax‘Ô߯cøQ¤qɨ­fùªK5-JŽkñÏUª.ðmQ¾ÇÐÐŽ¡Ø¥¥6h‡=Ë &˜¦ð:®ÖdˆÀLc­”®¼Cß5ˆÊ) Áe­WÄ87©;<Ëe¹`³JÒŸêÉÛ¤u-ï¬ÉXäpN<Ú‹œf¹LØ‹Œǹ¬1½vwÑYyl¿”±Éuàm.ËÏ”Ål’NsY.©W­Ê8Óx—ËòÄ'³áV#aó&³½µZ:ôÎ3hBRû&âaÔÁiÕ@Œõð,—åçÛ~s/p”Ë­èÑH]'0Ëe =Ún™²ËŒÃð —5LfÅ[ÐI´ “ÚZЦoU+… –í]OÂ?û ÕöÄüã$üã$œ½3!™A¶e®hºÝ]Éëò[ñ}‘“ü{ “ø7êSêqØ1<ÜtC›ß£N9¬tFÇv±R/?.Èú\‹p®5®½s¾äŠñ™ÞI(TýÀ^y›ÚëÀ»\nÅŽ1©ËïqYÃŽ±Ô8Q˜>ಆí=ñ>ï4“°yQÃÏfõEóX‰ÕPiÅJàP¢e—ïºn ¶–5,7Ÿ #OÛg{p®õ^Õò|~ìÙ³XaQ"†‡€×¹LØB9†ú=hß*.§e–{¯Â‹‡áERÛàb^t^Dx^$5m Ê2¶9 <Áe¥]÷ÖË$—¹ÜŠLdRw˜á²†Lä]¢3/R?ZÇðÓ왲¢˜Ú,—5œÝžy‘ú±:†Ÿ–ϼ®q—fؼ™×n*"/<Ù"N½Àþ„ê†úVN³œŸµxá´%v§SÞTžsk”µF©‹¢OÏ1|ÆeÂf{ü5x<ásxüóÖ{<©QÇðÓr¿¿ÞT?À½k®–œ,Á²x¾/5—bìöm]Lö×ѼS¬–Âu¾œÆÿJ8-ŸHžÞä²ä…ó^egrU8t&&÷€³\nEeR7œã²†Ê*RgäˆÂ}à#.kØ'’‰o Áê;“–°w“>à~.Ë-Ùˆy©ëösYn<Ûô¦¶f«7׬rÁ*ÑéÜ`fUlöQ—"ÞÀG\ÖàR§XbD­ŸÌ3C:KL˄ŠÑ!ö&|ð|Mnï|-£½s1ïÆ(? 4¸¬¡ ©ð@KêÏÖ1ü(Ò`[{õ;ëIMÁ0Sð›] Ù#ñ:×Y^-y©­£nÚ˜ž6v >c; b: ¼Áe­·¥ÅtSü‹ oâɥџvdÓ›Þâ2a³ƒU®:¡ö6—5, ·!R?]ÇðÓò`õš aó‚ÕN߬Jëöq™PS|zcX¾ÊN‘ÓŽÑŠëT˅ڜ̆¶èdÌðí’%^ ”è÷繬!ßYi?é6LNøU²ŸDT[¸ŸtÆ!lï~18Ô¿Ÿ´?pó¹…ycÚYß%N#À1.Ë­$‰çpœË’EY¢?¯g@úsÀ .k8jx€Zð‹UÛ ëØ²šF#ž®}Ÿ¡&‡9–ä ‹ÇJ°; 髎ݳXx«êøœ†Ó\–+@½¥0&9¬®§ÔÅõDèð6—Û´yžC¨g¶Üȃ†”‹ºÝ) “0eRc·SüˆÔõG-»,žÔuÏ%t]/¼gBêÏ×1ü4;(§è¨j/pYÃÑQá œÔ_¬cøiyP~M”°yA¹x=2âÓ Ä%¦rW²1>[cr‹z –ïµdzvÞp­`ô)TùÆN'R޲eæWyPžeC¨¨™‰þ~à.kH%}ÈRÖÞ£.îb[!!\0Ã"YdÈY³\ч¹_!|_Q? •†zb ƒõ’å‹7ÍYþ=†÷ðoî)[ø<5M¯ºÄÙ{Sµ•w–\Ÿ·*~ÊK‹:Áœ€5z$ÏNÂø ``qÉòÍwÇS‹/ÍJÅŒ]1üȃg³1$/orYnå²±ÖEë½rŒÖ À).*Zqo&´›¨W[Àû\Öp«Á ß$©—Mõ ûð B¥ô;zP7ó A¿!JG€'¸,—Ÿ%ä7¤mx’ËjÍÔUsªeêîd®Ý‹+f©$c¯)à]´º»-±×Uà=.kè­Å+Ö“þà,—5ÜqÉ*ÕF2Oòú¨ÜÆ ‡a÷a¯Ù¼šáÙær\4·:ùŽLh$Zv ©;<›Ðu Èã¥å–i‰‰¶Ñ·™KÔ•ˆ\xË\ZfÑiŽC¨?E£Ë—p¢Òìçr+J·“ºnà—5”nßÇ‚Íóï1<‚£sã%f FýZ'Ô岆á)©?VÇðÓò)æí ›7ëygâIëpYÎa©ÝÛš®ø(DL†€‡¹L¨©3ù€×ÛŸ›“À$—µ®WÇô'¤n8Âe •%N¦ç9y›­Æ…¡¥óºˆÛ9à —5Þ“‡¡¥6a*˜±““X¿!*}ÀŽC¤®¨o:Cq½j¥R´-Ê¥¨ïšy³(<<=âßc˜Å¿É6x"?í„Ú1.k8;!<<‘úñ:†Ÿ–O h4„Ížº––ѱ‰õ÷q™PrlÚº!qˆœw‰²‚hm0`Ga¸Ã`MMjTh|ku8ç>*Úå™40Ëe­Í*¦Ë!u#À±„B"‰ÚçšÕ‚j³ëT¸‡1ıvTÎ&õul[åì׸;3l^§ÒKY{ÏÌòŠèÝ6D«8˜P­õ¸µg9K= Q3\âÆêóòK6;§<%ó6qhYm9osHœOùã™iÑ~†ØÜÎ$ô_ÎÓϺ«ÀY.kXAîgHý\ÃO³û™×¸¿1¼Ïe ûÂý ©PÇðÓò~æuîÏ ›×ÏôPj1v¥{r½À„êܺo ©IÜ­²õøŽSu ¶“O•˼M¹m¢V&âC@lxhp¶ƒl‹÷ý±Üáñ1Ìþ¸n0ÅKë7™{w¢"±94¸ÜŠÅjRwx–Ëm¹²šô'# ÝWVï —'d¬r ˜ã²\d&n•sÀ .ëˆÄ¤¬2 ¼Âe±ƒÔ¦Q¹¼Ãe­_î`‘«À»\–Ûxܱ…V§øia"r8Ìeix{ÙJT)H"t xËrç¸ÄârRwˆ[5œÛê :~>×”1P 8ÁeÉ©}Ã)­êɘæ&ð6—å Š›f8Íe u.vKÝMî縬¡xÖÀæòB¢®ò70Ã.k¬[ÓQ,Š: ár+j1¼Å¿Èð(þ‘zJ øjé?<Îe÷©ux«“Dä,0ÉåVä•‘ºÀ.kÈ+c•ædLr˜â²\5Æ&Y¶eL2ç²Ö ‚L’測!ƒ`8c¬¯ÚùUvùI-Dí[‰Óð!—5C}¹¢v>oÓå¤~Ö–ÝNZ/¢JwÎP¾"î}˜gÜMê;S›¥‡ipïíû›õdÇ9?gÂ,8gUI̞འÀ"NW€7¹Ü‚ƒ{ÏÑJ §ÐJÕîí¦3çÂ'1ˆÃ-à=.·é$Æ ø ¡þÕü>«¼f»N™¦é¢½*1êæ²\Z·X¯JêºÃ\–œLE:‰mu/Ò-¡ÒO‡¼(tÀ¢>E„¸¬a!M>ŘVé\¯ƒLÞuÇ}éU̼%Qâêm8aŽ—þj˜´¡qàM.kìbýŽÔ]NqYC÷´?k¼Aׯ۞%|ô¨Ü>䲆qoOXKBÍGà0„{à0{´9Ì®Åú ñár+&H¤®¨T°{Ókè¯O]©ÕK˜èð—%ëö4\ç)%HTFã\nElNê.s\Ö‘Ý+ºžMê'ê(ŸÝóô1ëÙo&øz6©är;n$õWêØ¶Û?Ê™a—›q`‚NÔH0몘ØÊh…7¦Ÿ_¥Òªç}ˆÖð — ›í¾…ûp_£õîKêÏÖQS]mq÷ýÜ÷cMuß·Z¦x r½À„jÊìÞ­mJ"N!&C@=ÇQÆ+T‰3+ùÂ’ÀK\&ÔÖ¦bê(’º“ÀË\nÅÝS¤n˜á²†»§¾Wµ\:ÒÈmøæKKøcb4 ¼Çe KXpíÐÁ‘h…R;ke3†i”ÍR@º\-ìóáÊR03åE®Œ«$狦'¼Þ÷uÜEâPm›nÿø8˜6aA#Iíî]2{R4%F}À.hºn ¾Ùú9pÔb? I”Ž/sY®Shh«nZžÎ— à5.Ë•·RxËÊÿí¡›. S¸9‹À»\Öù|Œš³Y¨Ýwfú¾k/U}át´O C?Öü¸ºêN¨=ÎeɽÀèO…ãBR¢Žá§Õ4a`øQ¤Ñm ÂýÈ; BØ *ÝÚú…µD"´x˜Ë­èò߉à0—5tù™èz5váœrtéšeÇxž½Rf y¢.E|qYC1fðÌvøöóf™¯g/YFÈ-m°*í* ’þz8áœoL›óí¼ÝTZÔÿˆÓ5à,—[q-©ÎqYCfM—áGÙÄà>ð!—5,a÷óì º¨}á$Þ…ÃöÃaúµe÷"»ˆ­Þ³Ðû ¶ð¸Aê;ê~ZMÃÄÛ0•ß5ÛU:KöÔ1ü´|±'×’OèXìÙÚ›íù€Ëb;2¢Ó <ÀeÂfwd¤®¨ïŒÓQ2_Z,m]²ð&ñŽpYãÉÙž’UrlOte‰È¤c\Öxd¦k±òr%Fë9à8—5œ—2*fþ¥¹Âv¶mŠkD4ñÉg¹¬¡êÄÝ`µfÚEs©h££Hm2Yàµj¯¬7‚Q)ï”Jt"ס+ÁòNÐê̲/úô„wÑÜmC¯d¡þ^IêL2Qé*mˆõH¤®¸ŸË’·µEz{sy–ƒ¿ <¨Z¡¸8ÏnÅ ~5ž‡_,722Uh‰y?pËòTFÙ¢«©Lw#\à¬ß²Á }-»‰?sMž‹îþ‹>Ì2“P_jàœa¬ÛÅ"ÍOò&Û=óªùUÞЃ'Ø`¹™Ý÷Ú&øŠSÎ[üŽ5ËÝ}<áDK2|Ðïø²ÃÜ*H€Ô@{›=Qã²Ö¥§˜f¿Ê¿Èð8þ‘úÒÓÙhMéBÕ¥Ù/Î×±&#<µ!z'€·¸¬õ×rã3³Kð>Ò¦™ ©ï¨c»f6ŸÄÛø¤òÛ Vó¦*— ~½0ü¨.FÆ}{e¥heŒ7³ÆkÙŒñºømÆXÈŒ™%«X4ËfÆx–5Rã¹ñô”(ï"^#á^ã„2ï†ñ¦éÒøÉZÂ8³¸áÙlˆÚzQTÅ ªQ\¼hP…GáfY£¢f[Šo•Á£œhF·wÖv‚¾,øEOtŸ^àPBáàrL·˜r5Fm'%$‹Rm2‹ð'Òx˜Ë hw\»&Áç$ð— µ™cÉ)bÔOsY²Eô§}còÊõÑÉ«W„›-9LsYÃí¥Â¸ƒV Ô4ºŽÆêËUϳÊãE–MfŸánÐ/²??b}÷ø5ñ¾»Ê„£ <ªLy,s6Ê&ݵó,˜UÝ1MžÐ~ˆÇ"ïçUwÍ^ úìû2½ô{ M8Òcʤ÷Á”";Ëfä‚á>0’šãª9 žV<8 µa¹ã¹tŒàƒá!0“*©³‰Ùc2 ^„AÀBy™Õo©zAØãY¦gxy;§è¬lÐ ™l h¼IÑ‚ñ&$.¨¯â‰Q41ñXGËybzÁ4ã¢GÇ¥‚H'c<®Öí•Ñ'æ« n+ÚfÙ}»lsWÏŽ;+Gz ¤×”[Nã ÅÄçÙ@ö³T‚×Uà5.ËÝhÙøÂVSt…–xÜÒ“ ÍïÊù­ãÀ[\Öp²¥Cx1“ôßNƒ‹úÛk Y‡»vÂ];›à®]‚W/0¼Ï·WŸ»VEÝ•xìÒ*ᾄäÌQÈ]I[p€ËrÛ³›Ï‰–ƒÀ¦œ•x€‡ÁGn|!‹$b´w.æÝåÃÀ£ u°Imô'õÇêȨ¨t0Œ™ÚFŠ)|Òéwp†\Ö¸2y~Õ÷+SccV¥º”¥ÿ/Û£¥ªÅ]¨`år×Ç'Çâ(Çœº~ÅMÈð&Ì©³ó¯ºÅ­€Sø7ê¿°‘ú[u ?ê}¿(‘ 8¡ZßýéÉH,›1ÑT`½ÆgT~ O‚¡ÜE¥;N_’à•ŽpY®ðIãÑÉˆÇ ï;ŸÐYÜ*nt"m§€).k¨mu`•RŸðyЄø<ˆØ¤7ÀL={y>è£ v¾|”³È;åZî0mÞ•ƒ™Âòiúm—×L/˜A%‹ªÛ;y'Ÿ7…kØþO8ÿŸW~–aÃ(`â°ªºn`^+krû ¸ƒÛ°¶aG~õ3ðÊÏ$šSè-f•Ôê+ô&¾€úîò Óp¹…ºÆ ¨7$øŒs\ÖZÁ>f•Ô]NpYÃŽI_Ƹ6~}ôZîšðb™N'tU›ß÷xÍ–°ͶCšG~zsñ¹õªâ~‚§¡zÓn!ãùæŠ5½Tµ‹…w>í;NÑ›ššzVx—¾÷nÁ±SÉ‘\2ý>~‘Ïæ‚ÿÆ>™Í]½’¿21ž €\vÈß'ýJ¶O¡Ð¢[ƒÄ«û!à߇ü÷¥=­{ ù°•p¶Ÿþ"ä_Ôæl{½¢é­JyÙüUÈ¿Ú/û%à¯Aþ5©w±é§Ü}$ìòëÀ߀üÚìÒ±8*a‘ üwÿ]K,ò¿ÿ=ä¯l‘ÁÝ’w0ÎþäßÑö2ºWÙ—ªý~Ž$’L(Ùtl=YÜ þ&vaÕmW—wõH»iû:æ]ýÀÛ\Þu[ú½n%/;)Øé•ß~=— [à|»P%ŽÚ‘L¨ImÏ¢½l½¹¨ÌÅÃ|»oà2aÓ³ W:QŸxa!B|âµÿCL/¶ý–Žg…„†uúèC¤ëÅ»0Ï€Àð£Hãl4ã„-Í[ÅBÆxÌ—]¯ˆ/»~4 Ï‚æYeš†ñ¦³n¹£Es¯®zX^­å „K™^%Í Âë2Ÿo ðžPæ-¾.óàAØR<ö¤/V-c¦\6‹,¯w¦R)ÒIóç¾éÛž/¾ÈJ,{).ËÕ=éIcYI]'0Íe MR|‘•ô_^æ²Æb1»D×X¿‘ûlˆÚK+Ƭ±’º p’ËJ+©ÉtÆÈ]ËMŒæ®MÞnÑDç ð>—5\ü+Þ¢¿ -ú›”[ô„Æ•Ö! ª&rWÆrWFgÞ˜y~ýÊdÌƒí¸¶úMhŠ„ÒhèÿßÚêÿ_¬­Þ«­­nö½øÕÔÍßSY?} ùiÝÒK|fÒ”õÓ¯¾ùiŠºÖO¿˜‡œ—aÔ¬õS¸y]†œð: Žž'^A~%ýJâ¦ég?Ðÿ%^BòÄ@þißj¸bð“p¯/¿ù‹ÚÜKeÅôÏÿ2ä¿Ü¿ú“À/Aþ’Ô»ˆþ´CÊ&? ü)È?¥Í&r«¥øÓº%Öø+À/Cþ²²5z> íî`’Ÿþ]ÈWÛ+Øqtø÷ ÿ=é.£CÓiâòÏmt¾¿üÿ£RìýÖ‡àwz­ÿ™#-G‘.K5ÛÁ~jû¸L¨Ií¬ƒ¾Åû¸¼k_ ³ÉщD}’t"!9Ijç:hô!ÚXãó›a@`øQ¤q|S¶rmTâ*Ào¿o­wÉØz‡¾Šç*ï~ô³_Z-Šæ'xžËTœJœ[ã›×9–§0XÒ¤T9ô˜¾qÎò·À™ ³pæQe/Ú_KX¾.¾rNTÆ€·@KýX­ÚÁÍZõ†he‹ŸØÌ•U«ì”¬²iT½ðCÁ@R Ã[ð|¹ ; êX|£û6pšËÒ*{Ã’k¢¶$w€ó\Ö°-¾öø»`˜¤CÚ$[ü¾Í HÂÌörY®ÐDL³o\™´uqYÃáèáµiÒ8Ìe ÕÅýãÛàßÖÿ8óšSuédDÐÑÔ¶˜‚?>w–ýuÓu"Ù ¼Èe¹Ôú˜p5f³éÛà3„ÒÙÃ6›Hx‰Ër·¤4ž¡_¿.Á'œàr+v›HÝeà$—5ì6í7R¹m7^½*Üš‰Êà=.¶¼5;Zó·+·æ ;M‡i¢zãÚäõ±Oz^vmüúõ¬›e¹ãfÓ·£)žBS<%3úÿ6›Â7óÿÓ›MóµÍ¦mî¿ß´í«i {_@~Q·÷ϊϲš²åô.09/MQ×–Ó2ІlË0jÖ–“|òû2äb‚ÕøÅè°`âg!Vú•l_Iàß>÷aš€Äû 8|òµ¹×ž¢„‹ýiàO@þ m.¦²íôSÀŸ†üÓ-ñ­¿ü2ä/K½‹èO÷}Ÿù»?ùç´½‡£?ü ä¯H»j‡®ÝŽ_þ2ä_þši÷ÿøÛ[iä‹~K(ŽÜ)÷KÆ»sy×áÖ¸Ù?†Úa.ïÖ¦öö<ÂË~pyב(f1úéH¬~:!«·sÏ#ú§ëÅ™0ï€áG‘Æ1Ãxfú«KÕ2Ëþ¦œïÜÍ›¥-¿ôÞ1ez÷ cÆÛ(U|ǧõiשX®o[µšù%ªÒW-‘šÅÝãbҢˎ+ú¿OAxOqOù)FŒÆÕ“Št=Äߢ„# :¢LT|¹á÷‚¡ÚrC£Þ~4fñðÍ`I¥TØÞÕ deK$¨÷¯rY® bÌ(³”Hê:׸,w‘§âR"鿼ÁåÄ m–ë¸*8(3w÷¸,×ôb̳”Hêng¸L¨hŽÞŒqõêèuñÚÊDcø— 5½…¾Åà;¼±x ”¿Dcþ®„ÂCßè§oìÇoØÝàý~D©£ŽíºÃà»ñ†¾[å ÕM*ïIð. ~ßÊa<·–Ì ¯5Ë<#B”×ïÃk"Âkj½µ~?hü~ekEš6Œ9§Ì¯/%byœ|•îÃä×. ßuó½ K˜Ý´2Ý>ÃxbçWM«(\rïû@ˆ°„ú¤½}û$T¶äñqYîú;M%÷ˆÇa Mì%t^§—¾BÚöpYÃþññU*<„UOÌ «Z4^7«ËË¥ Üʈ×Q`ǵ½•žE³ê¯:nL¯HnûýZ›½pïóýÜçCl×õð6þ€òÛ8È¿¡Fç&XçÃOË'.?€×ò‰fL\­Ñ]Ó¾o¥’áÕ¢Ét\hw§Qëžä²\ÅÓ˜ˆ8æN/R× ”Þ`ÕCúOÏp™P‘‡DmÜ„«ü ^Æ.ŽŠDötÛµØÝä¢Þû‡@‰0Œ³÷+yo#/ôì»Å/û÷ãîDó8ð—åÒUb<¸h—_ƨ=¼Ìe¹#Ùb ‡Ôõ3\–ËbÝ’X²‚®u[¢1 ¼Êe¹õMtnÆújO¡oxl!nÓzVýÚúѲíÓ=‚ìQâ‹á x¸¾å é Ÿ‰Î]à<—å’:Å\‹ÔÝ>䲆û<ÅûdÒÿ¸Àe —¤ ÎÔá娮sÁö‚¯øÖ(Ë0Ì¢o¹å`F·Æ:jg™–O ÁäN&9ú‡A›0Ú9í½vùöó…gäîïsY®T‚X_ýü]3|€¶.u Xƒ"uÀy.kHÎväæí8Äð£HãˆÁëãi‰|™nR]wÜ—ÂýÀ] À]¥.Úh¨uÏ¢gYfÑsb& ¤ùG´¶oaëúŽ:¶k÷£x?ªü6¨»Xû°tbÇÀK°e Ãâk¹Oµa÷ÙxÕRÉtc·¶b9þ9p$<Žê‹Šƒ “BO%nÃ?^„ƒà%µ•¤hÿA« úá"cÙ1¬5»@›ÿ¬n¦iøk4hœÔ–ýZwJw¹y«â©ÇÏ ßò|ñ÷ú_áyð<ê 7açw‰9 KÕJÐÉX¡ù3‘ᳩÜgè[ÔßgÅùÿøÞÿ›Êü_«äWmï½ÔÄ¥n¼,1ÞôW‰LŽAʆg¤<Ë ‡¶WÒâM '8Nã¦ÛàÚ<þŠV×+7ìqáåÓŸ º)#L¿xö¶DõWÁšp ¬ÇÚðöþxü5­oïDàˆÜÁìOY‘x*˜‘ 3üë`Hx Õ‹ðLydÞZ@5ž ú-×µŠ<›iÚ «AüFiÉ)ÚùlðCü¥¸©ÿ€p  ^å¤Ã&ò7A„P_Ÿ1œª_©ò^ÞgWù:ËÁë´–—í¼ ]íûØ|a}Ì õiaÞ? Þ„j ÑŸöÇtŽ4åa‡½bûÞô„¸q¿ n„úæû'ƒwêfhœq­Šãú†0¥ÿ±q³ÿ (ª]%ýéÞWÌÔ)Oüý-"Ü BêI1â}ßÏ‚PSßwƒÏBŒ‚µlV‹>Ý—ºÄ>£|_ÛȱÒREЖ1ÍK>j £s Åíú_ƒ>¡Úžqô§GÁ—õ‰Ek-áÆ³7¯Š[ùoƒáQÐS¿1\ÜÊ<þŽV+Ó\Ó3ƒÀ0Y¥äØRÉ*$gã̤ÁKs7èƒ8.¿†áq}ºÉ†Dñ÷úwñ<„úæšg¡ðÙ8³<ž ó/q–, Ï€å™6XÿïƒÇß×jý±Àú•¢Ã‡¼ŠLspB Ù¾ãGoGfý߀5¡¾èð"QfÖMn!˜ ¾âÚ…é«ããâ¶FR†ÁVý`q[ãJº5Ùú5šT½ò]3ïI×òìB•N´ñÜŸ${‡+42ÓG'hø˜%¦|ó¥åžtžEwfK ”_Áê[ÅHÛËA·©M’u*,µ?•4‹Å¯Lê°¼¤D£ÿ‡àK˜ß´z¤ûia"?"„ú"Ý#FޱyCè^КÄ_Ó/€¡R¦Áf?5ŒÃ^ŽÌ¶ –—wí%ä¬ùnÕ2ææu«X4ÞµyºZíˆfÁ.Q_à”ßßUùGx ¤ÕOÒËü¼ÉÖ¦gx«NµX‚©UsÍbgbi·“ŸG F2ãMÇö<§,ü4¿ˆ§!|ˆ§QÏR9EORg+cµÞ×È sü%p$Ô·Á0e°Q-¼ê [.ŸN“é[FèÛe+µ:O± °¼â¯Ò—hŶèoÈÌ›~@¨oRü€^²ez6•µe/yn/ÝY®¸NtŽ?zÇȯZù—ÏàWorۤğ%¬r@¨o5ï„јŸLó+`H¨o ¥ã}a"ÿ-ˆêë˜ÅCÜ¢B¨@IF}:ç©q‘]ÿ}‚j:&2´†ãéì­bçéŸIkñêÝ–‹%»¼”J4ü—.zÆìüÃçÆ:ëTKA×I}¯èƒüx¯„úöׯ³¡ÿ"•Âbë.÷ϰDÉ£Ž Ãë ]™ücÃ(¿ËÞí-(3CdMw…ð‹¶ëlÑ`:Iÿ|‡ˆ,î‰þG<ác<Ñcå'zË inÉôSù%»\HqGš¦?ê2Ì‘Â?²'g[{|m2cxlUÐ^žzçí½¸ÇúŸðX„oá±ÞR~¬™š¡Î-ÛÞj0b”—ƒFj.Õ¢éóìïéFöü4ŒàÚ¯ Úv}ŒŠÇ œÁcÌ(?ÆzŒÈˆ²úU°úÕÚ÷*² Ú.v{ᢼ~ ¼‡ÀkH™×þ/aJ¿J„jç’¶tAoÇe2”—Nœ¬[îrµH¾L/שÌK¶Œ.=°ç¼`ˆ¼ñÿžèŸií0²'2½°ZMýH&*U—MŸ©û³?ÅÚUçnØßÑ¢iÙîÏÿg< ¡R ßPëžÅ ©ÕrÌxNšÿyB5¼ˆþT<Ì!ýulvJw,÷ñ/Úü>~<~C+“,‡ žɱ½+L7×3Ô·[󄲂YT¥Ì€6êÑ£™1Ìb‘¯Xý el°9uÅñi zÏ©!¾!üLÿÏDøÏôDù™îÏ”r(ákÝö¬ZŽ ŸR#ÏY f~kAÃWã×±b`HÌ¡þ‚ðâN|ø_ƒÇ¿ÖêÃYÊ´ü‹tÉt¾ê…§çFYî¹[„±øê 0éÒ„YÎ*“¾È“WæøV>åÛ¦Âô[F{zÚHÎIUø·`K¨oAû,6L7%Þ̥ϕŸ³Æ%±>üïÀ“ð,xžUæù(p…Üøµ°;`=AÙ1*®M{Òù¢ã…‘¢UDË-ábÊ<ª%‰?οÇã>Âã£0ƒOFæyËõM›â;¶ŸÂF‹Ÿ¸âO#þþÿð&ÌwN™÷3¶”ïËÝ‚Oë᥀wðv“O«¥%Ë¥›\™ú‰`¼·Ë{ïiñmL–õšª›$-1ŽþG<á3<Ø3å3ÜêÊ–ÖxŽ{Ø9"-Nó?&¡š†2͹i~¢Þb)N‡2‹”¸›1ŠëzçâOòâIõ-¿¾´€™rí´A$Á›…ÓyÓ§Õà°`ÙuJÁˆT‹¾=tMâ[‹ÿODø:žèuõ˜ x¢úÌÁ4ŠNy…¯ë…í;Ö-–ÓA>îRÆ{AøYþ/< ¡¾˜ œÚm醈ïªY©Xå Íú\k4g|ÇÝ0Ø^ê{U›*;¤¬ìJ6è˜ÇÉßriñ¬üÿ‚g"Ô7µ{‹<Îcsj>áÈЊge™u´±9vгÙEãE@þÚä #™Ä²¨•’è™%ÆÄÿÏE¨o‰ùµÒ»[O˜î¢ß¨(>«øý?x B}{ôõ#iRÒ~¬Àj  “êß ¦Iµ0ZŸ#½!jâq‹ ¯­ƒ¯·ÖÒ0M~VÎóêž)›FóÈNÄ[´Œª]‰ýiÓr–::À—0 ¾ie¾â9K¨µÆ¤4¬ÕÞbKïáº;ïQùèMËzõì+onDBÂ5‰¬ÅŽ.\·Õ½HAZŒÝÃOƒš»5}S)6~$h4¼kD®MP¬³Ø¹_†TC­»Í¢m6ý¢‘f£äŠVÙ¤£ÖÖ8â£É&ûèœiVÎ00áAÈ[`˜Èl0Å?ÂV†ÔŽ >º C«’†é‚1ºZld00l£aº`ŒÕ Ó±uáMË-Uqoï‹pAþ9mE¾ ¬ß…Èn”]6ÉwÃ^„× _ÓæU{ëk¨qCTÌ$œšÎCž×æTqw/1u×!?Ôè˾íãôî6Øi•/“ú…âÓjap°%V‘ôÊ!U:÷GÅ·2À.Ù¬§Ë’BV CµxA"xŠm¶ÄfxòÉæ7Û=ø"á)ȧ”-tÐàuá¢Ó%¬t8yü«¡%B×÷ ßk¡rÀÈ3ʆêÙùޤŒ3 |Y½ÓÍFŠí®:%gÅ*[üÄN-S“¾Ä+ª­Ÿõ©^î \äœ6ŸÚ¿)Ç]Ô­è‡7€÷!ßo¾[Ñ'€ ?P¶dgü˜l3|YÝ¥l:d/¬Ȳ‘œÑZR°½)\s^Öëv„}¤þ1lP’Còaæqdäh’íñR€«ˆRÜ ÔŒ2•2Ë~Ö˜¡ó=µ˜%¥Ø±ÛÌqÏ‚Ô@†ó¥âÉ­é47ª/Äß6ÊH‡õPèVV:ù²La ¡á¢WÙðòâOƒÔA†úÂÅ£¯‡:ÊŽzVÅt鸪èåœÑê:ŠIK²»Ãã%³Rq“¿Ü°f&£¦“à¦ÍîybmX®aù†YÌ©‰ñÜ5ñ†ÜÞ„w ßÑÑ×ù±ZæôtÅ(k¦ËϬE¯ô]):K,ëŸ=MúòŪçS¥ ч‰Ä‡2Ûû azG·°mýKŒbF³®—e畳ÀÓOkÃß6̾txò™æà„dCCDÆ–ÌE•¾sxòEmï`ß"ï0Øa¤˜y¹!RD¦ÑŸ O7I}Gñi5!¼Õ&á½–NlhYZdˆâk¹†‰n ¥•X†¢AG)‚ð·@LÓi ’•̳œ»yS8…1º>Ùè…$ù‰0q1,ÈñôíÇ3µÒ üOËö+«þI˜8ÒHN@žP&>_³Ü%*QÞáCƒ¡KE—§ –÷š1²Yñ+òزC¸©9y¬yM(–GdsMCê€÷oähWE°uåm’á>Èûd˜5dôA{o;†,µ”ÞPkÏ"oÏ1ŠÃ]Ȉï(úËù”³ôÉ`ÚN¦|*YÊýH²4žLKúöQøá-È·ôûm šïüèØW“OƒkµOƒÓêS©Ô« ŸóaîQüÒšgãäW÷¥Ýê\‰ðd© OCµ»«ž¹Ò(þ„©H¦nWÐum!Ä6]‘z*ZÂßA|ßJ‡aòˆœ h”’«©Ïëf1 µ^à~Èû¥;½AU‹Ev?â£h±aŠÕLcëõX‚ÜNÃr„j="½ªÎ­¯*)ÚåÆ{ …%ˆè·ö„{3oéð2äË2¬Ä–NG>™:ªv€RF >Í^!uG€YÈYåÇ?ÁNÃ9U?r@ »>¢ ›ˆ /(좆-Èä wv†‘MÍFmÿ‰8õ@–ÊlóR× < Y}ÅûrÖxAeMƒÿ_²ò&殹‘a-/³Â§üj(Qo"¢Ç€sç” ßãkÛî7]*Jëóˬè(.Ý'ah-¼­3)ú¼ðä{ÊO1ÏŽ‚Ö7B¢;ká‚7.äâS?Øš5ð^T, ö`qܳœB}TCô,.M>eí$¸AÒÖÚw ¹b[yKx ²ÔÀ-ÖÊIÝAàiÈR[Ž~S%`^°Le¿V7*TîгY¡fñV‘D»&¼ ù®2ÍÇ;´Šu›U+ó|~åÏ]ÿF·é­¤vKÞ)¯Yî ÃÞÀÑ'† .º|¢z¢§ŽO52P¾ÁFst—váø©16®‹>Ž 1œ¬žü2ƒØ<ܮݾÁæ™ØÁ*ôÓ K‹™ìP3î1"•u4>;Š_ËfX2ó/W\ª‘^ÃgyÂnsä.lv¡–Ï^#Å}Ôf¯1Ý•¼¶˜©`'ÔvÖ?­^Ò õ]ħåVHáͧT­°óº)EÌzêë¦{U F4"ˆ¢Áްnªlð%qÙòEÓóD­˜†åÕŽ.éYC §#ˆ¦ð¨—¢¶À¡æžK¼¦óÀQÈ:gÑ1‹¤î 0 Y}-g•±âÓì‘ÔŽCW~üÝ™üâ^ƒ,·ã,ÚÍíh•ià=È÷Zc•ëÀÈêñJ—á GæÄ`ø²zšj?õ¬|‡QÂO.që2ì‡Üßæùq9 <ùXó…Ô C>®lžýƺéQ9tß*‡°Dåð"d©„(Åà)RĪ•!,… PÛÆ–ÔwE°]!lo>£j…·ÁXö“µ^ ú6Ø~U‹eð½ñQ´[MKñË <žñ-ÈkV#‚<¤­·=XOXóìRµhú–pèDÌŽ/CÖ¹ýÓ÷ŽÂò£0ÚÁ„Ží§Žø[bw0PøÉÖQ5„ãk4‚\²p,þ¼‹cÛæ:ÄcñÑä¼Ïù’Ô›NqcÅ)‹v@Dê0 9­Ío÷±Ïó+lΣ½FR—Ú0ñ!ý—#ˆO³[/©ëf «·Þ#†kQ6¨UÆ’,¿`?d©ð_ÌaH]7pò€²Mº=‰cøá!Ère$¥&Êç<ŵ 2¶9<ù|klsxòõ¡XxîCú/SSmˆºÇ¹Y¶pîCýh'Ô¶qîCê»"Ø®¹Oo>§j…ç>»£é¼BÜzý¥:QÆi·ªÉˆÆ`ñQ4ÙC𜲅QØXvŠEgrò«&í[®áùt<Ñ3¼Š•·—7è‡ôU¶•Êßì”èÃLÀÖ„úÎ.ʌޑÏFï>U+â£c¦"üj®àu\I蘩„³#nQ1ùøÙ áÐø ~+áÈ-H #uûGµCÑªÝø”„…ŽEŸvuQDãdñQ|+×ÃceµTe–b¯:NÁpiÁ»"ô`²u®Âà ¯C¾®L~OH^Í50 ŒÒ¿Ê-à—àAÈúJÂŶ5R× <Y.”þtÌ0WLJåfN“wÜ`JZqÊT¼4̵ek‚ü©¨7ÙÃÀ9ÈêÓS¹~<âÍjý¸X¨K½@ÔöÔ?­uÃzH!ê9a,g‰xû7T-±iDíŠiå»ùgÑf~¿–ð(d©±M¬™“ºýÀc¥Æ²Íî2&a¢ãÄGSÇÛƒûelr¨¿„ÂŽ69LAVŸ¬ ‡9¤>A|$ÜÕ…hd"ˆâ[™¯‡9Oœ²os¦[t¶'¯òR3µ¼â‚MÓ³¥*/%\sè&wR†óçõ=‹³äƒ,ßTs­¢¹Äm4}¤\ãŠcÓ5áŽk<{@/C9ÆVSÍ*ÆÞ~÷,‘[85>Ë@ø,©*»0PTä^Mõ+ƒ8³•M-#z'ÈR>ÓÁĤ–‘ºaà(dm1ýÚ-|‘0 Y}?°3-¼JÆ€9ȹ6'·á·- ©íÚ6†‰¤~OÛ&NãíO«ZâC-¼ì•O+˜Æ¯&< ¹…aIÝ~à)ȧZ–úÓħ]a Ñ8A|ßÊÍCyLൠԊ>ƒ¾è3Ü·ßIè,Ð7^» ’;:…Ʋ딢¥#³}QÖwÁ”pòx»{ BؼÀã@ðJðø€•¿•`yxr ÎÅ“ºa`²Îp'¦ãº‡/ŽB– wTã"ŽCV÷X¹Ñ.rÚ¬•qu“=PÛÆ¸ƒÔž¸Cf'lïžPi'¬¡ÖÞŰ®kÕ´ÛÕ ÕÝõO«m1»wËz¢â®øÞ>aäŽæ·š€tBmsæà!¶+7á>Þü}U+옛°kV‚Voñ‘Œ:•s²‰Æ¾ê)&5ÍÎ ³P³´d¹_FÂxådúqt¥,¬!-<Fî¥N½aŽj[£|xø(¶G›–tñsÑY¿Eõ餞ŒÕI_¶LÏ^*Z›N‘E¯hÒ†±$’Ó¡6–4^E§Š­7oÞŒëà⦫Ħ8Y*…F,ê#uáÕCC‡”Ír…<©ä¸(ž^ad²›J°bê~Ðnì²åÉ$ÙãƒÀyÈê+ª2©‡ß‡ÚëZžS¬Ö+H ñÚ†<¬Í¥z oUƒÆ(ï•:Yý¶Ç\8“¯Œ²«Ì§ø­¥ _¢©½éÓ«G/ˆzÑ= ŒÈŠ´{È£lácç p$°L¸Ü a/•KÍ^Î¥E{)bÓ<Y*ßA¬—"u{€‡!ËÝxý©x‚ðZÒ{X‹c‹‡¯Á![„SÕ µm ÂI}WÛ„¿Ž7ÿºªv ÂûX©õ +±.A°ˆ’ørIQ‰FǹúMw¥Z¢u5òJpŽ@–+•³Óàž°T±»qàuÈR w1 ,féÔ]Þ€|£ùÝ+©;¼ ù¦z»ÎJ¼ô©âÓì^íuîÛ oA–+o¾ééE{5R;‚ø´¼W‹”;kæ‘ovI„µ^àþ„ê‘oå²Eñ½ñQ´ØÛЪðwä¤Ãš•÷ƒn¶l–hÃ…J¯•hþäÑ-NÁË4xA9Û5×^ aá¢'06a$úT|œÓìÒ ÇyñM×¥ÊáA AŽOÁ‹ð4d©mM©ÇÄå<0¨UAjv§MêÎ/AV?|ÐpÊ[ŠŒŠúº œ†¬¾d5.Y±“>AËà>%Èí ø á0d©)qã;ÍÛoèjQ7"J§€)ÈRùŒbnDêŽÓ¥¼wKê’e–ë}S±(}öá ø7á}È÷• &É"èR•'Û³"£y«"~“Ø›p'Â$ädÆï· ›°…sC;¡¶sCRßÁvÍ ŸáÍ?SµÂŽQTn³’ × €< G ©Úìÿ%5ÄGÑfÃm³äTËüVJQàT!×,¯ ÏaLÂH™UM#HçøÔ¤èÀAL²Àñ„B¾„ØÀAêRÀdõôPñ59Ò?œ„<©Ìc¼ç¹åÓ6n¤Ä×7^À7!ˉn©²»êD=…¸ž„Ü‚”HR7<Y=%r0Í–ÊŽáTýJÕÞ‘$:§ÙDí"EZ{Éqr2ó6¼„0r¶&é’‰I߆ó‚Ü‚å~R×< Y}¹„W5Å–7÷“Š}¯°û—LWØ…ˆà0ðd©õºMDï’ MÔò6'®z(uOãKµèjêH‚ðC|¾Fxò]凘âÕ—Ù%Ó“ü] 6V5ÂzEge´~nZ”ÿGÁ™0rÌF‘?K‘(™¯ì’ý)wÜo{×FŠ.©zÖrµHÙ4¡(ƒçø”UO|üÈêK‘xMœñ Žåñ‹Q÷%cÍ\¡[S¢`ðä^\.^ÿëð„‘ÍÅÚÇfáÈíã`@¨çØzüR4+•↹ÃÀOhìic6HÝð$äD¤®x*Q»ÎNÑ1±nÆaùKùUÇÎKÜà@ŒNs5DµÂóÇOÀA [8‹§)X'Ô¶qOê»"Ø®Yü"Þü¢ªvœÅï ï –`× <ù€ ;ÆêªÑñ‹BÄGÑhlÿ ì|7Øå‚ç×]ÙË2ûïÀˆ„ú÷ºÊÎRœccl¢r˜‚Ü‚u_Rw˜NÔ.QPí‚GëþXE‹gHØèp²ÜþAÃÆ–ä…Ñ“2vº|²T0#n§;ÀÇÕo¢êž%þ'À§Ÿ*óI·üznU†úÓ-‡àsá]‚ž°§±>àIÈ-ªH]7ðdõ jw†Íâ$lt8Y-»g“Öä³q)«\ŽBmUγÕW™ŽÞªS-Œ%Ë(¸N¥LÖh5@´U«1à<äyev áÒ{dv9ºdR{¶ÃNwSx,ÜxiYäxV}Èð̵`¢*|¥å»ÜY.@^P~œÛ<a[%«ä¸†…]èâ»—Ï0¢é®D„XìÄ©ðüãÀš0Rô@ñ ÎÓPö}ÆXuÖjn¦~¡kùU—ê R5A0rCŸ®qš|‡üD´ p²Ô~€X;'u€W _Ñ0¥õ)i¦ìþW^ <Ët…ÓÚ‰ÑUà#ÈêiíÈ¥–«ÅÚU•‚¬–à1KµïKN^bêF„w¡ DèЀl4ßHÝ ð,ä³ÊVÅíwž‘¢ vc*/‹ëñ;TƒWü/­НWÕ$ð)dõP|–ž‡û*ÍÒÅÖJhžÛ µm\+!õ]l×ZIo¾ j…mk%„‰XëœpŒØF§¨ž+zdËë^®ºlQ)¾€ïž‡¬6‚j\‘&RÀuæ¢Ç¬H“º ð&ä›Íï~IÝàdõM¤~ÚýÊ;åe{¥*>p—[ÀGÕîÓaæíòNfñmC\Ù,ÈÑâÇPÿ‚Zo6$*:Š[hR„£ ýבƸ©;Ì&t]GºÏ0ƒáÚ jS¸ˆ"1NAVwl™u›e¸¡þu›î¬gÅ(ˆuú­}ÀÈÍwú‡ÝÀ(%I½MÉ|iaZGi»ÑÈ)Tótj?+a²Aàä i“%b´w.æÝå“À«¯¶>¾¢_t-‚ø(7éà¿ydx2ZAã!ÜY®¬EÃŵJщ;hÛŽˆÊAà0äáæ·#R·x²úyÜó£|Š”1¶GyÓ£e,ñ›x‰âQàmÈê ;2ýð*\†PO?ÜpýÆw«Öªí‰žY%VƒÀ£uVøŽ ;I]ðäcÍw`R× <Yý`á“—¤þDñiM?OJOOC– !7½ÑJêÏDE©.¬”—š–èîmÞº¢¥Iî«7ìîó}G¬»·á®„§ Km5‰µRwx²º§ô¢»^ÿ²á%„!·ãªìOÂ); wh´FÌúMK;¡¶ë_¤¾+‚íZÿz‰7ÿRÕ ;ç ñõÜÌ+ v½À Õ\!åzÀ/ñ‹BÔ“+t„çcÍ›váØí¹¢–,Âz„G ËE• ×4’VŦœî¤h¯K|N/@¾Ðü^—Ô^„¬ÞÍ 5ÚÖ£ø½æÄ&¼YîJ¬†k¦°‘Œ‰îïC–:¬*n¢À¨÷Â#"韆uÙÔ¯Nï‹Kܤ [8"RoÖ µmI}WÛ5"–ñæËªVع’Èúª_• Ö TßÚ£j±2¾">Š›ä7öl½,5šEkÙl}ƒÝ®J…óS‚Ę•p²ÜáËÆy^¥œð(IT¦€Ó¥ÒGź`RwxòeöejçÕD}ŠˆÜ.@^P&tŒU§q·_N ê9x á1ÈR .qž#ž!HT àd©¤E1Ï!uÇç ŸS6TošçÚ áDãÄYP£ñ o Dù·AÝkV•ÎF‚­:ÕPÏÍ\Ç)Î,ᣑ²ËAÌh׫Ìòû^áqÈraAÃÕùäªÔ ±9 láMå¤îPßMågÓüè[»sŠEgÕj©[õ)¢—.@V_0ê4 Q"Ÿ†ÃvBVï|ÅÇžÏ@7aóæ¾»yö·^`?ä~n 9ÝÜyÕ˜Í67*<È YgÅr—·d²1\€,åsbÃûgàY„áe¯µ~P!õ¯GŸ–;úûpî÷›ê转štÙ,‰–+}þý>¤7!YJ‘ÑÚ½…Öž¾b¯…~îU+•¢-~:–ÈNA–Ë»o¸¾MïRtø#*3Àû[°9Mên@VŸïtSYÑGæ¯AVo÷2‹ZŸE3#lÂa©BöÄ¥8hÙaR× <Ðu¢¯ž´-:(‘Aà È:×’b%rÊN¨= Y}-IxP"õ§"ˆO˥ϡU6qPª-˜KÐëªJ[i¤¡ÇYò,wNlZÙugbx8y¬ùîü9¸0á8äñÖ»3©ÏEŸ–»óçáŸo®;×®4 × TwçŽ-´ÆÈSÖò²•÷í5+wunUîlÍçáÕ„³g•mü€†õ¼YÌW‹¦oEož4R,å!˜¶yŸ„çòšå®PÙ3ªYÂ*©ÒäEë7Â5#wÿ6»±~ ”ÔÎCVßín¬¤þañiycý&¼ùojjcí©d™;Ië$TooØz V2êçÑÔYÙãŠÄs8 Y_ŽØÎË'±±.‘™Þ…|·ù±.©»¼ùžºƒ Ÿ 'ý3ÀYÈê=fš]u[^sŠlúìZžY &ÏX-fX–I3üf´AÂ4ä´6à.dœ6’Ÿ½HŠú±Þ|§ù¾Dê.ïB–ráÍëµiáÒß gþf8Ó=-ÎÄÒ^lŸ®Næ¥ãœ2d‚°˜îØ2è²A™•œ_•¾ú[à]„óÕÂ+¬Xí£°'`Fàjôptou~5x>Ó£³+Á]{©ê w³ß ¶„W _ÑÖFº¥Zq¹¼ ¹½,©» ¼ùžz4#Ë‘ú™âÓìXŽúôN¨…¬Þ…c9R?A|ZMãw¡)„¨g{È0ʵ-2TZ×· á䡯š!X^„Ü‚RRw˜‚¬¾Sz")ˆÂËÞ­šklF'êMD, œƒ¬îÔÃFd7¬*¼ûíð"ÂaÈÃêñ€øþíw@9a;÷o¿º ›7‹û B¥;±ëH¨æ.wma5ÉòÔ(•ƒŠÖÖŠî©M‡6(X ïå>`òPMø²ú¾ÎþM¡’ ¥ß +î‡,u¬«a§ºkV´%‡"ˆO³»QR×< Yýþ¬þMku¢ÁqŽ@Öy¸&&"çì„ÚsÕ×G!¤þ|ñiy—ø{Ð(›×%ö’£Ð~…hŸH´zê«ÐG·m&»Ð:è]ÌÖm%øž‡¬¯äµxÿB<2ħÙý ©»…¬~DlØpu¯6Ï;Åj©,¼²Eœ²À9ÈêšÌÿïEû"Ô¿Åß•,ŠŸp$*}À~ÈýÍ÷R× €< l“ËFjs"~˜ó¾)Ä᱄é§ ëKÞé(Ën8›PX¯7Ü-àdõÆ$±ÄHîç!«/ËÉ´êïâeØ”V-~â¨ô[تI]7P_«¾Ûª1O‘kÑß…ï^ƒ|Mc‹ÎÉmxr 6 HÝuà]ÈwÛÑ¢‰À=à,d©M¹E77(Cý-Zæä1éî‡,5ó R× ì‡,ÕÄžœ³ÝÈ5qŸ!bÀ4ät[|æ{à'ßÓŸÙ›  »Î÷À]AnÁŠÃ÷À]CV_q \'RÉÚ^d':ÃÀ /H›©#Æ\²G¶‰Õ$p ²T”c«˜#Û¤nx ò-e[ ¥J¹L0H{YƒŸ–ñÝÛÀ'Ÿ´Æw/ŸB~ªÞ«¤3 çÄà à3ÈÏ”™ì obdóû¸«3Ôs_vô[}Épû^ü*Nb4<ùXó…ÔõCV¯u0n¤LcÉqŠ–YY9.í(.9þ*p×rÄ3 ‰í àk¥Î<ļ¬˜…WZé„Ú×!«Ÿm^x%õ#ˆO«iü~´ŸõìBï6Œâ›$ß ýß‹?ïâ¨k+s}QÙ<ù@ó4©ëB–ZnÞ|Šõ¤)Îöì¥âêœ ¢%^CÀË/ë³ÔÓ·?–±Ôð*d©K9Ä-•^ƒ,7}þT¼À)鿼YêR, íøû¸M6¡ËÔ…'*û-kǤ®¨¯ ÛqØz%6¤‰Ñð<ävn}ÚNˆ-Ú0"u€ú6Œ:W2öÈÇ!k³ÇÁ¢U^ñWSÔtR,pK O‚ˆÙuàä…ÖX(| rNÄ“ú×#¨çDüYÃ(™¾k¿bŽÂR†E÷Ú¾%~Kó÷sã3< ù¬6#í^Œ Ù¤wºþ@Bg)l%RßA|ZMãâ „(ÿ6¨1ŸR¥ó v𦆸(OYl°¥¸£í!¥‘ßíF9á™:AÖ?ˆG8y\©GÔ¹DF¬¦÷!ë,Y³DFê®@Öy /¦&u9à‚¬~ñèŒaÌ‘}=vï(wllñÕjmlÙë3WLºÌ[ô1þÜ™p²Tþý¦Ç˜2žâº–WqÊ–´»=倎v=Ç0×L»hÒå‹¢üœ § «_Ý9g³aUñLýLVÁöøÉêK`-½?ÅU>Ÿû‡Ažp²zÁ¬ax3o£¸L¶ƒ!Ýä=aðê%?ð~³ˆiše‹_¬b!c<Ω‰ñܵ´p™ "wøDÕ»àG‹Ó9ÊkUÑÂ9»;#Cc©«}¡âgT\'oyž%^ôãO¢>‚¬¾U3o3eZ•.²’ÿlÎhT¼üªMûèycÕñ*¶o ³P²=ï´ËT¿ªê.Q+×2…Ǥ?þ„ó5l ‡šº õ‡š©ç•à•Ò« œ™ÉΨo•*Žüݾñå• Ö½ÀqÈã#š€âjŒÚN`²\Œ·Éh£M'!ë«2Ù‘».Ág x ²ÔêNŒ9–œb!FíàmÈ·•ÍÑ›1rWG'® 7i¢1 |Y½FŒx“þ3ܦ Õšôö/ùOo.>·^UÜOà€Ò´[Èx¾¹bM/UíbáOûŽSô¦¦¦žÞ¥ï½[pìTr$—L¿F¹ñl.ÅÆ>™õ<ßÊÒˆ–ŸÌŽOÄ<`ïÛÏ<{23÷옧ì&!'EŸ’¾Ñ·}ĸóŸwÄon¸>æ[¯DןɽÀ}÷ÕY'è|ý÷[üﺷµ…·_Ì" w÷Ö&øß÷Â~úûÏý&ý]϶¼ŠÐ¤=o¾ñ|ácy?|3ì~ýÍônU°ïvÞ)—-6¦ßáßÙ»õ;cc~©2ö,øŸ¿W½ú(7öŒ9HnÒš˜°r“KWn,yUwͲ‹E³œ·›ÿ6sõæZ¶‹Ö_ùpqå›Q§Œx4Ro?{Ź„Â*äæê†ñ âÚe_¸—ø³0)á^ÈrúšÙô¦ûÊ^cýƒ¹ä宿&²ã7ǯŠö ß#ÌBÎÊêªn1Fkp ò˜²ÉÄ]‡ôs¥–•jí[ ¾Ã«Ð4Ú¢úð?”Ú”¡oôÓ7öã7ìnðb„7hˆRGñQ´0?g QmÛjk Lç/$ø²Aˆø(¾•!ãÿeïMàãØ²úà–dY–e[–,ï¶t-oÝv«¥–åE²å]²õžß2ö{3ÀhæQê.IõÜÝÕ¯ª[²fa†$$!{Â’  $ ;L2°„$d!ë!Û_>æ«sï¿Z%¹«ýîÒÝð}™ÅÿoKÏçTs·sÏ=—=±—,¿âX%±%«×wàÓ‚óâžE«ZYu½˜B¾SÛ>ZvùNxhˆmòÖ¿/¢ž·îÔUç$Ä𢙃bòAÑï§ø®„©}ަ õú#à#ÆQl~*‰ë2pfPlL†‰ëž?¥ïÒû)$ˆÙ§Z½î†Î±ãiÉ• É‘FÀKàJ;=òþp8>Õ8¼ ®”­×g‘ø+Äcèíw-ú¶M§åbzKê™>‘hëPFâ;#ئ¡ì»ñBÔʽ[ubóè¾'!Ö!âÑü,'h HŽ:Å|0hŒ¦زS½¦"VÅïÅg"<ÞÄ{•cõ£©!šqäÉÓ§Å1Í©&8Íyw,gùvlEõXÅ¿ÊN‚Oj+~#PÜòýj‘Ò`|äDDµ®¸l‰ÎÙ–üŠUªðà N‰]ž`O‹Ò¯ðP›ð¸þ¶ø¬pË»N7ÆXµx­÷Ó%ÅÒ¬²Q¶Ùì,½;šB}D6¼…¼ÿ ô&œŸÕ~‡l hЮ¶¾C­¹¥Å ³¬ö¦±E[cõþ!èJ˜×Ïá×nÿ_íÜø,û^Ò¡ÁœR„ƒ¿/UœÊFЙøŽµüU¿’™Æ ΃Ïk¿ÌT½— ÜÞ«Šæ’£v&¹@-#g—+©Ñàï&RòþóI¨K8®4ÑìÔÍôƒ,èNp±bÝÒjþ#¨FÈÀ™¶š´ "u’µf—Ž´-†³5¸µMÞÆŸ‚¢„p¥ ¡¦²C4cãk#Ç÷Ÿ'îâ¶Ø²½¾õ2q1 Úv^þ3þ(T&¼®_æí »B}lc¸ÿ»È&¯\ˆ¦„dÜ2«ä¨U(Ì=£{um4¾„vì«…»§„o€¿¡ýj×·v]k¶·Dw£Ï²Iv%3¯¬J`Žâ™×ždjbµäƒ©§öƺëÕK±þ,>a?xëmòYü^ˆxÔ>@ý€çd†ÿû¼vBÅè7¶oŒÒßõÓß!Ùwàó‰Í|–“›º¶ú!½žK¡x ™Î;^´Jã•ubœâ[˜þeÂ\ú<<¸ãÖoÕ>p šçYOÇ4™Á„Ê)e%]†>vp?xÄe¯–i½E¥Í|ë;¿°ôK?ôÛŸÝæÊùÖ÷´>~°ô¯}øßiÚqU)çR¹›†ÏÀ&†6ýñõFØÙ®!5êõŽ0N³˜<2{€ƒàJšÕŸ»,–¬b½}›N| B¼a«íBâ‡"ˆÇ]öR,-†h% C‹‹]À!p%ÕêJݹh«ÞÔ.²¨áwu$¶ÜUÔ*ËøCÄcÈ2½Ü2~Å.KZe,±¿¿+±eŒhšUvÀ„mìÇHü`Íöc¢½¬XU? %IËtÃÝ-n/ݰFw{ÛK7ÚHˆfÛ‹°LÙ]·½‚µ.i™°ÆÎ[&xw¶×2;aÍZfßËÄ]Xgš˜£Ÿh—ê'’4MÌуïÑ¡üM´LCâG©i™*m®IfWä9°‰M7Lä&3ÞV;ª"-ÃìÚêácª7«hÌËz¡Vo¢µ½Y$¸ÛÎÞŒ~v(‚†çeÅyÙnXbw¢µó²È9‰vÎËHü`ÍÎËös«ØÏDQbÇ*H§!< ®ÔÍJ' æ?Òzãø£ÄÓj5öà „¸-J-é#;tÕÙ GæWÉ2öFX-¦VA&à ‘Ì©ùj)·¹.©ö>|9Â:é:š-mWɉÑ*v/ˆÔ¹¼~ËX‹M¿%q“ÀÛà·[ïÚ$þNñë`*N¥PïõÃ}¿v“Òz}ßA<­Vc?¾@ˆzÌQ]uà!âÑü*;èšIMñ1#œv÷¤N_bsÂÞì>ƒDu€ë‡~§ÂËp|–·ýœç,ÙtŨ8˜Æì ³ ¢&ÞdŠyö;UÇ‹OõmdÇ!àðښϣ$yÙÎ9ËaA¹ðÊŸH1´Z´hðr8–ɾK$è^/SSñ]ºKJ*YeÖK¨‘ouùwÈî‹:½Äc¨qìX´ß)ÅHÝÜ ¾[Û*Ý*÷›“ }À~ð~óvYQ°ËÁ*G¤í²x\?^5˜ftIUX³ ©´ô5+¤Ïa`<©­×=ÆœŒa«îzÐÙ,sýœ •¾ÎY¾¸Á)ÿ€åGO'D;)Ù‰D4êÝ¥ø")Ưv ÝèÍzû¾[õ‚?=,ÞÍ-IŸ¿Ä,)𔶺×[¨0‘U— ´ômVv}º#Û¦ãy{Ù)НGº}–ôm[VûÃИ°Nþ®¢öò'l#kòz'læEuQú vÅhÖ795Š9DIâzÀÍE}cgd$® ÃúA_¥Q‡T8< ®+iè5—8L+5yy—`À àZãÇ€Á/j»ÄÑç¼¥*Ï+–íÁH­4ð>ø}mõ0V¶rO­;X-£[~ƒ•=[t»~0nmVõíå*¿0¨l{~0è=µ½’]ðq :¿QQöeŽ åø\Y1^Ĭ ½j®âz‘Q#ïæªE»D ÑeyÒã_¤¸<¿­°#±å¶Bõïÿͱd ‹™óEÛTŠÇêÖ,Ïq«~Ýóµ—‹=2÷2ÇñÇ~ºì/x…çÖŸWÓÁK •/¥7¯?¥…«¤Þ‘Óºõžj††Öœ•’]©ØÉÑ0À0šŠëFâB ¤Ú4ðø#åz/w ø ø+úœØýFzøøk&Z65«ÄœB¡´î-!~ÈÚ¶¥4³= G:©Û²ëJݳ(‚3üXPéáÚ0°MUßA<­Vc_ D½€jÿ»U'¶5³„ئ ÑÌ–ÍÅÓ›£l¾q×.­ñ)|5‹àúÓ˜ý[ò:“ò'wF¡Êhí?PÜ­Þ¢Ö­ZRcòiÉ­øiV´ž=¶J+tÒp¡´œf¥76ʶ/Îí­Y'_¶<‡½åßâ44'¼~Kû-¦·$&£*ÜŸN¾ñøÍ¹t°.ù•˜eów=™“?)y:NƒOkë¿í°ú|ÆÊ[ešïÖ þnó ³ã»£òªŸ…º„u««OY¶” X^æÞó ]w6Ë®˜ð™sP–PoÎýéÌ–$¸d#7O3»´Ba”àÛßS8B~J΀Ïh¿Àõ­Y|M}ƒ$´&¬s@X«Ù"Ù­©úGâm›­ühx²C43WIo Õö|bUŽ |ÉÜ!Pw8¬h‡UL‡•Ö‡‘Ù²Ááp|{îUö%¯ušŽƒ›ïï\¬úÖJ½%Û”ÕΙ>‰ïŒ`›fúø!¶9u‚›öDîúYzƒ 2C0°A@ÿBÝÖ¼{PP­¸|¯Šj\¥ÃÛTºZªmºInÍæ‘»`mndù̪ rßÍ ú·Úˆ kçIüá<¸~À^žiÝ©äVm+.³XÉ^g«¶³²ZÉð[Ë Á ²*B޾ež®È.ò`«BLø„Ð\ï>½L`%›[¡v“7±ð6ï ›ÔE´–kÉ) “tÍ>²o™Ñ×»0^ñM&èMBOa«–‹°,åÉð«Œϯˆ©F0°È6ÖËДp"QëÏÔÑukßû'Ò¼½¾•‹FÆ¥bW€·ÁoêâRHZx\)7qËgèɰWÝŠt!%î‚?ÔVfŽ<«²jUê i;Û#7 &ˆ§Tu«ÁLŒÒ Ò5OóéBLÙW¹'!¬S,F=½Oz”º é„FÒûêRï·ÒK².O*íîK‘úÔõn©ÒlGÝÜwd]„t7—”ë"$®xü¶ivÑ”&ò †9 6f˜¾ÑÚ)£*æ9 oyF€àÚæ9(jŽ‹òïüÌKÁÎËNI¥,p\iñóEœŠ]¬#–:ù.ˆ×7IOŠIüƒâÑíZ¥'-³ÂÏ9v‚w*·úêž ·=´ëî߯¢×êà6­NXÌÏYËcÁ³b{?(ÓÕ Z (hz˜Ϙ…‡cûÒå2p|ºù}‰΀ëoOË_PHò¯o€ßÐÖc€f ¯Û)^¶(+Aö°ÙM´2Â0×lÀ˜§ì [ÚìBiYÖaH¥#ÀÓà§›ï0$nxüŒþ •JëïNJgÓàJMèù݉R°n¼ÈsË<Ž?ÁóПÚvYÌ| –_ £ã"Õrcó ‘è¯d_æ¼Ððîï9kjSo•aÝuzÅ´Ø_)ò7 ~ÀÖ]ï)…ûy2;¿ïFzApÚšÛx°¹ ¨½Jm³…ö¹«v ¼SäHùàí6˜_´ âàYÁ¶ò)e_&µ0h–kØ4¢-<«ÀÊž»T°‹~Ç»‚,m9ÙUñ‚&bɇóïBcBs¹†Iûh‰UaÖ¦ÿKê9ÍWKë5·,xÑä&¶»½‡…0 ®” #×Ý’¸à¸þÁ‰ƒ,ùv5h0tµKЈ,¥35¤Rxü®¶jûø…–ÇÃÒG"ýK´òŠ©™¿oJÖsH—ƒÀ£ #jržCâúÇÀi›Gé©p8>bÖ*«œ^oÁ99Ç€ÁõÌûXÞŦ¼l+Žœ†ã[£éÄ–›([’lÊ6!$ß1*ë!¤G_·ÝŨ鵽ª÷÷’:ƒÀcàJí:Æqcbï$nð8øqm?Q³Ê‰âiv»%qÝÀ“àj»1[œ€¹KoÛ¹JJ6Gj ÏŸ3øbâq³¢aq±çÁÏë;lŸEâ“Ä£´î±æ¢—"ìïTî!è_¨{9…HàUЭ¸\i&”0’!Jj D‰EàÖ,Àú¹wÉdÁ]KQ‘R <†?¯ZÁ—•>¦Yø\ò¬(ÊÄ)ñ`¬¦X±Z Ë6ËvíFN-É;ËËÁ¸Tá×¢ËvKú,ùC¨ÿ0a2+êÏè\µ°8÷34<¨G©]ÈQ¥ƒìK,@qÂ[à·Ú2‡y Ò ¤vm]¼Šž`6+;h’:}ÀÁDË*·‘¸n ¹Êm{2ìµÀ«¼uÇ—.&CÀps+‘Æ=uCëœ^WZÈ[‡Óàú‡{N힇ÝìwªAkßÒ#˶kÒl ø\?û”_uÌó°Ðm¢ÏÝì[·tFô«Þ†¸xš’ ŠO%•dßåeá/#óÍw£w‰ŒmÛ†¶­åSd'™ æ£„nÑ…|HšN€O´~ªIâ³Ä£©F?™í^Õ£±»°‘f’J½cöƒ÷ëÅvãÀØM&=ÎB‡€#àJÝ«\Oö ~‘3m#å•Õè6äZ†º§íY"µN§Á§Û2=yÎBh~z¶žÄßr’Žà§d݉Ôì^oAŒŽÄu/‚ëÇèä3éH~8®ûWñ›×à+¯5Åo^x‰C¬ƒ¼§ <Þ‚úw¯Á)‡µ+¤4 ³3­['«…ùunrhh¡SÀ ð‰ÖXè80 ®?l˧µüIà%ðKúzH7à×…m9v‚w4CL¼&º]Ûµù´zGâwDOË­ð|ù÷èZ¡a¼p//{“F¹{µÛƒäUäª êZŽÔ8A<š–»GC`ð•(ÙÂgÖ2¯ê[Zá«@ =çC[ª¤=À¬‘9éŽà1ÌMh®^ñ4½È»BÚû‘p`­v1òÞøÉàeϦ´‘¼´úO 2á4¸þ–¯ÄߨT“纸T3SÌ»7#¡¡–žP V¶ŽïV<·ìädßå èOhn%~”§ð¸^ÑâÕ>Zªr’M9|*?jl@ß‹na–—–’ÍI'Ô Éæ$îp,Q«"ªi±CiæÛ6»oW,§@gø îzJz’N:e€‘ŒMÝxe­Í®(Xwò"ê<ÓÍ]£Ìª¼å僆³æXJnö^¸á$ø¤17ÛÍÇ YZõÉú)4 ¼ ~·ù>Fâ.ïëÛ±;¥cH*Ü>×{fÉ¥¬5×ɣƯÅ+F¹Á ½èøp¢Gcwç<»›bò7]½^D˜W›s×]$ÖJÉ:és xüvóê}hX„wÀõϺJjšQˆwU›“J÷}hL„sàú»‹Ò³H?A<¦f/¼ ßXÁZ¯÷¶ ëtñ…],ÜÍ^›Gè)?\ç–}—/@Ëú‚„ÉÙË1Þ9”òŒoDvÎ¥gŠ_#U¿[¾Öú"È&lኗ*]ÛÆ/‰ßÁv­xß/ÿ~]+4\ñØ 5§ÃZ© Šöƒ+¥·qgtíGj G¦ýz¨•/H—[„á#qØžÛ'àI¯}Àap¥%7À“¸]Àðm±´8îA‡ÃϲôÌëNž@“õ$ÒŽoßÒÖReápÂ&äÆð¯uÁkø±ÞCêô-Ë!qÝ@s¹1çƒub¡@'½«¾¸Ï&Å`âì:¥ÊX®ºdUªòµ³HÉ!à ¸þ)Ñnž¼ ©Êá9Ä7ë¨áEu÷=Ênaã^u)~:-/€›Ü¹ÜLÒ.~{'Õ4†·X)EZëþË{€Á[ÞôÁ¦ÁõÓ›öP› /ýQøÄcÀkàj§ï깬†Ýoïƒ+ά/u±üt%Fê4p\a(á ÉŸ>×Ïäe‘LÞÚÆA$ïUVË·„¹92p¦­å i)V¬iµÒ:_ ]Á•†Îúçºøˆ.;œ“.G'Á•jÈõ6$îp\Â~žvDß±ŸU<+r¼¾Þ!&ëO¤äp¼=¥0-x ¡ù9áNJH:3/ëB¤Lp?øþ滉ë€ë‘˜Ú¬ÚGñÚ† U1Èdù ó\àaÁŒ1Wõ+n‘6dý‰4Fާ™èŸl‡R½ÙÒ†J…©%xÔR¢ýÓ>*Pë¹…Œš—‘RGçÀÏ5ßËHÜàypý#\ƒÌòVø ¬àø…u*é“NƒO·¥OÊÁS›°N /Ç“õR§ØÂu*‰ëš[§žNÓSЪ­°ìÅó÷Ù+˜mxüŠ1³íÞŒR©n8®±—7ÜUàpý©­t$“Ä?Œ M5Έ’#[o,¥žœUf³vf%#UŸfçxüŒ1ÚæœÈL\–õ#Òë"ð:¸Ò=Lr~DâÎ#…µ×ÑtÏCnձפ£Qy4¢<ÜiÖˆK ‘K­:+4ݰr¹j°V“>1cÃm‡ÀÕƒ6[IèAàaðíoð$þHͤìñÉ`íØ_š9ÒãÃ2ìAh~28øü½}²í›D^oÁiú/‚ëŸvØ™V™°Ó¿–fÁÍ¥ìzÁÞ`CË\Þ¿ÕËLoƒßn}ƒ¦èNñhªÁ‹†Õ ‘3üâ䥤Ž+Â܇ÁÕÂ/vC¬¤Ôp\i÷$Æ}Ìo¦Yp¥vX÷_> ¼Þ‚I ‰FÊ,kúpý¬ò9~¤È,ð¸þì¼¥OScI…VÑjûÀÍU;RŒÄ‘2ƒÀÃàJS9o!q{€GÀõ§0çÄUfáÜ’%?*Øy¶æXXµÈ:éxxü¦¶®*q^Ch>nÒUzðY÷qàË„{Á÷6ß}H\7pø>m“tJ/hI~?p?ø~céñìB¦âJŸ$mO‚·`ƒ†Ä ‡Áõ7hºÓ ‰Ò¤Âð4¸Råæú Å.K§H“&€iðœë qg€càúç:NÐUïe»”§x‹‘bâ i–.€/hkÈ£Wbêâ»/<ãk)òT–U$îHjú¶pŽæ£WÊQkRç"p|²ùžEâÎ/럻í:{…v#³L¯€«E¥·HSžŸÂ)ÍÏš›a¤Tð¸röÑ»w× < ~ÔÀ,<\×JgÏ“"Ç€gÀÕZqô§òyÛ8a'x§A{ÄdÏSºsĶ1{¾€&b»²ç‹øòE]+4Ìžßc//ó’è¯T ²yޤY/p\)àÍ5Ò5©q8‚x4 7[§Ê¤-¯ÙÌ£OÇOõlð§\¯ÏRÉõ*Á΄³à³Ú¯0î—ïÀ žñ’’åÍû5Y#¥’š»Ð–p |Jg€©_ uÑwVŠVœn1÷Ú’N3À[à·Œõgq÷Ú’´ËÀÛ‰ÚEÒš¶Ü¥x%*iqø\Ûl„O¾pò¶¬Y-éÅéyxü¶¶¾éУ<»`¯Y¤çæpÌònÑrJüÆcÛ’Îtôà+„ipýCg"ùâë«.•ñäwL ñõ%5õ¡¡ùx@ÇûdûNÒãbñ4»ï$qgZ×öh#ùcÀ xF[=‘ú?²RSîßcÌA¶Œ´¯¾ù葬Ã^€§Á•¢¤rCâöÏ€ë¯À÷‰syyǧkd§Ç%œŸÔÖé~ØO¢{,0«\öÜgNQô;|úF‡jKh?Ê—=ÒÍ  G#¼®tÚHse½Ù„-Œoк´ bÛß ñ;"Ø®øÆ:¾üº®Æ7^X9¦‘z½Àp¥\­ºV#5†"ˆGÓj Ô ÔŽˆT¬§b×Ä®Å0ÓѲxtµbиIÏódíà×eæTd_ç N¸¾ ý:‡y ÃgÜæ,I¾¬‚ïÊzæ"< ®Hj”O´ƒ‚å šžW:¿ÓsÅ\ÿDâ†Ip¥+wäFcw˜Oi;IWJzà".µvHMäø<’Ð|AŽ>Q»M)‡•4Ú<Þ‚}· xü¨¶uNðsÔ–ƒ_¢k„èF\Q RÖH³cÀËàúÁ•}ÀÃaÍïˆmíÙѰ’ܨ¬ ‘^}ÀãàJ•xä\ˆÄuO€+Ý+·õsðe§R«/«`­“À1pµ £Ûú¤Îð:x Ò8I\x\?³G”Ü‘mÒ¤Ä,ð¸~ÅH•&ýaZŽæ›´zåEÒ§x Ѳòü$®8”0Už€åp8óm> (Xé ð,øYcV:R›Ã'ÉT)š±Ó.*FKï+¹µ¼ÑÎï'jwóê®I¥'z$8>¯¯‡t›þ¨°1ÇF(hqÙ±mŒPølW„âKðå¿D× oø´K+N)î`q#Ýzûm¿á“Ôˆ M“]§á0·jQåÛcTW=˜H‰³âᜪv?“MŠºtËÿìKx\iN³µà:½ÀëžCU_¥‡ŒC ½àJ ìu‡Œ=~Õ[³BÁ*ådïãpÂá„F½›úRcÊF}®N8>bÀD™ìTfBéÈ"©Â€z·(ÖíœRÅ[ödÇpRæð¸R¥1¹1œÄ§Á§µÍÓ_ Oú*·¯‘23À‡àúi/*Óô/æhfš^7|–.t|WAÁàqp“Kï˜Ø"‰ëžoÁ•î$®x2aêJ÷l*©ÙÁ¢©j©¥ò“BÃÀ ð e?IÄHï\|#; œŸÔþ(},iñÌG:G„¹œ×χõC¶N¨ÔÚšåh‡–äÉší%D“&4Ÿq±GÌÙ,}<*;JWÀ¯4¿…‘¸³À«àWµm§½'®gÀõëׇ”ìuvol«;IŸÖûÃpÂap¥Uý Σ ï æËoÄŽ 1™lv#W @ƸŽoË1bG€ðŒ¶Å†Ä}ÔözaƒÑ¥†^E¾Øi4¼ ~·-ó‰?/!4ö çoÅÏ#bûÒ¨xÜ\úclC⺇Ài›æàsm[aL'•/‚«UY1X˜‚”ɯ‚+õÏR‹8’–^W+ƒýé®`w%XÃÉ6gÒbxü¶¶6'†¦ÇsŠ ¶lùÛ“¼¾Lœã pý)ùXØ…lÂNðNƒ:&"Iñ¤.ˆmcD’ÄrD²®ÔÝ‹aº_Gv_ûñ´úü1>ÄNUÐSãã „¨þ5ˆ–¤§Î—“ù"ˆGó«ìglN,!Õªaþ |˜?Qû}ކÆå}cRç0pÜ\Ø0vb@â€#à#Ú6:Þgç©]pV]—úknaÍökÅÏi‘’ 8®¿u‹1¿lÑÞÑJô›™îší1šF¬¸%ºÂ”“ð3ì½–ç¸UéeûŸ„ÏÞ¿¥ý˜ÈQ¶r«Áw^µènÛ.Ãl±lÑ”¥ öн¼Irr";‘fOlñv—2“)žÍcÑì_öeþ^€ð¸~±¦àeìåe'çÐQ‘6“Fõ³Šõ4x?+O§Wè¢ œ ±|?#òáÕ·éàH[æOãþ´Ñ—™gÂqÊ®µ}õ‡v!ÏM2˜¤ZÆ\šÝÝ4P`…ØîŸþ&aò2¼ó, ßE.€~î’?éyÜŸ…‚„çÁõ+o_ã!³Ä \I\ù¼ÐB±Ü¼Í³vIjÿç 1á5põËK1Òë%Iæ4p\?|ÓÞã"kHRã:ð¸~âü„üÏà „Zr“kJRfp¸Ò®´Ôš’¤uûÁûµM’äWÝÙæmäþfèX)Àÿçñ{„WÁÕ⢦·uI£Y Vieië].€/è7(éšä¿|üem=º“Uä/³rì×_óΉhµg[y§°M Å8’·—ùmÑòÓ¯€ú„sàúwƒô±`ºP(¸ëþŒ¬B_ %õ ]nq6éÞû« ›P¿÷Ò]Æ’{#ˆG󳨄µ¿ƒP?¬MŸX··ÜKgp2ü+öš¿Øõ,é8< ®´‡,·žýjø.á0¸Ú^ÑŸ™Q°ÔHñÈ«Þ,¢ç¤Æhñh~•ü67Y'þ‹pÜ¿ˆ?wTâë—§XNú)6˲qÚÅlê‘V{€ÀÍ%fÇ•§ i=À!pý¼li7!ñ#ˆ§ =Ý_‚i µzº˜Þ#&¢Ní£b»7ŸVÛá/mÃÊMD×_ƒoÿ5ºvxW#N/qüŠ]–mH¿àQð£ÍmH\ðø±Ö6$þxñ(Ž6—uÝ—ÔŽ ž¶Œ6Nû—ÍmÆ0Ú,úÕâ[~:;ñѾÌígåä¢U(¯Zo=M±…·ž&?òÿ#III¤úà5ps)«qCIëNƒOë»vZÁ~3Ä£h¿DŒô˜{ƒHèuà,¸~†t{"ñ7#ˆGS=¢=)]oûµh _›0T!§~ùM4ž ºL²ÑfƒÀ“àæ–q†¤íƒèùÒ<Ú¦`£àp­¤Ëº6: eÓl1ïVüÄ_¼¬`° À»àw[b°³À{àúënРɶrRá>ð!¸~6~Z´ò-…J|–\µ•ÕJ0fU\fÓvµU±3²öWà„z%ßyØnå“ôš^7w;Î¥HÚ𸉠uPUÆ–Ž3’"³@sê Çr–©tW…ê²îóWatÂAðAãîÓÍ]GÒsH¥#ÀàæÎ]ÄyÎ_Å+ž×?v±Ÿ-Ù·´Â/¶V8ÆEÚ ÇÀ•Òœš©ã©‚‰.EO L”NOéOÅ*«b‡aÍ*ȶnÒä2ðvÂT%å¢u[¹œëñÛBäOh~¬ýu›W¼¹ž¿È%'ÒOK4ã(ZÏx=Ÿá!6h@š¦Á[p· ‰Ž«5¨èOw¥Õ¦ò_/þ:øN&¡Z~§Qóî ÖÄ’ œºÔZ|I5p’vx\­¥1z“"·€ à ¦ÚwXã’:YÇùz˜ûëÍhß{kíûýÙH·lÒéðø¹æ·l7<®ŸÇÔ‘Q°L2‚xZ3!¡)àEpýKs¥c&$>A<Ús)þ¿WÝŠ´«"Ûf¾íäj¿ÏÑP›QŸ“>‡#à#Ío/$nÈÀ™•I‘'‰ÒmŸHQT0Ó)à$ø¤13õí¢ëø² H¤Ì5àMp¥‘)f<¬Ÿ€DÒ.oßÒ6‘r‚!©qø\?Hò ¶–u*[;1q<Ûâ?XuVV ̳sn±h—ò6]pK5WR-˾Ì_ÎÁÑ\¾ñœx™œUÈU `Gê Ï‚+9¶œÿ¸#ÀsàJKÑ-_ásËÁ7p>Ä •â÷§óžIää;Ò%[I½óÀàús‘S[à á t(Í-Ñ‘^Yßú›ð'ÂSà§ŒùVǼ¬S‘É*/µåœŠÄSà)mku«l3“ €ðŒ¹ Ô}ÛsÖT¬r8 >Ý«ŒgÀõcÉÖ ù×7Àõw ï‹¶üĶë_ä§™ÅWÝ9+øôã媴}® VTò¿E¸Çûà÷µßD%ò[!°… ©_“I¨ßšhkBê·nCàQð£ÍŸ¸]ÀcàúUFÒüRá¼Ë¯5sÉ£"³éF@ÊNƒë[*[ß§!láV¾»!¶[Ißµ Û·•ô |ûOèÚAb+‰×J-Xë²-›t¶p+‰ÄõÛ¸•DâG"ˆG^ n¡A]&5F#ˆGó«¨Å¾¾Žû݉fƾN ¾‰8‡Í.bå’úà‡Çò•œ‹‘¦{€çÁ•ÉHÍÅHZ0 ®v&f‹ëÈ–3!ñ©âQ4W"FzÌ ½LƒëŸ‰‘n>$~,‚x4Õ¸–3¡*áÁ\!·ÀÂí‘[´ž…«¹`ñ–±3|…æV+ÁrhCö5¾í…ð¸þ¬kN^,Üñ Z{†U}žé-å@9ÛgÚ²¯ò½PŸÐÜšó¢x•Ú¬Ÿ×š(ùTˆ»ì6pÖjvUøû $áEpýCfj=ð÷Cþ÷'šÙŸ=n¸¿Xq yûÃâ/?š’ì‚IÕ=À$¸¹¬Å¸.˜¤õSàj}_ô§JI‹¤Â`&a i±~à"¿Í\y%KMçÁç[b©qàpýdàNé¨HþCàø‚¶:…¯~æþD3 _ßÖ¾ÓLÙHÑA`Ü\ƒ8"i{càúCü±p\¯ lÍÎU\ù‹ÃH¯ 𸾃«,Bn@ØÂ`-]º!¶Á€܆í ü¾ýéÚá]öm <г^\4€”ƒ+-Ëå¢$®8>¢ï4²ÑÏ"ˆG10¡ëäÆéâiË\ô‡á¹?œhæ\ôØ–hÀ¸F,€ôÜ< nîLVÜèDÒz€çÀÕ¶­¶ü4ÍÓa,v˜7_Co¿ˆÛ,®ØjYK¤Ý$ð¸ÒZWÚNcÀ»àwMØ)X1ȶrÒáð!¸þ³Z+ÿ$,ýÉD3[¹j}Òj°uôIZp(aª‚~séüÒºãÛ²‘>Rä p\m°Tˆô‘PmýôŽÄŸŽ ™¡q`[¤Ïb’jýCx=á¸Z‚mÝC¤qÓ¹Fê‰ c³9»X^;< ~TÛ8)keÅÎ?w' [¶é >ÚÊ­–J$“õ%Róð.¸þ`€ò¸þªëUÆ<ª"H°Ó³ZÑ@æóLHŒ4²îDjžÞׯ̅BÌ›S ¿b£àšU¨Ú¾¸ÍÁ mÐÊ6gQ¹±e«@EÇÜR0X¡ªÀ²/ó“ð>Bs…˜qCҺ啨 °ÂaÔÏ@ÂAðA­R7ÐS*Ò’‚n#À3 ëåbšIÁ)={x¼UpeÙî‰Tž7w5al÷Dâú€'ÁO껌l y5ÂËõ<˜Ô8A<š_EmKägà·?“hæ–Û’û÷ÁÉÚYÀN*e’¶{€Á•NòH­ÚIZ0 nà$œlމ‹ E“%b¤Çä‘Ð p|¢õƒ‰ÏF¦ì¹!ÏÆªÒãû¤’Zþ,š!gÆWGÜh×zHsÄÓäÖCÒNσë_s×;&bòÒÓ9R# œ×wä݃æåSz&Ü ¾Û¸¯tåc«¢ÆyËÏá÷Á›î-$­x\)tËë_I‹}œº'}ïYÕÜêF­pßõQ*jãûÏÃ~>ah|ߺ£ß(ä;%]öÀ•2)å&£$®8®äÈ[3·2l¡ÄØn°¸¬8~ÅÉQÈ‘å\ϳÅEj›7DqG“¯€÷óh„sàú­“Ÿž:"<ú´ä®—˜åG›B1ø…Œ¤¶ÿ^F˜oÙ=¢$4lã=¢$>A3÷ˆÞÔÊä’}‡_€ío‚ßÔ~‡Ãa¢ãÖ¬2&©Ü?ƒB„Fn‹j~&©z8 >Ýôq”¤΀ëß.Ó­r†T¸¼~«MÃâ?‡Õÿy¢™Ë^Ye¤àà0¸RèBÊkHZp|DÛTª—Í“ x\måТL.Rt ø\igPÚhIàCpý]é±Ä/D¦#¢™›Ê*ûp„ï0âà*Aä_„tÂó?›ü_L´5˜ÿ‹ÛÐL0¿SÚ ÿ_ž°¼Ó˜zó¶Ÿóœ¥zË’¯ ž.ˆîÚ|Zm‰ ÿ q‡ªn70&«È/áóÿ¾E‡‘ïñófÏóì‚vQv=« ®±¶r[–jbZ]KÉóÙ²[(¸ëþŒìÛü2Þ€ð!¸~§,ïàÿ ²ÿ•®ƒw"£çm¤ÆÞâiCÿû+ø¿’Ðìß]=Ï mâ…uÙâ:í¸À é8<™hY=Ï_ç8œh[=O?A<òjp uëº0©1Aæ”òÝ$ŠAŠLïëû7î¸t¤ï¸üuØ™°¼×¸ÇH'’:ýÄÓdg!i»ûÁ÷kÛf?[² .Ä š65{ 83o¢§ &:A<-0Ñ) ¹Ð=•UÄ_³ ² š4I/«UÅŠþô€hÐV.çzâvJWÖoþ=¬ýï7-®˜Y73!—œH?-Ñ£h={L%ìâF„Øøiv ˜7W¯$6>@ↀcàjéïÑŸªæ&àepµe]ôÝ`ù+ÙÀI¡ëÀYðÙ¦7p’vxüf;lRäp|ÁTû¦á ìxdç?ÀÜÿ!ÑŒö½·Ö¾ßŸý€tË&ŽÏ›b[6‰ž×äo>%ùI` <¥­‡J¨ø?Â1[²ÿ× ¦ÿ‰¶†ìÿã6l_Èþ?áÛÿ'];¼«ý~²·Ÿ•Ý/ÝRm¿¤æ%4æœrí—ÄõOëŸk”ŽÜ“øÑâ‘Wƒ逮“g#ˆGó«¨Eîÿ3|÷?'š¹?³’¬|DÜ» `ÇÆͤã¤ñà8øxÓ§3$­8>¡ïѲA{Ÿ úiG… = N+m—è5#9‚x4Õ¸¾íÄçó§Â"Ý0/½ì9KUÊ“žUü´Bsב#t´ :úT 4:Úºœ*½±Q¶ýØÃ†±C×çð‹„‡Á•vÈ ]$n7ð¸R5ý­[˜,é«ÿ‚=V ¾³ËNÞ.:9^\%ø‹1§´fyŽU’®£EjÞ¿Ó¦1å7à<¿‘04¦l­Ñ\HÖ‰H•½Àýàû›ïD$®8®t®q[æ»SbÅj¡âlõ¢¯ZZ’uRn8>Ñ&×ùM¸ËošrºÓ‘C[§³ØQ“œ€Ž{€§À•&·R߄ނ+Íe·|‘~~ç”U(ðnHº#)s˜WŸŽÄîS {)˜é*ðø–˜i8 ®lÓŒ\ü›À[à·´õPY1ÿ,KØÂÈ-²º!¶‘‹ßÚ†f"òYÿÿ_ž°¼Ó˜kùWÁÓÑm<Öò_á!*k©+uWð*–SðëHþr|ïßâiõøm˜>ÄNUÐSã¿á „¨þ5h¬Ø¥«ÎÿH ñh~•;â‘_¶sÎ2íW èƒUª{È(­4TÖ–ÒýýÿÀ—$¼ndðÄ–Þ ûŸÿ?¦Öu×~üz ‘f€‡À‹bŠÎ’¸½ÀÃà-XÊ’¸àpý¥¬ÒÝ-¤ÂQàIp¥¤ÁÆ.Ñ`‰ØH³ À1p¥Mdy—8Ì€gZãÃÀqðqm—8”¦b«A_GÕÀ â"[éûÔH§ à¸~q›Ót'ÍMÊaìT|–s‹"˜çgäÏ¥þ/ázOƒŸ6f»‹¼,mÌPE²þ¯D[ç$¾3‚mšGü¾@ˆzóˆëºêünBôë!âÑü*CŒ½boн4O2,99‘HI<þ¿ñq‡Àõ¿= ¦eš×Œ½Ÿ^(-SàV}vßñmË·ÙœQ¹weƒ-Ãë½î“ öºçælßW(Àü¿ñ„Ài¿Ñxð­-?˜œ÷iòæ;~š=ªæ×•±Wø½Ç*ùco–‚NÎóØTÈ¥ÿ(J8®ÖõFwŽ7‡ÀÄÇùÊðS]A¯ËÀ+ 픺±›NËVÐgHç1®% WG*åb¤N¯ƒëŸ锎ç“üÀ0YK)jµ½øÂ+’Šü\”P¯øBcwý½z»Á{͹kUÖ]é_Ú Ü—Ñ`¥~_Ê]é¿Ùìß§¿Ü+åVíRFá ì„>jã‹Âž4ý§‡€G €Zù·èO¥GúGŽFPùîmÑyvgÍr ]ðaIGç?/œc?x¿Ö¢+ú[gW+•òÌø¸]®.eèÿJÎX±j ÊÛãÙìÕ‰Kãq*Çí?Nƒ›ìü«^!Fê~à ¸~ç/íDô{×#ˆ§Åj—Ðÿ ÑÐ2ãDd&›fsÁ\*˜^½”áÁ„‡’B#Ž' ¡Ò/›>¡ ×(ðtB7ß칱ɕ›¸瀔F{6aøhG½±‰K; L n ywÿjÁN³WÄ*hRzĵI¯A3¥ck[´šzhæ—­œ=VqŠü±¼CT“¤yõ\¡<Ÿ®L+Úte›ss9é£*ðÂyøÿ¼ö»b”ÖÄ—mVUÏ£«Ðd.v`®ÈñtS ±Ötvßu\^ƒ?ç+èux^i®-t/‹àÕ±‡ç7‘ÉžV1K˜Jèd²×íš®\SÐg˜\-s ÆKn!#öpRpBMsô¥Ù•‰«cW²WdC\‘KÀYÁMä Èîw`gž#º ^'~:½øÄ~VöÞ/®âòg½|Ú¯X+öìRÕ)ä?ðáŠëü™™™Çù·è÷ÞÊ»Nrôtv4õQü,;‘Éÿ;“½<•›˜šœÈ@63‘½rm*ó,æ5{ß|2÷ø•;÷¿ó®]À¤àòuÉé7úžƒ7?ï:€¹þF…ýL6~„´LŽ{À#•!øþ÷Ûâﺟko¾1?†fºsûâï{H ­b;>ö[ôw=߸íS„†íyýµ' _«„_†ÿ±²ùez· Øs#K<þ¹–X$,(ðà¿¡m‘wÝ’ç7Ÿÿ¼±Ñ½¸Ê©®Ø¯ÈÃ]_%P±éÜ>zòyƒü—¨­¡{'ü×1wìÞ¼ã†òwÝ®¼ê¢ Ñ'¿ü à„-p¾Ž]À·'4$¶gÑY¶ ~½<rñ"±à„MÌ\©ÄæÂ ù…×Þw±¼xî_é|œOG_"µùh®Ø¥Õè†ᣩƩh¾ ÍÛ…|š=a×)ù°kèè„§ æ)m5'{Ý]·½±‚µ.¢«>«µ ”0”é—ƒ©y^:.Ó“¨uÁAÃéðÇÁ\¹Ëè4#Mü$ð§ÁúFçû Àÿ þ?µæÑßz÷øFŸõwR8Šx–j¶ƒ}bû'4$öqÐ÷@ðÁ;ö´@0_Ol.’Ž'I팃F_BëZ$=5vGÖ\ôØ–låZTþä3÷èгA?µK¬å*ï|ø©O¬dóƒI'<+¸ÚE&õËörNªŒ¯C-ýC ×kÇ6k·ÞZ%«°á;<\+LW^µKnÑ.Y¬êó²õÒ÷tàú"Žze ê\|#ûpVpi•½,X¡>µVdo ájÜÎ n a[>ö¸&!ì„I:•M²½ÁïÙ@’Ölu]ŒÞ Z~º#µ 8$¸£ÑÒÕº¸üƒÀC‚+&ÍëùG¸g¿¯)þ1ò’[õèdDÐÑÔ¶˜‚?>q—+ë–'ë2¤d/ð¼àj©õ1Ó՘ͦ}ðBåìa›M$?¼ 8¡![u^½ª O8)x+v›HÜEà%Á ì6íeÉl–¶›Æ._–nͤÊð¶à„-oÍýhÍýÚ­yÂàNÓAZ¨^»réêøÛ¾ŸY›¸z5ãÄfY6ÜlêGS$<‰¦xReõ6›Â/óÿéͦùÚfÓsî¿ßôܯ¦즘xüM{ÿ¤ü*«)[Nosà9eMm9-pGE£fm9¹À‚TE¹˜Éj|0úmà—€‰ò'y>’ ~ûÌ»i ß+<âð-àßb̽v…**¸Ø·¿ü;¹˜Î¶Ó÷ü‡[â[øIðO*}‹èO÷¼Ÿy»ŸÿŒ±ïÐ0ý1àOÿ”²«všÚíø,ðçÁþL»ÿ—Àßÿ=­‘/ú[RóÈF¹ßwœ°nöO!öà‡Œ‰}ÁžÇû ø°à‡[ ˜Ïч#sõá„â\½{Ñ—Þ| ­qûƒß±yÙ¿Žé~fÛ3*ítÐoì£ß@(0¬^¤÷]èw:7±M%!;ð…t¾P´§ÔSg0!TÀðÑü*ƒT“yÉò+ŽU›T²z¡3å8ˆÏ4hÌ‹{­jeÕõb> Ò¶–]†à­CíõÖƒ‰Ú°cÀ[ûtÕ¡ah÷&†æW‘ZNlŽNø,jÖ‰.—Ÿ›žWÖRÐ†Š Úõ Þ‚ â\\/¼Ÿ.àÁ ”µ“u“ü£Àc‚kl¢Çù„BEùÔóáxApµ(¼¼?œ^\í¤‰¼?¦WÛœ7àcÀŒàjÕÓM—“ç]Þ\íÚky¸ ¼%8a+üax[p;iÙ±‹äßÞœPS}Œ'ü`Ï_ÖGâ¸OpÅ­õ|³§ì6îU—”\­#­/5f›¤õ n Uì ?ò)n^_s kvžåªKV¥êQy½` š—®,Î5<¼%¸Áv´kÑ·m«à»1Ó/r—£ ÝÙ`ô§Ò³@ß¹‰íš#S.D͹ñ±w«NÜ=’äµ}›>šŸeø4Œô+V©ÂjéXyÇ/Ûž_2VI”Bå8Œ¦ØZx“ßAê™LI«uj¬ý5Õ:|šù»\»B —õJk‡ÅK¤Sü£‘‚É\òRúj*ÍŠÖ³ÇViÅžÍN¥.Å”ÿš#З0}SÚúŽžÞz½±³6¶Þ^%­(ƒ¢„£PtT[ÑüÃFtUpÈSÐŒc«Z®™f§‚¯¢¡.á4#çËÛe»”>{`U}Ÿ¢E>e~¢2íö+Èçü–•·Êt‘ôûœÆû.à}´ßçÁiVYwÇòN‘ªéòʺE'_¦+DƼjÁf—¿ÐŠgU‚©@…¹k¶Çhz´Â9ï­`©/ý6gð6„ð6ô­13+°Hr2Íæ3áŸ}ãñ›sòî|Šž5ÚÐäÝùô8gÔžfO"7g¿;_N gÆ9ãø®üg=×!|ˆ×y¨?šnµ¿¼ZI¨•L˜Må­±'DCÖ>ƒÎË)mv_åZ¥Å!þT%D«V;æPÇ’\¹@7K^„ZÛlÉ4ôHµäÁÓl´`­¬ØùÑM Jë6ÝÃ8ùAmݶ˜î‘‚í2Ћ0ÜmhƒíơǸQÛ8Í’ž]¶<‹×ZÿO±Ê˜bë›€Š„z—5DÚï‹ v•ºf¡a?´êoƒ'¡Ç¤QšZ]‚v„æGgýÈâ(;‘žœH_žØ²Bš˜·èt%Ä”ˆÐPè¦wÑ~fË…z;ó<*@¢/5¢tЄÄwnb»b7Wð5®hº§ E¹7I®&ÄææU4÷ݪͽ®Ô]‹Oíu׫w>á*¾ÆÕDKFùF``ÃÇQz«§àT[Ö.×`ÂAØe°%v¹»¶ Ðè mbø¨}€ç~‹§=m—þ¯c¯H(4Púí‰Dôwýôw8Â0ðyèGøä¦®­~H¯çÒÆîIR/Z¥ñ0kà-ÁÂ[¢šoñÜú­Ú× Äò“#çâú±B°~-eåÜ…hœ(ç¿ß—ØÒ›„^íìÈ•6OÜù…Ûfýøã_ÙæÊ'Hè~ørÁ­Ô>þïÇÃ'q3ˆRÎÍ;¥:;dÑq²Þzâ§ZÓq±ƒÄ£ F=—߿݈qÚŤÓ|¦xüŠvõ'–‹¥`¹#IHõ&Á­² ‰?ÁmWLjÚ¦GÍ$”„꫼ܕزɭi’‹Ý#·XgùÖ*›tá÷BÄÓj5và „¸mÆ-é;tÕé†#„ˆGó«L3özà |Ãÿ ‚¿®Ç"·o‚çÃu¯»Ì,&©~؆S¤ic ‹ ãÖ·ü¹ |þÀXS‹KñáÏ ð!øÃÖ»8= Äc¬£©8•B½×Ë«÷h7-­×‡½ñ´Z T#¯¡^GÓ««ýl_ñh~•ÛŒ—E¯ÅÎhXôy·³ìT*v~3U#è~’ŽïV<·ìäRá–”ì[„•«oƒßÖ~‹¬þÖ˜J®8ë„p ôˆR±c{DRç4ðøµäzDwxü¢¶½z™»ô¶«È¦¬q5ÒÀ)ð)muˆFàPȳh—*<„9> VMU¿B{íùÀÁÄfW˜U@¥«4{"Îb±K)ÙDÎjFq¬³é®ø2;ómÙÎZ`#º8ÚiÌë‡Öœ•’ô'ÉÑÐÿGS²-`oäa›Øì@Ø<~JÛJÒe“¸üQàiðÓÆ^ÏbÞösžS&gŽ}È'ö%Ú:5 ñlÓÔ ² 305Ø­»±ÆiW -B°LNŠÎ:ÍÖWÜ*›e¹$ÏìM³QÊPM¥嫸Á^}óѣ؎0VÿHHsýéK ÿósV!èÁ¹â|ž³ËÒž²<ó–—§]_úsÉåïâóÞçϲù;žÌɿР^‚ð%ð—´_èåð… îJ Ûh rÎ--gx²Ð,s–Y²`—V*«É²åù)v“eSlô•{£ŒÎ)³Ñào—Üj)ïÊ¿QdÛ ñ2øËÚot%|#þ{Í./2‘™¾ŒW»üqzz:Íž­x$;‘•W><ƒIîÔ]ÑVþá¦ò…ŒMƒ%åÍ2ÏrJKîzh Þ4R©4ÿ5z)rÄÈ!ÿ:‘äzÙZН3¾ŽU(¯ZüËOd²! ë¢í\JS•°Beƒÿ)›žŒŸòĪ~êbÛÀ.ª¾f{¼Ìž_kº,ïfxþ¤¯Þš#P~«#±å–¢Ò µïßìiس‚S ûQ¶ýó‚µùÉæ¤ß§u8.€+Ŷ¼Ï¥Zïd¯Ø%z¥Sôfçα­-wKi–Éd¤óøYÈ ò5¢ð´##UßZ©7 ÜY1G4Z5ï ñlÓô) 5Ô›þÌêªC«ô=Ä£;C—=ÌÀÙŽàjÖiT»f§˜)èÖ ŒD‘äu«{Š´ÉHnËÐP4Ùõ>âóPè'W°|_ÖˆÃ0adÚ`h!¼{sý+Ûõ £Áž?£¢˜Üò—Äž?«m©ašÝU‚yRXnÑFžï$½4&ÝÎïßkC0!ÔêbLäTìbLcê‚Ø®Í§Õ£‰ßA<-·×gºVhØ wóŰ‚j½‰ÍðU¯@Å^x¿®Å~/D<&–E–·R¥P*sJy~¨.hç"|tÌÔà+ënݘ½OGœxÒ‹ìÛœ‚­ Í­ŠŽÐÛ¼îú¾³T°ÙšU¨Ú~ðvÒÖQhD™WvŠ€Œì˜Bʌπ·`L!qGgÁõÇ”ó,™·—­j¡’ª–¯spJÖ­HÉsÀGà´•ÝAn%© ŽrŒdA¨»Pý*ÏËÉgq±ù¸ÌÒh7p/¸R¿V_ê¢ýN½˜4Iëî×ßaVÐÀ·ì!’'å æ¤Û=)×3n´ŽØ"È ,v)‚xZ`± p \?ú³3­pW×á2p|FÇ0Û:äŠJ‡LÊÜ΃Ï7¿C&q×Àõw"¥ç#$þañhªqºÚp@¨¥3ÔÍÔ7r¾2s—j{ò;ä•dE¶C&&€—À›ß¼IÚEà¸~ó–ß*%ù—WÀõÃýò+‘ÈɬV®5ùðl¢­ëA¿#‚íZžÃ—?§k…ÆëAÜVP­¨¿еØ9ü^ˆx4-Æ7gxÑ Ûckv®tÅ‘U!õÌbeh¯Ñ‚QRgT.਷7#mÕØQœt¹ œŸnþ(NâÆ3àj3šèO;™¬‘üëÀà7´õ¸Gn$  Õ¹ýU·Zȳ%›Ç¯•³|[ä-ï©—}”Ÿàx\?®¨²ôKA:¡‘¥Ÿ©¨4)ÔW —˹:‰ë?¨m™}žˆ(‚ŠOƒ+%hÕ·ï‰fiÃWÅFá¥i—ÀÍMÚè p*Q›jÚè8Ë­Ú¹§>e»lë d›7)vøøkÚ žã˰_r|ž5–›!½}W¶ltyÐr®¹²3%Ï]Gº×™wŠVÅsbcA±îF*Ž‚+­âäÜ-R˜'5œO˜HjžC‘ø—"ˆGSÃ|峪oçÓÌ ß[w|é`ªðpÔ;ÝW÷X¼HÖaH›áÄæÒ;œÍvwx\? -¿Z%ùç€çÁÏëë!=ÇK"¶pµJ¯Û±m\­’øl×ju _~L× “HDJ¬‚n½À} Ý$’Cº"h&‰dŽgt®Z4©¬~0«Ô¼ü¡(òœåñUw]„cÖ#²¯Y¹&æÀç´_%Í“Ÿk+#aóÌænfnÕurb;SöÆv¾¸ìFzŽ6¬& }"abm¤{µW£?‚x4?ÌN‘Z)©KŸ#‹?ëê‰ëLöD’êg4Ü <®´-^W³T1XÇ9åÊú²¥ Þbí²“·‹NŽÕôÎ(¨}x\)2 7V’¸à}ðû­+Iü\ñ´ÅÅ'áÖ“Muñþ­GEd½|ž= WÙ›Ør'€¤—wn÷ò¼³æøÿæY*̪°‰Ímk¿š[•µ3©; œWÚ|~,‚y–¨p°Å«X^Å'ͳ²-2’ ®·@–k‘“h…$ö<¸þä]ºE’ødñ´¥EFŽu4±EvÓa-Ùv8…¶G8®4c¬«R_Éås¬`Ž(뽤Ðp|¸ùÞ;%i½÷’xAOÃ’}“+°á}pýÉÒuz“ðè^>&…uÙs‹ÁлÌ/8­ˆ¬véûy¨¦Éñ:øuíà]ú|ð—¬ÜÓõ`F#¾rÅY¢ª–Ò‘iÔ–äÈÀÕ¯| "6¤HÊœ¦Á•V§1ýiLH‘ÄŽ«%ûEz„å覊‚ïÒ*ÞbK®[°­’t½ Ò*œKÔ‚ šÚí&Z_µåS¢§á-„‘º0†[w é3¤â!à ¸þYŽä»CÌç©´³[›ÝÐLGRÃȬ¥ u’÷Õæ«³*qBúì?Ô|!q»€‡ÁõoXÉÐjñ„奃vüQ¤ kœªðÖNÓY"]çÀõwTFÒÈ\¤ ¡Æ®`Ò+ëF¤Ip/øÞ滉ëîK˜*~îälÉÊ¡i&ßD˜îˆH»~`<£ß!J»M$§¶•¡.ŠRtAlC]sh,!¶+Ô5/?¯k…†¡®®‚+; &…z}à}*Šq…ömSè¤õ|>yÙò}1SPuð¸V͉ºá^ ¹ ^Þ¿Ûü5‰Ëï%j©¹Íî‡IÜEà}ð6¤äF¢ Sr³"ò°­‚›õ,XÕl+š[°à©¬œôø¹ö"š¬Þž‰j¤h\&ª»‚E—ÒZ†ÔÙ<®´j•sl· x\iz¼uÐÎ/"ù‡GÀÍÎk0X44Èðø©Öä(p4Q« §iƒ´@ðéN›\Îõò<†áÊ6ãhѦ«àúq•õÁ‚°1Gó냾²å%GŸ>#} iÔÔÊñ‘ó× <®ßŒ»U*®‘ ‡ÇÁ•NA4°Í†²mFi𤠒¸À1pýtÁŽŒ‚]2ÄÓìÅMUº v|¼õ3'?A<-_E®‰if@íÂõzúy·u­Fj EÐL€Ø?§Ût¨||𥜼M‡§ø>ÔšU൉=7_ÍÙ²,rgŽýóDŒô®Åœ#< Ì€ë‡a¤FâÇ#ˆ§=³ýG0¡ùÙþ¾Z;›¥ ˜d$Rjð8¸ÒP)7 ‘¸]Ààj{:[ı¤ë©˜ç$ð¸Ò$;&yÉu+tµcYÉ6Ià$ødkl3 ¼®¿§Ó•’^‘SÀ+àWŒYf§¸öKÅ(³À»‰Z^U+Œrx\¿BœtÇJâïG¦ür¶`Vm©øJ7Šâ÷¾Ew¥æÅA'Ú,°üb¹âVœœ¬î¯'àx\Í¢?½Cº'ùñÚŽ·*vŠ•\¯Œát$Ús–ªÑêÞ¯<ªéÂ_ɾƫP0’î¡ùóaíÌçÒkvñ¯ÇWEg줫‘¼ý #1{íHœ£MI~r.Pô–Tíu¨Cx\-…£nÒ¿eP¶ï!]N8k~ßCâO«ÑŸžeIJ.Ûrïwx‹BXLÀ—u(Rq8®ïP<›¬Ö­º>.~°­Üj¤ßòl«à|H æïîÝ;$ŸMöxáMð›Úï ãz 鄿c\»7¯â”m¤P°…i]$®h.­ëBÝ U{ñ,Kµ¡â1+á-ð[mñ¤'ðž'Mñ$µÞô ‡°?Ѳƒ[Oà8Oð˜9¸•áKÜh;Nû¼Hq¡ ëH¤ëð&¸~—tœé7Ðsìžå\Lö|…Á7àS„‘K# ù×ÞÍžjöÕ;²~F:3à&£ž1~FâNÇÁÇ ,㤷^I à$¸Ò2v‹"gÈy^u+öfuÏöiNI<ÓTúJÆ7á9„gÀÏhyQÝ”‡Ìc«”w‹ß–>$Eše7À•*žÇøRLʉ»œŸm¾ “¸³À›àúÝNßXÞ.Û¥`¼•NO$EnÀ´šŠÞíˆe£Âï…;NO)»v"FzLT˜„^^7pŽIÖz$þZÕÏ1Eª~Œ@h>*|0(Knµ”÷GeG.Òmp|´ùÍžÄížW«o¿å§i•0ép˜JÔêÌ· D M§Á§[c› Àpýã"ì}V!éçd›6©sø2øËÚj-Ô‚bAë׺è„ÉxÜ2grÕ?)TÜøá+ÀõÇ™lËM‚é’nÌì ¡*¡^’¹Uér xÜäŒ)¦¸Ià,¸ÒŒIoÈ#ñ7#ˆGS ó®éê…Æ‚E&²\rJVmáI¿!F"Ù×ø"8¡¹˜7oÞÐ+Ú|KùÍ,cüöûYų‹6ÞÂõíÈŠ:hí²¯ó~¼Âû6ï|ET ûep#H\†Aðc·TØ Ã;Nô#Ù—YÄ F²l5_æ$?ÀËü`5WˆXGHf’*~jž?i¬_:,*DZ‹¬Dw#ºúlv–ee{*Òî p\ih•ë©HÜ0ð:¸~ñ¿=i¶T­ާP²‚4¹|®ïQ¼µ‡µíƒjóÜêÊj-õœÆÁåçÖaV¹ì¹Œ¥ŠÒ×áq4ÚÚS|0w]VpK+v‡­[ž¸4€¶âu" D š}tX” 8|1\‡PÿÔvB.à@BOGÀG´?ü…$ŸOëïœ*F,XÐ|Äa$âPrK¶të&µöO‚+ Òr­›Äíƒk›h“OD³à¬„£àJÑ–ºöé”߸ ERÀðZ?¥€ò9 ¼®–ÀjÂ"ià8ø¸1‹ìP¹b‘T¹œoA؇ÄMµ†Þ­+ú4+I"®oßÒV…ß`To™Ä‹ª,E:Ò`KÂøÍÝ`$ŸøŸƒlÂNðNƒ¾sü‚2ç» ¶gÓIü޶ëlz_>¯k…†Ç/^Yn¤_/p|PE¿ºGÔ¥ÍFjŒ M³C¡‘&Ï?Víj€ /]/©¬ {Fî 7>Åb³L%ÙŸÔÊgÁ[°Kâ’À›àúAÈ̑޿% nï‚ßÕքǪŠÖF-º€;xEˆARÅe¸ ¡ùX•Â,þÉ3À³àg›ï4ôÏŸÓ6ÕPš"¢ºwRœZÁBç3àjs!ƒÇ蟽œŸo•®€ë‡ê¤ ú‡F¦¼fíB-àÎÃb½ëNe•U<«ä—-/I6PkÅY“ψ_.Áñ>¸þ 1XÚõôU(@h>bÐcÊ«–¼«“6û€Cà-Hþ%q»€Áõ'"ò%÷Hþ!àapý²nòóXAØÂÕÍ» ¶« ¿#‚íZM¼/ÿ¶®ßâÜpPj¤[/p_B÷çº"ˆGÓdÃÔµ–ªÅ%Û£Ö0…9Ì‘Ôñ)LH8 ®¬—†Â¢T9 L‚+Ýø(×Ý’¸` <¥m­~–ä{ŒoìI—Ý&e.¯ëg‰=I x áQð£m蔊MØÂ¡vĶqh ñ;"Ø®¡¡„/_ÒµBãëQee5R­¸|¯òÈpH×b%ü^ˆx4-öCu¨ì<³hˆ°='‡ÃÍ4T<ãë¿A&¯‘*û6.lM©4§ù6ûE¾A-GPÖËФ\û}Õo\× ù’^vh#]µêDÉ m$nx\¿øE6M;\aefæÙeÏöíR­X|Þöù•§µ¹Š¬_‘º'¯€¿¢­ö¹ÈamžGKYw>Eij™ª´ #©ë;ð0ÂsàjÑ£º'xrɉô³‚S|ÿäR²NG*Ãë;•ærNGâΧµ« uÇŒ‚af"ˆGÑ0‰é1i!$ô:p¼ I¹$þfñhªq Y!¼ƒÞ¡b—k%«¸‡–Dx \¿2L7Ï&–TŇxÂnðn­^·ˆ%tfè›)¨7<~Ì`#9§Gâöƒ·`@ó#x\@SÉØ N83ï ·^¿Ü·8¼~¥5nq x\ÿØŸB!)RàpÜÜŽÚ¹Òåp\©Ž¶¼M®çÁ•ö‰ô†@ÿ ‚x4Õ8ËÏk“Ç•’뉓Wb(,Y…Â/>,_¿"LÎñ,¸Òþgý|hšJ²§%·âKÏ$I£4ð x š5‰;¼ ®ß¬å7BHþ5à4¸þŒV>ÎR…Sv‚w4CL´‹‚]ÛÆh‰ßÁvE»Öðå×t­Ð0Úµ'ç2a7 {CàJû–\³n]ч#ˆGÓp¯Q¼ã >—[õø>U:5‡]‘ÍS³¼ºQøAk§óÎò²íÙÁ$_j–'| ü5s#=å^ù²Ý4éò^àQó»i÷:ðýàïoC7Mòÿ@:ˆgpÂvÓÔ¼º ¶Ý4‰ßÁvuÓøòºVhØMï¢nšvÔ´ëîßß¾.zÿPˆx4öò»ê¢ëìGêwςŠ#uÊÛÚ=“.ïoó»g÷ø>ð÷µ¡{&ù_üBð/lCÇða¸a »gjZ]ÛÆî™Äïˆ`»ºçàËD× »çdþ5R®ØÞ¯Ü;ïÒµ©1A<š6»-ީߧ^NiÒò™g¬Š³f3·låœÊFJœfWÌ8ú(¬Lxü¶±.Y1›™”y|þ¨ù}2‰»|\‡SÚ±Hü«Ä£©Æ…h6sýâ aI}¿nCx\ï¦Èèoõoždb³Lþüi•Þ¿Õ|_"q·ÁÕÚ•–/} Ü8D<-X>¿ láðN}sĶqx'ñ;"Ø®áýãøò×µBãÕWa=Ÿf…ʆ‚v½Àý‰¶¯¾>Ž(D3«¯W‘/Iã몂]Z¡s$ë.Žm„‰;§d³u'ü”—¦BM'¥ûÕ¿F'|\há—Glñ’ËŽçW˜]°‹Á1ÅµŽž³tŠN%ø-ßþ2_ûµ´ì»ü!èO8®¿•u€ÞųÉ4É*ld¤«~üa(ó‡7ۇǑoí²ÿH¢¥}.µ—.ˆmcŸKâwD°]}î—áË™®ö¹Öl¯â䬂ŸÎ»‘D§ h/ð8¸RòHÝî÷ìŠg•WICÚ‡¥¬DqHB+!‰TÞ¿«mc^Zë©í•ì‚O…ôlŸÊ?”p5Z‡³eIuÿ(ÌO˜OiM”ëîQñ+Õ黟UAÃ+À;àJÓŘ.#&A…ÄMï‚+ÙQnŽNâ.ïßÓvŸîs=YO&î‚ë'm’'¿Â§›-P½¬×ƒÛŽ‚6L¡Þ±§ÁO·~L!ñg"ˆ§åcÊÇ—'lÞ˜ÒeåevB½À>ð>å1¤K×^¤Æ¾âÑ´—¨MšÏÓ–I0,ØÏ‚Þ:qKVÅ/‡ùO‚ŸlƒKý Èþº.%×°ÿ¸03ÛÆÉ"‰ßÁvMÿ$¾üŸÔµBãâ@tv!Í6‚ÿ¯ _/p0¡[h¿®ÙHƒ4Sèþæéö¥y°b¥KÝÂ¥ù³1¾¸Ý³‚>@,l¯êúS06á}ðûÚor&, ͧ±,o/[ÕB%Ô׳J+¶tæýŸ†v„gÀÕÆÀº©Õ䔳*•ñHŸ‹ÀKàJ‡äæ$î,p |JÛpR”ÇÊONÐ0£àQ¤ÐeàpýÛIÞ6ø^’’¢üuªþ¡K:GàÏÀ§'Á'uü+æØ*›eqª½wîñÝÕ®Íß%°cÑ~§#õp|Vl’Î ù7·Àoiëq„*Ú9=“l·ôgalÂ#àGÌuKÏT»%Ògx\©$œ\·D⎓àJU¶Î|S̯X^°œ ÚõDºvUBµ\¶¥—¼¤Z 8®tâùS×b$¼(O‹Ü¢S¥Ø–ÝBÁ]|Ë)? þ‹îVëyQ¼£ìÙ9›©S3²oóçàs„æN]«Üµùç!p¸Ú\ö€°ŠÞÔØA3k°Œ)|š¿€Ïñð犟&!»Ø!±=À>p¥Õñ6‘¯Nìöƒ÷ë-ÕND‘.‡€ÇÀMž™Œé)ÿ~‘ð8¸ÚÕ¡ÑŸžÇm7Ó,Ÿ;â.}Š<¼ ~Ó˜Ízpž]ÅjsÀ—Á•R:å­v ø\)Ch{MQéë=HƒW€¯ƒ¿®­É^Ñ¿©Yû a_Ž{Á÷ó”ÝEëY’·ð”¬³BCÀ“àJÁ.9g!qû€ÃàÃm˜A“ü gm ¿~ñ•‰¶ …$¶hn(ìPù {"ˆÇÔ8h—ýLE¶‘.€‡Á•fÉ5·x\mµÅ"ã 9A<&-"}D€taÀ3àJ!/y‹žW;yýéIºJ¬Žª%çªÍWqËN)h©Ò=©vxün›z´¯öæØ†ÄöÍõh—%KºðjIJV$•÷oƒßn“¿–ûj#V|.7"˜»<¦°÷…ØÃa±Ý©´¨ÕCÊu_ g"< ®Ö#FzW)=AÞsËüüׄB¸–´:Ì‚gÙkWh/[]Þ¿Õ[Moƒë·¤NéÜH’x¼]ýò_våh¾E«®[I›½ÀàJIšrBâz€CàCچ飑@m­HŠŽ€´¿ý’:ç€càc­1fÀ3mX)’üqàøD›Úï_v娆yÕ_B+!47¯ºÉ^£Â¬t»s³a´žr/vü±Ãé.ùtþYÄîlÏq¥¯ë$Ý÷À´ß¡G˜Sv§ìk`ïI4ãV‡=¼ëì(•H•mõ¤Ò>àQp¥©Ž\«'q»€ÇÀ•"Ï[¾Äåâ¼¼µâ–¬Â6¿â×àÒÔ’ûL¡+i{øøKÚZ §Úî÷ž½B ëkþE8 ®ykäk¾Š¯‘JgàÍ÷57Ì‚«Í—£?H¥·Z‘u&Rgx\¨²}ùµpB­í˺RwñaÆùP=ÓÐe7$wo>šß@zÃôk·!Ý9ˆ´!þ >>a'x§Á3ÞS._Ķ1#ô¯ÀýBlWFè_Å—ÿ«ºVxQF¨µD¡Ö’‚~½ÀÁ„nF¨ö¡MRã`Íd„òŒïàÛØ…Í›]¬g¶/îþ’Tñë`EB½Œïz–TºU˜T9<Þ‚$%7 L‚ë') ³²ç®9|fåÛ%ßY*Ô²Ë|é‘tKçÁçÛÐ|=<…°…½1µ£.ˆmcoLâwD°]½ñ7à˃®_·U°Wì’ìÙÒ©¸/¡{ÝV¯®ÉHâÑ4ÙEÞã¦,Ÿr?{ã,3‹‰Ï¦Z ç¯Áž„ÁÕî7WœŒt™^¿ÒüޙĥWÁõKü2Õ­òtÖÊçnR'}®Àõã(Y~sB…Ÿñ ¯ðµø±IZ©[ÞJ• ø¬lùThI>Æúð&Â,¸Þ‰¹^ƒtº ¼®t6ÆÃbNü~#¬Gx\鼋œc#Úá¸~αtßHâç#ˆGSÓ¸¢©²n[OqçÈ©OÜK7¸o‚·ž×?w+?îþuÈ&láìçbÆó×mýøl×ìç›ñå¿Y× ÏÍ~ï äݰ˜Åsêô÷&to‘Ó^z~3~/D<šVÇac‡Â°Áœ§Þpmê’Jÿ ˜‘p|ÜØ¤g=”ó*W€ÓàÓÍHÜp\í’èO{YÑ®¬ºòSRã:ð¸~m ù6ÿ7á„-ìy©uAl{^¿#‚Ê=o]©»k­¹ŽìøÚßÄÓêOð-0|ˆª §Æ·â „¨þ5¨£ÑUço%Ä6aˆx4¿Ê}ÆîðóÚ´MçÓ*A?6ÌßlfgV2lÞY©z6»”\¢ó¶ì{Ãö˜] –-–œœÈN¦¤;šoÃÇ$¼®4ßZ;„I—MûÛNØ®ßäˆÓ¥›)“¥5‡B‚̳+U¯D”E«â9ÏÂmYúþôÝq;«Úyþ¿ƒ |nä‚£ºy ÉðVÖ4凴¨þDÀ—ªÛŸaŽtêÜ?€ª„zùèOå{¼ï‚lBó=Þþ-=ÞìlV¶Ó#µzGÀ[pàå»Ð0‚Õ¶Îpš\?X<‰CSÁ8Y°7ÝHÅrÇ€WÁÕvÈêÆÍFï-ŒªXë&ðøÖXëð.ø]ý¶$}ä…äßÞ×_Ç^el¼Æ‰?Åj¡â”Çám*-j]õ ¬dméñO'àxÜÀªÒÒwC6¡ùépÙò+öD2ðîÌhš>á«ÁÇ’ŸŒ‘v½Àð‘æ{:‰ë2p¦m¤=,É=L%e49Lƒ§™«·f!]^¿Þo€+ÕgÛÁP™‘ ³À;àJñÖ4o>1ò{.|¢ê€’j}03Çpµ¤œz³Ï]zÛÎUμ#‚²^CJžW DÉy ‰ž?§¿0Ä’ç)ð”±÷߹ȗsuäþ-8Â÷Û´Ñ@â;#ˆ§Õj|¾@ˆz §tÕùþ„X®†ˆGó«œ`bï ÍždÒl®àXÁdæ¥ %=”Ôðð‘Ã=«ÊŒ¬¾µoI|œÏe>õ ½F§ÁGUôªuìtãδ6ÒçšöÙ„b?S_êb°Ô‘z˜WJíÞº´\-ØiöJ¸é$]-‘´I¯A3ýùîíW¬{v©êòøpÅu þÌÌÌãü[ô{oå]'9z:;šú(þ–Èdƒÿ¿É^žÊŽMLMNd‚ ›™È^¹6•‰›ñ÷¾ùdîñ+wî=~-æ]»€IpéC@ô}ωÁˆŸwÀ¿\7ÚV±ŸÅe©ÅYˆ,Ò Ü)— D!úßo‹¿ë~®M¼ùÆüšéÎí?Lˆ¿ï!ûèï?ö[ôw=߸íS„†íyýµ' _«„_†ÿ±²ùez· Øs#K6ûß¿³{ûïŒWŠåñÇÁÿû¢wª—fÇs7É^²''í쥥©kËã~Õ[³B6‡[:çÌÕ˜kÙ)Ø ~åÝM¼È¨3/ôD–|óñ£¶Z©”gÆÇƒÿ$ãz+ã/ú¯â"Q¼ ø6øÛ›^ðO䧘ü´»`žª b¸¾¡¬b×ö¦CÆPÐ(¼gücàSѨþuÁ‹%wɳ­§|øáÆ)“@J}ð+À¿BE¹˜Iº[­ÄHý8ð+Á¿Rù“<¿„B‹–l Ÿ.<¼ÿiðO+{Úötìh«àlŸþ,øÏs¶]‹~ÁòW•¼ìŸüWZâe?üUð_Uú[~*ÜGÁ.¿üuð_7f—ÎÅ1‹üàçÀ?׋ü{ào€ÿ†¶EÞuKn`œß~üóÆ>F÷â*ÿ¥ºbQÄ“(qBŤsûèÉç ò_¢9=‚wô(»iû:æŽ}À‚wÜPþ®Û•W]4úä·€œ°Î×± ø–à„†Äö,:ËvÁ¯}'/Bð NØ|Á´àJ%6^DÈ/¼ö¾‹åÅsÿJçã|Â@´>ú©ÍGsÅ.­Æ'aÈÍl¡Û¥hòiöHé%õû‡Ð‰ð¸Z…³F1ú?õ‰Õ‚l\œtbÀ³ êÚõk)»í¼C2›M¥YvìòeéÖLªLoƒßnCkþQaWŽz­yÂà^ÖAZ¶^»réêøÛ¾ŸY›¸z5ãÄFn`ý(šáIð“*ë¨ÿ³~™ÿOo`Í×6°žs¿ø]«ç~5¥`ï~ààolÚû§åWYMÙªz ˜Ï)«hj«jè€;*5k«Ê~ü£*ÊÅLVãCÖo¿üK”?IgŒÿœy7M@á{…[{ßþ-ÆÜkW¨¢‚‹…%¾ü;¹˜ÎU˜+þÃà?Üß O~ü“Jß"úÓ=ïÆgX'Œ}ü3ƾCà ü§”]µÓÐNHâ³ÀŸÿù?0íþ_ü÷´F¾èoIÍ#íy dÜqPðŽƒ­q³ ±‡ï8dLì ö<ÞÁ‡ï8Ü Á4GNlÎÕ‡ŠsõvîyD_bxó1´Æí[ ~ÇæéÆõªR}?Ì÷J;ôûè7öâ_Øiâ»JÄ£¹â•VãÇðN!ªïÕë¼¥Õùñ„XÜ…ˆGó« 2öÄ^²üŠc¡ •¬^ŸÆ§!4æÅ=‹Vµ²êz1„„ý„¶}´ìòðÐÛä­?‰/¢ž·îÐU‡&Y»#ˆGó«ÈG­~*±9ûêW³Nt¹¼}ò°—je*ëN)hHEûÇÁk@±•›I\/ð¸Òq¯±1§4I\P9ÊöœcœL3~‡ËY…»rüZAéˆ+©6 œWÚ+­+5XÊÙ6•'i5ä¡ÿ$ÑÖ.ퟠ±„ئ.í§ñBÔëÒv¿[ubÏ56!n. *VrÔ)æí²³ìTFSÒŠý >¡Ö¬ù~²C4㾯;Ö2õ¯ÉÚ'J3q-aš‰RW³ów=™K1ÆN3úA&˜ÂS¥»J2•f%·ÂÖloƒÙÏrN¥AYµØ× sm _]ûµRõ^˯óZÒúþ ,n—ò>UùÌ<¶Jy·ÈIZéE 3àm¥ï¿Ø5ßxüæ\š×&ËPu‘ÙÑWîâÏwg³ÓÓ±eb_%Ì£'¼®_÷ç&Ãÿrnº…åÙÏÚHNd¦RP·`¯Ù…ÙWïpóø«î:{åó­b¹`ûÒ/ñ/ 8áMð›Æ¦½‹ö3¡XÌèDâ~Ñhk“´I|gÛ4w…!êÍžÛ[mP?N¥_Jˆeá>ð}§•Oíu׫—ÕðKø„ýàý­·É/á÷BÄcÊ&–‚M~vøå–Ûä—a‡_n¯M~¿¢²Mêþ”>'3üß¿Âk' m“~c{è‘þ®ŸþIŸOlüOnêÚê‡ôz.Ðü@2­a¼h•ÆÃÃ[¡3á.}Üqë·jø÷or1¦Éì,Ð¥k*{i}Àýà— ?¾ZÆÉ•6óNîüÂGþÝ™Ïÿ©mž¡œwò’ÖÇ÷bµÀïÓ®}ÿßY+qsˆRÎ¥K5cL>›šögZÔ)aýZC< jÔóúuì§`ÌV$Mjz€GÁª(;£Ú“1bÀ¬wú£Uæ!ñÇ#ˆÇyöV™+;¹÷DÒ.Lܬ“÷­i—‹ØŠ‘Ûj½aHüÁn»4YÓ0h.ö Ý1ÖÙ‹?Òëì€E‚+µV=ëøcÄÓj5ºñBܶ2’t’N]uvÂBÜvâW –ýOj;¿ý“=± Ëcsˆ†Ç–Þ-½NõÖÙëž›³ýØeÜ;ôà3ÖYõk;vÅ©êáX¹KÛ”Z&Ü%ü †xZ­F/¾@ˆzŽ=¤«–’5Ä£ùUú·]ƒ$©T8o'¬³êlÁÐ:#•OŸ28§ŠÙÄê…ã(ø¨¶™Î²p°ô™½Æ¯yäOЋ6"ï4ðømUÏ3*µ¸å '¿|‚•EgÞ5!©ìxapº¤§mÏÒí•u/Ò#A<†<—âÞ?isxü†A§Ùû'qãÀYðYý[É(7#ˆ§ÙmžÄ%·Àoi¿þ.–+X¾üÝ̤Åmàpýf}Ë hÝõžúlͱØk+Aï|Þ§ê©Î²C÷ή:%ªš¶óH±UÙ7 Cq„u¶pßdEоZ>ËÛ~Îs–Ä2õnNd¯º*ÃoUØæ Ÿ9ÒÓº}xÂðí×g¬àÊæ•¿¼ûåG烿 û`Ï*­ØdI¥#£z½‹€5û¹~Eå@Ræ ð:øõæ·s7¼®Ô»jÈ&ù³À›àJݜތt?Ü!D3Ë…bF*©K$ºX[ÆìÔrÓºÃr8 SÐîð¸ÒR]nX&q{ÇÁ•krÍ„ÄõO€ŸÐö‹“¸1›WèJð¹$$e]—T; œŸÖoÉÒ餃pUÂNpµ¥®™Y-éÑAaÌÆ{Å$·¼¹7õ\l { Gré ‰ïŒ žV«q_ D½Àß¾w«Nlû§ÈÕ®š iÏFƒkI»Ä[aºÖÓŒôÒ<ÿ5ÍpsSšyE+XùÉgãÆw$œ×Ü£L< ôåK Ò¸@Wð-ÙkB@š­XÅ¢%^)h¾x-Τßä´'¼~ÏÄòšÑ·§¡ˆÍ²Ñ‚»2h9pñ^güŠåUÞŸý@š½üeÅr ÉÚOÜr:›’•£PŸÐÜúú6½JiND)gYÖ¾Ì3#+ž[È‚¿+8~%9?Ë!•f÷mÏYß^#²u̓5_ã%z÷ʾúæ£G)<+g ^¦tÏñr{òu·°üÍ¥ÉÀ¿ŠÖ³Ú¯f¬BÁÍcýúÄ„ü ÇK¾þ’ö eè…2þS§|oÕÎ=%Ûð„ð@a·TبL1K(èúí`r¶PôÂBÚÁ†áä„Ájëü€÷šözε—kzŠÑv³š¨Ñ7jlkO+ý6#øê„Àõ£ÅI‘"¿¥ÓÇ%Ñ¿•W—AEÂ$xR[Ý;a_OŽqæ}›½=:Èm=¾øðÑ>_ú=NAwÂ;àw´ßã"ïâ· ?´à*œeÒ\³Èd2òýû(´$¼~ÑX±s±ê[+õ–¡‡ ët¢­kßÁ6­MÎà „¨7º=ÖU‡ê2ï‰ ž–ÇÑÎáSœK˜ˆ£Å ú=X%)(× ìïWóûtmFj F¦ÍvQ× ²²–‹ìå×òŽÔ· ÷Š#Òê ð¸R(;&ôy<O!< ~Ҡؘˆ_¤Nmt¢ªé£Ñ T:Ü7æ—휳ìäÚ“¬“~#ÀÛà·µõäÇúhgØËÙå`Bey´•Ê5 ¦ŽK²ž™žD§-ž½Åˆ<¾!;ˆ'ñÕ/‚›Äc‹ÄÖ¹^Ñ`‡ÙªíÙâDv` ÂÆ+Êz)5¼®ÐÙAÞ$©I ^BI26ä1»’ÙPóKÉ: ©ÓW0䜆Äu€+%ßkî¶“ü!àApµ,ø-zH{Çx¡Ö'Æ NÅ.ÆLº ¶kóiõÄ÷ÚDˆ;”Û†ž"KŸ&Î4w…axízûºá¥]ºF»ˆ(Dt=ÇWq+Òôðø#mÏðĪjqÉöHO~ݧٔ¨ÉÉ’¾%½µ™+E32 ùYGIÖÅH‹ÄÓl#qgipým½®øàFöŽƒk+2Θ|›13·dóٚ«¸ÂŸÂ!ÒgЮÀq®$tOÖn‘¦06_…t¦ŒÍ"×^Ö«I>` Çf× 476ϤÅõªãmñ$Ú‘eN)OÓ¿À£’Ë­.•£3F~ÅS(ëAz_E[ª†ÎŠV%·J“KèMuåè½NšÄ58a nän¤Þp\ifã+›qèòç·é¾oÖ^Ø¡ x?ð¸rý¹¹8‘¨®5ýçhÐ/¨°Öš“·#Åi¤Ý›ÔÊÀô›™ôLôœ™°¼Ó çÄlN’“vA¬¹ÍÉN&k’¿Ø ÞÝ3ÌâÓÏêš¡ñîdE~wrm‡PwR;—žÔè Mƒñ½;³’‰ìø¼0GDVõ›°+¡ÞÞÏi ËÏ[~+ajùYÏÛöV4Rmx2Q«Ó„í9±}Àap¥-N¹I‰ëŽ€p`}«ðÝð4øiã®±Ÿ»†ý¬,&J~VÐrá­ðŽ ÀÛà·[ãg€wÀõW¦}öĶùÆ—lOFŠÜ>׫ôd·…sql^O¦šBZ €›«—ë¦$®xühóÝ”Äuë—/’_9’üãÀàúÕÐäçtwà„-œZǪ́ bÛ˜÷GâwD°]ywñåïêZ¡ñAU;”ëö'tªîѵ©1A<š6SMý‹D ›˜ú×k¿èª’êžoÁ õ\…p¼3Ô{ðNÂpýê‘-'UéÔ€ÿNÕò¤̤^WÊt>?B´k^Úשø²>|~Kh>?bW¸×g͸Ø2©s x üTóˆÄ GÁGµÍtžåi;¸è”l¾TGêYŒ$KÈú)y¸®¡{H>•w–—m¾ÿÂK©ñ­=?Cɧ|ó›oÊø–³|;=Ç»/£‚é·™ƒó>ׯ¡s„oØÓÆdðù»¨í¾ÌC#ÂH¹7CÍdƒ3•›q¬•d6%Û^H¯àxÂ||=¦½¸£À ð‰6̨I~˜; >Ù†¹\¤\R+gÔ4ê‚Ø6ΨIü޶kFé>š8£n|æ­‘n½À}àû”'Ôi]“‘Ä£i²kÔëÖRÿ‚žW |÷›%³‘<ÁÃ=rYí`\ÂHÒˆöpü/9赩¥ˆ¶‹<·dyWFÊ6¸®f»7î¦%BfÙ«]ëøîÇR(¼ Þ‚S˜$. ¼®o¼r7Q#/I“+ébѤÎ4p\V5J>eår®—çÖâZŽ5Ës¬¥`*Eg’%õ|.D8 ®6UU©6ëL¤N 8>Ñ|g"q§Yð¬¶Õ§øy*«„i0Ö€².EJM‚ëOmyúÏ]¦ì`ú͉8¥\¡š·qÏN¡Z,I/ Á›%š‘~×m—ýŒôzð܉p |ªùnEâ./ƒëïˆvóAOÁ*W€3àj‡Åc­·ÚÐ*w€sàJUä­r8>¯m•®´tr)ð¸®?V¼Ì«ŽÑ"UŒ…êæ•u/râÊ,1Ùâ—:ùª=Õ+Â58FÍÚé©^£¤V¯B“Wk¿ÏÑë÷Ž–‚IžçäFeÝŸô9 i¾û“¸ gíé”H…SÀ³àgÍMBF—-:T¡d˜4ðø¥Öæp \iÚš¥RÇâΤÊeàpýùY>›¥ã‚v>Ãîø~ÕCˆ\,2±¥’‰ô¹òÌ~§ü'ÒìkÂ38F²Ð4_á*_äùtZ¡Lî ¾XˆeÁ$ÝöÄÔ϶r«üRq4L:0õ:&Œœ©iudæ="M5öÐ7œ¾’ÂòÇЂ0r‘«¡žã]_$Û…^€§Á•Ҍ亷x\íaô§‡pQš8p”·—­j¡Â’ &; œ77ÝAUÓU¬txü~k¬t8®_ý«3¶{#‹Ì€ëWêççoжŒ8¼×ã)¥ž[UŠe'˜+³Î¼C‡Ñ–ª|Ú ö)le=ÁÑÜù›ã¼/¹¥±¢ãS2…È|´å (E¨w+E]ß§à¬ï“*£À³àJs/9ß'q'€çÀÏi›ê$ólr§.­Åæ¢Ô…¬7‘jç÷Àõ½é0ÏÙ¼í·¬ܼt/ú&¼‡0r–!Oê¬LÈú)2 oÁ*†Ä2p¦?3º®`ŽSÄcÈo¨X#A<­°Æ(0®ó‹þôä2la ´(EZ¶l«&Õ.çÁõ£>sâD¿ã£=§ù)‹4s–km=þ–ì :îO ë9+N)ÿÜ%ßöÖ”ö­Þ+\…c$ïÁÄt<| IÞ-ÍOÇ˃’2€GÀMf'Ç´·xü¨¶uFÄ©e”ó>«¢óz ‘rÇ€×ÀõwÏT2Ü¿îBh¾TD¿It²þCõ‚+•i—ó× <~Hu { ù‡GÀõ/+–OÇøB8a'x§A3Ä$ÅÐN[Ķ1)æ Ñ,BlWRÌáË‘®'Å4l©tëîKè&ÅduMFj DÐLRŒJßú~êý‰fô­J!R¥¸\ÉVr*‰ëöƒ÷kÛä @Dp€%KѲ“R[)˜A{ÿÅreƒ•=;˜%V\oCºÕûñ{„sàúÓ½^ò'ÊNuªE8Ò"ZZ‡@ §ªç\‡žˆ­Ê×yuµûÁ(>ß 9©‘®‡€ÁM–1‹9ðˆ_$Lƒ+•1“sr·8>¦í(Dz¡ääX~©…éH¯ ð¸~¼ñ _·ÔšKŽ-”–e×ñ€#Wšë™ «"'€'ÁMž¾‰q¡ ‘ƒk›èô„²çælßgÉ-§|‰Þ×ß™œÃ¥ép\¹¨2$å„E96!¼LóIYß Uú€- /“¸n`ÂTx¹Sz>‡ß#WÛz0wʇt9<nò¹&žW  0É0p$¡‘eð8érxüBkL€ÁÕV:ÑŸMÓª+-‰e{,¼ýJ¶c%µÒÀûàJÙÀϧÕðÈ /í;yaqŽæÓjvÐ×’uRåð¸R4CÎuHÜ^àapµ´ÇèOO‰ú”BS¬w˳tð”Ô;¼nn¶¤|ªšÔ¹œŸoѦÀõ÷{¤÷ãIüÃâÑT㎸\,rÑ^´Ö—ïÃÔ(ÒDù‹žM9Áú,éÛÒ!^[xÇ;àú;*ó¾eH'43ï3½V$Àà-¸·–þÃ>àIðlÚÑØ ×ß´;”Ê0qÞ›¾Õ2«H—Ò¥}8®¨‘'/ðr0’ê¬À] {Á{uÐ û¼+øÅ•„æŒ]ÎeHÜnà ø ¶Y.ò^η 6?ˆÁO™[Oí§Äîo¸K/½IJŠ΂ÏêOç¥û¾U8 a'x§A{Åd#R.YĶ1‘Äïˆ`»²|yG× ³ýÊŠçätëîKèf#îÒ5©1A3Ùˆª5o߆±ÞN˜Ê.0=u Í8kþÔÄõO+$’Þ†ƒŽ‚êödó¤¯ë¹îŠ““¾ƒêB(E"ëΤèià+à¯h+|ŒW$ˆEá…P(áGR¿§pjÂcàæöØ÷H±“Œ§p*Âsàçšï\$î8ð±y2•+X¾#ý4ðø-ýNHÉD·#ˆ§ÙC!‰;¼®¼ÛÉÖʪl³&î€ë‡eU‰®ðrŽMÈiòÜõŒÒõ¤O°…9M$®h.§ißæ%Û ;¤ËAà(¸¹.MiŸTIÓà-8]CâNÇÀõO×ìÆö€|Æé‘jÕ]6¹Ò enï+%ÉÈÛæð>¸þÖ-Oç•í]I…9àø‚¶*CÔ»®Zka+æ•ç$5+ 3sWë^Lgæ“FÇgÁ[NâÏ+-‹µ3óIƒóÀ àJ õÛ²ZýR& ¼~¥5V¹¼ ®_óP)5ŸT¸¼®–¶k&5Ÿô¸A<­°È,ð>¸~ï:„ºãÁÿ•l:hy²-i4üð/ÐÖì=|wÑ ‹­D '‡WMÔîòÛ“7¯R~î| tÀêá-ßþí×’•xMØ ÞiÐßbVoè‚Ø6¬Hü޶+`åãËûºVh°]²+ÖDšþzÅ*­´ïXËeËóÓ½{À•µ0ÉLÏœ¤ÆXñhš3# €Ù¾¨PÆw¹-:ÒZ±=æW—Ölªh\+À.©sæ&Ì€gŒ @/ºö7v"u.o€+‹rã‰΂ÈîžIþMà-ð[æò”*|‚° øÔÈú©ÒÜ—hY>‰ëö'Leà+Í«ø=Â!psë¬nÞ9«Xå8p|¤5V9d Íôm¥TùÁ¼%›­8Á,ÌÕ•mƤÔ)àUpý…Æ)žAËs^©OH-Vˆó¬ 'àx \)3 ®;õ`¶*ëP¤M˜W™äŠÄÇÁÇÛÓÌI… àTBãN!³¹Þ¤Îuà]ð»­1Ìeà=ðvœŽ#ù÷æNÇ R£ölJ÷®]NaCúØuacŽƒàƒæ>y—uÒå(ð$x Ò•IÜà0ø°¶‰.R Áv¨XpíáÚRœ_q”³Ë^ñLÖ§HÑà¸~H÷ù”XðÕAôèÒóЇÅÌ· -òuŸÁù#÷Ͷaòº鄿'¯=¸Y¶Q6}Àð$d“¸nà ¸Zÿý©üÚf ’p(QK$iyÐãCpÂNðNƒfˆ =Qp  bÛzúšDˆí =}_þúVhzê æ:›i±RÊõûÁûU”ãJíÕµ©1A<š6{È3SYnÕ¢+ú(¦ÄwØXžLEQ”‘†ú~›×¨T\ZU}õúzµ #b·a˜ø(¤4ÑŒaByžMêôÁ•Ì-7N¸nàp¥Ô”-_a’ü‡–§eÏÎ;á”DÜZËOÆfØÝðæ§´Š?‘¾CÀ9pýyùò§‚»2ÆÝ?˜’Ë‹ŠOö3ºË€®ß¦û. Ak)Y4wgò×Z~ ¼Žð ¸ÒF¨v[ø¤¬)maý0›e£A£(UœÊƨl»øÚá0¸Òì^®]| mp|DÛFç£gz©› ?‹èoó®í³’[‘u(R’çÁçÍ +Õ`  b+"èüsüƒSZ¶£CCÙõj ¸`%h9ÛÊûôSéåÑÇáˆ„æ† þ6%{E4ÚŠ[ÁMµ%Ÿ>2\ ]¬•kM‰ëéøE±µ:³òýKñ_jôm¦øÛ¸¶n Ô‘Ý­8 ¹*g•èW¸îA7&«ù‚¶„SàúGmå'² [8u§yWĶqêNâwD°]S÷?‚/ÿGt­Ðpê⹑^½ÀÝ໕gí§tÍEjì ž6Œí_#}Y¢c»b)Óܾ¿ù£9‰ë€ëZ3(Ý\®êQññ|•/¦”JÆ“nƒÀqðqcöR(%@Š\^WÚÏ’·Õð¸þURÃ@ŔˣëŸ-Ÿò**Š7nÓÀ÷‚¿W[Çþm7H*õG…Ù9öƒ÷ë8Pݺëá[qž´ã½sïÆ(vx\©ØR}©‹ö;¥©ûGÀõï›bÛn‹C^:DÌŒvx Ü\…'…VOŠÜÞ¿ÝüVÿGÑŠï€ëhªíìÓÅ9›–ï²m4º |üMmÍzø©EéãàL™cx1wÙ#iœá·TÈ:©´xühó‡ÄíW; ¿å§~“¼‚uŽ83h§8÷‚* ­s8 >Ùëœ^¿¤mÁ4åFׇ §jHŸ)à¸~ø×f´ ¾K÷µJjôÇ…Å9š¯ÍØS™˜U¹^´9< Þ‚FMâöë7êóiæT(ªË³ê-¯àØÁà»Õ&ƒ¤äqàpý¡ë¨¨H‘œ±ZêeëËáL_v¨šÐä¹>R†Ï‚·à„֗ßÏŸÓ6Õn1X(äc“çàÆl3€X QMÌ&½®€+%wÈ›) |®3•Žåø…â11Híʪ½ØBX™c øªŒ¤Êà¡DË ø’¸½@s|ÇÃX%¾mQõ7oÏc„(ádùª[à¤êà}pýcoÈ– /z¢v*äO“þd¢¶äWÜ®çU»GÃÞgTÖ·H¡cÀÓà§›ï[$nxüŒ~÷£b–³Äcjà%sTL’fÁ³­1É9à$¸ÒòE3ä_N·cOìO ‹rìï4h†˜=1ÚÕè‚Ø6ølמ؟ƗÿÓºVh¸'¶û4+Í©\dNzõÁUôãzèšÔ8A<šfãµÙ.³XÑzü¡¨\û30!¡ùZ‹=mÛã’6§€çÁ•ªÊõ¸$î80 ž40[‰ÿV*¹M ¥€×Á¯³RÇ*ö¹A<­°Ï à=ðv!ù÷æÈÀ1èó+nY)ûg…u9šŸÕjcI¥cÀ³à-ˆ~¸!à9pýèDZ炱aTÖ•H¯óÀÛà·µõSÉøsðÂ&äN¼¡‹%eú€û-Ë qÝ@s¹ò_‘üAàpsíY¾ß'=ŽEO+Ì1<®V£4úÓaf¿S š­Èý·ü ïwÅø,Ęt;œŸ6×|ÔBΤÌmà¸Ò@%o¯à<ø|ë—L$þAñhª1B}kÒ©„©¦t„Þ³ƒy¸—R9ýç…µ9Ž€´}NÚœ¦Á[P’Ä1àø˜¶ÅNÐþ×’[-ñ$¨%wͦÑ;;üO:Bše€ à†âãŠû)NCh>>®¿ŸBzžoA@“Äíž×höªîbgcàjžmpvEÊL§Á•Æ,yÓd€3à3Ú¦Ù·eC¶]“.×Áõ·ß®bI'vTâ·U473¾B¸Ç«àæÊØjlfB7À[°—J⮂·a/•Ä/DOÖv_ § lÂÚNm[…”éîO´lmGâºæÖv]éÚI¤À p|H‘)í_‡ ìï4h‡˜}ŠˆwA¬¹}•Ni3|ÚÄWÁvl¹¾Ÿþ«uÍÐpc%¶`n#µz#ˆG^-®ÎEÝ>•ÔØA<šÖR½Ší/ÂN„¿?¯b#ÍY¢eW±‘¸~à©DË®bû‹pPÂÑ„©«ØgØûxXÇLqÓŽ¬ë’R§Óàj¢-Ò¦ ®Jh~: \•Ôé&ZV‚ÄuÍ•ƒè æôò×Õ“CÀcàæöcåË¥“§"ˆ§69×oÈçy ¨¶qƒ‹uù­Y´êr=gÅ)Éß§HJž.€·gžÿ5Âæ›0ϧ茴 ‘2}Àý‰–ÍóI\7ÐÜ<W{@9q¦RÁFƒÀÓàJñ0sù¬¤Êà¸RpJÞBg€ðŒþÌ[ºÏ%ùãÀ ð‰6ö¹¤ÇÕâi…9²Àkàú‡û©ÏݼßA¶o%e¦Àõ÷pñCKÕŠ[ ¦s9«PØ`kŽ%ë7YX›ã!ðC:+¶ú…ª%Ç-éÝ[Hž^¿ÒüU‰; ¼ ®_º'ÉïMÉ6«¿ ¿&¼ ~³ùÍŠÄÞ¿¥ßËIï\‘üÛÀ;àúG¶x‰¡‡îº½f{i*›G<Û§–Œ•ÕÜ*³XYx.sËÔP©Õ­(qfÝÚ.1ôµho„æJ MÓÛ,Ù,x>¼‡‡ç<;ç‹6ß@¬¸,ïŠjVN‰Yù5+x猤ú*Nƒ«­©ËHÄHïZÌy1Âg€7ÀÕ®dŠþT:”Câg#ˆGS ~†p[Í¡„«TÖ’Tï¯Â,„GÁ¶qV@z°âiv÷EâŽO+-·¼¾RµxRaxüœ1‹4¼mº¡UÆ€Yðœ !qç“ £í[>Á–sƒ®osÇÒ³W‚žzF¶e“V—€/¿¤­Ý/!*x»%›­’ å.Áv——ý2¯C´{qç˜ôùø¯NÁq|B[ëyÒ:¬;ŽМÒr¡jÓP)>p­¾ŠåQµPž. =;“Æ*û._ý çÁçµßeH¼KÅö|TB”?pð Іp\m×ËL·Jz žf7`wxü„¶NˆTd–s¼\­ô¬¼SõU’ H³“ÀkàæªôtÛe?#ÝÛ’.·€÷À•Èkx\ÿë.ÅÚ ¤Åðø#3ýÔÖÈZ¦bÙë«N0'ʹÝßá–ò¼bv0\RoVÑæ—7ʾË_®ÁÑ\?5ÀGŠ`$+XüzwYßÿF¨B8®;47Ó ]ŽO€+õr¾Oâ'ÁOj[è|†½†‘œß6ÂÇò°-ŽK¾(ëN¤ä0ð>¸~CÀuT4©»’j}\è›~¹Ó7Á…¾©µîôMp¡o2êNòÑo‚wŽ€èë!½có×á„àÍ“|óÕ žlÃŶñP3‰ßÁvjþf|ùoÖµBÃÜ›îŠgålÕz{Á÷ª¨ÆUÚ§k±oÆï…ˆGÓbwqÅâYÒõø"c…NT8Ád#'r.œeþ£Uw=˜8UìRJLJ¨ ­|…ÿ+Þ¿«ý,r.›‡8+V%˜}#Ò¹$=ÿ›ÐŒ3cGWðae‡ Òä<0žjþ°AâN/€+݃¼å쥋.Âs²Dª\^×ßÜPÙõÿx¡ù]ý ¤Wð8x –Ø$®x\‰­|„Ô8 < n®´Mñ¥¡eÒÀ ð‰ÖXæ0 ®4ݽcAaƒ¹¥¿.–ÊÊ6lÒj¸¾`@;: ââ´‡çWÏz|«0>Ç#àj%žë¦”|ùöMªŒGÁG›ïE$î(ð4¸Z"Mô§û"ã·/½¬ ]γàúž-?¡ý[ð Â.+hVرm\VølײâÛðå¿M× —½«Ppƒ¹œìÒ‚Ôê€+…%¸Z»u­Fj E¦Õø­AÕâ’ÍïcóÜuŸ%E„)Eý±SrhO†† |ÅÚ¡¡m´ƒlÝ)h!k— –·¢ó'•²À9pýêI* §¿ G!4¿pza¿ë3¤Oð¸Ò‰9Ÿ!qÝÀ!pý¸‡÷¹Ò3)Râ ð8¸~Íù1üïÁ/[8“¢A° bÛ8“ú{h!¶k&õøòß¡k…†3©Ãÿ©S¾·jçžúé ­!•JP’’½Àp¥±ˆ+¹K׆¤ÆhñhÚðJøv-p Õb¸uÇoj¤Š \—éÛ:{C#|Õ·=éá;avÂ;àúù«<]ðU{ƒëÌo{†’’êý}¨Dxü¨±±dW8¥“JH<Þ‚Jš$î0 ®_IsϘˆ½ñº‚}RÀ)ð)sDõ¤Ðuà}p¥=ky ]ÎëÏÂv3Q B~¼'=毿ֆ‘æërláxOsĶq¼'ñ;"Ø®ñþ»ðå¿K× ÇûÆ…KéÖ Ü¾OyxïÖ5©1A<š&;Ì—ç%4gŠœä –/}Øñ°áapµ++ˆ±õ[Iw¶¤Çpñ˜¥_°CÖè+¦ÁMVÛ‹9žEâF€càcú}Ž’Q2ÄÓìÄŽƒë÷uÒ#ÉŸfÁÛ±gðÝ£9¶pä£~« bÛ8ò‘øl×È÷=øòߣk…†#_£}¾Fšõ÷€+•ÞáÐ5©ÑA<š{¸u» ŒŸû,IÇ1ž»œNÜ¡üeÅöJ>sJ«¶çP¶’ìÛ|/LMhî<#¿]™g¬*ÞßE¾/aèvå-ÊõÖŠI¤Ñ! gÍ2¾¿Hx \ÿ0Üy¾UK³aì~d'ËÖ©ö¾ )9 |®ïRSäR8ÝëøÌ"½ËtÖDL7[@Äïd5ÿ~øá¸ÚZ}‹4…‚€tBó;ûF£7*H7Rªx\)D®¸nàQpµHWô§»XÒòî%-ŽõΧÖ-½¦så©”^¿ÔûŒ§Àõ[Ï[çI¬«•϶í’l£&u.ÍœøMHTÁÃÏ‚6RAº íH?(ÌÏÑüMH»hÂÅn²¬¬ý üúá@§Š‘T9'"qÇ)ð”¶µö¥£Å!d=ˆt¹¼ ®ŸqËsÏÃmm‹º™’(*^5W©zü¥8—·Ëv)ÃýÙ÷ø!xá]ð»mÞ~Ò Ío»øÔÀYÞõyR§8˜hY!@× 4WP¡20)0<~¨ kÑOÂ%[ ]Ķ1"ðI4ŠÛø‡øòÿP× #¾mç4ëêG†t FjôG¦Áîm„‹Ò´À¡“H|8³Jù`©ƒ¨j¹Þæ±ÙùG°2¡¹Œ»3¢zOwt>d‹]ÔÈa¥¤B ´OA;Â3àg´ú‰]É(ø'i•jU´‹é¿bâê$î"p|ºùÉ; œ׿V£'˜M¿!| %®ï€ëgk\‰¸0?\g‹™¿|rL‚f'Šr ÖªTð¸~%È á -bMÂ}½V.¦vPçGá9„ÀÕŽ,6ê÷dóÑG¥{üQØóGáRW »TL÷Hâ²À{à-(âBâ.ïƒ+åÙèMRHü\ñhªq)ºˆ \ý XÉkÖЇ7‡{émÊ &¼®ÍÚ¢ø~RüîfIV?M~¬öû õÕJÕ”I•ÃÀcà-¸$“Ä ƒë'L§SiV²^¤¥6wóÅR0}¤Â˜k¶·Á}OÖ£HÓÀàú=ú^ÔðÌ»%[ÚÉ.D¸|¯¶JçD’)Ÿ·W­5Ç­z´w’sËNXQFa€ù4ô#<~Ng]¨”yÚH»KÀp¥Ù¨ÜàBâÆ€×ÁÕnJþ´+SˆÛ-íHƒÀ›à7›ß ¸óÀ[à·´?@xê]ºA‘·Áõ7!åƒ(?ò‰–†²(ѱm e‘ølW(ë'ñåR× CY´]§ Y/P?”uP×`¤FñhÌPRçg`9Bý¤N“i!¤Ñ00 Þ‚Í2w˜Oi[k$ͪ~•MKÞVÜÍrŒ².EÊ]>×ï‰Uv~ >Ch~×Iã()ÔW:)ç>$®xü þ ¡b–CÄcÈ,Š—„’2'£à£­1ÉaàipýÚ"GØ:ÝùëT*Txj®÷<… 5¤ÕàupýIî®0&©Í?ÖæhæÄ­¿UYñœ¸ÐV¬ß2ýÀ!ð4e× <®ß”τᛰBjÎ-–ƒñ€Šô.U+<ü-ëC¤á!à4øt[†ƒŸ†ÏšvÚŽðÆú)ÓÜŸhÙ¥e$®80uiÙßê«úüÊq^hÞ³QÖ$Í+†× Š¿'ëH¤ê ð&¸Ò:WÛ‘> çùlsÉ+ZÞSiGú,œç³­u¤ÏÂy>kÔ‘”®íø,œ‚ð¸¹yÅžÒ=^ì~’®ÆR1ÎI`¼ëw˜×_/ÈŸ<"ù€Á/êë!ÝpFØ•£VX@.8C‹ë.ˆmcp†Äïˆ`»‚3?‹/ÿ³ºVhœé)Ùë9—~]Z¹^`?x¿Šr\©ýº6#5#ˆGÓf÷ÃøL™6X¬+YE;O‰E¶ÌúÖ‚õ“Ë%%-æW—¨¢†»œ¢[‚ߣ[YXEzøs°4á}pýmÑ´8%R.X¸®¶¥.NLÙ´>·*6™’õÓŸ‡–„ip¥Ó²õÇrΤX¬¦dÇRéð&x bþ$n x üVÆ’x\?é‡Wð›+Ø¢´ 2±]Q_ƪÐå‚¥ V ¾La³%Pj<¼ª‹ïxUXÙ×ù§p.Âðí×á·I8+%Ú¡é&’jýT!W›Ú)ôϱ®OÚƒ7ßõIÜ p|DÛF§üÀµ66Óʪ¼’pž_øÈOȺ©Ç€·Áok«™áÇ;ÝBÁ]ç7ò„×¶åÜ-z©‚-­øÂz–’:ÿ3øaàþD˲H\7Ð\A†=±m]U¿I™A gÆ Ôý^«P•=ìBª¤€càcÆÌÓ³˜OÕ­Äè0®£þt°Ìñ~xÉ.¸ëÒÑÒfx\V!wø×¾µârÑZ¹wAl£?$~GÛýù7øòÿF× £?{rn©â¹…ŒïX²É¤Y/p\)Y4Q¯J5UVQùf‡ZgH›S'­Î3àJ½NL»Š‰©“¸SÀqðñæ‚$î8p|B¿9g>z6‚xšÝ™ýáÑ'Á'[ß™‘øKÄÓòÎìߊfı‰Ù»Hjl¤a/P¿3ë3Й‘&‡ÍëÌöX~Æ~A©ÎFžN‚+9¹\‡FâN/+9µ\‡F⎧À§´ÛÒΠݤ.Û®I‡ËÀpýu•uß¿>ÅÑüºOÿuÒ«ØÂ[ÔI\7ÐÜ-êÒ×§“ü“ÀaðacæQ*ôAªœ&Á[=NâF€)pµVô§Œ_ÖÆKŽSབK´FËafIGqI» Àðm-w‰Œ'éÛ¿~]Øœ£ù3jœÇz©Òl¾÷¸^àpýíeéÙ,‰Š žfÏfi˜é‚؃àŽÚÊ6(‚xZ>›ý÷h „Í›ÍîX)ZÏ4ëê×cØ£k0R£?‚x4 ÆïR¾M05(¢£¥~·v»ˆSªØž%"qËÕ'²šÿ˜•p \²§2ÁúNØ„Àzű–ϬÈö¤Lp¢eu× 4XßÏrb¯ÌrhëO:%ƒ´ž?ÕÞ9©’^W:¢&oŸQ`\íŒIô§'øl‰9âê߯ŧB9Òl ø\_yúù GÏ+e{L?¦£Hô#Ÿ N¤ÝŒ$«þÂq|º-ÝÒ†tBóÝÒdð1“¢kJzv9téɉtéàkú©À‚Ÿ”-ÏO³ì þ2%ÛDHñ>à ðÍo"$®8 ®”±¢™jLòooßjÃ\ê¿ÀwµæRr3Zš‘tAl7›þ ZOˆíÚlú¾üçt­ðÜŒ–0k¼nê?§N/p/ø^åiìöÎe´Zâ7–'7o^GoÍ‹Ð;¹”ì²ìsø=Â,x 6>Ç%œL´m“Ä_Š ò&C]©»kfª#û,œõ7€xZý ~^b§rûÑRã7ñBTÿÔn>®«Îo%DØ(D<š_¥ŸñãŸáÊŽI*õ_ñ]ûÁûM\´n>#•O+-$ä¦$ÿ¿H8 >ªm¦ó̳+UºÞÓª›†¼¬vÉ!)y¸¾Ð†ó·á:„ú#æv7Ò¼â”êW ”É9‰ëW«pýéñ0ÇØ.­Z¥œ-j1)9)v8 ®?`Ê;σÃü·¦8N)Ðÿo!ÔŠsËy΃·+ŵ·•÷_G6{[ù¼ƒ*!›IììiÉ]/ñDpY"…€ëŸ'>ÀPlÖW®6ûßáVÿ=Q›+nXÔKÎ’¿­žô8A<†\^5%‹´9lÆ5‘1 $î80•0uM¤šQ.DO³[;‰^7P@kF¶ñ’ü4p \)ÿXs8ø£9šv,-¹qûH±žAªôµ6’ä<ƒÄu÷‚+-ü5Ó&Hþ>`?¸¹EB/}yl•Vâæšåp|¸5fÙi“Y𸹖že×£uŠŠQ’À x¦5FŽƒ·É(À,¸¹ƒ¡¼°Ø²“sTÎÿJ×€÷ÀïµÆ2“ÀûàJç·YFv|#ùsÀyðù6ŒoÿSØ•£ùñ­»D[A²®AºôµBÌr®A⺀ûÀ÷µ¡Ñ’ü~à~ðý&í O•4´Ìaà(øhk,3< ~ºM–9< ~ÖÜd0g *IÇÁ•Fy‹œN€O´É"Yà$ø¤¹YÎB«ex üVkŒr xü¶¾Q¤÷¯Iþà]ð»ÚzfTägÕ¢[æ<ÏöËn)Oa#Iåþ—°3G3WýÔ zÐÔˆÊ**hwxÜdrPLÐƒÄ ÓàJÉArKâŽÇÀ ,ò¥'c$?70]—žŒý_ðGB3“±ºKÜ ñ8ùªUˆ›˜5R/ œŸhŠs–?¿½ñÏ֔μ‹m¼FoÐ< ®4€×ý—{Yp“i1-ˆÄu'ÁÕÆ?½Dò/§Àõsrå[Ðï ÕüNS[Pçã ½NGÁMNœ4ý³'tÚÌï ƒ+ǵžû—{§Á•¦õrmæwÐNÏ€ŸÑöÕüÞÙvC:œ^W»R]¯Ýü.ÚÊï6µÝì¥ôÿ’ïT6ÊWvjDª¥×ÀMÖjЄŽÏnQ\§5ý.Za Ü@³æÒ7—t 5s4?ÏØ¹ìfþΣ's²žBjí¼…⸸On PÜq”Ìà7ðYé{%¸b'W'ÔTð*coWý î…¤ÑÌ·ß©Òí‹VaËÅ¢@¾â<©£ >×å;Œ(/?ª¡BGó£šÞiA®T/ðP¢U§¹¸. ¹Ó‚û2ì¡»n¯Ù^Z¡"]ŽÏ n0ùNóB.®U8#¸Z¨VÞPç€×'Ô4Tßf%ÛªI‘ÀyÁ ä5ßf1}óWéΫ°åÌ`0MåïîèÀÈñ6ú„Ûmè›°[ÃÑ|ߤvsW¦¸Opµ\͵åsøPpåâd7ú¹ø…M M5XЕ V.Xÿ/mÐú_R-”æ8€æ¬¨»êžò(>Á9Ö[H¡#ÀS‚·  7Ü@!•ýt1=Õ¦ /«W°Òià¤à/(¶gRfxSpµ»Žä-t xKpµCÛ‰Ä[~HzÜ.n a3jÏáÂ92I¥Ù¬ìVUG/Z9ÿ—Ñʇ[ßî†ÀðÑTC)Ù©£ºô‰?'Ì&;íô++ž#ê$eöoAet.®x@p‰*Ç#w¡Â‡Ã6¦b¬!`FpÅ-ß&L:I©ËÀ»‚«c’7Ú8ðžàjaq½6Mâïobøhª1Ç‚yo°X_²YÅ«–r¼ðXE\šhå*Õ`uo—òÏwa©¢³²Z‘}•=èçÐ%Ìi¿J7Ýé,ëð{¡ ¡‘@{Ý*š7ÞˆÓë½sïÆèÕÜ#¸Á쨋ö;¥©!†ÛçúÉQyt‘ü§Z.Û[r«Ò™9\¥}ÀQÁç‹u3sJsJS3Âp\ðV¬ƒ O'7°>@‘¦BA¯zÁZ¶ef÷7ÐWî‹^Ü,='Û‡&¾^Ó‘0QF ‹1YEú¡!6[ ÔQ>Àؽ;ï›a÷ªžøpaC6±c?#Ô¯öÜ!“0’?«ǧ_:<'8a³[ýÒÐ\âîæHèw’@­ë šsX€ë5 ¼+x+feôKià=ÁÛ1+£ß¹¿‰†feiÆœ•’ëñúV…&ª8å‚]§8¬tàÁ'ŽiÁ Ü;t‡IIE¡¡^wh2—’«³8 ¸Z NΟIÜ ¸ÚŠtëÔ+ÅŠÖ[µÖl–w–—m!˜‚¡Ï ®Ø\Á“2à%Á[p±%—N n$™T¶“üËÀ+‚jê1Äå§3êíù¶Pb–¬·ÀƇЬՒ‚›”æJÿìq`ZðÔÖàâÇ7P[cgZ%Ì}ç€nã1٢韚Þ\-Þ,o—)àm´êÛÚvÙ%!¤ƒÜ¤ÅàCÁ l¢Mð 7%el äDç´øãif þ„vÎqm~¢ÝþDÊ\Þ¼—qqYà¬à.-’ž˜’ø››>šj ²ÍÐ2ê…Kêu®Bˆ â<§ž«t/;žl'®ÊQàIÁw®j•‹;ÜÀ^Ñ^P ©2¼(¸ÁjW;y^íórù¥'ä‡àfö«¤Û ‰ïÜÄ6ÝLÓ*h!j| r©cºêPB@Ï&†æW9#6‹Á"—åíŠåhã!ø›²[ØX¡LBùPÉQ|8Â3øpgÌõ-•@GéñQÑ„8Ž£Y7"qg‚‰Sr'Ÿ@ÜuÛSH‘'…²@sâi&v¬ +®çTV‹ö…n•+kå×_ìiùVΣ«%mQ"˜ •¥ÓiÁŧábÓÚê_ch>¿yÜ/Ûb| &Õ\˜Ê‚†Á7{ ö3§²![¬y„¯A{¥’=Û'¤µýÌ"ÅØš#½f<½ÍL ê5ྡྷÿÖ Î´5Rð"ð2Zñeƒ­¸A­£Ý^Ñ*s_õ”&W¿°ã¹ù(ðŠàjѹNÄ^ÜÀ •*—Ùp®gÑœô§ù;™Êœú$šÏIñç„zŠ ý´?½²¸üðë•JÙŸ¿÷øÎ«™ÇceÏ¥´æŒë­Œ—­ÜSkÅž=ýè‡ËOW>¾k·í}óÉÜãWîÜ{üZÌ+õ .™~£oûoìZ¤7 ´ô‰úûöcïâå_ÜÝL±Û’á%Ò+±¨>g ÚT6úÓ,cw Û+Ëõ`"çºÁŒƒfIc¯9ùÍE=Ô–>´0,­™p$ŽÍk9šºúWAÅcÀs ó)šÆ?Å&ÅÄïq4;þÑ¿¸x^pµd)¹ñÄí&W‹õm+¢$½p%RÀ‹‚ •ÜJ½÷?‚fr M¤M;ˆ$¾sÛµƒ8Н1ªý5¨³8­«OØ»‰á£ùUÒŒÝw«+ËO³ûö0Ãçj¯ÛÕÜS*hóF†½œaÉìôÕKò¥À°{ÈÑ\’ì= ¿`‡Jìôˆ³zùj޶ëÃäœRµ¸d{ô§²ë”xñéwªŽÇ7±d_ä,^„ð^DM9ÁOÃ{¶OÙ¤Ë;+NÅùP `ÐUÛ,x/*™³<'gUªž|ôë´&œ€ÖÚZË—{9=Σ)w(7gLl·îúݳ¼Š»âYåÕàCÍðýð…ÂsTžž½äV=Br•vø«²_“´ïÞÜ@†Û( ”¥òš\YÞö׿jœñ¿”Ô3‰¯Mö\£‡Ž˜<ú,]{Zðv\fÉ埚¿Ì²3;¡ O8–иñ=ÆKn!#ö0#¸ªÓ»Ó,›ËNNʶÒcxMp{æÒch hh‚s–±‡–çQ.Gš½"Fл7·Êÿ”œœ˜¸"?x^€ªáýIÊŽýé%Æ^±ÊOøN­ùgØú‹ Ó)Ù^­Ëaï³—ØÛ[sròÃÎE(Nx Š«nÔ‡Ì88ê;Û{‚ó sssìž[,Wƒ±†=ƒŠÏm§¬s¢ø…‚Ò½ÀqÁ&:ÅôÞ$® 8!x;.¾åò³ÀÉ„é‹o;'¯(è3 œÜhýØÞ;-š ÇëhFúõ÷$§Ri6996yUºQ“&7€oK±î14ê1íF½?±ž^|b?+{ï¥òüY/Ÿö+ ]ª:…ü>Ì7fffçߢß{+ï:ÉÑÓÙÑT>Èd³Óã¯Ü{¡þ>sírÌ›5Œ¡*Wq§ßx.F¼c1PZü¼ëþåzmdGÅ~&âFèÖ¹„†‡Qè¿-þ®û¹vðæóc˜ ìÜþÄøû¸þþc¿E×óÛ>EhËž×_{²ð¹Jøeø+›_¦w»€=7rn©dóÅãMñ;»·ÿÎøx¥Xü¿/z§zùavü1÷Œì%{rÒÎ^Zšº¶<îW½5Û)¬RÎNliøÏ™«'0ײS°üJ|P<ú[w£Î°:ÎÇ’o>~4Ã(Ø?3>üð×ùÅ”‚­û¯ƒ¿¾iëŸ}× pK?λéxÍ3ß| ü-e»¶7úä -mp[E£úE~Kî’g[Oý²•³?üÑ8åêoÛp¥ž7À7T”«/uÑ­Vb¤.?þ!åOÒã?£/n _ëKßþÆœ« *ø×7¿ üÛŒù×®E¿`ù«JŽõÀïÿž–8Öß~/ø÷*}‹èOûÞ…Ç40Î÷üGŒ}†¸-@.îÃÀÿQeGíÜÞ1óGáKü8ð3àŸùÒæøßÁÿ»Ö˜ý-‰¹c£û¿ò¢‰ÿK`+\ì§ v·àaDƀ؞EgÙ.øõNº‘à'Ü'8aÓóyù‰ÈüüDBq~¾÷]ÌBŸûW:ç‚`Ñ—8±ùh®å¤ÕÈÀ€ÀðÑTãc¯Øˆ{’I³¹‚C[/‰˜ÜCI Ç¡á8>R‡ò‡ªß_%>έú©O(è5 <-¸Zˆ¿~™=7îjÅFúœÒ>ÀÙ„ÉÔ…‹v)#õ$0)¸âRûW v¶ÍNʇmI›ð4Ó?]3ÏØƧ÷c¼´HÐW„·/³Ú%î¬èæm±Íå”Ö,Ÿ’Ó‹6qvsn.'}QsÇüŸpþ?¯ý.‡Ë;¾mù6 ´âåÖrv†Iꆼxއ Û!å¶ùÜy»Ž[´+ž““ àfá•YѸWšk ±\wx^pW$Kp³Âå9¦àþ)cfé¼rMAŸ ¸ÚQŠsÄpIÔà¤àŠqìèOûÒìÊÄÕ±+Ù+Òñ[RäpVpíäã·“h¶„h¶Êz‹ßŠZ6;þv&{y*;6159ÌųÙÌDöʵ©L\ªa0—Þ± ˜\>›Œ~ãÿsÿÌ]Ü æ6ðÄ‘Ýÿ•N˜÷mð·7½àç䧘M óVàÊ*š ó~ø1ð©hÔ¬0ï—¿ü+T”‹™¤ÇGã>üJð¯Tþ$Ï/¡Ð¢%[ƒÂ§ûZà§Á?­ìiÝuc¾Ù¬‚³}ø³à?kÌÙtb¾ÿø+à¿Ò/ t¿ þ«JßbËO…û(Øå×€¿þëÆìÒ¹8¦`‘ÿüøçZb‘ü ðßжÈÀ»nÉ Œó›ÀσÞØÇh(ý*D‰*v †bñµ»j{ïèQvÓöu̵Âô7︡ü]·+¯º(hôÉo?(8a œ¯voÚ[‚û‚(}‚¿Xp¦ æ ®Tbsá…@„ü«QúèK¤6C‘‹¾Åàwlzóë? ³…ù›J±yú}ô{ñ/ì4ñ]H¥ÎMl×á )|¡)/Të?w<X‘Õ‡êiõw žØ­ýY&{b/Y~űJá¾ ¿á“.ôœ¥ª¸®xiƒ½âäV-» ½Çrß‘pßqRù;>?©î±>×€Ó‚«%¬Úc!=n)€w=a²oÜ I»¼™06ܱZ.HÜÞ…6wŒ½Ï¢U­¬º^LÃ"½ªÝУ?•îo® ï±]ÝꆨÙíÐU‡ZæîM ͯ²—Î-WKâ<¡¤J3øB„áÀ§vL³ÑQóýTÀ¿ÄkŽ7¼s«‘–Ç€)Á Î.¢§ÍŸ;¼ 8¡1±1çºIÜ>àEÁoÿ‰þô¨¸S}9mY›%Ád½˜ÔJï n VÐ^NTøÈ˜[*`ØO3þQœÊ¢Z²ú^‡‹_‡;T­…·v£qæ«L‡z6Q£¶r½¦v¨VÓˆŽß·*Ö¼geÇoÒí ð‚à=opO¦r˯7Ÿ'©»€7ÐÔ,•ÞÄðivû¿‡%Ä uÑáòȼ–Þ™%2À{‚8[®p±Þ,>Ò¬h“ü#©ÕHÙ*M¾ëMhB¸šì0>„î+ÜJÆoÁQÐq8,¸Ú½r(‰ëŽNØìDâºLðÓön•º`¤Â)àYÁ5x×sŽ«äéB?ÿ˜ÞM˜¿Ð¯¤÷úÉûÇ9à}Á Ì`¤—$~nÃGS{E;XæE­ê4*|Ö¸®púÅCœRÕ­úc|{¶v##ï‘.1K¸$GsGîz¶_¦àåšM÷›Zßeë®÷T”˯s™Qriƒ9¥UÛs*”‘’~ÛxÛhª­`똢ÐmÜ&„ÍSv½àþÏFÚ NØìÞ‚Äõ NØìÞ‚Äu n LôËY%º¼¼Š›*–é;ÕI£ãÀŒàÊfÌQ}5Ç«ØÅ²ëY…F黾h–tÑF­AR"=¯Dsã¨u=|]©»}Û&MëHž†ä°ãjSÄŒÄwnb»"f÷ñ5îk êpn½[ub—`shóÀðÑü,'ÈG“£N1Œ£i4ÁÑ”´Šóød„zç.ô>ÕèñÀ¨#Ï>Í ®•gK®—·=ŸV‘l¯h•6Îû”Oiç•`ðu=gÅ ºˆÂs—*–C×ÅÑ%TÞLú]â]êv[Þå¥à]îVKyÛ·Š¶\µ=öòf9® +õ¬ò–í;všÍ{VéérÕ«0«È^ Þ(¾yìÌ"ö…ðB„/á…^2bœõõõÌ )tÌ Öô^µ˜É“†òžÎf…ÿÑ Ïñ^Ç_³‚avÅ*ŽJ¿ ôçhÎ8׃w©ÝåÄ’;˜öÍ^É\9› †Hš´n©Ä’k6‘Éf²WãO½Ä¾ÁËxBD[Ô¶§¶¼ÁCj'IÃFÎ åØ&Gù%>õ0µ–r?ó˜¢rÁß…ŒG£é»£)ùè^‡-ÇÀ¢´xHnê-¯×+Ћpz hë•äzQXû~°,Èçgßxüæ\ÔìdšÖó³“òê¾ u Q—Î@=Õ§Ùy¡ìy¶nù›cÀÏ{AËõgfVÞ,YÞÆ›¥`Žýàç¥_á5¼ÂkF[~,zz ŽEá<“M2Ï®• ÆŸ|Õã ]öÞ¹Ç_ÈüU7è·ƒÎÂqólllóŠ5y·xÞå=F»»{Á»k?X¼r½EB–Í¢ÕôÌk¤±¤Ù#)‡\‘*•;$ä(rŸ€ó7å/HÒ¯õé˜ÐRÇlÕúYšÝíïu¿~ýúõ{¯S{ª®qû4)¹Þ6çë‚93þ\~MÒ¨‰â\GA©©µñ/qñ£™MFÎÛ°}Ö1mCghkÀNëæì|±—¡‰‹`‚(œÇ ®é›ÄD“KM]»h.ΧöÀ–P—òÓàPê¹Ò;ƒÝ•UÌå©xgªhg°DÝFS³Çì«b‚rƒÊN«†ÌÃéâ‰:~1½4WЭD—ЭK•ÙØCl¸¾m¹Æç¤!} ˆî¤=•!Í$B)ÔÅ*õß*uéXƒ,/ϯ¬H£}h‰¢v¯‚\Ò³£hÉuAeÜn6ôååÏê†EcçïlWçv·N›wó%,¹Oƒ¢ØW*Èa^*èúé`è‰ídÀgþý#—.\fõ¬U'Ô$lðÕ/.·y—7ص!’<þúvFåuôà€¨º…æ¾ ::ý*§A2E‘Š,ÔLíìÉ )!F+@O4‰«žÖ¿‹P^—Gó !º hJ×f人‡üG"îC˯ҌX`„è)0rªº„ÇÊ\ÍЬU•ðш ¦•_ [%HàˆÞpwUwg8ì÷ù¦5V¼%vÛmÀj§¿ hEXâĘêšÕí¬Ë7$¦.Î9Kxw`ÕS{fn8:JgîC|æRik~ÔË¥Æ7q+(ÿt6>RN^G,ÞùÙÒ+D“s†êÇïF6òáÈÈ“%Ãͱµ-“ly è.Qun!y p€ÃQ*ò8žާ”â¸ÇéhFÞÚð³cèÜÈ;ß3굚&¿¡A½PAQï]A<áɣ…ÓÐeº4UüµqümmÕ ?ˆ³ÎVs7»ØVÈ­:ø©ÊœŠ¸àƒ("ÊeŒðq‚øè8ߊojmk+¤óÜV3ñæ÷Zr’CÇÔtÈ+N¥Hòëˆ"ò¼\òqŒ èfômÈFàGÖUÞõÖš?Œ´cM(¡¼.ðÀ€§”ù9臯tž}g?^s²#uá§Ï¿SÔcÆï#ÑÃÀxX4t±ú‹ÔÚÕó¡ü— 260BvM$ß]1Çš´ õºQ¯ÁW83¶Þ&¾€™WÀÌ+J¥a|¿¶ý‹YvÏô°îNÓ‘]M=ÊŸ ªn»v¦swðÊ;Þ¯%c ÍίHOË€¢ê²ONBÇxþFª¸=MOˇèinSèå&ðÁQuæÒÃĆfeOpÐfޏ^êœUapðar-›ÑæEÛ°D9±P£è ÿª,???DÕås.ŒÉÖ•„•+uíZߊg3yƒGéÉñc@'ªÎá¸4=3Xs¼¶Ñ­ %V£¾µiÐôÐa5ín‡KÏ‹Ÿ€ ¢Kàb©2ï+o.òS!ª®ÕŒÇ6¶Û~| V5ÿ~°DÕ%KHÌ? PEóL>=0¿³Gf:6õ²`_ØW•öÙCt¨ ó³0܆þÉn¢¦‰uþ¢Iâ!=óNˆª ¼œ¸,悃8“õÒ±7E¬ü¬U·,J òk€ñšRA^â‚|’2CÉê§zÙ÷±0{>n'òEr©£â'¨›¥½V¿D—¦TéÒsGµ¾\MÎAjËúâ±E½¾"VcŽSk_\l‰ª¤I΋(„#lÁ7h‡‘47¿7DÕù2ÎÆ'û¹ôìeÛÐ9 ÷ݯ×uÁŠ^«¯¤ièó'’DôºfmrÙ/%æ¿/DÕ…Æñˆò £GTÉI£ü-PÕ€R«Œ²uôh, }'䦎Ý#QiŤøîV×÷Ò¶pðÉâÆÅë‚¶€»uó•Èë€ñºR%ò@‹2âÜ„Ñ" 85ÂØ—eàw`€¨ºd9SÌ·Ü_'fÚÆÐs® Ù˜GŒŒÉºX!åwŒ¿ DM°`VfáH|&™ž¿›”1apû׊ÌcÜ蕞iL¢GóHe˜5òÈŽæð Åw±–ë{]öI.îKî—h pkjvIqãò²³²’/ŸÃ‹$ý0ŽO”ˆ?:Qu»¤ÅÔ@Ú.ÌIwJ3™yòÂüg`'ºì‹•±?šíì†\Dæ'lx–úÀª-Òºž¹*mwØŽÓ"`žømç²\ý\}\=Z™«Ë)WÛ§©ßé—6‚^'DspžÓ¹L«¼a“±¿‚7¢—ÁÛåʼe%!`”z‡+Ñ÷ÿøH`>˜a½Ùß„kìæÂ‡%/=Ÿë[Þ\RÍz5 ùi$}ìQ wP ùwÚÉh=JZ?œ.bMúÅøa/¥ltÝÀ[Ë^îZóÛVöø~›o§©t¥m¹§/=véãÙG·2+OgÏ·á¬*{³'=½ÊÞìX¥ G¾wÖe›•›ûwxêñSWrpz½Þ½Ùãnz\Í}¾O¼@aø\Ë⵸X"}w@¼£â í´ñWc 8×êUÏßÌïì3+ä+pcƒ…,ÈÁõü Û smÜ2prO»CÛXÖ-at>{º#ŒÂÕä~ƒôí¡üèÏ¢’f®M’…Ç>öÉìÍðf5­`=Ê÷í‰ôäF5(ÎvÄòìK?r¬Î¤ßà¯Gÿþ]EÒ9õŸÿfc¿¬Xb-surveillance/DESCRIPTION0000644000175100001440000001260213233121461014467 0ustar hornikusersPackage: surveillance Title: Temporal and Spatio-Temporal Modeling and Monitoring of Epidemic Phenomena Version: 1.16.0 Date: 2018-01-24 Authors@R: c(MH = person("Michael", "Höhle", email = "hoehle@math.su.se", role = c("aut", "ths"), comment = c(ORCID = "0000-0002-0423-6702")), SM = person("Sebastian", "Meyer", email = "seb.meyer@fau.de", role = c("aut", "cre"), comment = c(ORCID = "0000-0002-1791-9449")), MP = person("Michaela", "Paul", role = "aut"), LH = person("Leonhard", "Held", email = "Leonhard.Held@uzh.ch", role = c("ctb", "ths")), person("Howard", "Burkom", role = "ctb"), person("Thais", "Correa", role = "ctb"), person("Mathias", "Hofmann", role = "ctb"), person("Christian", "Lang", role = "ctb"), person("Juliane", "Manitz", role = "ctb"), person("Andrea", "Riebler", role = "ctb"), person("Daniel", "Sabanés Bové", role = "ctb"), MS = person("Maëlle", "Salmon", role = "ctb"), DS = person("Dirk", "Schumacher", role = "ctb"), person("Stefan", "Steiner", role = "ctb"), person("Mikko", "Virtanen", role = "ctb"), person("Wei", "Wei", role = "ctb"), person("Valentin", "Wimmer", role = "ctb"), person("R Core Team", role = "ctb", comment = "A few code segments are modified versions of code from base R")) Author: Michael Höhle [aut, ths] (), Sebastian Meyer [aut, cre] (), Michaela Paul [aut], Leonhard Held [ctb, ths], Howard Burkom [ctb], Thais Correa [ctb], Mathias Hofmann [ctb], Christian Lang [ctb], Juliane Manitz [ctb], Andrea Riebler [ctb], Daniel Sabanés Bové [ctb], Maëlle Salmon [ctb], Dirk Schumacher [ctb], Stefan Steiner [ctb], Mikko Virtanen [ctb], Wei Wei [ctb], Valentin Wimmer [ctb], R Core Team [ctb] (A few code segments are modified versions of code from base R) Maintainer: Sebastian Meyer Depends: R (>= 3.2.0), methods, grDevices, graphics, stats, utils, sp (>= 1.0-15), xtable (>= 1.7-0) Imports: Rcpp (>= 0.11.1), polyCub (>= 0.6.0), MASS, Matrix, nlme, spatstat (>= 1.36-0) LinkingTo: Rcpp, polyCub Suggests: parallel, grid, xts, gridExtra, lattice, colorspace, scales, animation, rmapshaper, msm, spc, quadprog, memoise, polyclip, rgeos, gpclib, maptools, intervals, spdep, numDeriv, maxLik, gsl, fanplot, hhh4contacts, testthat (>= 0.11.0), coda, splancs, gamlss, INLA (>= 0.0-1458166556), runjags, ggplot2, MGLM (>= 0.1.0), knitr Description: Statistical methods for the modeling and monitoring of time series of counts, proportions and categorical data, as well as for the modeling of continuous-time point processes of epidemic phenomena. The monitoring methods focus on aberration detection in count data time series from public health surveillance of communicable diseases, but applications could just as well originate from environmetrics, reliability engineering, econometrics, or social sciences. The package implements many typical outbreak detection procedures such as the (improved) Farrington algorithm, or the negative binomial GLR-CUSUM method of Höhle and Paul (2008) . A novel CUSUM approach combining logistic and multinomial logistic modeling is also included. The package contains several real-world data sets, the ability to simulate outbreak data, and to visualize the results of the monitoring in a temporal, spatial or spatio-temporal fashion. A recent overview of the available monitoring procedures is given by Salmon et al. (2016) . For the retrospective analysis of epidemic spread, the package provides three endemic-epidemic modeling frameworks with tools for visualization, likelihood inference, and simulation. 'hhh4' estimates models for (multivariate) count time series following Paul and Held (2011) and Meyer and Held (2014) . 'twinSIR' models the susceptible-infectious-recovered (SIR) event history of a fixed population, e.g, epidemics across farms or networks, as a multivariate point process as proposed by Höhle (2009) . 'twinstim' estimates self-exciting point process models for a spatio-temporal point pattern of infective events, e.g., time-stamped geo-referenced surveillance data, as proposed by Meyer et al. (2012) . A recent overview of the implemented space-time modeling frameworks for epidemic phenomena is given by Meyer et al. (2017) . License: GPL-2 URL: http://surveillance.R-Forge.R-project.org/ Additional_repositories: https://www.math.ntnu.no/inla/R/stable Encoding: latin1 VignetteBuilder: utils, knitr RoxygenNote: 6.0.1 NeedsCompilation: yes Packaged: 2018-01-23 15:14:06 UTC; smeyer Repository: CRAN Date/Publication: 2018-01-23 22:48:04 surveillance/man/0000755000175100001440000000000013231640220013530 5ustar hornikuserssurveillance/man/hhh4_methods.Rd0000644000175100001440000001311313100434734016402 0ustar hornikusers\encoding{latin1} \name{hhh4_methods} \alias{print.hhh4} \alias{summary.hhh4} \alias{nobs.hhh4} \alias{formula.hhh4} \alias{logLik.hhh4} \alias{coef.hhh4} \alias{vcov.hhh4} \alias{fixef.hhh4} \alias{ranef.hhh4} \alias{coeflist.hhh4} \alias{confint.hhh4} % FIXME: functions without documentation atm %% \alias{print.summary.hhh4} %% \alias{terms.hhh4} %% \alias{residuals.hhh4} \title{ Print, Summary and other Standard Methods for \code{"hhh4"} Objects } \description{ Besides \code{print} and \code{summary} methods there are also some standard extraction methods defined for objects of class \code{"hhh4"} resulting from a call to \code{\link{hhh4}}. The implementation is illustrated in Meyer et al. (2017, Section 5), see \code{vignette("hhh4_spacetime")}. } \usage{ \method{print}{hhh4}(x, digits = max(3, getOption("digits") - 3), ...) \method{summary}{hhh4}(object, maxEV = FALSE, ...) \method{coef}{hhh4}(object, se = FALSE, reparamPsi = TRUE, idx2Exp = NULL, amplitudeShift = FALSE, ...) \method{fixef}{hhh4}(object, ...) \method{ranef}{hhh4}(object, tomatrix = FALSE, ...) \method{coeflist}{hhh4}(x, ...) \method{formula}{hhh4}(x, ...) \method{nobs}{hhh4}(object, ...) \method{logLik}{hhh4}(object, ...) \method{vcov}{hhh4}(object, reparamPsi = TRUE, idx2Exp = NULL, amplitudeShift = FALSE, ...) \method{confint}{hhh4}(object, parm, level = 0.95, reparamPsi = TRUE, idx2Exp = NULL, amplitudeShift = FALSE, ...) } \arguments{ \item{x, object}{an object of class \code{"hhh4"}.} \item{digits}{the number of significant digits to use when printing } \item{maxEV}{logical indicating if the summary should contain the (range of the) dominant eigenvalue as a measure of the importance of the epidemic components. By default, the value is not calculated as this may take some seconds depending on the number of time points and units in \code{object$stsObj}.} \item{\dots}{ For the \code{print}, \code{summary}, \code{fixef}, \code{ranef}, and \code{coeflist} methods: arguments passed to \code{coef}.\cr For the remaining methods: unused (argument of the generic). } \item{reparamPsi}{ logical. If \code{TRUE} (default), the overdispersion parameter from the negative binomial distribution is transformed from internal scale (-log) to standard scale, where zero corresponds to a Poisson distribution. } \item{se}{logical switch indicating if standard errors are required} \item{idx2Exp}{integer vector selecting the parameters which should be returned on exp-scale. Alternatively, \code{idx2Exp = TRUE} will exp-transform all parameters except for those associated with \code{log()} covariates or already affected by \code{reparamPsi} or \code{amplitudeShift}.} \item{amplitudeShift}{logical switch indicating whether the parameters for sine/cosine terms modelling seasonal patterns (see \code{\link{addSeason2formula}}) should be transformed to an amplitude/shift formulation.} \item{tomatrix}{logical. If \code{FALSE} (default), the vector of all random effects is returned (as used internally). However, for random intercepts of \code{type="car"}, the number of parameters is one less than the number of regions and the individual parameters are not obviously linked to specific regions. Setting \code{tomatrix} to \code{TRUE} returns a more useful representation of random effects in a matrix with as many rows as there are regions and as many columns as there are random effects. Here, any CAR-effects are transformed to region-specific effects.} \item{parm}{a vector of numbers or names, specifying which parameters are to be given confidence intervals. If missing, all parameters are considered.} \item{level}{the confidence level required.} } \value{ The \code{\link{coef}}-method returns all estimated (regression) parameters from a \code{\link{hhh4}} model. If the model includes random effects, those can be extracted with \code{ranef}, whereas \code{fixef} returns the fixed parameters. The \code{coeflist}-method extracts the model coefficients in a list (by parameter group). The \code{\link{formula}}-method returns the formulae used for the three log-linear predictors in a list with elements \code{"ar"}, \code{"ne"}, and \code{"end"}. The \code{\link{nobs}}-method returns the number of observations used for model fitting. The \code{\link{logLik}}-method returns an object of class \code{"logLik"} with \code{"df"} and \code{"nobs"} attributes. For a random effects model, the value of the \emph{penalized} log-likelihood at the MLE is returned, but degrees of freedom are not available (\code{NA_real_}). As a consequence, \code{\link{AIC}} and \code{\link{BIC}} are only well defined for models without random effects; otherwise these functions return \code{NA_real_}. The \code{\link{vcov}}-method returns the estimated variance-covariance matrix of the \emph{regression} parameters. The estimated variance-covariance matrix of random effects is available as \code{object$Sigma}. The \code{\link{confint}}-method returns Wald-type confidence intervals (assuming asymptotic normality). } \seealso{ the \code{\link[=plot.hhh4]{plot}} and \code{\link[=update.hhh4]{update}} methods for fitted \code{"hhh4"} models. } \author{ Michaela Paul and Sebastian Meyer } \references{ Meyer, S., Held, L. and \enc{Höhle}{Hoehle}, M. (2017): Spatio-temporal analysis of epidemic phenomena using the \R package \pkg{surveillance}. \emph{Journal of Statistical Software}, \bold{77} (11), 1-55. \doi{10.18637/jss.v077.i11} } \keyword{methods} \keyword{print} surveillance/man/twinSIR_intensityplot.Rd0000644000175100001440000001427413100434734020401 0ustar hornikusers\encoding{latin1} \name{twinSIR_intensityplot} \alias{plot.twinSIR} \alias{intensityplot.twinSIR} \alias{intensityplot.simEpidata} \title{ Plotting Paths of Infection Intensities for \code{twinSIR} Models } \description{ \code{\link{intensityplot}} methods to plot the evolution of the total infection intensity, its epidemic proportion or its endemic proportion over time. The default \code{plot} method for objects of class \code{"twinSIR"} is just a wrapper for the \code{intensityplot} method. The implementation is illustrated in Meyer et al. (2017, Section 4), see \code{vignette("twinSIR")}. } \usage{ \method{plot}{twinSIR}(x, which = c("epidemic proportion", "endemic proportion", "total intensity"), ...) \method{intensityplot}{twinSIR}(x, which = c("epidemic proportion", "endemic proportion", "total intensity"), aggregate = TRUE, theta = NULL, plot = TRUE, add = FALSE, rug.opts = list(), ...) \method{intensityplot}{simEpidata}(x, which = c("epidemic proportion", "endemic proportion", "total intensity"), aggregate = TRUE, theta = NULL, plot = TRUE, add = FALSE, rug.opts = list(), ...) } \arguments{ \item{x}{ an object of class \code{"\link{twinSIR}"} (fitted model) or \code{"\link{simEpidata}"} (simulated \code{twinSIR} epidemic), respectively. } \item{which}{ \code{"epidemic proportion"}, \code{"endemic proportion"}, or \code{"total intensity"}. Partial matching is applied. Determines whether to plot the path of the total intensity \eqn{\lambda(t)} or its epidemic or endemic proportions \eqn{\frac{e(t)}{\lambda(t)}}{e(t)/lambda(t)} or \eqn{\frac{h(t)}{\lambda(t)}}{h(t)/lambda(t)}. } \item{aggregate}{ logical. Determines whether lines for all individual infection intensities should be drawn (\code{FALSE}) or their sum only (\code{TRUE}, the default). } \item{theta}{ numeric vector of model coefficients. If \code{x} is of class \code{"twinSIR"}, then \code{theta = c(alpha, beta)}, where \code{beta} consists of the coefficients of the piecewise constant log-baseline function and the coefficients of the endemic (\code{cox}) predictor. If \code{x} is of class \code{"simEpidata"}, then \code{theta = c(alpha, 1, betarest)}, where 1 refers to the (true) log-baseline used in the simulation and \code{betarest} is the vector of the remaining coefficients of the endemic (\code{cox}) predictor. The default (\code{NULL}) means that the fitted or true parameters, respectively, will be used. } \item{plot}{ logical indicating if a plot is desired, defaults to \code{TRUE}. Otherwise, only the data of the plot will be returned. Especially with \code{aggregate = FALSE} and many individuals one might e.g. consider to plot a subset of the individual intensity paths only or do some further calculations/analysis of the infection intensities. } \item{add}{ logical. If \code{TRUE}, paths are added to the current plot, using \code{lines}. } \item{rug.opts}{ either a list of arguments passed to the function \code{\link{rug}}, or \code{NULL} (or \code{NA}), in which case no \code{rug} will be plotted. By default, the argument \code{ticksize} is set to 0.02 and \code{quiet} is set to \code{TRUE}. Note that the argument \code{x} of the \code{rug()} function, which contains the locations for the \code{rug} is fixed internally and can not be modified. The locations of the rug are the time points of infections. } \item{\dots}{ For the \code{plot.twinSIR} method, arguments passed to \code{intensityplot.twinSIR}. For the \code{intensityplot} methods, further graphical parameters passed to the function \code{\link{matplot}}, e.g. \code{lty}, \code{lwd}, \code{col}, \code{xlab}, \code{ylab} and \code{main}. Note that the \code{matplot} arguments \code{x}, \code{y}, \code{type} and \code{add} are implicit and can not be specified here. } } \value{ numeric matrix with the first column \code{"stop"} and as many rows as there are \code{"stop"} time points in the event history \code{x}. The other columns depend on the argument \code{aggregate}: if \code{TRUE}, there is only one other column named \code{which}, which contains the values of \code{which} at the respective \code{"stop"} time points. Otherwise, if \code{aggregate = FALSE}, there is one column for each individual, each of them containing the individual \code{which} at the respective \code{"stop"} time points. } \references{ Meyer, S., Held, L. and \enc{Höhle}{Hoehle}, M. (2017): Spatio-temporal analysis of epidemic phenomena using the \R package \pkg{surveillance}. \emph{Journal of Statistical Software}, \bold{77} (11), 1-55. \doi{10.18637/jss.v077.i11} } \author{ Sebastian Meyer } \seealso{ \code{\link{twinSIR}} for a description of the intensity model, and \code{\link{simulate.twinSIR}} for the simulation of epidemic data according to a \code{twinSIR} specification. } \examples{ data("fooepidata") data("foofit") # an overview of the evolution of the epidemic plot(fooepidata) # overall total intensity plot(foofit, which="total") # overall epidemic proportion epi <- plot(foofit, which="epidemic") # look at returned values head(epi) # add the inverse overall endemic proportion = 1 - epidemic proportion ende <- plot(foofit, which="endemic", add=TRUE, col=2) legend("right", legend="endemic proportion \n(= 1 - epidemic proportion)", lty=1, col=2, bty="n") # individual intensities tmp <- plot(foofit, which="total", aggregate=FALSE, col=rgb(0,0,0,alpha=0.1), main=expression("Individual infection intensities " * lambda[i](t) == Y[i](t) \%.\% (e[i](t) + h[i](t)))) # return value: matrix of individual intensity paths str(tmp) # plot intensity path only for individuals 3 and 99 matplot(x=tmp[,1], y=tmp[,1+c(3,99)], type="S", ylab="Force of infection", xlab="time", main=expression("Paths of the infection intensities " * lambda[3](t) * " and " * lambda[99](t))) legend("topright", legend=paste("Individual", c(3,99)), col=c(1,2), lty=c(1,2)) } \keyword{hplot} \keyword{aplot} \keyword{dplot} \keyword{methods} surveillance/man/backprojNP.Rd0000644000175100001440000002576213174712261016077 0ustar hornikusers\encoding{latin1} \name{backprojNP} \alias{backprojNP} %Internal functions %\alias{backprojNP.fit} %\alias{naninf2zero} %\alias{em.step.becker} \title{ Non-parametric back-projection of incidence cases to exposure cases using a known incubation time as in Becker et al (1991) } \description{ The function is an implementation of the non-parametric back-projection of incidence cases to exposure cases described in Becker et al. (1991). The method back-projects exposure times from a univariate time series containing the number of symptom onsets per time unit. Here, the delay between exposure and symptom onset for an individual is seen as a realization of a random variable governed by a known probability mass function. The back-projection function calculates the expected number of exposures \eqn{\lambda_t}{lambda_t} for each time unit under the assumption of a Poisson distribution, but without any parametric assumption on how the \eqn{\lambda_t}{lambda_t} evolve in time. Furthermore, the function contains a bootstrap based procedure, as given in Yip et al (2011), which allows an indication of uncertainty in the estimated \eqn{\lambda_t}{lambda_T}. The procedure is equivalent to the suggestion in Becker and Marschner (1993). However, the present implementation in \code{backprojNP} allows only a univariate time series, i.e. simultaneous age groups as in Becker and Marschner (1993) are not possible. The method in Becker et al. (1991) was originally developed for the back-projection of AIDS incidence, but it is equally useful for analysing the epidemic curve in outbreak situations of a disease with long incubation time, e.g. in order to qualitatively investigate the effect of intervention measures. } \usage{ backprojNP(sts, incu.pmf, control = list(k = 2, eps = rep(0.005,2), iter.max=rep(250,2), Tmark = nrow(sts), B = -1, alpha = 0.05, verbose = FALSE, lambda0 = NULL, eq3a.method = c("R","C"), hookFun = function(stsbp) {}), \dots) } \arguments{ \item{sts}{ an object of class \code{"\linkS4class{sts}"} (or one that can be coerced to that class): contains the observed number of symptom onsets as a time series. } \item{incu.pmf}{Probability mass function (PMF) of the incubation time. The PMF is specified as a vector or matrix with the value of the PMF evaluated at \eqn{0,...,d_max}{0,...,d_max}, i.e. note that the support includes zero. The value of \eqn{d_max}{d_max} is automatically calculated as \code{length(incu.pmf)-1} or \code{nrow(incu.pmf)-1}. Note that if the sts object has more than one column, then for the backprojection the incubation time is either recycled for all components or, if it is a matrix with the same number of columns as the sts object, the \eqn{k}{k}'th column of \code{incu.pmf} is used for the backprojection of the \eqn{k}{k}'th series. } \item{control}{A list with named arguments controlling the functionality of the non-parametric back-projection. \describe{ \item{\code{k}}{An integer representing the smoothing parameter to use in the smoothing step of the EMS algorithm. Needs to be an even number. } \item{\code{eps}}{A vector of length two representing the convergence threshold \eqn{\epsilon}{epsilon} of the EMS algorithm, see Details for further information. The first value is the threshold to use in the \eqn{k=0}{k=0} loop, which forms the values for the parametric bootstrap. The second value is the threshold to use in the actual fit and bootstrap fitting using the specified \code{k}. If \code{k} is only of length one, then this number is replicated twice. } \item{\code{Tmark}}{Numeric with \eqn{T'\leq T}. Upper time limit on which to base convergence, i.e. only the values \eqn{\lambda_1,\ldots,\lambda_{T'}} are monitored for convergence. See details. } \item{\code{iter.max}}{ The maximum number of EM iterations to do before stopping. } \item{\code{B}}{ Number of parametric bootstrap samples to perform from an initial k=0 fit. For each sample a back projection is performed. See Becker and Marschner (1993) for details. } \item{\code{alpha}}{(1-\eqn{\alpha}{alpha})*100\% confidence intervals are computed based on the percentile method. } \item{\code{verbose}}{(boolean). If true show extra progress and debug information. } \item{\code{lambda0}}{Start values for lambda. Vector needs to be of the length \code{nrow(sts)}. } \item{\code{eq3a.method}}{A single character being either \code{"R"} or \code{"C"} depending on whether the three nested loops of equation 3a in Becker et al. (1991) are to be executed as safe R code (can be extremely slow, however the implementation is not optimized for speed) or a C code (can be more than 200 times faster!). However, the C implementation is experimental and can hang R if, e.g., the time series does not go far enough back. } \item{\code{hookFun}}{ Hook function called for each iteration of the EM algorithm. The function should take a single argument \code{stsbp} of class \code{"\linkS4class{stsBP}"} class. It will be have the lambda set to the current value of lambda. If no action desired just leave the function body empty (default). Additional arguments are possible. } } } \item{\dots}{Additional arguments are sent to the hook function. } } \details{ Becker et al. (1991) specify a non-parametric back-projection algorithm based on the Expectation-Maximization-Smoothing (EMS) algorithm. In the present implementation the algorithm iterates until \deqn{\frac{||\lambda^{(k+1)} - \lambda^{(k)}||}{||\lambda^{(k)}||} < \epsilon} This is a slight adaptation of the proposals in Becker et al. (1991). If \eqn{T} is the length of \eqn{\lambda} then one can avoid instability of the algorithm near the end by considering only the \eqn{\lambda}{lambda}'s with index \eqn{1,\ldots,T'}. See the references for further information. } \value{ \code{backprojNP} returns an object of \code{"\linkS4class{stsBP}"}. } \references{ Becker NG, Watson LF and Carlin JB (1991), A method for non-parametric back-projection and its application to AIDS data, Statistics in Medicine, 10:1527-1542. Becker NG and Marschner IC (1993), A method for estimating the age-specific relative risk of HIV infection from AIDS incidence data, Biometrika, 80(1):165-178. Yip PSF, Lam KF, Xu Y, Chau PH, Xu J, Chang W, Peng Y, Liu Z, Xie X and Lau HY (2011), Reconstruction of the Infection Curve for SARS Epidemic in Beijing, China Using a Back-Projection Method, Communications in Statistics - Simulation and Computation, 37(2):425-433. Associations of Age and Sex on Clinical Outcome and Incubation Period of Shiga toxin-producing Escherichia coli O104:H4 Infections, 2011 (2013), Werber D, King LA, \enc{Müller}{Mueller} L, Follin P, Buchholz U, Bernard H, Rosner BM, Ethelberg S, de Valk H, \enc{Höhle}{Hoehle} M, American Journal of Epidemiology, 178(6):984-992. } \author{ Michael \enc{Höhle}{Hoehle} with help by Daniel \enc{Sabanés Bové}{Sabanes Bove} for the \pkg{Rcpp} interface } \note{ The method is still experimental. A proper plot routine for \code{stsBP} objects is currently missing. } \examples{ #Generate an artificial outbreak of size n starting at time t0 and being of length n <- 1e3 ; t0 <- 23 ; l <- 10 #PMF of the incubation time is an interval censored gamma distribution #with mean 15 truncated at 25. dmax <- 25 inc.pmf <- c(0,(pgamma(1:dmax,15,1.4) - pgamma(0:(dmax-1),15,1.4))/pgamma(dmax,15,1.4)) #Function to sample from the incubation time rincu <- function(n) { sample(0:dmax, size=n, replace=TRUE, prob=inc.pmf) } #Sample time of exposure and length of incubation time set.seed(123) exposureTimes <- t0 + sample(x=0:(l-1),size=n,replace=TRUE) symptomTimes <- exposureTimes + rincu(n) #Time series of exposure (truth) and symptom onset (observed) X <- table( factor(exposureTimes,levels=1:(max(symptomTimes)+dmax))) Y <- table( factor(symptomTimes,levels=1:(max(symptomTimes)+dmax))) #Convert Y to an sts object Ysts <- sts(Y) #Plot the outbreak plot(Ysts, xaxis.labelFormat=NULL, legend=NULL) #Add true number of exposures to the plot lines(1:length(Y)+0.2,X,col="red",type="h",lty=2) #Helper function to show the EM step plotIt <- function(cur.sts) { plot(cur.sts,xaxis.labelFormat=NULL, legend=NULL,ylim=c(0,140)) } #Call non-parametric back-projection function with hook function but #without bootstrapped confidence intervals bpnp.control <- list(k=0,eps=rep(0.005,2),iter.max=rep(250,2),B=-1,hookFun=plotIt,verbose=TRUE) #Fast C version (use argument: eq3a.method="C")! system.time(sts.bp <- backprojNP(Ysts, incu.pmf=inc.pmf, control=modifyList(bpnp.control,list(eq3a.method="C")), ylim=c(0,max(X,Y)))) #Show result plot(sts.bp,xaxis.labelFormat=NULL,legend=NULL,lwd=c(1,1,2),lty=c(1,1,1),main="") lines(1:length(Y)+0.2,X,col="red",type="h",lty=2) #Do the convolution for the expectation mu <- matrix(0,ncol=ncol(sts.bp),nrow=nrow(sts.bp)) #Loop over all series for (j in 1:ncol(sts.bp)) { #Loop over all time points for (t in 1:nrow(sts.bp)) { #Convolution, note support of inc.pmf starts at zero (move idx by 1) i <- seq_len(t) mu[t,j] <- sum(inc.pmf[t-i+1] * upperbound(sts.bp)[i,j],na.rm=TRUE) } } #Show the fit lines(1:nrow(sts.bp)-0.5,mu[,1],col="green",type="s",lwd=3) #Non-parametric back-projection including boostrap CIs. B=10 is only #used for illustration in the documentation example #In practice use a realistic value of B=1000 or more. bpnp.control2 <- modifyList(bpnp.control, list(hookFun=NULL,k=2,B=10,eq3a.method="C")) \dontrun{ bpnp.control2 <- modifyList(bpnp.control, list(hookFun=NULL,k=2,B=1000,eq3a.method="C")) } sts.bp2 <- backprojNP(Ysts, incu.pmf=inc.pmf, control=bpnp.control2) ###################################################################### # Plot the result. This is currently a manual routine. # ToDo: Need to specify a plot method for stsBP objects which also # shows the CI. # # Parameters: # stsBP - object of class stsBP which is to be plotted. ###################################################################### plot.stsBP <- function(stsBP) { maxy <- max(observed(stsBP),upperbound(stsBP),stsBP@ci,na.rm=TRUE) plot(upperbound(stsBP),type="n",ylim=c(0,maxy), ylab="Cases",xlab="time") if (!all(is.na(stsBP@ci))) { polygon( c(1:nrow(stsBP),rev(1:nrow(stsBP))), c(stsBP@ci[2,,1],rev(stsBP@ci[1,,1])),col="lightgray") } lines(upperbound(stsBP),type="l",lwd=2) legend(x="topright",c(expression(lambda[t])),lty=c(1),col=c(1),fill=c(NA),border=c(NA),lwd=c(2)) invisible() } #Plot the result of k=0 and add truth for comparison. No CIs available plot.stsBP(sts.bp) lines(1:length(Y),X,col=2,type="h") #Same for k=2 plot.stsBP(sts.bp2) lines(1:length(Y),X,col=2,type="h") } \keyword{models} \keyword{optimize} surveillance/man/epidata_intersperse.Rd0000644000175100001440000000316412665561746020106 0ustar hornikusers\name{epidata_intersperse} \alias{intersperse} \title{ Impute Blocks for Extra Stops in \code{"epidata"} Objects } \description{ This function modifies an object inheriting from class \code{"epidata"} such that it features the specified stop time points. For this purpose, the time interval in the event history into which the new stop falls will be split up into two parts, one block for the time period until the new stop -- where no infection or removal occurs -- and the other block for the time period from the new stop to the end of the original interval.\cr Main application is to enable the use of \code{knots} in \code{twinSIR}, which are not existing stop time points in the \code{"epidata"} object. } \usage{ intersperse(epidata, stoptimes, verbose = FALSE) } \arguments{ \item{epidata}{ an object inheriting from class \code{"epidata"}. } \item{stoptimes}{ a numeric vector of time points inside the observation period of the \code{epidata}. } \item{verbose}{ logical indicating if a \code{\link{txtProgressBar}} should be shown while inserting blocks for extra \code{stoptimes}. } } \value{ an object of the same class as \code{epidata} with additional time blocks for any new \code{stoptimes}. } \author{ Sebastian Meyer } \seealso{ \code{\link{as.epidata.epidataCS}} where this function is used. } \examples{ data("fooepidata") subset(fooepidata, start < 25 & stop > 25, select = 1:7) nrow(fooepidata) moreStopsEpi <- intersperse(fooepidata, c(25,75)) nrow(moreStopsEpi) subset(moreStopsEpi, stop == 25 | start == 25, select = 1:7) } \keyword{spatial} \keyword{manip} surveillance/man/addSeason2formula.Rd0000644000175100001440000000523613122471774017415 0ustar hornikusers\name{addSeason2formula} \alias{addSeason2formula} \title{ Function that adds a sine-/cosine formula to an existing formula. } \description{ This function helps to construct a \code{\link{formula}} object that can be used in a call to \code{\link{hhh4}} to model seasonal variation via a sum of sine and cosine terms. } \usage{ addSeason2formula(f = ~1, S = 1, period = 52, timevar = "t") } \arguments{ \item{f}{ formula that the seasonal terms should be added to, defaults to an intercept \code{~1}. } \item{S}{ number of sine and cosine terms. If \code{S} is a vector, unit-specific seasonal terms are created. } \item{period}{ period of the season, defaults to 52 for weekly data. } \item{timevar}{ the time variable in the model. Defaults to \code{"t"}. } } \details{ The function adds the seasonal terms \deqn{ \sum_{s=1}^\code{S} \gamma_s \sin(\frac{2\pi s}{\code{period}} t) +\delta_s \cos(\frac{2\pi s}{\code{period}} t), }{ sum_s gamma_s * sin(2*pi*s/period * t) + delta_s * cos(2*pi*s/period * t), } where \eqn{\gamma_s}{gamma_s} and \eqn{\delta_s}{delta_s} are the unknown parameters and \eqn{t}, \eqn{t = 1, 2, \ldots} denotes the time variable \code{timevar}, to an existing formula \code{f}. Note that the seasonal terms can also be expressed as \deqn{\gamma_{s} \sin(\frac{2\pi s}{\code{period}} t) + \delta_{s} \cos(\frac{2\pi s}{\code{period}} t) = A_s \sin(\frac{2\pi s}{\code{period}} t + \epsilon_s)}{% \gamma_s sin(2*pi*s/period * t) + \delta_s cos2*pi*s/period * t) = A_s sin(2*pi*s/period * t + \epsilon_s)} with amplitude \eqn{A_s=\sqrt{\gamma_s^2 +\delta_s^2}}{A_s=sqrt{\gamma_s^2 +\delta_s^2}} and phase shift \eqn{\tan(\epsilon_s) = \delta_s / \gamma_s}. The amplitude and phase shift can be obtained from a fitted \code{\link{hhh4}} model via \code{coef(..., amplitudeShift = TRUE)}, see \code{\link{coef.hhh4}}. } \value{ Returns a \code{\link{formula}} with the seasonal terms added and its environment set to \code{\link{.GlobalEnv}}. Note that to use the resulting formula in \code{\link{hhh4}}, a time variable named as specified by the argument \code{timevar} must be available. } \author{ M. Paul, with contributions by S. Meyer } \seealso{ \code{\link{hhh4}}, \code{\link{fe}}, \code{\link{ri}} } \examples{ # add 2 sine/cosine terms to a model with intercept and linear trend addSeason2formula(f = ~ 1 + t, S = 2) # the same for monthly data addSeason2formula(f = ~ 1 + t, S = 2, period = 12) # different number of seasons for a bivariate time series addSeason2formula(f = ~ 1, S = c(3, 1), period = 52) } surveillance/man/twinSIR_methods.Rd0000644000175100001440000001536412665561746017143 0ustar hornikusers\encoding{latin1} \name{twinSIR_methods} \alias{print.twinSIR} \alias{summary.twinSIR} \alias{AIC.twinSIR} \alias{extractAIC.twinSIR} \alias{vcov.twinSIR} \alias{logLik.twinSIR} \alias{print.summary.twinSIR} \title{ Print, Summary and Extraction Methods for \code{"twinSIR"} Objects } \description{ Besides \code{print} and \code{summary} methods there are also some standard extraction methods defined for objects of class \code{"twinSIR"}: \code{vcov}, \code{logLik} and especially \code{AIC} and \code{extractAIC}, which extract Akaike's Information Criterion. Note that special care is needed, when fitting models with parameter constraints such as the epidemic effects \eqn{\alpha} in \code{twinSIR} models. Parameter constraints reduce the average increase in the maximized loglikelihood - thus the penalty for constrained parameters should be smaller than the factor 2 used in the ordinary definition of AIC. To this end, these two methods offer the calculation of the so-called one-sided AIC (OSAIC). } \usage{ \method{print}{twinSIR}(x, digits = max(3, getOption("digits") - 3), ...) \method{summary}{twinSIR}(object, correlation = FALSE, symbolic.cor = FALSE, ...) \method{AIC}{twinSIR}(object, ..., k = 2, one.sided = NULL, nsim = 1e3) \method{extractAIC}{twinSIR}(fit, scale = 0, k = 2, one.sided = NULL, nsim = 1e3, ...) \method{vcov}{twinSIR}(object, ...) \method{logLik}{twinSIR}(object, ...) \method{print}{summary.twinSIR}(x, digits = max(3, getOption("digits") - 3), symbolic.cor = x$symbolic.cor, signif.stars = getOption("show.signif.stars"), ...) } \arguments{ \item{x, object, fit}{an object of class \code{"twinSIR"}.\cr For the \code{print} method of the \code{summary} method, an object of class \code{"summary.twinSIR"}.} \item{digits}{ integer, used for number formatting with \code{signif()}. Minimum number of significant digits to be printed in values. } \item{correlation}{ logical. if \code{TRUE}, the correlation matrix of the estimated parameters is returned and printed. } \item{symbolic.cor}{ logical. If \code{TRUE}, print the correlations in a symbolic form (see \code{symnum}) rather than as numbers. } \item{\dots}{ For the \code{summary} method: arguments passed to \code{\link{extractAIC.twinSIR}}.\cr For the \code{AIC} method, optionally more fitted model objects.\cr For the \code{print}, \code{extractAIC}, \code{vcov} and \code{logLik} methods: unused (argument of the generic). } \item{k}{ numeric specifying the "weight" of the \emph{penalty} to be used; in an unconstrained fit \code{k = 2} is the classical AIC. } \item{one.sided}{ logical or \code{NULL} (the default). Determines if the one-sided AIC should be calculated instead of using the classical penalty \code{k*edf}. The default value \code{NULL} chooses classical AIC in the case of an unconstrained fit and one-sided AIC in the case of constraints. The type of the fit can be seen in \code{object$method} (or \code{fit$method} respectively), where \code{"L-BFGS"} means constrained optimization. } \item{nsim}{ when there are more than two epidemic covariates in the fit, the weights in the OSAIC formula have to be determined by simulation. Default is to use 1000 samples. Note that package \pkg{quadprog} is additionally required in this case. } \item{scale}{unused (argument of the generic).} \item{signif.stars}{logical. If \code{TRUE}, \dQuote{significance stars} are printed for each coefficient.} } \details{ The \code{print} and \code{summary} methods allow the compact or comprehensive representation of the fitting results, respectively. The former only prints the original function call, the estimated coefficients and the maximum log-likelihood value. The latter prints the whole coefficient matrix with standard errors, z- and p-values (see \code{\link{printCoefmat}}), and additionally the number of infections per log-baseline \code{interval}, the (one-sided) AIC and the number of log-likelihood evaluations. They both append a big \dQuote{WARNING}, if the optimization algorithm did not converge. The estimated coefficients may be extracted by using the default \code{coef}-method from package \pkg{stats}. The two AIC functions differ only in that \code{AIC} can take more than one fitted model object and that \code{extractAIC} always returns the number of parameters in the model (\code{AIC} only does with more than one fitted model object). Concerning the choice of one-sided AIC: parameter constraints -- such as the non-negative constraints for the epidemic effects alpha in \code{twinSIR} models -- reduce the average increase in the maximized loglikelihood. Thus, the penalty for constrained parameters should be smaller than the factor 2 used in the ordinary definition of AIC. One-sided AIC (OSAIC) suggested by Hughes and King (2003) is such a proposal when \eqn{p} out of \eqn{k = p + q} parameters have non-negative constraints: \deqn{OSAIC = -2 l(\theta, \tau) + 2 \sum_{g=0}^p w(p,g) (k-p+g)}{% OSAIC = -2 l(theta, tau) + 2 sum_{g=0}^p w(p,g) (k-p+g)} where \eqn{w(p,g)} are \eqn{p}-specific weights. For more details see Section 5.2 in \enc{Höhle}{Hoehle} (2009). } \value{ The \code{print} methods return their first argument, invisibly, as they always should. The \code{vcov} and \code{logLik} methods return the estimated variance-covariance matrix of the parameters (here, the inverse of the estimate of the expected Fisher information matrix), and the maximum log-likelihood value of the model, respectively. The \code{summary} method returns a list containing some summary statistics of the fitted model, which is nicely printed by the corresponding \code{print} method. For the \code{\link{AIC}} and \code{\link{extractAIC}} methods, see the documentation of the corresponding generic functions. } \references{ Hughes A, King M (2003) Model selection using AIC in the presence of one-sided information. \emph{Journal of Statistical Planning and Inference} \strong{115}, pp. 397--411. \enc{Höhle}{Hoehle}, M. (2009), Additive-Multiplicative Regression Models for Spatio-Temporal Epidemics, Biometrical Journal, 51(6):961-978. } \author{ Michael \enc{Höhle}{Hoehle} and Sebastian Meyer } \examples{ data("foofit") foofit coef(foofit) vcov(foofit) logLik(foofit) summary(foofit, correlation = TRUE, symbolic.cor = TRUE) # AIC or OSAIC AIC(foofit) AIC(foofit, one.sided = FALSE) extractAIC(foofit) extractAIC(foofit, one.sided = FALSE) # just as a stupid example for the use of AIC with multiple fits foofit2 <- foofit AIC(foofit, foofit2) # 2nd column should actually be named "OSAIC" here } \keyword{methods} \keyword{print} \keyword{htest} surveillance/man/algo.hhh.grid.Rd0000644000175100001440000001434313165505075016456 0ustar hornikusers\name{algo.hhh.grid} \alias{algo.hhh.grid} \alias{print.ahg} \alias{coef.ahg} \encoding{latin1} \title{Fit a Classical HHH Model (DEPRECATED) with Varying Start Values} \description{ \code{algo.hhh.grid} tries multiple starting values in \code{algo.hhh}. Starting values are provided in a matrix with \code{gridSize} rows (usually created by \code{\link{create.grid}}). The grid search is conducted until either all starting values are used or a time limit \code{maxTime} is exceeded. The result with the highest likelihood is returned. Note that the \code{algo.hhh} implementation of HHH models is \strong{deprecated} and superseded by the function \code{\link{hhh4}}. } \usage{ algo.hhh.grid(disProgObj, control=list(lambda=TRUE, neighbours=FALSE, linear=FALSE, nseason=0, negbin=c("none", "single", "multiple"), proportion=c("none", "single", "multiple"),lag.range=NULL), thetastartMatrix, maxTime=1800, verbose=FALSE) } \arguments{ \item{disProgObj}{object of class \code{disProg}} \item{control}{control object: \describe{ \item{\code{lambda}}{If \code{TRUE} an autoregressive parameter \eqn{\lambda} is included, if \code{lambda} is a vector of logicals, unit-specific parameters \eqn{\lambda_i} are included. By default, observations \eqn{y_{t-lag}}{y_t-lag} at the previous time points, i.e. \eqn{lag=1}, are used for the autoregression. Other lags can be used by specifying \code{lambda} as a vector of integers, see Examples and \code{\link{algo.hhh}} for details.} \item{\code{neighbours}}{If \code{TRUE} an autoregressive parameter for adjacent units \eqn{\phi} is included, if \code{neighbours} is a vector of logicals, unit-specific parameters \eqn{\phi_i} are included. By default, observations \eqn{y_{t-lag}}{y_t-lag} at the previous time points, i.e. \eqn{lag=1}, are used for the autoregression. Other lags can be used by specifying \code{neighbours} as a vector of integers.} \item{\code{linear}}{a \code{logical} (or a vector of logicals) indicating wether a linear trend \eqn{\beta} (or a linear trend \eqn{\beta_i} for each unit) is included} \item{\code{nseason}}{integer number of Fourier frequencies; if \code{nseason} is a vector of integers, each unit \eqn{i} gets its own seasonal parameters } \item{\code{negbin}}{if \code{"single"} negative binomial rather than poisson is used, if \code{"multiple"} unit-specific overdispersion parameters are used.} \item{\code{proportion}}{see details in \code{\link{algo.hhh}} } \item{\code{lag.range}}{determines which observations are used to fit the model} }} \item{thetastartMatrix}{matrix with initial values for all parameters specified in the control object as rows.} \item{verbose}{if \code{true} progress information is printed} \item{maxTime}{maximum of time (in seconds) to elapse until algorithm stops.} } \value{Returns an object of class \code{ahg} with elements \item{best}{result of a call to \code{algo.hhh} with highest likelihood } \item{allLoglik}{values of loglikelihood for all starting values used} \item{gridSize}{number of different starting values in thetastartMatrix} \item{gridUsed}{number of used starting values} \item{time}{elapsed time} \item{convergence}{if \code{false} \code{algo.hhh} did not converge for all (used) starting values} } \seealso{\code{\link{algo.hhh}}, \code{\link{create.grid}} } \author{M. Paul, L. Held} \examples{ ## monthly counts of menigococcal infections in France data(meningo.age) # specify model for algo.hhh.grid model1 <- list(lambda=TRUE) # create grid of inital values grid1 <- create.grid(meningo.age, model1, params = list(epidemic=c(0.1,0.9,5))) # try multiple starting values, print progress information algo.hhh.grid(meningo.age, control=model1, thetastartMatrix=grid1, verbose=TRUE) ## more sophisticated models with a much longer runtime follow \dontrun{ # specify model model2 <- list(lambda=TRUE, neighbours=TRUE, negbin="single", nseason=1) grid2 <- create.grid(meningo.age, model2, params = list(epidemic=c(0.1,0.9,3), endemic=c(-0.5,0.5,3), negbin = c(0.3, 12, 10))) # run algo.hhh.grid, search time is limited to 30 sec algo.hhh.grid(meningo.age, control=model2, thetastartMatrix=grid2, maxTime=30) ## weekly counts of influenza and meningococcal infections in Germany, 2001-2006 data(influMen) # specify model with two autoregressive parameters lambda_i, overdispersion # parameters psi_i, an autoregressive parameter phi for meningococcal infections # (i.e. nu_flu,t = lambda_flu * y_flu,t-1 # and nu_men,t = lambda_men * y_men,t-1 + phi_men*y_flu,t-1 ) # and S=(3,1) Fourier frequencies model <- list(lambda=c(TRUE,TRUE), neighbours=c(FALSE,TRUE), linear=FALSE, nseason=c(3,1),negbin="multiple") # create grid of initial values grid <- create.grid(influMen,model, list(epidemic=c(.1,.9,3), endemic=c(-.5,.5,3), negbin=c(.3,15,10))) # run algo.hhh.grid, search time is limited to 30 sec algo.hhh.grid(influMen, control=model, thetastartMatrix=grid, maxTime=30) # now meningococcal infections in the same week should enter as covariates # (i.e. nu_flu,t = lambda_flu * y_flu,t-1 # and nu_men,t = lambda_men * y_men,t-1 + phi_men*y_flu,t ) model2 <- list(lambda=c(1,1), neighbours=c(NA,0), linear=FALSE,nseason=c(3,1),negbin="multiple") algo.hhh.grid(influMen, control=model2, thetastartMatrix=grid, maxTime=30) } } \keyword{ts} \keyword{regression} \references{ Held, L., \enc{Höhle}{Hoehle}, M., Hofmann, M. (2005) A statistical framework for the analysis of multivariate infectious disease surveillance counts, Statistical Modelling, \bold{5}, 187--199. Paul, M., Held, L. and Toschke, A. M. (2008) Multivariate modelling of infectious disease surveillance data, Statistics in Medicine, \bold{27}, 6250--6267. } surveillance/man/epidata_animate.Rd0000644000175100001440000001703112665561746017157 0ustar hornikusers\name{epidata_animate} \alias{animate.epidata} \alias{animate.summary.epidata} \title{ Spatio-Temporal Animation of an Epidemic } \description{ Function for the animation of epidemic data, i.e. objects inheriting from class \code{"epidata"}. This only works with 1- or 2-dimensional coordinates and is not useful if some individuals share the same coordinates (overlapping). There are two types of animation, see argument \code{time.spacing}. Besides the direct plotting in the \R session, it is also possible to generate a sequence of graphics files to create animations outside \R. } \usage{ \method{animate}{summary.epidata}(object, main = "An animation of the epidemic", pch = 19, col = c(3, 2, gray(0.6)), time.spacing = NULL, sleep = quote(5/.nTimes), legend.opts = list(), timer.opts = list(), end = NULL, generate.snapshots = NULL, ...) \method{animate}{epidata}(object, ...) } \arguments{ \item{object}{ an object inheriting from class \code{"epidata"} or \code{"summary.epidata"}. In the former case, its summary is calculated and the function continues as in the latter case, passing all \code{...} arguments to the \code{summary.epidata} method. } \item{main}{ a main title for the plot, see also \code{\link{title}}. } \item{pch, col}{ vectors of length 3 specifying the point symbols and colors for susceptible, infectious and removed individuals (in this order). The vectors are recycled if necessary. By default, susceptible individuals are marked as filled green circles, infectious individuals as filled red circles and removed individuals as filled gray circles. Note that the symbols are iteratively drawn (overlayed) in the same plotting region as time proceeds. For information about the possible values of \code{pch} and \code{col}, see the help pages of \code{\link{points}} and \code{\link{par}}, respectively. } \item{time.spacing}{ time interval for the animation steps. If \code{NULL} (the default), the events are plotted one by one with pauses of \code{sleep} seconds. Thus, it is just the \emph{ordering} of the events, which is shown. To plot the appearance of events proportionally to the exact time line, \code{time.spacing} can be set to a numeric value indicating the period of time between consecutive plots. Then, for each time point in \code{seq(0, end, by = time.spacing)} the current state of the epidemic can be seen and an additional timer indicates the current time (see \code{timer.opts} below). The argument \code{sleep} will be the artificial pause in seconds between two of those time points. } \item{sleep}{ time in seconds to \code{\link{Sys.sleep}} before the next plotting event. By default, each artificial pause is of length \code{5/.nTimes} seconds, where \code{.nTimes} is the number of events (infections and removals) of the epidemic, which is evaluated in the function body. Thus, for \code{time.spacing = NULL} the animation has a duration of approximately 5 seconds. In the other case, \code{sleep} is the duration of the artificial pause between two time points. Note that \code{sleep} is ignored on non-interactive devices (see \code{\link{dev.interactive}}) } \item{legend.opts}{ either a list of arguments passed to the \code{\link{legend}} function or \code{NULL} (or \code{NA}), in which case no legend will be plotted. All necessary arguments have sensible defaults and need not be specified, i.e. \describe{ \item{\code{x}:}{\code{"topright"}} \item{\code{legend}:}{\code{c("susceptible", "infectious", "removed")}} \item{\code{pch}:}{same as argument \code{pch} of the main function} \item{\code{col}:}{same as argument \code{col} of the main function} } } \item{timer.opts}{ either a list of arguments passed to the \code{\link{legend}} function or \code{NULL} (or \code{NA}), in which case no timer will be plotted. All necessary arguments have sensible defaults and need not be specified, i.e. \describe{ \item{\code{x}:}{\code{"bottomright"}} \item{\code{title}:}{\code{"time"}} \item{\code{box.lty}:}{\code{0}} \item{\code{adj}:}{\code{c(0.5,0.5)}} \item{\code{inset}:}{\code{0.01}} \item{\code{bg}:}{\code{"white"}} } Note that the argument \code{legend}, which is the current time of the animation, can not be modified. } \item{end}{ ending time of the animation in case of \code{time.spacing} not being \code{NULL}. By default (\code{NULL}), time stops after the last event. } \item{generate.snapshots}{ By default (\code{NULL}), the animation is not saved to image files but only shown on the on-screen device. In order to print to files, \code{time.spacing} must not be \code{NULL}, a screen device must be available, and there are two options:\cr If the framework of the \pkg{animation} package should be used, i.e. the \code{animate}-call is passed as the \code{expr} argument to one of the \code{save*} functions of the \pkg{animation} package, then set \code{generate.snapshots = img.name}, where \code{img.name} is the base name for the generated images (the same as passed to the \code{save*} function). The path and format (type, width, height) for the generated images is derived from \code{\link[animation]{ani.options}}. See the last example below.\cr Alternatively, \code{generate.snapshots} may be a list of arguments passed to the function \code{\link{dev.print}}, which then is executed at each time point of the grid defined by \code{time.spacing}. Essentially, this is used for saving the produced snapshots to files, e.g. \code{generate.snapshots = % list(device=pdf, file=quote(paste("epidemic_",sprintf(form,tp),".pdf",% sep="")))} will store the animation steps in pdf-files in the current working directory, where the file names each end with the time point represented by the corresponding plot. Because the variables \code{tp} and \code{form} should only be evaluated inside the function the \code{file} argument is \code{quote}d. Alternatively, the file name could also make use of the internal plot index \code{i}, e.g., use \code{file=quote(paste("epidemic",i,".pdf",sep=""))}. } \item{\dots}{ further graphical parameters passed to the basic call of \code{plot}, e.g. \code{las}, \code{cex.axis} (etc.) and \code{mgp}. } } %\value{ % invisibly returns \code{NULL}. %} \author{ Sebastian Meyer } \seealso{ \code{\link{summary.epidata}} for the data, on which the plot is based. \code{\link{plot.epidata}} for plotting the evolution of an epidemic by the numbers of susceptible, infectious and removed individuals. The contributed \R package \pkg{animation}. } \examples{ data("fooepidata") (s <- summary(fooepidata)) # plot the ordering of the events only animate(s, sleep=0.01) # or: animate(fooepidata) # with timer (animate only up to t=10) animate(s, time.spacing=0.1, end=10, sleep=0.01) # Such an animation can be saved in various ways using tools of # the animation package, e.g., saveHTML() if (interactive() && require("animation")) { oldwd <- setwd(tempdir()) # to not clutter up the current working dir saveHTML({ par(bg="white") # default "transparent" is grey in some browsers animate(s, time.spacing=1, sleep=0, generate.snapshots="epiani") }, use.dev=FALSE, img.name="epiani", ani.width=600, interval=0.5) setwd(oldwd) } } \keyword{hplot} \keyword{dynamic} \keyword{spatial} surveillance/man/estimateGLRNbHook.Rd0000644000175100001440000000131013122471774017312 0ustar hornikusers\name{estimateGLRNbHook} \alias{estimateGLRNbHook} \encoding{latin1} \title{Hook function for in-control mean estimation} \description{ Estimation routine for the in-control mean of \code{\link{algo.glrpois}}. In \R < 2.14.0 and \pkg{surveillance} < 1.4 (i.e., without a package namespace) users could customize this function simply by defining a modified version in their workspace. This is no longer supported. } \usage{ estimateGLRNbHook() } \value{ A list with elements \item{\code{mod}}{resulting model of a call of \code{glm.nb}} \item{\code{range}}{vector of length as \code{range} containing the predicted values} } \seealso{ \code{\link{algo.glrnb}} } \author{M. Hoehle} \keyword{internal} surveillance/man/arlCusum.Rd0000644000175100001440000000350313122471774015632 0ustar hornikusers\name{arlCusum} \alias{arlCusum} \title{Calculation of Average Run Length for discrete CUSUM schemes} \description{ Calculates the average run length (ARL) for an upward CUSUM scheme for discrete distributions (i.e. Poisson and binomial) using the Markov chain approach. } \usage{ arlCusum(h=10, k=3, theta=2.4, distr=c("poisson","binomial"), W=NULL, digits=1, ...) } \arguments{ \item{h}{ decision interval} \item{k}{ reference value} \item{theta}{distribution parameter for the cumulative distribution function (cdf) \eqn{F}, i.e. rate \eqn{\lambda} for Poisson variates or probability \eqn{p} for binomial variates} \item{distr}{ \code{"poisson"} or \code{"binomial"} } %ppois, pbinom \item{W}{Winsorizing value \code{W} for a robust CUSUM, to get a nonrobust CUSUM set %\code{W} is set to \code{W} > \code{k}+\code{h}. If \code{NULL}, a nonrobust CUSUM is used.} \item{digits}{ \code{k} and \code{h} are rounded to \code{digits} decimal places } \item{\dots}{ further arguments for the distribution function, i.e. number of trials \code{n} for binomial cdf } } \value{ Returns a list with the ARL of the regular (zero-start) and the fast initial response (FIR) CUSUM scheme with reference value \code{k}, decision interval \code{h} for \eqn{X \sim F(\theta)}, where F is the Poisson or binomial CDF. \item{ARL}{one-sided ARL of the regular (zero-start) CUSUM scheme} \item{FIR.ARL}{one-sided ARL of the FIR CUSUM scheme with head start \eqn{\frac{\code{h}}{2}} } } \keyword{models} \source{Based on the FORTRAN code of Hawkins, D. M. (1992). Evaluation of Average Run Lengths of Cumulative Sum Charts for an Arbitrary Data Distribution. Communications in Statistics - Simulation and Computation, 21(4), p. 1001-1020. } surveillance/man/imdepi.Rd0000644000175100001440000001767113165516007015315 0ustar hornikusers\encoding{latin1} \docType{data} \name{imdepi} \alias{imdepi} \title{ Occurrence of Invasive Meningococcal Disease in Germany } \description{ \code{imdepi} contains data on the spatio-temporal location of 636 cases of invasive meningococcal disease (IMD) caused by the two most common meningococcal finetypes in Germany, \samp{B:P1.7-2,4:F1-5} (of serogroup B) and \samp{C:P1.5,2:F3-3} (of serogroup C). } \usage{ data("imdepi") } \format{ \code{imdepi} is an object of class \code{"\link{epidataCS}"} (a list with components \code{events}, \code{stgrid}, \code{W} and \code{qmatrix}). } \details{ The \code{imdepi} data is a simplified version of what has been analyzed by Meyer et al. (2012). Simplification is with respect to the temporal resolution of the \code{stgrid} (see below) to be used in \code{\link{twinstim}}'s endemic model component. In what follows, we describe the elements \code{events}, \code{stgrid}, \code{W}, and \code{qmatrix} of \code{imdepi} in greater detail. \code{imdepi$events} is a \code{"\linkS4class{SpatialPointsDataFrame}"} object (ETRS89 projection, i.e. EPSG code 3035, with unit \sQuote{km}) containing 636 events, each with the following entries: \describe{ \item{time:}{Time of the case occurrence measured in number of days since origin. Note that a U(0,1)-distributed random number has been subtracted from each of the original event times (days) to break ties (using \code{\link{untie}(imdepi_tied, amount=list(t=1))}).} \item{tile:}{Tile ID in the spatio-temporal grid (\code{stgrid}) of endemic covariates, where the event is contained in. This corresponds to one of the 413 districts of Germany. } \item{type:}{Event type, a factor with levels \code{"B"} and \code{"C"}.} \item{eps.t:}{Maximum temporal interaction range for the event. Here set to 30 days.} \item{eps.s:}{Maximum spatial interaction range for the event. Here set to 200 km.} \item{sex:}{Sex of the case, i.e. a factor with levels \code{"female"} and \code{"male"}. Note: for some cases this information is not available (\code{NA}).} \item{agegrp:}{Factor giving the age group of the case, i.e. 0-2, 3-18 or >=19. Note: for one case this information is not available (\code{NA}).} \item{BLOCK, start:}{Block ID and start time (in days since origin) of the cell in the spatio-temporal endemic covariate grid, which the event belongs to.} \item{popdensity:}{Population density (per square km) at the location of the event (corresponds to population density of the district where the event is located).} } There are further auxiliary columns attached to the events' data the names of which begin with a . (dot): These are created during conversion to the \code{"epidataCS"} class and are necessary for fitting the data with \code{twinstim}, see the description of the \code{"\link{epidataCS}"}-class. With \code{coordinates(imdepi$events)} one obtains the (x,y) locations of the events. The district identifier in \code{tile} is indexed according to the German official municipality key ( \dQuote{Amtlicher Gemeindeschl\enc{ü}{ue}ssel}). See \url{http://de.wikipedia.org/wiki/Amtlicher_Gemeindeschl\%C3\%BCssel} for details. The data component \code{stgrid} contains the spatio-temporal grid of endemic covariate information. In addition to the usual bookkeeping variables this includes: \describe{ \item{area:}{Area of the district \code{tile} in square kilometers.} \item{popdensity:}{Population density (inhabitants per square kilometer) computed from DESTATIS (Federal Statistical Office) information (Date: 31.12.2008) on communities level (LAU2) aggregated to district level (NUTS3).} } We have actually not included any time-dependent covariates here, we just established this grid with a (reduced -> fast) temporal resolution of \emph{monthly} intervals so that we can model endemic time trends and seasonality (in this discretized time). The entry \code{W} contains the observation window as a \code{"\linkS4class{SpatialPolygons}"} object, in this case the boundaries of Germany. It was obtained as \code{stateD <- rgeos::gUnaryUnion(districtsD)}, where \code{districtsD} represents Germany's districts as at 2009-01-01 (originally obtained from \url{www.geodatenzentrum.de}), simplified by the \dQuote{modified Visvalingam} algorithm (level 6.6\%) available at \url{MapShaper.org} (v. 0.1.17). The objects \code{districtsD} and \code{stateD} are contained in \code{system.file("shapes", "districtsD.RData", package="surveillance")}. The entry \code{qmatrix} is a \eqn{2\times 2}{2 x 2} identity matrix indicating that no transmission between the two finetypes can occur. } \source{ IMD case reports: German Reference Centre for Meningococci (NRZM) -- hosted by the Department of Hygiene and Microbiology, Julius-Maximilians-Universit\enc{ä}{ae}t W\enc{ü}{ue}rzburg, Germany. Thanks to Dr. Johannes Elias and Prof. Dr. Ulrich Vogel for providing the data. See \url{http://www.meningococcus.de/} and \url{http://www.episcangis.org/} for further details. Shapefile of Germany's districts as at 2009-01-01: Bundesamt f\enc{ü}{ue}r Kartographie und Geod\enc{ä}{ae}sie, Frankfurt am Main, Germany, \url{www.geodatenzentrum.de}. %% "Copy, distribution and making available to the public - also in %% parts - is allowed with reference." } \references{ Meyer, S., Elias, J. and H\enc{ö}{oe}hle, M. (2012): A space-time conditional intensity model for invasive meningococcal disease occurrence. \emph{Biometrics}, \bold{68}, 607-616. \doi{10.1111/j.1541-0420.2011.01684.x} } \seealso{ the data class \code{"\link{epidataCS}"}, and function \code{\link{twinstim}} for model fitting. } \examples{ data("imdepi") # Basic information print(imdepi, n=5, digits=2) # What is an epidataCS-object? str(imdepi, max.level=4) names(imdepi$events@data) # => events data.frame has hidden columns sapply(imdepi$events@data, class) # marks and print methods ignore these auxiliary columns # look at the B type only imdepiB <- subset(imdepi, type == "B") #<- subsetting applies to the 'events' component imdepiB # select only the last 10 events tail(imdepi, n=10) # there is also a corresponding 'head' method # Access event marks str(marks(imdepi)) # there is an update-method which assures that the object remains valid # when changing parameters like eps.s, eps.t or qmatrix update(imdepi, eps.t = 20) # Summary s <- summary(imdepi) s str(s) # Step function of number of infectives plot(s$counter, xlab = "Time [days]", ylab = "Number of infectious individuals", main = "Time series of IMD assuming 30 days infectious period") # distribution of number of potential sources of infection opar <- par(mfrow=c(1,2), las=1) for (type in c("B","C")) { plot(100*prop.table(table(s$nSources[s$eventTypes==type])), xlim=range(s$nSources), xlab = "Number of potential epidemic sources", ylab = "Proportion of events [\%]") } par(opar) # a histogram of the number of events along time (using the # plot-method for the epidataCS-class, see ?plot.epidataCS) opar <- par(mfrow = c(2,1)) plot(imdepi, "time", subset = type == "B", main = "Finetype B") plot(imdepi, "time", subset = type == "C", main = "Finetype C") par(opar) # Plot the spatial distribution of the events in W plot(imdepi, "space", points.args = list(col=c("indianred", "darkblue")), axes = TRUE, lwd = 2) title(xlab = "x [km]", ylab = "y [km]") \dontrun{ # or manually (no legends, no account for tied locations) plot(imdepi$W, lwd=2) plot(imdepi$events, pch=c(3,4)[imdepi$events$type], cex=0.8, col=c("indianred", "darkblue")[imdepi$events$type], add=TRUE) } \dontrun{ # Show a dynamic illustration of the spatio-temporal dynamics of the # spread during the first year of type B with a step size of 7 days animate(imdepiB, interval=c(0,365), time.spacing=7, sleep=0.1) } } \keyword{datasets} surveillance/man/create.disProg.Rd0000644000175100001440000000421613122471774016712 0ustar hornikusers\name{create.disProg} \alias{create.disProg} \alias{print.disProg} \title{Creating an object of class disProg} \description{ Creates an object of class \code{disProg} from a vector with the weeknumber (week) and matrices with the observed number of counts (observed) and the respective state chains (state), where each column represents an individual time series. The matrices neighbourhood and populationFrac provide information about neighbouring units and population proportions. } \usage{ create.disProg(week, observed, state, start=c(2001,1), freq=52, neighbourhood=NULL, populationFrac=NULL, epochAsDate=FALSE) } \arguments{ \item{week}{index in the matrix of observations, typically weeks} \item{observed}{matrix with parallel time series of counts where rows are time points and columns are the individual time series for unit/area \eqn{i, i=1,\ldots,m}} \item{state}{matrix with corresponding states} \item{start}{vector of length two denoting the year and the sample number (week, month, etc.) of the first observation} \item{freq}{sampling frequency per year, i.e. 52 for weekly data, 12 for monthly data, 13 if 52 weeks are aggregated into 4 week blocks.} \item{neighbourhood}{neighbourhood matrix \eqn{N} of dimension \eqn{m \times m} with elements \eqn{n_{ij}=1} if units \eqn{i} and \eqn{j} are adjacent and 0 otherwise } \item{populationFrac}{matrix with corresponding population proportions} \item{epochAsDate}{interpret the integers in \code{week} as Dates. Default is \code{FALSE}} } \value{object of class \code{disProg}} \author{M. Paul} \examples{ # create an univariate disProg object # read in salmonella.agona data salmonella <- read.table(system.file("extdata/salmonella.agona.txt", package = "surveillance"), header = TRUE) # look at data.frame str(salmonella) salmonellaDisProg <- create.disProg(week = 1:nrow(salmonella), observed = salmonella$observed, state = salmonella$state, start = c(1990, 1)) # look at disProg object salmonellaDisProg } \keyword{datagen} surveillance/man/epidataCS.Rd0000644000175100001440000004173713174153300015674 0ustar hornikusers\encoding{latin1} \name{epidataCS} \alias{epidataCS} \alias{as.epidataCS} \alias{print.epidataCS} \alias{nobs.epidataCS} \alias{head.epidataCS} \alias{tail.epidataCS} \alias{[.epidataCS} \alias{subset.epidataCS} \alias{marks.epidataCS} \alias{summary.epidataCS} \alias{print.summary.epidataCS} \alias{as.stepfun.epidataCS} \alias{getSourceDists} \title{ Continuous Space-Time Marked Point Patterns with Grid-Based Covariates } \description{ Data structure for \strong{c}ontinuous \strong{s}patio-temporal event data, e.g. individual case reports of an infectious disease. Apart from the actual \code{events}, the class simultaneously holds a spatio-temporal grid of endemic covariates (similar to disease mapping) and a representation of the observation region. The \code{"epidataCS"} class is the basis for fitting spatio-temporal endemic-epidemic intensity models with the function \code{\link{twinstim}} (Meyer et al., 2012). The implementation is described in Meyer et al. (2017, Section 3), see \code{vignette("twinstim")}. } \usage{ as.epidataCS(events, stgrid, W, qmatrix = diag(nTypes), nCircle2Poly = 32L, T = NULL, clipper = c("polyclip", "rgeos"), verbose = interactive()) \method{print}{epidataCS}(x, n = 6L, digits = getOption("digits"), ...) \method{nobs}{epidataCS}(object, ...) \method{head}{epidataCS}(x, n = 6L, ...) \method{tail}{epidataCS}(x, n = 6L, ...) \method{[}{epidataCS}(x, i, j, ..., drop = TRUE) \method{subset}{epidataCS}(x, subset, select, drop = TRUE, ...) \method{marks}{epidataCS}(x, coords = TRUE, ...) \method{summary}{epidataCS}(object, ...) \method{print}{summary.epidataCS}(x, ...) \method{as.stepfun}{epidataCS}(x, ...) getSourceDists(object, dimension = c("space", "time")) } \arguments{ \item{events}{ a \code{"\linkS4class{SpatialPointsDataFrame}"} of cases with the following obligatory columns (in the \code{events@data} \code{data.frame}): \describe{ \item{time}{time point of event. Will be converted to a numeric variable by \code{as.numeric}. There should be no concurrent events (but see \code{\link{untie}} for an ex post adjustment) and the event times must be covered by \code{stgrid}, i.e. belong to the time interval \eqn{(t_0,T]}, where \eqn{t_0} is \code{min(stgrid$start)} and \code{T} is described below.} \item{tile}{the spatial region (tile) where the event is located. This links to the tiles of \code{stgrid}.} \item{type}{optional type of event in a marked \code{twinstim} model. Will be converted to a factor variable dropping unused levels. If missing, all events will be attribute the single type \code{"1"}.} \item{eps.t}{maximum \emph{temporal} influence radius (e.g. length of infectious period, time to culling, etc.); must be positive and may be \code{Inf}.} \item{eps.s}{maximum \emph{spatial} influence radius (e.g. 100 [km]); must be positive and may be \code{Inf}. A compact influence region mainly has computational advantages, but might also be plausible for specific applications.} } The \code{data.frame} may contain columns with further marks of the events, e.g. sex, age of infected individuals, which may be used as epidemic covariates influencing infectiousness. Note that some auxiliary columns will be added at conversion whose names are reserved: \code{".obsInfLength"}, \code{".bdist"}, \code{".influenceRegion"}, and \code{".sources"}, as well as \code{"start"}, \code{"BLOCK"}, and all endemic covariates' names from \code{stgrid}. } \item{stgrid}{ a \code{\link{data.frame}} describing endemic covariates on a full spatio-temporal region x interval grid (e.g., district x week), which is a decomposition of the observation region \code{W} and period \eqn{t_0,T}. This means that for every combination of spatial region and time interval there must be exactly one row in this \code{data.frame}, that the union of the spatial tiles equals \code{W}, the union of the time intervals equals \eqn{t_0,T}, and that regions (and intervals) are non-overlapping. There are the following obligatory columns: \describe{ \item{tile}{ID of the spatial region (e.g., district ID). It will be converted to a factor variable (dropping unused levels if it already was one).} \item{start, stop}{columns describing the consecutive temporal intervals (converted to numeric variables by \code{as.numeric}). The \code{start} time of an interval must be equal to the \code{stop} time of the previous interval. The \code{stop} column may be missing, in which case it will be auto-generated from the set of \code{start} values and \code{T}.} \item{area}{area of the spatial region (\code{tile}). Be aware that the unit of this area (e.g., square km) must be consistent with the units of \code{W} and \code{events} (as specified in their \code{\link{proj4string}}s, if they have projected coordinates).} } The remaining columns are endemic covariates. Note that the column name \code{"BLOCK"} is reserved (a column which will be added automatically for indexing the time intervals of \code{stgrid}). } \item{W}{ an object of class \code{"\linkS4class{SpatialPolygons}"} representing the observation region. It must have the same \code{proj4string} as \code{events} and all events must be within \code{W}. Prior simplification of \code{W} may considerably reduce the computational burden of likelihood evaluations in \code{\link{twinstim}} models with non-trivial spatial interaction functions (see the \dQuote{Note} section below). } \item{qmatrix}{ a square indicator matrix (0/1 or \code{FALSE}/\code{TRUE}) for possible transmission between the event types. The matrix will be internally converted to \code{logical}. Defaults to an independent spread of the event types, i.e. the identity matrix. } \item{nCircle2Poly}{ accuracy (number of edges) of the polygonal approximation of a circle, see \code{\link{discpoly}}. } \item{T}{ end of observation period (i.e. last \code{stop} time of \code{stgrid}). Must be specified if the start but not the stop times are supplied in \code{stgrid} (=> auto-generation of \code{stop} times). } \item{clipper}{polygon clipping engine to use for calculating the \code{.influenceRegion}s of events (see the Value section below). Default is the \CRANpkg{polyclip} package (called via \code{\link{intersect.owin}} from package \CRANpkg{spatstat}). In \pkg{surveillance} <= 1.6-0, package \pkg{gpclib} was used, which has a restrictive license. This is no longer supported.} \item{verbose}{logical indicating if status messages should be printed during input checking and \code{"epidataCS"} generation. The default is to do so in interactive \R sessions.} \item{x}{an object of class \code{"epidataCS"} or \code{"summary.epidataCS"}, respectively.} \item{n}{a single integer. If positive, the first (\code{head}, \code{print}) / last (\code{tail}) \code{n} events are extracted. If negative, all but the \code{n} first/last events are extracted.} \item{digits}{minimum number of significant digits to be printed in values.} \item{i,j,drop}{ arguments passed to the \code{\link[=[,SpatialPointsDataFrame-method]{[-method}} for \code{SpatialPointDataFrame}s for subsetting the \code{events} while retaining \code{stgrid} and \code{W}.\cr If \code{drop=TRUE} (the default), event types that completely disappear due to \code{i}-subsetting will be dropped, which reduces \code{qmatrix} and the factor levels of the \code{type} column.\cr By the \code{j} index, epidemic covariates can be removed from \code{events}.} \item{\dots}{unused (arguments of the generics) with a few exceptions: The \code{print} method for \code{"epidataCS"} passes \code{\dots} to the \code{\link{print.data.frame}} method, and the \code{print} method for \code{"summary.epidataCS"} passes additional arguments to \code{\link{print.table}}.} \item{subset, select}{arguments used to subset the \code{events} from an \code{"epidataCS"} object like in \code{\link{subset.data.frame}}.} \item{coords}{logical indicating if the data frame of event marks returned by \code{marks(x)} should have the event coordinates appended as last columns. This defaults to \code{TRUE}.} \item{object}{an object of class \code{"epidataCS"}.} \item{dimension}{the distances of all events to their potential source events can be computed in either the \code{"space"} or \code{"time"} dimension.} } \details{ The function \code{as.epidataCS} is used to generate objects of class \code{"epidataCS"}, which is the data structure required for \code{\link{twinstim}} models. The extraction method for class \code{"epidataCS"} ensures that the subsetted object will be valid, for instance, it updates the auxiliary list of potential transmission paths stored in the object. This \code{[}-method is also the basis for the \code{subset.epidataCS}-method, which is implemented similar to the \code{\link{subset.data.frame}}-method. The \code{print} method for \code{"epidataCS"} prints some metadata of the epidemic, e.g., the observation period, the dimensions of the spatio-temporal grid, the types of events, and the total number of events. By default, it also prints the first \code{n = 6} rows of the \code{events}. } \value{ An object of class \code{"epidataCS"} is a list containing the following components: \item{events}{a \code{"\linkS4class{SpatialPointsDataFrame}"} (see the description of the argument). The input \code{events} are checked for requirements and sorted chronologically. The columns are in the following order: obligatory event columns, event marks, the columns \code{BLOCK}, \code{start} and endemic covariates copied from \code{stgrid}, and finally, hidden auxiliary columns. The added auxiliary columns are: \describe{ \item{\code{.obsInfLength}}{observed length of the infectious period (being part [0,T]), i.e. \code{pmin(T-time, eps.t)}.} \item{\code{.sources}}{a list of numeric vectors of potential sources of infection (wrt the interaction ranges eps.s and eps.t) for each event. Row numbers are used as index.} \item{\code{.bdist}}{minimal distance of the event locations to the polygonal boundary \code{W}.} \item{\code{.influenceRegion}}{a list of influence regions represented by objects of the \pkg{spatstat} class \code{"owin"}. For each event, this is the intersection of \code{W} with a (polygonal) circle of radius \code{eps.s} centered at the event's location, shifted such that the event location becomes the origin. The list has \code{nCircle2Poly} set as an attribute.} } } \item{stgrid}{a \code{data.frame} (see description of the argument). The spatio-temporal grid of endemic covariates is sorted by time interval (indexed by the added variable \code{BLOCK}) and region (\code{tile}). It is a full \code{BLOCK} x \code{tile} grid.} \item{W}{a \code{"\linkS4class{SpatialPolygons}"} object representing the observation region.} \item{qmatrix}{see the above description of the argument. The \code{\link{storage.mode}} of the indicator matrix is set to logical and the \code{dimnames} are set to the levels of the event types.} The \code{nobs}-method returns the number of events. The \code{head} and \code{tail} methods subset the epidemic data using the extraction method (\code{[}), i.e. they return an object of class \code{"epidataCS"}, which only contains (all but) the first/last \code{n} events. For the \code{"epidataCS"} class, the method of the generic function \code{\link[spatstat]{marks}} defined by the \pkg{spatstat} package returns a \code{data.frame} of the event marks (actually also including time and location of the events), disregarding endemic covariates and the auxiliary columns from the \code{events} component of the \code{"epidataCS"} object. The \code{summary} method (which has again a \code{print} method) returns a list of metadata, event data, the tables of tiles and types, a step function of the number of infectious individuals over time (\code{$counter}), i.e., the result of the \code{\link{as.stepfun}}-method for \code{"epidataCS"}, and the number of potential sources of transmission for each event (\code{$nSources}) which is based on the given maximum interaction ranges \code{eps.t} and \code{eps.s}. } \note{ Since the observation region \code{W} defines the integration domain in the point process likelihood, the more detailed the polygons of \code{W} are the longer it will take to fit a \code{\link{twinstim}}. You are advised to sacrifice some shape details for speed by reducing the polygon complexity, for example via \code{\link[rmapshaper]{ms_simplify}} from the \CRANpkg{rmapshaper} package. Alternative tools are provided by the packages \CRANpkg{maptools} (\code{\link[maptools]{thinnedSpatialPoly}}) and \CRANpkg{spatstat} (\code{\link[spatstat]{simplify.owin}}). } \references{ Meyer, S., Elias, J. and H\enc{ö}{oe}hle, M. (2012): A space-time conditional intensity model for invasive meningococcal disease occurrence. \emph{Biometrics}, \bold{68}, 607-616. \doi{10.1111/j.1541-0420.2011.01684.x} Meyer, S., Held, L. and \enc{Höhle}{Hoehle}, M. (2017): Spatio-temporal analysis of epidemic phenomena using the \R package \pkg{surveillance}. \emph{Journal of Statistical Software}, \bold{77} (11), 1-55. \doi{10.18637/jss.v077.i11} } \author{ Sebastian Meyer Contributions to this documentation by Michael H\enc{ö}{oe}hle and Mayeul Kauffmann. } \seealso{ \code{vignette("twinstim")}. \code{\link{plot.epidataCS}} for plotting, and \code{\link{animate.epidataCS}} for the animation of such an epidemic. There is also an \code{\link[=update.epidataCS]{update}} method for the \code{"epidataCS"} class. Models for \code{"epidataCS"} can be fitted with \code{\link{twinstim}}. It is also possible to convert the data to \code{\link{epidata}} objects (discrete space) for analysis with \code{\link{twinSIR}} (see \code{\link{as.epidata.epidataCS}}). } \examples{ ## load "imdepi" example data (which is an object of class "epidataCS") data("imdepi") ## print and summary print(imdepi, n=5, digits=2) print(s <- summary(imdepi)) plot(s$counter, # same as 'as.stepfun(imdepi)' xlab = "Time [days]", ylab="Number of infectious individuals", main=paste("Time course of the number of infectious individuals", "assuming an infectious period of 30 days", sep="\n")) plot(table(s$nSources), xlab="Number of \"close\" infective individuals", ylab="Number of events", main=paste("Distribution of the number of potential sources", "assuming an interaction range of 200 km and 30 days", sep="\n")) ## the summary object contains further information str(s) ## a histogram of the spatial distances to potential source events ## (i.e., to events of the previous eps.t=30 days within eps.s=200 km) sourceDists_space <- getSourceDists(imdepi, "space") hist(sourceDists_space); rug(sourceDists_space) ## internal structure of an "epidataCS"-object str(imdepi, max.level=4) ## see help("imdepi") for more info on the data set ## extraction methods subset the 'events' component ## (thereby taking care of the validity of the epidataCS object, ## for instance the hidden auxiliary column .sources) imdepi[101:200,] tail(imdepi, n=4) # reduce the epidemic to the last 4 events subset(imdepi, type=="B") # only consider event type B ## see help("plot.epidataCS") for convenient plot-methods for "epidataCS" ### ### reconstruct the "imdepi" object from its components ### ## events events <- marks(imdepi) coordinates(events) <- c("x", "y") # promote to a "SpatialPointsDataFrame" proj4string(events) <- proj4string(imdepi$events) # ETRS89 projection summary(events) ## endemic covariates head(stgrid <- imdepi$stgrid[,-1]) ## (Simplified) observation region (as "SpatialPolygons") load(system.file("shapes", "districtsD.RData", package="surveillance"), verbose = TRUE) ## plot observation region with events plot(stateD, axes=TRUE); title(xlab="x [km]", ylab="y [km]") points(events, pch=unclass(events$type), cex=0.5, col=unclass(events$type)) legend("topright", legend=levels(events$type), title="Type", pch=1:2, col=1:2) ## reconstruct the "imdepi" object from its components myimdepi <- as.epidataCS(events = events, stgrid = stgrid, W = stateD, qmatrix = diag(2), nCircle2Poly = 16) ## -> equal to 'imdepi' as long as the internal structures of the embedded ## classes ("owin", "SpatialPolygons", ...), and the calculation of the ## influence regions by "polyclip" do not change: ##all.equal(imdepi, myimdepi, tolerance=1E-6) } \keyword{spatial} \keyword{classes} \keyword{manip} surveillance/man/categoricalCUSUM.Rd0000644000175100001440000001532613174712261017133 0ustar hornikusers\name{categoricalCUSUM} \alias{categoricalCUSUM} \alias{catcusum.LLRcompute} \encoding{latin1} \title{CUSUM detector for time-varying categorical time series} \description{ Function to process \code{sts} object by binomial, beta-binomial or multinomial CUSUM as described by \enc{Höhle}{Hoehle} (2010). Logistic, multinomial logistic, proportional odds or Bradley-Terry regression models are used to specify in-control and out-of-control parameters. The implementation is illustrated in Salmon et al. (2016). } \usage{ categoricalCUSUM(stsObj,control = list(range=NULL,h=5,pi0=NULL, pi1=NULL, dfun=NULL, ret=c("cases","value")),...) } \arguments{ \item{stsObj}{Object of class \code{sts} containing the number of counts in each of the \eqn{k} categories of the response variable. Time varying number of counts \eqn{n_t} is found in slot \code{populationFrac}. } \item{control}{Control object containing several items \itemize{ \item{\code{range}}{Vector of length \eqn{t_{max}} with indices of the \code{observed} slot to monitor.} \item{\code{h}}{Threshold to use for the monitoring. Once the CUSUM statistics is larger or equal to \code{h} we have an alarm.} \item{\code{pi0}}{\eqn{(k-1) \times t_{max}} in-control probability vector for all categories except the reference category.} \item{\code{mu1}}{\eqn{(k-1) \times t_{max}} out-of-control probability vector for all categories except the reference category.} \item{\code{dfun}}{The probability mass function (PMF) or density used to compute the likelihood ratios of the CUSUM. In a negative binomial CUSUM this is \code{dnbinom}, in a binomial CUSUM \code{dbinom} and in a multinomial CUSUM \code{dmultinom}. The function must be able to handle the arguments \code{y}, \code{size}, \code{mu} and \code{log}. As a consequence, one in the case of, e.g, the beta-binomial distribution has to write a small wrapper function.} \item{\code{ret}}{Return the necessary proportion to sound an alarm in the slot \code{upperbound} or just the value of the CUSUM statistic. Thus, \code{ret} is one of the values in \code{c("cases","value")}. Note: For the binomial PMF it is possible to compute this value explicitly, which is much faster than the numeric search otherwise conducted. In case \code{dfun} just corresponds to \code{dbinom} just set the attribute \code{isBinomialPMF} for the \code{dfun} object.} }} \item{\dots}{Additional arguments to send to \code{dfun}.} } \details{ The function allows the monitoring of categorical time series as described by regression models for binomial, beta-binomial or multinomial data. The later includes e.g. multinomial logistic regression models, proportional odds models or Bradley-Terry models for paired comparisons. See the \enc{Höhle}{Hoehle} (2010) reference for further details about the methodology. Once an alarm is found the CUSUM scheme is reset (to zero) and monitoring continues from there. } \seealso{\code{\link{categoricalCUSUM}}} \value{An \code{sts} object with \code{observed}, \code{alarm}, etc. slots trimmed to the \code{control$range} indices. } \references{ \enc{Höhle}{Hoehle}, M. (2010): Online Change-Point Detection in Categorical Time Series. In: T. Kneib and G. Tutz (Eds.), Statistical Modelling and Regression Structures, Physica-Verlag. Salmon, M., Schumacher, D. and \enc{Höhle}{Hoehle}, M. (2016): Monitoring count time series in \R: Aberration detection in public health surveillance. \emph{Journal of Statistical Software}, \bold{70} (10), 1-35. \doi{10.18637/jss.v070.i10} } \examples{ if (require("gamlss")) { ########################################################################### #Beta-binomial CUSUM for a small example containing the time-varying #number of positive test out of a time-varying number of total #test. ####################################### #Load meat inspection data data("abattoir") #Use GAMLSS to fit beta-bin regression model phase1 <- 1:(2*52) phase2 <- (max(phase1)+1) : nrow(abattoir) #Fit beta-binomial model using GAMLSS abattoir.df <- as.data.frame(abattoir) #Replace the observed and epoch column names to something more convenient dict <- c("observed"="y", "epoch"="t", "population"="n") replace <- dict[colnames(abattoir.df)] colnames(abattoir.df)[!is.na(replace)] <- replace[!is.na(replace)] m.bbin <- gamlss( cbind(y,n-y) ~ 1 + t + + sin(2*pi/52*t) + cos(2*pi/52*t) + + sin(4*pi/52*t) + cos(4*pi/52*t), sigma.formula=~1, family=BB(sigma.link="log"), data=abattoir.df[phase1,c("n","y","t")]) #CUSUM parameters R <- 2 #detect a doubling of the odds for a test being positive h <- 4 #threshold of the cusum #Compute in-control and out of control mean pi0 <- predict(m.bbin,newdata=abattoir.df[phase2,c("n","y","t")],type="response") pi1 <- plogis(qlogis(pi0)+log(R)) #Create matrix with in control and out of control proportions. #Categories are D=1 and D=0, where the latter is the reference category pi0m <- rbind(pi0, 1-pi0) pi1m <- rbind(pi1, 1-pi1) ###################################################################### # Use the multinomial surveillance function. To this end it is necessary # to create a new abattoir object containing counts and proportion for # each of the k=2 categories. For binomial data this appears a bit # redundant, but generalizes easier to k>2 categories. ###################################################################### abattoir2 <- sts(epoch=1:nrow(abattoir), start=c(2006,1), freq=52, observed=cbind(abattoir@observed, abattoir@populationFrac-abattoir@observed), populationFrac=cbind(abattoir@populationFrac,abattoir@populationFrac), state=matrix(0,nrow=nrow(abattoir),ncol=2), multinomialTS=TRUE) ###################################################################### #Function to use as dfun in the categoricalCUSUM #(just a wrapper to the dBB function). Note that from v 3.0-1 the #first argument of dBB changed its name from "y" to "x"! ###################################################################### mydBB.cusum <- function(y, mu, sigma, size, log = FALSE) { return(dBB(y[1,], mu = mu[1,], sigma = sigma, bd = size, log = log)) } #Create control object for multinom cusum and use the categoricalCUSUM #method control <- list(range=phase2,h=h,pi0=pi0m, pi1=pi1m, ret="cases", dfun=mydBB.cusum) surv <- categoricalCUSUM(abattoir2, control=control, sigma=exp(m.bbin$sigma.coef)) #Show results plot(surv[,1],dx.upperbound=0) lines(pi0,col="green") lines(pi1,col="red") #Index of the alarm which.max(alarms(surv[,1])) } } \author{M. \enc{Höhle}{Hoehle}} \keyword{regression} surveillance/man/fluBYBW.Rd0000644000175100001440000000447313174706302015313 0ustar hornikusers\name{fluBYBW} \alias{fluBYBW} \docType{data} \title{Influenza in Southern Germany} \description{ Weekly number of influenza A & B cases in the 140 districts of the two Southern German states Bavaria and Baden-Wuerttemberg, for the years 2001 to 2008. These surveillance data have been analyzed originally by Paul and Held (2011) and more recently by Meyer and Held (2014). } \usage{data(fluBYBW)} \format{ An \code{sts} object containing \eqn{416\times 140}{416 x 140} observations starting from week 1 in 2001. The \code{population} slot contains the population fractions of each district at 31.12.2001, obtained from the Federal Statistical Office of Germany. The \code{map} slot contains an object of class \code{"\linkS4class{SpatialPolygonsDataFrame}"}. } \source{ Robert Koch-Institut: SurvStat: \url{https://survstat.rki.de/}; Queried on 6 March 2009. } \note{ Prior to \pkg{surveillance} version 1.6-0, \code{data(fluBYBW)} contained a redundant last row (417) filled with zeroes only. } \examples{ data("fluBYBW") # Count time series plot plot(fluBYBW, type = observed ~ time) # Map of disease incidence (per 100000 inhabitants) for the year 2001 plot(fluBYBW, type = observed ~ unit, tps = 1:52, total.args = list(), population = fluBYBW@map$X31_12_01 / 100000) # the overall rate for 2001 shown in the bottom right corner is sum(observed(fluBYBW[1:52,])) / sum(fluBYBW@map$X31_12_01) * 100000 \dontrun{ # Generating an animation takes a while. # Here we take the first 20 weeks of 2001 (runtime: ~3 minutes). # The full animation is available in Supplement A of Meyer and Held (2014) if (require("animation")) { oldwd <- setwd(tempdir()) # to not clutter up the current working dir saveHTML(animate(fluBYBW, tps = 1:20), title="Evolution of influenza in Bayern and Baden-Wuerttemberg", ani.width=500, ani.height=600) setwd(oldwd) } } } \references{ Paul, M. and Held, L. (2011) Predictive assessment of a non-linear random effects model for multivariate time series of infectious disease counts. Statistics in Medicine, \bold{30}, 1118-1136. Meyer, S. and Held, L. (2014): Power-law models for infectious disease spread. \emph{The Annals of Applied Statistics}, \bold{8} (3), 1612-1639. \doi{10.1214/14-AOAS743} } \keyword{datasets} surveillance/man/husO104Hosp.Rd0000644000175100001440000000533313122471774016037 0ustar hornikusers\name{husO104Hosp} \alias{husO104Hosp} \docType{data} \title{Hospitalization date for HUS cases of the STEC outbreak in Germany, 2011} \description{ Data contain the date of hospitalization for 630 hemolytic-uremic syndrome (HUS) cases during the large STEC outbreak in Germany, 2011. Note: Only HUS cases which ultimately had a hospitalization date available/reported are included in the data set. The total number of HUS cases during the outbreak was 855 -- see \enc{Höhle}{Hoehle} and an der Heiden (2014) as well as Frank et al. (2011) for details. For each HUS case the attribute \code{dHosp} contains the date of hospitalization and the attribute \code{dReport} contains the date of first arrival of this hospitalization date at the Robert Koch Institute (RKI). As described in \enc{Höhle}{Hoehle} and an der Heiden (2014) the mechanisms of the delay were complicated and should be interpreted with care. For example, the case report could have arrived earlier, but without information about the hospitalization date. The resulting reporting triangle corresponds to Fig. 1 of the Web appendix of \enc{Höhle}{Hoehle} and an der Heiden (2014). This means that the reports which arrived with a delay longer than 15 days are set to have have arrived after 15 days. Altogether, this gives small discrepancies when compared with the results of the paper. However, as mentioned in the paper, longer delays were not very relevant for the nowcasting. } \usage{data(husO104Hosp)} \format{ A \code{data.frame} object. } \source{ Data were collected during the outbreak as part of the mandatory reporting of notifiable diseases in Germany (Faensen et al., 2006). Here, reports are transmitted from the local health authorities via the state health authorities to the Robert Koch Institute, Berlin. The resulting reporting triangle corresponds to Fig. 1 of the Web appendix of \enc{Höhle}{Hoehle} and an der Heiden (2014). } \references{ \enc{Höhle}{Hoehle} M and an der Heiden, M (2014). Bayesian Nowcasting during the STEC O104:H4 Outbreak in Germany, 2011, In revision for Biometrics. Frank C, Werber D, Cramer JP, Askar M, Faber M, an der Heiden M, Bernard H, Fruth A, Prager R, Spode A, Wadl M, Zoufaly A, Jordan S, Kemper MJ, Follin P, \enc{Müller}{Mueller} L, King LA, Rosner B, Buchholz U, Stark K, Krause G; HUS Investigation Team (2011). Epidemic Profile of Shiga-Toxin Producing Escherichia coli O104:H4 Outbreak in Germany, N Engl J Med. 2011 Nov 10;365(19):1771-80. Faensen D, Claus H, Benzler J, Ammon A, Pfoch T, Breuer T, Krause G (2014). SurvNet@RKI - a multistate electronic reporting system for communicable diseases, Euro Surveillance, 2006;11(4):100-103. } \keyword{datasets} surveillance/man/twinstim_plot.Rd0000644000175100001440000000260512011140620016730 0ustar hornikusers\name{twinstim_plot} \alias{plot.twinstim} \title{ Plot methods for fitted \code{twinstim}'s } \description{ The fitted conditional intensity function from \code{\link{twinstim}} may be visualized in at least two ways: \code{\link{iafplot}} plots the fitted interaction functions (as a function of the distance from the host), and \code{\link{intensityplot.twinstim}} plots the fitted intensity either aggregated over space (evolution over time) or aggregated over time (spatial surface of the cumulated intensity). The \code{plot} method for class \code{"twinstim"} is just a wrapper for these two functions. } \usage{ \method{plot}{twinstim}(x, which, ...) } \arguments{ \item{x}{ an object of class \code{"twinstim"}. } \item{which}{ character. Which characteristic of the conditional intensity should be plotted? Possible values are the ones allowed in the functions \code{\link{iafplot}} and \code{\link{intensityplot.twinstim}}, e.g. \code{"siaf"}, or \code{"epidemic proportion"}. Partial matching is applied. } \item{\dots}{ further arguments passed to \code{iafplot} or \code{intensityplot.twinstim}. } } \value{ See the documentation of the respective plot functions, \code{\link{iafplot}} or \code{\link{intensityplot.twinstim}}. } \author{ Sebastian Meyer } \examples{ # see the examples for iafplot() and intensityplot.twinstim() } \keyword{hplot} surveillance/man/runifdisc.Rd0000644000175100001440000000177512265246416016036 0ustar hornikusers\name{runifdisc} \alias{runifdisc} \title{ Sample Points Uniformly on a Disc } \description{ Sample \code{n} points uniformly on a disc of radius \code{r} in two-dimensional euclidean space via transformation to polar coordinates: the angle is sampled uniformly from \eqn{U(0,2\pi)}, the length is sampled uniformly from \eqn{\sqrt{U(0,r^2)}}. The sampled polar coordinates are then back-transformed to cartesian coordinates. } \usage{ runifdisc(n, r = 1, buffer = 0) } \arguments{ \item{n}{ integer size of the sample. } \item{r}{ numeric radius of the disc (centered at (0,0)). } \item{buffer}{ radius of inner buffer zone without points. } } \value{ A two-column coordinate matrix of the sampled points. } \author{ Sebastian Meyer } \seealso{ \code{\link[spatstat]{runifdisc}} in package \pkg{spatstat}, which is slightly more flexible and integrated within the \code{"ppp"} class. } \examples{ x <- surveillance:::runifdisc(1000, 3) plot(x) } \keyword{datagen} \keyword{distribution} surveillance/man/hhh4_simulate_plot.Rd0000644000175100001440000002114713230375405017631 0ustar hornikusers\name{hhh4_simulate_plot} \alias{plot.hhh4sims} \alias{aggregate.hhh4sims} \alias{as.hhh4simslist} \alias{plot.hhh4simslist} \alias{aggregate.hhh4simslist} \alias{plotHHH4sims_size} \alias{plotHHH4sims_time} \alias{plotHHH4sims_fan} \title{ Plot Simulations from \code{"hhh4"} Models } \description{ Arrays of simulated counts from \code{\link{simulate.hhh4}} can be visualized as final size boxplots, individual or average time series, or fan charts (using the \CRANpkg{fanplot} package). An \code{aggregate}-method is also available. } \usage{ \method{plot}{hhh4sims}(x, ...) \method{aggregate}{hhh4sims}(x, units = TRUE, time = FALSE, ..., drop = FALSE) as.hhh4simslist(x, ...) \method{plot}{hhh4simslist}(x, type = c("size", "time", "fan"), ..., groups = NULL, par.settings = list()) \method{aggregate}{hhh4simslist}(x, units = TRUE, time = FALSE, ..., drop = FALSE) plotHHH4sims_size(x, horizontal = TRUE, trafo = NULL, observed = TRUE, names = base::names(x), ...) plotHHH4sims_time(x, average = mean, individual = length(x) == 1, conf.level = if (individual) 0.95 else NULL, matplot.args = list(), initial.args = list(), legend = length(x) > 1, xlim = NULL, ylim = NULL, add = FALSE, ...) plotHHH4sims_fan(x, which = 1, fan.args = list(), observed.args = list(), initial.args = list(), means.args = NULL, key.args = NULL, xlim = NULL, ylim = NULL, add = FALSE, xaxis = list(), ...) } \arguments{ \item{x}{ an object of class \code{"hhh4sims"} (as resulting from the \code{\link[=simulate.hhh4]{simulate}}-method for \code{"\link{hhh4}"} models if \code{simplify = TRUE} was set), or an \code{"hhh4simslist"}, i.e., a list of such simulations potentially obtained from different model fits (using the same simulation period). } \item{type}{ a character string indicating the summary plot to produce. } \item{\dots}{ further arguments passed to methods. } \item{groups}{ an optional factor to produce stratified plots by groups of units. The special setting \code{groups = TRUE} is a convenient shortcut for one plot by unit. } \item{par.settings}{ a list of graphical parameters for \code{\link{par}}. Sensible defaults for \code{mfrow}, \code{mar} and \code{las} will be applied unless overridden or \code{!is.list(par.settings)}. } \item{horizontal}{ a logical indicating if the boxplots of the final size distributions should be horizontal (the default). } \item{trafo}{ an optional transformation function from the \pkg{scales} package, e.g., \code{\link[scales]{sqrt_trans}}. } \item{observed}{ a logical indicating if a line and axis value for the observed size of the epidemic should be added to the plot. Alternatively, a list with graphical parameters can be specified to modify the default values. } \item{names}{ a character vector of names for \code{x}. } \item{average}{ scalar-valued function to apply to the simulated counts at each time point. } \item{individual}{ a logical indicating if the individual simulations should be shown as well. } \item{conf.level}{ a scalar in (0,1), which determines the level of the pointwise quantiles obtained from the simulated counts at each time point. A value of \code{NULL} disables the confidence interval. } \item{matplot.args}{ a list of graphical parameters for \code{\link{matlines}}. } \item{initial.args}{ if a list (of graphical parameters for \code{\link{lines}}), a bar for the initial number of cases is added to the plot. } \item{legend}{ a logical, a character vector (providing names for \code{x}), or a list of parameters for \code{\link{legend}}. } \item{xlim,ylim}{ vectors of length 2 determining the axis limits. } \item{add}{ a logical indicating if the (mean) simulated time series or the fan chart, respectively, should be added to an existing plot. } \item{which}{ a single integer or a character string selecting the model in \code{x} for which to produce the fan chart. This is only relevant if \code{x} is a \code{"hhh4simslist"} of simulations from multiple models. Defaults to the first model. } \item{fan.args}{ a list of graphical parameters for the \code{\link[fanplot]{fan}}, e.g., to employ a different \code{\link{colorRampPalette}} as \code{fan.col}, or to enable contour lines via \code{ln}. } \item{observed.args}{ if a list (of graphical parameters for \code{\link{lines}}), the originally observed counts are added to the plot. } \item{means.args}{ if a list (of graphical parameters for \code{\link{lines}}), the point forecasts are added to the plot (by default as a white line within the fan). } \item{key.args}{ if a list, a color key (in \code{\link[fanplot]{fan}}'s \code{"boxfan"}-style) is added to the fan chart. The list may include positioning parameters \code{start} (the x-position) and \code{ylim} (the y-range of the color key), \code{space} to modify the width of the boxfan, and \code{rlab} to modify the labels. The color key is disabled by default. An alternative way of labeling the quantiles is via the argument \code{ln} in \code{fan.args}, see the Examples. } \item{xaxis}{ if a list of arguments for \code{\link{addFormattedXAxis}}, that function is used to draw the time axis, otherwise a default x-axis is drawn. } \item{units}{ a logical indicating aggregation over units. Can also be a factor (or something convertible to a factor using \code{\link{as.factor}}) to aggregate groups of units. } \item{time}{ a logical indicating if the counts should be summed over the whole simulation period. } \item{drop}{ a logical indicating if the unit dimension and the \code{"hhh4sims"} (or \code{"hhh4simslist"}) class should be dropped after aggregating over (groups of) units. } } \author{ Sebastian Meyer } \examples{ ### univariate example data("salmAllOnset") ## fit a hhh4 model to the first 13 years salmModel <- list(end = list(f = addSeason2formula(~1 + t)), ar = list(f = ~1), family = "NegBin1", subset = 2:678) salmFit <- hhh4(salmAllOnset, salmModel) ## simulate the next 20 weeks ahead salmSims <- simulate(salmFit, nsim = 300, seed = 3, subset = 678 + seq_len(20), y.start = observed(salmAllOnset)[678,]) ## compare final size distribution to observed value summary(aggregate(salmSims, time = TRUE)) # summary of simulated values plot(salmSims, type = "size") ## individual and average simulated time series with a confidence interval plot(salmSims, type = "time", main = "20-weeks-ahead simulation") ## fan chart based on the quantiles of the simulated counts at each time point ## point forecasts are represented by a white line within the fan if (requireNamespace("fanplot")) { plot(salmSims, type = "fan", main = "20-weeks-ahead simulation", fan.args = list(ln = 1:9/10), means.args = list()) } ### multivariate example data("measlesWeserEms") ## fit a hhh4 model to the first year measlesModel <- list( end = list(f = addSeason2formula(~1), offset = population(measlesWeserEms)), ar = list(f = ~1), ne = list(f = ~1 + log(pop), weights = W_powerlaw(maxlag = 5, normalize = TRUE)), family = "NegBin1", subset = 2:52, data = list(pop = population(measlesWeserEms))) measlesFit1 <- hhh4(measlesWeserEms, control = measlesModel) ## use a Poisson distribution instead (just for comparison) measlesFit2 <- update(measlesFit1, family = "Poisson") ## simulate realizations from these models during the second year measlesSims <- lapply(X = list(NegBin = measlesFit1, Poisson = measlesFit2), FUN = simulate, nsim = 50, seed = 1, subset = 53:104, y.start = observed(measlesWeserEms)[52,]) ## final size of the first model plot(measlesSims[[1]]) ## stratified by groups of districts mygroups <- factor(substr(colnames(measlesWeserEms), 4, 4)) apply(aggregate(measlesSims[[1]], time = TRUE, units = mygroups), 1, summary) plot(measlesSims[[1]], groups = mygroups) ## a class and plot-method for a list of simulations from different models measlesSims <- as.hhh4simslist(measlesSims) plot(measlesSims) ## simulated time series plot(measlesSims, type = "time", individual = TRUE, ylim = c(0, 80)) ## fan charts if (requireNamespace("fanplot")) { opar <- par(mfrow = c(2,1)) plot(measlesSims, type = "fan", which = 1, ylim = c(0, 80), main = "NegBin", key.args = list()) plot(measlesSims, type = "fan", which = 2, ylim = c(0, 80), main = "Poisson") par(opar) } } \keyword{hplot} surveillance/man/twinSIR_exData.Rd0000644000175100001440000000100713122471774016661 0ustar hornikusers\name{twinSIR_exData} \alias{foodata} \alias{fooepidata} \alias{foofit} \docType{data} \title{ Toy Data for \code{twinSIR} } \description{ This is data, which is used in \code{twinSIR} examples. \code{fooepidata} is an object of class \code{"\link{epidata}"} simulated from artificial \code{foodata}. \code{foofit} is an object of class \code{"\link{twinSIR}"} and is the result of a fit to \code{fooepidata}. } \usage{ data(foodata) data(fooepidata) data(foofit) } \keyword{datasets} \keyword{internal} surveillance/man/plot.survRes.Rd0000644000175100001440000000773113231631457016471 0ustar hornikusers\name{plot.survRes} \alias{plot.survRes} \alias{plot.survRes.one} \encoding{latin1} \title{Plot a survRes object} \description{Plotting of a (multivariate) \code{survRes} object. The function \code{plot.survRes.one} is used as a helper function to plot a univariate time series. } \usage{ \method{plot}{survRes}(x, method=x$control$name, disease=x$control$data, xaxis.years=TRUE,startyear = 2001, firstweek = 1, same.scale=TRUE,\dots) \method{plot}{survRes.one}(x, method=x$control$name, disease=x$control$data, domany=FALSE,ylim=NULL,xaxis.years=TRUE,startyear = 2001, firstweek = 1, xlab="time", ylab="No. infected", main=NULL, type="hhs", lty=c(1,1,2),col=c(1,1,4), outbreak.symbol = list(pch=3,col=3),alarm.symbol=list(pch=24,col=2), legend.opts=list(x="top", legend=c("Infected", "Upperbound", "Alarm", "Outbreak"), lty=NULL,col=NULL,pch=NULL), ...) } \arguments{ \item{x}{object of class \code{survRes}} \item{method}{surveillance method to be used in title} \item{disease}{name of disease in title} \item{xaxis.years}{Boolean indicating whether to show a year based x-axis for weekly data} \item{domany}{Boolean telling the function whether it is called for a multivariate (\code{TRUE}) or univariate (\code{FALSE}) \code{survRes} object. In case of \code{TRUE} no titles are drawn.} \item{ylim}{range of y axis} \item{startyear}{year to begin the axis labeling (the year where the oldest data come from)} \item{firstweek}{number of the first week of January in the first year (just for axis labeling reasons)} \item{xlab}{label of the x-axis} \item{ylab}{label of the y-axis} \item{main}{the title of the graphics is generated from the \code{method} and \code{disease} arguments if not specified otherwise} \item{same.scale}{plot all time series with the same \code{ylim}? Defaults to \code{true}}. \item{type}{line type of the observed counts (first two elements) and the upper bound (third element)} \item{lty}{vector of size 3 specifying the line type of the observed counts (left, right) and the upperbound line} \item{col}{vector with three elements: color of left bar and color of top bar, color of right bar, col of the upperbound line.} \item{outbreak.symbol}{list with entries \code{pch} and \code{col} specifying the plot symbol} \item{alarm.symbol}{list with entries \code{pch} and \code{col} specifying the plot symbol} \item{legend.opts}{a list containing the entries to be sent to the \code{\link{legend}} function. If no legend is requested use \code{legend.opts=NULL}. Otherwise, the following arguments are default \describe{ \item{\code{x}}{\code{top}} \item{\code{legend}}{The names infected and outbreak.} \item{\code{lty}}{If \code{NULL} the \code{lty} argument will be used} \item{\code{pch}}{If \code{NULL} the \code{pch} argument is used} \item{\code{col}}{If \code{NULL} the \code{col} argument is used} } Any further arguments to the \code{legend} function are just provided as additional elements of this list, e.g. \code{horiz=TRUE}. } \item{...}{further arguments for the function \code{matplot}. If e.g. \code{xlab} or \code{main} are provided they overwrite the default values.} } \value{ none. A plot showing the number of infected, the threshold for recognizing an outbreak, the alarm status and the outbreak status is generated. } \details{ The \code{plot.survRes.one} is intended for internal use. At the moment none of the surveillance methods support multivariate \code{survRes} objects. New versions of the packages currently under development will handle this. } \author{M. \enc{Höhle}{Hoehle}} \examples{ data(ha) ctrl <- list(range = 209:290, b = 2, w = 6, alpha = 0.005) plot(algo.bayes(aggregate(ha), control = ctrl)) } \keyword{hplot} surveillance/man/twinSIR_simulation.Rd0000644000175100001440000003417212665561746017662 0ustar hornikusers\encoding{latin1} \name{twinSIR_simulation} \alias{simEpidata} \alias{simulate.twinSIR} \title{ Simulation of Epidemic Data } \description{ This function simulates the infection (and removal) times of an epidemic. Besides the classical SIR type of epidemic, also SI, SIRS and SIS epidemics are supported. Simulation works via the conditional intensity of infection of an individual, given some (time varying) endemic covariates and/or some distance functions (epidemic components) as well as the fixed positions of the individuals. The lengths of the infectious and removed periods are generated following a pre-specified function (can be deterministic). The \code{\link{simulate}} method for objects of class \code{"\link{twinSIR}"} simulates new epidemic data using the model and the parameter estimates of the fitted object. } \usage{ simEpidata(formula, data, id.col, I0.col, coords.cols, subset, beta, h0, f = list(), w = list(), alpha, infPeriod, remPeriod = function(ids) rep(Inf, length(ids)), end = Inf, trace = FALSE, .allocate = NULL) \method{simulate}{twinSIR}(object, nsim = 1, seed = 1, infPeriod = NULL, remPeriod = NULL, end = diff(range(object$intervals)), trace = FALSE, .allocate = NULL, data = object$data, ...) } \arguments{ \item{formula}{ an object of class \code{"\link{formula}"} (or one that can be coerced to that class): a symbolic description of the intensity model to be estimated. The details of model specification are given under Details. } \item{data}{ a data.frame containing the variables in \code{formula} and the variables specified by \code{id.col}, \code{I0.col} and \code{coords.col} (see below). It represents the \dQuote{history} of the endemic covariates to use for the simulation. The form is similar to and can be an object of class \code{"\link{epidata}"}. The simulation period is split up into \emph{consecutive} intervals of constant endemic covariables. The data frame consists of a block of N (number of individuals) rows for each of those time intervals (all rows in a block share the same start and stop values... therefore the name \dQuote{block}), where there is one row per individual in the block. Each row describes the (fixed) state of the endemic covariates of the individual during the time interval given by the start and stop columns (specified through the lhs of \code{formula}). For the \code{simulate} method of class \code{"twinSIR"} this should be the object of class \code{"\link{epidata}"} used for the fit. This is a part of the return value of the function \code{twinSIR}, if called with argument \code{keep.data} set to \code{TRUE}. } \item{id.col}{ only if \code{data} does not inherit from \code{epidata}: single index of the \code{id} column in \code{data}. Can be numeric (by column number) or character (by column name).\cr The \code{id} column identifies the individuals in the data-frame. It will be converted to a factor variable and its levels serve also to identify individuals as argument to the \code{infPeriod} function. } \item{I0.col}{ only if \code{data} does not inherit from \code{epidata}: single index of the \code{I0} column in \code{data}. Can be numeric (by column number), character (by column name) or \code{NULL}.\cr The \code{I0} column indicates if an individual is initially infectious, i.e. it is already infectious at the beginning of the first time block. Setting \code{I0.col = NULL} is short for \dQuote{there are no initially infectious individuals}. Otherwise, the variable must be logical or in 0/1-coding. As this variable is constant over time the initially infectious individuals are derived from the first time block only. } \item{coords.cols}{ only if \code{data} does not inherit from \code{epidata}: index\emph{es} of the \code{coords} column\emph{s} in \code{data}. Can be a numeric (by column number), a character (by column name) vector or \code{NULL}.\cr These columns contain the coordinates of the individuals. It must be emphasized that the functions in this package currently assume \emph{fixed positions} of the individuals during the whole epidemic. Thus, an individual has the same coordinates in every block. For simplicity, the coordinates are derived from the first time block only. The epidemic covariates are calculated based on the Euclidian distance between the individuals, see \code{f}. } \item{subset}{ an optional vector specifying a subset of the covariate history to be used in the simulation. } \item{beta}{ numeric vector of length equal the number of endemic (\code{cox}) terms on the rhs of \code{formula}. It contains the effects of the endemic predictor (excluding the log-baseline \code{h0}, see below) in the same order as in the formula. } \item{h0}{ \emph{either} a single number to specify a constant baseline hazard (equal to \code{exp(h0)}) \emph{or} a list of functions named \code{exact} and \code{upper}. In the latter case, \code{h0$exact} is the true log-baseline hazard function and \code{h0$upper} is a \emph{piecewise constant upper bound} for \code{h0$exact}. The function \code{h0$upper} must inherit from \code{\link{stepfun}} with \code{right=FALSE}. Theoretically, the intensity function is left-continuous, thus \code{right=TRUE} would be adequate, but in the implementation, when we evaluate the intensity at the \code{\link{knots}} (change points) of \code{h0$upper} we need its value for the subsequent interval. } \item{f, w}{ see \code{\link{as.epidata}}. } \item{alpha}{ a named numeric vector of coefficients for the epidemic covariates generated by \code{f} and \code{w}. The names are matched against \code{names(f)} and \code{names(w)}. Remember that \code{alpha >= 0}. } \item{infPeriod}{ a function generating lengths of infectious periods. It should take one parameter (e.g. \code{ids}), which is a character vector of id's of individuals, and return appropriate infection periods for those individuals. Therefore, the value of the function should be of length \code{length(ids)}. For example, for independent and identically distributed infection periods following \eqn{Exp(1)}, the generating function is \code{function(ids) rexp(length(ids), rate=1)}. For a constant infectious period of length c, it is sufficient to set \code{function (x) {c}}.\cr For the \code{simulate} method of class \code{"twinSIR"} only, this can also be \code{NULL} (the default), which means that the observed infectious periods of infected individuals are re-used when simulating a new epidemic and individuals with missing infectious periods (i.e. infection and recovery was not observed) are attributed to the mean observed infectious period. Note that it is even possible to simulate an SI-epidemic by setting \code{infPeriod = function (x) {Inf}} In other words: once an individual became infected it spreads the disease forever, i.e. it will never be removed. } \item{remPeriod}{ a function generating lengths of removal periods. Per default, once an individual was removed it will stay in this state forever (\code{Inf}). Therefore, it will not become at-risk (S) again and re-infections are not possible. Alternatively, always returning 0 as length of the removal period corresponds to a SIS epidemic. Any other values correspond to SIRS. } \item{end}{ a single positive numeric value specifying the time point at which the simulation should be forced to end. By default, this is \code{Inf}, i.e. the simulation continues until there is no susceptible individual left.\cr For the \code{simulate} method of class \code{"twinSIR"} the default is to have equal simulation and observation periods. } \item{trace}{ logical (or integer) indicating if (or how often) the sets of susceptible and infected individuals as well as the rejection indicator (of the rejection sampling step) should be \code{cat}ed. Defaults to \code{FALSE}. } \item{.allocate}{ number of blocks to initially allocate for the event history (i.e. \code{.allocate*N} rows). By default (\code{NULL}), this number is set to \code{max(500, ceiling(nBlocks/100)*100)}, i.e. 500 but at least the number of blocks in \code{data} (rounded to the next multiple of 100). Each time the simulated epidemic exceeds the allocated space, the event history will be enlarged by \code{.allocate} blocks. } \item{object}{ an object of class \code{"twinSIR"}. This must contain the original \code{data} used for the fit (see \code{data}). } \item{nsim}{ number of epidemics to simulate. Defaults to 1. } \item{seed}{ an integer that will be used in the call to \code{\link{set.seed}} before simulating the epidemics. } \item{\dots}{ unused (argument of the generic). } } \details{ A model is specified through the \code{formula}, which has the form \code{cbind(start, stop) ~ cox(endemicVar1) * cox(endemicVar2)}, i.e. the right hand side has the usual form as in \code{\link{lm}}, but all variables are marked as being endemic by the special function \code{\link{cox}}. The effects of those predictor terms are specified by \code{beta}. The left hand side of the formula denotes the start and stop columns in \code{data}. This can be omitted, if \code{data} inherits from class \code{"epidata"} in which case \code{cbind(start, stop)} will be used. The epidemic model component is specified by the arguments \code{f} and \code{w} (and the associated coefficients \code{alpha}). If the epidemic model component is empty and \code{infPeriod} always returns \code{Inf}, then one actually simulates from a pure Cox model. The simulation algorithm used is \emph{Ogata's modified thinning}. For details, see \enc{Höhle}{Hoehle} (2009), Section 4. } \value{ An object of class \code{"simEpidata"}, which is a \code{data.frame} with the columns \code{"id"}, \code{"start"}, \code{"stop"}, \code{"atRiskY"}, \code{"event"}, \code{"Revent"} and the coordinate columns (with the original names from \code{data}), which are all obligatory. These columns are followed by all the variables appearing on the rhs of the \code{formula}. Last but not least, the generated columns with epidemic covariates corresponding to the functions in the lists \code{f} and \code{w} are appended. Note that objects of class \code{"simEpidata"} also inherit from class \code{"\link{epidata}"}, thus all \code{"\link{epidata}"} methods can be applied. The \code{data.frame} is given the additional \emph{attributes} \item{"eventTimes"}{ numeric vector of infection time points (sorted chronologically). } \item{"timeRange"}{ numeric vector of length 2: \code{c(min(start), max(stop))}. } \item{"coords.cols"}{ numeric vector containing the column indices of the coordinate columns in the resulting data-frame. } \item{"f"}{ this equals the argument \code{f}. } \item{"w"}{ this equals the argument \code{w}. } \item{"config"}{ a list with elements \code{h0 = h0$exact}, \code{beta} and \code{alpha}. } \item{call}{the matched call.} \item{terms}{the \code{terms} object used.} If \code{nsim > 1} epidemics are simulated by the \code{simulate}-method for fitted \code{"twinSIR"} models, these are returned in a list. } \references{ \enc{Höhle}{Hoehle}, M. (2009), Additive-Multiplicative Regression Models for Spatio-Temporal Epidemics, Biometrical Journal, 51(6):961-978. } \author{ Sebastian Meyer and Michael \enc{Höhle}{Hoehle} } \seealso{ The \code{\link{plot.epidata}} and \code{\link{animate.epidata}} methods for plotting and animating (simulated) epidemic data, respectively. The \code{\link{intensityplot.simEpidata}} method for plotting paths of infection intensities. Function \code{\link{twinSIR}} for fitting spatio-temporal epidemic intensity models to epidemic data. } \examples{ ## Generate a data frame containing a hypothetic population with 100 individuals set.seed(1234) n <- 100 pos <- matrix(rnorm(n*2), ncol=2, dimnames=list(NULL, c("x", "y"))) pop <- data.frame(id=1:n,x=pos[,1], y=pos[,2], gender=sample(0:1, n, replace=TRUE), I0col=rep(0,n),start=rep(0,n),stop=rep(Inf,n)) ## Simulate an epidemic in this population set.seed(1) epi <- simEpidata(cbind(start,stop) ~ cox(gender), data = pop, id = "id", I0.col = "I0col", coords.cols = c("x","y"), beta = c(-2), h0 = -1, alpha = c(B1 = 0.1), f = list(B1 = function(u) u <= 1), infPeriod = function(ids) rexp(length(ids), rate=1)) # Plot the numbers of susceptible, infectious and removed individuals plot(epi) ## load data of an artificial epidemic data("fooepidata") summary(fooepidata) plot(fooepidata) if (surveillance.options("allExamples")) { ## simulate a new evolution of the epidemic set.seed(1) simepi <- simEpidata(cbind(start, stop) ~ cox(z1) + cox(z1):cox(z2), data = fooepidata, beta = c(1,0.5), h0 = -7, alpha = c(B2 = 0.01, B1 = 0.005), f = list(B1 = function(u) u <= 1, B2 = function(u) u > 1), infPeriod = function(ids) rexp(length(ids), rate=0.2), trace = FALSE) summary(simepi) plot(simepi) intensityplot(simepi) } ## load a model fitted to the 'fooepidata' epidemic data("foofit") foofit ## simulate a new epidemic using the model and parameter estimates of 'foofit' ## and set simulation period = observation period # a) with observed infPeriods (i.e. fixed length 3 days): simfitepi1 <- simulate(foofit, data=fooepidata) plot(simfitepi1) # b) with new infPeriods (simuluated from the Exp(0.3) distribution): simfitepi2 <- simulate(foofit, data=fooepidata, infPeriod=function(ids) rexp(length(ids), rate=0.3)) plot(simfitepi2) intensityplot(simfitepi2, which="total", aggregate=FALSE, col=rgb(0,0,0,alpha=0.1)) } \keyword{datagen} \keyword{models} surveillance/man/polyAtBorder.Rd0000644000175100001440000000320712437341450016441 0ustar hornikusers\name{polyAtBorder} \alias{polyAtBorder} \title{Indicate Polygons at the Border} \description{ Determines which polygons of a \code{"\linkS4class{SpatialPolygons}"} object are at the border, i.e. have coordinates in common with the spatial union of all polygons (constructed using \code{\link{unionSpatialPolygons}}). } \usage{ polyAtBorder(SpP, snap = sqrt(.Machine$double.eps), method = "rgeos", ...) } \arguments{ \item{SpP}{ an object of class \code{"\linkS4class{SpatialPolygons}"}. } \item{snap}{ tolerance used to consider coordinates as identical. } \item{method}{method to use for \code{\link{unionSpatialPolygons}}. Defaults to \code{"rgeos"}, since \pkg{polyclip} uses integer arithmetic, which causes rounding errors usually requiring tuning of (i.e., increasing) the tolerance parameter \code{snap} (see example below).} \item{\dots}{further arguments passed to the chosen \code{method}.} } \value{ logical vector of the same length as \code{SpP} also inheriting its \code{row.names}. } \author{ Sebastian Meyer } \examples{ ## Load districts of Germany load(system.file("shapes", "districtsD.RData", package = "surveillance")) ## Determine districts at the border and check the result on the map if (requireNamespace("rgeos")) { atBorder <- polyAtBorder(districtsD, method = "rgeos") plot(districtsD, col = atBorder) } ## For method = "polyclip", a higher snapping tolerance is required ## to obtain the correct result if (requireNamespace("polyclip")) { atBorder <- polyAtBorder(districtsD, snap = 1e-6, method = "polyclip") plot(districtsD, col = atBorder) } } \keyword{spatial} surveillance/man/hhh4_simulate_scores.Rd0000644000175100001440000000504513230404610020137 0ustar hornikusers\name{hhh4_simulate_scores} \alias{scores.hhh4sims} \alias{scores.hhh4simslist} \title{ Proper Scoring Rules for Simulations from \code{hhh4} Models } \description{ Calculate proper scoring rules based on simulated predictive distributions. } \usage{ \method{scores}{hhh4sims}(x, which = "rps", units = NULL, ..., drop = TRUE) \method{scores}{hhh4simslist}(x, ...) } \arguments{ \item{x}{ an object of class \code{"hhh4sims"} (as resulting from the \code{\link[=simulate.hhh4]{simulate}}-method for \code{"\link{hhh4}"} models if \code{simplify = TRUE} was set), or an \code{"hhh4simslist"}, i.e., a list of such simulations potentially obtained from different model fits (using the same simulation period). } \item{which}{ a character vector indicating which proper scoring rules to compute. By default, only the ranked probability score (\code{"rps"}) is calculated. Other options include \code{"logs"} and \code{"dss"}. } \item{units}{ if non-\code{NULL}, an integer or character vector indexing the columns of \code{x} for which to compute the scores. } \item{drop}{ a logical indicating if univariate dimensions should be dropped (the default). } \item{\dots}{ unused (argument of the generic). } } \details{ This implementation can only compute \emph{univariate scores}, i.e., independently for each time point. The logarithmic score is badly estimated if the domain is large and there are not enough samples to cover the underlying distribution in enough detail (the score becomes infinite when an observed value does not occur in the samples). An alternative is to use kernel density estimation as implemented in \code{\link[scoringRules]{logs_sample}} in the \R package \CRANpkg{scoringRules}. } \author{ Sebastian Meyer } \examples{ data("salmAllOnset") ## fit a hhh4 model to the first 13 years salmModel <- list(end = list(f = addSeason2formula(~1 + t)), ar = list(f = ~1), family = "NegBin1", subset = 2:678) salmFit <- hhh4(salmAllOnset, salmModel) ## simulate the next 20 weeks ahead salmSims <- simulate(salmFit, nsim = 500, seed = 3, subset = 678 + seq_len(20), y.start = observed(salmAllOnset)[678,]) ## calculate the RPS at each time point scores(salmSims, which = "rps") ## produce a PIT histogram based on the empirical distribution function ## of the simulated counts as the forecast distribution at each time point pit(x = observed(attr(salmSims, "stsObserved")), pdistr = apply(salmSims, 1:2, ecdf)) } \keyword{univar} surveillance/man/stsplot.Rd0000644000175100001440000000700713231631633015543 0ustar hornikusers\name{stsplot} \docType{methods} \alias{plot,sts,missing-method} \alias{plot,stsNC,missing-method} \alias{stsplot} % for convenience \title{Plot-Methods for Surveillance Time-Series Objects} \description{ This page gives an overview of plot types for objects of class \code{"sts"}. } \usage{ \S4method{plot}{sts,missing}(x, type = observed ~ time | unit, \dots) } \arguments{ \item{x}{an object of class \code{"\linkS4class{sts}"}.} \item{type}{see Details.} \item{\dots}{arguments passed to the \code{type}-specific plot function.} } \details{ There are various types of plots which can be produced from an \code{"sts"} object. The \code{type} argument specifies the desired plot as a formula, which defaults to \code{observed ~ time | unit}, i.e., plot the time series of each unit separately. Arguments to specific plot functions can be passed as further arguments (\dots). The following list describes the plot variants: \describe{ \item{\code{observed ~ time | unit}}{The default type shows \code{ncol(x)} plots, each containing the time series of one observational unit. The actual plotting per unit is done by the function \code{\link{stsplot_time1}}, called sequentially from \code{\link{stsplot_time}}.\cr A \CRANpkg{ggplot2}-based alternative for this type of plot is provided through an \code{\link[=autoplot.sts]{autoplot}}-method for \code{"sts"} objects. } \item{\code{observed ~ time}}{The observations in \code{x} are first \code{\link[=aggregate,sts-method]{aggregated}} over units and the resulting univariate time-series is plotted via the function \code{\link{stsplot_time}}.} \item{\code{alarm ~ time}}{Generates a so called alarmplot for a multivariate \code{sts} object. For each time point and each series it is shown whether there is an alarm. In case of hierarchical surveillance the user can pass an additional argument \code{lvl}, which is a vector of the same length as rows in \code{x} specifying for each time series its level. } \item{\code{observed ~ unit}}{ produces a map of counts (or incidence) per region aggregated over time. See \code{\link{stsplot_space}} for optional arguments, details and examples. } \item{\code{observed ~ 1 | unit}}{old version of the map plot, which supports shading regions with an alarm. The plotting is done by the function \code{\link{stsplot_spacetime}}. Use \code{type=observed~unit} for the new implementation as function \code{\link{stsplot_space}} (without alarm support, though). } \item{\code{observed ~ 1 | unit * time}}{old version for animated maps via the \code{\link{stsplot_spacetime}} function. Each of the \code{nrow(x)} frames contains the number of counts per region for the current row in the \code{observed} matrix. It is possible to redirect the output into files, e.g. to generate an animated GIF. NOTE: the new \code{\link{animate.sts}} method supersedes this plot \code{type}! } } } \value{ \code{NULL} (invisibly). The methods are called for their side-effects. } \seealso{ the documentation of the individual plot types \code{\link{stsplot_time}}, \code{\link{stsplot_space}}, \code{\link{stsplot_spacetime}} (obsolete), as well as the \code{animate}-method \code{\link{animate.sts}}. \code{\link{plot.survRes}} is the old implementation. } \keyword{ts} \keyword{spatial} \keyword{hplot} \keyword{methods} surveillance/man/epidataCS_plot.Rd0000644000175100001440000002171613165510766016742 0ustar hornikusers\name{epidataCS_plot} \alias{plot.epidataCS} \alias{epidataCSplot_time} \alias{epidataCSplot_space} \title{ Plotting the Events of an Epidemic over Time and Space } \description{ The \code{plot} method for class \code{"epidataCS"} either plots the number of events along the time axis (\code{epidataCSplot_time}) as a \code{hist()}, or the locations of the events in the observation region \code{W} (\code{epidataCSplot_space}). The spatial plot can be enriched with tile-specific color levels to indicate attributes such as the population (using \code{\link{spplot}}). } \usage{ \method{plot}{epidataCS}(x, aggregate = c("time", "space"), subset, by = type, ...) epidataCSplot_time(x, subset, by = type, t0.Date = NULL, breaks = "stgrid", freq = TRUE, col = rainbow(nTypes), cumulative = list(), add = FALSE, mar = NULL, xlim = NULL, ylim = NULL, xlab = "Time", ylab = NULL, main = NULL, panel.first = abline(h=axTicks(2), lty=2, col="grey"), legend.types = list(), ...) epidataCSplot_space(x, subset, by = type, tiles = x$W, pop = NULL, cex.fun = sqrt, points.args = list(), add = FALSE, legend.types = list(), legend.counts = list(), sp.layout = NULL, ...) } \arguments{ \item{x}{ an object of class \code{"\link{epidataCS}"}. } \item{aggregate}{ character, one of \code{"time"} and \code{"space"}, referring to the specific plot functions \code{epidataCSplot_time} and \code{epidataCSplot_time}, respectively. For \code{"time"}, the number of events over time is plotted as \code{\link{hist}} (or \code{\link{hist.Date}}). For \code{"space"}, the observation region \code{x$W} (or the \code{tiles}) and the locations of the events therein are plotted. } \item{subset}{ logical expression indicating a subset of events to consider for plotting: missing values are taken as false. Note that the expression is evaluated in the data frame of event marks (\code{marks(x)}), which means that column names can be referred to by name (like in \code{\link{subset.data.frame}}). } \item{\dots}{ in the basic \code{plot}-method further arguments are passed to the \code{aggregate}-specific plot function. In \code{epidataCSplot_time}, further graphical parameters are passed to \code{\link{hist}} or \code{\link{hist.Date}}, respectively. In \code{epidataCSplot_space}, further arguments are passed to the \code{plot}-method for \code{"\linkS4class{SpatialPolygons}"}, which draws \code{tiles}. } \item{by}{an expression evaluated in \code{marks(x)}, defining how events should be stratified in the plot (the result is converted to a factor), or \code{NULL} to disregard event types. By default (\code{by = type}) the plot distinguishes between event types, i.e., the bars of the temporal plot are stacked by type, and the point colors in the spatial plot differ by type, respectively.\cr Note: to select specific event types for plotting use the \code{subset} argument, e.g., \code{subset=(type=="B")}.} \item{t0.Date}{the beginning of the observation period \code{t0 = x$stgrid$start[1]} as a \code{"\link{Date}"} (or anything coercible by \code{as.Date} without further arguments), enabling a nice x-axis using \code{\link{hist.Date}} and sensible \code{breaks} of the histogram, e.g., \code{breaks="months"}. The event times then equal \code{t0.Date + as.integer(x$events$time - t0)}, i.e. possible fractional parts of the event times are removed (which ensures that using \code{breaks = "months"} or other automatic types always works).} \item{breaks}{ a specification of the histogram break points, see \code{\link{hist}} (or \code{\link{hist.Date}} if \code{t0.Date} is used). The default value \code{"stgrid"} is special and means to use the temporal grid points \code{with(x$stgrid, c(start[1L], unique.default(stop)))} as breaks (or their \code{"Date"} equivalents). } \item{freq}{see \code{\link{hist}}, defaults to \code{TRUE}.} \item{col}{fill colour for the bars of the histogram, defaults to the vector of \code{\link{rainbow}} colours.} \item{cumulative}{if a list (of style options), lines for the cumulative number of events (per type) will be added to the plot. Possible options are \code{axis} (logical), \code{lab} (axis label), \code{maxat} (single integer affecting the axis range), \code{lwd}, \code{col}, and \code{offset} (a numeric vector of length the number of types).} \item{add}{logical (default: \code{FALSE}) indicating if the plot should be added to an existing window. Ignored if an \code{\link{spplot}} is created (if \code{pop} is non-\code{NULL}).} \item{mar}{see \code{\link{par}}. The default (\code{NULL}) is \code{mar <- par("mar")}, with \code{mar[4] <- mar[2]} if an axis is requested for the \code{cumulative} numbers.} \item{xlim,ylim}{\code{NULL} provides automatic axis limits.} \item{xlab,ylab}{axis labels (with sensible defaults).} \item{main}{main title of the plot (defaults to no title).} \item{panel.first}{expression that should be evaluated after the plotting window has been set up but before the histogram is plotted. Defaults to adding horizontal grid lines.} \item{legend.types}{if a list (of arguments for \code{\link{legend}}), a legend for the event types is added to the plot in case there is more than one type.} \item{tiles}{the observation region \code{x$W} (default) or, alternatively, a \code{"\linkS4class{SpatialPolygons}"} representation of the tiles of \code{x$stgrid}.} \item{pop}{if \code{tiles} is a \code{"\linkS4class{SpatialPolygonsDataFrame}"}, \code{pop} can specify an attribute to be displayed in a \code{levelplot} behind the point pattern, see \code{\link{spplot}}. By default (\code{NULL}), the conventional graphics system is used to display the \code{tiles} and event locations, otherwise the result is a \code{\link{trellis.object}}.} \item{cex.fun}{function which takes a vector of counts of events at each unique location and returns a (vector of) \code{cex} value(s) for the sizes of the corresponding \code{points}. Defaults to the \code{sqrt()} function, which for the default circular \code{pch=1} means that the area of each point is proportional to the number of events at its location.} \item{points.args}{a list of (type-specific) graphical parameters for \code{\link{points}}, specifically \code{pch}, \code{lwd}, and \code{col}, which are all recycled to give the length \code{nlevels(x$events$type)}. In contrast, a possible \code{cex} element should be scalar (default: 0.5) and multiplies the sizes obtained from \code{cex.fun}.} \item{legend.counts}{if a list (of arguments for \code{\link{legend}}), a legend illustrating the effect of \code{cex.fun} is added to the plot. This list may contain a special element \code{counts}, which is an integer vector specifying the counts to illustrate.} \item{sp.layout}{optional list of additional layout items in case \code{pop} is non-\code{NULL}, see \code{\link{spplot}}.} } \value{ For \code{aggregate="time"} (i.e., \code{epidataCSplot_time}) the data of the histogram (as returned by \code{\link{hist}}), and for \code{aggregate="space"} (i.e., \code{epidataCSplot_space}) \code{NULL}, invisibly, or the \code{\link{trellis.object}} generated by \code{\link{spplot}} (if \code{pop} is non-\code{NULL}). } \author{ Sebastian Meyer } \seealso{ \code{\link{animate.epidataCS}} } \examples{ data("imdepi") ## show the occurrence of events along time plot(imdepi, "time", main = "Histogram of event time points") plot(imdepi, "time", by = NULL, main = "Aggregated over both event types") ## show the distribution in space plot(imdepi, "space", lwd = 2, col = "lavender") ## with the district-specific population density in the background, ## a scale bar, and customized point style load(system.file("shapes", "districtsD.RData", package = "surveillance")) districtsD$log10popdens <- log10(districtsD$POPULATION/districtsD$AREA) keylabels <- (c(1,2,5) * rep(10^(1:3), each=3))[-1] plot(imdepi, "space", tiles = districtsD, pop = "log10popdens", col = "white", ## modify point style for better visibility on gray background points.args = list(pch=c(1,3), col=c("orangered","blue"), lwd=2), ## metric scale bar due to projected coordinates, see proj4string(imdepi$W) sp.layout = layout.scalebar(imdepi$W, scale=100, labels=c("0","100 km")), ## gray background levels for the population density col.regions = gray.colors(100, start=0.9, end=0.1), ## color key is equidistant on log10(popdens) scale at = seq(1.3, 3.7, by=0.05), colorkey = list(labels=list(at=log10(keylabels), labels=keylabels))) grid::grid.text("Population density [per km2]", x=0.95, rot=90) } \keyword{hplot} \keyword{methods} \keyword{spatial} surveillance/man/primeFactors.Rd0000644000175100001440000000043613122471774016477 0ustar hornikusers\name{primeFactors} \alias{primeFactors} \title{Prime Number Factorization} \description{ Computes the prime number factorization of an integer. } \usage{ primeFactors(x) } \arguments{ \item{x}{an integer} } \value{vector with prime number factorization of \code{x}} \keyword{math} surveillance/man/isoWeekYear.Rd0000644000175100001440000000300713122471774016265 0ustar hornikusers\name{isoWeekYear} \alias{isoWeekYear} \alias{formatDate} \title{Find ISO week and ISO year of a vector of Date objects on Windows} \description{ This function extracts the ISO week and ISO year of a \code{Date} according to the ISO 8601 specification. Note that this function does nothing else than format.Date(x, "\%G") and format.Date(x, "\%V") would do on Mac/Unix computers. However, this is not implemented on Windows. A small internal wrapper for \code{format.Date} (called \code{formatDate}) thus directs all calls having one of these format strings to this function, if the \code{.Platform$OS.type} information reveals a Windows system. The function also provides three additional \code{strptime} formatting strings: "\%Q" (the quarter of a date as a numeric), "%OQ" (the quarter of a date in roman) and "%q" (day within the quarter). These are, e.g., used by \code{linelist2sts}. } \source{ The code to find the ISO week and year on Windows is by Gustaf Rydevik posted at \url{https://stat.ethz.ch/pipermail/r-help/2010-May/239531.html} } \usage{ isoWeekYear(Y, M=NULL, D=NULL) } \arguments{ \item{Y}{Date object (POSIX) or the year. Can be a vector.} \item{M}{month, \code{NULL} if Y is a Date object)} \item{D}{day, \code{NULL} if Y is a Date object)} } \value{ A list with entries \code{ISOYear} and \code{ISOWeek} containing the corresponding results. } \author{Gustaf Rydevik} \examples{ dates <- as.Date(c("2002-12-31","2003-01-01","2003-01-06")) isoWeekYear(dates) } \keyword{chron} surveillance/man/campyDE.Rd0000644000175100001440000000564013174644122015361 0ustar hornikusers\name{campyDE} \alias{campyDE} \docType{data} \title{Campylobacteriosis and Absolute Humidity in Germany 2002-2011} \description{ Weekly number of reported campylobacteriosis cases in Germany, 2002-2011, together with the corresponding absolute humidity (in g/m^3) that week. The absolute humidity was computed according to the procedure by Dengler (1997) using the means of representative weather station data from the German Climate service. } \usage{ data(campyDE) } \format{ A \code{data.frame} containing the following columns \describe{ \item{\code{date}}{\code{Date} instance containing the Monday of the reporting week.} \item{\code{case}}{Number of reported cases that week.} \item{\code{state}}{Boolean indicating whether there is external knowledge about an outbreak that week} \item{\code{hum}}{Mean absolute humidity (in g/m^3) of that week as measured by a single representative weather station.} \item{\code{l1.hum}-\code{l5.hum}}{Lagged version (lagged by 1-5) of the \code{hum} covariate.} \item{newyears}{Boolean indicating whether the reporting week corresponds to the first two weeks of the year (TRUE) or not (FALSE). Note: The first week of a year is here defined as the first reporting week, which has its corresponding Monday within new year.} \item{christmas}{Boolean indicating whether the reporting week corresponds to the last two weeks of the year (TRUE) or not (FALSE). Note: This are the first two weeks before the \code{newyears} weeks.} \item{O104period}{Boolean indicating whether the reporting week corresponds to the W21-W30 period of increased gastroenteritis awareness during the O104:H4 STEC outbreak.} } } \source{ The data on campylobacteriosis cases have been queried from the Survstat@RKI database of the German Robert Koch Institute (\url{https://survstat.rki.de/}). Data for the computation of absolute humidity were obtained from the German Climate Service (Deutscher Wetterdienst), Climate data of Germany, available at \url{http://www.dwd.de}. A complete data description and an analysis of the data can be found in Manitz and \enc{Höhle}{Hoehle} (2013). } \references{ Manitz, J. and \enc{Höhle}{Hoehle}, M. (2013): Bayesian outbreak detection algorithm for monitoring reported cases of campylobacteriosis in Germany. Biometrical Journal, 55(4), 509-526. } \examples{ #Load the data data("campyDE") #O104 period is W21-W30 in 2011 stopifnot(all(campyDE$O104period == ( (campyDE$date >= as.Date("2011-05-23")) & (campyDE$date < as.Date("2011-07-31")) ))) #Make an sts object from the data.frame cam.sts <- sts(epoch=as.numeric(campyDE$date), epochAsDate=TRUE, observed=campyDE$case, state=campyDE$state) #Plot the result plot(cam.sts) } \keyword{datasets} surveillance/man/coeflist.Rd0000644000175100001440000000207112476432506015647 0ustar hornikusers\name{coeflist} \alias{coeflist} \alias{coeflist.default} \title{ List Coefficients by Model Component } \description{ S3-generic function to use with models which contain several groups of coefficients in their coefficient vector. The \code{coeflist} methods are intended to list the coefficients by group. The default method simply \code{\link{split}}s the coefficient vector given the number of coefficients by group. } \usage{ coeflist(x, ...) \method{coeflist}{default}(x, npars, ...) } \arguments{ \item{x}{ a model with groups of coefficients or, for the default method, a vector of coefficients. } \item{npars}{ a named vector specifying the number of coefficients per group. } \item{\dots}{ potential further arguments (currently ignored). } } \value{ a list of coefficients } \author{ Sebastian Meyer } \examples{ ## the default method just 'split's the coefficient vector coefs <- c(a = 1, b = 3, dispersion = 0.5) npars <- c(regression = 2, variance = 1) coeflist(coefs, npars) } \keyword{models} \keyword{utilities} surveillance/man/twinstim_step.Rd0000644000175100001440000000365713165517635016766 0ustar hornikusers\name{twinstim_step} \alias{stepComponent} \alias{add1.twinstim} \alias{drop1.twinstim} \title{ Stepwise Model Selection by AIC } \description{ \code{stepComponent} is a wrapper around \code{\link{step}} to select a \code{"\link{twinstim}"} component's model based on an information criterion in a stepwise algorithm. There are also stand-alone single-step methods of \code{\link{add1}} and \code{\link{drop1}}. } \usage{ stepComponent(object, component = c("endemic", "epidemic"), scope = list(upper = object$formula[[component]]), direction = "both", trace = 2, verbose = FALSE, ...) \method{add1}{twinstim}(object, scope, component = c("endemic", "epidemic"), trace = 2, ...) \method{drop1}{twinstim}(object, scope, component = c("endemic", "epidemic"), trace = 2, ...) } \arguments{ \item{object}{an object of class \code{"twinstim"}.} \item{component}{one of \code{"endemic"} or \code{"epidemic"} (partially matched), determining the model component where the algorithm should proceed.} \item{scope,direction,trace}{see \code{\link{step}} and \code{\link{add1}}, respectively.} \item{verbose}{see \code{\link{twinstim}}.} \item{\dots}{further arguments passed to \code{\link{step}}, \code{\link{add1.default}}, or \code{\link{drop1.default}}, respectively.} } \value{ See \code{\link{step}} and \code{\link{add1}}, respectively. } \author{ (of this wrapper around \code{\link{step}}) Sebastian Meyer } \seealso{ \code{\link{step}}, \code{\link{add1}}, \code{\link{drop1}} } \examples{ data("imdepi", "imdepifit") ## simple baseline model m0 <- update(imdepifit, epidemic=~1, siaf=NULL) ## AIC-based step-wise backward selection of the endemic component m0_step <- stepComponent(m0, "endemic", scope=list(lower=~I(start/365-3.5))) ## nothing is dropped from the model \dontshow{ m0_step$anova <- NULL stopifnot(identical(m0, m0_step)) } } \keyword{models} \keyword{methods} surveillance/man/stsSlots.Rd0000644000175100001440000000213511746064472015700 0ustar hornikusers%%% FIXME: remove this file and add all the aliases to sts-class.Rd ? \name{stsSlot-generics} \docType{methods} \alias{alarms} \alias{alarms<-} \alias{upperbound} \alias{upperbound<-} \alias{control} \alias{control<-} \alias{epoch} \alias{epoch<-} \alias{observed} \alias{observed<-} \alias{population} \alias{population<-} \alias{multinomialTS} \alias{multinomialTS<-} \alias{neighbourhood} \alias{neighbourhood<-} \title{Generic functions to access \code{"sts"} slots} \description{ For almost every slot of the \code{"sts"} class, package \pkg{surveillance} defines a generic function of the same name (except for the \code{population} method where the slot is actually called \code{populationFrac}, and \code{alarms}, where the slot is actually called \code{alarm}) as well as a replacement version (\code{<-}) to extract or set the corresponding slot of a \code{sts} object. (This documentation is not really valid yet.) } %\section{Methods}{ %\describe{ % %\item{x = "sts"}{ The slot of \code{x} is determined and returned or set.} %}} \seealso{ the \code{"\linkS4class{sts}"} class } \keyword{methods} surveillance/man/print.algoQV.Rd0000644000175100001440000000136313122471774016365 0ustar hornikusers\name{print.algoQV} \alias{print.algoQV} \title{Print Quality Value Object} \description{Print a single quality value object in a nicely formatted way} \usage{ \method{print}{algoQV}(x,...) } \arguments{ \item{x}{Quality Values object generated with \code{quality}} \item{...}{Further arguments (not really used)} } \examples{ # Create a test object disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 200, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) # Let this object be tested from rki1 survResObj <- algo.rki1(disProgObj, control = list(range = 50:200)) # Compute the quality values in a nice formatted way algo.quality(survResObj) } \keyword{print} surveillance/man/algo.bayes.Rd0000644000175100001440000001216413165505075016065 0ustar hornikusers\name{algo.bayes} \alias{algo.bayes} \alias{algo.bayesLatestTimepoint} \alias{algo.bayes1} \alias{algo.bayes2} \alias{algo.bayes3} \encoding{latin1} \title{The Bayes System} \description{ Evaluation of timepoints with the Bayes subsystem 1, 2, 3 or a self defined Bayes subsystem. } \usage{ algo.bayesLatestTimepoint(disProgObj, timePoint = NULL, control = list(b = 0, w = 6, actY = TRUE,alpha=0.05)) algo.bayes(disProgObj, control = list(range = range, b = 0, w = 6, actY = TRUE,alpha=0.05)) algo.bayes1(disProgObj, control = list(range = range)) algo.bayes2(disProgObj, control = list(range = range)) algo.bayes3(disProgObj, control = list(range = range)) } \arguments{ \item{disProgObj}{object of class disProg (including the observed and the state chain)} \item{timePoint}{time point which should be evaluated in \code{algo.bayes LatestTimepoint}. The default is to use the latest timepoint} \item{control}{control object: \code{range} determines the desired timepoints which should be evaluated, \code{b} describes the number of years to go back for the reference values, \code{w} is the half window width for the reference values around the appropriate timepoint and \code{actY} is a boolean to decide if the year of \code{timePoint} also contributes \code{w} reference values. The parameter \code{alpha} is the \eqn{(1-\alpha)}-quantile to use in order to calculate the upper threshold. As default \code{b}, \code{w}, \code{actY} are set for the Bayes 1 system with \code{alpha}=0.05. } } \value{ \item{survRes}{ \code{algo.bayesLatestTimepoint} returns a list of class \code{survRes} (surveillance result), which includes the alarm value for recognizing an outbreak (1 for alarm, 0 for no alarm), the threshold value for recognizing the alarm and the input object of class disProg. \code{algo.bayes} gives a list of class \code{survRes} which includes the vector of alarm values for every timepoint in \code{range} and the vector of threshold values for every timepoint in \code{range} for the system specified by \code{b}, \code{w} and \code{actY}, the range and the input object of class disProg. \code{algo.bayes1} returns the same for the Bayes 1 system, \code{algo.bayes2} for the Bayes 2 system and \code{algo.bayes3} for the Bayes 3 system. } } \details{ Using the reference values the \eqn{(1-\alpha)\cdot 100\%}{(1-alpha)*100\%} quantile of the predictive posterior distribution is calculated as a threshold. An alarm is given if the actual value is bigger or equal than this threshold. It is possible to show using analytical computations that the predictive posterior in this case is the negative binomial distribution. Note: \code{algo.rki} or \code{algo.farrington} use two-sided prediction intervals -- if one wants to compare with these procedures it is necessary to use an alpha, which is half the one used for these procedures. Note also that \code{algo.bayes} calls \code{algo.bayesLatestTimepoint} for the values specified in \code{range} and for the system specified in \code{control}. \code{algo.bayes1}, \code{algo.bayes2}, \code{algo.bayes3} call \code{algo.bayesLatestTimepoint} for the values specified in \code{range} for the Bayes 1 system, Bayes 2 system or Bayes 3 system. \itemize{ \item \code{"Bayes 1"} reference values from 6 weeks. Alpha is fixed a t 0.05. \item \code{"Bayes 2"} reference values from 6 weeks ago and 13 weeks of the previous year (symmetrical around the same week as the current one in the previous year). Alpha is fixed at 0.05. \item \code{"Bayes 3"} 18 reference values. 9 from the year ago and 9 from two years ago (also symmetrical around the comparable week). Alpha is fixed at 0.05. } The procedure is now able to handle \code{NA}'s in the reference values. In the summation and when counting the number of observed reference values these are simply not counted. } \seealso{ \code{\link{algo.call}}, \code{\link{algo.rkiLatestTimepoint}} and \code{\link{algo.rki}} for the RKI system. } \author{M. \enc{Höhle}{Hoehle}, A. Riebler, C. Lang} \examples{ disProg <- sim.pointSource(p = 0.99, r = 0.5, length = 208, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) # Test for bayes 1 the latest timepoint algo.bayesLatestTimepoint(disProg) # Test week 200 to 208 for outbreaks with a selfdefined bayes algo.bayes(disProg, control = list(range = 200:208, b = 1, w = 5, actY = TRUE,alpha=0.05)) # The same for bayes 1 to bayes 3 algo.bayes1(disProg, control = list(range = 200:208,alpha=0.05)) algo.bayes2(disProg, control = list(range = 200:208,alpha=0.05)) algo.bayes3(disProg, control = list(range = 200:208,alpha=0.05)) } \keyword{classif} \source{ Riebler, A. (2004), Empirischer Vergleich von statistischen Methoden zur Ausbruchserkennung bei Surveillance Daten, Bachelor's thesis. } surveillance/man/twinstim_siaf_simulatePC.Rd0000644000175100001440000000316712401613161021036 0ustar hornikusers\name{siaf.simulatePC} \alias{siaf.simulatePC} \title{ Simulation from an Isotropic Spatial Kernel via Polar Coordinates } \description{ To sample points from isotropic power-law kernels \eqn{f_2(s) = f(||s||)} such as \code{\link{siaf.powerlaw}} on a bounded domain (i.e., \eqn{||s|| < \code{ub}}), it is convenient to switch to polar coordinates \eqn{(r,\theta)}, which have a density proportional to \eqn{r f_2((r \cos(\theta), r \sin(\theta))) = r f(r)} (independent of the angle \eqn{\theta} due to isotropy). The angle is thus simply drawn uniformly in \eqn{[0,2\pi)}, and \eqn{r} can be sampled by the inversion method, where numeric root finding is used for the quantiles (since the quantile function is not available in closed form). } \usage{ siaf.simulatePC(intrfr) } \arguments{ \item{intrfr}{ a function computing the integral of \eqn{r f(r)} from 0 to \code{R} (first argument, not necessarily named \code{R}). Parameters of the function are passed as its second argument and a third argument is the event type. } } \value{ a function with arguments \code{(n, siafpars, type, ub)}, which samples \code{n} points from the spatial kernel \eqn{f_2(s)} within the disc of radius \code{ub}, where \code{siafpars} and \code{type} are passed as second and third argument to \code{intrfr}. The environment of the returned function will be the caller's environment. } \author{ Sebastian Meyer } \examples{ simfun <- siaf.powerlaw()$simulate ## is internally generated as siaf.simulatePC(intrfr.powerlaw) set.seed(1) simfun(n=10, siafpars=log(c(sigma=1, d=2)), ub=5) } \keyword{internal} surveillance/man/LRCUSUM.runlength.Rd0000644000175100001440000001444113174712261017175 0ustar hornikusers\name{LRCUSUM.runlength} \alias{LRCUSUM.runlength} \alias{outcomeFunStandard} \alias{LLR.fun} \encoding{latin1} \title{Run length computation of a CUSUM detector} \description{ Compute run length for a count data or categorical CUSUM. The computations are based on a Markov representation of the likelihood ratio based CUSUM. } \usage{ LRCUSUM.runlength(mu,mu0,mu1,h,dfun, n, g=5,outcomeFun=NULL,...) } \arguments{ \item{mu}{\eqn{k-1 \times T} matrix with true proportions, i.e. equal to mu0 or mu1 if one wants to compute e.g. \eqn{ARL_0} or \eqn{ARL_1}.} \item{mu0}{\eqn{k-1 \times T} matrix with in-control proportions} \item{mu1}{\eqn{k-1 \times T} matrix with out-of-control proportion} \item{h}{The threshold h which is used for the CUSUM.} \item{dfun}{The probability mass function or density used to compute the likelihood ratios of the CUSUM. In a negative binomial CUSUM this is \code{dnbinom}, in a binomial CUSUM \code{dbinom} and in a multinomial CUSUM \code{dmultinom}.} \item{n}{Vector of length \eqn{T} containing the total number of experiments for each time point.} \item{g}{The number of levels to cut the state space into when performing the Markov chain approximation. Sometimes also denoted \eqn{M}. Note that the quality of the approximation depends very much on \eqn{g}. If \eqn{T} greater than, say, 50 its necessary to increase the value of \eqn{g}.} \item{outcomeFun}{A hook function to compute all possible outcome states to compute the likelihood ratio for. If \code{NULL} then the default function \code{outcomeFunStandard(k,n)} is used. This function uses the Cartesian product of \code{0:n} for \code{k} components.} \item{\dots}{Additional arguments to send to \code{dfun}.} } \details{ Brook and Evans (1972) formulated an approximate approach based on Markov chains to determine the PMF of the run length of a time-constant CUSUM detector. They describe the dynamics of the CUSUM statistic by a Markov chain with a discretized state space of size \eqn{g+2}. This is adopted to the time varying case in \enc{Höhle}{Hoehle} (2010) and implemented in R using the \dots notation such that it works for a very large class of distributions. } \seealso{\code{\link{categoricalCUSUM}}} \value{A list with five components \item{P}{An array of \eqn{g+2 \times g+2} transition matrices of the approximation Markov chain.} \item{pmf}{Probability mass function (up to length \eqn{T}) of the run length variable.} \item{cdf}{Cumulative density function (up to length \eqn{T}) of the run length variable.} \item{arl}{If the model is time homogenous (i.e. if \eqn{T==1}) then the ARL is computed based on the stationary distribution of the Markov chain. See the eqns in the reference for details. Note: If the model is not time homogeneous then the function returns \code{NA} and the ARL has to be approximated manually from the output. One could use \code{sum(1:length(pmf) * pmf)}, which is an approximation because of using a finite support for a sum which should be from 1 to infinity. } } \references{ \enc{Höhle}{Hoehle}, M. (2010): Online change-point detection in categorical time series. In: T. Kneib and G. Tutz (Eds.), Statistical Modelling and Regression Structures - Festschrift in Honour of Ludwig Fahrmeir, Physica-Verlag, pp. 377-397. Preprint available as \url{http://www.math.su.se/~hoehle/pubs/hoehle2010-preprint.pdf} \enc{Höhle}{Hoehle}, M. and Mazick, A. (2010): Aberration detection in R illustrated by Danish mortality monitoring. In: T. Kass-Hout and X. Zhang (Eds.), Biosurveillance: A Health Protection Priority, CRCPress. Preprint available as \url{http://www.math.su.se/~hoehle/pubs/hoehle_mazick2009-preprint.pdf} Brook, D. and Evans, D. A. (1972), An approach to the probability distribution of Cusum run length, Biometrika, 59:3, pp. 539--549. } \examples{ ###################################################### #Run length of a time constant negative binomial CUSUM ###################################################### #In-control and out of control parameters mu0 <- 10 alpha <- 1/2 kappa <- 2 #Density for comparison in the negative binomial distribution dY <- function(y,mu,log=FALSE, alpha, ...) { dnbinom(y, mu=mu, size=1/alpha, log=log) } #In this case "n" is the maximum value to investigate the LLR for #It is assumed that beyond n the LLR is too unlikely to be worth #computing. LRCUSUM.runlength( mu=t(mu0), mu0=t(mu0), mu1=kappa*t(mu0), h=5, dfun = dY, n=rep(100,length(mu0)), alpha=alpha) h.grid <- seq(3,6,by=0.3) arls <- sapply(h.grid, function(h) { LRCUSUM.runlength( mu=t(mu0), mu0=t(mu0), mu1=kappa*t(mu0), h=h, dfun = dY, n=rep(100,length(mu0)), alpha=alpha,g=20)$arl }) plot(h.grid, arls,type="l",xlab="threshold h",ylab=expression(ARL[0])) if (surveillance.options("allExamples")) { ###################################################### #Run length of a time varying negative binomial CUSUM ###################################################### mu0 <- matrix(5*sin(2*pi/52 * 1:200) + 10,ncol=1) rl <- LRCUSUM.runlength( mu=t(mu0), mu0=t(mu0), mu1=kappa*t(mu0), h=2, dfun = dY, n=rep(100,length(mu0)), alpha=alpha,g=20) plot(1:length(mu0),rl$pmf,type="l",xlab="t",ylab="PMF") plot(1:length(mu0),rl$cdf,type="l",xlab="t",ylab="CDF") } ######################################################## # Further examples contain the binomial, beta-binomial # and multinomial CUSUMs. Hopefully, these will be added # in the future. ######################################################## #dfun function for the multinomial distribution (Note: Only k-1 categories are specified). dmult <- function(y, size,mu, log = FALSE) { return(dmultinom(c(y,size-sum(y)), size = size, prob=c(mu,1-sum(mu)), log = log)) } #Example for the time-constant multinomial distribution #with size 100 and in-control and out-of-control parameters as below. n <- 100 pi0 <- as.matrix(c(0.5,0.3,0.2)) pi1 <- as.matrix(c(0.38,0.46,0.16)) #ARL_0 LRCUSUM.runlength(mu=pi0[1:2,,drop=FALSE],mu0=pi0[1:2,,drop=FALSE],mu1=pi1[1:2,,drop=FALSE], h=5,dfun=dmult, n=n, g=15)$arl #ARL_1 LRCUSUM.runlength(mu=pi1[1:2,,drop=FALSE],mu0=pi0[1:2,,drop=FALSE],mu1=pi1[1:2,,drop=FALSE], h=5,dfun=dmult, n=n, g=15)$arl } \author{M. \enc{Höhle}{Hoehle}} \keyword{regression} surveillance/man/simHHH.Rd0000644000175100001440000000667213122471774015171 0ustar hornikusers\name{simHHH} \alias{simHHH} \alias{simHHH.default} \alias{simHHH.ah} \encoding{latin1} \title{Simulates data based on the model proposed by Held et. al (2005)} \description{ Simulates a multivariate time series of counts based on the Poisson/Negative Binomial model as described in Held et al. (2005). } \usage{ \method{simHHH}{default}(model=NULL, control = list(coefs = list(alpha=1, gamma = 0, delta = 0, lambda = 0, phi = NULL, psi = NULL, period = 52), neighbourhood = NULL, population = NULL, start = NULL), length) \method{simHHH}{ah}(model, control = model$control, length) } \arguments{ \item{control}{list with \describe{ \item{coefs}{list with the following parameters of the model - if not specified, those parameters are omitted \describe{ \item{alpha}{vector of length \code{m} with intercepts for \code{m} units or geographic areas respectively} \item{gamma}{vector with parameters for the "sine" part of \eqn{\nu_{i,t}} } \item{delta}{vector with parameters for the "cosine" part of \eqn{\nu_{i,t}} } \item{lambda}{autoregressive parameter} \item{phi}{autoregressive parameter for adjacent units} \item{psi}{overdispersion parameter of the negative binomial model; \code{NULL} corresponds to a Poisson model} \item{period}{period of the seasonal component, defaults to 52 for weekly data} } } \item{neighbourhood}{neighbourhood matrix of size \eqn{m \times m} with element 1 if two units are adjacent; the default \code{NULL} assumes that there are no neighbours} \item{population}{matrix with population proportions; the default \code{NULL} sets \eqn{n_{i,t}=1} } \item{start}{if \code{NULL}, the means of the endemic part in the \code{m} units is used as initial values \eqn{y_{i,0}} } }} \item{model}{Result of a model fit with \code{\link{algo.hhh}}, the estimated parameters are used to simulate data} \item{length}{number of time points to simulate } } \value{Returns a list with elements \item{data}{\code{disProgObj} of simulated data } \item{mean}{matrix with mean \eqn{\mu_{i,t}} that was used to simulate the data} \item{endemic}{matrix with only the endemic part \eqn{\nu_{i,t}} } \item{coefs}{list with parameters of the model} } \details{ Simulates data from a Poisson or a Negative Binomial model with mean \deqn{\mu_{it} = \lambda y_{i,t-1} + \phi \sum_{j \sim i} y_{j,t-1} + n_{it} \nu_{it}} where \deqn{\log \nu_{it} = \alpha_i + \sum_{s=1}^{S}(\gamma_s sin(\omega_s t) + \delta_s cos(\omega_s t))} \eqn{\omega_s = 2s\pi/\code{period}} are Fourier frequencies and \eqn{n_{it}} are possibly standardized population sizes. } \note{The model does not contain a linear trend.} \source{Held, L., \enc{Höhle}{Hoehle}, M., Hofmann, M. (2005). A statistical framework for the analysis of multivariate infectious disease surveillance counts. Statistical Modelling, 5, p. 187-199. } \keyword{datagen} surveillance/man/earsC.Rd0000644000175100001440000002014713020537177015074 0ustar hornikusers\name{earsC} \alias{earsC} \encoding{latin1} \title{Surveillance for a count data time series using the EARS C1, C2 or C3 method and its extensions} \description{ % The function takes \code{range} values of the surveillance time series \code{sts} and for each time point computes a threshold for the number of counts based on values from the recent past. This is then compared to the observed number of counts. If the observation is above a specific quantile of the prediction interval, then an alarm is raised. This method is especially useful for data without many historic values, since it only needs counts from the recent past. % } \usage{ earsC(sts, control = list(range = NULL, method = "C1", baseline = 7, minSigma = 0, alpha = 0.001)) } \arguments{ \item{sts}{object of class sts (including the \code{observed} and the \code{state} time series) , which is to be monitored.} \item{control}{Control object \describe{ \item{\code{range}}{Specifies the index in the \code{sts} object of all the timepoints which should be monitored. If \code{range} is \code{NULL} the maximum number of possible timepoints is used (this number depends on the method chosen): \describe{ \item{C1}{all timepoints from the observation with index \code{baseline + 1} can be monitored,} \item{C2}{timepoints from index \code{baseline + 3} can be monitored,} \item{C3}{timepoints starting from the index \code{baseline + 5} can be monitored.} } } \item{\code{method}}{String indicating which method to use: \cr \describe{ \item{\code{"C1"}}{for EARS C1-MILD method (Default),} \item{\code{"C2"}}{for EARS C2-MEDIUM method,} \item{\code{"C3"}}{for EARS C3-HIGH method.} } See Details for further information about the methods. } \item{\code{baseline}}{how many time points to use for calculating the baseline, see details} \item{\code{minSigma}}{By default 0. If \code{minSigma} is higher than 0, for C1 and C2, the quantity zAlpha * minSigma is then the alerting threshold if the baseline is zero. Howard Burkom suggests using a value of 0.5 or 1 for sparse data.} \item{\code{alpha}}{An approximate (two-sided) \eqn{(1-\alpha)\cdot 100\%} prediction interval is calculated. By default if \code{alpha} is \code{NULL} the value 0.001 is assumed for C1 and C2 whereas 0.025 is assumed for C3. These different choices are the one made at the CDC.} % } } } \details{ The three methods are different in terms of baseline used for calculation of the expected value and in terms of method for calculating the expected value: \itemize{ \item in C1 and C2 the expected value is the moving average of counts over the sliding window of the baseline and the prediction interval depends on the standard derivation of the observed counts in this window. They can be considered as Shewhart control charts with a small sample used for calculations. \item in C3 the expected value is based on the sum over 3 timepoints (assessed timepoints and the two previous timepoints) of the discrepancy between observations and predictions, predictions being calculated with the C2 method. This method has similarities with a CUSUM method due to it adding discrepancies between predictions and observations over several timepoints, but is not a CUSUM (sum over 3 timepoints, not accumulation over a whole range), even if it sometimes is presented as such. } Here is what the function does for each method, see the literature sources for further details: \enumerate{ \item For C1 the baseline are the \code{baseline} (default 7) timepoints before the assessed timepoint t, t-\code{baseline} to t-1. The expected value is the mean of the baseline. An approximate (two-sided) \eqn{(1-\alpha)\cdot 100\%} prediction interval is calculated based on the assumption that the difference between the expected value and the observed value divided by the standard derivation of counts over the sliding window, called \eqn{C_1(t)}, follows a standard normal distribution in the absence of outbreaks: \deqn{C_1(t)= \frac{Y(t)-\bar{Y}_1(t)}{S_1(t)},} where \deqn{\bar{Y}_1(t)= \frac{1}{\code{baseline}} \sum_{i=t-1}^{t-\code{baseline}} Y(i)} and \deqn{ S^2_1(t)= \frac{1}{6} \sum_{i=t-1}^{t-\code{baseline}} [Y(i) - \bar{Y}_1(i)]^2.} Then under the null hypothesis of no outbreak, \deqn{C_1(t) \mathcal \> \sim \> {N}(0,1)} An alarm is raised if \deqn{C_1(t)\ge z_{1-\alpha}} with \eqn{z_{1-\alpha}} the \eqn{(1-\alpha)^{th}} quantile of the standard normal distribution. \cr The upperbound \eqn{U_1(t)} is then defined by: \deqn{U_1(t)= \bar{Y}_1(t) + z_{1-\alpha}S_1(t).} \item C2 is very similar to C1 apart from a 2-day lag in the baseline definition. In other words the baseline for C2 is \code{baseline} (Default: 7) timepoints with a 2-day lag before the monitored timepoint t, i.e. \eqn{(t-\code{baseline}-2)} to \eqn{t-3}. The expected value is the mean of the baseline. An approximate (two-sided) \eqn{(1-\alpha)\cdot 100\%} prediction interval is calculated based on the assumption that the difference between the expected value and the observed value divided by the standard derivation of counts over the sliding window, called \eqn{C_2(t)}, follows a standard normal distribution in the absence of outbreaks: \deqn{C_2(t)= \frac{Y(t)-\bar{Y}_2(t)}{S_2(t)},} where \deqn{\bar{Y}_2(t)= \frac{1}{\code{baseline}} \sum_{i=t-3}^{t-\code{baseline}-2} Y(i)} and \deqn{ S^2_2(t)= \frac{1}{\code{baseline}-1} \sum_{i=t-3}^{t-\code{baseline}-2} [Y(i) - \bar{Y}_2(i)]^2.} Then under the null hypothesis of no outbreak, \deqn{C_2(t) \mathcal \sim {N}(0,1)} An alarm is raised if \deqn{C_2(t)\ge z_{1-\alpha},} with \eqn{z_{1-\alpha}} the \eqn{(1-\alpha)^{th}} quantile of the standard normal distribution. \cr The upperbound \eqn{U_{2}(t)} is then defined by: \deqn{U_{2}(t)= \bar{Y}_{2}(t) + z_{1-\alpha}S_{2}(t).} \item C3 is quite different from the two other methods, but it is based on C2. Indeed it uses \eqn{C_2(t)} from timepoint t and the two previous timepoints. This means the baseline consists of the timepoints \eqn{t-(\code{baseline}+4)} to \eqn{t-3}. The statistic \eqn{C_3(t)} is the sum of discrepancies between observations and predictions. \deqn{C_3(t)= \sum_{i=t}^{t-2} \max(0,C_2(i)-1)} Then under the null hypothesis of no outbreak, \deqn{C_3(t) \mathcal \sim {N}(0,1)} An alarm is raised if \deqn{C_3(t)\ge z_{1-\alpha},} with \eqn{z_{1-\alpha}} the \eqn{(1-\alpha)^{th}} quantile of the standard normal distribution. \cr The upperbound \eqn{U_3(t)} is then defined by: \deqn{U_3(t)= \bar{Y}_2(t) + S_2(t)\left(z_{1-\alpha}-\sum_{i=t-1}^{t-2} \max(0,C_2(i)-1)\right).} } } \value{ An object of class \code{sts} with the slots \code{upperbound} and \code{alarm} filled by the chosen method. } \examples{ #Sim data and convert to sts object disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 208, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) stsObj <- disProg2sts( disProgObj) # Call earsC function and show result res1 <- earsC(stsObj, control = list(range = 20:208, method="C1")) plot(res1, legend.opts=list(horiz=TRUE, x="topright")) # Compare C3 upperbounds depending on alpha res3 <- earsC(stsObj, control = list(range = 20:208,method="C3",alpha = 0.001)) plot(upperbound(res3), type='l') res3 <- earsC(stsObj, control = list(range = 20:208,method="C3")) lines(upperbound(res3), col='red') } \author{M. Salmon, H. Burkom} \keyword{classif} \source{ Fricker, R.D., Hegler, B.L, and Dunfee, D.A. (2008). Comparing syndromic surveillance detection methods: EARS versus a CUSUM-based methodology, 27:3407-3429, Statistics in medicine. Salmon, M., Schumacher, D. and \enc{Höhle}{Hoehle}, M. (2016): Monitoring count time series in \R: Aberration detection in public health surveillance. \emph{Journal of Statistical Software}, \bold{70} (10), 1-35. \doi{10.18637/jss.v070.i10} } surveillance/man/scores.Rd0000644000175100001440000000673413166672062015347 0ustar hornikusers\name{scores} \alias{scores} \alias{scores.default} \alias{logs} \alias{rps} \alias{dss} \alias{ses} \title{ Proper Scoring Rules for Poisson or Negative Binomial Predictions } \description{ Proper scoring rules for Poisson or negative binomial predictions of count data are described in Czado et al. (2009). The following scores are implemented: logarithmic score (\code{logs}), ranked probability score (\code{rps}), Dawid-Sebastiani score (\code{dss}), squared error score (\code{ses}). } \usage{ scores(x, ...) \method{scores}{default}(x, mu, size = NULL, which = c("logs", "rps", "dss", "ses"), sign = FALSE, ...) logs(x, mu, size = NULL) rps(x, mu, size = NULL, k = 40, tolerance = sqrt(.Machine$double.eps)) dss(x, mu, size = NULL) ses(x, mu, size = NULL) } \arguments{ \item{x}{ the observed counts. All functions are vectorized and also accept matrices or arrays. Dimensions are preserved. } \item{mu}{ the means of the predictive distributions for the observations \code{x}. } \item{size}{ either \code{NULL} (default), indicating Poisson predictions with mean \code{mu}, or dispersion parameters of negative binomial forecasts for the observations \code{x}, parametrized as in \code{\link{dnbinom}} with variance \code{mu*(1+mu/size)}. } \item{which}{ a character vector specifying which scoring rules to apply. By default, all four proper scores are calculated. The normalized squared error score (\code{"nses"}) is also available but it is improper and hence not computed by default. } \item{sign}{ a logical indicating if the function should also return \code{sign(x-mu)}, i.e., the sign of the difference between the observed counts and corresponding predictions. } \item{\dots}{ unused (argument of the generic). } \item{k}{ scalar argument controlling the finite sum approximation for the \code{rps} with truncation at \code{ceiling(mu + k*sd)}. } \item{tolerance}{ absolute tolerance for the finite sum approximation employed in the \code{rps} calculation. A warning is produced if the approximation with \code{k} summands is insufficient for the specified \code{tolerance}. In this case, increase \code{k} for higher precision (or use a larger tolerance). } } \value{ The scoring functions return the individual scores for the predictions of the observations in \code{x} (maintaining their dimension attributes). The default \code{scores}-method applies the selected (\code{which}) scoring functions (and calculates \code{sign(x-mu)}) and returns the results in an array (via \code{\link{simplify2array}}), where the last dimension corresponds to the different scores. } \references{ Czado, C., Gneiting, T. and Held, L. (2009): Predictive model assessment for count data. \emph{Biometrics}, \bold{65} (4), 1254-1261. \doi{10.1111/j.1541-0420.2009.01191.x} } \seealso{ The R package \CRANpkg{scoringRules} implements the logarithmic score and the (continuous) ranked probability score for many distributions. } \author{ Sebastian Meyer and Michaela Paul } \examples{ mu <- c(0.1, 1, 3, 6, pi, 100) size <- 0.1 set.seed(1) y <- rnbinom(length(mu), mu = mu, size = size) scores(y, mu = mu, size = size) scores(y, mu = mu, size = 1) # ses ignores the variance scores(y, mu = 1, size = size) ## apply a specific scoring rule scores(y, mu = mu, size = size, which = "rps") rps(y, mu = mu, size = size) } \keyword{univar} surveillance/man/measlesDE.Rd0000644000175100001440000000170713174706302015700 0ustar hornikusers\name{measlesDE} \alias{measlesDE} \docType{data} \title{Measles in the 16 states of Germany} \description{ Weekly number of measles cases in the 16 states (Bundeslaender) of Germany for years 2005 to 2007. } \usage{data(measlesDE)} \format{ An \code{sts} object containing \eqn{156\times 16}{156 x 16} observations starting from week 1 in 2005. The \code{population} slot contains the population fractions of each state at 31.12.2006, obtained from the Federal Statistical Office of Germany. } \source{ Robert Koch-Institut: SurvStat: \url{https://survstat.rki.de/}; Queried on 14 October 2009. } \seealso{\code{\link{MMRcoverageDE}}} \examples{ data(measlesDE) plot(measlesDE) } \references{ Herzog, S.A., Paul, M. and Held, L. (2011) Heterogeneity in vaccination coverage explains the size and occurrence of measles epidemics in German surveillance data. Epidemiology and Infection, \bold{139}, 505--515. } \keyword{datasets} surveillance/man/epidata_summary.Rd0000644000175100001440000000562012417463231017220 0ustar hornikusers\name{epidata_summary} \alias{summary.epidata} \alias{print.summary.epidata} \title{ Summarizing an Epidemic } \description{ The \code{\link{summary}} method for \code{\link{class}} \code{"\link{epidata}"} gives an overview of the epidemic. Its \code{\link{print}} method shows the type of the epidemic, the time range, the total number of individuals, the initially and never infected individuals and the size of the epidemic. An excerpt of the returned \code{counters} data frame is also printed (see the Value section below). } \usage{ \method{summary}{epidata}(object, ...) \method{print}{summary.epidata}(x, ...) } \arguments{ \item{object}{an object inheriting from class \code{"epidata"}.} \item{x}{an object inheriting from class \code{"summary.epidata"}, i.e. an object returned by the function \code{summary.epidata}.} \item{\dots}{unused (argument of the generic).} } \value{ A list with the following components: \item{type}{ character string. Compartmental type of the epidemic, i.e. one of "SIR", "SI", "SIS" or "SIRS". } \item{size}{ integer. Size of the epidemic, i.e. the number of initially susceptible individuals, which became infected during the course of the epidemic. } \item{initiallyInfected}{ factor (with the same levels as the \code{id} column in the \code{"epidata"} object). Set of initially infected individuals. } \item{neverInfected}{ factor (with the same levels as the \code{id} column in the \code{"epidata"} object). Set of never infected individuals, i.e. individuals, which were neither initially infected nor infected during the course of the epidemic. } \item{coordinates}{ numeric matrix of individual coordinates with as many rows as there are individuals and one column for each spatial dimension. The row names of the matrix are the \code{id}s of the individuals. } \item{byID}{ data frame with time points of infection and optionally removal and re-susceptibility (depending on the \code{type} of the epidemic) ordered by \code{id}. If an event was not observed, the corresponding entry is missing. } \item{counters}{ data frame containing all events (S, I and R) ordered by time. The columns are \code{time}, \code{type} (of event), corresponding \code{id} and the three counters \code{nSusceptible}, \code{nInfectious} and \code{nRemoved}. The first row additionally shows the counters at the beginning of the epidemic, where the \code{type} and \code{id} column contain missing values. } } \author{ Sebastian Meyer } \seealso{ \code{\link{as.epidata}} for generating objects of class \code{"epidata"}. } \examples{ data("fooepidata") s <- summary(fooepidata) s # uses the print method for summary.epidata names(s) # components of the list 's' # positions of the individuals plot(s$coordinates) # events by id head(s$byID) } \keyword{methods} surveillance/man/refvalIdxByDate.Rd0000644000175100001440000000211513122471774017052 0ustar hornikusers\name{refvalIdxByDate} \alias{refvalIdxByDate} \title{Compute indices of reference value using Date class} \description{ The reference values are formed based on computations of \code{seq} for Date class arguments. } \usage{ refvalIdxByDate(t0, b, w, epochStr, epochs) } \arguments{ \item{t0}{A Date object describing the time point} \item{b}{Number of years to go back in time} \item{w}{Half width of window to include reference values for} \item{epochStr}{One of \code{"1 month"}, \code{"1 week"} or \code{"1 day"}} \item{epochs}{Vector containing the epoch value of the sts/disProg object} } \details{ Using the Date class the reference values are formed as follows: Starting from \code{t0} go i, i= 1,...,\code{b} years back in time. For each year, go \code{w} epochs back and include from here to \code{w} epochs after \code{t0}. In case of weeks we always go back to the closest Monday of this date. In case of months we also go back in time to closest 1st of month. } \value{ a vector of indices in epochs which match } \keyword{chron} surveillance/man/disProg2sts.Rd0000644000175100001440000000161512672030523016254 0ustar hornikusers\name{disProg2sts} \alias{disProg2sts} \alias{sts2disProg} \title{Convert disProg object to sts and vice versa} \description{ A small helper function to convert a \code{disProg} object to become an object of the S4 class \code{sts} and vice versa. In the future the \code{sts} should replace the \code{disProg} class, but for now this function allows for conversion between the two formats. } \usage{ disProg2sts(disProgObj, map=NULL) sts2disProg(sts) } \arguments{ \item{disProgObj}{an object of class \code{"disProg"}} \item{map}{an optional \code{"SpatialPolygons"} object} \item{sts}{an object of class \code{"sts"} to convert} } \value{ an object of class \code{"sts"} or \code{"disProg"}, respectively. } \seealso{ \code{\link{sts-class}} } \examples{ data(ha) print(disProg2sts(ha)) class(sts2disProg(disProg2sts(ha))) } \keyword{utilities} surveillance/man/compMatrix.writeTable.Rd0000644000175100001440000000361213122471774020264 0ustar hornikusers\name{compMatrix.writeTable} \alias{compMatrix.writeTable} \encoding{latin1} \title{LaTeX Table Generation} \description{ Generates a LaTeX table } \usage{ compMatrix.writeTable(compMatrix) } \arguments{ \item{compMatrix}{Matrix which includes quality values for every surveillance system.} } \value{ LaTeX xtable of the entered matrix. } \author{M. \enc{Höhle}{Hoehle}, A. Riebler, C. Lang} \examples{ ### First creates some tables ### # Create a test object disProgObj1 <- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) disProgObj2 <- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 5) disProgObj3 <- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 17) # Let this object be tested from any methods in range = 200:400 range <- 200:400 control <- list(list(funcName = "rki1", range = range), list(funcName = "rki2", range = range), list(funcName = "rki3", range = range)) ### This are single compMatrices compMatrix1 <- algo.compare(algo.call(disProgObj1, control=control)) compMatrix2 <- algo.compare(algo.call(disProgObj2, control=control)) compMatrix3 <- algo.compare(algo.call(disProgObj3, control=control)) ### This is a summary compMatrix sumCompMatrix <- algo.summary( list(a=compMatrix1, b=compMatrix2, c=compMatrix3) ) ### Now show the latextable from the single compMatrix compMatrix1 compMatrix.writeTable(compMatrix1) ### Now show the latextable from the summary compMatrix compMatrix.writeTable(sumCompMatrix) } \keyword{print} surveillance/man/surveillance.options.Rd0000644000175100001440000000654712601334353020230 0ustar hornikusers\name{surveillance.options} \alias{surveillance.options} \alias{reset.surveillance.options} \title{Options of the \pkg{surveillance} Package} \description{ Query, set or reset options specific to the \pkg{surveillance} package, similar to what \code{\link{options}} does for global settings. } \usage{ surveillance.options(...) reset.surveillance.options() } \arguments{ \item{\dots}{ Either empty, or a sequence of option names (as strings), or a sequence of \code{name=value} pairs, or a named list of options. Available options are: \describe{ \item{gpclib:}{ Logical flag indicating whether \pkg{gpclib}, the General Polygon Clipping Library for \R, which has a restricted license (commercial use prohibited), may be used. This is no longer required since package \pkg{surveillance} has switched to alternatives such as \pkg{polyclip} and \pkg{rgeos} for generating \code{"epidataCS"} objects by \code{as.epidataCS} or \code{simEpidataCS}. However, for \code{\link{unionSpatialPolygons}} and \code{\link{intersectPolyCircle.gpc.poly}}, using \pkg{gpclib} is still an option (mainly for backwards compatibility). The default setting is \code{FALSE}. } \item{stsTickFactors:}{ A named vector containing tick sizes for the \code{"sts"} x-axis relative to \code{\link{par}("tcl")}. Each entry contains the size at \code{\link{strptime}} formatting strings. See the help on \code{\link{stsplot_time1}} for details. \describe{ \item{"\%d"}{} \item{"\%W"}{} \item{"\%V"}{} \item{"\%m"}{} \item{"\%Q"}{} \item{"\%Y"}{} \item{"\%G"}{} } } \item{colors:}{ A named list containing plotting color defaults. \describe{ \item{nowSymbol}{Color of the "now" symbol in \code{stsNC} plots. Default: \code{"springgreen4"}.} \item{piBars}{Color of the prediction interval bars in \code{stsNC} plots. Default: \code{"orange"}.} } } \item{allExamples:}{ Logical flag queried before running cumbersome computations in help file examples. For \code{interactive()} sessions, this option defaults to \code{TRUE}. Otherwise, long examples will only be run if the environment variable \env{_R_SURVEILLANCE_ALL_EXAMPLES_} is set (to any value different from \code{""}) when attaching the \pkg{surveillance} package. This is to avoid long computations during (daily) CRAN checks. } } } } \value{ \code{reset.surveillance.options} reverts all options to their default values and (invisibly) returns these in a list. For \code{surveillance.options}, the following holds: \itemize{ \item If no arguments are given, the current values of all package options are returned in a list. \item If one option name is given, the current value of this option is returned (\emph{not} in a list, just the value). \item If several option names are given, the current values of these options are returned in a list. \item If \code{name=value} pairs are given, the named options are set to the given values, and the \emph{previous} values of these options are returned in a list. } } \author{ Sebastian Meyer, inspired by the implementation of \code{spatstat.options()} in the \pkg{spatstat} package by Adrian Baddeley and Rolf Turner. } \examples{ surveillance.options() } \keyword{environment} surveillance/man/R0.Rd0000644000175100001440000001775013165630423014324 0ustar hornikusers\encoding{latin1} \name{R0} \alias{R0} \alias{R0.twinstim} \alias{R0.simEpidataCS} \alias{simpleR0} \title{Computes reproduction numbers from fitted models} \description{ The S3 generic function \code{R0} defined in package \pkg{surveillance} is intended to compute reproduction numbers from fitted epidemic models. The package currently defines a method for the \code{"\link{twinstim}"} class, which computes expected numbers of infections caused by infected individuals depending on the event type and marks attached to the individual, which contribute to the infection pressure in the epidemic predictor of that class. There is also a method for simulated \code{"epidataCS"} (just a wrapper for the \code{"twinstim"}-method). } \usage{ R0(object, ...) \method{R0}{twinstim}(object, newevents, trimmed = TRUE, newcoef = NULL, ...) \method{R0}{simEpidataCS}(object, trimmed = TRUE, ...) simpleR0(object, eta = coef(object)[["e.(Intercept)"]], eps.s = NULL, eps.t = NULL, newcoef = NULL) } \arguments{ \item{object}{A fitted epidemic model object for which an \code{R0} method exists.} \item{newevents}{ an optional \code{data.frame} of events for which the reproduction numbers should be calculated. If omitted, it is calculated for the original events from the fit. In this case, if \code{trimmed = TRUE} (the default), the result is just \code{object$R0}; however, if \code{trimmed = FALSE}, the model environment is required, i.e. \code{object} must have been fitted with \code{model = TRUE}. For the \code{twinstim} method, \code{newevents} must at least contain the following columns: the \code{time} of the events, the factor variable \code{type}, the interaction ranges \code{eps.t} and \code{eps.s}, as well as columns for the marks used in the epidemic component of the fitted \code{"twinstim"} \code{object} as stored in \code{formula(object)$epidemic}. The coding of the variables must of course be the same as used for fitting. For \code{trimmed} R0 values, \code{newevents} must additionally contain the components \code{.influenceRegion} and, if using the \code{Fcircle} trick in the \code{siaf} specification, also \code{.bdist} (cf. the hidden columns in the \code{events} component of class \code{"epidataCS"}). } \item{trimmed}{ logical indicating if the individual reproduction numbers should be calculated by integrating the epidemic intensities over the observation period and region only (\code{trimmed = TRUE}) or over the whole time-space domain R+ x R^2 (\code{trimmed = FALSE}). By default, if \code{newevents} is missing, the trimmed \code{R0} values stored in \code{object} are returned. Trimming means that events near the (spatial or temporal) edges of the observation domain have lower reproduction numbers (ceteris paribus) because events outside the observation domain are not observed. } \item{newcoef}{ the model parameters to use when calculating reproduction numbers. The default (\code{NULL}) is to use the MLE \code{coef(object)}. This argument mainly serves the construction of Monte Carlo confidence intervals by evaluating \code{R0} for parameter vectors sampled from the asymptotic multivariate normal distribution of the MLE, see Examples. } \item{\dots}{additional arguments passed to methods. Currently unused for the \code{twinstim} method.} \item{eta}{a value for the epidemic linear predictor, see details.} \item{eps.s,eps.t}{the spatial/temporal radius of interaction. If \code{NULL} (the default), the original value from the data is used if this is unique and an error is thrown otherwise.} } \details{ For the \code{"\link{twinstim}"} class, the individual-specific expected number \eqn{\mu_j} of infections caused by individual (event) \eqn{j} inside its theoretical (untrimmed) spatio-temporal range of interaction given by its \code{eps.t} (\eqn{\epsilon}) and \code{eps.s} (\eqn{\delta}) values is defined as follows (cf. Meyer et al, 2012): \deqn{\mu_j = e^{\eta_j} \cdot \int_{b(\bold{0},\delta)} f(\bold{s}) d\bold{s} \cdot \int_0^\epsilon g(t) dt .} Here, \eqn{b(\bold{0},\delta)} denotes the disc centred at (0,0)' with radius \eqn{\delta}, \eqn{\eta_j} is the epidemic linear predictor, \eqn{g(t)} is the temporal interaction function, and \eqn{f(\bold{s})} is the spatial interaction function. For a type-specific \code{twinstim}, there is an additional factor for the number of event types which can be infected by the type of event \eqn{j} and the interaction functions may be type-specific as well. Alternatively to the equation above, the \code{trimmed} (observed) reproduction numbers are obtain by integrating over the observed infectious domains of the individuals, i.e. integrate \eqn{f} over the intersection of the influence region with the observation region \code{W} (i.e. over \eqn{\{ W \cap b(\bold{s}_j,\delta) \} - \bold{s}_j}) and \eqn{g} over the intersection of the observed infectious period with the observation period \eqn{(t_0;T]} (i.e. over \eqn{(0; \min(T-t_j,\epsilon)]}). The function \code{simpleR0} computes \deqn{\exp(\eta) \cdot \int_{b(\bold{0},\delta)} f(\bold{s}) d\bold{s} \cdot \int_0^{\epsilon} g(t) dt ,} where \eqn{\eta} defaults to \eqn{\gamma_0} disregarding any epidemic effects of types and marks. It is thus only suitable for simple epidemic \code{\link{twinstim}} models with \code{epidemic = ~1}, a diagonal (or secondary diagonal) \code{qmatrix}, and type-invariant interaction functions. \code{simpleR0} mainly exists for use by \code{\link{epitest}}. (Numerical) Integration is performed exactly as during the fitting of \code{object}, for instance \code{object$control.siaf} is queried if necessary. } \value{ For the \code{R0} methods, a numeric vector of estimated reproduction numbers from the fitted model \code{object} corresponding to the rows of \code{newevents} (if supplied) or the original fitted events including events of the prehistory. For \code{simpleR0}, a single number (see details). } \references{ Meyer, S., Elias, J. and H\enc{ö}{oe}hle, M. (2012): A space-time conditional intensity model for invasive meningococcal disease occurrence. \emph{Biometrics}, \bold{68}, 607-616. \doi{10.1111/j.1541-0420.2011.01684.x} } \author{Sebastian Meyer} \examples{ ## load the 'imdepi' data and a model fit data("imdepi", "imdepifit") ## calculate individual and type-specific reproduction numbers R0s <- R0(imdepifit) tapply(R0s, imdepi$events@data[names(R0s), "type"], summary) ## untrimmed R0 for a specific event R0(imdepifit, newevents=marks(imdepi)[1,], trimmed=FALSE) ### compute a Monte Carlo confidence interval ## use a simpler model with constant 'siaf' for speed simplefit <- update(imdepifit, epidemic=~type, siaf=NULL, subset=NULL) ## we'd like to compute the mean R0's by event type meanR0ByType <- function (newcoef) { R0events <- R0(simplefit, newcoef=newcoef) tapply(R0events, imdepi$events@data[names(R0events),"type"], mean) } (meansMLE <- meanR0ByType(newcoef=NULL)) ## sample B times from asymptotic multivariate normal of the MLE B <- 5 # CAVE: toy example! In practice this has to be much larger set.seed(123) parsamples <- MASS::mvrnorm(B, mu=coef(simplefit), Sigma=vcov(simplefit)) ## for each sample compute the 'meanR0ByType' meansMC <- apply(parsamples, 1, meanR0ByType) ## get the quantiles and print the result cisMC <- apply(cbind(meansMLE, meansMC), 1, quantile, probs=c(0.025,0.975)) print(rbind(MLE=meansMLE, cisMC)) ### R0 for a simple epidemic model ### without epidemic covariates, i.e., all individuals are equally infectious mepi1 <- update(simplefit, epidemic = ~1, subset = type == "B", model = TRUE, verbose = FALSE) ## using the default spatial and temporal ranges of interaction (R0B <- simpleR0(mepi1)) # eps.s=200, eps.t=30 stopifnot(identical(R0B, R0(mepi1, trimmed = FALSE)[[1]])) ## assuming smaller interaction ranges (but same infection intensity) simpleR0(mepi1, eps.s = 50, eps.t = 15) } \keyword{methods} \keyword{univar} surveillance/man/checkResidualProcess.Rd0000644000175100001440000000452612424247304020144 0ustar hornikusers\name{checkResidualProcess} \alias{checkResidualProcess} \title{ Check the residual process of a fitted \code{twinSIR} or \code{twinstim} } \description{ Transform the residual process (cf. the \code{\link[=residuals.twinstim]{residuals}} methods for classes \code{"twinSIR"} and \code{"twinstim"}) such that the transformed residuals should be uniformly distributed if the fitted model well describes the true conditional intensity function. Graphically check this using \code{\link{ks.plot.unif}}. The transformation for the residuals \code{tau} is \code{1 - exp(-diff(c(0,tau)))} (cf. Ogata, 1988). Another plot inspects the serial correlation between the transformed residuals (scatterplot between u_i and u_{i+1}). } \usage{ checkResidualProcess(object, plot = 1:2, mfrow = c(1,length(plot)), ...) } \arguments{ \item{object}{ an object of class \code{"\link{twinSIR}"} or \code{"\link{twinstim}"}. } \item{plot}{ logical (or integer index) vector indicating if (which) plots of the transformed residuals should be produced. The \code{plot} index 1 corresponds to a \code{\link{ks.plot.unif}} to check for deviations of the transformed residuals from the uniform distribution. The \code{plot} index 2 corresponds to a scatterplot of \eqn{u_i} vs. \eqn{u_{i+1}}. By default (\code{plot = 1:2}), both plots are produced. } \item{mfrow}{ see \code{\link{par}}. } \item{\dots}{ further arguments passed to \code{\link{ks.plot.unif}}. } } \value{ A list (returned invisibly, if \code{plot = TRUE}) with the following components: \describe{ \item{tau}{the residual process obtained by \code{residuals(object)}.} \item{U}{the transformed residuals which should be distributed as U(0,1).} \item{ks}{the result of the \code{ks.test} for the uniform distribution of \code{U}.} } } \references{ Ogata, Y. (1988) Statistical models for earthquake occurrences and residual analysis for point processes. \emph{Journal of the American Statistical Association}, 83, 9-27 } \author{ Sebastian Meyer } \seealso{ \code{\link{ks.plot.unif}} and the \code{\link[=residuals.twinstim]{residuals}}-method for classes \code{"twinSIR"} and \code{"twinstim"}. } \examples{ ## load the twinSIR() fit data("foofit") checkResidualProcess(foofit) } \keyword{dplot} \keyword{htest} surveillance/man/anscombe.residuals.Rd0000644000175100001440000000101512665561746017626 0ustar hornikusers\name{anscombe.residuals} \alias{anscombe.residuals} \title{Compute Anscombe Residuals} \description{ Compute Anscombe residuals from a fitted \code{\link{glm}}, which makes them approximately standard normal distributed. } \usage{ anscombe.residuals(m, phi) } \arguments{ \item{m}{a fitted \code{"glm"}} \item{phi}{the current estimated overdispersion} } \value{The standardized Anscombe residuals of \code{m}} \references{McCullagh & Nelder, Generalized Linear Models, 1989} \keyword{regression} surveillance/man/algo.farrington.assign.weights.Rd0000644000175100001440000000123613122471774022066 0ustar hornikusers\name{algo.farrington.assign.weights} \alias{algo.farrington.assign.weights} \title{Assign weights to base counts} \description{ Weights are assigned according to the Anscombe residuals } \usage{ algo.farrington.assign.weights(s, weightsThreshold=1) } \arguments{ \item{s}{Vector of standardized Anscombe residuals} \item{weightsThreshold}{A scalar indicating when observations are seen as outlier. In the original Farrington proposal the value was 1 (default value), in the improved version this value is suggested to be 2.58.} } \value{Weights according to the residuals} \seealso{\code{\link{anscombe.residuals}}} \keyword{regression} surveillance/man/algo.compare.Rd0000644000175100001440000000333513122471774016411 0ustar hornikusers\name{algo.compare} \alias{algo.compare} \title{Comparison of Specified Surveillance Systems using Quality Values} \description{ Comparison of specified surveillance algorithms using quality values. } \usage{ algo.compare(survResList) } \arguments{ \item{survResList}{a list of survRes objects to compare via quality values.} } \value{ Matrix with values from \code{\link{algo.quality}}, i.e. quality values for every surveillance algorithm found in \code{survResults}. } \seealso{\code{\link{algo.quality}}} \examples{ # Create a test object disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) # Let this object be tested from any methods in range = 200:400 range <- 200:400 survRes <- algo.call(disProgObj, control = list( list(funcName = "rki1", range = range), list(funcName = "rki2", range = range), list(funcName = "rki3", range = range), list(funcName = "rki", range = range, b = 3, w = 2, actY = FALSE), list(funcName = "rki", range = range, b = 2, w = 9, actY = TRUE), list(funcName = "bayes1", range = range), list(funcName = "bayes2", range = range), list(funcName = "bayes3", range = range), list(funcName = "bayes", name = "myBayes", range = range, b = 1, w = 5, actY = TRUE,alpha=0.05) )) algo.compare(survRes) } \keyword{classif} surveillance/man/influMen.Rd0000644000175100001440000000113113174706302015602 0ustar hornikusers\name{influMen} \alias{influMen} \docType{data} \title{Influenza and meningococcal infections in Germany, 2001-2006} \description{ Weekly counts of new influenza and meningococcal infections in Germany 2001-2006. } \usage{data(influMen)} \format{ A \code{disProg} object containing \eqn{312\times 2}{312 x 2} observations starting from week 1 in 2001 to week 52 in 2006. } \source{ Robert Koch-Institut: SurvStat: \url{https://survstat.rki.de/}. Queried on 25 July 2007. } \examples{ data(influMen) plot(influMen, as.one=FALSE, same.scale=FALSE) } \keyword{datasets} surveillance/man/wrap.algo.Rd0000644000175100001440000000513513122471774015734 0ustar hornikusers\name{wrap.algo} \alias{wrap.algo} \alias{farrington} \alias{bayes} \alias{rki} \alias{cusum} \alias{glrpois} \alias{glrnb} \alias{outbreakP} %% FIXME: hmm and rogerson are currently undocumented and unexported %\alias{hmm} %\alias{rogerson} \encoding{latin1} \title{Multivariate Surveillance through independent univariate algorithms} \description{ This function takes an \code{sts} object and applies an univariate surveillance algorithm to the time series of each observational unit. } \usage{ %This is the main function wrap.algo(sts, algo, control,control.hook=function(k, control) return(control),verbose=TRUE,...) %Derived functions fixing the control object and the "algo" argument farrington(sts, control=list(range=NULL, b=3, w=3,reweight=TRUE, verbose=FALSE,alpha=0.01),...) bayes(sts, control = list(range = range, b = 0, w = 6, actY = TRUE,alpha=0.05),...) rki(sts, control = list(range = range, b = 2, w = 4, actY = FALSE),...) cusum(sts, control = list(range=range, k=1.04, h=2.26, m=NULL, trans="standard",alpha=NULL),...) glrpois(sts, control = list(range=range,c.ARL=5, S=1,beta=NULL, Mtilde=1, M=-1, change="intercept",theta=NULL),...) glrnb(sts, control = list(range=range,c.ARL=5, mu0=NULL, alpha=0, Mtilde=1, M=-1, change="intercept", theta=NULL,dir=c("inc","dec"), ret=c("cases","value")),...) outbreakP(sts, control=list(range = range, k=100, ret=c("cases","value"),maxUpperboundCases=1e5),...) } \arguments{ \item{sts}{Object of class \code{sts}} \item{algo}{Character string giving the function name of the algorithm to call, e.g. \code{"algo.farrington"}. Calling is done using \code{do.call}.} \item{control}{Control object as list. Depends on each algorithm.} \item{control.hook}{This is a function for handling multivariate objects. This argument is a function function of integer k and the current control object and which returns the appropriate control object for region k.} \item{verbose}{Boolean, if \code{TRUE} then textual information about the process is given} \item{...}{Additional arguments sent to the \code{algo} function.} } \value{ An \code{sts} object with the \code{alarm}, \code{upperbound}, etc. slots filled with the results of independent and univariate surveillance algorithm. } \seealso{ \code{\link{algo.rki}}, \code{\link{algo.farrington}}, \code{\link{algo.cusum}}, \code{\link{algo.glrpois}}, \code{\link{algo.glrnb}}, \code{\link{algo.outbreakP}} for the exact form of the \code{control} object. } \author{M. \enc{Höhle}{Hoehle}} \keyword{classif} surveillance/man/findH.Rd0000644000175100001440000000445313122471774015074 0ustar hornikusers\name{findH} \alias{findH} \alias{hValues} \title{Find decision interval for given in-control ARL and reference value} \description{ Function to find a decision interval \code{h}* for given reference value \code{k} and desired ARL \eqn{\gamma} so that the average run length for a Poisson or Binomial CUSUM with in-control parameter \eqn{\theta_0}, reference value \code{k} and is approximately \eqn{\gamma}, i.e. \eqn{\Big| \frac{ARL(h^*) -\gamma}{\gamma} \Big| < \epsilon}, or larger, i.e. \eqn{ARL(h^*) > \gamma }. } \usage{ findH(ARL0, theta0, s = 1, rel.tol = 0.03, roundK = TRUE, distr = c("poisson", "binomial"), digits = 1, FIR = FALSE, ...) hValues(theta0, ARL0, rel.tol=0.02, s = 1, roundK = TRUE, digits = 1, distr = c("poisson", "binomial"), FIR = FALSE, ...) } \arguments{ \item{ARL0}{ desired in-control ARL \eqn{\gamma} } \item{theta0}{in-control parameter \eqn{\theta_0}} \item{s}{change to detect, see details} \item{distr}{ \code{"poisson"} or \code{"binomial"} } \item{rel.tol}{relative tolerance, i.e. the search for \code{h}* is stopped if \eqn{\Big| \frac{ARL(h^*) -\gamma}{\gamma} \Big| < } \code{rel.tol} } \item{digits}{the reference value \code{k} and the decision interval \code{h} are rounded to \code{digits} decimal places} \item{roundK}{ passed to \code{findK} } \item{FIR}{if \code{TRUE}, the decision interval that leads to the desired ARL for a FIR CUSUM with head start \eqn{\frac{\code{h}}{2}} is returned } \item{\dots}{ further arguments for the distribution function, i.e. number of trials \code{n} for binomial cdf } } \value{ \code{findH} returns a vector and \code{hValues} returns a matrix with elements \item{theta0}{in-control parameter} \item{h}{decision interval} \item{k}{reference value} \item{ARL}{ARL for a CUSUM with parameters \code{k} and \code{h} } \item{rel.tol}{corresponds to \eqn{\Big| \frac{ARL(h) -\gamma}{\gamma} \Big|} } } \details{ The out-of-control parameter used to determine the reference value \code{k} is specified as: \deqn{\theta_1 = \lambda_0 + s \sqrt{\lambda_0} } for a Poisson variate \eqn{X \sim Po(\lambda)} \deqn{\theta_1 = \frac{s \pi_0}{1+(s-1) \pi_0} } for a Binomial variate \eqn{X \sim Bin(n, \pi) } } \keyword{models} surveillance/man/multiplicity.Rd0000644000175100001440000000061712414601076016563 0ustar hornikusers\name{multiplicity} \alias{multiplicity} \docType{import} \title{Import from package \pkg{spatstat}} \description{ The generic function \code{multiplicity} is imported from package \pkg{spatstat}. See \code{\link[spatstat:multiplicity]{spatstat::multiplicity}} for \pkg{spatstat}'s own methods, and \code{\link{multiplicity.Spatial}} for the added method for \code{\linkS4class{Spatial}} objects. } surveillance/man/twinstim_profile.Rd0000644000175100001440000000704712677753025017452 0ustar hornikusers\encoding{latin1} \name{twinstim_profile} \alias{profile.twinstim} \title{ Profile Likelihood Computation and Confidence Intervals for \code{twinstim} objects } \description{ Function to compute estimated and profile likelihood based confidence intervals for \code{twinstim} objects. Computations might be cumbersome! WARNING: the implementation is not well tested, simply uses \code{optim} (ignoring optimizer settings from the original fit), and does not return the complete set of coefficients at each grid point. } \usage{ \method{profile}{twinstim}(fitted, profile, alpha = 0.05, control = list(fnscale = -1, maxit = 100, trace = 1), do.ltildeprofile=FALSE, ...) } \arguments{ \item{fitted}{ an object of class \code{"twinstim"}. } \item{profile}{ a list with elements being numeric vectors of length 4. These vectors must have the form \code{c(index, lower, upper, gridsize)}. \describe{ \item{\code{index}:}{ index of the parameter to be profiled in the vector \code{coef(fitted)}. } \item{\code{lower, upper}:}{ lower/upper limit of the grid on which the profile log-likelihood is evaluated. Can also be \code{NA} in which case \code{lower/upper} equals the lower/upper bound of the respective 0.3 \% Wald confidence interval (+-3*se). } \item{\code{gridsize}:}{ grid size of the equally spaced grid between lower and upper. Can also be 0 in which case the profile log-likelihood for this parameter is not evaluated on a grid. } } } \item{alpha}{ \eqn{(1-\alpha)\%}{(1-alpha)\%} profile likelihood based confidence intervals are computed. If alpha <= 0, then no confidence intervals are computed. This is currently not implemented. } \item{control}{ control object to use in \code{\link{optim}} for the profile log-likelihood computations. It might be necessary to control \code{maxit} or \code{reltol} in order to obtain results in finite time. } \item{do.ltildeprofile}{If \code{TRUE} calculate profile likelihood as well. This might take a while, since an optimisation for all other parameters has to be performed. Useful for likelihood based confidence intervals. Default: \code{FALSE}. } \item{\dots}{ unused (argument of the generic). } } \value{ list with profile log-likelihood evaluations on the grid, and -- not implemented yet -- highest likelihood and Wald confidence intervals. The argument \code{profile} is also returned. } \author{ Michael \enc{Höhle}{Hoehle} } \examples{ # profiling takes a while \dontrun{ #Load the twinstim model fitted to the IMD data data("imdepi", "imdepifit") # for profiling we need the model environment imdepifit <- update(imdepifit, model=TRUE) #Generate profiling object for a list of parameters for the new model names <- c("h.(Intercept)","e.typeC") coefList <- lapply(names, function(name) { c(pmatch(name,names(coef(imdepifit))),NA,NA,11) }) #Profile object (necessary to specify a more loose convergence #criterion). Speed things up by using do.ltildeprofile=FALSE (the default) prof <- profile(imdepifit, coefList, control=list(reltol=0.1, REPORT=1), do.ltildeprofile=TRUE) #Plot result for one variable par(mfrow=c(1,2)) for (name in names) { with(as.data.frame(prof$lp[[name]]), matplot(grid,cbind(profile,estimated,wald), type="l",xlab=name,ylab="loglik")) legend(x="bottomleft",c("profile","estimated","wald"),lty=1:3,col=1:3) } } } \keyword{htest} \keyword{methods} \keyword{optimize} \keyword{dplot} surveillance/man/salmHospitalized.Rd0000644000175100001440000000116113174706302017344 0ustar hornikusers\name{salmHospitalized} \alias{salmHospitalized} \docType{data} \title{Hospitalized Salmonella cases in Germany 2004-2014} \description{ Reported number of cases of Salmonella in Germany 2004-2014 (early 2014) that were hospitalized. The corresponding total number of cases is indicated in the slot \code{populationFrac} and \code{multinomialTS} is \code{TRUE}. } \usage{data(salmHospitalized)} \format{ An \code{"\linkS4class{sts}"} object. } \source{ The data are queried from the Survstat@RKI database of the German Robert Koch Institute (\url{https://survstat.rki.de/}). } \keyword{datasets} surveillance/man/algo.farrington.Rd0000644000175100001440000001253113122471774017132 0ustar hornikusers\name{algo.farrington} \alias{algo.farrington} \encoding{latin1} \title{Surveillance for a count data time series using the Farrington method.} \description{ The function takes \code{range} values of the surveillance time series \code{disProgObj} and for each time point uses a GLM to predict the number of counts according to the procedure by Farrington et al. (1996). This is then compared to the observed number of counts. If the observation is above a specific quantile of the prediction interval, then an alarm is raised. } \usage{ algo.farrington(disProgObj, control=list(range=NULL, b=3, w=3, reweight=TRUE,verbose=FALSE,alpha=0.01,trend=TRUE,limit54=c(5,4), powertrans="2/3", fitFun=c("algo.farrington.fitGLM.fast","algo.farrington.fitGLM", "algo.farrington.fitGLM.populationOffset"))) } \arguments{ \item{disProgObj}{ object of class disProgObj (including the \code{observed} and the \code{state} time series.) } \item{control}{list of control parameters \describe{ \item{\code{range}}{Specifies the index of all timepoints which should be tested. If range is \code{NULL} the maximum number of possible weeks is used (i.e. as many weeks as possible while still having enough reference values).} \item{\code{b}}{how many years back in time to include when forming the base counts.} \item{\code{w}}{windows size, i.e. number of weeks to include before and after the current week} \item{\code{reweight}}{Boolean specifying whether to perform reweight step} \item{\code{trend}}{If \code{true} a trend is included and kept in case the conditions documented in Farrington et al. (1996) are met (see the results). If \code{false} then NO trend is fit.} \item{\code{verbose}}{Boolean indicating whether to show extra debugging information.} \item{\code{plot}}{Boolean specifying whether to show the final GLM model fit graphically (use History|Recording to see all pictures).} \item{\code{powertrans}}{Power transformation to apply to the data. Use either "2/3" for skewness correction (Default), "1/2" for variance stabilizing transformation or "none" for no transformation.} \item{\code{alpha}}{An approximate (two-sided) \eqn{(1-\alpha)} prediction interval is calculated.} \item{\code{limit54}}{To avoid alarms in cases where the time series only has about 0-2 cases the algorithm uses the following heuristic criterion (see Section 3.8 of the Farrington paper) to protect against low counts: no alarm is sounded if fewer than \eqn{cases=5} reports were received in the past \eqn{period=4} weeks. \code{limit54=c(cases,period)} is a vector allowing the user to change these numbers. Note: As of version 0.9-7 the term "last" period of weeks includes the current week - otherwise no alarm is sounded for horrible large numbers if the four weeks before that are too low.} \item{\code{fitFun}}{String containing the name of the fit function to be used for fitting the GLM. The options are \code{algo.farrington.fitGLM.fast} (default) and \code{algo.farrington.fitGLM} or \code{algo.farrington.fitGLM.populationOffset}. See details of \code{\link{algo.farrington.fitGLM}} for more information.} } } } \details{ The following steps are performed according to the Farrington et al. (1996) paper. \enumerate{ \item fit of the initial model and initial estimation of mean and overdispersion. \item calculation of the weights omega (correction for past outbreaks) \item refitting of the model \item revised estimation of overdispersion \item rescaled model \item omission of the trend, if it is not significant \item repetition of the whole procedure \item calculation of the threshold value \item computation of exceedance score } } \value{ An object of class \code{SurvRes}. } \examples{ #Read Salmonella Agona data data("salmonella.agona") #Do surveillance for the last 100 weeks. n <- length(salmonella.agona$observed) #Set control parameters. control <- list(b=4,w=3,range=(n-100):n,reweight=TRUE, verbose=FALSE,alpha=0.01) res <- algo.farrington(salmonella.agona,control=control) #Plot the result. plot(res,disease="Salmonella Agona",method="Farrington") \dontrun{ #Generate Poisson counts and convert into an "sts" object set.seed(123) x <- rpois(520,lambda=1) sts <- sts(observed=x, state=x*0, freq=52) #Compare timing of the two possible fitters for algo.farrington (here using S4) system.time( sts1 <- farrington(sts, control=list(range=312:520, fitFun="algo.farrington.fitGLM.fast"))) system.time( sts2 <- farrington(sts, control=list(range=312:520, fitFun="algo.farrington.fitGLM"))) #Check if results are the same stopifnot(upperbound(sts1) == upperbound(sts2)) } } \author{M. \enc{Höhle}{Hoehle}} \seealso{\code{\link{algo.farrington.fitGLM}},\code{\link{algo.farrington.threshold}}} \keyword{classif} \references{ A statistical algorithm for the early detection of outbreaks of infectious disease, Farrington, C.P., Andrews, N.J, Beale A.D. and Catchpole, M.A. (1996), J. R. Statist. Soc. A, 159, 547-563. } surveillance/man/animate.Rd0000644000175100001440000000111113167111527015442 0ustar hornikusers\name{animate} \alias{animate} \title{ Generic animation of spatio-temporal objects } \description{ Generic function for animation of \R objects. } \usage{ animate(object, ...) } \arguments{ \item{object}{The object to animate.} \item{\dots}{ Arguments to be passed to methods, such as graphical parameters or time interval options for the snapshots. } } \seealso{ The methods \code{\link{animate.epidata}}, \code{\link{animate.epidataCS}}, and \code{\link{animate.sts}} for the animation of surveillance data. } \keyword{hplot} \keyword{dynamic} \keyword{spatial} surveillance/man/loglikelihood.Rd0000644000175100001440000000232513122471774016665 0ustar hornikusers\name{loglikelihood} \alias{loglikelihood} \title{Calculation of the loglikelihood needed in algo.hhh} \description{ Calculates the loglikelihood according to the model specified in \code{designRes}. } \usage{ loglikelihood(theta, designRes) } \arguments{ \item{theta}{vector of parameters \deqn{\theta = (\alpha_1,\ldots,\alpha_m, \bold{\lambda}, \bold{\phi}, \bold{\beta}, \bold{\gamma}_1, \ldots, \bold{\gamma}_m, \bold{\psi}),} where \eqn{\bold{\lambda}=(\lambda_1,\ldots,\lambda_m)}, \eqn{\bold{\phi}=(\phi_1,\ldots,\phi_m)}, \eqn{\bold{\beta}=(\beta_1,\ldots,\beta_m)}, \eqn{\bold{\gamma_1}=(\gamma_{11},\ldots,\gamma_{1,2S_1})}{\bold{\gamma_1}=(\gamma_11,\ldots,\gamma_(1,2S_1))}, \eqn{\bold{\gamma_m}=(\gamma_{m1},\ldots,\gamma_{m,2S_m})}{\bold{\gamma_m}=(\gamma_m1,\ldots,\gamma_(m,2S_m))}, \eqn{\bold{\psi}=(\psi_1,\ldots,\psi_m)}. If the model specifies less parameters, those components are omitted.} \item{designRes}{Result of a call to \code{make.design} } } \seealso{\code{\link{algo.hhh}}} \author{M. Paul, L. Held} \keyword{internal} surveillance/man/twinstim_intensity.Rd0000644000175100001440000002242013165517315020021 0ustar hornikusers\name{twinstim_intensity} \alias{intensityplot.twinstim} \alias{intensity.twinstim} \alias{intensityplot.simEpidataCS} \title{ Plotting Intensities of Infection over Time or Space } \description{ \code{\link{intensityplot}} method to plot the evolution of the total infection intensity, its epidemic proportion or its endemic proportion over time or space (integrated over the other dimension) of fitted \code{\link{twinstim}} models (or \code{\link{simEpidataCS}}). The \code{"simEpidataCS"}-method is just a wrapper around \code{intensityplot.twinstim} by making the \code{"simEpidataCS"} object \code{"twinstim"}-compatible, i.e. enriching it by the required model components and environment. The \code{intensity.twinstim} auxiliary function returns functions which calculate the endemic or epidemic intensity at a specific time point or location (integrated over the other dimension). } \usage{ \method{intensityplot}{twinstim}(x, which = c("epidemic proportion", "endemic proportion", "total intensity"), aggregate = c("time", "space"), types = 1:nrow(x$qmatrix), tiles, tiles.idcol = NULL, plot = TRUE, add = FALSE, tgrid = 101, rug.opts = list(), sgrid = 128, polygons.args = list(), points.args = list(), cex.fun = sqrt, ...) \method{intensityplot}{simEpidataCS}(x, ...) intensity.twinstim(x, aggregate = c("time", "space"), types = 1:nrow(x$qmatrix), tiles, tiles.idcol = NULL) } \arguments{ \item{x}{ an object of class \code{"twinstim"} or \code{"simEpidataCS"}, respectively. } \item{which}{ \code{"epidemic proportion"}, \code{"endemic proportion"}, or \code{"total intensity"}. Partial matching is applied. Determines whether to plot the path of the total intensity or its epidemic or endemic proportions over time or space (\code{which}) aggregated over the other dimension and \code{types}. } \item{aggregate}{ One of \code{"time"} or \code{"space"}. The former results in a plot of the evolution of \code{which} as a function of time (integrated over the observation region \eqn{\bold{W}}), whereas the latter produces a \code{spplot} of \code{which} over \eqn{\bold{W}} (spanned by \code{tiles}). In both cases, \code{which} is evaluated on a grid of values, given by \code{tgrid} or \code{sgrid}, respectively. } \item{types}{ event types to aggregate. By default, all types of events are aggregated, but one could also be interested in only one specific type or a subset of event types. } \item{tiles}{ object of class \code{\linkS4class{SpatialPolygons}} representing the decomposition of \eqn{\bold{W}} into different regions (as used in the corresponding \code{stgrid} of the \code{"\link{epidataCS}"}. This is only needed for \code{aggregate = "space"}. } \item{tiles.idcol}{ either a column index for \code{tiles@data} (if \code{tiles} is a \code{\linkS4class{SpatialPolygonsDataFrame}}), or \code{NULL} (default), which refers to the \code{"ID"} slot of the polygons, i.e., \code{row.names(tiles)}. The ID's must correspond to the factor levels of \code{stgrid$tile} of the \code{"\link{epidataCS}"} on which \code{x} was fitted. } \item{plot}{ logical indicating if a plot is desired, which defaults to \code{TRUE}. Otherwise, a function will be returned, which takes a vector of time points (if \code{aggregate = "time"}) or a matrix of coordinates (if \code{aggregate = "space"}), and returns \code{which} on this grid. } \item{add}{ logical. If \code{TRUE} and \code{aggregate = "time"}, paths are added to the current plot, using \code{lines}. This does not work for \code{aggregate = "space"}. } \item{tgrid}{ either a numeric vector of time points when to evaluate \code{which}, or a scalar representing the desired number of evaluation points in the observation interval \eqn{[t_0, T]}. This argument is unused for \code{aggregate = "space"}. } \item{rug.opts}{ if a list, its elements are passed as arguments to the function \code{\link{rug}}, which will mark the time points of the events if \code{aggregate = "time"} (it is unused in the spatial case); otherwise (e.g., \code{NULL}), no \code{rug} will be produced. By default, the \code{rug} argument \code{ticksize} is set to 0.02 and \code{quiet} is set to \code{TRUE}. Note that the argument \code{x} of the \code{rug} function, which contains the locations for the \code{rug} is fixed internally and can not be modified. } \item{sgrid}{ either an object of class \code{"\linkS4class{SpatialPixels}"} (or coercible to that class) representing the locations where to evaluate \code{which}, or a scalar representing the total number of points of a grid constructed on the bounding box of \code{tiles} (using \code{\link[maptools]{Sobj_SpatialGrid}} from package \pkg{maptools}). \code{sgrid} is internally subsetted to contain only points inside \code{tiles}. This argument is unused for \code{aggregate = "time"}. } \item{polygons.args}{ if a list, its elements are passed as arguments to \code{\link{sp.polygons}}, which will add \code{tiles} to the plot if \code{aggregate = "space"} (it is unused for the temporal plot). By default, the fill \code{col}our of the tiles is set to \code{"darkgrey"}. } \item{points.args}{ if a list, its elements are passed as arguments to \code{\link{sp.points}}, which will add the event locations to the plot if \code{aggregate = "space"} (it is unused for the temporal plot). By default, the plot symbol is set to \code{pch=1}. The sizes of the points are determined as the product of the argument \code{cex} (default: 0.5) of this list and the sizes obtained from the function \code{cex.fun} which accounts for multiple events at the same location. } \item{cex.fun}{ function which takes a vector of counts of events at each unique location and returns a (vector of) \code{cex} value(s) for the sizes of the points at the event locations used in \code{points.args}. Defaults to the \code{sqrt()} function, which for the default circular \code{pch=1} means that the area of each point is proportional to the number of events at its location. } \item{\dots}{ further arguments passed to \code{plot} or \code{lines} (if \code{aggregate = "time"}), or to \code{\link{spplot}} (if \code{aggregate = "space"}).\cr For \code{intensityplot.simEpidataCS}, arguments passed to \code{intensityplot.twinstim}. } } \value{ If \code{plot = FALSE} or \code{aggregate = "time"}, a function is returned, which takes a vector of time points (if \code{aggregate = "time"}) or a matrix of coordinates (if \code{aggregate = "space"}), and returns \code{which} on this grid. \code{intensity.twinstim} returns a list containing such functions for the endemic and epidemic intensity (but these are not vectorized). If \code{plot = TRUE} and \code{aggregate = "space"}, the \code{\link{trellis.object}} of the spatial plot is returned. } \author{ Sebastian Meyer } \seealso{ \code{\link{plot.twinstim}}, which calls \code{intensityplot.twinstim}. } \examples{ data("imdepi", "imdepifit") # for the intensityplot we need the model environment, which can be # easily added by the intelligent update method (no need to refit the model) imdepifit <- update(imdepifit, model=TRUE) ## path of the total intensity opar <- par(mfrow=c(2,1)) intensityplot(imdepifit, which="total intensity", aggregate="time", tgrid=500) plot(imdepi, "time", breaks=100) par(opar) ## time course of the epidemic proportion by event intensityplot(imdepifit, which="epidemic proportion", aggregate="time", tgrid=500, types=1) intensityplot(imdepifit, which="epidemic proportion", aggregate="time", tgrid=500, types=2, add=TRUE, col=2) legend("topright", legend=levels(imdepi$events$type), lty=1, col=1:2, title = "event type") ## endemic and total intensity in one plot intensity_endprop <- intensityplot(imdepifit, which="endemic proportion", aggregate="time", plot=FALSE) intensity_total <- intensityplot(imdepifit, which="total intensity", aggregate="time", tgrid=501, lwd=2) curve(intensity_endprop(x) * intensity_total(x), add=TRUE, col=2, lwd=2, n=501) text(2500, 0.36, labels="total", col=1, pos=2, font=2) text(2500, 0.08, labels="endemic", col=2, pos=2, font=2) ## spatial shape of the intensity (aggregated over time) if (surveillance.options("allExamples") && requireNamespace("maptools")) { ## load borders of Germany's districts load(system.file("shapes", "districtsD.RData", package="surveillance")) # total intensity (using a rather sparse 'sgrid' for speed) intensityplot(imdepifit, which="total intensity", aggregate="space", tiles=districtsD, sgrid=500) # epidemic proportion by type maps_epiprop <- lapply(1:2, function (type) { intensityplot(imdepifit, which="epidemic", aggregate="space", types=type, tiles=districtsD, sgrid=1000, at=seq(0,1,by=0.1), col.regions=rev(heat.colors(20))) }) plot(maps_epiprop[[1]], split=c(1,1,2,1), more=TRUE) plot(maps_epiprop[[2]], split=c(2,1,2,1)) } } \keyword{hplot} \keyword{aplot} \keyword{dplot} \keyword{methods} surveillance/man/ranef.Rd0000644000175100001440000000062112716552041015123 0ustar hornikusers\name{ranef} \alias{ranef} \alias{fixef} \docType{import} \title{Import from package \pkg{nlme}} \description{ The generic functions \code{ranef} and \code{fixef} are imported from package \pkg{nlme}. See \code{\link[nlme:ranef]{nlme::ranef}} for \pkg{nlme}'s own description, and \code{\link{ranef.hhh4}} or \code{\link{fixef.hhh4}} for the added methods for \code{"\link{hhh4}"} models. } surveillance/man/epidataCS_permute.Rd0000644000175100001440000000271012471172506017431 0ustar hornikusers\name{epidataCS_permute} \alias{permute.epidataCS} \title{ Randomly Permute Time Points or Locations of \code{"epidataCS"} } \description{ Monte Carlo tests for space-time interaction (\code{\link{epitest}}) use the distribution of some test statistic under the null hypothesis of no space-time interaction. For this purpose, the function \code{permute.epidataCS} randomly permutes the time or space labels of the events. } \usage{ permute.epidataCS(x, what = c("time", "space"), keep) } \arguments{ \item{x}{an object of class \code{"\link{epidataCS}"}.} \item{what}{character string determining what to permute: time points (default) or locations.} \item{keep}{optional logical expression to be evaluated in the context of \code{x$events@data}, determining for which events the time and location should be kept as is. For instance, to keep some \dQuote{pre-history} before time point 30 unchanged, use \code{keep = time <= 30}.} } \value{ the permuted \code{"\link{epidataCS}"} object. } \author{ Sebastian Meyer } \seealso{ \code{\link{epitest}} } \examples{ data("imdepi") set.seed(3) permepi <- permute.epidataCS(imdepi, what = "time", keep = time <= 30) print(imdepi, n = 8) print(permepi, n = 8) ## the first 6 events are kept (as are all row.names), ## the time labels of the remaining events are shuffled ## (and events then again sorted by time), ## the marginal temporal distribution is unchanged } \keyword{manip} surveillance/man/addFormattedXAxis.Rd0000644000175100001440000000635212645670777017434 0ustar hornikusers\name{addFormattedXAxis} \alias{addFormattedXAxis} % helper functions for time axis formatting \alias{atChange} \alias{at2ndChange} \alias{atMedian} \title{ Formatted Time Axis for \code{"sts"} Objects } \description{ Add a nicely formatted x-axis to time series plots related to the \code{"\linkS4class{sts}"} class. This utility function is, e.g., used by \code{\link{stsplot_time1}} and \code{\link{plotHHH4_fitted1}}. } \usage{ addFormattedXAxis(x, epochsAsDate = FALSE, xaxis.tickFreq = list("\%Q"=atChange), xaxis.labelFreq = xaxis.tickFreq, xaxis.labelFormat = "\%G\n\n\%OQ", ...) } \arguments{ \item{x}{ an object of class \code{"\linkS4class{sts}"}. } \item{epochsAsDate}{ a logical indicating if the old (\code{FALSE}) or the new (\code{TRUE}) and more flexible implementation should be used. The \code{xaxis.*} arguments are only relevant for the new implementation \code{epochsAsDate = TRUE}. } \item{xaxis.labelFormat,xaxis.tickFreq,xaxis.labelFreq}{ see the details below. } \item{\dots}{ further arguments passed to \code{\link{axis}}. } } \details{ The setting \code{epochsAsDate = TRUE} enables very flexible formatting of the x-axis and its annotations using the \code{xaxis.tickFreq}, \code{xaxis.labelFreq} and \code{xaxis.labelFormat} arguments. The first two are named lists containing pairs with the \emph{name} being a \code{\link{strftime}} single conversion specification and the second part is a function which based on this conversion returns a subset of the rows in the \code{sts} objects. The subsetting function has the following header: \code{function(x,xm1)}, where \code{x} is a vector containing the result of applying the conversion in \code{name} to the epochs of the \code{sts} object and \code{xm1} is the scalar result when applying the conversion to the natural element just before the first epoch. Please note that the input to the subsetting function is converted using \code{as.numeric} before calling the function. Hence, the conversion specification needs to result in a string convertible to integer. Three predefined subsetting functions exist: \code{atChange}, \code{at2ndChange} and \code{atMedian}, which are used to make a tick at each (each 2nd for \code{at2ndChange}) change and at the median index computed on all having the same value, respectively: \preformatted{ atChange <- function(x,xm1) which(diff(c(xm1,x)) != 0) at2ndChange <- function(x,xm1) which(diff(c(xm1,x) \%/\% 2) != 0) atMedian <- function(x,xm1) tapply(seq_along(x), INDEX=x, quantile, prob=0.5, type=3) } By defining own functions here, one can obtain an arbitrary degree of flexibility. Finally, \code{xaxis.labelFormat} is a \code{\link{strftime}} compatible formatting string., e.g. the default value is \code{"\%G\\n\\n\%OQ"}, which means ISO year and quarter (in roman letters) stacked on top of each other. } \value{ \code{NULL} (invisibly). The function is called for its side effects. } \author{ Michael H\enc{ö}{oe}hle with contributions by Sebastian Meyer } \seealso{ the examples in \code{\link{stsplot_time1}} and \code{\link{plotHHH4_fitted1}} } \keyword{aplot} surveillance/man/hhh4_W_utils.Rd0000644000175100001440000000211313117736473016400 0ustar hornikusers\name{hhh4_W_utils} \alias{getNEweights} \alias{coefW} \title{ Extract Neighbourhood Weights from a Fitted \code{hhh4} Model } \description{ The \code{getNEweights} function extracts the (fitted) weight matrix/array from a \code{"hhh4"} object, after scaling and normalization. The \code{coefW} function extracts the coefficients of parametric neighbourhood weights from a \code{hhh4} fit (or directly from a corresponding coefficient vector), i.e., coefficients whose names begin with \dQuote{neweights}. } \usage{ getNEweights(object, pars = coefW(object), scale = ne$scale, normalize = ne$normalize) coefW(object) } \arguments{ \item{object}{an object of class \code{"hhh4"}. \code{coefW} also works with the coefficient vector.} \item{pars}{coefficients for parametric neighbourhood weights, such as for models using \code{\link{W_powerlaw}}. Defaults to the corresponding point estimates in \code{object}.} \item{scale,normalize}{parameters of the \code{ne} component of \code{\link{hhh4}}.} } \author{ Sebastian Meyer } \keyword{utilities} surveillance/man/linelist2sts.Rd0000644000175100001440000000760312677470307016510 0ustar hornikusers\encoding{latin1} \name{linelist2sts} \alias{linelist2sts} \title{ Convert individual case information based on dates into an aggregated time series of counts } \description{ The function is used to convert an individual line list of cases to an aggregated time series of counts based on event date information of the cases. } \usage{ linelist2sts(linelist,dateCol, aggregate.by=c("1 day", "1 week", "7 day", "1 week", "1 month", "3 month", "1 year"), dRange=NULL, epochInPeriodStr=switch(aggregate.by, "1 day"="1", "1 week"="\%u", "1 month"="\%d","3 month"="\%q","1 year"="\%j"), startYearFormat=switch(aggregate.by,"1 day"="\%Y", "7 day"="\%G", "1 week"="\%G","1 month"="\%Y","3 month"="\%Y","1 year"="\%Y"), startEpochFormat=switch(aggregate.by,"1 day"="\%j", "7 day"="\%V", "1 week"="\%V", "1 month"="\%m", "3 month"="\%Q", "1 year"="1") ) } \arguments{ \item{linelist}{ A \code{data.frame} containing the line list of cases. } \item{dateCol}{A character string stating the column name in \code{linelist} which contains the event occurrence information (as a vector of \code{Date}s) which are to be temporally aggregated. } \item{aggregate.by}{Temporal aggregation level given as a string, see the \code{by} variable of the \code{\link{seq.Date}} function for further details. } \item{dRange}{A vector containing the minimum and maximum date for doing the aggregation. If not specified these dates are extracted automatically by taking \code{range(D[,dateCol])} and adjust these according to \code{aggregate.by} (e.g. always first of a month). } \item{epochInPeriodStr}{\code{strptime} compatible format string to use for determining how a date is placed within the epoch. This is, e.g., used to move the \code{dRange} epochs to the beginning of the period. Example: In case of weekly aggregation the "\%u" determines which day within the week (Monday is day 1) we have. See \code{\link{strptime}} for further details. } \item{startYearFormat}{\code{strptime} compatible format string to use for determining how the \code{start} entry of the \code{sts} object is generated. Usually the provided defaults are sufficient.} \item{startEpochFormat}{\code{strptime} compatible format string to use for determining how the \code{start} entry of the \code{sts} object is generated. Usually the provided defaults are sufficient.} } \details{ The date range is automatically extended such that the starting and ending dates are always the first epoch within the period, i.e. for aggregation by week it is moved to Mondays. This is controlled by the \code{epochInPeriodStr} parameter. Please note that the formatting strings are implemented by the internal \code{formatDate} function, which uses the \code{strptime} formatting strings (ISO8601 are made Windows compatible) as well as formatting of quarters using "\%Q", "\%OQ" and "\%q". } \value{ The function returns an object of class \code{"\linkS4class{sts}"}. The \code{freq} slot might not be appropriate. } \author{ Michael \enc{Höhle}{Hoehle} } \note{ Some of the \code{strptime} ISO 8601 formatting strings have problems on windows. Hence, the surveillance internal \code{formatDate} function is used. } \seealso{ See also \code{\link{seq.Date}}, \code{\link{strptime}}, \code{\link{isoWeekYear}}. } \examples{ #Load O104 outbreak data data("husO104Hosp") #Convert line list to an sts object sts <- linelist2sts(husO104Hosp, dateCol="dHosp", aggregate.by="1 day") #Check that the number of cases is correct all.equal(sum(observed(sts)),nrow(husO104Hosp)) #Plot the result plot(sts,xaxis.tickFreq=list("\%d"=atChange,"\%m"=atChange), xaxis.labelFreq=list("\%d"=at2ndChange), xaxis.labelFormat="\%d \%b", xlab="",las=2,cex.axis=0.8) } \keyword{models} \keyword{optimize} surveillance/man/residualsCT.Rd0000644000175100001440000000471212665561746016276 0ustar hornikusers\name{residualsCT} \alias{residuals.twinSIR} \alias{residuals.twinstim} \alias{residuals.simEpidataCS} \title{ Extract Cox-Snell-like Residuals of a Fitted Point Process } \description{ Extract the \dQuote{residual process} (cf. Ogata, 1988) of a fitted point process model specified through the conditional intensity function, for instance a model of class \code{"\link{twinSIR}"} or \code{"\link{twinstim}"} (and also \code{"\link{simEpidataCS}"}). The residuals are defined as the fitted cumulative intensities at the event times, and are generalized residuals similar to those discussed in Cox and Snell (1968). } \usage{ \method{residuals}{twinSIR}(object, ...) \method{residuals}{twinstim}(object, ...) \method{residuals}{simEpidataCS}(object, ...) } \arguments{ \item{object}{ an object of one of the aforementioned model classes. } \item{\dots}{unused (argument of the generic).} } \details{ For objects of class \code{twinstim}, the residuals may already be stored in the object as component \code{object$tau} if the model was fitted with \code{cumCIF = TRUE} (and they always are for \code{"simEpidataCS"}). In this case, the \code{residuals} method just extracts these values. Otherwise, the residuals have to be calculated, which is only possible with access to the model environment, i.e. \code{object} must have been fitted with \code{model = TRUE}. The calculated residuals are then also appended to \code{object} for future use. However, if \code{cumCIF} and \code{model} were both set to true in the \code{object} fit, then it is not possible to calculate the residuals and the method returns an error. } \value{ Numeric vector of length the number of events of the corresponding point process fitted by \code{object}. This is the observed residual process. } \references{ Ogata, Y. (1988) Statistical models for earthquake occurrences and residual analysis for point processes. \emph{Journal of the American Statistical Association}, 83, 9-27 Cox, D. R. & Snell, E. J. (1968) A general definition of residuals. \emph{Journal of the Royal Statistical Society. Series B (Methodological)}, 30, 248-275 } \seealso{ \code{\link{checkResidualProcess}} to graphically check the goodness-of-fit of the underlying model. } \author{ Sebastian Meyer } \examples{ ## Load the twinSIR() fit data("foofit") residuals(foofit) ## these residuals are, e.g., used by checkResidualProcess() checkResidualProcess(foofit) } \keyword{methods} surveillance/man/all.equal.Rd0000644000175100001440000000202412670511517015707 0ustar hornikusers\name{all.equal} \alias{all.equal.twinstim} \alias{all.equal.hhh4} \title{ Test if Two Model Fits are (Nearly) Equal } \description{ Two model fits are compared using standard \code{\link{all.equal}}-methods after discarding certain elements considered irrelevant for the equality of the fits, e.g., the runtime and the call. } \usage{ \method{all.equal}{twinstim}(target, current, ..., ignore = NULL) \method{all.equal}{hhh4}(target, current, ..., ignore = NULL) } \arguments{ \item{target,current}{the model fits to be compared.} \item{\dots}{further arguments for standard \code{\link{all.equal}}-methods, e.g., the numerical \code{tolerance}.} \item{ignore}{an optional character vector of elements to ignore when comparing the two fitted objects. The following elements are always ignored: \code{"runtime"} and \code{"call"}.} } \value{ Either \code{TRUE} or a character vector describing differences between the \code{target} and the \code{current} model fit. } \author{ Sebastian Meyer } \keyword{utilities} surveillance/man/testSim.Rd0000644000175100001440000000347613122471774015500 0ustar hornikusers\name{testSim} \alias{testSim} \encoding{latin1} \title{Print xtable for a Simulated Disease and the Summary} \description{Just a test method.} \usage{ testSim(p = 0.99, r = 0.01, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K, range = 200:400) } \arguments{ \item{p}{probability to get a new epidemic at time i if there was one at time i-1, default 0.99} \item{r}{probability to get no new epidemic at time i if there was none at time i-1, default 0.01} \item{length}{number of weeks to model, default 400} \item{A}{amplitude (range of sinus), default = 1} \item{alpha}{parameter to move along the y-axis (negative values not allowed) with alpha > = A, default = 1} \item{beta}{regression coefficient, default = 0} \item{phi}{factor to create seasonal moves (moves the curve along the x-axis), default = 0} \item{frequency}{factor to determine the oscillation-frequency, default = 1} \item{state}{use a state chain to define the status at this timepoint (outbreak or not). If not given a Markov chain is generated by the programme, default NULL} \item{K}{additional weigth for an outbreak which influences the distribution parameter mu, default = 0} \item{range}{range of timepoints to be evaluated by the RKI 1 system, default 200:400.} } \value{ one printed LaTeX xtable and a result plot } \details{ A point-source epidemic is generated and sent to the RKI 1 system, the quality values for the result are computed and shown as a latex table. Additionally a plot of the result is generated. } \seealso{ \code{\link{sim.pointSource}}, \code{\link{algo.call}}, \code{\link{algo.compare}}, \code{\link{plot.survRes}}, \code{\link{compMatrix.writeTable}} } \author{M. \enc{Höhle}{Hoehle}, A. Riebler, C. Lang} \examples{ testSim(K = 2) testSim(r = 0.5, K = 5) } \keyword{misc} surveillance/man/readData.Rd0000644000175100001440000000333013165505075015541 0ustar hornikusers\name{readData} \alias{readData} \title{Reading of Disease Data} \description{ Reading of disease data. In the package disease data are saved in a file \code{.txt} containing three columns -- the weeknumber (week), the observed number of counts (observed) and a state (state). The data are read using \code{read.table(...,header=T)}, hence the file has to contain a header. } \usage{ readData(abb,week53to52=TRUE,sysPath=TRUE) } \arguments{ \item{abb}{abbreviation of the diseasename.} \item{week53to52}{Boolean indicating whether to convert RKI 53 Weeks System to 52 weeks a year} \item{sysPath}{Boolean, if \code{TRUE} then R automatically looks in the data directory of the \pkg{surveillance} package.} } \value{ a \code{disProg} (disease progress) object including a list of the observed and the state chain. } \details{ This function is only kept for backwards compatibility. As of 0.9-2 all data should be read with \code{data}. } \seealso{ \code{\link{m1}}, \code{\link{m2}}, \code{\link{m3}}, \code{\link{m4}}, \code{\link{m5}}, \code{\link{q1_nrwh}}, \code{\link{q2}}, \code{\link{s1}}, \code{\link{s2}}, \code{\link{s3}}, \code{\link{k1}}, \code{\link{n1}}, \code{\link{n2}}, \code{\link{h1_nrwrp}} } \examples{ readData("m5") #To bring a single vector of counts into a format, which can be #handled by readData. Assume ``counts'' is a vector of counts. counts <- rpois(100,20) counts <- data.frame("week"=1:length(counts),"observed"=counts, "state"=rep(0,length(counts))) write(c("week","observed","state"),file="disease.txt",ncol=3) write(t(as.matrix(counts)),file="disease.txt",ncol=3,append=TRUE) disease <- readData("disease",week53to52=FALSE,sysPath=FALSE) } \keyword{misc} surveillance/man/makePlot.Rd0000644000175100001440000000201713122471774015612 0ustar hornikusers\name{makePlot} \alias{makePlot} \encoding{latin1} \title{Plot Generation} \description{Just a test method.} \usage{ makePlot(outputpath, data = "k1", method = "rki1", name, disease, range = 157:339) } \arguments{ \item{outputpath}{path for the storage} \item{data}{abbreviation of the disease-file} \item{method}{method to be called} \item{name}{name of the method} \item{disease}{disease name} \item{range}{range to plot} } \details{ \code{makePlot} reads the data given in \code{data} using the function \code{readData}, and the data are corrected to 52 weeks, enlarged using \code{enlargeData} and sendt to the surveillance system given in \code{method}. The system result is plotted and stored in \code{outputpath}. } \seealso{ \code{\link{readData}}, \code{\link{correct53to52}}, \code{\link{enlargeData}}, \code{\link{algo.call}}, \code{\link{plot.survRes}} } \author{M. \enc{Höhle}{Hoehle}, A. Riebler, C. Lang} \examples{ makePlot("./", "k1", "rki2", "RKI 2", "Kryptosporidiose") } \keyword{misc} surveillance/man/permutationTest.Rd0000644000175100001440000000477012532031571017244 0ustar hornikusers\name{permutationTest} \alias{permutationTest} \title{Monte Carlo Permutation Test for Paired Individual Scores} \description{ As test statistic the difference between mean \code{\link{scores}} from model A and mean \code{\link{scores}} from model B is used. Under the null hypothesis of no difference, the actually observed difference between mean scores should not be notably different from the distribution of the test statistic under permutation. As the computation of all possible permutations is only feasible for small datasets, a random sample of permutations is used to obtain the null distribution. The resulting p-value thus depends on the \code{\link{.Random.seed}}. } \usage{ permutationTest(score1, score2, nPermutation = 9999, plot = FALSE, verbose = FALSE) } \arguments{ \item{score1, score2}{ numeric vectors of scores to compare } \item{nPermutation}{ number of random permutations to conduct } \item{plot}{ logical indicating if a \code{\link{truehist}} of the \code{nPermutation} permutation test statistics should be plotted with a vertical line marking the observed difference of the means. To customize the histogram, \code{plot} can also be a list of arguments for \code{truehist} replacing internal defaults. } \item{verbose}{ logical indicating if the results should be printed in one line. } } \details{ For each permutation, we first randomly assign the membership of the n individual scores to either model A or B with probability 0.5. We then compute the respective difference in mean for model A and B in this permuted set of scores. The Monte Carlo p-value is then given by (1 + #{permuted differences larger than observed difference (in absolute value)}) / (1 + \code{nPermutation}). } \value{ a list of the following elements: \item{diffObs}{observed difference in mean scores, i.e., \code{mean(score1) - mean(score2)}} \item{pVal.permut}{p-value of the permutation test} \item{pVal.t}{p-value of the corresponding \code{t.test(score1, score2, paired=TRUE)}} } \author{ Michaela Paul with contributions by Sebastian Meyer } \seealso{ \code{\link{scores}} to obtain individual scores for \code{\link{oneStepAhead}} predictions from a model. Package \pkg{coin} for a comprehensive permutation test framework, specifically its function \code{\link[coin]{symmetry_test}} to compare paired samples. } \examples{ permutationTest(rnorm(50, 1.5), rnorm(50, 1), plot = TRUE) } \keyword{htest} surveillance/man/calibration.Rd0000644000175100001440000000616113062247044016323 0ustar hornikusers\name{calibrationTest} \alias{calibrationTest} \alias{calibrationTest.default} \title{ Calibration Tests for Poisson or Negative Binomial Predictions } \description{ The implemented calibration tests for Poisson or negative binomial predictions of count data are based on proper scoring rules and described in detail in Wei and Held (2014). The following proper scoring rules are available: Dawid-Sebastiani score (\code{"dss"}), logarithmic score (\code{"logs"}), ranked probability score (\code{"rps"}). } \usage{ calibrationTest(x, ...) \method{calibrationTest}{default}(x, mu, size = NULL, which = c("dss", "logs", "rps"), tolerance = 1e-4, method = 2, ...) } \arguments{ \item{x}{ the observed counts. All involved functions are vectorized and also accept matrices or arrays. } \item{mu}{ the means of the predictive distributions for the observations \code{x}. } \item{size}{ either \code{NULL} (default), indicating Poisson predictions with mean \code{mu}, or dispersion parameters of negative binomial forecasts for the observations \code{x}, parametrized as in \code{\link{dnbinom}} with variance \code{mu*(1+mu/size)}. } \item{which}{ a character string indicating which proper scoring rule to apply. } \item{tolerance}{ absolute tolerance for the null expectation and variance of \code{"logs"} and \code{"rps"}. For the latter, see the note below. Unused for \code{which = "dss"} (closed form). } \item{method}{ selection of the \eqn{z}-statistic: \code{method = 2} refers to the alternative test statistic \eqn{Z_s^*} of Wei and Held (2014, Discussion), which has been recommended for low counts. \code{method = 1} corresponds to Equation 5 in Wei and Held (2014). } \item{\dots}{ unused (argument of the generic). } } \value{ an object of class \code{"htest"}, which is a list with the following components: \item{method}{a character string indicating the type of test performed (including \code{which} scoring rule).} \item{data.name}{a character string naming the supplied \code{x} argument.} \item{statistic}{the \eqn{z}-statistic of the test.} \item{parameter}{the number of predictions underlying the test, i.e., \code{length(x)}.} \item{p.value}{the p-value for the test.} } \note{ If the \CRANpkg{gsl} package is installed, its implementations of the Bessel and hypergeometric functions are used when calculating the null expectation and variance of the \code{rps}. These functions are faster and yield more accurate results (especially for larger \code{mu}). } \references{ Wei, W. and Held, L. (2014): Calibration tests for count data. \emph{Test}, \bold{23}, 787-805. } \author{ Sebastian Meyer and Wei Wei } \examples{ mu <- c(0.1, 1, 3, 6, pi, 100) size <- 0.1 set.seed(1) y <- rnbinom(length(mu), mu = mu, size = size) calibrationTest(y, mu = mu, size = size) # p = 0.99 calibrationTest(y, mu = mu, size = 1) # p = 4.3e-05 calibrationTest(y, mu = 1, size = size) # p = 0.6959 calibrationTest(y, mu = 1, size = size, which = "rps") # p = 0.1286 } \keyword{htest} surveillance/man/ks.plot.unif.Rd0000644000175100001440000000444112013463671016366 0ustar hornikusers\encoding{latin1} \name{ks.plot.unif} \alias{ks.plot.unif} \title{ Plot the ECDF of a uniform sample with Kolmogorov-Smirnov bounds } \description{ This plot function takes a univariate sample that should be tested for a U(0,1) distribution, plots its empirical cumulative distribution function (\code{\link{ecdf}}), and adds a confidence band by inverting the corresponding Kolmogorov-Smirnov test (\code{\link{ks.test}}). The uniform distribution is rejected if the ECDF is not completely inside the confidence band. } \usage{ ks.plot.unif(U, conf.level = 0.95, exact = NULL, col.conf = "gray", col.ref = "gray", xlab = expression(u[(i)]), ylab = "Cumulative distribution") } \arguments{ \item{U}{ numeric vector containing the sample. Missing values are (silently) ignored. } \item{conf.level}{ confidence level for the K-S-test (defaults to 0.95), can also be a vector of multiple levels. } \item{exact}{see \code{\link{ks.test}}.} \item{col.conf}{ colour of the confidence lines. } \item{col.ref}{ colour of the diagonal reference line. } \item{xlab, ylab}{ axis labels. } } \value{ \code{NULL} (invisibly). } \author{ Michael H\enc{ö}{oe}hle and Sebastian Meyer. The code contains segments originating from the source of the \link{ks.test} function \url{http://svn.r-project.org/R/trunk/src/library/stats/R/ks.test.R}, which is Copyright (C) 1995-2012 The R Core Team available under GPL-2 (or later) and C functionality from \url{http://svn.r-project.org/R/trunk/src/library/stats/src/ks.c}, which is copyright (C) 1999-2009 the R Core Team and available under GPL-2 (or later). Somewhat hidden in their \file{ks.c} file is a statement that part of their code is based on code published in George Marsaglia and Wai Wan Tsang and Jingbo Wang (2003), "Evaluating Kolmogorov's distribution". Journal of Statistical Software, Volume 8, 2003, Issue 18. URL: \url{http://www.jstatsoft.org/v08/i18/}. } \seealso{ \code{\link{ks.test}} for the Kolmogorov-Smirnov test, as well as \code{\link{checkResidualProcess}}, which makes use of this plot function. } \examples{ samp <- runif(99) ks.plot.unif(samp, conf.level=c(0.95, 0.99), exact=TRUE) ks.plot.unif(samp, conf.level=c(0.95, 0.99), exact=FALSE) } \keyword{hplot} \keyword{htest} surveillance/man/hhh4_internals.Rd0000644000175100001440000000336713117734037016757 0ustar hornikusers\name{hhh4_internals} \alias{meanHHH} \alias{sizeHHH} \alias{decompose.hhh4} \title{ Internal Functions Dealing with \code{hhh4} Models } \description{ The functions documented here are considered \emph{internal}, i.e., not intended to be called by the user. They are used by add-on packages dealing with \code{\link{hhh4}} models. } \usage{ meanHHH(theta, model, subset = model$subset, total.only = FALSE) sizeHHH(theta, model, subset = model$subset) decompose.hhh4(x, coefs = x$coefficients, ...) } \arguments{ \item{theta,coefs}{numeric vector of model parameters.} \item{model}{the model terms as returned by the \code{\link{terms}}-method for \code{"hhh4"} objects.} \item{subset}{vector of time points for which to compute the component means. Defaults to the fitted time range. For \code{sizeHHH}, \code{subset=NULL} means to return the vector of dispersion parameters.} \item{total.only}{logical. Should only the total mean (epidemic + endemic) be returned in a \code{length(subset)} x nUnit matrix? Otherwise, a list of such matrices is returned, giving the values of the various model components separately (as well as the total).} \item{x}{a fitted \code{hhh4} model.} \item{\dots}{unused.} } \details{ \code{meanHHH} computes the components of the mean returned in \code{length(subset)} x nUnit matrices. \code{sizeHHH} computes the model dispersion in \code{\link{dnbinom}} (\code{mu}, \code{size}) parametrization (it returns \code{NULL} in the Poisson case). \code{decompose.hhh4} decomposes the fitted mean (extracted via \code{meanHHH}) in an array with dimensions \eqn{(t, i, j)}, where the first \eqn{j} index is \code{"endemic"}. } \author{ Michaela Paul and Sebastian Meyer } \keyword{internal} surveillance/man/algo.call.Rd0000644000175100001440000000476313122471774015704 0ustar hornikusers\name{algo.call} \alias{algo.call} \title{Query Transmission to Specified Surveillance Algorithm} \description{ Transmission of a object of class disProg to the specified surveillance algorithm. } \usage{ algo.call(disProgObj, control = list( list(funcName = "rki1", range = range), list(funcName = "rki", range = range, b = 2, w = 4, actY = TRUE), list(funcName = "rki", range = range, b = 2, w = 5, actY = TRUE))) } \arguments{ \item{disProgObj}{object of class disProg, which includes the state chain and the observed} \item{control}{specifies which surveillance algorithm should be used with their parameters. The parameter \code{funcName} and \code{range} must be specified. Here, \code{funcName} is the appropriate method function (without '\code{algo.}') and \code{range} defines the timepoints to be evaluated by the actual system. If \code{control} includes \code{name} this name is used in the survRes Object as name.} } \value{ a list of survRes objects generated by the specified surveillance algorithm } \seealso{\code{\link{algo.rki}}, \code{\link{algo.bayes}}, \code{\link{algo.farrington}}} \examples{ # Create a test object disProg <- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) # Let this object be tested from any methods in range = 200:400 range <- 200:400 survRes <- algo.call(disProg, control = list( list(funcName = "rki1", range = range), list(funcName = "rki2", range = range), list(funcName = "rki3", range = range), list(funcName = "rki", range = range, b = 3, w = 2, actY = FALSE), list(funcName = "rki", range = range, b = 2, w = 9, actY = TRUE), list(funcName = "bayes1", range = range), list(funcName = "bayes2", range = range), list(funcName = "bayes3", range = range), list(funcName = "bayes", name = "myBayes", range = range, b = 1, w = 5, actY = TRUE,alpha=0.05) )) # this are some survResObjects plot(survRes[["rki(6,6,0)"]]) survRes[["bayes(5,5,1)"]] } \keyword{classif} surveillance/man/shadar.Rd0000644000175100001440000000114013174706302015267 0ustar hornikusers\name{shadar} \alias{shadar} \docType{data} \title{Salmonella Hadar cases in Germany 2001-2006} \description{ Number of salmonella hadar cases in Germany 2001-2006. An increase is seen during 2006. } \usage{data(shadar)} \format{ A \code{disProg} object containing \eqn{295\times 1}{295 x 1} observations starting from week 1 in 2001 to week 35 in 2006. } \source{ Robert Koch-Institut: SurvStat: \url{https://survstat.rki.de/}; Queried on September 2006. Robert Koch Institut, Epidemiologisches Bulletin 31/2006. } \examples{ data(shadar) plot(shadar) } \keyword{datasets} surveillance/man/hhh4_simulate.Rd0000644000175100001440000001213212575642536016602 0ustar hornikusers\name{hhh4_simulate} \alias{simulate.hhh4} \title{Simulate \code{"hhh4"} Count Time Series} \description{ Simulates a multivariate time series of counts based on the Poisson/Negative Binomial model as described in Paul and Held (2011). } \usage{ \method{simulate}{hhh4}(object, nsim = 1, seed = NULL, y.start = NULL, subset = 1:nrow(object$stsObj), coefs = coef(object), components = c("ar","ne","end"), simplify = nsim>1, ...) } \arguments{ \item{object}{ an object of class \code{"\link{hhh4}"}. } \item{nsim}{ number of time series to simulate. Defaults to \code{1}. } \item{seed}{ an object specifying how the random number generator should be initialized for simulation (via \code{\link{set.seed}}). The initial state will also be stored as an attribute \code{"seed"} of the result. The original state of the \code{\link{.Random.seed}} will be restored at the end of the simulation. By default (\code{NULL}), neither initialization nor recovery will be done. This behaviour is copied from the \code{\link{simulate}.lm} method. } \item{y.start}{ vector or matrix (with \code{ncol(object$stsObj)} columns) with starting counts for the epidemic components. If \code{NULL}, the observed means in the respective units of the data in \code{object} during \code{subset} are used. } \item{subset}{ time period in which to simulate data. Defaults to the whole period. } \item{coefs}{ coefficients used for simulation from the model in \code{object}. Default is to use the fitted parameters. Note that the \code{coefs}-vector must be in the same order and scaling as \code{coef(object)}, which especially means \code{reparamPsi = TRUE} (as per default when using the \code{coef}-method to extract the parameters). The overdispersion parameter in \code{coefs} is the inverse of the dispersion parameter \code{size} in \code{\link{rnbinom}}. } \item{components}{ character vector indicating which components of the fitted model \code{object} should be active during simulation. For instance, a simulation with \code{components="end"} is solely based on the fitted endemic mean. } \item{simplify}{ logical indicating if only the simulated counts (\code{TRUE}) or the full \code{"\linkS4class{sts}"} object (\code{FALSE}) should be returned for every replicate. By default a full \code{"sts"} object is returned iff \code{nsim=1}. } \item{\dots}{unused (argument of the generic).} } \details{ Simulates data from a Poisson or a Negative Binomial model with mean \deqn{\mu_{it} = \lambda_{it} y_{i,t-1} + \phi_{it} \sum_{j \neq i} w_{ji} y_{j,t-1} + \nu_{it}}{% \mu_it = \lambda_it y_i,t-1 + \phi_it \sum_j w_ji y_j,t-1 + \nu_it} where \eqn{\lambda_{it}>0}, \eqn{\phi_{it}>0}, and \eqn{\nu_{it}>0} are parameters which are modelled parametrically. The function uses the model and parameter estimates of the fitted \code{object} to simulate the time series. With the argument \code{coefs} it is possible to simulate from the model as specified in \code{object}, but with different parameter values. } \value{ If \code{simplify=FALSE}: an object of class \code{"\linkS4class{sts}"} (\code{nsim = 1}) or a list of those (\code{nsim > 1}). If \code{simplify=TRUE}: an object of class \code{"hhh4sims"}, which is an array of dimension \code{c(length(subset), ncol(object$stsObj), nsim)}, where the third dimension is dropped if \code{nsim=1} (yielding a matrix). The originally observed counts during the simulation period, \code{object$stsObj[subset,]}, are attached for reference (used by the \code{plot}-methods) as an attribute \code{"stsObserved"}, and the initial condition \code{y.start} as attribute \code{"initial"}. } \references{ Paul, M. and Held, L. (2011) Predictive assessment of a non-linear random effects model for multivariate time series of infectious disease counts. Statistics in Medicine, \bold{30}, 1118--1136 } \author{ Michaela Paul and Sebastian Meyer } \seealso{ \code{\link{plot.hhh4sims}} and \code{\link{scores.hhh4sims}} } \examples{ data(influMen) # convert to sts class and extract meningococcal disease time series meningo <- disProg2sts(influMen)[,2] # fit model fit <- hhh4(meningo, control = list(ar = list(f = ~ 1), end = list(f = addSeason2formula(S = 1, period = 52)), family = "NegBin1")) plot(fit) # simulate from model simData <- simulate(fit, seed=1234) # plot simulated data plot(simData, main = "simulated data", xaxis.labelFormat=NULL) # consider a Poisson instead of a NegBin model coefs <- coef(fit) coefs["overdisp"] <- 0 simData2 <- simulate(fit, seed=123, coefs = coefs) plot(simData2, main = "simulated data: Poisson model", xaxis.labelFormat = NULL) # consider a model with higher autoregressive parameter coefs <- coef(fit) coefs[1] <- log(0.5) simData3 <- simulate(fit, seed=321, coefs = coefs) plot(simData3, main = "simulated data: lambda = 0.5", xaxis.labelFormat = NULL) } \keyword{datagen} surveillance/man/residuals.ah.Rd0000644000175100001440000000113513122471774016420 0ustar hornikusers\name{residuals.ah} \alias{residuals.ah} \alias{residuals.ahg} \title{Residuals from a HHH model} \description{ Extracts model residuals from a \code{ah} or \code{ahg} object. } \usage{ \method{residuals}{ah}(object, type=c("deviance","pearson"), \dots) } \arguments{ \item{object}{object of class \code{ah} or \code{ahg} } \item{type}{the type of residuals which should be returned. The alternatives are "deviance" (default) and "pearson"} \item{\dots}{not really used} } \value{ matrix with residuals for each region and time point. } \note{This function is experimental!} \keyword{models} surveillance/man/sts_observation.Rd0000644000175100001440000000157613122431244017257 0ustar hornikusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/sts_observation.R \name{sts_observation} \alias{sts_observation} \title{Function for creating a sts-object with a given observation date} \usage{ sts_observation(sts, dateObservation, cut = TRUE) } \arguments{ \item{sts}{sts-object we want to set at a previous state. Needs to include a reporting triangle.} \item{dateObservation}{Date for which we want the state. Needs to be in the reporting triangle dates.} \item{cut}{Boolean indicating wether to have 0 counts after the observation date or to simply cut the sts-object} } \description{ Function for creating a sts-object with a given observation date } \examples{ data("salmAllOnset") salmAllOnsety2013m01d20 <- sts_observation(salmAllOnset, dateObservation="2014-01-20",cut=FALSE) plot(salmAllOnset) lines(salmAllOnsety2013m01d20@observed,t="h",col="red") } surveillance/man/hagelloch.Rd0000644000175100001440000001547712665561746016014 0ustar hornikusers\encoding{latin1} \name{hagelloch} \alias{hagelloch} \alias{hagelloch.df} \docType{data} \keyword{datasets} \title{1861 Measles Epidemic in the City of Hagelloch, Germany} \description{ Data on the 188 cases in the measles outbreak among children in the German city of Hagelloch (near T\enc{ü}{ue}bingen) 1861. The data were originally collected by Dr. Albert Pfeilsticker (1863) and augmented and re-analysed by Dr. Heike Oesterle (1992). } \usage{ data("hagelloch") } \format{ Loading \code{data("hagelloch")} gives two objects: \code{hagelloch} and \code{hagelloch.df}. The former is an \code{"\link{epidata}"} object for use with \code{\link{twinSIR}} containing the entire SIR event history of the outbreak in the population of 188 children. The latter is the original \code{data.frame} of 188 rows with individual information for each infected child. The covariate information in \code{hagelloch.df} is as follows: \describe{ \item{PN:}{patient number} \item{NAME:}{patient name (as a factor)} \item{FN:}{family index} \item{HN:}{house number} \item{AGE:}{age in years} \item{SEX:}{gender of the individual (factor: male, female)} \item{PRO:}{\code{Date} of prodromes} \item{ERU:}{\code{Date} of rash} \item{CL:}{class (factor: preschool, 1st class, 2nd class)} \item{DEAD:}{\code{Date} of death (with missings)} \item{IFTO:}{number of patient who is the putative source of infection (0 = unknown)} \item{SI:}{serial interval = number of days between dates of prodromes of infection source and infected person} \item{C:}{complications (factor: no complications, bronchopneumonia, severe bronchitis, lobar pneumonia, pseudocroup, cerebral edema)} \item{PR:}{duration of prodromes in days} \item{CA:}{number of cases in family} \item{NI:}{number of initial cases} \item{GE:}{generation number of the case} \item{TD:}{day of max. fever (days after rush)} \item{TM:}{max. fever (degree Celsius)} \item{x.loc:}{x coordinate of house (in meters). Scaling in metres is obtained by multiplying the original coordinates by 2.5 (see details in Neal and Roberts (2004))} \item{y.loc:}{y coordinate of house (in meters). See also the above description of \code{x.loc}.} \item{tPRO:}{Time of prodromes (first symptoms) in days after the start of the epidemic (30 Oct 1861).} \item{tERU:}{Time upon which the rash first appears.} \item{tDEAD:}{Time of death, if available.} \item{tR:}{Time at which the infectious period of the individual is assumed to end. This unknown time is calculated as \deqn{tR_i = \min{tDEAD_i,tERU_i+d_0},}{tR[i] = min(tDEAD[i],tERU[i]+d0),} where -- as in Section 3.1 of Neal and Roberts (2004) -- we use \eqn{d_0=3}{d0=3}.} \item{tI:}{Time at which the individual is assumed to become infectious. Actually this time is unknown, but we use \deqn{tI_i = tPRO_i - d_1,}{tI[i] = tPRO[i] - d1,} where \eqn{d_1=1}{d1=1} as in Neal and Roberts (2004).} } The time variables describe the transitions of the individual in an Susceptible-Infectious-Recovered (SIR) model. Note that in order to avoid ties in the event times resulting from daily interval censoring, the times have been jittered uniformly within the respective day. The time point 0.5 would correspond to noon of 30 Oct 1861. The \code{hagelloch} \code{"epidata"} object only retains some of the above covariates to save space. Apart from the usual \code{"epidata"} event columns, \code{hagelloch} contains a number of extra variables representing distance- and covariate-based weights for the force of infection. These have been computed by specifying \code{f} and \code{w} arguments in \code{\link{as.epidata}} at conversion (see the Examples below): \describe{ \item{household:}{the number of currently infectious children in the same household (including the child itself if it is currently infectious), corresponding to \code{function(u) u == 0} in \code{f}.} \item{nothousehold:}{the number of currently infectious children outside the household, corresponding to \code{function(u) u > 0} in \code{f}.} \item{c1, c2:}{the number of children infectious during the respective time block and being members of class 1 and 2, respectively; but the value is 0 if the individual of the row is not herself a member of the respective class. See the Examples below for the corresponding function definitions in \code{w}.} } } \source{ Thanks to Peter J. Neal, University of Manchester, for providing us with these data, which he again became from Niels Becker, Australian National University. To cite the data, the main references are Pfeilsticker (1863) and Oesterle (1992). } \examples{ data("hagelloch") head(hagelloch.df) # original data documented in Oesterle (1992) head(as.data.frame(hagelloch)) # derived "epidata" object ### How the "epidata" 'hagelloch' was created from 'hagelloch.df' stopifnot(all.equal(hagelloch, as.epidata( hagelloch.df, t0 = 0, tI.col = "tI", tR.col = "tR", id.col = "PN", coords.cols = c("x.loc", "y.loc"), f = list( household = function(u) u == 0, nothousehold = function(u) u > 0 ), w = list( c1 = function (CL.i, CL.j) CL.i == "1st class" & CL.j == CL.i, c2 = function (CL.i, CL.j) CL.i == "2nd class" & CL.j == CL.i ), keep.cols = c("SEX", "AGE", "CL")) )) ### Basic plots produced from hagelloch.df # Show case locations as in Neal & Roberts (different scaling) using # the data.frame (promoted to a SpatialPointsDataFrame) coordinates(hagelloch.df) <- c("x.loc","y.loc") plot(hagelloch.df, xlab="x [m]", ylab="x [m]", pch=15, axes=TRUE, cex=sqrt(multiplicity(hagelloch.df))) # Epicurve hist(as.numeric(hagelloch.df$tI), xlab="Time (days)", ylab="Cases", main="") ### SIR model information for population & individuals (s <- summary(hagelloch)) plot(s, col=c("green","red","darkgray")) stateplot(s, id=c("187")) \dontrun{ # Show a dynamic illustration of the spread of the infection animate(hagelloch,time.spacing=0.1,legend.opts=list(x="topleft"),sleep=1/100) } } \references{ Pfeilsticker, A. (1863). Beitr\enc{ä}{ae}ge zur Pathologie der Masern mit besonderer Ber\enc{ü}{ue}cksichtigung der statistischen Verh\enc{ä}{ae}ltnisse, M.D. Thesis, Eberhard-Karls-Universit\enc{ä}{ae}t T\enc{ü}{ue}bingen. Available as \url{http://www.archive.org/details/beitrgezurpatho00pfeigoog}. Oesterle, H. (1992). Statistische Reanalyse einer Masernepidemie 1861 in Hagelloch, M.D. Thesis, Eberhard-Karls-Universit\enc{ä}{ae}at T\enc{ü}{ue}bingen. Neal, P. J. and Roberts, G. O (2004). Statistical inference and model selection for the 1861 Hagelloch measles epidemic, Biostatistics 5(2):249-261 } \seealso{\code{\link{twinSIR}}, \code{\link{epidata}}} surveillance/man/hhh4_validation.Rd0000644000175100001440000003532613231640220017075 0ustar hornikusers\name{hhh4_validation} \alias{oneStepAhead} \alias{quantile.oneStepAhead} \alias{confint.oneStepAhead} \alias{plot.oneStepAhead} \alias{scores.oneStepAhead} \alias{scores.hhh4} \alias{calibrationTest.oneStepAhead} \alias{calibrationTest.hhh4} \alias{pit.oneStepAhead} \alias{pit.hhh4} \title{Predictive Model Assessment for \code{hhh4} Models} \description{ The function \code{oneStepAhead} computes successive one-step-ahead predictions for a (random effects) HHH model fitted by \code{\link{hhh4}}. These can be inspected using the \code{quantile}, \code{confint} or \code{plot} methods. The associated \code{\link{scores}}-method computes a number of (strictly) proper scoring rules based on such one-step-ahead predictions; see Paul and Held (2011) for details. There are also \code{\link{calibrationTest}} and \code{\link{pit}} methods for \code{oneStepAhead} predictions. Scores, calibration tests and PIT histograms can also be computed for the fitted values of an \code{hhh4} model (i.e., in-sample/training data evaluation). } \usage{ oneStepAhead(result, tp, type = c("rolling", "first", "final"), which.start = c("current", "final"), keep.estimates = FALSE, verbose = TRUE, cores = 1) \method{quantile}{oneStepAhead}(x, probs = c(2.5, 10, 50, 90, 97.5)/100, ...) \method{confint}{oneStepAhead}(object, parm, level = 0.95, ...) \method{plot}{oneStepAhead}(x, unit = 1, probs = 1:99/100, start = NULL, means.args = NULL, ...) ## assessment of "oneStepAhead" predictions \method{scores}{oneStepAhead}(x, which = c("logs", "rps", "dss", "ses"), units = NULL, sign = FALSE, individual = FALSE, reverse = FALSE, ...) \method{calibrationTest}{oneStepAhead}(x, units = NULL, ...) \method{pit}{oneStepAhead}(x, units = NULL, ...) ## assessment of the "hhh4" model fit (in-sample predictions) \method{scores}{hhh4}(x, which = c("logs", "rps", "dss", "ses"), subset = x$control$subset, units = seq_len(x$nUnit), sign = FALSE, ...) \method{calibrationTest}{hhh4}(x, subset = x$control$subset, units = seq_len(x$nUnit), ...) \method{pit}{hhh4}(x, subset = x$control$subset, units = seq_len(x$nUnit), ...) } \arguments{ \item{result}{fitted \code{\link{hhh4}} model (class \code{"hhh4"}).} \item{tp}{ numeric vector of length 2 specifying the time range in which to compute one-step-ahead predictions (for the time points \code{tp[1]+1}, \ldots, \code{tp[2]+1}). If a single time index is specified, it is interpreted as \code{tp[1]}, and \code{tp[2]} is set to the penultimate time point of \code{result$control$subset}. } \item{type}{ The default \code{"rolling"} procedure sequentially refits the model up to each time point in \code{tp} and computes the one-step-ahead predictions for the respective next time point. The alternative \code{type}s are no true one-step-ahead predictions but much faster: \code{"first"} will refit the model for the first time point \code{tp[1]} only and use this specific fit to calculate all subsequent predictions, whereas \code{"final"} will just use \code{result} to calculate these. The latter case thus gives nothing else than a subset of \code{result$fitted.values} if the \code{tp}'s are part of the fitted subset \code{result$control$subset}. } \item{which.start}{ Which initial parameter values should be used when successively refitting the model to subsets of the data (up to time point \code{tp[1]}, up to \code{tp[1]+1}, ...) if \code{type="rolling"}? Default (\code{"current"}) is to use the parameter estimates from the previous time point, and \code{"final"} means to always use the estimates from \code{result} as initial values. Alternatively, \code{which.start} can be a list of \code{start} values as expected by \code{\link{hhh4}}, which then replace the corresponding estimates from \code{result} as initial values. This argument is ignored for \dQuote{non-rolling} \code{type}s. } \item{keep.estimates}{ logical indicating if parameter estimates and log-likelihoods from the successive fits should be returned. } \item{verbose}{ non-negative integer (usually in the range \code{0:3}) specifying the amount of tracing information to output. During \code{hhh4} model updates, the following verbosity is used: \code{0} if \code{cores > 1}, otherwise \code{verbose-1} if there is more than one time point to predict, otherwise \code{verbose}. } \item{cores}{the number of cores to use when computing the predictions for the set of time points \code{tp} in parallel (with \code{\link[parallel]{mclapply}}). Note that parallelization is not possible in the default setting \code{type="rolling"} and \code{which.start="current"} (use \code{which.start="final"} for this to work).} \item{object}{an object of class \code{"oneStepAhead"}.} \item{parm}{unused (argument of the generic).} \item{level}{required confidence level of the prediction interval.} \item{probs}{numeric vector of probabilities with values in [0,1].} \item{unit}{single integer or character selecting a unit for which to produce the plot.} \item{start}{ x-coordinate of the first prediction. If \code{start=NULL} (default), this is derived from \code{x}. } \item{means.args}{ if a list (of graphical parameters for \code{\link{lines}}), the point predictions (from \code{x$pred}) are added to the plot. } \item{x}{an object of class \code{"oneStepAhead"} or \code{"hhh4"}.} \item{which}{character vector determining which scores to compute. The package \pkg{surveillance} implements the following proper scoring rules: logarithmic score (\code{"logs"}), ranked probability score (\code{"rps"}), Dawid-Sebastiani score (\code{"dss"}), and squared error score (\code{"ses"}). The normalized SES (\code{"nses"}) is also available but it is improper and hence not computed by default.\cr It is possible to name own scoring rules in \code{which}. These must be functions of \code{(x, mu, size)}, vectorized in all arguments (time x unit matrices) except that \code{size} is \code{NULL} in case of a Poisson model. See the available scoring rules for guidance, e.g., \code{\link{dss}}. } \item{subset}{ subset of time points for which to calculate the scores (or test calibration, or produce the PIT histogram, respectively). Defaults to the subset used for fitting the model.} \item{units}{integer or character vector indexing the units for which to compute the scores (or the calibration test or the PIT histogram, respectively). By default, all units are considered.} \item{sign}{logical indicating if the function should also return \code{sign(x-mu)}, i.e., the sign of the difference between the observed counts and corresponding predictions. This does not really make sense when averaging over multiple \code{units} with \code{individual=FALSE}.} \item{individual}{logical indicating if the individual scores of the \code{units} should be returned. By default (\code{FALSE}), the individual scores are averaged over all \code{units}.} \item{reverse}{logical indicating if the rows (time points) should be reversed in the result. The long-standing but awkward default was to do so for the \code{oneStepAhead}-method. This has changed in version 1.16.0, so time points are no longer reversed by default.} \item{\dots}{Unused by the \code{quantile}, \code{confint} and \code{scores} methods.\cr The \code{plot}-method passes further arguments to the \code{\link{fanplot}} function, e.g., \code{fan.args}, \code{observed.args}, and \code{key.args} can be used to modify the plotting style.\cr For the \code{calibrationTest}-method, further arguments are passed to \code{\link{calibrationTest.default}}, e.g., \code{which} to select a scoring rule.\cr For the \code{pit}-methods, further arguments are passed to \code{\link{pit.default}}.} } \value{ \code{oneStepAhead} returns a list (of class \code{"oneStepAhead"}) with the following components: \item{pred}{one-step-ahead predictions in a matrix, where each row corresponds to one of the time points requested via the argument \code{tp}, and which has \code{ncol(result$stsObj)} unit-specific columns. The rownames indicate the predicted time points and the column names are identical to \code{colnames(result$stsObj)}.} \item{observed}{matrix with observed counts at the predicted time points. It has the same dimensions and names as \code{pred}.} \item{psi}{in case of a negative-binomial model, a matrix of the estimated overdispersion parameter(s) at each time point on the internal -log-scale (1 column if \code{"NegBin1"}, \code{ncol(observed)} columns if \code{"NegBinM"} or shared overdispersion). For a \code{"Poisson"} model, this component is \code{NULL}.} \item{allConverged}{logical indicating if all successive fits converged.} If \code{keep.estimates=TRUE}, there are the following additional elements: \item{coefficients}{matrix of estimated regression parameters from the successive fits.} \item{Sigma.orig}{matrix of estimated variance parameters from the successive fits.} \item{logliks}{matrix with columns \code{"loglikelihood"} and \code{"margll"} with their obvious meanings.} The \code{quantile}-method computes quantiles of the one-step-ahead forecasts. If there is only one unit, it returns a tp x prob matrix, otherwise a tp x unit x prob array. The \code{confint}-method is a convenient wrapper with \code{probs} set according to the required confidence level. The function \code{scores} computes the scoring rules specified in the argument \code{which}. If multiple \code{units} are selected and \code{individual=TRUE}, the result is an array of dimensions \code{c(nrow(pred),length(units),5+sign)} (up to \pkg{surveillance} 1.8-0, the first two dimensions were collapsed to give a matrix). Otherwise, the result is a matrix with \code{nrow(pred)} rows and \code{5+sign} columns. If there is only one predicted time point, the first dimension is dropped in both cases. The \code{\link{calibrationTest}}- and \code{\link{pit}}-methods are just convenient wrappers around the respective default methods. } \references{ Czado, C., Gneiting, T. and Held, L. (2009): Predictive model assessment for count data. \emph{Biometrics}, \bold{65} (4), 1254-1261. \doi{10.1111/j.1541-0420.2009.01191.x} Paul, M. and Held, L. (2011): Predictive assessment of a non-linear random effects model for multivariate time series of infectious disease counts. \emph{Statistics in Medicine}, \bold{30} (10), 1118-1136. \doi{10.1002/sim.4177} } \author{ Sebastian Meyer and Michaela Paul } \seealso{ \code{vignette("hhh4")} and \code{vignette("hhh4_spacetime")} } \examples{ ### univariate salmonella agona count time series data("salmonella.agona") ## convert from old "disProg" to new "sts" class salmonella <- disProg2sts(salmonella.agona) ## generate formula for temporal and seasonal trends f.end <- addSeason2formula(~1 + t, S=1, period=52) model <- list(ar = list(f = ~1), end = list(f = f.end), family = "NegBin1") ## fit the model result <- hhh4(salmonella, model) ## do sequential one-step-ahead predictions for the last 5 weeks pred <- oneStepAhead(result, nrow(salmonella)-5, type="rolling", which.start="final", verbose=FALSE) pred quantile(pred) confint(pred) ## simple plot of the 95% one-week-ahead prediction interval ## and point forecasts plot(pred, probs = c(2.5,97.5)/100, means.args = list()) \dontshow{ ## test equivalence of parallelized version if (.Platform$OS.type == "unix" && isTRUE(parallel::detectCores() > 1)) stopifnot(identical(pred, oneStepAhead(result, nrow(salmonella)-5, type="rolling", which.start="final", verbose=FALSE, cores=2))) } ## note: oneStepAhead(..., type="final") just means fitted values stopifnot(identical( unname(oneStepAhead(result, nrow(salmonella)-5, type="final", verbose=FALSE)$pred), unname(tail(fitted(result), 5)))) ## compute scores of the one-step-ahead predictions (sc <- scores(pred)) ## the above uses the scores-method for "oneStepAhead" predictions, ## which is a simple wrapper around the default method: scores(x = pred$observed, mu = pred$pred, size = exp(pred$psi)) ## scores with respect to the fitted values are similar (scFitted <- scores(result, subset = nrow(salmonella)-(4:0))) \dontshow{ ## test that scFitted is equivalent to scores(oneStepAhead(..., type = "final")) stopifnot(all.equal( scFitted, scores(oneStepAhead(result, nrow(salmonella)-5, type="final", verbose=FALSE)), check.attributes = FALSE)) } ## test if the one-step-ahead predictions are calibrated calibrationTest(pred) # p = 0.8746 ## the above uses the calibrationTest-method for "oneStepAhead" predictions, ## which is a simple wrapper around the default method: calibrationTest(x = pred$observed, mu = pred$pred, size = exp(pred$psi)) ## we can also test calibration of the fitted values ## using the calibrationTest-method for "hhh4" fits calibrationTest(result, subset = nrow(salmonella)-(4:0)) ## plot a (non-randomized) PIT histogram for the predictions pit(pred) ## the above uses the pit-method for "oneStepAhead" predictions, ## which is a simple wrapper around the default method: pit(x = pred$observed, pdistr = "pnbinom", mu = pred$pred, size = exp(pred$psi)) ### multivariate measles count time series ## (omitting oneStepAhead forecasts here to keep runtime low) data("measlesWeserEms") ## fit a hhh4 model with random effects in the endemic component measlesModel <- list( end = list(f = addSeason2formula(~0 + ri(type="iid"))), ar = list(f = ~1), ne = list(f = ~1, weights = W_powerlaw(maxlag = 5)), family = "NegBin1") measlesFit <- hhh4(measlesWeserEms, control = measlesModel) ## plot fitted mean components plot(measlesFit, units = NULL) ## assess overall (in-sample) calibration of the model, i.e., ## if the observed counts are from the fitted NegBin distribution calibrationTest(measlesFit) # default is DSS (not suitable for low counts) calibrationTest(measlesFit, which = "rps") # p = 0.8267 calibrationTest(measlesFit, which = "logs") # p = 0.636 ## to assess calibration in the second year for a specific district calibrationTest(measlesFit, subset = 53:104, units = "03452", which = "rps") pit(measlesFit, subset = 53:104, units = "03452") ### For a more sophisticated multivariate analysis of ### areal time series of influenza counts - data("fluBYBW") - ### see the (computer-intensive) demo("fluBYBW") script: demoscript <- system.file(file.path("demo", "fluBYBW.R"), package = "surveillance") demoscript #file.show(demoscript) } \keyword{univar} \keyword{htest} \keyword{dplot} \keyword{ts} surveillance/man/twinstim_epitest.Rd0000644000175100001440000002050713165702123017445 0ustar hornikusers\name{twinstim_epitest} \alias{epitest} \alias{coef.epitest} \alias{plot.epitest} \title{Permutation Test for Space-Time Interaction in \code{"twinstim"}} \description{ The function \code{epitest} takes an epidemic \code{"twinstim"} model (with homogeneous infectivity of events, i.e., \code{epidemic = ~1}), and tests if the spatio-temporal interaction invoked by the epidemic model component is statistically significant. A permutation test is performed by default, which is only valid if the endemic intensity is space-time separable. The approach is described in detail in Meyer et al. (2016), where it is also compared to alternative global tests for clustering such as the \code{\link{knox}} test. } \usage{ epitest(model, data, tiles, method = "time", B = 199, eps.s = NULL, eps.t = NULL, fixed = NULL, verbose = TRUE, compress = FALSE, ...) \method{coef}{epitest}(object, which = c("m1", "m0"), ...) \method{plot}{epitest}(x, teststat = c("simpleR0", "D"), ...) } \arguments{ \item{model}{ a simple epidemic \code{"\link{twinstim}"} without covariates, i.e., \code{epidemic = ~1}. This is because covariate effects in the epidemic component are not well identified when there is no space-time interaction such as in the permuted data. Estimating a rich epidemic \code{model} under the null hypothesis of no space-time interaction will most likely result in singular convergence. Note that the permutation test is only valid for models with a separable endemic intensity, i.e., independent spatial and temporal background processes. } \item{data}{ an object of class \code{"\link{epidataCS}"}, the \code{data} to which the \code{model} was fitted. } \item{tiles}{ (only used by \code{method = "simulate"}) a \code{"\linkS4class{SpatialPolygons}"} representation of the \code{tile}s in \code{data$stgrid}. } \item{method}{ one of the following character strings specifying the test method: \describe{ \item{\code{"LRT"}:}{ a simple likelihood ratio test of the epidemic \code{model} against the corresponding endemic-only model, } \item{\code{"time"}/\code{"space"}:}{ a Monte Carlo permutation test where the null distribution is obtained by relabeling time points or locations, respectively (using \code{\link{permute.epidataCS}}). } \item{\code{"simulate"}:}{ obtain the null distribution of the test statistic by simulations from the endemic-only model (using \code{\link{simEndemicEvents}}). } } } \item{B}{ the number of permutations for the Monte Carlo approach. The default number is rather low; if computationally feasible, \code{B = 999} is more appropriate. Note that this determines the \dQuote{resolution} of the p-value: the smallest attainable p-value is \code{1/(B+1)}. } \item{eps.s,eps.t}{arguments for \code{\link{simpleR0}}.} \item{fixed}{ optional character vector naming parameters to fix at their original value when re-fitting the \code{model} on permuted data. The special value \code{fixed = TRUE} means to fix all epidemic parameters but the intercept. } \item{verbose}{ the amount of tracing in the range \code{0:3}. Set to 0 (or \code{FALSE}) for no output, 1 (or \code{TRUE}, the default) for a progress bar, 2 for the test statistics resulting from each permutation, and to 3 for additional tracing of the log-likelihood maximization in each permutation (not useful if parallelized). Tracing does not work if permutations are parallelized using clusters. See \code{\link{plapply}} for other choices. } \item{compress}{ logical indicating if the \code{nobs}-dependent elements \code{"fitted"}, \code{"fittedComponents"}, and \code{"R0"} should be dropped from the permutation-based model fits. Not keeping these elements saves a lot of memory especially with a large number of events. Note, however, that the returned \code{permfits} then no longer are fully valid \code{"twinstim"} objects (but most methods will still work). } \item{\dots}{further arguments for \code{\link{plapply}} to configure parallel operation, i.e., \code{.parallel} as well as \code{.seed} to make the results reproducible.\cr For the \code{plot}-method, further arguments passed to \code{\link{truehist}}.\cr Ignored by the \code{coef}-method. } \item{object,x}{ an object of class \code{"epitest"} as returned by \code{epitest}. } \item{which}{ a character string indicating either the full (\code{"m1"}, default) or the endemic-only (\code{"m0"}) model. } \item{teststat}{ a character string determining the test statistic to plot, either \code{"\link{simpleR0}"} or \code{"D"} (twice the log-likelihood difference of the models). } } \value{ a list (inheriting from \code{"htest"}) with the following components: \item{method}{a character string indicating the type of test performed.} \item{data.name}{a character string giving the supplied \code{data} and \code{model} arguments.} \item{statistic}{the observed test statistic.} \item{parameter}{the (effective) number of permutations used to calculate the p-value (only those with convergent fits are used).} \item{p.value}{the p-value for the test. For the \code{method}s involving resampling under the null (\code{method != "LRT"}), it is based on the subset of convergent fits only and the p-value from the simple LRT is attached as an attribute \code{"LRT"}.} In addition, if \code{method != "LRT"}, the result will have the following elements: \item{permfits}{the list of model fits (endemic-only and epidemic) from the \code{B} permutations.} \item{permstats}{a data frame with \code{B} rows and the columns \code{"l0"} (log-likelihood of the endemic-only model \code{m0}), \code{"l1"} (log-likelihood of the epidemic model \code{m1}), \code{"D"} (twice their difference), \code{"simpleR0"} (the results of \code{\link{simpleR0}(m1, eps.s, eps.t)}), and \code{"converged"} (a boolean indicator if both models converged).} The \code{plot}-method invisibly returns \code{NULL}. The \code{coef}-method returns the \code{B} x \code{length(coef(model))} matrix of parameter estimates. } \details{ The test statistic is the reproduction number \code{\link{simpleR0}}. A likelihood ratio test of the supplied epidemic model against the corresponding endemic-only model is also available. By default, the null distribution of the test statistic under no space-time interaction is obtained by a Monte Carlo permutation approach (via \code{\link{permute.epidataCS}}) and therefore relies on a space-time separable endemic model component. The \code{plot}-method shows a \code{\link{truehist}} of the simulated null distribution together with the observed value. The \code{coef}-method extracts the parameter estimates from the \code{B} \code{permfits} (by default for the full model \code{which = "m1"}). } \references{ Meyer, S., Warnke, I., R\enc{ö}{oe}ssler, W. and Held, L. (2016): Model-based testing for space-time interaction using point processes: An application to psychiatric hospital admissions in an urban area. \emph{Spatial and Spatio-temporal Epidemiology}, \bold{17}, 15-25. \doi{10.1016/j.sste.2016.03.002}. Eprint: \url{http://arxiv.org/abs/1512.09052}. } \author{ Sebastian Meyer } \seealso{ \code{\link{permute.epidataCS}}, \code{\link{knox}} } \examples{ data("imdepi", "imdepifit") ## test for space-time interaction of the B-cases ## assuming spatial interaction to be constant within 50 km imdepiB50 <- update(subset(imdepi, type == "B"), eps.s = 50) imdfitB50 <- update(imdepifit, data = imdepiB50, epidemic = ~1, epilink = "identity", siaf = NULL, start = c("e.(Intercept)" = 0)) ## simple likelihood ratio test epitest(imdfitB50, imdepiB50, method = "LRT") ## permutation test (only a few permutations for speed) et <- epitest(imdfitB50, imdepiB50, B = 3 + 26*surveillance.options("allExamples"), verbose = 2 * (.Platform$OS.type == "unix"), .seed = 1, .parallel = 1 + surveillance.options("allExamples")) et plot(et) ## evidence against the null hypothesis of no space-time interaction summary(coef(et, which = "m1")) } \keyword{htest} surveillance/man/stcd.Rd0000644000175100001440000000733312014262005014761 0ustar hornikusers\name{stcd} \alias{stcd} \encoding{latin1} \title{Spatio-temporal cluster detection} \description{ Shiryaev-Roberts based prospective spatio-temporal cluster detection as in Assuncao & Correa (2009). } \usage{ stcd(x, y,t,radius,epsilon,areaA, areaAcapBk, threshold, cusum=FALSE) } \arguments{ \item{x}{Vector containing spatial x coordinate of the events.} \item{y}{Vector containing spatial y coordinate of the events.} \item{t}{Vector containing the time points of the events. It is assumed that the vector is sorted (early->last).} \item{radius}{Radius of the cluster to detect.} \item{epsilon}{Relative change of event-intensity within the cluster to detect. See reference paper for an explicit definition.} \item{areaA}{Area of the observation region A (single number) -- This argument is currently ignored!} \item{areaAcapBk}{Area of A \ B(s_k,rho) for all k=1,\ldots,n (vector). This argument is currently ignored!} \item{threshold}{Threshold limit for the alarm and should be equal to the desired Average-Run-Length (ARL) of the detector.} \item{cusum}{(logical) If \code{FALSE} (default) then the Shiryaev-Roberts detector is used as in the original article by Assuncao & Correa (2009), i.e. \eqn{R_n = \sum_{k=1}^n \Lambda_{k,n}}, where \eqn{\Lambda_{k,n}} denotes the likelihood ratio between the in-control and out-of control model. If \code{TRUE}, CUSUM test statistic is used instead. Here, \deqn{R_n = \max_{1\leq k \leq n} \Lambda_{k,n}}. Note that this has implications on what threshold will sound the alarm (CUSUM threshold needs to be smaller).} } \details{ Shiryaev-Roberts based spatio-temporal cluster detection based on the work in Assuncao and Correa (2009). The implementation is based on C++ code originally written by Marcos Oliveira Prates, UFMG, Brazil and provided by Thais Correa, UFMG, Brazil during her research stay in Munich. This stay was financially supported by the Munich Center of Health Sciences. Note that the vectors \code{x}, \code{y} and \code{t} need to be of the same length. Furthermore, the vector \code{t} needs to be sorted (to improve speed, the latter is not verified within the function). The current implementation uses a call to a C++ function to perform the actual computations of the test statistic. The function is currently experimental -- data type and results may be subject to changes. } \value{A list with three components \item{R}{A vector of the same length as the input containing the value of the test statistic for each observation.} \item{idxFA}{Index in the x,y,t vector causing a possible alarm. If no cluster was detected, then a value of \code{-1} is returned here.} \item{idxCC}{index in the x,y,t vector of the event containing the cluster. If no cluster was detected, then a value of \code{-1} is returned here.} } \references{ Assuncao, R. and Correa, T. (2009), Surveillance to detect emerging space-time clusters, Computational Statistics & Data Analysis, 53(8):2817-2830. } \examples{ if (require("splancs")) { # load the data from package "splancs" data(burkitt, package="splancs") # order the times burkitt <- burkitt[order(burkitt$t), ] #Parameters for the SR detection epsilon <- 0.5 # relative change within the cluster radius <- 20 # radius threshold <- 161 # threshold limit res <- stcd(x=burkitt$x, y=burkitt$y, t=burkitt$t, radius=radius, epsilon=epsilon, areaA=1, areaAcapBk=1, threshold=threshold) #Index of the event which.max(res$R >= threshold) } } \author{M. O. Prates, T. Correa and M. \enc{Höhle}{Hoehle}} \keyword{cluster} surveillance/man/algo.outbreakP.Rd0000644000175100001440000001214613174644122016713 0ustar hornikusers\encoding{latin1} \name{algo.outbreakP} \alias{algo.outbreakP} \alias{calc.outbreakP.statistic} \title{Semiparametric surveillance of outbreaks} \description{ Frisen and Andersson (2009) method for semiparametric surveillance of outbreaks } \usage{ algo.outbreakP(disProgObj, control = list(range = range, k=100, ret=c("cases","value"),maxUpperboundCases=1e5)) } \arguments{ \item{disProgObj}{object of class disProg (including the observed and the state chain).} \item{control}{A list controlling the behaviour of the algorithm \describe{ \item{\code{range}}{determines the desired time-points which should be monitored. Note that it is automatically assumed that ALL other values in \code{disProgObj} can be used for the estimation, i.e. for a specific value \code{i} in \code{range} all values from 1 to \code{i} are used for estimation.} \item{\code{k}}{The threshold value. Once the outbreak statistic is above this threshold \code{k} an alarm is sounded.} \item{\code{ret}}{a string specifying the type of \code{upperbound}-statistic that is returned. With \code{"cases"} the number of cases that would have been necessary to produce an alarm (NNBA) or with \code{"value"} the outbreakP-statistic is computed (see below).} \item{\code{maxUpperboundCases}}{Upperbound when numerically searching for NNBA. Default is 1e5.} } } } \value{ \code{algo.outbreakP} gives a list of class \code{survRes} which includes the vector of alarm values for every time-point in \code{range}, the vector of threshold values for every time-point in \code{range}. } \details{ A generalized likelihood ratio test based on the Poisson distribution is implemented where the means of the in-control and out-of-control states are computed by isotonic regression. \deqn{OutbreakP(s) = \prod_{t=1}^s \left( \frac{\hat{\mu}^{C1}(t)}{\hat{\mu}^D(t)} \right)^{x(t)}} where \eqn{\hat{\mu}^{C1}(t)} is the estimated mean obtained by uni-modal regression under the assumption of one change-point and \eqn{\hat{\mu}^D(t)} is the estimated result when there is no change-point (i.e. this is just the mean of all observations). Note that the contrasted hypothesis assume all means are equal until the change-point, i.e. this detection method is especially suited for detecting a shift from a relative constant mean. Hence, this is less suited for detection in diseases with strong seasonal endemic component. Onset of influenza detection is an example where this method works particular well. In case \code{control$ret == "cases"} then a brute force numerical search for the number needed before alarm (NNBA) is performed. That is, given the past observations, whats the minimum number which would have caused an alarm? Note: Computing this might take a while because the search is done by sequentially increasing/decreasing the last observation by one for each time point in \code{control$range} and then calling the workhorse function of the algorithm again. The argument \code{control$maxUpperboundCases} controls the upper limit of this search (default is 1e5). Currently, even though the statistic has passed the threshold, the NNBA is still computed. After a few time instances what typically happens is that no matter the observed value we would have an alarm at this time point. In this case the value of NNBA is set to \code{NA}. Furthermore, the first time point is always \code{NA}, unless \code{k<1}. } \source{ The code is an extended R port of the Java code by Marianne \enc{Frisén}{Frisen} and Linus \enc{Schiöler}{Schioeler} from the CASE project available under the GNU GPL License v3. See \url{https://case.folkhalsomyndigheten.se/} for further details on the CASE project. A manual on how to use an Excel implementation of the method is available at \url{http://economics.handels.gu.se/english/Units+and+Centra/statistical_research_unit/software}. An additional feature of the R code is that it contains a search for NNBA (see details). } \author{M. \enc{Höhle}{Hoehle} -- based on Java code by M. Frisen and L. \enc{Schiöler}{Schioeler}} \references{ \enc{Frisén}{Frisen}, M., Andersson and \enc{Schiöler}{Schioeler}, L., (2009), Robust outbreak surveillance of epidemics in Sweden, Statistics in Medicine, 28(3):476-493. \enc{Frisén}{Frisen}, M. and Andersson, E., (2009) Semiparametric Surveillance of Monotonic Changes, Sequential Analysis 28(4):434-454. } \examples{ #Use data from outbreakP manual (http://www.hgu.gu.se/item.aspx?id=16857) y <- matrix(c(1,0,3,1,2,3,5,4,7,3,5,8,16,23,33,34,48),ncol=1) #Generate sts object with these observations mysts <- sts(y, alarm=y*0) #Run the algorithm and present results #Only the value of outbreakP statistic upperbound(outbreakP(mysts, control=list(range=1:length(y),k=100, ret="value"))) #Graphical illustration with number-needed-before-alarm (NNBA) upperbound. res <- outbreakP(mysts, control=list(range=1:length(y),k=100, ret="cases")) plot(res,dx.upperbound=0,lwd=c(1,1,3),legend.opts=list(legend=c("Infected", "NNBA","Outbreak","Alarm"),horiz=TRUE)) } \keyword{classif} surveillance/man/toLatex.sts.Rd0000644000175100001440000000415113122471774016267 0ustar hornikusers\name{toLatex.sts} \alias{toLatex.sts} \alias{toLatex,sts-method} \title{\code{toLatex}-Method for \code{"sts"} Objects} \description{ Convert \code{"\linkS4class{sts}"} objects to a character vector with LaTeX markup. } \usage{ \S4method{toLatex}{sts}(object, caption = "",label=" ", columnLabels = NULL, subset = NULL, alarmPrefix = "\\\\textbf{\\\\textcolor{red}{", alarmSuffix = "}}", ubColumnLabel = "UB", ...) } \arguments{ \item{object}{an \code{"\linkS4class{sts}"} object.} \item{caption}{A caption for the table. Default is the empty string.} \item{label}{A label for the table. Default is the empty string.} \item{columnLabels}{A list of labels for each column of the resulting table. Default is NULL} \item{subset}{A range of values which should be displayed. If Null, then all data in the sts objects will be displayed. Else only a subset of data. Therefore range needs to be a numerical vector of indexes from 1 to length(@observed).} \item{alarmPrefix}{A latex compatible prefix string wrapped around a table cell iff there is an alarm;i.e. alarm = TRUE} \item{alarmSuffix}{A latex compatible suffix string wrapped around a table cell iff there is an alarm;i.e. alarm[i,j] = TRUE} \item{ubColumnLabel}{The label of the upper bound column; default is \"UB\".} \item{\dots}{further arguments passed to \code{\link{print.xtable}}.} } \value{ An object of class \code{\link[=toLatex]{"Latex"}}. } \examples{ # Create a test object data("salmonella.agona") # Create the corresponding sts object from the old disProg object salm <- disProg2sts(salmonella.agona) control <- list(range=(260:312), noPeriods=1,populationOffset=FALSE, fitFun="algo.farrington.fitGLM.flexible", b=4,w=3,weightsThreshold=1, pastWeeksNotIncluded=3, pThresholdTrend=0.05,trend=TRUE, thresholdMethod="delta",alpha=0.1) salm <- farringtonFlexible(salm,control=control) print(toLatex(salm)) } \author{Dirk Schumacher} \keyword{print} surveillance/man/hhh4.Rd0000644000175100001440000005512713167342246014703 0ustar hornikusers\encoding{latin1} \name{hhh4} \alias{hhh4} \title{Fitting HHH Models with Random Effects and Neighbourhood Structure} \description{ Fits an autoregressive Poisson or negative binomial model to a univariate or multivariate time series of counts. The characteristic feature of \code{hhh4} models is the additive decomposition of the conditional mean into \emph{epidemic} and \emph{endemic} components (Held et al, 2005). Log-linear predictors of covariates and random intercepts are allowed in all components; see the Details below. A general introduction to the \code{hhh4} modelling approach and its implementation is given in the \code{vignette("hhh4")}. Meyer et al (2017, Section 5, available as \code{vignette("hhh4_spacetime")}) describe \code{hhh4} models for areal time series of infectious disease counts. } \usage{ hhh4(stsObj, control = list( ar = list(f = ~ -1, offset = 1, lag = 1), ne = list(f = ~ -1, offset = 1, lag = 1, weights = neighbourhood(stsObj) == 1, scale = NULL, normalize = FALSE), end = list(f = ~ 1, offset = 1), family = c("Poisson", "NegBin1", "NegBinM"), subset = 2:nrow(stsObj), optimizer = list(stop = list(tol=1e-5, niter=100), regression = list(method="nlminb"), variance = list(method="nlminb")), verbose = FALSE, start = list(fixed=NULL, random=NULL, sd.corr=NULL), data = list(t = stsObj@epoch - min(stsObj@epoch)), keep.terms = FALSE ), check.analyticals = FALSE) } \arguments{ \item{stsObj}{object of class \code{"\linkS4class{sts}"} containing the (multivariate) count data time series.} \item{control}{a list containing the model specification and control arguments: \describe{ \item{\code{ar}}{Model for the autoregressive component given as list with the following components: \describe{ \item{f = ~ -1}{a formula specifying \eqn{\log(\lambda_{it})}{log(\lambda_it)}} \item{offset = 1}{optional multiplicative offset, either 1 or a matrix of the same dimension as \code{observed(stsObj)}} \item{lag = 1}{a positive integer meaning autoregression on \eqn{y_{i,t-lag}}} } } \item{\code{ne}}{Model for the neighbour-driven component given as list with the following components: \describe{ \item{f = ~ -1}{a formula specifying \eqn{\log(\phi_{it})}{log(\phi_it)}} \item{offset = 1}{optional multiplicative offset, either 1 or a matrix of the same dimension as \code{observed(stsObj)}} \item{lag = 1}{a non-negative integer meaning dependency on \eqn{y_{j,t-lag}}} \item{weights = neighbourhood(stsObj) == 1}{ neighbourhood weights \eqn{w_{ji}}{w_ji}. The default corresponds to the original formulation by Held et al (2005), i.e., the spatio-temporal component incorporates an unweighted sum over the lagged cases of the first-order neighbours. See Paul et al (2008) and Meyer and Held (2014) for alternative specifications, e.g., \code{\link{W_powerlaw}}. Time-varying weights are possible by specifying an array of \code{dim()} \code{c(nUnits, nUnits, nTime)}, where \code{nUnits=ncol(stsObj)} and \code{nTime=nrow(stsObj)}.} \item{scale = NULL}{ optional matrix of the same dimensions as \code{weights} (or a vector of length \code{ncol(stsObj)}) to scale the \code{weights} to \code{scale * weights}. } \item{normalize = FALSE}{ logical indicating if the (scaled) \code{weights} should be normalized such that each row sums to 1. } } } \item{\code{end}}{Model for the endemic component given as list with the following components \describe{ \item{f = ~ 1}{a formula specifying \eqn{\log(\nu_{it})}{log(\nu_it)}} \item{offset = 1}{optional multiplicative offset \eqn{e_{it}}{e_it}, either 1 or a matrix of the same dimension as \code{observed(stsObj)}} } } \item{\code{family}}{Distributional family -- either \code{"Poisson"}, or the Negative Binomial distribution. For the latter, the overdispersion parameter can be assumed to be the same for all units (\code{"NegBin1"}), to vary freely over all units (\code{"NegBinM"}), or to be shared by some units (specified by a factor of length \code{ncol(stsObj)} such that its number of levels determines the number of overdispersion parameters). Note that \code{"NegBinM"} is equivalent to \code{factor(colnames(stsObj), levels = colnames(stsObj))}. } \item{\code{subset}}{Typically \code{2:nrow(obs)} if model contains autoregression} \item{\code{optimizer}}{a list of three lists of control arguments. The \code{"stop"} list specifies two criteria for the outer optimization of regression and variance parameters: the relative \code{tol}erance for parameter change using the criterion \code{max(abs(x[i+1]-x[i])) / max(abs(x[i]))}, and the maximum number \code{niter} of outer iterations. Control arguments for the single optimizers are specified in the lists named \code{"regression"} and \code{"variance"}. \code{method="nlminb"} is the default optimizer for both (taking advantage of the analytical Fisher information matrices), however, the \code{method}s from \code{\link{optim}} may also be specified (as well as \code{"\link{nlm}"} but that one is not recommended here). Especially for the variance updates, Nelder-Mead optimization (\code{method="Nelder-Mead"}) is an attractive alternative. All other elements of these two lists are passed as \code{control} arguments to the chosen \code{method}, e.g., if \code{method="nlminb"} adding \code{iter.max=50} increases the maximum number of inner iterations from 20 (default) to 50. } \item{\code{verbose}}{non-negative integer (usually in the range \code{0:3}) specifying the amount of tracing information to be output during optimization.} \item{\code{start}}{a list of initial parameter values replacing initial values set via \code{\link{fe}} and \code{\link{ri}}. Since \pkg{surveillance} 1.8-2, named vectors are matched against the coefficient names in the model (where unmatched start values are silently ignored), and need not be complete, e.g., \code{start = list(fixed = c("-log(overdisp)" = 0.5))} (default: 2) for a \code{family = "NegBin1"} model. In contrast, an unnamed start vector must specify the full set of parameters as used by the model.} \item{\code{data}}{a named list of covariates that are to be included as fixed effects (see \code{\link{fe}}) in any of the 3 component formulae. By default, the time variable \code{t} is available and used for seasonal effects created by \code{\link{addSeason2formula}}. In general, covariates in this list can be either vectors of length \code{nrow(stsObj)} interpreted as time-varying but common across all units, or matrices of the same dimension as the disease counts \code{observed(stsObj)}.} \item{\code{keep.terms}}{logical indicating if the terms object used in the fit is to be kept as part of the returned object. This is usually not necessary, since the terms object is reconstructed by the \code{\link{terms}}-method for class \code{"hhh4"} if necessary (based on \code{stsObj} and \code{control}, which are both part of the returned \code{"hhh4"} object).} } The auxiliary function \code{\link{makeControl}} might be useful to create such a list of control parameters. } \item{check.analyticals}{logical (or a subset of \code{c("numDeriv", "maxLik")}), indicating if (how) the implemented analytical score vector and Fisher information matrix should be checked against numerical derivatives at the parameter starting values, using the packages \pkg{numDeriv} and/or \pkg{maxLik}. If activated, \code{hhh4} will return a list containing the analytical and numerical derivatives for comparison (no ML estimation will be performed). This is mainly intended for internal use by the package developers.} } \value{ \code{hhh4} returns an object of class \code{"hhh4"}, which is a list containing the following components: \item{coefficients}{named vector with estimated (regression) parameters of the model} \item{se}{estimated standard errors (for regression parameters)} \item{cov}{covariance matrix (for regression parameters)} \item{Sigma}{estimated variance-covariance matrix of random effects} \item{Sigma.orig}{estimated variance parameters on internal scale used for optimization} \item{Sigma.cov}{inverse of marginal Fisher information (on internal scale), i.e., the asymptotic covariance matrix of \code{Sigma.orig}} \item{call}{ the matched call } \item{dim}{ vector with number of fixed and random effects in the model } \item{loglikelihood}{(penalized) loglikelihood evaluated at the MLE} \item{margll}{ (approximate) log marginal likelihood should the model contain random effects } \item{convergence}{logical. Did optimizer converge?} \item{fitted.values}{fitted mean values \eqn{\mu_{i,t}}{\mu_it}} \item{control}{control object of the fit} \item{terms}{the terms object used in the fit if \code{keep.terms = TRUE} and \code{NULL} otherwise} \item{stsObj}{ the supplied \code{stsObj} } \item{lags}{named integer vector of length two containing the lags used for the epidemic components \code{"ar"} and \code{"ne"}, respectively. The corresponding lag is \code{NA} if the component was not included in the model.} \item{nObs}{number of observations used for fitting the model} \item{nTime}{ number of time points used for fitting the model } \item{nUnit}{ number of units (e.g. areas) used for fitting the model} \item{runtime}{the \code{\link{proc.time}}-queried time taken to fit the model, i.e., a named numeric vector of length 5 of class \code{"proc_time"}} } \details{ An endemic-epidemic multivariate time-series model for infectious disease counts \eqn{Y_{it}}{Y_it} from units \eqn{i=1,\dots,I} during periods \eqn{t=1,\dots,T} was proposed by Held et al (2005) and was later extended in a series of papers (Paul et al, 2008; Paul and Held, 2011; Held and Paul, 2012; Meyer and Held, 2014). In its most general formulation, this so-called \code{hhh4} (or HHH or \eqn{H^3} or triple-H) model assumes that, conditional on past observations, \eqn{Y_{it}}{Y_it} has a Poisson or negative binomial distribution with mean \deqn{\mu_{it} = \lambda_{it} y_{i,t-1} + \phi_{it} \sum_{j\neq i} w_{ji} y_{j,t-1} + e_{it} \nu_{it} }{% \mu_it = \lambda_it y_i,t-1 + \phi_it sum_(j != i) w_ji y_j,t-1 + e_it \nu_it } In the case of a negative binomial model, the conditional variance is \eqn{\mu_{it}(1+\psi_i\mu_{it})}{\mu_it(1+\psi_i*\mu_it)} with overdispersion parameters \eqn{\psi_i > 0} (possibly shared across different units, e.g., \eqn{\psi_i\equiv\psi}{\psi_i=\psi}). Univariate time series of counts \eqn{Y_t} are supported as well, in which case \code{hhh4} can be regarded as an extension of \code{\link[MASS]{glm.nb}} to account for autoregression. See the Examples below for a comparison of an endemic-only \code{hhh4} model with a corresponding \code{glm.nb}. The three unknown quantities of the mean \eqn{\mu_{it}}{\mu_it}, \itemize{ \item \eqn{\lambda_{it}}{\lambda_it} in the autoregressive (\code{ar}) component, \item \eqn{\phi_{it}}{\phi_it} in the neighbour-driven (\code{ne}) component, and \item \eqn{\nu_{it}}{\nu_it} in the endemic (\code{end}) component, } are log-linear predictors incorporating time-/unit-specific covariates. They may also contain unit-specific random intercepts as proposed by Paul and Held (2011). The endemic mean is usually modelled proportional to a unit-specific offset \eqn{e_{it}}{e_it} (e.g., population numbers or fractions); it is possible to include such multiplicative offsets in the epidemic components as well. The \eqn{w_{ji}}{w_ji} are transmission weights reflecting the flow of infections from unit \eqn{j} to unit \eqn{i}. In spatial \code{hhh4} applications, the \dQuote{units} refer to geographical regions and the weights could be derived from movement network data. Alternatively, the weights can be estimated parametrically as a function of adjacency order (Meyer and Held, 2014). (Penalized) Likelihood inference for such \code{hhh4} models has been established by Paul and Held (2011) with extensions for parametric neighbourhood weights by Meyer and Held (2014). Supplied with the analytical score function and Fisher information, the function \code{hhh4} by default uses the quasi-Newton algorithm available through \code{\link{nlminb}} to maximize the log-likelihood. Convergence is usually fast even for a large number of parameters. If the model contains random effects, the penalized and marginal log-likelihoods are maximized alternately until convergence. } \seealso{ See the special functions \code{\link{fe}}, \code{\link{ri}} and the examples below for how to specify unit-specific effects. Further details on the modelling approach and illustrations of its implementation can be found in \code{vignette("hhh4")} and \code{vignette("hhh4_spacetime")}. } \author{Michaela Paul, Sebastian Meyer, Leonhard Held} \examples{ ###################### ## Univariate examples ###################### ### weekly counts of salmonella agona cases, UK, 1990-1995 data("salmonella.agona") ## convert old "disProg" to new "sts" data class salmonella <- disProg2sts(salmonella.agona) salmonella plot(salmonella) ## generate formula for an (endemic) time trend and seasonality f.end <- addSeason2formula(f = ~1 + t, S = 1, period = 52) f.end ## specify a simple autoregressive negative binomial model model1 <- list(ar = list(f = ~1), end = list(f = f.end), family = "NegBin1") ## fit this model to the data res <- hhh4(salmonella, model1) ## summarize the model fit summary(res, idx2Exp=1, amplitudeShift=TRUE, maxEV=TRUE) plot(res) plot(res, type = "season", components = "end") ### weekly counts of meningococcal infections, Germany, 2001-2006 data("influMen") fluMen <- disProg2sts(influMen) meningo <- fluMen[, "meningococcus"] meningo plot(meningo) ## again a simple autoregressive NegBin model with endemic seasonality meningoFit <- hhh4(stsObj = meningo, control = list( ar = list(f = ~1), end = list(f = addSeason2formula(f = ~1, S = 1, period = 52)), family = "NegBin1" )) summary(meningoFit, idx2Exp=TRUE, amplitudeShift=TRUE, maxEV=TRUE) plot(meningoFit) plot(meningoFit, type = "season", components = "end") ######################## ## Multivariate examples ######################## ### bivariate analysis of influenza and meningococcal infections ### (see Paul et al, 2008) plot(fluMen, same.scale = FALSE) ## Fit a negative binomial model with ## - autoregressive component: disease-specific intercepts ## - neighbour-driven component: only transmission from flu to men ## - endemic component: S=3 and S=1 sine/cosine pairs for flu and men, respectively ## - disease-specific overdispersion WfluMen <- neighbourhood(fluMen) WfluMen["meningococcus","influenza"] <- 0 WfluMen f.end_fluMen <- addSeason2formula(f = ~ -1 + fe(1, which = c(TRUE, TRUE)), S = c(3, 1), period = 52) f.end_fluMen fluMenFit <- hhh4(fluMen, control = list( ar = list(f = ~ -1 + fe(1, unitSpecific = TRUE)), ne = list(f = ~ 1, weights = WfluMen), end = list(f = f.end_fluMen), family = "NegBinM")) summary(fluMenFit, idx2Exp=1:3) plot(fluMenFit, type = "season", components = "end", unit = 1) plot(fluMenFit, type = "season", components = "end", unit = 2) ### weekly counts of measles, Weser-Ems region of Lower Saxony, Germany data("measlesWeserEms") measlesWeserEms plot(measlesWeserEms) # note the two districts with zero cases ## we could fit the same simple model as for the salmonella cases above model1 <- list( ar = list(f = ~1), end = list(f = addSeason2formula(~1 + t, period = 52)), family = "NegBin1" ) measlesFit <- hhh4(measlesWeserEms, model1) summary(measlesFit, idx2Exp=TRUE, amplitudeShift=TRUE, maxEV=TRUE) ## but we should probably at least use a population offset in the endemic ## component to reflect heterogeneous incidence levels of the districts, ## and account for spatial dependence (here just using first-order adjacency) measlesFit2 <- update(measlesFit, end = list(offset = population(measlesWeserEms)), ne = list(f = ~1, weights = neighbourhood(measlesWeserEms) == 1)) summary(measlesFit2, idx2Exp=TRUE, amplitudeShift=TRUE, maxEV=TRUE) plot(measlesFit2, units = NULL, hide0s = TRUE) ## 'measlesFit2' corresponds to the 'measlesFit_basic' model in ## vignette("hhh4_spacetime"). See there for further analyses, ## including vaccination coverage as a covariate, ## spatial power-law weights, and random intercepts. \dontrun{ ### last but not least, a more sophisticated (and time-consuming) ### analysis of weekly counts of influenza from 140 districts in ### Southern Germany (originally analysed by Paul and Held, 2011, ### and revisited by Held and Paul, 2012, and Meyer and Held, 2014) data("fluBYBW") plot(fluBYBW, type = observed ~ time) plot(fluBYBW, type = observed ~ unit, ## mean yearly incidence per 100.000 inhabitants (8 years) population = fluBYBW@map$X31_12_01 / 100000 * 8) ## For the full set of models for data("fluBYBW") as analysed by ## Paul and Held (2011), including predictive model assessement ## using proper scoring rules, see the (computer-intensive) ## demo("fluBYBW") script: demoscript <- system.file(file.path("demo", "fluBYBW.R"), package = "surveillance") demoscript #file.show(demoscript) ## Here we fit the improved power-law model of Meyer and Held (2014) ## - autoregressive component: random intercepts + S = 1 sine/cosine pair ## - neighbour-driven component: random intercepts + S = 1 sine/cosine pair ## + population gravity with normalized power-law weights ## - endemic component: random intercepts + trend + S = 3 sine/cosine pairs ## - random intercepts are iid but correlated between components f.S1 <- addSeason2formula( ~-1 + ri(type="iid", corr="all"), S = 1, period = 52) f.end.S3 <- addSeason2formula( ~-1 + ri(type="iid", corr="all") + I((t-208)/100), S = 3, period = 52) ## for power-law weights, we need adjaceny orders, which can be ## computed from the binary adjacency indicator matrix nbOrder1 <- neighbourhood(fluBYBW) neighbourhood(fluBYBW) <- nbOrder(nbOrder1, 15) ## full model specification fluModel <- list( ar = list(f = f.S1), ne = list(f = update.formula(f.S1, ~ . + log(pop)), weights = W_powerlaw(maxlag=max(neighbourhood(fluBYBW)), normalize = TRUE, log = TRUE)), end = list(f = f.end.S3, offset = population(fluBYBW)), family = "NegBin1", data = list(pop = population(fluBYBW)), optimizer = list(variance = list(method = "Nelder-Mead")), verbose = TRUE) ## CAVE: random effects considerably increase the runtime of model estimation ## (It is usually advantageous to first fit a model with simple intercepts ## to obtain reasonable start values for the other parameters.) set.seed(1) # because random intercepts are initialized randomly fluFit <- hhh4(fluBYBW, fluModel) summary(fluFit, idx2Exp=TRUE, amplitudeShift=TRUE) plot(fluFit, type = "season") plot(fluFit, type = "neweights", xlab = "adjacency order") gridExtra::grid.arrange( grobs = lapply(c("ar", "ne", "end"), function (comp) plot(fluFit, type = "ri", component = comp, main = comp, at = seq(-2.6, 2.6, length.out = 15), col.regions = cm.colors(14))), nrow = 1, ncol = 3) range(plot(fluFit, type = "maxEV")) } ######################################################################## ## An endemic-only "hhh4" model can also be estimated using MASS::glm.nb ######################################################################## ## weekly counts of measles, Weser-Ems region of Lower Saxony, Germany data("measlesWeserEms") ## fit an endemic-only "hhh4" model ## with time covariates and a district-specific offset hhh4fit <- hhh4(measlesWeserEms, control = list( end = list(f = addSeason2formula(~1 + t, period = measlesWeserEms@freq), offset = population(measlesWeserEms)), ar = list(f = ~-1), ne = list(f = ~-1), family = "NegBin1", subset = 1:nrow(measlesWeserEms) )) summary(hhh4fit) ## fit the same model using MASS::glm.nb measlesWeserEmsData <- as.data.frame(measlesWeserEms, tidy = TRUE) measlesWeserEmsData$t <- c(hhh4fit$control$data$t) glmnbfit <- MASS::glm.nb( update(formula(hhh4fit)$end, observed ~ . + offset(log(population))), data = measlesWeserEmsData ) summary(glmnbfit) ## Note that the overdispersion parameter is parametrized inversely. ## The likelihood and point estimates are all the same. ## However, the variance estimates are different: in glm.nb, the parameters ## are estimated conditional on the overdispersion theta. \dontshow{ stopifnot( all.equal(logLik(hhh4fit), logLik(glmnbfit)), all.equal(1/coef(hhh4fit)[["overdisp"]], glmnbfit$theta, tolerance = 1e-6), all.equal(coef(hhh4fit)[1:4], coef(glmnbfit), tolerance = 1e-6, check.attributes = FALSE), all.equal(c(residuals(hhh4fit)), residuals(glmnbfit), tolerance = 1e-6, check.attributes = FALSE) ) } } \references{ Held, L., \enc{Höhle}{Hoehle}, M. and Hofmann, M. (2005): A statistical framework for the analysis of multivariate infectious disease surveillance counts. \emph{Statistical Modelling}, \bold{5} (3), 187-199. \doi{10.1191/1471082X05st098oa} Paul, M., Held, L. and Toschke, A. M. (2008): Multivariate modelling of infectious disease surveillance data. \emph{Statistics in Medicine}, \bold{27} (29), 6250-6267. \doi{10.1002/sim.4177} Paul, M. and Held, L. (2011): Predictive assessment of a non-linear random effects model for multivariate time series of infectious disease counts. \emph{Statistics in Medicine}, \bold{30} (10), 1118-1136. \doi{10.1002/sim.4177} Held, L. and Paul, M. (2012): Modeling seasonality in space-time infectious disease surveillance data. \emph{Biometrical Journal}, \bold{54} (6), 824-843. \doi{10.1002/bimj.201200037} Meyer, S. and Held, L. (2014): Power-law models for infectious disease spread. \emph{The Annals of Applied Statistics}, \bold{8} (3), 1612-1639. \doi{10.1214/14-AOAS743} Meyer, S., Held, L. and \enc{Höhle}{Hoehle}, M. (2017): Spatio-temporal analysis of epidemic phenomena using the \R package \pkg{surveillance}. \emph{Journal of Statistical Software}, \bold{77} (11), 1-55. \doi{10.18637/jss.v077.i11} } \keyword{ts} \keyword{regression} surveillance/man/unionSpatialPolygons.Rd0000644000175100001440000000435012437341450020234 0ustar hornikusers\name{unionSpatialPolygons} \alias{unionSpatialPolygons} \title{ Compute the Unary Union of \code{"SpatialPolygons"} } \description{ Union all subpolygons of a \code{"\link[sp:SpatialPolygons-class]{SpatialPolygons}"} object. This is a wrapper for the polygon clipping engines implemented by packages \pkg{rgeos}, \pkg{polyclip}, or \pkg{gpclib}. } \usage{ unionSpatialPolygons(SpP, method = c("rgeos", "polyclip", "gpclib"), ...) } \arguments{ \item{SpP}{ an object of class \code{"\link[sp:SpatialPolygons-class]{SpatialPolygons}"}. For the \pkg{polyclip} \code{method} only, all polygon classes for which an \code{\link{xylist}}-method exists should work as input. } \item{method}{ polygon clipping machinery to use. Default is to simply call \code{\link[rgeos]{gUnaryUnion}} in package \pkg{rgeos}. For \code{method="polyclip"}, function \code{\link[polyclip]{polyclip}} from package \pkg{polyclip} is used, whereas \code{method="gpclib"} calls \code{\link[maptools]{unionSpatialPolygons}} in package \pkg{maptools} (and requires acceptance of \pkg{gpclib}'s restricted license via \code{\link{surveillance.options}(gpclib=TRUE)}). } \item{\dots}{further arguments passed to the chosen \code{method}.} } \value{ an object of class \code{"\link[sp:SpatialPolygons-class]{SpatialPolygons}"} representing the union of all subpolygons. } \author{ Sebastian Meyer } \seealso{ \code{\link[rgeos]{gUnaryUnion}} in package \pkg{rgeos}, \code{\link[polyclip]{polyclip}} in package \pkg{polyclip}, \code{\link[maptools]{unionSpatialPolygons}} in package \pkg{maptools} (for using \code{\link[gpclib:gpc.poly-class]{union}} of package \pkg{gpclib}). } \examples{ ## Load districts of Germany load(system.file("shapes", "districtsD.RData", package = "surveillance")) plot(districtsD, border = "gray") ## Union these districts using either "rgeos" or "polyclip" if (requireNamespace("rgeos")) { stateD <- unionSpatialPolygons(districtsD, method = "rgeos") plot(stateD, add = TRUE, border = 2, lwd = 2) } if (requireNamespace("polyclip")) { stateD_pc <- unionSpatialPolygons(districtsD, method = "polyclip") plot(stateD_pc, add = TRUE, border = 1, lwd = 2, lty = 2) } } \keyword{spatial} surveillance/man/algo.cdc.Rd0000644000175100001440000000627313165505075015517 0ustar hornikusers\name{algo.cdc} \alias{algo.cdcLatestTimepoint} \alias{algo.cdc} \encoding{latin1} \title{The CDC Algorithm} \description{ Surveillance using the CDC Algorithm } \usage{ algo.cdcLatestTimepoint(disProgObj, timePoint = NULL, control = list(b = 5, m = 1, alpha=0.025)) algo.cdc(disProgObj, control = list(range = range, b= 5, m=1, alpha = 0.025)) } \arguments{ \item{disProgObj}{object of class disProg (including the observed and the state chain).} \item{timePoint}{time point which should be evaluated in \code{algo.cdcLatestTimepoint}. The default is to use the latest timepoint.} \item{control}{control object: \code{range} determines the desired timepoints which should be evaluated, \code{b} describes the number of years to go back for the reference values, \code{m} is the half window width for the reference values around the appropriate timepoint (see details). The standard definition is \code{b}=5 and \code{m}=1.} } \details{ Using the reference values for calculating an upper limit, alarm is given if the actual value is bigger than a computed threshold. \code{algo.cdc} calls \code{algo.cdcLatestTimepoint} for the values specified in \code{range} and for the system specified in \code{control}. The threshold is calculated from the predictive distribution, i.e. \deqn{mean(x) + z_{\alpha/2} * sd(x) * \sqrt(1+1/k),} which corresponds to Equation 8-1 in Farrington and Andrews (2003). Note that an aggregation into 4-week blocks occurs in \code{algo.cdcLatestTimepoint} and \code{m} denotes number of 4-week blocks (months) to use as reference values. This function currently does the same for monthly data (not correct!) } \value{ \code{algo.cdcLatestTimepoint} returns a list of class \code{survRes} (surveillance result), which includes the alarm value (alarm = 1, no alarm = 0) for recognizing an outbreak, the threshold value for recognizing the alarm and the input object of class disProg. \code{algo.cdc} gives a list of class \code{survRes} which includes the vector of alarm values for every timepoint in \code{range}, the vector of threshold values for every timepoint in \code{range} for the system specified by \code{b}, \code{w}, the range and the input object of class disProg. } \seealso{ \code{\link{algo.rkiLatestTimepoint}},\code{\link{algo.bayesLatestTimepoint}} and \code{\link{algo.bayes}} for the Bayes system. } \author{M. \enc{Höhle}{Hoehle}} \examples{ # Create a test object disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 500, A = 1,alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) # Test week 200 to 208 for outbreaks with a selfdefined cdc algo.cdc(disProgObj, control = list(range = 400:500,alpha=0.025)) } \keyword{classif} \references{ Stroup, D., G. Williamson, J. Herndon, and J. Karon (1989). Detection of aberrations in the occurence of notifiable diseases surveillance data. Statistics in Medicine 8, 323-329. Farrington, C. and N. Andrews (2003). Monitoring the Health of Populations, Chapter Outbreak Detection: Application to Infectious Disease Surveillance, pp. 203-231. Oxford University Press. } surveillance/man/stsXtrct.Rd0000644000175100001440000000124312672245664015702 0ustar hornikusers\name{[,sts-methods} \docType{methods} \title{Extraction and Subsetting of \code{"sts"} Objects} \alias{[,sts-method} \alias{[,sts,ANY,ANY,ANY-method} \description{ \code{"["}-methods, i.e., extraction or subsetting of the \code{"\linkS4class{sts}"} class in package \pkg{surveillance}. Note that \code{[<-} methods (i.e. subassignments) are currently not supported. The \code{drop} argument is always \code{FALSE}. } \examples{ data("ha.sts") haagg <- aggregate(ha.sts, nfreq=13) plot(haagg[, 3]) # Single series plot(haagg[1:30, 3]) # Somewhat shorter #Counts at time 20 plot(haagg[20, ], type = observed ~ unit) } \keyword{methods} \keyword{array} surveillance/man/predict.ah.Rd0000644000175100001440000000210213122471774016052 0ustar hornikusers\name{predict.ah} \alias{predict.ah} \alias{predict.ahg} \title{Predictions from a HHH model} \description{ Use a \code{ah} or \code{ahg} object for prediction. } \usage{ \method{predict}{ah}(object,newdata=NULL, type=c("response","endemic","epi.own","epi.neighbours"), \dots) } \arguments{ \item{object}{object of class \code{ah} or \code{ahg} } \item{newdata}{optionally, a disProgObject with which to predict; if omitted, the fitted mean is returned. } \item{type}{the type of prediction required. The default is on the scale of the response variable (endemic and epidemic part). The alternative "endemic" returns only the endemic part (i.e. \eqn{n_{it} \nu_{it}}{n_it * \nu_it}), "epi.own" and "epi.neighbours" return the epidemic part (i.e. \eqn{\lambda_i y_{i,t}}{\lambda_i * y_i,t} and \eqn{\phi_i \sum_{j \sim i} y_{j,t-1}}{\phi_i * \sum_(j ~ i) y_j,t-1} )} \item{...}{not really used} } \value{ matrix of values containing the mean \eqn{\mu_{it}}{\mu_it} for each region and time point. } \note{This function is experimental!} \keyword{models} surveillance/man/untie.Rd0000644000175100001440000001045112665561746015175 0ustar hornikusers\name{untie} \alias{untie} \alias{untie.epidataCS} \alias{untie.matrix} \alias{untie.default} \title{ Randomly Break Ties in Data } \description{ This is a generic function intended to randomly break tied data in a way similar to what \code{\link{jitter}} does: tie-breaking is performed by shifting \emph{all} data points by a random amount. The \pkg{surveillance} package defines methods for matrices, \code{"epidataCS"}, and a default method for numeric vectors. } \usage{ untie(x, amount, ...) \method{untie}{epidataCS}(x, amount = list(t=NULL, s=NULL), minsep = list(t=0, s=0), direction = "left", keep.sources = FALSE, ..., verbose = FALSE) \method{untie}{matrix}(x, amount = NULL, minsep = 0, constraint = NULL, giveup = 1000, ...) \method{untie}{default}(x, amount = NULL, minsep = 0, direction = c("symmetric", "left", "right"), sort = NULL, giveup = 1000, ...) } \arguments{ \item{x}{ the data to be untied. } \item{amount}{ upper bound for the random amount by which data are shifted. \code{NULL} means to use a data-driven default, which equals the minimum separation of the data points for the non-symmetric default method and its half for the symmetric default method and the \code{matrix} method. For numeric vectors (default method), the jittered version is the same as for \code{jitter(x, amount=amount)} if \code{direction="symmetric"} (and \code{amount} is non-\code{NULL}), and \code{x} \dQuote{+-} \code{runif(length(x), 0, amount)} (otherwise).\cr For matrices, a vector uniformly drawn from the disc with radius \code{amount} is added to each point (row).\cr For \code{"epidataCS"}, \code{amount} is a list stating the amounts for the temporal and/or spatial dimension, respectively. It then uses the specific methods with arguments \code{constraint=x$W}, \code{direction}, and \code{sort=TRUE}. } \item{minsep}{minimum separation of jittered points. Can only be obeyed if much smaller than \code{amount} (also depending on the number of points). \code{minsep>0} is currently only implemented for the spatial (matrix) method.} \item{keep.sources}{ logical (\code{FALSE}). If \code{TRUE}, the original list of possible event sources in \code{x$events$.sources} will be preserved. For instance, events observed at the same time did by definition not trigger each other; however, after random tie-breaking one event will precede the other and considered as a potential source of infection for the latter, although it could just as well be the other way round. Enabling \code{keep.sources} will use the \code{.sources} list from the original (tied) \code{"epidataCS"} object. Note, however, that an update is forced within \code{twinstim} if a subset of the data is selected for model fitting or if a different \code{qmatrix} is supplied. } \item{constraint}{ an object of class \code{"\linkS4class{SpatialPolygons}"} representing the domain which the points of the matrix should belong to -- before and after jittering. } \item{giveup}{number of attempts after which the algorithm should stop trying to generate new points.} \item{direction}{ one of \code{"symmetric"} (default), \code{"left"}, or \code{"right"}, indicating in which direction vector elements should be shifted. } \item{sort}{ logical indicating if the jittered vector should be sorted. Defaults to doing so if the original vector was already sorted. } \item{\dots}{ For the \code{"epidataCS"}-method: arguments passed to the \code{matrix}- or \code{default}-method (\code{giveup}). Unused in other methods. } \item{verbose}{logical passed to \code{\link{as.epidataCS}}.} } \value{ the untied (jittered) data. } \author{ Sebastian Meyer } \seealso{ \code{\link{jitter}} } \examples{ # vector example set.seed(123) untie(c(rep(1,3), rep(1.2, 4), rep(3,3)), direction="left", sort=FALSE) # spatial example data(imdepi) coords <- coordinates(imdepi$events) table(duplicated(coords)) plot(coords, cex=sqrt(multiplicity(coords))) set.seed(1) coords_untied <- untie(coords) stopifnot(!anyDuplicated(coords_untied)) points(coords_untied, col=2) # shifted by very small amount in this case } \keyword{utilities} \keyword{manip} \keyword{dplot} surveillance/man/magic.dim.Rd0000644000175100001440000000140013122471774015661 0ustar hornikusers\name{magic.dim} \alias{magic.dim} \title{Returns a suitable k1 x k2 for plotting the disProgObj} \description{ For a given number \code{k} \code{magic.dim} provides a vector containing two elements, the number of rows (k1) and columns (k2), respectively, which can be used to set the dimension of a single graphic device so that k1*k2 plots can be drawn by row (or by column) on the device. } \usage{ magic.dim(k) } \arguments{ \item{k}{an integer} } \value{vector with two elements} \seealso{ \code{\link{primeFactors}} and \code{\link{bestCombination}} which are internally used to complete the task. \code{\link{n2mfrow}} is a similar function from package \pkg{grDevices}. } \keyword{dplot} \keyword{utilities} surveillance/man/algo.farrington.fitGLM.Rd0000644000175100001440000000560313122471774020255 0ustar hornikusers\name{algo.farrington.fitGLM} \alias{algo.farrington.fitGLM} \alias{algo.farrington.fitGLM.fast} \alias{algo.farrington.fitGLM.populationOffset} \title{Fit Poisson GLM of the Farrington procedure for a single time point} \description{ The function fits a Poisson regression model (GLM) with mean predictor \deqn{\log \mu_t = \alpha + \beta t}{ log mu_t = alpha + beta * t} as specified by the Farrington procedure. If requested, Anscombe residuals are computed based on an initial fit and a 2nd fit is made using weights, where base counts suspected to be caused by earlier outbreaks are downweighted. } \usage{ algo.farrington.fitGLM(response, wtime, timeTrend = TRUE, reweight = TRUE, ...) algo.farrington.fitGLM.fast(response, wtime, timeTrend = TRUE, reweight = TRUE, ...) algo.farrington.fitGLM.populationOffset(response, wtime, population, timeTrend=TRUE,reweight=TRUE, ...) } \arguments{ \item{response}{The vector of observed base counts} \item{wtime}{Vector of week numbers corresponding to \code{response}} \item{timeTrend}{Boolean whether to fit the \eqn{\beta t}{beta*t} or not} \item{reweight}{Fit twice -- 2nd time with Anscombe residuals} \item{population}{Population size. Possibly used as offset, i.e. in \code{algo.farrington.fitGLM.populationOffset} the value \code{log(population)} is used as offset in the linear predictor of the GLM: \deqn{\log \mu_t = \log(\texttt{population}) + \alpha + \beta t}{ log mu_t = log(population) alpha + beta * t} This provides a way to adjust the Farrington procedure to the case of greatly varying populations. Note: This is an experimental implementation with methodology not covered by the original paper. } \item{\dots}{Used to catch additional arguments, currently not used.} } \details{ Compute weights from an initial fit and rescale using Anscombe based residuals as described in the \code{\link{anscombe.residuals}} function. Note that \code{algo.farrington.fitGLM} uses the \code{glm} routine for fitting. A faster alternative is provided by \code{algo.farrington.fitGLM.fast} which uses the \code{glm.fit} function directly (thanks to Mikko Virtanen). This saves computational overhead and increases speed for 500 monitored time points by a factor of approximately two. However, some of the routine \code{glm} functions might not work on the output of this function. Which function is used for \code{algo.farrington} can be controlled by the \code{control$fitFun} argument. } \value{ an object of class GLM with additional fields \code{wtime}, \code{response} and \code{phi}. If the \code{glm} returns without convergence \code{NULL} is returned. } \seealso{\code{\link{anscombe.residuals}},\code{\link{algo.farrington}}} \keyword{regression} surveillance/man/m1.Rd0000644000175100001440000000440013174712261014345 0ustar hornikusers\name{m1} \alias{m1} \alias{h1_nrwrp} \alias{k1} \alias{m2} \alias{m3} \alias{m4} \alias{m5} \alias{n1} \alias{n2} \alias{q1_nrwh} \alias{q2} \alias{s1} \alias{s2} \alias{s3} \docType{data} \encoding{latin1} \title{RKI SurvStat Data} \description{ 14 datasets for different diseases beginning in 2001 to the 3rd Quarter of 2004 including their defined outbreaks. \itemize{ \item \code{m1} 'Masern' in the 'Landkreis Nordfriesland' (Germany, Schleswig-Holstein) \item \code{m2} 'Masern' in the 'Stadt- und Landkreis Coburg' (Germany, Bayern) \item \code{m3} 'Masern' in the 'Kreis Leer' (Germany, Niedersachsen) \item \code{m4} 'Masern' in the 'Stadt- und Landkreis Aachen' (Germany, Nordrhein-Westfalen) \item \code{m5} 'Masern' in the 'Stadt Verden' (Germany, Niedersachsen) \item \code{q1\_nrwh} 'Q-Fieber' in the 'Hochsauerlandkreis' (Germany, Westfalen) and in the 'Landkreis Waldeck-Frankenberg' (Germany, Hessen) \item \code{q2} 'Q-Fieber' in '\enc{München}{Muenchen}' (Germany, Bayern) \item \code{s1} 'Salmonella Oranienburg' in Germany \item \code{s2} 'Salmonella Agona' in 12 'Bundesl\enc{ä}{ae}ndern' of Germany \item \code{s3} 'Salmonella Anatum' in Germany \item \code{k1} 'Kryptosporidiose' in Germany, 'Baden-W\enc{ü}{ue}rttemberg' \item \code{n1} 'Norovirus' in 'Stadtkreis Berlin Mitte' (Germany, Berlin) \item \code{n2} 'Norovirus' in 'Torgau-Oschatz' (Germany, Sachsen) \item \code{h1\_nrwrp} 'Hepatitis A' in 'Oberbergischer Kreis, Olpe, Rhein-Sieg-kreis' (Germany, Nordrhein-Westfalen) and 'Siegenwittgenstein Altenkirchen' (Germany, Rheinland-Pfalz) } } \usage{data(m1)} \format{ \code{disProg} objects each containing 209 observations (weekly on 52 weeks) \describe{ \item{observed}{Number of counts in the corresponding week} \item{state}{Boolean whether there was an outbreak.} } } \source{ Robert Koch-Institut: SurvStat: \url{https://survstat.rki.de/}; m1 and m3 were queried on 10 November 2004. The rest during September 2004. } \seealso{\code{\link{readData}}} \examples{ data(k1) survResObj <- algo.rki1(k1, control=list(range=27:192)) plot(survResObj, "RKI 1", "k1", firstweek=27, startyear=2002) } \keyword{datasets} surveillance/man/imdepifit.Rd0000644000175100001440000000214213165516007016003 0ustar hornikusers\name{imdepifit} \alias{imdepifit} \docType{data} \title{ Example \code{twinstim} Fit for the \code{imdepi} Data } \description{ \code{data("imdepifit")} is a \code{\link{twinstim}} model fitted to the \code{\link{imdepi}} data. } \usage{data("imdepifit")} \format{ an object of class \code{"\link{twinstim}"} } \seealso{ common methods for \code{"twinstim"} fits, exemplified using \code{imdepifit}, e.g., \code{\link{summary.twinstim}}, \code{\link{plot.twinstim}}, and \code{\link{simulate.twinstim}} } \examples{ data("imdepi", "imdepifit") \dontrun{ ## reproduce "imdepifit" myimdepifit <- twinstim( endemic = addSeason2formula(~ offset(log(popdensity)) + I(start/365-3.5), S = 1, period = 365, timevar = "start"), epidemic = ~ type + agegrp, siaf = siaf.gaussian(), data = imdepi, subset = !is.na(agegrp), optim.args = list(control = list(reltol = sqrt(.Machine$double.eps))), ## the historical default for reltol is 1e-6, which is rather large model = FALSE, cumCIF = FALSE ) stopifnot(all.equal(imdepifit, myimdepifit)) } } \keyword{datasets} surveillance/man/twinSIR_cox.Rd0000644000175100001440000000134312672347154016252 0ustar hornikusers\name{twinSIR_cox} \alias{cox} \title{ Identify Endemic Components in an Intensity Model } \description{ The special function \code{cox} marks terms in formulae of the functions \code{\link{twinSIR}} and \code{\link{simEpidata}} as endemic components, i.e. variables acting multiplicatively on the baseline infection intensity. An illustrative \code{twinSIR} call with two epidemic and two endemic covariates is: \code{twinSIR(~B1 + B2 + cox(vaccination) + cox(size), data=myEpidata)}. Technically, this function is implemented as \code{function(x) {x}} and defined as \dQuote{special} in \code{\link{terms.formula}}. } \seealso{ Usage in formulae of functions \code{\link{twinSIR}} and \code{\link{simEpidata}}. } \keyword{internal} surveillance/man/twinstim_simEndemicEvents.Rd0000644000175100001440000000356113165702123021233 0ustar hornikusers\name{twinstim_simEndemicEvents} \alias{simEndemicEvents} \title{ Quick Simulation from an Endemic-Only \code{twinstim} } \description{ In \emph{endemic-only} \code{\link{twinstim}} models, the conditional intensity is a piecewise constant function independent from the history of the process. This allows for a much more efficient simulation algorithm than via Ogata's modified thinning as in the general \code{\link{simulate.twinstim}} method. } \usage{ simEndemicEvents(object, tiles) } \arguments{ \item{object}{ an object of class \code{"\link{twinstim}"} (with the \code{model} component retained; otherwise try \code{object <- \link[=update.twinstim]{update}(object, model = TRUE)}). } \item{tiles}{ an object inheriting from \code{"\linkS4class{SpatialPolygons}"}, which represents the tiles of the original data's \code{stgrid} (see, e.g., \code{levels(environment(object)$gridTiles)}). } } \value{ a \code{\linkS4class{SpatialPointsDataFrame}} } \author{ Sebastian Meyer } \seealso{ the general simulation method \code{\link{simulate.twinstim}} } \examples{ data("imdepi", "imdepifit") load(system.file("shapes", "districtsD.RData", package="surveillance")) ## Fit an endemic-only twinstim() m_noepi <- update(imdepifit, epidemic = ~0, siaf = NULL, model = TRUE) ## Simulate events from the above endemic model set.seed(1) s1 <- simEndemicEvents(m_noepi, tiles = districtsD) class(s1) # just a "SpatialPointsDataFrame" summary(s1) plot(s1, col = s1$type, cex = 0.5); plot(imdepi$W, lwd = 2, add = TRUE) \dontrun{ ## the general simulation method takes several seconds s0 <- simulate(m_noepi, seed = 1, data = imdepi, tiles = districtsD) class(s0) # gives a full "simEpidataCS" with several methods applicable methods(class = "epidataCS") plot(s0, "time") plot(s0, "space", points.args = list(pch = 3), lwd = 2) } } \keyword{datagen} \keyword{models} surveillance/man/intensityplot.Rd0000644000175100001440000000130712061471523016755 0ustar hornikusers\name{intensityplot} \alias{intensityplot} \title{ Plot Paths of Point Process Intensities } \description{ Generic function for plotting paths of point process intensities. Methods currently defined in package \pkg{surveillance} are for classes \code{"twinSIR"} and \code{"simEpidata"} (temporal), as well as \code{"twinstim"} and \code{"simEpidataCS"} (spatio-temporal). } \usage{ intensityplot(x, ...) } \arguments{ \item{x}{ An object for which an \code{intensityplot} method is defined. } \item{\dots}{ Arguments passed to the corresponding method. } } \seealso{ The methods \code{\link{intensityplot.twinSIR}} and \code{\link{intensityplot.twinstim}}. } \keyword{hplot} surveillance/man/xtable.algoQV.Rd0000644000175100001440000000217013122471774016505 0ustar hornikusers\name{xtable.algoQV} \alias{xtable.algoQV} \title{Xtable quality value object} \description{xtable a single quality value object in a nicely formatted way} \usage{ \method{xtable}{algoQV}(x,caption = NULL, label = NULL, align = NULL, digits = NULL, display = NULL, ...) } \arguments{ \item{x}{Quality Values object generated with \code{quality}} \item{caption}{See \code{\link[xtable]{xtable}}} \item{label}{See \code{\link[xtable]{xtable}}} \item{align}{See \code{\link[xtable]{xtable}}} \item{digits}{See \code{\link[xtable]{xtable}}} \item{display}{See \code{\link[xtable]{xtable}}} \item{...}{Further arguments (see \code{\link[xtable]{xtable})}} } \keyword{print} \seealso{ \code{\link[xtable]{xtable}}} \examples{ # Create a test object disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 200, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) # Let this object be tested from rki1 survResObj <- algo.rki1(disProgObj, control = list(range = 50:200)) # Compute the quality values in a nice formatted way xtable(algo.quality(survResObj)) } surveillance/man/twinstim_methods.Rd0000644000175100001440000001666513122471774017455 0ustar hornikusers\name{twinstim_methods} \alias{print.twinstim} \alias{summary.twinstim} \alias{coeflist.twinstim} \alias{vcov.twinstim} \alias{logLik.twinstim} \alias{nobs.twinstim} \alias{print.summary.twinstim} \alias{toLatex.summary.twinstim} \alias{xtable.twinstim} \alias{xtable.summary.twinstim} \title{ Print, Summary and Extraction Methods for \code{"twinstim"} Objects } \description{ Besides \code{\link{print}} and \code{\link{summary}} methods there are also some standard extraction methods defined for objects of class \code{"twinstim"}: \code{\link{vcov}}, \code{\link{logLik}}, and \code{\link{nobs}}. This also enables the use of, e.g., \code{\link{confint}} and \code{\link{AIC}}. The model \code{summary} can be exported to LaTeX by the corresponding \code{\link{toLatex}} or \code{\link{xtable}} methods. } \usage{ \method{print}{twinstim}(x, digits = max(3, getOption("digits") - 3), ...) \method{summary}{twinstim}(object, test.iaf = FALSE, correlation = FALSE, symbolic.cor = FALSE, runtime = FALSE, ...) \method{coeflist}{twinstim}(x, ...) \method{vcov}{twinstim}(object, ...) \method{logLik}{twinstim}(object, ...) \method{nobs}{twinstim}(object, ...) \method{print}{summary.twinstim}(x, digits = max(3, getOption("digits") - 3), symbolic.cor = x$symbolic.cor, signif.stars = getOption("show.signif.stars"), ...) \method{toLatex}{summary.twinstim}(object, digits = max(3, getOption("digits") - 3), eps.Pvalue = 1e-4, align = "lrrrr", booktabs = getOption("xtable.booktabs", FALSE), withAIC = FALSE, ...) \method{xtable}{summary.twinstim}(x, caption = NULL, label = NULL, align = c("l", "r", "r", "r"), digits = 3, display = c("s", "f", "s", "s"), ..., ci.level = 0.95, ci.fmt = "\%4.2f", ci.to = "--", eps.Pvalue = 1e-4) } \arguments{ \item{x, object}{an object of class \code{"twinstim"} or \code{"summary.twinstim"}, respectively.} \item{digits}{ integer, used for number formatting with \code{signif()}. Minimum number of significant digits to be printed in values. } \item{test.iaf}{logical indicating if the simple Wald z- and p-values should be calculated for parameters of the interaction functions \code{siaf} and \code{tiaf}. Because it is often invalid or meaningless to do so, the default is \code{FALSE}. } \item{correlation}{ logical. If \code{TRUE}, the correlation matrix of the estimated parameters is returned and printed. } \item{symbolic.cor}{ logical. If \code{TRUE}, print the correlations in a symbolic form (see \code{symnum}) rather than as numbers. } \item{runtime}{ logical. If \code{TRUE}, the summary additionally includes the time elapsed and the number of log-likelihood and score function evaluations during model fitting. } \item{signif.stars}{logical. If \code{TRUE}, \dQuote{significance stars} are printed for each coefficient.} \item{eps.Pvalue}{passed to \code{\link{format.pval}}.} \item{booktabs}{logical indicating if the \code{toprule}, \code{midrule} and \code{bottomrule} commands from the LaTeX package \pkg{booktabs} should be used for horizontal lines rather than \code{hline}.} \item{withAIC}{logical indicating if the AIC and the log-likelihood of the model should be included below the table of coefficients in the LaTeX tabular.} \item{caption,label,align,display}{see \code{\link{xtable}}.} \item{ci.level,ci.fmt,ci.to}{the confidence intervals are calculated at level \code{ci.level} and printed using \code{\link{sprintf}} with format \code{ci.fmt} and separator \code{ci.to}.} \item{\dots}{ For \code{print.summary.twinstim}, arguments passed to \code{\link{printCoefmat}}.\cr For all other methods: unused (argument of the generic). } } \details{ The estimated coefficients and standard Wald-type confidence intervals can be extracted using the default \code{\link{coef}} and \code{\link{confint}} methods from package \pkg{stats}. Note, however, that there is the useful \code{\link{coeflist}} method to list the coefficients by model component. The \code{print} and \code{summary} methods allow the compact or comprehensive representation of the fitting results, respectively. The former only prints the original function call, the estimated coefficients and the maximum log-likelihood value. The latter prints the whole coefficient matrix with standard errors, z- and p-values (see \code{\link{printCoefmat}}) -- separately for the endemic and the epidemic component -- and additionally the AIC, the achieved log-likelihood, the number of log-likelihood and score evaluations, and the runtime. They both append a big \dQuote{WARNING}, if the optimization algorithm did not converge. The \code{toLatex} method is essentially a translation of the printed summary table of coefficients to LaTeX code (using \pkg{xtable}). However, the \code{xtable} method does a different job in that it first converts coefficients to rate ratios (RR, i.e., the \code{exp}-transformation) and gives confidence intervals for those instead of standard errors and z-values. Intercepts and interaction function parameters are ignored by the \code{xtable} method. } \value{ The \code{print} methods return their first argument, invisibly, as they always should. The \code{vcov} method returns the estimated variance-covariance matrix of the parameters, which is the inverse of \code{object$fisherinfo} (estimate of the \emph{expected} Fisher information matrix). This \code{"fisherinfo"} is not always available (see \code{\link{twinstim}}), in which case \code{object$fisherinfo.observed} is used if available or an error is returned otherwise. The \code{logLik} and \code{nobs} methods return the maximum log-likelihood value of the model, and the number of events (excluding events of the pre-history), respectively. The \code{summary} method returns a list containing some summary statistics of the model, which is nicely printed by the corresponding \code{print} method. The \code{toLatex} method returns a character vector of class \code{"Latex"}, each element containing one line of LaTeX code (see \code{\link{print.Latex}}). The \code{xtable} method returns an object of class \code{"\link{xtable}"}. Note that the column name of the confidence interval, e.g. \dQuote{95\% CI}, contains the percent symbol that may need to be escaped when printing the \code{"xtable"} in the output format (see \code{sanitize.text.function} in \code{\link{print.xtable}}). This may also hold for row names. } \author{ Sebastian Meyer } \examples{ # load a fit of the 'imdepi' data, see the example in ?twinstim data("imdepifit") # print method imdepifit # extract point estimates (in a single vector or listed by model component) coef(imdepifit) coeflist(imdepifit) # variance-covariance matrix of endemic parameters # (inverse of expected Fisher information) unname(vcov(imdepifit)[1:4,1:4]) # the default confint() method may be used for Wald CI's confint(imdepifit, parm="e.typeC", level=0.95) # log-likelihood and AIC of the fitted model logLik(imdepifit) AIC(imdepifit) nobs(imdepifit) # produce a summary with parameter correlations and runtime information (s <- summary(imdepifit, correlation=TRUE, symbolic.cor=TRUE, runtime=TRUE)) # create LaTeX code of coefficient table toLatex(s, withAIC=FALSE) # or using the xtable-method (which produces rate ratios) xtable(s) } \keyword{methods} \keyword{print} \keyword{htest} surveillance/man/formatPval.Rd0000644000175100001440000000152712536544321016153 0ustar hornikusers\name{formatPval} \alias{formatPval} \title{ Pretty p-Value Formatting } \description{ Just \acronym{yapf} -- yet another p-value formatter... It is a wrapper around \code{\link{format.pval}}, such that by default \code{eps = 1e-4}, \code{scientific = FALSE}, \code{digits = if (p<10*eps) 1 else 2}, and \code{nsmall = 2}. } \usage{ formatPval(pv, eps = 1e-4, scientific = FALSE, ...) } \arguments{ \item{pv}{a numeric vector (of p-values).} \item{eps}{a numerical tolerance, see \code{\link{format.pval}}.} \item{scientific}{see \code{\link{format}}.} \item{\dots}{further arguments passed to \code{\link{format.pval}} (but \code{digits} and \code{nsmall} are hard-coded internally).} } \value{ The character vector of formatted p-values. } \examples{ formatPval(c(0.9, 0.13567, 0.0432, 0.000546, 1e-8)) } \keyword{print} surveillance/man/create.grid.Rd0000644000175100001440000000461513165505075016232 0ustar hornikusers\name{create.grid} \alias{create.grid} \title{Create a Matrix of Initial Values for \code{algo.hhh.grid}} \description{ (An auxiliary function for the \strong{deprecated} HHH estimation routine \code{\link{algo.hhh.grid}}; use \code{\link{hhh4}} instead.) For a given model and a list of parameters specified as \code{param = c(lower,upper,length)}, \code{create.grid} creates a grid of initial values for \code{algo.hhh.grid}. The resulting matrix contains all combinations of the supplied parameters which each are a sequence of length \code{length} from \code{lower} to \code{upper}. Note that the autoregressive parameters \eqn{\lambda, \phi} and the overdispersion parameter \eqn{\psi} must be positive. Only one sequence of initial values is considered for the autoregressive, endemic and overdispersion parameters to create the grid, e.g. initial values are the same for each one of the seasonal and trend parameters. } \usage{ create.grid(disProgObj, control, params = list(epidemic = c(0.1, 0.9, 5), endemic=c(-0.5,0.5,3), negbin = c(0.3, 12, 10))) } \arguments{ \item{disProgObj}{object of class \code{disProg} } \item{control}{specified model} \item{params}{list of parameters: \code{param=c(lower,upper,length)} \itemize{ \item \code{epidemic} autoregressive parameters \eqn{\lambda} and \eqn{\phi}. \item \code{endemic} trend and seasonal parameters \eqn{\beta, \gamma_j}. \item \code{negbin} overdispersion parameter for negative binomial model \eqn{\psi}. } } } \value{ \item{matrix}{matrix with \code{gridSize} starting values as rows} } \seealso{\code{\link{algo.hhh.grid}}} \author{M. Paul} \examples{ # simulate data set.seed(123) disProgObj <- simHHH(control = list(coefs = list(alpha =-0.5, gamma = 0.4, delta = 0.6)),length=300)$data # consider the model specified in a control object for algo.hhh.grid cntrl1 <- list(lambda=TRUE, neighbours=TRUE, linear=TRUE, nseason=1) cntrl2 <- list(lambda=TRUE, negbin="single") # create a grid of initial values for respective parameters grid1 <- create.grid(disProgObj, cntrl1, params = list(epidemic=c(0.1,0.9,3), endemic=c(-1,1,3))) grid2 <- create.grid(disProgObj, cntrl2, params = list(epidemic=c(0.1,0.9,5), negbin=c(0.3,12,10))) } \keyword{misc} surveillance/man/knox.Rd0000644000175100001440000001542513167627444015032 0ustar hornikusers\name{knox} \alias{knox} \alias{plot.knox} \alias{toLatex.knox} \title{ Knox Test for Space-Time Interaction } \description{ Given temporal and spatial distances as well as corresponding critical thresholds defining what \dQuote{close} means, the function \code{knox} performs Knox (1963, 1964) test for space-time interaction. The corresponding p-value can be calculated either by the Poisson approximation or by a Monte Carlo permutation approach (Mantel, 1967) with support for parallel computation via \code{\link{plapply}}. There is a simple \code{plot}-method showing a \code{\link{truehist}} of the simulated null distribution together with the expected and observed values. This implementation of the Knox test is due to Meyer et al. (2016). } \usage{ knox(dt, ds, eps.t, eps.s, simulate.p.value = TRUE, B = 999, ...) \method{plot}{knox}(x, ...) } \arguments{ \item{dt,ds}{ numeric vectors containing temporal and spatial distances, respectively. Logical vectors indicating temporal/spatial closeness may also be supplied, in which case \code{eps.t}/\code{eps.s} is ignored. To test for space-time interaction in a single point pattern of \eqn{n} events, these vectors should be of length \eqn{n*(n-1)/2} and contain the pairwise event distances (e.g., the lower triangle of the distance matrix, such as in \code{"\link{dist}"} objects). Note that there is no special handling of matrix input, i.e., if \code{dt} or \code{ds} are matrices, all elements are used (but a warning is given if a symmetric matrix is detected). } \item{eps.t,eps.s}{ Critical distances defining closeness in time and space, respectively. Distances lower than or equal to the critical distance are considered \dQuote{"close"}. } \item{simulate.p.value}{ logical indicating if a Monte Carlo permutation test should be performed (as per default). Do not forget to set the \code{\link{.Random.seed}} via an extra \code{.seed} argument if reproducibility is required (see the \dots arguments below). If \code{simulate.p.value = FALSE}, the Poisson approximation is used (but see the note below). } \item{B}{ number of permutations for the Monte Carlo approach. } \item{\dots}{ arguments configuring \code{\link{plapply}}: \code{.parallel}, \code{.seed}, and \code{.verbose}. By default, no parallelization is performed (\code{.parallel = 1}), and a progress bar is shown (\code{.verbose = TRUE}).\cr For the \code{plot}-method, further arguments passed to \code{\link{truehist}}. } \item{x}{ an object of class \code{"knox"} as returned by the \code{knox} test. } } \note{ The Poisson approximation works well if the proportions of close pairs in both time and space are small (Kulldorff and Hjalmars, 1999), otherwise the Monte Carlo permutation approach is recommended. } \value{ an object of class \code{"knox"} (inheriting from \code{"htest"}), which is a list with the following components: \item{method}{a character string indicating the type of test performed, and whether the Poisson approximation or Monte Carlo simulation was used.} \item{data.name}{a character string giving the supplied \code{dt} and \code{ds} arguments.} \item{statistic}{the number of close pairs.} \item{parameter}{if \code{simulate.p.value = TRUE}, the number \code{B} of permutations, otherwise the \code{lambda} parameter of the Poisson distribution, i.e., the same as \code{null.value}.} \item{p.value}{the p-value for the test. In case \code{simulate.p.value = TRUE}, the p-value from the Poisson approximation is still attached as an attribute \code{"Poisson"}.} \item{alternative}{the character string \code{"greater"} (this is a one-sided test).} \item{null.value}{the expected number of close pairs in the absence of space-time interaction.} \item{table}{the contingency table of \code{dt <= eps.t} and \code{ds <= eps.s}.} The \code{plot}-method invisibly returns \code{NULL}. A \code{toLatex}-method exists, which generates LaTeX code for the contingency table associated with the Knox test. } \author{ Sebastian Meyer } \seealso{ The function \code{mantel.randtest} in package \pkg{ade4} implements Mantel's (1967) space-time interaction test, i.e., using the Pearson correlation between the spatial and temporal distances of all event pairs as the test statistic, and assessing statistical significance using a Monte Carlo permutation approach as with \code{simulate.p.value} here in the \code{knox} function. To combine information from different scales \code{eps.t} and \code{eps.s} while also handling edge effects, the space-time K-function test available via \code{\link{stKtest}} can be used. Function \code{\link{epitest}} tests epidemicity in a \code{"\link{twinstim}"} point process model. } \references{ Knox, G. (1963): Detection of low intensity epidemicity: application to cleft lip and palate. \emph{British Journal of Preventive & Social Medicine}, \bold{17}, 121-127. Knox, E. G. (1964): The detection of space-time interactions. \emph{Journal of the Royal Statistical Society. Series C (Applied Statistics)}, \bold{13}, 25-30. Kulldorff, M. and Hjalmars, U. (1999): The Knox method and other tests for space-time interaction. \emph{Biometrics}, \bold{55}, 544-552. Mantel, N. (1967): The detection of disease clustering and a generalized regression approach. \emph{Cancer Research}, \bold{27}, 209-220. Meyer, S., Warnke, I., R\enc{ö}{oe}ssler, W. and Held, L. (2016): Model-based testing for space-time interaction using point processes: An application to psychiatric hospital admissions in an urban area. \emph{Spatial and Spatio-temporal Epidemiology}, \bold{17}, 15-25. \doi{10.1016/j.sste.2016.03.002}. Eprint: \url{http://arxiv.org/abs/1512.09052}. } \examples{ data("imdepi") imdepiB <- subset(imdepi, type == "B") ## Perfom the Knox test using the Poisson approximation knoxtest <- knox( dt = dist(imdepiB$events$time), eps.t = 30, ds = dist(coordinates(imdepiB$events)), eps.s = 50, simulate.p.value = FALSE ) knoxtest ## The Poisson approximation works well for these data since ## the proportion of close pairs is rather small (204/56280). ## contingency table in LaTeX toLatex(knoxtest) if (surveillance.options("allExamples")) { ## Obtain the p-value via a Monte Carlo permutation test, ## where the permutations can be computed in parallel ## (using forking on Unix-alikes and a cluster on Windows, see ?plapply) knoxtestMC <- knox( dt = dist(imdepiB$events$time), eps.t = 30, ds = dist(coordinates(imdepiB$events)), eps.s = 50, simulate.p.value = TRUE, B = 999, .parallel = 2, .seed = 1, .verbose = FALSE ) knoxtestMC plot(knoxtestMC) } } \keyword{htest} surveillance/man/pairedbinCUSUM.Rd0000644000175100001440000001465613157045136016621 0ustar hornikusers\name{pairedbinCUSUM} \alias{pairedbinCUSUM} \alias{pairedbinCUSUM.runlength} \alias{pairedbinCUSUM.LLRcompute} \encoding{latin1} \title{Paired binary CUSUM and its run-length computation} \description{ CUSUM for paired binary data as described in Steiner et al. (1999). } \usage{ pairedbinCUSUM(stsObj, control = list(range=NULL,theta0,theta1, h1,h2,h11,h22)) pairedbinCUSUM.runlength(p,w1,w2,h1,h2,h11,h22, sparse=FALSE) } \arguments{ \item{stsObj}{Object of class \code{sts} containing the paired responses for each of the, say n, patients. The observed slot of \code{stsObj} is thus a \eqn{n \times 2}{n x 2} matrix.} \item{control}{Control object as a list containing several parameters. \itemize{ \item{\code{range}}{Vector of indices in the observed slot to monitor.} \item{\code{theta0}}{In-control parameters of the paired binary CUSUM.} \item{\code{theta1}}{Out-of-control parameters of the paired binary CUSUM.} \item{\code{h1}}{Primary control limit (=threshold) of 1st CUSUM.} \item{\code{h2}}{Primary control limit (=threshold) of 2nd CUSUM.} \item{\code{h11}}{Secondary limit for 1st CUSUM.} \item{\code{h22}}{Secondary limit for 2nd CUSUM.} } } \item{p}{Vector giving the probability of the four different possible states, i.e. c((death=0,near-miss=0),(death=1,near-miss=0), (death=0,near-miss=1),(death=1,near-miss=1)).} \item{w1}{The parameters \code{w1} and \code{w2} are the sample weights vectors for the two CUSUMs, see eqn. (2) in the paper. We have that \code{w1} is equal to deaths } \item{w2}{As for \code{w1}} \item{h1}{decision barrier for 1st individual cusums} \item{h2}{decision barrier for 2nd cusums} \item{h11}{together with \code{h22} this makes up the joing decision barriers} \item{h22}{together with \code{h11} this makes up the joing decision barriers} \item{sparse}{Boolean indicating whether to use sparse matrix computations from the \code{Matrix} library (usually much faster!). Default: \code{FALSE}.} } \details{ For details about the method see the Steiner et al. (1999) reference listed below. Basically, two individual CUSUMs are run each based on a logistic regression model. The combined CUSUM not only signals if one of its two individual CUSUMs signals, but also if the two CUSUMs simultaneously cross the secondary limits. } \seealso{\code{\link{categoricalCUSUM}}} \value{An \code{sts} object with \code{observed}, \code{alarm}, etc. slots trimmed to the \code{control$range} indices. } \references{ Steiner, S. H., Cook, R. J., and Farewell, V. T. (1999), Monitoring paired binary surgical outcomes using cumulative sum charts, Statistics in Medicine, 18, pp. 69--86. } \examples{ #Set in-control and out-of-control parameters as in paper theta0 <- c(-2.3,-4.5,2.5) theta1 <- c(-1.7,-2.9,2.5) #Small helper function to compute the paired-binary likelihood #of the length two vector yz when the true parameters are theta dPBin <- function(yz,theta) { exp(dbinom(yz[1],size=1,prob=plogis(theta[1]),log=TRUE) + dbinom(yz[2],size=1,prob=plogis(theta[2]+theta[3]*yz[1]),log=TRUE)) } #Likelihood ratio for all four possible configurations p <- c(dPBin(c(0,0), theta=theta0), dPBin(c(0,1), theta=theta0), dPBin(c(1,0), theta=theta0), dPBin(c(1,1), theta=theta0)) #Compute ARL using non-sparse matrix operations \dontrun{ pairedbinCUSUM.runlength(p,w1=c(-1,37,-9,29),w2=c(-1,7),h1=70,h2=32,h11=38,h22=17) } #Sparse computations don't work on all machines (e.g. the next line #might lead to an error. If it works this call can be considerably (!) faster #than the non-sparse call. \dontrun{ pairedbinCUSUM.runlength(p,w1=c(-1,37,-9,29),w2=c(-1,7),h1=70,h2=32, h11=38,h22=17,sparse=TRUE) } #Use paired binary CUSUM on the De Leval et al. (1994) arterial switch #operation data on 104 newborn babies data("deleval") #Switch between death and near misses observed(deleval) <- observed(deleval)[,c(2,1)] #Run paired-binary CUSUM without generating alarms. pb.surv <- pairedbinCUSUM(deleval,control=list(theta0=theta0, theta1=theta1,h1=Inf,h2=Inf,h11=Inf,h22=Inf)) plot(pb.surv, xaxis.labelFormat=NULL, ylab="CUSUM Statistic") ###################################################################### #Scale the plots so they become comparable to the plots in Steiner et #al. (1999). To this end a small helper function is defined. ###################################################################### ###################################################################### #Log LR for conditional specification of the paired model ###################################################################### LLR.pairedbin <- function(yz,theta0, theta1) { #In control alphay0 <- theta0[1] ; alphaz0 <- theta0[2] ; beta0 <- theta0[3] #Out of control alphay1 <- theta1[1] ; alphaz1 <- theta1[2] ; beta1 <- theta1[3] #Likelihood ratios llry <- (alphay1-alphay0)*yz[1]+log(1+exp(alphay0))-log(1+exp(alphay1)) llrz <- (alphaz1-alphaz0)*yz[2]+log(1+exp(alphaz0+beta0*yz[1]))- log(1+exp(alphaz1+beta1*yz[1])) return(c(llry=llry,llrz=llrz)) } val <- expand.grid(0:1,0:1) table <- t(apply(val,1, LLR.pairedbin, theta0=theta0, theta1=theta1)) w1 <- min(abs(table[,1])) w2 <- min(abs(table[,2])) S <- upperbound(pb.surv) / cbind(rep(w1,nrow(observed(pb.surv))),w2) #Show results par(mfcol=c(2,1)) plot(1:nrow(deleval),S[,1],type="l",main="Near Miss",xlab="Patient No.", ylab="CUSUM Statistic") lines(c(0,1e99), c(32,32),lty=2,col=2) lines(c(0,1e99), c(17,17),lty=2,col=3) plot(1:nrow(deleval),S[,2],type="l",main="Death",xlab="Patient No.", ylab="CUSUM Statistic") lines(c(0,1e99), c(70,70),lty=2,col=2) lines(c(0,1e99), c(38,38),lty=2,col=3) ###################################################################### # Run the CUSUM with thresholds as in Steiner et al. (1999). # After each alarm the CUSUM statistic is set to zero and # monitoring continues from this point. Triangles indicate alarm # in the respective CUSUM (nearmiss or death). If in both # simultaneously then an alarm is caued by the secondary limits. ###################################################################### pb.surv2 <- pairedbinCUSUM(deleval,control=list(theta0=theta0, theta1=theta1,h1=70*w1,h2=32*w2,h11=38*w1,h22=17*w2)) plot(pb.surv2, xaxis.labelFormat=NULL) } \author{S. Steiner and M. \enc{Höhle}{Hoehle}} \keyword{regression} surveillance/man/epidataCS_animate.Rd0000644000175100001440000001356612665561746017416 0ustar hornikusers\encoding{latin1} \name{epidataCS_animate} \alias{animate.epidataCS} \title{ Spatio-Temporal Animation of a Continuous-Time Continuous-Space Epidemic } \description{ Function for the animation of continuous-time continuous-space epidemic data, i.e. objects inheriting from class \code{"epidataCS"}. There are three types of animation, see argument \code{time.spacing}. Besides the on-screen plotting in the interactive \R session, it is possible and recommended to redirect the animation to an off-screen graphics device using the contributed \R package \pkg{animation}. For instance, the animation can be watched and navigated in a web browser via \code{\link[animation]{saveHTML}} (see Examples). } \usage{ \method{animate}{epidataCS}(object, interval = c(0,Inf), time.spacing = NULL, nmax = NULL, sleep = NULL, legend.opts = list(), timer.opts = list(), pch = 15:18, col.current = "red", col.I = "#C16E41", col.R = "#B3B3B3", col.influence = NULL, main = NULL, verbose = interactive(), ...) } \arguments{ \item{object}{ an object inheriting from class \code{"epidataCS"}. } \item{interval}{time range of the animation.} \item{time.spacing}{ time interval for the animation steps.\cr If \code{NULL} (the default), the events are plotted sequentially by producing a snapshot at every time point where an event occurred. Thus, it is just the \emph{ordering} of the events, which is shown.\cr To plot the appearance of events proportionally to the exact time line, \code{time.spacing} can be set to a numeric value indicating the period of time between consecutive snapshots. Then, for each time point in \code{seq(0, end, by = time.spacing)} the current state of the epidemic can be seen and an additional timer indicates the current time (see \code{timer.opts} below).\cr If \code{time.spacing = NA}, then the time spacing is automatically determined in such a way that \code{nmax} snapshots result. In this case, \code{nmax} must be given a finite value. } \item{nmax}{ maximum number of snapshots to generate. The default \code{NULL} means to take the value from \code{ani.options("nmax")} if the \pkg{animation} package is available, and no limitation (\code{Inf}) otherwise. } \item{sleep}{ numeric scalar specifying the artificial pause in seconds between two time points (using \code{\link{Sys.sleep}}), or \code{NULL} (default), when this is taken from \code{ani.options("interval")} if the \pkg{animation} package is available, and set to 0.1 otherwise. Note that \code{sleep} is ignored on non-interactive devices (see \code{\link{dev.interactive}}), e.g., if generating an animation inside \pkg{animation}'s \code{\link[animation]{saveHTML}}. } \item{pch, col}{ vectors of length equal to the number of event types specifying the point symbols and colors for events to plot (in this order). The vectors are recycled if necessary. } \item{legend.opts}{ either a list of arguments passed to the \code{\link{legend}} function or \code{NULL} (or \code{NA}), in which case no legend will be plotted. All necessary arguments have sensible defaults and need not be specified. } \item{timer.opts}{ either a list of arguments passed to the \code{\link{legend}} function or \code{NULL} (or \code{NA}), in which case no timer will be plotted. All necessary arguments have sensible defaults and need not be specified, i.e. \describe{ \item{\code{x}:}{\code{"bottomright"}} \item{\code{title}:}{\code{"time"}} \item{\code{box.lty}:}{\code{0}} \item{\code{adj}:}{\code{c(0.5,0.5)}} \item{\code{inset}:}{\code{0.01}} \item{\code{bg}:}{\code{"white"}} } Note that the argument \code{legend}, which is the current time of the animation, can not be modified. } \item{col.current}{color of events when occurring (new).} \item{col.I}{color once infectious.} \item{col.R}{color event has once \dQuote{recovered}. If \code{NA}, then recovered events will not be shown.} \item{col.influence}{color with which the influence region is drawn. Use \code{NULL} (default) if no influence regions should be drawn.} \item{main}{optional main title placed above the map.} \item{verbose}{logical specifying if a (textual) progress bar should be shown during snapshot generation. This is especially useful if the animation is produced within \code{\link[animation]{saveHTML}} or similar.} \item{\dots}{ further graphical parameters passed to the plot-method of the \code{\link{SpatialPolygons-class}}. } } %\value{ % invisibly returns \code{NULL}. %} \author{ Sebastian Meyer with documentation contributions by Michael H\enc{ö}{oe}hle } \seealso{ \code{\link{plot.epidataCS}} for plotting the numbers of events by time (aggregated over space) or the locations of the events in the observation region \code{W} (aggregated over time). The contributed \R package \pkg{animation}. } \examples{ data("imdepi") imdepiB <- subset(imdepi, type == "B") # Animate the first year of type B with a step size of 7 days animate(imdepiB, interval=c(0,365), time.spacing=7, nmax=Inf, sleep=0.1) # Sequential animation of type B events during the first year animate(imdepiB, interval=c(0,365), time.spacing=NULL, sleep=0.1) # Animate the whole time range but with nmax=20 snapshots only animate(imdepiB, time.spacing=NA, nmax=20, sleep=0.1) # Such an animation can be saved in various ways using the tools of # the animation package, e.g., saveHTML() if (require("animation")) { oldwd <- setwd(tempdir()) # to not clutter up the current working dir saveHTML(animate(imdepiB, interval = c(0,365), time.spacing = 7), nmax = Inf, interval = 0.2, loop = FALSE, title = "Animation of the first year of type B events") setwd(oldwd) } } \keyword{hplot} \keyword{dynamic} \keyword{spatial} surveillance/man/twinSIR.Rd0000644000175100001440000003652213167661552015411 0ustar hornikusers\encoding{latin1} \name{twinSIR} \alias{twinSIR} \title{ Fit an Additive-Multiplicative Intensity Model for SIR Data } \description{ \code{twinSIR} is used to fit additive-multiplicative intensity models for epidemics as described in \enc{Höhle}{Hoehle} (2009). Estimation is driven by (penalized) maximum likelihood in the point process frame work. Optimization (maximization) of the (penalized) likelihood function is performed by means of \code{\link{optim}}. The implementation is illustrated in Meyer et al. (2017, Section 4), see \code{vignette("twinSIR")}. } \usage{ twinSIR(formula, data, weights, subset, knots = NULL, nIntervals = 1, lambda.smooth = 0, penalty = 1, optim.args = list(), model = TRUE, keep.data = FALSE) } \arguments{ \item{formula}{ an object of class \code{"\link{formula}"} (or one that can be coerced to that class): a symbolic description of the intensity model to be estimated. The details of the model specification are given below. } \item{data}{ an object inheriting from class \code{"\link{epidata}"}. } \item{weights}{ an optional vector of weights to be used in the fitting process. Should be \code{NULL} (the default, i.e. all observations have unit weight) or a numeric vector. } \item{subset}{ an optional vector specifying a subset of observations to be used in the fitting process. The subset \code{atRiskY == 1} is automatically chosen, because the likelihood only depends on those observations. } \item{knots}{ numeric vector or \code{NULL} (the default). Specification of the knots, where we suppose a step of the log-baseline. With the current implementation, these must be existing \code{"stop"} time points in the selected \code{subset} of the \code{data}, which is always restricted to \code{atRiskY == 1} rows. The intervals of constant log-baseline hazard rate then are \eqn{(minTime;knots_1]}, \eqn{(knots_1;knots_2]}, \ldots, \eqn{(knots_K;maxTime]}. By default, the \code{knots} are automatically chosen at the quantiles of the infection time points such that \code{nIntervals} intervals result. Non-NULL \code{knots} take precedence over \code{nIntervals}. } \item{nIntervals}{ the number of intervals of constant log-baseline hazard. Defaults to 1, which means an overall constant log-baseline hazard will be fitted. } \item{lambda.smooth}{ numeric, the smoothing parameter \eqn{\lambda}. By default it is 0 which leads to unpenalized likelihood inference. In case \code{lambda.smooth=-1}, the automatic smoothing parameter selection based on a mixed model approach is used (cf. \enc{Höhle}{Hoehle}, 2009). } \item{penalty}{ either a single number denoting the order of the difference used to penalize the log-baseline coefficients (defaults to 1), or a more specific penalty matrix \eqn{K} for the parameter sub-vector \eqn{\beta}. In case of non-equidistant knots -- usually the case when using quantile based knot locations -- only a 1st order differences penalty matrix as in Fahrmeir and Lang (2001) is implemented. } \item{optim.args}{ a list with arguments passed to the \code{\link{optim}} function. Especially useful are the following ones: \describe{ \item{\code{par}:}{ to specify initial parameter values. Those must be in the order \code{c(alpha, h0, beta)}, i.e. first the coefficients of the epidemic covariates in the same order as they appear in the \code{formula}, then the log-baseline levels in chronological order and finally the coefficients of the endemic covariates in the same order as they appear in the \code{cox} terms of the \code{formula}. The default is to start with 1's for \code{alpha} and 0's for \code{h0} and \code{beta}. } \item{\code{control}:}{ for more detailed \code{trace}-ing (default: 1), another \code{REPORT}-ing frequency if \code{trace} is positive (default: 10), higher \code{maxit} (maximum number of iterations, default: 300) or another \code{factr} value (default: 1e7, a lower value means higher precision). } \item{\code{method}:}{ the optimization algorithm defaults to \code{"L-BFGS-B"} (for box-constrained optimization), if there are any epidemic (non-\code{cox}) variables in the model, and to \code{"BFGS"} otherwise. } \item{\code{lower}:}{ if \code{method = "L-BFGS-B"} this defines the lower bounds for the model coefficients. By default, all effects \eqn{\alpha} of epidemic variables are restricted to be non-negative. Normally, this is exactly what one would like to have, but there might be reasons for other lower bounds, see the Note below. } \item{\code{hessian}:}{ An estimation of the Expected Fisher Information matrix is always part of the return value of the function. It might be interesting to see the Observed Fisher Information (= negative Hessian at the maximum), too. This will be additionally returned if \code{hessian = TRUE}. } } } \item{model}{ logical indicating if the model frame, the \code{weights}, \code{lambda.smooth}, the penalty matrix \eqn{K} and the list of used distance functions \code{f} (from \code{attributes(data)}) should be returned for further computation. This defaults to \code{TRUE} as this information is necessary e.g. in the \code{profile} and \code{plot} methods. } \item{keep.data}{ logical indicating if the \code{"epidata"} object (\code{data}) should be part of the return value. This is only necessary for use of the \code{\link[=simulate.twinSIR]{simulate}}-method for \code{"twinSIR"} objects. The reason is that the \code{twinSIR} function only uses and stores the rows with \code{atRiskY == 1} in the \code{model} component, but for the simulation of new epidemic data one needs the whole data set with all individuals in every time block. The default value is \code{FALSE}, so if you intent to use \code{simulate.twinSIR}, you have to set this to \code{TRUE}. } } \details{ A model is specified through the \code{formula}, which has the form \code{~ epidemicTerm1 + epidemicTerm2 + cox(endemicVar1) * cox(endemicVar2)}, i.e. the right hand side has the usual form as in \code{\link{lm}} with some variables marked as being endemic by the special function \code{\link{cox}}. The left hand side of the formula is empty and will be set internally to \code{cbind(start, stop, event)}, which is similar to \code{Surv(start, stop, event, type="counting")} in package \pkg{survival}. Basically, the additive-multiplicative model for the infection intensity \eqn{\lambda_i(t)} for individual \eqn{i} is \deqn{\lambda_i(t) = Y_i(t) * (e_i(t) + h_i(t))} where \describe{ \item{Y\_i(t)}{ is the at-risk indicator, indicating if individual \eqn{i} is \dQuote{at risk} of becoming infected at time point \eqn{t}. This variable is part of the event history \code{data}. } \item{e\_i(t)}{ is the epidemic component of the infection intensity, defined as \deqn{e_i(t) = \sum_{j \in I(t)} f(||s_i - s_j||)} where \eqn{I(t)} is the set of infectious individuals just before time point \eqn{t}, \eqn{s_i} is the coordinate vector of individual \eqn{i} and the function \eqn{f} is defined as \deqn{f(u) = \sum_{m=1}^p \alpha_m B_m(u)} with unknown transmission parameters \eqn{\alpha} and known distance functions \eqn{B_m}. This set of distance functions results in the set of epidemic variables normally calculated by the converter function \code{\link{as.epidata}}, considering the equality \deqn{e_i(t) = \sum_{m=1}^p \alpha_m x_{im}(t)} with \eqn{x_{im}(t) = \sum_{j \in I(t)} B_m(||s_i - s_j||)} being the \eqn{m}'th epidemic variable for individual \eqn{i}. } \item{h\_i(t)}{ is the endemic (\code{cox}) component of the infection intensity, defined as \deqn{h_i(t) = \exp(h_0(t) + z_i(t)' \beta)} where \eqn{h_0(t)} is the log-baseline hazard function, \eqn{z_i(t)} is the vector of endemic covariates of individual \eqn{i} and \eqn{\beta} is the vector of unknown coefficients. To fit the model, the log-baseline hazard function is approximated by a piecewise constant function with known knots, but unknown levels, which will be estimated. The approximation is specified by the arguments \code{knots} or \code{nIntervals}. } } If a big number of \code{knots} (or \code{nIntervals}) is chosen, the corresponding log-baseline parameters can be rendered identifiable by the use of penalized likelihood inference. At present, it is the job of the user to choose an adequate value of the smoothing parameter \code{lambda.smooth}. Alternatively, a data driven \code{lambda.smooth} smoothing parameter selection based on a mixed model representation of an equivalent truncated power spline is offered (see reference for further details). The following two steps are iterated until convergence: \enumerate{ \item Given fixed smoothing parameter, the penalized likelihood is optimized for the regression components using a L-BFGS-B approach \item Given fixed regression parameters, a Laplace approximation of the marginal likelihood for the smoothing parameter is numerically optimized. } Depending on the data, convergence might take a couple of iterations. Note also that it is unwise to include endemic covariates with huge values, as they affect the intensities on the exponential scale (after multiplication by the parameter vector \eqn{\beta}). With large covariate values, the \code{optim} method "L-BFGS-B" will likely terminate due to an infinite log-likelihood or score function in some iteration. } \value{ \code{twinSIR} returns an object of class \code{"twinSIR"}, which is a list containing the following components: \item{coefficients}{a named vector of coefficients.} \item{loglik}{the maximum of the (penalized) log-likelihood function.} \item{counts}{the number of log-likelihood and score function evaluations.} \item{converged}{logical indicating convergence of the optimization algorithm.} \item{fisherinfo.observed}{if requested, the negative Hessian from \code{optim}.} \item{fisherinfo}{an estimation of the Expected Fisher Information matrix.} \item{method}{the optimization algorithm used.} \item{intervals}{a numeric vector (\code{c(minTime, knots, maxTime)}) representing the consecutive intervals of constant log-baseline.} \item{nEvents}{a numeric vector containing the number of infections in each of the above \code{intervals}.} \item{model}{if requested, the model information used. This is a list with components \code{"survs"} (data.frame with the id, start, stop and event columns), \code{"X"} (matrix of the epidemic variables), \code{"Z"} (matrix of the endemic variables), \code{"weights"} (the specified \code{weights}), \code{"lambda.smooth"} (the specified \code{lambda.smooth}), \code{"K"} (the penalty matrix used), and \code{"f"} and \code{"w"} (the functions to generate the used epidemic covariates). Be aware that the model only contains those rows with \code{atRiskY == 1}!} \item{data}{if requested, the supplied \code{"epidata"} \code{data}.} \item{call}{the matched call.} \item{formula}{the specified \code{formula}.} \item{terms}{the \code{terms} object used.} } \references{ \enc{Höhle}{Hoehle}, M. (2009), Additive-multiplicative regression models for spatio-temporal epidemics, \emph{Biometrical Journal}, \bold{51} (6), 961-978. Meyer, S., Held, L. and \enc{Höhle}{Hoehle}, M. (2017): Spatio-temporal analysis of epidemic phenomena using the \R package \pkg{surveillance}. \emph{Journal of Statistical Software}, \bold{77} (11), 1-55. \doi{10.18637/jss.v077.i11} } \author{ Michael \enc{Höhle}{Hoehle} and Sebastian Meyer } \note{ There are some restrictions to modelling the infection intensity without a baseline hazard rate, i.e. without an intercept in the \code{formula}. Reason: At some point, the optimization algorithm L-BFGS-B tries to set all transmission parameters \eqn{\alpha} to the boundary value 0 and to calculate the (penalized) score function with this set of parameters (all 0). The problem then is that the values of the infection intensities \eqn{lambda_i(t)} are 0 for all \eqn{i} and \eqn{t} and especially at observed event times, which is impossible. Without a baseline, it is not allowed to have all alpha's set to 0, because then we would not observe any infections. Unfortunately, L-BFGS-B can not consider this restriction. Thus, if one wants to fit a model without baseline hazard, the control parameter \code{lower} must be specified in \code{optim.args} so that some alpha is strictly positive, e.g. \code{optim.args = list(lower = c(0,0.001,0.001,0))} and the initial parameter vector \code{par} must not be the zero vector. } \seealso{ \code{\link{as.epidata}} for the necessary data input structure, \code{\link{plot.twinSIR}} for plotting the path of the infection intensity, \code{\link{profile.twinSIR}} for profile likelihood estimation. and \code{\link{simulate.twinSIR}} for the simulation of epidemics following the fitted model. Furthermore, the standard extraction methods \code{\link[=vcov.twinSIR]{vcov}}, \code{\link[=logLik.twinSIR]{logLik}}, \code{\link[=AIC.twinSIR]{AIC}} and \code{\link[=extractAIC.twinSIR]{extractAIC}} are implemented for objects of class \code{"twinSIR"}. } \examples{ # see vignette("twinSIR") for an example with a real data set # here is an artificial event history data("fooepidata") summary(fooepidata) # fit an overall constant baseline hazard rate fit1 <- twinSIR(~ B1 + B2 + cox(z2), data = fooepidata) fit1 summary(fit1) # fit1 is what is used as data("foofit") in other examples data("foofit") stopifnot(all.equal(fit1, foofit)) # fit a piecewise constant baseline hazard rate with 3 intervals using # _un_penalized ML and estimated coefs from fit1 as starting values fit2 <- twinSIR(~ B1 + B2 + cox(z2), data = fooepidata, nIntervals = 3, optim.args = list(par=c(coef(fit1)[1:2],rep(coef(fit1)[3],3),coef(fit1)[4]))) fit2 summary(fit2) # fit a piecewise constant baseline hazard rate with 9 intervals # using _penalized_ ML and estimated coefs from fit1 as starting values fit3 <- twinSIR(~ B1 + B2 + cox(z2), data = fooepidata, nIntervals = 9, lambda.smooth = 0.1, penalty = 1, optim.args = list( par=c(coef(fit1)[1:2], rep(coef(fit1)[3],9), coef(fit1)[4]))) fit3 summary(fit3) # plot the estimated log-baseline levels plot(x=fit2$intervals, y=coef(fit2)[c(3,3:5)], type="S", xlim=c(0,10)) lines(x=fit3$intervals, y=coef(fit3)[c(3,3:11)], type="S", col=2) legend("right", legend=c("unpenalized 3", "penalized 9"), lty=1, col=1:2, bty="n") ## -> see help('plot.twinSIR') for intensity plots ## special use case: fit the model to a subset of the events only, ## while preserving epidemic contributions from the remainder ## (maybe some buffer area nodes) fit_subset <- twinSIR(~ B1 + B2 + cox(z2), data = fooepidata, subset = z1 == 1) summary(fit_subset) \dontshow{ ## the eventTimes attribute was wrong in surveillance <= 1.15.0 stopifnot( length(residuals(fit_subset)) == sum(fit_subset$model$survs$event) ) } } \keyword{models} \keyword{optimize} surveillance/man/algo.hhh.Rd0000644000175100001440000002010212656140561015517 0ustar hornikusers\name{algo.hhh} \alias{algo.hhh} \alias{print.ah} \alias{coef.ah} \encoding{latin1} \title{Fit a Classical HHH Model (DEPRECATED)} \description{ Fits a Poisson or negative binomial model to a (multivariate) time series of counts as described by Held et al. (2005) and Paul et al. (2008). Note that this implementation is \strong{deprecated} and superseded by the function \code{\link{hhh4}}. We keep \code{algo.hhh} in the package only for backwards compatibility with the original publications. } \usage{ algo.hhh(disProgObj, control=list(lambda=TRUE, neighbours=FALSE, linear=FALSE, nseason = 0, negbin=c("none", "single", "multiple"), proportion=c("none", "single", "multiple"),lag.range=NULL), thetastart=NULL, verbose=TRUE) } \arguments{ \item{disProgObj}{object of class \code{disProg}} \item{control}{control object: \describe{ \item{\code{lambda}}{If \code{TRUE} an autoregressive parameter \eqn{\lambda} is included, if \code{lambda} is a vector of logicals, unit-specific parameters \eqn{\lambda_i} are included. By default, observations \eqn{y_{t-lag}}{y_t-lag} at the previous time points, i.e. \eqn{lag=1}, are used for the autoregression. Other lags can be used by specifying \code{lambda} as a vector of integers, see Examples and Details.} \item{\code{neighbours}}{If \code{TRUE} an autoregressive parameter for adjacent units \eqn{\phi} is included, if \code{neighbours} is a vector of logicals, unit-specific parameters \eqn{\phi_i} are included. By default, observations \eqn{y_{t-lag}}{y_t-lag} at the previous time points, i.e. \eqn{lag=1}, are used for the autoregression. Other lags can be used by specifying \code{neighbours} as a vector of integers.} \item{\code{linear}}{a \code{logical} (or a vector of logicals) indicating wether a linear trend \eqn{\beta} (or a linear trend \eqn{\beta_i} for each unit) is included} \item{\code{nseason}}{Integer number of Fourier frequencies; if \code{nseason} is a vector of integers, each unit \eqn{i} gets its own seasonal parameters } \item{\code{negbin}}{if \code{"single"} negative binomial rather than poisson is used, if \code{"multiple"} unit-specific overdispersion parameters are used.} \item{\code{proportion}}{see Details} \item{\code{lag.range}}{determines which observations are used to fit the model } }} \item{thetastart}{vector with starting values for all parameters specified in the control object (for \code{optim}). See \code{\link{algo.hhh.grid}}.} \item{verbose}{if \code{true} information about convergence is printed} } \value{Returns an object of class \code{ah} with elements \item{coefficients}{estimated parameters} \item{se}{estimated standard errors} \item{cov}{covariance matrix} \item{loglikelihood}{loglikelihood} \item{convergence}{logical indicating whether \code{optim} converged or not} \item{fitted.values}{fitted mean values \eqn{\mu_{i,t}}{\mu_it} } \item{control}{specified control object} \item{disProgObj}{specified \code{disProg}-object} \item{lag}{which lag was used for the autoregressive parameters \eqn{lambda} and \eqn{phi} } \item{nObs}{number of observations used for fitting the model} } \details{ This functions fits a model as specified in equations (1.2) and (1.1) in Held et al. (2005) to univariate time series, and as specified in equations (3.3) and (3.2) (with extensions given in equations (2) and (4) in Paul et al., 2008) to multivariate time series. For univariate time series, the mean structure of a Poisson or a negative binomial model is \deqn{\mu_t = \lambda y_{t-lag} + \nu_t }{\mu_t = \lambda y_t-lag + \nu_t } where \deqn{\log( \nu_t) = \alpha + \beta t + \sum_{j=1}^{S}(\gamma_{2j-1} \sin(\omega_j t) + \gamma_{2j} \cos(\omega_j t) ) }{ log(\nu_t) = \alpha + \beta t + \sum_(j=1)^S (\gamma_(2j-1) * sin(\omega_j * t) + \gamma_2j * cos(\omega_j * t) ) } and \eqn{\omega_j = 2\pi j/period }{\omega_j = 2 * \pi * j / period} are Fourier frequencies with known period, e.g. \code{period}=52 for weekly data. Per default, the number of cases at time point \eqn{t-1}, i.e. \eqn{lag=1}, enter as autoregressive covariates into the model. Other lags can also be considered. For multivariate time series the mean structure is \deqn{\mu_{it} = \lambda_i y_{i,t-lag} + \phi_i \sum_{j \sim i} w_{ji} y_{j,t-lag} + n_{it} \nu_{it}}{% \mu_it = \lambda_i * y_i,t-lag + \phi_i * \sum_(j ~ i) w_ji * y_j,t-lag + n_it * \nu_it } where \deqn{\log(\nu_{it}) = \alpha_i + \beta_i t + \sum_{j=1}^{S_i} (\gamma_{i,2j-1} \sin(\omega_j t) + \gamma_{i,2j} \cos(\omega_j t) ) }{% log(\nu_it) = \alpha_i + \beta_i * t + \sum_(j=1)^S_i (\gamma_(i,2j-1) * sin(\omega_j * t) + \gamma_(i,2j) * cos(\omega_j * t) ) } and \eqn{n_{it}}{n_it} are standardized population counts. The weights \eqn{w_{ji}}{w_ji} are specified in the columns of the neighbourhood matrix \code{disProgObj$neighbourhood}. Alternatively, the mean can be specified as \deqn{\mu_{it} = \lambda_i \pi_i y_{i,t-1} + \sum_{j \sim i} \lambda_j (1-\pi_j)/ |k \sim j| y_{j,t-1} + n_{it} \nu_{it}}{% \mu_it = \lambda_i *\pi_i * y_i,t-1 + \sum_(j ~ i) \lambda_j *(1-\pi_j)/|k ~ j| * y_j,t-1 + n_it * \nu_it } if \code{proportion}="single" ("multiple") in the \code{control} argument. Note that this model specification is still experimental. } \note{ For the time being this function is not a surveillance algorithm, but only a modelling approach as described in the papers by Held et. al (2005) and Paul et. al (2008). } \seealso{\code{\link{algo.hhh.grid}}, \code{\link{hhh4}}} \author{M. Paul, L. Held, M. \enc{Höhle}{Hoehle}} \examples{ # univariate time series: salmonella agona cases data(salmonella.agona) model1 <- list(lambda=TRUE, linear=TRUE, nseason=1, negbin="single") algo.hhh(salmonella.agona, control=model1) # multivariate time series: # measles cases in Lower Saxony, Germany data(measles.weser) # same model as above algo.hhh(measles.weser, control=model1) # include autoregressive parameter phi for adjacent "Kreise" # specifiy start values for theta model2 <- list(lambda = TRUE, neighbours = TRUE, linear = FALSE, nseason = 1, negbin = "single") algo.hhh(measles.weser, control = model2, thetastart = rep(0, 20) ) ## weekly counts of influenza and meningococcal infections ## in Germany, 2001-2006 data(influMen) # specify model with two autoregressive parameters lambda_i, overdispersion # parameters psi_i, an autoregressive parameter phi for meningococcal infections # (i.e. nu_flu,t = lambda_flu * y_flu,t-1 # and nu_men,t = lambda_men * y_men,t-1 + phi_men*y_flu,t-1 ) # and S=(3,1) Fourier frequencies model <- list(lambda=c(TRUE,TRUE), neighbours=c(FALSE,TRUE), linear=FALSE,nseason=c(3,1),negbin="multiple") # run algo.hhh algo.hhh(influMen, control=model) # now meningococcal infections in the same week should enter as covariates # (i.e. nu_flu,t = lambda_flu * y_flu,t-1 # and nu_men,t = lambda_men * y_men,t-1 + phi_men*y_flu,t ) model2 <- list(lambda=c(1,1), neighbours=c(NA,0), linear=FALSE,nseason=c(3,1),negbin="multiple") algo.hhh(influMen, control=model2) } \keyword{ts} \keyword{regression} \references{ Held, L., \enc{Höhle}{Hoehle}, M., Hofmann, M. (2005) A statistical framework for the analysis of multivariate infectious disease surveillance counts, Statistical Modelling, \bold{5}, 187--199. Paul, M., Held, L. and Toschke, A. M. (2008) Multivariate modelling of infectious disease surveillance data, Statistics in Medicine, \bold{27}, 6250--6267. } surveillance/man/algo.farrington.threshold.Rd0000644000175100001440000000225513122471774021127 0ustar hornikusers\name{algo.farrington.threshold} \alias{algo.farrington.threshold} \title{Compute prediction interval for a new observation} \description{ Depending on the current transformation \eqn{h(y)= \{y, \sqrt{y}, y^{2/3}\}}, \deqn{V(h(y_0)-h(\mu_0))=V(h(y_0))+V(h(\mu_0))} is used to compute a prediction interval. The prediction variance consists of a component due to the variance of having a single observation and a prediction variance. } \usage{ algo.farrington.threshold(pred,phi,alpha=0.01,skewness.transform="none",y) } \arguments{ \item{pred}{A GLM prediction object} \item{phi}{Current overdispersion parameter (superflous?)} \item{alpha}{Quantile level in Gaussian based CI, i.e. an \eqn{(1-\alpha)\cdot 100\%} confidence interval is computed. } \item{skewness.transform}{Skewness correction, i.e. one of \code{"none"}, \code{"1/2"}, or \code{"2/3"}.} \item{y}{Observed number} } \value{ Vector of length four with lower and upper bounds of an \eqn{(1-\alpha)\cdot 100\%} confidence interval (first two arguments) and corresponding quantile of observation \code{y} together with the median of the predictive distribution. } \keyword{regression} surveillance/man/discpoly.Rd0000644000175100001440000000433512237174420015663 0ustar hornikusers\name{discpoly} \alias{discpoly} \title{Polygonal Approximation of a Disc/Circle} \description{ Generates a polygon representing a disc/circle (in planar coordinates) as an object of one of three possible classes: \code{"\link[sp:Polygon-class]{Polygon}"}, \code{"\link[spatstat]{owin}"}, or -- if \pkg{rgeos} (or \pkg{gpclib}) are available -- \code{"\link[rgeos:gpc.poly-class]{gpc.poly}"}. } \usage{ discpoly(center, radius, npoly = 64, class = c("Polygon", "owin", "gpc.poly"), hole = FALSE) } \arguments{ \item{center}{numeric vector of length 2 (center coordinates of the circle).} \item{radius}{single numeric value (radius of the circle).} \item{npoly}{single integer. Number of edges of the polygonal approximation.} \item{class}{class of the resulting polygon (partial name matching applies). For \code{"owin"}, this is just a wrapper around \pkg{spatstat}'s own \code{\link[spatstat]{disc}} function.} \item{hole}{logical. Does the resulting polygon represent a hole?} } \value{ A polygon of class \code{class} representing a circle/disc with \code{npoly} edges accuracy.\cr If \code{class="gpc.poly"} although this formal class is not currently defined (and \pkg{rgeos} is not available), only the \code{pts} slot of a \code{"gpc.poly"} is returned with a warning. } \author{ Sebastian Meyer\cr This function is inspired by the \code{\link[spatstat]{disc}} function from package \pkg{spatstat} authored by Adrian Baddeley and Rolf Turner. } \examples{ ## Construct circles with increasing accuracy and of different spatial classes disc1 <- discpoly(c(0,0), 5, npoly=4, class = "owin") disc2 <- discpoly(c(0,0), 5, npoly=16, class = "Polygon") ## Look at the results print(disc1) plot(disc1, axes=TRUE, main="", border=2) print(disc2) lines(disc2, col=3) if (requireNamespace("rgeos")) { # for the "gpc.poly" class definition disc3 <- discpoly(c(0,0), 5, npoly=64, class = "gpc.poly") print(disc3) plot(disc3, add=TRUE, poly.args=list(border=4)) } ## if one only wants to _draw_ a circle without an object behind symbols(0, 0, circles=5, inches=FALSE, add=TRUE, fg=5) } \seealso{ \link[spatstat]{disc} in package \pkg{spatstat}. } \keyword{datagen} \keyword{spatial} surveillance/man/stsNC-class.Rd0000644000175100001440000000421313122471774016173 0ustar hornikusers\name{stsNC-class} \docType{class} \alias{stsNC-class} %New stsNC specific methods \alias{reportingTriangle} \alias{reportingTriangle,stsNC-method} \alias{delayCDF} \alias{delayCDF,stsNC-method} \alias{score} \alias{score,stsNC-method} \alias{predint} \alias{predint,stsNC-method} %Coerce method to convert to sts object \alias{coerce,sts,stsNC-method} \encoding{latin1} \title{Class "stsNC" -- a class inheriting from class \code{sts} which allows the user to store the results of back-projecting surveillance time series} \description{ A class inheriting from class \code{sts}, but with additional slots to store the results of nowcasting. } \section{Slots}{ The slots are as for \code{"\linkS4class{sts}"}. However, a number of additional slots exists. \describe{ \item{\code{reportingTriangle}:}{An array containing the upper and lower limit of the confidence interval.} \item{\code{predPMF}:}{Predictive distribution for each nowcasted time point.} \item{\code{pi}:}{A prediction interval for each nowcasted time point. This is calculated based on \code{predPMF}.} \item{\code{truth}:}{An object of type \code{sts} containing the true number of cases.} \item{\code{delayCDF}:}{List with the CDF of the estimated delay distribution for each method.} \item{\code{SR}:}{Possible output of proper scoring rules} } } \section{Methods}{ The methods are the same as for \code{"\linkS4class{sts}"}. \itemize{ \item{\code{signature(from = "sts", to = "stsNC")}}{ Convert an object of class \code{sts} to class \code{stsNC}. } \item{reportingTriangle}{\code{signature(x = "stsNC")}: extract the \code{reportingTriangle} slot of an \code{stsNC} object. } \item{delayCDF}{\code{signature(x = "stsNC")}: extract the \code{delayCDF} slot of an \code{stsNC} object. } \item{score}{\code{signature(x = "stsNC")}: extract the scoring rules result slot of an \code{stsNC} object. } \item{predint}{\code{signature(x = "stsNC")}: extract the prediction interval slot of an \code{stsNC} object. } } } \author{M. \enc{Höhle}{Hoehle}} \keyword{classes} surveillance/man/intersectPolyCircle.Rd0000644000175100001440000000317413164432505020024 0ustar hornikusers\name{intersectPolyCircle} \alias{intersectPolyCircle} \alias{intersectPolyCircle.owin} \alias{intersectPolyCircle.SpatialPolygons} \alias{intersectPolyCircle.gpc.poly} \title{ Intersection of a Polygonal and a Circular Domain } \description{ This is a unifying wrapper around functionality of various packages dealing with spatial data. It computes the intersection of a circular domain and a polygonal domain (whose class defines the specific method). } \usage{ intersectPolyCircle(object, center, radius, ...) \method{intersectPolyCircle}{owin}(object, center, radius, npoly = 32, ...) \method{intersectPolyCircle}{SpatialPolygons}(object, center, radius, npoly = 32, ...) \method{intersectPolyCircle}{gpc.poly}(object, center, radius, npoly = 32, useGEOS = FALSE, ...) } \arguments{ \item{object}{a polygonal domain of one of the supported classes.} \item{center,radius,npoly}{see \code{\link{discpoly}}.} \item{useGEOS}{logical indicating if package \pkg{rgeos} (\code{\link[rgeos]{gIntersection}}) should be used instead of package \pkg{gpclib}. The latter (default) requires explicit acceptance of \pkg{gpclib}'s restricted license via \code{\link{surveillance.options}(gpclib=TRUE)}.} \item{\dots}{potential further arguments (from the generic).} } \value{ a polygonal domain of the same class as the input \code{object}. } \author{ Sebastian Meyer } \seealso{ \code{\link{discpoly}} to generate a polygonal approximation to a disc } \examples{ library("spatstat") plot(letterR) plot(intersectPolyCircle(letterR, c(3,2), 1), add=TRUE, col=2, lwd=3) } \keyword{spatial} \keyword{manip} surveillance/man/salmAllOnset.Rd0000644000175100001440000000126012655350520016426 0ustar hornikusers\docType{data} \name{salmAllOnset} \alias{salmAllOnset} \title{Salmonella cases in Germany 2001-2014 by data of symptoms onset} \format{A sts-object} \usage{ data(salmAllOnset) } \description{ A dataset containing the reported number of cases of Salmonella in Germany 2001-2014 aggregated by data of disease onset. The slot \code{control} contains a matrix \code{reportingTriangle$n} with the reporting triangle as described in Salmon et al. (2015). } \references{ Salmon, M., Schumacher, D., Stark, K., \enc{Höhle}{Hoehle}, M. (2015): Bayesian outbreak detection in the presence of reporting delays. Biometrical Journal, 57 (6), 1051-1067. } \keyword{datasets} surveillance/man/sts-class.Rd0000644000175100001440000002433313122471774015757 0ustar hornikusers\name{sts-class} \docType{class} \alias{sts} \alias{sts-class} % methods to access and replace slots \alias{alarms,sts-method} \alias{alarms<-,sts-method} \alias{upperbound,sts-method} \alias{upperbound<-,sts-method} \alias{control,sts-method} \alias{control<-,sts-method} \alias{epoch,sts-method} \alias{epoch<-,sts-method} \alias{observed,sts-method} \alias{observed<-,sts-method} \alias{population,sts-method} \alias{population<-,sts-method} \alias{multinomialTS,sts-method} \alias{multinomialTS<-,sts-method} \alias{neighbourhood,sts-method} \alias{neighbourhood<-,sts-method} % other access methods \alias{dim,sts-method} \alias{dimnames,sts-method} \alias{epochInYear} \alias{epochInYear,sts-method} \alias{year} \alias{year,sts-method} % constructor and conversion methods \alias{initialize,sts-method} \alias{as.data.frame,sts-method} \alias{coerce,sts,ts-method} \alias{coerce,ts,sts-method} \alias{as.xts.sts} \encoding{latin1} \title{Class \code{"sts"} -- surveillance time series} \description{ This is a lightweight S4 class to implement (multivariate) time series of counts, typically from public health surveillance. For areal time series, the class can also capture the spatial layout of the regions, where the data originate from. The constructor function \code{sts} can be used to setup an \code{"sts"} object. Conversion of simple time-series objects (of class \code{"\link{ts}"}) is also possible. The slots of the \code{"sts"} class and available methods are described below. } \usage{ sts(observed, start = c(2000, 1), frequency = 52, population = NULL, ...) } \arguments{ \item{observed}{a vector (for a single time series) or matrix (one time series per column) of counts. A purely numeric data frame will also do (transformed via \code{as.matrix}). This argument sets the \code{observed} slot, which is the core element of the resulting \code{"sts"} object. It determines the dimensions and colnames for several other slots. The columns (\dQuote{units}) typically correspond to different regions, diseases, or age groups.} \item{start,frequency}{basic characteristics of the time series data just like for simple \code{"\link{ts}"} objects. The (historical) default values correspond to weekly data starting in the first week of 2000.} \item{population}{a vector of length the number of columns in \code{observed} or a matrix of the same dimension as \code{observed}. Especially for multivariate time series, the population numbers (or fractions) underlying the counts in each unit are relevant for visualization and statistical inference. The \code{population} argument is an alias for the corresponding slot \code{populationFrac}. The default \code{NULL} value sets equal population fractions across all units.} \item{\dots}{further named arguments with names corresponding to slot names (see the list below). For instance, the \code{epoch} slot is used to store the observation time, either as an integer sequence (default) or as the numeric representation of \code{Date}s (if also \code{epochAsDate=TRUE}). In the public health surveillance context, the \code{state} slot is used to indicate outbreaks (default: \code{FALSE} for all observations). For areal time series data, the \code{map} and \code{neighbourhood} slots are used to store the spatial structure of the observation region.} } \section{Slots}{ \describe{ \item{\code{epoch}:}{Object of class \code{numeric} or specifying the time of observation. In old versions of the package this used to be the week numbers. However, depending on the \code{freq} argument, it can now be day or month as well. Furthermore, if \code{epochAsDate=TRUE} then it is the \code{as.numeric} representation of \code{Date} objects giving the exact date of the observation. Note: This slot used to be called \code{week} in earlier versions of the package, but has now been renamed to reflect the greater flexibility in the choice of observation time.} \item{\code{freq}:}{If weekly data \code{freq} corresponds to 52, in case of monthly data \code{freq} is 12.} \item{\code{start}:}{vector of length two denoting the year and the sample number (week, month, etc.) of the first observation} \item{\code{observed}:}{A matrix of size \code{length(epoch)} times the number of regions containing the weekly/monthly number of counts in each region. The colnames of the matrix should match the ID values of the shapes in the \code{map} slot.} \item{\code{state}:}{Matrix with the same dimension as \code{observed} containing booleans whether at the specific time point there was an outbreak in the region} \item{\code{alarm}:}{Matrix with the same dimension as \code{observed} specifying whether an outbreak detection algorithm declared a specific time point in the region as having an alarm.} \item{\code{upperbound}:}{Matrix with upper bound values } \item{\code{neighbourhood}:}{Symmetric matrix of size \eqn{(number of regions)^2} describing the neighbourhood structure. It may either be a binary adjacency matrix or contain neighbourhood orders (see the Examples for how to infer the latter from the \code{map}).} \item{\code{populationFrac}:}{A \code{matrix} of population fractions or absolute numbers (see \code{multinomialTS} below) with dimensions \code{dim(observed)}.} \item{\code{map}:}{Object of class \code{SpatialPolygonsDataFrame} providing a shape of the areas which are monitored. } \item{\code{control}:}{Object of class \code{list}, this is a rather free data type to be returned by the surveillance algorithms. } \item{\code{epochAsDate}:}{Object of class \code{"logical"} stating whether to use a ISO 8601 representation of the \code{epoch} slot using the \code{Date} class (\code{epochAsDate=TRUE}) or just to interpret the epochs as numerics (\code{epochAsDate=FALSE}).} \item{\code{multinomialTS}:}{Object of class \code{"logical"} stating whether to interpret the object as \code{observed} out of \code{population}, i.e. a multinomial interpretation instead of a count interpretation.} } } \section{Methods}{ \describe{ \item{dim}{\code{signature(x = "sts")}: extract matrix dimensions of \code{observed}.} \item{dimnames}{\code{signature(x="sts")}: extract the \code{\link{dimnames}} of the \code{observed} matrix.} \item{observed}{\code{signature(x = "sts")}: extract the \code{observed} slot of an \code{sts} object.} \item{population}{\code{signature(x = "sts")}: extract the \code{populationFrac} slot of an \code{sts} object.} \item{multinomialTS}{\code{signature(x = "sts")}: extract the \code{multinomialTS} slot of an \code{sts} object.} \item{neighbourhood}{\code{signature(x = "sts")}: extract the \code{neighbourhood} slot of an \code{sts} object.} \item{alarms}{\code{signature(x = "sts")}: extract the \code{alarm} slot of an \code{sts} object.} \item{upperbound}{\code{signature(x = "sts")}: extract the \code{upperbound} slot of an \code{sts} object.} \item{control}{\code{signature(x = "sts")}: extract the \code{control} slot of an \code{sts} object.} \item{epoch}{\code{signature(x = "sts")}: extract the \code{epoch} slot of an \code{sts} object. If ISO dates are used then the returned object is of class \code{Date}.} \item{epochInYear}{\code{signature(x = "sts")}: Returns the epoch number within the year of the \code{epoch} slot.} \item{initialize}{\code{signature(x="sts")}: the internal function \code{init.sts} is called, which assigns all slots. } \item{[}{subsetting \code{"sts"} objects, see \code{\link{[,sts-method}}.} \item{aggregate}{\code{signature(x="sts")}: see \code{\link{aggregate,sts-method}}} \item{year}{\code{signature(x = "sts")}: extracts the corresponding year of each observation of \code{x}} \item{as.data.frame}{\code{signature(x = "sts")}: converts the \code{observed}, \code{epoch}, \code{state} and \code{alarm} slots of \code{x} into a data frame with column names matching the colnames of the respective slots. Useful when one wants to fit a model based on the object} \item{plot}{\code{signature(x="sts",y="missing")}: this method is the entry point to a collection of plot variants. It is also the successor of the \code{\link{plot.disProg}} and \code{\link{plot.survRes}} functions. The type of plot is specified using a formula \code{type}. See \code{\link{stsplot}} for details. } \item{animate}{see \code{\link{animate.sts}}.} \item{coerce}{\code{signature(from="sts", to="ts")} (can also be called via the S3 generic \code{as.ts}) and the reverse \code{signature(from="ts", to="sts")}.} \item{toLatex}{see \code{\link{toLatex,sts-method}}.} } } \author{Michael \enc{Höhle}{Hoehle} and Sebastian Meyer} \examples{ ## A typical dataset with weekly counts of measles from several districts data("measlesWeserEms") measlesWeserEms ## reconstruct data("measlesWeserEms") from its components counts <- observed(measlesWeserEms) map <- measlesWeserEms@map populationFrac <- population(measlesWeserEms) weserems_nbOrder <- neighbourhood(measlesWeserEms) ## orders of adjacency can also be determined from the map if (requireNamespace("spdep")) { stopifnot(identical(weserems_nbOrder, nbOrder(poly2adjmat(map), maxlag = 10))) } mymeasles <- sts(counts, start = c(2001, 1), frequency = 52, population = populationFrac, neighbourhood = weserems_nbOrder, map = map) stopifnot(identical(mymeasles, measlesWeserEms)) ## convert ts/mts object to sts z <- ts(matrix(rpois(300,10), 100, 3), start = c(1961, 1), frequency = 12) z.sts <- as(z, "sts") plot(z.sts) ## conversion of "sts" objects to the quasi-standard "xts" class if (require("xts")) { z.xts <- as.xts(z.sts) plot(z.xts) } } \keyword{classes} surveillance/man/plapply.Rd0000644000175100001440000000726612477533154015535 0ustar hornikusers\name{plapply} \alias{plapply} \title{Verbose and Parallel \code{lapply}} \description{ Verbose and parallelized version of \code{lapply} wrapping around \code{\link[parallel]{mclapply}} and \code{\link[parallel]{parLapply}} in the base package \pkg{parallel}. This wrapper can take care of the \code{.Random.seed} and print progress information (not for cluster-based parallelization). With the default arguments it equals \code{lapply} enriched by a progress bar. } \usage{ plapply(X, FUN, ..., .parallel = 1, .seed = NULL, .verbose = TRUE) } \arguments{ \item{X,FUN,\dots}{see \code{\link{lapply}}.} \item{.parallel}{ the number of processes to use in parallel operation, or a \code{"cluster"} object (see \code{\link[parallel]{makeCluster}}). If a number, \code{\link[parallel]{mclapply}} (forking) is used on Unix-alikes, whereas on Windows \code{\link[parallel]{parLapply}} is used on a newly created cluster of the specified size, which is stopped when exiting the function. By default (\code{.parallel = 1}), the basic \code{\link{lapply}} is used. } \item{.seed}{ If set (non-\code{NULL}), results involving random number generation become reproducible. If using a cluster (see the \code{.parallel} argument), \code{\link[parallel]{clusterSetRNGStream}} is called with the specified \code{.seed} before running \code{parLapply}. Otherwise, \code{\link{set.seed}(.seed)} is called and the \code{\link{RNGkind}} is changed to \code{"L'Ecuyer-CMRG"} if \code{.parallel > 1} (see the section on random numbers in the documentation of \code{mcparallel} in package \pkg{parallel}). % no link to mcparallel since it is not available on Windows (R-3.1.2) If \code{.seed} is non-\code{NULL}, the original \code{\link{.Random.seed}} will be restored \code{on.exit} of the function. } \item{.verbose}{ if and how progress information should be displayed, i.e., what to do on each exit of \code{FUN}. This is unsupported and ignored for cluster-based parallelization and primitive \code{FUN}ctions. The default (\code{TRUE}) will show a \code{\link{txtProgressBar}} (if \code{.parallel = 1} in an \code{\link{interactive}} \R session) or \code{cat(".")} (otherwise). Other choices for the dot are possible by specifying the desired symbol directly as the \code{.verbose} argument. Alternatively, \code{.verbose} may be any custom call or expression to be executed \code{\link{on.exit}} of \code{FUN} and may thus involve any objects from the local evaluation environment. } } \value{ a list of the results of calling \code{FUN} on each value of \code{X}. } \author{ Sebastian Meyer } \seealso{ \code{\link[parallel]{mclapply}} and \code{\link[parallel]{parLapply}} } \examples{ ## example inspired by help("lapply") x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE)) ## if neither parallel nor verbose then this simply equals lapply() plapply(x, quantile, probs = 1:3/4, .verbose = FALSE) ## verbose lapply() -- not really useful for such fast computations res <- plapply(x, quantile, probs = 1:3/4, .verbose = TRUE) res <- plapply(x, quantile, probs = 1:3/4, .verbose = "|") res <- plapply(x, quantile, probs = 1:3/4, .verbose = quote(cat("length(x) =", length(x), "\n"))) ## setting the seed for reproducibility of results involving the RNG samp <- plapply(as.list(1:3), runif, .seed = 1) ## parallel lapply() res <- plapply(x, quantile, probs = 1:3/4, .parallel = 2) ## using a predefined cluster library("parallel") cl <- makeCluster(getOption("cl.cores", 2)) res <- plapply(x, quantile, probs = 1:3/4, .parallel = cl) stopCluster(cl) } \keyword{iteration} \keyword{list} surveillance/man/test.Rd0000644000175100001440000000143713165505075015021 0ustar hornikusers\name{test} \alias{test} \encoding{latin1} \title{Print xtable for several diseases and the summary} \description{Just a test method} \usage{ test(data = c("k1", "m5"), range = 157:339) } \arguments{ \item{data}{vector of abbreviations for the diseases} \item{range}{timepoints to evaluate} } \value{ printed LaTeX xtables } \details{ The specified datasets are read, corrected, enlarged and sent to the RKI 1, RKI 2, RKI 3 and Bayes system. The quality values are computed and printed for each disease as latex table. Additionally a summary latex table for all diseases is printed. } \author{M. \enc{Höhle}{Hoehle}, A. Riebler, C. Lang} \examples{ test( c("m1", "m2", "m3", "m4", "m5", "q1_nrwh", "q2", "s1", "s2", "s3", "k1", "n1", "n2", "h1_nrwrp") ) } \keyword{misc} surveillance/man/nowcast.Rd0000644000175100001440000002536212743251170015516 0ustar hornikusers\encoding{latin1} \name{nowcast} \alias{nowcast} %Internal functions %\alias{dist.median} %\alias{outside.ci} %\alias{logS} %\alias{RPS} \title{ Adjust a univariate time series of counts for observed but-not-yet-reported events } \description{ Nowcasting can help to obtain up-to-date information on trends during a situation where reports about events arrive with delay. For example in public health reporting, reports about important indicators (such as occurrence of cases) are prone to be delayed due to for example manual quality checking and reporting system hierarchies. Altogether, the delays are subject to a delay distribution, which may or may not vary over time. } \usage{ nowcast(now,when,data,dEventCol="dHospital",dReportCol="dReport", method=c("bayes.notrunc","bayes.notrunc.bnb","lawless","bayes.trunc", "unif","bayes.trunc.ddcp"), aggregate.by="1 day", D=15, m=NULL, control=list( dRange=NULL,alpha=0.05,nSamples=1e3, N.tInf.prior=c("poisgamma","pois","unif"), N.tInf.max=300, gd.prior.kappa=0.1, ddcp=list(ddChangepoint=NULL, logLambda=c("iidLogGa","tps","rw1","rw2"), tau.gamma=1,eta.mu=NULL, eta.prec=NULL, mcmc=c(burnin=2500,sample=10000,thin=1)), score=FALSE,predPMF=FALSE)) } \arguments{ \item{now}{ an object of class \code{Date} denoting the day at which to do the nowcast. This corresponds to \eqn{T} in the notation of \enc{Höhle}{Hoehle} and an der Heiden (2014). } \item{when}{a vector of \code{Date} objects denoting the day(s) for which the projections are to be done. One needs to ensure that each element in \code{when} is smaller or equal to \code{now}. } \item{data}{A data frame with one row per case -- for each case on needs information on the day of the event (e.g. hospitalization) and the day of report of this event. } \item{dEventCol}{The name of the column in \code{data} which contains the date of the event, e.g. hospitalization. Default: \code{"dHospital"}. } \item{dReportCol}{Name of the column in \code{data} containing the date at which the report arrives at the respective register. Default: \code{"dReport"}. } \item{method}{A vector of strings denoting the different methods for doing the nowcasting. Note that results of the first name in this list are officially returned by the function. However, it is possible to specify several methods here, e.g., in order to compare score evaluations. Details of the methods are described in \enc{Höhle}{Hoehle} and an der Heiden (2014). \describe{ \item{\code{"unif"}}{} \item{\code{"bayes.notrunc"}}{A Bayesian procedure ignoring truncation.} \item{\code{"bayes.notrunc.bnb"}}{A fast Bayesian procedure ignoring truncation and which calculates the adjustment per-time (i.e. ignoring other delays) using the negative binomial.} \item{\code{"lawless"}}{A discretized version of the Gaussian predictive distribution suggested in Lawless (1994).} \item{\code{"bayes.trunc"}}{Bayesian method based on the generalized Dirichlet distribution, which is the conjugate prior-posterior for the delay distribution PMF under right-truncated sampling as shown in HadH (2014).} \item{\code{"bayes.trunc.ddcp"}}{Fully Bayesian method allowing for change-points in the delay distribution, e.g., due to speed-ups in the reporting process. A discrete-survival model is used for the delay distribution. Details of the methods are described in HadH (2014). Note: This method requires that the JAGS program is installed on the system.} } } \item{aggregate.by}{Time scale used for the temporal aggregation of the records in the data \code{data}. See \code{\link{linelist2sts}} and \code{\link{seq.Date}} for further information.} \item{D}{Maximum possible or maximum relevant delay (unit: \code{aggregate.by}). Default: 15.} \item{m}{Size of the moving window for the estimation of the delay distribution. Default: \code{NULL}, i.e. take all values at all times. Otherwise: an integer such that values from \code{(now-m):now} are used.} \item{control}{A list with named arguments controlling the functionality of the nowcasting. \describe{ \item{dRange}{Default: \code{NULL}. In this case the \code{dEventCol} column is used to extract the first and last available in \code{data}.} \item{alpha}{Equal tailed (1-\eqn{\alpha}{alpha})*100\% prediction intervals are calculated. Default: 0.05.} \item{nSamples}{Number of PMF samples in the \code{bayes.*} procedures. Note: Entire vectors containing the PMF on the grid from 0 to \code{N.tInf.max} are drawn and which are then combined. The argument does not apply to the \code{bayes.trunc.ddcp} method.} \item{N.tInf.prior}{Prior distribution of \eqn{N(t,\infty)}{N(t,Inf)}. Applies only to the \code{bayes.*} except \code{bayes.bayes.ddcp} methods. See example on how to control the distribution parameters.} \item{N.tInf.max}{Limit of the support of \eqn{N(t,\infty)}{N(t,Inf)}. The value needs to be high enough such that at this limit only little of the predictive distribution is right-truncated. Default: 300.} \item{gd.prior.kappa}{Concentration parameter for the Dirichlet prior for the delay distribution on \eqn{0,...,D}. Default: 0.1. Note: The procedure is quite sensitive to this parameters in case only few cases are available.} \item{ddcp}{A list specifying the change point model for the delay distribution. This method should only be used if detailed information about changes in the delay distribution are available as, e.g., in the case of the STEC O104:H4 outbreak. The components are as follows: \describe{ \item{\code{ddChangepoint}}{Vector of Date objects corresponding to the changepoints} \item{\code{logLambda}}{Prior on the spline. One of \code{c("iidLogGa","tps","rw1","rw2")}.} \item{\code{tau.gamma}}{} \item{\code{eta.mu}}{} \item{\code{eta.prec}}{} \item{\code{mcmc}}{A names vector of length 3 containing burn-in, number of samples and thinning for the three MCMC chains which are ran. The values are passed on to \code{\link[runjags]{run.jags}}. Default: \code{c(burnin=2500,sample=10000,thin=1)}.} } } \item{score}{Compute scoring rules. Default: \code{FALSE}. The computed scores are found in the \code{SR} slot of the result.} \item{predPMF}{Boolean whether to return the probability mass functions of the individual forecasts (Default: \code{FALSE}). The result can be found in the \code{control} slot of the return object.} } } } \details{ The methodological details of the nowcasting procedures are described in \enc{Höhle}{Hoehle} M and an der Heiden M (2014). } \value{ \code{nowcast} returns an object of \code{"\linkS4class{stsNC}"}. The \code{upperbound} slot contains the median of the method specified at the first position the argument \code{method}. The slot \code{pi} (for prediction interval) contains the equal tailed (1-\eqn{\alpha}{alpha})*100\% prediction intervals, which are calculated based on the predictive distributions in slot \code{predPMF}. Furthermore, slot \code{truth} contains an \code{sts} object containing the true number of cases (if possible to compute it based on the data in \code{data}. Finally, slot \code{SR} contains the results for the proper scoring rules (requires truth to be calculable). } \references{ \enc{Höhle}{Hoehle} M and an der Heiden M (2014), Bayesian Nowcasting during the STEC O104:H4 Outbreak in Germany, 2011, Biometrics, 70(4):993-1002. \doi{10.1111/biom.12194}.\cr A preprint is available as \url{http://people.su.se/~mhh/pubs/hoehle_anderheiden2014-preprint.pdf}. } \author{ Michael \enc{Höhle}{Hoehle} } \note{ Note: The \code{bayes.trunc.ddcp} uses the JAGS software together with the \R package \pkg{runjags} to handle the parallelization of the MCMC using the \code{"rjparallel"} method of \code{\link[runjags]{run.jags}}, which additionally requires the \pkg{rjags} package. You need to manually install JAGS on your computer for the package to work -- see \url{http://mcmc-jags.sourceforge.net/} and the documentation of \pkg{runjags} for details. Note: The function is still under development and might change in the future. Unfortunately, little emphasis has so far been put on making the function easy to understand and use. } \examples{ data("husO104Hosp") #Extract the reporting triangle at a specific day t.repTriangle <- as.Date("2011-07-04") #Use 'void' nowcasting procedure (we just want the reporting triangle) nc <- nowcast(now=t.repTriangle,when=t.repTriangle, dEventCol="dHosp",dReportCol="dReport",data=husO104Hosp, D=15,method="unif") #Show reporting triangle reportingTriangle(nc) #Perform Bayesian nowcasting assuming the delay distribution is stable over time nc.control <- list(N.tInf.prior=structure("poisgamma", mean.lambda=50,var.lambda=3000), nSamples=1e2) t.repTriangle <- as.Date("2011-06-10") when <- seq(t.repTriangle-3,length.out=10,by="-1 day") nc <- nowcast(now=t.repTriangle,when=when, dEventCol="dHosp",dReportCol="dReport",data=husO104Hosp, D=15,method="bayes.trunc",control=nc.control) #Show time series and posterior median forecast/nowcast plot(nc,xaxis.tickFreq=list("\%d"=atChange,"\%m"=atChange), xaxis.labelFreq=list("\%d"=at2ndChange),xaxis.labelFormat="\%d-\%b", xlab="Time (days)",lty=c(1,1,1,1),lwd=c(1,1,2)) \dontrun{ ### Using runjags to do a Bayesian model with changepoint(s) ### -- this might take a while nc.control.ddcp <- modifyList(nc.control, list(gd.prior.kappa=0.1, ddcp=list(ddChangepoint=as.Date(c("2011-05-23")), logLambda="tps", tau.gamma=1, mcmc=c(burnin=1000,sample=1000,thin=1)))) nc.ddcp <- nowcast(now=t.repTriangle,when=when, dEventCol="dHosp",dReportCol="dReport", data=husO104Hosp, aggregate.by="1 day", method="bayes.trunc.ddcp", D=15, control=nc.control.ddcp) plot(nc.ddcp,legend.opts=NULL, xaxis.tickFreq=list("\%d"=atChange,"\%m"=atChange), xaxis.labelFreq=list("\%d"=at2ndChange),xaxis.labelFormat="\%d-\%b", xlab="Time (days)",lty=c(1,1,1,1),lwd=c(1,1,2)) lambda <- attr(delayCDF(nc.ddcp)[["bayes.trunc.ddcp"]],"model")$lambda showIdx <- seq(which( max(when) == epoch(nc.ddcp))) #seq(ncol(lambda)) matlines( showIdx,t(lambda)[showIdx,],col="gray",lwd=c(1,2,1),lty=c(2,1,2)) legend(x="topright",c(expression(lambda(t)),"95\% CI"),col="gray",lwd=c(2,1),lty=c(1,2)) } } \keyword{models} surveillance/man/hhh4_predict.Rd0000644000175100001440000000216112263006555016377 0ustar hornikusers\name{hhh4_predict} \alias{predict.hhh4} \title{Predictions from a \code{hhh4} Model} \description{ Get fitted (component) means from a \code{\link{hhh4}} model. } \usage{ \method{predict}{hhh4}(object, newSubset=object$control$subset, type="response", \dots) } \arguments{ \item{object}{fitted \code{\link{hhh4}} model (class \code{"hhh4"}).} \item{newSubset}{subset of time points for which to return the predictions. Defaults to the subset used for fitting the model, and must be a subset of \code{1:nrow(object$stsObj)}.} \item{type}{the type of prediction required. The default (\code{"response"} or, equivalently, \code{"mean"}) is on the scale of the response variable (mean = endemic plus epidemic components). The alternatives are: \code{"endemic"}, \code{"epidemic"}, \code{"epi.own"} (i.e. the autoregresssive part), and \code{"epi.neighbours"} (i.e. the spatio-temporal part).} \item{\dots}{unused (argument of the generic).} } \value{ matrix of fitted means for each time point (of \code{newSubset}) and region. } \author{Michaela Paul and Sebastian Meyer} \keyword{methods} \keyword{models} surveillance/man/stsAggregate.Rd0000644000175100001440000000273513167102247016460 0ustar hornikusers\name{aggregate-methods} \docType{methods} \alias{aggregate,sts,ANY,ANY-method} \alias{aggregate,sts-method} \title{Aggregate an \code{"sts"} Object Over Time or Across Units} \description{ Method to aggregate the matrix slots of an sts object. Either the time series is aggregated so a new sampling frequency of \code{nfreq} units per time slot is obtained (i.e as in \code{\link{aggregate.ts}}) or the aggregation is over all \code{ncol} units. Note: The function is not 100\% consistent with what the generic function \code{\link{aggregate}} does. } \section{Methods}{ \describe{ \item{x = "sts", by="time", nfreq="all",...}{ \describe{ \item{x}{an object of class \code{sts}} \item{by}{a string being either "time" or "unit"} \item{nfreq}{new sampling frequency if \code{by=="time"}. If \code{nfreq=="all"} then all time instances are summed.} \item{...}{not used} } returns an object of class \code{sts} } } } \section{Warning}{ Aggregation by unit sets the upperbound slot to \code{NA} and the \code{map} slot is left as-is, but the object cannot be plotted by unit any longer. The populationFrac slot is aggregated just like the observed slot and population fractions are recomputed. This might not be intended, especially for aggregation over time. } \seealso{ \code{\link{aggregate}} } \examples{ data("ha.sts") dim(ha.sts) dim(aggregate(ha.sts,by="unit")) dim(aggregate(ha.sts,nfreq=13)) } \keyword{methods} surveillance/man/stsNewport.Rd0000644000175100001440000000123613122471774016230 0ustar hornikusers\name{stsNewport} \alias{stsNewport} \docType{data} \title{Salmonella Newport cases in Germany 2004-2013} \description{ Reported number of cases of the Salmonella Newport serovar in Germany 2001-2015, by date of disease onset. The slot \code{control} contains a matrix \code{reportingTriangle$n} with the reporting triangle as described in Salmon et al. (2015). } \usage{data(stsNewport)} \format{ A \code{sts} object. } \references{ Salmon, M., Schumacher, D., Stark, K., \enc{Höhle}{Hoehle}, M. (2015): Bayesian outbreak detection in the presence of reporting delays. Biometrical Journal, 57 (6), 1051-1067. } \keyword{datasets} surveillance/man/algo.rogerson.Rd0000644000175100001440000001047313122471774016622 0ustar hornikusers\name{algo.rogerson} \alias{algo.rogerson} \title{Modified CUSUM method as proposed by Rogerson and Yamada (2004)} \description{ Modified Poisson CUSUM method that allows for a time-varying in-control parameter \eqn{\theta_{0,t}} as proposed by Rogerson and Yamada (2004). The same approach can be applied to binomial data if \code{distribution="binomial"} is specified. } \usage{ algo.rogerson(disProgObj, control = list(range = range, theta0t = NULL, ARL0 = NULL, s = NULL, hValues = NULL, distribution = c("poisson","binomial"), nt = NULL, FIR=FALSE, limit = NULL, digits = 1)) } \arguments{ \item{disProgObj}{object of class \code{disProg} that includes a matrix with the observed number of counts} \item{control}{ list with elements \describe{ \item{range}{vector of indices in the observed matrix of \code{disProgObj} to monitor} \item{theta0t}{matrix with in-control parameter, must be specified} \item{ARL0 }{ desired average run length \eqn{\gamma} } \item{s}{change to detect, see \code{\link{findH}} for further details} \item{hValues}{matrix with decision intervals \code{h} for a sequence of values \eqn{\theta_{0,t}} (in the range of \code{theta0t}) } \item{distribution}{\code{"poisson"} or \code{"binomial"} } \item{nt}{optional matrix with varying sample sizes for the binomial CUSUM} \item{FIR}{a FIR CUSUM with head start \eqn{\frac{\code{h}}{2}} is applied to the data if \code{TRUE}, otherwise no head start is used; see details } \item{limit}{numeric that determines the procedure after an alarm is given, see details} \item{digits}{the reference value and decision interval are rounded to \code{digits} decimal places. Defaults to 1 and should correspond to the number of digits used to compute \code{hValues} } } } } \details{ The CUSUM for a sequence of Poisson or binomial variates \eqn{x_t} is computed as \deqn{S_t = \max \{0, S_{t-1} + c_t (x_t- k_t)\} , \, t=1,2,\ldots ,} where \eqn{S_0=0} and \eqn{c_t=\frac{h}{h_t} }; \eqn{k_t} and \eqn{h_t} are time-varying reference values and decision intervals. An alarm is given at time \eqn{t} if \eqn{S_t \geq h}. If \code{FIR=TRUE}, the CUSUM starts with a head start value \eqn{S_0=\frac{\code{h}}{2}} at time \eqn{t=0}. After an alarm is given, the FIR CUSUM starts again at this head start value. The procedure after the CUSUM gives an alarm can be determined by \code{limit}. Suppose that the CUSUM signals at time \eqn{t}, i.e. \eqn{S_t \geq h}. For numeric values of \code{limit}, the CUSUM is bounded above after an alarm is given, % at time \eqn{t-1}, i.e. \eqn{S_{t}} is set to \eqn{ \min\{\code{limit} \cdot h,S_{t}\} }. %\deqn{S_{t} = \max \{0, S_{t-1} + c_t(x_t - k_t)\}. } Using \code{limit}=0 corresponds to resetting \eqn{S_t} to zero after an alarm as proposed in the original formulation of the CUSUM. If \code{FIR=TRUE}, \eqn{S_{t}} is reset to \eqn{ \frac{\code{h}}{2} } (i.e. \code{limit}=\eqn{\frac{\code{h}}{2} } ). If \code{limit=NULL}, no resetting occurs after an alarm is given. } \note{\code{algo.rogerson} is a univariate CUSUM method. If the data are available in several regions (i.e. \code{observed} is a matrix), multiple univariate CUSUMs are applied to each region. } \value{Returns an object of class \code{survRes} with elements \item{alarm}{indicates whether the CUSUM signaled at time \eqn{t} or not (1 = alarm, 0 = no alarm) } \item{upperbound}{CUSUM values \eqn{S_{t}} } \item{disProgObj}{\code{disProg} object } \item{control}{list with the alarm threshold \eqn{h} and the specified control object} } \examples{ # simulate data set.seed(123) data <- simHHH(control = list(coefs = list(alpha =-0.5, gamma = 0.4, delta = 0.6)),length=300) # extract mean used to generate the data lambda <- data$endemic # determine a matrix with h values hVals <- hValues(theta0 = 10:150/100, ARL0=500, s = 1, distr = "poisson") # apply modified Poisson CUSUM res <- algo.rogerson(data$data, control=c(hVals, list(theta0t=lambda,range=1:300))) plot(res) } \references{ Rogerson, P. A. and Yamada, I. Approaches to Syndromic Surveillance When Data Consist of Small Regional Counts. Morbidity and Mortality Weekly Report, 2004, 53/Supplement, 79-85 } \seealso{\code{\link{hValues}}} \keyword{classif} surveillance/man/epidata_plot.Rd0000644000175100001440000001526112665561746016522 0ustar hornikusers\name{epidata_plot} \alias{plot.epidata} \alias{plot.summary.epidata} \alias{stateplot} \title{ Plotting the Evolution of an Epidemic } \description{ Functions for plotting the evolution of epidemics. The \code{\link{plot}} methods for \code{\link{class}}es \code{"\link{epidata}"} and \code{"summary.epidata"} plots the numbers of susceptible, infectious and recovered (= removed) individuals by step functions along the time axis. The function \code{stateplot} shows individual state changes along the time axis. } \usage{ \method{plot}{summary.epidata}(x, lty = c(2, 1, 3), lwd = 2, col = c("#1B9E77", "#D95F02", "#7570B3"), col.hor = col, col.vert = col, xlab = "Time", ylab = "Number of individuals", xlim = NULL, ylim = NULL, legend.opts = list(), do.axis4 = NULL, panel.first = grid(), rug.opts = list(), which.rug = c("infections", "removals", "susceptibility", "all"), ...) \method{plot}{epidata}(x, ...) stateplot(x, id, ...) } \arguments{ \item{x}{ an object inheriting from class \code{"epidata"} or \code{"summary.epidata"}. In the former case, its summary is calculated and the function continues as in the latter case. The \code{plot} method for class \code{"epidata"} is a simple wrapper for \code{plot.summary.epidata} implemented as \code{plot(summary(x, ...))}. } \item{lty, lwd}{ vectors of length 3 containing the line types and widths, respectively, for the numbers of susceptible, infectious and removed individuals (in this order). By default, all lines have width 1 and the line types are dashed (susceptible), solid (infectious) and dotted (removed), respectively. To omit the drawing of a specific line, just set the corresponding entry in \code{lty} to 0. The vectors are recycled if necessary. For information about the different \code{lty} and \code{lwd} codes, see the help pages of \code{\link{par}}. } \item{col, col.hor, col.vert}{ vectors of length 3 containing the line colors for the numbers of susceptible, infectious and removed individuals (in this order). \code{col.hor} defines the color for the horizontal parts of the step function, whilst \code{col.vert} defines the color for its vertical parts. The argument \code{col} is just short for \code{col.hor = col} and \code{col.vert = col}. The default \code{col} vector corresponds to \code{\link[RColorBrewer]{brewer.pal}("Dark2",n=3)} from the \pkg{RColorBrewer} package. The vectors are recycled if necessary. For information about the possible values of \code{col}, see the help pages of \code{\link{par}}. } \item{xlab, ylab}{ axis labels, default to "Time" and "Number of individuals", respectively. } \item{xlim, ylim}{ the x and y limits of the plot in the form \code{c(xmin, xmax)} and \code{c(ymin, ymax)}, respectively. By default, these are chosen adequately to fit the time range of the epidemic and the number of individuals. } \item{legend.opts}{ if this is a list (of arguments for the \code{\link{legend}} function), a legend will be plotted. The defaults are as follows: \describe{ \item{\code{x}:}{\code{"topright"}} \item{\code{inset}:}{\code{c(0,0.02)}} \item{\code{legend}:}{\code{c("susceptible", "infectious", "removed")}} \item{\code{lty},\code{lwd},\code{col}:}{same as the arguments \code{lty}, \code{lwd}, and \code{col.hor} of the main function} \item{\code{bty}:}{\code{"n"}} } } \item{do.axis4}{ logical indicating if the final numbers of susceptible and removed individuals should be indicated on the right axis. The default \code{NULL} means \code{TRUE}, if \code{x} represents a SIR epidemic and \code{FALSE} otherwise, i.e. if the epidemic is SI, SIS or SIRS. } \item{panel.first}{ an expression to be evaluated after the plot axes are set up but before any plotting takes place. By default, a standard grid is drawn. } \item{rug.opts}{ either a list of arguments passed to the function \code{\link{rug}} or \code{NULL} (or \code{NA}), in which case no \code{rug} will be plotted. By default, the argument \code{ticksize} is set to 0.02, \code{col} is set to the color according to \code{which.rug} (black if this is \code{"all"}), and \code{quiet} is set to \code{TRUE}. Note that the argument \code{x}, which contains the locations for the \code{rug} is fixed internally and can not be modified. The argument \code{which.rug} (see below) determines the locations to mark. } \item{which.rug}{ By default, tick marks are drawn at the time points of infections. Alternatively, one can choose to mark only \code{"removals"}, \code{"susceptibilities"} (i.e. state change from R to S) or \code{"all"} events. } \item{id}{ single character string or factor of length 1 specifying the individual for which the \code{stateplot} should be established. } \item{\dots}{ For \code{plot.summary.epidata}: further graphical parameters passed to \code{plot}, \code{lines} and \code{axis}, e.g. \code{main}, \code{las}, \code{cex.axis} (etc.) and \code{mgp}.\cr For \code{plot.epidata}: arguments passed to \code{plot.summary.epidata}.\cr For \code{stateplot}: arguments passed to \code{\link{plot.stepfun}} or \code{\link{plot.function}} (if \code{id} had no events during the observation period). By default, \code{xlab="time"}, \code{ylab="state"}, \code{xlim=attr(x,"timeRange")}, \code{xaxs="i"} and \code{do.points=FALSE}. } } \value{ \code{plot.summary.epidata} (and \code{plot.epidata}) invisibly returns the matrix used for plotting, which contains the evolution of the three counters.\cr \code{stateplot} invisibly returns the function, which was plotted, typically of class \code{"stepfun"}, but maybe of class \code{"function"}, if no events have been observed for the individual in question (then the function always returns the initial state). The vertical axis of \code{stateplot} can range from 1 to 3, where 1 corresponds to \emph{S}usceptible, 2 to \emph{I}nfectious and 3 to \emph{R}emoved. } \author{ Sebastian Meyer } \seealso{ \code{\link{summary.epidata}} for the data, on which the plots are based. \code{\link{animate.epidata}} for the animation of epidemics. } \examples{ data("fooepidata") s <- summary(fooepidata) # evolution of the epidemic par(las = 1) plot(s) # stateplot stateplot(s, id = "15", main = "Some individual event paths") stateplot(s, id = "1", add = TRUE, col = 2) stateplot(s, id = "20", add = TRUE, col = 3) legend("topright", legend = c(15, 1, 20), title = "id", lty = 1, col = 1:3, inset = 0.1) } \keyword{hplot} \keyword{methods} \keyword{spatial} surveillance/man/meningo.age.Rd0000644000175100001440000000162313122471774016227 0ustar hornikusers\name{meningo.age} \alias{meningo.age} \docType{data} \title{Meningococcal infections in France 1985-1995} \description{ Monthly counts of meningococcal infections in France 1985-1995. Here, the data is split into 4 age groups (<1, 1-5, 5-20, >20). } \usage{data(meningo.age)} \format{ An object of class disProg with 156 observations in each one of 4 age groups. \describe{ \item{week}{Number of month} \item{observed}{Matrix with number of counts in the corresponding month and age group} \item{state}{Boolean whether there was an outbreak -- dummy not implemented} \item{neighbourhood}{Neighbourhood matrix, all age groups are adjacent} \item{populationFrac}{Population fractions} } } \source{ ?? } \examples{ data(meningo.age) plot(meningo.age, title="Meningococcal infections in France 1985-95") plot(meningo.age, as.one=FALSE) } \keyword{datasets} surveillance/man/marks.Rd0000644000175100001440000000052412414444352015147 0ustar hornikusers\name{marks} \alias{marks} \docType{import} \title{Import from package \pkg{spatstat}} \description{ The generic function \code{marks} is imported from package \pkg{spatstat}. See \code{\link[spatstat:marks]{spatstat::marks}} for \pkg{spatstat}'s own methods, and \code{\link{marks.epidataCS}} for the \code{"epidataCS"}-specific method. } surveillance/man/correct53to52.Rd0000644000175100001440000000223213122471774016360 0ustar hornikusers\name{correct53to52} \alias{correct53to52} \title{Data Correction from 53 to 52 weeks} \description{ Correction of data from 53 to 52 weeks a year } \usage{ correct53to52(disProgObj, firstweek = 1) } \arguments{ \item{disProgObj}{object of class disProg (including the observed and the state chain).} \item{firstweek}{the number of the first week in a year, default = 1 (if it starts with the beginning of a year). Necessary, because the infected of week 53 and the infected of week 52 must be added.} } \value{ a \code{disProg} (disease progress) object including a list of the observed and the state chain (corrected to 52 weeks instead of 53 weeks a year) } \details{ \code{\link{readData}} reads data with 53 weeks a year, but normally one year is said to have 52 weeks. } \seealso{\code{\link{readData}}} \examples{ #This calls correct53to52 automatically obj <- readData("k1",week53to52=TRUE) correct53to52(obj) # first entry is the first week of the year obj <- readData("n1",week53to52=FALSE) correct53to52(obj, firstweek = 5) # now it's assumed that the fifth # entry is the first week of the year } \keyword{utilities} surveillance/man/find.kh.Rd0000644000175100001440000000247112375711212015354 0ustar hornikusers\name{find.kh} \alias{find.kh} \title{Determine the k and h values in a standard normal setting} \description{ Given a specification of the average run length in the (a)cceptance and (r)ejected setting determine the k and h values in a standard normal setting. } \usage{ find.kh(ARLa = 500, ARLr = 7, sided = "one", method = "BFGS", verbose=FALSE) } \arguments{ \item{ARLa}{average run length in acceptance setting, aka. in control state. Specifies the number of observations before false alarm.} \item{ARLr}{average run length in rejection state, aka. out of control state. Specifies the number of observations before an increase is detected (i.e. detection delay)} \item{sided}{one-sided cusum scheme} \item{method}{Which method to use in the function \code{\link{optim}}. Standard choice is BFGS, but in some situation Nelder-Mead can be advantageous.} \item{verbose}{gives extra information about the root finding process} } \value{ Returns a list with reference value k and decision interval h. } \details{ Functions from the \pkg{spc} package are used in a simple univariate root finding problem. } \examples{ if (requireNamespace("spc")) { find.kh(ARLa=500,ARLr=7,sided="one") find.kh(ARLa=500,ARLr=3,sided="one") } } \keyword{models} surveillance/man/scale.gpc.poly.Rd0000644000175100001440000000133212060143477016652 0ustar hornikusers\name{scale.gpc.poly} \alias{scale.gpc.poly} \title{Centering and Scaling a \code{"gpc.poly"} Polygon} \description{ This is a re-implementation of the corresponding method from package \pkg{gpclib} to also allow centering. } \usage{ \method{scale}{gpc.poly}(x, center = c(0,0), scale = c(1,1)) } \arguments{ \item{x}{an object of class \code{"gpc.poly"}.} \item{center}{numeric vector of length 2 (x,y), which will be subtracted from the respective coordinates of \code{x}.} \item{scale}{numeric vector of length 2 (x,y), which serves as the divisor for the respective coordinates of \code{x}.} } \value{ A \code{"gpc.poly"}, the shifted and/or scaled version of \code{x}. } \keyword{methods} \keyword{manip} surveillance/man/clapply.Rd0000644000175100001440000000124613117527513015502 0ustar hornikusers\name{clapply} \alias{clapply} \title{ Conditional \code{lapply} } \description{ Use \code{\link{lapply}} if the input is a list and otherwise apply the function directly to the input \emph{and} wrap the result in a list. The function is implemented as \preformatted{ if (is.list(X)) lapply(X, FUN, ...) else list(FUN(X, ...)) } } \usage{ clapply(X, FUN, ...) } \arguments{ \item{X}{a list or a single \code{R} object on which to apply \code{FUN}.} \item{FUN}{the function to be applied to (each element of) \code{X}.} \item{\dots}{optional arguments to \code{FUN}.} } \value{ a list (of length 1 if \code{X} is not a list). } \keyword{iteration} \keyword{list} surveillance/man/twinstim_siaf.Rd0000644000175100001440000001253612665561746016737 0ustar hornikusers\name{twinstim_siaf} \alias{siaf} \title{ Spatial Interaction Function Objects } \description{ A spatial interaction function for use in \code{\link{twinstim}} can be constructed via the \code{siaf} function. It checks the supplied function elements, assigns defaults for missing arguments, and returns all checked arguments in a list. However, for standard applications it is much easier to use one of the pre-defined spatial interaction functions, e.g., \code{\link{siaf.gaussian}}. } \usage{ siaf(f, F, Fcircle, effRange, deriv, Deriv, simulate, npars, validpars = NULL) } \arguments{ \item{f}{the spatial interaction function. It must accept two arguments, the first one being a (2-column) coordinate matrix, the second one a parameter vector. For marked \code{twinstim}, it must accept the type of the event (integer code) as its third argument (either a single type for all locations or separate types for each location).} \item{F}{function computing the integral of \eqn{f(s)} (passed as second argument) over a polygonal \code{"owin"} domain (first argument). The third and fourth argument are the parameter vector and the (\emph{single}) type, respectively. There may be additional arguments, which can then be specified in the \code{control.siaf$F} argument list of \code{twinstim}. If the \code{F} function is missing, a general default (\code{\link[polyCub]{polyCub}}) will be used, with extra arguments \code{method} (default: \code{"SV"}) and corresponding accuracy parameters.} \item{Fcircle}{optional function for fast calculation of the (two-dimensional) integral of \eqn{f(s)} over a circle with radius \code{r} (first argument). Further arguments are as for \code{f}. It must not be vectorized (will always be called with single radius and a single type). If this function is specified, integration of the \code{siaf} over the spatial influence region of an event will be faster if the region is actually circular. This is the case if the event is located at least a distance \code{eps.s} from the border of the observation region \code{W}, or if the distance to the border is larger than the effective integration range (if specified, see \code{effRange} below).} \item{effRange}{optional function returning the \dQuote{effective} range of \eqn{f(s)} for the given set of parameters (the first and only argument) such that the circle with radius \code{effRange} contains the numerically essential proportion of the integral mass. For the Gaussian kernel the default is \code{function (logsd) 6*exp(logsd)}. The return value must be a vector of length \code{nTypes} (effective range for each type). This function is only used if \code{Fcircle} is also specified.} \item{deriv}{optional derivative of \eqn{f(s)} \emph{with respect to the parameters}. It takes the same arguments as \code{f} but returns a matrix with as many rows as there were coordinates in the input and \code{npars} columns. This derivative is necessary for the calculation of the score function in \code{twinstim()}, which is advantageous for the numerical log-likelihood maximization.} \item{Deriv}{function computing the integral of \code{deriv} (passed as second argument) over a polygonal \code{"owin"} domain (first argument). The return value is thus a vector of length \code{npars}. The third argument is the parameter vector and the fourth argument is a (\emph{single}) type and must be named \code{type}. There may be additional arguments, which can then be specified in the \code{control.siaf$Deriv} argument list of \code{twinstim}. If the \code{Deriv} function is missing, a general default (\code{\link[polyCub]{polyCub}}) will be used, with extra arguments \code{method} (default: \code{"SV"}) and corresponding accuracy parameters.} \item{simulate}{optional function returning a sample drawn from the spatial kernel (only required for the simulation of \code{twinstim} models). Its first argument is the size of the sample to generate, next the parameter vector, an optional single event type, and an optional upper bound for the radius within which to simulate points. The function must return a two-column \emph{matrix} of the sampled locations. Note that the simulation method actually samples only one location at a time, thus it is sufficient to have a working \code{function(n=1, pars, type, ub)}. } \item{npars}{the number of parameters of the spatial interaction function \code{f} (i.e. the length of its second argument).} \item{validpars}{ optional function taking one argument, the parameter vector, indicating if it is valid. This approach to specify parameter constraints is rarely needed, because usual box-constrained parameters can be taken into account by using L-BFGS-B as the optimization method in \code{twinstim} (with arguments \code{lower} and \code{upper}), and positivity constraints by using log-parametrizations. This component is not necessary (and ignored) if \code{npars == 0}. } } \value{ list of checked arguments. } \author{ Sebastian Meyer } \seealso{ \code{\link{siaf.gaussian}} for a pre-defined spatial interaction function, and \code{\link{tiaf}} for the temporal interaction function. } \keyword{utilities} surveillance/man/stsNClist_animate.Rd0000644000175100001440000000243412744770132017464 0ustar hornikusers\name{stsNClist_animate} \alias{stsNClist_animate} \alias{animate_nowcasts} \encoding{latin1} \title{Animate a sequence of nowcasts} \description{Animate a sequence of nowcasts stored as a list. } \usage{ animate_nowcasts(nowcasts,linelist_truth, method="bayes.trunc.ddcp", control=list(dRange=NULL,anim.dRange=NULL, plot.dRange=NULL, consistent=FALSE, sys.sleep = 1, ylim=NULL,cex.names=0.7, col=c("violetred3","#2171B5","orange","blue","black", "greenyellow")), showLambda=TRUE) } \arguments{ \item{nowcasts}{A list of objects of class \code{stsNC}} \item{linelist_truth}{True linelist} \item{method}{Which method to show (has to be present in the nowcasts)} \item{control}{List with control options} \item{showLambda}{Boolean indicating whether to show the estimate for the epidemic curve (only applied to \code{bayes.trunc.ddcp})} } \value{ This function is experimental and is not yet documented. } \details{ This function is experimental and might be changed in the future. } \author{M. \enc{Höhle}{Hoehle}} \examples{ ## See http://staff.math.su.se/hoehle/blog/2016/07/19/nowCast.html for ## a worked through example. Code will migrate into the package in due ## course. } \keyword{hplot} surveillance/man/epidataCS_aggregate.Rd0000644000175100001440000001234013165513050017670 0ustar hornikusers\name{epidataCS_aggregate} \alias{epidataCS2sts} \alias{as.epidata.epidataCS} \title{Conversion (aggregation) of \code{"epidataCS"} to \code{"epidata"} or \code{"sts"}} \description{ Continuous-time continuous-space epidemic data stored in an object of class \code{"\link{epidataCS}"} can be aggregated in space or in space and time yielding an object of class \code{"\link{epidata}"} or \code{"\linkS4class{sts}"} for use of \code{\link{twinSIR}} or \code{\link{hhh4}} modelling, respectively. } \usage{ ## aggregation in space and time over 'stgrid' for use of 'hhh4' models epidataCS2sts(object, freq, start, neighbourhood, tiles = NULL, popcol.stgrid = NULL, popdensity = TRUE) ## aggregation in space for use of 'twinSIR' models \method{as.epidata}{epidataCS}(data, tileCentroids, eps = 0.001, ...) } \arguments{ \item{object, data}{an object of class \code{"\link{epidataCS}"}.} \item{freq,start}{see the description of the \code{"\linkS4class{sts}"} class.} \item{neighbourhood}{ binary adjacency or neighbourhood-order matrix of the regions (\code{tiles}). If missing but \code{tiles} is given, a binary adjacency matrix will be auto-generated from \code{tiles} using functionality of the \pkg{spdep} package (see \code{\link{poly2adjmat}}). Since the \code{"neighbourhood"} slot in \code{"\linkS4class{sts}"} is actually optional, \code{neighbourhood=NULL} also works. } \item{tiles}{ object inheriting from \code{"\linkS4class{SpatialPolygons}"} representing the regions in \code{object$stgrid} (column \code{"tile"}). It will become the \code{"map"} slot of the resulting \code{"sts"} object. Its \code{row.names} must match \code{levels(object$stgrid$tile)}. If \code{neighbourhood} is provided, \code{tiles} is optional (not required for \code{hhh4}, but for plots of the resulting \code{"sts"} object). } \item{popcol.stgrid}{ single character or numeric value indexing the column in \code{object$stgrid} which contains the population data (counts or densities, depending on the \code{popdensity} argument). This will become the \code{"populationFrac"} slot (optional).} \item{popdensity}{ logical indicating if the column referenced by \code{popcol.stgrid} contains population densities or absolute counts. } \item{tileCentroids}{ a coordinate matrix of the region centroids (i.e., the result of \code{coordinates(tiles)}). Its row names must match \code{levels(data$stgrid$tile)}. This will be the coordinates used for the \dQuote{population} (i.e., the \code{tiles} from \code{"\link{epidataCS}"}) in the discrete-space \code{\link{twinSIR}} modelling. } \item{eps}{ numeric scalar for breaking tied removal and infection times between different individuals (tiles), which might occur during conversion from \code{"epidataCS"} to \code{"epidata"}. Rather dumb, this is simply done by subtracting \code{eps} from each tied removal time. One should consider other ways of breaking the tied event times. } \item{\dots}{unused (argument of the generic).} } \details{ Some comments on the conversion from \code{"epidataCS"} to \code{"epidata"}: the conversion results into SIS epidemics only, i.e. the at-risk indicator is set to 1 immediately after recovery. A tile is considered infective if at least one individual within the tile is infective, otherwise it is susceptible. The lengths of the infectious periods are taken from \code{data$events$eps.t}. There will be no \code{f} columns in the resulting \code{"epidata"}. These must be generated by a subsequent call to \code{\link{as.epidata}} with desired \code{f}. } \value{ \code{epidataCS2sts}: an object of class \code{"\linkS4class{sts}"} representing the multivariate time-series of the number of cases aggregated over \code{stgrid}. \code{as.epidata.epidataCS}: an object of class \code{"\link{epidata}"} representing an SIS epidemic in form of a multivariate point process (one for each region/\code{tile}). } \author{ Sebastian Meyer } \seealso{ \code{\link{epidata}} and \code{\link{twinSIR}} \code{linkS4class{sts}} and \code{\link{hhh4}}. } \examples{ data("imdepi") load(system.file("shapes", "districtsD.RData", package="surveillance")) ## convert imdepi point pattern into multivariate time series imdsts <- epidataCS2sts(imdepi, freq = 12, start = c(2002, 1), neighbourhood = NULL, # not needed here tiles = districtsD) \dontshow{ stopifnot(isTRUE(all.equal(colSums(imdsts@observed), c(table(imdepi$events$tile))))) } ## compare plots of monthly number of cases opar <- par(mfrow = c(2, 1)) plot(imdepi, "time") plot(imdsts, type = observed ~ time) par(opar) ## plot number of cases by district plot(imdsts, type = observed ~ unit) ## also test conversion to an SIS event history ("epidata") of the "tiles" if (requireNamespace("intervals")) { imdepi_short <- subset(imdepi, time < 50) imdepi_short$stgrid <- subset(imdepi_short$stgrid, start < 50) imdepidata <- as.epidata(imdepi_short, tileCentroids = coordinates(districtsD)) summary(imdepidata) } } \keyword{spatial} \keyword{manip} \keyword{methods} surveillance/man/glm_epidataCS.Rd0000644000175100001440000000570513165513254016536 0ustar hornikusers\name{glm_epidataCS} \alias{glm_epidataCS} \title{ Fit an Endemic-Only \code{twinstim} as a Poisson-\code{glm} } \description{ An endemic-only \code{\link{twinstim}} is equivalent to a Poisson regression model for the aggregated number of events, \eqn{Y_{[t][\bm{s}],k}}, by time-space-type cell. The rate of the corresponding Poisson distribution is \eqn{e_{[t][\bm{s}]} \cdot \lambda([t],[\bm{s}],k)}, where \eqn{e_{[t][\bm{s}]} = |[t]| |[\bm{s}]|} is a multiplicative offset. Thus, the \code{\link{glm}} function can be used to fit an endemic-only \code{twinstim}. However, wrapping in \code{glm} is usually slower. } \usage{ glm_epidataCS(formula, data, ...) } \arguments{ \item{formula}{ an endemic model formula without response, comprising variables of \code{data$stgrid} and possibly the variable \code{type} for a type-specific model. } \item{data}{ an object of class \code{"\link{epidataCS}"}. } \item{\dots}{ arguments passed to \code{\link{glm}}. Note that \code{family} and \code{offset} are fixed internally. } } \value{ a \code{\link{glm}} } \author{ Sebastian Meyer } \examples{ data("imdepi", "imdepifit") ## Fit an endemic-only twinstim() and an equivalent model wrapped in glm() fit_twinstim <- update(imdepifit, epidemic = ~0, siaf = NULL, subset = NULL, optim.args=list(control=list(trace=0)), verbose=FALSE) fit_glm <- glm_epidataCS(formula(fit_twinstim)$endemic, data = imdepi) ## Compare the coefficients cbind(twinstim = coef(fit_twinstim), glm = coef(fit_glm)) \dontshow{ stopifnot(all.equal(coef(fit_glm), coef(fit_twinstim), tolerance = 1e-6, check.attributes = FALSE)) if (surveillance.options("allExamples")) { ## also check type-specific model: stopifnot(all.equal( coef(glm_epidataCS(~0+type, imdepi)), coef(update(fit_twinstim, endemic=~(1|type))), tolerance = 1e-6, check.attributes = FALSE)) } } ### also compare to an equivalent endemic-only hhh4() fit ## first need to aggregate imdepi into an "sts" object load(system.file("shapes", "districtsD.RData", package="surveillance")) imdsts <- epidataCS2sts(imdepi, freq = 12, start = c(2002, 1), neighbourhood = NULL, tiles = districtsD, popcol.stgrid = "popdensity") ## determine the correct offset to get an equivalent model offset <- 2 * rep(with(subset(imdepi$stgrid, !duplicated(BLOCK)), stop - start), ncol(imdsts)) * sum(districtsD$POPULATION) * population(imdsts) ## fit the model using hhh4() fit_hhh4 <- hhh4(imdsts, control = list( end = list( f = addSeason2formula(~I(start/365-3.5), period=365, timevar="start"), offset = offset ), family = "Poisson", subset = 1:nrow(imdsts), data = list(start=with(subset(imdepi$stgrid, !duplicated(BLOCK)), start)))) summary(fit_hhh4) stopifnot(all.equal(coef(fit_hhh4), coef(fit_glm), check.attributes=FALSE)) } \keyword{models} surveillance/man/fanplot.Rd0000644000175100001440000000656313230341175015502 0ustar hornikusers\name{fanplot} \alias{fanplot} \title{Fan Plot of Forecast Distributions} \description{ The \code{fanplot()} function in \pkg{surveillance} wraps functionality of the dedicated \CRANpkg{fanplot} package, employing a different default style and optionally adding point predictions and observed values. } \usage{ fanplot(quantiles, probs, means = NULL, observed = NULL, start = 1, fan.args = list(), means.args = list(), observed.args = list(), key.args = NULL, xlim = NULL, ylim = NULL, xlab = "Time", ylab = "No. infected", add = FALSE, ...) } \arguments{ \item{quantiles}{ a time x \code{probs} matrix of forecast quantiles at each time point. } \item{probs}{ numeric vector of probabilities with values between 0 and 1. } \item{means}{ (optional) numeric vector of point forecasts. } \item{observed}{ (optional) numeric vector of observed values. } \item{start}{ time index (x-coordinate) of the first prediction. } \item{fan.args}{ a list of graphical parameters for the \code{\link[fanplot]{fan}}, e.g., to employ a different \code{\link{colorRampPalette}} as \code{fan.col}, or to enable contour lines via \code{ln}. } \item{means.args}{ a list of graphical parameters for \code{\link{lines}} to modify the plotting style of the \code{means}. The default is a white line within the fan. } \item{observed.args}{ a list of graphical parameters for \code{\link{lines}} to modify the plotting style of the \code{observed} values. } \item{key.args}{ if a list, a color key (in \code{\link[fanplot]{fan}()}'s \code{"boxfan"}-style) is added to the fan chart. The list may include positioning parameters \code{start} (the x-position) and \code{ylim} (the y-range of the color key), \code{space} to modify the width of the boxfan, and \code{rlab} to modify the labels. An alternative way of labeling the quantiles is via the argument \code{ln} in \code{fan.args}. } \item{xlim,ylim}{ axis ranges. } \item{xlab,ylab}{ axis labels. } \item{add}{ logical indicating if the fan plot should be added to an existing plot. } \item{\dots}{ further arguments are passed to \code{\link{plot.default}}. } } \value{ \code{NULL} (invisibly), with the side effect of drawing a fan chart. } \author{ Sebastian Meyer } \seealso{ the underlying \code{\link[fanplot]{fan}} function in package \CRANpkg{fanplot}. The function is used in \code{\link{plot.oneStepAhead}} and \code{\link{plot.hhh4sims}}. } \examples{ ## artificial data example to illustrate the graphical options if (requireNamespace("fanplot")) { means <- c(18, 19, 20, 25, 26, 35, 34, 25, 19) y <- rlnorm(length(means), log(means), 0.5) quantiles <- sapply(1:99/100, qlnorm, log(means), seq(.5,.8,length.out=length(means))) ## default style with added point predictions and color key fanplot(quantiles = quantiles, probs = 1:99/100, means = means, observed = y, key.args = list(start = 1, space = .3)) ## with contour lines instead of a key, and different colors pal <- colorRampPalette(c("darkgreen", "gray93")) fanplot(quantiles = quantiles, probs = 1:99/100, observed = y, fan.args = list(fan.col = pal, ln = c(5,10,25,50,75,90,95)/100), observed.args = list(type = "b", pch = 19)) } } \keyword{hplot} \keyword{distribution} surveillance/man/twinstim_iaf.Rd0000644000175100001440000003250413142670125016530 0ustar hornikusers\encoding{latin1} \name{twinstim_iaf} \alias{siaf.constant} \alias{siaf.step} \alias{siaf.gaussian} \alias{siaf.powerlaw} \alias{siaf.powerlawL} \alias{siaf.student} \alias{tiaf.constant} \alias{tiaf.step} \alias{tiaf.exponential} \title{ Temporal and Spatial Interaction Functions for \code{twinstim} } \description{ A \code{twinstim} model as described in Meyer et al. (2012) requires the specification of the spatial and temporal interaction functions (\eqn{f} and \eqn{g}, respectively), i.e. how infectivity decays with increasing spatial and temporal distance from the source of infection. It is of course possible to define own functions (see \code{\link{siaf}} and \code{\link{tiaf}}, respectively), but the package already predefines some useful dispersal kernels returned by the constructor functions documented here. See Meyer and Held (2014) for various spatial interaction functions, and Meyer et al. (2017, Section 3, available as \code{vignette("twinstim")}) for an illustration of the implementation. } \usage{ # predefined spatial interaction functions siaf.constant() siaf.step(knots, maxRange = Inf, nTypes = 1, validpars = NULL) siaf.gaussian(nTypes = 1, logsd = TRUE, density = FALSE, F.adaptive = FALSE, F.method = "iso", effRangeMult = 6, validpars = NULL) siaf.powerlaw(nTypes = 1, validpars = NULL, engine = "C") siaf.powerlawL(nTypes = 1, validpars = NULL, engine = "C") siaf.student(nTypes = 1, validpars = NULL, engine = "C") # predefined temporal interaction functions tiaf.constant() tiaf.step(knots, maxRange = Inf, nTypes = 1, validpars = NULL) tiaf.exponential(nTypes = 1, validpars = NULL) } \arguments{ \item{knots}{numeric vector of distances at which the step function switches to a new height. The length of this vector determines the number of parameters to estimate. For identifiability, the step function has height 1 in the first interval \eqn{[0,knots_1)}. Note that the implementation is right-continuous, i.e., intervals are \eqn{[a,b)}.\cr An initial choice of knots could be based on quantiles of the observed distances between events and their potential source events. For instance, an identifiable spatial step function could be \code{siaf.step(quantile(\link{getSourceDists}(myepi, "space"), c(1,2,4)/10))}, where \code{myepi} is the \code{"epidataCS"} data to be modelled.} \item{maxRange}{a scalar larger than any of \code{knots}. Per default (\code{maxRange=Inf}), the step function never drops to 0 but keeps the last height for any distance larger than the last knot. However, this might not work in some cases, where the last parameter value would become very small and lead to numerical problems. It is then possible to truncate interaction at a distance \code{maxRange} (just like what the variables \code{eps.s} and \code{eps.t} do in the \code{"\link{epidataCS}"} object).} \item{nTypes}{ determines the number of parameters ((log-)scales or (log-)shapes) of the kernels. In a multitype epidemic, the different types may share the same spatial interaction function, in which case \code{nTypes=1}. Otherwise \code{nTypes} should equal the number of event types of the epidemic, in which case every type has its own (log-)scale or (log-)shape, respectively.\cr Currently, \code{nTypes > 1} is only implemented for \code{siaf.gaussian(F.adaptive = TRUE)}, \code{tiaf.step}, and \code{tiaf.exponential}. } \item{logsd,density}{ logicals affecting the parametrization of the Gaussian kernel. Settings different from the defaults are deprecated. The default is to use only the kernel of the bivariate, isotropic normal distribution (\code{density=FALSE}, see Details below), parametrized with the log-standard deviation (\code{logsd=TRUE}) to avoid constrained optimisation (L-BFGS-B) or \code{validpars}.\cr The power-law kernels always employ the log-scale for their scale and shape parameters. } \item{F.adaptive,F.method}{ If \code{F.adaptive = TRUE}, then an adaptive bandwidth of \code{adapt*sd} will be used in the midpoint-cubature (\code{\link[polyCub]{polyCub.midpoint}} in package \pkg{polyCub}) of the Gaussian interaction kernel, where \code{adapt} is an extra parameter of the returned \code{siaf$F} function and defaults to 0.1. It can be customized either by the \code{control.siaf$F} argument list of \code{twinstim}, or by a numeric specification of \code{F.adaptive} in the constructing call, e.g., \code{F.adaptive = 0.05} to achieve higher accuracy.\cr Otherwise, if \code{F.adaptive = FALSE}, the \code{F.method} argument determines which \code{\link[polyCub]{polyCub}} method to use in \code{siaf$F}. The accuracy (controlled via, e.g., \code{nGQ}, \code{rel.tol}, or \code{eps}, depending on the cubature method) can then be adjusted in \code{twinstim}'s \code{control.siaf$F} argument. } \item{effRangeMult}{ determines the effective range for numerical integration in terms of multiples of the standard deviation \eqn{\sigma} of the Gaussian kernel, i.e. with \code{effRangeMult=6} the \eqn{6 \sigma} region around the event is considered as the relevant integration domain instead of the whole observation region \code{W}. Setting \code{effRangeMult=NULL} will disable the integral approximation with an effective integration range. } \item{validpars}{ function taking one argument, the parameter vector, indicating if it is valid (see also \code{\link{siaf}}). If \code{logsd=FALSE} and one prefers not to use \code{method="L-BFGS-B"} for fitting the \code{twinstim}, then \code{validpars} could be set to \code{function (pars) pars > 0}. } \item{engine}{ character string specifying the implementation to use. Prior to \pkg{surveillance} 0.14.0, the \code{intrfr} functions for \code{\link{polyCub.iso}} were evaluated in \R (and this implementation is available via \code{engine = "R"}). The new C-implementation, \samp{LinkingTo} the newly exported \code{polyCub_iso} C-implementation in \pkg{polyCub} 0.6.0, is considerably faster. } } \details{ Evaluation of \code{twinstim}'s likelihood involves cubature of the spatial interaction function over polygonal domains. Various approaches have been compared by Meyer (2010, Section 3.2) and a new efficient method, which takes advantage of the assumed isotropy, has been proposed by Meyer and Held (2014, Supplement B, Section 2) for evaluation of the power-law kernels. These cubature methods are available in the dedicated \R package \pkg{polyCub} and used by the kernels implemented in \pkg{surveillance}. The readily available spatial interaction functions are defined as follows: \describe{ \item{\code{siaf.constant}:}{ \eqn{f(s) = 1} } \item{\code{siaf.step}:}{ \eqn{f(s) = \sum_{k=0}^K \exp(\alpha_k) I_k(||s||)},\cr where \eqn{\alpha_0 = 0}, and \eqn{\alpha_1, \dots, \alpha_K} are the parameters (heights) to estimate. \eqn{I_k(||s||)} indicates if distance \eqn{||s||} belongs to the \eqn{k}th interval according to \code{c(0,knots,maxRange)}, where \eqn{k=0} indicates the interval \code{c(0,knots[1])}.\cr Note that \code{siaf.step} makes use of the \pkg{memoise} package if it is available -- and that is highly recommended to speed up calculations. Specifically, the areas of the intersection of a polygonal domain (influence region) with the \dQuote{rings} of the two-dimensional step function will be cached such that they are only calculated once for every \code{polydomain} (in the first iteration of the \code{twinstim} optimization). They are used in the integration components \code{F} and \code{Deriv}. See Meyer and Held (2014) for a use case and further details. } \item{\code{siaf.gaussian}:}{ \eqn{f(s|\kappa) = \exp(-||s||/2/\sigma_\kappa^2)}\cr If \code{nTypes=1} (single-type epidemic or type-invariant \code{siaf} in multi-type epidemic), then \eqn{\sigma_\kappa = \sigma} for all types \eqn{\kappa}. If \code{density=TRUE} (deprecated), then the kernel formula above is additionally divided by \eqn{2 \pi \sigma_\kappa^2}, yielding the density of the bivariate, isotropic Gaussian distribution with zero mean and covariance matrix \eqn{\sigma_\kappa^2 I_2}. The standard deviation is optimized on the log-scale (\code{logsd = TRUE}, not doing so is deprecated). } \item{\code{siaf.powerlaw}:}{ \eqn{f(s) = (||s|| + \sigma)^{-d}},\cr which is the kernel of the Lomax density, i.e. without any proportionality constants. The parameters are optimized on the log-scale to ensure positivity, i.e. \eqn{\sigma = \exp(\tilde{\sigma})} and \eqn{d = \exp(\tilde{d})}, where \eqn{(\tilde{\sigma}, \tilde{d})} is the parameter vector. } \item{\code{siaf.powerlawL}:}{ \eqn{f(s) = (||s||/\sigma)^{-d}}, for \eqn{||s|| \ge \sigma}, and \eqn{f(s) = 1} otherwise,\cr which is a \emph{L}agged power-law kernel featuring uniform short-range dispersal (up to distance \eqn{\sigma}) and a power-law decay (Pareto-style) from distance \eqn{\sigma} onwards. The parameters are optimized on the log-scale to ensure positivity, i.e. \eqn{\sigma = \exp(\tilde{\sigma})} and \eqn{d = \exp(\tilde{d})}, where \eqn{(\tilde{\sigma}, \tilde{d})} is the parameter vector. However, there is a caveat associated with this kernel: Its derivative wrt \eqn{\tilde{\sigma}} is mathematically undefined at the threshold \eqn{||s||=\sigma}. This local non-differentiability makes \code{twinstim}'s likelihood maximization sensitive wrt parameter start values, and is likely to cause false convergence warnings by \code{\link{nlminb}}. Possible workarounds are to use the slow and robust \code{method="Nelder-Mead"}, or to just ignore the warning and verify the result by sets of different start values. } \item{\code{siaf.student}:}{ \eqn{f(s) = (||s||^2 + \sigma^2)^{-d}},\cr which is a reparametrized \eqn{t}-kernel. For \eqn{d=1}, this is the kernel of the Cauchy density with scale \code{sigma}. In Geostatistics, a correlation function of this kind is known as the Cauchy model.\cr The parameters are optimized on the log-scale to ensure positivity, i.e. \eqn{\sigma = \exp(\tilde{\sigma})} and \eqn{d = \exp(\tilde{d})}, where \eqn{(\tilde{\sigma}, \tilde{d})} is the parameter vector. } } The predefined temporal interaction functions are defined as follows: \describe{ \item{\code{tiaf.constant}:}{ \eqn{g(t) = 1} } \item{\code{tiaf.step}:}{ \eqn{g(t) = \sum_{k=0}^K \exp(\alpha_k) I_k(t)},\cr where \eqn{\alpha_0 = 0}, and \eqn{\alpha_1, \dots, \alpha_K} are the parameters (heights) to estimate. \eqn{I_k(t)} indicates if \eqn{t} belongs to the \eqn{k}th interval according to \code{c(0,knots,maxRange)}, where \eqn{k=0} indicates the interval \code{c(0,knots[1])}. } \item{\code{tiaf.exponential}:}{ \eqn{g(t|\kappa) = \exp(-\alpha_\kappa t)},\cr which is the kernel of the exponential distribution. If \code{nTypes=1} (single-type epidemic or type-invariant \code{tiaf} in multi-type epidemic), then \eqn{\alpha_\kappa = \alpha} for all types \eqn{\kappa}. } } } \value{ The specification of an interaction function, which is a list. See \code{\link{siaf}} and \code{\link{tiaf}}, respectively, for a description of its components. } \references{ Meyer, S. (2010): Spatio-Temporal Infectious Disease Epidemiology based on Point Processes. Master's Thesis, Ludwig-Maximilians-Universit\enc{ä}{ae}t M\enc{ü}{ue}nchen.\cr Available as \url{http://epub.ub.uni-muenchen.de/11703/} Meyer, S., Elias, J. and H\enc{ö}{oe}hle, M. (2012): A space-time conditional intensity model for invasive meningococcal disease occurrence. \emph{Biometrics}, \bold{68}, 607-616. \doi{10.1111/j.1541-0420.2011.01684.x} Meyer, S. and Held, L. (2014): Power-law models for infectious disease spread. \emph{The Annals of Applied Statistics}, \bold{8} (3), 1612-1639. \doi{10.1214/14-AOAS743} Meyer, S., Held, L. and \enc{Höhle}{Hoehle}, M. (2017): Spatio-temporal analysis of epidemic phenomena using the \R package \pkg{surveillance}. \emph{Journal of Statistical Software}, \bold{77} (11), 1-55. \doi{10.18637/jss.v077.i11} } \author{ Sebastian Meyer } \seealso{ \code{\link{twinstim}}, \code{\link{siaf}}, \code{\link{tiaf}}, and package \pkg{polyCub} for the involved cubature methods. } \examples{ # constant temporal dispersal tiaf.constant() # step function kernel tiaf.step(c(3,7), maxRange=14, nTypes=2) # exponential decay specification tiaf.exponential() # Type-dependent Gaussian spatial interaction function using an adaptive # two-dimensional midpoint-rule to integrate it over polygonal domains siaf.gaussian(2, F.adaptive=TRUE) # Single-type Gaussian spatial interaction function (using polyCub.iso) siaf.gaussian() # Type-independent power-law kernel siaf.powerlaw() # "lagged" power-law siaf.powerlawL() # (reparametrized) t-kernel siaf.student() # step function kernel siaf.step(c(10,20,50), maxRange=100) } \keyword{models} \keyword{utilities} surveillance/man/momo.Rd0000644000175100001440000000330213122471774015003 0ustar hornikusers\name{momo} \alias{momo} \docType{data} \encoding{latin1} \title{Danish 1994-2008 all cause mortality data for six age groups} \description{ Weekly number of all cause mortality from 1994-2008 in each of the six age groups <1, 1-4, 5-14, 15-44, 45-64, 65-74, 75-84 and 85 years. } \usage{data(momo)} \details{ The object of class \code{"\linkS4class{sts}"} contains the number of all cause mortality from 1994-2008 in Denmark for each of the six age groups <1, 1-4, 5-14, 15-44, 45-64, 65-74, 75-84 and 85 years. A special feature of such EuroMOMO data is that weeks are handled as defined by the ISO 8601 standard, which can be handled by the \code{"sts"} class. The \code{population} slot of the \code{momo} object contains the population size in each of the six age groups. These are yearly data obtained from the StatBank Denmark. The aim of the EuroMOMO project is to develop and strengthen real-time monitoring of mortality across Europe; this will enhance the management of serious public health risks such as pandemic influenza, heat waves and cold snaps. For further details see the homepage of the EuroMOMO project. } \source{ Department of Epidemiology, Statens Serum Institute, Copenhagen, Denmark StatBank Denmark, Statistics Denmark, \url{http://www.statistikbanken.dk/} } \examples{ data("momo") plot(momo) } \references{ H\enc{ö}{oe}hle, M. and A. Mazick, A. (2009) Aberration detection in R illustrated by Danish mortality monitoring, Book chapter to appear in T. Kass-Hout and X. Zhang (Eds.) Biosurveillance: A Health Protection Priority, CRC Press. EuroMOMO project page, \url{http://www.euromomo.eu/}, Last accessed: 13 Oct 2010. } \keyword{datasets} surveillance/man/hepatitisA.Rd0000644000175100001440000000101313174706302016117 0ustar hornikusers\name{hepatitisA} \docType{data} \alias{hepatitisA} \title{Hepatitis A in Germany} \description{ Weekly number of reported hepatitis A infections in Germany 2001-2004. } \usage{data(hepatitisA)} \format{ A \code{disProg} object containing \eqn{208\times 1}{208 x 1} observations starting from week 1 in 2001 to week 52 in 2004. } \source{ Robert Koch-Institut: SurvStat: \url{https://survstat.rki.de/}; Queried on 11-01-2005. } \examples{ data(hepatitisA) plot(hepatitisA) } \keyword{datasets} surveillance/man/twinstim_tiaf.Rd0000644000175100001440000000535312265262002016712 0ustar hornikusers\name{twinstim_tiaf} \alias{tiaf} \title{ Temporal Interaction Function Objects } \description{ A temporal interaction function for use in \code{\link{twinstim}} can be constructed via the \code{tiaf} function. It checks the supplied function elements, assigns defaults for missing arguments, and returns all checked arguments in a list. However, for standard applications it is much easier to use one of the pre-defined temporal interaction functions, e.g., \code{\link{tiaf.exponential}}. } \usage{ tiaf(g, G, deriv, Deriv, npars, validpars = NULL) } \arguments{ \item{g}{the temporal interaction function. It must accept two arguments, the first one being a vector of time points, the second one a parameter vector. For marked \code{twinstim}, it must accept the type of the event (integer code) as its third argument (either a single type for all locations or separate types for each location).} \item{G}{a primitive of \eqn{g(t)} (with respect to time). It must accept the same arguments as \code{g}, for instance a \emph{vector} of time points (not just a single one).} \item{deriv}{optional derivative of \eqn{g(t)} \emph{with respect to the parameters}. It takes the same arguments as \code{g} but returns a matrix with as many rows as there were time points in the input and \code{npars} columns. This derivative is necessary for the calculation of the score function in \code{twinstim()}, which is advantageous for the numerical log-likelihood maximization.} \item{Deriv}{optional primitive of \code{deriv} (with respect to time). It must accept the same arguments as \code{deriv}, \code{g} and \code{G} and returns a matrix with as many rows as there were time points in the input and \code{npars} columns. The integrated derivative is necessary for the score function in \code{twinstim}.} \item{npars}{the number of parameters of the temporal interaction function \code{g} (i.e. the length of its second argument).} \item{validpars}{ optional function taking one argument, the parameter vector, indicating if it is valid. This approach to specify parameter constraints is rarely needed, because usual box-constrained parameters can be taken into account by using L-BFGS-B as the optimization method in \code{twinstim} (with arguments \code{lower} and \code{upper}), and positivity constraints by using log-parametrizations. This component is not necessary (and ignored) if \code{npars == 0}. } } \value{ list of checked arguments. } \author{ Sebastian Meyer } \seealso{ \code{\link{tiaf.exponential}} for a pre-defined temporal interaction function, and \code{\link{siaf}} for the spatial interaction function. } \keyword{utilities} surveillance/man/sumNeighbours.Rd0000644000175100001440000000077311770105224016666 0ustar hornikusers\name{sumNeighbours} \alias{sumNeighbours} \title{Calculates the sum of counts of adjacent areas} \description{ Calculates the sum of counts of adjacent units/areas, i.e. \eqn{\sum_{j \sim i} y_{j,t}}{sum_j~i y_j,t} for all time points \eqn{t} and each unit \eqn{i}, \eqn{t=1,\ldots,n, i=1,\ldots,m}. } \usage{ sumNeighbours(disProgObj) } \arguments{ \item{disProgObj}{Object of class \code{disProg}} } \value{matrix of dimension \eqn{n \times m}{n x m} } \keyword{internal} surveillance/man/epidata.Rd0000644000175100001440000003646113203271740015446 0ustar hornikusers\name{epidata} \alias{as.epidata} \alias{as.epidata.data.frame} \alias{as.epidata.default} \alias{print.epidata} \alias{[.epidata} \alias{update.epidata} \alias{epidata} \title{ Continuous-Time SIR Event History of a Fixed Population } \description{ The function \code{as.epidata} is used to generate objects of class \code{"epidata"}. Objects of this class are specific data frames containing the event history of an epidemic together with some additional attributes. These objects are the basis for fitting spatio-temporal epidemic intensity models with the function \code{\link{twinSIR}}. Their implementation is illustrated in Meyer et al. (2017, Section 4), see \code{vignette("twinSIR")}. Note that the spatial information itself, i.e. the positions of the individuals, is assumed to be constant over time. Besides epidemics following the SIR compartmental model, also data from SI, SIRS and SIS epidemics may be supplied. } \usage{ as.epidata(data, ...) \method{as.epidata}{data.frame}(data, t0, tE.col, tI.col, tR.col, id.col, coords.cols, f = list(), w = list(), D = dist, max.time = NULL, keep.cols = TRUE, ...) \method{as.epidata}{default}(data, id.col, start.col, stop.col, atRiskY.col, event.col, Revent.col, coords.cols, f = list(), w = list(), D = dist, .latent = FALSE, ...) \method{print}{epidata}(x, ...) \method{[}{epidata}(x, i, j, drop) \method{update}{epidata}(object, f = list(), w = list(), D = dist, ...) } \arguments{ \item{data}{ For the \code{data.frame}-method, a data frame with as many rows as there are individuals in the population and time columns indicating when each individual became exposed (optional), infectious (mandatory, but can be \code{NA} for non-affected individuals) and removed (optional). Note that this data format does not allow for re-infection (SIRS) and time-varying covariates. The \code{data.frame}-method converts the individual-indexed data frame to the long event history start/stop format and then feeds it into the default method. If calling the generic function \code{as.epidata} on a \code{data.frame} and the \code{t0} argument is missing, the default method is called directly.\cr For the default method, \code{data} can be a \code{\link{matrix}} or a \code{\link{data.frame}}. It must contain the observed event history in a form similar to \code{Surv(, type="counting")} in package \pkg{survival}, with additional information (variables) along the process. Rows will be sorted automatically during conversion. The observation period is split up into \emph{consecutive} intervals of constant state - thus constant infection intensities. The data frame consists of a block of \eqn{N} (number of individuals) rows for each of those time intervals (all rows in a block have the same start and stop values\dots therefore the name \dQuote{block}), where there is one row per individual in the block. Each row describes the (fixed) state of the individual during the interval given by the start and stop columns \code{start.col} and \code{stop.col}.\cr Note that there may not be more than one event (infection or removal) in a single block. Thus, in a single block, only one entry in the \code{event.col} and \code{Revent.col} may be 1, all others are 0. This rule follows the point process characteristic that there are no concurrent events (infections or removals). } \item{t0,max.time}{ observation period. In the resulting \code{"epidata"}, the time scale will be relative to the start time \code{t0}. Individuals that have already been removed prior to \code{t0}, i.e., rows with \code{tR <= t0}, will be dropped. The end of the observation period (\code{max.time}) will by default (\code{NULL}, or if \code{NA}) coincide with the last observed event. } \item{tE.col, tI.col, tR.col}{ single numeric or character indexes of the time columns in \code{data}, which specify when the individuals became exposed, infectious and removed, respectively. \code{tE.col} and \code{tR.col} can be missing, corresponding to SIR, SEI, or SI data. \code{NA} entries mean that the respective event has not (yet) occurred. Note that \code{is.na(tE)} implies \code{is.na(tI)} and \code{is.na(tR)}, and \code{is.na(tI)} implies \code{is.na(tR)} (and this is checked for the provided data).\cr CAVE: Support for latent periods (\code{tE.col}) is experimental! } \item{id.col}{ single numeric or character index of the \code{id} column in \code{data}. The \code{id} column identifies the individuals in the data frame. It is converted to a factor by calling \code{\link{factor}}, i.e., unused levels are dropped if it already was a factor. } \item{start.col}{ single index of the \code{start} column in \code{data}. Can be numeric (by column number) or character (by column name). The \code{start} column contains the (numeric) time points of the beginnings of the consecutive time intervals of the event history. The minimum value in this column, i.e. the start of the observation period should be 0. } \item{stop.col}{ single index of the \code{stop} column in \code{data}. Can be numeric (by column number) or character (by column name). The \code{stop} column contains the (numeric) time points of the ends of the consecutive time intervals of the event history. The stop value must always be greater than the start value of a row. } \item{atRiskY.col}{ single index of the \code{atRiskY} column in \code{data}. Can be numeric (by column number) or character (by column name). The \code{atRiskY} column indicates if the individual was \dQuote{at-risk} of becoming infected during the time interval (start; stop]. This variable must be logical or in 0/1-coding. Individuals with \code{atRiskY == 0} in the first time interval (normally the rows with \code{start == 0}) are taken as \emph{initially infectious}. } \item{event.col}{ single index of the \code{event} column in \code{data}. Can be numeric (by column number) or character (by column name). The \code{event} column indicates if the individual became \emph{infected} at the \code{stop} time of the interval. This variable must be logical or in 0/1-coding. } \item{Revent.col}{ single index of the \code{Revent} column in \code{data}. Can be numeric (by column number) or character (by column name). The \code{Revent} column indicates if the individual was \emph{recovered} at the \code{stop} time of the interval. This variable must be logical or in 0/1-coding. } \item{coords.cols}{ index\emph{es} of the \code{coords} column\emph{s} in \code{data}. Can be numeric (by column number), character (by column name), or \code{NULL} (no coordinates, e.g., if \code{D} is a pre-specified distance matrix). These columns contain the individuals' coordinates, which determine the distance matrix for the distance-based components of the force of infection (see argument \code{f}). By default, Euclidean distance is used (see argument \code{D}).\cr Note that the functions related to \code{\link{twinSIR}} currently assume \emph{fixed positions} of the individuals during the whole epidemic. Thus, an individual has the same coordinates in every block. For simplicity, the coordinates are derived from the first time block only (normally the rows with \code{start == 0}).\cr The \code{\link[=animate.epidata]{animate}}-method requires coordinates. } \item{f}{ a \emph{named} list of \emph{vectorized} functions for a distance-based force of infection. The functions must interact elementwise on a (distance) matrix \code{D} so that \code{f[[m]](D)} results in a matrix. A simple example is \code{function(u) {u <= 1}}, which indicates if the Euclidean distance between the individuals is smaller than or equal to 1. The names of the functions determine the names of the epidemic variables in the resulting data frame. So, the names should not coincide with names of other covariates. The distance-based weights are computed as follows: Let \eqn{I(t)} denote the set of infectious individuals just before time \eqn{t}. Then, for individual \eqn{i} at time \eqn{t}, the \eqn{m}'th covariate has the value \eqn{\sum_{j \in I(t)} f_m(d_{ij})}{% \sum_{j in I(t)} f[[m]](d[i,j])}, where \eqn{d_{ij}}{d[i,j]} denotes entries of the distance matrix (by default this is the Euclidean distance \eqn{||s_i - s_j||} between the individuals' coordinates, but see argument \code{D}). } \item{w}{ a \emph{named} list of \emph{vectorized} functions for extra covariate-based weights \eqn{w_{ij}}{w_ij} in the epidemic component. Each function operates on a single time-constant covariate in \code{data}, which is determined by the name of the first argument: The two function arguments should be named \code{varname.i} and \code{varname.j}, where \code{varname} is one of \code{names(data)}. Similar to the components in \code{f}, \code{length(w)} epidemic covariates will be generated in the resulting \code{"epidata"} named according to \code{names(w)}. So, the names should not coincide with names of other covariates. For individual \eqn{i} at time \eqn{t}, the \eqn{m}'th such covariate has the value \eqn{\sum_{j \in I(t)} w_m(z^{(m)}_i, z^{(m)}_j)}, where \eqn{z^{(m)}} denotes the variable in \code{data} associated with \code{w[[m]]}. } \item{D}{ either a function to calculate the distances between the individuals with locations taken from \code{coord.cols} (the default is Euclidean distance via the function \code{\link{dist}}) and the result converted to a matrix via \code{\link{as.matrix}}, or a pre-computed distance matrix with \code{dimnames} containing the individual ids (a classed \code{"\linkS4class{Matrix}"} is supported). } \item{keep.cols}{ logical indicating if all columns in \code{data} should be retained (and not only the obligatory \code{"epidata"} columns), in particular any additional columns with time-constant individual-specific covariates. Alternatively, \code{keep.cols} can be a numeric or character vector indexing columns of \code{data} to keep. } \item{.latent}{ (internal) logical indicating whether to allow for latent periods (EXPERIMENTAL). Otherwise (default), the function verifies that an event (i.e., switching to the I state) only happens when the respective individual is at risk (i.e., in the S state). } \item{x,object}{ an object of class \code{"epidata"}. } \item{\dots}{ arguments passed to \code{\link{print.data.frame}}. Currently unused in the \code{as.epidata}-methods. } \item{i,j,drop}{ arguments passed to \code{\link{[.data.frame}}. } } \details{ The \code{print} method for objects of class \code{"epidata"} simply prints the data frame with a small header containing the time range of the observed epidemic and the number of infected individuals. Usually, the data frames are quite long, so the summary method \code{\link{summary.epidata}} might be useful. Also, indexing/subsetting \code{"epidata"} works exactly as for \code{\link[=[.data.frame]{data.frame}}s, but there is an own method, which assures consistency of the resulting \code{"epidata"} or drops this class, if necessary. The \code{update}-method can be used to add or replace distance-based (\code{f}) or covariate-based (\code{w}) epidemic variables in an existing \code{"epidata"} object. SIS epidemics are implemented as SIRS epidemics where the length of the removal period equals 0. This means that an individual, which has an R-event will be at risk immediately afterwards, i.e. in the following time block. Therefore, data of SIS epidemics have to be provided in that form containing \dQuote{pseudo-R-events}. } \note{ The column name \code{"BLOCK"} is a reserved name. This column will be added automatically at conversion and the resulting data frame will be sorted by this column and by id. Also the names \code{"id"}, \code{"start"}, \code{"stop"}, \code{"atRiskY"}, \code{"event"} and \code{"Revent"} are reserved for the respective columns only. } \value{ a \code{data.frame} with the columns \code{"BLOCK"}, \code{"id"}, \code{"start"}, \code{"stop"}, \code{"atRiskY"}, \code{"event"}, \code{"Revent"} and the coordinate columns (with the original names from \code{data}), which are all obligatory. These columns are followed by any remaining columns of the input \code{data}. Last but not least, the newly generated columns with epidemic variables corresponding to the functions in the list \code{f} are appended, if \code{length(f)} > 0. The \code{data.frame} is given the additional \emph{attributes} \item{"eventTimes"}{ numeric vector of infection time points (sorted chronologically). } \item{"timeRange"}{ numeric vector of length 2: \code{c(min(start), max(stop))}. } \item{"coords.cols"}{ numeric vector containing the column indices of the coordinate columns in the resulting data frame. } \item{"f"}{ this equals the argument \code{f}. } \item{"w"}{ this equals the argument \code{w}. } } \author{ Sebastian Meyer } \seealso{ The \code{\link{hagelloch}} data for a \dQuote{real} \code{"epidata"} object. The code for the conversion from the simple data frame to the SIR event history using \code{as.epidata.data.frame} is given in \code{example(hagelloch)}. The \code{\link[=plot.epidata]{plot}} and the \code{\link[=summary.epidata]{summary}} method for class \code{"epidata"}. Furthermore, the function \code{\link{animate.epidata}} for the animation of epidemics. Function \code{\link{twinSIR}} for fitting spatio-temporal epidemic intensity models to epidemic data. Function \code{\link{simEpidata}} for the simulation of epidemic data. } \references{ Meyer, S., Held, L. and \enc{Höhle}{Hoehle}, M. (2017): Spatio-temporal analysis of epidemic phenomena using the \R package \pkg{surveillance}. \emph{Journal of Statistical Software}, \bold{77} (11), 1-55. \doi{10.18637/jss.v077.i11} } \examples{ # see help("hagelloch") for an example with a real data set # here is an artificial event history data("foodata") str(foodata) # convert the data to an object of class "epidata", # also generating some epidemic covariates myEpidata <- as.epidata(foodata, id.col = 1, start.col = "start", stop.col = "stop", atRiskY.col = "atrisk", event.col = "infected", Revent.col = "removed", coords.cols = c("x","y"), f = list(B1 = function(u) u <= 1, B2 = function(u) u > 1)) # this is how data("fooepidata") has been generated data("fooepidata") stopifnot(all.equal(myEpidata, fooepidata)) # add covariate-based weight for the force of infection, e.g., # to model an increased force if i and j have the same value in z1 myEpidata2 <- update(fooepidata, w = list(samez1 = function(z1.i, z1.j) z1.i == z1.j)) str(fooepidata) subset(fooepidata, BLOCK == 1) summary(fooepidata) # see 'summary.epidata' plot(fooepidata) # see 'plot.epidata' and also 'animate.epidata' stateplot(fooepidata, "15") # see 'stateplot' } \keyword{spatial} \keyword{classes} \keyword{manip} surveillance/man/inside.gpc.poly.Rd0000644000175100001440000000305412237174420017037 0ustar hornikusers\name{inside.gpc.poly} \alias{inside.gpc.poly} \title{ Test Whether Points are Inside a \code{"gpc.poly"} Polygon } \description{ Same as, e.g., \code{\link[spatstat]{inside.owin}} from package \pkg{spatstat} and \code{\link[sp]{point.in.polygon}} from package \pkg{sp}, i.e., test whether points lie inside or outside a given polygon. Actually, the method for \code{"gpc.poly"} documented here internally uses the \code{\link[sp]{point.in.polygon}} function. } \usage{ inside.gpc.poly(x, y = NULL, polyregion, mode.checked = FALSE) } \arguments{ \item{x,y}{ numeric vectors of coordinates of the points to be tested. The coordinates can be supplied in any form accepted by \code{\link{xy.coords}}. } \item{polyregion}{ an object of class \code{"gpc.poly"}. It is checked if the points specified through \code{x} and \code{y} fall into this polygonal region. } \item{mode.checked}{ passed to \code{\link[sp]{point.in.polygon}}. } } \details{ The nodes and edges of (non-hole) polygons are treated as being inside. Points that fall \emph{strictly} inside holes are treated as being outside of the polygon. } \value{ Logical vector whose \code{i}th entry is \code{TRUE} if the corresponding point \code{(x[i],y[i])} is inside \code{polyregion}. } \author{ Sebastian Meyer } \examples{ if (requireNamespace("rgeos")) { poly <- discpoly(c(0.5,0.5), 0.5, npoly=4, class="gpc.poly") pts <- cbind(x=runif(50), y=runif(50)) plot(poly) points(pts, col=1+inside.gpc.poly(pts, polyregion=poly)) } } \keyword{utilities} \keyword{spatial} surveillance/man/toFileDisProg.Rd0000644000175100001440000000125513122471774016553 0ustar hornikusers\name{toFileDisProg} \alias{toFileDisProg} \title{Writing of Disease Data} \description{Writing of disease data (disProg object) into a file.} \usage{ toFileDisProg(disProgObj, toFile) } \arguments{ \item{disProgObj}{The disProgObj to save in file} \item{toFile}{The path and filename of the file to save} } \value{ The file with the disease data } \details{ Writing of \code{disProg} object into a file as illustrated in the example. } \seealso{\code{\link{readData}}, \code{\link{sim.pointSource}}} \examples{ disProgObj <- sim.pointSource(length=200, K=1) toFileDisProg(disProgObj, "./simulation.txt") mydisProgObj <- readData("./simulation",sysPath=FALSE) } \keyword{file} surveillance/man/twinSIR_profile.Rd0000644000175100001440000000430512665561746017131 0ustar hornikusers\encoding{latin1} \name{twinSIR_profile} \alias{profile.twinSIR} \alias{plot.profile.twinSIR} \title{ Profile Likelihood Computation and Confidence Intervals } \description{ Function to compute estimated and profile likelihood based confidence intervals. Computations might be cumbersome! } \usage{ \method{profile}{twinSIR}(fitted, profile, alpha = 0.05, control = list(fnscale = -1, factr = 10, maxit = 100), ...) } \arguments{ \item{fitted}{ an object of class \code{"twinSIR"}. } \item{profile}{ a list with elements being numeric vectors of length 4. These vectors must have the form \code{c(index, lower, upper, gridsize)}. \describe{ \item{\code{index}:}{ index of the parameter to be profiled in the vector \code{coef(fitted)}. } \item{\code{lower, upper}:}{ lower/upper limit of the grid on which the profile log-likelihood is evaluated. Can also be \code{NA} in which case \code{lower/upper} equals the lower/upper bound of the respective 0.3 \% Wald confidence interval (+-3*se). } \item{\code{gridsize}:}{ grid size of the equally spaced grid between lower and upper. Can also be 0 in which case the profile log-likelihood for this parameter is not evaluated on a grid. } } } \item{alpha}{ \eqn{(1-\alpha) 100\%}{(1-alpha)*100\%} profile likelihood based confidence intervals are computed. If \code{alpha <= 0}, then no confidence intervals are computed. } \item{control}{ control object to use in \code{\link{optim}} for the profile log-likelihood computations. } \item{\dots}{ unused (argument of the generic). } } \value{ list with profile log-likelihood evaluations on the grid and highest likelihood and Wald confidence intervals. The argument \code{profile} is also returned. } \author{ Michael \enc{Höhle}{Hoehle} and Sebastian Meyer } \examples{ if (surveillance.options("allExamples")) { data("foofit") prof <- profile(foofit, list(c(1,NA,NA,5), c(3,NA,NA,0), c(4, 0.5, 1.1, 10))) prof ## there is also a plot-method for "profile.twinSIR" plot(prof) } } \keyword{htest} \keyword{methods} \keyword{optimize} \keyword{dplot} surveillance/man/twinstim_update.Rd0000644000175100001440000000504513165520251017252 0ustar hornikusers\name{twinstim_update} \alias{update.twinstim} \title{ \code{update}-method for \code{"twinstim"} } \description{ Update and (by default) re-fit a \code{"twinstim"}. This method is especially useful if one wants to add the \code{model} environment (which is required for some methods) to a fitted model object a posteriori. } \usage{ \method{update}{twinstim}(object, endemic, epidemic, control.siaf, optim.args, model, ..., use.estimates = TRUE, evaluate = TRUE) } \arguments{ \item{object}{a previous \code{"twinstim"} fit.} \item{endemic, epidemic}{changes to the formulae -- see \code{\link{update.formula}} and \code{\link{twinstim}}.} \item{control.siaf}{a list (see \code{\link{twinstim}}) to replace the given elements in the original \code{control.siaf} list. If \code{NULL}, the original list of control arguments is removed from the call, i.e., the defaults are used in \code{twinstim}.} \item{optim.args}{see \code{\link{twinstim}}. If a list, it will modify the original \code{optim.args} using \code{\link{modifyList}}.} \item{model}{see \code{\link{twinstim}}. If this is the only argument to update, re-fitting is cleverly circumvented. Enriching the fit by the model environment is, e.g., required for \code{\link{intensityplot.twinstim}}.} \item{\dots}{Additional arguments to the call, or arguments with changed values.\cr If \code{start} values are specified, they need to be in the same format as in the original call \code{object$call$start}, which is either a named list of named numeric vectors or a named numeric vector; see the argument description in \code{\link{twinstim}}.} \item{use.estimates}{logical indicating if the estimates of \code{object} should be used as initial values for the new fit (in the \code{start} argument of \code{twinstim}). Defaults to \code{TRUE}.} \item{evaluate}{If \code{TRUE} (default), evaluate the new call else return the call.} } \value{ If \code{evaluate = TRUE} the re-fitted object, otherwise the updated call. } \author{ Sebastian Meyer Inspiration and some pieces of code originate from \code{\link{update.default}} by the R Core Team. } \seealso{ \code{\link{update.default}} } \examples{ data("imdepi", "imdepifit") ## add another epidemic covariate ## (but fix siaf-parameter so that this example runs quickly) imdepifit2 <- update(imdepifit, epidemic = ~. + log(popdensity), optim.args = list(fixed="e.siaf.1")) ## compare by AIC AIC(imdepifit, imdepifit2) } \keyword{models} \keyword{methods} surveillance/man/algo.hmm.Rd0000644000175100001440000001573313122471774015551 0ustar hornikusers\encoding{latin1} \name{algo.hmm} \alias{algo.hmm} \title{Hidden Markov Model (HMM) method} \description{ This function implements on-line HMM detection of outbreaks based on the retrospective procedure described in Le Strat and Carret (1999). Using the function \code{\link[msm]{msm}} (from package \pkg{msm}) a specified HMM is estimated, the decoding problem, i.e. the most probable state configuration, is found by the Viterbi algorithm and the most probable state of the last observation is recorded. On-line detection is performed by sequentially repeating this procedure. Warning: This function can be very slow - a more efficient implementation would be nice! } \usage{ algo.hmm(disProgObj, control = list(range=range, Mtilde=-1, noStates=2, trend=TRUE, noHarmonics=1, covEffectEqual=FALSE, saveHMMs = FALSE, extraMSMargs=list())) } \arguments{ \item{disProgObj}{object of class disProg (including the observed and the state chain)} \item{control}{control object: \describe{ \item{\code{range}}{determines the desired time points which should be evaluated. Note that opposite to other surveillance methods an initial parameter estimation occurs in the HMM. Note that range should be high enough to allow for enough reference values for estimating the HMM} \item{\code{Mtilde}}{number of observations back in time to use for fitting the HMM (including the current observation). Reasonable values are a multiple of \code{disProgObj$freq}, the default is \code{Mtilde=-1}, which means to use all possible values - for long series this might take very long time!} \item{\code{noStates}}{number of hidden states in the HMM -- the typical choice is 2. The initial rates are set such that the \code{noStates}'th state is the one having the highest rate. In other words: this state is considered the outbreak state.} \item{\code{trend}}{Boolean stating whether a linear time trend exists, i.e. if \code{TRUE} (default) then \eqn{\beta_j \neq 0}{\beta != 0}} \item{\code{noHarmonics}}{number of harmonic waves to include in the linear predictor. Default is 1.} \item{\code{covEffectEqual}}{see details} \item{\code{saveHMMs}}{Boolean, if \code{TRUE} then the result of the fitted HMMs is saved. With this option the function can also be used to analyse data retrospectively. Default option is \code{FALSE}} \item{\code{extraMSMArgs}}{A named list with additional arguments to send to the \code{\link[msm:msm]{msm}} HMM fitting function. Note that the \code{msm} arguments \code{formula}, \code{data}, \code{qmatrix}, \code{hmodel}, \code{hcovariates} and \code{hconstraint} are automatically filled by \code{algo.hmm}, thus these should NOT be modified.} } } } \value{ \code{algo.hmm} gives a list of class \code{survRes} which includes the vector of alarm values for every timepoint in \code{range}. No \code{upperbound} can be specified and is put equal to zero. The resulting object contains a slot \code{control$hmm}, which contains the \code{msm} object with the fitted HMM. } \details{ For each time point t the reference values values are extracted. If the number of requested values is larger than the number of possible values the latter is used. Now the following happens on these reference values: A \code{noState}-State Hidden Markov Model (HMM) is used based on the Poisson distribution with linear predictor on the log-link scale. I.e. \deqn{Y_t | X_t = j \sim Po(\mu_t^j),}{Y_t|X_t = j ~ Po(\mu_t^j),} where \deqn{\log(\mu_t^j) = \alpha_j + \beta_j\cdot t + \sum_{i=1}^{nH} \gamma_j^i \cos(2i\pi/freq\cdot (t-1)) + \delta_j^i \sin(2i\pi/freq\cdot (t-1))}{% log(mu_t^j) = alpha_j + beta_j t + \sum_{i=1}^{nH} gamma_j^i \cos(2*i*pi/freq * (t-1)) + delta_j^i sin(2*i*pi/freq * (t-1)) } and \eqn{nH=}\code{noHarmonics} and \eqn{freq=12,52} depending on the sampling frequency of the surveillance data. In the above \eqn{t-1} is used, because the first week is always saved as \code{t=1}, i.e. we want to ensure that the first observation corresponds to cos(0) and sin(0). If \code{covEffectEqual} then all covariate effects parameters are equal for the states, i.e. \eqn{\beta_j=\beta, \gamma_j^i=\gamma^i, \delta_j^i=\delta^i} for all \eqn{j=1,...,noState}. In case more complicated HMM models are to be fitted it is possible to modify the \code{msm} code used in this function. Using e.g. \code{AIC} one can select between different models (see the \pkg{msm} package for further details). Using the Viterbi algorithms the most probable state configuration is obtained for the reference values and if the most probable configuration for the last reference value (i.e. time t) equals \code{control$noOfStates} then an alarm is given. Note: The HMM is re-fitted from scratch every time, sequential updating schemes of the HMM would increase speed considerably! A major advantage of the approach is that outbreaks in the reference values are handled automatically. } \seealso{\code{\link[msm:msm]{msm}}} \author{M. \enc{Höhle}{Hoehle}} \examples{ #Simulate outbreak data from HMM set.seed(123) counts <- sim.pointSource(p = 0.98, r = 0.8, length = 3*52, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.5) \dontrun{ #Do surveillance using a two state HMM without trend component and #the effect of the harmonics being the same in both states. A sliding #window of two years is used to fit the HMM surv <- algo.hmm(counts, control=list(range=(2*52):length(counts$observed), Mtilde=2*52,noStates=2,trend=FALSE, covEffectsEqual=TRUE,extraMSMargs=list())) plot(surv,legend=list(x="topright")) } if (require("msm")) { #Retrospective use of the function, i.e. monitor only the last time point #but use option saveHMMs to store the output of the HMM fitting surv <- algo.hmm(counts,control=list(range=length(counts$observed),Mtilde=-1,noStates=2, trend=FALSE,covEffectsEqual=TRUE, saveHMMs=TRUE)) #Compute most probable state using the viterbi algorithm - 1 is "normal", 2 is "outbreak". viterbi.msm(surv$control$hmm[[1]])$fitted #How often correct? tab <- cbind(truth=counts$state + 1 , hmm=viterbi.msm(surv$control$hmm[[1]])$fitted) table(tab[,1],tab[,2]) } } \references{ Y. Le Strat and F. Carrat, Monitoring Epidemiologic Surveillance Data using Hidden Markov Models (1999), Statistics in Medicine, 18, 3463--3478 I.L. MacDonald and W. Zucchini, Hidden Markov and Other Models for Discrete-valued Time Series, (1997), Chapman & Hall, Monographs on Statistics and applied Probability 70 } \keyword{classif} surveillance/man/algo.twins.Rd0000644000175100001440000001270612665561746016143 0ustar hornikusers\encoding{latin1} \name{algo.twins} \alias{algo.twins} \title{Model fit based on a two-component epidemic model} \description{ Fits a negative binomial model (as described in Held et al. (2006) to an univariate time series of counts. } \usage{ algo.twins(disProgObj, control=list(burnin=1000, filter=10, sampleSize=2500, noOfHarmonics=1, alpha_xi=10, beta_xi=10, psiRWSigma=0.25,alpha_psi=1, beta_psi=0.1, nu_trend=FALSE, logFile="twins.log")) } \arguments{ \item{disProgObj}{object of class \code{disProg}} \item{control}{control object: \describe{ \item{\code{burnin}}{Number of burn in samples.} \item{\code{filter}}{Thinning parameter. If \code{filter = 10} every 10th sample is after the burn in is returned.} \item{\code{sampleSize}}{Number of returned samples. Total number of samples = \code{burnin}+\code{filter}*\code{sampleSize}} \item{\code{noOfHarmonics}}{Number of harmonics to use in the modelling, i.e. \eqn{L}{L} in (2.2) of Held et al (2006).} \item{\code{alpha_xi}}{Parameter \eqn{\alpha_{\xi}}{\alpha_\xi} of the hyperprior of the epidemic parameter \eqn{\lambda}{\lambda}} \item{\code{beta_xi}}{Parameter \eqn{\beta_{\xi}}{\beta_\xi} of the hyperprior of the epidemic parameter \eqn{\lambda}{\lambda}} \item{\code{psiRWSigma}}{Starting value for the tuning of the variance of the random walk proposal for the overdispersion parameter \eqn{\psi}{\psi}.} \item{\code{alpha_psi}}{Parameter \eqn{\alpha_{\psi}}{\alpha_\psi} of the prior of the overdispersion parameter \eqn{\psi}{\psi}} \item{\code{beta_psi}}{Parameter \eqn{\beta_{\psi}}{\beta_\psi} of the prior of the overdispersion parameter \eqn{\psi}{\psi}} \item{\code{nu_trend}}{Adjust for a linear trend in the endemic part? (default: \code{FALSE})} \item{\code{logFile}}{Base file name for the output files. The function writes three output files in the current working directory \code{getwd()}. If \code{logfile = "twins.log"} the results are stored in the three files \file{twins.log}, \file{twins.log2} and \file{twins.log.acc}.\cr \file{twins.log} contains the returned samples of the parameters \eqn{\psi}{\psi}, \eqn{\gamma_{0}}{\gamma_0}, \eqn{\gamma_{1}}{\gamma_1}, \eqn{\gamma_{2}}{\gamma_2}, K, \eqn{\xi_{\lambda}}{\xi_\lambda} \eqn{\lambda_{1},...,\lambda{n}}{\lambda_1,...,\lambda_{n}}, the predictive distribution of the number of cases at time \eqn{n+1} and the deviance.\cr \file{twins.log2} contains the sample means of the variables \eqn{X_{t}, Y_{t}, \omega_{t}}{X_t, Y_t, \omega_t} and the relative frequency of a changepoint at time t for t=1,...,n and the relative frequency of a predicted changepoint at time n+1.\cr \file{twins.log.acc} contains the acceptance rates of \eqn{\psi}{\psi}, the changepoints and the endemic parameters \eqn{\gamma_{0}}{\gamma_0}, \eqn{\gamma_{1}}{\gamma_1}, \eqn{\gamma_{2}}{\gamma_2} in the third column and the variance of the random walk proposal for the update of the parameter \eqn{\psi}{\psi} in the second column.} } } } \details{Note that for the time being this function is not a surveillance algorithm, but only a modelling approach as described in the Held et. al (2006) paper. Note also that the function writes three logfiles in the current working directory \code{getwd()}: \file{twins.log}, \file{twins.log.acc} and \file{twins.log2}. Thus you need to have write permissions in the current working directory. Finally, inspection of the C++ code using valgrind shows some memory leaks when running the old underlying C++ program. As we are unable to fix this impurity at the present time, we have instead put the example code in a 'dontrun' environment. The example code, however, works fine -- the measure is thus more aimed at reducing the number of CRAN problems with the package. } \value{Returns an object of class \code{atwins} with elements \item{control}{specified control object} \item{disProgObj}{specified \code{disProg}-object} \item{logFile}{contains the returned samples of the parameters \eqn{\psi}{\psi}, \eqn{\gamma_{0}}{\gamma_0}, \eqn{\gamma_{1}}{\gamma_1}, \eqn{\gamma_{2}}{\gamma_2}, K, \eqn{\xi_{\lambda}}{\xi_\lambda} \eqn{\lambda_{1},...,\lambda{n}}{\lambda_1,...,\lambda_{n}}, the predictive distribution and the deviance.} \item{logFile2}{contains the sample means of the variables \eqn{X_{t}, Y_{t}, \omega_{t}}{X_t, Y_t, \omega_t} and the relative frequency of a changepoint at time t for t=1,...,n and the relative frequency of a predicted changepoint at time n+1.} } \references{ Held, L., Hofmann, M., \enc{Höhle}{Hoehle}, M. and Schmid V. (2006): A two-component model for counts of infectious diseases. \emph{Biostatistics}, \bold{7}, pp. 422--437. } \author{ M. Hofmann and M. \enc{Höhle}{Hoehle} and D. \enc{Sabanés Bové}{Sabanes Bove} } \examples{ \dontrun{ # Load the data used in the Held et al. (2006) paper data("hepatitisA") # Fix seed - this is used for the MCMC samplers in twins set.seed(123) # Call algorithm and save result (use short chain without filtering for speed) otwins <- algo.twins(hepatitisA, control=list(burnin=500, filter=1, sampleSize=1000)) # This shows the entire output (use ask=TRUE for pause between plots) plot(otwins, ask=FALSE) # Direct access to MCMC output hist(otwins$logFile$psi,xlab=expression(psi),main="") if (require("coda")) { print(summary(mcmc(otwins$logFile[,c("psi","xipsi","K")]))) } } } \keyword{ts} \keyword{regression} surveillance/man/measles.weser.Rd0000644000175100001440000001122613100434734016604 0ustar hornikusers\encoding{latin1} \name{measles.weser} \alias{measles.weser} \alias{measlesWeserEms} \docType{data} \keyword{datasets} \title{Measles in the Weser-Ems region of Lower Saxony, Germany, 2001-2002} \description{ Weekly counts of new measles cases for the 17 administrative districts (NUTS-3 level) of the \dQuote{Weser-Ems} region of Lower Saxony, Germany, during 2001 and 2002, as reported to the Robert Koch institute according to the Infection Protection Act (\dQuote{Infektionsschutzgesetz}, \acronym{IfSG}).\cr \code{data("measlesWeserEms")} is a corrected version of \code{data("measles.weser")} (see Format section below). These data are illustrated and analyzed in Meyer et al. (2017, Section 5), see \code{vignette("hhh4_spacetime")}. } \usage{ data("measles.weser") data("measlesWeserEms") } \format{ \code{data("measles.weser")} is an object of the old \code{"disProg"} class, whereas \code{data("measlesWeserEms")} is of the new class \code{"\linkS4class{sts}"}. Furthermore, the following updates have been applied for \code{data("measlesWeserEms")}: \itemize{ \item it includes the two districts \dQuote{SK Delmenhorst} (03401) and \dQuote{SK Wilhemshaven} (03405) with zero counts, which are ignored in \code{data("measles.weser")}. \item it corrects the time lag error for year 2002 caused by a redundant pseudo-week \dQuote{0} with 0 counts only (the row \code{measles.weser$observed[53,]} is nonsense). \item it has one more case attributed to \dQuote{LK Oldenburg} (03458) during 2001/W17, i.e., 2 cases instead of 1. This reflects the official data as of \dQuote{Jahrbuch 2005}, whereas \code{data("measles.weser")} is as of \dQuote{Jahrbuch 2004}. \item it contains a map of the region (as a \code{"\linkS4class{SpatialPolygonsDataFrame}"}) with the following variables: \describe{ \item{\code{GEN}}{district label.} \item{\code{AREA}}{district area in m^2.} \item{\code{POPULATION}}{number of inhabitants (as of 31/12/2003).} \item{\code{vaccdoc.2004}}{proportion with a vaccination card among screened abecedarians (2004).} \item{\code{vacc1.2004}}{proportion with at least one vaccination against measles among abecedarians presenting a vaccination card (2004).} \item{\code{vacc2.2004}}{proportion of doubly vaccinated abecedarians among the ones presenting their vaccination card at school entry in the year 2004.} } \item it uses the correct format for the official district keys, i.e., 5 digits (initial 0). \item its attached neighbourhood matrix is more general: a distance matrix (neighbourhood orders) instead of just an adjacency indicator matrix (special case \code{nbOrder == 1}). \item population fractions represent data as of 31/12/2003 (\acronym{NLS}, 2004, document \dQuote{A I 2 - hj 2 / 2003}). There are only minor differences to the ones used for \code{data("measles.weser")}. } } \source{ Measles counts were obtained from the public SurvStat database of the Robert Koch institute: \url{https://survstat.rki.de/}. A shapefile of Germany's districts as of 01/01/2009 was obtained from the Service Center (\url{www.geodatenzentrum.de}) of the German Federal Agency for Cartography and Geodesy (\url{www.bkg.bund.de}). The map of the 17 districts of the \dQuote{Weser-Ems} region (\code{measlesWeserEms@map}) is a simplified subset of this shapefile using a 30\% reduction via the Douglas-Peucker reduction method as implemented at \url{MapShaper.org}. Population numbers were obtained from the Federal Statistical Office of Lower Saxony (\acronym{LSN}): \url{http://www.statistik.niedersachsen.de/startseite/themenbereiche/bevoelkerung/themenbereich-bevoelkerung---statistische-berichte-87679.html} Vaccination coverage was obtained from the public health department of Lower Saxony: Nieders\enc{ä}{ae}chsisches Landesgesundheitsamt (2005): Impfreport -- Durchimpfung von Kindern im Einschulungsalter in Niedersachsen im Erhebungsjahrgang 2004. Online available from \url{http://www.nlga.niedersachsen.de/gesundheitsberichterstattung/gesundheitsberichte/impfreport/basisberichte-19385.html}, also as an interactive version. } \references{ Meyer, S., Held, L. and \enc{Höhle}{Hoehle}, M. (2017): Spatio-temporal analysis of epidemic phenomena using the \R package \pkg{surveillance}. \emph{Journal of Statistical Software}, \bold{77} (11), 1-55. \doi{10.18637/jss.v077.i11} } \examples{ ## old "disProg" object data("measles.weser") measles.weser plot(measles.weser, as.one=FALSE) ## new "sts" object (with corrections) data("measlesWeserEms") measlesWeserEms plot(measlesWeserEms) } surveillance/man/pit.Rd0000644000175100001440000000525513062174547014642 0ustar hornikusers\name{pit} \alias{pit} \alias{pit.default} \title{ Non-Randomized Version of the PIT Histogram (for Count Data) } \description{ See Czado et al. (2009). } \usage{ pit(x, ...) \method{pit}{default}(x, pdistr, J = 10, relative = TRUE, ..., plot = list()) } \arguments{ \item{x}{ numeric vector representing the observed counts. } \item{pdistr}{ either a list of predictive cumulative distribution functions for the observations \code{x}, or (the name of) a single predictive CDF used for all \code{x} (with potentially varying arguments \code{...}). It is checked that the predictive CDF returns 0 at \code{x=-1}. The name of its first argument can be different from \code{x}, e.g., \code{pdistr="pnbinom"} is possible.\cr If \code{pdistr} is a single function and no additional \code{\dots} arguments are supplied, \code{pdistr} is assumed to be vectorized, i.e., it is simply called as \code{pdistr(x)} and \code{pdistr(x-1)}. Otherwise, the predictive CDF is called sequentially and does not need to be vectorized. } \item{J}{ the number of bins of the histogram. } \item{relative}{ logical indicating if relative frequency or the density should be plotted. } \item{\dots}{ ignored if \code{pdistr} is a list. Otherwise, such additional arguments are used in sequential calls of \code{pdistr} via \code{\link{mapply}(pdistr, x, ...)}. } \item{plot}{ a list of arguments for \code{\link{plot.histogram}}. Otherwise, no plot will be produced. } } \value{ an object of class \code{"pit"}, which inherits from class \code{"histogram"} (see \code{\link{hist}}). It is returned invisibly if a plot is produced. } \references{ Czado, C., Gneiting, T. and Held, L. (2009): Predictive model assessment for count data. \emph{Biometrics}, \bold{65} (4), 1254-1261. \doi{10.1111/j.1541-0420.2009.01191.x} } \author{ Michaela Paul and Sebastian Meyer } \examples{ ## Simulation example of Czado et al. (2009, Section 2.4) set.seed(100) x <- rnbinom(200, mu = 5, size = 2) pdistrs <- list("NB(5,0)" = function (x) ppois(x, lambda=5), "NB(5,1/2)" = function (x) pnbinom(x, mu=5, size=2), "NB(5,1)" = function (x) pnbinom(x, mu=5, size=1)) ## Reproduce Figure 1 op <- par(mfrow = c(1,3)) for (i in seq_along(pdistrs)) { pit(x, pdistr = pdistrs[[i]], J = 10, relative = TRUE, plot = list(ylim = c(0,2.75), main = names(pdistrs)[i])) box() } par(op) ## Alternative call using ... arguments for pdistr (less efficient) stopifnot(identical(pit(x, "pnbinom", mu = 5, size = 2, plot = FALSE), pit(x, pdistrs[[2]], plot = FALSE))) } \keyword{dplot} surveillance/man/layout.labels.Rd0000644000175100001440000001056312573360044016615 0ustar hornikusers\name{layout.labels} \alias{layout.labels} \alias{layout.scalebar} \title{ Layout Items for \code{spplot} } \description{ Generate \code{sp.layout} items for use by \code{\link{spplot}} or plot these items directly in the traditional graphics system. Function \code{layout.labels} draws labels at the coordinates of the spatial object, and \code{layout.scalebar} returns a labeled scale bar. } \usage{ layout.labels(obj, labels = TRUE, plot = FALSE) layout.scalebar(obj, corner = c(0.05, 0.95), scale = 1, labels = c(0, scale), height = 0.05, pos = 3, ..., plot = FALSE) } \arguments{ \item{obj}{ an object inheriting from a \code{\linkS4class{Spatial}} class. } \item{labels}{ specification of the labels. For \code{layout.labels}: \itemize{ \item a \code{FALSE} or \code{NULL} value omits labels (\code{NULL} is returned), \item \code{labels = TRUE} uses \code{row.names(obj)}, \item a character or numeric index for a column of \code{obj@data} which contains suitable labels, \item a vector of length \code{length(obj)} with labels, \item or a list of arguments for \code{\link[lattice]{panel.text}}, where the optional \code{labels} component follows the same rules as above. } For \code{layout.scalebar}, a character vector of length two giving the labels to be put above the left and right ends of the scale bar. } \item{corner}{ the location of the scale bar in the unit square, where \code{c(0,0)} refers to the bottom left corner. By default, the scale bar is placed in the top left corner (with a small buffer). } \item{scale}{ the width of the scale bar in the units of \code{\link{proj4string}(obj)}. If \code{identical(FALSE, \link{is.projected}(obj))} (i.e., \code{obj} has longlat coordinates), \code{scale} is interpreted in kilometres. } \item{height}{ the height of the scale bar, see \code{\link{layout.scale.bar}}. } \item{pos}{ a position specifier for the labels (see \code{\link{text}}). By default, the labels are plotted above the scale bar. } \item{\dots}{ further arguments for \code{\link[lattice]{panel.text}} (if \code{plot = FALSE}) or \code{\link{text}} (if \code{plot = TRUE}) to change the style of the labels, e.g., \code{cex}, \code{col}, and \code{font}. } \item{plot}{ logical indicating if the layout item should be plotted using the traditional graphics system. By default (\code{FALSE}), a list for subsequent use by \code{\link{spplot}} is returned. } } \value{ For \code{layout.labels}, a single \code{sp.layout} item, which is a list with first element \code{"panel.text"} and subsequent elements being arguments to that function based on the \code{labels} specification. For \code{layout.scalebar}, a list of \code{sp.layout} items comprising the polygonal scale bar and the labels. If these layout functions are called with \code{plot = TRUE}, the item is plotted directly using traditional graphics functions and \code{NULL} is returned. } \author{ Sebastian Meyer } \examples{ ## districts in the Regierungsbezirk Weser-Ems (longlat coordinates) data("measlesWeserEms") mapWE <- measlesWeserEms@map li1 <- layout.labels(mapWE, labels = list(font=2, labels="GEN")) li2 <- layout.scalebar(mapWE, corner = c(0.05, 0.05), scale = 20, labels = c("0", "20 km")) spplot(mapWE, zcol = "AREA", sp.layout = c(list(li1), li2), col.regions = rev(heat.colors(100)), scales = list(draw = TRUE)) ## districts in Bavaria (projected coordinates) load(system.file("shapes", "districtsD.RData", package = "surveillance")) bavaria <- districtsD[substr(row.names(districtsD), 1, 2) == "09", ] sb <- layout.scalebar(bavaria, corner = c(0.75,0.9), scale = 50, labels = c("0", "50 km"), cex = 0.8) spplot(bavaria, zcol = "POPULATION", sp.layout = sb, xlab = "x [km]", ylab = "y [km]", scales = list(draw = TRUE), col.regions = rev(heat.colors(100))) ## these layout functions also work in the traditional graphics system par(mar = c(0,0,0,0)) plot(bavaria, col = "lavender") layout.scalebar(bavaria, corner = c(0.75, 0.9), scale = 50, labels = c("0", "50 km"), plot = TRUE) layout.labels(bavaria, labels = list(cex = 0.8, labels = substr(bavaria$GEN, 1, 3)), plot = TRUE) } \keyword{aplot} \keyword{dplot} surveillance/man/makeControl.Rd0000644000175100001440000000245513125014265016311 0ustar hornikusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/makeControl.R \name{makeControl} \alias{makeControl} \title{Generate \code{control} Settings for an \code{hhh4} Model} \usage{ makeControl(f = list(~1), S = list(0, 0, 1), period = 52, offset = 1, ...) } \arguments{ \item{f, S, period}{arguments for \code{\link{addSeason2formula}} defining each of the three model formulae in the order (\code{ar}, \code{ne}, \code{end}). Recycled if necessary within \code{\link{mapply}}.} \item{offset}{multiplicative component offsets in the order (\code{ar}, \code{ne}, \code{end}).} \item{...}{further elements for the \code{\link{hhh4}} control list. The \code{family} parameter is set to \code{"NegBin1"} by default.} } \value{ a list for use as the \code{control} argument in \code{\link{hhh4}}. } \description{ Generate \code{control} Settings for an \code{hhh4} Model } \examples{ makeControl() ## a simplistic model for the fluBYBW data ## (first-order transmission only, no district-specific intercepts) data("fluBYBW") mycontrol <- makeControl( f = list(~1, ~1, ~t), S = c(1, 1, 3), offset = list(population(fluBYBW)), # recycled -> in all components ne = list(normalize = TRUE), verbose = TRUE) str(mycontrol) \dontrun{fit <- hhh4(fluBYBW, mycontrol)} } \author{ Sebastian Meyer } surveillance/man/surveillance-package.Rd0000644000175100001440000001432013171351257020120 0ustar hornikusers%\RdOpts{stage=build} % Note @R-3.0.2 and @R-3.4.2: Setting \RdOpts{stage=build} globally % does not work as expected, so we have to specify it in each \Sexpr \encoding{latin1} \name{surveillance-package} \alias{surveillance-package} \alias{surveillance} \docType{package} \title{ \Sexpr[stage=build]{(meta <- packageDescription("surveillance", encoding="latin1"))$Title} % If !is.na(encoding), do iconv() from "latin1" (DESCRIPTION: Encoding) to 'encoding' % Do we really need re-encoding, i.e., encoding="latin1", to make the \Sexpr's work on Windows? } \description{ The \pkg{surveillance} package implements statistical methods for the retrospective modeling and prospective monitoring of epidemic phenomena in temporal and spatio-temporal contexts. Focus is on (routinely collected) public health surveillance data, but the methods just as well apply to data from environmetrics, econometrics or the social sciences. As many of the monitoring methods rely on statistical process control methodology, the package is also relevant to quality control and reliability engineering. } \details{ \tabular{ll}{ Package: \tab \Sexpr[stage=build]{meta$Package}\cr Version: \tab \Sexpr[stage=build]{meta$Version}\cr License: \tab \Sexpr[stage=build]{meta$License}\cr %URL: \tab \url{\Sexpr[stage=build]{meta$URL}}\cr % \Sexpr within \url does not work (although it works within \email below) % and using results=rd with "\\\\url"-paste doubles \url markup ... URL: \tab \url{http://surveillance.R-forge.R-project.org/}\cr } The package implements many typical outbreak detection procedures such as Stroup et al. (1989), Farrington et al., (1996), Rossi et al. (1999), Rogerson and Yamada (2001), a Bayesian approach (H\enc{ö}{oe}hle, 2007), negative binomial CUSUM methods (H\enc{ö}{oe}hle and Mazick, 2009), and a detector based on generalized likelihood ratios (H\enc{ö}{oe}hle and Paul, 2008). However, also CUSUMs for the prospective change-point detection in binomial, beta-binomial and multinomial time series is covered based on generalized linear modeling. This includes, e.g., paired binary CUSUM described by Steiner et al. (1999) or paired comparison Bradley-Terry modeling described in H\enc{ö}{oe}hle (2010). The package contains several real-world datasets, the ability to simulate outbreak data, visualize the results of the monitoring in temporal, spatial or spatio-temporal fashion. In dealing with time series data, the fundamental data structure of the package is the S4 class \code{\link{sts}} wrapping observations, monitoring results and date handling for multivariate time series. A recent overview of the available monitoring procedures is given by Salmon et al. (2016). For the retrospective analysis of epidemic spread, the package provides three endemic-epidemic modeling frameworks with tools for visualization, likelihood inference, and simulation. The function \code{\link{hhh4}} offers inference methods for the (multivariate) count time series models of Held et al. (2005), Paul et al. (2008), Paul and Held (2011), Held and Paul (2012), and Meyer and Held (2014). See \code{vignette("hhh4")} for a general introduction and \code{vignette("hhh4_spacetime")} for a discussion and illustration of spatial \code{hhh4} models. Furthermore, the fully Bayesian approach for univariate time series of counts from Held et al. (2006) is implemented as function \code{\link{algo.twins}}. Self-exciting point processes are modeled through endemic-epidemic conditional intensity functions. \code{\link{twinSIR}} (H\enc{ö}{oe}hle, 2009) models the susceptible-infectious-recovered (SIR) event history of a fixed population, e.g, epidemics across farms or networks; see \code{vignette("twinSIR")} for an illustration. \code{\link{twinstim}} (Meyer et al., 2012) fits spatio-temporal point process models to point patterns of infective events, e.g., time-stamped geo-referenced surveillance data on infectious disease occurrence; see \code{vignette("twinstim")} for an illustration. A recent overview of the implemented space-time modeling frameworks for epidemic phenomena is given by Meyer et al. (2017). } %% Author information is dynamically extracted from the DESCRIPTION file \author{ \Sexpr[stage=build]{authors <- unname(eval(parse(text=meta$"Authors@R")))} \Sexpr[stage=build]{formatPerson <- function(person, sort=FALSE) paste0(format(if (sort && length(person) > 1) person[order(unlist(person$family))] else person, include=c("given", "family")), collapse=", ")} \Sexpr[stage=build]{formatPerson(authors[grep("aut", authors$role)])} \Sexpr[stage=build]{maintainer <- authors[grep("cre", authors$role)]} Maintainer: \Sexpr[stage=build]{formatPerson(maintainer)} \email{\Sexpr[stage=build]{maintainer$email}} } %% Dynamically extract contributors from the DESCRIPTION file %% and persons from inst/THANKS for acknowledgement: \section{Acknowledgements}{ Substantial contributions of code by: \Sexpr[stage=build]{contributors <- authors[grepl("ctb", authors$role) & !sapply(authors$family, is.null)]} \Sexpr[stage=build]{formatPerson(contributors, sort=TRUE)}. Furthermore, the authors would like to thank the following people for ideas, discussions, testing and feedback: \Sexpr[stage=build]{THANKSfile <- file(system.file("THANKS", package="surveillance", mustWork=TRUE), encoding="latin1")} % this re-encodes from "latin1" to the current native encoding \Sexpr[stage=build]{formatPerson(as.person(grep("^(#|[[:blank:]]*$)", readLines(THANKSfile), invert=TRUE, value=TRUE)), sort=TRUE)}. \Sexpr[stage=build]{close(THANKSfile)} } \references{ Relevant references are listed in \code{surveillance:::REFERENCES}, and \code{citation(package="surveillance")} gives the two main software references for the modeling (Meyer et al., 2017) and the monitoring (Salmon et al., 2016) functionalities. If you use the \pkg{surveillance} package in your own work, please do cite the corresponding publications. } \keyword{ package } \examples{ ## Additional documentation and illustrations of the methods are ## available in the form of package vignettes and demo scripts: vignette(package = "surveillance") demo(package = "surveillance") } surveillance/man/rotaBB.Rd0000644000175100001440000000110613174706302015200 0ustar hornikusers\name{rotaBB} \alias{rotaBB} \docType{data} \title{Rotavirus cases in Brandenburg, Germany, during 2002-2013 stratified by 5 age categories} \description{ Monthly reported number of rotavirus infections in the federal state of Brandenburg stratified by five age categories (00-04, 05-09, 10-14, 15-69, 70+) during 2002-2013. } \usage{data(rotaBB)} \format{ A \code{sts} object. } \source{ The data were queried on 19 Feb 2014 from the Survstat@RKI database of the German Robert Koch Institute (\url{https://survstat.rki.de/}). } \keyword{datasets} surveillance/man/stsplot_time.Rd0000644000175100001440000002061113231631633016555 0ustar hornikusers\encoding{latin1} \name{stsplot_time} \alias{stsplot_time} \alias{stsplot_time1} \alias{stsplot_alarm} \title{ Time-Series Plots for \code{"sts"} Objects } \description{ These are the \code{plot} variants of \code{type=observed~time|unit}, \code{type=observed~time}, and \code{type=alarm~time} for \code{"\linkS4class{sts}"} objects (see the central \code{"sts"} \code{\link[=plot,sts,missing-method]{plot}}-method for an overview of plot types). } \usage{ stsplot_time(x, units=NULL, as.one=FALSE, same.scale=TRUE, par.list=list(), ...) stsplot_time1(x, k=1, ylim=NULL, axes=TRUE, xaxis.tickFreq=list("\%Q"=atChange), xaxis.labelFreq=xaxis.tickFreq, xaxis.labelFormat="\%G\n\n\%OQ", epochsAsDate=x@epochAsDate, xlab="time", ylab="No. infected", main=NULL, type="s", lty=c(1,1,2), col=c(NA,1,4), lwd=c(1,1,1), outbreak.symbol=list(pch=3, col=3, cex=1, lwd=1), alarm.symbol=list(pch=24, col=2, cex=1, lwd=1), legend.opts=list(), dx.upperbound=0L, hookFunc=function(){}, .hookFuncInheritance=function() {}, ...) stsplot_alarm(x, lvl=rep(1,nrow(x)), ylim=NULL, xaxis.tickFreq=list("\%Q"=atChange), xaxis.labelFreq=xaxis.tickFreq, xaxis.labelFormat="\%G\n\n\%OQ", epochsAsDate=x@epochAsDate, xlab="time", main=NULL, type="hhs", lty=c(1,1,2), col=c(1,1,4), outbreak.symbol=list(pch=3, col=3, cex=1, lwd=1), alarm.symbol=list(pch=24, col=2, cex=1, lwd=1), cex=1, cex.yaxis=1, ...) } \arguments{ \item{x}{an object of class \code{"\linkS4class{sts}"}.} \item{units}{optional integer or character vector to select the units (=columns of \code{observed(x)}) to plot. The default is to plot all time series. If \code{as.one=FALSE}, \code{stsplot_time1} is called \code{for (k in units)} with \code{mfrow} splitting (see \code{par.list}). Note that if there are too many \code{units}, the default \code{mfrow} setting might lead to the error \dQuote{figure margins too large} (meaning that the units do not fit onto a single page).} \item{as.one}{logical indicating if all time series should be plotted in a single frame (using \code{\link{matplot}}).} \item{same.scale}{logical indicating if all time series should be plotted with the same \code{ylim}. Default is to do so. Only relevant for multivariate plots (\code{ncol(x) > 1}).} \item{par.list}{a list of arguments delivered to a call of \code{\link{par}} to set graphical parameters before plotting. The \code{mfrow} splitting is handled per default. Afterwards, the \code{par}ameters are reverted to their original values. Use \code{par.list=NULL} to disable the internal \code{par} call.} \item{k}{the unit to plot, i.e., an element of \code{1:ncol(x)}.} \item{ylim}{the y limits of the plot(s). Ignored if \code{same.scale=FALSE}.} \item{axes}{a logical value indicating whether both axes should be drawn on the plot.} \item{xaxis.tickFreq,xaxis.labelFreq,xaxis.labelFormat}{see \code{\link{addFormattedXAxis}}.} \item{epochsAsDate}{Boolean indicating whether to treat the epochs as Date objects (or to transform them to dates such that the new x-axis formatting is applied). Default: Value of the \code{epochAsDate} slot of \code{x}.} \item{xlab}{a title for the x axis. See \code{plot.default}.} \item{ylab}{a title for the y axis. See \code{plot.default}.} \item{main}{an overall title for the plot: see 'title'.} \item{type}{type of plot to do.} \item{lty}{vector of length 3 specifying the line type for the three lines in the plot -- see \code{col} argument.} \item{col}{Vector of length 3 specifying the color to use in the plot. The first color is the fill color of the polygons for the counts bars (\code{NA} for unfilled), the 2nd element denotes their border color, the 3rd element is the color of the \code{upperbound} plotting.} \item{lwd}{Vector of length 3 specifying the line width of the three elements to plot. See also the \code{col} argument.} \item{alarm.symbol}{a list with entries \code{pch}, \code{col}, \code{cex} and \code{lwd} specifying the appearance of the outbreak symbol in the plot.} \item{outbreak.symbol}{a list with entries \code{pch}, \code{col}, \code{cex} and \code{lwd} specifying the appearance of the outbreak symbol in the plot.} \item{legend.opts}{a list of arguments for \code{\link{legend}}. If \code{\link{missing}(legend.opts)} (i.e., not explicitly specified), the default legend will only be produced if \code{x} contains any information on outbreaks, alarms, or upperbounds. To disable the legend, use, e.g., \code{legend.opts=NULL}. Otherwise, the following arguments are default: \describe{ \item{\code{x}}{\code{"top"}} \item{\code{legend}}{\code{c("Infected","Threshold","Outbreak","Alarm")}} \item{\code{lty,pch,col}}{the corresponding graphical settings} } Any further arguments to the \code{legend} function are just provided as additional elements of this list, e.g. \code{horiz=TRUE}. } \item{dx.upperbound}{horizontal change in the plotting of the upperbound line. Sometimes it can be convenient to offset this line a little for better visibility.} \item{lvl}{A vector of length \code{ncol(x)}, which is used to specify the hierarchy level for each time series in the sts object for alarm plots.} \item{cex}{A numerical value giving the amount by which plotting text and symbols should be magnified relative to the default. See \code{\link{par}} for details.} \item{cex.yaxis}{The magnification to be used for y-axis annotation relative to the current setting of \code{cex}.} \item{hookFunc}{a function that is called after all the basic plotting has be done, i.e., it is not possible to control formatting with this function. See Examples.} \item{.hookFuncInheritance}{a function which is altered by sub-classes plot method. Do not alter this function manually.} \item{...}{further arguments for the function \code{matplot}. If e.g. \code{xlab} or \code{main} are provided they overwrite the default values.} } \details{ The time series plot relies on the work-horse \code{stsplot_time1}. Its arguments are (almost) similar to \code{\link{plot.survRes}}. } \value{ \code{NULL} (invisibly). The functions are called for their side-effects. } \author{ Michael H\enc{ö}{oe}hle and Sebastian Meyer } \seealso{ There is an \code{\link[=autoplot.sts]{autoplot}}-method, which implements \CRANpkg{ggplot2}-based time-series plots of \code{"sts"} objects. The \code{\link{stsplot}} help page gives an overview of other types of plots for \code{"sts"} objects. } \examples{ data("ha.sts") print(ha.sts) plot(ha.sts, type=observed ~ time | unit) # default multivariate type plot(ha.sts, units=c("mitt", "pank")) # selected units plot(ha.sts, type=observed ~ time) # aggregated over all districts ## Hook function example hookFunc <- function() grid(NA,NULL,lwd=1) plot(ha.sts, hookFunc=hookFunc) ## another multivariate time series example plotted "as.one" data("measlesDE") plot(measlesDE, units=1:2, as.one=TRUE, legend.opts=list(cex=0.8)) ## more sophisticated plots are offered by package "xts" if (require("xts")) # need version > 0.9.7 for plots of multiple time series plot(as.xts(measlesDE)) ## Use ISO8601 date formatting (see ?strptime) and no legend data("salmNewport") plot(aggregate(salmNewport,by="unit"), xlab="Time (weeks)", xaxis.tickFreq=list("\%m"=atChange,"\%G"=atChange), xaxis.labelFreq=list("\%G"=atMedian),xaxis.labelFormat="\%G") ## Formatting now also works for daily data (illustrate by artifical ## outbreak converted to sts object by linelist2sts) set.seed(123) exposureTimes <- as.Date("2014-03-12") + sample(x=0:25,size=99,replace=TRUE) sts <- linelist2sts(data.frame(exposure=exposureTimes), dateCol="exposure",aggregate.by="1 day") ## Plot it with larger ticks for days than usual surveillance.options("stsTickFactors"=c("\%d"=1, "\%W"=0.33, "\%V"=0.33, "\%m"=1.75, "\%Q"=1.25, "\%Y"=1.5, "\%G"=1.5)) plot(sts,xaxis.tickFreq=list("\%d"=atChange,"\%m"=atChange), xaxis.labelFreq=list("\%d"=at2ndChange),xaxis.labelFormat="\%d-\%b", xlab="Time (days)") } \keyword{hplot} \keyword{ts} surveillance/man/findK.Rd0000644000175100001440000000213113122471774015066 0ustar hornikusers\name{findK} \alias{findK} \title{Find Reference Value} \description{ Calculates the reference value \code{k} for a Poisson or binomial CUSUM designed to detect a shift from \eqn{\theta_0} to \eqn{\theta_1} } \usage{ findK(theta0, theta1, distr = c("poisson", "binomial"), roundK = FALSE, digits = 1, ...) } \arguments{ \item{theta0}{ in-control parameter } \item{theta1}{ out-of-control parameter } \item{distr}{ \code{"poisson"} or \code{"binomial"} } \item{digits}{ the reference value \code{k} is rounded to \code{digits} decimal places} \item{roundK}{ For discrete data and rational reference value there is only a limited set of possible values that the CUSUM can take (and therefore there is also only a limited set of ARLs). If \code{roundK=TRUE}, integer multiples of 0.5 are avoided when rounding the reference value \code{k}, % i.e. the CUSUM can take more values.} \item{\dots}{ further arguments for the distribution function, i.e. number of trials \code{n} for the binomial CDF.} } \value{ Returns reference value \code{k}. } \keyword{models} surveillance/man/stsplot_spacetime.Rd0000644000175100001440000000636512700026720017576 0ustar hornikusers\name{stsplot_spacetime} \alias{stsplot_spacetime} \title{ Map of Disease Incidence } \description{ For each period (row) or for the overall period of the \code{observed} matrix of the \code{"\linkS4class{sts}"} object, a map showing the counts by region is produced. It is possible to redirect the output into files, e.g. to generate an animated GIF. } \usage{ stsplot_spacetime(x, type, legend = NULL, opts.col = NULL, labels = TRUE, wait.ms = 250, cex.lab = 0.7, verbose = FALSE, dev.printer = NULL, ...) } \arguments{ \item{x}{ an object of class \code{"\linkS4class{sts}"}. } \item{type}{ a formula (see \code{\link{stsplot}}). For a map aggregated over time (no animation), use \code{observed ~ 1 | unit}, otherwise \code{observed ~ 1 | unit * time}. } \item{legend}{ An object of type \code{list} containing the following items used for coloring \itemize{ \item{dx}{position increments in x direction} \item{dy}{position increments in y direction} \item{x}{position in x} \item{y}{position in y} \item{once}{\code{Boolean} - if \code{TRUE} then only shown once} } If \code{NULL} then a default legend is used. } \item{opts.col}{ A list containing the two elements \itemize{ \item{ncolors}{Number of colors to use for plotting} \item{use.color}{\code{Boolean} if \code{TRUE} then colors will be used in the palette, otherwise grayscale} } } \item{labels}{\code{Boolean} whether to add labels } \item{wait.ms}{Number of milliseconds to wait between each plot } \item{cex.lab}{\code{cex} of the labels } \item{verbose}{\code{Boolean} whether to write out extra information } \item{dev.printer}{Either \code{NULL}, which means that plotting is only to the screen otherwise a list with elements \code{device}, \code{extension}, \code{width}, \code{height}, and \code{name} (with defaults \code{png}, \code{".png"}, \code{640}, \code{480}, and \code{"Rplot"}, respectively). This option is more or less obsolete since the \pkg{animation} package provides better features for output to files. } \item{\dots}{Extra arguments sent to the plot function. } } \author{ Michael H\enc{ö}{oe}hle } \note{ The \code{\link{animate.sts}} method provides a re-implementation and supersedes this function! } \seealso{ Other \code{\link{stsplot}} types, and \code{\link{animate.sts}} for the new implementation. } \examples{ data("ha.sts") print(ha.sts) ## map of total counts by district plot(ha.sts, type=observed ~ 1 | unit) ## only show a sub-period total for two selected districts plot(ha.sts[1:20,1:2], type=observed ~ 1 | unit) \dontrun{ # space-time animation plot(aggregate(ha.sts,nfreq=13), type= observed ~ 1 | unit * time) #print the frames to a png device #and do the animation without extra sleeping between frames imgname <- file.path(tempdir(), "berlin") plot(aggregate(ha.sts,nfreq=13), type = observed ~ 1 | unit * time, wait.ms=0, dev.printer=list(name=imgname)) #Use ImageMagick (you might have to adjust the path to 'convert') system(paste0("convert -delay 50 ", imgname, "*.png ", imgname, "-animated.gif")) } } \keyword{hplot} \keyword{dynamic} \keyword{spatial} surveillance/man/epidataCS_update.Rd0000644000175100001440000000444612320060306017225 0ustar hornikusers\name{epidataCS_update} \alias{update.epidataCS} \title{ Update method for \code{"epidataCS"} } \description{ The \code{\link{update}} method for the \code{"\link{epidataCS}"} class may be used to modify the hyperparameters \eqn{\epsilon} (\code{eps.t}) and \eqn{\delta} (\code{eps.s}), the indicator matrix \code{qmatrix} of possible ways of transmission between the event types, and the numerical accuracy \code{nCircle2Poly} of the polygonal representation of a circle. The update method will also update the auxiliary information contained in an \code{"epidataCS"} object accordingly, e.g., the vector of potential sources of each event, or the polygonal representation of the influence region. } \usage{ \method{update}{epidataCS}(object, eps.t, eps.s, qmatrix, nCircle2Poly, ...) } \arguments{ \item{object}{ an object of class \code{"epidataCS"}. } \item{eps.t}{ numeric vector of length the number of events in \code{object$events}. The event data column \code{eps.t} specifies the maximum temporal influence radius (e.g., length of infectious period, time to culling, etc.) of the events. } \item{eps.s}{ numeric vector of length the number of events in \code{object$events}. The event data column \code{eps.s} specifies the maximum spatial influence radius of the events. } \item{qmatrix}{ square indicator matrix (0/1 or TRUE/FALSE) for possible transmission between the event types. } \item{nCircle2Poly}{ accuracy (number of edges) of the polygonal approximation of a circle. } \item{\dots}{ unused (argument of the generic). } } \value{ The updated \code{"epidataCS"} object. } \author{ Sebastian Meyer } \seealso{ class \code{"\link{epidataCS}"}. } \examples{ data("imdepi") ## assume different interaction ranges and simplify polygons imdepi2 <- update(imdepi, eps.t = 20, eps.s = Inf, nCircle2Poly = 16) (s <- summary(imdepi)) (s2 <- summary(imdepi2)) ## The update reduced the number of infectives (along time) ## because the length of the infectious periods is reduced. It also ## changed the set of potential sources of transmission for each ## event, since the interaction is shorter in time but wider in space ## (eps.s=Inf means interaction over the whole observation region). } \keyword{manip} \keyword{utilities} \keyword{methods} surveillance/man/stsplot_space.Rd0000644000175100001440000001412213020027566016712 0ustar hornikusers\name{stsplot_space} \alias{stsplot_space} \title{ Map of Disease Counts/Incidence accumulated over a Given Period } \description{ This is the \code{plot} variant of \code{type=observed~unit} for \code{"\linkS4class{sts}"} objects, i.e., \code{plot(stsObj, type=observed~unit, ...)} calls the function documented below. It produces an \code{\link{spplot}} where regions are color-coded according to disease incidence (either absolute counts or relative to population) over a given time period. } \usage{ stsplot_space(x, tps = NULL, map = x@map, population = NULL, main = NULL, labels = FALSE, at = 10, col.regions = NULL, colorkey = list(space = "bottom", labels = list(at=at)), total.args = NULL, gpar.missing = list(col = "darkgrey", lty = 2, lwd = 2), sp.layout = NULL, xlim = bbox(map)[1, ], ylim = bbox(map)[2, ], ...) } \arguments{ \item{x}{ an object of class \code{"\linkS4class{sts}"} or a matrix of counts, i.e., \code{observed(stsObj)}, where especially \code{colnames(x)} have to be contained in \code{row.names(map)}. If a matrix, the \code{map} object has to be provided explicitly. The possibility of specifying a matrix is, e.g., useful to plot mean counts of simulations from \code{\link{simulate.hhh4}}. } \item{tps}{ a numeric vector of one or more time points. The unit-specific \emph{sum} over all time points \code{tps} is plotted. The default \code{tps=NULL} means cumulation over the whole time period \code{1:nrow(x)}. } \item{map}{ an object inheriting from \code{"\linkS4class{SpatialPolygons}"} representing the \code{ncol(x)} regions. By default the \code{map} slot of \code{x} is queried (which might be empty and is not applicable if \code{x} is a matrix of counts). } \item{population}{ if \code{NULL} (default), the map shows the region-specific numbers of cases accumulated over \code{tps}. For a disease incidence map, \code{population} can be specified in three ways: \itemize{ \item a numeric vector of population numbers in the \code{ncol(x)} regions, used to divide the disease counts. \item a matrix of population counts of dimension \code{dim(x)} (such as \code{population(x)} in an \code{"sts"} object). This will produce the cumulative incidence over \code{tps} relative to the population at the first time point, i.e., only \code{population[tps[1],]} is used. \item [if \code{is(x, "sts")}] a scalar specifying how \code{population(x)} should be scaled for use as the population matrix, i.e., \code{population(x)/population} is used. For instance, if \code{population(x)} contains raw population numbers, \code{population=1000} would produce the incidence per 1000 inhabitants. } } \item{main}{ a main title for the plot. If \code{NULL} and \code{x} is of class \code{"sts"}, the time range of \code{tps} is put as the main title. } \item{labels}{ determines if and how the regions of the \code{map} are labeled, see \code{\link{layout.labels}}. } \item{at}{ either a number of levels (default: 10) for the categorization (color-coding) of counts/incidence, or specific break points to use, or, a named list of a number of levels (\code{"n"}), a transformer (\code{"trafo"}) of class \code{"\link[scales]{trans}"} defined by package \pkg{scales}, and optional further arguments for \code{\link{pretty}}. The default is the square root transformation (\code{\link[scales]{sqrt_trans}}). Note that the intervals given by \code{at} are closed on the left and open to the right, i.e., if specifying \code{at} manually as a vector of break points, make sure that \code{max(at)} is larger than the maximum observed count. } \item{col.regions}{ a vector of fill colors of length \code{length(at)-1}. By default (\code{NULL}), a \dQuote{heat} palette is generated using \code{colorspace::\link[colorspace]{heat_hcl}} (if available) or \code{\link{heat.colors}}. } \item{colorkey}{ a list describing the color key, see \code{\link[lattice]{levelplot}}. The default list elements will be updated by the provided list using \code{\link{modifyList}}. } \item{total.args}{ an optional list of arguments for \code{\link[grid]{grid.text}} to have the overall number/incidence of cases printed at an edge of the map. The default settings are \code{list(label="Overall: ", x=1, y=0)}, and \code{total.args=list()} will use all of them. } \item{gpar.missing}{list of graphical parameters for \code{\link{sp.polygons}} applied to the regions of \code{map}, which are not part of \code{x}. Such extra regions won't be plotted if \code{!is.list(gpar.missing)}.} \item{sp.layout}{ optional list of additional layout items, see \code{\link{spplot}}. } \item{xlim,ylim}{numeric vectors of length 2 specifying the axis limits.} \item{\dots}{ further arguments for \code{\link{spplot}}. } } \value{ a lattice plot of class \code{"\link[lattice:trellis.object]{trellis}"}, but see \code{\link{spplot}}. } \author{ Sebastian Meyer } \seealso{ the central \code{\link{stsplot}}-documentation for an overview of plot types, and \code{\link{animate.sts}} for animations of \code{"sts"} objects. } \examples{ data("measlesWeserEms") # default plot: total region-specific counts over all weeks plot(measlesWeserEms, type=observed~unit) # compare with old implementation plot(measlesWeserEms, type=observed~1|unit) # plot cumulative incidence (per 100000 inhabitants), with region labels plot(measlesWeserEms, type=observed~unit, population=measlesWeserEms@map$POPULATION / 100000, labels=list(labels="GEN", cex=0.7, font=3)) # counts in the first week of the second year only (+ display overall) plot(measlesWeserEms, type=observed~unit, tps=53, total.args=list()) # if we had only observed a subset of the regions plot(measlesWeserEms[,5:11], type = observed~unit, gpar.missing = list(col="gray", lty=4)) } \keyword{hplot} \keyword{spatial} surveillance/man/nbOrder.Rd0000644000175100001440000000360012407020210015404 0ustar hornikusers\name{nbOrder} \alias{nbOrder} \title{ Determine Neighbourhood Order Matrix from Binary Adjacency Matrix } \description{ Given a square binary adjacency matrix, the function \code{nbOrder} determines the integer matrix of neighbourhood orders (shortest-path distance) using the function \code{\link[spdep]{nblag}} from the \pkg{spdep} package. } \usage{ nbOrder(neighbourhood, maxlag = 1) } \arguments{ \item{neighbourhood}{ a square, numeric or logical, and usually symmetric matrix with finite entries (and usually zeros on the diagonal) which indicates vertex adjacencies, i.e., first-order neighbourhood (interpreted as \code{neighbourhood == 1}, \emph{not} \code{>0}). } \item{maxlag}{ positive scalar integer specifying an upper bound for the neighbourhood order. The default (1) just returns the input neighbourhood matrix (converted to binary integer mode). \code{maxlag} is automatically trimmed to one less than the number of regions (there cannot be higher orders) and then converted to integer, thus, \code{maxlag = Inf} also works. } } \value{ An integer matrix of neighbourhood orders, i.e., the shortest-path distance matrix of the vertices. The \code{dimnames} of the input \code{neighbourhood} matrix are preserved. } \note{ By the end, the function issues a \code{\link{message}} informing about the range of maximum neighbourhood order by region. } \author{ Sebastian Meyer } \seealso{ \code{\link[spdep]{nblag}} from the \pkg{spdep} package, on which this wrapper depends. } \examples{ ## generate adjacency matrix set.seed(1) n <- 6 adjmat <- matrix(0, n, n) adjmat[lower.tri(adjmat)] <- sample(0:1, n*(n-1)/2, replace=TRUE) adjmat <- adjmat + t(adjmat) adjmat ## determine neighbourhood order matrix if (requireNamespace("spdep")) { nbmat <- nbOrder(adjmat, maxlag=Inf) nbmat } } \keyword{spatial} \keyword{utilities} surveillance/man/sim.pointSource.Rd0000644000175100001440000000433613122471774017145 0ustar hornikusers\name{sim.pointSource} \alias{sim.pointSource} \encoding{latin1} \title{Simulate Point-Source Epidemics} \description{ Simulation of epidemics which were introduced by point sources. The basis of this programme is a combination of a Hidden Markov Model (to get random timepoints for outbreaks) and a simple model (compare \code{\link{sim.seasonalNoise}}) to simulate the baseline. } \usage{ sim.pointSource(p = 0.99, r = 0.01, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K) } \arguments{ \item{p}{probability to get a new outbreak at time i if there was one at time i-1, default 0.99.} \item{r}{probability to get no new outbreak at time i if there was none at time i-1, default 0.01.} \item{length}{number of weeks to model, default 400. \code{length} is ignored if \code{state} is given. In this case the length of \code{state} is used.} \item{A}{amplitude (range of sinus), default = 1.} \item{alpha}{parameter to move along the y-axis (negative values not allowed) with alpha > = A, default = 1.} \item{beta}{regression coefficient, default = 0.} \item{phi}{factor to create seasonal moves (moves the curve along the x-axis), default = 0.} \item{frequency}{factor to determine the oscillation-frequency, default = 1.} \item{state}{use a state chain to define the status at this timepoint (outbreak or not). If not given a Markov chain is generated by the programme, default NULL.} \item{K}{additional weigth for an outbreak which influences the distribution parameter mu, default = 0.} } \value{ a \code{disProg} (disease progress) object including a list of the observed, the state chain and nearly all input parameters. } \seealso{\code{\link{sim.seasonalNoise}}} \author{M. \enc{Höhle}{Hoehle}, A. Riebler, C. Lang} \examples{ # Plotting of simulated data disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 208, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 2) # plot the simulated disease with the defined outbreaks plot(disProgObj) state <- rep(c(0,0,0,0,0,0,0,0,1,1), 20) disProgObj <- sim.pointSource(state = state, K = 1.2) plot(disProgObj) } \keyword{datagen} surveillance/man/hhh4_W.Rd0000644000175100001440000000753212714567564015177 0ustar hornikusers\name{hhh4_W} \alias{W_powerlaw} \alias{W_np} \title{ Power-Law and Nonparametric Neighbourhood Weights for \code{hhh4}-Models } \description{ Set up power-law or nonparametric weights for the neighbourhood component of \code{\link{hhh4}}-models as proposed by Meyer and Held (2014). Without normalization, power-law weights are \eqn{w_{ji} = o_{ji}^{-d}}{w_ji = o_ji^-d}, where \eqn{o_{ji}}{o_ji} is the order of neighbourhood between regions \eqn{i} and \eqn{j}, see \code{\link{nbOrder}}, and \eqn{d} is to be estimated. In the nonparametric formulation, \code{maxlag-1} order-specific log-weights are to be estimated (the first-order weight is always fixed to 1 for identifiability). } \usage{ W_powerlaw(maxlag, normalize = TRUE, log = FALSE, initial = if (log) 0 else 1) W_np(maxlag, to0 = TRUE, normalize = TRUE, initial = log(zetaweights(2:maxlag))) } \arguments{ \item{maxlag}{a single integer specifying a limiting order of neighbourhood. If spatial dependence is not to be truncated at some high order, \code{maxlag} should be set to the maximum neighbourhood order in the network of regions.} \item{to0}{\code{W_np} represents order-specific log-weights up to order \code{maxlag}. Higher orders are by default (\code{to0=TRUE}) assumed to have 0 weight as for \code{W_powerlaw}. Alternatively, \code{to0=FALSE} requests that the weight at order \code{maxlag} should be carried forward to higher orders.} \item{normalize}{logical indicating if the weights should be normalized such that the rows of the weight matrix sum to 1 (default). Note that normalization does not work with islands, i.e., regions without neighbours.} \item{log}{logical indicating if the decay parameter \eqn{d} should be estimated on the log-scale to ensure positivity.} \item{initial}{initial value of the parameter vector.} } \value{ a list which can be passed as a specification of parametric neighbourhood weights in the \code{control$ne$weights} argument of \code{\link{hhh4}}. } \references{ Meyer, S. and Held, L. (2014): Power-law models for infectious disease spread. \emph{The Annals of Applied Statistics}, \bold{8} (3), 1612-1639. \doi{10.1214/14-AOAS743} } \author{ Sebastian Meyer } \seealso{ \code{\link{nbOrder}} to determine the matrix of neighbourhood orders from a binary adjacency matrix. \code{\link{siaf.powerlaw}}, and \code{\link{siaf.step}} for modelling distance decay as power law or step function in \code{\link{twinstim}} space-time point process models. } \examples{ data("measlesWeserEms") ## data contains neighbourhood orders as required for parametric weights neighbourhood(measlesWeserEms)[1:6,1:6] max(neighbourhood(measlesWeserEms)) # max order is 5 ## fit a power-law decay of spatial interaction ## in a hhh4 model with seasonality and random intercepts in the endemic part measlesModel <- list( ar = list(f = ~ 1), ne = list(f = ~ 1, weights = W_powerlaw(maxlag=5, normalize=TRUE, log=FALSE)), end = list(f = addSeason2formula(~-1 + ri(), S=1, period=52), offset = population(measlesWeserEms)), family = "NegBin1") ## fit the model set.seed(1) # random intercepts are initialized randomly measlesFit <- hhh4(measlesWeserEms, measlesModel) summary(measlesFit) # "neweights.d" is the decay parameter d ## plot the spatio-temporal weights o_ji^-d / sum_k o_jk^-d ## as a function of neighbourhood order plot(measlesFit, type="neweights") ## Due to normalization, same distance does not necessarily mean same weight. ## There is no evidence for a power law of spatial interaction in this ## small observation region with only 17 districts. ## A possible simpler model is first-order dependence, i.e., using ## 'weights = neighbourhood(measlesWeserEms) == 1' in the 'ne' component. } \keyword{spatial} \keyword{models} \keyword{utilities} surveillance/man/stsBP-class.Rd0000644000175100001440000000202013122471774016166 0ustar hornikusers\name{stsBP-class} \docType{class} \alias{stsBP-class} \alias{coerce,sts,stsBP-method} \encoding{latin1} \title{Class "stsBP" -- a class inheriting from class \code{sts} which allows the user to store the results of back-projecting or nowcasting surveillance time series} \description{ A class inheriting from class \code{sts}, but with additional slots to store the result and associated confidence intervals from back projection of a \code{sts} object. } \section{Slots}{ The slots are as for \code{"\linkS4class{sts}"}. However, two additional slots exists. \describe{ \item{\code{ci}:}{An array containing the upper and lower limit of the confidence interval.} \item{\code{lambda}:}{Back projection component} } } \section{Methods}{ The methods are the same as for \code{"\linkS4class{sts}"}. \itemize{ \item{\code{signature(from = "sts", to = "stsBP")}}{ Convert an object of class \code{sts} to class \code{stsBP}. } } } \author{M. \enc{Höhle}{Hoehle}} \keyword{classes} surveillance/man/ha.Rd0000644000175100001440000000242713174706302014426 0ustar hornikusers\name{ha} \alias{ha} \alias{ha.sts} \docType{data} \title{Hepatitis A in Berlin} \description{ Number of Hepatitis A cases among adult male (age>18) in Berlin 2001-2006. An increase is seen during 2006 } \usage{ data("ha") data("ha.sts") } \format{ \code{ha} is a \code{disProg} object containing \eqn{290\times 12}{290 x 12} observations starting from week 1 in 2001 to week 30 in 2006. \code{ha.sts} is generated from \code{ha} by the converter function \code{\link{disProg2sts}} using a shape file of Berlin (see Examples). } \source{ Robert Koch-Institut: SurvStat: \url{https://survstat.rki.de/}; Queried on 25 August 2006. Robert Koch Institut, Epidemiologisches Bulletin 33/2006, p.290. } \examples{ ## deprecated "disProg" object data("ha") ha plot(aggregate(ha)) ## new-style "sts" object data("ha.sts") ha.sts plot(ha.sts, type = observed ~ unit, labels = TRUE) ## conversion of the old "disProg" object 'ha' to the new S4 class "sts" \dontrun{ shpfile <- system.file("shapes/berlin.shp", package="surveillance") ha.sts <- disProg2sts(ha, map = maptools::readShapePoly(shpfile,IDvar="SNAME")) ## in data("ha.sts"), German umlauts in 'ha.sts@map@data$BEZIRK' ## have been replaced for compatibility } } \keyword{datasets} surveillance/man/hhh4_formula.Rd0000644000175100001440000000602313122471774016417 0ustar hornikusers\name{hhh4_formula} \alias{fe} \alias{ri} \title{ Specify Formulae in a Random Effects HHH Model } \description{ The special functions \code{fe} and \code{ri} are used to specify unit-specific effects of covariates and random intercept terms, respectively, in the component formulae of \code{\link{hhh4}}. } \usage{ fe(x, unitSpecific = FALSE, which = NULL, initial = NULL) ri(type = c("iid","car"), corr = c("none", "all"), initial.fe = 0, initial.var = -.5, initial.re = NULL) } \arguments{ \item{x}{an expression like \code{sin(2*pi*t/52)} involving the time variable \code{t}, or just \code{1} for an intercept. In general this covariate expression might use any variables contained in the \code{control$data} argument of the parent \code{\link{hhh4}} call.} \item{unitSpecific}{logical indicating if the effect of \code{x} should be unit-specific. This is a convenient shortcut for \code{which = rep(TRUE, nUnits)}, where \code{nUnits} is the number of units (i.e., columns of the \code{"sts"} object).} \item{which}{vector of logicals indicating which unit(s) should get an unit-specific parameter. For units with a \code{FALSE} value, the effect term for \code{x} will be zero in the log-linear predictor. Note especially that setting a \code{FALSE} value for the intercept term of a unit, e.g., \code{ar = list(f = ~-1 + fe(1, which=c(TRUE, FALSE)))} in a bivariate \code{hhh4} model, does \emph{not} mean that the (autoregressive) model component is omitted for this unit, but that \eqn{\log(\lambda_1) = \alpha_1} and \eqn{\log(\lambda_2) = 0}, which is usually not of interest. ATM, omitting an autoregressive effect for a specific unit is not possible.\cr If \code{which=NULL}, the parameter is assumed to be the same for all units.} \item{initial}{initial values (on internal scale!) for the fixed effects used for optimization. The default (\code{NULL}) means to use zeroes.} \item{type}{random intercepts either follow an IID or a CAR model.} \item{corr}{whether random effects in different components (such as \code{ar} and \code{end}) should be correlated or not.} \item{initial.fe}{initial value for the random intercept mean.} \item{initial.var}{initial values (on internal scale!) for the variance components used for optimization.} \item{initial.re}{initial values (on internal scale!) for the random effects used for optimization. The default \code{NULL} are random numbers from a normal distribution with zero mean and variance 0.001.} } \seealso{ \code{\link{addSeason2formula}} \code{hhh4} model specifications in \code{vignette("hhh4")}, \code{vignette("hhh4_spacetime")} or on the help page of \code{\link{hhh4}}. } \note{ These special functions are intended for use in component formulae of \code{hhh4} models and are not exported from the package namespace. If unit-specific fixed or random intercepts are specified, an overall intercept must be excluded (by \code{-1}) in the component formula. } \keyword{regression} surveillance/man/algo.summary.Rd0000644000175100001440000000347013122471774016460 0ustar hornikusers\name{algo.summary} \alias{algo.summary} \title{Summary Table Generation for Several Disease Chains} \description{ Summary table generation for several disease chains. } \usage{ algo.summary(compMatrices) } \arguments{ \item{compMatrices}{list of matrices constructed by algo.compare.} } \value{ a matrix summing up the singular input matrices } \details{ As lag the mean of all single lags is returned. TP values, FN values, TN values and FP values are summed up. \code{dist}, \code{sens} and \code{spec} are new computed on the basis of the new TP value, FN value, TN value and FP value. } \seealso{\code{\link{algo.compare}}, \code{\link{algo.quality}}} \examples{ # Create a test object disProgObj1 <- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) disProgObj2 <- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 5) disProgObj3 <- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 17) # Let this object be tested from any methods in range = 200:400 range <- 200:400 control <- list(list(funcName = "rki1", range = range), list(funcName = "rki2", range = range), list(funcName = "rki3", range = range)) compMatrix1 <- algo.compare(algo.call(disProgObj1, control=control)) compMatrix2 <- algo.compare(algo.call(disProgObj2, control=control)) compMatrix3 <- algo.compare(algo.call(disProgObj3, control=control)) algo.summary( list(a=compMatrix1, b=compMatrix2, c=compMatrix3) ) } \keyword{print} surveillance/man/algo.rki.Rd0000644000175100001440000001000113165505075015533 0ustar hornikusers\name{algo.rki} \alias{algo.rkiLatestTimepoint} \alias{algo.rki} \alias{algo.rki1} \alias{algo.rki2} \alias{algo.rki3} \encoding{latin1} \title{The system used at the RKI} \description{ Evaluation of timepoints with the detection algorithms used by the RKI } \usage{ algo.rkiLatestTimepoint(disProgObj, timePoint = NULL, control = list(b = 2, w = 4, actY = FALSE)) algo.rki(disProgObj, control = list(range = range, b = 2, w = 4, actY = FALSE)) algo.rki1(disProgObj, control = list(range = range)) algo.rki2(disProgObj, control = list(range = range)) algo.rki3(disProgObj, control = list(range = range)) } \arguments{ \item{disProgObj}{object of class disProg (including the observed and the state chain).} \item{timePoint}{time point which should be evaluated in \code{algo.rkiLatestTimepoint}. The default is to use the latest timepoint.} \item{control}{control object: \code{range} determines the desired timepoints which should be evaluated, \code{b} describes the number of years to go back for the reference values, \code{w} is the half window width for the reference values around the appropriate timepoint and \code{actY} is a boolean to decide if the year of \code{timePoint} also spend \code{w} reference values of the past. As default \code{b}, \code{w}, \code{actY} are set for the RKI 3 system. } } \value{ \code{algo.rkiLatestTimepoint} returns a list of class \code{survRes} (surveillance result), which includes the alarm value (alarm = 1, no alarm = 0) for recognizing an outbreak, the threshold value for recognizing the alarm and the input object of class disProg. \code{algo.rki} gives a list of class \code{survRes} which includes the vector of alarm values for every timepoint in \code{range}, the vector of threshold values for every timepoint in \code{range} for the system specified by \code{b}, \code{w} and \code{actY}, the range and the input object of class disProg. \code{algo.rki1} returns the same for the RKI 1 system, \code{algo.rki2} for the RKI 2 system and \code{algo.rki3} for the RKI 3 system. } \details{ Using the reference values for calculating an upper limit (threshold), alarm is given if the actual value is bigger than a computed threshold. \code{algo.rki} calls \code{algo.rkiLatestTimepoint} for the values specified in \code{range} and for the system specified in \code{control}. \code{algo.rki1} calls \code{algo.rkiLatestTimepoint} for the values specified in \code{range} for the RKI 1 system. \code{algo.rki2} calls \code{algo.rkiLatestTimepoint} for the values specified in \code{range} for the RKI 2 system. \code{algo.rki3} calls \code{algo.rkiLatestTimepoint} for the values specified in \code{range} for the RKI 3 system. \itemize{ \item \code{"RKI 1"} reference values from 6 weeks ago \item \code{"RKI 2"} reference values from 6 weeks ago and 13 weeks of the year ago (symmetrical around the comparable week). \item \code{"RKI 3"} 18 reference values. 9 from the year ago and 9 from two years ago (also symmetrical around the comparable week). } } \seealso{ \code{\link{algo.bayesLatestTimepoint}} and \code{\link{algo.bayes}} for the Bayes system. } \author{M. \enc{Höhle}{Hoehle}, A. Riebler, Christian Lang} \examples{ # Create a test object disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 208, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) # Test week 200 to 208 for outbreaks with a selfdefined rki algo.rki(disProgObj, control = list(range = 200:208, b = 1, w = 5, actY = TRUE)) # The same for rki 1 to rki 3 algo.rki1(disProgObj, control = list(range = 200:208)) algo.rki2(disProgObj, control = list(range = 200:208)) algo.rki3(disProgObj, control = list(range = 200:208)) # Test for rki 1 the latest timepoint algo.rkiLatestTimepoint(disProgObj) } \keyword{classif} surveillance/man/sts_creation.Rd0000644000175100001440000000515013122431244016520 0ustar hornikusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/sts_creation.R \name{sts_creation} \alias{sts_creation} \title{Function for simulating a time series} \usage{ sts_creation(theta, beta, gamma1, gamma2, m, overdispersion, dates, sizesOutbreak, datesOutbreak, delayMax, alpha, densityDelay) } \arguments{ \item{theta}{baseline frequency of reports} \item{beta}{time trend} \item{gamma1}{seasonality} \item{gamma2}{seasonality} \item{m}{seasonality} \item{overdispersion}{overdispersion (size in rnbinom for the parameterization with mean and size)} \item{dates}{dates of the time series} \item{sizesOutbreak}{sizes of all the outbreaks (vector)} \item{datesOutbreak}{dates of all the outbreaks (vector) # alpha} \item{delayMax}{maximal delay in time units} \item{alpha}{alpha for getting the (1-alpha) quantile of the negative binomial distribution at each timepoint} \item{densityDelay}{density distribution for the delay} } \description{ Function for simulating a time series and creating a sts-object As the counts are generated using a negative binomial distribution one also gets the (1-alpha) quantile for each timepoint (can be interpreted as an in-control upperbound for in-control values). The baseline and outbreaks are created as in Noufaily 2012. } \examples{ set.seed(12345) # Time series parameters scenario4 <- c(1.6,0,0.4,0.5,2) theta <- 1.6 beta <- 0 gamma1 <-0.4 gamma2 <- 0.5 overdispersion <- 1 m <- 1 # Dates firstDate <- "2006-01-01" lengthT=350 dates <- as.Date(firstDate,origin='1970-01-01') + 7 * 0:(lengthT - 1) # Maximal delay in weeks D=10 # Dates and sizes of the outbreaks datesOutbreak <- c(as.Date("2008-03-30"),as.Date("2011-09-25",origin="1970-01-01")) sizesOutbreak <- c(2,5) # Delay distribution data("salmAllOnset") in2011 <- which(formatDate(epoch(salmAllOnset), "\%G") == 2011) rT2011 <- salmAllOnset@control$reportingTriangle$n[in2011,] densityDelay <- apply(rT2011,2,sum, na.rm=TRUE)/sum(rT2011, na.rm=TRUE) # alpha for the upperbound alpha <- 0.05 # Create the sts with the full time series stsSim <- sts_creation(theta=theta,beta=beta,gamma1=gamma1,gamma2=gamma2,m=m, overdispersion=overdispersion, dates=dates, sizesOutbreak=sizesOutbreak,datesOutbreak=datesOutbreak, delayMax=D,densityDelay=densityDelay, alpha=alpha) plot(stsSim) } \references{ An improved algorithm for outbreak detection in multiple surveillance systems, Noufaily, A., Enki, D.G., Farrington, C.P., Garthwaite, P., Andrews, N.J., Charlett, A. (2012), Statistics in Medicine, published online. } surveillance/man/deleval.Rd0000644000175100001440000000272413122471774015457 0ustar hornikusers\name{deleval} \alias{deleval} \docType{data} \title{Surgical Failures Data} \description{ The dataset from Steiner et al. (1999) on A synthetic dataset from the Danish meat inspection -- useful for illustrating the beta-binomial CUSUM. } \usage{data(abattoir)} \details{ Steiner et al. (1999) use data from de Leval et al. (1994) to illustrate monitoring of failure rates of a surgical procedure for a bivariate outcome. Over a period of six years an arterial switch operation was performed on 104 newborn babies. Since the death rate from this surgery was relatively low the idea of surgical "near miss" was introduced. It is defined as the need to reinstitute cardiopulmonary bypass after a trial period of weaning. The object of class \code{sts} contains the recordings of near misses and deaths from the surgery for the 104 newborn babies of the study. The data could also be handled by a multinomial CUSUM model. } \seealso{\code{\link{pairedbinCUSUM}}} \examples{ data("deleval") plot(deleval, xaxis.labelFormat=NULL,ylab="Response",xlab="Patient number") } \references{ Steiner, S. H., Cook, R. J., and Farewell, V. T. (1999), Monitoring paired binary surgical outcomes using cumulative sum charts, Statistics in Medicine, 18, pp. 69--86. De Leval, Marc R., Franiois, K., Bull, C., Brawn, W. B. and Spiegelhalter, D. (1994), Analysis of a cluster of surgical failures, Journal of Thoracic and Cardiovascular Surgery, March, pp. 914--924. } \keyword{datasets} surveillance/man/MMRcoverageDE.Rd0000644000175100001440000000361213122471774016420 0ustar hornikusers\name{MMRcoverageDE} \alias{MMRcoverageDE} \docType{data} \title{MMR coverage levels in the 16 states of Germany} \description{ Coverage levels at school entry for the first and second dose of the combined measles-mumps-rubella (MMR) vaccine in 2006, estimated from children presenting vaccination documents at school entry examinations. } \usage{data(MMRcoverageDE)} \format{ A \code{data.frame} containing 19 rows and 5 columns with variables \describe{ \item{state}{Names of states: the 16 federal states are followed by the total of Germany, as well as the total of West and East Germany.} \item{nOfexaminedChildren}{Number of children examined.} \item{withVaccDocument}{Percentage of children who presented vaccination documents.} \item{MMR1}{Percentage of children with vaccination documents, who received at least 1 dose of MMR vaccine.} \item{MMR2}{Percentage of children with vaccination documents, who received at least 2 doses of MMR vaccine.} } Coverage levels were derived from vaccination documents presented at medical examinations, which are conducted by local health authorities at school entry each year. Records include information about the receipt of 1st and 2nd doses of MMR, but no information about dates. Note that information from children who did not present a vaccination document on the day of the medical examination, is not included in the estimated coverage. } \source{ Robert Koch-Institut (2008) Zu den Impfquoten bei den Schuleingangsuntersuchungen in Deutschland 2006. Epidemiologisches Bulletin, \bold{7}, 55-57 } \seealso{\code{\link{measlesDE}}} \references{ Herzog, S.A., Paul, M. and Held, L. (2011) Heterogeneity in vaccination coverage explains the size and occurrence of measles epidemics in German surveillance data. Epidemiology and Infection, \bold{139}, 505--515. } \keyword{datasets} surveillance/man/plot.disProg.Rd0000644000175100001440000000711113122471774016422 0ustar hornikusers\name{plot.disProg} \alias{plot.disProg} \alias{plot.disProg.one} \encoding{latin1} \title{Plot Generation of the Observed and the Defined Outbreak States of a (Multivariate) Time Series} \description{Plotting a disProg object.} \usage{ \method{plot}{disProg}(x, title = "", xaxis.years=TRUE, startyear = x$start[1], firstweek = x$start[2], as.one=TRUE, same.scale=TRUE, \dots) \method{plot}{disProg.one}(x, title = "", xaxis.years=TRUE, quarters=TRUE, startyear = x$start[1], firstweek = x$start[2], ylim=NULL, xlab="time", ylab="No. infected",type="hh",lty=c(1,1),col=c(1,1), outbreak.symbol = list(pch=3, col=3), legend.opts=list(x="top", legend=c("Infected", "Outbreak"), lty=NULL,pch=NULL,col=NULL), \dots) } \arguments{ \item{x}{object of class \code{disProg}} \item{title}{plot title} \item{xaxis.years}{if \code{TRUE}, the x axis is labeled using years} \item{quarters}{add quarters to the plot} \item{startyear}{year to begin the axis labeling (the year where the oldest data come from). This arguments will be obsolete in \code{sts}.} \item{firstweek}{number of the first week of January in the first year (just for axis labeling grounds)} \item{as.one}{if \code{TRUE} all individual time series are shown in one plot} \item{same.scale}{if \code{TRUE} all plots have same scale} \item{ylim}{range of y axis} \item{xlab}{label of the x-axis} \item{ylab}{label of the y-axis} \item{type}{line type of the observed counts (should be \code{hh})} \item{lty}{line type of the observed counts} \item{col}{color of the observed count lines} \item{outbreak.symbol}{list with entries \code{pch} and \code{col} specifying the plot symbol} \item{legend.opts}{a list containing the entries to be sent to the \code{\link{legend}} function. If no legend is requested use \code{legend.opts=NULL}. Otherwise, the following arguments are default \describe{ \item{\code{x}}{\code{top}} \item{\code{legend}}{The names infected and outbreak} \item{\code{lty}}{If \code{NULL} the \code{lty} argument will be used} \item{\code{pch}}{If \code{NULL} the \code{pch} argument is used} \item{\code{col}}{If \code{NULL} the \code{col} argument is used} } An further arguments to the \code{legend} function are just provided as additional elements of this list, e.g. \code{horiz=TRUE}. } \item{\dots}{further arguments for the function \code{matplot}} } \value{ a plot showing the number of infected and the defined alarm status for a time series created by simulation or given in data either in one single plot or in several plots for each individual time series. } \author{M. \enc{Höhle}{Hoehle} with contributions by A. Riebler and C. Lang} \examples{ # Plotting of simulated data disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 208, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 5) # plot the simulated disease with the defined outbreaks plot(disProgObj) title <- "Number of Infected and Defined Outbreak Positions for Simulated Data" plot(disProgObj, title = title) plot(disProgObj, title = title, xaxis.years=TRUE, startyear = 1999, firstweek = 13) plot(disProgObj, title = title, xaxis.years=TRUE, startyear = 1999, firstweek = 14) # Plotting of measles data data(measles.weser) # one plot plot(measles.weser, title = "measles cases in the district Weser-Ems", xaxis.years=TRUE, startyear= 2001, firstweek=1) # plot cases for each "Kreis" plot(measles.weser, same.scale=TRUE, as.one=FALSE) } \keyword{hplot} surveillance/man/bodaDelay.Rd0000644000175100001440000001506413165505075015727 0ustar hornikusers\name{bodaDelay} \alias{bodaDelay} \title{Bayesian Outbreak Detection in the Presence of Reporting Delays} \usage{ bodaDelay(sts, control = list( range = NULL, b = 3, w = 3, mc.munu = 100, mc.y = 10, pastAberrations = TRUE, verbose = FALSE, alpha = 0.01, trend = TRUE, limit54 = c(5,4), inferenceMethod = c("asym","INLA"), quantileMethod = c("MC","MM"), noPeriods = 1, pastWeeksNotIncluded = 26, delay = TRUE)) } \arguments{ \item{sts}{sts-object to be analysed. Needs to have a reporting triangle.} \item{control}{list of control arguments: \describe{ \item{\code{b}}{How many years back in time to include when forming the base counts.} \item{\code{w}}{Window's half-size, i.e. number of weeks to include before and after the current week in each year.} \item{\code{range}}{Specifies the index of all timepoints which should be tested. If range is \code{NULL} all possible timepoints are used.} \item{\code{pastAberrations}}{Boolean indicating whether to include an effect for past outbreaks in a second fit of the model. This option only makes sense if \code{inferenceMethod} is \code{INLA}, as it is not supported by the other inference method.} \item{\code{verbose}}{Boolean specifying whether to show extra debugging information.} \item{\code{alpha}}{An approximate (one-sided) \eqn{(1-\alpha)\cdot 100\%} prediction interval is calculated unlike the original method where it was a two-sided interval. The upper limit of this interval i.e. the \eqn{(1-\alpha)\cdot 100\%} quantile serves as an upperbound.} \item{\code{trend}}{Boolean indicating whether a trend should be included} \item{\code{noPeriods}}{Number of levels in the factor allowing to use more baseline. If equal to 1 no factor variable is created, the set of reference values is defined as in Farrington et al (1996).} \item{\code{inferenceMethod}}{Which inference method used, as defined in Salmon et al. (2015). If one chooses \code{INLA} then inference is performed with INLA. If one chooses \code{asym} then the asymptotic normal approximation of the posteriori is used.} \item{\code{pastWeeksNotIncluded}}{Number of past weeks to ignore in the calculation.} \item{\code{delay}}{Boolean indicating whether to take reporting delays into account.} \item{\code{mc.munu}}{Number of samples for the parameters of the negative binomial distribution for calculating a threshold} \item{\code{mc.y}}{Number of samples for observations when performing Monte Carlo to calculate a threshold} \item{\code{limit54}}{c(cases,period) is a vector allowing the user to change these numbers.} \item{\code{quantileMethod}}{Character, either \code{MC} or \code{MM}. Indicates how to compute the quantile based on the posterior distribution (no matter the inference method): either by sampling \code{mc.munu} values from the posterior distribution of the parameters and then for each sampled parameters vector sampling \code{mc.y} response values so that one gets a vector of response values based on which one computes an empirical quantile (MC method, as explained in Salmon et al. 2015); or by sampling \code{mc.munu} from the posterior distribution of the parameters and then compute the quantile of the mixture distribution using bisectioning, which is faster.} } } } \description{ The function takes \code{range} values of the surveillance time series \code{sts} and for each time point uses a Bayesian model of the negative binomial family with log link inspired by the work of Noufaily et al. (2012) and of Manitz and \enc{Höhle}{Hoehle} (2014). It allows delay-corrected aberration detection as explained in Salmon et al. (2015). A \code{reportingTriangle} has to be provided in the \code{control} slot. } \examples{ \dontrun{ data("stsNewport") salm.Normal <- list() salmDelayAsym <- list() for (week in 43:45){ listWeeks <- as.Date(row.names(stsNewport@control$reportingTriangle$n), origin="1970-01-01") dateObs <- listWeeks[isoWeekYear(listWeeks)$ISOYear==2011 & isoWeekYear(listWeeks)$ISOWeek==week] stsC <- sts_observation(stsNewport, dateObservation=dateObs, cut=TRUE) inWeeks <- which(formatDate(epoch(stsC), "\%G") == 2011 & isoWeekYear(as.Date(epoch(stsC)))$ISOWeek>=40 & isoWeekYear(as.Date(epoch(stsC)))$ISOWeek<=48) rangeTest <- inWeeks alpha <- 0.07 # Control slot for Noufaily method controlNoufaily <- list(range=rangeTest,noPeriods=10, b=4,w=3,weightsThreshold=2.58,pastWeeksNotIncluded=26, pThresholdTrend=1,thresholdMethod="nbPlugin",alpha=alpha*2, limit54=c(0,50)) # Control slot for the Proposed algorithm with D=0 correction controlNormal <- list(range = rangeTest, b = 4, w = 3, reweight = TRUE, mc.munu=10000, mc.y=100, verbose = FALSE, alpha = alpha, trend = TRUE, limit54=c(0,50), noPeriods = 10, pastWeeksNotIncluded = 26, delay=FALSE) # Control slot for the Proposed algorithm with D=10 correction controlDelayNorm <- list(range = rangeTest, b = 4, w = 3, reweight = FALSE, mc.munu=10000, mc.y=100, verbose = FALSE, alpha = alpha, trend = TRUE, limit54=c(0,50), noPeriods = 10, pastWeeksNotIncluded = 26, delay=TRUE,inferenceMethod="asym") set.seed(1) salm.Normal[[week]] <- farringtonFlexible(stsC, controlNoufaily) salmDelayAsym[[week]] <- bodaDelay(stsC, controlDelayNorm) } opar <- par(mfrow=c(2,3)) lapply(salmDelayAsym[c(43,44,45)],plot, legend=NULL, main="", ylim=c(0,35)) lapply(salm.Normal[c(43,44,45)],plot, legend=NULL, main="", ylim=c(0,35)) par(opar) } } \references{ Farrington, C.P., Andrews, N.J, Beale A.D. and Catchpole, M.A. (1996): A statistical algorithm for the early detection of outbreaks of infectious disease. J. R. Statist. Soc. A, 159, 547-563. Noufaily, A., Enki, D.G., Farrington, C.P., Garthwaite, P., Andrews, N.J., Charlett, A. (2012): An improved algorithm for outbreak detection in multiple surveillance systems. Statistics in Medicine, 32 (7), 1206-1222. Salmon, M., Schumacher, D., Stark, K., \enc{Höhle}{Hoehle}, M. (2015): Bayesian outbreak detection in the presence of reporting delays. Biometrical Journal, 57 (6), 1051-1067. } surveillance/man/algo.cusum.Rd0000644000175100001440000001146113122471774016116 0ustar hornikusers\name{algo.cusum} \alias{algo.cusum} \title{CUSUM method} \encoding{latin1} \description{ Approximate one-side CUSUM method for a Poisson variate based on the cumulative sum of the deviation between a reference value k and the transformed observed values. An alarm is raised if the cumulative sum equals or exceeds a prespecified decision boundary h. The function can handle time varying expectations. } \usage{ algo.cusum(disProgObj, control = list(range = range, k = 1.04, h = 2.26, m = NULL, trans = "standard", alpha = NULL)) } \arguments{ \item{disProgObj}{object of class disProg (including the observed and the state chain)} \item{control}{control object: \describe{ \item{\code{range}}{determines the desired time points which should be evaluated} \item{\code{k}}{is the reference value} \item{\code{h}}{the decision boundary} \item{\code{m}}{how to determine the expected number of cases -- the following arguments are possible \describe{ \item{\code{numeric}}{a vector of values having the same length as \code{range}. If a single numeric value is specified then this value is replicated \code{length(range)} times.} \item{\code{NULL}}{A single value is estimated by taking the mean of all observations previous to the first \code{range} value.} \item{\code{"glm"}}{ A GLM of the form \deqn{\log(m_t) = \alpha + \beta t + \sum_{s=1}^S (\gamma_s \sin(\omega_s t) + \delta_s \cos(\omega_s t)),} where \eqn{\omega_s = \frac{2\pi}{52}s}{\omega_s = 2\pi/52 s} are the Fourier frequencies is fitted. Then this model is used to predict the \code{range} values.} }} \item{\code{trans}}{one of the following transformations (warning: Anscombe and NegBin transformations are experimental) \describe{ \item{\code{rossi}}{standardized variables z3 as proposed by Rossi} \item{\code{standard}}{standardized variables z1 (based on asymptotic normality) - This is the default.} \item{\code{anscombe}}{anscombe residuals -- experimental} \item{\code{anscombe2nd}}{ anscombe residuals as in Pierce and Schafer (1986) based on 2nd order approximation of E(X) -- experimental} \item{\code{pearsonNegBin}}{compute Pearson residuals for NegBin -- experimental} \item{\code{anscombeNegBin}}{anscombe residuals for NegBin -- experimental} \item{\code{none}}{ no transformation} } } \item{\code{alpha}}{parameter of the negative binomial distribution, s.t. the variance is \eqn{m+\alpha *m^2} } } } } \value{ \code{algo.cusum} gives a list of class \code{"survRes"} which includes the vector of alarm values for every timepoint in \code{range} and the vector of cumulative sums for every timepoint in \code{range} for the system specified by \code{k} and \code{h}, the range and the input object of class \code{"disProg"}. The \code{upperbound} entry shows for each time instance the number of diseased individuals it would have taken the cusum to signal. Once the CUSUM signals no resetting is applied, i.e. signals occurs until the CUSUM statistic again returns below the threshold. In case \code{control$m="glm"} was used, the returned \code{control$m.glm} entry contains the fitted \code{"glm"} object. } \note{This implementation is experimental, but will not be developed further.} \author{M. Paul and M. \enc{Höhle}{Hoehle}} \examples{ # Xi ~ Po(5), i=1,...,500 disProgObj <- create.disProg(week=1:500, observed= rpois(500,lambda=5), state=rep(0,500)) # there should be no alarms as mean doesn't change res <- algo.cusum(disProgObj, control = list(range = 100:500,trans="anscombe")) plot(res) # simulated data disProgObj <- sim.pointSource(p = 1, r = 1, length = 250, A = 0, alpha = log(5), beta = 0, phi = 10, frequency = 10, state = NULL, K = 0) plot(disProgObj) # Test week 200 to 250 for outbreaks surv <- algo.cusum(disProgObj, control = list(range = 200:250)) plot(surv) } \references{ G. Rossi, L. Lampugnani and M. Marchi (1999), An approximate CUSUM procedure for surveillance of health events, Statistics in Medicine, 18, 2111--2122 D. A. Pierce and D. W. Schafer (1986), Residuals in Generalized Linear Models, Journal of the American Statistical Association, 81, 977--986 } \keyword{classif} surveillance/man/enlargeData.Rd0000644000175100001440000000232713122471774016251 0ustar hornikusers\name{enlargeData} \alias{enlargeData} \title{Data Enlargement} \description{ Enlargement of data which is too short for a surveillance method to evaluate. } \usage{ enlargeData(disProgObj, range = 1:156, times = 1) } \arguments{ \item{disProgObj}{object of class disProg (including the observed and the state chain).} \item{range}{range of already existing data (\code{state}, \code{observed}) which should be used for enlargement.} \item{times}{number of times to enlarge.} } \value{ a \code{disProg} (disease progress) object including a list of the observed and the state chain (extended with cyclic data generation) } \details{ \code{observed} and \code{state} are enlarged in the way that the part \code{range} of \code{observed} and \code{state} is repeated \code{times} times in front of \code{observed} and \code{state}. Sometimes it's useful to care for the cyclic property of the timeseries, so as default we enlarge observed and state once with the first three existing years, assuming a year has 52 weeks. } \seealso{\code{\link{readData}}} \examples{ obj <- readData("k1") enlargeData(obj) # enlarge once with part 1:156 enlargeData(obj, 33:36, 10) # enlarge 10 times with part 33:36 } \keyword{utilities} surveillance/man/sim.seasonalNoise.Rd0000644000175100001440000000335113122471774017432 0ustar hornikusers\name{sim.seasonalNoise} \alias{sim.seasonalNoise} \encoding{latin1} \title{Generation of Background Noise for Simulated Timeseries} \description{Generation of a cyclic model of a Poisson distribution as background data for a simulated timevector. The mean of the Poisson distribution is modelled as: \deqn{\mu = \exp(A \sin( frequency \cdot \omega \cdot (t + \phi)) + \alpha + \beta * t + K * state)}{% mu = exp(A * sin( frequency * omega * (t + phi)) + alpha + beta * t + K * state)} } \usage{ sim.seasonalNoise(A = 1, alpha = 1, beta = 0, phi = 0, length, frequency = 1, state = NULL, K = 0) } \arguments{ \item{A}{amplitude (range of sinus), default = 1.} \item{alpha}{parameter to move along the y-axis (negative values not allowed) with alpha > = A, default = 1.} \item{beta}{regression coefficient, default = 0.} \item{phi}{factor to create seasonal moves (moves the curve along the x-axis), default = 0.} \item{length}{number of weeks to model.} \item{frequency}{factor to determine the oscillation-frequency, default = 1.} \item{state}{if a state chain is entered the outbreaks will be additional weighted by K.} \item{K}{additional weigth for an outbreak which influences the distribution parameter mu, default = 0.} } \value{ an object of class \code{seasonNoise} which includes the modelled timevector, the parameter \code{mu} and all input parameters. } \seealso{\code{\link{sim.pointSource}}} \author{M. \enc{Höhle}{Hoehle}, A. Riebler, C. Lang} \examples{ season <- sim.seasonalNoise(length = 300) plot(season$seasonalBackground,type = "l") # use a negative timetrend beta season <- sim.seasonalNoise(beta = -0.003, length = 300) plot(season$seasonalBackground,type = "l") } \keyword{datagen} surveillance/man/twinstim_iafplot.Rd0000644000175100001440000002205313100434734017423 0ustar hornikusers\encoding{latin1} \name{twinstim_iafplot} \alias{iafplot} \title{ Plot the Spatial or Temporal Interaction Function of a \code{twimstim} } \description{ The function plots the fitted temporal or (isotropic) spatial interaction function of a \code{twinstim} object. The implementation is illustrated in Meyer et al. (2017, Section 3), see \code{vignette("twinstim")}. } \usage{ iafplot(object, which = c("siaf", "tiaf"), types = NULL, scaled = c("intercept", "standardized", "no"), truncated = FALSE, log = "", conf.type = if (length(pars) > 1) "MC" else "parbounds", conf.level = 0.95, conf.B = 999, xgrid = 101, col.estimate = rainbow(length(types)), col.conf = col.estimate, alpha.B = 0.15, lwd = c(3,1), lty = c(1,2), verticals = FALSE, do.points = FALSE, add = FALSE, xlim = NULL, ylim = NULL, xlab = NULL, ylab = NULL, legend = !add && (length(types) > 1), ...) } \arguments{ \item{object}{ object of class \code{"twinstim"} containing the fitted model. } \item{which}{ argument indicating which of the two interaction functions to plot. Possible values are \code{"siaf"} (default) for the spatial interaction \eqn{f(x)} as a function of the distance \eqn{x}, and \code{"tiaf"} for the temporal interaction function \eqn{g(t)}. } \item{types}{ integer vector indicating for which event \code{types} the interaction function should be plotted in case of a marked \code{"twinstim"}. The default \code{types=NULL} checks if the interaction function is type-specific: if so, \code{types=1:nrow(object$qmatrix)} is used, otherwise \code{types=1}. } \item{scaled}{ character string determining if/how the the interaction function should be scaled. Possible choices are: \describe{ \item{"intercept":}{multiplication by the epidemic intercept.} \item{"standardized":}{division by the value at 0 distance such that the function starts at 1.} \item{"no":}{no scaling.} } The first one is the default and required for the comparison of estimated interaction functions from different models. For backward compatibility, \code{scaled} can also be a boolean, where \code{TRUE} refers to \code{"intercept"} scaling and \code{FALSE} to \code{"no"} scaling. } \item{truncated}{ logical indicating if the plotted interaction function should take the maximum range of interaction (\code{eps.t}/\code{eps.s}) into account, i.e., drop to zero at that point (if it is finite after all). If there is no common range of interaction, a \code{\link{rug}} indicating the various ranges will be added to the plot if \code{truncated=TRUE}. If \code{truncated} is a scalar, this value is used as the point \code{eps} where the function drops to 0. } \item{log}{a character string passed to \code{\link{plot.default}} indicating which axes should be logarithmic. If \code{add=TRUE}, \code{log} is set according to \code{par("xlog")} and \code{par("ylog")}.} \item{conf.type}{ type of confidence interval to produce.\cr If \code{conf.type="MC"} (or \code{"bootstrap"}), \code{conf.B} parameter vectors are sampled from the asymptotic (multivariate) normal distribution of the ML estimate of the interaction function parameters; the interaction function is then evaluated on the \code{xgrid} (i.e. temporal or spatial distances from the host) for each parameter realization to obtain a \code{conf.level} confidence interval at each point of the \code{xgrid} (or to plot the interaction functions of all Monte-Carlo samples if \code{conf.level=NA}). Note that the resulting plot is \code{\link{.Random.seed}}-dependent for the Monte-Carlo type of confidence interval.\cr If \code{conf.type="parbounds"}, the \code{conf.level} Wald confidence intervals for the interaction function parameters are calculated and the interaction function is evaluated on the \code{xgrid} (distances from the host) for all combinations of the bounds of the parameters and the point-wise extremes of those functions are plotted. This type of confidence interval is only valid in case of a single parameter, i.e. \code{scaled + nsiafpars == 1}, but could also be used as a rough indication if the Monte-Carlo approach takes too long. A warning is thrown if the \code{"parbounds"} type is used for multiple parameters.\cr If \code{conf.type="none"} or \code{NA} or \code{NULL}, no confidence interval will be calculated. } \item{conf.level}{ the confidence level required. For \code{conf.type = "MC"} it may also be specified as \code{NA}, in which case all \code{conf.B} sampled functions will be plotted with transparency value given by \code{alpha.B}. } \item{conf.B}{ number of samples for the \code{"MC"} (Monte Carlo) confidence interval. } \item{xgrid}{ either a numeric vector of x-values (distances from the host) where to evaluate \code{which}, or a scalar representing the desired number of evaluation points in the interval \code{c(0,xlim[2])}.\cr If the interaction function is a step function (\code{\link{siaf.step}} or \code{\link{tiaf.step}}), \code{xgrid} is ignored and internally set to \code{c(0, knots)}. } \item{col.estimate}{ vector of colours to use for the function point estimates of the different \code{types}. } \item{col.conf}{ vector of colours to use for the confidence intervals of the different \code{types}. } \item{alpha.B}{ alpha transparency value (as relative opacity) used for the \code{conf.B} sampled interaction functions in case \code{conf.level = NA} } \item{lwd, lty}{ numeric vectors of length two specifying the line width and type of point estimates (first element) and confidence limits (second element), respectively. } \item{verticals,do.points}{graphical settings for step function kernels. These can be logical (as in \code{\link{plot.stepfun}}) or lists of graphical parameters.} \item{add}{ add to an existing plot? } \item{xlim, ylim}{ vectors of length two containing the x- and y-axis limit of the plot. The default y-axis range (\code{ylim=NULL}) is from 0 to the value of the (scaled) interaction function at \eqn{x = 0}. The default x-axis (\code{xlim=NULL}) starts at 0, and the upper limit is determined as follows (in decreasing order of precedence): \itemize{ \item If \code{xgrid} is a vector of evaluation points, \code{xlim[2]} is set to \code{max(xgrid)}. \item \code{eps.t}/\code{eps.s} if it is unique and finite. \item If the interaction function is a step function with \code{maxRange NegBin1, component seasonality fit1 <- update(fit0, family = "NegBin1", S = list(end=2, ar=2)) ## compare fits AIC(fit0, fit1) opar <- par(mfrow=c(2,2)) plot(fit0, type="fitted", names="fit0", par.settings=NULL) plot(fit1, type="fitted", names="fit1", par.settings=NULL) plot(fit0, fit1, type="season", components=c("end", "ar"), par.settings=NULL) par(opar) } \keyword{models} \keyword{methods} surveillance/man/make.design.Rd0000644000175100001440000000632513122471774016231 0ustar hornikusers\name{make.design} \alias{make.design} \title{Create the design matrices} \description{ Creates the design matrices needed for \code{meanResponse} } \usage{ make.design(disProgObj, control=list(lambda=TRUE, neighbours=FALSE, linear=FALSE, nseason=0, negbin=c("none", "single", "multiple"), proportion=c("none", "single", "multiple"),lag.range=NULL) ) } \arguments{ \item{disProgObj}{object of class \code{disProg}} \item{control}{control object: \describe{ \item{\code{lambda}}{If \code{TRUE} an autoregressive parameter \eqn{\lambda} is included, if \code{lambda} is a vector of logicals, unit-specific parameters \eqn{\lambda_i} are included. By default, observations \eqn{y_{t-lag}}{y_t-lag} at the previous time points, i.e. \eqn{lag=1}, are used for the autoregression. Other lags can be used by specifying \code{lambda} as a vector of integers, see \code{\link{algo.hhh}} for details.} \item{\code{neighbours}}{If \code{TRUE} an autoregressive parameter for adjacent units \eqn{\phi} is included, if \code{neighbours} is a vector of logicals, unit-specific parameters \eqn{\phi_i} are included. By default, observations \eqn{y_{t-lag}}{y_t-lag} at the previous time points, i.e. \eqn{lag=1}, are used for the autoregression. Other lags can be used by specifying \code{neighbours} as a vector of integers.} \item{\code{linear}}{a \code{logical} (or a vector of logicals) indicating wether a linear trend \eqn{\beta} (or a linear trend \eqn{\beta_i} for each unit) is included} \item{\code{nseason}}{Integer number of Fourier frequencies; if \code{nseason} is a vector of integers, each unit \eqn{i} gets its own seasonal parameters } \item{\code{negbin}}{if \code{"single"} negative binomial rather than poisson is used, if \code{"multiple"} unit-specific overdispersion parameters are used.} \item{\code{proportion}}{see details in \code{\link{algo.hhh}} } \item{\code{lag.range}}{determines which observations are used to fit the model } }} } \value{Returns a list with elements \item{Y}{matrix with number of cases \eqn{y_{it}}{y_it} in unit \eqn{i} at time \eqn{t} as elements, i.e. data without the first time point.} \item{Ym1}{matrix with previous number of cases \eqn{y_{i,t-1}}{y_i,t-1}, i.e data without the last time point.} \item{Ym1.neighbours}{matrix with weighted sum of earlier counts of adjacent units \eqn{\sum_{j \sim i} m_{ji} y_{j,t-1}}{sum_(j ~ i) w_ji * y_j,t-1} } \item{nOfNeighbours}{vector with number of neighbours for each unit \eqn{i} } \item{X.trendSeason}{design matrix for linear trend and seasonal components} \item{populationFrac}{matrix with corresponding population proportions} \item{dimTheta}{list with number of parameters used in model} \item{control}{control object} \item{disProgObj}{Object of class \code{disProg}} \item{lag}{which lag is used for the autoregressive parameters \eqn{\lambda} and \eqn{\phi} } \item{nObs}{number of observations} } \author{M.Paul, L. Held} \keyword{internal} surveillance/man/twinstim_simulation.Rd0000644000175100001440000004654113174712223020164 0ustar hornikusers\encoding{latin1} \name{twinstim_simulation} \alias{simEpidataCS} \alias{simulate.twinstim} \title{ Simulation of a Self-Exciting Spatio-Temporal Point Process } \description{ The function \code{simEpidataCS} simulates events of a self-exciting spatio-temporal point process of the \code{"\link{twinstim}"} class. Simulation works via Ogata's modified thinning of the conditional intensity as described in Meyer et al. (2012). Note that simulation is limited to the spatial and temporal range of \code{stgrid}. The \code{\link{simulate}} method for objects of class \code{"\link{twinstim}"} simulates new epidemic data using the model and the parameter estimates of the fitted object. } \usage{ simEpidataCS(endemic, epidemic, siaf, tiaf, qmatrix, rmarks, events, stgrid, tiles, beta0, beta, gamma, siafpars, tiafpars, epilink = "log", t0 = stgrid$start[1], T = tail(stgrid$stop,1), nEvents = 1e5, control.siaf = list(F=list(), Deriv=list()), W = NULL, trace = 5, nCircle2Poly = 32, gmax = NULL, .allocate = 500, .skipChecks = FALSE, .onlyEvents = FALSE) \method{simulate}{twinstim}(object, nsim = 1, seed = NULL, data, tiles, newcoef = NULL, rmarks = NULL, t0 = NULL, T = NULL, nEvents = 1e5, control.siaf = object$control.siaf, W = data$W, trace = FALSE, nCircle2Poly = NULL, gmax = NULL, .allocate = 500, simplify = TRUE, ...) } \arguments{ \item{endemic}{ see \code{\link{twinstim}}. Note that type-specific endemic intercepts are specified by \code{beta0} here, not by the term \code{(1|type)}. } \item{epidemic}{ see \code{\link{twinstim}}. Marks appearing in this formula must be returned by the generating function \code{rmarks}. } \item{siaf}{ see \code{\link{twinstim}}. In addition to what is required for fitting with \code{twinstim}, the \code{siaf} specification must also contain the element \code{simulate}, a function which draws random locations following the spatial kernel \code{siaf$f}. The first argument of the function is the number of points to sample (say \code{n}), the second one is the vector of parameters \code{siafpars}, the third one is the type indicator (a character string matching a type name as specified by \code{dimnames(qmatrix)}). With the current implementation there will always be simulated only one location at a time, i.e. \code{n=1}. The \link[=siaf.constant]{predefined siaf's} all provide simulation. } \item{tiaf}{ e.g. what is returned by the generating function \code{\link{tiaf.constant}} or \code{\link{tiaf.exponential}}. See also \code{\link{twinstim}}. } \item{qmatrix}{ see \code{\link{epidataCS}}. Note that this square matrix and its \code{dimnames} determine the number and names of the different event types. In the simplest case, there is only a single type of event, i.e. \code{qmatrix = diag(1)}. } \item{rmarks}{ function of single time (1st argument) and location (2nd argument) returning a one-row \code{data.frame} of marks (named according to the variables in \code{epidemic}) for an event at this point. This must include the columns \code{eps.s} and \code{eps.t}, i.e. the values of the spatial and temporal interaction ranges at this point. Only \code{"numeric"} and \code{"factor"} columns are allowed. Assure that factor variables are coded equally (same levels and level order) for each new sample. For the \code{simulate.twinstim} method, the default (\code{NULL}) means sampling from the empirical distribution function of the (non-missing) marks in \code{data} restricted to events in the simulation period (\code{t0};\code{T}]. If there are no events in this period, e.g., if simulating beyond the original observation period, \code{rmarks} will sample marks from all of \code{data$events}. } \item{events}{ \code{NULL} or missing (default) in case of an empty prehistory, or a \code{\link{SpatialPointsDataFrame}} containing events of the prehistory (-Inf;\code{t0}] of the process (required for the epidemic to start in case of no endemic component in the model). The \code{SpatialPointsDataFrame} must have the same \code{proj4string} as \code{tiles} and \code{W}). The attached \code{data.fram}e (data slot) must contain the typical columns as described in \code{\link{as.epidataCS}} (\code{time}, \code{tile}, \code{eps.t}, \code{eps.s}, and, for type-specific models, \code{type}) and all marks appearing in the \code{epidemic} specification. Note that some column names are reserved (see \code{\link{as.epidataCS}}). Only events up to time \code{t0} are selected and taken as the prehistory. } \item{stgrid}{ see \code{\link{as.epidataCS}}. Simulation only works inside the spatial and temporal range of \code{stgrid}. } \item{tiles}{ object inheriting from \code{"\linkS4class{SpatialPolygons}"} with \code{row.names} matching the \code{tile} names in \code{stgrid} and having the same \code{proj4string} as \code{events} and \code{W}. This is necessary to sample the spatial location of events generated by the endemic component. } \item{beta0,beta,gamma,siafpars,tiafpars}{ these are the parameter subvectors of the \code{twinstim}. \code{beta} and \code{gamma} must be given in the same order as they appear in \code{endemic} and \code{epidemic}, respectively. \code{beta0} is either a single endemic intercept or a vector of type-specific endemic intercepts in the same order as in \code{qmatrix}. } \item{epilink}{ a character string determining the link function to be used for the \code{epidemic} linear predictor of event marks. By default, the log-link is used. The experimental alternative is \code{epilink = "identity"}. Note that the identity link does not guarantee the force of infection to be positive. If this leads to a negative total intensity (endemic + epidemic), the point process is not well defined and simulation cannot proceed. } \item{t0}{ \code{events} having occurred during (-Inf;\code{t0}] are regarded as part of the prehistory \eqn{H_0} of the process. The time point \code{t0} must be an element of \code{stgrid$start}. For \code{simEpidataCS}, by default, and also if \code{t0=NULL}, it is the earliest time point of the spatio-temporal grid \code{stgrid}. For the \code{simulate.twinstim} method, \code{NULL} means to use the same time range as for the fitting of the \code{"twinstim"} \code{object}. } \item{T, nEvents}{ simulate a maximum of \code{nEvents} events up to time \code{T}, then stop. For \code{simEpidataCS}, by default, and also if \code{T=NULL}, \code{T} equals the last stop time in \code{stgrid} (it cannot be greater) and \code{nEvents} is bounded above by 10000. For the \code{simulate.twinstim} method, \code{T=NULL} means to use the same same time range as for the fitting of the \code{"twinstim"} \code{object}. } \item{W}{ see \code{\link{as.epidataCS}}. When simulating from \code{twinstim}-fits, \code{W} is by default taken from the original \code{data$W}. If specified as \code{NULL}, \code{W} is generated automatically via \code{\link{unionSpatialPolygons}(tiles)}. However, since the result of such a polygon operation should always be verified, it is recommended to do that in advance.\cr It is important that \code{W} and \code{tiles} cover the same region: on the one hand direct offspring is sampled in the spatial influence region of the parent event, i.e., in the intersection of \code{W} and a circle of radius the \code{eps.s} of the parent event, after which the corresponding tile is determined by overlay with \code{tiles}. On the other hand endemic events are sampled from \code{tiles}. } \item{trace}{ logical (or integer) indicating if (or how often) the current simulation status should be \code{cat}ed. For the \code{simulate.twinstim} method, \code{trace} currently only applies to the first of the \code{nsim} simulations. } \item{.allocate}{ number of rows (events) to initially allocate for the event history; defaults to 500. Each time the simulated epidemic exceeds the allocated space, the event \code{data.frame} will be enlarged by \code{.allocate} rows. } \item{.skipChecks,.onlyEvents}{ these logical arguments are not meant to be set by the user. They are used by the \code{simulate}-method for \code{"twinstim"} objects. } \item{object}{ an object of class \code{"\link{twinstim}"}. } \item{nsim}{ number of epidemics (i.e. spatio-temporal point patterns inheriting from class \code{"epidataCS"}) to simulate. Defaults to 1 when the result is a simple object inheriting from class \code{"simEpidataCS"} (as if \code{simEpidataCS} would have been called directly). If \code{nsim > 1}, the result will be a list the structure of which depends on the argument \code{simplify}. } \item{seed}{ an object specifying how the random number generator should be initialized for simulation (via \code{\link{set.seed}}). The initial state will also be stored as an attribute \code{"seed"} of the result. The original state of the \code{\link{.Random.seed}} will be restored at the end of the simulation. By default (\code{NULL}), neither initialization nor recovery will be done. This behaviour is copied from the \code{\link{simulate}.lm} method. } \item{data}{ an object of class \code{"epidataCS"}, usually the one to which the \code{"twinstim"} \code{object} was fitted. It carries the \code{stgrid} of the endemic component, but also \code{events} for use as the prehistory, and defaults for \code{rmarks} and \code{nCircle2Poly}. } \item{newcoef}{ an optional named numeric vector of (a subset of) parameters to replace the original point estimates in \code{coef(object)}. Elements which do not match any model parameter by name are silently ignored. The \code{newcoef}s may also be supplied in a list following the same conventions as for the \code{start} argument in \code{\link{twinstim}}. } \item{simplify}{ logical. It is strongly recommended to set \code{simplify = TRUE} (default) if \code{nsim} is large. This saves space and computation time, because for each simulated epidemic only the \code{events} component is saved. All other components, which do not vary between simulations, are only stored from the first run. In this case, the runtime of each simulation is stored as an attribute \code{"runtime"} to each simulated \code{events}. See also the \dQuote{Value} section below. } \item{control.siaf}{see \code{\link{twinstim}}.} \item{nCircle2Poly}{see \code{\link{as.epidataCS}}. For \code{simulate.twinstim}, \code{NULL} means to use the same value as for \code{data}.} \item{gmax}{ maximum value the temporal interaction function \code{tiaf$g} can attain. If \code{NULL}, then it is assumed as the maximum value of the type-specific values at 0, i.e. \code{max(tiaf$g(rep.int(0,nTypes), tiafpars, 1:nTypes))}. } \item{\dots}{unused (arguments of the generic).} } \value{ The function \code{simEpidataCS} returns a simulated epidemic of class \code{"simEpidataCS"}, which enhances the class \code{"epidataCS"} by the following additional components known from objects of class \code{"\link{twinstim}"}: \code{bbox}, \code{timeRange}, \code{formula}, \code{coefficients}, \code{npars}, \code{control.siaf}, \code{call}, \code{runtime}. It has corresponding \code{\link{coeflist}}, \code{\link[=residuals.simEpidataCS]{residuals}}, \code{\link[=R0.simEpidataCS]{R0}}, and \code{\link[=intensityplot.simEpidataCS]{intensityplot}} methods. The \code{simulate.twinstim} method has some additional \emph{attributes} set on its result: \code{call}, \code{seed}, and \code{runtime}. If \code{nsim > 1}, it returns an object of class \code{"simEpidataCSlist"}, the form of which depends on the value of \code{simplify} (which is stored as an attribute \code{simplified}): if \code{simplify = FALSE}, then the return value is just a list of sequential simulations, each of class \code{"simEpidataCS"}. However, if \code{simplify = TRUE}, then the sequential simulations share all components but the simulated \code{events}, i.e. the result is a list with the same components as a single object of class \code{"simEpidataCS"}, but with \code{events} replaced by an \code{eventsList} containing the \code{events} returned by each of the simulations. The \code{stgrid} component of the returned \code{"simEpidataCS"} will be truncated to the actual end of the simulation, which might be \eqn{ 1}) may have different \code{stgrid} time ranges. In a \code{"simEpidataCSlist"}, the \code{stgrid} shared by all of the simulated epidemics is just the \code{stgrid} returned by the \emph{first} simulation. } \note{ The more detailed the polygons in \code{tiles} are the slower is the algorithm. You are advised to sacrifice some shape details for speed by reducing the polygon complexity, for example via \code{\link[rmapshaper]{ms_simplify}} from the \CRANpkg{rmapshaper} package. Alternative tools are provided by the packages \CRANpkg{maptools} (\code{\link[maptools]{thinnedSpatialPoly}}) and \CRANpkg{spatstat} (\code{\link[spatstat]{simplify.owin}}). } \references{ Douglas, D. H. and Peucker, T. K. (1973): Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. \emph{Cartographica: The International Journal for Geographic Information and Geovisualization}, \bold{10}, 112-122 Harrower, M. and Bloch, M. (2006): MapShaper.org: A Map Generalization Web Service. \emph{IEEE Computer Graphics and Applications}, \bold{26}(4), 22-27. \doi{10.1109/MCG.2006.85} Meyer, S., Elias, J. and H\enc{ö}{oe}hle, M. (2012): A space-time conditional intensity model for invasive meningococcal disease occurrence. \emph{Biometrics}, \bold{68}, 607-616. \doi{10.1111/j.1541-0420.2011.01684.x} } \author{ Sebastian Meyer, with contributions by Michael H\enc{ö}{oe}hle } \seealso{ The function \code{\link{simEndemicEvents}} is a faster alternative for endemic-only models, only returning a \code{"\linkS4class{SpatialPointsDataFrame}"} of simulated events. The \code{\link{plot.epidataCS}} and \code{\link{animate.epidataCS}} methods for plotting and animating continuous-space epidemic data, respectively, also work for simulated epidemics (by inheritance), and \code{\link{twinstim}} can be used to fit spatio-temporal conditional intensity models also to simulated data. } \examples{ data("imdepi", "imdepifit") ## load borders of Germany's districts (originally obtained from the ## Bundesamt fuer Kartographie und Geodaesie, Frankfurt am Main, Germany, ## www.geodatenzentrum.de), simplified by the "modified Visvalingam" ## algorithm (level=6.6\%) using MapShaper.org (v. 0.1.17): load(system.file("shapes", "districtsD.RData", package="surveillance")) plot(districtsD) plot(stateD, add=TRUE, border=2, lwd=2) # 'stateD' was obtained as 'rgeos::gUnaryUnion(districtsD)' ## simulate 2 realizations (during a VERY short period -- for speed) ## considering events from data(imdepi) before t=31 as pre-history mysims <- simulate(imdepifit, nsim=2, seed=1, data=imdepi, tiles=districtsD, newcoef=c("e.typeC"=-1), t0=31, T=61, simplify=TRUE) \dontshow{ ## check construction and selection from "simEpidataCSlist" local({ mysim_from_list <- mysims[[1]] mysim_single <- eval("[[<-"(attr(mysims, "call"), "nsim", 1)) mysim_from_list$runtime <- mysim_single$runtime <- NULL stopifnot(all.equal(mysim_single, mysim_from_list, check.attributes = FALSE)) }) } ## extract the second realization -> object of class simEpidataCS mysims mysim2 <- mysims[[2]] summary(mysim2) plot(mysim2, aggregate="space") ## plot both epidemics using the plot-method for simEpidataCSlist's plot(mysims, aggregate="time", by=NULL) if (surveillance.options("allExamples")) { ### compare the observed _cumulative_ number of cases during the ### first 90 days to 20 simulations from the fitted model ### (performing these simulations takes about 30 seconds) sims <- simulate(imdepifit, nsim=20, seed=1, data=imdepi, t0=0, T=90, tiles=districtsD, simplify=TRUE) ## extract cusums getcsums <- function (events) { tapply(events$time, events@data["type"], function (t) cumsum(table(t)), simplify=FALSE) } csums_observed <- getcsums(imdepi$events) csums_simulated <- lapply(sims$eventsList, getcsums) ## plot it plotcsums <- function (csums, ...) { mapply(function (csum, ...) lines(as.numeric(names(csum)), csum, ...), csums, ...) invisible() } plot(c(0,90), c(0,35), type="n", xlab="Time [days]", ylab="Cumulative number of cases") plotcsums(csums_observed, col=c(2,4), lwd=3) legend("topleft", legend=levels(imdepi$events$type), col=c(2,4), lwd=1) invisible(lapply(csums_simulated, plotcsums, col=scales::alpha(c(2,4), alpha=0.5))) } \dontrun{ ### Experimental code to generate 'nsim' simulations of 'nm2add' months ### beyond the observed time period: nm2add <- 24 nsim <- 5 ### With these settings, simulations will take about 30 seconds. ### The events still infective by the end of imdepi$stgrid will be used ### as the prehistory for the continued process. origT <- tail(imdepi$stgrid$stop, 1) ## create a time-extended version of imdepi imdepiext <- local({ ## first we have to expand stgrid (assuming constant "popdensity") g <- imdepi$stgrid g$stop <- g$BLOCK <- NULL gadd <- data.frame(start=rep(seq(origT, by=30, length.out=nm2add), each=nlevels(g$tile)), g[rep(seq_len(nlevels(g$tile)), nm2add), -1]) ## now create an "epidataCS" using this time-extended stgrid as.epidataCS(events=imdepi$events, # the replacement warnings are ok W=imdepi$W, qmatrix=imdepi$qmatrix, stgrid=rbind(g, gadd), T=max(gadd$start) + 30) }) newT <- tail(imdepiext$stgrid$stop, 1) ## simulate beyond the original period simsext <- simulate(imdepifit, nsim=nsim, seed=1, t0=origT, T=newT, data=imdepiext, tiles=districtsD, simplify=TRUE) ## Aside to understand the note from checking events and tiles: # marks(imdepi)["636",] # tile 09662 is attributed to this event, but: # plot(districtsD[c("09678","09662"),], border=1:2, lwd=2, axes=TRUE) # points(imdepi$events["636",]) ## this mismatch is due to polygon simplification ## plot the observed and simulated event numbers over time plot(imdepiext, breaks=c(unique(imdepi$stgrid$start),origT), cumulative=list(maxat=330)) for (i in seq_along(simsext$eventsList)) plot(simsext[[i]], add=TRUE, legend.types=FALSE, breaks=c(unique(simsext$stgrid$start),newT), subset=!is.na(source), # have to exclude the events of the prehistory cumulative=list(offset=c(table(imdepi$events$type)), maxat=330, axis=FALSE), border=NA, density=0) # no histogram abline(v=origT, lty=2, lwd=2) } } \keyword{datagen} \keyword{models} surveillance/man/algo.glrnb.Rd0000644000175100001440000002316113165505075016065 0ustar hornikusers\name{algo.glrnb} \alias{algo.glrnb} \alias{algo.glrpois} \encoding{latin1} \title{Count Data Regression Charts} \description{ Count data regression charts for the monitoring of surveillance time series as proposed by \enc{Höhle}{Hoehle} and Paul (2008). The implementation is described in Salmon et al. (2016). } \usage{ algo.glrnb(disProgObj, control = list(range=range, c.ARL=5, mu0=NULL, alpha=0, Mtilde=1, M=-1, change="intercept", theta=NULL, dir=c("inc","dec"), ret=c("cases","value"), xMax=1e4)) algo.glrpois(disProgObj, control = list(range=range, c.ARL=5, mu0=NULL, Mtilde=1, M=-1, change="intercept", theta=NULL, dir=c("inc","dec"), ret=c("cases","value"), xMax=1e4)) } \arguments{ \item{disProgObj}{object of class \code{disProg} to do surveillance for} \item{control}{A list controlling the behaviour of the algorithm \describe{ \item{\code{range}}{vector of indices in the observed vector to monitor (should be consecutive)} \item{\code{mu0}}{A vector of in-control values of the mean of the Poisson / negative binomial distribution with the same length as \code{range}. If \code{NULL} the observed values in \code{1:(min(range)-1)} are used to estimate the beta vector through a generalized linear model. To fine-tune the model one can instead specify \code{mu0} as a list with two components: \describe{ \item{\code{S}}{integer number of harmonics to include (typically 1 or 2)} \item{\code{trend}}{A Boolean indicating whether to include a term \code{t} in the GLM model} } The fitting is controlled by the \code{estimateGLRNbHook} function. The in-control mean model is re-fitted after every alarm. The fitted models can be found as a list \code{mod} in the \code{control} slot after the call. Note: If a value for \code{alpha} is given, then the inverse of this value is used as fixed \code{theta} in a \code{\link[MASS]{negative.binomial}} \code{glm}. If \code{is.null(alpha)} then the parameter is estimated as well (using \code{\link[MASS]{glm.nb}}) -- see the description of this parameter for details. } \item{\code{alpha}}{The (known) dispersion parameter of the negative binomial distribution, i.e. the parametrization of the negative binomial is such that the variance is \eqn{mean + alpha*mean^2}{mean + \alpha*mean^2}. Note: This parametrization is the inverse of the shape parametrization used in R -- for example in \code{dnbinom} and \code{glr.nb}. Hence, if \code{alpha=0} then the negative binomial distribution boils down to the Poisson distribution and a call of \code{algo.glrnb} is equivalent to a call to \code{algo.glrpois}. If \code{alpha=NULL} the parameter is calculated as part of the in-control estimation. However, the parameter is estimated only once from the first fit. Subsequent fittings are only for the parameters of the linear predictor with \code{alpha} fixed.} \item{\code{c.ARL}}{threshold in the GLR test, i.e. \eqn{c_{\gamma}}{c_gamma}} \item{\code{Mtilde}}{number of observations needed before we have a full rank the typical setup for the "\code{intercept}" and "\code{epi}" charts is \code{Mtilde=1}} \item{\code{M}}{number of time instances back in time in the window-limited approach, i.e. the last value considered is \eqn{\max{1,n-M}}. To always look back until the first observation use \code{M=-1}.} \item{\code{change}}{a string specifying the type of the alternative. Currently the two choices are \code{intercept} and \code{epi}. See the SFB Discussion Paper 500 for details.} \item{\code{theta}}{if \code{NULL} then the GLR scheme is used. If not \code{NULL} the prespecified value for \eqn{\kappa} or \eqn{\lambda} is used in a recursive LR scheme, which is faster. } \item{\code{dir}}{a string specifying the direction of testing in GLR scheme. With \code{"inc"} only increases in \eqn{x} are considered in the GLR-statistic, with \code{"dec"} decreases are regarded. } \item{\code{ret}}{a string specifying the type of \code{upperbound}-statistic that is returned. With \code{"cases"} the number of cases that would have been necessary to produce an alarm or with \code{"value"} the GLR-statistic is computed (see below).} \item{\code{xMax}}{Maximum value to try for x to see if this is the upperbound number of cases before sounding an alarm (Default: 1e4). This only applies for the GLR using the NegBin when \code{ret="cases"} -- see details.} } } } \value{ \code{algo.glrpois} simply calls \code{algo.glrnb} with \code{control$alpha} set to 0. \code{algo.glrnb} returns a list of class \code{survRes} (surveillance result), which includes the alarm value for recognizing an outbreak (1 for alarm, 0 for no alarm), the threshold value for recognizing the alarm and the input object of class disProg. The \code{upperbound} slot of the object are filled with the current \eqn{GLR(n)} value or with the number of cases that are necessary to produce an alarm at any time point \eqn{<=n}. Both lead to the same alarm timepoints, but \code{"cases"} has an obvious interpretation. } \details{ This function implements the seasonal count data chart based on generalized likelihood ratio (GLR) as described in the \enc{Höhle}{Hoehle} and Paul (2008) paper. A moving-window generalized likelihood ratio detector is used, i.e. the detector has the form % \deqn{N = \inf\left\{ n : \max_{1\leq k \leq n} \left[ \sum_{t=k}^n \log \left\{ \frac{f_{\theta_1}(x_t|z_t)}{f_{\theta_0}(x_t|z_t)} \right\} \right] \geq c_\gamma \right\} }{N = inf(... >= c_gamma)} % where instead of \eqn{1\leq k \leq n}{1<= k <= n} the GLR statistic is computed for all \eqn{k \in \{n-M, \ldots, n-\tilde{M}+1\}}{k \in \{n-M, \ldots, n-Mtilde+1\}}. To achieve the typical behaviour from \eqn{1\leq k\leq n}{1<= k <= n} use \code{Mtilde=1} and \code{M=-1}. So \eqn{N} is the time point where the GLR statistic is above the threshold the first time: An alarm is given and the surveillance is reset starting from time \eqn{N+1}. Note that the same \code{c.ARL} as before is used, but if \code{mu0} is different at \eqn{N+1,N+2,\ldots} compared to time \eqn{1,2,\ldots} the run length properties differ. Because \code{c.ARL} to obtain a specific ARL can only be obtained my Monte Carlo simulation there is no good way to update \code{c.ARL} automatically at the moment. Also, FIR GLR-detectors might be worth considering. In case \code{is.null(theta)} and \code{alpha>0} as well as \code{ret="cases"} then a brute-force search is conducted for each time point in range in order to determine the number of cases necessary before an alarm is sounded. In case no alarm was sounded so far by time \eqn{t}, the function increases \eqn{x[t]} until an alarm is sounded any time before time point \eqn{t}. If no alarm is sounded by \code{xMax}, a return value of 1e99 is given. Similarly, if an alarm was sounded by time \eqn{t} the function counts down instead. Note: This is slow experimental code! At the moment, window limited ``\code{intercept}'' charts have not been extensively tested and are at the moment not supported. As speed is not an issue here this doesn't bother too much. Therefore, a value of \code{M=-1} is always used in the intercept charts. } \author{M. \enc{Höhle}{Hoehle} with contributions by V. Wimmer} \examples{ ##Simulate data and apply the algorithm S <- 1 ; t <- 1:120 ; m <- length(t) beta <- c(1.5,0.6,0.6) omega <- 2*pi/52 #log mu_{0,t} base <- beta[1] + beta[2] * cos(omega*t) + beta[3] * sin(omega*t) #Generate example data with changepoint and tau=tau tau <- 100 kappa <- 0.4 mu0 <- exp(base) mu1 <- exp(base + kappa) ## Poisson example #Generate data set.seed(42) x <- rpois(length(t),mu0*(exp(kappa)^(t>=tau))) s.ts <- create.disProg(week=1:length(t),observed=x,state=(t>=tau)) #Plot the data plot(s.ts,legend=NULL,xaxis.years=FALSE) #Run cntrl = list(range=t,c.ARL=5, Mtilde=1, mu0=mu0, change="intercept",ret="value",dir="inc") glr.ts <- algo.glrpois(s.ts,control=cntrl) plot(glr.ts,xaxis.years=FALSE) lr.ts <- algo.glrpois(s.ts,control=c(cntrl,theta=0.4)) plot(lr.ts,xaxis.years=FALSE) ## NegBin example #Generate data set.seed(42) alpha <- 0.2 x <- rnbinom(length(t),mu=mu0*(exp(kappa)^(t>=tau)),size=1/alpha) s.ts <- create.disProg(week=1:length(t),observed=x,state=(t>=tau)) #Plot the data plot(s.ts,legend=NULL,xaxis.years=FALSE) #Run GLR based detection cntrl = list(range=t,c.ARL=5, Mtilde=1, mu0=mu0, alpha=alpha, change="intercept",ret="value",dir="inc") glr.ts <- algo.glrnb(s.ts,control=c(cntrl)) plot(glr.ts,xaxis.years=FALSE) #CUSUM LR detection with backcalculated number of cases cntrl2 = list(range=t,c.ARL=5, Mtilde=1, mu0=mu0, alpha=alpha, change="intercept",ret="cases",dir="inc",theta=1.2) glr.ts2 <- algo.glrnb(s.ts,control=c(cntrl2)) plot(glr.ts2,xaxis.years=FALSE) } \keyword{classif} \references{ \enc{Höhle}{Hoehle}, M. and Paul, M. (2008): Count data regression charts for the monitoring of surveillance time series. Computational Statistics and Data Analysis, 52 (9), 4357-4368. Salmon, M., Schumacher, D. and \enc{Höhle}{Hoehle}, M. (2016): Monitoring count time series in \R: Aberration detection in public health surveillance. \emph{Journal of Statistical Software}, \bold{70} (10), 1-35. \doi{10.18637/jss.v070.i10} } surveillance/man/isScalar.Rd0000644000175100001440000000101512143464746015577 0ustar hornikusers\name{isScalar} \alias{isScalar} \title{ Checks if the Argument is Scalar } \description{ The simple helper function \code{isScalar} just checks if its argument is a scalar, i.e. a numeric vector of length 1. It is implemented as \code{length(x) == 1L && is.vector(x, mode = "numeric")}. } \usage{ isScalar(x) } \arguments{ \item{x}{an \code{R} object.} } \value{ A length-one logical vector. } %% \examples{ %% isScalar(TRUE) # FALSE %% isScalar(1:10) # FALSE %% isScalar(pi) # TRUE %% } \keyword{internal} surveillance/man/salmonella.agona.Rd0000644000175100001440000000126013122471774017250 0ustar hornikusers\name{salmonella.agona} \alias{salmonella.agona} \docType{data} \title{Salmonella Agona cases in the UK 1990-1995} \description{ Reported number of cases of the Salmonella Agona serovar in the UK 1990-1995. Note however that the counts do not correspond exactly to the ones used by Farrington et. al (1996). } \usage{data(salmonella.agona)} \format{ A \code{disProg} object with 312 observations starting from week 1 in 1990. } \source{ A statistical algorithm for the early detection of outbreaks of infectious disease, Farrington, C.P., Andrews, N.J, Beale A.D. and Catchpole, M.A. (1996). , J. R. Statist. Soc. A, 159, 547-563. } \keyword{datasets} surveillance/man/bestCombination.Rd0000644000175100001440000000102513122471774017154 0ustar hornikusers\name{bestCombination} \alias{bestCombination} \title{Partition of a number into two factors} \description{ Given a prime number factorization \code{x}, \code{bestCombination} partitions \code{x} into two groups, such that the product of the numbers in group one is as similar as possible to the product of the numbers of group two. This is useful in \code{\link{magic.dim}}. } \usage{ bestCombination(x) } \arguments{ \item{x}{prime number factorization} } \value{a vector \code{c(prod(set1),prod(set2))}} \keyword{dplot} surveillance/man/hcl.colors.Rd0000644000175100001440000000162113117705477016110 0ustar hornikusers\name{hcl.colors} \alias{hcl.colors} \title{ HCL-based Heat Colors from the \pkg{colorspace} Package } \description{ If package \pkg{colorspace} is available, its \link[colorspace]{heat_hcl} function is used to generate a color palette. Otherwise, the function simply calls \code{\link{heat.colors}} (or \code{\link{grey.colors}} if \code{use.color=FALSE}). } \usage{ hcl.colors(ncolors = 100, use.color = TRUE) } \arguments{ \item{ncolors}{the number of colors (>= 1) to be in the palette.} \item{use.color}{logical. Should the palette use colors? Otherwise grey levels are returned.} } \value{ A character vector of \code{ncolors} colors. } \seealso{ \code{\link[colorspace]{heat_hcl}} in package \pkg{colorspace}, or \code{\link{heat.colors}} in the base package \pkg{grDevices}. } \examples{ barplot(rep(1,10), col = hcl.colors(10), axes = FALSE) } \keyword{color} \keyword{dplot} surveillance/man/plot.atwins.Rd0000644000175100001440000000467113122471774016330 0ustar hornikusers\name{plot.atwins} \alias{plot.atwins} \encoding{latin1} \title{Plot results of a twins model fit} \description{ Plot results of fitting a twins model using MCMC output. Plots similar to those in the Held et al. (2006) paper are generated } \usage{ \method{plot}{atwins}(x, which=c(1,4,6,7), ask=TRUE, \dots) } \arguments{ \item{x}{An object of class \code{atwins}.} \item{which}{a vector containing the different plot types to show \describe{ \item{1}{A plot of the observed time series Z is shown together with posterior means for the number of endemic cases (X) and number of epidemic cases (Y).} \item{2}{This plot shows trace plots of the gamma parameters over all MCMC samples.} \item{3}{This shows a trace plot of psi, which controls the overdispersion in the model.} \item{4}{Autocorrelation functions for K and psi are shown in order to judge whether the MCMC sampler has converged.} \item{5}{Shows a plot of the posterior mean of the seasonal model nu[t] together with 95\% credibility intervals based on the quantiles of the posterior.} \item{6}{Histograms illustrating the posterior density for K and psi. The first one corresponds to Fig. 4(f) in the paper.} \item{7}{Histograms illustrating the predictive posterior density for the next observed number of cases Z[n+1]. Compare with Fig.5 in the paper.} } } \item{ask}{Boolean indicating whether to ask for a newline before showing the next plot.} \item{\dots}{Additional control for the plots, which are currently ignored.} } \details{ For details see the plots in the paper. Basically MCMC output is visualized. This function is together with \code{algo.twins} still experimental. } \value{This function does not return anything.} \references{Held, L., Hofmann, M., \enc{Höhle}{Hoehle}, M. and Schmid V. (2006) A two-component model for counts of infectious diseases, Biostatistics, \bold{7}, pp. 422--437. } \author{M. Hofmann and M. \enc{Höhle}{Hoehle}} \seealso{\link{algo.twins}} \examples{ \dontrun{ #Apparently, the algo.atwins can crash on some LINUX systems #thus for now the example section is commented #Load the data used in the Held et al. (2006) paper data("hepatitisA") #Fix seed - this is used for the MCMC samplers in twins set.seed(123) #Call algorithm and save result otwins <- algo.twins(hepatitisA) #This shows the entire output plot(otwins,which=c(1,2),ask=FALSE) } } \keyword{ts} \keyword{regression} surveillance/man/qlomax.Rd0000644000175100001440000000166012004015575015331 0ustar hornikusers\name{qlomax} \alias{qlomax} \title{ Quantile Function of the Lomax Distribution } \description{ Quantile function of the Lomax distribution with positive scale parameter \code{scale} (often denoted as \eqn{\sigma}{sigma}) and positive shape parameter \code{shape} (often denoted as \eqn{\alpha}{alpha}). This implementation does not include any checks, but only the raw formula \code{scale * ((1-p)^(-1/shape) - 1)}. Another implementation can be found as \code{\link[VGAM]{qlomax}} in the package \pkg{VGAM}. } \usage{ qlomax(p, scale, shape) } \arguments{ \item{p}{ vector of probabilities. } \item{scale}{ positive scale parameter. } \item{shape}{ positive shape parameter. } } \value{ Numeric vector of quantiles corresponding to the probabilities \code{p}. } \author{ Sebastian Meyer } \seealso{ \code{\link[VGAM]{Lomax}} in package \pkg{VGAM}. } \examples{ qlomax(0.99, 1, 2) } \keyword{distribution} surveillance/man/sts_tidy.Rd0000644000175100001440000000163213167164237015704 0ustar hornikusers\name{tidy.sts} \alias{tidy.sts} \title{ Convert an \code{"sts"} Object to a Data Frame in Long (Tidy) Format } \description{ The resulting data frame will have a row for each time point and observational unit, and columns corresponding to the slots of the \code{"\linkS4class{sts}"} object (except for \code{populationFrac}, which is named \code{population}). Some time variables are added for convenience: \code{year}, \code{epochInYear}, \code{epochInPeriod}, \code{date}. } \usage{ tidy.sts(x, ...) } \arguments{ \item{x}{an object of class \code{"\linkS4class{sts}"}.} \item{\dots}{unused.} } \author{ Sebastian Meyer } \seealso{ \code{\link{as.data.frame,sts-method}} } \examples{ data("momo") momodat <- tidy.sts(momo) head(momodat) ## tidy.sts(stsObj) is the same as as.data.frame(stsObj, tidy = TRUE) stopifnot(identical(as.data.frame(momo, tidy = TRUE), momodat)) } \keyword{manip} surveillance/man/hhh4_plot.Rd0000644000175100001440000004005713231413117015721 0ustar hornikusers\name{plot.hhh4} \alias{plot.hhh4} \alias{plotHHH4_fitted} \alias{plotHHH4_fitted1} \alias{plotHHH4_season} \alias{getMaxEV_season} \alias{plotHHH4_maxEV} \alias{getMaxEV} \alias{plotHHH4_maps} \alias{plotHHH4_ri} \alias{plotHHH4_neweights} \title{Plots for Fitted \code{hhh4}-models} \description{ There are six \code{type}s of plots for fitted \code{\link{hhh4}} models: \itemize{ \item Plot the \code{"fitted"} component means (of selected units) along time along with the observed counts. \item Plot the estimated \code{"season"}ality of the three components. \item Plot the time-course of the dominant eigenvalue \code{"maxEV"}. \item If the units of the corresponding multivariate \code{"\linkS4class{sts}"} object represent different regions, maps of the fitted mean components averaged over time (\code{"maps"}), or a map of estimated region-specific intercepts (\code{"ri"}) of a selected model component can be produced. \item Plot the (estimated) neighbourhood weights (\code{"neweights"}) as a function of neighbourhood order (shortest-path distance between regions), i.e., \code{w_ji ~ o_ji}. } Spatio-temporal \code{"hhh4"} models and these plots are illustrated in Meyer et al. (2017, Section 5), see \code{vignette("hhh4_spacetime")}. } \usage{ \method{plot}{hhh4}(x, type=c("fitted", "season", "maxEV", "maps", "ri", "neweights"), ...) plotHHH4_fitted(x, units = 1, names = NULL, col = c("grey85", "blue", "orange"), pch = 19, pt.cex = 0.6, pt.col = 1, par.settings = list(), legend = TRUE, legend.args = list(), legend.observed = FALSE, decompose = NULL, total = FALSE, meanHHH = NULL, ...) plotHHH4_fitted1(x, unit = 1, main = NULL, col = c("grey85", "blue", "orange"), pch = 19, pt.cex = 0.6, pt.col = 1, border = col, start = x$stsObj@start, end = NULL, xaxis = NULL, xlim = NULL, ylim = NULL, xlab = "", ylab = "No. infected", hide0s = FALSE, decompose = NULL, total = FALSE, meanHHH = NULL) plotHHH4_season(..., components = NULL, intercept = FALSE, xlim = NULL, ylim = NULL, xlab = NULL, ylab = "", main = NULL, par.settings = list(), matplot.args = list(), legend = NULL, legend.args = list(), refline.args = list(), unit = 1) getMaxEV_season(x) plotHHH4_maxEV(..., matplot.args = list(), refline.args = list(), legend.args = list()) getMaxEV(x) plotHHH4_maps(x, which = c("mean", "endemic", "epi.own", "epi.neighbours"), prop = FALSE, main = which, zmax = NULL, col.regions = hcl.colors(10), labels = FALSE, sp.layout = NULL, ..., map = x$stsObj@map, meanHHH = NULL) plotHHH4_ri(x, component, labels = FALSE, sp.layout = NULL, gpar.missing = list(col = "darkgrey", lty = 2, lwd = 2), ...) plotHHH4_neweights(x, plotter = boxplot, ..., exclude = 0, maxlag = Inf) } \arguments{ \item{x}{a fitted \code{\link{hhh4}} object.} \item{type}{type of plot: either \code{"fitted"} component means of selected \code{units} along time along with the observed counts, or \code{"season"}ality plots of the model components and the epidemic dominant eigenvalue (which may also be plotted along overall time by \code{type="maxEV"}, especially if the model contains time-varying neighbourhood weights or unit-specific epidemic effects), or \code{"maps"} of the fitted mean components averaged over time, or a map of estimated region-specific random intercepts (\code{"ri"}) of a specific model \code{component}. The latter two require \code{x$stsObj} to contain a map.} \item{\dots}{For \code{plotHHH4_season} and \code{plotHHH4_maxEV}, one or more \code{\link{hhh4}}-fits, or a single list of these. Otherwise further arguments passed on to other functions.\cr For the \code{plot}-method these go to the specific plot \code{type} function.\cr \code{plotHHH4_fitted} passes them to \code{plotHHH4_fitted1}, which is called sequentially for every unit in \code{units}.\cr \code{plotHHH4_maps} and \code{plotHHH4_ri} pass additional arguments to \code{\link{spplot}}, and \code{plotHHH4_neweights} to the \code{plotter}.} \item{units,unit}{integer or character vector specifying a single \code{unit} or possibly multiple \code{units} to plot. It indexes \code{colnames(x$stsObj)}.\cr In \code{plotHHH4_fitted}, \code{units=NULL} plots all units.\cr In the seasonality plot, selection of a unit is only relevant if the model contains unit-specific intercepts or seasonality terms.} \item{names,main}{main title(s) for the selected \code{unit}(\code{s}) / \code{components}. If \code{NULL} (default), \code{plotHHH4_fitted1} will use the appropriate element of \code{colnames(x$stsObj)}, whereas \code{plotHHH4_season} uses default titles.} \item{col,border}{length 3 vectors specifying the fill and border colors for the endemic, autoregressive, and spatio-temporal component polygons (in this order).} \item{pch,pt.cex,pt.col}{style specifications for the dots drawn to represent the observed counts. \code{pch=NA} can be used to disable these dots.} \item{par.settings}{list of graphical parameters for \code{\link{par}}. Sensible defaults for \code{mfrow}, \code{mar} and \code{las} will be applied unless overridden or \code{!is.list(par.settings)}.} \item{legend}{Integer vector specifying in which of the \code{length(units)} frames the legend should be drawn. If a logical vector is supplied, \code{which(legend)} determines the frame selection, i.e., the default is to drawn the legend in the first (upper left) frame only, and \code{legend=FALSE} results in no legend being drawn.} \item{legend.args}{list of arguments for \code{\link{legend}}, e.g., to modify the default positioning \code{list(x="topright", inset=0.02)}.} \item{legend.observed}{logical indicating if the legend should contain a line for the dots corresponding to observed counts.} \item{decompose}{if \code{TRUE} or (a permutation of) \code{colnames(x$stsObj)}, the fitted mean will be decomposed into the contributions from each single unit and the endemic part instead of the default endemic + AR + neighbours decomposition.} \item{total}{logical indicating if the fitted components should be summed over all units to be compared with the total observed counts at each time point. If \code{total=TRUE}, the \code{units}/\code{unit} argument is ignored.} \item{start,end}{time range to plot specified by vectors of length two in the form \code{c(year,number)}, see \code{"\linkS4class{sts}"}.} \item{xaxis}{if this is a list (of arguments for \code{\link{addFormattedXAxis}}, the time axis is nicely labelled similar to \code{\link{stsplot_time}}. Note that in this case, the time indexes \code{1:nrow(x$stsObj)} will be used as x-values in the plot, which is different from the long-standing default (\code{xaxis = NULL}) with a real time scale.} \item{xlim}{numeric vector of length 2 specifying the x-axis range. The default (\code{NULL}) is to plot the complete time range.} \item{ylim}{y-axis range. For \code{type="fitted"}, this defaults to \code{c(0,max(observed(x$stsObj)[,unit]))}. For \code{type="season"}, \code{ylim} must be a list of length \code{length(components)} specifying the range for every component plot, or a named list to customize only a subset of these. If only one \code{ylim} is specified, it will be recycled for all \code{components} plots.} \item{xlab,ylab}{axis labels. For \code{plotHHH4_season}, \code{ylab} specifies the y-axis labels for all \code{components} in a list (similar to \code{ylim}). If \code{NULL} or incomplete, default mathematical expressions are used. If a single name is supplied such as the default \code{ylab=""} (to omit y-axis labels), it is used for all \code{components}.} \item{hide0s}{logical indicating if dots for zero observed counts should be omitted. Especially useful if there are too many.} \item{meanHHH}{(internal) use different component means than those estimated and available from \code{x}.} \item{components}{character vector of component names, i.e., a subset of \code{c("ar", "ne", "end")}, for which to plot the estimated seasonality. If \code{NULL} (the default), only components which appear in any of the models in \code{\dots} are plotted.\cr A seasonality plot of the epidemic dominant eigenvalue is also available by including \code{"maxEV"} in \code{components}, but it only supports models without epidemic covariates/offsets.} \item{intercept}{logical indicating whether to plot seasonality as a multiplicative effect on the respective component (the default \code{intercept=FALSE}), or additionally multiplied by the corresponding intercept (\code{intercept=TRUE}). The latter only makes sense if there are no further (non-centered) covariates/offsets in the component.} \item{matplot.args}{list of line style specifications passed to \code{\link{matplot}}, e.g., \code{lty}, \code{lwd}, \code{col}.} \item{refline.args}{list of line style specifications (e.g., \code{lty} or \code{col}) passed to \code{\link{abline}} when drawing the reference line (\code{h=1}) in plots of seasonal effects (if \code{intercept=FALSE}) and of the dominant eigenvalue. The reference line is omitted if \code{refline.args} is not a list.} \item{which}{a character vector specifying the components of the mean for which to produce maps. By default, the overall mean and all three components are shown.} \item{prop}{a logical indicating whether the component maps should display proportions of the total mean instead of absolute numbers.} \item{zmax}{a numeric vector of length \code{length(which)} (recycled as necessary) specifying upper limits for the color keys of the maps. The default is to use the same scale for the component maps and a separate scale for the map showing the overall mean.} \item{col.regions}{a vector of colors used to encode the fitted component means (see \code{\link{levelplot}}).} \item{map}{an object inheriting from \code{"\linkS4class{SpatialPolygons}"} with \code{row.names} covering \code{colnames(x)}.} \item{component}{component for which to plot the estimated region-specific random intercepts. Must partially match one of \code{colnames(ranef(x, tomatrix=TRUE))}.} \item{labels}{determines if and how regions are labeled, see \code{\link{layout.labels}}.} \item{sp.layout}{optional list of additional layout items, see \code{\link{spplot}}.} \item{gpar.missing}{list of graphical parameters for \code{\link{sp.polygons}}, applied to regions with missing random intercepts, i.e., not included in the model. Such extra regions won't be plotted if \code{!is.list(gpar.missing)}.} \item{plotter}{the (name of a) function used to produce the plot of weights (a numeric vector) as a function of neighbourhood order (a factor variable). It is called as \code{plotter(Weight ~ Distance, ...)} and defaults to \code{\link{boxplot}}. A useful alternative is, e.g., \code{\link{stripplot}} from package \pkg{lattice}.} \item{exclude}{vector of neighbourhood orders to be excluded from plotting (passed to \code{\link{factor}}). By default, the neighbourhood weight for order 0 is not shown, which is usually zero anyway.} \item{maxlag}{maximum order of neighbourhood to be assumed when computing the \code{\link{nbOrder}} matrix. This additional step is necessary iff \code{neighbourhood(x$stsObj)} only specifies a binary adjacency matrix.} } \value{ \code{plotHHH4_fitted1} invisibly returns a matrix of the fitted component means for the selected \code{unit}, and \code{plotHHH4_fitted} returns these in a list for all \code{units}.\cr \code{plotHHH4_season} invisibly returns the plotted y-values, i.e. the multiplicative seasonality effect within each of \code{components}. Note that this will include the intercept, i.e. the point estimate of \eqn{exp(intercept + seasonality)} is plotted and returned.\cr \code{getMaxEV_season} returns a list with elements \code{"maxEV.season"} (as plotted by \code{plotHHH4_season(..., components="maxEV")}, \code{"maxEV.const"} and \code{"Lambda.const"} (the Lambda matrix and its dominant eigenvalue if time effects are ignored).\cr \code{plotHHH4_maxEV} (invisibly) and \code{getMaxEV} return the dominant eigenvalue of the \eqn{\Lambda_t} matrix for all time points \eqn{t} of \code{x$stsObj}.\cr \code{plotHHH4_maps} returns a \code{\link{trellis.object}} if \code{length(which) == 1} (a single \code{\link{spplot}}), and otherwise uses \code{\link[gridExtra]{grid.arrange}} from the \pkg{gridExtra} package to arrange all \code{length(which)} \code{\link{spplot}}s on a single page. \code{plotHHH4_ri} returns the generated \code{\link{spplot}}, i.e., a \code{\link{trellis.object}}.\cr \code{plotHHH4_neweights} eventually calls \code{plotter} and thus returns whatever is returned by that function. } \author{ Sebastian Meyer } \references{ Held, L. and Paul, M. (2012): Modeling seasonality in space-time infectious disease surveillance data. \emph{Biometrical Journal}, \bold{54}, 824-843. \doi{10.1002/bimj.201200037} Meyer, S., Held, L. and \enc{Höhle}{Hoehle}, M. (2017): Spatio-temporal analysis of epidemic phenomena using the \R package \pkg{surveillance}. \emph{Journal of Statistical Software}, \bold{77} (11), 1-55. \doi{10.18637/jss.v077.i11} } \seealso{ other methods for \code{hhh4} fits, e.g., \code{\link{summary.hhh4}}. } \examples{ data("measlesWeserEms") ## fit a simple hhh4 model measlesModel <- list( ar = list(f = ~ 1), end = list(f = addSeason2formula(~0 + ri(type="iid"), S=1, period=52), offset = population(measlesWeserEms)), family = "NegBin1" ) measlesFit <- hhh4(measlesWeserEms, measlesModel) ## fitted values for a single unit plot(measlesFit, units=2) ## 'xaxis' option for a nicely formatted time axis ## default tick locations and labels: plot(measlesFit, units=2, xaxis=list(epochsAsDate=TRUE, line=1)) ## an alternative with monthly ticks: oopts <- surveillance.options(stsTickFactors = c("\%m"=0.75, "\%Y" = 1.5)) plot(measlesFit, units=2, xaxis=list(epochsAsDate=TRUE, xaxis.tickFreq=list("\%m"=atChange, "\%Y"=atChange), xaxis.labelFreq=list("\%Y"=atMedian), xaxis.labelFormat="\%Y")) surveillance.options(oopts) ## plot the multiplicative effect of seasonality plot(measlesFit, type="season") ## dominant eigenvalue of the Lambda matrix (cf. Held and Paul, 2012) getMaxEV(measlesFit) # here simply constant and equal to exp(ar.1) plot(measlesFit, type="maxEV") # not very exciting ## fitted mean components by district averaged over time if (requireNamespace("gridExtra")) plot(measlesFit, type="maps", labels=list(cex=0.6), main=c("Total","Endemic","Within district","From other districts")) ## random intercepts of the endemic component plot(measlesFit, type="ri", component="end", labels=list(font=3, labels="GEN")) ## neighbourhood weights as a function of neighbourhood order plot(measlesFit, type="neweights") # boring, model has no "ne" component ## fitted values for the 6 regions with most cases and some customization bigunits <- tail(names(sort(colSums(observed(measlesWeserEms)))), 6) plot(measlesFit, units=bigunits, names=measlesWeserEms@map@data[bigunits,"GEN"], legend=5, legend.args=list(x="top"), xlab="Time (weekly)", hide0s=TRUE, ylim=c(0,max(observed(measlesWeserEms)[,bigunits])), start=c(2002,1), end=c(2002,26), par.settings=list(xaxs="i")) ## plot completely decomposed mean structure (useless without 'ne' component) plot(measlesFit, units=bigunits, col=rainbow(measlesFit$nUnit), decompose=TRUE) ## sum fitted components over all units plot(measlesFit, total=TRUE) } \keyword{hplot} surveillance/man/twinstim.Rd0000644000175100001440000005763413143147516015730 0ustar hornikusers\encoding{latin1} \name{twinstim} \alias{twinstim} \title{ Fit a Two-Component Spatio-Temporal Point Process Model } \description{ A \code{twinstim} model as described in Meyer et al. (2012) is fitted to marked spatio-temporal point process data. This constitutes a regression approach for conditional intensity function modelling. The implementation is illustrated in Meyer et al. (2017, Section 3), see \code{vignette("twinstim")}. } \usage{ twinstim(endemic, epidemic, siaf, tiaf, qmatrix = data$qmatrix, data, subset, t0 = data$stgrid$start[1], T = tail(data$stgrid$stop,1), na.action = na.fail, start = NULL, partial = FALSE, epilink = "log", control.siaf = list(F = list(), Deriv = list()), optim.args = list(), finetune = FALSE, model = FALSE, cumCIF = FALSE, cumCIF.pb = interactive(), cores = 1, verbose = TRUE) } \arguments{ \item{endemic}{ right-hand side formula for the exponential (Cox-like multiplicative) endemic component. May contain offsets (to be marked by the special function \code{offset}). If omitted or \code{~0} there will be no endemic component in the model. A type-specific endemic intercept can be requested by including the term \code{(1|type)} in the formula. } \item{epidemic}{ formula representing the epidemic model for the event-specific covariates (marks) determining infectivity. Offsets are not implemented here. If omitted or \code{~0} there will be no epidemic component in the model. } \item{siaf}{ spatial interaction function. Possible specifications are: \itemize{ \item \code{NULL} or missing, corresponding to \code{siaf.constant()}, i.e. spatially homogeneous infectivity independent of the distance from the host \item a list as returned by \code{\link{siaf}} or by a predefined interaction function such as \code{\link{siaf.gaussian}} as in Meyer et al. (2012) or \code{\link{siaf.powerlaw}} as in Meyer and Held (2014) \item a numeric vector corresponding to the knots of a step function, i.e. the same as \code{\link{siaf.step}(knots)} } If you run into \dQuote{false convergence} with a non-constant \code{siaf} specification, the numerical accuracy of the cubature methods is most likely too low (see the \code{control.siaf} argument). } \item{tiaf}{ temporal interaction function. Possible specifications are: \itemize{ \item \code{NULL} or missing, corresponding to \code{tiaf.constant()}, i.e. time-constant infectivity \item a list as returned by \code{\link{tiaf}} or by a predefined interaction function such as \code{\link{tiaf.exponential}} \item a numeric vector corresponding to the knots of a step function, i.e. the same as \code{\link{tiaf.step}(knots)} } } \item{qmatrix}{ square indicator matrix (0/1 or \code{FALSE}/\code{TRUE}) for possible transmission between the event types. The matrix will be internally converted to \code{logical}. Defaults to the \eqn{Q} matrix specified in \code{data}. } \item{data}{ an object of class \code{"\link{epidataCS}"}. } \item{subset}{ an optional vector evaluating to logical indicating a subset of \code{data$events} to keep. Missing values are taken as \code{FALSE}. The expression is evaluated in the context of the \code{data$events@data} \code{data.frame}, i.e. columns of this \code{data.frame} may be referenced directly by name. } \item{t0, T}{ events having occurred during (-Inf;t0] are regarded as part of the prehistory \eqn{H_0} of the process. Only events that occurred in the interval (t0; T] are considered in the likelihood. The time point \code{t0} (\code{T}) must be an element of \code{data$stgrid$start} (\code{data$stgrid$stop}). The default time range covers the whole spatio-temporal grid of endemic covariates. } \item{na.action}{ how to deal with missing values in \code{data$events}? Do not use \code{\link{na.pass}}. Missing values in the spatio-temporal grid \code{data$stgrid} are not accepted. } \item{start}{ a named vector of initial values for (a subset of) the parameters. The names must conform to the conventions of \code{twinstim} to be assigned to the correct model terms. For instance, \code{"h.(Intercept)"} = endemic intercept, \code{"h.I(start/365)"} = coefficient of a linear time trend in the endemic component, \code{"h.factorB"} = coefficient of the level B of the factor variable \code{factor} in the endemic predictor, \code{"e.(Intercept)"} = epidemic intercept, \code{"e.VAR"} = coefficient of the epidemic term \code{VAR}, \code{"e.siaf.2"} = second \code{siaf} parameter, \code{"e.tiaf.1"} = first \code{tiaf} parameter. Elements which don't match any of the model parameters are ignored. Alternatively, \code{start} may also be a named list with elements \code{"endemic"} or \code{"h"}, \code{"epidemic"} or \code{"e"}, \code{"siaf"} or \code{"e.siaf"}, and \code{"tiaf"} or \code{"e.tiaf"}, each of which containing a named numeric vector with the term labels as names (i.e. without the prefix \code{"h."}, \code{"e."}, etc). Thus, \code{start=list(endemic=c("(Intercept)"=-10))} is equivalent to \code{start=c("h.(Intercept)"=-10)}. } \item{partial}{ logical indicating if a partial likelihood similar to the approach by Diggle et al. (2010) should be used (default is \code{FALSE}). Note that the partial likelihood implementation is not well tested. } \item{epilink}{ a character string determining the link function to be used for the \code{epidemic} linear predictor of event marks. By default, the log-link is used. The experimental alternative \code{epilink = "identity"} (for use by \code{\link{epitest}}) does not guarantee the force of infection to be positive. If this leads to a negative total intensity (endemic + epidemic), the point process is not well defined (the log-likelihood will be \code{\link{NaN}}). } \item{control.siaf}{ a list with elements \code{"F"} and \code{"Deriv"}, which are lists of extra arguments passed to the functions \code{siaf$F} and \code{siaf$Deriv}, respectively.\cr These arguments control the accuracy of the cubature routines from package \pkg{polyCub} involved in non-constant \code{siaf} specifications, e.g., the bandwidth of the midpoint rule \code{\link{polyCub.midpoint}}, the number of Gaussian quadrature points for \code{\link{polyCub.SV}}, or the relative tolerance of \code{\link{integrate}} in \code{\link{polyCub.iso}}.\cr For instance, \code{\link{siaf.gaussian}(F.adaptive = TRUE)} uses the midpoint-cubature \code{\link{polyCub.midpoint}} with an adaptive bandwidth of \code{eps=adapt*sd} to numerically integrate the kernel \eqn{f(\bold{s})}, and the default \code{adapt} value (0.1) can be overwritten by setting \code{control.siaf$F$adapt}. However, the default version \code{siaf.gaussian()} as well as \code{\link{siaf.powerlaw}()} and friends use \code{\link{polyCub.iso}} and thus accept control arguments for the standard \code{\link{integrate}} routine (such as \code{rel.tol}) via \code{control.siaf$F} and \code{control.siaf$Deriv}.\cr This argument list is ignored in the case \code{siaf=siaf.constant()} (which is the default if \code{siaf} is unspecified). } \item{optim.args}{ an argument list passed to \code{\link{optim}}, or \code{NULL}, in which case no optimization will be performed but the necessary functions will be returned in a list (similar to what is returned if \code{model = TRUE}). Initial values for the parameters may be given as list element \code{par} in the order \code{(endemic, epidemic, siaf, tiaf)}. If no initial values are provided, crude estimates will be used for the endemic intercept and the Gaussian kernel, -9 for the epidemic intercept, and zeroes for the remaining parameters. Any initial values given in the \code{start} argument take precedence over those in \code{par}. Note that \code{optim} receives the negative log-likelihood for minimization (thus, if used, \code{optim.args$control$fnscale} should be positive). The \code{hessian} argument defaults to \code{TRUE}, and in the \code{control} list, \code{trace}ing is enabled with \code{REPORT=1} by default. By setting \code{optim.args$control$trace = 0}, all output from the optimization routine is suppressed. For the \code{partial} likelihood, the analytic score function and the Fisher information are not implemented and the default is to use robust \code{method="Nelder-Mead"} optimization. There may be an extra component \code{fixed} in the \code{optim.args} list, which determines which parameters should stick to their initial values. This can be specified by a logical vector of the same length as the \code{par} component, by an integer vector indexing \code{par} or by a character vector following the \code{twinstim} naming conventions. Furthermore, if \code{isTRUE(fixed)}, then all parameters are fixed at their initial values and no optimization is performed. Importantly, the \code{method} argument in the \code{optim.args} list may also be \code{"nlminb"}, in which case the \code{\link{nlminb}} optimizer is used. This is also the default for full likelihood inference. In this case, not only the score function but also the \emph{expected} Fisher information can be used during optimization (as estimated by what Martinussen and Scheike (2006, p. 64) call the \dQuote{optional variation process}, or see Rathbun (1996, equation (4.7))). In our experience this gives better convergence than \code{optim}'s methods. For \code{method="nlminb"}, the following parameters of the \code{optim.args$control} list may be named like for \code{optim} and are renamed appropriately: \code{maxit} (-> \code{iter.max}), \code{REPORT} (-> \code{trace}, default: 1), \code{abstol} (-> \code{abs.tol}), and \code{reltol} (-> \code{rel.tol}, default: \code{1e-6}). For \code{nlminb}, a logical \code{hessian} argument (default: \code{TRUE}) indicates if the negative \emph{expected} Fisher information matrix should be used as the Hessian during optimization (otherwise a numerical approximation is used). Similarly, \code{method="nlm"} should also work but is not recommended here. } \item{finetune}{ logical indicating if a second maximisation should be performed with robust Nelder-Mead \code{optim} using the resulting parameters from the first maximisation as starting point. This argument is only considered if \code{partial = FALSE} and the default is to not conduct a second maximization (in most cases this does not improve upon the MLE). } \item{model}{ logical indicating if the model environment should be kept with the result, which is required for \code{\link[=intensityplot.twinstim]{intensityplot}}s and \code{\link[=R0.twinstim]{R0}(..., trimmed = FALSE)}. Specifically, if \code{model=TRUE}, the return value will have the evaluation environment set as its \code{\link{environment}}, and the returned \code{functions} element will contain the log-likelihood function (or partial log-likelihood function, if \code{partial = TRUE}), and optionally the score and the expected Fisher information functions (not for the partial likelihood, and only if \code{siaf} and \code{tiaf} provide the necessary derivatives).\cr Note that fitted objects with a model environment might consume quiet a lot of memory since they contain the \code{data}. } \item{cumCIF}{ logical (default: \code{FALSE}) indicating whether to calculate the fitted cumulative ground intensity at event times. This is the residual process, see \code{\link{residuals.twinstim}}. } \item{cumCIF.pb}{ logical indicating if a progress bar should be shown during the calculation of \code{cumCIF}. Defaults to do so in an interactive \R session, and will be \code{FALSE} if \code{cores != 1}. } \item{cores}{ number of processes to use in parallel operation. By default \code{twinstim} runs in single-CPU mode. Currently, only the \pkg{multicore}-type of parallel computing via forking is supported, which is not available on Windows, see \code{\link[parallel]{mclapply}} in package \pkg{parallel}. Note that for a \pkg{memoise}d \code{\link{siaf.step}} kernel, \code{cores=1} is fixed internally since parallelization would slow down model fitting significantly. } \item{verbose}{ logical indicating if information should be printed during execution. Defaults to \code{TRUE}. } } \details{ The function performs maximum likelihood inference for the additive-multiplicative spatio-temporal intensity model described in Meyer et al. (2012). It uses \code{\link{nlminb}} as the default optimizer and returns an object of class \code{twinstim}. Such objects have \code{print}, \code{\link[=plot.twinstim]{plot}} and \code{\link[=summary.twinstim]{summary}} methods. The output of the \code{summary} can be processed by the \code{\link[=toLatex.summary.twinstim]{toLatex}} function. Furthermore, the usual model fit methods such as \code{coef}, \code{vcov}, \code{logLik}, \code{\link[=residuals.twinstim]{residuals}}, and \code{update} are implemented. A specific add-on is the use of the functions \code{\link{R0}} and \code{\link[=simulate.twinstim]{simulate}}. } \value{ Returns an S3 object of class \code{"twinstim"}, which is a list with the following components: \item{coefficients}{vector containing the MLE.} \item{loglik}{value of the log-likelihood function at the MLE with a logical attribute \code{"partial"} indicating if the partial likelihood was used.} \item{counts}{number of log-likelihood and score evaluations during optimization.} \item{converged}{either \code{TRUE} (if the optimizer converged) or a character string containing a failure message.} \item{fisherinfo}{\emph{expected} Fisher information evaluated at the MLE. Only non-\code{NULL} for full likelihood inference (\code{partial = FALSE}) and if spatial and temporal interaction functions are provided with their derivatives.} \item{fisherinfo.observed}{observed Fisher information matrix evaluated at the value of the MLE. Obtained as the negative Hessian. Only non-\code{NULL} if \code{optim.args$method} is not \code{"nlminb"} and if it was requested by setting \code{hessian=TRUE} in \code{optim.args}.} \item{fitted}{fitted values of the conditional intensity function at the events.} \item{fittedComponents}{two-column matrix with columns \code{"h"} and \code{"e"} containing the fitted values of the endemic and epidemic components, respectively.\cr (Note that \code{rowSums(fittedComponents) == fitted}.)} \item{tau}{fitted cumulative ground intensities at the event times. Only non-\code{NULL} if \code{cumCIF = TRUE}. This is the \dQuote{residual process} of the model, see \code{\link{residuals.twinstim}}.} \item{R0}{estimated basic reproduction number for each event. This equals the spatio-temporal integral of the epidemic intensity over the observation domain (t0;T] x W for each event.} \item{npars}{vector describing the lengths of the 5 parameter subvectors: endemic intercept(s) \eqn{\beta_0(\kappa)}, endemic coefficients \eqn{\beta}, epidemic coefficients \eqn{\gamma}, parameters of the \code{siaf} kernel, and parameters of the \code{tiaf} kernel.} \item{qmatrix}{the \code{qmatrix} associated with the epidemic \code{data} as supplied in the model call.} \item{bbox}{the bounding box of \code{data$W}.} \item{timeRange}{the time range used for fitting: \code{c(t0,T)}.} \item{formula}{a list containing the four main parts of the model specification: \code{endemic}, \code{epidemic}, \code{siaf}, and \code{tiaf}.} \item{control.siaf}{see the \dQuote{Arguments} section above.} \item{optim.args}{input optimizer arguments used to determine the MLE.} \item{functions}{if \code{model=TRUE} this is a \code{list} with components \code{ll}, \code{sc} and \code{fi}, which are functions evaluating the log-likelihood, the score function and the expected Fisher information for a parameter vector \eqn{\theta}. The \code{environment} of these function is the model environment, which is thus retained in the workspace if \code{model=TRUE}. Otherwise, the \code{functions} component is \code{NULL}.} \item{call}{the matched call.} \item{runtime}{the \code{\link{proc.time}}-queried time taken to fit the model, i.e., a named numeric vector of length 5 of class \code{"proc_time"}, with the number of \code{cores} set as additional attribute.} If \code{model=TRUE}, the model evaluation environment is assigned to this list and can thus be queried by calling \code{environment()} on the result. } \note{ \code{twinstim} makes use of the \pkg{memoise} package if it is available -- and that is highly recommended for non-constant \code{siaf} specifications to speed up calculations. Specifically, the necessary numerical integrations of the spatial interaction function will be cached such that they are only calculated once for every state of the \code{siaf} parameters during optimization. } \references{ Diggle, P. J., Kaimi, I. & Abellana, R. (2010): Partial-likelihood analysis of spatio-temporal point-process data. \emph{Biometrics}, \bold{66}, 347-354. Martinussen, T. and Scheike, T. H. (2006): Dynamic Regression Models for Survival Data. Springer. Meyer, S. (2010): Spatio-Temporal Infectious Disease Epidemiology based on Point Processes. Master's Thesis, Ludwig-Maximilians-Universit\enc{ä}{ae}t M\enc{ü}{ue}nchen.\cr Available as \url{http://epub.ub.uni-muenchen.de/11703/} Meyer, S., Elias, J. and H\enc{ö}{oe}hle, M. (2012): A space-time conditional intensity model for invasive meningococcal disease occurrence. \emph{Biometrics}, \bold{68}, 607-616. \doi{10.1111/j.1541-0420.2011.01684.x} Meyer, S. and Held, L. (2014): Power-law models for infectious disease spread. \emph{The Annals of Applied Statistics}, \bold{8} (3), 1612-1639. \doi{10.1214/14-AOAS743} Meyer, S., Held, L. and \enc{Höhle}{Hoehle}, M. (2017): Spatio-temporal analysis of epidemic phenomena using the \R package \pkg{surveillance}. \emph{Journal of Statistical Software}, \bold{77} (11), 1-55. \doi{10.18637/jss.v077.i11} Rathbun, S. L. (1996): Asymptotic properties of the maximum likelihood estimator for spatio-temporal point processes. \emph{Journal of Statistical Planning and Inference}, \bold{51}, 55-74. } \author{ Sebastian Meyer Contributions to this documentation by Michael H\enc{ö}{oe}hle and Mayeul Kauffmann. } \seealso{ \code{vignette("twinstim")}. There is a \code{\link{simulate.twinstim}} method, which simulates the point process based on the fitted \code{twinstim}. A discrete-space alternative is offered by the \code{\link{twinSIR}} modelling framework. } \examples{ # Load invasive meningococcal disease data data("imdepi") ### first, fit a simple endemic-only model m_noepi <- twinstim( endemic = addSeason2formula(~ offset(log(popdensity)) + I(start/365-3.5), S=1, period=365, timevar="start"), data = imdepi, subset = !is.na(agegrp) ) ## look at the model summary summary(m_noepi) ## there is no evidence for a type-dependent endemic intercept (LR test) m_noepi_type <- update(m_noepi, endemic = ~(1|type) + .) pchisq(2*c(logLik(m_noepi_type)-logLik(m_noepi)), df=1, lower.tail=FALSE) ### add an epidemic component with just the intercept, i.e. ### assuming uniform dispersal in time and space up to a distance of ### eps.s = 200 km and eps.t = 30 days (see summary(imdepi)) m0 <- update(m_noepi, epidemic=~1, model=TRUE) ## summarize the model fit s <- summary(m0, correlation = TRUE, symbolic.cor = TRUE) s # output the table of coefficients as LaTeX code toLatex(s, digits=2) # or, to report rate ratios xtable(s) ## the default confint-method can be used for Wald-CI's confint(m0, level=0.95) ## same "untrimmed" R0 for every event (simple epidemic intercept model) summary(R0(m0, trimmed=FALSE)) ## plot the path of the fitted total intensity plot(m0, "total intensity", tgrid=500) ## extract "residual process" integrating over space (takes some seconds) if (surveillance.options("allExamples")) { res <- residuals(m0) # if the model describes the true CIF well _in the temporal dimension_, # then this residual process should behave like a stationary Poisson # process with intensity 1 plot(res, type="l"); abline(h=c(0, length(res)), lty=2) # easier, with CI and serial correlation -> checkResidualProcess() checkResidualProcess(m0) } \dontrun{ ## NB: in contrast to using nlminb() optim's BFGS would miss the ## likelihood maximum wrt the epidemic intercept m0_BFGS <- update(m_noepi, epidemic=~1, optim.args = list(method="BFGS")) format(cbind(nlminb=coef(m0), BFGS=coef(m0_BFGS)), digits=3, scientific=FALSE) m0_BFGS$fisherinfo # singular Fisher information matrix here m0$fisherinfo logLik(m0_BFGS) logLik(m0) ## nlminb is more powerful since we make use of the analytical fisherinfo ## as estimated by the model during optimization, which optim cannot } ### an epidemic-only model? ## for a purely epidemic model, all events must have potential source events ## (otherwise the intensity at the observed event would be 0) ## let's focus on the C-type for this example imdepiC <- subset(imdepi, type == "C") table(summary(imdepiC)$nSources) ## 106 events have no prior, close events (in terms of eps.s and eps.t) try(twinstim(epidemic = ~1, data = imdepiC)) # detects this problem ## let's assume spatially unbounded interaction imdepiC_infeps <- update(imdepiC, eps.s = Inf) (s <- summary(imdepiC_infeps)) table(s$nSources) ## for 11 events, there is no prior event within eps.t = 30 days ## (which is certainly true for the first event) plot(s$counter, main = "Number of infectious individuals over time (eps.t = 30)") rug(imdepiC_infeps$events$time) rug(imdepiC_infeps$events$time[s$nSources == 0], col = 2, lwd = 3) ## An endemic component would catch such events (from unobserved sources), ## otherwise a longer infectious period would need to be assumed and ## for the first event to happen, a pre-history is required (e.g., t0 = 31). ## As an example, we fit the data only until T = 638 (all events have ancestors) m_epi <- twinstim(epidemic = ~1, data = imdepiC_infeps, t0 = 31, T = 638) summary(m_epi) ### full model with interaction functions (time-consuming) if (surveillance.options("allExamples")) { ## estimate an exponential temporal decay of infectivity m1_tiaf <- update(m0, tiaf=tiaf.exponential()) plot(m1_tiaf, "tiaf", scaled=FALSE) ## estimate a step function for spatial interaction summary(sourceDists <- getSourceDists(imdepi, "space")) (knots <- quantile(sourceDists, c(5,10,20,40)/100)) m1_fstep <- update(m0, siaf=knots) plot(m1_fstep, "siaf", scaled=FALSE) rug(sourceDists, ticksize=0.02) ## estimate a continuously decreasing spatial interaction function, ## here we use the kernel of an isotropic bivariate Gaussian m1 <- update(m0, siaf = siaf.gaussian()) AIC(m_noepi, m0, m1_fstep, m1) summary(m1) # e.siaf.1 is log(sigma), no test for H0: log(sigma) = 0 exp(confint(m1, "e.siaf.1")) # a confidence interval for sigma plot(m1, "siaf", scaled=FALSE) ## alternative: siaf.powerlaw() with eps.s=Inf and untie()d data, ## see vignette("twinstim") ## add epidemic covariates m2 <- update(m1, epidemic = ~ 1 + type + agegrp) AIC(m1, m2) # further improvement summary(m2) ## look at estimated R0 values by event type tapply(R0(m2), imdepi$events@data[names(R0(m2)), "type"], summary) } } \keyword{models} \keyword{optimize} surveillance/man/meanResponse.Rd0000644000175100001440000001255613122471774016506 0ustar hornikusers\name{meanResponse} \alias{meanResponse} \encoding{latin1} \title{Calculate mean response needed in algo.hhh} \description{ Calculates the mean response for the model specified in designRes according to equations (1.2) and (1.1) in Held et al. (2005) for univariate time series and equations (3.3) and (3.2) (with extensions given in equations (2) and (4) in Paul et al., 2008) for multivariate time series. See details. } \usage{ meanResponse(theta, designRes) } \arguments{ \item{theta}{vector of parameters \eqn{\theta = (\alpha_1,\ldots,\alpha_m, \bold{\lambda}, \bold{\phi}, \bold{\beta}, \bold{\gamma}_1, \ldots, \bold{\gamma}_m, \bold{\psi}),}{\theta = (\alpha_1,\ldots,\alpha_m, \lambda, \phi, \beta, \gamma_1, \ldots, \gamma_m, \psi),} where \eqn{\bold{\lambda}=(\lambda_1,\ldots,\lambda_m)}{\lambda=(\lambda_1,\ldots,\lambda_m)}, \eqn{\bold{\phi}=(\phi_1,\ldots,\phi_m)}{\phi=(\phi_1,\ldots,\phi_m)}, \eqn{\bold{\beta}=(\beta_1,\ldots,\beta_m)}{\beta=(\beta_1,\ldots,\beta_m)}, \eqn{\bold{\gamma_1}=(\gamma_{11},\ldots,\gamma_{1,2S_1})}{\gamma_1=(\gamma_11,\ldots,\gamma_(1,2S_1))}, \eqn{\bold{\gamma_m}=(\gamma_{m1},\ldots,\gamma_{m,2S_m})}{\gamma_m=(\gamma_m1,\ldots,\gamma_(m,2S_m))}, \eqn{\bold{\psi}=(\psi_1,\ldots,\psi_m)}{\psi=(\psi_1,\ldots,\psi_m)}. If the model specifies less parameters, those components are omitted.} \item{designRes}{Result of a call to \code{make.design} } } \details{ Calculates the mean response for a Poisson or a negative binomial model with mean \deqn{\mu_t = \lambda y_{t-lag} + \nu_t }{\mu_t = \lambda y_t-lag + \nu_t } where \deqn{\log( \nu_t) = \alpha + \beta t + \sum_{j=1}^{S}(\gamma_{2j-1} \sin(\omega_j t) + \gamma_{2j} \cos(\omega_j t) ) }{ log(\nu_t) = \alpha + \beta t + \sum_(j=1)^S (\gamma_(2j-1) * \sin(\omega_j * t) + \gamma_2j * \cos(\omega_j * t) ) } and \eqn{\omega_j = 2\pi j/period }{\omega_j = 2 * \pi * j / period} are Fourier frequencies with known period, e.g. \code{period}=52 for weekly data, for a univariate time series. Per default, the number of cases at time point \eqn{t-1}, i.e. \eqn{lag=1}, enter as autoregressive covariates into the model. Other lags can also be considered. The seasonal terms in the predictor can also be expressed as \eqn{\gamma_{s} \sin(\omega_s t) + \delta_{s} \cos(\omega_s t) = A_s \sin(\omega_s t + \epsilon_s)}{ \gamma_s sin(\omega_s * t) + \delta_s cos(\omega_s * t) = A_s sin(\omega_s * t + \epsilon_s)} with amplitude \eqn{A_s=\sqrt{\gamma_s^2 +\delta_s^2}}{A_s=sqrt{\gamma_s^2 +\delta_s^2}} and phase difference \eqn{\tan(\epsilon_s) = \delta_s / \gamma_s}. The amplitude and phase shift can be obtained from a fitted model by specifying \code{amplitudeShift=TRUE} in the \code{coef} method. For multivariate time series the mean structure is \deqn{\mu_{it} = \lambda_i y_{i,t-lag} + \phi_i \sum_{j \sim i} w_{ji} y_{j,t-lag} + n_{it} \nu_{it}}{ \mu_it = \lambda_i * y_i,t-lag + \phi_i * \sum_(j ~ i) w_ji * y_j,t-lag + n_it * \nu_it } where \deqn{\log(\nu_{it}) = \alpha_i + \beta_i t + \sum_{j=1}^{S_i} (\gamma_{i,2j-1} \sin(\omega_j t) + \gamma_{i,2j} \cos(\omega_j t) ) }{ log(\nu_it) = \alpha_i + \beta_i * t + \sum_(j=1)^S_i (\gamma_(i,2j-1) * \sin(\omega_j * t) + \gamma_(i,2j) * \cos(\omega_j * t) ) } and \eqn{n_{it}}{n_it} are standardized population counts. The weights \eqn{w_{ji}}{w_ji} are specified in the columns of the neighbourhood matrix \code{disProgObj$neighbourhood}. Alternatively, the mean can be specified as \deqn{\mu_{it} = \lambda_i \pi_i y_{i,t-1} + \sum_{j \sim i} \lambda_j (1-\pi_j)/ |k \sim j| y_{j,t-1} + n_{it} \nu_{it}}{ \mu_it = \lambda_i *\pi_i * y_i,t-1 + \sum_(j ~ i) \lambda_j *(1-\pi_j)/|k ~ j| * y_j,t-1 + n_it * \nu_it } if \code{proportion}="single" ("multiple") in \code{designRes$control}. Note that this model specification is still experimental. } \value{ Returns a \code{list} with elements \item{mean}{matrix of dimension \eqn{n \times m}{n x m} with the calculated mean response for each time point and unit, where \eqn{n} is the number of time points and \eqn{m} is the number of units. } \item{epidemic}{matrix with the epidemic part \eqn{ \lambda_i y_{i,t-1} + \phi_i \sum_{j \sim i} y_{j,t-1}}{ \lambda_i * y_i,t-1 + \phi_i * \sum_(j ~ i) y_j,t-1} } \item{endemic}{matrix with the endemic part of the mean \eqn{ n_{it} \nu_{it} }{ n_it*nu_it } } \item{epi.own}{matrix with \eqn{ \lambda_i y_{i,t-1} }{\lambda_i * y_i,t-1} } \item{epi.neighbours}{matrix with \eqn{\phi_i \sum_{j \sim i} y_{j,t-1}}{ \phi_i * \sum_(j ~ i) y_j,t-1} } } \author{M. Paul, L. Held} \keyword{internal} \references{ Held, L., \enc{Höhle}{Hoehle}, M., Hofmann, M. (2005) A statistical framework for the analysis of multivariate infectious disease surveillance counts, Statistical Modelling, \bold{5}, 187--199. Paul, M., Held, L. and Toschke, A. M. (2008) Multivariate modelling of infectious disease surveillance data, Statistics in Medicine, \bold{27}, 6250--6267. } surveillance/man/boda.Rd0000644000175100001440000001246713174640643014755 0ustar hornikusers\name{boda} \alias{boda} \title{Bayesian Outbreak Detection Algorithm (BODA)} \description{ The function takes \code{range} values of a univariate surveillance time series \code{sts} and for each time point uses a negative binomial regression model to compute the predictive posterior distribution for the current observation. The \eqn{(1-\alpha)\cdot 100\%}{(1-alpha)*100\%} quantile of this predictive distribution is then used as bound: If the actual observation is above the bound an alarm is raised. The Bayesian Outbreak Detection Algorithm (\code{boda}) is due to Manitz and \enc{Höhle}{Hoehle} (2013) and its implementation is illustrated in Salmon et al. (2016). } \usage{ boda(sts, control = list( range=NULL, X=NULL, trend=FALSE, season=FALSE, prior=c('iid','rw1','rw2'), alpha=0.05, mc.munu=100, mc.y=10, verbose=FALSE,multicore=TRUE, samplingMethod=c('joint','marginals'), quantileMethod=c("MC","MM") )) } \arguments{ \item{sts}{object of class sts (including the \code{observed} and the \code{state} time series)} \item{control}{Control object given as a \code{list} containing the following components: \describe{ \item{\code{range}}{Specifies the index of all timepoints which should be tested. If range is \code{NULL} all possible timepoints are used.} \item{\code{X}}{} \item{\code{trend}}{Boolean indicating whether a linear trend term should be included in the model for the expectation the log-scale} \item{\code{season}}{Boolean to indicate whether a cyclic spline should be included.} \item{\code{alpha}}{The threshold for declaring an observed count as an aberration is the \eqn{(1-\alpha)\cdot 100\%}{(1-alpha)*100\%} quantile of the predictive posterior.} \item{\code{mc.munu}}{} \item{\code{mc.y}}{Number of samples of \eqn{y}{y} to generate for each par of the mean and size parameter. A total of \eqn{mc.munu \times mc.y}{mc.munu*mc.y} samples are generated.} \item{\code{verbose}}{Argument sent to the inla call. When using ESS it might be necessary to force verbose mode for INLA to work.} \item{\code{multicore}}{Detect using \code{parallel::detectCores} how many logical cores are available and set INLA to use this number.} \item{\code{samplingMethod}}{Should one sample from the parameters joint distribution (joint) or from their respective marginal posterior distribution (marginals)?} \item{quantileMethod}{Character, either \code{MC} or \code{MM}. Indicates how to compute the quantile based on the posterior distribution (no matter the inference method): either by sampling \code{mc.munu} values from the posterior distribution of the parameters and then for each sampled parameters vector sampling \code{mc.y} response values so that one gets a vector of response values based on which one computes an empirical quantile (MC method, as explained in Manitz and \enc{Höhle}{Hoehle} 2013); or by sampling \code{mc.munu} from the posterior distribution of the parameters and then compute the quantile of the mixture distribution using bisectionning, which is faster.} } } } \note{ This function requires the \R package \pkg{INLA}, which is currently \emph{not} available from CRAN. It can be obtained from an additional repository as described at \url{http://www.r-inla.org/download}. } \section{Warning}{ This function is currently experimental!! It also heavily depends on the \pkg{INLA} package so changes there might affect the operational ability of this function. Since the computations for the Bayesian GAM are quite involved do not expect this function to be particularly fast. Future work could focus on improving the speed, e.g., one issue would be to make the inference work in a sequential fashion. } \keyword{classif} \examples{ \dontrun{ ## running this example takes a couple of minutes #Load the campylobacteriosis data for Germany data("campyDE") #Make an sts object from the data.frame cam.sts <- sts(epoch=as.numeric(campyDE$date), epochAsDate=TRUE, observed=campyDE$case, state=campyDE$state) #Define monitoring period # range <- which(epoch(cam.sts)>=as.Date("2007-01-01")) # range <- which(epoch(cam.sts)>=as.Date("2011-12-10")) range <- tail(1:nrow(cam.sts),n=2) control <- list(range=range, X=NULL, trend=TRUE, season=TRUE, prior='iid', alpha=0.025, mc.munu=100, mc.y=10, samplingMethod = "joint") #Apply the boda algorithm in its simples form, i.e. spline is #described by iid random effects and no extra covariates library("INLA") # needs to be attached cam.boda1 <- boda(cam.sts, control=control) plot(cam.boda1, xlab='time [weeks]', ylab='No. reported', dx.upperbound=0) } } \author{J. Manitz, M. \enc{Höhle}{Hoehle}, M. Salmon} \references{ Manitz, J. and \enc{Höhle}{Hoehle}, M. (2013): Bayesian outbreak detection algorithm for monitoring reported cases of campylobacteriosis in Germany. Biometrical Journal, 55(4), 509-526. Salmon, M., Schumacher, D. and \enc{Höhle}{Hoehle}, M. (2016): Monitoring count time series in \R: Aberration detection in public health surveillance. \emph{Journal of Statistical Software}, \bold{70} (10), 1-35. \doi{10.18637/jss.v070.i10} } surveillance/man/algo.quality.Rd0000644000175100001440000000376713122471774016464 0ustar hornikusers\name{algo.quality} \alias{algo.quality} \title{Computation of Quality Values for a Surveillance System Result} \description{ Computation of the quality values for a surveillance system output. } \usage{ algo.quality(sts, penalty = 20) } \arguments{ \item{sts}{object of class \code{survRes} or \code{sts}, which includes the state chain and the computed alarm chain} \item{penalty}{the maximal penalty for the lag} } \value{ a list of quality values: \item{TP}{Number of correct found outbreaks.} \item{FP}{Number of false found outbreaks.} \item{TN}{Number of correct found non outbreaks.} \item{FN}{Number of false found non outbreaks.} \item{sens}{True positive rate, meaning TP/(FN + TP).} \item{spec}{True negative rate, meaning TN/(TN + FP).} \item{dist}{Euclidean distance between (1-spec, sens) to (0,1).} \item{lag}{Lag of the outbreak recognizing by the system.} } \details{ The lag is defined as follows: In the state chain just the beginnings of an outbreak chain (outbreaks directly following each other) are considered. In the alarm chain, the range from the beginning of an outbreak until \eqn{min(next outbreak beginning,\code{penalty})} timepoints is considered. The \code{penalty} timepoints were chosen, to provide an upper bound on the penalty for not discovering an outbreak. Now the difference between the first alarm by the system and the defined beginning is denoted ``the lag'' Additionally outbreaks found by the system are not punished. At the end, the mean of the lags for every outbreak chain is returned as summary lag. } \seealso{\code{\link{algo.compare}}} \examples{ # Create a test object disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 200, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) # Let this object be tested from rki1 survResObj <- algo.rki1(disProgObj, control = list(range = 50:200)) # Compute the quality values algo.quality(survResObj) } \keyword{misc} surveillance/man/sts_animate.Rd0000644000175100001440000001153413020027566016342 0ustar hornikusers\name{sts_animate} \alias{animate.sts} \title{ Animated Maps and Time Series of Disease Counts or Incidence } \description{ The \code{animate}-method for \code{\linkS4class{sts}} objects supersedes the \code{\link{stsplot}} type \code{observed~1|unit*time} implemented by the function \code{\link{stsplot_spacetime}}. Maps generated by \code{\link{stsplot_space}} are sequentially plotted along time (optionally showing cumulative counts/incidence), with an optional time series chart below the map to track the epidemic curve. It is worth using functionality of the \pkg{animation} package (e.g., \code{\link[animation]{saveHTML}}) to directly export the animation into a useful format. See Meyer and Held (2014, Supplement A) for an example with the \code{\link{fluBYBW}} data. } \usage{ \method{animate}{sts}(object, tps = NULL, cumulative = FALSE, population = NULL, at = 10, ..., timeplot = list(height = 0.3, fill = FALSE), sleep = 0.5, verbose = interactive(), draw = TRUE) } \arguments{ \item{object}{ an object of class \code{"\linkS4class{sts}"} or a matrix of counts, i.e., \code{observed(stsObj)}, where especially \code{colnames(x)} have to be contained in \code{row.names(map)}. If a matrix, the \code{map} object has to be provided explicitly (as part of \code{\dots}). } \item{tps}{ a numeric vector of one or more time points at which to plot the map. The default \code{tps=NULL} means the whole time period \code{1:nrow(object)}. } \item{cumulative}{ logical specifying if the cumulative counts/incidence over time should be plotted. The cumulative incidence is relative to the population from the first time point \code{tps[1]} throughout the whole animation, while \code{cumulative=FALSE} computes the incidence from the current population numbers. } \item{population,at,\dots}{ arguments for \code{\link{stsplot_space}}. } \item{timeplot}{ if a list (of arguments for the internal function \code{stsplot_timeSimple}) and package \pkg{gridExtra} is available, a time series chart of the counts along the selected time points \code{tps} will be plotted below the map. The argument \code{height} gives the relative height of the time series plot (default: 0.3), the logical value \code{fill} indicates whether to make the panel as big as possible (default: FALSE), the arguments \code{inactive} and \code{active} are lists of graphical parameters (e.g., \code{col}) determining the appearance of the bars (e.g., default color is grey when inactive and black when active), and the boolean \code{as.Date} determines whether dates should be put on the x-axis (instead of the \code{tps} indexes). } \item{sleep}{ time to wait (\code{Sys.sleep}) between subsequent snapshots (only if \code{\link{dev.interactive}}), in seconds. } \item{verbose}{ logical indicating if a \code{\link{txtProgressBar}} should be shown during generation of the animation -- which may take a while. Default is to do so in \code{\link{interactive}} sessions. } \item{draw}{ logical indicating if the produced plots at each time point should be drawn directly (the default) or not. The setting \code{draw = FALSE} is useful if one would like to manually arrange the plots, which are always returned invisibly in a list of length \code{length(tps)}. } } \value{ (invisibly) a list of the \code{length(tps)} sequential plot objects of class \code{"\code{\link[gtable]{gtable}}"} (if the the \code{timeplot} is active) or of class \code{"\code{\link[=trellis.object]{trellis}"} (otherwise). } \references{ Meyer, S. and Held, L. (2014): Power-law models for infectious disease spread. \emph{The Annals of Applied Statistics}, \bold{8} (3), 1612-1639. \doi{10.1214/14-AOAS743}.\cr Supplement A is available from \url{http://www.biostat.uzh.ch/static/powerlaw/}. } \author{ Sebastian Meyer } \seealso{ the other plot types documented in \code{\link{stsplot}} for static time series plots and maps. } \examples{ data("measlesWeserEms") ## animate the weekly counts of measles (during weeks 12-16 only, for speed) if (require("animation")) { oldwd <- setwd(tempdir()) # to not clutter up the current working dir saveHTML(animate(measlesWeserEms, tps=12:16), title="Evolution of the measles epidemic in the Weser-Ems region", ani.width=500, ani.height=600) setwd(oldwd) } ## animate the weekly incidence of measles (per 100'000 inhabitants), ## and label the time series plot with dates in a specified format animate(measlesWeserEms, tps=12:16, population = measlesWeserEms@map$POPULATION / 100000, timeplot = list(as.Date = TRUE, scales = list(x = list(format = "\%G/\%V")))) } \keyword{hplot} \keyword{dynamic} \keyword{spatial} surveillance/man/multiplicity.Spatial.Rd0000644000175100001440000000304113122471774020160 0ustar hornikusers\name{multiplicity.Spatial} \alias{multiplicity.Spatial} \title{ Count Number of Instances of Points } \description{ The generic function \code{multiplicity} defined in \pkg{spatstat} is intended to count the number of duplicates of each element of an object. \pkg{spatstat} already offers methods for point patterns, matrices and data frames, and here we add a method for \code{Spatial} objects from the \pkg{sp} package. It is a wrapper for the default method, which effectively computes the distance matrix of the points, and then just counts the number of zeroes in each row. } \usage{ \method{multiplicity}{Spatial}(x) } \arguments{ \item{x}{ a \code{"\linkS4class{Spatial}"} object (we only need a \code{\link{coordinates}}-method), e.g. of class \code{"\linkS4class{SpatialPoints}"}. } } \value{ an integer vector containing the number of instances of each point of the object. } \seealso{ \code{\link[spatstat]{multiplicity}} in package \pkg{spatstat}. See the Examples of the \code{\link{hagelloch}} data for a specific use of \code{multiplicity}. } \examples{ foo <- SpatialPoints(matrix(c(1,2, 2,3, 1,2, 4,5), 4, 2, byrow=TRUE)) multiplicity(foo) # the following function determines the multiplicities in a matrix # or data frame and returns unique rows with appended multiplicity countunique <- function(x) unique(cbind(x, count=multiplicity(x))) countunique(coordinates(foo)) } \keyword{utilities} \keyword{spatial} surveillance/man/farringtonFlexible.Rd0000644000175100001440000002620712716675060017673 0ustar hornikusers\name{farringtonFlexible} \alias{farringtonFlexible} \encoding{latin1} \title{Surveillance for an univariate count data time series using the improved Farrington method described in Noufaily et al. (2012).} \description{ % The function takes \code{range} values of the surveillance time series \code{sts} and for each time point uses a Poisson GLM with overdispersion to predict an upper bound on the number of counts according to the procedure by Farrington et al. (1996) and by Noufaily et al. (2012). This bound is then compared to the observed number of counts. If the observation is above the bound, then an alarm is raised. The implementation is illustrated in Salmon et al. (2016). % } \usage{ farringtonFlexible(sts, control = list( range = NULL, b = 3, w = 3, reweight = TRUE, weightsThreshold = 2.58, verbose = FALSE, glmWarnings = TRUE, alpha = 0.01, trend = TRUE, pThresholdTrend = 0.05, limit54 = c(5,4), powertrans = "2/3", fitFun = "algo.farrington.fitGLM.flexible", populationOffset = FALSE, noPeriods = 1, pastWeeksNotIncluded = 26, thresholdMethod = "delta")) } \arguments{ \item{sts}{object of class sts (including the \code{observed} and the \code{state} time series)} \item{control}{Control object given as a \code{list} containing the following components: \describe{ \item{\code{range}}{Specifies the index of all timepoints which should be tested. If range is \code{NULL} all possible timepoints are used.} \item{\code{b}}{How many years back in time to include when forming the base counts.} \item{\code{w}}{Window's half-size, i.e. number of weeks to include before and after the current week in each year.} \item{\code{reweight}}{Boolean specifying whether to perform reweighting step.} \item{\code{weightsThreshold}}{Defines the threshold for reweighting past outbreaks using the Anscombe residuals (1 in the original method, 2.58 advised in the improved method).} \item{\code{verbose}}{Boolean specifying whether to show extra debugging information.} \item{\code{glmWarnings}}{Boolean specifying whether to print warnings from the call to \code{glm}.} \item{\code{alpha}}{An approximate (one-sided) \eqn{(1-\alpha)\cdot 100\%} prediction interval is calculated unlike the original method where it was a two-sided interval. The upper limit of this interval i.e. the \eqn{(1-\alpha)\cdot 100\%} quantile serves as an upperbound.} \item{\code{trend}}{Boolean indicating whether a trend should be included and kept in case the conditions in the Farrington et. al. paper are met (see the results). If \code{false} then NO trend is fit.} \item{\code{pThresholdTrend}}{Threshold for deciding whether to keep trend in the model (0.05 in the original method, 1 advised in the improved method).} \item{\code{limit54}}{Vector containing two numbers: \code{cases} and \code{period}. To avoid alarms in cases where the time series only has about almost no cases in the specific week the algorithm uses the following heuristic criterion (see Section 3.8 of the Farrington paper) to protect against low counts: no alarm is sounded if fewer than \eqn{\code{cases}=5} reports were received in the past \eqn{\code{period}=4} weeks. \code{limit54=c(cases,period)} is a vector allowing the user to change these numbers. Note: As of version 0.9-7 of the package the term "last" period of weeks includes the current week - otherwise no alarm is sounded for horrible large numbers if the four weeks before that are too low.} \item{\code{powertrans}}{Power transformation to apply to the data if the threshold is to be computed with the method described in Farrington et al. (1996. Use either "2/3" for skewness correction (Default), "1/2" for variance stabilizing transformation or "none" for no transformation.} \item{\code{fitFun}}{String containing the name of the fit function to be used for fitting the GLM. The only current option is "algo.farrington.fitGLM.flexible".} \item{\code{populationOffset}}{Boolean specifying whether to include a population offset in the GLM. The slot \code{sts@population} gives the population vector.} \item{\code{noPeriods}}{Number of levels in the factor allowing to use more baseline. If equal to 1 no factor variable is created, the set of reference values is defined as in Farrington et al (1996).} \item{\code{pastWeeksNotIncluded}}{Number of past weeks to ignore in the calculation.} \item{\code{thresholdMethod}}{Method to be used to derive the upperbound. Options are \code{"delta"} for the method described in Farrington et al. (1996), \code{"Noufaily"} for the method described in Noufaily et al. (2012), and \code{"muan"} for the method extended from Noufaily et al. (2012).} } } } \details{ The following steps are performed according to the Farrington et al. (1996) paper. \enumerate{ \item Fit of the initial model with intercept, time trend if \code{trend} is \code{TRUE}, seasonal factor variable if \code{noPeriod} is bigger than 1, and population offset if \code{populationOffset} is \code{TRUE}. Initial estimation of mean and overdispersion. \item Calculation of the weights omega (correction for past outbreaks) if \code{reweighting} is \code{TRUE}. The threshold for reweighting is defined in \code{control}. \item Refitting of the model \item Revised estimation of overdispersion \item Omission of the trend, if it is not significant \item Repetition of the whole procedure \item Calculation of the threshold value using the model to compute a quantile of the predictive distribution. The method used depends on \code{thresholdMethod}, this can either be: \describe{ \item{"delta"}{One assumes that the prediction error (or a transformation of the prediction error, depending on \code{powertrans}), is normally distributed. The threshold is deduced from a quantile of this normal distribution using the variance and estimate of the expected count given by GLM, and the delta rule. The procedure takes into account both the estimation error (variance of the estimator of the expected count in the GLM) and the prediction error (variance of the prediction error). This is the suggestion in Farrington et al. (1996).} \item{"nbPlugin"}{One assumes that the new count follows a negative binomial distribution parameterized by the expected count and the overdispersion estimated in the GLM. The threshold is deduced from a quantile of this discrete distribution. This process disregards the estimation error, though. This method was used in Noufaily, et al. (2012).} \item{"muan"}{One also uses the assumption of the negative binomial sampling distribution but does not plug in the estimate of the expected count from the GLM, instead one uses a quantile from the asymptotic normal distribution of the expected count estimated in the GLM; in order to take into account both the estimation error and the prediction error. } } \item Computation of exceedance score } Warning: monthly data containing the last day of each month as date should be analysed with \code{epochAsDate=FALSE} in the \code{sts} object. Otherwise February makes it impossible to find some reference time points. } \value{ An object of class \code{sts} with the slots \code{upperbound} and \code{alarm} filled by appropriate output of the algorithm. The slot \code{control} is the usual list but with more items all of length \code{length(range)}: \describe{ \item{trend}{ is a vector of Booleans indicating whether a time trend was fitted for this time point.} \item{trendVector}{ is a vector giving the coefficient of the time trend in the GLM for this time point. If no trend was fitted it is equal to NA.} \item{pvalue}{ is a vector giving the probability of observing a value at least equal to the observation under the null hypothesis .} \item{expected}{is a vector giving the expectation of the predictive distribution for each timepoint. It is only reported if the conditions for raising an alarm are met (enough cases).} \item{mu0Vector}{ is a vector giving what is inputed in the negative binomial distribution to get the upperbound as a quantile (either a plug-in from the GLM or a quantile from the asymptotic normal distribution of the estimator)} \item{phiVector}{ is a vector giving the overdispersion of the GLM at each timepoint.} } } \keyword{classif} \examples{ ### DATA I/O ### #Read Salmonella Agona data data("salmonella.agona") # Create the corresponding sts object from the old disProg object salm <- disProg2sts(salmonella.agona) ### RUN THE ALGORITHMS WITH TWO DIFFERENT SETS OF OPTIONS ### # Farrington with old options control1 <- list(range=(260:312), noPeriods=1,populationOffset=FALSE, fitFun="algo.farrington.fitGLM.flexible", b=4,w=3,weightsThreshold=1, pastWeeksNotIncluded=3, pThresholdTrend=0.05,trend=TRUE, thresholdMethod="delta",alpha=0.1) control2 <- list(range=(260:312), noPeriods=10,populationOffset=FALSE, fitFun="algo.farrington.fitGLM.flexible", b=4,w=3,weightsThreshold=2.58, pastWeeksNotIncluded=26, pThresholdTrend=1,trend=TRUE, thresholdMethod="delta",alpha=0.1) salm1 <- farringtonFlexible(salm,control=control1) salm2 <- farringtonFlexible(salm,control=control2) ### PLOT THE RESULTS ### y.max <- max(upperbound(salm1),observed(salm1),upperbound(salm2),na.rm=TRUE) plot(salm1, ylim=c(0,y.max), main='S. Newport in Germany', legend.opts=NULL) lines(1:(nrow(salm1)+1)-0.5, c(upperbound(salm1),upperbound(salm1)[nrow(salm1)]), type="s",col='tomato4',lwd=2) lines(1:(nrow(salm2)+1)-0.5, c(upperbound(salm2),upperbound(salm2)[nrow(salm2)]), type="s",col="blueviolet",lwd=2) legend(0, 10, legend=c('Alarm','Upperbound with old options', 'Upperbound with new options'), pch=c(24,NA,NA),lty=c(NA,1,1), bg="white",lwd=c(2,2,2),col=c('red','tomato4',"blueviolet")) } \author{M. Salmon, M. \enc{Höhle}{Hoehle}} \seealso{\code{\link{algo.farrington.fitGLM}},\code{\link{algo.farrington.threshold}}} \keyword{classif} \references{ Farrington, C.P., Andrews, N.J, Beale A.D. and Catchpole, M.A. (1996): A statistical algorithm for the early detection of outbreaks of infectious disease. J. R. Statist. Soc. A, 159, 547-563. Noufaily, A., Enki, D.G., Farrington, C.P., Garthwaite, P., Andrews, N.J., Charlett, A. (2012): An improved algorithm for outbreak detection in multiple surveillance systems. Statistics in Medicine, 32 (7), 1206-1222. Salmon, M., Schumacher, D. and \enc{Höhle}{Hoehle}, M. (2016): Monitoring count time series in \R: Aberration detection in public health surveillance. \emph{Journal of Statistical Software}, \bold{70} (10), 1-35. \doi{10.18637/jss.v070.i10} } surveillance/man/poly2adjmat.Rd0000644000175100001440000000334713174104255016265 0ustar hornikusers\name{poly2adjmat} \alias{poly2adjmat} \title{ Derive Adjacency Structure of \code{"SpatialPolygons"} } \description{ Wrapping around functionality of the \pkg{spdep} package, this function computes the symmetric, binary (0/1), adjacency matrix from a \code{"\linkS4class{SpatialPolygons}"} object. It essentially applies \code{\link[spdep]{nb2mat}(\link[spdep]{poly2nb}(SpP, ...), style="B", zero.policy=zero.policy)}. } \usage{ poly2adjmat(SpP, ..., zero.policy = TRUE) } \arguments{ \item{SpP}{an object inheriting from \code{"\linkS4class{SpatialPolygons}"}.} \item{\dots}{arguments passed to \code{\link[spdep]{poly2nb}}. Its \code{snap} argument might be particularly useful to handle maps with sliver polygons.} \item{zero.policy}{logical indicating if islands are allowed, see \code{\link[spdep]{nb2mat}}.} } \value{ a symmetric numeric indicator matrix of size \code{length(SpP)}^2 representing polygon adjacencies. } \author{ (of this wrapper) Sebastian Meyer } \seealso{ \code{\link[spdep]{poly2nb}} in package \pkg{spdep} } \examples{ if (requireNamespace("spdep")) { ## generate adjacency matrix for districts of Bayern and Baden-Wuerttemberg data("fluBYBW") adjmat <- poly2adjmat(fluBYBW@map) ## same as already stored in the neighbourhood slot (in different order) stopifnot(all.equal(adjmat, neighbourhood(fluBYBW)[rownames(adjmat),colnames(adjmat)])) ## a visual check of the district-specific number of neighbours plot(fluBYBW@map) text(coordinates(fluBYBW@map), labels=rowSums(adjmat==1), font=2, col=2) ## the neighbourhood graph can be plotted with spdep plot(spdep::mat2listw(adjmat), coordinates(fluBYBW@map)) } } \keyword{spatial} \keyword{graphs} surveillance/man/zetaweights.Rd0000644000175100001440000000300012316635114016357 0ustar hornikusers\name{zetaweights} \alias{zetaweights} \title{ Power-Law Weights According to Neighbourhood Order } \description{ Compute power-law weights with decay parameter \code{d} based on a matrix of neighbourhood orders \code{nbmat} (e.g., as obtained via \code{\link{nbOrder}}). Without normalization and truncation, this is just \eqn{o^{-d}} (where \eqn{o} is a neighbourhood order). This function is mainly used internally for \code{\link{W_powerlaw}} weights in \code{\link{hhh4}} models. } \usage{ zetaweights(nbmat, d = 1, maxlag = max(nbmat), normalize = FALSE) } \arguments{ \item{nbmat}{numeric, symmetric matrix of neighbourhood orders.} \item{d}{single numeric decay parameter (default: 1). Should be positive.} \item{maxlag}{single numeric specifying an upper limit for the power law. For neighbourhood orders > \code{maxlag}, the resulting weight is 0. Defaults to no truncation.} \item{normalize}{Should the resulting weight matrix be normalized such that rows sum to 1?} } \value{ a numeric matrix with same dimensions and names as the input matrix. } \author{ Sebastian Meyer } \seealso{\code{\link{W_powerlaw}}} \examples{ nbmat <- matrix(c(0,1,2,2, 1,0,1,1, 2,1,0,2, 2,1,2,0), 4, 4, byrow=TRUE) zetaweights(nbmat, d=1, normalize=FALSE) # harmonic: o^-1 zetaweights(nbmat, d=1, normalize=TRUE) # rowSums=1 zetaweights(nbmat, maxlag=1, normalize=FALSE) # results in adjacency matrix } \keyword{spatial} \keyword{utilities} surveillance/man/abattoir.Rd0000644000175100001440000000160013174712261015634 0ustar hornikusers\name{abattoir} \alias{abattoir} \docType{data} \encoding{latin1} \title{Abattoir Data} \description{ A synthetic dataset from the Danish meat inspection -- useful for illustrating the beta-binomial CUSUM. } \usage{ data(abattoir) } \details{ The object of class \code{"sts"} contains an artificial data set inspired by meat inspection data used by Danish Pig Production, Denmark. For each week the number of pigs with positive audit reports is recorded together with the total number of audits made that week. } \seealso{\code{\link{categoricalCUSUM}}} \examples{ data("abattoir") plot(abattoir) population(abattoir) } \references{ \enc{Höhle}{Hoehle}, M. (2010): Online change-point detection in categorical time series. In: T. Kneib and G. Tutz (Eds.), Statistical Modelling and Regression Structures, Physica-Verlag. } \keyword{datasets} surveillance/man/salmNewport.Rd0000644000175100001440000000156313174706302016351 0ustar hornikusers\name{salmNewport} \alias{salmNewport} \docType{data} \title{Salmonella Newport cases in Germany 2004-2013} \description{ Reported number of cases of the Salmonella Newport serovar in the 16 German federal states 2004-2013. } \usage{data(salmNewport)} \format{ A \code{sts} object. } \source{ The data were queried from the SurvStat@RKI database of the German Robert Koch Institute (\url{https://survstat.rki.de/}). A detailed description of the 2011 outbreak can be found in the publication Bayer, C., Bernard, H., Prager, R., Rabsch, W., Hiller, P., Malorny, B., Pfefferkorn, B., Frank, C., de Jong, A., Friesema, I., Start, K., Rosner, B.M. (2014), An outbreak of Salmonella Newport associated with mung bean sprouts in Germany and the Netherlands, October to November 2011, Eurosurveillance 19(1):pii=20665. } \keyword{datasets} surveillance/man/stK.Rd0000644000175100001440000001161012707657706014607 0ustar hornikusers\name{stK} \alias{stKtest} \alias{plot.stKtest} \title{ Diggle et al (1995) K-function test for space-time clustering } \description{ The function \code{stKtest} wraps functions in package \pkg{splancs} to perform the K-function based Monte Carlo permutation test for space-time clustering (Diggle et al, 1995) for \code{"epidataCS"}. The implementation is due to Meyer et al. (2016). } \usage{ stKtest(object, eps.s = NULL, eps.t = NULL, B = 199, cores = 1, seed = NULL, poly = object$W) \method{plot}{stKtest}(x, which = c("D", "R", "MC"), args.D = list(), args.D0 = args.D, args.R = list(), args.MC = list(), mfrow = sort(n2mfrow(length(which))), ...) } \arguments{ \item{object}{an object of class \code{"epidataCS"}.} \item{eps.s, eps.t}{ numeric vectors defining the spatial and temporal grids of critical distances over which to evaluate the test. The default (\code{NULL}) uses equidistant values from 0 to the smallest \code{eps.s}/\code{eps.t} value in \code{object$events}, but not larger than half the observed spatial/temporal domain. } \item{B}{the number of permutations.} \item{cores}{ the number of parallel processes over which to distribute the requested number of permutations. } \item{seed}{ argument for \code{\link{set.seed}} to initialize the random number generator such that results become reproducible (also if \code{cores > 1}, see \code{\link{plapply}}). } \item{poly}{ the polygonal observation region of the events (as an object handled by \code{\link{xylist}}). The default \code{object$W} might not work since package \pkg{splancs} does not support multi-polygons. In this case, the \code{poly} argument can be used to specify a substitute. } \item{x}{an \code{"stKtest"}.} \item{which}{ a character vector indicating which diagnostic plots to produce. The full set is \code{c("D", "D0", "R", "MC")}. The special value \code{which = "stdiagn"} means to call the associated \pkg{splancs} function \code{\link[splancs]{stdiagn}}. } \item{args.D,args.D0,args.R,args.MC}{ argument lists for the plot functions \code{\link{persp}} (for \code{"D"} and \code{"D0"}), \code{\link{plot.default}} (\code{"R"}), and \code{\link[MASS]{truehist}} (\code{"MC"}), respectively, to modify the default settings. Ignored if \code{which = "stdiagn"}. } \item{mfrow}{ \code{\link{par}}-setting to layout the plots. Ignored for \code{which = "stdiagn"} and if set to \code{NULL}. } \item{\dots}{ignored (argument of the generic).} } \value{ an object of class \code{"stKtest"} (inheriting from \code{"htest"}), which is a list with the following components: \item{method}{a character string indicating the type of test performed.} \item{data.name}{a character string naming the supplied \code{object}.} \item{statistic}{the sum \eqn{U} of the standardized residuals \eqn{R(s,t)}.} \item{parameter}{the number \code{B} of permutations.} \item{p.value}{the p-value for the test.} \item{pts}{the coordinate matrix of the event locations (for \code{\link[splancs]{stdiagn}}.} \item{stK}{the estimated K-function as returned by \code{\link[splancs]{stkhat}}.} \item{seD}{the standard error of the estimated \eqn{D(s,t)} as returned by \code{\link[splancs]{stsecal}}.} \item{mctest}{the observed and permutation values of the test statistic as returned by \code{\link[splancs]{stmctest}}.} The \code{plot}-method invisibly returns \code{NULL}. } \references{ Diggle, P. J.; Chetwynd, A. G.; H\enc{ä}{ae}ggkvist, R. and Morris, S. E. (1995): Second-order analysis of space-time clustering \emph{Statistical Methods in Medical Research}, \bold{4}, 124-136. Meyer, S., Warnke, I., R\enc{ö}{oe}ssler, W. and Held, L. (2016): Model-based testing for space-time interaction using point processes: An application to psychiatric hospital admissions in an urban area. \emph{Spatial and Spatio-temporal Epidemiology}, \bold{17}, 15-25. \doi{10.1016/j.sste.2016.03.002}. Eprint: \url{http://arxiv.org/abs/1512.09052}. } \author{ Sebastian Meyer } \seealso{ the simple \code{\link{knox}} test and function \code{\link{epitest}} for testing \code{"\link{twinstim}"} models. } \examples{ if (requireNamespace("splancs")) { data("imdepi") imdepiB <- subset(imdepi, type == "B") mainpoly <- coordinates(imdepiB$W@polygons[[1]]@Polygons[[5]]) if (surveillance.options("allExamples")) { SGRID <- c(0, 10, 25, 50, 75, 100, 150, 200) TGRID <- c(0, 7, 14, 21, 28) B <- 99 CORES <- 2 } else { # dummy settings for fast CRAN checks SGRID <- c(0, 50) TGRID <- c(0, 30) B <- 9 CORES <- 1 } imdBstKtest <- stKtest(imdepiB, eps.s = SGRID, eps.t = TGRID, B = B, cores = CORES, seed = 1, poly = list(mainpoly)) print(imdBstKtest) plot(imdBstKtest) } } \keyword{htest} surveillance/man/aggregate.disProg.Rd0000644000175100001440000000117113122471774017372 0ustar hornikusers\name{aggregate.disProg} \alias{aggregate.disProg} \title{Aggregate the observed counts} \description{ Aggregates the observed counts for a multivariate \code{disProgObj} over the units. Future versions of \code{surveillance} will also allow for time aggregations etc. } \usage{ \method{aggregate}{disProg}(x,\dots) } \arguments{ \item{x}{Object of class \code{disProg}} \item{\dots}{not used at the moment} } \value{\item{x}{univariate \code{disProg} object with aggregated counts and respective states for each time point.} } \keyword{hplot} \examples{ data(ha) plot(aggregate(ha)) } surveillance/man/sts_ggplot.Rd0000644000175100001440000000424613231565100016215 0ustar hornikusers\name{sts_ggplot} \alias{autoplot.sts} \title{ Time-Series Plots for \code{"sts"} Objects Using \pkg{ggplot2} } \description{ A simple \CRANpkg{ggplot2} variant of \code{\link{stsplot_time}}, based on a \dQuote{tidy} version of the \code{"sts"} object via \code{\link{tidy.sts}}. } \usage{ autoplot.sts(object, population = FALSE, units = NULL, as.one = FALSE, scales = "fixed", ...) } \arguments{ \item{object}{an object of class \code{"\linkS4class{sts}"}.} \item{population}{logical indicating whether \code{observed(object)} should be divided by \code{population(object)}. The \code{population} argument can also be a scalar, which is used to scale the denominator \code{population(object)}, i.e., \code{observed(object)} is divided by \code{population(object) / population}. For instance, if \code{population(object)} contains raw population numbers, \code{population = 1000} could be used to plot the incidence per 1000 inhabitants.} \item{units}{optional integer or character vector to select the units (=columns of \code{object}) to plot. The default (\code{NULL}) is to plot all time series.} \item{as.one}{logical indicating if all time series should be plotted in one panel with \code{\link[ggplot2]{geom_line}}. By default, the time series are plotted in separate panels (using \code{\link[ggplot2]{geom_bar}}).} \item{scales}{passed to \code{\link[ggplot2]{facet_wrap}} (for \code{as.one=FALSE}). By default, all panels use a common \code{ylim} (and \code{xlim}).} \item{\dots}{unused (argument of the generic).} } \value{ a \code{"ggplot"} object. } \author{ Sebastian Meyer } \seealso{ \code{\link{stsplot_time}} for the traditional plots. } \examples{ if (require("ggplot2")) { ## compare traditional plot() with ggplot2-based autoplot() data("measlesDE") plot(measlesDE) autoplot(measlesDE) ## weekly incidence: population(measlesDE) gives population fractions, ## which we need to multiply by the total population autoplot(measlesDE, population = 1000000/82314906) + ylab("Weekly incidence [per 1 000 000 inhabitants]") } } \keyword{hplot} \keyword{ts}

Iv¸8Ú¡|ƒÀNa™wæ T6å:ò\ÃeMjjæ1FóÖ·Crèºù9¶ uíiEOˆ÷Ø^&dól'«o'0¨2 üÁ›Øˆß5T›T1Ö¿ÀÜ4µÿPõ4¶I”8k¾Ýì38¾á¿k¸* Òÿ…nZ-¿:˜£Ìò¯ø!h¹²'Àæ‹OT»î¨X_¿b[M§ŸXc%‡¤5›¡ÏŒ„výÈoÃX'·†YÕIõÔì@x©Îfÿ‚ ®œUЀ֡+¡]•ã!6Ò=++])‚IÑ!tO¡|¡F¡™D>—$Ÿáöª¨:µƒ´Å~ @·¼,ÃV á»öѯ‘ß3§™t\«Q³«ÅÈiŽGÕp}5ù Y-cõ]ÇI×&‰PÜn—õ…nKR,¨¸¶c F†‘†™¸èç- Høóª°åA”¨oï'Æ({ˆÃDõÖìTPè‡øB€äờًÄ´x`«&j)•Žub‹¯‰w¾(æz“.Që¤ FX®U™Ö4&|`{гÔjÞ%ä!Nš¥ãÀè¹*Ú¡8!&Ð*‹#¸ò6X[S­þ!YïõïºØLUä¥NˆhrVŽª‚òÂãwWÖ8àchÁo{Guf ç:ç´Ð¢Ò-ZÕH1¾æm¸èZ½1½eœ¡Ëá‹‚Š([þœ'vÁù–8ø;^¹Pi)/w0sˆ”>ËKÛÈùIgí3ÂÅìÐv¶ !3`Æ·E¤(…Dê%<>¥Ý9ÉÃ8àÌR±ëÐ’/Þ {Å ÆÙ̘# ÊX,—Ù÷ã\Õ º”©H—Ë.k´¯]Y\$Ã]Z‰o7Kò™Yìê´Ž|I<ö}pkE±£dvä½l¢EVæS¡¬Ÿf³¤Óüíöø¯ø*& @-Ò.°û›—Ë€¥Üîsø¥ÊÐBøÏZDê1ží(§hõãô—Ë“—”ãc|Ÿ ­ø¦l:¢w %3øbL‘wåÿ=(WE#Ó­8Ìl‘Ôó˜–‹œ›‡ãy L¤˜!_´S•¤ïå*DØÍ>0UÁøì.jÁ8ÛÄ9é cà˜!éÖ¡cZ$Ì#·£p¼]õ™•@Ä}KPHÔo/ÆQî€ØÑñE×,«ÝYOJ)[u”âz¹OýÞLŒsÊ`Z¯7 l%èWïã =ÜŽ| ƒTŸcýö¬iœvr*Lá±fìäd¹ÑïÒd™H'í±‰›:²´À[¨ UR@^yyˆ—DйC^4à¶?¹€ÏÖÊÂó¶&0ßÛ¼­Œ'Àó5PÍcîÑ Àò›ôÓð+I¹ïF³` þõÞØE`Ip6íö¼3νOÚÁä>2í Ø:í€2~h.¤Uš,ûZʱž,³øZÅ—;E\'ƒäè ÂfX¦‡:LŽ©ÀÙéüOµÈ_ûá KvôЧ†‰L˂Ҩ•‡}ÉþCûúZ°PØNÅÊr=’L™­äÆ\Å+>iÔ½´E˜dlç›w¨¼/Ãc^•áM5 Pª/äú ²EŽ' 1;È \~0ª™¦ÊË}6,Ž}OúPaIa)äð4‰ & ²Èû¾ \aTÁa©p$ë“i’‘HàŒÓâè}èG>+HÛôYK‚‚XNÈiö~Ê×< •Kñþ_o³ž#Ãåu±SvK‰Dñ.ú˜Yôã÷Cß<ü´ Ëð7e¸/÷eø²K³Žú >µœ ­ q.d1ñ¼¼ç‹2üÏ2ümß^눆Rñ&Ÿ Ï+ê§Üßû2<–áU¨^/R¥›„ÂøÐw#II’DUÞ„|ÎcÕÉyïóU ìKã5ÈÉ6¾/Á¤¥Îîhcg£qÑÊÉã:¨>KZ©ÔÙ¦ ®¢*M>ãU4µ½&Tt¥ª¿)ây_†Â”ì#&f^ — ¨¹—Îbb^Ü|ÕˆÔÓáþGÞ8ê©"D!“˜ûy•‚p–ïŠÈßÀ’¡w£+B*”¸9+Vªùœ-e!VÉß×|¤¤mÔpÏÞ£lºË¸°ä"ó-Á¡^{,CA™eø]wÂXeÓ%'‡ÔŠ™²m?ßbLnvójÒ Kÿ&^d™(m9–Ô…ê"G‹¶«Åbö ˜o}YTÖû2êíUAù›2ü´ …§å‰f¢QÓ úqá]v>‰ûý¬»»?–áßÊpÀ×ÑŸ9ÅŠ¯•ºyÆpl¤"-~_†ï«Ô”¥¶ÞwÜäœÞ^ˆ‰Ù:e¼äŬª )¯5ðãÿÀ¯ÀRÇ’^Ùtl˜KÁÏ?Ÿ·éœ*Bt•ŽÞ¬NÙåÅb|ÏÕŸµ³@-)Ôá«£*ÍÙûݽA.]ºˆ';CHÉni±2ÔIDçs*JMˆ'͇R‘ÌÈÔ“ጆC‰ÓªvåUa"e(Î7}*ÊÒÃìmŠ#„*¸¦ÇGÆ#ËÉ0ƘLvVaÈà\I<]êð'$™¼>¢Zø¸ÄvÞÕE± FrN\À¿ÀËå43;ô…N)-ÂŽiA¯¤Pe´fŽñn©¦¨Â^†Á0:r1‰Ó<ƒ¤M(ý>_'W8žÌ¯…uR§qòN:[I©ß|,ªúJ‘-$Hç‹Ì»Ð¥y.c2ié(<Ã)SÛ‚‰]û|š%Ga9Iʳ2aû˜b" Ýzp’ÚoªlÜoûÒˆ¢£6k8ë(¥ÿ;(iª´„—ü3»QÅeŠÉrjÐÏðS[§„¿.‰yU9ðwñfÕ +º¢ðì:.Ë&xݧ$ L9„Õ¬Ì`®„ÕP°¤3ëV€Ðæâ©¼ x7š­?+¿fº­Ó¡Ó&ÂÓ ÎX°¨d.Œ&a;© Ñ[ÜÒý…@ëNš3”¨ðR«ik5ŽLq÷}‰›ÿÞö˜¸ è€2ÿû¦ŒuNe¨ÊЖá'˜å‹a…YNøû¶o³!_+¶El–ÃyfØoàø^¹×MIxêJõÓ&u :Y¡ÝFZÞg˜ ’„ŒaQÞÍ#cê°œiÈd¨ä\Ó£§…íÏkU À¥”!ÙzÙ\£ QÓ05¬f5Ýöª¿›¦ÏÐeŒHµ¨gûËAÏÿ Tð¶Ä‚š´î&&e hÉÁ<5å§c þ >e,òk›°Eâç'†óœyœÖ®;R7 zDžŸÂôx $šëÆÊY—q~BÈÏQ¬ç£ æÇ5k‘A;Ê–ûCâ2ñP¬.ʾK§ZØsz"ɾ˹*®yRÈÁeéìý òMŽBF¡®9Žtš‘G5U¿ñ~†a¬¦ cÊÑó¢fÅøM ‘S;öΊNâ L»êJ7\´aÔÐ8xoïžQ@ÙQÕÞnÂ3V¦q&™IV³Oâw©Ú§9Ñh¤– ½ ¨\›m`ÊËl-t¼ èý9_$6öð~èmn#_"Œ&ì«ïºÞf0KìÒÅÛ(õïcCc è;í;–à*™*¢?sбn/ÅÊP´âÕLÜ= !½_šäüYÖáDË€ä÷_7’Éô²µy\IÄY§Ö•` 8'NñüɼÓ@GÀðŸZj‡8*`Ør«¢l—$pJæÆm`–)ìÏëîã¬x@Ñ\êˆc›t{¸1’a_ÂfE„2ñ†Â×"QzR¸#É Ö‰Nš¹1+£• gņÀ™¾¹§À®éûYPò·ÏŸýõ÷äwãüÍ¢©¿¶`f»pBiš#·àÿ 3¶II2àÃR”“…¨€:©?¶‰ÂŒê¦ÙuóOdTÖí&S¸·}Š<ø^´§~ßãbBª«Ž[7"ü8xbœT9[¿@zᚪ±p¦þÔ ãÁÉÕìø/JècQåí‹^[}ðþN˜rÇ7[aÖ•ÅezxÛm£×xúZq¥zÓ¤­r5‰š­îÔW‘ZŠ•¬ ߆; |Äm+°81ÅEÏa‡E}o–ò\òVMÔL:A³|Z`gMoj~Áª‰öé8Â}TÖÍ ðA›Â˜*ì\ª´ýš±¶);höéåó £*x¼ué­J\ÐUCûš0ÙMt©z¥HIEgPmjüeÝÙtÝz[}!AE*R=)ßãZœéZhÿ̹Oê]ê"uñuÊð¦ Ev¤HKþ¶ º»Ã¾ëÊÛ¹nM~Ñ¥5XVN4~i•ÎþOW™âÒä’ ­‚GŽ_ÎFÀ²ŒIW2ááÅŒ,JÞ51`‚™q‘Ì ³SøMƒ^—«ôºà†^õÞc?ðcXC+ÃïZµ,¹£m šš:ƒ¾-Š…çk2Uv•pKT³Cc",‹ æ;©Ø-~ú²˜œZ=³4±?J®j"ot¿'Ë%,eÈçúV(èÞT²*ÅBf ±É4y3Õ Ëðšß‡V±ì.!ý4r=‘nÁíIÙ¦p wÈ–ä…ãç,3%éW6‘êYlUCº]-0’ÍÌŸA±&|¯ªéßõ\’„–’ù)üè/K“ßÌZû’ªðïx;¨¿½¿ƒ‰Ñä’àÏh¹„4ëZÜÄчGÐé-Ÿ]kã¹q‘×u¬yORU^t#7M?ï^º¿Ï™= ˆ¹R!M"L!œR‡25@""¼VÂïõÐ}ìØOI¦sÎÕ {üzAÛ Ë]ËkyÜÖúLÕÿŒÄQíel]ÕÚ./än|vRŽ«‹«øCZ›Oôƒ_šPb>¯tÑ·µæÔ8SÞ®làPºSðdlØ Ú~/ôûÓ|©ã:\ƒB4<ÄŸªe|J£Œ—Þ_Uïä Æ' QYÓËçÒý¾&oñŦžÍ ¸cxbmtŠÙãraR︫([éŸüÈOb:Þ*A{D7 %aªÞƒ‚Ná±8ñy‡ø$|¡ß&—?Hh—]8RÖ,*½ñéÛ 2†³N¢D!ä4}[ _.ÛÉUmýr)WUûŒ®uöåÊ›“v"!—|ÿOkœÌ"K;ãZ;HcK³Y:@÷ËWƒhêHYèCw<Û-œ/:mbÙk›~rk³AÒi)™Çꔹ…3lÝR½Îà^Î{ê3lšñý¯—?ÀÉïÓÑ ªÃ …Ý@U Wâ„Å—/ÛÝòªØŽBä~1x¸™^·€Šîe‚0¿à1A$®?nG·ÞA¾ôX,H¯¯Õ¨A¤ðެC}ÅeÉl“`ó7ýDbÒù¦âKפ§ÝŰ3ÆôòûŽJá!Ò_ˆüÛ~òÖ'ÚÚ‚zš¬ÆÝ5mœdŸÄÛ²›º}YâD6µ#¯­LuÕAZÒ“ØÍŠ?{ hO{^¿ •×/P@0v>‘ÑÔ°aÔµmÿ¤öÙÖÅu§™€¬ª­Ã×8} x— Öá·óêZ̼ò &›2Nè-!?™ƒ«`‹«}z9ªÁ2\pxÐôŒ©¢Äzù]€‡ìgfƒñqæ—ò¾ÁLöø¼åÇbr#˜ð,'Ôx†¤ªùgÊÅϸ Ž• ,ÜŠ²„IhÀB^ê*‘—fï }éÀaÃUSõåîÈ&øŠ³Mœ«Ê‚?š>«›ôîÚ!"Œ¬üÙAV›Ë˜Q†îæEÁbq#íW¶•çþNä"ÜWVi*àlíxü¨*PÒA &É­+?ç ×Ò(næu¢¬€¾ZÛ?Âãü£^·F“2\zùÈK˜Zؼå_CíÁIs1x6HÛ‘4pµíy…ózˆ¿N°«³B~R¥ŽLí/}Ó¡Þµù=Æ+ 'lƒ>úxh?Ÿë|*~ùÜy‚g'‚§©òOû‹ÐÍiR?TÍÔè®´ò¸?uúv3¾UAðoBÈ}è®ñ{n¶Ýõ6 Aô5‘3{½”•&šiøÙeÓÝ*µ4*Ö½¨¾(ÉŒˆ¾EWY,Šm>~7,ß°‘¿Æ{_~]}@UZ®Œ(> stream xœÕ}k%Ç‘Ý÷†~DCÀ·mv)ß6 íŠ2[†ÈÑ kJzfz†™îáô ÿvGDUeEæ[Q|ȆASuòT¾ã‘‘y¿¾6“½6øßòï‹·W¿ú$æë×OWæúõÕ×W–Þ^/ÿ¼x{ýÛg€È˜2USíõ³WWsV{]ìuŽyª>^?{{u 7Ͼ¬µ®»2eë!ó—WŸžnÌäk²¶œ¾GS}­ÁžÞßÜš)Öš³;}{ã-¼°õt©Ö˜lÊé @ǬI§7˜Œ‰5ÌϾÓéîááÑ–pz首9ËßžýJx “‡ÇÐJøë›ÛüTN¿y~sëò”ŒÃ’´â½Ç˜”æ2gcB9Ý} ºØ“¥’:k|*§Ç‡›[ïpÄÓKVE¤KÖÛZOnZïY]^°çä_PYj©ñô€Phc×Ú¦¾?ü·Ú~Ò2"úwÏ®þƒ ”2ÕR®£é:¸è&-9¹rýþþú/×»ÃÅF€Û©àP`ãÅ¥:™ì¯côЂÍg§g7>NÆZúâíýõ_OßÝßõô×›,fºµÄŸ6é:¹4ùdi¸ýñqº~|Åy÷øþÃŽ=*=–Z6L¶^ÇÓ䵯NÉ_ÛV¥U'BÁ„×W6èˆt+4Œì8ÕJÈûû«WWa ®ºëï 2€ÿ¿d™?ùý~æOñuš`\àÞ}¹±êÙë„£/¯†xÊd¢Æ£`'A+º3Œ‡c\‰T1Uh—Ûeç5æÎr^Ö¡*™Š`z(L*ˆ˜òTú"›:¶±†Až KP8û˜0cZ‰T1Õé¼ ‡ªià‰&N9+D:™`mÈ—gÃÞkʧó/l™/¾Å¼°ø¥ói:ÔASÅåb1v^cnXóâ6[ÌÂu¹g|]9T2èëói60© bÊ `U& „L°¾Gm^ê bªS<ŸrC™T2¥8mè dÊv ç“n`RAÄ”§p^ð6†v^cîRT*ˆ˜êäÏ ;´² B¦§Iqù-äM £VDLyrç™42Y?i‚NÅO•Ôƒ¾…u2¹8ª (;†"© d"-ûbgí½¦ÜYÒ†© de[P&DLERF& „L1HJÃÀ¤‚ ¤º 4tú€Š!ž4ê $ê…>m%RAÈ”¤4ô%Ò0ÄSah" ƒ<`V*ƒ- Ð‚ý°© dªFRúšiâI‚1ÔLÃO6NR$ºò¨â)’21ð(ä«(žOé¾b:™˜²š¥ƒˆ)MQ[bu2).¯g{¯)w™Âùdîç—B¦€¶¢Ò[y"TïÜJZFSÒå»B¦ä&¯ÙI:ˆ˜Š$ÈûVÒ0ȽSV3ƒ<Ũ’^Řòš£ƒ©:É)00© b*“ÚixŠ“þ|B÷6©B&xi”MÅ$k+šB&˜ÃU[Ñt1婞Ó8.¿ÆÜLzÅ×£bˆ,zMƒÑAÈâT4ýL!Œ¬© :ˆ˜ÀÊ?/xkãט;ù)kV¥"&0ó5«R!SŽSêר3¿‘ŠAžóìì[ÎÂ’ êÁ£aˆ }Aáêä¡B¦ †þù<Z[ú*‘‚žjÀÌ—¦1ØÊvm$„LÌüób÷Í­ƒˆ)Oþ|N÷Z°B&%ÔlMDL`ò+šŒŠA'wY3Û{¹˜üšf¦ƒˆ L~mÞë dŠ~²‚¡ÕIBDL`ôŸë&ÃRAÈ”Àè?/¸ d`,Dy2TU3t1eÜm9ûZ[Þ¶"© d*çóghì}q€á¯hœ*y*˜ýçΕ¡}TЧWÎ#Éñe^쾦Ü`ì ŠŸ@ÈãHÞ;"¦2åó"L™\DøÀ¤‚ þÌjíT1%I-®‚ 'ÜþNœŽ!°úÕþ™bû“ B&(aTüã@Ä”$ÇþȤ)ƒñ¿?÷u ñÕ÷„L%L*‘†Ažj$·Sš¼¢§“5Nðów­Aˆ¬Å";B&$W_3„LÎP\Á~™T1%îì_7÷F& „LÞIjÆÀ¤‚ˆ©Œj ­~}ÓAÈ‚¤g eRAȤhôƒIÃO’ÔŒGÁ °:TkAYr# ãQ!hIUÙ*ˆ˜ª¤l }¯‚©D]/ÑAÈEÔ<@Ä”%•£Ó²€€ 令rtãHÅO•޾n:™ln9!“³’ÆÑ·’"¦,©ÜÑ1È㽤pôcISÕµ„L!ª1 @Èö‰ qt†Í1eIåzN!SòÓùê>TNÃO• CÝT2å(©ÃøVAÈT¬ähè箆!ž,)ýèÖ0ÈSýä4q¢ƒˆ©J*ÇÐÚ*˜¼‰“ÕÖ„LÖNV«"¦<mÐAÈ伩cˆ§Â¸RÖ„L>HáCÝT23UÅÛrDLIŠGÆ€ B¦è¦¢Y':ˆ˜ŠêØ·“ B¦„˜„~9Q1È“’ЗHSÒât ò@ùUYƒK#HÁïÖ„L5Ha‡“ ¦`Œ”Ð3é bJjlâ2ÁH‚ºæV1ÄS¤ CÓ(.¿ÆÜ.H! ý ÓAÈÕ ûúhâIcH‚P"„L ,…„~†é b*‚»a>yb""„LÐfZŒâ1%-rAÇ OvRøá@¤‚ˆ©¨‘ @ÈT‚vòAÇ O5bPB?’T1%)±/‘†žh¬¹pDLy CŤb'ÉýÞz}ç5åNR0^_ ƒ<ÉI÷VŠ×”»¨7!^Ó'‡ç÷÷S•.ù±.àO6& „L%ŠÛûx?N«œ†A¼¤ï|MŠx+m¥‚ˆ)sw»x>ñ’¦Ð3é bªê© d‚ºæs¥ß{üEµçt29+6ìˤ‚ˆ)K†~ïÉÑAÈ„%TnM?"¦*úÝÜW1È¢¤6ôë½B&(Ÿ`è£IS–˜Æqù5æN^;) cˆ§JZÄP„L9êþ„LÅ ŠÄ05 ñdIè%¡B¦ê%¥b`RAÄT%¥bh%ôéþ.¶¤T¬¿c¼÷s[+i-÷ÎkÊU㙜—ô‡IS•Ô¾VèäÁß©Þ×7t ò;*ÌzØ}M¹³¤J í¢‚):é·Z9v^Sî"©}khä!-awNëäÉFR†vQAÄ”¤cL8B&øKqíëâ)ÒY€‘H!S ;¿¼¼ûr[c¤ƒ}9t1%i3¿oc„LÖI‡ú~×AÄTÔ;€Éuïÿ™àOeï_ÇO’öõ‡žSAÈœ´³ßÅsSÑîÔ1ȃ´±?”H!ðj¿“xDLIù‚,Ù›ûg'v€ˆ©HQ|üœµŽAž´(ƒ<ÕH!|}iâIÒöþÐB*˜œqR_ß÷:ˆ˜ŠvǰŽA¤ð½¾n:ˆ˜ªú»È@ÈäâNLÀîkÌí­ä)h¹w^Sî¬Æõ!Sðj\ß1Uz¹Û×ybÔÎèäIV8"¦,Dìµ®ºüóf¯îúSݹÿg÷5æ.QØÅŠ¡a&vÿÏ1åqŸëþ{¯!7þö pŸO_DLU=#p„L6JL*™pÍRì+C<`¸«uSAÈ佟ׯ›:ˆ˜ªt¿i—_c–{ç5æÝTØÌÚCS–ÂòZ9v^cîäµ~t ñT%ZO… KŽêý>@ÈT¬­§cˆG-ŽvK~ðŒvÍRÔAÄTvöüw_Cî`‚´ß9„LøR[{u1%ÉoÇåט¯ËSk¤‚ˆ©ŒN÷³[=€ÉÉéÞj´ósãåyÊz«bˆ'©‘y@ÈähïK¤aˆ§ˆ—ót–¼B¦$gûP7„LÙ>÷¾j „X’z×Ûº:™ŠS½ò@ÄTxž¸#w„L5HjBßHx¢1ª&¡bˆ'IJ‚i—_cnlï˳sï5å.’JзªB&$õ o ƒ<°Œi·S’…¾Dy‚S;ùˆ˜Š 0´®ºüóÆ ) -óÎkÌ 5Ò´C<ç¿Æ2ì![I-è%œ"¦,…õ÷ÅÑ0ÈS¼ú›„@Ÿ^ýéêë«‚?팮k#Óƒ0mEgUÔõ_®®piB}we¯ÿÿye®ež…Ä`˜$oñ›‰|KÊø„ˆ2䋨Em)ÖcLÞŒó;œ¡ÖŽÂ“‡µC­) !-`CµŽÂd]¹Z Gáɧî‹-…£ðPìPk C%ЕlW®–ÂQ Žk×-…£òÁPk GaPW®–ÂP#Ó GµŽŠóž.C­)…QÇ©C­) UL&Þ†j)å»Ñô–¥pT CK´Ž‚QŸº¶o) UM¡Ýý ÕR8Ê»¡%Z G%7´DKᨒ†–h)ÊáÅglö½e)åéG0hIà „ˆhMá(Ü¿/jMa(k3‰Ð ÕR8 wwk‡ZS8 7<»rµŽÂݺ®\-…¡è©+WKá(ÜhIjMá¨ìè\C­)…þö®\-…¡¼ë>7ÿÉߣ۴‡¬)•陣Ö† †bÚª¥p”ËC´ŽŠvhƒ–ÂQ`ðÛþ‹k CEÓuòü'ïÊÐ-…£À’I]{·Ž]¾oƒ–ÂP tÚ´&p ¨f®k–ÂQ¨´t¥j)UêÔM‡5a2>w­ÐR8ÊgÚãe¨5…£Ò|ï C­)úªï@KÃXsºmKá¨0ÿr#C­)•ʰ¢µŽª®_ÑÖ†©nþÁ¹ ÔR8*¤aEk)öh¿¢µ” å™|»¡¶Žr¾o‡-…£BîÛaKá(PSêPk CYcû–ØR8Êž%¶ŽŠqê©–ŽÉ•Nö2КÂP¸ñ×él[ Gùù¤C­)S/Å·Ž*s?C­) C‘eª¥p”ýª¶¥pTìtþ“¿/™bgdMa¨`m¿ªm)Ò3vmÐR8*Eº<¡ÖŽ‚¥Çuåj) …¿ZÖ-Û[ GÕY»rµŽJ‰¶ôjMá(ž±ë›–ÂP ´ú¾%Z GEÓkk[ GVo»/¶Žªeh‰–ÂPÙÙ¡%Z G Í]¹Z GVß·DKá¨Zû5~Ka¨Z½ëÚ¾¥phõ¶+WKá¨âz}mKa¨ ¢´t-ÑR8 ´úÔ•«¥pÈÒеDKá(Ðê}W®–²¡‚Èñrm)åKo“n)•l¿¾m)Ub¿¾m) emìmÒ-…£|í×·-…£’ï×·-…£ªïmÒ-…¡ð^À¾%Z GDít·-…£ò`o)Uë|Ka(¿Û•«¥pT¬ó-…£ò`o)U#ň2ÔšÂP£‘ƒÖŽ ƒm¾¥pTló-…¡"þ—R[ Gá/°u %câ`™o)UË|KÙ󼳂­ŸŠ_!ƒ²¶ˆb·rÔeÛˆ£ðdtíUþ%…£*Œ7>Ö†ÙÑ!8겜â¨Ë« CÁŒ<`-…£†vf-ÏPæúõÕ×WÖ\ãË?/Þ^ÿöÙÕ¯>±`%á¢Öºëg¯®ìŒ¹¶ ›4k3^㓯Ÿ½½úìäŒ 7·ý‹ÿHð‡7Ë’*üeM÷—»¹%O@D¤ 7{ö‡«ß=»úÓ•õ6ðhù·-%c©™K/ ð®H_ÃQ £Æ@†m¨5¥CEXÕB‡ZR:ž†„•›¡–ŽZ˺¡xé¶;¶ù-6>úvie²0¾¨á¡=m±xAî ÛÖF:s­¹={öÌÖÆèn-¸Œ ý|©ÅÛžLX=ÄŸáçñ¨(¢ƒç—‚Ïx*ÿ÷BŸ„Œ~*§ôÉŠÚÚ퓆Úí“ÅûäO{%cÊT ¨p|284¶Ñ½ƒ8„¹O>¾ùo ا/ðÑŸÊéõ77·øKí5gwzéÞ”âËé§ ^&jOö×7·è/Öþrƒ>Óê +OŽðŒÁæ|úоŠl8½AD®¥ÆÓ÷ȆÛñùôpƒ~ 3ù-¦fSìé9L¾ÛZm.§wP*0ç Tü[ à¾úaÎZ ¶i«íÃRB¨Ãï[¡®PsC;èb¨ù-ÒÕRÒéŽÇCA¾ÇvvÆåÓGs™ -f·7P-S~¬ÅX[ NŸ_}RºÑp‹Ûü†ö-ÖºçúÙK€£Ö"ÚfÎ7Œ">ãX"ü‹¥aÇ.ÅÞPlp(‹)ÙylcŒ}«€è-òSñàDß4µBÆÓç¬×Ù’*ð§L^ òDÏÆÔ¥ô(×¥£¿«Ã2X/סu4lÂOø-k¢-4®°ž0nNsª! 5jCéîÃ\çR/Ø(yš¡xçFsÅ»¹xóÜü~!³kù©pm|{chî§ ­Ô•°õO¸P,V16§ðK ?ÛÕ†}‹Þ ­GõF›ÚÑ,ÃbÃdÁdTjŠyùL¦¥qq ]³cÕam Z„rVöƒ—††+¨ä·¡ñH㨠ëG{|Úï·Ç÷Ûã·"à¥8¢ŒoÚˆú¨Ÿ{· ’ƒ®]@&¢/ôÍ6× ÙlX[;{XLî>,sºtK1Ö çâÌNÃd. Ê®ö äȈgÿýêÙúìô_on£ótÏén›Üo¶9§íñ~{üz{üf{¼þzÚž·Çç|JJßx¿=~+^ÊߘÙ@½X Do¶Ç·Ûã·Çûíñ»íñÝöø¸=¾ß?l½Ùž?ó=ߟÄ/3âoEÀKö¹“Xѧ‹¸Ôn8¢0¶ÙE¿æŸÔ‚ã¤ú°=~´=þR<‰€¥áw(ž~$Ûð,ÍóÛµmni–åe&ÿù‰‰Aš´¦X ¶iýf5þÌbñ?RÞ‘]këUÆá©ÇúÃDœÇS¥º„…õuÐ\P´”Ì+À½ zË,<|…~«.6“-ÀLKî7eW 5~;˜Ô-ÿ3ÁwÊÒ»ŽŠÝÝ,"@™ér>Îå–#˜$}DAUam픺¥ ÀlìÅb×as+ùË"8£žæ/©w¼˜_0ùö03'°FE÷›š-”Ê’&wŸ˜¡Ñrõ0×:àô8·a4JÔËwV8úr&ñŒãÊãyëÚ“HÔÇú#mÁSWŽ¾Ú‹²ËHe|}&©‰?ùöÿ"5Árûç¨íÓ}ÚZð#TÙQ­ïÓFøz¢)À2£=©|¯°÷ X•iS¦¡)Ðeèm¤p•ä/°s@0|p j|º{Ý—¨«2LâN”£©V}ZÿßûQcËñ(/xqXi* ,þMÛjæ4™‹S¼~Ù£"Ûx¬Ôt0p H6äÿ¢Ù³êÃȆ'Ûé¯#biö'lÊM¸ ¤÷¾œS“E£ $0wÊ<¤ h>¬c{^BúI ÃÂâ¯ßàThÉ(Zaâ–‹ƒñN1@_ÍŸÎP60²â k¼Újè˜Í¦ö­’†>€+,XkåÄá‹ qíÒ¿ß4kú[oÙèÇ®u¦þcÆhäT³®†Ÿà@ ´\iE¬Ø¹Tk\—îúŽi=ýg¦ò3çë°y‚ Â._³õ^¹ÞKoÀ‡V{i­Ã™am=9¿jŒn¶¬Ñ´p»8·óo—^q`ìÜ=}«˜'‰~z{÷ðÅ»oÞÜ}øb^öá3vñFæ÷ó ‰ã—÷7”ˆž„Á?|~¿ñ¼xs÷´**ÃÊé,ºÏšFñ„1)£x_ŸdÕâvÍy‹ý›e]~FCpv!}N‹$,Ù…kCdhÚQƒ%JÓl6+°-ç8sjêFJ\E¡×&ú”ù×îž“ƒÆZZ…= ©N:Ó·zGÍÓV‚ö©^óh&ë6m—Ê [¹¹],ÙÍ/ç‚ÇY¨QP™¸›Q$(1¹ó’½Ù*FÌš÷ÛM±ÏdѺõ°^4 6všƒt;÷Ëh$]v¿8Û$ ïÛ’Õ™/‡•;¼[¢S¯>,í`ꬮ-egCîqPAæ¾µ´æ7OË%5¦eœ¥XõeGMkª¶ÞGBíœ*¨n‘VL%&Èí6æIéy6EXž{W·/Þ-ƒ¹Øµx[üñ—dºÙEÊoîMަ ÜÏY|=ÙD8\e¯äžv÷0“@£2Õˆ7äËæÚáNÛu‚V bK¼¨ò_š4ð–‰5á8 ä‰þ×ÜÕ/Þs•ÿ›ap-jÁÓ\€öA7‘—Æ)¨dçéÌòàÏ_ÑGªÍ½‹)°^|PP9`Ý„!¹ø»I¥ç¹µ@½#ÍCü±¦ºéç¯D«›ù¯¾^ÝAñô_¶Ç¸œ8g£BÈMX°¦^œþ¾ó3ž·Íb•±–Æ!AÏš[?SÒ ö÷öM†yTz7÷ :žƒ­§IÄÛ2ɉ4.—Õšµà%EO³×'\pÏ©¾å3: [‹üËf3Ï3ÓïåµFXöål- u^ “1PÆËk!NëäæˆŽ\W4WóýœXÈ,C†äC¿Âd¡ñ°-š¯Åˆa®ùZ™[Hö¦½Ø?ßÃeF{ü—í‘9©˜|‘Ûg-ÈAî*Yê%O!‹ã75yôlãÿd{üóöø;¹'Ý#ȱBMoÂé¶ À“F+î<¹n£êaΖ¬[º5ÎÏ[‡~³°ņ5ŠbèwòºŒÃkbqÆí­ý:7æ§×ýÐéœð·è‚KÄ'7-®U^\—MÃMç›°£W>[×M‘£e¬Ý:«ÁðG/[ÿáB›Q|1¸›‹i -– ò¼mGnßà½õf3¸/â‡Lü\ëÚðÜÒãWÛãKqz|/N¥#¾ßÿ>sÑ"3„N¶Ðo³×ÓÇm£“ |&£ÙîÛEVS÷È\Lláv*.ë ¸r×FDè&Ƭúà-cq˜˜ÝÜIx1V?¥¢6íÏæÅå7‘ëYv©Ó`H¬Á²eKçc :†ÌÄ˳\K¯EŒ›8læíi'u/ÆÚÄü m^öÛÁ¤Ö†‰ õÁ;>q?M![@k`v±¸ô.ÖuŸÞôŠÜ<£É[Êšìì+/f¾@þ=ÑâêôS¦óx€·sAqîWÉ+uVlÞµß^Õò-Ê%¨wæòãÚôS|Ò{#È¡ ÂÚÍ/7…òn{dÛ1L%ýx{”7Þ^ UüÅѰ¹=oÖª6çž0†œ+mž¶îzGM”I´»/˜hßo š½Þ V`óë•øBœ€²„¿ûSÂÐ#fÎ6b¼Ê» B ÐçÛ$dA;÷èΤË_HÔ6ù.ê™[A^ÏÜh˜ DÇg è¹¼ ƒ?„ö°Y³úÊ=m˧` }0è5£RÊËôÈ­ÑË›'.ƒ½ëËÝËÍÈ[ü.`OÏ!<ÁØØ?Ђ5ס²§KR…MKU¿ðôz3ew^ŠÊ-ú§}8æ²!#ãÜLÁÑ×m-s ªÝ¬½Uk콆ôÃÕÆ]Ð%1`ÂáݬË‘·V¾óõ›LÀGFÂÆó7Ûg:yм‹lr^·1 ºo7ÉÆÊÏcÚžc· #—ñÙa™`*îìë!Ý=Ì;)¹•º]MÂÚc§ðÁ¸­’½°Y¿ÖÏvj´råB‰eûrœ4À‘mýJM¿YöÌs€V/Ð í(íæíÊëŒÝl¿¹WËHucx«£¸™0‡)’[ñi&@Cål›knºä»e·¶ö¾.†àÃümX,k?‰ZŠÌ…ÊíZ»‹iP˜ð27¾MÄGÅÝß›ìêÂŒæ\ ‡=ç¢aväz3 Õ6Ð5¡*ø[ZÆ)ñzEàh¥\T:†ù;´Yú:¬w²pz¾uO/±ò¾þ#¶ÿñüLMÜmóNŠx1P,è/¶w bgæÁ,­æ/0·I‚öžKf–9p‹Ìt®»Ó6œî¸¥õàvZÑèÂß3vÐР mô9à·«M?lw"ÇâÞd7ˆœ9îFç.Nä]¬úûy*žf6˜Œ½î5‡A€¬g»J[DÀBÇãŠ;Si¢! 6ÄyÜ2LÝÊþ¸&ªTç“|† V̧¡#èR‹Ð… \pÏXã…?FvàV^.Ö™FÕ¯å[U?9†9eÞÌØ¼l«!ˆ—³®žêDÒOüd¶¦Í´ÅÛw1¶iþØ@H{WƒÒLh\7f¹±”“».K%²ÿ[*s¹ÌËCÍ4[—øö"Æ·û¹_q&¬ÿ®Ÿ;wï—èz[ÖÍ« x2«© —\åÒHï¦J{ü7>AøèC×Ï÷"tO—›½z‹¡F»a·x¡s<óC`ª¯ADJÊü¸Åññ=¬dvP“1˜ƒ:.žs]­«>hÕT†ˆi¶#†óâ> `¾½:Ù›g_þØ(Ugé²FG;§`ÇþôßÎCïƒsÃ^'KCÝí²V¹ÿ’°%só ÿÌRGÜÛ/æÔ´Ï!@|wûÅAë~Qôºq±¨±ÛPm.åqw´$¸»¼wÒtá†mã1’ G?î6s[}öuÁ·ë±@ðKÁ… f>_VÈWÛvix³Zæ-læRÁQ°å蔥;¥JÜÙ@¶ÛYÌ®·® î ´äFëlÚÓyvÙŒûv r¿ŸËÌ¥ˆ\¾yMÐÒû“ÏâQg[ëuØïÍí×QAq¬²£’޵ÊãÜûäBëÊÔ··£Õ¶‹”YkrѼÜ;óBV,*}+ð77ýŠfñÊõµW;pñ³l³ó}³QiOÄàmzg;;ËË}?´Ï¢Ì XóÏg°ÏGî×}šÃÔËtv~jÖLȦýf{|¿=Êço™¦)ŸfêåÃöøB$c *3i™¡+eâ'˜âËmp¦S^ No,ä-ò,T‘E]},Jâ'äˆ(öaVÈ ^Xå\fä’ÇÜ~3ïB’ÓÍ4¾ÀÞɃÿû¶VIãC}Ó«pÞxbaa¬‡ØÏƒY]Å…¬ž\a:FGöû˜Š>Ë ÎÀîä#ßàܸ_Î$·ßuïy‹äœu5À÷z·_‘}´<8ó,Ø¿Ô äÎ¥p¯ËÎ-y‰ñ™=ýøCÕ\;VQ)´áKljmíýzw``¸‡¯loµÍµïÅI|/8CÒù­ÿOLb":ÿ7íÝ ÛÙ¤âKbrâý͆Ì:Ë|ÂÐ?«¼½.¾µnVßb¡½WY]ÏGxqC»ÙFãå·ÄéÕ6¢q¿"еĎÜì;5ê±×QÖRïÞgsƒÉﳡ¦A»ånܬÃKWmÍ;çaÎÂXF£ÐÛ: sàaÞvŒ¸¢Ó̆ÁYYGgžoÔýt‹ž4Ûr?yëqöÿD‹MA›=磛H0Ì#Z/ô%ó¿Ë*±v"dÐ2jè—…1ùÿ¿sÃþÇöøÍxä@D›êäbsÌŒ1u>™8BÜæéÂfcBì­­n;SœÒ/—±^ËéõfÞÍLÇÏW„ïÎÏÍå %ð8I†å»IÛ¹v6fóvµÔAåägâÆ¡7py³^d53Ñ¡Þ4³/#zßß=1o ¦ûÝt.™ vÜ n;n{ÈËÖè¡ã«ó&áÅ“7‡–çyW¯»›ì‡ž$[¶*ù.âݶ¹øjèŽE/»°A7Úó¸²tÛìãg·zÌ{ŠwK¡‚¹Ø4Ë^£³Óf_-{Šƒ›pÝl†ô1ÓÏÎ]{4ôû츘ù‰§Þ#^ ¯+F±Dºåðä~ÂJŽ?SæCå|ŸÇΗëÿ¿ñãendstream endobj 614 0 obj << /Filter /FlateDecode /Length 23119 >> stream xœÍ½Ë¯%IræmSZJ;-.tSè:þ戆’#Bû Ý\$«²ª••ͪj6³Ð¿.7‹ãnŸÅ­<îW£‰FûËs¾ÏÝÃãåfñ/OÛÍ=môÿ÷ÿ~ùñÍÏóÓ7?¼Ùž¾yó/oÿëÓý?_~|ú«wíÎ…†nu«îéÝ×oŽßº'W­÷”c¾UŸÞ}|ó«çÿøv»ùÍm[|~ÿöŸÞýÝo.ìûÓÛ-”mËåéÝWožÿï·ï~÷†¾K¬Oã?ýêùÃÛö]_‹éùÛ&··/Õýøè6Ÿ }Ã{ îù— —öXŸßÓ\M5<$…½ÖRÒó§ï¨E59WžF¿Ûo¹æçßèVjtÅ=ÿ–¾žkûëù{ú²óÞ…çß_.[h.í ±Öœ÷ç/ßîùÖÔêóoÞî©™ïþùg+Fë÷÷ï¶vþfPøÐ¾œwµv[JGËü­ðøÝþÛ³Ã_’U¬±4¡³Ã}Ýû‡OßÿøƒôŽú×F'ÝRûzŽí¿Ô ­ ZnåVÂÙAòièéûoÚh…zK¥ý¦y„6&·ÛLk_ùþۯ߄[Øk›?µÝ«m¼§ß ¿þÅß¾ù—§cöûþK/¾ïćv:´ÛþL$î·´ ùö‚üæÍ/Ÿþá΃´ËßÚÆÏ{o×猵(“xK^ãÆ£·å[Û´WÒ©›'Q¶/·X®ˆmP¹¥åPšDÚNÐŽmã@ é¾·YôÂÌøœ±en1jc bèïÅkQ&ù“6"ÆYFk¡ÇJ”HnW§Œ‘tcâ~µÇZ”‰¿E½—!ãÆÃë&»–È0µs¢OÄ6¨Q–Bi2©· ';ñ­2ˆó›^‹){;Õ(c$ݘøòî­E™4½—!ã(£5ßc-ʤܠÈmÃËS]i S¤žéHº/q;ÓôÕ¢L]B(c bÜx]í°e’o¾hc bœo¯Üµµò@ÎÙ·k ﯶ‡¹éíj°]åú‡Ò'IM‹Šíéúï‚\4ÈËàNO eÒ®*Ç ƒ@lÞ'„ÖdPÛ­¶"¾UoèîÜø+铌£íöÛž.ˆmñÕ=D™ÄÛ®vICÄ8Þì@<ê«4™´[½á‘ˆoã«g7%²·uÌ5¤O«=Ö¢LB»¥ÕÆ@ĸÝZ¹×íóZú$ã k7´»ÍÉ2† ã0jðíÎ^]XÒ}‰—Õ ¯E™ø›Ó3‰{¼ùkQ&éævm DŒ_½}Q&µÝkc b\e´z¬D‰„ý¶é©Ž¤7îìTÐX‹2i÷üÚW±2VóýUš Êm‹Úˆø6¾z“¢DbûÞ—tcâËSZ‹2 ·MOi$bܸÒ3T =áò)æÛ毈mP–Q\ %ʤÞjÑ#¤§muÃkE"©µ[ï`HÄÕËà-^Ђô@†ÑN±)_Û Æ—w-ʤܪÞˆq‘QœßðZ”Hv·ª5Hº1q{ó6µ ´ô@†ÏáV÷+bdçGB‹2iÑ»1ηåKW­I¤lm•/’îÛx]]§Q&žV†•11n|uD™¤[Ñ'$bœd´z¬D™Ô›ÞÂĶáÕu ­I î·¢Ï2Hº/ñÕu eÒ®´õ¥"1¦kòÕkQ&å–õ@#ãr³ÛwêA+Ÿd¸#›»eAL{˜¯ÎtenYÍtCÄ8È Noze’oYûj ¶ ¯®GhMn»eu21¤û_½Q&~ 6}{Aĸq;ÓgÎb =óœ\âÈš%¶A鶼ݵ&“ ¡.CÄ·Ž¡®É-¯E‰ìgÈînŒ¤_½IQ&bZ†ˆq”Àà|µ( Íu_ ĶÈX-ôwÔ$à´ é¾ÄíºÃ̱¤O2I=ì,¹hP!œ-Ê$C Ë1Î\Ýçµô@†=<‚Ž–Øe×Åk þxiï·ÖÕ+bD|uID™xˆ"Æ~Œ/„–ÈØï#i‰mÐêú6(2)66D\« áü®¡E‰„3y7FÒ‰/÷X‹2 :l‰‡1B<Ùc-ÊD‚ŽÝW±ÍWaÚGmGMqƒð°!Ý—øjì D™œ!Çn DŒ½6ç;¬E™$"ÆéöºMPȰÇ#i‰mO]Ò‚(‘´CxØnL|y¦kQ&g0²ã(!ÏùkQ&åVôdG"Æe ÏöX‰ÉgÔñnŒ¤_žìZ”I€±!b.µS“]+d˜ÚùGZbÛ“%ä¹zq¬¥O2^y– "ÇwbDüu«* =a<Ê¿´Ä6ÈK”t~ªhQ&IG”ˆmZìjMg”²Û_•Ë8Û]%J¤îQ6¤_]%Q&²$ 㸞% ¢L „Ž ã²ÁÑFÚÎ¥s-¹O«SD™"Æa ÏõD™dH‡4DŒ3ýýšÃHŸd8¨%·AX÷Nlƒˆ¿îª¤rÔ’ódëÄ6He1NÎ -Ê$ATÙ1NcTyrNhQ&by†ˆq]N“M"ûÁcCºoãÑî3¡>ÉØI{¤à›% RYŒ+« =aæíG ÓÛ "£;Œ=4‘‚{°A’+ï¤ T¦•Z²ozMÎÛ â«7ƒ Ê$@Æ¥!bƸïäΡE™dȸ4DŒÇÄÇ•p$(Ÿdœ‘£ž–Øö„Mqõx©¥2ÌH®;qElƒük31Aú$ãù#$Èļ“‹¥1‚¼²ª Ò¯íëÍ[pÑ•)9¹Ë(Mq‡ MCº/ñÕõeuLÏ1ŽW™˜S3TKd˜ñˆnZbT.24çÚ£”?^º'ÇÑ:KL{’J \ -ýñÚþzZb$ uu„´ôÇkûÌÑ=KlƒòD\¡ ¡Ä û|I-1 "þÊ9¤¥?^Û{.vb¤r1—FHK¼¶?‚ª–Ø¥Ûò ÖdR!7Ôñ­c qm *Ä;º]ŽØ©%¦AÄíÍìÔéGKŸd<Û”HÑ=K.¤’:'O@Z”Iѹ¤ĶHúëüŒPšªƒ\RCº/ñÕuerFB»11빤 Ê$CDÐ1V©›KW`Zú$Ãü¢`›¿ ¦AÌW×s@”ÉAACÄØAÁ¹m¢L"¤“"Æéµé¤ =󘓷館©¬ÎÙ‘(,ÌÎA:©!ݘøê^¢LÄ ã0Æ '{¬E™d$j‰ç«´Ñ©m¯¥2lé}ƒH^'¦A»Jëœ -ÊÄC>©!b쥫#¡¥2ö;q„ÏÛ 4gG"A 1ïòL ãz•g:sH铌`.‡yAlƒ¼Ê -Ê$B ª!b¥«sBKd˜¾@è¯Û 1Ctv „sp™jH÷ NqÞX‹2 Ô6DŒÃÔ^š‹Zú$ãÌ @µä¢AY:³xÉÒ&@<¨–˜_>giQ&²V ãÆ—÷J-Ê$騶%bœÆh÷lĹs¬:Õ1®ëAd%’v«¶¤7žWoPA”I„ôTCÄ8ut—z¬E™`"Æå'Šñ~Ö¸@;ç3Vz7FÒ‰/Ïj-Ê$@Û1WÕv5ÀÎùŒ•vc bœ—«ê‚&‘²AüÚî[¶«ªºSGR-=á¸Yލ%¶A^:3?Z”I‚¸¶!bœ®ªíNä´ôIÆSZ¡P©Í©W5xç6L½Ak ¡îÓîÄ4‡øj,D™œqÒûfA"Æq9´ šL „´ ßrUwj:hé“ [¿lµÄ4ˆùê!D™È[5DŒÃÓžÛô ÊÒGˆm^kMnÓáhKº/ñÕ™¢L<ä­"Æ~½2/ˆ2I 6DŒÓEeÞG}„¦‹«:éÔñ­¯û‚ôIÆjß!|'¶AÄ—gºeur©%b¯jðN„–>‰êwÑç\4§\•æ}tŠ8ï ÝÔîëÝkã¾ =óWü¬´Ä6(¼2î ʯÝX¥%¶=ùªbï\ƒ2ä¢^؇ "Á˜]¨ ¤O2ÎÓà)Ò’‹ù«¬Õ©ÒÒǃc•Øæ¤õ ¿Z“A…TVCÄ·^Uø† ©¬ ½Ž;„{;1 "¾º@¢L¢NPµDŒãzå_eR ¬lˆ—«(îÔ&ÐÒ<9HíÄ4(¹õŠÀ Ê$@)bCÄ8\Õž -=±ß’C;± ÊëÅ‚A”HÞ ²lH7&¾¼hQ&g°²cU,øQc%Ê$AdÙ1NëEA”IѤ–ˆñò¥´V$R„ é®e¿Šâ>h¬E™œÉn DŒÃUñß™§LAú$Ã3¥¥p¤Ò’‹åõ¢À J¤n:×A·%¼|ר4xˆ"¾~½ò/ˆ29Î݈§åÊ¿ É¤Bª©!â[×+ÿ‚h#uÛu©%wcæ«ë Ê$BN©!b×+ÿ‚(“¢+ÿ"Û²^ùWkpJ é¾ÄW—@”I€„RCÄ8¬'”‚(“ ¥†ˆq¾H(}Ô7C\·î•iI÷Ý·« ¿3×G =ój¨îG¨ÐÛ ¿^ùD™$±"Æi½ö/ˆ2©:AØÖõQ­IÀï_3¤ûúýµ•Az ÃföGüÐÛ xQùw®=Jùãµ{á8™%¶=e½"0ˆ òI éÆÄ_wóÒúÊ:± ë•‚A”IÖ•‚ˆm^¯¬5 Ä ‚q†t߸]U ž-=a´£‡,ÏNlƒüz¥`e’ `¬!bœ®*?jœ ðVcÕõ-ãzUxnT¨ ÜÉ0àiç ™%¦Ai_¯ ¢L"d™"Æñ*ËôQãù¥5ˆ¼"Æ*ys¶Ç"o5;x§!ݘøòl×¢Lß ã0ß&{¬E™dÈ5DŒóUvèÔl×ÒævÙ jk'¦AEeiNŽ„eâá=†ˆ±«On{-Ê$éX›%bœÆèÛÒ1_KdðÊ™™–ØÕ«4ÐGG¢Bh­»~!'‚n[UÚåä–Wš "¤{"¾q¬ <Ù]-ʤÀû/ ã1»r¶¿EÇ×öms:‡Ó’×¹Õ#(}’3TÕHÐá¬N.¤²(§FE™d¬i‰ç±ÎïÔ¦GQ"nSÁ0º­S9‘“ýUš ¼Î¼´D|ýXÌw²»Z”IÒ1/KÄxLq\ó£òIÆéå*%CZrÑž:FKg¢êœË}ÛwýLKºñ®R'·¼eu&¥%bÇ¿“=Ö¢LŠyY"Æ*™q¶ÇE‡¿öÍ»›žëº-áå©®4ýLKÄW¥2.Mu-}’qb{ŽäYrÑ üºÂ¼¨<¹”Ø·°éh¬ÓžÆW ó¢(¯)-c¿üDQ&IÇX-ãtU€÷Q㤣®èýîâÎàr‰]¥HÆ]‡V-é®Ä—÷9-Ê$èj\uXvwÛ®³-¹_ÍsDQ&Q‡\-㸠EQ&Eg5Z"Æe¹^.ŠqNWǵ¤Ýñ¤r­ œkg‰mPXÎDQ&Y‡W-ãüʸ'Jdè÷¾Ñ¿]Ó }[®¯‹¢L¼®¦k‰ûåúº(Ê$étGKÄ8I£¯å@z ã€W bT_Y_¥?^ÚûývLsü~U]wª9Jùã¥wÔ‰‘BlsârÍ]eRHfœ'Hĸ\$FÎ ƒRÈÐíàtxVˆiOã«QRet¤%b¬ò'Z”IÖÁXKÄ8_ÕÖÚZz ÀÇívLs¯.vhM^Gh-_¿\XE™$i‰§‹ÂºSï•2ŽvÕ![!¶=õª°î£QuÈvwi×/Ë´¤_½ÝQ&Qh-ãøÊB¹(}’aM×¥¢3;¹hPY.•‹¢D²»é- Û^]ðК ‚.‹k‰ø†«„ÉG}ƒ.‘ÛHÖZKÄ8_$F>ê›!dëʦÓ-é¾e»*|û ±eâu Ö1öWn5öšu%é²µ–ˆqº*dû¨qÒ%l©7ézše¼¼…•&ºë4EKºoݱ*mLûjQ&Q>-㨫φº?<ÌZ“ $Z"¾«ÏÎt÷}s‚5än̾A”‰‡(¬!bìonukM& "`†ˆoÂz²3Nkó\'Z"ÆêÆNõ¸êtý!‚Ò÷ýuc'z¬E™„[Õ“‰Ç1Ä9Ùc-Ê$ëЖ%bœ±>ìL3»v¿éÉp󲇢«°vrÑ 24gG¢èò¯íPátT A·K½Nly¥É èCKÄ7@¥WîîÌ=Hä¼ßcÖe=…Øå›=ÄMÍ­|’q맪™ZbÛÓx±{ÆÔié ѼÎb¤2'gŠe’tB¢%bœÆ °“{†eR!:fˆ«\ÁÙWˆŽíy‡¨!ݘ¸Ý94Ö¢L"DÇ ã1)p²ÃZ“IÑ©‡–ˆo K“]Kd˜ÚÅAtªÓ ¢’'GB‹2 5DŒÃrVe’!fˆ«ô¿É[5-J¤n7=åt[Âáu[^)Ÿ`ØÊÕCªÛ•û×·û\s<À®ìÀŸ%¶Aéªh냛E‹2©úu’–ˆ±Ê œœZ´¿í:õÐ’»1óÕå7eu Ë1ŽcTk®Ç ʤ¨˜¦b[ Üêô •OpN/ïœ~‹¤Óç0qvé×öKœZbn«!'Ðd’!Öeˆøª4ÁÉé E‰ì9 éÆÄWCQ&üg‰«tÀÉïØH’"§Ýˆ§1œ¹]é 3l¯:APˆmJœ‰ a.ïwˆsÒ‰¯Fy@”IÔáKKÄ8®4A”IÑu`-ãrМÚöZz ÖŽ£…–˜·\E™ÈQ4DŒÃUeØGd'úu@Øæ«€æÔPÊ';nº2«Óâ¯*”‚Ò¯í½~E¨Û ¿ÿM& 2 ßtUöQ㙋>Vˆ"Æu=þ ¢DҮ˷ZÒ_Ž‚(“WCÄ8®G@A”IECĸ¼²v+Jd˜ÚÙéÚ­BLƒ_}° 4™]¨Õñ ¯|1'JdìvÖ5U…ØåW–tEé—öeƒ´ÂNLƒÊvUÒuªAZúãµ½‡¬ÆNlƒüzˆD™`r¡!bœ–ßÙ‰¢Lª.àj‰×å’®(JD…üUD¨Á«b®S[]…|Õ°ýÃæ®ˆmJ\.L0éÐ1VI‡“Û»bÒaØ6]ÏÕ’»qØÜr…Weâ!ÛÑ1öW^5öç¶^CÄ8-WrEQ&:gб­Wo㜙åZùç¼nç§%¦9ÄWg:ˆ2‰ÔhˆÇÕ¯¨É¤@ø×ñ-Ë^Q”ÈŽ9„†tãÝ-¿rE™]ÎÕ1Ë^Q”I†äECÄ8/—xEQ"~Óa^Ý–ðënò´ò †ýÉ{¶vb›ãW_«‰šL’.òj‰ø¦ñµš“›]‹2©ú…‰–ˆq}eÝW”È0Þa‡hn'¦AÄ_Uÿ¥?^Û9‚–ØE ¶NPÀ„Ä+ûrËÀ6§Œ/Ûœœ)J“@tº*¬%Ý7º«:±újQ&B¿†ˆq¸¨û¨o€ÐoˆYg;Z"¾#­3ÎÿÒ¦«¼ZÒ‰/÷X‹2ñºš«%bì—뻢(“!^CÄ8-WxEQ&ò ãŠQÕÉ7 ôIÎ÷ì!ï²´Ä6¨ñ×Ý܃ò@†CKŽY؉mO\®üŠ¢L Dy ãòÊʯ(=¡ßÅѧ bTÜUvªAZúãµ}ધ–Ø…ñ圓;e‚)‡†ˆq^®‹¢Dê¦ã½–tcâ«Ë ÊÄßt‡ˆ­_·jM ⼆ˆoZ·‚(È´DŒërÙWm$n;Äy ¹_-ûŠ¢L"$/"Æq=¬ ¢L $/"Æe «Îö¸@<7:ÈDÐm»*ï:óP©V0<@] Ò¦–\4',W}EQ&r ã¼Zõ5‰ì¤.Ò}÷Ë]‹2ÁBCÄØ¯WwQ& ª»"ÆéªºëÌé¤rž,ã^9æe‰mP]¯û ¢Dü®st[ÂËS]i2ˆPõÕñU_µ?‹¾@J£!â[Ö«»‚(‘à §ÑnÜzuWe §Ñ1cèt²ÇZ” ¦"Æy½º+ˆ‰›®îŠ Û^]К <½ _UÝõQ_A¯$4"Æi½j*ˆ2ÁÄBCÄX%®Ü‚€ô@†#fÚ9›ÏÓ âv¥bê2BKŸd¼lH‚?–\4(ޱÉ9¡E™dÈ€4DŒËz¹U%’7ŒÒ³JDœì±eâ¡Î«!b¼Ü]­È$éx—%âšÆØlwDÀÚGÈ€4DŒ+d@Nõ¸Bd,;„À éÆE%"NöX‹2‰PÏÕ1Žc=×ÉkQ&B`†ˆqC`³=.‹Õé¼FKº1ñå›1-Ê$è±U‡“ýUš ².Çj‰øæ±@ëlw3hMÛÁ.CîÆÄËêúˆ2ñ:QÑ1öº8Ñce’ €§!b¬2WÎÜ =ó<¶ªß®(Ä6¨Žµ[WÎÜ }’á<Ü~ËØæ^­5©5DÈg4D|#ä3Nß•‚ô@†­à ”áìÄ6¨\\Ú.Zú$ãfØ…˜,± j<Û]fj„´ô@†ñ؃~-¡Û 0FÇ–v%-ýñÚ>súŸ%¶AùªbìÔ&ÓÒ'7ß(„j‰mPã«áCÐdâu¾$qõ˯ÉM ªÅ"¾éªZ죾 b“¯ôIãº^D‰„´†tãÆ—£¥ Ê$B¤!b¯^ˆù¨q„ÈŠNuµDŒËò‹/Q”Ht:A·%¼|VRš ‚±Z"¾a½œ+ˆ2É:Ñ1ÎËo·DQ"iÓ¡TKºqãu[§êZz Ã!£!â/ê¶>j!1å±UCÄ·¬§3‚(‘â Ñn\Töàdµ(“±UCÄ8,¿ÁE™d]uÕ1ÎëuXA”HÝtlA·%¼º6¦5xh‰øúåX&h2IC5D|ÓÕ,§ŽÝZz ѺVÎÁ³Ä6¨®×gÑFò¶CpÕ»1óÕ+oe!?Ñ1Žë±LeR ?Ñ1.ë/±Q"íÞF—h5¤_]öQ&⨆ˆqXÎCM&ò ß¼ÎQ"ûqTCº1ñåI­E™xEh‰ûõ­ Ê$AÕ1Nëùƒ ʤBþ !b\×#š JÄïJ5¤7þº#8(ä<^goÿ´-‰X´ub<´ @`Õq-P±uf‹kQ"aƒ BCºqpWñÊ©‘×Ò†:xŽlZb ’ëÌHhQ& 2 ã„•\'6¼eR¡’«!b\ouumD‰Ä]g"è¶Q¥òMöWi2ˆ@5D|ãUsjÆié ó+/ÿ³Ä6¨`…×™([˜“ƒ ¯†tãÆëëÖ@z C¿Sà¼:KlƒÂzÜD™d¸"Æù*î9³‚ Ò'Ö«sæ÷Zb”7¬ý:1Z”‰×Xbë¡ôëÌ¡@i2Hð>CCÄ7-'‚&“ qXCÄ·®‡CA”HÙ!éÐn\v¬Ø:Ñc-Ê$BÖ1ŽP±u¦ÇZ”IŠ­†ˆq¹J"|Ô¸@ú`®î¦71€nKxyF+M’ ßp{]Œ”2Hk†°j'¶=ʸNC†€jÙ6ˆNr7f¾zÛ¢L<$"Æ~½\+ˆ2I2DŒÓz¹VeR!‰Ð1®P°uªÇ’‹Û!:eH7&¾zÛ¢L¢N ´DŒãz VeR @eˆ—õ¬ JdwhH7&¾º¢L”`5ä0þ‡7ÿò†.í¥Ÿíín£]¿ì1R‹«… Ü}ÿá韾{Ó~¾×öçŸÞ¸§¿kÿûÝ›íéo?Ó2GåêùêÈïæ–yùó[nÂg$¨Æ ¯[ž´®÷J!©ît‡õJlåݨÒÉŒJvé ‰J'3*%»#ê,*L¨ìÛ~¯u,ƒÛÉŒŠ£7|+•NfT<½Ôb¹ƒÐN¥UÍ·NfTRÜŽÅ QédFEOÓ(íé›¶:xºÿçËOõîÍÏábxjwŹýéÝ×o³Cß=ÑÛw3ŽÒvóí‹ï>¾ùÕó¾máí®úvçYé¯Lñ£ãí/·ñ_”Kù·ÿôîïÞüõ»7Ÿkô¢3uÉÒIJt›úà>x¡‚‰&«ô{­Så¼ûšP¡7å´£À r'S*!ЉbT¹“)•ûX*zt?;KÍ’nЮ;püír |­EÅâ1Oh"P±^š$ü‘žŽx'MwÚæM9§ 7‚››yÝ.Ó3¯¹ù~>ù~¶øYÓ¥i›úÿÔ>uuþh÷háóç3oöB©Öõ•󦫼nވʫ樼jÞˆŠš7/Ïœv=ÚŽ©]ZÒÑ¥WèñgŠˆSQ­&Âóå×Ïo·v)PÒîžß·nó!•ç_¿}ûE»¯5çóPòÆoñxoÞO^N,ø¸Ê]É´¡j­8øî­§wmåüüÛž~ýü§~ÿCk5ë³»ˆßœ¸6›œ/$øü÷ŸnOŸ¾nmýçïüáí»ß;€ÅaðŸÜŽMV¶¾yÓÐé'ò€¯.­ú¯ñ¹ýƒµU@¿‘ªSU-9®þ˜/ÞÒ &‘¸ë@º%Ý·ñÕ4aeuA_KÄ8.§ £(“¢#õ–ˆq¹J~Ô¸èØ½§ O••jI7n|5„Ž¢L‚˜["Æa9!E™d]Ð×1ÎÁk4¨<Y‘ñ”bæâ1íi|5SE™ø›žëÄÖ/ÖA“AÒQtKÄ7-§ £(“ª£è–ˆq]NFQ"e×Ux-鯝& £(“¨“R-ã¸WGQ&E‡ï-ãr•)<µié {”нš¦Tw•;üàT=ÉÛÍâ¦÷-$⮄uU¢L’ÎEµDŒór"0Š2©:~oÉݘÒÓVQô#Éí:\n‰ï·ÕD`eu¾±%b¼øä*2):Õq-Ëñs%Ò.|µ/€nKx¹¿J“AÐ1qKÄ7,g£(“¬“-㼜Œ¢DöMç¢ZÒ‰/FEQ”‰×AwKÄØ/g£(“¤cÜ–ˆqZÎFQ&U¹ Ûz•¨Ï›ÓÙŸ–܉‡Õ™¢L Ó1W/ôœÙ =sÀó–õ«M…ØåÛú@d] ×g·é¤PKºoãïù|ÐX‹2ñ7½ˆ­_~›'h2€äLKÄ7-¿ÌE™T]áÖ1®c:îl‡«®yëó¾CLÉnL|ue D™Dýi‰ÇÕt¢&ÈÁ´D|Ëò :Q”ˆw7=к-áÕµ1­É è0‘%âÆÀÑdwµ(“¬3?-ã¼üvN% Ó’nL|uÅD™xý€‘%bì—ÓnQ”I‚`¥!bœVÓnQ“IÕ™Ÿ–ˆo½ŠN%µô@†sbäLLs/Ÿ4”&ƒ¨ ÜZ"¾q9E™V"Æå*wjüµô@†áNNÁbD|yТL1 ãp‘£û¨o€fNéVõ€D|3fäÆ4¹´ô@†ñΛùÓ4%oM uxìEþóÌ¿¼qõë¡De!†iˆ§«\Ü©‘×Ò‡ºÜê~Elƒ æèÒTxt$Š®ësqÛ4¤ëuù™­®™j‰¸ 1NtW‹2É:Ĉ@l3„§ú›uˆ1×M׺µ¤û6‰¸ÝÕ¢L<Ä6 c!Æ™kQ&ç«»11Nbœ>´ié »S­:XˆmP…ÐãÔHT=–m×ep-¹‡„ÛÙ‘éœý¦Gûs½"¶A‚’#¢LŠ.ƒk‰—Ûê!4‰8ÑGCº/=y»z”Q&Aåƒ ¶3q'ú«4dˆy"¾BSÝÍó,û¦«×ZÒ)!įvX‹2ñz4DŒ=„gz¬E™$÷i‰§ÛòÖšL*„< ß 9·S®ò,~¿é= @·%œL§eJùÃaË™—–ØæDˆFÎŒ‚eRt*¨%b\0wb»kQ"Áét_Kºqã:w¦ÇZ”IÐÅh-ã€y¸=Ö¢L2„A ã áHîñDý ”>É™wãKÜt&N'¶AG»<8Z”‰×iÀ–ˆ±§¿·½e’tZKÄ8áÛ9gzœtåÚF*„H ã ‘Ê©+Q"é|âÝI7&ngûÔqNKd8®¥Èñ)Klƒâmõ!ÐdRt™ZKÄ·¬Ç0A”Hv:tŠ Ûæóe®óýUš ‚ŽKZ"¾a|Gædwµ(“ ‘JCÄ8!ÒÉ™®E‰”Mשµ¤_¾&×¢L<„H c¿‘M& "’†ˆ¯Jƒ›ÜÄóÜJ©7èo½ŠH2^ßhMu×ej-é¾u_H‚(“¡PCÄ8®G$A” f¹"Æ*Ëm¶Ç˜åV7ICîÆÌWŸøQ&A×£µDŒÃzHD™dˆ…"Æy=( ¢DÜ+Cº±Û®¢’3çgÈy6®îH_³Ä6È˼™ -Ê$éBµ–ˆqºŠVÎDÒl…Œý®G~²!¶AuŒbÎŽD…ði; B4Ën¼« ¸É½@‹2‰Æ4DŒ£D¹C =aÀwLMëÄ6HeÆÍŽæÄUïta[Kº±wc$srÛkQ&ú`põ`SƒcØj²¯:šuXÒqÍ’0¹ÐÑ Êê1ÎnTÜlw1®†]WªµDŒý©œì±e!NvW‹2Éž2DŒUÜl‡3„§jÚ õÎnÜx]½ÿQ&˜gˆ« ¸¥vÂ<¸N†sCJt²Ä6(¡ÉÙ‘Hº4m#Rò c•·6‚Q ýλN—»Óœ|¾Îu~”&L3D|UjÜÒ0dLëdìuá`”%¶AeŒWÎDÑ•k}-âV†tã¢Ræ&Z”I€\=CÄ8Ü–~Z“ fÌ"¾*cn¶Ã˜1Wë¦ã’ºmÝÆ¸äd•&A+CÄW¥ËMvW‹2I§gˆ§1.9Ûáyzíß!]Î1®W¯¯|ÔÒåBûªŽBZr3U *DŽ D(YbÛ¯^`9ÅA铜1›Fø]†–\4¨\½Ù2xН¹TtrŸØK!¶@ ‰ñ‚Ø9wõÆË©r|'öÃx¸@Ñ+K.–ß„‰¢L²ŽjY"ÆyùM˜(JdßtâŸ%ݘøâÒŠ29_s؈±_~&Š2I:ri‰§å—a¢(“ª£W–ˆq]~&Šñ»Îü³¤7~ñ2̵(“xÓ ¶*'o²¿J“AÑaKKÄ·Œo¼œõ-:„¶àtf§%Ý8¸Õ€%j29_sØ}ˆo_y9Ùa-Ê$븨%bœÇHél³Ž”†-n7¯g4’nL,ïJZ”‰×¡QKÄØCÌr¦ÇZ”ÉùªÃn DŒÆ,gz¬D™TµDŒë˜Ö9Û㪃¥aK»N泤7î—OZ”IÔ±QKÄ8.‡-Q”IÑ5@-ã2¾ør¶ÇE— [v:ÉxÕ•éU‡\4'\ º’WÊ'®ÚsÖ¯ÿb›“—cœ(J¤lº`¨%ݸñ}yТL¼¥Z"Æ~¹„(Š2I:ùÏ1N%DõM:°‘ªó;-ߺ\*E‰Tlg@·­*ûn²¿Ugß5u¸ÔñË¥BQ”IÑI~–ˆqY.Š¢¸Íé –܉¯– EQ&Sg‰YvsM&YG?-ß|U)ôQã¬ã¡œ/5ìÆ@º±Û–ë‚¢(}àpWG—‹‚*Eþrç,W•M7ÙQytý´DŒërEP%²;œgI7&¾¸V¢L‚Ž~Z"Æ«'#Pd’uýOKÄ5/&Q”ˆßnÚ@·%¼<›•&¯“ó,_¿\E™$ý´DŒÓrEPeRuýOKĸ^…%5®º"hpa×ÑOKº1=`:Q”ȾAdÓn¼oëIp ÊÄCœ!bì— }¢(“¡MCÄ8-úDQ&U—õ´DŒëòëQ”ˆß!„iH7öûrAOeu±Ë/Mâ—†ˆoY®Ú‰¢D‚Ó5:-éÆÁ-WíDQ&•†ˆq¸ªÚù¨q€@e²à ã¼/Q"qƒ@¥!Ý8nËÕ9Q”Éip†ˆ±_®Ñ‰¢L* ãtU¦sæ>¤rÞ•‡Xôkß„ØÕõ8"ˆI˜†tã´¯ÇA”I€<9CÄxù|¥™dˆ^"®e¹|'ŠÉäÉÒ_ΓQ&þ¾þ*zÉxu%Lk2H'gˆø¦åò(ʤêb–ˆq].߉¢DÊyr†tcâ«wR Ê$B8Ò1ŽëaAeRtú›%b\®Êt>j\ !.TwÓ¾º-áÕÕ­É @6œ!âÖ³á@”I†`¤!bœ×c‚ ÚHÜ6ˆr7f¾:¥A”‰‡`¤!bìWËn¢&“!#CÄ7­'Ã(“ ÁHCĸ.ÞDQ"n‡Ø!ÝØíË•7Q”IÔ)n–ˆq\®¼‰¢L Ć 㲞ô¢DvIo†tcŠÎ¯vXk2 ôIùßpUaóQc%Ê$CΛ!bœ¯*i>jœ!ç-ú b@†tcŠÎ¯ÞH(9o†ˆ±_¯Œ ¢LÒ |ÓU ˆñò”Vš *ä¼"¾u½,&ˆ »,ûß‘tãÆ—Ëb‚(“¨3Ù,㸞Û¢L Ä€ ã²^D‰DÉm†tc ï® €(“pßpU“ñêÊ€Öd!³ÍñÍë™m J$m2¤'•`6Ùa-ÊÄCf›!bìǺ˜“=Ö¢L0ÁÌ1N·õc~YLõæõÌB"¾u=± D‰ä"@†tã¬2Ì&{¬E™D؆@lãXs²¿J“Að!â[ÆðÏlw „bqPÓnÜørbˆ2 þ1DŒÇü²ÉkM&òÚ ß<–Äœíp†Ä¶X7ˆþÒßWW@”‰¿é ¶~=}Mk2Hú1D|UÙlw„~b­½fˆ×±Æål‡+d¯¥m‡è!wcæ«+ Ê$BKCÄ8^d©Í¬Ïƒò@ÎÕø´XbÛ£’Èf¢@P(9Ùk†tãÆÝê\Q&‚B†ˆqƒB+2‚ô@†w™ã–Øåõ¬6%²o,2¤ï*¹lrÛkQ&²Ú c[=¬ƒ&“1!CÄWå–Ív8BL(í’Ú ãº^D‰èG‘ÒÕsH ®—ÅLú)¤ää²"®q½,&ˆ2ÉPÓ1.ëe1A”HØt–š%ݘøòN¤E™x(‹iˆÛîNÄ´î@†CVHœ§d‰mMZ‚(“ ñGCĸ®ÌQ"q‡¬5Cº1…éWW˜A”I„¤!b×+f‚(“Yk†ˆqY‚(‘ä iH7Nî¢b惾Z“I€¤5CÄ7¬WÆQ&"†ˆq^¯Œ ¢DòYk†tc È/Oj-ÊÄCÒ1öë•1A”IÒYkÄ6­×ÅÔš *D ߺžµ¢DÊ. Iwc$ݸìë‘@e!iˆÇõ²˜ ʤÀ‹á ãrUóQãéi©:AÒ«[/ ¢LÂM_ Û°Ôš 2Ä ß¼^ûDÉÛ¹i†Ü‰/×¾Q&g¡Ån DŒýzíKe’ ö¥!bœÖ〠ʤBÒ1®ëµ/A”ˆÛ! ÍnìT6Ødµ(“¨Ä6®¿Ôš 0Ìñ-ëq@%²;@Òw·Q&’Ð ã°\ã4™dˆ?"¾y½Æ%ˆñ$¡Ò_NBQ&^Lj­_jM 2Ð ß´^àD™Tˆ?"Æu½À%ˆ ;d Ò‰¯Þ-(“ñGCÄ8®ÇA”I4Cĸ¬¸Q"ÑAÒnÝz‰Ke Í1ë)h Ê$CKCÄ8¯‡A”HÚ Ínœ¶õ— ÊÄC Ò1ö5.gªAƒòI†ÚÏ9%ŠJXrÑžt•™–#U=-6(A~Z·‘×ÙžË,ZrÑ z<¬\¬/?Ø  ‘ËnO ;†#d€mNÞ¯*bάP‚ô@ÎõȜꋖØÅõJ™ ʤèü6b[ÖóÛ´&â ÂiH÷¥xÿjoµ&“ém†ˆoX/‡ ¢L2¤·"Æy½&ˆ©¤·Ò)Þ¿|7¦E™xˆd"Æ~=p¢Lô©ç*ÌÒàz!̬c,¹Ö›T"®u½ &ˆ6R6Q%CîÆeÛ¯²×fb =óU¶££%¶Aq=« D™dˆ6"Æ*¿lnÃ(·Ab›!ݘBý«2eâ!°dˆû«ú˜{,—nà›®Û¿.ƒS+Ÿ`˜^®BÌNlsêzL%²ïïfH7Þ÷õ*˜ Ê$B°É1ŽËU0A“It7CÄ·¬§»(ï  ¦!ÝØ»õ*˜ Ê$èt7bÖk`jM"M†ˆo^/ ¢DÂén†tãÆ—ÓÝ@”‰‡`“!bì—K`‚&“$ N݈ø¦õ˜ ʤB¬É1®ë%0A”HÜ!ÝÍnÜørºˆ2‰k2DŒUÖÙdµ(“U0 ã2VÁœíq*˜%97Ò‰/§µ(“én†ˆqXNwM&™>)_ ⫲Îf;¬D‰ä ª]ÒO¶ÇSW$Zz ÃHöó°Ä6ÈQ¨É‘ТL¤Á"Æi= D™ÔøÖ«(c;Õç6@½]yƒ]v·²Ä4‡žX­É$BlÊñcljr³kQ&’ã ã2VÀœíqä¸R§ éÆUå¨MöX‹2 gˆ‡±æÒ.¯¥2̰šoWÀ6G%¯ÍŽCÖA«ºm4gÈÝ—ù꺈2ñ´2DŒUîÚ\‡A”I‚¤9CÄ8QÉÙ'Hš«[… •!b¬’×f{\!hUÝYs†tcz8`u}D™DZ"Æ*}må¨Ò9w©êÊÍ_Ûœ2†+gÇ¡èlºº;ˆdÒ}w•Ô6¹áµ(“Ùt†ˆqX/˜ ¢L2„I ã¼^0D‰ø Òé éÆôÔÀêéD™x“"Æ~½`&ˆ2I:ئõr™Z“A…©!â[׫e‚(‘°C:!ݸñåj™ Ê$B™NCÄ8®WËQ&Òé ã²^-D‰De: éÆÑ­WËQ&òæ ã°OQ&Y‡1ˆm^/—©5 ¤Mò¡î¶HºoãP-3¦‡}µ(qLCÄØC8±{g-Ê$Arœ!bœÖÉ ʤBÓ1®ëÕ2A”Hv7]-Ónœ÷õj™ Ê$j׋[ê¯êd>jµ_†ì8Cĵ`8qb2kQ"eƒÄGCºqq6œ™ÌZ”‰‡b˜†ˆñò¥Vd’ Xiˆ¸æÛr1LeRáÕm†ˆqÅ,¸‰ ¬E‰Ô]Ç t[Âeuó*M˜‰fˆøF,†9ÑÝŠ™híŸu Ò1.œêpÑQɸmN'¼Yr¼®õE™ ´DŒDï1Š2É:ãÍ1ÎX s¦ÇYçÀÅÍm:iI7n¼,NjeâuÆ›%bì1n¢ÇZ”IÒqHKÄ8A€pªÇIG&©7½‰ˆmÅj˜3ý­7½÷]—¾´¤ûR~µ·Z“IÔ o–ˆoĸ‰þjQ&E!-ãÑÁ©–Œ›w:áÍ’nìÜè±etéKKÄ8@1Ì™kQ&Ye¼ ¶Sàfú›oúì6´¤ûRÞ\vL¬è¡ò@d¯‘#sÌÛ¿\!E™$]Ó1NP!sf»kQ&UçÁY"Æ3ã&¶¼%w´¤Sð~y¦kQ&QçÁY"ÆkdNôX‹2)º$¦%b\–‹d¢(‘ät*œ%Ý8¹å8 Š29+2vc b ÈÛxjÿÖÒöæ”9"a‰mPÆâ™Û^‹É›ŽZÒ)z¿¸T€¢L¼~_š%bì—#(Ê$Ý Ãé"yàå¹®4@ªš%â[—‹g¢(‘²ë¨Ÿ%ݸñ°xƒ…¢L¢~Yš%bo‹+$¨É¤èh£%â[–À(J¤:û±¤W·\<E™„›î0± ËÅ3A“AÖ¥2-ß¼îCÑFܶ騢%wcâ>.vD™xû±DŒýjñLÔd’tlÏñMËÅ3Q” ¤Y"Æ*m¶Ç‚;K5Þ‘tãÆ÷Õ9 ¢L¢ýX"Æq¹~&Š2):¼g‰—åú™(Jd‡\2Kãxó/o<]ÃQ¼`üØÇNE±ÛÝN¥‚¯”ùôOß½¡ÌüÚþüÓ÷ôwí¿{³=ýígZæc¸/E~=;·µ—×ù–[ñ•¼íÇ㩲¹cqæ5*B-œúÇTJ¼gÀˆJ'*—8jÑU„̨¸tßî¢ÒÉŒŠïof•NfTB/i,*̨¤^\@T:™QÉô´Ý8ë„̨TºõUãÒÉ„ ÎÔ(•íé›¶':–xºÿçËOõîÍÏáÚ¥£ç¶¾ûúÍaw8¸'·c|褞Þ}|ó«ç}ÛÂÛ/\õ¥µ†þÊô½“ŒþrÛý¯¸Ó_þí?½û»7ýîÍg§~(^_£t’î%áÚ.T0Íâq•žÞ}ªœ ß*;=‹³*w2¥/F•;™R¹å ¢G÷³“$Ñ$é)=}áÚ×<½ç’eIí^?ó„&‚ßO þH7¡Ïá¤éN·ý¹œÓ„ÏÔܾ¿'÷ä¨üRÉ­U¡ÐÒ÷ý¤ñ+jh;¸6õÿ©}þêê4r+íÌ÷ÙS‰™7Ñ•³þïò¼é*¯›7¢òªy#*¯š7¢¢æÍË3'–'z9c |p¹VõƒŽ+Ž’î˜/¿~~Û®žKI»{þç·_PÙà­Tžý–þj§ÓvoIÓäç¿Èds«í¶†T¿ðíÈIr_ÐjkòÓ»¯šÞß\ëXÍÏ¿åµlåù›?’XÚHúùûÆ}»+óåùÃÛ/vªÒQâóþo¿[¸å²?ÿãÛ6®î‰¾@/V¯!Çö™²‚Ëùù÷,íS Ïßr3k©ñùϤæoeKÏ_¿ûôÇöí°mí·Ïß½m{Ap>>ÿx|¹ºüüéë£i«Ï¿¤ïº´Çú|;hiôïÉ;¹œšÜŸHÚÕöÃòü‡öªVÒó'êÖ^}»¶<µSiÞw¥füؾÛn[ršßÐb­¹ýî>¡uàoy³¤KƒâcºÝîöðü‘ðÞæM3ÿÝñËXòó×ô•’]J÷c鯔 uÆ·>4=ÞÈm~ÿí}ø\|þa°¤¶ne/[ðÏï?rûkWíú¡·|?fÔ½sïi±hMÏ56˜¶O}ÛõùÖfÜûïùxäé¡¢XÛ”å ÅXÚž\šÜ}\Ûti=¦ºÏ};6Ÿ?ÌÛœ ù˜Í÷÷fÔ-ªf÷šŽ‘Hµ·ö6§¨J(!“¸Ýé¥BÛOog«¨Í_ôF·mkw´ý?ÑHÔÚ@?þòÚâT «uœ²Ãf÷€÷ã¶ÿá«C¦ÍÂcXâ–_’æ©Bßuû3ï.û6“y‹ßw’û/}¥½„Nm·Kv¹? }¡ñq¥MðÒ]x>ðdÚio¦ÉÔ¾]R;÷Ý yï7ÏoÇ]`˜y¬Á»(íi|š{qPssØlŸ¾;Ž=mŽñ4¥ž•ãЦÕq€+ê×ÙÎk{Ÿ‡ÔÆÚìKå=âþñ‡·WÇFºê¿ûÔ:J{fÍîùw°ÆÜy°:÷¶šö6­ÛÑÓS'­;Ã>ÝŽ3G»Ë®öïø+µB/öÞ-¶sÚgFÏa@¯¢¶«‚ãPÜžÛ¸ÉÇoÏÏ~üp~üÓùñçÇOçÇïÏ?žõöØÓòÞúÚ%¥Š•ûiÇñ÷ÚI¶¶a“Ýøc;ÒÕ矵 BuêÛÈÿ›“þÕùñÃùñûóã·çÇßž¿;?bÿt9-J;'çâÎ#›ÌQš—µ˜øWé:íØ ÷sÜÕùôCÇKw¹±‚k'å²2i÷mÜÌÓÓ¶µ;ÞJÉêüxtqO[‚Su2mÔ›¶W·œÕ^=–_>ӓݦ:|¦¿¾Ÿéw?:ßǹ ¥Ù¥¨Auçip? ¼pœùöÜlpr§kÖÖäñT{4ˆŽ7ÃUÏ »í7‡D›°÷£Åðò€fIëÝðÑçvLû†o|^5 GÝïçïËcîïù”•ª:ŠðŽç"EË}Ç«û}ž´k'¿×fUû@·'6›¾Ñû¥³éq©nË÷žW’¾L§Ò cá8¼ïKWèhD=NtÐçÆC1ºvÂ}þ·²Á®öZÐÍ>é‡÷ç÷—‡ç.õ÷çÇçÇ?ÿp~üt~üþrÿüÕùñ·ã^{¥ð—ÆÃÇߟÿóåÞ_6‡/¤ì—¯»ñåùñ7×?\ú}{~ük,ñ¬Ñ®ü.?ÿ/çÇÿóüøËóã:?þçËÓØpö;.\wZj·›÷éó¿Ÿÿþ—çÇýü¸Ý%ýÙùñú„òE»D»íÙÃÉðâ²nó÷+ÉûçÆ=Ý·#аÇÁ^Ûw¡Î3Á‡‹]å—'Ͻ<»çÑo/?ûÝp¢ýr»—D?$¹…ø_Õ‰¶_æ^n¹úÇ3ôó½¯ÍÚ«>fZ‚Ir¦Ng¶âwrþyá".”=•r¾OŠû9óÓAÛ=ýó7ÔI…0ÝÐ__?SœÙÇ¥ëçv)£¯ë×"4·é¬<\,Ý{Ê7uêôJ½HÎÍœ‡K€?f¹Ü»9|8|ÛÚ}ËñÀ§á&ô¸ØÝÚ>šÜ±Çc4Þ;´ã‹Ý·)ÛnϾ¾—oûI¤Þ/â¾Çñ puÏÏ'ÖŽ¾‘Ît7ûåù+¾ n8Ö}œìïO7¼îØI¹mïy~ÿÕy y_¯hWXM‚JLo.*…oºa¹¯,ñ{¡ëO¬ùè#Rã®@q›ci7þ/ôºî8í:,¯ <³=&Цuöîùøå 瘜œô†“â7—‡³ô‡Ë/ ?^~÷~lìgôËã?«2¸XèR¯dÿ†wÚš|?PÚV+Q_âÓp–½DµZ¢ÖÇÎå—qÍeX¹üÙO^¦¶±iõH&Ÿè¾¹ü8œa?\~aPøñò»÷ÑäÏÿŸ]¤áYàgçÇ>?þùüø—çÇs~üãùñ»óão/-†Ÿ½0i\i÷^Ef²V>\Ÿ8‡¥¬á¨uÌ‘6§Ž{Ír?~\ž ß.ºÅäN¡Ÿ‡N|ºÆ›õBù Öâåàε;ø ÖEù ²…=µÆ4,Ž_ëÔMŸ Ú7G#jžø,þípïüg\„åzÓp1üåpÕ ‘zovrãYж½@˜&í×xàkG ½õ¨²Bß¿<®48ðñžW@ŽCý·çAãã[ùÆ'Ž´žß ×(Þ:ê!Ýi»ÎöV»bØ(ù4´}o\Áv¼×ÅZRômÃq)j»m€a~þx.Î\ž?Zß³¾þ=o×idhä¦CTR¡Þ^{»lmGJºYg½vöä5/JŸ,:¶ò¹=µMq^ñŒ†t¾§×Õ—~÷BëFüþs7T~ú€Ì;æ7—‡ãÛüÂüéí¿ÙZ«,‘Æû™éŸؽÍ}úüËþ“|?Öò²ëpÒnö>^žŠ†õÓÑáÚeŸSA¾cé«Rô Ý÷«UÚ©Rä£EíbñuŒ—|õv¼k¦™\ÄKXÊ]ÝÊO\ËÑ7(œ9Þ@Ð|¹](HôØÒ%™®>øR²d¾;ûRÏ`9(cD®ðwãBKu ýþKrlCxmöþH<…¿:Ï /Eb¾=D G\†;Æó"™C¥M’˜û¨QKÕ¥~¦£¥Ó—úGãî§ÈëÒû ™Ïq¯¾ÑŽ%d¤²^®ûïêÒ¥ÇÊÕpðIß2óLÚÜîÔ\pþü)у5Æý¾lCïˆKO_PöVé¡sZ tq‘Ê…m÷¥„)s±]^ÞèÔ@¥çÿÀÓ%Т槷tVé<ðE;z·á8Î7O7CŽîù? Û¢‹¼,ÛpÛ›ùàÒN,þËyÞ ã½ûm´Sô÷ƒ Et{Ìaü!;¶Öùý¡û7> ˜Ö(µŸîKi«ævPÙ¼ú%_JÔäÛœûòÎwŸŽ0ìýã ŠCS¾¾ñÍõ¹gcCi7wYµä7ϯ Ãvy5Önö|Û²ÿ×›wÿÛ¯ø~¶ ;{è‘{€XH?¨ „½º—VÇ¿¡µ‚ 0÷{ÿ6¯ÛI…êÛM_ôÊmʱ›%¿y>Þiã)ù‡C®LyùÞåÏ<”@ßð­cà—Žô»vøý[:KÒ™üùr:B¶÷oè}X–Žqp¹ÝA6tAï Qm?§É»>í½,qèe|<Çø„vÔí‡U‚!ätgÛõ€ÏÁ‹ÏõžëEÄt8žxaŸÚuŒ\oȦ*÷ã._;ëã¼\|ùÙãÕ?ßÏ|qÜ"_±ò@W?^ïÚÚtcƵµÛ1N©íÑG¯ÚáJñB½z>‚êhçt¿føåïüí?þöKºjÝèŒÍþ#>ý=áH‡¸÷?üéXºï‘¿Ë’ôØÁ×ô¬ßæðû~K¸Òr÷÷j§g*kÛæÍ‘çÿšD?~8~ÒV_ò¿]mÚ±ûSIýÈÙN‚z—=-’Ý[.Eú™Â]„S;QÀzÁÝ@i {óЂá,=îZtôJ¥¸ì z¼ÓµGöêy¥ßrôà„E ·?h\?÷ü…tÄ=ˆ‡ ¼ÖüÒº¤¾,àEÄèñæõŵëLÏeõùýÝ3½¸6ˆü«dž±£GÇb»Øòç&PwºçÍéÇã:#¶ù¾¥á:ãþ£îŸÇ»íaÁzØ[8Nyþ¸C=Æ3ή=룗óEG•îo¤ÛÄx÷;þ®¾"o{uÜäŠüÏçY¦KïO´Ø¶Ý¿íé%Mø–Ú‰:?úñ>móVûôáôc»„|R?ú·ýá˜ûõñ\®ë~Lq“Ûºï,Î?»·—vô:†TeYCÆZ¼í4m€îêíRí¥1òJÐÑK Û^ðô1ñì_(ªaóÐyŒŽ ‡å7‡eþ)GºlŒ•ìûåy w‡ãæ)z_û…7Ñ{ž†àÇðñýð”?߯Ÿx¾óó:Ïï+7ñ‹¼íxT‰¾Ðî×ùžÀgZ½xñiÅá e<ÙÃÃqIñâÂYÒBïÐè«%ž¶û߆0âûsEåŸßF*lÕïòKj‡’c+,>Ý´;·ãÒºÔÖä4®½Ü‹|¨æ›ñ£ÁÃRÐådk{Ò&‹3?£=`ã­ú•Û1¢­¡›‹zž]¨GŸÎQnÙÞËÙþÏÇêø±6à =•Þ®DQOk|…<žïëî¾¶›¾Ý |ô:~£KÀŸxÓÏšÊ}ù“•/Nà/¬ì1îZnáw_ž¿³ûa؇¨ÖOÜð[±™ÛçR²ÖÝv29:\n/ч«FÝãú®–<Þ@‹Ô0Ñp{Ëz¤9¹ÀS•îæ²ìSÿóO¯G¦v!¨dí§ü»Ë?˜å÷YpŸ2±Ü§ ÆÖ9evŒr¿Û ë+cþrqÇ¢,eä\è8f·^S?ĶøÂé…ËwX®{z3p­ú‹j:Ktêù,u-I¯Ž…úÒZù´u¶œÛH¿Ëb9‰Ðà@^WWïÁƒèÓý¦ª³Çý/«dçy4=å&èäOÃSmÒØço†k´÷|ot„{ÇÙÎw$^ó‹“@~øÍ‡ÞªB‹°êXÄ92GªF|úþå´.¸òèù\œ(žÚÿÚ%L:/†Dƒñ årî¯ÇqäËÛÖ©´íøü± Âøã°BuŽÀïZˆßÛövèâlß‚;Òªoü Õ±˜å}¹Ôé5§÷cºÊ øáœ'øˆ{;í¤û²ÊNï9péåû#ú‚/IÖóÚÐ'}ˆ¦i⪯pƒ|õT¢zæS>Ždz_éÉ$ÜФŸ|?…yå¤ÝôÕcµu结÷ÇÏèéÏseEÍØââ1W¥'©tBæ¡VÒ®ûO-õ:žGê¸.§LºNËí”ïÊç뉪PÈ}Îq©Ã‚—Ï.Ñy«ÈÓc*þGM¢ËÁêKú÷RT“?C7,’ ê¿¿>Aé£ìpŽüÉ&Þ-¾´vrŸ$ûÏÞ~wΜ—·Õ#¹í”w«ýñ ¹BêÓ² Žty·E^ñxñÙýœÄM„L_$·ó9]Æ¡w޻Яf9àùÅyÿðåÛH×™mð^Š‚ŽÊßÓ•öNñéñÛC`ôòB™Ös† ÷1ȃ?,°ü6\a!T¾¥>âäcë¾{šá»_Ÿ÷_œ;Ó—|ËÐN)|Á¿%øé^·M;ê~‹7+æÑ—Ô•R»9m ÿާ~¼O‚­ŒûÔŸÚ.õæ.ïú¥}õí`sÞÜ©àÕx5njژé\ë4Ç ¶aí u¯èü±v¼?~´·›ë“n–Ûuâ7Œ?úŸô9ÉœÚÚ Í9’îg÷'üôƒbÃEć#2Oûï‡ø•¤µc3Þ/gšb×W‰ãƒ~c`¼é:‹wÉç`ÉÚ¦¦Ìy+VáBqÈܼÇç‡oçþLãCå[ï›ÞëÃLûJ 5¥‡3ÇÇ1èwtYþ_î:ÖÑ¿PâKKcvÄqóë­: É"m°¸ôbR½¥ó­Ï¬wQ™ƒc!íb½Ë…,é©í–íšú˜è[¤,¡ö£v鱶þ_ò8!»R•‘ÚW»ôDÇ¥$7ºüù#S»ÐÌÐéÏ™¨öf»ÿ{ýòbÞ°ÄJGö¸qšô¿çv®¨(ù‹«dò<Õ¸Ì~ìë´zÜXpF$ÜGûÈÁÂñõ~¸¶}ag:ô"í‰Ç­«¸¼O~¿¯lÿ|//¿;.²·Ì/¬å¶ƒÃù<Ó÷Ç)6Õæáð¤Þ^l¿w´û÷ÿ»Ÿ>§´z®H(™††R[yF]ÝÜ ¬¹ W}ǵlv=<(‰[oA¾=ïm®3®LºrLîý=îËÛ9<ÑÙ‡¾B—}Jï'î%ÎÌÜhÛ6.½3‡d8Æú|D jù'ÿîð­¡æë§¤Û-ÒVŸÔo†ÀÀxÁ£WÕõLz˜ÜõÔËÇÂ%Xìéã‘Kž½T}8}ä’ç<à¹ó‰<ŒÀàJ ¡ªìåìÏíaú\ {ØÿεíðÆÕ¹ö¨—ñ—»pÊú?ÎùÖö¯ë)årkVíSêòìPÚeñîêy+}µ,úù!¯oT=ÅÉÅÎÙLÜèò…´fOiÅ•ÿ®ðŒz`áù< ~wW"<ñ¥½þé§“yî‘ÑóARx\+øÂ…>þæm»›çÇΆç»_X£} c¢ß<ÓÝqÇNo«ÄËíûªMÞï«6)qêÄܽ~’ñ…˜»>¥·£C;ÜKe)r,ü'‚j÷ãõèòåyØ})¨6Š«u¸~8ŒáG¿è2BÓ! ~ÿF¾ßG+´pA~TÅcXèQ}¨lúnöÓý‡/>:óù;ßñžêóAŽÂ‹¡ÿÕŽŠç?sTLyÿ¯{TŒ|H¤ó±9$ò*e®¼Ì€µ[RÇÁ@‡Ïø‡Þßy£ú~–¾_“D…7ïàåGIëÅ/èÄÕ‚§Le™%'˜,¼€¸c˜ó¥ƒ-匄ª‚À.pú¡.¸»¼‘‚ç{Çš—ž¼Ç(ë~«²J|ý,Ò]wý¼ðtÁå£Ù÷𒻯PÑ‹vüO=ÑB_ægË/¿|Dí*?å6>ïÆÐ— æ™ª C7%õÐÒWçŠúé_õÁ:@<¿7U‡r†®Œx˜äÃhì×ðÆ}á„w Žá&ÄíP«pm«ñ3I>ÝŽ ¨C¶x?ZÃÑu ©½rxhé«ãg´¬ôÞ<\¤X©¬y9¯íb…õ~ðÐ ë˜ÛGõmû6öGÔŠó=úÝýR©MbžÙ¹ÆÈO:ó£¹Î,8û½¨ãÔÃEóý_˜W?¿;zÉËãÇ¥§á}Ü™l+§ÁßœëXŸ†‚¿:rj©°Ó}õÑ'õÄðÕO.~8~¶+å]mÔx>Äññøµ àõ “ÒK‰;G$KöÃ> stream xœÕ=Ûr\¹qÎ+×Ï©Ý  ƒ3CJ´Ë©}XhˆƒK£ïÝhüa#&¹ø_þÿË«“ïÿÚúÍÅí‰Ø\œüáDÒ_7ù/¯6?|=<þ2Eåæù«“ô©Ü¹ñÖOQÛÍó«“­Û=ÿ=ô•R5U˜¼ÔðÁó³“ßnowbÒÑI¶ï¡)¢ŽÑÈí»Ý©˜lŒÞ«íwZÂdÜžã¯R/Âö ô¶ÁHá¶—ø³ÂF“Ú:mÝv½ÃîV³}‰¿‹Œç£üïóŸÓ _¡ÓÐ4e…ŸíNÑSØ~ñbwªüä„•”å½ÃçÒš½&l÷w´é­“´R%…va{s½;ÕZÁv{ƶˆÃ9©eŒÛ»]Ùâ9ÛËKÖ~Ààoh-1D»½Æ&,ZÈy·®==ÙºÛ_—Sïö¤Oµt|ªíœKŸÐ´°b\ p.nÞ‡h¼nvJ=t¤“·Á*eÓ¡¥ÕÞÜ1,¸­›VšÕ®)ãä¼tĘDˆ¸};lž×æ»Ú|Q›7µÉ»®Í³Ý*ÐÓÛy„uFXáùÖ¯ädØw4 !Ïiš…”3´3¨mX67í‚òfmê =dÄG½Q5ÙFÅ ^Ѭm&–ïL 2¥!fFzßÐ\²¸ß0sXfO2+óº6/¸å4’ýèlð: Xö>/ÊÝÐg#`Ó‹¬Ø /Å Hn2R惥óÑÒ«^¥ÄI`§Èíæù^1ÜD8áï0U§u® oˆ\)¼±çZó:èNŒ¿¯-—aI‚h-{Cš´²J2>Êí}’w¢Õ«3òЍMÒ5I¹È'åU§øþ¢¨BÏ»qBŒqëûðQ®‘L_8—Œ7Âo¯Ç쥵þpÿ°NRñ´F&, [ú+”/ÙÀ‰ÎaÕœü}^u0ërWQÄjÂfîÚ#»XD£[€3IÁníbœ['’-=Þ&©P_uø1]ô»uU/ËR; #xÙ£è,¤v/tf.‚ó¯i7´_f«%?Îã(þ´¿z{y>[nûí›»×ó¿²ùa´cú ÐQÝ}‘0ì \”ù÷¯ªµòLÎÃ9¿{}“¬V\9áòÄl0 @Òçâ2$ñ íÉ]ɵìì£l==£æªt,ȾæAfKZ9¹Ã &À¸Jž–È@êmê­8’³ÉS_Œá¶Ï#‰¼ØÌK+B¡„+ü"×D}𣇿¯c…_Њxky •%/!sŽ«ÌaølMì ]ý¬¯H»ðèJá»J’B‡ð@…dÝ–Üߥ€­*2C{G|¤ÌM”|²œ§Po8³¸*UfÑu›QDÚò :àö~\eØD›©7Ó®Iê('Aáô»í®Ä Ò@€–²ñD^Vîd„c!GcZ¾Ù«KÅÁ•G¯‚X€Çs0ô˜À{ˆÃ3Ù;@i¾Õòj$£ ®å ïi7ÚY3p•)òœ0»•³ÚßíòîÙ¬xÚvu ãô8œÎ¾Œy­«bcîüŒÙt?b\êvUD&΃ÝQ§;ka.ET¼#Pöò’œÝì ¸²X֟غ¶€N…Çüãã42In¬1“rÉ¢ú :ºHíJKA7Þþê/ù†)hÌ\µ½OÑ83 ”¨í—ç,mÀ ˜×ݧj§ŸzfölKǯmœS9¾¿¯2ƒsÝWôô²¥°ŽÝ~ ™*5˜©fc5Fd‚)0rÙ ïÝÇŸ™„Ó æ²)¶p á#lk°§üºEï*ùƒ¦m•„“ `f¯ÛŸ CnÓa >ø1ª!c NvWµYéT®S: –±ñö/«ä¿Oó̾ŸdZ]#ÞÃpqvĵö:²)Ö­˜ ‹o ›¸‰T6Ýj¯½g"å€à<1ýZ@¯]iŽª*®çq;µ*GS€@K5ÉʹXÄËY]}@d¥á?$‚0±¿mì¾£|¥’­\¼ \íS˜ ø‡Yh2`_¤$„%Éö 6ƒñ/ƒÞîS(öÓºdI—¥Hz£Y¢[À§#¯¥fü,©Dƒwi*Tßn>i=-”QðctÜ*[†šqŠÁG˜Í\©Ø6˜C‚“O% &[Ù¼_ŸE°.Çôq–¾DÏ9Å2[äx–üw•DÈØGñgdÏvÅ#¨;_Ú6 8^6’¾œy?ºx”*ûßâ^á{Ï䜇›šy¯ùØ©w¾‘5Ú•}pÏÇÕ³ô¥ÉmKZJÙ†.L‚BÌEW''~[7u¢uÐV9÷%ÿ7`"_!~%ås{ /èSà—òÞ1Ìf&3» e㇘g9`æ»@¾{Ÿz ÑèvëþÈÎ3a£vèêŸÔu1çZs#lëÄŸãÃÖËÖZ"VÚÄÛšý ó!f p>˜š£Kx¢‹“ž)@¿ZQ›‘WÙªN,‰‰qʼ2AÌðRv†¡v˜Î ¦ª7è5icÄqP¨Tw•«åîFlü½HfèÖ¥ó°äÉ@4é#‘ñ‡aèÉ“Ø4Ÿ ã°s/T”Fë”`ª¦ãê Þô~‰›ÔCLÌeWÙþ} 설ð%–;„ˆ·ÀŠé~_?÷V vÒprºÈ]¢i|öño,|ä]‚"(3è E9-4"¶R9sKbrc™É€ä>lš¾“PAª0:-GšJÉò„‹€Z³Ï¢G8's6[ùÁîT:O>×ϰéÈ•òY÷kjþ v86…º”P›òàºß£áæ MÈnKôëºÎE°£Î %ˆ—Tô×?OH­‹ÑEð§Ê¦ß6aʑÃy–߉ئþTu‘…Ø2zŠCe">ØÃÌ|j9†âû ÞšâðiQ«žžyÀœ%0å›Îìƒg ô‘ øÎV…¤Lç·bJOöȲðÝð-ÝÐ R.LQ¦Új E¬¹S™Z4)ÍRp¦¡Ìžø5GÏšI²Ö¿UïS˜%|€úØæ·ŒŽeªäö¬(#ÎAœFe „Dú”œ£%ìª&¶š¼Ñ>ÇxW\Kß­T´‚wLù]æ˜v±ÐTúáq!< @-<@ B„Ÿ·äÔ³R08= ¹q“ôRÄâ€Í\P ·¤Ar¨ØŠà¦7PiÝ 0ø€|÷”ÒåD#L`½VÚÀh!± %dÞÍqaâHÜc8¸ÖC„‰‡;Y6óK!Ì·Ž¨ƒ#›'ؼ2nmó£Kád”£]ÀÆm»ë$áX«ÌÙi&à¤ßžˆÍOO@²ÁŸíÆ#›™¯N ,Xfùåòä«U_X ž·àÙ‡˜ä »Mª†2ATVéPÕ …y¿@Ô¶Hˆ‹¢‰Î +sVF[Uݵ~€‡9£û”ÐÓQ‡ØœjÄ©@Äø”n¼´ OU…QcÉÍX`„£Ÿ’‰x "sµa"B8²:i ³Ux[Ú§,.TØ0ƒÛŒì„ruðS–_!ÖØÉŠJ€À1Ñk’ Ôå ÙÀ¿ˆ¹Ö`m À´ü(ŠÚ¶½i½Ï“÷úÿ—¦ Û œŒÃtžSÔ„Ì·qþ{)ΞŠ穂Ϭ,~ÀÍÒЦkæÐçý>š)pÈÅSJ¿'±¿|MS?f9Xr @QÑnTª#Üh{ÄÇMóMç¨k/u+U’3Mþ}ò©ŒÀ`'IÓï:æéÔa9ˆ^|Äåì|Ä:g̉HÑÀyʲ:uF)Q'¢¾-'Ò€Ô¨¸VN¤µ…/ÌGp"¿á˜G9‘ªŠEIüN¯‡uÃS3uN;r6 h÷XÎËÙ>ˆô>€±1†ð@Æö·âkèey0_cä1à.øš?ÎÖŽzá̤Œeòáú‹wîì0Þ¢:*jóÑ1B‚Î ›3%=¡öE—äÚבÎatÚ\ï}UÅ~©Ú÷Uu`ì2ÂÜB¹Y«ðïîÔmR ›¯>; ÜS *.XK@‡XÊ ‰¯YìÊfººG)á// S<ÌÑ^'›ä©”À†–OX;†˜û²,– zÃý)mz\ñ ¥¼gÛ[@tÕÁSÎvº!@ÊÃܤt×ë}•ÎÌ Ç‚=Mœ¦Äöß0W%ÖÛ©‹ƒSª<æ4±ÿÛ .‘Ýn9'~å2ÌZ8ç,ïëPŠÙA6 jÝ#Ü OíˆïfJ ÈK ¦<Ñ— rÑD?šÈMÑâÇgjÞÿSHE”™¾û§…Ï¥ó§ŒQ¶pŸ_3–;"ºˆ´¢ôæœV8œ ¢ç3”O~p˜ªÍˆ½Í²8ñ›tK2Ý S³Ëu`# iJà,ˆÃ3çijjI×\.NGŒÒŽ)¼À˜@N.ò׿ΧnEcŠ©|1' âQ¾Þ*³-ä>“E¾^¼,|Xn÷ùöæc"aa²¯+ï:«_”@â}º—C¨^é”I+£Ž 7­W¹›ºx¬ mºÕ˜nL®Dö9t)™öÙ¡9Ng?DÈö‡±f) ЋWðoú؈¤Eîö½)ùMúJr”µ—‹’>4©—pÂ? f|wôcî´)„éòu$¯ùFé}úàÜæhÒ/Nij¸Ó]Ò"ÔÀ Ù>ë‚®¥†öæj{C›'J¥K¬<¼ßˆCž_À –î«X”“3½ÇâUgFšLx!¨øÏ&£cÈÔÞÝ6»¾–HN±•â¡ù¤‚KÃ>Ôò3£¥Õœ2ÄIûPѸt‰9RÃiŸÕ¥ÐÝ-+T}YsHÎÓhȬéÒš Xü…·‰fø¡i+˜NEK´QH­ÍÝ-C$×]Ú_¬LY ÀnBsÓ8¨µ¼NßœG¸Øç_´¤IñÔñð¥6êVR|Ž×X0=B‚E3Þ ˆicŽ}ÐvíNÅÀ‚ÖÜnç_éGœ¦¶Î6\ç³^/v0p#´¦´3Ô7¤ýP—å'‹ÎmDpŠd6ËYúݺS°)÷·@*´+¢Í1djÂbËd·G>ÀРË){ôøi98>æqþN^°¶‡ŸŸÑf˜ñ2i~]ø_ˆùbÝ0DŒkõócp)Z®úGô C'c”—«B&JÓ ™¼žÓaé ŒªbvZ’­'=ÛO5B’ùŒéñŒD¹1žÔ-*®ˆŽ%ƇHÊ Ž‘htå:é< ÏÑž¯¦xß²‚'ßUš2]&i|YXøNb†T‚Y_¥@ð‚„ì6æ]mÞ/fʈ9¼…ÕÞ€êi±€—Ûßw®Ê\:²½š™A´š[·/]ÌÊöá~hÒÜ&ЦKà…ãp.ò¢èÈ-)—{a}¥ %i¸t¬’ªX¬—ĪE4XŸá1àM2S”ÌTߊ*㽨ÍÛÚd¥ó>¦¶^S¾°¥á®øãä¸È[GgKe¿¾¯ÍËÚÜ׿]m¾v=\õ)œ0#ßj.ݩ髙˜ JuÄX¡±ýð×Õ¢,yÖPuñ‚§9ª»p E޼àav)Û~´d“­{ö±‡în³'hÀñ†íÅy„zR‚%1þôwØM›€õEÜÓÔ]èïâÐúeëôɰ;PL“CßnW’dß.À­wi6<µ¿Ìgߺ3(†ÑÜtGåuÚ•r"cÆ@‰¯…\VÕÞ¼f~G«uÐú€7m•ÈküžH°ƒädæÉÒ«ÛõÎÞ98û\… ½6‹»ì„ŸÌáZ˩ٌ=tì4ß"Á’“5òí\™¬)UËy5sˆ”ïYê0ÿмRÓöÌ Rm~­˜V+¬’³øÀ5îQ)µ¥ŒH1´#2Bá•ñÛx_åóÛasQµ¯ÕÊ*¸²ÁXI¢•¼°HÌi+ð޳gú€Ìa_Ö™>°¯nn‹×q vÏë²ZÍuörv±»­ËלkêuqÉDsÌ÷Û+idÀ¼J‡fio“‚ªe¢þkTÁCÉJ*©Â¯u¦3%J9P/òa×S-ÖÕ[Äh5ÈÆµµÙùe ù^s.¥“K_§2¾! T¼‚™¢-(ù$Uº”©R!™è–J®²zýMw( segm©>­Åž¬|-Ï,ïyj[J¤$ä¦%*´Š¸óqËhÏŠ6ì[QÄôì¦büÒ5ÖqÇS%Ae޽ƒ%é8×vÄ,B¤ £enÍA>¬'!ÔT5¤âÔ]Ob¥t¨×ׯŒ’±ú×mW°2(Ù] -sU±â V5JÎG•ó¡²éŠ™xZ‹â¨ø£‹Z[ðk ¡§ì+û’sEK£’\·[c< m3Pe»^Û¬µÝǵzB ˜³9Ù„ÇJ%ãEB]]˜/WÌ£‘)õnØ÷P‰ä¢N€ p’.q¯¥#Œ¯L%g§Ä¼tß”„üë;ûÍ-Êo MÞÝpçÄx“ºàtvEvQЏJ§t¯ù,}f£ïÏŸ~=P+U“ËŶç_$ÚÍ"ó§'9|îÁ¶çß+lL$1GÍ»aߕ󇣪žoâ›*U†?º¯a6g„Vº®¾‡4F|ÐËqOaÅ9«螢3êÜSè2,kYâÈÑ xÈ¢^ê6wOfö)‹ó‹¹ëƒŒäæ®ë¸kjªtþÎïÿc—í£""Úœ*C)¶Å 6)ÐÈìa…ØÉý¡jSÔ¦äÍ<‚Ûþ[ýõ´þúmýõum¾©Í—ÃT³lÙ™¹nX5øßpõlÔü¦6ÿgØa,Öò"úÎL3zcûz<Äíp>&Û¯jó—Ù¿=¶¶xF*T>iÐþçÚüYm~U›ÿÉᆈêÜä‚;¦äÓÛÏ«<ú|þÕf¬¢_EmÊaÖ›¬¡<36 }o+ú2GÞem^Õæ/k“=WÕ½gðŒ½DÀ„?ön81[£±ûž„ˆ§ˆ ´Ã&;õóa6Âݰïßš~Z·Ìü÷›Jó{µÃØ‹ñ†OA¨ Ú50Öu¿7@±Ü£µ-’-Þ­è’áÅÚ»GØ%ÃØ1ÛcSpɦcYcÂŽ úfFU›¢6å°ÉÎïŠÏ6:kÆ"^œ;ëgÉ¿7\Ããì§ÑÄŒ9MC–eHT|5éטC½žÛáÆùðŒÙ MžÑäv8ÄÙäÇÐöO‡ѸúF\‡aâýðŸBOýSŒ[¹kÂ!ÞV„`À˜Å ©³3\C¤úÝn¬%“ëƒ2kqð¹îÒЯ«AÇ×ñpTmEK—x§`©¥(~ÏË r.9¦g*ÌÞš„«!‡6 ·gÅ©Æ9œ÷i¸ú7B.'ê4átÔ³µ°m:ᄅGXšî"ÊY‡?KËÃ(3”VÞjk3ši³aä7¦ÚyçidÌ$x¢2ÉMí’îÐ.²÷èΈàn|üXeÌ”QöùèÌZ±‘ä^ïëY.÷’^4ì¼9½Zœ{¶æç³øÉ®8=X‡ =æÆìÜÊYïŸ “vƒž*éþ‘’¼æùpäi3øŽ$˜ïÇÏãÏ5öù©ÁšA}ø?eÀ*Þ¤"d64¥Ý)ß}=ÿŽ~V)wt륖SíkQ¿`Ëú§ô¶³4 zwÈá(RA÷}ú+a3ï {´A© Ñäç­ÖaJÛÂÊ•]aÈ<ƺÛExî®$®×Yn¤×8¿ ‹¯û c›oøÙ.Ô_^ÎjBý4™Z)鸚äJZ¸±xugï FÙ> «ñú•ò`¸ÕÆ:¨÷ ÝFáò‚[£€¡¯NÈÛ¥pm[/‹UÛä2-•:_y»£ý9-éÀm¤'àösµã6élta ‰ú$Ó@Y­—5`ç×oø-«RÔÕÚn¸#\px_cUïÒê]d9”TÕTö8vÅÛö¬ªlOùÝÔæ8Ö}|_tÅwÓf¤wéÍ wCÜšXõ›*Nš{­‰%"ÅXL‰-ž¹Ør‡¬•6øõŽ´#gl›MŽ}b}I¸\Æ«Kd+7OÎ),ƒ©}“²=;|¢R÷>?Sìm ÔyCÑÇǸÍ#'×Fž¨ ¹Åêvqƒ±´(rÅ$þ(g®‘©ç7}ÔêÓ˜,"•ìüáŽêi·ú +§§}¡8¦Ï°Ñþ«ên5»ø‚'³@ûŽ=üÊ6/ßûM5t¥k \Ó˜µ«¶_2-s‘.‘¯4n¿å!<@ð?ê¯Y6|A–Çš¯Yr•ð(Ï#DØZ¾¸ýdNj֎|­øß”¸eIp r?IO*åXÙ“f¹½5žÜEkç—¿!Uü¼(Ï@¿è_ ñ?™þU޼¦Xñ²¾ÌFyV9‡)ª¶¬<‹ž7á³OÓ½á0ˆé+|KíA7÷»'†ñÉ0dfÇ(ó±$©°î->ÿ.^^bý3+æ·9œgÝ£ƒ8.e¥fW?õ]¿€_¥§Þ>Hù(Šè±ë×éLÆw.RA/Ôåî_µ¬tPýô]êí½j´³›þNÅ,hº^oõœ¡-jÏÏCïÛ‚ð+q6n®qTmÌ©aN¯{ñTY­©ÎìzÖÇ|kf˜É¿”¬ 5žÍ7h‰$?ËÅð[ÏC®†Åâé‰\àtñJCOk÷sYùæíO悸x]ÏžÕ×ã¬ÿ&× k9QûRµß¬N]ÜÞV¯z¬T9}—"–zK)×у7—²oõz-αºö|869+)ʵ«²¯þÅÃ\¼u~ĆނgoAõ C°­{¡Há.K¼òW'ÿFÌendstream endobj 616 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3194 >> stream xœV PSgÚ>1À9"B5žb­›“õ¶ÞЍÓ*¶Z•¯Ô{Q0b HB $ÜB’„ w„$ ‰R.¤ˆÖÖ®ÝÒ]-]­û»k[[¬mÕÚõ =lç?Áv·3»ÿîÌ?™IÎÉÌ÷~ßó¼Ïó>ð˜@ðx<ÏàÐ]Aî‡y®çy®™\¿â[4š6šã >|ðñhé›3;§ Úw?Cðy`œ0Ä_Æwx¬÷¸àù¼§Å‹ðú=¹—ì æPbª†z0qéD˜xwâÞ3¼+½ÿ:iû¤û>†ÉŒKïë§ËÓ™i›ŠÃ3ì/8‡¯a%ý·/\}·jÿv!›NÔÂf¡Œì+ª/<ç¡Ê8hxËg¶“ %î!á6ØmêIU8À¡LeôÜøšdçj=eä‡eyûÖüÚ¬…^Æ×U®mq-´ñìw°ýß•Šq4úÏ~Ìú±‚y"v;åñ|ôCÁÇè'd5lb›ú¤nã ôÂY¸lër ¼UÓ—¡+Þ× . 1ÄÀNe”âàA(-ûºÛ\Ï:µL}2ŒÖ;þ‚¸?§[ß¹dîêæ•¥,Ázm\¾*RÒÔ¦bŽ›¡ê©MI­G? 'á„ûèS<`½÷†'–0‚3WIv¾ç5Sþ!fLúßpÎû™ò'מ|æ&<Óè® ü z ¤Á˜ž**Ñr¬ÁÒPã8-wDn‹CÕB7£IvÖ¿at°¨ªp:¡Ñxu|' ¹^_q–ÛjÖæ ´òZðø¿v­¢OAY–ÎYÇ…CNN¾Nf•™â€b§]_ÔÌ´Ê:òr²Oé­ÇÊsm© ¡–σ̹I½˜%Ô—MY@eBnÃN#AN¥©°°¾NXlª¨*)é>Ü«·q,ùõ\:§iNn`âÎÄ–®«N*Y_—©Ó Ý_ QºRY$,Ì‚ü* ª¡´ž;çl®õ'®4óþ6Œ3ZøxÓ5‡v²sq›‚4®ÎY¨§”Ÿ²v’õø³zp¨íýkÂËŠ½ä:Ylì&ø¬Nˆ’ë­Ö–ÉÛýO%»Dø2½,|kðJ]ÏE!þ…d¹É»úe »„- î•Ú5]ypúìW(AjáJ/œ_áé$7æ”ö3ˆ?­'Ü×õ†Öâšáä™]>nB¤õ&ƒ J©¦v¨:ÉCµ1 ¤±'¸6p €z¨‰Áy,N7¥ŸÔ—Aœ,*=…3ñÏÓ-m•m…”“”ë#Á *ŠÆWÙ §2 ²†íl¶dºÛ6MÆÚì÷ÚlS{nFŒàËÃ×[üZüê:]"¶Çöe»Zs‹y[±‡ÔBxl,œ¯b0É™¡5²+æLDM8P+6ˆ·Ê,ÇššëÍM=Q%F¦¹é|™¨Ë’åÌQRÐDì5¬ÕmŠ–&ïƒh*èëÄ!!·Çmè¸TÝBåü^¸Vu ªõ­.ÿ_0 Ÿrnq‰lÓÍ©mœÎpvºNsÀ +j[{ûk; :UMâ¦CE; 俞Xö:D‚¤Qu6Ó…œÃröÐΨ·ÿi±)ó²>HU çÑ¡Ÿ<6Þˆ±‘®á´-Øþ…½…×z£Fø.Âõ+:¥@“ T’YÓÔd9åü݆Žåì´E"v K?^€ÞÈœÆÉe•ZÐkÁp,_¨ÙÔÖ  8oõ]©ºhPºóTLÏŽãÊÛ®qÀ\Ï¡ i ÏH‘EL†CݘÔÔcxNCŸi°©ÓzºË9ÝЙÒ,©L#¤R'Þ£u¦ÈÁÕœÇüD Xšò`Núè\¥ŽÃµ•ÄEÿP›ëñ/Aúºr¥¸f|&ê?仿pƒÂZ–ïvÅ DŸf³Ï°þßÿ}Ñ·ÿIC©Î”“­Ï+02qs—2 7«[ö¯@7UØH—aÀÝÚ¸WÄ…ì4n–³‡›qÛÕ[͘×̳¿7ZßæãÜHÛÒ½@}uýÃOú­Ç«™Îö>¨>Wi”¶4µ¡º¶ÜRŸéŒNˆÔÆJ…‰Ö#ÕÜ€]¼ñ•0Glmc0(¤pâjc›ÓÂÒ£càõÛowá4ôû~ðFWê›1ÂÝm;a1h8Mä%˜R›9kKjʪ¨Gô2øÆÚ\Ôzª‘©17×´uªÕ°p)ÓË®¡O£ŸqÕ®5‘/,X×w©¶üƒ;ÌÓoï©ýù¸ut ýKÍÔþ繌[Èÿèm‚ýRÙn.ô|±Ã=ݻщ©Ÿ ±ŽÎns½F³sÜGy¿,ŸÜ–ŸËŸ+²¾ µœbúõãå·”¼ÁžpuÐU£\¦V&$4(ŽÆF‡ÐwôW›=Ë;ëÄŠ»Xîä® ¢ÿNziØdϯj 2Ûq!g=;”ê ³AIYÉ8Ș%<"ój?83ö÷Ó>¾ÝrÔ´2.+ M…eæâò¢f¨®„9¡š ¢ZžÂåq¤z^ãã¶ÿÄh/ôÁ)cÿ/“Ž[ŒÆ#Áû >†¹&ƒ’«Tò„F¥ÃÑh³ Ù?yØU6î?e‚¼Qåx ;ؽ\û_'yР2¾¼-87‡3[¥3å•–}|}lðÉNY²JžXŸØf6—pÃj´=øbïòèZþhþ…®®‹52˜±'^Éœb†*Æõ{ˆ®±‚Õ’ ™ÌØ^Ç5’l…wL±E–v™y¯òñ›CC‰þD~)K£÷Ü ¸Ä;ð×8£¸¸è”P¥ºâ¼¬¥Á,o¯0b‘j°“ ¸ŒõºÄz¿Ëú¬¯ª´¤¸ô•1‹+=€Å4üON؇üèð—¸Ù†\½®H_šÇ¼³'°3ívvÁÎeŸ7è @Gé‹rË+ï^GÞEáùûßú¸MŽ¥6¸Êùî'Ú6V®$Ÿ6æ'^/ÒÿÊ¿«<Ù6:ÕÆë¼ƒÕÜULŽÑ0¤¿#ý8êÞ«;a;¼ªŠZ¢[¯Â–¢…=¯ô½t3½~Ã-Ý_:†LÃ-Š•±¤å\ŠžÙïÂ.‰>„O*/™?¿®:દ> b¬†m +²w¤°^법îKZ9§ò³Njnðñò¨€¶‹”ÂЭK@”Œ¬‡÷àb5VMÆè³„ñn]]ÜçîOªŽ'ô•î!^·ðÑãGNÞÀcŒÿ’ï:Œh…—áxîŽãéù9!Üì¡Ø¯oïáJœõÞ  ~„OC†Y¨ñ³!ïÜbCÿÛ¼¶:'fßå?Æoè4ÐVŸ>õ>“ âòÖendstream endobj 617 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5475 >> stream xœ˜y|SeºÇñ¥àiÔ9§Ž̰ʨDP+²ï-¥tM·$mÚ$mÚìë““}m›¦éÞt¥Z JÅ–²Š :㌊8 3~u®÷M=ÌxßÇ;3×;Ÿ{ïmÓOrÞóœçù=ßç÷„Íš:…Åf³ïHÙ¸qÝ’Åñ—Å`ÇœûÛwÓ&4Ó  S;ä/»;ƽ ÎB¶Ù¬D6[X¦3Ó.¨¡±¹­«'E(’—ró$És3ç%/Y¶ìéùÉO,^¼,ùù¢ìAfFqòÆ I^vQ†ÿS˜¼]˜)È–È“ç®È“HDË-’J¥ 3ŠJ KrWΛŸ,Hò’·e—f—”gg%¿$,–$oÊ(ÊN¾èÂÛR„E¢2IvIòFaVvIqF¡(/ã`¶$#7£¨(£ C$Ê(Ì(:˜•!Ê—‰’Œ²RAnQ†LÀb±/NY]R*‘ÊÊ3+6åäæmlßQ°³hå3ËŸ½oFÂÌ{yäþƒ$±X›Y°cmgí`ídía½ÂJaíe½ÈÚÇZÄZÃZËZÇZÊz™õ+Ö“¬ ¬§X›Xk&kk6+À¶°meÓlÛÎv°lÛÍö°æâ„³¦²Ž±Ÿ™ÂŸÒÈyˆãœš:mæ4;w-÷йIœ¸sÏtîô¯fT',Møvæ[‰ÆYÕ³ÎϾkö¢Ùyw͹«ãc÷ôÝ›tïo¯•‡îÛ3§4fJŒ}¡ŠÄDØè»ñšóœë§y&…^BÔÔøCî°‹´Òþagsä÷IΈ3âh´×¹Û­öšèÈ?1äÉÉ߸—¹·ò¥‘X” "R{ò†?ïC¹½0©Á¤0Ò5ùÛ÷Q¡ó66{š<ª~䚣ÄÅ)Kö®—T†7FÓ dYjy¥ j  µh¯Õq’uï„÷öUç—›TÕ»©Ä‰ýeщQök78Ö‰õ<›Ù¥1Y,*¹z¥&˜v•áŸ)eÊ1£`–¡é -øä½c#Ôg¿«»6«³Þ`ÖšIM±äÅ—¶¾´}CÅn – `Yüñ³ŸmïFÚCî®Ð%g«=Ð6Üq»Ú[ŽB Ô(­Pd(+1Q铵¶¶5öötìy9}¯PFj‡r;S' ­‘ËÕ›ñCÿ·B×µÙ?:–§ŠŒ\Gs¯ ãPø£hÞ('ö@l:Oh‘–AQåQD"MuýC¯b’rMö]E»ž<©>©‚„Xò4“PµF$ä!Cs´•þrqQùþm£™×ÐSýhæP¯¬Yé'EmÅŽtO®;ÓCD{Ó™ëͯê²jÈDôÜü(J ³ÏŸã ƒ±GxŸsÃ^ûÔ §–r{ÑÏapuJo…IhÉÓYÌÒi â —)ݦ®sS˜>cȉ‡²_ÿz4ÞZ0j,&•<ðð®Råê@Wí²×a]§ÿÐŒì7=ã_ŸG[>çÄ¢›A§xΖƛ—ÀMÐP-4HK tR$‘ÎÐÀÉ-AÁÖ¼]%Yra§·ˆ‡·1¼’xÐní¡©îo/4wQߣÙZX±6‡I¦*7æe¤ƒ$PhvDp…[ËÜŠ¢qAÚ«ÒÁ ½—œ6ÒŸÓ›5Ä7£ˆ×g’ÆlÔ™©üä5¥@dUvvcªùqÀÏOæåa#ÕeÒN¬âᆮ–¼ 5‹I­EeÁuÄ­RsœÖ©u¡œ\ÆüFùбòøóG6¾‹¦£Yhz䯮·ŸI;X\XDJWòœ =¾oÕ´ÑÛZ´~K>s‡<›Ê_›–‹ë%Èo}·êkÏ᪙ŒÈ‘ëGnK€uÞ7ΉUÄîâÙƒ@ƒk²úêJ½BCš ÚB£—_¤ígÖ&V¯bj°ïXÝÙîëTía»/^ù‚¾Wþ¹òŸtà$ºë  D-Öɨ̇äÛ •xâ\Ñéþ6²z·roæ.± »8 ª`¿­¢¿ô{=ÞÔQ‘]-ɯÜûÊ`ÎÙo¾¹¦µ‘‰±UÔ}} Â>ü.*þŒKŽÍæUâ««ª*æ Ð¥!U}{kÓÀ‰Ô¾™>ó0óÐ’±Fô­ß©wa›µzrÅ\† J 6ˆNŒÑ}–ŠŽž:z ºáPuP„¹”­ºèŽ Ä}ãàCÞëcíͽQ°žéíýÃg‘ã`'p‰Í:“Yc ‹ö•W–B)(ku²ÆŠp>Ï¥-,7ØôípÒTý±1« ^רPø0ºr<"«\òtÒšµyÛpØ“â£iŸ“lìéhí„Fðjš‹ëÊC•í@|9†îiuZÌh‰’¼¼^–R;Ë]‚€Â^Ž¡_ ‘81Ñ v”=aŠ]åyBÑl„Ão­k‹Ê‡ Ï–¯&<¬WbT{ÁMZ|åP&³Âbb¦ÞښĈcõÚÅ*Á£í~®TséŽs ¡˜ûou«3+ –›øz•E¦sÝT'ôغpâzM]ñs{5Vµ•ÖF .«ÃæCI±æ$»Ì5¢o]KrUØÌðØ!œì*,Çúë1Q=úi(¹‰ÞºÉ‰q0¯ý ‚Ô¿q×Þ|Çéç{êëjÀŽY/O7ªó@AHBÊú–öÈ¡ciäs‹H}¹I]ÊÜM¼Ä•ýmò\à>w‹’ÿ¢bñnàñÌ’…ŽÙ<½PC4Êý2qqYöþÁÒçN ‘çÑL« G'ÂÑù?¾‰ý<¾r™+ˆÍäY´wJÇj‘.×HÊûòZ2ñ æ2³™d摹g¶\>=<ìóRVKùʃ`æ5‚¹ ò­BO‡Ç×uD­ª^TV Ï<Ø'ý#ºëò¯ÇkHÚÍÓ‹%%e²ry¡³éÅÉãíhzëkT뉣G€¸\n0˜õ#nä+?¢]‹Û*4ð¯PBš¤Ì£·®'m_6xjkýAYÿ^ä÷·=Ÿvº»¬N›'úFwk¤6Zˆ£>AîÎl†]º‰ÒJ X6?e½» ^Üñ÷Ö«öèšcÄ›™GžÛ°¯0-[(‹`33A'£ìXûݸgľã9›lÞz›ÇÚ‰åB¼ƒ80WPùRV%ï*X‚s:•‹²«y_EÐŒKðqmÉyfÉúQ™t=˜ë¨Ùcj0ZL&e\¦I·]!Ê4Õ—lmÐï˜Úâ:uû±®4 ËBÓê¤. Ð44ƒ{#´=O¡-ÔK(P“ƒŸ–a¡|ÜóUЯ‹Æ¬Ó™É’çTH€È×Eú£Î×ìÄaáýµQ‘—HD·½.ºïSöãGÇ9¨ob/\U+‰Ä"Y°¢©±£±ƒ\u+çoÇÀlu‡AŒ¼8FdÿO-וÕ”V¼Ÿ!*¨ÅÕùPN¤vçÇ•xÔó_•oÈß´ç‡J8ƒg°J&°‰]ÜÆFk.!Å%Îÿ#k°Xª”ä¾mâáÝÍ/ãf¿‡I`î`f.I{MAý‡°OsJËøK–-˜·žáDÐì&G“ÕIZíV+6 ^«g›4·32l¯ô£Óaµýä‰Ñ£[ߪÃÞñA<©øhöÛ‚nE’4*ìO4–9s½Zä´ÃñÛ>þÇg0S ŒrГÐø½V[£þ·1}ìØªØŸy®6»ÓoóÐ]¢ÄWCÆgÆ,£˜²ÍÊøãf”v×Ðd+z‡ç?Ž òÖIn)X,:ÙfæÅ$‹Ù€u£4¸¼VG­“|-j ¡¹@ôsÛÀ¨Õ›”SœpQMŽI• ü\=¦†œ­m4´bù´[ãòi³´ÆåÓæ6 ¼qiA\R ´˜*¶imP VpØk08êð°ÿ½ÿv{½8öÙÿ¹=5¿“tx†ÐFgs·éw•°t`4©ÍJs|Ú2y²£µ¶/B6úNÅ«—ÅXe"¥/Hö¤!«öõÖÙíµ”½Ó onhÊ uv669vô8q¼´ÅoÆ+ƒž¶€…6ï3i²@9i—0Qû;$]û…iÚgRHAvVf¶Ï™•XPs¢ì·ÞçLÌŠšÃ¡Ž5·'}Wi ˜º…M% ŽX{×WH £ûÿ¶ÛäUoù©Ý¦¶æÇÝf"”Õë³?Œ!ÎÄÓHÆó9Üðƒ_ëP9n½†‚IÕ.3˜€Pi4*CÔQ±c½…ªt=hø*ÆgÃÖ0€7•fgzî[6Zá t+ïBIV¾´D( ‹»ü»ÇKÚh+FaµZªžÏÛœŸO©ðÞ€cÄvÁáûà}tgüø–}í[Ú1Âk/m*..--.n*moojjǽobl ßm³ßˆÍáÄÖO¤ò°«°ƒ•ði<*Τ7‘ÌŸþºÑ€q–Éà6W_ø%SØ€6Db‹ÂlT‰þÌs4xãïÖ&æ‘[ï™”83_áSÖ5øC6š´{'¡…¢!c.AÿPS›gŸpz ±±¶³®7pæz«âeù–ƒ@ˆL-áˆØÝCµ!–­Æ{È^Ãw4âÞ^  b‹@K¦2›•¯¨2Lj¾Å°oñr<ÐK»^owµ¹Úpaî¹­Glf‡/rbb¤â¡% O<ÏüŒIŠׅ㫾>w¹ñÌ{d`WWá#ÑSµ.½ »@6‚ò½¹øAˆBøuS®¾ŸúMo@Îmq«°¾ä“Ó`Uêbís¼¥+Wª°CÙ\4tþD bu¾F _y½/g_3çÙØJWàQq–ÙÕ€žŒ ï#ÁrDØßO™õ!ëçû)+¿gÅ.ð®î8»|«°RœGîÈÜñ Ù*fé_f%YŒ½;þ…mµ]BíIõ›s®À¸Ú34xüXçyx.çœÌmë= — f-³œWmP™K±q—ZÔÚÛköa²{ ` p³nåÁêì”Ý…"¯”.Âkëvk>ež´… j¬þC¹ŽBk½µô9aVÖε¹Û€X•=öŽjõÔyäŒ\»Œ–â™Íë)ÜŒŸ)È4ÄÎ\f£¿6s#¯ÝØVè—>&eÅ&C…NJ•½PÄ &T;àŽò‘yGíQ:@ìÎ/Ï£y¿qùý‘¸õWƒÙ¤‰Ü=?óñÌÇ,QË{Y_”žÉ<ñ¶+w­fæª=à½íÏÐGŸ²Ñ—o¹orN÷ó&Ù®›N‡³ CÃÛ«—E+>2}R/c¶Ìjc¥EÚI¶w¶„ºÃdóÿØ?èOö’dÇ~œU §ÆÞ„÷yÚc `;ý9Cº¶Ó]¡ÎÖÖÆcýíMuf»Pº$ÑÎH{³ÇØ’»iË+9éäš­¥Š\¥ÍçÕQçlñÿØ$«Á}ôAuÃÄÂ0{$¦á  4Ä;üóãÌ‚ZIm™Zˆp1jœ`›™6ÙÕ>}.̈]H*ÛH7¦Jë6[©.¼p5¯ù‚iNbÚ™V¥R¯‡j~EPY[ëñyÝø>7™ŒôB8¶¨)ÂìoÆÈ79±uOð€¶ù°­àQª-¦ #¹•©d–˜Ç>0òaþ¥(Q§-Ôh •©êì8]‡KÐFÒ4¶”ÁCh^zÒEº~³ë&Cy æ[«y›m)=ð'@ ×P2š Zî{Ï8šK™þ$n¼_(ñôVC$–ˆ·$–ò/–seªNDnbÌFž9f¾Êkq’Aî%?b÷óG”„fµ¢Á3™[­ÄX¬%×3Rf>3•áæà{\T5 ïÇØèÓŠÝÉCÓ¸ùÌ\ÍX‹ç—È-ð¦ãÜn…@ëƒTñex›×뾓âr½ÐÝT2йÎ-ƒlHOÍ˧áŠÇ”›¶»ä‰÷Çâ¾z”[ÀÌÜÉÌÌX¬ULjPV« t¸ÛúüdðÐWq8ë” 1g8ÊŠ¿;¼‹+…,|x~®pèÿáðѸ%û;yרԗƒ‘¯rUFºm56rò«ô×1ö¡³¨í<'VƒýáL9ÅȸÌ/³Œ™±ôôê“>q&ZXÇ )FÈü•·7³÷r‡ÿw=§©#o± þȽ®0UºL°‡ÊÚ²Sœñˆñn+Œ³*ÿ ³›^kûà“Ž¦S´æ1씲 ûZ…´©3ßc¼*D3S“°\uPLHäE…éùMn©·[¬F ´fQ9’ûÆÙ#c'Žç„TªÊ!T;¤n©»Üµ¹)i¨¨ŽÀáþO>:ÒWÝôŽsm>@gá]M™C‰[Œ]Poô¾µ/TÖˆ÷x¢ù> stream xœ••}puÇÒ†…–Š:Qâén¨ 9äÔD^΂rÔJÁR°mÚÒ—¤iH›÷æ}³Ïæ=iÒ´M_Ò6mMi ”‘rT|9EtFÁïF¼ßö¶ÞÜ‚ÜÌýuÎÎììÎìoÏó|?ßïÏK›ÆãóùÂ5yy¯½xïió;>óø4æ °Uÿʙܕ™ÈLx|fùC(ø R=€¤³yB>¿¶Þâ¤è5r…FYY^¡’äHHþ°lÙÒE’ç–,Y&É­‘)+¥%µ’¼U…¬¦DŽTK6Ë¥•2•F’³¢B¥R¼ôì³ ‹KjêË•å«,’4Tª*$²z™R-+“¬“ת$¯—ÔÈ$÷ë[|ÿ¾F^£Ø«’)%yò2™²¶¤ZQQ¢¨¨TTòx¼rë׫^ÕH+7W-$óxÙ¼-¼ÞVÞ^!o-oïÞFÞ,^”OñOófsÝóÒxíülþÏÓv di¥©ÓÓÒ?ö ¿™îÇr°±k2krR¨0Ŭîà£<”!Ú¹ºÔ\Nš)ZŒt7Eðø=—át“>8žù¤/ñ¨‘vjZ„.ˆ£ñþKhÚÔ'ìdW¦4ú"½)ÚØuÓ!üá h#ƒ€y[!ÞbÝ*ÔC+˜“]T@ b ØÍv3Æš¦V‹]c¯§g1&sòðMôÔ_G“|ôøyôü„€™ÏdŠTNµ”˜&bìŠ 6™ØÐ“Ç>V²h»ÊGäx·¦›$-Vü•U;/lèYbÖÈØjVÃ.G³Ùt´ ñ®í?4BDªò0xÁçv{ým‰Ûdè@ é†"qz0nžía›Ïj3‘°PB%èi=-¥õ€ÙõÐhh†ÞÎQ°$ÚEÛÁ û^Òh¯k*qš«^]¨\X‹DK¿BO}w‹¸õOÄk; Ê:óÌ<ƒS&ÂoÔím÷âYÌÃæ$3;…8µ¯\ :&[ôwa­©~Ð9)Š4ù,™Î~&G†Ð°;ô ˆ;þß•ìcSC™Ëš âF4:=æh<á¦ãÄá-è%€ù[~mÔ€[K¨Ý.„8¡ü´ïꛃ>Ö²3ËØ%Xª5Oa&ãoü –Åt±ÅÉÔ̓I†Hò'n¥>01f–ÈÛn`= ~“CEÕq—ÃRîPs³C‘Å/­¬P;|d|èoÝãD¸Ç‚vìôÛ;sJÙ¹&KÀŒÒþ°ïýöоaÀb!³JmUÙ4Dé\ív(Â|ZwîÝ¡ÎînØl.“íØS*­ÛZyNy½GÀ%4QõÞ maÑ!é•Ûhúu4k€ã£ØœD=7“üÃ_!íæ÷ÌâR‡±°Ú^kÔwÂ{þük=ùl6‹s—dч+‘=÷õOÑ9`·“¤Ý¯X̦°­Å©ÏwÜyw‚8|æxû~ˆÀQª·ËB¿˜ï͉nò¿û8uY€NL¦‰ºt­ªºÚúš½­ºîÞþÄÎΛˆ¶²¸Cï0V\8Z~êǃH [=6“Ëf&qÕòÒR)`&“¯/há¾p_sßàWsBÝ‘AhÃŽK÷m_XÂJŒÿWò‡£}œçZ¹™2˜k8:S§&ðц+¨ùŠ`òùÿ±¸Ëej›ŒuUM¦²³[¶Æl;ƒn¬ôÙˆTE¿õªvŸÅ ý¶~Û¼ˆ½ðÇÅÙØŒ4ÛþN‡Ó#M´ÓH9U¼”]ÊÙD¤Øêw4mÆé®9+ý Äèi”E™GõÊ$Q“Ú,ŠÔÊB*M`s\ƾøæ›Û7&ŠX^½S NÜr"´·õž³sʺK"Ù>:ûù™[tdr‘ˆv{¢@c>gÈä¬&]*|³s¯ËLFlhÈ1°[Hp948›=õ‘Sv ÄÚC|(øN‹õÞi;m¿Øà‡ËL]p`o.ëŒGñÄHë_8š~•Å®qâÆ¢ºW‹«³wõE鈯› ½\î7Ãõ§Ú·Fº††"ÑÓï9QˆAóV…ímÓwõ tª~kÓ¶· ðMÊ&Ãåûf'ÊE>ÊO P~L yyNÒåâ*±íÈ×_¢ê¿]Ñ WÈãò‘D¬…æÂûa¶ªmL2ó¹³Íîˆ|ñ`ŠÓõ~´Y÷œ8KLäbÃ.±²ÃÎK÷FqO°et\k3éNÀuxÿ¢Ç۾úGƒmÃ-ãàÅü΀‰kXiÇ [·•¦²Ä“m͇ýDïm¯¯38 öu…÷s³¹çñ »’‹Rõ‹Õìƒf©Ë®©ÅZcmãnÀŠªz&zƒþãªûÖ¸g¾>0$};… ²{-Aj;.:% ˜ zZ ZË ‡×sPÎå°|‚›óqîËŸöœû’èZ1îhìlêDÉŠ}D ó¿]‰2Öj[•µÚTdÙ $FAS,Jûâ>| ­@¯„P6z÷-š>ïÃ'½˜M!úÔ~Q ‹aÑ:v>û²«¢DUn–ß hܽ†ž@/ĸ<½kîDw?⣩Ó4ÂðEhºP½D“ ¹`ƒâæòhIØÊõÝÕO(·3D¨êq:vÃXì ÍÞƒ1Œpg§MR ZœýE¨î(/—ïf Á°Ûôãï]=Ç-ÄÆ…µsßdgí^mÓ›À‚©ÛÌ­£áÑëx–º“YnnFŠN![žþÎÌ/2ð™iK;2g$½™™<Þüô$©endstream endobj 619 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4343 >> stream xœ­XyTS×¾>1ik›>ÓáZ«•*¶ÚÚ^µuhµŠ#*8#³  ÌÉÉ/!dd !a "ƒ ‚¨à<·¶Ž8µWû·]¯]}ïíÐÃ}ëí€vº®.×ëû‹9gïýý¾ß÷}¿Í!ÆŽ!8θEáËÂfù?Nõ=Çñ=?Æ÷7ÝñSÜжâBÐØ¦çŸ9;x>Ž¢ž ¸Ž0KµH˜ž+JJH‡L‹ ›;÷í×CfÍœ97äƒÔ8QRLtZHx´81.5ZŒI Y'ŒIŠç†LûK¢XœþîŒ999Ó£S3§ E óC_ÉI'†¬ËŒeÇņ|(L‡¬ŒN ÝÝôÑ‹„©éYâ8QH¸06N”FÄäÒ ¥/^"ÊgeçDKvÆ„ÇÆÅ¯NH\›´nWòú”Ô 0‚x‰XEL&V/kˆ)ÄTbA¬'6‰Hb!E,"Ó‰%ćÄGD±”XF¼I|L¼E,'Vsˆpb%‘JL$^Æxc‰ÎÎà˜™cz¹)Ü»cÏ, 8Æ{‡wwÜòy²%09ð?ÇG>6ý±+As‚>™°yÂwÁ¦Çãÿö‰ö'ߜțØöÔ‹O<}ƒîÓí/Šöú¹8hËO‰Š£42½Ry¤ÜFªŒuÐ^¦M¶8 Ú¦4¨éL£´ª¡ÜZf«¼Œø“PÏÁÎ6äÓÃõ©$øi½ÚŒ-°Z˜fÿÓæRp:TP¸Ic©gèíC¤¾F_,tjUɦ /ᣵ莇½ìë“»|3\_Ѐû8P-ßì>‚žþ;û!*/|;”·‰Vˆ´ È&7ïNíº×ŒBM6h‹ôº-¥HJ[dÒâ©u춺èúË-÷àyX|p~ø–„m»(]oJÛVC†<{‡$¾p0¤²„±9 ™ª8Y}²ÈzH+’h³´Rz!Û«•‚´‚"k‘ÓcwV™¨à¡ÅÀÏ\¨ÛËñ Þæ¢Ò¡ü\ÿé-P]×ùjÐ1jš}aø€"Q­\ ‚‘Z¡’FŸóÐ hâý×õÕçÙéÿ®ùê6|E~qžåP¬š½È?ƒL¶½ŒžònT­Ž~ë/SYÍ.cÿ•Ÿ¦78L`4•ÓŸ£ö´€wÝùÒìÐé`Ÿn74æ*=Çõ©Q3ÿÇå'ÞgƒÙ‰ì‹ì4–øtý%Œ&¢Éh*ÅëæG'µ]Ø_‹Æì9N·Ÿëoj²¿~ËÚ™l@r½sq¤(Èà¡ÕÙÞ¡^švƒ;Ô64Ÿo(6XÁHÚTÀ0ZP¨¨ßK>Ùô1Øml"+fåì|4æ ôâܸn±ÒwïT~åÿ¾ÔJ­^¡£¶±o°ó¦9sî9ô|£-ø=K÷öoç¿ñKYz{#ÖЊq +”؆J ¹OÇnð¢£ÜXz–ûû4_™¢RÇ)“ƒDiaJèzð  šïϼSCnVTØ –>´‚¶‹êûð*\‚éhÊÝ­ç?\±q¹JC+&¸“‰ÙÚúXߺûôí£@¶UÇoX—Ä>™M'.Ù)L2\ýï¢b£•ÊïP€—3ôþU.²?:Gúx(­A‰H‚¦Íý† ¦Ù%Kù¶½fÀ›øŽ‡8‡Þ{u½â5:rþ{ë0’/óṵ̈­F ^õ5Lγ^Ô¾›3† ù&Á@Úå Óè@§£F™£‘E°Ïî\ˆÉó~áÕghwÀ]Þ§Ö|a®JÈ(é‘"ëü¢`*5˜ÊŠ©cHd0Ì`ø_ˆ{Nª£räfÎòÞd°µZ ͘»OòPcçJäh’iÐ0rÐ2””B±³˜ªEKCŇò¨á¼¼û§? J¹Üyìsÿ‡ÆËsÁ`® ƒ}3å5èÚårL‡Ðk\T‚:øÅ¥½èñ/¡Á--ÐJ @DfW*+œ emýY„[ã²6ÆSŠ“;*ÒÿÏý_=BÆ—å®ÓWÐ[ç\œ+×Ñòƒ\ßDßX~‚–I-)³H]ž*gËþ˜½ËÙ Ä);⫳mrª*¿Z³O^§é/‚2=óMvLBTyŸŒ:`„.Ü 5¹ÖBe¬6båñÄÏPHâ¹³¸r³ƒJ7'X¡—¬w_¸ÕåÍN¶PÁè:nõç½h!îöñG¹Èæ›Êÿ‚WeQÙ<ú/¼Nf0pÙ6U…D¤ÈºˆÌáý ä-Þ"¶K“Eø`[¢~wM+ñ«¨LÏÈ4TQJlèÇXE¥–=&©ë‹û¾¾¼q¼z€ëc|ÿÂ7•cb™ÈŠ"[¡P)‰o¿?§,W"’ˆF ®…'½8òÉŒ­l))íé<ÑrÏsš²Ö>ò.cX®6„ä”kùÝèÝýèõب+Ÿ¨øëqô^{<šÏW¥ê3AIJSÞ^¿Fv¸¥§ê䞯©Š.“ý×Ú&Û d蕬þúó©6ʽ괺®Aǧ —*ººÑ+pŠ|Ø!69¤ >{}òæH ýÇl´4” Ж&çe«×\çè’Ñò©DR-õ‹‡g¸>¡o"¿ØŘšeYn²*(½^Ò—TšŽ¥žÃŽÃ2>uVߊ ]]õ½{iÇÊ^¹ç‘‹´ÎÉWg¬š³È ÌõÒCÍh|e']¦·§,³Tz ˜ÑRV\Bò«¥.Nÿ :rë‹õ½ÆÏRæBÎÏ­ÝáH‹JÙ™^@Éö¤´FùJ+Èñãé0+KhϵöéñäoËc”)´&+‰}ŽQÊ’Dë·² ·ÜkµÔB)Y-µçeäd¥Çôävv57t»)kfý¶SXvû‘À5r `ò4töG["6­Þבּ6—¤Ín{—¥±zÐ5x ëO 8¥ä"¢¤&â  ô³\Ô?ô&ßh1cXm*C¾þÅ$©^¡‡\weù!PÈ5ŒJ¯¡¦‡* d‚×DœAcQš‰&ûí*jgL~>Å ?Æß&=ÒÝáètÿ.¶íÅv{ÇéÁÃs¤‘ î«}£é î:×·ÐÈé³$IŠÜ›½Ý<ÐݾòAX˜rzÕMôÄíïË-J«Z§×+”Ô†Eï ý$Jï=y?3´œ:زÌpÊ7“Á?÷½î|>¾­Ål=d•í¾$±¼lÐ<Ÿ½7üù¤õ¾³Œ[oÈÄ4šÀ{ˆ%>3ìÊ[º™Ie¹>WaÕ›èFØmôbgß}ßÙäÑTƒÐ‚]ц¥È€žóídàþÉ(1êJA€­¦ÄZæ74ÿ™}iøÓ_»‰ŠéœS[¡ Ú™Ö)×®„‚u`µY %ãÏ©j¤„þ¦èÁõ3˜¦?ªŸR¯¥V³ i³È»ãÏtJYIcqQÍW¥¯šýÐN9mž®£uҀы\h®0ï,Ò´pQ*à·¢Õ€&öÆï]=™¥§°‹§,úëoËJß/ë2ÅæK£½ƒ6»øèÍïìN ;=¤ö]H¦ƒÑav‡ËyÕ'÷¢·.º]œôAti‹ê°ó\ÿÅyðlûÌmU7m=ŽCí¢:¨$©Ôé #%åò*ǹ§#Ö³ó5ûL’ŠÊf9+~ö}ú$oñ0·h£È_)EmI-ˆ …Îv‹© ¬#)çîŠmwÝêÃ1vönj4êt×¢ó˜wß⢓è"½ÁCO¢Iߣñ_,;B³£ØïR—hi…vc&CÇ(¬¿"m¬@/øø£Áœ¼Ë»Ý±kU®âÈu´V·}óL¢&òp0HŽKß»|SüöÏ*.ÌÎc(=Oîµ`w|‘%Ù)ìÔ‡Ö|r¸w¿ÅB'³ÏÈRâ¼ $A†Ãm³¹ œ,STŠsDyÉqùƒ?\=ÃEIÑZ¾r×Êùë\Ï –hB•{é:ÌŠ¬ŸÖÙjF¯a¿¥ï‘yjD€Ì†? °–‘c³S‡oé õ è…¶¢ªFs½ÅHáxgöAOýz[Ÿ$ÄÜš]ƒkxÌ…ŽâYÊz±[¦ Ýã£'¼_~_’7?ø” ¦XÓ#±öŽtôÞ‡ñª @ª6Äç+“T"Z%TÄc#™wVtäfÓ6œhýù[aþFaâ. “oc“å°i7 Æ’v(‡s;[·9ɹ¥ü)¼OP•µÙRl3,Æ&<“g~€×r5ìjv»¿_F§®pÐSý‡¸èÒ—_-uäåfä ³°q¹jõ»bØÂWfA!(È5Ù{¾þ=~akñ|STR[_ÞæQ#ãâø6ñù£×¤IgViôú"½&"j¡ªËäa”u¶Æî2oÅ>6œ¡LR(€@9j36°Ð]°ÏØ û ‡éösÖæ¸Ÿq”¼Å`+5€Ù?jf×øÙQ¦±ª†Çî°óŽ?û5~ìÛ® @—-(ˆ þ\WÓendstream endobj 620 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 512 >> stream xœcd`ab`ddäpöõ 14±U~H3þaú!ËÜÝú£ïÇ_Önæn–å? …¾' ~ãÿ%ÀÀÌÈXPÞæœ_PY”™žQ¢ ‘¬©`hii®£`d``©à˜›Z”™œ˜§à›X’‘š›Xää(ç'g¦–T*hØd””Xéë———ë%æëå¥Ûiê(”g–d(¥§•¥¦(¸åç•(ø%æ¦*@§¥ós JKR‹|óSR‹ò˜ŠKBB˜¾a`a˜ÂÈòc!ß…­'¾_=ÁøÝûÄwÌ?œ¾ÿmiéhènäÈ\Ñ6uþ²Y[öǬÓù­šnX2¥pY™Ü²ò9—êVµkìNí®ªÍάL¯HêÈë®ëé.XÐ×7cv÷ŽÙõ‹sk2šÂµ¿Ët­Y~²gÍ!¹mËVìêÞÖýXmnÌäà©i“ºWtO™´bÍœ•³7vOížÙ½º{a Ä=çO|·šÏø=å"ó÷w?ØD_°ÍZÖ½fy~w¼-ÛšïRý3»{»û$çÕ̬Ìk)hê”Kû­ÅªÇV—ו¿¼{†üM6ßkY#¶ÄŸþÎté;ßòþ®Å™Åí•Íre1ñ‰ñÝ5e—OìîíŸ%Ï×0í‡óÄïNÓØ~WLd?Áu[Ž‹¥2Ÿ‡óÄdZÛÒ> stream xœ}“mlSUÇïmÇZØJ¸¸h«Dبd¾ HÄ,0¢B„m”P»Û®´kGo·Òñ²»¾¬ë}z»¾ÞuŽr[`0Â2§ËÆ4!¢‰Äh$ÑDàƒß ž[Î0^Ö LÌ““ó<9OòüþçüI”(’$UÛ÷4m¨{œ¾$­$¥U iµÒŽ#M…áEP®„ò’ó« ËÐùçP|) T±I¯á!žÖH—°¾h«.8®/=ÞõÄVÿµYºK ÑDˆú¼ÁPP3uûúýà«oÌ?®àteÚÏCD6E2)$ƒ±î„v^DÜ")6ïþÿay)(Û=/»]ºÿÔí8WŠ·â•øy¼¿Š4˜BoiQ®ôé¹X*Ÿ(ÑbT‰V¡R9jµ8þ¨ú÷H™§Ý?UÕUTq•¼ZX¯,˜ÐoT.òõùüG9Mð冽ïÂ.h™lžÜ?µoê=Pcò}¬¨³¦!,DĈv)~ø|nÀô¡™C³ú/õß‘×â®¶‚)¼-³®Tù%ù2Í’’¦žòÅùáòry=Cÿ™!Ásendstream endobj 622 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1110 >> stream xœERmL[e¾— ·—R˜`7c™!þ E†a,Ê¢cX$ Y¥%”²öBù*…¬p kø*-1mŽN‡²8(lÀ6’9B0sί%¢De‰3ô½õÅÄÛý1oròž<9Ïs’"H’ É-8ýRàsD8@ qAÂA °Õßï¿2 dÁWã‚õQˆDeûPásE’Ú m¹ºÚF½¦RÍs ‰\jFFz—¦Tfp9Z•^SQ^Ôój•¶œ“j®PW¡Qñ\B–šçk3SRŒFcr¹Ö¬ÓW¾’˜Ä5¼š;­2¨ôõªó\ž®†çN•kU\`·ä@ÈÕikëx•ž+ÐWék‚椿œ°?ñ¨25 Ñ„œ%Ú)!#"‰(ây"L¤G=ÄSRIv’r7(;ÈGÑTƒ`‰ð ^Tì^s‘Â1>Û5bl‚F°tt™°ao+º½¶þ\0U’ë2|3ð!,Z–dñ^IYïLC?ôÙì (2Mзq‚Í — ;F[:y•äk¬Âm±ðî³¢&ÉÐ>hžaðuÁ΢}ø» t„0UïÖÛ]$zk‡¬Â_ìà0ô‡Áý´ª{õ}E—{-£L5­Á•!Wè>çð¦c`Øö8Ajú0–c'pdÅ´CéÂܰË}@‡Ç‘tq‰ðo ðy”9O®ù‹(¿m±NŒ Eño(ÝbžwSáÇjÖ9."ÆI·Ed\D"„TluÿSè"ÿ\§Ð¶²v°_îémQàƒˆÕ S€RÍ¡0tàæ¼c¤·lŒíR{sIñÅ9ŽÅœç–æwp>Š;ʈ̅•Yò¡E ï+ìì^”Jòÿ d'ÝCVž4#ºIÏþ¢ü¾˜vKg—¨²Ý¬@Ž™Á¯Nü)ÃqÅ¥­­==ÐÅtY;‡F—nÈQ,â¦P> Y@…x7ú|Ýï;O ùÈÈ¢Úá ×Iv€‡ç¡Î$Ç>쓘êD<àP 1£MP76‡endstream endobj 623 0 obj << /Filter /FlateDecode /Length 3924 >> stream xœÍ[Ks·¾óß°åÓlŠ;Äû¡*WY~D¶C¹lŠJâH9¬VI‰Ü¥É¥]¶«’¿žîfÐb%9Tâ”j1@£Ñýõ×á3ÑË™ÀùÿÕåÞÁ‘õ³Ó›=1;ÝûaOÒogù¿ÕåìÓcáñIE”³ãW{éU9 ræ­ï£¶³ã˽N»ùñk,¥ªFkÓKçáã—{Ϻ›¹èutR†îDuŒFv×ó…èmŒÞ«îǹ–ð »|*…ð"tç0Ú#…ë.ð±ÂF“dƒ¶®[®ç8ÜÊ`º>1ÏgùÇñפ¡á: ¢Žƒ†æ ctº‡/æ å{'j2ªw;Î%½&tË-íEzë$iª¤Ð.t›õ|¡µ‚9l÷’m§sRË»->1:ëó*Þê¬ÞWšÜ)­vÍ}NªÄm·Ftrج«ŽCéÞ3löˆVpÙ6õQ/´’ ¨-´íƒs饿¢™£ðÁ%}ÀÌp@«¹r =ü =ÔΚîŒmzy –Õ°+iº/“Aáçm/Ú;ÐÚ=Ÿ'‹«c×'ý„p1égm½azaÔ°í(¢,¢(bߊèЍ‹èçcMPÄ×E¼iŠ},¢(¢,¢i¾vÞ|Íݧ\ŇvµaYo…à‡cR"µêÃfÒ s& Ü¿|±… ~ á<]€PürC&’\£Ú%B÷&ªõçùÐcbs”‡Ó´ \Îr`L]hlÝ„N»“ÈWP]éi®Vwrµ7`½+W+{iK£¾n@»`‚Li ÔÜ•"yqXúyrJ êîôdÒ¦¬]Ê:4‡®TBpüßUa,0ã{V˜R";ߢ+@=e]H°@êB‚ÉÌ)>ÌùHTé ðÔ{C6òÎÛÜÑGkœ³¶ãºÌvš[{Ú@PÆ”WmR/Ó ¯rGÁ(ì«ðd»M­dáýÐ¥¤}[F¬X@$]¬„ÓãCøí&#9w§˜8+ÄŠSt:VTˈ8é àS0Aw˜¢Ðx¡2[%/™ôÒ¢ài»(S¢;Ôtßaè·4Q¤OË$í~Ÿš H@~WÕÔ}™ºMRxOô¡&)9Ó´J?¶³·s΢Ék@O¼ÇiB&ˆ7‰SXÔ¤$R®žZ¹CB];à›ÁT#VH"òІFDÓ”Ò†B.¥i’h`(ìÔ§Ex½“¢¨/CEQªŸpÀ ‘±.]UÖB¥^£*b’T4ÇÓæà”Sî+Õ¡.ïGXÀ'ˆfÖë^)Ï Ë´g~^ÄE”EEì›B]u}Ùåk÷³F9=ú±ÉŸ˜è›¯7Ǫûå€ ÆÚ°ÓÂ?h’øŠ wù !a4Õ P³¤{:lBußï'1H9¾‰yš÷?6·i ÞèÒéݦ]û‚”1óéý(Þ¾—¶Ç…A=¢àOs8qàñ[›{w/@ &錢¹Ä¹ ÞÛ–R‹;Œ¸V±?NÁúlÓX®p0[¼’ríN/¹®Æ_Õ.Ãs1@.ª[Ø4/õar¿£‰—¸Bjf©Í+Š˜!þ)C¿íe2(žÏᤠÏ6¨×¥BQNútéL‚ãgÒll’Þä…óúö#}ÐîêMv¼«7AÝém°v.¼'[€)zamEw® %Ù})Œ½>s÷JxÚn Þv°JU_L RØèðý*¿¨d¿ŸGÅ+á1…~ˆ+aP§Wvfµïpðá·\4²{O°¬@=hŠŸñ¨ˆ‹øMvÙØáþ¨ÓáššQ|]Dv‰ºjn¨oÎÀæý/Üÿìœñã">.â£"ò÷)’  õ™ß‰%P4Ëb…Œßâ8O/-,‚'Ô+xvPs#–þ€F­E´P2¹@Η:ÎGa†BÎÒ"}³%€µ:c¾~P~hr0¬™±Ê?Ü;þcJ/0›ÀÒ‰Ìåš4JÍp!(â=¥Îî_Ⱦp¤Å'üWÏF~/´ád{rƒ‰á.%¯y¨ÉŸƒõ’¥¶ U‰\²†Òçår]@oŽíß7i(Þó»ÃÜ%xÑO—n¨·¥Rà /óX#«Ï.ëot`+cüô3ŽÏ)÷Cìee›‹ÚàõH*ŒŠ2sD¸2¼jZSy+¨(À=F3Ïœ…ŠJü®¬\«Ò|©ùLSðáÔ”Hßåíª*ùGkd-R\gú‚™œn•"VõùÜŽ[^nµôq}Ô°Iî…Ôæôç:Ps²J!pÄXá[7ެ³+#±3(-¡¡ •ìvælÈQ“3)›HÉMÅ๰<—î.œš×ùLƒO+!"¥bõ#»IÛ}Ý?ÖAÉ"Ó[€ìÀ\N»ö6rÕy⦜ÐäôéÄ¡z8¸ %«ó®`ü¾«Qï!ùó;9ÖdSánVyM§øséa:~A“pL¨£~€œÏKpÔêÁ­))GÌ ~%sésYЏeÙç[M‘ `5åMs2ö[U°ë"~RÄŸ›™œ1¥MSdÄ‚1¥“{•Œ†zµáö?àÉ(‹tÙÖÉL÷Ï*â‹"~RėͱŒX1†´hÚjÕ´ömÛšµ_;iêÀiÝ{¯OèÖ9ÂÌ ŒChJæ|Ê¡úðƒÆ•Äv¹®—;+޼mŠìkJ6¬ƒsÐÛñzÿÀc'˜÷9?‘wxÅ‹æñ²XÌïdÒßb°wZé§w‰ ´XWµÒØ—¨oŠÈ¾†ý¿ ˜‰qï;FãýXrfFô›À>LYræs‘i5ý*u·©>ðQ!ÒõÁŒ?{ÖmhNbŽÕ•ÙHR/6Ï÷;pèͫᛣXB4]¾ÒÞñÁNþ´¢ŒÚŒ_¹26Âÿä¦Þôn¾•¿V‘¦|ê(í»ÿPc“ø]ò]f–'ö”•RL³÷èºÃ%N£mÀ¯P!lp6øQ"ÃÞ e’&—È%ÔoF†fE9)%—¯ÈPÎÙ´’}Ýò¦¹ v“–j´aõº×/\²ÒQÌÓOO"¯ßb÷ïw£+îóêt\ã'œ. ßìø´³ý1ëàý¿â¦ÊÛ>ø;)”å,Æ<Ù€65el²7·ÍÉÚŒö¶™,?ÇpW9¨o”ü_q–j¹ß-ßëp¦Év×á°ü8Šÿl¦àMó56àbǼã¹|·÷o´°Åendstream endobj 624 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7574 >> stream xœ•yxÇÖö ¡e „š;]ƒƒé½BB'ôÞ‹qÃEî–dÉ’e«ŽºeË–\ä^°M RÅ"¡CI$¹ =á’ÙüCžçÉ)÷&÷~ײ ÞÍÎ9ç=ï{Îè܉àñx]ç.[³tíÚñ㼄qxÜÀNÜ+ü,$æþø}±tçƒîk›Ô‡ÛÒì wô"ø<^ŠX;W˜,N‹‰M9Þ'©Ïµ¾ù}Ÿ¾”Lw¢Óé“ýØ~Ÿ÷?ôJPDЕà1ÁM/G¿\: zÀ±+º^ÙñŠû•GÌ$FÁöb›ÙŸB–‡èC.…<ôÒ ¥ƒŠ÷3øvhRèãW7¼zvÈCNq•=¸Jàyìá^¬àqã¹/h]­Ö(%)i g7Š~Z”FJSÀna=(fŸ%u`OC² àdÒ*È$¥É >©”àÛÎZÐ\ŸXô2×….Ùë:TPGâIÄy1R¡`Ò÷PxÙÃãÆ\ás=ôïâ“jñp4éªÁH2vÙ ·ÛÞ6XAyð­­{nØ‘)Œf€ÑhÊ»‚™ã}vûÑÑyÁæ€&îT'Z÷9êªOœ:âÔáQR¾>G¯b}gádø,ùÜqº®Ý¾dü–WýfBaëa˜ ¦Û&9l(™Úñrò ”æ¡RA²ÿâãö§ {Áõ—ÐzAJjÇ1{]Ô~(9– Ú‘éÛñV\áÃɤŸ[UIÎx*ÄX¥"a¯Ï~ûÒùÞb'ûckóuð.uióÅa b—Ó°7yǾ"kÓÖ¹aìr z›Þ3ðò¡eštéÚÅã¼öª<ð–‡wÿ*lºÌçLÐNÃγ®F½QwÔ ±ˆú|Ñ7°'ì»ÁPÉÑ6zÑÏßîÞ¹}éØÚy£g…ŽpÚì´ZÒY÷Ü3u²ó?jYJDž(XOêÜz{ò7±PT_ý|¥,¹Ã¤Rò{t.-$‘ÙÏ€»µCÉ»4‹l‚K¼~Rx¸ïKŒ™O¹[´Ál°#åÌ-É’¨óùŒZ¥hòãö„—nƒ¡åhbn!›3ø+ØÓãP¹’”"®b“¤$PS6ÞûÎĦނ|˜jd册fw‘µÖÌà'¢TÛÕí84sNЕ©MIç_„ÝaW8v~óƸÕÛRD)l (Ùõg@N|Zù$ … t •+J¥•ùu K~¶•Ô¾æÀi@?¸a."ÆO˜àë„«|8>¥>p$€c; GÀ>p\ýÛfH£Þ,꽜þ–„}mh‚ žˆ&£¾ì(ÒoÙÇÞ ìÏB®?mr0SÕ"‹4^'Û‘ÏÈ]q‡æbO¾„z ®ü[oüpýäAg‹bëýù_ó§M8‰^dž-Û|òÖ“‡÷¾¹YþæNµr‘JÆ&/Y¹v Úážá;<<¸ a?R¯ÖŠšJukŠë-Åå&¦ôc!>Œ1Ø®-OÐÉÂóÔl;PKj3òw •V®v6‹«ÌŒã >º ¯öQÂÓ®~×øëwÇ’{Áb?i,v\VÊ ˆD4UÍ(æ Py3ÇG›ê¡§XXâOÛA¤¥ÉõƒÉQyÿó»O€!²AS¨ÚrwíÙ×|䢥2k,1W=£(ÔÉÿø›ØíýæÁDXOä& 耊Jª¶F£Ë…ÍÿÙXä3ß{¼x$RÍ d+Ü-€Æÿj~o?ë}æGàc¬?«¶‘Ï©ööÀŸ[ÄM¡£*×)úÔˆ×7N¿Ÿý}6{8ÿB.§tà5¶mSÑ5£q뜉 èò”ëu9ò Ÿ’8äee&kssl×9àÆ òƾïïϪK¬`ã+…–×›ì«í`UU’w R£W+wMÀè°î5×&ª0¿,=]%Í×2¾t‡=ðˆ‡w#´¬¢Å˜Dåö§–}Ÿ”,Ú4v n¹ 8’pä÷ï·nŸc`3@V‹Í ÜÆ`ª‡Sp} ¡R橽^–¦Õ$4F»v`¡h)Ú†ÞöøØÁòÆVVÛè Z½^§É­ÀʵÂ`©„ý NQ˜¹¼ñÏî`ÐËž_+xðML û8’†3ýø@É’/ð›¨Ë–j™ì±‚qþÈ|AîB ­Ç]<ãCᇿ^ûøŠ7Ø™¹ªT #{sž&PKA³Ó Œ¦RöOQ‹)·ÁO¹¨›ŸI+ÈÝh»ÅxuSð·k¼ øª‘>½ˆ!£Qæß¯yæ$qdä\ïgÜñïšœ‰hé(U¶4fë®Å€Z¬s—Ú Ž™kYK½¹ÞR︄ô/ß¹|RÿÔ·¶6bLI•À¨<êçÇ`ì(ðSÚïg‚_}V#A@.ð‡ìUï.7|‚wQàp¶´». ÈYÔÕ_ýT‘h*úd-üD°Ç‚öí{Ö’gÑkl9¨Á ¸š¨çàøœË»yÕ_Då89½+ГøMÅÊÊëz{,ˆšÜ„Å› _/4ƒ"ôpïtûÀÝ^êôŸbì;G p³Ætý*Cºq)X–R8=:]ÀUž…´½•2HH ² _³­7äNP -T{T§z~òð>ÁaM‚géZ)ä¡iˆ^OvËÜÌ'™JK (Ô?Í+¥]–^ÃÎ×"{.@#¨%§Ö¨ºv±—)DÀ’Á®þœVÅi³c²RrvæÅjCLõÞ °G+ìmbŸó.‰=t„t=¢ÚI¸”³ãÂVþ,h¬ú ¿ï%¢ah$š,Øî¤Ú“ ²Ø'°çÔS›ù,ø]½ôÞËacÈ08YÐnýÇ(èÐúbî¬ÖFÌJÿÎiO5Úl NM°—‡npÂÈü}eð.ºÿ?)=¬ÂHnóž¾ÈSÚâU¢&w’2aǮ۟% £V•¨“¥´KZ¾OëE°—àá•ÝãÂÛçß®þ­+IÔ å%.ÓV£ª>x―µ¸ê…&v€>h§*e;—Fë$z‹ÍRì”SY‘$‰SlÛÙ û¼û¸{^ºÆçpZúÉN® :/Uމc¢Bã,¢B÷‹!û½SòK+Óô`/”‚kª~ºž¬lô|Ò 9?`kÖ—~¨¯å³ïF rÃq7Bˆ0Ë>Ç ®Èxð²·°èPXt%ÍnC¡¹ÂÚZà&0…·3 œŽ½§gÉÌ‘r‹«eEöX*Ôäo}}q€ïaË‘éRÔ p‡ u4ìEÂþ`çŸnnøub‘è?”Ô¸~T§ýOòQÝ’È¥+f…±ƒ}ô#nƒ³Ï|зµñJξ}jÎña¢‡Î9 ÏH)2À^wq¹ÑĺÒC€úñÞתU•Ê2¶ÞYi*6XRÝy@¹Ý¥u¥ò–ÕéêÄ­lŠ;Ψ!“&Œq%5¬(]¶פ*æLŸ¼M>dPóo//c>¡=¿Àžh„y“»Ð[[œ?Ûæ9ºg÷¶e«V,g“Ðôˆö–9ªaë]p P€ùK‡DŽaŸ +|Â0Æ/ P^çüÏ3ˆH¤üO#7uô}ào—K¯öï+åÁèOµ\P×ÖÜ@½õ®û¼ÝEß“wÈ›…[Å*uª>U,JC½q,cÿµ†»Õ˜æò¥Rä­¢•Û3¥Ì7×9, æÖ\m©ÅT_)¨Tín¦ …žçÛñ:ùeËÆˆu« .ñ·Ýçpá|ê>7”û®U Ò…©)îÌÚ†šš~j¤QŸoœôÃu(ù>¼Ñîûön h¯ òy–¾¡æ¢7Mÿ4'©äj-ô@'î<°Ö¾ w]FM±¡ZX‘ÉÖ'ת>}”t\^¢¨å+æNÌBÝÁ÷N£Øoc¬”i£Q¦¢ @ëkz*ÌöýåÌ¡˜‹Šw±öÓ_Aâ›b[sŠÙä:‘9´FdI°©Œ Ž´°:wáì-(0LJÊ™-5¶ÂÊöƒÈõ´»¥ò4ýÌçvþ¥cf=ý•V svg¤ÄDîÆ¢EåF«É@!ÛV,–$äD.xÞ†ãŽ@ö ¹ÆÍn/_:<5ÁSœÞÿR5÷ÿ¯må2 §«*F±0ÈW–kÛ—šœ¸]Ç \³ÑIÁ ÄִͳýÕø¶çÍ5ì†tиHê"8èG!ã/1öhy~îÅ~Xñ=+p1&pat˜* Ž?ø8è8¡„/øÑ”Ü­·,ásû±#ZÛ÷ð±m¿@Ò[¾—M]0w1Þ´óðÇEÀft°çàÁzƒw¨¤Á¨Ó_Aþ}H|ï ¨Wü üK€|íÊËip; óÅ/ÏaÃóÛí?Å«í»Ô‚ZõGÉ[Q×üÌ`ÜATƒºü/…ðÛ ŠÀÆçùêcOËLÑ¥ Wâ¥Å{j–m§ùPé¡SÓž1|¤!ki¤VP[uáPK+  Kô1J½ëerþj}Ñâ뎶CÀ \Væ7×ìŒT(ùÛñE© Äå&§kê2¼ˆŽ™g¨g½–ég²{ÿýñ~÷|„ÝSú `3ý›¸ÉaèN$ àž à/³¡z«ýZú–¶M_ƒéOrÄyŠhWÎF\ ¬M÷Ÿ™?7|†›±ƒƒjôGe¦ïÀ¥*§žwQº(}”~ةۥۮ÷½´ÛÀJÄ­ö à.f,öo ´he“ Û´ÖcŒ6y6rö‚`­°¸($>Lº ï—^ïkþ¼°usû|EïqZ£:a&zyš A ® 3Jå®FsµËÄ€›Ãp4ìWh/ušMF“¹vÀís2ß%ùX2µÙZ±Nž‰k=oN—T‚ãFPºëæUð¸áÜ{´©s‰…ªU ³s"ÕÌfô»@ˆi¿Úš­ŒM£k3Ý)‰iÉ)ÉYuÕuµ3£nóð®]…§p’…À;ôÍʧÀ'Ô'ó/¢Nèåá#^›ñÃn›Ž™™9q1Mûlì_ý v~t*惙µÌìFzÙêæÓg¯žúâÖá;VÎ]7#âCzöš#ÝøôòƒûWmžóÚßhÞvC+–—íPððáÎCLF;>yiNub¸&B¡g²ÐfL ÉM5&—ËÌÀtþßWµ3ý<Ä~‡Ý¯ÀÚ«|n%¬¤w¡Ã§MÂŽÜ D%v»Å•Ð-«f¤(¶Î»œy…3àxè„¡ó¯ Ç6=…Í:=Rï¼_ºï$ƒÂ èI×[a§ï.}ú#@=õwÕzéÕ9Kæo|£½,tÃÁWaØU8¸‚w™Ëás œJß&­ µ5ÈÙ•ä!&xß!lúÍh5Ú€-¸LZš•¢Êk˜hô’ ìïnL'å± 6¶8Ø62… Öù/ì!ãCtù:È Î(Ë)­±¹‹¼øê/øù¯ñ?Ñ?û¶ó±>®ÁÞ‚½y\îº1½.6..1*±2yoKKã~f#:÷ïñ»¦¹=mœ²ÍƒÃtæ\àsý0ßS5fX£dʼl ¥ÄÅé 'Œï–]Ýz6¬±4˜Êp·îúd­$EÃèZ‘^‡_úê’5÷50¬xû-Hˆv!YФBІ1m6MÆ’bs ÎŒÚ Wæf°J:á£Íw”ŒZˆ\C‰вZs…ÝÀ˜+Œ…¦ Ø©èá×àðùòsSK¨%ô{T8 Î\8z¾ˆr¡zê\:XV®^7OæbÝ0­Âç ûòÿÚ¨çÓntvŒ0%Z¢Pçæ•S,*k„äuøÂ‘ÌÆ¨Ha\ÜŽ½ò2Ï9çáàóP{†žçÁ>§/vá>·÷÷žtA °a7”g»D™yRy>ó4ø…y2ŒPm°Ø)©p9l ü' ¡=‰‡Â×m˜5y~ëî}çNÜùœFç)ËjO5q•˜ãëâ·‹Ù GŸO<±jóŒi ZâöŸ;ñÅÌ !´2¯¼æLË!g±%Iº>~›Ø›§ÝÜLõ\6]h-)eT¥¸X¢ÊÓåç0è)Š)ò@ ÄÅJ‹žDQAÎ\福*+-©(˵å[Xäxöa¼áý<¼“WÎ~x†;g’~.\c}s!­™•Ä-Gdø²ô£YgòöÀN?Ö½ÉåBÒÞ-)¯JÐölhÛÅŒŸ¹}˜H½v"üô'ö¶ìa/>¢®Ô­æ‡uUYÖ¼ M–RÇæ'‹â…@Òê%5ï\9v· ’2¶Ðp˜Ç^Tj'Ç«³’b™8*B (h6±»Ñhº8¢~±kwZbDB, v«[k.Õל:飣 W¿¸Ê»É%ñ9#N‰¢œ›Q^ÿ‘ÌöfV“Wë?G£h—7k¼w©ˆÃwöã;~æÂ*º¼ÈVJ@YN¡Ú„N¨ i¡K•-’§‹y65 Ñ[èZš«’å±/ ì&K/ÓÝ¿§áDJÂüæ:”äYåö!·D°îun7ÀM0ö³ší6PB9ò\‘¨½ÞްL<7‘©<·¢P5ÖŠÖ¿ÕC¼Õh®; «¾^õä+†tž%«v&Ã×á¡ö¡Ð»؈ñîŸ~€c,âÒhyQªwv£§¡îèÅñ'^»tÆÓVÇî¹n†/õ0îâ¡ñh,š6 aC`_û PsŠqÚÎÔ: k±R¢ŠF,H^¨‹îÂÎp ìCa¯ ÅR1Æz£ t|üžË?\üìýÖ†èeÃÍÜàµí¾›{¹‚÷˜›î”´ÃZfUT…¬@¦ÔêT u[\{ ¼Z\œ["ÎMUǪ±úõõQŽ]ë½à I–XfÍ/Îg\‰º­’«$ ¬´ˆª m˜kØór¢´2\C«ƒ%Ź΢*[½…1Xl' vûÅ ï–àÜ\†•V”¹”V¥…ÚæMˆižßC±äúýEŽ (;y+s½:Q, ÒfcLhÚg6pQ@Éè#b¬Ž¯_…³*x÷¸µ|ø¬¦áP¿b d5l°àfÓ\*+ËLT'åê˜T4R€†ú¥$ÓÐ`½+”.XR"v7Z }ƒ—ç^h'¹Á|Øl …Ë·È$*•^¤Y”¼(Ë} vþô—£ÂÛÃSbâcj3› ŒÀ`büÖý=„6X ܰµ—)‹j÷0ñþ qeñ¢€ñ¬¾ÊûÇç°e~³®ùÏÞ.FÞöáÃ{—ÿFw~O¯à½ÃUñ¹0Zlf–/Šò幘N×þ±8_®õ*ž—NË …Væyçùè|ï2Ÿkà^¢!½ò† øµE  ‹ƒ~‚¯Àp-ÜÁ 'úš~k×Ý_áÒ_aÈ××÷MFŒAËÂXŸ/à;Þo”á$ÀµÑæ*ÛQÈ©¢ZC“÷C¨a©c¤l2š¡ÍTnBƒµÁÊT}‚°Zï,y¬Ûª’ÍÐæ°ªXåZœpc`wù‡. ƒ:¡AÅ$ưTÙW%…g Ž€BÐ,©K.ý°©à˜±¤ct×Ãó æœQÞÖ¹=%Jg¦$_¡Ò0ÒÔm³çª¤úLH¤VIí¾e•Ì‚§S£Ú“€?¥£ÕÔz›òûЫ¦np ©»Ü_Rß¾qõ@ƒg¢ÎËS+$•uB•CcaªžÜÿ! .]Šs(ê:E‚!\†ÖKj,ŒÁíð~@–‚2`­6Z÷ßײ °UÇ 9ù'/~êó"n·JqÞÚ©¨kñ¢lŒ*a½ÞÊ4êéA8Ð6;oïnU`wiJxERn¸&C§”MÖI´2T+Íß©ŠFÃu”"[‘‰Oá*¿n¬<Á~Ôdmµ¿_ ™ KCÁQ8ÌD™«L õiiN¨ñ¸ÑËlG1Üæý ïâ}xà ^ïÑ›Wo[0{ÖPÉDã{©¬ÙTâÀ„S›åÌØ6æŽ|ý- yüä§w…§Vìa¾Wú%¨¥Î­»Œº¢‘ëæmŒmÊ/ªª.op¨mÀÀìm¹jpªí`ò®¤Ìð¨$6:9Q§[©‘éq´|>Çàä°;ÎOù\w“.Î)çª5ùJF*ߟò€Ê–W˜].)Ãmtª#] Ä”¬X\VhµšÌLIÑÑÖjÜÀYÕ…òòô2i¨M®êÒÆŠZ޾‘ðp]1ŠFÀ×é€ÎuyžèªÅ@‚…d®Idbtô)”›£–ìÞ¤‚·F; ý[¬!ë¹bÚ@®B? Pj{ ›pP_UÍ‹?w&ÛCQÄ͵Ã7Š.‰m]> stream xœ=’kL“wÆûR„ÿŠ#kÔˆo»8o‰ ÊŒbœ:™×A‹0Á¥ -½PÚR(W±§åR(¥-…–›Üä-W/``ó‚tss:5[¶i¦.™d‰ÿ—¼û°º˜}:Ïùp’ßó<‡`ùû±‚@1±±'ïŒ|§7Óë :ÌÞÀ&c9r9k±!È8l…,׈5!X¶šH2u±±¹-F*ÓÈóDb%kö6þÎèè=Ûù»"#£ùŸ åyÙ‚"~¬@) ”¾EÂO”fç •þÖýb¥R¶oǵZ!(TDHå¢Û¶óÕyJ1?A¨ÊK„9ü£Ò"%?NP(ä¿GŒx?c¤…2•R(çÇJs„ò¢,¡R#”(2ß¹O³X¬ÀR6ˆ³.”Å:ËJc¥Faf!Ÿe–?kŽú}ä÷„-b¿ñÓõœå-Õ½–"Æ0?Æ6=BoâŠ*5y GªÅȨw`v>y4.!÷¼¦œ”O%v&bB1!ùz´Ú,ÐÞÈxñppИKSPª?S%âå1ÊâD…y°®” vPV×eèEmO¾8·(-y^|÷–wÚÕNö n–Þ„C¿Å!#ö2¨ª¨ò ¼¢È˜Â,@BkØÝ>ßêåYúº_69 £C£ÐÝÐU†8ô¯L…wý‡ÿ=¶,±éGt0·Éfh@G’Rñ¥¬†,ÞX‘^zÀµ®N%QÔ_4Ô(´ù€â7ºïýté!ÏÚ×`tûôð™Ï2aêÿ}‘#˜ýµÕÈb…¥¡¸VÇËÙR’©ˆ øKw§÷rcŸ—”2!‡N…ršÕ¶ávg?ô#ªÈªÎd¦Î‹žâ@¼v¯"9ô\5fãg]®Å/¹vS»Ñnš0Ï6L˜¤2nóA&ƒ‰P„ Ho‡V§ÉdµÔ ¯Å ýЭu†T½š1_Tþ?`Θ] 55¨ªçU•VÊW×™”j•ñR¿Ó¹´ˆ3p„ç4"»ªÊ.Be-©—*P *§Ò©pÉ]¹€¢vIôNhimƒöžÝb1 š‘ï˜d7ÞMáEª‡ÂrŠ {p »‹ÙË5^¬/#z—N˜ÝÍdƒsטÌSG‹žø¸ÎaŽ×|'ËïåQƒ“÷àú%v&œÙÈleØÌ&‰¿Êà*´rк -ÎYhwÙ ¦“wy”›ß"…R@û I°£W¡ó*¯¥¬A Z3Á’IZZþ)@ŸÝ|ÞÕä6[yŽ;ÃxíÊ0&pð^ÈëÑäHŸ¨rxº³‚Z^¸ö÷£éW8€½t<—9’Ç„Cb8¯SÞⵯpÞý\<-'3§¢žÁ(j²ö{Gz4dgÙÒh°{ w@×˜ÔÆS5¶JŠÆ$zwgñ<¹ÜÞœ¡D8‚2eÌὡ¹WJÊ{` l0wéO—×Þ78{ßí‹ô@•ÿþšÀ÷ð.öPEâ sœ¡F†mõÍUòÜSXôÝÖæ „Wt‚‹¥ÝÝh\ òŸ %p’ÓÅ9©P‰ô6hs˜Lm­äØõûÐ h!@¾?;:i³®°¾ôHæÑô¹mÍÒá056ù@èÛÕž™Á3qí-žx˦¯Ðå\üÅF*nÿ–&ì™.aÂ`b6ýxâù7¿/= Æ!ý8 #f‰Yŵßî{18×=99?hÊ•Jõ©AÀ«HçÆ2î=2±¯Û’FýPE?Œƒ nyþh›Fmß‚u]LFKàÄJ¼b¹Ò_# ú€j 2qX¬÷kžÝendstream endobj 626 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 426 >> stream xœcd`ab`ddduö 21T~H3þaú!ËÜ]öc×O]Önæn–µ?„„¾G ~åÿ(ÀÀÌȘ[Øàœ_PY”™žQ¢ ‘¬©`hii®£`d``©à˜›Z”™œ˜§à›X’‘š›Xää(ç'g¦–T*hØd””Xéë———ë%æëå¥Ûiê(”g–d(¥§•¥¦(¸åç•(ø%æ¦*€\¦"œós JKR‹|óSR‹ò˜ „@bIßô£ƒïÇ÷²Õ?™V3õýÀ+滾_½Òý}éïÎßÝ¿—:9wÿ^ð½ó{g÷÷—倂'D»Ýçß«>Úý¶ûd÷¹î3.yz}ƺîÝgKÚÏ ëqê¶ëöîV« Î7q®ËêæZѽéÇüMÛç3~_úùûïŸü¢+Û»så<½U»Ó»9RØ—vŸí>¾œãO/{VwŠ\B Û¡þ›Ý‡ðf÷¡ö½<Ê›ØUºg¬‘ç+[ðÃyÖ÷ü©“°ýNœÆ¾‰ë·‹ù|ÎÕ“xxîÍááe`Vé¬Ãendstream endobj 627 0 obj << /Filter /FlateDecode /Length 7791 >> stream xœ½=Ûr$Å•ïò¾í(üÔ½šÊÊÊÛú 0c,¯#ö¡GÒ13j!iÆû°¿¾ç’•yNV–FXÃAP”²òròÜoýãñ°3Çþ“ÿ{öêèÃo\8¾¼;Ž/~<2ô×ãüŸ³WÇŸÂc&xµKC2Ç§Ïø[slâ´KÑvɺãÓWGßnþc;ìì`†ÁmöÛÿ>ýÓ‘q;3ãñɰ›â0„x|z~´ùßíéG8ÒE—ŽåŸ¾Ý\la¬MÑ:¿y Ó0(ühë#ްÖî&³ù+¼œŒ]Úìq€I>M›W8ØRŒ~s¸Æ%oLÜ|€ß»Âæ÷ðvˆÉ™h6W8<$ø¿Í-6Öšió‚Ça‚U`€K)„qs¶ÃfK›ï·£‡ÅG»y]w!—Þç±°ÏïÅ 0ÚkRâåïygv ~ùó«zà3\Ê%a¢z`Ô †#¿Ì»5vó9Ã=EøÚuáÞü@“c´eø ­(/güð›0(<íþ¸€3[ƒSŸL“9>±n½çÉÏò&;m·tºÁ† é!8H^'MðúŽ€ãÜýÍöÀç¢M|‰Óà†°9D™˜ ¼¦&Ø7—ŠÁì†!ª™&ôHFìå-Ýl5¶ëíi·=™ðž†´9ÅyB £§³àâð% |–ü´¿Æ „U’ıxÿC d»Ç—p9ƒºl1ïM}{K˜ +DƪaáñN#[ðpŒë‚¯÷8\3 üž¯Ä§XYá^—ņö×Îùµj»Gì„›Ÿð Îf7‡ùnðõ"iØL‹¨fǛʨõíæM“Ø×áu]õާ…ÃͨB¯%')CÂæ» !yJÞ\íÓÓ£¿1_tÇ·ë|°AÿÌ'7;NÇawƒOÈâPÃô9ßã)/ÊÆ°aôVìö—n8Ý./·ùíæwu­§EÁwnT ˆã`&gÌ/ ¦Ë2"™7ÿ$Kœ„R´Ì°] 9:N€èGøæ)Ð4 ÷’Ä¿Ý|·åùÈŸãV€ò71Ó³Æ97¢tÀjƒt¤Gà‹›K  Íaãbzƒ Ÿ§I›g‚iÜ ®Ïä› ÀÑÌ÷\P¬Î‡Ò¸”ãž ŽaWÿº.zY7+™ Ï1e¯0I‚ó@Fý$˜'/9úÁkÞWN_É5³D SpC³’}¾ïˆÜM°ÐÑþ’Ùc pZäá ºàÆéÑßyo Ͱ4£7{:/Ìäí5ÜoÈub†DhrbìÎM1£zþQ}Ÿ©}’ܼ%¤…ý$9 £“Ú ò°äàSÀªçø JAÌW™@;H<$/xü›%½-‡p/„v’†u$0`á˜ì»¥šD³*}„¨â Ÿâ4IYVÖ—„\Ëg¦«­û<[97Ù V¿«"Q õ3q£$€cHQ€Ë‰áš66ÒXaíÊ8Nå~Ä*—+bˆïÊvJXÓŠŠë÷Ø„ÉÒð·ðÞvd#?èä ëBùñª>Þ×G1ö¶;VÌpY?éÎðºû™Xí®>îêã7ÝÏ~ª¿Ýö”Γ ¦¨42Hð@™r-Ò¤]*l 0­¥ 2Œ¤‹=«Øq$¶KÀ-¶$?"ÛÈ÷Lêµßy «ytúoßf3„&ºM¦GŒˆèR † £dhþ%¿@°R~5çZÙ!…NýKýHŽÞ³æ6Œ)È1YENø–ÀÐ4Ãá±oID{SásU3!³÷$­†ä¦V£rÁ?l~ ¸lèµØ$1=~¼ç…Êõü£}€q„MV±…ƒ`bBd¸øXï¯BKð¦ã`[ÙXW¿œUYÉvŽŸ‰ö…= µÂìœÍ<ø'„5¨e¡  ÈFyàà i  e®U>I3±ÀÏIvËgô 0~Ì‚­áq¾sd~R¡?w÷ˆ8׈»•õ¬© LƶNbi´ìÀ‚Fž=›‚üåÁ îHÉö¼f¯Û§9€Í4wŠ»pѯq¦Öqò­`àC^0[I+&”) Ê¡(Q¨`BýEöSdÙ0ŠF©Z‡×Ì*@¡Íì{^w´nNÂPB²ļb—R&ˆ†D„s|*^¿A>2¢¦ Á•¯ùÒ á’ gA¶r™Áèá$÷lÂÇ¡ýÝKŒ^°pd[¹”|àZ]åg'ÕCÀ˜Í{!Ìv¼¡—UèdÈMc2› ÁéÉÆ#M3P'Gk߉IÕ‹9== İ ‡ŠÞ)ý²ÚâÒ„µ$Iê‚7„eƒùIJ•¦ËaÏÙŠÒ¤Ý<³ù'¨aDmÆ‹ªY*-© ø™`o½›”uÀjódö¨tˆ…OCæ¡äU“Ûd  ’éqD90nIÅ“—5àê¹#œs>…"öy† ‘HHXºr°U–›¬G;£@Xãtœ(+sÈÑWõf”Ú €(p«nô'ÞýšŒ¼×x(R:É¥?Ð.ˆ“@ZÁS É­”²'u€¦BG¬_ ŸWWcB™é8$㦄öƒ¶#—ÂäÉ_†CPË–b„ÑdfÈzÝŸôÉÑþö/ÄÃ8úöøS@† lý¦²ò›ÂÊÜßò6Ð!0óÀg!S´>®Ø’—_ðthåŠ=ï…Âs™á„êG…“¦T%誳ú†‹ä,Îó•)1c`õíðIùåAê(W•íˆõÑ€& ¾_9[ä©|Å„— 0ÜBxìš»”I´Î¢Óg—\q$ÜUèôUCFè¼°VŠ|æ0¢(ÕÖIÁã[Ô¾â.+ý¯ÜÌYЋ<£øÁ–ñ-' a«ã‚×Tòã@w ÿc¥Õ±âfHz—§KÓc%Œ%±GüÙ㿈rLÇÆ¨¼/g GË'A8’¸E8z;M8¢Tè³ÞG‚‘±œ¡ˆOˆæ=ûœï&ì žÀ²ûñ³mÑÄ3ÕÇ£d)Ðnó¯Û)´±%¥]óFÑ/:ħøEéâlÐ;ûn[8?²;‹,,IO§ ç³;ÀHÆ{Sœ¹ ’Ì]Â!\ßöÏ âh§ ™ÁÀÇß¶ÒÈz:–Føb@³½Ñç3uZ××0:ëÚˆ•#ONÆ“TüÓñÄLfgÂ1(v»ašø6„¯"ÓÙtĺ}v7ðŸ¥¦ŽšèÔq`7Pvšª@šä¬#º tîCž$tbF˜$ØæßF ìÃ(G¸ö‰7>™ ‚¨‹£ÚÿF…QW }û´@d—:í7k …†æðÚ›ªœŠÓª<^¡á‡s9 ÈP]á¡û|H”ÿ+LTȬ78…IÁÉ=^m{ÌKFœø^˜è´‹•ÖFÊyßá³imî/Å™$ÖÔ¨½öªþ'¢ Ü;ذ*¦ªiÆàJ«Îøóê:ükŸ öÀ7q.r|R0 NçF SØà”œbšÄA´ëñ$L8’xŽ?ӹÔ’ö{J}OäÌ©ëºwfŒI¹®Ø£¹â»\†UgÏÂ¥ª61VUã–ü> 7KŽôsÃ.wš|ÅeÑØ”‰ž%d±i-Mš%`•0u¹(ˆ÷<12+¥Žg y¤\Ñ> ߬¨7zH•Y·ZQCp,‹ÆF!Ɍ墽xu•7éŠr%¨#£ˆ¬8ùÉE©Z¾‚9ŒjT©3%I¶¨ü~\1a¥U°’@,1¦«:-"› Yx A™-+W:ãcëHÎZ¯ô‚ª5^6¬ÄÚ.ØÖ*¢¨×¦Hˆø ®ª¥Ö£—øG¯Ñ„J¨; 9<÷–_röÈìÑDÂÆèƒfGY™†‡Á=XÕ䜱á»~A>¡±GÂu!.¡‡¯#<Ž…õ¼_¹4·K˜²³;k²\ú¢©m4çáû1(ü“ŒR…¤w€Š]&(bi-­ÎÜÀÒA_ 3¨~¬ŠÄówƒ;úd~x£™<‚üW§é}rŸ‚6¤'<ŠIdˆ¡ ž¤Ntç72óà{`[¦BÙa¨ŠŸ³ÃÀzà ÐýdV×å«…:XZ\º ùõî}Ä…ÊÑ¥·ùžØPy6 wAÁ³Z UÀ“‰ñ^Ä.²‹ÎzÓ3fGYŸù *Ú:ýÄ®¬»D¾1‹Ë6®, íˆs!—n"ÌšÔÙ.ØÒƒqR¨‰‰…A÷ºÞ­Ä9æR´˜dŸÂ9àÐ+¹Â½Tùz[²ŸÅöœpG![í@aÕ6…'zÆô€épOx~³ú>~§”O4)ßÿáûæPVÎï£XlW‹–Tö¢ò¡.k‘Ö¢â£rAœdDg¼[»¬:÷»CÉ-ŽHÁ:fLw¸ÇÒ‰ÖÍŒ™n.ºóQøPÛKäfŽ“¥ÐJÈìH´#Š¥÷Ø­…s×(“b÷Jùpê¦`/›«^ßõ)ìºJeTÕ=ÅŽ·ä)R• ¡"Y§¬NnF”•ˆê^"×ÖƒU $”.›\OZÔãäy÷²¤ë÷({s–\ŸVFq³àŠ„úŸ®²uYR ³®§ïMHÂEß{ßq#ÐFÌŸ§KŽ äþjŸVF5íÂD$ܹ=©z¿oÄ+#!¡$¤YE%ÿ¬”ØVËïb˜‰ÖÒ Ìd'ñYï~0  {Õô^cÏn( +%œý©ê¡‡WˆÐÁ8uN™zÍê’ ÎŽ?OijEüy‘ ”/_ŒÖ…¾ï²"„A©\åjù“ZHúºhã]$§^˜1‚™¶ù‡ö™ó*a!<Ði´(Óá$D±i.´‹1´–¸Hßò€É!XºäYwN6[H¥®òx9wo*ŽÜnÁÐQÃüò‡­DrO”iï«þØÅ ´ü;l¦#Áø€2ûrt‚í€íba×Á°EçâûîãM}¼«ÿ^?ì>бWÝy/ºcwõñ²>ºbÀËî¼b²³î ¯ž¼uþ¬-yþ¾>^ÔÇÛîÛ›úxÕ}+>e×?t';“ÛyІž,ÖíiTa·>ÑšŽ!?èBt3 ‰´è®Ìƒ  € ¬ˆå~Jµô¦òkä FVÈ󼎜øZ€×¨ŠŒÃƒn¤=#ËÄÿþV/yêýŠÕhsÃÜiJ)2}eŒ¬/d@ÀÁ÷Ïjášö^)VÑfu‚°@/Öñã ’as^Ä¥Ø/iÙÊÂÁÝ¡ DÒàóºg1úe¾°/»ö¨²êOõKeQDw’j ¬ÃeÏËS³ÖÚ‹ÈìïK¦&R »©ÄòH¿©L¬È®‰ ùÖ<Ášô®u/]¾%³›Ÿ wó‘Ppš¬ÀîVð,&½kUùP+*z©‡{]‹3ÌÅdøÌºpÜbšetqM…}\R.Lœ:·ðM~I>+sËr8é„j á1ŒRÔ».ëFäc´BT1. º–>ݘ:YF+œ¡àWëU}%‹'G VZï(mP;Šº 5é©Âå¼";¥;Bg1Í\ª\÷(àäà79cýG%´žZQê´yZ¿ùn•”½™Æ_ÎgÅ­_Ǧi‡õ¥J¯ËŸ¦ØÝɼu­H õëpÏ9è’Üw[²Œè=]××,²YaKS±ƒIbv0ºbçA¯s•Bj„ãïtWU‚[<Å+)˜"²²¨\çJ M¶³«ë.wY1^òïg˜=HyiÖÿ™ê†W8€KØ4ª†&y ¤’‡Ú œ~Ëc¨ wDK[2Q§¥J\Ô–ý]ÝRmY¹2ß˼vŒù;Üóš2º’5òl JùXA§œ3 cW¼êëÖ3_^ 'ø#jjdÓÌrõs÷œD!Es::ncµÀ¥í°Š`ð*VÅ‚+ q¥^²±¬€²SÛëNK3aSõ’_†Ý;M½>ülì}4ù‘XÀa–c±Áq´|ȲåŸm-zuÝN0öxØ¢f;Äœ¹î†Á #ê8`¯vV]цÙ{Yß¿Ãå˜kZ'öAäwuÉnŸ´yï#†û¦0Gª*ËѪ(‡µö+ .„'îÐüà*êj˜H·¡ØdF4 ,_(—yÞOÃ}à-7þ¨(-¨ŒÒN¤4\æ›òkUr`¦û[þDQÎèÌÊ…4¡„I#Ô!Ý›63÷z>¬Òûè-z½³[N¯ €d8¯…áV—GºË*ƒÙEã¤+€%;íÐìæU—â^ì%(SËÃÌ¢IáÎ]‘%¹‹XmÞûªk[0,Ù o ¹€Ô´15LÙ–ö'!þD›‚¾H1ñ žq[6¯m3ãECÔŒþ²½-µ‹6ÔôäoÂŽx—egZUñ-RîèÑ¥N3€;R'GT'aªZì@±œ:>®½±$޵f³BzéΪÁ€7*Ë.„”-¯j™8€Ù 2L©À/Æe³\¸œ0Ø5N00ª«µ41_ä‘í £UâÞ̽¾ŸlúP£I¨Ì-Áçõqßm™‰—j˜ÊâÏÞ<ï'£¨oõ™@ Z-lÏšF Ž%¥3£ Ðᡳù*÷€ƒyuû¼¶Åü=Øö¹èõ±†-¿sm¼Ïi`1i¯·¥iù¯DNM÷;ý¿”ßW¶œwˆ¹þÕ "ñòm•‚šÛ^Sœ‹ÛÀNûb[’›é5›Ù-YÐ{£Y¯è¥&Z— ]®€ï¼*’Ë*® IºØY—¼ªlÚž¼¯ lG’ŒýÎ!b𪻺xEGû‡º<åSH‡Íz['›ó8¤{TZTµ,Q)t[tK)"kÍŸÉÔ¦ä¯M#;’h“Øÿsµƒ—Ýöfúhjè¨)`›\`IçÆïªú 4üÍY,dž¯þù¶„Õöõñ¶û(s×õQDE¸îÐûY}ìGî®ölå³¾ aÄYÙsó£õÀk5ºÃEa3/ò¥nb‹Ï^ò‘]Æ, vÙwA6ÊQ…˜×ycÚˆ!—ù…=·*+§z­Š=+m‡Ð”§Ö 4[{NÖ;äþ}`H¯®úìɽÄq²ÎçÛÜÕ%­ÐÊŶ4„þ†}å4â‹Bƒ>ñwŒ,o³Å’p4˵b6]ذ{NW7†â!à׈æSá¨G_ŸWŠÁ™ônó¯ìd¤,>ÞÉÇR1bž=bÞI5¼ ÍSd¤¸›tT}À¯ñP>ÞÎEÞÊm,ü3ª%—ÐÓÏyTp?§ ©²_/d‹ý5=&nóø!¸Nb[“|˨Y5×mééwy<ÕñNÂæïÛR¬3φ?¦#²ÝÛ–I‹v f_£È%ßÊÉ© £NR8{aϽ¹gÙtK1××õhK§ù}tNdë@#MîÁ̆&]W˜|Ì« kNJÙÄ2K™nW²‡ó1¼JÎÿ€Á‡)¸Ù™ë¹6K@{BçÔT™BÞVeS’¢Ý|ôAN•L#·Å3)¦®A¼Rˆ)_gŽ9çÛã6Ð þGÁ*Êr¤ ÷ ~ˆ.sY‰PÂHÒ³AÃ<²¨½Ùwß}tÍ»À"Ǫٮ¸wUbfÇ%²1ïY%MlÆæ‡µNT±¢OÆ:Ù•‰Ÿä`&ÊQÛ×Ò¯äú$ €)±êæN"cÉ3v›ôo;h+]‰“òò^îNàn-qØ7‹Uy5'õ9`c¢–Ú%icûÃ4ËdbÒžPÑÅ.ôÆI©¶uHF6$[ªàT©’³eãMMîQZxVž;î‰zξmÃ婳€Í~¦· tSjþ!«bx*¬“J^|tSInÙÑR(ä2³ÄT~Ce2žÌ+hÖù©àý¯é†©îœGúÁ¾î誼,ã*ß¶hí…F]Î^ù‘H9ƒé%VT¢ÁÄ~îììß‹5®÷?Ã]¤˜ÖÔfÊv­qº•+Œª™ 7›-ýº\Eê«ä ©–Qe‡†«¸2ïÖzÞÓ.±EÞ»FÛk®;ïÚ'ÂЖ¦>õQd7Žõ1vdžúøaw^W}w†lvŒ®¢IN–º“…î&û Ÿcw51ÙÔÌt÷а9ˆúè»îIÙ!vÚy$Uy炜ó Xt2ñàï,”t‘Ã][0½hã¢sÛ60CÈ­ðÕˆYÚq"õ“^§¨üÍóê¡6O+þ¤²Þ¨t¡Oð5":¥ÒÀ6'2 ­ê"éý ÒðGƒv‹­$S q¢ý;¸—–U3øÞƒø´Z“ké+©*‘ÁeRlÄL9&þ©T¸ã„l0Ôv´ŽŸÛàM«¬ÄN¤¡~–%þ"‡N÷dɵh³óo­%£itKÂPž{0çZ9~¡Q¨è/Gÿï!ùendstream endobj 628 0 obj << /Filter /FlateDecode /Length 7934 >> stream xœí=M—Çm÷}ùsœÉÓ¶ëû#9Q¶eÇ/qb5õ||.—K†äÍ¥$Ó—üõ¨ê* §»gEò¨Çg0è* ß…êýûN z§ð_ýÿæíÕo¾õqw÷p¥vwW¿Òôë®þwóv÷õSÀÐÚhÈ*ëÝÓWåY½ÓÉ 9é]ôqÈÖïž¾½ú~ÿ_5X¥•òûãáoOÿt¥ý 1»k5¸¤TL»§Ï¯öÿwxú¿Wˆé“Ï;þÓ÷ûÛàÚœ¬û70œ¤lÊG­lHˆa­œÞt:Ÿ÷GDÐ9d·‹#˜œS ûÓ=R”ƒÖiÿ>g†˜ãþwU){ôþ¢Ç ßöïY[«ÝþuANÊÁ,€àsŽÑìo&0ZÞ¿<˜“»ÿ±SÁ§>V\ ó%á°ƒ¶:ç2 ¡Pf‡Dü«¿ê ¾Á©|ö ê &F9`5,ùM¥VÛý ßs‚§ý"ßg ?Ñ Ê$‹\†’n%¾8âo¾Jȱü²€#Gù÷O¯þ‚büƒ­ØÁæ†Á¸uJÁÂÃ. ÉíÞßîþº»¿‚Ͼý ôîP ²É$]ßþáJ;ûvönRß‚()Ø'ß oŸ¬[†øA„£‡”!ÑÞ$™Á‰ÎJ@’‚OY@,3­AÍ•¢^†Àÿ‘ É–Œr~ÈK€,'€V {V@BÄå-A\@®Ä<.B¼q!HJ ±ËŒ_-lb\ø2î1@œÊƒµ‹X£1ü–Â2Ì ¼©ôõ Ü"¡%¯0hkš(j3h ‰`–ÀÀ‚Êiò"DœöÕ¤l‹T5Hö4`‡€e\ØA ú!,}ŸžÐ6 Ú.C\yÌà °ÑV/“`ð" ÄÙ×lPÓà–!) ™ Φ!ÇeH"r|Xóh->€Öûs@P 6UÜ4-C@±iæô`$:ø! UÁ&6  1}Í`ì|š*3ð†Z/B@AªS®jþ9fÓѪ؂  é4™`ÇÒ"ăDhd8\0f ’@4p—ü €ÑFÖ;ëâàW àû â‡%ˆÏˆ‹†—!±.Ó›<˜° I$oý&d$”ÀbeÔE FÝoÐLh܉ê}6#è Zñ0Q*Âî€nZ•KÄóô`QƒÁñ¾z{»ûaÿóííë‡ä„ñ¡kMãÃÔàNl¦u‡'÷> »Ó çÝéý‡‡æ>-±D(»÷wÝ_B ZŸÒÎ`@ð‘«W`Ž ló¸mîqWG»î8tP•ñ·~»oî¿‚éÚb‘:Â%œ±ûoI§ç"ÎØ½¾¤v6Î%œ±Ç ’fÁùË8c0–y»ñëØ#9~{vý×±G$’WÓ³¿Ž-v‘DÉ¥_B[|³!QÆ-®cë×±K’JPˆµ›F¸„3ö€JÒ)ǹˆ3ö kC6/ãŒ=<ÛЕË8cáåkë×±‡v[k¹ˆ3öˆPÒ)y{gìqㆾ^Æ{l¹%3qÆ‘nÑsgla놸ˆ2öÈvÑ mý:öxK‘/âŒ=rÞ0+—qÆ]oHÌeœ±á‹Â¿ñãØcóEnný:ö0~‹ú‹8cö%…c øÊ8qÆžlÈûeœ±§ËìÜøuì)ņ-¹Œ3öÄCòMã4Ì”±g+š{gl Ì&g/âŒ-íÙ2—qÆ–my±Ë8ã”S­ÿúcË¿6eÿ"ÎØ3µeYÛøuìÜ–¬]Ä{–7¤>8Í™_Ä[nȈõf—,*9QÆ–-ÎfÊ`½‹Ó0—pÆ–QÎxg!LKY×q.âŒ-ïÜâòeœ±å¦[‘Îeœ±å¯3 kygl9î\Ï Ö§|ì"ÎØòà¹dz.⌽Úúk•õ×*ë¯UÖ_«¬¿VY­²~r•µ;‘÷w 穸ՌQ$:kÁ¬xt`•%]€M†A046Õµç<Ú„ÌŸsÈ0ùœSºªüôœS¨ib¾õàÒì¹È‰t0󇜲¦ä‚ì!m=-…=Jé­x6ÌËÕ\´ÇŒÍ¥ØÓh~²xî±åë…R.zó¨Jµ²ÔaRïkS ¸wŸŠÕ!®š'¬éZðžc5ÇBqvÇš +øZãhX °гDAWƒp¬Xëk‚0,ô/I`5ÇÊ®ˆRÇš +ûZGhX Ò± z"N|pœxõÿ-ƒ0,ôGxѱ„ceP #°&ÃBG•ø.vòºfæ «A8VÌ(Ìk‚0,Êàù^wÃÂXT v5Ç õÔ¡cM†…ñ¨á»Ø!+Õ¬¶cM†‘ºÑ! +I6¤9R¨ýŽ2AF²ZÐÝ +Õü±cMŽe1Âå45ÃAW˜ø.wÇ µšÞ±&ÃÂÀWqéëŽUÝÚ C`-èj†…~QhE‡p,ƒMX„aMî©c5Çʵâܱ&à \&ßÅaXQk©±ÀI ­è†•l)õ6¤ ÀqòÌJvÃÂ(9‰]lŽÕœr÷* ±„¢Ö¯ì÷ÉÛv”áXÕ¹2¬ °À ”ÚhÃj†…a¸D5ÇŠQjE‡0, Å…VtÇÊàß…ÿm†5óÉÜK3¯sîËg”^òåÚ"G.ùÌŽµîÁΆ?aXÖa-ZÑþûºMc8†amh2ÃZի޳%Å kC¦Ø®lìÝ£v8fòLµBÏ„ßGÁúp¤ÆØpÝÚz«•žÞ6@ˆ`w³/Ô!ˆÎ{á‹ãº;Ó‘&ˆÀ²àDŠUFþîÁg‰A @àT £ù‘|ê-L7 @l,Í!êpÁ4{í÷>Cä—÷VQ{È/í÷¸Ð0 > ]ˆXÿ#.ûNLO¬pÁžÃ0­€v¢ |‡Pž€ü8D ž€m2`2€!à%lv†~h²ò=!( i÷7øü¼g1Š ž8—Áº$³-)Ò†¤4”UIi[’Ò˜¤üe•¡³†ÙÊÏ.r$3 É7Ôä¬LŽ¥ç¡ÒþîGl¿ J¥¬k£pJ–ºrÖì´ÝÛ;\ð/1Ùý_xTM˜Úv³‹žz}†„5î_ÓÐu¸Òä[ž?ÂhÓDÞŒÌxB ò r·?½§ÇÈ$ì©`Uѽ(Ù¼?½(£Ñ1=Ô)RØÿ™÷vÿŒŸu†QR&( ÿôžZ Áؘ††ÎZónèûõ9ìÿ€ÐœÝÊu)FÙ ~¼Ç†l›aËÈèå‘ÉÈáÀ§ÕŽrölaIr±2*dhSw@%³Þ†t8 –`¢VØ`MÞm·Íþ÷EœòŸ|KÀøÒ‚ý=r UÙÿ–†L‡½&Üë ù|‹w uô _Y¡UgØJ$F+x>‰ÞõíSÎÁÁr¬ha÷p‡J”Ù?-ó’0˦÷kkìà”åü’õçÈqÏdŽúæ•Õ&£¸4d—ä­ÍBp¨ËKs|_8¯ü´BÐc”` )•ã0¹–Š ‘wús&ñu«bø¬`hƒSUlØ=‰R2!£tàšaŒý ¢Þj0.Hx!TÇq~I†R„ ÉJÚè e¯^[øX€ DäâÂÙíŠ;o( ãX£'á{Ån”á %6|85ˆÎl0]dˆL¢k–[9&G.wŽ"­m¸"PÏIcmJòRcsaœò!¸ù½‡ëi¡EqR½5Á8r,& tO }BËi‰Í“rgTÍ—]qŽhàÀ¯eˆø ·åA§ÂʃËlqçjwmHP#šóýéU#ÿ¾Y#©D;¸n¨_6]ôF™_*\² ==뚀úêø³6òO(¸@Fä;ÿ¼ŒA.cé>ª]6šk œ€ˆÅyáPÙ Ñ8ýxhŸûÝX?Ôõè T`+´ƒ¤.xN§ò’ºÜ½ìÚ¼@x’e瀚Ì®z)É•é~ìrµdÔf!Å‚Q‹ºµúd±j6)2k<¨añ•u Lÿyõô_¿Ÿ9|è#A7¼:ð~H$HFçwÝd|žÁ´8-É|seMƒ.¹²‡:ŸvàBqƒÀ"ؽþ õÆ hVË´ÁlˆÑp/Ú%ªç…&p?Û2läÔ%{«ëÜš.¿£Y²wGq·eB›gp¢â ¬ÕOâAŒDóƒ( ®+k“ÆoÏØb™ûi¨‚×Ì:sÏ>­UPÚ&|Áw¨ÜÆ‹1IßAÆ‘ME·0ZH“nêÒñb°0Ý;×·•W5§p4Nv§EÓu¨â}ìª\µ¬P#µ¬è ¤•«N)eÑ©S„màj“ËÞ<ÀÙ²ùÕs<°Ëeï ³±äWcŸîVC±W=¢x(c;ɯW‚S’¡©uËNïº _qß³˜„&Tñ*÷Ô¸jh1z|¼cA8U,ñØ–àH& ‹¬ÂÆ“4#Jó³æo…¤JB,ÅÕÂ3°ØLÞNm(ew½É"ÄšGfu‘/ˆ STÈk÷h­ÅRnqf)^ž©LÙƒeˆ,œÃܬT•jû’ÄÔ?³,BeΛiö"ü•N,Uƒá<Å6ð(ùîVþq˜'ƒèV8FÕÌe™I¨Ãi¿*MóݰÑÈ­Wý©Ê4ñ,G0•‰v*C(-D…0.LÌ‘´+ið]I¤‰Ä¡Pìnº°qe™#…sQJþŸ@žÿxÂE€í0°k€ öHJ?áÏFAè²^‹u¡ˆ|KÛˆBVYІf•¸BéìÜç´œ¢òMÞ5ÆõÃ<@òާ#6wy¯Ùý<»®)1×ÌÛ®vÉ6¦Ë³s¡º”d×TìØù²ÀÕ¨”)?¢¯'÷K`¬Ú|^Ž+›¯ö¡;Žr_GSatRœe7ˆæ™€j¸ü3®pG¶šå´›¹¢áaÛÊyßCq<÷AúÂ#ëd2-ªà9¿T¥Æ2æˆêÙR!O;6n EP¹á^”Ï>.íó7©n³Ìƒº–Rµ«¤¥ëvÊ&ª¶²2DÙU“]Àúާf¦œ9¾Á4\ T¢’áÎãŒõzÓD–^”³„ÙYæ¼._  bçÅÌþLq%ZkÛVÄ\p³&ÞtöÂqT_Ð ÖÜP›d&¶‡Þ¶Ãtç-‹îˆe™Ÿ4®8&yÐM\÷9Îë8è/}­Œw³˜½ÉYþƒ3ÚR2›UÄꢤ×Y:Å@]© Ï—JìåeÚñì,E<ëú8b—“N!…¼r¸AþÇÓyáz½ØùÚ|r^l!b¡&“!à43Ä6?ì{©µü•·.y¼:õË:ÇŒICÔqg íúªï¸” NŽ¢ÂÖ]V}câƒ[Ý º‹U8r=AøIª?‰á›àMÛ–^ Ä{M}A$hœi€[]ˆËK· ¿L¬Xú¿‹…}oÑ”G›åìý¢<y‹\=Ö"мé÷«" ±dí²Ôè°À»ÿš…¬¯‡™²×ÅX†Zawx,"GYé/g©s`£’•+þáÀ Ÿtšˆý…øbR¢ÆDx¥‚I™°íK'¦ídŠ ŸqH góˆz jˆP™ðmtÀƒÃìe¬<£/¾üÕpÍŸÒY=0}¬YGE(ⲚËéC™û¹ÃàWíá²SŠ”2ŠtF~œ¦1gv»¸°(OzA"d³Ð*‡]Y²´Ø¿-±šä<”'FÏ\Þ#ÓN<—FtÎ7 ê=šŒGçw…“Àšœø–`1ÍÓ¥íý“R¢gU­:?÷\æÎ»˜2-ƒŸq}-ö»±÷ÈoçÉ@Ìg,ŠÔ (öé:,Z1?]V¥’@íSÁF='µ«Ó¥vëHÞ™Tå3j¢ ÂxþWÓjø¾ñ3ˆ[ Ÿ/y ÊF>Åô>|FqÜà¥t?§ú€Æ·%Š`òt7/…žçaóö‹ùV>ª(+5eIcS6u«C1œš¥?­Æ´’^:8<ë%(MÁká4‘°£Ÿê±"„'Ö9+Ñ*µ–7¹¿ éÀÃigå†þ¹”K[ËnŽÜf°¿˜&:½Ha[~ß½´<7‚‰bV2j93!Y2V­&mv‡•Õʈ.9Ç#Õ;ež™´èé¥ì‚?\äsSoUø(J;Î* ²•B€:Îýd^“m0 y›´š-†aÃÍOyý½8q°xÜù®$û¬þÀ­ϰqÛŽX‹€o*1ÜÆ}©ƒJ|ƒ’‘OñÙ€–Ú|fTºZcaÓ•†ß'…ïts½|ÄbÜׇÞgÒìÉÇ¥kÅ+žÔ¸ˆó§õ^º UîŒßuufÁÀ‡Bpgÿ§¾ŠK7}WRvR`ãé¨~¦À_âTá/׬d°KÛ¦ù©ÿâ‹F¶ß×PïAZªá®Usn+ Z„'ÿÝ·ïwtÿ#_xRâÒùñÆ\ë–Ÿb9:HT9ÙkûÈûÞôœk¥k‰µ´ŸP¤%_ó¥Î½-½Ô_Eª”þŠg‹´«5£`a9ùýç´Ég–¯r§üAÊ€Çëxˆ«¾Ô¤üÔcoéž–Xñ—5ت#Ÿ­Ÿý ëç`(ØïчI'òÚUÍ•?"Úö†E좱{²Ž+IB‰¢!šVópÙUcèu‘;aÑ_…·Ç±p9%O¿›Ù´ž[ˆ»$æ¤ýfáÊP!ÔQQ”>+yI¢®Yg~sŽyçGÜqáêL=ýšÚ>žˆ{Â0¹£HlåRþº%Gªñ}Ÿ“lóm݆\y3F+ÔÍŽä'Ûð¶Ð„™ßìVZä‹+Êeï7oÔÙHî s!e‰­˜;½€ b¥“ÌÙI=ÉÍ¥œ³í:?v-(‹‚3/‰’Þ¸›û#+uÕ$º¬J:ÞU]iGûôJKAÍ£z±åiE».Mƒ@èÙÏ̬ô³â̬ÿ2xyÏ×y5Ó—Ãã]é¤íÐùK!,ýeâG]ùGä°Ùïnöž¤ÕÎŒ²ðPßuaé åc†Þh%Á|tåV“É&ëoš¬3V°¨ƒŸí/gÕ'qzXÊVà´}»ý\²í±-Ì¢G\¼¨ß$Ä·çówÛàt6yÓw±¬¢®¿ßLú”º0^lZÖq¦ÝÞ ÆÊ˹ðBÑüŽ £.—?ŠC¸kf$ZavVÒ¢;–:ð”£tå‘¥‘½&‡ÜÍ”øÐàeþn"42BFÉÒI®-G|ø¾ÂY_Ër?ÌJÅy}½8´“o‡™. §yÒAÈ=Ô¯«ée|^Ë.“}–ïÁ“‡iÆrs?£*¬6Ö,äW|-õtÿð€mg"\OìbÛÑySY°Z>oÎþ…Õé2…vâ.\mý*¤¯Þº>kÐ`“êu¿‚Á…¶šê 9/’ÉÛm›¡TÌ>Q(EŸÌÉDØ3-î~Yöîê½kïÜX93.CX: lWÏ'Nu‰äÈ Ÿ¨†gH;€´|¹k·ýTmõȉҕëo rL8šJñÒÐwüÕ™ßQOyû¸|YÓ¼Óþ3³µ6·ËxÂå©r6ÈUÀƒhÇÏLÙˆ'ʽ!+f:‡ùŸæ4ò]KåÔ_¼´ !8d·li_<×Ã÷÷9/¸g”JŸ‘ìy|In˜S}X ú/Wÿñi¹endstream endobj 629 0 obj << /Filter /FlateDecode /Length 7668 >> stream xœµ]IsÉu¾Ãú86ƒVåžéÛX–BvH¡Ð '|ùÐÄFˆ "È1tð_÷[²2ß˪j‚C+x`¡•ë[¾·%þv>íÍù„ÿêÿWïÎ~ý]HçwÏgÓùÝÙßÎ ýö¼þwõîüß_A c<¼Ú—©˜óW·gü­97ÙïK6ç)¤}qáüÕ»³w¼˜ön2Óv‡‹ÿyõ_g&ì·öürÚûÛýïÅ«¿žaËC9—¿úqwsm]É.ÄÝtg¡Q±üh&3¶pÎí½Ù}/½‰6”ݘ‹ß½Ãl)9ÇÝñgT¢1y÷ ~g÷©¤ÝÀÛ)—`²ÙÝcóTà§Ý{llœ3~÷–çÉÃ(Ð ”’’Ý]]Ø´‡ÞÊîÍ…0¸u»}rèCm ó|#z¸ÖÑ8S 7ÅÈ3sûLûW?¿ï ¾Â¡B :ê ¦ò°Õ°ä‡:[ãv¿ç}/¾«û>lø‘:lv¸ËðAž`·²<ìñ×ߥIÑu{øÐölv}é½9¿taŸcäÎ?à©L“ñ¹nSr)ïÅ~à:a¸-°ñT`E®¾Î£øvϸ΀?ínñuœàÍîøžß'ÙÅ›>QLÜ»ìw‡'Zm˜ÒîIÌ‚¨º‚×jãûÐê:[ 'Û…ÑØ¦qËãÄ ?m}×/|jyß™à`Ô¸2,µ9<Ô¥å4of‚îEkIs7u ñ³èD’ isô!¯l2µ~& Mýop¤è*Ð:qÃídæa<›œëñã…f]îûZìó7¼C &rÓwhßßíC” Ü‹·Lg?Ê~—À`“±°óo{¿°Ý4;dh&‡ì“äœ6û¸Ü¤úü÷Ú¬•™4g—çƒ “·š¸u)ŽH`^Îþržþ¥qûà‹åU\ՙ̗ö{–Lí ð=ÌÍOfDÂK VémÉawG¬S2ëî'”5v‚yIvyœ¿sêî;±ãØ „­ êÃó ’XÌhp|ÞdØ—HÛŒçl%ajQWWÞÝpsÒ÷î=‰Ü Ö<ÓŒóÄÍHûë~ZbŸåiInlrTˆò×ø.'o…|VÔÚ’’ðS >¾h…’’pÆÞŠ%ñ~y õˆšRèÍg›c=è¼WHS2&ÈÒGG<Ã~òiæ‰Ç>£»™<¢ÜCE¸‡ºDìZð`gÉÒû‹Ëè31Ââkn± ò:&ò<+ÞVH`€„"JÐçiAO4–§ñˆ¤ì²’å’6ù´­±~P (µb˜icùá5YNâ±¾Êp M“c:ˆnr;Þ¶8S9ª÷×öôûxÄý3¾¥'Z[Û8Åspt‚ÞËÀ)€¢ÉZŸ\)þ e墈þÈoA!£ Áá€bµ¾‘Œ¥•Õ…Ùs/‚Öy)>{¿ÐZ8lˆ¦@49x»¾c‡×]³<0}›´73¶øQR)ê)P¿j+éØyONí†g†¤(eÕ¡£¬pìc¼V{ÎÔì€d`æÅ%8«Ãµ}3¨b©+Òj`î3%ù? LÅ ø=0_ª{cXJø]»ü"êõ¶˜Ô냵6èÚm STªut÷2l‚ý4b“FÖët¥y€úpÙmMúº©Ñà'²#@Jy¹׫*â 1°0@>]dÏp((?á9•(!Pœ\ÌIO®u½¥¿¤Ê;Æj?x;HÄ"¿'7sˆXRdšl2™¿÷ð½ÛÒ2,h¼‹v ¶± XYZ1îaež™MÀÓˆ³]w<Юä³w­Á±7xß!qõ‹ß]²œ"[)3ß¶׌”K d€c¾ _¾jvƒÊ®‘ Ùð:M^2$sDÈ ‘Þ`ƒ‰t AGZ¾l[’³f{€ PEonJdŠòð€Ý ÖA#"®)¢Ä’ˆ}]åôõ„m„CK5¢0Y#7"¬‚–¼ìa“_÷>Š#¤ïà¸]\ØU¼’a…аï$«™çµ¢Oï„Þ ƒzbUþÄçh%ˆ“lûÄÌʾñOK—Å ƒ±ë¢Æ;òܦ©èIHs‘>Ëe¦=b–ÃÕBzL!F¦‰yÚ¬kêì4û+“q²5#‰¸iŠ…á–7S°IXYŸzÛ5¦wOhÞ ´À i³+)WÅž¹‹¬= iŸRlÞñ| :ôÇýñ¦?ÞõÇc|ßïûãz¿ýñ7ýñz ¶âûþ(ÞþñbMÜ 9’óJöh &r8}‹ö&I>:¢ÜSÎ*2l+è[°Æ4p ‡Æ-?ƒTÚæfl€öŠ8aåŸø@Ç]J 3æHÁ¡×€—RçTUÉQêÊÝbYÈÑØIœV® ‡-;9‚v„´2£Äz¤glʥD†³XÁùÀ– SrÚ}G‚?qgy”$ÿuçÙ¥ñvŸÝ @°µy'ÈWUÁàS³# ‚~¶‚Öqo"°Ûa€XM™°T3?KUÕó'fØŸà*ýî¾C—Þ‚Ä÷ÖêêÀC¢0gí~Âý‡|ågÃöƒÚ@/°@À9µ¯ìºHhQ‘{–ÅJv)’%Щfž ´çc¦—°†Ýß:*ü¸>„ GñÝ Y+Nàf½É}x轊®ÄöÝò"€ßfÙvJ4ÍzO³(mjÒ»)|~RW]v¨¨ÜxÂxØ8¨{Á÷ÕõT$]÷Qr‹z°Ê)­)OŽ\z‡ú¬Œî¤nX\ÚiëšxÇe`ª\U'¬ßx…¸ÈÉÔ\åRŽR‡À9joŸ¨G—aMOƒ…ÖÍ.žŠàaãKme}qshàe‡µÌM–¬ûÑpUhÔTPéèà%0y³jðÝ6khÞ™Ýá¶«¯Ä(Ïî=KzÁ|–~›V^ÎZÉÝû·€7%Zg—ˆ©Êb xhUic.±yÀBÅHlQÍ ûQ„g@}{çAÙÝ·]²>JïÀ†%%øqðŸf©LýC2q~Ëè®®H«íkÜErÕÿñã Œ*F0($}³a‚Í[Q’ ]"éBì!åÌ"žÃ ‹xGl™ìnáXæÓxG>…Ô!Œ„‡N\7Ü1‚:zšrÞ õ‰ÃÌÙ,yæN¼©FvX~I‡ó—¼v– ‡»»¥—’½hþ<˜öÇ»þø¡?WÛþ®?>ôÇ›þø÷ÕÑ^o|¶š+„!»Ü¼„ÒÙÅÖ›J kàG{?)ûyÐ7š±WøpšE_õi±5üžõq=— µ:úO´‚ˆ‹¾Gç9¹Þˆnò†}0Æ~ªkF¼&ëq_Æ@zËÆ^Z%ŒÏ„ÆýOtÑ{å}êû£p®;[…UtöØÿÔoWŸûãbÓj’p *®1Ο³/‹Ñè2cÞ-9J <Ý¿»@ ‰¦’G|óáÍñ"À±À°×(¦éãÜŠœ=onú/ž¸9j¼«·ht¯ÍÖRêLåg¯þõÇÝ«u§ö9à,}x=fô¶ÈïæÆ˜©&D¢Tž¨Þ#;2ÿB’{òÓ¦¨|æ±EÕIŽ –˜-2EÞ8pÀî7‚aø¾7ÿáÜ{Ò§›Ö«)/cóÊ€]`ÚÃà\wÈé¬&ÀoxÖŽ<3úÖÕ$C‘üµ¾¥Ù.Pǧú¡Ž€-2j¤>ò§‹ðœŒæO júã}|ßEôº?¾^ýì±?þ¦?þп_}»ʸœ'--7‘Í)=Ö”'åö:mSÂ2¦û)Æ0äñ ‡Ù©”9Lè/gàY0;œzæáÐvÝL÷ÄÞ„%8”€OÐ¥ŸØ«Ì©YS|Öɵëd¹—¨åɳe«b<„·Æ ¿}uöç3Nßçï·ÓµÍ[³µm {Øœsÿ;S³µEúôh¶œ`AJ¨€ÂDŽ‹^&òÔð ÒŒEh^$°Çe¯:®«ÿÒe»C˜¨— Fs~_¿³.Aø,‡ØÁñ žüÒYç¼·qœõE?"Ì@±°ÎK ‚Q‘ ”Ì4-m=‚²(’´¼›íDèøFLCñPjöë‹ÝWÚã9%Ú Š„,:¼¥.g?aÍ2íÊõäX¡$?Ÿ;Û¦nöØÑ´Ú¶¤É,]ÖÙ~K)¢ÅÚ‘›N•4M¸•`-%¥£e°Y(,4‘ãi‘;&LdS*IÖé¾k Ì"´˜Ÿ0.ò6‰0.^¯§ŒÈG ã¬B*M˜þ’ׇ¸8z-¬öÅú’:9´ zÕ¸#•£Õ0êr«Æøëp”³´ð9UÖyÿÕ8Ê;Ì‚²²?2VB4d5ýI,D”ë52J¢êÅ)ÊŒŠåIÍNcåˆEÂW‰,„.]°4ÇMÛX»Å8[¶,…¸U»(è¼U;Õ™¤ºU›{#?H*¶Nûõ©uªL¼‰ÖÌÁÅ´Ô9Ñ8é"¥×˜³4„÷R"®úl.õgÙnts,Ò‚ùŒµj´úbδ+­¦¾Õ-ac”Á_” ^K¦Œ ÐvSjÒ®”>áûHeh­"î¨ *êZ6Õím—Â|•L‘8°‘ÆS=F¼é»ntokô·â¸¬ÙË¥jz Áp½Ãio21ÜìÖ):¨…¹ÞÍP”-5„Ä*} &J,X{ƒ±d6 JŽŒÁÀ…ý¯c™]ƒÉ­B+,.áˆ>H‚ÍŠ»;îm2ÇKð¥ßÌÊx‘ãf7„2¿Æy‡«Åq,ÊôGÔ™2%{ɪÔöÚÏu1^ûï;ïÌ[Ï´e[©aÔ©PÑàï.Z}›˜ÝèK,Sæ´š„9"n‘Þ¦É9Õs Örªu˜»HÀ¬Ç3e+éÚ$:¿m4²ÀïÒlUàA™´?n¦:wŬ•ë'ïk^Õ‹õT"³mL{ÔV„–1Ti¢d¿ñæEœ ¸Q«ræ`Þv.QN?œ%ëQ´²Á€‚€pà±ñÈœ¸–2øÃ¾¦Š”#¢[žQ2ý­8§o¿Ãøü¾ïÓþÆVfZLTÙªÌë!ù Y9mågÉ^Da®2ÀìÁØRNt¼vÜyªéé;¯‹z¶ý£um, SHæmPÀËø}Ñðe£Rš"Åw8Šë>$¨¸¨ ”–¿Q=£î ø‹fŒ}xí°[€‹@ëw\À0%@ÅUëÊBB¬Gî s{ÿŸl쥢Ù"‡ó¦®nZ‹å7V¦c¢N¤c߆á2…9+EGû¡a¯‚~ÝËÕ„ØBanýIfªvÓA$n‹EÊÄ×y+©»vp2Cí R.¤+¯ýÈ™*kV ©+Õ"Ðë¿Ð‹PNç¸zÏÚWJf‘ˆr"?¿ÄÇ-/)ùè–Åþ *À› ?Ô\YS¼RW8¢JíªR²½‚Öâq¼-è’îìñ|Ûˆ,­‰hðbôõ<™åR›”|‚¦Uit¾ê2Ú ÓÈ_^Û¢°8ì}΢¤Vž>U’ ð!­…ûŽ‘j!ODS=ZÆ«*_lL7kâeØ òƒ ìYäoÈne…¯¢k'P#zrƒ~T/ej–ó4É5•IÌñ‰›$Ê¥îPʼnhœ$!º ‰ýÔ59¸»†°¼äDx#²ÜVÉúËa[úbé –ÊN*WzYä* 2z†í¼ø>:ÚAUh¼}[ÉÊ•å¥2«©@ÏuŒIÝ€&@Ðp×רa­Ž[ï×ÜŠõC7‰•p¤ôn€ÁöÖvzÏ; QäAÚØ ’¯³Ûô0mx‡eþ÷¼@‚Ši~àK› Ù9Úãk³¥t•ÍD/€»¤G¤Çw :ì£ÐÝyÕíüÁîªðè ».ókæðÖn­®T*BÏŽ Ì$‰¯JJ&ΖÑWdRÊäìK¶õï]" ø]6§¸˜7ÔÂPÔd4aØRåš^æñ. Ë7LÎk#Nc §m4oËÆeËø2£ÖŸw˜W—-MÜÓ‰ †üx¯Öaü5¤ †+fù}È~¸dÊYÏg~Q+Å—±Ä¥éócÎFA8b¤›"EZ׆ÊìV’Šf:gaÑ)lzççïUôŽPóÂ'o¹\y•Ö8z;󀂯mqÚ ¿^Ⅎ]ß9E'ƒ9½\ü§‹àQlR &+@IqËk1OÄZ˜³Â¸Õ0&Ú#š“×ý}à/‹öÈ=óV{¹ÔÎjPÔyjõ±Q$=‘u©.SŸIÌ]ö}ûÉ%DèçUF0ÊC°Ë§&žfEѨ–© ~¡"Xã*9×$ºî]Z?í¢©xR¸gòé T‰sÅÚ–^™t ­èŠÆ1Ï܃7^[ u±›bR( ùúJpÞÆqf­­(é­cÛâãißïÂ…¨PS7–x`Y}§B”Õ•ð¾FÂüÁ¡Ãþ¦ñ’™œ)ôq¬ûŽ:' ¡ic¹ÐT ^oÌ8vòVÀûN¨‡E©\¬¶¤;Hغ‚¤Œ‘Œ)0<:’ "“oÇRâè&>) E—|ùŸr³ÉkÆ"gI\ y·Sú«6÷´\%Óär»‘` A‹;Â6ÑO¨\vQ¸ñ™ß"_iÃkvýÌ Ì\ä…÷è,ý~Ë7µŒt#ÍœO+…ÓÛº6m°h|㵡ᇃ[öÈR¯«œ7{ÛÝI7ý+•Á-¬€î‚ïÈÖÞÍ€Wdÿj4èú¥Ð@ñf¤lyk÷2¡Ê|žó ƒÒœi¨k@ïÚÍ@“ð¬ï¸LY$:¢nþ|hOrÊl®d³%4±ýªw5çeåLë)WÙ× Ë/¼ SÐVæ"½yAaš¡ ¦•K°â4Xå[hípºŒ1d9ÓCØrÛgƭͬUWón徫^)mèþô¥0öÖŠÚ‚õì­íÌ9ºìãä5‡õ:Œ ëë ʨŸëò&»¬1ƒ÷ɵ*>I!õ9X‹ÑPÁÌVD¯w Ù§:œÆä1Õ×õ‚Y°>õ¯dù=IžÞ·˜"_»bj¡^ߘEŠ yâ~ZudŸH¬ õðRG\œ1§âsO²²šeÔ2œ¢é”éúÚ{~2kŒíù%±«Ñu¬|®e±„=Ï£Ÿ¸Š| «´Š{Hs>5i¯obÖ4ÉàMÆqéèéytc†BAu"îàX/¿è‹™E-•VŸÕzç¸ô¿îúl#ÇÑQÆöî´ñLšKÄÀ«QU€kb+?¿ó]8œuð‚cãE_µˆ™Ô¡5b^-qS—•ɪ¼âõ\( _¾­ø ÿöEW˜£63@â“•²ý™GÁÈÚ L¦zURÜL®:Žžo*qO'ÈOù*Vœ¿’êd]Y&Ðk¿ z[ óý-L!•ñª}ÅÃ}y´!C–ÍÊWGnŠžý^wºr#ˆÃ2´Àâz*Xñ œ®•âDˆ/½±®­’†H}!P3¥!µæñÂõÁŸÆ‹û|m²€—ÒIð4LºP€+ªDéûu/ ël8æ¥}]z«Á„>X­Á›P#— ù¯Ho5O²»å… Xƒ—¾D.€ ¤@Ha¡8Þx»S< ›ZèâóÙ}d`_#_ô †l€zâË»±L£·„Š©d¥UokÂ\Ub\-¡ïh='¼¿¨×}̵jÒÆÂvª*™RLÍžñeù/.€TÃj¥ZŸ:ß”"³½Xìd¤eJ@¯‚xœ«˜Ó4ßò BÆÞÌnîpm)Ó+;ɳ [ke2ÅŠ*GÅ?€}¸?~ï¹ú‡w‡pA@χ¨í©Ÿòn?Þ‹÷è},¦ð•ìõõ{)¦©ìd땽חX³¶þö`N^˜Ìr€‚¶v‘º¼—tÒcç>jñü»‹~î}lLZí‰RŸˆ ÝHú—lËZ¤åÉ&©’R2Ų‰æÑ']…ƒèom“BÙ;×o‡ês»Áº6î…‘%]¡¯þœþÓÜÈß ü?^ã³¹×\p2B´™.ܶú™g‘Ñ…ÉÇ‹YËë<ÞÉ,„ƒ¸©jîÏ,\?†¯ RÖ›<ÿêòJ|I«á4e(‰À­º {©ºöš§lÛ­àÎa‡F‚toj–U¹rîwÂ[¹ù¨F8‰ÊpÊʺÞ+q+;á†[`U˘vq0m’êù·Û‘G,fË/ýç/Q¯jÑeH7ëf‰š°)ßsÔeqëˆójnÄz,h#©n‘†´ý„eÐ7ºÄÓæô?¥âGÖuæT¾CRމ %MÙ»za󻺈ñ/̬îP›—»qטÈd(Ö>8Gè­ ÒÕpÿ–Äâ–ÆuÇlCd>û?a-¢ endstream endobj 630 0 obj << /Filter /FlateDecode /Length 7171 >> stream xœå]IwÉq¾ãéæ?€›»ý„rî‹uÒ¾x4OÒPOòùÐÜ@Š š"@r(ü×™U‘€ÓMÓ~z:L©Xk,_|™øÛ¹šô¹ÂÿÕÿ>y}ö¯ðñüòæL_žýíLÓ¿ž×ÿ>NÙúóG¯Ï6&mý>ÖÚˆ¯­›tˆð‹GOϾÝÜlÕdsÐ:mÞÁ£Ê6g§7o·jò9Çh6ï·VÃ?è¼y†oµRQ¥ÍKøÚ'§UØ\ák§”Ï®<Ûœ¬›Ýõ?÷:¹Í|¯rr‘·òŸ~C#t|„Á£Íóÿm{áœÒæÇ·&NAÉ2¼·8BsTÊ¥Íî–æ¢£šFj´²!mö×Û k ´á7OÙ±¹ ­Îys‹¯SÎÁÇÚKô¶Ž¿Î«4Œ5km¿¤¡ä”ýæaÌJÏ“ b;Œ¼sódÿ@½+ØZ›Ÿ?:ûý,G:ÿñ˳dô”9Ö¤Éäó×gÞ¨4©´¼¹:ûæSÅ&<ä|a$Ú‘ì|»ùÅ6Ù ÆìA*Ú2]7a©ë‘]ôu=¼†ì$„ä¦P¦Åv¿ ËsjϦTÞÖå-j´qâ5vî´Ž$LlçÚ7­éeñ–ƒ@CØŠÕ7w­Xº{ÅTžtŽeÅØ@jœË›]{üH ”EdëãÍv_Ñ~þöSµÝ(;)Ý ‚­3n„†eÑr·U¼j[%—V#6ÈOƒ6¬Ü_6MµN0ç&EÞÅÆÀ¨Ñè}ßA‡0ÅÔ z+ÝËÄ,%˜Žó zœRQc& ûöø´IÀŸ‚Ke¼¿ÅMÍ9%2¿³é©ji‚*Ö«Úð¿£Å² ÅT;eØ´§ÅŽù¬7¿¢a²ªsÔ®¿¤InþW‡ÞÞ}»Ù¿hí\5#Èäë¡Ê`]­“>±Tå0¥x UÚ!UVƒ€¤~Ô÷‰•±0~ð‹Ÿ,WËãφ¦çjøíÇSŠc2`‚r™ç7dn‚ñÐÝUóm›×èp³ö¦¸ á!A–Xó6MуðUISIœzj xG'SYìÞUóQÓI,YÈS0Ý´N,tà ØÖ ?Æ”¡°Å~Ô÷ Š“W¹ ]6eÉŸ =ÛíP¼.Ûã¾=¾m/Ûã“¡(2ýi{üc{üføö·§”à&_@ô¯pʘ²_Þþt7*°ñ\AÛœM|@ÕQ>ïÆ|¿O©M¡3~Oz‹GON¹ñÞOJéÓÅ\& 2öïh¯£…×oJþ!Ø¥``ç7ÂßeeLธÉE`Юˆ$v¯ñ‹êÅ1@+>œʹ°¦›_õØÙ$gL‰;ꈞ.8{Ïü<µ–G…÷fÕ'¿ùw¤¾£†³…é ö÷ §<¬£‘k~Zivä2â…ÖÅFú!ÎBáèûQo·³÷ùÑ ~ûþãwßÉÎjdfâ¼'žÂu ™R²©„žÕËR¼–²SnsIAZòÊ[BUÜãœú­ŸeG $O)õþàÇ% $yãAt“=.‘¶ËpnNcºÆŸ§'[ñ9Ì 7Ðtä]`lq 4lwìG}¯!L ”²þÀ ¾k7;k¯OiM„3æþ†˜ ªØá€fã‚CKCÀZëÍW¸½i6–ó —Ep,ÔZÚì$Ø@xî!¼å‘³^O¶&@?>m^´Î_s„`¢FY+×é´riƒž|0¼ 0hùƒfÁš ÃƒÞ6÷£ÑÊ|ßág;ÅØ­ÐïØ¾ÎÂG?àƒø»ŽøÁvjU˜núîyãB“qæÿ–ØLÿ9ŬgìÄ!…#ÄÁk\à~Ô÷™)°ù“3¾Ãkφq‹˜Íúé) •v“õ¶w— OÌÈY $”Á̼Â'øÎÞÁ…„¦aù%CSèBu>uhª'ë4ï=a:*4µ“öý¨ïM,nEžß'bãÈóz°²ˆvÏ¿=¡d*ÄBnÈ‘{bñEñv`G\å¾ÉjU MRP¼Pï0O‘¿œ€&äh£œ÷‰4!Y+–]â16Ðj »Õú^kØÙÀÿ]1¤Q=óݰ·Ç+?;àûÆÕû8Áóþ<‚Ϻ8•àËQ.0ˆ‰9jEg_ïy@øLy‚òra"{òQÛ½8Ì#«/çžîppŸQlŽ {! æ†Cg˜y?êû¬Ÿµ™@ð#Ýóe3yWCëwÍÐ ÍM„@C…1ƒsH=ƒ»¼»‹ÁŤX 7–ˆtΕ¥ H§Ñ¬½k\TæÓuÃçuzsËX±tG=ÛStý¨ïõ£¢·håq¯½zFæâN™q÷l‘_“®”qªRºæwÿÇ¥«Íë³I[ºSI—õ'IׂÒX.•Qj·C„ô–#¤QëU{üÝ)¥Îa>>$ª½Ù˜evvóO[\Îi­’æ‡Û pxàD#Òº2c0¤F–ÒNõ•…3.õIŠÒ¸ï)ï=ö´ù†uYbq­óæ… „„×·7>(wµ`†“—·Xˆ¼}rSNìÚaã`;y¨2Gq}Ht?êÏ„ïègvîn¹­‹%óuƒ2€™'.¸¬ü [3‡òT^¯¥&X}ëXŠp{žeú»:k®…ÿúÏS®¢¤iÞűBbLžTèG}o¢‚ô2wvõÍ0ú}yŸ1}:4¼ãðøKÕx€ÉX*qGª˜[’qXÎ,³B.û²LcÒIÎúÔL£yã=›Ú@¢1…~Ð÷Éÿ.’yÛÄ÷—äºW²í¦äòáëýmqí&"ròXU >¤)¬·;ªÔTìgW©YKöþ«¶š<–*\ºÞlç´?ûà1û€- »Œ`ç0³yIΧ¤6?E ÏŒE¥æÛ¢ƒ;,¡´ˆÁ6ÿ±M¸IÖbY,Z2>ž·”µ ŸÎÙ¸I-çpb$˜‰zÖű•¶Ü…Žý¨·ƒQÏõÛ EzrÕoÏo>½âà+îȹÚ¤Ò÷#Ü¥¤2W½CÖi¤vz£ç ðFÁ˜Ú:¿¹Ü×Äa¶õÐNYC3¥<>cDz²Æ‡Z· öTŸ¢Dí¡†GípTxöÁgä¬äbJÂ5ú õôCeJ¿ìéùxOË)fxØlø’Èxc_eãšw]*–E3…ÕL‹“&ƒæh¾„ií½ÛŠˆ§rÑïKŠ4öYËo¸ñf%^­˜ ¿Õ z Â8—T¶79ðæFþüDjYÆIDêa¿ÎáTÊ2äåàÿÆ4§³3@]éT™À…RäCÑ(yoæõ¥Ðg¤Úø°ùu1ôÃkT²bs-jÍÛú&¶ç{Ί7®Ûè:âEt@GLÕܦ`a Þ‰dñ"öè±Ò‘Åk?kUJï‡)_†ÔV6”E¸e½L ì–€wü‘åËÛ)~]¦J,"àÝMyvƒÿrßf ú~á`û³6k‡:vìl̦~qt'õ(PÖa °Åï <Œ³0Ìoµg·exY¹*Tè:_óRæS¬¤íy9øU[ôý‚>9P'¾’Ú¨C–m¬{²£°„ºj` Þ a'2C/á14’1g¾Æû]5¤ÔL±YÇÄEü¬SÄÒÂêîÊfr(¶ó'Ì,ÜÎþuùwÀ¢ó2pÿÂ@c¡½ŠH§m±„WØ=fø£ÌlºîŽSáë`M°T4A‹Z29¢¤ÿc›<“uqn™Ù²$†‹4óŽ^àÇV×ZB‚åí–"ª´(éz¨#°\øÿà22*zh8a:a‹¿Búq)|Ù<ñ@±BÛÇ׃µ¨ëMRŽ ôC%-”Õ& e*Þ¢]Vˆù¤›Ò•,?/Ï>çC(Õûö»º<”>ICÜ&¢\WÊã%{zˆ×i×™[l8§¸.±eþc5(¾`8ç]S .xü”äÛ2 {K&±*…fÉ„\Æ–(\›Ú 0oÜ!QtXj,Ùv†d)ádÛô±4œ”%_ˆ³Æø‡ Û›&l%F¶ 6P‡YtWÐ'ÀZêÇü0cr÷—ì\#_°Û:¨¬;Í/¢cWJ›»|6‹Nd"—„O™§¢(uzÒͯAß êeo•O²ºhrý0 «Y®*ò˜3UÀµ¹²bq“IámZ€X‡ü*X¢X…FÜkQéS ­}ÖÂÃl$hqZû;žô"šåïÁûMeºÓ¿Æ;4ˆ"Š)‹oiáqD6uaeÖÜjðsɪTºÐjS™­ƒÙ’ð”‰ßáÜæqpxµ#DK!Þ«¢4Æ£%_ìýå³:E­»2øì³fº/ŸBËèxÌRˆOΓ£³½DŒóÀîq󨋽—Wù_̳à ]®eE­ 6ÍK œ~Eúoƒ/åãd—vžC:FǘU„EM€YëOqxz‡äìòEù]X0lÿC\™àɘŠNÝñ>f°8cdÜÕˆ†VÌ=Ó–âÇž?”ŒÂƒü]€¶q+}’u‡D›¢•©lþÖºãÑZ)Bá€ØvaTY6:#C‡˜zá¯Ë³ÛŽJ‹ôM^ _I$Ì®hÏÚã®=¾çŒPšE6~¹ÐáÄßÄ—¹sý˜ªpW_U‡BºÊN]0ÉàÎO`ap šZäïØ³.r)[@ÇX •8ƒíÚä:$1ÛhârC D§:‚-*«±*ßœÁì‹£—[“A=c8~k´™òVLúÏe7ˆ|VæïÀ+`L{ 竳›¢w«ë»Ä’Iˆ™šßÖŸ!»þ¼<rû#«ryÝlæ®2ŽÃ~XÎ_$•úJØÒ©Bû!Ì%.E{»¸¿œa®„ äÔ_9¦I†ž¦xŒ/Û$ìf!‚ói-B>ä+µòÌ$íøù;î.ÉÀãÒ _Vw Ç‚KÁ,¸õr„ÞÆÊ/±Ç¦4¥EbSBûB<3š h¨Š‰C뽓؈èV›dPGÈ ”0É6áÄ ‘ëUWòºrÞ½G­L®ð7[¾3¿«yµ”œÜÌ ù5Œ†ñËñ²ŠBw3 ýðŒP¥á;øÊ¤åúÚéYAÔÌïEËýºP4üëËø¦­"[/6o+V€ìÔÇfWOÙãqDò‰Þ<úêìÑ¿|»qØ¢‘X~æÐçéÆÖ4‹¯½Âÿ6?FöÁAd˘#„¹ì«WÞ™XÖÚ° ÑoPÞ<¨‡-¾Ì‹úŽ7¸¢iêåSàOgŽN)mm9Q=`ûöŠÆ mhrØZ;‹Ñ'K's/ ùˆZ=¬¼.œ‰ÑΙ"I0'ç’èñuëgèY4†ži^½orär\²”–SÉær€2`PA“t ÛÙi¬‰vx …êˆá-ÁFbãWN¦ÂGÉ8nõ„BꊀÏ7'¼Hâv2Ü+ Öa|‘Ì‹ò©ÏëìÙ¢!uÄA¤~˜“agâ%ë¾`Žš—³|¿€­paþèçrßð#gÏÅ'õ%?ÔùAâyî¡ÚüzM£Åí+Ü‚àc2k4çmù"x×\ú›ò ¾]¨’Z¢ðû©Íg¥9›íñžÔuÑZ5;äð{{y8Û҈SáAHa1X{v’ÈxÙHì!N%›Þo»\pŸÙ«Æ+‹L^”Cú¶ºSŒŠboÙz¾Çnuއ a4ÌÜ9Ä ‹‰¼,oõx¼P‰Ñ3'¼>ˆñ»ƒLøv°Á`ŽSÌ Ây.43¦( †‘ðvß²`2~®}°<5w{eÞð‘œ;Ýq(Ö¾¼UʯMvX}x[~† µîÅ(Àu£d9}½[ézDãï‡È8?¹ðPd&Ó¬mç€æ•áJ%î/å34Ñ{‡ÖÁîž³;z‘[Nó™z¼úôzaI`¼êÆzóW3j°§ Ë À7erNt†æ,+ów…`Ý P€‰K»Œ”ãñšã;H£Yhd¹Ls :ÁÆ KA‹sEë>›RV§f%g ¸:¡ ÌL ø çݟɾ-íf*£ G›¼P¥ïš-=¤â‰¿¬À”“¾ªÀ+ܰm˜úÕ±oÕ"^¾h6öª䥹xW™ÄñÇ“]Ìt£œò°\ŒÖw³¬óaÍ­" Q\ýów¶Ye!î1žkãÚÿ} ZÑ ǧ{ò2Üdè&=¾¢G^Î=©Øš¬12l ¤Ú‘fYãõseó1-ïÙi¡;’EÂV.êaôÙ¾Ç £¢0’¥âKÓ”e,_"5V—CžWMã/‹æ‚VÈZÌ¢ç#O8œD®ÝkâÚ¹IÚQµ€jVí1 Kpv‡Õ³ìÚãÛáãËöxÝ/‡nj?üöíñª=>kß {{¼ò³¡ßÆ,T^â¿e±ŽØâ¦ »b•w\:‹; ú¬‡NAsfšÏ+-œu‚»ú .­ŒÈêæ™øEú²>s©èaоOd»ɉ{°‰ÆÊB»à¡'-XÝ[ÍŽ¾½îÞ3žqê”vÇr—œñ*Ù¨;e­¨P‹‚gvwœŒ.MBãÓ—&Eª ºd¨é¶|œrXÉ0ÃNÁêz áØ-.wA8˜alèôn G€Ab¸:²ü@YƒƒgˆVj~WÒ&%cðè „y;®57¥C›ŽÏãÅ&e»ÁÖåИÀïÑu&ð5úwQü\KŃã&Hˆ[›Â,xÉ*Oµ¹Âƒ ,è0½)nf¥ükâàÏðÄR—¹GÃ8l‡þz®b‚a©•R® ‡U¡¯v¾- cYx% ƒ[ño –ø·ÖËpé\¾©GN€eXAÇè ýø¤B“W†ELCåÍXÆÇÇà:øMóÕÓ9Kû0ˆDèLg(ïp‰Ì.¼~;6”–_·¢`âgK™z;lMQ^¤®'?ø ÐÜËa•ÅÀËá‚Zs³BE—,õ•ãrfæ1œ—é“…¯áÚUêþäbU¢Í³•çKXÍL¹êÖ©»iµ!Ä}_²\ÔŽ.K—Ý‘°ö±–%®”–IM‘\E€ßB0%¸ŠêŽAÏ”M<Ô0ÙÆãþŒË]<;^Rl;šäõ#wtËãÔ6„œL„Xª=o‡šta’õÇŠ·=E½ÇÍK9uÏцLžÎT$cDÿ¹-ÓMi ë{Öˆ+F˜`ò\{‚î¶ÃºLVݹ”Ò<»sXd1{oîzñ—°ÙRo®«sGþ¬}{_¡)Gšã•+‰@I=sX]”hΔq'˜01ÐÇnx^FyôP¬Íýëþx#} ?‡—DÖÎþ’ûÜ@¼*¿Š‡å ï.Ñ+¸ÁNRÈo}à.läîÞßëãÀÙ†¼ªè:Š×78QEwès^Õn%ë¤'@’ÌŸµ½œ>„νàZ9•×8+ªàÁ}„÷ã³="Q7Dh+÷/ pãšÁÜ‚(Þ~V ÔW©ÍZá–…Q©2ÈÄñµwõàýŠk?›Pÿ=QÑ5ç4î 2Oíïª`ÕŸ#YøR™A&ýB‡D÷3I¨ÉúìÛeâøÔ²ZjÅ‘b\&Ë“Èwÿ¨ÿe³²{Æ–àE:Jš8ÙîìâÁÔ³›µ²lí$ÈBõ^²¹ÐQ:áØ©72 ÷ž•hÌ5?"­t ¸€àµ«7BNøQÆs_wݪÍÖȃcµ#á*X¿ \Êrá*RÎÛIÛ%øo7ÓQ„L{vY÷2ì<Ó Ç°zpºv}ñw$Dø “+æwŽ›«$Ð]À `ö¯?WæpA|Q5gˆXáùî¸_l'±±‹Ç›ž—Æ©|†žæs7‡—pì»RCú áÆ'Ð5ÍìÃåÁñû w‹×Ï&Ì=ö‡ùøäéÝCòA¦CˤEï ®RòÇå§ËÞ¹¶Ô)îùÕ]à ¢nÞ½Qâþ1ä Üækh0·vEÏ©‹ÂxU ®ñeCQ•¸m­b,Ñn5m‡7˜Máºòj;8–ÚÝœz)Åhý ègÈ4ÜÞ+ëˆW±Šà/ºÚBÜK…Çõn*-®»ÐšÚP²V±ì”׌ƒÊÞžðè+{ñ—xœt…ñ½ÿò;$©°#ãƒý=ÖàÆ²L× ³´{ºeJÙ>g¹~lôO‚Ù7 P& / ¤Ÿ8¼AE‰‹(Ý'LÊò[ÇqËk·á?9³Å2¼çù*·ýµ(Zg¸«ø^y-ïœEz%[*W*GÈV(Èaè„þЉxéŶ°*4¹š§þ8_eñ…¥Uœgññ˜5DPK³p3OËÐð‚¤F!0Ï[¼)ò’{•0œ¨K”P‹<ðßKb—óÅq²-½£xš H~ö?Ì®°endstream endobj 631 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4756 >> stream xœX TTWÒ~mÓýžˆ¨˜§ãkˆûŽËDqbƒâŠ¢h\pi„–M¶YèîêÙ•}YÆ%A¢Æ$š¨Qã$1F£c&a4Ñ!õð’™ÿ6åO2sòϹ‡Ót¿:÷Þªúª¾¯ž„±ÀH$ÖÅíõM³f[þ Ž–ˆ/ ÇHl{–Ûí.)ØXaä;|2 CpóPF*‘„Dj\BöÄ„©üü#&íœì0ËÙyÞ4‡ÙNN΋‚|ÃT;½‚ܼ"ü}ƒ¼"è—@*߈‡I/ûGDìY0sfTTÔ ¯ ð!a~¯Lžæ¥ŠðwXçî¦öõqp ŽpXíäëÐw»}.!A{"#|ÃÜB||†™½(øõ—=‹Ã—F,‹\®ŽòZí³Óm¯ïš]î~þëTë6-ˆ·™>cÖì9sÿdË0/2k˜±Œ;3ŽYËŒg<˜õÌ$f3™yƒ™Âld61¯3Ә͌ ³…YÌÌ`<™%Œ+ãÄ,ef1˘åÌf3—ù³Šy‰qcV3£™d&ˆ±e†0vÌpæ9†gFH1shp+&ùF²VR?`ꀒO¥nÒGVz«e®²"Ùò×äX%K¸\~eg}mË z›Q6j›+ƒól­l«m¿’?äþФ¡ÿ6gØ5»Av‹í.ØÝ²#à oynÅsüþŸ¢Ö¶û˜ÑÉ,®(•ˆÛ»yM±î@8„.UC =ßÒì]ˆ6L›‘ÀÅ(å‡ïB Tà ¨Ð½e3ÖÌF‚/„ä¥ç€Ñ˜Ñ#Fa™ü"q’MWÊëÐõðTõšNcÉ=qi‘‘ýrÛn˜Ek“¥(Áí(‘ŠGðÿµ÷›d€‹›ÿk*Aäda²LɾŸ> ò‘«’­0^‡#týx¾+ªXdnu\:Vþª@ªÏ„µín¦n¾e ³Çãü|Az¼ûu^ÙÕÓé¨7±èüùýo¾ž• ÎQà¸ê#·á÷pÞ-2W ȇo’Ô¡ æ£T¬ÆGÏ|Df‘ysÇ’däÃé8 çÝ{„v1’µ<8ðö)x«¤QQÞ|¢Ø ç¡qOQH©lOn>Žð‚mwG¼7–âŠ2ô6KÞGGÑÐ*íNìžËW@z¤ðš‹Çée•‹Àž$“d<ÙE¼q2™Œ:tEmѺ(Å›˜ zE™Fø³`Ì)ö¸èßpP€¿Ü8uîÒÍǹ§á&à`¯Z²Ø˜”ùÀU€±RASEÞ0ãx“8²Qò”f+“z‡GÉTÞ×Ë«"ÛÂÞÇ|ÿN@aÆ}2Ú}STÀNÅ–,ú){=Ù¿M«ØÂ;ÝQx¸.¸“Qd¼Ë¦•Jeù©@z䊎Nš¯q8\|æ«éç|9³¸'Ñ<îF5™†Cˆ»‚¸ÿ0’;q {>RÛXã]²d`ìFÿ­þÛ–ížœ­¸£rOŸ>ANŠ>É›²pö'höB çmÚ[Ue*jißxÄóe•«×~ B©œÌÿ5oR'jàs¨ìEØ\ÖV\“bj%MWpß©8X|•/¬Ø$Å iÚMª6¤pW¦pAd /âÐȺTEuª)%š“šÃÀ‹{Å Ô›Vv†)¥zÃ^àÔ P–MA– K…Ã%'ü߆b°?‹ÃòÑþt¨)ªXáÝ ÊÜ»2oMœæ>¸e(Í\f qÙ––Az…ÂöG!äiíúð3GQá^þS³<\ç°–Ãj#uG‰ŽãYPCÈΰ¨¸ÀD/X“¹Ýð9þ  <)úèDÇ¿Ç ³ÿ“—?+èhQ4œO.r iá,§…ÚñÕRÉw]ƒ[¥è'Žçqœ™ŒC/¹~’ç¤IZn÷礎u¼qýã¶s ^ÙåAÁkàr…`ûLJ+ü„‹{3 oYü ïÉw™åÁÔ??º ¸×¿.RLnaq—™ýÍ ¼Øã÷ÐH×÷PÓ›^G<·È‰ß{B[‹Œ&žkÿ¹‹a—¸šÿ-›ØW·¯^øZZÕY¿a‰ëÏ8Jd'^þ¾òcøÜ,ÈqQ¦Ì̺ià¸B´¢pz©ýc©x„úVf¹Ÿn"xÑ5üúeÕÓI¬”l£ñ1´Òõ{¯E,;â`>«(=ëË Áº8Poˆë¿#›ó&ÄÑÒ/’ƒ„Å&Ùy äÜé›è=6÷Z]`Ó“Äe$¥§ä†C*è´½öU²va°Äb¡[JíÀ‚úíqzϰ¬˜ M9ØçQðe—vañ¨.R˜iùj_é™YÅ´âÍ)&ô®Æ¹&IM‘·…f”x†øúûÄуX§Î󪩮­)k*ÑïÍL9•PÜ•_gÅN–Ì&sv©rQW?y³µ­T± ”ß íò²l(/K‚ýŠU(„ ŽHÎñÓçÅlñ6ü+2u?@!iõS%Uâ“pûÁ¼œìû`of×ÐTl‡ Xa}*‡JýáDNÏöX“ë2¼óÿÀçnöÉ—èKêÚŒTH³OØ‘‚’­7~E ¸þÖO„{Ø v ñŠ…öŸÑ«=@ „Œöys²¿°ÜʃÞJE3¯„¾[•”¥j¨Ðés'OÂÁ²Ö“úm®±èDÖQz›¿_£™öJö]£êh‡l…#}2!Z} ˆ¬lÅc”¡”Œ–y)å•ÆË´ÖBG¿Õ’þrzÞ„Úi“Æ< Ïøt¯àI$ß¶²E%E%…¥íoœMh¦Ä#tÝ¡¬>fú2Æ}kt€·â€'ôô™âVúl(á˷úð]Š@Ï­‰°vÞ_n Ùj?0KÊ-H‡ð™‡2²/Y ¬Ò¥ýß"1œ‚8­6E¯µÉòÖZŠ$œ†!„†Ê½¿H.±èÖ3>5~pj¼½z{€ëHƒxHÈ4jó¡‰3…—†«U[Û¼Þ½ýöÇm¥‚­¨¥rjU KÑZ*úã@>?÷éõñ©‚&zϲ™ÀGÀi'.p$ŽÌº KÕëõ:½B«‹…0ΫaoUYÓÁS· ›¹¸.¡‚%/|='â¬:ä²(Ïôãpâ)ñ©åZÎx4‰"XM´Šâê²"õúд]”>¸¥¼Âøi/WÖžÖ‘ðôà ½Ê9ñ¬Åªžï$d&}dæÈÃÚî£ Ê«O¡®§PÝR±³ËLT¬’ IM㯅FqK¢³T\%NásòÀ™\I"D äŸòòš¬UžùuyJ{ 'u=lR½Æ>*Jq¼·È¼äÉŽ‘Ä8'ù/Ác‰h¦¥?¶È†þž»,ÙQãJ#úâ„9ÄŒ}ôÚŸ=Ub:®ØÈ¢ëÏXd‰¤çïµzSel2pø‡T¤•7)êÎ]Ȭ€h‹1í Nä¦4¢G ¾Ò'ú’JÅMÊWdBU­ææ¶S ¯VƒkéN/'vÄá‰NÅ©'ºŠ b!eŸ^—¢]±\íI-Æëqô9E•±Åp¼¬±¤þh¹™x±1l¦­ön|S÷ÐÆ^æ^ŽÒî üŠG"àFÂÉ2‘ø?t ޏ‡.tD?ôËü XUç{ÞóFêߨêz/ýNË•¶®W] Úå]eÍöckóÝ(LJ˜¿Ù5Lµ^¹Š$ü¦·9`8•æ²§÷-B)ÈÂÆr3ôDþôÃBSžQ¯Ëb“ö‚šÛYs¸¼± ­Å¯u±‘úN¿Hù1yöûB©;‡î^Є}ÒOQw°ßáñ9þù«»O™v—8+z¦õu;ùo9Ÿ;yœ ÎK—Ã<2SAØ!§ê›l«ÇÙoÖc\ƒ¤î6†weÞ–â\ÁŸ=–Fqö“Úƒãs5…•EFm*kâ8õ¡èÇ•”UÆÔ{)½Õ1jÁ»Ò'gMаþ•%¹Þ­*ÅÞèÚˆ•»Êö…§¸EÀ:Îýƒe¸ Üyûæ—kkÂòÏÊ•0‡ÎN; Õ ÌŠo¢<’m(È;Èá L~.\=y®Þ»®Û¶ë\Å9âÉßø(n£¿ÿZ*|Gùkºt ?NE ÿÎ`4aËâ ‹&ý»ü—ñÿ~0ºoR›ñ˜ Ív½ùhBÇ‘ÃcÅÀn4]‡·¹Ç/Þ!nBì§„<íMÈ?~¢Ÿcìð7q¼êãËCkUtT\F—w»êŒÿm}9pßå?8T”œ­×Äé©›Õ!°4—“rÃcS:4ÆD»\)Ob#Ýç¥;»¯×Ï%VØâ/bû·8΂F)†wKù–Ýu>Þ*_ß:UËqS]‹@“å´Ê/üB¡_¥Cê¸Ô<7qª…[âÍÝl³äýxã³ÄUü¤ríu8ĵ›.tvÞÛJF– éjЗô‹ftg-"^£Õ'& Ê-ae›O¡ýr쫳ˆdYãÖCûg6Iyñ82_W®>W›8¥úeb5‡(jqB² /†ô¨…¼{Ÿ7rr…¼¼œƒUUïl»gœ>ìêú›Û"©¢¨ øòŒ?µHX:”ÿ0QEi7ÌAIö]Üç=_’©Jù-ãÚa߃¿À­>Ý7UüòK ²çå\«üG¢GO Jñ.šx´û.?7/窅íCuQ° BÁ"ú˜.¿R›œ–’FÙž¬ d¢’ý-Î,‘­†«?áìy¶0¿à`y1&N£²’i‹Ös‰Q°Ÿ*Jã‡Ô´AkŸ ØQ`ØŸž–ž@eH÷?â͢اÄORoÅnÊ †ÃÅÆRC1),jc!¥Ùª“úîXÁVS¢¨ÔÖ¤ôÉõ cÉØ k‰5qIÃçßÄù¿«›f±„ªÃ¸ ÝîЙØNè–ØÙÞ‡ª _iŒ>O¯õzzíçry¶ð¯,vôýI»ïÒê|ès†XMغ4`Ÿ°ïîÒ‚•06º©=¹?üCòù™‹ÇÊ#þ›Rý&¬Å%J'Z*wpœ£E®·T|vz{›÷•J‡Õo~£½S<£éh?ú -Åän–7ûWxïñð?²»ùhý‘ã8bÚéâ£<VßR}´^èíVøìÌ ´)³LÕèCcùX\ϧ‘qY*ô¬s›ó!ªVLŒ ‡PnWuxƒéHEÓÙíïL r2ME ~f‹_Ÿá¶*Sï¯ 7ï¹8ƒÎ9ƒpñCI>vHñ\Ì?$3ûÑ„ë¿õ—æ1ÝÜV*Áý(“â#êp„E+‰Ôò¦+ZY"? ™Í¹žr¢P²­ÆÀ)ººú‘Lư–]Ð/¡}»YríÑŸ“ŠF à½äZµÆ=61Y³b)Ì”7Õÿõ/y(ýâJ;|áµÃ5ÚôeSVN{Ã[Q×Xv²5°,0Ch>Ù‘QÜö×\¾áâ­T •˜DK*Æ~¯8ßrd|óqÐîè|®µQò)@7 ƒÂ;tD„±žÛÁ‘0êåé ž sNAÔr-Á5Þ^ÁÁ^3oÀ!èüÙ_¿ö5™Y-|YýÞûðwÓå"Q+g÷›ï;\s´ädEbÃÖ,¡µå dw\ƒ‚Ò¶QYª ÕùêâõQú4]Š4Æí̈́ҾpRy`y‹ˆŸXøj Îâ;ÍSÄEò*}FXŒbãÒÙ³F¦Äc4íË óˆRH<ê—‡S¨âCxr@Ÿ—×pN7}‹²|º)sC,ƒð ±oH®¦d^ çárK]É™tú:ùñz¤& ÛömIð€uà™·µHcÔµÀÅCâ^i£½7¡4×hÈÍò5¶Ý¥Q†é/»ÀX2dתCçUŠŽƒÍå¡Õ»‚vÇlûÙ<„3:ïãP´ŒÙé™ TôÖ?þðæ RÜw â»'þAÄÿyU\àÁ«m-P‰Mdd …¿â?Âßç¿.Œ&ñÙû7nÕëbª… ¤X5ÙÔÙÑ% -‘ø|Ñ=w”ææËɶ,Öl’A‚µÕ¼R› 966(©°l°±e˜ÿ0=éõendstream endobj 632 0 obj << /Filter /FlateDecode /Length 6865 >> stream xœÍ]Is7–¾ëW0æ2Yb û¢ˆ9P¶ÛKÈr[’»cÆšCqEKb±U´=¶ó×ç½dâ…T‘MÚÓáƒá$ ;¾÷½ þÇåÀò¿OÞ?xôÜúƒóíqpþà$ýõ ÿëäýÁ“—PÃã—1Š(^¾~~*‚<ðÖQÛƒ—ï Ú¬^þ•¥TUmmFé<üâå郇íJŒ::)Ãð3EÔ19|XŠÑÆè½~Yi q8ïR/Âpµm0R¸á~6BØhRYÇ ­Ö—+¬ne0à ~1Ï[ùï—ßÐ ¡ÓPÔqáãÕ¡1z ÃÑñêPùÑ …#™‡÷g œKcöB˜0¬¯i.Ò['i¤J í°¹\j­  ;œ²)bsNjãpŸCŒÎúÜ‹·:?Ï+5î”VKm_ÐPbˆv¸Ä"ŒYÈi²®Ú¥GkÌ4ÙçÔ»€íÈkSoõ¡VjµƒséGOqçŒ^ê4NØ c^oaDÆÃúá›2æoiÁ`ìð+8éðþP X\Ÿ—4FX‚Í–mnš-ì›J›ˆgÅ[\xjŽÂó´Íц8*aÇt ¬sþâåƒïÀ“ü°,0CW`‚ðaË c ÍA*Ì ´)Å‹R|\вE)Ž¥¨JQwëúR|Ôm—µàJ1t¿²Æâª¬Î­yÈë1úzYÆæ"í©Î¡6MÜDpX  ƒá¯« á´[Mjìèƒ>§ë#œ8KàÔø[¹àïreØý—ø5Ò G¹ 8ùŽzí'„¢"¿£ãÆ OáðišTÕÙƒû¤òñSÔLZzé@0qlÝEèÄl;â)ƒ8te°ñÇÚYÓäÞݦy÷Ú¼NE «ô’Ýè„ʉŒ¼ XCpyñHj²Ï_s !I =‡2äI*@ÛP×Z) Ì´þ1mÜ} øž¸U°Âh­Ë.¿ÆFB!BB~:|7˱˨ï Z^0Av™…a0 ¡³ÔPT.µ×§EV2‘ÁæŸÅ hߊ›<1 S )rŠ”å?ÊÆêÒB:-4N;5€T¼5~ÎDzu}ù('¬9ïWÕþZ 7hÍÈÕ;âíÀ|…ú 9`ÜPIÁ­Ã[`¢µ\žüƆµmÖAK­¥á‚h¿Œˆ¢ù>!•Êš+ËYFˆ¹¤úÒ"`XÕnG\¼¯vXù„â^Å…6 Š`NÎÃ,½ãòÂØ’M)^”âãR”¥(JqÜW!–¢/E&/Þ”âUW1‰sÜýÊ$Tgݯ¬.“CLP™}R¯/7Ý}Ȭjon&´Ø]_ge  Nr¸½.ÚËïpÆ—'Ó7þŠ&aƒˆH-}t@x¡§áQG]¿|ûqؼ™áå]—³Ô¢ÜDéb#è ®Ò¢@M\ÉI’ …UŒ0]ж^=IÌœ}MZƒ°(„ ¤àÂVà¿-2ˆ«K—iú- þ3C‚@‡ *Ž ¶3áK ¤êãoSk8º"K$WãDÓ®ÞÝUê§¡1™{¾©80S£Š>”xð\‰2•Ö =‰2/A %QæIé¤dPÞ쨞SÛÐf±`l„Ü,%ÏSËbWÍóEöâÐ.QµV(𸈃›a˜6Ò±‡ã.´ÍRp:x\SJª¶TeíI¯'Jâa¸6sPCm)Xs&r•x†0“~*„›¤½4fq<öõ ëèš‘.ÆÙYJKl‚1h‘˜íL"oÓÍŽõ¿:P ¿¬Of¶]ÍÖ#>8ü U{`¡¿!wU F÷ëx°$ ãÙižÐbà¸pmt8`œaY‡«z"SÔ¤2®KcHÖ¼§‰~ÃEÒ\áçÔ–ò2ë†"€BZé—usü µ° ]ý› ~ %à²Se;‹{û å0ôĽɈ—¸'Á®!~jEühaËý€¢ê£¿/Vóâ¼ýY:Ýî»´JcFâŽp[´éÖØ4àÐn¬æz7F!•„sŒBÆÑ„JõH©7¥xQŠKQ–¢(Åq_VT¥ø¨»¿/ë§.Q]þ"÷Uè×5üë¨òxÀ]½Èõ.Á¥:‹Ì`2¡Y•Ĩ„£ÕA‘„€`çzéCüèá‹"j*¨ˆÜmª¬CË.°aÔB»@ð¥!rë[r1û¹Àֿ̓º÷¬È¦ yÆõ ^gvq”~€•L¦ {—¯¸ê{²b¶õ"Ѹ‚z]ãc^„Z³M9Ãiid¹ÌøOû&`nÊEí–v&ºZkC&Md’œO i±¤wr=þ¢°ŽÊHkIw‰•¥tCR=Û‚ â]ÙñÖ´L Ö³"YePdݤ̺E³Õµˆ&¼e§:MàmŒ'PMuÔ“ÔŽ;&x¸IRø¼NtΧ ‡™ÍÑ…Ù‰]=«>§“¿õ´G†ìf8- VBߥì: êISPð—Ò#Ü@v>ùÑb&øž[‰1Z>u|D@ò.¾D€Z¸?ƒ0ÜT¡· `ú7“ëxB½œmn–ëá¶r]µj¼Õ7ƒ ÆKw¿V_PãázXôÀxîßì+oQdjüO¼±ÄA,¬ŠS sO¿v@ÊálºBpÀX¼dš }V—Éÿ>ƒèWÝⸯ®+ÅЧ%ÿs'¡8‰^nëBROèßí)€4åuoÊ读ūRdv¡GÝâº?ðUé™~é®à¦ÛÂù¾ÞŽKqÛ­ËHší²¸ÐŽèþŒ™´ ¯{‡Í7ˆ«*|jóµRT'1>«ÿ9ƧÑ[+µâaú@­¨œ‹ï xŸb…"cxú0•CævÑ¢ñ[ÞÉr„íé€Fì<¾7‡oÝÆ¡SÆ·{‘,`P‰+´ó[´˜·|n ÙñÏ‚Cò)k7Y4´Lž5ºzÖ5I›,O¿5B?qN6–mjÂÀ ÑXetß×ö”žÓ`„qÊvQ$ùI^_'¼oˆ’ê–Øâ¦u–g“[å0J†~inhÛ®z–¦Ê¿ÄE0èí¸È\XšÊK†çŽ>Žø9õˆ´­áð’fx[œBçù‡oÚ«”­ÆK¬Ö±f’óÅaËÉ4!V\ï°+:·"WRûÑwÃ’Qd6„¤ãH§tÙ&¢M@÷káuú謠Úç£RÚUœŒµpÍNüÌ;²&]FþË‹rC–l>Ø7œ¤„@»a¯ ä ÿJçÏíysV–Â~T6+îÀ«cåÌÍÈ!Ür¯ÅÌmýLý-#¤$°‚ÓiTBWeÉÅ#?ZÛXøïJ =ªïVÃ-1ö%†}>ó—T¡™ HO©ùzÿTØà¶P*Vd¤ì—.?óÝ"û3U¼ï"Z¢½އr¢ëŠh±Š\Ñ GH“æaoIsÒuôÚæu¿ë„b!øÊœ…ÝÊ«TÃùÇ‹Zç#k½ƒB2Ž€RÓÁ¦ÁƒjKìmVÕXPÎtöª+½o»šÃ(wîv½©‚ï ˆºŽž¦ P›×8Ãk H9üÑ)Iê"S3? ;ZÁºxá—rvŸ´îff”Éúí6µ‹‚ý6#«–äÞóárLEаXÛÃÀ+£j¦6›ÆiJ”ð˼’ Tù*JQ–b©ÐÃ3,” 7ȪèjÿèlX£ &—òêãŸVÇò(nña¶Í¾çõª_ù,µ ç¿2¡\1mÞAž Ò³†1 hBJRâ¶Ä“*ÍðØâÔ}‚±ÚÒG4w1ScßÌ­z)ˆŠŒ‡{c…úcKL+ç™E Ñs]dcm:*d8¨˜–î"óf©‘Ä dNÍI.þdQŽÒk¯0ã¸õ/LȼÎ9 ן(ÈiútZ¶‡KU75ÓѾ}ÉZø‘½qƉ³º(Oz_ qÇù˜Çí[ç#&ñ¡Àjä>J¥Ô½Z™(>éHá“Z1+²(æÕÙv;~ßíÂv‹‘½ÕÀlÀ4¢Z¢†j`°[”m,ï_Sø†*y}¨8'¯œ­6¼qÖ¡pšKFxi)£á  ߬*¤4”Äò„ù6’ÖêµäIœ;œ¦¢ß‡çI¾H=:,µ¡IØÖOª¬A“ÂdðšÏ‰¥3Öñ¾Ô­ Oó(dä(¿ VXB ª8-_çNônv$®¬fW3â/¹šÈE$1ïGUr¯ÍF¡½[JÄÈÈPe#¾ ?›ž÷$àB]à”Ìf³ƒóm~/ˆS8«ËÍ׺4œB«ç柱ãÅ‚ñ]1›Z…è;jpvQ‡sT7j §¼pƒ){¼Iø•SeúœÈµ¡™uä=ÙF ÇðŸ˜Ü›j6zÑá¿U˜á¨Œ8Q£®TÁVÿë«‚L Û«~VŠÏ •â³.޲ºS¤†3ïØyêaV d±aRk׬̫ãXa5´÷\E ‹%ˆpys—wÎ{„ÎüÃU9bÒq[¸ ÷ülf‹-‹dl}ól9o¨¶†N›ÕU1,¬°¹±{ÜY+f}$Ìê‹\V_”?èøÇuÌp0G‹Oú œï0å{ÎÔ#(ŒDc•ý”¦›ènÝ~ ¤ê™“=–b?ÿþNîlƒH'ëuiÓµT©¶ŽNˆ-g;e6ñ ª”3†X››°›±B1"ô0½ùx ùn å~Ë,Zœp=LUЬÄÒ˜¡kà >ïI¼|Çå¡”mj“ÿ‹‰¡/sËB7ahB´rL“ýØ¥üZñ*3à²áü  w© ÔŽ’‚1eÕuL£›îJAª¦üûêíMú mQ¬t_IIêE*-†oá@‡O¾0@ûlc”¥„y×}v¿­y¢`ñ®ÍÃÉt\ŽÁ´bÙhéU6ZjMFËuBŒ~dÜ©ØVóS9Ñ©*ž&Wsž×Þ¬øaγAè뙡|Íù"I# ”ª¼ªR|Œë.~syÁjœÌ0¼ “úÒ`Ÿ`°·±k1Áp3»VO.ì¤ÆObÁJûÑêûNÇwÇÔB[šQ+´_Û˜ú>Ö›n&-d÷gb_±/oúñ]¬B%±î”:„«wa7 ^Q¥Z+âR(9:€Y«ÆŠ†—_EQ9ë5.‚¢F•¸µi™éí¯`uœF‡b® n”ÆÌ)&_0Æ—x,9þ®*+ô\£â´=âÙqél¾r‚J’"±7dI4…¤C§ïH+®^fê?¯‚Ð&ËýM°ª ݉Îô?ƒ]Ž.­Ö$E³í[’Ë´$2xè±ÄZÈDÜúÉe°ØìïK³ÒDζsøÙÏ…ðˆcºCøÂpæéè0¥‹gB'ÄOžØÃ".g[/‹›˜ÿvú6ÿ‘˂˲7¼£ËâÕ9g᜶}œæ¸Þq‘•ž`+ëçr¨¸£ò—z|íùÃìBäKu–w£ááœ3² 7¡A }ûsZ5|o¡VôkÕ bz1}îJ0áFæ ËATܸžÙZǸA¥ÕÞ³“mÖ¿¨Ú&N£k/åÂÛvÕ«sË̤Î$ê’–å,=‡(»à[õjÇ{`*x^_½úr5[£ívõvÎ:UÀ¶àwÖFú!YÎNóÐ`"G\[í?ÞÕ?™ì|Qc:Kž[Xõ8€„ÑúÚùä‹I ]™í4ì–ò,cþ0[þbkát†F5ËŽ: [NÖPÌm¡Pnöƒrv˜8?Û›3ã@}ÆT[2sZ9ñI*Ç8?'J‹û÷×LýG[&¨õøDj9†ðuþÚçËp0ùM@ª!$ÆdÔè·Õlým,§Ø®0MLÚ ¡­x'´7§×÷†ÂÓ…—µ ò÷ÌÁ×¥7Œ‚³ˆ†9Caù1L#×7}… @–g=í^êì&mï<Õi\²Þp}´ÖÜoÒ¶Eä3°¦(þß“¶gC»‰mø KÈé?IJ¯Y>4K½aIÛ±| ݺ¬…½IÛ¬h»?ûTÝ›©éwKÚVù¨c0ý¸IxñfÒûªàã;fO=›Ø uí1ª Ðó ™A?œ¾‚DX_QÁyÂpmCJH ¢×ŽÒo1ØTÊ6ÈU¾ò6ºÞÚ:€³îÂ|Ÿ¯.@ÓweÕ‘X ô*Ò,€ Ÿã7 czXo¨ªÀ_YéBúÕw›ÑWŽ¿MñYªiéYÐI{Z@U.’f#´Îam$Ø{¤` Íã~W”¯£¹þñ‰À÷„Õ{Þ¶¤`:¦hÔ0YE…ÄQ 'xد\· 3±yU¤þ:½¡ LxÊ¡E§åÐÂÑ>ñ›&»•=Ó½ðÌ ÅjzŒ‚[9ΔDÒ)Öty©Û0 ­`µ¬¯<ƒ÷v!á€zø·¥fÿä¸ *•â³.бº lÿâ.ØÖÝ.Þv+œwGö¥Èb4àÈÅ'¥øÙ30÷ØHµýmdM¬³ â›óôFŸŠÁs$i²#%è(|ÜY±xø£‡é«@)ůIÏ_å_sEar߻ѩ€?lÑZ˜/j{‘âÓ“l °øO¸•Ð]m>ai !`ô=Wß74®B°7¤ë¨Âhé s!†PŠž_JIÿž·»›»#߉”Ÿèv©ûå°©ë¿[°å\N©·î“/O§ ù¼ḃ+ÿÛÊÓÔµBpde ^VÃÔèuÃìÐBa‚¥à¦zU/G²ôw©6²ޱÌÉ{žö†Ü¹Õxéå+|ʘ ®(V›Ú¢èqÎJuæ“ËB/¼‘ÜBéYs`Ý~‚ÛqWaÝ‹Â>Z]&’sµöÇ¡Rfœ¤ ì­Þ?ˆ…·Èî>*[›Æx3 Âæ8).g=Zñ¶¹tš‡t; ‚Æß,=ðñ#È}n¬àxêZ“ö\ßDC“•J æãÇpÏÿW…YàjÔöæÏ(ä{ £Üò‹W·yæRw5&ÆκuûO#°.˜&vEkç-®V¥ºÓ ØÓ‹WpO_¼úþÁÿKv8Lendstream endobj 633 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5211 >> stream xœmWiXS׺Þ1dïí„ nM´Mì ¶µu¶Jk*ÎhD&E™ ó˜9’•I s€ˆ€L‚NàTµVQ«­Ô{ìmËiŸ»6wqžçîè¹ÃóÜòcÃ^¬µ¾÷{¿÷{?æ1 c±XÓöÅ £3> LIvÿ¾ˆžÏ¢ß˜D¿É(yüÏq_˜ÆÓ<:Þ˜Ãõ‚ÏgAé ¸}&Æf±6G·¤¤æ¥ÇÇÆe.x/80äý%K>üŸ¿¬\¾bõ‚¨¼ÿz³À7:#>6yÁ"æ!;:)%Uœ¹7^••±àÕá ö¦ø,ð[›•t$ýÿ¾Á0lõæäÏS¶¤¦¥oËÈÌÊÎ9’•wtϱ½Ñ1þ±qñûƒ“„k×ù|öÞû—._!Y¹jõš`ØÛØØ;˜?ö.€bAØblŒíÇB°Pìs, Û‚…c¾ØRl+¶ Û†mÇV`;°Ø*l¶óÃ>Æö`{1.ÆÃæa|l26[mÀf`³0/ì æÍÆ(l6cak@1,{À±†'­›ÔÏ~Ÿ]ÈþÃ#Ïc˜ó!§ ¿IDƒä&Ò6yòäÂÉ¿LÙ1¥iêÜ©/¦EN{2}Õt¹çtO¹çÀŒø–™Þ33«gþ8ë½YÁ³ògÕy±½6zz5{/÷Nò~>;xv(4zŽÇ í¦ßr°Æ÷WS‡ŒJKÜ2Ð_rsptlB¾-’‹#´¼\^MDä”7—+Jl‚~8™íx÷’òTSò@º¨`¿ŽÌ…eÄ„ Z(H@'$‘“ãIM]b=…¾£ìãs`œ3Šm „mÄÀéºò€<[Ÿ´S€¢ í.¹8¼ˆ”Àcv"¼DQ®;KÂ<â—ÈË›&‰voç?&T†ð¼xÅ>1OD”-z+ fI¸é ¿BVDzŽ/ô˜Ã rÆ fìHÌõ~Q5>—ÕX•úMä„?¡Û$“û1—ýxîÕt´µ»§ÁÐ'êJl6¥–華ÕXêkHï?jíí=ó ÇŠ!´‰Nà0ýDý úÕíÒûŕ̦¨=ó@pö±£™‰yQ;.5»°ËŠ}mqi•¾OÏõþ²_†®œÖ‡Y¢#P”Nz¥“Õü3¬ø™ ôa Í]±ñÑ/C/èõò/(€Üe¿ ÙY 5:¼½‰ðC;6‹©ïʤ Šï‚¯É¿÷_¿Çgâ•öÑÿèb1x³Ç1:„ʇYœl\-–ç€| 1JJ«ÂÊà“ä·oëžèeM"ÑaÈCoÀÈù½ÿÛ«ü¼ã›}w מrîÜw6égÙ$Üõ’pá•Áìc]|W¢=¥z—ûöH…JíyÕëÁ(Ìz6×ÛV‚„ÔÇ7éåÝM® ¼sÚë”=óáÔçÐ.„3·þôAPdƾHÁ#BmÎŽ“íñÄ„Yof@¶™”qدPú«IïÓp)ÝJµ\nï9»Mæ{‡¢Iá›¶loá»á»FÏr²êŸAñ(NПQ‡…检D^"6ZˆfÝZùËÐ¥Æ3}Ää;(O¼µAE\®2i{IúB¡ç|ŽžR £P¦ÌÏÊK'$jÉ©Nlɾ n“pÊ…ûß_oMØÉ÷„ϯs°޲Kæ@•ßaWh‡I˜E¸zÎ9KÍ¥•_)±jl€¬·W9Od;â$gm üÐögÅÊüs™P+Œf}9 ÌâH2ÚµÚOÁÀy)Á«ÝÐÜÉúmŒMg@1%™„b½Hê£%ÑB˜Žë[ŒF§ž„oàÔ:¤•+ɼ¾Ã™pæâ÷5å2Ãrb+¡ûX©Ø¨ax}¢šØh”Vèî“0.$¾ÓUJË?aâ)kåzM×ùëÐçî\ä;ð6Ußä(pu¦HÔ@iP”d–e–dr}`È– ×Ñï#C 'sª2@/21%t[\çX&_Œ–Ûp“¥ØÀDäjåÚ:wÚÔM…Žùßܺ{.óÄÞvÂn¦TJ@¯»µ©ÿJKŠ:ÏVå =ÍÅa’WNï§A·h~ÀZa|²H¡R«™›éµF-y]Ä×¶>ÛY?x‚/³f¥‰ó³/FÒtCOýA¸É0D{9ܳm”MKÎQ<Ü *Ó ð%Z)"®•+A‰äHÑH¥ŠÔ¬$¹ÇÛzð1Z$%´R}‰JˆõgBïwœªljâ÷örÖÅÚsŽvëù sŠÔA¯w°è4æ¾H Á]Ev%ÈJ­²Pù*ç.„fuEQ0óÀq«é¤‘´£P Ñ©5)ûß…ÓP× 6ªŒÌʨ1k ˜lö8Žp›ï”šZŒŒxÅüë˜;Ì1¢MeQ¨Ói+P:w-Ìõl#y¦¼b1 3rsÓZÓ{ïô_‚ / YþÐæ²Zê<7-îÑœfVÃ#6ý6\NElÍä2¿'øóÒÝoÛmŠ‹ 4«,ù¸¨ðkªë.oXš%‹LÙ>%õx)dŸîªlmç7ÕU;[†IÏÿ˜ã“,È꣱ù…"p”6a@bÚÀAá¹øw…V…éæÚ·d"·êÉ«‰ Å’í?Hz1‹'884Ów9aŒ4*ëÿ%[ŠeÚ{$íOî•Ûî—¼ÊÖ =ÏÉjzs ‘Q22¶ÀÚ/ o2"!ŠSîv÷«2})(d‡Y%@ˉhWªÕÝwˆ¥ˆƒÞF³GVCöåNÇ@›`7Q\rÐ’«P©äJ…('M™ ÈuûžÀsväáÅ3ö ˜šW8òÝ{¹^Õ7×;w<IJ<¢±‰Œo‘ègb‚¢s9hc.Þ * º{þßÈß ÜÅÉÄ^E×áÆ?mUM¤;Q_Ád$ÚYôJ¸ŽŠØx8y7‡›“¯äuª\Úë$¼†|©lNw ÛÖ„€0p /:þ@Tª/ð!ÿÞH¼†X}?¤¬ÛÚ¯k >Ŷš|ÝßvÁ#N$Ià¦ã FÓ‡«[:kmÊäãüÊ´reÓ¯klüÂ/$õPš íPA¬îSÒ'ñ;t×nR*|ÝÖÏf'|Œ +x@ÂÛГxÝkºà¹ÖïcP YìJÆÍ˜óõŸ¿îzªüª×©]o`ºÞãZˆFm•®<,½õW]ÌeoigjóѾÕΘ|Uáp¯/Õd25Áù×¼û"r¤zCæëººo4À„S%N–ó.?jr²éšKÚ@d©1Ç”UÆMµ¤–¤réfße~Ñ·iÙ9rEQ!/;K­`T;˪èÉÙ’–bÈý"_>ø¦±gßÙZåàúžÍFD•rƒ fP 'N6•µUk  tÙ[›N8í'Á9Ь©“ºH¤š˜Gµ©«Ïòù YlÀÆcˆ³2°¹¯Îlï:#(/¨açÉþÖF‘°’_g=Ž’A)q÷D}ù’ÿZç\dÝ…{z‹íT°YcÒ}MÂ⯨‹>þG2¾8ȇW1^ž^$楺%ªXodzÙ[VpX0‘Hh·h UL‚’ìD@IUËü¿šèéo©:Ès ±[(œÐúæ+5Ì¢8ÂmÄôXkl ʘ¬/®¦¢9–ä6K¹Ð»áâ9ð7Ð+ëHkŽî^×èÎJs.>R`ùïÄæ+7©™Ä¶0ô.‘—»íLqÙóÑ5\ƒODÐÏ(§µ¬ Î:üQXö‘Ø\þÁ´8õFa+söИ×÷cÎõþªnTÚñ%*³{HѲ} SÌå›Þ xõ¯<™„ÐnÎWn/"½¿‡ãË©ÔÌÌ”äÚ,gKmmssfm²À“†Ì¾¿ö° ‰qj¡Õ”O±ÌÆlI—]$gV#ªE,²Wà œ‰k¸màÔãuUS yq¢×­ÉW®u—ìiâuZ–:Xß²Ms ÌŽçèåV]úpú¢XcÔ‹xeJ£hÈü|µœŸ+Év<Ò˜T}ä<úîç67ÁYУ©ò¦–éo‡¥Ä)µÈ@~¾L*cfO.½Ž(4DË“ Ä<¡;­L¼z c¸Í²ÁD6¡Û_Tä«xå<úhÚÁús þ³=ì I.þHcÏ1¼K¢:lWE‹…©»“6_^Ÿ:çRu€$¼Oèï[,OLd5jÏ%«-Jýf}I ÍßúÀ õàäSüús?xD Âð—µâ[óë±þm”]3*츟QaÑ]vóBCˆ(Z¹ÛRª/×3jë²H™é ÐK¥{ ™ËV3ÐqYÏF¡ŸûË®œÓíx¨^lÕu‘ð$ e“©¡®·ê$ ûjãr m Rä–˜L;¤•ZfN)!Zz]Çyåxê:Š%´þjU€šY”b'Ò ‰% ;8ŃQœrìêÿ°´€`~Þ•ø¦`p¤ÉÖî&0#ih.3’J˜‘Ôf,s¤fq„•Ú ™tp÷—}„EG0¨Nà¸?Z\UÐ}»ÚvYσB…O¼à|‰Ã¸ñ·Ýó²Ô9îéôºüpëLùjßùÞ`/MP¿]8ÙîO}‡!Ö';–ïªNþkßû'ÄZ—¼mÞûßì€8œöèÖ?øÞÀ7ñhús2ï]ê~H},"w:´kcèг/kº‡ÏðÏ>¢VÅöƒËäÐéîwz#·íM‹Úé– ¨ì¥=œ¬–¿±‡³(èa»T}ç쟯Á™Î'¡Ïr8ÍASW.Bó‘ç½O v©§²û? ­EìèÃ4Ãq äæ+òS2c¤±€ÜñN½Ryµ¦QPåh°6ò‡ÓkÐz¦˜®Áàâ ,ºÞJMÈ÷Ór-öxýÀt•ñw¬3ÏØðÌø:js¸0=æ ïê¸ÅMhvÇ?.ìŽhÌL,¯ä~z#¥=u$ã¶âøüeû®éºózKû½!ò_›ÀˆgìN´•9ÛÒÐÑÿõ'p2€³c~]5u&­6Ä%sŸø5Å97Õï°n‹ÀÛ²u©_¤ú%Ån po‚–7Œ›X?>dÃÁñYTŠýç0ŒmXCÄë¥v];9¾šÐ»¬Öúÿµ~ö݆æRé0v|Ŧ?#Út},ùÏÕ„.Q¡HÐ1‹ ÈfÝ…l6œõ;%LOOLnHonm¬oiMk Üdh÷jdÕ¿„¶—lhb€ØŽˆcb‚¢ñ ‰I'9Ôy>cœ½Uí'‡.uBÀé$<²¾…æò‹Ò¨ÑÓŒ=‰FÑ‘ Ö¬‰üwx ÆŸ†“ž ^iÐøL¡xç)s`³ßDVÝ’þ•(0 Ë9Œ¦ØëM̈^c–$ /¥õI7º/Àíí[ìÛhuküÞNܽÝCºn„Ÿ?cÓ)ðMJV PÐñP×Cߟ^œzó~ûäÑ;ûB²ŽÆðã%‰"ß ·ëßNºîòûËk×\¶v¥mC9=Ï-”ÒvúùU/øõãè{ŒšÃàSjÔiëòodvmäÇA»7§ä˜êcøŒÕ4‰˜¡D"ÍŽëͺûðqc÷Á@wø Åý)­Ùµ¹å‡«…¿3ÐÐqqÞw~—–†EŠcùÂTIZööBn×Èi× @Þê;¼;V—ž& S$Û3^pñMú3Æ©þfã¹Þ/è$fZ_HDâèöDg7lCŸÞ<‚ŸŽáhÇM ©p¨‚/_•u}å1 ÒwÙp'ý„‚¡x0êe?qóM’œ|53Õ¢h±R§: å©‹µe®S*Y1ƒ{ÁbrÉ›ÖçˆMµB~b}–9)RyztÆÃ§÷šÎŸœ>]s<÷rûÃÏEöÖ¡)5ä+A¡=úYm/`ñÏl:p|…pe@îç¡Ûàp€æÕM«zÃ:#/f\$œùìïÌüGmy‚&G樢ýMp 3%bpE#‰¢Ð)ꇳ[Ð,4éØÞ­«‚ËΗ9vAMe«™ÑZ†ÒžÒ z¿ªÀ;§<ÚP\\b,v¦Më,q›JŠ‹-Ó¦cØ'Â5endstream endobj 634 0 obj << /Filter /FlateDecode /Length 8254 >> stream xœí]KsÇu®liU©$Ë*«{cÝñô»[ŽRåT¬H)K‘V¼²¸HˆK¤,j“¿žóè™>Ý·E0•J\ZhxÑÓÏóøÎ£ÏüádžÔÉŒÿåÿŸ½|ò‹ß¹prqûd>¹xò‡'Šþz’ÿwöòäŸB‹€¿LiNêäéó'üª:‰ê$¸0%ãNž¾|²‰Û§ÿ m•ÒUc§  ¼ðôüÉ7›Ûí<™ä•Š›7ð8'“’U››ínž\J!èÍ÷[£à*mžá¯jžÃ7—ÐÚE«f¿¹ÂŸí<»dùÙ¤hœß쯷ØÜ©h7gøûœ¢ ²—ÿxú/4C+gè <Úu†ŸlwÖš)n~uºÝé0ùYãLÖéÝà fïyÎažmÜì_ÓZTp^ÑLµš›ÃõvgŒ†>Üæ\,»óʨ”6¯·ëŸ‰µœ‰çt~IsI1¹Í5>¤gµ¬Ö×ça&WVû»õEn]ŸôÎ(?Áû;ã¦è=¿’g¬`Ý/àѪ`mÁN{?Ť7û+l’"œÐæJLx«ý”¢·›?â¨z† @ôžIyÉÅËÍ¢vÖ°‡ëxy³’ .¿èìh>©èYöð¨I³‡Ø9ììáy~„í¼»ÿf»>Þ¶‡uÊÙì/i½èñšfèµKÕqž/}â½±¶Z%uá$âæ9Žƒò^RǺOfsŠiá$7oó¦+µÙŸ•ŽÏšù[¥0ÅK|Ï'­ò4Mq@LÆ1ÀªtMRë„.xÀ”´ä‰ï±èÂY¹¹5Å#}¥€wÜB|×¢ÁYa :ð#ê…d¼$£j^¤Ù„¹>f¯àáÜåk¥ó°5žh5oaÌD‚2C¬â%½Çe¯ð=˜ˆ²›ƒ<ÿåhJgâÄ'ì Î þHí– Ù)äʤy_>Û®ÜAn€äníùÔ´'q¸Îõí6hnÓæc !ÀP˜ ¦c’$4¸±@B¯Dg¸::cRÅU·´‹Þц–Ÿ¯qG 8¡»o7{~aÈû¥²ÏG¥Ò˜¹´‹Ð: ¹`@rÇÞôyD0Æþ‰yÖÑh¹ϸ;³{.¼áMªf“½dhy΢¥æà%]T/_åNz%Õïå4—-rYŒ ‰[¡×˜@P‡¢pGžÒ¶u˜!.3³T¹—…æ$ aË_?}òÛ'ŒÜÉÍ»ê«-ô›N`u“Ó„>G ᜢ†ÕDX|Äylþ ÿ„#•ß¾Ù^ȳ+ó‹ó|ç :—ˆRÖ ~³ùvCää]x„-ðpLÚÈ-Å;ãRꜣž¬Õõœ·L^1I±ò¢PÑ>³"t&Iô¶ÞÅõÍÒ&æ3ÈÚ¥×B³±È™Æ˜ Eç©Pó’HIÎΦFÌ ­̰à]©`Ö9:ÁÏ­"¢® ˆ²4'¶Á!,<tµC²I#ñ;€5 „“ÃÍ~þX¤N:yú›'Oÿî›Áé%8áÀ/Zèt­Bù4+¢~v3þËoþ5Z|† '@ ˆBe”­Ö›©…Î6›^‹?Üòïö÷5 ¬™É§;ü’;·/œ²&+raײ5 Ù‡ÂËÂi㉮£Üð(nsv ×`wà„®·°~Ò–d;ô£oÎ÷Œ?áPî–>öøœ€BêG û ¬‘wò©€|Y#9EDæ ™ŽTn>»WD þ\#ÜWºz‰T˜”Óq¬§hž!¬bÞÍTt ‘¬q½x„7 aBœZ©qtJ­¡Åg¬}aÿ÷¤R“QÒ^*IêÄ:4^jôh <Ê<"à@ÆÊ¬€§¤"`¦ ƒnÀWéEÀW>ÉYmÉÜqØ/-Êg»«ˆ“øYÁ`RA3’°Z¬ZN=ÉìäfVð¥1F¢¤'D¼°¨µ×LP ÖϲX{=ZT ¶f}µ†t8{§“¯Dë¡Àé¯3exB+´o`sÔ€þPa…–^Ld©S´ÊFƒÖMÁë þšv]uöðœý‚EM ÕöHN3HâÌE$fe§ÅÇP‘um¤­WÁÚøhŒ‡/‚Å.)èºô1²¥DkA$rÒ¯Yä)ã¥)€Ä92WÅk ˆÙè¢Q;Ëùs¡i®º3~Ñ0áŒèpó+ âÏ‹e&| ¬T[ÅŠc¥Þ]ú‹ ˆ£ÝÓQ É€4ÕÙ¡¾ Ȩ;–XvsAÃÄ ç÷O«ÐQ}Ö®qìjÊIN#÷Ln’»ŽÀIBjÖ²¢kv ÓîºÝa˜*(Çï·Î‘\XÉXsóõ*zûQ˜ÿãÆFSÈ®æ5±Â°Žä-ÈzÆoþ­²hQœ*U<×…åRÏœó£`.1?Éshö& ô’m¾DV¨´:Cús+Þ\§C;«€¢t­üÀ{4Ï~QÜÊÆÅÒuZ£„§MIÊÔ oU¨yER+6yW™¨û"c¿ãóîß_<L@Ì¢áR‹ígÒ blÁc4Ï"GÎB¬ôÞ¹Dg—e´‹®#ˆ\ ðbT¾cƒù?µîYv18ž?{ĺ^EÉ2g {ëè­«¨ppR Šë|D8æRߊr‹ا¨­Î³ð[mòÅ®ˆšlìhêœØÖ¹.ÍJZ´¡@:…° Ü |„öˆŒP æžañÉñuX-¢÷aLD;ÁžxPjÊ9i¼2”}ÿíWèg‡mCl€xü{X¯€Âô·³óUG4_[8‰¿ÚZB¼+öoØ)"Ònu¯W´Q8gfŠÙâs ']³Â…:ðcŠî¤:´úXï$H7Uüó8 ÂÅòxÓ}¼,×åñ¢<¾.Ù¶‡˜]˜`qi™JWŒä€Žû‚P ¯KZSëyVîåZyç^8%åW£ŒMÙŸ\ð–_Ä9 =j+Zh¥`%Ò9–!˜ðG¾ûèÉ&û`®´¨N@ˆ eQ»Ñ@Ï‘ Ö[7ÚúÛêFC0rU( M °(ì‚UȘçßàà7_Ò.(tHî%è¸,€þlKf€¢ïŠÂ/´d²Xë£ 5ôº€à–Ûùž.9•ÆŽšY Œ„Ì9$µùê€@ý#zGlaïª1¶ ³š}%M„J—Ý ïÿ[~‘ec) ó·¾#E|eï&E™–Råa'ægLöÁXÅâîŒ)"Ìzˆ`ŒJùxY¯ËãEy|]ݶŸ•Ç«òø¬<þÐítðZ×E1ƒŒñ¶Ê»nÍW…dvåÔðhèÌ7fÊ«læ•1«Oiµv8¤Œ–³Óäïª xiîcÐÂ][;‚sÙ1âÔê2ëÄ|8Œ“ûÚ–Nº =«zEa·ÉxÃ2pùEÁi—¡_ ÖAb‰iœG€>N ʾ,¾†z•Ç,ÍÞàFnÝŒ†MŽé“ÕØ;Ѧ•\÷Ë.+WäÖM¬yÅM##ùZÙY}R¹k;#æUÄZ·íeQH`1FK“#k!.Öñ÷[Éà`0±ÅÃ9;“çø°$ø È£¼“!ݳ“d:Xàyâ§…ÑÁÊ%C›Á„"ïªÓdè Øë⢅ÅL<Š Kb¡dŒd­¾¼äBãË“’6C™€ø…â¤Â—à>P×Û®Îý©zQ®ôñÄyØ€9²ûê@k~†•=gñ;gæŒØ¥´eF-}aÚ X@£ Ív$éi4%`,këE>.¾âžæàåˆ/ô{à ­5Ñ›Yo™$0\&¬ _£›c®\÷Èvlf;‘}ôÇËDŠ^®†$å ¹\ßV ŒÔ¿ê{%ð®’JwÇ-²G‘`RÂ8äÚ©QÐeAA#ÿ “7@NM$˜÷s`[¬”+¸Üµa3K9v;çÝ¢¾VÞ6­1Ô8;M¬Ýâ ĵõ¶/¾/»yI­!]|Þ@ÐXo·QsL›€buB°bÊ£ë,𛋉§Xy‚ºŸØ¿ß.¢ÉL“©S—TÂÀ•/ó¹£Ê;vÌÔ80€EÖ"† 7H7ÝÇËòx]/ÊãëòXÙÇëãgåñª<>+?t­ñÓÁk}gfVÜã’” ±îs¨“OÖò‹Áæâ 4xhQôgUÅ?î öá3žÞ«ãx|È=ˆH¨ ݋ڒ^y…iÆÂ0ñêAPŸât7Ü¡I0QÀ…v•y/$j ´º-gߨvb@›ånšÍ’» ô£ÃL1IÅÊýiyS ¨6éO9Êá‘ãéG4 å‘/¸æÃ‘É&š0'j䣲¤aªTƒ‡pPŸ#ç¼2`ÌW…†ÚI´h=ëìé­2Bšì VBhƒ yöž–ësµp‹ÝtÛ^u9ÕZP¨© |AéoVS6§'çúÞXx“¨Ö"¥vþ¾(‚AÊh‚æ}×2V<éâ¼ödàÃp$ŠñäÀ.Ê'çÐí3æ˜*­HÊš§-)tÞ%Q ¯Üc Œ071»%)4<Úäƒ4S:Ÿ`‰ÿšr@ƒœÅˆ¿Bcƒuu žóp~VÝáÌ;&n‹ªäèË‚ºÆ)Â8¢/&ç÷â±5ù*Q ³Ç°·H28È“í¹nº®±f²5i6Cludk6L˜…˃ ³eÀ„:Ä• %]®9H?50œÀ ü¢Øµ×™ tEôõ>Ó¿ªCûa¥ñ½TW¯¶b»QV#؈jr¦Í÷8-.›e1OÄ‚0«DúWÆê‡±“¥XŸ‡€:-,Xè¦Ûöª<ªþÑ$Øã"e* £‚ëŽÒ ÚÜãW…¯%’\I)sŠâ¡-A…»ƒ„ñ=®oªîêšìrb‰€ÙwžÜx{J|¸ Ȩ‡Èï Æ>й±/žT¹O]6E7…oÈâG¨ð”ÞtÛ ?§¾ƒ,*/TǤbßžÌ(åšYzvÞÛ6(hˆÓ^ˆŒUqâŒG0ž"BÆ—Åû‘I‘Aë-ç¾òƒ7–ºÆLì;n¶` C¨ëa¶ŽŒÉýúÍß—_wåWÑVz·ÝѾÝtGÞ·³l¨Ï–áâæÓòØ»êò8—GÕ}ü¸t&zŠòk9‡ž¢¼ì¾v^o»S¯æ€§»B8>ÍŸowÉÌ_÷Y¼m»+øcw$3hÛ[×ewó_tÁÂmy|Úm{Óâ¶Û¶Âüb´ur¿^u‰ê¶»‚ßw'(¿ëNû«î´E¿_tÉò¬»Ä7]šyvßôõÕÿÄ‘ô†8ê·Õ^ë*\Y…ËìI ¦ò(~uå±p‰kyDÈ—­xy¤µ~Ùíìõ}õïoï;ó«î"Ú*zøvÛJè?)ƒ« f9V¸ýI-HœïT]yŒÒr“üÿFÅÑætÜ«8T«þ¨A"tñuw:‚{ö¥à±¾8º3F¶Äª?š8”Fû6)éê;H¿ð nâUålè\Y¤7æ¾C8Ì{ÁxùEvQ_^]ù¯j‡NÄ ¯æ9÷‚7aÆiå4Œk}¦»Õd¿Á¬µtò’;Áû†Ò-ú¾wpé;Û³Ê÷Q*Ÿ´Õ†Räe¨8š=÷‡ÜñQ×Õ_ßû¡÷Rv9Ž,mSÞßàL}àcLÉ4Þ_çýMu›.B[ nj™P ¬^yr5D›t›Ü\õ²©CEéàŠÊ9ÏÍ++. ˆjò5ù¼¤Âá- ì)ä•Ԟ édߨØ[æIe*DY±R™ûÉ[ôÏþ¤YQŽtu7¬ë®~ñýM¾GAµp—=–X\ jäO¿*×/gÇG Ý.£ òU}‘ î½a£)¯„ÿ].¹Öí—¤•– ‚u^ÿsžPÃäîñæ0t>£ HýkUìOÂ{šƒCåÓïFÙŹ<À¬§dWÜ^NmŸ¥²òU‰'kÌQ{[D¡¹Ñ'a Çu q¢øèä P“¸¯ ,gÕR˜Æû/Oþéivèȇ—àgÃ/Í,e¼JËK¦Ê8 “Éœè)Ðüè¿@J‹”>÷|YŽ©cì}žéË•&áåxcËiÒç AÍœTïü²N¾8šW˜tåQ^¯Ñ‰îÚij°üå=+ÐÊÆaçvk6@!³n×#hTÉú/úrBŠî£@p¨Èvgg¼2¬Ž.Ô®A“ÞÑyØ'W²ØÚÛ¤Gk'˜J ïBM,0™T‰Ó(5ºWéÑÝÚñ¤z‡®Õ`¦ÈÔO‹kºø”R±Rü_ÓÖÂAFÓg`LŽ˜Õ`M7ÛszçfŽ2>ÅbÖíj¼•}ÕòæHòþVCƒ’ü!V/El[½sïîÖ¬õ³B¡½!Öà(ôòóûø–—ÖªfŸ¸“jE]³&‘ÈNF)_‡Î¸V‡Ýü;^¶ÄÄj{|÷“¼F¯ƒä• vDò¨ú$õÓûöH~ãß´AŒZtAŸz¼vÔöHz‰ÕÚ´oß‘ Ç«GfŠ>Ô«œa¿®Ã/4³]¬ôCw-MÎÌEŽÿU{$á˜MV¡˜ñ±îHÀ(–GÐFDgË!ÐÍÖANçQí-bsê£Ï›,딼(–Á3¶|ÐNʱ]àá*™å‚S!³¬”çdª žm¹âºÄ™‰Ld¬¨µ^]¾Ùcþ¼µ|ûBp%Ð'ªú*qÁ dû ·³jLZf”²-Þ»÷W±ë¯þ=¯Š¦DWE…¹52vaTÃù‹½(]õ2ÀË´߀§»Ÿ€;@Yå`Þ‘ 7`[ ô?¨‹)nÑÞò{H¬|Õ€ærnE0½ªèâõAíR6ÓMŒ#+眇Eå¶/øc¿q5ÛÊy’ut &Þ.X â5SPU‹\h%–âþˆ)õaÕ}ä‰în”âg8yQ’'“arÉ«’Nñô©DbYêûdë=ROÓµ¤£K§XŽrD¤´Å_Û3;Ä„x •uªj_\÷'qß}¥>ЉDÛ£òåL5üûñÝ0*½~"vm'¿"j*Ù‘Ë¢5=ªyGjj6&6~dc¬™0øPÁ÷Éa‚GœðvÉþèë ùÄ¡ÜóC)­ñhÜüü tÌñÝžy/åG=VL)ÏmÜA¼.úE ʸ|E%]ÅëgäáyËÓà"믜ËutÕÐ{nœŽj.ÃIgÇ ÿTSQiõÝÊL”+I®åPŽkR/}ŽŠÓ·I`Ö~©“³0Ïo—!ô†ëU®½@ŽošhŽx™Rñ/c–k­rÆ ÐK±\÷Ѱo3˜¹Sù”Bi›Qd©¿åÙ¡9VøQ\MçbòX\pXÓ–:À=3'Öð„‡U“¹4â»ý̤OóÝžŠä\$O~EŸ¹V,_ð]ZÜï¬AKU%üe3®2}© ÓÞ~-ªÓ’ÞtU°Eάywηpúý0Q¤u}hBÃ=Q×€BT­qÔû¢®`xSñ½w»*¬Ëÿ‡ùö¦]DIõID§±JD¹Y t¢–+~­/ÍûPÜCl³¢¨^¿‡U–¶ð&\Û9§í,oÛÎÛƒ†®æÿ¨LªSêgüÿÜÑ64 ¢;꛺H½mY®Õ>º?§D8+èZzìªé‰‡CÑùœŸ1ž¶çGŒÕ |Qj]›ÌçEÁ4â_RÀNG€ ¦ýæ’ôªµ@žåüàSL¤E†‡H~uÉ}ï™è9·Pïæúðõ³›ËÃùm7‡ %È,4â±P€âêИùݶWuà.A£jV O®Ö¦(IT•œÀ}/ €kþ?"Q+fª]­ÔØB¨µÞZ!)x‘˜Ò€ƒÝC,<&àõX=ó° ý1…·Õc“"‘¬Û½$Z6·±Â:~è?T“Ï_Ԩɫ¦²)Õ7ÚÁ‡ªÈwë²ø½¿X;‚²ç-hŸ Ì%LEÆxóWµð›>vÝùEž\Þݨò·7Å>¨kÓ¬)É¢gñ‘–A]*í_^×–Þ¯Q½±å3jøuk‰­>}w)¨­¿p”¤°˜KUaœ+pUφ¹/± ›{0Š™%è ƒ›ckaÑ—J’ço—ùºº×Nç=?p¶¶­ôç$fK]y$„Á2(@$ËÁoé‹YóÜú`—ïÚdY?Ó»Pû@òw_FÜöÒ)ÖXÃÜíäÎÕ¨{aí6f­È˜1ÍB¹) °k“?ÑY©*la©lðÀ¶Ø‰PÉqÄó­µ9q›ª€Ïc)Õ6'˺&•üv™måQ8K†ÙR]¤§#àˆ¥pMôw„&*û³ƒ‰^òàFÝQ¤ç=êfŽ ÂYR8û™#ènð%*{w)0e û¶ö3Q´(ëÑdÞYDOÊZU<·½dqµœöÓ¬P^êOý7ƒJï÷×nd1Ì[É”É:äBÆó_,Œg:þüŒƒ6Gµâÿ€ÅÑ÷R):þÝTâ#ë–¼ÍUÉUí=ÑP£0¨uIW®llqÇ ²eªUuzÝÛ× ‰/ººá«òk“ƒa#eý­Úù ʰù@ÁHå~•ÄI#øÅ&ìØ7ŸÚþÎAtBº i¢üͪVRßGµÇlÊ{ÕÀb)INZë¹,~Mx…ZŸæx*н ¬ÊŸ|C"«Gñ~ÿˆ¸0-sÎW|›7,•ÎCJ ÿScìå÷†ÅéxLMê£/· ,tź?Tø^õˆë¤cm ´A§Ž÷Pyרr¹¾ø\mãã |…zÏsSÿW|›E|Ô¹‰é­¬AI`3]0ä2|üŽj è5; 9uèDʆ¾J?Ì*8ý—z ÍĨ죯‘Ïoy±ÍÝYVåoÎGŸìÍÇ9;Ë·úg2´lYú xGZ·` ö£)ðvGwlª3¾¾Éßzw“÷ÒpÄÂQ >.V>@€ìã9Ju«®</ò0áè.¿¨ù³Î%Ï ñb^§tL6¯Ùòë÷£EáÛEx›=F«wš/r-_N¯‹™ ç°ªä\™cwÝ/iJã×+ï¿_Bu)cåÚär•'’2òð:ßä›ÃÀ'IC¸{„Œ'„,·/]¾ó£Ü¹°f•óÏÕRã°¦³¥uÑKB½¿}òßa›"¼endstream endobj 635 0 obj << /Filter /FlateDecode /Length 8804 >> stream xœí=Kœ7rÉUÞsŽÁ`݉§óñMn’ »ëdcìCAv´4ÒH+iZÖH±õïSUäGVñ#{Fí%|ÝÃÏz¿øýÅrP þWþ}úæÑßÿÁ…‹ëÛGËÅõ£ï)úëEùç雋~ =þrHKRŸ?ÊŸª‹¨.‚ ‡dÜÅã7vjÙ?þtVJ‹ÞÆ”ðÅã«Gßîn÷ËÁ$¯TÜ}€æ’LJVíÞí/—ƒK)½ûŸ½Qð•vÏðWµ,a‰»—ÐÛE«¿{?ÛeqÉæ¶IÑ8¿;Þì±»SÑîžâïKŠ6ðQþëñ¿Ò -_¡7Ð4i]á/ö—ÖšCÜ}õd©ÃÁ/WR—÷w°xŸ×–ÅÆÝñ=íEç­T«Åø¸;Ýì/Ñ0†Û]±-âp^•Òî=þSò.”Y‚3eýe_yp¯žý’–’br»lšµnÖ‹ëÐæà¬]7ûš}ë(g#¯úÒh u—Æ¢÷ù£Ó“=ž¿u ®3_ÅK~ÆÚxH:zë"\'¢^´Éð¾†àq1®[¥ŸOöõjoðC«àDéŒÜ`ð»Ãþ.ø¢Þ=ÆŸõ÷v/ðV¢M:â4ÆEÅ•“K.&ê`U0!¶ä ºe@õ¢éé5ÂTòðëU×ÅÀ¯á6oĪé ÿŒý|C#›×¹é‚ëa¤Ýñ6Ïbà*¹¹(»û'„ùœ´iÃËÙD[e¨RV÷º5ë±ØÝéy™0)ùŒì¢ï}C¿zí’Xôõñ}C76e¹ïEŒñdàe¬‡^j>öÑ ÛÔé ž]2nˆu9¾ÎÃÅ%ÀÕ%É«8ç½-÷£Gó„Mù¡^K†$/j®­q#—ëN.¢SÒyC?0€Ì3åÝz5 Š؃J0’Þ½eóŤ`kœ^_Òx)ÅXN"CÀMDB0‚œw•bÜ3Ò€çÔJ°bÐq鹄DTÚý÷¾P#Éÿ’ÚU òW´ Ø]4kw}\!,™¸\0  #p+D@çL¹~´ÅÁGÁãGæ°¸¨ñ8‘Åäo–BÑ­õˆVŃ2>è }. D,:í¼’w¨õÁÂÏÐ?†ˆC\=‚-g&w ë°Îþâ’õýv÷×õdG˯G$Ëš$+í¾91¤y–ïÑ*޼/8z¿ÇÆô³./ r`™Áp&A‰dŠ ™BGŸ!Üg”‰óËgý635Ô>¾¬D¨‡1`¾÷H·–Ôîcž,JRz“1ÃÍ1C}P6t˜ô'c:êÓ0#•Ô‰[ãÆ!±ÂuI rñ-fxkÕ1#‚$àÓ=PÃMWf÷‚‹°sâ|Ä2€6!Ü4é€óëg ƾoSgªµO‚Âe Ñ ;#PÞ°û2/IãXÇ¥î2«ò  ¨cÿì¥?¤”1wˆ«ÿy¦(ɬȳõ p"$è1o«4­y³5\%Haqåç°€èIt»ïvñ—/£˜_Ð>=ˆ”€lYþ ±w4!à6¡²øçt€xwz×}Øó'©öؤÏçõhU…ö3t¾ßH´®¿~Ù…›Ì¾q—Ã)=ÐQ@áñÖ<І#'²騀 k8Aüy\DÖ ¨toDé$‰_¥;OW´0RJbR û˜VmAðùnŸ¿MŠO4‡$Í®í,í,@@¬ï¤&Ö `ñlÁ)‹Ÿ€=ZªØÅX>gÞr©½ª[EIÎúN­èü¦Œ±ôV=â#þ¨€G!Eßî³dŠT½ßë¶½9AÀ‘Q 8rÊô±­î æÞ¶õ³O\(“Ïà ÖLJF1—‚cÜWL† ­ij;„'íß3rdÒ8³Gµéy^³+”&%D£ã4ÚÁqTbó0¸é¢ó?œ×O-Râ>JŸçTι%N¥ ÿlC+:N¬_*­@|Â]ÅÄ¥ ü ð]aêÚ®÷j£µRSZo¸ûBè]ëßÙ5p â-±Ø!ÅŸ:sÑ[,è““]Ùã;Uo¨ç0âz‘/=¹%MT ”.±û<Ã1@èÁÅò3^•ýáR@²&TÆø—g¥p€#£tí @û7@tu—RÔ£fJ5Ž <À¹+ßM¨DBßÿy¨D^Šçrñ) ÀF½% …\3×Ðâæd„‘ “ â5B›®Sò³¤uC5¾7]ÑQ¥lŠ 1e*V£.̓{‹ÕÐÃ;«(|¢Æžd^¡qþî'qSH‘rºÃT€ÆjmÐKÕ)þNÒC*A=™»¨Ÿõ)S¿d*ñshF(VH";eÉvag #h»3]²ÔØ;”ÐõP5ß*¬É†³ªÂ:YßðÈ jš˜HîRs3Ñó¨âÅ"¾Ä˜—rÕD ¢à@†”FLTH#)ÉwßçßÓƦÄïÞ5ƒÿþ´©uˆ´ l¨˜¡5†]|ËNÇqlØ„T¡ÛÆž6ŽÕ«Ð Ã*m9:§CI£Ù`WhhCÖ¤¢ÃæÓp®üø¡­ Õ‰.÷FÉFæÄ£]¼‡|#¬ÜvI›R€ì^¿rå@u% gœ˜ ™ho:3 Ìll}BZÏÒ›`{‰ëð‹ä´™¥½£ž$—4zÉ˪c¸–%Y×.+s1iéÔøe ã÷)ÝÛ°R™O3tÄÁ.Þ­l“Lâ Y8=òPÌS[¢ßknø³OiÂì9Ó\ù÷¢Ä=3óSR˜ 'á#²µ ôÀLÉ2ŒG[Ï Î³’¹Ò9lvÇ~=Y…çÚrg8ËcD&ÍØù„+É> ÿY¹˜œ(‡ÿõ.z÷Êz^Lì:r8¿.8é4nz¦/3ñ^9©Ëyq {[1ìí˜l1ñ'ûQÅ)n+:P&|]õ¸ä€›#~Ftl.&¡<Ãb<,$\}Hš:ólŒÌð6ÿê’©D8(ÁY^6ÅMûî:‡ØÄÕöºUH:b@e »Ÿ*u^?cx (úTñÞ‘5Ò{ײ2Æ™8$ÁeÒ¢òg€VlU‡¯¸d mq&‘w¹˜}bc‹œ¶¨`U%Ï«ØÞž´æïZóõ~d²»nÍ—­9¶ÞYLS?Ñz²ð¢âŒüp@åq›÷†jŠÐ[ñG4rM’¹nOx/ðw´ÞTâÁíò1Ùlþ,7 læõ†žóSÏÜ7 GäžÜPà‘N  ›4·Gu„ŸAŒ]1K ôg€-´²Ü›ŒWeÞåñÂ"8Æ)ÿšbç3h.ìÚUVe«í8Ø#_]ÙIRHzVŒù¸Ò¹ÈÉ0ŒIÆL`’ ‚ÄtiÏ!„Îúñé:bœšÓøÛ¼S0b¨æÅ&ä~ýÙœùA"Ã9öÁf†VÝì±±{†b**¸F?[7“6y½^¿è¢}/)‡G¬ÒìLHìü_w:¶¥ößâ`˜ ˜åR”èÌ—È,ÃI½QƒÔD/÷VŽJAhq2}M2NFÊ$ââ'ŽØ$º+¸Ǿ÷¥‹’¡ÞjpxGf¡îsj^Æu ˜C²éBú“$†TÜD²¬Á¸P`kò\sLµ¹‚t).'°]W…˜†l ›‚a>ÝÖñÉÎõ„ÑMQZ:$€â‘ÚEʓɔAM™ßбW›ûƒäæ.ü5‹ASÖŸ¯3~²m´Ò^†ë'¦‹fmœJýÅa$\‹«úÞn-/ŽjvqŸ×÷;º·ÎW†‡çQ¡¯øé¸HZD9—E+ì “§bmAsë„Ü|ØA¡-§)£›ð±†1x^‰™žç›Yâº×îà‹Ô Ã÷ÁÕN”úœ)ݺ@ÞX·t  yç¯~ [ôØž_¥iÈr¥9Ø¢?}¥ŸnÑ´ïä2ÌȤ“?&rаb¡·Ò\³¦éù‘ž æ´qܳ hÒ94·Ù ú³ö+ëËmÔ™IGr™r B9µ[Zÿbîžî×M þí¿ÀL”WÈ{ã,npÌ6ê†'.Ÿ /.ë2QÏLJ™Ú¹è«ñßY®i¹&‘%!ŸˆÒÒØ/"gËÄÌgÍÅ‘^ H š¾“p0ýj/£âãjªJiuÀ.Z˜7Q÷ØøÌ¤ƒ•ÇÿV¡k®\l$Ka6Æ›<†Q¦êû†Ì¸£?« ãœÓMË“ *w²ÓÛÆU˜]N*9•*S¨#Œ•æfˆ¦Žý€-8õ0cho^vèÒ ½ª—!1Ñ+D Ø”®³R@ªåM1êXϹµ¨o%* ,«‰½Î\mD, ìNɶ·Ã¢š±Ð‘qÓ ]§ÕÙ§yYÖ)Ra‡Ãù«U¦¥| «d0L«) s&ü›è*\“õF˜úš‘ÛiíÎÝ_] aiüÌ¡ý¶Z¾˜Î¹5M™^nPa"[†-‡¬aì3´;éÙ™6 ûA¬’C-ùqॳa{¿móq³é1ûV€Í*:,Äkãpg¾n©²¢Évžß6åôÔš?´æ3jÈž¦Ò|?üõØš7­y;Tz=HÓ@l< ´ÜF†t°Ý·¨ahS­dOÛRNÃŽ7Ãú¾î$ÑÕôNÌäe† ˆV &hƒŒŽÀ{žA0 DÅÒÀÝ$9’'àÓ]oH‚…``ÀõÍky†sÂ7ι⠀I@4šDÇì( å¦_7ÑB¢Áx‰ c'¢è{9rýOñž>”Y0·åTÈò É¤Ó¯ŒQdêdáUgynt·´Ë=¢,A÷X]),êó®ggžÃˆìÆdêñcæ~âιÙ4ë•d6å¢q¶·‘i‰i²›]™“¸}´3øÙlÝèzü·ßžñ«¢9ÄŠà’|…Úø^6ºÃ¬¨J‘e¥wAË„5¯3«¸Ž´ËÎ=‡ë®<+÷Ðô1‰|Ç25¿3&W [×±˜NÌ«KœN°á¸I5× ]¦ÁÓ<Èä3_ްõÉ5ëä ýÆÄfÊÆÔv0¯{Ï0)ýØeÉÀ}?ƒ³(ƒVPsÐ>3Èß|èN®¬shÒÉ-Î:‘Û†9ŠQ Ü?Zá…MÖAˆ)ñ(, @˜:(±k X˜~@ÓPÅÇwŠ›Ù`¹„ƒºŸ§‹l€W½dÝÏ:q»üJëè$¤š]ÉæmþÌ*®_~èibáI½&NÐoó|f“íS&|xKðy"õ8w²C}·P]·¹8‚=Òâ:#þŠpÈé ËE“Œ;c8BŸ„¾2)ÐÈÒ‚¯Ê-(QÑê”OeY|ggt9€‘ÅÙÞŒiÊ6ÌÄ‚ÅÉ¥£´|¹áWyhøxÞ¬ ndˆãñ)Yî”·D·Êž~‚A´ÐAf}ÚáÁº|)p°‚D‚eФÂëgñòmcíÒ¨ `¾†pj9%dè¸S¥`qÇ1ÆNô7Yn„ºDe;hÈAb“z$,ÎùÈ&¹—"ý…fަ7ºÑ lR³±³O2Ûš{ÈŽY@Ã`†Ó"Nëþ®$ŠV[è1/dQf» aõÞXu=Ð83Ì}‘1ì”tã&w*úÅL…§ÊÑyé†FIœ®{÷q!öçB·×ÕÉÐíhò¹@àbª„¯KºœPsøÈÖÌ\¢;zD”&yª‘ä©ðÒ¨nGo§Ç¾¶=#>sÌ‘DÀ¹(ß•òIèpºÌ,=d–ZItd_’uà·Z8ჹÊ:onÞ‹Éj@¢ÈþÙ—ŒcIM*}l¬2›Ôf…h£X”\ Ô{WJ«2¬«ˆÕ4WXKŽ êï®å1¡ìlŒí¥P$×a*x©YÒ³<þajõ6j[žÒ¶ˆF9 )Uq^Â]U„ê*µFX Q‡Áò§GXàx›‚{â*Ë”Nè©ÏÊ—Qäü³ q"Bç÷Àà% 2 Ç—9‡¼Oogôži´ÌV¾*üL{+Tƒ—£ ¡gy½å{¤ÎfV@¨ÞÇ’½SÔÙKioèù&f‹ÂžFÂÔ17á>‹uZTmÉœ»Õ˜ÕI¯/6ü¸‚Ì0ʈñšÊ™ÒT±÷eä]«±VµQ0Öµ÷ÙûtW‘ÃÔ©˜t†¢EÑû‡ð¼ŠÒÞrvÁé÷¡8Þa/_ÕBú…~l0uìÅ ±ÛØÇÖ^3÷Œÿ$ã·Ã‹JùŽïûnÕýêNœ%:}/ÚfyúQ3–”Ñœô˜Þ¬»R%û«•ŽÈˆuý¡ “#;ìç0¯ôáÂØtp˜ÎøæÑÎ=DÍVî"ï[áÂa"¬1ÅŽõvòÑÆ‹Ð­7Ã*ÃÖîºÊ"‹Ôµæª:ñ>D®c ÛÄáM­èüK`ïECq¿{k×°.` «ÏšoZóКÏ[“}önØ|Ùš7­yÝšï[óÄû–EúÝ?¶_/Û¯›ˆ´>Ê€5Eq–QL d8 ûþª5YD døq8Û“»>ûn×ڷñïXUŒo†£±0Žq:Ò»á–=ì]fNKÄ0“AaŽãð >îkàÝ—ëe¹Ï’9T›ª5¿ÛïKQã¼J)“=ÐÄ2Øüp&¼Nññ~ =F«ÿéÏÒ£‰#@߀45+HÇÏ ÒzÒÛ×{V'ZJM–ÿÜSTp¨a¦Å}&)IŽ£™þñ®üýYûFî:Á¨ŠT%^!~ ‰ÈF<ØsÆ#E Á\†¬c‚éÏrÔ ÇvÞ­ˆž^új¤¹²’IwËзe ‹ŸÌv/³<Ñ£ÊQXi»dE Î ö ¿ÀR? æ'Ò¶ÔòÇY•ûG‰`âJˆ,¹[”Eµæ~î–Ÿ*âYP}”ü¼N«ò bVôî×¼ÏÀ€Žd¡¢#â iŸÛ K2w„ØBWœ›Ï”Y³ŽL»s§¸uTÉñ§;qqãÙêa¥ÆÕ:wñ%sëÊü& ÛP‘7±~lŸp"µ›p²±Ï¤à­hQ¬›‡œðê­—ÒÀh±„Œ™W=¼ú²Ôªz¦©Wßèô‚ˆVÉÌ ˜E誓¸F¶¯Õd¦ºR'±v¨—ÇìS›û+×ýC£ÿ¶¯ŠÏ×9œe‰ž;´óS4جœš¤ï—«Y±Î7¦³Y\í¥Å»Õfaçäé ãªÆ-›úGYkt¥Um³ûã~hk¦G9})ņ¹ÁM- +j‡Ç2í±‡} âÐû‡Äé¥@oŠÑYhÏ0|ëxÕ˜ÂÇ|^qñ÷ò¬A=³œ®ÞVbz'óÄU&½H¨HÛ²ª5bº¼ ô€*¦‚ã8®ŽÎ’•",ùAÎcnÂeÌMOfèÔ ¬Îë©L{®ÃJnÏ´À ^³ºGMA³OÅäàðÝ©Z~o^“Ò «ºTÇúE/¡Ê$lÅ*¿³ôA–ãÈ ,q\ŠEc©H;7ý%1ÅàoãsŠ©âUk¾œ'N†ƒ²Íï „)éDÕ­&| ƒP’£ ÖÇèŽT,©‚+1zìÃÏØ±Pµ>`>æà]É@x€x®Ì9¯øxßn dYÔÛú f!Ia;ÿ{Ü`’ \¹[+ØÄ¡·QW3.#"†Sä0 öÄÞ ÄÝnÓšÓ…'$ “³»ßôƒoµæ;ð$?tm|>´¥× Úž ýl®|¼EÊnXÏtâ°ž¼7.i’ÅSГ–ï:­2TLž½œø'º3¸sYAáúÈë°dÈIaj.U2çr¿¶Þ¶ÔÊSŒA íp&ÒŒX¼oäNŒ6%BÃÒUðH›Á=ö¬¿+C;)–˜ØrLSË1õ»IÔÝúx3UäJE0­`8T{øëÉãÄa—tVVEÃÜêqÙk_eÓ‚ï,@•××ËÏ×ÅHÍ£ľ‚!:¿5ž(Ñ}££a(·.Ÿ¢ÅtÓ±ŠCøãâYÌ=φpÊ’ '‰ïJM«]áPÁ™4YA•ŸœlÂÉÎVDp€"•(2Óù«ÖœH%xgõKñD/ÉÃb >k+_éBŒï–½áÀÖBþ3Ï»£²ÖGFÁ&Bñ/|n^4&ð)É­òŽùç”DéZQË2Wã´ËÂcúsN¼uT(AЇ9‚é²È`ü]6)£‡©:2Ê­ÚºNkRp)ïãü2†aãqž´î÷\%ÿ&{oµ&'[¶/ÏšßÂBÂU÷Ô4†…"&Z&§æ±ä\94ûL9ŒÏsÉü¸t¡P¨°ËXDÅÐÔv§]|ÌÁ›6Ý%!ðéeT³ñª5Ç¢½V7U›¸¾ž²® g}íMðÏ@À0 &câá+†@çêÜ92Îß{®%z‹`újG³HS!ú°³<潤ýY(‚«Á†ˆD—ø”!–|àkðô$¯4®Ý~Ÿ¢ûú:ûV/ Ò4¾½Ï #ÿç/Îbo Ù½ÇÃó¼ˆí(7þ“_’\‹ÖÏ‹8 Ò߸׫OÙ²`K+ÙZJ8ùh…üÈO)çPØÞ$}lþèÞZÚi?¸)Á9ƒ°‚yíÓ²ÄMz]ŽßýæÔ™ñ­D©šOd–žúx*°G Ÿåïκ~îÇ·jX8VG>}AÌÅND¦E‡¾fÛv[½Ûct/Ì”˜C2)-`lL#ûR€8X®Öç1·@> stream xœí}K³d·‘Þ¾­q—u¼%¼³“lK²C’c¨vx!΢È~bW_ªo“"µ™¿îL<3sª ]ä8ìè™…ª?žó!Hd&¸¿Gy'ðÿËÿ~u~öëÏ­¿{ýôLܽ~ö÷g2ý×»ò?_ï~ûžÒtŒ"ʻ篞åwå æƒ¼óÖ£¶wÏÏÏþzøÓ½8j!…°‡Óý¿=ÿϤ=J£Ô݃8š „wÏ_<;üûýó¿=Ã'm°ñŽþ§¿^Þó:mÝá Ð)x(ªüS í>¡µ>yø €F:eãá„Èè¢9œ‘AÅ‚;<¾E‰¢“2>Ã÷ÔÑGø¯€Š­ òð >î#üëð–ZKsø6?„Và£÷êðÕ½òG`‹‡¯ï•ƒÆ•>|ߥ MŸÊ³ çׄá%<í¤–1ææ„sY2} ©ÿÊëßôþ ›²Ñ êœ:Ê@WÃ'¿)ÒJ}øCî÷àm»ÙïC‡?&R¡‚Æ^†‚€Þ t ñן{Áô@é#ü'Ðd–©ÿÛógÿŠz$ƒ;:g½…ÿUñX=¼mÂ1˜»w/ïþ÷ÝÛgðÆßÞýt $¾C•ˆ*&ýúü÷Ïþ~'þO¥ðAWÍ•ÊÄ£sw6høR‡ˆÇØ€7ˆG+Ð ¿ÚÜ1fÀ@_ÄMÄš£t ñ¨/Û¼¥1„›̛ܸÑò¨·`vù-'Nm"Þƒ¾'$J”u þ‰Ù*ú°‰¸xT!!Ví`àTèØ AÑÓ+ ÙG¹ „£Nò;zc6ãŽ2Ñ:¯ñkwkñBcÏn!8. Ðæ¨Ô& @Óâ ~Ê&A¿ÍÑ»M$ø£I”=ŠmÄùcê Pu|} PG™z"{t;ˆE-$‚IfíIt‰Ú"؈„x0^~‰ ~ÂýRÚVZl# ÕÞ&>X»mz+ЄÛbRhSgòø/Љ Ø€š¿‰¨¬ˆ º2Íã-ÚJ­”æñ¢EEÀîà<Þ@À"z01e`-¿ˆüåî_Ó¢ìQTw·£öw©·õ8 Í}Y“/:‚`f¥s&€´:ëê‚nAãw6s—ÝÁç÷8nÑùÃ7ç—w_þñòå·O_Üßg¢ó9ä«krž[®®7;¥ÕÏnÚJ÷sæô®®YÁ™Ä|ß–ÂC´×‰Ã© Á10ž¥ 'dð z©85AzÔ|猌!>21’ž{µ+ʄԆ—7å#Fj‚4«U¶0‰¸QÓ|‘ `°«ÄáÔgš@×@³tñ„Œ%|öeW ë@MnF[&zB&Ÿ½ÙÕ¨ Òµ¥½'dñY ¥âÔéýѲì2 ”ðÛzh &HïšÓI„?2o3pžû6AŸÙRÛu=ùô±ÝÀ© B¾ºìIÌÈ$P”“w}u?pÎsßüè1!¥Ý„û›LÜ@MfÑêvËLâ >‹#q;B›ëÄáÔ‰¡ì@ö­ ™Êûa£@¸Áô•ýé;â\eߦì#ÍÈ$PÂÝ4c¢Ç„ìue îˆóœÚ»¾g5³8Fm¸Ö^Ãz‹«¤áÌqÒ©£IêR¶Çfd–Çë ×zEæ3Ýœ+ÚÛwâ`”&ás¿"Î@}Þj½mú À$ŽN›Ö·¸š5AºcY7gdñ$Ä2F\Ù?œº#Nh…áxßÍœ‘Y Äã4»–zˆSŸéfjí¾u:"ƒ@½péSÁÒ§‚¥»OKŸ –>,}*Xb>ì§‚¥[ –úºŠU:,:lA œX#á’-¶ìD2¥@“’¥å߯à”‚¿C‰êKºÝó—Àz%‹Ü^2*äš›ö’Ñì =’úª½â¤ÈÕõ Ÿè%{Ë­âoa¬è[ ‹Þ ©”‰¼åaöä`m²9vïoAìœ \ ̵`o-•Ã[0³{+Àìˆ@иCkAÞR FÜR Áø¼ePR &c/a :T »PÎPØ…Òò·Àâjþx>ZÑ·`5ü-§ÒBOßëãØ[Ùì³·ð{ «Ë"é ÙæÌCËcå™dou¡ŸåŒVà/A¿Köö;eVØï’)îõ~[Õlv]16B1Á9EF™DÌPFò¬ý¿ÃÒ°Î]ÉË¿à,Y`I†ÉS–†¬° ¥â,YaAÓ%KEXŒt©R¯‘T`…\ÆQ€Ÿ7;G8¬Èf¥“4d…ìWZj:KEVXp•à,Ya“Ùð4d%­=Œ¥!+,à°Z¦o Ya ÙD–Š,°¤Ž©\CVXÀ-NÛÎR‘\79KEXÐ2F¦/ Ya1"ïbv–Ь°Ài˜}jÈK„3eKCVXÀßœ¥"+,gr–Ь°Àbî˜Ö5äz% ˆ”¥#+,VåÍæÎR‘ô¢Ù ݉n5ciÈ ‹Ñ|…îÈ DDl…îÈ‹‚˜‰­ÐYa¨Š QV8À×QŒ£+è£3Ž,phU*óICVX¬å+tGVX0PÒŒ¥" ,üwǺ¶!+,~EÎR‘pvg©È‹ޝÐYa`#p–Ь°`ˆÇ”®!+,òÆR‘–2–†¬°`HÈY*²Â_¡;²Àâeà+tGVX \õœ¥"+,àí°º# ,CdH‘•(oŠ8‡žº5â”&gðn‰¬8.Ä" ,<÷– ~îËîz–KÞÏË_aåÂʸÀraY`¹`/X.X—…‘¾0‹~–¹è¢Ê—)üÑÇX£8Ᶎ»öð :U‚ÞnqY¾t•Õ®Äá W~å‹1ívu[p”[«‹Hµ§¦8ø¿Ì-+Fä€dã’ÿQ—¬h¥ÖÈk/Y¹Ò‚gÃ\.YÉy.Žþù.Y©6¿ùm¨'/ú"0!CmgÂçÚé«jþGÎs_jZ+3RÛü¦é‘™ miëÜLÒ ~SôH}Þj=ò# ˜ÄAüFqâp bn½­ð#0Š“ð›ŽÔé*Úü‹ ™B|®¾NkÒswcºÖNHm8¨é>ž«§Ë@zîÞRoxBJÈìñÑôÜ]0ÒðˆÔ†ñ8ÒtÑÊÐÌéݾ ™äñxêMSc >o8 ÍÝQÄý,Îuã2ž»SÛÇeBjÃõ >‘— íœXw¨'d’Æõów”m¤>o6_ýù ™*…y7¨É@Mª=šAœ„‡›Ä©Ï[­×Pf&q¬¯ë¹ZkGÒs˜Z33RÜÌ÷-õ§&Hûì® ÿ…Ið|¬nAiæ4í‘â„Lâ`Æû¦ƒÌ#5Ašaíê„Lá&ìM·(ÔéýÑâä BÜÞÖC5AzÔ |F&pkøF8õy³ù’˜‘I Àå|¡Ñu{ =÷ÔCŸØR.ÕÉ7¸š m"×ÄÇŒâ$ü&u¤&H†šv™‘I RQ}Ã\¨ ÒgNÍñÌÈ$âø¤ç–9êŠ2¥Ù7^{ÐÀyîé)ÒìˆÔvKmú ý?P¤÷vÍŽÍÈ$P©{ÿøc°#õùÊä\AFßp¬Wzh &Hïš œ‘I ÀçÕù:M8Ï=ߨUeBj»^ÜdÇ^‚4³U›0Ê‚øì.-\¶22Ÿ7ó¬5«:!“<€o¸Õ+vu &H·¢5©;#“@€‡›î © Òu´æ”gdð ×z©‡85AzÔ”öŒŒ!nn롚 ½?jþ|F&÷ó B×MìôÜÓô}bOHm³×·ù³5Aúw×]‚B|ÃÁ¾®'Òsߌè=1!µa< >_À³båj‚4£V·B&`ð0‹³páÊHMv½J߈™Q Äå,ÐÂ…+#uGúõ*uhFfðÍ~ýÂ…+#uGÚý*eÓiü÷, Â7Ý·207 ß­Rö»&`áY˜UæÌ¨zÛ7ÖF`&áNõ‚0#õy«õº«7“8€ÛÁ…ZºGdd&Ùv,[Š32ɃógvénZ©;ÒïU©;š32 „¸œ·êVzh &Hïº}:#ƒ@uÓʧO% ŸJ@>•€ÜýÇ—€zo…Á+ðjÐv”ß`ý&W @l]Ï×Õ£ükõ"½xÁàÍ-‘\™]<Þ5`¢L—HÑ·°ì’¾ä-»3_UÆü1y …Ê…ewfàK>¤o{ÉâÅ@_Ò¶U­/YªÍnã°2_kÓWŽƒö·bLûìä-£Øu0œõQ{K¦u”½¶S±· 5{ëúâ¹AAãeìtY–òn¥øý"éÈõ'k4ª6;ŸÐ‘¼æI2–Ь°øáœ[GX<^EOud…/“2Œ¥"+,n8·Ñ‘–8Ü9Б–P/æn, YaÁë­ö%aù9nPHmàÏwÂÌ™q[hr‚ÆÖBü¹.PÐ:D‡åtÄ}8÷‹Ý 0O«DàÕ3M*ËmÓ¤±Ü4MËMÓ¤±Ürƒ 8^vÿ…/ñÖ!EˆÒ”;¼P&ª|–×c3Ç(¢DÖ 3éÀâzøÇÝóÀ÷;¤ƒ‹þðMúƒ‡×ß§ RÞ®E:^Þ?hmFúƒý—û‡´·âá/ø´ÅCÅêpÄGp‡,þüq#„æðü]Zúîþæ/ÐëÃ#²«ß*AW{”.Ë"…váð6£6†ÃïÓ·Ãòž$©`¬+*©ÌáœZÁ îpz{¡Ä‡Ÿ2Gj“9æ%'·-°àm Ÿ9<¾Í=”W•DÅË+„‡¾*_ %|<•êEæs@ò% b¤‰T4’…ã„£—þCT”ûkøi¤S6ö®w¬ÅoÒ¨ÇR¿Î¨5ðiíÅÓ›ü¦:wF;”Ç̪˜¿Þxh°äc%èK_¿{ꔨ… ZŒšf@­M•¾+³}Ù¥¨Auhsôûj×!éCe}xä<ªLNt”õw‰lŸeHÓì=|@’žý@ ¥ËWg5~”r0'„¦^äˆà”A­”ZQ!„©c ’)¨â%a,"Lª€÷‰ÁÌ€¡zÀzêgG 0!{™¥ÐÁ~Õ{£N@T;>ÿMó >.èNÂ@TçûNFº«?êj’4ûñ?åß*i"<`Á¶u¨`à%mðñ»® ¤q2Ép¥n.?köé}n1Dßè}[¾ÛˆÝ'Ò”àM–NàSÒÏô'TUOl¸|õã›ô}0`¬HéŸÊ§Æô!íSßô'~*ÂüüŠôè#jߥ6u`£B;—ÌE¢Riéó4aš¯ }èdÏS è<ƒ‹ÆI—_‡%Ö˜Ye%ŒçÞ\枊`a2œˆ«T`4ú´¯_Pz’jö›îļÉ/¢³ò¢ÛʺâæÅ‡ |swËW…ÔqmY'~ÒSŸ’Oµ“/Z†ÔÄã÷›+qq˜ÅÄŽ0 ~ž¾-ò4²Næ:úivBâ=d‘ê~Q‘öä÷}£Ê9cžÄ…HÓ ;Ø1·=Y¤à1¦>ãràBd«µ…y-|ŸÎýZfL^!¥„àtž%åù:ö˜\pU|°Ý¥Ecù¾”TwÍmz¤4ÌÁ*e÷–@ÂAŸxÊ2i0@t²åñO?¿#WcÅýò÷™$ Á‹ÊßE»™ñË*ÇáñU~äKÑA"cÓÔŸJÜ]¥ì C1yaзpc'3|dèq"™°DÒI˜Q/Û5Ä‘;½¨à±3ÒŒÉÛömqÚŠ`Zš:6ÖH¦²%f²wM1“ÂüÌ3-~9j£y% ctž>ç«™1[†õê3 ΀spê?ß?ÁääùP~¾í?_÷ŸïûÏÇÍg×¾é?_öŸ?n¶öåÎk[ë=DhGèë:h_æ©#½Ö­>éNÙÎ9è·qn¨€rÐR…ŸÑ(·÷ 5’ZèlÄ µNî„¡ø8¾NŠ¢®§qÆãPÑ ñƒÂ¿#øâ kèþe4¥¤‡5,yû– ?’)ÀaÛ²˜57‚eÈ—ñ¨fPca&I{š†581ÒÁï©OÀSn]HžWèsëm~mþU™€ª5ÃÒ‘÷`+ÔîÌŠâ²—f±f¶_mÇY|!ĺçó9éWVtç0Ÿ­Mù\-:Æ|öü?ÿõ ‘8:¥}~Ï€@­NàŸDØâ­„!û •Ô‡ßæF¢Á™pgP¢¶qÂ/U"ÿâ^ë$›¯ÍeÕ6 jvJŸç|6¥»Ð[Ìv"+!£øÕ[ÔJ/7%Ò+,ô¡·÷X^ŽÇ÷ý‰­ÉŽ'¤Öµž‡8Åà$ ‘‡kË.âñ…ϯãU·0§þóÝæÏÿg,"¨=ý¾bfh,÷¶År_3µJùþô¢eº›\Ò1ÒéŸIï<Ëœe>ŒiF:ÌÙMlEÔäÛø‡û–—$f¹8Ô`m¸ ð&)²2`~ÊiHŽí/¢&)Aú‰9Û_Q)J4Äí\抑»áí-ÚYÄfÖË>ßöDN©y™rÛ»¾ µz (M„àÞ7E9§.•)Üâò%ø;ø÷#Lð‰$œ¥u:— š8Kœš{S‡º¨º‹³`Ò‚wýzS³1×k«¸ÉÅ¿s*%õË©ŽçõËjpw'g4¹ÄS#Á O$üȱoJd¡ˆûJñÊðA¦¹VÄLÑÓÎ^Ã>Ô 90W9†åé¿ÿ=é7x,¾"ã]î%àg€ƒ‘´ÿ¼ ÔëŠC¨´ãyn*S:¶­L“ºØŽ¬V/ïq÷+–¼g™²ßô©þA]À?s.]˜µáÒfŽCJ'öè)«@5a¯½sôÙÁgbƒV|£ÚŽÁ{Õ×,â&‘ÆOCR©9ƒyEPCÚ©ÙGä¸(¢ ¹/S* wsÓĵ¹OYHp`Ôà𤹪ŒÞõu¹ÙÂ7­ð,Ð_ï^`Úç ·’B‘Règï„Ö§lÅÁT²¹öOò4õÂ@Ù°°³HdnoÛi:(§wùÅìáõM»íŒ,Äl``ÄØÖɽÒí›Ì&ý…À¸¶GSM4›:;Dc±CI¦æá[E«ŒMƒkdĬ$ÕãÍ]bËy¨›Òï+ü޵îáƒ.TzqÈž¾¤qFÛ®kc•£«o-O›_ù‹têGûqÓÁz{.€Îk|Úœoz¼ñX[‘ŽnLŒÙkÜÏ'î ñÍ~ìB€uÔ Ìê~ÑCØ gŸ?wÐfð‹ü{p˜ãJBWÓÏýçiÓùBÕ½°ÞH·Ê¼K…‚Û="FÅáN9üû§å/;¤#S2’Ä?Y{ØÝ?)6ÌI6°<_€¼†P=Îár”Ù‘,Ïî9rLýó³9­‰¿mp;!ÁÇ·©i©¼Ù{â52ãÑC–‘iy¤JþcͶg:%¦;ìjyw±ö‰7‰]ĵŒˆ—má$W1ç' …†‡¹ÓÚæöS}bØiÊUöè{q ±Ò/ò[˜ÒJæ ze#Œ‘ òÎð|_É祟ï6~Ó¾í?_÷ŸïûÏGúìv5dлö| å!ô`›ÑÇQáÿëĤæ]5¦j-ˆu]ÊëÑòÊŒb®úÔîz½m^ %ZÁ¦JÕ/Þm›8êú¼&2½ÈM¢¾ÿö¾…/§æžÿ„¿$fbø‡ly¹ «(s,”ûB¡„ºhHħÁ@Ïï‘-÷Î{õOJeˆØ’…t¤HòŒ•Á´Û?÷Ƙ͔‰ôqÌ4VgÓßõ)‡)°$Emow¢öâg`‰¢Hu Ô=vq_ï[¢< ¿éöˆ;"èIº‹©òÒâÕ©ò¼Ÿ©ñ„WñBšþ°‘ß^Sž2Ãä¯ ˆžøN~’íN’Ïvvá=ª88GÀ *aXW%}+ëaÞ³—”îÐlZþb¿§ÿ¹®$*¹SWB&ý©làæÙê”Ê‹Iylîˆ`ÃX–‰âø`Y~äo¤¯IAÏÞ†èv ×õ Š J©:œ_i`¢ä¦RÊÝÖÂ[CñHíI怯tÍ–ý\«HUÙ—“•M)u:ENÙgr åZ—´ë™¿Aáv·­ánzü‘¤®(ž1Ž- ›\Çì€bRù}n"–NJ[­KëÉN ÷’Áù‹vËA¿x×&َûSiyÁÍÓâRaŽ˜r'’þÝyd/Í@«DÛXÕe0&°iÿû8(æ2žÞ•ˆ?ZµQ7³³áÿ}_†âÈÔŠ‹|~ýpoñ„båô„ÔS<½.›Jr^eÛŒäœÉ‡*ݘ¢y|ÑI–Íxʨ{Åi;0â…ƒCù ‚!•EEx{Oô4TS1%;Ð?%Áà9h7¸*À†ª•v•à§h[tóÚ’¢©±¨äÙx©6ÛRIÕB3W„TÕžÆjEp³Œö$çÉ3…‰Ï§Ä#wmÒ³çÚdó”òØÜf§ aÕQO÷€ ·œw·eZ?‘­¢GšÆkZáãÅOuœ+Ç‹¨§‡Þ;Yû‹¤Ü¯"¶Ÿ8PiG:ª¤˜<Û¬ñšR±[ÚH×RîB×¶¹c?©Áx ¤æ&#ù¢¯';¶h¿à¡úÿrÿ`„õáÒÆbT©nŒ8!;ö~'ãNýVÈßœÎà"†éÉŸÊ×Ë19‘†Fê+œˆªŸ.U+Í“ø]&ôÓ†ñŽ©È?Þaf»Úš[qÚÏE±fúÔxʰNÅà›»OyCÛcüE»4/ñôÁ…‹¸¦EvJ¤o¾&“\B2â†_ŠMêgó¤D“>×ð>Ô‡à@ú˜§YÿêƒK½Jì$ÉŠƒŒáí¶÷C<¦¹%%×HV/m‹GÐBïȶ8«œ¨ÝWz•)§G?\áÐ=\3 óTVOfÈ^¤ÔvÖ¨y›:ùX'‡™XYÿü˜%BG‡Ïùé¾í(MGsé-)`v›ÛÎÐÃäsÎåp™…OmÙõT8ŒqGDG¢‰=—_§,]ì¼'}Ÿ9$ýwÚô‘¯4N2çiR¬d‘ù:Bt²8zB¸˜Ï„€ƒöš,HvÖôÁؼ½ã!¿J=q1¯èá§Ñ¶v¤h¼ñ27cÄ u…Õx'i°³Æìd©°øAÄ”VH§8Ó¦xÚƒÄËÃ.ã©éâÀóºû{7ng}O´Ì5uM~å†Ó+Âäô~(…l¸ù±ç¾:Ô¦^ÏíÐ$tBÖ™Òõ*ݸÁ³q,ç癯õ ÙéI¥4Å»âEéà˜¦/|ÐH½ðá/}tXèÐM~vÁRÝÉÎÂHâ-Œ>®G ž ¹¡zF¤Xg:>©M…Á¦û\6ŽMzew\ª­})ÓßÚf[æãNʇ·ÌÃQ’ x X À‡‰¤jˆk³ç³ÔÈÃFuãö>ÀO¹íÀô‚íª¡ÔÏ~8DFrDoóxàkÇïçÀP61Vt2÷©u½!-¬Ì™o¹Ò½6ºý,‚ºäLïøV­Ô‰ÆÛ'í§ÃäSΖ$‡£\ÒÀÛ8øS¿Ë u¹YåŒUèK§õ/Žd;º´Íµ³›Aƒ†ºÚ äƧk: cçiÄÞB×4þº®ÈµTþ¿-Äñç¯MÓx;«ÔÜÅÖ ¬îphliÂhyøÐ½s޹Ü,¯’{úÉ6%iEšN2‚%_e´F‘mÂd 8Ù”Oê@oNÙI•g1Oµ“ß šYì˜A'½ømVè÷—ëV&ðZ¹Sê@{=Þ—tnþNê& {hø—Û·‘áa›**Ãáo½ïwÎÀ§½‡p 1Œq;4R÷Ï‹jÿH–é¤\Q&íý©v¶"¶ÿLÎ6îìÄîX®§Ü =ùèI8¶+–6¶ëšžç´5f~ß åŘ-o#’ÔÔµ‰¢"ÒG¡…!ûç?tÿ·§ÒèYó/»H*o‰¶[â]sóÿ0öç|zŠtçgeã+ÄÝ#)bÍìnþÔ§Éá]84™TOØKg½ÓˆÚ´7Àk Ë· ¥*êãßnㇻ‰NUË%‰4&9rð¼³OD÷ù[°tF1îCâ2°ª³¦yZ9-ê©×æ’Îjåè"¦LÉæÙÀ%*ó¢Ê¦“1É7®¼¬_zÁQÏÿ}wéÜJúnï‚ èæ=+«øé¾MÕíʯ§*‘Ëe0ÖxÇÏ)ÃheÉrÃë¬ÓJŒ'¦sºJmžíÎõ(SÒ½å…1õ¯Z”Ò§\X”ˆó÷@J)[V¾øY^S‚ðÜô_“2ϸ»V®Šü?l)aendstream endobj 637 0 obj << /Filter /FlateDecode /Length 4891 >> stream xœí\Ý7r_ä÷ЛhûšŸMrÎðÅQΧóɆΣÝÕžöC·³kYÈCþõT‘ìæ=5­}HŒ Ѓj9d‘¬ïb³ø·ÕЫÕÀÿÊÿg7G¿~éÆÕåöhX]ýíH¥_W忳›Õç§ÔC)KM}¢Z^å±j¥‚ícP«Ñ}4nuzsôªûãñЛA ƒëÖÇߟþû‘r½²Z¯N†Þ†aÃêtsÔý×ñé_¸§ .®ð§WÝù1õ51ç»kB§©SÔTƒñ{cz«ºo¨Ñ*¯]ìÖÜAEmwÃtŒ!øîî–W½R¡{Æãt?Ʊû‚Z‡ ª»âîc¤¿º{Q¶{›;‡ÁÒ,ÔÁÅ8Žº;;ÖcOØb÷æX{š\›î±®§^—¾´Î7€áœz{eTŒyºÁû¼2Ó‡D¿2üªnøŒ§rÑBT7œe‰Ô´åë²ZeºËtF;‘î ‚ß%¤ƒ†©LÂ@Ô ÈÆøë—ãÐÈ6=ýD²À˜udÔ'ÖªÕ‰q}ð>#ϴͺw@‚iK~Ð~š&Ú±ÐÐJÛîuî¡FÕÝ=ÂÈÄÏ`» mz „ÅtÜÃÄRê~ŸÛGbÛÅàIì *Âý¦<ƒÙï² ®yz[F*dÏm]^&Th å\?• E䦑x"íq·<¯à};lŽ%ÖXžp˜gdé ‘Øª»÷¼T=5†,”Ä‚A™ýÌŸøbÆH´Q·Ö÷IB"V a¶™0–h~ ¼.sÔeâhЈ$Hz¹G&sš>rR/;(×=°6Ç`ÇÆxÌâhjîªlì>äÆ@æà¤ªÊŒn9;/n ˜Ó|apÞ[Þá¼RÜùB{NˆÌ½õ¤ÊôÎFYƒR^ö9 >‹6鳋e2fwlTåÇ㙑У?&dCršx3 :f›@s‚éT £g¬Û$ÞÑPéÿI·†'“U »Ìs°€Îë×ÈQÁ–¶mn4!¤‘ðk#zǺL’7’D3ш&)' c{Ø.-“RQB²è†W3 ^öÃÓ~zôç£ì1Ýê~¿‡\Æâ É‘ô~Ô«q ù×ì;ÍF²`}:ºØ+=ºWÌî⺲Pdaè‰6!a!L‘¹9>qšù3’˜±%ñ–cÀq »úPAhýKWáÏ*¸;_Wð¦‚/*x^Á÷|WÁ» Þ‹Kƒ5üå8û<Ö¬@^í«£ÓlöùP÷ x7âÒ?LÃ|÷ϵõ¤¶ÂzßTðª‚gb¤ßù¡-ï HÖ¾ X:Œu¯+xSÁ¢ïx_Áw÷Þçq<‘"t¿­Í¿­­kq•}¿×þ ®÷üYu‡ ª š žˆ4v`ñ1šŒœŠ“×ÔK\4©,!D„“•Ÿp$+ïvôí^Ô·Û ^Š2ò;±¯¬nDÕ¼ÂÖò‚ ú‚±ù÷¡JÀIm#93ü‘ïŸ0“y¡ÝW•ª@]Á¡‚ª‚æ@ѯDn€¢+ =€o+øØ¨ ‹jeE?«à/ÐÚˆð¯*ø¼‚ßTðOH·¤Þä7}ð“zï£à¶%ížm›+R•Z‡ ª ‚­˜B™ùdvP ³°® š ¶ækÑÜ‹­àzÁš<ˆ­€á …€E^‰2‚ ìºÍo+x‰¢œ˜Á§a˜Á߉}eIþ îHÞ糺2À Býµ¸œ{¯lü¶Yx"¢'áÑ|V$¯ k“Ž:>QÚQ´/+"´>Š’}¶¼ Ëçb‡;œBbù¿ŠlüJTúß#k&O1o÷µˆßŠì|/ö5{úJLz€P¾i"u*ö½§ØŠ}ïD¦mÄ 9ë+è*–2U›¯ZÒ‚ÌÈÑlö).0¼wxÁ€Ô‰ÔxDÂHkø¹R/ŠÐáéŒLT~SÁ» ^WpSÁÓ ÞW𼂷8l6²õx&åP3ƒž¼›OËü£ˆLžøî§ Ua€·¯Åå€\€Ò^‰È` Ù©¼¼yftZÝ’i §®Åu߈­@\WA+R }ú RÁ‰ÁœÊC‚± „΄(äû^.j«@Ờ¤Éù x/` È÷"c^ö‹Î_‰¼ß#( .Ÿ‹ – 1вϡ²|Ž8…BàM—––ñA¡ïM_‹ÙeáP` ¼Ê"1ð"=ýë‘ö” øù”á3‘5)ÿ©2ƒ/Å;Ök¹)°2ߊ¶"ÝöÙ´§u%vØs˜òý9'¢á± <Ú•Ã$\VÁ‘˜ãNY•.E àLätZAe7''  ä²éÜVÓ)à6ǨŒä'ž[,“HßVð;±ÃÎÊv,Æÿ•s‹Wbç§ä¯?=‰^ Íâ–G£ß/ÁgÄݯ çUÁkn~‰2·çdþÿeîï%sÒ‚´$‰;2‡R{øí¬Ê0>®€MAéº=$Ÿ€ ¦ØŠS€ÌíùnöR”9ùì¥94˜}ˆÆEm•ã…sÑÅý=ŽÅ,GNŸ"àr~ç?}Í¢^TÃužåÍòçýùRÄûú;2r7qc‚aç4-Z£vãÈW>’Ùš@Mââ{¤ÕÜáK‘@@Á‘·0ÅÅÀÛÊŒL>ô9øo+.§‰™·„¾A6ÏÞc«¾­à¶ƒè÷¤‚;Ñ}I·×eõ—ƒ@ØøS>_<å¼ Ò0È,à¨|hqg?OùxÕìBú¨ø Œš™ºï8lUÁçü¦‚ª œÉ‚%Ÿ—&©?p²ôK ȹðæ‹ ïD 0lŸöJæH6èM'Éó3Ñøïx¨erûE! •OŠ×ÞÉMá””À^¶ö5n¿{ÈGóà.Þ‰ Ló×â²ïi¾-Íc´÷„µã½ù@0C˜÷9_Rö}Ì=44^bî+ŸO@+ø}8’%êS]ÃÎ}Ÿ´¸=ó™ʉ¾|™é«¥÷ùHHúc1:½;?íðuŸU8—„ø„¯ˆN¤A²ž†wIët9Ïô1¬Þ «/‚á[îaeF;ô£_Ý9]?è¹åúè›'Þä ±·£' Þö&š|•ï;¾›ƒÖÝt¯{0éºí‰hBv=Áô*.nLç ÎVìzJWV[¸†Îji5*ÓŒÌw[u4{Ö¹{™&èæ¨tiý!ÝW%ItÓ­Ð|wt×4}Ôjqõw¾# ×½/Óâ}¾·:_Pæ{«Ú§Øh= 6»C?XmCs%7õÍà]½­¼ÉXù¾ö‹»|¹_ c¾S«H—†æF=’á%ÃyGuª €R|}T¾¹5šÜù8X>˜,”4í­äå=bExcv«exÏuÝ\•…Kð)£}O œ2þXnÂ"Šta;xëÂbó•ïæb-L¸iïµ'Õ˜õÁŠh…úPZ~š>ÂG$°¥DÊÐX¢£ …‹ƒêMðCçPÖóç¥Ì­„Ï—ˆ%V,jÂb–XÌlpa¨~úPU‡êC›Hqèj™2É>vY‹µ:žÚ¼ZiZ iNº‹l~Ö]ä±÷Ú ¾Wii[ªÙV#6:ªØ b3µü±¡ýŒº7¦ÌßÜîf“gÝt¹{ºj®mº ßéߟ˜8ö!Ã(3·¸_kk«þ6¸Ú¾-ˆIï.6‘,Tsù½­ÿI=ì`RuD«êÅòq(«ig{q•zhëS3c1´¾4§e«ÆŒ×ÚŒ½£ÞAñ˜ÀEÑD^[öÔçæ1êî‹`9I)éQ>SLæú!œÁÉÊ<Öë÷·¹6£]ÒLÒqq•?-ŽzÒ¢­¥Ф¼ŸˆðÜø¥lò2q¬ñìšò‘ñAÏGBë‚ß‘›ºX8¿Rƒ°Ùçy;ä4mâcÞ²rX½P=ä:—8rbféxÓä«SeBärš;@^Ž¡òªÛ³ÐBiqaŠ[’>NxÛ éy=±±9wsoׯS9èž(üÍú <$znÀ÷ãÓÃÂ?£¹µMNä¢&‹ìÎyI”ï+ ‹‹9v©4M YTšæ½çb÷âE¦Öà—j7û”r}l«X¯KœDZç8I¬L[(­“ŸM;TAvO3çÆ„ëm³'ôZÜ›¶ÕÔÚ.’Ó“imTt‰‡)¼EÎC†}BË 3ŽÖ rÑq–õ¼]‘É5O}gQ…g Z™\NöldpFJu™×~e)RnÊôSÕzJ³¬eÝbÍÒs ÿ#]qM,Ÿžýæ¾ó…~e8i‘[× RšK „äo¼­n®©žÉ|ž¹Ã6W\$lX˜À|vb•iì@’=Z’kÍCiõ¥&fò*Éßš˜¾¤ÉÇÀ/ä‚ Ý«Z´¿ÞV\„ì™c÷Ÿ ÜwÆR“0àÌÙÂAÞA¹=$œòTc¿iý”¤Û¥$ïoÐåzåUCX&Ш粋v–V&Õs©h˜ZM"æ?T9lRYx¤¼v ËÍÁJôæý‡Ü9r4 ž0fŽ×ÍÁanÆøϲ:RLP<{pí{ (…¤8¯{žš³ÂÜf¼.îÑ¢2/¤d?V%à`ÉiòWc·c³ ¡Ìd+æµÑK˜Â"~úÁ…䃚(zZ;a÷WN)øÝ7©ÆíüÊ´x>ŽO‚ÃJv“³¬”ï{0DcqkŒªJ8¬>ö²wv:zÁ ä¥í}«Í•‹»|)® ‡`²ò •âð å|Ê]”i nwɾ,ÿMyAÙôy¯¨ªDúÍÁTΦ‡P2^VÕñ#™Ÿ_I€—RÀj_fŸL±´ÙywÀû•"÷Ë¥f§G†0ã” q}•e!-I“åf*•Ò8Êý³CtÿåS…— #ëãcŠ}è£uúfSzß$†Ä{€ôW•P©´3eœRÎ¥^ÌèzNª6™¹Ô»„­nvzU#·ž=¤òŒ9Ümæ×ÆÛü EéÎÜá"·òû!Øü˜§Iðë{ø!3옴 òdÆÅ9‘uéì(cäO8µÇCÞŽ+%šYÎØÎs³Éß-§Â6-ÚR†Sé›I_Þ\³ÝûŠÿ!É• †Qð8§ ž„Á•çsÒyn÷üv K†]enXçVr(Fžææ²­“Þ°Ñê?!¥MJJ1ÁÍO/Ñ~!Á³Ž–)›ç2¼!Ã;Äš{U]˜r’°0ž„¯¼ T³1ƒëÖ{@80Ÿh>‰8.öqTp—m2íëm&ŸEñÔ_²Éù ®3“UkžÈA_ÊdW¾Ø¦4 L©âu Ÿ7ÇRl¹|;f4Éq¼†æüþÌÈw—)RxÕ&‡üX é%¨&ÕâæQ-“n1Î|#ôÝ%¸žÃ+]·Ç\Ô®SÌt•U#=\”¢*²*ªTØXóá´úÌ6¨K/yH«ö®.ùC~£+ìÔÿî=*¶>æÃ¢@{PoGæ“ãc:¬«©i>!×|²Éh8³*‡š®}5ùš¿M:cÚ·ÖœLz~¥iÜÇ8}°ù¬Æàð– ‚éí/ÔŠì›Ý¸8³_l‘ì§I! £0*ŸrÐB£ZäPçåÎÑà7å?ÔÐâyî@®h™±0cû1(7+c-† SÏŠOðÌöç½idâ˜U ü©9æoø¡?X7¡œ;ðÕÁ¤Çêà?|än:žY¾¬W•³J2‹XF:dVµpÞÿŸþ%Ù/“endstream endobj 638 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1780 >> stream xœmUkPWîffš"¥1j¶g6%"*b%k"BÀyQ_ áÍÌÀô8¼D wð:À0ò˜!‚+Ѭ²«l–&Ñã*1¥[ëŠ(qãëÇiëºUÛ3¬ [IuUWß®s¿óï|÷\’:$IR¡Ñ ¶¯åÂRRxËAøa½püe¤ 9K³ôó·hÏPçÙ®°Ý¤J[ªÖæg¦gp ï”е¾ ?¿@Ŧ\e~fJ’JÄe(s“8q‘£ØªNÉTr… ï § Z³F¯×¯NÊÕ®Vç§¿¿ÂW¡Ïä2ñJ­2¯2U®VqŠ˜¤\¥ÂNnµýªÎÕè8e¾"ZªÌW±P¥Î×îMUÆef¬Z½Æoíºw "–ˆ#¶ D"F„k‰Hb ñ&±˜XJ¸n„;±€ð bñ„”àˆ ¤Ùí sÐ8|'Y.)•<‘FHÏKŸÊÜe²FÙª€z,œtN"®ðä£1ˆ“!ÐÏü¼£?p×î¢,%k­iIf7RûÔ(;Ë‚Œò xð“Ù¼K°¢ž^ *‘›¨ÿáÒ¥Ú8k³÷©Ä(«-ÊgN%æ«âa”'¿“˜/rp[õ3–aÙ*oì†Ý¦}@ ÒéÇàÆâìÇ„ÄÞš¼í»ïo\ö_"Ÿ¡<È“à3&¢˜§£ÿ‚=”f­<Žèvs‹Õ´¿}|”vÛNù)ÇÞŠ†LK©’ÚÍòñàïfWÐJèé©EzX2Ëï&Çx‰°Iø-cD–l®je5«4í@EˆÆ¡%~êíç´MòÓ{­UÏ‹»Þ.EÓ9ªŒ•1)æ+z¶²í`£ÑiˆÓËýK¦Çx¢ÎZÏd £6DCPÇÔÙK9§´FyJgþ‘UƤ£¨îê±>xp(Sg`kÕTè>Ôn²\e†ç<Ù!h$B°àÀtSÆI‹å؉úŸÔ]Ô2Ì/^Ö5§&§ÙZ»)pÀ÷šÒÚ‘-6¡NÔt†ž)øà¡ÒîãrÑà.ÌûÛé©âyr¬›#Ä+jŽÞœ•SE :é3júË͉‰É›}å^Ôk»Ý~FÚ‘ya˜±ríj5Ç©ÕíœÕÚÞneq,ödfex»Ì9(ƒ³ýx&(»¸".ÖóB§ øâCð…wüUèOmЪËíùÊ›BÅH™—ž—©BÚ‡ CqmÕלÍjØh]~qöûOÐ9ðúœ®Ë…Ç× ËÌB/O^»$&“ 癸ˆÁA‰Ø¥;¡Ýt)Jï;c8ÝÌþâ©©õP-2Ò¶®²x‚ªl.Båv[È÷8 ®¯™-vdòÈ“Ãcp\TéÜe†[FûÑ÷ô€ÛØ;l Ý=\ÌFlJ@AôŠ©u°LÝ|wã`T+»¡‡ ‹=ÿõÀàŸÇÇw}œûi˜+ Šº<òíÐ7÷þy96&"jkýøÃBƒ…$ì„…¸-H˜¾Kvš&';픦§Ïrª‡ÅCÒ_ü›Ùùz×Õ_nÖ›_rmä°à+ö¼tfꛑÕÑíÆBmyÁï«XüÿC*ŠQ ª\Ì™JZ;ZÌÔ/ ž¼8½¢´f Æ a)–-ÇKp$Žy†‰sMö–@$‹³ðaæ½hp‚eàuý§›7¯ûàeØ+¿ñÞÌx(þY •¢’£Â„}U”—`sÂR4)Õ%5ºÏP.­oÜßq­}µÆß±8eeÛív„2ZD»å‰~ö§æ6çÖC;d 0Ï/„}÷NÞÆÃ3äÈPk@†£ ¨¶ö˜Á€jÑaºSoÎÓr%™ëŃ;xÞ{0}'úò.3{뫺d¡'6Žˆ3Û5bÇæÜ“…æ¶®†êƪ:¶×££ˆ¾ÑŸ–¬.MNÍ—çÖìªNýLocl;ÿµK÷¼Ã“·]¢1FX|ÿî$jçRsñÊê2TNs-\·¥ÍôùŸ²¯xá¥âãŠwâ2¿òÉ]˜2ÿI,Mø¨ =™mÂ+Ôpðj¥‡†þ2ñãW‘¡[âCßÖ‡u)kBë!¸‘ÂGy§±y¬“´Píüïì<æ<Ÿ þÛóendstream endobj 639 0 obj << /Filter /FlateDecode /Length 185 >> stream xœ]A E÷œ‚´Œ¤vѰ©›.4F½…¡a!JÞÞB­1.Þ$Ÿ™?ü©úá48›hu^Ý1QcŽ8û%*¤#NÖT[•>ªTõ”TýY†Ç+ ]Ðlú"ŸXÝšc[žØfR^ã¤Â(Ý„¤«kÑ#:ý×â›a4?“‚tŒ‹@ÃWyQ¨Û,Q$/Ë÷5ùŸœxHÕ#ºTÎ*±sZëð{yð!»è yÓl\ìendstream endobj 640 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 517 >> stream xœUMkAÇgšd»Ø_0 ¶fçRi ¤/]  hQ¢Ð^ôæ’M ›»×¶ÒjÄvªÚš@ª&¼zuŃŸ Ò£§\úÂì0Ü´hžçáyùÃóûCàB)•ž½¹ßºÃÐp/ø¨HòWüV€}4èo¹ßO³•Sìñ fž„kums'eÌÜ|– ±LMªê¥šš˜PÑ5›¹ŒV@id±®oÈ£Y#“Ãd%²„¯ŒÛ¶×t+n˜óÉh Ù9’E3ØÂæ#<‡n‚îh:Fxñƒš2ôb‰`¥9lpë¸@òزðÃ’–ÏkÄ{…‰QøÁÔ™$à:¤p<¯Þ. 6‡“îóße¶÷ù°ßev¸Ñ¢ív‰.)½=i©D iцâ÷n;l­pÿ«ÏýùŸpFª3…É]£2S¥¿‘Ä´H\)vQ(ì¦ÂÿÜUIĨ»e¦È‡H:Lmºw‡48 ת[UZ—k+¯ËëÏhe9ÒëˆÏË•Õ -Ÿ£å­J­âvħ³õ§/èK*×··ëµ'›åªÒûÆÞܽÖ!&écþüìÒ&t {Þñ¹Ó|$Ìœ#®_C”; ûÒëJ‹´ÔnÓV#²Þó«MIDjƒÎ1gÈy zy€ß}¦û endstream endobj 641 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 378 >> stream xœcd`ab`dddsöõõ4±ÔH3þaú!ËÜÝøÃà'+kc7s7ËÊï/„¾Ç ~âÿ.ÀÀÌȘWÜäœ_PY”™žQ¢ ‘¬©`hii®£`d``©à˜›Z”™œ˜§à›X’‘š›Xää(ç'g¦–T*hØd””Xéë———ë%æëå¥Ûiê(”g–d(¥§•¥¦(¸åç•(ø%æ¦*€]§&ós JKR‹|óSR‹òKB˜YÚ~tðý(h\ýƒmÓw§ùŒßÙn1_øCZô;#Ûü™ÝKfÕuWÊ«²­û.×?«{bwä⊩Õõ…-ÙMr)¿õY3°•uwuµw´µ·×u·õÕNéžßÍñ-àwCkIsfw½dàþÔßÙÏ—Ó×9­ª®³­¾M.Ó!(!ª›#­kÃŒ™Ý½æÉó•-øáçº~FüŠ~endstream endobj 642 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1909 >> stream xœmT{PTç¿—]– "UqÕ˜ëîµ)õm|«I¨#¾ >©‹»­¼– då)«°{Ï¼d_©I›ÖÖˆD§ÔGqëT[«¢ÓÄVMuLÎ]Ï2í·&&’éwî÷»çžó;çw¾sxNÆñ<±$õ Ó§…ŽñÊ«¼"†)Tñi~$ÐÑ*ˆV…¾QŠg¤’óeó.–yry\·‡ór¸c\w‘û;wŸà5ü^Ï'òsù7øµü¶%yù6kvf–dˆßž`˜ž”4'Ñ0cÚ´$Ãâ‹5{»)×j’²,9&‰†µyÛ³-’Í??K’ò“§N-))™bÊ)œ’gÍ\˜h(É–² k,…k±Ålx3/W2¬0åX _×0åë×’¼œü"Éb5¤æ™-ÖÜ|“Õ’û<‡ŒìÌÌ¢œY^®9»0§É–a5m·ì´ìŒÌø-Èxžû‡ ¶_X¤—ý¾/Y‡ø¾À!{–I*É6[ ¥ç©½ò-`¿¼|Îü®ãÄlLjÝ?>áոѵf7ê5žãexïæ=|_Ï7ð^ÞÇûùF~ßÄ7ó-ÜÈPûÔœû/ÿ^غ0Ru¨þ¨º¯¦žª~[ýiøÒ𓚥š£Š#& ‰}bäO:xeÕ•rP¤w´ L˜®È‹gJXŽg«lrB9•Õ°»¶®ÖíÔ˜y9å2q8›ö]£ÔueÒcJ¢Óó)nî\“Éép:À!ìöCS‹Z[uxÏ=UÒAIbÄðCâ3Çg¢úÉ)^TÉÎZŽ×­óÄ×Þ¢ˆœâš„ZBð±FiP>÷úܨÜàÙÓÜ9NùXƒãá^¹ßùûg»nnc[nyµ,Ã.°¹d_Í?ÖÞ›ÑEs¸ |_Tâµ6»Å6osÅ.²×0› ¹àÀ~VöJÛŒ+àC!À´» ýgqúw§Þoñ‡T†f¨¯õl9JcîàFG+ªI0ñú7â|ZÿDjvB’ R)8¼µz\CáÍ4Ì %v q&q«IK‘•´RÞ;îÿ ºˆõ>êÂÕ[ÇxÛ`¿ìªj ”‡»ñuø¥ 0pòëhÄù¢}Ï‹e¹¸ œþýï‹qô²šè.‡*X)Yr[`ñÅäßl<»õÊNJûñÏi¬‚¬7i°zµ1}í¦‚mÅ{j¡*„b—ÜÉF¤é°îQÏnvbŒ§üpYˆQn1)ûÄaóúx|·O…ï2¨Åž>ª`ß°¢z41l^úzEáI/ž^zÔb[/™Ù74÷R›fH'‹ãŸÓRE*öˆÃNPO*V ceq¬"rZ2¯Ã61ògÔ¶ÍšÐÔ*W;1ò<ïêÄðN媶áà`6.̢Š…í¨ ¼ÿÝ ¨úB`t¥Zð€{¯÷G(ÌÃÑ«POcñ|>ÅÊÂ% ã±ÿÆ^Ǩ"çö¸ÝP'4î²2'8:YN]¹€ÂÈHòLêN§Ó…4ÛNsæ@0ª;8 gу¿Pâšðh¢ßî’÷ƒÐê…F}Œ’.’­ST×°T¯¨”é"ÙµPçt;=[{Þê7áé^õ—ðoÀ¶‹¸£qŒßÏ®—[h´CmÙú•eºÉ4|¥Å¢­8–4V^ZÔB/DñÒþDóU`•8põŠ¿N¹œ‚ÍÆ}F¼ »_]Çð1&áé›wûö‰Oh¥…*-gZV¦£»t..˜Á$NøWЀ^:Ó!}”q<³©Ò - ´<¯ë%‰•t¶¹ÎˆÏ–³¥µEE³ðÁRLLÄ ñ_Uûd×.Êí¡µ]ãvè’p‹FŸ'=+ãüzA#n FQ<õ¯f³IQ3ˆ“ŽÚÐêöAK+ís¹ú.ÜÀ04¢|»?ÆÓq¶çΆH\uE…ç‚gYqVÜÊz¼`wÓ²ë6jö8íµnGC*íRòqšy`šLVO.H°aÕ¼ k««Ù®q v¯³¾µ÷O-Mº'8ü¦ 1%ÆÒÑÕ=L¥¶åEGþÖÍžá÷?n?Ëendstream endobj 643 0 obj << /Filter /FlateDecode /Length 8201 >> stream xœÕ]Y¯Çu¶_¯òœøÉ0{Úµ/1Àrä%°Ù¦í;†¼$E‹¼Cñ’¢è<ägæïäœSÕ]§ª«æÎpQ†Z}«k=Ëw¶š¯6b’ÿËÿ~ðìêÇ¿³~óøöJl_}u%鯛ü¯Ï6߃Rx5EåæÞ£«ô­ÜÈ`¦äÆ[?Em7÷ž]ýyûéNLZH!ìö°û÷{ÿv%í$R›½˜L‡ͽë«ííîýõ [Ú`ã†ÿéÏÛ‡;h«cÐÖmŸBw E•¥Ð.` ­õdäö÷ðÒH§lܰŒ.ší3ìAÅ‚ÛopFÑI¶?ÂïÔä£ßþ+¼!Zäö 6÷þkûK­¥Ù~™a`h`cô^m씟 ·¸ýb§ ®ôöU™úÛÂ<¿`=<„ÖNjcN8—f¦§@û—?Rü‡²Ñè¨,˜6ÊÀVÃ’ŸæÙJ½ýUÚ÷àkÛÝ÷fÃÔ©PAã.ÃAÀn~ØãçEEJOð' ì9bÏŸÜ»ú-QŠÒoœŽr@<ÑëÉËMÐqrBm^<Üüiss%ÌWÉÍk ©¿ÂÿyõÕÚÃ?.“i„´Ÿi57yÐýlž])o ÛxÕíæéÕï7¿½£å…‡„oL˜´éö¢\°“¥70PÈýBóàà‹×°gO5ê{£(è]ÇåÍYsUÆ•Â7I¦ÛKiã€ÏêVŠ '­7.H9)¿ao.˜œ@a—(âde·)œ™J“³ºµÆOAñÉÍo.™œ…­å“[õ"­–içΟÒL|çæ—œªÐÄen«N€îü‚ù¢I_{ä¬Ü¦¼¹lã0ç½ä7õ"A^ɪ—üæ²¹±;WÍ%½¹¨P “©zÉo.;4:¢ÒI÷àOjQk6qÖ&á‰cIU©Òž7ßTé½¶Û'Ï’8ßK'àõÍ^!ac' t_¢ÐM];TjÝ5J`‹†ŠºÞŠô™^Í(ºIH REYMŸíËhå3”s°ŸY ¨^ÏTjð:7ùï^/ ¬4&5ùóöÑ T’Â+ßm¿Úí%¨!İउN­àÆ¥ºtÅåÃ¥ †©¢’„–Úªm3mœ«Ñ@I ä€lŒ(pî¹}MfïœÅù*NQ’°hhî K”ô³ÝÞ ÎÔ’Ê 8?PâÖÉ < /-ëcü|ò1µ#ÕþÛ!uÛ°  D©"hÁqÀû¶Œ&ó—-â8JDÈ&LPqû—¡0@Z¦3†¾X—x–RÎ»Ž .z‹a{,Ÿ—LJåñEy|Òýìº<Þfúª– 6³œøOw{øÀûñȶe‹¾ºü¨H¼¼_ô£•’OôctïôcbPˆ$ úY÷b¢ƒƒxô³LuA?Æ:Ph—©"'2)Ž~Ö½”6g£ ˜u²\‡/o.˜œÖp¨Š£Ÿu/€è#ˆõ‹´¸ÀBòÙÍo.™ÒšçcÝ‹ "ÔeðǨmÙäæ—«Æq5›Ûª£¼B ¼hã4ÌÉqø3¿¹hã¼5p™ß\Ô‹á­«^ò›Ë¨=pà2¿¹h»Ñ>p–õ2¿¹¬:"ÞIçàßþÐq`½®àY€ÁüÎàHÞx)"Ш :ý¿Ã@ÚƒE9êÓõšy[dM¼ðAPÀ}µAIÕ~ ¬ü~ØG[à_Í%¿¹h.Ââ±ð¹ä7M/oÁ‚è<2Â9AGz7JHÛ™R~^þþó·Æ•Ú›I¢4áÊûDR„(MF–o=`™DO…+A}º éñóòø°<&\é¬WÒã±<^—Ç q¥&/\ Vûžçm¯­†DAz ÔÁ/ÈY*TôÉw("ÓíãW´|›‘Ž!hòî ûõÖüónï@¶‚ZÇZz!ß©ô1¬ 8_’óT8ØâÂ|U9I'µt"whBÏ4º 0Ê#|¶øµ–B€AÒ¸L©5ˆ:¡ì=~ŽþU ÇQùŒÓŒ”T¦v×£M+á\JÏ·»åqÏ\·ÉÙ ÓPU×_ çc㤦ùû AÂÛà¥#ïo»cVm/òz£ãë=¦5 à°êÓl¤ã+ê_¹û Ðip‡éC<^6|Ť³Ë]ð‰v(”Ëä „4™…’ã<˜¨úÖ‹[øIñÉ¿ÄIˆèåöÍ.@(?‚q$Zºî{½ŸÓQØ`éeþû k{M.{=•üãò|A1‚ša™öÞXX·óî‚­³¢&h¡a_ïàAAÿsø ÀžW¤Ì¡Â³–“õ ëä©÷ÚÏÛ—" 鈤…=ã÷^ƒ9*Ї#nÊy^3ºÇh_Áp÷½:ã'´eœÙþmÇçV»ó¥®ýù –aÂóù¿N2äWWÁ¦ƒÂŸnJá:MÊV;æjÖ^Ö’7 TOy®/( "¢6Á~•Zƒårn×åß¼CbEÒKmÓn¶ y~ÕÊœ±w“=?XÁM?"/sÔJø(¡ò"uà`lâÀä1Ó¸M{ý™ŽÏè#8Kº L Øþ¸Uý½W¨µ< SòÃÝ^Z$!µ•?JCùñH ?ãìŒy—‘p EÐí-+ó=[S𢲠oІãÃ#‡a> pì˜Ãp†¨WF@fäÇÏvL”6ÙÀ–+³Û´µ¨Tï÷$y6 Û×Hc È}ÕéÃB™7©+—qUW[.ß=KÑ(å̽Uñ*J_ä.+×E¬ðA®Óf¡˜¬@Ï ê /çƒCL8ÏëÈå`u/òÀAŽôcÑÑif&S›´KÇ윓ªTO¬oT%gØcJ>­ÅT€áËœ]N¿E!½)‰S•ÒH jÆ®)‡KÖ]r >7HèÑ**“«íÜDÇ´uÊǵo§hÁdæ¶ÞóôÚIÓæøNqv¬µ Úä\C“ @oµå:|“Ln8¿¹÷›«{ÿT%Ïó™Ç¨ò‚Б5Øu_×F@F)ÌõBЊ€BÑ2º ˜…N.5yj½ž·Q}½ “öEˆ ¬c\ã/øÍ§é=ÅëŒÄв·¯Š}ÚÕäLÍ>éêá›òøq·Á‘Ñ•ªèÍjvœØíØ]ª´è™^ ï½ÒýïÊãÊã'ÝAÈr§Ó¦‚DK¼Ï¬v¹Î¸óy!6¦Nß”£åÑâtòX4ä`œÊü/Cöþ`BÔ›ÏèþlΓ}R0_b¦sGåÝK}^˜ûÈ-’ )Ú®FÍ{,fÃlÀ²KÒ˜üa·©1úYÑ=·µ“d4 A7—üì&5wmX~‰¹>¹e–¸wáo `Šå®ä‰7GßÇ=ÕcS @,êr6õA^ȧqp®áŸ¦­®U|v –(Ä5RLÖiߨ;YΈ¢-­U‚˜"¹ÉΠó"Ö¦ Õ ÀZÚ${°þrž_N¬Ö­ŠØö^ÿUêÌu2Ed=å{wŽȾŗ] ºM½˜;rb°âú>¤GQKJ¶øìZ`X›ë%Š'TW‘%"sÚ›†ÈhÈ¥VG'Õyª —ã‡Pðrá܉..sØH ÈÁ‚û)¶^/Z@K*uëiV\ËkÓ¯V}›I‘s=βÏ=ˆ`±PaFòK:ËËììV¹"€ /ãü‘õB *§ ÓGß©¹pŽ›…œ\ZeãÅ h¦î4^Þó’ÛDGø«Z1¥¢aUŒ @ªƒF ¾vºÑÇJïØâx¤± ,&ÿúË…¼Óú|wM wÚ'¤¼Öî)/ï–òÀq좪•”_Ö¼r@¬fïÝìX>ú^¢´_>;MJáê{d #w4¢÷¨Å~ÒØó­> †Qçw“´®’øîd&%‘›Ô%!è· ìê£ë$Î&ýT>„sHGé»I‡ÊÚÞ‚t.I „«>Iw{dàÿÑ]>Þ‘ºzžäwO’Âìð TÃ,ô]æ êø/îNã(y®ÕS•æfd5ìÕ\^ÂSó늘*”0¼“ ó¹éO¸Ûç)=/oÛüÒËݶ V§IÈ&僧*uó˺º:óõÝÇ·iÍ:žp"ðbØ´)Šûƒ+Ï+Ždp„gpFsßç¹ÀæÖÇœ¡õä­êåCŒÒiáÁžëêçS²b16å5ž”!†‘óŠ Ó é‚ÊÎdù€ BŠu™ÿ~^ý¸¤!Göj_ò¥Uc‡f܈žGù€pÀ©äºRo!×e¸@®|ÃhSý.¾á˜à"Á~Žåêú„`?a«Ëýát WµÞ† áeJÞÓ-4c%î"@Vi`í}L,Ðå.߯Îÿ »ÁÊU Îÿ0=ž^¹xm©­çBçgœ9‚Šoeá„”Nú%ÆÇ÷‹Ð¿°Ðm7ú2¼â'išUßœ:`ØŒNGAÏR]àŒ1#1ôÞ1Ýã©8…Š@ÁkeEP`UÒ-ZºÅ™op»èÐ-X‰ï%f2s4b‰Gã嘆âèÖõ®ü\?–B5¨á[Ý”€*â HY'Kâ"ùÖG÷ÊOÿÈýƒ=˜teÝHœ ±ðš&9^t/`A=6‹é±sçm†!Q…~{i§´Aï.Qq³¹VSÅwk¢ Ë\:¹,B&ª üñ…*ꂚSD! Ϲ_Ñ»ë¯î‚Qf3Ÿ•¸×"¢uV•Ùñ2œÛâOdBapŸwðH&bY‹ s¾±ãªyaÍ ®¯.dsUq©¥ŠÃÂyv«\ã¤ÅQ|•ˆþ]±ÈnªÙU©×Ú’-x¸MÏfœ›÷pnQeu÷ìS34ÕXFùðþƒyJ)'íŸ|½Þå›]œÌALO<5ví&Çò`—®çALí ’».JFÓ!F_áã-À£*ΦÒÁ+/»pㆡ\s§3ïû°åª¡ïžëpt0î⺀þG\;^œ«yêô Çé\?½ÜåNé½v„el¢&ŒëªÔ̧}G–3AV·/²LÔ^Õʈ/9ŸßåI§ßz L„V¡ç¦ú,nº sýä<š\Žú)†í)[c¤ÆÀž³Òœ@í+Üžimp+H{'ÍNåíß²™YÍÅf뵞‹\y’ñÇÆ–èädÍÌFHJ;Ø’0ñQÛ8Øš5-a8ô:-p]$|×]Ò çx)ïäírØïâBÖæ¤ê? ö­zNFþ—dÏ2kVûDµ1¿Ó× âÏxºÙ^ÉÓ™1LÖ¢Pěޥ~§Lì3o)M•džÌÚÊH°ò!²¸q{e"Øc–øçèë›ôÒGÝØ-ºóä×ÞWRTº ãtèî•Ò4- Î2_DsüúKÒQ0tå .—;=M_¡ Â+úú‘c†iz¥ÊГ•×7×s|QÙ¬~ú¶Û–]$ÀбYö§mgA*Ÿ¦Ç/Êã±<ö«µñ–ú°ˆ¡ú.ÞNÁém]uåN>¦tëаàŽÂ_—I±<í®å0*I³¡ˆ’ì¾"þl3Ò þæbhKý~uÜÍ÷Žv¯ÜÉ×'F_ñü”#æ_øHÀWAOØru±Ènì .¸¸Ô¾&»ÇÙ”M†ˆá)úƒ?Ž õ5úNÒ¶ØEr¦Ì‘’þ…2<–„#47v³qÇV nÚ-Õ5¦KÇ•Q—0"ˆiw"s#eàå}¬ˆcU>œîÎíË tÑy†:!•;Š"2¼z«SšÊêj³œQ ûîH¹ ã’x\&–ÜØ´Xþlùn@W¥KޮŋX×ÚÏ«­ €ú:¹”Ókë¸ã]fs•1Ô¹Ù¦Õ-”Y,·ýd&œê»Ý›†uÒÄÄKe­)WÏáÙÅYªQÔ9aswS5F€D)Þ«/ŸÃßb‘ &?äåsø €6ª%¾çÛç LÓòÞõò9åÔd];éKŮ݃D'ã]Æú,̹ƒzÞnBYë› UUŒ¸§ÿðŠìûÆ­ÚdzõÓ®Š=#,?-?(Ÿu?{UqÕ½<>éÎ÷ ¢kW˜À/Ò]kw4BåRY±ÒÁåýkÄén—®u ÇZ~î§E²oS[ÔËd( ÝÿOÀ/ò ­÷(úÁÀmì½ãh×ô‹áo‘õaÚâú•…÷½;lZLD+kùìãÝ^:¼¡Xe܃žþ¿`鮲@;¦îOÒÊÐ÷ØAbÉîžÀcù-¥*7 z^âMk««Þs¬¢*î9í¾ÃŸò²ÎI83ýƒ@Ã6ÕÛ7¾÷Ä¥[AëªÒrf¦—¹’ J[Œë`k†ec×°›Šx}«VbÛ¶æ†gÊJo³Ãè÷F—´iL‹¾«ÓG¬Z¸h®»Ùs)kùõ¬jÕD€—޹Áß ž‘ Æ–‹ ò XØeúéÒª ¼ÌãXi{t£ð7„÷Hè ´\G¸¦ãòo©JüiN @“îu×ôÕAâÏwÎož^ý~ü£nõ2gð Û®±OðlHú~Úø±T9T1Ê’º¿“•Ÿï—£G•efË$ËGWºâÏ´àÏ÷jÌþc¦MÕ$»bgO¿ÑË®A­Lî¹j&Ñë]í[U|ð1„· …Š«;jx¸¼½”¼r¾UÕí¼§tá*$›;-qHÌY:>í—ºdzÅ¡•’ÿî¾mž]sÈå+°0½-Yöͽ  §P;>h¢ÁV[”¨ªØÔSþH ;@ö¶0˜"°\8Ô^–»6ZMåo¥ cWQ¬O 8ìW=`|eq†}È:±VÍÃùÇÞ”غö&½RŽ!{bqåÛÂ.¢ðbUZ2bVÅ"ÊÅf޵>PÆ’žû#Þ%º-\,1rbiÝï'-s½Ï«À×;ìsÉ<Ć#ÆBGÁƒMöÂÍA>‡“gœáàfŸ¾¯o`€º´|W¨ D˜í¿œFß YÝj¦}„`Ðí–Ç#Ï%:yóÉÿÁršô%üõW*W/ã|žLC´y‹0Ý2DêĤ+·ú¿Y²ŽÍ/m2á¿x™ž{ô ÀžGÆHOã¥Å5‰¹ˆ½žt¾Ëp©; Õ…‰-÷nRÑ!ynPþ5Øÿˆþ5Kendstream endobj 644 0 obj << /Filter /FlateDecode /Length 17420 >> stream xœÍ}I“f¹uÝ>€íeC‹L™ùéadË”EQfHrˆ,…M.’UÕÕÍ®¡YÕÍÁ^ø¯ûž{1~™·É¦F_!Ïw¦;øÍíq1·þWÿÿå»›¿úYH·o>Ý·on~scø¯·õÿ^¾»ýÛ„H(¹”£˜ÛŸßÈOÍm6·)¤KqáöÅ»›;cï_üšÀÆØíüÅÄD¿xñêæ³»O÷ÇÅ•hL¾û–âJñæîãýÃq ¥¤dï~{ï ýÁ”»×(5Ç‘Ž|÷%¡CöæˆwoQì#/Ï®dâÝãû{ÀƒÉþî%Ê’}šY~ùâ§\C?×0:zt¥Õð¯ï¼w—|÷£_Ý?Øt‰‡EMzõ>â Ž¥Îé8|¾{ü†¿Å¤ ×ÔšÃÅ|÷áýýƒs–8ÂÝ«éA3¥Ü}ƒâ\J ©¾%Wë_¿KÈ£uö)î/¹*%—p÷TçôKwXw Þ·ý¿ý îà¶ùñ‹›¡Qs¾”œo©"ñÖÛ`/µ5æÅæÛ¯oÿíöý³ãÅ‚›KÆP˜Œår$w‚£,5ŸÝ½¸wáBpw_¾{}û‹»ß½~ýÕ§_Üß÷ê BÔT4ŠÊmÈ!^¬¿uþ0—èè½>_²uÂÐÎTÙonŒ÷Ôí‘~S ÷x9²=Ü-ýGßF¿¸ùüÆ_¼-ööwTßÒ¿ž~öàç€p}Ä:j\- ¿DÇ€‡ÚئkŒ?è‰Ú°òhæÉ[NïBÒ4m< <Ñ_œ9ahðxß¿KÀ'Ñ(>;õ¦-©ñh扷tM~ÂäKŒ¹ó(ðd{ñá\gšU±·³†až|ñ§¾°ÉcZwžBcðÔ6„½5 ñ„ƒV{Æ$LîÊ£b˜'Òòpúö#\0ô‚±—pž:Î]-)•GÃ0õÞé]†þƒí< <–ZýÜ´¢ßæ…Š£Åõ5³Ðzvî ˜6]óQ1à!½>zÂÁR<†yHo=õ„ ´çNó<,d4ntˆE?P1࡞Ëùz¼¯v…Šažt9‰$-dœšç!`!™QNNŠ)Ù5ý«4 óŽxêKv_²ƒGÁ€‡4£ãÜ$Œm3KÅ€‡t޳áÒKs*†y°JŸ5tÒƒë< <´kKÒ½yX ÍÓ—ÛÀ~›F£a˜'’tê jÛ'–!–L-eÏo"©9,[Ã<ùJ{Àh·G¦Ó<‹a_Ñõ›H§6¹µŠYÝç “!ë»Ú­A˜…VÄ3Ʀiü©ðî6s†ìónݨæÉT»ó¨0Ûç§Š­e>ž¿ÝMÖ„ŠGê ªi8½}4 óÄËi [8NF3+°D{ ›/'MÀ·Y®b˜'otg`õÞÒ0àÇÆ]wwлb³mT xòAãùÕKÅ0OÜèkG< ]Fw)°„°‰b À|oe ²¼Î„åbû(Ô0Ì“6Q ãÙ'Øhž‡€%¹+ýMÒr¦¾Ò0ÌSÖ†øfߌŽO¦õþ£E×?KÀ§˜ aã1$…Žaž´‰a@íBC<æp›†%é–JëuÃ5 ñ°—å쳃.lªU¢c˜'^Å.8ê`ÓÈ6Ñ1àAFÁI¥&'§^Â,y]ˆFMÂΘÔi xOpz•;†—Q…€Ù'OâLÝÚ×1Ì7‘‹€¸Hé£aÀCãúœ%˜lÏ|Ñ1̓ϡ‹û¾Yû*,Á¯‘ ‰™’Þiúz¡bÀƒ\‚Ó«¨9º‹G…0KÜh‘ú!˜A£`ÀC,Ÿ¬‘þ•úüT1Ì“7ž…˜©Î¹×GÀzó ÝÅø>tXÈ:)ç~@ÞGÿ(Â,ÛeÃàx@ ùçX`™×tÃF0K¡µôÜqDuu ñxä œìdÂ%¤Vc6Ú‚#[Á7¿¿Žaž´ñ"`‰i©«*,Öm"–”Ø!ÁU ó”Ë)I©¥;»4X¬ás…ýÈ÷Ò1àAÎÀ9~Œì >3U ó¤M*„aÒ(T x‚ÛÄ*`qM]Å0OÙh –¤\CèðPíÊuWä¾Ä¾Œj°$ÅàzåG^_WLT óä«PÅYX©ðtö#ÀÛ<ô-RƒÎ±Š«™®a˜'nr!0›|×,T ñ„Ã^ùxæÐš5f…Šaž,»8Öw!?¨e=ëð sà;A¡Ù,ˆ:ŸæM:#íµÑ0Ì7±Šg1¡bÀƒÛ©'’9F¿Žaž|9…'·÷ÏR `ñþâNýlžü]*<È8uD"m(t}RÅ0OÜD*"ÞÒ=“*<Ñn"hÁžV§c˜'¯úƒ˜*1ÍcYÀ'yš±gûËOþzžŒ½c' Iì#µ¹®b˜'^iÒ†~dðëð­tŽU¬¶§Šaž¼Q!­ó­bˆ~ƒE‡à1wõh¡Ž‚´ÉbŸrƒu óÄ=1=çFÇ€Ùg+ê ©WZ;«æÉ›höŽ” S1àq~—±~—†?ÖhEÍüµTÃ<4ûÏ^^RÛ]·öU x}å&2™§ †Šažr9Ç, (ÉŽ³á õ5–çà Ýh£CŒé»t ó¤5^QwÞMé¯:<Ù­; ªÕA£·Û~*†yÊÙ±à¿^–vñŠƒz!v C<‰æÙ9%Â"s®»:U ó¤ÝþOxÒƒï< <Æ­ñ ™5TL¯†až²î€¨ö‹y÷:<6l´w~{´vV1àAîÀ&˜Gn“Žaž´Ñ"lžµxï®´Žk#ï:öúhæ)kNDÍ(å5½Ñ< [§ÏùÁ:<È8Aæ¤gÂ,i“±dÀêð$·Ñ ¬q“ÔR1ÌSv{?-çK7šç!`ÉaMˆàn@ŽìðVªð³Ñ ioÝY©A˜%´ðÑÄî•Q Ä’‘5pÚ%g±Ç¤ëï*†yÊn7¢ƒý£T xLX³!j”»}ÛìT1à±fÝÿPgp{t ó¤+ÿ‚xƒŽÉÜR1àÙlyÏÀ€¬?}ΘP1Ìw1 ·.÷×0àÁ‰çrK8VÅ0O^7?È»àYè+—ŠOô˜×Z§›-ä œ•`‡çÊò<‚9â•ÞÀɱȻëyQ*<Ùîözš9>¢b˜'¯zCÝÍ8íßÕ1à!ÐýÔŸMâ)â(DZ‰XD Ó}ž*†yâ9"âà>4XÈ*9Ç+‚7ã„ÃÁ968[o:†xìawû>ãoÑ1Ì“×ø…Äôö½™Î£`Àƒ(7±J3´CÒñÎñ œÞÓw¥ë扛<‰èýØ%¨cÀÃûzOmû£ôïÒ0Ì“×Fψ/£5 xS°qžc'‰ŽOØ*‰³/ɶj<†yâ&‚Šæ¶T!`ÁiŸçH.öv´(­Žaž¼Ñ$°ºgéð$¿Æ/d*Né£@À’w'Jâ¼Ê~ü—Žaž¸ñ4Ì1užb7ñ‹Å0Õ1Ì“7zÄ’¦cˆÇ!Ÿ`Ç-/úW<Í›ÕÒQ1Ì7ç<¹DZeó]êðX»žóÄ­»ë*†yò.ˆ]Ì-z£cÀãüFð¬UöïÒ0àA>ÁÉãêɦí9:†yâªGH_X1æyXMpÖö bÇèÑ0Ì“7QŒ%ò¢cÀý.KÂ!äÔë£aÀ³9Pòû’ñ<€ÒåÅÀÉÃG—*<¤çN˜O'Ö1ÌSv§4 xJpξåó¾Úª£b˜'­g<ÕöCŒº•†!žp¸æQƒîéQ1ÌS6‘ œj{L< <È&xÞ‘¡AÀbͪ7TŸ€Ù[:†yÒæ”'ì:“ŠÛ#ÉùQý«³\"Éc=™i¯´Ž›8FÂþÑ>U xΦF4n˜jÏþŸ×ø…X¨ÐŽ^ äl*›²Wu xÒîüÈùœ-Â,q½8¢ë*<£›ìˆ4ÒTt óäÍÆOÜÃÒ]æ,Å¯Ñ éX`¾·±†!žˆ\‚M?Lçëæ¹>A’ó5̼«ð úì ª4 „YòNc€/Êdœ¿Ü¼w¬‘‹º›Õ¾u óÄ͹Nã¢{;U x¼ÝD.æ ;Â,y·pÈóï>SÒUÎລ§bÀƒ\‚MXð˜$°Šaž¸ÑÝÚo;Ð1àI×§Gr^`Ê}Ç¿ a–¼‰Z`‡~<úWiðd¿ÉXΖÑ1à)ÇÆ“`iÖ ]RÅ0O\£5 7+ªcˆ'!αيݜMÏQ1̳;?>€Ü¶Õéð¿‰Z,ñk {lbËMF:†yâ6÷2óŸt x žO½ÂùÝÝ¢Q1Ìs}~$û „„^ dlöô̾ž`61 ÞãÜã³*†yÒ.C>í®¨ð@Ÿ;TÜRÔ?K0KY#ug™¢}*Æa?NE…€y›¸mî~rlâ§§µEGÇ0OÜè ðÞ¤4x xð§n˜¯ÏR!̲;;r9a^Ç€'n\Ž£U!`¡1]N¾Õ«Úhæ‰;Ía¶Ðu xà ;{Wçéæ9-nHáëép %lÎxÂŒý YC<9›szòÈ÷Ò1Ì“6! \ûv´³îu x¸½Ïïò¸¾ñhæ)›˜E>âØS cÀCºîIm@rÍ©°¸Ýù‘Ø‹Ücj:†yÖ$y¨g¸–L¯ çL䥷†až²ó&ÀòèKŽŠOkÌBZç6o°ŽO4»3žø”Î6;U óìΑL¾·†û1Nó';Á£a˜§l²!pòSOÑ1àÉa“ ‘qzûhð³Æ-$—ÊÈÔ1Ìs}”¤ì†žÔvC<¸ùì|iîêùà:†yÊ&#§àõ|p6ÊbæÝ[ cÀCsÿ¹À»º¿\Ç0OZ3"ú}BÝã©cÀãv§I†àF.®Žaž²»;›iS1àña¹€? Ÿ3ªcÀÌ&)‚d0Ù2½5 ó¤]ì"áä'×y x×ó)ãÛC͆yvçI&ìƒ(½><È%8A°E¬³<`޲‰_DܼÜýr*†x°ò¬B¾¥­ecÖø…Dâø&èöU*†yÒöا†¬1ööÅç7F0·"Vh¹ éöÅ»›Ïîh%0÷¦ä€Gwÿ@߆ƒ^ð¯Àÿ¢Wü+á_Ñ׿•ú·’é_ÆÜÿòÅOo~üâæ_n Ž;Qßõ‚˜±S†Ã c“™bÇ3&â€gšÉÔJ™Ð;&T-YP˜W¤-L¨Z² ¨¦ðª–,(ùœ 4¾ïíÓ,¨ ™¢è—»ãþůoën9ÅÀݾxusù­5Àò'ùoæ?óLX +ԮМ¥´b¹#á-%C‘OH#•ÙÀfáTv†ÏÀfHZKIϯ6.dN þɹë}Â9Aöù®o ç»¾£žíúŽz¶ë;ê¹®ï ÑõßÕÇþ§Ì_ƒ|s›èoþÈ~ó ·ÜrÄ{€ð÷ýêÓ‡·ß~óúö‹oß}ùêËoþÀ@ÜÄJj0FŸÃ q@~ö¦‹mtÀÃÒ µ%âê–U†EÎèÍXÿ„yáùz4G¤$˽LŒw¨‡ü‚¬æ˜hÒ/†Ž-Œ¸Üš Ên 'nê@‡Ú‡úËuзň/íÍ8)½ÆåÒº9ôêÑf‘RS•…Ö€7SðF£ â’ŠÃr ÙŽ8â-ð9Ò\¯I†Èõ Nˆâ¾B0޽(¡ÅƒF[<äš/”¿ ý¿ .qmƒ¼†¼‰ÿRPÐU\—ÈuÁ!^/¢¿DÁHà„^äk}qrPäán3.! ?JœÆ–UÄ!û< ®¢ÑáG– µDƒkœ”à mlÎ2OMˆ8Ù%œ,Â%jx„K#óWÖ`L4d¤XaÎ|cY4…o æä_Ð:‘Œ¬&g"ü.®¿íáš…:y)aó=òM"üv9DËsÄ~¤T¤$éEïbWJ€Æ»YÃ-XC<'6gÁÀñ‹• ÷ð†êáð®À7µsIÆ~‚·´•_Iˆ¿ÔK1ùº–㯸$ò°À)÷ò£deT/*œÁ11›ÐC|ÛãF»¼üŠÓ”¨$ó¡ò\‚ûÁ“D_48N…F>jWÔÈ ŒPh€1XHQbuY.áK{xôHwÕØS<,'ÎqIfiO…들1#öÒn0ć¡-dRAÑ8‰ÆÕ‚­*ãQ\Rx`àÊ–ú )6()¢zIq™ÁB#ᬈûkdä┸7P½(ät’+‰÷SR NnÀ¸8侈·=àÅ“:IwuÄŽ<™8©®‘ZÂ׃D\[ây¸ã°å›søå-F†]˜2%p‚€O2eku‚C_S«ó–.)°$#6ynE‹Æu VJ+³ØÕ’„0?Mc[Û;à¡ØZò¡h‹È,ç…äOÛ< ÌdSG¶ŠCÒÒÁ†ÒS3OëÐ~%±¹ˆ-!2‰ |ö˜XÆÔÞ+üÏÓ¨8¾P â ö"¿’è]´²xaÇòÁE./ â8k¿¾ˆ†æP`ðmíñÂ$#[{ 畸:ó°I×b©Šl…r /ZÔžù"¼…—ЈÛ7B-É,.š"d±™•Å–Ë%†¯ŽçQÌóÎbVx^飴C‹Ò¸ hE.ÉU^Ô…Ób' ßRàùÜržšN^.!Ežâ¼xX,¯2FÖM‹Ýއå@Iô"1ŽÐ*(†ü8G-à($ÿÈÉWQóg#òìê@5Ãm{9´N2–©Èc¶Å)#^¤€VYK"¿É9.š¶HIa}¼àªa)©qÌ"—Í DjAŸ™äŸ‰¥Å‘½8‹ý_¨­q"J-6rî'Kz‹{R‰•¹k1,¯†ñ"’–UW» ƒ DŸ–52qaŒô¶ AT`))FF­^jS’ŒˆÄõGšˆÈ –¹o{(uŒq‹7,(hxîì1ý ºcJŒ5ØÊSÙv$Cþ!(À•á•ï"!  ¹AAë‰(+-qï‚“:C€ŒtGcÆ©R˜Ê¨ÐêÍ*D©bÔâ¸1¬¸F$Dpi^VÂBU.À± a¾TÙÖiX¤$²¤0¾ñÔ/ÿ*D)É")¢‘µÆ"S¢#LFo(ÓoQàˆÍ§¼ÊZ$³¨p‡¬ )í"*RÅHNgYáxJ"ÏH%¹Ž‹9†dàB°¢ÛÉØB7oV“ADlÖ)mjí ®–ˆ+»‚¼¥ðÁ‚,´ cèä-uI@Êrdá×j‹äcÖŽ^"‘hú[K\9/K t8’{ÏK[Òt3älU Z¨šˆÑN-Œˆ\•™JƒŽfõ´êƒçR±òà ‹ô˦¹ºdùTWB+Ÿ%ïñ¹d|²”0VüêŽØm›jI©¢jÓ6ð)˜ª¡ÖÙ‘,çœèúiŽ%.×µ±FÇ©:¡Ö¹‡,&R¬D!«”¶µ'_½™E²šRè7ØTšÀËë³V^ ‹ T‡• ‹Ô9¨˜, kŒ¤X¬“ mUù$f¸Enf<­ òæÌ—@±4g½ÁòÅ)A^- hÊó°âL%8÷(âf#Y‘pL-Û ÎÔ;S³¨ñ·^Ú³Yøp¥ë 8ØE ’XÇ!*¨X¢Aë«´Œ´œ•,+ËQdu8ñ= øg´¬2`ŠÖ‚,òápµ™p{TSªV_rh~E±“¨$òp`©Çí‹•ÕÀõú—ÌñAÈ"ÇíR]›,õd&#‡¬ – g<1‚Ôz@x߉”È)ø‘ ¢š`0ŒU‹}¾¬6 S‚”È !¸’•Zs-;œùì) ¾(’ ÿnYÐÎüqÒ©–D1'ŠE²¥(pã° H%YL…àë K…ŸØÀ…%óþðXôòÛžÄÀ²Z9+jCÉbNPI–1”®O¦·,ïÖÖ:gÇk ñÄ*¾kâÏøÊìXšP¥€5œhÅÊAIàCÒFAÍŒ Ù¡¢\’ÄÕeMÃ$î$* u\dRØÐ”ãP’ƒšG©]\³)"¢öÒY–«²vÄ[ÜÿËc†—…’¤¤°ö`ØÖ’- «D±F´ƒFJ’˜ ¹µzq|<[Ʀ–°ÌÖ¼h“z–:ß”¾Œh&×e ÆÆÒ¤ é¼:c–pGÄŒ²bDvË4ç‹\ q+b­_N"'¢˜u-Õ]A>³›Ý%¬Û8è¯,&Ü!à°·–(7L '°CÅH ý-ÌTW5‡óºë@wÐÀ.9ËÚá !š$r·b8i$2NQ¸V,îYΑ†rˆÚà«BB%QÔ†PUÅ–VB%‡ôŠÃš1y5@¦fšrˆâ ›dÞö¼~ODg+f®ÚAeç’O"'œ1^†Ä‘D÷!ê¸D»©D¶:­¢<"š*æ “AÁJžÃøaç’ÜGü¶'³®X%¸cuO~$¿êpoÌ"(DÏ|Û“]Xy,Rœ±uøV¿Ìç¦Òä=jÏþIñ2¿&ë’¡ºmZv [ ò"Èhv,Á9 I–+†¡#-Z‡`Ä=]ÓgxÅâAï,T¼Ú¹:Ô¬7b^ÂZ u› ®J²–`Ãó«½'-T ájÚ8øÑXN6“¸$ɀȲ䷌h‡ðÒòÁBÔÔÁacp¨Ki:ÞìY¥_’‚$r"µ9®bëÒÄÚØ‘™œ¨‰Raú‘Guôæ´4¹äù°+3ÌÉêËžélGk7¯Íkâø`®Ù_Ô2Xg>j ŸÒÇ>›ÊM Ú}AªCÃè¨v_­²ä ‰³Š‡€+|· LgãqT»Ãau¬?˜*.Íbý¡Ùù-¿ˆ—1ùto­xB5Ѩ$‹W [¸À‰¯ñ(uÕm H,3YÖ9ÜqÊb‚Z»Ò+㢑«W¥Áƒ`êl)J¬ ÊÒóÿB­ÎÕ’(’"¶E“o\7ò«CÞŽÅÒËD+ò+IkbRš'‡¸•pÿZ–>*òéü¥t¶3qÇœ•’,væÑÀ@‹xö“’î°¯n%šFÞåÄÛÈ©ò+IšßE‹8š±*4ž‚Œ\#X.ЀbC³Yw²˜)ÕáÓÒ©"|lW8œbØö¨¦›Ct‘cj9×YŠ‘¡ÛJ*Wk·ü(NFFŠbÁ:™ËÛ>¹“±QÊUËM>½æd Ÿ)•¤ê“ô­‹¦RkåèÄÝØ¸=~^R›µ- öžŒ°RU-CmH_+´)îˆÄJ눚çÅ5–|ùÐP© ‰ q8 °¸u@ìkYµkË<6\‚: K¦5"uÅÉg³JæpÃëÎÕE/Ñg"‰pöX„D•\¬CBÔZ=¬, ˆ)É,.šÛ°e—E8»dHñyašLPj¼EÞ‹p KTǃ䟋“˜’KP™Y\DYb¨AXL-áÝÿ¬ç‰ÂINU/•ÕŒ5ÖB¥å24#âMÖ¶ _¿ÝÕÕ¾ì'o-‘œ6¶hå+3‰1¶3øÆ\öâi´89‹ ÂQK¹êhm''b^—šõAþ™ÅÊLU+u™ž²x{“äC¼J¶×MräxJJ?æbe0ø£½¹d‘°œùÍ…Öï²ö¨ƒ¡HOu©.&‰!q0%Pؾ©:•TGcÌb׻₠W==-ùŽ*cªnX<_ZeZ&[ŸºT{UêM€QŒ¢ž¼"¬¹$±Ï9@–™¯š¹ˆ³×ÁÀdC3…:#kþ1·žÄ„F˜ñ*ÏÂ«Š‘¦ñŸt s‰Wážà»’i<” ±4‹ŒØ A)9 %N|ðʵ„WMâl™´¤@vÞ /bhz/š½g ["?ŠÕ×xôêHÖ wŸÐ$' „È3.)bgšþîª;Ò‰Jáa˲gÉW»·%FܶËzœ‡©#ˆ ª‰7æ¨R¢Èúä‘Q Zej¿’TDâ‰2´©D\ðÈJ}੺é!PXøÙ‘\Ež½Â+Þ7~käTÂîvzS–•ôÏ&¬ÈC0ì´Š@ËnŒøqýQ¶¢>Øjº{Ìl¶*|×sà·Lk_ËdO-ˆ—ºóõj€k…}*e33µÇk~$¯²¼øy¸¢yT$‚pI”øC¨N o¡ˆÒæäÝÐØ=ZÃ_-¥’§žŒQK/ÅæL^D=âÉG‰äU|/‘Œ~©1g±È+iuAV†Ä´÷VôIÚPësC©«Ç!VB¢a·DM6teü9öì ×;+÷Ä⌔$ÞÁ.¯ˆ-““å0뇕²ÇÙ×àéA¢R¶Ô9ä‚‘¨T-Õ“C—2¶–ò0ÍVÖ’ÆÐLïdíaªŒ›š *6¬“ñ7œª€‚âDTø,¢‚JJOcàµÖã\e1Ê’ØÒG9*cªÇ1µ)䡱,e¨SGT[³HoÖüÒˆ‘)#GJ³W²T¯•d‰AP°KÊ{„T€É¾ŽìšJ nC—J¢¨¥: ¼O¬Ë‰w)KIïR¨> z{9XKu$i•e­ ÜÛadô¾Å¶Û›B0¢Tª–ÖÊÓ^ªH¬ò°€V¤$ʰ¶®SÁY D”‚õ¸lšÇE©úcK…&”âEâáåjIõ;:ñù@Ú€ ÃÊUK•e‡ˆ ¼(”®†=Î L•¥HVÛ÷Ú}M6Qš1z× ¦Ô³ ƶ™SëúϦÔ:Í©u5¥ÖUÔ”Z×QSj]EM©u5¥ÖUÔ”Zwõ9h|ߟ2‡<)+‰ákjåš"¹M<ÁÜæ7Y”á*‡r[á„’K9hpLõÅþŒzþœû÷÷8®gºû’ éÎwo¾½Àñ–G.æî#•;2ê\¾{}ÿ€‰K¢õ.þõý’ãÝ¿Ý#xSl$Mð’cpÀ¢‹Hë w_Ý#Iªe¾{‹·¾óÝ„-›»÷÷0ßL4wüb¬òÉÞ½Ci"UäîW÷p÷fWæ7|”ßSÇÞ}ø\žim­õ±Õ “={÷51Àì‹åî¶8C¯ø#5ïÈ úUc³w/ï{}ßb Í/BÚÏ@»áª0ú¸ˆgš w~EÅ8ß×ǻǗ('u2ϯ$™pЂ\?†É?òOƒ¹#Hx÷áÓ=ú!“ GÅüê‡`ê7ªýøizÏkþ¥=Œ q˽­ÔÜú凜Úòî'(Íd ¯­ I¢ ]ñПßs.6{,Æ ÉÏFg:¤þÚ¼ ’"ÉÛü7’˵Šò°<4šhÖ¾Xaû-Z×¶#ú$²ãk…œõ®uœéÍÅßôrsÔŽÝ|DŒŸÑ‹ÓxFëÒÌ%!tw¡:Âw÷?€=È:Èm úåÝã+îÏ@ƒíÕĆ—š%TÌ+¿›ªôáý„þ!rÚщóÀûĆä7ÿ̃yÜ}˜Æ†ŒÝ}žϧÓH‡_¡¾[ª ·\Îñ†ß}7qyƒ;h\<¾—ªÑ “mÉ6^Þûáí¶ßŽOZgXûº/dÂûr5áñ™…t½y°KÍ©;sÕ¿5·§‘Çê)u8JgdŸæßÌ£øµt-™YËWð¬!#€·z,™ÔéyJÎ3ä“`N¯ùT¿ÓÄ…ýÜÚêžï> öîwÜÜ4Ž \GÙ›iR?O¦‰ÈÏîñ&Ä$B#╜ߔi2åµÅúøäž€‰l–)#ÝfËaÇ"úÛ{Î/#Öiå½ôÞá¦GÜò ™û7/þò³»—û;‰—ëÉ+¥§É‹¤Lã×$«Ë¥Oò.ó’ÎðdÜü™2³’#±óa]åó4ÛA+DˆqY_¥‚ÑñHefÉ_u~®‘ô%I3×{yC[ïëØJ¦÷\I KûÕK ojm \¯]‘E –®è<ÞðgN‰¡uR n’ƒko!ŠáH³­½õ#4#dúae’#ׂ{{ôÆï‡ø¾’ý+&±>ÿò‡\5 ±ôý;¬¦õñiek¯» -ƒì;øüc0¢¿ü$µoàÚ/ë2Ù1dKÏâµo@Oë9JCÎwÿÀk 'C †êžDéú?¢‡ÍeŸÝ}øb,†“ð½ÎÞúÙì÷Z6"òúÁ¿¸½ýý›~€õ ×®«—B¥Ù‘]é{iâ«í4pûÔ˜Å/øÅåeõºRϸÊ}FŽr?ûUÚuÀ/>Nïû¶¿ï‰yùr•º°Ò)ÓÅB*>Lâ¸"KESbñË'rµ )y®ë,{Ug¡%«%d»QBhèu±˜ 2TN4>•´€!×ÖZd òÑ…«JöupRæÂ²Â‹žâ“‹Ë²ž’ƒ#ýzÕã…áý5óºÿZV[Oë8·.¯†…VV¤fBßÉÀ`!ÂFAW¡D„8z9ëJÕ®¨VAðfUY¦Q9-ÎOÚÈ´vµ †.8©NÏØ³.bíË;¯dÙ¢Ž y5»+%¯UüYEŸ–K¿¨ï')[ÌU˜À.Žó2`É$=¥J—ÿvÿ€\ƒWY¾èÀÇ#?RoˆzX§RZäúóÆãË-øÝxüz<þa<þÝxüñ–—–'–Œm¸Ÿêþr[÷éÅ—ñøiûqŸY¼û¯£ôa”>õ³m›¼Þ~ò‡mK}ÑÞ‘ïþf<ÊgÈkïàÇËx|?¿ïÆãëñøq<~9_ŽÇZ÷ëâÇ-ñ×ãñãñïÆãÇã_ŒÇW[Þo¶¦ïÏ?òz[‰Ûº1$ç†f€H«Ò\Hµêüø8¿¯[Âè¢p÷b~6ÿu<þx<þð^¬„Z‡ÕJøÏ÷dìÂþž‡È¯¶£lYS¯þvÛŠ¯¶#ëß«÷¼Ÿ¶5›út|³eXFÈÿ£â>›FÈ4ž!ý±.VW+Ô×c…z»]¦Ee^IÔ%õ;¬lýñ‡c9›*1 ©7ÛÒ÷ãq?¤þy´ß¿ŽÇÜ>N]ÿûQúvÛ‡¿Ú¾íÛ±1-lË"ØöÙ(ýÝvPN_mð/Çã¶ô‡ïüAËBòYŸ ê›ÔÖ§#êÃx¼Œ_}ÜŽ¾¯·?›°ûAûj<þà¼jÕš­ú&­ZYöe¤Óˆ~;FÛߌÇI¬O£íãv˜O:Âô³i¿ÜöÞï·ÃÆn»ì)†þxÙvä˜Þ§§ÿ1³czÛ¤6…Òôv,I_n'û´<¡çüY¾¿_ŒÇogÞÞñ9ÃøàCkés›*kË^_™„îWsWìújÒ˦.Þ/ÓÏ~7×á»uñµ±/Z¾iþbï{„1‡äÅÂ;‹ _ö–álÜ4_¶°bÿ»˜”ìíƒ/;°±Ê#¤–ÎÑ™o€À'V Í€àPZÝ ³×‘Žý¬d‘E¹j󳨢>öÚEX÷.òK®ÓÝñ.-w„Ù—ð„É6ù-Å´>s32…9¹¦±Û,Äó§>éÎDÔÚäkò–þý¨ƒø(zÃ^ 1w§®þþ^+¤Ç”n‘™œ¸­â÷ðY!aÙ8;ó}Æ¢À‡ø&’–h4µUú‰8ÈA葦êF¯.ŽJñ(Õ>ì â @Ëû™âí©aÀ5¿ |š4ÜÏÅø8®\8uÆM^¥Gyw²ù°×Q,Ç'txƢדYæmõ›#_ïÒÃBËٗ‚Sˆ/ykjÍ÷¸DÌkÕm yšÌÞp\(•˜¯ãB½ìß9.„=8…Tîå‹ÿ¼q!ô¶Éq~Å÷ yl¡>®k}/ŒŽz*6!sfñÅÿ~,ój¹ú»þ$þ0WÚK™W94È™½ö­¯yd×®¶)œÍÑ|Ç l=Û˜¥\«c8p§”yÚÊÄ úõÙ,Å•âi±¿p]`¦˜î^E~œ$ïûû]°ˆ%+b&±ØÖé}ÏhÓ¸éXzzj–7_TbR!–ÕoV >¬†BçYß„A€ ‘c•]¤¡TÄü¹Ræu“7¬ZÒI‡ÄY˜slïcM]AºgϤÚ˼åS†è%Rx.—ÉrdÉ9‚[ØÈêÖÚõ‰, —û×¼“âqUv¯ÓTäSVI|5+xÿU‹¢±=)c8K Ä?=/pÖÆŒXA¯Æ(_„óÃ&íîÊ”äÓ3ý:E—X3^Á§–"Õ ÿ:¨µ>U¾|’ž–>ûÇSñ´!Éó?»Vbÿ×Cúÿƒ äü‡É šæÖ¯æuæ”.ûJ8²1׫7NønÆL§®Ùy§¨|˜cÌñ‰ueQìöyI/±ÜjVÖIM –¦“bÛaɳNŠ£ŽÕþ}oºyeäÀ»Åy)Ä3+†eY²Uˬ•y¨¯óÈÞÏ"¬;É„U±Ü¤jrR*ÂGß DÇIbÑOÕ£D©±«â©púêKA=b¨±a\™™¯eø…sh£É7ª‰.=•XñF^C¿¿ ¨‹{:¬Ìh,ío¯ßÓl¾r7óÕš¥~u‘8ÇÊ“¾’%îì…™J{‹¹UâîSN>¼y=ÕÿýÍì¸ú¶.ýÔ1¶> óg²4qãçáž2©¾‘V/Ô_ïmÕéCª{8;ÛÙ`Øh@CâÅ~"Ÿ%€|Ѫ}Ñò:«ÖÜ{Døa–òSÚÞSŽÁÉí‡ìæ¹Ðéjmk¥ßA³ÚB;M DÎái°m¯åw~bý}ñ*‹ár~27dR!É•2×ZíÓ«ÐUæáé⯄8û„ÇE}'ËáZgB­÷ª^‡‘ª§~~~ß4•á;]æa\•qê®´u¹‹–$ÛÒ¦\¿žäÇôµ' ¤Žq²Þß­F×0<ø-ÄöÛ{¹K ÖL5^µ§I(‰â¢iIëò&…i ÌÃ14y?’ìqëã’,¿Ú“'[ó}±îPxå~Zž±rZÂÝÉÏSß÷qȹ'òó›†[VIPí¾E–>ΣxJ¹ÿ$-êj†T€Ë<@ø·{X àÄì§4¦YU^t4éãd¶÷6ø|`¬DK¸nYë[ížôoo¥`Íg3rÈ@ì ;÷ñ‡¶¯ÌcÖ\Ñ‘<žÈêŸ'PMF‡ °K®6|ÝeW魯íc7ö³ì´±Q2[žÙu 7ðÿ·›}eOÄ3;›™¾cˆ‡iËâVÿ¹\;¸*Áo Ucy&¹‡rÒšßýŠ1ÁüÝ!éDy1"n@èÞ”˜DY°ùê*«þlýe7ކ*QBë¸Ä<·ÑȲ®µ ¹ií}óÈÊH9LOŽ!ûÏ®;œǼ‰hÓsœõ:7Â’gcÝí|°›ÿ‰­AûWû¡8¹”ÏÛ–¼qKäCš X–©~µoH›Ö¾³š6%¡ˆ¸ÅñaËñ0}y³4%Ǿ™›5…`•*´RÃküFÞ]ÊÝÁį«Ëõ€Ì\‰—CÑâà‘«&Ò†gŽ_)åZãÙo{ýP÷çÄó¦DÙwZÇÍ– mfÕIv»y«õÖã­f#¾XG5K‚Ýó|µÿ¬ ëcí 'äÃÑ´HÕõâFIslïqN·˜‚sså¤[pŠÿ/üaÝTUÔe¯ÊL‰#?ìKrÝùäVŸFÆyýéöÁúK í¢»«Ú m¿²·48ÒÁ?Âáf¸#ê—žÅdÛ@áÊŸ|ûQ^ÖK4gñ·ËþÓºšŸ\.¤GÓÈëéß³këÚ‘vú6š3&Ø.Zþ¦RŽèwEÕK–]ÀÊG-ï€D¼~Ô¹ÀpÀüGžœ8¾ý>zt}õG^ÁüEVNå“Î ßÝ¿’[×íâÉ?ÊÒ.~šÝSíâ[g£ÿF»ÄBsÖí¾‹¦_ åööê7;?5¯HÙ2›S8PNqÈ0ìëþJ9n@å[Á³`ÝÚÓS¬½cgÑ66Üîƒ02û gä>ãã> stream xœí}Í%·‘ç½±D_-\o’ßäÜìÅŽ=ƒcÆìÅ`!Ïá©»Õ’ÕÝ%wIöh/û¯oDŒ 2™EÉÚ=,P0 ½Šþ%É$ƒñÅæŸï¶«ºÛðõ¿o>¾ú»?¸p÷þéÕv÷þÕŸ_)ú×»úŸ7ï~ó)×´%u÷ú«WåQuÕ]pᚌ»{ýñÕEÙû×°RºC{U>À¯ß¾úâòt¿]MòJÅËðsK&%«.Ÿï¶«K)}ù˽Qð*]Þ!Um[Øâå@»hÕæ/l·Í%[~›ó—Û§{„;íå Ò·m­üÇë¢Z9Boà§Im„ÿ`­¹ÆË¯¿¼Ðáê7#áá}Æ7ؼ/cÛfãåö=½‹ Î+©V›ññòøéþÁ m¸Ë[ñŠØœWF¥tùÉ1%ïBí%8SÇ_ß«4îµÑgmCCI1¹Ë'ü cÞT{Yß-‡6Wgm{Ù?Pï,ÍÍýêß Œ‚EKw.:ÕöÎØM]½vl¼F{÷ùÝÝ¿ß}z¿aEîþ ñOðÿ?½‚nt"îøÃo_)kaÚý‡å¾jw÷(N_u`ʇ¢Lt"Š·W£¦Ÿ®[y*ø«ñ3 ,ÌU¢ÄxµaFÑÑ]­GŠÛ`¾õœâa%ˆ¢ôÕù)%Ø«ÕDÑöêÔâ¸eã¯AM)>\ ÐÁô†0§¸+, R<,Øœb‘4¬Ä”’€Ù %Úkòg_(°[˜R¢º:êÝoéªô”}†BÑêªÂ”‚c·D1¦p‘’°?Q¬»=£㢙‡}t5aN‰×B¶±S‚K×TÚÅ·Ñ3ŠUDQpV̔ۦô6wõqFqÊ×9 VIO):^7š¯ Ó5šÅ» ß)V]cœR H !ÈëŒb¢x뜲\}¤GœR`„šf,¤ wÞŒ\íiÄMã8fX5U( ŒtœQ\RWKoµÇ3¥ ¨% ,·S`ì°&H¹³qJñ×)ö¿™R"Êl¢€$ðSŠ…¤ÊS Qˆ7ŽxJ•&ØÿfJÑ(~‘’í˜)Å×½”´&N˜P`·V hjä„#Å$[9!YØUvJ½mKï°g`wÎ(^]‰YRPÄG‚¡™DJ4¨z¦ñA9 Óœ¢ kÐûÄ‚¢`·Û)E¹²¢zĦ9lE‹ªtJ]AºBo íý”¢ûDŠ'M7£hñŽ(!]ƒQPl¥eàý8§7“ŒGÓŒ)ÅUý¦Ñb8üi=êü%S¶¢Ù´²­÷„•¥¹R¨ùgàÝ20Pû`$Ìî"Q@ëãjO(¸¶D@¥?ùd-ÉH ‚\:¥¤òŒF…üغìI­QÛÏŽö@×{7¥ íQ(¨ë' üE;@“nœLµ4jØè¦”ÐÖB£žŸ@ƤÒq ‡?Íf‹îÖf#«kFAéBMÔï3 ˜t6¨Ý'‹Ú‹8Ü€nÇõ>RÀ€­¼gP·ÏºÊT˜æ„ 6£À„òèv\ñ Åù6<Ðís‚F¹‹š]Í(¨% µkA³ƒž›RZ•HÍf`;Õºš€íê# Õ£ŸS ꤠ9#À¨ÉVÑ6µ1¥¨6~Ц›ŸQPÏâ:]©3 ͦC•~Fðå`&ígì±°™nf´/h®ês5¥lªÊMúÜúŤ¢°´uî„`a_ÛBAm®¦xû@íÙ=Š!Ã]{”~áø'lN²—´G=®§ØùªP@G?¥€æô´²åy˜R€AÍ”G=®ç”Æg49®þ„ïXæÁƒ&WaFAù­hŸ¨Ùõ”«ËS Ù­ŸSÀ!1@³»0¥€ö ÄG5»žR4Ù´HÍN¾ã„²¡·ƒd»9]uÚ5»žSŽ ) 9Éw8R0FBÚ¶¸"ßñHçºøŽ`“<™Q`ÈÞcÃL(Î\Kàû‹ë8P•ñî7vFqÎËÌl ûÁg›QbµôÁà1Ås\‹{|ò/”‚¥]ÔûzF±ÁT yò3Š­v7¸f®úœGJ@Ë)¨÷õ”Âú1êT|Ì#f»ì’Xú˜P@”À’‰¨÷õ”â›áyšJÀH?R@ïG5¥À<…2BÔûzNñ•Êš0¥xUBjàgÛâi(¨¯)Peêý9¸ºì“zŸNžœV) ÷ñ|aNIe„¨÷õŒ‚ªî·šŸ¼Ï#…5‚wÆó…#…c´&¥XN%'”*>횟|Í#ÅTml7à§°ÓȾ²j~3§˜=°H¯â}(ªžSØ 4Œ3ŠJ¶ØÌ “7:_˜Qªš6ÖäQÌ(¶Qð¥Rñ4xOâ'«ÀÐs ì2 ˜[úO&”ì¶Ê¹âk)Fã9R`WÙ9¥Ä9F€3SŠ¢Ó¤€àâ”\MQâüÊR "§´¦cC¿Ññ*7J@®!:¢iBˆV—“p«¢=RB EOZíi6'Œ4T hë`šˆ™@mÉ—˜Ì9¯cWhç°<]b2çÅN^ÿ[ÛYa2gÏŽë€Çà'y…Éœa;ö²;ñÎZb2gáÆ RnÏ “9ww\ ô°CŸ5&s~ïÁr„7Q®µ³ÂdÎ>˜4ÂÇYc2ç ,PÌ Ñ­&s.ñÐæÃô¶vV˜Ìùƃ\QàOÅïµÂdÎI>x ¨¾µ³ÂdÎ[y¼µhx~V˜Ì¹Íc_†2õJ3+H. П Ô]à6ždÎ1 3­±­‘&sõè?c4¿É5&·TëÃb[3 Hæ|ì†JÛZ3+Læœíq 0šêø­V˜ÜR»ˆAøØšY@2g|ŽáÙf ®1¹%‰!gvÇx É-‘|0I›ojÉœk~ðÀ•7KLn éã"PzY+HnIë Äs+ Hæ¼öC”þòmO-1¹%¿jq£d®ÚÊóˆ\äç¯ÉqÏ2gдªˆæ­1¹¥Ù†¦A˨eÉ-43=¼p+ HælýÑ×ÁÓµ‹YcrKéì#þÖVžGdÎù?xÉš]c2×6#¯Ó “[ñÀÁ+E!Ý„Ì ’¹¾`ô‘î¶öVKLæ„qĨ“›¬ZAr+S889êʼ@d®d8ðƒˆT¬1™«FŒÁóNÍ “[IÄ L-¸=ZB2WMŒ=i¬à ^a2WVÞæƒUÜ“¹úbä-‹9mƒ/1™k4F¦0È*m–—˜Ìu‡‡g~í½–˜ÜŠ=FWÀÙ=œ¸„d®9ÈY'”fddw”â¬u—˜Ì•%ÇÖìVì ’¹öd„€·²Kã%&s}Ê8ƒó?x8+LæJ–±/'ÞjÉ\ërð²#ììÆÉKLæz˜QÉc¾ƒokµÄd®™û_Ž# kL溚ƒw…ǺÄd®½9xǘØxy‰É\Ÿ3z‘`N›ð_c2×ð¼QàÍïµÂd®ôíLÌ]du‰É\ 4J•Í^·­I°%&sÅÐhã9ÊK­Í, ™kŠFßrá7/1™ëŽÆL ¬³¶¹–˜ÌµIÉïgŸkLæú¥q%”u‰É\ã4öïÎ'ëkLæ:¨Ñ/ èymfÉ\)u`Omv–˜ÌÕTÏŸ}É\o5Bä9õ“¹&k±Ã,·6ÇKL溭ƒçRŽõÍ“¹¶kôµf7µ¾Äd®ÇœÀ·Ó—˜ÌUbo.íùkLæJ²Qz#¿»ö^KLæj³Q+»m<ž&sEÚÁWNB¢.1™«ÖJ[Ä~ט̕mÏ¿× “¹úí ý•𬗘Ìr;Vœ«¬1™«èù'‰»Å²Äd®´û¨B³ÃÖ˜ÌÕx£ï„o²Æd®ØýŽÍó9Ï’¹¦o1ž¾*ÝšYa2Wþv5h·Ðüô5&suàç@s»9€kLæ ƒ¯Iµ7µ™$sáÁ'Ãl?~«&sâÁ×iÜÌ•5&s­âÁ×ijng…É\Ï8úИš¨Rkg…É\óxØñêšL]c2×EÜ©(öÄ“¹vr”O OØ\c2×W¼MËñ™%$s濚cWkLæ*ÍÑ_Àìò=Xc2Wr¼M]¸ªÀí¬0¹”oÜ æY@æúîq´ÒC_c2×€0æêXo.1¹ŠîG‘Ïë´€d®%½ƒH‰…¥•$sµùÁ9À°?7³Âd®H½÷)·…Zb2W­úR{^û“¹²}ÄP’xÛSKLæê÷qÌA ˉÉ\!?,ž‹ðÑ÷“¹Š~sÂ ØÆb<+Læ{9}áY¡ií¬0™ï…ÙdzÂd¾ßã0æmß_kLæ;@‘ *K¬Í, ™ï 9@ä[-1™ïGLöL›å%&ó}#¿oi³³Äd¾“ä0æý | É|kÉãÀj‡fw¯1™o6»B›ºY+kLæÛOò;ìù%kLæRF‰¾”ãvV¼Ue3CÕY44±U†­1ûí,ïËd™ºÆd¾ÁeX ·7ìãYa2ßó2ö…¯¦×טÌwÁŒJ®æ÷Za2ß3¬…' «ñÏ“ùN™±/Š«r;+Læ{gF fÀµ,Š5&óÝ4ãZ€ÞÞdzÄd¾¿fô‚ðzÏí¬0™ï¸1í#ng…É|θ}º¨µ³Âd¾-ç0æ´{kLæuF:Yök—Ìwî8ø·åª¬1™ïå9xâx¿EÛ¥KLæ»{Fƒ‹,Å–˜Ì÷ûŒ œÐ}µ–˜Ìw–~Û4´ùYb2ß4Z¡FœÔ­1™ï:ø›i¯3[c2ß74bŒÈô]c2ßR4¬…Ý<0^ãæ%&óMFãb<Îs;+Ln×÷¨î’ùF¤q%ì~z½„d¾3iÔÚ)\ï‰%&·‹•F8›ÍA^B2ß½4¬‚"¯vÉ|?ÓÁ_¥kLn×8 xM8Ïñ’ù¦§ÑRƒà OÎ “÷ï½|îå{p/߃{ùÜË÷à^¾÷ò=8¢¼|îå{p^¾÷ò=¸—ïÁ½|îå{p/߃{ùÜË÷à^¾÷ò=¸—ïÁ½|îå{p/߃#ÊË÷à^¾÷ò=¸/߃{ùÜË÷à^¾÷ò=¸»—ïÁ½|îå{p/߃ûÿ÷{p{2Ðç÷¯tÇ/®Hš‚l1ðK¶¹õå5ìÛrÕ]£Ð•Fšª ù9 ûP ?‡ÇËix'“ˆ÷çÐIŒeðØ*™þ9ÌïÔÝs°¶å²1~ÎáÅg©{Îêâ:ïÏ« › ¢9–;æÄsÔ5–ŠíÏyX`/Çi1é#ôýýÔíM>Ü)½Ó=;E +FÚ5B¿ìšqUÖOHºdÐw’LÿŽL‘(Œ‹vm1E ž‘uÎõ7|‰YyÐ:h‹ôŒCù3æXÞ?¼Ô"Eü+Â_ÏÚ4þ•è/]þMmòß”¢Ï5Ó÷—÷o/S¥ÁG&xJ‹ue Œwí÷HK X…—s5J‡B«<ª”…§y`êT¥t(‹š´k«R:TMþ(N¨€9mQ¢*¥CÕ¹(1[?qq÷¯eƒ£©ØO#ëê‚)EA‰‹Ú6ü S”6uÑþâåûŸÏæzvJººm çù”QÏò)£žåSF=˧Œz–Oõ,Ÿ2Jðé¿.e@Ê5mIÉ•ÄÛL ?laѸ³sÛt —oègŠ[¼¼ÿáþkG·˜Ôå3ÐÍ£‰—w 6L|1—ð÷÷/Uöòï÷˜ƒ–´Gžî'\ùm·Í%{ùÚPÉE­.°Ë/?–æ°ÇÒ‰ï[øîþÏlå/Ð xE;aF4´–.O¥“._•Ÿ¤ãÃ6TJ°Ê—ÛGjpÓJ[hòS2Ø5^•,%ôøå=]ݾÜÞˆñS—Ñm Óa„°•¸ŒFM}†Í•Ù+­|*Tmÿ–ºÙ`—Ç¢U›ÇÇõã}ûuûtu0¤2/«/¡Ygk¨6àIŸ”Ó±húG|ú#ýØrþòø ¯ƒ#,3mhóê¬j3ó—·u2/_ÞS˜Ý&^,œ]vÃø$ÊØâ_\¾=½k«áy\BŽìå~¼xZAó˜7ŠÔ—5öÐZ{À³,ˆ¤FiítJÀðuÚU‚µÆáƒ@ÑÚuûH}¥ä-ŽßëØË_ 3齑“YšÀâl¢aßPÑ;a[Úú˽£û~üå&®ìíŒ»Ü wpôtÇ¿O¸ Ÿ/×û‡€‰yÊ]^ îüÙ>jŸð90ŸdÈnù ’ÓKì¸ohõ¾£é…ö­d5œ@p5ü|`"«àv­*àñ:Ãa#,u¦œ¤~½¯ ˜d³—vêwò'.‰±®WÂERrHÌ4Ù¾ÎÄHt¸b× ÌŽOlxÏ{ÚX˜Þ;òÑy™Ã`µ–sX…”5^#«àšÃ{hÚí¥ÊÖˆ±¼Ûë{ð"EøÒ ¾b§¾ &oóÂ~Cs ư­³Å ²Ì9A­­õʳ·}ãEÿð’ÃÅûňç(øúñ^øO,0¿§WqäB™i<¥ô N¶?ïȲ ¤°Þ•²[|fóU€T^'œ¥Å_î)ÏÙùŸj—´x‹$“⌽TïNo ¾©ãÒ˜—;öñÁ\rªÚÎb–ôrxúL·õhÖ#ðX,_ï/? ù L˲™°úü¸AÏt ß7˜P¶–ÖxPÙÂæˆw2¦ÎQ¿C,& %½e#–¸ÍePãì o˜¸%\&_y[‘ÀC…jA$üó«×ÿõ‹ËïË›ØÍ“ýE)u0¸^^Ñeañ;åa-]~ò¢°Ë©±¢ât*ÚÛ•-»-‡ÇÓ Û–û’¶*lP4øçûÏwûϧûÙ¦iOÜ P7B³T“c ö†«9ùE`¡æYùb/-i–À]ù7W¼BCùøcy,Àv”ƒxšù+ü¡¶/r{ªËÙ ´Aj”—º½-jLÈËŸ¨á4(r)JЬGcÊv*«§a³K¢NF‚!‹Iú\:÷©¾aôÆÚî oOûŒu&¬˜¾ÎšÅEN°~ìµÈª xtØíŸHVX§šY°mž \¼S!‹ÿ_Ú ßñ-)Q ¸dÈ(úNìßjá*zɶüvKñGt”ô¶1è›+îî¡]‹äºÇÊœnd8“)ê4ŠmtÄÉ ™ê Re˜™îÅ;¼+/fÒ D¦‚ôÓ¾òß–—D¶œ³I,‚Wæ1ÊpC2æDŸJ…YÚ®z¿Ú@S½ÛðUŒõH~»ȈÁÍúfP‹•gÇ¡U®ùO2RÁ_®’æÇ6+©îDÚ0‚3{ÝK`T\qÛ.ÙßÓ-?Ž*¬§·ç*ìÁßè+ãíê[”"üÔÌ©àÔ™i-ÑûBгµƒuI÷¶Âë'µ`‘É0T0‹áï¶0ôGÃÀ6º OÔ^1 be.†ß7ON°l…‘Ûæhtvzß–F{›™¹ñÍ|gžÉ·¹‡÷¾Ìݦ~šIÚ-lO=ÃO»º{[˜{C=ÑÖ"ŠáŠy»ËôŸi bÄg¨±4„“„ÏZb=À¨"&±†ct¢¶öædZ%üigÚë  Úë÷{銘&8ÚÐi:Ùl'ž\ªòj1¸:ø¯Š.·ô…e}¾öòH‘$…² 1ˆª½Hç,B c~.}úxª*n<,õŒqU Ê1,Éî Ø÷Æ©9`©æ:ï#—ð"u}ÀÏ«’ül}"ÄÎ|/ã4hW`{^éÿ;Æ#í&Lxr¡í&!¹Ë¬l´Io’i¥IÅkÕYF2zPÂ…$µÄÜvÁº„aëÂ|uÑÒy£¨ì‹ú"ƒá$Œ!-–ZFH `½shK^¶ÉA]«.  ÃÆowFùA60Èt¬êÃ-„%jaûrÇÊ ŒjC£Ajz¦î0`Œ_üÖå÷öÙÔ­ÆFA0Íe2j`duÜ.Ô¸¶^‹úDH ù}é ;BÓþmyu—ú°D0á«çù0¾7åN´]1taNuÛeÖÝðtßéêrÿT§F,ç"(½uñ$p,WöÍ=û´½à¯Ë©¥AµœûÏ•m1{£mßÍÅŠ?¤¹wT/4 …~k‰Ü=p0®€`ƒEæûÍØ™­é«Åqâ@?î?ßÞ ·zæ5ÃÛnÞéÖÊ3ñõÉîèã딓º úS¡¢µF\–€UCÙçø)§4è1¼ µÄI°ª·[‡;·Ú ®ê­È#!0Å.-ŒÚ†@ì›ww˜¤V÷T0IÍt:±*¿•½üF@n¥“ ¼&ªMN@‰$j “|ko}ªjçÆcñS`ž‘Ø0ŠÞAŸõ¾¼••ÿ¨ŸÃÏUÍá5BͱEw«ën•1—=(úø©¬Æïßvò–÷íÜÒ“âåaw•ÊæŠxS‰?÷ƒ„Šê¢×cD¿öw;Ø -¸¶(6k#2ET ½QÕ{ܨ,£"æF£Ô¤Á buV& {s6 O¥µ!¼ÑwÒ?ÿ4§3ÖRÇÂrn%úFì“”·#Ç—Fâ!„ƒåxîy+?A*<·²u¬7iËu1hKèµe·ÉŠì¡™›¾hm®©ÞÓJa:x¿™Ê¹‘½ª1t›»ØË¦ËÝúð‹$ˆÁ“˃UQðx l}$º9D3h7 Å×G.t ð€ôÍó7íê»Ò¶qÂí+;…–Ü’cÍÓ(œ†£ÂvÏâK0ÞõfÔ—g=©-œÄ"ºHv‡"õVg'¦íË÷·rêF'C’ۃʳMœ5vûi&Sßí ܾ۟“@³Udz²â^ɳ²ÞâQ8Y’'¿æ·Me—a]×Äú=œè >}6`ÑàÀx‚Rs({¿sž4O)Áùn?Òã®ÚÇ’W’¥Ë(¼Í³ä„_•wEÏ,Kë²)¡¯çR"XGX:Dî}Ñ!Càyo» êl½ow<œR>à­4øê½›tÛãËd'9XuùI©—VÝáv É­uùߘ …Ó¿Ó¾»Hœ÷H,ÝÏ]3…WCҽъ> MköÇËn´ýr¶P¨ ¢—]`¢Šã\°¿aÔøYªmõ=α½&2wÄÞÅTŸþ¸jâyãÄÄ-¶búV»Jc {ôç“Ãh˜`Ä>4]xBËÜ”“p¼ÜÔ·ïðO¥-Š”Ñ!H²òðbîíí.bþrï,ˆ”r„žeí¼½—.xñÚ(>_ Lå ݧ8ž­þ\áâå~ÄÍíAq ¡¤*E®}ƒÊƒ¬ñ¼WmÀQþÒÇGˆ#9ŽV¢‰»T“TÔd}éŸrbE³P¤í?b3u£üþŸ]þa½Z~ò«Â”ð4O¶ÑÂ~½‹D%¹ÝÊ;x9ì¹FAcÓÓ³Ž&MõÁÑœíâ¥ýQ29÷D={ }á”wÅ6¿Ñz ú úš1‹yŸX¹B>Цû£à6Òç)tªz¥^¼5¼~—ç§e%mÂX²ŽrMª*êCZ·_õ\üˬ!<Ýq`÷aR·×ª˜.¿,BâÒÁ¾ À8¥‡|éç’äP¹-”Aƒ;u#V6cR^ÙQHýpßG-÷æ¿Ñ8‹ðrxÁYÐÒš,^ï/Ÿ¿¾~ÍVtÖ¤þ%ÖäFý ïÑ3À3‚cfO¡ûfå€Ý–&fŽ·ÍÌÙ“êÁ)ÑnнÔ0§”Z%®¢)5¦Ú?hýŸœrÏc@Ò㣌Õõi³ò¼¢Y‚"â)›e6sdÝhÊ»ÿ\\ÓPâ÷³ƒàþHh’Àó¿Nƒe:.Âå–Á”ݰ‘.ôSц¶8ÉmrV^ª?s«žD<;®1Qü¬KÐsÅΦŸ”¯´~ ¿J0žüݼÇ2œ„»Ç>ºê@ß&½‚V+]|c”³5ÝÕbî«"²Û˜ºH¦¯²Óþ†øÆâT•±ƒâ¥2üÆxî|¤‘¡‚Ò—O8ñÁRPïqïå“|òá{êdW™¬úèǽw‰†÷†ŽÐ• Ê?ÝÓù$-unñüO¶ñ}Akãk ¬2¶¤sÏ?»š†(”½-wò·»òùç)1¯«7Ûˆò=·.ßó$A¦rï¦/Ä8œAÎRJ÷4„›0ìþ1wÉa ‹fÔ×§6%6áöÌ%’ïÚÄôѧvÅr¨· ´÷›ÈSîUoyñç6íIBNݵrwíI_ì ˆ|í’)sdD¿%d«)gùV£ù)ÚÞôåàlÝöo‘ãm“úxʉ¢l;õ¶Ö Ï´Ý›ÛuL½¹Ý¸Ñz±i+µÒ ª†HÞÏ2ß·ÔHªWê•ãîܒʾAåˆ “Ò)?·3Ïö}±韔՜œœQr‡ŽˆïõÓD[çáƒ.ØÉȆ}`¢g8Ž™Œ‹vùÊýZÚN\$2勯‰òAæ>>†®ÊÉHE¾ªè–/Ð^FŸ>í¯-æ¨ޏtU{R‹`ÙÎB‘Ý3å¿¿¨0ÉOÓ6 é‘ÖÈ2 Ó~Q#C0e(ÆúšÖ@Z¹ˆ¹S-qÐiÝ3Ü­;þ(–¹Hnï’ÑË‹æðû‡ÛxÛz—- z¾PcLý‘uŒóDnÂB ä<©Ð•àI…qCŸ¯¢ïþ÷U«Ã0;¨§~ØìŒî$?Oîœ_•œ, zFôkZ¥Ó”°:'Y–ß³? nucðǺ<~KgIîsû±åGD2ÙqÝ1?¢;æŠ_©cuf7‹‹“|à“<”zÎWÞª×"÷]nᆗɆÁœ&A‰T‘¦SÑøfß UbyŠCâ½|IÙCÀtQ9É>˜²lA®ÅO6gÿ#еö í3›®^Š›Çñ¯ N}㱘ü}Þ»\™ÿ¼ç®^"cwf¬N¨`ºÒÅO…Œ¹_Þïõ‘Dsä‡ÀHƒÌO»³"ŠÚèdë^g,†ÖeÄ<àñèbÖa¼%Ù‰ø)6 uû¬ìÓ(>ÀÉ‚º©¹ôv²¶'g(bót…fýv©/Ù+¹Gª`ÙL¨²v«=­¦ãW%o,¶¢RÊÿ¸îœð~¯Ýj ý±Ë®uý¹¸<9ÇìŠú¶H¬^‘Ù”B©Îhú/¦!{»¨Ý;íŠBpÜíMÏ“]"tÃOtöi¨¦´¨Màýÿ2H> ,†à¤ú²]€Cä£+/ž;Òõða·,Å‹`^&o¤=¬V¤0•³ê…¨Ÿ×Ƽ ôd&âvˆ´?ôb„L V³%ü±’»QŽì<.\“Ëèe†ˆôK‰L[‰œùgÚˆøÍ/é3KDUª.%^T¥ûò%†¾ÛuB_…÷â`¢ÄIìí,£±Ä_©ÈRôÝ¥ÄW›Ô“xÁn€é»ÑMSÿÝ5Ä óš4ƒ¾kÔÕÏ•©³ ‹ov{ª÷'è– ØHü,yåýû¢Èí}»¿LÇ^䔺xšxÅ£@.ýh'°ÅÔ’â“fóªžW¢AЗM¯}šêÕ—ïK½31ÐF'y:©ŸgØ2ë ¦U;rÒÒ‘Û‚Lkü:ˆ-W”T>}¬Çð¡»ÚD:¨¸o©ZÐ6ÁÌ'n¥¬ÄFµÿ?ïé¦Ë?ÿ¾ôÓàiO¥ï¼©““ì>ÿ–âx–†·J}flµùmè¯ÀyìCν½ˆS„¯½ ³›òXþ}SêDª×ÁaúÊi–¯ˆLMÕ®´Nßìí‘Í@±ãÎX“‰òg5`ã9ÕÑ¡~±+…:fŸ§à§¤ÄËh/Èô\ Wã÷kýæÎ¸Z¸ ‡‚tÚHb‚ÄBÊ a×µ_4Ž!Aþ&B·Iç›®Ïp‰D/™r!Ñ1ÎϨ§_¯.7*"`‹ú2æzáG¨0E÷sýÇÒqŽŠÍâT‚v“•bÖ÷dÀîÆKÅNêòú~švXgce?:ß„+ü³òêÔÏsÛO€}è˜,‹Íub¢O·oœ»3¿0o#áè0›&ÆÑ¥y—ßaÒAÄãÔ(‘7‚Ày™Æ‰¼Uî 6fæ[¼èI-}6±Åh§ük™M•ó2¾Øxì—$ƒ!qG_LßÜÿ›ä`S¦uï¢Ü~úK’ƒñ»wã¨ïqÊ©¶.,òi÷aŸO>„(ŸÊ"`áÚ­ü†—AdHö7=¯W…B›Ö^vGw*áåË5jSÏ2¥IýuA€§x¼Ã„4èÜ“† –¢SÎHç; ‹TúºËœ_•âåá-6—åE3¥]ÝîUZ'±à;a¹Ö‰A*£U¢o½gøŒBjeÓF*&9~™K{Ñ(,Hì_’9 ÑÕðst¾ ºŒ[Ÿ¿‰ƒ×Ðw%åâEWî™jSlëY™ìÝ—òuŽ™ŽmLÃ=/Š®ä\—PÏcÕ'×ÃLvƒEˆoíR2.ˆ}¿ ;½WF¥®*%¬¯Ë·{ðü}›8àƒÛÓþûü*šeÝ¥÷‰ÚI)µÈÉx椬6xéÓ~'Öû{¾ïÃþóóþóÓþóËy†LÄ ÷äOg,2“¿ ¨íæŽx÷óK­b (#€Õ3ùzÜ)¯Îãm8þÛëïXÂs²Žû 7zHruÏñîq¡óÿ×ÚDçendstream endobj 646 0 obj << /Filter /FlateDecode /Length 9066 >> stream xœÕ]͹qO®“=9v€ÜÞñM¼Ón~“  ãÀl¯ðæð4’få•4»#i?|É¿ž_‘l²ŠÝofzµ1û°-NW±X¬*ÖWó}y˜'u˜éÿõ¿×¯/~ò{7o/æÃÍÅ—*ÿõPÿsýúð¯Oð†RCSš“:Ùãk SŠÑoßEÉ+œžB ÇŸatŽÉ©¨Ž/éõð¯ã½¬ŒQöøyy9γà—Rúx}©ÃléøÙ¥ö˜\›ãûNŸúTߟ1 Ïñ¶WF¥T¦›½/”™)fþUð—}Á×4•K.Q_pf”«±äW•ZeŽ¿,|OÐn“ïÃo3ÒYGC\@œÁ­È7‚0þä÷ar Í„?A³r„úßž\ür!AÎ?Íö`q“5d'wÏ8¼¹_àœ=¤ÉZl;M„)ñ¿ªÜˆT´ú@xcÐEîž\HcÒñøòõóçǯŸ?ÿüí§—™™(ºð~ ùwĆ_\|y(È“-ȧÿkÊ OÞƒ 1MÎ^_ØýäûÈ«‹O¿ûX¤á‘ôÚwÿ8,Ø»ÉzŽ¥ìÁF`YFECpñg†¥ìÁâ=4V`YFv`‰›\äXÚÈ,ï:eÙEC¯4ßé>²KP“|i#;°ÀJMAð¥ìÁalÅN·‘X¬Ž“á²ÛGö`‰qòbEmdۖĵ‘=X¢ƒX–‘X¼u“`Ë2°GÂá’ed–`µ´Q}d–8ki£úÈ,0±88–edœ¢ÒFµ‘X’Kƒj#Çbp`OŽïQÙƒÅÑé)°,#;°(å'ÍO€>²‹·“HêÀZÁ¡\i#{°#-TÙSÃ#âXÚÈ,>M^ ,ËÈ,V'i¡úÈ,!J ÕGv`q& Õöà€ã%,TÙÅ'-TÙƒ%Á£ûÜFv` ÖH ÕGö`IJZ¨>²K´ˆ5ÄŠÚÈ,iž ÕFö`±q°PmäñX%i¡úÈ,ðk@RvàPðj……ê#{°À«ªìÀ¢áÕ ÕGö`W+,TÙÅh=%±Cmdxµ‚”e`kà Þ¶‘=XB¢w9–edŸV ®´‘=X‚ŸDĹ ìÀááÑ ûÔGö`ÉY"eÙ%#íSÙƒ>­°O}d–h•´O}d–ŸVÚ§6²‹H$°Ñü:=!uêCÓ³¥°óqÁ¤Ôs¦ô‘Çc1 ï*á´´‘Xî9žå¼yâ8¾{.Lø”rqr6•\˜F\py¥”Žj ô¯Dÿ©ƒg¥zJì- *LàY ódõ¡ „ÙØIÇljЇ÷3Ù¡:°‡×†²­Ç2°‡ƒŠŽ£ìÁ|œ CQþ½ÃÂÀ†bàèwåpŒgÍ”jNôéí³Ót}{©Üñ«KMF7¹ãéîm–MyLÈye•3¸ô:åp¯ ôê[þ†ÿæ?ž¾}þ6ÿqžŠÊÕ¿Öò‹KH×éîîå››w·oòWfž¢÷½÷óWÏA˜º¾yùÿj²™ù@üj>O:;+²ÖJ'xªe’±à”Ùpw³ãèÃÎRÖ9‹\4VámDœ›Àeaf#/:\ÄE̸à`Ý9Ø2@Pˆa³Ùl ðÀÉg³–RÆr¶ ×g[àúlŒÏFÙ¡ fS†<&>›ÃƦa¶²°w0íèæ`â0™SÃNÀ!nƒåp‘J'‚^Ø"‡SIy‡-Lj€Ã‘î$p+ù>$ˆ±À(Ý%¹,ùN…m ¶¨m@†aܯ aöÄÍfˆihÓô¾¨yq%hCÔjë!½Óìò*#¯Âuò*§°@1 §°@I"}š‚D¦HOœH[ÔCYá‘®YÁ8‘ŠY€8‘J‰Ã,rNâ,ƒñ ‚HW´JYá‘ ®YÁ8‘ª¹q" ”$2udDêÁÔ`ýE‰‘Ž©¥­i`ÈR.‰b63˜Èh˜Œ4ux‹jŸÎ ÚÜE‡·à•n!ªq*mÖa6YL˜[_LVÀØ\¬ÏU¡ø\®è0›,vœut˜Èɨd$ÀÒ`g°ø¢‘`ŒÆ Öi¬PœÆPt¤O¦æ f²E­ÄL©È,RƒÕ5EÒ9œš‹183(22+H8ª~Éùì [`ípˆœ.§ƒsƒ¸c-qšÍgŠ 18?.h*â·×·`k[°€±-P®ˆ›-”£ŽÍT#•TÍr‹/Õ gÁ…"‚!%üͲ$À¢Ø-p=íPgÇÔÙQa8;R%6•„K V9•6ƒ;¢µD õäªI8[¶ˆÁ…A”@wœü ”šŠ&r¾8ˆhZù#¹ð)ü¼™B©mÙZgÌxä?9ÀoyØnc \NMM Ã)v‚ ,B ;^›ó\Kl±óhÎË!áà‚)± V–Ùøµe^àº-pMÈ0&d–BpI¥X6­M³Uƒi¶ð‹£Ãè`—Ò°0(ÖɃÐûÁšäJ°Ø8§F+dý :€s'áåi§‹¨2¸P¸&à…ZÎσ ×˵Tà%>i¸R®À…Â]è2w€óà¹m„Á±ù*\ŸoóÁ¯ôb<K-øâÁð4ðÅûÂc—‹š%|ɵg±ÖØJ8øCjŠ“0dÁæ”§Ipf@n°=:ÌkõÉ¥m¡><ÅF,¸QBõ ‹2N_C  iT„`Ê> ¸T w‡‹jØ)àVÔ½#àrÍ]Èf$ÏA€A|à šQqe`¶9ƒ‹ÙÎ 0Ê ‹nØ_¬¤ì®€s™å ,ŒŠ!:ó`"ò %¦a‡±ÜA5ê"—æa‡±Ü²O,ú!,HjØa¬$®„®[Ú®YÚŒYÚ Õc— Ô#•ŠÇ.¥±Að2éAœ°~j”D&U˜Á™Á´‚¤A}[\…ë‹«`lqŠ-®ñÅ(±¸Êö6"áÌœÂd‹D cÙ\¤YÒÉe‰``¥+à 03ÈèYYK ¬¥™-¶IHWJ+k ìE{œ¶ 4™ñÔvCUH†mMN&|^Ô~-àâpF™¢£íçëlæT´žÁ™•uvn‚sãädÁ .í(bÕ•;¼eŸ˜.'~9“ÁœÏ|î'áÈs` ¬È X?~+?#²‚1* Ø‘MsØ¢( TWœ¨)ÎÓÕ¤q½1š*ïÜÓ€Z¸Ö?K_Ù×W¶Àõ•-p|ip?¤11°Kbý>05ýI0 J0Òè"¤ Îr8;—·úv[X}ËwÛ„ŒZl÷Ö§+`l¶ &gcEHg¬À{20%7îÈéܨ”7f€³ÅZ18ØoaÑA“‘éH‚Kec:œSe;6ÊÊ“‹)b¢±$øbÉgÀ”Ùiãì`¬ = Ùiã¨û^˜çc…•Ž 8SxÇàü°WXIá8‡óT¸óù”dnÉxpÜóåª! a`¨2,/¸²ä.š!¢ôZ406]D³‚mÎÖMJkeb&¥u“R`˜E©@¤Doeôor-@Hs4ëýŽaÜï4lC¼Æèq^ÈùŸÆHKÀ 8™È6HF.`mºŒMWÀøl¥ÉH 03Ðdv7ÂéAº,¥£œ|Âc`7"<¶”™K´ª?9• \ÛY 8¡! pˆEÒÎð6E’>$ó *É<¤¥, ’óÙyÌC»’yHKé<‘‡M«R°êGâptpˆ ‡ë|~É.uø›KªUc’¸h£ˆ/B}¼êì/}¼•ö+ê·rìŽðk6‚…-BܨˆGt E»ªÔÀΦãÍm]o2^åõ*hLæ)}ž\LU*pîÆQ²Ú¾LMÊmˆÌˆ’s¹!†W)žüúâÉ?üñø³ ©±_Ï?zóòÝË[h€AD:+w¼}gKàï>{¾ü®÷ ˆV¹8Txhè»»K¼ a2ÇÛWõåÙ¯?˨­~ë– *\ÈVª~~‰èGg h/q|eÏðáyy"p]6*á$²²FTÕ­`í"‘L ¢*7•¸Œ¸}äÄ CðqáG„¡xGp°p–$›.`]ðg:U´”«¦‡\ä‹êéHìj„±KVžvÁnNa&‚½›wÁÎÉÙbf¨KŠ®Va–hám\¸?ÊÃ*D+¬ »ˆåά€•hòlà±aeqиìå²p&’Sžò•-Àˆûôq¹ˆ5ħÊühÃhëZŠ8‹=Tv1;b6x?;ƒàtƲ÷«ÄF.±–ÊtÊ/S¾ìWâ¼)'‹"CÕoæÎh(‘´,‰¿ùŽ=ß]ÂáÐÑñw_uvn)Ð¥0àîûc—/ NE0¬S|ó¶ÖCÝèQ/Ë©g¡Ÿ…ÏÕ¼C $yi /h%Þ~ѯæ¹b'ù5- ²ŠÝÅ BÛúóüŽ=—õ“NrÌpÀÃýéûAâ /Ââð“þ³¬T–nÀ§Y¶mt„)~l2ÍýœÔžŽ9wñ{—I*è'3¡ “–G®Go—™×êZ‡Ù¡;:Aõʦ;°‹ÏÙet 9.ƒVúGw/y›õ¯¼,LL[Ÿy!N‘Va¶èµŽÏñE7+8›œ¦›¥Ôñ w¶)ëË”¤Ru#¥ÿ+JG‰Ûà›Òœñ%2‹’ÓÉ3kvÆ·½ 8 âìªÕôÉMô´Ü­É L;îß¾¡ŒXEI²ˆÝ[/o›!þ”Óç%OŽ·AS@ä[TÏ%YS§€%‚ÙÅ+ÙVNAçÛÍŽnš+Ÿg­7¹Ké@ÀD³"Q€>=T‚˜¿¹ħpÚˆ|+J¯ëa94(ó_z·ZŽbH„þ €þ4:^ÞJ˜Ni\èús7l[tQ"fx€.É0" Ò'Éúô±õ²á4üšL/z†;Eo½™³ D¤%2h|® ,é'Õç-¯™Ž×° ÒöÕ%u²“gÈ­³#õ¸ Ô:'ì3Ç› ¤¢“ì+Æf'ûð† v‹}T…˜“•ì“έݤ‘nò‚îÞè*•}þF6Ô‘ÂX²Ô„Ú¥ÝÎq‚M$º¹BOå)aæ_䀨[¿þM¦˜“\¦ü<Û³.Ó²q¿Í7òÍä¹½lA+³ãÜQ"ãQ(3Ù‰ËsÀ™z³íBÞœŠ0édÅÍ|_•Ó³8ˆÜÀ_Áƒ ï{p[˜{Éœˆ|IaŒ9ÍçQ½C±,‘Ž£ˆ Á]¾åx”-¢eö:;ì¿-€GÁ:7`‚v2É/Ãé¥Í¡GŠ‘xÄ}ƒaú¦:±íQpûóí)lv\uŒZá&0/ü‹ìH8,y«Û³ì€Q离)$gùM]ÉrVá,¢C÷²':¡=wzÙÑÁ*qŒVZ_‚YX›ÈålsÌ‘yÛ¶ŒL¯"^Ô8!Ó¾„”tÍs(e œ°SוœK P²_ o‰J®WgÖV&Ô\Kʱh`8Ó¾iJØÿþq÷Jv¡®Œgª¿ÇaŒ‡ó­ŸJ¤x´Yƒ7É ó>+9ŠáªNraiÿUª¾Î2c‹»— 6¡cŽ DåÏGñ÷ù}°îz\°E&·º}ÚÜëøÕ@¦:~:¬<¿Óžqütjy*é?éÆVbs^µŸÃ™@±€:_®qEòÆUï‹ío.7Ewu6?çïòFBââ²ØYˆ.€¨r B˜¦S„C°uŠÂ•2äxÕ)þiqYœÕ¹"ð7Lš‹‡Ô¦ûi7åÛ+¢›]s§?=ÑqI ó뇖$é “rä€ ˜Ke[Ó5sN´r§G²܈,UN«Y5çfôZƒÉþz7:9CÀ;otÛžUðÍ$q‰ØL*_bŠóɢ͊Nd¥Iàµ^™IµÏÿ¹rÕÄT`šY+ºûV¥êJ½-[pŠm1.‡ïsÛýŸ–9‚Bµ”T*út´ÑÇLðÜ üWyP©ÁSp‘„@ÔÝÙ Óëuˆ¥‰V<·T¯Å@œ%k/yà\;@¾®4³¶yA±›"qï*N´Š|¸`UOþ´Å4ë¬YÖò÷”bLM•Õ`vÚ|M…¥rØ×ù*a!’¸ƒÉ§jÊMÈô“n#¯.>9[‡Š›u(CŽ„“>°+×»ûüîåí³º É"òóhºûg±·{?‹Àrg’”–¿€Õx„l1û¼O¿~|~ «‡z¤Pò ';ÖɆA>éæV­öÊ'©ÝãäÓôsyP»)¡£t ¥O¤M`biíÉ$uŒGB¸C&áóœÊãFa³¿t½xsEI>ÚåšßÌ|ò²TñùŒ¶†ûqÛy"JE©ÆÝO:òÍmSTáâ £u½! b±N}#-U3xø<ÑõšÂ@õ’§Ù#Eø­ªçîQ9%#µ„EÏ^mÕw€áÜ-øâ^ùŒ‚**½²pz jˉÑ[U¼ #«  æÄŠ*«Ì½9­éžŸ¦Ø¿½¤‚œ‹1e–ÔÇ»þø²?ÞöÇg›u9hcîÙFY´ÞÜÄ/ê&E½,æb*ðDš®ÕÛ7ÊpDc8—¢xÛSLÀ¸VÐ2YÑÑBÔÌÑéòL©²1Åp jÄ«î‹Ð¼öœ“1àõ¬Çôq …ua¡ŽR:ßìñ—·¹> ËÊlËs|Eƒ*…uò£žRuæXS]YSnKVuNÆòuz·ë¹Æç§ŒþW=}ÁÐËXmÎqbd׈§˜–ÉŠ/º4/m©fµf£tÚÈ忇ë®<<#]Ù g·” œÖŽ˜Fw’RÏJL—­ t3]¶Ž ö6›†Ò5”Uâ|:½ìpo†ìd‰Ókr’*H7—¹pC2ßµÅö3 À~\Ó2ÍsN9¦öÌÇßwÉ2kå÷[À^)øõ°s";7Χ(ªìÈ£+„ÈîOòbK™Ç»òèGpÞŽQü–zo<öŠ^²zÔ™ØìNaÌ’o' I²âý¥°K•¤gu†èšÓPÎ#Â9³>œúgåm*]—Ä8]»•7]N$yÆÔuÈZ^9áª$Ñ4W~6gÎ&Wtf'…SäÍÄYêÎU昪Eþ¯ˆ¯qÑ ©;ºtÅÖ6_À’ì=~½›Ÿi_²}f=T?I ò·‹Ý¦r0Ý©€}xÂòqŸ5$<{üE—^ª{Gü˜gßôòY}[¹{Ü[lf˜‡Ã«eR¨L0¹Ž×~žõ•78-J#›Á·…þ0t̽,ºAW4Ä$2‘ܧZý(kš:̼·æ¶ ΛÕc`<0#š:ŒÀw„5=?ǵäYË õj£9sƒ"[dš:wT¸¯¼aŠ«,ºþXw9êj®šùï,YÎw=7êÒÊÀ’¯7Ó!ã ™e†´@Cþg6¼Ò»¡¶G¿CeôöùÏÔöfÖ¨#VWYGÅŒ!ÏV™{Ó›N7“à ïÉ­x»,R5Ä´'g¼ù/šÙ’]ñ™­iv뀃n0 KÉñE¡ÑãE㌨‹Ÿ¸.ù8Èe^úYùœ !AùBƒ>-K¢»úBƒ$êq±«à<17‹õû¾i®Ó‹í>¦Ù´Ñ9{úUðã?NÒ % ŠÓÕÇãëãDz2Ì-Ím6¥ÙÛmWe«£m£Ïj옰ýHÎmjVsô5‡§IÓçð› mçW¤¦¨Mܱ¢ú•ÄØÐöè{W4|ų}ÅЦûk€®ÎC˜X&¾ëý7ÌÍægEI=Ý#^Z´É<`x<åCúþ‘Él6 fÎälr.÷‘ª¤Ge‹²–vMzRæŒ3ôùe;‹¹Ù)e‘ƒ8­+6G?&4¤zjΕ'yûG[7ÛÃÜÆ—sÅj‡³µSaì¯è¢¨1©rÍ,ØmI¸Yûf,LZò¼Ô&Ì-RµŹ*2Çl©s¢dVg¬ó÷Àõ¹±ø@W”"À.IÂ_.šÎDVU{(|wZB:l&jC”õ’¨-~â¢ùÀ4­¦ûÚ1$Ö2êʦi©]B>ýÊ™û4­¥›oGªešö¾¦KEV4;ì¡öãG<°ðµ‡ç[–Ûl°ð¼eyÏ™u>ðý­ê•\Ѿ¶Å1—âO騔«ô˜äXBQ‰¦Äمج¿*ʬt<þÈÐHKÐÞ;mäê¹cÍnýN~ùòAÝ{ ·½ï¨s<ôí%]¸í g·‘œÏ‡œ+ylΓ|ûŠ~$#h2ú”B¶õ‹Ë_ÙÉŸŒ¬(‹£3bì2É[[’íëî!Ö^ôtû†ºO¶Sü1­´Ô~¿“3kÚ×kµ%c©2lt/‰óþ¶ù·Ÿªßs»ÉÝIƒ¥£¢a»ª¨zvii [z\—òNÍ\¿3ª{Z:0y_g«W$gB@ï×,:DÔNäÇ/Îè÷T\X,ª—siDy”¹¶sé $×L9]?v‹:ª¡|Ô%–¡8£`ŒÄ¸)õD}k«:Mç¾;¤„¡J¹XÁã‡íKx}µÞ™D½-Í;È“¹tôp ÀZcØW~Û…”íÆ‘W,À+[CxògÕ Rh“¹ÈÛE­>׉¾Õ>¶È9çKŽŽ®´p)ñ²çÆžësN…Þ¦:¦.³­PbNêä¤ÛÜécÐ?dm˜µöƒ±j™ø‡yåñÜ÷ˆùTg>6Ñ^ÔH»BÝJÌù›~ZIém;”¯B±5Š ­;…#ö|;z+Õ±¹O ûì÷rU ÷ ®J47Úxn•5a‰ |d'ùBhÍ“¾ýú÷Å ÊŸ¨S*mtPи—ì»-‰ñì¡”‹ö~wñ?ܫƖendstream endobj 647 0 obj << /Filter /FlateDecode /Length 7689 >> stream xœí]Ís\¹q¯äÈÚS*¾$—©M3ÉrŒï'ŽkãÚ];¥]ÛZn9.;‡)Q²HŽLR«•/ù×ÓÝÀ{hàCRÒ:v*µ½}ƒ4€þüuüÃJlåJàùßÓË£>¶~u~s$VçG8’ôë*ÿsz¹ú÷háñÍ6Š(W'ÏŽÒ§räÊ[¿Ú®N.ÖÒmN~¥TUkm¶Òyøâäìè·ë›Øêè¤ ë×ð(¢ŽÑÈõõæXlmŒÞ«õ·-á×Oñ­‹°~­m0R¸õ¾6BØhÒ³ŽA[·Þ]m°¹•Á¬Oñ½ˆÁxÞËüQh8…N㎅?Ú£·aýé“ͱò['R2“w3Î%š½&¬w·4é­“D©’B»°Þ_m޵VЇ]Ÿ±)bwNjãú_‡õyou¦?Ï+uî”V£¾_)1D»¾ÂG YÈi²®Ú¥·Ö˜i²itۑצÞêc­$jWÇÚnƒsÓ¦õ@'Ñ´v(zµÁ÷ÆÊ5=I¯}¨iƒ9… ‚]Ÿ'âaƒòô¢ ‘Oï?S1†àpµÖð©Z?£.¼„õß_§>¼ÔëÝn} ÀëÛ˜ËÔDÁ0»›Â6yit5Yï·ÆkØíešìW´mBÈ {+$qVMëùcd™° @ŸÀ‹´ÌB¸˜6ÈÆàlîPË{æ·Ò„• [gm¦âwëÂ=]âÃÖãÂ®Ž«Ïn¬oÄ DÖ‹4oÙ<†MÖ°,é#A¬3.ëªuÚz§a¨ê£f$™'•—Iâ2y\97`0 ^U+¶û®í°&]dcØ,¿•Æ?÷ÛŽJjþÈl•¶ ™Š¿M !Õ4‚V¬±uƒÓl)á'ã»]ë­°AÝ¿gçÕ¸g4 ­½c=ÃIØGÍöÔ›PJu¹¾wôœrø*}ôqYßYðµÓ–ÔlCÁÝ›:+ñ@ò`Û@.ñ;û¥eþî?—"ZQˆ} Á°Á0m¤"h9àq ê è{ìyÍÔ¸ 0+Ô@1/ñEQvûóMwêÀì¸#ðè3üjýwÙpÖ· =aaŽÃÚ¦žµz@ ΆÐ)˜Hâؠ飿!›ºVÊÞš­WZØfåbëÙÐ3+¬VŠ+©d˺J äÏÈY ¼=ÌŽ8•¨T£œ–»]+'fÇW+§ßÏ»2M¿r€™HËD×J³áa²wÑÕ.V‡¬ßmêõúìäèWÐR»ÕpǾ8Ó¥W.0ó«Ë#íÛßçG_]¶få'Ÿ ºÜ*ì2˜­õ ŽÛÃxÊkópžrÎŒôÂÿ"O9­ÎSóGßOéóÔüMËSÃ`@¯Ä•‚ev†Vyý÷¨€ÂV’Ö×[åq稻X®gh”¸ï¦q;Î@;àéö´x µ_qÊõ« VêñÓÇrŸæ_TníXmîp¬Ð*‚=jfø/wùÍ:O}I¡­J_½¡ÕÀ~ýœYàÆ”ìO§èB+£Ók ¼íÎYng_æÀ"¢à‹ÈXö^kXOLÁ¬™Çüõ›ÉGÜ¡^â€ìă¾4`n;ÅGà@äżöÔ8=î“Ú+ì˜Þ>Kþ>¸×4HŽŸW¡µ¶]ÿ”„2BØÖß|]úþæËBɶZ3pUÁñ@I‚«àuVR¿&Z„¿µjŽò®îà2ú"Ìêâ­Ø-¼ipdc Ø öšQrU¢î—ØÚZÉZï7ÊWüy•z‚p4ÅÕFXáq­ñ­KMóÚ¥ñ•®Ytj*Ô­ÀÐóz÷š†PAW­÷ OØ( N8ï¾½aó ñQ¦ ?¿…9Âôâ40Æ“<ÎÞ_Âg ma'!€ÅؼAŒ³gÒž²ÖWØF‹n"v‚lO£ðYïæ=š"{)öé%á"F‚9ˆÕœ¦ÕZïJÓsš~pÚÔ»É8ï:ÛieFÉÈNC/¯;ìóÇ ßœy賚{B¿ƒMB˜|_d0î™#ÒãË „ @È„n`Ü[7÷çyö´ü _Ùʹó0¯{!/Ø=gƒ.Ĭn¾(_>z\ "´Ø7DL•¤µW¶ááDˆ<¤d`tØÅ °(:ë‚SŠ1Z°j$S|cÏ3QV¼‘P˜ŒÂ ¾*¬´€aˆ¤ói™lÁµ¸â ŠAá…0Í '—ÐÒÁÓV¥w¾Z8FÃeâD·rŽÍÒ^0üBµÃ¥}h×ËÜ6abðd£¬¾šWõú»ëòúmzí£B"Ò ÇQ¿Ý)nâ†AÒ'‘„!ª)t¤YKS ÃÔBeãp½€Ý_ ë ‡4R“†!´LZYPKJ‘t0´J×0t±kw8‘hÆîÀ¼joÊY"Ð[ ˆÑG$Za”Á´”_UŸüå¡e°Ö))ÿ Ð2'Ž–aö-«×l7^All ¾²6{=cê(ª‡beXa`­’†r-7K n~œç¨ÚÑbñ(Ö;gTþ:m½²®+ @†DþƒÀ_¢‡ù½"Ç)(t!ò¼?ˆèSxõ¡‘@/å@d Äq±?4 AËðPà¶i'lQM³oî…Á(Šû§aJH{/TÍ÷°»¡€žD+@…E8/x°úf~ó.xž‘Í­¬[ˆãyˆӦ=@±˜âm*HÏO²wn/oU}ôÁ¹i†ôÆt-¹iAÖ½ =ôfþÒBz¡qE;Þ_Ýéy Êq†ô²%=© =ˆTAHêꦟl(X"R¤R…‹zºªØSXûnxìŒ@›00N ä2x¶¿M¯AÎÖc¸è0öÝ¥ð;xS±è( BŠ|V;½ÞXÌc€ ïNo_œâÿ ²¢ñ€˜×7O7=…©Ä–M¹ÛÏ7Ì|êv?#zfŸ¥òДÓq“] ¶AQ‚æ@»€5½(×åñª<>éÒMéƒ&ì øý4Ñ ’²tñ½¨¬Y[¿Aæ€UOR ?ƒèë„ ù ,Èå¶Q¬4‚\bo©ã x‰D€Î®A\`kÜ“Ÿ“V”(qŒªz3£êl8TÞ‘40wZY)ºL2˜Ã…J#šÍ`12Ü ¿oÐïÔ¥#ûî+óò½•Nrx[Ë ‘ç‰Ë| :‰ æIfxË[ö w¨§¶ rj·t‹›kŽ.Sho@±NöÁz¿¨E÷CeLRÇö2FäOy¤Bm¦ß.RãÒù¤`‘OÓ[ÜÙJÏ·çƒÀ Û¯­äÊYúΉ¤[ñÙÃkñÁß½qºŒ˜0/Q¹C;Æ‹;àfÌBxš_ÌâÓøTجX6©™_-4ó†þÇÜø:Ï/x°Ïøyô¿-šžÉY½×y¾c•>Í¢7T¤™]6Xí ï¡EèeöµÁJ#ƒOšRõÛ~š{Ëwf”m›• χÜKìØEèX’›uHÀ#4ÓæNùnDKyuëÉdѾÏáÊõƒ9+í‰H¦”>YCðHâ$ý„·ß!þbh[IÿŒÿãg`åb¥Ñ&àq˜ö'/K³9{]EײIôüJ¡sÖUFƒÄÆQ&áijŽBÅß´ÅJ7âÜ©¤2œÕë$õÜ8GÀ£>n1•Qg’fŠ,x­L4xñïŽò¹"-;N3ÕS7b¿ìF¸6Ò2--6 >ùôøª<>/»¾ŸIüRÿ„Ç_81|_Ð/Š®z»™“ù•_Zöí;ÃQ¨VlÇžyßßͺ´HwUû~<'“S‘ XÐ$’á;f•.>Á]–ð»L‚Žåk Pƒ0™D¢‹9"Â8ÃVW™(e)’zRÞòˆ‡B”Âs ÈØþ˜ iZU:¢Ð³A‡BÔ΀ëòèËôÚÅ™n”ÜœuÖºÊ`&;“^%H¯$Úsi­¥pMK.ÛÀ>™‡á£¦31þ` “ÜñlõüÝÐ cM|ö¤”3•>M‘TvõÊ ða-º=Ÿ÷™3þÕÓV’‘, ´ò,d –¨ÚžåÝãüñDL ªµH‘¬ùÕÞÌ•98­äb¼ªêHzÜk؆óVv¦¹ø}I.~TÅÍô:€”î¦fÁø ˜$æÍM­u %,¸Mƒ8-(\Â.ìAóâ=…®%ëÍ‚ÃK| 2&gÿ4,”7và! ¥MDÊD‘žµôu¸Äö5lÝoê5m-ƒ=„ŒT~Ý+› [o³K±ÓY¢CÞ]Ù‡ªbbt ¿Ó¡ª@éZ‹«â²ÑX¿ g«ž]”[Yj…n‹U».OËc ¯ƒTèT Ìž+G0ú^A×þ¶8/'eœÇåñ›òøY”@ˆ¼×Ùf®Àè„ùŽ]Î|hðŽKm¤]x³D+ÞôýÍå˜x€õ]1û»Sft˜¥éùÍ`J$+2\:Î!.ãÉ;Îr»ˆ³Íɱ±qMDWLöä)<–1û‘ÓŠÌó%»¤v‰Uub®^Ïf3q“,˜ž<%…þ°‡ƒ“*f>n…0îq(ÐËRLe@òuÛ 361YÎûþ÷Ⱦ̊9k hk˜é±*X…*s~™Så×K`ŒŽi÷>Ä ê`4]•õ:/NCr‡´wŽC@ƒ%ºHßáž‘=~2vÖQ_¹ŽBç™r¯ƒQ¹o@&Xp |¨ VÙ…E>B½KÀ3k.œ´Z‡Ð©¶#×”—y±æ-ö…j5^Êëÿ˜žx•(qÒ6áÁô¶ÂJÜ”–§ÿ˜eÇßÁµ4¼DêÍöìú•‡Œó^„”i÷@‚ U¡Œ\€9CP„V0ý“ÊG•‹#ûî´•vDù?Mkª£ÕÐ`–yÏPքəɜíìZ‹>6ãXì(a¥}¯“~þ°J¨|û¸Ë¥S^;¶R:™¯L{íQæ2W¯Ü¨ðü4óë|j¸¢Ù¢›XáÒ<~Jb¡bï²!˜gÇêm°v &„K: ‚­#PÆ•âî Ý·ò£”ç³³¿ÚÏFRÛ1â?ƒ‰¬2¨\bS¸«f>Õ' e0—ÞZL0ÈaVqææó©±\–.‡¢ ¼¶«OjÄláæbþÛsç¡rù葹‡Ì'džâi·Á+ÞCC–³¥PxÏŸ®¯¦[1{0;…¯Êã‹>D†’!0ÿ×q‹!ÊŒ P‘s™ÙeNvûœ"ƒXŒž¸[9åö‘÷é´¸ º#lÙ¤ñù¡%r½t!g9Aß"*ÄÄx †´€›ž gѤs wãXÖë D†I&. òyy|ZYƒ!6‹äy‡œVôª<9X™ìsV5ÝwŠ®Òw°úuÊÚÔ×õ¦b[ør¬QMvÂíj4‹Ú¢;ðj°Îç¹Ìt€Ã|.>KY…ج’ŸUE ®”Øå P^æÙô,« þqBÁU4df± ,jñƒkÓ,ó¢Õw/êßo!n˜Ÿm؉„öyydRÍôÙ‰òfXRVÛ,ž.£ Ã*¿à6pPc›‹šb»]‡%÷‡pÖ—¿³ôi—šQ†'çˆ6Y¹…ï^û’:sÜÛ—Š ~-Ãw×I"(›kGp6V0dqɪ”T1aù£CaV&–±ÕyÁHÕÂQXˆ—iˆJšªz‹>lå·v-p²Z£·{s ñˆ Ói@–ØfÇ|pR„eõÒ#ç;È ³²Fò¥`¢ÎMÊ‹B.ËØ‡ò¦µ-y6µmÉ‘¡”î\uS|›]:÷&t%(ýÓŸì€Ê ‚O-¨5Y½O¬ x~öeÏw'q ¨U?BÉ2ËP ZUÌ3£'?Á£t°ëŸ'½Gü7Õ# Y£™‰ŒÉ\ÚJ‚*ˆ’®«–ÇÀûÜq‹Ú­ŠM>œ.[нlΞ± ¦¦ú¯¼å–n:Q;ΤR#°$ˆ-ÍW©ó2SU…W…-—§×?6\åTÊõ'É¡6KÌ›¬ÏáÖŘÜLimæê™üœJÍ,HÄ(‰Sùn‰™(»ÒlM¦Â ÜxZüžmyü´<>.FÅIJ‹’Âe×q×mŸf,D§RIªèhym™»É‹¦ïÇ€3 Â„‘'X8}–ºÆ0ïÉ\B÷6‡ˆëò6 èOÎ p]|„²L:döiž¿q`Û—q°U˜¼ë§˜úSê'bçcéú5»º~èuk+ \Xi¼œÌ¤;×~6Uyƒ)\áì,[*ÿoü ‡*ï@¹?/BÎcÿii{z ÍêËMQ«l´MÎÈ»þ²Ž$ó¼ßá~9­qT—Ž5´çÞo9¸«Z:>ÄÔ¦Àe{G‚¥ð[a¢7 0‡/k¾ñ=‹IåPbÞ:JÌß =duYÜåT6*È·Y7_ÆÐ‘¶$A¦)"dçzëhVb¢ãXßYÏÿ7½÷ )E:…P£86³Åuþ˜ù`iDÊŠåaæ½ó’sÂ$¸áy]úž§Z÷7O¶ºQ€œ%]û· «Û_¤ðM9UÊR›-Ã<øW|RçÏ'†©Œ÷Ù§cœ˜4®óÕÊË©7X³Ë«AZ„zqª ­~Ê,qvb½3üG«c0í^£¬ô·$}›sµ|  »Æ0‹À>pñöË:¨jøèû8ªè¯jŒÇÏGAE‘«2Ëç\ÙTÇî´7íL'ào›`ì>ú£Ý"9oH¨Ü`*È6‘pRã·) ÆB†]–ªXÙ­y¯)êÞ–qVVæ{3kÊÁ@‚Oèo d4ïk ¡ú„Ö@Âz¡výå|¿Ë¤)à}K(4ˆ…ÿ^-a,¡ÀVDoŠ)Ž3:P‰fˤ#çsP§¼L×R>!‹«oìÀì5˜çFy§ú¢Yî*ëÉ+™Aí@±{UDíÕ k”¢ßtA„&Ý|C_%¨ §‡†áPÁPæ3té*ä…Yfªêr¡™ßFhÁÑÎèQ¡ «¿Ỽåy!ÀÝÜeRª÷_–à»’g±‹˜/ÝÀeÂôLUw–bKŽ/»Z u c 1 Œe˜ù¬R@Ö“j9¸*/×û /1ÉÓ (ÌXñO‡„f¾¼ÜÌ 'ŽžnÐS;ÆÙâi;VBE>¬×ÈÊë¯Htœ4)@½¼©Ä•|¶äìXSObijÄó´j«‘6BñÔÑ 8ˆíæhèm탬 (U×ä‚xpZ è‚»tX(çJ¹x'—‹¾:Gýa–¯B…UzÙmÛ÷2p À{vR‚”㺠–[ÖÇpµ7·®½(y^| öÕ3¦Yé³Y×Èá ”ˆXæ)¦ X¢æðªZ@)Ž1öt}°>Wþ/)ËcŒÒDÉOPÛXnMbÉ•eù?ÅÅ‹ò”eõ¿ év½iBÌ7¡Ø­Nœ€Eqe}¿ÉèvšJíXÔ‡ð`»aCÂ\üµ-=ý¤á#ÿgVõ‰Š)–ûŽ\õ‰sÇËÚ–CçJlì°*§®ùÂרÞ+€|¶,M…øuÔGë`ë)OÔþU‚˜*ÑG†/y 6¨áéó*¯9•½¦nªšŸ³i’–Z ­¬Ü£2|^ðƒÆf ¥ƒ´së+®U+<¬‚¿ó˳ÙýN² &<Îû|{#I ¹[6ðSš¯—š˜·$@Ú¸ªVfœ«7*׿?£aí¨õujíŔާø±¾5ºÃó`õ«@>3*ÊŠç0`³é|k¥ÈØá*êoÌ`ÙýÁî¹iÉã>M/±àáÀ…£*PN÷@3õ _¦ßU&ço»…;i`I"¹ƒ‰"{ïCFT‰Ìn–: C¾‹{Œ(#dDl¢©jÇòE²ÏNΆ‘ŸÄa­Û#<¥’t¢ä®"¶ã‰”Ú¤6gÌT\E»òxS"Vr%ûÁ€~›-&òœöH¶œƒ. €rkc]‹™vÑ&^cmÏ|OÉt½âl9…º€¦i‹0yAx$©C,ˆÄÅX©ýý4\hòõ‰N{ý~ç=Äg©;—ÏE8<ª\uމÎ7å‘•Iª{ì!jo%©@|\´5-BJa1Â}R?Ì‹º#ŽºÿRF• §²­myü´<²ƒ=ýlø ®‹«ÜÜ6×aú:%¾¯o˜õùŒä/BdC''ý“*0' û»6%ÃÀ‡®´.¾ÄD+÷bÜ žI¸Æð¾m®U©µŸQl^B´[D톲’÷H`Ô˜g|ù‡–ÞÖ¼A¯VàœnµŠ ªW쿪ŸBŒy9ÜÔ7tEÄý²Þ¹¼÷Ãd½Åù:>ß ø‡—†jIß3õm^`ßR½IL)ÄiÍ?9žtÛ26‘¶rÿÚ{¨`k¨Tù±”ðˆà¶z³]ü¡Z|Úxv)I1F¼ —pTªêdÆ¡µgO=¤rå,éP1‡µÇ»ôˆ7zñ@»@Þm‘‘©x‹öÏ›A üÁ3¸„>°x¹sˆ6½ˆ¼Y¸eé‹ng×Ýeì°ÓÛü' ð„ù@;e¹§y²ç,?/ní×åñåñ7å‘rØ•Ç뉕,0Øü¨JQe÷HKš S_;Ðï/ê.`ü{Å?›—§&ŒÕÖBbO ¹ûîìèËš±¶…Æ—G–lëKë—‹éuwÍ=ç|ùòp¡ŒÞ=Vœ?)1yÜ–ÇOËããòø¨KŽéö{Û%’‘sËIïõË$ž‰îy_i°Ée#¦þ¤ÈÂuW„òh`¿Ã|ööÇå£KK›2¹»éöÊÞ~̉ɨÒ`ÜoýçÍ1¸"N oïZ²`µB/º»Û_¬¯»ë-ïÚÇC×{ÐãY·ß“./}S?ëÜíYwÊ·Ý?/KÏ „G]]ûY¥[¥Ø¨”›¢R˜3…À6ñ‹nƒQzþù°\WýüE[×;ؾûYŸƒ÷|ò=îyç~S¥.ȸž5ÊÅ‚£(0øÕÑÿÍD¤Ñendstream endobj 648 0 obj << /Filter /FlateDecode /Length 7903 >> stream xœí]I—·‘_Ûþu¬šçNc_|³=3¶çÉ›’~s |(²[MZì.º›”F¾Ì_Ÿˆ Y-Q¾éé dT$ÖX¾²ÿ±“Ü ü/ÿÿõýÕ/>·~w÷t%vwWÿ¸’ôë.ÿïõýî×/€CJ¤)Š(w/¾¼JïÊ fŠAî¼õSÔv÷âþêåþ1i!…°ûãáo/þûJÚI¥v×b2Av/n®öÿwxñ÷+ä´ÁÆÿéåþö¼:mÝþ4§€)ªô(…v9´Ö“‘ûˆF:eãþˆ 2ºhö÷Ø‚Š1·?=àˆ¢“2ìŽï©ÉG¿ÿ Š­ rÿÙ}„í‘Yj-Íþ«Ä„^€ÁÆè½Ú¿>(?Akqÿæ t®ôþcïú˜yaœoX ·Àí¤–1¦î„sidz ´~ùõ·u¯±+m€†ê„i¡ ,5Lù]­ÔûߥuÞ¶ÃuïüD 4®2¼¬Và-þâs/9Pz‚Ÿ@°eé±éÿ|qõ”#X@؋쮛”Ùi#ää4¼mÂÌîñv÷?»‡+x¶ð¯o@¤`À;”ˆ¨"‰×翽’ÆÀ†º“ &¦v÷ K6ÊÊ;F‘ÿ''mÆ”E¤8%§Fýä©eÔdÜâã$R¼Ñ“Slœ‚GJ¶nHöõœÁ÷X±‰Q™ÉË!AO.%ØI¯ ®„ÆNq…@¯€¼LëE=ÁÆ#ÅùI¨E ;9R$ùcŠ 'J¸úCJ EŠñCŠˆf²Ô²ß´Rì<,¾PJÍÁj‹2¤ˆ´» urfHQ6íœrVN`SGPPIËî%<­P<è7QÜ’ÍË¥r-Æ…'4\…¹Àvšfô…¸¢ÍùŽÂU(•K¡ßáƒ/Îã?¥¸gÆ…¾‡d®p çK«UõPúŸÀw±R—–9ƒP¸ …s¶‹f\…¸ èžå{])Œ ñ±l–«P8—˧#•k¡0.ÄÈŠïb¥p®cïʵP—7ªÕJa\¡]†Ð¯Apù䡲,Æ…HY6ã.Îr”[¹JåÒ˜ù˜ ñ c |—+…s¹œõ¯\ …q!j\ú*…s…;V®…¸9Ëf\…¸ÐS5ZQ)œ ܰò ×Ba\è­ßåJá\1gÆ+×Ba\¼qä»X)ŒËKÙjE¥p.À{VT ã :¥¤ ÓBà<±³’•¸"xÅÐìb¡T.#dίR(œ«QÔüOöûâÜ+K¡p®ìË×Ba\‹ç®\…¸W«fP…¹¼oµ¢RbëF+*…sedÀ¸ ãê|2÷ÒÌëœûòn¤—|9"uÑgV®uÆx6ü ãÚ°îŒkhEëïë6ñlXƵ¡ÉŒkU¯*Ï–3® ™b»²±wÏÚaUŠ\æïU›±ƒÃV°ªÕSl¸,eµ¤‚d÷…༠ˆ3htgLÊK–žã<”V™JÃ¥!îñ†seJÃeASlÕ) W)ãbcæzՒ䕘OÅ,âp-ß—ðÀ Zéa%ñÙ!ØßëLJî 2—ïZ·r¡|:Bç1‹I»`ÜX(ßSD0}¦0—ÆB‚ö¢Œü$½ âó0,x¢4& ¼¨õòßE–^bs@‹ »¿ÁóMr0”5áô’d²êðT‚feîry¸o»§rÍ»×>ì§ZÐþG^ þ U¡§ŽÞ®aEœzz¤êr0 6އaó¡<¤!¾Ûÿ©ÁADßTä§ñ)©Ú2ûãÖºëhÂþÛ\Ë.ÜJËd‚è_1øÕb}öî*JÑY¿ÌADm¨’>/ÛMê'ÿ Gb¤‰i$©„ÿ^‹ÐÕâ—EK%î¡ÙL"XߘJÜ_îï (ºëãC}|uÕÌÃhÀ¼È¥Á/qºŽÂ¹ ¤UÐ ÿëÊã`Ú1ɇÖ,WïOµz{¿ÖNPMÞµ5ðŸ:}Á„ã ÀDE›løÞV6ùî¼'ÁÎÙtM ]™ ë Âj×n%G’ #–)DP÷ý‘žƒH ºéÐ8PPN_ÖEmØ«)‚•n¶Ç é´=6„˜·‡êãÊöèÉÙ²Ýu(º•ärã†mrÈàÑ|Mj1‚áïqæe‡ïR'¼ Ò•-È›d@™ŸPø!ä4fM?Yœã)·!ÑN€iyñûc¦jÐHv“¦\Pá oåùÛeô&on0ž_Ru…] ö§:í»•;'Ô„¾A7]þoÑûÚ6ïø¶ÞbÄÛ¸i…éS¬<Þ5À5 *6=µƒ “Å_ /—jC-¦2¿›?À >ˆª§íB 7û;ô!ÝÓñ‘~jîéZ¹§c…oõ<^DÒh„¯¹E4ƃjÊæRÖ?«Ø°{O馒 [O¸¦B¸Èæü]' ;~3ðپܱǶ#È·wŸ¾ž€1„TÍ‚‚c|÷QƒežÀ«v£>T¥óꢻýSHvùë1-¹Í:½: ÑµÑËýß»Ë_óÀŠl»Sº±…_£zJxqÙdßµ‡Dµð¸îßpD©sÅjõ]Kó€yr²ÝR`ÔVfÃàà^Î̈́ҪH€Žý¡‰€JºÜžûfí²¹?¥Þ ¹=7!ÙmàÅ=ÅíLk©A܆j“N©=ÆùJÚ:Ë[•Í7¸i—;›˜›ê¬»›q`A4IN2%‹¾¾¯@-O!‚u:¾Nk wØèbq¨ä˜£9l˜Ë2½g›ý”˜¡Ë ,‹;²ÀÆèÈÛxSw»¼ø0îÁ ˆ©ÚNÞU7Çà×™ço¤GhÏtÓõãHaáÑõã œð­l—­ëdÞCèÂ&þ\DÕk]†Æ‹›Íó›‚+yËw·uÕ –ýX±öE óndf“µ e(Q˜J¤· ‘c}í˜Xvèšà²ÍGùªÌŸ]£m.˜¶½ôOmÓ Z‰!p'„g´˜Ã´òú†x'Z ™…ôXŒÐ׸®J¨âñ£Äü92ó{LJjb^³ÉäIŠšŽ\pßÓvèÑaYƒ¡ÞmH(2uÈø bv‚ÝT ò÷{ Âî+¦]!W³`Ç]<e°\:&a€ XRå8‘BJÉ– äºŠ•9æ`!Zã’q1xgXr0™ãE´¯|€’J# Xhþm°ÜtÃ&6†îøˆrÇ;M×,Û+ÊZà&ÿÛÔd¾¦„·£´¸¿c!Û­Ÿ5×¶Ë¥ë#i#´“ë‘úPµŠËØ[ øÄt€‰u¾ªM(ø\ 6„J a(­Û'ëœÕ¸hÀ»pÅáJ`oç nF[Ø7ÛÀžC ž]t¤Pä¬F!{Ÿö ŒßþDž…E“LàH}hÌî)5ImQ˜„0!G~F™µØæu+?Øp'§­O æ_/öË_qkÉaÜ2Å›jÃ[·FM¸6PcqÇ z̺³¨I.ëí’¦>4f4²ûø6mn=·†QèS^ÐØDtw§ôïÔ‘áMZFoTƒ«È£ia´[t!½E:,h‚^U„Ñ.Û" ‰Ò{qñïs e½êt¨@bšÑY2‡0fQœÛŽò–E{(zx`ùëêu^°tý„ ¹¿ÌLàÒRY=£ G^/ó®x‹Q²ÁÄ)D–5Øl0,GÚíw1`1,}îåHë!Ý‹Ä/_¢pˆbh°mºa„ûÊ’»ÆòÞÖH©JRR>by‚¾Ò Ã&¢rù=ÝÝVWÄÃYüB†À¨ãÎjŒq>àl†^ßV(ÿ~ä©r«>¶þúc•ÆW4B c·®Ýê/—y·îdYñã¢q÷¶¨$÷€iÓx¥u§yïªæ-‘˜Ì¸aÁgi©a¥ÞŸç 1›€« AjÈûýdZÆñÕTUbcðDºÁ3kŽÁ+´W ò>4 \C‘>âžux0‰ðc¶‡ úv“ÞG3Ù;,t¸¾‘§ºóԯĀîYñöazÄVœ~2SNû”7ùñ1 J¾Œ}ÌFä¨7"{“ˆÙ¦&õaözݦ&' YÕFÁ‚ï饤 ‘iz^¶j˜òkO0ÚõÊÏoŠªžªgêósË[Ø•WÉ«´JÊ] ¾HZk‡+Ñs¶"«ŽÙ¾X¥lÆ63«Ä‘R(Π£áEˆ …À9 k™MÐô²3Õ‰%·•çDE-©yŠEQNmž"u'Z›ÆÍÀ±9%¹é½K+#À°|Ã\^âV.çõ«ŒÒŠƒjËÄ»¬U‘óæŒg4 kØœ‡Uúú`-¥Õ9œùتv‰jFØÿ3É»†^ª¾fÁ7økYçÐ/Æ2§¡Ä/¢Vî7 üu®aÉ_ÿ'ÒÙ•$rÍIúóxyþ±‚} ) ÔÄj}01Gž Š ¶Ã*à¿ä '5¥áü[²5˜WÎ/±óSô‚ÞÁÔ%ªí5ÞŒ@E¦—dR¹àœ.I`ƒ%Óߤ"XX—ÆóWO‡Ü}ƒ)”Í3ý¦÷’'Fÿ´Ó΂ðË”ÒUíÎ&k'£1%/1}±ØŸœMV7ðÒÓÇÌÜîºY¢Ÿ±_ÙIkpù Z¯ó©»îx$Ñå;jð—› êIÐÈSƒ¿úü³Ôd‹;VWÚ‚„ñäÅQ šu&PC²x€Å_*é­“+QÐÝÒ\x–ò&!ö fdNñØz\bÁ¯ô½r|œ”q3ÅЄ§ sIˆólj±ü }œºMSÅ`ë74Ť -@!šê0·-‹>NG¯¹Nöõ¸QV±;OߟÛHn|Ú!ŒÁ[OÊza%‹NêõÙÇ´BÅ2lrdÓ gд)×!Ú”×Æ&lažK±Ee"˜Ri5V|rkؾïyD½ ‚GBÍ¿ä<˘ÉxÅ»ØKpJŸpž…5½*ö£>T_€ø]ãE“ äÄÑö˜à”¨ðîŒ Wä6üZ`–òN˜X8Kõ–LÞ(Õ[QÓ¹”¥U)XBé@*ú˲8y>€VQKµ on»°ÞVΗ¿©®”€_&a 9O@f¸.öé,ÿ€ê}!ý üYúWO´bbñ+¦I?äÀaI?ˆ°‘ M—M†¢Ï¡ePÅ2s ÉJn'?6¹*B?Ť„SÖ‚eÖKMxýÏw!á{Ù„ Ih´ZÂâ.Š&õ“°CÇŽN¨tæÊ-,ÀwÌ¢Ž º©ÛÄaÚoÇ%{v,ÛÇ|AÒ1\”¯„6=€ÇµÆO³Ìœ9'EwÈNãÄ©äa™âª›-¸ž%{°BÄ­€¡„Q•¼óŸXpÃ}òÊAÙ&ŒYò†Ù²›–wÎ,Ö)1:™O2^a´‹‚ð¢–zæ}j}sQëq.lβAtï×P–?ålywÆÐlkLϲi”­¥C$é®&»þ™ŒÝ¦÷ttK |C-ÂSt"Óªù”c‘Q7"ój,»¬;u¨Žõ»‡ª˜Â8ùˆ³`‡§4 ƒ7?g8ŒX7ó#éQ¸{WÛƒÑáÇïäó4ÁãÍh‹µxìaWxÚ¶õ×$ñèqŠKà{V[~ÚäLø™ÎÍ…>#ÚU¦‘ƒá ¦ªK7¹ iøª¹+!µ &H³ïÑä2øÖö3ÑýXpek4^—”éenZ¦LÂW”MË>Ê 5‰mÎs“š´`TyunZ í•íDbÞLÿámnh®M¡¥Ùøl` d1ÝäŸ-H›Ã۰Ÿûçî5Þ a2&bÙ`”›IòÊ‘m`ÐhèXÍñgŸ'²lÏfŸÃD²OZ¹*ðïsçE4-¸i ˆSkBwITÒ†€×‰ `Û<¡s6s¨5 ª»ÕæÉÛÂÝÜ7Ïþ4•‰ùiË;KÝóYÎ{­´Ly•-þ¢À¯&H¹†sÒÎjØxxEæöÁ6ÀEEM¨ %¬[ýDúõ༙0 VÏ„$)ø,· ©g—c_ZNfÅ<ß熱‹_Ÿê(x.àHÈupþ¡¨2D2K´úûÄRَ¶eå —MŠ—¥¬'~œuaÕ™(´}h¯W qÀ$‡²7éÔû,\mâ´E¿øý ´Ï-}If`OóX=unQ¹hî$~æÔ‰1µAóé-UÞäKN.ª¹TÄö)7Ö?«•—øÃ¡Ô ¿©·õ‘1×®8_ò}”(ò¼âûì\"M–ÂÃ4³«ÞP{ò¢4¼²t›;‘Š‹[sP‚Š•ä¦c­_N ¾eÇе¸ROßåÂ4Õú©|= œ¯ZþPë㎮š¶@Û{m¾×R(Ú8dÜÂþä’¶Eîÿ\têØyWøži £ð&’ä3[’WI~€< Þ÷±ºY<8á’Wлóý¨ÅŠN±ø%a›ø°)¶¡õõhœ¹`5å½£ ȳò^’`߀=ZZPf±êX·Üœ–*î³€ä—û\·c­MèšÖt‘¥A­™ÚgðôF‚ßÁË9„¸0çDÎj%cÆÁhš]HéIU ëÞºôØÔb½ZUšˆºXµ~sàù€BþY%?Œ¼;m>¿ùeé›~Y§›Coêãm}d c³®‰J·4ˆâ+fƒ]|Árz=ÄÏ[sLEh¬/jëš—šä‰;äczJ›Ç5ÄpnŠƒ™ÛÖˆsÕ8v6éZKüX[ì\óM•¶&"ˆZXÊô­×e𘠹Qò8ùH5–øu2ª2&ŽAÙHâ}ÌQwJ‘Æa¹bÔ!†”úˆöƒ’«iâ…á]­¥OÂa”Ò”ZݸÔ!¬æäY–쮫´ÂÑa–›2D´tñý¬¦eÛ\@5fø¢—j\uµ’N'ß(ºJ«ŠYó0Õùõ¦L_˵-‘3AmZáãx¢—®^/Ãk}ARgÌbèñ¶>>ö gJ5 ËÔå‚gÚ  VºÏ+£©—Ĭs ™—WD§¬£ÂôiÙ¼:«GŠt¥f½®0½¨×NNù‹)Ú¦ò‹Õ‚mjÃÒãûê%úëIgRïñÇgTcé~~³½ÔËÜî¦"3ŒyÅz­æýҾصtÈ ¾®Yôœ…˜_ïkå ¿û›>e$”Þ‘1p ô‹´£vT®¡î§n¿rÉçÊÌW&vêΛAü¤}{³d“®Ém¼Yn¯•Ç/vF7%Œ]µ‚`,£¦²_KQ}$!È¢²üx«ŸöÙÕ‹¹ŸßÞ¿}G…ˆô `Òýí‡7§DB‚g¾yJçXë.ä‡7·õ‡÷‰k^u¼»ƒ0FX¢‘û]¿±M9Xþø¸ñØWx7VÊÜÔÈàyX¿~ÅšëãŸëã©>¾­Oà J5‡£¬FŠò1jÝã¦UhΟ}i_¾àÖÜãgÅ£›"ã„þ)§ÃЩqd;¼¡. D©5Þw%~ßêø=òX\ñË93¥ë­8e˜Eœ˜A„§S5'í•¥&͵d£Æ)¤5<ÉêYV΂ÚkK Ç÷9õØ&ø…¸)¦öVî&X=:V?Çܧ˜~Ã4/—óKÕt\j‚¢ãŽóû­tøµ¢n *à ù)5§ƒîc> Kê†'°NìÂQ{‘6àm&y¾VKýVêK9M¬FdC× ª¼|¬ÉŠäÍðÖÚMâµg%’ uÝßDNPÞÂ.쿪çuw)v¤I Þ,š/vãuUŸõñiH½_ûD0N^ðŸÃˆQQéA¹ÔS¾rªì"·õ‘ñ> _{ÛL@غV‚\¡¬ú¯5ËÛÎ]î¿€°!ÏÕ_–gítBo)¦4*&(Šä 83³­ìð˜Ë{2Õ* µïš³êÚð ?À´c½t°PÏËå›+H”7>vyŒte½´ÐfÍ>ÞÁ©1Ì`öñkEíí¥E=ŸVŠ>&5þ5Ó&A£þĨS鄽Ë:E ëꑎGM|JTÐÇÙ¬~ð(„JÊfá>5Šg¶ºt›ÿÔø¡ðpåÄÓΛãâ»ÂVËcò);}ìøY1 I±kJ§°£š¶å¿8HW¸ñ+L—¶,ñWá4úðÎu¯Ù¹ˆ˜Y£#–þÙ™nI:¶ù0“¦¿4]NÙÛšÈòaqÙÐ_‚eÓª˜öÓÐ}àFcdUXzòX¿ªÚ,L±ÍÖ¹7Çx·(¢m‹–pA¤U ¹ÛDб`ü`*‘=ˆ÷3¾ÖÐ$Y±+0»9šf÷ ÙH›ƒÌ^é·œjY/Õ“œ¹×ÚùŒS›kçÜô\+ü+C¡=ígË©‚¿&ÞPñ&ðt“¿KrâÇã£L¸ÏÓîÁ÷ÖRÝÏ–4Óaìúî‘Y÷4Xã=ÝPNC1+»Ä·”̯±¯WRÑ|ì3zaõÅ+å¬çŸ’8ûæÁÏÁÞâ_ÕþìÆ-ŽÄ‹µù®VŽ1hÙuŠ ž¥˜ÛteÀj5SÒ|]ÅÃÝÛ|ú¯ø?¾§õƒ(•t!]ú¢Tqð¹8úº;@^Î^Ò ÕZ{_<–WŠð8÷?+ù¸Ü‡RƒÛ€í5¨âŽœž’dé»uSþŒâ~á¶~rñÅ!ЧõJiGwÝü«ÿñÏ/(¹‹=yLÕÿŸRúïQ$#oïåYB&êew8ÉëCÓJ4VŽáâäH½3͇€žqk榄’뢇]cµâðÌïËÒÀJ•Ï Y»ÈÛæó'\ÿÅEMendstream endobj 649 0 obj << /Filter /FlateDecode /Length 8419 >> stream xœÅ=]sÇqïŒ^óŽòÓ]Š8ï|íθ*®¢U±EŠË"U®””‡#‚ˆEŽh=䯧?fgºgw A&¥-s3===ýݽ? ;s2àùÿg7O~ým˜N.ïž '—O~zbè¯'ùg7'¿{#&|³KC2'/^=៚“hN¦0í’ '/nžlLܾø/lŒU£ß™q‚_¼8òýæn;ì\‰›÷ð8$—’7›·ÛÓaRš&»ùëÖøƒI› |k†aâæ F‡èÍ0n®ñµ†z/¯é]^6“7ª×$7&/€8ÜyížÈÉGœ 4`4>*Þö†ä°^§™+†h+^ð …pºqFœ3“:¶ýË:ß!;[)ZŒ`:ôÃ|W… [P8IJNAtxÕ*€N« p hr™îÔTãžvCp ÑçáÿØê‹i@ª[œG[ tBÉãvþAÐÚÐ’.üHzþ± a°øÂ8zÉLð#VR´žÇDà¹JA¨ýaSn±”ÿò¯K@Éâè’Y‡“óÄBh€£„Wš–”Þ d2à I€Ìõa‡ióöR;HJ¸™€Zþ €N,;†yun—‡®Ž1¦s¾K"úÌ ùgTF"D‡Ç»ÀøÈv ­G<õè» ›@@Wº"ð¨Ë ¥¸ü^ªU¾k‘Q0Õ»QUpU)Ç»OˆžKùâž¶Ã5åügc€k ±ðI`ÄÜ€™pÎ*=ƘY›”Ëb¶C#SçY´%\À5·Ž¸;¬Ÿî<'ÉŸ½\R÷ƒá̭冒³˜õ)`yêý?ÏÒ9ßნã !8f%‚Ä•‘7^å߈4F¿ËLo²qX8fúyʶôÔ(8ñÅ’uÂ$Þñ&.ÀænÝÓã|ÖU=¹¡¿ª]€Î '-Œse­’³$,a<Uù˜Œoí¶Q[*3=ad=`ÉjIì/ÅÃæHS qèšéTÈh¥g•Õ›Ô¹€uúIÐ×(ùSsë¼1SôSgAû†ƒŸÎ0Ň…7ŸZHˆ¤˜QsæBŸ æGÔù#RP"_ª8ÅØß“¹> ŸD2¡ë*½4’ªý"éMSí<á/ƒGAú èÿfšÙ;©QÚð9*ÓL0¨ˆ¡ƒ-l~{\¥±X¾µR¥‰ƒxFÆ`*Y$RRô(w-ürìÜ ¼ÍÉÀ) ÛUÃírWŽ>E®·Ž­R°Êü/ø˜=í¥©Ù†”IÿL9 INзpR|(í®já­‰CS·â“qº‹(A w?46Ι¼ $&‹b¼¶3~ÞÊ#®“@M¼ß‰L‚Ïä[ƒ…â¹’®‘ÆÆ™`»l„®7Ý~]Á"2î!ÚëVý²j{¹Íßã2 å}V˜¤V$T¯Ë ±ôIú9Ÿg"Óž°‰®Wa¯$ÒEq^% ©’Éœ»¨.·u1Á¤ï†˜×È ¡›¯ƒ›órÙ‹·f¡ð08ZßÙ£M`Aa3Šÿ¿Þ6{æbx¯àÙHæÞà€JwÏîÏ™1<’&å-ÐÎ\\UíƒP_:·¯‚^´Ÿˆy€¾â%á|¶¥èT° ÌÊP¡#}Èó¢”ó.´·ÂqYÙÜ1)ùr!Þ³ˆ*(ü¥"c•;k³Kböa ËMùip‚{Y_Ü ¹æõÒ7œ99hfwÙ[Ì‚}£úT¬Hƒsº…:ÚÓa)5'ŒK]¾.z>#œõréòb<¸É6«äµÉqÏŽÌ AV?WBPìúMㄚÝÛ击âÒL»Áf)½è:ãÐÐB‰.î¾Déû&MÚû 8Tí±DʧA‘ ËÞ³W Åh¬<ÔbU4ÆSÑFð2Öºä6Üuüp°ç…—¸%§«ßÍ·¨l¿;žÎÃÌÛQ;¦®¦˜*|ë„#NbaöT8ÉC¼qÒ¹fø¦¤<]—:’C£j·Î!±ÞªwhFGo*ê_gXpž¼S-~ßWjÄ(cpEmÍJ&b`”ÀÁ,½ÒÎØ¤Ì%©ó°Óf6³óôƒL%S‰Š‹ Þ†ÑÅi°“QªyZÐÏ4SÕˆÎÐsžm6·Š6€[Ú|)DðwÏ«fñÝ7uG§¸# ö¤DȾý˜—CkD°­7E¾×«½'Rqu€N5°"²"†Œvú­+ªeAW²¬ª=ó}Øõ!ÄFD]™Øå(< uâ×U4‘Ó$.j,²¨³ƒ)C*YLëäÓ¢n> ícÈÐi«½jòÿòâÉŸŸp¶Q8yû±ÙEp¡“Oã \¨¨1˜bô=ÆÑ5lQ&×aøØÅ… }Ћÿ°©äñû3Öïâ4É%6 *)‰êï…Ú“›®ZD ž*)ÿHø0IÓœ¥åŤÈç4‚d}’ÁŒƒP„Î+ 6áu XazÑWU‘.7’ÂýY Ís”x¹Ëæy%yÂw{C\$Y#µK©7<‚ÀdÝE—Ö‰!yüAØwÃd!²6<‚à&íbl¡Þ2VÑ,Ü êüSÞzçA²Ù°JU¨.96o⨤&ÇR†œ|`GGZI&¾Fåù?¶¶C%eÓàÀ°ßKót¿}Ä¡{¸ÖŸóÐýc{èþ‡î)6¶Po·ÂW=ßµ?é"í¼žq?ëM$D@Á¢U¤£ZèDÂ"]´ ¼ç‹9ÅV„&ÝzÏà‡pw¥7¹Q`†ìX ֥Ë諌ż\³á.8ƒï %Þ#š^.¦&}WFŽUl±€·Lâ0ÏžçN”qÒj ‰iÔ üù½ùdF̆6‰ÐÀö%QN›M¼î1/4zb½ò ÿ£H¿ã¤5<€âƒ{Y SÖ Ð»ù'B%{¨#ú—TTÿ]Æv1ãyëNz>”¾(’àrªC×þóbkf 6g½“&µÐÜïªeü&§º9;¹MucÒNÓ°HI–f¿G^ý ØE="Ÿ“æÑ/LµâˆÀ½¦àG¡Ç r9Õ¹pKä’8ý…K©OR… 5*3þÐQj&N¢›½}‡º†²žV÷sU.Ò[ý€ˆìCáîž“ÓÔ€ƒT“€!¢kÞ²^@åA1ý¼×^<ÿŽnºEZ.yíW°d«•·7<‡3M´C¦ëfáÎ;Ât¡}¾Ey÷ú©x 3ˆ)LnESÜiGò¡¥¿’c´fsßoVdï<åq ß ˆÖ?x`KÄÍ×ßàkK)!ëih—ÍkÖhîZN΃W  ‰eSòUË«¿SGŒ ¤µþs(µ1€Ú &¥X”ZóK(o7„è&oŽŠ}þUX®ïØÏcÒ¢—ÞÖ0źp3 Ò‚VñÊ7~œ»t ªwì¨TbOÚq€òëŠR'±z=cGH,NŽˆÍw•;„Ó!ô¨*×Çwõñ¢>^ÖÇC}|[¯êãú¼×õñËúø]}|¾úö›íj#HÒq(E`:rjáÏã„Þ92‚ƒŽÄE"F'F)-ÑÓ|+1?s ¥>`^Ñ(‘0oßÕÇ‹úxYõñm}¼ªëó^×Ç/ëãwõñ£P ;q¡Ç£/äúì$é+¦¿È±¤,é ¢‹,¤:­}ö,M?ð“κ¿_©“.Ó·y}ó Ä0ÄŽ'ýëw(€@KEû\%pq/nëãËU¼c<1„BÊB¨ŠB¡v;ÁXeæãXLýúB0ò7O ó@ޏR•\Žu!Z?T?Ïûªb¾ a(bì«m9¹Ó*ñ²·!ílhõdz-¹èXh–ìz¸Í§‡áaÜhPR0Ó¼d޶´ÓGà®ec"0¹—U£‡1ÀŸ5»glŒ¹Wñ@†æsŽ›ßoEظ0nV¼œ£@DqqÈÏSÖ˧ÔK£#íߤO í_z*­²úmiF827v.$š?>e¡‹WñíH\‰G¦S´BŒ©dPòV[½ÒŒò³\´Ëȼ22í?T(Qe'€ÒÒ·ƒï1‚Ö•ÂRßj)P¶K…>®êaÝ6ÔžÝ[™d%ÙË‘òŽÁ¢‹-ȱ÷«O;ç]\áÒndße_W~Љ¬Š°št«1Y˜˜9_:ÒDš ¿§4)ʇ×DMbØ"½T,§ ™ÑMËJe´R…ªþŠ›¼øµODæ@ÌЩ¼Z)¹V3Bë”ÊIœì}ÍÀMIû¥d:ÖM‚„£1/”L:­ÉÅ#¨r*ïs%®Ò²zsî\<Ãñ .>ï#ä1±Fìo\R~ž—),óé VSþ˜àÇnêQ¾tºµÞÑOEùˆüÛ¢¤¯ÀR°~±-á²Ûõ…ˆ±ðxöµ|Èă™îÙÃÈðvRþøËZz¶î¦¼Eé(G“’ÐM] Í>&‡‰í˜®é©ú®Måå9Ì‘!ú]ÉNhá=§F§§B¹Áw"ô 3]7¢pØ‹jÇÎì¤~Ê`ðÃR³=öU0‚øÃ…{áxQ{ÙQ'94û['fU´Bâ|hѯÚàÜc[ÓÍNLRÛg ¨Ü™Ÿ³?eÚÕ2°e1×WȪÆUOÛù|N)ß½<_Q)¸¨g€´î÷uÉ+EBfÊ@Å]ÞrN-}LÁñ¾š`6hÂÞH `MêÆÀqQ*S“U®ÓÇeB‡¶þÙ£öû!R:p“ˆ9pðj(„U kÔŸ¢°tÂHçí6õ*Ýæ2k®Ly$kùñ¥ÉûÔª—ÌZÃtmÌ‚ÐZ\MÇÁSUçƒ!ÃQæµ­xç1šØèzeø/W©¯zá—R'÷íÇzÕÖbäëªûõ‹RÕ² †yßšò9S«Óפ¨dõ&Êdõ&†…Ë¡É.µŒÛ‚À#¹ör:â=<¦ëù‰Î‡.XܘڟÜrA”W;êHZÊBi"Jñ³xf¥ušîQZq¶¬³ºô›&É6Ķª¼çð¥öj¼ÊY(¯4ÅRy%k¾[©Wd vbž—-¥lб%·üËý» ô° O"Ç‹¦ã„ÍÕÙÖc TîâhPØ|ù]Vîlèùw´#šÁ£k‹³âæEªàØVéåÕíáæŠ¦ ùìææ@3GŒå]\ß­:Ѩ«Ò?PŠO=Tx´²4@6 ¬uá|ÞôX«IâXd¨³Ú1uýEM¯.œÿ4aÉzÍû%¯2äD˜£ £iüqŠNßdÂêPaÙ—T®îø—h=?¨ì“±Töø=Ý\BÇ l\ýb]»"¥ë @²0¥ªÆ&Bé¨ Ò…”ÿ+ÊJ“&¥ujÓ®«N!™^c0µ»á gŒ]9—Eã ™f7§ï¸2²Á[Õ¼é‹ÊXŽ…ÒyÄ\ iÕ”ÏH{I0œNÆf=ƒV]ÏH–­YšhƒÃLdï­Ng-q Å¥F¯‹ã¹ßm×À=Yå#è6ÉÂWê(Ócn)`¨äv½d³ÓÕF9|VJí:@<·•·”mTοs¼©dØmÇDsL°‘±Æî ,‹OC÷ˆÂt‚ñÒdrãïÙž³€?TÑi&!-)1KªÇH¥ðÿ¶½Çœ•TNQ£Ä›§­­­ÕIQ6_â²Þþ§Ãòì¾û†@4(%¥þüsU“?R© åš>KJüˆy³r ÿ»Ç„ÿ1 Ô·@oe19mЍV…ògÔüè%Ê(ÞP×;Zpžu‹ WÉÔéð§*Y¤¥µWÙ \—3â“n¸ýzŸä<xÅHtÐa,¸«Gu7ûê}¯AóxÈŽª4Gu³‰%̶rë¼Ù’Ê%ŸóœñW“ñݨ_/ ÷QBÕ¨†*QMNPl½\9,PMëˆVlìB‹¥êy”*êþÇÆÕ˜5³¶/«¥ôIùÃÚæàC>3i<•]ujÛ$’déŠ}Láð~þ]©ßÎ íl6Ù±¸w„jÛ9q‹åAˆ:’´¸¶Ñw^j€"I¸ãÇÕ¦f¯Iú‹ÈDÞ— º=à ËHyDj™¢å¥À@Íçf«5?¢æ9¬• °4ÜNÝ[£")ê>M ÁjÖtÐm ­[)çè!é@%…œZwªäK „íùø/f€¦eOÌÖ?uV“c0ó£ôß]l)K}J³Ë’ûôT÷°jË–ÿ¦Nav‹ž³##Fb†óæQhŒ96"ãÞt œ4ðW ;ÍŒuS…Ím sMÅ´Záºíÿ>åÓEKœÕ|/ÒñN–WºrÙó6×~‰sxSöx±ê‚œlÀ>®‡k¡ÄÈ[ÔïEÿÚòx=Æs·›­¬ÝUì´vÕÍÕ×ç ¦ }do]úúsuˆŸtB¸ÙXÊ1‡ü@·¥”¦¿lKT_½H}=—€zÎòÌôòŒx˜Òˆç½<¯X´vdô«J¦ÌQ«)¹Uê‘ê56£UÄ©›%Q×ÝÆ_ôQFµ)öæÈ‰÷1tOçv§T䯈酨Yásˆ¡¯¨Yªë½Z ÞhŽ4m~Ù®)h@N /—3'%…‹H«:S#ÍJßÐZRŽü¬Ç¢W3ca%_-_x3˜”¬?"R}Ù‹v$‹&’ª!KåS·uSJ?è‹1#^e7Ÿ®dþäZõV 6&SŽë¥D}Éèœ:ÑŒ&SŸ›SÎç&‰u•KQ…ØÉwè¤æ,ò‚­Í›F’|ì}*¦à¢Ä˜_r (¥6M ã.)Ê·@)‡‡9 q¤yèjm×ý·ðœ!ÂëÑö:ÎI/ßM‰½èD¶†zD.%Bç23Àçqð}fÀQ6ÿ`݇}3e9!=^VéÑ(>«ulåz=ÍN]°ºj“{Õ ¯€s),÷öÑ`žU:V_8á)]ž"ƒÜ‰QHš|³ƒ×Õ8YtQyªWNrj\8ÚÅ·÷8Ù#\ø«¹ ÔÊ4aå¢âÔµcdµl6ö6g-G§z–4ißÄ`rGaÁSö…àaÊk§²vZmQLPLÿ÷=þÊsãæEÜ)ïYwnÃ}²·eÓs ÿü»NÂfÅñ(¿1w&ëØ×¯†Üß’Yé's{i•3\oŠìÂÓÉð?,+¸(w¹ƒ/n-ÑËH™4÷BËouÏJ®c¬µnù.FNFƒ>¬”ÃãdtõŸM0ùã5‰ªדƒ…—ÿ‚-Toœ¶U†e:¡°ôÎy…\SkEoã‘Ì^¬I\5¿„¼Ú—-+IÓí‡)„›´Ó!@Ø„15Ix>–pIq_ò—wi~¾zXQç)Ú/¶´V– K€E0á¾-ówd`ñ¶ùáíº˜®}ûÖ#MI?Î`TþÂÌׇ¸éÓT›¼U-C²Å9ÙrÍ0§n/2Éä­  è ÓâdÛsì/º\jNô2àGÏRa¿*‘2&( ‚]ÏôɦN‰}‘0ç PˆG¿¥9©ï†‚šNË™¾U¾º…jÍP×/\Û98n\¾ÎÀëtSœmyqõÑÏTMù¥ôeJô2a`ÞîzìgµÔÕ›KM©+ì2‡ X+”㈧œÆOÜ>Ûä£ÝÝ.NìÝûXßdM‹˜£ŽèK9æšä4‰Ç3)‰ÆuÒ!ÁîU sNÕ€ÁäÜœãÜ X ìƒÚ½nÞ¦ £Ë_R” žQKC,?÷”1*îz´Ã´L§/_Pä GÕV·¼Tù7ŒD:•ö„r>D?«'œŽãÂr³¤õ œöSvÔ,]Å@?:•tó§"ð;ºÃ±fmŒ‘ Ñ¤¼jÙ˜ø±ò§¦¥5{/ŸEôZ¾Á·°i³þRB†—» É‚ílsdü$ëcª*(¾B#ï¿hNP©‡„ªÆµvä+!Ë{%o+|¥!Û´RØ" Ë¢µöåh|PÀçb1ŸgÇ$7¥@§ÕpÐ2Æeç€&ŽˆËÊâViÿ³ ²aMÃÑ%¤^£\•X™Ô†mg-îªMuh]Oç†I¹¹é5‹ŒÑ¬uŠÖ­ûü×cÃÊ_¾|YýÍø§™&›Ï5‰‹/¹ŽJXÕ›¯•x dîªû`Ö­ŠÖÖü]Ÿ …ÕEl±ub‚ÛÙ)\ý1M¼'¶œðûªï¦Í_0=Ë «-¢X‡øP° èôòÝ#- E@}-É‘¿t%—ÞD˳iˆrpê[MÃÃüÞ{m¥Ez7ÌWƒVknôF…Ò×ß⧇KÖ'*|R…눮cv´¦v-:Œ É;í[P—bõª‹Þ:­r•¼ÝŸ‡J®NµéÔ–@ɨHfôÚá}“mþ„Í2©è³ÖO†œ4-qÉ#N®K\z–ƒÛüE*4¹Û¼„u›ŠêHœ¥’8J„¦¥8.3À±;XãzæˆZLÑ,lnF(R"5@óÔé/³þ8µ:úY¯ËýÒ%ÊVy{ Ö½¢øBŸKQ…îïŒØT2úŽDªrã´naq£Fÿú[”¡…q2¥¸í· Û-s1œ{¤ú^/ñ–ÜoùùWõñnu°hÙuSÿX«3¼©W÷Ás½:öoÛµ¶nçõñWõ,‘"ÿüäV¦3ãendstream endobj 650 0 obj << /Filter /FlateDecode /Length 6712 >> stream xœå][d·qN^ÇB“<6获y=‡´½¬X‚È2,ã+?ôÌìÎn´3=šÞ‹V’¿ž*Ïa‘]§{f/V€@¢Î°y)Öå« ©ïªÓ …ÿäŸ_üâk?,.w'jqyòý‰N]ä_->9…Z;øÔEõâôÉ ýV/tp] z1ø¡‹Ö/N¯N-¿RUZ)¿Ü¬þrúï'ÚwÚ³X«Î¥†°8½8YþÏêô¿N°§>.øŸ-¯ ¯Áú~ù†3Ð)jjeû€=¬µÓËoà£Ó½ñq¹Á:öÑ-¯pcýr{+нÖaùgº!ËßÁW¢×A/Ÿa÷!Â-o±³¶V»åwÔ9(³@ã0˜åùÊ Œ—OW¦‡É]¾,«àSor_XçS6ÂcèÝk«c¤éTßÓÊlýòÏŸ• ŸãT>ú• 'B9 5lùy^­¶Ëωî1À¯½H÷†àÛ4¨2Á"•áAµ?ñ_ªâc;øðެ-½vN/ÖÖw¡ïið׸tp S30Q¬È±"-_!¥ŒZæI£|ž´b>§¡›Õ4é£å§‰ÜJ™8HK¢é^™±÷·KìaçCÞ‘¶U×§ÃØýM9˱·Y¯*uöu9[w½…3 ½Àõ6`¥ÙÎ{úEõ›oW«µBµ^>¤Pªâuè†0Äqÿ˜(©”VZ#`!»ß‡N‡¨š5n®“x5,/ˆY}´ËÿX JÀ…åæ6I‘RÐ&:‡{?Èt6°eoOhèáwB>,œ~gB»tq÷$4_£¶ÏávJ…z‘?©#i_¾sÞ«P³4‘z©awFØ~ùó#»ÙU §ï±;}tw{G0([ïîá?­ÖZT'ºóv˜V„G5m¬[bõ¨Ìò?ƒîÔ)CL™E`f‚)ÐkYÿ"ÓâïPO7E³Nj™›¢‹ôw˜ÖÕš¹ôx6%öÔèö6›mȼd•ºË:>_>›ìÕ+Ô‘:>­-/óz”2·û|„Õʺd Lÿ%kæÐ{‹`ø5lVùÌcñ×6 `ïÁÌw8Œ_¯F£à25)ìëLÔ ÿîÚÞ»9ëvISÃê¹_s¾§åCTÆ,žÑÆU6íMìÁ<–9^wÚÇÎ{-= TMh5´®ÙƒÍrëú¢ÀN ] C6ú\¦î ©×–Ûó :§x6yŽoè#:™j"xZC‡Ä ZÃuA ÌÙeóþX‡.ihÚØ_ë\uži00«áfš`D–ÞjŽ®xê—Ý´8&*µø*›(Ïð(”ð´?톎!;ùãfÇeD•–`>=øÙçeBuQm”9çkçAcèd¾Möƒ¢w#$,@Ñíö=ã½Faƒ#µxL“~—ˆ&6&ăC#â©ý*¾ò}±2 æ‚ÿ \0EŸ‘ ÆÛ¤æÂ`¢×r“vj#òwÚsèçø[¦m&°ûõA=+<{N#;Ði7’äqFÞÈþÁ²Ò» ‘}¬¹ð¦p[5S·è˜ š\ˆqqIr²òÝìˆ_œ2{vÁëô&;$‰¼uìkšü ™$®=–ä-(ŸmO+©Ó¦úi'¾5T\KÜå ø!X/ nÅW¥ùeiþv580¥äã%Y…}w ÜYVCCHS'¯ØêÞ¦ 7ÚÞ1"1òÖ y(éoiÓà?û~59›/k.Ê‘DÏ ü–‰ÙÎNÀ`Ò“›ªeNez†Vé¨êJ&IdìvŽ|®; Æ6÷ùÖà’•Áè¢Mù„Ú= †Zð=løt.á›ä{ÐFvù†€Œ‚3gaP¶šÅk`c¼œ‘û*rKà«w¾æúM|¤ÅÄ ‰¡™{UóõТtüêå@+Ù ï4†t4lß;a?I†«˜]¦vL\gŽƒOò³‚ùçó2ò‹Ì`BÇS›Ãòk‹D}c™ôlw óö³"g…µ›ð¼v¸¢ƒêÌŒ¯„-Ec`9ƒª`sI}Éö˜¨XÁt½ö#6!a¼¦ï¸ö¤qäAZçÀ×¹½\3&7Žàü|U›‚8œú¨Ðp!& €æY!„?fÙê;ísëh\k£“”@MƒcaGî lkT@-3qwdâ šÙ§%nBʆ&j6É|BQÊh¾âK‰K½,(ª,:M‰ˆ" glý3*a“À4\œ0.j)‹Øß-O§4¹P]aà OTŠ~ Þ±dÔ›Ié=8hÕ åMm (ÜÑ5U¢«aàAúÆBô^qgxœ}qk3Ý1ƒr¨Þ’o¡,˜7ª¡$DÜó$Àú.·\8´~LÃZ­HG‡âÁcõ¼šûÓ •<íh8è4Á¯ÀfNgVA¡ùuaÀKÚ02“‰'4K¯ûy¡à˜¿ðð´º’ÃÚLköIÀÓÈ*qî$ì4 ø}Ö¤có1—ŒáW°*&C rd*Gy>"æÂbê'÷Æ´¤Š0}ä[áHÕ‚T+åØ5»W*ZG„ùV ÞcÚ%ú½-Z5'•^6Ð5Ñ$psQtŦNŒŠƒÍ&GvPø°­!göÊœ'dˆ8;·KËYþ²½«ƒ902‚HLŠ<¡²ï‹IhゥðÐŽº£ââ£<¦Ï6VS¢kâ1hà±Kž`â¼9+$œñ0@ƒ±“ÿþYœ” ò,“>f™×KŠRk¶ÕYƒ>óІ…›/……ïåЂú·º ‘¾›CK§`)bZU…ýüµÆ&íEÁ “pN²¥ÐöÁr·x»«¦ÄaT0MŒIŠßLó5Í Ø4‰óØ®Í5~V©ã/Ip`Esærú]ÏÝ@à–$²:vpœ£¬lèDkIG‰çª2&3µ#.±ú® b¹ ÙAV´{Yð 'ÓnÅuïÔåû‰/å=JÁTî¶ã¶kûW…*ëh OF@Š»øœ=ÔªÐ{—hf*:q]OXBòÏø Åxí´ìÉÙ>˜&°3*ã>";–yrö”ܳüÜu[‰@Šîà^uâêì{ÍÔŒ€Þ-…Ew(6 ÁJÎx]OÐ/°øcèÉm‚&¥ CY¦´Ñ7F =8B M@kIyKÁ .7Hl¹ˆÞX2C²™ ¦dœc2Î_0ùÊHTåèár$”±© âä.nm™·1“Òãp33™}Ý)‡Š&*NàQW¹Ð—ÒJ‰?Eß0"îSö9à ˜þPRVcŒN‚P{cŒNp á^¬éNR¡©€é*™8ÕYJ ýM]>aֆŠ(žÂÌE¯¼Fÿ)b`¶©ú‡NU„~.6ù!3ÀVå‚&>!G|eßS Ka—dÁ:°ªrL½1~Zè>ž¨3áÚ9¼Ñ2ò(Ζ—©yQš9Þc·æm…-­cès÷Xª$oW2˜jBÝUÆ+í±ræ4×ÀSˆCKeÒ¤öxrŒñYp‡šŽq™Àïòúô¢Wi³X@q8Á&ax‚ÍGârÕïn%ÎÇÍ=»GÿµÁû_ ÆX>Ø!Ôyónv@î£ò•q:1)Š?7öÅpûyq|7µº &¯¤Ðô!å‚d‡˜Ã~–çb¢R§hÒpN õpéëèÎ˦-­MEª]‰½Rn®Â‡¥ežçmÃ!°8QrªásrN5ïCLeGo¢€äwf˜JßÏ-»½§“ì?@ÑR¢ŠêïT´tìŽÄ.ŸÙ’ÁèLú”ˆf’ʇ%¹øÀ#äüxý~ÐssÌÈa»G½ZÈ\ý2è=ݠǪÌáŒO®ÚP쎛 9ϲ_Q™BÎìÚcÒg^¯Ä ×fºBj x´bZEmß™}_ñ¾Gµ¦Çšù߬Ö¯©!M2."P› ˆ(››—¥ù¸4?)Ími^”æfœ¢_þº|]—¯¯Ë×§¥ù¬4ÏÅ©î£ZO2½7¢m>/ͧ¥™‡h{lJóª4»ÒÜ•æ ñ+J:m/‰§ÏË×ø;6ÇïÄõ°éËûø¸4Mi*±9”æZì y‡á3Ã'ïm¯kªü¸4¼MᲑiVNzðþDګ㚊 Þ.Y ~*~O÷ÀmžaÎ{‡‹lè)ƒ¿oÖs¼*lb¶M]3PópäP±Õæ2ÇJýW7^réÝ.ĖKmΦ p>ëà±NOÎ=Ö ØqŒ§SÆhæÁ ª«L1×™ìI}§'$]RÑT.®žQJ¿ÃB$þ»™X»©¹Í^߬m¦Àu[ž·:#Ì«±Xe&]µáwj¶åÞM›ëWñ.)XÈ}2.{…§G2.¡SCÐÍ•ô³•x;Oe].‰#ÒÍ7&}©Ð½ïb¨"C[ñkcæTŸ¢Ý,Eµ|Ú;;P5wŸÞ!*œVXjš!²;®uYziÓ}×T£¿£ßYò„›€l“]ñ}‡1×é>–„5eÇHŽÄÈXs'b¬÷r}ä)æ‘)·mŒÆU7™ë(}ªÒýé©CzØ ïƒðYr°—æëÒ|#vØ”æmiʔû€ì9¡B9KjÚ=³–ŽUI-Â2¤šÿ »JÐ\¶5»ahýyRZƒÍät‡mÊ wyýàÝJŸ¦Äùô» K¥{AÑíºÇ&ÀH€P–Œ;í›E³%Ï·Ô»~dª`¦J×&ãiõPeþ¹£i & 3ñº†«ÆÈ«µažÍ&Ì|Néåç*«ÀŠúšô@¢`[®tì–écÚ¢EõAµŠX„:qïnV§øtݱlB[˰ÕšÌ\¶p§Ëfi=CèéõAÓ]Z–¡DžrLFÀG@œ«i£µÙœ‘—±pÚ›lMË}Þ1í.ƒÃKº„ì3QЄçÿØ%ÁºžQá=‰©·Æ«L¤Tg­›Iù`Æ ••Ç\®©oªuyBûp° z °|ÓÈ?maZg}ÇŸmÉÄHI¨£q‡0s¹æ’]‡”ÊðH?==ùã ½éé·óox6µßù Ok‡ô„£Õ ŽÅ'<—=V‚çaï=ÞýК÷ˆâþ™$éF¦MÊ>[M÷0å—ª e®a Ÿ¶Šjè±i'[þ‡bû÷¢nÉ®¹Ò¼Í!³ÏJs[š¢eìáÙ”M±‘¢RúÍÈQp¸’&›}ú¢p!/ÁØ2rÌ ³UuàO‹Šöò 1é йpN”‰S/¢Vï4ÐÓ|`’ç+÷kÙ冴«½’G—.ÚߟU²1 V•é‰îÉ% ¬´½ÓµK¤VÐÎÜ£©Aý$Éèâ/ëKÚ[š:F7oʈævùç$Ê€›cô_Ó”³Šú`_C+C|p%?TPLO®ÇPµH§›Ôdj)—&†¬ d®™í®/Ôî—löJvè{[Z7NR¼ +9›næÖ—T¤Ôx}ƒ —Øû|£ÏŠàRÆ®|±;Rí Ú;Œ³({À4y›â˜tšVî—“ªÿÜQ|‡½iÌ»ü´·£ÎÀ\{Wæ3ãìß™§7̦únâ¼ä G‹¬üÕ¶¬ƒß° GH"µe/¤ p¶14±7ZUè§ CSÚºÿÐÞ3í<¸XPå<Ž–`>©}u/…< ~Àn™ç}²ýÌëbT®¹ÃÍø!½›§«WsK?½ÿQ•Dmö ¡ènð±Š|óŸ3ÜËqÈyôW¥Éò,þ•Ø%(XõÇîX–„e;xäãÒd9u]š,QÀ‚,ÃÇ||9¡É¾²«‰øPSØ?…{SH©E|zðãaeìÜ_—‘Þ”¦œ@g‘9Y'o÷ÅC²=ˆ‘Góùrbþhþò'¬‘™šæ˜ð_¬%É‘£¾ûÊÇ=SÍõ“%-IÄÆ¤½×ù~ÈÛlG®Ç9Z²v#Ò”U–±r”G¢,Èt|uLο:¶2æcíJó/¥ù Ô•°r¤’u`®ÙµX¤òYéðÛÒdØ}Sš¬–H¨c»A$oÌ>ÞÇFµ»oQРλ—Aþ?©N`˜b®P1Z)Tø3FŒu$¯VSvf¦’x»÷înòp¦¶õÅ”»úû`B1ø1à;ÀA~\Ón±p¡ M.Ù‹J, ù^Ã_o¾Ù¾ÑÐ÷é`³Þ!úe<W÷¨­ Mû¶]ÀYó¸bqŒˆ7Ì¥K9Í}?&÷¾ÙóméÑ€ô»”âzBí^™1ˆicy}•ƒHc%‘)OÙˆ¯WnJß;DÀwyw!ŽA&Æ.éROõvâH乄S•JÖx÷ÆÚö}`""^`5Cû4Lñù–€ ÂeãFFC§Y¢ìÉ1¹bMVe,Wâ3˜Wá@1Õ9tºwÓ:ÇRá$½wZô +×2,+íÏDõÌ`õâlg3?“ŸB~1S¾t¦lG|Wc4G/ö/2› {E²Æ6ŽÖ²Æÿ ³“¥ X\ô}& bìâÐ/´wÖ}R™áTf „ZÍÇk¯¥î9ÖÖ¸ô£u2¥Fº4pŸ²Ê—¢Ø½ºGXc+ÎÆ,±,ÃÌ™þ¦0+ g_9@{[â>€†á ·tØzþX¹b'º>ô‚àZMÂüKó¬4«DÐÔd?{ þŒu«0vÇ&¾Ïã5ˆ¼ù:(9y¦OŽQó½êwÆG'~p¾3#”(ûCi²ì ;¦çâÙ°#}"é­ØAŒ­AðQ›[L]ÞuÉAL—1`ñª×çÔìÔ| Îü¦4o¸êœô°|£Ž—Ì'Wågÿ-^TzÆû6gϽdÿxò¿^Ý|endstream endobj 651 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 370 >> stream xœcd`ab`dddwöõõt²1ÕH3þaú!ËÜÝôãÊÏ`ÖÆnæn–Åߟ }OüžÌÿ=A€…‘1¿´¥Ó9¿ ²(3=£DA#YSÁÐÒÒ\GÁÈÀÀRÁ17µ(391OÁ7±$#57±ÈÉQÎOÎL-©TаÉ())°Ò×///×KÌ-ÖË/J·ÓÔQ(Ï,ÉPJ-N-*KMQpËÏ+QðKÌMU€¸OB9çç”–¤)øæ§¤å/Id```b`ìb`bdd©ùÑÁ÷ãIÓÖï[öß²•qÏwöï{¿³3ÿ¸ò£Bô»½Ún[íäßÌr¦¿EÊuqüÖ¸ãúîô“Õï¯É=ýνâ»E÷MŽ?,¿™Eçß™výÑÅ›¶mßÞͱf@tXw·|]¸hµ_¹Cvh²[|^z7GVö’{Gf}Fžo?×wMn9.–Ê|Îã{yx¾ó.çáíáác`_N‰ëendstream endobj 652 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 403 >> stream xœcd`ab`dddsöuа±ÔH3þaú!ËÜ]û‹ãgkc7s7˦ïß„¾' ~Oàÿ+ÀÀÂȘWÜÔîœ_PY”™žQ¢ ‘¬©`hii®£`d``©à˜›Z”™œ˜§à›X’‘š›Xää(ç'g¦–T*hØd””Xéë———ë%æëå¥Ûiê(”g–d(¥§•¥¦(¸åç•(ø%æ¦*€§&ós JKR‹|óSR‹òB2RKþèb`bddéûÑÁ÷˧vû÷¾ï"ßû¶2žÿ®~áð÷%‡/|WgþÅñý¹è÷ˆß²ß-/þ½ä·Ìo«ßá¿C¿Ëý6ù¾å¾›|•û£óû¤¨A·Û†Ô‰ÊÎuíÞÔóñе£7Ì=Ù}´ûIõ ó½.}êÝÑÝJå^Ia)‘.é†ÝßC~ˆgþ^²6øwÄáµß—dfã«ù#`Ú÷ø¹Sg²ýŽ›Ì¾Ÿë;·‹ù|έSyx¾ó-ãáíáác`8‹ Íendstream endobj 653 0 obj << /Filter /FlateDecode /Length 17262 >> stream xœÕ½[&9r%øØ,°3ÊOÎ;9ØY@Ý£Ë #`¥JA%=DUf]T™¥Ê*µZ‹ÁüõµcƋѬžÞ‡]4õ%ãøqwÒh43Íÿåþ¸™ûÿ«ÿýúãÝŸþ]H÷ß~¾;û—;ý¯ÿùúãýoÞÂOM·rsÿö›;¹ÖÜ›ìo%›ûÒ­¸pÿöãÝ—óxÜÜaŽ#<<=þÓÛ¿¾3áf¼µ÷oŽ›ÏÇ‘òýÛwwÿãñí?ßr(÷úO_>¼$¬+Ù…øðè,Š•Ÿæp1᜻yóð5zm(O˜‹ø[JÎñáùž¨Dcòßà:{K%=üWj=r &›‡ïO…þõðÀÆ9ã~p><Ý…¡””ìÃ×6݈­<|÷h#Ýܺ‡_ÆSè[?U,=çwŠá=¡£q¦¹Ý£<™»eî¿zù÷ã…¿Æ­B ™ˆÆ sGyêjzåõi{ø+é÷’éê°ì÷S‡?3éa³C/Óù ÞÊz Àø§—ŽI¬»ÑŸHÀl ¨ÿüíÝß’åœI4ò}p>Þ{ìí *$06ßÿôþþî?½.qà†ÞÆX-q6–Û‘Ü}t磈Ľ}táFì¾ÿøþþ~÷þýŸÿñ‘;DÝíI8îIÜâÍú{çs‹Žîëó-ûñLèòûŸ¾½3Þ“@Eº¦ ߇[‰ž ž‚¤Œ.¹ûæÎß¼-öþwôˆÔå÷ÿ¬þî/ÃÀÄ›qgL 7ÔÏ|—=<èå¢0I ½h¸%ê²Ê³Ã0O>ßÈÑÀÑk4ŽWþŽë££f}ëbéõTåØa˜§Üò¥ï\¤yû³ì0àIá–/}碿…ÏžlHIœûΓ\…Ñ7; ó¤[ºˆ„Ñ=ü:ÅÝâõ½“¹…Üûx‡až‚Yp–‡bµìí0ÄŽp£){¾—Éô¹òl1à¡I.Bú2´ÎÙA˜%Ý|¼ßbÀSü-™³„;’pü·òì0ĘO—{9Œqœ-†yȤº¾;Qd,vž <ÆÎz­Êy¢ùÜæÂÃ<ùæ¯}¨ÕøÎ³Á€Ç’QbV÷*¾¿×GÆßUDØŽfa²·Êõ‰IKõi¾Å€ÇÛ›½Ì@çHÇ„&…[ óä…Eë0çÔy6ðZޝ¯N6<ÉlãÙaÀ[¥\$žä×…6Û·æít¾—%' çÞÏ; xÈ>(×><=A—†yÒÊ2ƒ7˜ÏžL^ѵ©g­éý³Ã0OYXf˜9¶ôþÙaÀC»®HdØndï Ä’à},ìV²…l{«-†yÒÒ6Ó«ßãnájÿÒ¼ô}­Øb˜§,Œ3KÛá;Íë°õä¯Þ­¶.¶NÞbÀã ýëjÅ·¾àì ÌBZúÚöc«<¼Š]×Hw£j<; ó”…i×: š×!`!íj.öo Yóa‹O4 Ísó}žo1Ì“V6ÍìbcçÙ`À“.Ãà6ü_0C^ÙhAÙ¥;X¨·sºÈ'i˜ÐõèòlÒµï¯Ö‡-†yâ-]ý”cÌ©†xòao£ÞÛ¤ôßÂ,yeŸ‘¿»q±Å€žõB²tŒ`‹=ö™§$õÙ°Å0O\ØgˆÞø:ϲ0öÙ4É·æÉKÖKï;ÏÏ‘»‹À“dtžŀ‡z}¶ÐXâ‹A$¸ñì0Ìɦ»jmUn1à‰öfþX¸QKãÙa˜'ߎ‹?æUVÓÒôåÚ‡ÚæÞA˜¥ÌöYõwÓ-ŒY±Ã€‡úª\%ÌN£¾Ã€‡ÆnaŸQ¿ÆØyvæI+û,’>fÅC<å ?ùêoЦÙî[ ó”•…F«f6®ól0à¡õ'ڋį<¿-<°¢®}8E·æ!»åúîäã}ÍÙbÀƒ=š«Ÿµ±¼Å0OYi‡é< x|˜5Ü+‘žèq¸-KØ_‹fƒµ ûŒ¥Ê寳Ã0O^ÅØh>÷̓=<ŽtêÂË û£EˆöðøãdŸ±”ê¸éÃ<äÓ.ú𠯾?Ïž`I§^4¤UñÎ=†yò¼Ã ^¡õºŸwð%o.}¼½ÑjÔxvðÐ[^í3Äæ­íý³Ã0Oœµ[µÈ÷Ρól0à!)¸hž|×4žg‡až´°ÐhõjpOq +cˆ}ºï0ÌSš·Ø¢éϳÃ9¼ç ÷";É·Í–=<ôt³…;ÚÓÌ4íqvfI·xíAra›#±…€…Þ0^ûl­\úÃì0ÌSÖ™G΂1gƒ pξ÷³Ç€‡$éjyšÝ‡+g‡až´²ÎHÞMéϳÀ‰ëŒdâ[Ô}až²°Î ~Ïž$«ä¤WHÞǸï0à!û{a¡‘/ß÷´öæI·#žìèûóì0à!ûû¸Ê=3RŠ*Ïà ž <ЈWIweÄN÷æ)«@­š½—_G€ƒþRÙ8Ô©øC<î0+ûìP¹%{ ó¤Ûä9‹î§QvÖwž <¤UÓµÿÒô<; ó”[¼Ú žôI< xoµÈð)Jv¶ð8³°Ñ ³£íϳÃ0OZÙhfz¯<Þ­l4§}Ú-†yÊÒFqå-,¤?Ü"¢în¹Eï÷ðD³²Ð›ÚuéÃ<‰ü·‹whô[m `IîdŸAÞ#â@Ý_Ûb˜§Ìû u-¢}ní0àÉV¯•O×7Ñ÷ð V}•¯Ce/ï1Ìg-'Ïì¡mz7ï0ͰÏlê±´-„Yò*ÜFëK8Íšgéêm$D£›•²Å€Ç ëÌCgµ¼¤=†yâìªV­BýÚ£`[ xÈö¹>2™¢øo¥Ù@˜%“•z±‡°±û[í0à!-®³˜4(ݯñì0àºö ©¬²Üb˜‡V±«€‘‡†î0à‰vöU»„ š „Yò*ÚæTÖôžäVÎôýˆ=<œ÷yíÁ»ßB˜%Þ.&¹Ì´,„Îò:,Å.,4LÁβ0 ©Žt‘Qᱞo1ÄGsìª ÊÈÂØc˜§Ü®®®ÓîðnW³“þ•ÚÆÑkVöý+¦67·æI û ;¹Û”[ xœ[ØgX‹Rî}¼Ã0Oy!ΖÌàÙ`ÀãiÆ_¥9¦=·Å€‡óœVú¤gBî1Ì“fµÆhÉ­}¼vðD·°Ð ·{~ðÃÝbÀƒ¨ÑÅÛˆäul‹yþ ;äËu¯x‹ažt»Î>[ÔŽÄ–àVÖ)×Ey‹ažBvËÙSˆxõø×²ëüÕ3*×}O2ó™Q‘ r1û™Ÿ=†yÒíäGJ@쯵€…Wæ«-œÔ~ÍÃAZ­‡¨¢z[ x¬Ÿ­´ºsÏ®óì0àqǼëP%Ì*×x‹až8Ÿ ­ZEÏõ-<äÃÅEÒŸš&Üb˜'/­´ƒž tž <Á¯¬´0מx,¬´À¶v¯†yâÍ/²P”×¶ƒ€…ôÐÊJ£y:ÍÃÀò“'oU4w°c[aažU-ØBÀ²8àA x«³öúßùúæ; xPïcˤ•¡[([ 󬪀`§\Éòš°Wë ûç=Þ´Ç0O™ÝÔê±X¥ ·ðÐ߮֞ÙÕ³Ãr®•-3-caž4ï9ÔU (ݳŀǸEeKØ‹}wlažr²ÐD_ÒH»Á³Á€Ç®J  ¬ï‘™-<×âH¨ê«ú«çëãÂF 8]ØŽï1à¡ca£Ed›vž†yò¢9ÆrX<[ x‚_Ùpð{tï–x,ê‘'•ѽ…0Kz½®=l1Ì“NõÉ%GÃÞzø~ WÇ»<1>Э¦-†yʪ:9ù!!ž <¤çoÌHqµ›öðd³¨m ooøú[ 󤓅ÆòŽsS}Ïf‹OYÕÁ—‚ºÞÙA˜¥,ì3œ+I[ ñdìA^z½¢î“l1à1feŸ!#°4!Üb˜'-ª“T=èúk‹¾ãqµÏhé_ÊØc˜§,ª“ãÝñ߯³Á€Ç…•}f9ƒ»Òl `ñ«: °‚G×ÜýÆ=†yò\ѲçÀ»fWî1àñ‹ Sm K8U©ân•&Üb˜'.¬4| ¯Çþ÷ðÄeþvR›é[ 󤫙†WïeË·°$·¨g¼:w´Ç0OY}'0«/'ï1àÉáTϲ‰{ÏFÚcÀSÌâCH%-fa–t-gqì¯t Ü@ˆÅni§¹QjdažsýÏ22ýöðÐJxµÓm”Žþ<; xH¯æ >’ÖŠÆm!Ì’VZ¢5<÷—Ú@ÀâÜ¢–%¾‹7ì¯-†yÊÂFCM£Ô*óí1àñaõuìb4e±ƒ€%˜“…&IKÚZÞb˜gUý#¢ÚŽ< x¢]Xh¼WÙ"{ óäÙSíÚÑ{gK:×þh{B=gbO>Õþ¨1g|ï·?ÎÃõWoÑ(gOýÕ[4 OfTkÑ(2ÃìŒj- •ùëˆÕ[4 _˜šz¢·hTt§þê-… ð“ÍÕ[ª˜xÇÞ¢QþdEŒB¤ÕZ4Šü빿zË@¹Ã¤¹¿F‹F‘ßfTkѨt²"F‹F‘ån'PmP3)¸úOýw²F‹F¡ÒÀŒj- e‘A;¡z‹FÙ0¯‰£E£ð=ÃÕZ4*¬‡Ñ¢P/Ûßʦ bÓéïØ5œµAcpŠoÂÔ…AÆä3Œr'Ëa´hTH§^ê-…8â$½E¡j©…ê-åfˆ;ÿüô4Ý«·hòå'PmP˜—ý¡ …o¯NT½E£b8õSoÑ(TΘ†¸·(T¢ßvzÃÞ¢Qþd5Œ"ÿgî­Þ¢QˆY¸ ÕZ*Û“Õ0Z4ŠüŸcêÕÞ¢Qäÿ¤ÕZ4ªœ¬†Ñ¢P/{¬*œ¬†Ñ¢Q8ÿ7õWoÑ(ò¤{Ë@ùÞ¬†Ñ¢Qx̨֢Q8G7yɽE¡ Îéw-…¯ÅO\½E£È:&¿·h¹@i¾ckQ(ræþ-…ŽN=Ñ[4м ù¹z‹Fewê¯Þ¢PøB{˜P½E£P‰jFµ®´™P­E£²—ˆü@µ…·+æþê-EžÐƒé-ó©¿z‹F•“Õ0Z ‡¹Â„ê-EžÐÜ_½E£æ(Žû Ôqÿíݿܙãÿ«ÿùúãýoÞÞýéß™àïiýÈÆØû·ßÜÁÜò+PñâdDÜ¿ýx÷åƒ=ÿøÆYäJfü+â_òŒåú7_è_æàÕ¿ûøÆ¢æmá¿ùÇzû×wþöîoï 2*!àcoˆ‰^®á­ È&£J3iL<"çû Pk™P(_Z&Tm™PXò‹Ó¨Ú2¡pܹh4L˜ú6 ¤Þïr<ŒØy7rŽ084yß"¢ #_ÁzûF5’´J£]!n4µÑ¯CÖp ) D>/Ù+æÁidjï%¾UÝoˆÈȵ%²°(Sn-ûˆ#E%HKfYãOpJ‹¨éˆp‹.®[©!õV‘‡'bž~ñ‚mê¬õ«’#t‹[dƒ'ç!¯E˦«—%¡¥ÔE¬°–þpgq´“§«1"é‡4!kóÝÛÆéÃæ-·–5W¸ÅÈ! Mõgq˜†`ºŒlîåBÕhÁg¨ %±_å‹ÌWÇï‡ê;ËâgdŒÛæ -gå–ÄÒ†%É{‘hQ­^ÔRXÚ$+r/8ÌW}ŠÒÂ;.ÔÀuý¸!Êt™¡œ"ƒÈá/¬Õ- ´ädr ±lÊDC=É‹ƒÅœd–£]C·„Äñ)'î œ› N-œm×Fch äôY4ࣣXµ±È­1»@le•l»:Ô¡¡v1©h,$45£ø d«³Â–î]ß’ô:OVdÍÉÓàK'P›öÕÚv‚ÆjkqÔg3k jÁ©òÔ"b{¹¶8Tç ÐöŠ"òa#÷…@àpbÇ †–ž³¥Îb o‡ÝÊUŽãBß\?¤Eö—"×ýcÄÂàøy‘…ÜâTŽÖWYi¥pøE˜úÐw h±‹2µèqOÚ„¯&n¡w†ÀEœ;—ÎÅŒ(käå‘e‹*r’GmÉP&ÑËÜ¥¤Éç(úW{‹„÷„ëdî[¤®Càð9/‘öº­‘("r€tòˆåÓÔþB^xˆbÔx~b¤xCâ\à*ÿú¾éù'­cßlëTD5Oצ÷-r¡!nˆ'°Vl»b$ëYV å yãI ¾û ux)vˆL_yE|Ý 0¼"ûh‘£×üÒHÈ-2ÃeÚyöž°¶ú:LÈ’MI&´ôKÝh£I÷TZ V jI¬Æ-ÒP!kÆíN4³Zœ©³¡îÄEÌHÐÈ“Á#i(,iÐ"iȼäÉ*ƒŽ–ĦWÄœàE¼íÝE|é@ÔD’†2ø2Ø|-ô|Nxh–U‹ ×Ý=Âx1#mà/AD‚,Œ–W2. —†ÆŒE-ÛÚ9uÿf™«ªyr5,W"&\…šÅºˆ3a‘»˜ÇÔåih<[i 8yBÙ3Œ8 '¢Ü0ÇÌIT’¼Ï…¦„®e©ÖX}ÙT¤©™aߢ…´ºuŒ‡r)uƒkLZØÖ/ABÖåªuë®´Z‘Jj¡Ó["\8jÉuŠô HúÍ%;1âÛ–N®’숽^òÝ!Æ8Î1‹‡B-ëè‚îTȾ¶S¤E‚¨/aå*Vü=$j),køÈ"%dªI°¡µ,<²QƒÃ Ô"ÑŽƒt¾ž Ñx›¦¶™«mu`Äâh¢<²l kèWÐ@7ËEY¢‘“«°Ð@+±)ë;¯éÜ¥d2I´£­é¦8OÕf8c$Ø¿°¤ó6|ħѼüÓz1Aš3àŒ;D­Åª¼©…sgY’\…,H¸¡È}dç>âûd2Њ‚¶­Ç¡ÍDØŒØLŽu)køÜZdo?â¼jæTƒÕÿtP;6,‡—ƒ§*"$<Áé‡Ä:`ÛÉ Ôt€ˆmœ˜¤Eb‘;~+k$Öáà-rN±SØ7iùߌâíÈNeYÃËÍ-W ‚áW-}‡ Y½S3 X'¹*ÔPGS׎Ö^–5Ãß;‘–$²†¯4rÖ4Œ.Ÿ¶úÐs†]J2›Ÿ$çVô.™X逫(’ßIÌMv}{–B)EÖ$j‘P¾â*’ï `]í¢…4Öáeþ:áÙ<&sV¦jç$ØÈú!—xÀPË!q¡ší1ÓDOÀ–OzÂÜIìR^µ¨E‚GIbÀ9'"E÷®±šš!¡dʹ,±Ž£þf\–Î5‚å Óm ì­r„Â!lcÙ[õb^:D ·Ô8‚óâ¼1³ÌeþL˜vZÒ½ÏÊ¡T>Á©sÕ#øUÄÌ¡D^ªê( ³¤eP‹ãÓá»xTksŒ¿ŒRƒs2,XŸ8.ÑŸ=oƒƒéY®Êè°G U:¸j¼2T3Êáà Ç9|õü>rQ³-pÚR=8žÈ 8µHœÃÚ& ð !jö0u®r™ 'op:Dïu@©ó‰ýdÇUÿ¢V~(¢ QÃW=“4dé½>â(Çû¹Š0vç5•´8ÊÑ<ð7Öô “$“ÈŸ.–wä#mòj¹:”ÄqI,WÑ»ì|`&X+ROCÁ÷ÅåV(ŽÙ}dqi&H”ãpb®9Rgìur\ª¶D™¦6Ö«‰+úN^‚øTw’;a×Óž yä8ˆOî-™-DƒsüÜ’$Æ/uˤ‚;¿ó0GÃà«°Yž˜w„ZîKäõW®*ãÚ'¦v`©Ó‘ [·0ZvŒzžD:Y¨Õø€K6ˆ^‹¹vO¢ÄÂÀd–‰q“Änn 5à–Ì=Ø#qäJŒƒ¿*-R©#Z1j>ô”jI7¡¡õ/ÉbgkCfqëf—𱛺° ­däÐ|í­„¨+$Ni:r #¢.K,]{Þ!r…šœš¼5‡'b…“µ.ãÛ“ò,‚@ #;w¢–âh/]s|¸«Œ`¼Ä8zÓexGÒHü$ElxY€ß$Ý™c rt{¨æUŸˆþY8ÙÖÆœ%Àq”¦{r1²&4ß°% ±È!KWHG³ åjSKAë«M1Avöº>¯iE‘ÍU#-‰’G h¸â$Äqð Wn(2S#àw,^"øp»Z5)¢­[Íáj_•ÈŠ3ÀÂò8¨åbõê]s•xÖ‰º)Y"‡kcWrÍÖ×ÃR$¶\$ÉL|ë  ¨O1Ã2áqÇwªÛÌÔ"(?Vªj†gªbo´ü§ˆ <ëo`‰UÓÃ0²|»ÚEÖŒ½åGñ\>j‹D88,.WEŽptsJ]Œ8í-ŠE‰M1 ä±“ u‘«°e¢ 1ãxZ3¨¥ÈºÐÙ-çjXãK¹D¿k4ÀCÉx^äLLëÞûnYYccÛÃ)àøwóÀ=LŽÛPŸÇðwle¶òŠØò¶Èo‹·ÚPƒã£¯Vˆ«hR rÔ ç«­²[¦×ðȨEbèZž®žµU5oØdóö¶BXF[. 0c‹‘'¬M"ÙÔ"aŽ®ã=#Ë›œÿ0N a^ÁÔü±Rw̽õVv[<¿·äjð¶.µA¼ $4’`Æ\oC¸józìŠëYãOÔÂ[ #«£¥ ñå^¹°Äá^¼VxÞ¤@Ã!*ÆÃM ,€" IôÍÉ$#©îØ#óµE˜^¬ñ ®íd…õ‚!ÕÎ×0ð½Áªª$×¼ÁÈÛ¿ò ‰Ãk({d² > 6–eôúQá’E¼þÈÓÈ>AŽËôÜ/iÐ T ןíÓ˜¦žh(l…ªá…ê… ’ ¢P¡¥Œ|qyR…RÏþZ.&Ï÷°9rúFº„ô´R² é~’˜SŠ&'æ…cj”d?s ¨™±4€hµË©}ÿ39£X0  |I‹á9ÿ¯Ÿž|þéçïŸ?ÙIB'„%Üóˇ·ø‰ÏÃóÏOî?ýòñ«÷?Ý?sÏ)¢Ÿõ¢ õf\ò@òÊ÷ïî¿~úüþ󜌸|Þ„–Ù¦S·"]ØAçxÉný‹G²r2èÒÃ÷ü“¬¾üðí/oP~•\Xóðµ;²v]~xÿø†·V³£>þÏo ùÿðˆÌBÇ6Q&f^ñ)<üðˆt±bR~ø€›YóÃï…Œ¼Š‡ñaMò¢r½[ŒÏ?>¾±ˆfEûðŒVZÞ¼yø\Ç‘è)¿\ÔÓLFÊòáù›ú› _à)h¾“×ôð¤îýñ¶-ÖA¾”K͆Ÿ_~}@c¢! õ‘é†Df¤…Ú‡¯åý2ùÿOŸñ²tÉgWŸko‡zêïô#ý\ é±÷hù»‹©uSKwQãGç[â@aïäáYßýHnyRÔ9ýäæä‘Ö>0%VõÞ¿«Ê[âûÖFƒ?±Œ:8[´"ÐÉ}X2M6aÈäæf-:ùä'Ðp>}zä5Ò{‚ˆ:ìœhýf p—7í6ohm(ÂwC2õíñ RG³ ÿ'.¢õ—áä»dGzxz§zú÷ 9µE¿ËÏ@—«øãAž;‰å¾«ÔzàÞ ‚^¡  ºÈ)Íkzª.Èz8çÁzƒ„›ÃFÜÍdäáIÇmðL†ÜÖŒnïCþ­Ü¼äðÀ ûÿá—ñ÷hŒäq>|%· kû$TL@ª[& Rn F "C£«ÃÂ}¨Ó0··+ÁkÖÌï[äÄÒÁØ"Ñ}½õ¡Š.©¾‰®‡o¿¹¤Áþ¹^Eòòõc_ÔØÈPG2þõ¾üÁ d<ð ¿iB“gƒÛb‰Z%¿iò¹™ÑyžÿƒÔ*ùsÔ·,´¥ eïá7ü“gúy?¿???/[?¶[ćÿ}´¾­ß,/û´¼ÛÏãç÷ãç3ÿ 9·Ëøç?>Œß¿?ÿ¤ÝYsmýe ø,ßéýòÒÇÍ“+@#GÃö¿!–œ¦¤uÎÿߺq=3}†Ú£ÙØT{”~?ßìÇÑúËø)û¦õæ›ÞÍïÐÍdŸúùS«™üÇ«›¯Fë»?à}T; ÷êÂçñóÛø/{lÿY½ý^ôr³½þÓXžþû£¬k³§ r«Îú³oزñ¡[î¦ÙdÎcÄ¿ll(ÎGÄÃlhóïÈ_ùÚaþ ^«—{6I-½unÖŸ‹Á?|Òº²`/š?=?tF†“«Æ3_ù£bù<šÿ¤¾-ù[l|f1KÕ ' д×"Wç'EÞÀFZ§•¦³ÉZñ­0Cæ”MóôIša2Ïöb}Œ_2"»g‚1®ndz2"ùù3Y™öd#â]Éôb"±Õ·´X”àÓ‹,)ËHì¶Œž—+œZ Õ¨°ÆÏߎŸOšac$)eø|^>ƒ^p•bVCYIJ»¼_jŒà»%Ù´JõŸv©Ÿ¾[ÞbU7VªêØ=ä„]iÎ×nÁ:É,ÕÚ0aÙÊÇœÛJ Ö“ºˆ4€^DX½eœ”)/›Y]ÔËþ‡ñÔ_ÿ#¢Zÿò7ÞiCaµþ~Zö½ºì7ËŸ·åóþ²|²_–CVW‰É@Uôó˜ jN©)óqüü«åUéÇåLSÓk} …ý÷åX*Ó÷Wê~õ7££×ƒ­¬05ØjZ+bm¦­y•úÛñóïÇÏ/–­£FMÙ|Ÿw÷P£ýWËgW ëÙþó ·à Šôð&ñÚ{7fðmü\Û‰ÊÞùy©#š¨Ïp5$->N õé¾^¾ÿ§å›þ´Ä~XNÔ?Š÷üª¿?Ÿ–Pߺ½›6ì–oýÇ›Ïjü”ç¡„E ¤bSúé«óÏóX~?ÿ×ñóó«LÞËÞR¢õõø©ú[ãߌŸ ûùlng³Æä¶ð¦Gà9Ä•iD$ÒŽtòâÖ-ÔL dOé ‡ws1GÒÆôg!óÕpªz6ü¨³fø%£ï| k›S˜ž£rDNV'R'#©Ð¿½aý–£•ï\ÅI{¡ ÞÒ¸…ûŸ^Þ—YïsX”ò8ò=RY“‹0æWíó¼À26ß—"»Õü~b 8r"GÀ® øÊQvÿL9¬})$ÿÝè«v êˆ ú-G„9~_ƒŽvò:úp˜)vªOÝcÚJéöé±óßj€çRàþ¸—Ÿ³ûi§=#–§êMÉ6Žn{O?©}q|–8°p”-ú]H˜‡.¨Ž—~Ùñû‡9ûF޶WŸ6È 4ññG’{wyìZ‘ –j ü‹˜0oÐ)´ƒçbÇËVO&rS ×%ên׈Oó\4ÁùÞ$N88”h¢²º¨{i¢.ld7$t£i+A5ŸÉñе*M½ÿ¼¥Uw22ùŸÿ¯ìd|–7r'¿÷¹¿½¨«ì“ÞÜR/ ö7´d£¹m2|4&à >ëÓò¼ËóÀ¡þ^º¹ÖG}±[wÖ˜=šQ'(9Æs gUAÚð+Þ9¾yUŠ<~cÓåå (˹èˆK "5ëí×'å‡ÓÌEjP&iúÝzµQô5ØÝ·ÃÙ]÷˜hØYA««¦b½JßîÛIG1³ÒèŒEº£ÖcÿöØÃ1cÿIý]‹ªôêXœ·¢ÐCóô•Ú]«oåizÿ~¥W—Ý™¦Ò®£ùä8˜Zþ+õðlôâ$ŸëÛ¦_íÞíIÉ÷¬ÐëóÆe—G©äIiñQ:²©ßwj\úÛï‡ Õ ös}Ù‡{ŠIý^Ø?ÕÍÏ"RÛR2© ºY÷pÛBÌéµ{ÚA瘖Ñú*y[ŒžmjI„Ñ„(4NWc‹åçIEßN)5d8N‡È~€ÐºðzpÔßß<∞Ãb÷Íyï‘V7mãëA•íb²½[?ò9œÙ÷Vkн4cëÖhÎó…¢ø¬ØçÄ ü lùˆzûùge+Õ‰ãáÑ Ï£m ¿–ÁÉ#P©ºp½#ÛvˆK”üŽ*Õ²ÙMã¦jûÐÔŸ&ÑíÚí…¨ækÁNe‹´W~ƒ2}û÷€¿“ŒÝf¤ùbg[ §Lkp]Yžn—°,®O甆ëUë?¿à„ à»±À=«çRÂ'NQžÍkì±›"ÃNd Ÿ-pd’!9Bl_[Žê’û‚åú+–#Hý}ëö·ò ¼~¼´Ý,ïh®ú3竱ñüôÕc |(aR™²ÒÊ™²?³7Dï;¯Ñg—›n=÷ÔÌLKæ“Z2¹Ÿ3j÷è§¼„‹Úf3#­K¿{„R 1ºCn«Yñ©>É•z8½¯Rþôy#,Nç,Øhñ‘cT}=äû{µzü/¬· ­ —iÈâ_ËúÌSHg}²Öƒ^Jß´‡×q±fÝ!¬!»sÑee˜“ÞàL¸Ëñ¢yQj©pö4¾gI"ˆ0I˜(Nñ‹Oõ²Nœ¢!âO»ê—ÉÞ–;'‘0\÷R¼±‘ÃkÀ Á®?]¸«gueèâ\º¯ºXžðÅ*@ÿA?6—~‹lTð,‹ÕaÂIi·wûí˜z’H kßç6sC¿µ z æ”q®•n¥ð’¨2o~?nþrŒËÞ˜R^FÒL@õ·&îÛàþöÖ•‚ó9Ùò:x]:©z-á*n÷a_½°µò¤ý×Ó)„i>Р;Zžtû;i²g†ŸHMÖfß5>àC[Z#æ_…s¿]FƒŸ´6ùToG“îéÇa¨\ÕãX¿Uî…Œ)1‡LtÉŸû€Ò!'é›vó×ö6¸—Êü2¯nü=wŽ !ðÎ ð¤¡ðæ)ãþž–®IŸ_ØY8+HpÓ }>—µŠýEê =”ᚪЩ¼· šg·¹ø•kö¾VúŒÇN¨>§áûexÞÊøU2*Gb$Ø0‡­¼—Ðд1„ Ì9½d®ˆÕA¯g§À€r\ô–ßÁå%»sè–WdÇKQ‡¢5¡tB ›o çªFjõž¡.~…ÝÀ7 /F³ßË¡o~¥ñÎ]_2«û#È´,V?!Ä€ùYØÁéﱯúé´†ôÃ-„¬ê·ÊT¯áM¾N;ºÏò¾Ø<’dEÔ«¸®!b^^CfS¤>ü¬ª•I«·[ôoîÛ£?©x2#zÒÓFÎJñ‰ aív%;é¿><›Lžç× ¹¦˜G(Bo-Dü›úó…#ló*ŒÇtÄ"f•åRxžmQ@ü¯¤¾^Šï~ö_±¡ä~Jžtü‡¾%5V”•qÈM´VËV[Ãë#`Ì^tÇ®‡2ÈØò¥çAäO²¹>@´xpÙzð/^rÔ6ŒŽó¶SõYë–ïÎB,÷•¹ˆið2É­2.U*‡ˆƒ›ö-úNñ 홟2§-[Õc ½Q,ƒ½_+‚º¡.þ‹Öã¼KÎ3ðUMž G·ÿf¨æ'µ\þЗŽ_!QÃc•±õÙW™’§= »üµ[A'ßö|xtZlD~=bìÏõn‘ãPJ@ªíÅ_µÕ8y’'ZdØÝHQ.ΫMÑÂŒœ“׃ípZF±!Rî:&3ÛQó^_} í"*«U–2Pª¦.&lhÔaMÑçy‘ãt‹ >=Ž{›xñÕ¦ˆa{üÙ6ùq "=ŒÒŽgo†ì&÷rXOÇïP̤žÚÔÆÛ´ñÚÏ3÷ɧ¥^¨mpáj"t¨zö‚¶^ïã¡Âj¸¿¦Ëþ9-z•¦‰„øq‚ŒEåçŠiñšÓH´Î<÷êëÑì[¤×ª®ù¼>U…êOýÌ2¢²!y¹>Íù½9âK2ÈL,’#õgŸåÕ`K<ë-9îºÚs_o¯¿«]•CÓNd0=ia ÚéH [Šs†à´þà«Þmª )•v¢Rú^ _œÜçÏè(¾<ÙõN¦C9·SvÖì¡_Ë<‰jÑ'«tgˆ±Æóë<|3üˆ¯QKưñóF—:èëöÏÊþùé•p2§-¿ijòC·xVÒEjÍÆÜ…þ¬Û¹ü™pV3¿BýÒ@Ç‹úE9ýIšjX8•…òžÈïåªD ÜË{@8sRe‹èùgSl£ë•ZoùÍQµ²=DxŠ9E÷“ügŸÇ=^Ø6{ªu/h \ßÛýÛ»ÿ'.ÒVendstream endobj 654 0 obj << /Filter /FlateDecode /Length 8558 >> stream xœí]Ýs$ÇmgüGlùiik×ÓßÝ©8U±•UeËçr*’öŽ<ÞEÜ[šLAl^¼¾ˆ×Šðz¼Ø8ãöA™Í‹ãÅçÛO/§½šÄ4™íáòO/~}!Ì^h)7»i¯ý49¿yqu±ýÏËÿvgo†ÿéóíõ%œ«‚WÆno„“‚Œ‡bRÖãJ©½ÛßQ +MØðlÐÛ#r!xo·§w(Q°Bøí'xÜ»à¶?êäƒ^lßâé.À¯í=ž,”zûe<ÙOFLÎÉí«KéöÀ-lß\J ƒKµýªHÁ‡>¤sAÎ7ŒÃ5œm…!Äá&k£djïIéò·å†_áP&ŒÊ “¢4¨nù6I+Ôö—QïÁÃÕf¨÷Fá'b:I¯PËpŸ@[žOrüÑgnªì@ª=ü l9K…¬ÿùÅÅïÐŽ„·{ë6ÆøLÅMÀÕÁÕÚï½ÞÜ_oþ¸ywÇ0ÿfó ØH¼A“2}}ö‹‹?oÄ~‚ÿd2Úÿy5[®:ì­ÝXøoïä)ÎíË”ÛBq Æ·H“Û{?¢…# LECŠ–û ‰bå^ˆ1%ì•'J€ôCŠe-<¨øäÓæ~D°`GôÛiTòˆ öšô`&‰RüÞÐÈ5ÎQÀ”b?; ŸÞE (`þ¤ AÊ!Åð#DÑ`YzHqL—(0†C ÌÃDòÛ"‡öž8;X¢N ) Îx•Õ{=¤ }Óì;bƃ¶/@;¦€6hî¼ QC ¬ˆ@ÚPÀÐüúÎÉŒ)í(Aê=¸ÿEiÔRŒÄ•|†BŒƒ31C‚Ú ¼FN“ß;¤ÀˆÎE¹ý䯉’#ÅÂ"ðCŠHºSPàBLJ(BÂ:°c ‹Xµ¤‹%Ù®à_¬RÀ«¾¤Ä£0¦\_HAÿ2 hðâ4{R¢ »1V{ä0rŠBo2$ˆ½¤ûVƒØ9Š#aø#Çk(?pˆ!Eìƒ ú“!ôJ|µñø§Å@ 4ã|Ê$Ç…«(a‡SæY0àS¤Ryi¤8ò—C 8áÈeUC Dmò_0U½Âˆ6®èNaÉ£Ý(šl)àS¼S€3º5 X°òLÒGL7 8ŒœD‡‚ªèæCÐä9ð'Ê).Å_éa-kÿ(å÷›ßfpš`½Âò.n#(²g¢Qõ 2<ŠSAû’ð 5£U˜7|c(’؈V_\‚Ë ÁºíÛãõæ‹í7××_>|qyáNág‘ß AÀ_ìƒk#a‚{˜0à¸ýíýéîtÿþ- Î ­ÀCæâÜÜß$|ãášôZži8 áœÄýõÅë Ð¥  † 2ÅŠF¿Æ0•ÑSŠP3‚ê(óU·oh#=TònÚx˜F!\”÷)jÖÒéh‡­µ„N¤ƒãhÕgA`]"NúP¬ô"5G†¥l FjõƒîÇ‚[$PͺP,ä\{é8 í(½@HW•@ÃÇþGÉeÕ¬ Å¢÷‚cÞŽÒ tÕÏÄz+Ã2yjÎG6º˜±üŒ°;J'ÒµèfÌ‚ƒ6Ë ºá|d£#2 η„^$Ë^= Víý2q*Ι`!ÉC(ÁR‡ŽÒ‹ãStæ nqRb™85ë#Þ“ŸdyJGé"ºéÌÙ€¿œä²éjXÙðzš‡OIQGéR˜ÎvFx¡jXÙðÀÎ霄Õ?{Q »™“Ñ=Ç’§D1µ4*ÄìæD¯£ô¢ ]÷ZAD¿ÌlÎG6:ÀùxRÙQ:yˆnzÕ Ë…n¹a}dÃ{0Ï3ØŽÒ „tÛÙ±KTKªYY@uºÜRzÞϘ,¨f](`Åž›w”^ ¤ë~Ê ežô²•Þ°.X×&æJ¹ÐQ:ˆn{›Œë§eFݰ>²áLÕ£¹êÐQzb…¡ÓÂ;øw‘@5ë#h,ƒ¤GGéBzf­ Êã2jÖ…c’ Ïõ”ŽÒ DôЭ2 À\, ëBè ‰éc.Þt”^ ¤Û~Ê\€™\fC ë#«d.æJQGéBz?e˜škµ o4¬ ðFå +Ku”^ ¤ûNC:€ÒÍ2?Ô°>²áÁßÇE>×À:J'Ò«ü¢vËÜPùP,fÕÿæz[GéåºMk?-NyÖ…b%8³˜àÌå½ŽÒ „ôÁŒ9¬H,›±†õ‘ o]`¹–ØQZ"=ô6ŽÄ.¨e}dÃÃR ¹pÙQz€ÞgÚ‚²z™<5ç#ËGqôT$í(½<–,³äšs&€ÝNÈ’mu”^¤BÜßÂÐÕ°.À¦#<Û‹ë(½@¾5xô…޹a}dÃCbiIóÆ_Gé"zV €·LA ç#݇½ª6;J/.¸¥*hB¨˜–ÙsÃúȆ‡å4U;š¥ÈèRùŸ€mB˪Y „Sö¼}ÚQzB.U~!–k¨f}dÃCpˆú˜÷j;J'ÑG93,2½Ì†ÖG6<`‹¸µ>o w”^ cF›rØÉÄ2 5¬ Å*cS‡Å¼ ÝQz0ÕêsT Þt!üi8ŠÕÀmŠ;ÑiÏ»£tò}°Ëj8ïe jXù¼Ã»bì¥HôÂf,ànøÂ(ß°>²ý}l ƒÉü-¥ÈúÁ®œ Û7—ÉSs>²np±á%÷´”^ž`G»rè[[Ö…BN0f\s£BGi*]Œßu/~×½ø]÷âwÝ‹ßu/~×½ø]÷âÿ›îÅö±mþFŽ—Þ>nSNS,hš1f$ ‘¯ap/ ‘ä«`(³¿t’t*ÄÔ)_µ¼mrÔ'ø4D±*–r!(8A2ávm¡ÄÛÿ¿áR(X² ¹ÀÚ¥Zpá2SVpQ"Änæ’)k¸@ø›LÅe¦¬á‚{p•^2el¹P•^2e Ìá*½dÊ.SL¥—LYÃ2ã¹á6q™)+¸ StžsÉ”5\´Ž•·Âe¦¬áâTì6(\fÊ .b´¨ô’)k¸ÈÛ, —™²†‹q±9²p™)k¸xËÐ…ËLYÁÅLªí%SÖpÀVÛK¦¬á‚‰CÅ$Öðµa¥ B½¨XdÊ.FÇV¸Ì”5\ 6Vne&¬àâ Î$SÖp”ÚVÞ6SÖpATRi%SÖp¨Z3I„å<ä$¦„,6gÊ.Øá¯*.3e âÆ_á2SVpؼÎ}m¡¬á¢Lm-…²† [ÝQ¦¬á‚i‹®¸Ì”\à¢ØF“¹dÊ.ÚÅÞ—Âe¦¬á¥¶—LYÁEB‘•^2e q7ã2SÖpÁÝ·šËLYÊñ—™²‚‹F„Ré%SÖp„â«;Ê”5\œÜWq™)+¸`]aªô’)k¸B¡â2SÖpA„Ré%SÖpñTºæ\fÊ .Jm/™²† [é%SÖpˆâ+™)k¸`/z•+fÊ .ÊTÝQ¦¬á‚H¥b’kx`V_i%SVpiòeNyNîÛÜásh¡q1=7Ý\Áå‘äl—GR™\ÎBö<ÎÂÜ<΂Âå<?+¸<Vpy$$®àòHYÁåw»‚ËY·²b–û’ZãòžYR³AÆ:ﳜmÅåãŸÛØe&©cAÁ‰ôܶœ„¼Üi …“øKÁ/Ü7Õiz€;¾‹æqÐsÙUwy¢XÜßÖ ]ë€ €¥ªÅh—€;#†sI”5\¬«ø…ËLYÅ%=”Á¸äÇ4VpÑ›¦“HXÅw‚çLe—4«ŒK=ÏOZèðMbòÀ—’Ü ›Þ„5í§ËÀÝæà‡¤ø&üÐü/¶XëÿÚ»“<>£BÝø§˜ø[l")Ï\µ2Î`‡Ïº*z7Âð•ñ:¿—ÖÁ½ô×I°tÜ‘!^÷>¿Jás<Ç›Gó'8¾bû #Èýž¼ñn©Jïn´>o©f.ÏZª3—ç-ÕÌå9K53yÎRÍLžµT3—j©ž_¬‘qsÞêêeuGx|ŽDHzi-Ñ/¶øŠ5ï­Û¾=nRÚúí—øâ3‹ok+qäB™Éå‰óëòcvÚµ“À âþ*ܱÂ:x &·¬¾õCÓ+±ÓFÁÍP†D$ƒJQAR °|ÚÕ°’h[*è´;®'왲h¦–šm´ð¤ ˆ÷صY°ÉÜã“@tŽBiþyÜÌ&ƤQࢼRqÓX·/±× XÜÐÄø· Hƒƒù¹M@ã’ÃöúBAÈëùc FàP²Yž4¦Rê[Øøœ•]0M‘b9¾ê¹Êr¬—g,s)”\æ +\2e—y¾ —LYÎ¥Õ%§p.{>*2µˆñrv"1âêt¨ÃÖÒ¡/¹õp(Ñ9¸­˜–âGò ,xŠÅ¹öËð〠>$ܪ ”G¥`Á»p™)«¸h,ŽiÎ%QVqIZ`\j½|ÞÂWo '8%ÑܼöÊáÃ~ú‹€ì€~™õÓ›MUÔc¥‹ÛL±~2±å-ß|G©ÝÇG¸Fnøfy•ÕöÅ›ûë‡7§Û«Í›³S!¸g‹›Ç>ìÒñåUñJ wQF?}ôJl—™HûH× Š[ÎZ$ÁkTèã Cøªá20– O½ºØþ“¯ Á×{ðüÌÿŠƒO)Xšj<ÇØÿòCäTHg½r¦=£T:çÇC>`­€pÏùïUºEø Q7êö²z•ØBòùûþ¼ó©aÕhóGÀê¦âðDLŒt¢ãóÅž€*£ÅxâB|nªÀÀuEdx¢ 6>3|⃌² Ÿ¤©|¢Ó»g >ÉpdÆ'"-À‚O&zËZ…Oô¾ƒ'ÔªÇàI ¾2@˜ø’†ôا™@˜ø¼º‹„ Áرpñ¾1˜A ·ª•–i~JZ·lN²›ž‡©Ýô· ”ú`ÑPþ–!ç[áZb·%ÆOœAE)6ãÍ”yæÆ+k!÷IP—&ãž(Ï  [ñ 3çOOïÞ_o~z¸¿=¡Á®Ct*¿¹xñƒÏ·ŸØnÍöt‰OÝ ÀA_o^½9¼}×Ô$–'Z8esãs‰ÖKL®`(„N©–›¤rôŽéöÄ!;g§Ò«N¯Ÿ$€5zKöüä·7_QÞ6!ëôjmï½ÇÚ€vÀ»l…øûËÁsø(Õ8—í%Á…„Û~F"Æ?¤—`íÌöá_â Ëiû{Ÿ7½w†œD‹|ÝCTá+È_Çc¦ì^j¹=Ý–Ç÷¥ƒ‘„2-»·dÝÖƒW=¥· ¿+#£ó€xên>w‡°ÕxI|û¼SpC‡ôâôi²øx”eBƒC®õ›ß£y²·ÙßÅ.wˆmaòA‡ÅîìMïŒÉžŽPjK`M¯ˆ‡x@ó†'€ÉÂÜKz>*M`€ô^•÷Ïãõñ9§P½aþÄÇEe+gLñÀßÿ¶¼¸ÿß/ùÜåWû_EÙ#q~ïfªÙþ¢X6³9fï¨æxtx‡wŒÃöCdà‚<Ãö×dV*‰—Ù„yžb»‹°ÏŸ¯÷—;|í'€ŠÙ— u½, D§‚xpT¿%2¿†{@£‚ÉÝËD‚ýÑu“S¨Ê—åüo™V£Õ@*ê9˜3'ðæçsÉlç!¢Ùúù}ÿ¯ãÇ Huˆ‡è^3ï—-Ì“ÛÚøèt•?·9W“BgH¸Mr7ÜM å¤áN’¯ë·Å¾›å;wnCŒOw*GƼQ4éDõEƒmrÖë‰ëøjLÍpvñû þ^´×xó<ëåóß‚/ŸgëDÒ“¨'1¯R£âØ(þ+¦‚¨]t2‚‹tJú· ƒx·*Ý-™-d^ÙÙl‡÷Í=÷ÐEG'¦¥öѼ’@o.óᩎ«ÚRHÀZ8è"ÑnÖÝRà/MÈgï›%£q¯ðÓÃ'é,nÊ$¤‡ à9øHŸèˆÁJáóÞ“Â…ó˜HvB|E‘ª¼„¤ƒ¹ãC¤: Wnì{ãψ\•+ŸGß'QÕŠ;á©ÒÈc(‚gh˜|>Ü׸,¤0¾Üá ÿÉ>Üb¶7Ì”O_eãcû!q»š¦['“þÜê„ðÃT ô'(7áxÖK1Oèôü\‹0ñ/“ðgû‹›~ï΃_û€úâë5ƒ:/pÃ+ì —™í¯"8Dã~ï|„ƒ)îãe€QvòÍž`œea f§8K2\Ѹà­½£‰AÊ­ùܲëH»“‹^ œ\d ]…ß )8â›,r·a’rv0cj´¹Múx`ñ9ž*lc€HÓ›¿cðÀ·û dÃ`Óᾪ†9RÒ‡s<}÷†£Û¸F¥ ç¾¢Cò‚Òæ Wb+.ZöUŒ†àG*/Îp óËl‡Ö¿¦µÍåëзæ¦wÝë„/Õ³{bqì]”Î8”t Ô… H ¦Ú3øÓÆûxÆ.ü:j—2-ý8é2E d¶ú¯q!ìæ;©ÁG%>ðaÏ‚‚‡¢\‚6Î4ÃÝ5Æc_iÊÎñ—?>•.ëA†6çTº@ËÒ·ßæTˆŒþÄ&¹pnM‚¨T x„ÇàÏûÝ,òCm÷Ä o»ªÓJŽ÷ v¯jkÉ@à\4Á8ª1¾þ®ÔÃ,·Yd͇«µwf‚f¯­ÏHÈrÍÊ«d™hq<—9t7Ùéw¢d ƒgFî0X1G*ýÕÊJ¾@keã0¹fñ£BÑeƧ´¢ìuyÕ˜¡ÆŠÎ|1åœÕd$AÝù&O@¼W”°¡Ê`ªU2¢³WpNÊNhD–x&@ Z›czZ<üÆÅ茹î }Ö¥ž»LOÅRÃ#H$¡ü«±›;gžH±ñ^2‘T)Cƒ€¨ÒUxŸ¤ÃC1On;D΂òöYÁóE,G¢ø µµ3RøÇËÁ‡o`H´ Èg4DÎÂzˆ92*%žéøûå𾞞bñ“á!c–¾ˆ‚–kâÞqoŸ–‹û|?™…°Û¿êíÃËrîËa¼Kð€aû¢¾-‡Çrx=_æçÛhÏ8•Ãwåð}9|SÊ!è73>)€£gÔ;X¡i#ûÃsn™NøíS“q7¤Þ·³Õ*­ÒCV£¾.Ô{®à|x7dv?T*»ìªð}U¨‡¡Ö¯‡ÔïWÓ2J ëeûóK¯0ÛLߎœœÀÂÙ‘ºSñK˜]­:z˜ž×µêÙ÷æ |ÜO0øvs¥øæËŒ©[B>„ ½#HÄM^!óvâc{ g⾤«~^%;z—s5ËL®­åÐBÀ·QCJ.'© ªjà!¦ªgjLŸ¬`K±_È@DìL[7N‘â”Â(‚êË Îä†x.åjF2MÚ‡x"ÂÖ×Í”Ì K£±xøùØö}‹üJU#À’4˜áâ¹`„§®q¤»E[høy¢\uR²žÒ< -B“Œ±¡2«@Ùù\¾‹XÈÃ%pV†ÒÍ ]ƒ¡8€’×ï xép¢ØÎQG‡4ª y0*ïÎgx‚ö»v¾¢±fK;>±O5ve)A"s5—óGW9TÆ3<øéêS²_’î½” Öˆü‚lr† AêÑ+håV‡ZHæãáH _*%¤­@Ãa,n’<§ÄÜ‚5.Ú‡š%9_cM7px™rOïàNÉ×Ç)*X{­yy¡Âþ3·R´àK&jkÝ/Ú®ªF<±.›„˜±ân,øÀºh4ãÆ”D¹w ^5+¡MTÓ¢x`Ç)+×)^gt_lïß=¤³E½ÊŠ@§÷ñ”áV¥4•;BGQ•D㣒(my(jÊ©ËÜ™ú’ ²e–Üœ¸éGc6Z%Ñ¥W,c¬? ]ðù}Ò†pƆù>K@PUÕ†ÌBËJü®£Ì*T–žºq_|¤V+b·_-Z²~¼S'gëªz3ýU§{GXÂÄXm1ž¨SźĻ¯GÌ¢¡'ëzЙ øUÀ”´¼Ôr8‡+PBüD=XÌl—GQ?¦‹¹/¾ ÎŸ ‹¼0^ÕÚ*V(ñ;@­£¥oU<šûZ2—T´Á°gá†A*¬'£¼‹§Xô‡ñ?ÁÎM•¶ÁðŽŽoÊßά›@0¬ÁVu˳™0òSA7uÒ,&gVRkóÒ[müØœæR©–&{üoʾO›–eÕE0ë(íö&5½Ì+³Û@MCÔ@%•9œœW ö¸Ù¼‚¨ì±+“áå­<]‘aùãÉ £ eÜÄíro¼l®Œßˆ÷¡Áä-Tkê”+4u¡åïV¯÷ð:z]÷À–;3åö—|™Ç}I ¨±Y‰x3 )G˜[§`´S3QÈv­3ìy۳Ȩ±U½‚¶3`z˵lR ¤ºV”´Ã‹ATÔ½‡~7–Š~lä1Þ¿-6õ! <^ê¿3>pÇç¬@{ ¼K<º+«j‰RÄŠÙˬØøRY\²‡›8#T¼¬ËŽ´ØaøjÛ™ÒË* dåÇ‚x‡ ßæmGcüÚì9Ѭ{Yñ‹q:9püúÒàÓ ¸5BšõVéG÷Ž˜ XþÈ\tDéökGÄJ}X;5C)5 ôs¬ŠÊæ¾#Öò©I¡©„Ç«ïé>’Ñùµ¾ØË«í™¤¨nŠJ9ŒûV68bÎáºe‹ÛŽj‰ ·ó­›˜›Ñã™5UºDÆueÆ-¥œS»9}G ½ã€¿¡±*÷Ž©hµsYº³âö©ìxzh­ÖÓŽß„Hy¯Ÿ×“æfSFHC¬Õ|ü}ºLÈó2Ùlz¨ÓD#vÏlU§èe¨!K~xzöo¨Á®Iè jWEÄ”Ì'q$3ƒq¡›¹øbŒ-„&*˜®†® Œ³ ^Wš1q³½óp]dzˆgÃðÔ‹ 9Ùïj9•?P³c½UèýV©ËluÔà§´|ÛÈsؿРXõ¾`.å,ÌZ©€e:„Û6@Å1¬j[¨Ë¦HÛ* Õ&\¬ªMáLu馤SÍÞ]U2‰¦|¦ )új ¬yÚÇ Ö>Ènë! ‡«.úæm9ÂpkÛ8ƒ5Î%ÙìÙƒ¶@õϪþý—ËܵÌÑ=Û+fÏ,0¦‘6,9Öuâ¹2d­müÅy’Úêj¿µéùï³v3ËÝÜëŒYÇSìC¡Ž§ì\ڗërøºtéüC¡î •ñ}xŠÙc­cÔß²/‡¯Ë!ë±açVmP¥Cf;¼Žuì¼rûÉðð‰6³)‡cå|S¨o‡÷þ¦þmûÐÎÍfߨVõ%½,‡¬yŠuŽ]U=>yÜŦåÕð„;Î!Kùãr(Ê ì6žìÕb£½áIüðr'´u‚÷aïQ %|ò2®> stream xœÕ}ßÉqß;aäÝoùå»–vÜ¿(N`ˉ”º@–hØÀI{$GäR$OòÁ@ò¯§>=3ÕÕÓµ»7"FN8Û[[Ó?ªë×§ºçWf±WÿÛþ}öæÉßü:æ«—ž˜«—OþðĶß^mÿ<{sõ³§D‘ѲTSíÕÓ¯Ÿ¬j¯Š½Ê1/ÕÇ«§ož\\¸~ú{"¶Ö Ô>,6eú‹§ÏŸ|yùpm_“µåò-=šêk öòþúÆ,±ÖœÝå×ÞÒ/l½¼@«5&›ryEÔ±kÒå5šƒ1±†õÙ×âcºÜ¾½y´%\ž¡ÝÔ²äò»§ÿØzd“§G_÷þôú&¿”Ëßu}ãò’ŒCO¸{ï1“ÒÚçlL(—Ûm,6Çd[O5>•ËÝÛëïñˆ—çbˆ`—¬·µ^>¢¹ÔšbÞÞ’£ßú¿kežœw÷ñ~ÕºRK—·x¤>»6 ËáüCØûëövCËÑææ<}òO$…ÖŸ:‘®J¤‰vÄ€&rqùêý‹«¹zû ¬ØØ&×ùäÛûCÿùMd¬ ~i‚cΛ//O¯}\ ÍÝåÕ›W¿½¼¹{ûñ›¿½¾æ¡OÖšºør³£Õ,W!'z ½+Ò_»Ú»é.&\½ICëgÜÉMXr¼rK­ÎÖ+뉵¿ñ„zh=ý`™È/$)žúê]ja"j/3‘ 4ÂÀDi±q&²¥½a'ª‹sQ Ÿk®‹ q' nñ£ãR|bš¸ø<Å–Pyp¡,´ÜG¢dhöÚ‚6¢h—8Ï@N‘~ä ¾±Ls™i ¿ôAÌÓØ2ß&ž¥D:wÉ’.–g‰veÖ%R{e¢„æE¡maxšR]JRŹ¥Ïw¦ñÌn YîxNÓШמ]©qâA»’:ý)áqKŽ‹u<®B?ͽI4É󢕲¸™¦’^³j±m'¡-SK'¢M©­É¿ç ªy v>f‘§ÚRÊzxã—À4´õ•å0.‘¾c¢´$e9l[Ò‘BÈÓLBSív–Ô£Ò› éY&")Ÿ;„ý˜lf¢B;oÞ´¢¼Ë¬sÔ;Ef ýl¹×.`G¢R= Ÿ;îÊbfER vÈ.oŽÌ¤%€ôdYwæwž‚šî¸Ï‹K³P#šÎ(VÊ  7Ü'Rì^é”wa1 m©§>Õat¡.A“˜kž§èȚ͓ia y Hk¦yY6™ëœhÒÊ4ºàâ<¯‰_ž—%“´–.O˜ÚÙæ‰òRQ¡~}߉2Y²YT2´[äŽç6óS;Ø×Žôu—LhiEæò’ÙR¸â;+q¸(LDÆEUðeé2GjÑk3@œ¸GÕ5“œJR9s—ªjÃ|;&šÌ`3Lƒ…ƒÁ³ðŽÚÒ“ gá-Aη7ä7Λ3I8O“‡”j6‡:•˜†LTàÿMKë¤!ôä¥xmAh?ý2(ãOä(ô™ äâÌIRQXwù¨ÛAã›S³é†ÐëUCX Ïe”†pŸ€!ÛLCƒÈŠ.‰Ò¥ð$yeÖ%…t£Ëˆvñ¼KFMéIÒë<ÑÁ¨ò4‘Ócf³ˆ¨ô•Ë“)lŠ™LVLÌ †qž¦B.Rè"‡F[¡=i;Åa"¢Ú7\5š¿Tɳ£&&òGiíQ@„ÊDi ³ÑÉ4/Îô×Õ%*‹BC®¼(Á§3Onmtž‰TC‚|]0“!‘'Uì ¿Îª†0&Ø ædCÈD­ãˆvà¼{G76šªóª$'Ê@Ž•Q4Šm!2eÄÓ6€oà ,øaNf'‘çŽ{ÕŽ;‘j SFç'Kˆ)ˆdÁ=w ñ༟<õ›ô?EÍe ®¥e"RóV÷S €PÑ–´røw§ p3g=P„ÈÁȳÝ!›»ööCš áæYVõN¤YÂBK•mg”4‡)‘dÄÌrBñ â0EšÊÊzsf4Ù%«åyp´ŒFQr$Ò†•s@\?Ç~X]bëæ5‰ä÷N&²wšc¦™Lá*“ƒª¨ª)¤Xg©‰·ª¦0‘ZϬäC•¦pY!ß§”}Ž¢12kÀÊ’Œ6û‘B¤¹°È¦8&"§o^‘:Î!¡24w)„2[D–Ö÷n[ÕÂ!1¡M–°é®AãD§…CANYNÅ_ò{¤³)š¿”au9*þR$åQÙÄEŠݼ"1"ÿÔ9eÄþ“NBJ€m¶L˜N€©àDR}Š! ÔUšr&š áÚ'éyc;(†0ÐߦÊ@¡â0A3ô$ ø*Fž<; M™¦`óM‹K1™1Ü% ‹¢ß‡Ð2R@¨¤"¹Œn=†¬k@X‹,ú˜u¥¹0‘öÉŸžØ«¤ÿÿþ‰¹úÅ“?\­)Ö=±_é¿’÷ì>E {ISêÐôf ¾·–×O~sõOç™ ï\>‘ÉÖhzHZ¾rPáž &[Ë.‰ÝËÞrŠ Ÿvವœâ’[*JrÙZÎpñˆˆ†¾ì-§¸„ÒRS‚ËÖrŠK‰Í7\¶–3\N ï\ö–S\(êqÃìî-§¸ÔÚâÁek9Ãå°gDËÀå°âôW qÅVœ1îú¦"±2ýdMGUÛkÀ[6Hn|oÉ:ðûîú‰‹!bwÒ¨å — ÂJ.{Ë).pJɈ .[Ë).E\¶–3\ö¹ì\³û¨$$HÂþÚe7¶Q“>CbÁ3¹ÖMˆíõ%+F€~pÛÞÓAþ&ÉÊÃ} 4èIÅ’o˜ƒU¤—|ôDq¶÷kC”¹1 Tî `"·~iïÁd&ÿü DáF@ªáÏ'+yOGl²<ŒM’GüiòžVÿ`ój1|Gžõ®0‘×à» c?¬–¤9âH ‘”0QÕìA Í3‰ýÄ^˜3 z‹à´¦ºSX«ùáô44Íb›àpH½º9¢Z™=s‚P2rÄŸ#Z"òG?| {—ÌéFè,¨™­…%‰ˆª–“¤eJâu´2P²ÌC²z——V[IV"i^-o´êµdeE îøu5“•-‹Íóö ·¯(é :{ÎÁ«ŠRK®'*ˆ(4UäÒsFÓA„lÐŽEiiHò C·Des™L½‚FàJ"*Z®²ªÆ:«¡v€€+ /l¹×¢yäü¸ãn0=Ç„Œ;î†ÈYK;¶¿Îû#"×°y¿„:QÒ9Z:Ç(¿Ã¦P¹4ì”æÌrInh©†e D¶C—:ŸrÄí¤ž„c[çå迎Ǣ¥fbÈÉ£åb¢¢-E¹cQR¡Ô,Ñvð¹°¸R„¢å±h¡&¢¬eÓ(ŠäÝz%ûVi3÷ k û‡•å>‘5sÖ˜¢DTó0Q]† Xa ‰’œ¨Øýq/R «-¶9%JÑÒ¨ÿQ“£ qß9ïP“S”b @5ìô &§*æfX:Ôä(p9z®z¦ñZ‡ \ü(K´NŽ̑ÎÒ€¸Ú<ËD^âȳâ4Ѥ#ג˃¢¡Ñª•K¸ÐN =¯ *l8'N4QæyS{dyl˜ÅaCr•õ1Šr”$¥¦Û ÖñØHÂÍg½t ‹{?FƒðØP̪ÕRѾçm‰’Å°Ñø9“ëP‘£ pXk>²–…㙤]ɰ¥#T׌-õˆk(ˆ¨jPÓ Õ9«ªh8RÑ>ò@ŽPI#¡Ê;ΑžR*—êȉº¨U. ®„#§!̈¬ˆ8ŠþG©þ*r„£ÄÅ´ läÇ*ia„pÙQ‘£`uiЕ¨ÈÉÊnj &DQqã& ¨¢Ìµá_ ÛíÉR°7—ÖIDQÃÞ`¨ºÑ§Lbo\þëZow"l¥¦ž6O 'å¤ tu˜@OaŸc’ÄÃ4õ)ÕJuX.OQŸõ“¦eÔ”ˆ’õÛ(7?jq”¨Ÿ§H%ªõß –@¯¬QÇçàU8yöG¬iþúN„Øo^´ÑÒ¢ GK „Ü ¬ªp´z] RìFxmzÈö‘;D‘­™­ íòÈõLD”µþ² JFƒÞhµ3×Y"í$=¤^Ï&7§`IÉ Œq–'‡IÉ X/ͪ?”¼4‹E8AIÔØØk?Šp”Z¥ê:ÌåPƒ£!oÒ=@ ŽbAH¹ Ï¡G þó= §Ìf& I!Ôàhè\d½*‚[9¡ÀO)ÚuN:¤¼(-EP‘KL”´èŒ×¿Çr5­ Ns’¥ºwE'Y‘†ûÁ°ÇšW|œêNZN†3ÔOdÂ-'GF·ùd½+{Ë).Ññ9–ËÖrŠ @öaZö–3\쎭?žúû´– [Ë).´CüØ‘­å ‡Ã7Õå–S\HÏÀ°.[Ë.@_‡®l §x ~d²µœâ2l–Þð™0G$é;߇9Ös˜#`”ܱÁÞr sT¸8>Nõ}!lj€W&§ÇIG7&gÇI7&gðÆÃ<2“Ï7RxQ‘óüìpã§~AŽ8?”hþÈ1Þ˜:@Ž.ÒÀ‘Šù!ÎC¶P9r,ùAÈÑ•ÆõæèŠË2çÈ®|EÁÚîì ¦R=0·do:‘?:à-û6䞊é„!Ï…cÚY ­t"¯:àbRBÒð1÷VBÕR”HÉËD0Çsü>ºh%F™}ÜgÒaV2OR,š>ÂŽ%Y ˜‹Cf±¤ Ÿš#cÛ§;eõÔ܃Úï Šƒl;©%{­öÍ øeÉI-‘á¨OU²¢âdúqŸKÃ¿Žšó=Ô>QUïæ*-`¹7/QÈÁžûÚ[Ô£C  ¶É9P mnM' ZJÒ"èÞK ‰(kÙF‡£/Œ¤áüaœ‘o;ÄJÕúcª©¹¨xçh¢ÒÛLÎèO…¢˜û4ް+ù±•¨.jgÊØqW4¸mÄõ«·G¸­Ù ÇsÇ[Ýî½K‹jd;çÙFWi˜Êñ¸¶Ky=BPÇ %µÕ™Î+K}à³X®F£ 4Õü6TÜŸf«1iÇú¯«z`»pöé8©6›“©”+È›·Ú Ëç”8©O®N!¢  jmk±@Ur ’£”8RGU’€´²*^ËBGjYÈ‚*y¾j´v¡jõ2ÁÈS9ä¨ÉÇRa8‰w[¦™¸mÉHÁLÆ­í) ÐQÔªÿ;¢€jü[kµ;ãáQF£$‘O)ûÙe2¥ÐÈJtߣŒ&ÏÆç&ù„œG‚¹Q'×á{ãTƒfå†ð(£Q š“Í£Œ¦Î95ž!ŠK5§G:'δ’2yåMpêI‰QTŠi'¢"ŠŒÛ–fýOºPµnV¦K‰h²n+t¹8žÄ¨Ú6/ÁbIs2YìQL£%!䞻«ùmÜò¨¥Q²Ž¼dÙS‰M¨ErÓ£ˆ¦ÎV¤I•eÑ@ÞiîKê§x¼)VÃÙœ4"D¤Z´­êDEƒÐ»æ ŽÝ+â1 Z¦æE%õLJډ(«¥FûóÈOªR‡´<€þ Ø•LQ:‘jÞ¼T«%4Š‘«ƒžA6TÁë† @>\«4„¨AŠ6õÜog5×Ç5dŸgÉÍõ±2¼ð(¡Q*nfÔ0Šav.iÒî€Ë¶[M K1vƒoëÀ(hZ'3x M“PÑ$å'C'¢©Z¡QN«·Ñ Ö£ÿÒ⡜F)4ò™ñ(§‰Š©iH/ …s âæ•Ü`J¥è†,7×Ùz›Tó‡º)>³îaûuH-Fû€â¹2K8&“ccz¥àhˆ²ýv“ÑÔñqtÅkeG†=Ü’Ä•}´Öòà‹jþF¥m«jþFkëdþZqã`G,wZÅÑ –pJHq‹ì`ûî‡xеô¨¤Q ކ23ïìtKRë6ŽÍíG¬=*iòlr†„Jp–X’G!býÊ j¨¤Qà´q#¡’F)¸Ê(|+¾Ñêã–À@¾]â¤üÂëx*½zSRsmXh×nJZKèùma¸)IdÆz] rs²p•ˆT+¸K¿‹šýKƒÊBM˜]h/‹Ì=Šh4ÿH_E4éÞœ†GùŒRe”Æ9NêIC!Î…!ºBãññ¸:ÇÃÿ4.~=3ñI\¸å "SPÚ=0YÎð¨Æ-„¸5œâAN2Œ`²µœâ‚èÃpö–\(ÒóÍIéë³·œâBîÀp"“[NqÙÊ.[Ë.™p9»ÜrŠËvV@pÙZNqÙÊÖ—­å —ÃŽ-ŸKt¹A¤÷ ‰ÖžB:²—P4 po9ƒ$*\2zi¹å —%î\Î`‰Ì…±DærLd. &2—hâq.;—Ï'BL+‘øÜpâ§‚y‰"gò:%œhÍO0R¸:?œˆ‹ %G=pÖO¡‰>墕³áði÷eŽXh…Ì-e¢ ºß)ökbˆ(«îwmIªˆB‘ÙiÄUvLjƫÿ5÷. RêýqÆ“MÕÊý‡»U}6êÅ[!ˆ›Tˆh¸n„³oF\ßDDEó¿qQà8ÛéÊê¹v臉‚Vï_†D“ceM¼ÀJ}vêÅ[8mS™‘ÓîÝBÄõœD£Þ»åZÝ8ÍOo­!‘¸3Žˆ†ûFø&,'% #á¦Ô–KH‘ˆª–¥ Eˆ â„§".S!¢¨9áˆ]z®.SЖ朱s¢zØg²ZÁ¿úƒVð{Nû>i7w+H°¸i¸v«cø:‘W»QKDYËVúÈ“ç0Æ,º!"~ç¹Ì^ÍVfDê<Ð^JÁ¿¼¢ŽˆªVðïäQ Ÿ‹zï–K¢@šˆÔ{·p†§GQ¹ ÷nõ‚–RßhêtåZ‹Z›EÙ‰‚ɵ,Gæ—‘*SêýåѾ RTIÅFq¾ˆ¼VïïCá™H½w+¢BpšîÝje}Ú;^àökWpŠ›Þˆh¸w‹µe÷³QÕ²•ÃqF_p½³v‚V\0IDQËVâ‚ÑÚ-[Ù2¿Üm,µŒydk­ô¿<録VùÌ‚1LÔ‹·œ¬Z÷¨¬IŠÝÉâ¢7ÊÍŽ &[ØV7°æÁAs(€¾¼…Õ£²F)?’¦yÖ(åÿÊÄ|•‹zÅ®MKR/Þ•`IÓÅ[k}tMJ.ÞâÍm¥†/8L¬§Ú‰(k`®¦åÂ~_ŠÑªÿÛEbE²xµøhÜ”¤•â#ØG.l÷¨­‰súWé˜Èœªzñλp9ºG…¢–mŠ:›¬XßàÑ1¡’°tVÜ*æÛ¥¬JF»´<#e-aé‚Ü•¨³Q®À±ˆâ­©ÝßÉ›©Ú¬Õÿã~^®¿ò¸–W©ÿÇ5|„œˆ¼zú?ŠÓD”d2’ÏIÈ{üˆHµ„!þH‚¯~2„miB™rE€CrŠ•Šm”“o8KÑ¡DÛ(åHPq·Cµ‚ɹ C TÛd%MZä^AµrúÇUJá×E/1¹~Ͳä<—1iÀ] âægÒÅg’7~úš¼vC@»Q’º¦4±,}§¤ª•$ÁõêZ§RÄíÏ:‰«Z=®ZôÚmÌÒ_À¹ ’óFnqÜ(­\}3zûˆ‰• \×H{à(¸®T­Ž%1¡"»uq<•ä(eJɈ+m= p´ J;QUÊ”2Žáî¢P†£þ¦ _¸Ñ¹á†U"ª‘ãxÇ 5ŒRõh×[Ùv‚¨AvÀÞŽ$Üß®\¹ìØ.YW«Õ(ùv+Ó-'bûä e-'€›)1œÈ퀔o%&ò $pܸðÛÈâE ÿÉ|¯}@IŽ’7ðEÒl9ô#ÁW@EŽ’8ðA„9Jâ Ý÷XDpïÄìT^^@EŽV³„ã1%¡éÈ{ƒ!… äpÁVD´[p¼—yQÖW%E„³à†±K4Jæ`¸„•ˆ’V¸4¸°DTÕ›JîwäÚ jéRé*7 6GCæŠP”µ9Ê%ð;ú†«Vù .ˆ <|DƒZA6@ç“U¯Èý†Â%m²p„*s”‹ãZ×YÇqéHbo9ƒPj\(Ú-ë÷D(w.¡Ü¹œA(™ #”ÌåBÉ\¡d.'Êã\v.Ÿ¡„,˜Vjð¹ÊOÅB(=ìA¬#BoÒxà1 ‰’˜+VÉdôú÷“¡ ×sž»c5 ZV®. ´zf?Vpk¾âG x{ú>àÖ|Å÷òäd@l¢œ î·íCʇû䫤yãƒ_Ãt#×zÒ¢çmB¤Tê( ÿÚk9Éá¦M"n$鱑ȓ|?@Cðg-&§ ¨â "ŠÚ‚vYŸÅ¤^ÆUeåZ@[qÄm>6ÜRíÐ$ Îìq?eíФ¼‰1Dò¦ï?A@¿öÚ%ç½%¢¤}fPð €9É0rLÕiøP©IDÓ%\+0/pY"R/áÊë¹(õ.//¼"¢é®5.îb"¢¢ÕNFY®Oá¡]æ‰DIÄ#š ávEžWøä‰ö½yœ1à#CÊ ‚"ïM°-J|\:p·Ýt×vë[?òHDUËVÕº!ÑÌj‡'QTÏ!oBÆA LÖ$_d"’Cõ "L¤.µÃròƒPD5ÜÁWà6Î#$×6¶ LHQ½ŽË®gµ˜H½Ž«]È›6Åãu\k.’èn‚v‚@"ÅDäµ~ODIf"Y,MšpÏ¥¢n[¡õNƒovi©8ñYßÐ\ZŠÇt¸K¹¨ç粸h1 >Gû†nPq@}Žr€À¶ú¦Éêù$i U•êp ÊQ¹È~ÌBä+òrJŽaHèd£Ú¾ÑnQ“jIçðLJ>Þ©œ!À:–°ô0ǬN²ujSð=E%aY_Nœ’Œt©­Ùhœ•ÉÈž‰Ã=î‘S  sCÜÑ®;WÀ1å9Šħ ï”ç(˜œo÷hw¢éN®y  i2KÚV°FÀ7¼Ø‹Û³Œø>šv’.’›¬r’`È e’= sâþä€âå~€Q½¡8GÔ>ÇÍîŠs”ddûlÊ-Ë0Ù™üÎYµƒ‡ý]T;8ÀHÅ9Š0É€âí0ìêT‡)IYj7B*IûÔ?&MDEõ—²Üˆ¿bvK;]»Ó ÜòTF%à{l~v§ug½š Ø (ÎQ¹öZÁ)iˆœ«âózÅ9ÊGt‡ú»€âíâ'ª¡Šs”‹ð1H¾4 :G+b*øú-O¦·²ˆ©_8v<ðé4­+>_PŸ£XBï$T‚j ƒú‚Ë—í*µPhµšWÞ†æ1€c£=‹ e /øNžR<›%(SÚí5s°#Ñ´’tK¤ÚA‰Ž"qc¯Ód ×oÕ‰o5TèhEL~X]òŒ”L@pb‡£@Gñ—p§­ïWÔ+”ðVßE·LW(­Û wˆð&8\×Ôîí—5¡Õ9ÚåÝC‡ÏË+ÀݨOK ál›K­Z5oå§‘´\@Z°b2´“àR›T µË¼p˜«U/Pj·£Gî’ Ú—MF,Å9ÚÛ Èû 8G«æM¢V; 8G±„û¢÷É¥#,·V]H‡±¶¯!+zBúBµT~dy«WïQJ­„‡GçÕ{”š¿Í»Åìlw¹ôœxj¦0ñíÛ€YÛٱƨ]ŸÖ¨šBÔLuCPcЊ˜¼ß¾$¢¬¥à'óÙPqüQCK…c…ꥈé@3]©Ôô’=ú¡É°VÌJ4÷ð˜p SÔ¸ôŸÌeo9ƒïàÕÃÍœÜr†K·f”ho9Å5F´·œâRL«º\¶–3\²]÷w.{Ë).ÑŒ§A¹å$2&kø£p¸Ç•[NqÁ±„¡+{Ë.@gó -{Ë).ãž-Ÿ™ÄÇÁ„Ý‹L¦SÈ䊴lª´aŠ{ËdRárWšß™Ü¹tdrçr™d.ŒL2—È$sad’¹œ@&sÙ¹|d24ÓìdòqÁ‡€IÒ{­Y“Ùüx€%³’ížv-‚U笒{BöHN,õoÿÕû»wwï?¾º{{u÷5½?¼x~õìöËã)Õf´Ù®ë`·a"ÅeHq[–Ÿ_ÓZÐ6­ùòª=ÖbÊåå·×7´Æ”j/ï©×8ùryq}ƒcŒ¾Æ‹u?½¾‰äæ._4kL¼Ü½½n¡Ï—Ôjj¥^¾¿HÃÍîòúài¥îòøQŒPÊå À‚¾^¨>]îÞƒ&ÊÆÛæ˜ìÚqk¨gx»A\R¼»|X;h<‚âíÚš¬¿ühmr±^þxíð±;šb¸Ü¾|qY(ÙùË Þíh•tyÙ:¸>ßmSEÚÆ€ âòÝ_·ÆlÓ:4g¢ÅhÂ2Q|Óû!Þ¾N;ýÕ ¼À×âcºl³Qè÷Íú¼Íãó>V±ˆwš¶O aÝbà•‚š,¿¥ŽÐtÝ¿¶–Ö¥ý¡Í™ñÛÞÏm_¢zÙ´[RŸ>'Yz&:zû¡M]p¡ Ø'ƺ{ågø»Z\€Üðóíº°™Æ —½¸Ù»qÓ.¥€¤õæyëmöyë@Àf—U<­³—¯„Äah¾&qŸ÷—?¡^!UL}ýE“HÒÔ<šJÎÉF‹Í]Þù¸m/!mCDÌ„ziÌpô(7³¸¡äÔ>‰ì—uÊ=iŒ ú"Éý‹S ðØŸþòÉÓ¿þòòcR’!eKs=)¿ÜõÇýÑÒ.¥èжòå¿öÇGÿì·—þìúßýu|× ^©/:Á;õu¢ßôÇÿÕßöÇ_õÇ•/­Jnó¿=¾êwýñyüíõ½Ï˜qÈNܧ÷¿í£È[×)î­“´ã*m~üÐ_ôGžötùÛÞzÓ[í»þxןõGñâm]Úó{õï>{Ù&ígê#—ëoû£ø;!KüïýQÐ~<®Ñ$I?’BÅF}¬ýñF%°'~4Œy_ï¦+>׊»ÇVü?«+~N¨ÐóCwïzw…@ñ¯ú8¿R÷ç­Úú>Û?ê_ôÇ_ôÇ_ª?&^éð›Þaó˜ œy±‘µ—úàt!_úã•Vè!¯úã¿é+.ˆ…€ nêH¡ö„0~Ý¿ìÂÎ}£¾B¨S!ÎB…XžÛüø;]½ÿŸþx#ßÌ­?^]:Ÿ—ÊîÒýk#mvòËþø®?~Óoûã‡þ(¬µí≮õwk]ý¹­«?WÊÚryr;s]¤r;OˆÓÇ.ÈÂéFà‹þø¿²ÇÙ½U¬Ä_õÇߨò/ú L²P÷ú¶ù Ò ûþZ*y~…Ø*oU!MBJÅF{IоUåñ«þø{UŸÉW±ÚBôËÿD¬„Wåb¥Õ Óž¸ü_ü ¯êm_^îZ8ib³PÜÍ}ô¢›§ûWÊBk*û÷%Ôí HMÎé3LAÅårv˜‚–9Ü3ç{ípÕ?öúz]MÄkBLñîýCŒê̾]iIžeÜ.ðï6f6H‚;´&hM(÷Ÿ9¯{rÞ ÍÏX£« h=ZíWAò o¸çïE”ý"à}¶²EIºBÒ4øC[Hz††èÎ!~§Ö´jSKÈÇ´Æ:­2µ°FÉ¥XñGrëÖ >¹m@­_c:¯°¹îXµÃÒÑ8ÖMI&FþS£¬·¹ê©Ÿ·M]>ì–±wY¬G3_Â|”-ŽæëîkêIqЛ„ذ§~v]…ß{’G™K¸k+Lö±Þ§Ø`œ‰¥:òUn]š„Ÿ¯™[¢¨½¹îÉ¡’¢o“£Õ‹ár+_(q‚µ˜=2Þí¼H‡‹â+º 9¬ÎÊ,Ñë.!bWåù® – ‚5ìÂ5oå ­›¤ù#ÄÈçûŽ›“¼=Š?ûZŒóã:R³X'+åþö™02¶Î®]íˆÜçc´h%“~7R¤ñÊ`²œæ[=|‡7³Ø­Kµ‰î»>°×ƒè¶†@üc‰’±¤½kù¿)A4Æ”|_àq‹·i1áÞ-¾Ïý¾çH„Ú{.|Ü2û Ç –Âãt‹íö )&5c¼9éYµ¶Ä¥l~Ûõ©ÜyÛ;ö¿wC ùz¹§¦]¶«iĽ94f1)v–YÕv¦Üg1…J*ãôpïIÿš¥ÆO¼ƒ¾ÛV¸y©Ø$ÉÌޮka-ãËfkªA:zÛ®ËRò°n4#µ¥¨×>ÜliFtDà-o± i £´ BW O£¹®’¸:Õâæ&3@ߩϼF¥/ÍÐå¶¡.ô²ˆ<þ(>(©´«æÃs,~`íÖ¾dÕ† ÌíÙ ñÝuq«–†‘òäoÑ+&“æÒA_÷ 0•çû+=ÀT¦í*x†O„¾’»¹w›["ÿ^ØE.9’E:’¨‹‰%èU•§®¬B±¡&7m= uôÙutÐò¼‹‡$mFÑí4Z[”•–·fâ× *i±O\oDÙM‚À¼„’Ub€õ0`#^ØúxÓ*þ‚*e[´¡Âža ´%ò8j¯xUÊo´7ÙOƒ:?Œ°QrÜùw}ù$PÄ€!­ÎÝŠÓÅ =L©uï„›lRÁ ñàÆÝ®,ƒkÎTÇèïå^äxH’¶A[}·Kf°+w£ÆÒ+·k_šAŸä+Ÿ¯übõ›÷Õ|Äc?(²ÂÖ~Û)^®˜T-áë"ÃÆ¿ùu#,\"ƒ\’9!%Ò"y%Ò S²à¸ò¸!õöa»åÜ4µ]}½Fa8qz"Ã*Ai¹´G|ò¾o ‘FúEüeüâ±yyÿ€Sß§äÆEè½l/¿V‡uí=C–Zp邯BŒÍç#×äêfÏ­àÝzþøQxKdqÍ#  -ÿÕßõGJˆ<˜È™}­>¾R9¼R9ˆœ™HÖ‰\Ü—ýQtRÀ¿{ ’xÓ[Fõwê6¸SeåkõQßH¯TP™?‘”¹l=)ý;™0æÇ×j×_öG™’Ï¢YÅ)'VëQÈB,œÖ¦g\õl²™{">‹D‘³-ÖàOª:ÔaÔ[¼ÿWu½þLìAà°Ã2Ë5Ò^'ˆ?žÇ㛿·t<ªþ¥CSÿ?JÇ=kô+:.w;sHƒÕvìå¶9-G~LwqegÇÆ$ˆŒ‰ÝêÕ®Éï-¢ˆv€ 47Ù™žJÂ4!ž ªÂ ÑÕÍXh¡«ÿ¡?þsüÚú…:Û¸ù ·f|^Ï ËD1îP͇üMo;GÉ ¬qKärMà6ÐSóí8`¹75¿V¶Ð`|áÞÛ•…±£÷u7gè0ò[™4ãýj’¿–rÑ{ý§!nâÐs“á69ï´4ß&ï©æÁÅý¶ÿ™g‰ëëp€Iñ™ ‘ÉXk„×Tùˆò7ŠŽJιVú(“Éêî,†ÝÉ‘ÍK­Áõ!" ÒÞR°×>lñ›±‡=¾S÷%8ìk0èœy³z3j2cö«w#ŒßRòk:DÏÈ/̺¹Úi©î*ð_ÚðMÞfb[¨„8Äݸæ^f ^ vßäyŒ m0Wy!õÓ¨óRÚû(±»ÓeœK«ÍÀÝ\ô—ŽûöZs;!yø¸ùàwk·>öGQ»õ²?Šòj½þZçûº?þCüçþøµU÷;oö¡Œ>ÉÒ%l¦7Ûh܈iß®+`ËÖiAMioN í> stream xœe‘mL[eÇŸ§—ÞÞRÞ¼ 8ÚË˺RqÎbF@âX4Ù¤ŽÉ™Ên uk -ÐÒð"€PàÛv:×hWìêâ¢QI$qfn™~À,šÈb¢‘Eš£9O}úÁ;¢ñƒßÎùŸsþ9çw0ÊÒ Œqv‹ËíôY÷z»:î¦ô>L·hhG‚4™®Ñ=GôYïý•UŽ|°çBcâ0~ôhW£·{ ×uü„_ÚqøÐ³ÅRõŸòà»’Úþ­Hûœ>×q´] Î.o·ÛéñÛ]îö>ŸtÈëvx$»wô„Ôäìpõ¹ÿ_@mzxÕ¢ºÚjº•¢%¤Gù¨‰¨£Íê-( YÑ´‚¾Åux_Ö”j(:Ib4¥˜ºÓ;ÅL/3·6Ο½þfü£iŽñ¬5s^û¯6c0± À)0ðr—‚"”ÅVã7¯ýöÕÇÈ ~p¬ŒåîÞÉJ™ðeýŸïÆ#gF3×=ÂʽÈé\1NÎŽÌû½s‘ÇIÏTçdÛtpzŒ„¦ƒSã“S/…BÃD°û¯B5ð É“~óë˜&᎘µÑQþ&Ö9˜PU&Û@fŽup€¼ÎdpØ6^Jç,á¤jSÕ„Ó5âr@nß×ùtà~R+°c·Ù6(‚Ÿ¡ŽB«v°|ãjæ9‘45ŒöŒx††ýDx¦ÿTš Oæ×>Yù0fgÆ nB%G÷ÇÅÝ3ƒ¯5^Ô1"i{u§•èld61.á…¾6SÆ « XŒ>Êé6¦!pÄ`+“@*.üŽZAi]½®¹ÝÃjí5OV•0B¬\Wx¶Bùg€yÖVļzæ²V5»N!SÝú¶ þ}ÈÓ²|ûñ—ñwÆ—‡Knu_~ŠìZd¹Åß³ì0:Rž3ÝD8ÑÛë:rÕu l ûŒ¿7Ý”R&ç¼'\î²K,ã‹`U?mæèó*;VÔߨÛÊ4 Í V,°úÔËÀðý•pvãã:¡“nã%¨øækØ–Ø ì¢¸úúaVÍ6ô<ë:{Ñ4ôÖÈä6ù4zåTäTt1¬2ôŸ£ŽYpÍð©Í`ÌN)aE GæE¯ÿàÕ—ÑósሢϙÑú.<žtendstream endobj 657 0 obj << /Filter /FlateDecode /Length 5350 >> stream xœå\Ýs¹qgòGðÁ³‰v3øÀe§¢S㤤JYâUd=,?EÉåiIùäTþ÷tà‡Y w¥³ÎWNéAÍY Ðhô÷tã‡ã~%Ž{þ—þ?»=ú—×f8¾ÚõÇWG?‰ðëqúïìöø›1ð“•ï½8>¹<НŠc'Ž3¬¼2Ç'·G”‹“?Ñ`!d5Zé•°½qr~ô¶Û.ú•òV×=Ø{å½݇Ų_ï‡AvJÐÂwüTôýлîšF§Eo»~¬ûÞxaå2¶[ß-x¸Nwgü¼÷N8Ë»“ÿ jÄÐ*•1üõb©µZ¹îùéb)‡•í%c’ÑûÀ;è­8}¯]·~{ƒ±"`*E¯¬ë6w‹¥R’æ0Ý9l‘§³B ï»~ì¼·fH« F%üÓ¾âäV*97÷u@Å;oº; ç^Œ›µÕqHµ2Z›}Vïé8mê£^*)Qs¼Tfå¬/=2÷‚6þž@-58&³¢É•3á3RV˜Ý.ˆš½F'_HqÓ9/ú!QÑ Òõ;;Íã·¼Œ$ÒènÞõŽ!L3_H»òÎêîÏ%IKFzã<ýf ¾KwÖ(ž·&¸#4´BüaašÁ±7åLÛBäÍJ“ð,Ëž—­ó":ãó‰)RInNþȲ#{©F{=Ö@¬ÒÀßï+EF°´ÀˆJ(ùpå \53±)-M2LâT)BƒtpµÞ6"¬X´.'ÚÇÕ–ƒ‡‰ñ\îi ž! œÁu·¼( \´ˆLVFz7N½b®WLΓ9FeœÉò¼Z™Vÿžw*ˆU\Ö9Åš’ \/¤¨¬ÓcLE{8«”0’V8Ôcû{9B{V@hJ¾=9úÃQô5Ìñ‡Ïõ-´W«ÞªcR¤+#Ù¿xÛ}³ÈÚ5CÚD?!¿¯qXÒÖÃ4Qòœ‹ÜüÝk¶­ù7:ýoƒ<’tÐÆ„sà¡•évø¹[dJ½6Ǥ\W~qoìxnO»ìO§íb%‹KtÂÁAûR¬­`œ`½Xû`ª23nãSÝû9ëyhM¼o¢òŒï¯¨·Ú™jpdxil]6×ywÙy„¹r8áö…†­z™þ¿n<Á‰­>{µIñ@]·-– ·Y8ÑÞöC×'D„ª0aÇKõÙÌýúéŒ ¹ÍЬÇ8ZL±ÛÊ O2BÊ%Žù¯pƒö¾Co—Ý9ÚÓÐýãNÒ‚âkiž‡8؋ڰ°&!­þP<Ü ÙŒˆ³Sf[ÞtYøSl[ɰóÌ>诣RkæÛ¶ñ5Eö5H%­aIŸVŒß$Â̈’Ä™aÔÏ7žÇ©w8õ&Ò¹©} {UíèÓÓp婌ÖULcõÞÚ©=âVE@ù9kŠ˜ÓáSÌbØï&º¬6ñÃëÚ¥7Û”ø¼E<î;`óÃeQLQêulö"¦œH%Ç ¤6žCT mÈ)™wÏÓè^Uþ[K~>|Õé3ZÄ— 9Dzl7/ ú{9±ÎùŒ¶ñ%¶DHQÆ­8ãjˆ“‘¥ ¹+Ë“ xø#‰¢CÂÍú# T W9!Ñö!Ws‡ÈZ¨&]G…uîP1ìŽIR¨ð•3‡ô‚TÆÎ MÛâZc–g’;%ŽÖœ®ÉS Åd6q™›²Uäz5æL‚÷}^c½TV®¬Ñ“À辄)#Í9ŠŒ¡¤VSO’I­µR• ÁêšÓ§tøx6y 6§Jif rÅsÛñBÌŸyö¨w­MV:ô;á‚:e~X“°th©]¥„Ezö­Ëgšp¬;9JôU¤÷ê Ÿ+ V~6ÚD3f k!ˆÕì¼oX¥üimZgn+çY3WIÈ!$»"ùÌUÃýÚ!Œ&ÂTòp±09ç½k?&jJã ÿ™5Í6D†ÉIÞ:«Ípý0çù­k›[G'ãžjƒ³)ÉHšI³CÜ×á@röµ$‚'M®Ý õj ð¤8þµ®Ën‹rÈèëŽÎ°+õÂ~)Bôø¤)MCX“ u¡hëKjÞ¸ÎZcÞœ@д©¾MѲnèœz2aß¾²eÅÕf"ÒÈpÆ`OFß„ôî"&ä.&ŸÓÀµÍGq^–IŽ«_Ü GûGˆêHËšw’ RB>ô ó·uäöÊàñ ÊÕÊhý}ôµÅ56 “s¼ÀKÔº=Ç FiJº=ÆÒJÛœ¡÷¾$è­Áo^<×):]á«Ü4ìNNÐþ°Û)Þga—¤…I@|÷ü2H‰¯@_LË,ò²‡ŸHÀñ{ÆZœ:_s9QŽIjÁf"„ù\6Ïajµ?u„ã"¯Š ¬Áú>ÇõW,МÿŠUôˆÇÑ÷ŘùˆÝþŒUöFFû>­npl-åœÇý„QplÕå¼@ðvdˆ&1TªW™q¾[YŠå¸yLKů VëñkC_0~W ¿6ž¾*઀ øXÀ»Þð¢9઀œûÚÀqF þ>ëkõL´¾VWª*~MÙÞ”‰º× ×yúÊ~öåøMÔ}f”‘ØÉt†j›’dd š¾ÖûâÓN2Ù¬òNS®ÈTÕ=Ët"KéVJéäbüëbi¤âO¤)18lÕw¾i‚ˆð+¢æl÷Ó‡æ~‘-ZÝ–§M¦ƒ¬óua†·ÍÕk&ìè²}TIUOTèÁөÐF›ΟҤS½Oš~û„ ຩ¢ਠþ¦ X–§@×½ ª9åSså½õoMüÄTÛ‡ædg1ÖP‚Ì{þ O(T}Üð}×Ü𢀲€™N&)ððô]yº,à§2 1órD #6wWîEÁe~Ÿ¢âù=Öœ`Ò‡æÂ`‹7ÍS¸ÆSh ÿÖT}–Öo[pÀý¼‰;(#Ž—Í±m˶î»k¾×¶ñÕÆ¼(#sï>4¹*¡®›|¯%Ô“|ä)~[@š¤wàg‹œëd<1×I¬~ò§#)Hzs ý ‡[˜_¸u €:´Û¦–Y𬀛¦î¹œ¥x óHÌ:;*ˆ3y[yÌëæˆO{ß4ŸÂzcmwf{B€àìá8á\À„}æh»‡ ?ÀS×~¯öUÆhòóÃvˆÙ>¶Š¿h‚3 Ò²€ ?ß!õÔŽˆ·û¬L;ª¯Àu²šØÁæ¾`)¯Ÿ‘–»o‚Àž3¼ü¾y@¤MZ F¦] vãKâ'CüĨzÏò¢I²UÐV,m¢EvœŽé./Úûm¾i’{Û hš¶sÐÖ03HÛɉß\fh§ö-cÿÒDØoÕÄì±XpÀ%¸Î[ù#Ó³Ïr²ç¦¨¿|Vº2 9(Ó½Z mL¾/ xÔ¾h 6L {÷WR4ÓÃ÷’{?©982p‡Ú>÷/TÑT¼’“Bçûèû²<}Ý<¯û¥d*Sôe4éô³ä[Lð7Î#N ;3zØÕBi»ÿHs=ÄgÐCü]ÑãnßÎÿvyæ_¤ÁÖö¼€dBz€ÁÏ šñ¯•D{‡Owxà}“@Á¶ywÎìµ&ƒ×¾i‚íT6ÌÛ6oɦ) ;ü»Ê~<‰û‚úmʆiù*Yx¯í#Þ´ß«¼œ þª€ A(›þn³¯Ø!Ð7<ìF¤RV=‰Õ˽ôC*Ò^ƌއ‹>fš§JÁW¬• lÔòüžô“âè-E&ªw\è7_´,·ð‹Žk®¯â{c íÌM 4B÷u]2ôn½ÞÎÒsí´ÝÝ=ö±ÄÒ9æJ,Ûµ¾“bÙÒÖE%Wcad¸3 –sõRÚªó&b2)¡¦ªªÉ‹â$±þ.ÔNNËfzêŽ/SªZ®„ɉÞMØÙày•ÝËZÆ^ƒT+¿M§ïŸh Ü¡±ßtêÊ œ—†pQ# Ù½m'ÔÍßW¼A¤Œx\+{S†;n¯Ži¡gäÁPÌCU1%—\c0ždiÄÀ"ÛIƒIࢺ q2"•Z’+ªºy˜¤ªîÚíç€5¸ ’[¿…‹›CÑ ˆà½Wl¸ylrVÞ`Å×?ÙŽ×hôÚÈikÂøÞ5f/ì!%ëÐgkûÐ>Úšz3*–º‚05†N^£véê_ò—ÞäbºÌáuã`s·GnÞ€’6X«L«Þ·•H¶@GC*¼3ZL忪mÝ-ÒœJ.Ç-ÏölPBŽ*-Ô­žTQ:sJ|Jg%QõÃX¬p»”TÝüïÙ÷ºŸ­žŠ$½I”®D±"ÞÉÄȪû÷En{ź/ß”{'²ŠWJ ¤›~?­ƒÏ݆<7wVÖeÇéáa â¼Wa§ -« ͬŽ`;»/@s" ÖŸÝûg µÀq×äæµÑ¯z¯.¢Üµ’ƒiwŠ„éí"Ûwµåȸ­ÓÜ6oÕÒ¡pv¾ÚD$ÔjqŽ [ìB”™Ð+ =ˆí^àùýJ'^ 4O$–Ä2ŒžÙ¦®}Üë*G)Ôĺ`L«µ3øçuÜ:±0ùwÄõý篊ÜD®\ø&a{?ž,+ÿ¸€²ò¼¿™{õ2ÊoÃØÔ7GðÊ\m|…­w ‘V JðèÕÁtàØ¨#‰¥½EûµÑ—ÍÓª®BK¬>ÐL¢ö¨ÆKÜâVæ¬Åú®TÑËWi#ý¤yaÂÇq],[9m¼©.8É^O¾%JMn7È G›rºj>ŠØbˆ=W|‰‚Óó(6Û9ÎàDgngœ´LL¹ŸÁ<¥„¢Çr5V¬;5Õ<^¨pXCß""t­”—nÃi¯6¬ =A-8+D{ùX¢•>ÖØOïÛ»éXžå˜AªV¤xÓ54®ws+ߌWjL»¡bgAhy.~\{l£JÊ@ ‰]CCéäξ‘A ±ò\»::ÒÂõ ŠcgÞÊ‹õÃÅÂôk!#B÷Š#Øë³…ödÖ„Šª# 2݋ﲆ8ìÍwh¢wÁWô{t—asô‡&ºÞ>Þ<\ßmn¯Ó,Ýí&Lìø¸/n¶í ž–P¹žû?BËO4.ùÑÜ,»Óçrö!’pèw.ÓTÜ=`ä}S|.ðCÁ^l§Ò¹/ô¯k™¿ " ˜½mjìêØwG¡+£ò©íj¶ökÈ}ýÜUr­ƒ÷ä]{™ !§Y>K1LŒcþgºYš—¤Þ;s™/êŒE4¡½o½1ônz‹Æxhµ‹øÚz>-0Ð`€Ãœ7®.²çmÒƒ.ÙæÚÙÛ7áê†p‹Gö°¬@ˆ1œ—¯÷štOñ¼Cæ`†¹É©\"Yß!Z‚õâb‚²Î¯Õâ­Þì·až¨ò }0º6Kaæ-¿ÓD™!këZ»•_`åi©ëÔN^oª<Ƨ7H¦ù" jÞî”{O±)µÜ“™Éy‹)ÝX;A> stream xœí}k%¹qå÷ÞýÃnYSW|? ϶ü€  Í´àFúPÓoogר«{ä± ÿ¾dò—yëFV·lx{¡Y§2OÁ` F²~w%ŽòJàÿÖŸ-O~þõW¯îŸˆ«WO~÷D¦ß^­ÿ<[®þö)<á9FåÕÓ—Oò«ò*È+oý1j{õtyrPîúé¿ÁÃRªáimŽÒyxãéó'ßî¯ÅQG'e8|„¢ˆ:F#ï¯oÄÑÆè½:üx­%üBÆÃ D¥^„ÃxÚ#…;¼EØa£Éeƒ¶îpûî·2˜Ã3ÄE Æ÷,¿}úÏ©†¦¯¡ÓPÔ±Ôð¯®oŒÑÇpø›ï¯o”?:¡°&µzï±¹\g/„ ‡Û©-Ò['SM•Ú…ÃÝ»ë­pØÃó®‰H礖1> btÖ¯R¼Õký×ver§´Úâ~“ªC´‡wX„: Yë†îPúh)ý&IÐI7ÿôɯРdpGè3 íz^Ihå1xà1áÌÕûWÿzõî ”m°öê÷`ÿ ÿÿ·' GÅdßüã“ß]A7Âj5¹ÿ]ìN*ÎŒh`‚ˆx{ ¡"oÁv„ãŽz|ƬcÔháRΨ (.!ZƒÂgH÷–DVAØþlM~lÏ[©HM¬DŠu´E+âDPG#¡z†8ÐMˆ“©§ˆ Á•N˜º63¤IwÚ¨JaxÆ+h×ðŒ[y @Ã.$Ä›Ä|Š´·ÚÞÀ`TŠÁ*‚¥u.HôqÕO€’u3¤½mW„6ÊŠZagH4ÿE$üÝA=ãK0>¡YvT^%4´Óø*$ÄÄÛ)-ÚoEx¤ „GFCx”„GAkDZ€Õ黜¨t,Ôf|ć‘ÅCXŒ#Ë D‰³K`*BÚS$èî3!!U÷h´VÐú$€ÃˆÑ `;C"N%&!©'ˆóÎåþ†ž?*;´^¤8h‹Õ3D¨DêŒ@ÁäÇ®öÎùT‰¥tˆ—9'H„¯’\oJ )Ò½å%ê£Gb ²p ›pùöêWiòNTƵ¿RÖJè¬4’T(sйe‹´0ÏËcÀ)¦¾2Á¤sƒk9°B¸‚‰õ(dH‹˜_¬kxªî¸4xÓÃäF¯L·çN˜•áÑ4a2¦Ì<À«u \Ûn …æv˜<ýäåЋŠÐÒnz­ošéõy´Ÿð8T+H]ªõÜ‘s™NâYå&|Ô¸˜ ÒeºV H ¸‘{¤ËtIB‘"q½SÕ„t™­|N"ð¸»Å#érnE'|l±÷—¶˜.Ó5EŠ`Àw÷1!]Î-O#¾· é2[Sž E0à»û˜.Ó¥+EVÁ 7;[LH—é ™"E0àFíl1!]Î,ÄO#>¶¸óä vt¯kù^0EŠ`ÄÝ^U¤KÛ tK}Ь‚nvªš.Ó]EŠ`Ä÷¶˜.ÓÍ EŠ`Äw·x$]f{¨¤FÜïmñHºL·jY'Üî´jBºœÛžF|o‹ é2ÛTž E0âvgÒeºw¥È*8äåâ>Á„t™n‘)R#¾w±GH—s;ñÁˆo.~lé8>ÝÌŸ E0â»[<’.Ó˜EVÁ ß»¼%¤Ë44A‘"p¹³Á„s99‘kíbFƒGÒ¥ÅP:Á)‚ß;EÎe™¡H–›ñ6MI—iˆ"E0à;Wz”s™†™(Rä®Õ>MSÒeÍ:AŠàÐÖÅü¤Ë4hF‘U0âaçjž’.ÓØEŠ`ÓÖÅlÛ"¤Ë4H‘"p½»Å#é2‹4ž Ep4ûû˜.Ó€&EVÁˆïîcBºLã¦)‚§}|y‹ é2 Ï ˆõm6å‹8—Y ø)rc›L¹±JºÌBÍXÅ&xosGÎeϦH‘kÛTÊ6+BºLÂæ(b}Øß»#ç2ÍSd•›ð½Í%¤ËöÀ‰X-hï^î'GÎ¥"tb)RäZ¿¿w é29š @1vGÎåÜù•›ðJº´#”N0EŠ`ÝæP¶ž éÒNj:Á)‚]›Cù-I—zÜÓ ¦HÚÊv“„t©gHàdœð½-&¤ËôxŠ"E°ûû˜.ÓS0ŠÁÎïïcBºÌÛN"8Ö‘Èoðȹœ;Ò£r¾s‹FI—é© EŠ`SçQ¶—&œËôì‘"E®oó([Ó„t™qž Ep ¤‡ŠŽt_pšå¶$/É9_’s*ò%9çKrΗäœ/É9ggyrN›G0‡Å€%b·©Ô:<8Æa€56î˜ü¬ö0Îd^‚;(õR}ËA)¥Â”·¬6Ç †·’¦Y~]ÿ–ƒiÍŒo1ªQ û·`˜ëQV€ŽÇ–··"ØšéO§ÖoEÐ2¦,Õ·Àq€{mDô÷ä­ÚÃ[h+² æQú·&)Ǿ]0`\žÐÖ‡`¨Ê<šÛ[Ü Àá€Í‘WIA8,£‰®}XX•¨¡á°Xbàpà<5Ö¤ 'ûÈ?rÞÇLá°XbàpÀ†Æ5)ƒÅ‹f®ÆR ¬ëF­T„Âî¬KA8,¸OëRKšè¥"C­¥"\ÿŒu)‡%R{©ƒ%ʼfi,á°ÀšX¾¾"Oí¥"–˜×8KA.gQ ƒ^Âa±"']7–‚pX¼Kk½Ž¥ )Ô¨—†pX±—†pX¬%z©‡%€u $+ÀàU¦µm#©‡EëãH²Gm¥"ا¤LìÆR‹–Šh¥"rŽtc)‡ÅÙ¼£l,á°ÀNlÔKE,Fú¼ï©,á°àîr¨KE8,°s“c] Âa‰Ô^*Â`±JåôÝÊR‹¡öR î§Çº„Á’ö×ýê´!Üou©‡Å꜇ÞX Âa ‚è¥" /\ί,á°hj/á°Ø@ôRK öR ‰ô'ð¹ã#ŽŽG0XÎÄ#8,[ñÇv<‚Ã2‹G0Þ?à°lÅ#8ÛñË,ÁxÿL<‚òàplÇ#,Óxçýíx‡e+ÁáØŽG0XÎÄ#8,ÛñËv<‚ò`°œ‰GpX¶ã–íx‡e;Á`9à°lÇ#8,ÛñËv<âr–sñËv<‚ò`°œ‰GpX¶ã–íx‡e+Áà8à°lÅ#8ÛñËv<‚Ár&ÁaÙŽGpX¶ã–íxƒåL<‚òà°lÇ#8,ÛñË™x‡e;ÁaÙŽG0XÎÄ#8,ÛñËv<‚ò`°œ‰GpX¶ã–íx‡e;Á`9àÄNâdd=2á`…õþçýí•%ƒesfåpl{§å²ë—Ò%JY\– ¯$Œiü¦k Ï=]ž|wPBD¼Ójk%ü$åú“H?éëvEáy5¦»˜†O‡WÄ9ÌôºÐ°&,ÆÔ»kj:Ü…,ÞUªgY‹ |¬¥ ,…‘)Ù³¬‹EG¼F´#É‹ó«½éIV„ŲöjÇ2öó¾ûÁ¤°aÀÙË©Úl£âúFbRh ‰e+á— Ì3•=šªÍPõ'»MSFô˜Î9üU siw¶"¯Öà®ÒS”>¦»Ò¾© }‡`#xŠßBùy—/MUæá\¹“Á¦0÷ÚÄG¶Êò¨ÁVX7Ø*Ëc[%yÌ`«$l•elß­Ðwâ`µÿ°ƒ½¦ÜYØÕ ¬¥Æý“¯@¦ÿÕ'¾pfê^ Œ{·ñæaÿôZ¨°ó‡7Ë‹«ß~ÿâÅÿ½ÿÍ5èSY6\áSgww²Œþ0嚃ÌB~sÀÛ}CpJnÓUÆÚ¸p1x¥/ÞÜÝÑ«-ì¹­ý¬^E[ØõƒR[Øèø>_çÛÄÄol&LŸj®=l ¼XÄñp9j|ß#O€…ôÈZ%<ÁF­Okpa@´ÏK±†8So'\ƒ¦Æ˜#ŒyŒpqä1¿ žNx¤ñÇ8žTÇÀú©Þp·"ÊåDC¬i”90P-,¡‘Hh4^ü=>ÈÚÈI«ƒS’Ÿùdä1!+m½ÔmEÀŽ<ÖÑú€Ç¯÷“e?1Ѓ–ñó7>ãU½NmEb$<^YÂãÁÿŒ< AâqˆxŸ˜O‘öV¦Þ·µ"šÖ9à)ÉÐ!¨zuTFðS1<µ­j­8Ñ‘'?òXüxaà±øa‚ö3$ˆÄ‡ˆË5×U±ZaS>ÑU±zîì׫b³'oè>}ÔU±—xù$\šñjSÒe:™PdœðñCí‹¿¦¤Ët΢HŒxÜꈇ¤Ëlj¦H ›LÒÅ—»jBºL—á)‚W»[<’.“Õþ)RÇ“a|yÒeº© HœðòÝ/·Å”t™î](R]?e涘’.Ó-EŠ`üæylñÅ“’.³Ø RãÏ»[<’.Ó EVÁˆ“>¾\0!]fûJ±Æ×ÈÙ¦5r.³Íë Rä®v7דA<Û#Sdœð°³Á„t™nÅ)RîÇ¥þÅþ’’.³?ŠX„w·wà\fa…¤ÈõéÖ‚}LH—iô‚"«à„ïm0!]¦AŠÁ€û½-&¤Ë4C‘"ñ—.QÒeò9AŠ`܈ïÕôȹLKYå&|çíV”t™Æ¯(Rëtlº¯Å„t™†É(R#¾s!OI—Y4î)‚W»[<’.Ó EVÁ ;š.ÓØ"EŠ`Àw÷1!]¦!LŠÁˆïícBºÌ"¥'H 8éc†à‘t™d)² FÜì\ÉSÒe÷¥HlZˆŠm\„t™†—)Rw·x$]fQ줎-DÅîcBºLƒåY#¾» ér.&"p¿·Å„t™…õO"Ø·¿Å#é2== È*q¥wZ5!]¦‡)‚u Q±UMH—éYEŠ`»¦`ìQ5!]fG.'HícF‹GÒez²C‘U0âro‹ é2=@¢H¬íþ>&¤ËôœŠ"E°“ô¯é] ¤Ëä8ì)‚ÃÉ8f´x$]¦§nÉ‚.wî`(érîpïD°i1*n‹)é2=¤Hìíc†`GÆñäò)‚£Úû')ç2;ì$À*5Á;7l„s¹èDõwÆ~I/É" ù’,rnú%YäO–,"ú«K‡1úûD Þë»ë(¡ûä±»¯ò%#ÝdÏ•‘Úo—.i÷V⽚ ¹$Uós±4äòë"´ó ý'W á°€3C]*Âa¢ÍÀRKù:ÒÆR ~↺T„ÃÎMu©‡⨗ŠpX¢Î)J¥ –C{ÔKE8,02ÅP—ŠpX<µ—ŠpXb z©ƒo¾õR x*á–‚pX¼Ï·¬7–‚\Îb„Ðè™KC8,*æÌ•ÆR ¼-ƺ„Ãó‚ëR ~w2ê¥"mˆ^*ÂaqÄ^ÂaÁ¿_0Ö¥ %©½T„âã1 $+Àá€%ŠPIA8,°¬ÑÉ 08´ 9Ó¤’T„Ãb̨“p8¼$:©‡%úQ'`p¼—}¨IE8,†ØI8žÚIE,V¨œÆTY*ÂaQÔR*Âa±ëÍë¥ ØÖˆ¡›+Â`q°XWC]*ÂaÁ¯M‡ºT„Ãb#ÑKE8,Á½T„Áâ¥"z©‡E¯7ó7–‚pXµ—ŠpX¢È¹G¥ – ©½T„ÃbtN)h,á°¸˜S@KA8,°·c] Â`‰JåœÊR‹ D/á°xs:º—sXøÍ¨•†pX”?ªd8–ØJC8,>:©ƒC b) á°ŒQ„aì>{tâòË#ÎE'8,ÛÑ Ëvt‚ò`°œ‰NpX¶£–íè‡e;:Á`9à°lG'8,ÛÑ Ëvt‚Ár&:ÁaÙŽNpX¶£—³œ‹NpX¶£–íè‡e;:Á`9à°lG'8,ÛÑ Ëvt‚Ár&:ÁaÙŠNp8¶£–­èƒãLt‚òàplG'8,[Ñ Ç™è‡e+:ÁáØŽN0XÎD'8,ÛÑ Ëvt‚ò`°œ‰NpX¶£–íè‡e;:Á`9à°lG'8,ÛÑ Ëvt‚Ár&:ÁaÙŽNpX¶£–íèƒåLt‚òà°lE'.ç8à°lE'8ÛÑ ËVt‚Áq&:ÁaÙŽN0v'q:¦`\ÂxfWÅ`Ù\Sr8¶gV˶wú4—Jjü{ïþ²[%ñcGÖ­’éÚÓ§„s«ä„ÅÀœ3üifK½è®²0.º«õ¯ÝÎEw•¥^tWYÝU–rÑ]%¹ü¢»ÊQ/º«$Œ‹îh¯v,ŸâVImD¾üçq—Jþi®ƒºâŸE¯—Jj”⧺TRÃúzæ³Ý*y:ج!¥î=j°U–G ¶Âò¸ÁVY3Ø*Éc[%yÔ`«,ŸäVIm­O=Uo•´ie&×J~Ê[Ä&Æn„N¹¯§·JúOu«$ŒЊݾUò{¼IRH¢4ë½’^(XQ£ÄŸãQÌ1Š(‘õFƒ+Aº…#¦é§Ïïô¡Ö©ƒ‡WÓ%•©ïm/®o0m[‡xú¯®o0—?Hwø>¾ÒÜ~€çEN{‰/ÀË1o¯î“Ôª›„I¡]8<ëž¹}‹ð†*•IeŒÒ‡Ã¯¿…ç0F¿þ—\ /Üá`œ6æð!ݱ)bqì*P X¾Ô`x#‰½ß¦§… Zõp¶õ`üáuc#]p£À÷9PÈ †Atndª–A—’mW­>1Þ:&Ëó8ò#ð„Ñd$iÞ.j¢ _ã C¹twn¦ÐRÅ9·ÞCus?G#Þ¡ƒ£Äþ)y-8wY /‘Ó ß¢3B™±¨eÿØFqö*Î~¼ü EIöÚ ]õßöÅ:R×þ pÔüQ°NÂZ§Þ_wýÛž¾Ïõ+êüÁØ“Y¡ Ì ÿn8©7Yd€*R«ü®{ønAå‚O¦w:èó°Î>80­*{ìÁZåi>Áð½j¦*³£ý>Yº—€~l¬s¿w÷.Wì>¸Zåç+."iªÅÉÚí8¾oRJÿãôÑW>¾\|Ÿ¯A†…ŸBð`æÆ&P=Æjeoý˜<ãoвòø ëÌ—•âµÃP|Ñ•Ñ<4:‘2Гu¿œEzÍíïºi¯SíÖœ—†Mõ©]Óúy3‹¶|Òá&M´°&[I ƒYO,2ʱÎç-2uB÷H²HXX0‡K,²9£Îë³ßw³èÍár÷./<`+>gUâ:ÍÀÄÛÏ”:–”Oùäé_¦ Æâ÷ˆÐn¬2lÑŒ‰Éž@²ÙpÖâ‡V¼-¯¹Ã_7ô¦¡*·ê¹O„-M˜lÇV|ÞŠËC–†Š‡É°bªM-þy+>kÅ»VìôørZ|3ex3ex7í‰ûVü®s+lþª43~ۊݸièÒPÑŠÇV|ފݳÞŠÏZñ®_´âËiñÍ”áÍ”á]+~hÅûVü®ÔÃϪÚb¥?»¾‘Æ;êj’üuÕ×L]ßN+x;­Êû)ÃsÉ;Åý¼Í´ SP_>?ˆoÛ°éÜÄ­øº÷Ý}`Õy7)uú茨Ÿ”>ÌáŸæsJ§Éç=°1/õ“vÒN׊—­Å½¹¼ÝPZ³­ëöâZq>S˜ÖöýƒZë¼BgƒEMíá­8_ ~®3£V{ÛÑQü{+>¼~9×è •/^Êkõ-(`²&ùYóYœ9²×­xn»BÞzÖÜßÜ uëýÔªÞ>4;cì,÷~*¢7âNÜí´j¯ú.šù¦ù|ø»yÇuÿ~Úq¿Ÿ¿7x¾JýÛi‘ŒûZîÖø±½ž2?8õÿvêŸ^Oõöº™åW½oQ8øE¿éz´[ò~ý ìªþ–ÑL1×Tעޢ›å´Ÿ¶nr«n3G^TÙy·Bü0UåŸ5Òªmçà:{ø³©Ê:—õrÊðnª½ ^›Mg)Êv²Íºo~¨[DuÚù±wFPºeØm¯êYtSåÝ´:'A3}ñ‹Vüu+~;Eÿås9™®¿ç‹ñùúy.øíÔ >/µ˜tFõÎE׿ÝÙy©ùzhcÞ¹¾wÁŽ¿>5™Nòï[ñÛVì†N·@ìw0ŸÑÎ:é§)qçO¾žº–·Sô«éݤú|Ê«b˜×÷ëõ,3këYˆœrý4¥í&Üi:üºŸµâÚ/©,Zñ«V”ÝÃã¢o=†Èõ9Æ>_du‹¥Î¹uK¯O`÷]0™o÷tÊølv¿99ÿWµû¹­nÙýÄØ;.54~šR-09\LÑzžòVZòêu=Ç£­¨S®ÇÃÇÆÝÁnwŠÕŸ ç“lämÎ6 £÷¸ÏÉz]N­“dgfÝ€žÅ)JZIoݳ?fHŠKÎ8g•ü®ÊY»ÁY½±Fx—U§Ó¤>ÓaÄ0ïÛiu$×Þó3³Üšƒ3SçÂÒN›w/‹<ë¨Új«…Wy“R†–ü87«ÓÕÆàgÃ;Kífµ…Õñ­^¶dÉ&×ZÜäI¶NÙÏÑZ•׎^&6X¦åuYtûáŵ¸}ñk‚¯ZÃÀ{óìÚDðW˜Q†šNeß~¸]ÂCì]|,àZ Måîã‡7ï^”wôáþcæV?¾xƒ ü ¼½}÷ìºüðbºê'a¡-kláÌb¨þd³¦f‘UŒÓbXov#vc (‰e¶äî ¯IZg^òàÇe¸î@ØâauN{ ¢¬yJ=’´iÈâÝÇà"“;ÌãSÃð½í“£óãSµëåÇk¼q\ým®ƒò·ß7ó³Ô´sÉó‹u.m¬N—ZýôÞ­*I"kêGFzuÏ·o»ù$»2§tš1±u8SK<ÌÃwÍ;t㊶›ÞæyÖ?Þû2ÏŒˆ7Ýü2¸¤µþý¬“×F»1 uÝÃëœé'¬û̲ºµõÅÛäRÁÙ™Öñ0ùÿÐU¤›(ïZžt7¿v_$ü?ÙÅZendstream endobj 659 0 obj << /Filter /FlateDecode /Length 8744 >> stream xœÍ]I“·•¾Óþ }›êV)$6ßämì{lkáƒ5‡"›jRjvQݤdú2}Þ‚L¼‡ª›"áЩì,$–·~oÉï/¦ƒ¹˜ð¿òï‹7O¾øÊÇ‹ëû'ÓÅõ“ïŸúëEùçÅ›‹_>ƒ'"Þ9ä)›‹gß<៚‹d.¢‡ìüų7Ovnº|ö-¿ÜÛx“Å™¬Ó»ÃL!ðœã4Íiw|Gk1ÑC3µfr!íN·—{ç,ŒáwWb‰8\0Îä¼{‡·SÎÁÇò–è]™Y¬³£±_ÓTrÊ~w‹—0çÉ,‹ ê8¬;øy^û½}‚ã ½ùͳ'yÂâ/î~ AX{˜BF‚øÛî—8¸Í9¥@‡=›y²¦l`4>ïÞˆ'èôÊŠoÅ^=Åó°:·ûíerX™W{¿›§ìç°û·vÇÏËÏÒw¿¢·LpŽè7ÐEëwÇ÷â-÷D^qNþòXwÏo†ÍÒÝýî7Ëxw09\ 1& ¯„[ºû?äÜÀzïo»Ó+š£Mp„7õ¬^ò.ż!\Š#øØ½· h8OÀ×——+ÿ.÷ÑDxqÜ=#†È@®i‡sɆ̓™á"\ùÙKA‡¿\öŽgžàP˜K|ò’IÄ"O—6r¶»ù&ã^"5ë³zÁ=±E Ñ+úg‚±ÆÎ’þ»ï½çw€Da¦Aþ¥^¶¬ñ^¼à. ®ŒU·iˆ4ùfùŽ7eÉíŽå}.%9µuw<,Ú")™HÏ.CãAïa+éÈöY2[&&{ î3,±ìˆ¼ DÃ÷最nêK?ðÓ ¦Ä4Ãy{˜Yšòî×´SpÑ>Œ.ÒѺ0Õ½Êø¢³”w_õ~õ{!™I"C HHy¶[Ö—–ðòKø³”+¯Ÿä/Å‘ðß(:÷S¡ÿ2ᡈ…·8úlœ—ÄöZnþ*cQ8P1@UË@ÌŸ$eÒæ€=ír£?…ºFÌf"kÇsHa u¸ XHèã•mŽš“ÕÑ.Tu_†ÎJ“ëq&ZtÊ¡'€"¥. íš@û¦•Qý§ÎD;²b®x4øé²ÍÖµH'ûo† Šçù p€hÜîô /)À;^T.=jáƒó sÒ âb2‘RY_.æ¼ní{¦}“`ŠT±.<ˆõ7Ò¢e+!ÌÀÚB<(’,‹ó§…†¦ÖŠÁu‚SJä$ìt¹ ×ô;‡Yr£toîy@x^lŠ:8¼)ÕVci៲hâ/Z1…N(pÀ“˜lPÒúvU’noñE38D#Ž®Ÿ‹8²ü5°Ç‹ ÅÑŽB‘Ü&.§¶eÒRëÜàpðÓDlÚÒl-^¸ èNPR#ªKÓì@DÀ¦¡”#ÕIîàỷŽ`¥KÜòäÂ9?2*ŸÄ988N¹‘ô»ò°öQ`9óúlß>:¾ã¡)$ŬT7ÕZúÀ3FŠ•>d¡M‚ÄZø•‘¶Yˆ²‰.»3Fí²öÞUÎyÀ…Gé³^ñÁŽO(C­n>Km`²2pÓs²sQ&0{£ÍµÛ:½kfkIlh¬¬ÏÃ&„0äB9«3 ¶¢< Ù’åt’‡òöRȈžQ L.ègeß\ñm¤|Áê-$¶ã£”åb³Ä«_T‰¬ÔVÃl4‘lÏІCk®5ûyê}]ÿM—&ïy]òò]§²³t· ÑWÕ1zÉOÌSKPø„AQ#}UMù0YlÀQ¸A¤fHþ­`ØIðÜéšDüy?YˆþƒÆ–öËÐ{ƒ ¡+ÆÐ3ΰ­ v-h‘t¾–¿«Ðýp¹b=R2²r@àdÛ²£x3ll ìÐù#`D Ñ®M¼ –Ôˆî_òxdNn+kÂ5ú"z`i\ñ[À[Y|/ë:ö-YbU|*kñˆÄ|³ŒwÎÔZÖ5òQ„jï*“7eˆ)¬5Á¯[!°HOÞ~e>Í¢ÐLä@8Wp¹Ëuwu£¥ [Eíëžy$. €ÿ§¡I–EÞæ ‡ë©@ðaÁ«çÒÈ6¤tŸ¼ð„ ¨ qÍÜ•gľ- lâ¬Ú¡(°òûª>’‹¹AŒÑKïêz ºhÕõoë/.IÍ©~w ~2²îîx-ðSƒM‰Ð+¥À—¿dÿ% ­þo`hL¿žƒrèVT†„Ea+qû@'-Òd­Pô\Jzínô6lއà—ù<=?ùƒ›aöõ$€–úýÓ¯1ÿÞ\²_U¢ûj0Õ.khr!òÞD¬kÜØjÑÉSÁË)»y£"BšÑK•O¿zhÿ»Ó¶‡fú:oóžUÅOÁ•[t ‹+_ñ;üÆu]îáfO¶TñØó ^çé¦oÓV íGÖ‰‘ ¡%¤é×*WPŸ(¡¤áŒrÍ‘ÀHž)[è¸ÇDœÇk6nTR±ñY Þ´ÌêK"÷|µ2ÚÌxv[ò‡/ÿ\-9 –vk€rÑHðoüzWM©OxaÐÅÆx¦ s´tùãå:á­3ØjíÛ"°é &H¦ŒëL¼x/¬Î·•|œÚßÚã§Ä‘€F0¾^ÂÛ8<ÍÕ•Ùžž‹ÒõU‰2yyøƒSØ»!|Üè'ÓÂlLº\ÏëdLE¾VÞ~Úš¡S¢jEùcŸSTÇ„Ÿ‰ÃA9áu,±Æ…_òmdÚï«mª.= m‹LÒW<Ѓc`ê %É^a+²1î;yû î¨Êìaå1‡ê(|fÆòd¼¿ã e=S¡ˆ›GD¢)l€XHRvàLÆlˆ—N$ÎñmõŽ$íÜTCZ ÑÐøÔ¸­ƒcR«lb¶™ åp&¤@$§[ñpˆÄ# ùÒw¸^nšÑilŒ~Žô_/¤_–o”•È 8ÊSeþ¥¶ÒÁ°9fÊ8^_ s¶ˆ„ ,ïÝ5‰.wÌ>‹euZµwø®þôæƒ Ãdä  ÈI¼¡…pd§á\ñtcùâŒçÉí6òÙÄÉÓDJX¬dàCn §=èa6nµ$ÿ¬jo ÌÍŽtr l=§da‡ff[бZg†Ü<¥ž¼aY"ƒË½×§b‹"ì˜Öà5Z!iGkz An®ÿIˆ‡ÊÍí ƒø•sƒrfOY2 G1,øÁ GËž®oV4cŽø8*9ÌëùI .Ï!X¦!Â< iZ¸´ ûÈÒ„—ÀÙðzX©:4raRhÿÕ²£s]A«“†S#ÀÁœÍùpä@鯰#¼<à yÉ÷æ#=Uô×@ñ}à§Ó4K |ñUÒÛáUa…TÐoÁíC@¶^Þu/_×ËÛzy]/ßÕËSûl26î~[/oêåËzù÷zùº^>ü¬ŒG©""4vͲ2PT+öñ Ÿ60DA©„rs ž­iœ0ã¶ŒœÀ]‘aXJFbÎä¤I¡Åz' 2pÅ îi["j®wõò¾»C˜A–WÑyØÏhøæÝ·ì >%eÂù˜2ÐÅóóÆ8Š÷bˆM6:‚÷ßë;o'ò SÓ3?`Tº^9X2˜Z¨¸±,S åÐáÒuv4ç•´hÃMSvhÑuÁ仲c@¥RIü¥þ‡ýåä‚ß"2Mž´Ä_/I½#7ø ëp‚LŽäÿ›dm+Röé¥MûQ‰mÒ¸‚M3ób±SHËýecʤ¥\ò2¼ÝŒÜ¤òÊOv±ÇÀV$ÔyŒkÙÉ;56ãZ<«®.dT–Ly$Öu©ÌaöGÅ1‹ÏàQa’ ¸k`ÚÙÖŽ%˜¬m Š%%H¤Óª ßÞQOŸž·xãNÏ‹Òé¨j0ùʼn‘\ÀûÑ”äÝ,YÑy<Š?h(†)f„ ¸°¯óo«·xMƒ•|†Œ6ÃÙ,–L&÷&†YXª$ðL`ØK•" ÷š²R9ñŸÀnâ—Âcíºd'™"rýŠ7y¿ýïa$:­Ç ÀËDÀ@ð=Z7–¡I„Û~¯rëšœSøê)Yœ5!ÔE˜aæõ.pÞ¾"‚””Üäë÷ÕZ¦¸MÕ(Á~¢aج/ºeãjQ4KS¾CÚ2åJ˜ï××,‚ ¼+35Zçœ@Î`’âà@S†üˆ»A9‚G­2éYÃŽ% Àå)ÊŒ)¡Š´¿NY“o —)h§2烄%%RP²[¦¤w(iQ%4q²Æ;œ"#™SVËøOh³UÁ% ¾æÕœZåßÁÕ/{|<¢M«MÜM´ô¿WøC‹0êÄn‹Cömšæ0c âÞæ´Êuáú7¶{ƒccFšÄ4ùª{致{êü\pÓTtµè=溼«#7AêÂ<*ºÊ‚JØomluìê§CFÑT“B W`YX?*xM¹Z%îtaÝæ$)ð.«‚z»ìMΤGó»úb _áXI'˜ÊuоšU’,±x»ú™L&KxOç ¯HÅØF¶„Q9!wTÊÒwõá¯ï$ öðÔZÖSFœ²5—ÝV€æ­VT{ãÑ9Ö‰ƒð6›ƒUŽÊš¿Úžó¹ßkF”|BDqT¥H À 1I®é;U6â½´×]:nŠP­ùJ? ðSÑ$ðÑ\<6ý/‘ûPiN)8žÚ>­jMŠf–_¼c²ò®_ ¹´>¥k©#kÈKSr²4G ´uŸF™f?ÑJY^mö3g¶}¤ê\/·Å/ Œ4f:†³8ع¤e=8FhÁ4•v—P‚O£Š‰6C3:‚ OöLáxÛ &!ýJ/pÑXxãñíôYÌëYLô³\ÔÒo¦0$KñZakU¬¸1\‰™×iª„~2׌ñ²R'd’'–²ã°2(ÂêOT`ƃúŠJú (Åj))¯k”ÔLG2ÙÏ Òc '¸Ú3¨–›߯híÙà<-iœ/ ({ž]jKI£„TÒáy ¡ƒ9iWxdqª0rÿ¼âkŸ„#È`åiÜáOQ‘ƒ¡ ôõ¼Õ0Äw*s]˜z ªb£_#V[§M×bá³³|RŠb¸g‹ß BT3§k2˜f`Ûy z=Ò?ã',réÀºÒiåew%¦¨äAMžèBžbÕÞ?؉ -ª§¹Llàt Ò—ylï«A¥qx½‰%ü[Ö‘¦A~ð`ª `]è Y]ò×ëJbgÅü™©Ê^4鯥D`ž–ˆÂX’Ʊ!«Iˆ ¥‰¢ c_&m¸)Sj¡Lí§¨b‚­bP”ê"£hÁHšÖv7ð¹Ž\a} ãÜ"Ee´`òIÃ÷8*Lˆ4ÅÒàÝîÛÆÉ¡Y¹¾]ú}ž’¼ëæõcVliíMŽö·Çç«,ýPnž‡²é¬”_Úæì”ÝÈ9¹RzbÈçnÄ÷ÈÊžTkð›io–Ú\Z_ΊjA¯,ˆ_Oñ¡ü¦Â¼‚a^“Ô5"Êð~CgTŠ««ÝŒ1 Î?Ò‘²E‡Œ² Ýœ÷hÆðXÜýær­-ú{ÕX j²òã ÁBqÆªŽ±žÔûF™?@–q^ <+²Zš >ºrTµÃÜÂòprŽRÖHÖ?9ëÊÊçAnû‡Ö*«ÒêCj ‘ͦÝz‚ߢ,^ÜÀz–³Ë—ºy`i19€¦‰h¯â³hi=_ßö¡Þ”?ã&ƃú>ò&P=Ú #9›xQ©áûL‚²¦‚?Z<²ÖUðÓ¾F2é.‚ºÑ‰Œ]¿\Š3—úmKÙ³çâ–’FN©2Éjë·‘ØBc ì¼>{a™-…‘r¯]!~ºn­·b›mëù%º~ñwGŠHNÍ*3ÏÀ\a>LFûÒòœz©Dv(^âäÈGFìÙvƒ½)îÈ6høv”£òp`b@¼)LÄA¬ü±m}`Õײµñ$t"ª€§£dŽ{›8)q#ÁlÇ+UûýÀ¿Ä\ËAj-ç×Q/±­â¬³Ìý£pi»¢¡ÛUÙ„©q²ºeÖr°*ðö/YÖˆ-ˆâÊvƒÌo¡jØY×V-;ÓÞè˜Ó¬l7fÅd°(±Q%nmX­£#¬l…P,ˆ€GöÉ@#&|n²±µôx¤Á)¶r%»Dðâç—6>›§k`‹II6äCW¨û8%r·µ÷ëˆeÚÛÊ/Lë‹¡p>5à)§Cª”>ß§”ZCAgÚmLÒ+ FOây¥ž~úº$*io¢xì-0¢”lÐLÝhXs [Í«î‡ï³Ië¤[~ÉRf½hœf¸êYÚkל%ÍE‚r¼\®0ôq_=õ¢”xþÚåiu"í@…Mþýr­ª ãp¦\—|µ_;sQ`—”bbB§Üì¶ÄpT 0jë{E&¸jÜ5"gv2+“—$ªÆKˆ­ùU~/é÷çU„o­pb‚©½iÅ6Ïä•4í"yù:üg}–z„}sõDú1þu—U†:3‚;QU«;ƒ­£½ã—dØŽ3Áð‘`¨Îc9€ÄÔ×L­õ0{R[h·LZë>õ7n'9öKs, &ë?=PŸ·V~'oµzbÊŒV9¹pØ| 1©™«7æÜz†ó‹ÇËã®<^I¦ê¹ýš!Ù{‹p*wˆÉŒ)ax-SGMdNÊH‘¬Tó±.?9M˜ÜL¥]Ô£ªš& ¤SðNX˜MÕ Ÿ'‡®mM¡Þí‚czUw¾ÂN‚M»©R>eI•]”wõÑRn¾WQÁHM6&eHåyË&Cµ‡ÚÙš‡‚rÕŒÎÕßÞtS"'5µõ¶Ë µØwr°‹NS+~¾“§Àyq®Xs-Z›Hh¹Ò¨ç‹\%FD—Yø>ß•ý˺SÊß9îºØ]€1Ô¯R§… /C†_Šý²˜çåîÖ~A«kc¾J/æ 7Ê›1!¨£¹à~mÓk$†Oh„™ÊçU Ϥ>;Ž-> ë΃ÀÀZÚ‚•Õ{A«SéD)Á³ïxŒ8LMæeQ·íïdzÓ,µÔ`zïí@áÈÝãâÛhÜ™†Çéìok‚•šŒe&Huó9»ª~så}<¸Éjƒ ®•Ëà]j¥½È¾Ñ̰L_;Gƒ,éràò´¤êæ‰èI8JÛ6³‹ 6*óƒÎÞ±ñk…)½OtØ¥ˆJŸPn`U÷š‚õªKײÁõõ«•¹[ïÖå×*WÊhz.Ò¤Ð\­Ë•–ù*óï/׊¯¦­îÄ8‹lUL Ù­ýMKí%qì QT´.2Ê2ô®±uÜŠ]Œ… ¿yõSÀÉ%ëäÈh+n­â2k}ñíG ÐUÂOÇ;ööóÁúT—¶ûnT¦³ý´ï†áŒçMC;Ä’1P¸r"5mwü±'ï?œ´Œ ŒŒÜú)Ýf‹aô¹9|>“J"!.­|ÕcSR[t%ç¶Dðb:V <†£@Å}[ëÙ@ܶÿ¶Û~žÎÌ¡JzÑz:Uû½Êi /iøM˜ÆKªukD4ß´TQ+ëI°~fY JÙ ØýCðfû@aRÖVšý²weçRÜ8Þž²,C)jºé:™9NF·cf(/„=uŸÔÐ?ñ£Þ"jü[ ›N – |>!…ö<ž×ćÊöA?AMj±ê®ÕÀ«ê|ƒß.ñš4 "“%Z£:3w6ÛMÊb?·)CÖZ: vŠjLÚ ¢³ñF‘ЗÊH‘ ^Jg á í%¯üNñy€S *æ²7J&Y2Ê™ÔêNq¤ulûiM³p§ëÛoùî™bßoªŸýqfµpÖwcâRn¾ÍÄÛ0iwô1µ3ìV‚ k|¥ÍÔ-»·­^Äw& Òüi)ô‘b0Íö3ôéÌTG¾~üõ³æ¶B°§`¶ß#¸©ŠPšžìÌĘƒJ×;ä¡opÖ^þèhE"BQð³•äÞ‹¨t#gÃáIg–jžá¬fØ aeuŽíW ’¡ßñ¸X^ÜzÀØû~j²Û¤Fã¹¥óÖêfãb7 'Š`ÖÓ%HᛇÊèׇJãô°C/·M¿²Ô.·‹*ŠG°ÏO2è/4aç¹€Uf¦Yïl[õS&s,p&Vˆ¯)!*ËCpƒª1Åw¥3Á¨eû9ÿ!i®=Ã,×û¶_d?Iõˆ\ϰÞm¿i„þ“ËÛŒx?˜]¿d{ %ùB6Dï%òmúo9Géâ{w¢¦ mˆ'Ú¶W¸TæLíÏ•°9J”íŠUpá’Jû¦Iõ‘qeóTïDêûeR­h…Î’šg©k¿åKy '™£ZêUÁ„êebÜ•ã߆”U+ºmIÑÚMRšm4VR¸¤Ìþj’V çî÷«‘‹CŦõ56UrÄuG¹O¿D„x~T€7YZcé%C!*’ÉÉ’½‘ëlÅG|CvÜ{#a¥È°€^XíÔØÄéQýúçÖ§‡u`KÖn޾XœhD'?¦70~ÚôlìÆÑ" J‚ÒYƱm²ÅeŠý·¯qîa`ð›Ê l#4D¡:ôÁûöù;’`ö™/ ÆÉ|iP-«¨b–\hᆠΗÑUjp>ߥ5Yµ[¿©{yÐXêÆ¼J˜åk*Êç?åóX#=½öÒ“¤´°TµVØBŸìçl–°Jqâ@¥î[Lˆ™KTQ®š¢Ð]tqNÒ•Í÷d à^XB´F}½öö)ýTñ“iòk/”ÜU¸äËÿægš.ÇW<¿0ùQ¼­ 3¶jˆõ×g1¿%r=Í£þ«ƒê¨òmú².)~Y#äܰ׶˜ÄÀ÷)§ƒîÛ¦ªO-ÇE $,ÝkÚÜÊ#ÍÞ´y¢øú&f[î>®4¼Ì`™t¶^‰ ‡G¨¨U¥œKárøÁžeÝ›´wöÁ©$¶ß½îT’ÑðÛˆdfÑõÙ"Px¶½Y‰s3" ÚTvDÂ4ª¼¾h¦†çÓ9ÑœúH=6#™ã…Á.³xåû‹g>D8gàu·"/ÿÜ<àŸÞ6`0Í^l“>Ê9¨Ø˜úBÝŠ¨ ±6úrëL𰦿+‚VÔgl[”i1º< û0îX¢ŠwHö»<ë¿Ó7ÔÌÙ†²[ôÙÏ.V³@lÆóêG‹Úq¢“iÊCT5WZ–$¿›ÕÐíjIã™> stream xœ•kPSgÇOÆ£E¼¬±°ëž¤¶´õR´Ö©£­î¬AoÕ ´º !®\áš+¹<r!!÷P#r r± õ‚®¢[mÝÝ®µvíκv¶¶³³Ý÷0Ç{ît:Ó™õË™s>¼çyÞÿÿùÿƒ1 oúî-³o/“¿b+cÈ_3Å&s&cÄ1!.öäÊ›–¡†¥(1zo Æd0J%jž¨L!.ÈJ¹¯æ¬æ¾¾eËæuÜ6láþ¶D .Èá—r÷ó¥BA _JsÓD9©‚ûêÛB©´lëúõr¹<™_"I‰ó·¯^Ç•H…ÜC‰@\!Èåî•J¹ïðKܧÍ%?}òD%e2©@ÌÝ/ʈK1 [\*K¤²=r~Ž ¯ ­Ã`±4,ËÀÞÃÖb‡±X ¶ KÅö`›°ýØúÂX,6ÂXÄÐǰbª™¦363ö›yïΛ`a=ž?ˆ¤!ž¼£ “¯„i-®¸§™(a€­¯#4à ·Êsʼà",÷y³ÛÞã¿eíjvuŸëèðxzz>| ¥°èÝãÔª,N}¡QxÆ€(úu?zÅÖZúZ“¡BG¨òE[3×Ô5vu´ž²‡8þ³QÄ„KøÍœÁ¼£ÙEå„z"¯“… –+ÕÂÚ4ÐãuN°z 9h!‚wýÝ€{êâ ]¹Iω'ÛæZFÌO‘ïS&éGÝì¯|²žúõ<õõròåÐ ´%¡ÊI¹ÙÂìŽÏƒÿœæô\š<5 øHo~ª°’beíâýîXðx2EÙF®¥…ØôyÑ»É6‚?+tC[M‰ªAõ¸ÜSèlE†µgÈÉ/ÊQaøÄ3÷Σ¢sò&ÎÊëX#v"žÜ¬ t%ßø¾ÓúËèù)&¹’d±ó´P F\m­ìµùúGs¢:½÷çÒ«¤Óû6+ð½½ßìqŒ:ÆziýÛÁ[¯2ƒ—{ëý¡.š+™m¹‡ ø*-Q.¬M“ŒšŸ:íÙY¾ÆÚù«ß FÅ®DmYm† ƒZoŸÃ+¬nUÈʪò²‡eCFдG᫾,qé9hQa›n¤x‰ëÞ\·ñ7ÛNßn ™½456BÞªmÁ¨Ð‡©ã&ƒQÆD­¥Ánk2·ØˆŽnG³ulϽ†àh)ÂéÕ´Üg ¢œòˆÂ²5´×Ÿë’õÑX¾ÿùƒ¯w¦ðD&ƒAJÐÿ1Ñ €&¬ÍÙܰÐÂz”á™eghN_žYÃ6»›À .uS•ñEuBIe‚ªÙ¾qШM Ó×ÔÒ'úÐ|ôôñ £Áþ@ áïsMý$VÒõ•åâŸàO"yN$mô†Xß9?²ðÖsÄÂØÍÁ¸ak\†ýÝ„/endstream endobj 661 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 477 >> stream xœÒ-þCMBX9$øøø‹øÓù8‹ ‹ ²ø=÷]÷X÷Tns‚Copyright (c) 1997, 2009 American Mathematical Society (), with Reserved Font Name CMBX9.CMBX9Computer Modern70rÚøˆøã ø÷÷Z÷øÉøç”–Œ‘‹Ž¨ûxv‹û ‘€ŽwŠ’‰–Xhû•¾–àš‘Œ‹š‘׋Ÿ‹÷:%û ‹‰vl9ûyû‹GE‰•¦›š ‹‹Ä‹÷—÷ ÌÔøã³øà³¹÷!÷u÷øµ÷Óñˆ÷ûŠûˆ…ûwû#Žûw÷Š÷ˆ‘÷p÷ûû·p‹F—~çƒÀ‹æ‹Â‹Ê‹ß“ºšÛΖ¥‹¬‹Ê{˜=“[‹5‹R‹=‹û {duZ^yj‹—øP”÷_Ÿ•—û]’¼ ÷  7Ÿ ³” ÷ § Œ ¥NÄBendstream endobj 662 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 363 >> stream xœcd`ab`ddätö vŠ04qÔH3þaú!ËÜÝýSñ§kc7s7Ëšï·„¾§ ~Oæÿž ÀÀÌÈXXÙáœ_PY”™žQ¢ ‘¬©`hii®£`d``©à˜›Z”™œ˜§à›X’‘š›Xää(ç'g¦–T*hØd””Xéë———ë%æëå¥Ûiê(”g–d(¥§•¥¦(¸åç•(ø%æ¦*À¨c8çç”–¤)øæ§¤å1000103012²äÿèàûÔ½àû¶ËßK2>û®ò}þwyæå߯ˆžšõjc÷wŽï‘¿s»ãä~·°¥×7¤ÉÿyÅž>­~ƒÜn¶Sg¬“ÿ>û;3ûw‹ß›gOë^Ø-yŒmþœî•ò̾ý^ú]Œý;Ç‚XÏ€ÚÐßüò|¥ ÄÍùž¿íwÒtö—\ße¸å¸XÌçóp~—™ÆÃÛÃÃÇÀç`ˆ:endstream endobj 663 0 obj << /Filter /FlateDecode /Length 5788 >> stream xœí=Ms$·uÉ•ö)¹ÄåË”*•š±8­Æ7`Ç©ŠJ²¤”­È+*ׯ‡áÇ’ë%9+rWë݃ó×óÞxèFÏpöÃV—Äö ‡÷ýÕÐw‹¾‹ÿKÏnŽ>úÚ¸ÅåýQ¿¸<úîHЯ‹ôçìfññ ÌBã.ôA,NÅwÅBxÝ/θ.(³8¹9z´üͪïT/úÞ,7«ßŸüÇ‘0ÐR.Ö}§}ß;¿89?ZþÏêäG8Óxü§GË‹ÌUÁ+c—×°œ„IAÆ¡è•õ8C)Õi±üja¥ Ë NÁ½¼ÁdÞÛåö! V¿<Æ÷dç‚[~O{Œðbù§»ÿZÞád¡”Ð˧q²ï5ìLÎÉåÙJºV Ë«•´°¹TË ¾õ&Í8¯Ø 0Û %BˆÛõÖFÈTç éõ'åÀg¸• ÆÃBåÀ„( ¨†#_'h…Z~ñ<¼mšx!|K‹öÒ+Ä2¼à{À–ç„À?úÚõHÕÁOÀ ¸²¸40 ú›vyo|¤3ï˜s>\­ø¹bù/e¿:Ô>^¦¸[¨Õm D…<‘ÀgEs3c.'³ÙbŸÐœ7{.óVëÝœ]î;;³+ܘ‚’X¿|¶ãByæøíåÉO÷18ó=_€ê)÷Ðþ² }o¸òe¾(Û2ØSÆóÏšÃ6Ï3¡Ø6»mÊkNëéíÌÜ(U %æÊƒv&–z+|]^–D­G¼…”ÐwÊùåæyœá½©gðÚÍPÁ™¤ÃÅìW&ÜàSפ§«5 ¬…¨H?ßÅ÷]/—ÛÇq ¿T[lQQo•ÖÀAå9’ZxG!à àî®{EÇ¡çJé2®h'åéQ€¨½JP·N ¶™,¨Ðç𸨾æÚ½P\±Jô“Túq hT¡Û¼îµs\â™rIÄÄÈ ´ MŽ^¢;7ÛH6P ÙP—-*Ä¿½­ed­œì úÕ¼ˆW<€!bbNP«Ü‹áêmšÖ@ï¡%>c36÷…Ëê7i:XìÎÎ@ü™ÎázkTé­`;7üo€©ßŸSÆ(Ï/^£Gs¾G îÜÀ‚?-âÒâ”TÚó”E[“ÐÑå¼×Q NRÞƒ Ö.ã  œ›CdœxX[áq“ °©½`d £•ã0ך ß%®ÑÑ’ ”A|—·‰e%ùÐŒ>‰‹Th‚ìpY¥ pÎ:³ß{ÍT[TÍØX… Á;¢÷ª”µDu%Á’ˆ,›"O£qp¸`Göj`ƒèø¬qm¤ƒc åí·óÏæ,Úk DÃ^;“° ³à :àÎwk÷û1ój›7X~‚ƒ_d¡iz¨¦sÆeOqüö‘ÞXƒÓI ªÿz|ßø¯•—Þ(…üev/G@˜+!&8€#‚lzp»9¢íÁýÀ8bD²·âˆ‡ €Ñf)²—îë.»N0ý»}˜¢á>¿Ä+ûŽ(8b-ojo¦·=ÌÖ_ú‡n˜ïzÕ÷€c¯`)»ÜÓ÷?€h8­ò¸ÌC )XÁ¬&*0žúûºx­`Ë€óŽ=®™“xPl@6±Ø§jç’\)¬ŸD?Óbà¦ø{Ì«ÅÉU·«;—ã^ÄjCý¾Ž/Âáfœd¶óŒÿXœ·g<8d=Îí¤@ëÓàâ¶…ÒAtõfBƒižƒíyzéaÙüòcáŒfQ½Ã¢mîE³üÏ]FZa¶~3ÐÛ·“´<ì¨ó9’x’vrš†dÝã"ôRÚ˜,@>ºÉ`*ñ×2°îûÌ_/‹Êà*4Ź&~>ÞN¾½d¨)/ò^—•Û™Ö§D¡‚ˆ‹Û$ÉføE* tªQ¶’ö¨zа!_Q‰ŒZëƒ7)Gk¤Œ’ƒ”S‹mãjôíÂfhϧÞÌÙè7~Ô (ÈÆé VÊîzùYñêþý7%Hú5}ó*üK…ák_!³+CNê®{\©FN%Zä•$_óšÅ—<âyÎ<šý®§K¡ö{+nÐNäwvû›Vïð7)Ì9X%Qk,a pÓD€*WÒ‘(B6uþf{üTb퇅›Ór5\Àpƒ~ ñ¨õé¥g¶h׳ p„Ô£°’çLÑ`€ý2±ðR¯tŠÃ•ÔŠ&\J`p|EkÔÖð½Ñ6–vø5‹%¹ëP_)CISü6),¿ÇÌØ7'¤Q!” Ô&®aAÒ£jT·\Ô¹1ŸQú¬6ääU\-'SïãÌf]‘ •׫œ|ø~e4rKÌ_€a å¯Hp•5#•YYµbWcJ\Xq'¹îLÁÞ˜YSwwAa}¶KUóJ…†m²Ôè,o™)k[Üím\ µ Ù›P•šÅ kkÍÒ®eܽ.:a¤Mâ†úÚ„^ûòì)—F^ÑZP4øMYÚêO©Çøl¦ä¸I|`¼ tb=T©c)dö«çˆ÷àæ”H {ãb12Â_>.ñ3o;Ùê9VtÀΕåç[ x*ÛöİjÔq4Ò'_ܽ¹·ÈÝpBì˜1ªIFÊPû£3 Ï7¹Í‰9~³Þ>EíË¿vŸñF.*ÂïÖ½q³Md¸°KíµM›‚P›¿#1EwM(æ•«=b@Q.ëÀ”ä@¹Î¹œp<´{mÀçDb9 Çp~¯GG‹T÷ŒmÛtíô&Ìš´¢¤¤Ö™/·¹º·¤† ªC/iŽ9É HÕµ‹aMà3ˆxÄ–v;'&2{8á#]a5+d…¢$Õ`ód•'º*ªø`]X‚%hæ]¾–7,Ž›r8D81\dk×au*e˜prÕ¯&må_×4“Îí=‰l7PE‡CÛ‚èÄ1N"‘1®S6wÆLÄ.7ä`ìw§tP6 ’&m}uö ÔWÔum1¢œ91ä9“‘¨.íˆÍà톔x$Ljš”uðôAê­L-ÀÙï©ÂHˆž|'XD‚sebó«óZò¬@JýÑt!$Û矷¤žÑºú@Å»«Á^Y«ê¶Eü&E€» 1ÉÏ£KïûÙ€£n‰h0äÏÙ`û¾¢æ%ÝŠ¢}ON«FÌF+xQÑï«,Ìd°øló¤Ø»ÛŠß«®Ø´ÓÜ÷*>ôb‡O‰°Óˆ·oÎ £ ¶ÃtÁV MzO6éÐ>¨‡²mÄgصÛò\C"Ïÿ³´D²ây·‰ù\L6’Ýì{- ÁîcUùP)ò‚ ½BOŒB/¯âlÛOŠ]ÎQ>û’Æaæ×y»ƒ30Ï÷V]ë^—Ãs^ñ±ž •&{Ç·nãdT§Y¿J+ Zø­=L{Ìt@EHÕDù¹J`sƬ‘Z°]·«Ý»ìŒd‚c¥*ƒ£ØAf|É rÁT1è-A"!’{iñƤÞÑõKeXé‡à¨Ô|šÒ¡Oñ±B4pG±ÏÔ&Dàk׈ÕVû”¨9Ç ûú1—€ˆøÁ‘Ý2‚’‹˜ª4ô}Ì’;)1W¬ŒWýNÚÑmS^Ý_¾eæà"®Œ¶ŸÁÌŒû8¹ iŒ“/‡óírÜMü䢖ÓìK²Êf4Æ0,5cÒ0;;ûUzÈÖÉãìmGʱC3î¦÷ó'ÝeUõHlYÚôñé°Ô±O©©5™ O‰tƒ ) e[ü=÷%æ©ÏÙ9ïV€Séé;´<ùºà·•õ^Ð!÷.óˆ~¨Úö~GÙ6òR]£¸*B¹åŽú5§hb^ÃCœí-³éüÑO'²’ÙAͪäÕŽ^ádŠF9-@ê[(bÖNROÒIY¹’ßU}mÅåyFDÍŠn¨üL31ÃÑuœŠö0¾V"©¶@Ằ]ù°Ú§à?ŸðÝÌMiRŸ¶û(k@ƒ‘£|)ˆ©#ÁÜŒ5[Ê^Œ´ì×÷UÌÒ\µËžG{#Bgd–Š`òJhqUÞcgžÚKÊŒæ¶xsƒ'fI&í-–f¢¦†ñS£æêq†w8Yí›}VÀüŠA$s”ÓŸ©©Äă'¬bñ3®V[ơ͕ôF•Ì20úÜÂ8`ÃÙå<>ÇDñ4ÉÈ> îÓŽ¢2ü“Êšh‚he¬@δ²o.c¶€R?UZ`”Hî¹Oa§2h9âU c¬ŒAÉ53¯^2+z¬Á5ù†h hùóbàJïoë*B,¬ü*'ËÌm|Ñû&sÒö&Êj{ªý®ÁmE}?„Gè ×6!3K«9T"ë¾ÏÚÁà•(?Z~£Sp­,‹þ¬ «›ÐZ~`rÁ‘÷aóV­öoû0aøuROÊS6](Äæ²[ÎÊ𪠿(CvqÔWeؾ¨èIs‹úZ¹wÅúo¬±m¬ñEû胲çæd±—š?`àeE€<>n^öLDa¦‰ÂË&P{/ÖÜrP[+°Ã^óu[ÇúS“&Ç­—‡Ã°K'æy,ÀÕý»lÿ<ü¸L`Ùû@Ù‡à®}$SIO› }Ð\aÛ„¡v›FxäÈÛuò”LyøCþŸw´TôÞû35Á¹jÂpßÜ­b׌¨ï›+Ü#ýýD‘R#øoþÜVšendstream endobj 664 0 obj << /Filter /FlateDecode /Length 5694 >> stream xœí\Ks\ÇuN¶(¯œl¼{“;ç¦ßÛr•¬Xv¥¬TY„*©¢¼ H À€H˜úõ>§»o÷é¾}1BJÉ)—l]ôóôy|çÑóvÅF¾bø_ú÷äòè?¾Òvu~{ÄVçGoxøë*ýsr¹úí1ô°øeôÌóÕñ«£8”¯_YmG/õêøòhl}üè̹¨zK5rcaÄñéÑ‹ávÍFé çnxMæ¥÷Š7ë µ÷ÖŠáýZrø÷Ã~åŒYæ†7Ð[;Å™.ð³bL{ÛÒ;©Í°½ZcwÍNð;óNY:ËŸÿ+ìPÑ Mé§þr½QJŽnøìåz#ìh˜ÀäíÝà ˜1qÏ–1å†í]8 ·Úð°SÁ™4nØ]­7R ˜C§äˆ8á’{?Üágç½Ñ6­bµLûO犓!ÅÒÜoÂV¼óz¸Â&ì™ñé°¦º!G­ÔtدÂê ®#Ѧ¾ê6ªWiG¡EtŒƒºØá5RÃ)/ÒY19*®a÷@88‰„¿—S‡û‘N:æ‡óÔ[z>ܯ…ÁMØ8…€) 3•{·<\¦¾Ð#ÒÂkç‡]ìì]¦mfŸ3BÏš¶aç$¥ímÙÜ)|UÜ]1ÁOÈ‚áT^ºz‘Ó81ô^âùàLrøVcvØN»wp<ø»ñ‚‘H‹]”Ýc‹¾Ä´ÜÚ—‚32¨Ž©ê ïñ¢ƒ­åÛCÞƒýh q¸Ý´Ÿpy°c\H/o÷ªt†qÁ«9]#oIíGi‰"(»{S<—^…SyÅT4¸àõËÐ6oDbk)V {, |ªÜ(a+=ë+ü,©&„IƒŒ.°'ƒƒôÈ̾‚û€Ù\Ä¢²0ÜOò=Êd|§á²Wι”qØ]¼!UXêwÇG:R£4«{P¬¿‡ý1˜U­¬@m¸º<ÒÌÝùôáâèù¢ò劑“NÊfBÌ܌\;ÔÀ/†o†(™‚Õy$ã^M'ád"Oa¼ž®ãŸÒuÀÐàØYmBZ/Ö*hNZƒHË`µi[‚¨QIË9,% ¨½8æ›u!DO¯9x<Ž"èi™É^ìÖj]¨À,I.W`Uš—hPáAާísP…‹Y¶.ÿ.cÆ÷èÌ©bŸvö³H7ÎÜZ;Ç%´Ž$àãšØ°=ÍuæcPã ˆýÊ2 €uÀ½\(oó—dz¯·#jèpàè…¡ì ŸU‡°/ˆmþÞ*w(û>LѨZî}:Ež̨÷ÚÑ)Á}à^0§qÌ=1ÊQÁK+4µ—Äw\À|² 5`lG”Éá7-ÓÖû`ÆP¦ Ô¹ä9À= ½šZË"3ñ3|Õ ËEã¶p k´€ˆùÛáW žp^Ü’6¦Áwq çWloã@pX¶i»–Ðþ…¼YW5Í‚­‚NY„îRÃyŠ—"*±GŽB8ðò¢@Zi]57a¢qrÉŽ“àÖEúD†ë en—“®rŠÒW·”Oß®óly“qï×Z Û‹Ð×xEÙÿ*#û»¸‚g¶ÕWøv³%îÚö” ò@1z}ÄŸÀzýpæ±zžÿül¢ˆ XïÙÀ÷»Ê~jQàëJ¿D– ÞÅî|S€øt‡^ ªT)ò¿-¤zV+‚ ˜óáÊÆ%*» ƒ6|WŸcŽ EÆåïYG* qÛ5ׄ Íxãl1ñÂ:ì4|›gjZôù•…âîÐó+I Ξã‡Aáø6>¾ hª=¾ˆòòIlz­¯¿Ñ']¿ è»‰_ë¾á²V%6I€¿C°(¸C,GNŠ!…w`’÷FkÍ(0GJöØœ35_Ù4ÜòJ©VX¢Èé9ràX¤¤õ+GmF›®—7I‚®½"tÞ”•OÖZ  ¸$¯˜:þ1ñÄI3߬5Û#ÝÔãEåª)¢ühѧ ]ÝDBv»ë@!9Áã½HnÅ‚êE3 fŒFBN÷ð‰>¯`£0_1Ê!Šˆ[o{Œ²,‰È(µkF!ç­µ?í•sœÊç+'ó®mè%n²õ$}_­3ØRŸà}C ÃI¨å`kfsxÃgãF¦LvÈO»†?. üJ tÑ:OzT‘YËS¼›Áy¨© ÛfîA\šÄŽÉÙC¾ƒ«Xˆò}AãKœô¥OÆÛÙ…°]°Ò’y°@`¥¹œ)¢å4"ž´(Åð¦x‰øH˜S&êx·¥ 1ÄizœÁá€Þ@pê´|M}£¯¿LðÉ« jR@Ûì†FsëXúŽˆª¯*ÒM”»K!èƒÅ8‡ö¦¢OWpáF!М9û |žµZOYX8Œ ¾ÂhB¨¡¯*ê\*#Ãó)>¨B m\ÂÀõ»7á)þà<$h…ÿ·­ñà,PÄG Ò…PþazI/VA!…q9ï&Ñþ×HM Ú1¡9Aª©AžÙX±<óÇÌHª@›‘Y‚5«ù€c”ºn¸ŽˆÝœBq+íÑÄñ¢:€é´b:¸˜G0]PHí—4Àœé0l]ùÞ™1öžmu˜î‰ûz Óå%f^ü2Óå1-ÓuÌçWè§›©à_*­ºK¢õ—£°r2Ø?oLR[^ÀÀ?’ l’½TêãÝóšŽ œ ßБ$Ýætä¢GGê¬ÛFgƒ®z5&¹†šÙŽgØl„Îs÷¤-ò½[ÔèYVcPfôĸ`Š7µ¤ØûjðѪƼq eªÎ·dWjƒ[\~ÐãnR%´jK.rœ¡ut íc%—_¼ÛéŒuu 0®·šÆÌ‰û!g—À¶Þ£§2ü>¤ŒÒnïTW‘‡ ×Ã6`±à+ƒþªr9.B4GöFo¦°Zrا _9—¡slîð›± «5,ˆ-øÒ)æó:Æ|Zhi)j}]@ ú.¦ dLÄœC(Jé70¦ý(ì‚¶ÚË _§Y×Ý»ÌrÑÿ ©†ª¨©ïЦ„†sªU¢ @êåÆT‘¢ñ»Ót¾Ž°usÂgÅï¾'"E2>ÑöÆê6E;ÕrŒ¬eògY×%(Oöàdë-[´Þè-#D £~ÓZüšµ‚Wlöp-ë+¼öÄàVCä3‰Çÿ¬VxÄU`êÁ|¢f¯Q)XÍÕfð°¦5¯ Sl‰’ÙÖW©]Ð é’µÃýar/¤²`!¯‡†0R*ð‡ ’EU†kÃâÛÒ¼+ͳÒížcguÂÜñвÎMün“±›Ê|B¼”Z@ª@Tžœ&hPT˜Á¹Ô N!_è@“W(¡ê t(šŽÍ]©+83GîÅM`²i‘{Ãùᜟüùõó"å0ŸöîXª e‚FSYÛ6ȬgŒ~6zLNIõ¼Nö”}—‡øÞ¥¥LdD¸\ù#$ð¢4w¥yÞ•À۾ؽ}ÊlñpÃ>–f%ò|Rš]Ÿ÷ùªš®%ròøgZrIß´‡ðDßÍtQh^uµ ¥öuwÙij²/äÙ”æ!~Ø\,±Ý€üÉ„à3BÌžBC<Ñå¿wT*f•&¾¾#Bî&<ìX,u!®kóGƸ:¢Ž»íÚGbV‰á¼é’q6ïÑT9ƒò"=• /©SÊé|,Ô7¼zŸ).C ¶Ì1ø< F= ìz¼ëã¾…·ç§ilö®Í„Üb©Knâ`$lÖ‚ÇÈV*’c=ñQOìÌø° ^ct»kìŸQ5‰ÙwÓoé,— Ñ4ú„á.öp>¾=y(k¶áF¡È‚zÇ·EÜ•æm—kx(Ìü¿¡NÕKm;„ü¥pM3œ´žnú5‡Ûx`´¥'‡ñ©•Ä>½Æ‰TÇ«ˆYD’߬N”O:a›xQ1Yób ÏŽ²ÉSÏã¶°Ãb¬hêp…û€†o&Au|ˆ¿¡]ué7q¼M©ÈÌ•#Ü©ò Þx¦dûÂrb"ÊîÛàÅnT$eìAW™%w0ßä@…È߇Ä\íêùòB˜Z5‚ûMó)³Ä6ù9‚j2ú¦ zä-ª£q²æ9TéÚHêÀêYŽ!EîÆÚ;’hØVùÚ•/|6Ü&ëgw áSYvÖv)–nT¬}Æ\€JïÊDHy,׉LÉbÆ:Òë¬2²ÚÑvý²’ª¦Ú‹ËŽd°åJ_Eg·ô¶jiJeá”Ý¢8òäô)ÞBý=ý<‹ö:§è‡¿ÈKƼùÄû1evNîMr7…¶´ºó@e•Ù¯Ö ämH#ý²ÄÝÚfŠ …ΘîqûŽƒo±`<À%¯gǾMI κehnä‹«ªñ´$n_øek8W› ÿ¥\~|E`ê»®£ÔÇm‹‘É*þC·Ã-]x'ïe ÿ”¸þ ÎÚ®ûõ]<öã%oº“]õWþ{ £$WÖhÜTÜñ ‹;6Ó·Y€ÄÍÿƒÆ¢qׇu½˜é®H+ñ@‰üωøHﻈ‹úÈeß7~H.ɼìÞ! ^½ßKáÿ'ÜñlçAycÎÿ!o¡( «4!# è¿dïH”Tî‘+C¬xWš$˜|]šoJó®4I8ú¢Û÷»Ò$aîÓÒL\9µcéQ¤Zí$ÕuUTÑLDÛÜŸêˆ`޽«ÑøYƒ@œ57w"ì$61;E›t:€Ö=u~÷¡Ú¾ß•fßüŒÝÍç\OeIþuùJb¥·Ýa 1|’ê§FÞvScºtTWïÙĶ»Ú]w‰“þ†Ér¬ÛTýhp¦ 5Eå‘è)•zÔÇ%)aúƇìúu÷XÛî•Ô±8Ä|]v/go+¥Üãöþ€Ê~@Ÿ^–æPe7—=qŹùY÷^ÿ³ËûUsIŽK’ÿ"qúßQ&ï ç|šïÙ÷6ûCa…ÇXšgÙ ä“ÿß‚Ã/ºg$“ti÷Ãn2ðúÕljd‡¢{uú^¾¾Ü7¬¯ÐþÚ×FDé÷«AnºÔ½ïné¦K¦û¥c¶Ad‰“î ¥ï§¥I*-æ:¬º BÞ>ßô™åªK¦Ënß>x#úêù“Úƒ©Ü¬áRá;×U²$­kW~Í#³… v§òÝjk«î ·:<Ñk+ì¤ÁvªqŸ­3UÔéPTN+qœb†éCêÑ…‹_xö“u®eìlIÛ2É‘Ñ7‹ñù‰•AŨ®}§¦3 #¦ ÝnúÜÖ>w÷ñèßò±ýRÚ…Ÿòé”Ò†¥‹–sÔ±ÖÉŒ–¾5jÓÕñGð¦n“e6d±wôÁi!o—¦SZ&þ¼qøÈ˜h3“éGmÞÓ_ŠœÆ§÷•ÓIšG¤ø¼MRo¹¨³;)ñÈó³@ϪŸZ?Væ¶ó¨ºÎ!;I^^¾H5R8<¿è ¾•/?TÞ?%Ä–“«ñG+~È_¨]üͱ,»u"ü&ÄŸŽþ¬¸·§endstream endobj 665 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 538 >> stream xœcd`ab`ddäòHÍ)K-ÉLNñT~H3þaú!ËÜ]òcêÏHÖnæn–M?ú„¾{~·çÿn)ÀÀÌÈè–ìœ_PY”™žQ¢ ®©­­ƒ1204QHª„É(¸¤g¦ç)¨e©9ù¹©y%~™¹I¥Å Á‰yÅ > A©é¥9‰E(‚ ,†F¦ ‚ B  b ¬@'3°0D2T1Üe´ø¾ŠïÇ’+?nÞdÜöôû†§Ìß—ÿŒõìöÏK‹Šõ-Ñéþ-Îñ»åöo¡ï:ßµî~þ^û]®ôyÌi¹´½Ë=º9lY^íÒùü;6VWS/æí÷°ïa»^½’Ú=ŸñûôÇÌß§ÿèýÓûøgd {ÎoÆòšß2U>ì ~l½ÁøÃò)ó¾G¢8Ù¦]½áѾ÷%ÞÜw¥ûQ÷±âC‰›7DÌuï6ìöÈIñ+JmˆïtæxÌÖ·{âŠé‹mÛ¹ô@7ÇíãAöÁYÑ>éòúá¿5Ì<šHþÈayìæ÷G7¿ë?büa ´¥è³?LlaÄXï°mÙ³vÎánŽWǼ”T|µíb6Ý.“7f›85AáæÐË9·»9¾+¿ÿü]뻂Þëß2‘Éu¹IòË¿G±~ßÍÆW²èÇ‚Y߃¦‡,b»Çõ‚{kÿ¤É“úúú'LæáÙÒ?y"1iÂ^åÙíendstream endobj 666 0 obj << /Filter /FlateDecode /Length 6175 >> stream xœÍ\[“·u~_ëämJU)ÏÆœî ¤¢Thɶ¬˱´,'¡ô0{áîÚäµI”*ñ_Ϲ ôÎ.E¥R| ¶ËÁ¹~ç ¿]¨µ^(ü—ÿ?y}ðÑ—~Xœß¨ÅùÁ·š~]äÿN^/~{=´vðhTÒ‹£—ü®^èèÖ)êÅà‡u²~qôúàÅòÙ¡Z[¥•òËÍá7GŸh¿ÖΘÅJ­]Tjˆ‹£Óƒåßþz€=}ôi!z±<;„¾6EëÃò g S2ÜÔʆˆ=¬µk§—_ÁC§ƒñi¹Á:…ä–¯q“RŒa¹½Â¥ u\>Á÷ÌzHÃòSxªbò:êå%vüµ¼ÆÎÚZí–ãÎQ9˜:ø”†Á,OͰ†ÑÒòâÐ˜ÜØå]Y…œz“ûÂ:/ÄgÐ;h«SâéT¼2»ŽD¿üúeÙð Nå“0PÙ0Ê©a˯òjµ]~ÆtOÞö]º7ßÒ ÊD‹T†¢jEy8âG_ªâc×ððŽl<ýÑ—±ê³rN/VÖ¯c<Ù ˜+¥à\ZêÒüæpåa8XÓRÑÓA©´\—¦/MÕmšC^£†‰¿Z-޾88ú§Ë-ÓlÊä¯Ê(›Ò¼.Í×¥ùi·ïmiž•æÍ8[XþKyº*OEß7¥¹-͓Ҽ(ͯ—Ôö1âSó®4¯Kó»Òüú°´_”æ÷¥yQš—¥yÒí W±)ÍWݧbA¯»‹Ï{zRšº4¿)Í»M] Œ eU\‡82ù7Èã«ñÙJÛµwÉ0c ÞzYxKfŸ¡ú\”ÉÑöøå8uj>)ÍKó aŽÇ}Fùô?KóÃ"¶ZÁ¯Ø„Q: ‚\Îç¥y'©3õ5ûÔE’ÛÜ3… ßU;mSu9HI’L4Ôù}ižuéûó§xVš?ôÆ×2ù'ú´»—=EÔf(Sø<=}ÊéâzPšòEÖ›ôûuyË”§bXÝm~HîÆqY¨cÜaÊaS>ërÌå>¦ÔÝfŸ)ÿTš“2ýp¦4ûòç3¥ý¿bʽ=-Í7?gŠ{˜òY)7å÷ËG0e53¥wàí ¥ékJ»?¿êªþ7àO+ù³ç¢õ—CtÃÁ¹Ì¬J(v¢í¢ô…³ËªøÂ$س›ˆùÅËÍÝZ@Äô†ÞÃ:‚/ëv '–²Ø*öÂÁé´½e¦u°àׂc*_Ú`¤à”~ºo‰fí‚‹Xb‚¨šMï_¢‰ºY¢ ÀÁQ¯Ðy¸Ä‘Ýwe6è¶ù„!zòØÙ&‡²¯_=…÷À$+ã,€!Þbàìè–WýFÆj§´ ½oxd±S>øÖ¹…§Â.es_ cä”!®ªy›2z­pî@>hØ´RÀ[¢…,‘eQSÐÑTs\gÂA€ƒ~šà‹Â]UÑÞ´Õ[ŠŒ@Âü›ÂRIPˆâÜ€ôª–'c?|QG8 :¦#2‡šñ$™?9žµu|V(΢B瘕ÐNOòÔDu+gÃZ{×¾'zÀ¾4¨8ä”`³¿‡(3B0ôß¾Ä6îÀå‘Os|J¼xÆœ ä_B¤oP×ËùÍ¡ˆô'Îe.Ž1™ h¸sNi_Q‰)š4ïFÄô¤h z·%Êâs,†¸›(*˜UôEéÀ©A>–?«0-b’CˆX]ô½á¾˜äDài”3NPÎ×ÃIÞ ƒ°O!—'8¨;ÑáUa´þ¦„|må‘\²ú6& ¢Bë@ý½wß›®§¼çmyï¤X8a#oKó¬4ÏKs+/ͯºOŸuMÛjÜ É‰÷ç¬C*k¯ òu9‰ ÓÔÐP3`OiŸ1ŒrÄ é5n Z`)(ähAñ8„FÆwú°BAÞtpÓâ&¼,æ\DQWûP‹¹×¦¦@-D¸yYšÛîk2æ}[šOÊÌðÄ]õIñòâp×í 0‹miž——¦ð…{ùEi~Uš¿+Mˆ„§!~b€nT·|D¿AÛ¡½ æÏºt4¿ÞKÇÓÒ|ÝâU;GKÝ«.mI%róC—do»DÀaö{G¨üÿÞŽŽ»³=uZ-u^¼þKs®ïÔÌ`ÖØF.ɬ1JïO¬ã;²}Rd»/b‚ïl%;ì~Á/B oºSHFÓmºK;ÄÁ‹#þ¶ÏˆWûŽûûþ{ýÎB2D¨úÛnS’3à¤àÅ‹îÈý­Š`U™‚/ºt»(<õ$ûƒ¬‰ë (¢ª.ÏõmfXSȸØøè¯:¹µõC=y+ͺ»‘¹¾=R\w)xÛWßuC˜‡»î¸JLÄ:-O_–æ]i^uiü€×Z%±©ZûðB3ÜÍзßí|aÔ÷ÂÉç]Ý"fª£?®P3Ÿ:?ïZYñT KïWªE>á¤;ØUwÜþÄ‚Ÿ>þ…Æ€÷Ú‰mÜÂ#òû•2i 5a§àð#CE_B§5&7xb¦ ƒ÷¡rP$&Âc æ‚…ÕZ8ß²ˆç2Óúüwšì6üÇ™:ÄÂp3Xç:Q;¦HOêÜg[§6½]GF-õÉ0Œ½Mï )€Ì­ô:Ø0dî–ßÑnp½“ÖÞ„äÕ;›¦¼Ó¡¦{,L!¢½)® †CŒ"÷Üî÷¦HF™A ^pm ‹OÓ i-Ô-Å,)`iWQ&=p¼3ûÛ(׃ð”|¿ŸÓ®b¹f0"gZ$ãwG>àò¿¸ž/gh²Ø¹šÁ9Œ¢ý¿Ö3,µE‹•‡}ôx~Àp^Œ÷‚uC3ò Tôñ[Œæ¼ @}=ʤ†SÞ‰øH¶AƒP@ „†~ŽëÙ#cWÈ œVBg y:ûÍ·‘g6à*àߣ‚Ó ¾BḊA˜Ñ­°f,ìÒeˆpD’&åêÅkàv9»„R¸K0Ö4ø$ϸ3ŸGhñóòÒ Žò–ûF,6Ãgæ JŒ[>¿ÓÔŒ= tÎo+½¢+ÅûD ST|Q n¾†‘ò18mXeYÚÐÑ'ï´,Ùrç”–íšt2.¸ E@¡KÄùÀ˜/››6sÃŽdj† X,€…XqQ¢–ÂtŠ(—Bæ…Þ©–ÑB–ãĵ»S¥&ÞVÝQ ü÷ÂÔðÖì`| _RçPÛ°F±ªh*ïñi¨!Þ-Ëáà‚­÷* /öñR!@ý*«Mªl×éPs[ªv“1sÀv~ò÷/ õ–ró¹÷Ç(ë‘êŠ n@k¥{PÉ‘6o s‰}m õbx~s\´º°=ÌŠþ î»ER+4†oyL»¸½ÎÔÅÄ6Ñi5²‡(“’1.YU=²lY ›zÍäüCº™ç¢s‚™ûˆïxò 6ߥ[Pyõº’i0RмŸ0½gÁ‹ÉŽíå´«©D­ŒuÓ“ö`ÈÛ#úÈ‚ÊZÝÃuµ©rtšQx!ꔄ?/'˜®“j±œPM˜qãvXK¨·ZÓ&#ÃR™ ]yØ ¬öÖ~ðY?<Å×µ'¯¥ŸŽ$#‹=°xï˜(ê“ Ù™Aö;äC£X' ãXi†~ KjƒwItŒÓON’ƪ=(î}¤l“Õ‘ª¥—Ëè+·S¶9+ø'ë§²†—ÅF á¥ÝS͉„&8ï²’#¼‘ kð=„bfŠNŠË8§Y¿ã%ŠØžÖ¤ucÅë(.ïO‚[®ßq^×òRQƈ•ÂhܪLù“èÍ#M©õ:¦:+AéŽ(– “žœæÎNa’Sˆš,¨ßr‡4¢pV#3V–èîPZTá{ xhÿ!¥rUÕ/’ª¶$ߊ8æ3 Ccæ¡õ´ AÀ÷T ` ¡àâ[ÞTRY.-sؼ\¹âŽ’Q ¡«p€Á™f$' 'õ0Å·[! àc3]‘ѵ6ê1hfm,àrYÍ‘ýzPÑNÌFaQEÉ n›)œœ=½¼“ÚÓ›wÎJie)½§ùêHQ$Ù®†„Ǿµ Õ¶ÇD0`}+ƒ`È‹Œ‚mÂÚðfã²ÍˆV1ô¼i…¢–À‰!C†S¬M{ÍJ|ô‹qeFò匸näÝ)៾åA†¥E‘âLàq—Ioy´˜t'Ž¡=Ýæ‹++cG©(q¾o¦LãýR0ãó`$`3(#Á»°LO©ö®Y’Ro2<•}©DùÍ$cB¡6ø®tñV#fÝ0¬GmK“%æ ?R¼òšø!‘'Û"Ã÷¦»DÏj›¼H)ƒµ ¼;y*ó‚pÍ»S4ûÜqwpºìXß—ä½hog^ÜoP=¢`ðœÇà jV³>ýcqÂ?áÍ7J¨]Âù\ªÑd×MžáU¦ŒŠ÷˜(ì:fêÝÇ£³}ñ‰Úøû‚ÓaGòç,Ò‹1ˆ*HoKºâ;=ùN Ìwxy;ðÀèH!–CÀ3;ä.òýפ‚*£Ð=œÙ™Î˜ËÏÔ›„} ¨IÞ5g|o™*ù~ú±½7$SÙ„¾+µ{k¡AÙh;¥ŒUÂÆ^ÎÖ5À¶çsÆÙÍæÓ:¸ R?F°>9 keQXZV¦~½,°a÷š¹,9£Ðý^7¾EîNOºÚ€L8Ö ïiÓM—ƒz8бa'OÞ¬a@O‡bû"tšáƒ‰MgrëaHS0¥—ÈõigÃ?/cl}\ƒœ.,ª¯9Åû_ÄHE!f‹%`”óQuxNRêyŒ’Pà!¶wÜãèÅ›Æà̤zåL&ƒäy`R?†~ÏM2ÜdB6tÄ@ ŸÓw𦝠sÙ}¬Aö©¾škœ•©aá¶qȦøcp›f2Ô¼AdÉ?ÝY¢q 9Kð³ëö•ÆÔ¹?Cv(ãT øc³–Êëº>éYžxÔ×Ó÷ v˜} ¨²Ì;ùйSANènLôïT¸R‘—(Iºêç4‡ °Ð`&lä>íž;Hmßmº¿S§6œ%ôA¼úmqžîúÔå ºÈäcíã¨|T ÄTFîQÄPI\åùTPËH. µWYIÌDñÄFÚoŽFàÄýÃ|܉ݦ¸[5‚[G÷ßÛ™F;&á€^FÃý˜u+ЇðAßZ'íÅWDfS…TÙ¿ ¡ñŠò3~y΂)¿Žƒ)?kìÚ}Z×þéÎÕ”Õ8 ßþv‹U¹èž²ÉýT·öÔ­Š[Ù(Í/JStèß½Õ¬3Ÿe¸iWÙÞ‘õ¥ý*NQÐüCi¾ßV±´ÓÒ|Yš?¿D½_Œ-žþsiúÒåìòžÌÿ”æJÎÁ ŸM6±âoJýôNåÑ/JST®‹‚xqYì¦4Å%4q;[Tv#Ÿf䎗#,¬ }c¬Å ;wkbOeºø¾‚(rÞýÔÆÞw9D²±¸$„íßJóiiþ±4?)MqA«?Øœä¾Ól3Ÿ©¿ó³÷#C⪻+ÍXš¾»|×m†}WèÃ>²ˆÙÄû~y îï3i±ùB0X·©Vƒ|N¶^` ‰uͨò➪¶èÞá _¨«ÞIûUF\ƒßc+÷°ú4w vpÒC?å±aQË—bu졼9šL+ñ5öÊø L“[Á>yU¡/÷@¼eh›ãnB¥ªÔ˜)Iƒ9¢®ñÆÎá=¿àb *ê¢Î˜B®mí¸•:í8‚AÛüZý!´ÊÓ>UM9ª‹ ˜>F\¼ ]*YjÐn"çn–S!=C’ó¶ë¢´üÁµ¶Vä=Z‡º0ækD¼Ö:P¬b°Õx5=Ÿ#œé0MåUÒÇé0%>°cvÜ ¥(m¸x»IyX¬sU÷]§ êáqÅ2;ÉT®*jkæ±|z¤*‹K3ÑOSêM ¥œŽ°ó§ráÉŠXò&Ï·sOŸÉïRðþiÚsù »k¾Trª³¥Øuµ‘)%*e\„—“Ï€Fb÷C„¾‘(âr‰|wx6DßÇ5¦Ã sðrQIsùËæ~UãÂÆ±^Û©ßw0 ‹wrL*Cò5ð£(}PE²3%õb÷VHvá*’ Ü0WÞ_!%ã"$°åǘ5Ý©Z¡'të/6ãhú¾löÀ„ÄåòPh#jêfò^7yhçÂ9!<\êGqâ9SNµË«”ó0ä\¹À¸ÅýÑåþjGrg܆ËM†u*wžšA2i‚À¡*NÞQéSâ 'n/ú‚Yç~PÈ4ùûƒt²¿¬l5•IPÛ›^NÁø9‰_¬á šÈÌM»FU†8§ÿt/J²á­QIôèpØ¡B_–©EýšøÒ„H¯ŸòÔ\¼Kv¤)GÞ.¼%®:ö#cRŠ{á"îí‡ÎýqŵÈÇÝ%íæ]°´¯ÔGʯÿHŸéŒ‰×ß~™r¯˜Ò¹µ+Éû_®–rê‹ûˆÚí«q©–ÒªÁ>¦–2­õ»Rö³°ÆÛ©!‹TîÜ&?…M¢/åìV«Œ ˆº’ÞÑ…]Sã­ÏN;²~Êc#ÑÚâàSéÎTfJÝrÃïAØ”?®Ä%1óµSá=_U„Éì±4mSQŸpQ=E® •×n r_ןÑrø^*41‘ûîÔ¢blƒo}àÈÕ$3•*èÏ' †ÕK*Éø¨WN +gÙ‚³:„R4SX6OëcØÔ*ûªe„GrZHz<ÝÒyˇ4ïq/›:<¦ë¿;ØÝ›ŸyG37?›‹rô ê8ÜÍJ¬Çà—ŠNGÂæz6´ö–|GŠû=Üo#.Ë·úÕK¿ª‚ï÷\Ey=j*Ì*KšÃM.õÀŽ^RìÇòw§f­¾Õ4Ýebˆ«®òFÓŠúªGO㌻°€lËõ×Þ{3‡\Ôwö½1t”;E¨U©ìädÚVïŒûËC·eª¸¯0ë׺ÀÓ 3÷©Âïy=fŠwC\‘úšûfZ™–LÐb­[p0^ç’6§{äm싎íƒ>®H½Ç”_ˆð)GCðÙ«âäÊçwФG¿Å ¦K·ã^vS±cEuíÃ4%1àÄ(¬ô%1\CÚ¯ÚPü±÷¯»g‹†QÒaꚨPÞKM-s,%;ÅHÚ:?’žœp™>ý´ðÖÃÒ÷m±U¹x†¢µb+Ö\nœÌ»yŸ Í$PòÿáNèŽw»“^±~€÷ ?z¬&7:¥=W’Ħa)ßtˆëð¸öþè¯â¤ûU|¢žXb}°^6ÒÏj@(*@úóÁÿ;È9¡endstream endobj 667 0 obj << /Type /XRef /Length 346 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 668 /ID [] >> stream xœíÕQ+Cað÷œ¡˜ØØ çlsœ¥\¸Ñ®IŠPsAi»• •’ò\œVK)¥ÔÂJî–›]LÈ+áNâ ðþÿß@½—Ï.~=½=Ï9ïžþm¶ÂǶ” ÓeãÀEþªHÃ×uh éz/HºD“éò|«‡¸äJ4™«©äªv ¹Mæj¾ˆ\]½J®D“¹Z]C®Î:$Wâÿ’³ý\Öµ[Fr’û0=[Ç¡Í_ªð Èh­ø)ë쟥1ؼÛ|Npj¦ž`æ³¹cÔ.{Úy½åÔìZæl6mÐ ØÉþÁož\²'*žé̱Îò&‹°û &|>û]þ§ÏÑ?ZaO†– Þ…6°Éú¶4¸8½'áP…oä¹3Âöy«:ýäT•ßýz÷0x‡Ù(·šäS;Üó§&i ö~ÀÞ9° cõâSHs endstream endobj startxref 435343 %%EOF surveillance/inst/doc/surveillance.pdf0000644000175100001440000061366013231650474017716 0ustar hornikusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 5161 /Filter /FlateDecode /N 93 /First 776 >> stream xœÅ\[sÛ8²~ß_·ÉÔTHwnmMUîql'Ž;“ÝʃlÓ67²ä‘¨\ö‡Ÿçó5@ŠWÉtâÉ”LóÆ×îF“‚q&™±L1iS¦™)3ÌqÇ,sš3ÇReYÊ’Ä9–p–HiqÂà¢`‰ÅíD²Ä¥š%Š ®n2‘¤¸h˜Š 1¡R<ì˜0õ¤LX‡Bœ‰T&(Œ½L&%ljdRVLqÔ+4SÚá!Ã4—hÄ2­AŒpLÛ”*a†Ú•œ…JQ¥±ø'3©LQ)³<ŹbV¤•3«¹fÒ0ëu9N€4§©|ÊœCe ýwÊ1•0—Z#Xš€H%YªqM¦ÎÖPG•ÁIQ’˜ÄS<ŠÞ&Ò$L-—èøF½Ðà¢xJƒCàneÂÐðP8tK£fPŒ~¢f™øã@£5+<Ç4jVšúŒš•KÑiŽÔ¬ †Ã fíðˆA͆;à j6Õ‚þÄ(Œ.PƒúÁùĸ·P³I1ª5[Ž25[>Y?ôP‹š- øƒÔlQ³µÀ†EÍÖ‹šÇ€¡#‰E XKÀa¤áÔ3‡šá# ¾9*`IRŽ~2I ¤0´|í5§ÔwBgj À$I-f9¤4d8p ÇIš‚K`µàœÊ`ѯüë_,ÞÏŠÉù¤˜`l!‡,~³*¦ù,[B üùÁä'*œ¼ûv“±ø ÊOç—ì÷ß}VÅÕ|ÁìçgW“lÊ^þßÕ4c“Ù9{4;_dv˜g§Ólá/•…&ì`²šþŠºP Èç³§“"cžþSpbš‰I—¿ñäΩÊQ+{“wÙìK^\±+P³Xdìfrö d¢ØnöíË|q¾dp²??¿­ÚƒÅü|uÚ¼8Øc/®æËby¶Èo –F‰C£Õé³³‚=8¬Za¿,W‹ÏY>NfgUò./Ðá/²¢Èg—lYLEvhœ¯ŠSþ‰gêAO­øöd¾š¤6âÝÿ‡4 q9 ÐA;®9ÿ2ö*ŒG± ûpž¦áÔ„*’òa 4ìyyžúXgâj4g³yAÔ¨ªpÙ¯*)i’¾¤——µ'eoÈDØËr_Ö—”õ%¦¢æÉ|Vd34 xÛÏÎóÉãùWCµêTGÐN%J|$Êx Bça¶œ¯gè uäÙ×âÅQAãŸ$euÏçÄpÁKd/ægGYºãƒ§ÏÁŒìkJÿ½É—ö`Ô‘/– }÷&8†ôgeɧْê,Åéÿ&9AzDG¤Ùg«é”¨M ¦¶’3ß•RêJHíÌ ÐnÖ#T« ÏØP‘ ÃaC—]è«+ÇBTûrL„ìó>å÷Ê{©š¼—ú;xÿ  t$žZBù¸fx‰;Ïñ”G³ˆtÒ3¾bø!I2m\µ‰Ù@F ZU¥ "æHbûèžðtìå³OMžñ½Qp—nˆ•ɽ²ÒµX龇•kªKa-qPŠf¥UJ-R*°+¥<襸Ï^ʦ¬ªïÕû†K"mDÓ·AOhÖÅ©€‰¾B˽ÓdLdmƒ&ç"X}?‰(˜‘h:DÑe ©"JX"ÆýÍDYYÌQ’óÈØŸ5|02!ºGWLKØä#Å0±J“F˜Ûÿš,¤DMS*"Ä?‡&Xç¬úI’‹fÿš$‰±„÷·’ä4 Ã5EŠ[LéönícêŸ/®'SXÛû $~·ËŠÅ*«Š×Ú°zd²Ì¼BŒOŽíœüödÿñ 9~6;›Ÿ“Ñ¿Ïgf˼¾à •'W“9M^¢¯Þ¶…]Þ€ñeÈ4¨i'2’ŠšÐðûü¼¸¢™Cú9 þ9Î72ê_ÊÛçÛÃL^²†Ùè÷–wªöhŸ’3Gw½é_ŽùQ ³6]7!òa¹?ú¸žõ–gÞ¶‚.‚óró2Ë/¯ªStžf–ñ£øi¼OâÓø,>›Oç³ø<Îâ<žÆ×ñ,žÇ‹xñ*þ‰¿ýê‘ãk}g LšN.—ä{{v=®¦A3…ÕC} 7ŸçÓL’+WOt¯'×Yolwàeågf—°qºŸ/—X?ð§qå¨È®O0kóæH59þ£ì)±¨‡¤½§{G'¯ÑÚa Hied¬áƒéÁGõàcGÂGÃP"ñ¢ÍI9¼>°t%\_ÚÖ稉öTnìFå…·š­ `£½…OEªÙ òå1£Â„6ǰ¾è…54¦*k„†£mÂ3tîÍm /zçk ;üàk<·;ã‰AaíQí%\­êºï‹@,±Ì³¯¼O×%Ey0nÄê5N{Ú|ݼÙbW2ˆÄ†d„Ó†d<ŽŸ@:žÅÏãñËx'~IÙ‹÷ã×ñ›ø >Œâwñq|¿‡üLІͯ¯'¤ó<[dË| ‰òMÄÙì|²¼Š³?W“i|_Ð_û¿ÏY|k°ãËø*†—•Í ˆÿ?•Â8Ëg$rŽÿ7ñ ™•Óì¢G _ýM¶ÈççñŸñŸ«9|ñÓ©/P„2þ,’l/³ë<½Ì>£Áeþ5^N‰È".®Y_æ¥ü¿Åÿ‹ÿ—-æ-E ×Š@µôÀCÅÃÝ„ÃK&îvTAðª -œc5N6h‚žðØ=>:ÙAýïÞžF¤êëÓÓb¬º)ßB¯·öÙ]·ª¶~½›KñF»]Zø`™muß__hëOb†GŸ«ÑG‰æ”‡~ƒàî@X+Q…. úËOÕÓÅäìSVx)ƒPtex-º•ÌzIí‰éi)‡ß)}"]Oú#~á®–Ö³¯#|º+|áèJßäkƒ÷mY¤+¥,Òá-³2œÈž`>}òfçä|;R.íÀüìºr ãiœ\Z/Ówý)M¦-˜õ¾¾*™pÊÇ/x¸¯ÃÜ-á™ _ùë˜kÀ|Ú6ÜÒ&Ê_”F!”Hll_ÚÆšÚf¬ÁO¤e‚4í‚ÄtAÒ¨±š‹ÛQaú¨Ø9~þ|÷Ä7&š¶ïÚjª¯£%ÿn[MØÊ„Wp«7®õ‘`eeZ"ó{Z%)¯ÑÏÁ[ çÆS­"”l<9€.´De»Ú 즳ŠJÚ»¤,Q>„9ÚŒßÓ˜…¦ÓBÏ(‚§Ù4ŠüiË] ch­W×ÎCÏæ¹ð°¬<‰ k]W¬uÛ·¾V«ñª†àêÈ4Mz:ÍváÚFÐX¸RFÕxCºÑ›ÐhôÅéjЊhÛ‚¨˜ ÅL™TÚŸ`Fò}Žx¢y9nã t«®‚ñÝüxÛî<£¥0ÖXÉ꺶:’5 ÖÒ‡ý—/Á¼££ÑÖ’}I”Itc%£6M¥Ø‚çaDk«ÔhZ³l£r˜ L‹‚ó.„:\‰¡t“ÆÛˆQ.SµPSE»7¢ÌQ!‡P#8·jÖÇãQ#¸Ø†©!Ô¼Ýû°óò€D.mÂ?£³ûvõhí9þëD–ºNvÎh ešÛ–{§ý ]ÍkI+ô©j†t´m>Õÿ…ö”6¾¤ÒpTZ·|Ý:í]Y¦ºGöƒÀ¦áÖ¦áZ·J°pÔn£¯·M[o›®Þ~ÍMîkÐÙ·úª¥©{ÙPâ¥q{SÙ°ÁÖ†j"Påf‹*7˜'¶#‡½0Q Wc599oß$Ú}ñvg÷•7…Ó‘ŠOé>œûæèèpÑ€#¶n£J©cÈQì·éÚê°þ6:lmpúèI°dUe7”XóVmXº‚U"Z¦où>†îk¡|ShõÂíáþ.ÇǺ[&ÓŠE‡pTÊåøõ•”•«Ôñ¡ôYQå±dBWÇ«Ž-eB…cå³ ÊcŸ U+V-CžÕ"ô!LTi›­ß÷šŠ´6rp~tª"0_$9…©iõ`äBs-Œ÷ß>ÚùmoSÛÕÑ·ëÓùt™ð‡‡Ùåj ¡jL–½.ï ‡ê#”¸Ñ—ÉÆXrmØkDï6kÝ1³’ãžøëäwª^lÅšÖ»QO'gŸB@ãt²ð–lr)£—”ㄹÇÇW¦ÙrŽ®óÙj_¯¦E~3ýVjjE¡ ò룯f>GdD4²ŒEZˆY/)xÏѽ uÛf á®ï&ÅÐÃù³ƒÝ×ïÊCõÃ0¯hݶT¡tçƒ+] œÛ-87P1ÚPŒÃù°z )NB²á{úp®nØEÚ‡ŒN˜MëÅèMoû'Jéj.XÝ-¥|¶„SµWn¼­dii-©WZ(@»þ✂U´¼¬(Á3 ×)åP%ngI{‘¿LKÁ¾KP:õë"ž®„l9៾ë2ÃN¼[úÒÄâÉôæŠ<êÓ¬˜4ÝêlŠsò©/'t…¦“ëÓó ¦Éëg+r²¯³ËIm Ý\å´%ñ öËá‰ÚD´ç&É@–¡ŒØðÌ#z[A&èD*)á,²£3D×Zä݇ݗh¥åhïÇ’+tßü;ÏmPÝ=IáöDŠM÷6ݺ>ßDñ£i#õÿûJ¹¨s¤ª ©÷ýÔ‹^ ŽžOÉ¿Ïó.ÊA7ÿ‚‚uœz¶º>ÍËür6*ÃϽ¤Œ~rT;1c5ƒT.Ïæ‹¬ÎÑØœ¡%в]·‡×¢’^ ¼'dÍ)äa2:Z¹quj{–ÆËãG/ßþû·—ÙôsVäg“‡çÓó¦[©ÞZ¾û˺gÇŽv¯DÏ¥H¿yë–îë*Ý‚¬È[»>Ÿ¼X+Ú¡1Û a4© gPÝÆ@sO”o Ô–.‘[M׫ûþ´Ÿ¨êìÙ¢•$N[rù Ù‘À³^vÓEÇ:éL!7&©©“Ât¹îHÊ€`$éf˙Ҟ¥ðýéHE/|¿–[Í+Š×WQ†t¬+÷âÉÑÎû×uCc'¹¾˜®‰<~i¨/-Û¸v¡î þ~,¸Ù–VÛtecü¸j…×Çk7Ï‹’ÏEÆQHímÒ$}Æ€æ!À«¤xÚŠ¦ÑÔCi¹u~Tã›öÖëš[±ÜG²[§W @Ùù@ QÚr/¯°±(æ·®têzª‘ãñüÕãÝW·×iûÛ^¯0½L¡ô»:æœT¯}Þç·ýªhoϨñ±‚M¡Š¿ å‘tG­PlÛÉî°öÒnáòè Ó¦¼¤Þ°î=ý°Wùœö®>}ÚÚîz‚;ikø`ÕÖ÷ÖÛÉ<¦•ÌC"¹–ºv0p«sN©u˜%¨¶ÎÀôÕù4rHìèy³¿óáí~ w¿TÙ—ž·4¸ž9¸x9ð®j+WÕV®³vˆ¤µþÞS{ -ô8_Egz!Ùí¼9éíÑ/òc+ð€°ªV×mÂTŠ ÷±Lu¬éC å1½šS;ËtU†¬»ªLê?æQKfªúSMð(-3¦Ií¸h@ù!„ P:J9&lžF\õc>ô&-}sÅÊÈÒç=RqtK;ã_n½[ÌdžÙЗV°§ú Áý{lÃE¢¯’ÜW°ç8éßÖ”´Ž("Eoo‚ƒœÞþâèáØì‡¿Ÿ5&ÿ¢ ‘„BaÊ¿¿f)R ‘EOèÅR%ÿ®×“…ŒTbk¢”½HöSˆ~ñ–^™æôâ_…P¬¢ÉȹŠ~?E¸ký”I2Q%Zý$šÐ }¬¢÷7dÒÒ+Ò6Ò>)xÄ5É#)ÿòw¦‡‰’BEŠâ½Q ü´ú'…¢¾Üá&½:©e”Bà…0}ËJÒwœ©å½>bññáκ€ÿVK¸ôàª(nþÇ_¾|‘ÑâSg¨uñ™4ö¯^ oîSÒdˆ¢O9 °Ï¥ÐlÖz…Š9?2éØï•ü$ba›G†ˆÓ*Jé[XSN©Ù&2cG¶â;ði~q‘aN¤IÚÁÖIŒbëŒ)š?êt*ÖJ³¢7™«*JÍiTá=ut–5³þûG”ÂìËuVõ¬|y¿"´úP‹\J4§$÷ÅïÔyJÚðéÌg°ÃBŽ Í’ef 1ƒÅ³MñMNïQ6ŒÈÜ,s²eèÛ+>IÆ»´,ÈüÊå-ý!ÊuZµt?õSrÀÅýÔGKõjú}1üØ*ÝüçÖùW¢²žûËÅ6 õbJǹ/µÞçöè­ßéö¡ýæÛßþkWå{çc¸ôÿE’´òendstream endobj 95 0 obj << /Subtype /XML /Type /Metadata /Length 1681 >> stream GPL Ghostscript 9.18 2018-01-23T16:14:03+01:00 2018-01-23T16:14:03+01:00 LaTeX with hyperref package Getting started with outbreak detectionMichael Höhle and Andrea Riebler and Michaela PaulR package 'surveillance' endstream endobj 96 0 obj << /Type /ObjStm /Length 3332 /Filter /FlateDecode /N 92 /First 849 >> stream xœÅ[Ûr7}߯ÀcR©ƒ;°•J•dY±³–ãPIì8åšI³¦H9òe¿~OcfÈ)“e•Š57\ݧ@+z–±˜”†ÅÈ”vLf3é*™uWÅ|ºjŠfTTáj©Z†VÁã?£ nP̛Ȥ×(,Q.´"%S™Æ“TLIïR£_•cÊxT—–)gP]:¦<õ%=S‘ú’iÑMdÚA©2Ü(”Q’iOíàAOo43 Je˜‘ŽÄ´ÌX‹êÊ1ÒϬ" ¨€á¦Z‘Ù¨ñR:!³–Ìi‰s4n­™‹Š>æ¥GƒÚâ†ÔÕyMúÒžy Á%Úò.µ™ô# ’4f$ #Fá†:Űƒ3tcXð$˜±,ÄHe‹2•ñ,&…£$…Ì&2¨e0¶h¡6i%‹i8Vᆪ[ KS_– è kÉÊx/-Ù;éÕ’µL¤;Gï"Y›¬ë’¹Ñ€LˆÀ„t„…ˆn¤K'm8²b¦©V´OÚ†RЪódcE_ z.½#$¸ˆ2T_¦‘{ÂKÄhe² Ùh"”!¤¨d:OF7ŸlœZñdd@JRëÊÑ m¨ŠÒT_EGHöÆ%é8Ä3!W+’(²µ¤¯Éê\‹Ö‘¾’q µŸ ïUø×O?1q”ÏKö³p­oþ~KãáÓ&rìLnÆcöމ—ùç’Ü/|5œå“’¹úi–d¾ºÿ£(Ç9ûîôfö1/Æãád”³£a9üžýüs»ÇÐïÑKËaœnä⛺Œ·ôy0¾˜ÎŠòòj¾èù`2™–sôMp¡Š–tuY}•銾ŸL'%º›3¥ªwâ$?+†‡ÓϨO¥m´2#yˆT£–ÏT¥ù|z3åsF=?ý\þrZË>ŽPÚA3GB¡¸Aìðm„2*±¾‡q«¹ô ÜÆÈ}ÆË){¡pð€˜ÎØ˜à ºåú¯x†iþq„ ŽSÔÙ¥dÆ3PÓ„’éñÝ.Jƒ)…×ꌆ"÷œyc 7÷r½U‰¶ˆ`@)Ï=j“YîI=@‚z ªé ·ê M‚§Lü9x¾(0*i’I¯¾»,Ëëù¿…˜cÚžcžä³?ËÅ÷iÜlzÙ& ø¡¦dZ7™ƒù)B·k‘™"ÿB½J\1ò@a.Ù¤j2`‘žâ„ö(BLx!-×j¡´änW™†ó¢øÉ£uñdxý,/..›G(‰BÆïÄ8Çâ¹8q*^‹¡‰3‘‹sq^|Ĩ¸—¢ÄX\‰‰˜Šé$31óâ³(Ey9ËsQ~šŠñQ|ú>¡*õü£B˜'ŽÇË9Ø©Rýa§2­·³„Eúz\ŒsÄ J/ãܗ뼇”çåp\Œ&1œ“Qçä"5iSœ–ùÕ_iÚ2{ 2âM­7¯õ5 ´ò„æ V³,0®ªÙxVǾy€ê°tà‰q›{ØÆ5÷p•ÐÜ{ÈØîæÎNªµá=ÖUàšŒ4¦óˆå¯‰BbšÌÖ‹¤ †;§ý)å0_™°DGøóГøz‘燨–"…€9Jï(Ò‚É^þõìøüã9$ؒɲ>“5[2ÖáÛ1™ÉBú5Ü¢3·–ÅVÿ¼ÑÕ•Âzï(´I‡à/DW—¬ÊxÚ‚ÛÀ“5·I²ŒqÕ]I¢æ¹‘èkùŠwñ¾®…QÓX4hÃêªÅ6£}†³]†“n•ដgà¸_Å ðÜKñ*qÝ’é*~kØíZ\ÓÂsœŸ—ÕÝŒZ×ù¬˜ž%Þ++¦_:\GBÔ\g:\‡OÕgInI®°Ye»4mËvYü*Û¨úØýåøà·ßxqr2,/Ÿ~.ó -áeöã ¿¸ƒK8ÓvZ%ëÅë@ì{Ó±^â韓íæÐ@úõ¸¶!ý¶Áò]ÿø™~÷-#3»êtÒ¤ !…“RÊ„\²Ö»P·¹¼˜”ùÅl8>+æ×ãá—%Žß­‡ry_^· ¾(U=µÑr³áY1ŽQh~su5¤¼éhñ¢Ì?Ã9&ËO¡í°ÚEL/ R‡47®ø‡ëùÇW{›ËÐÎtí2 ³Þez^òä÷ãço~«û<ýrõ~:ž‡µ.¶q‘¸â"dÉ­h>¨íh½Ük¤PV#0 }ü…ÛL æã´$ž“¢ü"®ŠÉ ŠW´ÔÕÛ:˜È2Ú^ABÃ> $|Å*[€Žd¶„Á«·¯}õ¦WÉ[€[§üЇ‚–«P[BÁ­¥mûkçlÛjÕãÂj£éx:ÿËgÓŽ».bwò =‡Å\m³ÔÔŠ‘ª‘6êlKóµ­uŽž¼}ûŸ&ÎA¸ÇrRkv× ÌšÍï6ÿòö¶ÐéëËöoZR‘&'ëº%¤ƒÕØ®ëúÓŠ‹·vA·rˆ`)OKÀfé·\ôu)>[¸õºŸ¡ÙÔ× dâ*d:†Ü:þÑ_n[íÑ9µl¢±LÖnñdÒùsóäÒÙsóÒ¹sõ„Á4ggõã~׌Ë3¦FŒ=1¹´E:óÞýŒiéÏþ~úÇ_§5=WfÜ•2)‡¡ï¡½ ,'¶\&Ñ6ûšmר\wb+Äw¹Au×›¿´\Åùí Ú’ݦ¸¿o““Á›Cr+·¥úëkßdwæÇ`ïÃzYkÊ«¶Î6ý™àÛµŒîÛ;QÜíŒ7ßÈn˜µeÖbñÊé±Ë·NnkË·M±-ÃI{_†»§Qê %Ë4O>%Êô9®³GvgŠZ4eÀ^¶)¡ÛΈ¶;²ð­Ófe,X‡»,òÌô ½âÚ¢KÏARnüfœR¬¶;³X$ ˜J3” T]«Qu’špc_ÞŠ¿RÖÑ|Ïçetå)CÉЦEn(ïÉó:x„ÓNõF½”ÉDNÄnB-˜õíðúü>û~“¶Wƒ5ŒoÙýеE[„y‹Sª•iÛ T£)i¡)НjM´Üê-ÏÒ×`qÓúsãùåØ5œvv}–¥,)– ½Ô\Éc*WÑ%+WW¿†Èü^‰Ìub*÷McªMDFylPJE1¹{'¥n>S‚ø2~Îà;ˆ“ȇ2Ûw5qÊçoÄ2 Zãv´õ.'ñ›fî»D:ûvq€žûŒòÄ'Ô“qE Q>ãÑmI†­ÌãªcéÕÀ‡½Þë6à½ù–€ßDâÆñ´™Ù(J¤“Ô¹ãšø¡×¶·ÅÚq¿í„bþ.¡Ø£Ä=›V”vƒ€n°Š3”å mjC3ü½ØïKÊ:I|!T%þm„r4«b¢ê¥YJÕ’ ”_ÅaÅIÙ¢Ú<’L”šä]K(Oiôq7¡î–®µíîÿ¦¦ Ýb5Ùo–önÙV=*ÎÏs¸+ùç?é_ðÄЧáVã[”¼Ksëø³îÉ~:zlû³Îé>£ÝîV†@§rÉh«¹sÆÏB`½4­æ °N6@•²Ì$ØßÈÓ93ƒõš³æt°×C³æ`z}‡ÿ1¿~¦endstream endobj 189 0 obj << /Filter /FlateDecode /Length 6456 >> stream xœÍ\YoG’žgý bŸºf;ïÃÆ«™YÏz=xmû0Þ‡)QIlY¤,k÷ÏOYUY•$eƒ…T¬ÎмâøâÈüéÌì™Áíÿ‹×>ÿΕ³«›GæìêÑO,ýzÖþ»x}ö‡'Ð"å3>$wöäù#þÔžY›>Î&¬OgO^?úÛÎîÏ­uáw_ïÏÍÁÀ)…ÝõÞÃÆ»ÝíÞ">ùÝÛåñ´?÷öjµ»ËwØ&Ô’œÝýˆTÚó‰^ûhÐûŸ'ÿ #ó0 s¨¦Zôë}®gOþòèÉ¿þm÷-¶·ÁÀ§ïL¬5g·{ ¯}MÖ–Ý+xtÖøT¸£\K»‹ý¹ ÚøÝ "‘}.»gØÀ×rÜñC C)ž&dj¥Bkú0Ù¼;¾Ã/M4¹k0ã„Ó÷&%èz¶µÆdSäÛÖuñ1ín¸”¢vÜ»t¨µäÝÏ{—ÎÀ¢>›æQ%±ëiewlϱ¦Ý‘†Y²+ÆÉaȾ_ÃëTmte÷Fô}‹Tâ¡Z5þ¾ÍÀ¾ƒÆFWÐÃ)šôD̡Ԛbn«O(æ"ú+€ËéJp®uÁ˳Š&ÀzÜðˆ‚»Óó6sX0µ6ÈVÞ¹C62gO.¥Ÿã>•LP#¾P£Ç^j´ÅIr'fW€ïo–æØÇùÔɹõ‡ªã¾.~ yC~«š ñ}‚©ÍÐHtœ$ïøm…$z%:i—p“ì4¢@s€-ªN¾EÖ2Õ—Ý$VÅêu`–v ÔRµ]Ö ^îÎ%)MåDüÒè¼!iõ¥ìfy‘¤™El.ºÇëåµXxš—­°ñA‹ ŽÂ+hF•{ W¼–¹kâ ¢Úõ›Nb²õÔÀ´+ÀOJ ÐÛl:¾Æá'«Z£WËT^1ׂ:vÅM\«‡FW'†(!3ØyXÚÓ5ïgB¹ãcNm„™SKùtNõXÂý×’j H(ÏÃþ¤¨J°¼tHdMÿ"7WlÄ­5ydƥ m`jðÈ©@ÑÁL]³/Ù‚fCu€e;¤ñŒ[À vh`¼Wö ä!&«ìÕõ´\U,kìÜzÜJ³w5‚l*.ºIjXF­ÀÍLZjÎÃò!ò2ÏÄ8ð*ƒùAÎð)²}Xë¡ Ò7ѧ<¦“ì^-->싇!XlÐKðÚó?±í¦Ç ìr9`3”COø $>ž)fyyT ¬¢Uœ}º^Pª¢±ðg[}°Çdäp,ÈG~2 õ^ÏvTûyÕԑiªW{£@á3©/#˜ÚI&HïªXl)Ä;±. µgÀ½'B*‹ò×SÄÆ6T¡™nØ6z0&9L¶Q:ªújÏV°‘Ðx ;ø žMUø t pL¶0ا’?%ß´|½0mT:$Œø\ê@×¶9‘Ûr,nzéohL4¹à>ÂI”+F1AH@é—ja‰šeI™¬á%¿F‰uò!H~R,·Bä7(îëD>…Â:{A[Í>K2€ÞÕ@7U§ÐìBNïÛ ¡r¦döm¿ø¥H>I¥¨˜‹x2xpŸí‚׿Q\#óë¼wfÂö†bÒfþ²@#6Ÿ`6Ò]#}X*¨§Þkè†! °9é+HYcသBÒ[.„ð²Å£ä Þ;|zÆ=£’iŠ;ª@•Š;c\núÐVã\ëÔ™o˜`@ÖJNô3DsSƒ÷³Ý9 /y½ ¼~:o؇åå÷ -ÑC›‡ ³w˜[phÁM–öð¶Q+…9L½ÄÝ»YÕ«?ì±Y5 v~2›ê;!x3–¤ï+²Áªϯä”×\O:ìJY t ‰]ç'Ò늆eÙÄwža4ê¶"À­ †½¨$œ(Û:õ1blèÄÙ­z³bJüæ.¢±}Zk-ØõJˆì^’\3ƒy FN¹ˆÈ•e«A‘¡P”Oý’)ëî‚Ì·æiâ¢u ‡¼¼Qp T-zj°Šò£3;ëKm6¼¤Èæ_^ƒyãwÀŸ¤ ð-l‘BÈbÁ¤EÎö¾ ™Eˆ6$Ë5ÞGOS´&JÐH@š¦Ó<ê»Ø!é-Ù[öçLΓæðö$â3ní[Ì6:Êj »'(5fž´€„Á—L£‹Ð|Œ¯ó ®d«0HB⓳Qr€’ÁäB¾RB—{1•bÃÏ-À¦l§)º-E—Vfcáb¦—ÓNFª\Øõé6Jžxz“ª:IÅÉŽ?O|-¢Ê (,Ón“…{ÆoO“û­ðkZðC¢\s¹L—L9ÖO6!Ö»>K L­c1?!•«4¯š_ÃÎLÙ›z½'D®½Ò…?7w䊻1FwC["óð¤Ö$>â↭f¯Lt!#LÌ ªrn¹ÑVÐÀ„¥0äWIJ¼i÷ß´:Ö‡Ø'KDU âÓ¿•91lL,ÒAcLÅ9݇ÏèSȤ©vççn0QTÅp:Þ‡çÕ›6*Ð)ÛEI/YÕÖi²þŽ‚ö»ÌŒOoµŽì’-"á5˼`%iBð4Õ÷Bï¹Yž1ð÷‚I(¼¿IÓ üŠÃ(.'«tÛ[ŽŒd;•G¯1ý+‘Ø¡µ†Í“Pìp$ÐŽ1–Îwy±Œ••7/å«E÷´¨S¬–KäÀ•£ˆ³2¢â‰ŠöþOmä%Žê‹-Ðâ:±›p0ö¥<½[}Ó<—V¨Äg6,’Èà„5´„Pçµh?fÎÝ\t:¯yÌ ’)8 °«îÐ,Æ~+°m+ ¹J €»Ì²Íš O¨ò2‡»|En `‚2ö"uÑfRœ*1RÓ;˜ÅgU °(³Åø±•ÕƒusJµ•†eË¥a™°Öº”ȧƒI}þJiuétùäÈ5zR§Æ&Hïjå$o<{—–@BsÞYÍ‘O¥ÜߥÔéM[¡¾_–¨d{#K?ð7°ôÉŠ÷~¿ßTÔªšk‘&FÝC€×ê2˜8rÿ¦Õ(^jI¡•%nÀVâ´f^w!oÞ+úÙrœ2¢Ÿë-›yÒˆH*×U| ‘YgkÛ]¨Ûz°žP­Âfeýóeân¸C‰B·b¢Àþît $ªÈ ÖX ,ï\TØÑ—¾$iš:_œ{T°õ.ßw.#œç…Ó©FèwŽ$ÆÎ ›ê¬d&!0DZᜥ‡Œ WP盩Zbœ(ÏÃ6]åõézaÊ’«¼,öq»¼i“'KîL4)~CÐT.7q ?JýxÛÌ„u£(ªÈÉð«à™;Í8Þim&^73Á…‹ªJIÂñw·ß4Ãt‡Ÿìà]šˆÊöÆzyÂ;Ó±u¬CgcÍlÙ«Æj?®>éùu̦«ê¤E¾k< t\Þ’6‡`MN©Së´“{(†¬•`aÊëÙp¡ )AW2>ˆu † Ô¿Ú –ª¤ÖÛ0b!l#Ƴ· ͺÓÄ?Œ0Áûí”*‹yÈSB-T¬-Ÿï`ßZHý"O䮋HgžÝN# 퉱Sœ-z¾b^¢Å ô¸]ó×4mcrµ&—‚qlóFu }ô‰3âÆAŸÓªt–cƒÌ̈4²äÚ ©ŽBVØÂ× óO[¯XÚµªñÖi.dßvÔjgÃ+¨î!zO!ÄAàUß¿Y¢*¾uÅIBÊÌ¥=|€„ÛßÉimö[e&eåÜIÁQþh¢Ç|‹O8:Œö |©w¸²Ü&‹‹:Ą͡FËú¬5 %ÖŽ&âBDƒ£ÒjJÆ80Ï×ÏZÑå? 2G†•ÙL%]ŽøøgÿDTÀaÍ:è%ª N›ÅÙu‚8‰\qÔÅÆ¤ÚV«Ê.#Œv›Ù¸ÿÉß¡IV£Š‡ã$!@›ø³|¨Ù´>€ 8$;D o[Ã(iy<;XÎd»/·ú ŒB5`½M ,9¨¾8 îïQ® åtl+öÑ$1ú2µÿø"QÆh÷ÅžŠW°²é‹î-?~¹4˜êUôÙœWñЇÛÕj½´ ²‘Ppµ{h;6ÏT+jñïO‹»>l$°Ìi)®ëâzvÃZm}v=®n$63e·ieÑ2£8è`ì2f·åªê|‚ôåºHøÆ" ó$KuÊ=©Ì.^ Êß\ì!É*á)­hÞ)ûfÉ‘¿ë,\/dl÷‡Uˆ“¢@Ò€ű•îàö„«AV—to²¶r“–ÚéÎ6a´Ü"П:•s.0íó’U,«t/ó¦œKU…ÉÓøæÐêŠÕ~È©§îj›.î€.7‡àÑPæqJF<ë¶íÀËý\Ð"§ÕæR,åK–©ï‘¬K#¿s:³À5Í: Ã*Xýo¨ PÂ6æo4xl] ¥Y—²5z-¿ðÖçÚÅòu­¼S¼!¼y}æÕS!‡Ÿ^cñ• ±‡e~v[ƒåðƒÍB£¯Bö95ì}9$“–‘lwí,JÊ·LÓ×ð½[ƒoƒm R¥ä±âpRUxšNFЙÎÓa÷¬-ö‡~ÀÿjLª¸«9a;!^>(¶ºŸÄ˜ÄP^â:ò8{#ÌÀAšJÅ’²àÓÅCŠ €ÁRÇ·YTŠ'¶¦ÔôïFࢅ•TïÃ*FÙÁ*/ú |;K™*€ÛÀyê¬Ù—½eΣè3éd%tæ¶µ V«ò'þ®òñÔÉü)ž_dR9b­5ìŸ$¿/ÊË¥S,¾Ô¼àÜDÖêy2‰Fד0Öm„··ó·m¤ÿ·|)ï9¿Åó·Âµ€Vd3¦ÃĦΩðëéû Ì'‡±Á¸Y×ÿlòßà6,\a[¨k»\Y7iÁs¬"Á~Ýñ+Ëõ?»µ•ÎØÉ`„¸½c%v}±îË6¸2Ì“ò…&õážù¸>dŽžª¶‡SÖ<¿í¡õfc}'Ù(ú¡‘ åÂA¶RŠiW+B¸²)PØ%aD×W@L¹˜é6³Uô¾Öè÷]ï QjPÎ[?Ò™»!Mhî‡ÝvT—­÷ùfÅkßìv‹š~X^éW)Ïâ—ÉqäÁ›A]°M>ÞK‹1šæôËí'†-ü]QÓ|°`_gŸ£¦@,˜ËAÔ”>°¿Îuúô¨)¸H 87 •o8lèü å½ëèÎï{Á´ÿߣúæ3oWK!Öö ‹k^¸Dû¹ _b…ëqj€‰¿§ˆÛIa€'>ÛÅqE~Hù…çK/2Œ&‚u²èe%Íz¬Ç_g滤%)¶ÝyÒo–Çóý\Ž{Çõ[j–±BëíòxZ¯¶¯‡=‘Ê̲ øSn3s ‹*ÅYߟ®z,Îg9o”œ©ñõ MIc¹9ú[V}X싺ü„n%ŠŽªå=¦yû*W&&ÜTIú0-vSl;¼Úî‚u³îxµ)CB oïØ±å(¨’ÀÀùýŒ"ÝeП¢z•)„-ÎóàÏ™´£÷^Ë‚ÁîˆÀ7© Ž€ûŠÐW1(°•+‚ bõcÓFøÅõ9@¢Œ%,üˆ¢¼äìù˜¼‹÷ï½uÒ^¤÷"_hº­9Gù€SuêÍØ5»u—Áí¦òo·5>ÈvëνõªºAVÐ 3d>ò=¬òàíî¯Xy|$k:¦Æ¬JÅ—ýýÃÀÈ #µ÷0Q?ml«¨8m^­+,z®|,Ø(£+9cé*Û¸³ú¥ yøpÉc(_ãÔ,³äkùêB¾oÛÛg…ã×ðÃ`?ñÆ5Zò’WÙ7¢îP¬Ó:¸»A²•“¬®ÞÅ@ÈsœãÛ0vÆËqHZy¬šQ,Ñæ=&™²î¹ÌØxñ–:oÏo6[hør³ÁÕ&ýýòø/›öôŸj·†hfKõÙçõ¤mkÆ74gª±ŸÃ Çþ’ÙÎ- xÒI£eG—Þ•d̾”˜ÝÛñ}'H¼V/KÄÔ*⦷f¾Åƒ{U"ºaÈØß/o‡w•ÌáÑXF]Ô„þmž²¼¦â"’ñš€¯±ó?¬JÜPŨƒ*NûsÆøm°ª4` F Ú“cئEètdéÉÀJt|33§¼„œ ùt6v‹LjðBàg},IDáûЃ<, ðàbŒÏx\x ùÏÚckWÏ.:üÓÎQ9ÎmQ¡RW‰f§ ÊVåH3{Ë4°Á7bWÅ´¥@RF0ùì•Ó$­ïÕjñL¶¡„\C^.:˜)ÏKäðÔlh7‘1ô諹´Ö.ÍÙ:e#çþË¢žW5U1âC±Rœˆ’íÿþäÑÁ¿7<'tendstream endobj 190 0 obj << /Filter /FlateDecode /Length 6512 >> stream xœÝ\[\ÇqÎ3­WyÜ·Ì&šqß/2D’ãÀ±(‘¡`Ä%×´ÈŠKJVòçSUÝ}NUŸîÙ]J@íÓ—ê¯îUçÛ uÐ ÿ«ÿ>}õèW_˜tq}ûH]\?úö‘¦¿^Ôž¾ºøô1ŒñB»ƒuÁ\<~þ¨¼ª/´Ž‡/GåÚ†‹Ç¯=ÙÙË½ÖÆüîËwo.÷êà•²Æî¾»´ú`2üz†OMÎ^ÛÝ‹KupÙv/Ùà——øÓ;“vG|œ•2NïnžÂ»6ÂN”ß}²aÂk|êr FïNô4%kv|'/.—ŸoÙã?¾Z÷r‹ÏcÎɆÿ|üO@ §Åmd€ãYóÅã?ÒiRÎÁG$ºíNÏqŒÊÞ80ܼRQ¥¶“d}ØÝàh +ÉÇÆÑ9k˜ü´N0>—m— ~Íö‡uŠ9%$+N;½e³áÚ ð¢œ%ÚXÂîDG Ê(wG¯¥ïÁ¼)XçĆ޷Dg\o_®;eÛ{‹dW@ìÝ—É­]Þ}‹8ˆ)ì8½Êùœ2Z,XöiÐðx9êsvì ÑÖj·Þ‹Ý!˜B†ûr»“$B9£ŠpFÄ–Uñc†z|ìóî²[à›?Θa»xÁ1ƒ'QZ§†ŸluFüàÍ䀧l세…}ÛÃ^\6e+•¨IÁ_×cÂ(qGʾâ)Xe+ ‰¯*‡'ºIàXx5ùzcu÷e›&¨—CC"Ì÷näVnØF “86Vº€'…­:$1ŽÂ!ôé7œ€>•§ ‚ˆ«êŽêyLÁx£ájA\‘ Ú(.t2xˆv•o.=H¼” tÕn’ ©<ÍI›8JÔ‚µ€í`›Þ3[ 6—½·Ž%)©rr‘öns,5M Î'>ïm‘¨îo$ÜbFt¶Co+é³n_dÀ‘“³Ñ%`ÖzÛÈ“Ðót•X4 Iå“q@}„8`*D,ûlAZÅ5bÙ‰€£®‰sö&½•©°M©ìø)“°§Â þüå*y{ÄÕÑ$Ͳõ¢2‰'–]G.÷ ‰`wa÷âÊdrŠE¨€¾Š±ªŽ(¨ b.¼P€ÿøO8"^ÄCŽŠxP³pz8Ô!XX‡ªêHËF”ÑÔ¹Þ–Ý][XŽÍõ…6:Z L)àáÎÃ6â¥)<ÎB˽Â{‹Êûn^&Æ`¸…a.Ol7êüÅÛ2Ü&ù*SaL)Ñ>a{ð”±ôV;cVå#U ®P×Ê´ïñp€¿Èå.ë›r8¸°ÝW;FÁrPG®[dy|*êÐùíVÈ”¥åZ™C²®ÎýÎRðÒ¸ø¦°ŽR!ph`ÓÁésàkMš* ˜ºAs!h€*ÖÕ²Yöq|³H¹º¶ç[‡ê·1­í΃éÖÖþê‰2/‘¯Úgt.øi€ëÜ_™Â›œTçžâ <0Ç=p—†¸‡9“PÎoÊû‹à=‡Jè‡Þ, P  Ò™@OëjôSyªÐÀÅßdtòÂü:>Źá^=Žm.  ì63Àµör|iDtØÜ€   ûªÄÿ~D|üé9é‹ÒzÊÃÐå›R©ÆƒCÛNK‰âá%#xie 2%¨†Èy©H%›å0ߊá•ËI¥ÜA00àâ9.LíAb Ðz*rJéÐ]³t4X‚™[4œ–W´k›ôÏIÓFÂŽŸðU9¹Õ fj^ším¾×Æ_ÍŸ*õ¿[ Jv"iÞ¢ ì½xhÙ)i â&î~[\°¶NM%©, ¸ç"ž–pÔ唿;¾)¢Þý÷X1ãlªkŒ6vyÁ¡ßJñ=œÞöâ~n7³#6GP²þBH’÷„eκ°t–Ås‘¤¯0ÈÄ-&_©Fâ¸'Œ@Þ¸Á“9 ·ôn½}²B6úœ­À ð•Ì=„öœ Þq礈ߺy´6ì^=<†7•ú2½–añžñà!üd¼e“ܺ٘š4âjLµÿYgæ¾ë²×c[:1+XÖþa}<”Ü žóèQ°Â=R½ÓQÀ,ç?®¥.0Ý#v#üøÖMøä!öÖèm/Ú?)~œ¶NõtÍ¥ûØqå#‹Œ³p‡6;á.u ±˜’!ºàFcŒeh€©kBž ††dçØãÀwÀ@„„Ä»±azÛŽÂ}[vo)¢ÃþH)× ¿$¶ ô{|ÃÕ·| …BÏmÖ4{gÑ÷"‚Ñ#Ë£~Ï^âiBØc°ÚA*‚ ?À©;€-‘ü=É®œ­Þýúr¯‘s2J•ºÎ4DQ0zÌ4ÝÑêà¤ÈeÓ}9²¤óÁ[m<3“@ ƒ#_¶…¹c1˜P"¨ óìËྖíhØ3P#š»¿¿ü›ÞÕþŠ>âÊ6¨ÌMk9ÿÆ‹Þ+^Úø8ôÉÀyŠXdþ½Ñ‡Áq/b|ŸdRóS>Öƒ©ê |q`;.LºÍŒ¨pÍ~pèjñÝýi°;‹Q¦ÜDØÇmU'ä&x„© ù«‰µîdïF&X%&¢•äj=HVn¶(ŠNu–òëÙF §×ÍšoÖkGåãr{7ÙÇâd6Ë{s(\0ÜE&¿#ì>! †,tŠ>hðññŽ­IYó;–ÓfŒÏÂÅlx¡2€$,0ˆÕ©p€¶‚¬qz—zC4™`ˆxœÂ4iF½Ûz˜oË‚‡ct:‹CIè{ãPæ= ‰¡ Q 0P €ŒÊÎå¾£P™£fv±³pW¤³>,ܵAÛâúß ¶oF·ã”•¹Š«FqŽ6iŸìM6caûÖÁOvÿ|*úË©@ªÊd4¢´#DÞ  VBàÑÃ:Ä×¼B¢ºÄAóÀ¥´«‡±ˆŒ>q.±XËg{ß¾Ššš¿:ñÿž•VZÀÌä`Ö{É'Šßêê64¢(s¯(ŽMJ˜ÿ·å)æ ¹Ê&f~÷å—û(VÛ9Þ¢séCEÔÜÂhÖÃ9 £Y!«…áÌj„3†®f9²ÇY 뼎{ÂgŸªÅáоé¸y¦6ºE.ô6:’cF˜ÎïÖpýb#?,wºÜþqk"×°¬ì9<áƒù-ºuªÁeL˜D_•í›ÜÛˆB™Ò¯x>&Îë‰U!üŸŽAÍBÈã0ö³²†]Òf´FŸ˜ÑÙ¸à¸wz½îí{ BŽýíç‰N:8S“Á“ˆÛ~õU@Ò±+y'Ö(©R»:©O8¹×(Îi=—A,ÃdÈ~x¬7ÁIDˆæXâôÑ$U<>SÒ[˜‡Ô™’Õ¯WIÜ{v¹r“%C eÙ¿×@»ÙHÁ1ƒÆk ï¿FL÷†ìâàüøŒÓj!L2NÊ¡‹ üP¤Ø -†î29Dcó“drðŽ! ú€s60Õý³ˆâ K%ƒK`ðæõŒKG,½ÂZ#¶ˆ5=p• #N·…RvÅ\˜­NЫýÅü+c¼^œòLÍÞéÞ?™©ñŒdÿ¾d­8Ìu¯6š>„bÁ¼ sèYù3†zO”qÞd^e”æŽ"›»"ðàZ²¿‹=šK….Óy uñ©†ìr]°¹ž€ox#ÏœßîóB‡RÑ0e$”i„j¡rïŠb²¹j[Ü`ÁÅ Êþˆà-L€UX§ºù Ó±ÇM˜L— áIdüŸ=]×fzŠ{Ó‚(¥'uJ×=[¬–1¾ˆ„梎ÞÃtàju¹Ø9ŽU ]±• Ø÷×,×zU–AŠrß`“.Ciž.+¸ø…oñ\5é§‘Í0ÙßãC* “²Y¦Ù•?$íz€(L åÝWoØ¥]_ór «ò.ìo[’Ï1aÄŸLЩ™´È×7e+,)ÆGß±,™2šÂÏÌ”éÊä°þEöúXv‘¶¡Ë|I;¼®(¥õïpTÅ.êÌ"Õw* À™¬gá\ c(C‹ {™ØÚ_+Œî¶öKªg÷T8¶¹|‹@s¿dxlV˜Žú í’¤Ph Ú~t9,Qp‡àï(ÛÓy™ð¸\Œå–VVåõÂØõ⬎â`ÇÂwJה܅–E8§’§ß“RÁÂÛ9†bÓã,~ã!&lcqú¬þ=¡øhÕ "<1‹ú‚E1-‘;9|—³®Q›Ææ‰kCÖ+ÏHß »J°:QuÁ³»’Y.;²2ÿõ“Œ5—,ÀÃ5ÙåâÀâo£¸‰MÉiÀž˜Wˆàˆ¤ Ÿã=8¡ ¾Z”㱋1öPtwÐL”ÎÚuç®4‰gm*ɽ€àeáÂá^´>(kÎ]ŒÈzV¢´°1 PÓæÈɶˆ1Ƨ_¯7ÃŒYˆ€/÷cG( àÙ&}w¸éýZ÷ 7µ„VÔ,j> 7!éØÀûÆ›R8ojQµtÓ§bÚ²Å)Ëld±´%—CG,UQ•E€vÉLŠæŸWGRŠF^Žï¥”¥±P·}ÎÞ‡À¨ïoî³ÂŸÑjs¶/ie7-º.v•³Id(yÙÜaáÄ€@f;Ëä3æGRmU9Ï8lk²`=7‹Ë ‡“™ ¢Àc‘(M𺔜r/ ”&{Óêðsé‰i§:YÔº×R vÁZmdec'$¸§†kc4@5ïVIó¦$."½Gô‹Éâ㆖ǵS2Ó •5E_hY* ËŽó èZ ÀEÿÈÀxࡊÛ27 ^#{šÊŸA½‰›™ÜIð;ëáöRÔÍ«ŒúV×ΡBêa‚9ªëVáEýD¥øû%ÓÓ/wt¯G·`t}•¦)7<*Åï´™Y Za ¿Æ¥*wt‘[ÝI@ÄÏXèªpvÊð›dใ·e.Œw<|ŒnþoÈUŸ4iÃéÀ¹’°írLÞx’¨Ÿ].åþ'Ú ÏC¥zzY–NªyæåLW屇C¾úªCÿ“d¡Î18N/•>ˆ¼ÎÅÂ04"ª¼ËÖ©®f%…i¢‹7°$£'ӵݩ”vR ùÀÄÍR1N¯ ;wkœ%΂­-£YK›c¥$ׯÛ¢–ümyŠífŒe+U¨‘ÊOk.-m%ô·Ð" ÓƒC•¢P[@’Pi-ÐFTαDƒ\iŽ£`Òñë¬ÉèY9…óHØU4Ó¤]ЪÌ|ü庑qäa®ì¼éS¬€¬Æ,XN>®ò¯Õh­€fíd›þ¯ú¶ˆO\ÿ†IG†3>Á4:`;ë„ë ðZ8‹EÍj^LWã YËN*ˆ~‹¾ERŽÌ×e†÷°úš”ÝÔ™³H(¿m[ÎsÀãtØ­¡ô$Ô~Fü[ŽÂ=ÓŸÂtÀé$('·FÃèagé>Z6øX–µŸ{å´µ/Šf"÷£Å 󬶞¸&ÎJOìï ®7Z¶%Kaæ3LêBYµ¥JèÚ¥¹syÊùÈœa‹ÙªIq ,ÁVü=qc]ö»U×v“Ú›óaÙ+*\܉ÍÄo÷X=D—¨Ãv;,×JUJÐ2Øt“,f }-T <ð‚Ý`QS‹Mß»Qh^r—ðíØOùZÅÎUiRc¿I-kâS83¶Dp³—J°%o¸ð9 M ¦†|CŒ.Z%Há ™oLé*®«)-RM]rÈ¢À4½'FOÀJ9² V´ð‹°ó9>`>08S·çÄÅQÞ…ˆÃú¼C¬¸œ:Ê_,Ì6o\¥h? çò»}z§_÷zÌp›”%:˜µô'áTS °P¼5NÛØno™Òa²«“uŽæ,›d1vü;ºúÃDȦ ¾.•âÊ"ðŽf˜Ud†M³A8 ¯ºŠìSur0|4•]áÔ:MTKWòcE¹Ç©+`XHŠFšG#MtöJYJÓe-ÄÓ©<±³»^‘'\ã²yK¢Kßs‚èc›7±Cç3©¨¶Ê¸_éHHJQyylòöcŽVË¿)ÓŬ§JÒXMÉÈO/û¦e/Û„¸Ä$ :‡IfÞHÉD§È/¶¡Ò;8R… ·&©ÄE¨zòŒMTF%¸ˆ=î-?˦)›½—8sIÊ›¶^äD9¥õÚ<\Zât˜XHKø[< ñÜÕ]ÙLÜ"Š­þß¶OÃ;êØ;ïs¡ùšz|›»\êÄ:Ãä,—.ÓóËÑÏkâ ®±Á>Ö‰ÁXž(" »¶º®eGMavãV– fÍÇììc6ëæ~`w%}C|Œñä“+WUŸØh˜ÆÄ|oͦ¥Ž}u`Q ¦»Y™n²»;Àü‰ŒÙÏ •°ÑûÅÊ”dÖßÅQ¥ùþbvË­›ò=€®wrã“¡àKͤø|…,%ÌË`=kZ8–ÜSvVš ÌOì¬,ù…YÍ€½VK¡ï/GYØ|Àî0×UJ,‘½Ø7ø›7YðäÈ…€ˆvì/—3™g¥R, ndâØ Ïª“üBF_nMðº³~º‚—ì™NÜ|G¨6dG9×c}ÉŸo”@VÖx½)£Áëàjëg2pÏÛé ¨ÚM Km<° ç„5n-Ã/5 H]?«ËvÚ”°œëÇuPÓ*QÊ÷qWŸ „^º·=ÿ¨®hº'¤þ©L­j8c[;º–½› Ë”¸Tnu$èw®• pˆ·{QÀñi‹‡ùâý&,y¤ord U¬Õõxwª‚²{À¦©ó’×’Ì>Í"Ž~T—ÕÚ¨ô¾mÜwV½Ô&«mÑË™.nàâ]ÜKc­[Ö6a™v=éóqó¥ó­~ðîšöv ýð2,q„Ÿž*z>êž–Ÿ¿^üÐN/šˆ±+¡#íͨ Ë׎>ðz¬™À˜Õf¢™ÎñaÓ§¿w¯Ì‚„÷ì•IE-Ê‚¶R¨ƒ±·48 “J8ë-ï!¬T¥QEÔ»´ dÏG{:L–rÊ>ÎÒme±œ·%m{£1TÓ+UÑCµTölÍ1±š¼-c½”f6IøQK°¶¥³ƒ™dÃL]Ÿÿ¸X¥¶TîþrR  @=,)ïÓª…Ù¹U4˜P÷è]Ëù~ÄG½ ó}0ž£EËgàÆõvå¹yO~òðnÇOvÚ\SÛW_Œ(K¾¡ñ¼uù$C×b£Vi:¿%­Ì®‰ùc:ÂI×ÜãšÚÆä4h­ÝHóv[k»éz’¦è¾—¯’_àð^º£‚§g&!2q9óåØxŸ`±³*­ú®5ì"ÕYVNbAÌt1?ïôÕažY‘~k[+ŸÐ‘(Éðê–PoÀMÒX£Ü6‡´„@Jáè¹Hû$k (…W°Q;sFÇ']ÃeñçðŽ{¿£~-i¼Üšo4_ì ~8#ƹ¾ÇTŒ°Î÷ÿ/FTÂÄ)a NäŸѽ†k罹–oÜmƒ–Ê"ÇDäèÚ<šh%ŸžøI»Ï¬à7QÊÇSÖϬ<Ùý;ù$>%m .çP!Ö/ÿ$!7ïña¢ß4¡¯öس:õ«¸½cLÚ¤j÷èG﨡¢#êæ«œ‹Ùr3ÖLÞ-1‹f:§à>Öîã7›A.}é¦f[ì}byÛבA…0"ctG`~ÞœIµôú¬åIq…I Š[ÇÑØ®€*÷)Ú´ØË»nz¿Áeu±^¸CÙß¾öÆ>À¼ù |Úº·½Õlsý‚¼Íu§ }¥í'äm'C~äÞð²“á÷ßøG °=£> EcV†tó­´è#UÛ6sÑ¥ÿ1 àË“ÆÍ6œù~— ü8\yù’Õj®Å•&¨müô-ÔZÓþ 6µðWËc,G(¨µOqJ¥ îV·ë—?~&;èÿ.ûÌ/ƒ¡œÿjÊÞklN@îÈfW­Cÿáñ£ÿþ3õðendstream endobj 191 0 obj << /Filter /FlateDecode /Length 5146 >> stream xœÅ\IwÉq¾óùGà¦j¿A3÷…'CÒH¤fF¦)X:Œ|hb7I4 HÓ<ø¯+–¬ÊȬ*€ÔHã7‡)VWEFFÆòÅRøé@mõÂÿÊÿOÞ=yúʤƒ‹»'êàâÉOO4ýzPþwòîà×ÇðDˆÚm­ æàøü ¿ª´ŽÛ/Gå¶Ú†ƒãwO~^m¸RNùá ¯MÎ^Ûá|ƒ—&ªÐܾ…Û.etsûúä ~)„†;ü!æœlø¯ã?;ÖVÛ¬²Fv pfc>8þþÉñ¿þ8½…7uÖÖùá=\* ˜òð®PO) »k¸ožÃ5Þ÷9Çh†o6‡Öøm~Kï©`£¶xÓm“6Ã_|8+cŒRö¯|0yåŒÅIÀhŽI9똆K¼Ê(Ú!’BÑО ÷•‡U! 6&n²gâÉ+¢‚í˜wi´² Ÿ·,Ÿ”=ïÌ©ì]NÄ‹ee›u³ò'Uòù)¤`#¡ÁF•šµß1 «ìÏYPAùô%®­ƒñyZ/EV•“‹Ãþõæ¶å‘S<ß"ö[âT&5xÏn³öÃwx7)­SöôžÒw…€ × Q/ê×,ng\ê7Å\ ºÌ|tÆÀ! nŠo½ Þǧ Ìõ-)‰o*|çÐZ¿Zj»õ.~÷÷x@)8?‰1;4Ÿ°ÑÆõ* û²9Ò™8WïH£œ}|‰?:mâ):T§”ÏnØ“v§ˆÒÚnXk@{u£ûwðLÔ6«l˜° ÙhAµ6 Bºªš&IìH8`ÿÊYùÌžUÐ$kpE3IP`´É…|phÌÖ˜YPGÂOä´3’Âgš£ÒK›v<žIN( ÏÐ(íh¶|Šw3©Î¯q•œŒkô÷ãRkâRîR¬' ¿,`=pÓ›à7Tñ,»VHO_i£¤{ÓÉw-*ù'R¥Ù^]m¿ñÀØÛ Î)ÀѱëaýÝÕË;Rj=ø\Iöœ­ÑÃ9Ãñlù[¡¤7Å·ã6®Hùœ †m4 oeÊ»ÍÄæU•+[8Òð}#¸f`XÖÖÏ)áJoÉ­‡¤æÈWVVnèZˆO6'm何ۗ’0ÊvÌîÔjkµÏÞDÍ6­£ëÍMá+`b$O×… 4¨$,lŒrã,t¯!¶áôöÓHÎ/§ØCóÍÀAŽ6àë"èú¸Ý²0J΃Ïä(PLçY” Ôw• ~Їå|\Š©ŒÂÛ<*FPC<‚è-@cÀ›s  `}÷ÕóK§†Q ZøÅ Úkþœ)ÅU>¦-ø·%¿©çx[Oœ£Ô… T! Рœ9ÙÄ-K4€‚|z³rð»7ð(HQX´ûêjoñ-pìIR½cª"ûɳ ðc_¹•Ä„Nï™n6¦ÊiÉÜQà;¶D“]sûªÆœ;L¤%°•{§ËVÉ!<¨ à)@¦˜¸í£Ÿ½L¡XJJã¡¡FD Û½ŠyK zk³ ƒ]ÛW ä#ò!IÕDˆGÞ€*‚Ç6kÁP@£ÝÅC!È*ÍÜþn“, q˜i—ñàºîì‚C`ë2$i\Ü"»¿æŠ!"9†„—¸¤Ó…›»ôG«µ¨Ètu÷ôÄÇÍ„i$¾+ô0úÿ‘Ö@{øù¢`š]Yv¥ ãÒ¼6‰iq_r]W! „uÒ+Ëì®+4>å÷‹«JLã¬ØàÌ›(½ôFZ Ö~ØL{AK~ܳ À@à ƒBÑiý¤FÒ¡Ýt$ 6‘@i'UF˜ÀÚósðEÚN¸–B*;ÞyÂØp±g·è½oÈ7(½*Ó;¦.ƒò³÷·|ÂáÚ‹gü„ÓIJ»A‘”|‡!­‚‡WðÝJÊ!áæ{ZZ´IœxH‰(-ÁkØÎþ¾â3AýõŠ%Õ-¼©|ß19‹ä&Ò¶u\“&žw;+yÇ| x‚í«w”… Rù1Ÿ=­þæJò†«i ÖxÁÝÝfÊ~äý¢¾J…¼q!Ë€85ºxt°rc#0ÂA®KðU TßÁ‘ ßb:Œ9¢‘qð¼Ü¥Cï’ä)Óö '¼ÂPëq=AáI+ZXB`Àq5@†kY<=ƒ½2f²á­"ã)<¾8ãZ@@  æ~«ñÉl aÐ@Iøl6·Õ© pG„sÂ|ñŽ¥™a¹#¼Dc÷œŒè •‚W gâø¡àöb ^™±P3êÑ2ÖÀe]ÀoI½lcPaÐÇàwn Ù¾J¸àßÄ="DpIb`Ȥ#¬­}~FéM6.ÞÅÏ>Øbb¶G[À°YË/€4œõTžz‰Àˆª¨7Ú£«è²^¼ë]T§5ÁšêO-¸¨Ç/J*´2„  \ éOt¹®ísÝ2ÕÈþ]d•òÕ°’ à«'çzÛêvqpè«yÕ\ö0Öž:—KP§ ,xÁA¸WNïY&Ï€g•)ÔÝTPvSW”¸ˆÏœE.«pXy/lEV äY® QÇÜcåPµ×ô98$°¶ Ì èS”ääžï72Ѷû±^ØÄŸ¯LÅE ä1pü©8按8Õ¨<í‚¿®ÞYñ½€'QgH€ÆùR…yÎ-2P‚ÑBƒuE1VöoHSàÄ.»Å}X`¼Ê˜7eÍbK”=£5Y ÝòA‚ïp0Þ…Ð^R(R°÷š2Y*¼HäpÓøªeê bÒ£ÿªxÜðÚžTúw›É¶ÛD¤Mò ­ÖKõb51YÍp稸]¯@¿ošülLlÞêꃹhBÔ 0‘I?Ç€Y®+Ud"$(‚æõftßÊ'"z¤ð~x¾™òý³p0nG L cðn|)TMr/J ÷5úS‘Œëþàœ’ˆ¥è­$,@Éx ˆÌµ5ùêóÈYÂïÞ¬|L4<ŸÃFzN„kÝ]ÈçïøyG¡Å~6V—¨ëC°¤¨{RÞvþ³ÆšÿÙLÕõR„¢JƒL›N9ÐÃâÿ)ݪðE3gõP9þŠÖ¶˜9¼Ç÷@g¥D–…÷ræ!—kr’»V>^Úx~&Þ L1Á+IºuJ’+¾ß·S?ºí±¶:Ž+x½õÀÆÒƒ\"’p‡ÿÛÿ÷ì(Ö{?ûË uˆDc··!Ê5¨¹D_ áv¢ÖNuôqx¾§œ•Ëœ í½Þ«oïᆰNÿCµ{ªXò…tñŒ³ÒÈ<•ó=.Žø•œÛ³ùâ<áùµ&Ë[ÞoÐ.2ô)´ìhßÅ™µ˜ èùnÎ~Ãä’)Ô² Ä'ðnHFt¼ÚnÞH˜¡-ÒëmLÍ]“üOÅ Þ€‡m2Y† Wʲ±Ú¾Rv¥&M‘·}ØxOO4µ!Üæ\È‹cÃqRï´ZªKÂ\Íéi °[ ÔŸƒ¥êãMëxRéâŸBSœRb1FŒ=-–šxî{Ǹ´Žm Q¬}‡å´±BäëŠgó ¯4è°} ÅÅ5oŒN„_Ú„´ª÷e`®iÖe)O”6 l±ÑƒŽü–BÌ zP¿Êر_E ¤¶¾€œÇSl)—BÕ¾eÍäb³lÁOåXÁ›H>}IÞY…ÇôŠÿõ¬ž1¸ùÏùûøè1aK}ŒGYbD«x¨pj`ÏŦàm1„è‚•:‡Î–KzwAÄ*Eþ‹;­Ù†&ßÝã*Àq,5lä´ñÚ¢L(ˆµVÔaƒÝÜÂeˆä‰J¾#¡ÿgP0>Ò©[¶ÑöÀÿ•àŠT`Õõ¼®&´j=J8Ã5]¼ü¸™†™–/m½ÜÖËÛzù¦^^->{Z/ÅèÔS®9lAc×k6ß\Fäîëåm½üP/ųïëåNÞ])ƒze1wíã@ùyÚ¬¡aq¬¸±ÆŸªVÜW­Xþ‹“E RÏÆV ©7Ë~¬É_ÇÎJH¼-Ð@ÔùfkŒ±Ÿ úz›7¿Œ Ú<=ˆ å…X⺢¯µóùÐ28TÚÙ¼îmÞd,K4°Xd”Â…žn¦Î`[ÞFŒ¥½iG›3p |Á¨ŸÊHÂ×? žïxØ=”È@T§¹âˆŸÎÓ†g×ã)øÁf’¾Ýpôaã<â°»šÎQ湯+üiçÔ™Sú•PÐMÕWÉîè^tSËbBoÐe—ü5ÞøùT)ò~"ˆRÖ-žUŸ>•õÝ"•”×¢6¹õ7õÄ„¨¶*À ˆržìÛ²ò(‡3Àý7²:PZ·Ú¸§h‚©¾W0£Î(¾‚Dg·iÅ”gÁ­@¶áÁüÄ%†úI+mày,*â'_ÖPU1æúªâtïK«ŠeÑ®ª¨ õºªb˜U÷—D’¶Ü/·öMÓ»IÍ~,eiü ËKܸo3ÒoGùź·ü€víÊôk[À5}7WÓ°y2/¦E°@Yr˜å¡GŽŸ®ŸàFL˜š¯Xu¾¶`¥éégšyÃÔç¨D/¥Vç}„>îúPAã7§ñ«»RbXµ¦4WS¤–¤[ñ Ð°j.†€Ÿ²ï&Dí( ’pÚ¬‚Rg¦Œ¬Må#5þ‚/Ýÿ¡Ùî$¬G«šøŸ×mU“ßZUs²DÙšêÊš€Ú<·‘RVø×λR~žšµ›áÉ~±/KqôN鿯ªIݱw.j*jï­|Qš—‹šª¸Â Ê ùÓhþGSÒ´³’¦Vz£[gbøTðh•Û¡ÙCÈ¥h¸ ýóM I<þ—Íô7&U]º”ÓG2ÌÍ>_¯Ÿ“##i}ö€~Þçì> stream xœ­;Ër$·‘wÆ~D«bï‡ö²VØÖzíq¬g蓵‡žæc¸"»i6©Ñœö×7( Q]5¢ÃÖ„‚ $ùÎDÖß7jÔ…ÿÊÏýãůߛ´¹;]Ø1§Íç µùþB[Çà7Q»4æ°y¼ðJé1·™‡‹¸*Ám‚NzÔVM3°*Œ9Ò*µ¹»øû…¦C7åÇþqóÝœ7 ™°¹º½`„ôFÛ4jo6Q¹1f·¹z¼øÛðÛ­UJƨ0Üo/Õè” ! '˜wZ‡†=N«œKzxkv÷°È§¤mqÞÂe²np¬•rÑÏ8JÙü?Wÿ˜Y-0ófÌÑ»ºT¾Ý^F¸^ÌÃn2Je‡Op†ÍÎ;3àq:Ù˜- wé’DÌðÍã¬\pw¨>€fö.åáW(w!,È hŒ»dᘂnNN[Þ–¬±aøáyMÁ½™26gg3do£—È=!ö)ê<ìö[^~Üz| qØÝÝðZ›h[M夌 :&ã‡i9P¦ k¸ÕO[^„sƒñ ÛLr&„4ÉÀ­•ŽçSÔØè˜/a•Á—øQi3ìÄ £²®ËN2ÕADM»¹c¾ÑÍoXdtÊnöbº r¶(&—E0.5ê†×,òÇGÂ6LàI"?“äå)‚ƒ ™TV©âp|m(0avï31˜é­½ŽQÊ€X1‚¤‚2Åä†?ËÛ}æcŒŠÃ-]ßE7¼¶}‡&Ë+¢#$ø(hµ#µ‹9¥xMÖÚyØ Œ×: _øäÂÜ¿;ñ¬…M·—$~)v2ÒóV£l§Åe¯·ýê2¾fØAG©TG†‘“‘³ŸpŸÏp+bîs€ô[”£bÖ!8¤ï!O fRˆ×†]÷[”'´žI›ÉÐÂ^²ÙB$xÓÊ^òöBÄè0Tyx­‡_󳾈L¶1ÙÂ]¨h½ë¥wÙ°ÅM`5A»Š`‚ÒE¹QHàaÎ’$ÉÒ xc^$fO0|æÓ…MFMÔ}"sÿ¢ÁëE«÷Ø@°-Qh_PV‘±PÉhòª€[+À¤`?,ZòC¥ò‘ÁV6õbjçð{\¾ÜgÔ’ˆ†à(íûM½d\Œ³QYr‡A{0„>óÙÀõØ™`”$Óh«ÄÝ·›=49ÃÝA¨±+£Tâ5&ª^7ma×hòÃP=ZñµVúÚ÷v~ÂèÓVà`ƒ[¹í‚·6 ªIå Â7,»6¦¸pÜ¥yOØMʼ酎òS¦Ñ}êèCý¡ŽÞ/!eÁl8+p2Α‘˜(J:ÙdoUcÇ ¬ÃE¤Ç}êèTG/ ë—u`¡ƒ©üaÛ b `nÈlçA#‹nRº·ÚRœÚÅ>¡ G”R«mˆdÀy…_ðƒ„ÇÇ*e+¡ÐîG†‘:‘”Ø w&ö½ÉáÑ]|êð±A ‹¬6: Ó?72EN Îý‚b€Ò‚U¦ÜU>ÔÑóû?.ªH@:Ú·©ˆ1M‹?VÐÇ:º®£ÝªFêµãæ*XœÙ,Š›td‘2£¶ªÆç·U1vuô¼0ZÒç»:jêu\ êï¨SG?/(ÚÇÅ ÄB+¢YR>ˆçB ¨gk©‡”oöÑ;Š[VdžÏò roõu’ŽE+Á¦21ˆxB8µþd>cq^"›<¶®h¤ÀXª¡H„~$m Šò"ýâÑAYiÚ¬Ô¼›– Ó²»oò‰vË)Œµò ¼w€¤6?A›8éSâáŸÛb’|pê`'âLòe¦…Œ;avÀæ4{DIÀ0‚Ý«Q³80‚Àpx)ñL‡pÚÃî"‰  9(:c|àÕAuÔ}áÙ Ìü:6DHÀ&øªd­Îä<¬‡@0[•œ*O‹üýeóü†è:é,·=´¿Ù&Á Äõ€6·#NþùاÙx×Gw•z"üD°#$eßpx’'<#!R縜1ì*ÕP½SŸ–ÂàXŽ·dSª<ýéâêW“ d—ïÚ)ý1ˆÈ >7#³`v!³t.V«ÞB¡Å¨ $h>-^ÉTv':¨Ø•V‚¡Üà-9§E4à¶ÕrzOJq’_9Ò™CÔ¦ÈÉ¿µ9H|‘åÀë×ÐÿïWÞÜÏÝb¬†™MÎ :1Q*–“³}³ÿÇy¶B~t©m¹³ïSÛ#ÏæÜ{N‡í¾‚²{jå)Â,زNµŠù-nÇDX^%?âxi¬EZ)„»×”j_¤î …¤ÙZƒáÈq^î9Ëw€¢Ãnl3îýÝÕÅ_.\Îk¨­^:ÍÈzéT{4óhDéµLàšµzªõ nG{×T=ì³aãƒD}TPýž}®~0³äjŽyöË=óÓ¤¢))g0ߘëZ…’«ÂfÍõKð#(BÅ´¤˜˜ä´ž*œ¥Z—¯ÄšR ù.›Ÿ²wÊcѧÛù‰—Cø‚Hܲpׂ!0£ b¥âR~nÓ7ñ;Ìd°Â !¢p½â]Ìcöz~…dF‰©j þÔ {%T!¤ILLð;¿íŽ–/ƒ<Œ¨Ên•ó –¹wÅ00¢ èmTÁ¡{4šÌµ,È5@»Ýt+•J¼U¶‚¦YX¯@`ÿ“l‹Ϙ٠ÜGÈ5=÷“qHWáëüó±AçSUöűeWÊ(g¦8ˆæ‹:µ‰ ô¸s á¿Có¬~µ½úß3‚`!9™ÄJJ)¬ñ#ˆÊð›Ãu‡Äóà¸îî;Þ@äÞ·ëjBX’¼éÖ¤?88ÚÛùŰ2äl"·Ä€ I~èð¹.¨æ¼ÀÆÎÆiï*‘Õ%¿\  p&_)B·í•ÅB‰üçrb† n – ’pÄLT|s1 rXÝö$1 Ÿ‹ÉóšýƒÑÆB4õHÈ©ämôÑóã)ªœ)·nàn™–B^Cw‚st¤J¦ØªÊž“8ó…CC¿f/Öœz9M#>y¹BšÄ”ùë¡ÛNEµú¢TàÕÊÚ$› ’K Î¥0žUƑŭ ðÙëZ[¯=zñšÝKȱ çà9ûë|ÏÕe0B“4g;~>vXw²M% 0t_Úr’)ŒÐ¢oi@S!Þæ£tÛùjACôP,ÚüER>ò!6—çp vFëB<=AOªPrZH¼¨ÓM ~2)B_‹¨ê]¹./صVÈ8§’sß *.[Lú8‡W(zŸ…“I{ÉU‰eæ“I”Š(ò+QƒhRÄ^LXVB6C –ÄsèÄ~YPw} H¹êz ‚v0*ã¼;Š&©NJ»[ʤ©æPv6ÌŽyoc'F”‘“ Àç°ÌÒwÜ#cœ£ò´¡.@Í ;(g×ôõHå?¥¤UË|bXÀt)M‚a?ŠŒŸ–â+ÌŠ¦‹(a¥Ÿ·SZñp+Ô´‰•Èp£y jBâr<¡˜él{_!ŸŸDOê¿U ïgX$DÓª<@=7\H’ ÿ5i!åA^£.Ny·eʪVd“0 u׸DZÝûÛÌÿ]N'õ |/2Ö‘®«bK¡‹ÒƒŠ–‘¾Cáaá}–Ÿ[|lаf×} -Θ ßòØ÷qËrBtÃkÝLnæ‚Å’+- hº‚£¾‡ï¶µýfYœúrF¹ UÊýáø´ KIÝîü¼Ùõ˜Ë~œ†~ŸAM,|SÀa9LíÌà¥èL›Çןš“©ËƒÈ”0‚Ïš¸—-ìÀ°¹oÝëcwÚxVÏÃÉœçõÅbW^í­PÐh\’?óyØ0ߥ2ÅkÔãóú“4ÈÈ>ïCìˆ÷ïŠQ:Ä‘Œ×P™b]oõÏâôC¤¶KQzî÷†aPNy˰}ÿuÉZcú<új®òB¾>Šå1BŽèêi;èPí8÷o©hXpø±Éw­ ±#¿~yÞ‹u®Ç‚u¤ ?5ù‡š©u^ yV’¡,}ó#®1LfF)[¿öyÁc¢ºŒîij}üþ¯ï¼«~é›Ò[ 0³^0>1O¾XÊÎáÚÎÊ}n_îë_3ð: }ö¼˜UòýÎYÌ:λåÊ´XÜ¥MÅÅ̬TJ^· hl;Jþ³„ã3?•µA‹ÍmCÏXóÇ\Š…4~jô¼­ÅqçÂä1Šcþ¶ièÒ×n`œA>¾Þ"uÛHõ–˜¦EþB“0ê4šBI‘•ˆmÅIïæó…;¢«^~Úq˜Ã¦fGéMDª¿Vî"ØÝÐî—+6ò[_N€NMÒÅ VûÞ— Ѭï½Þ`ÂZ-°ãLÏ>n+r°þu[8-ÕG¯€‹'V(§R‰Ù luýK‘ø²h±- òL‰¨¿J똉 Xò°¿Ê ^¦Í|­wʹsŒ³oQáZÞÂÏ€.[§¦¶ç7ø%l V+7j¿¹DJ§œ¦'cú| ~Ÿš.}™úÂþSkËYX2jÝ9²yJüœm GÅìWÌÞrDŸ3?aP ¸Ä¶gù&^œ¸2ž X NWÖCŠ<5h@yÒÀé—ÝÊ">„¹d’:'dÖ·Ü$íßß"Ë!4¹Ä$ Ÿ_XW€Ø¤¨^»0½µˆÊåd¨ŠŒ·ؤØ@Z|§PÈ„Ñò@1KÒéa¹2…^·èµTG[¼s¹¯\Ly`„EaøkÛ×QJžaB¢²–¼á³HGòâ\lñ3Ö/%Ù ÕÏi)rzÇG;Ð*[¥ðXEjç4bŸä’r5ìûÇ]Ù—¾clÿp>Ø^T>£N‚R=mïO¸ªòž™údAÀ1?myqëð7‡6àæ¦±lo1ÄøÑäÒÚ¬jC¿¸-ã6M%úw¥{ºØŒKú\n$:Þ°Å1“‡DB@€¦_Ö)öAþBä…®‘—¦û(âðßó…ôˆ­6ÔŒã2v vò‚š ²3½z¢bcðe›x˜À~'„ŒT LKÜ7é\©{À(pé§þ·=oÀÚEaíÀ`*V™D+R˜,›«2¼iC±àaqÁ´á© _Úp·8;¶ákÚð¾ /ÛðqqÛÍ"„ýâ-–× t®åÚc¡`«ÌýŽØ bgðCh©ßQ£c!Oö—‹ÿÐ:ò&endstream endobj 193 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2232 >> stream xœ– PSgÇo 仲•x‹¨M¢­à•­«µZAtÖ·ˆ<4>xD‚Hx…—/T $9I€(‚O¢"hR@¯èúª®uw§>ƵS§3µ8«ÎZ·Î¹ø1³{Z[gÛÙ;InnþùÎwþ÷wιƧ#‘HHäâˆøÉažÓ`a¸DÑOx_ Tóæãž%¾à/ŸÖ~Ùxp0f Ä„AŒT"ÉÌÛ™™U”“–ª3¨Ç$UOž>}Z¨zJXØtõœ mNZr¢^½8Ñ Óf$Ä/›Ô+2“Ó´†"õ˜™:ƒ!kƤI3r'fæ¤Îª.H3èÔÑÚ\mN¾6E=/SoP/IÌЪûv7±ï#23#+Ï ÍQ/ÎLÑæè†áæè3çæäòò &%§hÓ6eÌ`˜QÌRf3šYÁÄ0+™X&މg"˜P&’YÅÌe¢˜yÌf1³„μ'ºÀø0[™’?Jêú‘~-ý^Kã¤|Öù<÷uÈúË,²gDGn³£ÙUý%ýg&yOðÌ j%gzŽK}O8·ãX1l†L(+Ù]D­½ß5n5•Ì6_#k±ž·5A+\…ÏLü?à‰9j¬ö*«Uuø¢Svƒû†ŠBû3è€6ø\^á8BŸ éÊh“/-”É{ĸ/¯¤ºP&ëQ¨èOŽÞœ§!'¬7l-bœëæÏßç¡– äÛ®/N;óg+iý¯JªÉ+[CÆÇFÇg+!ôÓ_ QtÞt@ŠJ.Ü5¶ ·¤‡ ‡H…VÔs8lÒK:þ!l4 ¢ƒ¾ Áq棗8PI÷ÐEU2:áâ¡Óª#Ÿµ;» Ú·Ôéœi«Ùp  U(åo|ºy †à!C¤Ò£àz»)£" &à8ˆ1‹ŽCŽ®RõFhdhêíæ„n &…o »¢\ñ{æÃD ’âØôµ«çOݲX¹!šTƒÄ\ xÌk”{ØÆ*ºÝÆûÛ— ûtä̾×Q¬,Ý_ ۀͣAE%¤vvØà€Si…ºvÛ¹ô?A-°M80¸£À¥;¡Rdûí}ÈæŠ0½ƒ¬­Š-e;-%Ô""[ÿÈ.íiX·:}þ\Úfk‰}oyý~p±§r¦eê Sâù¤>¿yí¸R.ì[óÀ6I‹Øš#p°{…ñ\Ñs>ìb‚à[ÊV.§óçˆaYô4'âG'‘uìß;‹,æí¥ÊìE« ã¥*ÀsWßCÎuÈdªQõùÊ R¯¯ž · up«.|[ö¿ô˜ÆEWkB\åÆá4xÔT:’ýG(Žýý3œ?ÚÔÀâ>ÔN¶%ňӑÊÜ>—µªÛùª&¸méuzÑÞ£bÛZt gôÍž’gR!I=uUp¼Éx/á‚jƒ;öð> stream xœµYtWÖ!¬šV&Ø@F¦$”ÐkH ô^ ˜ŽÁ¸÷&Üm¹È*W’{/²l¹ÉÆ6Ålj6@€PBÛ„„„@Þ8Ï»û?I6Éžw³ÿžýç[š™÷î½ßýî÷½P={P@´`ÕºIÍ¿½ËðCzðo =°îWyG² ôBßž{†Œ|aÇÏ€ªÞ@ûSB (>8Ìç£Ñc#wEø:®ó ÷ Ûíåé¸88(Âqµ[ —£esã-?†H#¼ÂW{z…Qµj^Ðüà! C…-_±Tºl÷òH·Qî+£=VÅx®örò^ãã»n—³ßzÿ 7ÍxæÎé2jôÜľcû‹?aâ¤ÉS¦N6½-E £œ¨áÔjµ–z‡ZG½K9S#©õÔ(j5šÚH¡6QïQ›©ùÔXj µ€Gm¥Rã©mÔ"jµ˜šH-¡&QK©eÔj95•ZAM£VRÓ©UÔ j5õ>eO9Pƒ¨ÁÔŠ£jÕ‹êM ¥R¨@ªDÙRÁÔTjeG‰©7)–z‹Š¤ z úP«I©¨ž”F0HP$økXa?¡TÈ÷ ìyÏfÍßDÑZCÏÌeõØë‹Þa}Fõùsßð¾ŸõóèwÞÖ˶í•o|Ù~ÿÜþ`·ÉXüêÍFv+kä[Æ·îÜb?Ìþk‡EŸòT4¨cð‡ƒ•Cì†9ûvÑÛ—¸î¤d§D*QKj%÷·;Ö}{hÛ0ûa熯þ`Dí;Õ¼Ò¶#Lh‹‰_¦ÔwÌòÃ:V²iª¬Xˆ¥<-{t~k½Ù#nƒš  +4µM`‚vU½úXßá&zK˜±J§ÉÕh%GÐ@¢ãxœF¡•ƒÂ!ÐB¸ºIwöÂA8¢nQ™o‰¦ >KÖÀ`ŸË"|ÓKE¶|;˜x›©Áõ¸„¼. F=Ð3—Ó;d°”<¨QÓ¦­†*²öëÚKepX‚VÒ?_9uá|Þ†uŽÿ§×n‚0P×1È™†û` hŠ/ñÓ¯…ùà²3x#¾ñ’ÆCe6´øðåìÔ­ÛŽÍ$+ hŸÉIî¢3Ïæ?(æQ߃EjºA›ÕÊ¡þ¢gÓ7®Ø: %“Ùge—.À5æÁ„;ø-®³G@¥è†Væ#鬤Å/}T²¸ð~ˆ9/~.lì˜ÃTÒÝ5ì®`š…84 ­Aëð`4 Ï‘à7ÿâÈZŠÈïµBã¹è\’¶-<¸&gÌ,ŒròÙ²ní»$í|eWäcŒ‘z»=wQ1ÁúW|ÿOY¼ä_GÊŸ–Ò^mÄÏjÜÏ83ÃÆà·ð€gï"†äé28h¨et(€ÅCið–†'Äû‡¸3õCD£>—ï^»Ý2u#A÷,‚î³&Ô°G€†M«¶öC+ìWšs°›ž§Êk’ ñ¤M~™¥µ–Sª#!” .3”óëëjwrâóÁgiüNRQGf« ±†¹Þˆ†…ü­ŽYlç‘×íYÞ]ZQ£î&iœðš, úÑc¡ Q‚Ô÷éïr»ž‘ä÷7 evÜW„ƀѹs$`[ž“øéev ưQ´1âãâ‡Èmd Š;±°€Ùìë1{†Ï鯣8e:= ˜H–`{:Ró24š²2N«miÙ!·ÃêrgúÈŸ¾8X—˜/ñ«÷ÌvË&L圷´à̠ƪ÷QŒIZN“œZ` £Lò£¥íÒT˜À)IÉ ¥W;Ä‘êÙz-uö-®–JÄëCkä_Ä“ü¥¦d= 3ñïXX`úC߯â8þÑy¶@ºß#˜È.’ ùô¾ôŒÏ8í­^¯ ˜>:’¡€zú‘Næ-YA‹[qO,N^Ž·6¢6 [Îþòxù/iÁ¿~ÉQà€Wãéx2vÃnh*ž‚ÖIÄqWávÕžOH¯ØËŒh¤›ÐûzÁÏ—Ð ‚Òyü 7ááhe˜H=3Ðq´‚‘~kiüÆÓĦ+5W.p§ÃÖÓDÐx/…Ç%œuÄ3¡=& Ú ùþ'¶I›wƒ«4‰|•ó5zÁ\ðµDÕÕô8·£ú®ú~®‘A·®C£?áôGÀ¡v\ôGWB”¤-¤A^Ï¿(~ð-vFäÙ˜èE)YGI{ D㑯Û/¦§n[2†¢µC_w}s”“%x =&¢±œ8ꪩ=ÇØ¢¿tñÛ‡B$5ǯ˻ÅU™#›Eâò„Y]‘UÑ·t]‘)e³¸Póžo‘ïƒ[]{¥g)-{®”•óƒL‚2>^ÈOE÷ÙœŠ’ƒ5Œ‰ŽP©# ¶kc4ægÒÍ꼈‚d•B!{gÛ㞨^^@€«u¨Ú¥\jgU„€‡&Pk¹å<¤Ë ÐŒì3ãµiPé9é¹¹RÃÔ“ßm@=ÑèûBtb'lqÞ(_g|¸öüºª¦`}°tW¼ë¼+NºzùzžD“M–ÛÃðkè…pž¬èªòR»€L/KàMô÷àKèÑÛV©Yý =dK™ ÍaIIXR‚Ú(kXMjC4ù[ª´„‰8Ç~ªW䫵áP½ôd õfU8BPwTÍP¬ÊMÈçfEMÃiöc‘>-Ÿl,½ûk°Qãc½ãä+óý‘þÅ>#^—b΃63£ðGÔdÿnN—™?r(57J™!Æ„ü U&=9b°k¹±í šqé*ïÇÑý/Ùtj·V`Ê?-üJr*Ì™^&—ù)gpÈ…†ØçÓì¹oKñ6`f.vY¨©ª)ÕWå§5l×HªæÕsô´çd‰7->x|³r‘reàÜ]a›À•ùàYØyŽ,rŽì/keRÑûìHzì‚];¶º7;ÙrÍÌ$­Xúùü -Eó²³·}¥q0Ñ¡JX»,¡÷«3# b“’RRñEÜn®ür¢-—áòÌäœHtô„H³h´(ÕFØÛ¥Té °;=ðyd›G—IÏk„h?Jdëöî=ZYej:PÔj†E¨*PJмQ›`…E¹*;èçØ¤„4ùªÙö³LÎ%%Ît€¢¢½åõ2U,ìMˆµÈ—A£nuú³öãpŸmkרvƒC]¥5iª ZT•V Õ¥@j>ýâË‘öÙ²‚X¾ä丳:¯ÓœÒˆlا®ë ZQËXÈ…`z¸y·t‹­8"¶ú±èr—Ú²JçS#­ÑdV·2â£E-[® î–T£À"Â̳a§Kl4‘TÅ,r§¡ 4yÅûNÌ®„ÃÐZéUå®[îà­r Ú±;ÀËoìŸÊðf¢²tPJfŽ áb=ÏY¹økó@Fyl˜HöN<‘µ î¬:ƒ¯£÷@á·\ƒI䣜HéI”Ô?©4_*2Ë*7Cé=^Jè螟BÚ¶ê|›¦^³Q4¸h¥Öú˜ÔÅ1Ä$©Ui‰ïbµ="ƒ"W•Nº°ªÊ8kb~ÏF“X }јN}ZB¼Ÿxñ HBk¥¦ôl3UQő҄À->ÇÎ8}º’³å× Öð¤ÙhVz›žÄÍ6¢ bÑŒ;-ÇsΫ}9w¥<˜ÐÒÈš*}IÝçsö}„LÀîω_â7Eà:¨õÍÍM%aP¹Š ¿<Ñ1¿qÊA4Mbû먮¾r¬á+¿"yÇh6Ù $›cðì×ZGI‡€Ë‹=:ªm€8Ú­/G@kµ„oÒÐHþ— ¯y ËNÏCêŽ~öšÎ+¢î®jÖ}NFÁ>ø4ÿ¾«øÊîÎijE¡êÔhÜyÖždŒü›A‹#ÕÄ¿Ãæä™ )Hh_Éð4£(ó§²fÔƒˆ‘×wöK– Òâ³H9Ð]Q r"j4÷ÞíŠToQ÷Ät°€ºKGÇñýO²Ëh4ò·™y”ÿù÷ÇtPÓΪ æg Y,þ~2#ûÞc¬gPyOìF°¨d1ÛvHwš\¾7ô€ò4‡ÍÚ³µ‡ËM{N¢h‰3íÈ‹!ûŒf,"ÃÊl5üÌ!Šë˜Ì&ç«5Qd¡jEE W©+”5D1eP‰:#M£N—óc;ŸÙç$jÔYÀBV™„?JWCë ‚P_õV•øÁV­¯Ô/À%DÒ9‡¶b.°Í7Øÿ˜|1̺ž(ƒÍD£ï÷ó"ö”àäÝ,ªtPþÆg¤û˜ #ð ÁÜ —cˆa°=Œ„e¹)Ú´d•'åuÀÜ,¹S“ y 2HNUKä }£Ã`+¤´Å?M¸m}akÃú2¢Öë,nõ{ewýÕ¢‹ÅOÑ"~5‹Í~–#'DfèNS½æ„¶’ÐQcwš–)2öIÄ?¦ó{Ùú°òàiHhˆ!ÔTc,¯'©]jê˜Xcwª*ôúüÂF’«è'ÞžÅošVyž€3—O|z}hÀïïÈä4rçuÙK´ÝâßRÕêÄTÎw]`­ûÉÄ¿ gLúþñù7C$yжÄË1Œøiuj]jwyh.a(fá–3‚ædÝÈ­=¡¼ nR禀²ÛüºXÌo–F›—ÅF§k8nÚuÁç!™½nzHÄWáù²;3ô$%gÈ„/þ†·dÅãIûËåÍÅô6çe¬9/7rÌƑޑßÖ¢-7kÏ e•½Joeê\$@d|"QÙC±­=ñ÷”L3Ð*Ø:LfÁËâac>ë‚{Ñ:Žð‡¢¼‡"“G úÑS$*átzÈý ºJ7Àaó<óQoSí_ئõùÝ<³4B‡€0‰ð¢-êXÎþ^®–Я“u\k#£Í¿cóÎË;†EرMØ!àï°…ÍÕµŸ›“ ò°HöµÚPëjíêòP"—R”r•¯èÜmy­¼ÐâPkOƒÑ¼CåbÚ6ØÙ½ÃÏ̚РÅuþjŸ•¡,€Ðfd’±xíï³-~þèó<û¿Åšñæåíx}þÕësð£ÖÒÿšoM`é¯áÂ_‡’–ž>˜»Ï¬©UjbkaEwÿ¤Öû‡/W¦Žét·ÇSùuº*“˜áº3PeIà :vjÝ­÷œ†rÈ÷1,²Ç’Îyx/SëˆÒÑýÓë¯CzZ¾7réì°×%ë’ €Ô'+½Íä3ìљ֬ŸšÍ°´œÿì†à”ñÛ'B>„Åæ˜­v9ƒ"l ªE&òÃuÅ9ç ò³2o{Í ‘,vHý&áÁ~Xï0I°ãÈ8œËµÑpRw2ûDzEáýCç,‹Ô ?F%F»–c‡PÕ¡ˆcæ£ìüvv{b”0Ÿ~Öråê…M Öynsòå qìÍGÛá"ódòé‰#?˜7>Z»£Å…ËKl3ò|±6hšó¨ACZúÙ|{÷—&Ùa¯.ª<6wÅ~f¤‹Þ˜]Õ«æÍÝ4sÚ‚swÏÔ_øº•³ì¤éɽ ~ÙÊ£åOç#".x!ºÂúÓ8aøöµ1´{B¸CÙµ%¦ð"il`²çÒî_{gKÓ_BÈÔ€éÏ'¯ß½c'ç¾# æ2xÀ7£QONü˧p ¥â ƒûÄÆÂv8Ý Çà(œ€Öòæêc{  ï5ì*ّ¶3ïï3…3÷ï+üJpÿ•­çmÙÿEºøæ? bT‡7”£¹æ;í2 ÿøï?겄Ïf¯˜—šB¤¸’IÍPdä}q1µªk|£CBCKBš2´ ÑpYš{6üðÎî5õ…¹™d€j5 0ZˆWø§.X¹J’˜øÛ6ï~‰z› Çs¯†¢öH½k¢¾×Ì?ŠÿŠŒ¼3[SíŸ$—sj•Z­F…éõY_œ?'É7ÃYÇd¥¥§ÉÞŸƒ{;Uî8ØXZ]Å¡oý'·ÙòöXWþ«³^ðÃ!º‡SY2=´1%x²óGk4/šÞ@ º¢ÐÉ“&-Áâ5ÜfÜ# ±ÌÎÃýNb›³øûËsÉL×eI~{4Š%ÏnA:nÊP¿õÈÆ ½1í³$`ä …\ ª²hÉ÷£Nã)€½ÏñÆ ql—`Mš<]‘™ûès$þ„kC=ò‘)3 ^tAÞü?iwD]B…—Eüæ×¤ +Ôš.F j®öBøîî)ÎÏÌÎå´ZF¿"xµ«‹D.'»RX:'ÿÖ-D¿Ž)ô2K¼>$Úg¼˜DûG»àÿJûÈmÄ_)(ZÿBw¢ä˜aXà<\òïF|L,ö#©yúå‘k9Õ\Ã%+b“ ¢³ãJäD±ÞGNgy¨Tˆj‘{—®%î\‰ˆ±^!ä(›5t*¤´…%­yüsœÙ;Z[ç?PÈ/ïpa3 ÌÉä%çÈâIIJÿù¯óÓxT²œä¼ÂôÜ\e":ì ‚}wQö]!¿]eávÚmßkÛ¿›YìN0?Ô}¼ÿâ´Ùð!ÌMŸt`ÎÁ®FšýËòCßÖ_ʸ ·샯²ž°Æýì,Q†ú\Ï1B\Œ.•ë s`%Q}Kd+âÆ® Üa~Ï©$¥i6" rMˆZ;Þd+AÁ­Z1ü  õäQíULg™ó‰“8³«~@Ìú~xÐåªýéIʼf³w†èåËMvÇ^"×ÇÖó ñ öÕ 4qgOÀs$štÛb›y&;]Icþªè*ߨ•\Åg'šÏóøà3?Ü2ký* ^ýdæ¦pñKžÕ ù6a¢´ÀTפ¸Ô”eD@[çúDŒnêýã92QQÏé?¡ŸÌy1PŒ)t½dïTŸ¹L2tgÊ©÷Þã4ÇÏUkÒj¹@g:z±  ˜'¥“UkC]%Ûv)ÃÔ)êpU*¤¨SÕĈ;e²,(á‰î4/‡,rÝ9·ä_IcšÉ{™¦}P¸¼ëħËÙ>~üG–†;+o/·& 2ñn$í7H†ÑLvªÙœÎãv›H;1 -p¼Ëˆt}ÑQHhC‰±²2Æè}Ú¥1¨§Dü b~ú‰Íy=ÌÓøšu$ÿûG2™Ÿÿá$—ÖðÃ*î>Þo–`ÈóÉr"Á:‘=úŠ­¤Q&êßÔVÙ"ßeàâ<`G@eœ¡¸.gßY×ßÇoâÁ˜Å¡Dƒa=b>EÂoÿLîOþ 9qçðÞ¹A}ðuv%ž•E·Âm(enÖ?T|V™¸RoØ [‰?Ùãè´`‚‘ÛV~Ì0s‰¼/>} äכߟÒ&BêŒèáÇ­‡ÿá‰Z“ïç5®^Š4.¨Ù9#˜±˜Ù„©—‘÷Âázó!Œ ýìNËgGk¢@ééU¤Ù›Ê5aÕÉÄ¥&C"ƒiºËNYæÚ“†.žïmm2þçÿÃlóTnU¤À6…ƒøõïζ)ë<⢹ˆF7ý`Æá^dÐýÛiðù7ÆÈ²®)òüÁ¾O*Ó‚«9OUr8D‚4?¶4±•ø%((/Ó Âîù´©÷¥>\ïž3ô}{rúö½¤ïÛ¢þà\µendstream endobj 195 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5157 >> stream xœX XS×¶>!prT!õCkªÖYëT+8‚â€(Ž( 2 C@&M62 2&ȱ¾J¿¸mËý·¯ ôZíöþŒ·gÎú`ô»c6ŽÛüÞø 'Mž2uÚtŠz›ZA §VRïP«¨”5’ZM¢<©5ÔZj åE­£\¨õÔ|jµ€ÚH-¤&P‹¨ÅÔ$j åJM¡Ü¨©Ô4jåN-§(GJL ¡†RÕ‡êKõ£æPý©¹ÔʆHÙRv””D±Ô`ÊžšCòNYRJêWQ¸ègQ`ñTì!6XN·¬µšgUN ½è£’e’/_ÆÐgcŸ–¾û¦÷ý­ßŠ~G¬m­îï7 ï€;›p›W§üÖvºm“Ø.ÇŸt´vÐ’Aiƒ.±"v$»˜Mb¯6x—ýPûtÚ¡\¨ T"ýßõ`¸/ª‚Å`î³)‡T™¡(ţܿSç BQ(]œž¾%2a5¨Œ{I—W¡†F à÷ÿÝ ¦Óû‡[(PhX*ç_Òe5¨a_ÆÞ¤>=+% Ï¢ÙLú:6XaºkS¸¢÷ÔÛ=3€§Á^ú̱M¨Äs¡ãåd¡TÌÇW¶˜F0….&ë6ÊQ<¿ÒÒãÏï:s®X¶‚Êm’®yµÆyï™ÏK _¬;:‡“~±yÅÆ2Ý{ÇèÁ[o÷½ ÉöLN²`K[éìâ:†‡†52öZå±³è Ó¾üs8†VE °ÐjTÊ×vªhé«fÁih°ºÜqϰñú¬ Þ±X 1ÀÑß6¸xoضr*O6N×ÃzÑTÄB„’Çÿ‚-±åøÑØK`ñãO`ÇaíÝY‘¾ˆ™8íWï>üµãòùͳŠù¬¸=ñ ˆ9ˆtZãfX®‡ z¸ÑT.ÉÔ}˜e쥋ç®Þ¹è2uìB·…>:Åá‘–G|ަ4!DÏ~)ØLþù­ÞÊÐ ^ú¬^]ìÿX;ëþ/X»©!¨ô¢(7ˆ/ ÀöÌ,á+;UÑtï|i°N0 ¦Nƒ1ؑǒΓ¬ úIVmØ3¸Ï*lƒÅf'¹Ó•ºý$ûž‚[*ƒQœ?·£Þ·ÆƒäÌrÄ8,Å7N´ì×ñ8dƒ$AN0¯"˜Ãlº¤šIÝ@/`=6Ìœéìvóñ“›†¯îŸëÊu“+Z[ºfo8nØD’öû3=fŠ\àéæ¼‚&¾CÒAŒ‚[„µi'Dƒ½ÄÅ<€*+¸§=ã}9l[@½–ŽEÑŒàpí’Æô½A\g:ÁHI㪠æeï`ÑC{éqÃrö‡K?A.3²LQ˜Jmi­6é“ë–*—yòÒ/t/…-èÞ“ÞÇWf™FPL—Š@ <÷ìlü½4À0rF1|u, £ÿ2öa Y»­)#ͪ`3dÇ›íE¿©»ÛzHÒ‡êí¥/à ä³QÙŠ,yNxöâ"ô1SÓÔøã×ÅaY\fÜž¸Æ $ÆêˆÜ¥JSs[t[P,ÁxvÔÌ€ ¯âž¨xéÓÖÔ¯×Ù¾=xâ¦Õ…÷ä\Fù®ÂÄáÇH⑼¡ 4³¥ˆk 8§®#ÔžÜôõ)^úý³º¦;²ú¿iEÆ|O&y 4 3Láãè^gNí©jrÆGx7=öF@ûûG;Ê‘.0XÇiÜ=vF!f.:[Ý-žF8ßhd,üÞÄf†èP9bÚéÒjÔØT¼7< »úá "ò8iVRÈÔÜÄÁ~ÉŸgÐc ‘íœ4ö:²·¥Žé­<ˆ%9mÔCÊ øC&¦Õ©Â”ÙøÙ<ÊØ®³pW/ªvˆ’‘³„ô1«ŽÆ"|‹à®UÝfÄGöd© ~Z¤E:äXö£Âfcœ»tàl±^T*$‹…ÍÆt$‘HI4€VF’õ÷£ ¾•^ÏXiè]5‰'’Ž(¯î. D; ’£w§ùan—‚ÑÐ^pƪµ»™E¡ØÞסþ2îÈŽÊJ8Œ£¬‚r}õ£Ìâ¬J&“ÎñjÁ}²S‹âÊQjAY¥Ù•̸&éŸëíζv€;,F°hb+COi!¦®’„(G >;s²Ry•ÜZó ~gë䦋¯*©+hÉäP~f¦vOqæ>T€˜ÿ>º€—žÄ wc›õc‡,ºêö’“Æ´ +y'™dRÖïKH_ŽÙ¦ ˆóF©ˆq÷=ðqëw-0"›£¤§‰á0ÈY a´Õaº¸ö N=8T¢ZÞyä‡/¬jzÂëzÑÓJÓÐÆñ4+?ӷЧ­Ê6ØÆJ݃yÖ»‡_wízêô`ÕÛBH¯w`ÁíÏœìÌ¥(†(ˆ¶š“¶ú! e¨Y?ᥠ‘·2(”Áë-Û%jBFÕ ô¢£ÿñæã ÄíéÊ´PG Q‘¢K«iÕÍÂFÞÆ¯³w"5Ò8"µ|f¢<Ü3@ A™9ùhS­,—ïˆSFøðk}~ ³¹Þfßn€È±°Dl]8Jß©V¤q鉱›œ3}þÍïOÕ†ê>F)|f`…ª 1Uº²úöáÈÏ[‡MÁÖ?Œ;àü\fBµÕGH[¯Y63 •1¢Q,‡ŸÒÁ©©ÁüfI¯ÖÖÀ ¾Ž[cšÝ(Î1¨Up‚ ]™‹´¨„¹hj@þ¸Rò†Ã7ºÐúè Z¿Ÿfê0g®9Bî_hÎdZÚZì[ºu(íê¤ÇüJ@kCŸÔÖÕ3b¹@²Ú{ÆÜ+nuütóúÍk­«=¹^ÙyÚ1mbðn³IÍ Y;³Ø„Xu§JnýjÂI.È2iXÖ¹{_`©¦96eâ…ÜjIL@VwÊ4=ýdØe¤7@IäXÍê*P ÐKƃq¿±£ˆoðb$°àpòqµ8eêîØ4>zÝšš‡æŽÿŽÉ¼Ì·_:‹(/x‡yØ ]fxöP ¹Æv0ÀŒUNÒ÷>G Ü®‚mµûKë.ÏFñ³çnžÊ­eê /ð•‘fêZeRב=Ýw™vëE¤žÔDªgÚh]iüô©óc,áq”™-èT™Y`M‹…Ñ‚ÊòWú§£‹Ö®Ýºh,I”±€”—ÁùÂù˰ù²]ýÅXcçùøâªÛöÒß’A Ø5>'Ï]8vìì§ŸlZë±e‹?)ÍRŠjEÌ“öÛ )õqu¼®¨*{_fîŽýi{S¶¿¨~lãšä š Í||a`Åfļ·`Þô­eÁ%±¼SÉñ)ÑaCP`±¼ ÉÙ-FÉÌ´WËa zuåÛåéuµ\bžOå$Ä,¤SQ"JÝ“€ÒQRqr±F‹ö ì=ÅÙ{臯²£æ=V^ÐÔ¤å«K P;b:À MÛ2o먞â颶¨«¡Š…ák¼,1^ 8Xþ‚¤ú7÷ÿÇíƒîrìë{ì’ÝC¸| ZRVñ0‘tØÛô“c+7nð^5‘ŸOƒgûYK…a¾ûðîËá…æÔ%Ð;‚~fÁ´ôô=b3P“¬2E#ä†Â*BÊÂêâ æjÕg‡šˆó'Ö"L窷ÇÉЉsWQ~Ê~.©>J§*ì¥îýçvàÿ|‰ï)\†°ÝÎðm32Zá+¸¿ŸN™øô6-}!¨-ë¢+e²èh™¬2º®®²²Ž{sk±;{J¯û_7.Þ µl]ú× 4•ñÚºrŽlCv­çS»ëM¹¦LSÒc°C— «Ì-n*à‡éã¯ÆÜ~Ôq-à“¤}¼ïáy”3Ò³Ê}Šü¢“ŽgZOÝ‚¾%ï…ærYÑ…éÚ#ÝN0#.,•ó=¸¦È›8Añ¼9Ó—œpý:’8Álͳ¨âÝ&TcG8¼1Ba_‡v‹­‹IlÏc§ÊËìÂàü/>¶[úy°h3¶å|l@buÐÌ>7ÜBãéxœ¼êÞÐͤ­ª fþÜÌ.o¸Ou‡”„îÛxWúš–¥ÿÕå}Þƒñd3ž&öŽ5?0°Áæ·ŒsmÐÏøk¼Š„¬ºA”ˆ éæ‹}Äã+’€˜žÊxÔG àa±DÚÚqää‘ýÅqnVIbß”ÏÝ?LúS2$Zôä0ßÄm2.ာ<1Òû!(LmD3Y'´èEÇ H¹÷'Hbg¼,ï@Ø‚Q¡àƒee…õ\´À{ࢿ¤-ß³3ƃrøk:½Ti´UA(:–÷éA¹¢‡Î°G›õvÇ žÆë¤Ñ?ƒèd]Ü·m;õå½ ½<Ü·¸ð_†²_ÕoE˜Óïá~Øúý9³i×ÎÝÊ ¤`JâÊš^~ úmoñ‹ ñ¯—7çæeîÉ3Û]E²}þõ[=Šæj¦ãþ13»v¿€1ҦꦨM˜(fB[tP#ÐH[tR ¡ÆABšnV¾aä•?Ò€îu”VtQ'¼_Û°y¥™å3å eŠè´„Ät¢&ÿX”¯A(ÕQY§­Ì+Ù—ÛÛE§ ð1I\8\daù°ÇØrT×Ë»å/±=X€åsDq>ûô…Ñ0ÒðËö›ïâQx´îûA·½è_Öe<\ëy5›ž””ÁùO÷JŽUÇkbÔHÆÈË3J*Žä:ÆuΚ(1yŠl4{ú1™gïB½AüùE6%5=©ãëOžt'°¦ç+ãp }éÌOw¾ÚvâúŠë‘wñÜwÎÌéÛë’ËtûËêŠ2ö¥äq%'N6žG̃/6OY¸a•«'ß#¨—odu¬è€?£  bxȶ}Tw}ÊÜqùK°õ‹‚«UZãbÅé{wgq·ŒWå§¼ÃwDó!ru€ÚcWBáŒôoF¸¹ô/g–¬Z¾zÙD¿¹…'#øœœ¾g‹á­,¤±2O¢ïkèÇõµTʬûè­­ Öý)ê³Õâendstream endobj 196 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2053 >> stream xœ­U{PSg¿—@îU«cº°Õ{ãÔ*> R¥¸Gð…ŠDª¢B) B DW{áMï"([´¶ˆ lÕu´8vwÚq×ukíÖW·~¡ŸìEÔívv÷¯3óͽ3çžûýÎïw~‡$ÜÝ’$…¡á“O‹\o®yn®ùÀ±!;<ÀSžî=ó¦EÏAæÙH1 E½FH2%½ T•ªOS$È5b_éq@PPàrñ;+V‰×)ei ©$E.ÑÈeJ‰†IïVI2^ì»F®Ñ¤®ö÷×jµ~eºŸ*-!xÉr±V¡‘‹#dé²´LY¼x£*E#Þ.QÊÄÏ/ç÷ü U)S34²4q¸*^––BÄìUZú&M†V'—%ÈI±ƒØIì&" _bEì%BˆPb=±ØHl&ˆ-Ä6b›p'Ž·ÉPòŽ›ÎíSÁ¯×Ü¥î—<xØ<~ŽR!Tý[W±—ËN—ØN>BñC×JtA4˜ÿ5ž¾&n»4›á ñô<55Vq4šÅ]”ÌX´•QS­–pòqZMŸy¾é¤¶KûXI}3rí‹åaÑ 6üï\/×!ƒÃµÊN¶_F—®P”(Bsýb“~‹ñ\<çÞ2D"òÞwhƒáXÑvhúÒNÀ|d9ç<ÝØÝw|¯ûaZ«¼ë„A2Ä›v¤F«Æêd@{¡§SØ "êª-Ey¢ïNÝýÒfãŠm dªÓò몛mÇ“k×ÉóY‘BLÿGÄgx 0íS(Bsá4ë…°Áîz·–l;‰òN ÐE×j‘ƒ35r\v.Sl,È/6&õ2 ¤»v<Îì<Ê^Êi66ékr›3 –¤ïñ_•|厞)®³hÇiY¼Ò›¹2«Ù\neÊ*êZË*SO¨G€~0tþOƒ©í9Õ¬²Kn“”GVo¨…Ïigíð£§e‹“,Œ¹ÈÊ•]%õ¬×Db–e;]Kœä™?¸6\L(Zôa‰õ"ã¤ÒM{ TðžYfæ1©Q¶ä%°avï$/Äï£Z>Vñwäqk fK.˜*€®‹ƒEùÔ ¬¹…LLàþ‹;Nƒ^‹ýñ2‡%h9~­ÿêfç….¶>®CešÇãà›ö”§žq¢ Fòû!Ä8h™ËW„ÄN,Fáz¡i¡<à7&:ë/¸‡ÒvGôXÏè æ‚~7µ1õ $EÚø7†×-ßøù½/t‹>q­½äl x(d]Pá§çt‹Â3'Ùì‡v0KiIÁfˆuªjrÚÔ×á6t_/o¢Í~B4£ÜÃIí,(;Ë¢Ÿ(¯ C“ë '‰FF®›è¾¨q¬ßRg¦”–ãt ‡-“=£ºLõzHƒBS©ðmÜæý:k²—C©³ì|—5& ¤ójÐL}1 `jÚæ›¼}ÑGE5`’—¹é|nd€2§r ª¸*ÍÂϼKsJø²6(µXëž aïð°5»ÔdŸr())­¡'GÊŽ²ì×oÚÉþÏQÜÐW|kŸ¡j\’¾ºc+@¯‰ûà˜©¬¦¥¼£MWuØXÄqÅlÓ¥óŽ@6ÈÆP;Më »•Ûäú} £ƒïf v]hf,1Ò ›†jo²#új{ª!'Î 0Q­¢Uá1‘ûâ{Ï«=Μm.=n¡§hzÇŽT½“Sh¿ÌOáÄžñjž=tPã>NŸ‡î yhnÀ·‹Âc㕬e¯PRÛÔ÷»kÐÇždá]x?oIéɇªG“ؼ¾{þ7K Ô<~ÃAv_F’ëô=éT Wµjl%'Æ7^°„÷ŸoWÜôÍ«¿vú•]lDZS•-P e`-6rFÈ¢s* jêÊ+k²“¤rZÅ(Û*“xYm 7¢;¡2ŸUÊ!Š@])ëÉ|?'N ûèÐûQHˆÜ ~‰æa_ÖĹˆI¶fvÀ ¨€æ†fú›lÑJ@Dc#ܹ˜Ðjùc%ëÄÿ-Þ84ÜUßÙlgÛê+y0ô-$¿ÈQ‹Ù— l’£_î° iXb.Ã!$ü¹àþŸK YøŸÏèEóo‘yuø»ž‰šõ š ^“áе478Z< ïâ53Rþ‹}ò1´A+œ‚–©‚;Me'Y—òréÀ91cr^¼÷Ö‹8KQ”€eü÷åΞ´:'mˆ§8n?ç­â)OµÐjª–«4ÀZ«Õq ᅩ‡+‡ú¯°ÛøøwØnÔµKðÒj}åÈñÑë‹s_ÝÒ½\=÷<÷äU(h¯,»+¤©ÊkíB[A9§Í`¦»ëUžÓ앞žC5ž3 âŸÄ†Iendstream endobj 197 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3543 >> stream xœµWyTg¶¯¶¡«4HLL9¸LÆèƒ"š¨Ç ¢ã‚1в#t7M³©„ºûv³ïÐ Ý, ""‹àB@Œ‰[œ¨O1Æø2ÉK\ÆL21“¯:óf>@“ÌœÉñœ9óþéÓuN-ßïÞßr¯ˆ²G‰D"‰§ï÷E#ÿæÓEÂŒqÂoÅ€ƒl÷löà »Ã3žë| >‡<‹¶O¢Ä"‘4>ÓS&OQDED*熸8»{x,uu^´p¡‡óšØ0ETH°ÔÙ7X¬$1Î[e!QaÊç¹+"•Jùr7·¤¤¤Á±ñ dŠˆ•.®ÎIQÊHç-añaŠÄ°Pçu2©ÒÙ/86Ìyôp F=e±òe˜ÂÙW¦R5kT&÷RįW¾‘¼7%Ä7Ô/,üÍÈ-Q[ýcb—¦¹.$À¨©MÔ›Ôfj6µ•ÚFÍ¥ü)j;õµ–ò¤vR^ÔêuÊZG­§Ü© ÔbÊ›z…ZBùR~”•EM¤ž£ž§&S/‘bQv”Z4Q$¡qãÞïÿÍn­Ý]û ö/I½‘®gV1Çǯ_3aÜÙôÌqG‡w'ºO”:ÎwÌq<ù¬èÙ´g/LòTŽ6XQUð2Єߨ|ؼ uQ*¤‚Z•{‡ ?pJÝ+‹Û¨a¤ô9Z¡ NBƒºÏa–•Ö*Läºt…•ÇÑT'T(Äî…i ÕÔØ à¤´Yw‹ÜÒ×À<ö7¤@jƒ B‹ü{|Pâ(t‚U˜a!ê ¹$6£<îA“ò´# ( æAز¬$FóÏH·—Ò¿/ÉÞÉc ˜Þä# ºÓäV8ýädÓ —G~ô÷9¾j‡‡Ó~õÞ·AšfÆQHͨEÍC¨yH,ìAÑ,b]¾Ã vp‰ŸÇ/|ó2’  ¿FÏs8²áX#=%ïÕ¼Ýpεô6ë©iƒèNi mÙ >‘à Ûµ;9 È':ñv+r3 óëD.¡š!1Rcvì´ki½¢+ô"0ˆþö!bÑäù_cÑâŸ<™Æüì+EÙ{øáè_²J(cÁÚòšæÞS†£ÀÜø`!¶ÃϬeeŒ´ÒÄ+ÍÐÄ8ÚÒÀj³·ŠÐoo S¾wÛV±R#}-?#œn¢ÃUž\’}'A¯¡ihòEþx:rÃËy<å¯/²{ÔÅ­¼ÐM·êŠ{¸ï%wàî ½^0B`«fþ–5ÑÁ›ö.A;i¬©.üpKLÞ•Ê>ìüêf‰4\VÞ3RszÑXÙØ,o Z"uKÎá4H,ÁÓþE›tƒÐ põ1‘’èµêò#¼£0%Ã(,Ñ‹Z{QJ¯Ý^cõP˜‘•œ™ÍÅÔÇíOŒØ°-"Fò‡d‡³g¦Wªê“ô+@Æ)v-Þ°ëè7 \ž´­º TÀ¤Cn gÐ)[V¨Õšj¹ÂbÐU× 8 µÀ|ßöÖéèC™¥|D‹¼hCElÑÚ*ø€i1ÿ‰ŠÄè8mV1äS…zÞÑVšhEïX…¹VÑé{Âk·Å6íd; /rV:N½ba¼rÁ&m¡¿ÈO‹à7ÒX‚“·o:‰:P7ÚÜsåóG>øõN—ª `ª ßÈ£ zqŽF‘Ãí\!=â7è Sñ¼»ã`‚ã…ÈûêmóÅv^¿¯5º˜(ª!¥›D?ÍŠ–Eß]B3êÄh…0‡E3­x&òIhæG¼¼PÅ$}†[h,¾®¸Ðzþ÷^Â6ÚSºîÕrcîqÉŠÚ ›fÜFý·ÅÂ}áÛž_v3Z%ñjh? ì1Ëpî'§~Ê]?sQbÑ}JxÞ Ÿ‚åqó=Ueí<Ò£~¬Ú]Dv„"Ó;Ÿ¸ zOXË>á×zzI ×jÜúÏaÞ¨ñx ¾Ñm‰ëJ{—tü¶ZÍ5GwñeöVz}Vñ) ´£P™a¦[EzA)\Ñÿ²¥uµÇ.j+-U§B $ÂAØ=ŠîVÆB:dªssÓfãr'l‡Úr«4…SŽ‚ž°A¡~ äM\Ôoì‘3P–Wƒfá Su¹P EºâÚQË2¢ý†úO?0Šz®¢½—†êÄÂdd‰%tîéˆ<Xµo©!Õl©­µtEÀAÞÜ}Rß Ìñ÷ÃÜùïV­Z +™wç>ìí+5 ª9ïS¬ËÚè {œDNheÅ7V\7#Šê$BGzbi¯Ù¼Ù1¿-ñðƒ:º ¤©¯ Ø~,ìýM¼-@ÅëüYЃ®¼Ær¤Çz ˜æïÓð¶72‚ã#ø¤˜˜·Á"Ûö7¾c‚]‰ƒŒú!!Ý*2Ü .ès¶ñò ­×{(Iñ¶Ž¯]]ª$‘Cê—1:a1ªÏ©"¡¥ÚÐÆQõí„‘G¶Œ=rJr+cËð8§=3A—µ?VLL²xh+h³$W¦ìŎµ‡œé:u¡pl}F²~zºNÔ6„ïˆÑÿ 6-öÆ×î·˜ UÖ˯Ÿ\ŽÇ/˜5’$tAöÈ©9”–fƒ*S£JSñ ^þ±þÀø-@®hùg]}G†šyÇÙÇfÍ[„Úëb´ßæÊf4"ƒÝ¤FɘT´´\G3a`4ožÄ›+œhä…cZåüuBAz~VL-%‰]TòlŽNÚá’'ú1ë>!ú±Â'?Yì¨~„¦'JÅn’Ðh²’±tøC§_¶ž€Ö_£‘(y¬¬8:ÑÔæGŽÉü— ~O~à‚Æ õôªøu4šù“~„¿ÐÞÃ×YÒ#UjB|ä^éÛÀÄaª m¿VÑY×Ê[:[úà<´–¨ØOº”ÂŒÚÎhQfXw‹%ÚÜÙÌJ6|m¾Tr ê¡1›î ¥¿^+/˜é’,P—¦ Ó†¿r*KÕjŠ”¦@«c„h+œx0ÊŽí„2ØqcìxR~x=Ör¹yŽÎ YçÅÂdt­Óá[ÿûx"–,~ OÂNž‡Äè™^D™Šr r²ˆîÕ|ÜÒ7”ÁÀÏiBkx­5°%Èý }üEx¦6ŠqDý$<Ç[QŠD¾"ºzÄ›í­˜Fã%_?ÞUR­Î©àò4ŠL2ÊšfKM¥=ºëõþ³9<þwÒñí§¥§mñïn ±ð‘i Þ#)ºÊ¢ßIÐøn}ûpÞx:¿ü‰gOµd52°¨~l8¸/AKÛɱ¥ü“)o„/¿6è½ !Þ©1ŒýYòK 1ýG'=[h¢‰À>cDƒc°»ï}m ËÑ=öOæ›à&óÛßÁ/q¸ÿ_7·ÂT *E Ýíé²ÃaÄð×Á ˆë ª>Ø­<ÌÇ•Ÿ›Š 4=r24|î&©|소Yšâœcªúì¾¼C±-éåqÛª™ù,I…j ˜¡ÂTPªm#0·Ñ €_~%`#žÂ;" ©$Ó‰&?a‡­†Ù†D³,.!QkI¶´èê8Ìa?¢Æ‹¥9Dõ?3á$9|9œ…Ãò¼Â^°#|îL´ÚÜE§Ï¢kgÅ(Tx•ÝQØ™+g.|Œ–Õá%AEœ. òÊO5(ptòPåÁ;Ù\´ß®ó*öÉC¼|Ñì]µ{ÚCø¶Ð¶Ì«)mYƒ©U9'”-þ°•Y½ÝkY où±Üæþ¼kšV͈ŸL[£ÓV‘VWQÌ”˜ÚKª„\ˆúÉ »ÛиsÊ^y+ÞXZ6bä¼ÓÆ¿4Š…Ëh?‹]=æošÕ‰<9á…§Ž4ž˜ÑdÄßB3¾áGúÜÍÑ ŽSûÍKIðü¬zùXÝmöcE_ýO9gú¹Ä§ˆ0š¡š~ARGÛ™_.9#ô·ÿý—A𦡩7ýë|þ_wžo?J4 W®V^wÄ‚Ì&bÍ8‡ÆA]™g`$18À¾N’¯/=_Y^RtªHÛ"%3±«Šï‡Ï¡¯ßzöÈ Ý×p–ÁAø:»¼õÉH”þ ÁbŠ×kÞ¯½ünË1²žU^­ÜBì`=¼«Òý’ñ8ŸäÈ‘)•¢ÓÚC**ûHŒºl,km/;ü% ·™Ph°ÖÓª´Å\ŒTÒ¨{HvðVø#4Žv'†^¬ªÙ‚Rá*úñ>ÉÑ©û(šôÇ­`$ªýYÛ2dgn!ìg°¯¤Ñ|îbƒ…LÎgúáOd[x“,¸Ìú¹¯îè|SCõ¡¦dƒ,S gøýéã—€ù¬ßËmÉÎ5[6yâDûxAD;&xV#YY‰I‚ƒËië„KÏpì–ÆK.Õ8L¤¨¿._¡¼endstream endobj 198 0 obj << /Filter /FlateDecode /Length 193 >> stream xœ36Õ32W0P0Q0R06¡C.=C Âɹ\… Ff`A#K È ÀRNž\úž¾ %E¥©\úá@u\ú@E\úNÎ †\ú.Ñ@3c¹ôÝôÝ€Ü}o] Œs~Nin^1P‹—§‹‚ÚÂÓíËÿÿŸòCõð¡£[fš:>ÔÝ«#}AÇP`áÃÜ6 úR?|ðNø²í‘˜´ÚJµëÜü}öÿ02p¹z*rËg;}endstream endobj 199 0 obj << /Filter /FlateDecode /Length 161 >> stream xœ]O»ƒ0 Üóþƒ@„ԱЅ¡UÕö‚ã  $QCÿ¾äA‡gé|wò™Óu²&‡/Š U6·$˜i1–µ”ÁXYž¸JÏøx“þýñ‡táw¹Š®Ë«¶„Ð)Ú¼D Ò.Äú¦z­FVýI50ëêr(¸ˆâ?•M%Λ€{dcn𛤯Òïï|JÁö[çS¿endstream endobj 200 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 329 >> stream xœcd`ab`dddwö 641ÕH3þaú!ËÜÝýãïO/ÖÆnæn–µß·}OüËÿ=J€™‘1¿´Å9¿ ²(3=£DA#YSÁÐÒÒ\GÁÈÀÀRÁ17µ(391OÁ7±$#57±ÈÉQÎOÎL-©TаÉ())°Ò×///×KÌ-ÖË/J·ÓÔQ(Ï,ÉPJ-N-*KMQpËÏ+QðKÌMU€8OB9çç”–¤)øæ§¤å1000103012²øÿèàû)Ù½àûžßgf|ýðû­;Ì?Ì¿ßý´òÜ¥î;ï~3>ú­,÷»õ¯×Ã￱}ø}‘õ Û÷|¢ßg|WaÿÎq6ÀÅÅ;à7—<_éÂs¾‡/œ½íwÒtö\7¹å¸XÌçópžèãá¹9‡—Å|zaendstream endobj 201 0 obj << /Filter /FlateDecode /Length 179 >> stream xœ36Ð31Q0P0U0R02S02VH1ä2Ð30Š!Œ‘œËU¨`d`T022L(’ròäÒ÷ôU()*MåÒŠré{qé;8+)—h ™±\únúÎÎn@n€¾·‚.PÆ9?§47¯¨ÅÎŽËÓEAm‘¸pm]À/}MSLJ:†l:È|ˆŸã[<Ÿb↠ºä³eê÷-`bPàrõTäå©0}endstream endobj 202 0 obj << /Filter /FlateDecode /Length 161 >> stream xœ]O»Â0 Üóþƒ´Aˆ¥êR– ü@ê8U†&Qšü=Í£ gé|wò™ãu´&‡/Š UV·$˜h6–µ”ÁXYž¸HÏøp“þýñ»táw¹ŠÓ9¯ÚB§hõ)H;뚦ï´îYõ'ÕÀ¤«SȾà"ŠÿPR4•8nn!¹in’ K¿g¼ó);Ø[æS¿endstream endobj 203 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4090 >> stream xœW XS×¶>1’sªÕx¼í ÕBÇ:àˆ¢¢8‹(Š ™$aVSH²æ™Èà*¢âÐRµÕ¶–V[¯­V­íÕZkë>é¶÷¾ ؾ¾ûîë}ï}É—òeŸµÖ¿þõ¯ ¨Áƒ(@`å¶v“KßÎü_ükƒø×…€wÿ2Ê²Ë ¬…`=¸å5ñ#Ð;ÃQ‚-ò|• a‘*7yD¼"$(Xé8μãt—9“gL›æâ¸$,@â/ w\+U„I•䙣§Ü?$@ï8nA°R1oêÔØØØ)Ò°¨)rEТñ“cC”ÁŽ›¢1{WÈÕŽë¤aŽ}¹Méûp“‡ED+Žkå{áE9- —G,[®ˆrWFÇÄJ×Äû¯Ýâé% ›ë2/yÒ”i3gQÔj=µÚH9QΔ'µ™GyQ[¨­”7µ”šLm§–QS¨åÔ ÊZI­¢<¨·©ÙÔZjå@¦þB¥QÃ([j85’E9¼¨ÁT–ÀA°o`PÈ ›ÂeÂGƒUƒ/Z³ªIE¿Ðè{Œ+sûÿW. ™8 U ½e Öÿ¶ÀFh£·u´Ýf›m{ÉöÛW‡^Íkl,E`F>fÞ½JÐbÙ$ä'[V³êM~"$‚6##‡¾x`Ÿ¼W¼HÇÈèÃY pZ¡FwA{Úz¬™Þ¤O0C%r 9ˆµGÅ¢sxbvŠ^j‡0Oˆädô‰¬³pN@ÜÖôJ ×‚ª ÅÄà9È‹Å*‚¾°²á¯‚™·2ï7Ž@ƒ{Q`¯øZ‡ŠÙŸ?={ùÝ’íë9œHûª`yb§¡R NA‰®{ oP€ÎÌ Í4܆Fy«ÒP² ¦À®ûåŒN$¾ñˆÆN*+}­ }»WýZ¥‚“¾Peâ'wPÛ!‡BXd7ö¶ÅbgG<6Ù"ñ? [ÇbovHÊ#‘íºnRé!¸h<ÖtætY\„c¡U!µR½7H!6*vÊ}}c¥Àjñ3šdäG™L#ž÷¢š;vâhºÇ¶¼s¾ª˜›=Ó1…Eî3çùÔ·FI’ªÀ•ŒûàúÈ–½ƒ†¢ACvhÄø'xˆ×¶èÝqóeë«óãÜŒ]’Áÿ¦NK=˜-³¹Ëý^xÙâÈÞ0¨%/jè@­j§”ñŒ-AcÐ8´mÂ4/“¼`d"”ú«€Ý¡Ík‘ðmt‹!¯“{.z=Þ AÇ7–¹Á8Ø c6/ßêkYOHÖcFÍ-äxí4 y‹eû⺬V4°ò÷€_‰:P‘•\¤ÀS#Ýðb`°£¨?ª|H?.–Í’˜P…\4+Y6ž›‚ÒDýÁÑhš&¯rìȘD6¼óoTzþñó¯ûˆ´ųNJÐ[HÄéh­.1¢˜ˆê„ÚêÚ²¦ƒaM~ë¥ÒµJ®)Ïh<æ_0¥ÛP¢?G¡Nw¹ÁXz©¦è¡Êx•‘ŸV#h9ƒ’ÎÑ#~{ ’ÕZHNâ´ÚÔÔ µ¬F–Bê°ß»Ô;´4²6ZÒ";œ~&õLÊMMBaš1˜™Î°ß)ò«sÉœ¦P—› Ì~H‹—à‘t¤çêõ•\vnQINNûî“#é¾mÇõ«'b¢k%!ÍAyKJ#s––ÀEæ`mûDåÍU8}2d”S y•¤ÕÑf”dæß4 .>åÝï -®–ùý©¦k4©œ·k¨yÓgpÀ[ð\< ûá]h~y{½­Ë$9Ñ\L”K+}4;ç*g¦=4*Ø{`gPdé‡YÉ’54¶Á“ ÉoèB‡ÐAäÑ}ûûŸ\ñì:ΤW“œÊ!§š`7–Œ™ØŒæV ~îE£MBt““5c'´FNëæ¿9AÃ(îâF¾¥ì¾Úzåcî¢Ü‹^" Z _Wp¨‰&s¤2î'ÍnÿOÕàÑ|vƶÕnsÕç8ô%'ö5ôhfHð<@z2¸1öXúQ8 ]µ=Œ8N?W„ÆY™i÷Ô¼. B/Ïô“À†?¢ªæG›U¼VˆV"Äjrµ¹ÇÔ·A%Aa—V©Û ÁAý(ÐDË‘3Fö¹‰ùš(€|CÞôºe_}¦µ¸UϘé0hA2½ÜЪQ{`DBŠN›©‹sìm, /ÃZ6 -ÃÑ]¶æ½cÙÕ}gý5ZØ °ü"vèJ# R´šô©8ËÞ5˜³ Ë¡Þl¨'9újvA—‘CN„*]ÑþU‰?h@«VÎGÛOB%eDf²Žô׿Kjó'±Â!dàÑmqbñÏö9ÉY)ePÙEÙ…OQ³ý¸9;%[UeU˜]Èôé¨1¶¿m5Žè¸éóÍï½n²û¨Ðw×ÙicP0ÆËe_H.È7Ó*اÊ9äFélñ;ØìS¶ ˜9Ë¥«eÕ õ •Uõ;st’†úSÀœ¹0S²—×S^ZWõÊP·àè­àϸ<Š¸Ê‘·áðùR“ú!;Á5lçŽ-§?¸øšœËÙXF½>¢F÷ÍBþ;TÄÊE*çýxvæíÅáMô¡ìâÜA³(X3 üÁÖ‚_?µô? e#‘#Xj,ÿ’W’ž}%Dèg6£rÀÀÔ·@5As»6V'%xo‚=hž€Jmqšñ‚¶WlˆÞîî H(Ñòõ¦|haêãÊ•ŠøÄ¿öÀ³ïw¼s¾ŽC«øùEõÇ®Ìt¨FI$ÑI-A&¨2S2Óœqª½ ¿CeBmM‚–;hçC!Oñ¯³1™±û!œ‰¬Š­¯¯>`¾´üðL‰V+&£RÔïè;˜eßoB#‘íOÝ7ŽÅ¬ã<[7Â$"p¡fÏk ½*Ï)+(ažf²3àqMƒ¡å@¤¬ª¡ÌÌ}˜ T„钓x{ÙêæmZä7yü’Îóå…Ü‘ Í~Zv†­¶x°hÛ‹ò?7Nȃþÿ»Ò•°=XæI\© :Ü×¼vd¨Ÿ#j !èC´†_Çâ7ûR¹RAHõo?a¨Ö‡rÂÌ®þY¢=2sŽHÄ?dñ‡Ù¦¨º0™R^«07ÕÕ5q¤Èh³ešIpñ ºuEˆbùÙìüªÈ+pœ¹zîÊ—ˆ=;ѹ”ËŠÓ«‹ûBµyÑUŸœ®Ó%§sIñ…%{·&Tm==™pþ•9Óœvúä¨%'vV¨ÑPù­¸msˆ^×÷í®Óa".iœŽ {R¿w‰•`/:ÒŠóôúâ<®¤"%©ùì¥õŸ§tïbsëÉó‹1Ç£š$»Îûy”‡XDÒµëdBg!Jà`_J„ÈOãIèá žÿ¤½Ch쌆½8ôÖ—èõ'zA7AçS¢³^Ú}:ØIzÏY| >ü„ƯŸýÖFlÕŠVrýð[í}ƒ#DkþŒ'¡èºþ‹u~ôÇÛJPßÛNÜÕaAÔÍÓ=ç+ö,ÿ3nüÆ£ÿÕÿ@¤»`Ú{(¦Î¿ØÜ`»T¾%ù]ÿ¶90¶oñeÄ·tEÿ·›N´ÉbKvó¹ÈSÈt*òœørå·³a•JrÕcÞÿèÈ7.y-_¾Þ×_ÉÙÓuŸœ†[Ì·“ÏOãâ:5 4¨.œ;—›ùN #¾7SºaËè7~Z‰(Ä<þ+¢-9¥(çTùáÉyŒÓ.XX»ït(¬sX0ßgÁÛK/ݾ~ºç£6®?‘Cß|iäß É<ðxˆÂ؉Ÿó¶èMc îÚ¤ôÎnŽä²EùÚ#ùp”©¯’ËãâÃVuïºXò²GrNü ªÃÖLÇ´Ól‡ÅßLDVœøù'p´»¢ƒÁì26‘ð"ôRÜaèÛ$§àtõá¦3GJÚà4¬ÈN) Ì^»˜¥{ÇNî'©#Q‚¯%DÞü°þA ‹Š ¯S45Õ9üÙàÆ(#ùNVÕôrø ù÷Ÿ ~~úè©íáÿÁš”µr¹R)—×*M¦ÚZ‡|Fý·ïH8ìU\I8äa$ö¡œ%ÆËe±[¦šlt£ÎMÏ+ºu ù0òОจˆˆÊˆVcY™þe¢/“<Çþ«|¢–FÁÑ;¨”ÜgÃÐ',\ÕÜ þtç·‹ë6ÂzXµsbè õl=þ |ÈܘÝ3vì ‹÷ÖÄ56VW7¶F•…põíïUÁ¸]¾jGX†"@"ó Ö†kZ-¤#þ5U—¦SNʇ\§èîáå“ðH÷ ï¸ 9½~’6µÉHT³¢:\¶O:ãá Ä áï?åć»+z'Vä† ÞÈî¶àLk…¥Ü>CÙxP•ægeärMí§êÎóð” ¬•ûI"¤Ò¸=°VŠêÕC®6˜ªÆ’6stEDŒ<ÙÚgS‘ ûñ1z ›õ=ølO – mtSªYmî»»]¿WR‘­&e¨S%;â|ӤĈøåûV¦äh‰ã`’!%Ab]û@áE¹5"¼»˜6éÊ <§Êúc®µuo¹õ0Šú-jL°endstream endobj 204 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1479 >> stream xœ¥SyLwža—Ù©"`íë1³ÖØ¢ˆ¢&Zh£Jb-G­ØxÕàºË.,; ;Ë ,¨hQ|Ô[,hYŽº+‡ŠG=Rm»¶J*S‹ÇŠš6¶F´µU{¥o’Ÿtïè?M“É/ófÞïû¾÷¾÷hJBÑ4Í$§Îž|© ¡•¡!Ê0ÍJ½r/Â4¦mª›ð"®éÙ˜IihÚæ(OíE–l³¤2ŒÒ‹›êM³$ÙãÇs¹\c³òcÅ‚ì)£Æè]ɬŸet Kô)¢MÒ§eåõ½ÚÆöžÉbžÝ) ô©âc¢¨H›èœY†%F³Åš—3–¢Ò© j6•IÍ¡’¨iÔt*…šA½E¥RiÔp*œŠ ú«%SZJ¢Ó3éæˆŠŸ4okvj‡hÚOCg…ž EfÒ®4€Œ§dú—f4JáîÌ;·`aqŽ‘÷­Ý±˜ŸÊ”Š›ã…Zá0ñ/zá$¦Æ­mvp ‹0‘¹Ý½çرGO¹ºR›šå f~"‹Qù*d<#Ó'X§òYÐÊadÌJBc¢H$‰¼5µ¨½õFòÄ@b¹¤ô =×;¿é:{:uÂøô¤$áÄy·Ê%QÎÕ‚7WªX¶j o¬›ÅÀ’dw¬8ç€cÛJaw¡¯âÏ’«¯”Á\Öj3G§êO¹øUžÕÕ"°&\B¬Î öÖÚšM¾ÍüqóIð‹ñM7÷³¶8jÃ'bj³6Ψ†vvg«ïÆugÿ¡è…ÍÀ¶CcÝM§ä?=4Fpt@ƒN%„Ék'¿gê Ñ$äßx]Wb‡œÜ`¯73â¼ùÜO]=ù°¼ÄU™»–¯œopZ€MÓ#ôG&)/sm+·Xž¶ÆÄLž²Ì2vµðØ {öÿz&æLþ¥=64â×çyàc`»Ÿµf¼|S¦¿  S噂{¹Ëé—‰~á«`k(jÚÞ²ñ3Þ·îcØì•£9iy£’ Z£Ø©]©¿më†ý~¾Éâ‡6`}MÐÖj‡w!lZ*$vq A¡Á•]ü>¬6cqÛc¿ïÆÈªÇvž  õgbBš«woq–•‚³œ_å.Κ줔®kŸ·üƒ/í¨Y ëOeÕÚªòuïŠíÀz=ïÅ‘°€$¦‘!Iøí(ŒÀ-wj@wÊ"Ó»XÕÛºoŸÓº1Œ³ÎÐ8GMt4éO"zF#uäÐŽ½{+Ê?Õ§DÈe¾Ÿ’ñݵëò™ ÇßËäïSqØOíÞeÜÚ­QâñÎÓû}ëW‘ð1#I_ùW¾„ƒô4k,-Sk³fÂrx&ïvÝb«:¹ºNïÿÎÂÁ…›؇ ¬á¹;Š3Ÿõúžóÿ¯©Êê—¯üAc¹:̲r’óI¢(I¢Ø(ù|>ž¤“œû>ÍvC‰Ÿ„?Aëgjv©€¢ ø ^bzEöâ*N™Î~ñÐ 2‰qÛÕ{;ƒ8ï9ÉÀ'âkL­WÅɇAýþPýy2ÁG£,Â\ vŠù0w1_¹~éÑLuÚrVÚòWïrA°9÷á`@ü:³óÁæõÜGv‚YÀiº«ð|TšÊ“b]¹íAçþSJA=èÃ?vàTU¯¸¹²Í…[ €›9‘hHŸ®¸îã¿„NÀ2 #dI!Ó±ŒÃ{®žln΃Ek ¬TpHÙÅ`_‰þõøÚÝ;wµå›j„ r–[h8uñûÃ~UTFBü¢ÌÅA~¬¿H¥Äj”ÉXÏUïƒö}&X&3Ìr#˜Œí°-˜8€Æù8@ƒWNsíVo®ÉnÍ5µØ[Û½-­|øòj%y3&T3déFÜ'Зï£-Ã^ÃÂaý(ê_@Ô‡endstream endobj 205 0 obj << /Filter /FlateDecode /Length 217 >> stream xœ]Mn! F÷œ‚ x’™Vy“l²hTµ½?&b‘É¢·†¦ªºxHÏØ’?‡Óñ”â&‡÷²ºOÚdˆÉº­÷âHZºÄ$4HÝöcíuW“Åpx3ùë;“¬ ºŸÍ•†ÇVÒ}È­žnÙ8*&]H,Já Jþß×k°áO' «jì(;³v”gÕ;\ôž›§ë 6FWuo±¦ê4aC©Ù²ÎبêY 6ªº¶çs#^™Ã?³Jw/…ÒÖ.Ô.ÀÁc¢ß#æ5󔬈m·endstream endobj 206 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1158 >> stream xœ…R}le¿ëõØêP¤¡U¸~ ?Ø‚˜H4€Ã(ŒnàФƒn«l-¬Ý€nw×õkO¯×¯»­S6F‚TðãÀL£‚˜(1!òMÐ?ÄÄÌ÷ÊÛ€ÇÁhŒy’'ïûž3mÆLtô>$Ï@¡{ =IÖ;½áDz¸Êµ½»ÝÑÜÒÁ.Z¸pqE…–Ÿa»Ùç+ÙU¶-Û\÷6ksneWUÖT²k\­è`s9ÙF{‹­µ‰u5±ëìØõu/ÔÖ±/Ö®]ÿrÝã•ÿÁðåæv»­ÃÞnßÑikmµ»Ý“·£Í¡=ít:\N‚ J ²éÍfq–©A»"Ú +±‘ØDdÉ~È)Ïm,D±€XKüLÞOÖ™u}ºß©jêmê :Zv“šþ9våÈü*5Žt—)œ*övÇ3 i‹zª8= #–²›¤ñ3½6Aþ0A¡uÚÓ¬;ãtºÝNgÆÍf2Y¦L áîêîŒêõ¨õ+J]Š}FýÀGž5} ) Â;4zB‡áLXî¹X}p«‚JŽÁ70F£—ôp F3öîÝŸùZŠE$ â´âƒÞù‹6T…\­‡ ؽÃåõnß¾:H÷õõó|ä~ËéÐ÷;a>_×Ã+à8ÛtºíKß ’ Ü&®»¾GcUš£ÐbÜf¼¾DŸ†aº¼Ì%z/tŒÀpúކÄN5yGƒ&uJÃæèÓûà4”OáXý‰ÍÙêÔ6 y¸)ßNlJ5G9C 5‘m°AäW^Øq’Ã%X.k"« ÓÝÞÝÝá~!èÁOs2È×~:sId&òxëàX:}èÐy‰N$"²ejIù’¬’a‘Sp²š–E!iV„ç ÁV-6"+§„E˜y^à|R0%XPƒÖhÀ <òƒßÌÉ‚œEEaõV`«ÌÇCq0$SÊm<¦NŒQy;úѸ/ |h7ßÏ©jX«¡ñøò‹ÕŸ¼1lúášy Ü _B‰ŽD-1D_y÷œ‡÷š¿]y¡öý®€þ㋉_µ¯uCGˆÎœzÙCŽçTgŽRÿDõFµø®Í ”›ñ<ë“ ðC¢•ú[¯XËQù 4[‹òKèÑÛF¼åÙqu6¥®Å»Œ â«×—™‚JPñN­ ë± «7–IœÄ¥Á<9†2^ÎÅò3ÇNŽçJr¥L U?k©a:JG£ñTT”#ñ¨xÀ`F“’4 ¤E1¿ÜpAüøÃmâendstream endobj 207 0 obj << /Filter /FlateDecode /Length 300 >> stream xœ]‘Arƒ0 E÷œÂ7@°“Æ›d“E;¶[dXÄ0„,zûê+¡‹.>ÃCúòÇ*O—ó%O›)?Ö9~ñfÆ)§•ïócl¾N¹¨¬ISÜ^¤Ïxë—¢<½õË÷ÏÂFx|ò{ãòÓÖ^?UOSœß—>òÚç+QèÆ1œÓ¿’}9†qoBG,ª‡*]Õ•àtAE4´@TRMÀcPQ (c* •¶R<ÅgÕ›0ª–s!")¨%w׈"jª‘C Á#P|z„lå ˆ¨EŒÖ ÖŠxTo‹NªNÿÈ¡ê¤âzELvÁë(‡ôÒì G³—ø^GÉ.w¿EÜ36¶/ÈÄǺrÞt­º6lkÊü·ùe^à2¢âµ•œendstream endobj 208 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5837 >> stream xœ¥Wix”幞!$~bGf¿/bQP  µ= ®¨ Èa d_&d™I&3™I2ûþÌ|³oÙ'{&$da_$@0¬""U´µµP­Ví±ïÄ—Óžwmk[{ë:×äÊo–÷yïç¹ïç¾¹œñã8\.wÚk«W§Kò^•¤3.˜·!;·¬ ½$ö֣ѹÑã¢ÅíÆì·G´ñ‰ãOÎxðá)Ñ)÷¡““Qà^Î$.wKa…Zoa½êúÆÖöeÅ"y‰07O’ôä‚‹æÍ#ÿ'eÈ“^œŸ´2=sw±¬t·0)½(+iåüÕó“ÖËÈCaÒì⢤Œì¼ô‚œ¤âœ¤MÙ[“6o|yÃÆ¤åÖn^·qÎü_矦ˆòÒ3²%éYÙ’ôÜôÂÂô‚ôÂŒ¬tQ©P”û[XTV\˜›.r8œÙ/m-Þ&*)•¼*[Už!ÏÌÊÎY·A¸1¿ðég¸'qÒD^ýØ´‡K8œ™œµœÅœuœ%œõœœMœÍœÇ9[9s9Û8Ë8Û9/q^æ¼ÂYÎYÈYÄYÉùgg g"ç^NkåׯµsY®ƒë亸n®‡ëåLæÌ!àsÆsÂÜ”q;Çí‹SŽiü;ñ›âÏ%-˜5`®4Ò²åù·¥ÐûšZ¼ÍÞ0S?¸ƒ!êÍ´e ·¯’(hãéŒÈNØ åYy…°j˜(MÀg³…]tíÛ G÷ÕàWæKÍjåf=®0W$`ÈCÚê@§ÁMÛì#®–ðïù®°+ìl çWG?þ¨CÞœüÕÛñýiŒVbUšJéÉ;r»=ê¡'ý5n©œC åF¸#Eõ¼€tô ›…U `:Ç¿|å¿Ñ=]íÍ}ÍÃlÐæ¨§üÊÂ|3Ð9ÍæeP‚Lï4»­Œ×±@1T©•:-þ9~‘ÿ ´ÃWmý~‡ÀgóÙ – ¨Àœ‘f†tºV³%äë*‚²‚Ã.M™—ApÎÅ2ƒÑj5Û“S*¶š•cÍP;÷°¡{¡ß¼w¬>• ­­ÀíPS]~…8üßþ%Ö9«@W®È2 ÔV­”ÊMa[à,i¤À€zfÒ_¹7×»}×P÷;qQ!jåýéå‹ ñtòš‰gÎ~óåO=ˆhô(ýb?²d3³Wæ­ß$Ü TZjäú±VÄéz9þÞPu;Pg:w¬%?;î%ö{\Ù‘E<Ñ¡™ADçC»{´rµÏêtwX¤ ‰Øddp%nÀãÐqCXAó1ð…|Ðà'xÑxŠy -A ìQ´Ú‚Ödük›™UƒYæLü”Q®Üd5?m¥Êuc£Ëû¢ûÍñä² ~-”ƒì Fj7Ø!no³±=ÌwÖÛXÙP?êìÜÓ}Ù)ðǺ]G€P'GÐÜQ¢?¿U¢Þí —žÛ¶#7+ŸÖœLkÌ]­\.T®ó¿ÎnmH—-1«M ¿³^'´èSA RC¹Îiò´u‚2{ ;FPgTªªm¤¼À~ô w ,jÏ{(D¡ûУè1OÆKy—wäçõªòC€ƒ 0ÇÐVw[[{]µ 'Òá®j 9oݺ||—<;ÖæÓ³9>)úõÍ !égŸÄEWD'òzvwn]™º½¸œÖÊíJù?ÜáÇùgwt£Žº.ôßl?Òö¸;ZÕZ£¦ÐXV bªÂ_N*lÚKxÇ}gŒÝà 4û#¤¢[CqÑ$ôSì-oQDíEÎTo®'Ó ‡¨Žæ³7ZŽë³ªéb«¬ ʨ*oe8Ü\Û(mßs˜Ÿ3+õ™k•ú„æ„6QbÉ/pbÕ³0(¡ûŒ-ÐN5U¤âBé® C™¡Ÿ÷£‰‡bç gÄÆ^A[d\ôfL¯t`ÒZÍj#öHr©(©&¸§ÙîvÔ2×ÐÑøÛ ¾ÑÎÈ™E {ÑLg¸¨Z•Oa.¶æié,¼(~^‚Lå*È Ëp¯Irjs_öɯ†ÆÄ†{Ð÷)ÐïˆØè Ln»Œ–ÚMðƒÇî±»Ñôh'ß»—õ½T³êj01˜oÆ6^~/Ôïoƒr#X,Z?xg¯6ǬY ‰–¼–AÓX4Ýïã÷¸ Ÿ~¯ÍÜ‹Þá¯. u·ãF–G)Þ)Qµ¢¤D\¦t¼:Ú¯nÃÍo'çåÁNuµ»#޳-u†}½àÔôUrLO›õ)x£^¬/´ÈAj°ØŒ’ä‚, ž†kµ]Îþ#h2ãït… :”ß»}nž¥*{“nû¤?Ò”·Æº»D]¬W0©x‚j'dS ÞÌûeí¸2@·®zËÐ ¿„ƒç[‡»¯w¡ép”ð1nýšï•¥œ,C5hé ›Ò[Ùƒg¢_ñ­¬ÉÓºj¿-Còo¿Õïèd=1ñ­£f·®¬Ä ¥t.dÅ´[¯ú^»Ã¯ª@^(1ïLǃüÐ5ï^»ï´x¡Á«³|¿óFÛP®"Ï‚uVk€©±¸Ìäú&«Ù¬ÂÓïtó5YÝR²î»U£ý˜Ê^°†!li$¢Ó¡œb¨s»Âl53€¢9„ÚD`ƒ 0ͪU«Çôk`? tNšÃcÒëèÓ&ÒÑàM”#sÇ-ôæ­¸¨þ»«µ˜ô:?iy)Ù¬Š®n² ý™nô«µéÖ8¡•ÅFY ”Ž2ÜU7pb]H¸>/Y¢¢K.möõÈÌ+‰5ËÃÚ½v¦û›K-Ý@Õ÷h×(Väà$¦bu^z*@Ò`‹3ÜHxÖVæ©,,ïÞy\vðÒÞ+.–äìÍêë!Äk‰iP÷ãc£ˆrös #5‘ÒEDJ?N~ëéE…ô5t2>¶_%/ê,bZgU[ ƒÔÕGíz^+4JéÅø}Õ6Sä æ®¾†& É¾ŸÐ£š˜¿bg.™?a~Ûµz¨¯9Ï„o¹Â`÷úÇ.ªnjo[ᪿKâ§+88=¼ÿÆ~ Îÿp\T½çÜTlÐ5†J-m1ê LrÙÓü]x…©2íåWA°U}°÷pí¹îLÍ>‡?6à»{·ýó€ßè$˜yjaw‰F¬/g2–o€êÉó…oôw×¶·ÓÊ-ªí™ÉbavÑN2y»XE !ðy}Ä¥Q‘C#ɯؾí`ι¯¿þÅ·Ç$¤÷$Áu߈-ì¸è‹æ¹ nƒÑbÑ襳1T@½&:6¼¯áÝç˜ÈЩ§ ú”!Q9¤ªª¢Ò¢=UZ§®ïhk8–Òû~ ð#øá…g–þ =ò›oäœqTåß{5ðv\Ôø½¥³šªÌ´b¥|]P"skØD¢ŸD9ںʹZ‹‚´Î`åßZG›ek±FÞ[Ô¶ øn|/~ ?:ïԫ׎;Þf<é=ùG¡ššjºj÷ÏP8 =ÏÛ†·å`©TR7eTµ­êTÿñ.4¹é0yãPïPC‹ ‹ÁjŒ5ôJc Q=澊j÷ü>ÏhÓ°EªÏ2ƒ pÍ~¼ñJ§ó Q³÷½‚ãðãe³ÞXúù;Ë{ÿ 2茄~4÷ëØ i+ÆN¼íPý¨(‚fݬ so¡Ë„ŽÇFîåÞÙ”!|M>»6HÍšR<…z%¡\=*õÌ¥„çï0òÇ ¶€À%P^w˜õî…jªI(•eï:XºïÔÀ}ut×ù&4ÑæFWø}¿„Ì%øÏX-þ3ŽÆÐÛ®€·¾¶ºÐ õòT“&*)Iª¾µ#ÜGOy"¨¯'’iŒvðÞ{õžFã÷¾¯æÿ+d.»ÓæbÎ!6=›€f"æOh<3¿9æŸÊÊݶk­.•4ôá„˨ÅÛcg€à³„E¯Ä´ ­ä”…Iyƒat"2%ÚñA÷'Ó¦î™=ÎaÅ+YYbqòî…äëã.¢«™õÕ³¯­ €zÅÁlqï¤ñˆ«­EO¤¯ä…4…¨|}¸?âzÝÑÅØCözÁ{+""ß—atÏø’úhá…} 2íØF…F°Ô2u¯”ÿ€ÀÔ¼, ÁàA¹öìäÔÑÝúO·¿„êâÑ= ×mÌ«Ô$Œ¾X›2jªsP"Ûóe(Fß­ºïhõÀMîÆãPïH<¯¡ªF"‰Eå!EsSgS'í½#ý‡%-ÍÖï”+Ôt–éÿï@Ø}mOƒ3D¤"&?ó²L~¤z©IÃèÄ»0U‘¦+óAJ¥tç%h–7Æõì…œ²ÈÈ‚v.Z~U^‰‹G*¼%ì® Iš*O6­¨ã‹¼Â¤~õÁo?ýðl¿Û$   øll­ƒ>‰ŠãY‹[KrK•ŠÞ±A|dKËJBö©8ß…'.Üùz%óçâ^í©JX,X¸xÞœU8.Œîmv6Û\´Ía#K›òémF£…ÀO›Lq9q¡§Éå´ÙBúØÐõ—«Î€Í ª/@÷ÆøWófŒ¾ßEÙQD•·PÑù¸èÃÒúªÚRI¡¤Pªhjkkm£ÓñE1m$]PCé=Ûfmø.¯ÍVï¡[Î>{ ¨P)}̧ϻswùs;6l$‘*AîítÞ7P5êzQI‘47s ìè•O¿h¡'};nÌ_LŽeß‘›?Ⱦ•É»_Úôƒì{b?Û!êbæþçŸßššœC[ƒæîâæ’ÆÝÎXÛW)$Æ¡ôÎ]ß»ñ<åºçÆkªÿ“ÿi¸D_¬+dŠ1¥É±´ù“L+#ûvÄÕÒ塇‘ ¢DÄÁ¿0wC:N%3ÚR±%?ˆÏ\Þ0?/E›¿á¢WÃq(ÕÆ»TÒŸ•/+)5ˆ÷‚¯fívi.Ø­U/ä­ÍÏgˆ»±;é&§ÿƒ÷ÐÝô¤¨Ë¥ßVʸÑu#E<¿Ö«ÖëÍüþø—ÕF%I T{µþ ë®uÑèÓoŸ%^ÈI’áÝnãà-R”Ž.#_ëÇÖT8pÄÓô#[íësT œM¾>âàckÞ(¶ ut ^+že5îX°ÛJ÷œìp·»ÛGo#ù¤Sðw¯rç]³ LäüJ¿ª¶1PÇÚi‡7x¢Íï25Àè?ÔÜîÝÕ[|ð‡kÔ«ø[ÞŽ‹~4ÌsXƒÞlÖ›iùöl Ÿ)€ëÍ„Ýæ6šÐˆîŽAgõ©É<ÉG¥à¹”uÔ¹»ÐÂùÇ^Àa~lsÏ~î«óW›Î¾K“÷j0rª†ÁËûy‹ž}V ÔÚÂC¾ËéGÞ9YOŒ÷€§=“ëI&E=ÕÈÁ/HѪ0úK8Ø„œMS¢ÂsÊÓÓ¦Ž6 5ÿ!jê·lÐL‡ˆºCu¥×¥N„ø!!žçßÁ|Ãä¢ N’TmŽË¨_»þpæe‚³õ'úŽîí}=4H½êä©v–¥dåeç§”“±,ãÔÛ5öb.†‘± M¹Žxhº¡½ªFì­d$ÎWXF…6[ž]P¤ÓkõZ£Ì#q–B.¤ƒ^dµÄ‡*Ý=--o Ôø”î jêÏ|R‡¤d: õEÔj”Ç«4Vš«  Àæ`½{ˆGBÀâ7Çòÿ11iØÈ‚=ÜgÿØöÅ[qQZÉóv;{`ÔX«-ÕÚ#ÒâžÔ¡×Þ‡CಹX§Óëñz~§Ïæ‡C–öÝ}”Ãê°²D}ª½î ë²»ÀAOÉæxÓ}¹ ­Ug­2Wšª´JZ¥¯¢´•æØ “#«:7fh3¥y…ÛÒ„ªÖ¤È Ç+¬/jK?"> 7àê§ÍŸS+Ëyå/æ.} 2 °©²[Wgj„0´¹È O4 ìon4D¼¬‘ß[—íIwTØ ±¹X/Š füQN–F}•‹þÒˆ.æùÈZ5€Ìæ–¹™e>jXßÍúCéÙÌc¯•|ßËxnÆ >ÆáìGw!.¹­=áÇË–®1*ô2¦ìÅBL‘ܯvê=AO¸ÏO7ýÆ7äˆØƒö #ØõÅ4gà}w G¬€å›9éÉãƒQm\ô•¬Ånvhü†j}N‹^âKÏl¦EA­óZ€ÙC¬]Ëò?à>îÀm*•ÁJ"¤ª©ñú}Pï¾™Gñ¼‰ ¦Ìm@…ˆŠºÈ çA¿&EÉ£ûØ)ã¢ñ—œÃèõÛqÑ/QÏÛþ¤N‹Bÿš’WmYœ—»èÉUdÐÐâ‘Y|›ƒ4Ô9º¾4V‹ÜDã%ÿ3ç9ov/\Þ´žDIŽ€»öG‚§ßmj±¦D™ÇìÀS@L:3÷zÆg].Xª’ÍjÙ¢˜±u np؉¦ºZØPšÃï%ý¿ýç}‡ú;c·ÚxmôV»eÑ­RÔ*㻥/ÆE¯ j¼Ÿ| 3¾ÓHÆgCÄ­ûT«Ya¢ÉÁ‹ŒÄ“ ÏÀÜ+KÑ$½d_•¢ÉŽí·Õé´ÛX–¶Û‰==åD³Ðƒ€¦SX‚ñ~rç§kÙe=ðG ÄPš¤Ð"LóOxŠHÔ㪯£?å¿kÚ ‹bU²sð6)Ê<ƒ~†{¼5h‹þ ñ®g ?g­ÅÉxËZs6ž†«ÐÞ„Æ ¿åñƒ ”ÃâÒ?‹g=1ïÒ‹.¡“ñR“2ÆtAY½ÁG„ª‰,sOšéµº­µ@¡%h> ÙO2Åe<yxž¯³€MG«¬6–i@œºÿúg7AðVÛæ1Wñ9æ@8:i?7Ú]Ä‹ ¿Nb*ÒÑ«° ÏÅãqBÎçÑ™üªª½ˆ^ƒ-ê]ñjŸÕE‡®·ÿëÏMnC3Àƒ HÂQ_ÞG–Öu¤ãùŽÃ´ÕAƒKÇjIPQ4­Æ¨&®\ãйõ-eÁÈ•UiVQ’ëº6B~ŸöD°Ý×éî$IÝ ªÚè¯*×””i’[ ­Eù›wd ²F|ü|Ûä 3ÕÃ{O÷ ²;‘cp™œFÖl7ƒbD726”¬ªxM“mÌ‚ÊeOœÈáü/È €ºendstream endobj 209 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2474 >> stream xœ•ypçÆW– LB” šì MH¥ h:å Ãé#6¶±‘oˇ˲%Y’eÝzuÛ:…-²„|@lãp8`î³B&IIIÒ0a’!i?9ËLºÓc¦Óé|3ûÇ·³³ïû<¿÷yXrÆ`0žÝºmORñ¶„W]YüÆŠôÒòújžøá›Ÿ'~ÆH<Ÿ”x©¤öNMgÍ€&¤$Ÿx~¶åiäy 5¦¢ŠùØ #»Z¦jÙ(ÊÄ•åî¯W­zmÅ ú¹†[$ãnXÉMãW êª*¹¼ÚnÚÊm+¹Û ôe%÷eA-·¨´‚W]Æ”q3Ks¸Y›Ó3¸[ÒwdíÌX¾ò¿V÷—¼ja¯¨TÂÃ0l^m¤¡H–^™Á¯Z7'Ãv`™X–ƒmÄr±×°4l5ö¶›Ë°0K¥ûÇ’±ÓŒ4Æ©$+s1óZòøŒ4Ö"Vç̆™ÃxÚ¬rŸ÷S’nÓDd„‘X0å¼ÁL$ЋlÖ®S›uQ·†WR ¸Bë ‡[»<=dðàa4Náem\›[ZKè& ä@9ˆ%Šêº|M6Þâ6¶ú­Ž^7á;Öqvð^—¸^fhÔòIéÚ2êc“^ FŽ$¤õw}>7awµ8;Ã_-´=íÁÀI°†ãñcG_|¨SšŸÉ£X¹¤ŠzPáéGc÷F×OÌû‰ñm]ÿá¯ÑÒFèùóÌÄëè—l¸³4çC´ùʸϜ%0ö'`¬ˆDJ—Öm ¼š¨r¡Vðª [°›_±ðÂÊð¥^w$pŠŒ dW·w \œž—ºB/Þ£&ª¨gZJÕùP˃U „kÞ..h¿y,|ùÀ-ÂÓkoƒ|²0ºçå"j±ú±á.èýrlpð`›F"ÕJt2²ä%Ù»Pˆ/»]{­ý¸2BD².ªÇàŒÞî¾ü¦èì‘Îp7¡ÌД”æñ‹ŠE ‡R{Cô„Ã1.¼[æ—ÖWÈsóÇŠ¯ÿ€f~†æFi˜Ü5ÄÑÑ:g$ÎÑ9½.1ΆBÉæ=ü¼Êôæ]€S©¬KÈÓ6`µçë³¥kI”ú ‡í0yTͦ£…¨k¯´ð2c$wvÄIG”ÆÓçJßíD©±o?‚Ïñ/—_¦H‚:Ê’=†´=Þ £ÅbR‘Ô¢-¥fízà4ª¡Ñh×øCa›u?yuúM.À]Çô›d`““R›Ùmà´¹¬Î˨}!z–u'’W¤Ô RR[«)þ»+ü›_ŽÜ =œ¶Ê‰'¬°¿füe*~‰&¦“Ù]Šv‰¨¶®¦¾]îíõÿe’uEEÅ€«Õξnw‡?FÆnÅnµ…}1ØÇ9^<˜ó âªþeNä›÷û¢€<Æ¢ÔÔ·„oƒY¸™ch2¨AŽç,?ñÝ“J2¬Â¤ñéW¢ ”vy¯3Ÿ"9ÞoFjâüÖ|ߪ®…5îŒýp ÿäöíî\ȧ°:£Œ„ºÍìöYíbí±:l.prÜz§Ng6«›‰f•¨ªY]rzk ‡vޤæP³(Ö®X¥SGÆ+úµ7äƒ-6è×õë.)à |õoV.I£æìGóíÐéê&¬ž¾f«Qe1J Dõ:GB0q´.ƒÛmµú½„»Õ£GÃ5§‹ïŽ–¡9è9”BƒÏ~~â‹G7}ƒ$ôfø­q¨)TW#ˆƒÝÑÞH/Á£.³í>[+iÂíZ¼í‰ˆ^«=è&¢SÇïô)ùJ}Èf7mÏMÛ49ÌÖXÐÑmp®Šù¥ÃâÓçQÒA”òç¤å¿§}Fcw‚R!ÑñÏÕ¤— U¾èô‹ô]}~«Ï&­G;xá³¥9îᮟòäøðQðƒÏÔªÉÒA½šê÷5uõE»Fê†vïÊ.LO'v¥‹›ºï/.|/øÿˆ˜ 2‚ZòàŠ± ttÉÊÐ@뀃8‚Ò'õW!NL0˜5&•YIçæÎÃ{ÏŒöÆB~¢{¸ý=¹´¸/-Å1hG„‰ªììKu‡ +BAH0Ü Bš2}Û6Âh2›éïµ­z·ïÏŸ¢YõˆñŸ„ýá[èâGÌéÙçØ>5˜šÍ&‰Pð*ÍP‚ŒhÞÝâèYhÅÛôŽÚ~©ž,Ûñ¦ p0÷´“f´‰b m¡‰ZL3õµøå©õ»v³çì§d×oÏ:?Ÿ‘Töö¦w^Ó¡‘]ýÓ`û_\%ß;u²{&!VâßÜ¢]çÚE·””¹ £ÖKÑÖ>t?≠Käé„òšäâs ’ÇÐv¶³Ó¶B0Ú|HknWú›¼­Nú¸F£Æ¼ãø‚í~›Ï·âêhC¸6^°o7P©ðµ¨’®nŃé…Ë@dž›E‡Ý꺊B ;3—OÁ9¸Ø1yhbðÐñÀI|½‹­.¨ßSÌ/áçÉö¾>òzÀpÉsÈCó?GO¡$à @TÕ.ò49äÐ “Â(×”ÉK«:Ö 5Ô·Š"(†|ÐÖà&‹Áûð^oÄéé%üڭĬöJuâE 4 u|*f«ŒJ³ŠÆ‹oÒÖ:=4‰^³ÇŒÏ“v&6z¼^$ìdEfߘCÌNΤ̂”9½6›Õæ³îwºü¶””˜Ó¶Ú¬N{ÀêL™‹aÿÈ0)Úendstream endobj 210 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2265 >> stream xœ}U Pgî9˜nQ§m1ÁtO¶R ÆÈŠF£fM¼¢D%(G"äPîáAF¹Ó\Qp`P0ĘI¢¤¢fÉ¡«k–DÝ$®ÇÉkòS›í k·RµõWuU¿¿ÿ¯ÿ÷½ï}OA©•”B¡Ð®2$G¥øÍ—¥JwEŸ”¼ÒL¥ô˜ ˆ83ºÇ –ÁóºÜg‚’·ÂvØÐbºe„¿ÃY8jl8ñÒ-Ð L6Ÿ½Áð"¬gä?ËÍÑã<'³”zQ%=7Ý™DûYj{é Ý ÖL>`Ý|HFO7Ê8ïµ2cè8K¾Ÿäò¢ëÐ+¯ë./r!]þÇe\ýàžSûîƒÛà¦û³Š+¸tMqraÄîÜ‚—!KvSÍÈ}œ‹üàÜ}5~W‰'q[þÇyÁï‚ØÐµ¯¯ÕÔ_P eÞq~ ç 07ß\²X`ÏÃóa !$q†Ù,W'ƒ‘hͯà£N)KNáôg®ñ²˜s>%m‘/\µsò x28–à¦GÛ³.]Îgë5}â{p\^§¡O¶Ñlz¹ËF¯Ó«œ±hÐ"¹»¦VV*oÏÆ0;z ¿tÛЖmÚwïd»ðrßz±Ó¦Èù…s8qñ]Bm‰ÜÇãk4Ë45vvxãäOoÖUY* Ö°@±Å¸g³Ñ_6=%µ «_o*K\ã‡=ê³ v äÚû«­bU_[ß3ð%¼-á5¦úXëv“­70#*c{lZ¸<ŸƒNçœeØeËÊD±¬Ö»³¡¥¹9§%1/¾0\`›f,zÕÈüó–^”`çs·ÁV}s®½þðÇ#N."Óˆ7áHiDfÕwû>ª~øg~ål°œ¸äÀðâLXɃELoÃU8È\é¸{£þ8ùƒ±° 63žYvie¦ÔVÙ5Î Cù êwð˜h/·–[­åÕV«ø‘‡GKŸXe­E±²ªÂcEý˜©«endstream endobj 211 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 774 >> stream xœemHSqÆÿ׻ZÛ˜QÖÝ%¥W'Ó>dVdFJ¢%ne!³¦Û2¯¹·^*˜f˜lº)[Ô ƒÖ -,# ‹^(¢’^„Š@úßq‹º+úRçÀçyàwÎ!$¡¨¨¬æ› µÕ¦FG“±5iæðY¿$…_JBv¢;¡4 ´dÄ7®Ë.Ù,¤ éA)dÎSu{Ú¡£u1¯¡2œüÖæzÎPÑ´'r&MbàèT å‘Îduuuž>;AÓ_ ì;Óí;ÝÕu†NGèó²f¸endstream endobj 212 0 obj << /Filter /FlateDecode /Length 8705 >> stream xœí][“\·qÎóþŠ©¼d6ÑNî@\N¥T‰eEvK¬’]rVËE‰Ü¥É•d=寧×nôâºT©”íÍ~ìAFãòÓ:l'uØðÿõ¿7//þñSÏÞ\l‡gºPù_õ?7/> £9¥-©Ã“¯.ÊWRááËa³'eüáÉË‹/Ž×//¯¶“N)F|u¹LŠÆùã ø¨Õf|<Þ^^Ù°¬:>¸¥äb:~}‰H0þûý——WÎ\ îø –ƒò°Üd¾Ø%øf€Ò®°’[þ¿Ÿü;VÛÐjÇx2ÆBÍŸ<…z~ ßCÍ Z]VqÞJr^…&ÿ4×Ïk—šúܬ7øÙnT!WÅ+gM8¾ÆÊnPÕçøï!ÅäŽÐíA@¹¹ë4-?A8nJÁçR‚VÚDÓåœÍ­µ@Û)hì÷´¯†šû×Yû¶ÙÁB|™6…}3‹((PçJ…loøŽÞX{ü…]J!è\?­ÖÇï/u€¢µaÍ*ú g5ízòñú¥ý•*–ËŸZßo ª9´]O‰6¯‹½àóñ«ìÉn67¿”9Ù¯—†½}¥Àicò‡+eNÎÆXzù£Ü*o]dNF:ƒº76Áxø>X쫵{[ë´i©ÀëXˆ>EŽ)·†×fMm~ ðW.•š¨ŽÒÊ<ƒvÄ]® `¯+"þywL4‡rØns@õœ*›ãø?—O¾¹È_1Áè?}¾ÐMK¼¬8¥SÑRÿ¼½ìùò3iÕ‡CÔ¬ºÄ2ÏJCÁbG½mê $)§#þéNŒƒáâOðû*%hdîrµOÔN¯Öº®¿-¦0:Ÿ“±wW` K¨xTãùpß7³?YôÉTý)i5rT£ƒ§VÍn††Àû¢ÚÑ=Ë+}¼§ß,V…†0`/»‡êc¥u&·îþ«ZÞ Ê ±<4§E˜I„ ã1Pà4Ùš¬“LöÂÄ6täÞ“øÁÍ—;êÆfŒû»Þ¤û¯›eôññ¶ûï²Ëcè|UÛÇZz]ªç`&)~S¬mÍŽ‡\Í„±ïþE7mV^E1qᯪGÛDZz7ÊÈ#­…›ß\<ùû/ú( »Ì x¼§ÃVò†Ä0ôHtÉä±8l2Ç?‡C}Šâ͹Š&•–"Ñ–¢`¤>Òj¥1JcP ²,é ?>Îc¯ŒsÒÔ:mXÓD24à Bb ‹ÃÊ…h‘¼$Áw[þ7¡2ez׉NïZ;ðíØ¦÷7Ù“`ÖŒ¹6[Bó¨Új‹¾¿4 þAÕ¹¤·¨·óé4ÌܨxSº''RÊjýá#DäÔ+ø.“Ú¼âQéä”o%¼Î+ž¨tȹ~¼ŸŽÿºx èªÎWFÁ(ÕvŠ‚dn¤±ìnØü†xdi©SÊ(:Ž 2\Átr»8l£BƒT7Ê‘N¤·yY|žsð[>•"ÀÇkLgµ¢ÎFawCàÙø)Œ÷N®Ú¦ùèuÏ#8yÐAeIÀ&FRļ’ŒÙÙXuIµr ­aÒ3lm[×ÂÏÇÇ7ãã¯ÇÇûññÙÒ¬;iX55Ä èʴı°9C9FØT(˜ÒqD;ï :qb ÄÂφ¡÷ëÒ¼‚û~DúψD¨%dç™[û€Í(>ëèhË“­½þ¥ÇE[?ÉŠ†nˆ@Ö‚SDCç~VÆõ—ta›çUµÁ0ȳ[öïæHÚ›ÏzÛ¢)\^ÃÇ Ö¾Î”Ï¸ˆøã5,i]€Ñ"¾½ì˦ZÚêº6Aáº`,íG•_Ùkô¯èLŸ=T£¦UrYFxìñðÕK’ø˜¡=Œö0P-:3ºY /jƃ> æ¸!­…1­1)àŽÅCãÍ*ã+FÃÖveÚ‡æmTcJÁùû‡ÜÐmÓPl–&hÇ7¶Ó<4 E؆Œiè&)hQ]ùãëåÇÛñ‘|ía|tã£Y ìÆG½Ë‰µ©UtZÊ“7°$:R?+{t§“Ÿ=¸é²¼Äà5YSþxuñ¿Û®üã§1°yGÁê'xØ¿ht.Wç†-ÛækˆË­¾^Ú‚ y U?;>*"qyÙ€èx5^,ûñá§èø`||¹¬æóññn|üåøø·£O?YðÇÇWããÃ2¿YÊÞ/Ë%“ÈzjY—ËæžjÕHÑ»~8ÐϪº-?ªññŠzü[¾FF1jõ‚{rñ;<9sÆŸ`±°>{ØIž`õ¥4ìR­:¼¾=|~¸»°'å”v‡.Ôv‡o.¶ÃGÊ;ë`Mux¹C^\|˜O°aR)RPXìR©ŽÀŠÐT©°ZTª#C*(Xæk*Õ‘”ëW¤`1í-“ê)ˤSpLŠ#EÊÁžklÕËãk¬ˆÝÜ)ú*áCq!õJþ¤=“ªÄ2+E**œw¨Ô@FYâ¹c;Bj“ÌÉ3!e9jIq¤Hy˜äYo„”YW—?ià³bVŸ,ñvò¬Ž²ŒFÖ5€P²µ>Ʉɯ2j »€Du*Õ"åÝäWR¤B:%f„²’=m\cGºÌ÷0´i B¤`•Íüª#ÄGñØåd“jȰ©Þ¿1©†P)o¹_„Ô+DîW±X?[¥’>E®±#£,ØÁS‘ü'égØ®(ü'*R€N.T)‘šéªˆ³åUÈ&X90¡Š°¢ð<–+¬ˆ ê¤[µ`9ë#nƒ`SM ’:ÖÍ ±°àQµ^;“º_G,¬7}­€§M3©ŠÀª ;²H;9VCh×À26VLª"¬,¯'Çjü¯Š?yUC`}2M*ÁÚŒ««•‚ÆJ"5á/0+N^5"eð°Iu„HÙ0ùVGȘ0^M¾Õê§&¸É¹&¤H¡v&Ô€Q+ äYGw„Ô 6†°gR!e5¹Ö„)ë'×)ËÃF†kì‘ vr­ )RÈ¥±¾ž,å`Qn™v„XÂÁËÖ¡ýãÌ6y×@Fíµ¸ô¢R)R.žóˆ² ò0çꑉ°=æB¡ÞoН2ÊòÊqßâ@‘Ñ 6ÇL¨!ĢޚɷBô¹pŠÌî¡eÍ×¥3R¤¢Ÿ|«#¤,Ø”`#RR¤”=fˆŒÚ'ßš"e‘ÅaR!e9Ï×!Ra›|«!ÔOü+÷­†0©”N‹6!öŠÊLÞ5Q¯ˆ‡LcC¨ÆhÕÉ2!eÁžƒûWGh½`ÏX¼) ·A¬·BVÕ:ž#1Û7„Ö>)ÍW§¡ã,i<•êȨWÂC3¦±#¤ÉÙ“eñ¦#TÊç…•êÑ{î_ am„=Gä24š O=¨F‚tfƒÝó¯ŽÛl°ûÒL¨Ä¦fƒ½—áBaR>pïš‘"aí΄*@ÛŸƒbBíS°ëˆ´§ B¤t^ÊQ)Ž)X<²UAHY°óÒ\#GŠì¼ ×È‘"…‡ôÌ!aßÁ|‹ CJþƒ-Qg¤HÁâ‘ùÖŒ)<À`;Bz¦çÓ™GŠìÀ˜Ûp ÈÀþË0ËOH‘J†¯QBje6Ø=2œ"{î]65x­€U~BŠþÌòR¤¼¼kBŠì¿4×È‘"û/î]!–°¬ài´™‘"›Ç<³}CHä26‘kl­ø\cG†í-løwu„–Û0Åz»!´^"² óq*ñuAF­l÷¸w5„FAجžxQ`2°÷à¾ÕVsØ{$^uŽ)Ø…mÌî!¶ò° c«ˆŽÍ"l‰ðv“ª“‚]÷­†XØ7†¦ÑúÉ·Ò6žÆÃÖÃ3[5„vއ­[Bt„Nc¶ܱB `ÆÎ*:BË ° c¬aR° c¶êÀp™`?^%‘r‰/Pg¤HÁ΃W½¤¤Ì›2¡Ž ©ˆ÷;XÕB¤ ØáêŒ)³MŽ5RlÀøbBŠlÀ,×È‘"[v¸J¢¶Ü·&$K%nY~BŠl=ØòtFŠlÂ6æõJ° ã¾5!E 6aìˆuFŠTP“wMH‘Šnò®Ž‘`ëá¹Æ† )»ÁÖƒ5E6ìè~FŠlÁ˜w¤[ †®?ñ¢PdðŠ*âH‘‚ÏÖ0©Ž})rß"ÈR°í`¬!R°í`¬!RHÓ3!RHq!RHq)R314#E i &Ô€¡O# Äô „H! Äœ¦!d²³v\ˆE) Å„*ÂJB ˆõtGˆ'k¤€XBê›/Ã5r$KÁ¾cò­Ž) ¦q C£™I¡Ž¹Çš™ÕÛŽÄ5V„ÚËàõ%æR¤â9’¥,A¬'¤HiÃYg¤H!Äl?!E © ®‘#E © ®‘#Ej&‡f¤H!ÄâÍ„d)7“C3R¤`ƇE¶_–é›"å¶É»&¤H!ÄúzBŠAÌ'¤HÍÔÐŒ TæÄncâæCÜý‡q<¨;8pèJ‰Ÿ{yÓÖÐ6Ñw'–ÕÈ ÁJ ù¦üìä“×—W ïühüñÕÃý›W÷¯Ÿ?}~ÿæù›Ãó»Ã‡Ÿòr¼8^¯·@çâ1³Æ’qÍå”>\)XŒo[¹ýþðüå-^€G•W¨[ièF$V†üªø?î/ñ®„¿ã 4}u 3?ÌÅáx{ópût\ø \x4ùO¤KþS)™ü§„ýòŸ”%“ÿ¤ö2ùÏ4Šä?»" ’ÿŒ>ÉvE@&ÿiY2ùO ù3ä?)ë ù?ìµ$ÿi)2ùOi}™ü'º$òŸ•$’ÿìŠÀ£É"u†ü'uÿYÈ&%’ÿìŠÀcÉ*%’ÿ¬^"ùOyèùÏ.Èä?½" ‘ÿœ×—ØvE@&ÿiQ"ùÏ®ˆä?½"p†ü§WdòŸ^ÉJëËä?½"p†ü'eÉü¿ý ‘ÿLêç!ÿ©”Hþ³+"ùÏ®ˆä çÈJ²Ëä?½"p†ü'e!ÿI½Mþ©Ç’ÿTJ$ÿÙ‘ügWÎÿ„²?Cþ“z=Šüg4»Hþ³+"ùOJ’ÉRó3ä?¥õeòŸj”ÉZ–Lþ“z!ÿé3ä?)ë ùOû3ä?)ë‘ä?“Š#ÿa/“ÿ”ŠÉFÅ‹ä?Ó(“ÿ´,™ü§õÉV–Lþ“+çÈBŸ‹ä?»" “ÿ”°,ùO¥DòŸiÉJ !ÿ)….’ÿ슀DþÓ $ÿ™”Dþ±xŽü'í{<ùO¤Îÿ£^çÈRÖ£É"õhòŸH=–ü§R2ùO¯üä?‘:CþÓ+gÈRÖòŸ\ø¿Dþ©3ä?¥ÏIþ3)‘ügWdòŸÖK&ÿé‘ü§e‰ä?¥ÙEòŸ]ÉvEà‘ä?‘ÉVw™ü'½#“ÿìŠÀcÉ*%“ÿôŠ€Ìÿ÷+gÈrE@&ÿ)a/“ÿôŠÀ£È&óhòŸH‰äÿèæŸ‹ü'RgÈÿQ¯sä?)ëÑä?‘:Cþ*þg"ÿ‰ÔòŸÔëç!ÿ©ÔãÈ*óhòŸH‰ä?!ìMþ©ÿ·ä?‘z$ù?dKþ3)üg´¾Hþ³Z‰ä?+K&ÿé3ä?!ìeòŸÔë ùO {‘ügEòŸ]ɦQ$ÿÙ¿’ÿ%ÿ¹Ô»ÿÖÃŒ{ׄ ÔêÕûŠÒÞß+J›¿q(í “(mþÆ]¢´ùw‰ÒÞß+J›¿q—(mþÆ]¢´ùwÒžÞ¸K”6ã.QÚü»Dióˆ&QÚ{â{Eió7îKV›¼q(í=ñ½¤´ùwÓfoÜ%J›¿q—(mŽI”öžø^QÚüûšÒž1‰Òæ˜Dió7î¥Í߸K”6Ç$J›¿q—(mþÆ] ´§7îKV›¼q—(mþÆ}Miã¯ðÆ öÓr©%<"§“«—ùmÛ‘ZpÌë`è W”—¿þ8N-õ£ùõü’+Ÿ´c…ÓŽ¿Oé&í°TÏ‹ ®¾³~þ0_âáùÃ|‰‡çó~z˜/ñðüa¾ÄÃó‡ùÏæK<<˜/ñðäaþ’„ç¯ò~Â$ž¿Ê—HxŽI$<Ç$ž¿Ê—Hxþ*_"á÷Týž…ïP«Õ’„ç¯ò%ž¿Ê—Hø=U¿"áù«|‰„ç˜DÂï©ú ¿§ê—$<•/‘ðüU¾DÂóWù ¿§êW$<•/°ð HøéU¾DÂóWù ¿cêW$<•/‘ðüU¾DÂóWù ¿§ê$üô*_"á÷TýŠ„ç¯ò%~OÕ¯Hxþ*_"á9&‘ðüU¾DÂsL á§Wù Ï_åK$<•/‘ðüU¾DÂóWù Ï_åK$<•/ðÓ«|‰„ç¯ò%ž¿Ê—Hxþ*_"á9&‘ðüU¾DÂóWùk~~•/‘ðüU¾DÂóWù Ï^åK$<Ç$~OÕ/Xxö*_ á§Wù Ï1‰„ßSõ+ž¿Ê—Hø=U¿"á÷TýŠ„ç¯ò~Â$~OÕ¯Hø=U¿"áù«|‰„ßSõ ~ÇÔ¯Hø=U¿ á§Wù ¿§êW$<•/‘ð{ª~EÂï©ú ¿§êW$üžª_ðÓ«|‰„ßSõ+~OÕ¯Hxþ*_"áù«|‰„ç¯ò%ž¿ÊHøéU¾À³Wù Ï_åK$<•/°ð ’Hxþ*_"á÷Tý‚„Ÿ^åK$<•/‘ð“Hxþ*_"áÉ«ü%ÏŸäK <’/0ðÓ“|‰çOò%žcÏžäK <Ç$~ÏÓ/(xö$_`à'Lbà9&1ð{ž~ÅÀó'ù¿çéW üž§_1ðüI¾ÀÀïyú%¿çéW üž§_1ðüI¾ÄÀïyú¿çéW üž§_1ðüIþšŸ1‚ßÑô+~ÏÓ¯xþ$_ àw4ýŠßóôqÁÀGö$_`à'Lbà9&1ð“xŽI <Ç$~ÏÓ¯ø=O¿§àù“|‰ç˜ÄÀó'ù¿£éW <’/1ðüI¾ÄÀó'ù¿çé— <’/1ðüI¾ÄÀó'ùÏŸäK <’/1ð{ž~ÁÀïyú%¿çéW üž§_1ð{ž~ÅÀïyú¿çéW üž§_0ð{ž~ÉÀïyú¿£éW üž§_1ð{ž~ÅÀïyú¿çé üž§_0ðïþHßJÒu>ÁИÒ—º¤¼Ò«jÙKuDA‹Mcca5æ™TCˆ”Þt¡ÅºTG¨”ÆDDLª!TÊ@üpLª!TÊÅ-¯ †TC¨TÀTkLª!T*ÁæcÑj‘2 3MQ©ŽP)ëϤB¥,Ì™:P©†P)Q&2©†P©ãùë!Õ"k‡”O‡O4„JiØ£àH5„JáNÃÐzu„JM>G¼Hû™ úc=½),w#2ÙÖþÜCIøä› ܺ'¨Å•‚ ¬ñð÷">ÆÀå¶K0zÞ¾]£ü¦ùw>.ß‚ÉnƒMÿ–®š¼v­ ‹[|ç'k2ïÑ&Ó5Y%kšëgߣMö½Úäζ)ÿ&Gÿ=Žq‡¢"„(_YX}M÷,š‡%q¹ÿQ…*À„’Ï"2åo*â4ì‘ijô~“•~?¿k»¿Ì áq€.?k²]^ ëwtf„%”SGµá°T:Å£rý³G{ÿêDGˆ¯­€q6,‡ Ä5\…*¨éëÛ‹LID ¯Ö>¸Êñ'‚†”AO¯9àýPî ìècæÿñ~Lè@ Ñ0î –z¡Ð Á¥˜~¯`‚çžQaáš¼ùãús1 ßöŸ‹íYØ f=ùÍÅñ?¿{øòõíõ·—GLûSR4$ûÝ.a;ZÔþê·[M¬=î,uM…ñÜ¿¿„ý ^ÑÉÉi[ÂÆ’^/'’eù̦}X&Ä%©Š×yƒIRÖû]¾¾ „Ã4@XËx÷P0Ì,Æ“PÉ둽“$ÒÃ,–°ïH)桹ÍÊð4PØ!qí:ÍöPuljJ.Ø4?»%­Ì©²Zƒ—Yþ椿:g‰LgI€J¾™ó—ÕŒÌ%ò[32¼·×$W0Íœv›ýÒàQôHU&¦gÎIõ Ž4Ç“ê ùK†5Xv–@ô´gÞÍÔŽ„Õ¸£ D_b+æx^êÜý1)Lÿ*{)*w r¼¢82œDka·Húº¤BÐKߎ±ò¬ ›”jʳ’/»˜’e7½~Þý”dM{SKß?›4“­Ý0ßCû{XA- !Xב\;š¸ÂZqÃ$»?¢ṉºó_¨Q‚=»JÈô¶w_ÅP3¾“ûöô|Åñ ¬'µH=GÛT|:•ª—vs?æ9›[ÁbÎfž·¦Dؤ¨kïæXYz×bîGš4²ôn¯¦Êå­ÓçLÇÖõ€ˆ¹€y:jÓÖæh¿ìsèК,ºdÒ#&¬=˜û‚Dw’üý[šÐ›l7_r-W›’j¬¦’‰Y¨{KH²Ë°hys É\7ϽêÏ—}d²dѯ.{YÑH¥ cº4–—~J=‰Â¹ÏÊÇM±Ü¢d>y9‡Ö<Õ,<â-7׳í¾XFÛ«,O>/$­íYºïÑÓÀë,NÐöD’%ZTNžpüÚsÙSZ&±yŠ‚‚Uª¾¿Ö/ð‹6‡É)õ.—nü5É•Ig‡§=dñ¼ô¹LÌÓýÛá9µA[2–øam¹Ã$ÌYg7ýí%kAMRý”µ·ç}Q¾K°’z±vÿ¯±£B€þ'åýñ²ŠCÔ«>sÙ2/àz]Ê^MŒ j¯K¡*Gšñ•ä'Aô:ÁÅbÚË>dzÊpŒN%e8u“ŸJìy½Ð*—Ÿ; l}ˆgß=¹ôñ÷¸#sÈkÏ,‘ND,ÌgòÆ]~± ²²p‚‡6ˆà˜è/Yà²ç¡þàbpl…ª@Uè)ˆ =˜pŸmêrUcäü`ýÞäIùÿ„!.'_>´|üŸ[æ6Å;‹c~É‘É"²JºÈ]E»še·¤Çœ¨x“ FA_àLø;eÂÅâ<_B¼KÚÜü=Ã’_×Êe½+Ÿ1“;:Š,þÝ"<–qÉEf^2—.ˆÙÉ›ÿ°pAX4Á ­–.8%§…-f:g.8¥¨­ÝA;ìëÑ‘»¥2è!LºÎÄ0}Ñ%ÙK4mÀýå˜ÁÉvêuI 0ãæ‹vîiT(KÜ`½¡C—®§¾§³r÷ŧ­<Ïs“•ÕrgCöF”"Bâ[ ºY¹-"¼äW—=’µø³²:HÎú1_Ý–v[uT'ÑZÊTÖ:hüÕU°5¬·7¤Ñ¢‚Iâ]=#@Òö‡ʉ3nû!Úè»*]_ö$áÊ‚LÄí¿…¿aüc\‚A†§íï|Ûâ!à .ëFí謹Ðe±†­¼kªÂÐPÿ¾¹èuh½Öµ€©7_Ÿ;µÉ£ó/ÔÒ½½Ç_šŠl¿ƒû{ì‡nê¯Üº^;ׯ"oœÁåtÝ•aJ\ “zÏh> stream xœ•Y XçÖž3JÝGAí •[¬îZ­K[—Z«âZµn  @ ¬ ¬_6 !$aIØAAÄ}éf«D»(j[ÛÚÚE«Ý·k¿¹ÿçÿ<ÿ—D ý¯½}®à£dfÎwÎyÏyÏ{Ñ·ÁãñB¯Z¿rÆiS}?Dq£yܘ>Üãü<$æþ÷_+ ”Bû6މxc(7qlw&ø<^¦X»X˜!¥$%gG<?>bÚܹs&ELŸ:unÄsi‰¢”ø¸ôˆUqÙɉiqÙø‡ÔˆõÂø”ÄlqÄSó“³³3æM™’———–-%-?)"/%;9b]bV¢(71!b™0=;bu\ZbÄÿ¢üg±0-#';Q±J˜(J'bñséÏ g,É\*Z–•“›÷Rþ®•âøU «cv'%¯KY¿aïÆÔ´MsÆÎœ÷gæ/XøÔø 'MŽÞ9µ`ÚtÙŒ™³fÄX"†ˆ$Öÿ ÖOëˆ(b=1ŽØ@l$^&6›‰ç‰IÄb11™x…XBDK‰)Ä2b*ñ±œx‘˜A¬ f³ˆ•Älb±šxš#øÄ(¢/1šcˆÇ †`‰¢?1€%#ƒˆg‰!Ä6b(1ŒØA 'hb1’X‚QÁ‰y^6ïDŸ‰}ò|E_¦¯\0@ÐBŽ&[úñúí£ÆQûB&‡tö'ûƒþ7€ÐÐÐ’Ð/[þØÉƒ zkð¸ÁY5äÆÐµCÃ6Ÿ1Ü>ü.9bòˆø‘“G*F¾¶1ÌöC¸6üö¨ÈQËG¥Œ2ŒúpôºÑÍcÆŒéx|Æãf4SÍyràýÝË=VËã¦qŸÑºF­=PJR²@á´û^cX)Í{„Í ’½K:šÀ¾–, dÿ.€³È²HA.)Í{Ó›€_v6‚ýÍY •E£¸~´ã€ëHyeØK‚B 6È+‘" …“þCáE/‹¾Äçúzé¾ö¦7bp2éjÀGd›@î‡;ÊJAMøµmû^Ø´3W¸›Fc°P¾;˜ç}g\ë"7£ó‚WzYšÞÛRœQÚioª?õæ1/ Ž–ç§—è õ*6àK®îÀîÄ\âÃY¤õóîÉ{{U‘pð'|á}…“ý©cÿðõþ+ï=Å v5 ‡Ÿ[cò¶l[Å>InE‡èN˜+€“w,OKWnX1ÕwœÊ ¯yy·z`ÛE>g‚Vö]xe2‚BÑ`Ä"êÓåßÀAp #$GÛéå;½Wÿ¸ñùõ÷OlX2yaä4Ÿ…—+÷ò¾Àéû˜»F̆2`¤œEŽ<‰ºXQ¨U ‰¦$e_lÕ6@¡hôZ6!æ"±é±_ÂA^»Ê•®ÌÙ*6ñ'JR5{óÍ_á||ì$اëBN¤‘•rö»+JÍ >‰¼pJµ8MÏŸ¢=¢¶ôs€‚ÁPŸ€}Ÿ½:uÝöÌüL¶8þŒÍŒ{Í›Ñ#±‘0•Nù5Š*©§¤ 4£ã—2Gãow½¨ó‡7-FÄ´é³Xq2ìAjNë T•¨Œ^@í á8®‚ëþxÒh‹†¬¦¿#á°24]ˆÆÎ@³Ð0vŒì/ï*ΧI›\ÀÌT}¾EºW'ÛYÂÈ])GãLGQ‰mÑWNvV³É(Iðr°à3ÉÀÅ’hlÕ+§¯Ý½só›jžÝ¥V.WÉØŒ—ÖlX¨@éåxáN/î]4AêÕZ1PS"·¦²ÙRYcbª~5Ú°3Æp«¶foªN[ d;Ü)€ZR›S’4TVÚÙj¬¬33öKØu¾Ûß÷B‚oð'(9˜ Ž%ƒÅzÚXi凜¯ ÒtR‘šQ, šûMz»6ÇKÏî¡Ã×äèž -m®MvÏ­Oo܆ø P5îÆ³ €|âò•2kt˜ët+ê<þ£ûìñ}ó`l¦áhR“t@E¥7ƒ²V£Ë…ÃÿÅXáßçÞ^$^Í ÑdÜ#€Æ¿ H°›ýá'öª)®‚Bv;ù°-á/,ôò¹åÜl:Ñó2bÐçÄ-Ø<÷VÁìÑ’w‹@,¥Ï ¨í[*.+[çLi@W¬|YW(_J(‰]^]m*Ý_ËœH8ܸAuþpò`^SZ-»×#´,°o±®³‚}T]ó1HÞ0¤J Œ^­L8 Ú€Ñ^zÀÜP~˜([Iuv¶JZ¢eÎ]ôþV˃ÏâÖëäH΢€fŽÏzUIš®@ªe ¦¦ãÿŒL@ ­gW>ï‚ðÂo—?¸äKin‘J¤adÏ.Ñj%Øï,FSûàH$qKȹ!ZâßY7ÑÒIªiÒ¶„€Z¡sW••Ÿ07²–fs³¥Ù~% Çsü‘OîB¿GŠðñ¿€æö£¥-GSº¸uµ7=`g4nx·½GÞN:›0né@΢àdª#Ñôáø¡`_ðÙÀ Àɳèvir ¨áµ ¸Ú¨‡†aØ>çò¯»_h)˸ÿäIrzM 'ñC•Ê«Ê+zk2Hš¢Ô[ n3T‚ ôp4¯†F‚Nð¶îõVÀÑûÖü~47kÌÖ¯5dW‚ÀJ ×Ëa§ ¸ŒÍvÒÖÊ !Aȳ=Sö²¡¨ 8ØÛ©s¼?{yb@ÒáYºQ yèé8Ä 2Ü2wy—ù4ã±´ƒr@ýÓ¼FªÑåé5ìR-²4zéÍõß¾Ömo<ÄTgìW¿ ¨¦z¿o2E>°ä°ë>¥U)Ú‚¤¼ÌÂ]ÅÉ€Ú”Tà]8°1Y~ ÿ‡Æ„ºAà’ÜŒ@dMÀÊ¢rTs Öš‚¥Eþ5CÿÄIBz`8ì C~D&Ažè!Eøídlö!qñ¥c¤ëAë"*ÀL †µæAkÝ#°?@ÞAO¡‰h–`G°b (ä±wá Kh 9÷;„øœó]+d“È(8K@à/Ü€•ÜY_Sq«þ{i?}O£-À¥­ ÷‘“Ó N™¿—¯¡[ÿÕøƒuÜIºÛç}4;P¬>znó§y)Þÿ€ðgžÇ£JÓÉ2<_â€ùp(—êåUßä÷n1~C‚¦=$€ŠÓViëQÕ¾¬Wyg#ù‚&N€>hbç(e»VîÖIô–2‹X)§²6]’¢Ø¾«Exøúù/Ï43ù÷î%hùšÏåCíP:D9U’ÉNŒÍÙ¨y[»/õœƒC coZkÐt@I@òaW[Å¡‹Ñ`+zq&š4ö©ËÓpŽÃßüÖÍ%C"'§­Õ¥•–JÊ@.¸—.‡ãõ•Ë^çd‚ª`oö a™pš–½-}­,™Ò“Ú3±°\S¦¬‘€@Å<¨@ëKý£Í~Ì Ò”j[Y¾Õ¾¨4ÅœYºÇ”ÛŒ‡Up¶Q½«ënðê@q=šq3Ь‚šÝ-1 KÆPÔE¢¾>ûÔ1w['«Wëµ@IùÎgþÄ¢h‹Š^»ãÔG÷Í×7®Ö¼«Q§oees—¾ð@‹øóT‹k«¬Oy°–œÓ¦'Çqš’ýRS_Üû¢/øt² ¸*<œ¯ùä'\:ÿç{j‹È"?ÂËH¦6˾ûé†Ã½¼›—`Ž=®§[à8fRû†úc͆_͇8âÂÍF]hÕ’"6s×Öü8@­ZØù[ÙM×÷ôœ½ ¨ÁÓYr Ó—uò«ðýË|®‹ÓÒww¹ÐÔw¥2:…IŒLAJ°œŠ<(† ñªãצíö(—)Tïez¬²Õûá~¸Üy†m¸Ó\õ ¾l•?·bZV‹u3‘ŸŠé—z@NX;ðàEßpÚk8‡f·Áf®-íhîú˜bÛPÎVû·ž’ù;ãå ë:EÁ*2òwþe¦WîaCÐäDÏŠ»ásoŸé†Û»y޳‡.AÍ9>LóÒÅxÓ*6RŠpÀ]Yc4±.E«ô ~ºùÕ·õ*²šmvzL•‹È]l”Û]ÕT%o_—§NÛÆfºS¬{õäÌéS’\©F ›Ÿ-ÛƒÕ d9³gm—?r¨¥×_‚£pÒÞ_á 4Á¼I‡ýèmiÇΟíöß·gûªµ1«Ùtô#=!¦ë@µ³ëHÛ첃ˀº},]ùd|4û`ô³itM]ð¾Êú¯»x¤üW{¥¿Z¶ÜW¤Cá«zF“rOÀ3ôÇGÚ/‚3ÔåõW‘€A/þ‡ª‡z—½O§;ý9ù‘m›X¥é‹YÅ* …Ô¢9/·Ü¨ÇÜP"•‚t5£×+wäâÅ»ÄÜd·´˜Xs½¥ TRäÀ£:°{?…íô¿Å+äí›ã6®[>þá\¼î>‡Å᛿ò¹qܺ>ß#LÍŠ2ݹ- - š|ÏH£¡½²q:XNãÈ7àÕ@îºíµ¨äÃ.‚ÃÞƒš÷|mô§3_%Wk :™pW×k–Ìý&Íœ°©^X›Ë6g4ª>Χ ì¤Ü“©Õ1‹gä¡PðƒÓheŒoÅRJ´˜Ñ(Eh:Ðúås­Ùz°†9’ôžâ5<0é/!ñÍ;É…•lFS¾9²!ß’Z¦2¦Ú³@'uîݳנÀ03½ä¶7”Ù<æ^¤ŽÉ ŽüÛEa4™…ÛF•¤x!̯Hµ[MN¼€aI¾ßè¤`˜êõ½¡ç‚*hûÃu À‰ú–ÓxÂ÷VŠÎÇ}$ŠA߆ßõNûŠ <Çügõ^+£{¯•F»ÉS~òöaߢ)½_¿ÀþAT3îã¦õÍT>w'¢#`ÃÏJ#zo†ëв9˯á[vý ”íì9xWðŸð­©@Žú\]ö%ä߂Į^yýÿÚMö3ìêUŽ×{éˆÁÁÕ“Ûþ*½´(ëÏ’0YKîüòƺw´wÊæÐ')õZLúqÈ.xÔýW+¯Ø¯–¥ÀEáñòìú]ñ %#?´·BD ¥(#[Ó”ã[øî¿î©ͬ…sƒí~óïǾ»¹vìû;8åUП4â&ŸBŸÇ£HÞþc6´›om8¨õª¯i»õI˜#òA¡¸X1%nÆŠÃP^ú»é–ñó§†OðªQn°S­Á”Í÷;œS¥rêYq?¨KÔ'êÀ.]‚n‡Þÿ¥ÝvRù@Üa­îJÆbýJ+:)ƒ˜¦ †$ãn“ïïfCáÐJk-. ‰Ò†~cèû£×ûW_M¹¹N¿œ:Ik´ã¦ÏG£¦¢éÄ5•S%wµšëñÚÞ·ü—ÁÉp„ÍZå4›Œ&s9°Ý¯…OÉ—”๢-Њuò’x,X| çð€“F_ÁënXŠ m¼|ø.ç¥ &£X¨ªÂú´XMœBÏä¡Wt2d´5˜\.3³aìßßåï 8÷<ÄAÀÐK°±‡Ï­:ÿôLìÕï°Z-v̽nY­0'S±mÉÅÜ÷à88NƒN¹ôòx¬¹è)(já[S õêU§UNÏ̹Òû|ÿþÇ?4H¯ÑÉñ¦W™^]øÒÒÍ‹BÁ ÇöÀ¨8¶–w‘+äs œC_'í £#¯´kÈ#0JðFðƒT²íc©± ”…WK«ò2U9r ³ DýÕ…¹¤<$'w;ÛMÆ¡(ÁÆàûȽº ‡çTV5”¹+|`üò¨ KàÏô/~QþžÄSÿE8„ÇäúÓ­ÙMÉ))i‰ižŒíí­™ÍèÜ¿ˆŸzÚííæ”Ý^ gØ»°ð]>7‚{~]ÕšSš(S)%®Ìn9e|­ºgÛÙ(ci1Uã¥Ê7Z2´’L £Shóõ:ü¥/Ô¡~y‹ŸóAÌ¡!‘Ÿ€da3m oafƒÑdtTš¸Ìs\¹¯€µÒéï¼ò¹’Q 1Wi(±]QÝh®µs­Ñfª…}*î|~Ÿ®>7ÇAÅ8èõÖÄp¼ýîñó” µÐûTç²Á*°fÝÆ%2vˆuìZ àn8Œÿè< A÷ÐIÂÌÝ…º¨ȨÂÊüêVH^ýå¶&Æ SRvWë|ÉyËÍí¬åqÍ\m+uØ@5åWJTź’BÝCqùŠ…q¥Ò¢§Qb˜³È÷>Œª®rÔV••XXd‡/ù¶S¸©ç³ÞG\:Ÿ3bÜ*Úq%úøô'²À›z?E“h—¯´R}W©HÁWâ+A_Š`]SQV ºÐ¦6¡Ó01LjS`²¢ òåÙb{q™š…6ô"º†V©dE@쯙r«ÉRî j®û_YítõUnÿ@ÙŽåÃýZ¸z«L¢RéóU ’Wä¹OÀ¾ÿz\ص#63ioRcn[¹L~.®ïáýÁMås©Ø« K—ƒç¨Ág|(Þ¼øH˜ÔÃ;á32eÒ_ÚˆÌo/Ã×/ò¹n8 é— ïI¼­AëP {áãp4Üw2ȉ¾¢_L¸ñ\ùŒøêJç¬ihB4Zå³ô´¾êûæA.œÑ\7m®+;Y#UÑhhÃC¨`B”(ZŠ7¸yÚ\å4V®éS…õz§ãwÝ6•lž¶U%+7à"І¡ò .Ožçºz1€p!™ƒ¥„LŒŽß#Š Õ2P0)F„àÅ^Ö AëÉf®’6kÑÏ$ (xØæ…³¼¼¿õ8d£o¡Ñöz½à&E@®W%Ç¢Ê@ê5”Ô*«s™LV+sòÔyK+ zÚ6n˜8ùù©q[\Çd¬­ÌæÂ¸ZV—¾l*šñùæ;pò þíŠk‘;59[﫤Îóp.îÈ Ÿ¼~G€Ãþyû;`n½S®Rc–ͦ²â&Ocåñî-û– 'ñTx5 ñ×–ûÁÁßñ®ÿQ1³Ò™/ÑqZÒ­¹-R¢ 430šíøß¶c‡,–£]õeÝ’Ý‘ÓÏg**¸ÅV¸¨Bá"‘¸¬Ÿ·ÿ¥Lÿ¾bahAüÄH dendstream endobj 214 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3054 >> stream xœ]Vw\YI£0×€„™1‘TL¬€ÊªH’dÅ ÙQ†q *QÏð]T@AEX’DDVEE fw×°Þ®qÕ3 ÕìÃûÝkØt÷Çüº_M¿zU_}õÕPZ”@ æ³.2A:ÁEÁ›,93g®ÁYh"¬þͱ_%DzšHO«Ñ\?Ùš z8§4‚9þйêµIqÊèU rëÅ‹mÆÿ—eʤÉöò°¤?þ‘»FÆ+£cå–äe]dŒz­*26ÁO© KŒ—û‡ÆÆË}ä|ÿc¡(ÊzN¬‹z­[\|Bb¨wXRxDdT´rMŒ*ÐÁÑÉz‚íøI“§Lµÿbšœ¢FQó©ÑÔj!eIùSÔbj åB§æRË)WÊr§<(OÊ‹ò¡|)?Ê‘2¡FP¦”6uœÒ¡t)}Ê€2¤$Ô?(–2¢Œ)eC ¢´(g*…ú(øRpDpMC[cÆEM‘f¦æe-+­ÕZ-ÂÑÂTa+=›Ž¢óèz‘…h¹(1g2˜ËÌ}mcmOmµö[C¥Î Ý‘º›u?ëQP&îB n^€Û Vl3¶‚÷´ñtgV aÝļ X¼ˆ~ 5B1¨€³ÝØÃNCÈ%M\5;PM–÷D’{Wë{/\í-ʼnå?"ÐóêÆŒËò¯üÂ¥ÇïEüÙ` ÉÏ €-Â< ÆKúÁ}ú:ŸÛXÝX}â2ê@7#/863îæéõWLÑÙ¸¶°*EõÒ\gÄàïi°Å,8Ð׫ԋ¢Õn2ì@c-ð %}·jÖøøF®q‘ašÄBxBA%‰*äšÐÎf±“%`7ìþS0œÞ.àmý ;ËÒ°½×ê>Ò2Ðmö¬¥½>œí½+#ŽâAž6Aà"q•2ˆ,'`ùç=ÄRIWÌoV÷ Œ~18ÞM¼Ý*“,=íYáeæVÄ*ç3’{ £foœñm½ÂÃÍueÏÛwgznÈÄýÿŽà°Õ„$èfáàwàÄéƒÁ@ñgWOž2’ÖRS •ÃXRýg)jE’êê>¸gW¾F‰¶¥íB;7 qa$“>ŠÄܹЀ>Ð4“ .Ó`w=µ%øZLsÇšÑY1ùëdùòRÛ’aF IeJv JdVG¬÷ŠR““$Ý”µ#kG)ùšÞ‹uÿåŽèº[[^[^܊Ρ뫚\b·³&Ù[÷£BædyAK÷·ñËÓ¤bxœð>><*G ë c±u·ëÅ?ÑÓšBŸ•eì/‘¾mÞ½}O b¢R³šep†ˆ¯§î¸n×Py¸«1⪉ƒ§"I“wH¨û|Uù5)üËôDXïš'0·ZJ.×J%K½‡²N.àìAhx‚¸˜¤ÜÑ<6¾h[.:ÎÀ9hÌ>-±å,_l*3:ó|Ñ‘^Ä´OŠNJÝ´)U¶a+Bî)þ[MäIÈ–±½æõæRû±¶VrRglÍÙÈÀxZ’ƒAÅNr]{¬¶¾°àb¶´ù@uæ7é¹ûG vc¿[à6_îØÅÞù¶á;BBc|‡› Ð-Än4®Á·„p Û~VíÚ ¸I„ö†qeG¿Š%ŸÈ¿IZ–Tœ‰ë1ö5 ‡[‰·£ÛdQçæUÌCheœr1Ù"ÐÁ­lo‹›•õ wÂÄîoš{®¢ŸÃê÷ýÉ>Hynk X`]ÎBˆíhèú¯Š LIMß›,%:º+{OªBµ™ÇžÊÍ+,ºqý“!ˆ›®‚'W>uóá‡J/:t¿J‹TÀ€¼¿çAÿÕ xÈr£‰Db‚›èüe`qªi¼ ~PñTzÐ7ß CŽ ‡6Ðâßôÿœ;—@†eÄÉ졟±¤òÒßæOwwÕ©KgJ×*¤x`ÐÒUUûך3õy_Á”ûÊxÿPéWg—z""†¾(|}?Ó-ÿæ:@¬ó³p*„-BlMcá@r ¼ÂøiFƒ.×â.áPΗ .ܱþeìÀN‚ÄGZ4 ³jßåcâì6àq Œ¤s á‰|&„0ƒ-¢›_‚‘¡Bc†4j4è“'Éì73b‹s²2³–Ïk@§Ðwc“qÓ±–Ç ÅU¥TòÞ)X¹ÄÁ›¾·°~ÿL¥’Wè‘òœSƒM!‘½Ò°8$ÂÏGQs¾½¡¦S&y¿W°½ Asž„c ä-8#4kÀ‰ÍÀ‚g3@Œž¢Þšú›Õ…ŸÐèÃÆW·ßu«Fša”íXl-[aUÅÁÜBYÎýŠJÈTˆôš¹lõñú]Ò'ÜB¶§>ÐÁYèåÞúàÁ©6žMû—ja˜&„ðõa—D°Â›±95óoZa«A5« ~î>QWÀÕA#;FÄ)þÝLã݉ñJDàÒ æìL\昬+úû“Û¥5ÂVJ,‰yw#·ÚÝÔc®ŽõœpQÑó¢{ÂÅÏ@U&^ÇT´˜¹˜aAU¢»ç*X ®; –,É]”˜ŸÂø‹>åž¹°4°š3z\A^­"xb—ô¯bg!¯5Ša&#,EØ0wjÅâzÞ¨‡èê,kì¨ý®à)‚Œ6þ¬ü.´Ç½Ú‘À,ÔªB¥ëó¢©ö‰lÐŒíÎ)±CU á( ©ó“«6ŸÜv½D2Ì*=ÜPV\‹˜AV •?8•ÛÌl&B¹ÌN”èà¢Àb¢1|ˆäÒÁ%‘ŠŸ3âµúçk§ók ~¸ÞTC¯H:ã&U¶úÂÛJãÀ¬HôCõé«Wj®3ãcñ¬%ÅzNQ¾;° í£ÿÊÜ>fkóŒî\gÛQ:¶ýÌ–“a(ñ ñ›]sk§›ÓixÔ³)`I¤hÜ«_@ú0º}Æ)™ä§ku'š®™‚ÎÔ;ØbÌÌà/c¤[”;ÐrÇ¢Ój2ò3䔕ç×!æ|¹rÁܰU޲¯‡$,€Àå¡ñSÂÎá<±¹Ý¸ ±Tãɤ$“o‹ðj`XìKƒ/œþÞ“Å ÙÇ·²>¿w3ßÏÃhŸ™ éÕåù ˆ¹Ñ°ô GÅRW?eÙ…]¼ö§ãá/@J‚ÿá –“ß`ã•«¾Ž “µNÿŽ dƒ&Œ!Œ()Ä&ãörMìöÓ©EI%Qg½N~‰¦¢¹ ×P÷䙳‹ϪZT7ïvÄ#â{ä¯}0Ì^`ñˆä YÚáô®Œ£Èo«(iAM¨8éH0cØ®úe3gøz‡´Ý½×Ø~•oqBW}<³Ã‹h0Ô™îåÌ}ûòöffîÛ«§×¹ïð¡½û³³32ôôÓôÄõ_÷榽endstream endobj 215 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2479 >> stream xœUU TçÞ%dwUŠ•uE…›M±¥ˆP.(Èûò‹¢ÈK@ ªVk[-‹ (êõhCEÅZ¯-Ò*ˆE´È£E$ ÒÒÚªílÎνhÏ=ž““ì?Ù™ÿ›ù¾™Á1c# Çñ™Éé;“sÓã 'kÞç-øˆ8”¡+Öå‹9gb\c9³Ì .̸Ùàþ&&Âq¯èÄ5™YùÙi)©¹R›¨ˆõ‹—,±û¿ÅQ¶ÌYšÿ÷?RŸäœ´” ©µð°39=3Kžœ‘š&OÈË‘FÆgäHƒ¥É)yéñÙ¯1 ³òÊÈÌÊÎÍ ŒOHL MÛš¶=*=Zîê¶Â^¶ÌÑÉy¹‹Tx ñµX$…Ec¶˜7¶óÁ|1Ì“aþXŒ¹`!˜+ŠÍÇ` ±ÙØÌ £±¹ƒÍÃÌ1[$”3ÆVbX#n‰Gã%x>b´Óè¡h(OT.ãã"ãjc­ø±»x³¸^Þ®¿®†&µ.ð×dãd…|¯f,›‘W°‚–¿@vl‘'3Öâ‰æ¡7×z:ØGô ôݾQÖDÉÛ*Í·Õæt{3Ê`†à"QUŸÓÉQ`©ÜÁg9!–¥e>\Äö¤ªŸ¤í< º ‚™Ÿï­DsЬЕ2Lj˜ ³ïŒ°¦ðTÈp·â…Y—Üœnëú+½ d˜5¶y˜&iÙ‘½‹XDq Û7zPtø8i Wr{xÛN|X%‚RÁi9¼í†ÞöñÿA/%¢®g´~îÈÑJI7ùÁáý…•r ¬Šôtª(=1†KÍÚUP¢ZÝkNïæwÎãËÝPI#ôuŒÿê„'Ýô6¤s{äïÚ§«¿TßEyîå:_þ|LÑ:9³tR>FLåe}x­N«Dü—õ̇Ÿâ>ᨌ÷Ï\d¡õo@Œgh^RŠ$'ë€üÓõÔQú}õe%G=þ:3†Í# Sò÷ùˆfîÉ?´}_èŽôMœ?e÷0ì‡Mç›[%Ç¢.æ6s縓G*K)d þ —y° ;7-=áý ”|¥éÎõJíiväÔÙ’ÊÓÔmë|ˆ<æTÐ(ðÛ,ž”÷vt}èWM= Ñ‚¼ÁÓåb×¼—žÄÂe¬Q93:MXÈë„ñ‡§%uE-â·ÃoÌ¡Ûû¯îºœR|Ù›£• #oä¡•‚Ìéï…¹e¬+±×uK¼G9¬ë…7Á¼YùSw]‚wû:Ä‹jhô]Ï0º¡ "µ)²ÒWˆiéˆpäŽ|Ÿ"¬~l¸Ôþ Kïñ{D¢>žÑÞý'2cé«èµîN¡OÀLÛžü$1Õm¦é±†—hDº…BP'ý(¡ŸÃŠ­'å^Cðoè5âWSÜõA@'8÷á|ìc¸oí©I{êÞ¸X¸Þz)!/䥵0QuQ.¤”ë›ÀEs›+2ëv}ñÑ…Ô‘N¦t¢õÁG ·.eMuŸåòƒxõ(fTÄ/Ðå3(Y!{´åÃ[h)¤Œ(/5´²ý7AÌÁ, >@,,EÛ$+ŒÁñw4 … +d"xÈÞB¼~Ø) òb‹\#Èÿ¤ çAâÚgçjJ‹¹ÂÏ$]äî’ýE‚ê=7Å­f}ý»õ±*>V-¨7{ªßž¿2{8ä&”{lg7}¹Š ÓÉ]­†„‚žz BøwBø· „LÊU°…x2¾¨Jü‚@ÛàA XJ l”-ê;¨“(ðáQ~¦m½à£?A.ö C3¢âN_H•¤TTqw(þ„½`G68€¬£1°–ð'¦øêàì:)ƦÁÊ[΃c¬´!Ðfý$ÚÆOŠß%àŒ05Mu^›‘Y†9}íï19HÒï´uÞ¿– A“ƒáØv=)ÐpäÿAŽE5.öß¾A’Þ_áÏQ´Ì—‹ÝL="§'ð¯jœ?«‹aôÎöˆ†è›ããì8œÒˆà„ÑÑèbÖ’éßµYPÁS ©ùZ¡uWhE|±šÑÏ N|÷e•úöóæù¿6ßîáÔ\kÎøšøª÷Îùs˸€ô¤ÐìäýqŸ®¡4Dñ­c—O?ãÛ‹M5p/bUä¶Á)¬Ãzdãº%à ’-àÓ‰é ø¨ÏŒgµ~£]°”ÌI¢ªH<Ñçâ¸.ÚaIì­³NDIDÙÖ³Û¯ûw§N[ÑzL µ© .—Yzøá¥«õ?,Ó•=È-Zå––hˆ¢%'?WÔÔUÜá(åÍÍ«bòåIï³9Ò…RSÙƒm?BÀ“Ažð|ÕoÅo "Q¯>BlOBc?ƒ² Ȇâi ¨•à HÖ](H–A¶FD´~žø ñuýζpÔxkÕ;á!K> stream xœ]=Â0 …÷œ"7H[QR•¥,@¸@ê8Uœ(MnO’¶ ¶üó>ùYôÃe ¹¸OŒÜXÒg·@>âd‰Õ ×âÖ• oå™è¯Ê¿>y Yû›z£x4‡cÕ+Nãì`P4!ëªJvÆH†¤ÿV0šMÙždמe"R•õû&£ÙÄ~“ÃR,N‹“lÀþžñÎgЧ`_5 SBendstream endobj 217 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 720 >> stream xœm‘ËOqÇwi1jQbcu»&ô@ƒ5 ‰ hTbÕ@Q|D-¥/(-´@K‘RZ[–Ý¥…>[II(å¡h¼i¢§ê‰øxð`<™`"ùµÙ.&^æð™Ì÷ó—a8Žº®ÑèúÍ×úuV‹þTmM‹Á4`Õ9vZÇ‹‡ñ⑲âQ@é{éb9HE («Qפ¯B÷c"¿Ó3ÜdïrXLæ~òtmm]MPëÉŽ!²QM6ëôÝv—³ÛBêld³Z£&oØ]‚h!OØmd‡Á¬³I»‘ÔÚɶÖË-­ä•–›m·ZOªÿoí_Ã0QûÝ «Ç°ª](LŒ—ãø&Z‘m‹. a/áy¼dKËc ®2œç5/GŸŸ¡ÊåÅ\v=[à’L -ˆ{{º(°F0p&½àz¦¦hU”ÎO€F|Þ€Ÿ?Ë7*Ρû¡$DæÒo&•1&ÆÀœ$1 TÇc t„4œCX—/ÉBdl ªBü2oâ]ÁMCÊ{· ·S^Úà.û’K+䉗ðŠz’H2±QT~ÆÊÂ"ÌÎÌ&’?¦øöc“„G àötŽ+}´Ÿd4“ªæà#µÊ©¤U²í²KÜ߸R|:4è³QÐKt™ëÞ¥sûbtx*71èéï©ø'|†/Cï‚)à”Ù·KÅ À¾šúƒ¥ÜIekÒï°ªø/ Åù€R¥çÏ„†¼Zš:OKÜa, Œ¡ƒT¹à*÷ƒõ¨Ù ˜Š®…Ÿ¯¡cŠpšá¦£ˆAëŠTjiieu#¬Œï¼å™D¶Ë lá_·DHû^žsfm6§ÓfË:s¹l6GÈæ‹MñxõÌ(Tb­ö‘t/H+ç–ã¢ìlŠ™a¤Òf•e™Ã&"¬tßo}Všendstream endobj 218 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 597 >> stream xœcd`ab`ddôñ ÊÏMÌ3× JM/ÍI, ªüfü!ÃôC–¹»üÇ´Ÿ:¬Ý<ÌÝ<,~ìú!ø=ÿ»3#cxz¾s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kê¡; Æg```642f`bf{…ÁacØ÷5|ÿ™, º×ÿX²¾{ýòr¡ï“îˆ ïø‘+¶>•]½{ÆùûØ—uöäËyût%usŸHg_Ü}¶ûÐrŽ?“سºëÔåRÓÙ¾»õ³BMzðýÍ×ëO}}ôuçæ½ß½D3Ù:Jê›[íºk»9~û°}y±nùñ]W]8ÙýŠã;¯âÕß"¿ÌMô#¶µM]¼bÎú¹-ëÂåV]:¿pW7Çûý¶V&¾nÙéò¿[756uwvçKþ0`ƒØW¾úâwæïŠË¿³:´‚ñÁ§gß|cþ1í»£h÷M™}Ù¸ñZ÷ Ž[Ç~3ÿf6 µÎ\X±rÕüEËW”/Èé•[·ý´ Ý;N•š$ÖÆæÈg¥æwFvuvv·uqt7v6ÔNéž#íæáP…ßÎiÉÆÓŽ%Êï궦{ÇêâE9ùùUIºŸý¾ó~—ýâ½_ùüγ¾çM2Ÿm=×-n9.–|În½½=}½“z'­^Áó|bï¦þžþIý“û'ñð&Xÿªendstream endobj 219 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 444 >> stream xœcd`ab`ddóñõM,Éð,IÌÉL6× JM/ÍI,ɨüfü!ÃôC–¹»ñ§Ú_Önæn–?4…¾' ~ãÿ-ÀÀÌÈžSéœ_PY”™žQ¢`d``¬« $-’*œô¼“³óË‹³3óR¼ô|õüòË‚™ ùy I©‰9i ùi !© ¡Á®AÁ îAþ¡ÁšzX]†"ÈÀÀÀ˜ÇÀàÏÀÄÈÈrøû¾ÿL‡ —ÿ_ÎøÃürïUæŸjß•EgÔuwÔvµ6´Ë•X'$%ws”µÏ\°hÂŒ¹;䧯Úòµû0Ç»9aÁɹr-&u't—äÔ•”¦Õu·qÔÍìî›ÙÓ·l’ܬcóölêæX:©´ ¢)­¥@¾Ô0û·H{]kQw‡déÜÆÙsgϘ2An”ɫ',XøTb≠',š¶¥wòŠ-Ë7ïÚ­›ãhOD…ÂoæêDù†üö¦î*ްíYûÞoÿ.7Kޝ|þç©S§/˜Ï¶œë2·KH>g7÷òž¾ž¾é=fLš8‡gmoïš ˜Ø;£‡‡9²·"endstream endobj 220 0 obj << /Filter /FlateDecode /Length 12760 >> stream xœÍÛ“ÉqÞíWÏ?ŽŸtÆ\vUߪhË”C¦V¤e‰‚o±ÔÃà²X( ¹À’Zýõά[ç—]9»Ø¡’8û!Ouuv]²ªë×ù‡›éên&þÿú¿/Ò“ŸþÚ‡›×ïŸL7¯Ÿüá‰ËÿzSÿçEºù«gd1;R®qŠîæÙ—OÊOIrû5Ð÷i¹ºy»y–ž|qù›W·O§ë2Mk\.ïn§ë—ãåËsŒË¾^„É?=û[*_eù³¿Æm tg/Ÿ\Üí³ß’É¥I¸úuŸæjòoŠÉ޵tWöXM~_LðFâu »sÅä‹Ëª­wÓ¼…ËûÛ§sX¯‹Û/Hb\C¼|E’4ïo!L3Íêæ×xùšïwÚ¶Ëýs¾Åmò“»Ü=gƒivy…·ÇŸoØv!®t1¿_Ý´¹Ë·|…ä-×ÀMÓ>…Ë}¹ìäfªât]Ã6/ËåO\€‹Ñí¡^ÂoüîÅ­ß®+ÝÝC.w ³QîÝ»j÷Ëý7Çmk—íò|pǯÊó óº]î~WŠnaOv=»’ZÌ´ÐeÊìô_¾xs¹.ùât[1¼,_üFÍ„îñêv÷çh&Û^M¾7“ÅÏÓ:n&íæ¸†OçÕ]çy½yêæëº„P~`¶ e©axjAÇM³C}Xç9r#j çî¹0ZQÿ3·¢‰ªÅ­ˆ/²ÇA;ÎÏbÜÖ½:Ý3ùëä›ÿOõà|³_ã>UïLt;‘îùºÍÔ£³á‡j¸âÓØéÿæaøÅå/©†{¸Æè– ÷= .ÓjtÒìAje_r3¤¾Ì]}ââFÃÏÛ£cÝsˆÑS_!ßä([ìK.Ês¢ÆM–‹óÙyõç#Ïìþê|<>Þ3»0œ¯Ó|-é'nä;GÝwqé:¯ns{sÝõöi˜fºùíòßnƒ¿ú‰ºõ7º/‡0‡ÚX²óxÑÞ+R77ÓHC¶Ü7cð‹¿¤Ûþç½ÔÙ|Ôá/ŸQMÃܳVr¿ò+ÕüFÕÜ–Ú¢/õý὘d^‰™Eôž?Þ®+Ýâ¼áP#ÚϽlFOx¥ùÁîû¿l=-k؃«æòioÔóg?|ØøTÂ56€g©šu|G—¿/m‘Óý›ÞªÅÀ/×û<ÙòV¸^÷0ÓÊ¥¯Û6ŸÚÅlü,å`y7ÞÁü¶XïWÝyãc^kd“cƒÄâ)ˆ}^F;°E‰ñ¾^yªí6Rœâ¢ÝXÅ µ¥—M¹7![èÝû<LqsP«^*JÏòœGÜaË‘ñin#S\ËcÆÖȱîþؽŽá&É»Òs¦õ"öe‡ë5Ê›WÕ6¯Ê¨¹_7ßã'µ»þÔ2ý•Æ[b¾<š…èUyêŠ.Îw>´©•KxpS+lkn½Ëâro•#s)nÞýªFÞfüÀvT¶†Ñ"ݪŸ¾;._åÖî¾…Ü~ÎW'Czˆò½ÂWeø¤öûm~Zó¶.VÃ[è÷¯ßˆ1æ…ØŸn³[.¾SK0úhñÓæ±b/.e@û¿/Ïe›÷E6õ¼Ê/ÙʤµR»™õnd~QÖø˜ÅÏÃÇ2oºÐÝa W&æt½yí<=½%¨+WõuÊkCÑ›¹®~!—­Ýy{.žUº¬¥Š:Ñzÿû‘Ò\ìe“=æ(ÙUsiüÎä{®?s}¶¼þÌ—ÛÍz-.¦áùÅm®µ@9ÜÁ–óQ¥|ñ)”ù¾Üêþ=Þ߃•¾ïtÉu»;oÇzÞåtÆŒ\¢J¿»p¸|/«‰A#½CÞëk)šw4å„Ì»ØÔ]È$B{º“| ks›ã].'ðv¿xªdž¿zòì?~qy}'ûF©9oô˜| 88âËÊÚêäƒë E8ãy9É&`¹¥TZÚ¶PcsEÞ€‹;-fvx'÷u‘·¸â8˜[ 5°ÜR²>±êW<îOܪ°•c;{ØG^Šã ýÏ·½'Ô¾D÷}Ÿ§sŽƒO¯ sEW ).™7h°ÉXˆGMV®°ävÑ.dC/ž^©ø¼:šÊ¡€: ÑLµÉ‚p‚|çŸ']võâäR¥^ £•>ÄK×½=LÇpxzý]¯€#ŸZ—}î¼Þäù ‡5¹$)s§[ýñTø¥x^LÄÅSGίB¨=# øÑm_*Ê»y +Añ>pæ­žo¾¬UÅǬV®¬©ŽF#f¹§ÊóóBë¼=–½†Úؾ:ž}-ãÕ»—GŒ*^b昜 ìîuû! Ÿ²ÎrÜ*[ .‹z¥åNku8 ?¤IG´½ çFÕÆ·~÷Z×exƒp¸×wºŸÍ ŸžˆyoF‰—=m¯fË—¥Þ«9BL¢µþræ=Ÿ²wS=È“üq~í^Çgb¹Ç¼l3Úçn÷†O!ª!Þøw¹Õnôx¼ŸÕ0 “TÙîÝ×=/7ç”Ø†ŽÓÄ\ÿù¡UÅ(v“4+.½t ÑAó*Aí¶Ö—P>䧃ïa´k³µé=ºcýñ®8Œ+ò/·2°íÙÝ_Ë^G‚ÿU¬ŽïðLjiq|N»·¸ï<ѽ‰#œçoӞΠŸÈ 'Ïç/p^žGàH±Öøg/bÕ¢:« Ž‹F„7ðñ #o¹OÔ(äaÙcà7É9Ê¥ Æ)o8ñŸØï®Mï<¹}¥å™Šö¨hÞJþÁÑ^N,—Y8äe×=êÍP.ƒ—\§8}Éo¤©¼ÜèAŒ  ƒÜ>ç]ÕN¾h’Û=â%†ØI: ›õrê u_kŒ'Yñ M<‹;ù&!‡%LÑ„_— Ó´â´ÞmΓe>²mÍ–ïË‘Q78³uœ±bŸ„5xu~ÔÑϻޞR§ð0ÊöxJfæ»Çk+vÛFŨøÙ‡®´“z¼7îÚZëeÞäúê†qõý[1îæu'sÔg_”Ÿö×¥iŽ‚ðm¿ºk|ñàFä’Ñ%Ù`Å; cÇ]Ä §ñ.kž¡Jy?ÊIŸ±ªêŸéøózüùûãÏûáÏÞ~8þüÇáϾ9þüúøóÅñç«á²†Os‹MSœ)|\¹È)܈ð_ãm:oó™óM\º-äbmÆê-\¥t˜üe]Pº¨”Oérâ5kßþ¨'ÆËËÄöJê¶…äÈ[¸¹Þ÷@,çÍóå8,•#ùxÊw/ åQFÙü²S6åÿÔÎÐûzIs–ñ &ƒ¤oŽ@ ší´=rïËØÈ+“Þo‡óiuÍ¿üvôLJï*l¶Öêä;ÿêøóÍa |wò¸æËak5üðeŽ©h¤ß~„kÞþ©¯†åþÝað??¥ÿ¬Nè®ùåÐaî°½îÇŸ0€·RbÀ£ÁÛáÀ †¡Úë4¨ãrÝ¿~öäÆ_g Y×·î|>ø†BúpuÛ ÅxübàæëW7ÿûæÝ“åêhÐ^oþôÄÝPo~ûdºùÅÞœ aöÆm;ø›t(ûº\ƒ¿yûäIca«ªÐ$AÃn³Š4› UQv 8Ü^­vŠ?W°ªJ¤ØÛ·².ßÁª*`i…‰õª ZÅ«ÇzUEÖ~Ÿ¶ëžhJäwöÍÊ-× êÕy;OBP¯¦@Y>\ÊVE‘µßéñz¬WQ(b¡µY»â2+UÅO;£«V+7"°*Šw1\·VÖ®3Ö«*a_¯¡YñÖ$Ö«(xEj”=Q¸GÞ·ÆzU­ví¯ªÄ•ˆjEÏÁ£'ª"Ÿu× êÕÙ&hùªüÕé‰à8¸«ªÈz¿\w¨WS ^±¡¿šÂíléV‘ǰ* Ô‹¢õˆõª ”Ňã°^¨+fŒÐU²¨¿OX¯ª€Õ¾iU¬øM1z¢*rd ÔßÖ«*h´¿ª"¯)„Œ›´jŠ|B‘Æû꥔bå'實À©¿;‡VE+Èá 5êÅG`±^U‘­0R÷à‰¦ÈžW^¢UQäøEk^>.­Š#SÜyVU‘O(î4S`½ªž þ®üUÙîi5x]ÑUWäS™× ëÕáUÒ"ú«+PùnÛÁª*`Ň#g°B¥XÍýÕ(k¦™² F/?QowX«¢ÈÚOëŒÞêŠxÖ~Ú¦d«ªˆvCÍ­ŠVô¬”·ªµ§Þ>¡ªeEš'°^UA+š'°^U‘ÏÚQo÷à‰¦È²œó´~«¢xfÌb+ËE實@Y|Ü<ÑÑg½›™G«ªˆVïïÇc½ª‚V4O8´* \‘þX¯ª@í©·+UÊÚiž@OTÊÚ#Æ¡]'6í¯ª€Uœ1ÕJ¶¢.ŠqhWdí©Ñ)5E^‘܃qhW ,>ó õj ”5OÊ_M‘ýßÏãЮ@YËŠq¨VŠÕê•¿šWÜ&ŒC»‚V;Æ¡]+úW寪ˆÑÞûà1ÕJµŠ‡j¥XQWþªŠ¬Ÿ›…8´+²^|âЮ@YÔßÑ_J)V¼] žh \qž1í \qqÊ_M‘m‚!.ˆCµR¬Ö ãЮ@½¶Yû«*`µO‡vj¿ŒCµR¬øTÖ«*PVœ1튴Z¦ ãЮH-Ó®üÕ9[-Ôß!í XyqhW¤¿•¿šeQŒqhW为, Æ¡]+êï详Èñ+Ÿ«ÜЪ(à¯mÃ8´+2žXø_±^U‘³ÕÆ¡M¹6MŸPQÐ*nÚ_U‘õZ§ãЮH߯Ôß!mŠŒ|I ·w®èW‡6®HýãЦ@YˤüÕéÕu *­ Ö~]UÚ¨×浿Šâw ºÕ>©H´*ÊjW‘hSdïXù›X¯ª€U¤™ŒŠuQÅ¡M‘£Ä6íÊ[M+¾6ø¡)²olùÓ2`U(‹z;z«)PÖ¼©8T)Åj™UÚÙ"6>À‚õª Ôk *m XQoÇ8´)`µÏÚ_U‘Oq “ŠC›‚VAÅ¡M«¸jUEzu§ÞŽq¨RŠ3P¯¦È{ÜiôA5EÖk§ÞŽqhS ¬Ù«8´)h•¿š"Ûý¾ì*m x‚ÊÅ8´)PûÍkU­¢ŠC›WÜ7‡6Ê¢Þ®üU¸ÇèTÚ9ïí1¨8´)²^aÚ”¿”R¬Ü¬âЦÈzêï‡V…Ú¬ïÏ1ø üUX¹s¹‡6EÞcXf‡6EÎa”¿šµ_w‡Vfް­*­ Zí^û«*P/êï‡6EŽ_!ì*m <ǸhUE^1N^Å¡UßÇ)ª8´)²^üÐ_M+úEÅ¡M‘Ï1ÎNÅ¡M+RG5EŽqÙTÚ(kUÚ°ÚœöWU ö[PqhSÀŠú;Æ¡J)VaÖþªŠ|Ú1N*m x‚ú;Æ¡Ja«yâò^]#Ó<9ûÇ]+?aÚáUÒvôWWDœ'úâЮˆ{¤%¬Ç8´+PÖÑ_]²¨¿{ô*Åj[0í xbw·w<‘Y´* ”6ŒC»VÔß•¿ª"­Üä0í ZŒCµR¬¸uC½”R¬üŒ‘¨VŠÄz¡R­‚òWS öË ûÇMêíkU°Ú&í­ªˆÞHÚŽqhW ,zî‡vE¶AG3¥òVUÀ*N‡v­vŒC»"Û ŸŒÛ»"ïÑSo‡8´+òŠž¿¶Ñ*+rvœ½ß”¿š"û¬çu'šµçÒX¯ªˆÕ=iQù«)b®š=ÿ=Q(‹?ÍŒõ*Š\‘ÏkU¼ºŒC»õ¢Þ>a½Š"gí™&Cí¯ªˆYh¦ÁãЦ@íi€Á8´+P–[•¿ªõ¢‡‹qhWäÓ¦ `Ú¸"6ëU鯙º;Ä¡]‘-g^Õ¹®È'Ä,òWU öÔß=z¢*Pû]ûè ”œöWUäh2‡ˆqhW ¬¨Î}tE–µLêÜGWÀŠIyðDSä°8uîC+ÅÊ«s]+ò©NðDSäÊßúÁz¡R­Ô¹®À×ãP­«Mûè xbŸ´¿ªW¤žÑU²‚:÷¡•b½öWUäWêï‡vE^qÔ¹®@YNûÐJ±¢þqhW ,¯Î}tE>í| ë…J±Z‡6®¸ªs]‘ãĺFí¯ª@½¶ ÷»"G€|Œ ëU¸bpÚ_UÚço«£UQ ^ô7Æ¡M‘ãÄ6©s]‘µßøK#à‰¦@YNû芼ÇÍ«s]‘#ùÆGÔÁM+.êÜGS`NÛuî£+p|B=Q¨ý¦Î}4Å;>MÖÊÚ¢öWQ`~Ì'ÑUzuî£)XVtÚ_UÅxÅ¢²Þâó‡6Eú!Ÿ„¢š"Û`>~h ”ÅçZ…SÊçÑ[M‘ÞÊçÁM‘c\>ˆõª ÔkUç>´R¬ø| z¢*pÅ]ûè X…Iû«*ò)æó艪ÈQ"ŸÄzUEZñù@ôWSÀŠ¿¹žPJµRç>´R¬¼:÷¡•bÅçÁMzÍê܇VŠÕ¢Î}tEú>ŸDO R¬6uî£+P¯-jU¬ø| z¢*`Ô¹­«è´¿P©VAÅ¡M‘WÌç¡^M‘þâóè/¥+?©8´)P–Wç>š£j>ˆõ*J~Ã=oÕŠÏ‚'ªãe>ˆõ* Œ…|>ýU•üÆvjV|>=Q¹zÌç±^ûéÜÇœÏb½ª"G€|>=Q¼Ç¨Î}tEŒrK>(ëմЇv¬œ:÷Ñy{™¼:÷Ñéû…ÏBÚÑr> ¸c½ª"üµä‚X¯ªˆ˜cÉ'ÑU«MûhŠÜéXø„ òWUD›Xò AôDQ°¬ Î}4EöŽ%ŸÄzËâ‚艪Hñ AˆC»"}ŸOB½š"F“%ŸÜЪ(P–Wç>ºõšÕ¹­+êï‡v®¸DŒC»"¢Ž%ŸÄzUî‘O¢'ªWÜÕ¹® •:÷Ѱâ‚艪@½¢:÷ÑYV>!õRJµ ‡vÊrêÜGWd½ò A¨WS¤ïó AðDS ¬Yûè X-ê܇VŠÕêaÿ¸ PÒ¦N}h¥ZíÚ[ÛéÔÇ’Ï¢ª"GÕ|>ŸOUä¸Äç•·Š£D>ˆ~( Œù| Ô«)òùäóP¯¦È{Ìçg´*ŠìÙ³Wç>ºV³:÷Ѱâóà‰¦@½uî£+PÖªÎ}t¬ø¼z¢*pÅ]ûè xuÚ_Uëœ%ŸDOTE¶œ|>ëU',9z‚z5EÖ+ŸŒhµë8tÉç¡^M‘µÏç¡^M‘µÏçg´Ê ´U>è±^EÁ{\Ô¹®À=òù@ôDUdOËç±^U‘m‚Ï*UÊ¢õ艪@½‚:÷ÑðjÚ_U¯òù@ôDU¤U>õjЬŸD5­Æ¡]+zuî£+²åóX¯ªHßçóà ¥T+uî£+PûUû芜÷òù@ôDU ö»:÷Ñ´Úµ¿ªVaQq¨RŠUTç>ºeŨýUa•±\ŽE<͈<«“×ç•?ƒÉ3$¿qZ–ûPBmª!ýdñ2ö––V&+ ä®É #Ql²Â’(6Ya wMVêe³Â@[¬0ж&+ õ2Ya¤€-VXŒ·ŸŠ–Ve…%¯j³Â’W5Ya wMVXúëѬ°´2Ya¨—Í Ql²Â’(¶Xa$Š-VXÅ&+,ŸÉ ƒ'LVXžq|€¢Ød…%QüHV)`‹-Çd…¡$‹F&×b…‘(¶Ya ŠÇ ƒ•É CíÉ ¯j²Â@¢Z¬°"Š V‰b›–e™¬00¹d…ÁÊf…åmV(`“¢Øb…¡¬G²ÂÀÑš¬°ìg6+ °É ÃMVʲYa ŠMVX2¹&+ e™¬0xâÓ°ÂÒÊd…‘(~+,­`…6Ya Š-VÊ2Ya¨—Í Ë+Ú¬0Å+ D±É C½Ë ƒ•Å CíMVêõXV¬,VÙG²Âhe±Â@›¬0”õXV¬,Vˆb“ñ¿b½ªD±Å +¢øQ¬0XÙ¬00¹+¬ˆbƒF&×d…áŠ&+ W4Ya$Š V‰b‹ÆÚ[¬0Öëq¬0Z=ŠF‹–u4+ °É Ql²Â²,“†²LVXŽ—6+ŒDñ'a…¥Õ§a…%‰j²Â@µš¬°ôꬰä{mVXÖ둬0X™¬0ж6+,=ñXVXZÙ¬°¼¢É CY&+ŒD±Å mk²Â@¢š¬°l&+¬ˆb‹¢Øb…‘(¶Yay&+ŒD±Á cíÇ £•É #Ql±Â@›¬00¦+¬ˆbƒF¢Ød…¶µYayE“F¢Øb…áŠ&+ í#Ya´z+ V&+,{Ú¬0Å+ „¬É ‹+>šF+“–­É #l±ÂH[¬0”e²ÂP–É ƒ¿LV‰b‹Oü+b…Áê_+ VŸ‚+“–D±Í ˲> + |¯É “k³Â@¬0^Ñb…‘(¶YaI›¬0Å&+,)`›–ä®Å cY+¬ˆb‹¯Z¬0ÖËb…‘ܵXaE¬0Å+ŒeY¬0ÖËd…‘(6YayE“¢Ød…‘(¶Xa ŠMVj¿[¬0ÔÞd…‘(¶Xa ŠMVX–õhV¬,VØW“–ãø¬°¼¢É #Ql±ÂpE“†+š¬0”e³Â@›¬°¼¢É CY&+,ëõ+ D±É K¢Ød…‘¶Xa¨—Í Ë²LVY“†+š¬0Å+ |¯É C½LVˆb“F¢Ød…eíMVXÖËf…‘¶Xa$ŠMVX–e²ÂÀ䚬0Å+¬ˆbƒF¢Ød…á-VXÅ+ D±Å #l±ÂX/‹VDñFÕb…‘(6Ya¤€-V‰b‹†²LVÊ2Ya ŠMV‰b‹†z™¬°qË £•Å Ãsü$¬0Z} V­,Vêe²ÂP–É Ql²ÂPÖ'a…Áꑬ°´z€–D±É #l±ÂpE‹ƲLVˆb“¢Ød…‘(¶Xa Š-V‰b“F¢Øb…Á_+ŒD±Å EóIXa´²YaI[¬°"Š-Vˆb“¢øq¬°²2Xa$w-V‰b“F Øb…‘(6Xa(Ëf…ܵYa ŠMVXR­&+ e™¬0ÔËd…Ezˆ–W´YaIÛ¬°¼ÇOà K+›–ÄªÉ #Ql±ÂÒ«°Â²,› Ød…(~+ V+ wh²ÂH[¬0”µ[¬0”e²ÂH¬0Å&+,G “F¢Øf…(¶Xaàh? +ŒV+ õz$+ V6+ D±Å ƒWMVˆb‹FzÔb…Ql±Â@µš¬°l÷6+ŒD±Á címVXÅ+Œ÷h²ÂH[¬0PÀ&+ Dñn±ÂP–É #Ql±ÂàÕG²Â`õHV¬LV®h²ÂÀ¾š¬0Å+,Ûꬰ¬½Í K¢ø“°ÂH[¬0Üã÷a…—|B<ÑÉ)©¬¼&U Yy-ª³òZT-f嵨ZÔLª4ƒªUYy-ª³òZT­ƒ¬¼&U Yy-ª³òZT-f嵨ZÌÊkRµ•×¢j1+¯EÕbV^‹ªÅ¬¼&U šEÕbV^ƒªUYyMª²òZT-f嵨ZÌÊkQµ˜•פj!+¯EÕbV^‹ªÅ¬¼U{fo‡T-¼q±¨ZÔ,ª5‹ªÅ¬¼&U šAÕª¬¼U‹Yy-ªöÌÞ©ÚIùkHÕ¢fQµ˜•×¢j1+n(„–›éæ×¿àË×e…ø\exvÏ“¨J-˜~¾Ü¸5fè, ¿¾ µÜ_œ2þމ]Ujîû5 <-ª|ä*P„Óõ!—ð˜V×_êòð¸>-Ö–M]Ÿ?CT *º˜§xÌëìÅ—¢‘®ªAÈÏEÖ (º˜Ùb˜1²Å0cä1ìs '‹a†ÈÉ`˜1r2fÔ’Á0ŸIç!ÃìÐ_Cˆr 'ƒaÆÈÉ`˜1r²fÈœ †µd0̘9 3æ@Nà Z3Ì*r2fÌœ,†r 'ƒaÆÈÉ`˜1r2fÌœ,†´d0̘9 3æ@NÃŒ9“Å0Cäd0̘9 3jiÌ0ŸIç1à 9“Á0cäd0̘9 3æ@Nà 9“Á0cäd0ÌgÒyÄ0cäd1Ì %ƒaF- ó9“Å0ŸIçÃ|& ³Êœ †s '‹a†ÈÉ`˜Ï¤óˆaÆÈÉ`˜1r²fÈœ †ùL:fÌœ †µd1Ì9 ó™t1̘9f¥%‹a†ÈÉ`˜1r2fÔ’Å0{ŒúÇ 3æ@NÃŒ9“Á0£–,†r 'ƒaÆÈÉ`˜1r2檳՘a†ÈÉ`˜QKc†Yå@NÃŒ9“Å0Cäd0̘9 3æ@NÃŒ9“Å0Cäd0̘9 3æ@NÃŒ9Óa†õ]¾â m}áW ëqãÛȾ¼è ./ôåÒV Ö.–”üZ1D]>_é¡U9Õ>â› ôµd°×2us£×*us2ÐkÔ’^7­wé1z ©›“^cêæd ×g@{„^cêæd¡×º9è5jÉ@¯QKz©›“…^ƒ– ôµ4F¯Uêæd ×g@{ˆ^Cêæd ×˜º9è5¦nNz Z2ÐkLÝœ ôS7'½^!us²ÐkÐ’^cêæd ×˜º9è5¦nNzíð%ýV©›“^Ÿíz©›“…^Cêæ4D¯q” Se0ú(hà¸äó´ÜFêŠeUZèd`ݘ:X7¦…NÖ i¡“ucZèd`ݨ%ëÆ´Ðɺ!-t2°nL ÆX·J ,¬ÒB'ëÆ´ÐÉÀº1-t2°nL ,¬ÒB'ëÆ´ÐÉÀº1-t2°nÔ’…uCZèd`ݨ%ë>Ãß#¬ÓB' ëžðÆë>Ãßc¬ÓB'ëF-YX7¤…NÖi¡“ucZèdaÝ:X7¦…NÖ}†¿GX7¦…NÖ i¡Óë†q–.¿àvýávýÇ”ÓÉ@ÆÏ`ùW)§“…ŒO¸]?FÆ1åt2ñ3X>DÆ!åt2qL9 dü –qL9,dRN'Ç”ÓÉ@Æ1åt2qL9,dÜiqL9ÆÈ¸J9 dSN' Ÿp»~ŒŒcÊéd ã˜r:È8¦œN2)§“ŒcÊéd ã˜r:YÈ8¤œN2Ž)§“ŒcÊéd ã˜r:YȸÓþ:3ã˜r:È8¦œN2î åt²q§âÐ!2Ž)§“ŒcÊéd ã˜r:YÈø„ûÞcdü –qL9 dµd!ãr:È8¦œNcd\iÉ@ÆQK2~ËÈø,!ãg°|ˆŒCÊéd ãg°|„ŒcÊéd ãg°|ˆŒ;Ü÷#ã¨%G-Èø,"ãg°üŒŒ«”ÓÉ@Æ1åt2ñ3X>DÆ!åt2qL9†È8îÇD7á¾÷)¬WûÞsÞº„ý˜¦¨ý•Î: qt]ƒ—çƒ;A_>^Ý‚—/о<æÉNCÎ]]žÏðnX2]T x¿*P}}ÌÀ†½ºþ\Qšãú|‚wS×ç\¨Ê©Ý; é|Uƒ¥b:G ø ¯n¼KŒM *º˜9þ‚®A¼Â#˜ù†pKÞ6—!\WTTšvó3 ¦Ýú̦i·>³€šõ™ÔÌÏ,@švë3 ˜¦ÝúÌjÖg0M»ù™HÓn}fÓ´[ŸYÀ4íÆgTšvó3 "ãÏ,œ?Æ0ú̦i7?³iÚ­Ï,`švë3 ˜¦Ýú̦i7?³iÚ­Ï,`švë3 ˜¦ÝúÌÂiÚÍÏ,¨3^ãÏ,`švã3 J³>³€iÚÍÏ,8DJÆŸYÀ4íÖg0M»õ™LÓn~fáü1†Ág0M»õ™LÓn}fÓ´›ŸY˜‘f5ë3 ç1 ?³iÚÏ,(mü™…HܾÙÏùX-MŠ òåç®Ð¾ÌÙêPÈáuþÍÎç ‚Ãª+ŠämPVW„UC«®V>Ú„Õ¡+>ܱȲEXåcPVW„U~¤UW„U~ euEXå×WPVW„U~í!š lòv9”ÔaÜ$MÊŠÏsòÉÊa5óN@F]6¼~ô`Ôa•×ò¹аjdØaÕa•'_(«+Â*Úò¹аÊ(”Õa•‘CY]V|øx–OæP„U>X euEXµ¥Ãª+‡Õ’²ÉÝa“)É’EXñáéø.›|$.×aµ,PNùOñïjÌ‘£Ða5ݼæáŽ‚lúÿú?/ÒÍ_={òÓ_Ó¨KƒÞâož}Ic[6¸á¥ÁÂñöJ3"­\Ÿ¥'æÅoŸýöÉF±t¤ë)#ŸË´Ý<{ùäò9ÿ õÀÙs°'þ¡ýŠâš ÔþWþ¿DÛN¿òåWóNýìóÏëïh(Ýôïfþ7š;ç•–Lêwùg4ã.¼Å?[¾Ï­íÃ_å[›u%Ž~¶þÀ{Û~ؽí?èÞövo¡ßµäѽýõ3š{]n¤r³¶)ò<ýÀj¡Áw£ºÑñM„j$?‰ÐJ?>SŒàË8͈—Ÿ³(© `ԷÛ‘Ø ×7s‰»û>’;ãS"þ¼£NŸ: uÈ/.ÓíÓ|Ñ%^Vú“ÖW/Žäü’Ýzü훾®¿ÞþÓ³¿-"B͇ù0D¸™ß¼åàùå‹{8ÊçñùIŽÃÍš_ËÐJ‡_¨ÐjóëWy¥UúnüîóqDž×h2¦ «)§]OÍ5o¸n| ¹Lª¼yß…2óÒPE=Åo>ðü—„²çã«?düã—À|ãÎDu÷çï¾¼å5\œÜåÕ‹¯^fò~úD=äÙ¯ž\þÇ7žýêîw·!\;¼(ï M×8ÑÅÅe=¿O I):Š_ièæawé}æžü?Ë¡ÄÁendstream endobj 221 0 obj << /Filter /FlateDecode /Length 4092 >> stream xœÍ\Yo$·~ׯœ<Œœ6ï#±¬vâ$Ž- ÞÀ˜•FGVÒhuì‘Àÿ=U$»YlUOëX†–ÛKɪ¯¾:8ðë]ÑÉ]ÿ•?Îw>ùN…Ýãë±{¼ózG¦Ý-œï~¾3‚‡/]Qîîíä¥rWJßXì…é¤v»ûç;?,~··”ÖËNÈÅÁ¬‰^ˆ¸¸¨Ã›:¼ªÃ³:ü-;aÅ ;®Ãu~–†6„^B®êð¢ëp]‡`% 7uxËÎ%[¼XÔñ;ã†qFDìÕñOÍçïÿeGêΚv÷¿ÙÙÿø‡Å÷–VéN·øMUÊ?êð–µÆKVïkÖ¯êð:a´ïæq›5baŸÖ¯Ëú• «(8?ªÚ9¯CY‡d³^Z˜X¦·L?n™yÜ2û€e¯Y•üÈ‚’ ñm©üâ¤?ªÃa7K¿¾®CE—!`´Q] ˆdÿpÖïÿggÙ[€>̌⵶Pô&×3îõãŒ{ý8ã¾zÜ!/ž¼ìžwÖáuxQ‡Wuø–ýzÉ£ðÔ49}S‡„:áÖe|$ Ö섳±Ü1È›H0(ê 7ì×n`cËpñ/À‰w—õ„dH¢Ë{>VmØG®þ’Õ#=q›guxÄÊ%è=`w;eO6gÉgb š$–:sÿ ¨$§y$fßÖ¯§¬íOêÜ{ ®w&r0ú7ìi6h¼¼fQù’p³å[`²æMôÏz‚i9ìT]³§xìÖŸ=ýÄ£ñv«o£º1§ðióŸÙe7ìWª>…þ*œ°Þ#szbUÏ“äb×!IµÔì1yêâozͳ݃˜¿§ŠŸˆAH)ÝöRàù86Œ‡@ï«„#–*îHJÎSEÃÛçEmêWžã×3Õ9 Av7ÇwÄ7Þ°sy/¸Ù²Å˜ jßÔ[~Z¿.ë×_"B>=º?$nòˆðІUå;áœ-OuÁ‡ Ǭz:V$³ŸKÙÏØCðfæÛ ö”ŸýLr§cW%/ü¨lg…• a=2¼ƒŸ³C2ï «.ƇÛþ×–\OÑ&‡æ{7—OÑnž¼™O¾Óºi=ŠÐ9)w— 6:æÁ~]÷-PŽ0)çËök!"2÷ïì\òõšUà½7÷’]vPç’Ìw*ýÚ)­©Š>«ÃU'E-Í4½¾Ž$™ÜÕá³¹¯‚ˆ€0`¼´´3êe]ýªj¼ © ™`è×a®¤r‡¡¨ =²ÌÓ-f–Ev™Ÿ[è5ïÞ–Ü1™¬«CS‡š$pªçß̀’1 ±„­$7ÓsTÆ€–Æ«T±F 0 £_g–c æS$_ýåd53ç`ä«b¬Æû„d¯ãæ (¨ú9aú–Ðì³®ÄPÎ-sìÆæQ8ôïH#„$ $C UÉ<>­jçü}ž«§Y{Vñõ•°oâYFð¬QMLŒIL,Æ>:"Ù_ØÈ#êíLüØÌ¹ž`lYM…9a³!±ñyŽàgÜ4NîïÇ (#“·$bdòUDü,ûzÖ´FžÁ9±¡ Ã# j—ûÓ¯ö&2?Ь¹¼gjYÃhDØ`dòEŒÇdF&M‚Ã:œx&æüø–µ­eŒr"]Šô’3T,Ù¹¿†tiÖ¹gÓ%Ï˜Õ $E¾"'C’Dñ¿!=9¾/HÑ  tM„@ooÓܾÿJÔ3ywãò¬]ȲÈÊ}HÕ3šÜ“C 6b_ç˦·ˆ¨/u>¶‡°šýzo):›¤þ±RJ^$¿TF^.6h}¼ Bá›N±Ñ&P”…'(Ä‚M½J`’!Já±”ÇÉ:*ŠÎÀé£É ˆ3:50Œtʦ§½AÈ{\©;õbußP©È/»g!Rj<©2Ö8ÁâßR*ÒVˆuµ„ñJó1Àð¤J‚E'_å=¼pùÐ:m]¾VTÆ™Åùª&*IO–„ íÂbEvZ÷Ûôú:Fœ6ÍMn‰ vuÔ!de˜.GÜzëÏá«‹A¸53‹ÚT¾SBiœ9ÜèÎí3$}g,VØu1B­—ähWù×& n,BþµÉ‹Íê·qÂЇÔHÑÚwÒØÒHÁ$WPL mÎÛþŒÑøÜ©qQZ˜‚ƒKb'Q-¼ÇgŠôþ’f¤×>ä¯>ùþ^FY¬)ÖJN«µŒ×Y˜ŽøK P^Ò7*KF0UQ{w»T#»ÅWÔ 0*aÐÜÖO-”TN¢¢…u¡µuUþº×C ‚ßÕk&õ„í·öVpn…«`ë”{À-6GY@q ¶’N,vÛ†#oÐ2^ê(|U¾‹sTÅiŒ:ªIEëü›|¾ÎQ4”P§u¤ëQwžD“8ØûjW¥¨v 󪶓·:KNDë¿›ì8àéÕ†™…Ê1 r®ˆÅKm"Â*E\¼„»o®ðsè\Hü…ŠR¢#ã× ®A†IsA•0 YZ@)În÷†áeU¨®kƒE¿+Rˆ– ÕH¦TÜÐVR±‚Ð\#òµm„ötO*ý""ùùÅŸð³ŒQ¢sBO4‘)õU6ºÉçŽROã3JWÉ:-<ø*‹ð¨¨£ª†ïrà ÆöÓV6ÀI…Ž‘pdCÑ‘_KµMq­‡!Ù/ã­üs‹·”%®Q`ðTÏhÕ¡f²R¨|à;Ä`ñ4„s6†È&ÞúÄP8ŤøP}?+ è[6ÙÜVõŸ”„ú`ÞZ@0 Ž”úÔñ^rR‘04ÄF² º,TFa·ºóEI;‰ý‰4„„Å6rÁªK ç!ç\`I°½q s. C€UßÜOJL`ëÓ. í6%%¤øœ˜à|ÊËÓgˆ&"‡S`p•«"'!‡Ë¸3+óa Ж’e pŠ,á A¤x Œ‹ïo¯Ò|ˆ®ø`¤%²h!•´E`šp–÷IÂQå°7„<gŠÄ .qq°.ø´Rsù'f‚ÚÇ^ÏÁÚÂaàJÉ/-†¡Ð„H4DpV/GftÀåä#£¢«´—ÄiTÉ‹U¤çŠ'÷ž|¸ÖA(DÄLDæ A´%P-鯅“NÓ¹ŒL?¬‰ÍÁÍê"Q˜•àÌ•~ˆNoÎ#wÅzÀ'†¢ù-„±îmãð‡mÂ\œ~ðQêŽ+B”dö©¨ßݱ MÌx°¨Ïâ÷!†6ÛÜ®\ÌÕxý›=X¯ÐJöŽvJ–åsóŽóéùÕtŸ°’T±!¦&>*›²Ì¢! ‰y“Ñ’\”)ýʳ”YÌ$BÎÎlr‚”sgØPç( Ñk[–³ŸÅó‹,ÐcQ™>WÐÉäÌYÃ0£©¯ˆbF E=Æ=ACšÉè$ü§&Ptv¾¹UÑ¥ÌÕ¢gÝ€ Èn›ÐERô-0®[ Á Ø;Ùìkò·uÈÿl㘭Áê¼1ƒ/717Yk 3d†U–.¶±²@Ä”^¸¨=èlµ¬¹p±Šéèñó51‰æƒU*)l‘2¼†¿A–…pξ[{5îhUºj¿Õ×:O€Ü í±¢ÍxI9H¨¿„×T>‡ýnº÷)Ž+¸_¼Ø–ûx1Ÿ9õ€Ë¥I–Šô»T ‹0cOì^ªåÃ,ÕF¹¥ŒË 5‹¦ÀÝŒ2­_æn ñiÏà]4),ö»™‘š³ƒ ë +ÞjawÝ'¹°©¦¢Õ‡™(½ÈŠx<)×è6ÏÚ$iÙË]–gANauRKÄ êDžu«š%`“•NˆlŠ´•9IÁGI4§»ÂÚÔKëlõŽuc‰¡&˜7A1­¾)xÒ- ×J]‡jrkêõµ!Ô„¹¡î'v?¬LJ<‚sÚ®ßâe2”9´Ý©rj®Aœ±éLÙ(€8ýóÚ·Öó5M™š–œVF߃Û$ŒJHäÀ¨Ýú™¶ 2x°þl ”éw3–ý^mV‹J—¢ô$ßõ æbd“ÆBϸ/OÒ¾­CÒÃ'}ù‰Ð'“FöÛм8aƒYµž”5ྡྷ·i"ÿ:«ÁˆT¤A7Îþ ell E¨ÂSˆC×9´Ì›=1ÝTþ›DçXªÐáao E›,+ ¨|fHýšúò]>3æ*£–3~Æ‚v•E•ŒDWÞ¤}‡,ÛH‘Ù¦ç9‰ 2£‚î¤^à’¨ƒ–áã@ï@@¯£@OÚ¤éݤ½ãô[iØÍÞ3×,8§Iú¸©SÝvBK_†"*Å&}ÜÒ ÕØö–ªi弨ɥ~šJ½¦¡Ö€Imùçǰ/¡ðŹt’жu…Ã0Xšs…Aœ{¿æ S®‹â0§z9PÙûüϨ ¯ÆÌXú‡åNéD¹Á±ÛÛóÄMÑ1€¾´K]6tÑË¢­ý.›ú]F"%HøÕH <Š»¬ ›Ü Ê)1(¸”Žâ’X6õ]1ôò(R Dí0ƒ©e!­^ÖhsÆëïb_ÿƒŽT"<¼ úÑ”¤û6 »ºÊ'ö`•#²2¹t}Dc^²ªŒvÑñ>ç˜(ç«4þá‚„æÆ§j 8n›·[ã᪎7åe "b¬‘tá(M’ ¿ô;!»ˆjCöD Óòö ±w½"HÊùŒ5Ú#ÍôÙ¾°Ð‘öb)Bßí íïö½‰`ïaIÑ”hÜÂÇÖj›íǰmVžŸY„±ªaAâùÃQ·<5 ”9¢(lÕêbñÉ.0Ý¿çòLâ{$‹ÎhJ‘qÜ:ÀýŒ¤šif¬F|4KÀöæÐ¤¥XËiÌ®óB#K›.`í=EdoóDPú*Õ]×ÚéŽz ¹õLÚ0ÈêNÐ$!1ä@H©sS”Š¿îmöϯÖÒÝ}µ–XE„qP{ñ×oã´¼[jpá;#…²?šÐø®›ÈXrh£¢la•ȈŠÏš†ÒÍ y·ÆÞÁR- ª9¬q‹ù´œÒ2¡WþW ä’%{”Þ:Ù:4 ý9šÒ®¡P5Dv©VTÂÀMQxì‹ÿÚ 6–Í+å|÷h¹7¼i}ÑÔþUCõ9²·UУr/‡¿~ù¦ä·Þñ/ýWyªzñ}i¦ÄÎCáW‚Úê]Uûæb¨€Þg–Êÿû&Å‚¨ƒ¯1»K ë|H?ßYHÿ“/öwþ ÿýIDendstream endobj 222 0 obj << /Filter /FlateDecode /Length 4150 >> stream xœÅ[Ér$·½3ô©C/÷­Ç­*íz–v7;ŒÏ]Yl¦ŒF´ú«÷ÿ×»› Ó‹”ÖÍ^mø’Oò³¥Õ³¤‹ß7—ÍͼԢäùË5ÕÌ‘kb¯†9³«Ãm®ëðZ^†ïêðâ¹µW³§‰¡°b©ªÁ÷ÊH© {¥gÅÓKŽñ f¼°Ðѯëð³æÜ˜< )É„ÔÃ,sʾ„Oÿ»ÃÄ%C;ƒB~c[ÕëqReí嬠îê‚C^ŠH<­Ãó:ÜÔ!pÁ†Õ`FfÿÛû,¹1I.¬iEoêºÇ) ¦ŽúböPAÊåììésW¼«Ãßf¹üP‡â2»:¼©Ãûæ¶£ ˆúY\2ò?ù!Äcízë‚ÁÌÂÐë"M¾Ù¸ÞwŸ¯Öª7ð­¶h UïÁeK§­SÔÝÙ£ø#•ÑÍr¼‚àˆWXÛè€C7WÈíº›óqÞwoVƒé“J¦{|›<ÞÑ. H®Âjß[¸òO«D¡U̧x£Ê­|÷ÇaœÕ|w«e8 ÷´6ãÝ¿‡M,l§|·¹Y™Ð;8°{‚ó@ƒã I ~HÁÛîw¼­²Á;B£Äá< çEOsÚ @ç=N;Øwp$] üHÀš"pi ãà2úT™d êNàÓæœn£ŒÒ¤ªEF‹Ñ@I"B€ú¨K  XÚ`hï< +6È]3X™»&Át”;¿ÏXH)t›-ÿ`‚ ù’Áxói%ﺮ¸¨çúv|Œ"Rg¹% ÞR«jeHÞ€ÁžFˆÁbÿ«J— àVÜs†[€4 ÄC§ÂÝPÄA¥;÷«µ?aç7«dñ8ÚC*gfŒ!ó#Ú˜Fbƒë>е”2°Ó+Ø4jÄÍUýìOuð—cð,Rz§"µž GÔòbe%ïqÖ>æ2¢5\Lð‰M ‘à x ¸AFt²> q_àY·Ég€† \‰Š ‘LØ#ëZ¸2Wq$Eü¶êÐÙxk;A úN &ewÍ&Xq[…; }qûóúMÓzç-“€â£,£ä¢äÔ½à -HÊóZÜíÃ^`‰ :&¼2âÇzœ ŸœC|U Â_×ãÏëÇâªKÒþ¨ñÞ€Gë- 2L„ñ¾zÉ:mIçÓ4è?_"š¶j™;H àYb\îøW€/hô¸*Ã"¬ßPX6–\_W²%‰è¤Y<'\ðÁ€×nsMÖ5€Ý²¦FPZ²ÕUÆ„+!q)É#àâźäBXtÂü`•µx¬˜¿'U€ø‘*ÈÈ‚ ^3݈è ÝpºŽ‘BØ.J£uΘ=º­r6°I‡ XÝlÒ½Óòð· 9çûÁºrr`†_^ºÎÙ$®VIȉ5ÜÛV²|Áß £ý±~ ’èê@÷4‰Fv?àÚüÝ+^Z4àO‰¦‚µKâÌZ ùYëÒn¤ø¼‡,8˜(8ަgÑã÷·{`’ÍÊ$yIQkòUÙzâvaφ—Õ÷Ä[g\êÅmˆåÚ‚‘«J àÌD’Ã0LîqËö«.’y[6ÇîÓ¢´ÐôÄ”&å„]œxZd— Y'ˆÌGõhnFбõ Χ,©”lš°ˆ,˜B¸  Cð‘A™·Zß‹; #4ÁË›HØeüSØwQuv®K–#9ãšnw™Ç)-G$¸Î… ²åRntà.C`ÛJ:êá¡ûk•¾Ø$ûQÁ´®½ø% 1šAs‹Rœ…¨¢*\ã«y¼Þñwah)£~qŸàµÍ{Ó ²p-XIˆÎë!n±vôËd•˜³P€)´äÏGuz޼Á¢‹–‚°Yk§¬øÖ¢Õìvíz%Ú -¦ g¾Ûb“ω£ÀÛïdRr_]˜øòTD“âÀ!!îVñà ½Ä>¶MC ƒPþx_i·yˆ¬O²O„,7¹ˆká Ï6tðäŸGëq® î¤É¹ª†nóÀ9GJMX[Ò!AÚ¸=œÀ¶Ë[ ·±vñ”÷…Ï6ù÷äe@¦lhbpM_à¬Õ6Ú›û…eÎØTÊà(i“˜Âr8 ¶ï£jû$¡’áBõ«LÇ—b¤Û¹:Þ~ÉŒ­SØÉ{ªgLŠš”wêNÒÚ„ÑbÈSÚV÷ÁNt#T²fã;ä0Ž>jÝbmKí%„(ad˜+£æ[â¹MêP/‰B7”q2)mìÃÄÛ¶€»y'–‰·!¥v6o».–pÐJ9sx’¨Sû¯`”ëj§PÊh#س_Zœv{¶²cÇæ™,c\U(‚µæt$‰³ÉZ^hŠ2(&Yv6“Œœ—ÊF€ˆ€ÆõÆè“bÈôQÁz\¾.Ï ð«P¼&Fr“þle6Û<½V2ƒF#w³ÃYÖˆªL,€Íš•?»ÈÌçù–˜ ¨6c ›†ž¬¦WÞ•ŠO߬@3 ¿çfcy×@Z ’ /x+ðnABé˜ÄF:‡jÎÐ[2½•õ.$³~4*ôœà’E¯|ÙÖS \4§k2*çB¨ò­wÆe?6‘.žn !ß1a‘KM=5q•ðsÒ™ÁkذnýZTgeò( 2$à0_(€Æ|Õ1Nhì¾ʯDP*ÐÒÄMÞ/W²^3§ç“ùA‡] *©»|0ì¦l.ŽPP‰n:˜…®° ~Ϊ7áòýJ gs¬É㎙·ˆ¢ÐC­¯@a/í£XTâ#w±¼•oxÀ6ºiÜŽ›cƒiWšMe˜ºên™å6nAs¶8¡ „wÝ[éL4r©›`gÂÚm‚±MT<8o˜^ÚQ ¢›ALnD}2'5¼Õ4¯žè&Å`¨›D 6`•(¶ÙSB05,w¨sc`¯ÎFåé-îæ[-oúûøB@°˜%?_M&rSëÒd}xÃ+ð‰êJ0.;Õ†²„+\9ª#š±+qò8YüsÑô9=¸Œ“i²#¬"Ò™šúÌBRÞ¤wâ¶ÒSSXœøÆÉÃÍ3‘ç"©üBýVTQ—_39Ã]—Õ™#‹ôQ=P>®6ælU³Ä‚MÔ°ìð×RØÖfðüȥƗ=0im·~|cù`ë¥Wt¼zKÙ:ÏmTË80·»0·•d,U ›üv ìÓrˆ5–Ä´¹úôek@¥ L“fƒ_oPf+Þ™ȼX‡Á‘¡•ÉX"“mÑœ« æ’…Ü{cè±,‹ËT÷M©‹Üó—U]Üu#A°4DFZwÚaí÷‹“£¿Áÿ-Aendstream endobj 223 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3524 >> stream xœW TSç¶>1s@Ä©G µ' u¨#¨Ï¡ÕZ'QœŠŠh‚" “LAfI6ƒ 2"B0‚Ôzµ¥Õ¶jmõuòÙeµ¾[©¶µtŸøsß{€ÞÞõnßZw½õ'ëädíóïýïýíïÛGÂØ c$ »Âkù9ÖŸSÄW$âøaâ«R ~ãm¢-Þ¶à ›¶ñ£Ç`÷hL‰»F1R‰$"V½"âP|Tp`PŒëÔ}¯»z,Z´`†ëw÷E®Ë¢‚÷)Ã]½”1AaÊzêº5b_p@L¼ëÔÅA11‡Þ˜=;..n–2,zVDTà[¯Ïp Ž rÝ¥ ØïêãºQà:Þ¬ÁËŠˆ°C±1Q®^û¢Â†q[±2Ê3:&v­*N¹ÏkÀÀ -Á[CBÃ|<æÌ÷oóf³‰ñf&1[™)Ì6f;ó3ñav0Ë™•Ì,fãɬfÖ0k™¹Ì:f³ñb62 ™1ÌXæ%†gÆ1NÌš*Ɔ9Â<‘¬’”J~æ5ì©ÔCš-½f3Ýæ–ízÛ32OY'+g“¹•\›Ý6»*ûUöß wnvðv(a7¢jÄ3GÍHVÔ8ZÝÍâº*‰¸Ç²ˆWWhFCh³Ôñ$§ÿ7gu"h#4Qšlˆ.^!;¡ÿ¡>‡Zí_&šÙX€ˆ¢ÜÐëóºqœ3VË®wÛ™ Y³¾Z¡~†úÓ,y &òÈ‘v[’,s´Ø‚Y´7JPŠ܃©x{øü/’a+¼‚Þt8LF–dØ*Økù°_N>õT°µúÏà$]¿û÷Ä`™¯»?:S½T fÂ:Š=™&ñe£¤ °¤bFðøÊì§Äƒ,˜7‘Œ#Ng¢.xðÇDO6ód Ý½ ð—J“¼æì¹ 3¼¦CåUà¾ÜB áGË/ô½f ¾†cÅñ8^ÚjYÎ+úú{Ýâ"·áT‰QEfàHâ-'ÞsâÅ^œÆ>€OƒÏø4úWî±Kò Úä·æ pŽâÞÁÌ<þ rRܱ¼1ç¢|Dñœ¿1¡¾ÞXÞÞåsÒwq°§2™æJ*# ÿw®îÒ44Â7P7ˆy¬£Å‡Ö»‘~ÞµFìŒs;¤{˾ÿ!ù±›BÖ¨Gœnx".Øx…}rlïryžRÊ–gì.lÃFœ(ùP¿¼„Œà:dŽâ¦L£èzJÒzoJÅâR¾ò“2µž$dkލ³4e À…‘i@ÆMÀQ±MYò†,cfœM?Jî-wPíØPÖ!dVér€S&FNXö0¨KóõPV%œ¨<t*Àå Ž.F—w#qrÿ–`ÃöÂõE›Šà]îã‡PRê(½“r Š«†ÜZ¹£¸–B€5ãÒ*ÉÏo#:¤(Nâñ53y ·*eº©¾S§j¸ƒß&Öí^Ìgw:¯Þº•>ìÚ°ðÐMp£–ÖÚ–ž‘ëú°Ø'näÏøvéžKÞή¿"à–xþQ‹4vÊðßêîÀ7f!ç .3ØšY/5´ÉEŠÍùCšˆÎR´f6pÄ pƹžtB§üm–N§ÓêäMJDqÊ–„úêÖãîÖ°x®¢ôÂ’ñ?ÌÆ)èÑ„\¾àøâÒP¦\Ÿ[œÂ±ƒ®ËØÓÛû`7qªrU «’8ôf­’«ÖèÒÒÅ®¨êmÓ(+L\êA$kL»K’å—|Nf>y[¬­QOiŒ€œBµ˜ØÌ%òS89CÐU@nÜï²ë=(»99…BQQÁñúú÷ýî¥|@éþI_ß_½I=•ÕGƒ]âÛE§)~‹FÇü\\XTp \Ìl¤6@$l…˜A‰(®Óddgfkµr²ŽL¶ì?CÚŒ¸õwh¼Ì–—¯©ÀÄÝ9?ƒ²—ŽK‹ƒdAÁÖé?¡¦]Pƒãh"ÄÁ‘œäÜìÜ#%Ü@9ÄÞ®ÁZ„YÖñÿììö€³Û€ìÅ’K÷~¥–o)¦ï¿Dl&ï^’($~»ºt=L/•/÷/Ï©’o.]?S»äÿø¿`Â:Ž·Ñ¥W[†›%/šÄÿæó+ô†ûV-ÞIÕ~ •ñå=”èï YÚìt9YÜ¿…¬Cm0ËB´³è¼ Ó†Ìî³í„!¯ö3Ä“üÕ, ×¾N‰#f@Ô¦ÿ3$äZÕ—*m¾¡ —‹Jg\ѯ4$ü[ Góò+)1÷ÐÄåš;«$˜Œ¶R|jaùF-„ËÖ©õõá°¢Rvº gsý5D®`;ô¿Âºú†ªG^µ# =~„.]fÉUtAo|I*ê1„WÊ4*µwRZ†z $Q¶›-kmþþßK‹Pú7»à ‡ö®·)7ÙN[?ãsRm“©ú|Ghuhžpö|w^5p;ß^±äþ 9 #qiéFñ. âB«ËÔ³m(à˜Ó÷ñ¥“äK†^è&żO‡1˜è»Ü£Z›Ûâ+7”6Á)®=¼Ñ_®œýl;ð}õý³‹Q?Ù Âw ^ƒ¯¸»+®9±YäýÆÎ¶Ä§+ÏצµìÎ:Úo‚¸‡à–íâ/ ŽÔhSuqºlm¦ÔÍ% JH'ë«~a¥ÕUèÁ÷š§‰Ëdõº¼¨x-$¥ ¤·“­Ï‘(ØFýSÊt-ðtH«§QI#xr›Àà)oãhœiü m‹é¦ÌyŒ°Žœ³Ä2¾%£jN}ǹÑÞTyésŽBqªN Yi‚_â®#[)º|‹v—«õ½¸THK“NJGª õ9…Ç„âSç·4Ë0sñ ˜HFØPò^°¼ûøÙSdðƒñ»ç}µ‡ã¬Þ‡8 > ¯îóÍQÈCb¼Œö'M’ Èc Ž•ârü/>̽vòrMGWÛÇTžLšº¨€ìÄ8Ä6Ä4Ÿ0–w~°ïà d4Y²„”¬RŠièüã—芮Óîáqëaþ>%ä~=D]Î>–l„¯¡€Ã‘Ý—zžÂ›S¦Â›ÇÔbÑ»÷Vˈ_>k¶GÉpÁÞfA•ƒ]KƒJjFä882Ìÿe!*}endstream endobj 224 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4194 >> stream xœ­X TSçž¿1®Ö¢‚QS{©u¬¶jµíØjµJ]ZÅ k‘Uˆ@ˆìBIÈÍý'!;ûÙ$€€ bÅZ—'ÚÍŽÖêó½vjgúfº½ïâeΙ/àkíkß9¶óNNN¶óÝÜïÿÿmÿO@ŒGß5›¶mXºÄûv7KÀÍÇý‹0…7ßË.ðIB˜4¾iöô=þ¨*Ê›ŒÂ¦B 9]»&Yž"‹O œ½ péòå/, |vÉ’å«“bS¤Ñ‘²ÀM‘iñ±I‘iøCb`hr´46-;pþËñiiòÏ<“™™¹82)uqrJÜ« fJÓâ·Æ¦Æ¦dÄÆ¾ž,K Ü™8vw‹Ç^Ö$'ÉÓÓbS7%ÇĦÈ‚xbµ,Y¾6(%5m}ú†Œ™‘ofGoŠÙ»/$.~«441iþ‚Å1‡&Bˆ-Ä¿óˆPb±X@ì ž"vO»ˆ×ˆEÄnb-±˜"ž!^'ÖK‰õÄâ9b#ñ<±‰ØLL &“‰¹¸^ÄxÂ-4Û;cü¢ñm>sEbQŸï‹¾äbòÛ Ž‰ßäß&MžtîÑüGïú©&O™Ü1%njÐÔëþM³¦M?íô´[ã7¬ÚíáÖW †¢mÈG±2BoP³l°$c,pQupÈ\hfš wÒ–¨ri@c¤uÆ8þÞa)vT|€üg¢,‘‹_á“™ªŠP« KU fª:ÍpÚ˜Vïbk1T–h@±“±×èˆaëfÍ (@¯Õ©ÉD^(>ÈßðácE~Ü€ÚÍ-r PÜ Ú4(D9hØâ¶ÖXÜ%§ÀXq¨´¶çãk@3…glÚË?¢Œ¦ó¤Ld{ãN|ÙŠXœÐæ!WOiäò[€Ì`ËJëœõöZºº¯ ‡~òæ6÷îåogåQÚ“Ò¦ˆƒÌ4ERVt^È|'XJŒF·…ª¼ZuÒd=ÈÔ &K¯ Wñ}[ŒDmÏ­.®°UÙ(?Î~ÿŽÇ]EÅW…œyÄ_…\yžŸÂ‹ù9ü¼¹6}†¦ 1šƒž¤x+_-ŽÙçù · ›ÏÐíƒ'šŽy²qoHDúÜ„`Z¶mWøn ñUù´pôÊ\ðeáçü4±&QÃİd®²ÖRh£p‹¡ZÏh•q‹ŠóA¹ ¬N«­¾¨œnCól9uQ§A‚è4-økðÉàÝqR­ê/Nyˆë@¡M¦ÒÄöÖó×߲ǹ5!RÎ?"{ƒV¥DírKþm»Ùh6Ùi¿a=x†ÁðúÏ„hÕ‡bT§Y¤Bqá€r¡-(IQ:zbÅ7¼˜æ/‰FµC•§r0è•ôõéŽÃ6c ÿ%úôz8?#DÆ/{’Þ½umäK@Î%‚Ùf5;Vü+0˜ÏyPK«`xc»px%R‰&³Œ¤K FtZµ…§â7òÏÉû=°ö jô¹#²)äZ6W#£Á`ÐCªœ`u™M•EÔ»Hîݘ$Å*Ðç“¡£²Öf¥¯r…h±öïMJÐT"ê’ÖÊ yL*Ͳޫ¸ ¨ÔXTi¢¢ s½2@2'Êɇì<T÷ƒ¦€­>—æi+“äÇ2q©¢j0meËÕ5èÊõ2Œ‚·„È…ºÄFsÿ,ÐÕÊx5“…dž#«¾ÒSzäôF×þ×ãÂÒ”º/¦jÿïDv“íÝ„‘½Pí~ïZ<Ôëö¿v[{ù¿·çÃ÷ 0ñ±üž|ØN&È_š›¾ÅrJA²ÀQ0‘Uy%iÉ9á›ûãÞGOu ¿ãw^©ŒrP?$[ãìÝÕÖ ÝhhÏqQ zòIµ5§¶¢¾¸ûxÔ‘ ü„¨§wR÷àÕKÊFé‡ncnIˆ˜éè2NèbŽxÙ¼‚ª…Ì-`w©¨”¾Œê|Pƒh_ý–ÁVTFûq-÷ì™A´tPÈ9¹Yb“Õh3éÒ”e&ieõßS˜ †‚¯¢í5–R¨"{÷{"Çóóuc83•QvOÃWý@º\ÌÔ|¹2†>t`5ì$Ÿï—ékmjª¥*·w몠jêÊ<•ÅýA£½aÙt¥ ÍzS äh(½ßN<&0ïq!Bn‡pc¬Ž+¸1ÎQíÓÓÑÉDAD˜£¼»ÅMå[ë!\]CËÐüì‘.ÍþÍzd@¶Úf°ÑpÔÜ]ÐÍtŽ–È+¤ÈÜ6—¬£%Џ_¢%ƒ¥gÑÒ“B.Ÿ›$>¬òÈÒRÒÒòlZ«–ª=`NÀF”¼‡/â}·«{[ú›ï4|@YÊ­eYÄe™Á°‡\rQ6€^>Žþ·sÐî¾ô5§ôî~+äZ¹±­Ñfï² “À¡3khLrF á°Ç¼×{ó^wÅ}±¨\Pip3vrAïÅOŽì›™µjkÐ6\¢ø:M—‰5 Èwk]}fI¯®;}ñî|ü…3aáý]/D‹QÞöô²X›Ìf€’T'¾¸#>*9Sÿ‘ç&e«²<ì6ÃøÙpä µKëS›“{˜ lb‡KšN•íë”À98ÚÕô~ÓдúÈ_«1D'ÌɉJß™õ6aŠ®£c­ë}½lu;;¡Hâ…­L+ǰ³çYÕ·?"†ÐÊÁŸ oÄ®Ýí‡wC¨î™IÐJ Y* §;+¡ûï2‹Æ¥Ñ³l¾†Z½èY}ÛSzúû¾¯?A·]ê=܃ÙÓc(‹"ýîMkÐî½,¼7õçn€cmÍO¥êlþË‘ó3C¹~ƒÛ© á%¿nøi#ÅÊÐXU¸A¢Q³ÙVÆF7A«Ùã%Áý$‡5ºXkTÑ[M†z(3¡r$ágEƒ#ßšr@[’°Ø¬.n°Í?>ráï•¿ŽàŽõŸiÿGÊ?–]Ѿ£‚1v¹3ÃKÅc©‡ôÊ “ϲ 5_£bÕ,dIÔN(=aÒæ3L°8Wååzä ‘x§ íXÍÉNúá Vf­¥CjqºÝüÒ6 A;d+“ § ²€aõœ ¼=J¯?§qŸŠË/ž52’æbc…]o) a?ÎE 5'z·^ˆ £v°ú´Áž‰õ£À 5høq#oÌ䃹 ]9kÄñŒŸúc·lg@Âɧù™# ÊmûòÞþ­ÝsÅ3QÂÈ]K®ÑP –ªûp•»ÑK¯¢+¨°Cˆ4H!n‚ËæU×›áØÈãû޼1‡b´ôIJ¯~«ÕïépöØh«[Ü^üÖì²ó \ú8¿öÓ~h€tWÝಈ=­X£d ”¡´z^ YäêÁ„ ·š~°Û Ö¼<¶PÅP9¡I ‰@&1 ÍõæZs=m>h95p6þè®J<•ŒQ ɧþhÚÙwÞ¼9#€C·Ðâª$“?«¤QêKZJÚé‹h¥óîZ•äÝØº}‹¤ü‚Ÿ¼ÎÑRÿå¨×¦¥ªeÚ,:éżý*ü(cõ˜odLmÔé»-è©"*àÏ…\š¸.Ó®Ìg&§TkJ««áœ3î^Ò(@o ¡½CÂá‰Ã¯ˆEF+‘&Öž_Ȳê*<4æòZc&ֺɼ?}wºwôËi+ãÖ•éO*gžÎµ3Ù.¥+âÈ%¯<ùìªUmß´4˜]˜Œ& 9WèTïwò±-Ëà‘QgÑ[mF“ÓN¹Šë›%íÛ/æž³ZˆCþ‡´]šéʼ°1Ë’è(4IËrš¡‹¼ùÉŸoßm\·ú«Õ§S¬ÒÇ[—ÙXQDù!ŒûañQÁÝs¿ñSG°GfB®dGÛ¾Õ u%TÅáÒ‹x˜ñv§P… ¥MÉ ÊŠLÉOä7ÜÿÓÉÓæA´ãç‡O'ÁT\s¨·»ÇaW®\+3Ðù’_u¢çÇÖH~±è÷sëÖ–ê=Aa{÷&Qš+;«Â!vï—¾ýÏ8½ZÈ›kî…âùza¯ÕòZ11“Ö¹ý¦æ6\4{€óEZQZj4âÚôfš÷]ÁÏyžâÇñùm!Ž7+ÃêÖwo)ÒZTäÍ‘?^öv¯óçÂÄ0Pp!»7årD¿H^¯3€Á–OŸYn_AÀÏñåµ|„RɲÀÚ"ÆêB¾Ÿ¢9w(4mð mðW/óàòA!J¹ v+j’ö'í?P™Sßêii¢üÒÝÜJ5•»E|¤Ë×3qèjâøª'Mp;&M"ˆÿþ&?endstream endobj 225 0 obj << /Filter /FlateDecode /Length 183 >> stream xœ]O9à ìy?ðQX4N“"Q”äv- ¸ÈïÃa§H1HÃÌìÎ6ãõrµ&ÒæœzA¤h¬°º-( ÌÆ’®§Ú¨¸³òªEzÒŒ7éß4+¿ËšgÏxùêjH9 «— ‚´3¡mÅ€(Xý'±˜pwž’39L"ÑN Çs¢,)¬ª:Ó¤°ªò2ü“÷äÆGAª¶ÀÆrV©Û ¿Ë½ó9EÈsv^iendstream endobj 226 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1401 >> stream xœuT LSW¾‡–Û;-lÎTA¯muŠ…ÁŒ:%q8æƒñˆìÁ²V T*-my¤h{ÿ¾(­ è&Љq8 nnF͸ŒqÎl>B2³™Í˜øZvn{Šî"ı-»'99çÿïýÿýÏA”8ŠBÍÙºm›Ê\¼¹Ê¬)5iõ¥)ɉYš¢rÊ8ž]ÌÏE<ÅÏ‹³Øè’ Ñ TÜÏÒK^æSfðs^äc^¢b,j'e ¬”›:@¥NQç¨!êõ+õ¢Ð´MzCµQ[TlV¾–œ¼"1Q˜×(ÕÕÊIÊ Õ®}¥©D«T•(3’¶%)·ë+… V¹D_ªTkŠUºB¥¾P™£ÉSæfoÎÊV¦gíÈÍÌ^šô¿Òÿ“0¨ŒšÒğgk¦Ð¬6?_NFŸ½1%¬ÖM‰k‹Lå{ö¨Ì¢YSe~¾)К :UµVˆUºÉmyéß)£ª@»K¥Û¨-¢(jzÊúä ÊÌ{ïý2 q ¹‘y‘µ"?jCJ:^O1¥¢¾FsQ=ú%jkÔYQšèª8Q¬Ç=±¡§lhY+™Q‰x‰ø›lh¾¬O<&‡uÒ±‘ˆp=IÅjË!»Ïîvº8W-0XìªøA¤æzäžkl S× ]òú0´‚kó |Õ8þR d2ð6Èϼz1ÿ jaÚ›¡\žCW@3p L"#>‘p™±ˆÔãT¢î¨ö¶xnÎÅuÓ釠bªôIôã²`ÔÖ:Áé”Ûd&IH ù$Ž| F(‡®‚± ®†V8 ÌÝÕ í wè[ü üˆ¯óÀ ðå“e™Õ'áö5C09ty3Ô-äHcq+r#í$ž„‰ž|×ÔváckttºÁí–{=x&Nx€óq>8Š{yÊsâ0.lebŸ¢K¹K<¬ø”à`ùˆˆOa‰M‚M§'ÿ|ú-^m¾Óø~Üy oÅR<+0¡/h»%w‡¥^¾ˆÄd-@L@t“|<›¬ îN;Œ·m¼Hÿbiáo#e€q>™×Y÷güX LK“Ófw;¼ŹÃk?'+Ž$B$4.*[ª!ÊÌÔ¼ìÆ 6¿Ó×10Ô¾_þÇ ã-€M‚±ÂK=± „çFáÚ1›ÌH×oÙ¾ª´¶åMY Ldïóü·¼ñàå\B\ç³âx%iÀ5MWȦ›^‰ë£Ç®ÐŽÓ)xá޼m³rN°Ç7à¢Æ”‘ÄR’º›(ª7æ“̵À€âS÷Á.èfzŒf“ÑRœwA5„—_ÄõøÌ÷òŸðÈ0¾Ú¯õbm/þà$–í?/L}pº«¼öÝΚr02»»kíîøL.ü†óÆ+3ÊF/ªDƒ£¡FEá¾'¯ÊB¼ä|¡VºN>öXBªI.yƒ˜„‘‹Óp•<ôxJž— Öî†pP¶°¡•‰`*QØ÷‰lŸ-°×b¯¯·Ë#A6tœ”„‰‚¬î´\¾‰kÆÎô€ ÚŽÆógYzÈ×>¡p±Ö ¿ÐÇ+‚}zÚÈtù4qŽ^úH§wuºý®V—×ãoï•JO{¼m~áioà?¥1õ¾ùdendstream endobj 227 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 649 >> stream xœcd`ab`dd÷ñõM,É®ÌMÊÏ)¶Ð JM/ÍI,I©üfü!ÃôC–¹ÛûWý¬Ý<ÌÝ<,~Š }oü^Ëÿ½\€‘1<·º©k¢s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kêawªhjNjnj^If^Zf^fIeqfn&È , F† Ë»»{XŠé0LbTalþ¾†ï?³UÃ÷òŒ?K¾÷‰.*í®•ûs™­¶´»¤da÷Lù—Ùf.ì^$Ï÷ŸéHƒ÷Îï Äøã_Dío¶ßJÝ¿ùÞ×~WåøV ’ÿdWýÎ÷þ»R7Çw„Äo{¶ß¿µ~ËüvûíöHwÿn³…E­¡qãîŒÇ–ÿâYÎü«þ{Žèw6ëïÌ¿ùUôÝ5¼äÜowuç.Üî3/¤›ã7Ÿùo†ß\¿ÙnÿfþÎÿéùùwgäÏ[÷t¯,>ªâÐf¾ûß¾sÉç÷ˆªÙ9›yßþÎj(·áøÝ¯ß¹²ŒGUÍåÿ”—ˆ¦ù[*þŠüf üxÿÃËžœ¶þÍúT>|§¿‹œf<¶ú§øj染¾¿]Ö<¥¹¶«¤ºK®Ý6ÐѼۯ;bsȾ€Ã¡;\€†púýæÑÈžÞÞ?£oaŸü„ï¢6ì>ѽ/ùPıàƒq—€6sžøÎóNž¯qêæ ?…–oZȶ“k'·s¸ˆ=g7÷ò¾Þ “{&ö÷Lè™ÆÃ³¼¯gJÏÜiý“{{xxϳ%.endstream endobj 228 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 397 >> stream xœcd`ab`ddôñ ÊÏMÌ3Ó JM/ÍI, ªüfü!ÃôC–¹»ìÇ®Ÿº¬Ý<ÌÝ<,~0}üÀÿÝG€™‘1<=ß9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õÐã3000Y00H3‚ìgq\ú} ߯ø Ýßy¾çaüÎñ‡ù{ÃvÑ5˲² ²²–¬Y³lٹߧY0Äøþ3%K1”­þÉ´šñø«ï^1ÿØõý²è•îïKwþîìþ½Ôɹû÷‚ïß;»¿/¸,§3C´Û»[­*8ßĹ.«;±Û}~ñ½ê£Ýo»OvŸë¾1óà’§×g¬ëÞÙ}¶t¡ý¬°§n;¾²?œg}ÏŸ:yÛ&®{Ür\,!ù<œÝ<Ü«{z{úzz'õôN>Îó¡wsOÿ¤žþ)½Syx ò©2endstream endobj 229 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1537 >> stream xœE”{PTUÇïåÂÞ«n$Ú6ÒãÞkj¦Ã(bŽà”†¯Ò41—e°\vÁ\»üXIX”å±ìJ+á”LQ²§R …iciOë\:6Ó•šš3sæœ?¾¿ß÷|çó;$B$¶rý˱÷OJ’Òc!Òãà´ñ5ãëÂ@I2ôðcЧ§!kJ{%M%(’4ä–¬4åš³vjþ©Œyü¢¸¸¥Q|LttÿœAcÎÊPùõjA«1¨ù¢ç“LY¡j¹Vr–-\hµZ¨ y Læñó¢xk– å_ÖäiÌÍ~•É(ðÔ ßÛ‚ûÛJ“!'_Иùõ¦³‘ ˆ)+ÌyêBMVö¢˜Å1‹H"6+ˆdb±Žx‘˜FL'"”ò ‰Pb71J:C&…4„üIm¤î†&„ ["‰áãeDïùÑá ‰æ¢¯oSýã *]+}¥ª$“»w€Ît–ijù:)JØ;ßÞú2þ*ŽhäÙöÁ%bÆæ^ðx ¾¬BeôáªÚS,â?öÅo\ýRïBÄUå¥}{QK»×èÎö§®KMN²°•wø‰’0=ôZY2‡=tŠ^`uôÑêóС >Ï(g­ô gý›r¥¥~inÙ=€Ê($I±*ÔïÁfc•{öˆP N(¯±ÕëS€Á¼>aÛÖcµÈ3´U\¶ŸÞs¥V3;r·/|ÒøÅ¹b¶¢¡ÒmÆŽO¥mPÚ°Ïå:x€u»ëÜî¾ôÓN0hzïð¥~ã'xJ+ç¨Jª«}í«^8Æj=q …ºãLU¬ËQ+ÖãÚƒ²Q©™;ƒßùüdïudXô¶êNÔ™èØç²×¼…>ÿÁ–ÎöÝÍùn¶§cdí… ;â8=½I\#&kvm³äç܇ûŽkeÝŸ¦˜ºÑš›Üyýf:}·Í’ §êÙ„·Uóãr3^Iíî¿ôþŠv³áÒ NóKŸIï7”ôúJÕ1ØSt1AZ+:A °ŒÕr´::àl´å•e{í<Þ;3¨©¬I޾&²½ËÕÊé1 òÁÛ ûÉYht6kP þsFÊLCb"0fÛëÀÕVµÕC€ñ[šò­B±>õdæÀXÿu5²}iÊð¡X?yh ÕQÒ"™ŽÖ}Ð6–ü;ž‰§ÎŸ§b"æ¢ihú™?ÚjĺâgY¹“Û9‰X)°Ýk8e8Â!ÆåSíGüh{ IPƒgº&õOЇ”ˆ"Ñäa ½"ÝS„N1WÈÖ,¾noÀÇâùxƒJG¸¿\¦­ùÚ.@4À»Ð=A½®Â}”“ZŽQ®ú×Ó@ªÑ¡KgO¸;\‘A:O,‚tH†"WjÕD*+kŠ¡,Ö]Žr<33¤Ïûî{ ÿ÷€fh³pôŸ~/Ø¡»M TƒOë)ˆl²x¬k£Õ› »™]¢]¬î“EGdÙ¿&ÕPX³ó4#£&{|#ØÛB"ûU ]Pu:]9lzÆ–¼(`tt' À;̽::S´G±Zâxõ7Ð'¯p|¢––Ž_ï¹O-\G?ݽ$ÏÝEÂ- u£4•§éDÐÓøþàÅóp“ASæ^ÁX¹<:&ùhY£·«éÈÙ­`g×;ÞæûþåKg­HÀ“ñž†¶—ÈÓhŽ”8E­Ó+D«c«½ Ü‘6y8W)䎖CòwŽüúŽüì”þ…ö¡ª«g6=#žÏܲùÙ–sZîÍŽ¶àB[vŽiWFÔ/ë‘E~ÿÝO_­™ÓÊ]õ_‚k̵Eƒ³øe›2;l¾®–Ö@Ovc¾‹=qþJõ`|#ŽÙ‰Fu‘3è熊‚JG%3Eû¡™ ·x¥•MÈT÷šWÕõtpòÈvrèÒå$¿[©ñ( ˆ¿><÷çendstream endobj 230 0 obj << /Filter /FlateDecode /Length 8783 >> stream xœå}[IržŸ©}ô~<ЋN{§ò~ÙõØŒ…A–W”m€«‡æð"Î’ìY’³#ú×û‹ÌÊ̈ªÌîæöŒlؘ‡©ó1*¯Q‘_gþñ¤.ú¤è¿íÿß¼{ò׿3éôúãuzýäOtù×Óö¿oÞ~óV¹d•õéé«'õU@:^^ŽÊ]´ §§ïž<;ÿpeÂ%)Ï/¯®­5§òù5žÕÅæì¢?ªxJê¢röxü’ð9ÇhÚ›6»ó?PqN+}¾}a“òùü>yc<ñžS@Ýùö=p›¢á|M¸É9¥pþí=Z¢oÞ1œ?ß\C=ÉÞŸ_°¶”ZS„L­Êæd}¨-G畳çT«B$k´²!Ÿ³"¾§Ï%Ð[Z©¨—E³!”QúŸŸþ-†;ŠáNíòùtmñ²±§§/žœ?_=ý–ã)^rTEÎ_¬ËÆœ®õ%X GT¿Ü$-“ 4xPEäS•™Wj/ÞGeO¼¬o·¢´T&ã]ug»0k²]zV–»DÌ;¯óÙùWWטΠ&éüKzôx õ‘¡õñWCàóÕ6”¼ß&£ã9É–¼Ÿu?]Bˆ:‹îÿ‡*¸ûôÅk—j÷Ÿ‘ºF¨«‰çÛßÒ¤F¥\:ß´Æxþª©Ó°ÜïÏó1Îè&ó›ˆ(&_œ39n"¿˜L·ö^œ´¹„¬ ﵆¾äK&ൻà)cªÌ%§¬BíÔÿ¤ž(Ÿ’¶q2ªPnç´ÓxK_R¬ úf¢ôÍ›¤·–~=UM5jª¦ñç:e÷:•¬œÉ7sý´I¿TªŸMçF»‹Ò)íU¶´ä—¹t1V©tŸ‹Ù›ƒ¥‹1Ò¯ýø>U=ÌÅÀ籋ù{¡ò¿ÁtXLgø§}(„]²þuÔ?†ã±ÑßëxÌCŽ_îxJìñǃûÑÏþ x¨ãiö]’¾8ïâÉ¡ ¾Hýlªá:hkïlÔ•aþ/OŸü7´=ÿáýoŸØ`›»SÐ.cHNïžØ¬ñïxûä—kÙèm €/JTéâr¦%À²ùFë/kþ± SSÉ_è™Nbú”'{‰Ð&sŸßíúýË…ß%Ÿk/.@ ùO|µÁŒnõÍ;¿†UöÐìdåê¦ ¼¬äƒþ¶cp¯1¾é#ˆ|I¨²Úd(f1æJ…|þ«Ò ؇X:JF €8”êsðÑÜçtûpûD­wÎ÷Æ©šì…u{s!§Æ•©Á¨foõ0¿E föäb*hÈ;Ľˆ‘Q^CîTº8Q:”wAÑ_‡Æ™Ù S›Èkp]øÕLgðá±0M5}Ùaè¹î6ø¦ 5|/†Ý=—夆×ÈÒ0÷ê«ñx˦ùMs‚ÏPàDó Wã〸¨ Å3ñбC—‚œñ^ZÕQ—œsþQ‹ò!¸Mƒ`BÓÃâ…82"=´ê»u;;å¶nWMŸ%p´îâ­×+¸\¼Âùç³éÁ—}lÓsÿ¶Âw ¾¹Ò,Çî¦ÎC‚38ËÍ *Úkmõ*$þXÃZtrÖòø•„þÿ;¨m뀛c«†ÂL; )²>f}l Sh{à'XSœô (Å<8HÙ…é^ï–¨N+pÁ¯IUDü µ‘B¬EWdÌÉÃê_060ê*é ºÓ;ºt/ͪ+TIe¢è Ã0ìù¢¢Ã?D8bkø,ÊÙ1˜FØS ø„czÐÜ\Ã…˜h׆)ß ‘~Œ¡º ] j±¨|P5Z0$¡F&YƲ0L ¹òMäÛVŠcMC\†Q¦•ʨÎL';8¬ü·¢~×j‹¬¶€ID,JMG¥má7åÖ!‘«¹²PÎäúŽ'­­¬³.ŸþtkRÇ‹¢ºÉ;û@…l‚÷oÍ–°ß~D#ßΜ c]Vm5Á_× ýáÖmÖ% u£•WüŸÍíŠ._ÈmÕˆÜâ($ê_¡3úz¦{ñ(“éÅ׳l¶Ú[Ã/ÜØJ˜ cº»ýž ¼a!hHªÛ¬ìƒýz¶6¦ø51ÔØh*N™‡®¶¢8×ba_ü¡Vˆ‹2TÜPÀ /úù ‹t£\¨.†‡ÜÍÇ![õb×X|ˆ\»uJ³uðølJúÓô )•5õ)͈ ¨L6¥k~âÑñiº—ãwQ¹÷*­Tgb`¼Ï\“æK5Rÿ~iÀ²Í~ÑrmÛùd› ,±“ Þ!za‘âûº½/×v¬à·#Ò¯Ë5ÄQ¤¢¾QÿÍ>ÜŒðÄ#¬q–X!x¼9Œ,MƒÜ»‘»­³vmØVâý»¯<´·eÔàiÏoù&d/C= ø§+ïËh— ´íR–°Ñi“»/ÌPª`ö)¨½ÿ9¤Æ¦“±àÈy—ƒb3܃{Ú^ï=Qu™âÐ ¡†ïi>|£mà#αXi ÛÓñ²aˆY£í+ýŸO7DÃô¼”D¦Jü»û<è34ëØgMûÈu‚öMXß&Șm£÷–¬ ¦Ýð\Ïòƒwmœêÿz^%İXT×A¥1»{ÿ¾ï7~Z¤·Ê?/ëëådû¡þÍ|4ϱâ­à÷öîžx(‹ -z÷óA•[Y÷ªr|DÞ^¦õb œ›ZÝ™+*{(¬ÅGœ5~U÷¶TÊÓ¥€!ÛñàMØ6ä®{ÇÙiº×ÊZÏN×½{g§•µð NQ\˟ݱɫä#ÜÄ0å̧õ]“ï3ŽB”Â{1¶xJpØwÁ­áž¹—ÿ‡*‹î콚â}þýμ~]kLõ¼¨Mö˜õ²½‰g”J1Oy; FÛ’½AÀÍ|˲¨à_·j·"uM´ö_Giµem[soÇî‘¥¡@!Ì=â!^€2ñ#ZZëj/ýX £R¥(îŸÇãËñøq<ê©E·èvN=ÊåÑA9í’ýo(×͉Á*Àç¦:E¹*û)X'‡ócFèqGGŽÇg7‡ |ªÿžÁ±:˜&ý+ j“,¯Þ‚Ú7o2ib {»ªb•(¿ÐûW¢¹Ô§U_ ¯îýøš¾­¨õ%#C˦lßïªÚêœEÈE ¦HÁ,ï}5—Tÿ¿{2ëðëX™8¹8ÛG]¶îÍÇæ¾äþaÓgFò:ÝZ ¶TÐü`viµÊSt0χóóizóX}>#wum°äUÚ  °&ƒÊä(Óߟì ùrèÄ›e¾†¼Y™–B«LèÛ}¥;º3ëC­‰c£ƒè7œ‰ñbÛåOiºT€Eù®ì?y¸ƒ…ycï1ÝzQ‹ å+û¤oÛBÕ¯“ wÙ?ÄæelëÕŠ5ó´›[3D§øôšø ±ò -Äh’2åÛÞ³…øR/ã›/q,>6|³[MP+s5ûšÑ ûöÕ4†Â£êû¡Ï ƒ]Õ|‹Ê%ßnËQ&Ä‹ÒÓ¡ƒnï2„”ØÛ䙾a†˜ ¾%kšiv ô5‘²¸A:,çD¨‡OÔ8ZA8JÅn;¼ÿùêÚZ9†m’7—Õ/ãñùx ÓG5 ûO½(s›oÇãë¡]·ãñ2ŸÇ›ñøy<¾Ç#ÌdÜ¿*Ó½¹ø¿{òô?–í&í£¦ý¦oFoÇãûñøi<~˜Ê¾]ÿz<²®¿™6üÓ¼¦Ãð~<¾æ#²U—FÍél†@¿œŽM†X/ìù´ 5•ýa*¦²¬ooÇãwå1oö_ÆãM{ÍrýÖ†"p ÕãV?7} ó°iûD¾›êïíT#¶™+Ï?ƧÕ¿íy1Æg®IìøYÌ&æ/ïûpþr:s¯¦Íù0­˜éøÓö¾äm˜5ROÛ0¯âfÚœOcê?Ç—\½ú㇩¦®^¤;X(^b#Î=[ëÉ–´Àá;-L;¼Irˆ8 ë tÑá„•‚}úðòô?Nï)¹è‰,öÃ}‚Žž¾-|-|I éìüEŸÞ1ö>ù’TÐXŠ^È0¡ø°IdD¹\`ûÝþŽ÷b#耇36›ñ x5Hö‚h¢ ¹’ô`B à%}¡µûjþïZI‘6-¸P2íÑnB9^¬(©VY¸ã*“(|IL¦¬ D{Ñž UkC‰î*„>^ÛÜ%oíNË~Ç…1ÉnJp×|^;ˆZ…²ÂÐñYÙ„ˆ³še^¸Ìö›Í –šÔO&SY–)–Ïî,Ј@X…"ý#“Ù~Cßl« ËÃÌǨC¨TØÜ`h‰Q&Që˜P¸Ã¸%.Ô.„éQž 5`›þB^HšK4`h¤Q¤/¢.Újg“ß³ÖNG.Ó€Öí1d¢”ðb"­ë¸ª ´É[.ÓVFãÂeÚo.‚¨Rñº$PeFŒÏ©ª qÀøDt uÝDŒ—á `a2õ||:ÀÚláè¹éÜUÆbÈøŒv€£ïy£;À…BtÃP›Š`B `%aÁpáÃ(~W /‘ÏXÚ(º²ÿÄ%À+¢­>©èÅDZøp T™¬„á@+Å×p«¹ª \‰åÑÖ`Êæ¨2P“, j/ž$òyè‚'ñ¢¶0M p%Üj€ aÈ j¿ÛÔš¸ît€5'À‹“Ù^¼ˆ0™`%Ñ_k>h Š”7àuu€'"LfðÅÆMã#œˆ0™`­Žð"–«PØ·³•V³¬M‰–Ä|b;к–ˆåÀ[Ý.âxEàÁðio¿Y¯R2Òfv ×÷‘D) `5eÚzçƒÓæO3Å’|J;ÀF0{ ŸÕp!8¿í€*'"¬f¶žY¬^„ÉÀè™Uð!Vs¡p!g„ÉÜU†èö\dûÍ‹N†ÈePeˆF ª@‘Ñð!Üf€U¦‰Še¹P¸œHâ2üw•AØÍPeà@,ï{ÚT«Ró©@•ÿà1Û¨2ð Üfî€*ÂMæzkà@x¸¶ªLÖQÈö› ž…ásTxÀ,*"Døï* ÅÑLDU&fa.кms±Ú(2ŽXÈ|h$Peh;™Of†á±Îc¼ølv 5ÇÁu$QUØ;¸n)ЊñðÜR€µÆ#bµ 7a½S%Jjk‡ëàærÃ~Yú£>Ðí7¡Ü¨¬¬ÙAka,w@•ëà¶rm„\_è6€¯¼(:i,7@ Áyc¹XŸb«LTJ,tÀ—p6Rz˜×Ö6îC˜Ë §c£·Ò^v€ vŒZÄlà%¥, f˜P‚ ák¿™†$ãÄBw\Ȳí€*”4šàaÀ„Õì‚áaÛ˜ý ž°›¨2ð!Ârv€ä²Xèî€*C³#*@•¶³£2§àH˜Œü]%Œ1Û¨2Ð_nµ~Ê98¾G¸ª üIµ5€âEA h*ëáM¸ák´×‰oòw•€+áfs½"øn3À+‚áKÝ Ÿá<üˆu5`««ìÐk"èc¦)À‹ÇÄ#PÄoZaZ×vèï:)C=BïÄ©òâ–¨j;é×ïoÞ^Ñî3–çÏß|<ݾ:ýAŸ¾ÿøæýëÓó›+Š»“6çÏW”ņ]9¿üøûsø*|¥¶´Â_ÿ.벦ð°rO:œ®u ¿aŒ•0÷æÝKÊPS+®©9Úï3Ÿ ­uÃÖ–¿¿½¢ Ëh}¾œÞ¼E¬ÿ½;¿üæÓË#…ñ#$1–ù žÄøóSMb™Ÿà©‡e~‚'1–ù ^Ò2?Á“‹ü„Ì=,"‰±ÈOÈ‚–ù žÄXä'dc™Ÿ`IŒU~B&1¦ù ™zXä'dc™Ÿà%Mó2…ñ¸üú·ÈO0¡eŠ¢'1–ù ¶-µJPt}W~‚eÖ)Š–ÄXæ'x1ËÅhÏ£ò\èQ &³LQô$Æ2?Á&bŸài…e‚b´ç‘ù .´ÌO°ÂU~‚g– ŠÑê;R-û°ÎO°ª–)Š^Ì2A1³NQô$Æ2AÁJYæ'xZa™ `=.?Á³ÉOp‘uŠ¢%1–ù Þœe~‚§Öù –}X§(Zc™ŸàÅ,ó<‰±ÎO°V/óìÛ¹#?Ár IQ4‰E~‚W³ÌOð$Æ:E±Õ´ÎOð$Æ2?Á“ËOp¡e‚¢cw¥(Zãqù .´HP°Ö,ó¼˜G%(˜Ìcò\äQ Š!³NQô´ÁOž `2ËEoÍ"A1ÊXç'xãÿ‚“Y¦(zÖàQ &³ÌOð$Æ:EÑš³ÎO°œÁ2EÑ“ËüOb,ó<‰±ÌOð=*?1„Öù žÄX&(Æl¬R,‰ñ¸üZ'(Xc‘ŸIŒu~‚%1–ù žzXæ'xã1ù .ò¸üZ&(ÆÌþ[ä'¸Ð2A1š´ÎOð‚• è2ËüÏüä &³ÌOðýÄ &óˆE—xT‚bȬó¡¿«OÁÜæP\3V9aÛã–?»¸£Ã ÄXb!)PÑpýZ'HëÃW‘f@ף乱µ^Ûú=ÄêúõNí«³V)›)ÒõÜÓ.yž#MÏ=¬’×s¤½`§Jè}DÚ·iƒQÕ3ÄFùEd”ã½ ÆÒÚ`˦@‹¼l mñ8AÆž %Eç¤QV,Ñxb˜"-ä´ÖŽâóRW<¼#}!$©ŸOQ.¬E줷ø;ÁO‘»ÚT"m£Ó&¯kľGØì¥«[>"}öˆ¼“ìiÓ—QG˜]“3,¤påéVvªR®›)í ‘r¤½Ét"Tž#ÛWí”ÖÒÞ8e²´7ޏ5É $¸ê§HQI§` ;þìòZ)iqèÀ)¹ƒ1ZñeÒøCéÃñçxvSD× ÙÆÃaé(¢kG$˜lc)Vô°žfK®w¦Ñ¤9Ò*/‡åˆA$öŠø[hGTA,bH+™NäupY&ÄqP²›"ÍÆ:¢ Ä0Eú[P…MvO6I—ëˆM"bçôªˆL"þÖn ã-5_¤¿åUÞþæåˆl“£SžE|íˆ>"âk烑ñ5CzÉ0Y6ΑþVN5â^#´­Ô¶‘~{8wbEâdOL8œì÷”À)X18å© g!áÒÖWߎrð=ºˆÓÎM³*û!eË]$ _¢Ë(ì³X1Cåi+j¨<ÎbÁ ýضÃz7’ÚX^£ÕŽDÄKµtŒ”k…†X?´ ¶–šK©R[ZK!¿ârièV¬.[ActÄÙskïOß»"F•‘ÍÕÂwd÷Ö¤GÉ—àõˆ.Ò²G­˜Ñ¥^ð®O»³BVÄ[yXÈŠy+O YQoåq! îíî¼ùV² ßŠCVô[ydÈŠ+Ï Y0pÅ¡!sî[Qpå±!+®ÄV$\‰­X¸ìä)Wž² ᘺ®88dÅÂe'‡L9¸òÜ ÷ÀÔ=’pw‡,h¸ZÑp\Ý ÷@ÕÐpÙÑ!S®<8dÁÂݲ¢á¸º®<:dÅÕ؊ˆ+Y0qw§‡,¸¸{ºî„ŠËŽ™qåá!+&.;=dÊÃ=0u<\~vÈ”…{àéNX¸òä ÷ÀÕÐpåÑ!+®ÄDÜÝá!+&®Ä\Üq|È”ˆëÅá!+&®<=dAÅݲââ²óC¦L\yzÈŠŠ+Yqqåù!+2®<@dÁÆÝ ²¢ã²#D¦d\L©¸òøWœ²"ã²DfTÜÝñ!+.®îž±;¡ã(»:.;BdFÆ=ÐugdÜawBÆ•ˆ¬Ø¸ì‘)Wž² ãòD¦T\y|ÈŠ‹+ÏY‘qå"+6®˜'å‰yBP–‡ª¬Êó¢¼'1ÏÊó„¡ÌNU™ò“0e'øËvòÁ|d'ïNTYÑ“æ#?yÏ`žÐ“å‘*+~²Äå¶b(KlEQ–ØŠ£,±IùÀdž”Dæ#Iyw°ÊŠ¥,±MY­²â)ÈÌž²<[eAT懫LiÊòh•QyÏežð”ÙÙ*S–²ù w¡»ÎááGã´sx4–òJQ·ðµàÿåZqUïp W.*¾†ñή^ç^ï'Ô(ÇS¼Àþ¡½…U »{«¾ñY“Óš¼æè_§÷¯Õ÷ÒÅ+Z‡Mß3øŽ÷ïý÷íµD{î^3[ß]¾è››¿u_ß²¾Vú¦Ì—ôÍüy}³èÛqÞìŸ7oöóæh‹xúšñt ýûæîîZ9©ŸÄÔ¬~x’õ ãr”["MÄ]²$]¦BÈÁ²'&S "SéÈd6€ Äp•aM~È=޳‚ * s A×Ӭ݈ ÛŸ½¢ Ÿ°õg­èÙQr6œµï?h°Ä®LB?àÅ ý Öyž–Ò >¹Ð/‹u÷†¢«àÙ}¬[¥e„BÃpï_ò´bL¦ë+¦!µ˜úZ_ú;˜ö²Ïìê,ÝWæ€ òñ…Ç›ÐlËÝKÕø²d;ÞÐD80Dxpuû—.+sÙ6œk1Ñ¡­u7^)üYFª†ª‰{7ø›í³¬4;Ĭ\„‡zŸþÝ“ó?}÷ÝËÏo¿ÿâê¯Êí?¿~K÷XZÄã¥wå…óýþÓó/oþ™¡ Ó¦ínkÇA ÊD,’XÛöWüjÐ~ÓêŸè†_DQY õ²CD®ÜˆMT[Þí^¸¼-7gn·+n—?«Ûý‹0Vþ̯§û8.”c×Ìݾ¯ºôüc­kÉóí«út\Ü.·»â®¼'oS.9£¿–8ï/ÆÆêл /J/eØäÊœ!'ã ÝG¿]‰ö™ž4š¿ºJœÕVn%†]JíÎ=º÷^\ºG£k’3èêÍ74þˆTÝ;W{-n6ÝÚ&./=²ÉºAµþ,¶Û®£¬ã=ßÝòw¼Úîô©L,¿óò¶Ô^¡\žH×ÓÙ /O|&Ô¥^£ZîÔÛîQµãz¼h0kUîëttµk2«ûG7 W.¿ìMç uó¾ÜhgS¹õšÈ4}㻢×FË{ÌÆõhÔ6£=/X¹e&ë}ˆìþÑïȠӅ͋ªzÓ­œì®NÒnWîœE¥ÛóòÂÄÖ‰åõ†µ ¹¸øýûñÕy.¾Ø*¤kÔzÛ·q×â›Ø.{M–WÌoO,¥*Ì‘Ù] Ù*h÷®PÂÇÿý(êãvq\—éW8²/†)íë«MáÐ`È^Ö¦T¯¬·lnÖðð‡\ endstream endobj 231 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 553 >> stream xœcd`ab`ddóñõM,Éð,IÌÉL6Ó JM/ÍI,ɨþfü!ÃôC–¹ûw”Ÿ:¬Ý<ÌÝ<,~Lúž*ø=ÿ{Œ3#cxN¥s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kêauŠ Sfƒƒ73Ð? , Õ¿¯áûϸw&Cãêâ«¿k–½*gü.qcÙuæï~²ˆ.®œ]RW˜W4·fáê%+—È­ÿS"ÚÝ5³²¶«­¢U®:"É?¢›£²iúâùgÍX%ü»VÿÔ)‹û§HöMéŸÚ=‡ãpäªHըߥmýM3göMœÒ'·üÍEË»9æOª+)o­él‘ÿ-RŸ×ÝY—)Y—ÛV×]ű3ýЇ½ß%ÊÝöÃï„Õ?nB7ý 30|YDWO­Î.Ê).›]±déÊ%+å’~ŸíÚ7¥{&ÐÒÍÞ¿Y]KW´ö7ÏœÙÓ?s’ÜŠ3‡÷êæX9©¨¨®³¶«C^÷g…C@D`·dG~O¿|_ÿ¬é“fwÏ’\]8©¶ ·4-ìTý–sßy6~çY)ÇW¶à‡óÔiÓ¾,`[͵[Ž‹%$Ÿ‡³›‡{eoOoO߬9S{&÷óðl˜µ¨§§gÊÄþž¾)<¼ -±í¸endstream endobj 232 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 922 >> stream xœ}LuÆï(p7Ö¡’\¶ùrw ` ¶a2d›ckÉf̈ÓÍM—ö¶vìZZŽÆà@`íñ=”(ÊKV¥X§Y”dF0j¢fÑáÄ·¹,ÑÄ÷;üù‡à?OžçOòyH"9‰ I2Å\V¾o³dëú£IúcÀUëýëÅ)`4€1ùR3õ!ôò¨üAÂ@’’«Åì¬ipÛÏÛd>Ç’Ëï-**Ìã öì)âH¢Ûn|™ ÛDI7ÆEþ§Å.Ê |ÎA›,×ìß½Ûëõæ Rm¾Ó}þPnïµË6¾\¬ÝÑÊu:dþ„ ‰ü¦Zþf˜RM,ºù2§Ut;‚H1Õ "Ad' q†8J¤nÜ!’ …ÜN¾‘”ŸÔýéëw Žbh,N"ó]¿oøj½˜±ŽQ·A¹ÀýÛO]åë²êϧ¢Ç‘áÇßWž^Á»†¹?‡Ö–á}§|3Y\¿`P35 =s,z2õ¥gK‹•bŠÃx9=“zy(D|Vd6™L8…K×:7A.,¢È¢AÏÕ÷1Cj¼¢‚r™UÕÎÎËŠ8vZó÷J+sQZýw w½ý§&(¥­Reö–ßzY¯hº^õrxu Zš6fߊÌU-ÁU؉râ·?}Ï­ s¬%ø\ßáþcý0OOŒ_ûëëWI€Õšµ¶A ÃÐÞðB­1䈢¬ùùϨ}ueÖ ;Ñ> stream xœÝ}[]7rî»Ñ»î=¼_‚øsr.™`2@<:H;m©Õ£qïnZ¶cäÏŸª"¹XÅEÊ­ø\ ­ýu-^ŠÅbU‘¬õ×+uÖW ÿÕÿ_]^üö “®îŸ_¨«û}¡é¯Wõ¿W—«ÿú(¬äœUÖW/ß¼(¯¤ã9ÁËQ¹³¶áêååÅ—§Ûë—ìYépz¼Vg§£étw}£Î6gýéþöüA«`•=½…G£• éôݵ gsjuö9oO7ø¢É9¥pú`›¢¿öˆ^‹æôtaäD£|Êætû€­2ç¤âé5µ*Ÿ¨cNÙŸž©J ä§Ò:U:½'¥\ª5ºäµ£–ðmü€´)çàc­:i{z"&(“¬9}v}ã ”—<¯ƒu…·þ®ðÑi',P!4†&ëŸuLŽwî¹`¡¶[Öˆ×öYÕmý…ãà3<ý¹—vKlÊ(][l‚ …m)Xà •f•³Áôº35^åäâé©IVчìýõ¿½üÇÖAU%ëåk"ìggÄÖÓòž79pvãû7­€ s)•rÞt‘ŠnlçÝé]—ÌÛg,È)å3rHü9ƒð>ÑÐ*CUe€êØ{•q(H¶o¿Á±J!¬ø.úûmgäCgäëR3>~}}c"pÕcÉX²Q<üä"sÁà\º'îï€M4×TŠ&A38Ñë.4 —6:˜YŠvŸW/PÑ-6ZgäâCA“ÖX 55C¯X«˜±¾¼bÍxB Ê—Z- zþô¦–öU¼©'>Ùo®qnFí陕X:¬|nüíÕÛ2x)ÙÄq$Ÿl®^þáÅËß|¹R4o¨\a†óá/ÅÂ:®Ãø‹( A[Psø¢ 8’F15!˜Ö©1WF6UÚ^cb0º6ÄÂS_8ú{$©\BÞ%4Ìéžw­¬s\ëQí1,Œ™|P ±ÎÅù´±YàXŠa³Ö°ûXF*q}|ß¿ëwýñm|˜>ÞöÇÇþøŠV['ü“ˆ†~2­ul¾ÞÛ6?¾¹öž¦éé9iØ& bše˜h°¹&&â$TŇ‚få8­X(~(c³áÂõT^Dé–+ü×…Ú§ŽZW9odõmæïôIkʃ”´ÈQ–.&÷O$?:Æ$|%æ¾1»„sW«ŒR¨OÿQr¼lÎ\òR†1 «Y÷ÄÖõ»R SAº~j)05¸¡q+_å*‹¡úË«ëó»n—¾KsÐýñGŒ½Úêïºä±1á –T-…•@±±}„æüP@4\˜3ÊU ©Ål¬ä¼q÷µ4e™ôÈÅ´µ˜·çß7Å)¬@Z$`Éo»Í;nˆ/Ìèûëâ»ÕåJ²X<ËtÝî¹qÀµ^õDɶ)ã•`Ê£ßÞ˜¶^,L±üÄ”Çõ†æ–ž-ÿÜØdrËדR‘Ž>hÉ‚Ë÷¥è +λm±~z»1yêì·¹¸[3¶‰ürn©¡ªÓ‘F•;}vS•‹Ñ2ð{VZéˆÆóÏ})XÉÀŒ:çIú I„n-D•Y÷Ï…Ø&ó‡’zâ…íøßËÿ¾àüãñ T­—{ú׉Œ˜(†­˜Ÿ1¸´\®ÁkyPÍ»©©ÀlúWCok4ƒkøîq+¦õµÔ¡+z9oíB \P¦ÀrÂzº¹®Ë—¦6ÙL›E6ó*Äj4nlÞBb´o'ÎÔf¼€%†v,+„S°7gVJB2¥‰•ò¡?>OM£ÏÀÍÍÀaS…›ü—Ú åÄÀƒ"”1p0YaVžÓéOEh¼.*¾ô/)•HÅbUlµh÷Ñn£Þ‚Õm©rµÌ!† ¢U‰OÚ÷ųCjkºßO¨ÃjðR*¤Ð`«¥:á¶ÂpŸ¡ MC‰…"’f,-ì©.ÜA)ð J<Ïfå Nðèò÷¨ìô”‡n¸´}ÓVZ4ïY—DìíV 27çLÖðËpO@Ì¥ÛR>”ÓVz|”¦b_ÿ»cÇ¢t)FŠè-yÂX¸ä2‡!Ѝ;Q ²±Tc€]äübÍ)¸Vy·)³"ÌéA4è½êìëNñÄËxì&o³Úȧð­I’d"Ê+ùŒ&9Æó–15áWX˜²ZŒ¾Øµ`òº¼Š¢ºVf"m c¢çƒFQéŒá>ŠyFüÃ*^\+Cý\Û®í>Ú >ž’³ = ÔÑ'¥f½É¾Ž‚–­Oß”Jbö-8cuÓ@zˆb­!{£ŠV1!`è¾g*ê±U] ªˆô¼×LásUóªÛÙÜt.æ7L#˹!—îÖU¾fþnW>(),¸Ê¬£'¶“vØo¿HQ¬!PbLºE’ÿ îþX°·Cõ`ai~-=~èïûãCíï:zÓÑ‡Ž¾íÏÓr¿:]ÏÜó¹Ÿ}=sÚ?ï¶?ªéãßöG÷c´ŸõÇË´6=¥ýþÇZÆh¿žÒú)-c H¼ëžÒ~>íÛyŠ–% ÆçW×ד½&1óádè¹?2ézÍQXQ.ö 9ºå27‚§i‡X4æõå2·2ÁØÔö$^«ùqZÂû)íC/ìói¹?Zc"ÿ‰ô¦?2¦¿Ÿ>²)ÍTÅý´¶'N»õ÷ïzn::—ïí7S©?}|;eôý”çóþ¿SthÆ>öÇýñ}|ØÍnZbœÏ»ˆÊz¾L‰Mz&lmø|JË Öý‘)B#¦Àl:Ì5Ö»i+XÛöËÒG®Ÿ§éX?†er\Íæk“¦ÓØ4`’–„¹\²%áýñõÇ?L+ƒÿpõç«§O™ãlÚþ?:Dÿý勯“SÞ‚¥ë¯L6àí_7åÎÉ\ic=Ø‘Wïï®þåêñ¸,^õý }Óçê//ÔÕÿ„wSSôÊ‚_{VîêÂÎöêáÅŸ^è 4˜÷œhC‘†*‚ j#2ÔTN$‘BeÁ°‚J"…Ê›³7‚ª!¬Âàϲ¤ ‹¤…&&°¬‘D úŲ¨†°²Àí9GѨ†%àF¡Â¨ *Æ££®4ðG#ZÕðÈΡÕçÌYEAU£Ar¥ò¸o&¨*‚ço@* Ñd³*¢]>ƒQ¨¸'‚R¨²=ɇ†dàmåCR¢Qô“÷.A¢àAC´†a¬cœ¬>{Áƒ†*çÎVVWAå#LAUã-ö²PO'e¡!œë)™A6„I 8qRÀø”Ud¡! ªg]yž>+1M"¨¬d¡!À³­²a IYh—…ìó eE3ÈBCøœ_|AUQVŽƒDlH爆jUG:çñ ƒ”ˆŽl ·Ë¤@t„åÒ9;AÕÞ¬ ¥@ŒH¡‚)éµ j¯1E)I(TZ))é]ÔÚH‰è«)áT6`Ćp*¯¥Dt„5+8)áEÅ bD Uʃ@l+ Æ,eNµ!½YÐÔA 6„1Þ˜8ư¢ÊD aD w¼l”D q”­j+*fTœH"…*ësƒ³!½(xÆ•Š5„iSCûAbpÂ4’±÷[UE˜~0ÖY¹ÒmÓ`óøs|Ø6:¸5#6„u1é³|Ø6§ÑÚ2’ aTN¶¼üä×y„ é rx†H–Ó^”óƒ$l§òi… aÆÁäéc&ž­–¢Ð Íkõeiñ4€K‹Wyƒ†0›Àx3X<aòÖ r0 …ÊÅAšîÃ`ðlˆh|´ƒ4„‹§—z–~ŠÎå4ÈÁ†°Î=<§U0ƒÁÓ&ÁÆA"ÊrƒÁÓÞ®`IhcgˆÒÞigfHƒ½³!œ*ã¤$lkTÔƒ½ÓN…@‚ 5ÚÁÞéHŸ5¼) ÂøåZÊ–¿ÇÁÐéo6nªÉ5„­kIá}Nµ!½Ù \¡íÀHÀÁÌB:7„90iĨ H¡ÿà l+ wwÅ lÈFD0¸ ¨'`Ê©³¶WäkYû¿ºÀ»h6;pV&~ÍÌ sÏUX/ýîñöáB©˜O?<¿}¾zzsõüáùêÛç·÷W¯^¿úêä~ó™úÌWý·_d}…‚d°dƒ”è®Ø}Jщ™Ó‡·—;<׊UÞ`ÝÚàÆyFç W?ªøO×x,³Óùêíã›k`I'ît÷êÃÝëøä€À¯âë3¢Ouõ9ÕÊ×gÕ­]}X»úÜÅ]ºú" °põE8`éê‹€ÀÚÕ祫/KW_–®¾¬]}Æ­™«/BKW_~W_P­]}Xºú" °rõ™¼¬]}øTWŸS­]}îx¯]}Xºú¢¬¥«/KWŸ[Tqõ¹ç½võ¹O½öõY@`íêó¢Ö®>oÖÚÕ絫ÏᵫÏk_ŸyÞ¿Ž«Ï©Ö¾>kÖÚÕçE­]}îä®]}XûúÌ«^»ú< ð‰¾>#Z»ú¼ƒk_ŸµvõYQk_Ÿ{ËkWŸ–®¾,]}Xºú" °võy@`íë³.þg»úœjíë3ÿüS]}NµöõY…KW_V¾>ó©—®¾ð©—®¾ð™×®>,]}Xûú¬ñkWŸ7~âê‹PÀÒÕç[»úÂñ^ºú‰_ºú" °tõEYKW_´kåë³pÀ'ºú‚ê]}AµtõEk_Ÿf®>¬]}X»ú¬Ùqõy@à?ß×gDkWŸ~‚¯oR"ÿž5d#úݳó°”cÊ éßÀ§~ý¢øô_àžw.ƦÃf#¹¸åÌ‘¶ò%[BP¸í k)ŽïVV9A½†#>AÀâ§-ƒ6*­8{ø¥Š·‹Ûš_6'rèÑ®çj'Xƒjr #L0¾ìQ9P¬– »²úêåû§Ü»mG±^‰ÀÞr´¦9¢DÜUöáÈ6âÔ¦€âq%¢ÅKný9ãŸ(ÑQ#K„E’bYÇõÝšC¥LôHSºW|D‰“² ]î¬MG”¨1‘h&0FÕ1%¢º¡uÐ!s&¢;ˆ6Óü>¢DXœAûÂ2s¶ê˜1›'®`Ê#á—ô³#.\G˜h@,Ø>ïš}z‰`  \Úˆ))¼%M‹¬Û‡ nòg ‚ :DÀaˆ^à«b#JÄÕCŒ?8d¬(1ŒÌÂz¬ý!“< ¬•° 3Ed£P æ˜8t\ÀꋎBÊh®Q †¼ ‰àšysÈ„ûÙªCõ7xIã#ö˜qG žõ²Çôƒ_úÐsqÛŽš/FQfŠ+ŠI…#4î9âÌ;nñ7 gnöÁ£Ž˜1 Šuæ³â¹8dßqž:î,$jãa%ZÊ¢väP[Áó^ê±<õlbÀ#$áÈ&àÖå;ëpÈ Äã!¨u,?;ud˜Õà1á|\\ ??ã‘a[ühOD­s\‰tê!>‰ÓüZ¢ÅÔãG®Xô9}ä:Ë•ã–éˆgRó‘<˜ ÈDÔ_M¸œÚ#½ËdÁê6Gº—x‰ðÈ=VƒŸ[ -‘Ý¢–‰Ó.ó‹ÓºÌïM è2¿6½¿[=»6½¿\=»6-²¦]¦×¦EÒ´ËâÖôþnõäÖô4í²¸5-“¦]fצaŒÎ ŠUt¨o€i2^ Œô†¥ƒá ©·±éðºÉåîî…!Ù·›Öt^fd»Ì¯d“œ`ííÀ»Â£ÿ¾ÜͦÈP®*Gµ Ot#˜#ò­}§ð’K´¢SŽN²ËN•bx§2vʈ r—ùòÞ«zDŸõ o؉.€^õZ ò¥I§´+¯ôNù@¥ò>•RxŸ2öIæ»»Ì/¼÷>¹vkuëS y+Æ…¡rD¾5é:Y¢O`cP©¼S¥Þ©†Œ’éù.óûù½SõëT"E#º ñ„Gä[“N¹:7z¯õ“½ užõ^5dì•L'x™ç轊íRðÖ«Lª‘÷*ÍrRÉ·zåûd“4½òr#¤×gq)©ã_ÀîqD¼Ô«–©/³ô,õáe‘û@¦>¼,rHì²È} ±Ë"÷L}xYä>©/‹Ü2õáešü@¦>¼,rÈÔ‡—Eî‰]¹dêÃË"÷L}xYä>©/‹Ü2õáe‘û@¦>¼LsŒ©W¹dêÃUî‘úp‘ú@f>\¥>™W©ö f©dæÃEêƒ!óá*õÈ|¸È| ®2Hl•ù@b«Ì"ñá"ñÌ{¸J|°O0I|0ä=\%>yydÚÃUÞ‘öp‘ö@@‹¬ûÔ³¬"éá"éÁ>3Â$éÌy¸Èy SÎsˆ%ÕЗ¹¡`軟F,©í†K_R;"—Ô1Ÿâ<¡‚l‚U¦,[½ Îõ—Û3¼þ†ŒõËLóT Cýh2Šê=©1Ù‚r;‡· !c dÈyˆ¡;ëMˆt½F6¡\þáMhÈØ™br•cB¤˜\¤˜&)&lše‚«"Ãä"ÄL0¹Ê0!±U† ‘`r‘`Bæ—\%˜ù%§ &dzÉU~ ™^r•_B¦—\å—Øg¡˜å—é%é%dvÉUz ™]rša"Ñ·Iz‰!»ä*½„Ì.¹J/!³K®ÒKÈì’«ô2»ä*½„È.9O/!’K.²K Ø*»„L.¹Ê.!±Uv ™\r•]B$—\$—¹%§ù%†ü³ä2·ä"¹Ä[r•\Bä–œ'—àÈ"µ„€™%öé'f™%DbÉEb MóJÌMZG¡Ó˜hrõ­…’wšM÷é/Û}¯†Q¿£êª«–|°ºØjCU½MϨ6¤Sµ[Ú¬]¨ê `Fµ!ŒªÞ/eT¨ê­EFµ!ŒjàçW§úXROžz³ßº2g°ò)¶ëËžÅÉ(¥1¢Î.àÁ˜ƒD³sþÿ]ˆ€3¸½‚·µ}‹ž½òûò¶„E¾ejE>Û¸¨”èäªÉéYM‰nY?Y€£"Ná®a¯•/Rº]QHT"hD=FU‰xˆªyG÷];QQ‹ÄEFTA”0󯮜¨õx#â,ø)Ò¢¶\¬xõÞ¬ó%«º¾Ù˽>i|Æô):Â@Ñ3žÉ:Y†;†{†%Ó¶Z²¥ó/JÛjÑpY›:h‰Çž[,Rdmê£ÂŒ \B6€Ó%Ó6H¡²C"·)TÎË´Má5ú!‘Û†h…Ä•*jå‘B…÷ce»*"ÊÊt9ŠSUÄ+ Q¡™D»‚±z­+‘"{Ó† ~4¹R•¡æTq-# R¹$²75 æ[IxWVŒOCðÎíÖ*¼-+ø0 … U¥àCCèÞŽ¯T9ËNÂ{´‘œ6Äз¡+že]lˆ Â# ‚¨‚Æ+™–pC¼£‹Bæ‹”‡†p¾‡yh—4&¥<4„s I) ÁS©–…[%"-á†*è¯$*€MáÜHÀ’”âÐ.hKJqh/*øAÂgæ © 7„•õ á¬B{R CC8ÛѤMoS!ÉäA"JrFæ&ÜÑ*ðù¥0 H¡»Rx…"jLCj· Ñ8³ëè`® ) Âú˜•LíÖ^_Æëû‚ TVË…"¨@ÉIqØÞ*qhˆ(+éÝF¤P%3ÈCCDY%FéÒÛå”JR"6„q?3-%¢#¼,ëÎÚª†p*˜¸Y *‰ª’®‰S5„—ÍÙÉvI¤P%6AP5„—…£TaêÔi­¤rÛ¦œÆ„ù‚ a*ÂiÌA&8Ñ®"n°hÁˆ†ðÂÄ"YaGXuÄ ;‚ª"lb;|é 7„Sá <±Úmˆ Òv‰ aíGj‰†ˆ²lD¢!‚ÊëA$6„×ûgC8Wñ씉†à?ÛÊJƒý³!\p0è,E¢!Ì:p–"ÑÞ. ß "§‰ho;ž Þ†ˆ¶ƒ %¢!LPaé¢!¢ƒà«Hhï £Û,œª!|–ôН\0Aš‡†ˆ’Ü`þlˆh•ƒ84„³Ô…ÁüÙÎR—ógC8'RÂÛå•4 hÀ‘”âÐ^Ÿ·ƒýÓ6yÈp|hç¼çDÊÀª8X@"ZŸ0Û… ª[ñœÏ}rª†°ÖpN¼h׆p*pN¬`ê†p*pN´Ÿ)T.â)NÕ^¦1#´! Ýd“#Å þØ xß”ÿcú±—ì'{ysûþ=üÿáéñ«“]~òdúã_{¡Hx ç~íåÓ¿F@€S}j@€S-¢Æe@@¸úË€€¨qàe­"l° ˆ°Á: ÀË€€,"l° ˆ°Á2 ÂË€÷£Ö6ø‚jaƒe@@„ Ö&5뀀|Z@€Ó¬#ÌA_xØ`àE-"l°Œ°¢>àú" ïe@@„ Ö^Ö2 Zµ ˆ°Á: Àk\xØ`îù¯TË€€h×2 ÊZDØ`àFÔ: œåe@@„ >5 À©Öî꯼¬u@€—µ Ÿzaƒe@@„ –6XFxØ`aƒe@@tñW ªe@@8ñŸTË€€¨qaƒu@€»ÞË€€p½—áU/"h° ˆ°Á: ÀÛ¾ ˆ¶/#$},c†Ðý0@7♆ Êù3‹ÙÎqL&~j§ ˜Äj+l1ç&LG_¼Š§&ô¦^b²sJ€»GÀŸt ô‘… ð>É”ïì<M¼Â”ðôa‚=¢«/ eÚÿÜè1Ñyœ#°ØÐY‹‰Î}œ"xˤ xd.LU3T*'w,&5ÏiŠ€¡YXLjŽªw‚Àü¡tä°ÀËl‚àgHÀ“.vÙ‡:Ž!Ô¹;ÀÇí[,² ‚±b0&5'ÓW@À(¶Ø¡Óâ¥îX,± œVĉ”Š6A´)lç°XaDµY™u‰Aí¼™_D6Å› 0§ õ"[2À&€/—ÀÝkÛ1;ÄS\ ‘Pm¯=F EaÀ!¬–×1ÕTw°Ø]3D‘7¯CÙ!xû;¢‹Ñ5CRé(8‚%ä´\ùÆ}hÃ¥)ó¤Ÿ>aâUy+ÔÝ—²­àþ ã ‘, -@´FC°…ôapêȂژ²€º©MÝOÙ#Øò‚¸j<í̵ZÊõ5r4àj”»„3Ÿ—}µÁûªŽ¸…©žµ ÀÇ6v˜/7ë bñŽ^Fîp¤ãèߘp˜¾ÆnÀtõżu˜° Çn‚àœ¦º1C‹&ˆ«ŸûqøQJÚ½G0½õ¿0D Ù!ï%½é0õ¹Õ;?jWxŠßÉ1Àc–a*u„r3—©T˜MÉÎܽ¡ª1 KÐ Ð&`ºÉoW?7ç(m]ž#¾˜éà{üpÈÑÅdvÆ'†)‚c¢9ªƒŒã 릡€0 %4Að3hu0¼dï¼û@׉Áç ç<R¦¯x€WVb@;`;8 Ζ¡¼Õ{$À¸Õbc ÿì‘Ø>0îX¢±Ý#˜÷¢H‘+“ÆvÄúa6p³êIBwh€=èi7pŽR°åkÈg 6,åzMã;ATý,›C[Çw˜\¾Hå°¡´œì€hˇÅÀ­R4º$äª8‚*qžBã„Í»_.'­Äv&Ý…ÖÅÝÏ®Õ~ï+$Äa½Ø!êŸNÇŒ‹sµØ/°Å†¡€Vû…û]ÅÙ~á~Wq¶_(¯ö å¡âÕ~á~Wq¶_(/ö ‡CÅóýÂ-1Áæäm™ Àc³åòbËC`ñ‚œáÙÆ·°Hq'^1å•v'ŠuãÈVL¿Ùy'r<=ßßd½ªn)ë•%“˜÷*Óæï•|kÒ«ì˵ÙÞ+K~§ìU)†÷ª!c¯ä¡íù~,ëU‘Ý­KŽn‹aI¸.r„½²ïF²’ýñª”ÉûCÇzgJ.“¡'ò`ùtÓx¨Û¨r·× ¿Ì\÷¢)>À«oÈØqj}¾!ÍXYc Œ›ÑÉôï`:1†·&²U|{§¢ç×£K§| ½S ;%OÙ¯6Ð÷Ûì³ tyÊ~±>œ²_m ËSö« t‰-vдÚ@—§ìWèò”ýj]ž²_l §ìWèò”ýj]b‹t~Ê~±.Ù¯öÏÅ!ûÅö¹gìç»çÃûÕî¹GìW»çF±_ížË#ö«Ýóýûl÷\±_ížË#ö‹Ýóáˆýbû\±_ížKlµ{.±Õî¹Û=—GìW»çû=öÙî¹áLKNôÉלn¼O¥Þ©†Œ½×-¦)XŸ\Û ÝúŒL½Ü ãˆ|kÒ'Cë1ïS  œìS)†÷©!cŸäíÕÁy;duðCÞYü°ÕÁ‰­~ÈÛ!«ƒòvÈêà‡ÄV?äíÕÁy;duðCÞYün‡¬~ÈÛ!«ƒòvÈâäÇîtÈìà‡¼²:ø!o‡¬~ˆÛ!‹sq°Ú§ç>†Ë!«sòrÈâà‡¸²:÷!/‡¬Î}ÈË!«sòrÈê܇¼²:÷!±Å¹árÈâà‡€Vç>äåÕ¹y9duîC^YûØŸ™û—CVç>äåŹárÈê܇ÄVç>$¶:÷±?2;÷!/‡¬Î}Hl~îã“S¶´s!=I‹!ó”-{ªŽôD%[È Sm£ª{îŒjCUÝÝeTÒ©Úž!ký†0ªº_Ũ6„QÕFµ!Œjàç×/OÙbÁ'Eñÿ_Ê–vu‡ù^ïÇlƒ½§2ø1Ry•l£êq™FÅã2ªG‹5*ŠYNUAÕ#xŠ_)zÔ©xVNÌEè(n/“²G':NµÇØYÉÏ’"&Î=i_Ÿ“/¹ZÚ³—ªæ-±ú ¿rˆßväÙ„°ÆÓΕ&QS^^ã9¥ãé‡k軲Á»Ó»küö|´1Þ^ß`N­”ýé &eˆ§Û‡kܳLà…ž:Å×èiNŸ]ßà§|@ªOOHàsŽÑœîg›5” õi¨0ž 58w}Ħ¡;sú€µ)áïw×[Yï©b¥\AƒrÆQY`½æd£øžJ0å/¾.ÕíduÔ´ 5¶r+ã»k×ÖÃX²¦=!êÎðƒsPƒßü€ÙüôMy¦ +=çe÷îJq6GÑ;ša˜Ý É~‰Á¤H9ëX%ma,‰Èœ Åvæ¨{Ÿ›³éŠÛîPÄs‘?<¼ЬÊ_1JYÁìWÔ4or(<ë”N7}øªT–ÂH*]6¥Ì¿éðÕ\ðj»“-íÆ×e^ÑWGÛ¼Ê@\ÙK¥ÝTuLËnò^‡MëAl±+@‘cpÂàa5öþV|<ýGyT:\m¯ú€=á[&CÛWºô•Ð¥ÔË,µÜk!8ñã5éå¢ð7ý5^Ç-WØ\­<–ʃ`q$1Ùð¢>PÛpÉþšñ‹ú›œ‘šõö›:~f·&ái“oùT|î:…³ê¹¼‡K0>ã|bËï-“\VËÖÔéÔËNóšëñ;9"¿ý" Ê éšë¸Bq`F¨TÜZiCÿÎc0·$£Î}Ë,wÀ3t^7øíº.¶§ß•º£½‚©Q$X¯Àpñ‡À㇠{#Áife™ ÅwÂ/OŸcSQ9˜“®9û–m­¶å¾¬­e¢±™1m;úÖö´ø 3,ýĶ#Á/h»Ñ­í}©½ç £ãor 2½}»Íµïð ?g@Ê|T‹ = ¥]ÔkÊI{¡Ÿ7‚W]«(%ÙQÑ 4nД¹âÁÂË2Y+Ù€9ÿKtj³ ÑZǼæ) zâcƒ‹Qõ&ø”epñK€ÜL+#¤ÁÅLò`–-? úà—&8éàRýTÁüѶÃ(/Û®~JÛ…`¡ÒÜ*ë–¡°ˆ%‰Ú€Í;ÈN9®1¥)ןoÈipI;2£"N²ÓS1SS4Vªùæ(p%^Û“¹ƒõYÿ;M.ò8l,>JÙ^ÃÊÊgÚÔIÃЧß#u]«pÙÇ£±Êsâ[îLÜWì kÂ,â*¿NÏŠNÄ*ÌýÏÎó§ÎÒk²­óT›û¹Iw(¿)e â-&;-Î…ÕõЭS>Þ8»é ¦-v:³1•¿y†ÛB,,IЉh¨’™…­þ]y©tÉd K[{ª+•Œ3Ü’ì}JÜe»½õZàs¡¶Éry~*î禢ÿðâåo¾œ jô±L¤ŽLò+3‡ú¨_EuxU_ê#NJ4ët>9Ç¿!ipQ‘Ìã!íˆæ AvBs‰ûiö6æíMñgÚÛ3[‡›ª¯º[׆‹ƒáŽæScŒþü2†``‰GZ0À¾±‹ÂÆ0,)HKæ\ë`\"VîòÆ¿(Ñ(×™N-‰"¨1ãX“#ߤ¨NV¿½KÒ²Ÿ«ÞÚ,Ä$7W e\‹oj‰y¡é‡"n-Šöèu@a(}Ÿ":Ø`¬üPŠÆ(ê×ÝË`*hz[È󈸣ôYc‹«I"†÷®pÀiÏ«>÷ZîϵÉàÿ,UßÛ‰ØÉýc×2rV¢äÔýPà¬E`¯ÖÁºûê´ÉxV˜0 çŠò!¸b²÷NƒZ¶!ëÛËëdŠúxªu Ѩ'®ºÞmÎü·Ýêd¢HÜÂ=C×r6Gh†+3u“³ð“B‹72<`5^I:–Ì,›ƒÖRêØp²_IñàðQ?¥¾[îÛ çúM¯Ðn•;Õ2³Â2òÛÍe¸½ÆC²àPgšLõñ¾?>Ñ#x‘d·>þµ?~ÛoûãC|Û?ôǦv#~‘ÍzÓZ',ýÚ/ÔÕ§ÁÏ2NMSÒQ÷!Ó\è3j××EŠ1@N >+t}f\Äõ§Dm矨_ µre=¾ïßõÇ/:oïúãó”`X†{­æ :‡û”NüË £|‚2¬¥t˜ÿ:\Ý€ß p&ã?n[aÿüâ¬ã¶endstream endobj 234 0 obj << /Filter /FlateDecode /Length 161 >> stream xœ]O1ƒ0 Üó ÿ @ÕNˆ…. ­ª¶Žƒ2àD! ý}I:œ¥óÝÉgÙ×mù_ÁXÖ·$i²,ê´Å¸³¥`ƒøk‡Söendstream endobj 235 0 obj << /Filter /FlateDecode /Length 4129 >> stream xœå]oÇ­Ïj~Ä!(лƷï¤.ФMÑ¢uó¡‡NÎ'ùìZÒ)’ÃúßKrvv8{³wgA ~ðhÃá’Cr÷»™èäLà¿þÿõåÉï¿Ra¶¹=³ÍÉw'’~õÿ­/gŸžDðð¤‹"ÊÙéó“4UΤô]€É^˜Nj7;½Oô;©æÏiƒ^:7_¡fʬ@z†‰ÃÊ 7¥<((lÕÜ‰à Æ˜×8/Äè¬OEzþýf) œ  ½ƒí?¢CÕùàhûRÂBÛªv7Åþ‘i Gm³J8"Ì|‰ >†h3é0÷³ø6{‚0ïÆ“+R)-C'4::±#r–¨kFêÌ«¿d‚@‡¦¹Ì 6lC^#‡¨ÒR•¾ :xí¨5ü%ÝF {8/Ø9÷n KÆÂŒ ï*aâH;kjXØŒ€-€ƒ•ñqÅ×8KÏmïŽzU ôˆ××IŸ…¨ÕgM4[+)PD·fÀ‰|X[eJa‘·‹ á©A˳4Fw=R¾Ò9TDŒRÓ”â”ö’¬HŒ”z›08cCµ‡GáM©áGm²NánšÆ lE ÉȈŠèuoG8yÐc郙:kg ªÖŠÉ,Ñ!•šÅ.:厥4-¨¯é„õäÛ  9ýÏÉ_NO¾<ÑPù¢µ¿Âƃ뤟Á"¾ƒèàòD’N•''_OÆtÞ¶b:À‰š?sBvŠB:Œ`q˜PñËtÊÈ__ƒï€S'àH]Ÿ“F 〠i‡.VœŸ©Uš9ÿU»&††=„„Ð(ÁølÊ ‰`Ä8~Ý除Z¸<€ÄfKùtþ¥ÐÃî‘õö¤pÕØÞùª’°Òx›Ûñó#no$¯ÁÌTÛ›’ k‡€c„`Rö°Ï,¢-Ö^vQšñQ€§p*£—&GÈ4!Ø ³‚ÙdAÁ°G¾re×ä1U²÷Ú+Àf¸AÙ¦5„ÜcfOì£Sp?AWÐlOÜþ€£™ÜÁu ¶/çVb æÂ{ý©e#£$äo Zl¥ìUú¤¥+àiwn¬,zO6k+ºèÄI;ƒT-`œ‹gÓ†”qØ¡JÛõ"mÖڇ¾ð†)„ Ù+»0òÊ=ç“£qÔ¿"›p»n„œ@­{Ã2¤:°aç*õ\×–N8ø*7ŠÞ !Zð@Œ",D¾†qÅ|é2ã˜6ìÁ®bàX…2D)<]”…hâš½I¨cðé§©øwU<ÉíÈ-÷âj+ql ‡\¸Nò ®®Ê‰8ë÷*âOI dT,‚ß4± ‹· ®¤>Ôè™àÊUqÌ›‰ž§y:*ÎoNe 8àéZÚ{„êù¿†¸®&ù„e%¦ç Éw;Öb-BÐaê4µâV\£¾Ô}MypVsþo^$ö ;ui")ƒ‰À3ëÐT¨†@ŒÇ¿‰µÚÂþ·u¼ÔQGW‰uZö7’¦.Û!öØÞMúA9á¸þÐU *ê1ÑÖ9 àëV Q!–a€OçÁŽJJìÉæ™$/†tÀo«CBÃÌå_AŒç§¦+ÑåÆÍ骨²7°à FæuKœ¶×žÞ|>r¬ÖµU]½"×ï‚£ä-]É#(^ï_ápëÓ‡³•fQV —EP”#¥<7±+{™ €TŽaõ²˜Ä‰ #gÀ¯?Ž¥'§!E›m¿¸ò2ô~D(å&Î&÷]eyQm@‘’¸lÎ|"I§K^…õQ™ÅóÆt;0Äô©d{‘8é\ £LíÎàYža¯· DH)´„ñ¤ÁhçÿéàöL?+ŒÏFZkwS½¥Iûƒã$+žgò :zä)5«ÌÞÉ8´ŠkÙÖ ó^·N-­­A‚NP3¥™iëürÑ<îýj×Q ÷€J•†“VÃA…Ö, J‚²ÚæpǨ˜î¥6à!'Faf˜0¾¶ôèð [ß¼R>Ocký¥XXÇÊ•1-Ü^ô(æ[0QÖÀ|/çÿ)!x¯nLp ´Žˆnìó2ù5ßWkò1xÙyÑÓìØýíºâ÷äñ v‰mÊÒ{ ,­C}‹Záw®'¦HÂìÜk,Vˆ&/Z‰Èõ E­ô›q GÖ)A©rм÷§î¬1›HA)%¿A¶±\öùG`T¥âh| ÜÜØ…–âØaäîb”:Á§ ÌKŒ\©\”‹Eï|œB1m¥Mólé*ÝØ½ xëê‹Ï¸¼ 2Dƒ!ó–”׋VÝ·]E¾iÂ^dË•–YuúvŒ7Wƒ ðÑb)-¥8ŽE¶Sê~^†wÍͱÝ?)CV!gÅÓóRË{\†€›2d5m–0gåm6—¬#ÞÏÝ«_ôîõ‘»ïC³Ÿé`­ìòþ–ch•Ž=C°ñËbÏ{}rîÉ“cÏÓÏ’'ë2ýo³Å?–EcÍD/š°Ëð`KŒ}ïxý¼É“›æÙsÖõ)CÔl›°ÿo‚ë{ä*¯ócE‡(O—Í@‘IðºÉÆœ‰fÂõ!0 Ý4aÙLBLKîšx×Í%^"g‚ö6•Œ4Leeþá€odBl‹‹‰à7M&&{Ö2z>–2¹,42s-šÃËЂý¤Éó&ûîš°#aüßÕ¨Tð Øß¨§ -K wLGɳúÖNIDK¥ÖXÊÅÖfjÕÅÁi†f&ìWM³ÝN6+ÕçX‘|ߊ«WÛ-«É~"»<žŽÓjýQ¹Ž²7Swø¡6r^%*I°˜óáĬ p+ Ý–JkFªoyx: Ùõ³Òhƒ?£^–Í´ÑÓ,®¸w.£IHè„SîQw‹Áv½§`ø¦Â§¼(Œû–•E›¯$°²$Öü›GVH›•',¹d­©«öÿáhQ#Hª¾mÒâBN•»Ù^ùú’õíT kWœ¼ëD5vó¥¾Öú Ìñã^ÈqœG5ÈH)W·;°*4œâ(…ªê˜çØ^¨¥ â(K½‰}ïUb뇩ßïÁb¸³}#¾‡4½ÄÖ›´ÑM.|ÆÂÇ?/J¥ó3„ˆ„Uþ¹sB1Q!¯V\»‹j¥FÄl2!•×~ØM‘L9!¤Q&’Ù?ÜÞ8ŠV—ÇU|°ã §(³Ó&Ö·‡ðÂp}¼ò±/@Ñûvp£ÛlnR?$6úÁòpõÌïÁéqc'U·ãô8j‹Ì^*šê§dv.W?}6t›ä*õ _A’Øø^uõûSÙ5K[æ^h@V·ª F¥Ô~ˆ£^¡¨»¹jh|Eí·Aõ/c)zŽñx|fÛ„Í¿;ï±-ÙÓd ûê‚}êŒÑXntÆà+\ÏJØ7jèèiÇf¡©dÏ»^ù¦«·y®ö7ŸE kؽ‘¾FRbÿÇ(¨@Œžˆ4†ú@¨¡àÔí5 v¶WMž˜‹ºud´µ’³þÒ¤äÚw¦îbªíˆ1‘:I&ͨ‘¡ÔÕ)¹éGWµ\¤Çø@£û ÿwêÏâÆ ‚¨ÿjþ'fÖiMËÒ­yàÄàḹ£ü/–…C¦ö¹µf(Jw²¼›ôiÖV̾6ò@¾Î° ÕI®øa»&©ÁEGÕÝB…Q)¡A¯‹fi‹Žb‡Ê¶ù–8Æì®P’¢µ •ï·FÃÛæ& d€p^Œ#ƒ»fxËûÂ+›óñèV^7tŒòô÷|§¿Þ¿,Cö¹¶K²Èz÷ã”馩 ¬^ÁÔªç_YÞ¶z±õôQÉD?„ê¶JJZy8â3 @˜eZß1 i_Ò>o>e°Oš°ì)cåäw òKü vò;ö˜ïä2ƾïÐiì¿c00f'.ß›àæêË>TðèÐSÁP,ðÞ%@;dE¨¾À*#@»ˆ×þæ…?ôƒö§~þ@7‡†¹S0üÑx+¼õÕç"¼•e‹êoýý˜T}O‚==0MM i[õ½wâ¹9¤¹ì©jð<¼ƒ>ËCÛ ÷cÞ=õY6‡î™\z s’?øòþ[”¾€Þ-âµ;ÒÕ" oìyò?ÉÛ~endstream endobj 236 0 obj << /Filter /FlateDecode /Length 3527 >> stream xœÝ[ÝoÇŠþ Ú2/ûýa4EÓ¸RF+OmhJ¢K¢¬7B‘ÿ½3»w·³Ç!”'-üàÕrov¾gööwïE#þkÿ_\|þ ‡Ë»q¸Tk¦³`eÀ¾ÆiÈPé&K‚•>’é‚°ÎU;>Nƒn”Pü}f…j‚ìŒCµ’lQÓ¡ú5ºÔ¬÷¡¾*¡-ˆ·€ª”Ç?4õ§9Ò—8Ä-šJÓ!Jp(T±‘^ƒJ–( °ÕDBhi tDí[™ž¶Aƒ» õ¢’“‡DÂ)Ø„ˆ6OB„õÉ3l02);¡vóCdIC˜lôCt?!LGÃcº@J‹ïZq¨ndCGW9h6´’ª¦1Ï–Và‹: “I½¼ÈD¶V“×E#” Ý(ûvÔàg'T}0e'’ÜGȪÂÀGrñè"zQ €ò²Åƒñ“ójã$ ˜Š<µ\ݦ,¥µl¢uÐ}&Wº nŸ­âR”\²Šñ¢¦HîÙ«Ý“úÍMŠuHZ²Êq‹¤Ip?OMó¢Ôli A‹ºVA˜:Èâë2Kÿ¼"ÑoØæçª÷ºÑZuŠ mÈZ¹Kùþ¾ oËpU†—lÀþÍ*ßm³‚äg pèå䇸mœ,ê|  á°Îœ8üi–}x~ƒ¦*h…Êî æ”U9?uÊ“LÛ‰@ãq³^PWŸ/0àm€È8ïtîR•²ÁéAÌ‘0Ú°í ÿ‚·µùV NW¹÷Ãù%qÕ”n\A¸dÉX…Cå*H³yÍRŸUxÊÀ8mT°9l6òYª^^B‘„¨ƒ(Ñ üQ»iŸ|Oó#eN¾~ßê×*e«À٪߶}Hô4¨wŽ«U´Fæ](!ÔÉ(%sðÅ7EÑuŒmHÜ¢« e1na£LÍJÊô‚ìì&•ãïF™ºþ=Lû!©(÷­Z jÑ‘r3è_CÙ纒 …¦ŸÍ1<ÑÔ )ÙùþØuvnò»’ ¾bÛhrú#-÷=]Ð#mQfïXb$Å\”áiÞõ‡UËð}Ͻ. þPfgeö’•憒µä4Ü †}óó±nú¨ ÏÊð¡ I&^°I™¨iÅ>FYû‘L“3ÈÊ€¨:µ>ƒÃ†õÄVäütU† «ªû9Js½f#ЏeqÊËySdûâiçSKmÔS¸Ýƒ.Oá’å˜kÉZùœÝذ>•‡x,€»32X~¶xcI–×9-òD·„«~8߃îV÷cÄKŒgç‚¡`·k†Äß-Ëà;6@y+}ÜC3wÔÁÍž²t_•ß—á·ìlü’Õ—,újÊЗ!$‘~üS5ÚÍõ%n¯//hàsÕá-@ïÙLOÒÌ%;$é·Ñj•NG‚â’µ,ï±Kº±,É2|åãÜï’R k9~ïØ4tÁnqϽÞ¡Òr%acî[ ‡™è†ÕÈ#_îYý^Sc}Òª|ÏZ`½@ª2ñe¢ò*sÅZƒ?ñ‘b~3T6ßü­‰ÁGÆ’ÕDÃ*pSlí¡µ#–0oƒ޶ýð‹Ÿ‰n›A»ñZsû¬ÁOÅ4ÁJ¿=Á~9–4‰e‰½—tmO—?ð¾)5mkàŸèÓ<Wì÷éõ^žt¨[REC%ãRñ€÷k¦^»Åw§Ñ´ïÎñh†çêãòÜßJNøºšíîÈÚWìÚWeíݘpwìÚö±EIL'ãÅ¥çìj©˜—áršß7tš!ïˆùÞ–áoÉ}®†Éfa#ál¯ £äF¦º¥"w:ý,iÑ-Û#ÇF¯ÝËÃ>Ç?öÙ‚\U§ N Òê2´Ü¹òg³šÜn5Sœ9°¦²Tyä&nwûlºµ±O¤êßÝ>‚¥À{Ù6ûìm”¸Ø…\P;Ö(®R)³–WS`)ˆ§ÅŒ=F­Y þIFùÄ€˜AÖë0|â3TdÎpŠÕß§M|$¢G=†O|Š¥ðëµáP“#ޝP‚o´†ýÕ¡¾³áªÒ³{ð9–õý+Ö¯¥Y)V8Þp$ÃŽæ± ô$Ãy–ßQ¨ ³zÃéõcÅ/ˆ»âó ‘ ÌÙ•ï1yVKƒwg º=v³TLN "|`-ÊPpÍâÿ4´k4ëò-O¥Õ_(ëê§eÝQ‰ù×Èz ¾GndÚè„+ÚÔ)w¥éžVhg+b ´1oßvµWÒýej€Òe9ÊØ«b ÚÊw·ˆk©‘ Èåmƒp0Üx†³FèÃ5à–xÍNq_çôJº¿ïoù°ÁSÈÃû©5ˆF vjAA^¡6]—'LU…¸`’Z`[i2  [ ª @„tœ±8ƒ(!d%r¶n‚CëRC_·àÕm(æ¥ÆÊd Mô²Eö`"{v‚ZðÛ„HPhUÙ"žj'›g˜ž3Ù\ œŠ>F!Æ f¨Ÿƒ‚#SF4€¬± i‰ž¼Þà…íï Wx»Úâ ‰e*{þ©·øwø\F}¼, þ&K#s’l)¥«ìÏ`ÆF÷™ñ1ú²ß­‹5…Á–0S6PÖŒDó7e»„VÔ89ŠZ#Jd¦þ•qFê 9CÖäì`ÒKÙçˆ`ƒŠT)÷€ÀRmÚHt (!ù›‘lçoÄ!©f¬õ½üT*«!|ʸR%@šñ#!}ŒI¡#£¯Ñ¶Ä,Gh8 ú PD6*c11wHMá½k—@²JQ‰¬ñBHeñüd~–Ì­qÔx5½ÄºÐf˜p¡åv˜« ×ÇÝ È{›„àA&l¬6^åÙTëU«Œ`×Þƒ5Û:ñ¶”ºáç9 0oeòàÕCØL›Õœøƒ ºÁ­Ú”‡Þìdç‚ËV¥œÍ¤ÒÞóûÕn}í|T@*8«+7z;Ý06êkÔ“c’ÜÎS‚´º†L¶Ña‡YZjî¦$û•éßNQoÑhY9©µ¶ÀF&4eÚ0®á!DS»1¿)¥ô&I¢\…~Ì oP—kÊ‚eÓ®ª®ˆUØÚûŠñ).¥·Nâ<.QBר@DºSR ï6$?ZŠ¯ŠšZk!WÇÓ€¸DHŸDpÆÛuLýY´%Téz˜é}K­œE+ ¶ùùºWð$´B¹ªSš“|<„›·î™¢¯³w²ø­ª·Të å|§¬n5fØ^µóÜɦßI–¡Äã5o½¹Jß*Tí¤¹`Ÿ;À4Ää¾7}º!­rB.)Þ‡¸.ÊÉF ¿Åz¯r.5*ÉØÛn™Ë³ñ^Ó/t°À鬯ªÚd´€³3tJGeÍn}#®†F{Ó1™¤ØvkàyÁ~o®ÜIÆp ^]gbADdzðö ïLªÐ(:¥<ø¶•>aZ‚on€›rh-‹Ž§É¹)þ¶xŽ_ní|_†‘DÞäŽÏy` ÿnêÆË-»ö²Ûÿ“‰ÄÙ^ˆÌ ©ûÄèÍÅ ×À¿¼síý·‡}0~—>£žÄéñ9>ø;üû/«)aendstream endobj 237 0 obj << /Filter /FlateDecode /Length 8150 >> stream xœí]ÙneÇuòȯ¸ÐK.ñºæªÀ@Nì8A,u¢ÉtO’ÝlÚ¢¬áï³Ö®ñœ:—d·¥$=èô¾5îZµ§ª]üÓAôAñ¿òÿç7?ûؤÃë» ux}ñ§ -¿ÊÿžßþùJX ÊiQ‹><{u‘«‚¤ã)¡rTî¤m8<»¹øìø/—êdRp>_^^©“]ýñ+­2Ú¸ã ÉfYR Çë·—&¢L<~™ìÉ(·?¼¼²:"ˆ_²1­lHÇ·¤úSÐéh”Òù_Jk6¡NN™dÍñÉ… ™ZÈ??¢V*ªtü˜ý«%¹x¼ýÝåú÷iñ­:ùe‰Ñ`°(•réøun1-úøolb ‹;ÞJ-´«Ï9~ÆŽ_°Riàj˜â//ɹ`£æZ‘»ÞÝ×}l_JÏ Ç“©Ñsü3g¨ƒñËXöÃ<´˜d²îóKü¤°ÊÙãéòÊYð0Åã/ÈC¥Qdçë?w®ÉtÃ’Œ3\36jslìÃXe!“õÓlŸ·—&œ–äÍñ[™oîä.WsáõåoŸýêBÛ“w)žýúâÙß}¶^þ?æîÀÀãí«ò :g©–ë"ý9m\á‰íþì㸂¥Ç2)Íg/.Ðͳ߳ˆ_!ל‚Zr‰ÏŽ?ç2&Lе¿ÌM®‘nü)ù`j…k¢Ø,VGS#Œ¸æbå #œà¼;>c½,ctU;íž‚Ût¹›\Zu#½è°þXpë·+ø7œ @b›¢áøúrqØ”'üšqaYѧP~ÿ›ÂØu˜‡ªŒªMl¤†=)ìºÊË·}¬ã¢ oޝ¿ ¾@_ŽÜ¦{|:\Áer‹Iãö>Ù ´Ø'Á¯eGiìOW„TJ6[å;–N5)‘{WÆz9\ °“ç3àôš[ÀZŒR¯dà›>·,lRðvµ¤´SÊCȈdtjµJß”€Öœ(y†±¾ÊTãkÖG=‡Ý æa‘ìÈ•ü}X.ƒÏ€Ãv´n-Ý®3Ÿ‚ŒWÊB ÷–GP“¿oß–.aµ¸Ã&0«ˆõXï«\1*?I~Œ„ŒØq— [ŒJõÞ G“džµ«‰½” f±eWÐ¥[nl[FîŒ<­áòѳ‹ß@¯Hò°âRÜÒAÇëXÿ÷ÕË燷˜ºY †±,ád~bõæp‚)/vGÊR ›,(P•vÅbwP°ëO)%h©…¹U D“c°Â„Ü¥=( ê %b5>ø¾Ô"À;a<é\ăñþà=F--•Ð9ÊxçkÃÐç.b1áY—)ú†º`N: k,ÌŠBñ`¨5¬©X(ä¸ eá ÚòªPZçŽ-@b¸¸°Ôr™´@^p—'­°bà8d''&¬ F·BI)VŸŒ¬eZ°*è+%SXµÆì›‹Wk”?| ‹fÀá÷°1ÿå ÜOàþë÷Ÿ@Zðy}a5úp‘èHá (NÉô|€† 2uÀ‹,ÏF™ —ÅIÀz‰dQÌX¤eI_ò‒· ÌL®)± L…ŒT´cÉsoi׺J!v-6‡à «ñ¶rÒê&RÀ“…kh©K£a;î¤d<(DxѲ™âò-³ÔŠ\g“|iØÌ*e\&é\O\bSÈÊ[I¡+˜‰Ü¤8Ù£ ³ÓÒŒÅOèÁ+SÙÿjÓ+Ú¹k£O*²ð#sâúꃃÃv Â-{ÍA/ÞŸ|áŸç–@™Àʤ` Æ‚‚õö™£èXÀ:-D5Å Fƒq VÈš¼¼F6$‡“êzG0 n_a AÂ¥’"«…b¹31ï¥6CS%’7Üso2ޏššÉæ"ŽBÀk8we|ä'vu!pé± š>FÌXsgmRá¹· '<'—Yll–”ºÊP|¦`â!Wq8±®”s±Ñ¼Á\b2f¬Eʘ¼1dÊ$nWR \R°ÎÚf–zY`L"ÀTœo«X.‚n“å˜iNçÄ뎞Äô,Ê·âÞ*Š`KŠ-sPEâBÙ”µZKÑO’áI2&ŸOÒ·‡íÓqü|`?ŸéÏçþóÝ€ùþ4Øéy¬P,r/àå1€kF{ º2wÅ€œ•Cˆ¥„£ãû<^1yB¼äÆø~óÛ°DáZWU§Çb9–rE/z¸.棫ìRPyÉñ–ã%ª¬¼lŽùƒ™yÀ2K9a2.ŸNôƒ3ãÐw‰³röD ­ÛbVpFN<ôkÖÿ¼j É{jÅâ—^=Áá åò¼4ØC.fÏ7;iÔOŒ{0n¡äÀQD•Ð^BîÒr8‰A|(’,¯w Œ;¨¬Z ËIÝžµN§±³K°ã6Ì®Åì~L.ÊìÆL®Î«'”<¡äA”d©ŸRe#¤oöù,ìg}0iŒ­N1Qì]XòÅϘç%JûêÏíäõΞñ|!cçÒÆöbÇ^t%©;±VÞŠˆTi¶4#·ã ù×.=Ñ2Hotå"‚‘Я­;e«+_=-Íÿ×¥áþ‘»íÊÉu’®õUÌ¡dgu¾M©àÁòÜ©!Œñ›8* ‹º”CÕû)šÈÓLÑ"É‚\msÓ•|™U“buª<Îà¡(å‚rÉtèƒzªŸ$±.x&¬ŽÑ}Vo¶ÍˆèyBö²‚ÈΖO̱%£Ë…rRKþ—|³@‹¹š¢FNôà_Ò½|“/…ó¾ÑPt¥åÛâzNNíŽã;;Ç[Å3ë¦ý5é¸ãàyoLûgÞc;ûpÞ«Ó~ž¶üŽT˜%Ç$\6Àƒ¥ž§À!‡åü4x]/çÓIH‚߬ëa`(YÞT|ûÍ‚ Ð8A#Fî\¡Trìè 03ÅõP”ÄëRÏT6dãí ]OèúqЕ¥˜ã9ÚúzÃÍî ˆé–D Ï@(¤Áœ/¥Í÷Öæ»móý·ùŽÜÎ=ºÍ}ŒW?9:GéÖÉH\q]‡—-Ž—Ó^n×ìníäúÌù@SÎМW´“{4ç'Í9LSžÓœ 5§KÍU;YWëĬWOì¹=e_ç›@k'ýf?l¿‰ëOçøÓYÿ|`¾20;ús0` lc ¯þêg «qÏ«_<†ÂŠÐUë_† UÖP‚Ïn.ŽÊ:eøèІx¸2X急çs@üÕò×+fLZþœ¨c!ÖêÏ.ÿ nÄö.\_õZ~å]½ö°a`1õ_¥cÞ$VhðJœeÚ¯¹c;(8'W|E[¢ý,[^f†## ®ÿ襮çf…6½bÌfÑýçÀŸ™À£ ù±!kCû1 ;`Ťƈ½WJy²4êáˆ]Ñ‚gÐ~^ø3Cμ1Ç—q`Ôƒâ`²µt£°a0´ Ÿ fìâÄ SmDAø$ÏÑüæ]zòˆ0^å÷ª<ô–ßgâæ]±«áµöžR{)HÍ?\^ñD1isü÷Ëõ[`–tùüŠÎã‹g_¬ÞŒª/½è¯O å—¤,ü²Õ»k$ëQd|Àgèdx‚è:?½«1èq’ßði%¸ ÃX½½5>@ÔúzxŸ­½ 4¼Óõ\ NÞn‚¥«ÜñóÏ?•—ñ´Ý>ÖŸŠÊïygã8ú«Kçé–ãGùõ1y ì†dõbW£ûà2?n—«pà“L•Ÿ™ŸÌ“7¨ørñ îy¦øÜ‡G±žó*Xîø‡Kl).Íñúõô¦4Ü€@ JÊ›a\0v‡þþÜ?¿êŸßôÏ—ýóËþùf÷óº¾íŸÏÇÆö^‡ƒ¸ð:ÔÁ­p:¾)n0ón~èk|=Á[‡A58¼ìp¸ËµÉ0:ùÒ”‹òþ•,vãæe¯¼èæM{¿pÉËþr6Rö÷¹½¤ š®Ïü}“N»ãõ—ý•«ñ]³ëßõÍø¦oƒaë'k‚=š<Úñª½Xùº²"O^õ÷íÆ÷Ãn²86mâ}•7 ·8cš¿mïü½•G3;òy×?ÿs}·ýóõ.`«¡{Tº_‰äK”ž9lùßož$óÉipîùV–,°ØM~oL “»Lqì*SƒpË#jU6ô?¢7ª%4;Löº~½K•g4Ë÷ýó¦¾Ü­7°îÍnÙ¡À©sñÛÝí|·KÖáƒþùùe‚’/õå'(‡Ùÿqwd·»Œgÿ#LY>ßsÊÖ¥2à­à¨ovûù.ÿnvË^ïŽl¿Ý»>²a8o;õÓ÷›ñUÿühw¼CǦS•|Âôˆã§îŸWýÓvàÁ¢n†î7`úçýóìSk k¹ö÷ò%üìåøÝ.‚ê¾`óý=pÜrn`í°èÏúçÇýó¿v¹< mhl€Ø~ÇCïÂÕWã Ï/äöSïòÕî–ØgÉ0Èý½8|þaËÉ-˜Šø)o@jO/6=ý~ˆd åI_›|Ù«¼Éø(Üìͳyš×kÜ/“¢¹¹0<É ¶QÞ€âùÆ1¼â%†.=R4A¸Œ•tNµ4¼D"Ç FGÅð!\5_²™ÓàŒäßy˜dè ÒŸ“ ßÔ»h˜•/öò©*Në"mð¾.z”7ïòs*Œi. æë¿^”7cX¸ VO.ß®5ò²Á08^=ô+>0 ÓŒ¯% fL¹ChxGÍ¡]ø[åÞÜÃbô"Ì[M«fg?–€…¤Wý„œÿ9Pnsc³1'Å Ed¶zEA™8 ×òæ€ #!§yö:T²aEá-%7Tâå àÇ"ÆÊKE#ÅKèb¨†0@HBvl—L\Víò‚¡)aì|G‡·IÇv¬^Ví2Ó% ]ÆÇóe%Ç;~lFîoÙ¡/OB ]{ÆøãØ.“‹7¶Â»NÞ«oC„½¡&õãeŽŽ#ÁIZO¯âßž㼑¨N«äx+Ž%ü<5òî“,+3é ŸñÆ&£ÊCƒü`¬k/ÆÞ¾aŒü4£'Ÿ˜6h–7®rðæë/o^24À߯Xa@ÍÝÌ|ìxq÷ÿãöRîÃà>n_~ùöÕ%¶Ã‡öøòù×/_tI÷²î30ØÄ†o7sø-ðbGæ|¼';Ð;Š+Òv^ÝQûx`wW\·"´$+hÛh&ÔN`²1ÊM¨ÞSb–ê ¢‰«q¿$ 8ÅU‘E1„?t½ðÊQx‚Ÿ±˜² ü“À¹%@ótHFÆT¹8 ¾”äùš=ÁW‹4¹7s¡Ï¨²¡ñ%sá±ó©€ÛNèßš^r¶oæß8èC€vL[œT(uJÅR—£K à3œ;œœãt¡£cäáÒC,bìGñÁü5gôYΤäÖ{J/z„yg]cÔƒœëVME5jÚ¿«M3Y0¥X0­R1`ºº¯6L·Œª Ó ‹jÃôv« ÓËdÆðRjN4ª6 oòæ—åª Ó»ª6Ì@©6LðãM˜¡H5aZ³Í†é”bÃÌVÂc„g3 Š•ÐUj•¦]ß]íž§Ý*(vB¯tÞNl¹ƒåPDn3ªP çÍ„^¤Z PŒ„¾_«•0ïéf7L"ok°./F÷¬¬<“9Ú|üdeI0:‡Ñî˜#»Û¾êÚ­&®ÿÎr@Ÿ—ïeõÞ‡»†²Ig¿ŸB®–f§TÕmÜÔàQuv×âçÔMÆ‚ ³zŒÈo`®2PôwŸæ¯}OŠß.<4´{Hl¸«@ì(ƒXÛbƒ]Åáý°«°ÒgmŠ&Ä»XÏR¼¡ª ñ. ³8EÓðÖ£4î»IãÙ šÅÙ z/pÎâ­{JœÌÎ7Ê+8;¥¢³ù샼+ð´PbË žõçý Æ*â|(SšˆãµÄœÅW1ÜT^Ãpåúy÷9U÷ßc¼6Po!¼¶}/ƒW¿ô~l¥*úY{XïâÇË­Y»<8ÜÉø~ÇøÏyS))ÍÛm#¥ZîÍN¯†û_bPß㮽ƒÙ8…Û©ö UkCXu5#ð¼ØãcEÄ´"÷Šu¯5C±÷Ý ÅN)†b3 +€z‘*šzÃ÷ŠS°«i–âlö@Õƒ†anµp׬æ§X–¼D:‚iÆÛ^Ý1l»äA¿°m¤.OZˆ¬ ‹#ë2QñRBG%y—Īü<Ó›|]+,CàòžÈZXzªP¶]’w5°/-–Ù´ Ÿa+®­’ .krÖ*QþŠÓ¨Uœ‹ùíêªU,gš/sVµÒû*j¥ÇV›ZiAÛ®VZËM­4é_ÔÊP¤¨•ΪV‚Uå†jS+]ѵҗ«¨•N¨j¥ë¢ªVJQ+½áæwcélP¤)z¥£ê•^«*–®ŠmÔ*=ÆJ—§ëw½õæ›ÿ°ÎúýQšªº­ ¢‰Èeæ}v3s ÖÛFr¶¯U»—y| ÷‡p‹î ½—ýZuË@©AˆfxTÓ¤ÎÙ¼ƒŽ¨!ˆ^øq"Íï›UD󋆘Dy_±Gœv¼ ál”à§ Û(Áp¼P1Ø)gÂ]ô6a×$Pv] ž ýme]G2SÖ¶ïÿŽÊÕñc„œ³|’kU]gv7—nëôÝãÑÝ0¼ïmKlcnçwôÀ¼Çmé}/à¾ÈÆN¬ña£ò]Â!çvEßR7AÛÅšÙ‰ tʹÈÝŽkÛÝÖ‡ÏAî¼?llì<è;¡*ø¶QªßØãgõ{÷$„k„`ÖÒî‡:œ<À{Ã$Ž~Ÿ×;ïÌš4ë¼ÂgÏHs q¯p øÌ6‚µü 0|ÓQÇügô*å¡Ýž9Y›1QÞLš)”G„Õ6ø G\µQ(ïvøÄ'À¿>3Þ”¤ XÏ샚ÚJ›Xke5±wûÖfÛ\[³«¹n c„—6Ç9QÓ7yÄjÕMk¥Ï©¶rÿb Uû¸kÕwX£ø…€ô8fc1µDvjC}Fµ¡÷X¥¡ÚjŸlmug‘d`RŠCÛge¹?¡ç»¥ÖÍ´9µfî[¥†•V¿¾ÕFÿ®wèPE¼ñ/µÈu†cÍWa6)óBžýZhöòoåÿÿ·ÐŠÉ¹TwK£¨¹(GI;‘²Þ¶²Û¢®õ¥h(E™½²)kÙTÊ.g‡s@Ž’ï!e‡Òo^üå7G`ñ¯”-«´f”-lŽ™=%äæåõÝ›—w‡/ß>½„¡¹$þ1ä»—_]}ts”(}Å‘~5ä»m{~ ÓÅüÌb¥pÝçRÂØE µHa+Ô(C¡êõB•2*&Y/S½H‹ µ22ªNF/T)C¡j²ôB•Ò UÓ½s©†"ü›aQ£ôBD%Ó—)]Ø?\Z¢ð¯+\ Dµ ô—%+2Wj ×:L¢VXU\IŸ"F¾WIþp»2›J¹£—´_‹˜$­kýwIùRLZW2Ï)ìÖ¹NÍN¥æ¡°_ ®º¤²íÍI«íøì½s’]Ù.kõ}¡XþÝ=‰~²WÊ-qåK…Jİj!Ä¡ï“öùvéðs ¦ö-ºÚ Á JùÏk”B•°*T¦Ñ ózÌVèwãªãf$U¤ º¼2FvÙQã[/ž“€÷ýÛæoþœ£è^m®Í½KV߸#aßX›‡ò,ÿ©zÉÊûBòbà‘äl™…™ÁÌ…“'vƒ–ª’Msß°}üÝ%3¿ÌØãšÅŒ!>“RÊÉ4üÖn•’rËöÊ÷[¶ç´±cVÔ]®íz|5d¸Ü–¶£.Ù.™<ä‹}Q:äöunSÏ¡ÊäeïçCo3™ÉR=ûiHû»­Õ¬L<‚î3³è&ŽL·ò³Ò`ÑíÈBï‚÷!¼èlaf¿å9†–õ"w0Óœ'y\c/9GÐ+WX§ Qã¶›MÒT Sj[Ž “ ®ÉlØÌR ß $öQI$“Õ |ÓÇ2$j eÇôNðT:I*ŽYZCÅMÊ ÛŬòsîb d5y+·áÄœèë9Ö;]^ñiè˜ìñ_÷ÛRÛ>$ãi{û{ÒI#3좤]”¼Ñ1Aëú» u~gžÔŠ‹ªïË äò€sßçIé8Ît\ñ?ä²0ëæuËjnHEzâ! Wæõ ú«<<És£¤¥3J6ª†Ý½b޾¦¦(øÌ«ÏìµWTÖÆÖ)/¿ºlYk×YD(½’Ce{;Î}Ÿó÷à/eu.ÿZ¸c:ï‹L÷)ÝÇj>C€…ûþ]—Öò磻3Ô‡“ß{±øŒªY‹Lùßn$–¦š“mÞ²€³AÓkøÜÕù¯¤õõ]ßçÒŠïÏ,lù„?ÝœºÞ†LÅ!õóín»C¦Õ/úç?õÏ_÷ÏOÎ$]µÏïvG6P¿|h¼ï’µŸ/öž³(Q“MÃDïû™OS¤˜CÐzx±àÅhkžendstream endobj 238 0 obj << /Filter /FlateDecode /Length 27500 >> stream xœí½Û³&Ç•Ýg¿Â~“d¿(ÚzÑfp¦îÑt„_zH(숡zHÄ@srÆ£¿Þ™µwUíµÖÎn4šÃË<ßÂêú²ª2+ó·¾Ì¬¿{Õ=÷¯ºúþ¿?ÿꣿüɰ½úüÛþî£~æçåÕ2Ûó8½Z†áyæWó:?]ÿê›Ï^ý߯¾þh|^Ç¥›_ýÃGý«_þÿo?ê^ýåßNÛó²–\ÜÝðê+Q¾üè§E›§çrÈèBÅ]ûóº¡ s-¥\`Á•e˜ÊCìt-Ô/%«ÔÉ…Š»Öz7ÁåJwXvTÌUêãížwmÏ=–ýTÂÕšK}ÄVx)àÚ©å\Jt•ö±Âu Å\¥VÂ)¢àž™Ú )æ*uû1RܵP?FйJÄ6x)ñ KÄÖCйJ¥Ä~ŒwíÔ]JüÆR+±»”Ð_Ì¥Vx¬S‰Ç*ÿû1RÌUªå€W•Åj?—¿±Ô˯ĩÄÒï+õc§²tG›<\K©—ØO%–k)õû±K åªÿû1RÌU*&öc—J¿ÔQä‚.S \¥fb?v*ñé¼”š‰ý)æ*5[ã¥ÄsœVjC—]¥fb?FŠ»6êÇH1×2Q{$Å]ûóŽÇBÅ\åï¯*æ*5Û#)îZ¨7#Å\¥fboFŠ»VêÍH9\kO@éIq׆½ æ)u{3RܵSk$Å\¥^b "Å\c÷¼ã±Pqׂ½ æ)µÛ")îZ©7#Å\¥VöxPq×Fm‘s•Z9àu@Å];õf¤˜k%*CÁ<[G-‘w1•‘b®©Œw1•‘r¸¶Ž©ìRÂbë˜ÊH1WÏTFŠ»˜ÊH©®ÿTÙ¼œ|e§i/†±v-¥B egÙNÞ)Oß%º.%¸¦¥Ô×9º.%¸ærFó]—\ËVƪkt]JpÑÅs¼]Ý«Ïë•<òWþ??ÿêÕÿúéGù“Ò¹ªÛæ~xõé/?²p¤Õðš¶Ò>§òˆ)÷îÓ¯>úë§îãOú½Œröái¨×§õ0=MÇße”1OKзú÷Xé~xê»îãÿ÷ÓÿÑ_}Znê·\÷Þ„µ[‡ÚáØmO—dfZÖÒeG Ñâì<‘fÝ´iŠ¢e/Eܶèq%˜Îó¸Mñ̾ۨ7á“z7ú¾ ¦ê(ÕmÜÃ(Ã…ç­\Øz‘K#õ{RÿŸFûs(ÕØnÉsvîŠ3mRœãTÖ¾‚À¡ø ²Tl´Ë4Ƶ_ŸÇáüoµµVþ§§o\í‘«¡ë¥¹Zt5s5øÆv®Ó·f®†é[3W‹é[3Wƒô­™«aúÖÊÕ }kçj¾5sµ˜¾5s5LßZ¹ZLßÚ¹¦oß;W‹ÿ½™«aúÖÊÕ }kçj¾5sµX®v®éÛ‹r5ð4sµø}ʹZpýŽrµèúCËÕÀÕÌÕâ¾4W‹®v®‰Y3Wƒô­™«Åc5s5(W3Wƒô­«AúÖÊÕ ¿jçj¾µr5H¹Ú¹Z̜ڹZ¸í\ JßÎÕ }kåj¾µsµX®—æjàzäj\ ]\í8WW3W‹éÛ—«õ[©•Ø›‘âɘÌlIÙZ ãJ•[ ®aŸ-¿»\—\SW šN!xè|â¾hÍË^cš)[óRóö°æen¬y™Ï5/Ç \ór%.ç­?Xõ’¸z©Ü—ëZ÷ršÂº—ÓsÿØ}šâݧëZùršÂÊ—Ós/}9Mqé ÍízÉÚ—­Œ¼Žß÷~àµ/Õ´à:ÂJ—óE‘Å/Û~ë;­}yY÷ˆØ[ð<"¶GĆ®GÄöˆØÐõˆØ.×^Ä]­ˆ b¸ßIÄ]íˆ ‚¸FÄŽô–ˆ ‚¸ß£ˆ-ºÚqˆí[tµ#6âZ«±a׌ØÂ±Þ±A÷ˆØ»Û?IÄ6Ô©°Ø‚HñL&º¤|­®€-žòµRxÂ×Já)_+… _+…ç|­žòµR¸¶@xÊ×Já _+…§|­žðµRxØá _+…g|­žòµRxÂ×Já)_+…'|­ž¶@xÂ×Já)_+…+_+…§|­žòµRxÂ×Já)_+…'|­žòµRxÂ×Já)_+…'|­žñµRxÊ×Já _+…§|­žðµRxÊ×Já _+…§|­®|­žóµRxÂ×Já_+…§|­žðµRxÊ×Já _+…§|­žðµRxÊ×Já _+…g|ÓZZ€-žðµRxÊ×Já _ã´–&_+… `ã´–&_+…'|­žñµRxÊ×Já _ã´–&_+…+` „§|­žðµRxÊ×Já _+…g|­žòµRxÂ×8­¥É×Já _ã´–&_+…+_Ó´–&_+…'|­žñµRxÊ×Já _+…§|­žðµRxÊ×Já _+…§|­žðµRxÆ×Já)_+…'|½ …§|­žðµRxÊ×JáÊ×Já9_+…'|­žñµRxÊ×Já Øá)_+…'|­®|ýáÁ”Ýóºõ¼f„E0ÃRñêžó^¿½ËVÆØðŒ å¸ËF‹ Y1WyŽMP·Hq×NO8RW=e|‘b®¾îàþâ®2ÜÑйÊuÃ')îZŸW4EÁ<#-)dÅ].ñeÅ\Ó„›E²â.ZTÈŠ¹æ·ª`Å\¥:íXzTÜ…« I0Ï:àyVܵÒÓs•Z‰O7RÜE[½°b®R+ñApÏNÏ6R×ÖášBÌÓÓF/¬¸kÁެ˜«:¶CRÜEK Y1׈%¹Ü¥6ÎdÅ\-&dÅ]´˜s•ÚØc¹Q1W©hÁ=´Å*+æ*„¾aÙQq×J‰)檛—`±Pqm±Êйö7©`Å];¶@Ï^ª#lLÇŠ¹J}„e½¬¸kÁm"o%Œ«÷R±’â.Ú`õVâ± Ÿ¯XzTܵQFй&ÚÞ…wíÔƒ‘b®B>؃‘b®R-±#Å]´Í*+æªÙ<–w­ÔI1×F›¼°â.Úä…sÕtKŠ»vj¤Tרu´Í +æªéü.TÜ5cÆŠ¹Üç…÷Ð6/¬˜«¦óx(TܵaÆŠ¹&Úh•wíÏx‚ ˜§¦óhBÅ\ îòB‚{h“VÌU³y,9*îZ°%²b®¶YeÅ]Z¸NÕ\ËŠ»vEÞÊý4k.}+檹<”›wÍÏdšŸÙ3Ðöª¬¸k)H0OÍäá*⮕Ú)æšhsUVܵaÆŠ¹æ Û æYhkUVÜ5cÆŠ¹j"eGÅ] ö`¬˜k£­UYq׊=+æ*uoî!cåpÕ<6¦`Å]D`¬˜«æñpH1×@Ûº°â®7¦`Å\¥VöXzTÜEÛº°b®‰Œwƒ±b®™Œ•÷IšÞYNzNå/g5=ßkVÃÉt+a]IÝwä¸å—ëR‚kï Î.ץܮÒmŽÕ]ź”àê'À应à gø’Õ.ÃR· [~ˆÕ.ú†—;Z¹F.®ÄÕ ™kÔ|át«].Ó½Úåò\«].SXír¹ÎÕ.—é^íry®Õ.—)¬vá³¹]/Xí2ÔáÃ}þ°«]8窨þƒ!´‘S¹W·\§( ¯w–ÞŽ ^¦ÆŠ——¦n<í‘§¡ë‘§=ò´Gžv¹þ”ó´èjçiº5ó´x¬vž©Û#O{äiìzäi<íÈÓ‚ë-yZLÝyÚ#O ®Gžö'’§u~+¶R<Óù+ I+o§$­¼­$­¼’´òvJÒÊÛ I+o§$­¼­(-¸’´òvBÒÊÛ)I+o'$­¼‘´òvJÒÊÛŠÒ‚Û)I+o'$­¼’´òvBÒÊÛJ n+I+og(-¸’´òvBÒÊÛ)I+o'$­¼­0ýn’VÞNIZy;!iå팤•·3”ÜNHZy;%iå턤•·S’VÞNHZy;%iåmAiÁ픤•·S’VÞNHg«4IZy;!iœ­Ò$iå턤•·S’VÞNHZy;#iå픤•·’VÞNIZy;!iå픤•·’VÞNIZy[HZy;'iå픤•·’VÞÎPZp;!iå픤•·’VÞNIZy[QZp;#iåí ¥·’VÞNIZy;!iå픤•·¦ ¶S’VÞV’¦Ù*-’VÞNIZy[QZp;%iåmEiÁ픤•·’VÞNIZy;!iåí¥·S’VÞNHZy;%iå턤•·S’VÞNHZy;CiÁm%iå휤•·’VÞÎHZy;%iå턤•·S’VÞNHZy;%iå턤•·S’VÞû€«XöîyîG^Å2Á*–q¬uÏmy¯ßÓËÑ:\£ËÊqꬰÎsõ´2w­ôt#Å\å,à£àÚ‡s&߱쨸k§§)暎¿£ sÍ HqׂktY1×ÒÓóíRB5-´.s*_ñX¨¸kÃ='X1×FëYq­ dÅ\u'–•Ã5—z‰O8RÜE;¶°b®R/áÅk¬¸k¥')æhÏVÜE{¶°b®:®)îÚ©5’b®‰Ö²b®R3G¼¨¸kÆ]'X1×B+Yq­ dÅ\¥fNXzTܵQ{$Å\nÛB‚{v|õ+æ*õG褮¥ÔËÊNŠ»h×VÌUê% ÷,ÔI1×€›¶àžWè²b®R'a….+îÚ¨%’b®‰ölaÅ\¥NB…GÁ=3µCR̵Ў-¬¸k¡žŒs•‰=)îZ±'CÁ<í׊»6êÉH1WÍâñ: r¸ÖŽökaÅ]´_ +æªY<\Rܵ`+DÁ<íÖŠ»VêÇ.åÞ`<²x,;*î¢ÝZX1×D»µ°â®ú1RÌUj%öc¤˜k¡ÝZXq×Bý)æªi<–wÑn-¬˜k£ÝZXq×Fý)æªq<^ TÜE»µ°r¸Ž@®)檉<”þRÂhêHä7t-Òk"ý)îZ©#Å\ãH­‘wᮩ$˜§¦òpIq×Ný)檩<^T̵Ð~-¬¸kÁÝ&X1WÍåñ: â.ܰ…ólô…[‰wº¦òxP1WMå±ì¨¸‹ökaåpÕ\ª< æé™ÉHq3)æ˜ÉHq3)æ‰ÉPp3)æ*Œ÷ìÔ‘b®R#;¼ ¨˜k¡ZXq)æ*5ª ï“4˜¼ÑŸkºþ>–iÜï×¥„¥#sçûf]®K ®¥¾²6.|¹•àª/M†U§<Ûä» ^¦K .:Ÿx†/YÒ2ÖçaítIK'…%-ãt/i™¾ã’–;g¹î¼+qÉGæš5n8]ç’–Ët/i¹<×’–Ë–´\®sIËeº—´\žkIËe KZøln× –´Œu£¸#ýa—´pèõÕGS×ù^™g9•{ËuŠ¢ð’–qm‘Êwy‡ËK¸G¶ö{—­«™­Åî‘­=²µG¶öÈÖºG¶\lí'[‹®v¶ Ü#[{dkìjfk1—ydk˜Ù¸šÙZ¼Ólí‘­Ý®wgkã1ׯšÌuHæµ$T­ìRµ²wBÕÊÞV z'T­ìRµ²wBÕÊÞU+{§T­ìPµ²wJÕ0‹¥EÕÊÞ)U+{'T­ìRµ²wBÕÊÞ U+{çT­ìPµ²wJÕÊÞ U+{§T­ìPµ²wJÕÊÞ U+{gT­ìRµ²wBÕÊÞ)U+{'T­ìRµ²wBÕÊÞV z'T­ìPµ²wNÕÊÞ U+{gX-èPµ²w†Õ‚Þ U+{§T­ìPµ²wFÕÊÞV z'T­ìRµ²wBÕÊÞ)U+{+V z§T­ìPµ²wBÕÊÞ9U+{'T­ìRµ²·bµ wJÕÊÞ Uã,–&U+{'T­ìRµ²wBÕÊÞU+{§T­ìPµ²wJÕÊÞ U+{§T­ìPµ²wJÕÊÞJÕÊÞ)U+{§T ³XZT­ìRµ²wBÕÊÞ)U+{+V z§T­ìPµ²wFÕÊÞ)U+{'T­ìRµ²·bµ wJÕ0‹¥EÕÊÞ)U+{+U+{gX-èRµ²wBÕÊÞ)U+{'T­ìaµ wBÕÊÞV z'T­ìQµ²wJÕÊÞ U+{gX-è-TýáVº”ZéÔfZé2÷°Òeê¬ü^¿³ˆ_qí+õ §~ uƒ¬¸‹öéaÅ\ã„kwY1×Ôá ’`žr,;*îZðíP¬˜«ÜXûΊ»V\û~+÷ˆeê™(ÑäÂýÄšj­Ú±ì§].$Á<{‡oW»•x¤}ƽ'n%¸†ŽÖ ²â.Z7ÈŠ¹úî’àž÷ž¸•Xªvn¹”e˜ªÛ]î>q+áÞÔ„G,»+KùßårѺAVÌ5ÑÎ-—Ç*u²ÃÒ»²,SmiîZðÉv)Ë|•¹Ú¹åVâ9–:¹à±N%ºÖG·¯ýJëY1×Fëo%«°ù†Ws•z‰-ñRBéÇŽön¹p-¸ +æ*ÜïVcÅ]+¾ës ´{ +îÚðÝj¬˜«Ô¢KŠ»hÿVÌUjæ€ÇBÅ\ÐW,=*îZ¨=’b®…vpaÅ]+îCÁй ù`{$Å]´ +æ*5û2RܵS_FйJÍÄöHÊáªÙ<.·ÚÆÍc±N%´Ù#›ßÑeÊRßÃçÏ¥#›ÇÒ»Þ~9Õl~Foö2É<É•ø¬?’y¼§Ë>Ó¾©·¯ÃBû¸\ |c©•šίæòXöS‰ß·Ò..—W´æòXöS‰gXsy,û©D×N»¸\JüÆ#—‡§à¥„cÍØtfz÷Ét$òPnRÜEû·°b®:ÞÅcJüƚȯèÚx·Š©&òhÁ=´{ +æ*d޽)æªy<–wÑî-¬˜«æñpÿHq×B½)æ*5{±K‰×t¥ý[X1W äñX¨¸k§VHйvÚÁ…•ÃUyìÅHq׌{Q°b®ÉCéIqíኹj(¥'Å]Ld¤˜kd"#Å]Ld¤˜kb"#Å\3)î""CÁ< Ù¥„Úu¤òxP1×J{¹°â.ÚË…sÕ\¯*îÚ¨5’ò>™@“ÊgK{®yüuÆçñÿ4s]ʽ^dª{tqÊ­×XßLW¨ÜJp•NÈ»Ëu)Á5Ï›å—ëR‚‹Î(žãKV»L}ýá¸ÿ0/p¹³–ëæ»Wƒd®U#‡Óu®v¹L÷j—Ës­v¹LaµËå:W»\¦{µËå¹V»\¦°Ú…Ïæv½`µK}ùÑñý°‹]8÷*e­ Q`ÙÊ©ÜK[®3…»LÝdGû.‹]^Â=âµ&^‹®V¼Ü‹â5ΚñZ,ÓKã5pýâµèjÆkµâ5ášñ†p­x ‚³f¼¥oÇkÂ5ãµÂ5ã5 á^¯«¯ApÖŒ×â•hÇkñXíx-ëÅñZt=âµG¼ö§¯EW;^ƒ®¯A€ÓŽ× „Ëã5ˆ¨šñ”½¯a׌×bÙ›ñ†px-~_3^î¯Á÷5ã5 á^¯apÖŠ×0„ûÞñ¸^¯«¯Åo|ÄkïŠ×ÀÕŒ×â5}Äkx =íx \Íx-†p¿ŸñÚT§½báwò S[RªVöN¨ZÙ;£je•½«½SªVöN¨ZÙ;¥jeq"K «ãD–U£ÖÀjAa"KƒªIkRµ²wBÕÊÞV z'TYšT YZTYšT YZT­ìQ5NdiR5LdiQ5NdiR5LdiQ5jMª†‰,-ªVöN©&²´¨ZÙ;¡jšÈÒ¤jÐZT­ìRµ²wBÕÊÞ)U+{'T­ìRµ²wBÕÊÞU+{§T­ìPµ²wJÕÊÞ U+{§T­ìPµ²wJÕÊÞ U+{'T­ìbµ wBÕÊÞ)U+{'TYšT YZTYšT YX-èQ5NdiRuG½YJÕ8‘¥IÕ0‘¥Õ0‘¥IÕ0‘¥EÕ8‘¥IÕ0‘¥EÕ¨5¨š&²4©&²¤` ¯EiPµ²wBÕÊÞ)UÃD–U+{gX-èPµ²wFÕÊÞ)U+{'T­ìRµ²wBÕÊÞ)UÃD–U+{§T­ìPµ²wBÕÊÞ9U+{'T­ìRµ²wBÕÊÞ)U+{'T­ìRµ²wBÕÊÞU+{§T­ì­X-èR5LdiQµ²wJÕÊÞ U+{§T­ìPµ²·`õ‡[írô¡¥ÚÒj—V»ôÃ0?/¯æ­®BÞïwö¾¾Þ¦ôtó6×·–~ÅB=½þx¹Í= ¸g¯í+z¢`ž¥¾ 3Xâgs¬Ç‹0ƒ÷,uùhôDÁ<[_'êî9^=Q0Oðg‚{¶úâ¢è‰Âá»ã˜·÷/ÀŒž(˜§Nf¢ó ]mIÁ‚{Ž—_FOÌ3öµîYkŠž(˜gê¢íàÁ=ÇK/£' æ)•®ƒsÁ={Ýx$z¢`žRë:8wÌSªÝç‚{–ºÉAôDÁ<¥Ú­PfܳbëBÁ<ûP_®< ¸g«³‘¢' ‡ç˜wËŒ‚{vl(˜§Ÿì¿– 7ÇÒ¢àž[ æ)nã€àžµn+=Q0Ït¼Î2x@pφ- óÌåbE‹®ÑJZöÚAEO̳LذP0OÝo:> PpOí1Àólõ–Á?»ãx{e´DÁ<¥¶-± £àž­é¢' ‡gîFlV(¸gÇæ€‚y Q‚ó t6ðÙ36*ÌSjt6(¸gÁÎóL6*ܳa“¸„PÁæRç ·AÁ=;ö6(˜g™°·AÁ<¥Î pÜ3coƒ‚y¶ã5•Ás ñÄÊ Z æ)Õn„“Á=+v7§°×ÄMK7bóº„P¢¥Û±ÃAÁ<¥âA‡s ñ@C‡= î™±i\Bçl3t3-¶³K(O#ÏéÈ; ó”ê7ÃÙƒ`ž­Ç†v ñ2Ö!<œ>æ)Õ:ܳbçs áËÖnÄÞ÷lÐûÀgs”º îÙ±™¡`žRõ u `ž±«d< ¸gÎ>›£T;hb(¸gÅÎó”j×Ùƒàž [ æ)µn€3Á=;v>(˜gEÒÏæØ:l](¸‡HçbÕÙ uPp¡ ‡gëuPp¡ æé uPp¡ ïÃÔM¬k´p2ñQÔÒwÝ”lè&®SYËcǧö÷£ýX\§]5 ^æè:•èª!Ú›cð9…‚{6|N¡`ž½žJô€àžiªgèºãµ†—‡óôôç$¸§\0°„ÏæŽ× îYà)E‚yÆÁ&½\ܳÕWÏDOÌ3ÏðUñ³;öº~=Z¢`žB¼k= ˜géà)E‚{fxJ‘`žRáF8Î)Ü—¢ÕY`Š‚y¶úòÂ`‰ŸÝ±Ö¥~Ñó”7éƒàž½ÎV‰ž(ž¾› aÂÒu˹¦uèK•‹L{ {y: ýišë¾¶Ñó = —IpÏ‚ó”Z7Ñ‚{Öú~´è‰‚y¦ îÙ°Y `žRï&8æY:è¾IpÏŒÍ ó”z×Ãq@pÏb3ØnO̳ ØÀPpÏjóånOÌS*Þ÷ ÷o&Œž(žÒÀë{ o îÙ­Ÿ¹=Q0O©vS,3 æ:èrHpÏ‚-ó”j×Áq@pÏ  æ™Fl`(¸gƒN‡óÔ Î÷ìØ¾P0OM¢áÜA0OA_8LüìŽ;̳õغ.áfž¡&ÑÐ,P0OM¢¡È ¸gƒ^çüžàG[Å%„òÔ$úK¨CÇÙM5ŠŽg u\Ò¦¡Ãžçд`×s {)xçÏè#†#B,Ó¸BßãŸë+óÆÑ-u(À… 5ކÞçön­£p3Õ<¾Í…Øk4Û„¥«&Ïb/36–:BY7ÕH îÂ>ù±›ì€\€îà§pöPSiè‚Nî\¥áH.Àß7ì„.!T¹Lïñ\B¨¼G2½içnh*µ°‹Wó ¶7ܳ`7„‚yj> …Á=+68ÌSª tC(¸gÃnóÌ#vC(¸gÇnó,vC(˜§æÓPfÜ3c[CÁ<5 †ã€àž»!ÌSj8wܳa;CáðÔ„º!ܳc7„‚yzbÌS#êøp@Á=È>ðÙ#± î!öAá}»I¹£%‰çDí¡î’2ljÚ?M\—ª˜ìö^Ç:•èªÛËíqéÁ¥DWÝk‹È/%ºêþEp(¢‡Î'œáË1ì5혲E ïûÊ‹ã… ¸ˆáJ.üÆŸ,cPSÏõùòÜ NS\Èpý^Éà.XÉpºî¥ §+.e8]÷Z†Ó×2Ðù× 3ÔWb?eýÀ‹(GªUhÁ… .„¥ × ²"«¶ý8Öw[Ìð²HëW]žG\uy~/âªèi¥U1Òúƒˆ«ÀÓH«(Òj¤Ui=âªàyÄUÑ󈫢çWEO+­Š‘Ö âªÛÑN« Òj¥U1Òj¥U½,­Š¦VZ…‘VšVA‰šiDZ­´*FZÍ´ "­<­ÂH«™VÅH«‘VQ¤•§Ui5Ò*Š´iDZÍ´ "­FZ¯x;­‚H«•VÅHëWÏ#®BÏ#®º<Â>uB%´ {‡»^`žRÛâêJܳÀ*Ì3ôؤPpîzA‚y ¯PæSU}7ìgP0Ï„Û^àžûÌ3OØÏ `ž¥Ã~÷àæ$˜§æÒPfܳbãBÁ<n~A‚{pó ÌS“i(3îÙ±y¡P=c×áæ$˜§&Ó{ô€àžzÌ3ÀîøÙ¸ù æ©É4÷lÐÓ`ž 7¿ Á=û3œTülŽy‚eý$˜g½/ð³;pë ÌSsi(/îY e‘`ž ·¾ Á=¨Îì#t4$¸g‡± ‡§&Ò±£!Á<5Ž¥EÁ=ó3ZÂgs ¸_# îYâ*~ülŽq€Eü$¸gÅö„‚y&ܬ‘÷lÐÍ`žú2çh‰ŸÍ±à&$¸g†n†ó¬=t3$¸gn†ól¸Á îY¡›!Á<¥ÂÁˆŸÝ,CÂá©)tÜL†÷ Ë`žšBÇ3GÁ<îÐH‚{XÂO‚yJ•ë¡Ì ¸7h$Á<Ò îAš!Á<3Ò ïÃÍMrí,›?giõµë÷zGW2]J\3P÷c8îïå:•èÚ»Á‚¤Ëu*ÁUú·Ñb««X§]ý໤]®S‰.<¡û _´’a¨¯p­ÔËW2èëî0â[¸çù'¦Qàüô\+.SXÉpýZÉpºâJ†Ëu­d¸\a%ÃåºV2\®°’Ï'¸¾ÿJ†¡vüG&øÃ®dàh¨Ö ò`݇ÐHNå^¹pŸ"+¼–aXz;,f˜Z«^šT=R¨Û>?R¨G õÞ)Tð4C(Hª)Ô#…ÏL =­*&U*x)Tt…ë\Hh(xŒ$³$”=…O3ö>ö>ÍØSø4cOáSeOáÓŒ=…O×gBÆÓŒ=…O•=…O3ö>Uö>MØSø4cOáSOÆÓŒ=…O•=…O3ö>Uö>Mà“ñTØSø4OÆÓŒ=…O•=qRD>…P>P…?ߟ¨|  *|  &ð)€šÐ'ó©Â§jŸ¨ Ÿ¨|  *|  fð)€ÊôÉ|šÁ§jŸ¨ Ÿ¨|  *|  fð ³"Zô)ˆšÑ§ªÒ§jBŸB¨} ¡*} ¡fô)„ªô)„šÑ§ªÒ§jFŸB¨LŸB¨)} ¡fô)„ªô)„šà'ªÒ§jFŸB¨JŸB¨} ¡ ~2 &ô)„šà'ªÒ§jFŸB¨JŸB¨} ¡€"žfô)„*ô)„šÑ§jFŸB¨‚Ÿ ¨} ¡ ~2 fô)„ªô)„šÑ§ªÒ§ªâ'jFŸB¨JŸB¨} ¡*} ¡fô)„º } ¡&øÉ€*ô)„šÒ§ªÒ§jBŸB¨} ¡*} ¡fô)„ªô)„šÑ§ªÒ§jFŸB¨Ì3p}ÁÞ=ÏýÈë fX_0޶Üè{ýj;N]+I8®AÝÅ1®&Á<=î/B‚{V|J¡`žRúx¹á³;pkÌS.Ø%Á=;>¥P0Ï4Ãz`Ì3wØ_£àžÖ=’`ž¥Çç îÁ5W$˜§ðì ÇÁ=¬¹¿…{¨;N.º"Á=¸èŠó¢….…Ã3—Z*܃ÛP`žRëâÛŠHpÏŠ*Ì3àF$¸7¢ Á<¥ÞÅ÷$¸gÇæ…‚y&\tE‚yJ½áÜApÏ îI0ςˮHp.»"Á<¥ÞMPfܳaCÁ<ìEŸÝ±Ã»ŠH0O©t0Fáð,¥ÒÅwQ’àÜŠ‚ó”J‹ŸÝ±`ÛBÁ<ìCŸÝ±ÂrÆ[Íøè<â‰£àž › æ™pSEÌSj\¬ÉðÙ36,̳à$¸gÁþó”úý îY¡¿ÏæØpÿ ܳaƒ‚yj¶ gÂáY;Ü‚÷àþ$˜§♣àžš|6Ç€»Oàž{ÌS³e(1îÁÝ'H0Ï„»Oàž;ÌSªt6(˜gÁÝ'HpÏ‚ æ©é2”÷àî$˜gÃÝ'Hpφ æ©ñ2œ;îÁÝ'H8øìŽûÌ3ã~$˜gÁý$Hp± æ)Õ-V øü> Ý Ør@KC®yÔû<ÿß3¢שÄIýsç{ø\®S‰®¥¾n1.I¸”誯ô„éÝ.DÏ6ù¾e—éT¢‹Î'œá‹ŒõñVíºØ  `ÂbƒqºLßq±ÁLœ÷Ý…8?1ÍÂê§çZlp™Âbƒëè×bƒÓ\®k±Áå ‹ .×µØàr…Å|>ÁõýŒu¿ª# üapNôÕGS×ùÖ{g#9•{iÁ}ЬðbƒqmõÀwzsÂKS«G"uzþØ©àiRZ=©ày$RÑóH¤NËï<‘ žf ©Õ#‘:-Dêr<©ày$RÑóH¤nË#‘ŠžG"uy‰ÔwM¤Æc¶#œ÷ªd£³'”C…U3VUVM@”QU9TX5ãPaUåPaÕ„C…U3VUVÍ8TXUï–°jơªʡ8Y¢ ¢B« ¢« ¢«)ˆ ¬*ˆ ¬f *°ª *°š¨Àª‚¨Àj¢« ¢« ˆ ¬f *°ª *°š¨Àª‚¨Àj¢« ¢« ‰2«*ˆ ¬*ˆ ¬¦ *°ª *°š(³ª‚¨ÀjB¢Ìª ¢8[¢I¢‚«J¢B« ‰ ­&(ʰª$*´š‘¨Ðª’¨ÐjF¢B«‚¢ «‰ ­*‰ ­*‰ ­¦$*´ª$*´š‘¨Ðª (ÃjF¢B««¨ÐjF¢B«J¢B«‰ ­*‰ ­&$*´š‘¨Ðª’¨ÐjF¢B«J¢B«‰ ­*‰ ­f$*´*$*´š‘¨ÐjF¢B«J¢B«‰ ­*‰ ­f$*´*(ʰš‘¨Ðª’¨ÐjB¢B«‰ ­*‰ ­f$*´*(ʰš‘¨Ðª’¨ÐjF¢B«B¢B« Š2¬f$*´ª$*´š‘¨Ðª’¨Ðj‚¢ «J¢B« Š2¬*‰ ­&$*´š‘¨Ðª’¨Ðj‚¢ «Ì6n B%•Îgæ5 ¬A˜º )÷ÔŠ÷ú5·Àï kPH¨ç7õ®É"Á=¸&‹óŒ¬s$Á~-]8]qéÂ庖.\®8;]×Ò…Ë–.ðù×÷_ºP_v{tf?ìÊN—JYëªXƒp*÷:…û Yá• S7ÙѾÓÊ…f]ëò¼OŽ< ’®ò+xš1f]­+¦/ ’®µ‘c…5c,ȺZ9V8P3Æ‚¬«cÅÈèE1š1d]Í ²®VŒ ÞŒ± ëjåXáZ6c,Ⱥ>tŽ=­+¦Í+¨cÅæƒçXÑÓŠ±b>xŽ{ ÅÓ42t¼Ut¼MÐUð6CWÁ[aW¦Û ]o]o3t¼UtÅY-xe¾Uv¾Uxe¼ÍØUøVØ•¦e4áæe´è'f´ø•w|Å™M~ÈU~Å©M€…¹-‚ÅÉ-„E­É°0=£±8?£I±0A£…±8C£É±»Ê±8E£ ²B» ²» ²»)ÈÂÉ îf$ “4Z(+¼›¡¬à®¢¬àn†²0K£Å²¼ Ë ïf,+¼«,‹Ó4š0 Z‹fy3š¨Ý¥8‹35š< S5Z@‹s5DK“5ZLgk´˜VÀ7cZ˜®Ñ‚Zœ¯Ñ¤Z˜°ÑÂZœ±ÑäZ˜²Ñ Û8g£¶8g£I¶÷¤”kqÊFlaÎFmaÒFmaÖF‹mqÚFnaÞF‹nqâFoiæF“oaêFʸaîF“p{ê¥RÄÅÙMÆ­¹8£…¹qG sqG‹sq GtaG‹tqGuaG‹uqGvaG‹v‰3Ú"VÚ"VÚ¥‰MÜ­Å»Åï +ï g¼+L¬¼+Lœñ®0±ò®0q»ÂÄï  ð2g¼+L¬¼+Lœñ®0±ò®0qÆ»ÂÄÊ»ÂÄ ¼nMÅÑ+–jIk*VXSÑÃ\W}ԷѬô+óüö_™ûúf‹ŠZ‘G +õüúãÝ3¸Pq×~4¡èÅ\Ëñ¹`Á<«½q.˜Pq×r¬.Œ.P̵õǤ•àBÅ]öÖ¹èÅ\u^Tܵo/‰.PרÙèn)î²wÐE(檓|p¡b®¡;Vp¡â.{]tb®±?WpJyP ûéZæ]®D×4kzƒ wÙ;é¢ s•zÙá•@Å]û±—Dtb®ÅÞM\¨˜«Ô̯*îZŽïÑйJÍ\±ô¨¸k¥ÖHйöáx“Vp¡â®íx—Vtr¸Žé:PzRܵS"Å\==~´ÿ^êä å&Å] µDRÌUêä‚ÇBÅ]뱿Dtb®ÉÞW\¨¸k£–Hйæñ* îÙ..š@1×2Q;$Å\u/^xŠâ®ùxÓVtb®íxy]0à{{]4b®Rh÷¤¸k;‚ÑÊáš»‘Z!)îÚ©åb®~:Ö*æ:ìÇPpÏLms•:‰ý)îZ¨#Å\Ó@mwmÔzH1W©”Ø‘â®ú1R̵LÔ‘b®R+<*îš©#Å\›½é.¸Pq×Bí‡s•z9â•8•Ðr¦~Œ”ÃU¸ŸÚ")îÚ©»”ðK©—Ø]Jt õc¤¸k¦t)vÌUj&öc¤¸k¡~ŒsMµÆK‰¥¯Ó‰Gt­Ò†–R3±#Å]õc¤˜k™¨=’â®ýX[] ˜k=’ èBÅ\[Oí‘w-Ô›‘b®R3±7#Å]+õf¤®µ©7#Å]öf(˜§ÔKìÍHq×N­‘s•z‰-ˆsݱ—Ep¡â®{3ÌSj%¶ERܵRoFйJ­ìñ: â®Ú")æ*µrÀ뀊»vêÍH1×JT†‚y¶ŽZ")îb*#Å\;S)îb*#åpmS)îb*#Å\=S)îb*#å}R&™ÏÇO·FõGqËCñÂ|#Mö\ÂÚ¡y?úoÒ—é‚©¦ÔËL—L5Û« íeº„`Zã‚àžýØ’ š@1Wôµ*æZ:|´±â®m¬˜«ÔÉu*÷0c¨‹³7,=*æÚŽWîYÅžÑäJü¾R'g¼§®ýØ$º@9\}7a;dÅ\¥N~ßJøÆºñ²¡Ë•¥;7¼ú¡Çú­Äc•Z‰­‡s•Z9à:•x¬é–sM#µDRܵQû!Å\¥^Nx,T̵t88`Å]3µERÌUêeÇBÅ]Ç6Äàr%^¯m ÖHŠ»Öc¦btb®R3¼¨¸ËÞ{] ®òP8Þ|x»Hq×~ô]ÑйJÍœ ô¤˜kè°/cÅ] µ¡K Wu(5³Ãc¡â®{3VÌ5ÔIq׆½+æª=^ TܵS{$Å\5¡Ç+й â¡@pÏB½)æÚzj¤¸k¥Dйj@eGÅ]öf(ž#ž‡öCŠ»vêÍ.%Ôš#ž‡ëp)Ñ5tÔ›]JxòÖx{³K‰Çªñ< w­Ø›B~Ùû—¯`ðU+Ñ+RÎϾ^å:7üHëW¶½þ›£µÂKIø$/‹ÝÚ#P ž?¸@ \Í@-\/ Ô¢ë¥Z O^¨«¨ATÖ Ô vkj•5µX®v õ§¨EW;PƒØí¨½3P‹®v ±Û#Pû“Ԣ른šZÌuÚÄn@-–½¨AìöÂ@ \­@ ¾±™¨ÅØ­¨AìÖ ÔbìÖÔ vkjñÚ#P£Çà[5ˆÝ~5p5µPúG æ®‰ÑŒÅdVKŠ× áÊ×Âà)^+„'x­žâµB¸àµBxŽ× á)^wáÊ×Âà)^+„'x­žâµBx‚× á_ ƒ'x­žáµBxŠ× á ^+„§x sXZx­žñµ0x‚×8‡¥‰× 5ðZ!<Åk…ð¯aK ¯qK¯aK ¯ÂS¼†9,-¼VOñZ!<Ák…ð ¯ÂS¼VOðZ!<Åk…ð¯qK¯Â¼VOñZ!\ñZ!<Çk…ð¯Â3¼VOñZ!<ÁkœÃÒÄk…ð¯ÂS¼VOðZ!<Åk…ð¯Â3¼VÏøZ<Ák…ð¯Â¼VOñZ!\øZ<Çk…ð¯qK ¯Qkâ5Ìaiá5ÎaiâµB¸ò5Ìaiâ5Ìaiá5jM¼†9,-¼†9, ºÆ),Mº†),-ºÆ),Mº†),-ºVOéZ\éZ<§keð„®•Á3ºVOéZ<¡keð”®•ÁºVOéZ<¡keð”®•ÁºVÏè§°4éZ<¡keð”®•ÁºVO馰4èZ<§keð„®•Á3ºVOé´^ ‚§t­ žÐµ2¸Òõ‡[îRÆsÏk}­.wÙa¹Ë°Øëûüî>o©G)Çe¨ï©Õƒ¬˜kŸŽw*îÚéGÊáZ»™p¤˜«ï7*îZŽwE(æzÀ‘â®úf0EÁ<#­dÅ]®åeÅ\Ó„{R°â.Z=ÈŠ¹æw…dÅ\‹½©2¸Pq.$Á<ë€káYq×J7R̵ôp#Å]´§ +æ*µO÷ìôh»”ð˜Ü:\2ר¹Â麶\®°°år] [.WXØr¹®…-—+,l¹\ז˶ð×÷_Ø2ԡÑzþ° [(âªuhŽñÜÙ>.ÁÖ²Üg‡qi˰åŒk[¦Æâ–†løìŸ¡ëO6> ®f|#¶G|öˆÏñ¹ñÙ#>CHyÄgòñYtµã3ÙñÙ#>{Äg§ëŸ]®ßu|6Ö¹¬Ø~Hñ L§«$$­¼’´ò¶’´òvJÒÊÛ)I+o'$­¼’´ò¶¢´àvJÒÊÛ I+o§$­¼´òvFÒÊÛ)I+o+J n§$­¼´òvJÒÊÛ I+og(-¸­$M“S(-¸’´òvBÒÊÛ)I+o'$­¼­0ýn’VÞNIZy;!iå팤•·3”ÜNHZy;%iå턤•·S’VÞNHZy;%iåmAiÁ픤•·S’VÞNHZy;%iå턤•·S’VÞNHZy;%iå턤•·3’VÞNIZy;!iå픤•·’VÞNIZy;!iå픤•·…¤•·s’VÞNIºÞNHZy;CiÁ턤•·S’VÞNHZy;%iåmEiÁ팤•·3”î·’VÞNIZy;!iœœÒ$iåm†i‚픤•·•¤•·S’VÞNIZy[QZp;%iåmEiÁ픤•·’VÞNIZy;!iåí¥·S’VÞNHZy;%iå턤•·S’VÞNHZy;CiÁm%iå휤•·’VÞÎHZy;%iå턤•·S’VÞNHZy;%iå턤•·S’VÞû€kVöîy®/ú5+KkVƱbÔú½~N§®Ã帬—¡î± [ñ°b®ž¶âaÅ]+=ÜH1W9 ¸î(¸‡²b®‚ä;–wíôp#Å\ÓŒ ÚY1WáDâ®—ã²b®zç±ô¨¸‹²b®å+ wm¸½+æÚh +î¢E€·r³ô8*Ç”ÃUg'áŽwÑæ,¬˜«ÔKxŸ+îZéGйÚž…wÑö,¬˜«ÔLØ‹wíÔI1×D‹Y1W¹#^ TÜ5㬘k¡e€¬¸‹–²b®R3',=*îÚ¨=’b® wh!Á=;¾Qs•z‰tR×Rê%¼ÝwÑ-·ÚÆRê%ëÀ³P[$Å\îÏB‚{VÜZ‚s•: ËqYq×F-‘sM´= +æ*g ÷ÌÔI1×B;¤²â®…z²K‰×½ÔHìÉHq׊= æÙhkVܵQOFйjוõv´5 +Yn%\‡#Їë@Š»l…(˜g Yn%~ß°R?FйjeGÅ]´1 +æšhcVܵS?FйJ­Ä~Œs-´1 +îZ¨#Å\5ŒÇÒ£â.Ú˜…sm´1 +îÚ¨»”xkWwÑÆ,¬®#‡+q)á@JOŠ»j—rog1Ö@û±K×JýØ¥Är#µFRÜ…{³\½aÇx„òp/%~_ åñP¨˜«†òxN%k¡ýQo\ n-Áйj,×wáþ¨$˜g£%°â®z2RÌUCy,;*î¢ýQY9\5–‡*‚yzf2RÜÅLFйf2RÜÅLFйFb2ÜÃLFй ¢ÃEÁ=;õc¤˜k¦mYn%Ô¾Èc?FŠ»˜ÈH1W©‘PePxŸ@ ÁäåˆGàsMÐßçáH4î÷깄°Xdîl¬Ët Á´Ô·Ð†U.·Lõ5ÈqÉÀù9X¶É¶¼<—Lx&ñÔ^²€e¬ÏÁÚ#è–2> XÆé^À2}Ç,W¼rßñS ‹;2׬1Ã麰\®°€år] X.WXÀr¹®,—+,`¹\ז˰ð×÷_À2ÖýàŽô‡]ÀBy×WM]g;bžíãlÅÊ}vø°ŒãxtÛï~9Ë ·G”öˆÒÀõÒ(-ºÚQZèQÚízDiÔQZt½,J‹®G”öCDiÑÕŽÒ pû£ŒÒ¢«¥Aàö¢( \Í(-~ß#Jû}ŒÒ¢«¥AàöÂ(-ºÚQnÍ(-ë¥QZtµ£4ÜQZ,U;JƒÀ­¥ÅïkGiñ_¥E×#J{Di?T”]í( ·(J™­xÖ„Ç’i, U+{§T­ìPµ²w†Õ‚Þ U+{§T­ìPµ²wFÕÊÞ)U+{'T­ìRµ²wr•½SªVöN¨ZÙ;¥jeqÒJƒª•½sªVöN¨ZÙ;¥je•½SªVöN¨ZÙ;¥je•½3ªVöN©ºöN¨ZÙ;¥je•½SªVöN¨ZÙ;ÃjA•½ªVöΩZÙ;¡jœ´ÒÂê(µ¨ZÙ;ÃjA•½SªVöN¨ZÙ;£jeï «½ªVöN©ZÙ;¡jœ´Ò¤jeoÅjA•½ªVöN¨ZÙ;§jeqÒJ“ª•½«½Sª†I+-ªVöN©ZÙ;¡je•½ªVöΨZÙ;¥je•½SªVöN¨ZÙ;¥jeqÒJ“ª•½•ª•½SªÆI+MªVöN¨'­4©´U㤕&U+{+Vä•&Uä•U+{gT“VšTÝQ?–Rµ²wJÕÊÞŠÕ‚Þ)U+{'T­ìRµ²·Rµ²w†Õ‚Þ)U+{'T­ìRµ²wBÕÊÞV z'T­ìaµ wBÕÊÞU㤕&U+{'T­ìaµ ·ð؇[×RFh¥S›y]KëZ¦®Õþ½~f/ ¿âB'Vê Ný@‹Yq-dÅ\ã„ uY1Wù¶š`Å]¸Jó”{0`ÙQqׂ/~bÅ\å~ÀBwVܵâBwV̵ŽÏx(ܳácsm¸Jóì¾”w͸Ñ+‡kèh‘ +î¢E‚¬˜«`•. îYqcÇ[¹ý4 ´MË­€kí&X1W©‘#–wÑ"AVÌ5Ñ6-¬˜«ÔÉKŠ»|°±b®…¶iaÅ]+.ÖeÅ\ëˆQ+î¢E‚¬˜k£E‚¬¸kÇ-'X1W©—ØI9\cGµ°â®·œ`Å\{àµi¬¸kµ—(æh«Vܵá«ËY1W©™=–wÑæ¨¬˜«ÔÌ…йJ{Z±ô¨¸k¡öHйÚ®…w­¸é+æ*àƒí‘wѦ-¬˜«ÔLìËHq×N})æ*5Û#)‡«FóðÈAÁ= õe¤˜«óPvRÜE›¶°b®6maÅ]n9Áйj4¥GÅ]¸k æ©Á< sÕ`¯*î¢M[X1×B›¶°â®{3ÌScy,;*î¢-[X1Wå±ì¨¸k§ÞŒsí´eË­„þóˆåá)HŠ»´Ð5?y(7)î¢ÍZn%–¨ŽwñX¨¸kÃM'n%k± ¢àÚª…s0Ç^ŒsÕ8ËŽŠ»h«VÌUãx¸¤¸k¡^Œs•‰½)î¢ÍZX1WÍãñX¨¸k§VHйvÚ®…•ÃUyìÅHq׌O°b®šÈCéIqmÊŠ¹j&¥'Å]Ld¤˜kd"#Å]Ld¤˜kb"#Å\3)î""CÁ< )îZhLIйVÚ¸…wÑÆ-¬˜«ÆòxPq×F­‘”÷‰šT>aÏ5s¿.¾˜§8_=—p/™ê®"]Xr Á4ÖΆ)·L¥ÿ9²ºËt Á4ÏÛ4^¦K&<—xr/YÛ2õõ÷âþüœåŠXî›~*aÝGæZµbŸ®kmËå k[.×µ¶år…µ-—ëZÛr¹ÂÚ–Ëu­m¹\am ŸQp}ÿµ-õÍâG§÷Ã.m¡È«µ®@‰kU.ÁÖ²Ü'‡qiËÔMÇ?z÷Ò–—en4푦]®ß£4-º^š¦E×#M{¤i4푦E×#M{¤iÑõ§“¦×[Ò4ÈÜ>pš]í4 2·fšÕJÓ q{¤i4]4푦k'&CÁó0™É’Rµ²wBÕÊÞU+{OU+{+V z§T­ìPµ²wJÕÊÞ U+{gX-èPµ²w‚Õ‚Þ)U+{+U+{çT­ìPµ²w†Õ‚Þ U㼕&UƒÖ¢je•½ªVöΨZÙ;¥je•½SªVöN¨ZÙ;¥je•½SªVöN¨ZÙ;¡je•½ªVöN©ZÙ;¡je•½ªVöN©ZÙ;¡je•½SªVöN¨ZÙ;¥je•½SªVöN¨ZÙ;¥je•½ªVöN±ZÐ;¡je•½ªVöN©ZÙ;¡je•½«½3ªVöN©ZÙ;¡je•½«½SªVöN¨ZÙ;¥je•½ª¦y+MªVöf°&ðN©ZÙ;¡jœ·Ò¤jeqÞJ «½ªVöΨZÙ;¥êNØ;¡je•½ªVöN©ZÙ;¡je•½ªVöN¨ZÙ;§je•½SªVöN¨ZÙ;¥je•½SªVöN¨ZÙ;£je•½«½SªVöN¨ZÙ;¥je•½SªVöN¨ZÙ[°úím9úÐZmqmËÖ¶¼í ¥*÷eHÜ•ƒ‡ƒV$_—ùÕt ÆF›pðéÇŸ”fÔuþ>ýêãrjÛ´ÛÓg2ÖÐõO¿¨†y/Ež^ÿ¦8ú®ß†õéµ9öm~zýÍÇõéZFë}ø‡¯¿®ÿré G>½þ²þÃ}/ë髹—yzú¶:Æ}+ƒÈòë[×eëWÖcÌûøôÛðíß~|ýùE=F_²=}Ÿ×X«ÛŸ¬¤ÝÚmÇiU¦Ÿ÷«tÅðÕqâû¾mËÓ›?ês,_½Wá¾´·uãÓ¯oÇ7Õ±vÝ´=½ùõqˆyï§§7Çi•‘^yŽÙiuË´ÁiýÍÇÅ\ó–r5üÈóÓÿ.Á—÷ þÂNjÞçã`~ª¿ñË]ÛR=ŸžM\÷íégOEíömZŸÊÝöqýX¾eY[ýƾ߶:kä“òXÛËØûÕ'ýX7ëøô¥^ü»r¨­ü“nyú¹]ˆ}*åò/« ¥X¶~>®v·ïåñ^¯å¸bÞ÷¨þ*Ü¥ÏÌQoÂ/­Št[9ßÖ Û Û8À=ýùqQÆ~‡{úÅqé÷­\”7w=«gSjÿµ¿;v3èì´^\×Ï[)Ò—÷ŸŸß¾¹ÿ|¾ÿüUãOÿBhnuåóº¯ç7þÙ]_Bù¿µk7• UÒV+íøô?®KdûÒºÞ|qÝÔØH¾=jÓ4Ô÷µb®õ÷û{Ù—ríÒü¹·Ý¹ß¦Ø|þ¾~åЕšø™£ÀN©žŸ@SëË m[<ô›£ùÔ— .nÙ‡ÒÃÔúqe݇ÒÂj‰êÂ죭Ï]?àóä³ûÞ~ÉurÞkRrTÉiÛìZþCxXÙ9œ©žÕ-ƒglߟ…ùÚ+׶̣ݾn_A¨Ý_}2”!Á> öÍÿ¼~EéöÕÿÍøªôßkwü“Òî×qKaŸ—º/Fý'O_ü¦>¬‹sŽG/Õ~)ψWÑùc7âC»´ø¾ ÁZôôÏþÑ=ñk+ÿõ#íü{ûa ÞÒGíÃY)Ÿþ?ÚŠ'±•nÖ}Vø2NŸëL®ø}žþøÓõ/Ïò ¯Êca+O¹ëå:ìåùYºP»ÈÿO½3]iZå¶&—¹¾Æl-Mâ¸5[ùOõè›mÁ¥­Ô{/Àÿ\»z¶õÌñEvuÂè^†ýP¢ßcvjBµÑÝÿëR®ú˜ØÊðó©Ü;¾%ÛP¸û·ä.dó–¬…‘ßï–|_‘©ôJ Ç*]׸—gtþ‹üÊlÕ÷YêgáŒþ\Ã}üIßW’ÙËò g_FÚsÍœÚ×§ÌV3åbem»vte`wútL¶¬·ééßÖ?ëvI‹ýTûóG·á«Õ‡L]¿>ý&-×Tžâóú^Ū7‘‹µÜÅšî²,ñÏ݆¯y»¥)5.í˜>êv{õÉØ—!þºê3€W§_‡wõu·ÃåìLê²øµ÷r¶ÍÒb±"–>„š&^Ž‚çÛ°aÛ©º¬…ìöóŠÙ¨mW,·õWÃÞ OoŽ>b[‡­ _,½k¹UåÓR_šºaoúÄkôñù¯Ž>»Û†Úkuø_þ|óÛ{ìkW¯Ž+â¾ Ÿ§Á†8ÿ×Ñc™å7õö—ú_®o8ÍoM-èšÇ@®´Üršá[øòøðņný2®ÔÝ_ر(j¡§½ÅQŒRóàÿß1Žç~À¯IjÂWõõg¶>VŠð¯þK4Hª’rð qäo+Ó(74"Ö„0À òs+fÁÑóž•ÓÀèUÌ\WU±Ê´,±nÿüÆ´:„µ+¸X«Ö¦±ŸÊn9Û\Ëk¼+齿ÙÈ\Fð#xÞ|MUöüÿ☶þƒ‚bMÎ:¯v¹já)5¹ –Þ’¼íi¿ÔÑÛwSÔ~!ðivð`é“‚ó¯á9óY­0¥!í3T »¢å‰3uh!$Ä×xnÜ…‡¶¯µ¯ƒ°§_Õµþõæ×÷—ÄÊöåÍIð ßSïr=‡y7¬=ïSè,¼"µ-Âbýg¥“ib6é·zMÏžöË7Ÿ§}í\zŠ«Ÿyç Žïa7uÄœm¸™Ï¡ï—ÖœrZëHßš}ii'[×mð¥éx/·ï‚‚ÊåŸÌåáQ;î|Wñj;ßžAÌ'õ'Ò/Ÿ”‹8õÝѯ†OH­¢K¹„u¿°¹;óÓO«o­Õ²Õ§ÿá£r—ÿ5@Ý­µÔ /Ãû¬åQp©œi}‘ö,±DOÔc}²ÕU8Ûr8öMzÇ—i]莛³ÎàY°Ñ~{ ò>ŒóÓ_çW¶îú¶Ÿ•îgOù¡‡ºÔî¼[ÿÓÑѶ|ÝÊøâû•ø)­Ëõ7̽»¾ÿg—6Xp£4ÈRÒ[]5Ÿ£Öÿ>¹®Ós}ªß±”5ƒëúóûÔˆ±’r?­Ã޸¥–Œï¼ÂÃSýÓ\á«• œT…½cýos è÷ƒÓÙÆcg{¥“ÇlØó¢þéÿxjØŸ£Áã!› B¦ûýûr•žÂ¨óÉú­nqÀöww F:ÑaÛb˜Îñé5ò¡ÁËÙ—§U²ßêïŽ/¾Áã»ýóuuŽáK—M'—«;–Sèç#¬¬¿U—Q'Ž\"Ã?f—®ôêø´ ’VïÔÔÒÿ徤a¬úõÛóÖ/šúµ{m?'¬ó8ÅÉlxt¢s8@ïþ:Leä³|÷¦U4ã}›µ˜þø•…B’×~¬f¥ýÓ¦N´Ú¯$<9žþÇR{çB„S_“>G 8•~ØÛèŽz•b¿¶ÚU“÷méŽó ­9ìå–ãà8šÿå1Ð^ûšy?] £Êyå,ŽŸ¥Ê¾‘|}7šÏÿÂE[÷Ö^Æ:„žÒ_¿úým?‡`ìm¿y-õ—‹è¶¡í<ìðÐü³ûliŒm` fÂ!ùMg.…éº{?¿oö×÷Ÿ¿IëÈ—ym(Oþþ> ò{Íúê³(ÿ%'üÙ8¯àxcjýÑ;¡ì%¿¼ö×ôûÝ_þd[!ç«#{¢”ž´6ýã¤þ—ò ¨»Å/ØZ'ýúþó7÷ŸßÜ~yÿ³ÿùV?¹Õ/oõ‹ûÏoÓãýýí‹ô†Fþ:ÞKÿæíxôùŸŸÞ†ŸÜþçûÏ¿ºÿü‹ûŸ…oûö]_ oby³âôïú¶ÏÒ“¿C†Ÿÿ&ýâßnõÇÂoî?¿=¿m¾‹3ûÕ9 ?¹ÿüÏ÷ŸuÿùG¹Tÿá£OÿÍ_—!ï'ë6o¥â6Nâó´¸_¼ë:ý«ôòæÕ!|Å—iþUzÑ¿LoæWiy½/­f¥É5G›,-¿²o™Qg”Üøù=ðy ¶‘rÊúïÆdV†îµý†|†¦×«Ö'ÿ³5dªÏ´cÑÆÏ´:Q³ŒµþæJI>3ký}ûkxº]?øž?Hï <ùÿ¾vy}eœpˆïú{´—ÙâÂnû=ºNÒëxž†£´Ò¤0ò¿J b¬v oéŽËÕŸÝw_J뇛¶iÂÑÃáÝVÆï«tŠôÛËTÁý þyÇÕQ4ëo½í8®Œ k—XC€¾Ô×a÷@Îâ§¹Ô£rvÓÔ7Û~(ê\üa@&tØ”wå‹ud9]¿ò|÷ßà—q|kLµÑBtæ¿™ÖÉWÛÚüþ•¿¿ ñ Õ–vhÏÞƒm‡ãÁZ‹÷¯³W zޝÊ(¡Ô ~^¥ãî: þúý§Œ Ö¥NFêÔé ‚ãûk(öu>{ýýÃÕ²ÑA<=Ž?8]æ«Ñ4 V3KºâÃswýô÷gÙi/øÓ_ýÝ«N!<ò1¦´#½0i&ÌI;Î`‹Sº^sº–½þ4ÿôºök·ö;p­ÙÖzÛÇ_ã? •ô<»Š·ó™}œ)ÜJ)Ü•ŸÕ´o´ÕRë†ñ­mõmW½¾ibÆkNu»?r] Ô´(»OëBõ©hü —áô>¸-#˽QÖu¸ˆô§)&—«€ôÇõGŽéúéQÁ¸e†˜¯þ¶·Õþó[û{êÇCÔßV§æ^_ú¿+M'þ»æ,ÄjëÏr!û7syzºâ÷,®C/ÍoÇf?'?•6~7ƒy^ç·Ç_·îI^óÏLK?OãÚêæÂì€wÔú¡«»÷µ®ÎŠî 7~ìhVᙸ/ûÉxG5OýÃz퇻£¶GXoÌ8 ³ó6Ó~q –kPÍëà «FÖëXª+ ¯ôö4›‡áþñi<'!ƒÁøûuÈCªðv´­o×Ãúß§~J~Y¬1*Ìá­?޵‡yúw_ÞõêKÿŽn¢KTÕ:R„Y—¡†å–lýÓ¬på–÷­*Êü:o$éD¡±Tþs$qõË4Ýk:~›y˃e.}XްZÓ¬ÆkêO¹ªùã©t;W÷çuÚNa‚mxšZÀÐÏýS°ïßYñ5=F™ßÚ5¯@¶ŽHß|ìÑÕPîÒFs'Ω.«Oø®Ä±Ò‡ûgf›¾PÒøn3®*þ ;vé¼!,ûÆe1EYæcŠñ‹æÃ'¶¼”?–ºe÷ùeè;}×ù°6\+ ožê‡ÙBHoÈ_Û‘ë<ü˜ü'ŸÛe¨©û/ý¢õƒMÝŸŽùkÿñ˜ˆÞ­;Î8¾R±7yóõy;z€”3?ì¶v~x=žÒx¡ù3@#•Òsrê|ùqößMŽÿ~Ï]Áêæ­XíäëúùòIŸwÌ+j÷z÷ãɪæñ“ÁÕ[~ë¥ì—¸à³{ÌoðÍŒñ×;옆£á­¾Ápìy}Ž{^ÿ϶–>éKyeÊó€U={Ö6ùª¿Àã`» öKý¦AÔÒÔ¾ïíwã¢àktãsp¦º)êõHÄâ_ÄlœðÉùOïߦžrºêŸû±ëß–­¾|Ù6.ûùÊîÁ2vÍàsí:kþ„³\/Ç'CD¶’åZ’u¤«ŸÝ¾¾ÿ Iì—©7žï?Õøó­iðöC/°¸Ó´‡ðîQm~›âÞåÍv aãÏÓó|çoby³ÜÑŽ{ä³_ßþæþ3DÀ_Þ¶"ȺÞçXâPëÔê¼ø¿Uµ«?êÂSÔW6mssrm˜]&)Ã6”‡Ãç69µÎR~ã?ž-ýÛ~©îéRf¡EhŒùLÕíëlØ~ŠáÔ=ýmÞé~ke+ø5ß~±^Ë3mzk™·# ÁÚ5B}ÝZFGïzˆ5ÍÛm²¬'PÆ4qžZœ€{ýtôdÆaí!㉓áü§n[5FOpœa{Ö(`&¿àåß—'À´åJ¬G =+C×_g Ö;Ž™tÒu½³nk¾»OñÇÐ7.ï÷òµs3ÔîúîÎïóϬ eØ\ï=ÚZÿýuQqºÁñß÷:«,ôggÿ û稜ձW=jG†x6„êÊ¡¸ÇTÔ#½~ÙdÞãRÖQB=ظÍ<ÇJ\ uðñþýòyÀ·tÆu3¤ºn§@Åóæ}ÙSµþÿg‹xuendstream endobj 239 0 obj << /Filter /FlateDecode /Length 2639 >> stream xœÝZKoɾëWè8L–³ý~,VÀ$‡lxÛÍ)JYŠ”Eiíä×§ú1ÝÕ↔áKàƒËíšêz|õjéÓ5ëù5 òß·Wßÿ$ÜõæpÅ®7WŸ®xüßëü×íãõŸÀ!9œôžy~½¸»JŸÂ·½ƒ-S=—æzñxõsw˜ÍY¯Ó^uO³B.oùô^YÝ­gsÉ üKuÀ"8“Æ…/%³p*»ûð!·Ò:̰¹2´÷ÖŠnç–3­»: ÜÜyÎl÷Ž…÷θ0pp/}·C܇Yóa¾fY ŒwËmè=MúÙ\IÕ;.º¿Θe®{IÆÀ¥ Ž­w^'cÀD'¡ð&»ŒÐ>ø øÃImºg8–Lp¡šã»pì„ñÝþ9JfL¹â<§ówÆ4_-qÀ–@kðÇòc$…“¢ÛVE³8àÁŠîÓ)pàÓrß²Ípö8¦7^ðîy6ºÍÁ .~ϼSûø©:b;û×â¯W’Ë^i ¸Z¬EE+™•m‹²ÓÆ¢‚6ÂkÅé+p 7ñŽùpÉþÖʹt×o3­{ß Ñ† |cM€ápÐÀ»/^ Ò9¸K›…{‘„/" ÞÆèKÿƒ¨D²ï.¡½Öíj àÔI¦jÚc6©””•8eí¹Ž·ð¥÷ÚAxŸ+¹®ä²’/$C_É )ì¡’«YV‰TÒªGV ÁlùëL€¾éÆüCòxÔ£Œ”¾gªØ¸%u9`Ã(µàfÍ‹VŸc¢§üO6¥£VÚéFÙp»`Úy‘‹OR[“*÷. `°Xr¶Wq=‚õp_…ý}Öì&— ˆWLå b¼*ªY¸íöwog.¸ëùQÎÖ! A¸w ±qŸêTñJ»ê ˆujBˆT  Œ)Ûê{Tm𨖬·Rž;¦6Oé›Þ¹Œ‹€7 P;ðgCÜ0ëŽm:u\Å®”y÷q²·éÆ÷u²Ee®©±'v‰|¹J56XÂUG§åÑÄYÓ?Š€þ‰&èã²Å,ì:M=Iñâ]»zD·(ýPŸU˜~ß4å)êÂF–ä—iš7Ýó¼yÛÙ³ù&©!ìÛ0óƒòe²‰p¡S2FC-дˆ 9Kô•¼Ÿ"û±°‹§\kÃâéêàݷЫêf¼xÜV´ƒ¡døEl5à38#k‡áúT3J‹ÔZ¦²0[‚A±Cæïv³8‘Šf«mŠP‰!¾â¡NÃçlÃéf¯FI:HÍ%i^â7e#ti'NÏ%Á‡!²Í\Rq?•Œièࡌf޼™*ác®A¿‹¥óµ)Dx^/é°JÜP=ã|#5d& QÖòDE“^¹Ìá ?ñ‚ÃÛý#ÅD­Æýâ¨ßÁðe0üX1ÖÄ/•\ù>[“©¢dï´+³AÜ Ž¶Ë.Jy€*c©C§sŒô?ÌêQ¢svÜzÃXÍšîKuëíQ‹"@·" ác¨™`hqù¥ &mûR0Ä4õ^ç¤;5)Ÿ|‚I¦©(¾ŸHl+ŠêB†)¡\«¡ÒØq GPDouAW)ÃÜÚ¾àŸmî†ý<@ŒŽ dÀÂÀšùɈ"o‚Ú;£å ´#Â~e{ÆÇä*é«ß!¥ÈlèÙmp .aØá©Œ*!pÁZUãÛ§£ïr¶pu¯™òoW‹ßýÜý¡nͨ¥¡í÷¡’«Êûc=“{7’€¶jÔK_Æ ïxú©;qw¢PÕ=ÓÐûÇÔ‡úäi³ûg÷8ü2†– ´í¼öXß"솔;),Y÷…ïb¥,©—ððûÙœk Í‹_øSÈù$ƒF§ÌK©‹£I¯…+’EÁävÊgøºËö½BÞTr^IFâH“ØxçËÒÍ{nÓhÜUrSÉ—JÞWò& ì°0À„4´UYÿ:ßhó¹hp·4&>‘¡üfa§}ÇÉHѼžäEÞÏÉÁ!9Ýëw¤q¨ ~$íÜ}½’ÔY/.1nD–¢FƒŠÝ•Ü’¼ˆá«V.TÑŽ±V ýgw9EeKÆkO:û~ŠülC£ÑD›ACÚ¤w•D“Â3É»ú!À™]q púý}M £K3<“ 'yi}¾ù rÅ_µ~åvRšÌM%Qc`$™ EN¥'†S4ŒÐÃ) üãŸoPv¾iF£¸¬HÞ yŠs ±Ê}ýYR³”ßH/ÿû¥åâÝEûD!€zÀTX°z¶’º«arHø˜,¿‘aDÚlH$á–d8š£À—¼Ò¤Cwä­kÒuÍi‘€ßdIá Ëö䎂 ˆ$„‡Ž_®+2 a™*€ onƒÏPüègØ×ᙀ&ý“`†9yʲ_IïÑ¿pOútOúôj)CÚøJòJ²ôïUø­‡ö9ÅãóÃbæ‹Îñ$¼'QûÖJ?å;7JºãÒ³ÆÐü†ÉFMÞîäH.­½Ñ7ªQÀ»šÊqr8Lo ô³èä/Ýjû'É‹<€rùÃE¶&ø f50•5Þ »b6÷J†â}©‚–TwÜl.yØ<ÏØ~© ø¤†².s“¯†…äSÊ*Ì‹H¢9Nª«Hu9y¯'Ô”º;´¢,…´Ž׸óu$ƒ™ÒÑ’¡rç눀9yƒÂê¾ ˜þ|Å.Á#Ç7 ÍÏÇ£;ïŒäÑøt‹ŒtèdÆÐ^T›ÔQ“¥«QA”EÝI7°9;èæ}:² \jIÓÌù:Ú©R.°ÇÎ/7´óìùй 2Æ‘~œÌjºð_Pý:"çy©ósæ„gdµÁíæ]õÛ`]&”Õ¤oÅù-©Ë§Š$Ð8´é¤ä/rZÙ;+¯çRõ&ü*ŒG—³Å¿¯>,®þþf[ièendstream endobj 240 0 obj << /Type /XRef /Length 222 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 241 /ID [<289594a8ed01fef2b6843534ee2bd583><05ddefd74b377fd75017b6da6c29f62e>] >> stream xœcb&F~0ù‰ $À8JŽ’Èÿ "ó–ÙìA)çé½Ñ”3JN3}Kl©&Pj‘Ú"ERÀdˆä‘r3A¤hˆäH‘|F ’‘ L¾‘L‹Áì?Pɦ“¬Á*K$£¸ˆÍÅ ¶ÅD2ƒMVö‘ù ’ǬbË{É¢6a=˜‘FÊ RÐ l#Ø…|ò`‘½`] `7\›ÿ¬ë9Èv¶°]`15ƒMþ" ]îÌ›&"@ºr¶ƒÝ3“ýO$» endstream endobj startxref 202175 %%EOF surveillance/inst/doc/twinSIR.Rnw0000644000175100001440000006241613165424422016551 0ustar hornikusers%\VignetteIndexEntry{twinSIR: Individual-level epidemic modeling for a fixed population with known distances} %\VignetteEngine{knitr::knitr} %\VignetteDepends{surveillance, quadprog} <>= ## purl=FALSE => not included in the tangle'd R script knitr::opts_chunk$set(echo = TRUE, tidy = FALSE, results = 'markup', fig.path='plots/twinSIR-', fig.width = 8, fig.height = 4.5, fig.align = "center", fig.scap = NA, out.width = NULL, cache = FALSE, error = FALSE, warning = FALSE, message = FALSE) knitr::render_sweave() # use Sweave environments knitr::set_header(highlight = '') # no \usepackage{Sweave} (part of jss class) ## R settings options(prompt = "R> ", continue = "+ ", useFancyQuotes = FALSE) # JSS options(width = 85, digits = 4) options(scipen = 1) # so that 1e-4 gets printed as 0.0001 ## xtable settings options(xtable.booktabs = TRUE, xtable.size = "small", xtable.sanitize.text.function = identity, xtable.comment = FALSE) @ <>= ## load the "cool" package library("surveillance") ## Compute everything or fetch cached results? message("Doing computations: ", COMPUTE <- !file.exists("twinSIR-cache.RData")) if (!COMPUTE) load("twinSIR-cache.RData", verbose = TRUE) @ \documentclass[nojss,nofooter,article]{jss} \title{% \vspace{-1.5cm} \fbox{\vbox{\normalfont\footnotesize This introduction to the \code{twinSIR} modeling framework of the \proglang{R}~package \pkg{surveillance} is based on a publication in the \textit{Journal of Statistical Software} -- \citet[Section~4]{meyer.etal2014} -- which is the suggested reference if you use the \code{twinSIR} implementation in your own work.}}\\[1cm] \code{twinSIR}: Individual-level epidemic modeling for a fixed population with known distances} \Plaintitle{twinSIR: Individual-level epidemic modeling for a fixed population with known distances} \Shorttitle{Modeling epidemics in a fixed population with known distances} \author{Sebastian Meyer\thanks{Author of correspondence: \email{seb.meyer@fau.de}}\\Friedrich-Alexander-Universit{\"a}t\\Erlangen-N{\"u}rnberg \And Leonhard Held\\University of Zurich \And Michael H\"ohle\\Stockholm University} \Plainauthor{Sebastian Meyer, Leonhard Held, Michael H\"ohle} %% Basic packages \usepackage{lmodern} % successor of CM -> searchable Umlauts (1 char) \usepackage[english]{babel} % language of the manuscript is American English %% Math packages \usepackage{amsmath,amsfonts} % amsfonts defines \mathbb \usepackage{mathtools} % tools for math typesetting + amsmath-bugfixes \usepackage{bm} % \bm: alternative to \boldsymbol from amsfonts \usepackage{bbm} % \mathbbm: alternative to \mathbb from amsfonts %% Packages for figures and tables \usepackage{booktabs} % make tables look nicer \usepackage{subcaption} % successor of subfig, which supersedes subfigure \newcommand{\subfloat}[2][need a sub-caption]{\subcaptionbox{#1}{#2}} % -> knitr %% Handy math commands \newcommand{\abs}[1]{\lvert#1\rvert} \newcommand{\norm}[1]{\lVert#1\rVert} \newcommand{\given}{\,\vert\,} \newcommand{\dif}{\,\mathrm{d}} \newcommand{\IR}{\mathbb{R}} \newcommand{\IN}{\mathbb{N}} \newcommand{\ind}{\mathbbm{1}} \DeclareMathOperator{\Po}{Po} \DeclareMathOperator{\NegBin}{NegBin} \DeclareMathOperator{\N}{N} %% Additional commands \newcommand{\class}[1]{\code{#1}} % could use quotes (JSS does not like them) \newcommand{\CRANpkg}[1]{\href{https://CRAN.R-project.org/package=#1}{\pkg{#1}}} %% Reduce the font size of code input and output \DefineVerbatimEnvironment{Sinput}{Verbatim}{fontshape=sl, fontsize=\small} \DefineVerbatimEnvironment{Soutput}{Verbatim}{fontsize=\small} %% Abstract \Abstract{ The availability of geocoded health data and the inherent temporal structure of communicable diseases have led to an increased interest in statistical models and software for spatio-temporal data with epidemic features. The \proglang{R}~package \pkg{surveillance} can handle various levels of aggregation at which infective events have been recorded. This vignette illustrates the analysis of individual-level surveillance data for a fixed population, of which the complete SIR event history is assumed to be known. Typical applications for the multivariate, temporal point process model ``\code{twinSIR}'' of \citet{hoehle2009} include the spread of infectious livestock diseases across farms, household models for childhood diseases, and epidemics across networks. %% (For other types of surveillance data, see %% \code{vignette("twinstim")} and \code{vignette("hhh4\_spacetime")}.) We first describe the general modeling approach and then exemplify data handling, model fitting, and visualization for a particularly well-documented measles outbreak among children of the isolated German village Hagelloch in 1861. %% Due to the many similarities with the spatio-temporal point process model %% ``\code{twinstim}'' described and illustrated in \code{vignette("twinstim")}, %% we condense the \code{twinSIR} treatment accordingly. } \Keywords{% individual-level surveillance data, endemic-epidemic modeling, infectious disease epidemiology, self-exciting point process, branching process with immigration} \begin{document} \section[Model class]{Model class: \code{twinSIR}} \label{sec:twinSIR:methods} The spatio-temporal point process regression model ``\code{twinstim}'' (\citealp{meyer.etal2011}, illustrated in \code{vignette("twinstim")}) is indexed in a continuous spatial domain, i.e., the set of possible event locations %(the susceptible ``population'') consists of the whole observation region and is thus infinite. In contrast, if infections can only occur at a known discrete set of sites, such as for livestock diseases among farms, the conditional intensity function (CIF) of the underlying point process formally becomes $\lambda_i(t)$. It characterizes the instantaneous rate of infection of individual $i$ at time $t$, given the sets $S(t)$ and $I(t)$ of susceptible and infectious individuals, respectively (just before time $t$). %In a similar regression view as in \code{vignette("twinstim")}, \citet{hoehle2009} proposed the following endemic-epidemic multivariate temporal point process model (``\code{twinSIR}''): \begin{equation} \label{eqn:twinSIR} \lambda_i(t) = \lambda_0(t) \, \nu_i(t) + \sum_{j \in I(t)} \left\{ f(d_{ij}) + \bm{w}_{ij}^\top \bm{\alpha}^{(w)} \right\} \:, %\qquad \text{if } i \in S(t)\:, \end{equation} if $i \in S(t)$, i.e., if individual $i$ is currently susceptible, and $\lambda_i(t) = 0$ otherwise. The rate decomposes into two components. The first, endemic component consists of a Cox proportional hazards formulation containing a semi-parametric baseline hazard $\lambda_0(t)$ and a log-linear predictor $\nu_i(t)=\exp\left( \bm{z}_i(t)^\top \bm{\beta} \right)$ of covariates modeling infection from external sources. Furthermore, an additive epidemic component captures transmission from the set $I(t)$ of currently infectious individuals. The force of infection of individual $i$ depends on the distance $d_{ij}$ to each infective source $j \in I(t)$ through a distance kernel \begin{equation} \label{eqn:twinSIR:f} f(u) = \sum_{m=1}^M \alpha_m^{(f)} B_m(u) \: \geq 0 \:, \end{equation} which is represented by a linear combination of non-negative basis functions $B_m$ with the $\alpha_m^{(f)}$'s being the respective coefficients. For instance, $f$ could be modeled by a B-spline \citep[Section~8.1]{Fahrmeir.etal2013}, and $d_{ij}$ could refer to the Euclidean distance $\norm{\bm{s}_i - \bm{s}_j}$ between the individuals' locations $\bm{s}_i$ and $\bm{s}_j$, or to the geodesic distance between the nodes $i$ and $j$ in a network. The distance-based force of infection is modified additively by a linear predictor of covariates $\bm{w}_{ij}$ describing the interaction of individuals $i$ and~$j$ further. Hence, the whole epidemic component of Equation~\ref{eqn:twinSIR} can be written as a single linear predictor $\bm{x}_i(t)^\top \bm{\alpha}$ by interchanging the summation order to \begin{equation} \label{eqn:twinSIR:x} \sum_{m=1}^M \alpha^{(f)}_m \sum_{j \in I(t)} B_m(d_{ij}) + \sum_{k=1}^K \alpha^{(w)}_k \sum_{j \in I(t)} w_{ijk} = \bm{x}_i(t)^\top \bm{\alpha} \:, \end{equation} such that $\bm{x}_i(t)$ comprises all epidemic terms summed over $j\in I(t)$. Note that the use of additive covariates $\bm{w}_{ij}$ on top of the distance kernel in \eqref{eqn:twinSIR} is different from \code{twinstim}'s multiplicative approach. One advantage of the additive approach is that the subsequent linear decomposition of the distance kernel allows one to gather all parts of the epidemic component in a single linear predictor. Hence, the above model represents a CIF extension of what in the context of survival analysis is known as an additive-multiplicative hazard model~\citep{Martinussen.Scheike2006}. As a consequence, the \code{twinSIR} model could in principle be fitted with the \CRANpkg{timereg} package, which yields estimates for the cumulative hazards. However, \citet{hoehle2009} chooses a more direct inferential approach: To ensure that the CIF $\lambda_i(t)$ is non-negative, all covariates are encoded such that the components of $\bm{w}_{ij}$ are non-negative. Additionally, the parameter vector $\bm{\alpha}$ is constrained to be non-negative. Subsequent parameter inference is then based on the resulting constrained penalized likelihood which gives directly interpretable estimates of $\bm{\alpha}$. Future work could investigate the potential of a multiplicative approach for the epidemic component in \code{twinSIR}. \section[Data structure]{Data structure: \class{epidata}} \label{sec:twinSIR:data} New SIR-type event data typically arrive in the form of a simple data frame with one row per individual and sequential event time points as columns. For the 1861 Hagelloch measles epidemic, which has previously been analyzed by, e.g., \citet{neal.roberts2004}, such a data set of the 188 affected children is contained in the \pkg{surveillance} package: <>= data("hagelloch") head(hagelloch.df, n = 5) @ The \code{help("hagelloch")} contains a description of all columns. Here we concentrate on the event columns \code{PRO} (appearance of prodromes), \code{ERU} (eruption), and \code{DEAD} (day of death if during the outbreak). We take the day on which the index case developed first symptoms, 30 October 1861 (\code{min(hagelloch.df$PRO)}), as the start of the epidemic, i.e., we condition on this case being initially infectious. % t0 = 1861-10-31 00:00:00 As for \code{twinstim}, the property of point processes that concurrent events have zero probability requires special treatment. Ties are due to the interval censoring of the data to a daily basis -- we broke these ties by adding random jitter to the event times within the given days. The resulting columns \code{tPRO}, \code{tERU}, and \code{tDEAD} are relative to the defined start time. Following \citet{neal.roberts2004}, we assume that each child becomes infectious (S~$\rightarrow$~I event at time \code{tI}) one day before the appearance of prodromes, and is removed from the epidemic (I~$\rightarrow$~R event at time \code{tR}) three days after the appearance of rash or at the time of death, whichever comes first. For further processing of the data, we convert \code{hagelloch.df} to the standardized \class{epidata} structure for \code{twinSIR}. This is done by the converter function \code{as.epidata}, which also checks consistency and optionally pre-calculates the epidemic terms $\bm{x}_i(t)$ of Equation~\ref{eqn:twinSIR:x} to be incorporated in a \code{twinSIR} model. The following call generates the \class{epidata} object \code{hagelloch}: <>= hagelloch <- as.epidata(hagelloch.df, t0 = 0, tI.col = "tI", tR.col = "tR", id.col = "PN", coords.cols = c("x.loc", "y.loc"), f = list(household = function(u) u == 0, nothousehold = function(u) u > 0), w = list(c1 = function (CL.i, CL.j) CL.i == "1st class" & CL.j == CL.i, c2 = function (CL.i, CL.j) CL.i == "2nd class" & CL.j == CL.i), keep.cols = c("SEX", "AGE", "CL")) @ The coordinates (\code{x.loc}, \code{y.loc}) correspond to the location of the household the child lives in and are measured in meters. Note that \class{twinSIR} allows for tied locations of individuals, but assumes the relevant spatial location to be fixed during the entire observation period. By default, the Euclidean distance between the given coordinates will be used. Alternatively, \code{as.epidata} also accepts a pre-computed distance matrix via its argument \code{D} without requiring spatial coordinates. The argument \code{f} lists distance-dependent basis functions $B_m$ for which the epidemic terms $\sum_{j\in I(t)} B_m(d_{ij})$ shall be generated. Here, \code{household} ($x_{i,H}(t)$) and \code{nothousehold} ($x_{i,\bar{H}}(t)$) count for each child the number of currently infective children in its household and outside its household, respectively. Similar to \citet{neal.roberts2004}, we also calculate the covariate-based epidemic terms \code{c1} ($x_{i,c1}(t)$) and \code{c2} ($x_{i,c2}(t)$) % from $w_{ijk} = \ind(\code{CL}_i = k, \code{CL}_j = \code{CL}_i)$ counting the number of currently infective classmates. Note from the corresponding definitions of $w_{ij1}$ and $w_{ij2}$ in \code{w} that \code{c1} is always zero for children of the second class and \code{c2} is always zero for children of the first class. For pre-school children, both variables equal zero over the whole period. By the last argument \code{keep.cols}, we choose to only keep the covariates \code{SEX}, \code{AGE}, and school \code{CL}ass from \code{hagelloch.df}. The first few rows of the generated \class{epidata} object are shown below: <>= head(hagelloch, n = 5) @ The \class{epidata} structure inherits from counting processes as implemented by the \class{Surv} class of package \CRANpkg{survival} and also used in \CRANpkg{timereg}. Specifically, the observation period is split up into consecutive time intervals (\code{start}; \code{stop}] of constant conditional intensities. As the CIF $\lambda_i(t)$ of Equation~\eqref{eqn:twinSIR} only changes at time points, where the set of infectious individuals $I(t)$ or some endemic covariate in $\nu_i(t)$ change, those occurrences define the break points of the time intervals. Altogether, the \code{hagelloch} event history consists of \Sexpr{nrow(hagelloch)/nlevels(hagelloch$id)} time \code{BLOCK}s of \Sexpr{nlevels(hagelloch[["id"]])} rows, where each row describes the state of individual \code{id} during the corresponding time interval. The susceptibility status and the I- and R-events are captured by the columns \code{atRiskY}, \code{event} and \code{Revent}, respectively. The \code{atRiskY} column indicates if the individual is at risk of becoming infected in the current interval. The event columns indicate, which individual was infected or removed at the \code{stop} time. Note that at most one entry in the \code{event} and \code{Revent} columns is 1, all others are 0. Apart from being the input format for \code{twinSIR} models, the \class{epidata} class has several associated methods (Table~\ref{tab:methods:epidata}), which are similar in spirit to the methods described for \class{epidataCS}. <>= print(xtable( surveillance:::functionTable("epidata", list(Display = c("stateplot"))), caption="Generic and \\textit{non-generic} functions applicable to \\class{epidata} objects.", label="tab:methods:epidata"), include.rownames = FALSE) @ For example, Figure~\ref{fig:hagelloch_plot} illustrates the course of the Hagelloch measles epidemic by counting processes for the number of susceptible, infectious and removed children, respectively. Figure~\ref{fig:hagelloch_households} shows the locations of the households. An \code{animate}d map can also be produced to view the households' states over time and a simple \code{stateplot} shows the changes for a selected unit. <>= par(mar = c(5, 5, 1, 1)) plot(hagelloch, xlab = "Time [days]") @ <>= par(mar = c(5, 5, 1, 1)) hagelloch_coords <- summary(hagelloch)$coordinates plot(hagelloch_coords, xlab = "x [m]", ylab = "y [m]", pch = 15, asp = 1, cex = sqrt(multiplicity(hagelloch_coords))) legend(x = "topleft", pch = 15, legend = c(1, 4, 8), pt.cex = sqrt(c(1, 4, 8)), title = "Household size") @ \section{Modeling and inference} \label{sec:twinSIR:fit} \subsection{Basic example} To illustrate the flexibility of \code{twinSIR} we will analyze the Hagelloch data using class room and household indicators similar to \citet{neal.roberts2004}. We include an additional endemic background rate $\exp(\beta_0)$, which allows for multiple outbreaks triggered by external sources. Consequently, we do not need to ignore the child that got infected about one month after the end of the main epidemic (see the last event mark in Figure~\ref{fig:hagelloch_plot}). % ATM, there is no way to fit a twinSIR without an endemic component. Altogether, the CIF for a child $i$ is modeled as \begin{equation} \label{eqn:twinSIR:hagelloch} \lambda_i(t) = Y_i(t) \cdot \left[ \exp(\beta_0) + \alpha_H x_{i,H}(t) + \alpha_{c1} x_{i,c1}(t) + \alpha_{c2} x_{i,c2}(t) + \alpha_{\bar{H}} x_{i,\bar{H}}(t) \right] \:, \end{equation} where $Y_i(t) = \ind(i \in S(t))$ is the at-risk indicator. By counting the number of infectious classmates separately for both school classes as described in the previous section, we allow for class-specific effects $\alpha_{c1}$ and $\alpha_{c2}$ on the force of infection. The model is estimated by maximum likelihood \citep{hoehle2009} using the call <>= hagellochFit <- twinSIR(~household + c1 + c2 + nothousehold, data = hagelloch) @ and the fit is summarized below: <>= set.seed(1) summary(hagellochFit) @ <>= ## drop leading and trailing empty lines writeLines(tail(head(capture.output({ <> }), -1), -1)) @ The results show, e.g., a \Sexpr{sprintf("%.4f",coef(hagellochFit)["c1"])} / \Sexpr{sprintf("%.4f",coef(hagellochFit)["c2"])} $=$ \Sexpr{format(coef(hagellochFit)["c1"]/coef(hagellochFit)["c2"])} times higher transmission between individuals in the 1st class than in the 2nd class. Furthermore, an infectious housemate adds \Sexpr{sprintf("%.4f",coef(hagellochFit)["household"])} / \Sexpr{sprintf("%.4f",coef(hagellochFit)["nothousehold"])} $=$ \Sexpr{format(coef(hagellochFit)["household"]/coef(hagellochFit)["nothousehold"])} times as much infection pressure as infectious children outside the household. The endemic background rate of infection in a population with no current measles cases is estimated to be $\exp(\hat{\beta}_0) = \exp(\Sexpr{format(coef(hagellochFit)["cox(logbaseline)"])}) = \Sexpr{format(exp(coef(hagellochFit)["cox(logbaseline)"]))}$. An associated Wald confidence interval (CI) based on the asymptotic normality of the maximum likelihood estimator (MLE) can be obtained by \code{exp}-transforming the \code{confint} for $\beta_0$: <>= exp(confint(hagellochFit, parm = "cox(logbaseline)")) @ Note that Wald confidence intervals for the epidemic parameters $\bm{\alpha}$ are to be treated carefully, because their construction does not take the restricted parameter space into account. For more adequate statistical inference, the behavior of the log-likelihood near the MLE can be investigated using the \code{profile}-method for \class{twinSIR} objects. For instance, to evaluate the normalized profile log-likelihood of $\alpha_{c1}$ and $\alpha_{c2}$ on an equidistant grid of 25 points within the corresponding 95\% Wald CIs, we do: <>= prof <- profile(hagellochFit, list(c(match("c1", names(coef(hagellochFit))), NA, NA, 25), c(match("c2", names(coef(hagellochFit))), NA, NA, 25))) @ The profiling result contains 95\% highest likelihood based CIs for the parameters, as well as the Wald CIs for comparison: <<>>= prof$ci.hl @ The entire functional form of the normalized profile log-likelihood on the requested grid as stored in \code{prof$lp} can be visualized by: <>= plot(prof) @ The above model summary also reports the one-sided AIC~\citep{hughes.king2003}, which can be used for model selection under positivity constraints on $\bm{\alpha}$ as described in \citet{hoehle2009}. The involved parameter penalty is determined by Monte Carlo simulation, which is why we did \code{set.seed} before the \code{summary} call. The algorithm is described in \citet[p.~79, Simulation 3]{Silvapulle.Sen2005} and involves quadratic programming using package \CRANpkg{quadprog} \citep{R:quadprog}. If there are less than three constrained parameters in a \code{twinSIR} model, the penalty is computed analytically. \subsection{Model diagnostics} <>= print(xtable( surveillance:::functionTable("twinSIR", functions=list(Display = c("checkResidualProcess"))), caption="Generic and \\textit{non-generic} functions for \\class{twinSIR}. There are no specific \\code{coef} or \\code{confint} methods, since the respective default methods from package \\pkg{stats} apply outright.", label="tab:methods:twinSIR"), include.rownames = FALSE) @ Table~\ref{tab:methods:twinSIR} lists all methods for the \class{twinSIR} class. For example, to investigate how the conditional intensity function decomposes into endemic and epidemic components over time, we produce Figure~\ref{fig:hagellochFit_plot1} by: <>= par(mar = c(5, 5, 1, 1)) plot(hagellochFit, which = "epidemic proportion", xlab = "time [days]") checkResidualProcess(hagellochFit, plot = 1) @ Note that the last infection was necessarily caused by the endemic component since there were no more infectious children in the observed population which could have triggered the new case. We can also inspect temporal Cox-Snell-like \code{residuals} of the fitted point process using the function \code{checkResidualProcess} as for the spatio-temporal point process models in \code{vignette("twinstim")}. The resulting Figure~\ref{fig:hagellochFit_plot2} reveals some deficiencies of the model in describing the waiting times between events, which might be related to the assumption of fixed infection periods. <>= knots <- c(100, 200) fstep <- list( B1 = function(D) D > 0 & D < knots[1], B2 = function(D) D >= knots[1] & D < knots[2], B3 = function(D) D >= knots[2]) @ To illustrate AIC-based model selection, we may consider a more flexible model for local spread using a step function for the distance kernel $f(u)$ in Equation \ref{eqn:twinSIR:f}. An updated model with <>= .allknots <- c(0, knots, "\\infty") cat(paste0("$B_{", seq_along(fstep), "} = ", "I_{", ifelse(seq_along(fstep)==1,"(","["), .allknots[-length(.allknots)], ";", .allknots[-1], ")}(u)$", collapse = ", ")) @ can be fitted as follows: <>= <> hagellochFit_fstep <- twinSIR( ~household + c1 + c2 + B1 + B2 + B3, data = update(hagelloch, f = fstep)) @ <>= set.seed(1) AIC(hagellochFit, hagellochFit_fstep) @ Hence the simpler model with just a \code{nothousehold} component instead of the more flexible distance-based step function is preferred. \section{Simulation} \label{sec:twinSIR:simulation} Simulation from fitted \code{twinSIR} models is described in detail in~\citet[Section~4]{hoehle2009}. The implementation is made available by an appropriate \code{simulate}-method for class \class{twinSIR}. We skip the illustration here and refer to \code{help("simulate.twinSIR")}. %-------------- % BIBLIOGRAPHY %-------------- <>= ## create automatic references for R packages Rbib <- sapply(c("quadprog"), function (pkg) { bib <- citation(pkg, auto = TRUE) bib$key <- paste("R", pkg, sep=":") bib }, simplify=FALSE, USE.NAMES=TRUE) ## "quadprog" needs manual author formatting Rbib$quadprog$author <- c("Berwin A. Turlach", "Andreas Weingessel") ## write to bibfile .Rbibfile <- file("twinSIR-R.bib", "w", encoding = "latin1") cat(unlist(lapply(Rbib, toBibtex), use.names = FALSE), file = .Rbibfile, sep = "\n") close(.Rbibfile) @ \bibliography{references,twinSIR-R} <>= save(prof, file = "twinSIR-cache.RData") @ \end{document} surveillance/inst/doc/hhh4_spacetime.R0000644000175100001440000003342413231650425017525 0ustar hornikusers## ----include = FALSE--------------------------------------------------------------- ## load the "cool" package library("surveillance") ## Compute everything or fetch cached results? message("Doing computations: ", COMPUTE <- !file.exists("hhh4_spacetime-cache.RData")) if (!COMPUTE) load("hhh4_spacetime-cache.RData", verbose = TRUE) ## ----measlesWeserEms_components, echo=FALSE---------------------------------------- ## extract components from measlesWeserEms to reconstruct data("measlesWeserEms") counts <- observed(measlesWeserEms) map <- measlesWeserEms@map populationFrac <- measlesWeserEms@populationFrac ## ----measlesWeserEms_neighbourhood------------------------------------------------- weserems_adjmat <- poly2adjmat(map) weserems_nbOrder <- nbOrder(weserems_adjmat, maxlag = Inf) ## ----measlesWeserEms_construct----------------------------------------------------- measlesWeserEms <- sts(counts, start = c(2001, 1), frequency = 52, population = populationFrac, neighbourhood = weserems_nbOrder, map = map) ## ----measlesWeserEms, fig.cap="Measles infections in the Weser-Ems region, 2001--2002.", fig.subcap=c("Time series of weekly counts.","Disease incidence (per 100\\,000 inhabitants)."), fig.width=5, fig.height=5, out.width="0.5\\linewidth", fig.pos="htb", echo=-1---- par(mar = c(5,5,1,1)) plot(measlesWeserEms, type = observed ~ time) plot(measlesWeserEms, type = observed ~ unit, population = measlesWeserEms@map$POPULATION / 100000, labels = list(font = 2), colorkey = list(space = "right"), sp.layout = layout.scalebar(measlesWeserEms@map, corner = c(0.05, 0.05), scale = 50, labels = c("0", "50 km"), height = 0.03)) ## ----measlesWeserEms15, fig.cap=paste("Count time series of the", sum(colSums(observed(measlesWeserEms))>0), "affected districts."), out.width="\\linewidth", fig.width=10, fig.height=6, fig.pos="!h", eval=-1---- plot(measlesWeserEms, units = which(colSums(observed(measlesWeserEms)) > 0)) library("ggplot2") autoplot(measlesWeserEms, units = which(colSums(observed(measlesWeserEms)) > 0)) ## ----measlesWeserEms_animation, eval=FALSE----------------------------------------- # animation::saveHTML( # animate(measlesWeserEms, tps = 1:52, total.args = list()), # title = "Evolution of the measles epidemic in the Weser-Ems region, 2001", # ani.width = 500, ani.height = 600) ## ----echo=FALSE, eval=FALSE-------------------------------------------------------- # ## to perform the following analysis using biweekly aggregated measles counts: # measlesWeserEms <- aggregate(measlesWeserEms, by = "time", nfreq = 26) ## ----measlesModel_basic------------------------------------------------------------ measlesModel_basic <- list( end = list(f = addSeason2formula(~1 + t, period = measlesWeserEms@freq), offset = population(measlesWeserEms)), ar = list(f = ~1), ne = list(f = ~1, weights = neighbourhood(measlesWeserEms) == 1), family = "NegBin1") ## ----measlesFit_basic-------------------------------------------------------------- measlesFit_basic <- hhh4(stsObj = measlesWeserEms, control = measlesModel_basic) ## ----measlesFit_basic_summary------------------------------------------------------ summary(measlesFit_basic, idx2Exp = TRUE, amplitudeShift = TRUE, maxEV = TRUE) ## ----measlesFit_basic_endseason, fig.width=6, fig.height=2.5, out.width=".5\\linewidth", fig.cap="Estimated multiplicative effect of seasonality on the endemic mean.", fig.pos="ht"---- plot(measlesFit_basic, type = "season", components = "end", main = "") ## ----measlesFitted_basic, fig.cap="Fitted components in the initial model \\code{measlesFit\\_basic} for the six districts with more than 20 cases. Dots are only drawn for positive weekly counts.", out.width="\\linewidth", fig.pos="htb"---- districts2plot <- which(colSums(observed(measlesWeserEms)) > 20) plot(measlesFit_basic, type = "fitted", units = districts2plot, hide0s = TRUE) ## ---------------------------------------------------------------------------------- confint(measlesFit_basic, parm = "overdisp") ## ----measlesFit_basic_Poisson------------------------------------------------------ AIC(measlesFit_basic, update(measlesFit_basic, family = "Poisson")) ## ----Sprop------------------------------------------------------------------------- Sprop <- matrix(1 - measlesWeserEms@map@data$vacc1.2004, nrow = nrow(measlesWeserEms), ncol = ncol(measlesWeserEms), byrow = TRUE) summary(Sprop[1, ]) ## ----SmodelGrid-------------------------------------------------------------------- Soptions <- c("unchanged", "Soffset", "Scovar") SmodelGrid <- expand.grid(end = Soptions, ar = Soptions) row.names(SmodelGrid) <- do.call("paste", c(SmodelGrid, list(sep = "|"))) ## ----measlesFits_vacc, eval=COMPUTE------------------------------------------------ # measlesFits_vacc <- apply(X = SmodelGrid, MARGIN = 1, FUN = function (options) { # updatecomp <- function (comp, option) switch(option, "unchanged" = list(), # "Soffset" = list(offset = comp$offset * Sprop), # "Scovar" = list(f = update(comp$f, ~. + log(Sprop)))) # update(measlesFit_basic, # end = updatecomp(measlesFit_basic$control$end, options[1]), # ar = updatecomp(measlesFit_basic$control$ar, options[2]), # data = list(Sprop = Sprop)) # }) ## ----aics_vacc, eval=COMPUTE------------------------------------------------------- # aics_vacc <- do.call(AIC, lapply(names(measlesFits_vacc), as.name), # envir = as.environment(measlesFits_vacc)) ## ---------------------------------------------------------------------------------- aics_vacc[order(aics_vacc[, "AIC"]), ] ## ----measlesFit_vacc--------------------------------------------------------------- measlesFit_vacc <- update(measlesFit_basic, end = list(f = update(formula(measlesFit_basic)$end, ~. + log(Sprop))), data = list(Sprop = Sprop)) coef(measlesFit_vacc, se = TRUE)["end.log(Sprop)", ] ## ---------------------------------------------------------------------------------- 2^cbind("Estimate" = coef(measlesFit_vacc), confint(measlesFit_vacc))["end.log(Sprop)",] ## ----measlesFit_nepop-------------------------------------------------------------- measlesFit_nepop <- update(measlesFit_vacc, ne = list(f = ~log(pop)), data = list(pop = population(measlesWeserEms))) ## ---------------------------------------------------------------------------------- cbind("Estimate" = coef(measlesFit_nepop), confint(measlesFit_nepop))["ne.log(pop)",] ## ----measlesFit_powerlaw----------------------------------------------------------- measlesFit_powerlaw <- update(measlesFit_nepop, ne = list(weights = W_powerlaw(maxlag = 5))) ## ---------------------------------------------------------------------------------- cbind("Estimate" = coef(measlesFit_powerlaw), confint(measlesFit_powerlaw))["neweights.d",] ## ----measlesFit_np----------------------------------------------------------------- measlesFit_np2 <- update(measlesFit_nepop, ne = list(weights = W_np(maxlag = 2))) ## ----measlesFit_neweights, fig.width=5, fig.height=3.5, fig.cap="Estimated weights as a function of adjacency order.", out.width="0.47\\linewidth", fig.subcap=c("Normalized power-law weights.", "Non-normalized weights with 95\\% CIs."), echo=c(1,4)---- library("lattice") trellis.par.set("reference.line", list(lwd=3, col="gray")) trellis.par.set("fontsize", list(text=14)) plot(measlesFit_powerlaw, type = "neweights", plotter = stripplot, panel = function (...) {panel.stripplot(...); panel.average(...)}, jitter.data = TRUE, xlab = expression(o[ji]), ylab = expression(w[ji])) ## non-normalized weights (power law and unconstrained second-order weight) local({ colPL <- "#0080ff" ogrid <- 1:5 par(mar=c(3.6,4,2.2,2), mgp=c(2.1,0.8,0)) plot(ogrid, ogrid^-coef(measlesFit_powerlaw)["neweights.d"], col=colPL, xlab="Adjacency order", ylab="Non-normalized weight", type="b", lwd=2) matlines(t(sapply(ogrid, function (x) x^-confint(measlesFit_powerlaw, parm="neweights.d"))), type="l", lty=2, col=colPL) w2 <- exp(c(coef(measlesFit_np2)["neweights.d"], confint(measlesFit_np2, parm="neweights.d"))) lines(ogrid, c(1,w2[1],0,0,0), type="b", pch=19, lwd=2) arrows(x0=2, y0=w2[2], y1=w2[3], length=0.1, angle=90, code=3, lty=2) legend("topright", col=c(colPL, 1), pch=c(1,19), lwd=2, bty="n", inset=0.1, y.intersp=1.5, legend=c("Power-law model", "Second-order model")) }) ## ---------------------------------------------------------------------------------- AIC(measlesFit_nepop, measlesFit_powerlaw, measlesFit_np2) ## ----measlesFit_ri, results="hide"------------------------------------------------- measlesFit_ri <- update(measlesFit_powerlaw, end = list(f = update(formula(measlesFit_powerlaw)$end, ~. + ri() - 1)), ar = list(f = update(formula(measlesFit_powerlaw)$ar, ~. + ri() - 1)), ne = list(f = update(formula(measlesFit_powerlaw)$ne, ~. + ri() - 1))) ## ----measlesFit_ri_summary_echo, eval=FALSE---------------------------------------- # summary(measlesFit_ri, amplitudeShift = TRUE, maxEV = TRUE) ## ---------------------------------------------------------------------------------- head(ranef(measlesFit_ri, tomatrix = TRUE), n = 3) ## ----measlesFit_ri_map, out.width="0.31\\linewidth", fig.width=3.5, fig.height=3.7, fig.pos="htb", fig.cap="Maps of the estimated random intercepts.", fig.subcap=c("Autoregressive $\\alpha_i^{(\\lambda)}$", "Spatio-temporal $\\alpha_i^{(\\phi)}$", "Endemic $\\alpha_i^{(\\nu)}$"), echo=-1---- stopifnot(ranef(measlesFit_ri) > -1.6, ranef(measlesFit_ri) < 1.6) for (comp in c("ar", "ne", "end")) { print(plot(measlesFit_ri, type = "ri", component = comp, col.regions = cm.colors(14), labels = list(cex = 0.6), at = seq(-1.6, 1.6, length.out = 15))) } ## ----measlesFitted_ri, out.width="0.93\\linewidth", fig.pos="htb", fig.cap="Fitted components in the random effects model \\code{measlesFit\\_ri} for the six districts with more than 20 cases. Compare to Figure~\\ref{fig:measlesFitted_basic}."---- plot(measlesFit_ri, type = "fitted", units = districts2plot, hide0s = TRUE) ## ----measlesFitted_maps, fig.cap="Maps of the fitted component proportions averaged over all weeks.", fig.pos="hbt", fig.width=10, fig.height=3.7, out.width="0.93\\linewidth"---- plot(measlesFit_ri, type = "maps", which = c("epi.own", "epi.neighbours", "endemic"), prop = TRUE, labels = list(cex = 0.6)) ## ----measlesPreds1----------------------------------------------------------------- tp <- c(65, 77) models2compare <- paste0("measlesFit_", c("basic", "powerlaw", "ri")) measlesPreds1 <- lapply(mget(models2compare), oneStepAhead, tp = tp, type = "final") ## ----echo=FALSE-------------------------------------------------------------------- stopifnot(all.equal(measlesPreds1$measlesFit_powerlaw$pred, fitted(measlesFit_powerlaw)[tp[1]:tp[2],], check.attributes = FALSE)) ## ----echo=FALSE-------------------------------------------------------------------- stopifnot(all.equal( measlesFit_powerlaw$loglikelihood, -sum(scores(oneStepAhead(measlesFit_powerlaw, tp = 1, type = "final"), which = "logs", individual = TRUE)))) ## ----measlesScores1---------------------------------------------------------------- SCORES <- c("logs", "rps", "dss", "ses") measlesScores1 <- lapply(measlesPreds1, scores, which = SCORES, individual = TRUE) t(sapply(measlesScores1, colMeans, dims = 2)) ## ----measlesPreds2, eval=COMPUTE--------------------------------------------------- # measlesPreds2 <- lapply(mget(models2compare), oneStepAhead, # tp = tp, type = "rolling", which.start = "final") ## ----measlesPreds2_plot, fig.cap = "Fan charts of rolling one-week-ahead forecasts during the second quarter of 2002, as produced by the random effects model \\code{measlesFit\\_ri}, for the six most affected districts.", out.width="\\linewidth", echo=-1---- par(mfrow = sort(n2mfrow(length(districts2plot))), mar = c(4.5,4.5,2,1)) for (unit in names(districts2plot)) plot(measlesPreds2[["measlesFit_ri"]], unit = unit, main = unit, key.args = if (unit == tail(names(districts2plot),1)) list()) ## ----measlesScores2---------------------------------------------------------------- measlesScores2 <- lapply(measlesPreds2, scores, which = SCORES, individual = TRUE) t(sapply(measlesScores2, colMeans, dims = 2)) ## ----measlesScores_test------------------------------------------------------------ set.seed(321) sapply(SCORES, function (score) permutationTest( measlesScores2$measlesFit_ri[, , score], measlesScores2$measlesFit_basic[, , score], nPermutation = 999)) ## ----measlesPreds2_calibrationTest_echo, eval=FALSE-------------------------------- # calibrationTest(measlesPreds2[["measlesFit_ri"]], which = "rps") ## ----measlesPreds2_pit, fig.width=8, fig.height=3, out.width="0.93\\linewidth", fig.cap="PIT histograms of competing models to check calibration of the one-week-ahead predictions during the second quarter of 2002.", echo=-1, fig.pos="hbt"---- par(mfrow = sort(n2mfrow(length(measlesPreds2))), mar = c(4.5,4.5,2,1)) for (m in models2compare) pit(measlesPreds2[[m]], plot = list(ylim = c(0, 1.25), main = m)) ## ----measlesFit_ri_simulate-------------------------------------------------------- (y.start <- observed(measlesWeserEms)[52, ]) measlesSim <- simulate(measlesFit_ri, nsim = 100, seed = 1, subset = 53:104, y.start = y.start) ## ---------------------------------------------------------------------------------- summary(colSums(measlesSim, dims = 2)) ## ----measlesSim_plot_time, fig.cap="Simulation-based long-term forecast starting from the last week in 2001 (left-hand dot). The plot shows the weekly counts aggregated over all districts. The fan chart represents the 1\\% to 99\\% quantiles of the simulations in each week; their mean is displayed as a white line. The circles correspond to the observed counts.", fig.pos="htb"---- plot(measlesSim, "fan", means.args = list(), key.args = list()) surveillance/inst/doc/hhh4.pdf0000644000175100001440000066542313231650471016056 0ustar hornikusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 4857 /Filter /FlateDecode /N 84 /First 697 >> stream xœÅ\ksÓ8Ûþþþ }ƒ,Ë:Ù;Ïì  ,º-”ÃÜÆmý&ÝÄá°¿þ½nÉg'©[³B,[–nÝçƒÔˆ…L2c™b* ™fÚ(fXKfYi3F’%LÈPãš &&‘LDLÄŠ2‘$– Å"a©‹¢ˆ:±Èjt²LFýb&½œ0ip3Âì±Ä¯Àô1½Ä”Žb†U‚q"Å´”¸O€I´ ÓI‚_ËL”D ]R‚E 3÷ÑÅX‰Á3qŒÉ"fCi˜ÄrDŒ_Å,‡Vaxd1ÖZôY,° +LªB paŠ$ *b‰NÐFb¬)BOh 7Ó+BNHë6„¦wB w°þHjË4a~¦…C+ É(Œ°Z\HôÄM_ôÁÈÒ`4‘¥M€ÂsH0²’x—0«4¦6YÙ$ÄÈZ ƒ‘µÂëFÒ…Ñ@. uÆÈ&J F6‘µÄÂ( Ù`d£-8# 2QM`,F¶Â&ÌYˆŽnÂJC(Å…&\jº ÎÙš1²µ@,lŒµXâ†ÀÇ9@nŒ‘ãÔˆ‰«$Þ…À^@ V$bB<ð)bkÄÿýç?ŒdE:I‹”²!;büõª˜æ³lÉÊöaz†ò7߯3Æ¡ÿt~Á~ÿÝ ñpU\ÎìþA~v™fÓ”¦«)Kgvœ¦Ë"Ogì ûž-~Á«‹,-òùìqZdìþãߢ E…9Â_Cq/ ïUýhЗé›ì=ûš—ì“/Ù9»NÏ>*t{‘}ÿ:_L–ì>óÉMÃ.æ“ÕY†qŸ¾dO/çËby¶È¯ –"F‡ãÕé³³‚Ý?ªfa÷–«Å—,ŸNÓÙYFƒ¼É‹)f¹wyy©îýÆÎX6›dWùÙƒì:wìj>ɦ@ã;_¤W`üÌαœ|vŽÑóùjÉ&ù2K—;›¯fÅò— ™¨I²Î_äX×_P'„ùØý/ÂòW¨ò7q¿þé²—¥ì«=!cß)‚šq·cß+‚p¿Ò–CúßëSErÏÁg³yA°Auù±ª1K°â’§Àmåo R ‹HÂò·œ4)ÇKÊñ’r¼¤/)ÇKÊñ’r¼¤\[VP?šÏŠ x…Ö+ùø ›äéÞüÀ¦^„š/V"4Ÿh… ¼P1úQ¶œ¯gX3-øÉ·âéqA¼…~*¾ €Ì°’Åüì8+06?|¼¤eß úûïmüuI¬1F¾X̯…¿„¤ìºVÙóq¶,jàï?|yln©“@‚H³ÕtJп¢ ¡A*™uk)W^òëóYḟÄï—)+6ðü*¥_žôä‘6é'‘SÒ'ý\%Jú”ä)©#JêˆP¬¡’Ý%•DhZT¡½•jÌh®ö«×~õÚC õš¥Ä»\ЉZ+1òGbW 9êHmå¸F씸ªM\}@mÍWéNÇáÇß¼`Åb•U½›ÙªW`0Ý„üÍ«Ç'oö}tpÌŸÌÎæ²¶qiÖG—é‚à`=œ¡‡¦Ñ¸¾”_ƒ]š[T øÙÞå“âÒéX:¢!}c§oþS¨ÃªÙÝ‘äY;{è{HŒVõûʱÚc[M~f yƒÛ}a`ç t9´ôL:6 žîB\¸7¨í<8¡nuî}zBŽvù1”cèf9%0xAÁ1­~)Ì©î»ÅQ;òÀÚ Ëçt_Â0ö„ê@¿ôuc‡í?Õ,¿<ˆä—^?Ëò‹Ëª Ú7ÞçùÄó'|Ÿ?åÏøsþ‚¿äüÍù?æoø[~Âßñ÷ü#OyzOs –§?ågül>ÏðÿÕUÊ'|’g‹l™/yÆÝtþ_º¼äÙ·³izÅÏù9ý˹û÷%ãçS~!âü’ɽÌf<çÿåŸù”_ñŸÁÝæs>Çÿ×üš¤ošþjáÆ4ù|Âÿæ¯æE69ºUÃ÷q-¹àK¾$?ÔA½Ì¾`Âeþ/§eÁ‹ËE–ñâ뜯øþ•ãßù?üŸl1ÿÅ).‡Ñ¤$ùþ4½ ïß Âž×ѹ§°è‰Cõ'ÿ|?Ÿfàâ¶Ézï·/­Ï=äggðJÐ<È—KÈ®“1G[~\dW'{µ¥°%ÀmðáÃÁ³go1þñqG@pgg˼¹Ñ(xZÅ÷õ¥ 4vŸ% ºÅ’¾Y³äQ Õ5žÖ0Ëm\{™³îí–eË=,ŒD3|î‘X~{òúäýÆßd8‚ýa£°¯}öqXV.ž e@9ÓÒ¯Õo_¹ ŸS/P-I£n†”Ò]Jé6¥RÈõÂ:‡Œ’|$;mq¡`¥$£Œz4tcJ¬$ºOFÕ'cÍc…%RÈÈß—ËRp]4=8Ú?ùpŒÉÞ¼MT©†D&ÕŒ5©.j­u;e©Ê;ÕõMßö»íßæz]ïu3„½^ͽpˈ›á»‚í+£«µÊåá—Š¢.ƒ-Þ+-_ÛÞ½ãÈÎ-Ïò¼È§“l•ƒqû{•NÉœ9#6°`Ÿk‘¸éòÖi%ZÍàO/Ïæ‹l›QBdZI™ìY%ÿ”rgk´¥î‹Yóûr–~k¡¶+utÇK<¦›„NEC¡ûøöðÙÓG4õóÑB§ôPèÔ@èÄH¡“Úv¡ý‘¡é´­’”F8G846®úÅ “ÆIûí<€M R™Ð}«kš³jWóGäc ëF£ûÚ¹žÊ§¹A}Jôú·ŒS¢*Љ…Ûv ]³ç>;ø„ãÑHñÿy—ß×ðé÷{†zƒ€ÃäÃiŠ =me,<ƒö¸d´×t7žM¯qýwõ‰#qË7ª|ðÀݰ°Ð7kwã?]¤g™ ØÜ•ئÙr鿫մȯ§ßù2¿ÊA qÉAH¸{ši4cÏ¡(©Ö871Å6#ŠÜÈ<ÖûÞ”3úá×saë¶b‚ ûl¸6›¿å6JaC‘¢'4.ó\-*ÇPäT!rUqmÝ=ëyE»øËhábÿæ£79¼ÝO„µFn½ÄG¿û”û£Ôº· T‚Ž7ÏD¾–¢¯«˜4™;Iu.1ôò•IÊ:Eè"%m#¬úöIÿçÎNy:½¾¤Øî4+Rà¹G6E+ã)µ.h¿I¶pyùizu:IÁþ|¶âó«ì"­²×—9}¿Æï2§DF~·«t†ËZŒ Ì=µ`—a ݆}1¹iÇJ ìíH)9Üÿóäù³Î„ñ!‰+HU½FHéA16=h"ÏAÛ2 ·ùD‰¾åF™ûhÕœ¡’Ã>ŠŠ\®’Û ;u߬¹ø¸ÎǵX|‰€¯à©MŒ¦üS2ï4vÑZ5zÏhÛé>šÏF×nNŽ?>ûãæ;š_¥³µŠxk"rÛ /6šÛàƒ¹o׿÷ë®ý{ޝ\ÿÝy ~ÜÆøvd«Š±ÓՈȚ²¨/ &·Ô’®ºá‹˜Îè_¸äBZX›Ò®–*Œí$Ä–zâšÄfU8¨&næ˜Ö‚Û‹%o÷^þI¶—?V.QÃ,ÙmÊ%ÃòÀÝ ýÿïòöú7oo8û—Lî²ò[Wäæ­Ï7n+è•[@x¸ËÏ~ƒÁiºp.øç¬¨Ýq\{qì>˜OÁìÍÞƒ5EšÊ›l7 çÞï9X]f x/ãÊ7N䩆ƒ2,ÝbΆ­·-è$I/’ýãõõo;¨ij­ˆÑU'ŒwH¡?~¶ÿþáÇ_ŸeÓ/Y‘Ÿ¥m/©*?5ZaѪADÝõìŽßQ[Ûx-‹1â;´G¶ãµçkžØ5^šïÙô¯g ›kzZ_—cЯ¯æ·¡¢]R~çS\Rͺ6V¢cû\³–ÝG×WSl¿I-këóðWù ÒÑßÇSÖ=IPˆË¦Y¹-§ÞŒs{Ífœ5"B$Öùv¡fápÒÊzò1ØX0äÏ­öÒÆµ@ˆM› 2ðòí»ý£×ÍöæÓI[*s› T»3w —Ê…¨mfóLÕgz9ØØçY¬b´»9y4ížkæ¤yü~ºF8é*Žwß? Sçßòwl{·fzÚ ð´Sêì×—ªÊ~Åמ¥›²}ɹŽc7ªu‘láY:ž¢Öñì J¿ŸÆ2n´©ìô“ª´WÒ&f‘VA$hÿb(û³SÝ›`Òq$5H”ÂEtöï‚D°Ð³0 "•(Ð&UEA¨ì¿T"ƒÐè(ê[³  ¶T •‰mÀû± è¥ëÜUà;‡¥¿6¦ÝØöÑjŸ8ö§ºý_¨Ž|ÿoxâÿºY%zendstream endobj 86 0 obj << /Subtype /XML /Type /Metadata /Length 1711 >> stream GPL Ghostscript 9.18 2018-01-23T16:14:00+01:00 2018-01-23T16:14:00+01:00 LaTeX with hyperref package 'hhh4': An endemic-epidemic modelling framework for infectious disease countsMichaela Paul and Sebastian MeyerR package 'surveillance' endstream endobj 87 0 obj << /Type /ObjStm /Length 3260 /Filter /FlateDecode /N 84 /First 766 >> stream xœÅ[ksÛ6ý¾¿Ûé ÞÀN§3±§Ù‰“ÔIÚ´;ù Û´­"¹’œ&ýõ{.R%Ù”-Û“È|.îãÜ *V°™2‹3&°(™×–EÅb4,j&Ö §Ò;\[¦d££g‹ž)kÑ<0åé>ú ÓE!q"™––NÓZ8ÑL»`õ££¢ËLáN3*(œxfð†|ŒÕ‚©Ž2U:~db2ž—côJªL÷Äay:ìM¾bzÊFË!ï`$‡ñá‰7ƒ)`qTÎ&WÓ“rÆᳯóçoçƒy™¤`€$ñtõf:9y[ÎÑ·xóô€‰wå×9:ýùgœ~»,©÷ó—ùºŒßeüNå£ÎG³f>z§óq®=ço1Ÿ½Á¬L‹ÏþüíÕÓöß½ƒCÏÆ'“Óáøœ‰ß‡ã'ãÙpqã`8Í÷/S†5Kƒ?-g'Óáå|2%ÿ—P¼ä6¤«âíÕñÀ+.4„|C…²Q ˆÅÐ]Å@Pè§ä ï²ÜZÆzáœëO÷ºº·h[ý ®¾F”bæiIŒvù.ܼl5¿ª…Ϧ0óÈ[ÓÐt]NÇOŸÚäï0¨×ÌÀ‡¸Ôz‡Oê‘Zv5QwIWA4ZºúD<ÏÅ q(ÞŠ8'âd2šŒñ÷óç8¥H‰r|:˜]ˆ3q6üRг‘8‡†ÅH|c1“q).Å:?+¿”c1~s1ÿ{"®ÄWñMü#þ)§“¶9(Кl¦k *ÑH…°wÌÁvÍ¡£“]sX2EeOo²¬öŠì¿Ø;|q˜Œ/öt‘Æ­Z‚]±Ù×EÂCÐg­r-ÝßÔj+7ÙŒVŸ-_K‹5mÛx­ZUOžÖr¬É“¶”Õ´•u sÒѤ¡¤›gI ?A /Åe9NN+‘®Î¡{_Ä·%¥ƒµe¥ÓzIëàÓ·ô”Fíh]+ÌVZ·¬}0MgYéNöÁáF I­5p2=-§™-ÈÄ)Òyži†îeö°þønŠS^a]ÁÜýøj4¢–GåIj"—”{D͈ h$/*èÂqçÒ:¾Ž?ÕPû¹3(/9î‚Ûã G J0ñqAiyŸÛ€òª:ÞT6 Âø57EÊ9r´.(DŽpŠ\‚ÛH žæŽ0ê‚{mv‰I-P.€¦Z§¹ZÕ)e—”«@ Df×r;S…âÒÇ~¨ž$Šû–‰÷G/š'óád\Ýúîb>¿œý[ˆÙÕôË ,˜O? ùiù}¢·›_¶•_k—ÒÔÀ)Ð*ˆÏPâú­|ß%mbÂÁû{¯÷à ŽB›¹¼œ×r"Êå»lÙ÷ ñ®î½qóZÞ¹^ãP‰Ä«|¥b Âzw6t½Êe–xwuÙ„‡F‰“€‘\µ}?‘ƒ†€S­¤C:ð}) >;Î?gU ç¿´à} ‡ºÙ݃)¬(×»ÿ=û•Øþ‘ëË7â-ëjÔyK¹³Ýr”vKé$ß’{#ug-,bYèTˆ²éùŽÈCWäKbè)ráõϳ9¢ZN•^Õw¨êf²EQÁ>õ•I·êÊPe)ŸSÁ$Ë÷ˆ 1±>WpÐõ¹cªnˆu?‘J}Ÿ%§.ÛÐZ%„ÜfG%)²N•À»”^þzðæùþ¯†Ÿ¯f‡“ñËÊó«×Ç£aOåÕfUyëÔbË} ®h»ºÚÕ§îoµçõg›zY×âú¿ñYàYµýÐâën9¹´Þ/'—{b æø)æK$™¯ÄkñF!ÙüMü.þ F?;çÃÑi‰Ó98üì(þñtpò©œÊ³y}>MyèÆüô¯«Á¨IO©C êÅ·Ë d£Cñ?$ U®:"0Ô ë%™H$UCäDârt5‰¿®&óòôxÔInëc~1-Ëœè^Á=f'“i‰¼ãï y/¤ìcì¤ ²úÚƒš˜—}bín>ñ:ck»È‰w49IZ²%—éÚi±¼9)Q×9P¸S;:ÚN m‡ì& 퉬q™›¼s®Šn1ƒ^¹'\H…¨f®-ÑWEL„G„ü~¼´)ûæežÀRy·®}îÊ7/•wå­Ê»;¦¶ ù..„$§`µ,oÔE‹Ó\fîK‡äÊ´•Ž\­&\Ò{^оšsyNjFóE^à mu(o…¨bívËC©¶)}:Ô[˜ÊXôB–.r¶³•,)ÊÐ$ªù@œT®/ÓZYXVÅXv»Ðh ãk{8@´Irç…Ôu=·uþ±EFt—IÃÙ¾›¼ dªfzké ‰gaooi°ášd-7½ëkéxô«~"*Î`‘áǨDÓÙÈIý·4•÷UÞSTyOQÕ†”÷u‘yONç=9¶Îýè¼G©s™„KûËDœv‡W ÔîÔ@Í’š5Ð ‹g1iƒ£Y<ˆI{Û,Þ­#SŽH²ë‚uà‘ʳšª‚p½Ð0…ôÌÁ›˜*…|P |ƒI)h}‹I’ÓûGrø |Ç;ͬ„ ªû.£n¾€Åk0Ãi‡ç>0­ª¹„>StFÑ;9&xn=Á§ :[\{õ8 ”²œvòP†4,ìÔJm·.I*ã·ÐWXîAÚ».Á!f3SÀ!øÐ8#²}Ͻk•ÒÞ¦r´˜,Ês`§ƒã¾wwǘŒF\c²&Ž„ÉKЭH0ÿ€øGÐ ¨,½¶¤äåv«å}1Ic8%µvPr™¶£4â*aÔ®çVÁ®1ErI¾ÁD›+†x˜úSeX£)Q!pC[ŽŽ´û„)ÈžùÖÎAA¹ÉêPÑñÜv :ž˜úYÃà}] lí£,Wï±¢ðLô— }oüߢ’¨»•Ä{÷×°wÄøØû5ÕdƒXèš Çlh.suiYz•^L¬¯àžk:¹>ýÅ9BF=fïêòöû“y+Іë¯ËðlÇ‚£¤!¼Ò¡æaÇjÛ?^ ¢zµe ”‚^ºzLP› ºåÁ“”}(Pë=!²‚€ÌÉzØ7ˆ6Ì<½©ñ½³ÿÎYC3$bjÒÞ ¢­ªQé’.@ç ý¸˜À â¡Á„V–¤ö0+·Áìòn;QÁC‚Oóô:"bþ#ñ4¯el0Á9½l¿¦=þ5µðMλµM¸ÞyßYq¼âTÝXyË‹“WHO’GŠ~ÀݺZcsuÅVø—«'9ŠìêîÖVqz#þ!Ë›ëe™’"݈Ò(Ìv’Ürceƒ2ÝViúæd ¹ i_¥ÐT-’)c}ö¡ÚÜɘ‚JuûGÅÔd`:Ë«ÎÀ {¤ÂUŽñTT&½gVhÉ´"Ý},LTê ß4eLžH£ÝSó.ŸƒË³§È Žp;‹|BÕ¿úXy Eûã í¿Ëßl´×óû¥é'XÎ6WT¾jvú„—kóHñš÷5žÏÎJ¸gòÇiÅYZÇJ^M»ÜÙrkÚ/¡íšÍo3vú%AõŽz_)õKiçÚþuXÔòendstream endobj 172 0 obj << /Type /ObjStm /Length 3084 /Filter /FlateDecode /N 83 /First 759 >> stream xœÅZÙrÛF}Ÿ¯èǤRiô¾L¥Rc9Öĉå‘%{’IÊÙ¨P¤Š„¼äëçÜÆB,”L:’i™4–¾§ï=}—nH¯™`Ò&-~Þ2å¨í˜ötôÌc`ÎI#ót=¢Âפ8AC)º£™Ô¯tgœÃ‰eÒI´‚£ŽqŸzŒ’^L ’"ÃÛè' ¦´utŸ)+ðÄ(gñVÔLÑ0-ÞŠ–i#NWzÝ3­#½˜¶†^L;zU¦ƒAgè 9B1£-äÍŒStË0+=l™ÕÀ tÌZEW<³^Ó3P…TГˆÌi@Pèˉg¤dÎ^ŒÍG·4ó2Ý2Ì+‡QJ‹(@IǼöô°gÞJº˜wИBÃ’…úèðŒ’,H ”AY¨ ˜‚@¥ }(` NC¨r,xÒŸò°’¡·‹ÒQ‡‘EMx´`ÑPÏZ²è¨Œ-z Z³1\¥¡>!¬%‹Ð™§÷ [!TiQ(¤†â…UÔl!œÃ]H/–ÅD¤aAùÿð†9¥™H™ iih2¤'2Àz2`B ÁD:#k j¼#â ï)›x¨éš¦3O±Ò0 ‘êß}DzÇË›EžU,û¡XWìw0ÎXöëÿ~#ù< g' ×@²¸™ÏÙk–—+ϳ‚]äUþ5ûþû„ìv<&Bux‘v R¦9½ôòmÁÖÕ:É`³y¾^ï I¹À=æM+iÜwP§ˆvHË«‚ò«ëy=$¶.ª‰´8•fEäÞëñ¸ü­ªñdyQÌÙåruu3Ï«r¹è„6fÖxm*ßi®0˜±CßÎpv=;ÃãÝÎ Àß,f„‰ÍrtŸ/.Øl¹¨VË9©§*o¦Ùbk5×pg#Å‘í‡${µ(ßå«2¯ vE*šCÚDØ6ƒ(Ã-¦ýPX«±°fÔa úèÉ‹%ù{rƒôyÁúšc Š\`}¬E¿&ƒ.*H_Ã÷7–<).ÊühùýÑ-Çà9†¶ánÃÕ³b½¼YÍŠ5#$O>Tÿ>¯%yÒôÀ1$wÚŒm9;/HOÙéÇiâ5‚Ó×õþ¦i”âãD¥^.‚™Î¨¡ã×7óêÓ”r›5—b"nÈÓ!Y ÙÙüfÝŸ=GËÕE±j+“úSƒ¾Þ*? nágµt<ú§:+féIc€Ê"ðN!GºÈ) ã¸@èÄ“ç7TI±ÏÊÅŸ­’a ”·þ¤Ã=w8IO09帽F˜´Üa¶· Žq è‡å·Hã:P1pKÙÓ—å%Gn3Âd„çQn¬g,%¾˜¢¶bêX® Òçà‘dÂ(‘8®:ÂÐbŠšÛ†`÷i:ó”WÇ Œó&=kŒ —)gì@!ç’䢾(i"̲ÅH7„ÒÀ$gSŒÜˆ”FÝx‡‡g¹—õüžÐî…€pS×5<" ’«R^ ¸Ó('¸Fq󠶘d1z¢(“µ«p¡SÙŵ¢§(ó …w^o0!0›`ÓÔxVq½" ¥9|TZ‰h@iPòРx§6  OKšÛÔ£”Ÿ³ìÕÙÓîºRI—¾ºÊËyµüçºøƒ_‹Õ¿.ó~Q|²ßÛ‡$û&5š{ZÙ‘ÙoJk­6aZ ½ktÎ×EJʳÿ¿xñäè›Ç'g¨²'‹Ùòé0Ë~)ërs!pßæ+äuFÏVåuµ\¥•Ÿ®®K]A-’Zð/åEõv]³! xÛ­MôÛ´îtÛ³»ýKå¡U(Y1%š«µ4štæ¡Ò3¸gS‰«ôéX_qΧʥ6þzFõ­³dóë‹òÍÛ¶ •PÉóUö(˳Y6[Η‹ì"+²ËìMööãõÛb‘•ÙŸÙ<»ÊÙ2»ÎVÙ:«²›ìý׉̩ëoi=-;žçoP«©Z“Gm™–nzc’Ä×õÍãr^èFÃMö<¿*ÆfZåóröhñ5‹@õW®×°y²-ßÁUqõ_ZkêÛ°gÿì×f´È§{þâÉéÏ/’0µ+ÇÌŽõÖˆjŽ)µ#Ç($4öGÛþ6WD¯½o´ˆètý„¶-CôÝÝT&ºãµéÞ§?`¤ÐSFÛî¨bì®·8édóLsV[éçÒ‘®XZñ„Ψ¯)Í‹¦ÏÅ£ìIvœ=ÍN²Óì<{•ýnþ‘Øyu•'v¦×jŽ‚ž-9—‹¢!èºü’Vï— ê»ì}ö1û+û«X-‡œµwqÖ²`UB6â¬svH£]9‹ ïSœ…üvi º¡å‰z%#7(ÈDAÈ?wD¥eÏ܆°Ã¡Á… 6¦ÿͨNòjU¦As!­¨ Ó?Ý#¶óZã°|µ(!¿¤vp«;µ\ox°m@vÛ€Ô'ž"ÉBÞµm@Jߨ;ßg@î® n6Úx•W?ýttú+Ñ!F¢Ç#‘Û|IorÏxE«çûÇZg¤ß§ž£õõ~›6‡þÞŸM9jëéˆ$Y¨ÕJ«t…ž¶I¦¡Ý…P×W¼QScÅÀäæÑîò²l|Iæ®im^\VõÙ*9œí±1¹ñ#fâFp/ Õ&ñ#7âÇndÀ›½ˆ¾Å‹4Ú8£ÍÓL¬æŠCÆY ?3!í’Õ +ÒYÓ¨÷Æš†aQµç($ºëÈöšqœÑæ^lÏi³«=749›sÚ·iÏcÚs«dòV#gÈoâòfnÿüòå«sèèñùc$:»Ål§óLNóB¿ã<óF¢úS=&» Y ‘q˜ŽÛ[æXO‹ïÃYáa"7z—ÚcŽ“ÜÇëfÇqŠ¡ÏCŸ#‚Ãë(y3 ®j™+µ”bJ_XÅ,u-kX—V¡²|i'Öu” 0 ‰®‚©´âlTÚàæ:xfh3Q™ƒ`R&p GÑaòÀº“ö†KZí²–'†Ë-¸¬]àÚÇÃì@?® ©tÞS~> stream xœµ\YsÉq~Glø7LèiF±h×}èÉR„ì•–´ô‹´Çš ÀÅAŠûâ¿î¼ª+«§¤¤pèAµÅꬬ<¾<ª?íÌdwÿ'ÿñþìŸÿâîúñÌì®Ï~:³ô¯;ù¿‹÷»ß¼Âigóäl »WoÎøS»³.NÎÇ]Jf‚xö—ý͆ƙ`xn¦XkÉE¦c¬núô½ú=Ò.𶓝¡ýW—@ïW‡ó`¬/û_㇮Öêëþîpî™J û+œö0mqÚL¦:›kÝ_ÂØ“J–¼‡éjl qÿV1xqÀaL.ìÏqº]†/q:8“ö:=ý!o“|²¼¸Ô-ìr¾\]@$Ì6œhXq8wiJÖ¸‘ë™Ü­Úð–DIäÞÒ0ØìéäòÝ5nb§dÊþ ÎÖ˜MÜ? S«Ë&ï”Gp@㽞ׂútžü¾óÿÀL; kßá8Õœ½E=;Y[òîÜÙ©ÚTX}Š{u†–ƒõiYÞuYª5S¨¦'ö~ÿ¤×Tîóòç.•G– èRkr–à£Úæª[ÃQQ~¤ÝSMdRHÎ׌J?ä½]qEï}‡¢´ìv`ZíÈžÁ©@z1:ò„)Ûlë6š¼u–%ú=y1Ö1÷Æ„ìrôÀlR L“ãüg_D×Î4?oÑŒŒMÞ£5œ{ðägùÉ5 Ÿ=ôny5„e“Œñ%±ë¡ã;ëA¼Üð‡ácÍÁkͽÚîQ­yB!‚ès’ÃÊjù]ßKËFïôùà`lfɘ ø¹"~¿ËSÍÆÆ?ù\waò¾š„ÂßÿòðêNÔtî`wìîÜ–É•XYO¿U;}`X_Ki±)PR¨K¹c¿49:øßxøû~øÛùk¥™Ï‡¾YBÙÛU÷\àÓ(Ζj]òESÙЄ>ÍVðÈ0²ø5:¼PkÐ;ÁòœM Õ*ÛQFõ‡A8$ŠZ~I禎³ä‰Aâ&ç÷ƒMÏòúÝ@dvD„bà»6›“HÔÆToµ{’µ Τç‹hŠ®N x0(?Õ HúŸw›t<È…EÃpƪýÆPF`[üÍá3¯Ø4œúèòÏ‚ ÂíÒÛ!eyV–'Dåã€èˆ2ŸP+6;ÒÑú™–˜ì6%8¸ÖKHGá/y€uÑð†uV:°þë¡8ÔÁ ø°´“Žà}s¶ö․RŸS+ ‡4ÜÞvWJ}…€]ØÕ©&—ì*¨ÙûÑMΰ_K| Á3§Å¥”¸Y¤p˜2±†»U»?^Hv²×kd뤶#‡•¥Ÿ"ºWŠð g+Nt%Æ“’$±(Zt ®ÕrÇ?‰¾­u+[Ø6ض³;»WäÌ-ü»CŒ¨ˆtײ³…”“‰%£ˆù<…TJ£ö¨$÷L”Qª]y3<5ÐJ^Áø-™_L‘¬BPüRãë]Ó¨dE6Î`ÇÔVÎÔ·Ný ˜¸'Œ]“¸3dAÌ™0q9u¥Ž‰ž!dVEãFïÇ{„ Ö6ä~¤ü9Cô•ðk+$  hç!êð†¹8Aïb<„¬ýý_‚˜Ax^ ÈÂÑÙdK²wXÍy_€z8·ÎC©ÀÊ)s+Wæ,jÎ!U­qu¸;ÉD-˜Ä÷€”À’ŽzþçÝ„u:’ÕŠg˜eü¶LÔD–Y$œ';òwó† ’7¼Iô϶TS°,?‘öeŸ¾êÒ~Ï¥\©YLÞä€f t= PYæÍªµÝu²÷Š˜rRY2¤ðÓá<â2„Ë \mˆ¸Ø4²ë»tš'–gôy°Þ+V0M²‘yÞ$såÉb¹Uf,q4ÛÍ¿Ÿ½úå_8yËaÁ¦ Áõhb¬E*IŸH.d %sI€Íâ)÷Ênpqh±›þØN/˜èØä8%0¿67‹!-…ÕQ8¬ÀD·Ô!Zé¹¹œwhtÛ5÷‚3uÓ†SVJ}šÍ° -×ã``3ÒR} bò„[3z¾cjEªo¦†+p6ƒ|ŸûÎw«ø±GMøm‡O VWL9@NsÔæs)º3ˆÈ©±A0…uÛmñª°®µV *d–>ol¨/ñš ¤Wªˆ…×Ê…|Ä@9ûPë¶G˜eÁ¨/.f4‹ð&:f—’æh“hCK˜…CLÔ×­àͺS³wƘôÄ}!+i¥òûçþ἟çºNC.ŸØ”r„tï8ÎÏRºPÓ² U1ŠªvKµùF\ÿ@^C™Íý’A K&’Œ…Œ¯mò™'!ßÇ´mB—Ýðf¬J¾a•Žr ÄêÐQy¶h@èÁ ö?î»eLÇ”x±°¿eðB?*Õ]2Mj:›PzÑRøáb¤¶œþkgvD÷µ˜´J—|È$^cú €Çgˆ•æ Iü¨˜¿m¢Qjzâ9ñ¥‘óYŠÄ"H±ˆ½·°Œ¤ˆ;FÜQØ8>+ì¸m<¹LAé‚Óõ„øÀjþî$›â•lÃGF³P®µKåúXI¹beØÙëÔm&e‘¯YB4À™ÜÉØnù»\ÂB2Ö-%ãc!É,ì‹¶Çÿw5%g7h–L¦5¸º%áw m}ݯ8è‚á00 vžÉìnXÖËÔ“Â?Ic 64@3T¡B¦Ö©^Íèè\NЈԫ`_í‡ Nˆ–2ŠEʳ¤ fµ@T<ï1Lcng w­ˆ—Ø=FÊÑ‘-zœ–ˆ…â×¸àš¿ªµlŤ†0Gªã-ÓÀ"âõLXÙªŠJ rι3O@%Ȇp©è2æeí©N|š2ÝR^æF¾Ð2±£*Š.TÊ}ÅL`.ÒP«àHÔι±ÚŽÊ¨ô 0ýÀâ˜Ñë¤|Mº ßI„dx+Î+Dm!¬u0>>v,¦}ðМeˆ¼%š,5àz`ˇ<Áí²ob!jUNp¼Èܪ“%çÝôj”Tj¾xʨú.šÄÃ=ÏP[·ÏÞ.2$övÊ©ücy}Q•Áß™Ø?²nü˜Ò=6uÔÛâÙLa“P›땾G̺î[&ÇÎB¥à^(㕯y•OxÅ7¤»w2 µ!–Z{KÔ$°DMë¿Êv´à'œŽVC¿cây4aˆ%s þŸ1Þå@µÊ«Ò²ßt}?ŸÁï9Y›n´-š_ª¹©å–­%(­SœÄvÑQ5§æÒC3tÛñóøZgQ:¤!5@J¼}ÊT‡ovœd­î-üµo¢>#ÕéÝÂo0ø~$Ï(Ô%i£ëyt7®æÑÓʨÿ+¨´ 1n£¥K¶ÑÏ£ÇyôaçÑÅ<ºšGOóèíñ-|°ÉÅÊå”g P·PX|LÂJrÞi÷’yÊÌ;–ÚêD¢Çþªnñ™èIäOÈ·€¶‰”[ÐÝ{(qXN);¶öÒ cÈPºµÜrI1ÃÓ•uÍÕ3ö†Þ /| æCk;*b£ÇÐË)L}¤ ¦þ?øåÚ.—ô†}nÙìÕ¸Ù^Ù7‚ ãw€çà› ×Ôu‹žÀ °hsM鲉–rj¢Ÿ9=+³¡ý¼d(b€ ´þ+ësâ«,§ k"Ä‹KžK¶Œ{PþdrNm1q¤ä7÷A_“ýh+?/Äkt5õ«¶Æ¾´uïR•†3ïÁdžRIR¦Sc¹fÂhzO<¬\iȬZ*‘";ìõ)à»ç³Ö¸‚õ’ËÜ#A«¾äÉdÃ^1§ŒâZnž0ÑÖÞÒÉ)Ñçn/FiÈW[A²(;àM[)Ql‘Y™†æ‚Mÿp"m2)P“\ ¿%E)“!aÈ…¯yA¾*¹ê¨t sË»d¬lžgÛR¢A¾Un8èñY{Ìs€šDú‰°2My+pSùκ××*>ïf*õ¡b‚¯4ú}¤7kµf=yÇ`_ê×›$ˆ›n 'Ôb fˆ¥µMNY )ÁZ“[ì–8'B-™<`Ûñ±ÛÕSY@µl ¶«æ+PŽ} ë^øŒ@ÎWlc6cSóZÇ“€+Æ€;FŸ,5…5Æ}èàrcç¼6ÿ„sÀïW¨Ì‚‘S‰ôxÙVm¨œàÄÃ9V‹£Cã8 ø–‹&lYkO¾_ßt©:ÔI©ŽP"4†¥™ŽÄA!¿RŸNý8*S›˜^ãü[ò¿Gþ ³VÊ“‰%÷ÕfˆŸÖ0ì¨eõ Å?¢›*x+£ák‘Åñþd d—Pûš¹•tÞ“!6:þ×1‚j+’ûþZ¤S'ÆvBƒE0^.t` ½‘ƒXØ/·ÙŠÝ‚Ue|ßô¬í¢äv(¤Ý x‹Ï!åÖ7V~j†lW˜Ï.ê_¤ÀõÅ4ðDSxcã}ûe‡Ê‘.Ø>ñ[7;À®Þá]?-Ú7Ãáè òP uÿRõ9Q£ÛôUmâò¬“áCÐèíÊA~Á6^1bÛj8•èïcñ-™ÀHHÁß{*Έo¥œõ’’M¾œ’Ì€EŸk¿EäºÈ"ææ[Ù½æ!C¿b!z3·dŸ7ä_›pãϼs®ó59ˆe-üBB‘Í.ÞÒü,jgC aÄ_zèåÚõâ2ç^†_ÑÈ©½÷ÌäV#påßz´ŽýÐs{š!àïR™$ÅÔ)Z·XŸè™ =Ç ÖS£œD©Îwäê„ícÝ¡S@Æ”‰üþñÇjøCß>YüÍ nµkEl,-bE‰ôNéûC¿YùY9 d*Œ[ƒç—¡ÒÇKd… móãw†ÎQÙÎe;'ÿ§·gmé~ÿ½ˆe™Ÿ>ñ4^Ð*cœdJ²;IÞRqÄa¯.luª5Ò=ŠÈêP赟;8;8Ïs/U¶J|éy%¿Ètfå¦óvÕ¤•JùU-h©›.3ö %–6?¼!0•´uãxÕVÄ—áJ¢¿Oº¸UÈrEÜ5K7-0Æ®Ñ6.«_| sc1ÕŒsý >ÈÚ©n ÃúÅrÆ2´YÞmȃªÛÎJð´üH¹N{_³X¶rÌ® y抿a¿æMÀX•ò†L•ð–ý*çñÞ;.rƒ½bcd ®Z[$KDc•6oÀ¶ñò‘¢È+xX«ä)õUg\ï‹2³èõ{»¥óÑwLxåFY%Ão{¤S=¡G!€»ßÈ)ëVþøæ°ZÐéBO›åu»õËë¶áÐHŸOG™iõf‘á/º¤|jí`÷*ªßq”s^%˜*ãÅ–w-Ôòþ]¯žåþ ?»ÜØáoœÐáEu^—¨ÛˆéRŒÄìýœs_j,x;ÙœóW5<þ4u‘àƒËö2ª]0½Úù¦6Ô}ýBo¡NÑ»Ò[Øî¨P§ ½ï‘Åäåçñ÷ë-•“+=/3V’zÙÛiŽê~ê„'øí«³?žy@¶Ý'Hzþí £-D;ë[\ܽ?sÈL¥ÏÜžý°ùçNRݬ圆¿v幋~gÑ6²Ç¿wÒþ"@6;@°”è/˜„ ¡ŒÒ÷ZÚ/iéaüwû ¸qøóä'Ö‚…Ò•Àÿ²F ‰žYÐ ÿ•ÞÓªÉ72iø—8[m©ÃWúgÆìÙV/E}Å?ÂË}hXL•jûŸ$ ÿ 2`lJò»w°À`eÛ\\–üЬ oÛ%cÎNIÆZR¶~ ]|{±JÃ×}8õáûÕµŸWgúð_úðMûðyu·KMW¢UŒ¶åëì”WºB¯Å÷‰uæ-ÿm ‘ü?¡ÑƒÎƒdo,;þ»$ ÃêÅO™1:‰-=b²-Ë×|ò×)Ú´ÃpÙ[ º{‹öL¾ôdzÿŽ™W1endstream endobj 257 0 obj << /Filter /FlateDecode /Length 6078 >> stream xœÅ\IsGvŽð1GÿÄ\\íJ¹/£p„å°gFÖØ1#â¦ñ¡ € % $5ÔÅÝoɪ|™Õ€DÙ¬ÎÊåå[¾·dýp®f}®ð_ù{õæìóoœ?¿}8Sç·g?œiúõ¼ü¹zsþ/—ÐÃx2g•õùå‹3~UŸkçdÒyTnÖ6œ_¾9ûvºÜ]¨Ù(erœ^îÔl“Ë&M7» ëíl³™ÞâSùÉðvÐCô¸Ãe8ml!¹X;%‹«¼0qVÚh:ÊB£÷»ÿºü÷3kü ô¶º¼&ºª » [¨¢‚˜áe³¡µ3Žz± {¡íì]J<ú3š=Z ‘Â8?g`Ë+ÁSD[å<Æ£XOî»ãÉ“Û3'èdâ´¯#òxc<,÷åGÅ Iœ FòÊÆˆo‰w•rÄn8‰ÓÈn’ƒF”À¥bï ©8, µÓC?7H5,p:àRM¶št.ÀÖ—}ë\3;uNÎ'8h£€ä2^U¢ Þ}]%rG2’½ 9nª;¹~ÁxR{¬ëÌrrL£M#íŸáNò)œ11ªN³ŠfaÔ}%â¬ø4ô/ãºäÜ£’ŠK°í$•ól™y6žˆ‡É@½¢Îˆ}q³6Íôt_Ÿî¯PAîÝôýÎ{RmÓþ–u,ÅLóî"5'xïK–5ïllD ¥Ç*ŽH›ˆóöB?"‹Ùðð×äÝà™½àÑû'1ù^rd§p)(—op9€l4ër$‰ŠôeNQ°ÜYÇ÷ðØ‚9;¼¯fF4Xu¼…»F-­ô»æá‚ŽÓs”§]ž>òCTÏÄÊE;°}ôïï1_WzxÑrϪçþtvùßÂ+S¼?⾬U”‹,v!Š÷äs°Ó«}`¢SêÏz–ÁJõ'í5Oã5Ðc’ºxÒ«@<ùY1ó2'гzVò¯*•H˦œƒEÛ$@‡e6û¶Ì[„ÐØìíô¶^,,á¦eòqÑEê5`~š „¥Qa…?“•ì)·,ÌÓãÌwËFUÍþ¾2ð=a3Š] Ôˆê”cz†-³žuÌ‹Â{¾ÚøeñÀ.ìWTÛu¯ÚÊX­jk™ô) ÊÌšA缬AOõôש2)€Lÿ×ÝòBŻW‘-^$‹'áÓûŠÁ„1e>ðÌËË1½ßòpQ'©i<3ö×ëºåhÛ­­EkÚ ëä–b\l\pÄÓËI>ð,ÕDo°SÁ*Ãm±Zè~ÕìvdŸÓnüÝì$¯ûF›’€H U¿,D/B¹À!I[('×¹¬ž W±’±/v‹Æó‹¾ký‚u(hNY8O8Ü&˜74*ñ®:W ?VeÕÛ…š°í^˜4Œ–9{K©PŸùæ´n…ma#yl¹‚ì…òž{àñ, þôÁ-C0"Lok#(†»U-€¦t ¯I» _JL±Á`Âþ§}¡²z”J$5[˜! O "Þ[¾Ï¿ F:©Ö€ vÑ[¸nØ,xNM·ãQZWqlÔ«öëzÖm^ÏÖúÎÕ¸n°ÚÊ'ÅÊM=ò>w™ÑÕª¡¤Y]æÆòÈzÖb«ÖX‹ÌfŸd=¶^1YO™¼%l‚§)ý’ uW{ÜÖ÷¸fÜ×.›eéºcË¡¬3lø‘+±ÂXîÓ Œà\ÍL]¨”TXËÍÖ£"ƒBsU\àPkÐT³Ÿž½'ÓäAÁ¶?쬑^<)^3žp°]ܧÒË+ï ‘“üMãôtw…&Ât°ªë=k4©l¢¼,Þ ¼nÁt—õþ+òuÆ|è&w:Vu( 0i½A#‚@)2O žº˜<@Ø,z ¶/¿ÃÍ¢Àö^¥Òåcé’Î㜣*=¬R9ãZ5u|õŽ{?ÉÑ€Óàœa ¢ë£iÝœhPžöÕp°4gpˆü¢8þ ö'€ HEÓŽ©ó¬_ _?RÏ»Ñ]ÌÀMñ”›_Ô_¡ †œ„xú®ÌØ-Ñq pÊ?o‰Ÿ¸ÂËÝè¨Ad4ÈM¡è-S´ :Uzn[$â2Ô° 9B6M<®svŽ•Ýr—µjm©Ð½þ]¦«¦K¬¾õu§ƒÔõDPG@5ÓÙ¾ è>Ç Ùøø#ÓÓD=ñE€(¹‘Û=aAåÌ\ÊË”Øæ ÐsÑËÖK§ñß.AÖá-?Oq J8‡D†û²¼êŒJqw~³“3^æt/mÊjÆ¡¢m#‡p3ØAâÒ‚×ÜÞƒ|W÷¿÷…Sè)"ô_` Rœþ âD­.¬ÚÕ®µ•*y8"Ë+gËÂð¡8 Á3ÂÜ€.٠wSÏù³Þ>uâ¾øh:©ý‡cÔsöv…FHç„AXû`X7rà» sµ>9ö–lÐãš?h^›yÉ/¢ëOÉÈiS}`@˜l‚À<*9±ô•ø§§:3ƒöálÚw\|W“¬é½æþ\€sf«]ùÕHWfð«`¶öhŽÐŒ`œÑÑôK<.)Gs·´${ƒO#ºñCò-¿P ×2[Y7­*·‡âÆ Ô—¡É}sÕ.·XƒMÉ_Tß-kÂë{©n8Ãe“ʃ ÏâÒ èŠÌW%ñmëÖ¯l £|oK€¸µ‰-®±`2ÒÏàÂãû18§` ¼™AË=§SЩ=o¡j[üŽafrME˜JøÌc {hRH4phŽ‚ØxB&¦êV8” ‡†L·DNÛ°|Õ‹ûuÅ|{ׄ^;½öç@u_5U·ì @ÞZçLÈùÐ Õt]}°÷UGÊÁ˜(hpW{¬N°œ$Îô]5­ûq<·]Ô_ñãNˆ²EQvÍa8DQ¬c}*ó6H¢B'‹½W®3æ¡Ò¢™ÈÿíœiM¥ù0vÅaº´&^Hšë.W:0çHtú€'¤‘xBïŽýÙÙ(¤°ÊÓ¬„ÅXò'Á>)À0!ÈœáлD“ìÉ»Hàµó “‘·˜h—…é 8­/y¥àWÀ5 *·!Ê“BY–½Æ .•Õq{´ TÄz=íâ{Âò}âQ\Î¥•ýSÔ:WìÄ@cÓžvëì¢ÆÀUôÚËöˆO.aZï"lIî’Øû°.aÑ#~Åx-¿‚fXø•š›üjT®íªiÚì2Ò,/eÀþ’ø5¸›ÌªÅ£ :”€šN“ªzÄžòEóŒàEB—9è/.‹ÿëZx¡CÌ…5¦¿¹È ÒƒIùHs¦Áé[ÔT€ÐÒ5¸á®J±¿ñ&\£ZÃvPAj'™ª+°$šN3¶zª£ô‘ÀBfz4æeLáÛ.æ„«‡U£`“óñ«²Ž8þ¯:…Šõvklóym>ÔæMm¾­ÍÃ×Cw~Ž&¯:Ó4 i#@Á/²Ú~p®ñP}›F´c`žÓäQŠ£PÝQn1¢”whÝW©¾©¢|_›‡Ú¼ªÍ—CB`Nè¹OÂÛ¸µÎéÄ—{¤ ·+†ÀÎXuµ‘¼^‘V›¢êŒK:Ò ðgXäC” ×£•.?R`(ü*dïFƒ„9@«²hèE_…޼‰«¦!•ü£[Ú/©Ï@yê¡7®”YeʘàïF÷äS‰PK…ÿcùû*äSžê…L@·éØ|‘k¯îÖ®´5ම]h˜==Çâæi C²mS=\°¶Q¯ó¡–³´)xÉYQÛσEtÃÓêz&PñµbIÆ’d<¼<@ ­ Hçqæé07ܵޅˆ °?"¹à,Ú¬¨¨øø¾îIØ€e„œšÑô:Ÿ-fT!µK[X²@ЏQ$Rø[žAïIDzšSØSÆÐSG[g LCˆd#l&õÑAÔ’´N”S‘¬|S6S&‰[NXú·°Õ¿x[›7µùÃÅ™9… áŒCT>òû]²È2q£Fï)e+c7~5Òç[^ûìäv#°·5§«ýïÆ& <>c“†G‡ŠcϬ€™Îq‰`çÅ2gRô?sä‡À¤×" zSaôQ(ðˆ¿9H„9íÊì0öŠ¥7U@) ÉßÄå+fÙ ÎÔi¬„tñ ækRlŸ2’ŠœÞ.EyŠwe8//xѧ½}ì½hÇvNx²TUò„¶)ª»]`|SªÎÓʬä÷—öÇ¡™„Çbˆ¾÷µy¨M1ÝK1ón('`Ôêé ì©*ª*ä`ÜzÔ¾K|tñý>ƒ´¯•â­hì¸É âuìâ?¯–@Lú›±–&œHò³ž¨ÂEŒ˜7ÃfO ¯É²D«“µ(‰¢ÐRR˜|Z}Ä{ÒÄ=¬XénÈ[¯jóvÈ$χ õ~È’/‡}Es êBο–fNˆ–dZjäû€¨K·î|÷ƒ ÙŸ €P» N4nòíiwÿNJËUÕ÷»–!»^`¬6³²/úsÃË6ãRôM`™{¢ô­6§ÎÜxF8«lº¼ ±“ 5Q;¬‚yàqÿEMØŸÄ]h¨eP9ìŒ3×öãÏ^r?;-±Ì»oo$ðcŒÚÈ,ܾ$§@Ö”¼k çhcLJ7©ºú†½O"-¾eúI<õ¦ˆ#î¸QÁ¢^ü á}—W|:T‹§ïkóumîkS$°^õƒõ<÷û!€Ì~5öš|]ݸzæmj)®EâÝ}'›ø¦î~X™ˆ×[LlCÀ-:…fˆñdÊ Ðé$Þ*«IP~a w€™‘£ÚªÅ’®`½G)b‘­!¨ TÈ趬TVê—â¡¥üãp_Ö†ìŠÏ†ÒáÈÄuê_„@Åî÷W«ònüÉ-ØÂ… ¹WïTÒ°u•£ÿ.%t”ðû¼x8¯FÇt^ ’¿E¢Ðìé©×ROåj»Ü²š†iD;ƒ/ BÌ_£dx£Oó‹SÞ ‹cI|ZÊ[çN  ÅÈ|XšKÀ¯w‰º‚0:èX´¹<:[Šb‘µ¼}ù© ‘¸;BVKBC··b¯yŽ wWž”ù#_Pràë‰qºSý²Šbã!Ò¥NðB”òüzú!V?U».–Ź-å&íbn <Œ¨Ð!ˆ–2¿ä9w‡BÌîÈ+“.Õ+¤${SªƒvéL©¸¨/½¾¥0nA.mXº×b@]#ÅÚ{„ôX›î"¡˜ßÁ0¼ñi_H€ñq1z^ù7^IE±G)N×½uM*Jz°4tH-.ÍRúmÖŽË6Ÿv›vó>®ØÎ×M:ÝÅF”i’J½o©V#™L,m#' èþ[ k€d)™n ÖS>åÚT;å¨Xç¾^’px€|[Xcõ{w­, g@ø2Ú-œ“­²¹Qß°uÛ°u›[j‹É'Ì¿I «Éž!V,¥ZdêJ5× {p¦Ä{£²^;.)@f÷—Ù lD²ìP’ât_ï2•²b7[xó¸l¬ôectJ Ë4E][Ó»”¿Àë£púšË§YðL|ò¤.ô†¶½oèØ¹Ö#:ûä¨b—3«‡rw³©c¬9ìËŽ0BÎë`CFá½ýu0|¦Û+{nfØ)ÔãB‚£zz?–ÏàyµuߣÃ`ø¢M}¸ï¢¥6§^·³X4Eá¤Õǧ>m¥Ôð__ëfWA×õn­ìØ×æ;ùt㶪6ZR2~#>îÀ±Iü€‰{R̆¹¸>6_´)±[P“vq—]¹µ2l騇gÆ%Á%6_ÇøbèúA è’só ‘[ÆÜÙæ¶ö\ånÇì)¯¢Þ”A€MäÇx ·Ütxƒ]ðBå‰|u 8!®¦Ž 8 Œ×GEW)QÒxý³8ÈoTBsúµxüÏÅ7 åŸW£¼?’ɦèðÔªGkÈBŸÃyø˜J9£^®!a ’JçÍKˆ°VDû6p>¾@|IJ°?ðÅo§M¯˜oû;,ÖfºÀß\HÅ@}L§â–.eñ/jHrIcÝÕÕbz/*ûzeÀ榗¡d=•žñÂr÷|:Þ?þʈàž÷’§* -±¹ˆßT[ñuÅ=rˆeñŬŽ­eÕ¨*ô Å.ûÀh5½ym] ²Kƒï ÈÈí>xöš®ËNðòi”n=2/X*6Ut¡dóÞ¦œæè“eäÖ©ÙH¶—”b~qa,¾®I÷Ölmó %ïãnM(ý$ÔöMUÛâ6Ê(¢?Ñû)wßŇ:•¦Ams‡|£"¶kúß¿ûߨoËß¶{ürŒ,é“EH‚)»/òçåíª®.³û†Ó–’8§ù~3;YoxKȾ.¡G˜ä ‹ðœ£¯M!~J¥œ*åã&6ûv”¸¢û{ƒZÍEš• „)IƱ÷ô]B‹å΃Åζsf›Ö«zLm¹Oã6¼ïGyrã3c×<0ìÇìî»æSwç—ím î™,`ÿºÛ¥Ã$Dˆ3x–¿èž¨žS:ÁÇw…yGÇFBù–L}»vX¼¬ÙyŠG×úo—gÁDN:ÿñLÿá “[Ðõ\; cºó7°q)¥õÉë³g›_eLpî1㚯2ËÆ[øKÇÈ_eÖE~•1ånJ4ç ”°MöѰ#ÿ)§&L©‹b:nÞ׿Cmþ®6?6Eß÷µù¶6? ûЉ9"b“ å)5çÚ|[›ß׿«aßëÚ¼ç´0Se€:N¡L±ÏÉ`ö†ó/gÿ}1|Fendstream endobj 258 0 obj << /Filter /FlateDecode /Length 7087 >> stream xœÅ]ÝoÉqÏ3cäÍ ò¶q²ÇÓßÝ>È@ $6Œ$ˆ=€ÎùÒ)Ç!u¤dE/ùÛSÕÓUݽu–|SÕÓ]]_]3÷ýnžÄnÆòÏëõâg¿Óf÷úñ"‘v»‡×ß_ˆHÚå×ëî—/-„Øù)X«w/_]$6b'„›¼ô;7ëI(»{¹^\íq¸4RM³Ø¿=ÌSF¿¿­—÷õò]½üý¾^¯õòT/õòqÈø4Èzù¡^~µ 2Aye÷ëåÛzy*P±Q/ï+à›zùHoÛ.ê冀›Ê÷ê%Ù›z¹9ÀóˆY»i–û¿­Žðzxù0dF„ûá”\W*™’÷õònÈáñðŸ/s!ƒ˜Ô¬@—^Þ€æ$Ö˜ç)^žêåC–;mˆÔ[z¹ÞWê]½|S/ßÕË4šË2˜Ê)˜õÓÃ¥Z”ê%QÆ7õònÓªMSö?©þåð¦ËVAÛå —ßÕË[ª·ÛrÜ ×€èÌ7C¾CÅ~U©c­;ÒìD#sßF6Á]¥þêS[nJ»£Ó·]þ¤^þþ•â_^ü­¢•v²;#M˜ÀJë¨ÈNå&0§Ý¿ïîÀš>aA¥Þ¹I;9{jB%ðÕÂï¬u“ò:™Ð_¾¹üp:}w{z ÞéýÇÝÝ”r–Zí߯ߜv÷¯vëéøx{zÜ]áßoîv¿:=¬GÂм5ð\ø(Yî@Ȭ“ñöÀÇ*Ôre§Y£–ïß½YO‡—ÿu#ºÄ¡ ''kÄÎ…ÏGõ¯÷ ÷ öˆ{uPð›0rº~wº©³ç+p1èY&vRÁOëv!„IÈmÂ4² »0¿ÿã~u!gnïõ\Ón­çÁ ùÝ-P¼™¤Qò]·ŸÛ‹¥C­„“õ8R¸Oxx1¢Þ­´¥C­”“šT¼O(X5¢TÞ´¥C­„P´Œ÷¡‰…ðn¥-j­ºäT¼/èɆ…ðn¥-j¥œà'Þÿ›f7 έ¬¥C­„Ñl§Ÿ_êµ°§TÞ´¥C­„“„M,â}ÎN^(„w+méP+áaTÒ …•QïVÚÒ¡V ¶®Œ3 ”˜ŒQ*ïNÚÒ¡ÖJ s Þg<Îó€Bx·Ò–µVŠ—÷0ÞSáÜÊZZÐZÙà8B-ÀÄù…pnD-h­gظÈH‹î×Ê´³pÈZh0¡i``”QWÝìÀ²63Œé¦`&gG¸µt¨•Ph@Ü訅R*ïVÚÒ¡VÊIO2ª€1¼È!eãÝI[:ÔJ9m£tn #BåÜÊZZÐ:`ƒ1zŽžR97¢–´VJ]4«²»é(•u'léPëD>!Œ(„w+méP+大¸fÖƒßpáÜÊZ:ÔJ1(pàSœQïVÚÒ¡VBÙ–ÍAV Ô²ñî¤-j¥œŠ;›GO©¼[iK‡Z+Å͹F3äp¼zD!¼[iK‡Z 'È=áõÔ„WTíú,¹d¡X Àƒ8‹R::’;n¨ qP"PŒÊ9 *†Êc (2ªg*JíõXà˜!:‚D,¶È·Ké±ÄîÅŒ¿`³›p¸®ñ—LÖb3Ú,û”–Z»ƒ®TŽ^»Ð”–au¸¸ËÍþ_— Ã!€ c7÷%¶Û‰YìoNø®¬ÆFyð“nÿê€T`˜÷ˆÐÁ[)bµöÖÍØ÷ŽQÈÌþ=öv›Ùh™Zàçàf0yûwx£ÖRÅ6í|IùÝåndX^l¯ŸaÚá‘Ð.‹Ù½üç‹—µÿ]»Ç¾n€ØÄ^}1áu—š­Ýßcø½Aoav¤”*½.`°ÿYí¯ðB¨ÔH.̃ßÿáé½0 'œ) p…=ç0lØõAÇ.ú|ù€dx^os“œ­Ïâ‚sØâ߃‡yºÜìe¾ŒÂŽw‘$²ŒÍ+c“h…#Ýql"X·"B†à}ì‚ÇÁÏS1ï´¸X9qô‘nPˆ°ÒlS…Übñz6”¹íU\Âô$“8?þGºe~UF€¦èôA²-•vÄ7„70óééôÌ'à&‘­PéÝŸ<¢GÂ_Â)üâúAü ³†åQß_Fµ‚¼‚|]^$ùý!®6.½È+ïµcÄ·,dnaÓ³¿ÇG‘÷Íñ±~°Íã»!EÂ%ŒÙhH£ ·qœr¾ŒÞY¦ýà‰œÍbÁ½Ö©º#“ O ,€ÎCÚÿmåLôî>©# Ñî_›n´s`³–ÆÃЊŠLÛ9<\WÅÆÉ@ILÕJÐ?Ø=ÀåœÎEÝŸáqØ6 Bè<¼ž—6  6¬ 9ó8HÎgeùCRñ7e‚$èkÔ~P·Ó³€‹W!È¡:éà®ñ~0+æ’ìxTrØò>¾O’9¼®|ß¶|½W¸o£ÎbKÄ[Ygƒ°]G+V+°UN:™9D4‰Í‡¸>XL-FA9i¸f'Â>MK§“®kÝðš¨aœq!Œ4†mÆ´½ Ø£¯@ˆA ¢÷¿n5"ÏØ Ž"NØ'¦Ž‘ìÑ’M¸ŸÝÁP{Ál÷ø· $Óì÷Õ~¼~}"Fý±—fK ã·L¡q¾Îlä}z!¦Ê}ˆ[ÂÈ´°l•—v¶¢@L°½_e!ùºöhà3oˆ¼SÕƒÛ4"ç³óöAã}™¥ñ˸vî¢Y ‚íwŒ…^V‰ûK㔦¼!ë±îh: ðE‘cAÍ(qÙq7y«´¦Ã› йK~P ei"p“ÆŒ–àŒ`ž&3¾aït¾Fã¯F¾÷Á›eÇxˆ±“ƒQ®ÓïÆ;Ï g·»Ä—lmV±¿DyÚÂ8ò-toCÞîÀ0¥½êy~;Z ¶qWä‹ÑÞ˜¹æm»ÿñȢĠ\¸±T­  }ÞÒû?+ËŸ k®Å–%ÆÍŠ ý§Ã¡ÇËÌë¯Æ¶ÐCÌ19g…¦Ô”Éüz8:a&W¢¤¡½”ZlAç7Ûæa”ƒe° !yÆ0qú°dE¿—U8Cô60‚ y~RFft²o¹™Û2ýhÃFÓ”<ÒrûdµÅ? #€~m«7a„K6刷œ1}¶àÌ‘©5ÍÔ†¹h@^ufyN)äûj¨hpò] VI:Vï7ÈY÷ß×È0>Æ,H8SKSû¬&Zmðo[N!xIF‘VWÚ@ŸŽ„ɈÅ.E Jiy,ô¦f¥gk%H†Qè®N3cèd÷ÜE²òçâuf×cŒ*`L¬ò@œiã)©’]: H–ñoF:™E³£~—¾°†U%ÆÝCRv¬ys8òF7le{Ÿ ˜¿Ã¿ÏXø€W±¬°ýÙвÂ=Þ&—?ËäºKÉ)Îb¼:µn.‚0§ÃÕÁcâo¨[~;v£gt€.e:Q-¯k¬fÝ×P!YËCfe'îf:RiÝõûZ xG4þ¾"l–dOx¨;~•Ń÷ùÏ>fñ1ÕœDIÈTB)Ø=ñ£*©6ªÅ:˜#ݨ qFkI¬q®ÔˆÛ¿²âFF2îã,‹eŸðôRŒs‡ÎÓ;/>åêÑ2Wo?é”Ìž>‹»Âª†ša"àÙ¹'#8ÅjF#Ðð¸ó“Õ»#Ž-nã¼|§C*Àйb“Wóz¸ˆx6â|xbU€1ÁEÄ ‚ÂçzºfíLë4ißUrhm%8üi¬U¬wJ+J4›Í'û3—´ÜløC>¤],¡n¦„²N‰3X1Ãj˜Ûš·É Rczô aBn$¿ß'"Z#Zv¥«‚‰#&5EòTÑSp^¹¼³‚,_XJµ%ÁÎF’L-œÃ¬Žxò))íaVÍœ.xžH&» óàrºÔV¯“1Wåó0K‹^±0„dÅÚè®”@â TMrÅ”à™è™ /Û“}ǵ»W›ÊÎW¯@ê¼·5þ8¾©á‰ºÈóÓ%¸7’`²5Hsfµ7¼„> rN‰ž#Õ*vS@K“äbA Á˜SãÅ2°ÅšµÂ&ˆÍºäh|³L9Y¦ÕG¿”ûyí‚>/;½øfSºv‰I³„œúõQ…ñÌY' s 9ÏŸàœQ…Mýhx&JâëÌËÝ[hÛ |\Òä]„÷8¨rò7%ªƒÕ–ºqè°lÏ,uo%C"ì‰-渉þÈRwY©e{Ű#±`Ǹpøª³-ÑsœÄªMq mðRKªnÉb¡zt8%BŽðâóP7V^pµ¯EøåÌy)‚µ£êpWà Á•'e/ÂH6K×[…ëË8ëme¾‰ü0ž†|§HÀ^ÄS«sZy{K%ðPÂă–au2sY"Û³£gVz]hE5w>}IïÌ„ïy>ä& ›2dzŸ.Ó\í)~<0~p8g»éKe¸°ÄZvªKKX È­œâ…Ïbð`!žÕ°°Ò§ì1¼ÄÏ8‰Å8PgŒ£â`ÿ#f `Ú„ÕãpC:ØLx¬/èI”ð8 ‡ÕÄVïÞ¿Ù’°>– ²XÛô`Ã¥·ÚÙ&Ø{.ÅòK»ôo`'ÁÆ5b>¯€·gY¶¿‰3q¾0é ÌPÃñ´¥1-ôlwÏÑYÙí–)EmůˆÁ^ýéÙgË ÿÅ`ÚÊ9ƶ묣e~<¿s±`öì™ó`w¿øÌ!Ï\¢<ŒK”Rð-t‰ ð0:ödTä×ÃdÎCð_«xÑ©&—"píјʇê˜úÙhvîý êŽ1 nŒWWw¬ótÕ´nàWåTÊAãµES¡ÁJ‰2g¤-6<×rc¢¬«ä}Õ¸þLN‚ã•EÃ4~&mÑá<ñL:FÄ:äJ9”ô‘*ÝMºË‰ç ©htgQ$ÞìOpH°ˆ Ö”ºm_ÊŸˆ¥ð™‚â±äHF:·Æ+2ü˜9 »nb¾üü42º­‘ÑG¼ÏLJ¦£q^¼Õ¯1@¥ý®V.ëd¥dûïgÕ$“mƒ^i¯Ãz¨1) fÙ_"CB³ÆÇ²áMB~,‰…Dcã÷}?³)rsá\3˹r”OäÛ­øQb£qŠ˜fkVàgr[Ab{ƒ¯X@òüë6±^K–<½å¤Ä7*Kë¬3öÛ©\:D)&œoNσH¼jþÉóÈȶÌð¼‡û#ÆBæü”ÔݧÎ;Àñ+ûÄyGÖö»´ÂذÂr“Ëš¤ÏCC@*x·UM³gݵs๠¾¬;“pœ¤O,·vbm˽Œ&?¼:]Ë{Ò„@:&ys]Óú"µ‹Å’ó]Qø²ZªÌçÞ:²+Nµ RÄúXÊ^¸ñ“:R%B»˜t½Ù^'›‰œäF;6\òö¤Îçx®¤ÃjCP[•ò:åyZ=„ÂÓ ÏÚ0´XÊœ a1ëxFl­•k ¨/J2%÷rZ”µUü5ö‘ÕÉ:§qm‰„±<²Îm¡0&Ò°NØ¥ñP/OõòûaÕ2àø(¯ µGœZÅ^¬:àÛ÷ òò#)%ô‡Ž9BSy ©Ó_Ï4ü$ìûZÞ{ÿÔFêŽ ‰V¶ÝdZÆÓCZÕ¡©ÞùºiûéæVH9Éç²Áç=^žêå÷õËø/ꥩ9\°‹b 뮺: ¬ˆƒ¤çnv«£[œ>Øwu.ÉÖú˜9Ä#ºñ©M:¦Vîü–Ù°® ™aVìÚÂ,L[ÉDˆ‚•|pÝœ†V#6îOÚkS]t„u=«›èˆÇ%pÖ4ÃVÛ½'öUªVádñf^:á*öwò6ÍgG9¹Sèó¢ÕÔ%Ö6u—Ž&Pôíì(åZ±âÖÔœï;»qçþgò©Ï¸;‹ ùLÝvO!º=ž;.i—yùjy–Ì ?”NZÓ(x¬0Z¦ŽÃü ì3iHÇÕ3Bº?e}Eûÿß I¿Tå3êRJþàúÊgÌÛ9¯þ% SŸ,£nݳÿ0˜6 yåü캔°úª›y~Uê‹O~^‘Ϭïÿn0QE)Ϙ¨ÑÀÎuÁ9tó0ý¿âÕ¨³/y({÷05Á³oeƒaùM:Ô‰ BMëVæÑG¾ôDã\q ¬•ÿ2*»z·¿VÝñ#)`„<¾S;§÷eßnïË*ü0å‡ôM!|é ˜ ü†øêø=r‡ßû*”§^mt¢¼4¬Ä„ Û ø…g|g¸˜î¶ïDÆÎn5 ƒ…£”ƒб)v£î.M® ?5G`øŒÛ\™B…=·‘|€ØÊ1ñubpN¤ÏWßå7;æÔv’b}ñIÎd'œíwÙ2„ÒjzÜJ|ôÕnÚ¨AJl+y Œ˜ ”d#f7·ñÛ‹ÿº`ˆendstream endobj 259 0 obj << /Filter /FlateDecode /Length 5404 >> stream xœí\Ko$7’¾íAã?°7ÁsÉÚuåòýÃŒ1v gF{j/¥gË.©d•ÔÝöaûFÌd03RÕjËkøÐ4Åâ#_|Á$ùñèå±ÀÿÊ¿g7Gÿö7c¯öGâøêè‡#™þz\þ9»9þòZX5}QŸ\åŸÊc)}T8öÂôR»ã“›£×Ý»ÕZôJ}÷f%zLT¡»Àj£ñ¶»Çj¡¤2´ú¿OþFŠÍHZõGÇ'çGÝïV'ßAiܱ‰ƒR€ÖkÙ;m£I-EnÙvfz¯•ÐǤáëîóÕZ:è#†î“UžBÛ¿”½/Òÿ·÷ü¢7Ññ´r½˜°AiªhDaêh@œÝ5ÖI¡]ènWÊõF*Ý=@¥ ԆèmŒÞ+PhÀ aBwµNeFum]wÕt íbOZ|†å ¤ ¡¬Ðk:q¯zo\lÕØ /À‚°¥ÉçEÓm7¦&]Ú|Âuã{ë|ô‡»‡­0¢­mr“QÆZ‚¼ªß®”KÉRi%ÑZ•ÖŽˆy=hi·»Ì9éºÇ$e§l•­Gõ|}©¼ê±Å•ƒUƒ»Iøþ.õ&lÑYjK ds“&*Œvª™tš)¨/ÎMÃÅ Œ¢êF¯AÕ}”¬V÷´’uF¼|—Æ….åàñÎ50°Gs“Î&[ƒ,m©îÒ2…¾;'r¸Nrˆª³¼ö¡»Â+ð.Ÿ– b´¥3ÖžÕÕT™½]Y 2Óe3ª%ùLä&u¼ ¢(\ŽÙE·‚òÖÉ"€l5ñÍlR:pn;˜öc1í@`Â÷FÍpîúsðw…£8ñ„+D¥Ê°ïÙaAêÐלö°?1Ã:†ÖÎWL‹Š€HF@t’ºÛdƒRA+jQ\¸Q±×Ò áfÃÌËöÞ9¡&ó⤡ÁbžŠ§%4ÝÇÞj1[öR÷"¸Åî“Q Ýèùq\”†ÇNÕ9«ÄœL(N–dÞín²3©(º¬Da –2Шà{m ÎD•'Û{9A”´h#L´ñDD ž¯l׃a(†á»¯VA£Ç'¨Z+ëÚÈY'¾¯8B€fC›äè)B]ZšX¢ TÝ ¶ˆÐÆ D”©d#Ÿ‹‰ZÆØmó”‚ì¾íj‘ß®J=€[Â~h ¡¹Ì[9Ñ„7OÛ;€/‚n±÷¿_¢i+A|/¡ð œxÀ™w²Xð$rÆ>)GÈKóD²Ù=¼cÜ-‹öÁ·l¥vC¸ãMµ q£©Þ¬’”î~ÄéÀó s Û±LZïù¡áð¢R¥…E¶¼KBù¦ã ­e´=¸Ë$ RQñˆ„vú”†‚à^ÊJ'Ê\°ФiVy°™Âv+ÖŽ`êf˜ÃÃçlרՑʃi\ƒïTSB¯ŠíVé^ºà‡Ÿü3`,Bò¥¹SÍ,T/«†æˆè¦à§÷µxQ‹?ðƒÂJ+ƒäŤûà6,\’Í”‘aBDÛnš0XÈ“°AŸÝ~Q*àyR1ò¤vH*)þRä"!æN¬tÇÐ 4™y÷G>òˆÔpMZ¾Nøm!°w'ürž©\LáH‡Ž2è;mš´es†~iÁ‰Zslî{€¨'Z‚O`~ÊöèÛË?DzY;LÃy:€ºm®HoCeÅÿuåç9ø‰Ø{'Ñï¼` ¨ÆüMu~·"Põ!zñØ  2⢭µº…ì %,˜j|I.J^ø Z£@q†N4˜¾Ë}#¨`¾k„5Ì#3÷˜’ü‘‚½Áblr"B·›°Í¿òÐé<£€–Leš3„§uDºøœA I¡ÜÒâ-„w+Ì‘­sšÊ8ç“`°ÆyBXéÚo9á"+‰a™öþiJ‡g;+ “1ß±!i¨û3Ù 0¿ö¨Lð‡»DÐÇD2úlë‚ÉÚ)b”•ÁÂŒžÊÐ_¶Æ…ä294 AÃÞä)¡Í$ÐÁ²làh®£¬Û´˜úÊ]¦FB¹fFÙ›±Ä±šYnÛ %loŒ .…ÜÑèîy‰[/zŒŠ³½¥¶w@ï¢ZßÖÞ/–{¯4 ¦‚vÖ˜èy^<ûŒÆý#Ù*/Z”ÚXš£"1¡óÜ¢y›ñàx€íÝÆfܾi÷ÿ°ôÜúTï¥I"ÍŒe“«c°üHN’ñ¾ Nƒp?d ƒIVmLžYV¦õè5t½ojœ¼À»ç²°§’0ìÙ? ºãÏÚí¬ÔB@“9î°@*Eð/…±µ‰Š›ëjíØK^”®ûgO%Ö&%Ö­ ç<àÉ-+Á3¬Î‰ò~ÚºàW;ºá8"öù°¿Ž…„‰v? µ*mÛXNò0|?É¥q8''f=Îí2ù"¸HÚ¼Õm˪iŽ7݉~5õùjy …jâ$9dWxƒ³Iz©¶õîÜØÒ]Ñ‹ú;"ÝÄœ"Ä95°Ü’¡˜Ð2ÛacÜËy Öýeä[‹1ƒK½vRaÜŒSÿE·´½r¹É刻fT"ûê(8=å°PÛð¶†ÌæØæ )IÖm¡¿LÜP9qˆ‰e»`œÛmÝ ŸúïO•·jH&¨áçfŒC?¬ÆÍçÇéDËïù™Yfé¬ÈE‡s¨:Omªi:Ê.§Uàì–@^ƒ™9Z4 Opra³ŸºÑ0xpiç©8µ£!h- øCRJŒÎzDXÔ•ñà£Û¶@ÓþrhüÁÉ ™ØE²’e&ßvdJ wÜÖC\Ͳ~À=€8@Òo€ƒ Ç7½TÐçÕÑÉ¿¼îÌj-A|½í¾ZEä Þt·giÍzö (Z%íaµÐJg:k{ ÐÝÙ&{?îŸáŒ$¤N …½kHgYoq!Þà†Aw¶«}ß®4~+•¶{ £Ü§2ù°R ‹ Æ4ŠHñbóäã—‹à%$P’Í"²¡B|`¶A‘¶‰HÈÙн<âé{ Ì(OÙ1ÝúÉß¹q@þûðuu.gIqCRí¼7’“î4°.9MYþæ 3ãáH؈3dÑ„ûŒ‚WÓ°†Õ@cHÂOyx3'VÚ·XöÄç­˜?Ð^gB$ xiîÓQ¦8܆f/ŠârfiØmR–Œ± ñŸðsJq ºÓÏ€Cm“[62À¦A·¿®«Z³lfyØm&ÂRŽÂïâ[ÄÇú©`ܯßÕâm->Ôâ=ÛvË:²1=nË Ã0R˜g±cyJVeTÆ™vsµ²žìcÞj³DèÌCˆf~†ù5ಘˤæ$OØûUÊ¢|k¼éÓMÚ}îàm!Å)Jm>˜¬¥Ç>ÓÛÔ¬kb”,Kj¯fçP€0i'‹ÌCÆ%œi÷2™'!ýqö b}Ú„ïñ„OK¨ßx2èÀÉ6í/f×4aU¾KsjwÄËdìùKž<ÒÈgLËæ&ãßù4¬ÝSImC,›¸ÐÅ̺›]\h€™âs>œpߨåÐøxÕ~Þá} ÂȎ𠇺¹°1º9ÿá=/Ÿ3ÚÊz®«S´à\2Ó…ès™‘9}‚Ød*-€óQ]=dò!°ò°­>öȳœ}µ'ä#Þý¡Iê^%!"Ú)=~ î:ôõÅXÚÖ?_¢Ôå°º¡¯Å8-C²4:Ÿ=ÔX¾œ÷%»ÿ©Åu¥ä²ôû⿯m/kƒ]-Þ×âM->Ö"aý›Ã ¶lƒ+’Bt cpó9­Åói[gÁ€ÿQ‹×µøP‹%c)jóÁ&µí¨¨'Å4ľ/jñ¡®“è…h mTmXï ‰¢Ú B¹£ÅkV€·¬¤¶µßƒJ䇸cÛ’gìÀ|go«Ø/ÊÌÄà©ö’-îéψ‰Þw#®ñ›»=×݈²ß° ü[;÷¦‡˜À¿úµ díðåoÎô3œiÅ­½£n5q¡©A½a'¾gH}Á.’ï— þŽÕÄ=û³[$qƒúÂ~acñ/ì|¾k°ž¬y¬þ À …™Ú2Ü;Ö%¿›ŠppÉÑ:nj5‰‘Äïk‘tñžƒZbuÏEÔý¿ µ·ìÈOáë`&DNè9¢¦†/OU”ލŠßÐõcÐuìÔ.QSÆ×H¨$ Å ëWÄÛ~dœñÓúçojq7íjj9¤È«òÓCÎø ÛÃóFãLxà׬¥ü’ø–5=>Dým9MT{¬ÅSö‚>0šRõÏ`±öž,‰ /Ï¨Š—v¤·G¶·ƒPDÖqÉÖìŒåí3ü7ê}u\$wµö”…‰Ç@ÈÇrÒa±rzõO¯®‡ºõ@ÀpˆñÎ;6j÷çAá'Öê–w$žðMÚW"¸€ó±Ãñcl5b($g³ÓH7%§|0n¬îÀÀ‚-ÎclúÝÌ¥¦4Ä¡»lU2âÙaï—Ð8b‹[68å¯ë¡‡© JiÓ)ÖÈÊ7à!}Éí^Ò>nØùÆ|^pÎNâS:KblÜh×l[[¤³Ãê'Ô‚èü¾BÍ«ÓÛZ|ÅöpÅ6 4ä{ܲ ðpzÏ.}ÃJáŒ*åÿµ¶§{5ÏçrÄó_BóCz»?Æ"a8$Z5dgk¾ªþS-¾ª¢ù{-þ¹XˆÂSiíxËÖnÑ ’Hðëy¸7öË·½›1Õã«&ââWuóÆæŸioX=rDô#ò÷"RÎOÞ³Rà]‘úÿªÅWlo98·dKp2¶}Ƕm dlË{=ÿ3‰ ò°J¦N"x¶G$8¤ÁlW§á£¯éçµøYá <2¢¡Ü³K¹¥ZæÜéæEt/qrMÆùÑÓ¡ý-õP÷M q½A"{v°ž ‰üÏ,Ÿ#œI¬Q"Bj¨ ~©È~w¨_þ£ÂùoÏE«såì{¹]J~#í)€ŸJŒ“_.cç?Qµ¶1‰mð»u¼¶Î?zù(Ì{ÆGš*‰¡% ¢nqïsžj–Rðï«Â/Ø"IÌ{ÖfxÞDÒõý"CJKøëÜ C¿×üžkoX¥ñ,™Ïm›¬{¬ýžýYã\ÍhË;pÓXÔìÀqÛ3¤aQ„.7˜Qý2—eˆ½r>SY>~§Ytì>Y‘òëúr%Ä—ÐG°i˜žÊœŸ«§‡sÆf'5ǯK·§ò9'¡›ûz®¾âù%W¯À͇ז/§67_é5ÉÅ×`½·5ȹ½øjL¾ûBÏHš×²>±Až ã/Üw•½7ÚsGð†[Çbñ%5rpî’œèúÕ™ïió7²ÂÓû2bËíÁ é½ÅöÚNú>Ów¥g>‡i›0@\¶%sÛ6š.¾‘Ò^Õ±aò°£Óaöoùúp}€i–nXÓÏrÓ„^)¹­ñ–> §g¥ÔÍR»ùu*5¹äc'Mqù¦‚æ5›»œ²Pª >¬BÔ §!eŸµI&Šéc3ó°•(/ü­Éä¼*=®@“‚O4â³y¨sÓãÈu©»Z|`esà D# „ñÉMœwJ1«ÿPØåà4S ÏZ ³ÓWM2ßÂà“^KjÚìWãõÛ«~œÆäY©µPµV¯!e ¸4¤ÛÙvÚ÷øëÑÿßÄ;fendstream endobj 260 0 obj << /Filter /FlateDecode /Length 4596 >> stream xœ­[YsÇ~ç¯àS²p «¹UåVT–9±eV*)Š´@€&HÛ²ò×ÓÇìNÏ”8¥*Ìv÷ôñõ1ËŸNU¯Oþ+?/nN¿tþôíî„–OïÞžüt¢ùsùqqsúå9lÓÚžÆ>G¥OÏ/Oøy}ªuì“I§Q¹^Ûpz~sÒ=]¬×Ofç?žäÞ§`ñÅÉù¯º««+÷ºÛÝïþöæÇÙ<(Õ+º?Íæ>ç>gÛݬ»õjg~y4|»‹íæþn». F7û·ËÕº?S¯g³s¢SŸMÊÈ®{º]]^^_\¯6÷»'³?™|o@”9É”ÜéùòäU÷lw}³¸_ÍæÚ yÝýp¿ì ƒ¤»gwwÛ;¢=o à¡Àâ®×ð°vJuäõ1Á¯‰i©Þëà =OycUÀsëíÛ¿/.Ôli»éto“ÕN>oLpõyâðüj³$Æ ¶Âƒ1úÐ0VAY=eLO½î èÃ¦Þøx:¦ÙiRG÷ÛÌ#ùÅí5~£]o]ÐGžA•ˆ/^u÷Má د‘29ÍRÎ#ªܨ—äÝ¡¼À£8›#—/ <}f˜¿xÿçd²”XÜDâÑíÈ‹íÛùúúÝj}}µÝ.ŸÀ³‘|©ƒ1]èa4áÙ×OáëdÉ—;ëCê£ÉDØ|9Ù˜±®ŸG§úëÃÍ›ÕÝ)®Û^žœ»‡Í5ÂܑÄÊCáÓC˜¬†ßlw»½¦°U#|v~ò=Éq  r2Š9„!^°GB yÕy +ãzß=%\Î.šn;Ã!ëÜm.Öø…Wð¸ëvðQÙÂ7×¼®¬±å ØmHÆÇ/=¡ú¬2°°wƒÎv³¹µ®Çìn‰NÎ/î€U)ÙÔÝó–¬-é?ƒgÃ2:Lö ®+䪣©[!‹ÒûÂ>IöàEJPyÏKÜ R!’>†®^vß—`|î3zŸÀlïf‘ʆnñ–˜6ùì˜^P’žzºrß±¨ |±{˜ñäF›XýóÌD  z%ÊQ)—@Ý9k8ìš¶ïæãbÆ¡ä"Ø>‚² ˜.f¨\orÄŽ“À䃔Xã©h\+UW[­Š »Kxh{ïR* Zƒb;ƒ=£ºÃtn@u1i#Hµ´òñXÂïmòÝ r7 DU¡¿lÜÝ!ñK 8 ¨fS¥xËL€4E· ÌŸ€!ð ‡ÃúÎ(”÷sFŠ#¨h$çB׺#ä䱇ÍYw~>ë\cNÆ,ˆ]'9’^ ¿Gç`ÃYAùZòÛˆ³¢¥K&"Ž˼}¨A?2 Ò_¯ö´5î(B@ê>ŒÀ$Ù-v$¾3.IuÉHÞ ðÚ ÙœÄb=# mõ•39qáË><ç¤t€iˆ½+røŠ¸;§A%¡D,ù(ë< üÄ1@-èÛå Â)dš ý]nX" 6¤e:`1…<àÜÙ XÙ†ÁBXeÁ"+àxƒ"eÈõn Lðí£ñCrÄܸîŽWTé‹7$‘IÖÈUä¥ol«‹‹j‹Ï1áxÂK!(â @M2‡ñbV‘‘7ž äØTùG¥‡†Úm•ˆc6yðBÛxúœö+gƒ¡úl@B®-Ž™-i$aÅ–ðPëá¡0ÒðFIágŸtë´%ðùÃnG–PÀÏ "Gƒyóp~ÃÌ Ð\(ʈ£ë~AíC„Ä& å"èTP¥Ñe¨Ó„gq ‘é}B­ ‡QE+š£c BtâϬÅÈ0Î^L#ÒÊ_#ì¹Å%gp‚oÒ+9¨œ@x?K"ßtkøxF 1dS÷lNH1‰ã8c¨Mè ?Œ A˜¹NºV\¨wvbR#õº*ïýÀßr½Et±-WHAYSÔOqÇ…eŒJ¤Ø Œ‘m*Ƽe…`-!8>T˜ZWü¼%@Œú >:ÖSƒ£]8\ðºR,«½Ù‘´W»;î«‹Ûäí3Õ? ¹¾,^rŒ &á$ÕLpA&VaŠÓd3Z© ›Òµ pæ ÷le¤|^0ã3ÂË7 n‹(\«ìؤcËœ©@¸õS¦R–q\ç<[âTCCåÿ•Ø‚Ó#èÙ¡êÎfÆaWÁ5º†nÉF3r#=@˜µÝÉ3N{¤@€ ¦xŸ”An–ëL9xÉ0Å ¦; D³Fá-”qF͆õÚ€% œ!ÒÄÔÃrÒ¦`1žT üÇÄ´p~ã…oê–C…• =4hû8ÈP€<;~ʯOØ,Âõù|èkL³—‡ŒHS€\Efð\º9‡³K²  È®½ r ôÓ.?§¸†üŠ‹§H ª®`énáßx·€·kuíU·½ªÑ½n²"åYIþ[²e†*[MÝa÷²C2xÐîù– ‡r¶²ØYl*€m“9&¬ê{&Á}&èï÷ª8€9ì;Ïð¼ùr Þ‹a±^Ƕ7¥Þˆ²Ô“lŽ{Y9²cŠC¯j þx)€2â»Z¨œ;^ÉÊu%«DüÞb€I]¬+@ÌkÝÇ…4~P¸ÀÜâ=3×j‚Û¹¤yVf£Å À× Ñ` ɃȨ F±D=Ò”9$àÏ!6{R×ÒJ+æl˸ìŽtY]P–‡Ó»L "›îøHN¥!EáêuͱR-«Zb/Úu&¢[->ÔZ‚tÓ4*/–ze•i§ãΠ¥½â|ˆ7ªÍ—êrNPkZvC¦ qlú­\›8¯½'€\“$ã»….-SÒÜ™X_J³¹Í–fa'8EÄT,7ŸxÍ'œó¨'çòJ”\×òg#óvv 5@•bc™a@|Ž)ÚåISŠmkgKퟟT[BYó üIA2‡ž4QŒþé‚k.jiþ´ßRÃ2T¬Ðñ¢;( EÓp‡€ÅQ%,ÈMP™Ç *k³‡ÊÑSíܨЇ»êx³;ºÿá`Ǻ8+ºùœÜŠÃ3,‚«e×TÝ<µƒ"–§vØùIYNË>é†çmëÅE c©‚†/D€¬¸zÃkI9 ãÄ¢½ŽñSs†’»Ï™3”òM‰Tº ªU‰‚Ó1ƒÕ6Dû±:9`åPšè vÓ¤äîA¨+1tß ‰[·_ùz''áØ#÷!9;_€’¡,û(ŽÝÕNå7‘¶h,As|ÙÒ#öDD¤Lƒ¶å ðóPMíך£s‰ 2Õ.™·‡Ïe(ˆRK#FbZOSï¦tÿ#ÇŸž§Œ—$_ÕÀÜ/+î4(Ñ.ÑÈg‚µ¸ŠI–Ê48\nÆLb3Èd›ô¾:ÍdBÀ´uS¤ð»*MK¢rqV|‰„ ytlðkí—êìF–QûãjºFŒTS‹âõJøÒŠwÀú±ZYx2mNT6Oò0Ò:È”(5+ªWQɹ‘˜ IC‹Ò$'±Ð|·ÎÌ›94gP…ƒ¹&ƒ µc梧–ýme/|JD†pmÁ¼ÜE—©“ÖCå}%UPº‘sïEyÒ'ÓÌÆKr„ö?ÕWLÇ>’šÈ¯×b ip9>[Õt]fãÌøÿ?Ƈ§ÑØ­_‰ùÈR®SÕœ¢OeÆ„ˆyl¨^Ê0¥ 8¶òÞ{N_8 ˜LžÆt¸dÈC×ÿz6V0²§‚‡‡I«1I^Ì­bîôù#€ÁÞ`äcs3ò9–ù¼ò¼ö{™_S¦™ÜwÏq 1¡ìçYM'Îj†µÏÕK¼+œÌj¬ ˜zë=)"×’×!YÉÝ‹ßlŠŽ—^âƒÄ¬»wÕ§ó‘Í^fSÓÌæ¼ãgÞÐm—O“®W@¼ˆÝvVS•Žy„’Ž´â*î¿ lø|>ëÃýÇøÖ¤ˆ9‡/ðêæ­IÙE7—Á¹­†Í©oËY* ›Q ¤šÌMÄLŸ¦zÃ’¡n‡íº?×ÇšIÒtRÈ]Õ-<ßw‡2a‚`r0Oã.hù!ʼڶdblN¢°ÇC5ŽÌZj|YŸÇ>÷¦MÛé8¼07_è–\ükÆ5Vç†YâeÖ_ꃓ«×ú;¼Âç¹·Ü‹À¨Ñ™Þm¯Àa9ºeÃeÚîŸˆÇ °W³Î™tÙLì±R¶‹ßØý£½SÇe0©LZ‡g["¶b†9¹KúØl(&3o•¸Pã™]ÅÖ‘ÃE}ó3¡|¦·D†O‚u4¾ÉÃU]¹}”Ó"™G Ã2½‚D{Rù–WFù­+3Ðp\òNŽÆ4·5”34ómVÝq*L8/—ëAfÌ…º{Jç1øvç¢%ƒ: »ÃµP붃8´¸ŽÖ4Z] 9MjgD‹úÑËm­-~ÞO‘5?Ô‰ôâ¶ €Òi·—£ÖZwÚbI‹}Ñ´3»¡·Ñþƒ±©g8–z:/¬etÜÖè˜\= )àÿ‡oìž/$ÚŠnîñS¶ýò’Z vbžY¥ñuÍq ˆ Ôôº^dZÙŸ¼çVÇw{Ý0û÷#üë|ëõ °ó†2é´› `LJ„²5%Š.•èA¼^›dp7Íà  ‚ÊïÆôQÛ¶z«q$§Ï«†—ÌÞVt.#Ùo‡…‡‘2wLGg<$sÑñ«˜žoâ›l^çi-Ùý÷ð;=“›Ô¡ÓþwÑ*åc«{ï´| _Þ!Èž§ÜIIîלÀ5eHj¨+ÌÉ6ÀDã$°Œ-­0¾M:„ñ~ÛáÍœèDÊ›AmO"Šûk.ûaû€*ÿþ»¾[æ÷°fç-%‹_PdBü0R÷>0¦KTNÙ£oý€K|ÐÁæIï0ýs ^Ð5·®WÅVø7SÐ0Ð_8}òÀê1}endstream endobj 261 0 obj << /Filter /FlateDecode /Length 2302 >> stream xœµYÉnG½÷Wô±p—r_t6 ÛcÀCñfÏ¡ÄÝ"Ù2æ×çEFVUduQ#3ÐAÉbdDf,/^$ÿت^oý«ÿŸÝm^8¿½zܨíÕæ.¿ÝÖÿÎî¶ßžB‡mîs0a{z¹áz«uì“IÛ¨\¯-~u·ùµûy§z«rα»ØíUï” !uÿÚ™Øå›5É™ºov{§mSèÞ‘„ÏYßõÐ ë,%ÞJ%·$’]2Ý9™Nq”u}R¡ûûºŠážT¥lƾ½Í±Úvowÿ<ýq£uî­‰[2bcÊz{z¾éþ½;ý}Cž›¿ýÚ®Éh6*kœbN ú/ðÙ'R”‡aç¤ nVŒBS÷[GGT&×¥ão;ü¬’µ¸É°;±cøÈ‹Uç醧²;&ã»›rW³í{’69!$¡² Qkö¿ÍÙ9ÛÝá{Ôðb€Â=TÒÝÃéØ ·ã1]ã²¼n”Ê."´d4(|ä¸ÀÝ®œÅh >²í—´NÐâ«‹¬±Å:…çÎõEÝÐ ¡øn¾ÛPÑåîl– îµJ½KÛ½Ö}ö¾Fëã¤ðZ$$Û`º{ñùP Y¥ádqV)2 ´^÷J›îyRý(<ÌLZiì®xWΩ{š#-/K¿‡Ù“ª?WUçŸQ1®û°ó¢sU¶‘eÝf í¡èÈ EÐýɉÕÅâ¼Õù·s.‰¥L‚3rJö.åFGOëÍ6R$^'ÀáÂÍ ¤DäÇ®‡û¹î@Û´R.ò™Mv*äN$c1]“n µÊI“©ð\ðHj´\Ògßž¸têÖ§"/À«´§„i?ß”JV*Êi2dµÑ\HµÀ¥ÈÙ®„ù3°ùÐ[6O°"Í„È%ÅЉÃ> ‘¿väb £n>ì<ù²²g[X¶®@­êÙo8 Àª†½u¾W.׊p‘¥bdôÑ6{Ói]°§þôz»þä}«ÒÚÔ ë“ PhTŸ±¬ðÊ+§,ŠãYTʌ҇.Qd«€ng¼€™ºíœ¿•_ýYº¨Nˆ#ØÇ΀uXâ«^âk4ºOˆÒ/SrÒ¡nC“ÙŒGHV-‘öLHp={,F­¬kiã>6Á=²Håš°&èèëZú¬t6%0Þ“ëÑ2%™ÉÈ|B\r„Ú ¼TÊ4:ˆŠ=ãvF.q“ûÝ"5|:1ÆÔºîçæx. ž•ä‘FÏeIk‹T³Öy¼g&«5€=.½TRrÑ5ãL¬Kh´öªÀ£5'ë*Äëž ÎÉ@ùãÆS“®lK‚KÙ'ø{D¶ÜQ¤£2Qôžî›ô˜@\ -þ‚ŒYɼ ­M¾§_$Øìr2hÉ-y¸hS³(“)ÝÆ}È•¤¸œS‰;&Ê*~AžçÕžƒ Îç¯E8kí|-¯ç$ù¸˜•Hë‡ç™7Ý—dC•#›Ò˜lÂ¥lÆ„¹£Pºèhàv@=ª8j5SÇ¢VºÕ~þêV°M^s\\ì³®,ƒy´è‘¥ZLô«ê3òž*½KÕ —4Û èi6±Íl£ª„Ktc ð6f½Ù„¶`“èGÖÂ}«šž£Úž35t#>á{ègb].Eí§©Gë/ï<¨‹Bÿ›Ö3¥¡x[ò7+¤0óúz¦‚ ¡Rz1d°]¢û‹! *uwºK„"ðÛá±T *ÛÃ˦P-˜àÑ8&*ì¾éYkZLåÂÕv>•–ÏFS:ŸØ-*ñv®¹ËC"ÄÒ&jÉ)Pgh‘‹Îå0ÉŒzukÍÞ®RÒ›¹$;Ñe®ØF†o¬hÔxf$Ó€Ué6®ôc’.Q«ÂÉшUTžEOèÃm ÃqV¶^¨ìh¾âH*†šCÛoÎçBÛ¬ì¿Lí©0•ÏKb_uñ±#øZKìçCÔfích1ó‚ëÖ¡· <æÀj¯#‚¿¨Ï%>bäö ‡/áã×RqHn$†@3ÒnMèL®X~z-ž‚ñê”ÅE Úƒšõ˜y*ªŠë'âô‡÷¥²Ð«õK.DS(-ä§¹få)@¡ÜW1i/(Ó§ %69ÊoÔTŒ„®(§AVâŒRKÒ®òº²2ä¤Óx0¡‡ïø(‡ >fÑ’`èy¸Øð$šîßf/HWþ´Ÿ2~cçñ kšA×õðÀûëiÐ}ZY}œV¯§Õ«•Õ_Ÿ]ÙiÕO«‡iõaZݬÈO«‹»ï¦ÕóŠæ?Wäæ» âÛÚØê ?=,½[GºÿF2{~‡@F·ä_ ê û-"ç\˜¶$#ä Ão- =ðš!˜È/%ä’”¬ÃsÎ lùåÍ{$èAλ„žÞ ýb:žvŽXκedl'9›³ÊPdA%Rûâ4ù§}”¥aŒfèïæØ&>Ìñƒª§ôø êSobþß=¨ŽV‘êÙ*1‚ÅÄ–àá²/¼GŽÁ> stream xœµyXT×ÖöÁ‘9džÊx"¨9jlQcïÆ»b¯HoÒÛH‡¡ SÖÌÐ{†6 Š]±5Þ£‰Ýhl71šÍ>dsï÷íÀä>_îÍýïsÿ‡çAsöÞk­w½ë}÷XPÝ»QÂE«×Oœ`úß~°?¤ÿ¾Àk•µ%YBoôî¾gÈèbk~ITÝmîG ,,Ã’G…îòö ·å>ÚnâÌ™ÓÇÚMš0a¦Ý‚ÏÐ]î®v«]Ã}<\ÃÉþv‚Üwy†GÙšã<ë£"""Æ»„ õþxôX»ˆ]á>vë=ÃÜxó÷EAÁ’pÏP»ÕAž¡E9,ܺ0hQðöÅ!Ÿ„. [¾L²|w„ëÊH·UQî«£=Öx:x­õöY¿kƒïF¿Mþ›¶L·Ÿ1sÖì#GžŸÐ{lŸq1ã?š0qÒä)S‡NëeEQC)j&5ŒZK §ÖQ³©¨õÔj5’ÚH¢6Q£©ÍÔj µ•ZH¥¶Q‹¨qÔvj15žÚA}B}D-¡&PK©‰Ô2j95™ZAM¡VRS©UÔ4j55ZCÍ l¨n”-5ˆL ¡hŠ¡vQ=¨ž”=•LP}¨@ÊŠ ¢úRý¨þ”5%¢P,õA ´èiÑ‹ZK Fu§Ôƒ,žwóéö™`¹àN÷©ÝK,í,s„´0’I_dú2û{°=|z<èYÔkV¯{ïí3»O¶Õ‡V™}ÇõMí7 Ÿ®Ïþ;û_°ž"‹*¸8Îîfo½·ú½WýÖÚØÛ|g[3¨Ï -ƒÞ=¸~H¯!wÞõ~3ׇóÏÛ ²s³§ìYû1öËìíÿ6tÙÐã܆¾køë’F,¹„WXµ%m3òËuum üжUlj¾23b@!KÃîíßÙDmuݤbüérõM#¡UY§:Þ{˜‘Þj¨ÔªsÔña4Ðð$§–kd · ØÁœ?ݨýöÂ8¬jQš^‰¢ .SZÏ`=ŸÃ"K|ËK„V|+yˉÞu»Š<¯BÝÐ —ÑNRXFjPŸÐTA%Ù{OÇÞˤpHŒVÑ?_;sùRî¦õŽû§ÏnPPÕ2h ÁèßWì«[ ÁÑ%h5#ºù†ÆöRKZt苬”íbsVÚ,Œmëüþ=½vêëöÔ=VÛi•£2Üa¸kÉêþô>•^á¨T¦H±ϵÁ,Ú¤Ô¦fAš-ä鋨#í£Xžà«Õ^Ó[¥ôi(M) B«°ÑÏÀ©q;G€-I™ºESMpæÓïTGWA dkÓ2sÑPäeƒ&ád\+…-$H¢]LµiÐ^'‰ny—èHôîôÝFƪm+©ñ=j6Z#ñ}tîÅÂWE< å»±HE×k2p¨ŸðEôÍ+·OÇñÓ$öEéÕËpƒyôÑ=ü×ÞÍ¿BxS#õ·WТ7ÞJéÇ\˜??DˆlŸ<þ룙_aAžx5¾ÍâþBGef½U¢µôË–ñËo™9\lÅ+¤~‚Þ¢ú>ª½/àý/‹Œ|‹ûàþc°îÙŸ?D=PŸ@"‡`G֜˂‡„O¡šáTÅÁªÃGÊöÁA8 ©t©tu$•Þ°Iâ,qrÜ$F/‰±mœÑúÌkÞ¯!Ô0Pôü úŽÅîhžˆÖ é? 1br 3^ ²D—Œ‡ÙÍÄÀ¬Á[÷ bѨmÙó)²x<Ðqš8PSÚ21J¤‹!S*—CB2·mWãÖã‚­è9vÀSñdìBlÅ›h¬ž·m 5X¿½ŠŠî½@óùÞì7!ëZ¦ÌY,ºÛîÓÑ=êVM%TÁ eÃïá<‡Î¦ÓcZ6} êõóˆE¢1/qw±èÅ\puŽ0Z\È¢0ºæÄ±šÀ\ÿt2¶Ä}>™¾ÀÝS·?XWjÐ1V<‚=üßW üjƒ€?Ø6„ÍÌ%ÊdŠdÁµoJ±ÄÒ ÌD–µwÑ ²ÙDa»m;N‘‚ ’m£Ó¡Œã]…ÅHg*LÆâÈqx50x†Ðª-­£5÷½4´Ícý+è.tta£›ÍA…Ö¢õx0šˆç‰ñ€¿Ù±fxð{;@÷Jx®JN,>°6{*Ì,ˆtðÞ¼~ÝRP¾¢3§c :ë=÷Qá„»|¿OY¼ô_ç?+¡='XŠ^TÇ»]š=3CÇà÷pÿ#C*ðì? ¯a´ÈŸÅö4øEIÂâãü‚Y¸æ1¢Q¯/î߸Ó2e3a9¤o.Qý 4ä1Ún@´r‹íŠó†°å’…âñá ñ|’"ÛÎÐ=¡_äúMPI¨pªÔ 7¥;š¢qPµ±‹ƒ0I,Û/tu˜?¸‹ß^yûp è&š¾aQ7‹M82ó“èÐo´Ø¬>¢©†}pö™Éb7½@™Û(FãI>þ:S* §PE$@T«/1äÕÕù׸p¢› Á{Yœ i;æ#:ÜæFF s»mÛ~ø]ã—u•VØ ½EZr?<íd'_z,ä7ˆ‘ê!ý}NWÀÓ}?䦢ŒÎ€{ Ñ0l( ؊ç¤z~Z©u½!ô(Š2„(zŒ<ÐfV/¿‹˜­>îs§{Ÿý&’Sä«Ò‰‡”(1¶¡£!%7]­.-å4Д”t=¤*#Ø¥ÿåË“µ ybß:,×,Âèr—åŸÔP¹ÿ!ê–>Ñ_铲AL>¤—Š47tªâ9…<1I®ð¬vƒXR=+Ïe|Š‚ª$bÑãºjÙ—q$?‰1I‡Büf~™öاa (–r‰Í—ìsÏ&² Åh!Ýœ–þg¤½T•d>Loó|¨£Ÿh¥^â•´èîŽEIA+ðöt‚0ζú ¿<ˆGþKÂñ«ÛtjØâ5xž„]±+š‚'£õbQìu¸S¹ç<é©Ô¡ #𡳸ù*DPº€΢aF< ­ ªfØ–3’op û>Oh¼V}í2w6t#M$ ×2xZÌuH‹F´ÇhÆAëc߯ÿÄ6jrorF¡b!]O˜>æ¨:›ÇãVOÿÉS¿QÁÏ 2§öÂWÐ`ÆOý±°…¨þÙS„j¥zI iw:!’|›H£á¹–Fú“äÌc¤=¢ñÈwí‚—ÐSv,]8]~¤•Cßtþå(&‰ñz.L@c9Qä8X]s‘±Bëä·!HbŠ_›{›«4E6‡Äås:#«¤ok;#SHçp!¦3ß&'n†Ûg¡ç(Ìg®–ñƒŒ¥|œ€Ÿ‚²ÙåÅ®˜4A¸2Pa°S­6+‰&Un8DB’R.—~€³lpwT'Ë'ÀÕØV6C W€jƒ2‚Á]`–ô%H“åû£áÙdÄiRó!Ò²ÓrL#±cÛ“®ûô˜-9nÌo0m+!ÛJ œ4‘Û6ªôQäg(Sã'àl›Q¨Nž§Ò@ºmU3èÈ®ª­Ê0€À®]› H™Ÿ.Ë ÈŒœŠSmÆ"]j9gZ×ç”ÃfµwÇÇ!O‘燬ñ/6éqÚdÓ95é?¢F›ŸpSšÔô+Û|КÏN$ƒ>Úˆüô•O&>;¬·n¹¹ãš~õ:ì'ÑïÙ4÷*×#À”}ZpW|&t½.T&õ•Jç#MDP³w“Gó¶¢ÀÌ\â¸<@]Y]¢«ÌK­ß©W5Ë­æØYIb/ZtàäVÅ'ŠUów…ngfÖ‹ÐKÙä ÞWz„IA3Ø‘ôØE»œ¶»5?ÝrÍÌ ­RòHøáüt-C ²²Nž¸kÒ‡! ?R oX»ºôaF8$ALbbr ¾‚[mеÿBÃ,¢C4òr\–‘” ¶d´›„ Iq7ÀÞN!Ho‚ÝiM#Õ4ZŒy¼Z€ö¡¶vïÞc•ÆÆý…GL°Q¨BH‘7kâ;`Q¦ÌŠ'> &1>U¶z®ÍÜ“rH‰3l¡°0[g~Cµ\»ÁQÜQä/@­:âð³6ãp¯ëÖ*w›m¥Æ¨®„hQVtÌi‰6% A_Sÿé—_´É’æÇð%%Å›”l­úŒFOÆz³ª¶+€(Mx cn~‚éazäÕÒ%³b‰Ìêâ/:u–¹áÛŸhµ:« ê#:^زíÆà.15ú%æœ .Ž1QDL±È†RPç5Ÿ9U‡ 1¤Â³ÒM»ÜÀKéè´ÛßÓw8wEXÑWZ(!½eI¸Ò]Çs\ùi`¢\6T(ý ŽÚÅw:€¯¥÷@Áw\½Qè­˜@–ô JçŸTš/šd«¾ä/!tñ@ÀO&m[y鄺Þ±E8j$õ1ªŠ¢‰±IT)SF`•  ½À©Åûø¥ýgÏVpVüZ2aêŸ5LJl˳8ƒÉ@ô@,š~¯ådö%•wç¦@<RQ]©+®ý|^óǸÿG˜Âý8Ñ<àå(×Au¨wNN"(ÃÉ”\àø ^ÀˆøÍ“ ©b«_Guö•]5_qW€dm£Ù$½‚ŽÁsßi ŽÃÍ6ï1Jõp¬Kÿ ‡#Ub¾QM#Ùߺ¥Ç§¼Úæ‚6+-©Úúبۯ »ºªIû9¡êfø 4ý¾«øŠ®ÎÄs…!ª”(Ô~Á†d ü½E‹]$ÕÄÀfçšÉO†(_'Šz*QÔ?•6¡nD”…¸®½O’”j—IÊîAí@Ôbî¹Û3$¨žÂ®‰fku§Îåûf—Óhäo3íÿóï!ŽýéÀF—ÊM¦5†ŽÆ,ý0 ™}í1Ô1¨¬;v¥ X”Òè€N€+Ãö†ìWœ%â­Is¡æP™qoý)B-±F§ÜhrÎ(æóECªù™ÕÛ6‰MÊS©#ÉFû× A§*T•+Ô*ˆdÚKÿ¤ÅtzªZ•&ãǶ¿°ÉNP«2)€ÌR1Œ®‚#¯ B}TÛ•¾à Û5> ~ ŽÁâöytæÊÐB½5qŽIWBÍ ëŽÒÙ 4úa0¯sð`1NÚÍ¢:¡^ e/7½ ÝÇ|4÷Ì z3†z«CHPš“¬IMRÊ’•œÏð‰ÛÀ½6¼)à(\Fu‰¤²mz¥Qwίmžè‹\ð‡Ä<®ÀKñ8<»Ù5O@KÐ ô!šŒœ8ü þ–ýú <4âóûаÅ8—à÷§$¶BçÌd‹¦<ÈÒ[ îWž= Eü"1ô·GÔBJ!— ЇP&¼(¢ª¦PWÑäU¿ù“i›í9LÏñ¿oþ™Æÿ t‡MÙ[‰.™LÙctäµE «,š+D½u÷Õ£¾Åï‹ñÛß™ø?- TÌ¢ò“öXˆ&ƒývG <Ùäå±[9ZîA9‚rëêÖˆ¯Ð¯ZÏ ý"E¡h>;^•W©ë ⬼òê}À<‚‘áÁ*¿ØPqrBx;ãÁB”뚃ö+Jy~õêͦ˜¦ÐrqãžÆôÒUé UIå©RH`¢óŠrJ3Ë‹ê<"œen®œk½«VÌø%K>vÖ{v‹ãc£|Á‡µQàŸïiŒpˆöswfÑËÈ õüùÄ­†¸[«¹ÍÕë` áKHQû¥í6i“áø*;bɉ“‡÷6ÔŠÏ ¢î0uÓâm£ÅWRæ¶´èКÔíköÿßmÔtpvˆödÐëß÷¹U[¸DOê{RZÖÄt#²œ÷úûÊ¢_Q8zË¢<Ê!O¯ÍÑÔ€˜'¨»°$l%~Ͼ¨¸õ)Üb¾ÇÂx$‡ÿò hÔ^33áµNC×¥/2M‹þVDÔTî½ÞàË`¸ï÷Üï}ZV Ì­â{Õ/…¤•X¶Ø'*¶Cò‰¸çñwl¢.o¯ßXJÔt­ÙÍ¢>o­¿zûÉ•¢çè~ ‹íL~–-#D¦ïJSú”¦‚ÐQCWš–ËӛŢÓø½l]hY¿$8$Xb¬6”Õ‘‰Ô*1¶M¨¶>Sr}~y3IÈuôoÃâÆÕ…§àœí§>½…fëñ § N-Yn§ýC;Íþ*E¥JHá|ÖÔ¸íŸDü•`údû'Þ çÊO$|͈žW¥Ô¦T{•…ä†bo[4=p^ú±ÍܺSŠËªFUN2(ºÌ©£Ùœfª5¹™¨µÚú“Æ]—½“9ÐãΨ›Xt^-¿7]GRrŽLø¢où0sVÜŸµ¾YqÅTL/S^Æšòr3Û¤aìh§¤©+SÃ!?„+LÓ@S¥ ŠŠÙr&èìW/?%sµm|÷š°ŠÀÀ°°ÀÀŠ°ššŠŠ"O½HÖg–¡M”õemãÛf²íHi¾÷)@S ëчPB`™£,“ƒÂ‚‰]7”s÷î×þ‡É×kØoÆ„;= ö˜¦#ÁXAIZ.t) } ðT³©ï—(¤ÅâíÁÛwRO¸«jaŸjŸò·FyM_>}Ó¾eDÙFFË#ÉsÕêóš2¢kT5Ïyúd¦å£™|º šÕžÑñKێߚ̰¤Œÿì¦ÅÃwÏ|0ÿ–Í6Yí2Ë…Ø ”ùòR&Tè‹ÝHck‹²/åçefÜ"öšAîBiÌl!ñˆûb1|À$‚ÓáÃp(‡;AÃiíé¬Siå^43õÛ»e|¬ÎúáÛ¥µ&¥5y²Í¼£e}pIHHp”/×ܾC«NÎÛЦ«‹™f<ý¿ìCŽ[þr¬[އD•ۮçó;Ùµò=PÌ|úY˵뗷,Zï±ÃÁ‡ÓDz_6k…+̳Ig'Œœµ`|”ƩőËMh 5~½.pê†QƒìZöY~wÿ—Fé!Ï.²,&gå>f¤+‹úέŽ<klÌß2sꢋ÷ÏÕ]þæHÇIŸ=(燓£\‘LFš6SüÛÒ(†¬Ý‚´,Ü’¢>‘¥ê;õ³D`dr¹LÊÒ(ñ£ÎâÉ€=Ïó‹q?lß‘4Yš<#çÉçHtž;ºå!<0aKªG=ôè²î’é_BcˆºŠ ®"Šøèo)”«Ôá\´0TjYæÎK[ <€>v<¶ÆÖß}êhMK­8gKkä^`¾-xý ŠÇó-žŠWâ1x2Þ×"Œ[/g^Wf Þ PÄä¤@ —D%ö[1Í}|Ø8bÜw±¶11\ǹ)eAÃøVÆ—–—ÕžßØ²`<îµ[pXø¶ò·@7é¶1µOiŸíã¬f/‡íwïꞢ¼Œ¬N£±T«Uq+ƒÖ8;Še2r*¹¹sònßFô»ˆ‘\'5ÇëM¢}Á‹H´v þï´·ÌRtWN@!×ø¸ša†b‹ ÃÄÿnÈÛÈb_’šç_¾‘]IÕ\’<&B *+¶XFFÞCäpÎ"•P r`Ïá’u4)-"†x¹€—£,Vß.—ÐfÎî ì“8ð:[ç ?PÀ¯hsdÓóMÉä&eKã䉉 ÿõï Sã x”¶Òì¤Ü‚´œ­y>éÛlôÍ÷QÖ}ï‚®³p'õŽÏßÏ,rXâ6ÞoIê\˜ óÓ&îŸw`ÖõÓ|ùºìàwuWÓoÁm{ã묬5D}/½Ïà<\†+Y§JQ¯¯² PW¢JGål€y°Š¨Ù¥Ò•±c×8™>_UÒ4’†¾!@GÚ°  çV¯œ ~ÀøÓ:²Tk%Ó^HôKÂDÎÏt[ðö‘¯G·~ôDEn“éNn¢7o~4ZƒœŸvÜÓˆn²o_£ ˆ»p ^Ù"áÄ;Ø [.øhÒ†ã -nÈÛ_U铬•‚+ÿìTÓ9`ž˜5sö¶9W‹ñFì+5]œ…ÙŠÞð´°-´ ¦¤8'Ʀ$/'ÆÀ,Šª¯!bàËQÏ/’ùŽºOû Í~6ïõ@¦Ðô†½Wuî ’¡{“Ï|8bžÃ<_}dQ§¯9ñØ•üF`öŸ–LLP® qìØ¥U%«Â”)¬JQA"#j—J3¡˜;(¼×´t4²$ÐÙe~ñyqCªQ{™Æ`]`˜_œó„çË‘²zúô'Žl ÷VÝVÖ‘`4ÈÈ»’ ¹I2Œf²SL¦{·Ûd°Z‰±n“«óJçÑ+ãH~É}FL’Âôñ¾Ð¾‹Yd XV‘‚ïaÙ!°ºý€VéÑÀûÖÇ_î0¢ÈÇ&a³ ídQ¯™¯0µÃ%ÆÇ›C[h¬>¥Ž(Á¾_<ÍÏP¤§¨M§Š#’¶G,wØ™éX–¬U’La˜#ÆÇè(H.ÈÔh3Ҹܢ¦Sw¡ ;³¢Š¼4°ýJœC˜k˜‡WÈN"·×ŸŒ>¯%b—8ëúbCEE´Á7Î'eçÔ«cPw±èÄüô=™òn×›¦ñŽ‘üw4î?Éd~þ‡“\RÍ-¿ÿtŸI"g+ˆ lG6è.[A£ Ô¯ñDE‹l—ž‹u'ÿŠX}Qmvóç£3ð<³8„(B¬CÌâçHðÝ_É{¢Ißc'j_ ^[#v0¨þŠ]d…QGà”0·ê^=): «\‰l…íÄwm‹öpØIŒ=ÁÈ~L×ÓŒ¼®<$à7š>·¥„Ôáã£GýáMa£Ïž k=å©\`Ó†ô``Æbf ¦þ]nD^z¹ˆëL—K–ô‹{-Ÿ«Ž5§¢£•&Ï-S‡V%÷ ¦éN›hžkÏê;y¾s´ò?ÿ?Ì6Åvy2ìÛŠPÿîl›¼Þ=6Š opÕmfîAÝ¿ïcŒ,ïœ"¯5Ÿ¯hH ªâ<”Ia’¼˜’TÆJ¢ç£ÀÜ ½»åÑÆžW{q=»O×õî¡ÏîÝûª®wŠú_V~ìendstream endobj 263 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 329 >> stream xœcd`ab`dddwö 641ÕH3þaú!ËÜÝýãïO/ÖÆnæn–µß·}OüËÿ=J€™‘1¿´Å9¿ ²(3=£DA#YSÁÐÒÒ\GÁÈÀÀRÁ17µ(391OÁ7±$#57±ÈÉQÎOÎL-©TаÉ())°Ò×///×KÌ-ÖË/J·ÓÔQ(Ï,ÉPJ-N-*KMQpËÏ+QðKÌMU€8OB9çç”–¤)øæ§¤å1000103012²øÿèàû)Ù½àûžßgf|ýðû­;Ì?Ì¿ßý´òÜ¥î;ï~3>ú­,÷»õ¯×Ã￱}ø}‘õ Û÷|¢ßg|WaÿÎq6ÀÅÅ;à7—<_éÂs¾‡/œ½íwÒtö\7¹å¸XÌçópžèãá¹9‡—Å|zaendstream endobj 264 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1482 >> stream xœ­TiPSW½„¼§"hõÖå%Ö½ZÅm¬KëÅŽÄZÀ‘  &aSQ’/AAÀ…JâÊ!¢wmZ­£3µíÔÎ8ã2êØ©þúsí´,v:ýÓýsçÞ™ï~ß=çžs" Ã(Ôš¥3B{vÄ‘Œ8*@-Ý}¯;<‚d$o¥¨} crF"2†1YwªÍ¹–ƒÑ¦š”8Y5cÞ¼¹SU3CCç©–¤ë-)‰:“J£³õé:›tHS­5'¦èm¹ªI 6[ÆüéÓ³³³§éÒ­ÓÌç“§ª²SlFÕçz«Þ’¥OR…™M6U„.]¯ê}Ü´ÞUmNÏÈ´é-*9Io1B‚Mæ ‹Õ–™¥KÔ§¤¥²šD’5d-ù‚D‘hC–’e$Œ¬$AB$´DNÒÉ=FÃÔ,(x [(óËGËsä×åX!–‹—Á/ʼÌ3Tà\TÈÄìâï[oS™z]Âj“àx¥ ‹ µlW9$)iW˜–=á¼éj…6¸a?á¸4Ö†ze?ú/V»wÏhÝJ-ëužwµAÜ´»ß–°ÁbI‘OâeNàP\Ceb*šy3ëAùé3éx:îù|‚ßîб6e0Öƒ_]{Œ¡Ì $2LçÏšuÆ[ŒgÚ½ÍgºŠª%ÜxgçW;ÔÃ%»·7S4âD¶·•øøÚÛ>ñÝ+ù·NîUÈ›‹Ò­F)‰ÎH‰qÎÞÜ—DÝßKãÿðõé­WsÝ®¾Ø[›“!ä> stream xœX TS×Ö¾!psªB¼U¬ï^^[‡V«8V­µÎ­(Zµ¢‚€È! “ƒÌ2C¦0(Å:S©ÔW£¢¯®j‹­¯µUûûº¯=üß Sèjß{ÿZY NîÉ9û|ûÛßþÎQöv”H$’,s÷ð˜ájýw¢ð’Ho'üE¼«…ƒÏÝÐp1nß0~lºüŸ#䎄­£(±H$JY&W+‚•.“ý^s™1þ›S]fººÎwY"óWùù„¹¸û(ýe>J2uÙ(÷ òWª]&/ T*ÃLŸ=ÍG9M®XôÚT—è e ËÿH…Ê—ËJy˜Òe­Ìߥ7ºi½–ÉeáQJ…‹»|—¿"Œ¢¨¹aKå[×G¬P¬ŒTF©¢}b|Õ~î±»Öú¯Ûý~@à† !¡²-//x{òkSߘæ=ÝuÆÌYñ³çPÔ:êê}jµžš@m &R©I”µ‰ÚLm¡> –R[©e”'µœšFm£VPÓ©•”+õ.5ƒzZE͢ܨÙÔÊZKÍ£ÄÔKG ¡†R/P#¨‘ÔbjåH9QRj4åM±Ô‹Ô›hÊžJ¤ž‹ŠLv±‹°û\¼U|Æ~º}‡ÃD‡"‡_èLÉ8I3Š)cž ÉòóЀ¡Ÿ ›1¬`Øóá›_˜ùBýˆu#ŒÜ2òÞ(~T‡£Ìñ‚ãoN‹ö9}.ý‹t©ÔOš&==zØèm£/²žì¹§¼x@0ŽŒÈ f³Ó# xXÆH?ƒÂh¶ •úqKé8 •Õ¢þîð¶`]R‹(Ž÷†´ôÄã[‡NŸ-‘¯ãpô.Iϼ:ë¼7ÏÓÐO>8¶“~öò Љaz÷V™ÁËìô­4–md{f ­,8Ò_݃}CV½Î¿JÃ&9{Åxü ê`:×ÞÃb«hm’…Ö 2¾®[KKŸ… NGƒÃ¥®;–mWTò«p‹¥ Žþªa©—ç®÷gódãT3|f}b‹X€P²ã´Ÿ°=¶Ÿ6;bé÷SÁì¾ÿœ8ìƒç°KÜo?üöêÕ7¯¸¹Ns_¼„ï‰]КECxŸ„l KkÈQ#ÉQ_¡5 Uó/ãDíé0oÁ¹ÚˆHÓÿ¸šo a2¾è€W+$ßÁ0ÛJ XM“­°Â ÓÍp­/M¹§»°ÊÙ‹Î^¾uaéì)+ÜV¼øÍÇžhÄçXRb@ôè{ÂÈ™?þu›—:4ˆ—>ªÏ(ñÿ]R»Mÿ.©ôÀïY Â"¾$Û7³”7vk£èøÒ0æp90{¼Žy,éneíphÇΘÁCÖã‘XÌÛNrË,:l*‡àÂV"cP ŠõçÂë}k7 ÛO˜Š¥xÔ?^»k'[ª <ñÐ[6€<é•ìÏùó—¸]ðÝuËç·O,ZÅõR+Ê Þ=€±œ°l' ýúÈÌÊl‘ <} ¯ ‰ï’ôF ŠæVb½DÚ Q0Fâ‹âš"c%÷°ïqœ/‡Ç€7dl¦cPÔÁfdÐs’ÆÔýA\÷Zc%¤uÕzPQÁXyŒô(`-û‹?À \fdyt bŒú²:}ÂÑy¬V¯ñय़ì] ÛÙèqw,° „.µ&(‚p‹ûv ¶~DO-0žœQ …ñôŸÆ>‚!ëObw´!r [<(³Ól@o¡û«Æé¦Ì¡æ1Ò'pòYevt–"',ûÝ"ôSÛÔøý%²ˆ,.3v_l#b¬;ñIª‘EîÕ¦dpÞoCrü–r~Àôg±ßiyéöäÏã7Û½;ØuûÆÂ; .­boab¬á_—Ä!ECAYfK×p6ÃD¨=³é‹yéô?˜5„ä0½‘]3ÿ¬YñžIpP4 óláãy÷è$ÏŸÝ+Q5äŒßàtzʵ€Î[wuU C`°NËéÜ7ìQ"f:SÓ+Ötö+d üÚÄf†Pb:é²RÖHË{Á=ºÐßÉfÇ B¢MTIþ8£€žb‰ìä¤1GБý-&ëiöžÛfQµ.–’ƒ4 :ÇL4áÛX·L¿›Ùw¸$øaQs%ªB…z–7À ˆÍ¢2!Q,ì°î` ‡ˆDjRº´:’¬_…*ù6z+>í £÷ÖÆŸL8¢¾œ^ˆöÜ%F¥§øano4££·Ài‡6º¢šl®D1?7 þîÊVfi#çÃ(« Â\óMfI–‘ɤs¶´à!ÙÉE±¨µ ¬²l#Óò óc³ÓyËÎ.p'H«»&Öú±îbL}òé³''+™‡PÉM_âWwN@Ke†¸êRSAK&‡ò33õûJ2‹Qbþ~&t9/mÅ+ÒñÈ­SÆ­¼ìö”“ªZPG^k#“HªñM R"Õ.u@¬JFŒ»ïÁÚ¾n Ù|‹ê„ 1 D¨Ó%uýõ7¤_ãëø%ßyâPÛ¯î¸G zûßa†âÉxžãàgû†ôfK…Bù¯adé êËy6°‡_oÉyÌà0 üҠDzàöG*uçÒÑHE __ÃIÛ|Ž>ðÒ 6ÀK5Û—:(”Á[í;%èVyŽ1 Í¢c÷ÿ ñ–á øÝ©ê”PgV™dH©œ)ckþœ…4¼ŒŸgïAHçŒ2óãaÊÌÉGÅLºB«Žð9è×öøŒ-Ìæ:t§"»ÄÂn±¦0”·'#:…KÙ¾1s—]ÿöcHà%ÃG(‰Ï ¬ÔV#¦ÚP^ßù ò‹×áñ³ððL'àþXÞ—ÕW,Ð`]o‡šv1Ø„€¤°Ô0Âå=­³ (#wOµi³±÷¼ÔÄwk%!ª¾ÃÜëÏ]/DdJ w\ÁÙñùÊbÿœ”Ü䢔"TŒJòóK²r¿‚Ü¢³Lfwý§?ÖJš }”ÙHôz¯6)‚à]›Žæ¸ ž³}f*gF¡?¤ƒ““ƒù’¯…}|·©¢ué(Ö9Ȉ*9a$mÌEzTÊ\°u6l”ôWÙµ>}ØÏ§_O±H{˜,fBÙLZÚVì[¶ó%,šÒÓ¢¼þOB«vt´ÎTÏ@ˆýrÉF¯y‹–¯»ÑõÃõ«×¯´môàœÄÃvPÌ77Ù„š¬pļkãTM·Vaýsä™4¬éN/,ÓÕ"熢¬C¼[#˜ñWÕjºåº¾F5þŒ6‹Î[ š¹6²†JÔôêñ‹xØ”IÄŒx2XÛú ÆJ-urzL õÁ¦$9ZŒŸŠûšÉ¼Ä–t^<ç©(xÕšžD³oµ[ Ž¬X8ª2awì® ÇÇðQC8¸Ãcå°/Îgg!…!áTÂitGèZáÉâ‹E÷ÐmÔœTêQ´ì´¹£å‰›7F¨f¢€#±–k,î‹!×ÚÊF *­­ôOQ··`W³¾ªÌté-÷Ö¢³¹Í“l}í î˜hó$Pm³ûœÃ3¤›EDT2H¿\VÓ L烇—<À+Yšní Û¬m1-híÿIÿplåæÍ;WN!¹°ªˆú,ùäü%ØqÉ©þBŒµk~taýÍ1Ò_A ËÙM>­g?9~ü̹£Û7oðöÞÂÏd³2)Ûó]çÍ®†¤úXo(ªÎ.ÎÌ ¯JÙ˜òª¢úª˜ÆM‰žº |\a`åļ±|ñÜåÁ¥1¼S‰qIQ²q(°DQ°Ä ½‹™9ÏÖÂhý¬ã«õ©ê¸ø<ã Ĭ “Q«çtß«,>=©Ü8p%›ôwÇßßæéµÞ•_FƒGû·–J3:Â|ýÎ=<”Ã+W©±ÑïïÁ´ôÔb‘P“ܨBQȹ!YeH¹Ìw1—«ÿv¨)%[$ÓñÉ»cåèäÙË(?©ŠK¨W´…Ô½ûØ ü¯$ñ=„aÛëj_DFÜ_ħm|z™–>2ìMQF¹<*J.7F™LF£‰ë/=§3W¡ìªÿUëâmPÇšR¿ˆF³™-;ß_(÷Ì®óã|êöÕUèÊu!}íqÆÜ’¦î°Ìw…8Hææ7]WŽ&ó¾‡ÃóÞ®`¤OTøù7£VçÓm߀¡¥o„ærYQ…©ú> c{]lZ¬,™ómÞTäE\¬xñ¹ï\õE$q±ÙºGÊ’t[ #%l×nõù,Œ‰Có ÿ>Í–ˆÏÅSàY/wÜl2ØÖ­õäÿÙqÏ»ôç·]§;D÷çs¨mùPúwT8%|Ú—‡™ƒ¸øb·³ƒÆ÷‰Ì‹ƒo1gÛa˜õc½vŠ„ lFC4R#&¤7§ô!;$ª>ö~Ó‡ ðð®DÚÖu¤õHUI¬‡µ’˜~Šßþݤÿ:%M¢G@Ï”ùÆï’sšƒòŠ`ÄHï† ™62ÊŠx²Y`µYT(èÄ‚œ”Ea¿Z8¨hoüuòÚ”-:91.©W¶ƒ§.7©J‰’ˆ±F{ˆ±ÝŽ·§¹3€rt•)ç¶.ƒ]ÍÂ^gB|&}³[ŸXM,¬séµûõYyç >û01¸Ù^ç°:3#OQ‹òÈój”ÓlîB«è7*þõý½ïÅ¿Qw~£„+lVkP~g`øÄÛxºpþÜݦÄrCU¹©(­8)+=ÙÚx1÷>Û1k…çúU|°ï’õ-âñ®u]nñ#½ç‘ †ûlû‡¦OÐ9æÖÒO±_±mepVo]¬$uzרxÃzS¼v*ÀK¦ âC"öj c¤?[e—;Iÿtú½õk7®qõ[TØÁçääsÍTÇèÊ(MÈÌG뉸ù껇œôº±ýâªkQ 0ÜíªÓ}øyŒô+a•ðw¶LS—˜š–šÂÉäqZ¢8ÉñEñÅц ŽäqÊØhMXR3q¥qe…¹9¹y\ƒ©¶¬í']¶8¡8^¯:ˆê©¬ª\_ZoD}†2 Cô¢úë h‚t6)ž\´¢™à‚”Fr0å>¨å¿gK’;Pwl£·á} %?ˆ“Ó‘(MÍà·ºðÔ?•ô€Üþ%pf˜Czp×f èÈ¿@ƒàÌ"ïß(«V¥ØL96ÒÁ)I!<®”¨‘²©";g>W×t¤âî_ïXêöÖòuoÊW矗Dóó¢õÊ2•F–´kÞ—+ÀzbNúË“E?3"±PXVïÒX'1µ ã†Ú«åǘ‡· ¢þµ9Êendstream endobj 266 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3830 >> stream xœ­X{tSe¶?!4#´d â=§"A±"8¥ RdJŸ´é#IÓô™¦Iš¤yì$Í£IÚô‘†¾Ó–¶´”VÞbkµ £02 :ŽŠ³f®ãc¾SNïZ÷KÁ—þ¡sgee%9Yßw¾½÷ï÷Û¿}8ÄÔ)‡Ã™¶9z÷ÖU+C_1ó9ÌS˜ÿâÊØÄ[¥ã a0“ 3§¶?aGC³Qñ}(nÁåp$yºÍi‘L”–.\œ¼$rÕÚµk–E>¶råÚÈMÙ©2Qr¢82:Qžžš(Ç?²"wI’E©ò¢ÈÅO¥ËåÒu>ZPP°"1;w…D–öô’e‘"yzäK©¹©²üÔ”Èç%byäöÄìÔÈÛ§[qûc³$[š'O•EFKRReb‚ èMâg%›¥Q²\yÞÖüm‰IEÉÑ)©‡ÒÒE»²²×-'ˆD ñ±ƒXHì$»ˆÝÄb/±”ˆ%!öÏ›‰ýÄsÄ "ŠxžØB¼@l%¶OÑÄvb>Á'"qŽˆ©D€³‹óÍ”­S†¹Š©/O½ö6¯ˆ÷iÓ>';¦GO¿6Ã:ã«{.Ì,›ùå½jþƒü+÷eÍZ?«kvãìÏÃ)ÆÈW@í2/ø9#ã÷rÑn&Hx&ÁnR›ÍÅ`&–2Õm¶fB‡±NÍ|È^õ-h-´Þ’fÅ×+íÞÊÚwQø?ú {2™.Ë Ÿ<Øšvâ‹.´ÄîÖ‚®L%J+•.Ù d¾ÙWÝänv5Òþ³ýh* “îì_ûrLa)¥;)jO€4(+² “Kw€‰Ô¸Á^e±ìTÝåú“A ›A¬V z#{Ö¤7—ƒQ¨v•ø½µÎz'Åß…ÓùV †37>Íúó܈/3!¨ìvB'hïº{KÖê§ÿ›åÑì<Ê, ~Ë{ÃUòÝYÅ^ä)Ô8q.¨¶@±L%ÍÎŸè ‹øJ¤Õk·ÌŸü»jhô-@Óдo>zahs%ÍF²ØY¼,°96·ÅA_F]ah#ï Ços–®ˆBó׌N¹Œ¼—¹Œ_î¸ô;‹° ØE /D„f!ÞøaŠu°~Aʡ໧š·ãÝ3z¢ý('[îHÈ[˜C‹wï‹ß$ü`^p|yƒ–~Â?=¾A`©°8 ‚´š]S9¨Ë¨ßmJ¸´³&„l›Éæ±*öÉ.DŠE”q­r½´Fz»ýâ“@®yüÿ|è*ßu?òDNy&éPY<6Km…#b÷Ѳɨ˜˜·¹aç´YZcŠ™,ÃÔÙËt †o+t@—18‰@ _¯”ûÀáv8›+jèn´ÈYÜ”t„ø<÷ ÅhÉ?cNÆìOH‰iÕp¼Wö P¡…NBÈ®®7>xÈA÷K™‰Röñ‹´J–µÈš.›ÅfuÑüñu'¯Qgg|[wü¤X¬¶J°1÷äeÔN–J߯>$Ë¿«¨—PkØ'¼1§Bª3—hÅ4˜Lz0’*78<6k]õ*’†nV¡W†R0æë©Âç óÖ¹Ž7ŠÌ®N§¥G:›‡ˆ¦ì礦Rc.m.7—…vñ@Eµ¥¢ÎJFQ¶f=äƒp"W¬¢R'ø‡A[f¡„fïŸèÔŠ01q¿$“ËóƒÅâô‘|f­º]úÀ‡k²ä:yP¿ÀbD‚Á­àW¦«™PN–V6׫žÙæÉx>-.OA©Ï¦Ôgü›lw¶¹¬ËÔ×®¡c§áWnèΣð×üanÄ-(Np\3¨=d¦tý¼öÓ ê´Ž•¬/­Ê—KŠã·§½ƒ–ö"þÐ'ê’*©ˆï$Ž4×Àý c×Zz4)*Ó •‚†T;Šk›½CIG·²Ó“‰¥"nÁÓo*[õ$ÝÀ,Ñf?FÓë\TÅ,ÜàÕz0ìÊ@A¯çõ ÅÕ`»°¡Ø®‘iò±@¥°‡­æŸÌk¼ÍlŸÙ`P€R×™|æ«ÓwäLæ"-UôròÆ—€”BSjœ­˜Úw¨ýè(Z5ÊeÜÌ|Õa±ƒôh}Ù:±ÖD=Ë–©¬TX(g2¾ìxçhç_šÆhWƒ½êÉSÁ„éìbýí´[«+(W°åËa =cN®FªL¡s¢r6A,ùİøÜÙ®ööFªnÏ€¾z ¡É¬ëõã„NÕlÎÓSÊ]…¿™-ÕßUÁqNó³ƒËÌeÀÕᨼdƒ{’˜:I ¶¤aqÌ“ðëjÊh*5iö‰~mF™öæ—A‘ÚirÒ}pÌÖý0`ì -r†X®…‚hpz,à¨ðáû&ÜIÑÊÑêóhÕI.£af ލ‚b¹L./uê:ª1Ç–‰;ˆä[ÁNÛ£>Õ9ÜñIË»”½Æáû…ÙÉZ]È•Å#è©!ô¿Í’¼À›c”AÎͯ¹LnÎV§kHÆD¥Þ¦¥1æ"ˆ‡¶ƒ¡Ã‡¤k^^-x Î0ºÌP†P?`ɉCó 7¾µ§(½IÛo5[Á do «©¹ *߸žÞr.ùâÍÏßÿ,€µfÙ¨W¢£(‡= =%ÐIÌù $ÕYOî‚÷ªÎ5¿ürÖÛi˜qìR¹D͹’Ac-VØ#Uí§}‡ú¤#ð:ëo§}ì(ZgÉŸË1$g.(NÊ‹ÍLú=qŠþc•–FÏqúzÊp÷A…0[±NŠa{»oÍ÷›áˆCόθŠþ1"ðìïÉ?ò‹q7†šîb]¦NTn¦" 3k2ç³\v»Œ]´z(ê}:âj7oè;IžCNÁv§63zÝnÐŽ´Ÿ ¢éuÇè¦Ñ¡SýØy4Å&šÌå&ý¿°…ã i¯!éÛ\t~|•à¶“¡5f³‘Z¬U™Õf(ªÝP}ªÓ¥`¦OÐf£& R…kŽmùšŠ¦£¥èáPJågŠ(ã_ Ëhxÿxå‘6Ä£`õùÛúz»z®Óð™"6ÑwöÚP€YèWÂÿ~C<ê;?7â;4Þ,He×n:äËÊ^»˵…Ú½-PC6(bé#x­ÒÒÒ\ÕYÕC_DϸÛp\õÂWS›-±KʰÊÎæ/&%¬\ž«ë éì'K3Tø%T¦0ȔƤ37;ÑÒ *âÓrF.h*p)ó¥™_[ío­oõÁ#ÒÊVzy ãŽÏøñ”Tn6ã))~WÊÛÏY 0 ïc9ø=-6°wXJ;Œ½ÏpR9ïL‰ËX[äQzò \¹ááÇ6nìþæ°½Åæ¡Àj±â¢xÊ@¯2…"ŒeSM:³[c½ÝàpZ¬nåñ6w¸«zö\,9ƒgÑpÄE÷£ð6]N- ªlËZ íY•åV‘¯¸úɯ~zãfë–M9f!2+ÃFƸàçæë¿³'0õË  D¸·ûЉ^KSU{¤ú"v©¡ê”ë¡ÜHédÅQ…‰þ ,üñážlE{ü8à$X½ m§†±‹‚}%RØTFoc«~2¢÷¡'n¯þdÑ¿¾ë;ý¢â̦´—bëã!ögˆ~ÿxž€Fà;$ù.…!ËA{Yü97â+$» ($™Ù9uÅÍ]ÁÎv*bôOè‚à ¿D”•™%¯)hí vñã(æ<çcäà¢×PŒ `6¯Õá`ì…æŠå€ Š&}yah*sAÅÏ 0›=(×Z౉žiÁc÷P3¦®ñÏœ¨œ9“ þsº7endstream endobj 267 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3444 >> stream xœW TSg¶>!s@@«=*Õžâû…SÔ[kÅ'Š¢‹H‚ P!"$Ù‰Ê[y‹€AäŸ*S§j«ÖV§­Z;>êÜJµ#¥ûàϽkþ€½íºÓ»Ö¬»v²’¬µÏÎÞß·¿oGÆXZ02™Œõô^äï:Ûüu¢4F&µÞ” |YÐçc¶r°µl;Ìf8v¼†ÉCqã0F.“EÇk<£w$ÆF„…Ç9NÞ2ÅÑuî\鎳gÍšë¸0246b‹*ÊÑ[©Š£?¶;úFo‰Ktœüvx\ÜŽy.. 3U‘;gFdž½3eºcBD\¸ãºÐ¡±êÐG¯è¨8ÇÕªÈPÇÁ§›9øá¹#>.4ÖÑ;:$46Ša§¨EÑž;b½vÆÅ/W«vmñ ݾ.Âwý†í‘®³ÝÜÿÄ0kgƇϬe|™IÌzfó3•ñc1™ÅÌLf ãÅ,e–1Ë7fãÎü‰y‹ñfV3ÙÌë ÏŒdÆÑN1–L4sKæ"k´g‘lqK®–Ÿµj¹Ö²Åj¦Õ'ŠŠ.Ö-a_rY»Xn3Öæâ¡CôC:mƒlÙ¶;i÷ßöER¶}Ÿ˜$£ å(ÃÍ(“KÇñÿCðbáéþn„ C ™Ÿa¥d/çBˆH>÷R²•†/à8/¡Rû¡­³É #Xdît^=U¾s@jþ(…µïk~hÄJ“ 'àPüŽ•7÷-╽ýÝNJɟŹw=ýaÎ b—/âøšã÷à÷ÄãqÈò•¸œ}Q>ã’Ob-’)ä[?Ä­K³yUÄ<ŠöÒ¥ÌFé £¬m±måR Fó8Æåq%îÎd$õdº¢Çƒg8\ ²–'#­ïƒKÅŠ–3GMðghÜQ]~ÀÍÂ^°ïëL5¡_®(Ç`“ì2:Iú6y_ZŸ;_ ûã…w=}Ï/«Z$ƒÌ$ÈVŒSÈÔ¢²h6%™úä´4Ø«ÓÉtÂû¹Â p;ê{%¼iÛE@~,þò\×ÕÛÏ ÎÃm@;UYlHχ"à*ÁP%R¨È{&œ`”F5Êz(Z9´:ƘpT nˆÈÙP°²pM!œç>}å(ÏYkô)yfËa%íérJPÖ„ Êdÿ (ÚµÉ1LšÀãx¾*…nrÀäÉÙÜwI=ët/î‹[§»n *?vydÔö5p­’2ÑŠÖȵÿ6´Ø+­æí¸?»`óêùï(àS–xý†E;éZÔ/U·à®IÐÏSàÂ+ë­fQ²dí¥·(ØÝt8q´÷âÑÒ¤ÓNIf 0(Ѳ¿›X*ÙFÃsh£ñá1Ÿð8«\âM2)C²çs‹ä]ÎĆiµ ;@ ëN`k*²4:Ðe¥‰Äš¬.šqÚ%4) ÖBÌ@Ú÷ÏßeȪ‡#gÈ/ãì%S¦ƒkÐÝ(k Õ›K‰ü“E—‰“/±ÉòPH¬©«-o*ÕM*ŒùUP ÜõÖйâ–Ì&nAD> ¹„_]h;]&nåOB»¢<*ÊÓa¸JG ’#².~†Gâ¶÷ƒg¿G¦þǃ-Ž2ö%mÏc9t(<”Ÿ÷-8˜X_Z`}r%DXZž¥ÑÒ—VtŸ2í¬ÚÌÕ-¥ÕE†W97YœEÖQ5š”ºG£™Jö/ÔÓ)iƒãew©æêAŸ›'>G+”“1V*¥¢ÊpÎRŒÁ¬%´íÙ”QTš¨ä-E¹ŽÖ|Ñ^HÛ­Ó¥f š];–¹Gœ§Ÿ¹¤ÇQ8*÷’6K§ÓiubvvJ2Ärª†¤êò¦Cçî6gñZB%cpÁIèZ\®`ÿ²ã;&“zÌ7©Ã<ÑH'ÓiãÔTõ"èà^S@¼N³/Q› K.N©¨4|= 6ß¼ò8ÖL„û£èôPÁIõ,V÷ÿrpoNZ 8”@NÁÁB¬ë³­7›‚¢ÆÐ 4z fàr'©»×D"X5¤Cºšœ„7Œ¸¡} úó,<7{Ê+ÆofãKƒj½hõã&ºGâüì-t¸x®ÔØ,ú±èõÿ%–ÈúóªÕþ)TÈ0ÀŸQG¨hë».åTB+œN4Qd6¢o-¾3è0éOä’?Æð•9P]§¹xNTµùZKO˜õÖ2œ8¾˜…ÓpÚ™Þ’âdÈÜ­ËNÉcV,WÐŒ :Ó%ÖZZõÍå¥'NV˜àÈ'¶úœ=>`î¤ÖlÕóȬ¾‘f•P˜ÈŠžÏŽ :mŽœ–žjnˉÄcŧ[ÃÚÏ"òP *o‘—¬¾Ò%xg?¹}Sdõ÷pgoÎ=9ŽÄüù˜.(¦F"\üêóö¨ÆÔ±öHÕCvVö>HáÔ‡w;v¸´¼*ñ„J¬NT ÁU!ùþ´aý;K¶·EˆI»Ã! ”•[ËwïÌôŽƒuœÏ§ËpλÿÑí‡kkc‹„€ª•à±YzenjÒ<}qá!‡äðîpãìY¸ñàx‚—»ØEø/?Oñ _KýitXWÓÕ+P,þº¼˜Ñÿƒýeâû‹#Í~ô£â÷øñÿ¹“jT›ð”MéiÀ&t5"Y:†§F£ñ øˆ{>î>ñú­—êb=ÐHãg¨ä/žbG\À!Š8‘ZSñ°ŒFp{DGø=]pÿ(z|¸$cÊ.&E'fmܮކ• ¹–ñ„‘œÙ©¹E#å2žXc#==öÏõY¯s'ÿ!Úã§”4RûO8ÞL9îì“ó­Ô‡o ­hm6Ö· d1YNçãÒïÜùÔÐR¯¾â‡·4k•jêc[d—ã—å˜+­â'Wd‡¹vã¥îî›È¨ra¿t¥¯| }X³Ïj²uié‚òýØòÍS©*8/p%²e›ï;üŽgöÄ=/ÒV¨¥ÔFƒ?§T¿M,݈X‡3ÝQØŸð«×ú z­^Ÿ_ 檮þ8ð^ŠyÙõYoïz?&²jJ€JJ€‡2üšZV_Hß\þ¿&)HšU›"eyßáxàîö?$Ó”Š;†TG>¿ÂA¿š&=¼ÃÒ„<|baÞú~N5I’i`‘Æ¥çI}|ãcAšÓkb£´ŽtÂÀ¢®éíweÉè^bè}Ÿ.‡Ã…è¤îöAÜ"ûVðÿÊÙ›¥¸ù!_ÎÿÝî4ø–÷}Gùÿ$¤ƒXNÜ´tÛna÷wK‹WÂ4ðóVpÿö2/»ÛqåTEüüÿcþ³ÈÐÇÛo:]&Ã=h%Çg},_«…m•DNyÏíR–*NBgNË!®¿‚ˆJ¶Íð3œ£Ñ mƒ½9p ÚàUth7ɺÐ}ðu¹dÀm¼J‘­Öø$§ehæC2ÕEÓ‰ïÿZ\ˆòo¯·ÃSmoRµ°šºrú{¦äÊúÆò³mÛË·ZÎv(îÉéw=ç¿ç¬I$IHK§¶”è$Í1ß2µ¥~ò>¾ÞÖ(û-ÐäxïÓœ6ƒaÔË÷7ˆ¦üâz¨ãZ£jƒUQQ*—çè_›¹ß|ÿüBìÄ¥FxXóÉeø†»íy…ˆÄr®Ï¼Í»Õž,=[™Ö°)Whk½9À=¯ÈÈ}ۂŘˆm¨6U— Û§ÍÌ ìã’r Lh'•iíçWf¡[‚®|·iª´PQ­;›¨…äTt÷¯±Râ)¢ 2%[kxFµ§ž½rÏ©Ôä¤hžÜ$0XåM| gB«"z(s£Í›ßLéßQC] ŠþºÖZ_Úq†îD¡(U§…¬4!p÷û{}an*Ѳ ÙÀ¥BZ’HNÓ¡Ý[V`Ðä E‡OG» 3Þög2tëªÃŽ;µT4ÆÔlü q“û78gv?Âah?çysK@Æ6¥hŸZ$ùäcPYA‘‚æ²&” l,=Êl­òmmQVik§·µg˜$ô÷yendstream endobj 268 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1041 >> stream xœu‘{L[uÇï¥<îXesY“6ºöÎ1ÑEç411Y&›:^› ¤Š+P)(P tô¶ôyzoŸ÷–Ç€¶ÂÜŒÆâÌbÔÅlQã+&ËLÌþÐå×îG¢ÅLÌI¾œ“óý~NI$'$IÊ ‹Š4mõ¥æÆƒÞøTnv‰¶®]¯i]›íŒ?DÆNŠo“4aî~mb(¤&tÿƒ-Èó êÙ„Ú6)$YÞdq²y†fs«®®¾Þ›ûtv¶¨ÏÑ5fú…:_ófƒÁdlÐÑš¦ct~NQ]l0‰Mý˜¡‰®ÑÖkôµ´¡–~U[A—•()¥_*9Tv¸ôñœÿÁûO[¯5µ-í½Qר[£'ˆÔâÚº¤­r‚x’PUÄ$é%Ho&’‰ÉRòNÒ‘¤ËMgü)Ùc%ŽÜNÈn“â‘^Ù 'ôàíû«ÍʦáÎŽgÊp‹¼â¦þ»îù·~hø¾ù§*ôˆÜyÂ6 œ'èáèc·Óe±x½nƒo2âÍUxW®nt@½Ð5ä x}. ,íêfÝJרÇÿ˜ŒªÎÿ¶„G?DYòXAïÔlæ¸ê*ÞsëÑi˜ MœE;gQæÚq¥ÈË‘ðÜÌM6S¾þ+ÐOeÄÝØÜï[L$Ò.‰ïÅvð`|Ïjß³s ÀÂ,…v¥Á\òðÇW NPú |z9 n@lüÔððØø—þ€Ïï‡ %Ø¡7kwEžG‰ Ò º[ Kss¡‹êëó2Lx¯ê‚ûÇÈ¢ðëið èk/4~f¨hÕ:U¨#þ— qëTG¹gOÂ] ‰{—a¦|îèdA¤(†ë?Æß8çª"uœ^%>yÃ"‘>)ƒ°‡µ ¸©åHA`Y+[Äjw¹l6%V‹õR[kÃØ¬v¿+bS¡JqP‰+Æí‡ÂÊÛø0Ë ‚©× «y&è‚"Žëyxۙȿ%ƒh×\!Ÿ<>†XÞöCÿß™n8¬ÊÕ%<È8m.8®€^ÞqÅñ \p°àJˆˆ~øµäÑNèQ®.¤ZL`2À€*þnêÀŒ®g!Å2ÊX&—'â÷&$ -úYvÒ)Øw7ãU:3ó*‹¡jÎí[)ø¤zD ÔŽ¢íOCöÀrª¢¾}g ®Áùº¯^/¹Øù>P¿_½÷«*ƒá‰-ó±Ô…ô…ÊtIùÖ½Ò Ýゎå}AŽ=%•Æ8.ì÷G…–Mì“>@Z²Ìendstream endobj 269 0 obj << /Filter /FlateDecode /Length 293 >> stream xœ]‘Arƒ0 E÷>…o€À`73Œ7É&‹v:m/¶È°ˆaYôöÕWš.ºøÖÿ©:žOç2ï¶zß–ôÉ»æ’7¾-÷-±ù2S76Ïiÿ%=ÓuXMu|֯ðôà·áÊÕ‡£ ¯ê‡)-™oëxÊ…MOûiІKþwÕÐÃ1NÏÒ1öÄ"7ÖÑôuU‚#ÐGÑØCTÉm¢Š\" DA‚(©µ&'/ØHOM­ø”˜F£2’ø ¢&sT N@‰ˆä4}+1Q‹ž[i<v.ö] ìІ—Bï€Å^~Äw½øü o Þoƒ&˦ù‹=7bÓ}Û¸ìºGÝÖ3þ[õº¬pY‘ùxö’µendstream endobj 270 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4533 >> stream xœuWy|Seº>!´°,êdlOªŽ( ˆ^ n ²ï´l…’î)]’6MÚ4möõMNö­-MÓ%龂”M ʪ0È8茎ƒ3 ÌèÌ8W¿t>®3_Ðß½¿¹÷úËòÇÉÉyß÷yÞ÷}žCMžDq8œG×­_/”®– ‹E9‹Îß’WPY,,Oüôtü1N|ö¤øãÜ:ÌNäMh“ … )“OÍþÉä‡ãÔCèä t`&5ƒÃÙ^R£Ö[Xo ¾©¹=Ö³¢L\].*(”¦½°páâùóÉ÷’´ìê´å ÒÖsö—É+ö‹Ò„¥¹ik¬_¶¡LN.ŠÒž)+MËÎ+ç§•å§mËÛ‘–¾õí-[ÓVnÙ˜¾iëÜÿ¢ÿ~UX,.fçI…¹yÅRa°¤DX,,ÉΊ+DâÂÄ{QieYI^P,ª”)ŠJ{³BºZ.¬Ê®ÎÉm-ÚöÚ+¯þôÁ”éÓxiÌÏ}‚ÿØRŠz’ÚF¥SÏR;¨åÔNjµ‹z‹z‡ZC½H­¥^¢Ô4j&äX9À±qì–ãà89.Ž›ãáx9>jõššLE8Opü“¦Nú„[7ùåÉç’j’n%§'ß} ~–þã”—§¨§™*šú]ʬi“¦é¦ý}ú…e3Sf–?ôÂCç^ôðÔ3}B ]oÊ9yaž_uëÁÝaf6L$YÂàP¿LzƒÿõÞ¯SsVåÖf™UV-@mp=Ñ.bLô™»v¡É¯µéR{…Ú àò{Bî€ >@4ÉvYÏ ]²Ý,¯Õ€\8ø. ™6¸hn#@X€Ó‘‘‡«“ÑNôiÒôr>¥Ô‘Ñ[è™F8èö7ž†žçAU›* Ž•:³¼ž7ŒÐ­çoµÐçÖ3eVy%TÒµ^e$ÒÚ84²ïàë85NÖ«7”æ¤æ¤¶ÑéË8¥ö5•2ƒÆ¶NˆÑ-5™¤D¶wËXÎçè?†Ð´†ÄÍ&ñãü.´]ÎAx>˜´V³ÚÈì{*£B´Lìiµ»‚èXÒä°ÂÈjÁâä~ô¤3 .ºQåS˜Ë¬…Z&/NšŸ,×@•ÊCª½•¼˜PM§æúÛzÚ“zØGR8]ô»&^@•ÕF°Ë™Ýä?xì»ÍŠw¦zûYßÇ@·z ) “§š1ŸMÒ×t½Ðt( UF°X´üؽ~m¾Y³ øR-ù1¬=Ê¢Yæ$OšÓÿ9éÒÝD¡ó ÈœËÞñ¿]B›îp'VÆiÞiq½¢¼\RYç2xuŒ_Ý&Ý *+Ù!É(,Üt¦¸s,æîr„‡Ð2gÄ7.þ‚¾ªZ'×3f}&Þª—èK,ÕP j°ØŒÒŒ’â\ _ÝΡ£h†Àßé A˜)Ø5/ÏÑj>›½ÁÉDÿ8ÔÕ´·Áº¿\]¦W²ðTÕÈ£¾_øËÆ£pm˜i_{ÕÐ ¿„ÃÛÇ{ov£YpŒ&Í üPÐð/¸qc‚9-˜5VS­™Q¬©Þ” ´ØÜŽØ=þÂÈïûQš;vpðdU(++ÍLõ@it/Ðx ž‰ŽŸžzõÍð Ç/Æa_Ñ1胖–†îÆþàE 7¥¡7x;ñc5X” ~Ö¶ìš2 wÖž:Ñf´túrh‰Á`1X Ì_1‘ƒ_ áÁ§ã6zÿ67®ÿ!S­Å¤·0Ei++ö[ÓÝqEH¦½èqW{ËíkÀwB+4וååPA×ø«¢‘îÃ'7…D› 3¤*¦üJº¯è§¶`^yNk÷Ú½ß\i뺩O»¹X±*§ jÖ ³ÀRÛœ‘f2 ÑJ²¤\²Ï ùá+ý×\,ÈïÏúë1Äk#‰szŸý[”ˆst©¯sã‹QïW_Ù“]Z\ÂÜ@§’üuÒå:‹„ÑYÕVÒã*/Ô³ë5z­È(c–àU;M5PÈŸ7ºþšŠf ¹èg ž—ñŠVí) "*ŠÞh‚¦†‹‚ÈmWì^?ÿøå‘úv û£%k7áªóéÜ]EaaäЭC¤{©Kþqn\ˆç>Ýt¢55¥–±uŦjù+©{ñ*“rßÛ«¿C}xàHã…Þ[‚†ƒ¢÷ìüß-xg¸“`æi„ý剾JóDõȤ_¸Xrn¨·1cê¶«vådHDy¥{ ö²Š¡B(àóúÈR¤»Ä´¨f×ÎÃù¾þú()–òSCÔ{k8Â9xƒ_þ-ÏepŒ‹ÎÀ,{s@ô:ñññƒá?÷^t~÷4ôÂ`]H\C‚ÔÖÖ(- ÐÓÔMÑÖáã™oáÇ0?…ŸXtvÙßÑSŸ}HĹ֜ˆ#Ž W"œ#×QcÏÄzUûYwÀÖU^0šÜ7ì'š¯u:ÏAˆ>œwðÌÅÏ=‹WÌ9·ìËï¼±¼§ð‹Íd'¡y_'H9-%èØ¡û¡;~úç“ñwǹh`"‰®mŠÅqUHÑÚÒÙÒÉxïɾŸI0+Lõº¢ ;€Vè}-m®PËyÁÐ:Àî‹ò=agˆ ˜`f~Þ1#ÓËLN²Ó5û4’º"Ñ™½…Çî  9^ä¼ETe×Ä­¼†”׸ñHŃ«¢^eHÚ¢t¼Ð²ê@ªØ+ê€Qúןüöî§ç÷áÉûMÕ``4Ÿmt0§PYkqkVk­ŠÙ½Ert{ÛàãGp ~O[:ºç=¥àÛ²íi%,á/Z2îZÌ ™­ÎV›‹±9l,Ù>½Íh´XÍfÆdÚŠ«ÀL¤ÔärÚl¡s|ìÝÍÔž>šM‚f&àlx?ÑݾßÅÙûˆÖÝF¥¹ñ'¤MµÒi‰@ÑÔÆÍGr>€18ßtrðXÿÀ{¡Qzµ“§ÚS™™[˜W”Y•ôŠìÓ¿h°7;9ŽŒÝèᛈ‡&¿bµ ¯’U@ÔXF…6¯:¯¸T§×êµF¹G꬀‚^lµ$‡®8}mmoÔøêÜ5ô#/údiù,(3–èKéõ¨§4*͵P Å`s°Þb(‚°øÍ„0Îq !lbaçÝó‰~u•ç¡5ÔÚÞîò²ÆÔpÁ<ÐQcS€$æ2½8јIÇ(œ!‹ÿæ:}ׯÇ—ð|*³HonŸ—ó󜧭]Örÿ\q>çø;Äè=ô6žW¬ñ‚Oàp¡‡TËGÏùñŠeŒ ½\P¹¼Ó ¡ÕN½'è‰ ú™–Ï|cŽ.{Ðt»¿º„æì"àH$°2òÈ&Èñb4®åÆG¬<`-v³Cã7ÔëÃx_üJªìlz0h²Ô:¯=D»ÛVþ·¥âU© ¨ã+Bª†¯ßça |òžß å7Tú t$Ùg³¹ˆ*xKáu2”q_¡äT3ùŠs½w‡ÿ+*æyÛ"¿ƒÃôqèÿšþµÛ—,~a-i4´dbNªÍAuÞ4ÕRmbðÒÿšûº7o®ðÉÜ´ŸBiŽ€»ñG\ÕÝᎴ[¢)¯+ìÆƒ„03ïföŸ º°Ôf˜Õò¥dc&Üà°“êjcCƒhnêáÿη4öw&ªÚzã~Uûåñ2Ô.ç¿g.sã×P=>θ¾3HžÊ†ˆ+õ©4V³ÂÄlÆ5x±‘8{>àÙ|˜wmš®—ÎOUejòHTÛêtÚm,ËØí®Ö—œhz Ð,KÑbÞÏî=¿‘]ÑáJù¥¡¹A-Æ ðÔ—ÈŠzVõuüùÔLc{`q"KöY œ³è÷g9'Úã7þO4Æ»™;þž³gàíL…·žëkA“Ưz¼à ãì°¸4e¯á9ÏÍ¿²üÛr&/3Õ%&_Ùdð‘EÕBÇã쉢'½V·µh´-@‹Ð ‚²JNÂ<</ÐYÀ¦cTV+#ª ýäæŸ¾þÕhúî„ÏøS‰O?ĉ7Çó‹_'5•꘵XŽçáÉ89ÿËø“©?îêU™z1³[Ô{“Ô>«‹ %_ ÎÐ×B©hFÍo‚R)¥¾ˆˆÖM¤ãùß œ€ah7F”AƒKÇj‰­3h4ZQM‹‡Î­o« C!¨¬uf-]¸ùùe°Šµ'ƒ1_§»“k¼à¡ëþÚ*My¥‘!&¿ÄZZ”¾;wÐ$'.†ÙgDP?Þfp”uØÉ:—ÉidÍv3QÿÄ  Ù[Ê×Ö¬Óäs¡^Ú±þ£‹'_düëû²Þ‡¿ÃEÄëDÓù/M¦|²øOÎrÐǹñKñçx­2¨bð­äJȃ¬ÌÂ\É0ÞïYÝáq1Çu– =–¼OKÇÓ„ uJâôtUƒ.Øé‰ ˜Ð°OœA’T””\„ŸÑîƒUĉ="_Ù@‡›„]`7„¥×á2Ä`Ô}Ê’FÉÉÁ~è½’%Lþwg9ƒPìÒçUÍàªdüqïKðƒ‹Ï½ý‡û®rZÐÇŠ ФáGy)_"Ú‘»)]BN^»rú¯w~ÓwNpèêxˆÌégžÕÅ‚ï|Ãùü.Ú6Êë¨h--­¨(-m­èèhmí`¦W?â÷QI$92uüAfêämÛ²R¦@ʃ›%^­!d«·¥¤´Ùz‰=rÙì—=eEý ½+ôendstream endobj 271 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1442 >> stream xœm“kLSgÆÏ¡@ŽP/[Òi§žVE'n2¶¹éb²:ut 8¯å"”[K)¥¥”Ó–^8ýŸ^(´¥µ”Û°Ð0'*¢hœK0ºyÛuF³-Fã4Ù¾ørL¶Ãæ—%Ë›¼þï‡çyÏÿÁ±Ä Çñ·vfgË5•Yy¢tÓú¼òŠÆ¹zîe »g—%°ËFîðì'³I €0ñÒ²¤ïÞD¶7z!ªX„%áxaž2oUªôjEE¥FúafæGë×ó÷§Ò½tK†T&/­V65T+¤òº2©,#;Cš£l⇠éZe´¤¼R^sDª<"-(/’îÉß–—/Ý‘—»gW~zÆÿºûϰF^[R&¯kÄ0l^ƒ¦L‘_µY´à °=Ø6L†mÀ¾ÄæãN°þ¿X"æÄø…„\D0$x˜˜•x.ø ÿ=3ÇÎÃtH_§&¦j¯”þZRÑb$”ð„¿øÃ1ö—·š7Gõu¬K;ËŠýÙ%/ív¸©Ýorì%Ö¨n* s )¿Óë”ô¶GéÝw¸/–œ\ÃäzLf3Å·¥)Ò …þ.¹Q|,s†ÛЋ#ê^b¸‚<©„”,¬OË®8ƒ³çÙ Ñ\ uÍ&U™Åé¹ÏÒV×> stream xœeU TSW}!$煮’ø«ó§VÇJAêø«UÑ**ùU¬ ÿ`A¢ 9$üä£`BBH(ˆˆ -*j¦TmGÇ‘ª3~ZÛjGí ½¬é›cŸã`ÿ°~L:¶N\pr˜3¹T€*\PÜ40àr8[ãR×ÊS²ñ±qéâE^ ²ßeâÈ,±·»x“$*Q®LKŒK’£Å›ÜýÜÅÊ•l0^“µäU'Ø¢+$AU>50Hµ5»ƒJ=“tLñ¾* j Ô zBÖA¹ª°òö0õÞ}j´)r€ÂÎRŸ ¸Zù‘ ‘-µ©àj.%¼fRßÚ½öµÐ¸¨•KbÏÝÎd45Ú’½@íü,v#³!¿ª´¸Ø``t:Ð6ôHNhëBdïŸ¯ŠØ|óÿN¨,h…í·"_¥àéˆÂ‚^³¸ A·Ñtúœ"˜\#“ÆøÀý:YÑëVüú„Äï*øÚe2ñ|5•A ­·q3O{˜×~¥éÊefBfS¶ÕÞ;eØ®£¨‘k,Þ»òôYE (P%¨O”2h ÝÐÛݹ­v;PËÖïØ(3f7666V¶î,i;]eêô¹èE¢2TóÆW¶:^±Â)¡jù÷ŠKý]' ŒÐ;ªäˆääìú‹ÿ&Â+úiañÛkãÃ>Žlë;Ó=Š–•1,ÏÓ©<[tX8GGÑÖ\»šBWî;"uA“ì¾)/¨¼Ž£ÅhÉ­îÏ\ÒÆ¶‰"52ØC¥V65ëZ¾XÕù>vyx:žñã®Ë³E+à "%Œ«Z%}Æl÷õëß7I-»D{r² ’j¤V¥vbDQk FÎhòÓþm¹ý¡MÌGMð!ëÈ/N,Ùe”€¹ÎØ)?¦1õpdäzÇî…YÔ~´½ô0PBW@9èµ*u¡ ò¨ìš¼ÚJC¹™Áë0ACŠ61G±?/]Ô»ðØ|¤ØvÈ"^VUW˜›ºfß…·ÒEÈa| ²nÛü7×÷ÖûIGž9Ï¿ƒañDçÐ^ú8©qž nÿ¼|ØUhAÀy£º´Sdç’ÂsX<áØ¡¬cM¯¼è oƒ¶¢£ÚYB·`ûúHz£,^)W¤˜S[Ž›,Ìoàc\€¸,pª˜ù‹Ûÿ51 Þx5 Æë^s_˜\»Ë~çºMÉAëØ*g¹ÑXÍÇÎPT£6P ~ŽäYøúÚ—jªËËn@ k†(>vÄ‹<ñì,‚?ÌÚ a½½p¢’é'áŒþLÅ@‰ùàžÏÑlèv tPO±×d4M³pºûêû¦k߉ޣ¡]uBÚY¿»rs×ÕŽÓŸÂ0õ`Ñ9·–¯qÏÒ…uï`ªò:–ì€äÅA0šû“Ï3Äûnôgfú‰†ÀèíþqxúM·-ê£PG]ê¾ríòÖµLý8M¯Y½uÙⵟÚ.ß>É i+›2OÊàÃY/¥Â«w¡çHþœsç9Ûéæ´†ää´´ää†´ææ††fFÏ–²¹è«¸¬”ÔÔº”öR}10åÅUºŠrÃÊÍkò÷Ch¨üRuiÕÕ›ˆb«Àt@³º{çìØBî˜=¦™ËŒ?âçf‚Ri€C"û·üC0ŠðGŽìY3þ-?çåÙA‘ýÿàÄÙË9ƒ³vý’£äü8ÈEßà|ô Ë®Ã.Hˆ-äý òFÓKÍ„Æzª\­/Øë¹ ·0¡Ø!sa ¬¬ÂSÏ`Þ<íΦJ ÊJôåÿ‹Žv³ðÝHOà šŒxþhÚâ!v ¨Õ(2d‰~˜w{–^Úa:ìÉ{Á½ D]Vyï $<Ïô#‡jÄ…o¨—*øíBÃ]hXɱóº&tпÔÛP+ÿ ”JÈdw­¸•Ìý;bwü\È4ÁpA­ÈF¾Ô‚íÓ˜›‰Ó9Š*ØW(]£áfá͸¯v>ZV+ðNtO\_¸VÀêÏc«Ž/¿¦< ð—úžïl#¥7à¯ÔÒjVÃÕæœ·ea [,YTàœ‡Ë0\1`@S¾>`VÎ2Ì« ‚Uà;ѳ¬a;¬—Y•R¾âÚ—Ì´&’žšª‘}l]:ã·Ù J",Î§Ôø!2V“çÉ$&ñÛôw¡‹]w¡Móéú÷×ÑúgO¬‚¾g?<ƒûì‹aAÞ´‚_(Ëß›“¿#d°/–ÿù?‘b. ÀãYˆïy;cÞšwõ¾®­úXcVcÜþ"ÐjóÐ@Ç P÷/_&ÁŠmïûá`œà¦R±ÕI£ì$ÿ…ë®°S÷ 3šüäs ¹?`9?˜pß*nùÞx½þÖ‘Á/Y…ny]ðæ*ÿU ¦Ìf«ÑÔÜ·ƒíMëéášv ŽÉðÌ+ H ɶÇkÚýÚ´¢|دÍ×Â^JUuLÿVdžùxÎúäðˆÕuçãDm…V|Bµ§“ÓsÃ=nDä|ÿþOÌ‹œì¿7Þﲺï¡5÷ä÷\…ãlF4.z„¹bB·+™•¡éíý Ýñ&&' Â’rLµ-:/„ŸZŠgà٘Ʃ؈¨uEÂ3ˆûÝ·ÈMäYLÃvØ–+óßY˜¾ »Pp(ë$Ü„ÃÔ Ûã{µ½àgeÇ@(|L9g˜ìkëPrU™‰o<2…™ìî4 œ¦˜ŠuÅ:]q¹N§¿èäd9¦/Ó•éõúÒ²§©ño8e=endstream endobj 273 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6833 >> stream xœ•y XSWúþ1×kµîWAí½(­ûZëZw­û¾ïˆˆ€a'„„@Ö“„@ÂöEAÅ­­Ž­V%mµŠZµ­Õ¶£U»·Ž=·ÿCÿÏï$ Igœ™g@Tîrη¼ßû½ß è܉àñx]¬\¿bƉ¼¿ ãñ¸Á¸WøéHÌýùÇ2èÎÝ;W ~UÚ‡[Ú6ö„a½>—(Ö,&ˆ“b¢¢SBFDŒ ™8}úÔ1!¯O˜0=d^\dRLDx|ÈÊð”èȸðüKlÈzaDLdŠ8dÄÌè””„ãǧ§§ K'LŠš=rLHzLJtȺÈäȤ´È½!‹„ñ)!«Âã"CžÛ7îùãRS"“BV ÷F&űr^ü–ù­ &¾•´(yqJêÒ´ôpÑž∕{WE®Þ·&*z]ÌúýlŒÝ·yÚÐЯΜ5{Äœ‘sGm=fçØqaã'L”¼>)ëÉSb(±š˜N„kˆÄ«ÄZâ5b1ŒXO '6#ˆÄ&b±™ØBÌ'¶ ˆ±Ä6b!1ŽØN¼EŒ'ˆÅÄDb ±”˜D,#Þ –“‰Äb%1•XEL#‚ >Ñ™DˆW†`‰®Dñ1„èFÌ$º/³‰DOb.Ñ‹èMô!v}‰~DAý‰Ä*œ3ü²˜'à©xÏ:ÍèÔÈáWóÿ_çTA_A IÅ]¦v©§¦RRêVWy×Ö—²ºñºmîv·ûäîw_^ü²§ÇÜÅ=;÷Lëy«—£÷èÞ÷û,èó¬o\߯û%÷{H¥ÍýW 5 p :ô$øXðÿ8g fàA+9øâ+Ô+Q¯T¼òˆéÎŒeÖ0æ:;œÝÍ~²-äì1Cª‡ŽàÊzpeÀóÔý\Êã&r_ÒÚ*#P 2$ƒ¬ýh_kUP2)Iû…5 €}FVƒƒµÉ@È*€“Ik¨ ”$€ñÕ ßvVC5É –E¹.táa׉¼jJ€Y@¬— y &}›Â«7îŸëì¡Ã¼;ˆ¯ÂKÀ±¤«o‘¤ì^òÜe=¦·€’à;;.Þ–&ÜǃÁ Ì”÷ f¾wï6ÓšÈ-èCÁ¶€•^\©N²qTWœ>wʨ“y¢ø\]–NÉúlá¤Ø–\î]ººÍ¿üÊ«~·Æ a›à0Ae%öM²ØP23©}“òK”Š¢"A‚ÿâÓ¶“@ {ÁMŸ M‚Ĥv3ŸzCÔf”ˆ‹mÁHóÀ]؆Õ×øp2é¯ÊÈ­RÁ¯”$ìõùï_y"Þ[ædjÙveƒØU4ìMÞ³­NߺcÁ0ö5r;:Fiø ùØœŽ"8À±‹„£`¸®û}¤Qoõ^EG¾Vôº „&£¾ìÒïÙ§ÞMO;7€6º€˜¨ ‘Yr@+ Ëed®˜ p$û¡¨+ÿΜoœ9î,f£Q”`“¿>à›þ²ÙM¢Yر•ÛÎÜyöøÁ··KæîQ)–(¥lÂò5–ª î©æáÁý°‰†ýIJ#**É­.¨1”™¢_ vlŒ!ئ)9«•îÎeP²†  †Ô¤æîj*¹Då¬3”›Ç5lº?í£„Ö®þˆWúíÇ’‡Þl;c(p´ åDœV’¤bäo PI;3}ˆM›ê¡§xXè/Û!¤¹Þõ£ÑQöð‹ûÏ€>¢VmTU‰»êâ, ½d…TÊ MåÏ) uòo»}ƒýÞ?<kh8ˆT§-PRñ5ÀZgp¹°û¿ò}î{Í; ÍˆP1hÙ÷  á¿ºßÛÀŸû‘øﯪdÀÞ˜åásK¸)tdÙ& ÁIŸ>kËô‡™?d²'s/gƒÝ”¼‰†íÜš]ΨÝZgˆÚÅ&m–lÈ¥2²âb£åP)óÎÞKÀ dΑÞ=š^WÊ(šg9¶ÚÖÙÀAª¼æ$ïëc%zF§Rì= êÁa9lªÌ{){nqJŠR’«a|å'yà)ïFhXN‹1‰ÊlYN û>™±dëøÙ€Z¼ý6$àBHÂÑ?¼ß¸k¾žMé V7p›½±NÁIö1„R‘£bt:i²F[·Ï†]‚£( ¿3âé;ÇKêYM Ókt:­$4(–R½¹ öÏ;Gaæòæ?³A¯z~+åÁ¹˜Žp$ gúñ&‘…_à7N›)Ñ0™ãü™ù’Ü‹äš œwYðŒ„ývýÓkÞd§e+“ÔŒtîBu V€CN 0‹:¶äA‡BÆõ~^¬ÿÚÓ-£Ì”DíØ» PË´î"kÞ;¦*Ö\cª1×8náH¿ýÂ7÷ ½Ï"yðÈ_@MÃIKí Æ_\€ºH\~B ÆäþÚGGý¥÷›{H¾&Œ^õ®¢vÃgx9Ž_C[ ‰2uõËrME·6À[‚ƒ~ Úh[³Š¼ˆY¢K@9.¥ÀUOu, ƒÎó9—wñòvÈ£nþ¦ó.9èHüRâ¦â†Î b€:;vÙV$Â×íú€àoÝCÁpA{˜úÀßëðj>;*›5¤èÖêS +Àb°‚ÂõpÜé®BÆn¿i[#¥Ï A6H·¿iݤÏnNP T[V§z~öðná´ÆÃ‹t•òдpijÜRw^“é Sfny€ú‡iD­Mשٷ4È– Ð(jù¹õOÎ6;ªŽ1Å ‡TçUÝÖ]¥r0§²ë¾ •1šÌ¨ôĬ=9Ñ€ÚUqø2ìÑ{Ù¢ã"p„N‘®ç´€¨6Ö«%ì„ak~Ô•¿ î‡ÉÇh& vù³©¶à$€töìy õD§=O~Wo½÷²Ø(rœ,hóþS´7×î¢ÖLÿ Îi­jM&§:ØK|N78m`þ}+>‹þO­–c$7{­oò”6 x©¿Þä=¤TØ~ëöׂQ«ŒÓJÛzH®¯¹Š`.ÖÃ+~À„·/¾]ýK—‘¨ʉ[©©eMðFµ/~² ËLh”ãè‚z÷T…tÏŠ}Ú Ùj.6Ê©(ψ‘ïÜS+<~÷ïÏ×0Üþì4ÿω .T&¥ª•™ &%rwê.@ÍØÞ|­åì GÐØY½N¯Õ*DwÕç»:lGKß@c†Ž¸>Ç8øÜ7ã¯þHNFÛŠ-æJOÎjdø«ÿîs$¤±w9© È_ù[|“…T8Í JÙ¿VMéHÍùÝ0OmU”d€L@­~ŽÀ2Öú/û'èIc¬}EÞvÇKŒ)ѲߘVƒa%pÖS~|pí°Ûó@%U‘2ô#rÔÊXB±«ŽøZ`©3ä]²1¸¹¶Rè‚,;' ˆ‚“Ë€“áx8×›ù ©<ïfM/Ÿg‹Îµ6hswS¨œ ò5\ÇÅm8~1=' É™%ûjWƒ`¬¶»£.(u¾5ÿÑéSîú#¬N¥Óåu•ù 墭Jzí®Ó·!ïÛ¿ß¿Y²8M­ŠËÙÎJ§¿µø¹¤ò¥¤Ã8ACütWJÎÄÒ‘Ã9uî!‰1/¼és€ú~æ— "òs.GúçV•9É,; ‚­$Ž 0lç¯ÁͰŸ‡÷à¬Ç¾ï†ëé:'øÓ°¡—°t B‚ofBìÿу*5ªŒl6qÏvQ8 VÎ>ò[ÐLW´´\¼ ¨Á´dÐêrÙ¹ÿ&üä:Ÿkâ4ô³=.ܲ;¯PŒ‹a"Cc,¡BŠ!ûÿ­ð×F¦þÑa(×)TѺ‰ª¨óÜ:—8ϳ•kŠ~Ô×u²yËö£EÙ»±ü'D±˜e;p‚%^õvò>¼+irëí¦RKcMÓm`ÜÝL€rÖ90dÌ ‹ÉY,Oå™ã©P’¿ó ¢±‡•þ%G·+À¨Á aIµ4ìEÂ`çŸooþ ub‘è?hX,˜; ‘Dâò¢ÿA>©^±bõìaìPýˆ›á¼ ç›áÎf^áÅc× úÆyè<…ç(y*8ì.(1Y—¼NrP?=øæI…²LQÌÖ8ËŒzs’;Ç(·»¨ºHÖ°.%\·ƒMtÇØêµ7^åŠ5¨YQŠt?JìL™¼S6¤RoÝ]b>¡=¿Âžh”i'»Ð;âO}x±ÙóöÁý;W®]½ŠG?Ò£V7.v6¨dk\pP·V¼1Ž}~:àk ãüáÅå Îÿ<ôG ¥à:sð¡qk»pï¿ZÔ2 ¯„ÏÓŸh¸ ÎS××ßD-ýU8ÓŠ|r¾ï™{ämû±R•¤Ëaå+dQsÞI=z½ö~¦¹\‰Ä{e«bW ¹¦j‡¹ÖTÉš*ÌÕ €ê+eÊÃûQHÐ@/ô­xƒüªaKøÆuKFv´ø»îKX©žû•Ï ç>¢+DeÂØaR¢;­ª¶²²–Ac[ 4ê3~¸'߇7Ûbß6^ ¡ó,AvT)ì{ª¯xËô/ƒ¹H)Si Z©pOÓÛ^,»»ŒycÔæ ai[“P¥üLôqfл²²(I­Z½`R:ê~pÌÀÊx'Q…Hrµ" ½4¾)£Ôd;Zœˆº"?‹{?ý5$¾ý8º1«€M¨™B+EæX«ÒëH®G¨K—/Þýñ™ ­¡Òj/kêE®¡-,e ñ>·ç…™Ýú­fíOMŒŠØ›• ,F=v¶6¹@œ›±è8'œ‚ìq+s›×&_Ú#õº¦¸¼ÿI5ø¯sÜ 2—«2J¾8È'Ë5mx>ÆÓ!ƒ“‚A>ˆ­˜SçùÕøÎŽivà ºóh,’ºŽûQˆÆù%ÆA­F£/Àïӽ̋S¾½§þqS¿Áa,Ë{÷ѧAOÐøÀ#Aø’M íxÑxe Ÿ;ŠÑض†mû’Þ:ôƒtê¢Ë@ðÖ='?ÍVƒƒ½Ÿ þÓ ÞS Fn.úòBâW€^ôO4òO ò+Êàn€óå/ÇaÃó™íö[ñjÛ*U ŠEÐyÂÔ57-O :÷+!ü.¨4pðéxúÖbã¾"P ‚Ëð£4ËÎøPá¡“’;Î | ¤!k®Ç¤–WU~ùDC# ì…º(…Nƒûe8r^ô|þÍ‚Ž›ÖÀ\îÌs×ï‰+Ù±ùI Äd'¤¨«S½#û!c9¨a½ ,ÍÏdþûöþð|ŒÃSô`3ý‹¸Éè^ à™ à/“¾ؽƒÕQGuGÓ¬ËÂô'Yâù ´7k Ö…ú<ËSãCÃç¦/ôŸãa,Oï êüY™é38µHéÔ±â. R©‹Ôí{´{µ»t¾oÍNF‰€¸ÑV ÜŒÙö-”ä¡ôbd7è£ ûŒÞŸ-ú¬Ã Ïúf…Ä'i}€aâýÒé|Ã_Ûa„Áwzx×[à9 Þx¾]vó¸EÝzë ꄎõæŒ÷[µÌÌ´IËÀXjÂç‹`'øêï°ó“sQçgV1óêè•ë}p±åÜ—wN†…­Y°qŽôGô¼õ§>¾ùÙÕG¯Ý6ÿÍE¾3Zx× -˜¶wAÁÇPÀ‡—9­7lÀLeUÄíV‡ËuL:Ú¦• ´ ¡¾Òèr™˜wÿ÷§¼0sá-pX ZÊ»Êeñ9N¥ï’ŽFÐØgð5ä 8Lð¾ÿB,Yÿ»Áb°kp±¤(=Q™*S3ûP?Á°wc:)‹ÑÑÀÁ6“áh˜`£ÿÂAò@ˆ6W«9Á©ÅYE•Vw¾‘i‚¿¼èÆBø3ý‹o‰a>FÃúb)ìÍãp/Ñu)ÕÑ11q‘qe ‡êŽ2[Ð¥½ˆßšæö4sŠfiÐe˜u™ÏõçÞ£ßSÖ¥Z"¥ŠœL ¡Ä)µ§ g‹[v\fg̵Æb<‰z›X‚&#QÍhå‘N‹¿uYZÔ%}Á›`&X}l)$D{‘4è ;hÆÜoÒŒ†ÂS!°SU©®´m`­äõ·ÝS0*!f'5%vÈ‹«L¥6=c*5Ø¥°SþãoÀà‹U—¦R« éõ¶ÈZp\¸üö‡ù” ÕÒ•—RÀJ°fÝÆ…R/E|àæÂJy\ —IÛ-…vPL•‰ 2”9ÚÜ,µ¢p‘tsKyO¹éÞ [Ë$¡Ñ4ÜOkp0™Œ†â!^ ´Á…bw¹Önð)NÖ _œ÷Á¡|xHO Wm—f(•:‘¤S²üt÷;°óg¿¾-lÚµ;1ê@TUZ}žèŒß»ñ„Ðz‹ÞŒ…u›zY ±†‘ˆ÷g¨M/KÆtXÑÂû›Àçb±g~·®ûmo#V¯}øðÁÕrè˜Þ;ÞEÆù·kLsÿ‘RÊûWÎç>þ£'m¶š¬˜ K2]"Q®,;—iÝðç²\™ÆKðbgFiIžÃna:†ˆ'×á{Wù\-׆ôrÈ{ OûƒÑ:Ž‚® ù¾Á 0ŒANô ½tïýßàŠß`È77ŽLžˆFC+‡µèõðüŠIiŒwi X¡Â™–‘+WªIÒÎy ”]šÄQrKFÕ‘¦â²:fQëÁ˜5hôŸ‡N!;Ü‚B¸†Ïüc ­·é x]¯_qª8 Dþ9_+j  fxŸ§o—žïpô:Zø\7FCêþù{à+ê»97P4t&ê¼*©4£¬Ú]^iW:Ôf¦üø™£ê“OÌŽºNÉÀ-F›$rUfõ6ø>"‹@1°Tì–# Ï÷‰4ìÀfÈÈv©Òìý8ùÊCØ„ð|~|hÝÎEófϘdx/‰5 ¸|«Ò©ÛÁ–ìÑÏö}Cž>ûù¬ðÜêƒÌã÷оUÔ¥WQW4zãÂ-Ñõ¹ùå%µ•è™Ã -z' š'ìOÛÏîKˆÓÆhר¥:TŸ…ØN»óà|ØÊçê¹ÛtAV‰8[¥ÎU0Ùž) (­9öÌ’Œ’°ìK’åHM‘1%-Û-£‰)Ì»±ËV‹Ê.+I)–Ô‚jPïª(ª+­Âî·«eÂÃuÅÉgÑz}>ù!'ÐVˆA’©¬½ÝJeg©¤ ³)F„`iÀ@»Ø¿Äz²†+ õäZô³%µ‡µÞ'{x·¾…8¬ï§ 8-r“I@¦SFïFm#›š’ؤå.£ÑfcÞ=ý¡¹P-õ7Œ;BøV×))k·Ú]X–KËã·ƒÍÙ“îmy ûÃÞ¿À~O–Ý MS§noÿ ìȇp:.OaÞyüŽ> ûþãÑwÀÜ:§L©Â=$…JqŠ«Ëª ÞnÞzp!z wÛ×P%ygÉ÷° ìõ=zkýD­Þ˜É|Þ¦… Þ–V+)“7*`“ÿ[ê˜Ù|² w˯Ëî ¸`&ÛCžÏ-°Á9ùr‰ÄÖ.ž—®uc^ê,vïJÿ…2åWendstream endobj 274 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2897 >> stream xœUV TW­¢éª•²DÅtõ!ˆ((¸ ²a“MQQÖH·—¨Ñ`Œò—q4 ¨¨q1 jpC‘ˆJKh´[4$4óŠùíÌü†ñÌxNŸ>«÷ß»ï¾û>M™šP4M›ÍOLËNÌJ]oœÙKÖ´4ÖDú@†°º/¿o™Ë¹iåXóU–ðýpH ³†Q2šöŒZ1oUúºŒÔä”,¥CdØÂqãÇ;ýoe²Ë$7åòuïv”Þ‰™©Éj¥=d'¦­JW%ª³‚SUËWg*ÃãÕ™Ê@eXbòê´øŒ÷)Ч^5/=#3kµöšøå+Ö''&%§„¥¦©¦MŸñÑ„%±]&Mvu›2UIQ!T(eG- Â©*’Š¢©…Ô"Ê‹šGySK(Ê™ò¥ü¨ù”?åJPAT05ŠM¡R¨£ÔlʃJ §,)žA ÔHÊŠ¢)G‚eJ>ßA½¤émô&Ž&©&Ÿ›”˜<%Ë.™š™:›"Óóò!r?ùmf0“ÁìeN±ƒÙil5gÏÍå¸t.Ÿ+âÞ ­Ôkfk¶Éì¥Y/œ°êQ‘ÖšRdÙÒæÑ ùZ+þd‹T,Š;¡Šå›þqµåéª üo­¤duWí¼‹;ŠVÅzqz–|ŸÕ&9µÑgtP¯“Áa錀\m°7öÑÛÂ8pxöæBÀ”^ì$æyϯzà‘xØç‰amÀ­­[´èKÊêz:èšnYŸ£„5¸9k°‡f§E†øÏK¶EØ aór»fïk î§¿@à‹^þz"¹ñLNô–Ô jUHPª;âð‡ÎÀA„耛Æ+ëÕÇÅ£ûU{"8£«ÉQCBm0†zIgÅ75`µÐ G˜êÈÚÌfÄÁX=Ð0 ¼§€ EÞÅ…­Lâ³¼“Ã7Áú@á—ë3ñp<8x¦Ëä°v C¯µ?-à)ÁqmѶ"Ë{ĸãÞA<Ìæåå«Ànçž°¼ËÎ9y[¬#Ñò•KÜ9>ôApû‚uð…N&HBn¯ßx‰Æbv ãŒª¦5kØX’’FG/þÄkiâ¾CÙŠMû¿Ü¿­œse ðæðñTgÓ+MÜyÛÃâ¬oýþ®>„ÊGמ?Þ|÷Œ:b§ÂNdµJŽÍô­ ‰SÀn:¶óöûÑ d"Ϩ›Üùu™¢…ý|ûæÜõˆKÞ²»\ü´?Ë­ÑÆø,›´P ûЊ_+e”Чã:–¿  ÷qó?{K!±Ó ¬[Sø Þ» Õ­½Çy±ä^TÔçSD¿|.ƒ¨>•0á­ê9C†Š‘+Ë'0ØÁàŽ•’;B ¡XNˆ1pDº4&ö±58ÙINò™ NJ2pfÀ‰œ|μ’œÿ48Ëû]•\Úè*ìÓʤïj…/v|…¶!NýÙþ#"Ü`»ýê°à¼:!Y‘™¾Eµc!×ÉÞ®8¦AÜ£s«¢ÅÕlnòºM~_`³ ë¾Z¹)øÓ´XäÇ9Ý ùóN}IC£â›È#Y è Ú³³¬Ãöà' U9ë3²RÓ–¶q‰'ꯜ)ëÚ'>Û{  lßï"Ф xêiá2!^Lá­êá]–¯ >[¯nµEÈÁ <¦¾Áâ¼Eé¡ "cÁ ÝŒ zŸqïxs‚f%¼¾º´ùäšcɵǼsl\°)öÂî]J°áˆÝâ4fã´eñÞˆsŽxÃÀªAósKõr¯ÝF[¨U²h¥¥#k­½àƒïÌås%V¬aá¶4Dþ~Gtp™hE­”C™ŽK™”úð2rñØÉ˜Æ³°ÏSLƒÍýº£MD~ƒï¯—â…®k³±¥ÈŸÄCÌruþ ,ÀâÆO?+úmdÈ#½¤ÐËúÆ£®†nÆ0\ê–Û¿Ué%=# 1èåo˜~ÅùÍàÖFK»a“€Ú¿¬ÙP™útÖåqäzû X†=±g— 8€¹¶˜bw–oLò|…––®ª^s|ëñÜËÜÎf¡°§ñV'âž4úOû9*³Ö­´ž”Ç„[súÛƒ•…ù(÷[Å=vmÁæ~-†­£3V·Àpc2ˆ¶œÖÁé6+~¬ä@,Ìaùž[ñ±eþÖ˜wÅfx¶kñÇ¢ÄÊØºŒt ](«¾Ã¥³X™°ÐÖ;©ìzŽb*³Ë±-Ô†n>Uu¶v‚¡1Àòi83HÐ×yâј_äé6%ú!0¢îÑSñŒ“ÌÐ-Z¢â²–~~i‰†¼ìHΆ"EéºÝ(‰Pr}à•=—f}¼XÇÙ~üábtÐÝÝ’i ‚á®[mùŠIbnZº+nŸj4ÈK˜”Ò­Gvôä‚ùÚ3³Ouœ;Y‹:9°t¿‡íøÙ[U7#)M¡V³—Ññœ’5‡³÷}‚–qnq D€2úëùåË;Ó }ºÁ‘ 4ÝP¬eøW}*Ói6Lÿ!#š;eàD˜öVEVû¼×¨Ò?+þô»^ÕÁòw]¹Ñ|ótâ|~k\0NoœIð7N¥Øç‘—ÇùÄg‡.V¤]/õCïâƒb> ä°øý®£¥}Ñ‚Aí&ñ vÇ_úb‡(¼‘{ÎTšg°Ü u žá»©±,ï è‚\ògÅ÷HÖÒ ¡õBéit—S·6l‰‡»ºc™IrëRß;3aE¨û<²gü”¿u à{Ðã3*9ÌÁáaMœ¯ÿâ8ϹKªï6×T?ù^\gª¿>}jh„Ë”kZmãUcáïÓÀÍ6º¢ *~•ÕÃTáæù…£–òªÛÕ÷Štƒ×=Š¿•p-脱7Z;~„E<ªk"Œ¸[[zå{1{†·GAhYåÆfFHŸ7ýœ]C‚ݦF5¾èjlê …^ó\VC`Á2ö(#?Ë…1rÐ~‚èZ:E‚!ÏGÊ#©;Sî÷Uܧo“Ê'¹ÃÁÿò„àûv}½ÿ· –ZY N øŸž8x^ïÛ ;ã.zMë^Ë üµ`kûšPr†>ßå]2(#.ø£uÒâØ ,'„­8¼µ[‚8v—ÄFP¬þ%æ¶"©.´l>âÜM_\tÂá86v¸‰1¿AD]|ñb PhØ«—Á^i§`Ø©ï‹^À¦azÍIñÇù®qCX o¿ƒs«+Ân¦‘6 Ö=/A„Q“º10QÌÏ«¿¾B7Ñù„¿ùq¤YNžÔ‡:M ˜9#¨ùgýõ:£Â[d•HÅû!loD £5ë\UP¸«0?¿àë]ææç v}C…_m>„¢þ?~0endstream endobj 275 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2290 >> stream xœUUiTW®‚®EÁƦS‚"ÝíFqAAPaTÒ ‚G0BDeG"в¸@4Agˆ¢¢ Òˆb„&¨hDÅ ¨¨ˆÙ45'“ÑQOp’½Õs;sæh2ó£Î¹ußö½ïûî},£²cX–u MN_›œ›–?!È”ž¤¤¿Íƒà Œ—Åáb”h›¡^-1ËÁ!ÓìÜ XíéNÙ"Ù,ô÷® ½{½åd÷•£ï…ëðšùŽa](½›µ Q§õÿVP[Shàô›çûà ûa4:Áhmïý!pÿž´W¶XZ,G®’òeò%ÿ³¢VþòÌ‘“׆‘óÙã,Ñ•DÄoyðD~üíFÓâ¨TS°ýxÔ¨`.¯íýªiÕüˆäUAzœËSܹÀÁ3àØŠª öpQ>#átd1C~FfÀô_€ ûõÅÈIwÏ…ŒðX<{Vt÷óçç»ïèûÑË9 aïRä—ÀÓþîhâÁžÜ>t®ãÒ­ú<.½gQwLGÈATQ tÜÓö³D—¹ Àµ /úD §WËC)ŸÃ@ßϧ‹Öò—Í‚váý'îïݽµ¨Z#…ÍÅEd 'QñéA¢vò A-·å‚ô‚{–.ˆ¢—’Kd;é#à§vãz®û´´O-K¯^«¯^_Ux!f.qm((/ kÄ÷’Ö…¥˜vTäé6”m)ÛRGgóÛÐáo ÀŸ|C.U6k>vài#·Wž6Ö`ðyפòM;É~ñè1sk×'9ïëÔÖê\x¦Q)³à ö$%úT.áiÔÀ þ/ ›²×d¥®ˆÌZD±¨}_P¼ï<…7.´lÈüD_“W–_‘,Â>Æ£ú 鬅“pfQKøBLÏ͆ûíú}㹇ý:Œ7ËEfç˯­·^n"[Ѐíéðñ!og»¡ƒ¢Áæ( ãP¿j=tµY§§Î«&ÊrV¶ ²…Ã1üt›z†¬æÐ D¾J4†/›…ƒÑü²æžMÃõÑÌy›eàœÐ“ßwjz¹¦JÊ©Ý\I‹Ð&€Ýìvô@Y¨)Ô_Ú^»¯›ˆç¥ænØP¨_¿‰‚ÈM®†¼%QÄSô¼öìÊŃÎQlÄôñ¦Š÷EðâµÒŒÄeÆØÌƒÍ'÷›/—ëÎî²”î(©Ü9”Bé¿”À5ð>è7ü”ŒXƒ¡xƒþ𔨹Ìòd>fçz‡…½Øk†ôk>´­ïÿ,û–H=à~_­ù:õ‚>¥mÞñyd.‰ÍN[,B¹ñœÔÝüæØ¥!ÁÆØ®çÏÎÞºM=܆¦YS^uÔ¼¨²¹£ƒìÎáD–Ù:¸È•ÉK K¶åëF 5Eå[«H#i.=¸ûÓʪýµ7 Ûªuí§¸¯<+.®†GÒ&põù‡SOL›8çcÈãQà.îT¡Ça|~°iu$ñ/.ìþ¬ê˜¾òh}e3¹D¯®4Šj¹ˆ!tÑåJIù#%<š±‹CNŽ °ºúä} #ƒÓKV®µRq9ÙNJÉÅÍç>hJíñé@–b˜ä…*œ‡sžŒ€ 0¨çÖËz=êøü¸¤ìh’HVU­;úùÏ>:/–<–v=hh¾F®“¦¸Ò™¢~ ’ù<~ÚË>TºÎMùä߯)ßs¨¢bëG{t½BFIfñZ"N\¾b²>lÖÄ;¶P0È¡h}f>쥢=‚´Aœ º™`¨‹v¸<š^É_ÐþÔ™W·Èm)y''%iq¤)x‰8ãGäAºÜPÝѪ –-Ÿ“¾ÿDGóÅñ{3-§Vväß!"L~ò hôt7*:nEFºÙôæ¸ØÐàq]=¿œú¢S¯†ú>Ã]§ý®KŸ¨(lPoÍPÑÂÓÐèµ-!ÐÌv(³–ÂI…Å[,´_ 9ðç1þó!ŽÃ©|ßÞÖ`ó«©ûðêú푹zÔÓMf÷.Ú†+ÿóØtu5~z峺Õq:´õen66ÿþ/; ½á× ‰Í‰Œ×e_\Jh㌠‰ë–EŠ]‚" xÀzð`©U<í¡<$ôDðäå*Õ«H-ߣ';°ò h‘lÅÔÚÅ ô´“¬Ë%Lø5ëâ!ÁšÞß)å2jº: 'I¹×!ëJi [·0!j½7AAçʩǟœÛò€Ü%õ-ÍŸ›J`Èû?¦}+ÄâO-Ç©Iݺª”=;ÿ@Æ‘™ ,È|?>#7‘¤Su~ãÆ£›¿&OÉ÷¥-«Û{ªþ@3û„`¡P9¸PÞ(Ù6‚Á3QXã‡jj1åÍPÞ¯<àÙOÁ –)Õ¶ 4^ä«›ö×<ÿœ6¶‘ŸDp÷úÇ⛾>è©Ë·Zá;Ë™ëךâŒ9™8U:tœž±]Eym¿ÀD®öð!iŽŠÓy,·…p8,èM)ñþZÀ÷@”0‚‡hÅû^ê0y²v£5F²9ñómzœù½ ǪOñ‹SѾþqÑÆiõ—Š”Ò+ÁÁOü@Gmìõü9­Iïgè»òÃô}-ŒåàŒ"’:·V¶ì‚ÐòÄZœ‚ÞájéöíUÛJK·ostìܾw϶ååì8¨ØQÍ0ÿ›ˆïUendstream endobj 276 0 obj << /Filter /FlateDecode /Length 168 >> stream xœ]1à EwNÁ HœŽKºdhUµ½1&b B†Þ¾šªêð-ÙþßzÃxM\Ü¢Ç%n¬Ó‘V¿E$>Ñlkk‹éÓ•Š‹ L ž¯@|7©ýU-$î]SGm ¡×´…•›‰õM#{c$#§ÿVP“ùqf´ Yß‘,P§?ŒùRf:8n1’K¼€eëèû[ð!§ø.ö¢ V¼endstream endobj 277 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 418 >> stream xœcd`ab`dd÷ñõM,É®ÌMÊÏ)¶Ð JM/ÍI,I©þfü!ÃôC–¹ûwöÏÉ?ãY»y˜»yXüPúÞ"ø½–ÿ{…+#cxnuÇ$çü‚Ê¢ÌôŒ#c]] i©T©à¤§à•˜œ_^œ©˜—¢à¥ç«§à—_ÌTÐÈÏSHJÍHÌISÈOSIP v Vpò ÖÔÃî:TѼÔôÄ’Ìü¼âœÄ⌜Ē’ÌäÔ’üf3;†eŒ]ŒÝ ,ŒŒ,:1³¾¯áûÏl•Æð½|'ãÏ’ï}¢‹J»kåþ\f«-í.)YØ=SþÇe¶™ »Éóý´üé!:­izm]{K]‹ÜŸü¿?Zê»Û»;$¦ÔÏœÑ?iÆ$¹ù?LšÞÝßÝ' 1wAÙO™Œ?¤v2CÌbú_„éßwÿùÁVÛ]ºhQ÷™r?~|ßͱ­qêæ ?…–oZȶ“k'·s¸ˆ=g7÷ò¾Þ “{&ö÷Lè™ÆÃ³¼¯gJÏÜiý“{{xxE^´lendstream endobj 278 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 666 >> stream xœ]mHSqÆÿ×Í»9¯«mÌ0k»T”s}¨ÌД”$S¶™Y„Lsoš×œmZÊ &GÇœ˜8 ×”-j…Ab¡‰ ¡„aÑ ôÁ’(¡"ý︅m„_:8ÏÎsøIˆ ÉÉ2sÑØtH¥«7_n4¶$Ì=l&ÁîHbwòÀóÅTÉ@ñ€âÏÆH)>'Áº-øäVÄ#ˆ*3SÄ4··XÍ–VZ«ÑP©âý0]ÛNªéRc]ã´7XicÓºT]¦¦O1θi¥³˜&º¶Þbl4ÑŒ‰6ÔŸ¡+õÇuzºDW^Y¡ß¯þÿ¨Í!Ä?ªÉÑ"¤@$E2”ÿñQ9Z"2ˆ›8"ÞàåšN›Â¹SÄB¬ŠóaV´C‡âO Ùa‡ÖÖQð+cÒ? A%gá &!;œq6–`)¤,ÎÄI²äÇDabr ×xl'^‘ï®%ÛbͧÜ[à¤p^Õɘ {²  NxöN™:öºm¦aÕÿäûÄŠg –„Ú!9T@ŽKïØUÜi+8¢]óðf`^Þ˜ ü|78÷`ùʨfÈP"üöndÑI`×{«OXÙî¡ %;#õô6+jëNÛ³Ah„à)<  LnW¶Âb#'=«ð(®0éÞ\öÿˆ~‹Hg£eë5Qœ¾¾Mb/áy#évvW»Ú®wçÃUrÅ$ÎÄâÿÃÈÈpÆóù…9ø,Ä©ûÞr…¬‚£ò4Ú³® îøï+e¶™jp)n¿z1þ„_¦óî.ÌçD\š’“réÉ2Ÿ« zZ¶³JRì°E~Ì ȈèMªBÄ70T P©áÞDy½½}óöøCž~Ÿ§Ïëí§Òú Å«endstream endobj 279 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1208 >> stream xœu”{lSUÇïík—R¦0ê6¼[/AÂa"y´ˆ(² 6@бnkm×Þ=ºŽ=èÖÇýÝÛvm'Ý`˜!`@1˜EG@!!Ä4`#"Y8·=·àeFb|œ?Nò=ßä|?¿oNI¨I’“V™ØšåM¬Ùê´Ø¬ÏÏœQj®®¯59¹ÓħI‘Vˆ9J Gêhõ¶A5è” S¦ÕÙÐñèâè«' -I®³w÷úü»«Ëlv—ÃR]Ã2³fΜ=c†¼/`*\Œ±€YiÚºÍÖèÜfaLÖJfeAQSlk”-LžÍÊT˜kLµUŒ­ŠYk^Ï”—-/-cV”–”¯.Ë/ø_ÎÓVs­¹Š5Zª«GÅ(Í#e79ÌÖ¿¬QñØrÖoßnbå XsûXTZœöZ“Ëaª´l5ÕVXª ‚HËËg&¯^o'HŽ’'2H†È0AÉ…*âc²’ü]Ñ®øMéT¢÷Ó*§†zÄÛ@j$Ñý[ÊD>=â×C?Çû„-qæe;2ú€q*M¤XŠ ±ñ:"Î =³ •ðÝY‰×Òàè~ØåÄm”ñ}4ÌóÐO p|½+n{.fqF+.†*µ1 –ÁÂuϽ¹ ¼b‹uÇNŽƒfpñ\ÔûcÙYx^°ÐF¥bi°ðS¼•OÝ×*Àn x~ÀðßÄÉ"=Ä!ì n:„ŸºZ‡6ødâ]TB¾dxZŒËï²ñ´ÅrÀºÁñP)VÇñ"¨¤Rò\Xq"ãlL¬Áz<¦ —p]Y)y®àò˜]‹6æãŒ¥¯Lë¢Xöí‘‘æ"eÄQ1|@%ä¹¾…áS?]:ùщ÷zc£ È´™‡ÿFÛ.Óè·‚ tEžEÔ"4q52àLtvJ‚hqÉ'¢å¡á3(ã"Òþ„!(¢z:¡¥%@.ÀªâB¬ÀFÌÍÆÇ7ã“N<׃çž’ö¸4ÍÁ7/àé7qÎí)1Ïíª/=†Ј›o)ÅStr•Dí&qžƒn¾Œ¦OG9y÷vF9¾¨èð…¼‚ßð+¦®à‰g±eâ³§p$#HKÞ´8¯‘»ÁÚY˜à~ø©Ž(ôö 2êç.!2"î::~ |Í¢ù€æÉݨ !âAËgÉœA2éNyôãÅW‹_°º½¯8ñ4 ¤B º#¾‰ AeCˆã»bø’Xš%2¤ÔÜy—Pû5sQ«:u^cç¸ZƒHJFÒëž.¾ìöôç&ÎkÒª÷×tÒVÝ=AʟŃ/å¼Ê)“Wà´í Þü:¼V¼£»Å_"Q90œ áΩ*1>K<¦A“àÆŽXà´çZóå ûÝ_o>²PŽÆãÐ5+4,pœ¿‹óC´‹R5YRŸt¯£ ºþ„ U{5éÉ ´êh#™ ¿­Ëkkõíl÷æJñç°EìĦÏ}á4j’Þ= <ß³7[¢U ‘¸üœƒÙé=â3aÑÐä5ƒÚoÆæjUkmº1 ;°[ˆðÝ|(é=ªÓ Cш¼z{cè¾nAüس{ÿendstream endobj 280 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1325 >> stream xœm”]L“WÆß¶€Geu¢ ØV/Œf“1uY\bÌt‹Ž* 8¥J …b?h ¥ôZÚÿÛÞÒÒŠPËW S7uà×p]¦1Û…»Ùœû¸X4™§ìÙŠ3K–,'9ÏÅ?¿ó<Ïÿ0ˆ$&Á`0VÈÍ(Å)RIÅÛÙ[÷Ȥ•‹ú¦ø:F<“_Ϻz¡p¡ RYš4“™œ—† +±b®}Ha0Šk4-FË^YƒV.©+ùÛ²³·oÝš¸wò…Zþž,~Ž ¢V¦VÔJø‚úJ~NVn?O¦NˆþfY=_X%HE|™ˆ_XUÂ?Rða~_þÁ#‡ ¶dýÜ%´A,V)Õ‚º:A)*MÓòÔ×¢ˆ8J”1ì `Ä’ÄS‰$âCÉ\ËœfÝM:„ÇÙ »Ì±xzŒÙÏY ëðfŽ_&ƒ,®Í¶v¹z—JuÎìîu=gyÃ?Rgz¦ÊèoK›E¦zn>­iW¶ÕÛ´ZE¥°Ð!û•ðÜèwgîó<§ô¢›‡Ç 7¥3Õ-èî¡ÀçâŽcÖ¬'ˆò@£²Ufmå 6j  Ñ)¿7ߊ|æº:Ë+½Ù>“éï õÍB'bÿÅt§ÿ`Oa6~ˆÙ¬ø¯Ð[Û@oåÖgï­ªÒ†Æú}3Ý“¼(Î |BF'„á”®Ú¨•€©zãÑÉÈ噢h^¾¨\«çÊÏôå¢ÓöÑ+jþEåE~º?rÐTH[«i)4Uó$ôz]^u2, u æ MÀh¬‹êK‹fÄs7&? ù¸C‚뚀pÚ=¼bœ—`c aÆ,üT͈÷á79þ&hk3€©ƒkÒåûʹ˜~f8|ú->޳¾ò·€Igc;W!Ö(pTAeP’‡D€¶ço“¶ÁÝퟓç§(rÄN¥øIŸÝObNWº¬¡¹yÓnú8¥Ê+jñCw$=7ve’ Â0„›†QÕv*A™ô³§)ã§_9|/a-Þâ,Bè- ·p[ëÅHnÃèïL àdp¢Eó5v›ÆÂÕì¯+TIíÓö[Gf‹gr<Çv–ÓLzÍ¡™à•¿=:75à ΉæÍO\ìçѺëhÍË OžèP*χ1kä&oìÎíÈUø¼4Óµ…”»N€âe.ôû8/†ÄcXK‹;žå>Y³*)þ+.ât ºÂ‰¤Ï>QŒ´u›ÝfêühäBÏ%´êOW€ ø×„q´1\-ö½è¥4»†Î ³_$§Û ]ín@})tº]_b*=R6[wæákÿÜÙÙØÔ5ÿ D3)ŽácݱJ±¸ö˜¾Ðî’™û>‡ßéçÝÆÁè fþ£1úä]‡ôÐhQ¶«Ìcµ\ÖÐ-uI¡Û åv+X¡‰f­—£ÑNß×Ñ‘8V´jÕäÔjÖB­Yl’ *\ÊQUu¢pt»‰½€ôvÚ-É[BÐùñ+˜Éˆ¿ˆïy™11zq•‹v|@¿cº[†‹é·ylx—æ u‰*xÝÐÓɸó½çs¸óú‰²á ÷NB…­­­±á=)M€™¡apÐ7ÙãâºO?îyFö€Ãé~8Ñ7xu—×Û—¨)»©7^BbyÌI¦Ä–=_Î]ÆT·¦.…Ôå1I:]îΘŸ"SS/ùG½.²ÓÑEz½‹Ôß6¹”endstream endobj 281 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 475 >> stream xœcd`ab`ddä÷ñ ÊÏMÌ34ÐuÊÏI ©üfü!ÃôC–¹»á礟N¬Ý<ÌÝ<,˜ }üÌÿÝ_€…‘1<5¯Ø9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õPÝçg¦ç&2000°102v1032²dÝü¾†ïÇå†õ?š×ŸZϸã»È÷Šï"Ì?–~¿,ú¦ë{óïÖß­]¿›45z~WoýÞÒû½ê½Üo‘é¢ÝÁÝ-áµz>µ¹ÝéÝÁ ë®4íïþÜ}¨ûr÷™Éû§?¹8uq÷†î-óâç¤u+v[rðýg¶ëcè>ûãâ.ÆŸÉ»˜Nú>C4†­ì·£zÙo…nŽß Ù¾oÿ>m℉º§HvOlŸÐÑÿ»âûZ‰ï lß5º,ümͱ‹-ç{+ë_a¶òúîâÆîΩ òß7þþü{ýïþÖ¶Ö¶î&ÉÊ9ݳä~ ³ñ5Lû0å{Ü‚©ÓØvq}gã–ãb Éçáìæá^Ó××ÓÓÛß3iÒÚã<<»&n1qZßäþÞi}<¼ \É[endstream endobj 282 0 obj << /Filter /FlateDecode /Length 4027 >> stream xœÅ[Ý$µ—ò¸Ê±"ôÀMãï""ˆÀ‘Û®vØ»× ‘ô[ëb6¬ ¸%Bï0%  ¾ .Ìs[¯ò²LG‘²/ïu\Å1Y-^YÏë2ùO‹:I%` ²ê{Å_ÜÁSô/ònEdÚG[秤ЉR}á ÍÛˆ;p?.õ8c¸Îæõ¤ÍùÄO>y¬°(WÕµ ýfï÷ `ÜtŸÒ^M2väÖ±CÇš¤ @¿ÂAÌ8©wiÒ˜asù)Õi9h”†m\q]À)M0Q0;~'1‰SÜV°*6g½/ôq O¡áÅgZ|õd•'sŒS)Ú¡ÙÄ1t3MÄXÎq,KhU1Lj‰ s~ñùÙÅ;_ÓjÊuYò#š°EnáYèÆ)¥‚*ÿºp+[byXl@™Œš Ç­ˆÚ^ÇtÈ0K]kGª“i(–ø÷™hH¹˜äü4[0"Kr¹æ1Æà-L šq×u»d(©Ülý[—þ%!Ã¥¯âê¶Ê8+û)M²<<ÉŸ ÔCæ½×ZĬõ Fü+¨"¤Q!hƤÀRÕO(¸9WR§d?=Fu*‹pÊq >Ã{É"n-à–›Ï*ÌelP LÂ2ë¸Æ :ˆ_QÒÜûÀ.¸–•è°-4³¬µ7ö!VqÆkIï±›a˜Ï™FäSb ;À#päøq‘?‰T íÛmYá3œ.3Ê…BGƒÆä¼ndeïë^§ x]rÅ Þ”ƒ²ošnV¹IØ5›TßK’õdÏs¯Ê ÝÚ6ŒN€SËd×÷cþ¤Õ˜=§•ý |wMÝÇ)\¬¡6¼j$nŠsžÙ!i;lǶ£·U¦=¦NÆäÏ-Û\4“°º÷­/rַβPW!+àè ©c½,¹q–“DŠz4©EhhLÒþÌt 1Õ(íªUˆ®«1§ô¡Ç\¹ò¡6×6|maü=È?ø´Àÿ >àø¼ŠµT—ÅKöQ&ü 1MA"î÷q6Çü½0ÃÎOÂü'ã{*äFIZœæbáB èMÁHË%È„¥Ö˜Ä|³†Âv.r¨Ä|=º’²aÒÚ0*S[9]4±ê g;A'q`¿H_TÌ\ÝÙ.0¢ÓSR:ϪÆ…Wá³p¶sªömLÆH;—½<MCçÌÍ}ªj6˜é…;Ïb_v7iX!r÷ƒEø¸á¥ãíú“÷¢|G¡a5ob59*¤!Í2é!¦ßj.Ñ‹FÏMd.”«ÜÐn|àãS3³¤…èK!:É2©:—B:¨Ø'®g•ZZèêFG¾|@?7TAïg´ãšŸ\œ}u¯úhÈ”=¿›¿ß™Á9„QcTë~ø'Da¼ßó—tÃ…wÊTú B§;?Üò²»B^òužk•)òx(ä]!o ù2ÒÉñJP ó\<ÍF_òÛBn yYÈS™áªŒ’Éî éŒ^Óy3YâPÈuS†›Bî¨dy²Ë¦8äµÛ&á¹Úî8øTø»dgåÌ!”4Žç›B>+$Ϭ.ƒKrÐypÝ$ÉTJäµãc;…œ;½–ææÀ”Ét]+MœäƒBþ\H^xŸ”ÑgÍ×Ú¼·Í3#²ïš›[7—ÐMõ`7`äH Œâ@öòÜöÞ²æÍ@ˆz=ä+ÑsüŒ€ðsºîÝDBt8îÏA\2¤E‚ŸÄ4‡«mÞÁhãÁ‰)ñƒ<¸Ýá® ©3ü—½óuwzO‹°Y\Ê "Èåp1Al÷+ñ¿ð$<}ƒŽ’¹žY?降Í?œÜø•¯©õÏŸ6]ònj’S’ð ÎnfPÛûþA¯tGem ð²{ºïL²‡}ÕuS/„T…ïr–õ€·Ý5G·MÍãÁ,ß°qWŸO»›Õ BAÎîÙiÝœwŸÜÝA•QEßw)ÞÂ{ˆûðŒ±NôÂ(ëàOç ·ÑDó² ¾•ò‚·Ï³‚X=5kzÐÊ y§dqä’†{] å;‹u¯8ø¸S°™09Šœ2Xåÿ"³ÿ5•´]Ëœ€s|>l—ûÝw›ýîzÖP@rε[: ©„/S áÃÏ>F'#ĸÕX­NO?š0Þ+>E!2~ñòæÅæ®û‡c¢øò°Ct.lª+@ ZümÀîfüKv·Ã.@=«LrN}ȼû¨;S÷Á±¥%bÖUÚZ¡‡ÄÁKÔwTO8 s¥‚±yc'¼¨¸®¯ÛĦÇÛ ÓéÂ6NŒNMŒtÇv(wÁ«¯4äóqn=lñ58w¦i+¶ê<¥8hîª{ÜÕ5”^zwoéòÓ_2¤Ÿ`g±^·Úr⡾i= 'Ã}б«Ÿ¤Ão6švøñû§wÿýÜ•¢|(ó· Ê¡µîÀ& 1^éó2`}¾SCô:wÉ;PÞm[÷C–ã|õU†\§¿ÌZrUHò{­MûÞ2DSÉò½åúcB¾E6ƒðÔÛ÷¦ºù»õ¯¸žuZýölä‘yŸ´ÅH‡cÕœ•$Ó4ÿ%y<á ©`»mA²iÖ¬%~¯„ö‹¦¼¤´ùè±2ˆtCê„ö7øl‚½LxÞ™R>ŸËð¯Îþ †5Ýendstream endobj 283 0 obj << /Filter /FlateDecode /Length 10278 >> stream xœí}M“%ÉQí[—±vØE,¸õ˜Je|G Ä3! šiÙ[HZ”ªº{ZÔǨº™´à·ãÇ=¾òvV׌á`˜½‹ ›¬è¸žñáç¸ÇÉÈÈßÖÅVü¯þ÷æþâû_úpxûþâw&Ú¸ÄCˆÆ-ÙlÌe)á`‚K‹1‡§×‡ÿwx¸ð˺Úrøý…9ü„þÿ·ëáÇvµfYí!›ñ›û o²_Lé%w_íÔê%¹¬K°RËe³„0×j%s­äí²¦¹V+™j9³Zt©WjsÝbÜ\©•̵²uKܘj%S­Ó^Oã0ÕZo1Ü<‡úŸ›ûÃ?¼¢É0ÖââWýáÕ› ™&s0Å/%Ó@¥²¬Ñ^Ý_üòh×Õ\^9¿†ÅDüe7¹ú—µøËoþ-lþŠ›¿Òå¯_ýäâG¯.~~A·5K2ÔŸ˜ë¨?­$&ï–`¸?{µV·ØÜKæZÑÂÍâT«•ljù–µÌµjɦVmÅTkj×wãl—báxžfÊaŒëå«ß^\‘ÅPR:Ø@À°ñðêöâhøŸV)s\dç¢ÌEŽ‹NƲû†Mëâý„‘V a/`DzO?)™‘õ< =½B—M$ƒÔ©háRâQ?{¼ô+îËáÝÛKG™`¯o>¼¾e¿€AH‹OvÍóðY>Ã!ÂRÉ<|÷¯Þ=¼}¼y¼¹ùø¾ÄÏÑÖ“^XGÿMŽ×%v¶ÓOo‰)œ_r™|¬•kÅ%d»’Mb.ê!ÓK Y¥>º5.ÙrI<žÎä%JI$J¨“h@¤„††ì8b>¸$ÑÂN°‹ËÙ-v\X¼ãB¸ƒP©RèçUòâùVfõh<5ЃÐPb JÈi²”äv‰máò§­1EæÛgˆ èG‰0›¤$/f¨wNnåÉ ¸ KÓ¸$ ý8ÉBY"ÃÏ/.r % J´†Zn¸$ÁùÑP_’ØÉDdTeÍÍLNüî8ØÊÑh™H3Ä-¶«Yõʤ\ëà÷t'CSfùÞÔ.™1u$èÿ@è픉±ðU˜¡!‘£í³­W–ÂÜÂgà’‚É¤À}°!.)²â!r ne×:1@"ù™IËê¤$ÁÏ"&(J q»‡jV-)fñÒ+/­)yq(qmD(fÈ¥×q†œ í‹ä VJ {… +&%D‘+zESž¸WÎ94,b>ê¯9:‘l½;E²¥`¼ {J‚Ã<Ò ¯­.9™óà¤$-Ä@wðr¯äJr/8ÝõL.(r†9ú“n(F ゼ6Õ!öD 4iäÙ®ÂÁ¯eAâ™qo"àE%Y 䩮ɀuVª€’`Å„ŠWs>¡ïø“@ Ì17ŶO%ÔS)Hì.XG yjv9ÔIf‰Ep芔ð¼OÈDD ¸¹‹uš|±ˆ>Ñ&ZIÁ賓Tˆ‹œ¾ñ<22.‹÷¼ƒòC ;Ƚ¬”$ ‡êнøîø.AŽYá`xlÑ{b ÜI²`ò®¼¬AJ„4áO ‚p&Yp—¢p&ÙÔâL'€pb˜ Í¡”_4QäÀÙÁ™ä–9p¦Â¬2á3S äPJwAÏä‹p OABØ%aM&“+¬é‰ã|Ù kRÎTç*;aMàj…¢ùb鈜™‚KÁ˜Ò­Ä»2%ÇR8»Ô¡ ˜ef$¸æ\9“H9à9–Ò°GùQ©œéLDY+göÐYVnÁ³Ôæj05nŠ‚L[t(Ô? o"W”ħ8v‚Q©(ÞI4%wJ)äÓM;@Kà?ç”(Äi|¸S% q¢Žtœ²àJ‡Š=”ʯ(ØÀ0E5¡†B1'A¿q´þÀZhÄM·Reޤpœ(%›††8p¡€#©‹Ôpš=§p«Ö4X)ˆ]r;ÃC^$}¡è[Y“J¤€ÆUâhÅ&•4Ò¬©15ó!ÑIúGè2G6©$WŸðBµn-šÈ?¸ ²øŒÈ”yÈ©@H®Æ¸s =fÇ&%<Ô›ÎPl4‹aW3Mpˆ”x/Ó˜ÚqూhF¢ÃЮa¦3çš,80ZaðÆ:ëÌàu߯:›)rRî"”éÈõ¢ÜšÜ›c)Ò_¶L)¶ÄRΨ¿Â™HVžJAÏ5=pˆtKC 44³Dg}#Í,àpø7+LËíCŽÌœI÷f†¤ÜÊ‚À¸Šü„¸ieJwâÔ„Ñ©“.äšgRI3äA)‹ËZi…@‰¤km y­DÒ`ª‹’0grÌIR"œià[l™úÀœ *N(ÓP_xã°ÈàHJ˜2ò#Zp$%œ8î¯^¬àyRR$nšº /㛎¸é@Â…ó^.)I[ܤ› gâ^ân®0g¶¸I9ÞÊˤ½ÌÅT"”‰4C|ÉS+Z$•áòÖÔå‡ʤ¡Lx‡ »§èò N¶ó”x"—eÂ; —B™”ÛH>ÕTö.ƒOB™žžøciàÕ+J(J0­Œè|©é&â­Ü½Ô|Ó²ËPI $È*´Á3 !ã´u•?9!¢x—$m¤¹Òt±f ”Ê i"ù–‰ KO ›Q .x!MD@©D&ékRJ“…4ìKp&ü'H¢?ŽšÔWéuÈk]Ö¨I%‰—”ŽWN‡ŽÂ¤Ù²ZZiTÒô5§¦’Jš œäÑuíQ£¦£“8Ú¢¦ƒbü´à$6ª©&p+v¼°&,¨ŠHgpÆ$Œýenq”yfTIAÎìëM*ɼü`æÁ‰èc™”Õ‰¢-£¥’,Q”ü]è:­Â™‘<’©i¦ ’ËSI‘õ§+•!ÑGìŽÌäXë¢:¶úpò™ˆÆV~å…3{ØLôOX~×KfGÞb$x©‘ÅL«M—R#M#KYH@4ÁÓ”ÓOq “+¤2‚%?ùU^…54³ÖЬR+ÑTˆgú}]'‰a k6dΈ_MЇrÖÄòZø%aM0c;€¯ò|¿L>nXûñ’˜S‰°f]:£$ kŽØ™ Ï GÁV"¬IÄ\º@•J:‹aÒѵXaÍžÒR‰°&VÜÍ‚Že<[ h ƒäâ8«iÎ2VYóÑÚ¼R&°ä %VÊìÐ,„% ¤š…XÅŠr p.¹&Q»ÌJ)5ÇìÈ,E8d¢ 8 „Ù‘Iiÿ*+Pò1TT’x­ÍJ ¬ð¥©6h˜#¯Ê*ÙP‰ðe×ü úr²$Œ,®®¡%™šTÂ|Ùך~±Ë5AÌ$!ÌŽL¿Bp‰S̤’´˜ ˜~-B˜˜Þ¬B˜X|²£yÐ@˜aÅŠÛgpK” >2bFTÒˆ§ µŠÂ¯ñ2È£L˜D¥«ÜŠPfÐj&pBÇhá#éÒ„Ko(ø¹*AÈø™$„‰tÉJ‹åá…,Ð@šðÿfï‰DÝ/|uÏ¢îÝYÔ=œEݳ¨{uÏ¢îYÔ=‹ºgQ÷,êžEݳ¨{uÏ¢îYÔ=‹º\ruÏ¢îYÔ=œEÝÿ-¢îרsL¼gŸß™‹&ŠÔÚD\¨~EJDÄ¥•¶,`›† µIžMõUä­.­å꺪 ¸6·[pQR…à*àâW"+4o¡µ)¸Ehm nj«Ãªà‚¬d)Ø\Kü“· ®o‹º®àÒEV­.«·n.±†­%U‹€œÌ‹ô&à@S$Ý&àv½¢ ¸È%K-¨n°Mn®wUºé.ÜÍH‰¸È³¥  ¸ÖÖè®iúXpm:kp‰·«ÎÚ\èdró&à®m­Ú\"Y7U®­îZ¡2ܵií]À¥¾¸€k$Ñú­áHv7é·xEÄϦßÚ$K—¡ß:WEÊ®ßz#Áhè·]Öêú-M«(—]¿…#ºkÕo1‰Q,Wýo·é·XkpA“o!.Èš| ½LšÓ\׌¦àh6w@³*¸™MÀÈl nEf“o2Y¾°lòí€e“o,›~;`ÙôÛ˦ßX6ývà²é·—]¿í¸ìúmÃe“o0»|ÛÙäÛÌ&ß`6ùv³É·™]¾íȬòíf—o;0»|Û‘ÙåÛŽÌ&ßv`vù¶³Ë·˜]¾íÀìòmf—o;0»|Û‘ÙåÛŽÌ.ßvdvù¶#³Ë· š]½íÐlêmGfWo;2»|Û‘ÙåÛŽÌ&ßd6ù¶³É·˜M¾Àlòíf“o.»zÛqÙÔÛ˦Þ\6ùvà²É·—M¾íÀlêífSo+0›t;€Ù¤ÛÍ&Ýl6év`³I·›MºØlÒíÀf“n6«t; Ù¥ÛÍ.Ý6hvå¶C³)·™M¹ÈlÊí@fSn2›r;Ù•ÛŽÌ®Üvhvå¶C³+·š]¹íÐìÊmÇfWn;6E¹íÀìÊmfWn;0»rÛÙ•Û̦Üv\vå¶árH· —Cº­¸ÊmÃån0‡vÛ€9´ÛÌ®Ýv`ví¶sˆ· ™C¼mÈìâmGfo;2‡x[¡9´ÛÍ.Þ6dñ¶!³‹·™]¼íÈìâmCf×n;2»v+ÈìÂmGfn;2E¸í°ìÂm‡en;,»pÛaÙ…ÛË.ÜvXvá¶ã² ·—C¸­¸ºmÃåÐm0»nÛÙtÛŽË.Üv\vá¶ãr(· —C¹m¸ÊmÃåPn.‡rÛp9”ۆˡÜ6\å¶As(· šCºmÐÒmƒæn4‡tÛ°9¤ÛŽÍ.Ývlé¶éÆM¹íØìÊmÇfSn;4»tÛ¡Ù¥ÛÍ.Ývhvé¶C³I·šMºÐlÒí€f—n4»rÛ¡Ù•ÛŽÍ®Üvl6åv`³)·›M¹íØlÂíÀfn+6›j;°Ù„ÛÍ&Üx6ávÀ³ ·M¸èlÊí@gSn:›t;ÐÙ¥ÛŽÎ.Ý6två¶£³+·M¹èlÊí€g“n<›t;àÙ¥ÛÏ.Ývxvé¶Ã³I·]ºíèìÒmGg×n;:»vÛÑ)Úm‡f×n;4‡vÛ ÙµÛÍ®Ývhví¶C³k·š]»mÐìÒm‡f—n;4»vÛ±ÙµÛŽÍ®Ývl6ív`³k·›M»ØlÚíÀfÓn6»vÛ°Ù¥ÛŽÍ.ÝvlVév@³I·šMºÐlÒm‡fSn4›r[¡ÙdÛÍ&Ûh6Ùv@³É¶šM¶Øl²íÀfÕm4›n; ÙtÛÍ.ÜvhVå¶#³ ·™]¸íÈlÂí@fn2«r;€Ù”ÛÌ®Üv`vå¶s(· ˜C¹mÈÊmCæn2‡zÛ9Ôۆ̡Þ6põ¶³«· ›C½mØêmÃæPo6»zÛ 9ÔÛ Í!Þ6hñ¶Asˆ· š]¼mÈâmCæ$ÞVdvñ¶#³‰·˜]¼íÀìâmæo+0‡vÛ€9´Û̽ ¹¢Ü~~ûíY¹=+·gåö¬Üž•Û³r{wVnÏÊíY¹=+·gåöî¬Üž•Û»³r{8+·gåö¬Üž•Û³r{VnÏÊíÿŒrûu=é'n9ÕSž;÷—ÁMzÙr á0cÞ0‘ôûW÷öðêéâx×çý®Ék˜q†sÒ0H>ÂnɆнÂzõÜ9 ƒÈ­B‹Jû°Až©s¡åœ†AbÑ•ßR @¨d0­,=R&`5 "’FÍ)!Fæ ï€dƒ –Lˆ™mtœÆ€6ùuQЦFÇ øo¦yA?9µÔ¢¨úœ™* %HkÕ&Øà­•¨×>Ïí¢èDží5 âܬ9!xêgõ:ŒCêƒ"ɘúþŽÖøá¬01C1*íÃ͸„§\X QÀK^eJãE’ÁA<,`iu™5}§Øe‹w§4Çkn¬#W<–ÖpZÀ9Õ|‹·²ø§•`…a5SLXЛZ‚b®i0c¯Æ 8ý‡uS-ö²xK0h¶JLQ̸`(iÆ'¼ôˆ•®š’Á"&iµ oÍs}‚&bS”5·ÁQ^3,Ó"dzZ¯“…à°jÚE3?)PZͺ¸VÍ´Ò$<ïâÇZ LK†:£¶’`1Ê*.gqÚ¯uð¼:êäkÙóëY®ÔŠÈxÿ_)y5öED«˜zË“«ç5xjá5E<vš~M3ç]Z”vÑ’|\¬)š³ŒýsŸ8éÕ¸&øúHO &!T^+Æ&:~œ®æ…±ŠôZ!§êÍv ñ^µ.ç%ͱ‘ýÎJã*2½Úú›­åð1%ÇŽFdzµI‰8)Js…Í¥QuRœ(õjëäèU•z2ÇJ½’c=sjSŒS\AÅT•zµ'QêÕâ]Ì‹ç­;j-,¼»X­}8Ö+fqø,oÖ¤Vì†âížZNHsÒLþÎ §1ôøÖ€J Á#)æ…ɉV¯¶îÆ{9Ðêq¼òªÁ„8ûÎi.B±»ŠßvÑB ÞCàÍjn“d‡µš½,Z½”³hõz~]Í VRÔðl‰BÚ¥¶dä³–i ‹ç‡ hõÅ,Q%©Év±Ø¨¨¶àÁ·Ü¡Õ«A9×íæZ ãPoÍìÇ£{M)$‡*Õ«u9ŠT¯Æ†Ø)hõöÔ¹ÌgÂjQMÎÊZ}.¢ÕkÌEó<¿¶¦7%‡¦j†§"/z«­uŠ©^«¿N„zµÕ"öÎòNw¥öÉ{½jëw¼ÓÌ/nj-$J•^Ó`VÝ×8yw„Ö†’ÍŒ%‹F¯ç‚E4ztë* ½e9ÞM^ôÚG9QV|x‡/¸¤ÈxsNz¥d STÜ'†OŠxÍ8$µ°s¬Ïëù`\47Ëò9òNÕ “èóz-Ì´tˆz+Y|"À©mÊÇ»¤,Îki 0Èâ¼Ö‚qEQÔñ)+¿2£H`µy5Wµy¥ìS`m^·ø¥#ÍØd¿´«×@œãôÄ,|bŒš¦%:EQŸ„uòª•Öœà¢È­d0§·.vxáŸOõÑj!Ñ#|Í£(Jø“ª:Ï>™¤ß­«ß¤T¢B|Ç&zM— 4·Š O,üš½YÛ(â¼Óà §Ÿlq^ 'Y´y=·.4Š@vëbVÅ—ä`0¯Š7øp¢¹vB$.zi&¾¯È‡hù Ž1PMºœe^K®€AÕ]ôøV;Ù 8)ipµ‹¢ÌkM1¹žæÛ+0˜œfpÂW÷CàÜDƒSÕb ÌF38ùu üꢖâ´¤Uñé; ª óøbóZÄàHóZÁMjîˆpÞÓäjR¡Ç÷"õD$EšÇ>@£Ò¾HÉ âÆ[|BØó8j0ɢΫ%…øB°SÜæpºÔyµ1ÄC|j ž}ª°?Ù+Ø¡¦#³D¼j¨æ†8 û!Ž'ÒHâB=H‹[ƒ…^MÿÆ1PØ¡ç4Az½! ¢Ð«‘+½ šñ)$U…G{Åè„Ö;Å'ï8.ÐZÕ„`æµB|XÖ(n(qg–+nÉw8nrÕËÔqh}Ñ{³üe…^¯¿¾*ôJýõrʦVwƒÈój yÉ©—öãÍ1LFäyMƒIsCNõ«blJnY‹Ú+ð0—x?„Vó(~d½ÈŽÓ3“¦*J5·˜¹E›×êoe^M%ƒEñeE‡ï8xÅçÆ©,ŠÇÿ¹¼.«Ó|Ú„#ë­¦x”q–ªâÛž.[>XU-ÄÝ«æ‚ ßúQ•åù¨L£¸*&ƒ,ÌëyMa^o qä¬S|PNKÔÔ•ñ%‡ ùÄ.ã[šJ@.ËÊÒ·¢Á„íj ÷²²6¯æ5ň6¯6'dµyµ!äOþX½3"p~¾]5ýš j:!NŠÎš¢hÁ^Ot€Á’#|‰r̲–¹Tuy­uvÉuÓ¼¢AVæÕz\D˜×r|RÂhî…€Aæµ¶x|òGóEE|<ÍÅw`°ðn¥u¢Çaáü5¥DÓãÔõ¢¨À`Q\jû5ˆ2¯7„Q”y-ý_ZY“bòƒ Y—^—³(óz“\ãõtBØËÞê‰\ßýqšCH+wUmY›WsCc«6¯”Æyãª6¯4É$«âi9üA£¢§Jy¨L“\ >|¢ø²' &ͼI‹ŸyÑ ›ä¿¿|ùc|WÈñçB2åù”ÁÜó×túŸwø"Eýšð¨Š©Š£ªü‰ªÏµ×@NY(š|ªTE(iøøK`!ã—ÇëŸ^¿}zýþý»¿Ä—|)q9¾¾üõ«Ÿ\à“.`zq|ýpûúþÝÍå_Kß~Î_Îx®!R ¢·™ïo >7•øTtAîÿÕ%­È -ò2Ýôj¥Q.>\cïMÚñÕXK ¹¿ÞT– æxs‰—ds îøxø°_ŽÇo.a.»O(NëêñÃi€±0w…_–”¬|îø0¿¿ì—ï.ñ=ªÕÅ|¤ÂGºJjmÆM0bßÿ’èhî:> uÿÕ-uíGOráûÕË»qù͸üÕq\o·Æô»Çqùa\.ãòë—.ýîÝ~uy)Ý:™Q¤£Æ´n½Á@çdb<>>ɼ$“æâÇÕ&º<½åÛîøðv”ïÍΈÏèéO/^ýß_öxÉHcô{Æ >{“Ž_\^yœ„e¶p›ñqåñ-3ãéw|>·I'ˆE]|‰çøo<%.Ïí¯ ù,àÐC£6àÓ?³cÜÃl¤Nsy…»s3Ê x‚7­äKïÅ%fÇÇ7Òªhòô£GîBN6¯}æ8sÃìdâ6aM3ÄgxûȶWcÙpñ¦t˜“VÇë»Öç|¼=n3û©PPŠ4˜×\N«>QzZ“ç Rèž/“mßÌ6¸=džÌa'4™îÿ#Ü”ª9üÙ©‘Á†Øµ£›8€‡0“;^O»•fÑw;n½›Wc¼q›+¼Î…w¯ ³]Œ? Jÿø2ÿq_cô)G0¡ŽJY×”âî¨`*NÞ«=úÇŠ“Ýñ§°H$àýâ…aáÝiœpTÚä3 ®ßsxñÖç½Gå°øãõσ3‚)>ÒˆfgØk€Æ”HSÿ‡¤?nÚêøêRØýýf tŠl} ÂÑ-ð¡œDMÅ5S¨|u‰$Äè6(Ø€”—]$–l½­©8oa´Á>¡ÖúÏâtÅJ­ß öø¸ï^=¨Îþ‚†à{”Ô—½rþáÉœb>VúÁÜÚã\åv;b®è9‡Ÿg]’;ÊEìñO¦¦Ü´fØèÅ×½;×ÛX¯ ¬f.Ú¦™ø5ÖK籡ĞP[s¿‰n.¹ù‰M6þ4bÂ7»60~ÓàlxJ¦›Ìýž8óVÚ™£ç¬¥µcΑ%»¦>Iþ‰`’à ¤ ­‘¶c¸‚G–Äþ†ÀgûÂeJÓîF6 ~Åí¨9”~áPä’Ìñ·Ãîëgxãƒloœ«©ÜnKšs‚*tɆg2Ô½å—õü0mZ¦PÕum«/¾¬ë,¾^^º|f=DùÅj|G'ÁÞ{·äã?£yµ©²”‰kúÜÔð’v³ d51Îã%óuØ:©Œ‘kܦ¯_ÔU ãµ\ÒOçP8OS ó²,Û®yGÖPÛù›9§=‰,Òú‡L DÀ¶Æ ¼¬w’–·@äætyn]ûݺ×sn§xGö‰AéðšN½‡# vcîúáÔ Í–¥Dl µ¡ÃCS“6Äz<@âùþ—eã‰òîDkâ+F+®ðgh§³¦”fµ‡´3ñoðÕd·²A¤xùÍ}¥ÔT3„L)—2¥¼,ôb«äÉN6h®~üÁ‡½^áM{?wÆÚoÝBÈoÔ”\v=kïm‘Ðòl» QiO½{ö£œéÊg›Ö‘;þe­¸®[áa)¹UÂ[”Ró‡{&¡Éáù¹â³Ó:ˆ…6öºPÍ?m7ß…‹8`g²<%Im®RNqg®67Å{¹‘î5Y:þÅn‡¯ðÒrâãÅÛ%æc­Îjٲυw»üçu d½h ´ªýUÿÍ&™è«‹)Á×'œ2o)8?Vs ö^FËÐí‹iQºÉ°ö’´ýÀ©Ã‰ghŽY‚K«Mä2/HpW8í ÄSqåv8èõ¬ýR²Ë»HrjúDÞi~÷&Ò'h…ùó3‰sšßÈLb9ÙŸIÊûm6›©œ—Éßb*Ñ‘lüv;‰ã}Íyßã„òÕ1¸NžÐÀ†{#Í}û©ÄQiþDc¦¥\ü3öR#®ó òÝ÷g0Ÿˆæ(%×ܲ/<ºÞºž>úçV„OV·CU„’ƒM¨ä?ÿ4MÙV¨éÊïc¼ËXã¬-|ÿÅ.c‘N‰ÇF,FϹ®ôG«¦‰µ_–€ô{åÝgú †Ë;*ÃmGš©ÿT›ÄÅfÚÁ¹üxsê—ÈL¬Ê~*xñ¬Hܯ¿óƒœ JÇܾS}rö,qêÉ sÃK|^åî#ø©:{:|«·4íèÖÆQÄ;ùÑtóÎíiÝõ éÉpõBùÕVüž]åCU½Lÿ3᚟$T]ŒUÀÊ€ÿñtON“ÚŠD‰HÄ ªþÉð¤iÚžž›µÂ8Ym}^ÿë›è"X¬0»Üßn‡ˆ·ìðÊžÖàÓáéùÍ;ÞXŸl7µÍ;B'Q6ïü=AÐÒrÕÿª_=°ZhˆáOµð{£ðø|—×ãr2ð~\ÞËw»ÞïV1´Œ‹Õ._~¯5ÌTQ˜KŸÆåô³ûQ÷~”¾Þµûn·ôí®Ý›—J§Ëãòýh·ÙB/ÝoÃÔÍ»]»ûú㸼f„"E ¥m&ùû½Y½;oÇå×ãò7§3Å—w]äëݺÓåí¸l›§pýf\ÞÞƒ{ö//?ӫ׿œ½hr’ÿ ž±×²/vKÿûœdïn¿f×Á—VWÓ÷OüÝø÷«á½+W½ju¯š¿Ý^üÿäm[Îþãc2ä{S9õjvC·ë†“sÎ Õ°kñ´ìœ'jÿ~n û$úb2óŧw£ÿá¸4ãòͯÇyÄ{…ûÝ—U-˜±ä¾{<í:ÂÔ±ÛÝñ»Vˆ-!X8±á7»Ì9Ë)¥šýÝÖõöS£ÉìÝN«î?Oýw»-™:0Åê9 ›¸¿{Ä·OÍžbx"Ä3…ïRx¯ðå¸üŸüÑ>Ö·¸Ÿ°RtÈ7‰ýÿàÄmGݬ>¡5M#ùõî@M“µŸcL$ô‡Q÷iw†îvKÿ}76mR²oOÿ¥ë)Þ¼T:]~œCOçÏÛÝ ¯G…ulâ·åÉÉcÕŒ†ä«&|rÕ9~¿ðhL7øó‹ÿ N§endstream endobj 284 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 649 >> stream xœm[HSqÇÿgg;;ÚR öT)%™·˜.²Û¢Xƒµè!,¶ytgº¹y¶D¥Ú¼ýÂÛÒ3ÓLí¡°À‡‰óÔ0Hê% zìJÙÃÿØñ!eÁzèé÷ûÀï÷½H«AAèmv—«¼b{-TöÊ^²„¤Ò½¡ÓƒöáÆÉݸa®ËÇ IB4aBñ0ßèÙ"o1[nµV•°eeVöD€ ó^wµ»Ep‹[ÐÌž¼<'ÆÙ¢#>Q .-•$ÉìDÌB¸ñhq +ñ¢ur.ÜÊÕ³§… Èžs86“Íœ6!ŠŠ\˜µ õ\8ˆÒFDß!„\èªEF¤Û*„´hý ˆe$OIÊøƒL¼‘ñ˜L*ÕÊ~ã˜"I±ñNÕ´Z­æ=S£˜i>>ÛµÖñ$ñ¾\tï3Ÿuß_meºF{FÂ@û!&™ õm}‚Å1f‰{Ñ34¶6 ÿR î^0UŽ9†á)=37ÿéóÍË-ýL¿4Þ“zÆ'L™8oåõ LãÊ4‰›•#¶P£Ó0;Ûí&Õ²Fý&?ˆqÆjÑ·‡ œ†QÓGõe~ů.Ÿù9“þ&ˆ¶2}ç5èx>µ-Û☖‰/iìJ“Š/¿Õ-YÏ\ábWìÔÏ%‡y¦–joù+º¸yÓ%| ›Ãƒk©¯¯Ÿ-Ë)¿“QÛ<úÿ_QW¬äouZyI>Æ ãõè…8í»Ý=Ãà^UãøÇâTöÙ5ï²tÿ¦ƒ<#RèêëŒÑjÍf¾ñºN]×çu¦Û>–¢Ôø€^ÎMï`rµqÁ# iÃN„þá|4£endstream endobj 285 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4020 >> stream xœ¥W TTW¶}eA½§R©T5¯Ð(8 ¢Á“8‹&¢¢bŒ" 3È(PPU§ŠFQ¡”Ix℃¦ívh£+¦»¤[&6ÎÃKÿ߈Iz%ý¿Ö_wEÕ©wï9gï}ö•0f#‰D®X³|Ë\ÇÁ—vâ‰8q„øºˆç Sÿ:s°‚…YóD« +¼>÷ŽÆ­c©D“¹"|wBdp`P´í4¿é¶s.\à`;ÏÑq¡í²Ð€È`?Ÿ0Û5>ÑA¡>ÑôŸ]¶Âý‚¢l§½½û9sâââfû„FÍ \<ÝÁ6.8:ÈÖ- * 26ÀßvUxX´íZŸÐÛáÓÍþ³"`\'f ³–ÇØ0K&Œ gÆ2VŒ‚y±fìiá3&‰ùVòäÓö#ŒÒÒ^³ifz³OÍ=̉,Rö»}Æ-åÎŽ´™=ÊkTÏ+¯¿òG 3‹ËW-K-oÈò#òÓ£mGïýŘԱ Q+ïïíÑ¥BÒÚD*†õ;)ÓjSa„CvFf1 |3N“¤ÍX\¬ZvÒpÚXÍpNhÏX¼!°:'(5ä ª3hiŽ•²+ÄÎÜæ¬Ž8`S·ìëbïe*Õ²eéÞ3øXŒ2œµËKNíBù¿$jdþBu¿•L.†ÒG—â»ijÌ(ìÔvüJ‰æ,yç§“ù«†úÖdè0vÂI¸¦¡¶;á Vq÷Æa”Ëëõ ‰Æù6ÄÕÕ5T¶œßT·™Wt8ƒßÖhWN.nÕ˜Ä V'Û|nb*ýeM[ˆ‚rGK \Ï#(¿s2lcoH2dUWyÕªÏÙr(JÈÖA¼?Q”ï\(™ ÄÚ¯bwÅUKÐIÍÝdNÑkÒÜIY7~鈙q»=•Ï*Ë‚dà¢@­"6Òa%o€ªý9ÆÎsP\=δkk :ªRÜõ¯ É_TÊÉ_LL+Ñ_G V×p–8'{tY+’ú'WÖï¾Q\”îW¡çç¤uX³aS­ˆ§Ø± â!Ì?:")Dóa~GwwÊMø; YÅå]-gîžø~„'Kªˆ"'Þ «®Ö`¬UaÈPÂé:]fÿÁºå—Wo¢'sˆ=ñ#Ûp*™ƒ%*EÒqè3žé¡eÝ iÁÿpI…¤âr” í')ÉÖö˘›Ÿu\ºÍŸWoaW‡D…¯‡kÕ<ÖQ1 v¸AÍêí=¦MÓr[VSàyÊÖ_q5^t¹¥\Ä¢s¾¹À®É„f•¢C¤Œûðµr¸¥¡•âë&\ßý‹`%áNqª;ÕÀSíºh®èÊ(ìÚÔ;§÷ Ô¬Çd*…ÙrØÇå“n%æ²GšN×uS“±tVÃÆU˜¯gZ8ƒÿ…½ûiŸûˆÚ$^¦…AV*æˆÊ‚²œ‚kÀ l”.TI‹âeŒ.бRõÙ{õza)ÀXm~AíÔÍÕëélò2ú…]cñ£IÑÛb¶…¬^ 6É 3däåV—Aw<ª&8<,Þ‹à{åîåžKGhc é Ý"9IgÀr+Åq¦2!Q éÜK< \þz²zÝ–#6p6¾u ¹‚²dØ› ×¥dñ®Ûâ·PAUÚw^| •MµÚR•üÅg?yÚyñ_ôùb;ŽS’L±6ípÄP¦F*ëÄèõáÚ(­Ž¦ÂEŽËKTÏÛàÜOŽd`!Á–£§ŠÄ‰‚ÅÃÏŠâöe•€MîÏ-‘Œ3PJ0j™)ç´Òõø'Ý%ŒØ‹Œ@"ØHƒ´HZúBhÍèô—KÅM´Í…%F#q•ÉÀHe©d…¹ Ëï«7õ÷7i`ÒÓ@é61¥P΋cd‡ÐË\-K·K\KÆ7_6 "A”h°¢yƒ„KßjWz°øáÏÊ ~ÿk@‘ͬ¢«yëæüˆÝä7É$2î8‚é8]S˜Ã«f$‡MIðÝH=‘ZÞ8 j›UumBq=\‚–ª0šP U6×ãøÎðDÏx"}é@¯*†#õšÛ[Ϩv˜Ü­¢OpršBÆ’ñßÎÀù8¯ý‡ƒ‡â!k.+Q£ŠÝæâB#&éÑæ¬ê¸™±ÙÐVy¼¶¥e_àH0kC'Çï†ÈŒ»MJc¦GKq¤¸N¹T}‡ô­RË~;óúˆåsG|Vt8/t|RZF<ÄsÞMñµÇ*[Û;M'Œ1§˜¼EaŸOå2šï”‹œ}+|¨»ègƒ4;cÇCR®GKHŠvy,¸r[º—¢ï}|ãXÆÕ÷ù G?‚™A¥8˰½ í$‚âÜýù…\ÙD¥MVæ°&ÐyXxtv^¹ eª!‡7Œ É˱!¥ª®¤ûÿ¸»-ëý¢y|òkDÉñÖ™ìEG«{T#G!c­x„Ñ¢»’,ŒúøgRoè2¶Á18«3 =v «x^,^Wž lôñ òön jo35žôti‚ø_íV×:¼žâŸž.î°VÜíÄyJ2µÞ¯hC#|bÓ~´çÛÏŸ“‰Õ|nè^züphFgèõ{Óx¯íë;]ЍX‡3'»÷¬ŒQuy4f¢$ŠSŽ•\¾”Õñ‘²¸ŒT剷,ˆ}^rnl®¾HWÌ©eA¤€jYñg¥¥¹Æ’üûp’d‘l£ËLb¶‚L2ÍÆù"äòþÀw²p:çtPt½òã¦Vnp£vñ~³Õé›îàÁ;› ÚÐmb”2±(ü 4r7¾*hùëßÕÁÛÃøS‘ʦúSp™û§c‘•ó{3·r½·Wô.رÝmÙxb‰ÌT¢Óý‡8™‚ÇQž,Y­lJvwï:y"–Þ#ÌJt›îvöÞ½óíMü`#ÑÇ¡£ä>:Jq¯8BÙÔäýŸíMMí}š$¢3¸ç[ždAªRn§Ÿƒï ›ÚÎO Ïíë½Q\' 5¾|ûÁ0 ÂpÌÜœ<Û59±@ ¥NUH0_‘âýReG¤é 3_ì6b‹SWÈ@·áãrn Œ¨Ô쩜 ‹®àÔð(¶<.P?z '$—p ®B^*–a$½žiãÒ?LÎLÓ,¥™sÄ^&4Ÿkï8޲¿^à ‡ì¦ÒrÖš¹ëN'Õ4´T9çs )—¯«9YbîAçꥫV;¯TOâ“’J‹g“ .ªPû'8§˜¾Â1V—püÛçq'N¦…nì©Dö½GdZ˜»6DÍã8öhV‰®‘²Äîh~¸@W’ªÕCvšÊ-Æ]ã KÀ½<¢(Z-pÉ–¨"ÔŸ¤T•s øæÎ ÅôêÚ o¾«R¼XöÄ"Ê5ï’o2ÖÕ@+wÞ{TÒæôµoÝ{ ÇðŠÑéÙW(ât;ö™Nã˜ZÊ7äq-ŽµÅ‰ÖŠtÅ'ÊrPVÙ^°¿F¸`ú„ŽœFmut`VÂn傫Û›kjOöø\D&’…óI¯xï½ÛºJXòYÔ šŠêë/p<ÚÚÝ&–*Å@ m­Ïî{rU¹v7gHl€ÛpˆÃ±„î'°ÔÞ–Ùñò´q]zU—Ȉg+ŒBÙ+ü(³#[ ,,PvÔÂÒ`!g˜ã/Ôendstream endobj 286 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1853 >> stream xœ•T}Pçß厽ñ#1›Á$îžIjUˆmª ƒ j*ŠA#:ŠŠxÜ÷ÁÝÇÁˆÄ•/ANù:„;>ª Âk¯ ‰[‹Q‚Z;ÖLM¦‰5Ötæ]ûÚiPŽ„ôÎììì»ûîóûxžßKr‚$I*2zëÖ‘§y⫤øš8GöklëžDù‚¿ üåͯM‰|¥Î@Ûf2’Ô›ó" F›I›¤á•óU ”o‡„, R. QFèÔ&­*A¯ŒNà5j]/-R•ïTZ5oSÎ_©áycèâÅV«uQ‚μÈ`J [¤´jyr‹Ú¬6¥«÷+×ô¼rS‚N­%·hôiÐ-¼Ú¤Œ6ìW›ôA¼d4™yKzÂ>Û~u¢F›¢ _´˜ 6ï[‰Xb±XMD;‰µÄ:â]b=El$6¯s‰ÄL‚‘ôr"¸N&‘}>>G|þ#Û+÷‘ëäý¾A¾NßQ¹Š9ŠíŠa…H‹õÓÅzlP€úòoC¨hH†4ØÄT¹ µÍv.í¢ZtçmF²ß ÑÔwaù®„L½†ëÈ)Ö³«¨l¤$7ƒ»ø´6Þ»B~¢éïïýd°ÿÝ_,‰úÕê5ûï\f%DG ÑB ‹G™GWï!‚=žè:| hgÝWÍîå[6šcã¸EÛ¡r-‹å”}¬êiîOس»BÕT•[¢j¨b%ÏÐU¼. “‚LŒç2hJáó>ªkvB&Ð8ÒlØvÁ\yˆ;—îÊœÕXp;vЩzMà&U]¿•=\[Pa:x+¬°ƒ±ÕQUê*c/iú V2"´áëó½©-f§:k*~Ë‘P²¾:éÆV×W_×ZŠØc†&(ºœ5ܧ~áq-‰‡FU[D-¥ÆMÆKïP5àLdW,Wd!9eÄ»ØN½q]óù½Á¡ö4ÈͲ¦e ãT-Ðài¯>Ò¼˜!™¸ZœÍŒz6±-8‘Zv@îÕ+&?A½u5ífû…âæ.ö„®ªöÒ‹õµ=ÈÑ(Ã%únÊ1ö9‹Ã~T¶^*å’J5RobáM$ø6N苟·_n ùà/+P³kà,TvÐcÞ¾Èß !‹$" u0·Þ»…•»çA¸¾ÞÖpº¥ä#Öu¼ʾݓ¼‰Ã+ qÀ.X@¯Œ~P9 ç=lƒÖm@» ­U¢eO‡Ò .bÒUÖ¤Ì=Pt̾¶ ½Î¡™EÏœ»" ŸñÉ_)þa²yO²ß)õ²–ýŸIÀ³ä?5éØ*ˆg²khÌ´3à‚âceǪJ¡žn5@&‹)*SBÊ)ÉvpÅ…’E°/ 0¼“«Í·ÒG©Ãnëå´k±ˆ pHf•;U\ZZhù7Kò=£2¯üˆô¯[ꚃ¿(*)jfë²ê€®i¬jý4ìa¡{s;½a{€=󼓌ÜÞ žG¡ô?–Ѥ¡næáÎî]»3“Õ,Ú09VO-OÃ_NðEPnïí­2ǰ؜¢ð¢.üQìFµÝþ‰ò$i‚ØÇ¸x§ÁÀóƒ“w¹œN‹ßÃ/3ÞÑ{ðô °¯Œ×ÑMj”ä¸g É3b@†>D¥ šŠä¾í”£IÚ6ë`olÛ(„ßðEÇD®÷ÚôÑSKÜÓ‚½hq_P7oHtæû¦˜%‡ÝPÅ!oùÔquäo5rÉÄxô{¦|ÉÁ8ر-<‘Ñ+å7ù>­Àmi€“)»Q«‡v{˳ÞÝ+l ‡Ö(î~Ðs¡öTv4‹3yúgN|þm!‡f¡µh‰âÐ,º-ʘÎÔ¦”DcjJb‹±µ³©¥•ÅË'½ôÕK7òâÀ_Ð*I+Ú™œ²ôrÐ!–bö ¾ôm ¿( ¯Ásð €×áµh~ͽ·¯¹YmG '›3óI™* _ü'R¢Ÿ÷ð»®¶´Ä*._cv«ú¿¸sÑ#ɉ Ý÷ŒùsÖŸM&-mX^÷„¯%ûÄ ™¸ç‰?SvŠ ”vf8l漌ƒù,¾õïÕ‡²¤Cäðl¾Æ^ÝP^]QÌNÏ­#ËPx…3J‚ßÐTÖOn3øOüý‡ü§ÄRÀ‹Áendstream endobj 287 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 951 >> stream xœ•RmL[U>··p –OsçíJ„¦±H6ãt`‚ÌBÑZ®´u·-íµºQб^¸.°¤ B ÚuH²QL–9]œÙGÒ¸9?11Æ“Ísëᇷæ~¹,çääœäÍóqž‡Bj¢(*ÃX[¿3})’¥ä-*ù1ºR¿§öe€–­úÌõ@! pS®ÏG4E‰mF§Ëç¶µZ%¾ØR—WVî0ðÛ·m«äŸ·ÍbvðµfÉ*ˆfIyà_qZl‚ä㋟±J’kWY™×ë-5‹žR§»õÙïµIV¾^ðîv¡…¯r:$¾Î, |ZZiú0:E×AIpóµÎÁí@i[›˜SŽÐ˨½€ªP5ªCTˆ²_H£o©*¦R«ÎÓ¯Òãr0W^…¨œ¡pV‹IZ~_d.<^Ülôø¹Þß2IQg†¹vâÈ~cšý°—³3 ýqÃ4| ÁeíQf¯uø%æöÍÄåË£oÔpÄ÷ÿ³ qWD΋oãUy»É³‡©h¬y®"°°ÌábH+HBp»Žè#”â§={}hëÛ•‰K†3¢Ì‹OèðmfTÁBœŠ­á3+4¾•Ú}¶•±~Új ) ´ž°$ï"\øe"‹êjl¸ %ÿÉì^¿Ê‚‡¼N‹ÉÓ&°Lzf]sGp. ÍOÄ&g#ŸÃ,yf5¹ò®±e ïŒP3køø5Z.Çï°§?„‰µýwÈV’¯’䣧p!~xù¯‰àpGgÏ‘î]«¾"èƒf0‹çÄspf4}SìæšœœdkŸ¤ÉÅKJR(޵˜¦p¶b­Q^g§¥°ÝÑ&½mnŸŠOOqDOêÃW†ºç63˜ë¿£p¾‚ØFÕÁ9Œ˜Ü¿³þËß‘Þtê´Rï­_ªÌTãxó]¯UƒLU.̓âFâëoF^ÛwßB<ÈìFk©(îQ„Ó+¸m…–Ý©jÖÒ€Þ¾À±Gì'_¿’3"9 D¥#ªJû-²rïoœ‚\€¹{(8÷›!Ëø‹)æ—ïož G¸Ãïí€CàuëÕ ¥‚EÚ'ÑxˆÂþ4¾š*`Ã=}.îMKƒÇ;V0/…5ëÃÌ[A¿³Ú3çû†Ee­Âü¿\VÆühV—Û>.G±søÄx&10ÑìäC\¶zGH›Ôj“cÚ„þ’ã!endstream endobj 288 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 324 >> stream xœcd`ab`ddduö 21ÔH3þaú!ËÜÝý£÷§.kc7s7ËÚï넾G ~çÿ"ÀÀÌȘ[Øàœ_PY”™žQ¢ ‘¬©`hii®£`d``©à˜›Z”™œ˜§à›X’‘š›Xää(ç'g¦–T*hØd””Xéë———ë%æëå¥Ûiê(”g–d(¥§•¥¦(¸åç•(ø%æ¦*€§"œós JKR‹|óSR‹ò „˜YütðýøÞ½éÇüMÛç3~_úùûïŸü¢+Û»så<½U»Ó»9RØ—vŸí>¾œãO/{VwŠ\B Û¡þ›Ý‡ðf÷¡ö½<Ê›ØUºg¬‘ç+[ðÃyÖ÷ü©“°ýNœÆ¾‰ë·‹ù|ÎÕ“xxîÍááe`ßqÏendstream endobj 289 0 obj << /Filter /FlateDecode /Length 2739 >> stream xœ­Y[o[Ç~ú#ˆøå0O÷~1š.à¶) iõfùሤ(¹")óâFnÑßÞÙ=gg–RâA ñrwvîóíœÖò ÿ¥¿óõÙþ¡ôdµ?c“ÕÙÇ3¤?óõäϰCXi=ó|rq}†Gù„sÛ:á&–©–K3¹XŸ½kŽSÖ*n¥uÍ~:š1íUs ËÜKíd³ ËÚ{kE³šÎ¤æ-ã¦9„eϘµ¦¹‰L4WÍ7Hg›ë°Á0æ<Ç[˜pRìæ°l¸äÞ;Ö2ïµóñnÁ™4®Ù’Ýï/þªAUóð£åÔ»X€2 8x$&‰ÜgòÇLî2¹Íä*“¢Êá@WQ¤ÒÚF´Î1Þ‹ÔNgš±Ö1Ý\Lã_c$,!™L12Á²eL9X ÆSB%¿Hï¤6щ¼Ëf Bqp°¸,¼ó,Í‚#¸1 VÍzÖ´RðAÔ_£¥ÒÛÝ^š 4²¼ùPè¤SœðuÖâ€*ö!Òæn–Ð ðbÃ%ûÐÄ5]ÜíŒTªà¯ñZxSkÿhK¼gQÆÔLh°˜™Ì¸lµr®7F5ÖÁ-¢ZQK£+Àü øP)ÑZ.›nh lxÁ/Æ:d"S2(Ö5³T®ÀDgÎI7–÷Q¸Vö~Xg¿uUoîªòsÕÇÒC™P_ìâÏF@Æ'+Dnr!Xàr0Hw-l€$Q½Bx§EóïÀªÇ*…Ü‚Oó}Ý>'ÌnqÌÐÌ °…÷˜ÜC¤YøÛf¬#¼äÁwèGÇy L=añuŸ³K¥Qq)SìTr çΟãÒ¶ ŒçÚ¹[­Ð÷‹¼WÑ+«›U‡ÚÉä¸HJ)A{CNJŽ ÕcÂÛ´]Z¡©…ïp³… WhH½%.†zD¼É Ö“¤Ð^Pá6È-˜‹øb\ÿ¢ÄêDý£ÞêОLë›âFh_¤Î27•Š ¯Ù^÷‚¸S‚DÖ2:*es”E$'1ö.­¤-Ëï¨w& ûÛÒõiª¨¦| ¡ò|vñõ»æ-éœ?gÞ]ÈnÐŧpc>oîHŒD Óþ×Ó™ÑbÁß…åÔ^7ñ¨…Ü\î›#¡)›°Ÿƒä`¸ÏÈÆ) åe¦€9c)©9³J`vh€X*¥5æ»[bÎ ¹}5ˆÿi3ɰ®àµqð‡t•1oAéT„=Oz×>†²! É:\çF‰bý8ZÊVóWL)a‡[ðÒ]>Xëf*y°Œ’ä5P Hâê—zrîdŠÔbyUB÷!"± eNõlÈoѳx‚\Gô¼)•‡v šße@ˆuȘQóŠ[Ô Zœbœb!èÊòZ,´rŸ1 I!מ¨:vI(8P¥bã\Žó2ÑÿŠ‚( Þ">$©y P½2aßX@ÖaÑxÁGÈc`»C–§R´þR‡[1¯çc½4Ñ–ò9/w¨ª÷fÜ+ãExQñ2Š(koFîÛXà æ*V3»yT!¡‚Hn\ĸ’ÊB=0 ÒZ9‹4xÊ ÊêO•0‹†máK¬Ü¡v¡,ÎhTC Ò£C½VzOèHVQÚç0Âjœ¸`èH8ÀÙ15R4p†šm»ÉÑNmMK(ƒ5)EF^ƒ twCR)l!1Ò‚9ß^œýt†/C }_ÙÉîôsÊíĵÞU{jV—ŸƒßÈ¢y5Pw¹wýK)]&ÃÖEõ÷]¥ þ­}_ˆ¾ý5Çò²ÉôW™¼Íä&“×™$Ú3ùC&—UäŠËiT¢=›k^5aõ©z׎*Üó:P^ýâ¾jšýHé¤IÊF²Ëäž’é§6™\ä ÷yu—ÉÛê±C>võœ „Ã<«ó½Îä¶*κzÛ¡zÛ–^Q³ÃUuﱪ&¹â&“Ë*PG¡3·­ûGX$×™\&¶‚“ÕÜU9 øjŸõÏúŒ[9~_ ¿z ‘P£©÷Å™ÕËðǼ8‚±¿HÌüXu>qÒ*“¢ÊáP]Mª=Ù$Iv‘˜øz¿Æê¥Ërþt—Ûz˪c= á‡u|léÑà³ÉôöêÃrQ ¯‹– Ä2ýoó»n¿Oÿ íCÿg¿ §o¡‡9ÕWîëÝò#¼28¼qX£EÞÂL¿eèv‡aüÏ{¦n…çâv} bî—»OËÅåôu˜:DaÉE/ãÐÖ„:Éß–Ý¢ß" Ýz†¯1eÅn2„@fs}w\n>wÉ<\6ëåæv³Úηóù±O)zÂϾãçïQÒÆNgÖÁ_5t‰›“bm–·«›«íqw³Ý&ÙTð&4ìgdÓ5ÙʳÁ¦£³ZƋᩀ2r}_:OÐÛZí0ð.ÈÐ!Ž œE<°ZzI'ΠâëÛÃk ¤ÖÀ#”p2ˆð‹ -uÓáÍ Çe]"03nÆ¡nš%ž@b„ݱGð–‹/|-ÐÉà#`Žî…9™yh.t,P\IÞ$QG/™.5#íhQBY2iÎ/&ò@ë­ÀÌ£.,Œf¸é’0G¶£Ãâ»ý6½-xqô’ŒxJX\NpûSå$íÄü‹ÉMÉçAµÔ Þr ª×ÏÁÌzï]Õ``µqþ& ;Ò»LžgtóUaÕû[½o’†LÚôü¹UB’K:6‘ìý/}\+PXóŽ?^¢ÉClã¤p›Îû¾•ìŽÜb}‘º.ΧŸ©ëýcºömBˆ–ëáóÂM¨æ>g$·™<ÔçV¦š¹žËõt˜³ÐÙ >½ãPoN^ø˜í¬ÊÍÌy»Ø(V*2ÃÄ+¸?åjJΟxÆï‘«‚&'UÝÀëVfÜIKjn†)œoÄÐõxìPûH>ŸÚ§J `Žô9‹3Ç'Flpu¨æyFͯÀáx}ÜýTÓŽóÒGM›H„=`ܳqz4ìõüéž7=ß^² ã¦á#çà¡z?Š ¯Vý"x1̧ÎûÉ‘MbkÝçž~ä‹ßpÎO^å'Á~‚õìÄrü–¤B‡ ¯Ìi¹œpž¿ uiÌ¥X‰AbƇUAÎ!úUoËeËA;XA„/ÊÓÛéXí\­92¼œA>~>dò>“ËSEGù!j:òepuÌßuô9¡ÄôEm˜&Áýºüô‚X 1ü6†äm_à½ôƒ~ Ø@¯xÈä=e0 Œo2I™ÀžOpyýªn ¬ÿU§5®ÐfØûßLR<„/AO¯ª?dò¾z1±Ãuu G[*ð—Ž3ÿ¤AQÄÚð´´«¦_»L3y—I2¿JÐf†¼Š1Óïá)¥j½§K2Á}„±¢˜mÕãvUýë‘ô—¼áM&¿Ïä?3ù¶p èÕ«/sþ¬ªEáæšn„Ùuu• Hª¾©ÿTAÆÄ?õ‘õÝÇßTÑ慠‘'Ç df^I^LÍù‰—@=ÂwÏåH}æ¼£Nù :i« ðzÞèU¡ò6rzñùýtö”ׂÔendstream endobj 290 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5740 >> stream xœYyXS×¶?ÎáTQ[âRmNœ*`­C[§ŠŠLг„Q„0‚„;20q **K¨u±Î¶¶ÚÚÖÚëkë}Zk÷ñÛô~oŸHìõÝï{ï¿°Ï>{¯õ[¿õ[k„“!†ʶnLIZ0>T´1VƯ{sÃÜpî-Ç@øb勉$'v!€‹#pqªÎƺ¾øô^C¸¯[*ì´  gXèJ¯qãÞY/ÏH”EÇ$K&Íœ9S²1CÒûDâ#M’EÇIÞÆ?R¥±ñò­Ò¸äw%ˤRIrŒT²I+•, ^íè+ñô “øJ㤉±’àlY¤$@)K’zI6Å'Jb­H"ãã¢dɲø¸¤w%ó“$’$¹4R†_’¦GJåüƒw$riâVYRþ-‘%I¢#â’¥Q’äx‰,.26%Š¿¯oŠK–Èãñó­ø >*8>)9)2Q&O–àƒ}YmLމHæïM’áÇ’øMxgT|d ïMÿ³äY\’$YšžÌß³Q*‰’%Éc#2ð½ø(y¢ÌbBJ’,.Úvû;’DitDbT¬4Ér.ŠÍ?‰×ryl†åÝxË®þûeÉIÒØMïZ#+Á¡—HøàÆF$Jø'¤H_zh‹Öÿ/~AøÌû0~õyÂÂÄEIÉ~)þ©ié2"—fFJƒ6GDŽʖmÞ»bëÊé3FΜ5ÛÓË{í¸wÖwĉ“&¿—3eê4‚I£ˆ`b1š!B‰·‰eÄXb9Fx+ob%±ŠøXM, Ækâ]b-±˜@,"&¾Ä$Âð'Þ#Sˆ%D±”˜N3BD8oÃ1ñ1€H|@¸ƒˆ9Ä`b1xxƒp%„ÄPbÁn„;±sšp"RNàK‡Ãï9Å;Ý'#©IÔaçùΟ8CÚŸ>øÚœ×® ˜;À0Ði Æe ËZ—Kƒ& ªôë`éà C†Ü}}íë¿‘ÿÆ5W××/…ùŸ†zÝ=ô6³Ž©`n¹yº¥¹=vË}‹{‰ûçîߺ÷x òxßã°Ç3‘TôüÍo~>lö°“Üoƒ¹ß€Ž5ÃN³€‹ÁL#KÎ¥ÒrYÛõµ,œH™*Ëk*U¥™ì&j ×@¢ vO](ÔÜ“BÆòKÙ¹–¥qTCUï P?À±$¬43(—‚s`'YCY/|`–›]¹â#îÂëÐÈMeæÙÎl¦|Ðr}ßB Ým&|D‚:RØòÍ7Mu—†µ€z•)­&Û˜RAP)W"à!³³O`3F†_Õk (][ÙþA`dú’b«9Yf(Åöh‹os>"3fçÑyêéãNnþÔ¯‘>ºÓÒrô‹7o„&F¶]§(5’2íPJÂÔ' 1ß”Q—U‘ ÒèEó–¿#>A¨‘ùf‘Ћº(÷¦7fÖŃÚgAÀ,ÞŽ,3'0  cçÚæÈ ã0h4ŽÜ;ê«ùPÇÀáìó¹ÝÈUld~þ"x ¢ãH4prÀù ŸÃ¬Å#.‡Óê˜w»xª+•eY,r Rû€5Sh JÓÈÃ6„‘£ ¾ÝŒv|„däH;LK-›+Te™ìHÊj·¡u³É:`ð®sßq¥Ì¦Žå»ýXœ¶6l]ø¢œÀÌêì¢lE#—Ÿ'À7n5¼(Þ³[o´A¥ËË/,ÊÏû. MXè·ç}õ´º¤V[ÃÖÜl„¡ÓcèDàxÆ®$CþîM@](õÐ)ÊÔ:PÊ˵õ»¡“‡¦LSJháD£R——£Pdò¨¢@3œ`†_[w[ønÄ{ÇæÐ) 9ôÔ“av.†aµ Ö›: KøÛzˆ  á (b…O^AÄÜeòE~bá*ÒÅüp~ùû#Fy!jZÐé»<{ Iöo·ÿ/¿Ã탘-WV7Í4†"${Ë÷Ï;_4]¹À†¡RÒËŽùaVú*q\Â(¡'täêÉS¶X½C W¡¥ræÇóËg騩A§¿ùóÙobûx}ßôæTldà*ï£â\2_¯4VõZñ^è®)ÅùP"2(õ½ˆ)>"ÑÊBãN*Õë¥ýM%{æÛS~ Î}»LáVPÍp ŽC)Ðòg*¶YÎLDItµ?ócͮ“ð!¢©Œœ¼m–wo[Ò~•Î/ jXxÝÊÚü²lùRŸÁR(yÝ[wu Û êò’tÊ’b ««ª* ŠÊìj6­.SŸV‚rä4þ¿A`#W{!0( v¬°çN?½Ôɱ„¬B‰³‰yŸ3ÛMœs« 'HhTwº  Ã¦X]¬E´åhƒ±¾T¬­ …75͸< yzóþîm{ÓjÙ„1Aú9ÒŒ©ÆL¨¥Ûo´ÞinQä6ˆË•¦$P¨Žõ(Ë/+´¦Bi}õuk&hiáp>9yÛS Ńûã"jB†!Á”àù)UIõ9ìîÌ=Ê[ù]ªFå®mõ¹Õ© “™½nÜû!ûh5:^¬)ZœP¶@Z’>3CW“Îls„{qq~–€Æñ^ùˆÏ³ñø6Švå烀È+}{ðãl{ÌÔƒ`‚¶,Ð NÃ'6¼ºž£Ð[¨[ äJ I¡v“'_½µ*ŧpÕ«<„*û¡ö1C³ë£6ø «i67ÝíÛûa&Œ¥ÂEç–™gIǧgG‹s T˜w´B¯4hµM™¸{§ÙÐ èËmò*€‰Çfû,«ÝZ¶ˆX2ß›j–‹úöÆåÏtã´)ï`f„&}èÀ˜;®ÿx:wt¨‡Ø~¹0žkà$Rg狃͗£š‰ÜF@7²óÕÎê)è†&¡D´ˆTرYdã›/ƒ¡‚¼È%v;ˆžZ â:1@«`#÷×:L…ì]a_ë{ì5ûªá)ìXtàDÌ­a¸Ày@ñtÁÍÑó¶ø,faèÌý A33"$ÈyVà…{Ðù9$úJ ÏGø3æã¯v®åX.ÌÕaÆÿja£c¸•T\oU(¬}¢+CSHÔHYKæFȹà*1rîƒÆÈÕÎëm6:/¡8¾&VY[’Þ'-··¦`o³Ðýñð>yÂnƒ³-¥k-mæÍ1XžYú—£œ Ó²ªa).ÐÞȹ#/Ï/þq­ÛôÉ9ö i‡ k–AaT( •ùâàu&Ìô”¥gî5:ØÆ¶º¼ÿhí¹;2+[A:Ú£ ·*z¬ÏF¬Ï ?{`u-åõyb¯´¦«mÉ ÿg30>' èæY±´8îÕW[²°¶üMÞÆR(=™ŸžÖàòè[5Lf×ËzÛÊÓ|Ëê>zNÚÈ|ž¯Ë¿S©ãúꞥ8Uv‘°Œê€åG“ÜjÇo¸lââðRÏ]F¢& §Ã#òe.>ÅÀv¼`¡bšŠ«ÑvÙÍÕçáÄcq›ëFzÞžÿø««Í7/²ÂôôÉ$æ¦Õ½,v9…ÆÀ§Ì÷ç‚g°Â}ˆ!AôôàsßCç?ŸCÊN‹Üp—Ô@6ÛÑÑÛ¾yõD¢5œ†aCéÔÿ‚’¥ïšO=æ"ášÕ'ø¡z›ÏÌÓêȃk™²FínPMÿsö $@ž˜.ƒ‘9Þ éKÝõM§ÄMµåå˜2F•^QPXT ¯Ý2'%ÐÞ¾_<,M9k43-ÿøþìc@ÿ|)tV(Àšdí«õfÁÓ6îC<Ìâº4MD~(‰¾™áL8úÁ0ȼÿQ¬r#ó«ï#¼I„·±ýîA8 gó$(î+ø6fØ3ÌpbPUu¡üøÉæ+@´ ˜Õ»Ô*€cKWWVTë tŠv‹Î_&ƒ¹+²?Ì ôxφÕKßæeÞ xhaoµ 5C-Nî6Ã,  ÉGÞYÜ5EÊ¿ÇÂ~úÚF™ì*\v™“PËQׇ‡Ìžäãõê>Ûdb¯®kZ€Óؽ^Gn^×ýÖ}®éêy61Û|ý—ûbæÑvÂâL}̵G·hØo4ÓBÏ8Ïë·È™{§Ãf#ÂÓ9¼¿¼ëîÿýÏ?{¶Ðs»Ùi/¼µl—Ux×Û9æasŒk UU×.¨ë¢6ЀÇÚÚlC:k ŠÖ±v½xزø#<ŸhKÊ5F\ôðXû~àºäÀ%½cí&3ÌìE=–2¸ \‹9vM£ÏØØJ­‚#S…µCªåÜYp‡î^|zº•Ø4üßc2Ç>?ð|„çÚLާ.[è éçÛïÏÜx^QìX(ƒ¦Úu(ÿ²ëš§à©“»ËS)£ÈsVN2qƒLp ™o¢×w@}‡»°‚;ÁU3[Ì‚q„G½ç_µÕ”É6¦4ç^˽žkR™²êrªA =s’Ïè¨õUõ©âœòøÃ@WÚéQ`((U—W˜‘Œœ<Š ‹U¸.ê Jź}¤ðȺý] 7†]Ý{:Z77žGÁÌCÉu‰õr㼪ÀòD#ŽSåö]ÀDߺ{ùá¡ÖœÌ:±Q±s3–ýˆÞ µ”WhëvþîQ¢ç“~©£ÆÔåê-@©p^NíñÜæ¼Æ3s¨3êgðõå†G¿p!¨ÙÖPÂ#Pc‡”-Ç“ Óõ)‰[Šx;èÝû—…‰ƒfÀp¸º“ŸY&­*KsÇØvï¤P8{—Èeÿ©ƒ°ªo¦Zf=šl1<—ß _³nÿÁ¶4\1¶y‡Ûi vcñÞß7~gòͦåEž‡ßPè&b5×­¯l#zŸÀó{ö¿ôé,_ÑázLÀùÿÀÔÿ•¨¦ï+Qo]å‡aËÙc-» Û»+a Vãb뇮“·í[ûÓÐtìì'»?¢¦‰[¬¤/º…7Ù}q:•4z ‹ùdMĦÔÕkĹGå»ÂA¥‡¯£mÎv»HÁuÜè==£ÉKœa¨yU «Å-šÜ#Oà†“K)´²gx''ÿË®=÷²mµ|n+6qfšc\ƒvö”æ€Oô ]Y­A ?æj«/“=¯QYs±¯@-êxJÅúC$ìàOÉ6CS+TcKGµí7Ô¶r\•–Â+LsMmyCMÛ¡ÝGÁgô×gf dœ×Ú[NÅŠÇG…ù‚ÙôŒKA?A:=ýãD¼yù^q:¬c®vD,?ÇÊâµæ®/ïußgQ Ó}4ÜÖÔ9®î¸tÿ»Ûx{0§ÒŽÌsÎ2æU×WT4Å?ByÂͶZWÙ·j5Uf†Ç°© ØÆ6ø£N X¥X™*ž„~ït©Uðs³¦Ð¹Ûss3n;üíƒÃWo²÷¿9]dh80äˉÈI‚(ä2­+èÎÍ‹­ßžëN1² ÙY‘›6¤EzYÄÑ‹¿Þ{øÃù–-‹kÙ²TMAIØl7ÏÉ· ÍlˆÜ»+õ [Aµ·¶iJÞ±™= Oáu©mýpÛ~~w9Ôü;ŽØC\ÂúÛÖž`»zýê'üËÎ9r1f9 3#|rBc×#g€ÜÀš²˜êÕµ!UÑ5‰ZU™º ÐUU•%ÅÚb-w?÷2¸àÛ]p8§VTô´ô¼HÁ+çáçü¡9¹Û‹4jšÝ7½r1ðÈ3wo®hZª¸ðsVyU}ýé61t‚c;¡3€nà®:F¡Öh1Øø8Žæ3hH[¾¶QNnnŽR§Ô³ÚbøzÄHä”—[TòEüaz]iy¹øèt9é¶kÕ ªÄfk‹ E¥l¾dT[½Î€»k܉òÕÊâ¢1ÞYM%iQÚü>¥}ÝüâMŒëRî<ó›Äˆ)4á¯XŠmùæÍSV[†»júÛµ4~Ô<¿TÆ^W‹ÃÑzùcÊ˶ œŽú¿3Yúgþ4ƒ}FZµªH…0§<¯ªÚ k¨Ãõ°ž´Ù«g0Þv*¦à„±$66Ù–µß,æU`óN ;&¼ý²_ɾ~–¡7Ž ¸ ó˜¿ÈÕ/Hþ@]yI)(³^¡,ܦ÷Èÿ P),š¡À—ëJ«ËÅ–,ãŽbc'¶Ã»íŽÜYøŒÑï×6}8ÏW^žŒÆâvxòfqêXåVõV'BN'?„¡Nj£+¿0U—^kíÜwèp} oZõ¶\_ĦOÞ¶dó¢¨Dq1Q½0æø“½Ú=e»­]…€[Éq Z’¡ÊW‚,dù­h+ÄPÒ†=Uü·ÛG›î¾"³ÿÛw²7EfF£}þ5Œ†t¶‹NŸ2} NÐ_ù]œµ$P¾f81!%dÓJìu…^W­ï»p³ý /Xš‡„£Ù±³f,;7'ȃSµwlßÁzË»2šìCÊ•S¶[Ì`x¹ðøp“¾||Jp`jôzqj–b;PÐyz•Ñ -©¬>t¢á  ¯vJÃøMÝ€Jɪ •@Ió ¿ÿNsm…ß›SÇͺº¾e£XUVX¢4Ö²Ü핹g³ñí9Ÿ·ÚCžAâÌæÏ÷X"Æ| #пc¸OIKÙ-ÏJÙ ¿,aw6Nü²´ÔÚ”ºtC*Ø â³Ã£âåy¹ æ)3Ò`Ÿ>SiØê@]ž)íøŠ†Üýà8XÄܸËX Œ´!_¯èmC‡šás|ßD<ØÊÑЗþ»4ÎÖ È¨½p(žÛúòRFÝçÄät ]ìñÈ[GÂfeQð<ïê­H÷Ìð|²Çò"NjX`ÉjkgqˆÿèX\Ô H¤QèT e%UºÎŸU¶b¾µ‡/ŠÌþ(1Š Úì BÁê]Qí*}a –(,H¹9¦´)lK⑜Ï0„oÁXG>=35"J‘ºŒµpÌ }M¼Lè± é°€©øªþøÁãçBÁÕ Ô©|«YŒµ¶²¢²²nsµtæ{R?vú«+@ ž÷3túRÐåûåççø,œ,V…1Íí5õõµ­-형ôé¶µãfMš´éÀå,¶`g±¶¨•œf⦚ «Éd¢ÌŽ 4»¸Äÿí”–endstream endobj 291 0 obj << /Filter /FlateDecode /Length 13489 >> stream xœík¯æºußßïO±á¾èÞMæ±H‘´âÖ œ¤ì3€QØE1ž3çxœ33ö¹ø’¼èWïZÔ#ñOjq­mÇÒ¢0’£ÑóÛQ¼¬ EQ¿y\nîqáÿÝÿûöÃÃ÷âã—ß<üæÁ¹-ß|~ŒqM·RÝVÖÛúè’[o%?~ýîñ§–Ç/™­*÷ÿ¼ýðøƒ×¤ä¼Œ·²m)?¾þâa¿†{ôÎßÒRcò·uÙ_xxúöý‡wϯõÀ¿¿bÐùõSzLëz[–•¡Ÿ=ý÷OÏk¡²øøt{|ÿñ‹çu¹-nÙžÞ½ýöÝçÏÿóõß=üðõÃéT¤âͻǘK¼¥øèÂn)<:—I¹•ÿ¶G÷à¢Ë·5=ÆRÜ-•ÇpókXóãJUP–DøÝAôþ B9:*ä-nÙ­'”n9_”<ýË;w@«»Ñ?F¥oT¾órk¼…‹+ÝX<™rKk-a{ô+•t=¯Ö[N—«¹-Þ–Ú–;”o${¹Ü’nk5(Q /7W¨VV@áÎw­¥û(ò¥LC·¤ê÷×¾Kõ¨·—–õ®÷Bm·íZåË-„âÝQç‰Æðâ® CÚŠ•\ºùx©wËaÝŽ•üBõÚ2nÛµÿŽ…¢Î³\;ðxƒëZÍšQ ëFƒÚÔ TÎË .ç¯é¶\«²o»—Ûzí½ã…"/«’b¦›J‰úüµÿ^¨m°†õΆ¢oŽ-êµT+kP¼åk L.HèÀçÏp¡·­xû9†°^hè’Åßʵߎ‰,¬ ×víëh[Ü-\{nÁm!ïsí¹dŒÖ|Z‚m!¯&uÜ®T› ƒ1npsy°<¢ù±M˜Ø&dÎØÏ·GnÌ_ÝXß17rcöݑۮÍ×÷¸-„ÛÒw^vvCm’ŸÌ+Q;Ôá7òcñÚw9ê À焹µ+Dú!Jézÿ+uÅåô™G"×îËŸŒÑ •[ô—6Ùh`4çC.övm·T§y2ù¶\Í»ñL¸CäÅÖ« Or‹­ÜäÅ¢5djóÓinäŲ`<Õ÷Ù"‚-W;I7|lP‘0 õÅ;”ɇ X𷼞L&&`]³Q ¤Œ\ôÜÌÿ¼Þ›»mð 9°ÁîðÍõn<“ìNß»3?×Ò¸LîKÀú±›É{ Ø`À2y¯k]JäÃܵïƒ7S_×Î;H‘B°ÉR6^Ž|˜ƒ-çÏÛ}U‘ãgr[BÜÕ~ŽƒÝ»ÿ¾䱤ëü9鱅 ’ÅXëø™®åÚEGrVW/44u!_%DYƒT!gµ]ýÂH¹E ³ÎŸÃ â«B~Jˆ¯zÇQÈMY]½øí¶ô´æ?]lPÈMÙAV!?5oÒBJ ¯úÊ!%„WCq˜kŠR䢆ðŠïl¨"rQBx5ÞYrb|5\ü”fõFª¤1ßÜW2o[9g!Ó.™;î„­P䨄(+‘‹o.¸£‚,W“ù|BI ²üÂõ¬)rTB¨-’oИpî þ’›7+䨄+‘ïO~Ë“ßJ×®ÛMf$f—ýÀôä¶Üµ2»¹ïÉkIáVgQ<9­$8‰ãgòVB Õ›[OÎJ´N òRâ4VgC}2JÉÐzrVB˜5ø_Æ”òšÁ´‰YÝõ¨ûJ‘Öp½uIR¨5R乄©¬ ¤`k9ÎbVwüìW{Öœ¨M ²Æ’p„oåYDÅ„YkX¤y¬ EnûúøëBeq&«kÝ•<—eõ…›eõù.!ÊêÇÑš†|SIWr]C¨µ']ÉÉuI‘ÖP&ò]öí‘ó²ã®•¼—w E§Ý5Qè#•‡`púH`%ï%D]}$È{]­)ÙeBÖ“ÉbÐEÍùôÒò^BÐűVŠçÕÈ} ¡9”L5u@~‘B/Î)M‚¢zù¼µ¼” 1ç¼'<¯qï@þK½6žæ;on“Îý§ç9ÍSˆÜ—0¹Å {+Q’ÎýÖ–À‰ï!ß%„]‘}L9+’Ü«vÑ8ƒ€"ï¼ÇõádHV»BMÏ;KcÊy¿Lûû°yÉ": GÏi_‚Ƭ³V@ï½¹1!ìê{w /vm²2lÜN¦HaÅ”1Ÿ>”1å²å@>,I3ÑÄeL8;——$?CìŒntc¦)ðè‚t]¨1ã x¤fœ?E¤Ÿ·dx¼0C¸Nê—ÒÄãç°HAÖx7ä´£w¡²4«u^ŠÜÕfUÏwþ¼‰Öp·d@„8«ï2¼ C ³úÒ’£¬¡…¶1Íìû+päõvxó&Îdõ½¼8)ºnž”ô p€Šbõî>-A2+}™x¦Qˆ³z§É«/„0«÷yõ…eõOd÷¥ ëü9ŽÑÕµExÙE¼¦ý4¯º‚«Þ¦5K±U? ‘Ø¢ ¡.÷ñ¼ôB­pÝç•ÒcB~.xzçÇìrÏÓ÷섊YñrŒõÔ!ï$ÄUü`´œ 8¯ºÂ** 9çóÖè_N赡ÜΩåDÎ)“0üìp9Ûžœ“UùBRΫå1µÜ{6ÏH¶šÌE «¸Ã»³Le•ªHiÉgÏ&ï$„Ud¹·óÑ­ç…ÂCBÎcR 'DþùÚu{·º¹1ÍæÆxÝ…8£…ã–×]qU?R6*¢¹N‹¨!Ë” /¼0—i5f™½ÝÈ[™nˆ×\DÓàò¢‹l†[œäš5æšâÉu ±Õžùõ•I¾Ëœß¶EŠ®.T"ž?g)°:ÎcvÙ79,;¤ÚʘVŠ·Ã+^çó¼ÐÂŒ¥2]!–¡,ETÄË}­À€ZiQ‘³²V®$&”£R‘B«"k)®Êê¯G>Ë]ç{ï—Ég aVçÕ,¬¹^y!)uªaÑ5›žDãèwîñïèÿxÝôßòÂcêTàLf†ÜȾn¨}ò~櫇Ïx•k¬±Q¼°;ÐyfË™‡p¥/b.Hg:Š—­u?ƒÔÆ«š=RǤ2/ÛJHg*üdÕ!uœÊ/¼Kžé¨­Ö¾þüáéG?⟙çH}¡?óÇŸ92¸/ÿ³õ%W#w0üYøÓ ÿ´«%ãÏê«‚ÑI¿„m°'#užá…˜d1vÀË©sgîg*¼ú«Ó:Îå?ÈîÈq©ÀÓð]é3H w÷ˆå:^8¹ùçŠ|WŽEg[Šæ®‘JžW7% Ž3R]$ÔýLGql;­û™Žº—((ý ÇZ{‹‡gÙFðƒªÕúÏòüªz锞âBÿp¥xJBŸÜRÿµñÓ½òäâý_ìQ¹;.Ãû=†×“èæ¨ÐkIÝëIËJf­ ?ºòuz+Ðí–#å\W²CA˜»á]¾A‘¼Ü~_lÊÓ˵Üõ±ÒñþкÆ0.ûÚg×±®©ù‚t÷@]hže)<,´I/ó„•Ÿ9œ7GÝ Iw×¶#JïòôEÚÊø.ÏõÞ¨|Ë5ƒ„r>5!ü€Š&§öîÖ»$i™iw±°8ñ]ž®„%Š«ê»……ר_acÈ„daIדE«ËµãòÊþóÔ<ýSè¸]>I«ê‡Ë‘-É×|{¸ÜoÂ[S¤e¦¼ö °ÒµõîÂ&®2ÅÑØA à°·…˜s³?ËëK)e¡0ÌLÝç&±mS‘&æ‡NÂïFH“œ(´m‚ì IÈn0€÷ÅšX”yaYWEeìŸÐ% 3óRï/™ÌªQqY‡‰ùëÝGÊèÂ5ïî¯ùU ËID'Ìô2䳄IùÎgEòYœ|o "ù,Ã÷Eöç×ÛãÈ5!,×ë|V$Ÿ¯mRj £ŠÒ¼üíK’Õiü®Â N_‘1†F°FöäkŸj€|–|V_ä³Ö«Ï”Èi%!FèÆQÜŠôu_tÂ2ÓáæÈi­×n)*8×½­‘*Mµ†¾D^ëj³û«%òZB°7ÊïeØ<“$MÌw½2‘1t¢Æ½BÏíš$‘ÓV;ôµMIŽm P£­®Øä³„`«ïiR°Õ×vâ?LÀÄk„Šìk)d)ØêÇI"¯%[L1IÁÖp5òZB°Õ›2?!ؘ"ÅZ½ÙNÛ*ÅZCE’×™ö¥&]!ØêoŸ¼–°Æ´/5y-#cIä´„H«÷©)ÒêÛl#§%DZým䵤H ;íF& N«¿šKã’¯Úi»!²‘ß"­AÉ)Ò•²juÖf#×%,~èšd£6”^šîk)Œ©æ~shm7r\B¨½k¯¹R>2&›Bn·Å ÅZ½ Ü¢”mrÈsî±niÌ6¥«¥Mж†êÞÆtS¨ò[B¸50Eж†f£ ÑÖP“ä·Âµ&¹¥b>!êXB¸Õ»›­ %`ÙØšÉi Ñ–ãלŽUßEq DgÙ3t£Ñ²SÍk§Í¼7Œ°D¯ë´Ù™¦àF2ï cØÚ¼:)Úê»QæõqÒëËh·2Õ†nå0æšBàšyo˜¾×Öï{ˆ÷†ª²¯&ÞÆ2¸™Ü–neÞFÚ®¬{&·µZ©}&·•®‰mçm2o céð²Îkwë}dÎc®)¸’\ijk`ÆTój"2ï sí·}¦]x[Áo¡KâÇgB¬ÕUQáþiåZʦÐE ?°f¶Š³ÍëýÞƘ ¨³ÛVŽPx7ÁÖv©-6©é›­„$®-íïÜ–¿& C-Q3Z3[%f!Øêï?­R¬Õˤ1ÝBž ‚­þƶd›%ÙæžGtf»ð–0VŠPò˜n^£-~ø`F[¥ŒÙæÕF†eqâëÓØI³ÍkÓTÌh+,ü^Öµãvn;ðm!Üêª),~L7¯%i5ÄPðuÌ7/ƒ’˜(†[èÞ*Â’Ó^'¬âþ4иÄd)Ø Çló“Æ`«î2Ð ñŽf† (JÑÖpû¼¥™à·ÀÞ^† [CŸÜ„ÖèŸ÷33r‚’øötW×¼ŒjG3MI¦ˆsèàÖƒ[ÆDS¸1~•P°5]r¼™Ø¡Ñ"(‰ N»r¼™UÎÉæ>dÑ^8"ÌluéÖ1×¼[‘ºì„63Ò Ž°ó±%qcš®÷ó !Ö¡ ­9í:6¿&*,*ëÞÄÌèlŽwœV×þ¼Œu_Û˜h £Úñv0B†€=›×H‹Mû«ñ–0ÒžÝÕx3#Ô û6‘—róZås³¨ày³k·í­‘_ÆLój =o #¸¬Îñ«ÄÒ†€ÝÍy^„%¼ÇÓ‰70»v[Þçä\šêR ÁÔb <ï`&¼ŠÞWï`&¼Ç³ÞRꄊ°`×ß<ï_&d¤l4f›×i„àys«@QN6»çÓ˜m ½ÒóÎ0FÔJИm^­»ç Ì,§å·1Ù,‰¯&ʈ‘|“ÍkN¯õD¡c9ê)¯1Õ‹.%ùÕ?½yOǼ w¨ônYSîàÏw¹Xê!ç ÔC}­2ê84„é~ý¶žÞµÆ×|šî7ä§÷U:äjÜ‹ÄÅp˲-P¯ýéã~+iÙž>}q\<#ýË®• ˆ¤Ûi¾—·’IðÛÉ9P™¨¤ WØwïõ‘Æåø(×Ý7ío|:/Îå|o­€­õÊQ"KFëñ•ϼ¬-ï­öC.BÙüº=ý¾ ”’"µÚ‡g®­Í•µÖÑR¸S;º‘¡ßë௞_Å…×#…§ñé…»N©¥^h€F÷ôó¯Aþ;>ŸãüZ›.g^«@xCþ‰û¥Ä=½ùKª²ÌŸ†ðu¬…ùôLþáw½ûÙok±È¤n¹ª{×ÂÒÖzß+›—R¬òô·ü»_UòÎîMð54 ×IÊž’¹§7ŸëGÎR|úÃ3OŸ/®<Å,ñÉŸE[„#wýóy¤ÿEG ?—%×þøú^ÿ‡Ÿ=½Þoa!ËZïœZ£ø:|x÷°°ÄÚ]bŽÞÇ®{¾Ù{³£¨¨ëû¯ª`¡n{ŒRŸ7jKn2)®T' !IÞÞ¥,ÕðéHíñæ+¾>uø%tcó×­Îq€]ûÍçûß%ò<òøÈ”NÅϱ¡¾«ÒkîMÇNS·Ô¹à:»47`']/N•¥ u&ø*.,w*ëß·qx¿1OŽê^gõ/ßWSTr¹7HY—Ívû¾÷?°™P:¬ÇÚ0y‰)…FSÞ/r/F5ƒK¦QÆ5îžßßÌ”ß-:×úQhþùÕñû+Ç;àç» ùt7ÏõËJëÓoŸcäœéÔÞ‚/oªç– ˜7¡Z?ßÏStAÂTlØ\ŒýBcõ ÿ;ëO{[èêÖ˜¿ðÓ…×p,û¿9¨S·<Áß~V»Ð½ÞÁsì]!:êBÐ+ i?<×77¼{úÅ>rÄŸÏŽþåq÷ahÖÀaÝû›Ú[ŸÙ+~uzÅ?´®óOÏØÑAÖ9{ípØØ»õú Öß½Hd•Ï¥®O¿ãû¤ Þºkïw=9ç|>­éWÐÿ°Kä…‡#ÏH¹P°œ{ýer°\<ÿ‘ûÛûzØœ¿vϺ*†bÁ¾{¾—õ¦úË…Cw¡U? Î_lQýý×µ0Ô˜ù°lµ;WWS¨¢¶ãÞSp±Æ(¼Ä¾¼úÂO|6’‰H}ý¢_ç?#Ãõô“æ€þ¾V$ xö¬¬àÜn î À~úŽœ© •vš¡o÷‹°Üߟ½êSí«‹£nûö¹¾/»’áÐúQ»ÜÞEã² öˆ7YZ±oÃ=C{ÃÙ¿ÜK¶eN–B&©þ»·ª]µJäO½$êk<…G >ŽÀ7u4§’}ð­ÙSøçjkç¡\ïîTé‡L¡¿³›éªý±ïtcThÌSu· ³ˆ|âÌ·|þ%7%/‚-4>~U‹Lå(÷[ÉÁ-éèØ÷JߣlçºÓŸê c{µA6Žÿ÷-F¿úe ßíô¼bé­]Ý´ïî FÙÅØ©&éÀ›»^ Ç\¤ϯšñüTý ‚ßqôÉÎsí:ñ_õ¤¦‹ûׄ#YÖ°=~­¤¥ÎñÇ`x»>!q û‡‚öÌñ?±ÇÓ¿;¾Þ/Wò=¬‡oÚáç'ú¾üxžüÔNþ¢~#ªÂµ~;ʦv-W;ÅýìwíðC;üE;…¯›Â§vö‹vöm;û¦~#Ší#‡M,ÇmuøE»…¯ÚáwíðÖß¶ÃO"û±~‹Õx\ì?¶“¯Î“oÄ ¿‰Õ7û-V×yø¾þ¾Þsÿ~' Þoâ倅æûJÔÅ+CóüA<û­(ñA,Ïâ=Û…øžHü^,ľAŒ<)‘#+7œý~;„n ýFÂÇQ,Åx̾ÔÃÿÕ¿h‡_µÃïDöíðˆgÚoíÊð{ñì÷Úá_ÖÊyuÔΫc€Qü${ž9÷çLϯź‚ úGø›ëþÿ©B{~#Vñ×­È¿m‡ïÚá{±^áðM;üØߊbPAŒ\*ë^'—Êr¼ 0œ•ÕòK±¿ÊõÃã£X›D±oÄŠý›üu;ü‡vøY;ü!Œµçîx±ïw÷Š7íwKÙoò_Ã-íä÷Û¡“líçíðWVß|'V,hõö'[ëSÍ•k§O(›ó/Åk|ošFÐ/ÅÛè®vþÙÑ1ÃÕ>ˆ‡]qN…_´QóiŸ`à)ùcdÀhþ\€Ýo€1‡}\ö/Ûá'ñðó?Ý‘×Ãb—†HºÿÿwäF!þ8GnŒIÙ}”üÿ;±¼0à~)Öªìÿ¿ÿìÞï¥CèïÿÆ<ý’n›/ÿF<}=ü­Ø9äþõ¯ãéïuÒY¿x~E 2e£ÿoù÷>¡‚, \4d•`äÞˆgÿÐᆵþ·?ÚÖÃß‹b÷»¨ Å3¹c†økKVÎú°èË>àËvøN–øãoYóÐ} ~Áx?v„:ãñÞ:ðÂç]ÝHhHÎÿ¾ø)} ¾Ûˆ”7¸_Óc}kúððô_ßx÷ñ›÷Ÿ>~óW.,¿çÿ>¬·ü\/Qêö®n“êþ˧¯¾ûðñ—<×>ðû[ü,ïÜmaŸÄùɧgÇßN<-~Ö]¨ûëôâ5­¼5Ƕխ¦3û‹ˆûöм8°£Î3@ñûö+BljƬü)Öjg€Z—º.Pç x£¼œ‘:ÏÅßðX;ê<Ó¨Z¼1ß9¯TÌû>ßÔÛr:ÏœÛ×5Бþ»!u?ÓQ¼8uë´îg:Š?ß[7>©û¤ïú2PÇ™ŽÚVž_Dê~¦£êR÷3/[ÌרõmÏ´Ö:Œ¶ïKÙjöI?ðü$™¾'=ÿþá)ñÿçÓ÷Ií§Ì'^‘=ܶ•—®A1€[ªÈ“óÌÜI뵎?îä Órçoš`§mÐy ½‹6æøwCŽz2í@÷þÙ ó@÷îÙ ó@÷ÞÙ óDƒþøâ§ŸÖ±(»¡àÕPÞñÛ%…Û†3Ù n¡ó8óÆÐ™Wp¯µ5(Êà÷¸cm’Ó¸¬üœâ`謯¢9'tŽœ‚sBçÀ9 7'tŽ›‚as@mØÜ!5'tŽš‚AsBç 9 3Õ;µÑÅmGý¤~õçøï¹ËóJÑÛ—môo¥.¬.÷ï3üNÓBuÍm9˜mûOÁºð÷NÈ9 ÎoìÚ+¹ºÙ®ç R9,ý·õL”àre2!PJT[2Ê4‡X‰Šwå¾4ƒÍ4­9mt¶ú p]gÊ4¸÷©Îœ¼™õ3g>Û¿™²ÕM”ô"™Ðgûç7#ûüý…ꉒ ±Rt¼ÌÞó6qÚü&T?%²°¡?¾¾6éÙ&T• ùcªLfÒ Ð¨{ n†ÌB¥Ìë",¥)ÄJÔí9JÒ•Lˆ•èÇÂ)Ô/½Mú¤ ¡’«ʤL&Jz›*q¶d*M¡ÏöO™.^íI:KݙʙB ¤›6%½†Lè³û‡Zæ7™¦£ÞšÉ€Îþ©4]gÊ4µ‚L¦ép]:£~æLý„R}]èÕ:Ú*i±ˆ ¡RkX¥LS•Z÷W”¦(û›+Í!TjÝDQšB øÅ)ëîæ+ù`Ƕ6„JZ¸eC ¤]%¨‚¹Òb%^Ñ´6׆@I¿;%ݘ*©õdB¨´Õo&JSˆ•øûƒlä÷ýP'J&JêYBSu(øÜÖ‚±bB¨Ä`°J4cX‡.RƒüÄEèX è$þïôÎL•Z8=/Ò%N¬×©e2!Vâ$!uÉ‚`-M”Z›Ì…¦ ê´b Ó„>Û?až8¦ŠðÓ.`B ¤æ]6„J¼MítÀ™*¹¨X8%½7™(ñ¾?ó@΄>Û??¤ž‚’ ¡»2KhÆ€Ž~o&ôÙþ1{N?õ>`B ÄUºM{¸ uJõ³H–Ò B¥È[ÉÏz“ ’^ã&ÄJüE°ÍêM&JúX1!PÒï΄P)óKi ñ‡1yÓ’Ø%üW#nC¨ÄS¿#n2 Ã_™s3ÿdC¬TX³06„JÓy ƒ´¤yTiC ¤ÎSÙ*ii¸ ¡ÒÙ²óªž2  ;/ѪŸ| uVDm|‹þª×´Š,¦é¨Óo&Ótô ²ÔYnËÌ‘˜ ë¬u%CÈ„X‰šÁ'Ýo› 訞͆@I¿7b¥X?d¦ß›Å€Žêÿm•4¯mC ¤×’ ¡R¬6”¦+¥¥æ‹­.'b1 Ýd.4‡@ û\i¡R«Ei ¡uaShÆTúm5=²±!T:¯¦ÍÔYëÝ ¡)ÄJàG £xblMOØ*i>Òb@Gw&„J¾~8ÚPšB¨äê>Û†Òb%ž4f“ÃZ§ÖÄ„@I/“ ±O<êñŸN †ö(džPI›}µ!PÒƒB%­o[ 訳¸6Jž÷wœŽâ%_\…]L~µ’&ÓtÔTËd@§õý¹Î”×Ïu¦LÓQ6“6ç:S¦é@›Nuæ ëÐ ÌÙg6JêcS%5c³!PRŸMØ(­ÔùCŸj¶ÁoC ¤ŽYb%ÞÊÎx¬d2 £- 2ÐQ;€Å4½Ñ,¦éðÒÚ!:€&³Ö©;X7fB ¤Z~B%íù ’Þ³M”xѦ›¶6„JjÓ™+^sk)™+Q’áÖn)›`rM”àáuц@ÉÓ ”Ùã)b¥T÷lÖWóÙ(iÏ^MuȽO#[B%åÙ«É€Tä\h¡Òªí9T• odl)Y+‘áZ“ñ¬Û†PI«o‹ýÞL•\ÝÁ[¿·9ÄJ™7_·Æ‰ ¡’öÞ†@Io9B%uÌ™*iO”l”ô¶3!V*õû€ vׄH©~×¹OÎm•´^`C¨¤= ´!TÒžÁÛ(i–Àd@G}hC ¤ö&b%W?hÔ· ¡’öä܆PI™7ÔQ{€ ’:oC¨Ä¯Eš2 £÷%B%e×dPG›Çµ!Pª/ºBS†u(+âwTõö7!PRý€ ’:ÿnC ¤ÛB%­¾-†uxéÕxnnC ¤ÎvÚ*iOàm•´ÙnB%eÖd@G}šgC¨¤=]°!Prï]hÜÜb¥P¿c„rÍ m•ø… Ù4£ ¡R{\«(M¡NIyZiC ¤NêÚ*iO+m” ¯1ª ±R\ö)µL&Jz™L•êp2Í!V¢†]¬õ6„Jj„bB ¤[B%þVû4Ø1!TÒb‹Ý:™*µæiU¥Âßb³Z΂PI‹--tôÅ„PI[%bC¨¤F—&JFËY+ퟢÔëÛb@G¯oB%mœX 訡ŀ=M[Í„PIm5B¥èçoØ+åúù5#"4!PR׉Ø*i+)l”ÜVæïÅÙP§¤Y]B¥°ŽË@…2M!V¢¤aÝŒGó6„JmA‘¢4…PIY—m2 ú¼Ds”Ôô6JÐ(s¥9„Jk¸-³Å6„JÞ,LFY"c]jC¨¤=0¶!PRŸÍÛ*ÑðöV™æP§¤¦±Öä(iÏ^¡’ò\áPSr…š¥Lû¸ ±¥zÉX×ñ¨S:ÖkJ3•ÚÃzEi ¡’²®ã*)O;^<Ìš+Í!TRVˆ¼jJØU¦J ÄJ”ÈÖi?e5Æ TRžê¿B¥ùój›AÕkš(é¶×„PIµN&„Jª7¡¦dX'ªJeŸúÓkÜ‚@ɨq B%5R1!TR#%ÝošPS²Ú΂X)åúÅÝ›*)Ïš^’¶Úà*)Oˆ^5%£ÆM•’›¾{ûˆ•¶I5nB ¤=áyJzôdB¨4{ÂcMèkB¥XÃ5Ci ±Rî÷R\¸NœÊã‹84´Åqj(`,âÐÐpXĩўÐÍ4¦Ä][NÖPÖ(‰ ©>Û~JJï× ÐО%¾jJFï7!þ€ÖRÝ>Ü»*Ù*iumCÒü)Ò T¢*˜­—~JjÛÙ*)O‘^5%WBMíÕ2)+¹À©¡dBõƒlëþA0­XLÓÑ–Ø è(ÿlæÔќɀŽZÑÃ:ëþá¹BfxÅ6„J>OO ;Z ëP¢úÅ4W“mC¨¤¬x„Jmh+ešB ¤­%xÔ”°y§J „J­y¥)ÄJ±šW\šÏ´Ú*-õ™œ¡4…ªR©S0ÚsÍ@¨¤<Û~JÊÓH›i:ûǧ΄X)UWã)çmª'J&„Jj-™*i€l”´çÈ/€PI{–`CMÉh;B¥­ÌsXb%Jt¶ÍªqB%åɔɀŽ:sdC ¤Ž9‹Am¶Ç†š’Ñn&ÄJ9ÕMøõZ2!TÒæ×l•´M%}Ì™PSÒg{l•rVBB%Õgš(éýÉ„X©Äú±‚eáÏ”L¨)QŸ+Ó­ÿ^¡’˜(eþ’õ4"0!R"CQ?|°¸š"ËJ6Ô”ôz²!TÒêɆ@I­'b%Jùøê̯ uJÊB%mþ߆PI³t6„JÚ,« ’ê¥l¨)é–ΆPI›µµ!PÊ>Ž©íå(GvV5YÌ©£;“͘LÓÑ+ÈbX‡2vþT¯knhC¨ÔÜ…¢4…šVÀTIP©™AEi ˜Á¹ÒB¥µ¾™d(M!Tj |ÿ°!V¢äŸ¿y¯w'b%JÙWkŽ ¡’ö Іš’1xM•´é=%½ÆM•\šÏðÙPU*õÛF[*MŸ‚jhS»6JꜼ 5%ÃÙ*i¼6JFû[+¥\?СN‚Û(-e§®Js•Ô¶3!TÒž§ØPS2¬€ ¡’6;oC ¤÷B¥¥nÁ`(M!PÚJ݈CWšC¬´mõS&ËV¦_¯~Ô)ÍßÐ{Ô”ôùyB¥ó©É´Hst *ç%šC¬”SýL T¥Ðr&Ô”ŒnB¬D ;xWŸð˜ êhÏl•4ObCMÉn&JêsG%}È™*µæU”¦+…ºŒÃP2!VŠË8©%(™*©¦Û„š’a¼M•´(À†@ ¦¢æJs”ôþdB¨Dèð9ƒ:Ô¼Ó•Ø6T•ê"5KÉ‚X)ÕÅ“.Q€>]ÓmC¬D¡~èÃEÁòš(©³Ÿ6„JÚœ¥ Ò–Ë Ì©\¦9„J­Y¥)JÐ,s¥9„JTðÙ»ú/€X)§}ú@›ý´!TÒ²B%ÕΙP§T_xšx`B%mnφPIõå&Jºí5!TÒæ‡l” ÓÍk|±R‰ûœ†Zã&„JÚŒœ ¡’6/kC ¤æ¼6„JÚŒœ ’Þv&DJ2­d­)·!PR{¦ ’:ßhC ¤Ö“ ±%’›µÛ†PI›I³!PRû“ ’^O&Ô)-ólˆ•¼¿YWM¦é¨AÉ45$0ÐI~¾•€É°ÎZ_æFH¨ib¥°ðfqºŸ³!TÒ²%uÎÒ†PI›¸²!PÒ²“A-÷µ!PJdp¦kæmˆ•(9Z‚UK&JjvhC¨¤åb6Jz=™PUª›{XJÄJ©nͤÏÌÙ(¥¸Îßz±!TjW”¦+mu+—É.³œÕ†P©Mq)JS”6*¸%4ePG› µ!PÒëÛ„X)×mÞôÙBB%ÕòšP§T·í´”f(é6Å„PI{j`C ¤[b¥Ç AÉ„P)ú1A”¦*i« LÝÌ•æ*iþ×b@GœL•Ô>`B¨DæÂj¸)ƒ:ä§{ÁØ*Q˜6ݙĆ@)’™ÓœÀ„H).¼¿¦.d2¬C HäÄ!ð>î‹Am”Ø(©£Ä†@IÍål•´qbC ér³½ð_±eF)i¡ ¡’6ƒmC¨Ô&5”2M!Tjɺ¢4…@I]CdC ¤&¾6„J-íW”¦(AW™·Ýb¥µnÿ¬Ï5Ù(éã΄Pisóý0l”ôqgBÒ2šeC¬DéhvÆ ‘ ’^&ªJ…?YjX_ê”–#¥jÜ„PIË~m”Ô'‘6„JZL`C ¤÷LB%«Õvs•È•M¼Û+żOÞœY¤ d1 £Æ—6J‘Òÿ¹M1!VJyœº¬¸ ¡Ò«+B3u(¡™î_jC¨¤Ì˜ êhs;6„JÚ\ƒ ¡’6nC ¤Î7Ù*"4cP§%4ŠÐ%s¥9ÄJ[ý0˜1âLˆ•2«ÌpÓttcb1 £¥˜&ÓtôlÎb@'„[ï¸`¬«”¸OØ©ÕlB ¤W´ ¡’2+`2 £÷EB%­²-†tÒR?¾©×¶ ’š¥Ú(©Ò†PI‹Ilˆ•\ýÜ©QO&„J–…Ùô™ ’Ö+Mu´hÒ†@Ië•&Ã:”2Fgäº6„JÚº/ê””¬Ù†PI{ôlC IÕ\i¡R §¥)ÄJ«»Oi)y¥ ¡’–Û(©YŽ ±¥±ÉYV΄PIu&Jj¾dCU©Ômλ³ PÒkÜ„PIµá&ÄJ”VñFàj¼lC¨¤=/´!T¢äcš3Ù*i±· R³Ð‚É´ÖI[ݼ[õOƒ:Z kC ¤G&„JZ$gCŸ=üøá7žj­n˜Í[Äy~Ñ¢¬ûƒÏý¿_¿{üéãǪéÈï÷ÿîÁ=þý߯–Ç¿}¨_ã}$ö¦p¼ÅgÚÎÿÞ/²<~IrË#ÿïþŸ·ðúáû?¡›tË­,Å=¾þ‚t+òèK¸O¥v·´®þñõ‡‡§ðüúW?|Mz?~ø?Áé+%endstream endobj 292 0 obj << /Filter /FlateDecode /Length 30597 >> stream xœì½k¯eGr%ö𸠘ôˆWù~ ,Ãn`f0ÐH4Ú‚f T7YdËuIŠlYÝ_ì¿îX±"÷ÞggžªC‰ÝMVm-žµ¹3#3##V¬ø§'÷ìŸþÏþûë—þòoR~úòû(ÎÅåTŸ¾ûò£úÈ«èÉþóë—§_|&W{ïŸÚs/%=}öú#>Æ?y_Ÿ[hOÕ¥gËÓg/ýýÇÿë'ŸæŸÿøÏ·_ß}âž{Ͼ·¿Ø¾Ú~¾]ú›]øõ&üv~³ÿÙ[o>ùt,Aè™÷ɧ>äš?þjùÄÃÛ?_^ðݲ_>Û/ø›ýçÿ¹ÿüë–þ?`ýÇw/ÓøìÛUvß“«å;—Ãß/ø~ùïûÊ{XŵÿüÇó»æenõaé?loÿüöEþ^û¶Ÿ¶$ž7—›7œ¶ó>s™ƒÒ}üšÕù‹]SÖKÿa¿;^°ÒµCßù²üÚsÞN¡w˜‡Áü§e§|±ìŸCã¿üº¼ü¢¿Ø”Dæo ­>»ðo³’µfVm|çTý!ÕZM¾^vä¡‘‡¥ú°’ýjÙ²õúüÕòÚÃÏÏ—ÿõzÂQ¹0„ÿá³þ«Xá÷-ï\ž°\»îW–wñá¹ÕNËû³O>uÏÁ¹Ð«6%¶Ôƒ®Xò»÷$‹<:·xÙBuCKÉ='—´YIv‡*Êp­†& õŠ—8/?ÑQ¡§Ð½Þ»Üé?~=%r²'‡÷TçW¶âRŸ¯>‡¸¸ Wÿž7Öžtä‚w±4íÀäKGüšMm1s .·t¼ì }Zî½ÖÀ·øè»ŠñäÜâǯ¾Ç%ÉI“zø/ÿ¦„›.¬Vİ ÌÒm­?»”Ž¿ÿlÿùzÿùfÿùÏûÏ_ì?ÿn)ýåò¹¦"gèÒ)„ñ7=¹uŽ}¹»ùrÙþ«ïãÆïÆÚOhŸZJb±„ …òÔ¡Ò[HA_è{‘A|³¿úðó®õ¢…©[¤s<÷z9>nõ…9?·^ãhèó'ŸÖ"mwýãÿŒ]o©òÑT2µnb¬ÏÑU±nâsμó•j¶Ë®Þ(Ž~Aë^Īîèï~ìÈoäáÉ{¹>¯ø†Rç°£~ŠöºZ9í“Ï>§ÚJõj}.Ñù}0Ô2cnôíûå /·æmì¾ù•,@IÚW½X·S"‹çÊÍ\ú-.»b £ >líV±­²¤xóŸó!òø_ÉëE5² „tJ Õrênoû ]zëË.‘1xn9ïú1¦Òªû’ô• Ûxͱd¬¥Ù±S¼ © ï«]É*ü=@FX×FÕ….‡Sl‡K‹íÇGÅá[ Ú9†_€âJjùØÕßó؇´ËJE=ÉîßúŠ*æÐ2YðÙcCоÞ4ýŸ†5ëÕ×ûÎó¹=ØåÛ¾¯{Gå–ä« Ý§‡Ëy£ÊA6œ–ŸðýM>…‡Ïÿ‡O½Cö^Y£ÿö÷Ç}ì°Y²/²7=±nÑ™Ì1}Áç—üÇ6í¤ÿ¼uõ—²P¶('â>L/o»Q9ªuH%±ßƒô{øø_ð‚æ|ýøöjN^NÄr›}kÇ­‚šŠ½VYjjü¼_AmäÜèqØôñFAdnÈ‹dÕð7F 7Ñ­zÉ×='ʬ®"Óêõv'柾QM•O–k¯,A¶[þl_{ÿv_<¾}—1ð›å‡¥ê¯÷Ÿß,/øýþóËåµ_·‚ƒY°ZÖd—}ŽiÛ(7M8êò·».¯-´£@“ª•¯¡ɇx³.ÞY1tÔþÇÌÕYŒßîfIýjWþ/xŒøb[–ùÕlí*1%®] ~Ÿz\»/¿Ýé°ÒB±¼jxÅâ•Ô(ÔWâNfÒ§¾ùçZÒiÝ=jèïtÚtéÄ£9°u7ŽE§ÞØÉ_þóáãŽk÷»Â[/Ç›5z¥¿Mz/ÇÍxÙõ÷ ˆß®m‡ðœC]Û‹h· ø[ªGÝuËÇäÍí][þªùELO¦ÏyvÝ1}nšl;}èrv0@eìË`‘¹½mÜØ 0ãK¾ÂrÃY/¥=ÇRnW më_5šÕ.ПoöŸ½ÿüfyÁï÷Ÿ_.¯ýzÿùýþs½jÈ8úçTëIá7›2uÚ”¶øÎ6¥Î Ø”N õÖnĘ]ç¶í*R“Da0þê0(Ô;ßÐ5k›ëtÊsEwqŠQN3¥ìÓð›ã³SV7ÙÀÊq¯|ÞµäK»¢Â˜ûÚžìo6Þßí6ÖÍμ´¡mÅdç¸Ûåõ«ÝÜxõí>ŸŽOüöåúÍn:Y÷ÉrüñqQùþ“Ãâ¹]üõÞ7_ò>Y=ïÛ ú`íÒÛ¹"–A‹áÞñü¸Ð2>S}öi;—~3ŸFofÖ§ãúãí»}Yûâ¼ÂéÏÏÏû¶þüjyí·Ë‡ýõþó›ýç›ýçï—“¦¶çê]?T6ýÛvUh`rQtж]í¶W\oä´+FÕf¿~ùÅä§p§Sfß¾ÞÍáíü­6£ÃxþíáŠotâ‰1ä?þæÍ6«¾?/ѧ3’´;x8u‹â‹ >þßñUž«Ûv|KyñùžõüêW» Î:”Ûù={,v첃êsÞÒíêW_ï:ú9ÅûÔA|ØênÎh›Þ ±äC<™³÷]ÇÆÇZ´9°z"ø·N…Ó\ÃÕIƒûŠÉSAèîhéS¨§­C_¼ºuëZ&®šã©|k‡ˆT–±»‡ ½¿úã53ѹ¶-zš‘z¤ûÞÞ,ÍüÕf:þžŸÜ¼_§_$ßFN”/Ë}U6—ÿøI‹ø6=œ°A­Ý;Ä£Õ:»¡Îpì2ŸŸÍíÕIî›§K“ù ˜˜qôÙÂó1üóíî{çƒ~½ï~‡+îxAï܈0·ý4}cÄ¡¸s¬åwî'SðV{å XÓ¿ÇøÊ“ëQs^}Ç×T±&á3äå½Õåùša–Р”-w{6¬óo+[¢ŽÄ‡Œ<9›µÏ¶öãBý͛Ñöà^ÞÍÙQ×% }Aì˜sî7—ýœIMì­ 7s_¬cé1†÷gûÏw†ó~±ÿü»¥ô—ËçšKú Ëáµß,?âEHsÿ~ÿùûýç:°{ÿc‡‡xÕ!ýbÿùwKé/þä7ÚćÒ¿2Tùß—Ò?_ÆV¿X~ѽôö„ß/¯½‰Îþ¯8-£˜~òG8ŒÖ·ÇÚõWï­¼i5ÄkÆ!¬÷ÿî?×áìß{é¦÷¡½ãÐû‡ ¾YÞöê8&«pö‹®oO8=1åu¬úËó·)¼æ›ýç׫Aû±ðxúó7ˇ}=»ÿqçåÿ¶ÿ|YÊ!€}À¥ü_ûϸœ¡ÿ°”†å7³cûÌ¿\ÂÖ“ê?ËÏŸ/cök4ϳꋣ „³~oGŸÓ¦OÛϯöŸ¯öŸ¿ÚnûíòÚ¯—Ð ût´áî´ïU_ž—ˆ³2¶á¿üùCžp€ÏÜ€‰¶Ÿ¿[^0oïÚßÿy¹VŽÃ:µ†m݃’mÃÿ÷ËyðÃT…§LÓÑRããÿ Ñ’³‘”äx’Ûæs»§qÛÛ³üªcU]/åk´ÝÅtØcsØŠ·Œ¾â€~ÌûÏñ×¶õ[~þÕþó0ÝO8HÀÍ#ÎäŸ> ®¦g9àâÀõœú“¯pï¦í¿ß}ñô˧¯ß Hñ!=ÉQn>´¡È!¯§§„3Mϰhõð—þéÓ'ý‘ÆZ›¡ ñÉã…¡6±ÏÓØçbN?ù Gñà·vàøäôÑbè× S;ÈQJ¬ç'9Ê<âe’¼IÏÏ-B"GûF‰‘«H<Ü"‰r²ØS”#ów$IrWÎrPª¼F*"ÀY#¬8^á“DRdÀU"§V‡§xœˆ(Ë¿=E¸×}U‰œ|ICŽ»$bZT>¹†gŸ(‰¼F~IßH¡¤?×¢’$ǬIAߪDê¸+w~gèÁkAÒ²J€À»’hLYKd\лúä¬w5ia–/M5ã‹ïJB:~i+þ9ôF{Nm\ӥÜ|o*À  e`õ#Zægå€Ã™Jbî•_#%U;,çöÌÇÈ—W\Ròv“´KÇ\ò(3ês÷㦤’.6%À¯@½äql° ¿ª—œ;«ÏE‹E4=—;tžœ=Ú IóÏ Šëe"X·ËÐâU ý¨cÕõÃå茛!‰úq¦$èëQÿE/ðné­ÈKΓæ+(XÄ7ÇÜü˜ZÒB|{V$•á2‘¤]y×Ry¢®ò1WÇ ¤¥ª¬»:0>¸Ñ{ìÍ«ß|„ÀËŒÉOÿ"ëŒ:ŸþQ¦ÿtÍÿkþ_óÿ˜ÿ_}ô·Á]‡­¿!ïå9{Ýÿl˜§(WbêHƒÜ‚¾)Úç‹Fê¸Ëõ¹§‰«ÖÓ v•4ç<¬43”fß*ê†/Šˆ˜:J’($2%ұк ç öÇJÏøSôÒçv—,(˜p^º„/—™'–Yô@™$égyÝqÓ$Á‘OŸU \rÍXYbÈÛ5é®$°ò¡^GH; ïBŽ*b¦b˜½èך ³´áD^âŠ.^Ÿ¨3ÅË‘ ©Ít~%‘Ù)#áe1¤þÑy, t‚H3e Q"-†ÁôÔѫʫzÄ£ŸÒØ>Yº°¤FQÈñ Ge®sé×¥_8ýâªV;° €^ÙÕ‚.k¥ë7EW´ý¢wÕE2—eY×v×àÔlpÒ#Ô—Ó³‹$3?*ÑHÇ»ª^ñÉØb¤õE Qˆ!‘ >ú¸ Ê6‹Ñq2þž×HÏÀ®8Ü5KBÂs¤Qcœ%N5Á‰òò£°IË‹Ý$vÁZ Ö‰Z»œ½íÑ 7ËîÔM !‰¸3ª k àš´½:¨ù%ÛQàÎ_`ˆÈ=ò&½GFŠm‘Ô³7E…«¤‘Á† CwÔ>rÛ0‰…$göèB"¼ì‰ò`‡Ý\Ÿ3Z#CÉ›*”p23ܪW݉·m½ˆÙ"«‹|w7Ó²T‡I¬>çH©l±,;K˜ ›ŒÚÃe¢Ð/ÈÇ©$¨ÿ¬È±Që1B[õ®H§Ÿt†Ó,HáЗY¨N?€•ˉ7?%ì…F‰ÚJ±ÊU“÷…çB[¿Kp˜ÅßI•Q®ðTJ98k+",ð(QmÔN懠6X¬bX—tOÕj©òuÏ‘Öñœ–1ho&„ªÊ—â<½µèꔞ=Åô «$ó¦RÁ"µ2–Ñ©…ãW£¹h¥›£úåktô\Ä/&tE©—0ÇL{Ôˆ“»ºz3Ñ…¦ºðÃDXµÁånÚíÏ×ÁÊêj­.<ÛxÞ|¶§kú]Óïš~¢éwŒH0»·ò%ŸÆóXUkãe’è©õHç:$z’S!ßs ‚Tž9'›z,5Æ¥”œc8æ-uFJg'Æäb’®ct­X‡ACË„KF‚ûº0J§ØRRÿ­ö|ŒèáïkW¦ÏŸ&ô7"]h­£{;9sœëà‰ ö4FSN¹˜ði»xG"@NßÚa\/’Ì0ZÃHm„'÷̾Ââd¨¡k0w •вG¬-GI±ç£ÄI#V–vùƒÆGX)ýw$@À 0Ú ºÄ¦µ:vNÈ…-îÍVÁP£oˆ¹qZ7¼¢iŒ@¾Aq³ŒGHw$Q]óúœb=xÒXÖ +tP½ënXÄË"` XU'NTH‘ÍâŽÓÕ¸˜D#òŠn=„Xˆª`²X­4ˆû£² `}ßÂÔ»¤¦ñ­QGW$Å–BDiêí5ðÃtœ»iÔÍwéÎzÍák_søg<‡±=+Ò8—aå½@À®u1› –‰•‰Y™ªCY~ hc G¼*½‰˜A±ÑßK{….a¶(ÃǼûˆå)¢'8`W:kdX*:JŽå™n¡…D3òyr·‰ÞTÁÕCCàRínïfÓ:«¯¦‹ö™%¦ûnžpº 1þ¶èDÌŽÃ&±Ôz ‹7–!ç†aœ4õ½mN(ÏÆ$˜oI—!F\ÌÇ­çO·=%0J#ýÌ(Oô©õíM0mé•{C¼#? ‚6Ž#¶&z1¹âÙIÃË9¥óœ¤pfZ»' ú•>Dzòeà<}òÝ‘Ð;Y±mð£³å3Ôé%êañn‘¸6ôPcô~WÄYÒtòzçèÐELº¦»æ††ßLÝÝ®yqÍ‹k^œæÅ=ˆÙÉ"{º šoµF$€ŸCŽÃÀ¼ }L ªWìO³Ø;ë·_ÒÓÎÄch¥ ¡¤ôX ÝËfv$ù2¸b3ÿNj^»£dYÞ‘`-©Ž‘‚@¯ÙPP¹ðnª(¦ª~f7 ¦|Œö¯Ø½ÞŒ©,ÆKÔ¯Öj†r ~G¿ÐI5sÇx¼C!‚Ñà‡+‰··{7Yx`¨ì&yîY=*»„PÐ'< ‰ãŽLxÞ•¹$NÀIõGf‚+„œz¿–À<º5Â1¹gC}6ægƒÿt&x})奔?5¥¼ïƒsƒ,óQÖŠœ÷ȤöGi„ÔDª,$¢QXÀ©¤Óµ èIÏsܼ«ÓŽI4OíJ’ô@Räb’ªnÆPmÇ)}BåVW€?>0YŸB‰œØ+‰|šb7ƒ~䚨.Oœ í 䣩 'êP¼YìNТµ3Ž9ôTáÔiWÐŽÈ6¡Õp÷nhÓ•Dº¤i¨^^ÎAGŸ³Á^~ SjAÁ£$Êi•µêšå‘n![w•1iá߯(DÑ8ð®Û<±48àgUTm6ÏIõÚŠÃSà†éµ€&—â)½y£«<0é]ÁüË–º<ƒµ Iƒ&§éíª²¦ ×#tãͤº_j}©õû¦Ö†H^%ZÞ&ü $¨÷EÌŠb˜öî iLz¦3°‰î5²mW&ƒXn7½oŠÊªu#Ë<{R`iK*8X ÓÜ–GT0ðÕt¡‰ÞD0l& â›YÕ¥ÐhåôÛPÛ¡ÂN 2ÂQjŽÚœ,‰=G²ñåstEwxøÒYHˆO”Îq†!¯8á92a21Œ‰I±»—D ##¶?´ÊÈ@þ~ù¤ñOBðgAbÚ<§„ÕLCN`¢à †ù“‚™$Ú7×€rŠ©ÕùäÑÇ–CùHƒH‡^$†5ñØ ‰R²¹våPÉ·?”M6å Myj¯/U¾TùýPåû‹§ÕËf«ï0 à´FÀ—·0¹Âî±(¶‰"Ô`­¨ ‚2¢ö³$fBµ‹a쇇±iTQüc·½ ¸bê:Z$ꊌΥ|S/š÷ìkåÀôp²‡rû_HDÝœº64´èkäðp3K"R€ðö8ü]0Ù ÑŸý¸äJŒËD öKð¨ ØuÛBhàæYÃ,Ç»w×BbaÄÝÁ»$©ƒ.(‰èbj‘%Ž–`êç ax&"Á]8­nÞËwzgŸâÂïxòLξËÙ¿9û@g?é—:ù[ÏÙ“ËVÃ^pÌ®™]ΕåòF߬×w}ÃJŠ`¢Cô“:Õ9‚O0hIQR.É#úY™)†ÇŒk4õL^Gðì¶5ôç\Söš²×”ýÙLYÛ{£&mVÍŸ‘#ógn(^vÉÎ*° 8sÌô3ÅÁLƒ03%¬ÈN„ X#³ 3Ù9 [h¶—&›jawͶÙl¿Í6Þ»íB0&᫲aŽç ’b>_5dõšj®ŠPä‹Ã!êœ-,*Z1GŸîH,+»8²½&ÉxûNRáÏí”k³ž$cÄKÌ߀"Ñ B#\LCw©z‰î;JD¡•sd¸»URáZ—æÔµ ;: ‘0m‰…'2Œ×—¶_ÚþÁhû[¿·x6ìUò¸Vy†çÎéhÀ=7"*dn²˜vØBˆ›CŠdz2†rì~ÒÒý3¤Âù^ý|}Ä¥·ðdød«ô«:@g1Bvš%öX{{&ì+ˆ}GBdÈædP…Ã%ˆÙÝŒöÑø2›sT fœhFmô}|TìÊoÁÏÞý‰™XA†ÎTÀh¾Œˆ³@£w- L©<ßÞT‚…ç_è¦/Ãm;ìaø½Í"us‘£g¸I2læÏG¹‘Èôùt×Í¢7xò¹üŠßÇ}QÏÓË¡·êð3¤…€u¶Qføy%ÃZ²^'òÞFF™/œñ–ló¦ý°º4cRñ–…"»AodD1ãí¦æ^Síšj×TûƒO5lvç\á—e†ñœ…xeÖˆ-¬,8gábjÕ›q8x9(luÚ"õ¬»­[AàÞA_À¢¶ÈûB¢t*66Cè…”0ÞiG…’ti‚µC¥[H˜P #݃`Fc8ýޤª·Ÿ9ó†¬$3ÛÈÌHò‰ÓåDô­Ž¾p\=w\IéG¼‘¤G½ÂÛýè _õ¤hkú³n´_]?!(NB¾]•$=A‰ÃDâm‘…Ï .B芥…=Àµu|\S ðjjxG¡Ñ>¾ëˆÒšQ ‘ŠoÞ5t.…·¸m¡î×,¾fñ5‹Ö³ø-¯V±žŽœ5hoÀƒncô®2­c%`TzçN^H¡=žÉ’gBå‰tùÄʼ mž©gúç‰"z"Ê]JªÁÈ*u3¨ F= ±š|ô7™FàBsÝB(y2š/=²£ƒž5pW¬FøX¯@Ôo׈’i¸&WC/$°\ɸÏwÃ.Ä›R áÔÖƒÛJ:ǯÁßéÿ«ã§­C½µ.I#sI0‚J]ü3Éþù˜¢z\Ý *IúÙ}Í)«¥´¦s}R¢ÎÞYiÀÊ¥¸ÎWgH\K88ºoZPÇ®ë™%2§ø¹!õÎÓƒ8—kÊ\Sæš2O™Y¬ô-6Ÿ ÙT´¯é{Mßkúþ§ïÝìn=\ûºÅ6^&‰9 + i×»ÛUµÔ¯^ãsp5 ÛàŸ*:Š<%3kæpþ~ìd?ùâ4ž™'¶ä™Qù̹<±2ÏÌÍ vçG¢SˆaŽBÌ‘Š9š1G<æ¨È8™B+sôeŽÐÌQœb?¡«»/æ2(!ó\´M [H™)­[˜¤úöjètu°({f÷Ûkä*7"X“&ÃS,vÂ{Ù}d¨ÇÙ-U®,Tî1¦Ð¦Ðíùln³b•>Ö4TÆáP³³›?îæ]dn¿æÛ5ß®ùöÇ™owc•²ÓÀmR„\ótxl>ÜQ4&¢™ Î ±1 Ó U0ÐÖ© Ÿô·’j ? ÔÀ3ßtå¾À tö- ózj+#ƒˆ…Ïb-e°:L’ÒiƒÀBTGýfVUòŒ%Ò¬j6ê' :ø;ú©ëxèùOæH©l>žN‡xtfÑ#2­q|º ÀŒA¶L$æW•/M7”bÓHÉæã™%f³¶î†G5´Ÿ"Ê[óo™e`DBqºÁ-¡™¸…|Ìx›%(ˆ i1Y “Ã`oÑ ÇQl-à|cõ5ä6·;’¡{r—•òšÈÕþ³kL‘~n®ѧ³óvéõ¥×ï›^߯– ü‘¦¥3´'êú/佸:Êm!HÝõÅŠ6jêO::»A§w3ÿ )’5W|Ô ^HªR)uEÎÚÙHBç%Ájtmèh€ª¢âp›Í½Éj³Yƒc!¯–ìì c a×Ñj`« ‰#£úô=¹ ‚d­ £'vyõñö"¶Ø˜ýN•C€ÕÖ€+Î'‰%ùÄú#€ÄÍÌC1_V<Yÿ A*ähîÁÔÀ³!cêªk£‡¯!aC3]Ro‚œQ,ùÊBÚ€\³[àƒPF ¥á§zôÉÌ’àƒQ:dâLY•²{!€[J_ÜÍ œ7"K½ êØðä `^îvMqÆôܨßYl2„há­êgé®z—‡· Ѐ¤a"gɱÎîãr2Kx»8ªÃ? s§ŽqƒG†þÞ}x;–׳Mò…ˆm èÿ9MJÝ—®‰zMÔk¢þÔ'ê[Ýo¾Zpî\¬dQÐd.z2F™‹§‰¼Š¹IXX¥Ø”Ô[V‘\C›ÕÃøÕÆ|Ü~‚z°®©yMÍkjþô¦æ}ŸUfÙX…**`UoR¬b(|“Ú{dÛM¹”Nc5gI©Äž¾…mÌ$nP¿™9l“ü MpŠš³*Q´ "Œ­¹5c‹ƒ;ZºZ™ÀŠ?ÔÖÔçl5aP” z†*;VŠÌz˜Rã媥ˆ´ÊM¨…ä¡ú=sÕŸse ¹zÐ\`h*A4W)ZT2z þ‘WÑœA’»A¡‹bXir#3ԋ±âꥄ—þI•ð~6hA,ò¼f¿@¢u #èw ß º£B;ú0˜»¡þÇæ~Àk€«8¾² ÞŘñ3ÆcÂ<‚Tæ ˆuJèW…ì¨p:À72á¶¾ øG|T1Ÿš˜UQ|˜žêp©ÑaU\iÕp iUrW’81Ÿ>D³ÕÐmu—7–À”¤7ä#®þ´Ö¸Ž¨g•Àp ;3‰’nÅ’Çà"9‚QvsK8Äà$=²ÖpÿµÝ“0ÛqãQ åh?,$ÛŒV“aË%+¨ÎlÙe•Ì;n˜9óB2S:?@mÜÛ˜s Áð…[…$c²¾0/Jõ‚¯ŒqƒñxÕ+Hœ¥T6¥ö"%̬0€ƒ%bçuŒHÙ[ú`Ñé¨H›ë4ŸõØrÍñkŽ_sü=žãoácºå4yY¡Ì\)1¬4µã4á×{;”γ"ý‚¬T©ÕFB{ñ‡Õc%ñ´Ø°.éǃæRß¿¿N` [œ>xàÆÑei[PzS4KÔ‰K‰±0î ÁBRŒ±$ÚpUõÊè “­~ÌRBt”‘ÚÒ1´ÉÙ gÕ%¦fs$­$š+¶ ÂBP‡©=ŽŠƒàWD«9–¢Ãò’w-Ôˆ”Ÿ[T)^c+£ˆØ,Ï”æÒtuHVPéÈãXHHþ)’fÆÿJÂJ­ N hI®|9cð.¯Ó²¥—GïH¢ Ü)ã³PbX¼ H2^âð gœAM>‚qó‰ìç«[4 PSŒ“"{q0öSÆÛ‘ÉG2t—’:±ĺ}úëSâWÞ<˜K×̼fæ53j3ó>uÅm©Ö—uyשì\&v.%;W› Òžª®$öª Q% îß< ³öÄA~È´ÀÂFW³1>—UŠÌC“é§ŒÞ!qÐC·ˆÅvÑxè(Þ Ð,'Pìˆu JƒÒËXx<±A(TA_è±5ðL7‘"3U@‹Êº‚ I!:'¶Qo!!µH¼1‘²†%âx;«"júÕÓÉZ„IjeÞ] Œg6°–”`5ÜûøYÂJô°Ílc®˜§l’(øG†­Ì·²M+Â!˜*Og,B‹J¶§­,¹.yZE‚°†µ”xáoæÊů¯rÍk†¼e†¼%õö¨ýB*²:s›À(À(ã,š×‚LœŽ™aã‰PÇŠl’vð¯©ÊÒ­V Áµ¨g\RR°žCD‰6úºü[Q§‰•1os:`(NgÏyÈÜšŒ´ÉŽ{ÈøãŒ¬qø0#‹úyü(&1LÏ0h‘úèÉNýˆ xòž4>¬Š‚ úJ ‰z>Ïáµb±ÀÊJw$ é„Àm:HÜl ÃóÓcãMq+ňg*HWàc¼“@ä•&óRÓý}77”fë¥Cûƒ.šÙ±srþ¼¾´ôÒÒŸ¼–Þç¸9mn/n’¹î¯ͱ+ ïFeÄ-uÓ£Æ Ø U2 X¤ˆÑ ‰²ÏEA˜aÊ?iAQCÉŸþ …oG7Ä>ˆvÔA–‚MÜ O~ù?å ,r 漃²ŒN°t {{4w I)8e p’˜kY(Õ\oƒUØr0 1.âYb\É`à÷ưL†ÞÍÒÔPlW¥à4Ù8V€œÊDè4ð ä]Ì,Cæ­(eȉèK0ô1;èå¸õÍöiàõpö€*;Ä1œë¥1Πwă`7¿#è$wј¾1Qv—<Â;3îά¼3sïÌî;3O$Á3ð#ìÃm¤éFëhÀŠq©Ø©Œ+™ŽG—Ô•ó$P&O#Œ¸+[„œžö=±ìEY«²åÉž%Ò…ð9 ¾œÁHfœï©ÝEB P=ÎÃUQ\NNÌLG^ŠGy6vN0 –i"‘3™XàÌ7´rb¡p”Ø3ÔðBÂ1wud´g8RÂqh€ Çꓲ>}M€k|°à>ƒM‹„1Ù¼ÐÂú-Cç[&ßëN Ð@¶ÚÈŒáMBß%¼i†´l:R4ù7íjØ-7¨Ž·×Ïd÷gÆoywälòáÙNõNM>l´ †L7Lö<ð/ ø‘0ã ¥uBwR]8vgɬÅSÊÚì†#5±oÀè>*@ƒnÚ*‡.$«ÈF} o°’ÖÆ¡ ¸& ® ¤=Yv½öÞYntU¤t.d:; ¢N5S§²ªc…æ@qœ7¬t çG¸#p0Štsõܨ±fÜê’ñEŸ‹ D­™º­P®¨’lsÉHrqatrÈ0öۓƾ¾æÔ5§®9õ£Î©»®µ3óeÅï7SÎ43•àL78S.h ÏÔ†3ýáD/·’$C&øhZ Œôå›ÌQ=KÀÌW‰00d%Ê?)Üf0µ0ÜÒkÛ•8Õdw1’ró¼-!ïp­/Üñ :g,è.:#J¨Ó™:£WÏðÖ3üuP´ÐvÆâNpÝÑ;~g\ðŒžñÅg 2¦'ªýÙ’D¡‘x+{;äñ²ÜÆ„u‰ÜÉ`0ÉxY½ÓGˆ¡ G›UÖ·Â/?”>9XÑ„F‚È¡=*-pÓÀ1)blÔ$¨MkVo¨˜óGé{ÍûkÞ_óþ›÷÷Ý›FYˆ +>>DPÔªyÅÑÑbE$yœ½5»0 eñëÀ¦h’ƒIôyâD¸8q2.hgjÇýãLyf‘œ‰&¡§”Õ0Tú;EÕØ‰J†C!yußš $µ)$°¯|¹ØÇ¿ƒ~¯ZÏÔÉ„5¯ŽÄqã ‹ýðÇ$¯ çªq´® ûüøJ|7šâŒ|0¨«Íu#2Œ€AÅc}}CJP‡æú2@eÝHP$–pÄz\1Ç¢4th},ÇÆ ¨Hã<¨°nq—N_:ý^é´2 (‹«Ge2ÇNÕ ËGï˜¥Ô é(µA{!s“înì‹-é–Œ› éèpÝJ ËÈÍTGcåñ™{|ÁO>s˜?Â|n›{‡k8ͨW4USÃdyÇ„1ëSòÆÞÎ897|*µ¨gDŸ§•„5áðn º©¾¹É±ëyd´ÊìHõ¶ÜxT" üiŒ‰Ï½ÆýÃ÷‘ú¯–š‚!_Ž®Ìæµê7/;ó xnhtƒ¯'TAài$‹Í¨˜°¶qºTÛði+IW•Xž0Jö) p| ò/µâÊÂ1àˆÐ"uYÓÁÚK`Óº–Ú*6¤Î”ŽQH˹ê¹Ëot6ç Ê•dλœs3ù›SŽç"tÊòI@ª+dÉØBv[‘¡Çˆšfz§™j¦‰š¨¤fº©%ÕÛ)¬€«Qíƒ+2¶ªÜB¼„þнëÒÓC«UD h£ž†ó84±èKû/íÿ0µÿx„od0²QhÈnù¦²wtMIµªe£°LkZ鯬Ýû‚¯.ÇQ‘¬€—fß±c¬çß3RÃY¦53vàáà­ØRS$qèæ¨œ-cØIVð´Ö`÷x`’Vg ÊI È“o£œ& 6æ(¢T[úVN£({Ú¨ô“Ö¤UgŸ1‡[gÖº•âuìd€ ‹EÏj÷£7KJ¡£Ñ»r|² K ^C÷³ºû馷Ev_>Z¥?—­­4aœfÔØ©¦QÃCQeåà MÕ¾DjŒ¹ç‘±°X.ó`nG×[ÌlíBe“ÛÕì iªÖ{­_,oš(­°G“—ÌDdYTÖúµÖVò @Ûví”´X—2)»½?ƒz2Ô>Š'W%£Žðð ªLZ(jÙ ²õîZÄSãUãsäE­ä¹žò\syQ—yªÝ<×w>•€~})쥰?'…}K5ì艊žlY Š×2:!ZN–¶ ½×Q´6j¼N$É2¹PÖ‡ŽÕl»Êñ$ó Û%J‡z #A jz‚&Z‘Ð0úê,ñæå~«3d£‡ÿ|W‚z#ÎËœ@pÏ$†ÚôIáL¶ŸÒ¬ï¢Ee*k%y廨”äL§)Óuß°NGo3 s)Qú‡Ð-€eŽ”5Ãþ½k±«mïÇ8†¼cgVlý;îT[hЈ T]G:ƒ%´¬ú’F:ó[G;”fËáÌ([ÅÑD»ôêÒ«[¯îƒŠOø¸—¨nÆÝÍØ¼¿÷êÏ€Š9²ƒñœmÓÞîjÕÀ#©~_ý1€: ' äYõ(!ò"D7ðz‰k¤.9cuˆÆyëÆwÍclØxquÈ1"4oÈÐÓ”æµXý8VÌ3»ÁÌ€°8Û¬G h|2à×MÆ‚£ì·ZÛo¼ d¢M‡öœ%I½ (ÏÎX“ö…¢îƘû Í–‡ì9‚‹±chJõ½PW‚¯Åw’Ò²ë¬1¦¡Y" È­ŒDÂ;ü9æ“c˜L”›!Ê…Àé*¶![Þ—,Å×vC™ž ¤¯¯isM›kÚüÐisdÑü˜åÀP´ä+Š)!|Níhø¨G¾Íµ; kÀneÝV’ÌT¤­¬›\ÓH଺N€×I=Ï.†"5–(n”“ÐêKxL ®ÔN€Ó<t+ƒ,Î Pæ¶zóàhIÅ,?8¶”èt)G‘Ô ìÇ•¤jɉÂÓ&üfEáwÁNL¨C¤¨yPS@¢4 ¥Y u! Šýœv Àðp€"ù¹)ì°˜c<¡®h&`ñÑìvç>b¨Ë¡!âÆávHñ*=8óP[fž#Lï?‰ÚéyäWiÆC,¾Œƒ7Séä1nœ‘£ÖŸÀ!7Ü$‹æØ#P„jß#[RìÁb¼ö•/%“‡}rÂÏ~úÙ•?yûߘËÁ¢no"? u$±ˆ{LÃÝœ’é…`=NÉá]Q×ô˜3´k$¡Èà&Tܪ°¸qRC8P)=ö»€'«ä71AWó|c!‰6Î*@ŸÚ¯ûÜ¥÷—Þpzÿ\Æü…®f%eñkzgcY ŒÔ윪ZI)˜JìÛÐ/aü1ÚŸí¹C?#š¨U¡Ê¨´­4˜ežTíÕá| [y‡äÆ¿°ºï, ]Qøú_£IªDD7ªáŽràr‚6xœ&AׄFu%IŒnÉéÚŠóâä›o ¦êïÇn“9a†{_5É$° íÓ ±ðýÓL5KÍÜS=ÕLaõñ" ;;ïYÛ,Šrià¥2 ¼‡S|0¼(FóeËîOà¾ËFß 8ФœaFÖà0æ²ãl ø®); ÜõD"×ñd×/'y¬rÞnÜ»½ûƒ3³L 5Ü‘€ w57¨·¡aBãÞ%,*»|q»qsNŸpà‰œÈLâYH|³g;dLÐõ…d¼/@ñ3pþŒ­Ÿá÷€ö¶Ñï±ÂJ·£Næ‘K.MxkM&Èíh•f¹ òKgÕ 0ð¦RÉ)À4ëj:Ø· ѽu ª¯•3œøõžDA™ ¹}¡¯Eù0÷‘¨UšÀmbp`å¡›¾3âBÒ5G.!…±§±ÅÊ%e4÷$Eá^›þ®$Q×d>ž “Zótj7žú•„3ÔØ6æÈ 9AÅv|E‹Bœíødù„^s‹¬vª³ÀvëY•A9"µ}ŠDÌ¢×x ùD¯üø…³=>鱤ÇQ+5°¬fg¹~# IŠæIî©WK‰S¯’Y»uÐ|"I‘ûeä™T712IdÆ*ÁÂá1,§¢åʸFˆ.49PÀ´ìKÂ.غ=8Ú28"(n§ˆÖ€A@OÝô¼ûrЌڥkØ*êzÆg×ÊT°}j‰=¢Ëœ›íšÆ€ð3Öc†åÅÜb™ƒÐH±T0ûøÛö°¨Ó5µ¯©}Mí÷nj«óé[zÊ[ ΚˆUŽî°X½ú¯"B.<ŒV¯=B0¶IöcFeŒE}]Ú$dèIÌ5ú!H–m‰¤ËÄ‚$éIÓÛÇ.$UëeëŒ]ÎÞÉÜø®h˨ãf‘yº+òÒÈ‘ú%­"Ц|5ºÈˆ›+Ì„I6ìÂDdjOAdK!r.åk!I$ƒ…™üÜÈÐÒ#tÏ£ØvôüNp§ò]2± .ˆS´µ k¸&jD’»S•lôÊ£@:Qˆ¡!%p+âsÖ]ô/½¸ôbÒ‹ûty)i~€¢òÁ NŠÜÁ‰ñM™gqs]@wÔïJò›ÆÌÁ1ót<Äî¼Î'ÅD_Ef~'!^hr)ðZIZ,g'HÄKpdCEJ#ËXHÔ?ïÚÈGn$?:@K!ß„âƒæ$÷ŠFF;.BÒ”3YܹaÈvÛ.’XŒŸÚ*„Hµ^3è=´Íü·FéwÈ rÊGrpú1xŠ‹ƒ½Þ, Ô@UŸM’ÉyÙöo!…ƒ¥ƒ: Á ÎX0³ÅDÔs†»ÒH×@$FY£8ý¬¸„|\Ê|)ó{¡Ì÷ý5V#Tyt™¸aHÐÐàŽ'²’XWuÑÝ•ÏÄ`Nrj«â~yÜA M÷Hm+BQÉS”šWÉò5Ë!oéˆ;ò¾ê¡Ôˆ9¡bNº˜ò2ÞÊQ•HO ‹%Lt¥k‚ÄŠo@ËžÔg–ì¬CCÕAX±# S–É(^ŽŸy%iœZ0iÀÆ´?]¬/?H’.,x{õ“R=[MèîP•dÃõF´N;ÂJÉÊQ!˜áuÒ –˹4åÒ”wk I¸n „"Ñ ’ýsË[µì­È–™CêVˆHïÂ9ü4W`˜á-´$˜(¢á'Wí2yŠE%Q!AkÞ ,yf¶Zö†°”^Õœ4fD #×öüí噿rN‹’OsY¨¹tÔ\^j.AõH᪹’ê¹Úê\‘uUµuQÙõ\üõ\öõ¥—JܪÄ]¢ Œ ìºyr ÅFömŽ(~‚NÊÞr€-ÕççÐíe´u’eØä^ ôôź¥k`î£еÛD«¹”ÐU°Sc ¿[V¢'¢zLS}ŠÏæˆü,ékniÈ×Q»Îú ½’ÌÇóù?ó'OÀ»žæa§cÜáð ðS:MA¤ •,³¸[@¯O¼)ÓEš˜¬’D•^x·|³³Gל@?¬‚[­Q‹åÒ¤K“~MzËá Lgêh£‚¤¨Hˆö[M‘ÓZXã,¦g9ÂhcvBOp‰=kWOúa3JCm[Ū•$X—‡*zÔ°™²‰î·´q霘–o¶ë»ÓħÌò9÷ü67ýK|2ß' >,N óibqâxàœÂÜF%D¶M–YœÊ¡K§1ì §ïJ£dp·ìjæIÔ”ú”; Úb[ì‘ÅF Éy« ôîI«`J·B„`Y§7ªÇÚ¥Ž—:þDÔ‘Ç@³-Äü²'ÜÉe‡Ldñ‚+Ú2rCfÄÙ[vÔ–½¬•‹ìšD¶·>00ç•mW4 „;Ÿ•3®dƒQ:T‹dLÉ ,èFî†Ün¯”f•ÉeøbœP: –,èn¬Y!á7,ùÁt‰Ykª6ì ù‘Z±ƒmqž´Ãydºás‘š×B»Ž¡È<]° ØÖyóc¼]fgµÁóÝ«‚à –ÔþmB¿Í¹G`uô!¢à¬$<,^Šs)ÎVœûaÉEqVô ˜/\Y¢]‘@ÑÇQ7)µ­Øb I!kÃ^JNÝùHØ¥‘rå°°u@\\yÚàK•I”Á«ÑJboO‘±úO’\X.-ÈXñíñ¸ÝR¿MÜp þ¸3ÅÜŠ…îÌusiÛ¹üí\"w.£;—Ú}¬D稜¼¥Ním­¬—{õ´ªòΦQsTá ×Û5Ùâûspºæs(°(20"˜jÌå æ’SY„Gé û#kÿ¼cÌ»Êbç9ïN«ì¼Ë-vÂy·|÷¬ÌV¨ú…Ä‘Ð#Kp0¼>èq­ÒUEÝ’UAibMƒ§¹Aô…<¥É¬šéCÅØ¦ngEEÁ.+öŠû»RÀ·LÒ3¬«œy”ݸn±Š“I*_2 ™6Ž#kQ%?&”7l ûËßLÍa.É5ã®w͸?ÖŒ{‹ó&:†ÃVb3sHÇq–ÊPåxG’Ô©¾óh(FŸRœ¹®è)sÊækš%:³ÍúïL†ºÜãæP) ‘ÏÈ:à{ˆ¢Š°èw¬$•}øž¤óŒ ï¾}v÷$Þ1®% «ÇÖÎóqi s$i2ƒ:¹I¤¶8ÆÝ¶* ÒPEÙ‚‰¨y ;ë(©K<“ý^ÜùÝÆ€U¢3VŠ2$fi¹9ØŠe˜Ž ëJR5»"‚]ÇõãsÀTÌá—u]AÀ“¾Å·‡C§èé`]aç@íË=E{__*~©øû­âên=_*Ôƒ‹DY7îNÇ(ƒ¤3X»Jô1ÅŒ åéJÉÌ#¸qˆ[H‘“A¶èÛôä_ò‰’¤‰3"ivVE–”fú»ÁÑþÖš]2sÝÌ|8gŠ”…$yT‘~c@¬Ÿ9ò)™ç8<ƒ°N°^“,Ðc2iHš:(Ûp ¸”¤t¨¨ JºÁ”säýHåèBªcØA¿`Dp7î‘ÍùðúRÄK ŠHRŸL²‚ /;ŠG4ËÕz¢ª k®ñQ#¥‘8Hq/@ `h±bAÑ“x7f[ìW’¸Ñ3 Y@É®!"!’EØ©+ISÂZu8Zj´Ê!Ú?“_¡w¥Ñ ^4RæzOrÛ…dª¹ºõGïÖ»¾I1™Ù‘,!)€L´0Dv‘-d"ªOz}ðÏÀèPZì±8‰aBT 8„8$°~t:VséŠ$X —jäApn+ 5…änSß&ñRHÜ= «(‹šJ7c IÒDX9ÍT¹ ºâ·>ڹ졌4‡ØDÀ¨0LeN(‰Š¥Qz…ýƒOÖì—zGt19dæaI™[,ƒ^{|{Ìà P•Ôñf¦‰"垤’´lãRʤó9>9ÙÛc2UË•!ƒ†ý~Ò ß.}¹ôåQ}¹WCWÇotQsã_öåzåD ÌFˆ´Ì%D`æ­?’Ûm½ÆÛEUƒâ5ðè5 f¨w$ѱ`‹7KOG½{–p¡à¡*/Sm˜¹~Ì¢ÆÌ\‡f*U3W³™*Þ,«âœ*çœ+£¬$LÇÖ„ŒÁ~æÕÂÆ5ÞènF”;ù5Êïû(ß…Úß"u_–Iæs"úœ¬þPŠ».ˆ;¨–²U:д!ÚÉ\š¸.vâš5m”ø] oÇ¢•ä¼Â-%Óº8¯óú:¯Á­Ü†<ÏÎ'GÝëbl†™!²ÇxS<ø·HQº5§Ápç"=è'¤õ Æ>Áµg@÷óýúR®K¹þPÊuÏb  "ÈLj:\(ÓY;éƒ[³€Ê¨è“L +`#'€Ãв š¾4xý«¬ßž‰[ŒÒ-ñù&ªFÖü±É<öš2éBôÅW{–AQ5£¾`Nw&бJR{4XQæ7®%(? —×N“=jVn¥ZâüÀf"]Ã:œ‡+fI"sõFp04p·*›|^-ÊJ♯"„¸¼¬¼ÎÑš3 ë ¥ÍàGøž„BÀij°•mÌÕSƒ{g]Vh`åM‘ ý8qX÷¡~;^U­ÔÃ,@D‚‰‰VœþVÕ¬Hì¥~—úýiÔï~tÇú‰øwYpXõHúœmO^ó'ª±ªå¬[ hô¢êFÔ‹bV&’áR<æid%rÒX• ˜X¦K¶ÊdŸs½`9Ó}(X^ jØ(0‚í…'·¤¸74e¿ \n‘ŸÍ¬Ú¤Ÿl§,ÌùCR=áZ„©ô@ê˜iÁ¼>ÅðX’œ×4\Å`ÐBqZRN5ŒíÕÙᣛDÿzÔˆ£³4a" †ÃÓ8Yã5v?˱Óx,(*›\6ùÞ~ Z-Zßå­ü€´A)5¼ÌÔ=Œ—¹h±+ 3X€€›Õ¨˜¸ŒèxÒî§V‘x& •»R÷AOèŽÙ­I ìŠ62vÉh0ðĆm9$…?EPuf 2±Á˜0\s]³Ò:ufAUÄÝžÉ6$Æ$u¦›¶€¹¢0e‹Q+œð+³¨;’îâרýìFMgN]¯ŠZŸ ©ÝðL;ïFu+˜XÁ’* IN–>*°ç¬0ŒCßà´¤™€ð>'*+ |]žt\г/º^_ÙÑe¦@x½ioüè‡fƒ â«QdJˆí×Cª–áÞuµ Iû‹¬/*P èØœØÌ±Õ飉²{kñTZŒ –],…Ý ©ìÒmZ¢HŒÀCû,V»¯ÞZ‘MdÛãuJ×Z%ºf_›™qH]סI²UæTB0ðvMi† Ý®!†JWëá˜T*.lpáYäú·™ûmæ‡;Sq­$:Eü D8x-ø^5¾çß…ÁGÇè)Ä(Þ°€uÚÓNnšleïP"–jŒ‚ Äc¦Ú<{@Â/XHÀR‹W¥1zÛTeÂ\^sˆäâv~2!çš²×”½¦ìÏfÊ*¢æ”èÿ²¢˜f’™ˆ`&+8g•/%ôsì° ,„<ûn©ÂÖä:N@ ÐÄ%pXòU^©Òäë‚Õ¤~w9éSýé¹@õ#e­A§È74:·Yêw&º#3ñ/7ލ½ùàûöäÞ” ^ƒÞ¸„^à•$PJ³;x9œ‘Ô‰^_:qéÄI'î¦b+rS[Å4Øë£á¬ðfgÑßàšúoˆW숯Y˜s´£cÕPƒeT PžŪYõ/DSÌ‹•x¤ŠØ\{l®O6Õ0{¤òÙë3=+„2"3ü ñŽ$°ròöé¡è&ì݌ϛ!|3ÊoFž¡n+Ip¼«º»Õ¢.í¹´ç_§=w=äŠRVðWG¢‹¢Õ+ŒªH¬:€e÷ŸþldSœ9íÃn¨¯Qéo!Ét"ÖsÞî t‡0ÌH3¡+{1stóÄK‚¢Xû°Âï ɨë«=ã¹gÌ÷>aÇg|ù„A¹>•¦=•®kÛNåo§ò¸ï®¨«Qs ›…ýµj¸(×zº# ÙŠ?¦DÇwì~# E¢o üÝ*"S).ݼt󧨛v<¦¾Ð4Dw–`ee‚"èf{šûQƒ§õŽ©øxpm6à!7=·F=ß“@ñ5âN»® î·ü»2]²ˆ.˜ÀÚ±ú­Â’SŠ5‘¸QWÕi¥yL%\g‰|kÇ'=1h[ Óèxö—g5³…Ñùœp=¾¼°tŽ>˜) ˆ2“RÖ®“# tÍ“kO…Á‡ ú;X)ðxñÉ>Ѷɵ ³ÿ‘$Ï95ô”=úúÒšKk~°ÖÜÏHë7Øë5)•ÊœˆsÖ ]u.E¹åÝŠ2°¥çC¬|´S"XX4­ a ÒŽ…ãšÀТ^¬[*¦Vµ–Z¥×SÓ‚ÕúBùÔïAî‘7ÂÆ¶ÙÚF’ãÌgݨ…í:M¿XGUkaÅ“¹¸çdd…èÈ”¨µ$±ÊÝêöõ§ (\ãÑ–ÌKÃI xÛÞ†aÌ ‰â'Ôåâ­–4?ì·oö²!sÈ “„_¥ö;#8Ú ]v=-tãÚNìlœÁçñ%EÕ5æÖ˜Ûô—u DÄôä0ÝÐG/@ÜjßXü€zÖ̪@°gSá3ï;;ÌZ åLj8<¥*3M7¶©šH•I½¯Gl”M€Ô¼>ÆSŸP'…¤Qã öÊ)¨ ”ê>Z|{!‘ýNëxx`Qµ@I¯Ö>H`§nUBsU#•|†èU× -ü›é+Ì8Åó0ugöƒA}[dm`õê¸K>2ê]‰ÒukÈ€"ó„[2ÇcGp(u¢_£ûÞŽî[ü¾·<®FSRÌqæ1" §M“RžÐhA¼,Õ¤‹Ó”"µŒÂx0¹M6—úcÜ&3#ÊDš2óªLÜ+3?Ë‚Ãeæy™¹`a™ u¤»1ïLÞ{&ø}})Ë¥,*‹¢Qaòa 7¾—ÝND±Šhf¡AòµÃ'ŒÚ€J¸àëÏàDÖ1ñ\-r¹•æj!)•Ÿlå­˜=£Ñ+ÔxGr¶†V’ɆšÌ¬…%öˆý–ÒFáB×< lÚÑmd÷ZV£}TÜ¥»ÄŒ[߯ü߼ΦMÍX „ÓPŠB‰§—,w¥­îÙ,IäØÜ‹Îó‡vWQNÜÁýêH¢,={׌h>dzöØYäÒ¨K£~4ºK p,¼,a3bBKL€ŠG`p™UEÄáe åè¥Cß蘥bÔ+Iç]ÅòŽ‘¡CßÝ‚UÒ`¥•'jÄGí™ÜØõš8Š1úª9*!ñÅBÒ Îg¸}¨WBOœ§-È0I†›;2sÍÝq16¦ª&gnh‰ÈïŒÕ’G©…ÆrÉâ³’¥{Þ2-ñ…fÐWbräÀgQ7l‹ÒÖm'þ@Â+é°Af9¡]^_ u)Ô©P÷#AN^®X§®^'€Pk ] H\H]„OMÚ³ÕsdQÝÊ"VÈ±Ò ÉÂ\As ˆTW!v¶Ø´£Ö™çA×­š×½zk®‘óú²aRg‰‘ünV€BZu3ÊØu\“*wæÇ0¦`UñyÖžQÌÌëf}h¡}·j$ʾ¬}3ÊpZ)q58ÌS8KŒŽ85ê3@ñ B`eR&Àcðo´‚lЗ¦\šònM¹ :ÙËjœ'M˜•eR¨GÔ@o¯D6e´ZãÑoÐpۇʨÙjÕe™÷£Ø;óŽD2¢‚ IÍôùod3xÅÕ±o;2\é,ÞOÐB,ƒµÏjØ+;„}ø,‘6Ãi‡È†=ç¡}qÚMçwÞ•ç{ÚÜÏSòõ5æܘßwçB&•Ú;ÙoEX0$sU#M†gƒc©ŒL ;Jè”BÄ0YžUªÕ-¿0k•õ½áRÒY ¤ç‘ôge¸ÀbÀæ°PWëÕYp¡£pšäAÄ$HÐAÜ‘gX0mÁøB;“& VÍ‚wo¬(³$+-‚–+a‚&"pÀõ`Œ,0!A¦Z÷F,SgGêRx4o~TÖ), XitNÊ€&–Sìi¡¬àHéã q&¯Í`Eå¶›–ˆ #"ˆ ÙKÄ”@,DC^¯á¶+’bÎ…Ü„%l’|»ÓÜÈB¼&Ë ‚¡@Œ¥ûÕÊö âÀ–ƒÊzG•ûÔ~Må„ríl¡Ì±nåÒÈÓB£i}G‚ýNëY{´î·ôƦG·šÎ¬ÝKû/íÿ0µÿ.óÜT°Vë•¢àÑ£µk)ˆp0&KAì,išG™2§Âù6«ÕÕíÐò§4SƒVMIH‰$î")Q^Bd¹+Ñ‘IZ—ÖŒoÐñJ«0Ý52ÙÁýó¨g"p¹ˆŠ¢ag"§;]ƒ™<]G iëvR™%–@ØIxò†ÐݦýWŒ1Õ3éx¯÷ºÉn©^³Ä)CVDa4!mS«Ç8ªd#^åØV³§zÈ–i — "§D§Á±„ËX‚xÔ‚Ûêµ>pÌŽI÷²<Œ¨…䑢ċRÆs¹ã©$ò©fò¹¨òª¦®ʪŽDÅgá´L>„º£°i\¼QT}WÅM#mt”µƒ@¼¹Ä :î+›Ù[Ôy´O±O#xïPpÝ[N°è=¸Ò)öMs×õ¤¯éyMÏkzþ$¦ç}Äí¢^sT®X$²GcMñ¤Ùh£¸Èn59ioäǘY5ÎÄ37ÇŠ¿câø˜y@f®™È#ü#Q)òޝެ8¥„ñÆ”ÝF¾gébø:ÜÕúHv{Ÿ2£ZfäË#E²§ÒÚsùíËv_jð©Á½hu@š«dù÷ª¥ÅFìóqÚ2ða-ãT±„r·ìÆYû·âDf§6%ÓŽd`ÇsÀÿÚîI˜oÔ/‚ŠpÃé´ú`Øo$µu•l‡· ¤M±º6ø]³¸ªlàÎ8l+s¶dÐÒvÆ‚}R€Bõí ëŠÀyòÛÇÙH‘Ÿíޤ(¤CÞå7P¡ýÀ¦¨LÅž`glr·×hü)ÛÛkŽV×]x­Õâ ­ :p(ÀÅò¸œ›PQê— Ä Å%5)XIÿ]A_hžž±qÚ ë“ÚJ2ŸïgÀNŽä ‡Ê)UòÁùñÐy>V/ŽÞÓñ|>ÂÏÇüÉðvÇÁÍ2ëkN]sêšS?Úœ"?)@l(—P•lý…6 FN8,Y:1•‘ÕRÉNýí• XÓmêtÈ)Ï´ Ågò‰¨|Áe¾â;?q¢Ï¼éïäZ‡>À§›P_(µhg¹€ûŽ‚\é{Å5æ-Mº²Ã;KÑXH²Í샵Öd÷O^|M¼ð7í \)ðU»‰r–Ðô‚édŒzÑúb—Ü*íÛK1.Řã.Î)´L¼C”I‰E ÉËb*^—¹8rÁ?uyýíb¨Š”¹xµ§Ž¦{î%ÜÇ9Á P‹¹³ÚãqKe©ÚyseÌï¸Ï£æw»iO4€H€§&)‘B3¨ÿÈ’Ô´ŸÎo×¼ÁX@“Â/-¬T]²l)Bé>_,Õ"+Õà9y-Ìf¬®[‹d‰” ÜLZß0lÝÂо:È·$»B­x×íˆî}òû>Êwµ¾—#8wÕ]\ÜŽPÿP•†l$|¡´AO_¬ÚAЪUõ€ùH.ÖäžâM='¬§ú p¾ LŒ¢É“Ùœ(¶Ì–a€/¼Ò Ü$h]-%  -5JúIß‚6ø™€xaïÈ ²”(ÝÝ“úº™F`©VÒëVt%÷Ÿ`\˜ jÄ(SÁàqP8U~d‹D;b°nðp¤‚éÜi4uv_#ü^0KÏ•5çZs=ÇGª@ÊúƒÕnýlÄ@dPBD#’­§kÉ)Å[Oí,½òVIÀp+:²§q ¬Jjb¹¹¦ ¾[s0Íúb2ˆJfJE) IÜè…&‰»vê¤àhÖ£7a$:!LLš•ç—¹97ÛQ§Û´¦ I{s}ÔEf‘&F²gß°ð§&†! ÷-©fTõT Á ñ NH#Áô#aЦ±&)0©0$Ü$ã¹åÍ|–+ÉÌ‚ùwæ#ÅÊ Ñ•Þ¨Æl­…ǃÒݨW¾Ø%•Žñ­iãœD„꾄I„Ÿˆ ~°lí5¹®ÉuM®óäºð<èÓú†¥öâÆ !פ#÷ͨû‡0W; ``s…çÁ{°Ä„ҙƺU~_I }®;¹'¼nDô§v‚d¡nÕ´Ðk¬ÈªúQ ±Ö±®ØïñM2/ â,Æ0œ¥‘(ŽlOxX•ò§l0µ³@Œ"„(£œ„âÛsC;«G„uls¸E´&bä U@œë&εÏõ__Cþ¡ ù]ÞþÑ£â»F…”oMë ŽHǹ#4Gø¡²K©/Т6ìÆÒ=k¹g«"¢åßà0Zã5:%ÔkÁ(R©•E·òoPfýÊP‡ÞjéœPì´‡ÑÒ÷Äd á`Uš‹®´]ÚJ¸(Î9-zUY ®qÐcõ”¦*L§B0 H÷`¸8tË5Úc£€\ÁÔÁaХ᱾Õ)®8—ž]zö‡Ö³»ž7rÃÈCc›j_òŠÕ2¥Ô›•„f*(µ|G¸ îBàPðé‚ÔK´Ù2"¯Hü•ë=IVïCöƒiÄ\ج ¡gø'‚0âè“ÔŒ—w%qár¯iQI<;U9xDâG1¯Ê07ÀLb²ÏLÙÒ*C ÜÏRŠÏ_H<Ý9`l7vÇ‚r¸7䘰©x&2 u« ¿E¦@¦Ž—§Ö‚\Ù5y0³¯$¬H/uF]Ôu+EÀ‹}+·R°¬1àqÇG¡8¬Ýå¶`ÉÕÐà®!°lSàHòî ˆp±=f÷ÀÔcCÓµôtvæTß#½DûŸÌØUM¶)SÄQ›š7âÇñY –£§²f²ß…Ž×Jè=nž%ªûnp¼ —*™ÃXç1§aHæÔm.‚;>~,@û5‡y¯;ѵ\kÁµ\kÁýDàîÞÒ‘N”m„}UéE3’üO™ ªSì’ >’P4OÂÒ•Íw¨dTÆuêV0¹rYKB.£g?üèûräo`T@Ò¨CjHaèéas…B8Vï›ÛÔR œ®Á…D¨±5ƒ"+; Ö«V›1tƒÄÏY¨9m½c”;·‘æR¸ ´”Fž8– ÎPÈÄh6XS ¥-Ae!i:Ò “›* ÂçÅ€rõ¶14He²ûH%ïn«uw;æÆ péÁ¯wÕÚñP®Ôœa5eaÍ™Zäw…b‰mÕÒ•À"ªº¹¥±Á3Ÿ£û ˜š%Lo=m$÷,$YWö„|¶¡äºW$e9¨½ÞDÊ™!%‘ˆC~œ©GB.„©¸Žs©o¸ðÏßé$Û“ê¹B¤·‘§4Ì"½eØÏ-~€þKñÑ9¸˜¹óäžçÿy‰˜W‘ÇVŸK¿.ýúqô‹u¾n‹$½ììR€Vuã¨Éš)µ§”µF÷a¬™:n€R Æ$Ì*ÜR V’ž;!ïÁHªò³‚­üH®l,MTÛ§â6¢¯6l9@¨6ç·ÂD“Ä´´¢Üq§¨m¯ ÅÝ­–¾mj[*¶¾¯&AÖ<²U±MiÖCaßLpMEÛÉþÜ‹?½³ìÔ©JÕ¹ŒÕëkÔ~†£¦™øw-X‚ý²WØÈ“B4´dŒ¡6«:’¶‚•Ùͨêaa·Îd뽪#râ‘#r!Áh Nò©éÏL×ÀiH—7a)À‚rÅÎÜXÉêN×ß?é¾¶žÞ|¦ˆšŒ¹Yòîèò“^Ä­çØöÿžcä隸0Nh黑)؟»-]™ULÒd1ZžwS„ 2CF4×zkSÃ…¤$*Ë(ózº·¯Ñú¹ŒAâ·)/ 0ùJ²H¬™’o¦üœ9…ç‘Ä0 )g3—½sx¬3à°e;l˜1kUúp$3nʼnpXÆ#è„̦r…ÔXµ¹[üPU¡¹Ñ\¯h®i4•=š+#=TOé\…i®Ô4e¼¾†üCò·yz‹UÎÑ…êeïZW¶Qv'Ï2jNÁ†èþÅù;_i ­\ÿZ[|;húL¦?´¢ÜáÄ›Iòμz ê½»ô|7~ï&þ#ûŠY6:‡ÀU,Û`g(“„%¿Ö‚¤tx"¨#ÉB$Îo]%¿á|Û’³*É ãVùvèÌ×y çû2œ÷óRoúðeÙïóØÌã÷À¨ÃK¶IÐDšYl0=ºñ‚‹T[3ˆvÇJ§•JoŽtqø»VóBáøa®sºÅ}6—ò~Í8vÌ1­¥ä ›£e‹ˆÚu›#sDóŒX2…ÁßYHwŠ=¯ù£Z¾•õó4m^_ZpiÁ[(?E†3вíeTe©“¯Ô£;ÏE¨ÔJ¢2“$ÀJ]¦µÖ¼!` "!ÈÚÑ0QÝ™exÞIš6­=DÏõŒ`¢X> Þ:¦i!«CyÓ:­·Ðþ‹õ:¹ä ƒ,ÎÇg&2¸Uƒboܽ•?u9É®aø“Ãýmô¯ñ²¢%^PÏôÆ3òL“¼ Ržè–gJ扶y¦vžÙŸg‚臖–iAš­w/t3àå Šy}uüŸ¦ãï§CŽÇY¾é®°e4A­6® °ˆA®’I:²z£'»À)•îI”KQÜÍß ?xÄÈ:ƒšƒvF×…&j8;£“õ»Dc“s€ž‹;Ùœ@ho}‹ƒŠúsÉ0šp^¼UáQC¾Ìâ¬ÝJ"ã<'(ëølå¹›ßý< „Û]#óS™»YL§T«—V5Íæºgsm´©~Ú»k®¯¨é›™Ö°MÏÕ ë3×õ̇ý@ÙœtvNL{}õ࿱éПoŽþ ]#¼qÐZd_4÷¦ùabL‚ 焬saPÙÑ,·aZH²„Ç8«9¨^œJAYÿýÀ4žçþ´<<´¨tõ;¸ŠÙ¸¬tºÆy»†ÄAòìoœ…gÌáKœ¡‹A/ ø€4`ìO”Ñ'Ž|ºÛÔ˜—?*mke pÆO¢EgÒÑ1éL^º 8HP'žÔs&Ñë« ÿ­]x×x:Õ†Cm½Äbžði¡8«æÅ tUêÃïEIÕ"1Ô¡Öô£”Ææ7K’"ÁCÊbž™Y¾74š¬@ÍÝ´zºJ‚[n¾“çÇõÛïSÚ ÓÕéQÜR/A¹ cU+Ñ¢ù+‰cUÍ’FvCòÑöåfªŽ³G  ?Å;‚h©i¬Ÿ®ÒNëÉH#¦‡„0£„ˆ#,‹2’YSa¾AÙ¸ë—lÇo¾Ùç5ûàrŽ d'òÌ7¦glÜ•#p¡R*W˜½Ú"T‹f]h"ysjeM'5à?ì,cìoF.kgY¿8ìHÀÝk?¤z?nŸ ñ ØüZÿúþö·PêÜ®ú/îFR¢»h.ˆd‹¤X¹o=ên¬3 ’¦…Æt7îÆ¨Vž#}2FÄшª.n„nvaœ!Eíu;FUr»†ŒÃEìϱ³ž6³×Χj’Êž ЉL¥¤Ÿ3åÏD 4óÍÜB3ÿÐÌQ4ó½‹ùè½ÿfé^Iú¦š’4Š+_…>£".³å«¿j#¦›tfIÉ5Å8wùÖBIÕñ‚¦&Iñ3¿rüÅ.{iù·¯&ÕÞO¨9Ú?Í‘èÄï•ùwÀ.‘ržž%gãXWsÔzÎ2ó¿5‰’C‹…6ꎽ#´³MZ!VÜìk%£<ì¸û“Yz£Ø6òZŠE ÁìÝ”ð~lÀU%ÜÔê¡}‡2käCøPA"ZÃæ=~!‘sQïq3¸%¬b|G‚%mdŠŌ؋I}ÎiØË‘˜ýŒe¢æ'ü¸M¬ zˆƒã±J“ÌûËíá]£Èf 7=µP»ÿgØjžX½%ã‚ךÊÅ€bBfšj†–Hºå<ǬG-ìbÓ'UeDO<¿«AÃ7ƒ]ë&à|ÀÝÆÅ¡2ú½1´k"œ6>öS+ìgÖæû)á'LÜË =ƒ¸@ï3üÓpÛ-àwDï ã{ý~|Æ[V¤NÈN% Â5à®êuìOè.ä>2fjÕYº×¬ùp_½nY5ÊÔÛVäÅT2ËcÚјл…oÛÃõç§ÞFúÍ‘¡+`Éúe/l ¬›K—¥Å±r@Ív(µ_“‡óž0l0°ƒ9ª³nv[¥ª žÿt¨C ¹”¥=e\3K O¾­ÑA}l*!˜üö£èIÿ >Twp$:¿y©0÷-›Þ*¿A˜pxDU f}i¡Y<ù`ÒHIbƒÊ¯ï`ÁµÊwÞîD¬Ç6ݹàWñ,ˆ3îDÔ<Ý9;ñî¢ÏãÆºSyæùÆ9;&ÒA³}%Ò•Åðn\ç|•ýF$ñȉë|ãÌÉrVgÄv'<«mêØäµ˜ãÞ= ëêÒšõG"{¥íˆ‡Ïì v˜?3j×èý² Ð`©Jº9èã²gÅjÂÿ¯ÅŽÒé8–Hñ²œœo|BFSÖ!c9À`û]2·Â¤;G½_D½>\÷·Ëë^’PþÛIe_’ãU·êùr®:éâËAr¸ê¤x/Éáª[%{Ù‡kNúôr®:éÎËAr¸êÿoíZšÛ(‚ðÝ¿BÅ…^*+ffçI*.J7'‡µ-É­,A0ùó|ݳÒÌ 9p R•´[=ýîžž]yr–'C…)Tç91T˜Šê,† SQMã=DEóCüŠè„)Tj¶F³ÔjÆÆî†Ù7‹«ÏÖ(=œ·aíb…Ö(3#·JÆ_‹”_ W7¤æJ5­æ¯§HV~2ü VJò“¼ÇO¤ù5xÓòw>Ó>/ä'_ø‘ßTàSm¹—GâG¿ü)º?uù#ÃOh@ÙÉ·‹®®èöÿf¿ª5#øÚÞ¥1 ü`}¿½{¼_nï–³›wË'pQŸbš=núÛÇC¿=ìß6‹_²¼KtØd°-(­+‘|KäË–ø™´sÙq×M‹>§TLšþl°i*T¤~h¸oZLìô J]JVÓ†É Ž– ô_4­ãû¢¥Ÿ„#†¯3‰ÂÌõû†—Ó…ÌÆ*å’ ?OC{F»”B0ôªiù¥ðô-£ ¦"í£ ôTQ³º>´]ê·\Wî=7|[±Ò)sî›™Y{ © ;ANÐÇWÉ8Ý×NG&¹ˆÉcñãÕâ³Zd0þz`?D›LdkxZcµVU vŽö mˆAƒíÍGÚ5üŸDoé}ÅîQ0:Ú6|ž ]ˆ´fΜùžî ¶?p,càïLQ$ Ùñ]‚D/ñð:`§CV/¦Žîš“¯w[Öƒ-Ò¡ÊÖû"šÕðÆ%fÌ,,#&œ ³ ¬¶˜k‹ Ø*ÞŒ•¢Ã(mY©ö«ˆH–TnyÎB"QÌjÓÑïE…‘>AÔ-Ê—ïŒS®O¼žg¸D»Uæåǃø8¥ý„\òØá°ÒÙZ‹šäh5Âww¾Òãxl_$, ·’WüÅ$g0†Ì÷(W‰ŸdÿC•ý3^Ó¡!ÎŤ'kµGä–9RRg†˜}ùœ\Q›ëŸ!Ô“,cŸ¬$u6í£Lé9ÃÐÍýÄÔˆ±±Ôo2“ UÎ}gí$'ÆÜtðOW'@›(cù‚ºvðëŠ$ä´o¡ÿH’±ô!~n°õ%2ªÐ°®¡N&¶²(÷…yÓòkíˆeRÊcæR6>dzên#³4zIrrbk/$“€öRé’?²ºjbà ‰\ÃÛÂS‚Á›Q/ª ¿ß7>KuE¨M‰ûq@êÎâÜò¯s9ßæR뜔_Ǭ,}·¬,ϵÆÔÜvëLMÔ=Œh­Y¥c#™gl@—{CUd±è7Í(ý²_‰AÉY_·¤ó"gVÊQ¿^W™Y­û¼ÚiäzUŠèx-¿Àô*L+”o¿Á9 º-‰ì£Q鎘Éb¤VJ+ÙNO:Þ´ÃÇ&qÇc«anüGËŸóîüBSc mç'=Êþ}u¤Û}¥Ü¾TÛ¼¬†Å¯œ•³Å‹ƒŽÖ³ˆ“·—ƾÃT¹Çޝ1/ð¦¥*0 ñõ'ðp‹$8ÁŸp(àòâº}7i+‚×¼¾( ‰'ÎÀcI{þWeLߟ$|Yí Y X_ŸÄäGY® Øðp‘vô¾ÀÃEŠŠÅ¾€›‹´Áë^ðÕÑ6-ň]ð²E¿•e_Ð_YÔü· ~:ÚFx>!±“ž{T£Ìð®šÐÿdÙƒöendstream endobj 293 0 obj << /Filter /FlateDecode /Length 155 >> stream xœ3¶Ô32V0P02T02Q06T01WH1ä2Ð30Š!Œ‘œËU¨`iS026i&`9'O.}O_…’¢ÒT.ýpK.} *.}§gC.}—h ™±\únúÎÎn@n€¾·‚.PÆ9?§47¯XÁÒÎŽËÓEAmXóõýÞÿÿ¯ÿÿÊ~ý“« \®ž \ÄE*Bendstream endobj 294 0 obj << /Filter /FlateDecode /Length 160 >> stream xœ]O1à Üy…@H‡.Q–tÉЪjûbLÄPƒúûB:t8K结Ïr/#»ò=>)ul"-~H0ÑìX¨ŒÃTY™øÖAÈáªÃë6Ùßô›äã¤TY©=„ÞÐ4RÔ<“蚦ï¬í±ù“j`²ÕÙžûŠ‹ÿPr4—8n®1§Ò´4ÉÓï™àCNÁñ<\Scendstream endobj 295 0 obj << /Filter /FlateDecode /Length 5983 >> stream xœÕ\YGrö3¥×µ 0æÍÝ6»6ï‚°²±»ðî`¤š3Ãåá4Å!ER¿À?Û‘™U‘Y™Ý=”,¯¡5k²òˆŒã‹«¾¿“¼ø_þÿÕë'¿þ£±·OÄÅí“ïŸHúëEþßÕ닺„ÖÁ“)Š(/._>I¯Ê )ýT¸ðÂLR»‹Ë×Ožm.·AMA½9lw*º)ưÙ_mwbÒ1o7W[19éü<¼Çç6FïÕæ~«üddЛwø&ÌÂæ% ÖÁKç6‡·é±‹æV0spf󾥄қ›´FÐÖmÞâkBIe6×l‰WðXaâøiƒÓÆlÞÀ¼þaaŠyè[|Í aòÐ(Bz_I¡]Øîq€JÈÍÓíN ¥>˜Í øéàÅ ø6ꜪoèDߺ[(Q.—†ðá×i:qº[—•=lç?/ÿõ‰ÖarÎG]^ÿÜ÷Ot»£‰¯œÂ·våµÔ“5!¤·÷H¼ ¢º­ŠK´„’¾XqF”ÂÃð”^{¸dN½t]R»Ùßá,ø\V>-cÏo¦ ÑMØÕfÚî )q Oƒ°Îiàšîù9YÝd„ݘÝÒ [~sì5‰•r‘‰MöЏ?†hñ5˜XDk;·ªÎäFù6ûe¼§_ÿ1VºC5Y«Êmÿ%^—q°Á<´É½ ±n²^ W<9 \„¯À&/¿[i$àjàŒ 6îYŸƒ+iHwnAÝ/´{È´“–è!b0~@[.ªû$ŸÎLJ¼X^äªîþŽÂH­‰™•u A3/G•–À+y}bIœÜk˜<ä» Îê|·yöt¹:ˆæviMá}be%P=äÛµÀ÷t¹•·y±Fh8)Â|²ôž„á=ã‹*hd²Jà$¦^œoïjáj¦d‰×…QðsO„5B æHÏíüŽ®ƒå¬zØöø ”Ô´<ŸÏ„íò,§…û± ¨kN{¾‘ ÷&€à›Í?t·£4YýôíÔ³vv³¹èî”o“Öß<ßö„(€¸ØIÞ㼸$ d¾I÷Pkºj æbýtK²( ûy•Yl8çüNâ#²%“ØŒ¬J[ÎüÉÞK"ªÖŠÐØ‹#8‚°J…#fd'HØ@Fg¡cÖ‡$™-ŽxÍ-ÐøCØl`i=.­¢QQ¢ráºv¢*W»>téJð¢´3+^ ²2›ßd¶møF© kbÑã;[Fž¶ßw ÷¾_5}{ß/nóVQëß§= iÙ_/¢?GâtoTëŠÍïíiK€ËeÈÚÏÕŒj@Ƭ­¼l1n¶œ#í“ÝÒp_ oá'hލCBæéb_l­DÇÏü„L €àmΣËxÍ^V^fAMÂù-¿)?خҴ –̇™©9ú: õˆ™[{X9O`‚61dŽO­‰7¤ã|8+éÜ'— æÁ¦ Lí+c÷P5û `·…•fRˆn£§Ül®5ÇÄ]Á5'!ÉÚ” ¾â«Å‡»ý–ˆ#À[x±»¯¾¹ Ý¢ì¥SºÚaÁ ¦áÒVApýSE ÒÌ1Ö!‘|¢ϵH$CÍöP®IVC>Î ¾á†Üx%QP SîùI²á²ïu¡Ž5u —Õ]™£† i½¨nüÓÞöégžëoËrá"NÑ)—Cð¼<<=î³Áø²màÿÕìPnôP¼©q%˜ý»ÞyA£ ù\ï¼"ÿñëikZ¼ê£O%é&@G™8ðCg*òÜXÝÒ3ØôΨ`z|ž£³µÈœ†¸lv`@`‡ì‡5ü€áõÃ7݃ˆ È›îQ=Çêeä_õiêÏŸöESÍøUýKÔ³‚äÈ|ËÁ%š¼Û£Q“É‚ ]£Ð °Øò8x`×lê¼ÎåÀ R€#{§Ü~‚ÕóÕVîÓ F7ÊFïf!ž¿]X?OÓªè!¢Æ‡†¥…TM‰:fû"ÈÚÜ$àì n XÇ (ó野 4Ä Î‡æIÒj”…dAlTÆâd\áä¾NyìJú Ë™–ÒeÇ ¸Ô²b¥>– øZÕ T9቙DÔ&“l~­k•s6L•m¡;ïCò” P¢ŽDƒ7>|ª(*‰ÓI „ü"m xç7ët ¥aÞ¥ ÑçN1¿š¤H3ïÒþlJ À{QeSAç—Þ,lQG¶fÆ%r)Z3âÙ^²WÉ÷W q½ºJz¶Äù ÆŸò‰cí#cªåð]–ó€O‰wv)À týàd!á€n©àú½ÝŠejà”bsVÀQJ*Ó”kþÇmfU û´‰wÎCikÚ†ªjáÍê¢É¦ ¶)ê… ËF_ÔK>1œ½÷2 ¿@NÅ"#0ì+ÇP!½¨ûz‘©ÛÝ ªÕî ¾ñбƒ´ 6œkÌ`û#cÖ`zÐF.˜‹ê¥¯q‡_µàôL 8dvŒ—épHì*,u"{âô:L ™Ç K‰E‡b ±PðQîÆ•²Ç˜¼i%f1ãÉÆ <øü‡¬îFM4§Ç!8f“vÊû íü tO‘ð3ã”àsw Ý_À¨R²¡V)[9) Æ€Î)·ú§þÔsC 8×R¢´¿å.mÕSІ£ z/JÓäCÊ`n;JÖß@z5Õ]øØK, ÊT±gTo]5ö(ãn¦Z唵I²%îÈ'hPý~n?’Žðv¶ê ,Ú/õ"ëÊ#! WzçTXy™”Ÿè)‰õŒ~ûäòïWY$!(5ÿ;bõ“ùý¨Oƒ|7½ç1 Ùíž~föz› —†.<‚ƒ¨*‹MŽùµX«{Šð0AÇ)+Ý{HÏ€\e?TüˆR¤´,÷>¥ÍAaš¤™ÿÓÁÌ&/êøh'a¾Mz?´y¶BÆQõQÙ.?ô›‡í›\2Ã<@Ž >àÞ‘ÚH/Z *b0I•ÔØRb)Å}É2`ɦò‚úò3Txa¿xm¨ÜIk´¯½YI¦šÔd¼B¢¬v¤ƒØT˜ÒóRG–õÜ'n¥ÒÜ8,Ö2ùœJJÐI?n+»Ógw¥<é¢}þ}#–ÄhBÔª¹ùƒÐ×UÚª‘u¼67¬x¡Í‘â=Æ}7œ½Ê8=[,¸$\âù9ž¦8,¨ #) !`å|{&–¡>ê3JezÜ›îØùăòåÆg"`fgÔù®†§bsmKº`Ô>2ï/E(V»¨IP4œ¥|ì΢ƒ´¤tsÚý|ôè@U~#iZ¯rl$Ūµ®Ã,%‰+©Ìä” ÈCšXc±ëËt‹¹§…pwiĨ]­+j7i&Ó|A©dªdB… ÷‚P½¾\J°¾\f³N¶j²s¦ªJíË>åSŠá·‡Jε-züƒ‰~j%§h4K8˯»jb‘AHû%Ÿ²;5àLT¾uï{¬æ#uT¾‚¥©4+ÖK5©¾Y_Þ¥!¾L—Ǹ —‚\ýUä +Cõ¡‡êÛ'e;ìÓE}`|ÈUü¾Ð:Ϊg}¶¬rS[aHcÖ•Ú+[«K®ÌÓhëÄo¸Yuí–ª›¹m×fÛnÀ~ [V‹áxü‡°Žµ¬Jsf˪{täqÔãºç¼þG`…_º¶m<Òóê þ~^þ²ÏËàw‹ø¿ÈÌ/:Ç6 ßDhÅxÈÌi?‚™?ö™<2@B§˜ù#FV”Öóœ¨-GþñéGrðýÂÁ7?¸fÿ“9ø$jü¸øùÛ[ü ¨°ç²qà'ÙXÔßÃúÒfòj%FG´³g3tñÉ~ìq4艟:ÅÑ»%ÑM}ƒé[KË=µŒn æM9£º·œn?†ÇpzÝû“ñüuŸçñÛ"K*½åù°7zh€¦Xr¾·üÏ—Oþÿý\Ô‰yendstream endobj 296 0 obj << /Filter /FlateDecode /Length 159 >> stream xœ31Õ3R0P0U0S01¡C.=C Âɹ\… Æ&`AÃˆÍ ÀRNž\úž¾ %E¥©\úá@i.}0éà¬`È¥ï 43–KßMßÙÙ È °±Ñ÷VÐÊ8çç”ææÛÙqyº(¨-> stream xœ]O1ƒ0 Üó ÿ @ ]ZUm?eÀ‰Búû’:œ¥óÝÉgÙ×mù_ÁXÖ·$i²,Ê ´Åx°¥`ƒøB‚Svendstream endobj 298 0 obj << /Filter /FlateDecode /Length 3756 >> stream xœµ]oÇñ](úÖw"}È15Ïûý‘6ÜÔ@R$E“¨èCÜF”d¶©ˆ²c¿ä·wfgïvö¸GÛ‰ñ`¹;7;;ß3úi!z¹ø_þ÷âöìñwÆ.®gbq}öÓ™L¿.ò?·‹¿žÃë`¥"ÊÅùÕ• )}TXxaz©Ýâüöì‡îû‡%`F8Û].WZèÞÛ=,WˆAxïºç°ÃH+M·~ Qºωmˆyƒ×> Ñë·ÿ9ÿ;Ðâ§ÅùÞ[€žó |ýŒÑ »»n ¸N  ð‘‡^. w}Oí{'•pß"%*ƽZØÐÑu…È^árô^uûåJ9À<|>ÝÑøãRy¸™‰ÝkZ øëxÑ:©eŒÝ[^ãµtðÒ¹î@%…vøeâÐéÞF:ecw †m1Ïa£Áuz U“<Le`ƒK¼Ë«ë{ü`Ôé¨YPp'„Ò€dÎ$²ïé‹.úáQœ@:(C ݶ\,}hÑN¡„à§½á¸D¬8…̉F˜iÕ"º=C‚»’ÂöÚ/V^„@o:+sîÓíéúFEÉ)¼Þ"vC´Ý.”HYßàIÛ)+qÉÂ$Éb-Ú‰ÃAxËõ`sÄ)ÚªÞä6GxË—Kk{ô!À´èài^´Åë@W¾u?ÃjÖ9] 0Û¼£Í.û»"LŠȘ´cØ® ªà¬ô¥KÃNò]✦V”5C¤bCHlT• ì!³ø"c?P Ú ÿ¼\9¥@1ˆ78mLµu°µJRÕâüë³óO~HËç²€7Mëô¬+ðG|KSæ–®/àó`²€¦€ðÙ²i¥T½2z0ŒWÅ:íQçµî½ôs¬&•sJÃ+nG1efK}p`!)qþr­Åÿ^ xT2JÊ£ “ÝEqÝzGë &°ŽâœÕI]-¾(Ë_R¤¥ð$s"xÐAÅ?ôä¨w2XÏ/ô¿%ˆ(çòùquKå-Þ³û 0G*A®fóŠ\:jÁ-ªe𪚠föé¶èpB÷.`ž:†…´´§rµí®÷šz°ù觯ŽË¸4ã3¿àìF×€åÁëú¤¡ð³ìæ¯QÜC~°Ú$cÁdÄøºðMxuD¡ iì‘n`fë.–dé¼`-{Ùըëxôçdæ…PÀ’ç‰%ðS¶dj¬„ÌD6ÉUj Yå‚{‘óÀ=ËÅAs6ozQ%0ñHSá“…í—‰Ë R/[RËdaSn¸mkì`°Á‘ñw"Ϭ¤ª½é‹2Žd rÀƒ7R¯Cx› ‡”F0.l÷M¾j’Z¢e¸!‚i‰-÷˜ü“xPÇY§´þ´–ž§çgßžQämá†Æ/îçÃmˆˆ¡Î™V¸í4¼¸4nŽÌ™m™ J¿(`ö3 ¾/àe|QÀ›>PðÑHÃ[¢ÕA»Œ6”ÌΧpî4ËôÂ÷àÖê ÅBÈì¨wÀºÄ² È€íÁj>ùê‹%)wè•…è0ö ‹Â‘nß_^Ü<ˆåJ*ڮᦀ 줷è|:ާ€ƒ÷§s²œ3üœ=Äün¿6ñ²èw¢¥ký-²Ì²?X_Ì–>›Š=®¿ ª ‡cÇk2MdK”‹”ž@ŽÖŸ9Ô”€Y°ü‚©Î>™.=e„!FŽ“ÌÙü¢-€[˜ ÁXñ‘çðip?3oHÛ•nFù›a^”ðèfð,›¼ÏJ8>+àMÙ°-à¡€, ôá«&¶_ ¸*{Ie‚T~6^ƒ—trLdA_5ÄQÈàâ(§‰ ¾½ž6TæT“Gp1(£²£ÀHbU2ž¤S‚,ØI°vÍ2*.O‡dj2ÄlÑÉCh ®î%JŽ*y¥ñ¤©Â¼=G^Z¡ÈË`£÷»Q>ù³¥Ú„R±I˜=?Ð:f–?’[“AM’ïh·ƒ$oÏ“?ºPÊͤLÉf@b&òŒ÷uòDîN  –HM!L娧¼ÓKF0…†â$0áJÎ$˜jJ¬ :¤l½‡çù*)×p»t(l¥üëÌ#LÐjŽ$U—¯wAAújå1f¡Rˆ1^˜ð•ëõjÀ•dÓÂ\œq2g èâDU 7@Ú_ÅT”vC2yB“_Á™*X¤›j¯l;Z³ ‚vœxŸD3|î ç³ç¤OÇ'~Ï!‹s"½œ†,¡«"ly¸1ü¾.‹»Öâ‹e+FÙ¿)๞nHÇeMp[À—üX&L&ÅÊ«ûnšŸ¸I²ÖÚÆ!€øü]#ªšqý¥,®ÆEvþ®€›®›XÙ²ßJð¹ø.à£ÂÐ5ÿĸúYoš¯sh~‚|ÕÄöKë€t&8ýµœ|ÕEOzq¾ à”±¾—”]ôC9'W+^QF!„«jh:õ©G4À °4Üý1£ôš6ø¨gJó—Dàë¾YŽvèëLšÿPm*§5ÝŒ¤®éV•a¤ ¾Ÿ<˜6¡DrH¸Œ>q¶"º+qJeéFîŒHj§ÍòÒq+/·d’àÍçâËCah‰;ÞjÓ­7Ä4÷!´î8ð’—°‹O`Q·é¹€{u„ª¦·48ÆÙRI•‘NCÛÕ€¥×H…¦ÉÛ&È*’÷|ÝŒI ^¼Ðü¨¤è•Ç­*H§AX;f‘ùEùþ¾€¬8zÕ¤ «þðµ÷ÒòëØ(âªqÄÿø$¹š`D]zd‚UG2c»áƒùkcd¯”šú닦ke~‰¹ñ÷[mP,Õ†G;,2+~^ÌõwüWŸV¾F‰h L+QIåv˜ƒa^e_ö¶]s;Ìõ±½»‚¡í­Ö|o+–X7ñn ÞËæ†{~‹Öꡘü SG£` n›1{ÉmóQÙ«oøSŽà÷|>E–½7ãXË‘¿£ ǘ<4yÓ~”C“²6wo›ï¾mâeø¸€ÍO¼²ñÃm —Í[\5ñ^4W©E¦"öûƪ‘ùýPôH ÙjØ»Ä O€°A$ùfû9öM=e¡÷]S{mål‡é›,~ÞÄÛKFN[eÛ·h“¶N3•õ¡¡³L™Æ½jÚÙ§Í wdž6+YúùJqóÊÈX©»Ë«æë1álkŮɣm“µß`½o›ÚzÕ^½þ ïŸTè~ªM¿¥b®V^ÝB{OŠˆÀÓÃÃövýìJes –ùaÓçšvÝÓû{ˆ™ó”.…I!ýòÕÝ3ˆÅ{‰ÏïsQb(g¼TQg¼Áÿ­•Z‹RW7ÔeINh.wÂãr ?àÈX¢ãx¬U2[ð 1_Ÿ¥óOž¤|6ý%V©¡×}²<ÿ/ì·N;¿à?Ümñizmœœ9ƒß`?üÐ=<¶ iMœòè2ZZUÝYCfŒ z a¸ˆÄÂÔUØÕ¤¾ÄÉÖÞ¶É~h}tf ;ÿÐ"ÛYxYc}E6X²ùj_ÒÉ4ÞqÃYL7v*“ˆÄIÛý“´@ùJ³Y'å³ç c§„T©t)Ò”ŸI=8ïáúô®Š¦ÒÊFe r¾íFÈ: (¢;Q¸Áh¨ÆÞT ꆮHÝ›²6O ÈJ…³T2¹9ºWç¥JaŽÚqƃX'yÒà ª™ÊkÆÔ£‘×Êçæ²z¨9xÜ=pãÜëßð®€íî1k¿(ঀ—ü¾€Ï›È®8Þ–J5iÛFòT¯\+Lå¹r—zSÀWT|ÚÜp×®#bÑP—²_]lüTàR Gz2ÀµfM;nÀ]í1˜Ku:i2Dilït­.YÅ í¶aÚÍÅUTäSµN¢£ÅÙàM‚.}h Äm¬&Fp¦D jý*¡c@vÇ»d¡ºoŠž®ó@HÔØ“@Æ`ObÏgë †Õ#ýúô¾*¬Ó­ÍÍH¼éІ}áu=$Q†•4$3Ljí3ír@¬å œÚû&Ê%vå!Ø †DWrÆ"ß µŒá-§“ùqZ‘ŽtzÔ86±Ì,L¬†Œgþâäj´Õ°y±àäב#¼mPÏç~• LÞçwÙñj^÷Ëa€÷tZà@7 [Ê„²;2ãËÌ73ê|̇Z_p_À]ÓRo›˜_èßô§&¿ONa"YF0¦ãÙ ,“:šøyBlÇa3²€gÿw`x5´NNu‚húÒ€„”eöG(owóΓ/4YÁR}­ 4óªÒxÛØ·L(Tç%XH×Ç32'{D“X¶•Š‘™Hãݯ™‡›þ¸leë-‹Ù³œj:}ÁV ¸Ç"ŤëÔn)°k)|°®Óoë÷«({,´Á?NÓj'æ¤ á·gÿdÔ9endstream endobj 299 0 obj << /Filter /FlateDecode /Length 162 >> stream xœ]O1ƒ0 Üó ÿ @Õªb¡ UÕöÁqPœ(„¡¿/ СÃY:ß|–mwëØFàðEŒehvK@‚FË¢¬@[Œ;Ë'å…l{åßO°Èlü®&’ÏSyÍ«r ¡Ó4{…$ê¢hjcA¬ÿ¤=0˜ÝyÁ&£:ãæ?”M%Ž›€KÄ17ÍMRËô{Æ;ŸR°B|o;Süendstream endobj 300 0 obj << /Filter /FlateDecode /Length 5431 >> stream xœå<]o$·‘ïŠ_à^›—žóN§ùMnn󰀓øIVwF`³}9¢‘¼ÖÈoOÉn9Õ’ÖÁ?¸L±‹Åúþàø¯‹¡‹ÿÉÿ>ÙýüOÚ,Î÷GÃâüè¯G"þu‘ÿu²]¼9†Ö.„èƒ1rq|v”>°äz/ý ºÊ.Ž·G_v¿[®ù0 Vw÷WË¡×A §»;\×!¨At—°l„0Fuß,­èeЦ[âZ™ÐÝâgÞØ Ÿ¤¤Œ;o]  Ãe§mèN—+åL¯D·%›w°ŠÑmNq] ƒª‹$y;H`Ù~)•Hº>/ëÿsüŸp}×ú0×—ðG¯ýâø·GÇÿþe÷«¥W½„év·Ë•>?ºMÄ‚s ·ðA ®ÛG. ƒ èz+œup÷z=bQ@ìI$< {v÷ËiËõRÚ^ •ø0„`|@Üøpùwø!\˜½GNyo¼ì‚WÆF«A ©AÒÁ ¤ª6l:ã]¼€ƒ²N†U «(°¸aB⤠>À*"–!xo»óÓBR&‰÷V‚ ·¸h팠8 2"°Áv»³‘ Tþú(JQØkAÄ&ýárƒUB…¥²wf±2G›ú)pËÈ,Ÿ“OEª„¨“k"ˆØCÆ]]»Ÿ®$Ô¿X®€¿X2tÿ6"Õ–\GQPgAVÅR”„—Þ;²rH!(›/ø¯ikC'dI^j!3-‘Ü%G­î¥ž!ö’çν”ã¯Qk°¯€™'\Øl̯DþÛ’Õþ¢løœ¯šHC êN583ðùÅXî'c‰=·˜,]¤ìÝ„gf:S‡‡¦û„1ÓÆÍi®Ó<²Ã æPÏ4HœÞ$Ìè‡s=öý_Õý‰ÏŽþx”†éÊí·ótÖ‚íh«¹ ºH’Nô_.W*Å8þˆ•“iÚ˜ÁÓ^p3}õeq5-þ}‚VåÏbZüt‚Re¿Ízsýá»>𦀧#2J;‚/XÄÜì}Y0œ”Õ]o)øÄÁë^± Ù›kÕ,åyÉ6¥l+YëPÓ“d›"òá £S×Û–aL¥=äÉD-gs|²Zþ|5âJ\Q•Lö1pp z­Üä;Hâ¡Tï¤Ï3Šêë’JŸtHOˆ´ ^°~Æ=ûBiùß—zƒ¤ø›Ä:‹}Wš>¥qƒL=…Hó© •HLÀÚÊ££Ô™Úˆ;u©t`^B;Ï$¡IŽËÙ&¡!-ÅjbFrG:›}$õªR qVÚG’ÚCoÜN ¨*&vÉà† å$¶Iòª‘ÒT8ÐG›ÈUI?)®ÒßqU.pnCSµØó†è˜rj7ÕòÆ÷²«3:¹Më6Ì·Ü'DëK"ã©Ö#:…£3‰ɦsæœlZæ7IxoÈ¡iÈ:'ZÜ< Opð§l7‚Æ@“¹©[º+à-³¡šb³†6Y×¼bAÞfW#!õŒº2:ÎNÓ«Çmô†ñ¡ ‚º—Ÿ8!ê¢)uf‚3O­jœNLÒŒÓ À ^uîñQ=êpЀh{Ý„ìy#°©8^•ªàc“˜é&Ÿ†$6ê!ŒÇI]5DšU›šQµœÎ›oDõ8ø:‘a‚œiAüdF÷óÐUø^Jv¼•kžø0žWÑF묃QlÆ[{›ÒûÙ¼ìHOOfžÛMsȾq&Hµ°/ZxÞc »Ÿ3·Õ›ÕLÏéðPΣ%y«˜ûi†{±M‹Ï¡ èºPÏ™ÿàV|]A´áÐìÆG-3‘q •±À¥ToÁf<×U¢Ø…ùžoÑ¡ézÕ£µÚà¸CÖ·ù”üpøð¹y1Û86üé˜É[ض¦ƒD@æøÒ½eûtøh´>_GOÝ)^O4xS?íyÕ±>hÞj ø Ò¢:´KFßÕàsY’›†b1­¨[ü“ gŸ>DKk|Ÿrñ… Aw±¤½cÜ jõzf»;@éÛ~wÄf¸üKa^FúÜÏð\“–¼L˜½ˆƒ ec[’<}þ¶8ÕºJƽ8ß]óÓ§]Ý;,¹yª&<¾¤yôE5€dòU{eäÆG?ÇÆ×‡fÂé9þ`lwwÿÂHð•–hî˺c 5)ÎT[©Õ•·õqœG{£‰CF©*í¥N32ƒœ®º1M¯^ÛÙ6Æòƒ ¬«‡s¥øá¾ÑŬ]3Ívˆ–½Ziû؉~b‹#ÏGâ¾ÅõÐL™MrÁ ¹ñyœq˜çà¡ÀΔç}‰û_cœŽÊ¹9€ZÊù ÜWD/•h|(ÞÔ¥ÿ¼í4ˆé@)33 ¨Ï󞯹>“)[~Êa©è3»†ÆùqÏ8Ai~ fz(÷·$RìbP/¶›Âoõ¶%eƒ”ÕàCãÛs¹;Ùª”‹üò¤žqä½ôqCÓI jœJùEè!ŽÛÔ?Ñ\€Ä™g˜*ž?0 $ðgs_·ªÊ¨f¸éåBC¥ÒÏÓÆ)™~–6žê#¦J—±TL¡ö“Óe¡5í@’^ÍVÝ¢´H\ñÒ´å‰ÒÃà‹çÉ$¿æT*€f† ©JÁÑCüÁ˪zø—ÍcuìÀØYÅäI ¾º%»Ë¨l¦ì¤j¹¯{kÚ°,dÓ†( ÌgSúÙö¶Ï¬RÌŒü⻀ƒWVNÄ€>ß—v¿L»ñ ؘmC”· íÚŽñqFtÍëwSPª»iæ':õ2ýØg"̽œ¸?”Ýò¡§Sðõ3ÁpÖ§p²­e;ëûÙÍÍ÷¸à¶€—<™p”ÅûÕ »áº=,NÄ® Hf€¯Ê¤mn®7m ³º5‹—ÌɈo[0rÎXl8aéÝ̯XÒ¯Y¼„t2q¼£«Ügü5 oËêë¦EzÌmM)Iš¬1ã¤-‚ûî xÍî½*¼»²JðÞpKH½§LF¥`ò{Ùe†½f­€oÙÈgûVÛ[ÁHV§øió¶€÷$ŠDô„ÎÏÏØ)õß ¸*{EYý”5£ï>£çtíŸ2£''Íí¨ÙMë³¶Nà‹âÜoTâOGÅLˆ‰bŸ P Ú•4™eá ;‰pˆ² ôŲÀ?§Bå¾øï^.ó7Ñ\Y¨„ÐÖ¡çàTJ±â•€W©•Ô]M_+¾a·’¨G¢â»Jö®Yó츎7¬ïõq·áÜâ›ÊÇ}á{™»RMæc×ë§ážeÍGy5¢õ‡úŒmÆ—x»*îþS©üÿã{9déq'¸brIïÙû’ëœð‚eÞž•Ÿ’=‰÷Ë›{–7ìÞ+‰Z¹îµg¼)àŸÙÕ/ža#‰½×,a|v¿z#,û𔹗 *àð³9Â!^i×C¥õ³‚íÉWx”©·ìE‰v½eYM®¿?@uö}Iª{YÀó^dÈ$ǦéÇë²LÞÆ‰j3ãóæ*…ßý½íYëz²rÙÑ#8ð ^ÉTräOIð’Õ'³ígDïçp×}ßðÏìê¼<ô•17rÓ/œˆœ±WÚ²W"×xêíëïYoù†=‚°ŠDp>}ÃA,˜÷•r|_÷ó’I= wyâ†çù‡™KþvJ¹fyÉn ²:yЧߕ´-{}²™ž¼;PÏÖ3ܰHkbUÀß±{×,²:¥‰ïÏ þØ`ê 7†œiiËLÓ£T8|öOJÒ¸/ Iï''9“Ý·ÜW¼.ñ ‘èžU®ñ¬­ÇåU'nÚ°gé%š}Ã2ê”^ˆãŸ«l)e±ã,¤“~‘¦iÕñ=·ªk—ºYÖDݪ"Q¢€DHùÉï% Ñæñÿ&°. $;²5éÞÛò[^ÎHøÊ¼¨0¡ö‚ÒõýÚ35ш¿> stream xœµV}Pgß%]ÓÖéöpj7éÕV¬´z§rÖŽZ¥Öâ¶õ‹R‚òA ‰Ò I²OBB¾VE©ÔF뉕~x{Z;=ïh;çõÚ³­ÕÞµïÒ×™»Eª½öîzsÜìÌ;»;Ï>ïóû=Ïûû-IÄÆ$IJ—¥gÌ™?v÷ˆp?)LÎ-Ý Hˆí›:‘ŸŒ‚÷ í](ûnBB’EÅ•Ëtz«± _cR$©f(æ,\8ÿ1Åã³g/T,Ѫ*e‘"]iÒ¨µJ“ø°]±^§*P›¬Š¤E“IŸš’b6›“•Úâd1ñŒÇæ“F‘¡.VKÕyŠº"“bµR«VÜ*.ùÖºL§Õ—˜ÔFEº.Om,"‚YR¤Ó‹M%f¥*Oýb~Aávmê,‚ø9±†XK¬#Ö™D‘M,¬êñœ„^àáÄí²Á ¶~7 G$ßÇa§T&ø!òzåE%Â\t†¬øO\”»ZUÆr×¥xâ®85\·{£÷RjGõ*1w§'"fæáèíÜ«ÞÃr”I}rúß^ ¬ÜÈbûOÇÊ„-öa^ˆÜ{õœ“ËÐ6Ý›ü%&1™<ß‹':‘ˆüô34™Å[p³ TÝ¦ÃÆ£ÎÓ#ž“üÑðÃûż/;5½›`%l‡<×ýFÝæ‹hÞÀ£_„„Ù-äµ(j<'Azü3^ëªGyDúËëWÐT4yÞgÓÖ¼°M¥“¿Káø;ojÿŒ4¡–Fh;Üïóöí;ô»¯ÏÆR,]•¼(?¯ù5­ÜÖµ¢eè›q‚¯ "ê¼=Šv1Ÿ½òñ{~?çô³PRe(n­hjh÷wï/ <¹m‰¦BÎ!RŠéKû1±‚„½ãT.+‡£rÂö° ‘ì:„v’ 7…T¦…sïvp\Y9ëtTV8…}[Ü;€ÆÕºusn”öì–¿ekw´Yƒåí%O+‹³RæmûŠ•u6‚Û´ãÌr<²º¹ZŸÛð±µuMµõaýAÃi ¯EOýnP¿×Ö ×öjüÊ@fÃòFxƒæ‡®S;½Ðú«}\ ÐuPÓ,Ö÷Øj–G ÃäQĶHÐL!‰A +PºUꚦ™óK½ó¸²ŽEôpßÙKìëzj…~³²Hþ3+öRÄø@ÿwsŠ^ždnÓó 5ËÒ% «~}’E#ž4FÜì·ŠÆ™< 9¼.hë2\„àÀÅ@íN–¢ø@O­­¬=.GßR²Ñ{›p?O¢Óg%Âet• xšÜ4O™9ñ äÀH¹êu5[ÁU®JWÕ,Ü•ø0:îò;àÂ÷Aˆå)“K Åb„Lã_ ¸ÚžMÁm‰IèHunFº7Éð@]Ú8||@‚$èi¦µìÀŽ /ŸóÞ> í•wï{¥¾¼¢pùœ®Ò;i[]e°)Pl- ª4ƒŽÕîͯ/Ç*-}AÆüú ¹V¹P †zu_é[® ž§—]ÍFRsmð=4'ÁbS.¸«Ùí¾Òn8uÐÞÚNRÆÌD„Ãârå `Âl—¹rÿ™¾":ÔÛÜÓ’w5׋œÑ#H É™+²§‹b≋ïGŒˆ´IPŠp“i·¶šJ,VSI‹¥£½µ¥ƒÅð:q:N~¤ž¯ŠÚ ¯@Ç8Ek]µ‡ä‚”’ àGãûE– FÔÌpžêZ¨Ï…ßÔÎ?äãÇ”@l0pÜ \¢Nl®Þ#Úr#Wo‡—h³Ù±x&fãÛ¼ãvÙ%^‘Úe õÎ[×ñ£ Öú—À6Åju–ß©²ú¹fnÜëaW6Bß>VäêY£Ï0?±ÿ£d£Árù1] ý‰Êq|Ú¦ÍYV–“–¬mY‹ wu™Šþÿùþÿô BA­#ä‡#”*LaºÌ¡RséN£1¼³-ÜêbñõØy'C§PV„ô"¯PÁÞ­”lgHXÚ€tÆçÔQüÄh<;1ÖªK˜ªOHˆ&Ä?¼› 'endstream endobj 302 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3883 >> stream xœµW T×¶­¶ «TD£©2( Pá8Îw¼ã´¹sgOrœ>uê\Ç·Ce‘A¾>rGwE ,ÔGAþ q\æ$SÄ;Ž[¨P„ÏsrŠâ5%,2`ÑøIޱAŠ@ǵ²(YdŒÌÏqY˜\áèá*sì nJï·kXhx´Béèæ'‹”S5ZîîõNä²(EôʘXŸñ¾î ~2ÿ÷ƒÖy†„Ι4uÚtgŠZM¢Þ£ÖPó©1Ô:j,µžò¤6P¨Ô&Ê…r¥¼¨¥Ôj õµŒZNM£VP+©UÔLÊ™r§<({jõ 5œAýCJFYQ*êŸÉÃóÔÓÃè½V£­­:­ß´Î—¾'ý”YÎÜfg²W:,ˆyº<¸ÁÆÙ†ÌÒ0ä‰mýÐQCƒ†~;lú0ã+£D•­Ø&ÑÁ ATòí¢Å5(ƒƒ‡P«8(oÞš@6'5–Õü ÅÉÖræj^𗀫ïdXÅË™jíY¨œ…ju‡Í(ón´ ȃùéÚùK—J6yð8é/ŸÝ ‘ ©cmÍ+Á„®Ð“ñÝèþ7ôQóbNn`®ïWú =µŒ¿JéÊÇÊE)â|ùäŽËm<¸Xx¬»vn²÷gÞÃãñ2ü ‡´Ì!mî1 —>kœå¹rãL ãð×Üvuî!™ÐjæIÇìEó<Þ/ØŠ‰J£8Ý ©ëFuÝ´¸sˆÿf±Í¤‘x8~õÙD$Eƒž~‡†ó8{sþà]&ooÓ|G  .Ö·Õ=VÖÍp$¾Æ¯~¸?‚{ÄÖ°-ÛâdÀ’ââ &äd'%?v¡²n©ñ\®¯F.Œ.²Õï2°ˆyþqhÄäï°dÆV· •p…Á‚¥Øç¤mz‚ÿ¢€‹ÅôYXV×Ö®oöæGS±¼|æ¢y±>VPTî1@- ã1Ô›i“䬘B‹Í\^1dB.[’q|›4GY¥¹Èºþr&ñÌ”ö8þ6ÈZ‘©©äE/i*·Ž–¦á‘1Nx°x¡ÔÖ<… ÖiB‡ë%Èáò2Òæá(Ÿ‹–Fá©QKñBò”ƒ´¯è•ß0O Cf FT-•2‘ŸŠTÒ>˜ì¥h,Ôo.Åo±Fiвîi•¤}¨WÿŽúY©­8¬¥?vþr‹FóQ"÷´å›Ïò´ ÉâS3vïƒpV^™\f0×Ô…×îp–;Åíã5ˆ–â×ÿÒÖjÏAÔÀ'PÙKÄXÆE]Ø(ØšG¬:ÈO_Vë´xÕ¼ë©ù¯AI«´_“;à+0õÞÊÌT5 Hûó¨ xv_º³•Á“ù¨ ?ÝW¤è-0m(Á#Iº¶âkJƒè¬“jCñm4º#Îçt­L‹NIãC„äì"U°r}26 ÃÞO;žr.¹Xu V·§8ÂØ‘[f¬ÜÒô,šÏÐA¦&S•*`“!=^ÀL<¤dgfV”óÙ¹ --kÚzÊýéô…[gƒ¦ä õá9+‹Bs\Jà#¶¾âø$É™¢å3Ssa?°…­#m2Œ´Éë&4Ç ù¡ 9i´@á‘&<¹EK5“&NU±±_àzÓ7g:]ºÎ½žq•ûø-‡‡åA;»ºI½† Q¬–íͽK¶;×Ís•\ŸXYU^^Õ{„Ê#'u-ÀÿP6Mðeð6ÕâÙ°ˆ]ðmäÅ¿·µœÔóY[ëŽ[q¡ä¶p>z³6*5QgJùUíÜx—à^;O";´¨¨QÛÏ5' j!btDqç›Wq}rÚ˸žÇF&+¯¶#+·Òÿ¨ì?Ë/½~k¤O õä@Ú²ªÆc¦v`ë~JÂëW(}¢„ØßÍà 5{+ db1ÞaÐu‹É&‰þ&-ŽG_r5WNdꡟ+»@ñ‡Õù ˆ·p%C9gÛaØW9i_Ý‚A„Ú‹ #GÖö¹yéÅ!h|Ï»í#A‘š.ó6$N4d5TÅÇ'Ä(å²Ãþgη¶wVö.W‘éîY£¤¡yߣÑ?E)—ä;£Êª*õ%¦+‡NetOÆ#kdW‡lòóÓ@•¢Q%©„襞¡žÀzÌ;ƒ&¡y_´v4ÛãW)ØþÊõwšP%–ß Q‚y—¦×Yìô»Nf2á°uRïÈ:CFV-œy9ó'Á‰A<šÉ }¿ "”J-û|Ðf產 ³­]fÏMéK‰­ÔÞ&Ãη—iWKgе éîë¼Á„¤Ñ Ñ¤ÆayÏßíHÎ`í ’q-¾"Žåò -Üf Ó ÇWȘ›AÆ\Î ýa$!°³RÜÜó¦u¼Œ<ºE¦œ™r)Xš°¶(¯ôÏ\"UÔuÒèŒÅ—ô+WcÚÑàAeǎǯâÇ£ÝÇ:ô%Â2ü]ŸÄŸ™U=78º*1:*p§|3°˜*@®µ †ú–ú¸ Þ»‹ìñl|ázäÚkOR/Ñâ´‡3jAÿÜó‚¥3ÞÂð݋ ˆFƒÛU‘“žµ/•èZˆ˜½Bá¬Ï˜Zô¶ g2õ\šö•®~<23ˆµE§É0hB9ÄõI:¿!u‰EÑ­M˜A¥ŽoÍ+Uï+â34‘) ge»+«Êʪ˜¶¼³Às4.”ŽïüÓÔâŽT¡.B–7o¡si$GÄ£-”¢¿ÜzþtÂWø ?ø3µš­w ìup·_’ûW#=‡ô9¼GRâT°õÀR<Ûbæ°Oòö²†™ï-Þê$¼tê6þ•YŸ¾«CX z!ý³âUüŸºuTEâ`[Ј§úÐÈEìáªc*Ã"¢cÂC«âªêuÕFó؃tÊåü}¤SüA•“äÆB¸ï÷ݹ*#»Y­’\ŒÉ<­Fröº~F~â,nS±w\f?>ßù9šcÄÎ;rxmdôäÍXì’*ö¦ñÁ[.­,Úö˜ž7}ô–òí‡}…¿†”OâRÏ%–ì;¡¨÷„uì’ Kçx»õâלθ®9¤ÉK%ýÖo˜¼{ SN¦¶(—ÏÊ«8œWÚèÛtŸ(…ÕÇhÀEE[ø!Á¿Í»Ð¯€ŒéHï뽆ý\C‹WP‡'ͼzT råÅW_jq sÉ…¹ýäåVcËàшý4 ·Ã3^´e.~Ök"ÔždÈÉ”‰èak¸Ð[w³uK_Ñ—üÛP«ø£Äí½v¦jÿ±­ùüŸ×< yÌ>ÿFž9à³z·_âgžF·ÿ×­ïÃ911¦Æ<´JÒzo¥Ñ)ô×QóéqøûåìœÆ-t™TTÄîÍÔ|ì5Á{ó paG>_ùÑïþôµmáI;<àöæûVC;ÛuµõÊõË]=¶{­ÙÅ/ÛÀ¡! ªއ€‡ýâEç;»\º÷ù]u<):ö¬@KÕ] 4Ú˜Á]Šiö“ÇEG„ë£ëJ s³søýû3É6Åj!1ý݈ÕÛ· *2Øôìôìüîˆá-á̯$­Ý(¬šëѧÜK¿нóž«Ñ ÖÀR¹ÿœ07¥;` &äº4.m^|-ê4ñ¤§Moj¿ƒ ,Þop»`•.I’?‚n"wáFÙ‡åWNÕ%ûè…~VñZXËa,NöˆÃÜâ-[h"Á¾ÅtŒ vF­fŽ«„ÌX>*|³ÿ[ÀÊ™J–sÕlŽ P%ÍàCäÒíS8D>O ¦ˆf†Šl7–«>A¿>"³BÒþߣE7´€¬}ª„ÔõÊÝi)k ÑYì.­©¼x¹ºŠ8Çó§á{b±¦~Föjvù¸Y›ŽÁþŠêÒƒµqú°5hT¼þêÙã]À~qz©“³×Ûkß%ˆc¬£D Ó »ø–áÛ»­ú»(ã.Môö9‡rÐЖ³É¡z>I;£K㪔—šNËNÍ$~Æs8×"÷/äácô²ŸòõØéÁ‹Â”Нrnz>¥"¥ZÙ³·¿pÎäTÊ—ùÃfØ›À;N¹% Á—Ô.¦Bt-EayRìSȘu æYÍ6Ø 4äÛØt•Ù ¡¨Ô– endstream endobj 303 0 obj << /Filter /FlateDecode /Length 193 >> stream xœ36Õ32W0P0Q0R06¡C.=C Âɹ\… Ff`A#K È ÀRNž\úž¾ %E¥©\úá@u\ú@E\úNÎ †\ú.Ñ@3c¹ôÝôÝ€Ü}o] Œs~Nin^1P‹—§‹‚ÚÂÓíËÿÿŸòCõð¡£[fš:>ÔÝ«#}AÇP`áÃÜ6 úR?|ðNø²í‘˜´ÚJµëÜü}öÿ02p¹z*rËg;}endstream endobj 304 0 obj << /Filter /FlateDecode /Length 161 >> stream xœ]O»Â0 Üóþƒ´‰¥êR– ü@ê8U†&Qšü=Í£ gé|wò™ãu´&‡/Š UV·$˜h6–µ”ÁXYž¸HÏøp“þýñ»táw¹žÄ9¯ÚB§hõ)H;뚦ï´îYõ'ÕÀ¤«SȾà"ŠÿPR4•8nn!¹in’ K¿g¼ó);Ø[IS¾endstream endobj 305 0 obj << /Filter /FlateDecode /Length 179 >> stream xœ36Ð31Q0P0U0R02S02VH1ä2Ð30Š!Œ‘œËU¨`d`T022L(’ròäÒ÷ôU()*MåÒŠré{qé;8+)—h ™±\únúÎÎn@n€¾·‚.PÆ9?§47¯¨ÅÎŽËÓEAm‘¸pm]À/}MSLJ:†l:È|ˆŸã[<Ÿb↠ºä³eê÷-`bPàrõTäå©0}endstream endobj 306 0 obj << /Filter /FlateDecode /Length 161 >> stream xœ]O1ƒ0 Üó ÿ @UuA,tahUµý@p”' aèïKèÐá,ïN>Ë~¸l#ÈGpø¢Ʋ´¸5 ÁH“eQ7 -Æå‰³òBö7åßO°È~W3Éç©:çU]Bè4-^!ʼn¶ªºÖ˜Në?iŒfw6ª+¸4Å()šJ7׈cn𛤖é÷Œw>¥`ƒøZ©S½endstream endobj 307 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2310 >> stream xœU Pgîa€n‘ ‘±ƤgÁ;Z[Š9*ÊÆ3ÆMP<2âÈáÌ£d@fæÍË%*×ÌpŒ@DEEDCbÖTÌFÃæÚÍ®9,MÜŠ£¯ÙßÚÚȵUÙdk»ººº»þ÷Þÿ}ï}ß/¢BC(‘H–´fCbð%ŽŸ,â áq޼=R‘bˆ íx$âÛh¬œ€YQ˜ü %‰Ô:s’6{¿>3=Ã(OK?‘˜¸p–|þ¼y‰ò%j¥>3M¡‘¯Q3”j…QøPÉ“µi™Jã~yüSFcöâ¹sM&Ó…Ú0G«O&a–Ü”iÌoP”ú½Ê]òeZQþ‚B­”÷6'øHÒª³sŒJ½|v—R¯¡(Š]¢Ñfë Æ“"m—rwF¦jq|‚„¢§ÖRë¨õT2µ‘ÚD½H¥PK©ßRÏQ˨åÔJjµ†šL£"D㩇üT(åM½" Q‰'ŠSÄý¡Âb a|xJø ½’öÓŸ2“™æq¯ñVÉH05À/¯uŒló³GV³–ëïò l%%ydÏýë±YÆŒg쌊îr5Ãqè„Fûk¶³‘SôGnê ÂéqzN#‹ÕáçÉLw¡Ã –IêdÐq*ºÏuNA¸àk0(—^æŠÂ†,ÄM,1‡c~&á/C€ äû¢1twÇHûð¬fïþéÜ¥7j¶¬åH½Í +…Œ§uŽ3pjìƒcÛH=Ø n¤áhÕv[”5›a¼¼,_ËØÃ¥Ü¢É4s˜Š~§¢x‹ŒÔÿ×D+ÍpJ&á+Í-ü Ÿ¨õ¾zMÌïÃLc¦Ü!QD''É„;ñ…ÒÛ·1Š#&’Ân…ÏxB×c‡!_wÛÀÙÚWaº÷Ôg6)) €Ý°^¿C»m›IŒ€–¼ÀY>þ¡@nKô½al¼#ÝŠ+ñs¶ãõ õ=À|xñ B‘ðå oWú; ²õà„:fy¨_בõ608C¾ÂŒNøšDlÚœ³S)“¶_¢I|畲’—e÷3~ gÜ÷”ß»rï³ áËp?Û]…Ó1œ³Ó6{^˜ì†Ü¦†¦Ú¶cê¶íkŠ5F.Èèš<þ3Œ:kp¼öK£•LôRkÕq¡T‚ÙÇÏku à1Þâ³G ¢Àbƒ‚œÍVTTbQ5ªÊ2!±YKSöÒ5åÈ:T]ÅE…G¬¹•}û@É,ˆƒüiº¿/କö²`òáà~™HçBQu™ÃQw”s—UÕx<=;OY}KQ½W/÷™šsšd™íéåKé ç ¿©õ"#ÝçXŽñUazyQy¿ ñ»˜QÂ%#¹æþဨ~d½xd~Ê6¾Ùínp0:Íjƒ,PB>¤¹„¨è^û¡l0A¡­ÄZ<—¸bã°ÙR#¨Ñ5Épú¹½ÍºSP» 4°g,âÔÛ«ò+Ì5i`›Å öD’; kJj…tOj>uÁ8›Ñž&ÔÒ@æXœ0`¶êLdÉÝXO«°jÁ]å®ü¶Ç~CÚÝ…ns-LªW¥»’ ŠÌgêÄt_ëÍN_t7ðÉá«-1ÒT3~y•õ(ZÓ{ñ]ªýXöšv#m†Íéépæ0‡I´ «ŽíÝ»ÛSk7³ð9ÅjUC®¿¹®Þß»Ãc—5ûÏT´30¤\ Ë¢¥~j“íYËŠ=I9/A“x+û2'Ôøº.jaŠþÈÎxV½c뎎³o½‹³Ë8 ¿ÕÜ‚¯^omu\Ã7Ä<Å?Êî-5僆ÑÕ›üþ†#?<×µ€Lœ)'{'A00Ù1| ¢Ú V3ØrK8ã²d] 0«Ïa<ÎûøôÅšó6}Pc£ñw÷D é}Wb¤íü$Œda?X_Ù«Ú¾m_¼ i^]®×öƒÓeƒþ“ǺƒÐ'÷6+«óÀû×›¬¥lûàÓ‚b¢ä „%¾ŽÃñïõõ6•I·®¦qæ³ÃßùÎÆf‡ß&Ìðâ3£g}GÌOdßè†o’¿ì-röò ‰ùv:JPÒ¯©ÜRVTh-.µË2§Í·½©°³ÙØ‘Õo¿=ŒÃËVàœ/·À¸¨p‰ŒÇœ>†]¹ñ¹G54Ãèëý}½••¶ÒJ®°Tp=£«Ûïk>ZçïR¶o|:qÝtŽÐO©>"ïÿŠ¡à0=vbŒR)šW¬bõþá_v@\EÿÿÇË Ø’¡JŽ v÷`$RÑ!µDhê |ž%Sƒ[y«¢D°È†ïÓ÷9¿‡ÃB7ûGÏCzU©ç„LzÛÅw±m¯ZeÔk4Mú@›×ÛÆæõ™ãó¿ïœ†#öþŸ¼ŒîAJôRbLá­ 6Ô¯¾­ÍëkåÈû¡­ŸðO¯Q{ mcUù)ÄÙðÏ õ¢Û—Äx“±à±ºJÊ ‹»p`àÜ6\‡áÃn·Ó¦Üâ..x"‰ˆ6q©3 SŒ‡¤ ~D¼A¢n,­¦Üã.—ý˜ „Ôèfá/òŠ×aÔœ÷G/´´ZœÖòbÙë/ayH):’J¦‘É6ki)X«ó`eõWQtž;ó•÷ÀHF2rklì&|ÙêÝ»‚YÁ[Ìÿ‹_ÆæÙ… lv›àŠ ‘`Hø›CM]%·«´DŒÚ›ÛÔÜP×2´±ïɵërwoáLmiÞuÀÄ‘q“‘°ÿ˜ÊŸçßǬÿaÍoèÓevÊHã/¯äCèûïþ½{³ýBu]à¶[[/…¼Š}uAðjZ’ÓÈ'AMUYc8ÙYM"†Çs¡ ë#ÇùÊ"#‡G>@Qÿë'G> stream xœ}”Lgǯ\¹·jÛÍm’¹»óŠã§NTÒˆ˜ lˆXD©-®GÙQ¨,(ˆ@¸>-…*:Eå\¡Vð×1’é_fqÃlÌÅÅeÙËMtÑýñ¾õj²ëÌâ²å.¹»?îù>ïçý<¯†Ò&QFg.6o5çdGß“·5d^y‡†Æç¹áuÉ §A¯™ÇøÞÀí³qík¸âuŠÖhê]]fG}³Xkµ9ù¥»Òøœ¼¼Uéüòìì<¾@°ˆµ»ªëøâj§Í"T;Õ;¿Õ±«Öâlæ—®±9õ«³²\.WfµÐé­kÓÒyW­ÓÆo±4XÄ&K _è¨sò%Õ‚…Ot—™xšB}£Ó"òÅŽ‹XGQ”¾nCaãæâËî2»@Q¥T*µ„*§2¨L*‹*¤6R+©bª„2¨‹¥´ÔAê/MµæARfÒ·t)}C›ª=¡}”ÜAº$ 2©‘5ðƒËˆdj?&Á^Ð)z‘‚ vè"³‘ÊͬˆN{®yá8Œ»eiB¿PFf¸y–ÃÏQ+žŒië^H€Ã§82…›S¬ŒšÜŸH.h*èUÑ”;9eÃÍÄ·ƒ8tAƒ—ÿŽ­26…ט"¿Ú‡˜ûÞ6+9¬RÛZ¶ÁN3_a²ÈˆJFC²Amð]¦R:âðàcôd@XÁÉø¤È¬Ø',eÓpò¾Îâ… ÎóÛN( u2c Wªy׃x<ž·CÍKŽæMþ;íù.ÃUøƺծƒ{P:å°û!z|ÔžOËmµ§±¸7‘–Âà,”Pøh …;…/Ë4.%%¦«¾ÞII{‹Ô°Õ+xbHîêÜÁ)v{÷÷­~°Ó€upç©çG>…¯O”\ _ÿB‡[ Lwrdê%°‹=wU`—a.Æ€5 µ’Œ#ChÌë¿Ï•|Æ Ýpp¯Òùn®ÒB&;NvB¤(ù/ùw£z¨\ÄÚѨç†7!¸!º£ÕÐ"¸þ%G.!÷½˜q¨Ý×Þ)ýàë;Ô§3†oM/8@ŠUûÂ9¦ÇÜž&U“|;€ §Ý#Zt‘ãH€ªÿÈáÈ)D6E^iõ/æòiŽ\C#0þŒ "›{»´öÀv¯-ºqvô ª.R€ŒäÈx¯Œk± Ï–iÒBŽ˜"‰Ì¤¯s'¡ÑήÎ"V$Uh—«&®*”·Ô)ÆÖÕs…ÃÅߣ{G]Eª["SÔê*`7à<抯g”}ʨ6œ³ùML­ójXzÇÃÒÕ°Ï¢a…¯†¡ç¦W†óð4ìŽMìú˜àðšItÏß´)ž´©­©€-ÂæxÒ#'Áð§ýŠ662·ƒá91•ˆ!Hc OM‰ýdlÝ`Q¯õ¯ˆ£GÊlP4x>^öfŸ°8‚‚q~Vw…T 6¨ðZ§ùUÖsÊŸH™Ÿº:µL1 ãY#éŸ>–¦h"àrÕ߃ïX®ð ÛGEš8?ÅFéIPÇæãxEÅ0Ó´³Ôcf¢Ü¬É½C“Û¤9ænö4¤AU„Q…1)‡TÔÕ{•# Š«b@ q×EÞ›«¬'yÓ⼕‡ÿB}ÔÛÒÈŽW¼m> stream xœí[]I•çßóS1¤|ˆûMÔ TD3,õðPØé*3¶lÐ|úY÷ˆ“>NS°h^¶Zt\Þ;nÿˆ¿—?žÂ9žþŸü÷ù››ü²ÔÓWïoØ\[¨¥ŸÞ}uóÇ›H¦“üçù›ÓžÁÓ1ÆÓ8ÏÖÊéÙËŽ&žbìç‘Æ©‡r޹ž½¹ùõíÿ|ò4Æòퟟ„óœyäv{·~¾Z?¿Z?¿^??¬ŸïŸ<­)ŸCŒ·ÿ¶~¾ýûâýÝúy¿~~³~¾»ìþêÏëçon×ï—ëçë«ïø«ißrô›'×Jµöxéö¬¢øp5Éwò@R­Ö)¯ÖϯÖϯ×Ï+†7Ëúåþ€ý|w5Þ¿<ùí³ŸBc:Ï:OÏ~vóì{Ô2joóÀ‰©qÉ<ý|¡9[Õ½—ãVÅﯶ—˪¸Öv¶ :®*^|ª&,g}\ÉÚË•Ÿ/×Ï7ëç«õóõúù_ç=Þ~g½öçW“»5õ]-¨-?[ÛûÎEÖìu[Ëzñ¹bßñåçxzõ?\}öùÕ¿¼j}¾Ò»ióOWãÝÔýÙ¼]OÙ»«Ïnmþ~ý|{¥ùÿo«a+ç½±lÍâƒýûÖlîwØÏMH¯é—ozwõÉ÷ëç7WãJÀÿZƧfüz¯ÿ,ë§h’~¿|ø²oÝ=~ÕøÖPî¯>ûájÕmϾ¾ÚE¼¹ÐÆÇEz½ðÞ\ý¹u[Mü×õÒù»ëÊ~ZéìízkíY?Óúù“«lø·õ3®Ÿ?\?óGEö“g7¿`çâq¯"Ÿúyö¯y-Vð8:z·?þòõë>yöû›y. ò¨šúúë¯Ëonßxÿ÷û'O[0f5ªÍ91I·/_ówo¿/ÿ– ÙÜ¿ýðîþõ2l¿‘ÔGpuÒ áÞþøþîåËWÏ_ݽýðþ‡O¾ ÿÏ=ÎÓSLI àô¼§ç'ï?¼zóåyãÀxãí¯>¼8KÌ#ÞþäÝ»ûw÷ÓËFáîþò‡ßÜ~ùîϯÞBšïÞþõKì™c !܆sϽδb‡ÿWÁÇ ¥¥„ËdEõæîí«·_Ý?¿þü›÷ÝlZLi—¶1‹E(…̱½½;G¹oç µDiÆÂ®%Õ‹XB,1kNñaÊgÆz¤|¾}±ç‚–9Çf@_$(¶šã4rÈ‹,iù¤sŒ£Îq‘ÖFގbyÿêío@ß½)ØÐB?=ç<ËL˜ÄÛïq3«dÿ‡?¼Â‰åœK‹[˜_ß~øAM¿y²g¸$jxe(Höžè”!\O¡™$ˆç¢ìɇ7^¦?–O¤EþáZú?ÆÒÿ°ØçRÜZ —í(Ï6µ<°X(Ïïß_ÍÃ{Ô0{¿h8 ‹úgêàSéÿ×ÔAš¡”Ë:¨9åÏÔµ£ò/¯:âŒm^ÔA5¤+é§^i¯ƒÓ=åõ´è?\IÿçÂ\Kæäö)öT:úË ÌQwÔ|Ñ® h–ø7¦ä6¡ç¹ÁœãZú?ª€Óÿ/¨€šK-8C¼’²ïÿt÷îÅ«÷¸ŒR£á\­ÕÛ\à ö<ÜZ<õŰúE\1Œ™z×Ïî¿zúúÕÿ»{ýêëûû?„@ˆ[=@(ýÚxÿïÿçÇðäÈäÄÜæ>ãyÇ·”þèòÁQǹlɘæUýü›7¿»{§.R¹½©žÌ¼ýæí+t„ž–¯½†ÚõçCƒ—t§åÛ?Ü¿"¯Š†q¬Êãî>~Ús¬Ð: <¼ê9æmkTæQÿ-%'Èq$Ÿ¶Dð¥Ð†f"õöþƒ<9­ø»ÎNŽuÏz ÁF6a¨@tAO@­âOÏœ¥WòÓ¸,µí_­×à´ ‡Ô#L è‰ÑÓ B‘Œ\ÑW—·7xü)¶Ã9F»xäË·ü ¼ ç¿f¿§øcž¡C>Ÿ¦~®ò†ó¡ÒÈ—/zû(1TJl ¡œj@ÌJnÐäJòË/Ìçÿ"nðê!Å!ŽÛûß­wl±}‰s8”ÓÛ‹âÃrÇnrn3üC¹ýò½–êDrcOßãD'B’c¢9OŠ!7œ C2 ‡M·¦bB§“gåuHÜÑ:`67ÆåläF9híܲ֜ðWgf÷W'iÿ¬)ßöè†Ô^= õX½>¹ÛfŠÛì{›¿_ÇQŸbj×^ìü û¹!¾Q½»Ùõ"ù–ôñ*ó̱`÷³WàVÙ_]µ~Š>¿Þœ¾s5µ[Ù|–O_/Ò¿^-ǧWËüÝÕ4\grÛ+¶¤oMà;W_üÍÕâ¿¿š†ë-çúï¯þül.>›ô϶Ó;j80ý…N¶èìúÍÃ$X|¾~~gý>}í·õÐßÅ>ÎЇÅÜã¹åS®øFèÛ ?†ÞôôîîôŸ§·7ùÜÁµª§?CçÍùô{è:¿¸‰5%x²Uø×ÓHl/çf†×7¿zø„ü™æytþ÷^pÌÙ1ËöÔìé<Úþ”YÖS šû9õ=AfÙž* 3³?e–í©V& TûSfÙžºÌðVë™Ç<–¥QÁƒëm\Œ+¥žk=Å ,T+à EüÜ…Ó*þ•诅€å‹+Õ‹'ÛÅ¿õÕb"ÍÐz˜àwa!‹%µQÏMªâÊS¹k2ËÅSàbÃø¼?%–ý)¨¦~Îu{J-O•Só²?%–‹§$­ÛS[ê¿mE@ ½`ËçNümÀÉÈSHþ„?(‡¦)5𿳔Rküoƒÿ ÜúÇÀVhÞd­Vy6ɳ—•²šÌ 0ÓKejg«€+Œ,»6¯Éæ~QWõ‹6ŒÅöË/BžÌ3´ ˜:q+þùý“Œãð æXO2ÁYèힸ{Amc,'ðäz†”o•‘ä%gÈT?9Sm¬išeêAfAO &à¯5HKÖ\AÄçµK8ĵ½]›ܼ0±+4ÉØ¡·¨ÿœçŒeÍ ¹–Ì!`.S2[ àéŸ{¢?k¢3GìKÈÒ°q‚S:!1dÁÞüæsŒüg…91X ‘_ ¹À ½õ3ÇÚ &jŒ#€*Å*ð#qˆ„“-ôgÄÞÿ„ù!—TŽdV‚ÀR S7~ ÊŸE‚$ÔY†‰Òè°…ˆœ|³¥K(³@"šô'œÚ~<‡ŠXšhšÐP3äBm–É¡‚t½êæï‚~ÛÃf M,üv¨ ñdާ qÈ!KµPCAè»:‡êÙÞÄ2¾ êEŠ0D64 $Y‡š ý"b¨™ÂéSôôuŠ×^p mE0ù:KfŠ—ªMÞ$°™_‚ª¹¨ážªJüH(ˆ¥è›¸mõ gáäq¡cSÕ@ɘ–Ê–%T’’èP1JåØ[àP˜Î̖¡`üÍ…-“CAE'ާgÕþ—,CAutŽ~Eê K¬CÅÀ/lõÍÄI³¡r€¥wœP)‰ç(l(¦ÏOÆ$ð?:ÊZ 4@ö”VôVÉñ™ RS ¨´Ž.Œ}™-ðô)¥Ð8­)@ o”²,…BΪ„&õ˜(| —_”;¥e Y F0KP¢i°¡Q Î^'Zjà,¥ÊãX*JŠªq¶Á29çºel_T#‰A$*ÿ|æ0ià¦I°4ÌÿªéÀx`Á®¬mã,XÇ£­>Å,TK·P\æÞª¡?ƒ.‚†âgR°Pj¡y‘ †`H^¥žúÖ€ÁÒÏ{kMà8s ˜¸¹‚¥­@ü&(uÑEæGj±7MŽ+­oúJà=œÛ6ô¡Ë›2K9A5J ¨†Ê–¦¸eEÄñZ™üH!ɘ [&M¯±_–¢™™CAn£XxÖÚ!s™´Qv,Á-,biè—Q(n sLM’Ç,0TñFµµAÌÇ,rêRÂÑ UÖ’‚zÁ@ÓRœ”£ìªY:êâp@,Ô Aĉ‡>°T~4õÉ1CÅdè’4œ)¥‚cÄõ¨eJ¸ HP-ä`ç é…zQŸ\^Ô¹+:•’¥â&[†ºñY*7ºW[âÆc—Ç–™m.P8©s¬RìÇãÜìrhâüÊ(˜rŒ—²¿™ã´ mÚ]cøsXÖA~¨ø½¹ïZÌ%.ï•(4ùØ-vìbÌPù¢'Èup¨•\ÉX·,Ý|ÞÀl—¡ :Ôçeñå,TK¹tEÁ2%” 4OõåU¡y._žc.aùòU,ÍÞ%–.l°¨//"X¦½KbNêËWvÁ¢¾üÄ -™}ùLØŒ âËc¿Æ–Íål•¾<(”[s)ìË(šíŽØ—‡ù069² /]óÀ;ùòРd4 ùò]“ª)}yøÏ8s–:¹ò©¦ ª.ƒ¦%Ð¥vœ$“¥`W]VÒÐìf4{ Y¶8 Ù¯iý:.¾=VÈöÀ°†=0ìa {`ØÃöÀ°†=0ìaÉr`ØÃöÀ°†=0ìa½WÈ2„=ÖÂö€°„= ìa{@ØÂö€°„= ìaÉr@ØÂö€°„= ìaÿ ka¡ÅÓg–ŠS-6%•JaqnÆÈT1,ÌùÒ°ØH»@Wqß°Irœ‚aQÚ†íUçäŠa±éÓNa‘€q¬Lž"ËsaXȹ< Vû*Á°8zñŸ†aƒrZŰ‹j†ÅfÃQ1¬o û0 «ÃÇÂ°ë™ Ãª¥Y(‰yC¬bQĺB)b]ïRĺ€ê§«QªË¢@u…R ºÞ%@u%Gª*oUãAŸªÆz ¨µÙ€*3ªëª+ªV™T ~P]ÏP]±PU޼€ª¢¨T£ÂÜ ¨f±(PUeP5q- ªâ2 jâ2 jú2 jú2 júR¢º$¦DÕ$¦@uILêR™Õ¥2ªKeTMhJTMgFT LË kòŒ9aõ’¨Zs3¢j-R‰êzD‰ê²(Q]o¸T-ãA4ŠK×›6\ªtôoÀ¥åÂý å7= G«Xšj>Ž.ƪpt!ÕGᨰD…£ë…£+…£ùd8j:{Ž®hŽªÎv8ZÀQÕ™ÁQ•ÙÎGYfHMf HMeHMeHUe HMdHMd H—ȚƔ.)]@º$f€t9Ý HMbHm’`€t!I¤*±Hm²f€Ôœ)#¤62BºžQDºY"•˜7D*– ‘J¨ ‘ò»G¤bÙéç€è ´Qy•QKŽQs# ˆ.«@tqU¢Æm¢Jrˆ®Gˆ®hˆZ}*µ9³ÑõˆÑQUÙ¢ª²DUe ˆÚ$Ï€¨ÁW¢*³EDUgFDMgFD—Ή.¡)]BS$º„¦HÔ”¦Dt)M‰èRšQ“QÓ™QÓÙ"¢*´Ô/¦PFDMeFD­å3µvfDÔÚ⧈¨ýy…ˆnÀS-óÒ3àioÙgþxªeÿº÷Þ\A6¼)/R¼¹R²áÍ*–n¡®*Þ4mÞ´ælxÓ”³ãMÁ¤Š7×3sùÑÏ\~4×£áM“—áÍõL —žë†7U^ oª¼ÞTy-¼©òR¼iê2¼iê2¼iêR¼iâR¼¹Ä¥xs‰‹ñæ¦-Á››¶o.m1Ýܤ%xs“–àÍMZŠ7—º ošºŒošºŒoZ¡ß4ß´¦o|ÓœñMk”Æ7×3Ê77K·PóÆ.ÕRÆ£ìr½ëÓìrY>f—ªTËò’%Ô·@•¦5E•&5C•&5C•Ö´A•ª4C•Û3æHK,Ê*­>UšÐŒU®g”U®x VªÐ¬T¡-X©B{ VªÒ VšÒ¬T¥-X©R3XiR3XiR3XiZ3XiZ3X©ZSV¹Ä&¬riMYåÒ•\Ûµ&°rIMaå’šÁJ+v…•¦4ƒ•Öú VZsSZi-ÒhåöÈ0OT,B+W¼‰Ë£$R^µ‘Èü‰TË"‘’qåŽfÙ¹cʸ¸c‘gþ!îhJ3îhmû1î¨R3)Ë–xÊr§¹B;šÖŒ;®gÚr§%㎪µÅUkÆUjWuüÌÚσ:žêxê Žu<¨ãAêxPǃ:Ôñ Žd9¨ãAêxPÇê Žu<¨ãAêH±l'~ÿûâZœÞÏôÇ›ˆ[ÑÃIþóüÍéGÏn~ðKp¾OàðæÖêéÙK¼¾‰6¬GÂ*/tOóôìÍM:={wsûúɳßßüäÙÍ/¾}ŒI:$˜/g§õ‹ÐÇ@{ÄÎeæ,Í+Fd´0®Ã§¡éc¦qNW]"DÐÚpCÈ9A3ô‰±ã¡¸@·¸Dˆ³g\emqD§  0˜Ôæ# غaÔ­>™Æ ¦„(a†â•ÄÉÛ*`¼õi;·b„ezE8xö9ŸLã–vϳúHzÈÁPÓ>¼'ÆŒç 1ûÄXÙÕsë¼aŒb÷ãœ|úbòÓ9Æ!¹a»ÄþäÓêc—\#$ðˆ†Uɵ_ŒUríUŽø¡Î·®q__vŽq8·p!n4{ó‰¯KžT þftÎsÅŒgc„qÕ¹¢x¾™n2q«W5Óݧ;ødÍ5FX][7 «’çì”B˜ñì×­÷Öïxn# «üÈ«-bñùf'lœé]¼ðœ’dÚ©;.òðÍtÒé–DTµ¦}šwÇ=󾙆A•Ù‹WïÝñÔŒéZŽ…¦©Ž-ÄØ%×^ g•œëîÓ9vÄR‰[Qw™tà"Kø}ȧa\¥\§¡ã™ôFCŸÆƒ_3ý·Ÿ4¸ZéȼËô²#©ÎcŠ>"„‘s=ô’>¹žÔhM¯ eCr™÷w„ª\ÕÈ1bÄ/ Ô¾¡“‹~â¢o j—rÄFã«ê!ŸûãydŸÓ90ä†âtаòÚ /|2èXÇ!fàgðì9Tã.É´“;1ô«†—' ¶é:‰0®J¦¼ ˆ±ºÎŠ.†ñÍ4 «Î™ÖU„NãôègY5ãaw%'øõ·U×2Ä/~Ó3‰0¤f×ÀÓ\ëy‚?æêÌO\(–<;\kÝ\Ùåă´}së <›÷ÄT®}7ÄX¦+¦ÆÞ´ª}:F\[&¹vFx2ìtÅÔø•–—zUu¡¯ž­U×BÄ52Ù9…S+Ú©1¶³+tÃ¥CÎyÆÕ"®>(.¼$¯;ø|ðž¸®Ž–òƒoëâvã¢tÊs;û,ç ãa M7\b;ºZ!œÇpY(1qñÝœ>ñ§9%\`ïÒh0¾ž Ä8œ¾ð§ÃiO'\jŽ»}bÄ%NXŠ#zÌËq~À¥ÄÐ ›KÛÁKO<ßpÁD㤅ÝNbIWàÓ:þs/>Å1u†–9ù¤†S>Xةï5wZ•é;‡žGTŒ±ò~è&¼Ò8%×><w©äî9}ÁGðôtnhÊžž<ÆØºç¸Ÿp“§s®qù±o®ÇyvG§6áÂ^çLO•Ž1Ò©ž™Æ--ÁqzŽÛÂböœ½`ŒÕ·yã%>Á¸aŒÅӗLJdÚ'ƒùœCwMcæ}è^¢„‡¢û¶nW%Ï^I¤‹Q‡,ˆ°ð^!·Š†aUV 4—/ɉ®q©ŽÓ@Œ±K®»3aXå½dNkv1ÆÆ;ØÎÝeÕ|Šœ2Wçwõð½Tç>1N¾×f…>Ýnªá\§êS×0®j®›K®q9m¹˜ÄÞ|bl|oÌ×]º¹Æ;D8×Õ©¡eÓVÜvåÒ%ÀË/Æté{pÏpäåÑeùn¼²©¨vŸ^(&\3³Ë8C.y+Õˆ>-FW>œÆi›Æ8†ç,8Áà³ã2-ŒQ7Í99x!Æp\›†6É´“c†{ê‹çD&Ñõ‘Žs<‚$zz·xùgõün‰1vÞŠícÆ;O†çä O¬«žŸðRŽçàœëHBñÌ5 ¬®‹¾}çá¹cÑq5}A¨ŽŸ¨1Âæºé¯ÛŒÑñäb»æüÒ8]wR¥\mל_Œ¾»æÀ`»æ¼ú‰f»æ¼j¦Û®9¿uלÓÀš‡íšsBøÏu_Æè»k.åyv]„v×d©Û6çT1cóÜÔ€§té¶9'Ì1ò¶97ÌSä.6¼üݧ^’l›ÃC9]è^:ɇÂÀÌÕeS2µB^”ïS10´ÖÁ+}:ž‚k&x}Ât9Ác¬©ÙÃÑ'Æ ¹N¥ƒ é23*õœ¡=¦VaçS30´b®q{Zði=xXÏ„¤Õ+Ɔ¹†9RuYÕ‚5±…ãQŸÅ§õÀÐ*›lœVO@Œs2ǬN*²wÎk‡ÆÈ{çâÙ'…ÓvÎ9<õNvÎ9 25ØÎ¹á×ksøÎ'Qvι-ðÀƒ’%×N”§FÙ:ç5Óå“ëL¦&Þ9çcæs®1¶ä:“Ác!«çL",ÓÕ»Åct“'Ï«U6Î9FØ+ºÉ¾9Ï=7_¤ ~Žç&Œ°æèÚp`PmÕµc´¶Ø³Z`Pu݆ðŒiɵSÅàýà®ü»š9cÃ5ž{æ1Æ)¹vj< FÕìºbÍó|„Ô’mó*Çd{çœPB˶yÎé£V˶yΫfÊÚ=ç"B¼©¢¹Žü£îžsZiŒW÷H¦ÜoœúJ®–Dµ&»ç¼ÎÄy÷œ×¹ˆxÒh« Ù>7iDzOŒ´}nàaŸÖc+m¹©çérœƈ­×ýw$ƒ]m”>íµ‡yÆÓ“]NÅgçã&\xEžUhCB=;åO—àÓSCp©gºÄCŽ]òÑ4bjÙ…á„&ð¬Ø< |ÛGç¡n£s‹pú6ï½wÑáÂX×]FÓs@ ÛC]%à)b¾»Œðr ç\gÛDçc±]tNýÄ8ŠëàOפ¹²-ˆ±GWŒI—IVω:® —\‚ÉPœ¸& ÁcxÌçsÅûèÌph+ãôîîôŸ§·7x§_éO?…ÿýžnúÈt-ELD½¹) §Œfx}ó«Ÿ1C’;Iàºw)î™e{ o‰}Ê,ÛSsâÂý)³¬§ . À]+éfÙž*¤ÙŸ2ËöÔe¦·RXÏàÝ(ŸªÀ˜Ò ¦š½#üX˜ñêÈAwo´F“‰_ßÂŒ/>ykéçVñ¯DµóÀ?²üSøW¹x°êƒ ÿjúoÿêO~ûì§Ü$2Ò˜&÷ÃÐÑjIµe«Ó+O¥)öÊ0ÛSï lûSbÙŸJèpŒ²=¥–‹§$ÛS[º¾m ãJØ"C ¨sPOóbÇ ;® Çó"^ÜÜFú§ ¶L¶taãçr0}Y¬–×:á*\ˆZÞKEbYýÈ²Ë µ›fçË|D»±ãéD"Ý®ÒýM å)–NÐèb¡-͉7öüúöç÷OðZ¢ÙÚíùôêíË'xgU€¿îž¸{Amc,§†ƒ nŒÙŠ÷xdì•på õo·oîÞ¾zûÕýóûçÏ¿yÑ)=Ì0ôŒ se"±ÍD-8à Þ}ÝJ¢\omR,)@ýÐ=^™îDDƒKÉ€W"b>ñ*H643îvEKÁ¥)&ºš tÁWbe²eR ˆk˜8^¼à·[Ó?ap €_ ÉÒ’¼)h <ÏIÈPVdÀzÅÔáÝ®œÜ}ƒðËE$ žŠ,¨vì ÉR8T¯´lØ—ƒÔ‰l)´Ø*IÃ;!ß§Kï*!b(º„—®·ÊtG"<4%¼#‘BU ©HãØ29HÆ/Vd‚¤ |'4Y:‡ÊQÊ/H¤PÁƒ«qñ‘€—#£"¥Ã«ÝØÃ îóÂÞ^™fàA|ü~GÊ…ÇNrŽðc>3L’¿eà›‡ÔÝX0Pç&‚÷#Rô8 N´ùE•_„ó 3›¾^™;ç¨pêð~D4ÍÑÌhBæ¥ð N(P*RÛt=â‰î΃ Miùâ툨Hg‘évD:Æ‹®î$ËäPx=$[ V2U6ÝgK–ΡîE '  € ¥ÀWV¿¶aÚ.Lf m¡N*—®™Ëx"…Â{ê9¼@CÑ- lªOÍDK ª— °¶Æ¡èXR²Ð-'ºŸ˜õMW*’ƒÔ/^©o¥{…%=x§"¦–^©ˆÀ#Èü*ì Pà‰Y:’k3]©ˆêÅ#¯[* £Óe™®Td5Gþ»pBAÉ28µºQ‹׎±¡ãÃP-ƒ/Ìx¡bÇ S]¨ˆu™ñN,4@µàt 7'o2ìÜ&"GŒ÷)ÒÁgTrx™"ÁK9èa(H´÷à50‘-’¬A ´&ñ2ÅÞY \Kt™"‰›®¥$ˤPƒo¤GËÈŠîN%Ë P¨ÝÈñÌ$ïªØ}¥Ñ%`¨©J™ÂÛ)Þ‰9ØBü˜ž òÌä«Ã°J)f¼NQSÈÕM÷)bF«t%t"Vx!… †(,¯ÀoÂmAhÐŒÓmЦÑ=‹hÁEݺOè:E¬Km¯t›bÞ{j¼M‘.õÐqYvïEZMÇÆØ²¢¨xÊв&÷btá"…<úà}‹ƒ†ÂtÃä O9œ‘¢¡J÷·-R˜‘¥]uH&Âù8qxÿ"K‡3=賎–Ó,•ÑàÄ–‰pª@u„—/b˜ = ¿/_Ä09k=Òå‹ÝÆ‚3²4~SMÒ ãå‹qœèžq®%º|U‰Ž=§ºRÊKhA‘P?WEstù¢ŒŸƒßU‡ AZ>]¾˜Yt™ßŽßxD b&1¹#æŽ._¤«öäºÊŒw-R¨ŒGÕ±ep($ÍX™ÇGºŽ4ãpE¡Àá\>ÐsÒ^í,}>N™¥Éü„ÄW+݃™Q&ôu­‰g˜¨Júf̨Hw3cç7é:Sâ@#ñŒ,ÑðG©Á¤O~5«pBÍPžBæ U3r(jo8K¦7éM¨`À«×X†ìDÍš8PI2:O¼“.î:Ä_ ï&âlÂ/ U«†ÂkS(T’n ÇJ 5tŸ´Ý›EД2h:YÊ6Ö¦¤™ç§Ð»¾‹NŸäA“D_°Y¥‰Ú“¦\"†ÚC?‚ ƒ¡'—È/Å@zAºÚ,áè—9T¢Wï: [ù®E𠏓\à¢ïæ© DÓ¸÷Ëd/¹³O\î ‘7Ÿ9ZŒ’7¹k+×wb‡ÃÿŽ‹×2%ú¸ôÕ4k~pñ S&‡ •/&-0Ÿ£YÀœôù©G­ïHì€B78ƒ£q Ú$­3Rœnðß•ƒdF æ‚‚àØ† Á&ÚØ08 ´ÈÄÄað8”Ê–NpÊB‹½$ÂC¾[Èã]nó%æÀÎqÌÜXÁRx¢†$/fšѸ8TÉâWî3 VpÅ~{MâWV{ÁësÛF˂މ¯;8P)äˆë`Yp–¦$çè‰ð`)‡J¡@:8<9ƒeñï žA%ÎíûU6°ÇO±Ç¢£(ð‹;rosÁsÄ2j Ý5**<{ ‚Ú3.ªÆ‘ê1q–*9ü0îu‹ ®bÃ@4cùût9}çXùû©`›d ]»ƒçˆ¿_ð£9ÆÙ2I·& „+v#diâ±Á‰Î¾æÉ¦<µˆúÈ–É.+æ ˆzc•[^†„Q >Y-1‰Ÿ+¦‚¸†BáTš^•ÑŸ»èrª*IW –É¡ÒP nâÝu™óà@Ø6¨òrIâêF©‡ŒLxrÉõ+9í`É¢¹\+û¬ƒ.ÍF ®ÜœX0Ô- mH (%š{æ@Çm0ˆÇ¢t¶yˆÇЦf°ÇD+0L³o¬+XÄáÇæÎ‰™âð§&ͤñùÁÅ">?ö'ªDñùëd,(´òLâÛ»°Ïl¨â²ˆ úÍÔJ"c‹Õ@<•É]ä C‘ÛÅ-Rè+ÜŽKi F šò•R#‡‚–-ñ@ÅP¨.7\ƒe²ÜÏð šÂ¡d²†Á¾nÖ7ÂBý6vAÁÒ9 dâgp³G’ÅP%Pg‡ª”I.? Æ Æ=KØ $t™äò'¼?[_ ™á-f“-äòÇ"“sȵ¸ü8/‹¸ü(l”Øçǹ ÿ-.?ž\Èaùü8ŧ?s¦Ùˆ©²frøÉ KI‚çðdi<ïÒÐ*ã+rN¹ÉT¼\9í¢¬t{¬— x5&¹v]F°ðåKN•î7ãV΢ۛxt¢¢¬t7 ë–{‘*·o`,\i•®ب´Ž">n÷«Ò1ѱ™Òد¦P\-tóWÙ“j1J(íŸZdßÎ}DKâïcÝ ¶ˆ¿ª¾+©¿Ÿ¥µ,þ~Ñ­eñ÷‘³°¥°¿pަ4™Li"­²¿?›Žæ­’¿O,窲¿Ý9K¥µÌîjl|…¼|ï oU2Å@ìcÀË+½ýå½=èíAoÉrÐÛƒÞôö ·½=èíé ·½=èíAoz{ÐÛƒÞôö ·l9èíëƒÞôö¿‰Þ~M ØqïçÖÙ*0RÛk©Å…¼ƒ-‚jq¸ÛQm€"] Z”@–GÕ¢ËW 2ªÅI­²Û!LØà­¢Ú^dz ¨¶(O1T[D ÕVK-T›çªe/r#µ•Õ´H-º‘Ú¢(ÑHm¦µ‘ZúÓ0­ˆt#µ]¦‡‹Ôî¼6R[¸^/HmüˆÔÊ»„Ô¦©èv#µñ#T›>‡j³`íÕ†‡¨–9ȆjéÏ Ô–KPÛÏ8m•Z[œ¶ÈóN+ñ§e~±qZþò°8íP”kœV$¼qÚ¬8uã´B"Óê|rç´lØ0mp«œ6Êd{qÚ¦Ñlœ– Ë8-žìó€ÓV©·Åi»Ô¶qZ$x\Êi‘c•N‹/.8íÎr™ÓÒxFÆ´øDn;$LB©˜64e£‚i1 ‚Óš* ÓbbÈ ˜0¿È8mRàfœ6WA»Ši“ §…iµsZ˜V±’aÚ$ÒY˜6 >X˜6k4†i wâ©ÕïF;©MÂe•Ô}ùFjùkÃNjý£¤6Kÿù8©å>ì1R+ãéFj ©©m’÷Ejé¯OcZeã¦MaÚðÓòŸÆhÃßÀhã%£Í26팖ûÛÅhÅ…[¶K·½CÚü€ÒB+àg”Ò&öBiéŠ&²(¥5I ¥]¥RÚ¥H¥´è÷Ò2L‹¼d\`ÚÈ]Ðë…i#ÂÙ LZd/Ä0íÉ ÓêHi”^Î25Jˆ-H;dBZrf¸ë^V Ói«¦Ø ­Ž•;¤åÑi‡´\ ;¤åîi‡´,¹ÒrG¸AZ©‡G!m‹@Z™x~[HÛØ°AZ®ßiµ÷1H«ãå‚´IÀóiÛCH›? i#ÿÅhƒtå‹Ñf}·1ZN›Ú(lÚÄ_܌Ϛ,Ïj£1<‹’AélNR³Fgq,f¤¨tVe¹è¬ÊráYvR^/<‹¡„¢ žE%°<ô£†âYÓ¥áY”7Ï:φ¡`Iðl k¶È xÖ†ÊÅg{Ò7 Ÿ-Uf/†hKT4lŒV>H/F«ÓÅh³Òcc´•giŠhûÔ ¢-2óÿ4¢‚g´Œ36H›>‚´Bd£eꨈvÈ4oG´å#DËÄkG´\ßÑÆmz€huÚ¹­N;7DËO¡•Aò‚Ð2œÜ­Ûhë@dÊ©€6+Ð_„¶É›7B›Zæ¡-­NˆÐ*i[„¶IA-B«’4B ÿÀ(¢Uçu!Zt 8bA´M«Ví¤"Ú “ E´±ÈrC´HzâÅÏŽB[…Ñ Œ…Ñbú¸•Ñ¢‚(£E–[´2Z|FŠBmÒÚ6F«CåÆh.F«ê_¶‹¤UU¤Õ±rƒ´]ñ¥AZ™W~Ò ’5F+Ìv!ZÎæŽh¹E´•};D[9š ÑVfÓßѪ*Ñ.´1ZþsZ)§Gm•Ïl Ðʼr´ l Ò‹ì€V‘­Ztð/ -xOŒy¡Ue.B«Ò\„V×ã„61ñTBÛô›ã"´ú]aÚ&®ˆÖš¾!Ú¡_n¢R Šhm°4D ùA´ø1G¡má7©4ÑbbøMŠh͉UD‹ŒHÀ¨"Z¡xø1D‹£1£GA´¡*y4F«Ÿ\ŒÑš0 Ó3(¦Ò,L+³‚ÓrAì˜6}„ižn”–»üÇ0­Ñë Ó šÞ8-·þÔÊË7P+¸×@­L,/@-;C Ôª6ÿqP˵·ƒZ.åÇ@mR4ºZÁ§¨MÂe Ô&†°¨åX6N[/8­‰sqZ!1œ¶]pZh@ÜÚ>^eË”ösëiJ{PZ2”öõAiJ{PÚƒÒ”ö ´¥=(íAiO¥=(íAiJ{PÚƒÒ”ö ´¥u¥´´ššo<=¾˜6êÌC1mÒm±†i™v¼Þ0mî²ÙN1mI2¿6L …ÄÓFôE§4ŠiÁ„Û#® Óæ!ó4Å´YçÆ†iqfÉQL O— ÓB¾å,Æ´P¶ºg\8-ï3*+œ¶M±rZ ÓV- ôèTðJj³,ë_¤6é~Z#µø_ŽGI-n¾ãPJjÑ¿º µ¨ž0 ©EÉ R‹ÓÒpIjÃr !µ¸ˆ¡«’ZôMøMJj{Óô1©PÖ<Á7R‹·¶ð# k@(¬í–K¥µC·ê*­¥M¤Ì¬™Ö¢ü«°Ùl&0›5ZÒYØ,ÃZ¨oÞMk°6våœ ka˜‚oÖæª÷Ö. «°V°§’ÚVåÛƒ¡Zº¼†-ƒŒ&ót=m…­G!ªÅ}q—¨Ö„i¨Ö”i¨Ö”i¨Ö”i¨Ö¤i¨Ö¤i¨Ö¤i¨Ö´©¬Ö¤i¬Ö¤i¬Ö´©¬Ö¤i¬Ö¤i¬Ö¤É°vS¦ÀÚM™k7e*­Ua¬5a¬5a*¬5]¬5]¬5]¬5]¬5]*¬]ºTX»„©°v Ó`­ SaíR¦ÁZS¦ÁZS¦ÁZ“¦ÂÚ%M…µKškM› k—6 Öš6Ö.q ¬]Ú4^«Ú4^kâT^kÚ4^kÚ4^kÚTdkÒ4d+øSy­I“yí¦Láµ›2õ†‡¥Låµ&Lãµ&Lãµ&L嵦K㵦K㵦Kåµ&Kãµ&Kãµ&KáµK–ÆkM–Êk—,•×.]¯5]¯5] ¯Ý„)Àv¦ÛM˜FlU™lM™lM™lMšlMšlMšlMšlMš l—4Ø.i °]Ê4`kÊ4`kÊT`kÂ4`kÂ4`kÂ`»tiÀÖt©ÀvéR­ÉRí’¥Û%K¶K–lU–ÆkM–lM—lM—lM—ÆlM˜Ælå¼%¶&L!¶›2ÙnÊÔ[U–2Ùª4³Ui.f«Ò\ÌVµ¹˜­js1[Õæb¶*Nc¶ªÍÅlU›‹Ù×ÂlU›‹ÙfcÊÊlU›ÆlUš‹Ùª4•Ù.i ³]ÊTf»”¹˜­(Ó˜mµrPf«Â\ÌV…iÐVu¹ ­êrA[Õ¥A[•¥A[“¥Q[“¥b[“¥a[“å¶*Kö¦Kö¦Ë…mU— Ûª0¶Ua.l«Â4lkÊ\ض)3nkÂ4nkÊ4n+Â\ÜV…¹¸­ Ó¸­êrq[Õå·¶ TÁ-O? Ûª,Û.Y ¶]ª´[ŒL• Ûš*Ûš( Ûš( Ûš(Ûš& Ûš& Ûš&Û.M¶5M*¶]š4lk¢4lk¢4lk¢4lkª4lkªl»©R°í&Kö&Kö*K£¶¦K£¶¦K£¶¦K£¶&L£¶&L£¶&L£¶¦LÁ¶K˜Êm—0•Û.e*·5a·5a·5a*·5].n«º4nkºTnk²Tn»d©ÜvÉR¹­ÉR¹í’¥¢Û%KC·ªK#·¦K#·¦K#·&L#·&L#·&L#·¬Lö¦LÁ¶›2ÛnÒԫÖ4 Ûš4 Ûš6 Ûš6 Ûš6 Ûš8Ûš6 Ûš6 Ûš8Ûš6 Ûš6 Ûš6Ûš4 Ûš4 Ûš4Ûš2ÛnÊl»)“±í&LÁ¶K˜FmM˜JmM—FmM—FmM—JmM–FmM–FmM–Šm—.Û.]¶5]*¶]Â4lkÂ4lkÂ4lkÊ4lkÊ4lkÊ4lkÒ4lkÒTl»¤iØÖ´¹°­jS±íÒæÂ¶¢M£¶¦M£¶¦M£¶¦M¥¶&M£¶ëäŶ—ÌÖ”iÌÖ”)ÌvS¦ Ú%Ì++k‰Ø>¾°ö ¶±=ˆíAlb{:ˆíAlb{ÛƒØÄö ¶±eËAlb{ÛƒØÄö ¶±=ˆí?‘Øò™µ_Áÿ¾¸ÁáJ.ûãMÄ3ÂIþóüÍéGÏn~ðË¡ýÃ[[«§g/ñn2:I!ƒ`õaP¤PºÏÞÜÀÿ{wsûúɳßßüäÙÍ/þži.G‹—}â›Li`Ô™.1BàMÔçQŸ0ÐB£K„Ð 9%à™v§ß]Uu‰±Ý]¨O1‚Bi´ô«‘CX|ÊÆ>¢Y~‚ÁKäŠkëÁ‘švŠAÿØœbìXבNñˆûµâÙM@GÍnŸ[)Âàë\Óàl8×4n¥yÞÐâ!~cjžõÞS™žyFÊËgxõ;ccÚìTŠ…¾žDúLåRŠxSh¯žÝÌ3^õî­GŒ´mݱÓÁ)£s¦aXuÎtÆÝhžâý|iôšÁõ‰±ºJ¯âªž¾ ~mÆ<ûõ´8Ä”c½4ÜWçaÜc'c*Mݺ±Î3AÏN>DÆËë’yªìÕ¸éªϦ“½áééàJ ×jÆ _]›6Î}›vÅ“\ó ju²AŒƒêÙ-‰¸pgxN|+Ô<='ü~Χ¹¥PÊŽ3 \§„™ö›øBŒeàÅs¸Ú'Ó0¢R¦ýbÄ;p›ç ,žq™WûƳҲ§Ãˆß<©ªÝÚ^Ã;]Û¢X׿ C*U´ÛŠËø¦kË!Õ¹¢aLÅS p•ScœøéÖ±gÄU¾™nxC,]¶ 5î’éFw¶:vÞ Ï:q±ÑA(®Ø²%¹©ØK/¸È5e×aTån“ñ»ˆ_¯ÓðŒÚâªT«§#Z0ä×ñDO"ì´ËÍOÆ¥‰Î™Æs_¦g½à‡åìa™®P?µ%ßÑÆÔæÛ1ŽsÇ\;¶T}k|vÅ:”G™v›µáÊÝäéÕv\eçZÓ¸C‚î¹]V6¸å"sé4kO"K€|S#jsõïp©åôä´]·D¸µD<Â?{N :^ݳ¼ž½ú¤±âjGi4×¹9ÄXqïžB|bì¸Å3Ó0¦6WP‹gûóÖ>·¶3p•o„3í(é îXwmÞ|rÁÕZ.¾ÞY97ЈG?úæo6wíÁñŠ×äêÍCŒ­º:\s £ªë“Bw2øæ:QÚÇiˆqׯò†UÊµ× okžSþ £ªsžñbW¸SaXõÍt¥ÍrŽ+ FÚ,ç(ÁF›å!Ä8(×n³KºÊó«<ž×ïœéA»å“8x³œc)Ú-çˆNêäÝr~™ž´YÎ1Ó-àf9ÇŠÆ }‚ë´­EÞ,çÉß”åXЉ6Ë9Žª-ñf9¿Æ1ÏÃàK˼Yᦳl–ó«˜rŽÝ•iAŒ- GMã…WÅó&Œ±tW¦1Î0cZ)áºÇ|ú3¢5ÈáôË/ðVµwx¤Ž ­ŸÞàm]¯MQËkºÊß²?Þø¿Ûãb¡Çå¶f{ºÎ†—ÝlO‹ŸþT^#xxZÇB°¡bú"Þ1Yýõí«·/_s÷ö¯_>}ñîÉS˜v…ûí«?=Iu_oïÞ>ùí³ŸÞ€´z.èg7Ͼ÷ëÛ/¿ùpÿîî«wwïß˳‚ÝÑ£äÅÝ›WÏŸ|—ËïtŸÉ§ÒŠŸnpË"ž(°’šp‹`ˆ'øOˉšÎmLV%¿¸ùÿu|Ðendstream endobj 310 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 360 >> stream xœcd`ab`ddd÷ vò541ÕH3þaú!ËÜÝýƒõ§#kc7s7ËŠï·„¾‡ ~æÿ ÀÀÌȘ_Zåœ_PY”™žQ¢ ‘¬©`hii®£`d``©à˜›Z”™œ˜§à›X’‘š›Xää(ç'g¦–T*hØd””Xéë———ë%æëå¥Ûiê(”g–d(¥§•¥¦(¸åç•(ø%æ¦*@œ§¡\KsR‹=´˜Yêtðýè^÷ã÷:Æï¬ë^¬cþ¾âÇSÑ]}SÍšÝ=gnMw¥Üïul•ÕÝ•UsºgékŒ‘ÿÓÉÝÑPWÙ]U9»{®Ü÷ulsguÏSÕÝà×>yüo‘ݢݳº6ÍåøÎÌÖTÙ]Ú]Ãñ§—½»¦»tJ%Çof¶)s»vÏâà+ŸÿÓqÛï¤é웹6sËq±˜Ïçá\7‡ˆy‹·…endstream endobj 311 0 obj << /Filter /FlateDecode /Length 4023 >> stream xœí[ms·þ®æG°ùÒ£^éL”qštÚæÅšf2Q?œEJbCñ’rìüúîbq‡Åñ¨ØqÚ|éd2†xY,vŸ}vÿ0kj1kð¿ôçÕÝÙ‡_k3»ÙŸÅϳÝÍÙg‚Úé«»ÙùtBÍ\\#f×g4^Ì„pµ—~æ] egwgÕ'ífót~ñï³Pk«øø·³‹'ßU···ú²Úö_¼ø÷|a›¦n[}4_˜êTu½y8ÿöü›ÒÂWWÝö°ë6郼÷]·\mêsy9Ÿÿëâ¯gÂ×AúÐ/öu»]vwý@]­®¯WW‡ýӨ׏Zyíg‹(¡×³‹åÙwÕ?ÛÝ|!uP}Òív±ï¢ìŒÛÁÎÛU½[_VëõÖ_®š:X-ã8ìm¤êåYm—|@¿û¦6uYLø;ŒšÚЧëW«eÚ½óå~„ µv$â³ýa}×VY¼ç‡e¦ð¢z¶Ûuiå½BV¯î/«vW‹¸Ešùt¼…¿ú~Ç0¶ÌÎ;çzÂiœ³H¤+f‘Ò†< ŠÀfAí}~Y]V‡^uªZdS¿œ(š†ÖÀY+Q;§/ÖÐ"„±¤qîýz{YÉùÎ4šsãf Q«`”@ETOȘM¸_ã/B×J[ñfc¾«´Ù…"#¯d-œw¢4øÆÓÉxQË L´§%‰|ÕíQdX¥Y9½~ÿÄÌ?7fJf¥œ*”+¤PzBædŽYÍú7’L×[èY4Zº)™É²žÿç27$⢩•³¶´â ›7R´ýÍ­¡M!³Õ Õ~FÑÇ2ÿ—0+ZjJE[” mÔ`G˜.IØ&•Ö¥™I9º—«Ýr½¿'„FÌj¼V¡B©0žÝ¯—«»õU,mñn½m·‡üeµ¾Ym_¶›‡ÕSZ&¤ÁÙpŠ/WÛv³þ à PÕ¦»YlÖ߯6ëÛ®[â(1¶‘l°µú¿·»Xy“>žÆ¥i”Vµ SúÇÃÝ‹Õ.‡ÂîºU¡zØ®1Ö-tDvÝL)ó±ñWýßTuß­·q:Š‹²ÒÂÄŸ]œ}Lè4 2`Fã›0I‚`šZ*ƒ$”2~Ð4¦ê€V8Ћ¨@ÓáCpNV+è`…ýV 9å `Q]Í¡« NU·¬o·žcÌ”(Ã~W!hg`ˆ1ÙT/X÷vÝwÚ*ì‚ݽ2—ÇuL¨º-4ÁVkì¶LµE¡!Y[]ç&°ìÑ4ÚWw(µwUøÙ‡`«P@26ùÜWlõ]ÔìBW´FY_ñIP%°w£têl éZyÓžÍû0š = 3ÚC¬¨8NSøøsñU»êú,í0ž@ã«sÜaðRË긳š$òpœÞWijp†êG<9ßèRåÜic|ü”i£ñ¬^ÅBƒ×,È-ÀA´÷½YßÃïZ8œo“UÑí²yÑdÞ…¬ƒ£eáY‚a4Ž}`V;XØôY1ób'Æ~€Ï <îµ·màæ¬WÔ°"znÆ;ún½CBÌ ÁCGÚèš$ˆ•`¢'´¸§Í ¾PÐw´K\Œª°¿¨3éDzyñUöÑ#…ßǽ Æ:Ò£ôJfEkwôáó½,þ«|Xì´9,¢+i&Å¥øS 4räIñ’àúØd¯ZGSRÊ×Ö©¯¾G ȧtËÜr‘¥ˆ°Ÿjͳý·Ùn2ÈMÃÝ>+r-Mí˜?ëP& óýÇ¢[9nÐ/Id©NÙ%$‹p¤ h.ü% @äç6ÂmK:Çê“ů'Œbçߘ d­.1ìç*#9›ãO”"˜IáŒ\lŒ§89ÒÈÈá+L_1äÃF1T C_ÐKt#ȽŠZÈQç¹€shÀÁ}šBh>q‰ùÓÜf˜ú-ðIÔ#.šD.@zÄ€ÌÏ'™ú-ªvšeð¥»AsŠœuëÑÓ£y [ ãzó,È?¶ÁOD¾"‘# ¤¹´ƒÉ’Ó‹D÷ÈaœÛÛ‚\"ÆFöÈ‚ïM'CSøOÕ’º—LѽEž($lPÓÀDÈ=”xYµöüX÷4âÁØìB8_1RË-©› ÇÓ FÓ)¶WÌÛÈí ,¯8޵›¨~ =˜1¾¦I8€ ”G 7ÌMÜÒX“n óAxà$¦€¢–º4Ð,a§Ö¢À< pë—™rº¹Œ§€qŒ"ý¾Æ6qؼà–H{h´PII´orï•G} +¦ØOS”±?©ÕƒzNÙóE/[:WˆŽûèt¬ ¶·A€ÿº‚ÙÂï0™†ì¦ã+s‰çÄ¢ñag‡x•c øèZ…’"¼|@AÖ`Krÿ’“"òÑ„ø¥Û'fŦ(!|Xï†ÄlШG”>Ûê뜋´ä”ÒŽdŸDó×4„Ë*÷rX´Ð˜»r†R§å:„9öRˆ WÅv–4µñzäÛÑ&do“GH˜~.‘ð!GÞ2Ä.”Çã•̱v±?ÂÊWX^9É ÈžŒ€à5F tÁò„l˜¬KùÐ0nC;…tb?RkŠ<µ^gŸßf¹¡9Ð’‡åx·É–ÎV…Zˆ¢ Ñ7L›£5¥Í)?ÄQ÷Žëª»9„OÌ’,‹õ*†•¸zÁXŽÓ¹yÐ`Ðl<[Û&NSƒ&Ây³Ïfk€¨^!‹ø–¸% ,q¯@N~±ÄX±#MžŒ¶}ö5‚7ô“ÆG.rŒR¡NÈÚ#ˆKѳHü˜º‘šÁ2šˆ¡ê’Rãa'%` ÆÇÅdIhr苘ídDÉçóÉ„~XÄcee`?Í·Ìœ®£ÎÓ˜‰è+¢+‹ð5é}w!Âü¬%&.VÅ3¨¾DGÐ (ªe±q“çëÙN_¸1}Ùæ3N˜"MPH­H¼dH°ËxɆ?!¨^ÓÌkSðÝÂF{8²–HN~>ïKÓa²w‚²sÀnYa¯ òƒÕC œ¨^}1Ìvz-ÎG÷§L$¥q®O{­e2IÕ*Dí”4y,8·=ÊCu• MÌPO‡qª]ægœ>?ƒþGÌ9‚˜«½”¶eƒ.®kÉ!áõ$m™;'‡ÿJqQ7Á½m>G‘°:g'×KdÁ±Æq*íj™ƒLY4@ÕiÌÊ^$š`jØZÜG©úù$<'Û õ„ùEwÄ Eñ€¹ô?ò^eD±‰ÄÕ!¥‹) ŒU’_xûyZøEºZÀ·ìQ»ÇßZˆhÓZ=uÍ ­€D1Ð5ßç #Þ!/}Ã~£§æ*7—¹YçæynÊa®?å‹ác—?n'xž›‡qå•M"ÆæÇ¹y››¬o››ËÜŒ ™Ú»ÉqûÜ|ÈÍMnr³ÎÍóÜ”¹ùA¿yÁ‡Ýç¯åævR².7œÞÆõ¤”“¢};ùõ6ñ< ´ÈMºAÄŸl†TðIf&wŸ^ּ㭘Txë¦É\ß Þk‘ êÇ¡$¦¦²àì]Y Âïw,aàñ$ÈJ– ¬ß²T——D,•@›¬Lߘݼ“H¼æä!3-È‚)ëCJåW¬vJëÝÑñ±àˆÃ\p£âc?ÙU¶ê «MyÙ‚q\8ÈOµù‰$©t™¼J)b­››À«Ü9_w1‚ÍC&#úeŦðÖø;Vvµò¯8KœvN®V$¥£‚Ú©Æ·+R#Þ­¼-cé…y|™ ayeQ3`<+ÈJ° ÓѼhÒ/˜þhMÊY¹4ÕEß;:_áSĤy§¯ £m÷²”¶5=e0‰-;ÔDp'‹r¯iœç¤‰Ô]D+éDäÉÊ„taF”Í |–ÀNU"4ràkèzQ]°4ïvÞׯ†ymLnû2/„2‚Ûw-JÎd󱸾¡ýà¥BŽ.]™Éõò.©¯-ï‘Û˜¥ ïKÑØÃý {®þ ÒÒe¾²FŸÐcáÅ'na_ÓÂ@[+|EO6Íb>+JÂQï;nL¼Lܳj«$ýý¸Ø›~.YõóK1:ÞÖRü서„ž÷`Ë„QN5(À>*UÖÓ HvÃP”|U–e¯…ÖXÖµ;ã|†Vkì#שQã êIe½Wžëã-{­Lß`>òÂÆ)T×ÔK¢£ëB¶L·¥¶m³;VèÍŒs²ÐÛøœñ|ê6ÇùŽÝ7Ä f=”&èγ¬PCg!ùÄÝì¸+´Ïû ¹OsˆñË O{O\M>dÊUÎŒ‰?¿x‰QË©¼Å\®Äªáh0À‘!ÕÀ‡=²`Äû3a»)xààP+lº)#ðÃ@ħÕ[²ï^¼×@¯?ª šînE­r¥7@BX4 a!µÇÚ ²W*À¾Dá°OK”ü³ya1¾©wÉæ¯ss›,Goss“›ïPˆé!KxYþý<7“þ_xç"@¤¥`7^ˆÞÖß²€=¬Ïz’›&7Y‡èt¿Ü3}ãTÿ2^ãDàŠy=yÔ«Iu½?©õ¤µ“*z¿Øì¯P®ÊÔ#w¼˜ŽDÈ Ÿ½±É/(ð ¬ G7‘EÕ‚åÁ£PƒCñþâ‚mßKàÆ)4~ÆÇ,op]—ù$óvIk¤?“œ *£KME/ÎËpš¿N¦€eRU ì©'MÚahˆ,Òyüšôó(/²G¥%¾ÓéÝtüxŽß-ú¾oxß8X̶¿S2C"ª(Qô(äŠe“U‡òmñÉRyÏ|¨T. VO”Ê,^ÿœ,•ÃkïÔlæ ¦ÿ)‡ˆÿ'úöWgÿtž6wendstream endobj 312 0 obj << /Filter /FlateDecode /Length 5151 >> stream xœÍ\[o\Ç‘ö‘›Ad_f6šqß/Æf kÄYÄÈÆbâÙXŒ8Ñb’CÏT˜ùí©ªîsºº§Gr$0`•Z}­úêÚ}æÇs±”çÿË^Þœ}ö±çÛÃYj¶NXãÏ÷Û³Ï$5ç?.oÎ_^@o)åyXFçÌùÅÕYšFžKé—A…s/ÌRjw~qsözößó…Uz)äìr.–1ZÃlWÈëB~]ÈM!W…¼-ä¡ßͺÍýåöÝ5&f»#Ríò8"7…\òªï y[ÈU!¯ ¹,äËBªB¾ø'gïKëÛîj—¼Ã8ì—…dò9‰þywk»Bn yèc»üy—iw§føn>ÿþâÏ”ÓK)5àéb èÖ¶Ç—g¿K@}¡úÜ/£²B¨‘K¯Ã¹óa©cL½Þmó…QB J÷wZflj"†óE\§Oí0Z(£ç G44él oozgÖA N-{ºãŒE½J;û=ì fÂFCrVRh—ôÀH¯}É,¬tÀ¢„ÖܺÇq^“Pî„–*Z¡ÕÆè½¢ÙdˆRx47Œ·³{h~©%_ðq®üR ¥a:XÏ/uˆ³œ9 @e„T²Z„Ö†©b\Ñ>dÅO…`°Q ‹;¥}m#u'Èæ[œ5¸ª÷-nÏíiÿR/Bš"w@x:µ Â’‘éLñ„SÈè#m:ïŸ륟­ˆçB­ðˆx°’³¯ø×ÄSsó.¤hyOp0N"ƒ»bÌÚ=@?à«~Þ²ö<•2K'Oú¨S6ÎV÷Ø9 #µFJ  áüâ7gÿùP±P°é%H ¨œKTp® >ª+`[*3[0N_ltlX™a¡AC”4³¼¾ðÞå)Œvjà˜„qir&ZXš`œ6¦’uˆÊÀ‚»Û´"œäxûcg@Šj¶}›!mƒ­ÌÒTÈÝ´$¸Ò¿ëâ¾+â¾c ÞÁ(ëÁÔ-) p‰+x„⨺¦Þ1D ¨ƒ—þXeò»}_.Ù¹ïcÀŽ–!d“:èP3IZÅÅ  ®‚(Ò2 ä;¼Zîï®2-ð¸0$!C²J¿ >dK‡ÙΨ²qß‹õÐ?'W„?—æÚë°D$ˆ ö|dšÀ=<è±IŒpÙp«úRx$digM:p)¬ki\Å×ëÚ'\Äaÿꀇ9;k¸N½a?ëBîP ±Ð2ºRÖŒg¢×¸°q¬ù銄¼ÓAUÖí=Îâ‘á·¬6SâË9É€ø6Ëp³º<:—°ZΘ‘KLu`@®>€^ØŸOiº tÝuô`ÙöY•v‰†Xfl晣áÄ 'A£µ†¿ÉÊp&©(wšž°5€X—ej¶ö[Õ2ª›h²=D&‹ëjoFêªQ]ÎÑP1†<¥™@\²»4.¹°‘ûìPÝ厰NN,·Zlü±ØŒƒ|ªÄ/€’Fç 2¬esS 2nšiï%©·3áÈEh4•5šÓ úO˜Øw)x‚…ÑhÞ¦ýÚP aÑ„ú%WaUt³æTS$œœÿ²Ý©æe Á6­}‘P.TLÁÿ¨B…ZŠ« r¥%A}"ïd¼€› Îjn+Ðê¥ò!pï–¢ð­ÈK´×(ñvªŽƒ‹Lk-ÄìÁV`Kf>+z“7T9Iyˆ¯n ìR¸l½;ÐCaÙ1¸Ò•C_§M`„öfëSjD‹4镱ƒ4ó0ð¡¨6w~—Å€°éöw¬7¢â³oœâ‰†r‰ž7có[Ê«Èlöÿ…¼+ä®ï ¹)ä¾×…\ñaiu³6RÇ,ZDÛå JêÈÚnœzùPL3ƒ‚hXÒ5g7“}˜¸Ç5ï—  ±h4ž ‡êA1gàDn ù¶o ¹+äC!÷Ýa».¹î²ZÞmØ(ÅhÈD9¾Õ]´Èe(Ç>”Õï yènDÉ%¤ãШ¥5€Kƾvˆ6)ZïÛÆXÖ¶^ ZAJUçå}:ú”‚„¦xÃxÀÏmè²ÏÉk9fxÁð9ÀØ„ê=%®†@Ë‚‘i£]%Â2*ÕDë.èxÒÅ=<Øx&Ìâs´öéU•ÈQGÈfÀE2?»â¬H>PG¥uc¸q¤ úȘb»…¸ï %ôÄ—Ñu ¹:”蘡&µ‰È*‹“j”k, •ÐDKQÌÉÌKçŠQØÝ¤×Ï€œþ=jRÁ〯»çÍ[÷p3nÃw•ÂHîtS‰ÀeÀ4ÕHf„Pø7¤È´mé´â¸tÅÐ?‘ŽaÏL][’QÛ «ÃlÁ¹ØHõ¸éôÇ¢‹ÌÞ’áþë¡÷ï“§ûùCmG[ÛøÛ®A\rÃ;ôŒÁŠœ0P¢é5JãUa#šÀ®R3ê!tL°²A?g¬3m MÌÁ£5aZ¹IHŽRÔ¦;i~JÕîRç*]m›¢öÀÚÝ“@ D@_§ý+/jž0”‘ÑÛ¦"6 ÈÔIm€i¦1uܾ A;èpÎÌÀ–E 6{0Þ”BfH[ü‹œ*v'¤öK*a…Å’M @`†™@›U^Ÿ¬©Ç”V–ŒžL3ªÊ¯¤ ç¨bÐô€jS¹T,V{=Tô¾¦ðF ŸÃ¢ÌºTVÍz|MîËßUŸÃ<'ªK¢:@¦ÛúËxo:OTÞÕ•Wò¸qÓFr!#ëϚ̚ 1T͹–å­6ˆšD‡ÌŠ,eä\ÎîYƧáÝ_¤Y œSÍå3°\¢CÙ‘úËH=?Â÷à [Æêê‡ÁÅH,Jéè`´­’ ”fYCÕiꢮTäO% ]qF³" Ço+©ÈtN—&öÙßWETÉö€[Ü£–¼œ©ÆÍœ*KJ6é/>Ñ1…¨äÝãda•*e„˜c F g1t»Ulª ™$#ÐÁÆæq/±7±.bgÒe1ö¯J Y×ñÆ  >zqü©ˆ5f@ L|ËÜ®t ÉÇáaBDMÌ“¦_áÁ k·“f£Í9ˆ~šƒ=PÂD‚•Д»6\‚%lœ*‚lRŒH³óˆU–¿bNsÜ;(.œø/ð?1/°Ä?òr¨§›–­óa¶À'R±B¾Jñ¬‡p­Aåpüºž>ÆÛñîªÐóºv¹Ž“Pñ8·–Š„ÿŒŠ’{•ˆb>rÆj¬%ñî¹µ€=‡†MÈ£é¤7:N®h¬XcRJäˆÁV ‰ùQ­•´p&x¶Æ颴ºE¬“"ï#çÕCŸõÅíÒÆ ²í\áÒuã¿Wö3ÕÇASÅX˜äDŒt[ ‹aâ:â«Í„q£]²ñBoÒ¡”ã·ÚÏPirªŒ†°*«‹ê`rD\²ì€ò¶ýšEy•£ro-'Éò€’_=”M§2¨¢:Z¶j}½Úâ=µ |LdWóqï<© :K*[k@‡ÒhÀÃEÌŽ¥|÷© ÄsƒèdS"I ¡ÉÄÕ_€éç2Äæššã#‹SÆJœ½º3IÓ c]‹AcÈò±p¼^% `Ð4êÉh~êú£—xòŒØ”i…0YLìQÀSZ4LÞ"lÒ¶›’În›ÆEÐÌþUå.%˜6ÊU¥¸V"ƒ©‘¤¸a YWb»V…ó©*ôË)Å~5¥rŒãWþI.à‡83Ø›’]㟠–˜“dþíJn(Xçè‘H㌤Ëóþ Ž\–޳zÍDHA¼ P´Š´ŽuÈÈ2î#¦ø»” ±;†žŽt2§¡{Œ±ƒ­X­ŽÙ°Í°¿c5Ë'H$–*¸&ì˜p˜gÞá8Ì`šÌœšEœŽÈiC¹‚t\Úã—âùÎÉ€!ΑsüfÁùåeuá6Œ¯}àj»MÈ‚¦ú~x›ƒ§Eù­ó !p¸¶xN !]ǰÊD}‘G³èú…¤VËlz@<¯úQÚ&MJ_?j*ÏþÌZÑ&ayEˆÚÓŽÕÉïáÛbOy %Ki&Ö¯¡rm‡3`ðX©ììäÇl¨ô;Ä3V—fv'?Ú kÙ¦^S…똼¯Wªy>È`J ³?òÛ:PU~*ä©R­ì#‡RyHèJ»Rèñú»31SvH3`ŠÝŠÈèô<î™0‰Ö6ésåCFH<ºô·dx~GË 7¼?ƒžù¥w=•ÅgHôR3ÝÞоµcÐ꤯¬Må—ó¨# ˘I÷!G÷ÍÛ¼¶,ÞR©›®W…¼ï¶æ÷»DÝ%¿)äe!w…|,ä¦ûîrÛ¶/Uáÿ§_2?Ô=zê*ż8o(Û×é±Â³‡‚ÒXæT9¼NÅ'¿î ¡øÜ’èå€4W—]¸'Œc?ð½–4Ë!)—•ØŠ/ªËJÌ)½Ôøz…ûrziu~¼7L4…nÚûÕ··°v} Ë^GÍ|˜_ü:EÓ`/*Ÿ»ü[êÑL#%¤z:K +_Ô©½Ï7`Lë §2ö‡]r‘9ýÝ»hŒÙň›Ç.>ÂE¿p ¹¿.WÚùÕ¼ÓV´WÍ#²nàš[À®3bá¥Ódë¨~¹æ3u?\fÞ±œl*†o²©±¦‰#Z(œ×Tv­v—k|d?ÏÓ{«~jÚdCµЊõ•F*¶Hg*Üæp0O1=ôÑvR°ôpUîØ+åè•TG.„ K‘›ƒàWºæí ¥VÕÆ!¼ ·EX™§IŒ-ÈÑÅ @ØcG— HuªXȉ+ß&€T?=ÂcUã+ö¦a„ZÈag,g7Ž ›!§o9j•GÏÚezŸ–ù²LÏ1= ™~½€3aªû³y/§M •ž¥ECä‘ ßìûÔC†¶ðˆ/ɤ¨Þ’ôÞ2oqÈûÂÊßU€4f˜UàØ¸½á¯s 9¯nËk<©eoPS m®ZËèõU1pãCD?^Ëø:CaÑõW¦ø|äVý Îßý±˜V铜æc±dåÛÀØ7]¢¯ ) ùy!U!Ç•&ººB~ÿÉ>7‚œ!ïåj½¹]|û°ÙßßonÞlö }Ì.ðþíqµy´ éK¤—›ýõ»Ûü‘2³—ûÕ- ó@£ ´ln6·ÃHÜV7ô¯Çß/sHHz-_|OSŠ©ÏŸ2Yl’Z99´›Ñ‚ØË¶à rë›aø}oÁa.XÚ î¸>„¹¯Õ?açwYÊâCÄø-Þ”It§¨Œ&©=³i0¦Û©0¢¥ ý_²Gø¸’v?Ì­<=`0h}ìGi5L·ã]¬üÈÛ\­Eÿ’ƒ…é2=`?dV<› b¬jTEç:7Oi’ýßv[yÌP=F·ùXîb²tõ6†×‘)8^Æ6}+7km9«¦ÑñÏ øÇ?ÜaPÉ L¸„Áµ_¯ÓýXÿ-{ª9å jÇ0U6ï_òW‚UÜ¢$W¼j><Ãö¶ðjÃÃ˲Þ[¾ÞC™^D$‘ÖC–òªŸ‚›œï±~™>уýžx~j´`/Wy…k …V¦¯rèY :È*§k_@%Ôܤ¾ZÊ&äLl³Óu©ÄoÕD+# >þË‘<_'á-³»1Ãm>DèÆJ4¦ùe¢˜¥Î¼´Lêæ¼ÌïÁ@+”ÖÕ§_ñë^N,˜Úæ²a¬?Hœ~;Æ-U)e/Ç.° —bôª¢]ÝÖ§¯046U»žx|—¿iQ³/Å¿À? òû‡K`ÍÐï´ÁÒŒû¦},¿.$ëpSÈw<Äzþ{}6ê®Ûá¶]¬ýþ¾Ÿ—ÏÆ}ª/›Œ}W~ÙípÇg—øE!Ù7èý¯õÙdŸuWc_ÇÀdãÂ'tÃç¥ê2üÝÆ!v*B¿*|^vå[`õ_¥q16®xÏùª»Æ~@a×eûEƒ«.û,x($ûeöS üg ®º¿yð×BÊÒ—ý`Á«î°~ß»Sâ{×=ܺ»ã‰c'šo¾{ΘþPÈû®*öìb{ªÃ¡K2ñÈ‡Õæ¢=9“å]·C_çþÅÌÅc{—]òä¯ÜwûV,éý`ëðÈOAzÈîKÔ³ï®»å£ÆÒð#§¼]"¯ ¹+ä¾7…\ò¾ïº3ÜæÜ4ïw1·uåϘahî{1öû1Ì ~QHñ¼ícãÂî™jqcûïj7³WLÌÌW0|¤ëAôä·üá†Eeƒ˜õ½ŸëÀÂÑhYBŽï}‹÷iy û©ýôÌùŽ/Ñ#Ýyï»ÛéÛ7ÖzÒ™}€eè²ç¦Ýe«—‡B^rÓí  ù¾Gô‹NŒÂÀ±>uÎÕ'ÅI_0}KÏØZýnÒ‡q¸=ÛÛu·/ëÀü>ûI§Zç>©^O³¸µÏ[&åY¡»¨º,¤8”q g™ÊÍð[î~šÏ8ÞÉÉPèïy‡Ÿä~ÞvÅHóO$![­Šj{óöÜì‹)?s,‰>Ïoº$‹†™Ÿ ÉÎí'âϘ,úApßÈ1ËöpŠÕ¯ºv‹MvÅçíY‹Òá›Bþ¾_ ë'ÒU”K¼?œVtß3“k~4áïÎþ¥>'endstream endobj 313 0 obj << /Type /XRef /Length 255 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 314 /ID [<89daf93cf0a41c85344c4554da71f5fc><23ce60abb2b4b24960d84adadba811d3>] >> stream xœcb&F~0ù‰ $À8JŽ ò?ƒpÞZ ›”ž=M#üÏ n»û7%Fc$‘ÿLb×Ù¢ @ñ.Á"e~‚H±4)d"9=@¤ÂÉ´D²©‚HáS ’?H2ò±YrÀjòÀzÀ*ÿ‚H.k)Í"yÖ€Íô‘ŒÁêÿ€Hf°ù¬Â`²,b "XA¤F!Xä1X„DrÌÛ(6gˆäÛ%~äS°™À²OÀäK°ìJ0û˜| vÿ7[´ìZq°xXœ L¾“lÎD-l«Al»°/ÝÆ6'“Qi0ã endstream endobj startxref 223489 %%EOF surveillance/inst/doc/surveillance.R0000644000175100001440000002240213231650411017321 0ustar hornikusers### R code from vignette source 'surveillance.Rnw' ### Encoding: UTF-8 ################################################### ### code chunk number 1: setup ################################################### library("surveillance") options(SweaveHooks=list(fig=function() par(mar=c(4,4,2,0)+.5))) options(width=70) set.seed(1234) ## create directory for plots dir.create("plots", showWarnings=FALSE) ###################################################################### #Do we need to compute or can we just fetch results ###################################################################### CACHEFILE <- "surveillance-cache.RData" compute <- !file.exists(CACHEFILE) message("Doing computations: ", compute) if(!compute) load(CACHEFILE) ################################################### ### code chunk number 2: surveillance.Rnw:161-163 ################################################### getOption("SweaveHooks")[["fig"]]() data(k1) plot(k1,main="Kryptosporidiosis in BW 2001-2005") ################################################### ### code chunk number 3: surveillance.Rnw:223-227 ################################################### getOption("SweaveHooks")[["fig"]]() sts <- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) plot(sts) ################################################### ### code chunk number 4: surveillance.Rnw:320-323 ################################################### getOption("SweaveHooks")[["fig"]]() k1.b660 <- algo.bayes(k1, control = list(range = 27:192, b = 0, w = 6, alpha = 0.01)) plot(k1.b660, disease = "k1", firstweek = 1, startyear = 2001) ################################################### ### code chunk number 5: CDC (eval = FALSE) ################################################### ## cntrl <- list(range=300:400,m=1,w=3,b=5,alpha=0.01) ## sts.cdc <- algo.cdc(sts, control = cntrl) ## sts.farrington <- algo.farrington(sts, control = cntrl) ################################################### ### code chunk number 6: surveillance.Rnw:351-354 ################################################### if (compute) { cntrl <- list(range=300:400,m=1,w=3,b=5,alpha=0.01) sts.cdc <- algo.cdc(sts, control = cntrl) sts.farrington <- algo.farrington(sts, control = cntrl) } ################################################### ### code chunk number 7: surveillance.Rnw:357-360 ################################################### getOption("SweaveHooks")[["fig"]]() par(mfcol=c(1,2)) plot(sts.cdc, legend.opts=NULL) plot(sts.farrington, legend.opts=NULL) ################################################### ### code chunk number 8: surveillance.Rnw:378-379 ################################################### print(algo.quality(k1.b660)) ################################################### ### code chunk number 9: CONTROL ################################################### control = list( list(funcName = "rki1"), list(funcName = "rki2"), list(funcName = "rki3"), list(funcName = "bayes1"), list(funcName = "bayes2"), list(funcName = "bayes3"), list(funcName = "cdc",alpha=0.05), list(funcName = "farrington",alpha=0.05)) control <- lapply(control,function(ctrl) { ctrl$range <- 300:400;return(ctrl)}) ################################################### ### code chunk number 10: surveillance.Rnw:420-421 (eval = FALSE) ################################################### ## algo.compare(algo.call(sts, control = control)) ################################################### ### code chunk number 11: surveillance.Rnw:423-427 ################################################### if (compute) { acall <- algo.call(sts, control = control) } print(algo.compare(acall), digits = 3) ################################################### ### code chunk number 12: surveillance.Rnw:436-441 ################################################### #Create 10 series ten <- lapply(1:10,function(x) { sim.pointSource(p = 0.975, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7)}) ################################################### ### code chunk number 13: TENSURV (eval = FALSE) ################################################### ## #Do surveillance on all 10, get results as list ## ten.surv <- lapply(ten,function(ts) { ## algo.compare(algo.call(ts,control=control)) ## }) ################################################### ### code chunk number 14: surveillance.Rnw:449-452 ################################################### if (compute) { #Do surveillance on all 10, get results as list ten.surv <- lapply(ten,function(ts) { algo.compare(algo.call(ts,control=control)) }) } ################################################### ### code chunk number 15: surveillance.Rnw:454-456 (eval = FALSE) ################################################### ## #Average results ## algo.summary(ten.surv) ################################################### ### code chunk number 16: surveillance.Rnw:458-459 ################################################### print(algo.summary(ten.surv), digits = 3) ################################################### ### code chunk number 17: surveillance.Rnw:471-491 ################################################### #Update range in each - cyclic continuation range = (2*4*52) + 1:length(k1$observed) control <- lapply(control,function(cntrl) { cntrl$range=range;return(cntrl)}) #Outbreaks outbrks <- c("m1", "m2", "m3", "m4", "m5", "q1_nrwh", "q2", "s1", "s2", "s3", "k1", "n1", "n2", "h1_nrwrp") #Load and enlarge data. outbrks <- lapply(outbrks,function(name) { #Load with data eval(substitute(data(name),list(name=name))) enlargeData(get(name),range=1:(4*52),times=2) }) #Apply function to one one.survstat.surv <- function(outbrk) { algo.compare(algo.call(outbrk,control=control)) } ################################################### ### code chunk number 18: surveillance.Rnw:493-494 (eval = FALSE) ################################################### ## algo.summary(lapply(outbrks,one.survstat.surv)) ################################################### ### code chunk number 19: surveillance.Rnw:496-500 ################################################### if (compute) { res.survstat <- algo.summary(lapply(outbrks,one.survstat.surv)) } print(res.survstat, digits=3) ################################################### ### code chunk number 20: mapWeserEms ################################################### getOption("SweaveHooks")[["fig"]]() data("measlesWeserEms") par(mar=c(0,0,0,0)) plot(measlesWeserEms@map[-c(1,5),], col=grey.colors(15,start=0.4,end=1)) text(coordinates(measlesWeserEms@map[-c(1,5),]), labels=row.names(measlesWeserEms@map)[-c(1,5)], font=2) ################################################### ### code chunk number 21: surveillance.Rnw:546-549 ################################################### getOption("SweaveHooks")[["fig"]]() data("measles.weser") plot(measles.weser, title="measles in Weser-Ems 2001-2002", xaxis.years=TRUE, startyear= 2001, firstweek=1) ################################################### ### code chunk number 22: surveillance.Rnw:557-558 ################################################### getOption("SweaveHooks")[["fig"]]() plot(measles.weser,as.one=FALSE,xaxis.years=FALSE) ################################################### ### code chunk number 23: cntrl ################################################### cntrl <- list(linear = TRUE, nseason = 1, neighbours = TRUE, negbin = "single", lambda = TRUE) ################################################### ### code chunk number 24: measles.hhh (eval = FALSE) ################################################### ## measles.hhh <- algo.hhh(measles.weser, control = cntrl) ################################################### ### code chunk number 25: measles.hhh.grid (eval = FALSE) ################################################### ## grid <- create.grid(measles.weser, control = cntrl, ## params = list(endemic = c(lower=-0.5, upper=0.5, length=3), ## epidemic = c(0.1, 0.9, 5), ## negbin = c(0.3, 12, 5))) ## measles.hhh.grid <- algo.hhh.grid(measles.weser, ## control = cntrl, thetastartMatrix = grid, maxTime = 300) ################################################### ### code chunk number 26: surveillance.Rnw:620-624 ################################################### if (compute) { message("running a grid search for up to 5 minutes") grid <- create.grid(measles.weser, control = cntrl, params = list(endemic = c(lower=-0.5, upper=0.5, length=3), epidemic = c(0.1, 0.9, 5), negbin = c(0.3, 12, 5))) measles.hhh.grid <- algo.hhh.grid(measles.weser, control = cntrl, thetastartMatrix = grid, maxTime = 300) } ################################################### ### code chunk number 27: surveillance.Rnw:627-628 ################################################### print(measles.hhh.grid, digits = 3) ################################################### ### code chunk number 28: surveillance.Rnw:632-638 ################################################### if (compute) { # save computed results save(list=c("sts.cdc","sts.farrington","acall","res.survstat", "ten.surv","measles.hhh.grid"), file=CACHEFILE) tools::resaveRdaFiles(CACHEFILE) } surveillance/inst/doc/monitoringCounts.Rnw0000644000175100001440000035435413231323241020567 0ustar hornikusers%\VignetteIndexEntry{Monitoring count time series in R: Aberration detection in public health surveillance} %\VignetteDepends{surveillance, gamlss, INLA, MGLM, ggplot2} \documentclass[nojss]{jss} \usepackage{amsmath,bm} \usepackage{subfig} \newcommand{\BetaBin}{\operatorname{BetaBin}} \newcommand{\Var}{\operatorname{Var}} \newcommand{\logit}{\operatorname{logit}} \newcommand{\NB}{\operatorname{NB}} %% almost as usual \author{Ma\"elle Salmon\\Robert Koch Institute \And Dirk Schumacher\\Robert Koch Institute \And Michael H\"ohle\\ Stockholm University,\\Robert Koch Institute } \title{ \vspace{-2.2cm} \fbox{\vbox{\normalfont\footnotesize This vignette corresponds to an article published in the\\ \textit{Journal of Statistical Software} 2016;\textbf{70}(10):1--35. \doi{10.18637/jss.v070.i10}.}}\\[1cm] Monitoring Count Time Series in \proglang{R}: Aberration Detection in Public Health Surveillance} %% for pretty printing and a nice hypersummary also set: \Plainauthor{Ma\"elle Salmon, Dirk Schumacher, Michael H\"ohle} %% comma-separated \Plaintitle{Monitoring Count Time Series in R: Aberration Detection in Public Health Surveillance} % without formatting \Shorttitle{\pkg{surveillance}: Aberration detection in \proglang{R}} %% a short title (if necessary) %% an abstract and keywords \Abstract{ Public health surveillance aims at lessening disease burden by, e.g., timely recognizing emerging outbreaks in case of infectious diseases. Seen from a statistical perspective, this implies the use of appropriate methods for monitoring time series of aggregated case reports. This paper presents the tools for such automatic aberration detection offered by the \textsf{R} package \pkg{surveillance}. We introduce the functionalities for the visualization, modeling and monitoring of surveillance time series. With respect to modeling we focus on univariate time series modeling based on generalized linear models (GLMs), multivariate GLMs, generalized additive models and generalized additive models for location, shape and scale. Applications of such modeling include illustrating implementational improvements and extensions of the well-known Farrington algorithm, e.g., by spline-modeling or by treating it in a Bayesian context. Furthermore, we look at categorical time series and address overdispersion using beta-binomial or Dirichlet-multinomial modeling. With respect to monitoring we consider detectors based on either a Shewhart-like single timepoint comparison between the observed count and the predictive distribution or by likelihood-ratio based cumulative sum methods. Finally, we illustrate how \pkg{surveillance} can support aberration detection in practice by integrating it into the monitoring workflow of a public health institution. Altogether, the present article shows how well \pkg{surveillance} can support automatic aberration detection in a public health surveillance context. } \Keywords{\proglang{R}, \texttt{surveillance}, outbreak detection, statistical process control} \Plainkeywords{R, surveillance, outbreak detection, statistical process control} %% without formatting %% at least one keyword must be supplied \Address{ Ma\"{e}lle Salmon, Dirk Schumacher\\ Department for Infectious Diseases Epidemiology\\ Robert Koch Institut Berlin\\ Seestrasse 10\\ 13353 Berlin, Germany\\ E-mail: \email{maelle.salmon@yahoo.se}, \email{mail@dirk-schumacher.net}\\ URL: \url{https://masalmon.github.io/}\\ \phantom{URL: }\url{http://www.dirk-schumacher.net/}\\ Michael H\"{o}hle\\ Department of Mathematics\\ Stockholm University\\ Kr\"{a}ftriket\\ 106 91 Stockholm, Sweden\\ E-mail: \email{hoehle@math.su.se}\\ URL: \url{http://www.math.su.se/~hoehle/} } \begin{document} \SweaveOpts{concordance=TRUE} \maketitle \section{Introduction} \label{sec:0} Nowadays, the fight against infectious diseases does not only require treating patients and setting up measures for prevention but also demands the timely recognition of emerging outbreaks in order to avoid their expansion. Along these lines, health institutions such as hospitals and public health authorities collect and store information about health events -- typically represented as individual case reports containing clinical information, and subject to specific case definitions. Analysing these data is crucial. It enables situational awareness in general and the timely detection of aberrant counts in particular, empowering the prevention of additional disease cases through early interventions. For any specific aggregation of characteristics of events, such as over-the-counter sales of pain medication, new cases of foot-and-mouth disease among cattle, or adults becoming sick with hepatitis C in Germany, data can be represented as time series of counts with days, weeks, months or years as time units of the aggregation. Abnormally high or low values at a given time point can reveal critical issues such as an outbreak of the disease or a malfunction of data transmission. Thus, identifying aberrations in the collected data is decisive, for human as well as for animal health. In this paper we present the \proglang{R} package \pkg{surveillance} which is available from the Comprehensive \proglang{R} Archive Network (CRAN) at \url{https://CRAN.R-project.org/package=surveillance}. It implements a range of methods for aberration detection in time series of counts and proportions. Statistical algorithms provide an objective and reproducible analysis of the data and allow the automation of time-consuming aspects of the monitoring process. In the recent years, a variety of such tools has flourished in the literature. Reviews of methods for aberration detection in time series of counts can be found in~\citet{Buckeridge2007}~and~\citet{Unkel2012}. However, the great variety of statistical algorithms for aberration detection can be a hurdle to practitioners wishing to find a suitable method for their data. It is our experience that ready-to-use and understandable implementation and the possibility to use the methods in a routine and automatic fashion are the criteria most important to the epidemiologists. The package offers an open-source implementation of state-of-the-art methods for the prospective detection of outbreaks in count data time series with established methods, as well as the visualization of the analysed time series. With the package, the practitioner can introduce statistical surveillance into routine practice without too much difficulty. As far as we know, the package is now used in several public health institutions in Europe: at the National Public Health Institute of Finland, at the Swedish Institute for Communicable Disease Control, at the French National Reference Centre for Salmonella, and at the Robert Koch Institute (RKI) in Berlin. The use of \pkg{surveillance} at the RKI shall be the focus of this paper. The package also provides many other functions serving epidemic modeling purposes. Such susceptible-infectious-recovered based models and their extensions towards regression based approaches are documented in other works~\citep{held-etal-2005,held_etal2006,meyer.etal2011,meyer.etal2014}. The present paper is designed as an extension of two previous articles about the \pkg{surveillance} package published as~\citet{hoehle-2007} and~\citet{hoehle-mazick-2010}. On the one hand, the paper aims at giving an overview of the new features added to the package since the publication of the two former papers. On the other hand it intends to illustrate how well the \pkg{surveillance} package can support routine practical disease surveillance by presenting the current surveillance system of infectious diseases at the RKI. This paper is structured as follows. Section~\ref{sec:1} gives an introduction to the data structure used in the package for representing and visualizing univariate or multivariate time series. Furthermore, the structure and use of aberration detection algorithms are explained. Section~\ref{sec:2} leads the reader through different surveillance methods available in the package. Section~\ref{sec:3} describes the integration of such methods in a complete surveillance system as currently in use at the RKI. Finally, a discussion rounds off the work. \section{Getting to know the basics of the package} <>= options(width=77) ## create directories for plots and cache dir.create("plots", showWarnings=FALSE) dir.create("monitoringCounts-cache", showWarnings=FALSE) @ \SweaveOpts{prefix.string=plots/monitoringCounts} \label{sec:1} The package provides a central S4 data class \code{sts} to capture multivariate or univariate time series. All further methods use objects of this class as an input. Therefore we first describe how to use the \code{sts} class and then, as all monitoring methods of the package conform to the same syntax, a typical call of a function for aberration detection will be presented. Furthermore, the visualization of time series and of the results of their monitoring is depicted. \subsection{How to store time series and related information} In \pkg{surveillance}, time series of counts and related information are encoded in a specific S4-class called \code{sts} (\textit{surveillance time series}) that represents possibly multivariate time series of counts. Denote the counts as $\left( y_{it} ; i = 1, \ldots,m, t = 1, \ldots, n \right)$, where $n$ is the length of the time series and $m$ is the number of entities, e.g., geographical regions, hospitals or age groups, being monitored. An example which we shall look at in more details is a time series representing the weekly counts of cases of infection with \textit{Salmonella Newport} in all 16 federal states of Germany from 2004 to 2013 with $n=525$ weeks and $m=16$ geographical units. Infections with \textit{Salmonella Newport}, a subtype of \textit{Salmonella}, can trigger gastroenteritis, prompting the seek of medical care. Infections with \textit{Salmonella} are notifiable in Germany since 2001 with data being forwarded to the RKI by federal states health authorities on behalf of the local health authorities. \subsubsection[Slots of the class sts]{Slots of the class \texttt{sts}} The key slots of the \code{sts} class are those describing the observed counts and the corresponding time periods of the aggregation. The observed counts $\left(y_{it}\right)$ are stored in the $n \times m$ matrix \code{observed}. A number of other slots characterize time. First, \code{epoch} denotes the corresponding time period of the aggregation. If the Boolean \code{epochAsDate} is \code{TRUE}, \code{epoch} is the numeric representation of \code{Date} objects corresponding to each observation in \code{observed}. If the Boolean \code{epochAsDate} is \code{FALSE}, \code{epoch} is the time index $1 \leq t \leq n$ of each of these observations. Then, \code{freq} is the number of observations per year: 365 for daily data, 52 for weekly data and 12 for monthly data. Finally, \code{start} is a vector representing the origin of the time series with two values that are the year and the epoch within that year for the first observation of the time series -- \code{c(2014, 1)} for a weekly time series starting on the first week of 2014 for instance. Other slots enable the storage of additional information. Known aberrations are recorded in the Boolean slot \code{state} of the same dimensions as \code{observed} with \code{TRUE} indicating an outbreak and \code{FALSE} indicating the absence of any known aberration. The monitored population in each of the units is stored in slot \code{populationFrac}, which gives either proportions or numbers. The geography of the zone under surveillance is accessible through slot \code{map} which is an object of class \code{SpatialPolygonsDataFrame}~\citep{sp1,sp2} providing a shape of the $m$ areas which are monitored and slot \code{neighbourhood}, which is a symmetric matrix of Booleans size $m^2$ stating the neighborhood matrix. Slot \code{map} is pertinent when units are geographical units, whereas \code{neighbourhood} could be useful in any case, e.g., for storing a contact matrix between age groups for modeling purposes. Finally, if monitoring has been performed on the data the information on its control arguments and its results are stored in \code{control}, \code{upperbound} and \code{alarm} presented in Section~\ref{sec:howto}. \subsubsection[Creation of an object of class sts]{Creation of an object of class \texttt{sts}} The creation of a \code{sts} object is straightforward, requiring a call to the function \code{new} together with the slots to be assigned as arguments. The input of data from external files is one possibility for getting the counts as it is described in \citet{hoehle-mazick-2010}. To exemplify the process we shall use weekly counts of \textit{Salmonella Newport} in Germany loaded using \code{data("salmNewport")}. Alternatively, one can use coercion methods to convert between the \texttt{ts} class and the \texttt{sts} class. Note that this only converts the content of the slot \texttt{observed}, that is, <>= all.equal(observed(salmNewport),observed(as(as(salmNewport,"ts"),"sts"))) @ Using the \texttt{ts} class as intermediate step also allows the conversion between other time series classes, e.g., from packages \pkg{zoo}~\citep{zoo} or \pkg{xts}~\citep{xts}. <>= # Load packages library("surveillance") library('gamlss') @ <>= # This code is the one used for the Salmon et al. 2014 JSS article. # Using this code all examples from the article can be reproduced. # computeALL is FALSE to avoid the computationally intensive parts # of the code (use of simulations to find a threshold value for categoricalCUSUM, # use of boda) but one can set it to TRUE to have it run. computeALL <- FALSE @ <>= # Define plot parameters #Add lines using grid by a hook function. Use NULL to align with tick marks hookFunc <- function() { grid(NA,NULL,lwd=1) } cex.text <- 1.7 cex.axis <- cex.text cex.main <- cex.text cex.lab <- cex.text cex.leg <- cex.text line.lwd <- 2#1 stsPlotCol <- c("mediumblue","mediumblue","red2") alarm.symbol <- list(pch=17, col="red2", cex=2,lwd=3) #Define list with arguments to use with do.call("legend", legOpts) legOpts <- list(x="topleft",legend=c(expression(U[t])),bty="n",lty=1,lwd=line.lwd,col=alarm.symbol$col,horiz=TRUE,cex=cex.leg) #How should the par of each plot look? par.list <- list(mar=c(6,5,5,5),family="Times") #Do this once y.max <- 0 plotOpts <- list(col=stsPlotCol,ylim=c(0,y.max), main='',lwd=c(1,line.lwd,line.lwd), dx.upperbound=0, #otherwise the upperbound line is put 0.5 off cex.lab=cex.lab, cex.axis=cex.axis, cex.main=cex.main, ylab="No. of reports", xlab="Time (weeks)",lty=c(1,1,1), legend.opts=legOpts,alarm.symbol=alarm.symbol, xaxis.tickFreq=list("%V"=atChange,"%m"=atChange,"%G"=atChange), xaxis.labelFreq=list("%Y"=atMedian), xaxis.labelFormat="%Y", par.list=par.list,hookFunc=hookFunc) @ <>= # Load data data("salmNewport") @ <>= # Plot y.max <- max(aggregate(salmNewport,by="unit")@observed,na.rm=TRUE) plotOpts2 <- modifyList(plotOpts,list(x=salmNewport,legend.opts=NULL,ylim=c(0,y.max),type = observed ~ time),keep.null=TRUE) plotOpts2$par.list <- list(mar=c(6,5,0,5),family="Times") plotOpts2$xaxis.tickFreq <- list("%m"=atChange,"%G"=atChange) do.call("plot",plotOpts2) @ \setkeys{Gin}{height=7cm, width=15cm} \begin{figure} \begin{center} <>= <> @ \end{center} \vspace{-1cm} \caption{Weekly number of cases of S. Newport in Germany, 2004-2013.} \label{fig:Newport} \end{figure} \subsubsection[Basic manipulation of objects of the class sts]{Basic manipulation of objects of the class \texttt{sts}} This time series above is represented as a multivariate \code{sts} object whose dimensions correspond to the 16 German federal states. Values are weekly counts so \code{freq = 52}. Weeks are here handled as \code{Date} objects by setting \code{epochAsDate} to \code{TRUE}. One can thus for instance get the weekday of the date by calling \code{weekdays(salmNewport)}. Furthermore, one can use the function \code{format} (and the package specific platform independent version \code{dateFormat}) to obtain \code{strftime} compatible formatting of the epochs. Another advantage of using \code{Date} objects is that the plot functions have been re-written for better management of ticks and labelling of the x-axis based on \code{strftime} compatible conversion specifications. For example, to get ticks at all weeks corresponding to the first week in a month as well as all weeks corresponding to the first in a year while placing labels consisting of the year at the median index per year: <>= plot(salmNewport, type = observed ~ time, xaxis.tickFreq = list("%V" = atChange, "%m" = atChange, "%G" = atChange), xaxis.labelFreq = list("%Y" = atMedian), xaxis.labelFormat = "%Y") @ which is shown in Figure~\ref{fig:Newport}. Here, the \code{atChange} and \code{atMedian} functions are small helper functions and the respective tick lengths are controlled by the \pkg{surveillance} specific option \code{surveillance.options("stsTickFactors")}. Actually \code{sts} objects can be plotted using different options: \code{type = observed ~ time} produces the time series for whole Germany as shown in Figure~\ref{fig:Newport}, whereas \code{type = observed ~ time | unit} is a panelled graph with each panel representing the time series of counts of a federal state as seen in Figure~\ref{fig:unit}. \setkeys{Gin}{height=7cm, width=9cm} \begin{figure} %\begin{center} %\hspace*{\fill}% \hspace{-1em} \subfloat[]{ <>= y.max <- max(observed(salmNewport[,2]),observed(salmNewport[,3]),na.rm=TRUE) plotOpts2 <- modifyList(plotOpts,list(x=salmNewport[,2],legend.opts=NULL,ylim=c(0,y.max)),keep.null=TRUE) plotOpts2$xaxis.tickFreq <- list("%G"=atChange) do.call("plot",plotOpts2) @ \includegraphics[width=9cm]{plots/monitoringCounts-unitPlot1.pdf} }\hspace{-3em}% \subfloat[]{ <>= # Plot with special function plotOpts2 <- modifyList(plotOpts,list(x=salmNewport[,3],legend.opts=NULL,ylim=c(0,y.max)),keep.null=TRUE) plotOpts2$xaxis.tickFreq <- list("%G"=atChange) do.call("plot",plotOpts2) @ \includegraphics[width=9cm]{plots/monitoringCounts-unitPlot2.pdf} } %\hspace*{\fill}% \caption{Weekly count of S. Newport in the German federal states (a) Bavaria and (b) Berlin.} \label{fig:unit} %\end{center} \end{figure} Once created one can use typical subset operations on a \code{sts} object: for instance \code{salmNewport[} \code{1:10, "Berlin"]} is a new \code{sts} object with weekly counts for Berlin during the 10 first weeks of the initial dataset; \code{salmNewport[isoWeekYear(epoch(salmNewport))\$ISOYear<=2010,]} uses the \code{surveillance}'s \code{isoWeekYear()} function to get a \code{sts} object with weekly counts for all federal states up to 2010. Moreover, one can take advantage of the \proglang{R} function \code{aggregate()}. For instance, \code{aggregate(salmNewport,by="unit")} returns a \code{sts} object representing weekly counts of \textit{Salmonella Newport} in Germany as a whole, whereas \code{aggregate(salmNewport, by = "time")} corresponds to the total count of cases in each federal state over the whole period. \subsection{How to use aberration detection algorithms} \label{sec:howto} Monitoring algorithms of the package operate on objects of the class \code{sts} as described below. \subsubsection{Statistical framework for aberration detection} We introduce the framework for aberration detection on an univariate time series of counts $\left\{y_t,\> t=1,2,\ldots\right\}$. Surveillance aims at detecting an \textit{aberration}, that is to say, an important change in the process occurring at an unknown time $\tau$. This change can be a step increase of the counts of cases or a more gradual change~\citep{Sonesson2003}. Based on the possibility of such a change, for each time $t$ we want to differentiate between the two states \textit{in-control} and \textit{out-of-control}. At any timepoint $t_0\geq 1$, the available information -- i.e., past counts -- is defined as $\bm{y}_{t_0} = \left\{ y_t\>;\> t\leq t_0\right\}$. Detection is based on a statistic $r(\cdot)$ with resulting alarm time $T_A = \min\left\{ t_0\geq 1 : r(\bm{y}_{t_0}) > g\right\}$ where $g$ is a known threshold. Functions for aberration detection thus use past data to estimate $r(\bm{y}_{t_0})$, and compare it to the threshold $g$, above which the current count can be considered as suspicious and thus doomed as \textit{out-of-control}. Threshold values and alarm Booleans for each timepoint of the monitored range are saved in the slots \code{upperbound} and \code{alarm}, of the same dimensions as \code{observed}, while the method parameters used for computing the threshold values and alarm Booleans are stored in the slot \code{control}. \subsubsection{Aberration detection in the package} To perform such a monitoring of the counts of cases, one has to choose one of the surveillance algorithms of the package -- this choice will be the topic of Section~\ref{sec:using}. Then, one must indicate which part of the time series or \code{range} has to be monitored -- for instance the current year. Lastly, one needs to specify the parameters specific to the algorithm. \subsubsection{Example with the EARS C1 method} We will illustrate the basic principle by using the \code{earsC}~function~that implements the EARS (Early Aberration Detection System) methods of the CDC as described in~\citet{SIM:SIM3197}. This algorithm is especially convenient in situations when little historic information is available. It offers three variants called C1, C2 and C3. Here we shall expand on C1 for which the baseline are the 7 timepoints before the assessed timepoint $t_0$, that is to say $\left(y_{t_0-7},\ldots,y_{t_0-1}\right)$. The expected value is the mean of the baseline. The method is based on a statistic called $C_{t_0}$ defined as $C_{t_0}= \frac{(y_{t_0}-\bar{y}_{t_0})}{s_{t_0}}$, where $$\bar{y}_{t_0}= \frac{1}{7} \cdot\sum_{i=t_0-7}^{t_0-1} y_i \textnormal{ and } s_{t_0}^2= \frac{1}{7-1} \cdot\sum_{i=t_0-7}^{t_0-1} \left(y_i - \bar{y}_{t_0}\right)^2.$$ Under the null hypothesis of no outbreak, it is assumed that $C_{t_0} \stackrel{H_0}{\sim} {N}(0,1)$. The upperbound $U_{t_0}$ is found by assuming that $y_t$ is normal, estimating parameters by plug-in and then taking the $(1-\alpha)$-th quantile of this distribution, i.e. $U_{t_0}= \bar{y}_{t_0} + z_{1-\alpha}s_{t_0}$, where $z_{1-\alpha}$ is the $(1-\alpha)$-quantile of the standard normal distribution. An alarm is raised if $y_{t_0} > U_{t_0}$. The output of the algorithm is a \code{sts} object that contains subsets of slots \code{observed}, \code{population} and \code{state} defined by the range of timepoints specified in the input -- \textit{e.g} the last 20 timepoints of the time series, and with the slots \code{upperbound} and \code{alarm} filled by the output of the algorithm. Information relative to the \code{range} of data to be monitored and to the parameters of the algorithm, such as \code{alpha} for \code{earsC}, has to be formulated in the slot \code{control}. This information is also stored in the slot \code{control} of the returned \code{sts} object for later inspection. <>= in2011 <- which(isoWeekYear(epoch(salmNewport))$ISOYear == 2011) salmNewportGermany <- aggregate(salmNewport, by = "unit") control <- list(range = in2011, method = "C1", alpha = 0.05) surv <- earsC(salmNewportGermany, control = control) plot(surv) @ <>= # Range for the monitoring in2011 <- which(isoWeekYear(epoch(salmNewport))$ISOYear==2011) # Aggregate counts over Germany salmNewportGermany <- aggregate(salmNewport,by="unit") # Choose parameters control <- list(range = in2011, method="C1", alpha=0.05) # Apply earsC function surv <- earsC(salmNewportGermany, control=control) # Plot the results #plot(surv) # Plot y.max <- max(observed(surv),upperbound(surv),na.rm=TRUE) do.call("plot",modifyList(plotOpts,list(x=surv,ylim=c(0,y.max)),keep.null=TRUE)) @ \setkeys{Gin}{height=7cm, width=15cm} \begin{figure} \begin{center} <>= <> @ \end{center} \vspace{-1cm} \caption{Weekly reports of S. Newport in Germany in 2011 monitored by the EARS C1 method. The line represents the upperbound calculated by the algorithm. Triangles indicate alarms that are the timepoints where the observed number of counts is higher than the upperbound.} \label{fig:NewportEARS} \end{figure} The \code{sts} object is easily visualized using the function \code{plot} as depicted in Figure~\ref{fig:NewportEARS}, which shows the upperbound as a solid line and the alarms -- timepoints where the upperbound has been exceeded -- as triangles. The four last alarms correspond to a known outbreak in 2011 due to sprouts~\citep{Newport2011}. One sees that the upperbound right after the outbreak is affected by the outbreak: it is very high, so that a smaller outbreak would not be detected. The EARS methods C1, C2 and C3 are simple in that they only use information from the very recent past. This is appropriate when data has only been collected for a short time or when one expects the count to be fairly constant. However, data from the less recent past often encompass relevant information about e.g., seasonality and time trend, that one should take into account when estimating the expected count and the associated threshold. For instance, ignoring an increasing time trend could decrease sensitivity. Inversely, overlooking an annual surge in counts during the summer could decrease specificity. Therefore, it is advisable to use detection methods whose underlying models incorporate essential characteristics of time series of disease count data such as overdispersion, seasonality, time trend and presence of past outbreaks in the records~\citep{Unkel2012,Shmueli2010}. Moreover, the EARS methods do not compute a proper prediction interval for the current count. Sounder statistical methods will be reviewed in the next section. \section[Using surveillance in selected contexts]{Using \pkg{surveillance} in selected contexts} \label{sec:using} \label{sec:2} More than a dozen algorithms for aberration detection are implemented in the package. Among those, this section presents a set of representative algorithms, which are already in routine application at several public health institutions or which we think have the potential to become so. First we describe the Farrington method introduced by~\citet{farrington96} together with the improvements proposed by~\citet{Noufaily2012}. As a Bayesian counterpart to these methods we present the BODA method published by~\citet{Manitz2013} which allows the easy integration of covariates. All these methods perform one-timepoint detection in that they detect aberrations only when the count at the currently monitored timepoint is above the threshold. Hence, no accumulation of evidence takes place. As an extension, we introduce an implementation of the negative binomial cumulative sum (CUSUM) of~\citet{hoehle.paul2008} that allows the detection of sustained shifts by accumulating evidence over several timepoints. Finally, we present a method suitable for categorical data described in~\citet{hoehle2010} that is also based on cumulative sums. \subsection{One size fits them all for count data} Two implementations of the Farrington method, which is currently \textit{the} method of choice at European public health institutes \citep{hulth_etal2010}, exist in the package. First, the original method as described in \citet{farrington96} is implemented as the function \code{farrington}. Its use was already described in \citet{hoehle-mazick-2010}. Now, the newly implemented function \code{farringtonFlexible} supports the use of this \textit{original method} as well as of the \textit{improved method} built on suggestions made by~\citet{Noufaily2012} for improving the specificity without reducing the sensitivity. In the function \code{farringtonFlexible} one can choose to use the original method or the improved method by specification of appropriate \code{control} arguments. Which variant of the algorithm is to be used is determined by the contents of the \code{control} slot. In the example below, \code{control1} corresponds to the use of the original method and \code{control2} indicates the options for the improved method. <>= # Control slot for the original method control1 <- list(range=in2011,noPeriods=1, b=4,w=3,weightsThreshold=1,pastWeeksNotIncluded=3, pThresholdTrend=0.05,thresholdMethod="delta",alpha=0.05, limit54=c(0,50)) # Control slot for the improved method control2 <- list(range=in2011,noPeriods=10, b=4,w=3,weightsThreshold=2.58,pastWeeksNotIncluded=26, pThresholdTrend=1,thresholdMethod="nbPlugin",alpha=0.05, limit54=c(0,50)) @ <>= control1 <- list(range = in2011, noPeriods = 1, b = 4, w = 3, weightsThreshold = 1, pastWeeksNotIncluded = 3, pThresholdTrend = 0.05, thresholdMethod = "delta") control2 <- list(range = in2011, noPeriods = 10, b = 4, w = 3, weightsThreshold = 2.58, pastWeeksNotIncluded = 26, pThresholdTrend = 1, thresholdMethod = "nbPlugin") @ In both cases the steps of the algorithm are the same. In a first step, an overdispersed Poisson generalized linear model with log link is fitted to the reference data $\bm{y}_{t_0} \subseteq \left\{ y_t\>;\> t\leq t_0\right\}$, where $\E(y_t)=\mu_t$ with $\log \mu_t = \alpha + \beta t$ and $\Var(y_t)=\phi\cdot\mu_t$ and where $\phi\geq1$ is ensured. The original method took seasonality into account by using a subset of the available data as reference data for fitting the GLM: \code{w} timepoints centred around the timepoint located $1,2,\ldots,b$ years before $t_0$, amounting to a total $b \cdot (2w+1)$ reference values. However, it was shown in~\citet{Noufaily2012} that the algorithm performs better when using more historical data. In order to do do so without disregarding seasonality, the authors introduced a zero order spline with 11 knots, which can be conveniently represented as a 10-level factor. We have extended this idea in our implementation so that one can choose an arbitrary number of periods in each year. Thus, $\log \mu_t = \alpha + \beta t +\gamma_{c(t)}$ where $\gamma_{c(t)}$ are the coefficients of a zero order spline with $\mathtt{noPeriods}+1$ knots, which can be conveniently represented as a $\mathtt{noPeriods}$-level factor that reflects seasonality. Here, $c(t)$ is a function indicating in which season or period of the year $t$ belongs to. The algorithm uses \code{w}, \code{b} and \texttt{noPeriods} to deduce the length of periods so they have the same length up to rounding. An exception is the reference window centred around $t_0$. Figure~\ref{fig:fPlot} shows a minimal example, where each character corresponds to a different period. Note that setting $\mathtt{noPeriods} = 1$ corresponds to using the original method with only a subset of the data: there is only one period defined per year, the reference window around $t_0$ and other timepoints are not included in the model. \setkeys{Gin}{height=3cm, width=7cm} \begin{figure} \subfloat[$\texttt{noPeriods}=2$]{ <>= library(ggplot2) library(grid) # for rectanges widthRectangles <- 10 # dimensions for the ticks heightTick <- 4 xTicks <- c(15,67,119) yTicksStart <- rep(0,3) yTicksEnd <- rep(0,3) yTicksEnd2 <- rep(-5,3) textTicks <- c("t-2*p","t-p","t[0]") xBigTicks <- c(xTicks[1:2]-widthRectangles/2,xTicks[1:2]+widthRectangles/2,xTicks[3]-widthRectangles/2,xTicks[3]) yTicksBigEnd <- rep(0,6) yTicksBigStart <- rep(heightTick,6) # to draw the horizontal line vectorDates <- rep(0,150) dates <- seq(1:150) data <- data.frame(dates,vectorDates) xPeriods <- c(15,67,117,15+26,67+26) ################################################################################ p <- ggplot() + # white theme_void() + geom_segment(aes(x = 0, y = -20, xend = 200, yend = 10), size=2, arrow = arrow(length = unit(0.5, "cm")), colour ='white') + # time arrow geom_segment(aes(x = 0, y = 0, xend = 150, yend = 0), size=1, arrow = arrow(length = unit(0.5, "cm"))) + # ticks geom_segment(aes(x = xTicks, y = yTicksEnd2, xend = xTicks, yend = yTicksStart ), arrow = arrow(length = unit(0.3, "cm")),size=1)+ # big ticks geom_segment(aes(x = xBigTicks, y = yTicksBigStart, xend = xBigTicks, yend = yTicksBigEnd*2), size=1)+ # time label annotate("text", label = "Time", x = 170, y = 0, size = 8, colour = "black", family="serif") + # ticks labels annotate('text',label=c("t[0]-2 %.% freq","t[0]-freq","t[0]"),x = xTicks, y = yTicksEnd - 10, size = 8,family="serif",parse=T) p+ # periods labels annotate('text',label=c("A","A","A","B","B"),x = xPeriods, y = rep(6,5), size = 8,family="serif",parse=T) @ \includegraphics[width=0.45\textwidth]{plots/monitoringCounts-fPlot1.pdf} } \qquad \subfloat[$\texttt{noPeriods}=3$]{ <>= yTicksBigEnd2 <- rep(0,4) yTicksBigStart2 <- rep(heightTick,4) newX <- c(xTicks[1:2]+widthRectangles/2+52-widthRectangles,xTicks[1:2]+52/2) xPeriods <- c(15,67,117,15+16,67+16,15+35,67+35) p + geom_segment(aes(x = newX, y = yTicksBigStart2, xend = newX, yend = yTicksBigEnd2), size=1)+ # periods labels annotate('text',label=c("A","A","A","B","B","C","C"),x = xPeriods, y = rep(6,7), size = 8,family="serif",parse=T) @ \includegraphics[width=0.45\textwidth]{plots/monitoringCounts-fPlot2.pdf} } \caption{Construction of the noPeriods-level factor to account for seasonality, depending on the value of the half-window size $w$ and of the freq of the data. Here the number of years to go back in the past $b$ is 2. Each level of the factor variable corresponds to a period delimited by ticks and is denoted by a character. The windows around $t_0$ are respectively of size $2w+1$,~$2w+1$ and $w+1$. The segments between them are divided into the other periods so that they have the same length up to rounding.} \label{fig:fPlot} \end{figure} Moreover, it was shown in \citet{Noufaily2012} that it is better to exclude the last 26 weeks before $t_0$ from the baseline in order to avoid reducing sensitivity when an outbreak has started recently before $t_0$. In the \code{farringtonFlexible} function, one controls this by specifying \code{pastWeeksNotIncluded}, which is the number of last timepoints before $t_0$ that are not to be used. The default value is 26. Lastly, in the new implementation a population offset can be included in the GLM by setting \code{populationBool} to \code{TRUE} and supplying the possibly time-varying population size in the \code{population} slot of the \code{sts} object, but this will not be discussed further here. In a second step, the expected number of counts $\mu_{t_0}$ is predicted for the current timepoint $t_0$ using this GLM. An upperbound $U_{t_0}$ is calculated based on this predicted value and its variance. The two versions of the algorithm make different assumptions for this calculation. The original method assumes that a transformation of the prediction error $g\left(y_{t_0}-\hat{\mu}_{t_0}\right)$ is normally distributed, for instance when using the identity transformation $g(x)=x$ one obtains $$y_{t_0} - \hat{\mu}_0 \sim \mathcal{N}(0,\Var(y_{t_0}-\hat{\mu}_0))\cdot$$ The upperbound of the prediction interval is then calculated based on this distribution. First we have that $$ \Var(y_{t_0}-\hat{\mu}_{t_0}) = \Var(\hat{y}_{t_0}) + \Var(\hat{\mu}_{t_0})=\phi\mu_0+\Var(\hat{\mu}_{t_0}) $$ with $\Var(\hat{y}_{t_0})$ being the variance of an observation and $\Var(\hat{\mu}_{t_0})$ being the variance of the estimate. The threshold, defined as the upperbound of a one-sided $(1-\alpha)\cdot 100\%$ prediction interval, is then $$U_{t_0} = \hat{\mu}_0 + z_{1-\alpha}\widehat{\Var}(y_{t_0}-\hat{\mu}_{t_0})\cdot$$ This method can be used by setting the control option \code{thresholdMethod} equal to "\code{delta}". However, a weakness of this procedure is the normality assumption itself, so that an alternative was presented in \citet{Noufaily2012} and implemented as \code{thresholdMethod="Noufaily"}. The central assumption of this approach is that $y_{t_0} \sim \NB\left(\mu_{t_0},\nu\right)$, with $\mu_{t_0}$ the mean of the distribution and $\nu=\frac{\mu_{t_0}}{\phi-1}$ its overdispersion parameter. In this parameterization, we still have $\E(y_t)=\mu_t$ and $\Var(y_t)=\phi\cdot\mu_t$ with $\phi>1$ -- otherwise a Poisson distribution is assumed for the observed count. The threshold is defined as a quantile of the negative binomial distribution with plug-in estimates $\hat{\mu}_{t_0}$ and $\hat{\phi}$. Note that this disregards the estimation uncertainty in $\hat{\mu}_{t_0}$ and $\hat{\phi}$. As a consequence, the method "\code{muan}" (\textit{mu} for $\mu$ and \textit{an} for asymptotic normal) tries to solve the problem by using the asymptotic normal distribution of $(\hat{\alpha},\hat{\beta})$ to derive the upper $(1-\alpha)\cdot 100\%$ quantile of the asymptotic normal distribution of $\hat{\mu}_{t_0}=\hat{\alpha}+\hat{\beta}t_0$. Note that this does not reflect all estimation uncertainty because it disregards the estimation uncertainty of $\hat{\phi}$. Note also that for time series where the variance of the estimator is large, the upperbound also ends up being very large. Thus, the method "\code{nbPlugin}" seems to provide information that is easier to interpret by epidemiologists but with "\code{muan}" being more statistically correct. In a last step, the observed count $y_{t_0}$ is compared to the upperbound $U_{t_0}$ and an alarm is raised if $y_{t_0} > U_{t_0}$. In both cases the fitting of the GLM involves three important steps. First, the algorithm performs an optional power-transformation for skewness correction and variance stabilisation, depending on the value of the parameter \code{powertrans} in the \code{control} slot. Then, the significance of the time trend is checked. The time trend is included only when significant at a chosen level \code{pThresholdTrend}, when there are more than three years reference data and if no overextrapolation occurs because of the time trend. Lastly, past outbreaks are reweighted based on their Anscombe residuals. In \code{farringtonFlexible} the limit for reweighting past counts, \code{weightsThreshold}, can be specified by the user. If the Anscombe residual of a count is higher than \code{weightsThreshold} it is reweighted accordingly in a second fitting of the GLM. \citet{farrington96} used a value of $1$ whereas \citet{Noufaily2012} advise a value of $2.56$ so that the reweighting procedure is less drastic, because it also shrinks the variance of the observations. The original method is widely used in public health surveillance~\citep{hulth_etal2010}. The reason for its success is primarily that it does not need to be fine-tuned for each specific pathogen. It is hence easy to implement it for scanning data for many different pathogens. Furthermore, it does tackle classical issues of surveillance data: overdispersion, presence of past outbreaks that are reweighted, seasonality that is taken into account differently in the two methods. An example of use of the function is shown in Figure~\ref{fig:newportFar} with the code below. <>= salm.farrington <- farringtonFlexible(salmNewportGermany, control1) salm.noufaily <- farringtonFlexible(salmNewportGermany, control2) @ \setkeys{Gin}{height=7cm, width=9cm} \begin{figure} \hspace{-1em} %\begin{center} \subfloat[]{ <>= # Plot y.max <- max(observed(salm.farrington),upperbound(salm.farrington),observed(salm.noufaily),upperbound(salm.noufaily),na.rm=TRUE) do.call("plot",modifyList(plotOpts,list(x=salm.farrington,ylim=c(0,y.max)))) @ \includegraphics[width=9cm]{plots/monitoringCounts-farPlot1.pdf} } \hspace{-3em} \subfloat[]{ <>= # Plot do.call("plot",modifyList(plotOpts,list(x=salm.noufaily,ylim=c(0,y.max)))) @ \includegraphics[width=9cm]{plots/monitoringCounts-farPlot2.pdf} } \caption{S. Newport in Germany in 2011 monitored by (a) the original method and (b) the improved method. For the figure we turned off the option that the threshold is only computed if there were more than 5 cases during the 4 last timepoints including $t_0$. One gets less alarms with the most recent method and still does not miss the outbreak in the summer. Simulations on more time series support the use of the improved method instead of the original method.} \label{fig:newportFar} \end{figure} % With our implementation of the improvements presented in \citet{Noufaily2012} we hope that the method with time can replace the original method in routine use. The RKI system described in Section~\ref{sec:RKI} already uses this improved method. \subsubsection{Similar methods in the package} The package also contains further methods based on a subset of the historical data: \code{bayes}, \code{rki} and \code{cdc}. See Table~\ref{table:ref} for the corresponding references. Here, \code{bayes} uses a simple conjugate prior-posterior approach and computes the parameters of a negative binomial distribution based on past values. The procedure \code{rki} makes either the assumption of a normal or a Poisson distribution based on the mean of past counts. Finally, \code{cdc} aggregates weekly data into 4-week-counts and computes a normal distribution based upper confidence interval. None of these methods offer the inclusion of a linear trend, down-weighting of past outbreaks or power transformation of the data. Although these methods are good to have at hand, we personally recommend the use of the improved method implemented in the function \code{farringtonFlexible} because it is rather fast and makes use of more historical data than the other methods. \subsection{A Bayesian refinement} The \code{farringtonFlexible} function described previously was a first indication that the \textit{monitoring} of surveillance time series requires a good \textit{modeling} of the time series before assessing aberrations. Generalized linear models (GLMs) and generalized additive models (GAMs) are well-established and powerful modeling frameworks for handling the count data nature and trends of time series in a regression context. The \code{boda} procedure~\citep{Manitz2013} continues this line of thinking by extending the simple GLMs used in the \code{farrington} and \code{farringtonFlexible} procedures to a fully fledged Bayesian GAM allowing for penalized splines, e.g., to describe trends and seasonality, while simultaneously adjusting for previous outbreaks or concurrent processes influencing the case counts. A particular advantage of the Bayesian approach is that it constitutes a seamless framework for performing both estimation and subsequent prediction: the uncertainty in parameter estimation is directly carried forward to the predictive posterior distribution. No asymptotic normal approximations nor plug-in inference is needed. For fast approximate Bayesian inference we use the \pkg{INLA} \proglang{R} package~\citep{INLA} to fit the Bayesian GAM. Still, monitoring with \code{boda} is substantially slower than using the Farrington procedures. Furthermore, detailed regression modeling is only meaningful if the time series is known to be subject to external influences on which information is available. Hence, the typical use at a public health institution would be the detailed analysis of a few selected time series, e.g., critical ones or those with known trend character. As an example, \citet{Manitz2013} studied the influence of absolute humidity on the occurrence of weekly reported campylobacter cases in Germany. <>= # Load data and create \code{sts}-object data("campyDE") cam.sts <- sts(epoch=as.numeric(campyDE$date), epochAsDate=TRUE, observed=campyDE$case, state=campyDE$state) par(las=1) # Plot y.max <- max(observed(cam.sts),upperbound(cam.sts),na.rm=TRUE) plotOpts3 <- modifyList(plotOpts,list(x=cam.sts,ylab="",legend.opts=NULL,ylim=c(0,y.max),type = observed ~ time),keep.null=TRUE) plotOpts3$xaxis.tickFreq <- list("%m"=atChange,"%G"=atChange) do.call("plot",plotOpts3) par(las=0) #mtext(side=2,text="No. of reports", # las=0,line=3, cex=cex.text,family="Times") par(family="Times") text(-20, 2600, "No. of\n reports", pos = 3, xpd = T,cex=cex.text) text(510, 2900, "Absolute humidity", pos = 3, xpd = T,cex=cex.text) text(510, 2550, expression(paste("[",g/m^3,"]", sep='')), pos = 3, xpd = T,cex=cex.text) lines(campyDE$hum*50, col="white", lwd=2) axis(side=4, at=seq(0,2500,by=500),labels=seq(0,50,by=10),las=1,cex.lab=cex.text, cex=cex.text,cex.axis=cex.text,pos=length(epoch(cam.sts))+20) #mtext(side=4,text=expression(paste("Absolute humidity [ ",g/m^3,"]", sep='')), # las=0,line=1, cex=cex.text,family="Times") @ \setkeys{Gin}{height=7cm, width=15cm} \begin{figure} \begin{center} <>= <> @ \end{center} \vspace{-1cm} \caption{Weekly number of reported campylobacteriosis cases in Germany 2002-2011 as vertical bars. In addition, the corresponding mean absolute humidity time series is shown as a white curve.} \label{fig:campyDE} \end{figure} <>= data("campyDE") cam.sts <- sts(epoch = as.numeric(campyDE$date), epochAsDate = TRUE, observed = campyDE$case, state = campyDE$state) plot(cam.sts, legend = NULL, xlab = "time [weeks]", ylab = "No. reported", col = "gray", cex = 2, cex.axis = 2, cex.lab = 2) lines(campyDE$hum * 50, col = "darkblue", lwd = 2) @ The corresponding plot of the weekly time series is shown in Figure~\ref{fig:campyDE}. We observe a strong association between humidity and case numbers - an association which is stronger than with, e.g., temperature or relative humidity. As noted in \citet{Manitz2013} the excess in cases in 2007 is thus partly explained by the high atmospheric humidity. Furthermore, an increase in case numbers during the 2011 STEC O104:H4 outbreak is observed, which is explained by increased awareness and testing of many gastroenteritits pathogens during that period. The hypothesis is thus that there is no actual increased disease activity~\citep{bernard_etal2014}. Unfortunately, the German reporting system only records positive test results without keeping track of the number of actual tests performed -- otherwise this would have been a natural adjustment variable. Altogether, the series contains several artefacts which appear prudent to address when monitoring the campylobacteriosis series. The GAM in \code{boda} is based on the negative binomial distribution with time-varying expectation and time constant overdispersion parameter, i.e., \begin{align*} y_t &\sim \operatorname{NB}(\mu_t,\nu) \end{align*} with $\mu_{t}$ the mean of the distribution and $\nu$ the dispersion parameter~\citep{lawless1987}. Hence, we have $\E(y_t)=\mu_t$ and $\Var(y_t)=\mu_t\cdot(1+\mu_t/\nu)$. The linear predictor is given by \begin{align*} \log(\mu_t) &= \alpha_{0t} + \beta t + \gamma_t + \bm{x}_t^\top \bm{\delta} + \xi z_t, \quad t=1,\ldots,t_0. \end{align*} Here, the time-varying intercept $\alpha_{0t}$ is described by a penalized spline (e.g., first or second order random walk) and $\gamma_t$ denotes a periodic penalized spline (as implemented in \code{INLA}) with period equal to the periodicity of the data. Furthermore, $\beta$ characterizes the effect of a possible linear trend (on the log-scale) and $\xi$ is the effect of previous outbreaks. Typically, $z_t$ is a zero-one process denoting if there was an outbreak in week $t$, but more involved adaptive and non-binary forms are imaginable. Finally, $\bm{x}_t$ denotes a vector of possibly time-varying covariates, which influence the expected number of cases. Data from timepoints $1,\ldots,t_0-1$ are now used to determine the posterior distribution of all model parameters and subsequently the posterior predictive distribution of $y_{t_0}$ is computed. If the actual observed value of $y_{t_0}$ is above the $(1-\alpha)\cdot 100\%$ quantile of the predictive posterior distribution an alarm is flagged for $t_0$. Below we illustrate the use of \code{boda} to monitor the campylobacteriosis time series from 2007. In the first case we include in the model for $\log\left(\mu_t\right)$ penalized splines for trend and seasonality and a simple linear trend. <>= rangeBoda <- which(epoch(cam.sts) >= as.Date("2007-01-01")) control.boda <- list(range = rangeBoda, X = NULL, trend = TRUE, season = TRUE, prior = "iid", alpha = 0.025, mc.munu = 10000, mc.y = 1000, samplingMethod = "marginals") boda <- boda(cam.sts, control = control.boda) @ <>= rangeBoda <- which(epoch(cam.sts)>=as.Date("2007-01-01")) if (computeALL) { library("INLA") control.boda <- list(range=rangeBoda, X=NULL, trend=TRUE, season=TRUE, prior='rw1', alpha=0.025, mc.munu=10000, mc.y=1000, samplingMethod = "marginals") # boda without covariates: trend + spline + periodic spline boda <- boda(cam.sts, control=control.boda) save(boda, file = "monitoringCounts-cache/boda.RData") } else { load("monitoringCounts-cache/boda.RData") } @ In the second case we instead use only penalized and linear trend components, and, furthermore, include as covariates lags 1--4 of the absolute humidity as well as zero-one indicators for $t_0$ belonging to the last two weeks (\code{christmas}) or first two weeks (\code{newyears}) of the year, respectively. The later two variables are needed, because there is a systematically changed reporting behavior at the turn of the year (c.f.\ Figure~\ref{fig:campyDE}). Finally, \code{O104period} is an indicator variable on whether the reporting week belongs to the W21--W30 2011 period of increased awareness during the O104:H4 STEC outbreak. No additional correction for past outbreaks is made. <>= covarNames <- c("l1.hum", "l2.hum", "l3.hum", "l4.hum", "newyears", "christmas", "O104period") control.boda2 <- modifyList(control.boda, list(X = campyDE[, covarNames], season = FALSE)) boda.covars <- boda(cam.sts, control = control.boda2) @ <>= if (computeALL) { # boda with covariates: trend + spline + lagged hum + indicator variables covarNames <- c(paste("l",1:4,".hum",sep=""),"newyears","christmas", "O104period") control.boda2 <- modifyList(control.boda, list(X=campyDE[,covarNames],season=FALSE)) boda.covars <- boda(cam.sts, control=control.boda2) save(boda.covars, file = "monitoringCounts-cache/boda.covars.RData") } else { load("monitoringCounts-cache/boda.covars.RData") } @ We plot \code{boda.covars} in Figure~\ref{fig:b} and compare the output of the two boda calls with the output of \code{farrington}, \code{farringtonFlexible} and \code{bayes} in Figure~\ref{fig:alarmplot}. <>= cam.surv <- combineSTS(list(boda.covars=boda.covars,boda=boda,bayes=bayes, farrington=far,farringtonFlexible=farflex)) plot(cam.surv,type = alarm ~ time) @ Note here that the \code{bayes} procedure is not really useful as the adjustment for seasonality only works poorly. Moreover, we think that this method produces many false alarms for this time series because it disregards the increasing time trend in number of reported cases. Furthermore, it becomes clear that the improved Farrington procedure acts similar to the original procedure, but the improved reweighting and trend inclusion produces fewer alarms. The \code{boda} method is to be seen as a step towards more Bayesian thinking in aberration detection. However, besides its time demands for a detailed modeling, the speed of the procedure is also prohibitive as regards routine application. As a response~\citet{Maelle} introduce a method which has two advantages: it allows to adjust outbreak detection for reporting delays and includes an approximate inference method much faster than the INLA inference method. However, its linear predictor is more in the style of~\citet{Noufaily2012} not allowing for additional covariates or penalized options for the intercept. <>= # Plot with special function y.max <- max(observed(boda.covars),upperbound(boda.covars),na.rm=TRUE) plotOpts2 <- modifyList(plotOpts,list(x=boda.covars,ylim=c(0,y.max)),keep.null=TRUE) plotOpts2$xaxis.tickFreq <- list("%m"=atChange,"%G"=atChange) do.call("plot",plotOpts2) @ \setkeys{Gin}{height=7cm, width=15cm} \begin{figure} \begin{center} <>= <> @ \end{center} \vspace{-1cm} \caption{Weekly reports of Campylobacter in Germany in 2007-2011 monitored by the boda method with covariates. The line represents the upperbound calculated by the algorithm. Triangles indicate alarms, \textit{i.e.}, timepoints where the observed number of counts is higher than the upperbound.} \label{fig:b} \end{figure} <>= control.far <- list(range=rangeBoda,b=4,w=5,alpha=0.025*2) far <- farrington(cam.sts,control=control.far) #Both farringtonFlexible and algo.bayes uses a one-sided interval just as boda. control.far2 <-modifyList(control.far,list(alpha=0.025)) farflex <- farringtonFlexible(cam.sts,control=control.far2) bayes <- suppressWarnings(bayes(cam.sts,control=control.far2)) @ <>= # Small helper function to combine several equally long univariate sts objects combineSTS <- function(stsList) { epoch <- as.numeric(epoch(stsList[[1]])) observed <- NULL alarm <- NULL for (i in 1:length(stsList)) { observed <- cbind(observed,observed(stsList[[i]])) alarm <- cbind(alarm,alarms(stsList[[i]])) } colnames(observed) <- colnames(alarm) <- names(stsList) res <- sts(epoch=as.numeric(epoch), epochAsDate=TRUE, observed=observed, alarm=alarm) return(res) } @ <>= # Make an artifical object containing two columns - one with the boda output # and one with the farrington output cam.surv <- combineSTS(list(boda.covars=boda.covars,boda=boda,bayes=bayes, farrington=far,farringtonFlexible=farflex)) par(mar=c(4,8,2.1,2),family="Times") plot(cam.surv,type = alarm ~ time,lvl=rep(1,ncol(cam.surv)), alarm.symbol=list(pch=17, col="red2", cex=1,lwd=3), cex.axis=1,xlab="Time (weeks)",cex.lab=1,xaxis.tickFreq=list("%m"=atChange,"%G"=atChange),xaxis.labelFreq=list("%G"=at2ndChange), xaxis.labelFormat="%G") @ \setkeys{Gin}{height=7cm, width=16cm} \begin{figure} \begin{center} <>= <> @ \end{center} \caption{Alarmplot showing the alarms for the campylobacteriosis time series for four different algorithms.} \label{fig:alarmplot} \end{figure} \subsection{Beyond one-timepoint detection} GLMs as used in the Farrington method are suitable for the purpose of aberration detection since they allow a regression approach for adjusting counts for known phenomena such as trend or seasonality in surveillance data. Nevertheless, the Farrington method only performs one-timepoint detection. In some contexts it can be more relevant to detect sustained shifts early, e.g., an outbreak could be characterized at first by counts slightly higher than usual in subsequent weeks without each weekly count being flagged by one-timepoint detection methods. Control charts inspired by statistical process control (SPC) e.g., cumulative sums would allow the detection of sustained shifts. Yet they were not tailored to the specific characteristics of surveillance data such as overdispersion or seasonality. The method presented in \citet{hoehle.paul2008} conducts a synthesis of both worlds, i.e., traditional surveillance methods and SPC. The method is implemented in the package as the function \code{glrnb}, whose use is explained here. \subsubsection{Definition of the control chart} For the control chart, two distributions are defined, one for each of the two states \textit{in-control} and \textit{out-of-control}, whose likelihoods are compared at each time step. The \textit{in-control} distribution $f_{\bm{\theta}_0}(y_t|\bm{z}_t)$ with the covariates $\bm{z}_t$ is estimated by a GLM of the Poisson or negative binomial family with a log link, depending on the overdispersion of the data. In this context, the standard model for the \textit{in-control} mean is $$\log \mu_{0,t}=\beta_0+\beta_1t+\sum_{s=1}^S\left[\beta_{2s}\cos \left(\frac{2\pi s t}{\mathtt{Period}}\right)+\beta_{2s+1}\sin \left(\frac{2\pi s t}{\mathtt{Period}}\right)\right] $$ where $S$ is the number of harmonic waves to use and \texttt{Period} is the period of the data as indicated in the \code{control} slot, for instance 52 for weekly data. However, more flexible linear predictors, e.g., containing splines, concurrent covariates or an offset could be used on the right hand-side of the equation. The GLM could therefore be made very similar to the one used by~\citet{Noufaily2012}, with reweighting of past outbreaks and various criteria for including the time trend. The parameters of the \textit{in-control} and \textit{out-of-control} models are respectively given by $\bm{\theta}_0$ and $\bm{\theta}_1$. The \textit{out-of-control} mean is defined as a function of the \textit{in-control} mean, either with a multiplicative shift (additive on the log-scale) whose size $\kappa$ can be given as an input or reestimated at each timepoint $t>1$, $\mu_{1,t}=\mu_{0,t}\cdot \exp(\kappa)$, or with an unknown autoregressive component as in \citet{held-etal-2005}, $\mu_{1,t}=\mu_{0,t}+\lambda y_{t-1}$ with unknown $\lambda>0$. In \code{glrnb}, timepoints are divided into two intervals: phase 1 and phase 2. The \textit{in-control} mean and overdispersion are estimated with a GLM fitted on phase 1 data, whereas surveillance operates on phase 2 data. When $\lambda$ is fixed, one uses a likelihood-ratio (LR) and defines the stopping time for alarm as $$N=\min \left\{ t_0 \geq 1 : \max_{1\leq t \leq t_0} \left[ \sum_{s=t}^{t_0} \log\left\{ \frac{f_{\bm{\theta}_1}(y_s|\bm{z}_s)}{f_{\bm{\theta}_0}(y_s|\bm{z}_s)} \right\} \right] \geq \mathtt{c.ARL} \right\},$$ where $\mathtt{c.ARL}$ is the threshold of the CUSUM. When $\lambda$ is unknown and with the autoregressive component one has to use a generalized likelihood ratio (GLR) with the following stopping rule to estimate them on the fly at each time point so that $$N_G=\min \left\{ t_0 \geq 1 : \max_{1\leq t \leq t_0} \sup_{\bm{\theta} \in \bm{\Theta}} \left[ \sum_{s=t}^{t_0} \log\left\{ \frac{f_{\bm{\theta}}(y_s|\bm{z}_s)}{f_{\bm{\theta}_0}(y_s|\bm{z}_s)} \right\} \right] \geq \mathtt{c.ARL} \right\}\cdot$$ Thus, one does not make any hypothesis about the specific value of the change to detect, but this GLR is more computationally intensive than the LR. \subsubsection{Practical use} For using \code{glrnb} one has two choices to make. First, one has to choose an \textit{in-control} model that will be fitted on phase 1 data. One can either provide the predictions for the vector of \textit{in-control} means \code{mu0} and the overdispersion parameter \code{alpha} by relying on an external fit, or use the built-in GLM estimator, that will use all data before the beginning of the surveillance range to fit a GLM with the number of harmonics \code{S} and a time trend if \code{trend} is \code{TRUE}. The choice of the exact \textit{in-control} model depends on the data under surveillance. Performing model selection is a compulsory step in practical applications. Then, one needs to tune the surveillance function itself, for one of the two possible change forms, \code{intercept}~or~\code{epi}.~One~can choose either to set \code{theta} to a given value and thus perform LR instead of GLR. The value of \code{theta} has to be adapted to the specific context in which the algorithm is applied: how big are shifts one wants to detect optimally? Is it better not to specify any and use GLR instead? The threshold \texttt{c.ARL} also has to be specified by the user. As explained in \citet{hoehle-mazick-2010} one can compute the threshold for a desired run-length in control through direct Monte Carlo simulation or a Markov chain approximation. Lastly, as mentioned in \citet{hoehle.paul2008}, a window-limited approach of surveillance, instead of looking at all the timepoints until the first observation, can make computation faster. Here we apply \code{glrnb} to the time series of report counts of \textit{Salmonella Newport} in Germany by assuming a known multiplicative shift of factor $2$ and by using the built-in estimator to fit an \textit{in-control} model with one harmonic for seasonality and a trend. This model will be refitted after each alarm, but first we use data from the years before 2011 as reference or \code{phase1}, and the data from 2011 as data to be monitored or \code{phase2}. The threshold \texttt{c.ARL} was chosen to be 4 as we found with the same approach as \citet{hoehle-mazick-2010} that it made the probability of a false alarm within one year smaller than 0.1. Figure~\ref{fig:glrnb}~shows the results of this monitoring. <>= phase1 <- which(isoWeekYear(epoch(salmNewportGermany))$ISOYear < 2011) phase2 <- in2011 control = list(range = phase2, c.ARL = 4, theta = log(2), ret = "cases", mu0 = list(S = 1, trend = TRUE, refit = FALSE)) salmGlrnb <- glrnb(salmNewportGermany, control = control) @ <>= # Define phase1 (reference values) and phase2 (monitoring) phase1 <- which(isoWeekYear(epoch(salmNewportGermany))$ISOYear<2011) phase2 <- in2011 # Choose the options for monitoring control=list(range=phase2,mu0=list( S=1, trend=TRUE, refit=FALSE),c.ARL = 4, theta=log(2),ret="cases") # Perform monitoring with glrnb salmGlrnb <- glrnb(salmNewportGermany,control=control) @ <>= # Plot y.max <- max(observed(salmGlrnb),upperbound(salmGlrnb),na.rm=TRUE) do.call("plot",modifyList(plotOpts,list(x=salmGlrnb,ylim=c(0,y.max)))) @ \setkeys{Gin}{height=7cm, width=15cm} \begin{figure} \begin{center} <>= <> @ \end{center} \vspace{-1cm} \caption{S. Newport in Germany in 2011 monitored by the \code{glrnb} function. } \label{fig:glrnb} \end{figure} The implementation of \code{glrnb} on individual time series was already thoroughly explained in \citet{hoehle-mazick-2010}. Our objective in the present document is rather to provide practical tips for the implementation of this function on huge amounts of data in public health surveillance applications. Issues of computational speed become very significant in such a context. Our proposal to reduce the computational burden incurred by this algorithm is to compute the \textit{in-control} model for each time serie (pathogen, subtype, subtype in a given location, etc.) only once a year and to use this estimation for the computation of a threshold for each time series. An idea to avoid starting with an initial value of zero in the CUSUM is to use either $\left(\frac{1}{2}\right)\cdot\mathtt{c.ARL}$ as a starting value (fast initial response CUSUM as presented in~\citet{lucas1982fast}) or to let surveillance run with the new \textit{in-control} model during a buffer period and use the resulting CUSUM as an initial value. One could also choose the maximum of these two possible starting values as a starting value. During the buffer period alarms would be generated with the old model. Lastly, using GLR is much more computationally intensive than using LR, whereas LR performs reasonably well on shifts different from the one indicated by \code{theta} as seen in the simulation studies of~\citet{hoehle.paul2008}. Our advice would therefore be to use LR with a reasonable predefined \code{theta}. The amount of historical data used each year to update the model, the length of the buffer period and the value of \code{theta} have to be fixed for each specific application, e.g., using simulations and/or discussion with experts. \subsubsection{Similar methods in the package} The algorithm \code{glrPois} is the same function as \code{glrnb} but for Poisson distributed data. Other CUSUM methods for count data are found in the package: \code{cusum} and \code{rogerson}. Both methods are discussed and compared to \code{glrnb} in \citet{hoehle.paul2008}. The package also includes a semi-parametric method \code{outbreakP} that aims at detecting changes from a constant level to a monotonically increasing incidence, for instance the beginning of the influenza season. See Table~\ref{table:ref} for the corresponding references. \subsection{A method for monitoring categorical data} All monitoring methods presented up to now have been methods for analysing count data. Nevertheless, in public health surveillance one also encounters categorical time series which are time series where the response variable obtains one of $k\geq2$ different categories (nominal or ordinal). When $k=2$ the time series is binary, for instance representing a specific outcome in cases such as hospitalization, death or a positive result to some diagnostic test. One can also think of applications with $k>2$ if one studies, e.g., the age groups of the cases in the context of monitoring a vaccination program: vaccination targeted at children could induce a shift towards older cases which one wants to detect as quickly as possible -- this will be explained thoroughly with an example. The developments of prospective surveillance methods for such categorical time series were up to recently limited to CUSUM-based approaches for binary data such as those explained in~\citet{Chen1978},~\citet{Reynolds2000} and~\citet{rogerson_yamada2004}. Other than being only suitable for binary data these methods have the drawback of not handling overdispersion. A method improving on these two limitations while casting the problem into a more comprehending GLM regression framework for categorical data was presented in~\citet{hoehle2010}. It is implemented as the function \code{categoricalCUSUM}. The way \code{categoricalCUSUM} operates is very similar to what \code{glrnb} does with fixed \textit{out-of-control} parameter. First, the parameters in a multivariate GLM for the \textit{in-control} distribution are estimated from the historical data. Then the \textit{out-of-control} distribution is defined by a given change in the parameters of this GLM, e.g., an intercept change, as explained later. Lastly, prospective monitoring is performed on current data using a likelihood ratio detector which compares the likelihood of the response under the \textit{in-control} and \textit{out-of-control} distributions. \subsubsection{Categorical CUSUM for binomial models} The challenge when performing these steps with categorical data from surveillance systems is finding an appropriate model. Binary GLMs as presented in Chapter~6 of \citet{Fahrmeir.etal2013} could be a solution but they do not tackle well the inherent overdispersion in the binomial time series. Of course one could choose a quasi family but these are not proper statistical distributions making many issues such as prediction complicated. A better alternative is offered by the use of \textit{generalized additive models for location, scale and shape} \citep[GAMLSS,][]{Rigby2005}, that support distributions such as the beta-binomial distribution, suitable for overdispersed binary data. With GAMLSS one can model the dependency of the mean -- \textit{location} -- upon explanatory variables but the regression modeling is also extended to other parameters of the distribution, e.g., scale. Moreover any modelled parameter can be put under surveillance, be it the mean (as in the example later developed) or the time trend in the linear predictor of the mean. This very flexible modeling framework is implemented in \proglang{R} through the \pkg{gamlss} package~\citep{StasJSS}. As an example we consider the time series of the weekly number of hospitalized cases among all \textit{Salmonella} cases in Germany in Jan 2004--Jan 2014, depicted in Figure~\ref{fig:cat1}. We use 2004--2012 data to estimate the \textit{in-control} parameters and then perform surveillance on the data from 2013 and early 2014. We start by preprocessing the data. <>= data("salmHospitalized") isoWeekYearData <- isoWeekYear(epoch(salmHospitalized)) dataBefore2013 <- which(isoWeekYearData$ISOYear < 2013) data2013 <- which(isoWeekYearData$ISOYear == 2013) dataEarly2014 <- which(isoWeekYearData$ISOYear == 2014 & isoWeekYearData$ISOWeek <= 4) phase1 <- dataBefore2013 phase2 <- c(data2013, dataEarly2014) weekNumbers <- isoWeekYearData$ISOWeek salmHospitalized.df <- cbind(as.data.frame(salmHospitalized), weekNumbers) colnames(salmHospitalized.df) <- c("y", "t", "state", "alarm", "upperbound","n", "freq", "epochInPeriod", "weekNumber") @ <>= # Load data data("salmHospitalized") # Define reference data and data under monitoring phase1 <- which(isoWeekYear(epoch(salmHospitalized))$ISOYear<2013) phase2 <- c(which(isoWeekYear(epoch(salmHospitalized))$ISOYear==2013), which(isoWeekYear(epoch(salmHospitalized))$ISOYear==2014 &isoWeekYear(epoch(salmHospitalized))$ISOWeek<=4)) # Prepare data for fitting the model weekNumber <- isoWeekYear(epoch(salmHospitalized))$ISOWeek salmHospitalized.df <- cbind(as.data.frame(salmHospitalized),weekNumber) colnames(salmHospitalized.df) <- c("y","t","state","alarm","upperbound","n","freq", "epochInPeriod","weekNumber") @ We assume that the number of hospitalized cases follows a beta-binomial distribution, i.e., $ y_t \sim \BetaBin(n_t,\pi_t,\sigma_t)$ with $n_t$ the total number of reported cases at time $t$, $\pi_t$ the proportion of these cases that were hospitalized and $\sigma$ the dispersion parameter. In this parametrization, $$E(y_t)=n_t \pi_t,\quad \text{and}$$ $$\Var(y_t)=n_t \pi_t(1-\pi_t)\left( 1 + \frac{\sigma(n_t-1)}{\sigma+1} \right)\cdot$$ We choose to model the expectation $n_t \pi_t$ using a beta-binomial model with a logit-link which is a special case of a GAMLSS, i.e., $$\logit(\pi_t)=\bm{z}_t^\top\bm{\beta}$$ where $\bm{z}_t$ is a vector of possibly time-varying covariates and $\bm{\beta}$ a vector of covariate effects in our example. The proportion of hospitalized cases varies throughout the year as seen in Figure~\ref{fig:cat1}. One observes that in the summer the proportion of hospitalized cases is smaller than in other seasons. However, over the holidays in December the proportion of hospitalized cases increases. Note that the number of non-hospitalized cases drops while the number of hospitalized cases remains constant (data not shown): this might be explained by the fact that cases that are not serious enough to go to the hospital are not seen by general practitioners because sick workers do not need a sick note during the holidays. Therefore, the \textit{in-control} model should contain these elements, as well as the fact that there is an increasing trend of the proportion because GPs prescribe less and less stool diagnoses so that more diagnoses are done on hospitalized cases. We choose a model with an intercept, a time trend, two harmonic terms and a factor variable for the first two weeks of each year. The variable \code{epochInPeriod} takes into account the fact that not all years have 52 weeks. <>= vars <- c( "y", "n", "t", "epochInPeriod", "weekNumber") m.bbin <- gamlss(cbind(y, n-y) ~ 1 + t + sin(2 * pi * epochInPeriod) + cos(2 * pi * epochInPeriod) + sin(4 * pi * epochInPeriod) + cos(4 * pi * epochInPeriod) + I(weekNumber == 1) + I(weekNumber == 2), sigma.formula =~ 1, family = BB(sigma.link = "log"), data = salmHospitalized.df[phase1, vars]) @ The change we aim to detect is defined by a multiplicative change of odds, from $\frac{\pi_t^0}{(1-\pi_t^0)}$ to $R\cdot\frac{\pi_t^0}{(1-\pi_t^0)}$ with $R>0$, similar to what was done in~\citet{Steiner1999} for the logistic regression model. This is equivalent to an additive change of the log-odds, $$\logit(\pi_t^1)=\logit(\pi_t^0)+\log R$$ with $\pi_t^0$ being the \textit{in-control} proportion and $\pi_t^1$ the \textit{out-of-control} distribution. The likelihood ratio based CUSUM statistic is now defined as $$C_{t_0}=\max_{1\leq t \leq {t_0}}\left( \sum_{s=t}^{t_0} \log \left( \frac{f(y_s;\bm{z}_s,\bm{\theta}_1)}{f(y_s;\bm{z}_s,\bm{\theta}_0)} \right) \right)$$ with $\bm{\theta}_0$ and $\bm{\theta}_1$ being the vector in- and \textit{out-of-control} parameters, respectively. Given a threshold \code{h}, an alarm is sounded at the first time when $C_{t_0}>\mathtt{h}$. We set the parameters of the \code{categoricalCUSUM} to optimally detect a doubling of the odds in 2013 and 2014, i.e., $R=2$. Furthermore, we for now set the threshold of the CUSUM at $h=2$. We use the GAMLSS to predict the mean of the \textit{in-control} and \textit{out-of-control} distributions and store them into matrices with two columns among which the second one represents the reference category. <>= R <- 2 h <- 2 pi0 <- predict(m.bbin, newdata = salmHospitalized.df[phase2, vars], type = "response") pi1 <- plogis(qlogis(pi0) + log(R)) pi0m <- rbind(pi0, 1 - pi0) pi1m <- rbind(pi1, 1 - pi1) @ <>= # CUSUM parameters R <- 2 #detect a doubling of the odds for a salmHospitalized being positive h <- 2 #threshold of the cusum # Compute \textit{in-control} and out of control mean pi0 <- predict(m.bbin,newdata=salmHospitalized.df[phase2,vars], type="response") pi1 <- plogis(qlogis(pi0) + log(R)) # Create matrix with in control and out of control proportions. # Categories are D=1 and D=0, where the latter is the reference category pi0m <- rbind(pi0, 1-pi0) pi1m <- rbind(pi1, 1-pi1) @ Note that the \code{categoricalCUSUM} function is constructed to operate on the observed slot of \code{sts}-objects which have as columns the number of cases in each category at each timepoint, \textit{i.e.}, each row of the observed slot contains the elements $(y_{t1},...,y_{tk})$. <>= populationHosp <- cbind(population(salmHospitalized), population(salmHospitalized)) observedHosp <- cbind(observed(salmHospitalized), population(salmHospitalized) - observed(salmHospitalized)) nrowHosp <- nrow(salmHospitalized) salmHospitalized.multi <- sts(freq = 52, start = c(2004, 1), epoch = as.numeric(epoch(salmHospitalized)), epochAsDate = TRUE, observed = observedHosp, populationFrac = populationHosp, state = matrix(0, nrow = nrowHosp, ncol = 2), multinomialTS = TRUE) @ <>= # Create the \code{sts}-object with the counts for the 2 categories population <- population(salmHospitalized) observed <- observed(salmHospitalized) salmHospitalized.multi <- sts(freq=52, start=c(2004,1), epoch = as.numeric(epoch(salmHospitalized)), epochAsDate=TRUE, observed = cbind(observed, population-observed), populationFrac = cbind(population, population), state=matrix(0, nrow=nrow(salmHospitalized), ncol = 2), multinomialTS=TRUE) @ Furthermore, one needs to define a wrapper for the distribution function in order to have a argument named \code{"mu"} in the function. <>= dBB.cusum <- function(y, mu, sigma, size, log = FALSE) { return(dBB(if (is.matrix(y)) y[1,] else y, if (is.matrix(y)) mu[1,] else mu, sigma = sigma, bd = size, log = log)) } @ <>= # Function to use as dfun in the categoricalCUSUM dBB.cusum <- function(y, mu, sigma, size, log = FALSE) { return(dBB( if (is.matrix(y)) y[1,] else y, if (is.matrix(y)) mu[1,] else mu, sigma = sigma, bd = size, log = log)) } @ After these preliminary steps, the monitoring can be performed. <>= controlCat <- list(range = phase2, h = 2, pi0 = pi0m, pi1 = pi1m, ret = "cases", dfun = dBB.cusum) salmHospitalizedCat <- categoricalCUSUM(salmHospitalized.multi, control = controlCat, sigma = exp(m.bbin$sigma.coef)) @ <>= # Monitoring controlCat <- list(range = phase2,h = 2,pi0 = pi0m, pi1 = pi1m, ret = "cases", dfun = dBB.cusum) salmHospitalizedCat <- categoricalCUSUM(salmHospitalized.multi, control = controlCat, sigma = exp(m.bbin$sigma.coef)) @ The results can be seen in Figure~\ref{fig:catDouble}(a). With the given settings, there are alarms at week 16 in 2004 and at week 3 in 2004. The one in 2014 corresponds to the usual peak of the beginning of the year, which was larger than expected this year, maybe because the weekdays of the holidays were particularly worker-friendly so that sick notes were even less needed. <>= y.max <- max(observed(salmHospitalized)/population(salmHospitalized),upperbound(salmHospitalized)/population(salmHospitalized),na.rm=TRUE) plotOpts2 <- modifyList(plotOpts,list(x=salmHospitalized,legend.opts=NULL,ylab="",ylim=c(0,y.max)),keep.null=TRUE) plotOpts2$xaxis.tickFreq <- list("%G"=atChange,"%m"=atChange) plotOpts2$par.list <- list(mar=c(6,5,5,5),family="Times",las=1) do.call("plot",plotOpts2) lines(salmHospitalized@populationFrac/4000,col="grey80",lwd=2) lines(campyDE$hum*50, col="white", lwd=2) axis(side=4, at=seq(0,2000,by=500)/4000,labels=as.character(seq(0,2000,by=500)),las=1, cex=2,cex.axis=1.5,pos=length(observed(salmHospitalized))+20) par(family="Times") text(-20, 0.6, "Proportion", pos = 3, xpd = T,cex=cex.text) text(520, 0.6, "Total number of \n reported cases", pos = 3, xpd = T,cex=cex.text) #mtext(side=4,text=expression(paste("Total number of reported cases (thousands)", sep='')), #las=0,line=1, cex=cex.text) @ \begin{figure} \begin{center} <>= <> @ \end{center} \vspace{-1cm} \caption{Weekly proportion of Salmonella cases that were hospitalized in Germany 2004-2014. In addition the corresponding number of reported cases is shown as a light curve.} \label{fig:cat1} \end{figure} <>= @ The value for the threshold \code{h} can be determined following the procedures presented in \citet{hoehle-mazick-2010} for count data, and as in the code exhibited below. Two methods can be used for determining the probability of a false alarm within a pre-specified number of steps for a given value of the threshold \code{h}: a Monte Carlo method relying on, e.g., 1000 simulations and a Markov Chain approximation of the CUSUM. The former is much more computationally intensive than the latter: with the code below, the Monte Carlo method needed approximately 300 times more time than the Markov Chain method. Since both results are close we recommend the Markov Chain approximation for practical use. The Monte Carlo method works by sampling observed values from the estimated distribution and performing monitoring with \code{categoricalCUSUM} on this \code{sts} object. As observed values are estimated from the \textit{in-control} distribution every alarm thus obtained is a false alarm so that the simulations allow to estimate the probability of a false alarm when monitoring \textit{in-control} data over the timepoints of \code{phase2}. The Markov Chain approximation introduced by \citet{brook_evans1972} is implemented as \code{LRCUSUM.runlength} which is already used for \code{glrnb}. Results from both methods can be seen in Figure~\ref{fig:catDouble}(b). We chose a value of 2 for \code{h} so that the probability of a false alarm within the 56 timepoints of \code{phase2} is less than $0.1$. One first has to set the values of the threshold to be investigated and to prepare the function used for simulation, that draws observed values from the \textit{in-control} distribution and performs monitoring on the corresponding time series, then indicating if there was at least one alarm. Then 1000 simulations were performed with a fixed seed value for the sake of reproducibility. Afterwards, we tested the Markov Chain approximation using the function \code{LRCUSUM.runlength} over the same grid of values for the threshold. <>= h.grid <- seq(1, 10, by = 0.5) simone <- function(sts, h) { y <- rBB(length(phase2), mu = pi0m[1, , drop = FALSE], bd = population(sts)[phase2, ], sigma = exp(m.bbin$sigma.coef)) observed(sts)[phase2, ] <- cbind(y, sts@populationFrac[phase2, 1] - y) one.surv <- categoricalCUSUM(sts, modifyList(controlCat, list(h = h)), sigma = exp(m.bbin$sigma.coef)) return(any(alarms(one.surv)[, 1])) } set.seed(123) nSims <- 1000 pMC <- sapply(h.grid, function(h) { mean(replicate(nSims, simone(salmHospitalized.multi, h))) }) pMarkovChain <- sapply( h.grid, function(h) { TA <- LRCUSUM.runlength(mu = pi0m[1,, drop = FALSE], mu0 = pi0m[1,, drop = FALSE], mu1 = pi1m[1,, drop = FALSE], n = population(salmHospitalized.multi)[phase2, ], h = h, dfun = dBB.cusum, sigma = exp(m.bbin$sigma.coef)) return(tail(TA$cdf, n = 1)) }) @ <>= # Values of the threshold to be investigated h.grid <- seq(1,10,by=0.5) # Prepare function for simulations simone <- function(sts, h) { # Draw observed values from the \textit{in-control} distribution y <- rBB(length(phase2), mu=pi0m[1,,drop=FALSE], bd=population(sts)[phase2,], sigma=exp(m.bbin$sigma.coef)) observed(sts)[phase2,] <- cbind(y,sts@populationFrac[phase2,1] - y) # Perform monitoring one.surv <- categoricalCUSUM(sts, control=modifyList(controlCat, list(h=h)), sigma=exp(m.bbin$sigma.coef)) # Return 1 if there was at least one alarm return(any(alarms(one.surv)[,1])) } # Set random seed for reproducibility set.seed(123) if (computeALL) { # Number of simulations nSims=1000 # Simulations over the possible h values pMC <- sapply(h.grid, function(h) { h <- h mean(replicate(nSims, simone(salmHospitalized.multi,h))) }) # Distribution function to be used by LRCUSUM.runlength dBB.rl <- function(y, mu, sigma, size, log = FALSE) { dBB(y, mu = mu, sigma = sigma, bd = size, log = log) } # Markov Chain approximation over h.grid pMarkovChain <- sapply( h.grid, function(h) { TA <- LRCUSUM.runlength(mu=pi0m[1,,drop=FALSE], mu0=pi0m[1,,drop=FALSE], mu1=pi1m[1,,drop=FALSE], n=population(salmHospitalized.multi)[phase2,], h=h, dfun=dBB.rl, sigma=exp(m.bbin$sigma.coef)) return(tail(TA$cdf,n=1)) }) save(pMC, file = "monitoringCounts-cache/pMC.RData") save(pMarkovChain, file = "monitoringCounts-cache/pMarkovChain.RData") } else { load("monitoringCounts-cache/pMC.RData") load("monitoringCounts-cache/pMarkovChain.RData") } @ \setkeys{Gin}{height=7cm, width=9cm} \begin{figure} \hspace{-1em} \subfloat[]{ <>= y.max <- max(observed(salmHospitalizedCat[,1])/population(salmHospitalizedCat[,1]),upperbound(salmHospitalizedCat[,1])/population(salmHospitalizedCat[,1]),na.rm=TRUE) plotOpts3 <- modifyList(plotOpts,list(x=salmHospitalizedCat[,1],ylab="Proportion",ylim=c(0,y.max))) plotOpts3$legend.opts <- list(x="top",bty="n",legend=c(expression(U[t])),lty=1,lwd=line.lwd,col=alarm.symbol$col,horiz=TRUE,cex=cex.leg) do.call("plot",plotOpts3) @ \includegraphics[width=9cm]{plots/monitoringCounts-catF.pdf} } \hspace{-3em} \subfloat[]{ <>= par(mar=c(6,5,5,5),family="Times") matplot(h.grid, cbind(pMC,pMarkovChain),type="l",ylab=expression(P(T[A] <= 56 * "|" * tau * "=" * infinity)),xlab="Threshold h",col=1,cex=cex.text, cex.axis =cex.text,cex.lab=cex.text) prob <- 0.1 lines(range(h.grid),rep(prob,2),lty=5,lwd=2) axis(2,at=prob,las=1,cex.axis=0.7,labels=FALSE) par(family="Times") legend(4,0.08,c("Monte Carlo","Markov chain"), lty=1:2,col=1,cex=cex.text,bty="n") @ \includegraphics[width=9cm]{plots/monitoringCounts-catARL.pdf} } \caption{(a) Results of the monitoring with categoricalCUSUM of the proportion of Salmonella cases that were hospitalized in Germany in Jan 2013 - Jan 2014. (b) Probability of a false alarm within the 56 timepoints of the monitoring as a function of the threshold $h$.} \label{fig:catDouble} \end{figure} The procedure for using the function for multicategorical variables follows the same steps (as illustrated later). Moreover, one could expand the approach to utilize the multiple regression possibilities offered by GAMLSS. Here we chose to try to detect a change in the mean of the distribution of counts but as GAMLSS provides more general regression tools than GLM we could also aim at detecting a change in the time trend included in the model for the mean. \subsubsection{Categorical CUSUM for multinomial models} <>= # data("rotaBB") data("rotaBB") @ In order to illustrate the use of \code{categoricalCUSUM} for more than two classes we analyse the monthly number of rotavirus cases in the federal state Brandenburg during 2002-2013 and which are stratified into the five age-groups 00-04, 05-09, 10-14, 15-69, 70+ years. In 2006 two rotavirus vaccines were introduced, which are administered in children at the age of 4--6 months. Since then, coverage of these vaccination has steadily increased and interest is to detect possible age-shifts in the distribution of cases. <>= data("rotaBB") plot(rotaBB, xlab = "Time (months)", ylab = "Proportion of reported cases") @ \setkeys{Gin}{height=7cm, width=15cm} \begin{figure} %Remove this slot as soon as possible and replace it with just ROTAPLOT!! <>= par(mar=c(5.1,20.1,4.1,0),family="Times") plot(rotaBB,xlab="Time (months)",ylab="", col="mediumblue",cex=cex.text,cex.lab=cex.text,cex.axis=cex.text,cex.main=cex.text, xaxis.tickFreq=list("%G"=atChange), xaxis.labelFreq=list("%G"=at2ndChange), xaxis.labelFormat="%G") par(las=0,family="Times") mtext("Proportion of reported cases", side=2, line=19, cex=1) @ \caption{Monthly proportions in five age-groups for the reported rotavirus cases in Brandenburg, Germany, \Sexpr{paste(format(range(epoch(rotaBB)),"%Y"),collapse="-")}.} \label{fig:vac} \end{figure} From Figure~\ref{fig:vac} we observe a shift in proportion away from the very young. However, interpreting the proportions only makes sense in combination with the absolute numbers. In these plots (not shown) it becomes clear that the absolute numbers in the 0--4 year old have decreased since 2009. However, in the 70+ group a small increase is observed with 2013 by far being the strongest season so far. <>= # Select a palette for drawing pal <- c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3", "#FF7F00") #= RColorBrewer::brewer.pal("Set1",n=ncol(rotaBB)) # Show time series of monthly proportions (matplot does not work with dates) plotTS <- function(prop=TRUE) { for (i in 1:ncol(rotaBB)) { fun <- if (i==1) plot else lines if (!prop) { fun(epoch(rotaBB),observed(rotaBB)[,i],type="l",xlab="Time (months)",ylab="Reported cases",ylim=c(0,max(observed(rotaBB))),col=pal[i],lwd=2) } else { fun(epoch(rotaBB),observed(rotaBB)[,i,drop=FALSE]/rowSums(observed(rotaBB)),type="l",xlab="Time (months)",ylab="Proportion of reported cases",ylim=c(0,max(observed(rotaBB)/rowSums(observed(rotaBB)))),col=pal[i],lwd=2) } } # Add legend axis(1,at=as.numeric(epoch(rotaBB)),label=NA,tck=-0.01) legend(x="left",colnames(rotaBB),col=pal,lty=1,lwd=2,bg="white") } # plotTS(prop=TRUE) # Show absolute cases plotTS(prop=FALSE) # Even easier rotaBB.copy <- rotaBB ; rotaBB.copy@multinomialTS <- FALSE plot(rotaBB.copy) @ Hence, our interest is in prospectively detecting a possible age-shift. Since the vaccine was recommended for routine vaccination in Brandenburg in 2009 we choose to start the monitoring at that time point. We do so by fitting a multinomial logit-model containing a trend as well as one harmonic wave and use the age group 0--4 years as reference category, to the data from the years 2002-2008. Different \proglang{R} packages implement such type of modeling, but we shall use the \pkg{MGLM} package~\citep{MGLM}, because it also offers the fitting of extended multinomial regression models allowing for extra dispersion. <>= rotaBB.df <- as.data.frame(rotaBB) X <- with(rotaBB.df, cbind(intercept = 1, epoch, sin1 = sin(2 * pi * epochInPeriod), cos1 = cos(2 * pi * epochInPeriod))) phase1 <- epoch(rotaBB) < as.Date("2009-01-01") phase2 <- !phase1 order <- c(2:5, 1); reorder <- c(5, 1:4) library("MGLM") m0 <- MGLMreg(as.matrix(rotaBB.df[phase1, order]) ~ -1 + X[phase1, ], dist = "MN") @ <>= # Convert sts object to data.frame useful for regression modelling rotaBB.df <- as.data.frame(rotaBB) # Create matrix X <- with(rotaBB.df,cbind(intercept=1,epoch, sin1=sin(2*pi*epochInPeriod),cos1=cos(2*pi*epochInPeriod))) # Fit model to 2002-2009 data phase1 <- epoch(rotaBB) < as.Date("2009-01-01") phase2 <- !phase1 # MGLMreg automatically takes the last class as ref so we reorder order <- c(2:5, 1); reorder <- c(5, 1:4) # Fit multinomial logit model (i.e. dist="MN") to phase1 data library("MGLM") m0 <- MGLMreg(as.matrix(rotaBB.df[phase1,order])~ -1 + X[phase1,], dist="MN") @ <<>>= # Set threshold and option object h <- 2 @ As described in \citet{hoehle2010} we can try to detect a specific shift in the intercept coefficients of the model. For example, a multiplicative shift of factor 7 in the example below, in the odds of each of the four age categories against the reference category is modelled by changing the intercept value of each category. Based on this, the \textit{in-control} and \textit{out-of-control} proportions are easily computed using the \code{predict} function for \code{MGLMreg} objects. <>= m1 <- m0 m1@coefficients[1, ] <- m0@coefficients[1, ] + log(7) pi0 <- t(predict(m0, newdata = X[phase2, ])[, reorder]) pi1 <- t(predict(m1, newdata = X[phase2,])[, reorder]) @ <>= m1 <- m0 # Out-of control model: shift in all intercept coeffs m1@coefficients[1,] <- m0@coefficients[1,] + log(2) # Proportion over time for phase2 based on fitted model (re-order back) pi0 <- t(predict(m0, newdata=X[phase2,])[,reorder]) pi1 <- t(predict(m1, newdata=X[phase2,])[,reorder]) @ For applying the \code{categoricalCUSUM} function one needs to define a compatible wrapper function for the multinomial as in the binomial example. With $\bm{\pi}^0$ and $\bm{\pi}^1$ in place one only needs to define a wrapper function, which defines the PMF of the sampling distribution -- in this case the multinomial -- in a \code{categoricalCUSUM} compatible way. <>= dfun <- function(y, size, mu, log = FALSE) { return(dmultinom(x = y, size = size, prob = mu, log = log)) } control <- list(range = seq(nrow(rotaBB))[phase2], h = h, pi0 = pi0, pi1 = pi1, ret = "value", dfun = dfun) surv <- categoricalCUSUM(rotaBB,control=control) @ <>= #Number of MC samples nSamples <- 1e4 #Do MC simone.stop <- function(sts, control) { phase2Times <- seq(nrow(sts))[phase2] #Generate new phase2 data from the fitted in control model y <- sapply(1:length(phase2Times), function(i) { rmultinom(n=1, prob=pi0[,i],size=population(sts)[phase2Times[i],1]) }) observed(sts)[phase2Times,] <- t(y) one.surv <- categoricalCUSUM(sts, control=control) #compute P(S<=length(phase2)) return(any(alarms(one.surv)[,1]>0)) } if (computeALL) { set.seed(1233) rlMN <- replicate(nSamples, simone.stop(rotaBB, control=control)) save(file="monitoringCounts-cache/rlsims-multinom.RData", list=c("rlMN")) } else { load(file="monitoringCounts-cache/rlsims-multinom.RData") } mean(rlMN) @ <<>>= alarmDates <- epoch(surv)[which(alarms(surv)[,1]==1)] format(alarmDates,"%b %Y") @ With $\bm{\pi}^0$ and $\bm{\pi}^1$ in place one only needs to define a wrapper function, which defines the PMF of the sampling distribution -- in this case the multinomial -- in a \code{categoricalCUSUM} compatible way. <>= <> @ The resulting CUSUM statistic $C_t$ as a function of time is shown in Figure~\ref{fig:ct}(a). The first time an aberration is detected is July 2009. Using 10000 Monte Carlo simulations we estimate that with the chosen threshold $h=2$ the probability for a false alarm within the 60 time points of \code{phase2} is 0.02. As the above example shows, the LR based categorical CUSUM is rather flexible in handling any type of multivariate GLM modeling to specify the \textit{in-control} and \textit{out-of-control} proportions. However, it requires a direction of the change to be specified -- for which detection is optimal. One sensitive part of such monitoring is the fit of the multinomial distribution to a multivariate time series of proportions, which usually exhibit extra dispersion when compared to the multinomial. For example comparing the AIC between the multinomial logit-model and a Dirichlet-multinomial model with $\alpha_{ti} = \exp(\bm{x}_t^\top\bm{\beta})$~\citep{MGLM} shows that overdispersion is present. The Dirichlet distribution is the multicategorical equivalent of the beta-binomial distribution. We exemplify its use in the code below. <>= m0.dm <- MGLMreg(as.matrix(rotaBB.df[phase1, 1:5]) ~ -1 + X[phase1, ], dist = "DM") c(m0@AIC, m0.dm@AIC) @ Hence, the above estimated false alarm probability might be too low for the actual monitoring problem, because the variation in the time series is larger than implied by the multinomial. Hence, it appears prudent to repeat the analysis using the more flexible Dirichlet-multinomial model. This is straightforward with \code{categoricalCUSUM} once the \textit{out-of-control} proportions are specified in terms of the model. Such a specification is, however, hampered by the fact that the two models use different parametrizations. For performing monitoring in this new setting we first need to calculate the $\alpha$'s of the multinomial-Dirichlet for the \textit{in-control} and \textit{out-of-control} distributions. <>= delta <- 2 m1.dm <- m0.dm m1.dm$coefficients[1, ] <- m0.dm$coefficients[1, ] + c(-delta, rep(delta/4, 4)) alpha0 <- exp(X[phase2,] %*% m0.dm$coefficients) alpha1 <- exp(X[phase2,] %*% m1.dm$coefficients) dfun <- function(y, size, mu, log = FALSE) { dLog <- ddirmn(t(y), t(mu)) if (log) { return(dLog) } else { return(exp(dLog)) } } h <- 2 control <- list(range = seq(nrow(rotaBB))[phase2], h = h, pi0 = t(alpha0), pi1 = t(alpha1), ret = "value", dfun = dfun) surv.dm <- categoricalCUSUM(rotaBB, control = control) @ <>= # Change intercept in the first class (for DM all 5 classes are modeled) delta <- 2 m1.dm <- m0.dm m1.dm@coefficients[1,] <- m0.dm@coefficients[1,] + c(-delta,rep(delta/4,4)) # Calculate the alphas of the multinomial-Dirichlet in the two cases alpha0 <- exp(X[phase2,] %*% m0.dm@coefficients) alpha1 <- exp(X[phase2,] %*% m1.dm@coefficients) # Use alpha vector as mu magnitude # (not possible to compute it from mu and size) dfun <- function(y, size, mu, log=FALSE) { dLog <- ddirmn(t(y), t(mu)) if (log) { return(dLog) } else {return(exp(dLog))} } # Threshold h <- 2 control <- list(range=seq(nrow(rotaBB))[phase2],h=h,pi0=t(alpha0), pi1=t(alpha1), ret="value",dfun=dfun) surv.dm <- categoricalCUSUM(rotaBB,control=control) @ <>= matplot(alpha0/rowSums(alpha0),type="l",lwd=3,lty=1,ylim=c(0,1)) matlines(alpha1/rowSums(alpha1),type="l",lwd=1,lty=2) @ \setkeys{Gin}{height=7cm, width=9cm} \begin{figure} \hspace{-1em} \subfloat[]{ <>= surv@observed[,1] <- 0 surv@multinomialTS <- FALSE surv.dm@observed[,1] <- 0 surv.dm@multinomialTS <- FALSE y.max <- max(observed(surv.dm[,1]),upperbound(surv.dm[,1]),observed(surv[,1]),upperbound(surv[,1]),na.rm=TRUE) plotOpts3 <- modifyList(plotOpts,list(x=surv[,1],ylim=c(0,y.max),ylab=expression(C[t]),xlab="")) plotOpts3$legend.opts <- list(x="topleft",bty="n",legend="R",lty=1,lwd=line.lwd,col=alarm.symbol$col,horiz=TRUE,cex=cex.leg) do.call("plot",plotOpts3) lines( c(0,1e99), rep(h,2),lwd=2,col="darkgray",lty=1) par(family="Times") mtext(side=1,text="Time (weeks)", las=0,line=3, cex=cex.text) @ \includegraphics[width=9cm]{plots/monitoringCounts-ctPlot1.pdf} } \hspace{-3em} \subfloat[]{ <>= plotOpts3 <- modifyList(plotOpts,list(x=surv.dm[,1],ylim=c(0,y.max),ylab=expression(C[t]),xlab="")) plotOpts3$legend.opts <- list(x="topleft",bty="n",legend="R",lty=1,lwd=line.lwd,col=alarm.symbol$col,horiz=TRUE,cex=cex.text) y.max <- max(observed(surv.dm[,1]),upperbound(surv.dm[,1]),observed(surv[,1]),upperbound(surv[,1]),na.rm=TRUE) do.call("plot",plotOpts3) lines( c(0,1e99), rep(h,2),lwd=2,col="darkgray",lty=1) par(family="Times") mtext(side=1,text="Time (weeks)", las=0,line=3, cex=cex.text) @ \includegraphics[width=9cm]{plots/monitoringCounts-ctPlot2.pdf} } \caption{Categorical CUSUM statistic $C_t$. Once $C_t>\Sexpr{h}$ an alarm is sounded and the statistic is reset. In (a) surveillance uses the multinomial distribution and in (b) surveillance uses the Dirichlet-multinomial distribution.} \label{fig:ct} \end{figure} The resulting CUSUM statistic $C_t$ using the Dirichlet multinomial distribution is shown in Figure~\ref{fig:ct}(b). We notice a rather similar behavior even though the shift-type specified by this model is slightly different than in the model of Figure~\ref{fig:ct}(a). \subsubsection{Categorical data in routine surveillance} The multidimensionality of data available in public health surveillance creates many opportunities for the application of categorical time series: one could, e.g., look at the sex ratio of cases of a given disease, at the age group distribution, at the regions sending data, etc. If one is interested in monitoring with respect to a categorical variable, a choice has to be made between monitoring each time series individually, for instance a time series of \textit{Salmonella} cases for each age category, or to monitor the distribution of cases with respect to that factor jointly \textit{via} \code{categoricalCUSUM}. A downside of the latter solution is that one has to specify the change parameter \code{R} in advance, which can be quite a hurdle if one has no pre-conceived idea of what could happen for, say, the age shift after the introduction of a vaccine. Alternatively, one could employ an ensemble of monitors or monitor an aggregate. However, more straightforward applications could be found in the (binomial) surveillance of positive diagnostics if one were to obtain data about tests performed by laboratories and not only about confirmed cases. An alternative would be to apply \code{farringtonFlexible} while using the number of tests as \code{populationOffset}. \subsubsection{Similar methods in the package} The package also offers another CUSUM method suitable for binary data, \code{pairedbinCUSUM} that implements the method introduced by~\citet{Steiner1999}, which does not, however, take overdispersion into account as well as \code{glrnb}. The algorithm \code{rogerson} also supports the analysis of binomial data. See Table~\ref{table:ref} for the corresponding references. \subsection{Other algorithms implemented in the package} We conclude this description of surveillance methods by giving an overview of all algorithms implemented in the package with the corresponding references in Table~\ref{table:ref}. One can refer to the relative reference articles and to the reference manual of the package for more information about each method. Criteria for choosing a method in practice are numerous. First one needs to ponder on the amount of historical data at hand -- for instance the EARS methods only need data for the last timepoints whereas the Farrington methods use data up to $b$ years in the past. Then one should consider the amount of past data used by the algorithm -- historical reference methods use only a subset of the past data, namely the timepoints located around the same timepoint in the past years, whereas other methods use all past data included in the reference data. This can be a criterion of choice since one can prefer using all available data. It is also important to decide whether one wants to detect one-timepoint aberration or more prolonged shifts. And lastly, an important criterion is how much work needs to be done for finetuning the algorithm for each specific time series. The package on the one hand provides the means for analysing nearly all type of surveillance data and on the other hand makes the comparison of algorithms possible. This is useful in practical applications when those algorithms are implemented into routine use, which will be the topic of Section~\ref{sec:routine}. \begin{table}[t!] \centering \begin{tabular}{lp{11cm}} \hline Function & References \\ \hline \code{bayes} & \citet{riebler2004} \\ \code{boda} & \citet{Manitz2013} \\ \code{bodaDelay} & \citet{Maelle} \\ \code{categoricalCUSUM} & \citet{hoehle2010}\\ \code{cdc} & \citet{stroup89,farrington2003} \\ \code{cusum} & \citet{rossi_etal99,pierce_schafer86} \\ \code{earsC} & \citet{SIM:SIM3197} \\ \code{farrington} & \citet{farrington96} \\ \code{farringtonFlexible} & \citet{farrington96,Noufaily2012} \\ \code{glrnb} & \citet{hoehle.paul2008} \\ \code{glrpois} & \citet{hoehle.paul2008} \\ \code{outbreakP} & \citet{frisen_etal2009,fri2009} \\ \code{pairedbinCUSUM} & \citet{Steiner1999} \\ \code{rki} & Not available -- unpublished \\ \code{rogerson} & \citet{rogerson_yamada2004} \\ \hline \end{tabular} \caption{Algorithms for aberration detection implemented in \pkg{surveillance}.} \label{table:ref} \end{table} \section[Implementing surveillance in routine monitoring]{Implementing \pkg{surveillance} in routine monitoring} \label{sec:routine} \label{sec:3} Combining \pkg{surveillance} with other \proglang{R} packages and programs is easy, allowing the integration of the aberration detection into a comprehensive surveillance system to be used in routine practice. In our opinion, such a surveillance system has to at least support the following process: loading data from local databases, analysing them within \pkg{surveillance} and sending the results of this analysis to the end-user who is typically an epidemiologist in charge of the specific pathogen. This section exemplifies the integration of the package into a whole analysis stack, first through the introduction of a simple workflow from data query to a \code{Sweave}~\citep{sweave} or \pkg{knitr}~\citep{knitr} report of signals, and secondly through the presentation of the more elaborate system in use at the German Robert Koch Institute. \subsection{A simple surveillance system} Suppose you have a database with surveillance time series but little resources to build a surveillance system encompassing all the above stages. Using \proglang{R} and \code{Sweave} or \code{knitr} for \LaTeX~you can still set up a simple surveillance analysis without having to do everything by hand. You only need to input the data into \proglang{R} and create \code{sts} objects for each time series of interest as explained thoroughly in~\citet{hoehle-mazick-2010}. Then, after choosing a surveillance algorithm, say \code{farringtonFlexible}, and feeding it with the appropriate \code{control} argument, you can get a \code{sts} object with upperbounds and alarms for each of your time series of interest over the \code{range} supplied in \code{control}. For defining the range automatically one could use the \proglang{R} function \code{Sys.Date()} to get today's date. These steps can be introduced as a code chunk in a \code{Sweave} or \code{knitr} code that will translate it into a report that you can send to the epidemiologists in charge of the respective pathogen whose cases are monitored. Below is an example of a short code segment showing the analysis of the \textit{S. Newport} weekly counts of cases in the German federal states Baden-W\"{u}rttemberg and North Rhine-Westphalia with the improved method implemented in \code{farringtonFlexible}. The package provides a \code{toLatex} method for \code{sts} objects that produces a table with the observed number of counts and upperbound for each column in \code{observed}, where alarms can be highlighted by for instance bold text. The resulting table is shown in Table~\ref{tableResults}. <>= data("salmNewport") today <- which(epoch(salmNewport) == as.Date("2013-12-23")) rangeAnalysis <- (today - 4):today in2013 <- which(isoWeekYear(epoch(salmNewport))$ISOYear == 2013) algoParameters <- list(range = rangeAnalysis, noPeriods = 10, populationBool = FALSE, b = 4, w = 3, weightsThreshold = 2.58, pastWeeksNotIncluded = 26, pThresholdTrend = 1, thresholdMethod = "nbPlugin", alpha = 0.05, limit54 = c(0, 50)) results <- farringtonFlexible(salmNewport[, c("Baden.Wuerttemberg", "North.Rhine.Westphalia")], control = algoParameters) start <- isoWeekYear(epoch(salmNewport)[range(range)[1]]) end <- isoWeekYear(epoch(salmNewport)[range(range)[2]]) caption <- paste("Results of the analysis of reported S. Newport counts in two German federal states for the weeks W-", start$ISOWeek, "-", start$ISOYear, " - W-", end$ISOWeek, "-", end$ISOYear, " performed on ", Sys.Date(), ". Bold upperbounds (UB) indicate weeks with alarms.", sep="") toLatex(results, caption = caption) @ <>= # In this example the sts-object already exists. # Supply the code with the date of a Monday and look for the # corresponding index in the sts-object today <- which(epoch(salmNewport)==as.Date("2013-12-23")) # The analysis will be performed for the given week # and the 4 previous ones range <- (today-4):today in2013 <- which(isoWeekYear(epoch(salmNewport))$ISOYear==2013) # Control argument for using the improved method control2 <- list(range=range,noPeriods=10,populationBool=FALSE, b=4,w=3,weightsThreshold=2.58,pastWeeksNotIncluded=26, pThresholdTrend=1,thresholdMethod="nbPlugin",alpha=0.05, limit54=c(0,50)) # Run farringtonFlexible results <- farringtonFlexible(salmNewport[,c("Baden.Wuerttemberg", "North.Rhine.Westphalia")], control=control2) # Export the results as a tex table start <- isoWeekYear(epoch(salmNewport)[range(range)[1]]) end <- isoWeekYear(epoch(salmNewport)[range(range)[2]]) caption <- paste("Results of the analysis of reported S. Newport counts in two German federal states for the weeks W-", start$ISOWeek," ",start$ISOYear," - W-",end$ISOWeek, " ",end$ISOYear," performed on ",Sys.Date(), ". Bold upperbounds (thresholds) indicate weeks with alarms.", sep="") toLatex(results, table.placement="h", size = "normalsize", sanitize.text.function = identity, NA.string = "-",include.rownames=FALSE, columnLabels = c("Year","Week","Baden-Wuerttemberg","Threshold","North-Rhine-Westphalen","Threshold"), alarmPrefix = "\\textbf{\\textcolor{red}{", alarmSuffix = "}}", caption=caption,label="tableResults") @ The advantage of this approach is that it can be made automatic. The downside of such a system is that the report is not interactive, for instance one cannot click on the cases and get the linelist. Nevertheless, this is a workable solution in many cases -- especially when human and financial resources are narrow. In the next section, we present a more advanced surveillance system built on the package. \subsection{Automatic detection of outbreaks at the Robert Koch Institute} \label{sec:RKI} The package \pkg{surveillance} was used as a core building block for designing and implementing the automated outbreak detection system at the RKI in Germany~\citep{Dirk}. The text below describes the system as it was in early 2014. Due to the Infection Protection Act (IfSG) the RKI daily receives over 1,000 notifiable disease reports. The system analyses about half a million time series per day to identify possible aberrations in the reported number of cases. Structurally, it consists of two components: an analytical process written in \proglang{R} that daily monitors the data and a reporting component that compiles and communicates the results to the epidemiologists. The analysis task in the described version of the system relied on \pkg{surveillance} and three other \proglang{R} packages, namely \pkg{data.table}, \pkg{RODBC} and \pkg{testthat} as described in the following. The data-backend is an OLAP-system~\citep{SSAS} and relational databases, which are queried using \pkg{RODBC}~\citep{rodbc2013}. The case reports are then rapidly aggregated into univariate time series using \pkg{data.table}~\citep{datatable2013}. To each time series we apply the \code{farringtonFlexible} algorithm on univariate \code{sts} objects and store the analysis results in another SQL-database. We make intensive use of \pkg{testthat}~\citep{testthat2013} for automatic testing of the component. Although \proglang{R} is not the typical language to write bigger software components for production, choosing \proglang{R} in combination with \pkg{surveillance} enabled us to quickly develop the analysis workflow. We can hence report positive experience using \proglang{R} also for larger software components in production. The reporting component was realized using Microsoft Reporting Services~\citep{SSRS}, because this technology is widely used within the RKI. It allows quick development of reports and works well with existing Microsoft Office tools, which the end-user, the epidemiologist, is used to. For example, one major requirement by the epidemiologists was to have the results compiled as Excel documents. Moreover, pathogen-specific reports are automatically sent once a week by email to epidemiologists in charge of the respective pathogen. Having state-of-the-art detection methods already implemented in \pkg{surveillance} helped us to focus on other challenges during development, such as bringing the system in the organization's workflow and finding ways to efficiently and effectively analyse about half a million of time series per day. In addition, major developments in the \proglang{R} component can be shared with the community and are thus available to other public health institutes as well. \section{Discussion} \label{sec:4} The \proglang{R} package \pkg{surveillance} was initially created as an implementational framework for the development and the evaluation of outbreak detection algorithms in routine collected public health surveillance data. Throughout the years it has more and more also become a tool for the use of surveillance in routine practice. The presented description aimed at showing the potential of the package for aberration detection. Other functions offered by the package for modeling~\citep{meyer.etal2014}, nowcasting~\citep{hoehle-heiden} or back-projection of incidence cases~\citep{becker_marschner93} are documented elsewhere and contribute to widening the scope of possible analysis in infectious disease epidemiology when using \pkg{surveillance}. Future areas of interest for the package are, e.g., to better take into account the multivariate and hierarchical structure of the data streams analysed. Another important topic is the adjustment for reporting delays when performing the surveillance~\citep{Maelle}. The package can be obtained from CRAN and resources for learning its use are listed in the documentation section of the project (\url{https://surveillance.R-Forge.R-project.org/}). As all \proglang{R} packages, \pkg{surveillance} is distributed with a manual describing each function with corresponding examples. The manual, the present article and two previous ones~\citep{hoehle-2007, hoehle-mazick-2010} form a good basis for getting started with the package. The data and analysis of the present manuscript are accessible as the vignette \texttt{"monitoringCounts.Rnw"} in the package. Since all functionality is available just at the cost of learning \proglang{R} we hope that parts of the package can be useful in health facilities around the world. Even though the package is tailored for surveillance in public health contexts, properties such as overdispersion, low counts, presence of past outbreaks, apply to a wide range of count and categorical time series in other surveillance contexts such as financial surveillance~\citep{frisen2008financial}, occupational safety monitoring~\citep{accident} or environmental surveillance~\citep{Radio}. Other \proglang{R} packages can be worth of interest to \pkg{surveillance} users. Statistical process control is offered by two other packages, \pkg{spc}~\citep{spc} and \pkg{qcc}~\citep{qcc}. The package \pkg{strucchange} allows detecting structural changes in general parametric models including GLMs~\citep{strucchange}, while the package \pkg{tscount} provides methods for regression and (retrospective) intervention analysis for count time series based on GLMs~\citep{tscount, liboschik_tscount_2015} . For epidemic modelling and outbreaks, packages such as \pkg{EpiEstim}~\citep{EpiEstim}, \pkg{outbreaker}~\citep{outbreaker} and \pkg{OutbreakTools}~\citep{OutbreakTools} offer good functionalities for investigating outbreaks that may for instance have been detected through to the use of \pkg{surveillance}. They are listed on the website of the \textit{\proglang{R}-epi project} (\url{https://sites.google.com/site/therepiproject}) that was initiated for compiling information about \proglang{R} tools useful for infectious diseases epidemiology. Another software of interest for aberration detection is \pkg{SaTScan}~\citep{SaTScan} which allows the detection of spatial, temporal and space-time clusters of events -- note that it is not a \proglang{R} package. Code contributions to the package are very welcome as well as feedback and suggestions for improving the package. \section*{Acknowledgments} The authors would like to express their gratitude to all contributors to the package, in particular Juliane Manitz, University of G\"{o}ttingen, Germany, for her work on the \texttt{boda} code and Angela Noufaily, The Open University, Milton Keynes, UK, for providing us the code used in her article that we extended for \texttt{farringtonFlexible}. The work of M. Salmon was financed by a PhD grant of the RKI. \bibliography{monitoringCounts,references} \end{document} surveillance/inst/doc/glrnb.pdf0000644000175100001440000046001713231650470016316 0ustar hornikusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 4289 /Filter /FlateDecode /N 80 /First 661 >> stream xœÅ[YsÛ¶~¿¿oI¦‚ØÁN§3^lj'²³µ“F¢m6”äJTâô‡ßç{@RܤЎz32Mƒƒï¬9 ‰ ÚI$“D%"¢‰Ñ‚bCI,‰BF"˜ ƒ?Á \&#¸à„iÿa–ãMÂC¨Îœ>$\Eà®C¬DxdáyD *a$ÜdDrhŒs"5‡—Q!tÆ"¤À-¥5Ô×DY¼oˆŠTD¸%š…Ø(× µ 5¦µR :¡Á  Ñ*A„$& 9’Œ0PG íkõ-±ÂZ<°F1!‰Ð-Òj ’ùÀ,JÈ%RBÁØH……îh(D0‰l hc¨–Ž‹ÐÎ1ï*`¡Wä—n¸P0xGbAÁ€¡enM>‡À:(ù^³¯óÉj ´=¸jô²§ƒ9jݶü±ÁRêQ£0@߃ h0r¥ŽP}CM£fQJ šü¢P`º6z®Ï'éìsI“ã^‡•Æ a=¬´»d¥á5NqFž‚š/¦q¶üÕ)0^¼ ùb•”µ×½•¯ÄËÄuHß|xv2zýËÉéh>göñ(¹ZeñÞ™ç4b¦Ô¨3À¼î©…r–Œ6ÓkUꪀ—´æ6ÁJZ|·ïÒI~|¶Nóíê'™pGØhœªêè{ ë~¬°ã¬p%Áí¹y–¤W×å%Œ gå!½¸'Š&¯âŒÎg ½Á©Î’ËÜ—ø½ÉVKšÓ’Åü‘C´kú1ÇÆžfñzYŽ!û%ŒÜ3*;üè>M³ÁBªÝ­—ñ4Ù2wÇà­¥ã½ÙØèê4]¢;âx¶îœçÉô-È–¬ÏJm>;0yröúàí;èê4ί}ó½X1m¬ÀdtÀb[`aŸahQ΄sí9þÇ#uÇ7´¼+ÊY'|sÝ—§J€ÑA!DuºË …çt<ŸNczãÿÏtFo4Gl6àÆÔf¸Á3m¤k¹ ·BÖà¶C1²¡˜ûãðâøìì—ƒÓ¸ºkŒÙÒô¬1Æ:ñ°1p­bÌBŒ¬pn¬Cç4¬aÃ_ u÷\\CKxÆzCn<ÖMíŒZÁ@Xn ž7οÖ`{ Ÿк kb°1¯GܵumíÆæÞWx£í Šcéâ, -ï»Aá5¼edÞ/Ÿã} †ÀQÞÃŽñŒ‡k;¬÷x7%¼G÷é=¤Oé}Fésú‚žÐSú’žÑWtâqAßÐw4¦qN?Ñ1HK6Ÿ23¡“4 -]Ò„ºæi2›ÄËëB«_ÒKüK©ûû’ÐK°ÞôŠ^SJ¯“Mé_ r‚ØÍ |¦so 6Ø‚d‘Î'ôoú÷jž'“O™¿í®|q»L¾@ËËô–.3$…y‘$Έ¬èú•ÞÒoôŸáå±,L èǦ˜šç…¼)tÛ„'¬j5X¨ÞìŸ]`û ©ù›íÍ–éúÆZ¾…ìÊ7ïÈ÷PCñºŽÇ«úòº¼×¬öÜo–Úï·[\ÿïÖìa«Vß±¹Ö÷ž´…Mƒ¨Ò½/åìBšèi.š¢÷¤;/pkq‹k’6AÑ*¤ %'­fþ=9)¤ÄKEC¼|ëÊDË… ÑÿTqéÙšÿíE Ѷ Ä·55%ïx‰0vƒ@Ð÷G¥ä]éC×ûï14H:¤êJ‡lKjý„©p«yçØl-Ðk‹ÖåC$óöOW-9Ym·¥Î£Bí‚6 í¦T•˸*"˜ïÏ‘ðv®¤LªØ @q¿ëM5̉ŽlÓhJŽÀŒœ84Ç€bÄïå&í_•þ¢p¼*]Ý&z<0yÇÿÂ%4ÙaG5×r—-p ÕÍ`ò¿E¥ï”´Õ‚rÃL ­nå\D a:T ~ƒÒúÚð@3((ß9QšZË5QVÒü;DuÓ,²†È«E”`2ÂVD÷`Zìç™@ U%9 ¸Ü Q>_e×4•¹V)Y€k&m¢ 4ú¤VD]Ĉ}¤tywHTÔ%ЇÀ1Ùág6`‘JäÀ)æ*Ш‹,„˜}FT‘øo±* dÒ™ 8=v^Äú¶@k{Q®¾¨\˜öÊ·®Ãµf»»µÕ ]f-Á/Vz0ÛÙ<Ñ…ÒP¸nÌäUV?Úb¥ñK2ÜJ7,s¯5¦#“dÙŽ5¤Øòû/ÙžÒ °A¸ƒ³4ˆ†‰€3vÇÝ»ÊóByÇEõl8/?~ÙÑîú&^}¯M¼»æg¤¨‚8ã†-‘tß/ ŠƒÁÁ¡Àåý’(‚÷£Ì‰ª4÷ëÑû½ó—E²&#™á'8½9@¦:I@®»;SY;Þ´vèJ î³Sm'C¸cˆ[°‹ÃÜßÇ.Ÿ^¾{rôây™ÑÒ=ìÙšb²>évŠIe“v¢ÜŠ1u3ªt—•è*ëRWk0'¶«®AøC×HK[wöSldËÀ<ŸÝYmVÓ¸ûU—º¶®³‡DYƒ"«šþŽð[β¹ÝÞßUà÷_•—4DøEh„›+ Ì €fàürï ÙÆiGµéõkŒ{W˜-É®‡ª-Ín›K Šh´j²JŽŽX¤$AX:ÎUécÝií“h,fÙm‹YÌÇ཈ˆV÷DÀF þÓ¬¶´µDŒÂízpŽ˜Q«Zí[#«’(!8ê…»µçxNè›ÑqUÁ}Ãço=¼Îó›_)ýúõ«ŸÓ`’@«‹/èsí²Ÿ;j¿¬q_~à5~Qõ½Oœî¨Ü[ê;j/,›ãPª6ZÆ Lù”;3ðó²Þ»Aj›7vÅEp'Ü:q‹è5^"‰n7›ÓéÊm+v‹éPQænÙÄ\^‘¢ˆàç. m|3€+Õµï|¦Ãºà?r)¿kè§éJ©Kúendstream endobj 82 0 obj << /Subtype /XML /Type /Metadata /Length 1726 >> stream GPL Ghostscript 9.18 2018-01-23T16:13:59+01:00 2018-01-23T16:13:59+01:00 LaTeX with hyperref package 'algo.glrnb': Count data regression charts using the generalized likelihood ratio statisticValentin Wimmer and Michael HöhleR package 'surveillance' endstream endobj 83 0 obj << /Type /ObjStm /Length 3254 /Filter /FlateDecode /N 79 /First 712 >> stream xœÕ[[oÛÆ~?¿b[áÞ/ж'mâÔ•“6IáEflžÈ’+ÒiÒ_¾Y’/’#Û ŒCá’\îÌÎ|sÛÝà –I‰‹cJY<ÓwíXH™ÅûT0¯ K%ž+–*&…–,ÕøÐ§,5LjåYŠŒGoǤ÷¥ž)að<0¥ú§L9%ð±`ZHô’ií0ŒPL[Çe:•@fd †':EÃ1c }åÈ€¨Ì K‚MŒça½Ç)™Ó}¤BCcd©™³’†¹ =–yA#ƒžW¾òÌMÀ¼A)Sæ¾} q”d>Õø\)É@iˆ T†%¨ä¨-5 B’¯dh©3' z©ÂT$‰Tá ²e©5„ëè„ïI,â ŽN¢˜”$^„t[‡¨ åeF7$I#It} :…¥! K­(+G*$<¨€7†õc¢¸ˆ%HLо Éyêm£ÄµhblË8iA÷–D$ 4¤3¥ˆ7k©IëH€4âBY’ñ¨,ÁȦ$Câ’æ¢∆§Ù¸(OíÿóóÏŒ?ÉŠ’ýÅ=büí»÷Ä] ocdâ¡ÚÙõtÊN•}) õ±ãñx‘ÍJæê»Eö™ùªý:/§û¦ùe>/ò¬ø‘=~ܦ–©)! iv©¹Ô‚é{9bãÙ{örôhr1^”’€øš¦‰.M¿™¦íÐ<˜ÏÊÅ|ú¨ÈÊ2ŸIÊ!I«RU.I®£â:TžäÅäº(òùl9þþ|q–-@æ$i˜ƒxCôN×’O!\€Gi“8¸ž†ú(›PO%|"€Wc\"1@,Iƒ„ß y"ô<¹þP~½Ê™Ï>·ØÞ›Íæå-™Ò¦œV‰~ÀTp‰ü4®sÑF%Öø¹(/†)m|]òä ¸ïÁÓP{DÜX7àÉû„üDÔ±"F–)¸¾L{ßJ*Àoé¨T÷y’˜¹“f (¥(v†R§*ñ†"¨ß[N›xJáà¸kžŒ„{ðî–<‹ì¾ˆñ÷£g¿ÿtpôú5B6:›ÌÏà™ÿ3ŸíÍŠ|õà0_å<%C´âô5XŸ,ò«r¾ L$²ÿr\÷¡à¿b„X 'á?ó³ò¢À|¬4Q4ßûè´i Ûít=mĵWL¢Ë…’øÞçóÈzìÁÆWϳüü¢~IS?ÉJöóüœOùŒÏùU¶Èçg|ñcÔvê‘BV§ãóЬd²¿?ÿ‘_Òð4æiõò0ŸfΧ§G¯Æ—Ù@¿”ãi>Ù›#ÆÆ_ZÜåˆ ³6ÿ'evùó¾­›–ZùÛzv™Á;o_ŒŽ÷Az§»t€ÛtB:È÷¶ƒŽ2é@ÍÎù{€ñ‹þEBjeu­žÑ]EÍ ¨Z±Gì,—&aM|¾O¸!Œž·o—À9t&|2ŸÎgüŒgÑÏù§J ^ð’_ó;XB ß`I °„—©4‘éaÉ÷±ÔUhJð {¬ÁƒÄü›àqCð¼xûæÕïDZm¿CIgÅÕÊ݈ÁÐTØôAã·FýA?ú£`§•«T…¬ù‰åѺïþyA5L6Òê6€Bèø$¤mZCO©ýÀ½[‡½Š êNW•¦õÇÄhÃpuªãÀÕ”\¼Ò+]íÄ\gÔê£Ñ£¦h¡Ñ–Úh|ŸñçüW~ÄOøþÿ³Æçååø<˳EV䀿çÙìl\\ð@íÅ׫‹lðNùeï|–ñ+~Eùë4ûXV­EüŒp]ä_€íòŸ9ðý™åÿf‹yæˆn5ÌÍåx—"[ ÙôPú(ï"oK”S9¶=ÌI€Ç‹ù¤`t7¦20TÌãÇm°[={×€ákªU½ŒGãr‘ÇI'(ìµÚ§-£0}GJ¦:3ËA?C~QÑz3±‰^ee·Ç¿¾xðÒÛ ?·eÂ`×X°X°ÜÚ‚õFNÕ|û>¸uÖ› y‹ `áØ¦ ««jl»¡V]ã;o+Só0PK’Ïi#è Ö†„Ð ¡m„{üEÌ'Úa¡e\í¸ð™ÿÿvcƒ¸)6Т”ŠôºV“6^xi5=½ok6êÛ©…]“Z¼{wôüùP;9ÙeA­A™í¡,l›[8€v¨¦nÊ—v|å¨%÷¥Ðµ.ôä ¾Ò×=¡«¾Ð{bØ6"« 2ßìR½Î;5®s“wB„bˆžJ¯óNŠŠáÚ;-Û·ñNÍrÍZ€bgwzötÿxÿ9ùöôî)-wö«™m³ l7KðwOF[© bë銹ªU:ãÒ•º~j„Â…6Òz2ùH Ú!?Þ¶¼MÛÏP 5LãbÚÎ…t´Ñ¹ÐK¯]¾‡sÛÇyGmÛº²ˆoEä0„ÈËWïÞ¿{ ¦m1¢Í#Íê`+~¹m+^E¨þukW?±æNôèˆu±áûîXÝÞý/oÇÙíç´ú~­[^ÕåèÑvÒTM®Ðý”ò_ÌþÆù)íëeR;.&y^æÓ³ Í%{ñ‰K„Ý‹ñ$‹ klU +5?eåò1ÚÕ‹Æx–ò|:/Vùñß×ã)¬êcþÆ5¿^ À;_dcl§ÌÿE\ŸfE3çYŽÄùÆô¹^a¸š^üoþ÷õ¼ÌÎ>L«¬:ûŒ)·.¦”™#þXdYg_ÏβE1™/²˜:|Y—v«°4rÛ1òG®zkZÍK]ËÛ¸RAúë==Ù>Ÿ75>F´ÇcêÈV?‰»g‘±m Õ5ðHÇ]³ºM»*MÛ2¹ìâFZ}“ÆÍ´ê†öHš¯©Zk:ÅM4ÓÜxŠ”U;æ&î57:î²µx®Qn:uZ¼[¢z Ñùùy ¦ËÛªû­ûØ!>(®Õ2ŸÏÎòâj:îæ©].T «.z)uðÄNOûƒÅ…ßGo÷N^ýôòIÂÅÓ/e6£ )²ók˜ÈÍŽŸv k ÐÞùMË×þþâŨ¦yòõòÃ|Z„ÁVªÓ°»ôùjͪƒìg“T;oåòƒZWñoûçE:=×]ErU$€á½¢‰.§¶½Ø¨RzGQ›ÆëitPHCº[ªss¿q½*àV è¶¶¦¸uæTbaÝ.è$x9Ø'26!ÓZ&WeÑßk£ÂvKèñ¦ˆ+÷eâ üC„U{ƒ£ì,¯ò~›Ú„ö¥LâRL³™×¸ˆ¬@D˜dUbyvR"2ÄÍñ¥ìãy½÷7ŸºÿBóÉ!¸¤ÍÈÓ˜ÄW ϳ IÜÖoì,À‰¾)PßnÚïÈàW6ßY”¨+ëe«òÇ‘6çüªYÖ[kCКZ™ÁßNš C/¾É?·œ-ùºqÉž6Çš¶£R¥Eh©fÕDƒ©Y©ŽšõÔ¼F,÷Ärò|?oe{è[¦"ñÊÀÓØ Ö˜HZ£Ågtðå––©*AHåꫯ¯a`±ª‰å;R¥mUjyUÞAº©OR¤V˜Ä¥ƒ­h£}B«OZêDÐiX”€æµr‰rê>Û™}®¶8®Ñ8cëK™•L.™$¥“RpÎ*˜]2Õ•‚¯÷H]!1:¹ÔÇ¡6Ié’):I ÉcÞ†©­=®5èqõ½<®®ÎW så{8š{Y JÓ:—ꦓ!ñ¨Œ‰2ŽN¯%6Õ·õ-ºbVêÚÇh[_k_£k_S‡:(¯FÔWY_Õ_dvê‹Lƒ¯è‹Lsëþ¾èîÊ0 vçÓ•2¬HÒôvºØõÁ È)¡c'l†‚ñ§.D…¹—'º;SJÙÄÃq-™¢Èèü.˜º»Ï6‚|4m„øn:?ª’jßR&tôA$eÅB<¨*#3ÆûÄøx"Qú1eJ‡l‡:­c&î~ÑíLÑ+ÕbŠŽ}Áo퀩»‡\‰TÏѵ†à dêðjT1SüNL}#eÒñY9›¤@¶âéü³¸êÓ9»Lš…ñ‡Hš“ªwKLuÆùæà— Ëí6¶1âÁêïYH«Ô¦¿—6muýÚl—†ð&MŸA™¸=þÓ”X¸—ÄèÔ¼M"¼aùÖËÄÈ>tó|£ñVç”ÍYòüãÇ Ö@ðÿ+î²Òïi3µ¥¸×vbŠ*ÚÝ´{Ã>[w<ÚEë,g³ÞzvÜë­i³Á¢6ý¿šÁÂö®Xlµ°×€ëåÖmeöÿ¦ZŠªOvU;0ͱ¯1ô?ù¶³Íendstream endobj 163 0 obj << /Filter /FlateDecode /Length 5391 >> stream xœÅ\K“Çq¾¯ý#&|šQ`Úõ~È[´MZ#(–¤³ï;+ì. Èýuç£Y=Ýx`8x`£¦º*+ëËÌ/³ª÷/5éÂÿÊÿ/Þžýó÷&lnžÎÔææì/gš~Ý”ÿ]¼Ýüæ5öˆ'£½Û¼¾>ãWõF›8¥7!¨ ~x{öãö°ƒGe” ÛûÝ^M>çÓö†š½Ïf{ÍSo¾Y~ñ]ïñ šÏñ9(mrüŸ×¿E³0¥É%ŸAÈ×— Ô¯w{§¼·_‰AŽ[³½]–õËj4Lø ]²VÎ;œ‡p*ªHRŽ».öƒèrÃ'p öÞM1¦¼ÙH‡Äª.ëÌ”Ko[xG£^p^›£Üz©-žËè˜3iȧœACƒæ›A[°ã:ÚíßĈrôKÞ®¬|y‘z‹ß쌟L'—Ð侸~©r€7lDPÊÒ£GéúlúDþ¶­Ï²ýn€)½ôˆŽçÓqNÛ6Q%{únÁÂ]·‚‹Þ…­Ê‚ÃnzoЪŒš¢NiâLVÍ;üÇ]*BZ@•*¥CpÖ±ÚÂ]bëÊ€ ÎA9G"(€Ñ–0 j)¶º{‹¿h•<˜£|–C’B“R^û"µÝÄ ­Qè Z·ÚnÜdmVeÞþ´Õ»×Æž^ôŒ“7!{vÛ)=äXf²^·æ§]é“DŸ4)ãc*}~Uz zŒ“vIùÍ^Èô£Ôy:P©Ñ&ÂNQÈ·bÙ¬4aç,[RÐ|;¼+•*»Ç!tóÛov¨´èAµ°³…˜´ñ,ÒßÙº”Mdâ5äÏÇ>ø8ë½ÜO1ïÂö ¦`È_t{åƒuÚ vl¯X7ÄZÊO[BcTÁÃämÕ[ƒ”Ÿ`!ÿ¾ÃuhíU>ÒZ-¼ 6,Ôý®HÖ^Ìe &Ey—À‚ȳÄìlBÏ ÁFç°C»¤†¯¹U'¿ýaP¶°#1ýs7 B ¸pDìŠäô"8˜F¼}dÿW4Ð忆7Þ£ì ù™YÂ#ÄQ;Žr7(à™ÞL.m?VEfeʲ (ã[0åhTR£µÌ–²l¯ŠI¥¸ýšdƒˆäuŸ^eñ…éØñãM­w Ê.=Œ¬X{m§ìÒ)ÀÌ À¤u…ÈHÁ˜ížYz•í7RÁ…j™œGƒ€¸í®ãY‘AÓMF‹óŸÑ$p=í“ó+1Ò‚“÷ƒ“Ÿ¹l^´^øéBuð`>³…vŒßVpÎÍ㢛ØÝŠ[b¦Ñ]éÉ¢èbÜd÷8.Ðp]F—`xaÈ4KtJ gîÒ¯*ªÓÅìÃ:CE-iôÂàÐò&O9k§xÑÝlöÞLØ ‹ño%;g*ÃÄI%$'OLYŒ+N –“]$¬ãdYo…ÒºhežÙi13àz‚WEW ޤ¨àµø–éwèêöÆÏÔ@VîÈó¤Àþ› <¯ù‰áx˜+– T°/>qg›˜œ[˜ŸÉzQe—A¼P‡œfÿ æž ëÖÀÎ Ö&rŠ0,µX&³1[9Kf@‡4´æH±A{ ·,/nŠƒvÀ…|(ËÔNpÛÚyéï?ñ´ÆÙáTOëƒ]÷Á^ú&?´®RK<–·ÑË¥ÚV`ÀxÌ>|M´;¢‚ µ>Ý´§c{š~ío¼kOíé|·„À:ýž|Aà5-ÏE˜si+¦ ø¨(ÂbÔÁÿH –ÿHØ Šsç&¸Ç ‚ÆLéš[ŠƒÚŽ/äÀ'“éàl†èð<°Šc_+Ä! ‘ ·Ô¶üæ´¢DOÍpò§Žá;f ̃6eå4¬ªä@Á-…¨#Û8ˆ  *‚ÒÀ+ËÆ[r¾:äÀj‰†Ä!OK ’Ò°¨Ã}·[­¿‰…ðx>@D¾äi‚[~O£C¼ëoPËFU'Û”Jh([)úïÓ5ï—Žâ’Õôû³×¿ú‘£?pô¶g˜'Þ•x£5U1¬®¯Kdg_õ5½aÁlÿ½p¤å¡{& Ö\…°ÞƒPùQÈ䗻ʾèj›v4$pÁD‚¼ÑË™¼°ám:Ž¿Ì-àhAÍ%¶ÂØDŒÜ:ÝúH™0:2#¯:²*F±~/}¬VùX}Ï÷]- ®"£›N­³Ž ' ¢ò›÷ÈV BÝd-] VÔ°ŽÆa5Ä\ Idá¼je`ÙÀÁ!n EÒˆÄ4ç³U”3ÑZäÆLù°5j*­˜óÅTÜœ‹<ë}!†!€s{è ¼¨— ¥e.hÅÀV©^'“Pþ¦š……¥Äó3K©Õß1±¢l°µA6xÛ̽°¶ìá Xü·@"XRk5˜/þ–=e=Ñí÷®’ÉÀtÔçDÇ1¡Ulª\ €ú÷sA½\‚E|–‘SÀô¼[{ `(qãðD“S[p’b8ù¢°ê¹[®ñ­Gà{ánŽ$ ñáëê ÅÄ&jPèëM•3n¤É¨€>~ö6OÁÙX X÷^†$&[ÈE…}?wÙ„Z–0º‹÷¦ ‘à9°SòT{!ÞÄP„~†J³M³ì«!“‹`ÂàA Ê1þs—ì„1’ø€Ï°hCÓ>K4H&ØtÆëÐ%7ícÆ­~†ëD!‚ž‘IlT:~Ö¶Â0†½¦‰,¹íñÂvV. ñBHt$`P@[ÕMIÅ0hSeÌ- 7Ñ„²ïÍú3’Ï©Jf)$`)¿X5¤=H@¾Äe7gŠù}N½„æÕ¨·Yl‘¼–m«9Æ÷‡Þ-0×ÎR¯ÚÓóÂSÿm}ü§öôÔž^¨ðû…aîÈs:,x±0J—òBÐXoª³ Jcêû‰L¯iœ1æL¼•©Ì)j3ä÷ÅíVÐ8vûÂc=tW|Ù›9H¢GÒ³T`ì’Gœ34T3ðäzËqWa)‹  Z‰¹ÔÇ$ñ9<ö9§b?!ñ(˜r >,ŸzÞ¾h͇«ÙvPÊ f™˜;§$¦¾X .¢Ã«p§8÷æU¥/¥bÒ\tÖSòºbär¡Ýß- û(Ìj‚u\ÿ0‡ÁZzªó¤1õ½¾Ð¾_°’§U¹lc•Çó.× ‡Ë´]3|þ¹qe¤c IÀ9€: n°u%¸Aº°ì…ËŸmg™AبŒ TÒ6Dò›HAžG¬ "ÁC&8 ‰8ÕÜRZÀ>Ò7dŸÐ©€ôQ¯6±Tw~Vƒ9ª¢:´Ð÷`aT&ðÄMQLmÕèw©`³ý ƒ0­”{ÂB?.¦¯«Ä9Zä'8(éHËׄu>’eÀQfçÒÞöðvÕcåb -É­(Lrø*SPzôŸ  =ÜkÓ.Ì‹ÿ2¹¯[}‘Š­ç ´GŠ4š¿Œèb„/ÈO„hçss${ªÛ‹´ì‰ÅÀ\e^ŸÂö¨ìàÆ¸þa`¯Òœ µ*»¯§J,ë^¥K»“Æêº©Î¶æ–T’É+>†.’T®ÉdıÈSÀL¦BÇÌþSGQ§V(ÆX-{¶!Òña/WxVä²K7²nMµ¶ŒEÇ—Ž@ФçµåÚ¶P[nê¡11טN껦†ÃË0Ý?èÇ7¤$i(Jc¤qšüŸ©@r§5i&PO'þ©¬oðOë‡ÕÅi½ô@7ƒPëRb´¥ò00† ·ëFø™Y¹UÔ´¡³3œU8[‡ú8ݾÐY²f±õï…æÅd¢3s»À¥Öë:E^@$Ž’äNæ$Q‰‹ÕÚ˜qqåèÕ xᜇDRÐ{™3¯e&Ei¼"ÿÉã*êªý—±ŽÆÇW"#Ý%JiRѬV>d¬t]­€­ÔØàN}9ž"™µãЙ§.1“.Kx>:¹æç WÈ+õ äÖ%——.Ç@+­¯êaßQYpŸ¢åC•ÁÊm¡ÈÍ‘jÄmB9Ú[ÊQ/"ñ»ï‘Orš™ÿ+‹žGó"ÆZãž»$•Wj¢x·lâÂÝ/n|MÛÈyq±*æBÑ—xxá²U†âä,UœŽîë«0"Þ2/w’~7Ëв6X7ýØóÅxHJñ I/¤d¼à’ñü Ò‚µ_w¯¸ÄŽ!8 ê¯Bˆº‘šÜwnûØó¿ã§ÈKCFSFý˦œ¥JÅÍèø>Wyÿ¢ëÝ]òj‚Jk@½Y9ðUš§( ¢43]\¯]L™. q<° 0Ø++‘”9ÉžÇá“âXEÄè#¥°”‘XC×OæœÂZ*¦,'¨•ŒSíeŒãN”:—«8s*^m÷žEKÚ/GÌ/¢â’¾©z-NöËÎM¯XŠ8ž,>ôÁâØ‹Wù‡Ù©«åDݼ ËGç+eÀÁŸŽ÷çÆûh7YÊ­pØ£.ËB[¹Þ®w{¼±1y]*5ð¯@)¹E÷T>£ñ ˜aÊ#^ ?–q/ز`4««<ÓG<Ùzšk®K£ê3_fw|ó¢¤)T4x½—WÊÄhŸr©cEðɬÐ@—p r¹†ªIÖ‡b’ʆaŒ–õ¸T6ßxË9b³‹—9¶“*Éá*ˆÑýëð•$rkÙ9’£²käµÐjøÆ:-†Ý6åľt~ÕÊ_/z(n ÍqßÇ›)ZS»}U‡®}úÜWbBŽ Þä04?u9¤x‡Â]ÏeÆv#TÑÙH×ïoð[Š(Zïø¼À$Àv‹‚%©p6˜Ž”Xîšëܰ’}—‚OÊ`x¹ÝC¡U©0ˆÖìUÁbÂÎDSj_É1Ö(o…Àï]p\Ao2ägLÆJ Õ¬úl˜#ŒöÑf¼™ºrV"ó¡øP  @;Û¹»‡ýNâxymô{ƒÑ¡OÅó|¸ VÇj†ÔºÎ=ñ U‰Ð9]“´l‘®ÑŒÈ»ÈcÁ€QϤc<£“Þ_RÈr M;§-7HºIw˜x8dÚ+û'Üo B VÞ¥2Ÿˆœ´ÀžÇЖ¶b\p3{\²%1öŒ®ðì§ø+nýp@7êÛ4—Mélô§OÜŠ5M&iôG.æW§ÖOU>á‘Ój°h:úPÏŸ!ØG 0ü2òŸ˜CÍOUŒå‚öš?ŸpÞÒ ¼ êGÑ|æÊÊ5ÀÝØë «ørÞÿ(@rc¤2aTi ÖÂÏÐûXÂBdàdÈ©†}\²Ï!Äy*2^VÇKºâf;Fö•}¨kÒcà¾kL‘~æ™Pƒ`…Þ X>Ðç Ê.S>¿éP.÷´NT¤û×g8ƒÓæÃ™Ú|}¦uÄO±!ÇKÑaóö̼|Ô[îÏ~XýË$^m _4 ˜ÄÂR½…ÿCÚ¡=þi’ú)¾×›4eà˜ØßMðã‹j)§úé$Ýf€—cµ¢)ø#nX„å‚þñ„Pþ‡—¯ZºÙx]ŠjtÖôW"ú[ï䧨ÄTUP>H˘Ñpwëj&„!ëaê?øS`ô!ò­XS)Çб‰C*zxY®?€¾ºf IÇÖÂÊwø 90 þƽ<Þ÷Ç«þøÐŸûãÝb‡©?þi±ïÛÅG1Û»þø¯ýñfñµ¿.N|)Ç]*Å8 ƒXÎÆêkä/`èÿpö½Ö-Zendstream endobj 164 0 obj << /Filter /FlateDecode /Length 5626 >> stream xœÅ\Is$7v¾·çG0æTåP•±/£GŒcylÙ–GTø ñ!›ìf·DVµÈÖÒ¾ø¯û-ÈÄC&@²¥q8tDÀ[¾· ¾¿PG}¡ð¿òÿ«»÷g.n^¨‹›ß¿Ðô׋ò¿«»‹Ï.a„ÓÐsÌ*ë‹Ë×/øSèÒñ˜LºˆÊµ —w/¾ÙÝíêhrN)ìΧ½‰G›ãîý^UÎ>åÝàsŽÑìþ²ß¬ Ç”Ýnºßã‡Îd½{…Ýéè´ßa¯U!@~–‚·» “„œmлk‘ƒÖ ¿Ãv²>@7Ìq¥ÝKát0>ï~¨Í÷<–{‹+keCÚuû¥‰ôk¥¢jטÊ"A7CÞÔE^ñ§õîJ~ø€ÿpJyØ9î,(£4¬H£-Óùu™ºß ¢è”’3¦uþˆbNÙ˽œi³Ê$kä̂зõ»;èÊD>Å™fXnÐ'¿;ãÄ: —nÕi—˵&yþÛÓóEz§G»¾XÚ‡ý]þó mÞ¥tqùŋ˿ýf'O‡×µ>Yºi§£Ë-dg1Ú¸¦›G›¬Ìî #›)¼À;²YrÔ•ønâc£ÅÛk:Ø›Qy™ÄËKx;d¢ ùp2O¡Ý_ ÓµóR²Iò§¼õ÷üaÖHª Ðí6›Nõªo^ ¢ñ^ÜKŠ»év¹AIê¹L"3| Ö¹FŒË‡Ê˜°»åùbBBòΧºž$ùÔˆdÃ’yÞKÊÈxŒÀ@V ÍX¸,?o¦:o&KJå—ÀñÈMÖeø+è¨ËkÐH·U"Ä]à¸Cx öˆÇãåéÈüë5^{°YmuÎR±IÞã³^£‚;ûƒËé˜vÿ@‡®”ùõWt£@…Ý}ý¯$§J¹òk§lrsEò”hAi 7 XäL<«´ÑÍ^ðL=·ÝýeWïëµ"äAªÇ«ö•RõOå H Óó‰ ú ¢ˆ•@“ÀM®õײ¿F5W¿Ü±°õ•M@÷Dç ?ìþ“´¼¶®-9kq‡#îz…# œ’c`¿ æ9U…tµÖY9ñ ÄhdÉ_©@nºŸÝ׿©6_vHÐGøã¢@ 8 ²óùÈþzꜦӱś'¾;¿( fº5f)B+Læž0·N‘¼«6ZŒ&&K °x*°6EƒÀ­pŽÚðL‡yÐ ÈRE«y>B©a„õY|Q茂™¥I¥ (àɆ$!Ì,Âà¶$× >r:4ÛœåÄ7 Â}\¦Aª¤þ7úMeá¨p}¼£ÓYän!¥A™¤"Pòð–“ì\2Ï Çà±»85ª'iÇÉæ :Ú>Ï €9lrkvm®£Ø-±ú°9”}ögˆ¨8 YÜŠÖÛ*3 )Ö¶ Ty$yÓ{Þ7jÜ¡pBAß¾l¼&±óÖÒ…œŒ33+º°5oÈð¾u|f| ; ³¾ d ĶHaþ¨Uú¢Õó´/ŸAù´r0‘‹º&âq„gØ*KÅXD]¡iÅôtñoµ¯ìCqû\ø|Apƒïyh& ˆz jÊsu0„Ð÷8Ìî'þ$T5‘…¨éKÞ=Ü¿ð0¼o\•Oá ›,ªpÀ¬8 è([5‡`ö—•ò&*ÐŒ3pjšLo<þa÷'Fk3bFÚÐ:ò–“7[EE” ‡UêÚ‚y“<€w=_Sr [sØéV 9¸gb:cÑ%¹îÿŽ®Í­PÚ_t’ž<|§ÁÔ„ÍuÅ@¤~´GòÔbf‡^Wn^kàHNÜDQìÆ/ÄŽá®{ž]RL^˜üÔ*ãžÍú±ËlGæ\íŽ*ä™s?“à˜…\ùÈCòÀ{Æý­«y‘!”«Ð1¾¨b0ñÑF…0øÀ[<„ѸuØ“àsî0·¨Ž™ `³Å×<±Ï¡õ¶¢Ù‚ëtt9ü¿ƒë•wÞÂ0à-v1ð˜?±§NpB÷Ó/Ú®úÁ’û¼Ê1øá@‚ŽŒôö[×—dF `þт҇ž­&\NôÁ•Ëp­¡G„¢apí 4§ïxŽHшóB\ºø²_#M¨$ï7•OOý×…hòh6¶é¸ÆG!ÊêÝ*lj”@9 dÓ …Ú`úL{óÕ?m‘³ÁHä)G¼c5C¡_Ý8´i9@öǵ}+C[eq)ÂwoHáOÄaÎY ®°$ôÅ0¨Ölg1º'·^,ÜÊ-ðÌ,€Ô¼©ÍÿC§¬w¥CbÃjö£ö!© "G ̦\—|À'*Û«;g@jts£gìÖ¸vóá;ŽV)Õ6)V|Ú‘sµ\ç^3 r+Ì&´ò#¢ÕQ¨97.5Æ3ÆW®ú>rîW˜'·˜Õ@’ªÉGà ¹ /Wkg„?D™WYå¹ê§d5Å)ZÀvjå—T׿Äßa$AnÎyñ±D§6‚¯ùCŸÚì S¡š-MÞ8ª—ÂU@¿¶®w’@¤ë?×Ê*Ã’×'!~tÑ-X €Adùj ’¹ÓkN'ã)æ96àñ-¬_’z":ò”e‰)Z €;›gÛÚê`&‰“a˜ñQñ™í(Ê-¸f°È#¥8\•B  Kn] ¼ÑŽmYæXë<î”uÝTë‚»5:À\"^­«Ê°×®ò¨+µ,ž¾tªD ”EpXgŸŸ\Ø7%VZt©¸YÚ#àÙ@®…lÃî‹^ñ–›} ñÚÃꜱ4X ¦¢´èƒ—8[38ç}h½‰xx®?„"¥‚?óÙ“‡ÑÚ+œ:èüH‘CHM‘ « Æ+wù- ‰ª©?8:ïæâ˜Ž†€k °Ž£ÃÇ`#˜)ø¾ÌeHËÅ"rà§½EÝTQ(Åý¹®oú=×Üé§Û)5|€¥âeü§€^)ê0Ò¢ƒÇ7ܽÜü´8í{Çhñˆ )ÀdDíªŠOÑŠ"§9ŒûµÐJÒLM¯¬FÆ;Žù—XJÌÉØh•Që—jówì³Ù¤‡\·ŽîÅ‹¶õ×ÌÜôˆn•¼?è¾ Ñ61ð®ëÒfL¬ñà°{)’ü4–.¬_ôB•£˜iYØ^)?ÎáT|žfÀé°œãɃ+ßrÅ¥˜ T3+z¬MÝâ~®0ŒÇØ_Æ œ§ŸÀm3VB)*4 žç$Ðêz•–‡°…ô”1VäÊüû2² Ý1 ˜«SÝq¯YF¹ý¹Èžn&g?*÷Ô6ôG3Ó:¸¤¸†A? ·’©²Ñø{™h(¥7f:¹³©©j£nôF´BÒã7¥âBýº¼+Ύ΢ gßóúqåȬ±¾EGây\C;. ´_.9`tÎùÇ$tñ¹y=<›7¤Ûì[ô¹lhZü"·)ncî\×¶ma·ELÏSéµ³àõ¦Ò³åYcîÅä!VÏ¢)ˆ'­l¤Œô‚M_Ýü’%¼¹›§kH=¢/”§¼þsÊ8a €¥_—Ÿãk°rîsçÊ6 \À¦æà;)SÛ·ö/Ž82ó³V]b¦Û^²‡¥ýP›oºƒûß‹Ùö:€Ÿ·„½«#okóÜ¥ñ¯KØ'µy×û¶6Oµù{j‚Kv¿­Í«Íjó®6_Öæ«Ú¼ŸÏA—-SïëÚûP{§Ú¼í.!f8uW»í6§ºÚ›îj×Ý^AúUwÀC—†‡úÙ[IïÒû¹üŒ~Ð Cßõuç}wïSwïÊ´ø3TÔ<¨!ÕmêÚ<Ôæ“Ÿ…Úümm¦_‡EÙcÛ]"ÆZ#Å­ Æ­ÿxùâ?à¿ÿiâçendstream endobj 165 0 obj << /Filter /FlateDecode /Length 14465 >> stream xœÕKÓ9rž÷ ­½þÂ^è|ŠáQÝ/Û ‡£‘’5Ã/Z^pHöÅêCŽØì‘´Ò_w¢p©|pðN÷ð(r8ä9ý2? P¨'ÿøÔ]û§.ü¿ô¿on/þü×ÃòôÍ/þñE?wýµ[Ÿæeë®Óò4ÃzÝç§~Øûk¿=}|÷ô¿ŸÞ¿¯ë¸tóÓ?½èŸþÊþïÿ¾èž~ù¢_†îºŒOóºÍסºÊ6îשúþÅoL»ë:Á**Kßw×9MÝu‡Möi½nK²™Í×FIÕrxî­¢²Ìûv¶dµö×FÅ.s¹ŽÉhë¯t< Û>^—\5Ô¼À(*‹]ÂuM—·Z3/p*)K× ×>µÔÚ÷× fÅ_à:ôáy«¨°¬q¸vð+)´š†ë€&Í jœ‡ëH¿’«e¸Nô+)¾½Öu¸.=¬’«m¸®ô+*ô~®nbV|ÿÛ:tÑðŸ¾çmý ôQñ=aÆë°Â()¨i¯#îrRàõ6×í”x5ᢲŒÖ—)Y-62éVTPÔ:^w6ATèÕ6];Üã¤,Ó8‡>­ö)ü«·ŠÊ²-{¸‹‡ÕÞM×w/)p~ï§ë¿’â߇é:ã'Îï£ 5¸•ßA÷iºnt+)¾ëíótÝq“² ý†Y´ZækG¿¢ÂK\í_q«“‚‡Ãnÿ:â.&M¿ïsxzy«¨¸~:tÝ*?²£~u{£¨x¯†n˜¯{«¨,ƒuŸ~OVãrÅøÊŠo‡¡›–kO·¢Â½Ñ!ÐfYÂpóFQÁ®Ëu^a”׆n[®Ë«¨ ¨}¹n°pØôÝrÝýX-Š{8 }¿3­³JŠwª·ù·‡SYÕ¸^GÜÁ¬¸ž<ôöýJ üšWNâEÕ²ÚVIA«ùH¿’ï·íÚáf5ÚlݰJŠ/Ëîçñ¢ÀÊF.º_ü†í:鬸 Æíºà&VJ´š¶ëŠ^“”5oœÇ‹×í¹Šy¼V¢Õº_{ú•ߤö_GÜĤ !öÓxQ¼óc·s¯•hÕïœÆk%Z ûuƒ[YñÎö{ÇÎ üš;ÎæEÕÒqÙ“ßãÚq6Ï ŒÂº™^%õí¶,F›fÅ[M]ÇÙ¼(¾CL69np+)x.O¶$Ätž7¹Óh c¸•?¹ÓÔ_G4iRð`žl)ŽÙ¼(pÞ–â3ÝŠŠoÓÉVâl†C`u6»lt*)¨Î–â;Û**¾ºÙ®SyQ|Qsoëb‚©æÁVÅ«YAI¶Ÿp}Y•­Ãgz•ßef[‡s*O îàlëð~%eY÷éx‰I_›u2Üç¬ÀÊÊèWR|K7V“yV`eËñ~eÅ׸ØzoXEñ‘ÅÖã4Šll5Î…OVPŸ- 9WJ´².Û³B*Ñjø~U+ÑÊÖãœÎ³‚Ö²õ8×>YñÞ¯¶çtžô›ÕÖãx­•he rÎcYñ~­¶”åtžXMö¯ô‹J´šmyŒ±Q)ÑÊät+ ¨Ï–ã ½JŠïá_9ŸgeÙr|£WQA›n¶4ìàVVüýÙz[ã^gÅ׸ Ëu€_YAY¶ Ÿp+%ZÙ‚|¦_QñÆfOM¼ge…—h+r¼ge3ÔfKònE…em¶ú…QÐ ûÊ—Ò¬x×÷n­fó¬ø¢v[’O´JŠoÑÝ–ä¸9Q€ã»-ÈWEN…B1X“#[ŽsK Œ–­šÊ“‚Ys_mmL§¢âß4‡ÝVãî_VÐT6ñq*OŠo†±³Õ8^H³²ŒÖf㞬l9ŽÙ<+nž;[#¶Ý£¨Ð«i¿²¤C OóŽ·Ñ$ 2[‰c&/Šk¨±³•øL—’âúÔØÙJ|eC%eÙR3yV\_{[‰ïp++¾¨~è8‘gE¶,†WYAQSÇuO­D+[ˆc/Š{ÖŽýRí)5ÚJ|ÝaE%ZmÜT΂o÷~¯6•kå°ºjS¹V¢U_m*Å_¡½|ò++è¢ö¦Ä}墸v°µ?W=EAsµ¯\X-Õ¾rQPã:ð«V¢ÕVí+Å·½=7¹î)Š¯Ñ†9æñ,À¦¯v•‹â¯Ð𝣵­ÆjW¹(( /;ñ?ýµóȼ(ð{©ö•‹‚ºÖj_9+~¨Ž[µ­\T¸WûÊEñN¶ Ç ^_ÖÔWËEÕPm,5ŽÕÆrQPÖTm,Å7ýd qLâEAYKµ³\”µV;ËYÁ`l!Žy¼((k¯v–‹âýš»™{¥EU?ó++¾KÌCµ±\ïÖlSÿŒÛ˜T8U;ËEAYsµµ\+Ñj©¶–‹â»Ä¼V[˵­¶…¦E_;·–³à¯p骭å¢Àª¯ö–‹â}_†jo¹V¢•­Ã±]Z+Ñjª¶—k%ZÍÕörQ|;,ËZÍçY÷kµ½\+ÑÊVâ3Û‹J´Ú«í墸×®Ú^®•hekq4jüýY‡js¹V¢ÕXm.^MÕærQ|›®óÆ·Ñ¢ ,[Žs>Ï ¼_«ýåZ‰V[µ¿\Ô¸WûËEñV[Wí/Åûµõ{5ŸgVCµ¿\XÕs­D«©Ú`. ¼Ÿ« æZ‰V¶*Ç–iQü}ÜÖjƒ¹(¨q¯6˜‹â­ö®«æõ¤`ÚØûj‡9+þãÙ¸Õs­D«±Úb.Š¿Æ}ª¶˜‹+[—sbOŠùÙ—j‡¹((j­¶˜‹â»Ä¾U[ÌEA£îÕsVÜœ7u¶.Ç´žßòS×s‹9 Ω©ª-欸V°eQµÃœMÕsVèÓWRÊ`™%¦ìYfI)ƒeV”2ábE)Óy){’YQʬNQÊDj¦ –¹M)³ E)“e~R†•¢”É+J™,³¤”QÖƒ”2Hß)eXIJ5>D)ÃJRʨï‹Pʰ’”2ˆZE)“eV”2YfI){¿¥”aõ¥ M)ûú6I){–YQÊDj¥L8WRÊà%¥Œ%¥Œ²¥ŒöÒ˜²g™%¥ŒK””2Xæ6¥Ì’¥LªVaÊ€}%¥Œ¢Ú”2IfI)ƒeþ˜²3’”2XfE)“eV”2±ZI)ƒ–”2¸á1eg$(eø$(ex¤0eT&)e4”¤”Á2+J™ ¯Â” +J™E)LEIJEIJÙ=aþ¥ìYfI)£FA)£>I)ƒ§}R†•¢”É +J™,³¦”=Yü(¥ì­$¥Œ%¥Œ–”2xßÇ(eo%)e0Á’Rö¾·(e”")e\›¦”½ßŠRf Sˬ)eOðjJÙ“ÅRÊÞJSʾFI)£,I)ƒ–”2ÊR”2ËR”2YfI)¨}ŒR¦•”Á2KJnIJJJeIJÙ0M)ƒe–”2Ê”2ÞG)eo%)eÐÀ_„R†•¤”Ñ’R†÷RÊÞJSÊàn¥Œ’$¥ XRÊ(KRÊðJRÊ`™5¥ìË’”2¼—”2¼”RöV_„R†•¤”ý5jJÞKJeIJ,óc”2­$¥ –YQÊd™%¥ì¯ñAJ™V SË,)e¥)eÏ2+J\™Æ”=ÆÛ¦”É+J™¨ïƒ˜²3zR†•”ÑŠRæ*JT–¦”]÷Ó”2)^E)“@nSÊ$}¥Ì’$¥ þXRʨQPÊ(ISʾ¥”½Õƒ”2¬$¥ìï´¦”á—¤”QVƒRF)_„RöVQʰ’”2ê“”2XfI)£,M){¿4¥ìÉâG)eo%)e_£¦”ý5JJ™r›R&É,)e”¤(e²Ì’RY¬)eÏ2KJ,³¤”Qピ2¬4¥ìYfI)ƒâ}ˆR†¤”Á2KJ,³¤”Á2 J$³¤”}+,]µÇœ ±Ì¬[dn3¶H¬[j ±er`…Ø"9p±En`AØV¹aËÜÀаen`EØ27°"l©)–¹aKM¶Ì ¬[jаen`AØV¹›í™X¶H ,øZfV|-3+¾™^ËÄÀ ¯Eb`A×2/°¢k™XеU^`E×2/°¢k‘XÀµL ¬àZ¦Vp-Ó+¸–i\Ë´À ®eZ`×nH ܆k«´À‚­…$ÐZ&Vh-“+´–IZˤÀ‚­…¤ÐZ$d-s+²9›dí|Ûk™XµL ¬ÀZj ¬eJ`Ö2%°k©)°–)XË”À ¬eJ`ÖV)XKMµ>%°àj™Xqµ÷ôm‹«eF`ÅÕ2#°âjïéÛWËŒÀŠ«EFà6V[%VXí=|ÛÂjïáÛVË„À «eB`…ÕRSX- ª’€j™X@µ•¦ Z¦VP-Ó+¨é€SËlÀŠ©e6`ÅÔ2°bj‘ ¸ÍÔ"°Bj™ X µL,ˆZæH-r+¢–¹€QKMµÌ¬ˆZæVD-s+¢–¹€QKMµU.`EÔRSD-s+¢–¹€R IµÌ¬ˆÚ{î¶EÔÞs·-¢öž»mµÌ,ˆÚ*°"j™ Xµ÷Üm‹¨e.`EÔRSDí=wÛ"jï¹ÛR‹\ÀЍe.`EÔns5“·ˆÚ*°"j™ XµÌ¬ˆZæVDí=wÛ"j‘ XµL¬€Z¦V@-S ¢©€PËTÀ‚§e&`ÅÓ2°j‘ Xñ´È,pZH‚¦…$`Z¦V0-Ó+˜–i€Û0mXÁ´L¬`Z¤,-$Ò2 °`i‘X°´> ° i™X‘´Ì¬HZæ$-s –)€H‹À‚£e`ÅÑÞÓ¶-Ž–€GË ÀŠ£½§m íÆã&G{OÛ69Ú{Ú¶ÅÑ2°âh™Xq´Ì¬8ZfV-5ÅÑ2°âhïiÛG»U»ÇM޶Ê,@ZHŠ£e`ÅÑÞÓ¶-Žv¬öŽ(-ÞnÚ-3+Žv©öÛ-2 Œ– €F[%V-+Œ–šÂh™Xa´L¬0Z&V-+Œ– €FËÀ £e`ÑV €FKMa´H,(ZæÿU-óÿ*Š–ùE{ÏÚ¶(ZæÿUí=kÛ¢h™ÿ·Ñ2ÿ¯¢h©)Š–ùE{ÏÚ¶(Ú{Ö¶EÑÞ³¶-Šv®ö’Û-óÿ*ŠöžµmQ´÷¬mƒ¢­òÿ*Šöžµm`´Èÿ«(Ú{Ö¶EÑ2ÿ¯¢h§j'¹MÑ2ÿ¯¢h™ÿWQ´÷¬m‹¢eþ_AÑVš¢h™ÿWQ´ÔEKMQ´÷¬m‹¢eþ_EÑÞ³¶-Š–ùEËü¿‚¢­4EÑ2ÿ¯¢h™ÿWQ´÷¬m‹¢eþ_EÑNÕžr›¢Eþ_Ñ2ý¯‚h™þWA´LÿÛ†h«ô¿‚¡eö_Ñ"û¯bh‘ýW ´#w”›-sÿ*‚–š"h‘ûW´Lý«Z¦þí=fÛh™úW´Lý«Z¦þ-Rÿ*€–©@ËÔ¿  eê_AЮÜOn´Lý+ÚJS-Sÿ*€–šhï1Û@ËÔ¿  ½Çl[-Sÿ6ÚŠ±m´÷˜m  ½Çlm•úW´@{Ù¶Z¦þUí=fÛh™úW´sµ“Üh™úW´Ô@ËÔ¿ ½Çl›-Sÿ*€–©A‹Ô¿  eê_ÐNHý«Z¦þU-Sÿ*€–©@ËÔ¿ ­4Ð2õ¯hûjW¹ Ð2õ¯h© ‚©@ËÔ¿  eê_Ð2õ¯ h‘úW´LýÛäg~.`•ã6<_¬ÿ.v÷l|Üñ˜ ’j¹·*ʼŽò\o§UV¼Õf—fïÓ*+Îjèl=»MΪ(Þª·»3Ã*+Þjئcgä´ÊŠ·²iþ˜uO«¬x«ÙFrx÷:­²â­ëápZeÅ[m¶Äì`•oµÛÚ0ìaŸVYqVc·NW‰Yð6ƒ=…EñV£=ÑÐEñVS 6½ïEñV‹­´ÑEñV«-Õ:…EñVÛ2]QT¼ÍnsÄìûiQœ•­·ã™}öù¬x«ÁÞwßO‹â­ìõìØ¹8­²â­ª1åF™³úƒÙº‘=;gëîg+±%¿­_Ý^\BÞíDÛ#¶Ž\ž^K;›0B†í_…Â÷«ÛÿCþ+[,ÎöúÄ?úUü3›w{½¯þlÈ•ö•msó¯~¢²Íž/ÕŸŸUÙø³*»û³)W¶îëÏoÆ©T¶ìÌ¥Í?ã¦mí¿úŒÚ–ŸÓí¿úCµ‰×KÒõ²RË 8ï{++̇,y«“®OFž®Ï6eŽ/FnŽ/VgTG¶òQ•§ÎÊùþóF陯~êÖ$ìã®1‰}÷ürÜÃBaºÌö3DwÌý¥²½fY—~>~Ádèþ ÓÚaº ØÉ:‹s[¸]G[ð‡Ôÿ½òñÝ1ët‘ÎÞl ’>Åá±–„ø¼² ÙÖ…ÝÓ¯&¥.0Л=Iûõ)1á tRâ\6ÌæöûÈdÅfÑá3ƒ£ùº†MŸ°šÒ1¿zÿõó`®nCïN°ý:ÚE¿úë—¿ýñÓo?¾{ýÏš[öUm ~[uíÝÞã Ü[•aíe7mèÓÍ}õü²»†‡œÝÆoŸÃîÝ´Ûå]¸¡ÖÓúùò»`aË»u.¯ß<ÛݳÿX.ÿðlôÆ_^sXÛr¯[ÌÚî²ù½n—¡¸nY.ž{…±)ðòûçîø›yº|Š]÷mŸ/oz×ÞLßuÜ7{±»ü}°w©Ë'³è»ní¶ÃÉ),éöÓÉ)8ÛæË‡ÌÀæ®uC ¥´ïBû0™¿uWtÈ›ù±]¾ÎõæÝv¨éç§pÅݾO—‰Õm½wçCƲ©ÚnÏǧ»µ?ž®^ýëPZ·Ûì?õþ’ÂuØêØz€ýáéphU[ƒ5¦yfKÍ­v¸ÞÙš}ðä~¾~¬[¢ö—7Ïù—«ø­¿áÑ9ëñ—×G§íÅ`¶—é.öÔH5÷Óf ²¾e½êh!+°’CcØëÀäÝU¼Ìu¼ìï¿GE_Ÿ}Ä·Æû ïö’±Ùµ¥Ø«ì|‰^Ï}?öþ^~æS7wk¼Y“MJûÏü°±èÆLpx±1’.3Ü «°ëö£¸ôóvþ¼ž?wþüPÿÙlϳÃçôóÓùó7çÏçÏÏŸÏŸoΟïÒ‘%òé³WÎìþ/Jok]kxÝ·;Ìk= wNßΟ×óçÞ‘òóuÓàC³œí÷çÏ¿iþÙw¢âV ôaí¾où¢^Ç;?lãàûw«9†þj“úð9Íñ—ÇÏ­Vþl98…“`¦>WsµQb¯Â«=~ãúwhÕÅzñŸv6iLöЉ%ÚÛ·ý‰-÷ìÊÖÝàÇêæ_ã©4^ûêòáÛóòGÏÖÙÙîGÞh¯ú[GžMñ¯ÿþr '»Æ=¬¬Ö¿6WQ²-éi’¼ý‰–µ £é¤Kþ}sP}sþ|þ|wþtcæS³ûî¦ßÿ±ÙeÚ£ê÷ÍÒ¾kvP÷Óõ`ׯß4 sîX#6ûmXšØë~w÷Øûð1´º­“ú•OÃ2©|<†¹-ë·4Cͽ=]9a–yâc¼‡k7û'¤¿›_?ç'd¨ÛLö±7ùv<ò­o‡»ÔÓ/ã:UÏÙ³˜ëÙß⯓¿à—¶Ž³7UëÆÇ<»Åëþ WÉ?‡ÞgóùÖÙ|ôÔoÇÔÖºq’äï)Á¦ÿõ2¶p´º/ƒ³øÏ¥’CËÓvÝ—e:†øöc÷ÄV]¯þì«Ë{~^m†üOåWzT÷û–{Gøy;þxþüþüùúüùéüù®ûö§Lã ÚnÞïýûá§¼ú?]~.뿜âËŸ_Áõüù»óg|€öª˜þìøùþüùéüù›ó§û³ÏŸÏŸoΟïΟið¿¿oZ¸š¿i:ñíùó¿ž?Çóg×üù‹óçÿl–àl¯çϹYÂÇ?¢„¥YÂï| ¡ß sxv,ùÉÒ.ko:–žU/s/A2¦Éåì‚î®»~ÿ¡ÙÙòS:üþ·èºgÁÏç èùú9Øl>„ü‘§ªÅŒöì\Ãw¦Û©’&ÇH‡Œ6"½UR`eOv[Íz«¤¶bÍ™"Qì­’‚²–.ìx«¤ ¬µ /ÍÞ*)Kˆ†*ǯ…ùVIAY{È;o•oeÕð¥ÍY%e´§w "¢Uží°ŠÊ¾Ëty‡ÞZzX`ZGœ£·Š ­¦0UÀ**ö*ºb-}蛾·ŠÊâ{Ö\Örð2Þ**cˆÛÓ>Ïj-Ý¡½’B¿¬U:Ö˜´êÞÁÄþ“í¶9ØRIÙW[R¦O GCee¦óƒG€EÞ*)Þ¡€EmèÊIö‘7Í夂 •ïÖ´~Ç%Å÷÷ƒŠB¿ª”hµ˜£( ¤uß¼QR`µíÕ¸Ï ËZ™ã>+¾,[èTã>+¾Iwkæ•?VmE_û¬À*|óE¯ª”hvl`ø>_õ¼•hµìÕ¨Ï ¼²væ¨Ï Ú!|ldkQ‰VÖÎ[+)Î{{UÙ9ê‹«~ç¨/Šó~è¬{E6!Jg…•heÍܰJ Ê ‘ó;¬¨D«å¸oE%Z­‡~QÎ8tÛÆ‘_¸µoáæ·JŠ·ê퇢’›~ãÀ¯•h5løEñ·°·+‹Šlì7~Q\÷zkäM•7ð‡> ¯¼À¤ÀÊ?+þ)y$ŠÀÀÏ ­Â¶?/1*° ‰"&´VV¼_1S„7Š‚ë !SÆ}VüLxdŠÑXIñ³Ó‘)ã>+cx7rNkfŒû¬øz–ã¾(þ&뱋ﭢ2ÂlÊÚ·jØ'…-tÀèpcœÐQRheÜ¡±’2†=çt auŠÆJ Ë×jØgÅ7ñ/ ç³âÇE18î³âG븬ոϊïYcH£(Àf[«qŸø¾¯Õ¸ÏŠë¥S·†˜g”ïúÔ ’·J ¬Bà+nOV`5®ÕÀÏŠoÒ@PÍh¬J‰VÖÌt+ ¨o9²Ûx#*ÑÊZ™Ã>+(k;¾/z«¤ÀwûWŽü¬ø²æqŒÖª”heí< µ*%Z G‡·¢­"»æ­¨â…#?+¾sÍÖÐ=Ú++¸Æ%ìGÁ*)¾½fkiþ¬ÀÊZšƒ?+°ÚÃg2XQ‰¼NÈĄޓï}ˆêáàÏŠ¯1Dõlh¯¬À*DõàeVÓÂÁŸxbìÑZYAIËÈo•XÙƒ`a…IA/ck%eí…æ­’â7kwJ9£¤à ¾†p*4VR0¯¬ÖÌð* þI¹†Ôh¬¤°>keþ¤`ÆßÏ9ø“²(K·¢â'ÎÕZdD[%Å¿ÙÚ„»Tc?)ã4ašVÖÊûIñ†¤è Ip·&e”ð6QA9ÖÄöIÁB$$”à°O ŠŠt²7Š š3d”à¨ÏŠw=„¢¡’‚úÖ9ä“ðFIñϵm3 F‡@ŸBtâ¬8Ÿön ƒ3ÊŠZ{H°‡ú’‚ž¾G¥·JŠ€{XV¢©²âGÄB6ÑVYñÎÏG\§7Š Ý²FæˆÏŠ/Ê™#¾R¢Õv„›z+*ÑjŸ9â)›1¤5Ĉ¯•he­< °JŠ»;cHl8n°¢­ÂGÄVIAYÖÊòEUBVX%VË‘Ç[Q‰V!¡$Œ Dkåž­•Ô·Þ*)ÞªïfŽú¢œÝaì­™1ê‹â¬•;´U¥D«q é,¼URܨûiâ°/ |‰)h­=Å:«¤à wkg|©+Š[ÉïÖÌöIaQØÿé ™újÔgÅ_Û>÷üBW+Ñjé«QŸ?&B† |œ/Š¿3{Ì0쭒⟵!CÅÊv¢¬ŽõEqe¥$Þ( ®ŽøHW+Ñjì9ê‹‚ú¦ž£¾(çí™:kf ú¢¸ÆšºÖy€•heÍŒA_¸ÎYac%V!5Œ 6âŒÍŠ/©·VÆ/ ¬†žéŠ+kf|¤+ ¬¬™1è‹«¹ç /Šï}8Þ Q)Ñ*$eéa•Ô¸õôEñ÷úHžÈö¢rX ]ÇïtEqCq«‰îœ×‡¡ãØ/Šoˆaìø™®(Þùaê¸SŸÿŒœ†¹ãØ/ ÊZ:Žý¢À¯µÍ•ÿþ4…§=‹Š‚o†Bžm¸>šƒøL—T7ö—ÿä¶ùºòŠâ›a (+)î{²W8~žÏ Ÿ+/+t+|0:^àÚñ+]Q|÷ ¹ûG6VTèÕ^ÑxEqw'¤îçÈÏŠï !u?>ÒÅÃi¨`¼¬À-»±ÕÈO ­Æ£(À+kd|¢ËŠ¿ƒ“52‡}V|gqãöIÁœBÞ-6VRüÝ™¶_èj%ZíW+‡ÕÜíոϊ»‡s ù`oæ¡ÂñŠ«±ÂñŠ«ð U)Ñj®€¼Z‰V! ]¹R¢ULJì­’â>䳘ÙXT¢Õ^yµ¬|J‹¡A·í”Ÿ):[¶ú hö:æ?}w{ã{r¸nÈûrl9Ú"ß.ôˆéü›ÏÇI"Ër¹>}÷þëg8]ăÖä³ç£ùL¿îÉ犌ä3ÚS£ÏD–ä3_E>“Vä3ùh‰>{·$ù ^YÏîQõ0ù +I>ûÆÒä3cI>ƒ ~|†• Ÿ}kiò¾KòeIò^Iòí ÉgWãÃä3¬"Ÿa%Égø.Ég”õ ù +‰>{>ú ϰ’ä³wý1òV’|ýùL«/A>ÓJÏ £ú >Z’Ïà£%ù >Z’Ïà£ùL>Z‘Ïä£%úìùhA>ûö|”|†•$ŸÁG+ò™eIòŒ±$ŸÁGKò|ôCä3¬vI>;ß5úìùè/B>ÃJ’Ï`Œùìlš|F}’|FY’|FY»"ŸÁèJòìð¿#òV’|-Ég\ã!ŸAéJòÙ_£&ŸÁò6’|†W’ϰ’ä3j”ä³/K¢Ïà£%ù ƸM>“ŽVä3ùhI>£>I>ƒ–ä3Ê’è³ç£%ù >Z’Ïžè3Ð`…>2–è³/I’Ïà£%úì‹Rä3Yd…>Ãu…>£¾6ùL:Z‘ÏðI£Ïž Vä3ùhE>D–ä3øhI>ƒVè3œWä3Ý’è³/êß ù +I>ƒ –ä3Êú"ä3¬"Ÿaõ ù «ÇÐgo$Égï»&ŸÁ òž+ò™%)ò™|´$ŸQ£$ŸA?H>ÃJ‘Ïä£ù :Z‘Ïä£%ùŒ+Tä3}Wä3ùhE>³,‰>;>úKϰ’ä3˜fI>£,I>£,I>ƒ–ä3j”ä3øèÇÈgZ)ò™|´$ŸÁG+ò™|´$ŸÁG?H>Ãê‹Ï`Œù :Z’Ï ‚$Ÿa%Égøþ ù +I>Ã/A>£$I>û’4ù êW’Ï ˆ%ù >Z’Ïðëßù +I>£¥$ùì¯îAò™VŠ|&­Èg2Æmò™„±$ŸÁG+ò™¾+ò™|´"Ÿé»$ŸÁKò|ôƒä3¬$ù ¿$ù >ºM>³$I>ƒVVä3ùhE>“Vä3bI>ƒVä3¡f…>m¾'ŸYˆDŸ}!’|ƵIòÙzM>ƒ–ä3øhI>Ó•ä³óK’Ï(I’Ïà£%ùŒú$ùŒ5úìøhI>ƒ–ä3Üzˆ|É+Ég_ßÿä3¬$ù >Z’Ïh I>£FI> –䳯Q“Ïà£%úìÁ`I>ƒCVä3Wä3ùhI>£,E>Ó¯6ùL:Z¡Ï¾4ù ˜W’ÏÀ‡ùLY‘Ïä£%úìùhI>ÃyA>Ã)E>óùL>Z‘ÏDŒ%úìùhI>ƒDVä3ùèGÈgÚ(ò™^)ô™|´ ŸÉG+ò™|´$ŸÁG?H>ÃJ ÏžŽþ"ä3¬¾ù +I>ƒþ9äs>ßÏYUJ°ªÓ%+@˜š„™.YÂL—¬a¦KV€0Ó%+@˜é’ \i fºd3]rÆ‘G}øª{<Ŭ‡ãpªuŒ;œQHå¦ïa+OÂ|ˆ±Ø_ÞU×fé@ø`|ÙºžÎdÝ O¿‡Ø|:’u+<šÂÓ™¬[àéU²n…§3Y·ÂÓ™¬[áéÔž~±7øt$ëVxú=ÄÞÂÓ™¬[áéLÖ­ðô{ˆýO¯“u+<šÂÓ™¬[ðéž~±·ðt&ëVxú=ÄÞÂÓï!ö{Ä¡¼pâÐ ^`*w¼ÀTî*x©ÜUð5¼@M/܇84ƒ˜Ê]/0•» ^ ¦‚¨‰è¤rWÁ L宂¨©à¦rWÁ Lå.‚˜Ê½»ÀI-p'³ß¥Â~×Â]Šá8Ý/r‹PÍjU–xÁ,ñ"0YâU\³Ä«¸f‰Wq̯â"%^„E0I¼ ‹`’xÁ$ñí°Ÿ#^E E¼ˆ‰`†x ñ"$‚ âUHÄ‹ˆä‡L/""^D0=¼ˆ‡`vxÁìð*‚ÙáU<³Ã«xd‡o†Cpä(#?lŽ,Ü¢µRÒ÷Ú<ò‹Pü*ñ|;Ô¢ò`ê¯xô„}—e®XÒ±”Å,Ô §}3ˆ£ª> ¬Ûï}ûÚñÑW„ºþû(’V€È}É]„È]I;@ä>Œ¤ Âtù*@ä>Œ¤ Âtù*@„𠡦DîÃH"wQ$­¦Ë"•ÖA/»Ì›ä^4öa—Žï¥VLJ'“zÑ)°U©ø›±'Uý[™PJbá«ïSžšR}êêQ›ˆj¹}iEµ0Ç¿ŠjaŽÖ‚ÿ*ª…9þÛQ-lº>ð0š.lÒ­UÛ-é{i»,ÔmÇóTÄ Ï3Õù*b†šŠ˜áù*b†çˆœ "fx~€Š˜áù*b†ç¨ˆžÐŽ˜á½”Óä÷ÓÆ°C2q7Ç ÞãKj¾÷E¨î=Ï&hãTõ¯ß½;"sRZ_ÿ?†”êÓ×µóЃv˜OUÿÖù½»#èg‹Áþþ=}T)d¡ò ª¯CT9¤Ó°+ÊÙßÊÝãûyv µ¨®žDR6,p g:ñô)ŸQq µ<¢úTyЧ¬f§SL¯†ô™©x…Ú2¡ÂªxÈ„ «â!*¬Š‡L´Ãªªkž»jºÃöeÕïÇ%Naå’Ó×WÌã+Ú[UýKWM—cH'Xõûцyçû}jx4F;¬ò`í|õSx#¬{ý–¾Å•ê³PWÏÊÚQfuõ»ÿ„v„œmˆìé›^ñ •Õyí¶Êƒ-¥¨;={ÅU·í²ûn_„ÚžÒŽŽ«<pž=a?tŸ*¬]vß ‹P{ÀsHn"òŽçÜDäÏ!¹‰È;j7yÇsHn"òŽÚMDÞQ»µ#ïªsHníÐ;œCr‘w÷ñy­È»ûø¼VäÏ!¹‰È;žCr‘wÔn"òî>>¯y·â’[;ôî.<¯yWCr‘w<‡ä&"ïxÉMDÞÝÇçµ"ïxÉMDÞQ»‰È;j·VðÝ«kEÞñ’›ˆ¼»ÏkDÞUçÜDäµ›ˆ¼ã9$7yÇsHn"òŽçÜÚ¡w8‡ä&"ïxÉMDÞñ’›ˆ¼ã9$7yÇsHníȻ꒛ˆ¼ã9$7yGí&"ïxÉMDÞñ’›ˆ¼ã9$·vèÎ!¹‰È;žCr‘w<‡ä&"ïxÉ­yWCr‘w<‡ä&"ïpÉ­xÇcHn­Ø»qðe4âîx ÉMÄÝÝGçµâîx ÉMÄÝñ’›ˆ»ã)$·fÜÝ}t^;ˆÀ;œB¢âîî£óZqw<…DÅÝávÇCHTØÝ}p^+쎇¨°;jí¸»»Ø¼fØ!QawÔTØ5vGM…ÝQSaw<„D…ÝÝçµÂîx‰ »ã!$"ìî>8¯vÇCHTØ!Qw<ƒDEÝñ uÇ3HTÔÏ QQw<ƒDEÝñ ’fØ^¬öÅç9bð¦øD9_¬Ü9æíH¯?§ÀמoÒ諎7Q}<ÞDôñxÐ7T4í€>o"âùxº‰Šçãé&" §›¨x>žn¢âùxº‰ˆçãé&"œ‡›¨p>n¢Âùx¸‰ ç£&âùp¸‰ çÃá&*šg›¨h>žm¢¢ùx¶‰Šæ»ùkDóÝÇü5£ùp¶I;šG›¨`>j*˜š æ»ùkó݇üµ‚ùîCþZÁ|<ÚDó݇ü5‚ùîCþÁ|?ÿ°uZÈ¿F‡±¬±–øy#)¡–{«¢„Å-‡Ì¤ ¤Ó*+ÞjÛâGÓ*+ÎjèúU¬Šâ­z{#ŸŒN«¬x«a;§UV¼•-(iã´ÊŠ·šíÍið×Xoµ,q•{ZeÅ[­¶~pYñVûg×Ó*+ÎÊF|‚«¢x+ëÇ|~ZeÅ[åo§UV¼•=ÚZeÅ[ÍK¤ÊO«¬x«Åzô毱(Þj"PyZeÅ[ísñN«¬8+[[/LJ·³ßgÅ[ }DvN«¬x«qš¹Ó*+ÞjZã‡æÓ*+Þª}n<:«?þà¢Þâ~Œ§ñ:wñà"[˜öáà¢Ùе7ì§—áÓÔ´ÌO¯Þ¾¸ü*ü‹ùÐÙ+ò“ÿ‡üW6çi¬þèWñÏBW·)£ú³á³*>¯²ñ§+Ûöö_•Ù¼ñGÔ6}VmÓgÖ6Vmóç5äòYwmù‰Ê޳®Ê9WgdZRpxѽÕp›*~-[•ÈÈlä"#séea›ü¶öÁY9¯~Þð;Ï  O!˜£³…ãq"X÷ür3t?]fû9÷‹»ôAÆ5Èýüox.Ø0Ãןãù»?…%éžVoo+ÊïŽÉ¦[ŽuéÚ÷‰cèúñØ4MÊÝ[š½’Ù=!@ŸÀ³íø¨””8‰ ÂJY¬—uûa•ûß~þÌÇÚh]ÂwÇtÔÚ¯Þýl«È}zwºZàÔG{óyõ×/.ûã§ß~|÷úžÿÔ5n³Z[nÅÞ;àiÚÛädáßÂ’»ÕŽÏ/ûÞÖüó察_Z“ìû¸_~ýü2|üí»áò:¨¶”¦þòþmÐçk×­—_>ÛlÞ­ûdFîfwwFÖ¶vãpyùæyì/ß¾ÿ¾Û y_.ÿÏöÄÆË'Ó§}œûåòC×}߯%\´]€yªµùÏ.ÀÜ VC#¼ú³¯.kBM§ËGq»5ðŠžÂ\?^^wXlݼ_nQíR‚:ôÝhýõ‡¨N}p#^ Ý¤Ë‡(wýå­+ùýÝÒÖÝŸ»}·¥°©f1šËóryóŒí—P\(žd¡é¦°ÛVŸl‹ÝIóâ¸ÖmŸ/ß¼M`m3-Þ¹?qu¿9ë~ýþyõ¶ÇJÂÍšÍ €ÜæÑåÛPXXá¦VÄÒÙêóòÍ»|­¾Ž÷Q\úí¸¦Þ®¿ Eø«Ž ·Ífl#vê§ ~ ªýUùíóË!¼ÌGSñ~,ûpùðuüšík¶×¡Yl¡0Lšó÷ûúür±ÅÞjżzx^–Ž7{³u·µºÙ¡S…/ža¢HèíÑZë¸n—ïyÙ¶º´»2÷ìwhòñòulP›¡úˇï­ç—ïÏj>„;±oËtù§`û¯e²y̺«]˱Øt=øýyÓJÍóQsù«£ïì¶0ÞªæpŸlˆ±íB‡Y—u¾ü B“ ê¿þ¯p·~ïT)ú£É6Žìiá}å¨ ª­oCß?»þè=K¸%£¹_ʽÑúFì<áÅoªÊÏ֣󄢿£³ÿ¬ÎXÓhݦc#_s¿Æ±¸u}¿%çÍÑnA3ÿpöè~¢åz{[îÂÂà«Ëk×~q,_fÓ—¡ïÍÑÞ=A¾=»`hϰ¹n½Žƒ4lWÙíÌW¾Ov_?ãÑþcô¥ÖÕ–g[è Ç®ÖÿB7Yvë¹Sn¥£ ÷„ˆOܵóOÜ'=ïùÿC¨ÅV{ûmÇñÉfðµ;LCDŠuN»H›pû§°^êÂj©~ŒO6Ã6M;ï˜qVöÃû]¼–q[ª¦)/Ã%Ú”3è ¹™Vßµ›­´5Z)ö±|º¾îçánYç~Û*rÈ!%É…—ò4›ïí~wÇûãQú—ñ©>bÙÒ#<ìhï]¡yÿ5žÜ굯.ŽþÔ ÛKgÇÎ xL ÅâíYÓÿŠ÷ðÜù±YÄÑ™»lKɧ—cØê?Ʋ(þ»ÿ”D€vendstream endobj 166 0 obj << /Filter /FlateDecode /Length 9603 >> stream xœÅ}[o&É‘Ý{ÃÏ~þ ðG{Xª¼V¦- † Å¬´šmyFûÀ!Ùœ–ºÉÙ-yþ¶#òR§*ƒÝÓd,ª>ŒÊ[EFFæ9_Î_NódN3ÿ_ûßë÷¯~þ§»§WyeÂl¦y9…˜æÉÇ“³v™r8›ÍdÒéñöôï§ûWnZ\œÃéo¯ÌéŸéÿÿôj>ýú•‰vž¢;…%…ÉšÓûòîÕ¿æâd°jHÊnбY3eV É~™R·ŠËXU$γL¯1¹É¢"Õ*§)e°jˆl×bü +Gà }Ü!Õʇ)AwHµŠfòÐúŽ@Ë2ÍÐúŽ$—'ßËÊ–>X5D–•æ4y°jŒj²¾¸Š°jˆüB\û}ìÔÂä ²–yÊÐÇR­Rœ¢«ŠDcæ)T£L±I5º˜ y?t±!Ñ.n2¹Y9êt±!X–Ï;'숈ýÎ §É ‡¢rä)+­"ÆÔÎÆLÉ «ŽÈÆÛ™Â@0`UÑ,;{“F£¦%ƒQEÀhñ耉†FcéVyFìHôަ‘¯VfÓìˆ,k¬™\«ŠÀ0Õñ?££p¹ý=Ø)BçBÁ2N®Å49è\CÀˆTN`TlOÎSľUZE˜,ô­!²BKñ ZÞ9HÖGô»‘e#M$è_G ,ŠN :Øé–^пŽÈ¢Üœ'ýkˆ,ÊQl‚êyZô ;¤ZÑ ÍXTCD¤µn1ÓÞÒ¨1-ü†´B¤XùÙM3t°#rܽ¡yFTç'=Ü!ÕŠ:_Gd} ¸Úw\Ô'ƒ«ýŠÈqð™2ö°!²Æ`h2I£€M“…vDÖ(0¡÷íjòÎý:"Ç=,aç~)4a…6q¦Ù$m û--ôo‡T+·L T×(+¸ÉCÿ:"ûcÞy_G íÉã:¿"²Æežqª‹¡é]숬pqfŠÐÅŽ@…Ô]ì”E ݯ#`µ$\çWjÌ×ù‘e%ŠP°Î¯ˆúd&›+eyšPÐÇŽ@Y¤ô±!0]ÓbÑ%¥´sÁŽÈVe Q¸Ðw¬LÞ­ô ‘‘i9Ç…¾#²Y9ÌÓìTãmo””ì4Ã(ìj•—Ýbßán6Wû=R­(FA¢¹"¢]nöpEDÝiFQÀ†"T`Ôh;múB+DŠ•™\ï÷Hµ¢(• ‡;¤Z¹„yæŠÈq0Ác¢¹"²õ´}CÜ#ÕŠž}+DŠ%Å“>vDÖH‰®ù{¤Z9‹kþŠÈ/DË$úà©VÑMXa UKÆ5Eä˜Òd™fìaCdYôi§vD¶Z19èá©V¤Ð;5†eçƒ+ÚŽ¡vÚEa Vý‘V~¦ý<ô±#`egþ«´B¤ZñFúØÙzh?}Ü!Õ*.;ìˆüŽž"¬ü+5æ„+ÿŠH«`<®ü‘K† 6ó–LZU$:Êô¢oV>ð†DZ!R­¢ÙyaGdÃqé_°Ê—þŽˆm‹ª`å_YT´nB£ H‡ˆ4p:Ø9¤‘U†6D¬w..óÎãSÜy`Gd³ŠS°ìwDŽÂbXõ&Îá¢ßhÓB1*A÷‚V´‰÷п†ÈAXÒÌ/H£†@÷(H-ؽŠDÚ0s0)VÉXôw@µ¡óŒF ‘ß/y»s½†@SH;×ëˆl{Zh2¡UE°¬”ù iÕé¡y¸è7@Ö—)@eèaG $G{èaGä8ä`1ç\¨1.;çëX%‡‡¸+5fšM`Taãg OIöpT+7ã’¿"¢Uóãd,X!R­(<ÿ­”µì¶ù{¤ZÑh@±13í顇;¤ZYÚÔC;"GËøýoEÀ*ô¿=R­þ×áYÞPx‚+K¾ þŠÈVñì†óÛ‘ãn)DeèaG ,O›zèaGÀ*† ‹ªÔG –û=R­rÄå~Ed}”ãrß<ŸóÁñíŠ@YÞ1›#­"¿­èˆžOUS³Y<.ö‘'Žž¢.ö‘)§©‚‹}G Fú°˜rvDžÁ{jžßv­VöuÅ„ÔAG䉲÷ÉãJ߬‹ÂSÆê*VÁ\ê;ãœÁ¥¾#1†BßT+ŠOè} ‰™Ò•Ô|!D‹‡¸‘+¦§?s¥UE`$ù>,÷ ùï™V4Kœœ»Ódqs2 ™»Î*Χ;¶-ää©ýÏõûÓÿxýêçßp/h?LëÇéõ›W•¹4'Kñ*åtZfšƒÖŸ^¿õíùW÷Wï.hgk–óOoŸNoNOß_Ý\=ž>>½½¿;ݽ{üááíÓ/Noï?Ü>^ú,KpçëÛ>\üÇëæê蓸ÐÂNÕQr’£ §KC#•Ürz}óêüáíûÛ‹×Ì|ú7‡>˜ …£ )åjc~ûpAó0gÎU÷æ‚Vš™öÇçÛë·7¥¶ÿõšÆè÷/'_UZUÄžghU _5ZÉWVEòU¥Ue»^J«‚Õ iU°ÒiUY£N« òU¥U‘ ÕhU$_UZS•V…UZÊÒhU/W•ü¥J«aªÒª@¾j´*–¥ÑªÈ˜j¼*4^¥Uå1£J«"ùªÒª@¾þ#xUa¤Òª’|UiU$_5ZÉ×­ 4§J«ùúB^U©´ªl•N«ù:æUzUiU LUZÈWVŲ4^SVEsÌ«BA*­ ©´ªˆ/ÏѪ’|UiU UZU֨Ѫ@½¾V+VEòU£U‘|ÕiUIM¾ŒV•V*­ õ©´ªVòõ%´ª´QiU LUZU¶\§U¡,•VòU§U%3©ÑªÈLj¼*¯:­*+ÔiUYáKiUi¥Óª¢FVÂT¥UæTiU(K£U±¬1­ŠÔ«J«7ù2Z­4^ÈW•V…f)´*T§ÒªP’J«Š9ö ­ ¦J«BY*­ äëËhUi¥Òª@_þChU°RiU _UZZŸ^F«‚•J«ͩҪP–J«ùªÐªP’J«B«TZUŽé3´ª$9UZHN•V•­1­*­þ!´*X©´ªì£N«ªÒªP–J«ùú2Z­TZÈWVEòU¥Ue_H«"cªñª@¾*´*¤Óª’|ÕhU$_U^U’¯­Š¦F«";ù"^U½V+WòU£U‘ÀÓªH½ª´ªt=•VEòU£U‘0ÕhUl»F«BY­ „©J«ɩҪP–N«J*ô¥´ª´z­ V*­*¾ô3´*¦*­ e©´*”õ UÁê…´*X)´*Ô§Òª’ÜÓiUYÖ3´ª¤BuZU’¡/£U¥J«B}*­*{¨ÒªH˜j´*’¯*­ eiU¤^UZÈWVd¡N«ùªÒª@ˆ~1­ ×iUY—J«ùúBZ¬TZÈW•VòU¥U|UiU _UZUŽDœ3.÷ ù·'Z‘íLÕSñ1‘üÇi>ݼªôé7å7›iGƒEÚüÎrÖ˜H»¸1Ò|ØDÚèÖH¸G'~® ¹ò›Gd+y!_] ´¡uòAøÕŸY‚Ãß™š…6¥K&oÊPršg¹ñg„6–ð»Ð áD¾"ä#åŒi€8öWFhn—IqD¨äPߢ=e'3H«¼#a ³—1G ‰³Ž2ª™¾QC‘¹$ôŒØP7í$×m#´qä3£#’h5޵dÚ6–ozDê–‘ÅÖ#˲ðè2B[ÆÂ …b¿dç’5â¿ú(ØÙd$#íLstöˆÔB¼‘úVŒè%4Ÿ,z‰@bý–vÎK;‰Ü#‰üÐs­1®Ò<dIåP‚ÚôUºñˆôÚ ÍX8òY‘dSùgœËiÏîŸE}QÚè•£Ÿ#BeæZ&ÍÕ¤µVKó~-·"‰¶+µ\KѰüVîˆÌ¬Ã(ˆKõšD”Lû;8ܱ–ör ·–ž–Ëiï;f´L=Ä9"ëKŽ"4+ÂsÇù‚8[Ã#"Þ¢ÛÍ÷ À’1%³”ÿ㙟¥Ì¨ˆ«ˆ+ŸrDÚ[´Á2ÐZ‹ð{zZ+A±"ÜÏ9„vM…&9 Çö‚Šåð䈬%ŠUhdœ Áà÷ ´íÁµ!©,–|¾}½°¾““Ü|i{ã 1‘&]†ÆD&(ZhL¤9„ŸŠ’É<¼c¢&aÌ_‘5zÛ…3ˆ8B8ºÔ¼PƆÀZ.í/àw‚v¡¿‡±üº‡ö%Êwa…¶¡a…¶‰²(8Q¢á9E¿ãD)<Žq"_Ç1Δ½`èÍvÙ…ÞL~œ¡®’Üj3BÉ´…º29)„L7ÏOÄÝL ± €K€¹™R@07Sjk¡m÷‚uåŒÁˬA]†6ÏÀz8Ci',h‡ .VÎ, js);Ðb…ÇÁÎÒ.ÂŽcaÅ·È{pÀ,mE!¤8K¹„´¬ÐѨ¶lúˆô·%«°osÎùÝ :r1TGGTÞïà :ÚÂK´ƒÇ¡8Ú[âɨ£=Ü*1Bé/üœÉyò0TÞÚÀXŠ\ ËnŒ´iìåºu'³CâLùš±¡ì—w-„²)_³)È-K 9 MªÆå!aPûb©›¶¿k  å{FråÛHíg¤Œ¢½‹”ÒHû§%¨ÈRÊ×ÏwDê[”C0r åŒÜB#Áˆ¶ß3#·Ê¡= e±êb¯†`ähÏ…ÁhCÈcùZ‰rמŽÈöÍ€íIa†ï%ªøùÂÖP 'r.SÆ ?jp™&œ´¹LÙ$“)Ä!Í´ÙÃ!Í´ØÃјŸ)œ- ´µƒhågJôäÉ0¢~Ž»$ÉÏi—$QF4Ë*F(g P•¡ Mø@ª2” ÁpyCšqc¤mà=í’Zh:"ý-kfÜÆyKš€öZpé-%h8¤|šCJë*+ï(ׂ`å+žÃ!ÿ-m•êvê¬ïP6f¡54A1žu$Šèeé¥_•qÙ!!»¢®`„2Ž^$š¹È‰¡ÏWÎ`Ž/ÒsE(ióyˆÐ¸•“0ï)3i€„Ä{ŽÒBOî^R±C"‹:çÒBO¹ž#ÄxSwØÞg[‰–=Rw½eœMŽq„fa®eã§5¥ä@é_ùõî‰s*'ºŒÐŠ›G„E|¡¸n ÑÅR–‰’zVóÏf„ðζì‡hÀL‰žÄåP=®êÇSãÛÄF‚v¼;L´ãÝaš ïÓíGÙû@о»;L´#¦ Ú²÷‘ ý({ Úñî0MÐŽw‡)‚öÝÝaš ïÓíxw˜&hÇ»Ã4A;Þ¦ Ú²÷ ïSôìxu˜¦gÇ«Ã4=;^¦éÙñê0MÏW‡)rv¼9l,gßߦÉÙñæ0MÎ7‡)jv€1;@Š–¯ S´ì»kÃ4-;^¦iÙñÚ°¡œ]\¦iÙáÚ0EÊ¢dÇKÃ%ûîÒ0MÉ—†•ìpg˜&dÇ;Ã4!;Þ¦ Ùáΰ±Ž}we˜¦c‡+ÃÆ:v¸1L“±Åî#;Þ¦ÉØñÆ0EÆ~»eìxc˜¢c?hÝG2ö£Ø}$cÇÃ4;Þ¦ÉØñÆ0Eƾ»1Lѱ¤ÉØñÆ0MÆ~»dìxc˜&cÇÃÆ:v„;ܦɨb÷‘Œo Ódìxc˜&cÇÃûîÆ0MÆ7†)*v¼0LS±ã…ašŠ/ ÓTìˆi*v¼0LQ±ï. ÓTìxa˜¦bÇ Ã4;^¦©ØñÂ0EƆ)*öÝ…ašŠ1Mņ)"v¼/L±ã}aŠŠî ÓDìG©ûQľ¿/L±¥î#;Þ¦‰Øñ¾0EÅ&bÇûÂûQê>±¥î#ûQê>±ã}ašˆï ÓDìG©{:ŠØR÷¡ˆï ÓDìG©ûHÄŽ÷…i"ö£Ô} b‡ûÂ4;Þ¦ˆØw÷…i"v¼/L±¥î#;Þ¦‰ØÓDìx_˜"bßašˆ1MÄ~”ºDìx_˜&b?JÝG"v¼/L±ã}aŠˆ}‡i"v¼/L±ã}ašˆý(u‰Øñ¾0MÄŽ˜"bÇû ;^¦ˆØáº0MÎׅiv¸.L‘°ãmaŠ„}w[˜&a‡ÛÂÆv‰(v¼+L°#¦ Øá®0E¿ŽW…)úõÝUaŠ€ý ré×ñª0M¿ŽW…iúu¼*LÓ¯ãUaŠ~}wU˜"`‡«Â4ý:^¦é×ñª0M¿ŽW…iúuÄ4ý:^6°ï M¿~T¹ôëxU˜¦_?ªÜGúu¼*LÓ¯UîGûAä>Ô¯Uî#ý:^¦é×ÓôëG•û@ÀW…)úõ£Ê}¨_Ç«Â4ý:^¦é×ñª0M¿Ž˜"`‡«Â4ýúQå>Ð¯ï® ÓôëxU˜¦_Ç«Â4ý:^¦Øáª°±~½ÞÚôͯQÈj_Ì©‹åÈŠ&Žå2=ËåJò½!øÉDÑþ2E¿»l,‹MläÖDob=÷ÚÄ«ŒßZ›¸»ØLSÛãÅfcµýÖÄFfÊ&Ò)¢ÃµAžW/¾µ5«êøva$âÇûÒÆ"~Ñ…Ê‘Ê.d_µ´58´{]6ßÚº€×°)¿ ØaÚoð6í·x Ûø·[w;)»u7„&Z;ÇBÈ °{kíîîv·ñODå•Û••/¶>EM±†Ô Á—¶ºñÎ8í‡ xgœòC¼3nø;†Ï¿DNýOSÕŸ9ʼnßoNÔ2V«)Cµ’Uî¿YuDX­bóÕjE¤U6oV‘V]«»YuDZ5EêfÔiÓ•™›QG„Õªj\­VDZuIàfÕiÕµr›UG¤U—vmV‘VMá´5@جò íKwDZuáÌfÕiµóá5ÂêÙk áÁ~m¡ µ´»œ¾'ðlçÙñe‚Ìà;òñK ûÊMƒ¿á¿°PÀRj-ÿÐߢaŠäYøV}™ðE{ÍPÉû×ê{Ì÷ò݃ƒ÷h¶Zj7¾ö¿Û[ÁÒ¹{˺kä`÷¸k†Úµqe_Ð5ÿE] _Ôµðe] _صлƞ ôͤCu±÷-Q^ðÙ×¾•3?×#ãÚ·ƒ—×Ê-™ë ™›f£!1Ñ$mÉ;Z1Ïhwz™þf?·èFâÜbµY³€ÕHd«ÿÀ'iÕ°j-V¢íŸH¶;G½)PN–zãè|qéòÂ1ýè‘Ïo‚9†½µTÆÙ„òìØÄÎÇ;HmùQeÑØBFðï /Ô¼^?Þ–ˆOoõ™³0^ø§`ó ð|òG‹[!¶üTB–R‘ZL}mÍ€¨ %ˆœÌ¸ÊÝPÂC-Œ¬Êå×Hyž)6K_ªŸvj´fÖR¹á¬Ïiìe)uá®#eáíÅÄX„²ïEÁÌr¹/\JX<XÁrzß.ýÍý› þ½J²FÜ3K‰æâ¼?½þúÕù?üpûøÝÃÇû›‹ÿúêõûöü«wW—–õ„Áß—οûøá»ÇÛ«?“MsçHãHùZž³µÎð“²6ò=k𾾏¤Q¦­(yã÷´/£$Ħó-ùe$·3ç› þŸÅ-äm6ÃùM±µ1Ÿ¯>²ÅæåüŽ –Lqïü ¬»[ν ÌÕÎæ|õŽ,Yæòù#Ûꪅ.&ÆóÃc)‹ƒTï^fèÓÌ ‡£~Q`úö|ÍÆ3Åâ¼TkN,ñš‹1çÍfæ8=E·Ð–›ƒÙ9–íÇŠý'÷ ËoÏo/˜˜]Lç§ÚVjä9L—,öLÔñ2Š&gÊ‹Û(òÈôŽÍ½»ÑRÏ—¬ÀJL)¿¦Ö/ö¼uüüýk·œ>2gÇûµ†eN©¸aüm’ ‘Æžw–æ…;_Õ,üë¡]G†öÂäºNI¡ë‡}j¨¡²kûBéüpaù—xÁÒçæÍÔNÑÿREN¾:Yë~)5ÍÆ¤´kØ_û‹ï³?—î·ºÝÚÎ_ûÒбåû–ÈòÍJÿ<-¸ô.n4K$·m³œù‘t¶Æ–*/ýBÍ¢†ÔFSï²–÷eÆäœR¬…´Zžê‹Ô.i}_Ñ¡81·lÀ'¶˜y^æ„£´&\㦕KC÷6˜™ŽnvÅ¢øg.˜:ç–æiKpž‹ã2òŒ‡7½¹¦å_ôÁÏŸl_æ¥ôò÷TMéÈ!ëð¼´âb,{SùÙo¶›9‹V½$Âl¸º/#οh?߉ð&½‹a™¾¢Þ£c0J;nt póú^j1£DËw[rnÿñbOŠLÞq-凗+ܪŒFñ´R!ç þ|è:†ÿçb sØØPàÄX"gÄu™w”F.Šç<ôüFôü¡Œ$¥­‹‡þ®1æoµ¥”™œ¯Z;Rñ1x\·£ÆBó®·P &Sm’OÞËèüé6ó¬©#û‘#GÊ!öJ|ÌkÑ*­d¯‹x¿úYJ.ñ@lŽz¹Möz %ìyÊ<ž |ÂÇ ¬­ž\ZÂùŽ—%Ï!µ~•8ωâ/ÉŒS.%Ë+ùýöøLÉá÷c‘pYöË¢œWÅrâÜb}òµ–.Ê7ZøW•ŸªV¬6w=ý°‹©_Ÿ•å6*EÈ õ—øGv8s¦ÒP/{¾›j”Nó÷ç¯e“³[C¤ƒ\Ý·A§È÷Ä£‘"eŽPt‹ôsvüj_¿oÝN0™>T8›ÀuGõü³ÛUÌ·7ç«×,/×É/ì’6G; ú†ºÕ-®Ç«® —WÜÍ8{ëÓ>ŒrÙÇ0Ê¿ïß}„ê7´ÝOeù½H¾põT­Ý.*””­MHcÖ`×ÊÙëÞTáµ>¯…Ñ+ÙìJ;øYò3ÜÖÊ)?þnû2úPkI´”ÞòP ¨[f+ÎÖJì”®X¿—wÑ¢û¿WÁŸ¶à3¡#QÒ½´CËI7«˜9énK®¿ ŒŽãtþŸ%–ñç§Ærß©c&Ó¸;SÿÓ%± óì(Ÿx,.þˆünƒ/ŸZ;‚K¥“Ëœ£·PʇÍüm­=EÚ»ÝßœÖ$_=g¡/æbë l!˜³uÉõÞ”¸…JžË4‡âµ5¿„ ¶5wac—Â.¦oSâzûPã\•«µlŽL´åMµ¿´»¦l‹bÁ”‚¹>?sº±½õ±ø$Åo¹`öÜŽ7&õóSRrjjÂ%ÛM…9Õ ê.k¨}Í5^3“›—gfU±¦òôµ´½'Í‹)¿G šJë(F묲úËñ¼[¿ßµz˶q‘»r'݆o;á˜ÚÂðÕÿ$ŠS âÁíñn{|ا¡xíq{¼ß¿»¹ïeo¦"ÊËÐs¿E,Úë8C¾¹wÇp(1½_¦…IZ#ÀÕËàÕÇ–£¯a¹XôL‰ÀÕý¶?¾é0Ìq8Qƒ+}Z«9¤Ü¯y?ì¥wÛºDÞ†´ýÍ-*Ï^Ow¦ û„· …90‡µ{jÚÝÛð7Nv(] ØÛ­onEe+#±exÏ`Ly£êvã$ÎLDšXâ]àûŸrÚí³öÔÿHÕ©£=;ÜQz&1× ~³ùÜÛíñi{ü×í±EÕ’ÆnwCWõa²6­Õ<ÐH>n]ÌùO»C%ò33Ç_R'ù6ÖãÑã‹ñínä*•âГߢý(då5ëmdM†›[Æ$çŒð:±KY¸<ظ¯)_ËeH—e¶ÿPšAûÁÞôÏìvNT‹órNÀyŽh5eå´,‡Î¿¹à+Hi¢Ÿß´‚izU—X2I1¦Ý®Ü <”äd²FüÓ6š%íK ‡“_*uÑ]•ÿ|<¼]»ÀùVLËìO>Ô)íb]îyÊ.z™³w¸Ñgìåsºƒ˜&»±:ÿùb';pBv@>¹ðA`‘е¬hóHuÀ¿ÀN¬MÛ ª=>šûóÅJxÈÑ{X‘¿ñ÷ŸC¤mð}}=‹R†õPj+ø›%¯zŠ÷Û¤ÿ¸=ÎÃùo©šÇKUoöŽ‚à·i•pÃ¥”K¿­¥5“,VØ¿–ÃV±(tkUÉ@êiÆWÕa’Ô"w¯/p|i2ÏmUS×3‹±Ô  OåD gS’Q–GjELá G.–êÂnDþÆ^—€ ÀŲKçÓ¬ò* öçûµúôÄþZ‡Ì$ «PžX8ã*Eö»õ}u±Þ­¥…/R@vGÊ¥Á–ŠÖçŒÕS· ñ-ò…ãu—'×wôU~l£løT´ðm”àf»TϤ‰Kñà²c˜‘ýâšh¿ñHkø±®jF«¿¯ã`Š^GÍU~µjÅ Š’ýY#ë ²9,Û6ÍmÑšrí/ 3´ La=W<Ú¸‰Ì:\ÕGÖüúb•”|ý/Û"1UùÓ;¨å*Ní£vNÌÁ$.Ì=sÈÛ4PrMªIÄâÈøîvÓ”i¤¤Ì±1uè]„Å`aÉ«x{¢ê£ÁÂÛBj’còDN5Xð&'?·ÂóÕ‡”ü§ýñsòÖŽI9BçÊb‚uÍ.ìûZ°z9 `2'5|Ý_4™íº<¹¼%,]ÓV©6Œý‰TÛ6z…kKS.™¹øê5‰²>¶ošKˆ)qmÔsÁA&˜åFÃ}–‹Š/ô-*+º†àM™i2,g[ßšgf¬‡ˆr+ýT_óuC¹¶Á̾•—í—.QìµIy´Žù™ µñÔ—B,Ù¬õdWËÇJµqsü»÷íLíÓûÿ9|FHãÿº’ç_}ÉvµE©›.?û´”àSÿq¿+=D(A}—Ÿ¶p°ìVµ$ªZ¼ÛˆÓí$MêcÜÜ$"A†Û·[ ÷£n‰% ÎÈÑ‚ý¤-åÁïÅäëŠ{¬Í}(YŸ£‘ÃÚ–Qÿÿe»÷̑䈾«§‚¦üó/¶ÇwÃÂÆµ‰FÙö§¡…èÆÍ]þ/ÛãÃöøÝ°Š1µúס¨xÀo!ÿOŸàÉï†^0 ÄkÂy„w}·=Ê‘í};ìü¿;/ÆL|¸ß GòOCçyù'«&DËÆDù¸ï†ü»–»rœ;ž‘Å‚|ÊSd–â ëOjÿêÿx÷Áendstream endobj 167 0 obj << /Filter /FlateDecode /Length 5258 >> stream xœµ\K“ÇqöyáƒÃáó†.ê±9£z?àÐmÓ Bpo¤ƒ]`c1b¹`FØWÿlefUWeÖtV²< YS]¬Ì/¿ÌÊÞï/ÕN_*ü¯þ{ýîâçÏM¸¼½¿P—·ß_húõ²þsýîò—WÐÃihÙe•õåÕ«‹ò*49¿ÓJ_Fåvچ˫wßNW›­Ú¥LŽÓëÚÙä²IÓËÍÖD·sJOÇØÅ磙OÑ‹] {Î.ú龩Œ6nú¸1a§¡7tÀ×Rðvº)Ãùä¦þî´±Óüît0>Oï°1d£'˜ u2óÉúÐ!§éøª–§ëM[Øþ{;¥|vâÍûº­§7ÐÝheCê­–fŒ°4_LÃÝá1§ì§#®-g3ý¡¼£a‚ §V*ªBëÒ©R³)ò¥ß‘ŒsN)Lïñ9(‚-û×1‰ñøÚ›Ø’œ±É­È=%›Æ=·g:ÔlaˆãŽ‘¬ŸïËÇ€sŒ -+ÄòaóW¿¾°Æ rR]Ý€ íIXIiþ¼ßj»ó.¥Ò w rö)óƒà²yÉŽ–e­ÅDÞû€­0h¶è¬/}2ˆ›‰ç8·zìzŸý§L²Pr¸üY,{”§ÉVÃVùÂÚb vAÍPʑȱÙé8ݾiƒŒ@‚;0-ÙIqýü¹ŠÛëžSLúr rôÚ”ßô¿›«ÿDӶ´kÏzÏ`B˜C©L©oúã]¼é/7e6lÜeËN¹HÏ«ˆÂ›7S_‹2%Qk*ëco}Þi‹†ø2Á:5˜Aô :ø¢ª^G蔋IÍ0À,b/u _õÎÆ5ccv_]*ÑæLâ<ËÐŽ¬žöð&K{ä8U÷NOŸpì°K K¯ØØÇ¥»:´X]Á9XçÐðµ<¬©êºqÁ‘.T³0‡ ÚL?Ý€0` @>TXõßtåtJÙ)GÚT1©àeò˜x¢~˜¶ì,h0L1"UΆڬ*L…äâ°Ê†?%ímPóõÅÕ?~;ý‚óiúú9˜©¢A„ð¯à@›Ü Ív˜'ÐTçûu`ö\ÔW£™ä  Îháè—q›ux‡æ€2íÿÈ„[%ÃÅBö4 6:.¼#($ô@§(½NªÁõõøCé›E߯¹Ûf ¯è£”qÆ>ZvŠÊ›Q{pFt,Ë8#ºoî-f7¢®H@’äv&„Š$º IH¼KÚ9ÐX»ü}éžj]P´ty»4JÞÁF¢}ü(‡ET³`.Éºêø²)Àö‚Î=Z8Év p pF» Æ!<\ëÌ••¬ ™æ!qSFAxdþñ—O¥GLv<j"²ÇG@;™lU»²*TêsÓ …´ôòZ=G);—w&†ó'&’Óìm ºÖ´S œW›Å!‘D:-cÒÆÌ³þÍÊ¡ê¨s÷Ÿ[OÌ!Mÿ¼Ù‚˜üÒôäÉú¿ËAO^–#ç²àÏRÖÃ\B™µ‡õÀ9|*>ý¿—Ö´u;bçÈz>[¬o‹ÿ'°1ÀJ–Öâ f¶’Û%åÍ;³C’MzÀðqã‘õ¦Ä©Òƒ3æÝ>cÕhÎàx­XáoŽ! È4YcÃÍÊ_w“ôÃAs>.œž1þ^h´€YhÍÒ¥X#bJ9¨¨ìcOjîúlqZtáî<ÀXh:G›@]#S×/@\Ág°Ân_÷ãe?Žé!t!û3Œ¼0Ú—p=Å)ÛàÀrT)¢~ô0NÄv4ŸKºYVš»îí÷ R>5[:hí@%Á6wF)úÅ3¤@/uƒ éGq ®’°BG¤;ŸEºÂb½3gPŒÁ  €R:áÿïЛÑòH›Gø¾ó†‡n8oº? ·´µÚ ºUžüg«{ôóÅãsš}×ÏüeYدxñM'šÿ%#LœUkÙ` +fšc=ö=¾:ô•îû{Œûr'û“rÄd0$*EcùÙrE< %tZyrÎ0I¦e?z_î‘WâYÎÕ˜˜ŽŒà/¹6ð”@Gfˆú»¢ªÖ^B<Þš`‚'Mö.Ø ‡;i'qƒIù’uüvúFÿ‰¼ÙwÓ²wõh,uÿ°°0•h“•+PKèôÁìÄ šw €…‹ö ŽˆTYÀw›¶wÚ‰¶ÓÜÆW%.ÀøÜDƒVÅ”U ÿÄ´ZoŸ÷ºE¸Œ>áÁ¥ Š[ÁœWtÆÄiÿÐ÷®s§/°+À¦|D‚ÍtÅœ„¼WÁÑK™ûì ©^³ pÉž°×ˆ :™…¹ÜÖŠ/§Å&ŽË+ÖÊê¶¼‡™”}yT:­SÄöËÌÙ³DÔ‡0 Ⱦ¢0oE;É.#2¶d‚Ëv¸‚RÈ|‘L]ÎÔ»iÉ ™ŽfÓe‰øŒü¸, "`Ì @3è4¬†x‘鿟¥E4˜Ín ϨõŒ#.2§îû10Ð*–¨“åéèEÏDø$4×6ƒs8h”žëPA¸šjÆPsVsÒm˜'O/V†#ie•¹:”V€ë‰ñ¹êP)¦¯³ò“Ît?Ìuåý|€i-gÁäõZÂ0¦ „êPžÚz©-Ía²X¸8«T§÷´“•P8ž¹&¾¤”—eœØq ²dOdÏNà$79ã1úÏø+[»îJ TÅ=^òŽ¿X$²f¼×’ëT‹ÄبÖr’„iLÝ<‚È4aæܘ^‹A¸ýÿ¬sTË *e–ý?r}½lÇÊ:ÝXDøwпšSÒ´”žÚŒyçḆ¾Ö…Ö&ý9ZkC¥µµër”4ÆÍ¾”œ¿Mš\¯^ÌûU3ÇŠ# ð‹éÌÀV9:–ÇŸ½G!èló#Û©LLW„È 1”’Å.^B l!"™à…ENb¡ÍëºTCà‹zú’¸lÎÝò`yÆ’¾Àtœ®Ê3¨‰®Í¸£è}Ä-eL,´TÀ ?˜ÝƽլVWrôt/°.zÄ⹿*Ïjòû\Æó+N¸j~YTBNÿNšXºêjó÷+ ’*ÌÕʨ¹È¨31 ¹â@ aTp°«zÐÆyJ±N/¡‹¥«‚Hö4ÇûF÷ûíü¬òH¯œ‘T¬ä« áã"û¢_è O)0ºœDžèf j;à™î¨2¸äG# ux/ìGú­N¬¼ÖG‘e›ÔÇ»HÐ)嫆X/ I­Ÿ— ’û÷]iŽ Ü§‡"š üúš·¤4Åä–8§.ièáz©å\V¦]Yý9`*äšã’„ÞšZc@#1‡JtÆ uvÌŠ——6ŸtÍOÍ™>’IT'à÷ý¦¥J¹2îYZ@ø¤±0&º´ÈTcd|öÙKå—yZï©,¥ú$ÉhTø;ÃqgÃ]æí±¤½÷fÅEñK6è¤>9­aÙy%!m‰@Gy3}(íBSY4CÔÚuì¾öÑ[)l~Ë.¯š^èv™K}5½ /9%T^&‘Œ„>0“òÇM»SÔÕA”M‹0Å¥‚.Ùp^bS;òäטž‚@MŸÁMøÝÎÙÞª.rÒ‚ž«WÅâÿvtê…À²£®Ë/W ZS¨©M!úúÝ8­Íœ$¸ÇðŽ7KI³qA3IÒåçÕ¦%ÆK¢@“ÌÝ;½«Ë¨+¦Âtý[¨p_ñ=%ýë´ Ü3òMÍýâl„#ñÛÒ!žÜéãz•É“cé«(³³TÖñǪj˜™Í aÞ2 ©jW^’ߺŽAø‚¦;W@TuäúvÏ”ŒÕ;° s¶,æWK+œ¯‘Øi#J+°Il-îü ŠòVRŠ·e‹J™3ºL2pÒ%´ ŠO §Øý¼©±| Æõi\vÆå\BQŸ«`ú#_uÎJT­ð”÷unÎüŽU<ÚeC¥ˆH¶±Ý3÷±Ø} ÕÍò>ö›–‹Àá¤~NJ¯` ß69aªuf<·/vã0àß5Q‘ã¾æwA¬O”›Ð`ÃcõØ;JíA¡yäÂí™õöòBz•kß_bõDÇ¡V;ë“*…ŠºdôµÈj´²'•ÁÓ®×­#ŽwÍ’¸òªÛÅM!€Ü=Þóqm>2ݘ]}o¼j[$„¨Z:—ƒU¹¢Ç#âÏ$`]Üe€¡æ ÂϘjŽÅz–Œt=½ØûîÃR xŸ„“÷jŸIy˜)˜\3dªI‰K:ý„SõUOL6QÑŒÇêÀ6ƒ͇k’[ aÎFPVSdÉαݿn’EäçÜ·3ÜìDÊ9»äÏhÝò„í‘ãfÎ@ðqkéÐ#Ôêßá”N{K©©ªCô$°¢§‡ ÁIe·d^èÈ ’÷šo§_“þc ;®¾d7ýò$T¤"RQ8ÇÚùªû,_–Œ¡Æ±wݵÎÓ€|‡[|/ˆh²îpºÀK‚¬†[(K‘u?ÆØ6[Ú³MÛÓ| š¯÷»‰‘X@(÷¤1¨ H6ÔaÙ³ cùSL¹ºÖ^+[»ÓZë/¦sÂÇ(bà—ƒv4E£˜N*órýÂèÆ3æ Du/M¿ë‘ŧrÓèB›Ï_qéÜ%ÐÔчÓ|I.ññd|N’'³Ñ_¬XRßÂ[™táì4ÐÐC¡iâ«agÕO·€'(·À–z¿TJ|ÃÙ([]»ÂWÈ%U쌓÷U• ¹z '¼„E÷7; DˆZš$Q¼åGð9V^R­W\àö,Ã*êL¹€ªƒ {}U[éÔy¤Þz`°‹÷:’Ï7žP&ò>‘¸¢ÅôPogƒ¨ä†|Ö›7ÓQ”Œì=³¼“.…H\o<Jc1ù—èQØœB¶e,VýT[ùlŸºŸßÕAùÀ/73Ò1WBT«ã€F¬ ¹/ÒÌ0ÝS|Dk÷µL¥¦D¥¼@K4ŒOÄÕò¸þ)©ßù4×D„vÓÑ×E®®ÇÓzhÁ5ùè3T6X‡8ï¦jU¸ÆþÅ€ßÊZΓïOÒ\ûMµŽø­ VÊhŸŸ¼eãòä]üÑ[ ÌÂîhèv4Rú†¦Vø|ůX€™8¹¬@Ôáëâ715{Ê`”º"±Vóâx`×1 uE­m½®Âwãs>ë†=“ÒaˆÁë‰8}u$’5^nw[-~B‘0ç…s6Í%lɯ ‡ ‡¾i·ržŸ½<}¸ò´¬'Ïðx0žu¿çëꆯXh¢(S/-±²ç·’§ï€c>ò«¯·e¸dêhôE ݵ¼…ZÏ ŠÜˆÃñÆ”åäö¢&¿q†")oÌÉVþ`E$«D lIeYÖ[¤,Ú`¥Ä zˆÚ&\q.[#¹ðöµN«%º@wÕÕÒ,˜dáñŠN°4öø'• µ§g/‚àLLJEŒ”T’÷mÍòë®Z¡åÅ›[Þí¨Š¿Í.N>””PT¸åG¼*}±X<>„L³ópaN·Tí¾g¼»DØJ’ð^UZ[3xUØnçIŸ@€Ö‡©=r ¸ßÆZÈYÂüôMŠÇÄo´$`Tšà¹ÏàTævñê+c}Ì©SðÕ§¶µÊ²üß“~Èø?‚+ª²Çd0íÍã—w‰; €y€ò„Eæ¸çÿ”/<ÜH”ßÚTŠöÇ—ýñÍf©6ƒ=²šV¦qÍ[:6ú@)´cƒóðÎÒuÑÓƒÔ2xÓËZèeþ|ÌoŒŸG`–`îÌòàì~üm/-E²–Òˆc†gB×íÛ¡>‘òƒó‹YæÛÆÏ"*׌hÿàóLJæÎ¹2§QOï½íŽ®b$ÔØñ6’íM^ë AïB|÷Дú¾|1mS–Ñb }-üÍ€ñS!þ­‡@ÂN¸×ûüjÓ??kXõ®s¹÷½õ¡€¿‰õ®)f 7á\ RCw62cÆ8ZO—çíx§ÑèûžÑYVþØ ÑB 9Ln }Ô?‚ŒÈh°Æ:ç¿>4‚n¥©m¸Ö¬Ÿÿe÷ìÕÝW H†[ZóT¥Bli©2ß9GL5®^®•þв²Õ©‚Tí7íœdš)Yp;4ûŒDD~8Þ:3ÖB‹ûst<+Ä­¼ÙsY/6GíWY/þî´øÒéÈÒ¥ †:1³ Á¥ñóX–?²ô¯¸VÁõ%ŒœoKØ¢jnŸ1ýÈHôi €·6˪'qéø¹2’và¥r­|VG3ßw¯W¥,4ù?Õ¤=*5`~w+›`ÑCf­V-á †îOáÀ B= +ñ“&,dù¦£ð9¨d¹à‚ 3>TâŒÿòå5~Lÿ$î4°÷/‰ŸRt:ìµï„¾È‚Ã~ºÁ¨SÙi3¤­d÷Ûùd¤gþD/Ðß¹¸gLãM7Ö¼ˆúqç=/âŠúZا¼ûÎúø£ÃO}eÿXËþr H³®|@ßüËÕÅïá¿?xkbendstream endobj 168 0 obj << /Filter /FlateDecode /Length 1510 >> stream xœWÉn#7½ ù) js_|  ’x&‡ØrÈä [ò’Ø’ÙÁ`~~^‘ìfµ,!¦éêbÕ«zŧ©ìÔTÒOý}õ099×~zó2‘Ó›ÉÓDåÿN믫‡é‡,¬ÂN—dRÓÅõ¤|Š-º¨ã4HÛ)ã§‹‡ÉŸâÓòn&;­¢–J|?››¤º(£XÌæØ–R§ :l‡„í$>ÕuHZ|øR¦äb ¿>Ïèïè•Wš¾qÑà/.°m•×.‰5y5)çŶñ™ Q¼¶ØÌtÀ¾tbG¶RV•ÆG±¼G0Qæ`®ÈÖ¥hÅ-yp)… Årk˜X§ÅMvm¥tÉŠÇÙ\{²Wb{—ñØ­Ú„KÊÑ‹󷆩Wa“…ìbJÞ…¼íRpÆ"Žÿ.ããµÑ<êí¦øvˆõެCŠÉ‰º[pѰt–ãB¹â<©T¬Hà®qB–)(ñ¥V&ºQÛœ”AK8ÑñL¨È ¢¹ï J`µLsÖ^Zmã_‹3ôY­OÓ¹2³1N+4Ï*Ç Jø¥„'¥O¢€®±Z>ä6J‰€,8+c)@:(zgrb6iàÅ mG§µƒ¿…V·œšXZ3j•*LRNÇb^·»eqrìˆÒtÉi°#§s'ÔÎèç-}XÀzm`n5™Má‡ByIJ#§ž;¸®{1”¦©MK§IoPºu¶ç3G° ¡Ø×„•8Ç%zµHž¨¤2‰óS©F9B¼0,÷Mt2*«œî¤Ò朽¥è“¬ÕEq“é3FÙL’Ný¨d§£)Š·aìu=S@¡– üLŸ¢¶…’)¡Q(!xÐ]7©ìó¾Î¥{“.å.úMÒÆˆßr Þçj áë5D¨äªP©UÁ%‹à–YÜgà¬Á ÞæÈÙÙ=##”u”о‡ط0)¸!2áBNPA¼°UœÊ­Åi“¨ÙWïb%ŠóÞdÄb¬|׺sÊçç<×Ë¢  YOÄdƒ«Ò¢•&®Î½sÑéã ±ÀˆK)RlR`4Äm“‘9Ó‹_œ›Æ‚crÀ$–]LB‡x¢¨Èd \r=:ŰPVú.–F¬5È2€ÊÅš"@}k0^´{†¾Ü1Ð08o\úØ”œ§Û žk¹ /·F?ᨾæ·M¶v—myÚ–'—ÿæeT:Yš¶ìÚò¹-ÿiË»ƒ¶«¶\·åÉ,7ž6 (Ž‹æ"Û‰ äµ-ŸÛò­-™í®-—|÷‡¬ëÐ^©°¶éÇ|o¥UtMd3h/±½.¼Ã†û{èŠ×Öü²ba×Ü)höºŽ l;÷ôÑø:{äÝb”OZ‰BN©nï࢘¨¨ë+éÕ¹Íæ| !TÒ;ݰ¯ìܵï9g 'зÌ1™œõ£ I‹ #4p»ÆÓlAƒ¥´á€ùþà’€|Ààʰݴ›…ó3}½uñ]P<ñË~™t´Z‹ñ`ÔëÀ‘#ÎÚÔwèˆ2eyIóöŠf/[¹B.9´›á´ÁÁÈ?¾Çž 蓪 ‘ Û|³BÄR´æ~g”Ê’†+ÞQï§Ùb²7Îööï&EWZˆèBÖ¸ã.ó àA=),éL¥dðcº9”ÊNÎñrá&Úçz|;ãï ú·¡@½’´ªsé»ÔË%‚!À‰süjŒ¹u2š b“¡Zç¶G’ýŽ?h.›¤0F°lVÍ!óñ2Š„4%xÜÖKNžÄ€éèËröRÒãðF -íH‹îØs¥Љ2ñ˜—Œ>G€Ze¥6Ï"k{e^¶wÌò?æûyÿéþmÒÞ¶;¶æãW™¤5èYi9Õ<2ƒ=Êdƒ€Ø‡W\6¸j€C:ü,öè™ç®49ûpÕfƒ»6ðŽ&êá° ›N×/5|öé0ž‚c´ùJ@G@—ˆÄÌl^‡:€BéÙâïÉO‹ÉïøùÕžóendstream endobj 169 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1012 >> stream xœ]RL[e}¯-¯RÐÒ3`¯/[Ì0ÙM– 6eÊø±ˆ³L eH'”v¥ nW;»– #TYI¦bb©¸ Ë2bfШ‹†L‰8‚ zÛ}šÙJö‡Þ›ÜäÜ“œï»ç^š (š¦eÏ–è_Ñ4椗ÔÔµ4hš"ÍǃIt0YÜ*b „º¢@*©hî¾+eXõª¥D4]^§7ПnmÒÕi |–J•ž®{øêV>/ƒ?¢9yJoj>¥ã5/óG2 3ø£zS¸©ãSõ|uVÓPËëkùÒš þ˜ú`‰šÏ/):V¬Þ™ñÿo=Ä¥Úƒ†¢(ö™Ô»T™YŠâ¨hJBI)OÉé~*:<%¢Š(/E—ÑK^0.T /î0·–ÂX?æúé…P¹04€A…§Ú¹¿£™öf0FÀ­ É÷x”D+ò˜"œŒi7…¹K.šq_ sqè·³)Òj¼ßn¢_â¤KoôÛ:.’­¨ÐáQÀ'§1“®ù]m6p°ŽsgÛ*+ºº9’Hx=)"b¸G 0y;èçuѾ‰v¬µ!Sˆ’㫪o[=kíé=}N‹y²å2yHH I®¨êèèï‡^¶×Þ34|õÚ›ƒ&"ïÅ@)»i@Ž—ý¸l¢ƒ‰þˆv…§Ì™Áã‚1ƒZÂ(@bsKxì1p)1Œ3´x<0æâ0€3bר¿6äû)£7$ñÒÓ+èY͸¤€?;ëoø!w¬HúÛ7Cã0·_Q9Ka?ä³›ƒ/xÙw+l–åŽ0¨NðiÅiVçepV<Ñg;ÍUŸ,kN¶^<ŸÀ§ì_CâZ«%ÓÖ3Óö»ðQ8¿‡iëC±ïðן}ñs…k'60aí1ùDðUÌW40VSw¥åÌëÝû  XrˆÁ$Œvèvm¹9¿p~d1&åk"ãäÅDºW•uüý×è¤û=¥¼~¶,Ü;_|6þ1°?öîÞž·HH¬’Ä“„(ù€¥úšƒJfs=ÆwqæÎxé…õ“¸AnéäŠ*0¥AG–§HÊä.ëÄqÆÑà7ê‡GŸä«N"*ÕK£AãµEÂá°œ—J½v÷„ý€ý¼ÃqAKQÿa0ðdendstream endobj 170 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1402 >> stream xœm”YPSWÇï%@/‚û`¡µ7)nE+ÒV‹K¬Ø±2"@Pd [ KX7Ü„ïf'¹I€H@d1´ ˆŽu¡Uê2V;Nµµ>´L™iµíKOœÛ{éCg:Ó—3s¾ó9ÿï÷ÿÏÁ±à ÇñU’“%Ê¢ýJI©ôäöÍâüªR‰|ád}àu<°:(ð†¸’ï¿H D_Yb\¨åH±I—a!8žQªR·$Ê*Tria‘Rôn|ü{›7óëQ®J´'N”$9Y"«Q”HE’òmªôJºZrBŪ}ž!çÔlÒédî5ÉÛ™Z(•‘=ªNýçÚsÔŒ2 ²¶XV[ Èj«ì3Ë?»l´K VØ4õ¹š´C³ùóhÏ(Z:± BóÅe~t¤GóU ¾3ƒ¾ñaÅÈÑÃ'Äbò°XÞTO=¬‰bŒ&7ßb¡Û5t©Þ $Sé*ƒ¶ TÑn`/‚®Y†VÉÅüu‡nŠ÷¨ÎÝè¶Ÿu›Éi$¾¦»[ âhh…VƒV¯64B+qhò“/&ú†¼.²w´ãX >Öb€8Jé Sä-Å䉢Y…Ì+íõx ©QœœLÒzƒ¿ßb×ÙØ£°×ìÆ¸#Õ‡ðÀ½@B$Û@Ómz=ßü·á(Gê}Q´4ó @ÕpÁø~Þ¬Ur늚íz›Ãd²›„ƒsÏ]ƒ<äm,·'!MßL)…U{Ë8”ÀTu8Û=§íäÀ|û딩û:Ú5YÁ´ û·¡;n£Ûýø$\þƒP4‘hyöÛ¹Xn 7Ä)6ù¹°çh=zõ¢:r·2’« FÇŸ  Y n€¨6UµS“%l–FæpÇvp‚d Òuß]øÊû½sB¸¤º;èp:QEwhÿ¢áä¢à4YDD„÷Œ‘eNY¬.cDÄÅÑËÉÍX"cØß€A­nendstream endobj 171 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7353 >> stream xœµY xSÕº=!4ç0Uh<Ò‚žAd*£(ˆ 2ÏóPZ:—ÎSè܆Ò!ÉŸ¤ó<¦Mi›–¶ e¨@A@D‹È (ˆ€Š þ§îÞûÞNêýÞ½×ûÞw|¥É9gïýïµþµÖ>¦{7F"‘Èf-^á2Öò¿×Åñånâ+R/bø5­3ÅzK¡w÷/¿æã ºôêpM_F*‘„D¦Ì ‹Øâçå<Ìk¸³Ë”)“G:;vŠóŒ`Ÿˆ-^!΋=¢ü}‚=¢è/AÎ+C½¶øDÅ:›êöÖ˜1ÑÑÑ£=‚#G‡Fø½3|¤sô–(ç>‘>[}¼ç„†D9/ñöq¶Nn´õßY¡ÁaÊ(ŸçÅ¡Þ>! ÃÌ›23tVØìðˆ9‘s£æ)ço]í±0ÆsQ¬×â8ï%>K}—ùù¯Ø²2`Uàê àµ“ßœòÖ´¡Ã†¿›Ü{䍸ÑcƺŒ?aâ«“zÙ3Ì«ÌRf0³ŒÂ,g^cV0+™¡Ì*f³šάaF0k™7˜uÌLf$³ž™ÅŒb60³™ÑÌFæ=f 3‡ËÌe\˜yÌ|f<³€™À,d&2‹˜IÌbf ó&ãÈ81˜ŒÀpL¦'3ˆÙÎ3}{&”yéËôc9ó"Ã3/1ÑLIOI/f>ݦ;£“ ”HþÖ-^ÚGª”ŠÝº_³ÓÊFÊ"Øþl {†›ÉU÷pëñמ{zEõú[ïµ½ôYÝç'ûùö_¼àùÂÙ¾Î}µ}±ß-ùërÕ‹S^,ãûò»_óRPÿ‰ýv\çxË)Úi§ÓÃSx4ðÄÀ__6½|ÿÉ+/½2á•àW¾& Š “ójçƒB^0xœ¨¶ïL3®7‹ó+%3¤â«‹øô"MN<ă:-=‘xu}ï»Î+aµ– b«uûô-`†M£öpïÁfv}„©Ö Ë×鱿‚ì(¥ËЧA†SðJ‚ØÃyØûà ¶Mc¹%–] ‰9ª&ŽÅ|íÈ;¢”Ù‹`íÚ”Fìv}Îõ—ÀnxŸ'U¬› æÑ5ëŽèw@-{§mìy*8 ÀEìÏŽŸ9]°z…@ÿéµk!´ ®dá&˜ƒZË*—ÃLpݺ˜“_~Â’A*» V~à|nê…}ç:Z•³FÜmv@Å ‚Ø Çjöï8Ø^µöÃ>eíæÚͰ|ÀV+Ý•nî!ë³ïôUš;G™Ž?›#Lýå÷Žã÷<ñÂIÄ—àäQ\>ä$© m›VØN;O!à–u;ñˆBþvàÚ¡äöXòz¥ Ou1p¥`¨Rà6¶ rT¼]X?÷eÝá7ÀI~,%Éx²™.°ƒ¬1ãH£èÔarxzKoô—ßÇwÅÞüY– ±ìÅ…œ4w…üË.ÿ盺Sס¯…pDÓüGLe󨬸¶Õ_‡½~þy”x@º+ä÷§‡{´’3#Ùú#‡êwñ£ñÄŽôyoò /ŸÊ½aŠÄ*ÐA%-G&˜;%f 7EùCisçt>¨†}¾‡Ïw°› §¢€Ãp® Ñ…LWÿêÌ[7QÜeƒÆCÙÇpNydö¾eyaiÌR¿ Ña+–¿NË.Ö<[ùSt¥ÃÎXJ±þ¥Ø÷#žÌý×+O(YŸ±vòûuIž§ßH¸WG—H¿û¯#Gëtöî3Ös âÉ cC•‘I‰a®ÀÍ\rYìuþÆç×Ú&¬¡ÅøœkOÏ>½Ù_~߯¯yìÆ…¥ðV Èüμݺv}ìvØ£¶Lg+;CSТÀѱ·¿ÈуV/¨µÑÉÎ…V%ËM…Aõ›ùå™à7/q3-®3åS»î”àË·q• ›¤âÕΩ|×ÁߘRõ¼Ê²fÊá½pZ¬°#¡¨YÚ›ìù“&,MÞð†0³e6:ö–á0­,%g¢íDPÅIM¦ˆ÷1Öõ~ùmôÆ5¼1ãz<ÌâÖù{M›ìwâëA]¤ÍÜ\¤Æ*ˆ#©Y:]E… ×ƒ¾¼b¿ÇmE{ðÓ¿ nH.T4zçzäÒ¦±²`^ÑÉ͵{ob·,— ½ KÉ=pEU¡øÉÊ€t $' êŒm)jŸ:OHŽØûÌ[é_ºC©ßn ¯KûK"­IiN©Ä³øš•“nû7÷—'ˆßžæ‹”{¼ €ËƒÜÎdwgf}"˜Y_í*M0xÁ$ð3Ð 5²ßT¾Š…¬¼t'ò”ÐdC3¡]ßtê—;.dè¿dh`ãêcÃÀ‰,!“È8âAk5/ß–¢Ò²~CÁU¡Ö²²©t]Þ0õÙÊjÙ«†g+S«¦ á–9_¥3Þ WŸÍ9œª¶Î¹FU%0K*ÄD©8oòyÕeûÎê83¥ ÑFA$lÒÇé,Ïd[µQ)šŒ Õk$בtÇÆ´" \½Sín(§à Ö®ÔDAxé‚õÖ[NCfZQ!蘨O/‚"ÈÌȨ̈¨ÈWObwq«Y²»ãð›Rü‡ñcÖ¯\“6Nú … µ-¡•¡Ê-‰î3.,½ýèâùK ].n''.c÷Ãi:¢»ÆGë 0|¬ oa„$ªÃ¾¶e•[¬Éám¾ü°¹¨Ù²,%]–BÀMc[V‹ÖKOMzÒX’ç8 3 µzÈrÚ±*é!ÚušH†ç«j…RM~RVZApNÌD’î8+Ó éÄ2Ÿßa«C¬ÑùÙî8 …êÂ@t ¿8f%¶[ê ÏÎ*þ [‘ÖL•å#§"0Øj£VãÌh¬ýÖåîA£CÛåwqò¹‹TiƒâÍ/øL¯íÀU}Tü¥âxÄJvyDš* ã@–€®,´Án¿VïÝëK77eŽëüàʸںòÊÚÂô¦M:ÅŽæCÀ:á=NáËÊ÷]§~O½(øÝ-kÁ{ë~Äirî©hçRñM~(;rÖ· žÍ‡?h»S²)Ë¡8DœÌã<œ‘›{ôÈ—:'3®¤ðƒ°Åº!ìmv¤@ü¶mÛSÉYÒáˆþ„œÅ"GmÞ|R•’—ÉNÁÞmñoVÓØ »ž™Fv5lÍ ÞoQO‹t™%…¢NŠ{0™oصëPM­¹eoI»áš`m8Ýä5ú$,ª4¹IÔÊÆoKJO[<ÍqÚO)ùt‹³ ¤$¯Òz‡v¾&¶‚«.̶ÉçA§m_ú€ðŽ£H¯Ë—i¶‚S[«7ëj¡Ú456IVR‹ ŒõMý勡޹ª¢x ¾””„0‹QnÐש‚ïÖ6<_@¬>ªž³6ŠéÁFôm{î{¨ïéÃãùgÆÇÚPºî™X.·xG;'?UÒ¶þóÏÝÍðDF;ó4ØìKÝM)ž,T€® t÷ñrkà´„×øÔzV€'øj–†¸m ò X nàWÙJ Ê©æØÑ^ìU) ¶^üµE±€©^K¤s6ÅÍ›Š ìN(þ^h2ËüÔcé#½©©ù';-–Ë,ÇÃXþ•¨¤íè+©8žÒ¶öô])üÖbÁU¯´íY[G½ù6­&=ùu¢u$R4fäk2) k[¡B°mPÜ»Ñût­Åþ8¢K☞”–¤\:g!¤mkåæÌ\#”rµ1¥QÑʤ`·6¿Ã§÷ž8Q#؋˨‚5Ým5YL×Ú»‰&‹£ï!Žº® ²ç¬j5|F¥`7| ­d•Xóœ™dš,@›KB»N9Ò €I|Ñ(i3áÇt·ˆ¯ñy–†Çm‡X\”©ÈD;“,ûQE+v£¦G&#]}RT t§ÄºxCV†Kí"d)¤çVwÂÑEõ”=WL'+¨ŸYÚ±ïü|‡þ®™‡ÄŸÿqĆ´l®]myƫà Oä?C ²ÏÀ¦F«º–‚E£Š Þè¦Ülpmä®ð½êÔ¶êOÕ¨2ïj:FE[‚Ù­ ŽÎ3–³š [g«§ÔI1¡sŸR¨ÕÅÐÞ ª—•@¥¶D[­Öi!†ëªø“(c³ÒuÚÌ4qd×}Ǽd6¸bÈ©Pˆ‡ØÐþ˜"Ô_»A°Aïoõcp StMgm˜ ®Â™FåRÎFXA׳ølþ•i'póÉ@oIÙÊc£Ìh€ª«ïSöqc†~ йOFPïn¥ùÛõé)š´íÁˆ lƒõàÕÕü>œ…ºêremçäZ uî¥>x—ÇÍä šæ¹d™@<©­MÆâ\€oàxtÈ×äþ 2à,ÆB|ý³·pðl’GÊÉ+“Ç(ìñ¤µÙℯrì~öî-)Îgñȱ߼ÿþ~C ¤–ɱIÁE•Fï¨/©¬iõmZóÞ¤5ƒÂN ºJ.ÿY†¸„23kß9•ö¢]µxÚ’¿ncûc)Fã9§É°72_>üqØ7äyú‡Tý'Ò¢Æ2«myì¶ Çà ®@‰<Þ®‰g5®8ùU5BµC]Gô%œy©¹Ãýdù/*ŒÀwù ð°z‡®±Ä¤È-¬®ÛÜ-¦ LˆPlOŽ õ¢@â¼yÈ„ê²ÊÝ¡{ÕÀÝ;wîrk|kDµ¢egKV9eU´ªŒt$sqEÉ¥ù9ÕeÉÞÑîiž‚G“‡A Üè9sÞq7ú˜¶*’bÀŸ“w2TäcŽ^¸¼¸YV¡=öüùÈ•æÄ#ëê„5uËa í—›!U˜¹Õ ”&CÈ9þõ9GŽÜպߠøPv»ÃÄÕ³×WØNU¬´”ؼ¬»}Áÿÿ¨L÷¥q>>þ#Ïí;£”Fº¿GØav ùµh7ýñµýå¿b>å±…j(4òõõP Ü·Ø=ƒ¼6'ò-2Lñ0‰¿_så#¸Âý@d_‘¡ùô€ ÅpÁÚ /< ŒÏýE6²¬ü¯¥ÔM5oÙåA0€×^Ÿ½~¤5w¥ìz]6$© %U«H›í`û‘Ä{I×cÏlhZUAÝzƒ5-cŸ§—ž¾w¶¿ü¾'.ታeŸä¥ÑFf|^¦FÝ1} mGÍÏË4?#k·BþS¦¸‹oŒ¨ R†…‡ÃÍu¦ªFªHJsçØ:‡ãµágð³3khA.â#Ñ‘'/š—xƒ“Nç}tß6’7ݲ]¤<‹—¸ÉšßRµÚäTÁEp½çÞq4¿I'ôæÑ™WÂG’ÏÇqò{;RRë|«Âói‡âf¯Ÿ59dzÖ¡5Âòcê3ÚmþvP?¿®Öð›£Óä 3šŽš·œñ»Mu Çµ±›B~ο>¹’–ä$UøÒoÄHkU¼îv¥ g´JZL˜{sMÒÎÑSø.”Å%U©bœXÒ„o@9…e¾¦*TÅQLlÄW¯ Ù^Ã#8Hÿ>†½VLx±¯BñN‹:RŒ—gP@W}@I@1™h=4°™K o“<=+}úQšh慎أݣù(Ù3\Ô¶bbâ2bèuuºõUÔ#Ökëm×ù‚|Ž9ÎuÔêÓ³©ïʼp*?÷ô‘6}•Å{†¨“ ”ºìÅúD›pThóUщÉÔe"öŽbÔß3)…"¦¿Í°uš-†-ž'¯Žx{¤+éi‚ØïOMy– BŽÐG ûí=”• †Jȃ=^d›à€EÏü´5[À6êýþ gV"tJh'‘ž•â{ ø?ÚÕ2ö·bÕ›ÀDe´õ]žóó¿?ßµæêCÿÉ#ÞÿT÷J¼5£Àí·£á/;>dÛ‚_ •Uƒh$ý5Rúë ñ:_~b_þn‹· Öii¼„…úp[Ù>ÕVФ¦Þ®I##º<É1I›©É¦¡´á$ÔZJ­žkÝ¥ÍzOÛ='  ýŒï9E× 2QTi Ôqþéõ— 3½Ð]»: )†mEP úœÌ"œ"f9â[]Ù¶lŸZB©²Jüä²ä¸éû»R1L|ÊçY"oG2dÄ4E\„,€xR‚JóNæd_¡1—C/™*~*‘(\ÈÀ¢€×¸màvð ÈްðáƒÜc™ÕÅ7÷l¤?=e&‡¶ÃQû±vÔaËéîdq¿©!c'”q}Òvá♵³Vxo\ê/ø¿´ꀳÜÝq'Æ}kÆèX½[›«PÜa¢Mìñò‰+‡ ôhÞ´ûþÆ/-ª>mBLU|þÂ=ÜP_˜VÓ Kœf¼»vÊÄYß8ÙxæëvÁ:“–»_U‹CèT¾]p½¿¥"/JñÈ’¤Á›–Ç­Öï öçÖ—™#K”ñÁ)ÞóŽy~Mc–=%H ‚65#a?·jC¬ÛfÁÓ-ÊÞåH¿o†cwAþËG°·­ú$Gú¾ÃÇÃ&:Û ‡áƒöªÖ‡w5ÓþÓ´¥Ì­00slâÞÜ2b¼`áÑS }*¹ùTŠ«D{þ4?rå5ÄrtÚƒ£÷HŽwŽ’vÎÂk|ITVÆ@¢¢ëYb DGW@‰Büž¬á‹mß$(º¾“%ؾ)¶ðWTTmÅŽAOnbo¥ÑbE=Å›ü©È›ýcÃÂÃËÂZ*‹ó³©Òèu:pzHÌLµh±"9™Zk5—š•‘Upã ìI+ëH U¿®¬”<8)ůH*O››>®ŒôC‡@\8 pæ.œ‰/`¿"  \N†!m›Ë\"_&¬#Ý’‰”òmZéó±;E^¸¹ ¸ìLCŽâ÷Gc<}vx¸¢Â>«Ðn)¾0ñ“mÀ¥ed¤©AS«øqØ 2ˆé¾d6éK’lSMËÌÈÎÿö3”(Án…(…¯,YeÄFdo·X^ࢻ ?Œ7Ä!üÁœ$O©þ×]”²Ä!%^Kÿ€“ü†V£Ä¤'ÚÉÜÜóqC˶¨JÁS“ ñ\@mREuuiÇ«ÚfŒ&½Ö‰@d—þñx™¥ %«­ ­¢ ía­»Ž?¹×ë9fK ³só½ÞN§Ó&. ]âîªHK£³Ê°âµðêUd)énâÒ“’,—b=.åO’òå4ž©‘&3¤bæòÆ® %k¥§›Gÿ'5-áÁÎãb©¸ Ó•Ï*²@Ÿ+HÉS%flÛ¦Èw›™žD·Gã¤ÊK)(ÎÌÏ7X[‘±ÓÑ(Ù}soHÅÍx‘‡ké×ü?ßôÔRX 3Ã=GÎIŸoû™.{§ï{ëb´¥•|QµÿûÆsYWà*GüÈEÞ–™bP‚»ð!œ³¹Ç*°×¥<®gc+†å¯„é°ˆÊþ\Õ„‘+‚Ý,ïœÔt»[Íû)¥Â>—b{ç‹| 裄ŠÇC pAl%}TG-×UB&ÙE´Äª[4­í[ÏbU ë¢.hµ„'¸ŒOžüdv8üÝïØ­ü2ÿô1ŽEáÔ1xè„2—kÄžØÍ3nåa0”5î­­õß®­Z¨þäXëIàîì{kÊÛë§®Z¬ «H€ÊrÂé$"²²:œi!KNuß–º}>uP6A¹€4éTcÏŸ>¦­»Oz„oßþ¸¿œ0¸Ÿð×wœ;>EmyCNum¡NMfž¨e¨{ØÙ´´Û¸Èˆýo8~°ÑŒ1·-¶7ñØkÊCÂlÜïï'àZ¶2­)µ‘Jõ çïe«³Rµ´¦+¢S6DÏ/Ø”ãZµÝ ¡•¦Ê½=^A±±°½8GoÈÎ J[} `Ú”[ê«÷†õœüWj—FzDzû†o¢~hÅѸ ÔÐÒTfª©‰3$ú§nšxnvWÈAîÑ(·ä7•i²¨Ìç6©ùŽú?J ®yéÿ¦P´râ«Õ7îì±h?zß]@µ¿ ñK¾†¥É°oË‘š¶´-F!Á Ü‚jŒ¥ y»O¹¿ÿ&y‘ $< §âO*‘›}¥ßGï“ûHy×\ð]½‘Ã^ä¿‚O¥•ĶÃ5(ç®4>ü¶ô ,6 å¾°Ž&ɰ>Î/xé&š€(F®ÙÒE–‘¦ ô={ï–T\eyÆšiÛäd·ßo?ðTZüw®\æî“‘.„´®Ì n$áÖFñoöPôýÓSÒhIávìýëmŸª‹ eã4Ñ–p’¦‹Ø‘BcJ $s„eŸùx«rÜm²*‡ßsñ8¢þ_¨‡·zCÆvؘá$ÿŠùwÕcü ¯„X!ªÙ£r=p£H*%ÿvüþ ¹™O™@'ñðÖîkšÓCwÞš”Hˆea|y:g¯4гÊ0¤ Û(#ž…¬¹ç¹^BÏî“+{÷0æõî}®²w†ùoïGnÆendstream endobj 172 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3902 >> stream xœW TSWÖ¾!ps!Þ êÜK_jGEÔÖQk[ñʈmµZð‡'òyF@)ÖWE|´V ê´QÑ©«Úi-m­µÕ¶vömÿšÿ„ðHÿúÏÌZY NÎÉÞgïýíoGD9:P"‘H²$08x–¯õßÉÂD‘0ÉAø“8kïNÈUŒ\[';韻C¾lK‰E"…:w‰"A£ŒŽ’©¼§†¿à=kþü¿L÷žíë;ßÛO¡Œ‹÷ SÉ"äa*²ˆóR„GG¨4ÞSÊTª„3g¦¤¤ø„É“|ʨW_˜î­’y¯‰HŠP&GlóöWÄ«¼W‡É#¼m·ó±ýY¢'¨UJï@ŶeÅ£t”G÷ ¡”„p@-{áüÙK7Î/~qÚ²€e¯È¾<ÉáÉŽGÂŽe·#DîƒÜfÿôÛ!š¸h^ú`AUÄïî7ý&Mm†Ð—ã-ïY6·¿=0³ò¡ßTóOØ]ÞÎ÷IêQc´ %§pþ¸A"í5Œ—lEéQc=wop;}+‡ÇC(¬£S‘ú`24p½’¶¼=Ñ\ÿ(Z›ˆäqV«­ö%ƒð¿;^ú(a5ûí…ï`4§OªM1"¦±¡f_CæÑyoýU³*˜—~rÐf ;ÐZ%1ÕŒjøÛ¸gÁÈ ªèjkˆ‰HËcñ —ëGô£&‘Åð˜X˜D?ñî“ Šžpw÷‘Œè×ÅŒ¬À‡®6‡I$§ëé!0x\7C¦9Î<^úNC«*N)R–Ä/¯Dï2-ím÷?«’'qú´]imˆ±zâ-’d”'åër ¸PC(J% Y5?jæã´ot¼ô^wΧë&DFÆøn ª¸¥ävÔåW$"ÆZþÏ’t¤l-¯ÑwVrÝQg L³Û?;ÉK¡Ÿ1kˆ-±Â4Ë sÌpÜ,:d‚ÔµÁ67¡¶Öd¹Œ$ñ(‰7nZ‡˜¯S`Ƨ?Ý긤ÂT-¿+­4³eðÊÀÜ9yGV´–“µ†W‡‘;»>‡'â•xÕÏØ \><ÚÚÔÀ«QŠ-Ó¶ô|lþ©Ad-úlR ¥@³0o$‡xÞzió_´u¡‘$úK¼“žöqTïÛÇúêAS˜œÆ®Ù®B̫茑·Õ:Ù !fÑ] ÈH„+….ÖhgÛ.F#Á2ùýnzÒ 3c¿N9²—‘SJHNVÚAÎ~׆€`+²‡¨(~kgõ±T‡˜^ºÆ8pwèlýŽŸ¢ ÍZ»hç IòÇåô4KR/'M=‚Žìé4Y ›nšEÍB‚XXLÒÙjÓ¨‘{šh,Â7±n:™~wb8ÎV$ø^et2 ¯zÔ„* ˜7€ŸÄfQ%6[=HIHÃc ­I"ö›P=ßMoÀ§ éü–Œ™G4—vVÈÐvã,õÎÜpÌå§0…ôz8íÔm£zJþ¹µòq_±ªH{yFEåufã—úª¢FFO—¬ïÄ£Šs*ÓêP%êDE5ÅÌP–g™š=>°léƒ@’édÁ¡mŒ;Yx1¦FrE%Ò†m/)Êá!Nrmí?ðs[žG‹å†ôæjSy§žCez}î*ý^TŽ˜¿Ÿ‰[ÊK»ð²Ømô þ—~ä¤É¨gwW“Eˆé/2µ’·i¢ÒBPb·|·û‹Nx¾˜·ÝÆ`§aúÖ’ äÉBÀKØ_J§ dÒ FNÚv„ùD;.ç¥Ú·Qˆ&:ŽÁ{%8tfˆ,GZÈŸ ü]µoˆöæŽT´³_9²\‡¸œT˜tXJ2áò<‰uü¤š…ƒfѱ»ÿAKptFdž&7ΫÞQŸmÈ­÷\Oã“áÔFÃ3ø×âí¨z¡åü e|pT¶éKÊÐ^ƨ©S&¤iÆw?|<+йáaÚk¤>± "ÖòÒ·¤äry©›ü3wÉÕ¯Oš@ ï¢l^/«×5#¦ÙP»¿÷Y‚½Ž'ÍÁ®ß>Àü¾vžµ@«Ytõωá˜àÄfFeÇçÅPnïš•¥Û›•H‡˜ [¼ÔÎ÷ë$±ÉƒÁܱŘŒby!Q/©Ø|g”©öF”ä–æTæV¢½¨ª¬¬ª¨ôs(­<Ëèûé'þX'i7Ø É‘”¯ËN†óÇzg@¿b£î0gÏBéXc6-íÞ³µfËD,š6Kñدþü ÁÑ9ttŸi?±ŽK%A!ó^]úúµ¾ï®^¹z¹;(xG÷ÎA2ÉÉá:›y@[”€˜åvUÇIaœYôš A/„ ÖP:þë÷ø)ì2m vÃcM<»¾2ZK¯ÉÙ™šË«ßZ›­@‹Ð¢Sé_0ú‹lUï…®¢3¨GYþ3¤%À4Å*˃»b(µŽ•1v¸ÓEßúµrùåÛ:šjL_Fé/¿ºùEnÝ”‘ó÷L)Ð<¢%&J‰UfØi‘/ · ˆÔ£éýêÞ=¿¯°„Ç*;Ó¯³ÓQÀޓӂÎñú»cþëÖmñŸFemAÍEðûðƒ‹°ù¢Çþó©ÖÙñîù7¯—þ3 t°”]ÖuöÃãÇϼtÓº5¡¡ëùY2¶¨àª1ßô^ïkÍÞŸfâ •ÍÅ{õ¥ M¹{SÛT¹¿)µmmÖÆÂèÍ|z…¬~3bf,]4wKmLu*/ÅTVz¶Z>ɪ”å™~!h9Êb^z¼ÆÁ¸Ç=ŸwjN½µËØÖ8 1Ëè”rviQʬʪ*l@»Pñ®ªâ= ¸àKì”Eǎו··7ðÆšrÔ‹˜>pB/….Ú2e°ý -‰bá58ÁZUô «‚æ`õ8R÷o„ú!Óé½³aPûy=°Òfi m•¾„/¯Óßãí!oúòKhŽeÿÖYoFG˜/^»ƒ9¼ì¿“1´ôÔ-"WZQ»¢1©Q @òúØZ¹)ý b.5ÿíP{Ê"E^ÈçD¦)Љ³—PYv—¹_eÐU C÷öCˆxèOîwz„ ¬Mæ>cF'܃GÛáéäžž¡¥„G“ºQ¡P«ŠFµÉÔØhâr ”™=Î\š+W¬Æ»akÊû,½È¬ßòÆBÅÆâ}á\ؾü£…u…µ…u±ƒŠ{HÊÆÒªörî°Üœ~™HJæú—}—£Žfîå·NØýJ#}´ .¬2¢uyî>y œ«gÄ•rEꊼ†!‰èi“µ;Òä9ÜÖŽµ•!D"Š-œ»âÄÊÏ’ˆ¬-.| ªÚÉ “Q‹¼,àIºë)x>A‹O¤crrbøÅ’á³àÕ¯[/‘d~ÿG”ÛèÁ…ЃaºÃD‘ƒHœ:ì >vS“Æsñt'xls0ÂÝýºvÊÏNûo¼Mzƒ´ÂLÛ³u+Î#æãl€yÜ´@–U}“ðZ‡ˆøgí˜K{¯\¿~]À™rðm«„˜yÒ©hìvwæÃ‡w¿7;Y:¼14Û®žê× #ë;vù”ý“ìì9p±~¬¯P‘ð<[К‚4ˆ‰µy7 wxÜ#‰Jì¼/mq&“Ç;,—H»ûŽtiªJ à°N’:Ôž7wè?ÙA4 гå[3¶)8íAE] b¤·c‘\—¤¶¢nC—è_TÆEêþûâQ·þE —Ù¢®è² ¢9㳊B÷âPO½¶(Ù„Œ¨¤N_ËÀØòïOX3î°ÜE° ÜÅpKpd;å-±ʸ¸ÈÖÄöCƶ6_püÃwÖ­¿zçªè,á![yutD’‘Mʤ‹D2ÙTÉÃc<­ê$;1(“ǿљ1d§“ÄN Ì7üšDF~Ö‡ËZUçk*ñØl/Žèá!àaÂ×5»‹Q5S¶£!1oÁž¸»œ˜Õ±;»øf‘A-% evÆÞ!Xx X.›¿’Z×»è\b”y)9ÚŠÜ’<Ìâjü¡­)‘˜Ç}µÛsv -“SšbÜ[ÀÊ9[V†2ÒóÇ„ó ¿ªDç…éb!äW7vw¡2¦N[›¢ÎÕfäqø³ÿñÏM/D(ÇKSÖи»zoé0?‰NYà]u<œgaõó0;`Ç)xÀ«ÄãÁ `‘á2ö•p†©0ÙòÃÞ«/à)xjv~…·=pw]$Ï?ã}¯÷A‚%œÐéA wÙsï˜>Dï37„%ØuÙÛþ1F]ƒ¡©ÖT•·gg×ÖvÍúøøTTˆ\+KPó±‰Ê‚¨‚5ùZ„âéOÖnçNÐ?œ^ñæê U¾á¯Vt%ò%%»KQӜڠT©µ±³¼I8eüçßÜã¤еMV¶2c²*„%åðZ5»%fg‹ çì¨Q¸Ž2»ºZ\GSÔÿ• /endstream endobj 173 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2824 >> stream xœ– PSçÇo ä^ѪWK«÷†º¯ˆÒ"¶®(ŠŠ¢¨¨ˆ&‘%ʾ ‚€$‡hAEeUD FâZ¤Ò:u©[Õ×Z}:Ö–NKµÕê¹øñfÞØÚy¯}ÓyóM&737çû¾ÿïœÿ92Ʀ#“ÉXOŸË]Çw<•Þ–IºIå@_ióµ98ØÐcMo¬{zâŠ^Œ\&ÓÇfzê×'FéBBc”ÃF(]=<ÜG+Ç硜¡Ò©#•>ê˜Pm„:†þWúéƒtÚ˜DåðBcbÖOrq‰«Žˆ« ™2b´2^ª\¬ÖFÅiƒ•^úÈåu„VÙuº±]_žúˆõ±1Ú(¥>XÉ0ÌÀH½ç̨èÙ1±ÞêùAÁÚµ¾!¡‹uác\ÇOp{—a2¾Ì`fãÇ,a†3K™eÌHf3†™ÉÌb¼˜ÙŒ+3‡ñf&0sfãÈôfú0}žéÇTƆÑ3dÞ²b™Ôm·ü]y‚üŠM/°¹`;Ö¶DÁ*´ŠF6‹}ÆpìúÚÕÙ}fïhŸÞ½÷FÊql³«do–¡e¸eré žçМ!Ý<}B§é#vSÉ›mUì…|Éu/[núÒuÊ 9 ²z¡ŽEæë¦KGK£§ ¤òÏ^a¥óYé-³¬°äR%êy|Ûå1q%înƒH?Ò¿e º¢ûÃÇØ[ &²ˆ'ýí-bY݉}Vø,ë÷êKBÀ¸‰@8 ŽmMiVô/Á¹¥¨±Ê. ³”Û oKosãËak¬0ÍÓïôœŠéàD6“±dYK48‚Œ@z!‹Žh¿7+7%=6Å 2šðþ®0&ìó»ZvP€ŸŠnžj¾tûIÁi¸ ØC}ˆÌ4eì€BàÊÁT!:¶=¥"¶Ze8ûHp€¼¶m¯zÞÞꬒp:‡o¢Óé æø}¢¦F—·´`ÞÎ…;á4wù”¢Û]}8±òPUimq澤‚yGwµ^ë!±d<™°†ÈÇ!íË3 ÇKĵ úYhT”n‡²Ò Ø(ÎÏ…=PÎY3?Æ=1l¥Æ|ò;dªúJâþ{QÖ–ójE¦W298%­'«b¥a<,ƒµ@Ùy—®û”<‡2éo‘ÕRg™ör)íøÂMžl4¦e ™ ëç¸GœGŸ8Ÿ‹ý±þyC¶Ñh4ÅœœÔˆâÔ5IûKkwºGؼ¥Äk5– øÁ‡¡k5rù¯¨½eÆ¥ûäup{ÒQç¯è¬fc‹×TyÑ}Þ:(É Çï¡Ó¹SÅæc¢?‹^¯YI,‘µË«,O¥%FzöùœZ\Y­XÝ|>¯êáx¢y 5€‚, úUá”.ËÌh‘KËq_žûeÞ<%ªüv-¢ƽ7„ô&ʧãpŽ:ñ|oQ d%sR³Ä s½ãèCŒøv³XecªÏ=Vj)>|¤Ì /`qÈ]Á9â`Å—VŒ¦]ÀöÙ£³‰èÈh…•tªxöùóN“Ñ'¤¤g$At8ñ@™¥èx}HÃÌqD®%œ0dºêyùçfÓ¶ƒF/ªÅ¦.{ÄSè,Ç*ü”Ç) |ÿûO‘ý€xˆí£»x*ªL/ÀB× ¨êŒáÌâ[R+.à1Û܉‹HDlRÐvBãø–Û‡1µFV}£ŸçÝ“c?œËŸÞÐ EÀ¡pîËë‘–´±jOŶ½¦œìœ-ÊÅíN8p`wqiEâaµJ—'h*‚w,§: K¦Ì /Ð4èĤ„ÄPUùÚÒäè,ŸXÌù^žƒóqÒýo³¨*ªP¨˜ Ö@v®*?­–ÖÂöÜ¢»8ìžÇ»Áµ“'áÚÇà^nb3 ào^Oõ ]DÞ$o†4×^ºEâo ¸#­þ¤]93¢Ã×Ré¿Aû§ÿwnû:ÍgÅ£f´X{wò¨Eçþ}R¤ø=íÅóð1÷äûÄGh·ýȳN ¿þ²}Î`wEN+ÛpH±0‡.M£îlè=cp¿~»{ïæ­© ÆÌT£˜½"qÜßdwÏ^öm°È¾ÂnèÓá»ñ>í^0(`58&Î{kM€hÝQT ‡¸úÈ*:2Ríòd)ª<î|÷äLÔÄ¥Rø¦ò³ p‡»íy‘ˆÄÆÃwÒŠcÉªŽŸ,O¯Y•/4Ô_…<àWDÄ–À0¸A·Á 5¤ã[ Y9 [¸¤<(:夿'Í¥z~ÙQ³Ð•oµŽ”¦+ö·E% %M ­í mUx”(ˆLÅV™Ó©ÇPÙ©çHjñ’ž'7tÝò¾cÌ?£m! ÊœD}G+íák6WR«ª sí•úêâ³'hü ÓŒÈN“Wnò£#MÀÎU{3M9¦àÒ =I$Ç阵©¤À”[°](Üm9þ€ª c>ð„A¤çÚù»?щM»êÊ,*×F¬K\åvÇ»ãØÖGØ '>$ƒ6‡©DÇ´BÉw®))(TÀ|Öj²î‚½{‰ƒ]Í”•;ôÈupd˜ÛLœendstream endobj 174 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 866 >> stream xœ}‘oleÇŸkçõ(uü M6íÅ@P–9DC@Dݘâ&n1†Ðk׬[·¶[©Øµw[×v¿Þ]»Ý]ÛÀn°)%Tˆ¯6111þK”7Fã ßyù\}šà­“hHôÍ“'¿ožçûù}¿ª3!Š¢Žwu¹Bƒ=‘á~¿/øtks7ç÷¹ëÚnýqJo2é;Í@¤JGExlf°ÕÝþó¹íXÛ†Ó[0¿ÑÕ;ÎÛý£‘€×3bÛZ[÷77ç3l„}¡…íp ùÃÁ!/ë9Ãv´tµ°¯úÃÆÐË>éaû¹A—ÏÍúÝì\{²çXwûR÷k'Oô<Õò|97Ì„<ÎâÜØ¸Ëçã‚ÁÚ!D#·§Í¾¡eô6:EÍR@eÅÕ¡}èsªºmÚg*àëï›7}‰ð;eªÒ%û¥³uToÒѳ_„¢S¿I/Â%g½ž"‘ ýÜ’ SØ÷Y?J¦ì &€Ïκ?>Ni ÂG Þk`5­N~Ûy匆­×àXað˸¥¥Ë.,.}/g3² 9F›‚Øž¶¾ö´ƒtZ Îù£ÑÑÑãIfzz–çs Î:o¥~€= y˯ƒwÍ}kø›©«ÀäçA{@57¡Ï? 2–Ø :-|î1Øx÷\ë½~úýNež‡øÆÇ?Í\?¥x¤8¤a!ö0ô‰|ᕯÇnÄ‰Õ /‚Ÿ!v;Œ‘H(x,93›LB‚‰« ÞûmõŽèÀö]8e¥X\^þJfææ2ª³þ¾iá*(©®ûË'fýçðF´d?MX –ßcø1F?RËv]pVÐyÜ„­wq0øÀ?9D“d©'‡É³ø ²r⃗R+쬕÷‡ ‚Ìg««¸Ø09—†0qAˆÇr©B©—H¦ºHD!)$a²1®š,BNsèkxA‘Õ,ä«u†å»Žj™Ž†îÿ_V?Ú!?-ÅrÕÎ4è‹XTåy š ÄSiHÄÕÏÈ?Ss‚˜:£$õ5²Ð %DÑEs’7ÿÇ‹WËÙÊö•%ºl-ovXͽ;ŽÚ6msIÊ)’¨fr’xÙf+IÒ¼,çµ¢(Vž·=ŠÐ_ǘÁendstream endobj 175 0 obj << /Filter /FlateDecode /Length 261 >> stream xœ]‘;nÃ0D{ž‚7ÐR_ Ø8‹A’ PÔÊPaŠ å"·Ïp¥H1<‘;+ªËõå—MWïy Ÿ¼éy‰SæÇúÌõÈ·%*Sëi Û/‰‡»Oªº¼úôõXãÏ;¿ù;W5ä‘Ù‡Â:ñ#ùÀÙÇ+Käì<;Åqúwdº}bœ«£³ f4NYS;ðT°u" /Ø;ÑØkãDÔ„3°ATQ€íàDDp –´,XN;,)"‚+Û7NDbI/‹à@¤ö’ "¦—(¸²æ†ò’4”ÙáìDÀ³Tp|ki£ôzÔ¨Ã3gŽ›”/å–N—Èÿ'­©LiHý*%‚endstream endobj 176 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3275 >> stream xœuW pg–nYXi‚ÉQt;Ã0å9l`˜ÍÎ!LB ˜Ãœqclß¶lù|è–[zêÖ}ØÖaÉ—,ß0±!&3À†I²©­,ËL¦fSÉd²¿H{w¶…Él¥v·ºJUý÷«ÿÿß÷¾ï{O°ÅßEN„$>$-º´ê‰]ËÐäÓÈñ$jx Ãy¼#%u*‘ql/+—WœÎ—%ÿrýú©©Üïo’OÉ“_IKÞ•STVSYTœ]š›¼+-=-yOY ·XœRVš|J’Ÿ]œ—\–—|Pr4ùÐW3$ïÈØ{hߟ¦ýß7üájvqy~ö)‰,»(»¼<»¬DršûȽböLiåÙnyNúž¼Œ¢Ÿ]’ôÌóË6aØ^ì –‚ÂR±Lì·X¶ÛmÄvcK1/ÏÄž™GóìILÈÁ„-¦x[ð„þ3ük‹6$>™xUPöX¾§ÿzñÇï/éJÊKz?鯨%ÝŒ©B±Ô}7Ûr»…Ö] Ô@Õˆš…2Wè\ág»3D¦ÇQÌà7OŽnßù†LAÞ9=Ç¡6W-¯+hØM¸Úà2›C6Âw;xað »±°šR5!÷³uT½^±¼YÓâñ;‚vÂL{ÎÛ:BÙB¶5ì½(j‰Nö'À'œy…é™ì3u'I̤~l ÿüý!ôñÄßxw¦¹«OßC)wÎs×ÿ|†KFë„0XÛ¡ô”w—Z³œ§9v˜À#íWïu\Ôå¶e¦š*¨Âœõ¡P»odâäØVV”·6ë¥ê#zbJ=¥‚ƒ¸TölRØ–ÆŽèÆÃužjiIõ‰Œ™œ»è…´t‚;Ÿ¿ìe¬*Š¢±µQÞ jÚ ­l2‚Mf5J¨Q9 =` “”•‚FШN¨óÊØöYU>à?ÿÑ JºÐoþŠž%/ÝúóÕ/ÿúÝ-,žC™@MªÝ`ñí·sÈ‘ÈíÊdR©ˆW·hšÿžåƒ˜­d«X)[ÏnD|ö1ôÂÙ gË y1hóy.À­´Hšv [Û‰,>«ÏâsO˜é3nu›$dÁª8ÄQt¤†‡nÆ  …&‰Rˆ“kW^­ööµÓv‹ü]H¼/º èVƒœÜ(D?²Á†û”.UfÊ×¹ìÆÄTAj•’÷ÛÙ¡&ÈñCÃ’K_Ï,T/!Â`}Àã [@h¡ìÉP§# Öe±và©‚0‚Þ¬6Sfp´Õž‹ ‰œƒŒû>à=xT` ÙŠ3‰º8ÞN@}¤ßè4qx7™(JÉ®œï©sÚ͕գüd,GÐf°ùþ‹,nnÀ9,þô:Æf‡Æïs”®»gù1Eìi¡¥h°ã~Ž8ê:}½†0´ÅMòšE'Ø×›êO¾ºÄGUg‡Îù®õß#[Ǹý‚øDÑЛ¿Èc×jô@·Z‰®û£=ý€;|PT¡–êjÉœçåp ÿå\É»#ý¾în¢ñˆ23ç°´@Rzà£i/4{\N—x´Ü¢–Öe¾y6ïÚ_þòJìŽ+aèW@Ôo4Äû€{å?„6½]o0µzbs Ë%à»Ë'gÇ‚î¿FFg.Ÿ¹ ý0ÜØ\^ÇÒÐPWoT€¯ô«‘®öÑÉcC¿eŸcÅìöù W6ƒÖ|ú­'Îø¹?ªÙw‰A¡[µyeà·Ä C q¬Ç9H»~â°ó!9$+HÁÊÚyÞüMÑK±9*l)ÇÚÕ‚ZÇ.Îë7™S¸>Î/8È“»ª€2Ö›(vÑü~+´~“YÆ¥¶RP£Yà¡u4dœz Ɉõ*S­ÎÚô¿“qiÌ*r?­ AðQ2¢X‡È¢£Uèù»"»‚1:Á Àp HŽ]¹FýÑOÜêYÐï}wœ³{±ò(Zûˆ7ý9ºõ9?6ùà)á¹ãáS»å)%„¾šRW²Ëð×¾?@Þ¼ö`eì¢ ê^ËÍ•Jmœ]$øj¶µ3®#vš{9XðÛˆ)$âÍŸz”£Ng$*¶TÈ/Ô…F¢¶·-½$ÝL >z=Zîú*„–¼_áw7\gWìðßëòÿøÃòü\5Ççäñ°f-cÐr*Ñáár}Dum5ÛÈÈŸˆ–>óȯ×ëe¤®L“5ør‹¡$ðþëÀWÍñ|ñ–¸*gÿè ¡¼q:sóÊüXã÷ýÕÔÔ@5¯ÈŽf^ÛèôY–VÒâãðsÁïvG^pGý½½áö ÓçÎL‚³*Úä1rN¨§M`¢oQš\PâuîÚ.à‘Y߉²ãÚ·’ÜIý7±M¢8…e¯hRBkR™8æŠÞrÖ© ª†];§é¡ÁŠeAƒÓÛâôØ«s¥Û:ú©©ƒ ƒ&JmTãwßhÎTOWëPˆè8ëžY°Já,ƾ\}ËC;C|”eÞ¨É-¬©(+Jû<^‹ÓE04m梹»7lËß[XHªTܙΠÁêþä#´8T¦cT£ìPl{ /öO?@H±K¾ïàåTg0ä9ï »Æ´¸†--bkØ5Ì5ž¸)¤¦-qŒÝ+]k2¼µ~ˆß¬ì»±wÛ»Éq´ÙÚÆEZÅÿÓ¢ØÏH)¡ @\ïVúÚ<~†&,NïÔ0Jë-Ÿh Â{02ÑÞí<1Tv níõ zç&ž }43ÅÍöî¬Ð®gô:ŠÒQ„ê38Òp¥]í E:œM§÷ì{3/‹Ø±¿²þ´2ø±ÈÖé9ÖGÜÖëæùe¦{8ðöØÚ{„kP_{mþ”ú7ìâdf0ª›êL*Ð>”Yo§¿?HtŒ{fØV*ÃTïÇžæ”ñ1Ò Ýg<a: ¡z¯Þ¦e4\ooÔ«ÕµAŵPµEk×uTy‹!”¦FJ‰ËÖï_·@á°fÊÛíê±÷ÐNÚ ¼Åàn¨UWTn”)1•z+÷ à{¤ç‚LØ"[fßžf,4Ws°5Y ES@t”A*£âºÝj‰!òñM‘ôç¦Î^&ÜéY7á˜C´4nHãàßéEwB¼ñ¨ÿ?öVŒÞ#r-K²iì+O°üÏÐóèhɈŸ²«…¬Dà»üdôv×äÐ;œ&moddjV¦š"¡êxõ ’íù;$™'9û¯Ž|1n»Òùïä‚'Á·¼»ßòÑÁia¤²½´´²²´´½2ioOTqãv{QIHz|v ñø¢ƒ³’CÒ’™f'ÝÚln1'%u˜û9ã²qÿLltÒR ûo÷dDendstream endobj 177 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2726 >> stream xœV PWîaº¥q»IU*VâmªxÆhSçpÈÀpÃ5#‚3ðÏ4— Î00ˆÈ!*5žÆDs˜ƒD“¬›]×}Í>j³=M²ÙlmuUWõ;þ×ÿ÷¾ÿû~aoGˆD"×M›‰I>óçÊb3ä©¶ÑxO?ÃŽÿ07z~4_Îbp¶??Ã9Ô™¦ ¹ ˜LˆE¢­q)«ÉªÔøØ¸t¯—æÏ_0ožð^æ©òòóöÚ• P¦%Ä{E$E{môÞìíõºB) Æ{ÍR$yEÊâ"ä1^Н`Ù6¯ µA^ëýC¶½èý«ÿz6@„G’"9-#boTLl¼˜°Þ‰Fí“~°›Ã`å%VÙÙ #Ù°ÝÊ·M³’[!ŠR(ˆ„[`•Ï­Ûc ?Ø®ØLý¤‡ñs‰œ|¯¢à ד»5°‘“HÂ!{ÄJnÐÀ)m"éÖGï_¸övUH ƒs¶J2‰×i,ü|³¨eó hMùOÄSfcž‚¥æ G4ñá=D3K+¤ !a»Ã’¶C8„Õ'ŸN탫pºà|c_óé3õÝÐ'3šÂ›Â!dÔxv8ÔŠæšyk®Åõñ0ªq£'óG\ŠèÙ÷±½oDX†’"éïñó¶|Þ// cÇâžý©=‡$?åó y,Íî ù(äôè’²K§á‰k—¬Š’™z’™ÜzЃ‰Bi$=u°u uÐóÆÕXÂNúATœBhÌ#ÿœÑµ½Eö§÷»ÑKÑš*…s‰GÕ‡ö´EWDTUm¨†KTGSÏ-dWê#70úü* ª¡ÔÈ>$ë \s ÔyŒN»/_«“µDBPx’lCP\­¢9ƒmKi)¼žKÑ7ÌÚϳWOßå»$öâ—{]uqÉ> ò @Åbw2 ªJõz£‘1ÀpÄØqª¸^ÈŠ<ý§ëì8r³ÆÚoE'­òÞgÜØø„k÷—°‘ôI<ó'¬#îXï·D{æ,C;£/Iºg|ö&è^bñlÒ棹úZþØÊø¶ë7gYQí7ýf×¶QÔð ‹Ç+¿–^H "R 5{´§J´“„^èŠíŒîÚ^»¨eëv¾šhÊjj9bj:t }—žmî¨jjàbôKl ¹M·V·)qe|êV£hÍòïSß:Ý}ÆÈÐ~Q%Íg<ë¯þŒÅ/JiýÜÕñ»ßˆìxó­Þ´¬Œ²v¹"TXÑáåzˆ×»Ñ:¾ZH˜Þ*Cz+žŽV¹=qb ±Éz¼§æŒž²’)E‰Å)¡†<=%'i¯ú¢Š¼ìé½/ï@áf_w߇ù•`€2¨©9hÒStµ•Ä„.vê“ x />ãKÝwúCÑÎÀ[Š2AˆÔd°ê›à;»pþÊ ® ºf:˜[Û¯^ÿh¦{…¦: !??'¹˜¢uQ ®ºŠydÈfAíw:-¢c#hë1¿9I+÷.¿H[XÄ$yoTǺà$Z„–|Þ{îàÛűl¤®0ò¨”#Ê–&SÝÑwWtýOù=&ðd<õþ,D¡émȹRÀIäó£j …_T˜EÈ~èÎm1u‘vÆ´‡®]úƒÉWäŸàŸÕ‘× g [çaÍ$WUgчÈÁŠE~ÕßßÇÕ@A £Öªò •J¯U6·Ö˜$8²^:ÕPÛ€ AÝàŠ|ÂãF“^ÅÏ’Ö©Û¢•a…‘ 5í\†§÷ºu3Ë,™l^ŽjļZfUúg%„Cµú~0š„&<¼Ù‘;¸­… m €×© ‡}BI¦Ú êL]Ѝ¿ ܙݙÚÀ?v¼ôP´› ¸bö€ÔTVµº¶ÒXÞÀà5˜BrqBNê~uº" ¨…ð ¡YßVcaékšC -Ýž·af:‹ìÆœ¤!k¶¿øÂºÁs§OtöqÌe‡[ÈÙ„BzeZy/=výòˇÜh „¯jK»X^LÒ±—­®Þ9X(TùÄv\t+ö Ýƒù‡Òæô¦Äx¥"5¹!åè1S‹…y|Tô¤¢ÅBàNT1íGmãÿeÓô矕óXݳÀbA­¯ ù§x"£çÓ,–@˜–,÷öªªÝ?3ŽÏþOãøïÆñËU¿e.ã©>FŠÇ¢[Å(˜Ÿ$mMkLJJKKJjLkmmlleðMû_oÄ+3QÈÿÞÌ wØZôAHœ*9%¥.ùx)§¦\_e¨(ø¾¶ª`?Ž*(Õ–V]ÿQ62óÇ2Ñ¥ˆo–â¹h1ž‹Wç"ˆÅ„ dÇ+òèFÞÝ¢ £óÄ£2ô@jÚ ¹ÌØ]‡Ü½ T¡†å¿u¨1‚‰Å¡öÂ\3ö­CÎøÜa–¿ëpØ6g;ì­SÜ)¿ht²4»F²aé©5•YLr­ª< d°7c[PmŽ;œèïk°äì«cš³ÔÁ 0š/æ)*øŠÀªÌæ(E÷/‰Ñ¸@ ²êð䚀Íäwù!4¥ú qU®å ÷ù¬Çôf¶Sc±Àß*<ñ-,¹‚]nm¬ª¬„+ge á{'…›41Iü‘Ë¢w¯*Ôj uPdT±÷f]Ä Ë¯ˆ m2vÍS?·°D[VùÍ»ˆ¾Ì "»CH _Pã0nÎDCÝhH@[Òm’·¡v‡Ã`T*a¯ðÕŽÛÉܧà!áË!öšL`<Ì vÔF>3Ã<ênu  ¡U G7¤ðéOã>ØuwYmøƒ_J¤wº¾ð2¬,ñéYqrù 圇êû¾k.½ ŸPKIa%¬×¼–370q7DÃ‹ê®æ ÜËp †*ΑӇ-ÐC*ã¬Ê X›(ád¡æ:­×”’?óK¦YH]U'Ë_"ÁÎl~m$ØÜÂ$Ä9ÛDÕ±:µ“ wèànC·ð܆Ýx$4ÝÊg¡Î½oë·–I­3ùÂÆ²ì|¨÷3øÊX¼DŽŒ ÉØ"Í*&SîÐÃÜ·ÎAŽzªÜ·É5V)Ö9 ïhkã2Zݽ9#h»¹¬½§hÉ4sJ×7ïg~½ø>’~íFȮ ]Rä´ì&v„gÇÅ2h+ISõ…¦ö‚6OäòÞŸ«Ët¥,íHèà€N™ÿ†rƒ ¶vDì*ßY¿ŸÓÚº úĬ}°?›Å¤ ö.7pe%LUmçùÏà,XvU¨jc Ѱ]|ÿ´ˆ´è˜”]‚îžËºLÑ+Ws\q•g{¥±1˲'7®`K×»/žìõ×»B“9)Ã̯®CIUefë„a'f‚}pp˜³#8;™õ½Á /7¸«ÎΖ®ÌPÆq\iY‰óD‚ø7%ÝÓ@endstream endobj 178 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4298 >> stream xœ­XyTSwÚ¾1®K©‚©¦ö»—ªµØª­­£UÇV«Ô¥U@TÄ:È* bØ ÙÈž7{ °FHE×¢¸´hWGÛjnv¾Î×±Ë/xùãûEtj§ýÎéÌ7'''Û¹÷¼¿ç}Þç}ž°ˆ±c‹¸jÃæu ž÷¿í›Îò=1Æ÷_l!cº+. €‰l˜8¶å nv0˜Œ$¢ØI›ÅÊÎS®Ê ÓSÓrCÃ’æ„.X²dñÜО~IèʬazR?tCBnZJVB.þ”ž’[öÇ´Ü\ÁÒçž+((˜Ÿ•3?[˜úòœ¹¡é¹i¡›RrR„ù)É¡¯eósC7&d¥„ŽV7ôeUv– /7Eº!;9EÈ'bæJþ«Ù««Ã…9¹yë ‹’6$§ìJMÛ”™µ4lμù ^ ˆD1“ˆ$fQÄSÄl"šØLl!¶Ï¯±Ävb51Ÿ'^#Ök‰uÄ‹Äzb!±ØHL'Æ㉠âQ"˜!fa¼ˆ±„›Íú~̺1lûÛ±o¬ ¸ÈYÁùk`9ž<7®hÜÇã{&ð'|81ó‘G9ä~tѤ€I“³&w“Á;ƒÁ=!/„Üñiƒ†EàEÛ½¾µu¬³Ã°ÑfÀ%^“¦“éõÅ 'µ†Rå}¦FðB«¶ú'δT@­C ­2¤ñ÷egYõ{(x*ä8˜¥9Òx™ ¥N0QpÐÔû¡CÛî¿Øê„š ˆb´öF?ÌÑ»õ&ðD Qªdd&Ãæîe®0)œ ßY™Û7ÏÍB©ƒhà £U\‹ÛZoqWCõ¾Ê†Þ?ò°1.ÃNf‚8‰–¤kK!ŸÜÙœzôëv4ÇR®¥t%J!̉2_ïªô”7Ú躓Ýh, Ÿlvo_òfD¡„RKo‰‡T(Èe&I"AGÊËÁRa0¸-TÍ•Úc^ /i 5"zsR§Ò«AË“ÙKêœÕ¶Z4á|Ûxƒ}7?ÏüËÔ¯}\ß·¬Ãm@¢ñœåk2½üá™i”QÊEAM|WÉ÷"/2,йÈÉ0pv¨õ6A±t1ÍL9ò]ºB¥X3ýÞÏePE£O9h Dߺ¶oUÍ„2׸Ì$N&˜lVS¹ÁJ_Aíhçkëö<³l&3†òÙï#:æ r^aû¬ÈËý&òòBfÃef0³g]Øð)š„¸øÆOSŒ•©ã&ïò¾×߈ح§èÎÁ£-€<Ö¼32>oVFÍß¼-n;AÃ;ó¼Ãó¼,ôÌ-öðñáå\ƒÙ`3iÔÛå:5ÈJ©7VÆ_ŽªŠ“Èd0yŒ”yé§YˆB1ˆ…v-—ƒZ¥…–ÞÆ,g&¿þ‹_<ƒfœ÷ ×Ñz諯ú®ùcdz ÷¨3@KûÛâ0ªÍ>³Õ‹æÞ;•/âöÌ®"S¡MÖ“¥˜J‹ÚF7aú6C+´k½÷ˆé딃xXË­¶FsÝfÛŠ=‰'€‡ë™€ÂМŸ"ŽElOMçÓÒ8§ðw°B"e6}6—ko?í4½å›2Ìþë´T¾ È(ùM»É`2Úé a x‡Y^ÖðÚOÙhÅû\E:n-?÷öE¡h”ŽòÐÌ¥g¸4sé7ˆqí±²ý6&Ös>¾ÇLä3‹ž¦·oZ° ÈYQ!hx)fæ9/jkg ¯ïd¿‚¤\ƒÑTÒ!-žöÜR*Š¡ÒÖ3/É=tíeÔp‹3d ”úŸNZRZV‡ÉXc¦N#ÿX`ä9¥ ‘€6_E®.Ì[ äRÎ ÒÛÛüEòÐd"OE‰£ ßHr4U>(Õç¾ô­OìeݾÃöµcE¶5Ûì½@º0De*“‚ÆЦCì0íôk„_;î¡âäTƒjtn­]% ñÏCŽìšV¸bSøfH„4¢Û¨7‚ È.w»§± "_ /¯9•tñöW~é¾/ºÓëtî`D ¡W§†\E?ËulïÌßÿ»0„<50C™®ÖS!½=…UÓ63ž™ËÌ^Ôþ!rµ×·oVÌü·›üA×™©!?¢áFn ³dåÎX ßwY X( ´×âl‚*²^ä(’&«¢cºÓOÿå¿y¨o}”ÁjÄäå=LÞ#!å+“""§ÿy‹»¼ ¸âx™u]ëÝà 7Ù¾5¾G¸±*Ì&)rˆö65¸»ŽÅw¾þ`-‡]÷4åÓÿqY…F¯—+¨•ó^йEØ;p²é‡Æ£tÇ¥þý½˜ª½:W"twÊè‚yûîÙw'û|\{«Ý~Èú²{f¦pòpSdEÌ×#ç§Eûtnnáý–™2âG§Hãt<…L_TjÕÚèh7aGûï/UlëœJƒ”ÞdÔ5‚ wÇj®B<_ó4gp䎱”.àU€ÅfuøÆ ³ð×Ì“#Vt˜èN8€Íbtk;ýwµùÍ¢ ¢À^f›Ùõ ƒvbŽÛwjxwt‘þYÖÊõz-¦êez(äÉÊ¡ò¨Q)×j% Ç+NRâ4%à“>45‡ë¤ÿDº¬ td6—mòW³e‡½úšìrQ9 A«×èT÷›.p£e¸ëœËHÝÅF $â¶À;¦£µ×ZáØÈ¾]^ŸÁ̜̈́/8ºè›ßîøzÙ»ºÊ{mM´ÕÍíA/Ý1•yp¯ ýIf 즃ÐY&Á]{ÝWèEóþ\ïf o óx!¶à𠧺ü~û—s*?0Õ¸®Ø;';p½õº Q–Zœd^¼Êã©Ûß“¸7qŽy,]Iå3cÖùyQ€ÁtÑç9¯ŽŒ“n'ªòyŠtIL*È¡Ð$sµX* Žt•‹„‚´¸žüÎï»Ñ®lŒ}ñ¸*çÕÛn_ áÉ‚¡©!? /OróKcUùÙ鼤IX`% GÝYÕdEi힢LqrRgÑ>zû£Z ±|ëÍ.¬ƒæ{:(ÍUð5TÈ7ûÄ‚æøéÌX& cž\td ÖÁŽCO·ÓI^B•Ü8f½"cãr¬ƒ[t9޶ qõGhϩýØÏž+[¬ø%­nž©ÁiãÌ¿À*&lä–^‡ Ž'++©­¯¨v˜(³«=fkM,ecMk]kÏ…+ÿ‰Ä²6--+ç¬<7öu'Ýè„—å+B¬ö/ؾÇüë­Ån´áG+Ôyñ[˜§ÒÌß²…ÎâÇæbŸ9›ƒ"ÄØäw Ý‚÷Ék¯\f&SLõÿ‘<þyD»îå¹xDüóˆšÁh®¤/¡ªDp­kKÅÑ´l‡F …äÊÁŒ 7Z~´ÛtV‰D¯–j©â謌L ³´M­¦S#mÚk9 õp&íжìjFóâ}Œ¦œ9r:á“©!>tÍä>„_ð,FI!645V´UtÒÑ+åûp×jy§S<»æ¥3sÔ? tY[ã×÷Z›#ã+ 鬗$»¥øÁ§h0½Éä†Ä·ÛÐ3f*äsµ/—ë)°‹óÙÂ:Ee]sí>Ìä³8ì<ßÌBo¡Cìáñ¿Ì;j½ç¸èäwV °È<ʰð30ƽu@@[µn•KsL<íD‰][]ä;ò •|~ùÓ/¬XÑñý^K“ÉAÑ`Ä”s”‚JªóŸ0†IÑ)õZl9UÕf0–Û)‡³±µ¼¢sËÅ’8U#6zïSvïi¥…^©ins¡%³LmLw·B7ùÉÕÏoÞn^³r^©É£ô ò¼æbÝ>÷/2~ò6u”ð¶vì:ÚU×ä© ª÷W^ÄîÏßµ ÔZJ),/LÈÞϲ4<ðsªß8ˆ¶þ2Ø£³~_ÏÀe û`[‰@ÉוÒ뙊_…íƒháè5¼_]ôïÏÖ¨ºá±;wfQŠË1µqÛw§ÿé?ðÏ: ?¢ìƒQb1,´•Á¯SC¾C \·¨>;cwÖî=5ÅíÞ¶*dðcôgî^Q]vzfFfnUAs»·ÕëÏŒ©þn4öøsûÙ¨Qr±•å[>QÜ„+€ž8ë DJ_Yi0à6Ø4&•Œ \ÊÌXH1c˜u™Ìf…Ȳ7jb=k{¢*´šÍ8þ|Û›ýl_°/– gK/õ ߉©ÒhT:ÐÙäô©%öEÌ‘#Œ’‰‹õzá”f­Õ?F3nQh ZçE›á'<½Ã(â ë3de£·P·1“Óhµºñ¤øS ÅÄp @‡£N¥.ôg3;ÔŒÅò£ÄþMl°Pƒ×—íE¬:–/n˜û€°v•Y¥ÒëK¤Ô˳•|­ÚOÚbRê³ë˜uÿŠ?ÂWd(ä˧ =8yÒ=ÐkêÃЧ=|OÌFÿÑ ŽŠ CžIe€J°Ë f¼ÃíyWlnät£˜¿KZÐD7šù.Íý€ÛÿÙûÝÞ4ÿÖ—çqI¸üÔr&l ·¾Àß{íšØUSº_¢R«ý`t”Uj–€”äïzr£Tni¾ô!ŠDAÝG/1O-\IÅ rbÂ˱÷³Íi4â¥bo®éhÁ¶«¹ÀSÜXäÍÆö¡W\³†'&¯] Ùl™SíÉe™ ƒRNOå¹}«(ÇXåæ0 Ž@ïø¡ Ôø±‹ë&Žs—MœHÿ ûÿ¬:endstream endobj 179 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5546 >> stream xœ•X XSWÚ¾1äz]j«ö*Tç^*S¬u_ªµu©;*JݪÖÙaOH„,' !BK„MAĵÖéb«ÄÖVQ«ö¯Õi«µvµ‹=·ÿažç?IФ3v柖»|ç[Þï}¿/<"hÁãñ-Y³!rãÆéÓ<ÿ„scxÜØÜ_øÙ(—ûÇï«`( rýËÍÜØá°þq¸ë ‚Ïã¥çj–ˆÒrʼnñ ’Ðgc&„NŸ;wΤÐÓ¦Í ]”'NŒ‰†®‰–$Ä¥FKð?)¡D1‰q’ÜÐgç%H$i/Nš=%:5cŠH¿`¤ÐìDIBèú¸Œ8qV\lèr‘Pº6:5.ôSü±D”š–)‰‡®ÅƉ…A,X$¥-]&^ž±B‘™•½zOdn̚صqQ{_‰OXŸ¸!)ySJ긹a/þuÞüÏNØ6qÒŽÉS¦MŸ1³`Öó³ bE¼B¬#ž!‰ Äxb#ñ,±‰˜@¼Jl&¶‹‰IÄb2ñ±”˜B,#¦ˉiÄ b:A¬$f«ˆYÄj"’˜M¬!Ö|â)"ˆCˆ¿ ÁƒˆÁÄìÄãÂÇ/>QüDßpãbDÄÈ ‘{FÞx²úÉ t5}{Tø(Ѩ£ÉÑ+G·Ž¾ülðš`aðñÇB”O |*ù©OÆló1çÆ9û7÷X=›Î}Fk]k ”dÈIhoŸ+8ƒ”¦ƒ$Q ¨bï“¶f°¯5ˆØÃ¿àó¤9LEJÓ@²°ØðíjØß’RXô7¶°)o¦ôÉ$(¹zyR£Ò{(<ïæqS.ð¹ 7½ËsB²Ð…MÀɤ½ ‘dl,¹î4Ò—ºkÛ÷­Ø¼+K´—ƒ˜(ÏÌbÏÙ>׺É-è¬àµK3-5Á™e]ÖæÆ7Þ9æÔÑòa±®@§b±/*7¼ææÝî…íçùœVÐ0hÁ¥Éh8Šž@,¢>ø >‡Á!0ŒAr´ƒŽØå¾üÛÍ×?z}ãÒÉ Â¦{Œ ±Nõµó.~ƒvŠÛ…gƒCá ø4 zùò´õ;ÒsÒÙ&`‹ý£ë3ûZ°ëùâGºÃ` rê5Rgq3hÛ=³Íõö{ÝïêìáÍK1}ÆlÖ›VN†=HéåÃ餞PC¾Ø'¤$g' Ÿƒ#à¸þ·× †³høZúŽ4£"4n&zd'õ—*Ó w¹y0 vÓp©+Ñä‚JìPWµ˜ªêŒLÍO ÐCH…¦.9E+Û]Ì QdÜ%€R“Y ÔTF]Iu›¡ª¡”±^0Ú?í­`ß ØM^/ü^r,yèM' UÖ^PFYUvaªV*.a˨®ß»³Øµ9nz¶‡Ðæ¢/O“¦vû÷F«óö§7ï}L«Ú(WÃuz>OŒˆ”ÉXƒ­´á¢ÐÿñWûHò|ó`*l¡áR ´@E [€¹Í`·ãðï*½á{ÜKֿŔ0h Ù “ÐðÃî‡A‹7ü¸€"Mõõ“°;ȇH…ÃݰÀÍç"¸ÙtœóU š=ËÜÛùßå³G‹Ï‚Ý”¼„Âwl­¼¨`Ômu*HÚ"å«ÚùrPLåY嵵ƲýõÌë±g€£ta×w'f7§Ö³ÉN‘i¾ukÅú °jh9É›ú©žÑ•(c‚v`°–(m*?Œ”¥¸V"QI‹5 vNá†3Ýð˜›w7õ0Ø@çŠA’¼¢ ZþMæElºP+¶]…\ I8ñ»·;w.Ö³™ »Ãì£7¶ÀÙ¸ÈÕ…¶ì<•²¨„ÑéduJÛ^û.âÓh,ŠD»ÐøkÏþòúẶNV3èôN«i Ô²z½É G•¿Cµ4zëŸßßàçÝ?×óà˸3»8’†óüø@3IÛgøMÕæK5LþTÁ4e>#c‘B“‡ë.yñ}Ñû?_üø‚§ØY…*±š‘½¼T]¨H°¿º Œ5¾F„Yn¸÷¢‹;A·’ÕÍýuDCHYZ}ëÉ$´S€â=4'øÓg< ’ù(ñƒ"‡ì‚YOîEYþ̃ ð ‰+#ç†ÓzPú ÍB´t’*_¿=v Vi5æò×K]¬©¥´ÅÔb½Œ ü‘oîAzo‚!î–Ž£e­G£Ð 쀺HfصÞljQàBtø‚9‹ùe¦DsЕðŠ`Ÿÿ]ß¾¬¸ÈÓèNYBh!õ ØÛ©‡†að)>g÷oxD>OãÑ›‰_ªR^V^ÒU$€D .LYµ ‚ñu‹¾ T ƒcøÛÐ0ÐÞÓ ÞýCu¼~4kèÖé%†H°DR¸±WÛÝÆX,§!]ÑIéóHP²-/™_ÕvƒjàÖÊW9îݼ+¸ BxšvI!½ø`~šCæ(ï.=É8M P¿–¾"Uk³ujv™Uôµú wß챺1µiûKÞTs£×7™"˜2ÙõŸÒªDM~|vzÁž¢@mŽo[¼3¥L4Í –l®“%P:Rsj7,W›•uy PQ> w'ëIý£Í~‰zÒ˜b‰,ßf]X–Xš^–dÌjÁšÚªÛ©@t]ÀíUë×£ù. =Ÿ_··5 „àao(ˆÂPЕÅwÞ8æhïbu%: PRžó™?pÚª¢×í|ã*ä}õåÍËu+²Ô%©EÛXÙÜe+"åÏSý©ÿé@VŸ‡Ó¦#ÇsêâýRcYòo(ÿ~ ›ÿ'ÄáÿØWb›äAˆ™tbb1íë|l|ÒÍ»u¶ãØwà t[5ø8vRÇRŒ£aø§à‹yPG½ËåÅ…¦$¯Mß³-'PktýÀVõн½§/ê{ðB†huŬWß¹r7ïæeøÑE>×Íièû{ìX’ƒ"•S™¸°D¤TØÁ\ÈÀQ³ýÔÉ´ß9¥à"…û^¥Ç)ÛÜWöÈêSlÓ×-5ßêó6ù¢UIhyán6 9)˜ü¨qxð¼G©G(õ ²Ô¡·”Ö—u¶t_ÆÝ PÕmÖï.yóvÅÈ,?ùS©0‘¿ñM~“û'¼H7Ôà‚åà¹9jiø GßA?^Ýü À¢œ3£âø!4Ä$Æ<ý+y·yuLdÔ‚pvœ—r{à¢÷NõÀ=<ÛéC ú ¦ºé"¼(E&8ਪ3Y»¢MzP?Üúân£Ê©¬e[ªÆ*½Iì(²Êá¨i®‘w¬—D—¤ngӉɀzfÖŒ©ñöƒšÍ‘È’ð§Õ’çwȃLjÙõÕð)Üä´û'ø8z®t#„éí©ÇΞîqß—´cͺ¨µ¬}O?Õ} ¶ºûHÛb·‚‹€ºs,‹|&f û`Yó²õ?[?º¡<Éù¯w°¤üW+ [ûóð·ó5½£GJ¹§á)ú“#çÁ)êâ†ËHÀ •ÿïAÊ3®Ëßò·þóñØwxÝËpKî„‚ €ÏqnZo4TUSИº[­Ð1Ùè5­L iíMF»½”¸û??åÛŠçž…]eC/@W/Ÿ{:éX4v ³@1H9¶Š “³‡CV/ÊLWl_z>ëC8¾§Ãj¶ìâ<•ÐSQø‚w§Bêoo×tdPx9=+óR'ðíGŸüÐã:µVŽ Èt%«—mYè“R× Ã{á¸zÞy®€Ï1p}´v‚Îμr½Bá‚·ýRÈöß e30‡ÔJk²ÓU™r5³=)ÿ³sIyHHèV¶‡ŒFá‚Mþ ûÈäPm±VŠB2k jšÌŽJ#Ó G î=êÆRø#}Ïk"Ü‹(¬[+áp7šL·IšSãRi::Ú2[Й½ˆßzÁáîá”=n\Îàs°àŸŽE¿¥jË,‹“)‹ò”Ê­’´¾ax³¶wûép cj5ÖâµÃCŽiš¼t5£UhrtZü¥+ТÙK^ó@Ô¡•ȉE²àYЃ9¥To0lU¥6`¡\™ö¬×À:éŒ^»¡dJD¸ÓÔT®UQë*­¯Ð3¥õ‹±¨üú ð=øtí™96*ÊFo¨ˆkGÁ{玟­¤ì¨•Þ§:#kÀ+ë7-•yj÷®ƒÛUÏãZ¸|ÚRf³€ZÊ™[•§*Ò0¨Eç(Š@r«”&5<‰â‚« =ŸBQµ5¶úÚBs±‰EV¸ZàøæÞÏzyW9!Ÿ3à$WvàjÇyZ÷2ßS«vO—Š&ÑvRÏÙìhh²¨¬jÓpøäÁ÷õÑGÉ/Gƒfça8Ô¢W¥Š’"Ü›>¨Ü!k@-(k4Xʺ@9噢d™`»–ArŸæCCçƒÂoÃn<]_€oÑ_ï_¿cù¢ãófÞ³¥F›4P®ìêÌm`KáÄû{¿¡¿ÜÿñMÑ;Qû˜¯ßªù;pQg6GƒÐÄMK·$´W64ÖµZKÌ@ÏèèÕWªçpZ¬0kwœÝ›–ªMÔ¾¢–épn¼b'89ʃ‹aŸkç®ÒUu¹…%êb%#•ïI–€" 2Yòëòê±bíË‹’3%RKɪrk-eeÆRÆVy¼³kuY‰E^'©•¶‚fÐno¬i«wáðû÷:ÂÍ Â5{Χ&ˆÅäYN mÌy DDfbU”å¢ã}DpaA‰ ä÷w s!X0î®ð›Ø@¶pU´ž\‡~ qZÛÝðy7ïÊW°§Õ€*¨ Ø%¤Èuª„ݨ*ØûÁ¥š’VÈìFcEs⳦6@õ¶oÚ8qòâiÑ[íÇd¬Ål±ãY¤VÖ Ü6μ±åk8 ¿Ÿ¼»êZXÚ.uæ¶~Áï: çbœ øäUðúùëo€8tÕrU æ %©ÎmvºªŽ÷lÝ·=ƒ9óÔ„&\‹ø„O| Ç]ÙpQQ›2Rã˜ÏÑqZ„Y­R§¢¸ðÚk(µâßíÇ™LG»ÏãeºaéÞ°éKæ±Ã•Ü’ ¸°Ra'Q®y {ð…!Ìà \ÑÐAñ(¢µendstream endobj 180 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2285 >> stream xœ]•}XLûÇ÷nš=jltÒžñ–„¼å]©érTÞ*J5•Ó̤Lrž ÷Ò/qB“J“ˆ”Þ„RQqäˆ^x¹çÎu=œ“Ëõ²öÜ_ÎsS8çÞ?æyö^û7k­ïZŸµ~4enFÑ4=Ä#"fKDBtXèmL¸Éd'ØÐÂ(3ÁV„°Öx˨# ²0¯5 Ç ô–4œ‡R"š^â²T«‹‹ŽŒJPج\=qÒ¤ÉXfL›î¤Ø¨ûôEá©QØ‘‡-1ÚXu„&Á'Z½11^᪉W,S˜Rø EQ¶K4ÚØ¸x÷„Äк°pŸUdTtŒzþ”iÓgÌVPÔÊ—ZA}EùQþ”=@­¢\¨¥Ô:Ê•r£¦RJÊò <)/j9åCÙP')KÊŠ’Q#(šâI(sÊ™J¡nÐötýÔÌÏ,Ó¬K(ª}0÷5¿`þH¼X¼]ü;³Œ‰cóFb-™"©t±ØSl)”J*dX žZØ ¸`T‹ñ|ë?¨Å0…ibNK¯d^@µX*2Ž0Hc°jlÅY]›PÅõV‘×ûÙý›µç»®ŸÞäÍãGÄò»,¼:0ë²n³O/›û7 q‘bx bº‚È…Z„‹žg‡i솕¯0óaÞk À¼íßcgys÷/)GÛ­v[¼hM×›7—»ºåÄQ< €_`Iæq•Ò— ¬#Ù`Ňtb©`Ê}´ˆ…á¿‚æv'vG^’ËÖ\Žô(÷²qGšh_Vvj¹;õîcíÝÝ\ƒ:_½®ï¼CÜ[©_€¼_êYÕg™5ÙŠçÎ=È=œ¾§€‡1’{ÐnäüCc\XÙ´wDds˜Á[0£Èü‰HaŸ`ÆíffXl;[‰E‘Ù1[äÛòÓš’`Áê‘)ú”Èn ßê¥Ò~›£ã“³wgï.!§™ýxÐ?}`.º‡¾Ë«)«);~ 5£ÛQu®…ØíòÈp}êAtŒ=]fhì8¿.ƒ— `ÌKØ Ãèóà 2 £8\‡-a>óשq‰›#7øm^Ir‘Îz0½û kªMÖœ‘겓r"XÍè`–>Ç®ä” ÅSñV¼ÆáY°¶§½âÁUùÑIâ'Œ%¼ƒwÏè‡ýÍ,æœa_´3d¡Yf‹¯b;l·h9¶LãÁ†ÉºZt´ ±-'u‘º´ää4ù¶T„”)~©#ºÕþÈu¸åõòzˉ¦K$Òf¦ælga2#ËÁÎ ææ‡»iNÔœ?f¸¦çUe}»/ï uŸ˜S Â4Â¥“Áªõ”A­F5÷A Š+Yãªòú¸Nàz`Ìù!ñnd“\ÕìYî‰ÜQP\t z Ä—¸®F· öJBdÇ›— · ‘ÍXûoãP2²¼‰qó^[w=R¢µ±á¾,$R(E¦Ñ½ –&g"ëÛ½¦%ÉÕæ¤õ–ä©ï”©wýGH0²žÕ¦ÿüù6¹r,'¡÷ÿFÈ*®ÿéVéè¨<{½¾$6„ǽ}–öÊš?Þ+É[ï˜RÅû…ò›/”x ²†—£°­Á~l‡ÄÔ2°ƒm`GøDvvÀvàÀù柤ÂO$ò Z8µ\o­~–ÀBÈ&ób;Ü$ ØÅ-B^_‡¬Øè¿m:Â<ÂVy3Ëλw©¢û¨­´¶µæŠá)k÷?޾Ú©¬šK˜›W¢’­ùª#êƒ_¢‰hÁ.çÍöPuBR!mARåŽÓ;ï¢è笿g—ä^(=^ƒÈx5# i¦Ài®w™©µŽ’Ä9.!XJ3í?D.r0ôY°`ÓX2ÝØ-LAõ±Â7÷`È“Êfô ¶“c{èû¬ò÷geØoaÑv ÷Èþƒz}f¦Åà )Eýu²è[endstream endobj 181 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2214 >> stream xœUT PWíf˜îV•NKœž aFDEYGEÏ"Å2ƒ ~¢1ñ׊"®«ñ1® þ² b $ˆ (àŒül4jr{ê µû’JYÕUýÞí¾÷{Ïy‡$,-’$‡$¨Ö%h’WÅšwŽ¢)Ú[ˆã$J5æ³¥‚•D°²¬°’bÿ1#À{$!!ɹQ«æ¥¥gg$'&iäN‘á‹'Ntý+⡘ì)Ëþó‹Ü7!391UîˆëTiéê„TMh²:.+S›š)–‡'$f©b3>ÁÏMMKÏÐdÆÆ­ŠMX°:9%R¥vSLö˜â9ušœ ˆD±ˆ "‰(Â…ð!澄áNÌ'„?DÓˆb:JŒ F6K|DpÄh– 9žaIÌ$rˆjÒžŒ"óÉûäS‹u’1’,I±,Ã-s-/XöJ?•zK—K+¥”5:CËé…ô9f#‡³ÖFwA Ku¢BKŠ©Æµ¡4é; 4ª¥ÈŠB‡ûÕÒ_¨vH“‡6Q`=Rk±FЊá­IZ›–ve7äuÙ²çZÄbÎTÜ —i¶á÷º–'—WËÐÿºD9­ªs”±ŠYB´z™c q¾¦]tm'ËôP£—À)±ŒCNS/ò3Œgpzúæ@ÐÔ·È•ÏUrÏë”h4¹PéîÞ,°·Úûxsè¢Ã jÍ nèmÙ†Z”ÊuÃiêjdef“À€½Hðß©`xžUø á)ñ!Lͺ*)¶r‚¹ŸïÌD£Ð°Ð™ ðN#nu>å­á îpƒv‡Ö¦·eë›ÿhï 6Õu@ïbzhV±wóöÜmv‘B\ÊÒY ö‚¶†³šVÑ¥‰ìé’@Nš ¼Ð_ÿMr*²,µáëc{÷•ÈZèÏwmÝ“#0‰Û Ëy@O†Òm>Ô¦¡ ò»æ´Ù²Äu£Åb/TE³ßÉ#ü<c/Þ“‰´—ɉölˆøUÆú¶ •g*›ó¹‚Öè§%_?—@”QÍMêW?§ŠŠŠvò²wIÄo+¹/vïvLêÆ#§y¨§ûü«§ ÍŠO”e¦oSï^ÌtS?\(Õ ÌÃKiÑ|½'1{‹ÿhè¦ì)[Bת– þŒkã‚ßkNÔÞ–í<­©Ž ‡ö–0Èü9!m{N†&Y·q‰À%œ­¹YVÒ{˜Zt4¿ä03@Û"­¢%f® ª1o1µp¿ºí>ÍV†^¬ImµY/HÁ”ÓÞ#~Þgéañ<”ÒàˆŠ¹¾AÂB>$LÜ5(©³z‰˜o¸7¶ž[_šX\ê#0ÈA,‘šÕ+ÕÑòÓ©ÍÓWÆú Œû¢6 ¶µºg-Wã| ù!žÖC5Öw¥¸côB'©¤šˆ?\ÓÞ‘Èù=A$8üTu¦á;žÝ4ÿrÄX®÷Öß‘ ÏžCÃzOq}Ö`]ÿè™ÌÚ¸z¦‡QfÇâ¢SL}”i”Ø'uìWD%7¤ï¸k‡€&ðl'ÅBØÂ _]ßT‘üÄ»Úï8 IÐ\4·×œÀª« ¨bÜ’f~Lb€%,?™vuý7_~³§šÙÛļº}¯[`znNâ­Ç5ÅWÉ }â‘>‰8Ƙ͡ä€ÜД Ÿ IøTw¦ê6ßqÿHÆÀ爇Ihl†%xüІ¡ä뀬p†b6„x‹_îü€EŒØ®•4`ùÂò÷|L?~¬¢ OØs\ÖLoÈßš‹U¯\¶bïáçßbŠécôX½÷íõ{›Æn/<î>pÁÉ^¦â.Š}cT[NwèÆÙ5ð„hÉïqùOÌ„ô«»`%õ¨üP¹ô-…ÖÀK‚@©œB(CŠç­yl”iÉž>q(î¶ç˜Òξ ÐȇO%ÉKrÊ…›ŒxÐ Ç‘Óoî0fƒÅsp”‰™ùjê–€+NžÞ¯ÆH̶iŽŠö£a?öJ' -7õ£5b¿ôoÁ®im|ðG¦›[öüŸ6ù˜fï?¼Yßt÷|B€ õ›æm}Y| y+Ž£ŸGV;ûÅ® ["SÕÅžôVá'Ĭ]Ì<¸íïHý; D¼ãÆ÷ÇE×éÈ+½PÞ+c4(,H]½dYˆÆU@¶ ú²Ù€+¸<ƺdY?Çü []V 0³,_\sEhÙ²IÎn1ÿ…(ˆºöâ?àó$$P$îåL{ Æè…´ ‘ë7!û&ØìY‚^¼Œõ9£W"æé9Óêà÷ß–ëo¼®ýø—Ú­‚^¸y3¶"¶ü³cþÂd!@š‘°uÅîyŒÊ»¾¿´èĉ+ÿ9]#0wÂgG¬YœÈ»/FNÓWlGŠ1¢Š´ùí6"ß;¿×–m†µ ãQå¹ÒWU+¦y,ŠrŸsýíWü*?¼põÑ”2ÿ–¤WØúŸëaloRÕ´RžíiZ'0/n9|2QSѹƒ.ZX˜V¼öbäOªN züëwàr·—È>zÕu_K¤p}p P¯»§ýSü.àê;°’r€™ÝŒa–à·:ö+æ¯÷' «cs._¿«Â.v¯^OîC¬ß¢ôÅ |.Ì­{ùF¸+\‰ÿ§?ƒ½t*×Sæê± h挦g†;õzóU¶Öœ‹@xÑ¢T×оa—ó äååï;`eu)ÿÀ~¼(Ø·Ïj8AüBM²0endstream endobj 182 0 obj << /Filter /FlateDecode /Length 5928 >> stream xœÍ\Ëo¤7rrölrH.äÒ¾ðýØxãÀÙdm 0ΡGšÑØ–Ô³’Æöä’=UE~d‘MöHÆ&|0çŸÅzüêÁþÃF,r#ð¿üÿËÛ³¿ûJ¹ÍõÙØ\ŸýáLÒ_7ù—·›ß\@#áËE”›‹7gi(|’~ *l¼0‹Ônsq{örûÍv'£ q«„ßìvçZ«%·}¬:¤¯1˜í«Ý¹ò‹ :n_ïÎÅ¢c4ÞþçÅ?ÃÂ^ñ…[¬ ~C— MØ\\ÁŠ7‡ëݹԋ6âòy¤h¶­”†mÓ?Ç£OµÞø%zA}a¯…ÝœËÅi ÙŠÝÅwØÑ²ŽfQZÇ&Ýþú1ui·l¡åЪÎ4Úá‘ìxûél»>D™gþE^»Ý¤„í«á&ÛøEZßÁö“ܱ]šR¨ç.*Gs™Åk%t³è>nÑΗýd@ei )ÕâB¤;ß~úE¿‰KtÀ¿ÐïÜç¼7d+ _¢õ K ‚ÔëeóÙánÛS)¹x`tœÿapx Ôq…<ŸÊÑi ”¤½ Ó\À‘C)#ÃiZ{)bKkõQ.|Yõ·ñr{™ #ƒ ÛÃÃ\p‚‰jœ¿±u :JÁJ8\¯"\íH\%®kÂ:–¸^e„‡‹.jÀ»gsà“©râ>?ß§Åæ;é}øönwî–ház¦úÆ/^Ö£¯d36‘ (ªí)ªÙu_ßì€lþ ÆûÜëW©K«¦II*YÈŸ3ŒÚJ¼ ìh¤Ö¸‡smPbhVµX'²ì|A,’ö›Ý¹ÑfqÒm÷wض ²Íöðf5ÂÂ2íþ ZP¯^mïá³ V“zǯÁY½ÝŸæð1 - ¤ž,.“)Úº-­ÖÖÃÙ´pèXÿþæræ¢=H`0¶oiS–Ì ®¥agw;XÊHó¤ô÷Ûr‹‹J[dó^ó èèŽ~x“¦B2\Ö{Ú˜d5b´³‡4þµýé …i»cäÁYœÔ2F\!„ ´º1ƒf77~w&Ø45èF¡ñB°‡ Zm¯òň¼¦.v‹€š•!äq…œiO÷,ìJóà 78øŒÜ¤-œØæg7•x-ÿm¶µ©Ï˜Îq¤Š±R^G…TYya.7ÿÐ|da“ÃMæƒ_É„‹\ÕÉ*Õ{yz輿Á.Ñý¯43XT«Í€£å${ËùŠæPDêÊØ#7áÜçx£  À ÑTÁõòí½«ÓÕCe†½b[~Oój¸A.<ù xß(¸4¯ üP{Ѩ%ÌqËH¾€š£`ôYHØÉ˜J(°(9èx¢¹†)€^×ëVZièø¹-ÎÅ—gû²ebØ(£Fñ­‹ÜÂg0–ÖrIDDu–¯çcÀ¿‘‰ºÓ »Ý_qÁ*1¾xv¤J€ ¼N“ÙÊ™ŠßTº_`V‡ìª2¨ÓîÒ–q›7u?ˆ…é|QqñæËä›WƵë¼(³ ÍœÈ#JòhDzäÔIä-åÓ‘wÐɺ;XŸãK5×¹c«sKåM*tÜl“@2½Ÿ½Ç!ðžïñ è—CÓ’¿hã¦]ML;Âbè£ìв# p8†ûQ€DÃ3ˆ³ºN^JNœöqqÆú ë÷²Ó Æ Ò¾\ÐI™DVjû=v†¾Ö4æô’·ýq‡¶Ì:§ño8 !‰YuíëôYGnÅçÊ8MјÇVÅÒna‘}j PˆLsï™i„&.Ï›uêx ¥©-W@Ù{„âK>’ÑYŠ.}v"Áõ¼ó–/ÉHO<"íTZGJ¸#SIÖXÿÇô5€rþ‘ÙˆÔ ªÉºyóm%äžXÿ\rˆ¨UH釬V®¹O6›+úÌteÖgpá‘ïì¿XïæŒôdùÀ-¯wL'àìugx…FÃÈ$Úbp‚æ÷à ~“Æ™Ä4üsBÅ aûå¿TæéÅ‹…{5í/„$yÍCßÔ ŽõÀ«¢>†ÚWSE{tbÄkå«찣Â1§Û€nHb”‹„Ä•´¥·_~…RÁ468î’°¶PŽ%Ž@8?$ à~ v—ïôÀ+¢¿C ô:ïŸ ja~œh× ݰvGçs,(PÝàÖD¯.“G¶´¹"ÔÿÑÄSwAJ0æe¦­ƒ€HEðÿdH´ŠÀ>1"|F5°ÒÄ“¢Ã¯»ñá ŠÉx¯òµj ­#¡&. g¼-œÁ0!EÀ-ˆ•iwNvLHç;‰Ít#G_%£†ª†s\ƒ€.{‡¨0?õºŠhïT›SZMt)×%×(Î:ÁéÜp è ð'` GÔ-èKr"µODB‚¦K¹¿FðZ>E2þ)r‘lÌ ä]å»—ì‹/¿HxÒÇÆ3ë}¨Þp š¨ôP J*.þý¸+ãóhÝĿȶÅjŒ!wLW¤oðÈ4ìlè¬?ër9ö™Á6úêm*™«wÅKcJŠ+½D$oµáÇݯsGDl(U^fÿ¶04÷£&Šš‰ýH/”r°ÂÈ6ÞèÄ,ŸïJÀ $lä(ÐЮD«Ÿï¼)v#0N]äíþ§ÝwR¼A9àø˜Ù|ubì‚5löËAàÐaô'šÜãûáüÓ瘜6Z/ð eÃ/·ÈÂj üŸäö nÀNym4ÜV\4E2q±?nX‚îÊÉ-åô÷5LÜ êÓJ)TýÛ‹³ßct=l~<›ÏÏ48zpmJoñvs î¶V¿Üœ}=M=vÔË©G˜LÌzÁ9ƒ©ÇgSQB =½Ëé+%º"Ïú”_ï *Ìi® øCodœczwŒh‘SÁ_Çt–K»ûKì¦Ýcò”eǶ3Ú5@ -ÆgÁj{=O0¸¸(U#, ¡çQ4g^ø4äwè®#dU«÷(ÔXè 3 Ç€A"åï†É²õ2—˜í;¦WßPÛ@yi! R»ø+63"PØÝj÷v@ïÞûµËŸ w++ݺY‰›õdâ~5Ž >5¦Ðúg”•Œ³ÊÞ­ùÙ•áÚÓ›¬–»œV¶ÞMÊ=ò(R›»óª¤>ÑpÑÒ÷£¥A~´ÈZhíy=âÕ´Å`ÜÐçÕà²bPúD*z`0êƒh| ¡«B$×@:ZN€Ù"¬î¢gVC€<¥ß–°|MU=¦ž nÎpAƒûóÆ(~Öàaîú¬ÿœb_@$ðד'z3Ç]©ä{ôß{—¢w(Ÿ„°ý;„-yyÝuÁW·ûäæÚ¨Ý wéBïyü›;Ìî8e)1ŒÏÜYÒ†cnæå,œ³òg0~Qò÷#~&Æ¡ÍL/)Û¤BS#ÛD_Á‰½®²–¹&E†ËE§èåi¿¨a†>D¤œ‚cÈ.žÙøÍÅ¿EòÉHAãw`}ù¼Ÿ×\K/i&H3ˆýa&ÑLë_fý;$“é“8&bpûÐÉà9Ü2úhõàN²,£oJ©XnñX)P†>6™úú¢zïÂÁ%—v‡*ú4¢‡5!.Lö|…;Tšjðâ@³¸ßÍûjBÙÑÓ @ UNBËuщÀê#n©Û$tñ€f-Ì wL@ôãÿd"Yà¯ÓŽ€7$Ü×0©5˜c“Ûïª=ææhö1J%¥jº°ÄÛþáøžPBF³«vtºñk:0XôT¤œ›÷µùCm~U›¯kóaH'PnX³Ò µ#Á‹\Ôà+*õ™M »ø>\@_áfªñæÜÉr»s†+ÄûæC†œªí‚u½ã:>ì†ã@ßÑiGéò‰!þ¨JÇíá(\‘_¿¯ ¯«`VCB7úï5“=ÈS‹#2ãµXVºž7—läÞ ÓÁáãöPC"U5ï ÝÁ–ÐLjse“¦>»†ÿM®«B»Ý¾òêŽÕ¾íjeÁ¶áÆøï†Í×CÉx5Ô6ï‡Êäj¦L€çJqÔÿJå@SxäI˜¦U3lX­]!Z£*ëo@'ˆ:I•ȧõú^ö›L5,ˆ1pœñ£ÒDZ¤1+“ˆÏ5§»ôqA°Â¢Ï6éÐ…ú(”ÔmZXËý=çe3¯ G_ж)¸¾N•‡Z&>ÂS‡ßè@‚F5˜ \¯ìgÔ·´ÕüÉ%õX&Å<¼ÄwÀ%¶-š:ôO,T˜•PDzL‰Sd4ð¤Šér=ðLì¢ñ¡“ŸªWþ††;©8,¸Ézjŵ0O 2ãÌ¡sïŠw7)ѼO‹¸•Édð)jz€‡Ó“¨ºNš|$cÆxåælÕãj"¼T8·mXµyWÓUåMm²¯L“Þµ£"ì³–ó\¦Kš˜E¿('F:´²ñcž‰|gðu ,Ô\¬lŒùÊM‘Ý]çä1g“ýÍ;°#sä føò$Î&ìâSÒdíåÄJLj'‘úõpržœåi¿Aéó¹*Í•‡3m6$1K«bO9þZ#Ófò£Òmm"*(ßxÓ£”°†x?£ªiI#hï–(íD·w×;ªc\/€mÃ+¡Èp™·-÷ᶝ•l¼`ï(ºôCoh†ë6ªú‘JS6]½ö±­S'ši3¤£®IÛQQ-ëÒ”BƒJóÝ`½¥G!<•Gǹ@wîßÕs²wc£Ù–' 7‰WnêYú¬uè°³UÑ1¦Ï…/ÌY\›ŽáZM}•mHZ@&4ÚäYÚxéú¨ç´’B±S­Ç> ¼U”™$¼'7ÃñÇui×1ÎÐFšù@rÓÆ0ÂCš=À}¶g±¾µ&‚öN[¹Ú'fž1¿0°K‡àgÖ§KÔùèÑ©l,vû²¦{ŠJA©ñ«fŒI4•2F6-mRrôÎéHéÓ4 Õ±uô¦jÒc?É:µ¾ÍºâU£µÊ FI²$ßÌé—¨w<\Ÿ¬ÌÃÁySÓ¸iQxÙÙó jaŒÚ Ò  ÷Mî>©Ä°x]b¬¯yñ•ïô‘×9K¼õª2MÖêÊ)kž È®c mıdz׵y¨ÍeØ cØ÷nÇ “ ó£b²»”U³øÚ<5T3zÏ´ÌSW˜Ï,hâ_hø!-Òx6‡1\¦ñÈf–"¢ÕR\PhI æ€Lq†øJaÁ‡TbdrRÐR¸lfG)º•)5 °1/‡¹©´`[c^Z“y#±HÍÍ»ôØ9¦b¥êuåÕ × H¦]eÞħ‰©Ì#V7vôÛ³§W ‹5’\Lò‡45æŸæ?ø@k«‰.ž(–6›€S¬!plÛ¨Oà<ì¡»Ÿ=8ÒYÎM\ª™]Μ±G´ÆuÕFå¡í!ö¾2ÇBÁüN—‰¾oBLÀõCV—q©©: Ÿà "ë>êieMIóðÀë3êb%r²ðÀŽyPmÊÝ¥jX\Qv¯ŒŠÄn¤©ŒÂaJ¸ÞÊUc'\,¾ê4 »ƒŸª–zL£˜>êœ6ŠmRÝÕôEúiÏØo"ܤeÁñ²0/gigFaaÄ*Êñ ½yåb­ë^™7 üi&¸ê–œÄދŠ?¶eiæ¤ÌZµ¸kíôD-V¯fÏOÆžÍã#Þ–>úá•H?sâ9aD–ÈÅÖ…NáJô Ë ŠYµj©éÏh€?Œ¢àûfÒuQžïÉ[AÜÃù°ã›-w²-6¨„ ÀŠÇ™]/I!÷}îsœÂS€¶ í}þ,§ÚW3½Ì–í³í>”çúïsrO­DCy¥tNɧ¿·¦·/sÍ?ñBá9é­~ïŒk›ÚÜ Òg¼æ>Až›ìƳåqMM‹Š'N¦øC½-.Xÿ#;6’bøU‡QUYSG_¾*®ïê^§ù¹›tlüIª& 4²Šß§0² î2:aøZܦÏ2í²wt9<æ2¥Xmdq®A±RC¸íjš¦ƒÿ @¢cìê ¿Ô¾}OOt)å?ø}©}Gæìµ5¥åG„R¬S“/öLÛxâ®ÛMé ý.@”Ú¯Gù‡t=äúQÖVYs™Ø¼¯Íjó_kóUm~Wæúûúñ¼|Ü×7µy]›‡Ú\úེ<Œš÷µyW›¯j“B@¹ýP›oks_›WïlµyY›‡á&‡3†ÇøtøõÛáÖLJ»îí‡ðõpeY›¢6mm¦çbÊjü}ºUïªú÷8õb¸1vÌw'®ÅY`õOkSÔ&ý~Im§4@ÞÛ9:Ð6ÿ´`åíwCÖcüöX›™¶ÔþcÈDi¾ÎËVÞ÷Kô×þax“cŽe÷ËnJ ›šqÖnŒ Yô°2â³T éšò÷÷gÿµâendstream endobj 183 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 350 >> stream xœcd`ab`ddôñ ÊÏMÌ3Ó JM/ÍI, ªÿfü!ÃôC–¹»ìÇ®Ÿº¬=<ŒÝ<ÌÝ<,¾ú*ø=ˆÿ»¿3#cxz¾s~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kê¡» Æg```4``d`bddÉø¾†ï?S²CÙêŸL«¿ú~àó]ß/‹^éþ¾ôwçïÎîßKœ»/øÞù½³ûû‚Ër:3D»½»Õª‚óMœë²º»Ýçß«>Úý¶ûd÷¹î3.yz}ƺîÝgKÚÏ ëqê¶ãà+[ðÃyÖ÷ü©“°mâºÇ-ÇÅ’ÏÃÙÍýº§·§¯§wROïäã<<z7÷÷ôOêéŸÒ;•‡—j‹¨endstream endobj 184 0 obj << /Filter /FlateDecode /Length 159 >> stream xœ31Õ3R0P0U0S01¡C.=C Âɹ\… Æ&`AÃˆÍ ÀRNž\úž¾ %E¥©\úá@i.}0éà¬`È¥ï 43–KßMßÙÙ È °±Ñ÷VÐÊ8çç”ææÛÙqyº(¨-> stream xœ]O1ƒ0 Üó ÿ À• ]ZUm?eÀ‰Búû’:œ¥óÝÉgÙ×mù_ÁXÖ·$i²,Ê ´Åx°> stream xœm’mLSWÇÏmK¹h…¹É¶{oö& S ‹SÌ2]« ›Ø²edTlá®/¶½¥\(e229Š(h[˜Eê`Fa$3›©—Œyµc/!‹ÉtY2‰Î…/rn¼fYµ[àÃ>ó?9yžßÿù?PȆaé:}EEaÑãë‹b.&>#Ÿ•CÉ/ö‰( ªäP¥{8’ƒê³‘% ½÷cÛð‰Žõø½v«£ójòéÂââ-é"¦˜~ÃÅxí5f7­7s6Æeæ’ÂIÙ;Ãùé¼×lçÙ¶i“ÏçS›]õjÖk}=#í³s6ÚÀÔ3ÞF¦–.aÝý¶ÙÅÐ)8uêб.OÇxi=[ËxÝÜÍzÍ«S À^PŒ@ t`7Ѓ,‘t€—°§±!ìoÙ—²‡ò\±/Sìƒ<ú™Çî ¨B‹¯¢â¾i¦¸´šij&'a Y¦l©ƒn÷(ì§.J ËŠB”ý£0­ƒ-”•)ÿLL]áC)}hIÿÿ_Êd¿6ýÊc¼€†“ýª“@Ùš¿$ Mž”-åÜ)X^¾såÒûÒVB§_¸»xíúüüµ2u~‡ŽJ'x hÏ/räDû´öÖ·ƒ=°#HvY϶‡xøÔé3SæS•» .£‰º~®í¤|i…}AJl_å¤c…ñ¹·ñx,. ¦$eš$ 7¥\ó˰Ä3xèLO¬óR€„Á@`¸3ø†`ž‡1ï Yè.?¶ï¨ÞWÙü––â;¿Û»8>œøšr\>öÄ#‘T§:_gO õæur°ÑÒdk®‚í/?0~qvù¸}™L–—üqTçãÈÇ2 ®Ê‘á[¢Õ¯ vuw÷RC-±& þÇüO¿´kŒQ£ý‘®@3Ú€xh¤wlðPÌèßÔa¦a{/ qÍ.íæ† sÖJ5±í.Ø m§ÙÞÃ.ß;°ߺ´' ¶~iîzAÚdR•û§ggg¦¿úfÊd00½KE¥%"_;=3ü|2L…NÂï!þ;’ÁWLÚêüÔ ˆG’+МÉÔ3‘6¬ 4óÑ)s•ž[ 8ùþ¸Jà ¥ÉÑ8óDܽރ®Ñº±Xä³(™Ùu'ÐöRòOç×kÉ5 ?«ÊàU*Aµ€âîTendstream endobj 187 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1922 >> stream xœ­T}Pgß%Ý*ÒÖ3wuÔÝtô*Š©ÞQ8O±~?i­_„„IDƒ$É>‰@>$BPD¥`‹Ö#*Sõ­Ž½;çè9õ¼z¶õô¦õ]úz3·hõæ¼»þuóμ³»óîû<¿çG‘I’â´ôŒÄ¤±§×ø)$?5‚Ÿ&œ=JŽ®‰‚hDGšJ1Õ¾Œ¶¿ˆ²^"D$YTR•¦ÖµùyJ4V>Kš˜œœ4GúÆÜ¹ÉÒE*…6_.+’¦ËtJ…J¦^ ¥ëÕò|…Î(] Ôé4) z½>^¦*‰WkóRgÍ‘êóuJi†¢D¡-SäJ—ª‹tÒÕ2•Bú¸¹øÇ{šZ¥)Õ)´Òtu®B[DÄÄ"uš¶DW*“ïÈUä)ó Sb ±–˜A¬'2‰ D±˜XBl"Þ"–ˉÄJâm"˜BüD@ND»ˆ›ä:òhDf„7â¡È&º™Ù%Šº.ÎwR«( u’·ÆðNñRy?ŒrÃ"~:+¬ü[³Z¾“áî‹ñ¸ÝQÅÔ°{Ï&wS KÍ*¦˜jw @HXÇ Ýv2zzˆZe©ícQ&õå™+Ÿ^w­ØÄ`óŸá·šýü|Ùyí¿(âÓÐv šÿ7Lb2~&ž„'Þ‰C$"ï|…&2x+Ζly—®O{ÌzàCǩб@OßÁAáÞ´íÊîͰ !×¶F³I½%Û :f4¡<4"ÿŽ/ ˆÍ%ñsö=Ž«¨f¶%½w~Í‘T˜Œâ‡sp.JÀ³Ñ¯ÑëwÑDy ¶Ê Ö*Ž5céÌ_`èŸã¤kÈ‹Qʧ_£¨‘Y˜ma`s½~6=|Bæ½AD]¡Ùh·ä«£·?s:9«“Òê⒖ʦ† ³ë`A áöEÊJ–C¤Óÿ•âãiûa:ŸÐ–VÇ„Øìãßl$;Ž ÝGDè<ŸòÓÎ Æj©ª´Z mµï‹äëÖ%>(Û¿‡½` ZZÞŠ`)äѲ’ ó /Ý22ÖF°›6sœžÅ3(£«¯³Û]uL½»©½ÞÐ.>ô½ðé? j:M ¬ª[锹2Þj„OèPãÐý‡õ3 Œ½¦ŽÛ ´ö6Q ÈÊ„Pr€ü&Œ¿Åñ±$ a)J7Šm3”‰¿´Ñå_àC”p$¢‡»Îœ5®§–j¶ÈŠä¿0‚'ŒÓzð$ú˜_(yJÏJ*iëâEÉÕ¿9Å  O#®:Á.§q&Ë!;¤öš:НÁMè¹æj¥íñb4Þ¢ÖVÕŸ`Ñ÷Ô˜ñ|¨Ü¸vÃGö‚rš|„$p ËúÞïÉöä½ #}ÅûlõÞ6WW‡aßK ÇYÙÖ §ý‡>9´-‰ÝF­µ-1¯W½­4nz»4<4Ø}6È8¶uÉ€n 7Þ`Ï3¨Õ³)N 0Yí’ùéÛ27æö?à Ÿ;Èœèª=è cøÙf? ^½î'{."Ù5z€þ.1¨A©n3{û÷¾ºìt꫉³„±˜ü×¹ÐK݈ÚWËí­®æ8“…-NÉÐg½*uÅ¢9ׇ†ûÎ2ƒÂˆÍÿ˜è[ú'qyÀÚm#ƒÏŠ+qB”_ìüz߇ˆňqߣéQ»ì\+ƒ®ˆÑò(£ØŒE¦wqŒ`§Iâ'¼áCêÞ±F}ƒ"tlô_Ú˜(K]ÎÅaNbçâWðÏî$|ssà’³Ž]L¡ Ï$à¿§²]•€Ê¨ÑéóUù5 ‹¦7¡õè]D7„Ž÷çµ±Þ2°‚ñbJ›Ð’Ç9Q-Ô˨BR[+ÀðÐ6ü‹_Mz ¿ˆz7î;9ð]«sت9[……)]–™ÿdCv»f p†ácÚÞ$q¢¿?Ø—áø*;Ž ÉÒŒ¶ ÜnFêód ß݆6 Ÿè!Z.iÙÙ³£è—Ï2÷«ºÙ®G=mP õPgµpU(§Mî*o“ËãmÙ(+ ÅjFÕ™ç) ´,ýÍŒž¶£Ù#€¡Gâ3—fÍdŸú˜FÏgz²|Åö †CHŒÇ?KœGÿÏPG¡øø^4m„| ¸#$ [t¥£®Ôoh ¶øÛü^'xæŒë¹¸û: ŽBÛ“ ×Úê°¼X˜W„FÇ÷ ¡*¢·YÂ9jêa/8®þÖí:{âH]ÈN‡(Avà¸÷¸WÔ‚ä]L5r3ì¢õzÇñÎDñ&êÂîÖÀ¿ÃŽ ®\¸g7=»À4Ùh´V<ëÒ½\3÷øìfØíV Ð59†úõÑ•’©z®ÒØ¿#¨e„üÓˆ¥ð“%z_™¾¬\« ”·Z} ¾ùßbÊ}üâ¤v5úÄ8ÛM…Æ…Ç3ã"êè|žèè°7zAü>¶COendstream endobj 188 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3835 >> stream xœµW TS׺>ñ`ÎQ­öx±õžƒµZ±(ŠVE­ZÐZ©à€¨EË „IH¨ÈL†Ÿ@˜Ç -¨ b­u¢¶Öki­Ø^o[mkçÞî7½ïí½ízëvu­·Þ[Y++É:{gÿßÿ ÿ–Pv£(‰D"õôÞ²ÀÍúi–ø´Dœ6Jü+ ¸èa¬%{4ØÓ`o÷Æ´I5“е'PÆ´m"EK$ò„lOElj|dx„Òivˆ³Ów÷%.Nnóç»;½#‹ –;y+#d1ÁJò%ÚÉW)S¦:Í^¡TÆ.suMNNž“0O¾ÒÙÅ)9Rá´E– ‹O’…:½¬+|‚cdN¶Ãͳ½{*bb•²x'oE¨,^NQÔsr…gìšø„uÊW“¼‚SC¼Cea‘¾~ÑÛb¶/íœá2wïün‹)j#µ‰z–ÚLͤ|©­ÔlÊr¦¶QÛ©ç)ÊŸZCÍ£ÖR/Së¨õ”µˆZLySK(j)5•C¥r¨ñ”¥ ž &Q“©¿P³ p”¥¦¾–øKþ>ê•Q´ý¥‹ÝõÑ GwHí¤jf“ÈNdµì½1>c>ûüØÇùŒ#hÚŸŸ;þW_‡ƒw'Ìžðâ„-Þ›øôDíö¢ÚAì³8Í(AÔ  ÅÍHÅÁ}hSÙU s@¶4'™Õþ(ÅÓ2GË™wKsýlb2Á‹—3-º~h3ôC‹æ´ý 3ójô ȇùù½ó—/WïðáqÆ>ûă¶uÓ³E7£¤}µÒb Šâçü#f±½Ët< ?ùÝóHŠÆ>øMâqà  V~*¶Wû6…Ãp©£·íØñÚN8GS[C;^‡ à·K±óõ°–íIf‹«YÒ_Lh¡-N–9è³ò´š¬<ÞEÀùuž0¿ŠÝÈ+‡ Ex>Z–ÞG3Ш (ÎÌÒæç Ùx!f×Îv-ö=ŠzÑQ´éøŸï¹á9FA—êJ`«¡Ð(Tñ63r5Šs%?  ÚAi°;7Žcˆï ½ ,b¾€84yî7X²pוZ¸Æ`ÁŠòõâÜ@a8ê[%–sPµí½§êûÁÅùØ[·he´¼ª>YP6í3B©:Ì–Ñf úë-qÊôQË*Nndnf… ÃmL˜:Ë“O–£¥h9z ÍAÞÈ?\ñ2Oùõ.PSrP2u%ÇùŸ¥wàžõ½k`„€¯vî–—¢‚7î^BÀ'Žpè§+¿Ü¢É^é܃î/>,Õ¶ˆÏQí̓XVÞ”Yk4Vµ¶Ç¶-–»¦äñZDKñSÿRmºsЭð>4Ùh’Ìxh*º¦S²Œâbƒä`/Jí¥Ñmq¹­…9)‰Ù¹|tstñ`ñøðõ[3!âp„p@ñFî‰ìs™UêædþªDP°Añ;®ßyø»D^e€m¦Hj`3!?UÀÓ˜TÈ/×4ÔñúÐÕÔÞÕuÀþÜwáVÔì2!¼#¶x}eL±G5\d;N|Ž$Åó¢u|AN [zƒà`)K2£ýfq¶lËoÓùsGŠôWy3§yb`,‚X©MÞÁü£0#\x•ÁRü—œ¸xãIt„ÐjóñëwÚ€×¶ðºÌßh…²˜ß“VÞåsÎ…v=aåLH»ÖëýÛMW †=£J-…âZÝD"°§Ìh©QòãšÖH£â,M7ãéhC¢T;7üùùj6ùSÜÁ`ú¦ò앃—oðo%ne<åÁ¡ëà~ï`‰30£C„MÓn£¾Û´ø¥øw¨°üo4K4î '¥¹C‚­°G,ÃY¸œúOžú‹R“nˆð¼†Àô¨ùžêòC2 >lø³§ˆìEžî~lfè-у{̯uÌâ€5«Ýóß<Ë£O<ÝʼAP» xÞÞeŠëÉ8C:~Þ0››j° $”63ërJN Hdάñi³Ä *iÑ}Æ•5Ö»ZÀš¹&¢! öÁë¶Ú˜£} dB¶&??c&®pÄv¨3¿Z  ŸÚr „ ñší Q Ÿ‘%ç¡\Ufà‡Žút]~%”@±®¤Ž( ’Œ—~3Ì’3ߢçoÑâDñ+§®Ùvñ$ FýŽSŸY95ȸíÚä—´©ôB ßžßn€.Ö´·9R—¶fÀûî'÷/¢Q¼Õ{(­¾yè¢Qrü}´{`°‘§ #G̦;ðHÄ€ê@`Ý7øyÉëÓ›Luu¦žpØ'4=ièöÄÛ²Bƒ_W¯Z+Ù÷â/½ÓÛ}²ž/ÚÕ~ ؆ Õ ç}™- 9é28[Ã{âœ=¢‚üwwDŽhee—Žœ¡  ƒb¦YRÿ-:£»\ëµ7 êá¬{@I0òÁè¦L ©VXUY3±ÞÓ¨9¯Š¡`jK'm"óÈÈ’-#K.@i~U4rå84ªœ´˜XY°Ñ) ³¨Ó”R•š–”%— ;{¾çÔ•B¥uYÈ<Ôß(éDwhô/QÊe„Á4SS}µùÚÚ“Ëð˜y3¬ùôµ3Û‘}YY.¨³µê µ¸Æ/ÆXŸeg‘ ZöiÏéÃçö…6 ¹Gž,˜Äº›4J³¸p¹õZR"‹]åFéˆ" ˜XØåb³þ³ÄúÛàìãÐt7[ñXƒò~[”Y˜SSË@§/®A*‹ƒcÁðÒÇ2iÒ}Ldb†ÿí¤6™ˆm‰]¥‰ Õæ¤`ùð;Ž#òq5¢Ènkц+4:kMŒGŠc’ÌA>ä˜ìsÎøI<ù+g4jðøéújáeMÿ·LÄ2^Ã79Ò#uzbBÄnùkÀÆaªm»QÙÝxP0vtwœ†ËÐP¾·2t)•A;¶yÚ†€œË´8íãuPÿ½ß—x<–.|OÄŽ?ÌA4׋¨†âü¢¼¢,·äe0°Á³ÚÐKB=SPÏ•¢ÿ0´Á/PŒ§D²¨ÄÓ3*&SŽäÊ$¢V[Ýo´3hŒôó'zJk4y•¼JŸ rVY»·ÉT[k:nÞ¹v…ßLyQþ¾ý§ù42IYÑû£aêñJfµèéHÎÛnø?¦‰œƒíF“XË¥‘‡8̵$5)â“bcL)¦CK#yìC:{µ,t¶ù·ÒN’+à¼1²§—JDíˆïu“ùiA«¤ÿºqF¡â ÜŽª€Óp•½~þÊGhi#^TÌ“HUþ(Q€-¬Ô*ØŸËGùì¼¼¾2„½ÌmæÎºÀC!Bghgöû©9çÒ«óÞTvø/»zÛš¥ÞÇüùÍ}ªÚƒÚÒÂG` èâ]e _TÚp¨´¦+äJäßÉewû+4ê’²7ö ÖPZN&ŸxrÞ§F²êŸ­´x ¥qØÉÅ}îÆÝÈ“ŸüÓLr`ðLÄ>ƒ&#ášö/:0—>´ÙvœÆø‹ü nÄ_¾‚]±‚ wËèîÐW[¼¸ÿØâ6Ý)žv8 m¿k±õ¼ –gH®X¼i‰·¹²æºãYse‡F¡$&H{Gþ팶FÉš¼t¼q8Ë¿&ÖåW€tSͧ¡™œ0A³ŠœOëÕÄ\†Z¨ Aû‡‡mÁR ÕPPh ËùßÿVÒZ‚ÿi—BðÆ½¡éú5nø½ üo¸þ0{¶º‡ôÃ'Ä!®ö¤ÙxÚ [-âH“ApIkØC`ËWçhr±Ë°Ü/A[¨)…©ígÁdƒí%›|7ö,T«+RKö—DW…ãÃ[ñ"1Ÿ §³®9-d’@­øýš~2™WÊÿð¿õûŠTeP úB} Z&Ö:¢åõú}zu©Õ²‹Šô5Ö»OR«e‚IÒsè¡Ñô+wºõo'àöî’‹®³_ô˜YÙÉWì/Ð^÷ŸðÚ+àÁNÿ~ýˆ¾?ôóž½/žäñ´Ï¹ýe!-pŠx·çÚ«Û=}ý7ïá_ÞÆ¡ñ+ZÒNDƒÏÔU+·/_ìqùÎGo]h'¡;5<Üj”|ÓO£0éy!èÒêžûÞ¹ ´íM2ʳhly™µ^¶8_§ÚïîéìÏt<ܪñ¸>§·±ýW°Ez]±ðÛ®(…lÛ‰t f¡‰¾ˆÝ„ìÝ2UåkòÔ ©K¾›u»¼m^Nn{c³²‰ÜÕlž^ST5tã›Sü™šÈÞŠ“xýžä§{îÑh‡ø_\sRC|BbªBјjjnhhæÑæ)m‰†„ø¤¤øø†¤fS£¡'šÄ~ h5qBO#¶«¸ËIGBå)‰q±õ‰í5%úb¾°° €ÕAzþ«q_Tj­Tl¾>__6x1d—[hs¿¤UÑÈ„6sý¸Ê8b:*3J@L§­Ÿ8ãpz²õÇ$£å)£¤g•’›ìVô7îäßÜ}dzÑ6ÃyØRņ,oÀÌ)ñèZsdÕ{ }pN÷™/t} û.°äþy“Û^†$ɼƒp º7kß®»v¦ã¹î^PÖ¿PµVy¿«2}Rð¨ )Ö{X:s·ù8A_ñz,×É|BìkaÏ+gšˆíœka‡ L¸:c!-—¶êÀAòúZmÊŠfª+­a–_’”œúEݡŠh—(U§ålÍÚ››½…8&‹½¥­M—®¶˜È„ãt¾¾%7Úù’F²ëf¿°ã86´ÔhK©Wdk@«æëßí?1ì§}k\û¿´åUbé8it‚(±áÖ*>k¼7ÔC”0„TC4š€¾çP1šÐÝßÕ•SÏgÈ`wbMJKs]¹Ovf™»1‡cq²÷þIî…¦ ©ó>{Î-j¥"K@ð»Üˆ9ŸÝÝ’u ®³·º¾ýüœ9,²†¯ #n; E¿3<-„`—Ô zÖ EyiƒW0æ±ãø±vKŒöcŒeööµöã)ê¿t‰¢endstream endobj 189 0 obj << /Filter /FlateDecode /Length 193 >> stream xœ36Õ32W0P0Q0R06¡C.=C Âɹ\… Ff`A#K È ÀRNž\úž¾ %E¥©\úá@u\ú@E\úNÎ †\ú.Ñ@3c¹ôÝôÝ€Ü}o] Œs~Nin^1P‹—§‹‚ÚÂÓíËÿÿŸòCõð¡£[fš:>ÔÝ«#}AÇP`áÃÜ6 úR?|ðNø²í‘˜´ÚJµëÜü}öÿ02p¹z*rËg;}endstream endobj 190 0 obj << /Filter /FlateDecode /Length 161 >> stream xœ]O1ƒ0 Üó ÿ ÀЪb¡ C«ªí‚ã  8QC_’@‡gé|wòYöÃu`A>‚ÃE0–u Å­ Fš,‹ºm1î,Oœ•²¿)ÿþx‚Í@¦ð»šI>ëË)¯êB§iñ )(žH´UÕµÆt‚XÿI{`4»³Q]Á¹)þCIÑT⸠¸†@sÓÜ$°L¿g¼ó)Ä_žSÅendstream endobj 191 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2112 >> stream xœu• PSgÇoä^YŒJÌÚ&Ñ®(Šˆ–­«µZAtÅ'"hT^‘ ’(„GAÅ@’“ˆ `QÂSM Â]ß®uw§UÇ¥ÓÎÎÔâ¬vluÜ:ç²3ݛк:Û;“ÜÜüïwÎù¿ïåíE :*62a~¸û6˜›*àÞñâÞQŽ<Yë~Bðóî~gܬ„Ú ˜8‘ ÚÜ£QÚ½úìŒtµN1+5D1Ñ¢…¡Šáá‹˳TÙ©ÉEl²N­ÊJÖñ?ö(6iS3T:½bÖµN·wñ¼yùùùaÉY9aÚìô¥!¡Šü Z±Q•£ÊÎS¥)Vj5:ÅÚä,•b,»°±¯(mÖÞ\*[«MSek(Šš¼\£ÍÎÑåæå'¯Nѧ¦©2ö,žKQÓ©uÔzjGm¦â©-TI…RQÔVjM­¤b¨Xj*%¦¤¼”7UH=üQàòJô:éõ“PåM{Wû,öé-Ù鉴žþ+ãÅ|ȬçŒâ‘`1˜åbçGÚ„œf$Bz¨µöƒÊJŽê‰eô‡@C¡±d0yJQ—墵ºá:|j¼ä÷K›" Öb«¶Xä—p¼:D·I°O(/´}}Ðß‚Ó#œM“§\¦E¤Ã‡ˆÄ#þ|Ü×Ò]þ(â¯$HúùNJî¬TÒ§-·­]|œ[¦Óf÷ë+QE£à›ÁÏÎ9ò–ÉHÓ¯Jjè7wÏœ¿1aŸL2„M>.ñQÒ’þ;vH“‹¹û†Nâtâd´ãd!×)N™÷‚,$ŸA‚ÈÄog⇸äÑ œ #ÇÈ)‘Rúárý9ù©O{ƒÐ ½ÕŽ ˆƒmLŠHdb.‹/¦ß‹»æÿ ©W(vײKч&‹Ý9x2ðTæ´ô[  î‚ËcLFÑ’¡/ZPü\f6뀆IéÌooïtô\ÙܾE&é†ÔDÝFÌ%\ÜÔNÿ®Þä{XÌðE¦#+Ýe9,sç œzØ¥‰«Y -¥`š¡¢Iþ} ªôe&(H“í«UW¦“E€¤6ìmØ/ïQw†2’a—áaÑú)σÜiûôËJëJá 09`Ðɉ€.€#'íV8áY ñ„Í:ù'h¦ÃûòêÓrÉPZ{fåGµ|¦› =ø‹Ë/ù=õe…/¹iRÒF+åÞû{ÿ²+ÊzUfŽvÜm’a;O ÆMJÚ,{ºå’~ŽßæÕÿµx½(!>r©±åª Ÿ¾õÏAZñuî2IA+܇/ù,_–9¸‰¬ •»,älœŸ´²®Ü~–Î6iÌÙ ;¬y~”ô©vc‰Ùl*;"' ± ¶ú\eE»MóÍfþœì°¦xdwiŒõ«É®…Zª‡j[µƒÜ‹Ò2âŽäòQ*jËÝrGÑ™²Ì9°”Öܱ(UƒæCF£Ál”O'UD„g}®³¢LóS$C²õ€Gu‹v$‚ ÌPæV.!qÓñ¸[˜bJ1§ÀØiÍøYˆsG}íûË·@P ”WÛë_aMà+RóÖ3Þ‡ëW‹ëÎà\—'Ž[Š“0Âmwç;$ÝÛÿ%»(j¨æ¦"(’¯µðÕ51˜I¯ø ÙHÄeïït´ut:zÏÔ­²Ó•–`:“—É3h »ÂHìGÈŒ)sp¢þs™$ï+`Ï7ö2ûq¾4”ž3¯(;!Õy)\PwÉ&ÿ;Xn˜àLœ.äôÜ")EeãÉ^8ÛʊR¡Té6kµ<‡-¥Ÿ”[ªŒ£"r' ÅÒ*c$ñW¨<:¤F‡ ¥¤»lß󩾇.Ïù#ÿSHs…L6C¾$ÔÀ(éó¶ÇÐÏ÷°Ïnv:ŒåÅŸ08³Ü».Üà>ò"¬ÀÉ’BÜÍÍâM¢_c7úŒ¥¯ûHKŽ nžŠ!/£ƒæ>%3ä’ÂHHÔää3•äšËé6çÅökÀ Èøh%ÄíK“kR¶Ê„hH»zø„›X¢tq7YA#ÒcÈÚëlcÈæð0½…¬µŠÍe‡Íf9¡‰™G¶éÿ »ntšn[î¶ÌU+ è ˜,%¶ªò¦:p2gsš3´š‚´6åöÐÍ;7ÚøFwŒo¡z]| ÄIBåæHõLyp„ù‚oS¹¬Z·eHÐÓP ÃÎ c¯;‡õfSQ©lßšm À9àÌ뀿E©³Þh¬•ùÊrB¯î n ¹ú¤[i\ýúØs?¾é1ÙBK»·TîžJ‚§¿O¦‘À†â,Þß?ÃÅæŽ?ó&6ºHŸÇO1"ÿÅE¸ÚÚ-oïe«;àôd6jx{›ù¶µæ,.›%ß ¹~D4VC[‡áAâ%ù.WüÉ•ü ¿#“È”ç³ñ÷¸ ïUýÉ(Ýo*=`çmÛ˜Ã+¦™1è²ü¬·µÛÒë8ÛÚÓSÓ8¬$À¢fÄxß3ü†1ÜÿK '¾HHž Ž‹—’HwU·^O‹Ë ÕMþe“Ë3äbiÉ‹jîoÒ éç’“Ôê¤$§º¯×uî‚̳&7|M€ RBÔÄHߤð¿V'?»Ýä˜Î LÚý†c † ¾Æp!漤}jgÒ/+÷9}2rÞûž‰9 F>ÔâM!ÞÃHé3rs6->tœ[_…;ÕÇEd»f}Qô™¯÷¿q=v??öoñSÔc0endstream endobj 192 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 329 >> stream xœcd`ab`dddwö 641ÕH3þaú!ËÜÝýãïO/ÖÆnæn–µß·}OüËÿ=J€™‘1¿´Å9¿ ²(3=£DA#YSÁÐÒÒ\GÁÈÀÀRÁ17µ(391OÁ7±$#57±ÈÉQÎOÎL-©TаÉ())°Ò×///×KÌ-ÖË/J·ÓÔQ(Ï,ÉPJ-N-*KMQpËÏ+QðKÌMU€8OB9çç”–¤)øæ§¤å1000103012²øÿèàû)Ù½àûžßgf|ýðû­;Ì?Ì¿ßý´òÜ¥î;ï~3>ú­,÷»õ¯×Ã￱}ø}‘õ Û÷|¢ßg|WaÿÎq6ÀÅÅ;à7—<_éÂs¾‡/œ½íwÒtö\7¹å¸XÌçópžèãá¹9‡—Å|zaendstream endobj 193 0 obj << /Filter /FlateDecode /Length 179 >> stream xœ36Ð31Q0P0U0R02S02VH1ä2Ð30Š!Œ‘œËU¨`d`T022L(’ròäÒ÷ôU()*MåÒŠré{qé;8+)—h ™±\únúÎÎn@n€¾·‚.PÆ9?§47¯¨ÅÎŽËÓEAm‘¸pm]À/}MSLJ:†l:È|ˆŸã[<Ÿb↠ºä³eê÷-`bPàrõTäå©0}endstream endobj 194 0 obj << /Filter /FlateDecode /Length 160 >> stream xœ]O1à Üy…@ÂÐ.Q–tÉЪjûbLÄPƒúûH:t8K结Ïr/#»ò=>)ul"-~H0ÑìX´ ŒÃ´³2ñ­ƒÃU‡×'l²•ßô›äC5§²jk½¡%h¤¨y&Ñ5MßYÛ bó'íÉîN¥ûгªþCÉÑ\⸠¸ÆHœJÓÒ$pL¿g‚9ÄZ§S½endstream endobj 195 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1586 >> stream xœT{PSW¿—$Ü[¡nÑ>n2UÔR«³£¸­3ʪ,µuЊ5b$Ñ„äbxˆ*˜ä ”°†>Ë¡Wïß ©p0£ÂÂzbÕ|ÍN…‰y¯éÔ> éø¯…¶9áŠF%6;{ÅU!ºï6^¼-KÐÈaâ²GÔIZ’@Ï$cª¿ûãxâ ¹Ü^Ð…„_Z#ž é%¸îë‹p†u»tÞ\ÐÁxÙöª%/Ï¡VBKö„qMH|$\Öo·Õûq~Æ þê펰N>C(›¹~Ó}÷»ædÔA;›)ï¶ý°¸c¾ÂDŒOù–,ؽ·ø^£>“!ÉQœS¾šƒšû†ÙôÊïMÝ»%<K¹á\‰±¼‡q{Ê+ÁÎu–uuv½Ñ?`î?°C§Ëø(£3 yò?0:Qç÷ŽÃeznÎýä`¶ºZ.I_¥8CâÚ=8Ž'Çeøµ¸‰;M•µn¨<É»ÝÕÕ5µ¦€Ég–,9º5÷ØkW±fÐ4tj¼z¼êœ+PÖüZ¨ôìú$¨Xaýäz%ïjöø*­€×J5$)ƒêVŸ×ÛÞÆ¿îkñ74D]q…$–âF~kÔÑSÜ¥1ž/hÜrÆÚ°Õ7Ø®È]¤7Úêxo%Ôø=íRŸË$éÕaÜØAÿ0öÊðCq9&+ðçƳÁ°|•‹µ}Jú"ÿ³0qëÂo§ø–ÝÌSAÁ p§Ç~FÒÖªˆüËɢʭۛ•¾±vä:aÈê(y€k†¬b`;è®úç.Ã5ëê›dÕ%Þ±˜Ü¢3™ÕcÄoæW‰û½xñn_/=x_ýB&RâÜñÓŽ (d­ŽîîÎsáߘ'4qó\ ]ïÉÄå’7 Ðù}ΗR•O-#“Ä¿®DªÆîu5Öúª«\§N{4ÆëÜ'à8Ô# óLB„õ¹&Lýül/¼ “:/I`U8?n°.D£bê‹Ïd81'ôBT0wÇFGš›Ý§›ùªÓRl¬µ½4ÔÓÖÞ=¤?¿ë¹´—Vò„yÖô'òþ¸§™ù±6G%=ïfÍnçþ êý³ÿ;¦¸ùÿgà °Ï`Ê‘f  ‡)<†})抋¸~{Ðl¶ÛÍ…A[0ÔÇ“÷å}ötg+4íÒ]°ŸWÄôsXØâ Ä’C­LxÁôB~|C‡ò¡O©œ>«\DQXClÈendstream endobj 196 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5731 >> stream xœ¥Y TSW·¾1p¹*ν ú÷^jÕߩ֡Ö:Ôy¨(‚ލÈ<† ¦Ø c˜‡„yVœp¨C©U¬Æ¹Qk[«u¨kíëâ:ôýï„PB[ûÖzëIVÇsî9{{ïoç" lúQ€^æ²iÓ\óoLc¦ô3½.LÁѦƒ/mÁ^ö6ÿx=x¸iì0T:mJ Q¤rY˜8&"Ð?@â4Ñ{’ÓŒ¹sçLuš9}ú\§%¡¾Þ{DN.{$¾¡{$dâ´1Ì;ÐWã4qA€D"ž÷öÛ2™lÚžÐÈiaþ 'Mu’Jœ6øFúFDùú8­ IœÖí õuê6nZ÷÷²°P±Tâáäæã!¢(j™(L¾"be¤Dº:J¶'Ú+ÆÛÅÇ×ÕÏÍ?`CàÆ Mî!›C·ÌyoìÜy㼿pâ¤Å“wL™ºó­i»ßž.Ÿ13nVü;³ß¥(WÊZOm &P©R›(wj35™ÚBm¥–RÛ¨eÔvj95ZA­¤¦S«¨ÔÔjjåL½C­¡fSïR.Ôjõå@9RBj45†²¥^§8ЧúS¨7¨ÔÊžD-¤SC¨ÅÔPjåA §FP»¨×¨ÝK¤FQËI0(JBLäõ³ïØïsa¨ð’Í ›X›Û¶¶÷hoú;?»Æ›¹ÒÿŸý3ú?à2pÐ@•ý{Õ )ƒÊ™o\2¸kHñÐ9Cs†þ÷°MÃî w~aĨ[GÔŽxùں׮°~lû¯‘“FúŒLÙ4òò(ÛQF]wxÃAãhïXáøÛh¯Ñ_Yoªlª:o<1"7£Ð´cÜ~l®ÇÎØ _®>£Ì‹[DÇ…ApP”ðGqÇnë½K×Cs‹ün´„þ×í}'OGºq82Ø.NDVÕ›WM&ç¥Ðƒàc#ª ç¢ }ëGl‹mßšˆ‡â¡O'#dóôÊao<]êúÙ×>½vý¢ËÌ®K—òd a@S7[m¢Áö±Åƒn =s$|ö Gg?Ç6{bEüþølÑ\êÒõui€)†=þä…kçW½3Óùƒ¥Ë}¾<ÃYO¼d0¢rbøÇV@•ŸÈB¸àFý`0=~*Ž=šˆè›'ŽóØgG$ÒÅ ÄÆ0bãz zÁnÚþþüek®Þÿþ†áÖíö…®œ%a´­ÛµáÆNâÜÔÆ¢á´/D·µAU÷ÔÎrp´/‡‡£mHéNGƒÄ2wÇ®E¥ äºúÓ ‹O¥|C—Td™xºE›×Ê?îÙDÍ­ÀEv–ƒ; 4™œ(AkÙçW¾E—éWŸ\L•¾¬¾"áØ{ÖFºïà›,‡`ë¶_àŽùÖ*·zŠ…´esóGð“4 g,Eµ,ùj¯F"”ú ¯†Òr1›Álî’[Gh†õÀ­Ö$»i@ù¡i‰é ¶ê‚%© ÉiœoÅvˆ%ÁZ¦˜¶ùPd¡ŠoªO}!¯Ý{7¶1!¢€)ë¼õçe\²noA0#?ÝNâæ’âÜú<îTÀ9БܚWýèàɦÈÞ»&"û­’=9«  ©m®ÿþûÌ@©šÓ„ÕA0fx‹Mç /t4ÅØ²ÔÔE³¬Õg}I÷EÆÍÏ®Û;sVÞà úÍ›7¾½Öi܉rYzp—¾Ã[Ìè¨îݽ·ŒMŽl7d(^?z΄À…ÐÐÄ¡J»¿ÎgÑo] ¿³ïPvc;—ªƒr`nÿ©xÁ`’’$‘óϘÚYDõ t;mMuªKŠ©>ãö>ë¨îéÑ ƒ Ú$šèË9r°>WKÆqÈ`[Ûçù}r›FýðýB¿*ЃcÔ@á~¦wóRS¢ÐäA6¯¯†–æn„Y·>EïÄGl3è½uò³ªFÅG{KýÀö*äëýâ=öF0ô6tÄöTŸƒÑ 1yºêùsøÛ\ßJ’Ží™_ÖYõ¥Z§.fÔtfX™KŽ´Ì53þ0Á¯r0–àÌ0<2>2š¡3-DûÙÏ]?ÇN;'ÀbQeLuiS·\}f9h¹{ë<µÅ³Å^BƒH™}Žòo MóÐzVW ãüfñà©ãI&ýe"z >ö°Ú…¸x>rÃH„õ0§Uö”Q_b+¾ºxð¸‡wæ.6ûh0Apֈʈ苎DÕcì%Æíøˆ^Œ\ÐÚÊ:t„Ã^8‹ ’ÊÄã gà è„‹p³ðXÑé†ÂÏá4%¹ì„åà «`eÂæ¤‘ÒÙÀü^ªÈžT«3)­¹5ôïÓú§?» nä2Åz¹˜ŠÚâæOç‚bá<Ï·ùmS¬­âî˜Ð‡v¬ì5¡§ /7 äîbTvK‹ ¦ÑÀ=Zþä±ôï”r°r´ˆ6Im~¦Ÿ^µe‹×ª©üxóæ8úšwáô%´ù’À`îCÍŸ ‘ÿEVñ Ê”zJ4—QAfkëMÊ&`ž?û®YY[ËW–hŠÕ9ázU1‘åÕuҦ͒Ý)"?>¬<° ˜·–,åW\É+åIá{ôašôU{ÒœAÁÌúÕ@ÃÿÝùz¯·Ù±[=Û;:ÚÛOŸn÷tw÷ôÜÊ«ñrö!À{Þ+<'LZz¸½­ùðé,þw!ÜÃTÕÂhÍ_;f—ôÿ/‡ î=Úhø=#Zj%Ý_'N^‚e57">¾ETµ7“ÁC÷±+‘Ï5úÑ!·]»}\§õö’»? ºóÆ`:ÇÖKªÂÂ$’°°*I}}UU=‡]ñHÖš.¶¸îO‡5Ç¢;t7˜½µuæ:j¹.4­7ÝéVjRe|h2ç~È-3‚P‚`Ñ‚Ùî ~ù üáÝÉ·bóÓ®É3á’¬b+2[<7.ñò֖йõ{gTd”fèzTf»e[¥¶¨1—;lH|Œ¦“ì°{%žfz#3²k" rð ÷‘XÄA (ÔrM†ò2i€‘Fȃþ‡ÐøhÀUÞ´Ôîw`,Ô^kDÃÌŸ½5ìªx¨Tð‹ìzg:а.éÖ>I·üOò˜€žHä±)ˆ'[ÉÆ}õ—ƒUW7à‡ô¸µ[6o^{æ‡6Øýͪ'4ö`úóç¾Gø?ËľÇïÒ}‘‘â‘}Æ÷û(“‘f •zS“APnRM›ˆ}­æÖ"‚8~¬…ª •_Ûâ·H§§z9fÐé•É-)µo™F9´Võ4¡±¬&+Ñk]Eù>:¢ k‰&Óîïe\ÁéND›?BÓnô1[ ÈffÒØæÅ¥gEw'1 R‰Â÷6È€4ö ‹Á•°ÇvÒÎ}h±] h»{‡ÒŹp8ÖN)êIþÿ§%½îšÒ„&q?¿¾œ>—¬jz¾‘¼)Å3m»€Ow£ÍÉ…Iå2H"?ä;&%qvO_“v0åXÊqOôC•5Èó-j®´¼š¾ÞU)ËŒjG-A'¿:3÷4’df4t¦×),ÉRåKªÈEædVjÊ»û¡ÞÔb5ž$ÙcKÌs[½cqÀ¼-x° €L<ø·íW·–rYHJtçÊ_žW”gjˆ¤2³‡ïÐÉ¥± ì®Ñh~WOÚêë,l€öÐƒàœ‘ìy‚¾fÏ•]9ט¯æÜÅöØ~΂¹+¯ì<'眣—l‚y̤G³ˆLþèÁ³¯u¬-ç4³+\Û?>Õqâöím›\=Wðø‚ͼµg/_ø¤óþwg]×­^»qždô¥åèÿ¡ש¾üAøê‹ÿP¦ì>QQlœ¿rG&W„=4Ú„*pÔAa¡ºšAßÿ6oqaöeÔ`œ2¢Š{BÓXTÅÆã fÎ$}P¤–•degeCS[%Ë¢Cw6»!!¢nÚ‚1uk¶?‡øjû`²9öQÑ‘“\"šÌª“5rHfÖoغpþÃÍ{×>¾y¥uÓæ2N“¢NQ§2êT ÿ2’NÙ¿iNq²å 4B€v Bt×$dÛBê‚ýÄ!Á~Mâæ¶º¦fbó—ÿ#O¾§ï4 ¿ÈÕЩœ»ú‹áÅU³¾<ÎH9[ì•’ªRAR#×µæ½èý UÀ°3swˆåœŸ¦k–ÁBØÞ4½Á`©Žg¹âLN¶¶Ê™Ú(]„„|ð3:Î|ýöC^à©lñA8Ðæ‰<6щþàç{Šù?Ú³U³…y¹ä®¨‹Óª²ñ윩Rg#SHdEÊüdíëðqì¶7M•ÑŽ•ñ%ÙÙMŽ%/%:ZDŠmõfJ“r”¹Øá¾âอ7T;tûäáM¹Ù9Z(`òStbÉœõïlä6¿;“hÍЧ^žzrÙ]×r™ÈÑåó–=× fRb¿= Wâž®~ºýæûáäþ’*UÉó“µ)Dò½ssð&,Šr–îò^´ÝË#D•’šJF™UWuïÜý³ÜG_—=€©Ü€*É—àhç7h!UΤ`ãó¢´¤Ï]3 ñ€ksoŸú¡-¾HŽ—ã×ñì€WâhÞxxï\cc(!¯4ˆã#%þ±ÞÀŒò_È ýó§jo ÷+æÝðuv§÷ù[_í Lê¶xÞnw/³Sõ¦Ñ(Ùu!:~c55jÔ1y°/ Tbµ³&‚w!>7]£G™BPžÄÿºñ ’ˆ…TÇè¹N›™™Í!êRzD†3ˆU°oìË«Ë0¤×p‰ÇÅu±Õ ùª®+)­ÐÅå¥dòÒ¢…‡“²ýÄ¡ª\/s˜ E©L™š––Ú@ÃË1¤ŠH×½ìÏž7w(’NÎtRÈÿ¶Ú.(OÙÊ!gÚ:7ùåsüBæßB ˆ[Ò[BôÒ³ˆ£ „ôƒsˆ§ à€Ÿ/ø%p˜Ç¼]"ùÕ· yDFt"ø¶‘Å…Ýe^XØ`¢5kØTiŒïÖXeZL HEILEó‹Í9¿vŸˆÐ ¿:q[n®Z­éã‘ èüK§ž†îÜGÝMþm žÜgìlyÍh.&ý-K%Ì!Æ[-¿B÷ZjaªßYêâ_IŠ,˜üû&“ÿvKœ3Mšv½´góJA ¹LUtIL¤2:)•ßÿ¶T%'·ödGI…¢¼Z[^mU Q Ø|»[7Â6ØvñºŸñ(dƒlŸ£ÑÈ™ÃAä†÷¾ Arõ‡›7¯NÆãðxÜÿýn# è¨ùÓ#~7 prcãÙfB` zÇjÈt”†)´ž˜ˆÒ÷ñëCa;D3˜ÌGÂnì˜Î$‰3B‚ë2´<{ ¢{.\³óbè1éåôjÂ[µÐÒ¦Vñx´ö“L·/Úð3É–drú•5«RƧp!+¼ÅÞiŠ i:„2²‚„êCõº*®ëí™vÖ7;ÙV6³ç}Šg££ðʧ¬*99™Ü´ÌúƒCßYBÜÐóâ6JÌ‘ËãGǑ̓šª¶ý7¯À 8ñs<÷Ÿ?ÿ]ïæ¤]mY£^•›šÍ•=ZKÄøƳW¸»z½ ºÝ,TÃQä¨aòëÔMÍbµ’xš G ¦ÆÚôãkwU®ÖD"%„Ôgä¬ÒÁÄÝXEÃö³¡ƒIŸ°à¾xT:“`å5W4µ§øsp’Ä¥¯ôøìq7z…èûâ芭k7¸Í_”õajÔ„d5š|µ4ÅÔÈôá‘Eà¬'Ð04òþ÷O¿r9ë¡ç>;“{™DäÎ¢ËØY½}UheLM^W«M+HÍåZê Ìõc~^añ^>|xlL†GšOºÌs™Ó$GC¦Õ&#[&/‹ONV*9Eœ(2š¼½Ù±¥ …2} IqBX”‡_:Ñ}LlilYQn®VË•7TW@>d¥–É tQ­̺Âzý‰6M>ä[rå…ÁÄ\¹Ù)<€€UÆC:iꢬ¸RsíSÍX/­®/ŒÖÁô3ݪÒp":R2â£<«‹fQ0zb‹ŸØYP­2¿ü|cD*R_<‘‹Ö×:óÕÅ—ÇEv2ßWžŸÇ5î?V|˜»GW¬Y¸Òm®÷–Òv)¯Vçæ«5šBÇÜkeºðè°ßy_-G¶hØO‘ðçÏpÿ ¯T©'‡ÖöÝpÍ&BìžùoMD%>aKワî®RyJrZ"ie’2IC®¢ñxðùñx ù‚wàD$\ü üô5„lg>Ä6›¶Fû{q…x Ú½™DÁ|òÉé;_œq^6w͆ec¥è5578±À´,-. qtŽa€q 7À&&̾¿ÁÞÞh?ˆ¢þk£endstream endobj 197 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 857 >> stream xœuRmLSW¾··G¨›^áNpH"¤Ó_Sÿ £8Bý(°ªÙ”VZè(”B¹€H-à½ïm ¥h*: ÁlYtY Ùpc1&n¤Î¨É¶?Æhô %f„sõÔS’ýÑíü8Éó>çyÏó>yYF£bX–Í.7›m¾ºí>Gc‹ËÓø±©Èâ¨muÛšSìGÊZVáUÊ:5ð‹^^[?©½ôšë/Ó>À73ñµUx*ƒA,kmêû~úž¦ŽfWmOØl2m)*¢÷'‚½C()ÊlGë=m-õ.ÁÖX#”›‹…=ž6Zt =‚ÝQgs;S¨tª*vZ*„RËÞª}…Åÿkò=ÂÞL:|ËJ\µµ-­ 6¥j\-Mn[GŠw¸NŸ’Ë`ù鿈JSdJÉ0Œ6ï@öÚõ +±ÀÊlˆ 3 Ñ0›˜ ¶Z…T&|ÙðFUZÅÐt|ú¶‹ƒ 5ž¡ÐȧÿD¦ÍØÏ/þFüfávÜËð/ûóšç¿°4Ë×·ŒÍ\MÞ‡¥D× ž.ô’J@ÉNP梃¡0ôg@ÿÉ¡¤óEæeŠÃÙ0Û ^ï}|ìÞÁñÎ;‡¯lEãY‰¯hybç| I}§¤>h‡€réUÝšäùä?Ý'à@V sxÍלáE¿ô@äWicñ£jå5¿ôÐÃ’ÜÛo!Æ["ÎÆá,Ì %¦ƒŸáïòû5¿Z®îú[ç.ã|¸”¿t¼>?œG£ ·vá„7gã¡Âí"1ôµAìFI»Ü`•=ë÷˜WÞÙ#IÐ Çd)Þ{Û9¿c„dF|„JÎê€lXØ„3öhK@£2Œåþ‡[Òn„ ’ »ç»q|‹ªÅ žŒß[Ïá8 Q’ÄãŒÎýQÄ«ËFH^¨ °%éH_À§7·N¼ñå]7±}EòÁ‚’t$+ìß_r¸â·Z> stream xœcd`ab`dd÷ñõM,É®ÌMÊÏ)¶Ð JM/ÍI,I©þfü!ÃôC–¹û·ÝÏ’Ÿ†¬Ý<ÌÝ<,~„ }¯ü^Êÿ½P€•‘1<·º©Û9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õ°»U45'575¯$'µ¸8µ°41‡ÉH„±‹±›™‘‘%ëÚ÷5|ÿ™ŽD0xïüÞ BŒ?þ%‰.*í®•ûmÃö[©û7ßûÚïª?‚Øf.ì^’ÿdWýÎ÷þ»R7Çw„Äo{¶ß¿µ~ËüvûíöHwÿn–—çûÏl•ÆðÛn'ãÏ’Ó¢Ý3'4Nø³ûû|‰»¾Ï›>qÊÄî’3§Öµwv·6Èý¹÷{}mKKkw½dwíÔ¶©m?îþ^/1£¥·»¿›cÆÔ©3ä§³€]ùç2[miwIÉÂî™ò?.CíjœºyÂO¡å›²íäÚÉ-ÇÅ.bÏÃÙÍý¼¯wÂ䞉ý=z¦ñð,ïë™Òß3wZÿäÞ^܃Ñendstream endobj 199 0 obj << /Filter /FlateDecode /Length 4612 >> stream xœí\Ks$·‘¾Ó:û̃ÕêZ¼Ëv„VáñSÔIöFôÎXöhHjVÿÀ?{3( F5›ãñ^¬ÐaRÕ( ‘™H|ù(~.fy.ð¿üïåÛ³ÿü‹rç7÷gâüæìû3I¿žç.ßžÿöFHéàÑE”ç¯ÎÒ»ò\j3+¥Ï½0³ÔîüâíÙôÍÅßá £›Ä|À×.®Î¾vø)z!ât[Éw•|]ÉÝæoÿÊfB=[ÂùÅ‹³‹ÿøvºØlŬ„PÑÓ»:˜¨ÂôH%…vaºßlµ×ðƒ[yúOEŒ6¤ÕôÚ‡é: 0"Là±ÂýN3X3ÝáÒ˜õjÚo”¾ƒŸ>àS£„9îˆ!åâô× N§`fº¢Eœ²‚Á>†h!œL @[åg,0QVxs çs bÐ6mHFeœ™öw‰a+¼«+ìð=µ„)voIXÀ&ìúi#„†$ ¥E¶+"sB˜ôà×avF%ÅN?˺oU%g|\t¿•8´ ª‡*ÑוÙ"sO¢«OˆovéMM£Î6 10ÉçxÉ]†6j{ Ï]ÔÞ¹¤‹ ¤ aÚÝ&Å8/n~«¤™½>ß’õE•6tU­å@‘2êÈ-« 3ób‚1™Cšá‘±ÅôÁß“L„…Í›­÷qÒN¿#{K¢|UçÈG§9‹ðˆ#´gц°œE"ßUòu%ÇgQ°RµÌ÷£{Ÿo¶¬=H?q›ÛƒaÃ1 šŸ®Þ[:] /µ¦±˜ÙØYH=]VSÝ3ñ&ƒ÷΄fjT‹“ÞyËÎW© Zq–îÓ":jn¨{|j@"­õVÞ®Ó #þ„þl0Nû7E,dÁicšCŒ'ß³™¨ÓÑ‹p~Bàon«<É2¥ðÀR̦‰ŽuÑX^vÌF_’c DðXM½ÄÆ&IðgíÞ‚<Øœ–à”Fõ0-'ÝʱnŒ  ê«"Ø‘v„QÒÀެ´`GzÝcàÚjæ»­Žñ6-éÁêöt@œPBŽÎ‡ôŽ:~>n*¹¯ä<À^{_É»J¾+§`¢ðÑÞZ†NñÚ-°âÏè\K’t!<\\Œ'Û†‰A¾°íBé2uòŽ:ÎnÝãþ wƒ½Ñá84¸©ä¾’óp{í}.z…½©äýX àÛ¢+À-_D°"wÜãv—¤PÄ'.Éäš²-x!0ÜuãO #Xµ:Ð 8=B9=°‚.P p‰EÑè°;çfѹµVq—;N½»“Añ‰™ëâšËγûÿ¬Y]7oDÿˆËYZܾ.²ŸH6ÝntYdd‰[˜¯dÀ6iârhyw•|šÛžÛãȰŒÀÛË/ gþ13Ôiß'ÒBÀj]œŒÒ2ò”÷w0§ÖŠ4ó¤ÜQ~ BÀfŒ¦øú›qH< ¤–òãò:…ü¢’¨ä7•|ÁÉaÈD)3Ù8•’:AùA¬2Ý´‰Ç$×°–ì,]kò¦+y18>YÙîæÞ~<a0½V9Á²’wÎTøý$&%W³E‰ ï—x³)nïoŽFœ å¤`m‘ñÈ+Å8;·„ G¼’ñþ¨WB“aì•H ±MWïðè §dR/[tSX6¾Æ;v‹µŠÌæ}5ãÇJ²üÌ•üK%¯+9N‰ëþ¸)á;É¿j`· q³ž¹³{À­cžMwbãÇE» Ã.“\ƒT>ƒQ"ï*ùPÉ÷ñGâ\«ò c¥Á¼í¼2»“V)÷³Ù[ô•u;wƒ¨—b]`ô ®ú)Úýÿ‹vÿPÉo*ùbH>ßW™>ôCú«úp{R8ÝhóPøLLgLQ,¾å þ·jŸ­ÀBþ¢’ÿÔqíûÅÇwr0V÷“iÉR¿­kËJþ­l_Ô‡,[£*i*é+i‡OpB| B3¡•äcFhM5³«“,ƒ âAãàê6ºeÕ\cÕܺª9NèɽÂŃ—°üþ}Ú‰—G³+?m¤¿Kw"•‹› …‚Ý%;2,¡ò¯p^bÜUü°ëpïAëÇviåÀ|1Æ«ˆ OéùxKVIñÇJŠOÖÝ¡œ'¤y€)É€S•ŒÕ7æþ>½ç‚oêÈ”\I65Þ]-á²êKYÙ®ÃRVû°žç=0Ÿ#½ppæ¨ Âý9îÓ8ØR ¿ø¤žÐßl½Q˜´™ÁÅÞ{ìïˆþœ ü¶g*ɰɫì.Q†‚q4oå0}OˆÍŠ¸Â’ ÃJҞ˞%þpÞ(â¶Ú0çp4ŒV°SUÚUÖÝU’áâ›J^ŸÐÑÇ•J΢å÷9]8´® ¶Íì‘c16rûceýˆ£V”is43æž´Æ‘œB˜aÏ%ÐùÈdê2š8Ht At¹L{ʦN•Ä0Ë"gWàÃ,—‰|†RÚÝrSdMúP©¶î|Ya%©E÷ˆ6Î\6û,m;ÿÍ‹öã.†8‹™ó°Vn²!+L4w(ù ’z²nK6YŠûM4Éc_¥ÑNª ÀÎ"œîϪ¦ÒØ”ÊBrúªZÁ‹ßoJÚ{Ωcjé\y•Wê3 ÃÒsS¤Hûmt ª€FªÛ"=<•˜õxVÿ¶X ˆJþö溮·{™ë4€ƒö5Ÿø„¶Ô(ÆiXœCv W…;®ïÃ4,xn m… ÃA6ÖÓµþŽù-&Ö"°Ãũе¾R…Ât¿ð”îç=]¸=!©#‹ÝòT’`%;õ­[‚ÒÓGàšÔñLo’ç}9«¬ŸïWxOj- ßȺ§Ì æÝ±ÌòͲ#ѤZ÷é5d¼ã⮸©«4îâ,6ÂÛk.x×õµÑzZ, •­90œ÷ìl¼ "E "­Cßã‰O±%KÿûM9_L?Má¯m|£Y°n$ÐqŸ‚7³´±…¼}Žq ypͺdû,ª§Ðj÷èx´ª™$a[q*’E:¿RØ)O"õ~)¸Þa›ÇRq<9‰,Yª÷,¢Û'/ѰïÂt\ÕË‚GO -¦ÞÊ ;dÅ+Þméixc¶¦É.Op挌N=’1º•S7–;žX-©á”«´˜fën p¹jwxÌ+j©"­D§³ a%·9„×F娊…Mû Î>Œc] ÈLÖQåœDœo´Ç -nëEq•ä‡p¢=Ñ(\—a(wrêÔ €®ùµ“šr(Â^iic^¸4Û=eÊ›ä›îu]ð:1 ;XkÀUíiÇ7³‹‡4I8¿°[Ó„'Ù¬ü”ÅÍ­DwL g !)žlLR(/›!Ïü ¢N“}Çxk_HeOλha[£æ]¬½å&{uÁ]¹¾ï¨ šqÛº‰(’« æîyÊXÖ7Ê5Oa\0j­fËzv™‘ðÔ#³øË 3Å2ÕñÄfjúÍ’šcÆlè»ätߥˆƒ;)–×\ýH(o{Ü|žm@†ƒ€{  iË×@¹[ø³j™“ªÏ2Ťšzéï6C7ü! –Q?ßFƒ¤~ô]µÑlѤ¤a ×uN8dôqÍÏü˜ÞóQ®q‘D¡´šVZº›mbY’¡qªÌ Y×ݸ=p÷Y±PŠ,ÈFäÔôÝù¸ v‹/¥Ïê¥Ä›.†ÆÃÀÐÍ¢ÕæÃŽdhOXÛœŠ²k“¿üд›ríôþpù¹½ÿYT´?¸™)Pvþ«€Ý8SÊÆÆÒ!ÞË0DNûAé|µqÀÎVFÙ¦–úæˆW•dßX0¨ÅúŒ.*É:-XñËqŸúÆa7~ bùàÙ­"p⥮-Ï ã0HvË›§DOM#ƒóØöÕX/m¿BYÃËÍb´qÓ´³þ]ÚG(ÉâÜ?€Û¿ì3vÉÜ}EhåǽµÂAp}÷ÇA•$ˆ®çö: °b~%2ÿÑ.Т ÏÖK4pÛ–¶ìË&'·ž²±@ a» jq ësÐ¥wñÉrȘ·a9ï‚ÒxI.ω²ò[º­Ø¦ Á/6—pÎéÂ=Lˆ* ZòVc¶ÅUÌW²EU`"èèÀ©Ëeö ›.»OJ1·ŽÚdeÒ#yd¾€lAö®Ú §”¯? ¶@ŒžÕ4n®ëq*UÏ™X ¼>¤)”ø`›ÚXO ¸Ñî$gÐ`GÁ èÇe wÔv¸@ù—ÖÔd©ÕèúÀ‹ºi¢LÌæ$)~ BcGÌ—° -±ò‡ 2iëšìÊ 7ia dø¦ÿwSÔßô¼Û”$ ;`…¹¤à<ß³ÕïaGôIµ¨£_Rè²DÙØţ'Ÿw«Êÿ§ÊI¡h°‡}×|Mq_]=%/Þ\²Üe£æ"¦‘¸ôvÝç [Ø ÆX'|9Í{b 914e™û2¦’J”iy‰5yîÞ †t9tM=Ç_W9±ZÄš:NkÉWÚAÛÈÒAØÛPôvQOÒ ƒ'•q³ÔÀ*Ó©kЏ$ó¦oc·’UHÊPôW¿o÷m%‡K0Xïãø[Ï•Ý=œM ù·Ž^…v5œ÷¿*ù›J¾àì ))ü£²Tؾd¬o:%ÜóèíÒrÜ~ýÓ÷·ÿ>ÊO´Ï®”b À†`"=‡Øh­÷¡O ð5P‰VîÂ2ä±?Í”»kÑÍÌEûÛ%ÉxþVäv—7+twù,Ù´'yæ=€Ü\/Pí0†UTº[«µ-;CÁŠSW¹ëZxƒÞ®Þú,™×„àÉžè/ôô½QQÚ“Ju¥¬[†OÝÓmµmÿœL‹ãî%’tyÓز^k“ñ, ¤ØIX×Ô.‘Ê'Ö//Îþ ÿýÈsendstream endobj 200 0 obj << /Filter /FlateDecode /Length 160 >> stream xœ]O1ƒ0 Üó ÿ Àb¡ C+ÔöÁqPœ(„¡¿/ СÃY:ß|–ýpØFcpø¢Ʋ´º- ÁD³eQV -Ɠ剋òBöwåßO°Èü¡’Ϫ> stream xœíÛd·qÆßyÎsC0àYs|ÈÃËù!€#+PìXž ’Œvv¥µwv¤½H1ŒøoOñ^›µ·Vd'ü ú›j’‡‡EÙ¿®ýö°.ê°Æÿ•ÿ>¸»øù§Ú¾z~±¾ºøöB¥¿ÊÜþñš,œ=ø%Xk×.ò'ÕA™}Q«:¸Õ,j³‡ë»‹ÏŽ¿¼¼Úõ¶¬êøÍ庄°«àOzñ¾_ôâçÇ^~Þ‹_÷âM/ÞNÕg©¸ùÍ?¿¼üâúŸéQ–°‡Ãõ'×ïóŽ}ß?ôxÚ›¯_Û±—c»©ø]/þ¤ôŽÝ÷âÓ^|ыϦ¶Ozñƒ©úxZïÃ^|ÎçØËw½ø²×^üË´k7Óæ¾š¶<ï0{ä?õ⇽¨_WÃ÷½x;­ÁLk˜¿Œ'¼†8u´1˦Móë[šÔ¬.š[ã<ûÕõÅï¢ç8·-þ°oJ/.6­Í¿ƒÒA-Êž=<üûáéŶ¸Í®ûá{r#š¢‡?ß}t¡|Ør¡Ý(·ìæpǧgO.~¡Âº-Æq«ª8£¿+µ-v«¢ìžü>+r·ƒUQÀjÛ– À*+VoëâU±¢áZ5XÅz[ÎV{\'Àª(»ÞiL‹•5‹`UܲúbåÌb°_E±ý·¶èͲãxž1˜Åz°* «K¯´Ê9Þ¯¦€•2ñ¥s«¢°õJÏ»:°* Xm{œ8ܪ(l¼ôJ«ðfÀª(`µï‹Á~zo÷Åj°ªJŸ…zu;Mb°* ›…zõûâ±_EasB¯Á‚IÀ¯ÕjÅßsSx¿•²‹†‘ª ï‘ÒvÙà Å®äÔr¶ÚìU¨ÉØÅBÇ«½Úíâà-Å®Ö/ª¶gí`œŠb÷UÅ™“­Í}ìVV°ïÞÅz¹UQ ÷äG¼åªðÞÓK] ô«*|ŽêøWèWUøì‹K¡ƒ·X¿«E»bµ¹ÅC¿ŠϨ -«ð®«ÂÖ­wa0JŒ¼¦²F£¢ðª_6x‹U+*ìUQ W>cZ”°îË®³Õ¶úÅÁ[, ŒÃ¦üâ¡_Uá-n:,+øjUÀj ‹‚~U…?ãf‚Ueχm‹wX¨É†eǪPÉV.,üµ)l…Ø|X`à‹½ a Ø«¢p+Cã UU…Ïe£Ó'¸UUX¯ íŽøES¸•Yoº*Ðâ¾.;ö«(Ð{»Æz¹UUx‹ŽvmìWQ .¯p?o XÅÀÞbUø»Ž«˜†~U…?ã®Ô‚F d­–üµ*PÓ¦p7o ï;ýyØÍ%[Ñê„FE`#º[½¬ð«£àô°—Wúîõ°—J¶ zØË%YÙU/;ô«)¬÷6«ð¦«Âûeµöòª€Õ¦‡Ø§*|$¬Ù†½*`µo‹Æ~Z´#èV¬(.ÇneÏë)BÆ^…¯Ì–brÜÑ«Â÷WG1¹‡^U…﯎âÂÆ´*|evÚ ;zUxïÕ«¡_UácêLj[Z¤˜|Ç~Z¤˜Ì´G9îçUš("Ø«¬ð†vâcpŪðº<½+h°`£ö!ú© Ÿ3žÊ¸ŸW…¿COñø½ª ÔEñ8œ´šý¢xÜÛ® XQ<ŽÑOU Eg‡ý¼*`å)FÆ~Z OZ]aëH ¨wô¦p+ŠÊ1þ© o1PTˆB¶¡ Î¥£’­(2ÄsÖ d«Ý ;zUøhë0ú)ôœbrÜÏ«ÂgM ˜|Ç^¡’­È'q« ëÕ¶RLûySÀŠþ ­QÉVšbc V¨d«bä ¬Š-ñOWú|ØV ÊaGo ÔEQ¹Å~…ê¶RTî#\ÀÛæ*ð^ùÕûyUx{^ ·ÍMºôpÛ<*Ùjn›»Âæƒ7Ãmó¨d+ŠËáµ)Ð/;Ü67žÑ ·ÍM+·ÍMà}Ãmó¨$«@Q9ÜŸŽJ¶RÃmó¨d+·ÍUà£(&ÇÓVSXßÃ>Ü6J¶²+ÞžŽJ¶rÃmsWx‹~¸m•lE19îçUaoǬëpÛ<*ÙJ ·Í]éý¢`g¸mn U³nÃmsWx]Fá~ÞèýŽ·ÍƒmìpÛÜÞžn›»Â­üpÛÜèUP¸›7…[©u¸on X)gÓQÉVz¸oî ë½Ú†ûæQÉV´ÂnÞþÕ>Ü7w…·h‡ûæ®p+ òÿe{…Q~¸i® ÿͨ0Ü4J²ÒëpÓÜþtZáMsÀ†âqØË›ÂÎ<´7ÍMºÌpÓÜ>ô>Ü4w…¦¶ÃMsSØNg´3¸—7…¼öÃMsS _a¸in ‰mÅ›æ*€nš›Â{EGvÜË›VÛpÓÜ>tÈY°Á,ðç£`÷ò¦°o½ ¸—J¶¢Xöò®°wH›2ž²šO†›æ¦ðÞÓr‡{ySx]䘸—7…ÏSšJx*m ´¸ 7ÍMºÌpÓÜ6†"rØÍ›-Z¼i®ظᦹ+¼=?Ü4w…[…á¦yT’Õ¾:ÜÍ›Âûµ«á®yT²Åãp&m ÔEñ8.¦ƒ’­Ìp×<*ÙŠâB¸;•le‡»æ®°ñÚÝp×ÜnE+œ´F%[…᮹)|vÙu¸k•l¥†»æ®°~Y=Ü57…½¥ØNZ]áu™á®¹+Üjîš›-Úá®yT²•îš»Â[ôaØÏ«ÂW †»æ®°ºÜ:Ü57…¿!§‡»æªØ»U¬¶á®¹)ìþÑ8³»zQ Bpûp×\lÑâ]sØÍ¼q•ã®^°òÃ]sU°½0Ü5W…ß5¿wÍMá-z5Ü57¬(*Ç]½*|Lý6Ü5W…&ÿçu¶2Ã]sUì¾§ý#[íÃ]sSøêíp×\ §‡}½*l_O/-¤q½2f2ç¶Ç»uP.¹•ã}-/–à.¿Q§bl½¦ËÊ뻋ã‹Çw/¯#¬WÑNQ`fâ¸Ó ,dBêsÏAïÇåðøé£KšÉtŽrLJ^<¼íòÙ²Œ„,âÅ!Ÿ‡£•„#„,âÅ!‹x1@È"^ ²ˆ„,âÅûž‰ƒÕ¹x1·:/+/†Þ‹x1@È"^ ò/戊Œ„,âÅ€ûJx1·s¼1^/†š$¼{%âÅ!‹x1@È^Œ½ñbÞ{/9þuŽsYÄ‹B–ðb„%¼!ä9^Œ°¯„#„|&^ V"^ °¯„#„,áÅ!Ÿ‰ƒ•€8,âÅ€ûŠx1Ô%ãÅ= ñb@ÏÅ‹¹•ˆ|&^ V2^Ì[ñb轈C‹gâÅòŠx1à·^ ð­ˆóù𠼘×%âÅÐw /æí‰x1@È"^ £ âÅÐ÷sñbn%âÅ!Ÿ‰ƒÕ™x1X‡s/YÄ‹ùÊ,ãÅ!‹x1@È"^ H°ˆÈ+âÅ‹x1´(àÅОˆC{^ŒuIx1@ÈgâÅÜJÄ‹Ðñb€e¼˜×u.^Ì­ÎÅ‹¹•ˆX{&^ V^ íý(x1XIx1GE¼ú.âÅ!‹x1ëÕÙx1X‰ƒ•ˆC‹"^ ²ˆC]"^ ²ŒsYÆ‹9.+âÅ!‹x1//ŒWÄ‹ñb€E¼êñb /†ÞËx1ÇjE¼ d/øöÇÀ‹¹•„#„,áÅ!‹x1Œ–ˆÃ8ˆx1À¾çâÅÜJÄ‹Bñbè—€C{2^Ìq_/沈C]^ ²ˆÆ+âÅ!‹x1Ô%ãÅlµ‘ñbtE¼ZñbhQÄ‹B>/æV"^ ¬ˆ„,âÅ€Þž‰ƒ•ˆC‹"^ÌGâx1‡ÏÄ‹ÁJÆ‹9Z+ãŬ÷2^ uÉx1‡'x1º"^ m‰x1@È"^ -Šx1´x&^ À¬ˆ„¬D¼˜×%ãÅ÷•ñb^—ˆC]^ ²ŒóšÎÄ‹ÁJÀ‹ù|x^Ì]/æè­ˆC]2^Ìüëx1yE¼ê’ñbÞ¯³ðb°‘ñbŽÕþx1؈x1@È2^Ìû~.^Ì­d¼˜·(âŬ®WàÅÌÊx1¯KÄ‹Ññb€E¼êðb軌󾟉ƒÕ‚ƒ•Œ³g|^Ìa_/†ºD¼ äwÆ‹áï^Œ²„b$ãÅüéÎËÁJÄ‹B–ñb^—ˆì+âÅ!‹x1@È"^ ²ˆ¤{^Ì­ÎÄ‹ÁJÀ‹Añbx>/YÆ‹Ùü“ñb€E¼Àa/øVÄ‹¡./æà°ŒóE¼êñbÀ}Ï‹Áê\¼˜ã²"^ÌßµŒ8,âÅP—ˆC]?^Ì­ÎÅ‹¹•ˆóe¼ d/æu‰x1º"^ Hð™x1X‰x1´(ãÅüE¼Zñb¾JÈx1@È^Œ²„#¢+áÅ!‹x1@Ès¼Û;/F+/æ-Šx1¢·çâÅÜJ‹Bñb€%¼!d /FY‹q$<Þ5W“³Câ_‰ÂÅÄ¿…‹‰% 5‰ÂÅÄ¿…‹‰% ÿJ.&þ•(\Lü+Q¸˜øwNᎉ% 5‰ÂÅÄ¿…‹šDábâ_‰ÂEM¢p1ñ¯Dábâ_‰ÂÅÄ¿…‹‰g .Oü+Q¸˜øW¢p1ñ¯Dábâ_Ã…Ä¿…‹‰% ÿJ.&þ•(\Lü+Q¸˜øW p‡Ä¿…‹‰% ·jmöM)\Lü+Q¸˜øW¢p1ñ¯€áBâ_‰ÂÅÄ¿…‹šDábâ_ÂÿJ.&þ•(\Lü+Q¸¨I.&þ0\Hü+Q¸˜øW¢pOYÝ…‹‰ ÿ î I.&þ•(\Lü+Q¸¨I.&þ•(\Lü+Q¸˜øW¢p1ñ¯Dá¢&P¸Câ_‰ÂÅÄ¿†{‚êÎ(\Lü+Q¸˜øW¢pOYÝ † ‰% ÿJ.&þ•(ÜSVwBáž²ºS ÿJ.&þ•(\Ô$ ÿJ.j…‹‰% 5Ã…Ä¿…‹‰ wHü+Q¸˜øW¢p1ñ¯Dábâ_‰ÂÅÄ¿…‹‰% ÿ .$þ•(\Lü+Q¸˜øW p‡Ä¿† ’Dábâ_‰ÂÕøW¢p1ñ¯Dábâ_‰ÂEM¢p1ñ¯Dá¢&Q¸˜øW p‡Ä¿…‹šDábâ_Ã=Augî)«;£pOYÝ…‹‰ ÿJ.&þ•(ÜSV÷”ÂÿJ.j…«NXÝ…{ÊêÎ(\Lü+Q¸˜øW¢p1ñ¯Dábâ_‰ÂÅÄ¿…‹‰ wHü+Q¸§¬îŒÂÅÄ¿…‹‰% ÿJ.&þ•(\Lü+Q¸˜øW¢p‹ÆêšP¸Câ_‰ÂÅÄ¿…‹‰ $‰ÂEM¢p1ñ¯Dábâ_‰ÂÅÄ¿…‹‰% ÿ îøW¢pQ“(\Lü+Q¸˜øW¢p1ñ¯€áBâ_‰ÂÅÄ¿…‹‰% ÿ .$þ(Ü!ñ¯Dábâ_‰Â=eug.&þ•(\Lü+Q¸§¬îŒÂÝ‡Ûæ9…{ÊêÎ(ÜSVwFábâ_ÂÿJ.&þ•(\Lü+Q¸¨I.&þ•(ÜSVwFáîÃmóœÂÅÄ¿…‹šDábâ_Â=eu§.&þ•(\Lü+Q¸zöõS¾_™S¸˜øW¢p1ñ¯Dábâ_‰ÂÅÄ¿…‹š@á‰% ÿJnÕÚ¨O)\Lü+Q¸˜øW¢p1ñ¯€áBâ_‰ÂÅÄ¿…‹šDábâß9†‹‰% ÿJ.&þ•(ÜSVwFábâ_‰Â=eug.&þ•(\Lü+Q¸¨ .$þ(ÜSVwJáž²º3 ÷”Õ`¸o›ç.&þ•(ÜSVwFáž²º3 × ·Ís ÷”Õ=¥pÇÄ¿…{ÊêÎ(\Lü+Q¸z¸mžS¸˜øW¢p1ñ¯€áž º3 ÿJ.j…‹‰ wÐ$ 5‰Â=eug.&þ•(ÜSVwFábâ_‰ÂÅÄ¿…‹ÚÄu|¯˜S¸˜øW pOYÝ)…‹‰ WáMóœÂÅÄ¿…‹‰% ÿJ.&þ•(\Lü+Q¸˜øW¢p1ñ¯@በwÅ›æ9…‹‰% 5‰ÂÅÄ¿† ‰% ÿJî)«;£p1ñ¯Dábâ_ÂÿJ.&þ•(\Lü+Q¸˜øW¢p1ñ¯Dášá¦yNábâ_ÃI¢p1ñ¯Dá¢&P¸§¬î”ÂÅÄ¿…{ÊêÎ(\Lü+Q¸§¬îŒÂ=eugî)«;£p1ñ¯Dá¢&Q¸§¬î„ÂÿJî)«;£p1ñ¯Dáêá®yNábâ_‰ÂEM¢p1ñ¯Dáž²º3 ÿJ.&þ(Ü!ñ¯Dábâ_‰ÂÅÄ¿…‹‰% ÿJ.&þ0\Hü+Q¸¨I®‡Ä¿…;$þ•(\Lü+Q¸¨I.&þ•(\Lü+Q¸˜øW¢p1ñ¯Dábâ_‰ÂÅÄ¿S ÷Í3 Ét=-2ѵ4=^~xlÚŠ[9µê wÇ?×ôêšUW˜•¢‡›y·j ³ÒÔ÷¬šÂ¬(RLA·j ³Š/(†Qݪ)Ì*…g[5…Yyrf>M`6Ž qèFMéVÛJÁ¾çV]aVZ¥é̬šÂ¬6Úèâ¶Ó­šÂ¬ÈOÓ@ݪ)ÌÊÒ˜i˜Mœ|šÀl<Þ0 ]éVt,ßS Üç_S˜•¢í~çÏ×f¥i›Ð0—›Â¬¨thíVMaV;!-X5…YY:‚l|–v…Y Å}¬[½}¦îtZŒÛMyZ¿b¦n½®*fꦤ¿ÚÃ36Úd×·Çã_h¶îšNÐüõSôvvZ.ñCçÑü tè>¦kcmâBc€Í>õšÆ¼SãǶwjl{·ÆÌ; £iѺñ­íµ5Ü›?ÚþŽ­Ù7Èù§^ÕZÊî^3»·P­œ ŸØ7<@V£þ jÄ¡QŒÚߌØ_{ÐRŒà!ØMfÄ:þfþÙÓäÓfîÒ)%¦ÉW9Mþzyµ…¸ìºãNE·ÆK»£Šrü*t5Gµ§rüŠ•Æý‡Kœ¿ÅK*:*ØÍÇ~"¥KÚ!n(Švgã²­\f¹ãr§Ë·ø6.iUÉ‹ Üjè?ý(îH[\‹mzóEɪ÷±-Á–Îßñ í;¦¸„V¿ÛHû…>±s´´ºò/|üôÑ¥¦PˆÂ?öÐA–blš±Ÿ\ûòÅ—ÏÞüñò§yh?;Äo/7Š(i‹r†Aµß^ÄŸÆ£iskô°m+|¬M¬{ aM|#»]|\èoõî-jšú’è=Þ3餄¼ìùO"¥Ë ½$ÐKÎð!M—$¤ ’?ãògâ¿ÖjIŒ`TÌV¾»J1fTö-ßm9—'ò¶Ú-3q2åz¨”aûÒ“‹ìÖÅ 4*¥/›lÙ³6ÿ‰ˆX íy>+4b±mkcp·ÃX±J½Qñ”UFkK½Q4ö™±ÛóØlñß—HßLJt•ØD¼¢©–GK¹=ÿ‚+Þõæ¶èóé¶'þrH%%ìù7ªTùWDQÙòQ¢O#c|þŽ9B»Ù&£ÊŸÒY¡Å5±ºù¼'=˜-ž:)昛¡c}ýJ8ÅNGøìªÅ1·]…âªÕ1wZL,óË} é Èæ—» 妻ú% SñÔê—Évî—±éûÕæ—txÍ¿Oi~G;ÝB7Ç,Ñx÷K«×â©Õ/-mké«Ï6 6Fžž;f\05÷Ë8²§V¿´N©úet¤ô»Žæ—6¤Ûæ—qCË÷·Õ/£³EZ¨û¥‹ 8¦‹{‹aŽYÝ/­»ÉS›_º¸mÜ1K»"sLGënà~ÏÄÉS«_ÆOgG­~IqQúF®û¥×©æ—~ˇÑî—Þlù7†Í/=­»ÉS«kzZvã9£»f=u×ô4“³6×ôÁ¤…£ûf uwg®hÕ_du× ´ìæ­¤ºfØLvÖæš!ýâ²ùe ·“<µùe°ù(ݧQ 57í$Í/Íì©Õ/­¹é¤ê—í@×üÒ¬´ê¦­:¦Yµm´¼ÏŸÚlqÕâ˜f5¶ìlÅ1ÍJËn& òË4+u#mlÅ3Íš[èžIK”ÍEõL³[¨õâ™F­.GP=Ó(ëô}@õL£(òÚø–ÙŽ¤Í5¢i—v¶êšFÑÊëÙEÆA1Ï41K_mTפ5ÔgÜ»º¦QÁg¶»x¦Ñ´ò¦ûöê™FÓ$‹¾Ú<“"Ê|Ñ<“âMŸîÇ›gm’çtÏ4šü"újõÌv¦n®i4Epñú¿¹&­ñ!]]7×4ïdg­®i( È[[õMCûurÖâšfKÿ‚sMC;LºTn®i¶è\¹¦¡53®Í3 -IÉW›gÒ†³¦Í­z¦!—J×½Í3Û@óL \UþÙTõLŠ UþPõLCQàâš&†»;óLïêò—ή*T_úÒ¹z¦‰WÌi;©ÎiâÏÛÒÖVÓ˜PÂÐ6“öU7wMÎIM•0´:§ÙiáMÛIsÎz«Ñs7% mιïºý&=rÙÞªsFÇߤ7R¼µ¼Í=”0´ú¦]KÚ|3ÎUpM:¡•Ÿ˜T×´[‰B›kZS¢Ðæš–ÂÇì¬Õ5ë­LwMK+oÂG›kZ_ÂÐ6¢6”0´ù¦£•7ykóM§rÚ}Óé½|ÁXÓm) í¾éLCÓ·2©)G˜u¡«bsJç£8JQq{>oqÉ‚Ïq¨ >ßÔ¶{¥è¬É=Åq;q‘nΊÊq¨‹'¤ô^ç84þ&ˤô´öÆï”bÇuVLŽCUÅÅ=­½qCI>”÷É¥¶´Åÿëj š~Ôn«§§; ò×NÉ솋ÆIÅ›m¿9ðåtwyÓa÷áøô’|ö—`Ž¢L~æƒ:Þ?»ŒGÛ&îñ.ê´úxo7/.ãW1䝿øø2~ßB»Œ?Þ?½¼Š?š¦#óñæËX¦÷æxÿ2U¯é`x|‘M¨‡ÇTɺºÕ¿Žt¬ÞÃña4 ÈQmÇ—]}[§]’B² *gÝ~¼ÍÆ4#¨¤ê8µ—š¦SŸŠ´h:ïêò9ZÃñIî…罞ë¢(€Šñw·–âçãÍ¥Ž» Àw±Dv©¢Rçm®(ÜãØ” >ìÇ2äòCÖljGjzoo‰‰·×·ô¢boâk¢÷ô²Ÿõâw½øi/>LEOû+ÕPZÙoS”Qµ™+ö‚ïéíÅ_mˆs€‚'XÖíãVŽIfW^? g_ †-Ë4#÷Kü _íÆ¹W´fŽŒÖ êÙE^Ü®â/O5-Í©s¿¤þÄC»ª£A;wX|Ö‹ßõâOzñA/Þ÷âÓ^|1­,ÛR˜jiδâOzñ®_öâÚ‹ÿÒ‹¬²Û^|È›˜½§øƒDE«íõ'×ïv¼Nïi]5Íįӻ¡=Ì×wh ,úB%´*ŠñÊËþûøjâ·³.ÓfKû9¢m<<Çž+Úbé,eÒåä¯&Ç®‘¯'Kfø¬ñÅGÿQ!=r„·œ‡yD®# ŠpgÜâAŠæñß1Îë­ –;úcüÜNNøå%M9 ÃñOYôdz“[ 'ðM|¹Š¢}kj‡\|ûò'íªeGŽÅæ…³tãe_OŸvã— ´/ëq«¯^Õl]ÈÄš®/ñawv¶F¼èÅǽx׋7}axÑ‹l¹ø¨?éÅO{ñ7½øe/þºï§Å?N§w$c(N*Ïô®W[¼æˆßÐfMó<}?w6âbMÃÿ~l´¾@?Ï"½i‡à³.¾B:ÅQŸÆ©O¯ôŽoJ}ä~0 îÓ´ŠÏnÒòQßrÛSÒƒPstVÉ[\™4¿h],‘ia¤è¤¬}i|Ø×-¶J²…íq/ÞõâÍÔ–UöQ/~Ò‹Ÿöuë7½øe/þzºò±btØÃ§‹·èåéM—{¶n?xÝ“Âr_‡êócW?¿LýˆSrOíÿ|ùÓ‹RƯºŠçÝY›H*>i=ø‡>WUTÇoºzӋϦ»ÅÓ^|Ñ‹K/>šÖÀê½›Ö[Æ&—/§»ÞƒéûœwèÙÔ6ouñ 3 I§6$eDƉÊF÷ocD؆þ¸Ÿ÷⿾nD¾êÅßNýéÓ†çÄ:ÿmégÓ¡dÓ÷+>ªoðVþæç鼺§ÓAØÆiîÅlÈóÑ{å8©^ÿ/æ=».¶âg½ÈÚø¢¯$lQQ0N“§”6ŽW>Ú»ííëö›W·z;mõÅTýa§ØŸú€~ø¿nÁþ«-O÷SÛçãsØ}¯GÚTü.M˜˜Ì"xŒwÓßo{ñ³^|1­ëæ2^úù½>zŸöâ½øAjöJoa±ZáæßÝ¡½~a›»™öSxI©ˆ1| nYÄö±Ð…DOdƒŒ÷¦“ú/|Á`¶ÕsÙ¢÷hG½}tțÐ|Äž51s×½…÷ØêÏ9ˆœDoÿBÇžÞôfÞ&l|>}@aáx4Äg¯{ O¦-À'P+þ¬YÞ›~ìd…HÅo¦kð{ÓʦN–^Éñ¿â]Æpº€W3›ÞÏ›:Ûþ¥Û‹ÿ1µù$ão懶ÿJ~õûùÆôÿ~ó&~ÓÔŸ½n.<ŸwM÷âûoáoóN°ب±ýíçSƒ÷§cY&CÚs몰Öà3©ó­º<]*ë^|?G Ö-^µûì÷úßë¶nbr'‡³ì¯òà?Ê¿Fß%MW¾×îæÌ€ ¾ô½ÆûXñl9ûlZdƒq3ý{O_Omçÿœ~ìŠÙ»îìþìßzñW½øÅ´øöëèÝ«OT졾{ݸñ÷È&*{ÿó Ÿ½ÒÇSõåT–ܯ¦}cë,;R=ví]p6Þà :›os~寚µüdºJ²µ“ƒø‚ù¨ï{‘”îò2“`­¡.£öåùfÚÚÒŽWoÐ@+¾ìEö<7ïÜó·¨øòÊyÇjÙV '´¾†²kvúb«e¿D“½ó U?ÐzÉb³·[Ù\n*›Ö,j”%7®J37>-²®Îoø?¿cL·Îk{oÚô“éÏך_ôáø§×-ƒóuîÔZeìÆæ~ú±ùXÂj•ÝM ¤P¿}ìËî2ìræÁÔï˜c>绊0ÕºZnË<÷›Ûm‹ZÛMÐ×¼…¶>}ØU¶j­]e!áÔÛK#óÝS:CüÜ?€íñÑt(î¦ÏÁ:ñÚKÖ7œêã^!œ!ø,ø`þí´^‚q´fÇüOÞå(ÚµŸiýîâ¿s£ïHendstream endobj 202 0 obj << /Filter /FlateDecode /Length 3760 >> stream xœí[KoǾ3ù Á‡¥¡õûa˜ÀN(/™9Ñ>,—/Éâ.MRR„ ÷üìTuÏLUÏÖrEY ÐA¥ÙîêêzuÕ×­ŸgªÓ3…ú¿W×Ï^˜0»¼;P³ËƒŸtùuÖÿµºžýîFx;K]ÁÍŽ/êL=3Fu&ºYT®Ó6ÌŽ¯Næg‡ªËÙ&æK"ïù×…7¶SZψü€i#ùÃ!ÑO‰Åkúú’È;‘Ûs¢/ˆÜyKäµ(ñR\£{ß‘|CäkyÏÉà}îò5‘K"{eî£<þãÁÂÆÎ§g ?ù<;>;˜ÿëðøÕAùwL³ãçÇŸŸÌÏËT¯sê-ä‘çƒçÿ,œuêb¶ 㮞sQ×w¢¦.Åi\7â<ÙQ %s{".ýZ4ÌšÈS"¿ §úVôá{‘|)ò½$f²8L­ÝÉFl,ó´3Q=¯iÚ;r—DÞyÕU‰»"sÐ>VrÛ£C dò¨ô l§•ƒ¼„Nùraœë¬Ö­W­Ä-­E ߊc™.?=‰ `®vµ7— aV£a £v¿¤ úÊ,ñvŸTÜ}™Û³$t*ï^ä Ç_y¯{~DΛž ¢*®Å}0!Þ‹-néR\‚9; ·DžÙy*N[¹!òš¢a¹ '<°zn¤$°¤ˆ="RÓ€gD®Dq×"ß[q,ø31ü“*øIö´F˜˜þ_¹|L°ýW.B²e%M*šêd¥v¹%’Õ9gcEó%}Óó~•¯EÊ%Ós—•¬òqãv¶Ûç“®œ#߉ËýZQ&{ò­8VÖ0ßçý¶<*ñ¼Å\r]³o4WyȾ—bnÏrö”¼í¢mRº'ozO$sG*¥™¶žˆÛ–«hæ rAt'r`K|h #GÛá1ÊÖDöv™vJš»jZÉëdÿ€’˜=&÷ª4JU˜ XÖ9]æ^TþŠÈ OfÒØ±Mé;¡òñ$g$RiİKDzñëWeÏ“1a˜S¼:ÂÔ6â´ë}|ï…­7 no‘£ŒM[‰Ó¾9°c¹Ï[‘ƒ\ÕÊçózŸ8ÕÏ^8=C×SY#d<ä8¯‡òøp¡:£”ɱ”a6¹lJv²Ét6‡ùoá«ÓÑÆªYªM™“çÈÂæì¢Ç²IwA{¬a€3dÊ„»0¡ËÉu:?ÎKÖ—&çÅTS¿MPQ_0"*åÀ®ë«|Y[+!_áŸsŒ¦Ê¬»…ë%ªOgã‚–I:Î78&(£t¯&ËÕ¤ƒëüpô~–`³wDÞù’Èk"—âXÆì÷D>'ò‘&ò”È?¹ÉŸDËkêsã¦Pf£• ˆðk;UÁ¨¸¬s ~±™7à¬&¢“èÆfÕ”:&'÷Âg0¬Ý;”#O­3̬§fð]iÚvÞ¥DGU!4N…2 §/q,vMY«ˆg½õ¦K)»Z8‘a–$@–ðð9 {g¹úŒK0n/$ßYˆ¶.(Š~-Ú½#rÍ (ŦNCÄí0 Èç”ã_×u§A¥‡ÂF€eÅh­°É$å@ ëq¿ÅŠ`üîŠÊ7Ùj`r6(‘;Äù”]Æ.G+è(Òe RAYiŸü|ƒˆ„YŽzþªÙÁ¸äªY²lW jЦ‚ö0 ’’™/ùæ í”IÖH^h8$\̽3fSQùgÚB^yJäK"×» ÞœCsM•œƒÖ©‰€F›Æ>Hñ΂¡@ª ö¹ZeëJ^Å!&»‡5é”ò0æ® ã­´‰W Áï 1=Å& ¥D <õü{:36UÚœ›ã¥8L†£agPôPN‘Ÿ@w•›ÍÍźÈR;Þˆ) ’I›ØŸ…¼%ò½¨¶‚Ì9,ó…JP½¤$ 1;CãѾ!Üy/Ðb3®¹aŽ"ÆŠ5w“´}CÞ+Í™)+"eÙ„¥uimÅB¢$"[D¾ÁºA§šýà«WågEÉb[QIsÓœ#?Ý:Ñè-“ܬü0ÉacåÂYm¥M=dÖ½/”bä;Ò¯xÑË‘"¯P—A9äoÙ¾Š¤à1}Û$eƒQþË*4 ÙÚŠ-gÿ˜uÙŒr¾ÕØSÁ‡½$·Žä§«ö«´ 6)gmkJ/û6 g©\,Äà­'¾¡j•§­ijñìÐbªsŸ" >‘åĻʬ [C#å”ýð+P¾Ë%–OJÙ±2öBÊÁÆÒüïœÁù4éÆÀ®u!3&¾¢ÿjl÷ä&‘5MDò]øÉ=ëÜ>#ò׺¡‘AKv«÷'‘Ù®Û.i 7í½¾“ÿ‘dýô"Ùc“‹z‡~hÀµ‹i}_Žp}G¤¬`v”Å‘ˆ66ϲiY“ËCó>'R‹_oDÅ?ã²IÓvˆy'r[*1§×;ìêä†ÆÏ‰d÷%½¡'îšÌØiIÈ ’ zaaÅž@É2¦†…ȰV$åÕ´8Ö‰¢§GËPÔçˆTDq@"Ò‹¤«¸ÜeÛ×ÌÓœÉ2"ÂÑ…ÈWÄoÿu^.ý$b¢jéLrÍ.Ho ‡ì¦_§þÀ°E-’Ìϼø5‚¨1€¬f‡Ÿ‘C™±…ƒøµÙ…TÓ.FíŒPÜpaÐjØä(ìüü’×X-åÜ%¨îñs†R.†¾FòºT98ÑA…W[¢‚yìBXMÆë e­)ƒn«V†Õ±>~{%/‚ N©…×°wWE²2S8Ø*Âxj<èÎ5m`€ ?V×:^•± ÍÊWïKße)xK§ãŸò¤?¾V`¨”­ËIµX„†6s4dBŽM+kðΉ¼ ò%‘÷Dù-‘_ùœÈï‰üFö¯A¦ÌØTÅx…uùX±¾'½`ŠÁê´û躸LL` ¼ÝÜÖÏQ»‡ *¬¢Aå7ìórD—Ó.?hïllܧzzôÖ͇º(­_ÿ{a¼Ý‰kC֗ת&¬eûÞüòø•­vïxØãårÅ¿®‚úxû0|M­Kër©¤R4¨án_eÕvb}e`_®ÔŽJ[4ÿw/ô«éRLšškt¬ÒŒwD~Mä "ŸËø›ßs±0EUp6=TBEEÞOïhëîëà¬ÂŽžý¼çÖCð‚,,9c&i }-ðîFb--ë–E¯ADÂ…ºP.Àø:ÚúYì@›çè"pEü± 6VŒöíäj¹sü~ÆFžl…l9äðPØ¡âµ)7&çÓüù‹"bi»,ìJÓ.>fСßRdVèØiÕâ!ƒMJ¢þL.ðæp„–õÀòÊ™æÀ*hM*0ñÜöñQáUDBTÅM®"øÝV$ÀÑÓ¥Hò%w3ì@£†œ:Þ&%Už·Œ"WxÆÛP@«3¤ËÏô«&uâèá õ ¡-|G¬¯÷öŒƒ·0›\Їæ9Kp¯ß´‡Š\ò 4Œ@ŽÑ þ.¸‹VnNƒ[òÑ =£R~ª¹/s37gLÇ»ñ؂څiVÛ€[Ý1“vS9ääìª0>·Î» ’«Ltì1Å êŠóÍ*$:Ýʽ&Г¬Á ©ñXþTMêC°õ1Sÿ{‹X’gpÄò¾?T¡XÚôT!­K‰'éæžW²ZÊAiÁG·ø¤vÂè@,¹°zo‚Oá`‹—4‚ß'q°³ÜÈËq—¹º±„ýÆž¼ÙÒ=fíMª´ÑÙçš\Ѿw£nÍ™úKà5ù!‚üª=…9¿²wûÈÈ¥š'æ#ÉП£}m ë‰Ø Ö4ÉÀÃSQœÇ¼±>ÅáHJÞ¶Ê€—ðâoj¦:€u¢nó_¸ýä}ÌîoD!þ".÷JTîÝ>CÈø˜ ÌÖŸ>ú´|Ë#¿þµ^­æÁ™Êÿ8žð‘O±@fîÁÞk1Oaðú/ÃÔˆÙü¾+g¼ZN±‡•]<¨Ã…öQ#<¢+06ŽãÚ`Pe"ÒÓä°û¹‘ãôÛÃd±$óµN êÔXÞi@Ó Ö3Û9ÛÖݵ0PÇ4—€ç•6 [z[ŽGŶMQŽG­,Ç-¸fÆFžÌßaQµ\$uå°Æ%„R2‡aó~rxŽ ì¡|[vc¥ëbi»ùýáº.¹ûó¼.hÛ£}Ó¼Œj´My'5¾®¥LÛ±Žó/ilÙå)•¬HdjÙF‚ƺ·Q4r2ÎðkP®ŠÒ1°‡ ô>¢–m“W ‹”;ÝÓ¤Û/JRਫHÓ âS †Á­QN[?Ôuˆ²Èµ;a«¦ÄB^Þä¾~²© áÁç@}eø+tÀuqݸëP²éFïýÓ–BnÆ—eïŠãf(¾SïLøiÆ1 ãq\¹$’½øaÏ|Îw¢¥[Ü÷Rv ¨Z5ü`§ªÃÏ®œ9XÖâ“IÊ&¥Ö5%ÆnèÉæ}Ÿ3>…aqzJžÍ\XîÚÊÂгë ÂϾTûU°0é¿yvô_ü­B±oF·woJÕ_ÞÝ=m¹úUN%$˜e‚¡Ñ*½3Þ ƒ[DàwÌœëjt®óº …­6¨0ìÚi—l±D]5^J6Mâ’è›"~´Š§¥”à Ž(t¿Ò0ªÜù8¾*Z²7—S”bÛ¦¬¶E†Ü‰If—1¸Ÿ¬(¼™R+;—œßÔDÝøðY][³ ¦®uyGÃk}È#˜ ¦Sxg¼ú+d Ïæ±b¿Î{èhôSÞ÷-å1|Þbî"„ÙÃ/.&°¿IÚ É+åáבìù/{ʞı—Àìà ‘ì¶`M$»8`— ìêa%¸9<‘ï@':`dÁ©â‘ 3ì7ǃ?ÿ«ú¨éendstream endobj 203 0 obj << /Filter /FlateDecode /Length 162 >> stream xœ]O1ƒ0 Üó ÿ À• ]ZUm?eÀ‰Búû’:œ¥óÝÉgÙ×mù_ÁXÖ·$i²,Ê ´Åx°¥`ƒøJ‹Sƒendstream endobj 204 0 obj << /Filter /FlateDecode /Length 4766 >> stream xœí<Én%GrwÂGÀƒ.®7èWÎ}ÜdÀiÐÐh4ø ñáqiv«Ù|-.=Ó§¹ú³KVed½,’’%øÒF'3####c/þ´Q£Þ(ü¯ü<ò¯ß›°¹º;Q›«“ŸN4ývS~œ¿ßüÇ)ÌpFƬ²Þœ¾>á¥0dÜèã&ä8ú`6§ïO~N·ÉŒI9;ì϶jtÊ«8\d´²! —ÛµvtZúËíÎ9;&m†o¶;5úœc4Ãû­‰cÈÊ gÛ€>Ù ñ÷)x;Ü2ލÜpx°Áß {ÜFçݰ¿Å³Õ„m‡pN) w¼Òf?¼†6EÂp¸e$Q;œã9Y¡Ñ.9×`9ÜàÚ´¦óÌóiºò)yâ=#ÏÉoÄ!÷D€rÞ ¹3rÎ=žH©¨4+¤ÜzûëéôÞéᑤÃÛJÒØãŠY¢`‹óí<:ÖÉ_}³UN.¯¶ÿ}ú”+å!Y˜Íf§ñ"BÞœ^€$ ¶œ}J™°ð« ~_AÆûŸ§':±pÄÍß@bbÔ£õ›TÞ¼¯ÿÌÎ.o®Oþü3Ö$?&øÜ˜ƒgÕÛ¢Gà›Ð:-€*‡Á•Ÿž~ú!TB­ Ø‚ÔEXÚlü¨Ì<ò „…1Á“‚“*™B”6¸@ãópñÉ8x2áˆþ$¨õGCÈ£7’ÇIù_x­M{Íü#Öj]áTØËÏPØìˆÍpÀa­7; æ²aÁÂG¡Pp€ÀÎ}ŽJÃçh›WL€ßPw°.¨%-d@ÀcØÞ££I>–»2Øü° bÛ¡zS>£ÒÀ -<}¹ðLÐÃ:E¸ ©Ääû-`$x²øž”Ãg³s6ƒ@dP«;¼à¬6:_PøÒ/ùüp8:œ-Ö|SFª§[žµ—ò"TL;@e@Å7ÚBj$AýGd¾Qg pÏ ëàÈpŸwÓh’ûµtò…¸¢èi·}^ôÏGÒnÁôž]ôÞ9É’U`hàmªI9»=ܺ$BèÍ{Ä•@n|^ r˜Iå„ Äsô.%Æø7zkJ™ '%›™§ÙE/yz‰W‹ƒ¼a8€¡Ü?Ì6Sðé°ï˜i$PþŠÆa4ÉAiΤÄòÝ™ B{wLT«9ÊJvñ×°Îd´ú‹wƒØÀt?Ôe’žKAÏEµ¨ õÑ‚ž†ƒÿ¹¿ßLg¾Æ³°W<¬ žásˤ{&4#×ë y2¾œ¿ÛÉÔÁUú¿nËÉ2]R êÍHAr€ÚéÕÉðõö_NªQvƒÇ‹ð¤IB†lOTð­œ[ˆk h4£¾LÔõÝ5V@¨JUX( ¾!ƒ[2Þ£»ç­ª\Xxõð+×Ý’*å@ç°3k¼õƒT?lê¨÷•ûïáÃ\Ý1I¨û™G˜dr‹DO“}ˆcaÅ’´ˆ×þ¦æ®‘kIq}{à…^“A+W°F2ìB3ÀÞ,®G'gµÔÚÌ ïÏ´™d5(3?†UãÙx»i‰žoléLÉ]±¥ =ɘRè¢ÚÈã0O èî#¢ƒWå©„d~*0KBò"öì  C…ñáKæÉ„’]œ©žÂРœÜì4ì«–¸®àUÝ窻춂7<몆€$ôTÃÐ& ÉJC8  ‡ ´aEïϪy]õèB–ËÃdz´‹’ †˜_e·Ù*òÚ“g>üZ¸#‚&å=Ñ~Og…›œ”.—ö]fœþî‡áIIiad”x&ˆPßôEõf¶ÁWe®ÍÒ{¡µ¤ÛQԠɧgèñŒŠT{¾‰|«÷¼ bnuÒƒŽÌ#Ž3ûl¿%m€ôHÔn‹ï0;«W}èù¥òuèèƒæ 0¶ ­hð©¼kÂÝY¤‹wM:iæ‰^á”´‹÷Gfe'}¹•ã;ýŒA*¾µÐ± {r¦d—x“Âè±r†¬ÍU®1Ôèÿáxiʆù:Ù’‹1ñ¾IçJ ìBf–eãxXéÐ ó±€SZn)ÝGv>iG©ÛÏÉ-Î+Á£¥È—•®*ù)Xç–.?ïŽAAÝæ²n#ïQ¸#+[Zp‡ÑFxåÀŠƒ¶ ΂i9Ð.‚öæh'Š3îŽéÂDÂ+Ê“i].Šê¬g˜ÉYœ0vBÓ£]3ã² Åj©ƒû»*µ«¯Ö°©gU\„e¼ç )7I@ŠLaßT›Â­¦#-Lç´ðÐæ3´Yq_/XëÄ2¡Zhñˆ·¼R/-x7®Å3•8RP|/å«pÖJÊ^½{•ntm¬-¸?$F2{Zf—®oó¡9&MEwí Žßs;P\þï†Òb@±æ4`ôOx·•´Îè‚c´@æ³rýPÑ9J$Øf™6˜Çæ´ÁóÏÁò¨C°¼L ¾€gÄÖÌdX’ü"‚üê0BÝKš1½£0!&šIGMI4Ƀ /*•ÝnT©Á’—þ ëEâ>4…bàX»¼)ž7*LæÎªþá¤.Œà›ã6ƒWcB^æoW¡å 7ÌåISb`ÞÂù í(±JÔX8mé"a†ô/Œ<45 ANn¢´CÙM¹TUÇÉÇr„FåL*¦ë.¯d,mÂ_è¥*‰h—Yàp¨òµ§'Œx@—•IûwŒ¢&ÛÃg2¡qË)ãð¹¾áU4œ9Ñþ~Ò”á@]Ä*ž¤‹yëé¬K–Ô¬€£jÒM𲬇.Ñ‘^DGNçII…£Ñ´á蘟&_®°`‚0s©û4ÀŒ¾x¾Ã—LC‹0XxËZÊzCF´,/ T·ÕhCžz-Òãzíšç罊.¥õ§í,0ÂÅ’¥‘…;ˆ±3>Z3W\¹’¬.¬›4æÖ¢­=}Eëß·;oðb¦£ÎiJ xSÁû Þvç^Wðewômï´É†‚—@RÚ¾­à¾‚7¼ªàe_VPWPUÐWðË š æîÜ]‚ßti¸ï’þ²KÎXA'±%1FÑóùø®ö]ö^uoeìNËÄeŠÛ>« ¼•‹ ¾­ ¸Íïº7xè^Û+xVÁ»,»ë2}ߥlߥAÜày—2![÷OâºK䯊·ÈÀ‘‚(GÙY(ù%¨¾û³ &®s‹„©XüB@6¬–ëçåAŠŽ[IÝq¦—r W—ŒÝMLúMùšÖ<I)¯•f{ä‡gyº8½1߯YõY-ˬaú(©8›·2L;¯T9Jœz|øüª-–râÔ¸àDò]2y[2êf fÎnêE°kL8ŽKeUëŠ7;ëÕ Ž—;–¤29+/‡¥„²‡ ¿ˆ«A4{­¥“¨Í»gЬÙUA¦n>ˆL•È µì-­R"‰ÿi‘u^d’awr›I^–ï.+(&ôd“€Dm'„X¿ â¸o¶¸Úf(D¨xðÆ~¿K¦¯D×”Œ8K› ÈDÓ 6'6ÚTÅ̯Ìæ¤¬Ç*V2MÊpÕ&¸ŒIÇ]uÈÉ8Ósöv:D°›EN¹§ïÓbTícÕŠ\Ä >2!ÊÃÔIÓ† XÈÊ[$¤;'¤ë‚q£üžq´æòT+ÂÎÑ?'ËÜû¿jëÛTU3…ÓßÁF×÷cÓ‹õˆ˜À Û–b„r}ÇEÅ,%8Ã;G¬¼ å| ‡¦´Ñ”=„#7YF8È_Úp´”ÀÖj‹å×M<{]µâu«Çñn‚Ýì£,|vŒÿ?ão+ø— ¾ê‚Ÿ}äÏ>òc>²ŸƒÜEítܷì0xc¼Ôƒ¬?ƒUö¹Qüä­VP4 Wñ®{zð§ŠIçôˆ¦<–½À³øqÛíBi ’p¢X|d8…çÄäéóÑ7»ÏŸIðŸ*áb¬Tî.xfßeö˜¯„>yè:šÜ—Á‘qÏ)†c,“±|3yÄ4e‡ã]^rúÖ x$Éð²‚_tmO¿ð¡‹·ß#@”€…I(]:]u6aœ¶t u![»¦ª—[í;½ñquBõ'Ñ¿Äçk6D&§Uû¦pÊé¡ëªTšÏVš‘. ˆÜºÐŠªõœC}1µ!,;æ1 °õcßKM{fO8YÒ£žp£ã–ðiM_@1†”l‹˜ ÚAÇÕèê`¤ª)ëŽk <³Õ„G$$u÷àÿ!ìé?L|‚Y˜Èú¢ÆçÜWP8âsý„V#?Û‘‡ ÔñlšÖ‘>¾ú•›°nw<Ùæð¬† ”-ü4޾Ü­´?Âd…å<úh(ÒM›¦l`ÇõÜ@nNÁÆþüünÏ=Ô~âÆ)NžÄ°j¾÷ÕU$×|ü¡v„7Àtænsã”&‡U”/}¢“¬{FDÀGˆ°;ìÀ²áqò*‹_ðT¬pÉcÑè^ý°¹÷§ËþE' aÕFÖØÚÐmvœÛ‹èö€rò^ƒ½¡ †£ox—]"H]έâdG T“» šu®h¨½ä=¨Û®œO»þ 0΀ø èrNñÏXr”MO?pW_ D+)œ×X1lóï2ç,sÃçA,Uó¨“tFPô™§¢”*¥<í©Q+›Ø­ƒÉwŸñãßµ×»p’©:B÷¡Z¾-2÷Ë!ðÇ}dûµ¢6>°4úŸxJÌ‹ö·ú(ŸêÜïËÒÚwyëÁêìÏ£[Î/rª€£zy=ñÀ¬Äˆâ°{’%Ž-eÝT˜Ïëcá(‡º§QócÂg—ËŸp†zášîùu•ŠÓ9áÑø£8ªü£_B:vYŽb ©Tí¥ BL–¨gtqÅ¢ÈËÙãÂR[ÍcŠŽÞqÙ…ß15E¿cúªcQGà “kDca-á~)z“ô+ ü’ú=O°*®¤e&!¸z[=—£ìè6Y[üà ÓßAð¿h™¶Î/³ñ)µ¹g”æš/cÙ±Õ&6%»~3†øõé¿®!8%*|/¦ÛžõeãôÙWTX™!/'Å ÁÑ7À0 $¹¸þRд¥òËj¦Ì`j0QYVfÙMƒÅ~aQ>·ßýÚUÆÛîÆ÷]¾¨ày÷@w]dw] /ºD5êCûõ·~ à…Ì»zm]øXA3¯ú·:¸[¯‰.oRTÙÆî„ëî=±EÊÏ5Ñß¼&ÊcXÖæ&–§«£; q¨Þ ø¢£vÞR´”1Z¢¿µó§“ÿ¤7¸endstream endobj 205 0 obj << /Filter /FlateDecode /Length 161 >> stream xœ]O1ƒ0 Üó ÿ ¥ ˆ…. ­ª¶Žƒ2àD! ý}I€ÎÒùîä³ì‡ëÀ.|D/J`›H‹_#Œ49U Æa:X™8ë dÓáý ›ìÎïz&ù¬•*«j¡7´5O$Z¥ºÖÚN›?éŒöp6MWP_.Xü§’£¹Äyp‘8•¦¥I.à˜~Ïr 6ˆ/@¤Ssendstream endobj 206 0 obj << /Filter /FlateDecode /Length 13644 >> stream xœ½}Û®Éuä;¿â@/Þg nWÞ³„Ñ20cÈX#™¶d?œæ­é&yh’-þ`>{ÖÊ늪\$ÕÛh FãDå­²òR±2öÞmWs·ñÿÚŸ¿{ò·°ñîõ§'ÿùĤä®ù.ļ]}¼sÖ¦ëîŒÝÍÕä»/ïþõîýwM.náîÏOÌÝ?ÐÿÿÇ“íî¼»«‹w!åpµæîÝ yû䟞˜}Û%¥ü“y1¶¿[( Ù}ºæÎòÛÕf`U$n›½šžW×YˆTV2×hÕ(WNW µëˆ`YÎ]ÖïTŽÉ×à„He9ÏM.Y üü~ÍX Én¿úžV ü8%«!V¦‡Œ¬ŠÈ6µÛ¯X¬ ˆ§c±W5ìˆÌÏØ|Ý ©Ž@ZžºÔð€TVرïu$³]C#¥pÝ *¤.yM@*@´ôj˜½r¨ý®*ØHÉZƒÝo ²¬K×è€UYtÜÕB©:IÅ|Ý¡‚‘-j³¿†¬Š@áÝFïT±!²X΄k†6HÎ\<Á†‰ ˆ¯!ÑDM-v¾ Dï(Wß8)_=T¯#²©Üî¯0uÁo;u’Õèhdt­7xK/T°!4HR¯h$o®T°!@¢KxÊÀ2%{uP¿†`™hpÚ¡~ ‘مͺ^GdS³ú^Gd¯ 4:íP¿Ž@Za»Fè¡ ‘}!ÄxµPÃŽ@R48e¨aC ©=]Ö°!2©hèՆʢÑ)CÙ;"ÇÚèé]R ¿H³/¼[¤²hpJPÁŽÈv45{¨á)¬´¥ë5< •eí5A ;"k˜\>tÀ†@7M8Å•Ê6Hq¿F¨]G /ú«ƒÚuD²2L;Ô®#2Çlâ¡ïÊröÐù:"[=ó5”¾#ct‡™¾#ÀJô6A;u¤á)c)¬»>Ô±#2­ÝÆ«:vDÖq§ñ û_Gdé÷ý¯##Mž8×7D¾¬{Î×UìˆÈf!ÏÉNÖ@D†n³Ûu Àj¤EótÂ+œí9Ò³ý@ ­lq±9ÑônÛ3.6"Ó24HíPÇŽÈ´hñ~ PdžÈ×Õ°Ò¢a æû@¹RÄ  ÀÚ-Îø]ÂY¥ ¿ÈBÑzéê¡‚‘ÙÑü~5PÁŽ@ZÁc<"••6œð";½ì8ã‘Âr›)¿²TÔ~‡ØYCú¿ë5ì°|¾FhҎȲ;Zt9¨á©,§`Î?"•µÓ+$ ǃ«ÍÈvð4Ja÷ëˆ,»÷öÐýHe…Ì×’…Heñ~ ßÈ1ï0ç€Â [À9 òé¤Ôð€T–‹‡þ×Yª,Îù‘mbº&¨aG ­Lo*eß÷ë†$D +è‘ùE·ú_G€ECö¿ŽÈrÅhpÞ°½Q@ªph€Ú¡†¤°ÒF»y¨aGdÙ“õW 5< •Ew`ÿëˆ|†)ì €ü’Á9 À¢ æüŽÀd‘éÚC -Á£o,“¯jx@*‹Æ(ì‘5Ì~?LúV ‡I¿!bÓãrÞs~G ©=âÂs ²Cì†^(¨bGd£î´/‹Pņșn÷û_ Ýw¡pÂï*ùÄßÙ û¾æû†’ßh„‚5gGd©üfi7Ud¹tµ@*€h¿Ñð”=p"ªç·˜qºïH´¦4FeeÓý©, V°!âùÑL°óu*hœÁÎ7Yzã#ͬŠ`ZÑòN^²"ú¨7)ã„?È‘¯¡Ž‘iÙm¿:¨cGdKX¢ Dæhý†p À¢~f‘ÕÈ‘©êØ`eÚÔCHaÑâ§üÈr9êEêx@*ËùC/ì¤ý#RY4He¨ã©,Z=Ôñ€TÖž¸IVCd{y¥°vX6zá©,ïqÚˆì_>ì8í‘ÊJ§ý@¹vƒßq"Û>l´¹‡:vD¦¬=ôÂŽ‹Æ*ì…ƒ;ôÂRYqlj #V0ñwÆ ú~ʈL+šÈ_®%«!ò E­°6$zšh«^YtLý‘_}Œ§þŽÈ‚4ZÁÔßÌq÷°ôl€üïM"ð5·#Ȳ¿ævòKžööPÆȯÌÔ-ÎüÁ“Å™¿#ÈÊùŠÅ*´h¦‘ –ž‰‘æÈÔ&ìlv\zv„Ö©Ž?UVÕ>èvfÐL#ˆ vÈ1&ÿ†ˆ‰ý÷¬,úP_QÊÒ‡6åÛ›I¬veq»{ÍÜ¢OÞµÿ<w÷wÏžüíhŽ×–¿ñîÙ«'U¼4w,p˜dýâ³wOþxùÍû‡·÷4EÓ:$]þòéͧ»ÇWwŸ¾xñðñîÇOoÞ¿¾{ýöã‡Ç7Ÿ~u÷æýç—ï©‘öÜåùËŸïÿýÙ?pvÔ@&¢(»ÈŸ²m¸{ÊópvéîÙ‹'—ÏoÞ½¼Æê§¡?pqõL[4 z­\-Ì?>ÞÓ»¸ï6\®”Ý«{ÚÈlfK——Ï?¿|QrûŸÏ¨~«þºRVÅÀóetNMYEýUSVQU•U(×MÊ*pnTV¥+«2G]Y•ú«¦¬bZkeÅIUYÍTUVAU•UHKSV¡µtiUꯊ² š©ª¬‚þª)«˜–¦¬¢hªI« ¿ªÊ*$¥)«Ð¢º² úëÏ!­ ’¢¬‚úª)«¨¿jÊ*4•®¬‚Ö©*« uÞ$­ Šª¬B™TeU–I•VAU•U:UeôWMYÅ´4iDSMYŤ4iU&¥+« ‡ªÊªcTeUª¯ª² ù©Ê*ä§*«²ÝoUV¥)«¨‰ž•UT^ueUê¯ùFeU²TetNUY•m +« ¿Þª¬J–ª¬‚‚©*«²ôº² i©Ê*诺²*õWMYÅ5iU~‚ü‚²*L]Y•jè­ÊªdéʪÌQUV!-UYSUVAÁÔ”ULKSVQU•UHë6eѵ´ ꫪ¬‚fª*«ª¬BZª²*Þ²/(« a*ʪLIWVA½UY•,UY…²ÿ Ê*°TeôWUY5ôFeXв Ú¤ª¬Ê”te4LUY…´TeÊ¥*« ¿jʪLIUVAT•UYö›•UÉú”UÉÒ•UYC]Y¥SUV!-EYõõ6eXº² ú«¦¬¢þª*«²†7*«ÈÒ¤UÐ_UeU&õeUJš²Šú«"­JõUSVQÕ”U,ÔÒª ݤ¬G“VAÕ”UÔ_5eõWUYOWVQÕ”UÔL5eÕPMYÅ´TeôWUYSUVAÕ•U©sÞª¬JÖʪdéʪ|Úº² š©ª¬BZª² iý,ʪdݪ¬KUV!GUYýUUV!-]Y•Ú¤®¬J5ôVeU²TerT•UYGUYEÍTSVQU•UHKSVQU•UPCueUꯪ² ú«¢¬‚z£² ,]Y•9ªÊ*è¯7)«’£+« ¿ªÊ*诪² ú«ª¬‚þª*« ¿f‹“Ä´þÇ;Þïm”¹áÝ(Mbÿ~·Ý½xRõÓ?á°¨‹½¾,À±€)ûMl–e­2ÚÒì´Ý5Èr¦hë= ´eÝ$ÇnTôd¡½¨‹€x$°¨ìWÈ(¯Ýèoê »Œ\°fóüÅH"´I´q‰ô7Éz;Áð·H‰ÐÎÏì+dлº@f»z£ñi dT"P‡¥åÐ ™wy[b{B»ïVÈì+ö<[$ï¬e¬ÑOi_S¤4Ћ´Ã],ðŒÌÎÌíâ, ô&íðÄìÊ™Â2^ãHÛ+MÒê×—ãƒq[y^¡-…É+d=‰ÞœœI‰•‰Ð²Å‰dz+Òm¼„û¤œC(í,ZÄû%2Ëœi ¿AÝwZÔD¨ûN³…ƒºïÔÃ÷´DF;ï~?´üN n.wêóû˜O}ßc‰WˆÛhm T nåÒ{¡ÛhŸ_ÆÏ‰ÐÒØÄ2z¼Û¨gˆìýé/—34mÕSZ!ãÕv†ÖºÞBëZ~4¡=8ÞDËU2F#GÓj.'B“oM%B‹Pg¡¾Ìß<ÎÈÌ‹^Ûk€V–0ð9ê8ð9j°ò ÎÈlG+F¡îž×ÈxŽv¶ZÂ(7ùÌõÿ$gDJו°‚2úíî˼%Ú˜B¤Pù–pFFow´`ç=œDø*B;Kä&Ò_>è•Ø# ´‡D€Û B½ƸŒñÂÚ† m­\p¹¸Åò B›»€Ë¥ÙB}†8iCœ‹´5v…Ì"'Ú‰%¨h¢õª€§"´™Šy‰ŒFN´\uêÜ0¹D{¤WÈ|è™V°0XeêÛ¼£8#cÅï2í…J³ŸÙ)3­j­„:7z™/@¦un ·Ó:ׄ%2Þµº{†1n§Òó~ôŒÌ÷z§¥¯q€PÇQo§….Žz;¥ˆ£^GÆPD‹2W¦(кÖe@|(;EÄ­<œ32òò-c„:< {Þl©LI¡E«u+d´7ôìˆÐ:6¤%ÒŸ-67ÞÌI„ÞVÈxîžöMåŒ@hÕjÜéýÐÓÚ»<вÕ@hÙj–Èx <­hÊ)вF>ïh‘º¹%Ò_JOóK™¦â-Ž|žCˆaäóô¾ó÷§2ÆïhIjåèã©»”§#Z’†-@­„z8 }ÞÓ²¢]ÙÛ „wv+d9ÐúÓCÕ­?„:x‚ŠZmú09ÐêsC„vi0òùH«O—VÈ|è‘Ö£tƒHÛ´¡õ¨[£ Ò›X‡Â2«i“ò ™/@¢+ÏIgd¶q¢î¾›2_¿DkØ¡5¬]³4‰ºö+d‰C¸3 ´ª5rDó¾)Ù™™gÊvv™CZ¦uîCc¦][ò€ÐªËŽŒäoEýÛÐÒÏëR.Â:µxrtïÒâÉѽK‹'?G¯âÉѽkO~Ä”€òSÐù*žüu¾Š'G÷.-žÝ»´xrtïÒâÉѽkPŽî]Z<9ºwiñäèޥœŸ£ÎWñäàÞ¥„“£y×:žÍ»´pr4ïÒÂÉѼK 'ó.%š½»´hrôîR¢ÉÞ]Z49xw)Áä)±ä)¡ähܥĒƒq—JŽÆ]J(ùÁ¸K %Gã.-”Œ»”Hr€Ö‘ä`Û¥’£m—H޶]J9ºviqäèڥő£k—G®]J9šviaä`ÚµŽ"?xviQäçXóU9zv)aäàÙ¥E‘ŸcÍWQäèÙ¥D‘ŸcÍ—QäçXóU9zviQäèÙµ $0æ/£ÈѳK‰"?`Z9zviQäçXóU9zviQäèÙ¥E‘#¦E‘£g—E~Ž5_F‘£g—EŽž]Z9zviQäèÙ¥E‘ƒg×2ˆühÙ¥‘£e—DŽ–]Z9bZ9ZviAähÙ¥‘£e—D~°ìÒ‚ÈѲK "GË.-ˆ-»´ r´ìÒ‚ÈS‚ÈѲkDŽ]Z 9:vi1äèØ¥ÅŸ#ÍW1äèØ¥ÄŸ#ÍWAäàØ¥Å£c—CŽ˜CŽŽ]Z ù9Ò|C~Ž4?‘ŸÍ—1äèØ¥Å£c—C~Ž4_ÅŸ#ÍW1äèØµ"?š/cÈѱK‹!?Gš¯bÈѱK‹!GÇ.-†»” rpìRbÈÏ‘æËrtìÒbÈÓbÈѱK‹!GL "H‰!?Gš/cÈѱK‹!?Gš¯bÈѱK "Ç.-†1%†üàØ¥Å£c—C~Ž4_Å£c—CŽ˜CŽ]J9v)!äÃ.-„ »´r0ìZ‡ƒ_—AŽ~]Z9øu-È?Žn]Zü8bJ¹tëRÂÇѬK G³.-|üd¾?˜uiáãhÖ¥…£Y—>Žf]Zø8šuiáãhÖ¥„̺´ðq4ëÒÂÇѬK GL G³.-|1%|üd¾ G³.-|üd¾ G³.-|üd¾ ?™¯ÂÇÏAæ‹ðñƒY—>Ž˜>~2_…£Y—>~2_…£Y—>~0ëÒÂÇѬK GL G³.-|üd¾ G³.%|ü`Ö¥…£Y—>Žf]Zø8šu­ÃÇ«kÒþ~HwCÓÊôïcHõã q–õÑ6w‘‰à]œ$KEG0-*=ÀÖQ颈U”E¤Ezùþ5 ÄsNïšEDk±u´;Z‹­ƒÝg›à( ˜hé_ fqx"ó9Ü5 xÈJ‹¡GÇ2-†ËÖ1ô¢"Eà”õ  E1š¥vÍce"pÓ¬Ú iùˆ­#óÑM ÌG´u`þ¬jXE]³Ý«áĬ PûÃ]£²wµu¼¿È¼*·2sÚýè™grxéwÍÌÑ´M;F€¦mÚ10m[#øv7Õž¬œ2Xlí¹¥5 4Õ‰4ìÔk˜þd D²Zœ¹`uD²Zä´`uD²Zl°`uD²Z̬`uD°zèd D²Z8¤`uD²jÈŸ 5@rZ,œ uD²Z(—`uD°z@“xˆ‘¬²#X‘¬Ë"X‘,ì$³×Î]ÁƯ»þ–x¡N3ʳwO.vÛ»ùq°½£Áï©á ZšíØêï·ü‚¥×]þ¡ßŧ"=i¼«ÞÆïI»Íº«ÞÆqåûú6[,oû—vW máá&ÿõŠ9š{VwqÅ ;jżrUŒöèzÍÂò¾¯Õì”[ø–ªò ?­já'V-ôªq?Pêfò)»Øë–]üöþGÝŠaå·öÇø•þXL*»AåŒÀ©@̱þ—AüÌáõ7î;ú}ýóEçˆÏ2¥uŽ˜ÿ;©…G Ò˜ú§c!IûÛFéõÉaùåÌc¤ýfª^ŸÛýSÇGÜ6 t™hî æb¦Í7¥r1¡\;¦Øí¿Îý³Ì!|6$rX8Ù9Þ@Ð ÍõÇ—eâáo8´È|8€GxK{¿<n„¯œ‰X6^…T*R“©·¥3uÓyãªtC ŽO¾uñ¡Ò9S xWì·k¦É«%›jœ/³SUqxíRgÜ– - ya÷N$¼¹¾FüëgÇ+GŽ‚È´ óÍîõ·ï_Ý[>|apx¥]}rÞß=ûßO.ÿüáÃËß=þøþÅýßßóf§Mõå{‘ÆËÊp”ãÃÛ‘9Wy»&ö3U¹0l”¡Ôi7zyCdî‹Ü&üÁ—¶Ë¾¦Æ}ûòÚŒ—ŸÙ^ß”Û6cr¾¼¿ç³ÙB)Ù¶´qéËmŽþþÀ•²;w7‘šà~O—ü /ìâïµú‘âåáçf÷=ç8kg/-¿™ËŸ™böݤ\ëalÜ"æ2š¨:SÏÏ_ò ´ñüÇò vÒå8.?ÏË_ÏË_ÌËçóòa^~Z&öI¦ÐŠÝŠC¶¨{‘®³Í+Û¨µ‡}Ø»§|4Ä[f“ÿÇsɱ²t™S)¿(%¡¾±—¶k——…2œ‘3¿Yü.ý– Õ:á{‚é7»&?]šryv‰?;îÓLM]óÇûqYûŒ—?Ýs´•¤´X{UêƒÝ\Ì—·¥7ï4÷_Þ”1õˆ÷%)G¡GQ^ڵřqº<¾j¥Ü ½÷³¾‚w‰{!uîéÕêEKÙˆ4ê›7»™Òÿùëõÿ3iAþÅãè®éõ~ Sð-Òž²¦G3õ¥þ̨çgsHºäÍp¼ó5->mpy-Êùv¾+P•JÕ!.Ø=ÖbÒ€n[÷Õ½,ðºMÇ’Œ=é Çk,Èh#Ù¹áY3´Ø7iÔIü‰Ÿ^gbŒý¾°mnÊ€^žËÉÐ0ö8ßÀÕ¤h5•hÙ^ƒ‡9ø¾-—!S~¯çåã¼¼. â¶óòý¼ün9¨Ž ¦Ëœiø?ó¿Soíîôô}y£y¡ŠcæFü=Ö§“,/TðYÊW‚¡•ãåáÃ’>Œ®õv&-r‘ñC͆rñÐçßãPÌ÷t:©¬9çöV•®‹1‘ý‹VT&ùýNå{Ù¦¦)³ WÝf•²4òÚYßEjk{ì /×oƒO¸üdäJðSé¨1”Wá©ç¢9ÊŽúXQî’_¹ Y¦ü\¼=i^Böôv9§)ãÓ˜ÉåßO#1È®Žˆ[¢bùóÓ¨O±5e²‡U¦¨x¿‘hPý_÷ÙÑJ–Vüþq&q·ÊZ°<.“é}®#—ˆ*øA0¸ßÓÄK„Q©£<–ÇÀ=ÝAUYÇÂD¶6¨uîr9š9˜'ã ­¬ßÌKe…ƶ4;¶[EǺ<~(óJrcžãRÞ›9J>µ;µzJ‡9÷°Øð¼Ð¡µ Ï4åzZ½å§öPZw§QÞæ‡ïJ9–äB®.Q‚‹©Œ@™iM]a¶çö Kwl´ÄçwsÂF+ÃÞ9.®½1ìæ ’QAwX³Á;âxSžì§ïW…ô†{ÏéËBŠûù¼\o,‡Nm#AÞ ² ­oÅrX´ó_jÒ”…×óÓÕ–Tð&õ¤ÄGkåãÄÀÊKV—¤e¢¦-bÊ{l=;RÈõÀcMb3Þ'ÜörλÕUåM¨Ãmbiƒ•r8 ±r=ùXFú‡“Cå©QÙ¥€¹ö¨£oðÊ„9Ô¬‡0~uVr?p~&gV[q;¬û:WëLåÓCIëZ>ÑÇ:žµ”gt#€ŠÇuq)üa+k³ZõlýÃa#wœYU>ÍDzxÝy×ñXÆÚÍX#§9¬Õ¾ãï/ê‚ P·Âxø§U¤1üå_½W[tš¤ìj8$zeÃþ´ÿÇÒ-#$Mõ—'«o;뙂†ûྶ——¿ž—¿˜—b¬|ùWŒ=´€õüm^Œ=|Àž¶\‰Mæ_úç+¯¯!pð¡(¶Á¢õã*þ6DCõú£¼ïïåãºÎX쥕P_Ìåñu¼AåÁ'~ƒ¬¥Ïh¶ 4¿áâF_¾Jð(ÁqM´ñ;×ÿË• þÁäê¤4îF¥V”ƒÐ©æ×Žú^’àa¤aí$:…pZ¹ ¶ÔC}®>Ó#¾Ê'_‡øÚ–ljÊ<<ˆÆ~›AyxýðfÖVíÜñX 4¼>éˆýùçšJ¦®ñCIÂÐ ‰Çû>àü¹r©fÇf ÇNŒM?àë>^òºÅ|àdª‡±ú'&øºØåaÙ…V…ò÷oùÄàØw‹š¸ìGø¤*N拯K}‡Ä9§õ€ZzG+›(ÚäñÇåúâEMŽ÷Bb¦h«CÚ”ÿ‰'9Zž»QeØTÉn'§ÀRŸ eïcÂØÎCß­s†ÙR“X½Øa6zÕkQz`楇û¦}wþ=[oåçá´vœkÿãˆÒhõ²µða¡ü¢Žs:sï ÉÌa®Ï“½W­>[þµ_•”¡íoÿâ­h:,s‘å|¦÷ùÿqÿ4°ôfúDB;þ ƒ/ßÏËÏóòã’ûv^þz‰¾™—õË:õרÒ-—ÿv™×çåü|?/_ÏË—óò×óÒÌËm^†yù«yiçå¾äþrY²—Ëjˆ2üb^>_VèÓ2±OËD^ÌË7Ë’­Ëðb™Ûó¯åöPV¬j:3Voçß?ÌËï—µ¬¥‰^Êm^þÛý}ÝÁ¶„Ÿò²%ì5ùÙ3?Ínóã²þi^ºqןàÓ>ûå±'=ÎËë’ðvÙÚ¢[~·îÎë&žóÿY&ü¸,Äï–ÙýÇòéúÚ³y±DEDGx¾,™¨ýç¯Õâí²?9ÝÒ/ÙDÍÄE¿l¬¨Å#˜À„ÝqlÙ_÷S¢ÍúÅĽX›¼;!-Xo—”òϼŪÝOëIiHŽ¥•U­_$«!;Üh± ÍúE²©¬jý"Y rUëÉjˆ`5ï—I:•S­_$ ‘ʪÖ/’ÕȯZ¿HVCÒ díÖ/’ÕH«Z¿HVCD›6ïIª€x:ÝúE:"ókÖ/’ÕH«Z¿H"•U­_$«"¼Bãö¨¬jþ"Y ‘5¬î/’TkØNªÛºTóAêˆL©™¿HVCd;4óɪ”½Ù¿HVC ­jÿ"Y ‘mÚì_$«!²ôÍþE°åj0’UdU ɪ²ª ŒdUÄn|ì)5Vq‘¤·˜²VN5‘¤†ÈÖj&0’ÕÙÍF°bùÐSêÆ,ÕF²²s¸X«a³‘¬†«8ÁHR TÕF’*‚¥ªF0’Õ™_³‚¬ŽÈÖjV0’ÕÙ·šŒd5ÒªV0’UèÍ F²iU3ɪ¦Uí`$«!2­f#X¤²ªŒd5DŽºÕF’*ùU;IB¤²ªŒd5D¶|³ƒ‘,DjPzµƒ¬RYÕF²"kØì`$«!²§&œìÊ?e4;IiäUí`$«!’Õì`«#2Çf#YˆTVµƒ‘¬†ÈVov0’ÕȱÚÁHVC€Uí`$«!PÇj#Yˆ´cÅF°:"Ójv0’ÕYÇf#Y ‘¥ov0’ÕȱÚÁHVEàmm†0’Õ‘c7„™¬ˆ»!Œd5Òª†0’Õ`UCÉjäX a$«!V5„‘¬†ˆ¶ï†0’Õ™V3„¬ŽÈ´š!Œd5D¼¯ÝF²iUCÉj”«ÂHVC€U a$«"²O4OAj€,U³„‘¤†Èüš%Œd5Òª–0’…HeUKÉjˆìÍF²©ÇwŠ'Œ 5@–ªYÂHRCd ›%Œd5XÕF²"ËÞ,a$ ‘ʪ–0’…HeOI pš%Œ uD¶C³„‘¬†È²7KÉB¤²ª%Œd!RYÕF²9OI Àª–0‚Ôùtš%Œd!RYÕF²"KÕ,a$«!²M›%Œd5Ò*ž0’T({µ„‘$D «YÂVGd~ÍF²¬j #Y ‘åj–0’Õ`OIªpª%Œ$!RXÍF°:"ËÞ,a$ ‘ʪ–0’Õù «'Œ$Uò«–0’Ô`UKÉjˆœ-š%Œ`5ÄÒ"Û¿²ª%Œd!RYÕF²"kØ,a$«!Àª–0’Õ±óé¦0’ÕH«šÂHVCdh¦0‚ÕÙªÍF²*s]õ…‘¤ È–o¶0’Ô(Uµ…‘¬†ÈvhÆ0’ÕÁêÖ0“5Q®n #Y Vñ†‘¤ÈVèæ0’ÔQÃn#Y±†×멱ª9Œd!RYÕF²"ža7‡¬ŽÈ6sÉjˆ,}3‡‘¬†@ZÕF²"úi7‡‘¬†@ŽÕF²"Ójæ0‚ÕÙÍF²"slæ0’Õ`UsÉjäXÍa$«!Àªæ0’…Ha5sÁêˆ,W3‡‘,D*«šÃHVC ­pØï‘ʪæ0’…HeUsÉB¤²ª9Œd5D¶W3‡¬Ž«šÃH"•UÍa$«!²5sÉB¤²ª9Œd5ÊUæIVCdÛ7sÁêˆL«™ÃHVC€UÍa$«!c5‡‘,D*«šÃHVC Çj#Y ‘ãD3‡¬ŽÈ´š9Œd5D>¡f#Y±ågŽ©š¸HREägÈnâ"Y‘‹„î¶"Y ‹ÛŠä@~ï®(‚ÔdUWɪˆÌ®™¢HREäçæî_"YÁ «‰dUYÅÀD’ íÙüK©!åéÖý9ªÑˆdUÄfW~Ò¥²ª#ˆdU¦Ïæ"YvhŽ ’U9­KSÛez]Ö¦ _<]îèE£p”‡WYí0ÔJ¥[Q¾åðêoÞ?¼½7ü#?&]þòéͧ»ÇWwŸ¾xñðñîÇOoÞ¿¾{ýöã‡Ç7Ÿ~u÷æýç—ï9ö4wyþòÃç1ˆ‡y9”+–ƒò,=¸T)~~óî%ŸSœ§½õLË•§BÑœX ó÷ŽC[c¼\)»W÷´—Ùʃqî÷x¶û§É±+¡U ;_Z¥ì© ­ ǪB+ȱªÐ åºIhÎB+°T¡rT…VcU¡ÒR„V*u¡UJ¨ºÐ*åXUh…´4¡ZKZQŽ] ­(¡jB+ʱªÐ iiB+J¨šÐŠr¬.´Ê´T¡U¶©*´¢ûó­’¥­ ÆjB+ʱªÐ*[KZQøÔ„V>oZ%GZ±TšÐ ¥Ò…Vcu¡UÊžºÐ*åXMhÅ´4¡%TMhÅ´4¡ÒÒ…VGU¡UŽ6šÐ b¬*´B~ªÐ ù©B«lù[…V`©B+H¤8Ù•‚« ­ ÇÞ(´KZAöT…VÙ_Z¥{£Ð ,UhASZeéu¡ÒÒ…V)ǪB+ȱšÐŠ9jB+|ŽÔ…V4U¡ÄÑ…V`©B+ä¨ ­2­]Z¥ì© ­RÐT…VHKZAŽÕ…V™ÖmB+Ê£k¡ÅX]h•ª.´ÊüT¡ÒR…Vñž}AhISZeJ_Z¥{£Ð ,Uh…²ÿ B+°T¡äXUhqôF¡XŠÐ R¥*´Ê”t¡$MUh…´T¡Ê¥ ­ Ç*B+¤¤ ­ VªB«,û­B+°~¡U²t¡UÖPZAøT…VHKZAŒ½Qh•,UhE9VZQŽU…VYÃ[…V`©B+ȱºÐ*ÒÒ…V>5¡åصЊb¬*´‚« ­Pª[…VɺEhEŽ&´¢« ­(ÇjB+ʱªÐ*zà„VcU¡$TUhqTZ!-]h•r¬.´JÙSZAŽU…V=oZu£Ð*YºÐ*Ÿ¶.´‚„ª ­–*´BZ?‹Ð*Y· ­ÀR…VÈQZAŽU…VHKZAªT…VGoZ¥ ­£*´Ê:êB+H¨ªÐ r¬*´BZšÐŠr¬ª´JuTZ¥« ­ Ç*J«TGoZ¥*­2CUh9ö&¡Urt¡äXUh9VZAŽU…VcU¡äØò{ ’T9©Õ»¹ÿ–ÂL…zx”ZØ[B¨h>Bû[ûhåâ®Ú¶zíQ7ɱu'8ëGe(7ÙÍÛÓ?Çëe·P~cˆ[h{é–ˆ¸‹:|Xê?±@f:†6’Jkè™ïÃW¡½ AN¶rÎ_AV–vt²²l5 mÔ|„†­MQ¾¬™õ´´srŠï?’!êciÌtmª°Õ]ðx:×Ò.N &ŒÐÛi!Ot7+d þ–Ög×íw¬_!"v ƒâÐ+µ Fhc°8{@…¢ÿ6ˆDØ Ë¯Ù^Á[ÜDÜEû8à5qíBàûÃ@Ä]yGÍÁÆ-HÅv—ƒÜ£‹‡‡Ó‘™ÿž|AÈlùHýµ"îbO³BDî´ƒÕ ÿÞŠDÜvx‚ü›9 öd–'Ñk’Ó w¥„_ý-Dz(Oæ$òd6•…òdšXðéäO'ÓJÜ#B«î òÚ7+wÜoÇïÊ,Y¯Þ8.7q—ß-¿Óª‡¹Þ Ì|rkòö‰Ûhák ô@£d<ÎÈ+ð"í-adw1<òB«› ¿ººDkkH¸ýìÖ™åK´ÄÇÙq-¿aðw‰Þ+Ø]¢ ^„âd¶†€^8ää²7‡VÏ´Àƽ#³€™î`àÌ´À†ãÉ™éì›ÇÕíôŠd¿Bf¿h¿I¶@Ä]´ ‡Ã n§·¾GºVáÞ¬‘2ý Žx dÔ‹V§·d¤ì7Z»»¼BÄ]l%kWÈÈÝoq+ôŒˆ»ø7Ì C¹ßè½Á} ó.³¥2ÅŸ‘Y C»è™%l¿·@DÊ´U€¯ŒÓ,­ù·z˜ãŒÌ”é„/ŒžöœøM{"#kö–CÓ ™5¥Íöoi?a¡Mq €ìGxÏí›[!³ÌŽ õ þ°îˆH'$á=6ò[#´W°Pêvò@f^ì¯ ßã"î¢Ý|ö%Ó±÷´3€âøìp³ì=]Á'\JÅãçZÜvhøö3‚ dv±@×@kþm‰ˆdh³ C±çŸ%tPœH»€ ŠÓ~4W"´ €Zµ­•¹‚¬ÚïÆJ„º.ì–}rN~Ê¿Ò*v…¬ÿÜfE |˜Ýú J¤þ*©Dh9 |¦l‚¼rò‡±ð„Ì_S¬ÈÎáï"úT‹}Gã1-öÇ´Ø÷s„ü*öÇÖ±ïGL ~?ȯbßÏò«Øw4ÓbßÑxL‹}Gã1-öÇÖÁïh<¦Å¾£ñ˜ûŽÆcZìû9B~ûŽÆcZì;­ƒßÑxL‹}ßÀxL‹}Gã1-öÇ´Øw4ÓbßÑxL‰}?i±ïh<¦Å¾#¦Å¾#¦Å¾£ñ˜üÆcZì;)±ïã1-öÇ´Øw4ÓbßS‚ßÁxL‹}Gã1%öý`<¦Å¾£ñ˜ûŽÆcZì;i±ïh<¦Å¾£ñ˜ûŽÆcJìûÁxL‹}?GȯbßÑxL ~ã1-öý!Ž}¿Í9>ÑF£öÒùyõQ>A†¢}ñYž x'ÉöÑÏL ©?Þ/CêÏ÷«zô3ÓBêÑÏlU`zY†Ô£Ÿ™RÀ´zô3ÓBêÏ÷«zô3ÓBêÑÏL ©GL ©G?3%¤þx¿ ©G?³uHýì°óëwï°;ÇoFÙ=wžgÀ›F=¸¤iúè’¦ê£Kš¨.ië@ý£Kš¨.iZ >º¤iúˆiúè’¶ÔŸ?üÛ?àgå6ÚW•]g4n󦾿Á»úÃ:š¯iñÿh¾¦ÄÿÌ×´ø4_ÓâÿÑ|M‹ÿGóµuü¿øÍä¦$̦ãŸ;6Ðt†'F Þ5šîàé¦+@L9VpðtS΀§›v¬=ÝÖÇ f“t©b6‰¥‰ÉA“Xžm3 x×h’ƒUœvZá|¦á|ZA±ë"£„´¿NÊC“8ŒV‡›fÑN9q>(q>!Ê7—^@Ç!·ŠCs8¶ Þ4 ˆ®vÚÁ tµÓV ¦¬@W»õÁŠY٦爺r /TÍñºÞ4ëz>Ó±:­q>Óq>®q:Ò±<­VyëÓ³ªSaêuõ-\xTÌo[ýr1¼iÔõ`À§9ŸY9Ÿ9Ÿõ¢×¨cEhïüá¦Y´õ[-9?Yž,A[?ídÉùüÉêd Úúi'KØúi'KÐÖO9Z¶~ÊÉ’óù“ÅÉ’ùœºØ6ŸS,?š+Kà5 }‡»Æƒ:¸jVÓ¬ [ v`1åÄ @Ê•ó±–åt Ô¬œµœ¬Ì‡0%ÅþÇFÃ;žxÃûá®ñ&„ÊA0!ÔÎÁ ¦œƒ9˜jç`ЄP;s>-³:ƒ&„Ú9Ä´s0hB¨ƒABåÌÁ„P;ƒ&„ës0³sLAµw޽‡`®À!¡ :Çá®Ñ9Þ†Êùð6Ԏנ·¡v¼½ ×ÇkŽ˜v¼½ µã5ˆ)çkÀÛP;^ÀÛP;^ƒÞ†Úñšó!œóñšñЇ–;:-#¶ŠÛ1ÿànúÞÕúÑ2Q;µƒ–‰Ú©´LÔNí e¢vj-µS;h™¨œÚ9X&j§vÐ2q}jg>†.+ÏÇ`{ÌøhtŽß‚¯lÇ»Æc881j‡Ó¡£v1å0ÐùÈÐò0:1j‡ÎG†Î‡fwU|6pùÉcÙšÉv@ð¦Ñ¾GíˆÑù ÒêˆÑù ÒêˆÑù ÒâˆÑÁßq}Äh¶ÉTï{›øòK`Ð9b+nmrÈI;¸t>Þ´:¸„®‘ÚÁ¥óñ¦ÕÁ%tT.\#µƒK¸Fj—Ó.¡k¤vpé|¼é|pi>Ѧ0hàßn•3¸<åÂ#Æ›Æ=XQ*§¡V”Úi(´¢ÔNC¡¥v ¬(•ÃPèD©†B'Jí08Q.C¡¥v 1í,Q*G¡Ð‡R; …>”ÚQ(ÄÖg¡Ð‡R; …>”ÚQ(ô¡ÔŽB¡¥v }(µ£PèC¹< õíÆ”ªåb=*ÅïþÖž[‰¤i@yMO¤P!g¬A;J4X‘¬~ìf²:"YýüÉduD²úY‰ÉêˆduAd²:"X#~°"Y=üz²:"Y-€x’ 9}o:I‘¬õ9Y¬k8bG$«ÇÎMVG$«‡MVG$ ;Éì5‚óE'T°&íN¨†¿Þðg”À‚úÎæ£»mŽJù€ÿ‚÷SÃçh.cûÒßò_–?8ˆ?ô»ølV¤'wÕÛø°PÒn34Û覆qýöõmüVnépÛ¿´»ïÞð&ÿõŠ9°XÜÅ3å'핊yå6ªXÜ¿P³°¼ïk5;å¾¥j§¼ÂO«Zø‰U ½jÜ”º™|Ê.öºe¿½?ÆQ·bÂû­ý1~¥?ãÝnº;#õ*`M{[=Ÿ9¼Ãl'¯ ƒ$¾2ôÄǬÚIrVí$¶³äT@RZ!GûÛFé_Ì'ŽÊ—ØÌ¼úo÷OŸÜÝÜ%ðïÕÓÜ.†QÏ?œ.&”kÖe¨Íÿë ËBï ¶ìECù™pž yéòñe™wø; ­èUáU뻪šå‰p+|õÈóH†—X´ÃÉ4¤&SoÒkÝ>X^CǪ ÒþŸ6–—ÙõW*CxOë·k¦‰ %šJàž |Œ V‰—~ uÂmÉÐJ¿Ì¶=USNþ´ÄññaŽŒ¢§M+ôúøûþÕ½ådÖÇjZ³%ÚIóO¦_þùÇ—¿{üñý‹û¿)? þ›·ÏüÁ]Þ•.¿ûñów_>ü@œÙ;–…ãoD´Ûh'¾©†Ô÷îè?4'Ù2½Q/ì/ñïŸü—ñ endstream endobj 207 0 obj << /Filter /FlateDecode /Length 162 >> stream xœ]O1ƒ0 Üó ÿ €TÁ€XèÂЪjûà8(NÂÐß—èÐá,ïN>Ë~¸l#ÈGpø¢Ʋ´¸5 ÁH“eQV -ƃ剳òBö7åßO°Èìü®f’Ϫ¼äU¹‡ÐiZ¼B Š'mQt­1 ÖÒÍálš.£ªkÌþSIÑTâ¼ ¸†@sÓÜ$°L¿g¼ó)ÄDYSyendstream endobj 208 0 obj << /Filter /FlateDecode /Length 161 >> stream xœ]O1ƒ0 Üó ÿ Àb¡ C+ÔöÁqPœ(„¡¿/ СÃY:ß|–ýpØFcpø¢Ʋ´º- ÁD³eQV -Ɠ剋òBöwåßO°Èü¡’Ϫ,òª> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 210 /ID [] >> stream xœcb&F~0ù‰ $À8JCò?ƒ ÙF ›]×/xFãz8’ÿT…6Ù¢‘ øw‘g@¤ÚY)zD²€H0û*ˆ”’Œ3Alîd°ìÉè"ùÔÀ⌠RPDб‚HN0 /‘L;Àº^€ÉW`sä@$Ç]ÉçBÈrγƒÉ?`ò%ˆdD2o“Z RÈ®†QõØÌ_à”üD #Ùk6Ì~ †$; endstream endobj startxref 155189 %%EOF surveillance/tests/0000755000175100001440000000000013231460066014127 5ustar hornikuserssurveillance/tests/testthat.R0000644000175100001440000000007412716715512016121 0ustar hornikusersif (require("testthat")) { test_check("surveillance") } surveillance/tests/testthat/0000755000175100001440000000000013231726606015774 5ustar hornikuserssurveillance/tests/testthat/test-calibration.R0000644000175100001440000000321612625100455021357 0ustar hornikuserscontext("Calibration tests for Poisson or NegBin predictions") mu <- c(0.1, 1, 3, 6, pi, 100) size1 <- 0.5 size2 <- c(0.1, 0.1, 10, 10, 100, 100) ##set.seed(2); y <- rnbinom(length(mu), mu = mu, size = size1) y <- c(0, 0, 2, 14, 5, 63) zExpected <- rbind( dss = c(P = 6.07760977730636, NB1 = -0.468561113465647, NB2 = 2.81071829075294), logs = c(P = 5.95533908528874, NB1 = 0.403872251419915, NB2 = 2.77090543018323), rps = c(P = 4.45647234878906, NB1 = -0.437254253267393, NB2 = 2.57223607389215) ) delta <- 1e-4 #sqrt(.Machine$double.eps) for (score in rownames(zExpected)) { .zExpected <- zExpected[score, , drop = TRUE] ## if package "gsl" is not available, rps_EV is less accurate tol_equal <- if (score == "rps" && !requireNamespace("gsl", quietly = TRUE)) 1e-4 else .Machine$double.eps^0.5 test_that(paste0("still the same z-statistics with ", score), { ## Poisson predictions zP <- calibrationTest(y, mu, which = score, tolerance = delta)$statistic expect_equal(zP, .zExpected["P"], check.attributes = FALSE, tolerance = tol_equal) ## NegBin predictions with common size parameter zNB1 <- calibrationTest(y, mu, size1, which = score, tolerance = delta)$statistic expect_equal(zNB1, .zExpected["NB1"], check.attributes = FALSE, tolerance = tol_equal) ## NegBin predictions with varying size parameter zNB2 <- calibrationTest(y, mu, size2, which = score, tolerance = delta)$statistic expect_equal(zNB2, .zExpected["NB2"], check.attributes = FALSE, tolerance = tol_equal) }) } surveillance/tests/testthat/test-earsc.R0000644000175100001440000000472213020471574020173 0ustar hornikuserscontext("earsC method") test_that("earsC returns a sts object", { #Sim data and convert to sts object disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 208, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) stsObj = disProg2sts( disProgObj) res1 <- earsC(stsObj, control = list(range = 20:208, method = "C1")) res2 <- earsC(stsObj, control = list(range = 20:208, method = "C2", alpha = 0.05)) res3 <- earsC(stsObj, control = list(range = 20:208, method = "C3", sigma = 0.5)) expect_is(res1, "sts") expect_is(res2, "sts") expect_is(res3, "sts") data("salmNewport") in2011 <- which(isoWeekYear(epoch(salmNewport))$ISOYear == 2011) salmNewportGermany <- aggregate(salmNewport, by = "unit") control <- list(range = in2011, method = "C1", alpha = 0.05) surv <- earsC(salmNewportGermany, control = control) expect_is(surv, "sts") expect_true(max(surv@upperbound[1:4] - c(3.278854, 3.278854, 3.436517, 3.855617)) < 0.000001) }) test_that("earsC returns error messages",{ data("salmNewport") salmNewportGermany <- aggregate(salmNewport, by = "unit") control <- list(range = length(salmNewportGermany), method = "C1", alpha = 0.05, baseline = 2) expect_error(earsC(salmNewportGermany, control = control), "Minimum baseline to use is 3.") control <- list(range = length(salmNewportGermany), method = "C1", alpha = 0.05, minSigma = - 2) expect_error(earsC(salmNewportGermany, control = control), "The minimum sigma parameter") in2011 <- which(isoWeekYear(epoch(salmNewport))$ISOYear == 2011) control <- list(range = in2011, method = "C1", alpha = 0.05, baseline = 1500) expect_error(earsC(salmNewportGermany, control = control), "The vector of observed is too short!") }) test_that("The range is well defined",{ data("salmNewport") salmNewportGermany <- aggregate(salmNewport, by = "unit") control <- list(range = length(salmNewportGermany), method = "C1", alpha = 0.05, baseline = 2) surv <- earsC(salmNewportGermany, control = list(method = "C1", baseline = 10)) expect_true(length(surv@upperbound) == length(salmNewportGermany@observed) - 10) }) surveillance/tests/testthat/test-determineSources.R0000644000175100001440000000125012725263572022417 0ustar hornikuserscontext("Determine list of potential sources in \"epidataCS\"") data("imdepi") test_that("determineSourcesC() yields same result as old implementation", { sources0 <- determineSources.epidataCS(imdepi, method = "R") expect_identical(sources0, imdepi$events$.sources) sources1 <- determineSources(imdepi$events$time, imdepi$events$eps.t, coordinates(imdepi$events), imdepi$events$eps.s, imdepi$events$type, imdepi$qmatrix) expect_identical(sources1, imdepi$events$.sources) sources2 <- determineSources.epidataCS(imdepi, method = "C") expect_identical(sources2, imdepi$events$.sources) }) surveillance/tests/testthat/test-bodaDelay.R0000644000175100001440000001740112536502707020764 0ustar hornikuserslibrary("testthat") library("surveillance") ################################################################## context("Checking the provided reporting triangle") # Control slot for the proposed algorithm with D=10 correction rangeTest <- 410:412 alpha <- 0.05 controlDelay <- list(range = rangeTest, b = 4, w = 3, pastAberrations = TRUE, mc.munu=10, mc.y=10, verbose = FALSE,populationOffset=FALSE, alpha = alpha, trend = TRUE, limit54=c(0,50), noPeriods = 10, pastWeeksNotIncluded = 26, delay=TRUE) test_that("The absence of reporting triangle throws an error",{ data("salmNewport") expect_error(bodaDelay(salmNewport, controlDelay),"You have to") }) test_that("The function spots uncorrect reporting triangles",{ data('salmAllOnset') stsFake <- salmAllOnset stsFake@control$reportingTriangle$n <- head(stsFake@control$reportingTriangle$n,n=10) expect_error(bodaDelay(stsFake, controlDelay),"The reporting triangle number") stsFake <- salmAllOnset stsFake@control$reportingTriangle$n[1,] <- stsFake@control$reportingTriangle$n[1,]/2 expect_error(bodaDelay(stsFake, controlDelay),"The reporting triangle is wrong") }) ################################################################## context("Data glm function") # Parameters epochAsDate <- TRUE epochStr <- "week" freq <- 52 b <- controlDelay$b w <- controlDelay$w populationOffset <- controlDelay$populationOffset noPeriods <- controlDelay$noPeriods verbose <- controlDelay$verbose reportingTriangle <- salmAllOnset@control$reportingTriangle timeTrend <- controlDelay$trend alpha <- controlDelay$alpha populationOffset <- controlDelay$populationOffset factorsBool <- controlDelay$factorsBool pastAberrations <- controlDelay$pastAberrations glmWarnings <- controlDelay$glmWarnings delay <- controlDelay$delay k <- controlDelay$k verbose <- controlDelay$verbose pastWeeksNotIncluded <- controlDelay$pastWeeksNotIncluded mc.munu <- controlDelay$mc.munu mc.y <- controlDelay$mc.y vectorOfDates <- as.Date(salmAllOnset@epoch, origin="1970-01-01") dayToConsider <- vectorOfDates[rangeTest[1]] observed <- salmAllOnset@observed population <- salmAllOnset@populationFrac dataGLM <- bodaDelay.data.glm(dayToConsider=dayToConsider, b=b, freq=freq, epochAsDate=epochAsDate, epochStr=epochStr, vectorOfDates=vectorOfDates,w=w, noPeriods=noPeriods, observed=observed,population=population, verbose=verbose, pastWeeksNotIncluded=pastWeeksNotIncluded, reportingTriangle=reportingTriangle, delay=delay) delay <- FALSE dataGLMNoDelay <- bodaDelay.data.glm(dayToConsider=dayToConsider, b=b, freq=freq, epochAsDate=epochAsDate, epochStr=epochStr, vectorOfDates=vectorOfDates,w=w, noPeriods=noPeriods, observed=observed,population=population, verbose=verbose, pastWeeksNotIncluded=pastWeeksNotIncluded, reportingTriangle=reportingTriangle, delay=delay) test_that("the output is a data.frame",{ expect_true(class(dataGLM)=="data.frame") expect_true(class(dataGLMNoDelay)=="data.frame") }) test_that("the data frame contains all variables",{ expect_equal(names(dataGLM)==c( "response", "wtime","population","seasgroups","vectorOfDates","delay"),rep(TRUE,6)) expect_equal(names(dataGLMNoDelay)==c( "response", "wtime","population","seasgroups","vectorOfDates"),rep(TRUE,5)) }) test_that("the variables have the right class",{ expect_equal(class(dataGLM$response),"numeric") expect_equal(class(dataGLM$wtime),"numeric") expect_equal(class(dataGLM$population),"numeric") expect_equal(class(dataGLM$seasgroups),"factor") expect_equal(class(dataGLM$vectorOfDates),"Date") expect_equal(class(dataGLM$delay),"numeric") expect_equal(class(dataGLMNoDelay$response),"numeric") expect_equal(class(dataGLMNoDelay$wtime),"numeric") expect_equal(class(dataGLMNoDelay$population),"numeric") expect_equal(class(dataGLMNoDelay$seasgroups),"factor") expect_equal(class(dataGLMNoDelay$vectorOfDates),"Date") }) test_that("the time variable is ok with diff 1",{ delayWtime <- as.numeric(levels(as.factor(dataGLM$wtime))) expect_equal(diff(delayWtime)==rep(1,length(delayWtime)-1),rep(TRUE,length(delayWtime)-1)) expect_equal(diff(dataGLMNoDelay$wtime)==rep(1,length(dataGLMNoDelay$wtime)-1),rep(TRUE,length(dataGLMNoDelay$wtime)-1)) }) test_that("the factor variable has the right number of levels",{ expect_true(length(levels(dataGLM$seasgroups))==noPeriods) expect_true(length(levels(dataGLMNoDelay$seasgroups))==noPeriods) }) ################################################################## context("Fit glm function") # if (interactive() && require("INLA")) { # do not test INLA-related code on CRAN # ## CAVE: _R_CHECK_TIMINGS_ as queried by surveillance.options("allExamples") # ## is no reliable condition to skip the test on CRAN (see # ## https://stat.ethz.ch/pipermail/r-devel/2012-September/064812.html # ## ), and especially seems not to be set by the daily Windows checks. # argumentsGLM <- list(dataGLM=dataGLM,reportingTriangle=reportingTriangle, # timeTrend=timeTrend,alpha=alpha, # populationOffset=populationOffset, # factorsBool=TRUE,pastAberrations=FALSE, # glmWarnings=glmWarnings, # verbose=verbose,delay=delay,k=k,control=controlDelay, # inferenceMethod="INLA") # # model <- do.call(bodaDelay.fitGLM, args=argumentsGLM) # test_that("The fit glm function gives the right class of output?",{ # expect_equal(class(model),"inla") # }) # } argumentsGLM <- list(dataGLM=dataGLM,reportingTriangle=reportingTriangle, timeTrend=timeTrend,alpha=alpha, populationOffset=populationOffset, factorsBool=TRUE,pastAberrations=FALSE, glmWarnings=glmWarnings, verbose=verbose,delay=delay,k=k,control=controlDelay, inferenceMethod="asym") model <- do.call(bodaDelay.fitGLM, args=argumentsGLM) test_that("The fit glm function gives the right class of output?",{ expect_equal(class(model)==c("negbin", "glm", "lm" ),rep(TRUE,3)) }) ################################################################################ context("formula function") ################################################################################ test_that("We get the right formula",{ expect_equal(formulaGLMDelay(timeBool=TRUE,factorsBool=FALSE),"response ~ 1+wtime") expect_equal(formulaGLMDelay(timeBool=FALSE,factorsBool=FALSE),"response ~ 1") expect_equal(formulaGLMDelay(timeBool=TRUE,factorsBool=FALSE),"response ~ 1+wtime") expect_equal(formulaGLMDelay(timeBool=TRUE,factorsBool=TRUE),"response ~ 1+wtime+as.factor(seasgroups)") expect_equal(formulaGLMDelay(timeBool=TRUE,factorsBool=TRUE,delay=TRUE),"response ~ 1+wtime+as.factor(seasgroups)+as.factor(delay)") expect_equal(formulaGLMDelay(timeBool=TRUE,factorsBool=FALSE,outbreak=TRUE),"response ~ 1+wtime+f(outbreakOrNot,model='linear', prec.linear = 1)") }) surveillance/tests/testthat/test-plapply.R0000644000175100001440000000062012535261014020544 0ustar hornikuserscontext("plapply()") test_that("plapply() results are reproducible", { if (.Platform$OS.type == "windows") skip("causes R CMD check to hang on Windows (but works interactively)") res1 <- plapply(c(1, 1), rnorm, .parallel = 2, .seed = 1, .verbose = FALSE) res2 <- plapply(c(1, 1), rnorm, .parallel = 2, .seed = 1, .verbose = FALSE) expect_that(res1, is_identical_to(res2)) }) surveillance/tests/testthat/test-farringtonFlexible.R0000644000175100001440000004762513116543146022734 0ustar hornikusersdata("salmonella.agona") # sts object lala <- paste(salmonella.agona$start[1],salmonella.agona$start[2],"1",sep=" ") firstMonday <- as.POSIXlt(lala, format = "%Y %W %u") salm.ts <- salmonella.agona$observed dates <- as.Date(firstMonday) + 7 * 0:(length(salm.ts) - 1) start=c(salmonella.agona$start[1],salmonella.agona$start[2]) salm <- new("sts",epoch = as.numeric(dates), start = start, freq = 52, observed = salm.ts, epochAsDate = TRUE) ################################################################################ context("farringtonFlexible -- weights function") ################################################################################ test_that("gamma = 1 if everything below the threshold",{ s <- rep(0,10) weightsThreshold <- 0 weights <- algo.farrington.assign.weights(s,weightsThreshold) expect_equal(weights,rep(1,10)) }) test_that(" A case that was checked by hand",{ s <- rep(2,10) s[1:5] <- 0 weightsThreshold <- 0 weights <- algo.farrington.assign.weights(s,weightsThreshold) expect_equal(weights[1:5],rep(1.6,5)) expect_equal(weights[6:10],rep(0.4,5)) }) ################################################################################ # END OF WEIGHTS FUNCTION TESTS ################################################################################ ################################################################################ context("farringtonFlexible -- residuals function") ################################################################################ test_that(" residuals should be zero",{ x <- rpois(10,1) y <- exp(x) model <- glm(y~x,family = quasipoisson(link="log")) phi <- max(summary(model)$dispersion,1) s <- anscombe.residuals(model,phi) expect_equal(as.numeric(s),rep(0,10)) }) test_that(" residuals should not be zero",{ x <- rpois(1000,1) y <- exp(x)+runif(1) model <- glm(y~x,family = quasipoisson(link="log")) phi <- max(summary(model)$dispersion,1) s <- anscombe.residuals(model,phi) expect_true(mean(s)>0) }) ################################################################################ # END OF RESIDUALS FUNCTION TESTS ################################################################################ ################################################################################ context("farringtonFlexible -- formula function") ################################################################################ test_that("We get the right formula",{ expect_equal(formulaGLM(populationOffset=FALSE,timeBool=TRUE,factorsBool=FALSE),"response ~ 1+wtime") expect_equal(formulaGLM(populationOffset=FALSE,timeBool=FALSE,factorsBool=FALSE),"response ~ 1") expect_equal(formulaGLM(populationOffset=TRUE,timeBool=TRUE,factorsBool=FALSE),"response ~ 1+wtime+offset(log(population))") expect_equal(formulaGLM(populationOffset=TRUE,timeBool=TRUE,factorsBool=TRUE),"response ~ 1+wtime+offset(log(population))+seasgroups") }) ################################################################################ # END OF FORMULA FUNCTION TESTS ################################################################################ ################################################################################ context("farringtonFlexible -- reference time points function") ################################################################################ test_that("We get the expected timepoints with weekly data",{ # Case with weekly data with dates dayToConsider <- as.Date("2013-06-06") b <- 3 freq <- 52 epochAsDate <- TRUE epochStr <- "week" lala <- algo.farrington.referencetimepoints(dayToConsider,b=b,freq=freq,epochAsDate,epochStr) # Do we get the same day as dayToConsider? expect_equal(as.numeric(format(lala, "%w")),rep(4,4)) # Actually for this example I know the dates one should get expect_equal(sort(lala),sort(c(as.Date("2010-06-03"),as.Date("2013-06-06"),as.Date("2012-06-07"),as.Date("2011-06-09")))) }) test_that("We get the expected timepoints with monthly data",{ dayToConsider <- 48 b <- 3 freq <- 12 epochAsDate <- FALSE epochStr <- "month" lala <- algo.farrington.referencetimepoints(dayToConsider,b=b,freq=freq,epochAsDate,epochStr) expect_equal(lala,c(48,36,24,12)) }) test_that("one gets a warning if too many years back",{ dayToConsider <- 48 b <- 3 freq <- 12 epochAsDate <- FALSE epochStr <- "month" expect_that(algo.farrington.referencetimepoints(dayToConsider,b=8,freq=freq,epochAsDate,epochStr), gives_warning("Some reference")) # apply code control1 <- list(range=250,noPeriods=10,populationOffset=FALSE, fitFun="algo.farrington.fitGLM.flexible", b=10,w=3,weightsThreshold=2.58, pastWeeksNotIncluded=26, pThresholdTrend=1,trend=TRUE, thresholdMethod="muan",alpha=0.05,glmWarnings=FALSE) expect_error(farringtonFlexible(salm,control=control1),"Some reference") }) ################################################################################ # END OF REFERENCE TIME POINTS FUNCTION TESTS ################################################################################ ################################################################################ context("farringtonFlexible -- fit glm function") ################################################################################ # Case with convergence control<- list(range=250,noPeriods=10,populationOffset=TRUE, fitFun="algo.farrington.fitGLM.flexible", b=40,w=3,weightsThreshold=2.58, pastWeeksNotIncluded=26, pThresholdTrend=1,trend=TRUE, thresholdMethod="muan",alpha=0.05,glmWarnings=FALSE) response=salm@observed[1:120] dataGLM <- data.frame(response=response,wtime=1:120, population=runif(120)*100, seasgroups=as.factor(rep(1:12,10))) arguments <- list(dataGLM=dataGLM, timeTrend=TRUE, populationOffset=TRUE, factorsBool=TRUE,reweight=TRUE, weightsThreshold=0.5,glmWarnings=control$glmWarnings, control=control) model <- do.call(algo.farrington.fitGLM.flexible, args=arguments) test_that("The fit glm function gives the right class of output?",{ expect_equal(class(model),c("glm","lm")) }) test_that("The fit glm function gives as many coefficients as expected",{ expect_equal(dim(summary(model)$coefficients)[1],length(levels(dataGLM$seasgroups))-1+1+1) }) test_that("wtime, response, phi and weights were added to the model",{ expect_true(is.null(model$phi)==FALSE) expect_true(is.null(model$wtime)==FALSE) expect_true(is.null(model$response)==FALSE) expect_true(is.null(model$population)==FALSE) expect_true(is.null(model$weights)==FALSE) }) test_that("reweighting was done",{ expect_true(sum(model$weights!=rep(1,length(model$weights)))==length(model$weights)) }) test_that("there are no weights if very high threshold",{ arguments$reweight <- TRUE arguments$weightsThreshold <- 100000 model <- do.call(algo.farrington.fitGLM.flexible, args=arguments) expect_true(sum(model$weights==rep(1,length(model$weights)))==length(model$weights)) }) test_that("there is not a too small overdispersion",{ expect_true(model$phi>=1) }) ################################################################################ # END OF FIT GLM FUNCTION TESTS ################################################################################ ################################################################################ context("farringtonFlexible -- block function") ################################################################################ referenceTimePoints <- c(as.Date("2010-06-03"),as.Date("2013-06-06"),as.Date("2012-06-07"),as.Date("2011-06-09")) firstDay <- as.Date("1990-06-07") vectorOfDates <- dates <- as.Date(firstDay) + 7 * 0:1300 freq <- 52 dayToConsider <- as.Date("2013-06-06") b <- 3 w <- 3 epochAsDate <- TRUE # p=1 p <- 1 lala <- blocks(referenceTimePoints,vectorOfDates,freq,dayToConsider,b,w,p, epochAsDate) test_that("the reference window has the right length",{ expect_equal(length(vectorOfDates[is.na(lala)==FALSE&lala==p]),w+1+b*(2*w+1)) # p>1 p <- 8 lala <- blocks(referenceTimePoints,vectorOfDates,freq,dayToConsider,b,w,p, epochAsDate) # reference windows expect_equal(length(vectorOfDates[is.na(lala)==FALSE&lala==p]),w+1+b*(2*w+1)) }) lili <- as.factor(lala[is.na(lala)==FALSE]) test_that("there are as many levels as expected",{ expect_equal(length(levels(lili)),p) }) p <- 8 lala <- blocks(referenceTimePoints,vectorOfDates,freq,dayToConsider,b,w,p, epochAsDate) lili <- as.factor(lala[is.na(lala)==FALSE]) lolo <- lili[lili!=p] test_that("periods of roughly the same length each year",{ expect_equal(as.numeric(abs(diff(table(lolo))[1:(p-2)])<=b),rep(1,(p-2))) }) ################################################################################ # END OF BLOCKS FUNCTION TESTS ################################################################################ ################################################################################ context("farringtonFlexible -- Farrington threshold function") ################################################################################ predFit <- 5 predSeFit <- 0.2 wtime <- 380 skewness.transform <- "2/88" alpha <- 0.05 y <- 8 method <- "delta" phi <- 1 test_that("the function recognizes wrong exponents",{ expect_that(algo.farrington.threshold.farrington(predFit,predSeFit,phi, skewness.transform, alpha,y,method),throws_error("proper exponent")) }) test_that("some results we know are found",{ skewness.transform <- "none" lala <- algo.farrington.threshold.farrington(predFit,predSeFit,phi, skewness.transform, alpha,y,method) # Should always be ok lala <- as.numeric(lala) expect_true(lala[3]<=1&lala[1]>=0) expect_true(lala[2]>lala[1]) expect_true(lala[1]>=0) # Here we know the results expect_equal(abs(as.numeric(lala)-c(1.3073128, 8.6926872, 0.0907246, 0.8124165))=0) expect_true(lala[2]>lala[1]) expect_true(lala[1]>=0) # Here we calculated some examples expect_equal(abs(as.numeric(lala)-c(7.0000000, 26.0000000, 0.8597797, 0.3850080))upperbound(test),na.rm=TRUE)==sum(test@alarm==TRUE)) }) ################################################################################ # RESIDUALS FUNCTION ################################################################################ ################################################################################ context("farringtonFlexible -- no convergence") ################################################################################ timeSeries <- rep(0,698) timeSeries[696] <- 1 algoControl <- list(noPeriods=10,alpha = 0.01,verbose = F, b=5,w=4,weightsThreshold=2.58,pastWeeksNotIncluded=26, pThresholdTrend=1,thresholdMethod='nbPlugin',limit54 = c(4,5), range = (length(timeSeries) - 1):length(timeSeries), glmWarnings = FALSE) seriesSTSObject <- new('sts', observed = timeSeries, epoch = as.numeric(seq(as.Date('2001-01-01'),length.out=length(timeSeries), by='1 week')), epochAsDate = TRUE) test_that("The code does not produce any error",{ # It is ok if the code does not produce any error expect_that(farringtonFlexible(seriesSTSObject, control = algoControl), gives_warning()) }) ################################################################################ context("farringtonFlexible -- NA") ################################################################################ timeSeries <- observed <- rnorm(698)*10+runif(698)*100+30 algoControl <- list(noPeriods=10,alpha = 0.01,verbose = F, b=5,w=4,weightsThreshold=2.58,pastWeeksNotIncluded=w, pThresholdTrend=1,thresholdMethod='nbPlugin',limit54 = c(4,5), range = (length(timeSeries) - 1):length(timeSeries), glmWarnings = FALSE) seriesSTSObject <- new('sts', observed = timeSeries, epoch = as.numeric(seq(as.Date('2001-01-01'),length.out=length(timeSeries), by='1 week')), epochAsDate = TRUE) test_that("The code does not produce any error",{ farringtonFlexible(seriesSTSObject, control = algoControl) results1 <- farringtonFlexible(seriesSTSObject, control = algoControl) expect_that(results1, is_a("sts")) seriesSTSObject@observed[680:690] <- NA results2 <- farringtonFlexible(seriesSTSObject, control = algoControl) expect_that(results2, is_a("sts")) }) surveillance/tests/testthat/test-hhh4_NegBinGrouped.R0000644000175100001440000001470413022237001022465 0ustar hornikuserscontext("hhh4() model with shared overdispersion parameters") ## use a small subset of districts from the fluBYBW data data("fluBYBW") fluBWsub <- fluBYBW[, substr(colnames(fluBYBW), 1, 2) %in% "81"] ## stsplot_space(fluBWsub, labels = TRUE) ## set "neighbourhood" to order of adjacency + 1 neighbourhood(fluBWsub) <- # nbOrder(neighbourhood(fluBWsub), maxlag = 5) + 1 structure( c(1, 4, 3, 2, 2, 4, 2, 4, 3, 3, 4, 4, 5, 4, 1, 2, 3, 4, 5, 4, 2, 3, 4, 3, 4, 4, 3, 2, 1, 2, 3, 4, 3, 2, 2, 3, 3, 4, 4, 2, 3, 2, 1, 2, 4, 3, 3, 2, 3, 3, 4, 4, 2, 4, 3, 2, 1, 4, 2, 3, 2, 3, 3, 4, 4, 4, 5, 4, 4, 4, 1, 3, 4, 3, 2, 3, 3, 4, 2, 4, 3, 3, 2, 3, 1, 3, 2, 2, 3, 3, 4, 4, 2, 2, 3, 3, 4, 3, 1, 2, 3, 2, 3, 3, 3, 3, 2, 2, 2, 3, 2, 2, 1, 2, 2, 3, 3, 3, 4, 3, 3, 3, 2, 2, 3, 2, 1, 2, 2, 3, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 1, 2, 2, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 2, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1), .Dim = c(13L, 13L), .Dimnames = list( c("8115", "8135", "8117", "8116", "8111", "8121", "8118", "8136", "8119", "8125", "8127", "8126", "8128"), c("8115", "8135", "8117", "8116", "8111", "8121", "8118", "8136", "8119", "8125", "8127", "8126", "8128"))) ## a crazy model base fluModel <- list( end = list(f = addSeason2formula(~0 + ri(type="iid"))), ne = list(f = ~0 + fe(1, unitSpecific = TRUE), weights = W_powerlaw(maxlag = 3)), start = list(random = rep.int(0, ncol(fluBWsub))) ) if (FALSE) { # check derivatives fluDeriv <- hhh4(stsObj = fluBWsub, control = c(fluModel, list(family = "NegBinM")), check.analyticals = TRUE) ana <- fluDeriv$pen$fisher$analytic num <- fluDeriv$pen$fisher$numeric equal <- mapply(function (...) isTRUE(all.equal.numeric(...)), ana, num, tolerance = 1e-4) dim(equal) <- dim(ana) Matrix::image(Matrix::Matrix(equal)) } ## fit a model with unit-specific overdispersion parameters using "NegBinM", ## equal to family = factor(colnames(fluBWsub), levels=colnames(fluBWsub)) fluFitM <- hhh4(stsObj = fluBWsub, control = c(fluModel, list( family = "NegBinM"))) test_that("\"NegBinM\" fit is invariant to the ordering of the overdispersion parameters", { fluFitM_reordered <- hhh4(stsObj = fluBWsub, control = c(fluModel, list( family = factor(colnames(fluBWsub), levels=rev(colnames(fluBWsub)))))) expect_equal(fluFitM_reordered$loglikelihood, fluFitM$loglikelihood) expect_equal(fluFitM_reordered$margll, fluFitM$margll) expect_equal(fluFitM_reordered$coefficients[names(fluFitM$coefficients)], fluFitM$coefficients) }) ## fit a model with shared overdispersion parameters fluFitShared <- hhh4(stsObj = fluBWsub, control = c(fluModel, list( family = factor(substr(colnames(fluBWsub), 3, 3) == "1", levels = c(TRUE, FALSE), labels = c("region1", "elsewhere"))))) test_that("estimates with shared overdispersion are reproducible", { ## dput(coef(fluFitShared, se = TRUE)) orig <- structure( c(0.0172448275799737, -2.29936227176632, -0.311391919170833, 0.0173369590386396, 0.242634649538434, -0.73402605050834, -0.0411427686831543, -0.917845995715638, -0.324146451650439, -0.252506337389155, 0.153202205413176, -0.857813219848051, -1.00758863915022, 2.01735387997105, 2.38047570484809, -4.38317074697181, 2.46949727973784, 0.549903756338196, 1.12432744953686, 0.647372578569298, 0.21388842588635, -0.437822769909503, 0.255185408180267, 0.92949604237045, -1.09633602928844, 0.298117843865811, -0.68452091605681, 0.23456335139387, 0.162259631408099, 0.209619606465627, -0.10216429396362, -0.629658878921399, 0.114133112372732, 0.823887580788133, 0.12141926111051, 0.113879127629599, 0.109816278251024, 0.221038616887962, 0.115707006557826, 0.187260599970159, 0.121830940397345, 0.172070355414403, 0.157444513096506, 0.254811666726125, 0.268571254537371, 0.215202234247305, 0.212970632033808, 0.262762514629277, 0.205440489731246, 0.0567461846032841, 0.154168532075271, 0.320248263514015, 0.309517737483193, 0.366585194306804, 0.370748971125027, 0.304859567470968, 0.397763842736319, 0.357894067104384, 0.380956131344983, 0.344676554711052, 0.37300484854814, 0.378382126329053, 0.342270280546076, 0.359489843015429), .Dim = c(32L, 2L), .Dimnames = list( c("ne.1.8115", "ne.1.8135", "ne.1.8117", "ne.1.8116", "ne.1.8111", "ne.1.8121", "ne.1.8118", "ne.1.8136", "ne.1.8119", "ne.1.8125", "ne.1.8127", "ne.1.8126", "ne.1.8128", "end.sin(2 * pi * t/52)", "end.cos(2 * pi * t/52)", "end.ri(iid)", "neweights.d", "overdisp.region1", "overdisp.elsewhere", "end.ri(iid).8115", "end.ri(iid).8135", "end.ri(iid).8117", "end.ri(iid).8116", "end.ri(iid).8111", "end.ri(iid).8121", "end.ri(iid).8118", "end.ri(iid).8136", "end.ri(iid).8119", "end.ri(iid).8125", "end.ri(iid).8127", "end.ri(iid).8126", "end.ri(iid).8128"), c("Estimate", "Std. Error")) ) expect_equal(coef(fluFitShared, se = TRUE), orig) }) test_that("calibrationTest.oneStepAhead() works and \"final\" is equivalent to fit", { mysubset <- tail(fluFitShared$control$subset, 16) osa_final <- oneStepAhead(fluFitShared, tp = mysubset[1L]-1L, type = "final", verbose = FALSE) idx <- 3:5 # ignore "method" and "data.name" in calibrationTest() output expect_equal(calibrationTest(osa_final, which = "dss")[idx], calibrationTest(fluFitShared, which = "dss", subset = mysubset)[idx]) }) test_that("simulation correctly uses shared overdispersion parameters", { fluSimShared <- simulate(fluFitShared, seed = 1) ## simulate from the NegBinM model using the estimates from the shared fit psiShared <- coeflist(fluFitShared)$fixed$overdisp psiByUnit <- psiShared[fluFitShared$control$family] names(psiByUnit) <- paste0("overdisp.", names(fluFitShared$control$family)) coefsM <- c(coef(fluFitShared), psiByUnit)[names(coef(fluFitM))] fluSimSharedM <- simulate(fluFitM, seed = 1, coefs = coefsM) expect_identical(observed(fluSimShared), observed(fluSimSharedM)) ## fails for surveillance 1.12.2 }) surveillance/tests/testthat/test-hhh4_ARasNE.R0000644000175100001440000000231712444011132021045 0ustar hornikuserscontext("Validate AR hhh4 via NE with identity W") data("measlesWeserEms") ## fit with AR component as usual vaccdata <- matrix(measlesWeserEms@map$vacc2.2004, byrow = TRUE, nrow = nrow(measlesWeserEms), ncol = ncol(measlesWeserEms)) measlesModel <- list( ar = list(f = addSeason2formula(~1 + vacc2, S=2, period=52)), end = list(f = addSeason2formula(~1, S=1, period=52), offset = population(measlesWeserEms)), family = "NegBin1", data = list(vacc2 = vaccdata)) measlesFit <- hhh4(measlesWeserEms, measlesModel) ## now use an identity matrix as W in the NE component instead of AR measlesFit2 <- suppressWarnings( update(measlesFit, ar = list(f = ~-1), ne = list(f = measlesModel$ar$f, weights = diag(ncol(measlesWeserEms))), use.estimates = FALSE) ) ## compare fits test_that("AR-hhh4 agrees with using identity W in NE", { expect_that(coef(measlesFit), equals(coef(measlesFit2), check.names=FALSE)) expect_that(measlesFit$cov, equals(measlesFit2$cov, check.attributes=FALSE)) expect_that(logLik(measlesFit), equals(logLik(measlesFit2))) expect_that(fitted(measlesFit), equals(fitted(measlesFit2))) }) surveillance/tests/testthat/test-toLatex.sts.R0000644000175100001440000000655612365645037021345 0ustar hornikuserscontext("toLatex-method for the sts-class") data("ha.sts") data("salmonella.agona") test_that("toLatex accepts basic input and returns Latex", { control <- list( noPeriods=10,populationBool=FALSE, fitFun="algo.farrington.fitGLM.flexible", b=4,w=3,weightsThreshold=2.58, pastWeeksNotIncluded=26, pThresholdTrend=1,trend=TRUE, thresholdMethod="new",alpha=0.01 ) result <- ha.sts result@alarm[,7] <- TRUE result@upperbound[,7] <- 1 laTex <- toLatex(result, subset=(280:290), table.placement="h", size = "scriptsize", sanitize.text.function = identity, NA.string = "-",include.rownames=FALSE) laTex3 <- toLatex(result, subset=(280:290), alarmPrefix = "aaaa", alarmSuffix = "bbbb", table.placement="h", size = "scriptsize", sanitize.text.function = identity, NA.string = "-",include.rownames=FALSE) expect_true(grepl("aaaa", paste(as.character(laTex3), collapse = ' '))) expect_true(grepl("bbbb", paste(as.character(laTex3), collapse = ' '))) expect_is(laTex, "Latex") expect_is(laTex3, "Latex") }) test_that("caption is incorporated", { testCaption <- "Please print my caption" latex <- toLatex(ha.sts, caption = testCaption) expect_true(grepl(testCaption, paste(as.character(latex), collapse = ' '))) }) test_that("label is incorporated", { testLabel <- "Please print my label" latex <- toLatex(ha.sts, label = testLabel) expect_true(grepl(testLabel, paste(as.character(latex), collapse = ' '))) }) test_that("ubColumnLabel is incorporated", { testUBLabel <- "Upperbound" latex <- toLatex(ha.sts, ubColumnLabel = testUBLabel) expect_true(grepl(testUBLabel, paste(as.character(latex), collapse = ' '))) }) test_that("one can override the default table column labels", { columnLabels <- c("Jahr", "Woche", "chwi1", "UB", "frkr2", "UB", "lich3", "UB", "mahe4", "UB", "mitt5", "UB", "neuk6", "UB", "pank7", "UB", "rein8", "UB", "span9", "UB", "zehl10", "UB", "scho11", "UB", "trko12", "UB") latex <- toLatex(ha.sts, columnLabels = columnLabels) expect_true(all( sapply(columnLabels, function(l) grepl(l, paste(as.character(latex), collapse = ' ')) , USE.NAMES = FALSE) )) }) test_that("toLatex works with output from farringtonFlexible()", { # Create the corresponding sts object from the old disProg object salm <- disProg2sts(salmonella.agona) # Farrington with old options control1 <- list(range=(260:312), noPeriods=1,populationOffset=FALSE, fitFun="algo.farrington.fitGLM.flexible", b=4,w=3,weightsThreshold=1, pastWeeksNotIncluded=3, pThresholdTrend=0.05,trend=TRUE, thresholdMethod="delta",alpha=0.1) salm1 <- farringtonFlexible(salm,control=control1) expect_is(toLatex(salm1), "Latex") }) test_that("toLatex only accepts a single sts object", { expect_error(toLatex(list(ha.sts, ha.sts))) }) test_that("toLatex stops if 'subset' is not applicable", { expect_error(toLatex(ha.sts, subset=(-5:290))) expect_error(toLatex(ha.sts, subset=(1:10000))) expect_error(toLatex(ha.sts, subset=(10000:100000))) }) surveillance/tests/testthat/test-siafs.R0000644000175100001440000001207213164444360020202 0ustar hornikuserscontext("Spatial interaction functions") ### test bundle myexpectation <- function (siaf, intrfr, intrderivr, pargrid, type = 1, ...) { ## check analytical intrfr specification against numerical approximation if (!missing(intrfr)) apply(pargrid, 1, function (pars) expect_warning( polyCub::checkintrfr(intrfr, siaf$f, pars, type, center=c(0,0), rs=c(1,2,5,10,20,50)), NA, label = "polyCub::checkintrfr()")) ## also check intrfr for deriv if (!missing(intrderivr)) for (paridx in seq_along(intrderivr)) apply(pargrid, 1, function (pars) expect_warning( polyCub::checkintrfr(intrderivr[[paridx]], function (...) siaf$deriv(...)[,paridx], pars, type, center=c(0,0), rs=c(1,2,5,10,20,50)), NA, label = paste0("polyCub::checkintrfr() for deriv[,",paridx,"]"))) ## check deriv, F, Deriv against numerical approximations checksiafres <- surveillance:::checksiaf(siaf, pargrid, type, ...) for (i in which(!sapply(checksiafres, is.null))) expect_true(unique(attr(checksiafres[[i]], "all.equal")), label=names(checksiafres)[i]) } ### test all pre-defined spatial interaction functions test_that("Gaussian 'F.adaptive' implementation agrees with numerical approximation", myexpectation(siaf.gaussian(F.adaptive=0.05), # Deriv uses polyCub.SV pargrid=as.matrix(log(c(0.5, 1, 3))), tolerance=0.01, method="midpoint", dimyx=150)) test_that("Gaussian iso-C-implementation agrees with numerical approximation", myexpectation(siaf.gaussian(F.adaptive=FALSE, F.method="iso"), pargrid=as.matrix(log(c(0.5, 1, 3))), tolerance=0.0005, method="SV", nGQ=25)) test_that("Power-law implementation agrees with numerical approximation", myexpectation(siaf.powerlaw(engine = "R"), surveillance:::intrfr.powerlaw, list(surveillance:::intrfr.powerlaw.dlogsigma, surveillance:::intrfr.powerlaw.dlogd), pargrid=cbind(0.5,log(c(0.1,1,2))), tolerance=0.0005, method="SV", nGQ=13)) test_that("Lagged power-law implementation agrees with numeric results", myexpectation(siaf.powerlawL(engine = "R"), surveillance:::intrfr.powerlawL, list(surveillance:::intrfr.powerlawL.dlogsigma, surveillance:::intrfr.powerlawL.dlogd), pargrid=cbind(-0.5,log(c(0.1,1,2))), tolerance=0.01, method="midpoint", dimyx=150)) test_that("Student implementation agrees with numerical approximation", myexpectation(siaf.student(engine = "R"), surveillance:::intrfr.student, list(surveillance:::intrfr.student.dlogsigma, surveillance:::intrfr.student.dlogd), pargrid=cbind(0.5,log(c(0.1,1,2))), tolerance=0.0005, method="SV", nGQ=5)) test_that("Step kernel implementation agrees with numerical approximation", myexpectation(siaf.step(c(0.1,0.5,1)), pargrid=-t(c(0.5,0.1,0.2)), tolerance=0.01, method="midpoint", dimyx=150)) ## ## plot the polygon on which F and Deriv are tested (to choose parameters) ## showsiaf <- function (siaf, pars) { ## plotpolyf(LETTERR, siaf$f, pars, print.args=list(split=c(1,1,2,1), more=TRUE)) ## plotpolyf(LETTERR, function (...) siaf$deriv(...)[,1], pars, print.args=list(split=c(2,1,2,1))) ## } ## showsiaf(siaf.student(), c(0.5,-0.5)) ### test new C-implementations of F and Deriv functions expect_equal_CnR <- function (siafgen, pargrid) { polydomain <- surveillance:::LETTERR siafR <- siafgen(engine = "R") siafC <- siafgen(engine = "C") ## check F resF <- apply(pargrid, 1, function (pars) c(C = siafC$F(polydomain, , pars), R = siafR$F(polydomain, , pars))) expect_equal(object = resF["C",], expected = resF["R",], label = "C-version of F", expected.label = "R-version of F") ## check Deriv resDeriv <- apply(pargrid, 1, function (pars) c(siafC$Deriv(polydomain, , pars), siafR$Deriv(polydomain, , pars))) p <- siafR$npars expect_equal(object = resDeriv[seq_len(p),], expected = resDeriv[p+seq_len(p),], label = "C-version of Deriv", expected.label = "R-version of Deriv") } test_that("siaf.powerlaw() engines agree", { expect_equal_CnR(siafgen = siaf.powerlaw, pargrid = cbind(0.5,log(c(0.1,1,2)))) }) test_that("siaf.student() engines agree", { expect_equal_CnR(siafgen = siaf.student, pargrid = cbind(0.5,log(c(0.1,1,2)))) }) test_that("siaf.powerlawL() engines agree", { expect_equal_CnR(siafgen = siaf.powerlawL, pargrid = cbind(-0.5,log(c(0.1,1,2)))) }) surveillance/tests/testthat/test-tiafs.R0000644000175100001440000000473413116536317020212 0ustar hornikuserscontext("Temporal interaction functions") test_that("Step kernel of a single type agrees with numerical approximations", { steptiaf <- tiaf.step(c(7,20), maxRange=25, nTypes=1) logvals <- log(c(1.2,0.2)) ##curve(steptiaf$g(x, logvals), 0, 30, n=301) ## check G expect_equal(steptiaf$G(0:30, logvals), sapply(0:30, function (upper) { integrate(steptiaf$g, 0, upper, logvals, rel.tol=1e-8)$value }), tolerance=1e-8) ## check deriv if (requireNamespace("maxLik", quietly = TRUE)) { expect_that(maxLik::compareDerivatives( f = function(pars, x) steptiaf$g(x, pars), grad = function(pars, x) steptiaf$deriv(x, pars), t0 = logvals, x = c(0.5,2,5,7,10,15,20,25,30), print = FALSE)$maxRelDiffGrad, is_less_than(1e-8)) } ## check Deriv for (paridx in seq_along(logvals)) expect_equal(steptiaf$Deriv(0:30, logvals)[,paridx], sapply(0:30, function (upper) integrate( function(...) steptiaf$deriv(...)[,paridx], 0, upper, logvals, rel.tol=1e-6)$value), tolerance=1e-6, label=paste0("steptiaf$Deriv()[,",paridx,"]"), expected.label="integrate() approximation") }) test_that("Step kernel with maxRange>max(eps.t) is equivalent to maxRange=Inf", { data("imdepi", package="surveillance") imdfit_steptiafInf <- twinstim( endemic = ~offset(log(popdensity)) + I(start/365 - 3.5), epidemic = ~1, siaf = siaf.constant(), tiaf = tiaf.step(c(7,20), maxRange=Inf), data = imdepi, optim.args = NULL, verbose = FALSE) maxepst <- max(imdepi$events$eps.t) imdfit_steptiaf30 <- update.default( ## update() might call an update.list-method registered by another ## package, e.g., gdata (2.18.0) implicitly loaded in other tests imdfit_steptiafInf, tiaf = tiaf.step(c(7,20), maxRange=maxepst+0.1)) coefs <- c(-20, -0.05, -15, -0.5, 0.2, -1) expect_identical(imdfit_steptiafInf$ll(coefs), imdfit_steptiaf30$ll(coefs)) expect_identical(imdfit_steptiafInf$sc(coefs), imdfit_steptiaf30$sc(coefs)) }) surveillance/tests/testthat/test-formatDate.R0000644000175100001440000000517212625315364021170 0ustar hornikuserscontext("ISO8601 Date conversion on Windows and Linux") #Generate some dates d <- as.Date("2001-01-01") d2 <- as.Date(c("2001-01-01","2002-05-01")) test_that("formatting date", expect_that(formatDate(d,"W%V-%Y"), equals("W01-2001"))) test_that("Formatting date vectors with ISO8601 and UK conventions", expect_that(formatDate(d2,"W%V-%G / W%W-%Y / %d-%m-%Y"), equals(c("W01-2001 / W01-2001 / 01-01-2001","W18-2002 / W17-2002 / 01-05-2002")))) test_that("Formatting date vectors with roman letters for quarters", expect_that(formatDate(d2,"%G\n%OQ"), equals(c("2001\nI","2002\nII")))) #Some checks for the atChange dates <- seq(as.Date("2007-01-01"),as.Date("2013-01-01"),by="1 week") #Format with conversion string x <- as.numeric(formatDate(dates,"%m")) xm1 <- as.numeric(formatDate(dates[1]-7,"%m")) #At change test_that("atChange function works for %m",expect_that( atChange(x,xm1), equals( c(1L, 6L, 10L, 14L, 19L, 23L, 27L, 32L, 36L, 40L, 45L, 49L, 54L, 58L, 62L, 67L, 71L, 75L, 80L, 84L, 88L, 93L, 97L, 101L, 106L, 110L, 114L, 119L, 123L, 127L, 132L, 136L, 141L, 145L, 149L, 154L, 158L, 162L, 166L, 171L, 175L, 180L, 184L, 188L, 193L, 197L, 201L, 206L, 210L, 215L, 219L, 223L, 227L, 232L, 236L, 240L, 245L, 249L, 254L, 258L, 262L, 267L, 271L, 275L, 280L, 284L, 288L, 293L, 297L, 301L, 306L, 310L)))) #Test every second change function test_that("at2ndChange function works for %m",expect_that( at2ndChange(x,xm1),equals( c(1L, 10L, 19L, 27L, 36L, 45L, 54L, 62L, 71L, 80L, 88L, 97L, 106L, 114L, 123L, 132L, 141L, 149L, 158L, 166L, 175L, 184L, 193L, 201L, 210L, 219L, 227L, 236L, 245L, 254L, 262L, 271L, 280L, 288L, 297L, 306L)))) #### Year formatting x <- as.numeric(formatDate(dates,"%Y")) xm1 <- as.numeric(formatDate(dates[1]-7,"%Y")) test_that("atMedian function works for %Y",expect_that( atMedian(x,xm1),equals(c(26L, 79L, 131L, 183L, 235L, 287L)))) test_that("at2ndChange function works for %Y",expect_that( dates[at2ndChange(x,xm1)],equals(as.Date(c("2007-01-01","2009-01-05","2011-01-03"))))) #Does this look at expected (hard to check with testthat data("rotaBB") plot(rotaBB, xaxis.tickFreq=list("%Y"=atChange), xaxis.labelFreq=list("%Y"=at2ndChange),xaxis.labelFormat="%Y",xlab="time (months)") #Test quarter formatting test_that(formatDate(d2,"%Q"), equals(c("1","2"))) test_that(formatDate(d2,"%q"), equals(c("1","31"))) test_that(as.character(d2 - as.numeric(formatDate(d2,"%q")) + 1), equals(c("2001-01-01","2002-04-01"))) surveillance/tests/testthat/test-hhh4+algo.hhh.R0000644000175100001440000000417413166701415021417 0ustar hornikuserscontext("Comparison of hhh4() and algo.hhh() for 'influMen' example") ## influenza/meningococcal data, also illustrated in vignette("hhh4") data("influMen") ## fit with old algo.hhh() hhhfit <- algo.hhh(influMen, list(lambda=c(1,1), neighbours=c(NA,0), linear=FALSE, nseason=c(3,1), negbin="multiple"), verbose=FALSE) test_that("algo.hhh() converges for 'influMen' example", expect_true(hhhfit$convergence)) ## fit with new hhh4() hhh4fit <- hhh4(disProg2sts(influMen), list(ar=list(f=~0+fe(1, which=c(TRUE, TRUE)), lag=1), ne=list(f=~0+fe(1, which=c(FALSE,TRUE)), lag=0, weights=matrix(c(0,0,1,0), 2, 2)), # influenza->IMD end=list(f=addSeason2formula( ~0+fe(1,which=c(TRUE,TRUE)), S=c(3,1))), family="NegBinM")) test_that("hhh4() converges for 'influMen' example", expect_true(hhh4fit$convergence)) ## compare fits test_that("results from algo.hhh() and hhh4() agree for 'influMen' example", { expect_that(hhhfit$nObs, equals(nobs(hhh4fit))) expect_that(hhhfit$loglikelihood, equals(hhh4fit$loglikelihood)) ## fitted values expect_that(fitted(hhhfit), equals(fitted(hhh4fit), tolerance=0.0005, check.attributes=FALSE)) ## coefficient estimates hhh4coefs <- coef(hhh4fit, idx2Exp=1:3, reparamPsi=TRUE) orderhhh42old <- c(4,5,1:3, grep("(sin|cos).*\\.influenza", names(hhh4coefs)), grep("(sin|cos).*\\.meningo", names(hhh4coefs)), grep("overdisp", names(hhh4coefs))) expect_that(coef(hhhfit, reparamPsi=TRUE), equals(hhh4coefs[orderhhh42old], tolerance=0.0005, check.attributes=FALSE)) ## variance-covariance matrix of parameter estimates hhh4cov <- vcov(hhh4fit, idx2Exp=c(1:3,14:15), reparamPsi=FALSE) expect_that(hhhfit$cov, equals(hhh4cov[orderhhh42old,orderhhh42old], tolerance=0.002, check.attributes=FALSE)) }) surveillance/tests/testthat/test-hhh4+derivatives.R0000644000175100001440000001100113231460066022234 0ustar hornikuserscontext("Fixed effects hhh4() model fit and involved analytical derivatives") data("measlesWeserEms") measlesModel <- list( end = list(f = addSeason2formula(~1 + t, S=1, period=52), offset = population(measlesWeserEms)), ar = list(f = ~1), ne = list(f = ~1 + log(pop), weights = W_powerlaw(maxlag = 5, normalize = TRUE)), family = "NegBin1", data = list(pop = population(measlesWeserEms)) ) measlesFit <- hhh4(stsObj = measlesWeserEms, control = measlesModel) test_that("estimates and standard errors are reproducible", { ## dput(coef(measlesFit, se = TRUE)) orig <- structure( c(-0.499636482022272, 0.551345030080107, 0.96093157194767, -0.153585641356373, 0.00333284018297979, 1.01500011496702, -0.588738943313705, 5.52782609236691, 1.81915612994789, 0.121781347106564, 1.27401298230559, 0.453889365025671, 0.281013375484401, 0.00459840327748742, 0.210642721317572, 0.191921649336323, 1.87984346848385, 0.265016986696184), .Dim = c(9L, 2L), .Dimnames = list(c("ar.1", "ne.1", "ne.log(pop)", "end.1", "end.t", "end.sin(2 * pi * t/52)", "end.cos(2 * pi * t/52)", "neweights.d", "overdisp"), c("Estimate", "Std. Error")) ) expect_equal(coef(measlesFit, se = TRUE), orig, tolerance = 1e-6) # increased for Solaris Sparc ## tolerance determined empirically by an R build with --disable-long-double }) test_that("neighbourhood weights array yields the same results", { What <- getNEweights(measlesFit) ## put that in an array for time-varying weights in hhh4 ## (they are not actually varying here) Warray <- array(What, dim = c(dim(What),nrow(measlesWeserEms)), dimnames = c(dimnames(What), list(NULL))) measlesFit_Warray <- update(measlesFit, ne = list(weights = Warray), use.estimates = FALSE) ## NOTE: variance estimates are different because of fixed powerlaw expect_equal(measlesFit_Warray, measlesFit, ignore = c("control", "coefficients", "se", "cov", "dim")) expect_equal(coef(measlesFit_Warray), coef(measlesFit)[names(coef(measlesFit_Warray))], tolerance = 1e-6) # triggered by 64-bit win-builder }) test_that("score vector and Fisher info agree with numerical approximations", { skip_if_not_installed("numDeriv") test <- function (neweights) { measlesModel$ne$weights <- neweights pencomp <- hhh4(measlesWeserEms, measlesModel, check.analyticals = "numDeriv")$pen expect_equal(pencomp$score$analytic, pencomp$score$numeric, tolerance = .Machine$double.eps^0.5) expect_equal(pencomp$fisher$analytic, pencomp$fisher$numeric, tolerance = .Machine$double.eps^0.25) } test(W_powerlaw(maxlag = 5, normalize = FALSE, log = FALSE)) ## normalized PL with maxlag < max(nbmat) failed in surveillance < 1.9.0: test(W_powerlaw(maxlag = 3, normalize = TRUE, log = TRUE)) }) test_that("automatic and manual normalization are equivalent", { ## check for equivalent functions for (type in c("powerlaw", "np")) { W_type <- get(paste0("W_", type), mode = "function") w0 <- W_type(maxlag = 3, normalize = TRUE) w1 <- surveillance:::scaleNEweights.list( W_type(maxlag = 3, normalize = FALSE), normalize = TRUE) pars <- w0$initial nbmat <- neighbourhood(measlesWeserEms) expect_equal(w1$w(pars, nbmat), w0$w(pars, nbmat)) ## for the power law, dw and d2w are length 1 lists in w1 but not in w0 unlistIfPL <- if (type == "powerlaw") function (x) x[[1L]] else identity expect_equal(unlistIfPL(w1$dw(pars, nbmat)), w0$dw(pars, nbmat)) expect_equal(unlistIfPL(w1$d2w(pars, nbmat)), w0$d2w(pars, nbmat)) ## microbenchmark::microbenchmark(w1$d2w(pars, nbmat), w0$d2w(pars, nbmat)) ## -> type-specific implementations of normalized derivatives are faster } ## check for equivalent fits (rather redundant) measlesFit2 <- hhh4( stsObj = measlesWeserEms, control = modifyList(measlesModel, list( ne = list( weights = W_powerlaw(maxlag = 5, normalize = FALSE), normalize = TRUE # -> use scaleNEweights.list() ))) ) expect_equal(measlesFit, measlesFit2, ignore = "control", tolerance = 1e-6) # increased to pass on 32-bit Windows }) surveillance/tests/testthat/test-nbOrder.R0000644000175100001440000000231212535244311020457 0ustar hornikuserscontext("Neighbourhood order") ## generate random adjancency matrix ## radjmat <- function (n) { ## adjmat <- matrix(0L, n, n, dimnames=list(letters[1:n],letters[1:n])) ## adjmat[lower.tri(adjmat)] <- sample(0:1, n*(n-1)/2, replace=TRUE) ## adjmat + t(adjmat) ## } ## set.seed(3); adjmat <- radjmat(5) adjmat <- structure( c(0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L), .Dim = c(5L, 5L), .Dimnames = rep.int(list(c("a", "b", "c", "d", "e")), 2L) ) ## validated matrix of neighbourhood orders nbmat <- structure( c(0L, 2L, 1L, 3L, 2L, 2L, 0L, 1L, 1L, 2L, 1L, 1L, 0L, 2L, 1L, 3L, 1L, 2L, 0L, 1L, 2L, 2L, 1L, 1L, 0L), .Dim = c(5L, 5L), .Dimnames = rep.int(list(c("a", "b", "c", "d", "e")), 2L) ) test_that("nbOrder() returns the validated matrix", { skip_if_not_installed("spdep") expect_that(suppressMessages(nbOrder(adjmat, maxlag=Inf)), is_identical_to(nbmat)) }) test_that("zetaweights(.,maxlag=1,normalize=FALSE) is inverse of nbOrder", { expect_that(zetaweights(nbmat, maxlag=1, normalize=FALSE), is_identical_to(1*adjmat)) }) surveillance/tests/testthat/test-sts.R0000644000175100001440000000462713167154115017714 0ustar hornikuserscontext("S4 class definition of \"sts\" and its extensions") test_that("\"sts\" prototype is a valid object", expect_true(validObject(new("sts")))) mysts <- sts(1:10, frequency = 4, start = c(1959, 2)) test_that("conversion from \"ts\" to \"sts\" works as expected", { myts <- ts(1:10, frequency = 4, start = c(1959, 2)) expect_identical(as(myts, "sts"), mysts) ## this failed in surveillance 1.11.0 due to a wrong "start" calculation }) test_that("if missing(observed), initialize-method copies slots", { mysts_updated <- initialize(mysts, epoch = 2:11) expect_identical(mysts_updated@epoch, 2:11) mysts_updated@epoch <- mysts@epoch expect_identical(mysts_updated, mysts) ## construct stsBP from existing "sts" object mystsBP <- new("stsBP", mysts, ci = array(NA_real_, c(10,1,2)), lambda = array(NA_real_, c(10,1,1))) expect_identical(as(mystsBP, "sts"), mysts) }) test_that("different initializations of \"stsBP\" work as expected", { mystsBP <- new("stsBP", observed = 1:10, freq = 4, start = c(1959, 2), ci = array(NA_real_, c(10,1,2)), lambda = array(NA_real_, c(10,1,0))) expect_identical(mystsBP, as(mysts, "stsBP")) }) test_that("different initializations of \"stsNC\" work as expected", { mystsNC <- new("stsNC", observed = 1:10, freq = 4, start = c(1959, 2), pi = array(NA_real_, c(10,1,2)), SR = array(NA_real_, c(10,0,0))) expect_identical(mystsNC, as(mysts, "stsNC")) }) test_that("sts(..., population) sets the populationFrac slot", { ## for sts() construction, "population" is an alias for "populationFrac" ## (the internal slot name), introduced in the space-time JSS paper sts1 <- sts(cbind(1:3, 11:13), population = c(10, 20)) sts2 <- sts(cbind(1:3, 11:13), populationFrac = c(10, 20)) expect_identical(sts1, sts2) }) test_that("\"sts\" conversion to a (tidy) data frame works consistently", { ## univariate sts mystsdata <- as.data.frame(mysts, as.Date = FALSE) expect_identical(tidy.sts(mysts)[names(mystsdata)], mystsdata) ## multivariate sts data("momo") momo3tidy_uv <- tidy.sts(momo[,3]) momo3tidy_mv <- subset(tidy.sts(momo), unit == levels(unit)[3]) momo3tidy_mv$unit <- momo3tidy_mv$unit[drop=TRUE] row.names(momo3tidy_mv) <- NULL expect_identical(momo3tidy_uv, momo3tidy_mv) }) surveillance/tests/testthat/test-twinstim_score.R0000644000175100001440000000462113122210335022132 0ustar hornikuserscontext("Likelihood and score function of twinstim()") ## Note: derivatives of interaction functions are tested in separate files ## we thus use relatively fast step functions here data("imdepi") model <- twinstim( endemic = addSeason2formula(~offset(log(popdensity)), S = 1, period = 365, timevar = "start"), epidemic = ~type, siaf = siaf.step(c(5, 20), maxRange = 50), tiaf = tiaf.step(2), data = imdepi, optim.args = NULL, verbose = FALSE ) theta <- c("h.(Intercept)" = -20, "h.sin(2 * pi * start/365)" = 0.2, "h.cos(2 * pi * start/365)" = 0.3, "e.(Intercept)" = -10, "e.typeC" = -0.9, "e.siaf.1" = -1, "e.siaf.2" = -3, "e.tiaf.1" = -1) test_that("likelihood is still the same", { expect_that(model$ll(theta), equals(-9610.68695991737)) }) test_that("score vector agrees with numerical approximation", { numsc <- if (surveillance.options("allExamples") && requireNamespace("numDeriv")) { numDeriv::grad(func = model$ll, x = theta) } else { # for faster --as-cran tests c(-365.19927878021, -29.3546236207476, -45.8139085706014, -88.5862997849202, -24.0808271983838, -54.0273836522059, -28.0233414216383, -74.5539641345285) } expect_that(model$sc(theta), equals(numsc)) }) ## Note: twinstim() uses an estimate of the _expected_ Fisher information, ## which does not necessarily agree with the negative Hessian of the ll ## (it does asymptotically at the MLE) ## numfi <- -numDeriv::hessian(func = model$ll, x = theta) ## anafi <- model$fi(theta) ### now check with identity link for the epidemic predictor model2 <- update.default(model, siaf = NULL, tiaf = NULL, epidemic = ~1, epilink = "log") model2i <- update.default(model2, epilink = "identity") theta2 <- theta2i <- theta[1:4] theta2i["e.(Intercept)"] <- exp(theta2["e.(Intercept)"]) test_that("likelihoods with log-link and identity link are the same", { expect_that(model2$ll(theta2), equals(model2i$ll(theta2i))) }) test_that("identity link score vector agrees with numerical approximation", { numsc <- if (surveillance.options("allExamples") && requireNamespace("numDeriv")) { numDeriv::grad(func = model2i$ll, x = theta2i) } else { # for faster --as-cran tests c(-679.706275919901, -91.0659401491325, -114.082117122738, -1532144485.45524) } expect_that(model2i$sc(theta2i), equals(numsc)) }) surveillance/tests/testthat/test-createLambda.R0000644000175100001440000000557413066472434021456 0ustar hornikuserscontext("Create next-generation matrix Lambda from a \"hhh4\" model") data("measlesWeserEms") ## a simple endemic model measlesFit0 <- hhh4(measlesWeserEms, list( end = list(f = addSeason2formula(~1), offset = population(measlesWeserEms)), family = "NegBin1" )) test_that("endemic-only model has zero-valued Lambda matrix", { res <- getMaxEV_season(measlesFit0) expect_equal(res$maxEV.const, 0) zeromat <- matrix(0, measlesFit0$nUnit, measlesFit0$nUnit) expect_equal(res$Lambda.const, zeromat) expect_equal(createLambda(measlesFit0)(2), zeromat) }) ## + AR component measlesFit1 <- update(measlesFit0, ar = list(f = addSeason2formula(~1))) test_that("autoregressive model has a diagonal Lambda matrix", { res <- getMaxEV_season(measlesFit1) expect_equal(res$Lambda.const, diag(res$maxEV.const, measlesFit1$nUnit)) expect_equal(createLambda(measlesFit1)(2), diag(res$maxEV.season[2], measlesFit1$nUnit)) }) ## + NE component measlesFit2 <- update(measlesFit1, ne = list(f = ~1, weights = neighbourhood(measlesWeserEms) == 1)) # symmetric measlesFit3 <- update(measlesFit2, ne = list(normalize = TRUE)) # asymetric test_that("getMaxEV() and getMaxEV_season() agree", { expect_equal(getMaxEV_season(measlesFit2)$maxEV.season, getMaxEV(measlesFit2)[seq_len(measlesWeserEms@freq)]) expect_equal(getMaxEV_season(measlesFit3)$maxEV.season, getMaxEV(measlesFit3)[seq_len(measlesWeserEms@freq)]) }) ## AR within NE + unit-specific epidemic covariate measlesFit4 <- update(measlesFit0, ne = list(f = ~pop, weights = (neighbourhood(measlesWeserEms)+1)^-2, normalize = TRUE), data = list(pop = population(measlesWeserEms))) ## calculate "nu + Lambda Y_{t-1}" and compare to fitted(object) check_createLambda <- function (object) { mname <- deparse(substitute(object)) model <- terms(object) means <- meanHHH(object$coefficients, model, subset = seq_len(model$nTime)) expect_equal(means$mean[model$subset,,drop=FALSE], fitted(object), expected.label = paste0("fitted(", mname, ")")) Lambda <- createLambda(object) if (any(object$lags != 1, na.rm = TRUE)) stop("check not implemented for lags != 1") meansByLambda <- t(vapply( X = object$control$subset, FUN = function(t) means$endemic[t,] + Lambda(t) %*% model$response[t-1,], FUN.VALUE = numeric(object$nUnit), USE.NAMES = FALSE)) expect_equal(meansByLambda, unname(fitted(object)), expected.label = paste0("fitted(", mname, ")")) } test_that("multivariate formulation using Lambda agrees with fitted values", { check_createLambda(measlesFit0) check_createLambda(measlesFit1) check_createLambda(measlesFit2) check_createLambda(measlesFit3) # failed in surveillance < 1.13.1 check_createLambda(measlesFit4) # failed in surveillance < 1.13.1 }) surveillance/tests/testthat/test-algo.glrnb.R0000644000175100001440000000435212277121770021125 0ustar hornikuserscontext("Count data regression charts") ## Simulation parameters S <- 1 ; t <- 1:120 ; m <- length(t) beta <- c(1.5,0.6,0.6) omega <- 2*pi/52 #log mu_{0,t} alpha <- 0.2 base <- beta[1] + beta[2] * cos(omega*t) + beta[3] * sin(omega*t) #Generate example data with changepoint and tau=tau tau <- 100 kappa <- 0.4 mu0 <- exp(base) mu1 <- exp(base + kappa) ## Generate counts set.seed(42) x <- rnbinom(length(t),mu=mu0*(exp(kappa)^(t>=tau)),size=1/alpha) s.ts <- create.disProg(week=t, observed=x, state=(t>=tau)) ## Define control object cntrl1 <- list(range=t,c.ARL=5, mu0=mu0, alpha=alpha, change="intercept", ret="value", dir="inc") ## Run algorithm glr.ts1 <- algo.glrnb(s.ts, control=cntrl1) ## Correct upperbound (rounded) ## dput(signif(c(glr.ts1$upperbound), 7)) correctUpperbound <- c( 0.0933664, 0, 0.001387989, 0.4392282, 1.239898, 2.983766, 1.954988, 1.722341, 1.586777, 0.7331938, 0.9337575, 0.7903225, 1.104522, 1.425098, 1.24129, 1.633672, 2.033343, 1.788079, 1.397671, 0.9081794, 0.797097, 0.7270934, 0.5248943, 0.3093548, 0.2622768, 0.2301054, 0.1595651, 0.1484989, 0.06889605, 0.1504776, 0.04138495, 0.02219845, 0.0231524, 0.009575689, 0.1504776, 0.5827537, 0.0357062, 0.005011513, 0, 1.390972, 0.3167743, 0.5717088, 0.1053871, 0.003442552, 0.0005934715, 0, 0, 0.05509335, 0.1375619, 0.2449853, 0.6840703, 0.5427538, 0.05675776, 0.06656547, 0.09036596, 0.209314, 0.1392091, 0.03494786, 0.026216, 0.277202, 0.01762547, 0, 0, 0, 3.564077, 1.41019, 0.290548, 0.3740241, 0.4269062, 0.1296794, 0.1298662, 0.6322042, 0.2115204, 0.107457, 0.9366399, 0.1379007, 0.1509654, 0.03392803, 0.005775552, 0, 0, 0, 0, 0, 0.001143512, 0.001637927, 1.021689, 1.965804, 1.83044, 1.017412, 0.3033473, 0.1689957, 0.4051742, 0.1247774, 0.1460143, 0.03590031, 0.9459381, 0.4189531, 0.2637725, 0.03925406, 0.01374443, 0.2283519, 2.535301, 1.406133, 1.692899, 2.021258, 2.951635, 4.25683, 4.77543, 3.90064, 3.646361, 3.680106, 4.236502, 5.522696, 0.1221651, 0.4054735, 0.6761779, 0.8039129, 0.3913383, 0.1261521) test_that("upperbound equals pre-computed value", expect_that(c(glr.ts1$upperbound), equals(correctUpperbound, tolerance=1e-6))) surveillance/src/0000755000175100001440000000000013231650476013562 5ustar hornikuserssurveillance/src/stcd-assuncaocorrea.cc0000644000175100001440000002424113231650476020037 0ustar hornikusers/** * File based on algoritmos.cpp and sv.cpp from the TerraView plugin. * C++ source originally created by Marcos Oliveira Prates on 06 April 2006 * * R interface by Michael Höhle initiated on 12 Jan 2009 */ #include "stcd-assuncaocorrea.h" #include #include using namespace std; // Calculate the number of events in the cylinder B( (xk,yk), rho) // (i.e. represented by the boolean matrix MSpace) between event times // (tj,ti] // // Params: // MSpace - contains for each pair of points is geographically // B( (xi,yi), rho) // EvtN - The last event, i.e. t_i // EvtJ - The first event, i.e. t_j int CalculaNCj(short **MSpace, const int EvtN, const int EvtJ) { int i; int Soma=0; for (i=EvtJ;i<=EvtN;i++) Soma += MSpace[EvtJ][i]; return(Soma); } // Calculate the number of events in the cylinder B( (xj,yj), rho) // (i.e. represented by the boolean matrix MSpace) between event times // (0,t_n] int ContaEvt(short **MSpace, const int EvtN, const int EvtJ) { int i; int Soma=0; for (i=0;i<=EvtN;i++) Soma += MSpace[EvtJ][i]; return(Soma); } ////////////////////////////////////////////////////////////////////// // Comment: Unfortunately, this function has not been commented in the // TerraView and hence it has been a bit difficult to document its exact // use. // // Params: // ev - a list of the events // RaioC - radius of the cylinder // epslon - relative change \lambda(s,t)(1+epsilon*I_{C_k}(s,t)) // areaA - area of the observation window A (also denoted W) // areaAcapBk - area of A \ B(s_k,\rho) for all k=1,\ldots,n // cusum - return Shiryaev-Roberts (FALSE) or CUSUM (TRUE) test // statistic // R - array of length ev where the computed values of R_n are // to be returned in. ////////////////////////////////////////////////////////////////////// int SistemadeVigilancia(SVEventLst &ev, const double RaioC, const double epslon, const double areaA, double *areaAcapBk, const int cusum, std::valarray &R) { size_t i, j, NCj, NumTotEvt, NumEvtCil; short **MSpace; double pontox, pontoy, DistEucl, Soma, UCj, fator; //order the event list ev.sort(); SVEventLst::size_type n_event = ev.size(); //create the spatio matrix MSpace = new short* [n_event]; if( MSpace == NULL ) return 1; for( i = 0; i < n_event; i++ ) { MSpace[i] = new short[n_event]; if( MSpace[i] == NULL ) { delete []MSpace; return 1; } } //create the output vector R.resize(n_event); if( R.size() != n_event ) { for( i = 0; i < n_event; i++ ) { delete []MSpace[i]; } delete []MSpace; return 1; } //Populate the spatio matrix with 1's if within radius rho in space //and 0 if not i = 0; for( SVEventLst::iterator it = ev.begin(); it != ev.end(); ++it, i++ ) { j = 0; for( SVEventLst::iterator jt = ev.begin(); jt != ev.end(); ++jt, j++ ) { pontox = (*it).x-(*jt).x; pontoy = (*it).y-(*jt).y; DistEucl = sqrt((pontox*pontox)+(pontoy*pontoy)); if((DistEucl < RaioC)) MSpace[i][j]=1; else MSpace[i][j]=0; } } ////////////////////////////////////////////////////////////////////// //Sequentually, for n=1,2,3,... compute the value of R_n by //by summing up all contributions of Lambda_{k,n} to form R_n, i.e. // \sum_{k=1}^n \Lambda_{k,n} ////////////////////////////////////////////////////////////////////// double LambdaMax = 0, Lambda; SVEventLst::iterator it2, jt2, ev0; //Loop over all n for( i = 0; i < n_event; i++ ) { Soma = 0.0; //Loop over 1<= k <= n (in code k is called j and n is i) for( j = 0; j <= i; j++ ) { //N(C_{k,n}) NCj = CalculaNCj(MSpace,i,j); //N(B(s_k, \rho) \times (0,t_n]) NumTotEvt = ContaEvt(MSpace,i,j); //N(A \times (t_k,t_n) ) = n-k+1 NumEvtCil = i-j+1; UCj = ((double)NumEvtCil*(double)NumTotEvt)/(double)(i+1); fator = 1.0+epslon; Lambda = pow(fator,(double)NCj) * exp((-epslon)*UCj); /* //Alternative estimation having the desired property for \rho->\infty // N( A \times (0,t_k] \cup (A\times (t_k,t_n) \backslash C_{k,n}) ) // \nu( A \times (0,t_k] \cup (A\times (t_k,t_n) \backslash C_{k,n}) ) double iCount=0; double jCount=0; ev0 = ev.begin(); for( it2 = ev.begin(); iCount < i ; ++it2, iCount++ ); for( jt2 = ev.begin(); jCount < j ; ++jt2, jCount++ ); double NNoCkn = ((j-1) + (NumEvtCil - NCj)); double volCkn = areaAcapBk[j] * ((*it2).t - (*jt2).t); double volNoCkn = areaA * ((*it2).t - (*ev0).t) - volCkn; UCj = (NNoCkn / volNoCkn) * volCkn; // Debug // cout << "----> k=" << j << " n= " << i << endl; // cout << "t_k=" << (*jt2).t << endl; // cout << "t_n=" << (*it2).t << endl; // cout << "N(C_{k,n}) = NCj; // cout << "N(W\\times(0,t_n) \\backslash C_{k,n}))=" << NNoCkn << endl; // cout << "vol(C_{k,n}))=" << volCkn << endl; // cout << "vol(W\\times(0,t_n) \backslash C_{k,n})=" << volNoCkn << endl; //// cout << "mu(C_{k,n})=" << UCj << endl; //Lambda = pow(fator,(double)NCj) * exp((-epslon)*UCj); */ //Summation for the Shiryaev-Roberts statistics Soma += Lambda; //Find maximum k of \Lambda_{k,n} for the CUSUM statistics if (Lambda> LambdaMax) { LambdaMax = Lambda; } } //Depending on the summation scheme compute the statistic. if (cusum) { R[i] = LambdaMax; } else { R[i] = Soma; } } //clean memory for( i = 0; i < n_event; i++ ) { delete [] MSpace[i]; } delete [] MSpace; return 0; } int CalculaLambda(SVEventLst &ev, const double RaioC, const double epslon, std::valarray &R, unsigned int &numObs) { size_t i, j, NCj, NumTotEvt, NumEvtCil; short **MSpace; double pontox, pontoy, DistEucl, UCj, fator, lambda, lambdaMax; ev.sort(); SVEventLst::size_type n_event = ev.size(); //create the spatio matrix MSpace = new short* [n_event]; if( MSpace == NULL ) return 1; for( i = 0; i < n_event; i++ ) { MSpace[i] = new short[n_event]; if( MSpace[i] == NULL ) { delete []MSpace; return 1; } } //create the output vector R.resize(n_event); if( R.size() != n_event ) { for( i = 0; i < n_event; i++ ) { delete []MSpace[i]; } delete []MSpace; return 1; } //populate the spatio matrix with 1 if is close in spatio and 0 if not i = 0; for( SVEventLst::iterator it = ev.begin(); it != ev.end(); ++it, i++ ) { j = 0; for( SVEventLst::iterator jt = ev.begin(); jt != ev.end(); ++jt, j++ ) { pontox = (*it).x-(*jt).x; pontoy = (*it).y-(*jt).y; DistEucl = sqrt((pontox*pontox)+(pontoy*pontoy)); if((DistEucl < RaioC)) MSpace[i][j]=1; else MSpace[i][j]=0; } } //do the calculus to find the output value of each event i = numObs; lambdaMax = 0; for( j = 0; j <= i; j++ ) { NCj = CalculaNCj(MSpace,i,j); NumTotEvt = ContaEvt(MSpace,i,j); NumEvtCil = i-j+1; UCj = ((double)NumEvtCil*(double)NumTotEvt)/(double)(i+1); fator = 1.0+epslon; lambda = (pow(fator,(double)NCj) * exp((-epslon)*UCj)); if (lambda > lambdaMax){ lambdaMax = lambda; numObs = j; } } //clean memory for( i = 0; i < n_event; i++ ) { delete [] MSpace[i]; } delete [] MSpace; return 0; } ////////////////////////////////////////////////////////////////////// // Shiryaev-Roberts space time detection as explained in the paper // by Correa and Assuncao (2009). // // Params: // x - array with x location of events // y - array with y location of events // t - array with time point of the events (on some arbitrary time scale) // n - number of elements in x, y and t (the same for the three vectors) // radius - cluster of the radius // epsilon - relative ratio of the intensity functions to detect for // areaA - area of the observation region (also denoted W) // areaAcapBk - area of A \ B(s_k,\rho) for all k=1,\ldots,n // threshold -- upper threshold when to sound the alarm // Rarray -- array of length n, this will contain the statistics calced // by the function // idxFirstAlarm -- index in the x,y,t vector resulting in the alarm // idxClusterCenter -- index in the x,y,t vector containing the cluster // center ////////////////////////////////////////////////////////////////////// extern "C" { void SRspacetime(double *x, double *y, double *t, int *n, double *radius, double *epsilon, double *areaA, double *areaAcapBk, int *cusum, double *threshold, double *Rarray, int *idxFirstAlarm, int *idxClusterCenter) { //Create SVEventLst SVEvent e; SVEventLst eList; unsigned int i; int j; //Fill coordinates of event list for(j=0;j<*n;j++){ e.x = x[j]; e.y = y[j]; e.t = t[j]; eList.push_back(e); } //Array of test statistic values std::valarray R; //Call SistemadeVigilancia, this calculates the SR statistics R_n SistemadeVigilancia(eList,*radius,*epsilon,*areaA,areaAcapBk,*cusum, R); //Debug purposes //cout << "Size of R = " << R.size() << endl; //Move values of test statistic for return for(i=0;i*threshold){ controle = true; break; } } //Advancing the iterator "it" to the point //where the alarm is generated. if (controle) { unsigned int cont = 0; SVEventLst::iterator it = eList.begin(); while((cont < i) && (it != eList.end())){ ++it; ++cont; } *idxFirstAlarm = cont; //Determine the cluster center of the alarm unsigned int num = cont; CalculaLambda(eList,*radius,*epsilon,R,num); //Index of the cluster center *idxClusterCenter = num; } else { //If no alarms, then return -1 for both alarm idx and cluster center idx *idxFirstAlarm = -2; *idxClusterCenter = -2; } //Clean up (nothing to clean) and done } } surveillance/src/ks.c0000644000175100001440000001432713231650476014352 0ustar hornikusers/* * 16-Aug 2012 / (C) Michael Hoehle * This file is a modified version of the code ks.c available * at http://svn.r-project.org/R/trunk/src/library/stats/src/ks.c (r60102) * The file is copyright 1999-2009 by The R Core Team under GPL-2 * (or later) as shown below. As stated in the GPL-2 license * the present file is again available under GPL-2. * * License: * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, a copy is available at * http://www.r-project.org/Licenses/ */ /* ks.c Compute the asymptotic distribution of the one- and two-sample two-sided Kolmogorov-Smirnov statistics, and the exact distributions in the two-sided one-sample and two-sample cases. */ #include #include /* constants */ /*#include "ctest.h"*/ static double K(int n, double d); static void m_multiply(double *A, double *B, double *C, int m); static void m_power(double *A, int eA, double *V, int *eV, int m, int n); /* Two-sample two-sided asymptotic distribution */ void pkstwo(Sint *n, double *x, double *tol) { /* x[1:n] is input and output * * Compute * \sum_{k=-\infty}^\infty (-1)^k e^{-2 k^2 x^2} * = 1 + 2 \sum_{k=1}^\infty (-1)^k e^{-2 k^2 x^2} * = \frac{\sqrt{2\pi}}{x} \sum_{k=1}^\infty \exp(-(2k-1)^2\pi^2/(8x^2)) * * See e.g. J. Durbin (1973), Distribution Theory for Tests Based on the * Sample Distribution Function. SIAM. * * The 'standard' series expansion obviously cannot be used close to 0; * we use the alternative series for x < 1, and a rather crude estimate * of the series remainder term in this case, in particular using that * ue^(-lu^2) \le e^(-lu^2 + u) \le e^(-(l-1)u^2 - u^2+u) \le e^(-(l-1)) * provided that u and l are >= 1. * * (But note that for reasonable tolerances, one could simply take 0 as * the value for x < 0.2, and use the standard expansion otherwise.) * */ double new, old, s, w, z; Sint i, k, k_max; k_max = (Sint) sqrt(2 - log(*tol)); for(i = 0; i < *n; i++) { if(x[i] < 1) { z = - (M_PI_2 * M_PI_4) / (x[i] * x[i]); w = log(x[i]); s = 0; for(k = 1; k < k_max; k += 2) { s += exp(k * k * z - w); } x[i] = s / M_1_SQRT_2PI; } else { z = -2 * x[i] * x[i]; s = -1; k = 1; old = 0; new = 1; while(fabs(old - new) > *tol) { old = new; new += 2 * s * exp(z * k * k); s *= -1; k++; } x[i] = new; } } } /* Two-sided two-sample */ void psmirnov2x(double *x, Sint *m, Sint *n) { double md, nd, q, *u, w; Sint i, j; if(*m > *n) { i = *n; *n = *m; *m = i; } md = (double) (*m); nd = (double) (*n); /* q has 0.5/mn added to ensure that rounding error doesn't turn an equality into an inequality, eg abs(1/2-4/5)>3/10 */ q = (0.5 + floor(*x * md * nd - 1e-7)) / (md * nd); u = (double *) R_alloc(*n + 1, sizeof(double)); for(j = 0; j <= *n; j++) { u[j] = ((j / nd) > q) ? 0 : 1; } for(i = 1; i <= *m; i++) { w = (double)(i) / ((double)(i + *n)); if((i / md) > q) u[0] = 0; else u[0] = w * u[0]; for(j = 1; j <= *n; j++) { if(fabs(i / md - j / nd) > q) u[j] = 0; else u[j] = w * u[j] + u[j - 1]; } } *x = u[*n]; } /* The two-sided one-sample 'exact' distribution */ void pkolmogorov2x(double *x, Sint *n) { /* x is input and output. */ *x = K(*n, *x); } static double K(int n, double d) { /* Compute Kolmogorov's distribution. Code published in George Marsaglia and Wai Wan Tsang and Jingbo Wang (2003), "Evaluating Kolmogorov's distribution". Journal of Statistical Software, Volume 8, 2003, Issue 18. URL: http://www.jstatsoft.org/v08/i18/. */ int k, m, i, j, g, eH, eQ; double h, s, *H, *Q; /* The faster right-tail approximation is omitted here. s = d*d*n; if(s > 7.24 || (s > 3.76 && n > 99)) return 1-2*exp(-(2.000071+.331/sqrt(n)+1.409/n)*s); */ k = (int) (n * d) + 1; m = 2 * k - 1; h = k - n * d; H = (double*) Calloc(m * m, double); Q = (double*) Calloc(m * m, double); for(i = 0; i < m; i++) for(j = 0; j < m; j++) if(i - j + 1 < 0) H[i * m + j] = 0; else H[i * m + j] = 1; for(i = 0; i < m; i++) { H[i * m] -= pow(h, i + 1); H[(m - 1) * m + i] -= pow(h, (m - i)); } H[(m - 1) * m] += ((2 * h - 1 > 0) ? pow(2 * h - 1, m) : 0); for(i = 0; i < m; i++) for(j=0; j < m; j++) if(i - j + 1 > 0) for(g = 1; g <= i - j + 1; g++) H[i * m + j] /= g; eH = 0; m_power(H, eH, Q, &eQ, m, n); s = Q[(k - 1) * m + k - 1]; for(i = 1; i <= n; i++) { s = s * i / n; if(s < 1e-140) { s *= 1e140; eQ -= 140; } } s *= pow(10., eQ); Free(H); Free(Q); return(s); } static void m_multiply(double *A, double *B, double *C, int m) { /* Auxiliary routine used by K(). Matrix multiplication. */ int i, j, k; double s; for(i = 0; i < m; i++) for(j = 0; j < m; j++) { s = 0.; for(k = 0; k < m; k++) s+= A[i * m + k] * B[k * m + j]; C[i * m + j] = s; } } static void m_power(double *A, int eA, double *V, int *eV, int m, int n) { /* Auxiliary routine used by K(). Matrix power. */ double *B; int eB , i; if(n == 1) { for(i = 0; i < m * m; i++) V[i] = A[i]; *eV = eA; return; } m_power(A, eA, V, eV, m, n / 2); B = (double*) Calloc(m * m, double); m_multiply(V, V, B, m); eB = 2 * (*eV); if((n % 2) == 0) { for(i = 0; i < m * m; i++) V[i] = B[i]; *eV = eB; } else { m_multiply(A, B, V, m); *eV = eA + eB; } if(V[(m / 2) * m + (m / 2)] > 1e140) { for(i = 0; i < m * m; i++) V[i] = V[i] * 1e-140; *eV += 140; } Free(B); } surveillance/src/twins.cc0000644000175100001440000024750713231650476015254 0ustar hornikusers/******************************************************************* * Authors: * Mathias Hofmann * Michael Hoehle * Volker Schmid * Contributors: * Michaela Paul * Daniel Sabanes Bove * Sebastian Meyer * History: * July 2016 (SM) -- dropped deprecated "register" storage class specifier * April 2012 (SM) -- replaced exit() calls by Rf_error() * March 2012 (DSB) -- changed long types to int to be in accordance with R * (we observed bad allocations in 64 bit machines) * May 2010 (DSB) -- modified from Oct 2008 * * Markov Chain Monte Carlo (MCMC) estimation in the Branching Process * like Epidemic Model. Instead of a slow R solution this code * provides a faster C++ solution. Can be invoked through R or be * programmed as a librrary. This code uses the Gnu Scientific Library * (GSL) available from http://sources.redhat.com/gsl/ * * For now this code is quick & dirty. A more OO framework would be nice * to enable better programming, but this will probably be speedwise slower. *******************************************************************/ #include #include /*New C++ uses header iostream (without the .h) followed by a namespace*/ using namespace std; #include /* Replaced calls to GSL with functions from the R API */ #include #include /*wrappers to what used to be GSL functions*/ #include "gsl_wrappers.h" // Dynamic_2d_array class by David Maisonave (609-345-1007) (www.axter.com) // Description: // The dynamic array class listed below is more efficient then other // similar classes that use temporary objects as return types, or use // an std::vector as a return type. // // It's also more compatible with a C style 2D array, in that the // array is in one continuous memory block. This makes it possible // to pass this array object to a C Function that has a C-Style // 2D array for a parameter. // Example usage: /* Dynamic_2d_array MyIntArray(12, 34); MyIntArray[0][1] = 123; cout << MyIntArray[0][1] << endl; */ template < class T > class Dynamic_2d_array { public: // constructor Dynamic_2d_array(size_t row, size_t col) : m_row(row), m_col(col), m_data((row!=0 && col!=0) ? new T[row*col] : NULL) {} // copy ctr Dynamic_2d_array(const Dynamic_2d_array& src) : m_row(src.m_row), m_col(src.m_col), m_data((src.m_row!=0 && src.m_col!=0) ? new T[src.m_row*src.m_col] : NULL) { for(size_t r=0; r LongMatrix; typedef Dynamic_2d_array DoubleMatrix; typedef Dynamic_2d_array IntMatrix; // Analogous class for vectors (== 1D arrays) template < class T > class Dynamic_1d_array { public: // constructor Dynamic_1d_array(size_t length) : m_length(length), m_data((length !=0) ? new T[length] : NULL) {} // copy ctr Dynamic_1d_array(const Dynamic_1d_array& src) : m_length(src.m_length), m_data((src.m_length!=0) ? new T[src.m_length] : NULL) { for(size_t i=0; i LongVector; typedef Dynamic_1d_array DoubleVector; typedef Dynamic_1d_array IntVector; /************************************ Globals *************************************/ /*Setup params*/ int overdispersion; int varnu; int la_rev; int K_geom; int la_estim; int nu_trend; int theta_pred_estim; int xi_estim; int delta_rev; int xi_estim_delta; int epsilon_rev; int xi_estim_epsilon; int xi_estim_psi; double psiRWSigma = 0.25; double xRWSigma = 0.25; double taubetaRWSigma = 0.25; /*Priors*/ double alpha_lambda = 1.0; double beta_lambda = 1.0; double alpha_xi = 1.0; double beta_xi = 1.0; double p_K = 1.0; double alpha_nu = 1.0; double beta_nu = 1.0; double alpha_psi = 1.0; double beta_psi = 10.0; double alpha_a=1; double alpha_b=0.001; double beta_a=1.0; double beta_b=.00001; double gamma_a=1; double gamma_b=0.001; double delta_a=1; double delta_b=0.001; double epsilon_a=1; double epsilon_b=0.001; /********************************************************************* * Compute sum from 1 to I and 1 to n of a vektor with indices 0,...,I * of a vektor with indices 0,...,n * Parameters: * * X a vector with indices 0,..,I of a vector with indices 0,...,n * I "length" of vector (true length due to zero indice is I+1) *********************************************************************/ double sumIn(const LongMatrix& X, int I, int n) { double res = 0; for (int i=1; i<=I; i++){ for (int t=1; t<=n; t++) { res += X[i][t]; } } return(res); } /********************************************************************* * Compute sum from 1 to I and 1 to n of a vektor with indices 0,...,I * of a vektor with indices 0,...,n * This is the double version * Parameters: * * X a vector with indices 0,..,I of a vector with indices 0,...,n * I "length" of vector (true length due to zero indice is I+1) *********************************************************************/ double sumIn(const DoubleMatrix& X, int I, int n) { double res = 0; for (int i=1; i<=I; i++){ for (int t=1; t<=n; t++) { res += X[i][t]; } } return(res); } /********************************************************************* * Compute sum from 1 to I and 1 to n of a vektor with indices 0,...,I * of a vektor with indices 0,...,n * Parameters: * * X a vector with indices 0,..,I of a vector with indices 0,...,n * I "length" of vector (true length due to zero indice is I+1) *********************************************************************/ double sumIn2(const LongMatrix& X, int I, int n) { double res = 0; for (int i=1; i<=I; i++){ for (int t=2; t<=n; t++) { res += X[i][t]; } } return(res); } /********************************************************************* * Compute sum from 1 to I and 1 to n of a vektor with indices 0,...,I * of a vektor with indices 0,...,n * This is the double version * Parameters: * * X a vector with indices 0,..,I of a vector with indices 0,...,n * I "length" of vector (true length due to zero indice is I+1) *********************************************************************/ double sumIn2(const DoubleMatrix& X, int I, int n) { double res = 0; for (int i=1; i<=I; i++){ for (int t=2; t<=n; t++) { res += X[i][t]; } } return(res); } /********************************************************************* * Compute sum from 1 to I of a vektor with indices 0,...,I * of a vektor with indices 0,...,n * Parameters: * * X a vector with indices 0,..,I of a vector with indices 0,...,n * I "length" of vector (true length due to zero indice is I+1) *********************************************************************/ double sumI1(const LongMatrix& X, int I, int t) { double res = 0; for (int i=1; i<=I; i++) { res += X[i][t]; } return(res); } /********************************************************************* * Compute sum from 1 to I of a vektor with indices 0,...,I * of a vektor with indices 0,...,n * This is the double version * Parameters: * * X a vector with indices 0,..,I of a vector with indices 0,...,n * I "length" of vector (true length due to zero indice is I+1) *********************************************************************/ double sumI1(const DoubleMatrix& X, int I, int t) { double res = 0; for (int i=1; i<=I; i++) { res += X[i][t]; } return(res); } /********************************************************************* * factorial function *********************************************************************/ long factorial(long x){ long fac=1; if(x<0){ Rf_error("negative value passed to factorial function\n");} else{ if(x==0){fac=1;} else{ for(int i=1;i<=x;i++){ fac*=i; } } } return(fac); } /********************************************************************* * logit function *********************************************************************/ double logit(double y){ if(y <= 0 || y >= 1){ Rf_error("y <= 0 or y >= 1 in logit function.\n"); } double logit; logit = log(y/(1-y)); return(logit); } /********************************************************************* * inverse logit function *********************************************************************/ double invlogit(double y){ double invlogit; invlogit = 1/(1 + exp(-y)); return(invlogit); } /********************************************************************* * inverse logit function diff. *********************************************************************/ double invlogitd(double y){ double invlogitd; invlogitd = exp(-y)/pow((1.0 + exp(-y)),2); return(invlogitd); } /********************************************************************* * Makes one Metropolis-Hastings update step, log-scale *********************************************************************/ double updateMHlog(double &par, double parStar, double logFpar, double logFparStar, double &acceptedpar) { double accpar = exp(logFparStar - logFpar); if (gsl_rng_uniform() <= accpar) {par = parStar; acceptedpar++;} return(0); } /********************************************************************* * Makes one Metropolis-Hastings update step *********************************************************************/ double updateMH(double &par, double parStar, double Fpar, double FparStar, double &acceptedpar) { double accpar = FparStar/Fpar; if (gsl_rng_uniform() <= accpar) {par = parStar; acceptedpar++;} return(0); } /********************************************************************* * Tunes a parameter *********************************************************************/ double tune(double& parameter, double accepted, double samples, double& tunepar, double a=0.3, double b=0.4){ tunepar=1; if ((accepted/samples>a) && (accepted/samplesb) { parameter *= 1.5; } else if (accepted/samples0){return x;}else{return -x;} } double MIN(double a, double b) { if (a2) { REprintf("Error in the twins.cc function invers()\n"); } for (int i=0; i< k*k; i++) { A[i]=ergebnis[i]; } return; } void mxschreibe(double* A, int a, int b) { for (int i=0; i= gsl_rng_uniform()) { alpha[i]=alphaneu; acc_alpha += 1; } } return; } void erzeuge_b_Q(DoubleVector& gamma , double* my, double* Q, const DoubleVector& alpha, DoubleVector& delta, DoubleVector& beta, const LongMatrix& X, const LongMatrix& Z, const LongMatrix& Y, int n, int I, double taubeta, int rw, const DoubleMatrix& lambda, double p, const DoubleMatrix& xcov, int ncov, const DoubleMatrix& omega, const DoubleMatrix& omegaX,int scov, int mode) { if (mode==1) { /* b-vektor des Proposals*/ for (int t=0;tgsl_rng_uniform()){ gamma[j] = gammajStar; acc_gamma += 1; } return; } void update_beta_t(int t, const DoubleVector& alpha, DoubleVector& beta, DoubleVector& gamma, DoubleVector& delta, int ncov, const DoubleMatrix& xcov, const LongMatrix& X, int n, int I, double taubeta, long& acc_beta, const DoubleMatrix& omega, int scov) { double h = 0; double c = 0; double d = 0; for(int i=1;i<=I;i++){ h -= omega[i][t]*delta[t]*exp(alpha[i] + beta[t] + sumg(ncov,xcov,gamma,t,scov)); /* h ist h(beta[t]^0), beta ist \beta^0, betatStar ist \beta*/ c += X[i][t]; } if(t==2){ c -= taubeta*(beta[t+2]-2*beta[t+1]); d = taubeta; } if(t==3){ c -= taubeta*((beta[t+2]-2*beta[t+1]) + (-2*beta[t+1] - 2*beta[t-1])); d = 5*taubeta; } if((t>=4)&&(t<=(n-2))){ c -= taubeta*((beta[t+2]-2*beta[t+1]) + (-2*beta[t+1] - 2*beta[t-1]) + (beta[t-2] - 2*beta[t-1])); d = 6*taubeta; } if(t==(n-1)){ c -= taubeta*((-2*beta[t+1] - 2*beta[t-1]) + (beta[t-2] - 2*beta[t-1])); d = 5*taubeta; } if(t==n){ c -= taubeta*(beta[t-2] - 2*beta[t-1]); d = taubeta; } double s = sqrt(1/(d - h)); /* s ist s*/ double b = c + (1 - beta[t])*h; double m = b*s*s; double betatStar = gsl_ran_gaussian(s) + m; double h2 = 0; for(int i=1;i<=I;i++){ h2 -= omega[i][t]*delta[t]*exp(alpha[i] + betatStar + sumg(ncov,xcov,gamma,t,scov)); /* h2 ist h(beta[t])*/ } double s2 = sqrt(1/(d - h2)); /* s2 ist s^0*/ double b2 = c + (1 - betatStar)*h2; double m2 = b2*s2*s2; double a = 0; a += betatStar*c; a -= beta[t]*c; a -= 0.5*d*betatStar*betatStar; a += 0.5*d*beta[t]*beta[t]; a += h2; a -= h; a += log(s); a -= log(s2); a += 0.5*((betatStar-m)/s)*((betatStar-m)/s); a -= 0.5*((beta[t]-m2)/s2)*((beta[t]-m2)/s2); if(exp(a)>gsl_rng_uniform()){ beta[t] = betatStar; acc_beta += 1; } return; } void update_lambda_br(DoubleMatrix& lambda, DoubleMatrix& lambda_br,DoubleVector& xi_lambda, IntMatrix& breakpoints, IntMatrix& breakpointsStar, IntVector& K, IntVector& KStar, IntVector& Km1, double alpha_lambda, double beta_lambda, const LongMatrix& Y, const LongMatrix& Z, int n, int I, double& acceptedbr, const DoubleMatrix& omega, int theta_pred_estim, int xi_estim, int K_geom, double p_K, double alpha_xi, double beta_xi) { /*update breakpoints of lambda using reversible jump MCMC*/ int newbreakpoint =0; int removebreakpoint=0; int newbreakpointnumber=0; int u; double v=1; double a; double alpha_la; double beta_la; for(int i=1;i<=I;i++){ if(!theta_pred_estim){ a=gsl_rng_uniform(); if(a<0.5){u=1;}else{u=2;} if(K[i]==1){u=2;v=.5;} /*K[i] is number of segments of lambda*/ if(K[i]==(n-1)){u=1;v=.5;} /*if(!theta_pred_estim) max of K[i] is n-1*/ /*decide if new brreakpoint or remove breakpoint*/ if(u==1){/*remove breakpoint*/ if(K[i]==2){v=2;} KStar[i]=K[i]-1; a=gsl_rng_uniform(); removebreakpoint=(int)floor(a*(double)(K[i]-1))+1; /*generate breakpointsStar*/ for(int k=1;kn){need=1;} for(int k=1;k<=K[i];k++){ if(newbreakpoint==breakpoints[i][k]){ need=1; } } }/*while(need==1)*/ /*generate breakpointsStar*/ for(int k=1;k<=K[i];k++){ if((newbreakpoint>breakpoints[i][k-1])&&(newbreakpoint(n+1)){need=1;} for(int k=1;k<=K[i];k++){ if(newbreakpoint==breakpoints[i][k]){ need=1; } } }/*while(need==1)*/ /*generate breakpointsStar*/ for(int k=1;k<=K[i];k++){ if((newbreakpoint>breakpoints[i][k-1])&&(newbreakpointn){need=1;} for(int k=1;k<=K_delta;k++){ if(newbreakpoint==breakpoints_delta[k]){ need=1; } } }//while(need==1) //generate breakpointsStar_delta for(int k=1;k<=K_delta;k++){ if((newbreakpoint>breakpoints_delta[k-1])&&(newbreakpointn){need=1;} for(int k=1;k<=K_epsilon;k++){ if(newbreakpoint==breakpoints_epsilon[k]){ need=1; } } }//while(need==1) //generate breakpointsStar_epsilon for(int k=1;k<=K_epsilon;k++){ if((newbreakpoint>breakpoints_epsilon[k-1])&&(newbreakpoint> n; // Rprintf("n=%d\n",n); // int I=1; // //fin >> I; // //cout << "I=" << I << endl; // long **Z = new long*[I+1]; // for (long i=0; i<=I; i++){ // Z[i] = new long[n+1]; // } // for (long t=0; t<=n; t++){ // Z[0][t]=0; // } // for (long i=0; i<=I; i++){ // Z[i][0]=0; // } // //Start @ index 1. (Z[0] is not defined) // int t=1; // while (!fin.eof() && (t<=n)) { // int i=1; // while (!fin.eof() && (i<=I)) { // fin >> Z[i][t]; // i++; // } // t++; // } // fin.close(); // //Return the result consisting of Z and n // *size = n; // *size2 = I; // return(Z); // } /* Calculate the deviance of the data we use that the data, Z, is a * sum of Poisson distributed variables, i.e. it is Poisson * distributed. * * Z_t = S_t + X_t + Y_t, i.e. * Z_t ~ Po(nu*p + nu*(1-p) + lambda*W_{t-1}) * * D = -2log p(Z|theta) + 2 log p(Z|\mu(theta)=Z) */ double satdevalt(int n, int I, const LongMatrix& X, const LongMatrix& Y, const LongMatrix& Z, const DoubleMatrix& omega, const DoubleMatrix& lambda, const DoubleMatrix& nu, double *xi, DoubleMatrix& eta, DoubleMatrix& eta2, DoubleMatrix& varr, double psi, int overdispersion) { double res = 0; //Loop over all data for (int i=1; i<=I; i++) { for (int t=2; t<=n; t++) { //Use the equation derived for the saturated deviance in the paper //calculate the mean and variance of Z[i][t] eta[i][t] = (nu[i][t]*xi[i]+lambda[i][t]*Z[i][t-1]); eta2[i][t] = eta[i][t]; if(overdispersion){ varr[i][t] = eta2[i][t]*(1+eta2[i][t]/psi); }else{ varr[i][t] = eta2[i][t]; } //calculate the Deviance in the Poisson and NegBin case if(!overdispersion){ if (Z[i][t] == 0) { res += 2 * eta[i][t]; } else { res += 2 * ( Z[i][t] * log(Z[i][t]/eta[i][t]) - Z[i][t] + eta[i][t]); } } if(overdispersion){ if (Z[i][t] == 0) { res += 2 * ( - (Z[i][t]+psi) * log((Z[i][t]+psi)/(eta[i][t]+psi))); } else { res += 2 * ( - (Z[i][t]+psi) * log((Z[i][t]+psi)/(eta[i][t]+psi)) + Z[i][t] * log(Z[i][t]/eta[i][t])); } } } } return(res); } /* Calculate the deviance of the data we use that the data, Z, is a * sum of Poisson distributed variables, i.e. it is Poisson * distributed. * * Z_t = X_t + Y_t, i.e. * Z_t ~ Po(nu_t + lambda_t*Z_{t-1}) * * D = -2log p(Z|theta) */ double satdev(int n, int I, const LongMatrix& Z, const DoubleMatrix& lambda, const DoubleMatrix& nu, double *xi, DoubleVector& epsilon, DoubleMatrix& eta, double psi, int overdispersion) { double res = 0; //Loop over all data for (int i=1; i<=I; i++) { for (int t=2; t<=n; t++) { //Use the equation derived for the saturated deviance in the paper //calculate the mean and variance of Z[i][t] eta[i][t] = (epsilon[t] + nu[i][t]*xi[i]+lambda[i][t]*Z[i][t-1]); //calculate the Deviance in the Poisson and NegBin case if(!overdispersion){ res -= 2 * ( Z[i][t] * log(eta[i][t]) - gsl_sf_lngamma(Z[i][t]+1) - eta[i][t]); } if(overdispersion){ res -= 2 * ( gsl_sf_lngamma(Z[i][t]+psi) - gsl_sf_lngamma(Z[i][t]+1) - gsl_sf_lngamma(psi) - (Z[i][t]+psi)*log(eta[i][t]+psi) + psi*log(psi) + Z[i][t]*log(eta[i][t])); } } } return(res); } // Calculate chi square the sum of the qudratic pearson residuals (z-mean)/sd double chisq(int n, int I, const LongMatrix& Z, const DoubleMatrix& lambda, const DoubleMatrix& nu, double *xi, DoubleVector& epsilon, DoubleMatrix& eta, DoubleMatrix& varr, DoubleMatrix& rpearson, double psi, int overdispersion) { double res = 0; //Loop over all data for (int i=1; i<=I; i++) { for (int t=2; t<=n; t++) { //calculate the mean and variance of Z[i][t] eta[i][t] = (epsilon[t] + nu[i][t]*xi[i]+lambda[i][t]*Z[i][t-1]); if(overdispersion){ varr[i][t] = eta[i][t]*(1+eta[i][t]/psi); }else{ varr[i][t] = eta[i][t]; } rpearson[i][t] = (Z[i][t]-eta[i][t])/sqrt(varr[i][t]); //calculate chisq in the Poisson and NegBin case res += rpearson[i][t]*rpearson[i][t]; } } return(res); } /********************************************************************** * Estimation in the basic epidemic model * */ void bplem_estimate(int verbose, ofstream &logfile, ofstream &logfile2, ofstream &acclog, const LongMatrix& Z, double* xi, int n, int I, int T, int nfreq, int burnin, int filter, int samples, int rw) { //Model parameters - start values double nu_const = alpha_nu/beta_nu; double lambda_const = 0.5; double psi = alpha_psi / beta_psi; double x = logit(lambda_const); if(!verbose) { Rprintf("------------------------------------------------\n"); if (!la_rev){ Rprintf("lambda: Ga(%f, %f)-->\t%f\n", alpha_lambda, beta_lambda, lambda_const); } if(!varnu){ Rprintf("nu: Ga(%f, %f)-->\t%f\n", alpha_nu, beta_nu, nu_const); } if(overdispersion){ Rprintf("psi: Ga(%f, %f)-->\t%f\n", alpha_psi, beta_psi, psi); } Rprintf("------------------------------------------------\n"); } //Allocate arrays for all latent variables and initialize them // first all 2D arrays (matrices) LongMatrix X(I+1, n+1); LongMatrix Y(I+1, n+1); LongMatrix S(I+1, n+1); DoubleMatrix omega(I+1, n+1); DoubleMatrix sumX(I+1, n+1); DoubleMatrix sumY(I+1, n+1); DoubleMatrix sumS(I+1, n+1); DoubleMatrix sumomega(I+1, n+1); DoubleMatrix nu(I+1, n+1); DoubleMatrix lambda(I+1, n+2); DoubleMatrix lambda_br(I+1, n+2); DoubleMatrix eta(I+1, n+1); DoubleMatrix eta2(I+1, n+1); DoubleMatrix varr(I+1, n+1); DoubleMatrix rpearson(I+1, n+1); DoubleMatrix Sumeta(I+1, n+1); DoubleMatrix Sumvarr(I+1, n+1); DoubleMatrix Sumrpearson(I+1, n+1); IntMatrix breakpoints(I+1, n+2); IntMatrix breakpointsStar(I+1, n+2); LongMatrix bp(I+1, n+2); // long** X = new long*[I+1]; // long** Y = new long*[I+1]; // long** S = new long*[I+1]; // double **omega= new double*[I+1]; // double** sumX = new double*[I+1]; // double** sumY = new double*[I+1]; // double** sumS = new double*[I+1]; // double **sumomega= new double*[I+1]; // double **nu= new double*[I+1]; // double *alpha=new double[I+1]; // double* beta= new double[n+1]; // double **lambda=new double*[I+1]; // double **lambda_br=new double*[I+1]; // double **eta=new double*[I+1]; // double **eta2=new double*[I+1]; // double **varr=new double*[I+1]; // double **rpearson=new double*[I+1]; // double **Sumeta=new double*[I+1]; // double **Sumvarr=new double*[I+1]; // double **Sumrpearson=new double*[I+1]; // int **breakpoints=new int*[I+1]; // int **breakpointsStar=new int*[I+1]; // long **bp=new long*[I+1]; // We would have to delete the pointers manually at the end of the routine // in order not to corrupt the memory!!! // for (long i=0; i<=I; i++){ // X[i]=new long[n+1]; // Y[i]=new long[n+1]; // S[i]=new long[n+1]; // omega[i]=new double[n+1]; // sumX[i]=new double[n+1]; // sumY[i]=new double[n+1]; // sumS[i]=new double[n+1]; // sumomega[i]=new double[n+1]; // nu[i]=new double[n+1]; // lambda[i]=new double[n+2]; // lambda_br[i]=new double[n+2]; // breakpoints[i]=new int[n+2]; // breakpointsStar[i]=new int[n+2]; // bp[i]=new long[n+2]; // eta[i]=new double[n+1]; // eta2[i]=new double[n+1]; // varr[i]=new double[n+1]; // rpearson[i]=new double[n+1]; // Sumeta[i]=new double[n+1]; // Sumvarr[i]=new double[n+1]; // Sumrpearson[i]=new double[n+1]; // } // then the rest (1D arrays and numbers) DoubleVector alpha(I + 1); DoubleVector beta(n + 1); DoubleVector delta(n + 2); DoubleVector delta_br(n + 2); double xi_delta = 1; DoubleVector epsilon(n + 2); DoubleVector epsilon_br(n + 2); double xi_epsilon = 1; double xi_psi = 1; IntVector K(I + 1); IntVector Km1(I + 1); IntVector KStar(I + 1); DoubleVector xi_lambda(I + 1); IntVector breakpoints_delta(n+2); IntVector breakpointsStar_delta(n+2); LongVector bp_delta(n+2); int K_delta = 0; int Km1_delta = 0; int KStar_delta = 0; IntVector breakpoints_epsilon(n+2); IntVector breakpointsStar_epsilon(n+2); LongVector bp_epsilon(n+2); int K_epsilon = 0; int Km1_epsilon = 0; int KStar_epsilon = 0; LongVector Xnp1(I + 1); LongVector Snp1(I + 1); LongVector Ynp1(I + 1); LongVector Znp1(I + 1); DoubleVector omeganp1(I + 1); DoubleVector nunp1(I + 1); if(!varnu){ for (int i=0; i<=I; i++) { for (int t=0; t<=n; t++) { nu[i][t] = alpha_nu/beta_nu; } } } for (int i=0; i<=I; i++) { for (int t=0; t<=n; t++) { lambda[i][t] = lambda_const; } } for (int i=0; i<=I; i++) { for (int t=0; t<=n; t++) { X[i][t] = 0; S[i][t] = 0; Y[i][t] = Z[i][t]; omega[i][t] = 1; eta[i][t] = 0; bp[i][t] = 0; bp_delta[t] = 0; bp_epsilon[t] = 0; sumX[i][t] = 0; sumY[i][t] = 0; sumS[i][t] = 0; sumomega[i][t] = 0; Sumeta[i][t] = 0; Sumrpearson[i][t] = 0; } bp[i][n+1] = 0; xi_lambda[i] = 1; bp_delta[n+1] = 0; bp_epsilon[n+1] = 0; } /* Fuer Saisonkomponenente */ int ncov; int scov = 0; if(delta_rev){ scov = 1; } // determine the number of covariates and allocate then // the vectors and design matrix. ncov = nu_trend ? (nfreq * 2 + 2) : (nfreq * 2 + 1); DoubleVector gamma(ncov); DoubleVector gammaneu(ncov); DoubleMatrix xcov(ncov, n+2); // bad, do not do that: // double* gamma; // double* gammaneu = NULL; // double** xcov; if(!nu_trend){ // ncov=nfreq*2+1; // gamma = new double[ncov]; // gammaneu = new double[ncov]; // xcov = new double*[ncov]; // for (int i=0; i tuneSampleSize && (!verbose) && (sampleCounter % (int)floor(sampleSize/100.0) == 0)) { Rprintf("%d%%", sampleCounter*100 / sampleSize); } if(0){ if(varnu){ if ((sampleCounter % 100 == 0)) { Rprintf("alpha\t%f beta\t%f %f gamma[0]\t%f gamma[1]\t%f gamma[2]\t%f %f lambda\t%f\n", (double)acc_alpha/I, beta[2], (double)acc_beta, gamma[0], gamma[1], gamma[2],(double)acc_gamma, lambda[1][2]); /* cout<< "alpha\t" << (double)acc_alpha/I<<" " << "beta\t" <<" "<< beta[2] <<" "<< (double)acc_beta<<" " << "gamma[0]\t" <<" "<< gamma[0] <<" "<< "gamma[1]\t" <<" " << gamma[1] <<" "<< "gamma[2]\t" <<" "<< gamma[2] <<" " << (double)acc_gamma<<" " << "lambda\t" << lambda[1][2] << endl;*/ } } if(la_rev){ if ((sampleCounter % 100 == 0)) { Rprintf("K\t%d\n", K[1]); } } if(delta_rev){ if ((sampleCounter % 100 == 0)) { Rprintf("K_delta\t%f delta[2]\t%f\n", K_delta, delta[2]); } } if(epsilon_rev){ if ((sampleCounter % 100 == 0)) { Rprintf("K_epsilon\t%f epsilon[2]\t%f\n", K_epsilon, epsilon[2]); } } } // cout << ":"<) superflous. double accpsi = exp(logFPsiStar-logFPsi); //Do we accept? if ((psi>0) && (gsl_rng_uniform() <= accpsi)) {psi = psiStar; acceptedPsi++;} } //update xi_psi if(xi_estim_psi){ double a = alpha_psi + 1; double b = beta_psi + psi; xi_psi = gsl_ran_gamma (a, 1/b); } ////////////////////////////////////////////////////////////////////////// //State information to file if we are on an filter'th sample if ((sampleCounter>burnin) && ((sampleCounter-burnin) % filter == 0)) { logfile << sampleCounter << "\t"; if (!la_rev){ logfile << lambda_const << "\t"; } logfile << psi << "\t"; logfile << xi_psi << "\t"; if(!varnu){ logfile << nu_const << "\t"; } } if(varnu){ // Unterprogramme fuer den Update von alpha und beta if (I>=2) { alphaupdate(gamma, alpha, beta, delta, lambda, 1, I, n, Y, X, acc_alpha, taualpha, ncov, xcov, xreg, omega, omega, scov,1); taualpha=update_tau_alpha(alpha, I, alpha_a, alpha_b, xreg); if (sampleCounter%3==0) { if(scov==0){ double asum=0; for (int i=1; i<=I; i++) { asum+=(alpha[i]-xreg[i]); } for (int i=1; i<=I; i++) { alpha[i]-=(asum/I); } gamma[0]=gamma[0]+(asum/I); } } } else { alpha[1]=0.0; } //Update fuer zeitlichen effekt mit RW if (rw>0) { // update_beta_nurrw(gamma, alpha, beta, delta, X, Z, Y, n, I, taubeta, rw, 1, lambda, acc_beta, sampleCounter, my, my2, temp, z, theta, Q, Q2, L, L2, xcov, ncov, scov, omega, omega, 1); //update_beta_block(alpha, beta, gamma, delta, X, n, I, taubeta, rw, acc_beta, sampleCounter, n1, n2, my, my2, z, theta, beta0, Q, Q2, L, L2, xcov, ncov, scov, omega); /*hofmann - no fortran update_beta_tau_block(alpha, beta, gamma, delta, beta_a, beta_b, X, n, I, taubeta, rw, acc_beta, taubetaRWSigma, taubetaStar, sampleCounter, n1, n2, my, my2, z, theta, beta0, Q, Q2, L, L2, xcov, ncov, scov, omega); */ //taubeta=beta_a/beta_b; // taubeta=hyper(rw, beta, beta_a, beta_b, n); //taubeta=720; //if(sampleCounter%500==1){cout << taubeta << endl << endl;} // for(int t=2;t<=n;t++){ // update_beta_t(t, alpha, beta, gamma, delta, ncov, xcov, X, n, I, taubeta, acc_beta, omega, scov); // } if(scov==0){ // if (sampleCounter%1==0) // { double bsum=0; for (int t=2; t<=n; t++) { bsum+=(beta[t]); } for (int t=2; t<=n; t++) { beta[t]-=(bsum/(n-1)); } gamma[0]=gamma[0]+(bsum/(n-1)); // } } } //if (rw>0) //update saison //update_gamma( alpha, beta, gamma,ncov, xcov, X, Z, Y, n, I, taugamma, 1, lambda, acc_gamma, P, P2, gammaalt, z2, L, Q, omega, omega,1); taugamma=gamma_b; // cout << gamma[0]<<" " << gamma[1] << endl; for(int j=scov;jburnin) && ((sampleCounter-burnin) % filter == 0)) { // for (int i=1;i<=I; i++) { // for (int t=1; t<=n; t++) { // logfile << nu[i][t] << "\t"; // } // } // logfile << mu << "\t"; for (int j=0; jburnin) && ((sampleCounter-burnin) % filter == 0)) { logfile << Km1_delta<<"\t"<< xi_delta<<"\t"; for (int j=2; j<=n; j++) { logfile << delta[j] << "\t"; } } if (sampleCounter>burnin) { for (int k=1; k<=K_delta; k++) { for (int j=2; j<=n; j++) { if (breakpoints_delta[k]==j){ bp_delta[j]+=1; } } } } }//if(delta_rev) }//if }//if varnu if(epsilon_rev){ update_epsilon_br(epsilon, epsilon_br, xi_epsilon, breakpoints_epsilon, breakpointsStar_epsilon, K_epsilon, KStar_epsilon, Km1_epsilon, epsilon_a, epsilon_b, S, n, I, acceptedbr_epsilon, omega, xi_estim_epsilon, K_geom, p_K, alpha_xi, beta_xi); if ((sampleCounter>burnin) && ((sampleCounter-burnin) % filter == 0)) { logfile << Km1_epsilon<<"\t"<< xi_epsilon<<"\t"; for (int j=2; j<=n; j++) { logfile << epsilon[j] << "\t"; } } if (sampleCounter>burnin) { for (int k=1; k<=K_epsilon; k++) { for (int j=2; j<=n; j++) { if (breakpoints_epsilon[k]==j){ bp_epsilon[j]+=1; } } } } }//if(epsilon_rev) if(la_estim){ if (la_rev) { update_lambda_br(lambda, lambda_br, xi_lambda, breakpoints, breakpointsStar, K, KStar, Km1, alpha_lambda, beta_lambda, Y, Z, n, I, acceptedbr, omega, theta_pred_estim, xi_estim, K_geom, p_K, alpha_xi, beta_xi); if ((sampleCounter>burnin) && ((sampleCounter-burnin) % filter == 0)) { logfile << Km1[1]<<"\t"<< xi_lambda[1]<<"\t"; for (int j=2; j<=n; j++) { logfile << lambda[1][j] << "\t"; } } for (int i=1;i<=I; i++) { if (sampleCounter>burnin) { for (int k=1; k<=K[i]; k++) { for (int j=2; j<=n; j++) { if (breakpoints[i][k]==j){ bp[i][j]+=1; } } } } } }//if(la_rev) } // if(la_estim) // cout << S[1][106] << endl; // cout << "test" << endl; //Loop over the individual X[t], Y[t], S[t], and omega[t] for (int i=1;i<=I; i++) { for (int t=2; t<=n; t++) { //Update X double binp = nu[i][t]*xi[i] / (epsilon[t] + nu[i][t]*xi[i] + lambda[i][t] * Z[i][t-1]); X[i][t] = gsl_ran_binomial( binp, Z[i][t]); //Update S binp = epsilon[t] / (epsilon[t] + lambda[i][t] * Z[i][t-1]); //hoehle 9 Apr 2009 -- protection against Z[i][t-1]==0 case, leading to binp = nan if (Z[i][t-1] == 0) {binp = 1;} S[i][t] = gsl_ran_binomial( binp, (Z[i][t] - X[i][t])); //Update Y Y[i][t] = Z[i][t] - X[i][t] - S[i][t]; //Debug //cout << "i=" << i << "\tt=" << t << "\tX=" << X[i][t] << "\tY=" << Y[i][t] << "\tZ=" << Z[i][t] << "\tS=" << S[i][t] << "\tepsilon=" << epsilon[t] << "\tbinp=" << binp << endl; //Update omega[t] in case of overdispersion if(overdispersion){ double a = psi + Z[i][t]; double b = psi + epsilon[t] + nu[i][t] + lambda[i][t]*Z[i][t-1]; omega[i][t] = gsl_ran_gamma(a,1/b); } //Write state to log-file. if (sampleCounter>burnin) { sumX[i][t] += X[i][t]; sumY[i][t] += Y[i][t]; sumS[i][t] += S[i][t]; sumomega[i][t] += omega[i][t]; Sumeta[i][t] += eta[i][t]; Sumvarr[i][t] += varr[i][t]; Sumrpearson[i][t] += rpearson[i][t]; } }//for t }//for i // cout << "test2" << endl; // cout << Z[1][2] << endl; // cout << X[1][2] << endl; // cout << Y[1][2] << endl; // cout << S[1][2] << endl; //Praediktive Verteilung fuer variables nu for (int i=1;i<=I;i++) { if(!theta_pred_estim){ double p_thetanp1 = ((double(K[i]))/double(n)); //(1+double(K[i])) if(K_geom){ p_thetanp1 = (double(K[i])*(1.0-p_K)*(1.0-pow((double)1.0-p_K,double(n-1))))/((double(n)-1.0)*(1.0-pow((double)1.0-p_K,double(n)))); } if(gsl_rng_uniform()<=p_thetanp1){ if (sampleCounter>burnin) { bp[i][n+1] += 1; } double alpha_la = alpha_lambda; double beta_la = beta_lambda; if(xi_estim){ beta_la = xi_lambda[i]; } lambda[i][n+1]=gsl_ran_gamma(alpha_la,1/beta_la); } } if(overdispersion){ omeganp1[i] = gsl_ran_gamma(psi,1/psi); }else{ omeganp1[i] = 1; } if(varnu){ a = 0; for(int j=scov;j0){ a += gsl_ran_gaussian(sqrt(1/taubeta)) + (2*beta[n-1]-beta[n]); } if(delta_rev){ double p_thetanp1 = ((double(K[i]))/double(n)); //(1+double(K[i])) if(K_geom){ p_thetanp1 = ((double(K[i]))*(1.0-p_K)*(1.0-pow((double)1.0-p_K,double(n-1))))/((double(n)-1.0)*(1.0-pow((double)1.0-p_K,double(n)))); } if(gsl_rng_uniform()<=p_thetanp1){ if (sampleCounter>burnin) { bp_delta[n+1] += 1; } double alpha_de = delta_a; double beta_de = delta_b; if(xi_estim){ beta_de = xi_delta; } delta[n+1]=gsl_ran_gamma(alpha_de,1/beta_de); } a += log(delta[n+1]); } nunp1[i] = exp(a); }else{ nunp1[i]=nu[i][n]; } if(epsilon_rev){ double p_thetanp1 = ((double(K[i]))/double(n)); //(1+double(K[i])) if(K_geom){ p_thetanp1 = ((double(K[i]))*(1.0-p_K)*(1.0-pow((double)1.0-p_K,double(n-1))))/((double(n)-1.0)*(1.0-pow((double)1.0-p_K,double(n)))); } if(gsl_rng_uniform()<=p_thetanp1){ if (sampleCounter>burnin) { bp_epsilon[n+1] += 1; } double alpha_ep = epsilon_a; double beta_ep = epsilon_b; if(xi_estim){ beta_ep = xi_epsilon; } epsilon[n+1]=gsl_ran_gamma(alpha_ep,1/beta_ep); } } Xnp1[i] = gsl_ran_poisson(omeganp1[i]*nunp1[i]*xi[i]); Ynp1[i] = gsl_ran_poisson(lambda[i][n+1]*omeganp1[i]*(Z[i][n])); Snp1[i] = gsl_ran_poisson(omeganp1[i]*epsilon[n+1]); Znp1[i] = Xnp1[i] + Ynp1[i] + Snp1[i]; if ((sampleCounter>burnin) && ((sampleCounter-burnin) % filter == 0)) { logfile << Znp1[1] << "\t"; } } if ((sampleCounter>burnin) && ((sampleCounter-burnin) % filter == 0)) { logfile << satdev(n,I,Z,lambda,nu,xi,epsilon,eta,psi,overdispersion) << endl; } logfile.flush(); //Tuning if(sampleCounter == tuneSampleSize){ if (!la_rev) { Rprintf("Current xRWSigma= %f --> acc rate= %f\n", xRWSigma, acceptedlambda/tuneSampleSize); tune(xRWSigma, acceptedlambda, tuneSampleSize,tunex); Rprintf("Corrected xRWSigma= %f\n", xRWSigma); } if(overdispersion){ Rprintf("\nCurrent psiRWSigma= %f --> acc rate = %f\n", psiRWSigma, acceptedPsi/tuneSampleSize); tune(psiRWSigma, acceptedPsi, tuneSampleSize,tunepsi); Rprintf("Corrected psiRWSigma= %f\n", psiRWSigma); } if(varnu&&(rw>0)){ Rprintf("Current taubetaRWSigma= %f --> acc rate %f\n", taubetaRWSigma, acc_beta/tuneSampleSize); tune(taubetaRWSigma, acc_beta, tuneSampleSize,tunetaubeta,0.1,0.4); Rprintf("Corrected taubetaRWSigma= %f\n", taubetaRWSigma); } //tunetaubeta = 0; need=tunex + tunepsi + tunetaubeta; if(need > 0){ acceptedlambda = 0; acceptedbr = 0; acceptedbr_delta = 0; acceptedbr_epsilon = 0; acceptedPsi = 0; sampleCounter = 0; if(varnu){ acc_beta=0; acc_alpha=0; acc_gamma=0; } //Fix seed of generator to reproduce results. // gsl_rng_set(r,seed); }//if }//if sampleCounter++; }//while counter //Write means to logfile2 for (int t=1;t<=n;t++) { logfile2 << (double)sumX[1][t]/((double)samples*(double)filter) << "\t" << (double)sumY[1][t]/((double)samples*(double)filter)<< "\t" << (double)sumomega[1][t]/((double)samples*(double)filter) << "\t"<< (double)bp[1][t]/((double)samples*(double)filter) << "\t"; } logfile2 << (double)bp[1][n+1]/((double)samples*(double)filter) << "\t"; logfile2 << endl; //Write accepted status to file if(overdispersion){acclog << "psi\t" << psiRWSigma << "\t" << (double)acceptedPsi/(double)sampleSize << endl;} if (!la_rev){acclog << "lambda\t" << xRWSigma << "\t" << (double)acceptedlambda/(double)sampleSize << endl;} if (la_rev){acclog << "br\t" << 0 << "\t" << (double)acceptedbr/(double)sampleSize << endl;} if(I>1){acclog << "alpha\t" << 0 <<"\t" <<(double)acc_alpha/((double)sampleSize*I)<0)){acclog <<"beta\t"<<0 <<"\t"<< (double)acc_beta/((double)sampleSize*(double)(n-1.0))< // // This program is part of the surveillance package, // http://surveillance.r-forge.r-project.org, // free software under the terms of the GNU General Public License, version 2, // a copy of which is available at http://www.r-project.org/Licenses/. *******************************************************************************/ #include using namespace Rcpp; // Euclidean distance of a set of points to a single point (x0, y0) NumericVector distsN1(NumericVector x, NumericVector y, double x0, double y0) { // hypot(x, y) is not (yet) vectorized by Rcpp sugar return sqrt(pow(x - x0, 2.0) + pow(y - y0, 2.0)); } // [[Rcpp::export]] List determineSourcesC( NumericVector eventTimes, NumericVector eps_t, NumericMatrix eventCoords, NumericVector eps_s, IntegerVector eventTypes, LogicalMatrix qmatrix ){ int N = eventTimes.size(); NumericVector removalTimes = eventTimes + eps_t; NumericMatrix::Column xcoords = eventCoords(_,0); NumericMatrix::Column ycoords = eventCoords(_,1); List sources(N); LogicalVector infectivity(N); LogicalVector proximity(N); LogicalVector matchType(N); LogicalVector typeInfective(qmatrix.nrow()); IntegerVector eventTypes0 = eventTypes - 1; // for correct indexing IntegerVector idx = seq_len(N); for (int i = 0; i < N; ++i) { infectivity = (eventTimes < eventTimes[i]) & (removalTimes >= eventTimes[i]); // "<" not "<=" because CIF is left-continuous. // Also guarantees no self-infection. proximity = distsN1(xcoords, ycoords, eventCoords(i,0), eventCoords(i,1)) <= eps_s; typeInfective = qmatrix(_,eventTypes0[i]); //<- logical vector indicating for each type if it could infect type of i matchType = typeInfective[eventTypes0]; sources[i] = idx[infectivity & proximity & matchType]; } return sources; } // The following R code will be run automatically after compilation by // Rcpp::sourceCpp("~/Projekte/surveillance/pkg/src/determineSources.cc") /*** R data("imdepi", package="surveillance") sources <- imdepi$events$.sources tail(sources) eventTimes <- imdepi$events$time eps.t <- imdepi$events$eps.t eventCoords <- coordinates(imdepi$events) eps.s <- imdepi$events$eps.s eventTypes <- imdepi$events$type qmatrix <- imdepi$qmatrix sourcesC <- determineSourcesC(eventTimes, eps.t, eventCoords, eps.s, as.integer(eventTypes), qmatrix) tail(sourcesC) stopifnot(identical(sources, sourcesC)) library("microbenchmark") microbenchmark( determineSourcesC(eventTimes, eps.t, eventCoords, eps.s, as.integer(eventTypes), qmatrix), surveillance:::determineSources.epidataCS(imdepi, method = "R"), times = 50) */ /*** This is how tedious the function would look like without Rcpp attributes: RcppExport SEXP determineSourcesCSEXP(SEXP eventTimesSEXP, SEXP eps_tSEXP, SEXP eventCoordsSEXP, SEXP eps_sSEXP, SEXP eventTypesSEXP, SEXP qmatrixSEXP) { NumericVector eventTimes(eventTimesSEXP); NumericVector eps_t(eps_tSEXP); NumericMatrix eventCoords(eventCoordsSEXP); NumericVector eps_s(eps_sSEXP); IntegerVector eventTypes(eventTypesSEXP); LogicalMatrix qmatrix(qmatrixSEXP); [... insert body of the above determineSourcesC here but replace return statement by ...] return wrap(sources); } */ surveillance/src/surveillance.c0000644000175100001440000011061013231650476016421 0ustar hornikusers/** C routines for the surveillance package Author: (C) Michael Höhle Date: 8 Jan 2008 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, a copy is available at http://www.r-project.org/Licenses/ Atm the only C routines are concerned with the GLR computations in the algorithm algo.prc. //should check that these really work... void lr_cusum - intercept chart with known kappa void glr_cusum - intercept chart with estimated kappa void glr_cusum_window -- window limited intercept chart with estimated kappa //removedvoid glr_epi void glr_epi_window //History 17 Feb 2009 -- added LR scheme for negative binomial (still experimental) 08 Jan 2007 -- added the files for the negative binomial computations 21 Sep 2007 -- modified code to get around error of extreme strict (=pedantic) MacOS compiling on CRAN 28 Nov 2006 -- file created */ /*#define DEBUG*/ #include #include #include #include /* header */ /* void lr_cusum(int* ,double* , int *, double *, double *,int *, double *) ; void glr_cusum(int* ,double* , int *, int *, double *,int *, double *, int *, int *, int *) ; */ /* Helper function for x^2 */ static R_INLINE double sqr(double x) { return(x*x); } /*====================================================================== Poisson GLR detector ====================================================================== */ /********************************************************************** C implementation of the LR test for the seasonal Poisson chart with fixed change in the intercept Params: x - array of observed values (pos 0 is first interesting value) mu0 - array with the means once in-control (pos 0 is first interesting value) lx - length of the x and mu0 array kappa- the change in intercept to detect (here known in advance) c_ARL- when to sound alarm threshold ret_N- here the return value is stored ret_lr- GLR value for each n to be returned ret_cases - The number of cases to be returned ret - what should be returned (value of lr-statistic, cases)? **********************************************************************/ void lr_cusum(int* x,double* mu0, int *lx_R, double *kappa_R, double *c_ARL_R,int *ret_N, double *ret_lr, double *ret_cases, int *ret_R) { /* Pointers to something useful */ int lx = *lx_R; double c_ARL = *c_ARL_R; double kappa = *kappa_R; int ret = *ret_R; /* Loop variables */ register int n=0; int stop = 0; int N = lx; /* Loop over all 0 <= n <= length(x) */ while ((n < lx)) { /*Compute for one n*/ /*printf("n=%d\n",n);*/ double zn = kappa * x[n] + (1-exp(kappa))*mu0[n]; #ifdef DEBUG printf("For kappa=%f and mu[%d]=%f:\tx[%d]=%f, LR=%f\n",kappa,n,mu0[n],n,x[n],zn); #endif /* Add up */ if (n==0) { ret_lr[n] = fmax(0,zn); /*5.11.2009 -- Bug fix. There was a small programming error for the computing the cases for n==0. if (ret==2) ret_cases[n] = (c_ARL + mu0[n]*(kappa-1))/kappa ; */ if (ret==2) ret_cases[n] = (c_ARL + mu0[n]*(exp(kappa)-1))/kappa ; } else { ret_lr[n] = fmax(0,ret_lr[n-1] + zn); if (ret==2) ret_cases[n] = (c_ARL - ret_lr[n-1] + mu0[n]*(exp(kappa)-1))/kappa ; } /* Find the first time that the GLR increases c_ARL there we stop */ if ((ret_lr[n] > c_ARL) && !stop) { N = n; stop = 1; break; } /* Advance counter */ n++; } /* Return value (add 1 for R/SPlus array compability */ *ret_N = N+1; } /*********************************************************************** Function for the computation of the glr-statistic with time-varying in-control value Params n - timepoint n where the glr-statistic should be computed x - array with observations mu0 - array with estimated in-comtrol parameters dir - direction of testing (up (1) or down (-1) the function returns max_1<=k<=n sup_theta sum_t=k^n log f_theta(x_t)/f_theta0(x_t) ************************************************************************/ double glr (int n, int x[], double mu0[], int dir){ /* For the recursive computation of kappa_ml */ double sumx = 0; double summu0 = 0; /* Define max of the GLR stats */ double maxGLR = -1e99; /* Loop variable */ register int k; /* For fitting and summation */ double kappa_ml = 0; double sum = 0; /* Loop over all k */ for (k=n; k>=0; k--) { /* Backwards loop makes calculations faster */ /* Recursive update of the kappa.ml quantitities */ sumx += x[k]; summu0 += mu0[k]; /* Calculate MLE of kappa */ kappa_ml = dir*fmax(0,dir*log(sumx/summu0)); /* Recursive updating of the likelihood ratios -- See notes on the 21 september printout. This is fast! */ sum = kappa_ml * sumx + (1-exp(kappa_ml))*summu0; /* save max value */ if (sum > maxGLR) { maxGLR = sum;} } return(maxGLR); } /*********************************************************************** Function for the computation of the window-limited glr-statistic with time-varying in-control value Params n - timepoint n where the glr-statistic should be computed x - array with observations mu0 - array with estimated in-comtrol parameters dir - direction of testing (up (1) or down (-1) M - max time to go back in time from N Mtilde - number of vals we will need to estimate a detection the function returns max(0,n-M) <= k <= n-Mtilde sup_theta sum_t=k^n log f_theta(x_t)/f_theta0(x_t) ************************************************************************/ double glr_window (int n, int x[], double mu0[], int dir, int M, int Mtilde){ /* Define max of the GLR stats */ double maxGLR = -1e99; /* Loop variable */ register int k,l; /* For the recursive computation of kappa_ml compute for (n-Mtilde+1):n */ double sumx = 0; double summu0 = 0; /* For fitting and summation */ double sum = 0; double kappa_ml = 0; for (l=n-Mtilde+1; l<=n; l++) { sumx += x[l]; summu0 += mu0[l]; } /* Loop over all max(0,n-M) <= k <= n-Mtilde -- do this backwards */ /* for (k=max(0,n-M); k<= (n-Mtilde); k++) { */ for (k=n-Mtilde; k>=fmax(0,n-M); k--) { /* Recursive update of the kappa.ml quantitities */ sumx += x[k]; summu0 += mu0[k]; kappa_ml = dir*fmax(0,dir*log(sumx/summu0));; /*Calculate sum of likelihood ratios using recursive updating (fast!)*/ sum = kappa_ml * sumx + (1-exp(kappa_ml))*summu0; /* Save the max value */ if (sum > maxGLR) { maxGLR = sum;} } return(maxGLR); } /********************************************************************** Fast C implementation of the sequential GLR test without windowing for Poisson distributed variables, this function can test in both directions (up/down) and there is the possibility ( in opposite to old function glr_cusum) to return the number of cases at timepoint n to produce an alarm at any timepoint 1<=k<=n Params: x - array of observed values (pos 0 is first interesting value) mu0 - array with the means once in-control (pos 0 is first interesting value) lx - length of the x and mu0 array n0 - number of burn-in values (number of observations, not array index!) c_ARL- when to sound alarm threshold ret_N- here the return value is stored ret_glr- GLR value for each n to be returned dir - direction of testing ret - what should be returned (value of glr-statistic, cases)? **********************************************************************/ void glr_cusum(int* x,double* mu0, int *lx_R, int *n0_R, double *c_ARL_R,int *ret_N, double *ret_glr, double *ret_cases, int *dir_R, int *ret_R) { /* Pointers to something useful */ int lx = *lx_R; int n0 = *n0_R; int dir = *dir_R; int ret = *ret_R; double c_ARL = *c_ARL_R; /* Loop variables */ register int n; /*l,n0-1*/ for (n=0; n= c_ARL */ while ((dir*glrnew < c_ARL*dir)){ /* increase/decrease xnnew */ xnnew = xnnew + 1; /* put this value in vector x at timepoint n */ x[n] = xnnew; /* compute the glr-statistic */ glrnew = glr(n,x,mu0,dir); } /* save the value */ ret_cases[n] = xnnew; /* set x[n] back to original value so that we can go to next n*/ x[n] = xnold; } /* Find the first time that the GLR increases c_ARL there we stop */ if ((ret_glr[n] >= c_ARL) && !stop) { N = n; stop = 1; break; } /*Advance counter*/ n++; } /* Return value (add 1 for R/SPlus array compability */ *ret_N = N+1; } /********************************************************************** Fast C implementation of the sequential GLR test without windowing for Poisson distributed variables Params: x - array of observed values (pos 0 is first interesting value) mu0 - array with the means once in-control (pos 0 is first interesting value) lx - length of the x and mu0 array Mtilde - number of vals we will need to estimate a detection M - max time to go back in time from N c_ARL- when to sound alarm threshold **********************************************************************/ void glr_cusum_window(int* x,double* mu0, int *lx_R, int *M_R, int *Mtilde_R, double *c_ARL_R,int *ret_N, double *ret_glr, double *ret_cases, int *dir_R, int *ret_R) { /* Pointers to something useful */ int lx = *lx_R; int M = *M_R; int Mtilde = *Mtilde_R; int dir = *dir_R; int ret = *ret_R; double c_ARL = *c_ARL_R; /* Loop variables (n>Mtilde, so we start with n=Mtilde (due to -1 in index) */ register int n = Mtilde; /*l*/ int stop = 0; int N = lx; /* Precalculation of log(mu0) -- apparently not used anymore */ //double logmu0[lx]; //for (l=0;l= c_ARL */ while ((dir*glrnew < c_ARL*dir)){ /* increase/decrease xnnew */ xnnew = xnnew + 1; /* put this value in vector x at timepoint n */ x[n] = xnnew; /* compute the glr-statistic */ glrnew = glr_window(n,x,mu0,dir,M,Mtilde); } /* save the value */ ret_cases[n] = xnnew; /* set x[n] back to original value so that we can go to next n*/ x[n] = xnold; } /* Debug*/ /* printf("For n=%d the best GLR value is %f\n",n,maxGLR);*/ /* Find the first time that the GLR increases c_ARL there we stop */ if ((ret_glr[n] >= c_ARL) && !stop) { N = n; stop = 1; break; } /* Advance counter */ n++; } /* Return value (add 1 for R/SPlus array compability */ *ret_N = N+1; } /*====================================================================== GLR in the Epidemic Poisson model ====================================================================== */ /*Helper functions*/ /* Score function */ static R_INLINE double score(double phi, int *x, double *xm1, double *mu0, int k, int n) { register int i; double sum = 0; /*printf("[1] ");*/ for (i=k; i<=n; i++) { sum += (x[i]*xm1[i])/(exp(phi)*xm1[i]+mu0[i]) - xm1[i]; } /*printf("\n");*/ return(exp(phi)*sum); } /*fisher information*/ static R_INLINE double fisher(double phi,int *x,double *xm1, double *mu0, int k,int n,double scorephi) { register int i; double sum = 0; for (i=k; i<=n; i++) { sum += (x[i]*sqr(xm1[i]))/sqr(exp(phi)*xm1[i]+mu0[i]); } return(-scorephi + exp(2.0*phi)*sum); } /********************************************************************** GLR detector for the epidemic Poisson model described in Held et. al (2005). Parameters: x -- the data (as array) mu0 -- base means under H0 lx -- length of x Mtilde_R -- number of obs needed to get good estimate (typically 1) M -- Mtilde < M xm10 -- observed value of x_0 (0 for initialization, but known if >1st round) c_ARL_R -- constant determining when to signal alarm ret_N -- the return value ret_lr --- GLR value for each n to be returned **********************************************************************/ void glr_epi_window(int* x,double* mu0, int *lx_R, int *Mtilde_R, int *M_R, double *xm10, double *c_ARL_R,int *ret_N, double *ret_glr) { /* printf("====> begin glr_epi\n"); */ /* Pointers to something useful */ int lx = *lx_R; /* length of x */ int Mtilde = *Mtilde_R; int M = *M_R; double c_ARL = *c_ARL_R; /* Loop variables */ register int n, k,i; /* Init return values up to the first position */ int n0 = fmax(Mtilde-1,0); /*hoehle: 25.9: changepoint can happen at position one: fmax(Mtilde-1,1);*/ for (n=0; n-18) & (fabs(exp(phi_new) - exp(phi_old)) > 1e-6) & (iter maxGLR) { maxGLR = lnk;} } /*Debug */ /*printf("For n=%d the best GLR value is %f\n",n,maxGLR); */ /*Save the return value */ ret_glr[n] = maxGLR; /*Find the first time that the GLR increases c_ARL there we stop */ if ((maxGLR > c_ARL) && !stop) { N = n; stop = 1; break; } /*Advance counter */ n++; } /*Set the remaining values to zero */ for (i=n+1;i begin lr_cusum_nb\n"); #endif /* Pointers to something useful */ int lx = *lx_R; double c_ARL = *c_ARL_R; double kappa = *kappa_R; double alpha = *alpha_R; int ret = *ret_R; #ifdef DEBUG printf("lx = %d\n",lx); printf("alpha = %f\n",alpha); #endif /* Loop variables */ register int n=0; int stop = 0; int N = lx; /* Loop over all 0 <= n <= length(x) */ while ((n < lx)) { /*Compute for one n*/ #ifdef DEBUG printf("n=%d\n",n); #endif /* LR for one NB variable as given in the first equation of Sect 2.1 in the Hoehle and Paul (2008) paper */ double zn = kappa * x[n] + (x[n]+1/alpha)*log( (1+alpha*mu0[n])/(1+alpha*mu0[n]*exp(kappa)) ); /* Recursive CUSUM as given in (4) by Hoehle and Paul (2008) */ if (n==0) { /* Statistic */ ret_lr[n] = fmax(0,zn); /* Number of cases it takes to sound an alarm - backcalc'ed by backcalc.mws*/ if (ret==2) ret_cases[n] = -(log((1+alpha*mu0[n])/(1+alpha*mu0[n]*exp(kappa)))-c_ARL*alpha)/alpha/(kappa+log((1+alpha*mu0[n])/(1+alpha*mu0[n]*exp(kappa)))); } else { /* Statistic */ ret_lr[n] = fmax(0,ret_lr[n-1] + zn); /* Number of cases it takes to sound an alarm -- backcalc.mws*/ if (ret==2) ret_cases[n] = -(ret_lr[n-1]*alpha+log((1+alpha*mu0[n])/(1+alpha*mu0[n]*exp(kappa)))-c_ARL*alpha)/alpha/(kappa+log((1+alpha*mu0[n])/(1+alpha*mu0[n]*exp(kappa)))); } /* Find the first time that the GLR increases c_ARL there we stop */ if ((ret_lr[n] > c_ARL) && !stop) { N = n; stop = 1; break; } /* Advance counter */ n++; } /* Return value (add 1 for R/SPlus array compability */ *ret_N = N+1; } /* ====================================================================== Functions for the intercept chart ====================================================================== */ /* Score function for intercept chart*/ static R_INLINE double nbScore(double kappa, int *x, double *mu0, double alpha, int k, int n) { register int i; double sum = 0; /*printf("[1] ");*/ for (i=k; i<=n; i++) { sum += (x[i]-exp(kappa)*mu0[i])/(1+alpha*exp(kappa)*mu0[i]); } /*printf("\n");*/ return(sum); } /*fisher information for intercept chart -- its minus the hesse */ static R_INLINE double nbFisher(double kappa,int *x, double *mu0, double alpha, int k,int n) { register int i; double sum = 0; for (i=k; i<=n; i++) { sum += mu0[i]*(alpha*x[i]+1)/sqr(1+alpha*exp(kappa)*mu0[i]); } return( exp(kappa)*sum); } /* Formula to compute a single l_{n,k} for the intercept chart */ static R_INLINE double nblnk(double kappa,int *x, double *mu0, double alpha, int k,int n) { register int i; double lnk = 0; for (i=k;i<=n;i++) { lnk += kappa * x[i] + (x[i] + 1/alpha) * log( (1+alpha*mu0[i])/(1+alpha*mu0[i]*exp(kappa))); } return(lnk); } /********************************************************************** GLR detector for the negative binomial model described in Hoehle and Paul (2008). Parameters: x -- the data (as array) mu0 -- base means under H0 alpha -- fixed dispersion parameter of the NegBin distribution (see Lawless (1987)) lx -- length of x Mtilde_R -- number of obs needed to get good estimate (typically 1) M -- Mtilde < M c_ARL_R -- constant determining when to signal alarm ret_N -- the return value ret_lr --- GLR value for each n to be returned **********************************************************************/ void glr_nb_window(int* x,double* mu0, double* alpha_R, int *lx_R, int *Mtilde_R, int *M_R, double *c_ARL_R,int *ret_N, double *ret_glr, int *dir_R) { #ifdef DEBUG printf("====> begin glr_nb_window\n"); #endif /* Pointers to something useful */ int lx = *lx_R; /* length of x */ int Mtilde = *Mtilde_R; int M = *M_R; double c_ARL = *c_ARL_R; double alpha = *alpha_R; int dir = *dir_R; /* Loop variables */ register int n, k,i; /*changepoint can happen at position one (ie. index zero in C*/ int n0 = fmax(Mtilde-1,0); #ifdef DEBUG printf("Length of the data = %d\n",lx); printf("starting at n0= %d\n",n0); #endif /* Show the data */ /*for (n=0; n-18) & (fabs(kappa_new - kappa_old) > 1e-6) & (iter maxGLR) { maxGLR = lnk;} } /*Debug */ #ifdef DEBUG printf("For n=%d the highest GLR value is %f\n",n,maxGLR); #endif /*Save the return value */ ret_glr[n] = maxGLR; /*Find the first time that the GLR increases c_ARL there we stop */ /*hoehle: now >= */ if ((maxGLR >= c_ARL) && !stop) { N = n; stop = 1; break; } /*Advance counter */ n++; } /*Set the remaining values to zero */ for (i=n+1;i begin glr_nbgeneral_window \n"); #endif /* Pointers to something useful */ int lx = *lx_R; /* length of x */ int Mtilde = *Mtilde_R; int M = *M_R; double c_ARL = *c_ARL_R; double alpha = *alpha_R; /* int dir = *dir_R; -- currently direction is not supported?? */ /* Loop variables */ register int n, k,i; /*changepoint can happen at position one (ie. index zero in C*/ int n0 = fmax(Mtilde-1,0); /* Compute x_{t-1} */ double xm1[lx]; xm1[0] = *xm10; /* used to be 0 */ for (i=1; i-18) & (fabs(theta_new - theta_old) > 1e-6) & (iter maxGLR) { maxGLR = lnk;} } /*Debug */ #ifdef DEBUG printf("For n=%d the highest GLR value is %f\n",n,maxGLR); #endif /*Save the return value */ ret_glr[n] = maxGLR; /*Find the first time that the GLR increases c_ARL there we stop */ /*hoehle: now >= */ if ((maxGLR >= c_ARL) && !stop) { N = n; stop = 1; break; } /*Advance counter */ n++; } /*Set the remaining values to zero */ for (i=n+1;i #include #include /*** C-implementation of "intrfr" functions ***/ // power-law kernel static double intrfr_powerlaw(double R, double *logpars) { double sigma = exp(logpars[0]); double d = exp(logpars[1]); double onemd = 1.0 - d; double twomd = 2.0 - d; if (fabs(onemd) < 1e-7) { return R - sigma * log1p(R/sigma); } else if (fabs(twomd) < 1e-7) { return log1p(R/sigma) - R/(R+sigma); } else { return (R*pow(R+sigma,onemd) - (pow(R+sigma,twomd) - pow(sigma,twomd))/twomd) / onemd; } } static double intrfr_powerlaw_dlogsigma(double R, double *logpars) { double newlogpars[2] = {logpars[0], log1p(exp(logpars[1]))}; // sigma*d = exp(logsigma+logd) return -exp(logpars[0]+logpars[1]) * intrfr_powerlaw(R, newlogpars); } static double intrfr_powerlaw_dlogd(double R, double *logpars) { double sigma = exp(logpars[0]); double d = exp(logpars[1]); double onemd = 1.0 - d; double twomd = 2.0 - d; if (fabs(onemd) < 1e-7) { return sigma * logpars[0] * (1.0-logpars[0]/2.0) - log(R+sigma) * (R+sigma) + sigma/2.0 * pow(log(R+sigma),2.0) + R; } else if (fabs(twomd) < 1e-7) { return (-log(R+sigma) * ((R+sigma)*log(R+sigma) + 2.0*sigma) + (R+sigma)*logpars[0]*(logpars[0]+2.0) + 2.0*R) / (R+sigma); } else { return (pow(sigma,twomd) * (logpars[0]*(-d*d + 3.0*d - 2.0) - 2.0*d + 3.0) + pow(R+sigma,onemd) * (log(R+sigma)*onemd*twomd * (sigma - R*onemd) + R*(d*d+1.0) + 2.0*d*(sigma-R) - 3.0*sigma) ) * d/onemd/onemd/twomd/twomd; } } // student kernel static double intrfr_student(double R, double *logpars) { double sigma = exp(logpars[0]); double d = exp(logpars[1]); double onemd = 1.0 - d; if (fabs(onemd) < 1e-7) { return log(R*R+sigma*sigma) / 2.0 - logpars[0]; } else { return ( pow(R*R+sigma*sigma,onemd) - pow(sigma*sigma,onemd) )/2/onemd; } } static double intrfr_student_dlogsigma(double R, double *logpars) { double sigma = exp(logpars[0]); double d = exp(logpars[1]); return sigma*sigma * ( pow(R*R+sigma*sigma,-d) - pow(sigma,-2.0*d) ); } static double intrfr_student_dlogd_primitive(double x, double sigma, double d) { double x2ps2 = x*x + sigma*sigma; double dm1 = d - 1.0; return (d*dm1*log(x2ps2) + d) / (2.0*dm1*dm1 * pow(x2ps2,dm1)); } static double intrfr_student_dlogd(double R, double *logpars) { double sigma = exp(logpars[0]); double d = exp(logpars[1]); if (fabs(d-1.0) < 1e-7) { return pow(logpars[0], 2.0) - pow(log(R*R+sigma*sigma), 2.0) / 4.0; } else { return intrfr_student_dlogd_primitive(R, sigma, d) - intrfr_student_dlogd_primitive(0.0, sigma, d); } } // lagged power-law kernel static double intrfr_powerlawL_sigmadxplint(double R, double sigma, double d) { double twomd = 2.0 - d; double xplint = (fabs(twomd) < 1e-7) ? log(R/sigma) : (pow(R,twomd)-pow(sigma,twomd))/twomd; return pow(sigma,d) * xplint; } static double intrfr_powerlawL(double R, double *logpars) { double sigma = exp(logpars[0]); double upper = (R > sigma) ? sigma : R; double res = upper*upper / 2.0; // integral over x*constant part if (R <= sigma) { return res; } else { return res + intrfr_powerlawL_sigmadxplint(R, sigma, exp(logpars[1])); } } static double intrfr_powerlawL_dlogsigma(double R, double *logpars) { double sigma = exp(logpars[0]); if (R <= sigma) { return 0.0; } double d = exp(logpars[1]); return d * intrfr_powerlawL_sigmadxplint(R, sigma, d); } static double intrfr_powerlawL_dlogd(double R, double *logpars) { double sigma = exp(logpars[0]); if (R <= sigma) { return 0.0; } double d = exp(logpars[1]); double twomd = 2.0 - d; double sigmadRtwomdd = pow(sigma,d) * pow(R,twomd) * d; return (fabs(twomd) < 1e-7) ? -pow(sigma*log(R/sigma), 2.0) : (sigmadRtwomdd * (-twomd)*log(R/sigma) - d*sigma*sigma + sigmadRtwomdd)/(twomd*twomd); } // Gaussian kernel static double intrfr_gaussian(double R, double *logsigma) { double sigma2 = exp(2*logsigma[0]); return sigma2 * (1 - exp(-R*R/2/sigma2)); } static double intrfr_gaussian_dlogsigma(double R, double *logsigma) { double sigma2 = exp(2*logsigma[0]); double R2sigma2 = R*R/2/sigma2; return 2*sigma2 * (1 - (1+R2sigma2)/exp(R2sigma2)); } /*** function to be called from R ***/ void C_siaf_polyCub1_iso( double *x, double *y, // vertex coordinates (open) int *L, // number of vertices int *intrfr_code, // F(R) identifier double *pars, // parameters for F(R) int *subdivisions, double *epsabs, double *epsrel, // Rdqags options int *stop_on_error, double *value, double *abserr, int *neval) // results { intrfr_fn intrfr; switch(*intrfr_code) { // = INTRFR_CODE in ../R/twinstim_siaf_polyCub_iso.R case 10: intrfr = intrfr_powerlaw; break; case 11: intrfr = intrfr_powerlaw_dlogsigma; break; case 12: intrfr = intrfr_powerlaw_dlogd; break; case 20: intrfr = intrfr_student; break; case 21: intrfr = intrfr_student_dlogsigma; break; case 22: intrfr = intrfr_student_dlogd; break; case 30: intrfr = intrfr_powerlawL; break; case 31: intrfr = intrfr_powerlawL_dlogsigma; break; case 32: intrfr = intrfr_powerlawL_dlogd; break; case 40: intrfr = intrfr_gaussian; break; case 41: intrfr = intrfr_gaussian_dlogsigma; break; default: error("unknown intrfr_code"); break; } double center_x = 0.0; double center_y = 0.0; polyCub_iso(x, y, L, intrfr, pars, ¢er_x, ¢er_y, subdivisions, epsabs, epsrel, stop_on_error, value, abserr, neval); return; } surveillance/src/stcd-assuncaocorrea.h0000644000175100001440000000261013231650476017675 0ustar hornikusers/** * File based on algoritmos.cpp and sv.cpp from the TerraView plugin. * C++ source originally created by Marcos Oliveira Prates from the * Department of Statistics, UFMG, Brazil on 06 April 2006 * * R interface by Michael Höhle initiated on 12 Jan 2009 * Note: Some function names and documentation are in Portugese */ #ifndef SRSPACETIME_H #define SRSPACETIME_H #include #include struct SVEvent { double x, y, t; friend bool operator<(const SVEvent &a, const SVEvent &b) { return (a.t < b.t); } }; //STL is used (check its use) typedef std::list SVEventLst; //Functions provided in sr-spacetime.cc int CalculaNCj(short **MSpace, const int EvtN, const int EvtJ); int ContaEvt(short **MSpace, const int EvtN, const int EvtJ); //int SistemadeVigilancia(SVEventLst &, const double RaioC, const double epslon, // std::valarray &R); //New version with different estimation approach int SistemadeVigilancia(SVEventLst &ev, const double RaioC, const double epslon, const double areaA, double *areaAcapBk, const int cusum, std::valarray &R); int CalculaLambda(SVEventLst &ev, const double RaioC, const double epslon, std::valarray &R, unsigned int &numObs); // Hoehle wrapper function to create SVEvent list //void SRspacetime(double *x, double *y, double *t, int *n, double *radius, double *epsilon, double *Rarray); #endif surveillance/src/backproj.cc0000644000175100001440000000271313231650476015667 0ustar hornikusers#include using namespace Rcpp; RcppExport SEXP eq3a(SEXP rlambdaOld, SEXP ry, SEXP rincuPmf) { BEGIN_RCPP // get arguments NumericVector lambdaOld(rlambdaOld); int T = lambdaOld.length(); NumericVector y(ry); NumericVector incuPmf(rincuPmf); // Create long enough vectors for queries about dincu and pincu NumericVector dincu(T); NumericVector pincu(T); pincu[0] = dincu[0]; for (int i=1; i tools::package_native_routine_registration_skeleton("..") // for surveillance 1.14.0 *******************************************************************************/ #include #include #include // for NULL #include /* .C calls */ extern void C_siaf_polyCub1_iso(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void glr_cusum(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void glr_cusum_window(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void glr_epi_window(void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void glr_nbgeneral_window(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void glr_nb_window(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void lr_cusum(void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void lr_cusum_nb(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void pkolmogorov2x(void *, void *); extern void pkstwo(void *, void *, void *); extern void SRspacetime(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void twins(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); /* .Call calls */ extern SEXP eq3a(SEXP, SEXP, SEXP); extern SEXP _surveillance_determineSourcesC(SEXP, SEXP, SEXP, SEXP, SEXP, SEXP); static const R_CMethodDef CEntries[] = { {"C_siaf_polyCub1_iso", (DL_FUNC) &C_siaf_polyCub1_iso, 12}, {"glr_cusum", (DL_FUNC) &glr_cusum, 10}, {"glr_cusum_window", (DL_FUNC) &glr_cusum_window, 11}, {"glr_epi_window", (DL_FUNC) &glr_epi_window, 9}, {"glr_nbgeneral_window", (DL_FUNC) &glr_nbgeneral_window, 11}, {"glr_nb_window", (DL_FUNC) &glr_nb_window, 10}, {"lr_cusum", (DL_FUNC) &lr_cusum, 9}, {"lr_cusum_nb", (DL_FUNC) &lr_cusum_nb, 10}, {"pkolmogorov2x", (DL_FUNC) &pkolmogorov2x, 2}, {"pkstwo", (DL_FUNC) &pkstwo, 3}, {"SRspacetime", (DL_FUNC) &SRspacetime, 13}, {"twins", (DL_FUNC) &twins, 16}, {NULL, NULL, 0} }; static const R_CallMethodDef CallEntries[] = { {"eq3a", (DL_FUNC) &eq3a, 3}, {"_surveillance_determineSourcesC", (DL_FUNC) &_surveillance_determineSourcesC, 6}, {NULL, NULL, 0} }; void R_init_surveillance(DllInfo *dll) { R_registerRoutines(dll, CEntries, CallEntries, NULL, NULL); R_useDynamicSymbols(dll, FALSE); } surveillance/src/RcppExports.cpp0000644000175100001440000000233613231650476016563 0ustar hornikusers// Generated by using Rcpp::compileAttributes() -> do not edit by hand // Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393 #include using namespace Rcpp; // determineSourcesC List determineSourcesC(NumericVector eventTimes, NumericVector eps_t, NumericMatrix eventCoords, NumericVector eps_s, IntegerVector eventTypes, LogicalMatrix qmatrix); RcppExport SEXP _surveillance_determineSourcesC(SEXP eventTimesSEXP, SEXP eps_tSEXP, SEXP eventCoordsSEXP, SEXP eps_sSEXP, SEXP eventTypesSEXP, SEXP qmatrixSEXP) { BEGIN_RCPP Rcpp::RObject rcpp_result_gen; Rcpp::RNGScope rcpp_rngScope_gen; Rcpp::traits::input_parameter< NumericVector >::type eventTimes(eventTimesSEXP); Rcpp::traits::input_parameter< NumericVector >::type eps_t(eps_tSEXP); Rcpp::traits::input_parameter< NumericMatrix >::type eventCoords(eventCoordsSEXP); Rcpp::traits::input_parameter< NumericVector >::type eps_s(eps_sSEXP); Rcpp::traits::input_parameter< IntegerVector >::type eventTypes(eventTypesSEXP); Rcpp::traits::input_parameter< LogicalMatrix >::type qmatrix(qmatrixSEXP); rcpp_result_gen = Rcpp::wrap(determineSourcesC(eventTimes, eps_t, eventCoords, eps_s, eventTypes, qmatrix)); return rcpp_result_gen; END_RCPP } surveillance/src/gsl_wrappers.h0000644000175100001440000000467613231650476016460 0ustar hornikusers/******************************************************************* * Author: Michael Höhle * Date: Aug 2008 * * * Header file containing wrappers for GSL related calls * to R calls using the R API. This code is used in twins.cc *******************************************************************/ /* new definitions to replace GSL code */ // Remove the dead RNG variable (DSB 04/05/2010): // int r; double gsl_rng_uniform () { // GetRNGstate(); double res = runif(0,1); //PutRNGstate(); return(res); } double gsl_ran_gaussian(double sigma) { //GetRNGstate(); double res = rnorm(0.0,sigma); //PutRNGstate(); return(res); } double gsl_ran_gamma(double a, double b) { //GetRNGstate(); double res = rgamma(a,b); //PutRNGstate(); return(res); } unsigned int gsl_ran_poisson(double lambda) { //GetRNGstate(); unsigned int res = rpois(lambda); //PutRNGstate(); return(res); } unsigned int gsl_ran_binomial(double p, unsigned int n) { //GetRNGstate(); unsigned int res = rbinom(n,p); //PutRNGstate(); return(res); } //hoehle: The original function assumes mu>0, which needs not be the case! //This version handles that part. This is the log version. double gsl_ran_poisson_log_pdf (const unsigned int k, const double mu) { double p; if (mu==0) { return(log((double)(k == 0))); } else { double lf = lgammafn(k+1); /*gsl2R: gsl_sf_lnfact(k) */ p = k*log(mu) - lf - mu; return p; } } double gsl_sf_lngamma(double x) { return(lgammafn(x)); } double gsl_ran_beta_pdf (double x, double a, double b) { return(dbeta(x,a,b,0)); } /********************************************************************** * Log version of the Gamma pdf with mean a*b and variance a*b^2. * **********************************************************************/ double gsl_ran_gamma_log_pdf (const double x, const double a, const double b) { if (x < 0) { //This is problematic! return log((double)0) ; } else if (x == 0) { if (a == 1) return log(1/b) ; else return log((double)0) ; } else if (a == 1) { return -x/b - log(b) ; } else { double p; /*gsl2R: double lngamma = gsl_sf_lngamma (a);*/ double lngamma = lgammafn(a); p = (a-1)*log(x) - x/b - lngamma - a*log(b); return p; } } /* Seed random number generator */ //void gsl_rng_set(int r, long seed) { // set.seed(seed); //} surveillance/NAMESPACE0000644000175100001440000003454613230415345014217 0ustar hornikusers### Load C code useDynLib(surveillance) importFrom(Rcpp, evalCpp) # see vignette("Rcpp-package", package="Rcpp") ## although Rcpp is only used on C-level we need to "ensure that Rcpp is loaded ## so any dynamic linking to its code can be resolved. (There may be none, but ## there could be, now or in future.)" (B. Ripley, 2013-09-08) ############### ### IMPORTS ### ############### ### Import all packages listed as Depends ### (for utils and polyCub: only selected methods are imported) import(methods, grDevices, graphics, stats) ## sp classes & utilities (bbox, coordinates, dimensions, overlay, plot, ...) ## (we "Depend" on package sp since it defines essential data classes & methods) import(sp) ## we define own methods for generating xtable()'s, which we want to be useable import(xtable) ### required generics for own methods (that's why we "Depend" on these packages) ## importFrom(stats, coef, vcov, logLik, nobs, residuals, confint, AIC, extractAIC, ## profile, simulate, update, terms, add1, drop1, predict, as.stepfun) importFrom(utils, head, tail, toLatex) ### required functions from utils and stats ## importFrom(stats, pnorm, cov2cor, ks.test, formula, rnorm, runif, step, dist, ## update.formula, terms.formula, rpois, rnbinom, setNames, ## na.omit, as.formula, pnbinom, qnbinom, qnorm, sd, glm, optim, ## poisson, ppois, qpois, predict.glm, summary.glm, quasipoisson, ## glm.fit) ## and many more... importFrom(utils, packageVersion, modifyList, capture.output, read.table, data, setTxtProgressBar, txtProgressBar, sessionInfo, head.matrix, str, flush.console, write.table, as.roman, tail.matrix, methods) ### sampling from mv.Gausian for OSAIC weights (twinSIR) and iafplot (twinstim) importFrom(MASS, mvrnorm) ### disProg-specific importFrom(MASS, glm.nb) # for algo.glrnb ##importFrom(msm, msm, hmmPois, viterbi.msm) # for algo.hmm() ##importFrom(spc, xcusum.arl, xcusum.crit) # for find.kh() ## (packages msm and spc are now "suggested", not imported) ### hhh4-specific importFrom(MASS, ginv, negative.binomial) importFrom(Matrix, Matrix) importClassesFrom(Matrix, ddiMatrix) importMethodsFrom(Matrix, coerce, forceSymmetric) ## sparse matrix methods provide a significant speed-up in marFisher importFrom(nlme, fixef, ranef) export(fixef, ranef) # we define corresponding methods for "hhh4" models ### twinSIR-specific # for use in computing OSAIC weights by simulation #importFrom(quadprog, solve.QP) # moved to "Suggests" ### twinstim-specific importFrom(spatstat, area.owin, as.im.function, coords.ppp, diameter, diameter.owin, disc, edges, inside.owin, intersect.owin, is.polygonal, as.polygonal, nncross.ppp, ppp, runifpoint, shift.owin, spatstat.options, vertices) importFrom(spatstat, marks) export(marks) # we define an epidataCS-method importFrom(spatstat, multiplicity) export(multiplicity) # we define a Spatial-method importFrom(polyCub, polyCub, .polyCub.iso, polyCub.SV, polyCub.midpoint, xylist) importMethodsFrom(polyCub, coerce) importFrom(MASS, kde2d, truehist) ############### ### EXPORTS ### ############### ### general exports export(surveillance.options, reset.surveillance.options) export(animate) # new S3-generic export(R0) # new S3-generic export(intensityplot) # new S3-generic export(formatPval) # yapf -- yet another p-value formatter export(anscombe.residuals) export(magic.dim, primeFactors, bestCombination) # similar to n2mfrow export(isoWeekYear) #extract ISO 8601 date export(formatDate) #ISO 8601 compatible %G and %V format( ) function. export(refvalIdxByDate) export(ks.plot.unif) export(checkResidualProcess) # for twinstim and twinSIR export(qlomax) # quantile function of the Lomax distribution export(plapply) export(clapply) export(hcl.colors) export(fanplot) # spatial utilities export(discpoly) #export(runifdisc) # CAVE: spatstat has similar function of same name export(unionSpatialPolygons) export(inside.gpc.poly) S3method(scale, gpc.poly) # redefined method for gpc.poly in spatial_stuff.R S3method(diameter, gpc.poly) export(nbOrder) export(poly2adjmat) export(polyAtBorder) export(layout.labels) export(layout.scalebar) # randomly break tied event times or coordinates export(untie) # new S3-generic #export(untie.default, untie.matrix, untie.epidataCS) S3method(untie, default) S3method(untie, matrix) S3method(untie, epidataCS) # intersection of a polygonal and a circular domain export(intersectPolyCircle) S3method(intersectPolyCircle, owin) S3method(intersectPolyCircle, SpatialPolygons) S3method(intersectPolyCircle, gpc.poly) # little helper: multiplicity of points S3method(multiplicity, Spatial) # list coefficients by model component export(coeflist) S3method(coeflist, default) S3method(coeflist, twinstim) S3method(coeflist, simEpidataCS) S3method(coeflist, hhh4) # Spatio-temporal cluster detection export(stcd) # tests for space-time interaction export(knox) S3method(print, knox) S3method(plot, knox) S3method(xtable, knox) S3method(toLatex, knox) export(stKtest) S3method(plot, stKtest) # PIT histograms export(pit) export(pit.default) S3method(pit, default) S3method(pit, oneStepAhead) S3method(pit, hhh4) S3method(plot, pit) # calibration test for Poisson or NegBin predictions export(calibrationTest) S3method(calibrationTest, default) export(calibrationTest.default) export(dss, logs, rps, ses) # nses ### sts(BP|NC)-specific export(sts) exportClasses(sts, stsBP) export(linelist2sts) export(animate_nowcasts) # conversion of "sts" objects S3method(as.ts, sts) export(as.xts.sts) # no registered S3-method since we only suggest "xts" # generics for sts class defined in sts.R exportMethods("[", plot) exportMethods(toLatex) exportMethods(dim, dimnames, epochInYear, year) exportMethods(aggregate) exportMethods(as.data.frame) export(tidy.sts) # methods for accessing/replacing slots of an sts object (cf. AllGeneric.R) exportMethods(epoch,observed,alarms,upperbound,population,control,multinomialTS,neighbourhood) exportMethods("epoch<-","observed<-","alarms<-","upperbound<-","population<-","control<-","multinomialTS<-","neighbourhood<-") # methods for accessing/replacing slots of an stsNC object exportMethods(reportingTriangle,delayCDF,score,predint) # plot variants export(stsplot_space) export(stsplot_time, stsplot_time1, stsplot_alarm) export(addFormattedXAxis, atChange, at2ndChange, atMedian) #for time axis formatting export(stsplot_spacetime) # old implementation of (animated) map S3method(animate, sts) # S3-method for an S4 class, see ?Methods export(autoplot.sts) # outbreak detection algorithms (sts-interfaces) export(wrap.algo, farrington, bayes, rki, cusum, glrpois, glrnb, outbreakP, boda) # FIXME: rogerson, hmm ?? export(earsC) export(farringtonFlexible) export(categoricalCUSUM, pairedbinCUSUM, pairedbinCUSUM.runlength) export(nowcast, backprojNP) export(bodaDelay) # sts creation functions export(sts_creation) export(sts_observation) ### disProg-specific export(create.disProg, readData, toFileDisProg) S3method(print, disProg) S3method(plot, disProg) S3method(plot, disProg.one) S3method(aggregate, disProg) export(sim.pointSource, sim.seasonalNoise) export(LRCUSUM.runlength, arlCusum, find.kh, findH, hValues, findK) export(compMatrix.writeTable, correct53to52, enlargeData) export(makePlot) export(estimateGLRNbHook) export(algo.compare, algo.quality, algo.summary) ## outbreak detection algorithms (old disProg implementations) export(algo.bayes, algo.bayes1, algo.bayes2, algo.bayes3, algo.bayesLatestTimepoint, algo.call, algo.cdc, algo.cdcLatestTimepoint, algo.cusum, algo.farrington, algo.glrnb, algo.glrpois, algo.hhh, algo.hhh.grid, algo.hmm, algo.outbreakP, algo.rki, algo.rki1, algo.rki2, algo.rki3, algo.rkiLatestTimepoint, algo.rogerson, algo.twins) ## auxiliary functions for algo.farrington (FIXME: why export these internals?) export(algo.farrington.assign.weights, algo.farrington.fitGLM, algo.farrington.fitGLM.fast, algo.farrington.fitGLM.populationOffset, algo.farrington.threshold) S3method(plot, atwins) S3method(plot, survRes) S3method(plot, survRes.one) S3method(print, algoQV) S3method(xtable, algoQV) export(test, testSim) # FIXME: remove these test functions? -> Demo? ### conversion between old disProg and new sts classes export(disProg2sts) export(sts2disProg) ### twinSIR-specific export(cox) export(as.epidata) S3method(as.epidata, data.frame) export(as.epidata.data.frame) S3method(as.epidata, default) export(as.epidata.default) export(intersperse) export(twinSIR) export(stateplot) export(simEpidata) S3method(update, epidata) S3method("[", epidata) S3method(print, epidata) S3method(summary, epidata) S3method(print, summary.epidata) S3method(plot, epidata) S3method(animate, epidata) S3method(plot, summary.epidata) S3method(animate, summary.epidata) S3method(print, twinSIR) S3method(summary, twinSIR) S3method(print, summary.twinSIR) S3method(plot, twinSIR) S3method(intensityplot, twinSIR) export(intensityplot.twinSIR) # for convenience S3method(profile, twinSIR) S3method(plot, profile.twinSIR) S3method(vcov, twinSIR) S3method(logLik, twinSIR) S3method(AIC, twinSIR) S3method(extractAIC, twinSIR) S3method(simulate, twinSIR) export(simulate.twinSIR) # for convenience S3method(residuals, twinSIR) S3method(intensityplot, simEpidata) export(intensityplot.simEpidata) # for convenience ### twinstim-specific export(as.epidataCS) export(glm_epidataCS) export(twinstim) export(simEpidataCS) export(siaf, siaf.constant, siaf.step, siaf.gaussian, siaf.powerlaw, siaf.powerlawL, siaf.student) export(tiaf, tiaf.constant, tiaf.step, tiaf.exponential) export(epidataCS2sts) export(epitest) S3method(coef, epitest) S3method(plot, epitest) export(getSourceDists) S3method(nobs, epidataCS) S3method("[", epidataCS) S3method(update, epidataCS) export(update.epidataCS) # for convenience export(permute.epidataCS) S3method(head, epidataCS) S3method(tail, epidataCS) S3method(print, epidataCS) S3method(subset, epidataCS) S3method(summary, epidataCS) S3method(print, summary.epidataCS) S3method(as.stepfun, epidataCS) S3method(animate, epidataCS) export(animate.epidataCS) # for convenience S3method(marks, epidataCS) export(marks.epidataCS) # for convenience since its a foreign generic S3method(plot, epidataCS) export(epidataCSplot_time, epidataCSplot_space) S3method(as.epidata, epidataCS) export(as.epidata.epidataCS) # for convenience S3method(print, twinstim) S3method(summary, twinstim) export(summary.twinstim) # for convenience S3method(print, summary.twinstim) S3method(toLatex, summary.twinstim) S3method(xtable, summary.twinstim) export(xtable.summary.twinstim) # for xtable.twinstim S3method(xtable, twinstim) S3method(plot, twinstim) export(iafplot) export(intensity.twinstim) S3method(intensityplot, twinstim) export(intensityplot.twinstim) # for convenience S3method(profile, twinstim) S3method(coef, summary.twinstim) S3method(vcov, twinstim) S3method(vcov, summary.twinstim) S3method(logLik, twinstim) S3method(extractAIC, twinstim) S3method(nobs, twinstim) S3method(simulate, twinstim) export(simulate.twinstim) # for convenience export(simEndemicEvents) S3method(R0, twinstim) export(simpleR0) S3method(residuals, twinstim) S3method(update, twinstim) export(update.twinstim) # for convenience S3method(terms, twinstim) S3method(all.equal, twinstim) export(stepComponent) S3method(terms, twinstim_stependemic) S3method(terms, twinstim_stepepidemic) S3method(update, twinstim_stependemic) S3method(update, twinstim_stepepidemic) S3method(add1, twinstim) S3method(add1, twinstim_stependemic) S3method(add1, twinstim_stepepidemic) S3method(drop1, twinstim) S3method(drop1, twinstim_stependemic) S3method(drop1, twinstim_stepepidemic) S3method(residuals, simEpidataCS) S3method(R0, simEpidataCS) S3method(intensityplot, simEpidataCS) export(intensityplot.simEpidataCS) # for convenience S3method(print, simEpidataCSlist) S3method("[[", simEpidataCSlist) S3method(plot, simEpidataCSlist) ### algo.hhh-specific export(algo.hhh) export(algo.hhh.grid) export(create.grid) S3method(print, ah) S3method(coef, ah) S3method(predict, ah) S3method(residuals, ah) S3method(logLik, ah) S3method(print, ahg) S3method(coef, ahg) S3method(predict, ahg) S3method(residuals, ahg) S3method(logLik, ahg) export(simHHH, simHHH.default) S3method(simHHH, default) S3method(simHHH, ah) ### hhh4-specific ## main functions export(hhh4) export(addSeason2formula) export(makeControl) export(zetaweights, W_powerlaw) export(W_np) export(getNEweights, coefW) export(oneStepAhead) export(scores) export(permutationTest) ## S3-methods S3method(print, hhh4) S3method(summary, hhh4) S3method(print, summary.hhh4) S3method(nobs, hhh4) S3method(logLik, hhh4) S3method(formula, hhh4) S3method(terms, hhh4) S3method(coef, hhh4) S3method(vcov, hhh4) S3method(fixef, hhh4) S3method(ranef, hhh4) S3method(confint, hhh4) S3method(residuals, hhh4) S3method(predict, hhh4) S3method(update, hhh4) export(update.hhh4) # for add-on packages S3method(all.equal, hhh4) S3method(simulate, hhh4) S3method(plot, hhh4) export(plotHHH4_fitted, plotHHH4_fitted1, plotHHH4_season, getMaxEV_season, plotHHH4_maxEV, getMaxEV, plotHHH4_maps, plotHHH4_ri, plotHHH4_neweights) S3method(quantile, oneStepAhead) S3method(confint, oneStepAhead) S3method(plot, oneStepAhead) S3method(scores, default) S3method(scores, hhh4) S3method(scores, oneStepAhead) S3method(calibrationTest, hhh4) S3method(calibrationTest, oneStepAhead) ## methods for simulations from hhh4 fits S3method(aggregate, hhh4sims) S3method(plot, hhh4sims) export(as.hhh4simslist) S3method(as.hhh4simslist, hhh4sims) S3method(as.hhh4simslist, list) S3method(as.hhh4simslist, hhh4simslist) S3method("[", hhh4simslist) S3method("[[", hhh4simslist) S3method(aggregate, hhh4simslist) S3method(plot, hhh4simslist) export(plotHHH4sims_size) export(plotHHH4sims_time) export(plotHHH4sims_fan) S3method(scores, hhh4sims) S3method(scores, hhh4simslist) ## internal functions for use by add-on packages export(meanHHH, sizeHHH, decompose.hhh4) surveillance/demo/0000755000175100001440000000000013231650476013717 5ustar hornikuserssurveillance/demo/cost.R0000644000175100001440000002125112656157266015024 0ustar hornikusers## need a writable figs/ directory in getwd() ## -> switch to a temporary directory to save figures to TMPDIR <- tempdir() OWD <- setwd(TMPDIR) dir.create("figs") ################################################### ### chunk number 1: ################################################### library("surveillance") options(width=70) options("prompt"="R> ") set.seed(1234) opendevice <- function(horizontal=TRUE,width=7,height=4,...) { #Do it for postscript instead -- who uses postscript these days?? args <- list(...) args$file <- sub(".pdf",".eps",args$file) args$width <- width args$height <- height args$horizontal <- FALSE do.call("postscript",args) par(mar=c(4,4,2,2)) } ################################################### ### chunk number 2: K1 ################################################### data("ha") plot(aggregate(ha),main="Hepatitis A in Berlin 2001-2006") ################################################### ### chunk number 3: ################################################### opendevice(file="figs/002.pdf") data("ha") plot(aggregate(ha),main="Hepatitis A in Berlin 2001-2006") dev.off() ################################################### ### chunk number 4: ################################################### sps <- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1, alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 1.7) plot(sps,xaxis.years=FALSE) ################################################### ### chunk number 5: ################################################### opendevice(file="figs/003.pdf") plot(sps,xaxis.years=FALSE,legend.opts=list(x="topleft")) dev.off() ################################################### ### chunk number 6: HAB662 eval=FALSE ################################################### ## ha.b662 <- algo.bayes(aggregate(ha), control = list(range = 209:290, b = 2, w = 6, alpha = 0.01)) ## plot(ha.b662, firstweek=1, startyear = 2005) ################################################### ### chunk number 7: ################################################### ha.b662 <- algo.bayes(aggregate(ha), control = list(range = 209:290, b = 2, w = 6, alpha = 0.01)) plot(ha.b662, firstweek=1, startyear = 2005) opendevice(file="figs/hab662.pdf") plot(ha.b662, firstweek=1, startyear = 2005,legend.opts=list(x="topleft",horiz=TRUE)) dev.off() ################################################### ### chunk number 8: FACDC eval=FALSE ################################################### ## cntrl <- list(range = 300:400, m = 1, w = 3, b = 5, alpha = 0.01) ## sps.cdc <- algo.cdc(sps, control = cntrl) ## sps.farrington <- algo.farrington(sps, control = cntrl) ################################################### ### chunk number 9: ################################################### cntrl <- list(range = 300:400, m = 1, w = 3, b = 5, alpha = 0.01) sps.cdc <- algo.cdc(sps, control = cntrl) sps.farrington <- algo.farrington(sps, control = cntrl) ################################################### ### chunk number 10: ################################################### opendevice(file="figs/farringtoncdc.pdf") par(mfcol = c(1, 2),cex=0.8) plot(sps.cdc, legend = NULL, xaxis.years=FALSE) plot(sps.farrington, legend = NULL, xaxis.years=FALSE) dev.off() ################################################### ### chunk number 11: CUSUM eval=FALSE ################################################### ## kh <- find.kh(ARLa=500,ARLr=7) ## ha.cusum <- algo.cusum(aggregate(ha),control=list(k=kh$k,h=kh$h,m="glm",trans="rossi",range=209:290)) ################################################### ### chunk number 12: ################################################### opendevice(file="figs/hacusum.pdf") kh <- find.kh(ARLa=500,ARLr=7) ha.cusum <- algo.cusum(aggregate(ha),control=list(k=kh$k,h=kh$h,m="glm",trans="rossi",range=209:290)) plot(ha.cusum,startyear=2005,legend.opts=list(x=30,y=5.5)) dev.off() #Extract coefficients beta <- coef(ha.cusum$control$m.glm) ################################################### ### chunk number 13: ################################################### print(algo.quality(ha.b662)) ################################################### ### chunk number 14: ################################################### #This chunk contains stuff the reader should not see, but which is necessary #for the visual block to work. control = list( list(funcName = "rki1"), list(funcName = "rki2"), list(funcName = "rki3"), list(funcName = "bayes1"), list(funcName = "bayes2"), list(funcName = "bayes3"), # list(funcName = "cdc",alpha=0.05,b=2,m=1), # list(funcName = "farrington",alpha=0.05,b=0,w=6), list(funcName = "farrington",alpha=0.05,b=1,w=6), list(funcName = "farrington",alpha=0.05,b=2,w=4)) control <- lapply(control,function(ctrl) {ctrl$range <- 300:400;return(ctrl)}) #Update range in each - cyclic continuation data("k1") range = (2*4*52) + 1:length(k1$observed) aparv.control <- lapply(control,function(cntrl) { cntrl$range=range;return(cntrl)}) #Outbreaks outbrks <- c("m1", "m2", "m3", "m4", "m5", "q1_nrwh", "q2", "s1", "s2", "s3", "k1", "n1", "n2", "h1_nrwrp") #Load and enlarge data. outbrks <- lapply(outbrks,function(name) { #Load with data eval(substitute(data(name),list(name=name))) enlargeData(get(name),range=1:(4*52),times=2) }) #Apply function to one surv.one <- function(outbrk) { algo.compare(algo.call(outbrk,control=aparv.control)) } ################################################### ### chunk number 15: eval=FALSE ################################################### ## #Apply function to one ## surv.one <- function(outbrk) { ## algo.compare(algo.call(outbrk,control=aparv.control)) ## } ## ## algo.summary(lapply(outbrks, surv.one)) ## ################################################### ### chunk number 16: ALGOSUMMARY ################################################### res <- algo.summary(lapply(outbrks,surv.one)) ################################################### ### chunk number 17: ################################################### print(res,digits=3) ################################################### ### chunk number 18: eval=FALSE ################################################### ## setClass( "sts", representation(week = "numeric", ## freq = "numeric", ## start = "numeric", ## observed = "matrix", ## state = "matrix", ## alarm = "matrix", ## upperbound = "matrix", ## neighbourhood= "matrix", ## populationFrac= "matrix", ## map = "SpatialPolygonsDataFrame", ## control = "list")) ## ################################################### ### chunk number 19: HA eval=FALSE ################################################### ## shp <- system.file("shapes/berlin.shp",package="surveillance") ## ha <- disProg2sts(ha, map=maptools::readShapePoly(shp,IDvar="SNAME")) ## plot(ha,type=observed ~ 1 | unit) ## ################################################### ### chunk number 20: ################################################### opendevice(file="figs/ha-1unit.pdf",width=7,height=7) par(mar=c(0,0,0,0)) shp <- system.file("shapes/berlin.shp",package="surveillance") ha <- disProg2sts(ha, map=maptools::readShapePoly(shp,IDvar="SNAME")) plot(ha,type=observed ~ 1 | unit) dev.off() ################################################### ### chunk number 21: HA:MAP eval=FALSE ################################################### ## ha4 <- aggregate(ha[,c("pank","mitt","frkr","scho","chwi","neuk")],nfreq=13) ## ha4.cusum <- cusum(ha4,control=list(k=1.5,h=1.75,m="glm",trans="rossi",range=52:73)) ## #ha4.b332 <- bayes(ha4,control=list(range=52:73,b=2,w=3,alpha=0.01/6)) ## plot(ha4.cusum,type=observed ~ time | unit) ################################################### ### chunk number 22: ################################################### opendevice(file="figs/ha-timeunit.pdf",width=7,height=5) ha4 <- aggregate(ha[,c("pank","mitt","frkr","scho","chwi","neuk")],nfreq=13) ha4.cusum <- cusum(ha4,control=list(k=1.5,h=1.75,m="glm",trans="rossi",range=52:73)) #ha4.b332 <- bayes(ha4,control=list(range=52:73,b=2,w=3,alpha=0.01/6)) plot(ha4.cusum,type=observed ~ time | unit) dev.off() ## finally switch back to original working directory message("Note: selected figures have been saved in ", getwd(), "/figs") setwd(OWD) surveillance/demo/biosurvbook.R0000644000175100001440000002171312677465415016424 0ustar hornikusers###################################################################### # Demo of the code used in the book chapter # Hoehle, M. and A. Mazick, A. (2010) Aberration detection in R # illustrated by Danish mortality monitoring, Book chapter in # T. Kass-Hout and X. Zhang (Eds.) Biosurveillance: A Health Protection # Priority, CRC Press. # # The data read by csv files in the chapter are found as data("momo") # in the package. Courtesy to Statens Serum Institut for making # the mortality data public. # # Author: Michael Hoehle # Date: 13 Oct 2009 ###################################################################### #Load surveillance package library("surveillance") #Load Danish mortality data (see book chapter for CSV reading") data("momo") #Create a plot of the data as in Figure. 1 of the book chapter. #Note: The year is determined by the ISO week, not the date plot(momo[year(momo)>=2000,],ylab="No. of deaths",par.list=list(mar=c(4,2.2,2,1),cex.axis=1.5), type=observed ~ time | unit, col=c(gray(0.3),NA,NA),xaxis.tickFreq=list("%G"=atChange),xaxis.labelFormat="%G",xlab="time (weeks)") par(mfrow=c(1,2),mar=c(4,4,2,1)) plot(momo,ylab="No. of deaths",xlab="time (weeks)",legend.opts=NULL, type=observed ~ time,col=c(gray(0.3),NA,NA),xaxis.tickFreq=list("%G"=atChange,"%m"=atChange),xaxis.labelFreq=list("%G"=atChange),xaxis.labelFormat="%G") plot(momo[,"[0,1)"],xlab="time (weeks)",ylab="No. of deaths",legend.opts=NULL,col=c(gray(0.3),NA,NA),xaxis.tickFreq=list("%G"=atChange,"%m"=atChange),xaxis.labelFreq=list("%G"=atChange),xaxis.labelFormat="%G") par(mfrow=c(1,1)) #Monitoring starts in week 40, 2007 phase2 <- which(epoch(momo) >= "2007-10-01") s.far <- farrington(momo[,"[0,1)"], control=list(range=phase2,alpha=0.01,b=5,w=4,powertrans="none")) cntrlFar <- s.far@control upper.ptnone <-s.far@upperbound cntrlFar$powertrans <- "2/3" upper.pt23 <- farrington(momo[,"[0,1)"],control=cntrlFar)@upperbound cntrlFar$powertrans <- "1/2" upper.pt12 <- farrington(momo[,"[0,1)"],control=cntrlFar)@upperbound ## plot(s.far,ylab="No. of deaths",xlab="time (weeks)",main="") ymax <- max(s.far@upperbound, upper.pt12, upper.pt23)*1.2 #par(mar=c(4,4,1,1)) plot(s.far,legend.opts=NULL,ylab="No. of deaths",main="",xlab="time (weeks)",ylim=c(0,ymax),col=c("darkgray",NA,gray(0.3)),lty=c(1,1,1),lwd=c(1,1,2),dx.upperbound=0,alarm.symbol=list(pch=24,col=1, cex=1)) lines(c(1:nrow(s.far)-0.5,nrow(s.far)+0.5),c(upper.pt12,upper.pt12[nrow(s.far)]),type="s",col="darkgray",lwd=2,lty=2) lines(c(1:nrow(s.far)-0.5,nrow(s.far)+0.5),c(upper.pt23,upper.pt23[nrow(s.far)]),type="s",col=gray(0.1),lwd=2,lty=3) legend(x="topright",c("none","1/2","2/3"),col=c(gray(0.3),"darkgray",gray(0.1)),lwd=2,lty=1:3,horiz=TRUE) #legend(x="topright",c("none","1/2","2/3",expression(hat(mu)[t[0]])),col=c(gray(0.3),"darkgray",gray(0.1),1),lwd=c(2,2,2,3),lty=c(1:3,1),horiz=TRUE) #Median of predictive distribution lines(c(1:nrow(s.far)-0.5,nrow(s.far)+0.5),c(s.far@control$pd[,2],s.far@control$pd[nrow(s.far),2]),type="s",col=1,lwd=3) text(nrow(s.far)+2,tail(observed(s.far),n=1),expression(hat(mu)[t[0]])) alarmDates <- epoch(s.far[alarms(s.far) == 1,]) par(mar=c(4,4,2,2)) surv2 <- s.far surv2@observed <- 0*surv2@observed surv2@upperbound <- 0*surv2@observed plot(surv2,ylim=c(-0.05,1),ylab="Quantile",xlab="time (weeks)",legend.opts=NULL,main="",dx.upperbound=0,alarm.symbol=list(pch=24,col=1, cex=1)) lines(surv2@control$pd[,1], type="S") lines( c(1,nrow(surv2)+0.), rep( 1-s.far@control$alpha/2, 2),lty=2,col=1) s.far.all <- farrington(momo, control=list(range=phase2,alpha=0.01,b=5,w=4)) ## s.far.all <- farrington(momo, control=list(range=phase2,alpha=0.01,b=5,w=4)) ## plot(s.far.all,type = alarm ~ time,xlab="time (weeks)") par(mar=c(4,4,1,1)) plot(s.far.all,type = alarm ~ time,xlab="time (weeks)",main="",alarm.symbol=list(pch=24,col=1, cex=1.5),lvl=rep(1,nrow(s.far.all))) ####################################################################### #Negative binomial GLM modelling using the population size as covariate ####################################################################### phase1 <- which(year(momo) == 2002 & epochInYear(momo) == 40):(phase2[1]-1) momo.df <- as.data.frame(momo) m <- MASS::glm.nb( `observed.[75,85)` ~ 1 + epoch + sin(2*pi*epochInPeriod) + cos(2*pi*epochInPeriod) + `population.[75,85)`, data=momo.df[phase1,]) mu0 <- predict(m, newdata=momo.df[phase2,],type="response") ci <- confint(m) kappa <- 1.2 s.nb <- glrnb(momo[,"[75,85)"], control=list(range=phase2,alpha=1/m$theta,mu0=mu0,c.ARL=4.75,theta=log(kappa),ret="cases")) alarmDates <- epoch(s.nb[alarms(s.nb) == 1,]) plot(s.nb,dx.upperbound=0,legend.opts=NULL,ylab="No. of deaths",main="",ylim=c(0,max(observed(s.nb))*1.1),xlab="time (weeks)",col=c("darkgray",NA,1),lwd=c(1,1,2),lty=c(1,1,1),alarm.symbol=list(pch=24,col=1, cex=1)) lines(mu0,lwd=2,col=1,lty=2) lines(exp(log(mu0) + log(kappa)),col=1,lty=3,lwd=3) legend(x=20,y=100,c(expression(mu[0,t]),expression(mu[1,t]),"NNBA"),col=c(1,1,1),lty=c(2,3,1),horiz=TRUE,bg="white",lwd=c(2,3,2)) set.seed(123) ###################################################################### # P(N_c <= 51|\tau=\infty) computation ###################################################################### #Number of simulations to perform. In book chapter this number is #1000, but for the sake of a speedy illustration this is drastically #reduced in this demonstration nSims <- 10 #1000 ###################################################################### # Simulate one run-length by first generating data from the negative # binomial model and then applying the LR NegBin CUSUM to it ###################################################################### simone.TAleq65 <- function(sts, g) { observed(sts)[phase2,] <- rnbinom(length(mu0), mu=mu0, size=m$theta) one <- glrnb(sts, control=modifyList(control(s.nb), list(c.ARL=g))) return(any(alarms(one) > 0)) } #Determine run-length using 1000 Monte Carlo samples g.grid <- seq(1,8,by=0.5) pMC <- sapply(g.grid, function(g) { mean(replicate(nSims, simone.TAleq65(momo[,"[75,85)"],g))) }) #Density for comparison in the negative binomial distribution dY <- function(y,mu,log=FALSE, alpha, ...) { dnbinom(y, mu=mu, size=1/alpha, log=log) } #nMax <- max(which( dY(0:1e4, mu=max(mu0),alpha=1/m$theta) >= 1e-20)) - 1 pMarkovChain <- sapply( g.grid, function(g) { TA <- LRCUSUM.runlength( mu=t(mu0), mu0=t(mu0), mu1=kappa*t(mu0), h=g, dfun = dY, n=rep(600,length(mu0)), alpha=1/m$theta) return(tail(TA$cdf,n=1)) }) par(mar=c(4,4,2,2)) matplot(g.grid, cbind(pMC,pMarkovChain),type="l",ylab=expression(P(T[A] <= 65 * "|" * tau * "=" * infinity)),xlab="g",col=1) prob <- 0.1 lines(range(g.grid),rep(prob,2),lty=3,lwd=2) axis(2,at=prob,las=1,cex.axis=0.7) legend(x="topright",c("Monte Carlo","Markov chain"), lty=1:2,col=1) m.01 <- MASS::glm.nb( `observed.[0,1)` ~ 1 + epoch + `population.[0,1)`+ sin(2*pi*epochInPeriod) + cos(2*pi*epochInPeriod), data=momo.df[phase1,]) mu0 <- predict(m.01, newdata=momo.df[phase2,],type="response") #Correct for past outbreaks #omega <- algo.farrington.assign.weights(residuals(m.01, type="deviance")) #m.01.refit <- glm.nb( `observed.[0,1)` ~ 1 + epoch + `population.[0,1)`+ sin(2*pi*epochInPeriod) + cos(2*pi*epochInPeriod), data=momo.df[phase1,],weights=omega) #mu0.refit <- predict(m.01.refit, newdata=momo.df[phase2,],type="response") #Results from the previous Farrington method mu0.far <- control(s.far)$pd[,2] ###################################################################### # Simulate one run-length by first generating data from the negative # binomial model and then applying the LR NegBin CUSUM to it ###################################################################### simone.TAleq65.far <- function(sts, alpha, mu0, size) { observed(sts)[phase2,] <- rnbinom(length(mu0), mu=mu0, size=size) res <- farrington(sts, control=modifyList(control(s.far), list(alpha=alpha))) return(any(as.logical(alarms(res)))) } #Determine run-length using 1000 Monte Carlo samples res.far <- replicate(nSims, simone.TAleq65.far(momo[,"[0,1)"],alpha=0.01,mu0=mu0.far,size=m.01$theta)) (pTA65.far <- mean(res.far)) #Run CUSUM kappa <- 1.2 s.nb.01 <- glrnb(momo[,"[0,1)"], control=list(range=phase2,alpha=1/m.01$theta,mu0=mu0.far,c.ARL=2.1,theta=log(kappa),ret="cases")) alarmDates <- epoch(s.nb.01[alarms(s.nb.01) == 1,]) mu1 <- kappa*mu0.far #Show as usual plot(s.nb.01,dx.upperbound=0,legend.opts=NULL,ylab="No. of deaths",main="",xlab="time (weeks)",col=c("darkgray",NA,1),lwd=c(1,1,1),lty=c(1,1,1),ylim=c(0,max(s.nb.01@upperbound))*1.15,alarm.symbol=list(pch=24,col=1, cex=1)) lines(1:(nrow(s.far)+1)-0.5, c(mu0.far,tail(mu0.far,n=1)),lwd=3,col=1,lty=1,type="s") lines(1:(nrow(s.far)+1)-0.5, c(mu1,tail(mu1,n=1)),col=1,lty=3,lwd=3,type="s") legend(x="topright",c(expression(mu[0,t]),expression(mu[1,t]),"NNBA"),col=c(1,1,1),lty=c(1,3,1),horiz=TRUE,bg="white",lwd=c(3,3,1)) surveillance/demo/00Index0000644000175100001440000000117113112020363015031 0ustar hornikuserscost Code from the first paper about the R package surveillance (Hoehle, 2007, Comput Stat) illustrating some methods for aberration detection biosurvbook Code from the book chapter on Danish mortality monitoring (Hoehle and Mazick, 2010) fluBYBW Code from Paul and Held (2011, Stat Med) to illustrate hhh4() model fitting and predictive model assessement with proper scoring rules: an application to weekly influenza counts in Southern Germany v77i11 Replication code from Meyer et al. (2017, JSS), illustrating the spatio-temporal endemic-epidemic modelling frameworks 'twinstim', 'twinSIR', and 'hhh4' surveillance/demo/v77i11.R0000644000175100001440000004252413231627357015011 0ustar hornikusers################################################################################ ### Replication code from Meyer et al. (2017, JSS), ### illustrating the spatio-temporal endemic-epidemic modelling frameworks ### 'twinstim', 'twinSIR', and 'hhh4'. The full reference is: ### ### Meyer, Held, and Hoehle (2017): ### Spatio-Temporal Analysis of Epidemic Phenomena Using the R Package surveillance. ### Journal of Statistical Software, 77(11), 1-55. ### https://doi.org/10.18637/jss.v077.i11 ### ### Changes to the original replication script are marked with a "##M" comment. ### ### Copyright (C) 2017-2018 Sebastian Meyer, Leonhard Held, Michael Hoehle ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ################################################################################ ################################################################################ ## Section 3: Spatio-temporal point pattern of infective events ################################################################################ library("surveillance") # you should also have installed the suggested packages ## 3.2. Data structure: 'epidataCS' data("imdepi", package = "surveillance") events <- SpatialPointsDataFrame( coords = coordinates(imdepi$events), data = marks(imdepi, coords = FALSE), proj4string = imdepi$events@proj4string # ETRS89 projection (+units = km) ) stgrid <- imdepi$stgrid[,-1] load(system.file("shapes", "districtsD.RData", package = "surveillance")) imdepi <- as.epidataCS(events = events, W = stateD, stgrid = stgrid, qmatrix = diag(2), nCircle2Poly = 16) summary(events) .stgrid.excerpt <- format(rbind(head(stgrid, 3), tail(stgrid, 3)), digits = 3) rbind(.stgrid.excerpt[1:3, ], "..." = "...", .stgrid.excerpt[4:6, ]) imdepi summary(imdepi) par(mar = c(5, 5, 1, 1), las = 1) plot(as.stepfun(imdepi), xlim = summary(imdepi)$timeRange, xaxs = "i", xlab = "Time [days]", ylab = "Current number of infectives", main = "") ## axis(1, at = 2557, labels = "T", font = 2, tcl = -0.3, mgp = c(3, 0.3, 0)) par(las = 1) plot(imdepi, "time", col = c("indianred", "darkblue"), ylim = c(0, 20)) par(mar = c(0, 0, 0, 0)) plot(imdepi, "space", lwd = 2, points.args = list(pch = c(1, 19), col = c("indianred", "darkblue"))) layout.scalebar(imdepi$W, scale = 100, labels = c("0", "100 km"), plot = TRUE) ## animation::saveHTML( ## animate(subset(imdepi, type == "B"), interval = c(0, 365), time.spacing = 7), ## nmax = Inf, interval = 0.2, loop = FALSE, ## title = "Animation of the first year of type B events") eventDists <- dist(coordinates(imdepi$events)) (minsep <- min(eventDists[eventDists > 0])) set.seed(321) imdepi_untied <- untie(imdepi, amount = list(s = minsep / 2)) imdepi_untied_infeps <- update(imdepi_untied, eps.s = Inf) imdsts <- epidataCS2sts(imdepi, freq = 12, start = c(2002, 1), tiles = districtsD) par(las = 1, lab = c(7, 7, 7), mar = c(5, 5, 1, 1)) plot(imdsts, type = observed ~ time) plot(imdsts, type = observed ~ unit, population = districtsD$POPULATION / 100000) ## 3.3. Modeling and inference (endemic <- addSeason2formula(~offset(log(popdensity)) + I(start / 365 - 3.5), period = 365, timevar = "start")) imdfit_endemic <- twinstim(endemic = endemic, epidemic = ~0, data = imdepi_untied, subset = !is.na(agegrp)) summary(imdfit_endemic) imdfit_Gaussian <- update(imdfit_endemic, epidemic = ~type + agegrp, siaf = siaf.gaussian(F.adaptive = TRUE), ##M set F.adaptive=TRUE for replication with surveillance >= 1.15.0 start = c("e.(Intercept)" = -12.5, "e.siaf.1" = 2.75), control.siaf = list(F = list(adapt = 0.25), Deriv = list(nGQ = 13)), cores = 2 * (.Platform$OS.type == "unix"), model = TRUE) print(xtable(imdfit_Gaussian, caption = "Estimated rate ratios (RR) and associated Wald confidence intervals (CI) for endemic (\\code{h.}) and epidemic (\\code{e.}) terms. This table was generated by \\code{xtable(imdfit\\_Gaussian)}.", label = "tab:imdfit_Gaussian"), sanitize.text.function = NULL, sanitize.colnames.function = NULL, sanitize.rownames.function = function(x) paste0("\\code{", x, "}")) R0_events <- R0(imdfit_Gaussian) tapply(R0_events, marks(imdepi_untied)[names(R0_events), "type"], mean) imdfit_powerlaw <- update(imdfit_Gaussian, data = imdepi_untied_infeps, siaf = siaf.powerlaw(), control.siaf = NULL, start = c("e.(Intercept)" = -6.2, "e.siaf.1" = 1.5, "e.siaf.2" = 0.9)) imdfit_step4 <- update(imdfit_Gaussian, data = imdepi_untied_infeps, siaf = siaf.step(exp(1:4 * log(100) / 5), maxRange = 100), control.siaf = NULL, start = c("e.(Intercept)" = -10, setNames(-2:-5, paste0("e.siaf.", 1:4)))) par(mar = c(5, 5, 1, 1)) set.seed(2) # Monte-Carlo confidence intervals plot(imdfit_Gaussian, "siaf", xlim = c(0, 42), ylim = c(0, 5e-5), lty = c(1, 3), xlab = expression("Distance " * x * " from host [km]")) plot(imdfit_powerlaw, "siaf", add = TRUE, col.estimate = 4, lty = c(2, 3)) plot(imdfit_step4, "siaf", add = TRUE, col.estimate = 3, lty = c(4, 3)) legend("topright", legend = c("Power law", "Step (df = 4)", "Gaussian"), col = c(4, 3, 2), lty = c(2, 4, 1), lwd = 3, bty = "n") AIC(imdfit_endemic, imdfit_Gaussian, imdfit_powerlaw, imdfit_step4) ## Example of AIC-based stepwise selection of the endemic model imdfit_endemic_sel <- stepComponent(imdfit_endemic, component = "endemic") ## -> none of the endemic predictors is removed from the model par(mar = c(5, 5, 1, 1), las = 1) intensity_endprop <- intensityplot(imdfit_powerlaw, aggregate = "time", which = "endemic proportion", plot = FALSE) intensity_total <- intensityplot(imdfit_powerlaw, aggregate = "time", which = "total", tgrid = 501, lwd = 2, xlab = "Time [days]", ylab = "Intensity") curve(intensity_endprop(x) * intensity_total(x), add = TRUE, col = 2, lwd = 2, n = 501) ## curve(intensity_endprop(x), add = TRUE, col = 2, lty = 2, n = 501) text(2500, 0.36, labels = "total", col = 1, pos = 2, font = 2) text(2500, 0.08, labels = "endemic", col = 2, pos = 2, font = 2) ## meanepiprop <- integrate(intensityplot(imdfit_powerlaw, which = "epidemic proportion"), ## 50, 2450, subdivisions = 2000, rel.tol = 1e-3)$value / 2400 for (.type in 1:2) { print(intensityplot(imdfit_powerlaw, aggregate = "space", which = "epidemic proportion", types = .type, tiles = districtsD, sgrid = 5000, col.regions = grey(seq(1,0,length.out = 10)), at = seq(0,1,by = 0.1))) grid::grid.text("Epidemic proportion", x = 1, rot = 90, vjust = -1) } par(mar = c(5, 5, 1, 1)) checkResidualProcess(imdfit_powerlaw) ## 3.4. Simulation imdsims <- simulate(imdfit_powerlaw, nsim = 30, seed = 1, t0 = 1826, T = 2555, data = imdepi_untied_infeps, tiles = districtsD) table(imdsims[[1]]$events$source > 0, exclude = NULL) .t0 <- imdsims[[1]]$timeRange[1] .cumoffset <- c(table(subset(imdepi, time < .t0)$events$type)) par(mar = c(5, 5, 1, 1), las = 1) plot(imdepi, ylim = c(0, 20), col = c("indianred", "darkblue"), subset = time < .t0, cumulative = list(maxat = 336), xlab = "Time [days]") for (i in seq_along(imdsims$eventsList)) plot(imdsims[[i]], add = TRUE, legend.types = FALSE, col = scales::alpha(c("indianred", "darkblue"), 0.5), subset = !is.na(source), # exclude events of the prehistory cumulative = list(offset = .cumoffset, maxat = 336, axis = FALSE), border = NA, density = 0) # no histogram for simulations plot(imdepi, add = TRUE, legend.types = FALSE, col = 1, subset = time >= .t0, cumulative = list(offset = .cumoffset, maxat = 336, axis = FALSE), border = NA, density = 0) # no histogram for the last year's data abline(v = .t0, lty = 2, lwd = 2) ################################################################################ ## Section 4: SIR event history of a fixed population ################################################################################ library("surveillance") # you should also have installed the suggested packages ## 4.2. Data structure: 'epidata' data("hagelloch", package = "surveillance") head(hagelloch.df, n = 5) hagelloch <- as.epidata(hagelloch.df, t0 = 0, tI.col = "tI", tR.col = "tR", id.col = "PN", coords.cols = c("x.loc", "y.loc"), f = list(household = function(u) u == 0, nothousehold = function(u) u > 0), w = list(c1 = function (CL.i, CL.j) CL.i == "1st class" & CL.j == CL.i, c2 = function (CL.i, CL.j) CL.i == "2nd class" & CL.j == CL.i), keep.cols = c("SEX", "AGE", "CL")) head(hagelloch, n = 5) par(mar = c(5, 5, 1, 1)) plot(hagelloch, xlab = "Time [days]") par(mar = c(5, 5, 1, 1)) hagelloch_coords <- summary(hagelloch)$coordinates plot(hagelloch_coords, xlab = "x [m]", ylab = "y [m]", pch = 15, asp = 1, cex = sqrt(multiplicity(hagelloch_coords))) legend(x = "topleft", pch = 15, legend = c(1, 4, 8), pt.cex = sqrt(c(1, 4, 8)), title = "Household size") ## 4.3. Modeling and inference hagellochFit <- twinSIR(~household + c1 + c2 + nothousehold, data = hagelloch) summary(hagellochFit) exp(confint(hagellochFit, parm = "cox(logbaseline)")) prof <- profile(hagellochFit, list(c(match("c1", names(coef(hagellochFit))), NA, NA, 25), c(match("c2", names(coef(hagellochFit))), NA, NA, 25))) prof$ci.hl plot(prof) par(mar = c(5, 5, 1, 1)) plot(hagellochFit, which = "epidemic proportion", xlab = "time [days]") checkResidualProcess(hagellochFit, plot = 1) knots <- c(100, 200) fstep <- list( B1 = function(D) D > 0 & D < knots[1], B2 = function(D) D >= knots[1] & D < knots[2], B3 = function(D) D >= knots[2]) hagellochFit_fstep <- twinSIR( ~household + c1 + c2 + B1 + B2 + B3, data = update(hagelloch, f = fstep)) set.seed(1) AIC(hagellochFit, hagellochFit_fstep) ################################################################################ ## Section 5. Areal time series of counts ################################################################################ library("surveillance") # you should also have installed the suggested packages ## 5.2. Data structure: 'sts' ## extract components from measlesWeserEms to reconstruct data("measlesWeserEms", package = "surveillance") counts <- observed(measlesWeserEms) map <- measlesWeserEms@map populationFrac <- measlesWeserEms@populationFrac weserems_nbOrder <- nbOrder(poly2adjmat(map), maxlag = 10) measlesWeserEms <- sts(observed = counts, start = c(2001, 1), frequency = 52, neighbourhood = weserems_nbOrder, map = map, population = populationFrac) plot(measlesWeserEms, type = observed ~ time) plot(measlesWeserEms, type = observed ~ unit, population = measlesWeserEms@map$POPULATION / 100000, labels = list(font = 2), colorkey = list(space = "right"), sp.layout = layout.scalebar(measlesWeserEms@map, corner = c(0.05, 0.05), scale = 50, labels = c("0", "50 km"), height = 0.03)) plot(measlesWeserEms, units = which(colSums(observed(measlesWeserEms)) > 0)) ## animation::saveHTML( ## animate(measlesWeserEms, tps = 1:52, total.args = list()), ## title = "Evolution of the measles epidemic in the Weser-Ems region, 2001", ## ani.width = 500, ani.height = 600) ## ## to perform the following analysis using biweekly aggregated measles counts: ## measlesWeserEms <- aggregate(measlesWeserEms, by = "time", nfreq = 26) ## 5.3. Modeling and inference measlesModel_basic <- list( end = list(f = addSeason2formula(~1 + t, period = measlesWeserEms@freq), offset = population(measlesWeserEms)), ar = list(f = ~1), ne = list(f = ~1, weights = neighbourhood(measlesWeserEms) == 1), family = "NegBin1") measlesFit_basic <- hhh4(stsObj = measlesWeserEms, control = measlesModel_basic) summary(measlesFit_basic, idx2Exp = TRUE, amplitudeShift = TRUE, maxEV = TRUE) plot(measlesFit_basic, type = "season", components = "end", main = "") confint(measlesFit_basic, parm = "overdisp") AIC(measlesFit_basic, update(measlesFit_basic, family = "Poisson")) districts2plot <- which(colSums(observed(measlesWeserEms)) > 20) plot(measlesFit_basic, type = "fitted", units = districts2plot, hide0s = TRUE) Sprop <- matrix(1 - measlesWeserEms@map@data$vacc1.2004, nrow = nrow(measlesWeserEms), ncol = ncol(measlesWeserEms), byrow = TRUE) summary(Sprop[1, ]) Soptions <- c("unchanged", "Soffset", "Scovar") SmodelGrid <- expand.grid(end = Soptions, ar = Soptions) row.names(SmodelGrid) <- do.call("paste", c(SmodelGrid, list(sep = "|"))) measlesFits_vacc <- apply(X = SmodelGrid, MARGIN = 1, FUN = function (options) { updatecomp <- function (comp, option) switch(option, "unchanged" = list(), "Soffset" = list(offset = comp$offset * Sprop), "Scovar" = list(f = update(comp$f, ~. + log(Sprop)))) update(measlesFit_basic, end = updatecomp(measlesFit_basic$control$end, options[1]), ar = updatecomp(measlesFit_basic$control$ar, options[2]), data = list(Sprop = Sprop)) }) aics_vacc <- do.call(AIC, lapply(names(measlesFits_vacc), as.name), envir = as.environment(measlesFits_vacc)) aics_vacc[order(aics_vacc[, "AIC"]), ] measlesFit_vacc <- measlesFits_vacc[["Scovar|unchanged"]] coef(measlesFit_vacc, se = TRUE)["end.log(Sprop)", ] measlesFit_nepop <- update(measlesFit_vacc, ne = list(f = ~log(pop)), data = list(pop = population(measlesWeserEms))) measlesFit_powerlaw <- update(measlesFit_nepop, ne = list(weights = W_powerlaw(maxlag = 5))) measlesFit_np2 <- update(measlesFit_nepop, ne = list(weights = W_np(maxlag = 2))) library("lattice") trellis.par.set("reference.line", list(lwd = 3, col="gray")) trellis.par.set("fontsize", list(text = 14)) plot(measlesFit_powerlaw, type = "neweights", plotter = stripplot, panel = function (...) {panel.stripplot(...); panel.average(...)}, jitter.data = TRUE, xlab = expression(o[ji]), ylab = expression(w[ji])) ## non-normalized weights (power law and unconstrained second-order weight) local({ colPL <- "#0080ff" ogrid <- 1:5 par(mar = c(3.6, 4, 2.2, 2), mgp = c(2.1, 0.8, 0)) plot(ogrid, ogrid^-coef(measlesFit_powerlaw)["neweights.d"], col = colPL, xlab = "Adjacency order", ylab = "Non-normalized weight", type = "b", lwd = 2) matlines(t(sapply(ogrid, function (x) x^-confint(measlesFit_powerlaw, parm = "neweights.d"))), type = "l", lty = 2, col = colPL) w2 <- exp(c(coef(measlesFit_np2)["neweights.d"], confint(measlesFit_np2, parm = "neweights.d"))) lines(ogrid, c(1, w2[1], 0, 0, 0), type = "b", pch = 19, lwd = 2) arrows(x0 = 2, y0 = w2[2], y1 = w2[3], length = 0.1, angle = 90, code = 3, lty = 2) legend("topright", col = c(colPL, 1), pch = c(1, 19), lwd = 2, bty = "n", inset = 0.1, y.intersp = 1.5, legend = c("Power-law model", "Second-order model")) }) AIC(measlesFit_nepop, measlesFit_powerlaw, measlesFit_np2) measlesFit_ri <- update(measlesFit_powerlaw, end = list(f = update(formula(measlesFit_powerlaw)$end, ~. + ri() - 1)), ar = list(f = update(formula(measlesFit_powerlaw)$ar, ~. + ri() - 1)), ne = list(f = update(formula(measlesFit_powerlaw)$ne, ~. + ri() - 1))) summary(measlesFit_ri, amplitudeShift = TRUE, maxEV = TRUE) head(ranef(measlesFit_ri, tomatrix = TRUE), n = 3) stopifnot(ranef(measlesFit_ri) > -1.6, ranef(measlesFit_ri) < 1.6) for (comp in c("ar", "ne", "end")) { print(plot(measlesFit_ri, type = "ri", component = comp, col.regions = rev(cm.colors(100)), labels = list(cex = 0.6), at = seq(-1.6, 1.6, length.out = 15))) } plot(measlesFit_ri, type = "fitted", units = districts2plot, hide0s = TRUE) plot(measlesFit_ri, type = "maps", prop = TRUE, labels = list(font = 2, cex = 0.6)) tp <- c(65, 77) models2compare <- paste0("measlesFit_", c("basic", "powerlaw", "ri")) measlesPreds1 <- lapply(mget(models2compare), oneStepAhead, tp = tp, type = "final") stopifnot(all.equal(measlesPreds1$measlesFit_powerlaw$pred, fitted(measlesFit_powerlaw)[tp[1]:tp[2], ], check.attributes = FALSE)) stopifnot(identical( measlesFit_powerlaw$loglikelihood, -sum(scores(oneStepAhead(measlesFit_powerlaw, tp = 1, type = "final"), which = "logs", individual = TRUE)))) SCORES <- c("logs", "rps", "dss", "ses") measlesScores1 <- lapply(measlesPreds1, scores, which = SCORES, individual = TRUE, reverse = TRUE) ##M for replication with surveillance >= 1.16.0 t(sapply(measlesScores1, colMeans, dims = 2)) measlesPreds2 <- lapply(mget(models2compare), oneStepAhead, tp = tp, type = "rolling", which.start = "final", cores = 2 * (.Platform$OS.type == "unix")) measlesScores2 <- lapply(measlesPreds2, scores, which = SCORES, individual = TRUE, reverse = TRUE) ##M for replication with surveillance >= 1.16.0 t(sapply(measlesScores2, colMeans, dims = 2)) set.seed(321) sapply(SCORES, function (score) permutationTest( measlesScores2$measlesFit_ri[, , score], measlesScores2$measlesFit_basic[, , score])) calibrationTest(measlesPreds2[["measlesFit_ri"]], which = "rps") par(mfrow = sort(n2mfrow(length(measlesPreds2))), mar = c(4.5, 4.5, 3, 1)) for (m in models2compare) pit(measlesPreds2[[m]], plot = list(ylim = c(0, 1.25), main = m)) ## 5.4. Simulation (y.start <- observed(measlesWeserEms)[52, ]) measlesSim <- simulate(measlesFit_ri, nsim = 100, seed = 1, subset = 53:104, y.start = y.start) summary(colSums(measlesSim, dims = 2)) par(las = 1, mar = c(5, 5, 1, 1)) plot(measlesSim, "time", ylim = c(0, 100)) surveillance/demo/fluBYBW.R0000644000175100001440000001545613231627357015331 0ustar hornikusers################################################################################ ### Demo of hhh4() modelling of influenza in Southern Germany - data("fluBYBW") ### RUNNING THE WHOLE SCRIPT TAKES ~20 MINUTES! ### ### Copyright (C) 2009-2012 Michaela Paul, 2012-2013,2016-2018 Sebastian Meyer ### ### This file is part of the R package "surveillance", ### free software under the terms of the GNU General Public License, version 2, ### a copy of which is available at http://www.r-project.org/Licenses/. ################################################################################ set.seed(1) # for reproducibility (affects initial values for ri() terms) library("surveillance") ## Weekly counts of influenza in 140 districts of Bavaria and Baden-Wuerttemberg data("fluBYBW") ################################################## # Fit the models from the Paul & Held (2011) paper ################################################## ## generate formula for temporal and seasonal trends f.end <- addSeason2formula(f = ~ -1 + ri(type="iid", corr="all") + I((t-208)/100), S=3, period=52) ## settings for the optimizer opt <- list(stop = list(tol=1e-5, niter=200), regression = list(method="nlminb"), variance = list(method="nlminb")) ## models # A0 cntrl_A0 <- list(ar = list(f = ~ -1), end = list(f =f.end, offset = population(fluBYBW)), family = "NegBin1", optimizer = opt, verbose = 1) summary(res_A0 <- hhh4(fluBYBW,cntrl_A0)) # B0 cntrl_B0 <- list(ar = list(f = ~ 1), end = list(f =f.end, offset = population(fluBYBW)), family = "NegBin1", optimizer = opt, verbose=1) res_B0 <- hhh4(fluBYBW,cntrl_B0) # C0 cntrl_C0 <- list(ar = list(f = ~ -1 + ri(type="iid", corr="all")), end = list(f =f.end, offset = population(fluBYBW)), family = "NegBin1", optimizer = opt, verbose=1) res_C0 <- hhh4(fluBYBW,cntrl_C0) #A1 # weight matrix w_ji = 1/(No. neighbors of j) if j ~ i, and 0 otherwise wji <- neighbourhood(fluBYBW)/rowSums(neighbourhood(fluBYBW)) cntrl_A1 <- list(ar = list(f = ~ -1), ne = list(f = ~ 1, weights = wji), end = list(f =f.end, offset = population(fluBYBW)), family = "NegBin1", optimizer = opt, verbose=1) res_A1 <- hhh4(fluBYBW,cntrl_A1) # B1 cntrl_B1 <- list(ar = list(f = ~ 1), ne = list(f = ~ 1, weights = wji), end = list(f =f.end, offset = population(fluBYBW)), family = "NegBin1", optimizer = opt, verbose=1) res_B1 <- hhh4(fluBYBW,cntrl_B1) # C1 cntrl_C1 <- list(ar = list(f = ~ -1 + ri(type="iid", corr="all")), ne = list(f = ~ 1, weights = wji), end = list(f =f.end, offset = population(fluBYBW)), family = "NegBin1", optimizer = opt, verbose=1) res_C1 <- hhh4(fluBYBW,cntrl_C1) #A2 cntrl_A2 <- list(ar = list(f = ~ -1), ne = list(f = ~ -1 + ri(type="iid",corr="all"), weights=wji), end = list(f =f.end, offset = population(fluBYBW)), family = "NegBin1", optimizer = opt, verbose=1) res_A2 <- hhh4(fluBYBW,cntrl_A2) # B2 cntrl_B2 <- list(ar = list(f = ~ 1), ne = list(f = ~ -1 + ri(type="iid",corr="all"), weights =wji), end = list(f =f.end, offset = population(fluBYBW)), family = "NegBin1", optimizer = opt, verbose=1) res_B2 <- hhh4(fluBYBW,cntrl_B2) # C2 cntrl_C2 <- list(ar = list(f = ~ -1 + ri(type="iid", corr="all")), ne = list(f = ~ -1 + ri(type="iid",corr="all"), weights =wji), end = list(f =f.end, offset = population(fluBYBW)), family = "NegBin1", optimizer = opt, verbose=1, start=list(fixed=fixef(res_B0),random=c(rep(0,140), ranef(res_B0)), sd.corr=c(-.5,res_B0$Sigma.orig,0))) res_C2 <- hhh4(fluBYBW,cntrl_C2) # D cntrl_D <- list(ar = list(f = ~ 1), ne = list(f = ~ -1 + ri(type="iid"), weights = wji), end = list(f =addSeason2formula(f = ~ -1 + ri(type="car") + I((t-208)/100), S=3, period=52), offset = population(fluBYBW)), family = "NegBin1", optimizer = opt, verbose=1) res_D <- hhh4(fluBYBW,cntrl_D) ###################################################################### # Compare the predictive performance of the models by computing # one-step-ahead predictions to be assessed by proper scoring rules ###################################################################### ## do 1-step ahead predictions for the last two years tp <- nrow(fluBYBW)-2*52 ## for this demo: only calculate pseudo-predictions based on the final fit ## to avoid the time-consuming sequential refitting at each step. TYPE <- "final" ## use "rolling" for true one-step-ahead predictions => TAKES ~8 HOURS! val_A0 <- oneStepAhead(res_A0, tp=tp, type=TYPE) val_B0 <- oneStepAhead(res_B0, tp=tp, type=TYPE) val_C0 <- oneStepAhead(res_C0, tp=tp, type=TYPE) val_A1 <- oneStepAhead(res_A1, tp=tp, type=TYPE) val_B1 <- oneStepAhead(res_B1, tp=tp, type=TYPE) val_C1 <- oneStepAhead(res_C1, tp=tp, type=TYPE) val_A2 <- oneStepAhead(res_A2, tp=tp, type=TYPE) val_B2 <- oneStepAhead(res_B2, tp=tp, type=TYPE) val_C2 <- oneStepAhead(res_C2, tp=tp, type=TYPE) val_D <- oneStepAhead(res_D, tp=tp, type=TYPE) ## compute scores vals <- ls(pattern="val_") nam <- substring(vals,first=5,last=6) whichScores <- c("logs", "rps", "ses") scores_i <- vector(mode="list", length=length(vals)) meanScores <- NULL for(i in seq_along(vals)){ sc <- scores(get(vals[i]), which=whichScores, individual=TRUE, reverse=TRUE) ## reverse=TRUE => same permutation test results as in surveillance < 1.16.0 scores_i[[i]] <- sc meanScores <- rbind(meanScores,colMeans(sc, dims=2)) } names(scores_i) <- nam rownames(meanScores) <- nam print(meanScores) ## Note that the above use of "final" fitted values instead of "rolling" ## one-step-ahead predictions leads to different mean scores than reported ## in Paul & Held (2011, Table IV). ## assess statistical significance of score differences compareWithBest <- function(best, whichModels, nPermut=9999, seed=1234){ set.seed(seed) pVals <- NULL for(score in seq_along(whichScores)){ p <- c() for(model in whichModels){ p <- c(p, if(model==best) NA else permutationTest(scores_i[[model]][,,score],scores_i[[best]][,,score], plot=interactive(),nPermutation=nPermut, verbose=TRUE)$pVal.permut) } pVals <- cbind(pVals,p) } return(pVals) } pVals_flu <- compareWithBest(best=9, whichModels=1:10, nPermut=999, # reduced for this demo seed=2059710987) rownames(pVals_flu) <- nam colnames(pVals_flu) <- whichScores print(pVals_flu) surveillance/data/0000755000175100001440000000000013165637101013700 5ustar hornikuserssurveillance/data/m4.RData0000644000175100001440000000037710636320360015140 0ustar hornikusers‹ r‰0âŠàb```b`bad`b2Y˜€#ƒ'H<ׄY$ ļ@|‘xÀH„<#’:FâÈꙡY3&@7]ŽÍ ¯%˜ˆEX ˆ-€ØÊ–„by bv¨ZN4·²BÍb@rŒî6r¥ú‘Í@wÛ( àc -/‚ö¨C‚Q0 FÁ  úˆÑÁ …Ïä0ßÌA”c(­CÖ¼ÄÜÔb C€Ü@ rä'§•¥¦À—$–¤B9,iE©…HE%èF&ç$ÃŒµQ@‚ì)™ÅEùé@æ?¤ªÄŸ surveillance/data/foodata.RData0000644000175100001440000006413412376633046016251 0ustar hornikusersý7zXZi"Þ6!ÏXÌöÒ h ])TW"änRÊŸãXdGŸã>@j½õtA©°”'ßÅ`fÓÏDœ› ç3-”­bfžìl]"xÓ¨€Zvæ®ßLˆ}Upç⇞ªkmV@ƺÎWIUÖùÚíå…Å¥™^*5!¿¸9\ÚÞêÔµê„Ê’oÂkíÿÁdP=:¥«‚…™ÙXW$%3_›Gõ£&9Dž¿œC<=YøÛÃþ,èµijËdð´°"Z£e]KÓÙ/ÖŠ–ŽÎcI} !¢«ü…}¢ÁÔø“®€ÉÕ³¦¾NsÒGv Õx]~õCÓ{w4VÆ#~á›N½Ìa ¼ŠÜæ ¿ÝÿxdšWRaùÈùè’ÊÔ]êåÏ_»³žjÙQ”îøëøÄÓsáÚXÔ<>g(ŠÄi›â!D¼(FýŠ8 £ûÿ T¢‡H£ÂAA Ãàä˜Qßà©ð1ð{€àEJŒ¾3Û®=æ¯ Åh>AÊ vü Ó_ W JY TìâQ ÛêŠè=+6ì\ž ÌÞ¥C»/)p„ˆÂîÜ®m”©x7ž[zòàÝ}ÚA©¡¼ âã~ÃÝYñ‘gulÝ‘:~³Q+8ˆShŒzàñ݆7ÚøÛ/ ¿›…C¨QA4¤;íÐÀÊóõ«™n`xÜ‘9„)<ï/+§Å]¯!`ÿÅV >?‰ê…¢iío†iº"ãÚX¿†û‰LœYÄq7mÊø!x×IÁ› |¨ÒÅË"T÷Ûlø¿Â!ŸÕ9oÞêÝz £ ëºN̸~a´ºÐpPš…ud®gEÁ˜cn§9[*~X%úúævŽÝð8xW(èï~-Dz5•ÊuŒÞˆÝJñ¥¼÷C ,mTWÉwÛÊÅBq «Ì 7¶öA9]3ÍÌkšØ5‹‘šsõýÃMã¶t˜ŽIÇ1 î»èˆ™©³.NôÒEfyqˆøÞšÎ¶œ#›‡þÚ‡‰ «x(ØšvÔ寮KoTÿp ¢ä‚˾L]®K¶¿.ñf F¿‘(Òœíß›'Ål¿my†|ÇÕij¼BñZí¸8úÒDöH¼“Î}úßxÄpdƒŠ á\YZ/ÄRZöTc±NÑUü];Læ.´HÇâ|œÞ+Ez–m–“Pn À Ò°UתŒÚ/Š•_5ÇÕ·« ‹Ý5.iÓ„y¥ý‰˜u~Røaq“oy¬ˆhy{7-·M¡tµE ¶‰˜s«lhMÓ²Åð6 ‚¥œÜ.ö%v¶äÌ‚3¯^>¦êô”æwîöÄ­ë7÷¼Êç+#›A2ÿš¸ŸuŠT°(k²e7QåïDg¾õOÌ´)5*ZîÞpQ3ÕóáͧaªÓ«L`„%ÞÛmFU¹€”µ2|ozGɯ±ƒ³â8ú&pºY€ñ.;”w‚]#—‘žÉ—+z¸$DM@mµTD7Þi —á)ÙY ǥҺ຺d30?Vh˜ÍêR”Ô­8*ÀS›¸ ºZŠ¥dmýTãb2¤uÏàÝínýè|– ¯KìL}ö¹-èƒmå› ¸æå¦œOý Ì®ôgª#uVäÊI%EÎëâ43®Ã m±žbéëÚÁ×m¤“®ÐŠš»í!ÂEÐÌ6š¥D¥Jd$Šsp´¢âŽÃ¦h»×èn¨J¦¾%°}|kXU±1ð­.é †…®>É¢ØôbÇ3- YØGPU=Ÿê%ÂZ]°ÉZ>´µÿ´½ëÁ£bcWh`²‚÷1L·ðÏÉÓ¡Œp{@Ž™=½$¾—`'Ë«mdB3’´‰=…k²evØVbmÃQxƒTK+µjñŠ Ê°Í6~í¤Òsmyè%ê óŠdI±—Í¢Gʉ÷l Cþ À0¥; °¡öñu„M[ÜÐ¥Ñ&¤.ºQ¹ÄÇ%I@H) ´ƒG™êw“AŒ]ùKýׂ‚EŸ)ç¨öPØ„s-Q}k—>—CTWï DY‘ÊËSt½¼c˜<{Êu©ØtB¾ô,+p\§¬»Û¸•Ÿ••r<9RýGÖNyäžÎy$éxše欘×ճø2ûRøvrØ€68¼†sÈ_{Çe(»q[X½7¹[­«þs)’öƒ)«œÐ¬O.Í—ãq¤Øöƒfƒ³hÒ£ha0íym™• ðÏÆvån>¥ºÐý¡ ¸LŸšÜSHT®y†¹ô`2'»?Ž„µkPó‰MÚ” 4Š  ä\RÅ~æ¼/~•ÏÆƒN₆:ZD5,ÜÀ-HéÂþXB쩚µ<ÙH¾®AiæI½½Òêfeð7W³M‘„·”³‘(°l‚ãùœ—Nº & bˆezûjÊÅàÇúf«o‚ôüŒ¾œ?ñFR;v\7ª[Ÿ@T„ógå6 Û@ò@žEÛCâtÜêŸÂù«7g5îvæJó€ á‹°Â~a©¼9¨DûE=QC¡²°"ãM/ý>ѽ¤”LG0Öé’kûäf.${dÐÔ7 +v °ç€påV!^ò‡*þ|â^XÎý+óK”Ú#ç‘QèÞÙÉk{âVˆBÑ&³Ï¹={±TH3pþÜUCÿ¦Â¬S]ÀmÒóuÅSù’ƒ•3û,˜ÅK;Ÿº"=n7Q[%dp|ÏÈÒì¶0Áb¦+ûÀ…ɇ°<9tÙξoÖv ×zŒ*hö4|_p :¢Í ¥‡A¶üÎ"hð@·S“E‡£ç=ém í‡MQ&’­ñ6ÎÝ´†W­ý’¥¥zì2ʬ<Î5y7£î.ßy¿fÎL·J,GI¶VM»’¢®C¨pAL¼éÕg-&T=£W¥:¼VÑÓ§ m?ì¿4PÔŽ´zR–vj.KE³*2ð€¼‹2oA„¦ˆ«çW¦˜4bMaºµZ[iëTˆ ¨¼QëaÄÑŒ½öÇàœ×ÃcÜçóióåŠ0ú1FkŽ&÷?æ¬,o0ާçkVÕkåÎ)"#F™$ª±{ˆ‹/è%䑚#Ì,ƒ©7a håz숊Žý˜{úƒh¶ןÛsÿ=ÉÕMþä¡„ïRrÌù¤,¦º7ö'Æ”_â[ÌíaM5HÕ®úcÇþrÛ?oªðô¿…! DÒ×%ÍÓª[‹1Û¾^ê ¡Ç |X)quÖ«³²A>ãã|–‹E;ÜKÖwˆ<‚ŒámQk²?Ä 9bçr° ¦Þ¡åé›ìßÙ쀗&Øk»iSmì'ýÓE=_ì½Ö“ìoÔoÞÿn䣳nþÎl&Ûd<¹0’*ãý§›1*Ïç©~iæfºLÁÖ‘u9Ñ"²Wc ´c2¢=çÕÛ¹’*ÃJ[îN:¡“rñ xg¸‹ŒòŠža˜±D¯’Iœ™…yë+kº¼‘¨1mŠÌTF­iÓ‡öŠf]âk7ãoÇ Þ‚¶ý‡J1dˆ9ȹV6U'ß»çr“L›ÓIo^ýQAî(+a…Æ -ï«*myl@ŽÞG3÷7çð©ÀHLÉ/Šú7©üÚ·w­Q¸øÇðCx&“3™÷'::f|VnÆþ±i˜ÿ3MUû^"3–ͽšåÜ`Ì’©Ay•ypº•¥w¡-R…3 Apw#o á‰L4›nÏa§P‚áp>HeË HÁ_+bêFÁ"||’œ†b¨#’†Ð`ù ‰ŠAs¼®Úë~jo•YöN˜±ÜR£cOâ .ÈlÚÀ³7Żٸö»È|U—Û&Ì¿àñUÊS†âø¼àÿRb7c-WR¿ç]ÑÕ†_(0Føxåy—žÀTX PS§òÝÑ—ZÄ]tÝÏbApŠº¾÷‡.WeÒ;dù«ÈÄeÂ*ûXeÆW˜'öÌÆÈéÆlQžÃ–ë ¯a_i¨ˆ/ò!œ2•Ä„£O€ZÏôà‚¤R1Í»ZÓþ~<Ø%e½OŒq7¤£óÕ‰N<ùû†ë¬Ò R†Ý:.Í&ì6Flõ.¨mýMöqñ,œ¦†0qÊû_• õ~7•NUDg†…t|VÒ^xì—ƒ³­xŸÇ%i>׈­°&4ÛXÌûÃDF¦é2œŠiO^ɂɂù˜Ø &ÍÞ”¦žMGFyÒ#¶µe@°—¹f–Q#ÎEþ×ÁÜÁÁS¼¶ƒ— ËGŠP®Îµ˜)  ²êúÓ’¹JJó© 5H‚- PäÁE‚YÈV°¦“óê&«Ñ¹œMN&ÎÏ‹Ž´À’VÏœÿGÕ3ï…U‘“ )E›IäL--¸çˆäèï*1Óa¯e¥­6;0Â"ï&ôO»aÎ%òLÑé KÀPþœûÚßÝâCÄ«M]ÏÆd©pqt®ŸÕÜÔÒ pÔü"ÿÊÞ2\©þ^dR¾Á$S¨¤“•ü¬dTÖç¿n\ü<ø˜ûC±/x—ÎPu-S¡NíÔP7÷쵪>OÿÆå& ïßxÚ †OÐ’çCD¬†ÝT<6ëýCÂ,!Wól–ϱ˜&r%^}çþy(Îõ!í?5ÀëÎǵn’Câ«™SX€oïlGH.%s•z¨Á…A”¸ÉpáŸøÀGS8ñ“œº)š|´U5¶_¦ àöpa ý¤ñ˜½jëð;NÒ]”LgçH"ÉÖ„·—v¬.ºxÈgJ|øØ{,&Gòjý{ãò œiŠí½¹åÔ;m¥æ”ªGÁGó"–B“cE5ßpÒ9ÕNorS¬t óé½B'N¬ÏóVB4AˆLžü‹HX£ÂäR4h4ÙlEàñW:›Z5€x2XIã1½wÄät#ýFQf`¿C=N`ß AçchiŦXQ[‚Bø#ß›8²îò‡¥@ RÛˆ¢ö¯ÀìÆu"ã˜1q°*Äb_”Ö©5Z çe諞ß̶ŸeqÒºš6±äWê½ÏJ¹‚SØÒuÂô®â€ü!š ß3vŠø –Ê(­Èé1¡ 3¶eX Ëø¤¡këᥠ6Nƒ× –¼5PtmÄ5'©kõ%Ìk¥½ö+1¹-y耈fתÏâZx0º7=9P Qõaâ7æúaJvì‰6Vð iW«²¶¸_ÉÎÇOÁ™Šüaí9**,,ì&i7&Eö¹Öý±eOµžßÄ2ð§!ÿyÃ÷ ´SU°Ð‹e™²“žý|¡ƒqeæ»>j59 ªÊÌÑÿµïïxívœ~ÌniU­ç” ÐUP@,—÷ºûFˆØBW@®Kà—{[<Ð;†§k-M$­îEtþýL «öÖóKÎÀ}¼>£ÆÖ’fÕ’º­M(·ýñ¶@Šg¨§#ÏüNfåx¸ ð,¹=V=±‘–‡Ó¡½„-ޱ@ˆù=Ë@KÎͨ|ãÝs¨JkÒýPÓñc¾P|N÷¥/•þÄò»˜_È|Ü>€{ë €îܦ¼T¡!J~jÖ¨›ž%º»'ÖŠÛNʾê³Ð%U:;áVجYÊʿs»‰b ý»YJ—êžê÷|ô©˜Ús~èf×@˾ʅ•øè5*.ÊÃd h¬€™Ÿ цô¾Ýï}AE^S\RüåKÿiŠf6J|Œ7þHáÔºo†‡£Àyè><ÝP«ìænOÒ”îMb§ÍÛ+¬náŽÊ/Y,‚Ò„òŽ‘ÇÂ[£¹ójå1ÜÀ?>LñryžÙI?a¦Î¢©5îñ§ˆòMozÐÑ¢]1ûGõªS!™ÁN8™ãŽ0?×Ôð)¢(ˆUQ[Q–>¶ÕõÓÏ‹‘‹w;hÓK–6àîF"RÆÄn3Z 3½œƒÝ“š‚ú'¥Ø.,\ü‰pÒ-N'Ê—éÊ"µÉC4åa¡Ðܵ޽ã¾[}ñÇÿS©Iß=ä8ÐüË—Œ9<¸ÏÝ m¯ýŽ ®¯”^ß9`Y­s2ÒKú{ å7;ÓýíÊÔFÀµ3¤ ì‹ý¿Wmßòbzvî¹íÈÿv[ôFºid_ÄÒáaõ ›Ã>é.«a/2¢£‰žµÓÂ!V@?f9€äC^÷ôÕ,t²P.@‘Rµ{#98òRÒmëö¦sõIÌLýû™ò€ËÅËöÕž×oUÛÞ!_Åa°ÌÈ!K·hXÜ0\ þÚ²3›µ<ì U=ONõÎÀÔfÑ¿aùEŠcTÔÅb§ëN’ ÁVM™Û<>{,pŠäàTq*"<¡Ç6L„Z¢Ù¨èòIoü©öt”ÆòÜ-=6›¡!X¿¼ÇÀÔ‰AX`‡ùëºØüGÔÐk—#-…sîû0b;L-·ès!!Özw6¡ÄyýWàÁz9ãÔ‚Bâ©,z¥x´2³ûàf5!?þH/«´iülZ«•öa!Õw#½&dÑÀZqF’å+‘\éMâ I‡Ó¼u‰s™ó„lÙ$—AÜŒÚ8c6yš\9  ?l¼ÝÖÓ2KW;“tP¶Šº,píæ¥‡ô~÷Kí¨k /{meÂ鄱±í8PRrow')ióÊ•®ÉQ3À¾ÛdÂÊ£X Hâ.B†Ýöƒ77ïáà~þ®ô^±/Á0Ž)Cr¼¼¶ì-¤™‹Æqdnà½Ä±è{´K+GÎ#N`E3\•€X…ˆßÈú…f­00’ãÑY¼âȸ  Z–¾¿cÔ¢êõêC}c&‹²S$.ñf1Ž;×UT÷´ñó/C–ø1Õ·4ÇÐ⹺}”˜Ïñð"¾¨Xsrܱ­Yཛྷ™//,"˜síù ÓÒëŸ3{»q~2®Ÿ/àù|ö}lCÓÂMüyÁU€Í8 Ž€·v6‹¶5þ¢K»çˆëlË¡„•Œúµy³K?pˆ®n1IgýO&Ôì”à äë*§xÕÞ32ð (Åd³wox7u©Gø_oè€ÝÅ‚gÀEuÂrvNç­ççK¥+éY˜9ü­À‹ú¦0Q<èñÝ(¥‡ÐÏ/ m[ì™Èþ„kÀ?±!Xlžð ›°dw¿-Þ]Y]'ÿ„V‡ç®’}Žq5oø~­èV0ìý÷8Ðr÷ät:˜Ã;bôOY±ûhžetNl½ïÿŽº›ÀÇ¿£µ í^íXs#ýŠ—öW1C3„¨!—7.ÁHcR.È4éÞnT;ôd‚µ¦]ªLºÃn~Í4Ê­KÉ™É-sÜ:a ­¸›‹,ŸÚn1áÑp›Ööü‚Õ·9ÊHÍq3ágjÆG4XQmPL7#ÿj&õ‹Ä+ç9w©ºþ ɳq£¯ ‡ÊîÐQG ´YC#l5o타úÎgÛÛ·tÖìVcG¹Î×¼ø(™PS÷ñ¯Ýž*&ïÄ>•ʼ3WÏg`HÔ4“ºÎ=øèAvØ_T³Á¸{UÔ-5j¡k3™y^87éö[gሃ¹Ò¢.9˜¦Ã;ΩÅPôJU‡D·€¦]ée±li59ëµeãT-µã÷ë}­÷yvѰÀ+|Miuc’ý-žR©)}ñ6¼/à%é»ì.—ÍuNXZ œnÅéö6"O®#ô3+Ùž IÙi@Ü* ÃX×[>.íѪ[ç{¼í@pLW=öFq–)6ÍG -ÙØö…«òáW;×Oÿ*Ÿ­œ•5l‡»ÊS òaÅÆH«×n˜Ëñí­p+ õ1&½Å/%Æí…0-e[$eKn¯ü\ÂÈ€Û[êS8p´Kö^…ë€ä†Wþ|¢8Ý÷O|êF«’.Ž8õ’‚ÔfnµÞ-(OwV÷¶¤3BÄ%uOIÓuHrMl=¼@^¿uI1Œ kE¤ƒ89,Q¾dSZÅÔ¡~·AP­úq˜S)ß²ùèúÙVƒ]3`yUv°x‚¾Ó-BK­-µñ²Ç´¿ÆÓ¯Žq…¢ˆ‹yä##3Ànµjø õˆ‰Ì`t¼{=´¸z$™g2ø-M×½Â%Š_ êÖ3»5Ú‹¶Ïn‰6‹köØD̯ Q ýÀ «”ìø§bã‰É†ì–'Ï>=µ¡[‚\9þØlå|ûDâ_»£à·‰‡"C'·ÜlÆWÎZAÑþuä)$Þ£EøZ1¡ íÈ*ÒBiy®ì ©ð‹!­ô<B]¨–BF°ìW ÌèÕp|tê¼@j(9è}ô 'rÁ/«úƲëÌxê¹ÿê‹tåùœ8ÛêáõW#*AŽyÛÔç’–á7F»Â¼â¿Ì5w¢’0—xåsÊÃ~ÈFÏIc3s±Úa¨0Og V—z@d_@ÏÖ[vN‹FŒ–d5¨:h„ã3AÆ#Ÿ}ùSmÐ#e“ ÚR·µg%ç´*}þy·¡²œuwF uâ'&{@nŒB“x˜YÉÛ©óFÚ”šßddï¾(1óÐïU¶¬Aâ1ŸÍÒ‰ _üΙ-6›úüvÃAð•Pƒ6É­°¢;£ÌôT –z©vŒ%êOb†õ ö¡– wIÜ˱‡Gh ÏN­{7÷ˆ&\'V. œˆ|ÏíP>¤Âo¹#RÕ‰˜u,ÌJÕˆ#‚¹Ø4~ ý÷ô¶ šN¦»;Ð,ópOýÚŒ®Ù±*!ÍÁhÞ“ç¶=lŸèÖ‚ÔÛigõ¸f'Q<ùáB Ò§Ö<Œµ­¾á`T†&¢ m*U?Kˆ¿w|Væ´XúÄÕ|¾Ï‚ÒªÛ7Ái*Úœzª¤(ü?Ú×;éÓê’Pk†ý¢þOK”Šôbøü² µìƒ˜ï )[ÁzŠ£—ý«‚l›°ºï•yvìÎgBm1~eö(çÈ[õ½½wì¥/þHB[…¼.fäÿÏ[ô 6¥9“¾1_ènx­IH]ÖçÞË[Åøjø*Ž{rï/6o¥p,CG#›ž 2Œ—£žW‰ê½nì—Ó¡í ƒá„½ž=Áµøf®ÿò_ç J½[APÒ­Ãùª:åD“"Xy.‚ΔõüÔ;:•š7y>› ¡ÿD·œ…“‚½-oáúÃ{Y®ŽrGT«['Šš˜i££q¬Â9Z¡lŠì¶Qùòôs×{Ë£EjD x“š21ܾÚÑ“_Ûµ¤&ÌujÊWWovâ­îxC¦‰Û³#‘u•nHD<÷½OÖ‘Ó¨'–˜:t¬¤ÀÕ¨¿{v? )ffÔÄ'ÖÁeYœ¹¿ÐS(zþÒW%]$øvFHœÃ§ù…˜´­² ¾ ÏHV­Wb=ú, Ö¦²¨ žfcÅX;`P8øÀš®ÛB§<ÿ°#¼*‰=–%C²¾M1GæÍ b/Ì~çø¥òÝ[µÎ ­[x@0ƒÆ (±ûópAQÝLò*l66aQ¨…Ó ÄÍ8’2g|žÙqBb™,s,Ä#>šë‡Ö´,ø~–®¦‰…aÁߦw°W‡,OzÝ.™a÷噢»xË›ÏZiE'pzwªP>ªRwÂÁ®|h³ï&&©G~ÈH¼¹ó¬´ÒºQ6„È­ þ ¸óïˆ=åFšª&#kšUÄ·)­VzíÛþˆK¤´w£­)vº¤†ËeŽ\`›õzd¤Oƒïe%¹”ûFÍþ··:È º­ž|QsZn§è»®“ô§u$€qpFšz /žô Ÿku¹ËaÍl²òð¶áì¾+…Ë›ëE Öך]võï€àþ³ÍuȵØÏd›ßm6–F/Nµ³öÀÔ_ÿQøeg·ÎE¡§ýPÌÑ?N/^ùÏæG¢óѯ¤Á^ ˜s`}̸ýVƇ*JÿNV;ņL.Æk®ÿï`ÁXZ à¶´®JpÞ><Û3•ð…3Þåf;ÿ×â6ËKÃLa½ÚêÅrÝOÉYšÅÆ©õºÌOV,‘ÊH¸´`ƒZ¶Y,6ƒ ­¹]~çv„r1£ËB`ƒª[>ï/k#XÆ-ˆö¬Ô“;kß¡gáÿ-(êùÈ J˜Ý–«j(Kª&‹È몷;¢¯rÇùÃl ®,°åe¨æã/ÉÓÁøŸµ»»úÝ^é¢À·¯ŽyÁ rzE¤|³î7‹~Š^U]¨Á‡ú˜¹J†‡Ö©‹y7>@_Oò[6¶BÐöKìÎÿHàIzÉòªGŽW †GšT$³+6ù~•Ò]©­‹Ð:/,&“JžÍK>Bë%—Ð)ËEúq¾™ð¶ƒÍÝŸ¼ y,|@U,àCŸñ~×rnɱu}Hg¶¤›„„Ò.è`­g‡ý‰ÏEÈÉ ËœOw¼MVn­4ñú0¬5PJæ±LT&ªpáštve4îÇÒûl“T¬9DAè¹Us \cqá¼¢išaï(²ÒLépF #·yëÄÆ´ÞÁš×–[ô¬¤ûΞ˜r¥&l;Óˆ=žÚO°q:êæÜæ‡|xO'Khýn(Œ€’½ÊÏDóJí¨.5™LÍspM³[÷ò·ka§œ%Ô¯®ª·bGŸKTÃ8â†sŽO°ž7w3Jr÷»®’ýèì–Òñ'} r¢—·Ÿ’¥±æ*ÉXœÙÌ14s\•Zë ´{Ló”ÊÍ‚,uh1é<«Á²dT\@mõT;ŠIùÝ Žœ"0“ cº4®XB‹?<ÊÎàÀ>¾rÒ(vÂö¸¶…ßžNÄ,`A¸r¤+isï,.EŸ†¿ÿ-ˆO<4)·ïÜbœÊÎÃ#(ƒ¨=6râ¹&°­ÎÆ›Жkn@ku×¹ûdýtï¦ÎÈ L€{l4É5Ñ‹ð h±®˜W{O ZèÓŽU-fTçk¿|Ä m €Î[èÓ¹Ïð¦2ØÁË b ·òUËF’#qžnÏ»¡SÆ”"¤‚ËuÜ„¹j¿N’°P7jèééòŒ†Íÿü8¾¶±h\Dd?T¤á€‚'™Uâ}9ž§¶¿ñÅÓþ(ÈÔèK]ϯšc¥åùIq¡aÛ MÍb|pTu 2i¼xðcuìNÉŽ.õ7=»1­ŒÒø"%—Ö" \ìR9ùjqòrpÁ³öe¸Mí"¢2À€hqâö!Û&>fcÂi‘¤™ó0…GÓVxË~ý# Šʤüâ*ÚV(/yÅQ8»âGF¥Õäxœ‹×˜sìBöxeúØÈô±LÀEoª +Zå¦ËT¸û†ê$sž,‘E¡½sÍu[ôŠlp\ɪ‘0ñê“€lk–'“­À •¤»O©4&Ù³^>L­¯H ³K+yâÏËÞ‘7*{ü^ÚõJ„A6Wq΢4(eÓ‹áÓZ—Èï€(t Dñ`²EÑþTö kÎcýØrj½¸ `ÁêÛõ¦ ÆI“€R/ŸwûÉ 3&WÊÍa…HÞ®,M ¯Dy׉v+b ¼¢bÞUXªS‘ô[²žš$~#Ò0.ÂØÉ'Ú—O¤ 1å"Ú%“)•¥¤Ê¨øÇøã•ÕüT,’ˆö­§ŽÁiF×…D” ¯Ö¹vj¡q®“œ§«x •­üvyÊ Ún.H^v[zþ'!Ö(J¨l^-Pò_®É2xB7#!{>ÐKÁƒZ¥CžÎ,´Y<‰öÖt2OcÆcvÀùݤ!©=ñ>” .~|€Eô.ƒJçƒÜêð$’ah<%è¦ò<ÖâØúŒà†³-ÓFr—@‹3÷žM®žžÐTÁYó·o1^Kì1<d;÷üC†¹VA!ÚZïù…˜‘æ&›N¼ír u× ±–gYòÐâÉrKô¹ÊþàOˆÙ»ô5•JªkFãÄ@C^Fv-Ùtdë¨êv/IžÓ"‡‹1¼o:žEËÿýÚ>CiŒêÛ ³ÝÄ2ySŒ2Þu°:2ÑU·¨`"¤»»¤WÆYÛeWõò°}ýA\‡Øn¨¦GÿWá»FÏ' ~'{õ꾜ñ=sÞµ‹äÃsë¦{-Ü®^òÐøËÎÌ‚pÀ›A05HI]xl/àÏÅZá6„… öÿùKÈε2 4!ˆˆ 3ŸYÍlüÐqœÈö«Þu9žzyv3†¼èíÖøH"UsüW-BYÊžÍÜTmê?Œž§OX ‰°‘(Þ‡PEXÐú”Ú®Ïï¯ÞÝ£¨ù¸_î¤qé)t^è™ZçÓjæ]rŒGpµ£~39×SióÿýÓ¿MvÛˆ)ÌÜ;{L§Ñ”ÿ[‡bÕ*s;-ðg[S~Èæez+;|]`öt˜Z+¤HXOÓ¤šˆŸaáþ3Kò!ÙTeEx9P"þ*Ûó -Fp ÙP6mµÖgÿòX‚ø|…ż7†ÔA.“¹RÂÑpŽd‹>µÆsm‰eWÔ²â(æuEeñh?uáh¢âü {I‹ãmþëÏRÊNGÝÎÞÆmê¯)Ôœ"k(ËÀ4ÉÀSNFWÀ .©KØ  ‡}ÿy…ÊI6ÔøL=CTÃKdÝlIÕGE¤Y3šð· èZ?Ø´µC¹ßûÀskÔŠˆÈáE¥ÛÛiD&`õ|aÔRõ^G§-%THÎ[XèPͲéû59µ.<‰fؼWM¥p_C/žÌGŽU§—¸€Â¿¹Ø(„ØÑÝ$ðn_£víW_k“YzïÁÜt¢Ð+¦¨úáúoc®Ãƒ¬xÌÔ'Šú»áŠd{fïÒOèõÍß—aðÜ.&Íß8šè·G\Vαýâ9© æ·.œ„<í“mª?4£Åß óôIƒ¼Fdd•nvx/ôëÞ˜¾= ¾ ü×å÷È#åÁÜŠk‡¡3ï“-YvÛìš0ZÎgÓñ žÞÄÍ2&>Ã%÷ǜ˳$4wkü*ËÛn0Ø—ÓhóUFò9c‡!„ÿv«©X¼íÌÐ'Qܧ¼8€BmrkžÄ5ÓÏ}Õ7:Ú[ çÄMè«¡ÆùçMŽ^´¼"/^ Çe³/Nù–ˈCà㸗äyàØ·$k´s±“œ©†Üë©ôzöˆ÷ÁjSo5$ÕÉe0îe”O—¼Í= MzD °îód;ÞÎŒÆá4þ˨W?¿ ‚­Sj®ë¿Üó¼¬{Ç*ÚG’‚Õ13ú£·ó¾1YIUÂ>½²þÓ[%ž‘é ļhÝö0d0#¾.á×J‡Çî[*Hh¦ÏýbÒI1åªz ¬á Hi` :÷Ù–å>Ž[›wkŠ·-JÀ/zëxV´‹h>1‚F&%E«9Ïä@ÐŒŒëS~ù…ïàœ$ #©Z”×®û%麽Õq,¶†„š-•8¤‘v°õ`Þuõ:“zˆMBŒuœ´\Jú`YtöΆ׼³xstƒü­çL\íM£Wq•Œpxüqú¶ZÑuöáÔWÄg“ªÑJ¤jcѹ€ê™™.?Û¹:î¨DttpþuNo˜‘B2?«Ú.àÀcÓjƒ„™`o,q0=¡YÏ%êOúvi¦˜B¥Ë¼)@xÖý2è—HYýo‡ö.õÈk’㸠㞤ô¹ ^8tHØÍÝ2á"G;ÕµÝþ¥ápÀÃÙÏeăçp¿ª96‡r-“ÃᬠKãjçÍ\¶‹Ÿ^Ñ:ÝQб°–@É“÷χ»`ø³mäá‡Ð¬b2OCp¢¤»µ¯=èÅÜæ¥?›s¤ùnÌl°ÏTmžÏ2'"!Áû‘±'/@ò-(ìDBdtMÁ0„øÓtSҦ凖ͼFQ·…k1fAsZýiži)¤sÚ#çâ&KÂO­˜ïšÍÏGµµ!aòã}Õ¯¡'€¼°1 U°ýޏeˆ0ö©qV·Õ„²G4l–¸Î-ëÿ-ï‹XÊÚm§üö«>6CÌ1ËÜTGp[XGm F‰û(¹\‚yœ_#¤A²ÊâY £–ª³„æï‡±ž‡Ó±oþMÊëU÷l(F¤Ï¹CÓ[¿ox:„¶ œäµˆ–ÜT›Âì9¶'cñCú¬ªßZ|Ø,“¬T|UQµa–SF~:n­K?P4’-PyOY3ꟶ)I ~ál þ%OãÆckö¾—0§¯,rêZ!.òÀk$z³¾ ”½*ç 8½ªÉ¬_@-†muòÅ6‘¡;Gxb«Juùx.½ßÓSOoRá±2¯¬Ønãh²~!¤ü{š+>ExÓ/99w•ŸmHô’“Lñãç ÖLên9r GÓ›ÔNI »ëçf)ÇŒ Œ,¬¶°ì5íÕÛ Pöh!оçHˆ§ì'âʘ>%êËQjœzÃq#vÉÃ"_]Ä:^KøaŠ?Âc \ìl÷|íô¥œ¥Þ÷ØKfÒsqc*²¹¤¤Ð±G0â.~Êåaÿ›B£èyXÀS;á1õͲb¨M·øv9‡çÚHeeÖ/;Ayp¾¾bezw?Û|®ž<#—qç=ë_à  ôRúŠÛŸ‚[(Ä^ƒ ÙÆG§ K¬yïijªb¸ÍÊ‚QK‹¯óF ›S×>RlÓCzŸˆôFA–Õˆ¥.IMhM£/q flP¡g>[ì·Ä}»ô°xžäŨÒkT ó<š¦@\6—6-8+%Ò ¿šô5¡ÊPH}döÕ/&èžþIáXž#nÓ*¾òh¥¸­Ošª/LN-tQ?Ñ…L—¹¦•Bɱž¾j<&”¢4ÎÃõçµßÉ èÈ-¦­ ŸVúj Sß9ºVžÔnE$;Ð@K¾00‚Îix;à4žêÎèCMºŽ?Ž“£îOEök0Êé2·a‰iöHÊ…ËÆï #à~É$<Ôf2otyÂLʨ¾,¨‚^´ÛUóöDjÔãm}bñPq”ȹ¶^—r$ʸO·Tý°ƒŠˆ mù¾(ž…õ¦rØAý 2à3ÆYþ^™,¼ÿ /fÆ"“ŽqîdÑ…í—½U;ô š8àÛ.Þ8ÅãÀ~|¿}5ï*ÂHp[¾J³L!ÍâÄ|ÕìˆKrÌj™ÌQÖz «“liC7rºE´^7ú^]“ © ¼ ä.)®rdÆö{Uüt*¢#L…R‰rE»²õšì@ødE?ïñ5S] §(¨àg]èwv¤V·}ŠÃñÏÞ^Ø·]n"wãwY´Wm{ÖL:JÚD ` %Pba¨K Æí£ôkpCa›_‚w'ÅJ;Á2öÈ;,›«®U%òX+BÏÒ^ŸÂpp£Š¿¥²»¾ÜNÇÁ:ë×a+å2F\lƒ«/h*\lyÜŸ®Uìi”GC7x–:«´Ë'Zà(kn­×E/Cðuj$Kq>w=ü¾¥JX1íòK^/ª©8#X%~VúÅ îÀÏ-àí¿%  €¯)\J!4 }†@%¦Bñ7g’ý:˾¼¹*2CƒÆ8RP§ÓûébNöSûNSvW€J®ð‹FÝÝmòà¼.¥'$ÑÅ—¥TƒËÚH»Iðº$0Ft ­Ô¤´QXJA–®ÉýNøÌ®Ó‡Î@íÄn‘ìj †õ0Ì3b»;¹ãˆviOfùN•_♼}ý6qu4¹FÏr’æàRÎ(hDþÑ¡ð³PÊLEËû·:œ¦R%öEAî:f*s‰7 êb÷«„u£!æïÍ%·?ÙÌø?r§í»¦G]Ú%ѳl¼@cT±7 ¨K¥­´ñï xAèJ%a´ß‚‚dX(F3lÝ/Z}b ßœu¯f¼ÊS¤Ä ªÊd=>ïéÈ¢ OYü`' B¾L'døŠÚœª{!☶¦…ªt0 öäÊV}Æ6yýíØüz ¯Am´,2Šì̬¡é!;ÞËÕõ^ʶ˜<§Z§ÞxÅâÒ²b´æØå<Ë#N¦ÌØú@6ʹÙ‘#]ܸ‹-YQ‰ï(ûådFHç“Nì®Éò_)£e H Æg_æJ×óqªÃDd’jòXΰ=M¡½7¬ðqF7ÑZÛNʳ/Ü©ƒšbX “Wƒ[€S,dûô ñŸÉžÍIi¤—õDÚ3-v™Z·˜›¢M£+ž?÷Œy1™» ÂàKGË=5éS­š¸V™ë‰÷­áÍYD"bó2¶¯ûèQ"µDXÛ¿{XþS¶Ë_ŸÜê²ÓOÏ*—Ù0e†s›P›Ö‘‹\„Íäß=r¦'J´ÖnÅÅS¦%Ûð>o(Ê6?Â`Å#›öŠÜ^¶]*Öqõ‡Žu7^êhúÁŸˆêÞNñ“°QzXƒ(|Gƒùˆýuá«!ÏÖp@Юg]’G6Ç^œKy£ppRAe9dߊÊÊèIy%ïÛðÛRÕ8¯G¨H&„¯iL&¾-îKœ0×´C(GÒà’__ì]vGô‹„íÃÓÅpÞkR~¼7ì.¶˜Rå Įģ-Z÷·øõx-½êÛväÜw8´ ø/”îcY¸šŒúKäsOV#ˆ ×4¢sÝ<œC_°v”­§h ‘6È7àI=È̃‘›mø6ÈÎ8,†Ø!ý :é .7)1“²n31–ë‹®î¯}:¬þ-+¨”‘>ôtsƒŠ­½ AGÕø&‡gÙoc…ÔŸ¤Õ!¹¢#½á0š÷ʨVhÁSàŽŠUšÊI9ÆU¢É˜5´ û°ü÷®Nù(ß%)ºýädFb僧µ‘Ò-׆‚>®=:Ê}µ¿ãü7aܱ¢KyÞÂQà0Êͪ0£ÍÌ»G‹§¿î¬{3.M¥½F¯DÍö®–¿G²î\¥2×l﹌d¿€ÓI#]É,¶î•°åµ7ÿå×|ÁÔî7<„±&óôAÃ)ùHË(÷ ¤ÔÒ)àA¢=TlSˆODû°ð-©c:¸Ýz7°˜“Mê CÆët—ýpD1³wG­þ¶·¹Zó:ÿÁéà¿ä3”ž‹ Ò|á·=PŠfÛ‘gâÃüU€ß%”د 24HUð'mEL^@˛ʶ6#™)‡ì$]GÅÞÇÒâZ±®wI|w¸® rZ‘½Û´}™w M¿¾ >ðŠ5½Œx¦³.6§,:%œì%Ë.› `¯Ø‘™?ÛCöZ²¤OQ²,Àömç²à N9¦hp˜í<|œðÆlÝ%¬7„†xß?öÞÁˆrÈ¿5´Mƒ•+þöy¨÷%ÍÀ{vÂN–ѦK}4‚÷§£­SUZ±pQHM˜8(míR%6Z‚è©%TwÑ® eÙoèÙš’ÆÐiAÕFœnÊXkŽ_õ0ãNbä2ÈèÍŽŸ[es†¢da(Ñó†ùÞà¢Æ„RÝ£°R¼í†9åþ2èÉÔ”&ö’…(ÞÕ®íi¹I-œ{oj–ŽP_kÌóãwWé"UÙsÏœ¥ØéÝ] ë:©H„yMøxò¾>©ÁÖ¶®VÜWD¤”G*DÄá{/64É“óãÀY¢±sÊóT¥ÿ†Ó£DT)áCX42=\]»È~qÙ1P……£íltÔ÷Âé(Ü´/¢¨³†Zq¾ô›Ø÷Lã3M5çO!£BbDË•omÖô*,€.M®³”èÜÔüƒ¡M‚Q´ž¼7HÈáX£yäš²!àÉ0¡ˆÿ*~AJE;¢Á°FÚª©Æ3:$ÇÏPèÖ7þ”!¬E—ªÈ„§Pý× =ÙqÚDÇ2:f1áj·+¿+¢•ÞM h·#Œ$Ò_ÁuíÞg²n®Gváıy<³®~øGFË*ØÌãKæ+'‡M?j¡ˆ˜·‘ù^Àt¥4¡Ó·Mq¨R†ÍæÆu,yìqk£àîò^¢x>¹ÎŸZ*ê«ϼ"?‡x²p l%1^)¾Vþ¶VM‰…Îô?C&ËDô»@(½€¥fþš-$œ¦D’vcƒ‹—è”Xç±ßdãå·b[éëÛËSç@D#¥k"«4“»íõ뜑PPN¨ â“-@»£Ø—Êe3ŽGp‡‰³õQòÛû­ŽPÌÀSI;!$³åw8½ êÚQ£•dqPäœvŽ\JÓl„ÂF@hõ$žn§Ñ‡OQÏ\¹z¥Ë¸« ƒ"íå{,yÇÉÿÓ¦ "Z.³™uI¶ÒkëíI‚0†$Д%î릹éuAÁ óEqtfîx"”ò«¢µ/‘¼cïÅÑ\TóUØ\Ñzt.C†Ì“UÊx&úàè™ìMkâš§"Î>‘/úü÷p.ÝüÍ¢‘o’CÛv÷¿þÅëzU"LÚæÇ@MSß-5/*²?*sî¶nªNT«ª ]UN˜q½³ÄÔÄÓÜ Çœ"öކZ`KŒØÄy•ÀqóøÆa—7…ȃ90 eL¯=°ˆÉ¥šÄè ;£VPhº™›S[p{Mé ‹§qšÇb|ÿ ».OÃBJsøþŒQЮh¿ä7\íøšÀ¡õQu¯˜HÍŒq$ˆ„­+<÷ ’=tx‡”Ì~ÿÆnÐHŒn¿~ùÆw^–~ŠåÏák„ LR7q¦¢:Pä3ï^bƒi÷8Úa/ËŽÊ­¤:eûèòoÒ†;®êéYB-Uõœ¦1vÞÑ9åX"L„¯ø¶àGìN“KŠ$R3ƒéeêjïŸ6û)¬BG|aµ ÖR¿‘àM¢Bð5ìíë¹pIh¾$dNûãX¡ZOqÝÌviüûap Ñh¿>Ò>õ oÖ"µ^DEXo#ádáù€]Àî0X§áà÷þ7¿º­iòíµvt­^×1º{ù\˜¥S( sóWb×@" ¼à!í´$´¤ `ªÑ2 _<‚¤(ý”— žãut@½@w¼uÈ|”_úŸMQèÝì Ì”nk;‘7l¹¹’ÀPlKåŒÅHÛ‚ÄUiVíhý²BŽp4IðøŽm{¹ Sá§[v»À©Ýì–WØ7ÙbDÌ~aèB¡¶œIY³¾:Om#À.ᬿ~@ŽI--’=&¼¡6ÄŒ u†¶ÙË”Š${o”™Ãi$ZI»(æ•&(ÎÜ,÷:¿Ábøí:ÔLðu<»#4 øÏ.6x·1¬6¸Õ0=+|C»»¿@Ý”;•½Vã¹2Nó™ÅD5ߣ!z%Uþƒ}õSMH˜y§òpù€äŸ]1=v”‡FlöYî£ËÎQ6º¸0 þ'WQësŽâ·()7w,‡7ãz… åÜËT;øëçz™‘ g¢.°J/‡ÓÈ>÷ÜDèØQó…A00|¶-âQI^¼—ÈÏ«õÉ»R«±=v†â ÿ¾œB÷"µR€žÁm‰^â /Uñ'ÅFêÀ¾°’ïGuôWõ }ð¥ÅÍa¹~Ûâ‚ã~ƒÉþ1ê@®[‰÷amÚK4oCŠêÂÙÓÆü'CÛC¤¸pá©FVˆþ¦EËνÄ€LÝã7Æ÷wx‹ú¯óáä¸m”²Xö©5â+¬ž€1ÅÈ" ­W\ÅšÊë3…n,ËHõÅc4~ {ãˆ9³mÑ*¢ÉUV·P+1SφA¿©·4Þ̯P ±%mávK•Ü·€½jÝ~ü—ˆkñÞ1ó¨Ï+~ü|#öCCEõ—ò žæ´‡ìÙê°.ÓèY4d(ïŽY{O£ã w˜û‰¼&§<'°Û8ðØpV­6ã~SWBy¹}T‚/§i²‰›„Ú@·üé«à¢ r\Ô˜èa¾ÍãÑè ÆïHó·âMÁup¢rß‹®Ô%~¬lܱVX¯üÛ^´nQÐqk+m<ë¤Vˆh£§0hÝ6ÉÛ \‰X°ñ)ʬVI®WÑ]öˆCD­/ QÏ%*ÎññãG :¦G¼Ä«C›äû Á¬šÂ‚ˆ¸°'áÔJr2ÝòÌäewåEÎUoÓ̓ö1˜;ÞPMbv(A¥‘íRõ²Y=˜Pì²à)!É S—ÓåŽM]Iä6À\«HñN°ëYÁßXÞ×Ͼ.ÁØÂÁJ¾,ƒ6íôUU× ÈSr¥©“»LD<^gÆó½­|Ò4 ’1vµ×òñÉë±ã\6ìÎ*i,#ø|()Ư­B- Ç|•$øTJYó÷þSwØ4 Öõ<1ì?< l ¡9‘j| cÓ•¥°[},àõ´níî,=ÅŠBŠÒE¤¼3ÆžmWñr„çóoEQÆÜaaû3Q¦Ío4ž¤aÄœr¥ÐýŒ/ìãQÂúÞw‹kUç} û¡påÚgãþÔ¢G€Uç ö,R*9\ɰ¿zúΟ³†l\Ù* Énpt8[€¶Èl_ņ1Ê®û¨[µ5éA·IÎ ·¤ˆ>à.…Ç)¶hsŠ2"É*XŽ*Ø]„á“È~¢ˆÌ/f =²™V³†— !d›´™+å<ÍAn(ØJÍlpQÈ“]Æ ¸ðÁW™ê'õÇš) ›èß’¤·9œz½pÂïÈ”ôk_¾à$“Ú–¯|§Ý]Ždž«~¦²¸!×óHu\ÊÖor)9›…ïæ4ÙúX;:o­È¸u«À^¸«ªïªå5' w>…‰9ƒƒj<*ŠÉ)ƒilO:—ð ø 7R@¸†ºù(³6J|:ûRNp+&ØIü õýØ"TâsÆ—9Jä—?H0>¢ ƒ²T~z+¥çãL¯ÿŒ)é3pÃá6¦…§ÛÃFBª uä[ªØ¥÷KºÙÓc¬hþØ_’){ký‡L. ¦Ä÷ÄÓÖ?ñ·JÊ0-´F£“ÎBx—þDTT·É”…^ìkqáï›×…¾—‰k̸ï6„.¾H» Ø ÖVo”î¬k -žÆ-¶"ÊýíÀÝ;áÜiT_"Ä"›¹-KÀüù†'ØK„ÂË?àÛ FÒî0V4ŒðQÃ’­xqEX=6“ü[„>v6âã¯Ñ稄°ÛÒ!Õš—Š,g¥éÐ¥'góÅqc‘hµ¦—ØpŸŠ¨Ò3?]×köv1VVò„ ÷€cºø§ˆ(Žø‰ dU‹6BIº fE¦ûçè¶M¸ê8Í6‹Òm!•&Øwß'gCÎ×-rfÀ¢îz d£E•‚#ƒµ/œL_‰²|)Çà¤TóžOÕ(tWJ={©µÎÛŠa0ŠÏÇ'†Wù$áì€jºo…Ö…ZbWSÍ#¦<:ñBéf*ÿÙ+T-^BŸëŠ6±Ð¦xbõÀBÕVÊøtœ´€Ò/pÖ{ú 2Í♢ðrvZT'úQmËÒà·&#Ð}]³¯ŒíV§'&fžÒôq†Jc±¦0ùË´7À4ÿ´\1r^«&XŒ†ç@Uóæâf·Ü÷²(-êbFÅ1Ê‹í2}ݨζ¥:.“¢âÇã “$²n7÷·HÂؾpÍí61XÑ=ŸÈØ!³ÃèÅøšj@ÀÙTEB|¶ôpAœ‘*;PKàùö€Ìu±û(°½sœ:}e’|Q­½ôðÈýln1w‹)‰Ò±ÒTH«sf‚¶M »€ÝÀûß•úö\Ÿ +s; ÖÖ2eì<÷ˆ»$Ô(ÍùÖZ§ .¾9¸cTBšp0e–Kí4×Zìa!,ƒ[•¥ò“bº.3„dkñ`ÔJg§²ñ:Õ]NàØÚ9ˆdk¤:ì×å>DW’'J´ðnk7îž™0vb/&c/>l/o¯Êèý±xAJ7|=ªCøpÝïÂõmg„EŒ-¼…™ šùjbèšâ`Ú¨RÉs‰Óoð…TuÜédtº°žB¶mt u¢³ÇOy#NñaTã/[$±]Cà6 `N9ãÎ#ªŠ¦ÈaĢ“s„•뻓‹o¹W8Îóͽ­ƒ0­+&†$¼‘ÆE>~å;%M(ñ“¾ä‘ñοvþ—ÒÀ"‘Úêƒ$7Z.´K©`8W ‚Žùð3Âçf"*ÝJ÷²ÙC(îÓ1ÿæ&ÉŒ‘û!…˾R¯r@s»E=Vç‰%éajÃN—ñ’Žì»¸ÖLY Cê^©y˜—þk”–_ [çû0TƒR÷ŸÃÝ—µ"]öãc8*Ü~N±Ƹ”’ànéšü4’¿õЉ[ÞÎîOèõrL½ÚÚsÞ®Èñõ}T)ŠøæàFø…#÷< Ë:¦ãhn›ŒŒË6¿‚»ÿ«DA)ªæÂ¿âŠêiM·»¾>}êL~ŸÎJœL”ƒV±Üsm(1Ù,õEõ:X66U®øÃÖÔHâp_ƒpêò–X‰¤‹JSì³É žg+®[cöoylÊ“TQÕ_SbòâGY^£±I4ˆ¼U9<ô˜ntîž5ÑʸxF1¯€<½p†@s g¯2LàdìQ@+§•ÿˆ~d{Úó²S`c¼—0Œ;÷“÷z8⎾çGt ‹Cì·$wïÓ—h#$¥˜&Þ©j¯á>Ø0øÊ™zùˆ,tö‚ˆ ’ß¹„ò{[áØ¾7߃Q=z>XåOÏ}Ò½6ø&õ™„ì,Û‰ì@Ëœ…§Yœ7阫 ü%Š#ŸÕ Ðd|Ç,½ÉpN˜…¤L¿™CÕŠ%*!ÿÚMVÖôÅ §JõEÊYÛ¦ ï=i¨U›³ÖaAyÖ+§9ͧ¯É: x@›Ä] `U¶@ 7µ%&¾•©>ØD¯$i¿ÙÀlbI `ÈãUø®¸•£2ÍV½c“5 %´Õã¶Ìê#SùJ9oR$ |[ûŸ~kŸÛ²AP­µ§¿ÖÖZ¶÷õCú6Lä¼ããæIÏwBÝ^ÉY^*…—*»]\gb—Õ/›êçìl}O G)nŠb9ôÞÄßIbx# Ô-A…rÚäŽõ–¤Ñ$ºÊÖõÌ{Y‚…×±ÍPôžB=ÃO* ²«ûö¡~?(æ¢ÅåuAž_Ñ‘ËQ² ŸâÓ±õ4ékëR‚#ûô§âõõÓØŽ[²@D¤PlMbeÖŒnWç耡ÅÛKÑ»;\‰òÑRpL"˜¼üU U’ÑCU_Eh Úëwî€ñ<¯ý+Iˆ<ïëðB¶ †|5£Û?¿þ>½¾ŽŽ®ªÏùº4â¤þÓp­2†õÊè-Ïfo²C ÆþÛÁ–\°"òj/<#`–!DþÀ&·,®y>¦X3Ü}†ˆ&õöFéØM¯û½õE8s9Ö¹sŒª2~ëOZm£¥y,kì Ãa(•èò~liqmAQ¢žª.‹•¤õçhùúѺJPɯlµvà*IN,þ6I²¿‰ ÿ3ZG2`Ë6VgUÉo™“y8¾#>[˜[ýTŒ§V•´ïWK:é6ºeJáf™Ä#÷,tç,_;ìîK‡­ôñüLìó½fr ­Þßš#Lg~B¯z΄k\Ýb°¸MÕ]–Ðí%ˆëäzÖçõ´¼™B­Ù-·CKTj8‘8†Åö~lÓØ—â€Óg˜Iý(Á˜‡{Þôø§OyIzí.: w{J#ô}.Rÿ›pjÝ8ó>Q4:Á7S‚NÿÛ“úó¬6qÈŠÞcšÇªzÒ¡~Q-i|uZ„Ý{܃ugêÛvJŽä¯jÿC¦ý´B_¢2ÿé×LÏ‹—ÉKÑ÷)Ó{ ß×88•àºû<Ø™~ˆ:ƒ!’ˆ¿ÚRýíià éÏ!Ù9ô¼”å*¼àEÝ‘ÒDÊÐÞ:£Ç5ÖýÄ'¯Ym§GïU‹1WOAe~e©)©kä ðÃuH¨~ÜÓ+•AÎTÈ‹=ÐÒÿ¼¥¬°Â„Ú(í?i ZßEÍz“ %%SM6ßYBžcÜ tâ]ÕÂçÆù”i£ÔW/«%ª0«gÏ¿‹øjýe¸5b ŠL&$''® ;%:¬¬¡Bã;%á¼!Ø¢[>›aùµŠøE hò6dQãsÖÖîÆm‡wG ݱÐÚ›ŸèFòǼ{ì,Ù¾,)åáaU­ÅR¥Õ¾îm’dkÛM»Äxí©ˆ› ±ú™žŽqþwFCæÒ­Rq…5ï\ƒæ)Ù{¢H’IäòS/£hÿõºÿ¸.côÁÍSØY‰çËf™Úw ðLÖQ=l ™ªÚ¦®š¤‰Þ?;Í[&ÚÃc¨ÚÛR‹m7_¨ 9{og¢«ÐT»øÁ4 .bì°ˆ¥w#WmÖú=س!i+ù÷W/æ=Óê~’ÓßáŠË0³ÄDÒÅÄÄ,Ë–^$o£½Á#4»'ð™®}pé®QáúS… ’ ¬Õ ZáÆÕµh:ÙwHö¼$‰ˆ%‡"9\k»êІ"ªžK æ½@bþe, G6`]þÔá ¡¾^­óø|4ÄUíõt™{tK5ã§CHåÃ瘳oض§×·@.Úw:L„¤?““ ¢z Æ»º§FyG±8Î…¡ö¬–D†<ÇOÓãyîÔj÷SÇÚg”˜'®-y‰Cã ‹qÍ9Öý0ÙÂ’õ= Ô(ž«„7WdÕ«/ [ÜlôÜÓc æM¬WlµeÓO­*?W™é¢ãÎ[B¦ïDnÒ>Þˆ»»U¾ó‰í2iñZEWÒ­i;3‰«ó"L'Y7O<¬?€7>ôÑ 8‹ #¢{ §Qðxþ%7Ÿ-3š"Ûˆ¾$¥ŒÌ°d]íÁÕÝSäÕ!Ës ½ X¹ô?N™…£’.¥…5ôÎÿ•éÚ£ôZÍ û´V•؆V¾tt&îwW=w9fFà³tŸŒÙLñÛpë¢{3ŒŠ’“º Í#‹.ج¦YÞÆ.w°‰ïlÑøñ׿kÛô/‘°›%>Ân/n¸›u ÇK.lú€e·ºs‰¼Bi›¦phÄšñrÖâ¿€B±°ÉÀ‹Å.¤M&‘æiœEµø ŠîQŠïqa5茭Ôa_e¸š´¸xÝŽ» Òášd¬éÈÌ˵-bRÙånLpc¿u;dK£^¸âŸfŠòˆãaõ#Ïøfd7_|þ¬I?<ÊKí®Š¿2 înæ+;jòb)O颃^ãÖ—Y-©eÕDÂô³ƒ¯¬híË_:53Ë‚|9‚2£e«>kVP´¾Bn5>‡ˆ™ §žœ¾Ž]–Ä6nÌëK4™‡ŠlŽõ¶ú'ÆùÓ¡²GP§[Y„@-ì õ6D¢3SS$âÊsR:´Î;}ìòVødý˜zyãߤ5tnÍrÜa]oÒ\E-Ö.ÑÓp£×Œ´1½ù¹õŒi¨?E­×£sl¬aé>¹ŠdÍ•ÍþáÚˆëp^öVeʵÚðñw¾“ŨœæaæcÒ³%“NɈ­í÷”k NQP5~¢™Å©þšà© Áo7ÎÝ”;¦‘œ|rÅLÝÊ {=Ø$&RÛó&æÓŽTF¾ˆí æ}Rô—«±WÞSg Ô¦d÷ˆëM*õo5ìq»R—æÙLÞoÓ(í…Yðd»…4îôÿ5SCàxÌ$Úw—ˆaÅ~M'$¬b­ •=•bð áXÞ!ÐKßñõ2SnAJi®ôü‰€ôEW¿}ÎÍVmeõZ ôxä;<}H©––°èŸ^n¿ ü DXÆÓ³-žL­Ø­ ž•Ö>Yih«;$ìõóllâަߕÑQ<ðJÿ93’jª¹ý^H7«)‚_0Å„!ÇÞ߇M´ÙŽX ް¾Oâ”f29æé1ÜÆ¿\m(>顺)ÚYWÒ»OÑè[}«B¦ížØ…&H@£¶ŸÖŽd,Ì«¿1þs GGANž¿óÞI#à͹`«¸fµ Þÿ!ùn‹´‡êDåš+c´…XŸ;gª÷ÇÂÁ¼¼[77PIÀõ$Ë?ìî_kÍpÖËS<Åì;K;Ö•ÅdâìÙžÕ[xe‰ 'οÎñCìM]]n눽2]jCp[è?ÊiÉÏ+‡¢‡ôìÛÕ´¬ù~Î1ÊÐNä[ì ­ GxµyÚ†}-í¾VtžKµ¡®Í5M=›=²C)¾„ÊïM7¨]H?tR4ìTƒ—ˆÿÁY–~ݳ‹ šd¼¶¤ê@&ìzY7‰°aó¬Jn¦†YnÙÐ’¢/ê˜uo6x²lýï ¯²áqqª¹V,gÄa.á‘gíLâáž$îÏ üÊR£ŸÉ˜8ìTÂPƒñ¬×-×ÂôÐHœ¥OAAâŒ=“Ö]ú¬mZ¼·öð¯D$—ló¨w<츞ÿ­ÏêÐ<4.4HÛ—¢l-ç½é¬9u&”^Jõ4÷Ö¿AVÇ•N‚¡u¥äîÏšÊã}BÝÜ bTq³Gºoöí‡B¿9€élšp’ùS#s&Ø[‰µ¸ë93ïhÂ3¦þå ?9û#hgq¿ CÅ3¾¤;ú%´^;Ï@‚”ÁÐ=Äw@h¾ã~{ŸáÔ‹ZÇagiËÌ× ùèÆžõ¾UðÚä°„¥‰/FÞÞ@W¡…Æ-…£³=ì2$=˹”7¾áÓ»GÌNß͵Ý+*‹Ô[÷áì›ìGªPÔ%v-= AgÄsÚXeDúGɤXhÂé¶äœ45ãêBb?ØæqŽ7‡ƒtÙÙP᱑Ifßè%ÛŒ™ÈùÝŠà2{g²µÃ¹„Î wÂòã¦ð8~ÿ8…hNSRgò_&+•ƒ{L K¹×V$^Kj´vTíé9¸?3ÄêܽˆVŸ4&42Øf¦ƒMám}¨êbº|äï :µ ]w¶{ð÷`óÿÿ6>ø.˲ó¸p¦übdç¡ÜÄÐ÷¦˜%õ ÒΑBå‡ë¦S3ùÂ;{×Çõ¾žÍÃCfù1ɰdV3®:‹ånì ' zì)À¬J±¨}:ñÑ–ˆ%¬¾d‹Xâ1Ù5ú*jû1¿´3!ìuÈL¶÷YŽYЧ\0­I-bmºqW³õV;ìiɰa.ïwº°iE*Ú¿¦•î£aú|ôXµq¥‰®š;x„ nè@Ær§#²”© kù úØãÿ(Õiˆ¯%ºìT² ”+¤ýzþU˜,nY¥vmp sº¨aÖ$*…ÌG,wöP#3¶ˆºr¦çû嬼¤ 1¬A´ÅUh/¨¨ »°Â›bró#ÜR&S£õ,†“ 5Τ@HÑyñ­„@ùDœƒpÒ$«Vé2¸}#=#ˆ`Cñ°ÓË&“¦NW‘ãJLDƒÞ)Ïh…쩯À ÍÔÔ—V„µ`¨J ÷,¾7K–¶G'SÆÄ“›ÀmNg xÕVg²þ–v•l>Êôûbvôÿ6gs!Ö-õ,{ÜÓÓÆ½TÌ‘ÿ0ðÃoë¿kßÑàscáî SFlûçFrfê–) +¡b»±ëÞ×ü0«§9O91/™ÒoñýºúÀAf6O›õâ·¢!°þ¶¿jyÃÇbTÊ:˜‚B¼J*/f5À%þ»©@Äg˜û*öWóÎD£éåC™€3DÏ#„.eÏøÏœÞ¸\0øœqÖ¥±²äèŠÇ=ClXR¶* AÑ/ªÿ=³ÝU¶%£ŽØ{í¿š²mÿn0¡ðߪB–âçš\ã¹IÇô?1o§yR ¨H%d‡¶Y9òµc =l·`(?t­1)Ú±Þ;©jgn—š¶Ã䋌 ¦¬¢ ~´Ži +E~~ÆÖá´†»úhë"¬µ³“ü2œÔ×vïIÜÏÊê×íUâã”»J³ h5Ÿ£‘©?œað]Á`Ûw°õ™qôÃ~œ`yC«Jª\vlwkþË$_ ÜÄXÚ%gè Ë€šÿ.[S˜}P¡þð¼ög'Ñ'@áš…‘õºC’ùs׊|Íz³\Í¥,OZÎMH~žGc©Ï|D _ìüŠ¡¹ä*…³©kˆnâY˜°[Àk»ñ¹ÀþM[EÜ—çî¶2n¬„¾ªÁû'æ—Ûh!° ̶š¼ÚæîÊ N%qÅ€L|›žžJ%ƒ7;ìuÎ/ºQáJqŒàr¶,ôà·Ô,/÷à5Ku܃¶ó”o‹b»æö wú80+ß­.š[w(z^¢ ’½Ú‡:îU~SC ;âZø¦ÿý7,U©^&ÚúHì°ë­ð*b8“–;‰YsóÝC »§rºØ¤V8åyq̵PñåŽþ\ð”xç:«üâÀÎL›Ë$/¿8•û*x<ùG,WWÆË•zˆ'CŽ*ŽŸ>'S8 H£à|ø§=m0`iüq—Eø3­øvpnXG«®ÆuÓh˜œŸ1=ÕŽü t‘ùÛ*Å ~?t-ЯxÉGV¬òª–“ÁmÞ‡!å¼Rý†p­ÔsïÈ»þ±` ¬ÎxØ?öfÐó¿c!/ z*¶ä't?rDªth‰=ø”Mc«.à•møtuµºÖžŸÌógßm¬é¤¸¹û;½©üdUè¡ë¤U'KFwD*tåÜ*ž<ò'jæÏõfè8™ ˜˜¯ë±ì|; ¶Vâ^dö$é‡Å‰… 1G`‹Z±+ì2Óaû 4¸uÎJ&õÄRðÖøÄÚ4tIepôÕåΚaæ]²¨7A ’Pâ»t€fOÞºû%ÁB÷FÕ ²¾qéz³‚Ï#lE"õ¾É‚ø×ÊÑéx彑ˆr3Ü”æ$æ‚Ò‡¦~º¿ iÌbœ»MÕ>¿¢4¦ßv£Zeš¯;梞IÕ¡G‘;Ú â½C&ßdýÊ®8Ô2áÜ7w5½Á‹(“\äîà Ëq´ÝŽÂ“kHckbo\qó}ï*Ÿ,J÷°4BP oõolËD»+2jWzË6Ö4é¤ërÄ=Ópx\yÆ¢´ì,Ø©—0$œC›mò¿øJʲ·ÇüÁ“'uYtI~¯tcÛ@{)g>­VÅý©öL±ÞËÊ6ëeˆFK!ÚY©¼m _Zããá_uå>¶¾¹h6â­äºI5Ë„<·ƒíÒd[(öª–x#ÞÉÚ~«Aú“Zi±$ÓÁ„Âú3Â×ñðíö±–ໜ7Y¢³Ð³”ºUÅ÷Ûe,ïUVì #3O.¸˜ )8å>5Ð-öã¤Hú#¼„Mê„¢P†¬‰N®ß®ŠÅÇÔU/Bº€ý_&Bü?ÁDôñ[u ifbelGDï›Ã_~à3—Ù¢0Aè ®®*¯ÓZÿ‘¸Á-ÈêýmC±öw¥Ç]‹Î”,¾…9øœÂßÄáæ 0C ß&¡ñ@Ê&˜»ñ4FϰUTõžžånƒ¿ŽDS[diM !!;÷ò¤üh»Jðƒ" ¥7˜¾¥¤®duaU Ôí¼˜0A-ãOÉ›î¾aØX*”gr âÓÎuðÿyñ²­F=¢7Ù”2‹ÉI¥ët…º¾¿3©Ä£MÄõ‹…êv!B\#:\O¹äB‹¯ìE2©ÑfŠ3Å¿M˜ˆÈqóâËO¼éñèö˜v`¼¿xãŒ>¸Ð¤[»$ºÛ>0 ‹YZsurveillance/data/n2.RData0000644000175100001440000000047210636320360015133 0ustar hornikusers‹ r‰0âŠàb```b`bad`b2Y˜€#ƒ'H<ψY$ ļ@|" ü À„$>Ѐ ˆ%ÑʉÐÇÈ@Ø pÁ"F ¿óVÂÀÄ @ µ“ˆ@ÝLPsXÊg`@øMÉ­èq†®V‡:f$145¬HläðdA3ªB q†€ìÔ€êåAgƒÚÁ eƒìáFò‡’>˜^f¨Ý0÷3"©g@2–fͤàc€ä¥Q0 FÁ( +°ÿ€J‚@õ£ƒ ŸÉa¾ ˜ƒH'(­CÖ¼ÄÜÔb C€\I‚9ò“ŠS‹ÊRS`ŠŠKKR¡–´¢ÔB$‰¢t#“s‹aF‚êa {Jfq@Q~:ù„ö½œ•¸ surveillance/data/imdepifit.RData0000644000175100001440000004225013165637101016572 0ustar hornikusersý7zXZi"Þ6!ÏXÌàÎÎDj])TW"änRÊŸ’Øâxù¹¸ë£8Og•Í0Ü'>uz>Äà‘q¶Á`>ÏpŽu+úo^RD›œ{JUÀ‘ìÇU·)› žsâm—Ñ~nܯrb#Œ!Wéñôj›!~õ‹?_HsŸ`p*­¬.°ä^Œ¿¼˜À⢸nŠ–ž‚¶Aë%ßÎwaiŽn¬ÜêºIÚÆ…GÏD‹ZsèÒ¿¢DïÄÈŒNñÆùö—ü¯L-ÈòŸþæ¡EþÆG ¬iêD`¸hÿËò*âé I°mwÿ+–K° òµª ÊÊêvŠœQ©Î‹Ž¸aáýðßIçSÔ§û«Ýï _=ÍNPQdeW¡èƒ•:GW Î<ó°ÆB!ßÔ*wóÉ3;þ)z ^î‰ d 0ÓŽûMþE¦¡OÞ(a@ò$úšö¼zí%VbŠñ÷Ò‘M*‰=æ+}Ph¹°v Ìé6s×[&y@¹¸ñägħÞU+òoØ~A?ÆÅϳ§,g ´•àÙ+Gvá–ð‘ŋ٠Ìïá5áz²o‚T&Ÿµ¼¤ ‹Ã ˜`h|c¼/ÿë¼×g){«T’}¢ÂÍŒ7Ó.Ø8o!§\Ï'±+EšSK»zœØt¯ÅË^͹æ¶8gÀøÓ˜¼s]tzQáŠÛ‡«!.»7aÛ^õ®ÝœþŽ^•=ééÎboÐ2%ÛÒ‹x  cÍ¢Õëjªy7„L8Ñ: L¸?è…tab´¾z൵µâÌV#iÝ¢«!ñö,ÎRõs Âu Èá±¹ÍÄIë~÷ :8=qñ‹|N+¿r Õðö.íLö¥-Ô÷f:59ˆ3ñ| Š`Fó>ð£F7ê4YÜí½kzÇZr­®2×ÛëþÆVÒ=b]xÁ±µïkäg(Q>¤‰³èW/…¡7b¬Ãó…å¡)É¿§d¿ {YJ“U†ßñ(sÑÁX))Wr& [2Ì·Ó¶#_óç–SÐŽ÷ÜO'Q1§)Æ<˜§‰ÛJ¹¦ì„‚·Êwµ|N©xüØb ‰Ä#é•ú‡{ŒìŸ¿iŬ#¿÷:§ÅŠ$f”aúXŸÆi$«ß¬ØgùWYäønn{ÀlÙ‘{|F±è‘Wèn;ÐÅ„L¶êój´ÄÉJ“ŒŠÊWú“]—/âïH˾#+Á±Ÿ/)§E»…#'GŠÏúØ|¡WبcU(6`!â ´…@Óó8N !.ÛkŠã¯Sα—kÀ¡=$dzã¦ÙÜÂÝCð뾈yüXŽ€ÝøBI¹žÁ’¡+=>€i+Lø’ª˜o¨0K\ §F“øzo5-7åÅVç x“'IJ`ñ+•|xêbKæÆâCÀN°¸ü(ÑX9¶E$ ‘à±BÃvˆ™&ƒƒ¾—ªŒ¨Ç☞DI°!/¯Èé½Ù˜á•kŒÒ/‘ì%±…1uÈX¢Ö¶K'e‹»:¯˜öõ·Ä\KÅ÷ÁgŸâññ_±$C=¹ßÌ‘B­¯+ÁèT꣑#²hq–~И½è]×oEŸëz„@öH¼ŠôfuV%²‚,aÚ êðD{Sê¯w¥;‹I;JB6­ó‘ÆWÎ ŽxåÅp.¸c ›¹S»æjB¾ÝáCÛÊøW¦,Ì4O#Ê# æò¶'VUC”шÞù·k`#&­üÏ$ÐÒ:dWð£VÐf|gK¾a>‰ÙÃK…?mWÌFÓ++{B{ïZ”€CxGx:‹‡@|F]³ O¼ª‰¹W>/)R7(U¼ZäI˜A&}ÈiC* /¸ÃN‚`Lƒ•ê>)ßI7Ù)pÜ·¡ì«ÝŒk԰㬓2«4€² sgºšgÛ|3(A dÉ..Rì䓞¯Ý¢é"!!€Ý,‚×\€O dÙÂî„»Âð ¹+±®þG|ÿγ̵â¡ënÊýèŸMtÖâTkSÙÕbs]ùK%Í'$îÓR-X׬ҧȷŠ‚X/%#&Ša!,ÙþzÎ}âM e…jÁ(`Eªù‹ƒ19~nó×ïÉ£ÜĪ÷üz•r™ð(ŽŒ\À'T(0ÞXP6F˜ß8" jæÿ²4bNû `Û;’V ÆSÍqtY±û2²>%Fë°~DæsÍ8…”ZÕaûEg^¼ŸÓWÀ&€-·€GcBÉ:`ÉMºøGu–Š íâ%“Á<–4! ÞC8¡9Õ…ŠÀÀa©í(‰6‡LÞ»NO›¼›ö\wHm€êÿ‡é®ý2Ò+6)·BhOX<Â*5öܺe ïç¹>× €clq/¤˜%v„Mv#" ƒ?˜žj!•%³}²*~#‘f4Dõæ36õÞþŠ›åc÷ð¬ŸæË& cøâÚ¬ÿŸ×Ë3Ô*CºØ!?ÐËçJ8 Ø_£M{ÀÝ[›ñ*¦B}ìëÄX1µcáb‡ó½6™ÆÞLS9 ¡I“°.Òޝ¢v>ÜNþMØ›IÁe+W}ûHlú˜7Øã¤SëR— ¶2²‹Ì`(n¡|C¿Ý£œ u>ÖÀðp[Žv—A­½˜¬æXö[šÚ]ÝçŸÝPµKPá5êH™g:'Úuòeá/¹t€´Lt@E 0I<ó¹?Rø¡Æ0ÏîîÁvKIg7e×|](ÔZ ×^jÜ£ ‚ÑóDúV­£­Í5: xÝÐÜ£¶Åæ‘GDBG™^?:$Û#u¦ rC_|ØÖ=à—¶J.FŠröyZ¦ä³}1ï±5Ûbä‡{>\ÅV”t!÷F Ü‡¦%Uuðí±ÀÊdÖÓŠÆ$Ýú7ãBí’Eý~Gq<±, ær{eÓzérßÓ[hÐ/MiKu*0K]M¨ü…õÆý.˜rûê+sÔb§dUeÊX)xÉ •!£©k­.èË2;¡=Á*œSa4ö+yÒàË}áŽÐiqj%Nò8FµŸ×h8±qKeô3MºLÎXi€£¥dÇ™Yþìgq8 z“×j7£xd^½Üw#Bº§ CGÙÓŠRœ;Î6oÊF'þ]Q÷ݘ²g<³DK‡mAžÀ%™™¶×¢!$r­.,ÿ†8¢"šm‚+ŠK®ö­\¢2.4 Á)$а£¡Ãšwu6Í"†÷U´Æ/ÿô9£e¥!¨û)$4›«€¤q»•ƒ1§6|¯¨(œã“t¡èŽæò_7«˜?œg¤l—‚RUö¬èµy©5`x,CîÄ¢†µKV2¥jìÖoÛN|±5NǨo_YLhI²È~ÜQ ¬6j¢A„Éþ²U¨š™¡ÌWZ;ÔZ˜é šO:Ï\3OëЪ îî¾ ;1 7l³G;بÔÞ “4x¾ËŠ-¾åkjàq/ý‰:–ÑÿN”é2| ÷k} MÝ´†K$lö %f=ÉTÛTXlÏ÷õûm=ü*›ÔQÉqúm3BjitÀ^ £Ž½íÒ—eÒ¹þ}4™-ü.³ Qˆž£‰¼©LÜ g>³”¤õ[ï ÷>?-u Ìq'9ág¸|çbXÐê^šÇF×úp5äº`ð á+ÿf ¶‹þ¿\Z•Ýí©ÛXkˆã±ø´‘dÉüõÖ¿‘B17¿¥fuB·Šœ†(5Øq¡ÿ×3—_é\/ŸtÙ!>%…À‰¼ÙÎ>œsëë2l€LìU“0¨—›®ž²au(r…«&–CŠS.ë,oDu.]Bâ$ŠÃÄÔqþ’Ò–GiIÚ £±i¼ÿ¸ ­û¦n½7ãMçôš¸GÁ!ÓâÓˆŠRtÃDw‘—Ü~0•âê-Ù©~Gd»4ØÝ›ÒcB¡õãaÒÖs!:#æÆ}ê6Ý&m_Ÿœܪ/A²ïùD¸aÑ+o)¥)6'u/ŸÁp‹S”-L8#êÝмt·± TþUÆ©…&·VÌŽmFí#^ÃÐÏ¡ïÕ‡G|‹‰ÿ¥ÛÈ0Yá`÷”¡ÿ +Â(_ÒÞ²ÙÊÙ¯=>Š›W:j’†¾ôžoø\:vƒáXð!¥¢ºTÚ+â|ysܼ&&“\ˆP|•ý$úX¯RÜGÉ·´ÒÞí6˜wÑv³Q–ùdUŠ˜4÷¯å$'Ô…æ@'®Öó‡^v7^>8Igìâ²’×óZèvá\ÁO~}F‹Çu(':ëU—ÞCÕKº¢7îЭ •‰3(ÁÕñ-–ïv¼ã2‹þô¬\¿[¤!+Wër€Íœéÿ2IUªÔÛ:Ëy€Œþßc/²ñòäÓAµ øhº…UíÌ?é¼éÕZÆ¢®w ØÀöÎ^–½XdPÃzO'7’Ø[÷óCÉ4Œü‚̯5˾Vb¡°­ê›ªÞºXÑK&Ç‘(Ô[èžš¡HAlûàúÔ‰}€£‘fGª¬TÜD ð·BÊ"y‹ÿxÏñó'}+aÜœ8ÓÒH§†Í3ÌîM –l…†OýÛÃ’ý p¢©™© a櫆~ªõ—D]Ÿ}C+æšbèÁÎ~‰%»ùá>Ô/añqpËÈ‘±ÛÝ%ûO}ÿY“”“2 ŸSòÔ°Œ\단’&þСÃ-ã42Y½ÅQ@Îl9‡?‚ðÑ›ø€="þC v¥ GÜÐ/Z%F»?™6àîK ¨l¦ÏPÉp? 2}8Ë\þm·„éP¢‘ 06ùˆeQà8Ë¿ûY² ‰A£¶ö&r°ôhÝ«•RµäëòÄ/~ϱL#ý“ÂLjó¨cà'Þq1Bne—|‘`*Å£(Mg0¤ xxéÕ)æ†Çbŵj´Ù¸“«;~¨=ùT00Bú]§£ žy©Û~÷¿´d‘S©æ¢m‚¦Þ9&}qnœä­æ cW¨£O€“›_˜Ø{KØÕkDb“à|èGl²éÔK0™6Ò¬§) ŸÂ(>QŒÉ1•ƒ¹§\úº¢ÚP€Ú­®ª(¼|ˆKÞ´©eÆdˆŒ3Kaïáqfˆ—(ê†Vu=Ì”Q+`¯. :å~éÝêM&§LÓgŽÿEã('+ߎ¡vAò=<˜ïÌD-+:«ñ9gž¥l’ÖxJÎCb¡»¤±N—’«åí‚ò'Ð5y°ž/Œ¦EbœqBÝû­Cs£ žÉúš#5‡¿g=òÄ®‘0+©WAfqa(é´_Í=÷RŒ MvŽÍ¾À‚I—ÅglmGb.jñ†9ãø^­®ãL.›#1c­o“ŽPõ#è4škfýØÚª£Áú ¯ÙL<çKø~Íbo ç´Õ;ʆê xbqR§¢C¦òÿbšëˆ3ɽPŠîàŸ«dYÔU‹¥, n,Å+¡3†?Œ?BÖ{\<Ëó¥‡~ø5)ðÄ¢¸‡ÿ§-æ ‘­xh š¾½õ•Õ¬¢<@Lnt48ù+ªE$iº‚b¡9â,Ó›ò/”L`“ZçŽÅþ/úbȈƶúy aL0êàuçvïóF!¤²Iì N¹¤Ö~ì‚9ñ=7#ÍAÓQ^ÿè>[!±UTý…®¤œwç•aâù=\E)i ºòn¾hàÈñÛžK7e/§Nåõ¢¼h4#é%¾Œ“Úy`ßùÌÏY7¼' ÛÓ¹Þ<]ù„«†[©zn­îd«§t¦·ŒÛÝ`:ZÐØýJ¡ âƒáÍpÅïÔt«„…?”A¤ÔÊ‚s裪—º €Ù‰Je¶±'6ºÔö0Ìh¦D|¤ÛèÜ™¹¹\@£Ñ ›Æè}=ÓΡt œ’c/Ñ“}¶ˆz$/óâk#Pb¯m-[Ý>b‘ Sú·º$Ú´ýbß”>½l§¯ê@êTáî­tK I b³¬õÔ0±”= ®|Ç1“z÷Uwݶˆ×[ÁûªÆû .?lf¨“y íBè89޵ÏC³0qA?y¼÷ÀøL¢Ô²QI"IO¸ááÈêÿ£Ô;™lØc×Ã+ÅŸ/Á1· 4TwÔ­a8ÐUs`õ™¦áî VqEŒ¯Ï#öÊùØ ÆlÑ–#]Ÿ[ÅØhèH{ÈÇåä£8,‘å,zQ!d dÌ×N»ÅB÷ÖøÃòÍx÷0ÐQjšEÌßPo,¿ñqš­­™éÞ©z:Ðc|å5KKT#x²„l™¢øºo¿Þ )þof…"¾.N‹Ô¦ØGìŸç RŽíGeþ#¾§[ÉB}YZ¯Ù}vÙåŸ-"UÓª—b±]ŠÇÔÍjî©<`rT¹•æ{A,"gµÊ '®!à.fë—'êñFQ›7ò Òj_˜‹™zl”g ©‡ Z¬èÂühr+PuÚGÐãïI^*« ‡Ñq{ãC?fåœßEÙÇLÛÏzo›½(%҆繸ä<ªw‡ô…8"9.Ä}Ë©ñ÷ÕˆöêócÃtôP"«äAª…½o˜ Tïч± ïæÙž": ¡k ˜èÄ m:IjõŸê¶Ð~†å­àØA@B¸Žâ$‚êdönÚ”78›ÓP'= T#6Ú: «÷el±8KFé&«×#Ieö´læ3õfµ £%7ìàÂp³b¸ÜÉ©(Ñw'ß2Š®Cq†–U÷…iUËýÇÿÀ*Éóבɽá'BOÎ|”ôDå0­õÿC$Y'·Ä;„vjw»»ƒôJíÏ÷³{ yÔiŽDÅGŽ›ˆ*g‘^ÈjBý -WÖ—â3“1Ø$°˜æ(+ðÙÎ2…pÑOв:£½~µ–wº—jOútWëgµÌ–x­1ô‘rò3ZË[Û]°áÉ8úºÛ†Gƒõ}œX.–ÿÂПH…ä:ÚØÒ»°È†§0ö \­™@naMÍK¢•™ß ãR®nA@þŠ9†¿J0zÓÖÓ H¬SEN²ìíÇ^{TÄq$V?ôn"S[®,}ó‰0ÇD`=¨‘¨øQþa€å&B—({l/éŽø±0š9øÛd¦X>h›ä©a­£Á’n½—bìñTˆÓ¦uÓ2`yãXKzO”p—™o[v??mv¬RCð%ƒ2UÂzŽheZ½8§‰lm”œèlª¦'×!P6;íXÆ“)yQºì“èU*çíT£ƒÉJúv´ê‹¤sðèOMº hÜv#¶NÎÿ3I:÷r䟦|ßÒ“çÌå.ñ”§-# [9FÌx–ìl<¡»ÍÃã‚ÞjŽ!`B™OÑ:É·×®Ûpüìn+ڶϧ•òБ7‹—ÅbðÇž¢Š›'À ±a)4û‰ÎÎfÆÚÅ>ë©Gú8"ÌÑ…`cc<¹ÇÏ*ÕGç'D¥û—MÖëGñ‡_ö`¬™YÕ̇M”š½œ†$ÜÜ?mq6 IŸô/QÅñ*>3¾ÓH­án}[òFHåõy›LmC`,,ظRyE—ÒÜ…»ÞÏ­yû/OöÔjjè7Àó,˜R6’þ+“?¾k¢LðHÿ‰ß°3 h¼+„o-]}ûóÒ飦ßéÔ‹ÔYŒOƒÙ§ ƒø-¤Îú1~ÆÍŒÊ¸–ê0·Rñn’[YìÔ·ÉÆ ,;uC#›úþ¶Û’ò}‡s¤5}‚]ä稨2Ø;¾§"ª;ß^›È¹ˆÂaÖÓÒ²PMp|óü%»X·Ë¿W´ÛVÿneàþšïÂÿ9*ꤜŽÈ[͘5iwïèKtT `6çÅÿ“Ô"«!v–\±2OêpÑ• Ø2 ÿ|Pq ÙÁÕ¡Víø‰>˜‡Ù6/c`bAû°WAÂÛ†ÛUÍT>D¢£BŒT4Ïv2Sx1eeÔÇüD¥»Ï%Á–àà圂cÉ>S\¡©‚.Z3cÉ yæÉÇK‡;‰ýýècÑKj½,žóìôÃýÒÚÆìp1f1ZüôÀB+þç·q­¦†¬=ù&.ÃM ½V.iâÒ#9Ć+`Ö D8Á Åý'}I±Ù6ôøï‡_ìÛ9¨<ó ¯ÑsÉ;˜‘à`ñíjEd ^mU^Ât Ä1€DË.Å:‘ %NbLrf(oæ±¾•hvD$¤NÎBbL¬ß~ ]+*§W`Lá9j&#­{¿ÐØ»’ ß@™@ª¤¾å DtχÓŒOfU?üä"¼zH‡¨(Ì=LoÎÜš5PTª……©âÅÊÚýSä¡ãS¡"Özr01FnÛ×y²ü¹™Òp,mmâîòná(Ò96U€^;ov•ØEgÀÿD¢[ŠrÍ¢bþ‘@P}z‡çÛ/ía2ÉkÚmtñO©‘1_|‹¤[*sP[ˆ§q>Yߎ_,-ÏŠÌÆ×ÄŠö7Öà!ÑÅäht‡_>©Æ´‹Á}a†}4È—ÚG'Œb'¿e߃Ú+nÃDgm%½ßòGê½.䉨½¡!вQÔ K#μk!ô±[hGô°Xå!Ôôº­8àe˜-R}]xˆ£+>md­Øl_"†ßß)¢À~VÕ•{÷ <"{ê¸+¦õßáNŽ{íéY{*LÒä{:¸ ¨U Œ¯ð0?Ò/j=u„E¡·§"p‘¼c–«¶$øÈ@L{8ÆX>´m¸9Cr§?qÈî¥:™_i{`ü¾j1å"V‰ð‹rôÆÙº²Sæ ¦¯Çȶ¦NSU'b3©Åâ•KSÛL–}ÎT¿ÃP”>^Ñj`IPHr:ùÜÞ€ÍÛA”ªš­f}a$†?™¯cÒ—k57°’õy@èWhõü?ã+æv=YLâh®-Ì×ßàzRtð½ £ÏýÀ)Tý˜³ö›ED§bE i°¢”¡ð:Ü—9’µ YÚÈþ±â²èºkÊóÆe5÷é!ÄϘƒ'†šÇޱ8.{zCå™#ÒyíõÝ›³×ô)Ðkˆ,M«­ò(S¿¶Bc<`åüËzô:¶h©ZL½†ó¯ŒGµ!– ÇVÏ7w˜Ã:Œzo íðŠ‹X–סšÍ£ø$, ® Óêøà='ת¡: R‹¡bˆ&‘v¬™aÂé_Wg4­"êôDrðË´Å‘‡†‘FžªcåÄŠV³ù%-µp”²ÿº*ßçV¾³i'*¡Rï|m[}J˾|ýodmÕÄ[ ø…‚<Ôþû“g];pÅùÒs€(ÍÔ2ßÝøÏ=üpƒp:8€\Ÿ÷öG–^ß}†z5v)³¾Šø  ÇÌ´±g ”…\ét¯ì™XÙ›#ëóü>´~½÷ˆñg$5°Áá2ŒÀí8|ŒoT5ou9;°7´²ªbª —9À6’¥éCGéùð*t<`»ÝB*”­h;-ã¿[õ¿õc½ËÖõÊm±÷¤‰ÑyN) ¤4ø–±÷VDxËGšÞ _ ?OÀzº£Wç´=ÎÞ\ÏÈBUC·¦°QÿÐ ½*}ýþº ãQõ =Môõ•efÖî5Å¥cFˆæð «¥zSKV5€ÇÝX©\ú>^Èpf núÚ'Šl~\'ö3Œ¶Ì÷ë导M š”U:À8I"Éù&§8ú•®ƒP?w­ôSæ6#MœsteGlð'ºCrmz}~6eiŠÜuÎÔ1Qº3uÜHAÖf`Àªóx ×éO[t·îšÚf€È.‚å–BÊ9E†X^/1­“;¾Ôƒ »¢úd–Nÿ㦠)üZ Éšâ®#ŸÏ1„øKtT¼âV‚7lÎÈžxŸµªöŠR–á2»)-bÎ×Ç,ß{Çuô€0~‡fbA„aj±uªa·ÙZ:Ù&&!åm#ÝÚ¿/Âj,»Këü’MpóÙÊE*£§šmÔ×êŒŬj'h¡­0Îj€ú}¹ôY Ùë²*Ÿró³  ÿM*ÂHBšœCô6òôsí—›á‚# XVªi ’Ò1ŽJ ïÐË{øuDkí0œæåõ™;||mÆúïdÓ+ôv‰9»%àÉØ4£·,Ss¤¯"ì&¢|ãWÅ?° L›¤vo3Rãaލ³P+kµ¨ÐxD …Ô—£`½¦»2òð‡èâ‰ÈjŒ˜oKõPó“"C{*ã{ÏÃa®ºm€x-/Èv…ý]ázyÍJ¨ñ nÒ$ã L¥oIâø©AM9²Á!–3åX;š¬u]ó‹GFGɤ}¼LÎh±2|QíGàà$.­€}–Ûõæ"bš1ó8Ê)Ï‚Òò G6Ï FFÙ4ºåbkäÑËFȪt±Ž>üøøVb:-Ž’ˆZ‘ùLbå7DÂ#½ õ#øuÎ뤄Øò«”vBöV•çº6ă,~ÒÔéCŠ¥»—Éûe·ãÝØÕÒÔçì°g½šÉŸ‡>þ¸¢qÒ ‹¤Ñ£¥º ‰îÓºãÝgKê1c4R1øDU#l½Ï&o¿»D•Ø$°åsâ|fžr¥*BŸrJÚÏ:Oö¶RÚèòyš€vÜo[WîKã¬+ Rm€¹À-¤z€£¨D¶Rñ»¬-JS.GH÷—Úìƒp;¿WåUU€õŒO“„#íçlgڇ8ì¡zq”­ŠÇàȰËË5o•꤮.Ÿyp'\í>þ†v´wiØìôìdF ÷#ê$ߨÏáÿsŠ+߬0ý³ðaÞÚ!h3H"Sñ[÷›³¡µÂçURÖ¿€N?˜{vk $öi$v1ƒ#ÍÇKåúå†Ù)“Ô¯À­º¡o¨LÀuÆ÷ÚÓ„G+nÑì°“!Üü“ä™å•kP”P6yÝG=nƒ¦íêg¾8xÛbÊKÛ xQ7É5ËÙÂ%MŽh’5€¨Ç,Kf"ôÆžƒcûý΀ôH”±9>:xDlÞÐøf!?–O#Ç]VÔs\"ïQFíã)wÚšÍj”3¹šêOr‚.Î#6³˜’?ÊîVÓïõVpyÔÇÏ]IŪå 0E–|å§ß 3£q¦“‹`™TCχ{x^ „²ÉϪ{2C%ÞàÊ w‰Õ‘g™N±ò±&äkëù¿ƒø¹X÷įØ×'1Ë!B<¹ô^Rýy,gcƒäM{y´¨öu‹‚:¥ø˜â‹òÔ/-8 %ƒ£Õ7[¯vªm×þvËA/€cÕÂÉuö­þ‰*LÜ—ð£%úwÛ…~Ü|gÇa„:¢L‰MÊø ^nÐÞR1˜R€$Çüu×Úšk "YÊëLì™5ç(çÙ7H4cÛD2kŽ›ØÈ3ÎÂUcµ…®…£su]ºEªî`±”ÇúwÞ¨5Ë•‘yfŠ’É‹Æäå–!Ö¿½oÙé †WAfçtµë"ØÕÿ#Uû,D#5ñaì \-\›µ|Ç=Œ‡Lh7‘Æ*¹ñ4,š6*…CЉq›KíMÉ?ìôíóc;Z¨tn­äêRüKøÇç<ôÖY2x•ìeÿÐgƒ7‰¸«‡âi"†5B5"õbðè¦úÝèè­ ^¼jµ¹w‰Tw=ÙÖü‘äÚµõ¹£]Ù··Úè…mìÐG@¯¬Lª ᆔ,[-‘ ØSñGlÍxÏ³Ž¡BÖu( Ûw*š²ÚVHœhô4g$9'¸ô2t¢•þ£5¢[MR¥s”y¯5ÐË釷ÓCà‡è<¡òHU+@U^íß{ó@äôHh½Ã!L?™ô’['ÿt~ˆüCZ>¶–—?âÀÖ¿ÓàȹѪ9O^¼SZ†l« 'Ù#k¬+å‘‚ ×álò@!´‘ú%Р¢ŽFJ±þ­r‰_}æB•¢ìŒµ¥m8 ˜M¤5æÍÅ¡²XR*s·;r™æ>êçBÿñÒòân±¤ÎƒîCôo=1Áˆ|;Ó0ŸKÈŠU$›×R¹ü ÿª:YÄÕß¡º# "b¢1êåpkzuü¾¶yxøÐ Å¢|øÉl6¢³®Œi•# ¿pûÈ À Û™þ¹[fýi‘Ê­+éR`/\ý¡Ÿ=A2û¨ÙF¬P–’¦ 'c'q¢AcÞc zW`5þÓ…¥]5ºœeëØxñ”êÁSîYùâçêP-š¯˜;ø½¥äç!Y|&ÜéºKþŸ³$ÇÏ]“¯ßÂlH`>$r~)'ÕRôxÀE9^á—eìŽYnfÏ%°»ÌYÝé&¤âʬ†GÑ®ÂÚuëë6ŒÓ£Þt2n…!(íÁúäIÊ$¤ Êœî|ÎýGd¶Qá½Ó›'æ¤JýÑ RÝIœõ…ïÆCî­ > /z‰ÄÖäM‰«ó@lÑU¿ëâÑ+]³jy©+‡ªÝáx{yr\Ûâ@„TÅ¡ÚБp;íŒ%³QÇ01±¤œ™6ÝJ2ÉëÝ£™§# Oç­ñ‹¼fÕ(s-` ο¾—(ùšMZÉðèô•SB5Q{‹’|T}êá}¥ ë.N‘ä€ü‘H¸ªÚÅ)ci ¬ëß%Šplan&¶Tƒ`IJÎ_ÁÝŒ±¬yWõ+á%¢@„ Í,›üÏ[,8YÍ„Ó-×~&§îAFu\PÞ‚XÛVäåˆ[Eïž2¥“‰Ä—bfö¬“ iÂÉÓ*Žã e;‡1uõêq$QÈäP$¨hˆýJmKºÈ:p@_>Ä,jš*ãYaÝj‡<‹vqÄP£³:Ðn2›$áàžV…­ -²¸ÿüu_*»Ã;…øÕ0¢¤ Å'hQãÊeÞ¯‡R1›åíÓÐU™ªáÅ!zNyJp,Ôä«{v!æ!ºpPjeÝK "î•*æpZXÅöô†.•K…ì„ INŒ¤ÐOŸyÂÞ¤Âu¦’´–Ã\&k ÚÓmµr9­ ‡WN\8On1¾ã±^oæÖ)ô²ª+8ýZ…‹ /ˆ_TÊxƒhÿKkµNÅgZ9&÷ïêG¹šóñy´Àr›hÆçZæ z·?è~ò)úÙ§Œ}ý4€ ¾ÁÍ)ç*¢ÀûM,@OñdL¥Úšéª/ëöLÉÄòk’NÇ_¹Ê Ü]}²Â¨r\Õ,,GOÏ`ð 4M±MbˆÌí˜HçÔ½ä[•@÷Mm÷X8¯3ûî ÆlI\T§ E)uyÀÀhwϤ.j•ü@ü'ãz7¬~ŒƒïîDÞp˜!ïz>#¬qÞÜÍéÒtFyÁÄ/›¶ÿë4Pú“µíÛ‰‡ ò×7i¾{¶ Õ˜áч£V>÷_ÐÑK³¦kЬ=QOrï1›þKCb¾ö“³ã,ÈHòrÏÏÑVûÕ}ާi$½sªT ú+<ìïÛÞ›~í6,°[¯Ä<ê{ÂëPÓØ¸™Œ ǺævÝÒs~*¸®:‚7£¨Ž,èÿ´¸8x1(0 åK¾ŽÛB¼‡áùÎBÓrH1±0Šh{Ó™½°ßÎdêõKÇL¦¼ÔÓ÷«gÃL-}¦Á¯§ópþÍßÜ:ó—bN’@ ¦‡¬ÅJ:Îàbпç€AרW¸—±Ù´az6‘ð8b{a) “ÇéØ\È›ÆGó„ÌVk–Õx(’2ïDÔ‚"R’r©ä8Ó÷ÊÝ¢ZcvÚÞI!¨Ï•œT(Ç™›ñ'¿ iÉtzhçÐY;²·?-ÚÅrò«mo¥ÉSÝh¨]·ŒZh ž¤ØI¸“Ou’ßžWÜgf·‘èdw-¤N&Cº5-†A5àxßsˆ0MB¡elµf5“H\Û๬ì!’dÔð+2˜J¤Çˆò¯C+Wî™su¬JžÈÏù9Ì[œ:Z®nêo)¢Ž+ƒÉy£H1_;˜@šlI3;#é ÅÏ'S躔Ä[¸ÇÌ9mÿ1Î<ð¾œr(øe!¤ñ2d>Ú¶­Å¶¤7%GxzGª ø‚pèÄÒÔÓx_²Óøy£ DKßñLuÀV´Ÿ/1°A¼@‹½ùS™8 »õlîWbÄw@QŽÿ]§_Ã{lÆ¿–™y»I‰?»Uäµh¾#ìÉêào£“}GsLcCAD •Á#“gXSßãö`ËÒøÊÅþ«­[j !þÕÚº.½lrY{av½Ëeßê¶‰Óøn'Ø:¦Vf× È)§ž–^(5b5°kx¿q‹e{ˆ9ÆäÜS½€_N»gߥ$¦Á&yä]-Ä2–pZ˜»1ÂW²Žòßê_î,çw¦\š4¿à#/²I\·§Àªœþª;¬¦ –¬Ìõ÷!}äúWà/ ›~²¢ìë\AÆœÿû±þ\6¥˜zpÚ´ma}›EòÂ÷Ags.ÌÏÞÂv8µOfÄ}Œï.-ð[Œ#°1¿ÊL·šüóâq\Âê‚‘æ%|ˆš¶†½iwÛLåõOÝú¿ž¾¤ž:úÅ0WdýÊÙa¥è¢Ú>ö«IoPŠ4I¶ÛI^F¾À;fÜ!{³ ËÍ4¬þ¡¬Ã‰çX´ªÚÞoævRCØE¶Ž.* ‘©Ö¤4"@ÉSeeï÷Æî”8 Z–ÂGõ¾_?—À÷Æí& üO©® } ,ŽûkVžŽ•‚0Õ³ù5OFF•Åc"Y¯?Œ]ȹªi¬Q0§ªæfÏyuvV%xTÕPÚ%ÅM|2}›ÒvÌëÔdVoÉOÅøé&h‡h_9³p  wìq°Û:ü5Xïd™bšžfú î“iW¿ò‡6Á—é,2·líäÝÞÚ_Mäﻼ>Äžnr%=drtDÑVªU~¤â®¬¶u#„tB%;5#r#«Q&~þ”½GÖJt”¯ÎÝYnAN;Ñ.=à:>N|2.†‚ÎßIT&(kL¨Ö̃*ýìFU<Ú»/€²yjj|:æÇì´ð.#hÈaÎÙä?]K –¬ŸÈ¶n7b\¹ñ‡Öà`Å’.2<Ü_SpèP“º‹žIðˆ·¼ö ¿Aš{s¦¢rV¡õˆíPÐOl¢Áã»v¦ÝH“ L›NïÃ( ߀À²]·bi6:=b¡+R‘9Y¯ùK”]â¨d-Ž b–ãVç~<æ r”.•Ròšä‚µÈ¶ïµ ³0Mÿ ñŠQìÃy.5š˜¡JàÓ éK }ŽåCO¬Ò7µ±4t=³~.Å2kL—5׉[Ç‹öS* ¨“j­o¹œ#}Ë6··pçCÓ€«5cï¥aO§¢jÜÛÃÇÝö@-gBÉ‘†>úÔJ%p¹'¬‘PÌ¡ŽòÔ󃬘qæ`D:÷ûg=Æ@K›êó%?S[ëÌúðcõs˜T¯þHaÚ5 †jÝuÎÕ!Sm†ªJ%íU³sä#a ѬúKåü˜›Ô5õõCœ‰UQê7±’î5j…³Ó™Ë¸®Y œªª]hxƒ,)å›ÒqÈ›â|Xº*ë å™>£s•´HP¼í¡2ìÞ5€APŽWÛ~윋±sjù£Ìx@ØKÌóç«"4M7éme–?t©õ”¹×¢öùWQ哉Rˆ‘à1SO墢M£`9¾J°é—²Ä6½íïˆýöÊöw$ø8æ ð'1nn>ÛDþ«Ö– ö•W¼RY€ÃÇ^¯ñQ(³CN÷*à]ãmYYÔªü€Lšš¦s©…#_} # íÞ® tg‰¯,—¡w2þ«Ý¢%÷'ƒ' å}¡·ìZÌ|×^¡Oviþñ€à§5–þ«þ«ƒjzrªP8g'mÅ ðf?Uji \ }ûAèY•ÄAzrj¾JͼÇ2…N þƒ•ÞÕñ<î4ùÞ1Rk‹’ ^ëOƒ"oçòUK\BÂÓ1ío}n!PèÍ+¦Wi­pGU×CÈâ Ñ;aæ+ÕU†(³:&ñ™ÊE"Ï`á"ó#Ðõ³a#r+9¸BC?Z“R‚Âc™ÉI ,9©;ÝÉÎŒÿÒ K×q“*±©K]§)¡‡Æat”Üù”m¸›¬®Ãx¸W|p?7Ú\ɤΞ¬+¢w›ßÜÙŸ\dx‘¶ ŠÃú×PJ~Š·<ýH„Æñ@@ʰR$ϧ¤mËÄ…/´#â—¢YÍÁŽIGν#<ˆlÎ NØîŸÖ‘%¥ ìØÙ¹ Ù Oœ°˜i‘­›¬ÁÐ'œä—”)·Äû˜‰~“øàÅuìEÌŸ€ÂRª-'ô¶à,¿¾sÿšŽ6Öˆ'Ë<ú÷éVîbšnY™è"Êíÿ‘’ïy’qª‚×ëv«—‘¼ ˜ô|[’$g ¼w9_Š—’~ç‡9†wË{ àÙslÍ©y‘¸œ¼ÂeüøU.4бF‚³X‰K¼A5ã¿# ÷´¯O[•#¢ØãäÄØƒ³±äørÌ6e!^֊ɯ¥o¨Œýß¾T¾§­ʼnžHËn;Â"d?e§'„òÁE$‰—׫…T”~ƒiw¶"vXzÌ´‰_»–¦ ÿbPd¡©‘­q‹H¾q~F‰(ø¸ð—v{=F“™Y—6Á qo¯‹jÀÐ]‘-ô£øßdŽ`ˆ¦÷8NêSa¨@¿ôç[8ty36ª±¤šçcS§V°sÈcèê<¿ÍÊ¿–^rä¹ø‡­°HØX¦å˜ïšÐåa(Ûg{b@@R-ØN'gks½pcô§l¦1Yˆ #ŽuÏHÜ  ï¢‡ä&€(Ò×åxü ¶2ÛCãkVø[ýﮩtåZ uÙç²ä`ü¸m;"˹@ÐáWH›1ôdYÃxy¢ ˆ»4]÷ÜZá ±ÿèó¦û̼]¾vs ÙÝFꤩãºM¶B Ù”qR©µ_HjØ£n¤¬H C¡•E×8}3w+3 ª€_“s[gäaÊ´g’„¾:ɵQÝÁF³?¼Ódq†cɺ«çÅö`µ€túüBú,€•D?›¬Ys Èúù_Œâð0&·ž-L£Žý3h[ UõªÄ©šúùäø°„o¬æðæÈ2zKàg²˜¹>:å>¼µnÔLõdÝѧµp^ÑÙ·2@(þQUP>aù~€^#ç¬lÐz®i¢8…RÑ…Fùü¨s"­&Q]´Kc.œQJwx,qKá2ÝÞþ1¼]ÞÑìe œ`y씘,qT>€Á…ï÷-vm.5ØE+­,xÏM.maÒˆ ޱì”{$ç5^Àƒ¬8Ý^QPêÂÏ;Úþ)(^ýDÓ„ç!ÚáR¦òŸ=/ùã÷#vdäm1"¤žÕ`úši?ëÕ™7ŸÆJE4¤ä¨j 'ƒ¡Ôk¡£x©4Ã8¼²c Þí¸WÙzÅïŸGíÅÜÀ.4|ÛëÁßRe. ì\s•‚`â¶¢®`²h&,ƒzÐ\yŽ|ó!rŽ…LaU=xœXV´W´ê·5ß4qø?ÎÀ¾ZèY| ¦œ‚MyD’ƒz ¾lWÖCÆJø`4Z Ä£+`Rîí.®¶&ÕÄJ|‡Œ6 7ñxfÐ8<ù0H9o±~¯tÿ]€Û}ô zü†-†ÓÙq Ͼo58-è\¼kÎÏ7$È ˜æöE]ÐöÎé[ŽÌƒØtt1’¥íÞÍØš/ðëG©°-î ™¹'ë?ópùÜÔ ÷R/³OBÔ5þ9oš¶v¢J=y£3ò§0Ó“ó›ßÏ Tô!RÌ% É½ /äÉ Ê+é,¹Ú”Ö­ÂB÷$Ѷ´® ,¹nG´L¡:: ¨˜3±€[7oÐ@ìŠÓÿ˜Ö8ªÊpOZl ´Ÿªà-ØÁ 4I¯÷¯Œ'7½Ì r Ψ—¡rä]Îùa·ƒ2çÕ-ÆËL˜¥±œrs¾½9~oÎÙœ+ýBf‡ OÕï¾wò6LÐä6:ÖT¬šGõüzÚ÷UR™M—j"„È€ÓLθq} ^i1¡ÒÒÀ hcUüÂ3l&º­üŽ¥Ÿ^|\y¥ç„׫yè¦M[í@j‘2ÞàžÎAÚ[œséWÖ{Á'6ÛÝó쫱J‡Ã  Ê 3}IÅg&» ¨R3qÚõ“!"ã»hÔÐëŽhB¦Ïïõ§c òϺÔÅòùz“†£™a˜[=!fÿ )"v/ﮘ}¸ç©‘n1/D§Vcl}LÖER{5Ïx%c§ˆ¸ã!Ÿñ ò—7ÐåN~Ñ9gPǔΟ¡H.vÂïùá'Cý¶Ñ™UN¢£;.µuÐ.”æC£S*$—/u‚} ƒŠ¹¬¹n4ÆÉÉ]6¦þqù´þÕÔ¡ ¼gÚ´LeJQfÝÚØlqÚ&øJh!^ Ç}Π5rGÁ+…4ãÀ?C/?Z~s9$Y‹˜[»¿éù$‡¦CxgX;VÌÓA¾V¶P©w&»IŠ×Æœàš”÷@F´~–†óî¥8~Ýò.·¶ù‰|Üä6”ðÕ‚ùôD™ƉWè­tñ=’v()¹_îàθ=4ê¶²v gÝßi˜ô?¡rÆÅë$íÒèv“jeÒêD¦p¤üæ±dwçÃx ”ˆ¹Z5¢ ·Kn9Õ°Ž…§R[Ó,òPP#¯¬5t‰Òàoñý¼¢Í¶·³ƒo0°Æÿ ¡¿©'ÔØ,?ŠKÀv¨ Þ€¯Ö;« w­^Ó¯n=å ÒEgHmY RWïS4 ÿ”¼îBçðO@÷=W$F‚ê …¢ÏL> [WžÞUQ¾¯ªa“‚‰Ï rS>0 ‹YZsurveillance/data/m2.RData0000644000175100001440000000030310636320360015123 0ustar hornikusers‹ r‰0âŠàb```b`bad`b2Y˜€#ƒ'H<׈Y$ ļ@|‘ah/y€Xˆ…€Xˆ¥€Xz 5 F,àcºyiÈûC‹£`Œ:P}Äèà…Âgr˜ïæ Ê%”Ö!k^bnj1!Àn ‚9ò“ŠS‹ÊRS`ŠŠKKR¡–´¢ÔB$‰¢t#“s‹aF@‚ì)™ÅEùé@æ?3/ô´¸ surveillance/data/MMRcoverageDE.RData0000644000175100001440000000151112004012605017156 0ustar hornikusers‹eTkHQ>®lÕ4·Q½þÄqÐÕ2b³4léGt¹:[³3rgÔ^Dý¨¨~ô"(ˆèGDDdЃêGE"¶êÌÒ"¤ìÌ:w48÷ñÝóøî9çN]Ubq8€„JiÌ¥e^ˆ†ȃ±4—ÄãuŠÙÆkæUÕ¹ói.¡9’UôŒ ð,‡Î` I!‰çÀs^DRì9#GB‘ ŒdZ^ÉTnD7·raÛ<ÕÈE³Ô¯d»¸0‚zRîŠ*3È®±u„ºà).Š«™eÏ\ÃEŠ»|lL K4¨á–LŠse‡>ä1Ú`Š3•Ž^²>ÉU.,¦hÃ&‘õ¦P…Æ“DŸ[vÓƒ£Ò:Ö‰ctá»}¸°ž1á¡’Qý?ÇùÛh…¡1Ý–ªW4[íÉæh©[6²Þ¤QÚ’Fsà!“i3]æÀcäàßbä+:³d-‚ 51Å6­þøµ@ÎiƒšhÀª¢`âC€hÀ×»K.@Nì„nœ¸40wÀžï1hY°úýÔ ¬v@Ήk~¯DÐÙùö÷÷Û«Ñé®ÿùâýdt4qsæ£sèôšqgc?ö½x?éðü:‰²Æøëoè÷Û-œzþ~Û3ìßèÔ¡ƒ{IÅBg^š4~ [¼öîÖ¥ˆÎÅç–›Øoû¾_f£[þÓ÷ãóèÑÆNñݼ)'í{Û1Snœ9VÛø‘q܆¬f–d?t‰<¡ÛöôÖòDº¤Dƒ}fÖ«ÏÛ*Ž`&vê@ÁœèÆ_½6Ѓ™¬ÙVtWµ\~^…î´ë…‹æ¥%ðKû÷ÿ²Ü#ø{‰ 1 îùåìÊìKìíZscÂî.LËûÔv®T·LÇ^߯œÓ}z&»YYÓ4©´©Ô0Œ°. á~- ãG %V³åyvÂ5B‘{´¾qÇŽ¶â—! S:|ƒžY|0ûÉ ±20XÆ w€a`8F‚QàNp¸ŒpÀ¸ÜÆ€ûÁàAPcÁÃ`x< ƒ'Àxð$x < *À3`˜&É LÏ‚©`˜f€™`˜ 怹ÀU Ì5`>¨ @XÅ` X –å ¬+AhÏçÁ*ÐVƒÀ‹` x ¼ ^¯ 4ƒ(ˆ8X Z€N °¬IÐRÀx ¸ <Ð6€ l¯ƒ7Àfð&x ¼ 2àð.x¼¶€À‡`+Ø>ƒíàð)Øv‚]`7ø ì{Áç`øìÀ—à ø | oÀapÇÀqpœ§Àið­Ñ“«J"­uãþÞý\ ™þ õ5ÙÓžåzb65õ˜Ìý#§q‰ÝœŽ»â8„°oßiN¬ÌÅ¢ EWdÔöÆî@—K½Zú‰Î–ö:ÑU´×ìˆÖKÿ\±_"Z©ÍoŠVIû,Ñ¥¢µuÚMåþ¦ŠN5 ÕoŽ[g~Æ…Z#íK¸ŸŒÚ¾B›§ŠýÚ¼Üo¶ßiÒ>ÅP÷Çý0ô¿Rë¯ù©§ŽK?D+D‡iþÒ~‘æãºL›Ÿû˜!:A›¿\”ç5?£Î7ÎPýç<ì¯Ôt¦6ë<žÏ›yiJçÕ4dó°Ä¸eá}ËÆ›qá:©«µÇóü¸@Ï­‘úïjûù­jÿÙ=š¼Ì®_s÷Ÿëô¤è™r±oUÇ8è¦jÏyN_Qýฮ¢@O_`˜GÅß3×Ôq¬g×mUÇs]î÷ûuÜÙëê~éí9Ïw]¾®í›þ2U¹þ>±?°SO¥=çç¾Õº§^õç`¹ÚÏ8ïš ÚÓ¿ã£ÕõY§=ãÉy;›ÔõØÏ:ý¥ÿGºÝf¨öÜíôó¤ãG¿¨ŒÛÞ«ñw¿fÏ}ñüyΗzqp Ì[7Ð|ÅLˆ2~”u.þ&õͲž–¯—Í@»¥þË(u¿ä\~.½¦®s)¦úá‚:ÿ¥+ªÒ¯Ÿªþq>ýžóþÓÆ#û\ÐU›Gïß.ûà¹3ï¿-WÝ-ë0¿y~Ì[æ1Ÿ#¼7rŸú[ÌÕ·nÏæ×e>2ÿwžë®{Þ&‘6ËÉñ´¢æf»CÞ-3F¿ßp‘@óúÎ.›HõzБñ2ǵ×U¦=7‘jÉá`‰ßm¹-é¾›½‰¢¬Š&­4ŒÂ}#™·²A³+v¬èz«%®Å.œvÄ{Ý¿ÇNnj±SüºÎÐú9IÛ[îÆâ®„G7(ŠYž_r À/‡åšÙµ7VРÏÌÃojΗú+T¬uaÚ»ßJ Æèoq+Y/û©Á Ú`Œo?BŸ5HŠ£vÊsídžˆ”õüW¶Ê_À÷§Tºt³!míI/‘²ÛàScCÃPž DÒ^:¯ƒÓíHüD2i¥¢ñ^¯>Qª`surveillance/data/q2.RData0000644000175100001440000000030010636320360015124 0ustar hornikusers‹ r‰0âŠàb```b`bad`b2Y˜€#ƒ'H¼ÐˆY$ ļ@|‘apF$„¡®g`F·Œ‚Q€ð1 ¾¼4hýâèQ0 FÁ($P}Äèà…Âgr˜ïæ ÊW”Ö!k^bnj1!Àn ‚9ò“ŠS‹ÊRS`ŠŠKKR¡–´¢ÔB$‰¢t#“s‹aF‚ÚQ Aö”Ì•üt ó;Џ surveillance/data/salmonella.agona.RData0000644000175100001440000000065510636320360020032 0ustar hornikusers‹íVKNÃ0ØNÒŠŠØp ¬ØÑ+VˆÛ@C…”6"©¸Wä»'ž­p”‘&¶çóü<þ(wO×ÕS%"FŒËÄXßuÆ2‘åÜ·Ë¡n·Ý®iÛúªÞt»ZÄ^„ ¯ vsŒ=H~À9ŽÚœÄbÕŸ‘ÍP|h K±gu.«øVs‚mFù…æ2¯Ð/µ_†Ðůt\ 8‚øòºœjàzê5ÔùÜë’ø/4¦$ž'j+ȇ5ε>êÆüÙ†º@ÕÈÊxÍ%ñsa‡ÏüaŽ¡µ”T+æžS>êÌxiÍ%ÁÈFb\k$Þ/àò³‰cœ¥‚bÓòc|˜sZwð`î.ÉI÷‰û¨!r˜ö.“øaMÈËÕW&ãfI.jÌJ~÷ëGî3÷´ÅœŒ‹õã.ÀŸ«†ûÀoß ÞC>÷Fâó+¿s“L2É$ÿUμf«ûhlVŸ—‡ÁíÌÑÿa¾«·Í ÇŸ§ÆY÷<4ýG³Fа¯÷Ükß¼“£ß§/m=2¼ËÁX®ß†‡¾Ûøîwд+º surveillance/data/momo.RData0000644000175100001440000002102612376633551015575 0ustar hornikusersBZh91AY&SY)9ꃤ‚ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿà#À@éPâ€}€ T¥7ÅŠ>€€ * X €zð$((  jbž˜Q=¤M„j~ ¦§èMªl!Šm˜F¦õF“Ôò4FOSji¦&&L&M2dÄÄôÑM©è4Ó&SÔÛS&š14É€Ðdž˜ÿ*ªSÀ¦C@i“F@5M0šhÕ=G¨Í ~¦ z€Ðh€ÓCÔ6§¦£ÔÙG”ÛT=&ž§êž‘ú£@ =1L‡¤Õ=54òjm•˜ 4@SA  €ÐÓõ$¤¦Jh1¨ F€2š4ÈÓ@š 4da`##@@шú EP§è„O6‰1MªŸ“&Ôi3ISjiú¦›SG¨Ú™4P44õhSMê4ÐPOP44¡¦F†‡”6£M4õÐú¨©’=½"¢a24Ú)µ0Ôɉ¡å4ª4L@=FLM1=FÔhhôz¡ú 4ÐC@‰éd2b6¡‰ê&™OP ƒÔhõ>´AA•œÝžr9(XœÞwC'§ÖL}»OËÃäMtçg¨)U×Ú].vLý ˜ŒÑIËjõÓ;-¶ë}Âãr¹ÝIÞç~Šš£Ñ_f­k|Äd†‹K)¨—×l6?†ßw¿áqyÎRs·?AGMåóÖØZ+Y|u:Í|ÎÇïÚî7{îÉæsºSs©î÷†ý§©«­õÙ[\¬\Çu½à~Ü^?'—5ÏéuzýŽÜ÷wÁûÑRSSÔUz+kìlí•Ý­\ÀÍÎv¹î·w¿ACE㥦ò*¨óyý•ÕöË;[uwW‹}·Ìªšª¿Memwª¿×acì²³´µ¶·¸Wsuwx±mïµuòö A`ÄØìv;Oþ_;?Õ¿‡å|¯ûìúßsÝËE²ÔD&³vl9oœ&í×-Î.»kÖn¶¸[©P›(RXÂ[:mk*„üUéÍͶJ9»ÈKÂÒur]c—uŸ·é¿nôët6‰©eV,²ËP«‹\5k¦5ÃKÛ¨/m‹­Óá¶;°wwißפÜè2§H*²¥Œèݳ-¼·Z¬Ø-ÝÍ»X5ÒìØU’§Zš¢iV²í¹¶®Ù»rÙÒË.lÞŽ9yš‰·"ÎFI±,¬e'K.Ù7lÚêÚÙV^Z“W¥âlNZ•l«($¢TªM¹eêç$¬àØ2Ûbní­ˆËÜÅ—…Ù½©+¢ò+¥‘ÎÙ¬é ’"bõä>I“$“/eŽ‘:¬°ì¯8Ýæ¢ó¯Îrâ^–6Ãe¨å±R%±n^•fÍ–['üܹ50ñ¹mÆ Krƪª47s]Ng8Ùg,¼¶WbÛ»¯HTâÜ´–ò͈èÎVæöÕɶT‰®³™Ås:·zÛÙtz'hç€ìJD “ÅÓ€L Lf!IËX#Zç/¨M\DÖ6É»nKwvªå“–Ãy[ÕÓ¶ôtç:¹x¢%ÌtjÍj<"Tx’Ñõ“!  =ª8Ýœëõ®VUêÜÙÕÏEâ¯GM¼ÛnÚˆ Q ™¢È¥2V (#ä(A”eÉ,!˜Š‹ÕX{»±Ž6ÀxØë¢F$B$BD5©"˜ •*$-z/hE`$"pT R`%4‹Òá<*PX9^ÆL«yó¸ J†#*Ò/gDF*2ZFŠL¢úŠE BVŠÎJ¯#hHÍ <Ë9Ç:ÄŸQi=æŒñ¨ÂP”Eó8½T•d51[éY48@Âc¸Lò` Ra ®pžs«BF MI*Fv3ȉïg¼ÐšHÈ3|\®Ö!Z'tª©rI›°@ Š@Ó±lR`d»ŽK ÂŽtœàe*× ¼Ná5XÕmXªAä¨F"NÚ¼A„!‚fTÆWjù£ èTEØ–Ÿ+ÃR¤7/_Ý2 2£EJ/Tg¼¯2¡X ¬¬‚Sa  ^û÷€RT±„Æ”+₤uª¥V&8ˆNÀ"T _dÁ+Xa€:a4(PI÷–•¢1‰× 1x@… W@þÍ?QäôðóQ&‚f®¸ –_^) #–(Ì;Fo›Ì_C¥ð5ZDZ¾ýpMUfxÛ…(N0 <B±£ÐðÆRÈ0ƒ!ƒí݆BŽ úúð>ÀÂÇ{¾¾h`@±`mŠŒ­€J8mGÃªà€…”˜kÙK wífƒ{Îãý«1þï@=’–dQáÆ³x+…ßGµÇ¿E¥gzŒ!)Òñ–×à~5¬Òƒ±5KvûI¤ÒÀœýÕ¼øÂúIu$ß/°[~%…MÒJu9‡Ï02„ŠIƒ’ÖO\µ[TÑS‰MUÆk°Ã¶Ñ7ì²[ŒúBª`A’ÕPæÎAq)aA(QJ²ëÌ&XFHp´Ä7‘P ¥¬ª(†4ä’6â䡼åÑ p€6Ä…..º}[ë’áZÖÆå¬,JC1¶Ø¸O¦O —æ'û’q¨,""Ñî*¨“‡Z3ÀSœŒ X&qøë"³®´‘c¼°£šÜ%‚8w¾!·Ô QÂa‹dÆNGD@Ä@CL4B ™Ô"@ˆ æÕT×Ë za{èX¡#tâ]#Âi±é³8æ;ÂÆ­ k0†=Å =#ŽÖBh‘¬$$‰0¼Ð¥¤‚î(TB˜ë…4Q€ ThY(Ù:M“Jqízæ …å1ÀÒ$±D3SH¤€ËBAJCÍnI Ä&bj£IâN@Âè†I¡(ïØba²Éž»…(\Θ³R ƒ 9Gž ‰£ `MÇD’ÎhD‚‰ wØn’† ZG,|.ŠPå8º´1&¤$VBЃ¡'§İâÙDÃ)/fWMˆÖÓQ±Û?ò…ÖNQ`9‰<’JÉgœ,-¦ð­"û/#æˆs×~‰¨!Bë”2¬J4 äŽ,àªLéêŸ.–˜3³€9 BÕeá–ªÍЀ‚íý'ìôß+—ðÒu?¶Ž—¯ý{ú1ïæì¼nIÑs}†úÜ3Sõ-<Ù§£î6`·Ý/=ÿnÎÕ¯ŸD„Ëkcžr“yÖ¿þn}ì% —ƒÂÞ×oCÊqnÙŽøÞ; ÆXÀ "ÊlÏ®˜ƒP‘P.ªhU.´=¨*ûÿqþûµ4ãžOÈ æ½!¸Æ}{H" ^aÃmÄ×HÑ,”sƒ„ NH” â:è߇â%EcWò~WÙ¡Ú¢\ù˜nhÎ$øp™z_Df%£*¯yMÿ9@ùrÄÒéçÞsÒ’à¦܆(N:Võ”ФŠ"^õ˜eÖ%¶¯§€›®r% É§P&bc!Œ .V.ú§¢ìv£P¢0G|·èúŽ]v«=ªcj`Mzxc$ð-h–f†#R d1pŸŒçÖ¬DQH2KÛòÅ+9Ax]PY]rx‰íÑšSççÙÏþ+Óˆ¡ q* NÏ]#$F˜ò¢ŒÓ¢KöÎ•Ž´v)ô NÈ·±†ìÉ:'¬èXfgÍÐd:ŒSÅÚ”ª: ¦¤ô Ëy[,ÕŸ%•¢ƒa ÍLSSìÓ¾'·ò‰32ßfQŽœ¡¥,ëÇUä‚ ò¦yfŸB߬ÒKNuY¶¥WÓBZ'í†#”‡%;ê¹¶ýeuM}SÜ€"âyç.œ¢’¡E!‹¡1>x)Bp”ÏǼCR×uÁ>'›yúX9ÃP«~‡Íòªæin¼1«=­Wu’ákäW¬XÉ©­Z“$߯M{X«ÅÛ³MIWÇV’î´aVä V˜·éq£S®Û4žH 6„¬¬ƒÏ­¥ÜWæïñ?E ü;»ãÌaöÒcŽœ˜Âª v¢8h­ÙÞ6TST¶ Ô• {$I¥©ij\جÉ|RÓi£SWm\²€Sl76„={®0cŽ‘l¥¥YQ6oÍmxÌǼê3þ)˜.Bã¸EÉ,Û20f%6½øL§0ÉPYy–L:Ç)ŒÌÎW×y0@[w¯ø×qÇÛišhL]Bí?ÀŽ’©z0è Æ@7 Ä×Dz•m£i‹-ÒUØ¿ªéâÐáÙ§^â°Þ ýkïb†V/íëp×§TÎÕowY8 ãÆÊd’.OG5?R¥ìz9óÙ`~I hÍ¢£qÔ«pøÚÔÅ'7#\\8ƒ÷º"$™gn.$^ì¿¿CUh ÃNЯ Èh!2xþr%cRŠ{|8L¥`ø4o«Ì{[ιäÐçÝérÇÆrÿ'mWûáæåæçí?º;Jãj©Æ¾$ËsvÍÃvÎ FÏ'ÒÜoG&¦;7§^ïï/%É[g,æüq‡!üÜRSH££óÃKsÜþ8Ä5Z+›^:è·P&Riõë~Ól- ¡1ÀŽÕèy¹”‘TüUöëè•mÆ+ªûû5zðùü›$å0ž¿‚¡ÚÙCo̧“óÖǤ7{ÎèZÙ¹ÃsÞ)²­d¹¨Žr¥Ù)Ò¿q8ð÷“ýÑj|$«æÙ~¯Ð'’NÂÆ« ëV`§b})¯VñsŒææ$¤ò‡D+Û“/ ßgÉZQcèò¼›²÷ :öfSó*øU-Žªræ@8q„QýÄŽºÞÝC¥w¹ž]áoo<×½ë;*¿ÃØJ;ð>p¤œYªkü¶ŸÃÛÚDWœõR€ƒ¹Óí›kœIË}{LVù)}^ÿ“;sÊñ6µÁM:È™Gò™3½ {Ÿ£ŠÁläñºVÛ pr—6\.uòX—s,R³ç1câ âØãéÓ¯²>ìü_ª#±H„öà3å³ÐCOàÄõG_í¹×ùW°Ý¿ÔJ’>E:¦ŒÂ,F|2ê‹û¸<¶ÿ l¶ :꟣Cù¾Yέz7¼ÏjöA¡àç{2¯p»h>âÔH<¶c_Ò$ƒ›ƒÿÝa‘¾N:>ÏÙ#싆vè›Ìþƒ6Å”·û½?q§ åfÜW žw¨`‡ès¿õSE¶¦ÔÓÈ÷žäð­ÅBé-í,Ú-4 ‹>„ó¯ö1ÍÓ@:Qž¸÷ø¾?ø%ÏWÐÃñèb¯Wž½ÒIªüÇ¥¥6ø-—õŠH̪Çò¡:—þá½³ÊMµ9g¹@|5Ú§#{_š2ˆmæ)$Ã+‹.N, Ê *ôI²ŒNÁæÍ4¾n¯@Í)ŽÏ¿‡a jXÜU"Q%ŸLl¶nî)L ªÞmêïÒÓíc§í¸r/‘ýp«Ý•YˆWéhDìÖ\.EU– »¯ß¶¼%j=ôeC™„QtGˆ:ª‹@Œ²‹I&>ýE¢SߢÐS(KJ£þ¢ÒSž‹E1ò”ZW«û- (µÑZþ¨–•1÷š-!côtZHÇÊÑh=ê‹M*”ú|§ÄôßEýÓQb‹ÝK¿Pg@]¢söeMªûµ”dP$$Y€×’‹âd½?_Œ¢Ò‹Ñ%üb_·¡E¥þ½¯ÔQô4^¢‹Q~j-Þ4]Ô_¼ö_2KB_ K:üõ’‹î;¨¼íá†ÍA•Aâ<¨#6PnÖ È ù2_+¯ÇQoZ’ôuþe”_ýÓßÉtÖ‹à5öTZQ|É/š×ÜI|eCÝè´Òˆõ?‡ÝövHˆë\”D•%L®Ïl‰ÙÙZ“%F0œYmeJÉ2q%b šÌ©2áhÂ|V4°G’]4 ib¿…í´ ypΤë,HTÊÂHD‚HfI'UaTò0c a£Á« £E«I<Û’ñÔ»°c by1i€Æ(Î)<‹É¡<||u]Ì¢éëÉi^_.•TxøéTt±E‚XDñÂð󴤯 m–$±NØ*4%µQ5hKJKŽ4‰g:?±ˆvÄ,y "_âÅTví¡QÛ] +·mk<Ò^%Ï;Ênº´sÎs²xLEÜ1Ý®œq¤[¦ øãSVÅ-–˜%œç=)¹œýy-Img ¢ö¤¸ÕKŽtVõÇÒ’ÕK¶»vÒtLIví —nÚ7磌Z˜ð%‚\õÚ>D–sœùÒ’ÑqÇÖôð½‘.ÜïM쵬’EHª1 hR1¦˜!o1¹²lœõÕËÒ%œû.8î‡qz™/—%ò¼<> Ãȧ{Á/D²K—ŽoOö’ÐKˉQã㢛ÓGŽ„¹çE7‡<ñµ ªÏ]`Ô:õû"YÏA:sœïñüò\};ÔnœóϪÜ[£ìkÚ$ú¢_å’òù|¾_>Adºï5ÁV ÔˆÕ0¬Êç?ei+ -Û±•K õÀUf5×@ ik—uàß¿aRÂGÛ°‚¼âååÝ»8ãã…‘d[·nN©8mÀFš`‰)¦š`ƒkmyÜF1”Œl®œƒi[K…{û«ž½"ÜX, ‚ß½iK@–ÒÞ½zp'üh Bß¿zõ,+„°¶õêh„ i˜„òÈŒc€ŒhJùÀŒ^><óÜ»©Ð—<ì6«ž8Últö»väi°–;˜#Ájª FQ*lßGû>š¨*€¶Ë2NÓ´í:ò`×] ™USL'FpÖFTŒ ¯Võ¾Dœª1°X¯]u×:¾a——w(J@G˪@ªªiz€G=jªš~Õ‹ ñA©™B@F1È1¹s!_’íÁÇ”`Ü_ ÎÓNB†SM4Î †1ãÆu8€Œi˜^KRªi±8ºàG ®ºª¡NP»]už_Á÷"^]•¡//—žwyЖs¥^ýò<ó±=È—9™•‹Ö‚>—R½ÜŒììë òp#9. v†…χ™Ù1’<–Ã]®´æfg{lØ 4¼0GŸ§/—¹‹GqeÑÑãQ PçkÜpèçΰÖì~¡^Žvw‰²$AshÖk/^°.øÏÕâÍ%µaÂʟ¡×™—²äÑ·ïååÙ¡ À££ÝkeœÕêë¯7$ol RY–çð0XDoÈíÐØÅ°Î¯'Ú­’‡ƒ››lK[p8×+ºÙÎú&$ú@Šé]aP¡y` ç:1.ýaÜŠàg‚-´Øtôò›ˆqàkvÀŽÏ_<âoÇ™“#áM‚¾>[ä·æ£e²ÏÏÈ5üd´†~ObùPF~&¿¼—;IÌjlv8±l¢›PGK%¬‘ÙÉ,dÒÅan;ÐGYµÉØI¥¡¡ª´ «[­Á‚t2p`˜»zU†]3!|ŒmÛ‚r).yçÓœé<²\g;GÚ’Á.8Îv¯§Û·¦ˆÜ‚0#Oòï9¯O´ÏÝó\fß7Òð¸—úýßSþþGÕÅ‹¢êÞ,¸]©Nñk¦Çiòi£ãª¿¨œ”/9OÕá˜~åT•ûˆ&<H¶&y••Û+™än÷<]gÍüçåÔì6::?sÉ×ì^*““ÉE}Ä[­˜âMN¬ã\*™Y³èx÷߯ÙÀÜt{^ªZYïÕf˲-MOôåõs¢çžyßz—<ñ³eÆujuë×®ûŸä%œç=3uOfKŽ8ßwÑçž8ét¸ã›qî$¼ s´ûé.ݹçÏtóÁ.Ý»vèß·mV¾ïÏn·¸ã9ÝoRÎs´mæ%Çþ q¼oâKžyç¢túb]»víÐt;y‰vÙ=Œ—nyÚ>|—nÜó½sÏ;cüĹãd{Ù.yãÑçqÇnÏü’ó¦äƒïn\‚¤ °#tŒcc“(Z> #Ào‚5Fugu€U]cððððÚ—‡•ód¾nK·<ïGqÆÔºûb\óÎõ7½.Ül†Ï½çžyéSžxã`yî3©Þ¶KŒçr·g9ÎðoœçezÒ^ªKž6“Ž=êKžzEÓþĽ̌cЩCêA Zä#$ JFDO žÄví¤Ž8é'FÄqÆ’3º7øÒ[Æ$q½-íKÕÄ\ó¡óÜMds΄sÎô~rKi°G8ÙLÎ$g; Ÿ%¹ó¤ŽyîUݱó¥ORKïd»w ¹Û¶ªz14ÀiÐDcÒÜ·0žÀ¹naÎs²}©,ç®ÕuïÐ;ûûõ§‡ KÐ%ÇÏt³%ø\qªqÇ~Éï$ºõëµ9Ï]Uׯ]n½{ûöW˜—^ýbùr]zê½"YÎs¼g=u«$³×U~4–zõعÎsë|õÖ=Yë¬|±,ç9Ýg=u޽ú ½Yë×zë×ÞIg;¯ƒ%ÇÏD—9Õg9ÎÔë׿Zïóý×Xõdºõëµ=A,ç9ޙ΋=ú„%éÎ}à–sÜÎs­yijO˜%ýâ\ñÆãî\qïÒ\óÒ¹ãHä—:Î ,çA.½tNâ]ýú’ïÅ|1.½u‹Öç‘Er6íípÌ1{‘¢Spä7nÀ°m?ø»’)„IÏTsurveillance/data/hepatitisA.RData0000644000175100001440000000203111075173445016710 0ustar hornikusers‹íØù[TUÇñàa”FÙž••™‚Š0Ê*¢bÑÞ#L"ƒ3ƒ¶K›íû¾Ú¾ïûí{ù§ôXï;÷û™§9ÅóôSýrïó¼ørÏ~Î=wžæ¾šò¾rç\ÌÅÊJ\¬”_§ÅøQâ\ÅþÄòáäX"—Ê¥²«+MJfboXÊ¥óÕ0ûY™È·€p Õ›…ƒPƒq‚vÅa8GàH…£q æàX‡ã1'àDœ„y8óq *q*à4,Äé¨Â¨Æ"Ô ‹±KQ‡eXŽX‰U¨GkâÖ  ÍhA+ÚÐŽµèÀ:tb=6  ÑlB/6ãLœ…>œsp.ÎÃù¸â"$Ð "‰-Â0R¸[1‚mEcØŽ ²Èa;°—àR\†Ëq®ÄUØ… \kp-®ÃõØp#nÂ͸·â6ÜŽ;p'îÂݸ÷â>Üð ÂÃxâ1<Ž=xOâ)Ãç˜Äø_ák|ƒoñ¾Çø?ágü‚_ñ›Ëß?±à^ØvG¼e"Œk-n°¸Éò»ì¼ÃbÜÒÛ&Šë7)_íY¹ÕWZ¬±Ø¤|+ß ô‰âòêw¹+î_ùk,…+Ž*¿ÔK×xšUß·ÓÚë¶óî°ÃøfK_oéZŸÞI;·üv‹ëÔîDñ8µ^Þ84ÏEv^ëŠË·xãWÔ¼4¸Åz‹•^z—®þ´Ô^U^¾ÎçXÔ:kÝxíWzåzíÍ·8Ï«§y©]í­‹ÖOû±ÙbO8áÂõ(ìO+ßé•×õQ;ÚÇê¯Õ¢¿N…u·ò^ºÖEûÜOoðò5ÏUµÎ~¿‹½¸lŠôê)Æã_Å*/¿ÚK×¹úÓõÒõôǯû´Ý¢ÖGóÖºûë£ú­–wÅQשÍK×85ÿºè\ýè>QÿêWë§výý­ûCÏ µ§ùh¿Õyõµš½—®u×}­qh>jO÷­W_ýèùÓ7F=¿t®ç|¯Å.+¯çö½æ§ù(Ý¿~ê_뫨yxûÁûâ+LŸ Á§ZlŸyEEfPd4±-|6̶rû\øIW(“îÏ&3;’ƒa^øªsÑÑÑÿ˼Çb¸|¿•éÿò}–ÿ7F,¾'üæmü½ÐA^ï(œÞ}*Å(F1ŠQŒâ§~÷諸¿ï¦ë» —ÿ_~>qÚÎdrëß_†a…l.‘Kþå$“S­-™ävû}æh254ÜŸÏ §Óª:k,=6>’È¥Ò£­™Ä€?’‘DV# †$– ¦²3é¡pänߟܲ`nÆsurveillance/data/n1.RData0000644000175100001440000000051210636320360015125 0ustar hornikusers‹íVÍJÃ@žý ÖJµ¨ñ ˆÐ³Å»=ôäI<õ$D»Š -fƒ¯ã3õM|qf3K6K‚’^÷ƒ/;óe33û“ûùb:\ @‚Ô¤BSK|€ñ.é«+uD2r„Ü@òšm]}é4ÉùǬsÿ Ù¡‹»(Çò©‚˜çlOÈ“(W¶eÞ¿q=‚9ái/‘{PÕ>åÑïÜ“ÎìŒãHÖh§PŸÕšûìóëƒ(¾`;Ü‹ØïÍ¡{²ß¢‡P-š¯KEºÏÖ§¡¾a¬®QGqDDíëî Zÿææ»rúŽ [‚ú‘˜Ý6|9ûš;§î7¿Ãl•¿‹Æ\uâ`ýhMñi–~’-óÒ°£Ÿ ó¼(Ê8äÓ[n}Hê³î_fùjïŠõ š?Ä_”8"¸ surveillance/data/ha.sts.RData0000644000175100001440000001761211746064472016034 0ustar hornikusers‹í\S×Çf+(bˆD Y`N݈n„%‚¸ÿî…‹ºÅQê¬Z÷(V´®:jmÝŠV±8qàþÍ m=¿Ïçë É}ïÝ÷rϽçÜûžéÒ·ß—Ïápô8z–ø¯>¾4ÐÃ¸Ž Z£`yý(u‡«_±À'†ŠH¥0¾0Ç÷j¼ü o7ÎË}äÈÛ1FxHÞFy‡2EÌ^mDZ@ð¸b…”C¬Ä)T@ì¬Ç©„|…TFª U‘jHu$¯HMÄ©…ÔFê u'Ä©‡¸ õW¤Òi„4FÜw¤ Ò""DŒH)âx"ÍÈ×Hs¤Òi…´FÚ m/¤â´G: ‘NHg¤ âƒtEº!Ý‘ˆ/Òé…ôFú }‘~Hd"Gü$Q H’÷=… ¡È@$ G"%‰|ƒ¨(DD#ƒd02Š C†##‘ÈÿQÈhd 2‡ŒG& ‘IÈdd ‹LE¦!Ó‘ÈL$ù™…ÌFæ s‘yÈ|d,DEÈb$Y‚,E–!Ë‘ï$ä{d²Y…¬FÖ k‘uÈzdò#²Ù„lF¶ [‘mÈvd²Ù…ü„$#»‘Ÿ‘=H ²Ù‡ìG ©È/ȯÈAär9‚E~CŽ!Ç‘ÈIäwäòrùù 9ƒœEÎ!ç‘ ÈEär¹‚¤!W‘kÈßÈuä’ŽÜDþA2[Èmär¹‡ÜG2‘ÈCäòÉBž O‘gÈsä’ä ¹¯\Ÿ‹ÿpÑÿ¹èÿ\ô.ú?ýŸ‹þÏEÿç¢ÿsÑÿ¹èÿ\ôn^¿þÏEÿç ô.ú?ýŸ‹þÏEÿç¢ÿsÑÿ¹èÿ\ô.ú?ýŸ‹þÏEÿç¢ÿsÑÿ¹Õê¯ú¡7:)ƒ@•"¯]çõ3\Yž÷½Ô›Y”Z®Rk éÉ[¼,ÒìžÎÂ<¥_”B5H¦‡'`>ŸS¿-iÞü)}¥¤yBiÎémóyÅÙoQm©¤yPqóú’Ô…ô¦tµýb”}W¿ó®ïäcϵ|ÎúÜê÷¡úó­÷×J³¿¡ÿÊ1>ä±ßg b¯KÚÇìgô ü­KºÖ¯tÕácÌÕ},•Æ·KÓw—vŸSïŠÞ s ü]Ôþß·ïü×¥$s©ò{øXëokÅ9ž®~£¨˜èõ2%=VQg›¥Ï©¿*k}ŠyéÏùz—UNþ¹Æœ¯«¬Æ¹÷Í™ÿ*Éy½ï5øÔÛˆcþWÛÁ‡RQ׫´sïs|RÉTÚq²,æ©ËBoË=?ÆÜæÛ|¥´ûü”þóoñ»K=ËRŸjA×x WÀ57𮱤8óï3§U•E<_Üú~̹‡÷-÷¶mJ“Ûh•ô:–´m·üÇ‹J«1פkÞ¯(_ý¯Æèÿ•ó }xý[ÚÆÇòÍOuþ¥ÇßxþL? $ï¹Í¼ggóžµË{ÞÕ¬à#jX$B®È{ŽÓúU¹—Ïé ^–Õ<ç’ÿŒÜ@{âÌ^‡ËƒÚ×!j5{¡ˆÈ^GÊ#´¯UŠö: ?`¯‡*‚ôïû+Ùkµj òUÝ =§V`½-Jð|‰D"‘H$Ò¿Nìÿx›%‘H$‰Dú¯‹â!‰D"‘H_º("‘H$‰ô¥‹â!‰D"‘H_º("‘H$‰ô¥‹â!‰D"‘H_º("‘H$‰ô¥‹â!‰D"‘H_º("‘H$‰ô¥‹â!‰D"‘H_º("‘H$‰ô¥«øñPÞ›årtþh›qÞûÿÊi“‡ÉUáXo~Þ´Âw‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ‚ ˆ/ÿèCtüèÈH…ÊO@OÒAAAAAAAAAAAAA|ÙüGŸ¤3P„û)£UÁJ¥æa:ÎÌO}±‰7…%ÏQt:‹€óy:ÊçZ¯‚l©ŒŒ“«C”­Tr¼¨yÃ6ÛÒí¥È’%K–,Y²dÉ’%K–,Y²dÉ’%K–,Y²dÉ’%K–,Y²dÉ’%K–,Y²dÉ’%K–,Y²dÉ’%K–,Y²dÉ’%K–,Y²dÉ’%K–,Y²dÉ’%K–,Y²dÉ’%K–,Y²dÉ’%K–,Y²dÉ’%K–,Y²dÉ’%ûß·ÿÑŸ[Ô—Gr¸ú ¼màç§üê§Û8 lð¿bó^²GñŠMUÓƒGÀfs×U |×ËuB*õÓñãztþ¸žžæÜÁìÅŸè‡kÏ ë7XGµM#UÊP·(µ*$"HGõyyËUAQšs“\Tr†þaò(,¤'xý’4ïâS œq¤Ü ³Ê-ÐÂ5-ïÕÇår‹Ý¬M"Ôꎪ…Žöa›[Ìfª×¶E¾ê _–*ÏöR :‡×¼ç'¡õ+Ö½æk¯Õ[œz¨³›Áà_X?Ó£PNTèìÑ¡ïÕûr »‘û^».s5žÒÄýj9¶[âb¿·ÖŸùÄ«òÀÄý›W¨¹.Äq=ã½›üⵂVI3ñ¾ÈÊQ?7ñŽ '=¦çÿ½ÓnõÍé‡@|^0®{åÇ ¾¿ÿ^¿­×@ü´M§?ÿr‰ó¤ªµ3@Rm£Å“]¾ ©ÐíäO}+ƒ¤ÍÜ%£í‚ÄÝ¿ë’4;?«b$^vÄ—v)â]x[·½¿ž ┞¾Øïâïj˜ãó@¼h^NâþÚúóNÇÊ>X­m¹|‹Æ7n‰SgÇ=²Ê«ÁTúð ƒzÀ´=hZhM0u3ïÈ›™¦¶Uι8ÌVówe ™æëÖ êæK ½°h˜¬Ž±™µ̶—?v¤˜Ø•;6Ìô»$Ôí<øS·/Ž;ð+˜L¿/’Ý·Ï£nnW`×Ö5l瀉J¯Æ#gßüTÆÍÞ`â´¿ÑýËôåX½5V‡çTüÀžc¯£A¼«ÁU*¸×W1C‘±LÜC"?gsÝÕ ,䣆ÍT®P®7}!pâXJ÷h’žbMM¾IxJÇôvB¬ ZìÉû $‡ÒoLHÝ’#î= ôâûó*¥¹»‚dÌîl‹v}Aû}ìéÝ‹A¢nµ…7Ó$í:g=¼ ’Åß.”mš’ßmÓçnÉªÍæ»šÏÉ®±ÎÞNv Ù^¯ÛžœË Iq¿=çXfþ~E¯ Jª’qO.ï vIÄ–ç‡Û˜¤÷Á[r‡|7bnÅÜŒ¹]ùyçW^qN%ëqï‚Ä|C{÷% i–z|JòM¸Ú|wòï qÉÚøôÏÜ>¡ÏQ§I ©â7¤’ùv4h8wÍCH:öá‡LŒ×^—rµüf5•ò œÝÂÝG2üÀêÞ#ñ¸IÁj‚ýäªÕÇ•ô;׺¡;@ðôÜ(/~74ï'=¶,nUßü,Æ8´³ÌÚ´.Ÿ¹1Ì\f†.ðý Lì;7Ç´¶«-‚IŒÞÍ ’F`¢/[å; x¾ó=g k¼ÎuG¯ïŸÆ+ž¦ÿvÒxm óú­¥Às‰m5íÛË`bk™z³u˜Ìz0$îÇÀÛy1mB˜ñºžZÎOëÎæ¦‹¯Ê¬À|À: W*ƒe ?qÞµz 0vŸu`;&ù8üæ}§ô僪+Îdçö€ÕàŸeª—ƒÕ£núÞÚP®ƒzNò׫ØuÑáÎ5ËÖu:Haw~öé°šëxÞÄ»’FëÕ/ßmX.Är#–+±Ü麭AV"{FËWŒ7Iõ^>}/¦‚¤‘Ùÿl·â(è4¹Jœ¥x¾Çf3Å ïLc÷‘}@2eò‚ì A2ïÚ=§¾6ùkêÍ)¿~ÉìþÃA/®Få‹Q\¯æ=/ÃBà®m2|„»¸“æCï`?Ð rotgÕ0ªP¾ó¿D0ºzÍñ^2ŽN5Õâj™óòs7MNÄr$mÎÔsìåé3À¤fù‰ç¦˜¯ƒÜQ°ë)›Ÿ\žp ŒÔM~¼¸w/…O6ú5¬ vã?ªâqô=Œt¯=q§ðŸ,'g¿çL­ Vï2˜¥x×è¡«v‡—ó­E6¾²=››ùUå<ÜªÇŠÓ ÕèÑÉîmk¹Ü+¥;ôq¨UøÏw±wO™ªZâ-)k‚öÇÑÃ]u8ÛÄG«qÏ´ñÝe‡GnXý5GR6eøïÅ^0øŸ˜Ó6Þyˆ/›Ç%^ â;ãÏ$-k^ÕÙŽ·1¸3øuwüÞþ ©dº|FÚ(Ì•6ÿf° s¼î&[þw‘’À]Wšn­¿6>$­ÔÖÚô‰¸I…öÑWòs– ±ÜˆåJ,wb¹Ë­4¹–6÷Òäb,7cS$Ú)6…ÂFM6*²Q•²ooJÃý6hÐ~•^ ˆ½®?Óë3ÄM.<ù¹gC·=Ä«ÛÁÄÞúçBqûÞ wºÅk¯³Íþz–õÎXƒû¦II–`ÓzŒ¬Iì °ùá¦SÓí™`óÈqɰ.Áæ–§ÕÆK›Á¶CC·Ž¿Ç€m€ºb‹óÀvNøêYáCÀ6ó¶á‘Ú `ûaŒþæÞl ^û~yóåG÷ÛoŽ)¿Y2lŽZ/zäí6÷~»Î:º›úe<úêràÂÝÍË%"»LºÑÒßìd7"Àêfu³c§9…j”y¡_ÚGmKÙÝ´Ñ®Z¦å|‹Ab¿Œåoå» s#æVÌÍ|…ÏŽ¶Ëw?,²àQL²àRl²¹ý€“ûÚƒ¨ÎØúpëˆ\œ½ž¹íQùô@C›¥ ²àü)]:DvrÓßÃÛ€ðÞ,C= ²¶é0áî¸}ÕmºO‘_%ùŽ‘– šâÐlÜÅzu·›e¢Ñ-ÿˆ±ŠѸ„5zÒ• Ú2WÚiëíq¸bÝC Z·k½Û%8#«ä¢M}|/Ø ¢΃\G‰µ×ÃzfVçºþëÞ“Ÿ Z¬mÞ¬¹³æÏÜApjØ¥òXæË,èdA( J5A* ZÙš³‚ê÷Í07w5yãz‰ Øß=ø€l*X pZ3¤ú°}`U­«× œçüªÁîÀú›#&OëQì¸bùØØ¿äÝ®C~wökâé¸r›´ÖÖÕhÏ·²òù¶úšPÅ,w°¹˜¶kB£ßÁ&pí¦‡Uîõ?zײO„õ1oáw1kÙõÐá¾eë¾:¢°û¾\…-ÒYÊ&ZdQ³VïP0ðiê}/gdáÉ¥5sÓ—z*G,_0ùó!ÿ[ýÓC†ŽÎ-§þ}òFv[‡´ž—Ú %Žz“=1:pËjp+¶ˆ]NÛŽM;âË’f}ÿˆìù·×ãvOª¹-—€ØÞD1<ô ˆMœ—TÛaž¿ô§Y dKƒÚÜ”åªl!…-¬°àœë,xgÁ< îY°Ï‚Íùi‚jYö¨˜–¿:ËžïóðkÓr˜ìybbíZƒcdÙŸrm"˱¸×ðÑ ±,çZÒì=‡:g~½FMe“€[uõýT‹ çu^Õ$½+è×=TÙ}å20\åñ`xý80úéI•égÌÁ(ôtÔÆiÚ%B¶dÈ–µ9«&‡e -0´A= òYÐÏ’–h“„Wç÷é§rt6ØÂîõò†"s™¸—ðÄ•MFü f™U#Á«PŒÔåâ™.¥…jyÕI¦F ìîø}ôªv1¡|hðñôî Œj;AþÛ_ L>²Ál;Ʀv41=Â^G’wÆý ÂPyÖ‚Þó@8yêÀîwžpÖÌŒ'‘ËA8õª,;޼© ÉÍßß÷9‡÷ía¼ç<‹_l@˜Ýa͸ƒ­òGE6J²Q“¢lTe£,[Qg+ìlÅ­ÀkVäÙ ½vÅþoA|pËz ¼¸ål¯ãgAxô/›Ü*wAø½çæ{®íµ×C¿ËÙÌøaB0èôðRnØ:0LÍôNëÖŒ!wÏfïc7žÓ‹CÉÀŸrakýŠ`:`–]æ WíJºeÅÞ©;³»ƒÅžN®?‚Áß;W»‚§ûRb–Ëõ\Ú;­˜V½·^³¹qGÝ›LÝCÁªíÔqÜ^ÚQ‘•׎ššQ´àèÊVêÙÊ}Á}V?æÖìNÃÄñõ§67Cƒg‹Ò¯IÁ ÷«_ã|#AëÜÊ¡ûRÙõøô££N‡Ðá¾y÷%é,eâ¾Ò¡0®ÃÏ``Üóû§-æ¬Ñ×ܤ›ÛתVJ÷üö©6µÃ¦zØÔ› bSCš©"6u¤]Ž×,ϳåzíº#[‡dë’l’­[²…ÍB[¸Ð.dtZµ÷ææ™ ^.þÙõ ]ßÊòùˆ* =øâ§®§/ôêÜAÔ‚4ï)ê}¤Y‰ƒí§€ôζ›7¶+Q£ù‘WÁ£Î“ÀÄ0ðèïà“)-Ì£åä*Ûðh¼sØ×àÑ"lÅã¹à!]Æ_µ,<*ÕYì‘t¤×o{hÿ HsÚ;Ôö ¤Û,›ú¬3HÏ-òK»5 ¤)¶.Sýóë—3z>éÌé5¶Ú Ò *%[ƒt¢›yô a ] ïlÔçH§L¹ÊYº9ÿü”§š¬h ÒÖ{ݪC'Öê{þÇ8¼Nw¶.ñÞs$›¶Oïs@’m[Ç›·ÉŠ¡N&µ~Ñ~l*‹Mm±©.6õÅ¦ÂØÔ›*cSgl*M;µÆnS`·-°©8v[ƒÀ|Âü óWg²‘ô¤ðš7Û8×ù(/ËZ9Òªð¼kC¿D ívÁF³€Ã«º4FÝïpþûlÇüdÏ«ƒ½Àø…¾´KÜA0Ö[¿XñxÛŒÜõø‚xÝ,Ž×.׌7§¦Zd£Ußñã5#¿ ÙíÏ7Ã;I]«qoÁÕ1ó—ê ú ¿›]kzžûÝ«µwì‘ëNÝn´^Ã=Èr_ïº4ÖY–#ÞnØq²ìç”O£íOd/äré¢ã.²çÒ;æON„˲†yœn$d·ÊåÕ‹({b²5ùn LötKõ±ãõ|eÏ>e-ËŽW>o1C– A~wø²ï‰5.+È^<«}¿jW#àˆÛŸÛZ/A–2øù?WÊráÁö=€óó%‘ú¶?p/Û×Ч?û^ut§Ò²íNuvP…»ÓW·pÕy•Í\A¯-ë¼Ö­ýšœé?¤.,<{±öxß']¶•²;íÂ&¿\Š… :ý(õÛºZ³¨hÕ EHX˜<Â_‘_kNÎÿ½«…Xʽsurveillance/data/salmAllOnset.RData0000644000175100001440000004155212630575752017233 0ustar hornikusers‹í}y¼GqÏìî;dÉz:lË·|Ÿ²5»Ooöa°åÛß6æ²l [ K²$s„Â`’pqá°!Ü$@HHBÂýv$Ä9H¹$!@¹Ã¯¾ÓßÒÔTï|~ŸOþÛý¸=[5Ý=uuuUÍ>õuÝÜ]vó²BZyò–|mçò¿,´Ã´\—ïÙ²ýîó·o¿zÇž­{CÖ:ÜÝïlݵóö»äËÁ!´–mþôÑûä{ØüéãB¼žHøTÂg>›p—ðáyÂ#¼™ðE„/%üÂW¾Žð„ŸDø)„o%|;á; ?“ðÂ÷¾—ðs ÿ$á~ á—~9áW~ áŸ%üó„ßHøaÂo#üNÂï!üË„?Hø×ÿáß&ü»„ðïþá/^$ü„%ü§„ÿ‚ð× ÿ-á¿'ü„ÿ™ð¿þáÿ$ü?þLáÏ´ O>ˆðJ« JøpÂG^OøD§>ƒðY„»„7ž'üX› _HøR—¾Šðµ„o$|3á§~:áÛ ?ƒð3 ßMøÂ{ ?—ðó ¿ˆð}„_Føg¿Šðƒ„–ðë ¿‘ð[¿ð;¿‡ð/þ á_%ü„‹ðïþáß'üYÂ_$<$ü„ÿˆðŸþsÂ_'ü7„ÿžð?þgÂß#üÂÿAø"üÙá϶ O>ˆðÁ„W>„ðá„"¼žð „O!|:᳄7î~,áó_Hø—¾’ðµ„o |3á'~:áÛ?ƒð6ÂwÞEx/áç~>á¾ðý„†ð+ ?Høu„_Oø¿…ð[ ¿ƒð» ÿáþU¿Nø·”ð'Šðg ðð— ÿá?!üç„¿Føoƒð?þ6áïþ>áÿ üߎîP®-“„—>˜ð*‡^Gø(ÂÇ>ðÉ„O'¼pAx–pŸð9„Ï#|áK?žð•„¯!|á›?™ðÓßFx+ám„·ÞExáçþ Â/$übÂ÷þi¯$üj¯#üs„ð› ¿•ðÛ ¿›ðû€ð‡ÿ:áþ(áþáÏþáá/þ á?!üUÂ_#üׄ¿Aø[„¿Mø»„¿Oøß ÿ7áFøó­~‚ð2Â+¯"¼–ð:ÂG>–ðñ„O&|á „7ž%\>‡ð¹„/ |1áǾ‚ð5„¯'|á[?ðÂ[ ßEx;á„÷~6០üÂ/&üRÂ?Mø„_Møµ„Žð¿™ð#„ßNø]„ßGøý„?DøÃ„?Bøwœð' †ðç ‰ðWÿ1á¯þKÂMøï‹ð?þ.á%üï„ÿ‹ð#ü…<Â_˜ žðI„O#|&á„{„KÂ!|.áó _Lø2ÂW¾šðõ„ŸHøÂO%¼…ð„ï"ü,Â; ï&ülÂÏ#üÂû¿”ðO~á¿–ðC„ß@øM„!ü‹„ßEø½„ßOøW˜ðoþÂ#üIŸ&üy „¿Dø ÿ1á?#ü—„ÿŠðßþ&á"üÂÿJøßÿáÿðó±CxšðrÂ3„×>Œð„!|ᓟJøLÂgîž#üÂ#|>á‹_Fø „¯&|á'~á§¾•ð„ï$ü,Â;ï&|/áçþIÂû¿„ðO~9ῆðC„žð›?Lø ¿“ð{ ÿ2á_!ük„“ðoþáß#üiŸ#¼@x‘ð~”ðŸþ ÂEøo “ð?þá!üo„ÿ“ðÿFx!‹ðB‡ðáå„W^CøPÂGfþ¿Àüùÿóÿæÿ Ìÿº„™ÿ/0ÿ_`þ¿Àüùÿóÿæÿ Ìÿ˜ÿ/0ÿ_`þ¿ÀüáVÂÌÿ˜ÿ/0ÿ_`þ¿Àüùÿóÿæÿ Ìÿ˜ÿ/0ÿ_`þ¿Àüùÿóÿæÿ Ìÿ˜ÿ/¼0óÿæÿ Ìÿ˜ÿ/0ÿ_`þ¿Àüùÿóÿæÿ Ìÿ˜ÿ/,fþ¿Àüùÿóÿæÿ Ìÿ˜ÿ/0ÿ_`þ¿ÀüùÿóÿæÿæÿæÿæÿæÿæÿƒÕ„™ÿ˜ÿ˜ÿ˜ÿ˜ÿ˜ÿ˜ÿ˜ÿ˜ÿ˜ÿ˜ÿ˜ÿ6fþ?`þ?`þ?`þ?`þ?`þ?`þ?`þ?`þ?`þ?`þ?`þ?`þ?`þ?`þ?`þ?`þ?`þ?¸0óÿóÿóÿóÿóÿóÿóÿóÿóÿóÿóÿóÿÁ 3ÿ0ÿ0ÿ0ÿ0ÿ0ÿ0ÿ0ÿ0ÿ0ÿ0ÿ0ÿ0ÿ0ÿ0ÿ0ÿ0ÿ0ÿ|0óÿóÿóÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿázÂÌÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡Ìÿ‡·fþ?dþ?dþ?dþ?dþ?dþ?dþ?dþ?dþ?dþ?dþ?dþ?|0óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿ!óÿá— 3ÿ2ÿ2ÿ2ÿ2ÿ2ÿ2ÿ2ÿ2ÿ2ÿ2ÿ2ÿ_ ^Ì>¯¬,v6Ç+ë‹S¼ÏºÀârÞg}`q%ï³N°¸†÷Y/X<”÷Y7X<‚÷Y?X<š÷YGX<Ž÷YOX<‘÷YWX<•÷Y_X<ƒ÷YgX<›÷YoXìò>ë‹s¼ÏúÃâ<ï³±ø8Þg=bq3ï_Àûñ>ë‹—ò>ë‹Oà}Ö+¯â}Ö-¯ã}Ö/oä}Ö1ŸÄû¬g,>…÷c]ýlh?c÷V8V(#Û—œïÓÙ³wËî½ì”o~¸š?œ÷‘§vÞ¶gëîgo•è2_r•H0—è.— 4—(5OKvÜ’Œ?—,1Ï–ß/M2Œ\ˆÌegÏ%šÈ%bk=(Wñdm‰ŽÛ¥I–Ù‘©#ÞqR"ª ñ âÉ'$»˜”ˆwrQÚ„ ¡wJ"ˆiÙ§ž–h{Z"ž)ÉÒ&%³ïÈêêHÿ ¡yBVþ„ìF’ñuÄ‹wäÚÞ&Ï–¢%YqKÆäò¼L)‘É”¬¦i‘Ñ´Ð<-z˜Þ—ID0-²˜O3õ5é'ò™«îˆü:’M¶å9m‘s[èmÉîÓ’Œ«u|”'hÌeÈ {yfKv÷üi’uä’)äèwŽÜygg’mç—&Qi~¬´PWò|¼Áj]#Mæj—ѪçŠNÈ®?!²œÝwre-‘΄ds"ß Éú&Å3N‰l¦$‚™’,cRVþ„D{û£\Úòü–d÷-‰ð[Âg.;ek&ÊrÌEÏùmxá&tJÖg¤Qv°ìSlb­¹tȾ/Wñ ¹dk™DøÙ?ƾdr¤4ñÊùŸÈ¼xù&yk-ù;)ʰýj¬¹Š·ìH†ÜÞ:¹vÞ.4‹ÍM\mqâÛ‡dh“·ÊwÉŒ&„ÎŽØGì¢-zhK¶Õ¶¾+MÖFK²÷\2è\¢ô\æÏewË$Îd ä3‘·\䙋 g°EÉF²/KÝgoeÛ"Md–}TúIö™_!Mô— ݹЗ‹å’õäÿõݶÄF[Bk[¼Y["Þ¶ì2m™³-ÙK缌”&óv$[ëˆ.;¢ç Y‘[Gl¨-Qw[2ë¶ØNëslòÌ–ð×’Œ5—9sÑe.¶™É÷L¢î\䙉³_—&Qy&rÉ$;Ì~Ž8ÑA&Ù{&ö›IÉs²_ˆc*ÿ}Ënž‹cË?í!‡^e­´Äv[BoKàÖ‚ÌÑ‘uÖ~;ÂÓ„ÈB2Ç ‰î&$âœ(¤#6Ø)¢oi‹.:í(‡ì@ôПВç¶`û²+¶$sËZÚMBÓçh;Ƶ×U.ÑTö›¼û{ÏDïÙoqMgyF.¶‘ -‰6Z¢ï–øŠÖ+¥‰ZâS:¢øŽØqGtÙ‘ˆºóúɆ;·H“uÑ‘ÈcBž3)ø ñK±ŽÈ±-h[ælÿ¥´í2Ÿìø-±ßÖ£”‘d¹D‘ù•‘î쥉oÌ`+b›ÙWIóG©ÉH2ñW™øìì+ÑÂdÏ¡ÍÉšÏ$ ÉDÎü½dŒyŸ¾æ¿äyâÃ[/Œ~µ-k½-;d[ÖH[lª-Ñ|ûúxñÕmY7í»¤‰>Û²¾ÚâÛ"×–ØH ûˆðØ’Œ&Ýæ/äÞµ#ë6û}ðš .;YÚå\ЙÈ1“5–‰¯Ë„†ì8òðË´Ë‹¥‰md"³ì|êð/è!‹G)¯GéÛÅgåO¡mb¯ä"ƒ\äÕßÒ_Ü’=ª%t´$ëj‰o‰ÏÏßÇõŸ#ûT¾&ú©ìÃ|ÎÒ%þ;»´ *þ²Ó¤AÞ’UgòÜLöÒ ¼Ÿ+Md–‰]e/•&~1›“{™f²V²·Egïàš“í’ö>öú ®Å/Gû®üæqäkOÆæbßù ô½Wr?ùJ´çJþâo²WR–â÷3ÙÓ3Ñi&ë§Jfq"kA%k=- ³AµòwÙWôPÁ“5™åÉs² Qá‹Ôõ5|Î?Óöt¿¾2~¯ö?ĈK$CÉdÍdÞLÖQ.ºÉ¯“ö ~Ç>±’s·or=ˆ?¨ü•Ì—=t¼˜ö‚¬öõsX¤' óBõªîÈþ5¶J/íÈS?œÉ™!“Bõò[ò]ÖP&{`ö êùÙ܃ÑO2†ì]Ô߇h+ÐûÿÐfeýâç'X—¹øé|š´Ã.^@ûÌ$óÏΩí+›¤^¨¼iÂ|²fÓe²·d³”õ3¢-TÏq<ʱÈn±‰ÉÖP‡à >äPÊ6}ù»‰v ž°¿ýdˆ{›¬›Êç|0Äý¾k{ÉK“$»‚´làÜà ûÍ&ÊwŠôIl¾Nù¿ž8TùÞÉ{¥Ì`?èëo㼰ÀŠ5²(TÅŸeÇ“7T~‘ÁÞ/¥\ç£]VôL‘žQŸ×‘/‰Ó²çQgX‹e÷P¯ <à‹ÖËÜâ»3Ä×? N@+*xË#2¨n ƒD• o‚PÍx û ’úy~ a¼MDFú®¨§Ê>?HQIÅÛ¿!màpò){g&ë¦ò53QNYI»”Ø0?IL”í&ð3âû*¿sy´³ðC®÷¿&=x«+YÍ<¢uÇ6$ìxi“Ç46ÔL5¤ËŽ-woÅ‹³5±–^˜1}¦5)âÍ$±Ù»5n­øºqüÆŸñgüÆŸñgüÆŸñgüÆŸñgüÆŸñgüÆŸñ瀼l˜À o1&ÿÿ{k±eû–ÝwÇW˜­êGuã6nã6nã6nã6nã6nã6n¶ý_e#ËîݵkëîÛvÞ»ãŽqJ2nã6nã6nã6nã6nã6nKµÿ«”dÅŽ­Ûî¼KR’ÝwíÜɬ$d£ŸXýaÒ¨'.ù´›ŒƒwíÜuïö-{·íÜqÉî-·ëŸ™èßͯãëø:¾Ž¯ãëø:¾Ž¯ãëø:¾Ž¯ãëø:¾Ž¯ãëø:¾Ž¯ãëø:¾.uý¿z‹Òº{Ë®§NíÚ¹ýywîÜ¡ÿèVp÷§wmß¹÷êÝwlÝM‚|‡öm·í|n|2ŠøýOÏA»vï|æìž½»·í¸s$]r{Ëî;÷8ýã;·oß²gOüGUk^/¼îz×or×–ÛŸµåέnº|Ï. ’ô­ù¡›kåõ»¶ìݶeû5ûå„nkø£&ªŸ|ûÎ{wïÜÿAH(rÿUdtÜŽ~0¼ö¿Ìª¦š ßqÜŽ À?î×6ז鋈í`*v%Ç´^:ì?Åñ¼×æ3Ûì—±_‹÷u|Ë|W:=z/w÷l?Î÷Yê¾í§ó+ýöÞæ¶´fîþ¨1K}T>?î3õjé^J–-7n”<Õf‚¹Úù—’·—┟Q:°°§ÛÏ;jl;Ô6æŸéi%¯+ÿ<íÓrý}Ë›ž7ŠVKoMýÛy´¿®·Ì\½ì¼¬,ßžWÿ¬Ü4¯#í‹5>IZ°±¬ µ¬rÞÏx?3÷¬ ¼­éØŽ£ë@kÈÎåçžÁ“ÿØçuLõ‘¡)o´UÁþ õO82CmS?SŽ/û±¾ÔûŸQ6ã×Lfú{[;Q^=?-ó¬ GÏR6Âhšì˜ÜµÌ\4§å'¸1–Ï–;¶¼{Ø6µMëKFñmé³{—§kV‡ÁÝ·W]3ú ë7CHõ¨: ¡)'Kóö¼¥ÇíÇVgJG'ÔkFiÊÍwË¿êOã+‡šz±ã—ò·Ö?{?c?mÓ7„&¯vN¿§,å·&FÌcç·>Àۇ߇ˆïö¹Sù½MiUyªôÙS¡ש¿Vÿhõ†ûÓÄéX;ï¤áÛ®·e¡©Ëç±|ë~ ôjœ¨´ef}ŽõK˜c…¹¯2™&ßê=ëCZŽ•ÁA¡i9Ù¯|¨ Ûõš‡:¦Î\+O˜9Û¡©Ë ó¬e†w•¹êKåš»çøŽKÅ‘`GR¾8Î G2­—†£ñ3ãº^- Gãàõ>AŽ…›•v¯çKÛ, ÇKâÈ- ódâvKÃ1I8šǽÝ&íNÂ8õZi×snÙçGâ8:…½à|øÇÔ»¤¿cè8ñxi'óú8òp Çàx¼iøÇ¹Od¿Éw—ðyäõbòÕ“v«4=†ãîžNúqtá=ÒžC¾p}˜×—q ø»NÚ äsy»ˆ|¬'_gýlä~å™' ÇGÂq õl꼞dð瓟9Ž}a\¯¡vS÷Poû¤á8ÈmüŽœò¥Òp$ñ”áã9öjêò¾€r…ÌN!î"ò;E¼4Ë{gSWgpÌF^Ïæõ0ʼ ¦„-žCYmf¿ã9þBi7Qö[BüÌ!÷(kµŒã²ðºßÏ{8>÷uÒpŒà}Òp<ê•ÔŽf…=ãȺ‹Ióñ¡^ ]Ò´Š¼œIZA˱ÔÓ©sT¨×ÍÑÔÑIäá¹|Æ9äÿ\ÊìJÊ ë¶v#éÃ?ÜŽõ|;yÝFÚ¡#èóY¼‡¤ýVi8BñvŽ¿²€î.ãz:‹´Òw2i?Žßב]w§“þá ¼(¿CXkX%õ¿5Ä€þÑPDpü/ŽÀÃá8Ê÷S!þƒô’†£©qœŽ„…¿ÀQŽ8^ÿxýB\wà}7å™À.ŸBy‚÷³ÉCIYw)W¬é9Òxé½™2y"eýÁ¾/§|ÞÂþ°—(×·‘~3û0yí8&öÓüÞþ-T‡"T}Á;ü0ŽâÆqr8bÇ”¾8Äu÷$£Û;¨¯§Rül"?¥Í‡Úgžgô ^a·Ç°ïÞ‡¬N¡îΡ<°^vñäyù…­áiÃú Ô!tð"êä>ÊáÅ”ÉV~¿žsÞ@â˜â§™çÁGœO~ZFÞ›H7x‚]@~Ïá=è¼O}`­Q×Ù`ÿ°WøX¬×kBôM[)Ïg’7Øüõøºøêâ§È7ŽÜIy€fØÕ)Kõ ×°ÍQæ°ÿe¤2ž&󤯤ÜO£l ‡sÉÿ‰„çù Œƒo|\¨mö1=Ç?‰t€oøa]w~ØÅ.ÊðÎs¿”õ™”é,Ÿ¾ð»¨ïê:ßYä ´ëz?Žã?•|@OXw3!Æ+ùÏ{,Ÿ³—²ÆÁ°%ØìóU¼¢amcíÝB~n¢Ÿj;úXG}@§JêdŽô>–r:Ÿz8™÷®%­h'q®õäíT3Ïl¨ýÿÔÁ1ü®±Á<ûC°ýIÿfê φ-ÞA:ÏâsA⇛É×s!ç<ŠúÐÿ{åýÿX6¥÷/ã<°ßç;¼žDúžFßÀg_C:°°¶á£"þC\+¯&>áµìƒ£áqȩLJèǰwðØ›°Ÿí Ñ×ÝÊ>W†:&}X çð™›(‹Ëxÿ#'Èv€ýí\Î÷xêçÊz;縀2~€Ï¾'Ô>o/yx1ñ/4ü¿œø»Ù4Àfïã<·‘þ­¤óY¤UcàêðBât@—°•’¼‚þSØï¶ ¤v[Ñõ¹9Ô±¯ÊônÒp+Ûíäýùü^à³ÞÏ{ ÿ%FO¡`°iØ]g_h|ÞÂ~X³q®/‡hØ+>À9ãð–·S†8”Gx©ˆáaSá¿Cuˆ`†›pèÏ?†êð˜|½4‘S.úÉÅçW‡w}\Úw¥Éž›ýM¨lÊD¿Ù#!÷{¡z_„¾ªƒ¯p‘ÐP”ƒÃ—N$ýð°[ì¹ ñ ð„ØPöçê  Õ!R8LªÚÓ¿*_U4y¨æÀ!58äÜà (&XøÎE×Ù?„x¸î“8¦:ÌòÃ<äLÖqþU¹~G®8¼°žÊpŸØVu ÖJ½V‡ÿ A¿ªƒrªCr® O°×÷‡xx^}2ÄØêÓ”?úA<üîHouÈÒyÅA>/¢npà’è6Ã\8tHô†ƒzr‘guØæI{m¤/{Ê?"í²¨ X‰ƒ-[Ò=V‡ßA?8ô2û+iòüêp#ØÊW£nªC½žC=LÒžŸCý|†²‡oùDˆ1-hþH_ÑþòøöÇ¡Ok£NÂ_†*>«Í’½¬:lì!%ñ8¶ÌqØÛ7C<ìÔ—ÄÆÕAˆ2gužÄ¥ùs£^«ƒûp°ì±É^U`ôT– Ûo‡xÐx„/yˆö%6aŸ|ùø\ˆ±.|+lº$ꣲ¯o„;®c›Š¸L’õؾâ¡J8ä ÝÉ~›‹o¯WÂ{Ç>i?œcR÷-òõPìŸ ]8È ‡ÕU”½/ÚZu¨â5Ñ.ªC­pàhø%Ò >Å^«8÷©3=¼ìýl¿Ã>à{þ;ã<8üª:ü þ‡bá =Ù'ªƒàpðá¾¼z”:ù沇T‡¥Jš¿“zù6õ†û’vñ?9Ã!„E®ÒºBŸ+ø,än?I»ÑÃÀÄU‡•}†ëèï)„¥ûÆIÎ’­¤?@? ñruØÛ;£}T~鮸òS¢½åÒ§:ÄVÖCuÀ-üýxø_žß×|#ô _X­¡WÓïÁî$f­ÃÁYX;ߢ?¸Ÿ|ý5åœëO¢ï¨xú }ÂëæÍ´OY;â‰¿Š¶ZéM|auèžè)“ýª: Lö÷ }ßC{›ŒvXɇÇÁf¿¢Oÿ2ímŠþ ºÅ·°þc)7Äe_‹6_Ù×WÈÏÆ÷4Äo¢ì¤Íaïzy~ ùÄ~´ý‹ü×ô'ö_íGÈÙøèý(òˆµu }|ä.qF&~©:dñ•qUz€¯Ä¡fßa¨€ûWÚ ä,üV¾ëu\ãØg46C>‚z âµ_ãúÀޏþñ%ƒõò»yï«ÑîªZôöÂo¤®ßFÝÿi\[ߤ}ÀâÄÅe;¾Wü5q«ìëúùœGIÛ»iïðMØÛÏ!®C †Ø~ qêˆ °W]ê:pˆ×_l¡~;#gzù¸‘ú}ùy”kk>mC„«C¿~=úùÊ^ «¿•öÞ¿"ê²’Áîèû«Ã$a¿B9ýéxˆr…=¡¾ð|òvO¨ã˜Ÿ!íZBì† þ]cYè{2âN­»<#Ôµ<ñæÃñÙÕ^úÆ+B\‹àóÑ÷k”ä.ñNu 'dúÏìzßÌ»A.ûR⯠_ˆã.#ÝC]o½{¨OıR¯ZC¹‰ºw’wȱ.rΜ㡎…± N†-c€Ía=¾—r…~°?A>a—ˆQ>H~ßËù°ŽŸLY=‡tÞC:`?ˆ¿±g\D]€Þ› ?×Û8yl öµ+ÄØïr¶«ˆ{˜z¼1Ôùó»(Ëç±Ï|ö½¤õõ”êYï ¿XãØÏáSÞB¾ÞHÙj­ñ‰¤´=ƒò?''øäXOˆíÏ#=È.áõLŽCŸ Ù ¬)è]ë ;ø<­]ì$ÍwñÙ[(_ØÃ¾cÈWQÐåÈøAÍvõrò}ìµ}Íìã$ñƒƒB+y`ÁšÀ±÷Ç¢o­üÊ×B´ |ÿ|”eåc%.¨å¼™ûÜFÙ;$ïÊeOÂá¤Øëß·îç)k¾:lYb–è²:T]t”‹ŸÃaà¹Ì‡Ãgq8h>!MhÉçb<‹ÿÁAµÕÁØE?_}àû°æÀÀoü=iÆŒ\{ÙññöÅÊî?ªC2‘#Tý?Æ=‡`"YªßgåÈ^c²ê`Vñ·ÕÁÛ88W|Z~Ð.1eKä[Ä-:j‰Þ[¢ƒâî·2ºû,ž#„=#Bü)>£ª£Ò„zËèS±>?ù©lû|âCÔÇû?B|™ó}_ÆwC<4ùò-ä ïf̼9ÄXZ|Uuü„ï",6Ú:,âó!~%uò%ÆP×G{©b‚õ¡ŠÍªøõ°IúÍEò€¸í#¤ñ%Ö&âÓCÜ;?LÞÌ~X«X߈밷ýOä¯:pøéqŸ¨r<䌈EÕ¥¿ã¬üÌGW1øðüâïT‡tËšC>‹u÷\þrÚõ…Ü¿Îå^„ýû0b2ìÄ%=ˆ­Vûö…÷„º¦‚u‹˜æ|âïç_G*y@.ˆC°/JŽZ8‹}¾à›Œß^Ë=¹óë(÷·ïˆÑ‘?Àv>õ›½‘±Øg&>:“õƒÃ¥«½ ö_ñPý&°:÷ê {ú I;t„1ð#ð=?ÉûêoàWàw±?|züDÔ[uˆî÷);øTì#ðU²~ªE~Õê÷Rw¢ƒêPfÔÞ×Dö†«UúDN}õ~n[T:ü¾BÛ6åú m뽡®é;¤½ä ~>{ö¬çs tûVÚÜB´çjÿƒŸO9޲¿…¶ù‹ÿ®@–uUå.°#ä?ðwÈgE.ÕÁDzOd/ãÁxäñˆ«þ#ꨊC!CäÂXëÐ)jÓÛIø{-m :Ážþs´7ìaØßï õ;ŒÃžp#á]äúÃÚúóø¬j"_½+®ãê`àÍ!Ø-9p•“¯â:¿)Þ«Öý¡q­Wë“0¬®È)ƒzÿY¶@;McÆÞ„w×ñŠxàRò‚=Xëêwñ>®/&O7QV°³wR÷š'¾˜¼~˜×GB´õOÑvP?z=ñÀ!^{iG<‡wØ{·‘Ö­¤qé;*Ôï`±ÿ£~ùûÔË _Ê{°1Í×l ±^¨ï:`ŸOàs¯âsoä}ø¬µg™ëË(<ûô)°_äOá:?°Ø6Ö5b¥ Hb±[ùÜH¯ÖƯ`³ïÞ6ÞÄ~g’wPk[bìøZê±ÏÅäáBÊ º~%õY`=J^W­Uð¦5ù‡H'j2°qø¤” öy¬×Pû8ç³Hÿ“Øv‘Ä©=Ò‰û¨=#‡-Èß©äíRÒ7Gé{Ѓ8uÖ äm+Ÿž_}ߟNþ±öô½ lôò[ÕÜø>ê綨³JN#|-uÐ#Ü#]GQ½¾Ç]›ùýI¤ç*Ò ½œÈ1ú» àPŸÖ÷A€»¼wz¨ßéo0ïY”ÞÃ\ú t\By^ÆvV¨ß»l g°!'<’4¬ ˜ã°P¿‡GííÒv,ñ°¯Ã‰_mx9ŒÏ+9÷g9Ncr’áw=Ûi·ž×Íäé ÊãÊq޼éûèÓ9—þ|¬á³ð^>ý>ó`CÓjsðŒáI×ò³’s¬â³Ö†ú÷ G’öãCý;‡“(³£ÉË©¤¹ \0kPmçôPÿv@7~ª÷ÚbÌXù øBøe¼;€¯Ô˜þ>¶ŽµŒ¸¶Œ¸þþ> qŸÄL¨3Wù±ì§lKüX~)÷FÄ8'rE¬€:jN?Á|¢cÄ÷Õ>…~mÎ…½9 ê'XW ñó½¸wUkh;iC÷L~¿/Ô>øÖ×/ü2Öâølì#ð#Ÿæ¯ã¸ðù¨b_x ¿Ã7ýÛ/1Îy:é—ý¢ŠÉÅ'W5©'Çø´Šg±‡~´Ã¢nŽØò/HO?²”=¢?G¾ÿ´‡<@?X—W‘Ø2üÖ-|ì6|é¿"Ê¿ÚO_Obï}éùíP×úàã´F…|ðŒdÞ*„,»¡Nõ¡®Em£9½ŒôáYØ´"CŒ€½©Gúôꙡþ½ÎùÄ!€ lõ;¸Ë‰ßCžî¤ü ìϯ!ð»°UØî®kL÷³áޟǾÕ;)¬[Ä•Ÿ¤L´þóÓ´‡íäGíþfê>çã!®3øökCý›ð®>ûtâà`oë©Ü?<ôÙ÷ÚP×6`LJúçû)»Û(cØìËy½W䎨¥aïÁš}3iD?챿NùÜG>îàs¯¢Ž {Ý!oø”³¨Ð ?r q³äóxö;*Ô¿iÃý's^ø‰[B½wBÞ!·g’6ÄŒ·†èCðý ¤ßï~‰røuüûêïB@¯Æ–ØÛað9»BŒwôýí¹|öYÔÖo@Ó溑}À|3üô û€ßÈgB†X—÷óŠõÛDür5e#¶Áúziþ5Êågyvv y_H=A^“—@½§1ÂU¡þ=Þ1¡þßÉü~,urõ‡{ëBœêß!\Âë þñ¢ÆsWSˆWQÓÛNÝêÚî?7Ôµ×yÊsn íºWößGúK<ìéP6Ћ}NcˆcˆŸ%_ØOÏ õ> eråÒ u‚çŸÀùOgßsøÜóÉ3lt#yVy<†xÝGÏàüèwöìN¨k€«Ù®õïôV‡:Þ­§F<1êßùà>lri>‚ãKöí±Ï:ö;2Ô{:ÚY”¿þV}ïàøÇð¹ÇR†¸w)¯Ç‘·£9ö(ν)Ô¿oÁ35¾9”÷W…:ÎQþ°? Ÿ}€ò8Œ´Á¾3FF « nN¦®¶ðyGî’·.ùW~AÏíäKã°õ¼wL¨móÎvŸ¯¼àûJ~_êxt-y[Çq+yoùÑ÷ãjSÓuz:å¡ñè>;Ô¿åþ6Ò]\Âû€O%Íkê5qv¨ãËeäSãß•†Ö#ØÖq<ö¹ƒ8çÊj-õ4Í{èÓâ}ð9AùLòþ$á#ùÌs$ç:Œò_E5^WY/ õï×–q®UæÙm6ØâòPÿ~þàPÿ­ëÊPÿÖ~Šc—ñy“¡þ;×CØwõ¶‚sê³åuŠtè<ëøýHÒ¿.Ô1ùá|Ž®Ã SäMe‚kÎ9•÷•æ9Pÿmª‡qÊËA¤½Å¹—qþCxo:Ôö°šã”_•ïjÒw(ïéž!<ù×£€l ÑV¯¥LaÓˆ»6†¸ÇÃÏc `ÂþËïØ+×>†ã°W`ÿ{$ÄûJ΃ñ¨·"Æ^Š8±ïÛyÅ~÷Ýú\안ç±Ç 6‚߀¿y!ïÝâ^÷ÔHzµOý2ií‘\ׇè3pÅzƒ?ÂÞ…5ª1ö<õQ#|/lû”Pçè7ÿ*ÎÜ')‡[)›‡ù|}·‰zöK­M¢‚ø ñöaÄs¾ëCý7!Ö)«ØçÜPïûØO±¾×§¾P×t Ý/g¿‚sö8ï™×%—‡kB¬‡h­d#eþXÊëÁ㾗𠺡wøè’¸>çÔ=¦$mé†m]Nz#ëBýûWØè!l€W„ÚG«/Oº×hü}$éì…úïÎ õß° nxœáùÒö4Ê2€¿¾”ðfÒ;Ïg<êjÒv"Ÿyl¨÷C©‹åüÞ1<®b›!_Z#€ÌÖ>‹rÀ¼°ƒ³©“u¡ŽeŽ!Ïózg¨ÿ>è|#ó ù†­6zø¼,ÔuŽ£CíG¡õ·‡ñþ‰¤ÿXò;eô ^Î$ÿ'§8vÆôóN!èsû!Ï õßN ÖAÜù;‚4ŸI]JúÎ uLµŒsjÜ 1Ù ÛòPûGÝ3€kóŠ6Íë±äå4ÊVé?-Ô¿ ÖXí8~_O™KY®Ô÷<4ë9ãŽu}ë”P﹫©ŸY3ø]Ã>jSº—輌p—|® u-KýIJPÇpºöÖ…z]ª-IÏïéT?©2>šr)ÉÓ œCãQïaÝžêµããmfBýww:—ÕÛåtD¨õ{¨¯6|(á•”Ç!¦Í&µó#ˆ?ŒcÖ†Ú^Ö„ÚNªý4Ô~ ôM“FÕÅr^[¡Ž–sÎ 3ŸÆQ“F¬0ôë³5–Ó8As¥´öB3ª¼4Î<&Ô¾Vå9tø}m¨ã åu"Ôñ˜>[ã‰Pÿm湆?µÇ)#Ÿe†F½ªŽgBí{V…úo4ö\Á¾ª/ÜÓxëöŸuª´j?A56Õ˜­å¾+ß#+:êqÚÐuL¨ãÖËy¼ ûcNÄ9ØÇyõ]ê 8§ÖµÎõÞ6Ç껑3(k<9Äñlð³kC½g`êúÓzÀÁlר-èXÍÓŽásÖ’æµs1ç×úÖe¤t"—¹‰´‚fÄTáøÓBýwß³¡®i©?9˜<ÝN9¯uœ2jÿ9cø€žaç(oÇ„Ú×èÞsp¨ëVÚpÿ$òyh¨ßSÍûˆ3N Ïg„fuç;6Ô>m5ûàÙûÁiíI÷£UìxHã3]ï6/Ö½EïÛ}Fã#Ýï×óÞ±¡~/9j>*ÔµµãÈãq¡®#i­ë¤PïÓg…z¿92Ô6¢¾_÷©Õ|†®Ïœ}Û”—êK}ªêl¹Ñí ç˜æXå_kw+¨ÓyÕúèÉ¡Ž/ Íz˜­%(͸Œ¾TæÊ׊Ðüw-Ô¿èwåAã:½¿2ÔkNã²åæÙ«è÷'¹ƒÆSISaôR„ú,x;!Ôñ£îÝSÞºwiJý¡ÆjÖwZß«{̲Pï+J¿î]kB] ÓÂê6v$ïNx­“ƒÖqçUó|]»jGÓÔÆ¨6fQÞÚ¡¶7YÛägÆð û‘öÕ5¤z³1àA¡þ·¦)wõ'«C]k]j?tx¨ß•kl·*Ôkv’-„º& rнv…é§{—6ÝUgvŸ×º >Ëò¯kGã •“æWʳò¡1¤®]×>ÆQÙk¢{y'ÔqdÛôÏ ÎÆ£¶®8*nSz5~é¼Õ»Õ­ÖVÕn2cTžj‹Š×8t2ÔëÛ÷·±‹ò®Wå1£5Ò¹27nÚÀ6FShìimÕÆ‡k íª[«Õ£Þ·ñn|…Ðü·urӬ앾`t¬6¬q–®w¥K}æ/ézÌB³)}Ö³P¯+¥AmNùËÍ\ÊŸÕ—êÄúA½§þQõÞ1cmì­2¶±iÛG‡:N;1ÔyæêPïZgEn„œa}¨ÿ ­Ñ龫פֿ u-Iíµj®ïÎ4þÂ3Õ.TßÖwÛxhÂõÕ9t?Ö˜m­á rÒØø`~?,ÔïU§ú.ôÏ„ÚÇÛ|<„:öÕØÆúoõíJ·Ú­­L†&ê‡U^*õ·š/il MßÓ©¾Žuì¦ï/–™ñú®P÷˜ËC½ŽW‡æþí÷_Õ‹åa"ÔöØYâª:<(4×òÚP¿oÔ¼Iã2ÝWÖ„:VÖ:±ÖWØï':´ûƒúé`dßv8•…Ý?'Ìw­·äf>ÛY>5æÖ¸w ¿_ê÷Á«B­WôÑ}Ví[ãëÿÔÞµnæk…J›­×ŒŠç&Í8õ-ºÎ¦ NmM׀ְׄzÝë=ͼ,ì^«òÖw9WÙu¯ñ¡ÝƒÑƒål,e÷WedëvßÖº¦òªµ¥{ÆÑ¨÷|¦±œúë5¡Ž!¬­ùÇêÇÆ:ªGÕ³úÏ*ý¹ù®Íæó“fNË‹Æi>vÑ}Øæº¾t}Øz©%l, zPù´ ÞÏa÷ó–cñ6¾ ç}Ž}†ÊAi³±zi|¢û–ÞÓyõ3aú´ ÞÊØÆP^oªOÕ•­'ûøLy›txkïJ‡…•>/Yzl_Õonæj…¦ÞmŸŽ«òô{[n`Ë¿ÍGUWêƒt-Z›±ùjîš•0óZ>²-w}u¬ÛóÜú •O6¢Ÿ•EpWÛW¯Ööl|®Ï²v—»ïž6+£QþÏÆßvÿÜ0Å“Þo/÷¼Œ’©Íó¬ ´¯Í'¬}†æNûçÞ˜'`/º6ĸ^cFûþæÐPÇcëB½~5îÕ½Bóh­AhíXëŒÈô÷lú^Tã¦5ÚSÍóµv6ÉçN‘§cB;kü ±›6]7*'•™Æ'ÏÚzšÝ74&Q¿¤1¢Æë«C]?õw…ú7…6çW™hmT×9>ú[¯Ôµ­kÕú»l­°µí¾§ükL¬}޵_Ò<ƾ××}ÝÖÛfËðѸ֮1›Ÿ[Ÿbý‘¥ÝÖmSÿkß[ߪ:Òçh½_s'(*[3°þÞÆÖ§û8ÆúÕÑ„íþn÷cm£b#å!„fìªû„®­ kÜäcs;_õºÑœÁú»7Y™ëú³¾]é²ýtÍ©¼¬ ¬ÎqEhú2]÷Kªît>»'uÌü-7¯ú¿/ùø@¯6ö ¡^³~_±vaç·²°ù…ÚêÀþ@c6+?K—Ƨv=[³»OX¿`ã«Üññ稘Ýç'ÚôÝõ¨¥·kåÇæ ‡ðûá†íãcÿ]yë8œß7uNóÙ˜ÀƆʫ•™õIV~×u>*¦™vãChòg}‹¬-Ø1Öfýž¯~×Óâãj+W¿é~¢¼ÛÉÚ=­o³óØ1ÞÞZî¾îÉvÏù±ÚWeíie—ž& Ú{žvïÔfkã–¯3››û¸Þú K§•‡ú`æµ§ê8Ÿ#Xþìšóòð|Œ’•_C!4mfÔú÷ëØ®¥Ìá,­KÙ“Ï)¬/>ÐØà¾[ú-¯¹ëký¾õý~>ÏŸ½ïiòòÕßûKŽ¥Éól}ß~ö…¥s„}±êwø ÐLˆü#TûµuSÄ‹kÙ|·ꚬÆiv¿Çú=žã׳ï¼êXz½y–ævS¤G}ˆæ¶&=aÆØÚ¢_£J¯ÊÕ>KñšX¿¯¿õS_kc/Ü;Š4Úú‹­›ÛwŸ»gâ³Â̧5w»Ö4Þ°¶aדÆDÖ¾íû^k6ŽÖû3!Ýÿío0ÿáF&“æYZKU{³õ]»YºíºðþÕî»~½ÙØ@¯6¦ñ>ÑÖ÷µÏThî­vÝŠ í:ÔßvX^ô¹Áôõ±‰Ò‚ïë^ç±ñµò¥¿gÖþ¶¾ií]ù³¶ ¹…—>›«ø8Àû*¿÷„Ú¢ÂZ7³{Pn`»§X_«±³îƒºŽ|¬ãúú=ÍêËî›>Nåo}œ`ûéø¥ú{;RzÛ®¯õEÖ^ì\ö½µ#ÛÇÇž~ À{Û´óÛ8yÔ¾isN›»Y^lÍÕ·|X¿åãoKkÍ8kTŒ9ê3*VõuH½7Ê6쿯/U+÷öè?>&Ò~Ö.5xÍ­ï\ÊnGÅöÙ>G¶1ga;¿ëGÙ¦×ç(cý·»Þ:#æÐÕ³§q”Mùy²°4maÄýQ>:мKùD»¦,n¿=íû1Zˆ¿•ÑßÓ­64Ùß)hØî6ž[Á«ÆÆö÷Àöo‰pÿH3Fûéß¼Ùõƒïú¾"„f¬`ד¯õ*M¶3ªVå÷>ë›´æ*ó,½¯¿É×ß® uN`Ÿ©¿;<Úà¬ÿS­rÒß§ü^g÷eëGlÿì÷Û8te¨óˆM¦ý¯µ7û½Òº‰ß[õcq>>°¾Óúkkwvn›X¹¨Ll]ÌÆf ·MSšì{Kø5çó3ß×û¿ÞGÁ*ŸÏhBÓ­M).Mzõ^ªûñôÚµãyò8»Ç/•_ؘÀÛ‡]ûšâÅþ^o”ïWÚ=?K]õ“;ܨߎXýx½úÜÈçv½Ø| ˜~^–£h;Ð>ºÔþciõ}&]?«'¿&­‚¹ oe–ö'æÅ÷¨ø|”Ì<öÞR6â×€Î(Ù/ÅŸçÃ÷±ˆŸç@ëTió5è¥b Ï?ËúPk?Š'Ïߨû~½êsìü£ü†Åáãß#yÛ]êã×ÇùÏ(ü(ÿ1j^ýî×ÈR62j°²E“ÕõøEïê÷£|âü½=ã@v³-ò×KÙñRÏðóyü8ö} ÜŠã= þãýÙóL;ç¨çhLå3öý˜M–¯Ì?ñðÿßsjñ·3ÀO¿†4ÌT÷Úñ]zwãÆbCõ_‚é{L±ÉcºÝ3ßÄt7lÜä1E7Á$£ºsML/™§—ÌÓKæé%óÌÊä fÞcŠdT·ç1½M̦ K)f=¦[$'ç9™ÜcŠ"Á$£ºN>eÂi™pZ&œ– §eÂi_ç1EÏcºÉ¨®“ϼ(ÈcŠ &ÕmʧØè­˜¾Ç8댳^`šò) ou‚qVL2ÊY]Ñõœ Æq Lé1žÓå´[­ÓÒcVWaºÉ¨†Õu«u:ë1E‘`’Q «ëVëtÖcü<½dž^2ÏlS§Ó÷˜"ÕÐiÄÌ71›šÖ[aÖ[aÖ1NÎsMV˜bc‚IFu|Ê„Ó2á´L8-NË„Ó~Óz+LÑM0ɨ®“Ï|Ó“D̼ÇɨnÏczMù`–㬫²H0Mù`ÎzŒ³:`’QÎê°N» fÞc§X§=ipÚ«ÖéœÇ4¬®Ât“Q «ëUë´ç1ÅÆ“ŒjX]¯Z§=ñóô’yz#æix¤^µNK)f=¦›Œjè´W­ÓMÓ°Þˆ™÷˜®“ó\S§3ï1E2ªÛó¯Ó2á´L8-NË„Ó~Óz+LQ$˜dT×Ég¾éI"¦ï1E2ªÛM0Mù`ÎyŒ³^¬Ê ¦)¬ÓžÇ8«&嬫²H0}qœbvŒåt¶Z§›<¦au“ŒjXÝlµN» fÞcŠdTÃêf«uZ$˜¾Ç›<¦ÛM0îé³ §³ §³ §³ §›š:­0 FLé1 V˜žãt®¹¾*L1ë1ÝdT×ɧL8-NË„Ó2á´Ÿè´Ÿè´Ÿè´Ÿè´ßô$³Õ:ó˜¢ç1ÝdT·)¬ÓY)ŠÓ÷˜nS>Eá­®(¼Õ…·º¢ðVWÞê°Nç<ÆqŠU¹1ÁXN7Uë´ç1 «‹˜dTÃê*LÃê6Uë´ô˜bÖcºÉ¨†ÕmªÖié1~ž^2O/™g¶©Ó S &ÕÐé¦jv̼Ç4¬·Ât{Ósržkê´Â=é&£¼NË„Ó2á´L8-NûM똾Çɨn7Á8ùÌ7=I…)º &ÕmÊë´ç1Îz)=ÆY¯`œõ…·º¢ðVWÞêŠÂ[]Ñõœ]ÏiÑõœ®n3W­Ón‚™÷˜"Õ°º Ó°º¹jÎyLÑó˜n2ªausÕ:ó?O/™§—Ì3ÛÔi…)6&˜dTC§sÕª,LßcÖ[aºÝãä<×Ôi…)º &åuZ&œ– §eÂi™pZ6­w®Z§¥Ç³ÓMFu|曞¤ÂE‚IFu›òÁ:í&˜yqÖ‹uÚóg½Eá­®(¼Õ…·º¢ðVWt=§E×sZt=§…«Û”I¸L*ÀeR.“ p™T€Ë¤\&à2©—I¸L*ÀeR.“ p™T€Ë¤\&à2©—I¸L*ÀeR.“ p™T€Ë¤\&à2©—I¸L*ÀeR.“ p™T€Ë¤\&à2©—I¸L*ÀeR.“ p™T€Ë¤\&à2©—I¸L*ÀeR.“ p™T€Ë¤\&à2©—I¸L*ÀeR.“ p™T€ûI¸ŸT€ûI¸ŸT€ûI¸ŸT€ûI¸ŸT€ûIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–úIe©ŸT–æ“ÊÒ|RYšO*KóIei>©,Í'•¥ù¤²4ŸT–æ«uÚM0óãç阧a½óÕ:ó˜¢ç1ÝdTC§óÕ:õ˜†õFLßcºNÎsMFLßcŠdT·›`œ|Ê„Ó2á´L8-NûMë­0ÅÆ“ŒêÎzLÏq:ßô$¦˜õ˜n2ªÛ”Öé&qÖ Ì¼Ç8ë- ouEá­®(¼Õ…·º¢ðVWt=§E×sZt=§E³nS «‹kuÄ$£¬ÕU‰CÃêˆé{L‘Œ²VW ’yzÉ<½džÞˆy¬õV¥Â†N#¦è&˜d”Õie ëk½Ä”Óõ˜žã´YŽ˜bÖcºÉ(¯Ó2á´L8-NË„Óf˜˜y)’QÝžÇôœ|šàˆ)zÓMFu›òqàˆqÖë*Àã¬×U€‰é{L‘ŒrVç*À•Ó𜺠pÄ8N]¸(|8bVWø pÄ4¬®ðà¢ðàˆ)f=¦›ŒjX]á+Àãçé%óô’yšàˆ)Š“Œjè´ð`bæ=¦a½…¯GLÏɹYŽ˜¢ç1Ýd”×i™pZ&œ– §eÂi³LLßcŠdT·›`œ|šàˆ)º &ÕmÊÇU€#ÆY¯«GŒ³^W. _Žgu®LLS>®1ŽSWŽ˜§]_&fÞcŠdTÃ꺾\t}8bŠžÇt“Q «ëúÊRÄÝ3ï1žÓÙ„ÓÙ„ÓÙ„ÓÙ„ÓÙ„Ófe)b:íúÊ1ý&¦YYŠ˜¢H0ɨ®“O™pZ&œ– §eÂi™pÚOtÚOtÚOtÚOtÚ¬,EL±1Á$£ºMù¸Ê1})6yL·›`šòq•¥ˆqVç*Kã¬ÎU–"Æqê*Kã9mV–Šž¯,ELÃêz¾²DL¿‰iV–"¦(L2ªau=ÿÛˆñóô’yzÉ<ÍßÓ÷˜"ÕÐiÏÿ¶°èùßFLÃz{þ·…Ä897[1ÅÆ“Œê:ù” §eÂi™pZ&œ– §ÍßFLÑM0ɨ®“Oó·…ÄÌ{L‘Œêö<¦×”ûmaÄ8ëu¿-$¦)÷ÛˆqVç~[1ÎêÜo ‰™÷Ç©ûmaÄ48õ¿-Œ˜†ÕÍúßS61ΓÌúß“ŒjXݬ¯GŒŸ§—ÌÓ1OÃ#Íú pijÓMF5t:ë+ÀÓ°ÞY_Ž˜®“s³L̼ÇɨnÏc¼NË„Ó2á´L8-N›àˆ)Š“Œê:ù4+ÀÄô=¦HFu» ¦)WŽg½®LLS>®1Îê\8bœÕ¹ 01}qœº 01–ÓM¾1 «Ûä+ÀÓ°ºM¾L̼Çɨ†Õmò`bæ=ÆÏÓ1OÃz7ù pÄ=é&£:Ýä+ÀÓ°ÞM¾1]'çf˜˜¾Çɨn7Á8ù” §eÂi™pZ&œ6+ÀSlL0ɨî¬Çô§Í pijÓMFu›òqàˆqÖë*Àã¬×U€‰™÷˜"%V§ÿ.v¼“ß¼qÿ·bÿ·îþo½ýßf÷Û´ÿÛÜþoåþoýýß”žÖÍ¢„þ7þ]ȈîìØr÷Ö=¤G‘ÙŽºç¡?t7WíÞºkçî½ÛvÜyÃîm[vܹ}ëˆi’>·ßuþž‹¶ìÅmó5º­¸ûÞí2Óλ·mÙ~Ãõ¦cˆ×ÈÃsûðÖž½{â­µž®å{îÝýì­Û¶oß²ãv’Ûÿù”Rk0surveillance/data/fooepidata.RData0000644000175100001440000014531412420322610016725 0ustar hornikusersý7zXZi"Þ6!ÏXÌû5–Ê])TW"änRÊŸãXdGŸã>@j½õtA©°”'å»r̆®»a{ªñŠÍÊ i-ðNœîy0ûv·P´rÊæWÚnUXßkLÂ-ðË£@¡Ûê4:Õì,Ⱦ}@D–bŠ˜q%Jð)¹ì6ÖÌëÝ=Ô%ömP"ˆ±`þ/¡†êß{}$«Ç[X,>x ïhLž‹ÑõY ÊÿKÙX õ©g:íHxw´$d{-_’BqZºz)wª»±Ï!ópæ]Ö äjdZÊBL·ø^K'ÌŒCEb†;µ:e2è ýM¥wû( ÇŸ4àÝÙãc¸Óí4o…XºÜ¸4yI'®¨þÐuª½ _íàC¨Öêî"×¹ÃQ6åS5nwX^ï uŸ7$„D&öâ&ºO_"¿èü5ã ÑÓ Tœ61KÌÇÀ‹ì—'W7œ²ù$ Ãô…£A«‘y ,%ýÅÍY ê‘ÀÜsÏ|I:M2 ²KAsT²Õæ—e©‰YD‡Oo>½ú…ß*‰ý*®nOc¥ˆ©“Á´®+PÒPÊ¥¿ÕÓºWRSG"­N†§L-x üß×F  =Õ_¸öÇA–ÒZ¦)H»Û”òµ@îÌ<¼l|v§ÞæÉ\ç§Ø `ËÔõ¥ö ÷9<Ÿ‰ ¤q0. 3_å‚éi,µÆÛ4‹Ü@x ó…UDú­‰6TgöE~q O€ †¤ó{)ì|/P›7x¸ÊŸÙbÓS[Ó¼Pübuè%HŸßIÉà¸6§HÉ·('Žƒj¿xÒ‰kAÁY¡ƒòbú^ògHêj¦RÅO?¥  ¹A7õ R+ÍDRއÿ#åo¥ZÊE¡zS{|¡¤û%æRµFÙüàÖÆ?a£*¾š9Iþ'PŽV®tdÓÑ‹¦¿fqõ[cÖÙÖgNIv|J„muƒS¹ÿ?xdÔîƒlÿ‹4g( ØvëòZ½x·{ùÌþNä\*åJsÜe¦‚Ù·ÃƼÕƒ>Ò:$îžõÇx8¤R¡òÇ*רê[1ÂMæ;¼‡LÕJà£Ksš!ÙmÍüløªqI¡MA¨‹zuж:©(âõÛ‹«Xsh9µséj„›$5 ÷­HEœO›c}†1N DÛŠe†U(ÛMrÛ¤œ+¥ºe +Â?N¥È ÿE1˜ƒ YÇËyÁ`Ñg9êD¦ágŠêaE°•~Î#™vY,›vn#èE[sï91–ôÛjY`“²a "!€¢`’CxÚ¬míÁþ߉-öxB!Ÿa Q¥G$=KŒPơʩW_ûaèÌDo¾ ‰]Zm^‰Iã„÷3 ¥ÿÎ÷8pÁÔ笠¹é>’rI´FÀ{é¾™,$QD#€B˜Ä–S…ˆ?®ÿ·$9îÓêÂUO£özG lªŽÐ`rùïx1ˆmO.»u´ÒbZ™ª°ý66-øoŒF~q-ØÝ¢È`[ö¨]›ªz¹ÍD‚ÉÎWxËÐl‹gÓËûN}U&€9í),Qµ iŒÂ°¯È÷¸q¦’§¨b å â1S‘' †fÛj£Mî”!—¯ö¥“ý ª<"¡ót“Ÿv]rê[mCÖ¬œ„ÿ3Gíê‡û”u_‚!“É7?3Üî IîX% lc—Ū… I=,ÚÁÌNä§ôp3\q~®µáÂ~èY'šÁ”c“ö ÜੇÙl£Èµ»¨'€†]eš¿Œ¨Íð¨õÂDyý«vNûÛ­Î`çìÂjåR4ëïëì½{žïÉG@óM“´\v¥ Ì?´•ý’†VæH‰Ëð9f#Ûí 4^¸oQ…Í·}]¯hW•_‡¾ðâ* ¾îH]øYñ·%@d}õî?TºÒ#P)þ{Ã’–ªcBH6 ¾ûŠ™ È©³‰t‚TÞyhXÌý±w08ùµ†@6:JןNzÔ~¢€ Mä’˜I¸éë(@#e’ ¦mñó1ÍàÄocsâ7:ü¶xÿ’ˆâ±ë¬´°z?/YZú:.øÇçX1/w{M÷9ó×Ï;)T·1¢üzÇÞ*WðÁ7å¥r™j±Ï¦zcŠi%Ë+,[?»’”½E%7k£‹@ÒK-óJ§Wðƒ¦ÅXŒÀý-­‡°.èÜè²½>æO*Éüêä|@°Z­näÛ\­3z¥–›'è ÊeŠ„„r®+V"cÿÖcð¦RŒQg"Þì{çw3¤’aß0C}¢9.¶pÁdoâòíP¤RÛlݔ٠Œæ…c©Ñ%:jýcÄá-t|" YpR¡º0ÅO’wšÅ–º©±u$‰£à0ç™ç߸ínP½eð <ß§ƒÀ¥þ (Q2YÝŽîúÔ7ÎËÈvÉû©t%€ §™ Q^V!ß–ª²…¨&ô({rá¶Iû-^îICYàîtk¸ü#ãœ8­½Wç6ïüôÍ‹øŠ³‡ë!\i˜¦ñŠª¨¹èÈôÙÝ ç|—F’ä¾É%¶veû¹É¡ˆzÂT&2:mQ^²¸Š¨ø GÒ]dÃD²¶¢qråaªV²Ì ÙtœH,Y}ÂL©‘Äk|Àý´ŒÄV{ åiB¬œò  Š.e\“©ÏÆBíœËº~"F ½œ´ò‡;Nge_o5WHù “›ýRç8p´Âõ¥¿Ò ,)„x2ÒNœHJá«2ÚBsõyG/8à7øe¬É|²—~¹Ô/]½ÉÆ)Kñ.ýÕ]½Ó1ºSøÝ¥gÇ-¿†üƒmUnqûÊw»šyÜm¯òO}U©Ãõèt¯ñ®xr¸k¡ýêÄ£O¹ºNÊ»÷zá(«ž“¼–r¢yw¿¶|Ë‘$°‘‰-Ä|‘VXK ééŠçÄY%ï5±c•ñzÝKµI:œ§ºØjKzàzÃmúLþ¤b¢&CR' ßüyƒÇ7ö¸¥Æ%ò!h4b ÔͶ1…B¶Ñf£§>Ÿ$MwŒ^\j[’¢Þ¡¸¹c2gµÝ಻ ôãDÂÝQôò¿"%ØSïÊ»ÿQF`4q2ØwC§_p`§ ÷©Ùa™ØÈÞ]t¡%Ëí×mÞ$!Óm<[,÷*û¼±_2^JÈ1V<½ T{Ð{h7zdƒ}Šþ(_ö«L_ÊÜ /ã×%yÛOÛN’ù:¦SÍýÀêlR¹þC¨3ÂD O˜5¹ÖÈìÜâì Šæljžj´êo‚+=ŒF>Û<ó@Ÿf‰Ô_™¦°ŽÕæ‚5†ÈÐVd@±9&TCd~0 «Áë‘s¢ŽiUñV›]ÇäªõÍaªóyÖtœ½9Ý—+&M³/±ôÈÈøšÅ’µ¢~»Îæ[‚­ùœ˜þµ×Sjwm|2çr®N/–éL»ºÌÏÍ¥§E@1t ËsBK”¾ÂÇf[øSç¨IµÂÂY¢‹Ðáåá_ZžX £¦¸vdKCHðï*;‰N¿H3ÔRÆö§!TI˜AæÌ¿¦dÆë– ¾è€{ÿƒçú»ªØ’A:@ýtb¤ ‹ÓL9åÿþf Ÿµ<Þ¡äFªnÐ;¼Wô¤1¤+Xj.1×@l"Z¾£/+çÍës ¢SÇâ¢ZåÐ\kc» ÞÿsŸæt»á#PBþA-ŸðÙ*ö˜¶U•©wÕOª<»ˆ~zb^ÑÕå¼Î,[ÓÝ{ókúìÔ^ºÃ›’†@L¦Cí£š/ôëBWd&NÔÏ8ÃGfö¦¹qk^&Çõp ráÛíb®¯phåÏ7gµU>¥k—Â"›”Ó¥ÀôíªßÛÔ¾[Îð¨TtÈ2 “(w˜ASáÑMŽnºƒ¾zž[,Ú/«#¨Š±›'[Òûÿ¹™¦[*Â>妛E­´†¾àÞ¹Ÿ' ¹»r¬ëɦT°~ÌE”­Ø[ǽ+çT‚¬Œ—nѽΖy¨í\­ô÷¹–ÍÀ7®â"Lê|}$Ú:›ÖÝ4v¥ ƒ’ÑGp·h†JˆÀ”cRšhÓuâMH7¹¼"Ž0kŸ7}&Âr,ºq¯ÿÉûçMW9h¸ò6:ñi05tÍÖnÒ¿úuUOG~r•£ÎÅëòŸíxÁáü‡¤<3ÊOBß=Œ‚.ÈyÇmþ—1ÃÛ<Ç)}?%R!2;?ë5Ó0‹3Y×Òñ_›@ÿöM«în X[;m´E¾ýàNÝšëV€vºRÑ#ï²Â6çgû -ñ¯¦/Vìß$ˆí7Áwe]êûžfðóU]Nån‘¡ãò(~Xù­ëµ*yL(4E+àm[ÉnæôldüáÝYZ#tÜ-e·WXêéI¥ž(Q+=‚QN×ÉGóA~¶Æ/UÏF# Qã9áíߌâËë)OíÞVÎY@µZTvÖê Uåô7=Àfæ» ¹—qyxKjÒ¼Hý40†¶NêÃ_óÖäÔ–M 3¨¬>×¾¿müv¬Yäå[ùÇÚ­üû:ràa¦?­mÙýÑîÔ:©M{é‘ýLİœ¶¿…¸h„¨±ÀS{™ WàÀ„;†ø…òWö27šh\K ƒ‚>µ]#Z?\¬€ñ—›ý"ô*†´ÄhšÍªEƒ±µ¿G”Ú’É<­{>Ùr‰§Æ/ž`$@õÛP³zìÊ”^(×—ÿHY/C¿Oõ‹$OJÃñèz3öÿ×õžT{#åU3XÀ»7UCœ¡ÙM®Qš™¸Íòˆ®úuyÝk§â¼›žÊ^Sî+}YN ××ëfm€H½Z¤Ø$#;©î8éWg©äÅÜøàKä¢oN?{Ù±/…"7ye¹ÕÂMqÇA{° óâÓµ×4QÌÕÏ0ÞGKÛ+ ¢£àÈKO¨‡ÛpòÒY™“ˆ?+Þ² O~eMÒwRòVø›¼ÔVy”PêËݼ+N¶ø~|­ø»“\@글 Š^ ·³¬ÁŸèqC:Ô¬\ÜOy¦%DÕ0]í|¯b¤Ÿ»þ¹Œ2Ë(ì#N휨gÁÀëgºŽS®d¬m2÷þþøùÒTt×GÞÿ2oÑ­þ¢‘᪤ yÅ;@ M—±f 8ݜȱ‚›ˆŸºz&ÿ?Ñ€5(N8ÓäŽb.PÔ$.^ñ(_žþ‘D¹TèXÏ‘¢‹ë ŸÂq4ce°‹"gð[¬âm_ØHª6¬‡&i$€—(ª1~¨»à.ÃÞ€v##|Þ­J­³óC^¿p]J²…×1ú—®?ï">–^ö¬Ï¿Ûmi›2x9ì­58}¦±0Gƒ¦ÄRC¼;3Ëžöó®yÈêQJcd°bô0 ÌWgò@u©Žjept ¡’¬¢:?«7>JÁ\û¶g¶÷bMMÐç’Þõ‚Ø .^Ñà0(ºJº•±ÊHWYj+fBé“{|pp°-ûSs{Fƒ—wùh_m¡ß²äÃ5&lÀùD§p+׆F8©ÉY¼F­L'ûÁHúز•JWe­Í£îö™Õ‰‡0ea¨J&(}úïÉ ‹qršŽj¿SX%àK Cú>Šz`„U ãA½ÏÖ…@=ÅÛ ÖkÌì±ñånÅÊ÷ë ñédwߎ$¹þŒk‚%™bÈX3ÎÁ ô¿ÏQrŠ)­ÈI–M¨¢¥/µR|ðž"]Ú¨½Âä6¿hBùR´ám—ÚÛ0Ô¸ ˆýÑ=×öŒ¨–›ŒÆÍó)-´JF˜Þ ùù½èëïÛ5ª, ‰¿G´.3Þ ø(Qm·I;›±Dçã‘™ 5£A¾öO΂ÃÀ3f6ᙪUÀHº¨ ÎÓö—+ & ÊäÊØþÂ:ãB'\ ®ãXMÀä@ňOâ#HÑ!+VÃ^“’ÌÙJºhÄÈ>ÓìȼˆNK>Ø2I´ÞµV–,€ýS%ÿÂ@„‰Pwí4lñÓ0ëßc–™}@M˜ òª7rø…ôu:ÕæF'ƒÆEæÊ¯-é%ŽÛ¤G¡]¸‡2<'ì©é€áÜo_ïof‡àE›KFkc¿uŽEIØØp «B&ß3¦‘ˆvŠ‹{„ vµRß›¥T;/„¨½m±¥N"f˜±31éÓF‰è¥åƒ”#‚ˆ’âOý"ÜÜ*ïƒ%Ž> WH LÂŒ¼[ü¤D*מ͓m0èf cv3žëø’$QÀ©,#,¶J†/Á˜œ,U̸6N漺7*TzÀš !„wj׆*wæ¾RÆË‰‰K•MºW½’ŽeY¬®‰×«J³qlÁê€à`ôôÂ.fO–ȇ‘PQ VÌCøãÓíC5â¿Ï `˜DzªW¢¯ºÕ¦2Kq¦$°”„øÆu:•çõ-˜kÜüæ!äó8Ð4¹ü¶&¹™PõáÛÏ…±—ìDù‰ý–%³’ÇXùŒ3[ dë¢îàwó}Þ´cñ° UœxT•£‹ù@œÑùL)ÍÙ$U„™hýãÎ Õ˜8šÅv2ÑènWánž§¶ÎÂÎü1¡˜Ûš6š_c§ˆ½(7 ¢jmÚ˜Eéè@Ý1¶Óôw<¡íjÌç2_/™ÚåŒ]ñx`¡fñ6M± Æ´T!#‚ÍQ3>²ŸÌvBŸ‚¦YjOD=Ø ÷ Ÿ5ð»3÷γâåŒLÁÌEP…ƪd¥D°Á÷UÖ:CÃîô\§àÀ³V ¹Ÿ±ºº¦gzêï1óª™ípÓøýç.ã²î¯ÇçÞÂZõ¬”ËdOßæâÛðSê¯âï ?ÎOE#†pó"oq§ *aDÔ­ž8i±ô[pT=M³WŸ´ÿ‹ze=?3¯GµÞ“,Ò^ ¬”g&•€Ý6J2‡ãu yÜs»<†tj:ÊŽÏ®÷àO¤U{Z±6 ô>húvä»Ñùu›í…£Õ‡ïlw0xìT»í£s ›ÎCkçóîŽê®Ç©P¢÷^²f Šwì_U[ËæÊaÊ­Ž.ŽÜêX߈S›h£E/øqÊ›‡“è¤üñJi™ºM>oÉöá5 ïͺòá’æ9öŠâq‚u5Bð~L“†lËQ,)'‹„I–†³1a*Êù—ea‡¾âÇ{çFB ÞÁè? ­à¬¸Û^'ÊFò¦¸¢Ù›¿=Û÷9)AÛ~iüû¯ÿCÍov¹82ïçRf,I}åœõ²35%æKn°Æ-Ä´ò¼U±+ÊÖ <ÄÂAAZ”jq Fy'‡|¹¹'!Gþ\Ùä¬ú—ÁÇ=ÑÌ÷w `Ù7¬&¬ ÀæŽYˆÛ¶0ܲ£±'É÷Ä{­zÞì Æ$›Gñ)P`*NL{môëAéó…& •Çc¨Uï]VŸ¿™ÓK^¸Hs<Ú‰þØÃ|^H—0š#]÷&’.¦¾Ü&×1›«ô‰ÍÖð$‚ï?ÎäŒ/ˆØ ;4 W£ŸC^ý7±›Š àÇÑnfŒfð(-¤ç.ŸãÔ»zïG.` Ü †ì¤Ÿwõ©óN–à0Ú”Ë| èPÃàÞP R¢ñB1´$5¥ºcÎým+™¸)CtÀì›,”´©Ý¸fåû!>%ïKm±AÍMêÛ9gÎÿe#û©N³b´{b{Ø8¿kò|Ãíß… ³¶óÉò¦R³K8A.ÕXc|UncIjËTJ;¿z·\zÜhùé<S¥#öiUZ~k›]¨T0]Ú ‚ÌW>·Ü¨!ŸÂ¢i)Q¿ú^ê ¥H@ªf)hÕ÷üG碈,±+Pí£|#€3ö–l‘).\ÑJ™¥¨Eô1Ÿhêª}?̼™>„ož”¸Õ÷“ÛÁúGvÓzkòë·9ç_-\…vïõø“AëÎpœéºá¶X)Í y4½_ßÖ!Í‘‹Á¢?@ÊC´v 58&NË6T!š±Q-Þ!.*ÓO¼g"‚,Ÿ›4&¥ÓDà¬×.öÁÄ!e˜á®›¢0µXÐÿ,ÞBݸ)·KjÑšÔžöc".d"%^› ¹’ÅÙÝIKa3Äì;¼pSTÿOšÍ·Ba©“²®CVëû‰N×p( ù$ØøƒZi<&_ëƒÁ«a˜éÌ®÷”þw²Ë÷Û8'óB'åÖÚÌ?]Cp¥@RÜO¼"$ÁˆCøê˜ô µ€¢7TF°º£'`jœ ‘ÝüÑD¹7Öô²m ¿#Ös9÷;ýÛYÉýôA`HÏû*{ÚËVq%þØÈñM¾µÈˆMx›Š£^°ôaëùíšS‡Ôšš°ºrx³N -<ΰPœÓôôº§Hã`©€8úbQÞÛh&áÌ´¥’–Ù½‹VŸQ¬Õ¡¥xÆí1¦{V•s¡û‰ Ž àzW þÍÝ{Ƭç*‹U§l^ÔäÚ›…$èÒìÈ, ³õ)†Ag¬Ó¬¯V„÷SÜZÕ*=„´Òµ— å·v¤²í¯­¼¨4Añ©•ºL‡@µZɧ–›ÜÕ\‰Hoó”¬CxÊ-ÝÿxänlúP8þ5à‹£ÙàVSB7íg‚QE×â~UÙÈôؘ¼ž5GD1wŽúìMDÖ°ØW0á8Ñäó¤Hó€luS†ñ½ˆË0dô‹‚†q+;f®,(lº!æŸÄséµÔCœÅvkŸ'Üùœ-i öë,­€Z²ßfé¦茈&U0™eHÿæ!®ÏâL(2îr ʻ³Qâ™Ø­ú¤.«<\ßç†]F§p÷W€E.¶ÖMGüj÷£Ý—Â;O(å?°ÝÒTÄ))5tÎ^tRÊশ°dååPgHâX8­ ,nRB`¤2[]Å‹qÀ‡KuǪag°¥ßg†{Æ ¥6¯4êóoIsR1^§f"…swMÖßòÉóÿQÙÁw – ô ·­ÿ¾Œ)Ø-_—|afh!¿ñÞÁ¨;®ž‘CDéÙG‚"í lüè«NE“»=74«¥—4®H4bwt^:×W26ap½¢`=xbwz¬Ünô}JöW&÷×äÇÆY5ãmÀ+íÀùý&ö=pJðo¿ÆÂvmTàçÉŒfí:°€{ /¢W>hçß]5ž7y¨”’ï!Óµ GÂl|6œ-¯èC¯`æ/ÿ·‡7x_Ök§Ý48í¦Ô£x#:Ÿ8Þ5Ó"Ç´× Õ–Ðãb•iþbqf¦šé.÷ÊKÝ$$VuÅÏÍ7wËÌeý$çD·úUS§r%¦!Šî¯Ú£À!¹§ÎCXáîÿÌÙ`ºÍ0Güà›©#ú©3¬î'S·MõDÞò¡ƒÌH cJŽ ¼wCLÂ$XVÓ”õú+/íl?IÅÚj4V/Újw{ö¬˜MEE„+„.v`Òj"áËúPF¬Í±YðníàÒùY6#{ M+„ÊèGÉâi¢4kõ:_>ÚnOý¿[çn–Ï`ù`‚lK®òÍ 4ê2±Iz*Í»O5Ón¾ óý;q²ëKÇ'Þ½½E ,)tã}ï¾8=ð궃"‹‹'àŒ”'·Ù- ±…¹öë²?µºüK\pÕ’™ €°u»a½Sõ[º!ŽÄ× Kª´VÌ©¡K( l®Ü[¡O¾EÐsíýZk4r ¯%1Ýoòº °Â—>;! Y$¾!úhçœÕ€j¿çm.ÃJ1CÇÂŒÜÝFMÙE2á€2òÅútÿò~,n¶kcú"q)æ2‘ {ÎÏR6H]j'tUÒÆ¼—-@3…Šn±J ŽÆúlìÔš¡E6¸3ï©SR6ç¤æ«dªy\µX=özÑÒJÄ Â³Œ+vnñ=ÿÊaí¦ ¯Îª(Ž•-ìæ9U]¯¥œ6iMШËr·Ñ˜–ù`C"¹Iç!–Óó·1jiˆÀp2,³÷ªqA‚d˜®g£¹R_eޛĄ5š ¤Ü¨úÀ»·7€äjÏDŒß‚ëc*§ìÅD~¥j+ö<Ç(u“x©_Î/|‡õ‹R›’Ø,‹Ü„ªZñ̶ÓSÉe{lÊ‘ýŽAß•¡þ ÛãÑ ËaŠì鿱þM‰YFBŠJ±nžE&sgÍkåc¡hêé‘ù£)Íð¡èîkô2ÖøN2Zpýaºa VÍ_LÚ`àjõ†[Íû"¿]0ªžw+ü½êFìã •ˆíL°Ô\h 2~×q£o gŽ6ucšáýøãþsö,•k„åzϰF4üí b"Á#Ò©ìùÆ+$@ÜëOÁÜèåBü„¤{—¨²T•×ßuóuŽc©ßåÎjdIè'ÿ‰ëÑÌ-X+²‘.мðDÊHÙòÏHãZäªþÅ<û&ÍÔ£ýJÍÛ7bX …©S˜¾·sh›övÅÚw>ÕìÕÐуæù¶Ü~Ñ9½äãÚ"w8È£Rð¬U";¥3_¦±k4Ôo§\D©—8 ,ãð ™NÏ^–8ˆ÷EfµÈ,¨‡9„´ÇGìñ€ê‡‹;d!gM„ðÿHOåfe.òèÊAéLU†TùŽõdR®~*o"6¦Nú™œ¿ö)³8Ñ%v°kš­- õd‘Ž:×0—VQ×T“ÏÚeJÀ‘Osà6ÓGYn¡&zXCÀÿظ-þHÛpÝ1¨AˆÃ½ÐwR+î0sñÛFöv"Yó亪!ô+I Ó¦®Q­,ð'’” Ægo²mY+‚+ú…“—ûØÍ~Þ9õZÄQ¦ wþÿï0z¾ Ý5<ïžp%ëj"W¦'o&¢HFRƒ²–éÒÙŠ‚rQ:Pëñ›œÄNbïþ®OÐ ðZºÑçcí¡}44¾Äþ~]ᶃz;á?ý°Ç^~2Ý7ÑaÖû˜£Â1Öã7Jé¡›àCvþà^9î=Ûœò î–­¿YrÌvLjánÓ{­|’°ÙÉY„cOð”©Aº÷ÐV#ïÕv!¤e{A%×õ¨{—t‡ï[~6 u•Ÿçd[œ™a]a9¾ìü@b„æ[ æË]Aço±®@€Yì¼—‚p4ÓžÝÙx òŠU³Á8ÓN¿çügšˆà.Õœïפ¿ Û^Ì«wxyÀ&„Ø{!ò–ð(FŸJêi¿¯L´Âÿf36'"G)c»_žËuçvòn./èv Vk3Ù8ÒÚáÞø=žì%ÉsõÆ÷õ©ãß4UŠ0{‹ä.ç©  7‘9ø?E´DÿõÙÓÝÛËVU §:ħlüAá1$LÀøÚ&жc¥‰|gK¨¿gI(¦‘LMp?ž\d­BàA>¨»t@SÚ7÷€ÛÀ!W‡§ØÂYpcgm$§ÉŸ@¢_ G ÅcR. %.$¥8ÂúO5¡û Œ ÿrvå9¬”gÌ´þ×Þážmùkb–8‚NÓo¿o3ÒÊ‹Ay®_þ.ÏnÝÍOâ’â']×_¸èýh§Ÿuö¹'B”ê3àóc‰X[¤ð¡Ý”„Š_Ô¶q«æ/~ÀóJ¥¹÷jÚ2›9K(§1ÐÀU‘BaÍí@·Ÿ\r%æ+ðR ð°ŠÁ=?ÏåØÒ°ã@¡19ßOz­¹˜ êíû fls •ë’Aϧ†ìpÚö9sñòm’…š+Í©*ào³-æîHÒÆ»gÿOö‘ν}pìG™G_„­òâЬ™Q›¹ÝÉîQt_^Ù´‰pµH_hÁ}UG•í†ûí R¤j}å—[g>0ògÒ®•´LçÖ~);·HwJJpÚq:Â%£DæX4oí´!õ¯âÔ ?&5î Ó»¤ÞSߘÉIÓ†¼!GÅœJ¤/•Uqãè½bÐp§#ίÚMÊbÐ,—Þ_µÙHù=6pfù ¢~c«¡ââ™7øHîÃéBÛkÚê–ÅÀ&ØÖÔ x T§Ø¸‘¢v õ?)·eR*a÷ãí^CŸ,UeIÉ|ÛóõÄ“9²Ãwkâ v—ã0K‡]–A:'ŸQVÉs™nb¢«˜„m`d¡î¡ùP+÷Þ„rÑ¡,¿ù§¢ ñ-ÙäÊÈçÑZÃ×Tåµìˆ9 ¡:~ùþÏÚ냳m›¿NÃ^:óبv»=öKh$ìß}ªU¼Âé cѯ(÷ø,¹¡Ì¹ÌŒÁá…ùíøEø%NÎ hoüÚ¢+ÚöïÃàåÈC‘Lp'“ÑÃæ6FçWºá¯['.8dK[sº²fʉNöÞ€ÛÖÇ™—õøµ|æø®šAÌXƒGxškqUv È¾QØî8ðÅ0ÝLEe 1Äib=ƒúƒ7žùÅ%ýÆ|Ëö$.˜d{aë"ù†>m€gEVßxD•cFÐÔƒ…ã~q¡-iGÅ/æÚd`$QyH`gi;ïˆÁ÷¬$(AŸt¢U“T ~äo8&uU;óGÕãÌGV°2éÍ>ökʉž{‚=vJËh¨¤ùOñRQï¢ ˜­\v&‡hÚ`¼=4Ê(ü©ÜÙeGû”ª¼l"då†$¾ö˜”OxªýÄ‚Ûøì&ºO\$§˜i>$éæž,ì\–àžåc0\@¯ú>œÿ4yÛc>¯¯ùœÞwEQûì –”ò¤ÕMc‚`)ögÕóe¶ŒöªMËŸ˜Æ^†npŒªõ˜Ù̆—"‰lÈíOŠt]d®àïÞ»n‹aH*òù¸ì¬cÀ&ðÚ^þT‹†å™.ºÎo‹E8ö¶´D¾»=‡à7ã¨Ã” ô\AV³îëpÚÀ¦¤ÔàJ3ë$v.ð\£§ÚA@´Ršƒ«`0KEÖÃ?8É4¯W©ò®)ô ’2”€ÄFÎü>DH-%2MÌçåw}ÅÞ™Þ€šìà D÷‰% •BF•!&ª2¦d\f÷¥#ûТÜn@ÿæ—¢üÏA"4š!ô ü!f™þ²éÏ íëYÏ¿ ï¤"ð„)‰D ¬z-ÆuÎÍa„¼$Í+ÂWæ¢[ŽÝé<ÆÑ‡“‘£™¾’¥çŠUJjX§ØM?\à - µåît\L@«ó¨¨ÂLþfu‹+©šñOü>f—¿JX €_•ïÐÂèe'µÏ‹ßõ‰O¬ò¡>‘ù`êg;ΉÍÍ \ æÈ§‰Î8\C1u÷'ó"n{@-[9œ ƒÙŸr£5<»éùKˆ²å]xõ›ÏÌE•óžßêLšL]ÏH`ºþp4†ìæÓOŽ{‹ËiÓO@ôv$;#jàZ|Ä”¶,(vXI>—¡‘…Hþ‹›Ž-…±´˃lR˜AiÊÇXjps…þ{21æò·÷bSv`kpV‚y³ÇwƒšXµ£n¦jœ¨Òe¥õŽ3Ïs£g»ÐrÜÖ9—ˆví óÊðê'”c4+Ÿ@ëaHÈ¿£ò¿×/ï•z<»NÎ-¤£õƱØmƒ¨TRÑé5¥²Ö4‘­Ð.d|=æ~{˜ñ‚”·fŒí{#šÛöƒê†Sp˜kl6ÛN.ec’à=~•¸“@ñíÃ/“t*g‡U +0,¢. ½Tº‰Þ{óq [›#¯ã&´‡¾ùøZErC5å°5N¼©¢PÛ«)»¸ýßÌI ±*‚|3ÈVONV:2pàtåÐéN³žã.“¤I‘Hþ€XïçËnz½VÍõìèÆ etoÝ£ÕÈŸ›·ðZhMxyrlýÃ˳˜B`ªãDa^º³å·û¯ðuÇÀ,5÷dî…µ!ñûçgdâ(HÇù TÛØPœ õkG7duëJ ŠYCmÿŠí¸ ì¹~ñs"¥T‚/sÊÁ¿a=e|eªŠÐ9ÝŽý5ì¡çôHÑv¨@ÓUKT&ždƒºîq5—Aµ÷™C"Le àúÒ5D˜„2údïʺ©×ÈxcøYl¯´Ö„“²¸‰I‚“¨Fˆg3(¯¶ƒ­Í”úbÐÃQ \±´´Ž1~COˆjð¶·h$ªM¤:×ÕP:Ô;òÅàéM6¤ù-QŽò,´ª2‡ªï ik¼x›k»kc_„ÞEüÕ”k7³˜¡ÐüWâ@Fnš³$õ XêÐô\ØÄ¤z…ú#«“ªäü€2ß!­h­êý¸f†¡„3x°ú)‹ g÷’æUØS•.IcþŬæg?œQ¿ Ãüª9¡•ÍØÌ9ä‘9.ÇãÖ7w£T«Ì1 Yó_üÔ˜ ÐÙFD»î<ø ÑlG¦ ¨’fa*/Í:m·9§Xª’m¯þ«ò¢ð½Ö>5m Š%+\ò>tƒGèÈäT»û6áv¼n#¯îR§ÇGuiQê³e¼÷{æÒ‡±ÂÙÈÉ}^žœ»–´VùyànuÙ–2i½ÐtpÐ2Ó]—3ZkC±uÆžgäòÂ…©…?¿S\ 0¤—Q µüîi—Ñ“7p?Ûª³O|²\î‰ûšË©’‚…3?b™ºçºÞWGéö¡ ]ˆÿS9ÃptëQc{à5§e¬kÑD O¾Ÿ¸]åòɯãÛ¡Xp?nÀÒ b"—MÈõ.Rg[ß/A åwµ} å´¯â?g%]–V xe"Ì£K¾Î‘w¢TF„ŸÒ1¾Ð/FË¡1q~öK  ³ýèûŸû¤PȰÌû2}r} í¸e+ çã­, £?ƒ vm&'g+ÿ‡X[+F@Õ%/£úóïºcq8à µTw±4\qÑ¥á½Òz¢ò‰í›*Xg£L±Ü´ç¨k9¥d)!¦Ðu|£ëˆ ölãH8.\S”°ëkÖz±®~ó.€³c?U;.Œ(ñj\øvþa ‹‘Îã—.-Ì5ñÆ›³VMíEëeHP+FEç­iÐç kÁš½üñ­Qâ1$Dö§Ú»^gíJ‚ÞÞÉ0IùNQe–ÉÚ4üÜh€‰ô–¶áaõ Hº8C§¤’#˜,\’”h`Î=ߪԘ Ç1qº£¿NôÙÒˆá/D©¤'J2¢yw?(Ñ9—Êe%(ݓΠßÍ ´¹¿¯S¥èô °Ãë¶ÑXh.×t&_ã“gmÊ€Ø'($†ep´{¨"ׯû¶;ò`ócý-èþ:¸}²À5Í^ü[ÖŒ0Š=Σ&7RÎM¸Éc(BËßõ ÂN¦NÄþ?+æ9ûÎK¬×PЛNç0[Ÿ0”ý™œÃª1—LErhвCx“ŒÖ§^‚ó«|s´,  ôº…ÔT)½Xg1¦CJåµ{0ï‘0Þ ñ;mv «K—@Xã²h¾òû»¹CÑËß.À‡¸¾²àîr›T?r§x szâ.³—±}˜ÿS†T»¶Yz_!èED;EõIpáô& ¸šר¦á9ÍóO-³ÊìZ¢U©¯TJAÎéÒÄ£Ëw"yªJB;Îï5¯d}ÉÅC„–jƒDÕÏ´f:@m¦·‚»wTãqy‡óáª*Uz„ãÈXi™#TšS¢1Ža ¡ |h™ÿ#½žv7çZœý óÊ©c\n¯)€½7RŽùL®àý?XTùÀ¶Þ{ eGåQÈŸä7A€ÎFY¸ƒ™kÎÆ¶Ô& ONxÜ/%á\4ðexºÀø¯2Ÿü½¸b­+u?÷¬œïQ &Ñg•êŽ h•nÔ5yrµÛoÃè|U}½bÄÄ/ ÉÑ&ó ­k”þ>èöæ!óN%FÒé8+Yóh©[i‚”Gá–H"He8°œ5Ua…ᾚ 1˜ ”*í<‘‰Nª_¤jv°Ú$Q6j=í U¹Eþˆ(Ìsæco°>×®;åqe$4E_$¢-ï9–8Ž×5ŠÓ…¤©´ TFËMÃà`è2E.ROnÝgãÆ¦VDõ”ÆêŒ[¦ðh©%{ÈV*}k1ÊíWuˇ¼ÊM½ËÏÄk®½ë‰c¾yœhI‚ƒsÜœ5º·:ï¥3ͬ£v ¹rB²‡¨ûÿIuÑI °·I+¯„ï6k@ºšÇzν÷é–Èxã›û„ë¤â:ÚŽ”¶B`QªNù±6¿»0Þs—WAÉ\ßñ¡sÔMŸGÉótÈ Û*s&XZ(ö¥þ8]†Ý?¦s#;³Z |Ê6å×çW.žâÓ%N»)A†@ ×[ÞÉc#Êü÷¤8%£ú®Êø?˜Â€–¬DL"Ô*g4cð¡×ÿBjHØ 2ÃDÞ¬zŠÕÄnØ'úªt$°o´&x>ÇD™‡‚YLcc‚MqNç”J À³¿Ú5Ø)µ< :š ÛlÕcwWEkd¥Ùp¯àYwŒ!ÐÀôJ¡Ì*wœ—õ;`º¶Ì—zÁzZüÙ’ÊS?û6Hð ;Áj–´þDì$xŸ_1—J^}ÐT â´³ø+ ðYH£eç»P Sœ&¸žpð¯_º—¶-5ÑþàD-Ø~ˆêÛ2UýiT÷ª·(`‹Ñ˜¤~€²­ÜG+(œóvcÁhß @Äk”'üEÆÎÿã”›3ýØš~Ñ+ÚiY=Pä#"¢a8þ¨‹ŸÎ¡Ý%*"™œÄåhªs‰˜¥õ†Í6enMcÿø.6É0¤ÆÀZc”’ !¢é?5È<‚Erò âa^lºðm úÄD³`¢r:‰¦f²Ü2–Î(ˆX5 ˆB }ß>=7q¢É†ú̱=‡Çè½¥ÈZ$5ب^1‡ý´… K¿ÙÉfŒÏU+ÎáÊŒ5‡¹ÖJMZcïa¤Î ¹D涨O?/£æ~{oöìÚ’Âý|);&Þ€|@˜ø‡Ð(Þ4!n¿`þ:㔵aéåPqá„od©T=¥°CQW²Etðš¦E•X‚"¶4 Õ–[Bøy¢Å„DžÖ³ýÂÃ[ihùZr{³ž¦@fO¦ŒÈå:s¡t ùΘføDƒný± ìê¶@̳‚Å/rÈ‚oðkéN¿ô'S§ÝÞW¥|2ºGTDÄÔÌ:ßJö nƒMôí ¨!mð/0…Kî ³Ô°Ÿ°ö™ÎUØÎÆœ'ÑçhòºKò¨aó›gÕn¡£¬žÙ9âÛYŽÆIxsñg[Ÿr´9væFZ? D,~“Ú“½ùssÏi°|ú~.öÉâ/uuµ×ÁšÔJÊ¡‘B§\ÔPÀpyÐÜG#W(Jœ*K›*ÖŽÀbÉ …OgÖk xãûÒÑaøÆ:7T]qˇ92!ªWÙ?çH™m m Ÿˆßš´ë úбp_V{Á™±ù A‰B/rˆC….óÑ{ÆOßm’L·¢a ¬ÜÄ:=Âõ= Ÿz­\¸çÙy…"‰”älT²xîÆùǦ¦8éÔx”YÉ»™caN’A‡évsÇÒŸˆ…ÉŠ!#ùç _ã!þ2øõ·XÓgÏè ^eS>g·|MTª ϋׇfÅp-ƒœ…A7ÿtºP³Ù´…¾3Ÿ¡ÖЦþ×þÜÁ~Ѿ?ºOý$hh-ÝL‚²C5ÛtSŽNtL.ŒÃÿ¥˜¨*kÙׯpÜFáCgÒ…Õ uÌ“I…‡ Ï`öb«ïœ]Ta÷¼Hq^Ýê[n 0Äúj½­– &ö[f8âóÆ ÇàZo…r^¼rÑÛü_‰Ô%ÛÝeú§Ç»ÔÀ9å› 2Äi·„ K¹›&Óýà«Ó³yáz\† e¬FŒ•üké£N§™”ñ5>¯¨òþÉ]Hõ 9À>@@,j· ±²œŽ ªgÐSþåÚ ¦òFʉ¹ÉŽ]ó—Š`¾K¸-à/ö bJ²Fv·¯¤q&ƒQ‹3m‡ô¶ëŸ ;KSõ°¢W¥óCµæ(e—£“GUŲ)zÍB9½P„Ší¡¦ïÝu=„Ÿä®&[GˆB.lÓ÷TýEbø™¦¾zÃ?í¼ûM~þg~F£ R>±#±j²•—ÕÁš ;xŸ¯ _½üA)pWðš—,«‰Ês˜.ƒ˜$.jn|Åv†a{U_Ÿ–²Ÿ&F郈7©ïQ?$× u쫱c¿?"¹A¯ëËt#ZwƒÍËjS#ŸÕ朜ãmÃ@QÈ\Ô'¹.¬9”ÞúÆÉïÿxÝɽõN5~ÿ.xâ3 rG’†L>ò ÎÉsfØè@‹7ÕÒ{™¦„TQ`z¤×-_m£¹‰=£LÈJGøî»„‰îÅ‹qJ·Bˆ;*ßœ0‚ä}{´FEø ±i|8*Ù!ê€êDH~؈¶TÎÉ)é_*ù2+Ê<ܾ°³;0çl‹Aù#5Í©"wa@9‡dÙÝt/Ÿœëôr?± Qêz ´ß¡v=rº(©>&å–q}"5W‡P‹¬á¥þ‚yÈ¢LõåO—ó ­¿0ÛŠtL1³º,âHg$™z^ós.qh¬@#…9¦´ò ¹×ù¦"Àxì,§B€fÛÒ ¥ÅçÚ/J%äI‰DŸ.õºÅa¯ ˆÆŒìÖ—«c&/Ƹ_Àý@ÏtGv`èT–løl¦aE».ò ’Š‹Ì °®.CTtòû‚kÙÎÓGl¥ HÒî†ä\åÌ4Ÿª@õpUª5ü§y¶FÊøùSZ3¹žôR‘'ÞÄ;™6ƒ¯ÎŸÜ9 WUÄHª. Ù¡¸Šze4jÏ’${v8·Ähòò§`ÝI§ÀÖÉcqéûÊ 2;ù&ˆB=Y;sÈY ¸ lâÝP× T“úM¶j[‚JYOöÓCñ–¯Ý l®”3ÌDý!¼S<«:ŒôRÿc%¸Rv‚iAÈ)ñe¢|B­¨";ºu‹Ÿä)ï]]SO ü(fÝþ_þwç߸D/§s ‚¼(~²–6s +­­üi&’]¿"Ül?LAk/cÖYÇOêÌó¯8 ¡·Ú Éy79Ïh’Ígi¤O6ç+ Dœ³÷.Åù'¶n-â·YæuÈÉ@m¡½jÀNÌÅǑӰſ×JMw˜à ~ßw0SèAo7§!.»qÒ `i|-gÛ:pë±[䃹yòwSè’(á•p^Õµ`8Þa"ˆgw{XÀì@(u˜ýÆO‹Û0L¨ën¾£ÖMÈÙn@C–ña®A øydVvî •­U1G"öjjß[¼‰CŠ£,¸°øõ*¶p–Ê<!„të¶ó{û )˜Z·=J ® Ûç˜Þ¿[VÔô:49§‰T±$É3 a¬û&t‘k¡–q9æýýý•á ZÈ4 D]âk¸^ñx jŠb9¥“ͦî8Á ŘÂhãwÞQ<´8ùÕðÀš>Üôüž]ÈÖÅÈåoG„ð÷Ø•a>£Œgòüt4>–î«´ºµDñl0M_¯Jªy¦jÀ 8˜=®!Êô”ÍÁÎTÑéTˆ‘ËÙ¤1ˆ½½“fȱ1á,DB/U9°:9a¦Ýó÷¯©iðyðˆ†ÚÆwUnè3æ›ò…·yÐçj×ñ•‹ ¨iýk†çÛÄ”D±`uäX*ÿ?ñ)u²Øž&£ù¦@«†U;ØkxË—¿µ”U•Ìš—4 ¡ñò1ÜV(ƒ#ÏT[bQŸùƒ4•¶;¦™‹¡Ü¼za߇Øë»…Ø@Äÿ0j‹9qÏ1vµÝžrü7?S|PºìV¸í$Â’ òŠF«{{Ò\—+§¡IZ(êV@œÞ]—P/C9/ýyÞ¢ˆ{ªb*B×Ú\&¨‚~{•®•®ÀbÔ‰Õm`¿×Ìîf@ç1Å*Ï×x-ç·‘Cœ™‹ŠˆWZ\ŸV«­?ò¡zÕK·¬Mf;·>Å.FR% qƒIpW¯Lÿ™y?Œ? \ÑÐÀTÆLx•c"08(rÙV’`L iz™|Á$ ù½°søu†«9/zO¸ 2©“7"uÔØ£sNÔÓ•Š Öb‡…¤ƒ¨[¹óTäÕ»ãéNMA'"¢Å1 ô«?ôôAL†“êàÐh VÑh4¢ôVr LïpR`ÄŠ 5d®ßÙ%²RëZos?(¿¾ú/ðÞMÀ¢`êCÑçãý+vüøÚK S>©át8àÏ]IÍÝý)µ’ôΑƒÌÎŽøùå­Oõ NèOãÝ’må”–¶XDËj˜õå¾/`N6–ùK‘8b4u*3ÓŸìö- PŽH›´¬@m´¸$^=v7phGø:²G‡É».ÓKX¬½,Ü'"À­¥¿æþÙiØTñÖfáãÂó̯ócE®P:x½ÓÚøïŸï_ºÁüB§ÇørÃ; Mù%)ìI$µzâ÷sŒÎ³ž¯ø{ b—+>þbHÔWèdwì% ˜&o{¾†‡‡3gx!(*:ŠòŒ $üs“Ìš7ý–’ ctŠ'Äa?evε¹!x‹£õ¹¦ÄU‘³Ïùö;Whžúå…™Z¥¬2ÝûdÍH*tYå周ò¢Rt¾§ BYq_Ny7^‰ˆä¶ø%@瀂êÌm˜º¥þCéI)ñø»~¬ ‘ÏüÔ¦“ú OØ1¼¶„fppxÎþ±“.Q€©uuú®¿R±6ˆ1”KmÓ‹Î^é»ÏWwña~kñí¬ƒ® OBÁ‡"µïQòg8´ùÀ7`’dŽÀƒéÔ­Ú¿*L•£ì¦êàIÓ…ždù5xSðÆÉ„+lAÕNvµŒ„3Ðxó‹_B:sÆÀ=¤žC)óDy“‚º¨|Ùq!\˜Tž6>"R1VgÎÔÁ©2HÌ[dÏa¨ïózÍÌ2›"ÒØ%j½âþ¦_Â{Ü’)#|lũπ íˆJ.D®eŠ(é?„›ãÆß@þqìá¼ÇŸíœœúp§ Ú–ºª“ÙA'Rj­½Ù³Ýª± !Y“ü@fY {{FJO6™Ž>=wÉvÿ=ýkÄJg³S  l±xÓµjax²Üç{(zü¬VDRÑÞk„–5·dp ¾Äq—:á+^€­…$F§K4@o`S|ŽGwïýè8}©:©§Ò^ _"¹oYÚ»V §8Æ—çý@ Úˆ‡_‹œy͘>}™É Di’ŽÙ! ñQ 2lz\ÁaFUWø]¿³€‰ã'óDz«t¤™ÒÎONªÙ(¢­lÁý¯È®S³xot¤ cVûWŒ:…·Á!ɉ2v{äYd¨rÉ’Xƒ±o’éÝ*‚°´ WΪÆe5'›D4ö rÖóLçà¢6¦>‹Zamuÿñ–g Ó&×ÓY•š4âJý»Ú0ôÀ—ó‚ÞF›$¢A/ÆhN 'Ë"×ìÄÍUbUé˜ €^Õ]wŠÒKNšØ;A“Õ…nñVƒ>œ(ª”8‹Ã,Pý· ÚZan8g÷rüÓ“y_qåp iúƒ\ܺ_lïq-”Ü® ­ý.g¨Y± ¦„8HØÃ×u¨³Ðôû¶pÖy‡â ý²¼°}/=/+òʨùÓ¦fOñG fQŽÖÆMXÛfù!Á§ÚÜ¿Ý*8± öÇöI?píƒ )ˆíJÏópK²6‚> ¬hM9:ªk5<ùáäÑMb }™æRü#>Ä:W,ÜH][tlÓâè[לN§7Þ/Ñù“LC¾õ€Õ`f‚§-‰M £ ËĘëLW¡„Y<ïºFn¸EÉï [x‚78$žØVi÷G°l‘‚=輋瀽ÙéhJÓ„–Ñ{PíJ@Y‘I…Ÿ­<ä…«A!:… 3ý|þu‚FÕ;ÇéXGÒ]Úì0‰8Oõm„ýén4ƒ`˜tq¾N~噳k …3‚ÿ¶‰qvÈmbŠ’¿*E­t0ü؀ɻgYóƒæÞx \TpÆÔLawøu’ÿŒ‰>!gÏá”6TàiÜ+ÁX}|–œV^/+%´žkMiÄô”ð»0ÛZíÒvHÔ †”Ì\ Ùa¤¹ÆDÁŸãÏd)ÊýªÁï=™,èÔWÙ»KD,qA™â…Xf]zF‚«ø§»#ß¡FA´g)a^ÿÌ ŠÍ Iºó}ÌÞQå’ÎÎKÖ>°;|͵@ä&**EƒŠ|0F‡XØ8¯x0Ç.ãs\‰°Éâ¤}ºï®hÓ¬ô mjì)~3ôß»FæeŸŒhÛÓš23N žIæèüág²azMŒ(~³Dõ—“ KBbG*u|Î"cw4^öâ4íˆô‘,…;ÝBcr+„IöW‰œ‚¡²qEpY7i„ÅÉä m)C5Þ{ÔúÁàÓV ãéÂÞ¡ Åó-Á¸ü™±Ç `>Þ;ú÷Žþ£„+ZØÕd˜§Ëâ.2ݨð?Ç”Ft#+÷,|ÉÜœ…nã•Üä^‰±é7´º áÛ‚&ª`Å›íBwOñ2ÞOn²v&Ñ7§n¡Uï¡cùc¯‰ÿÈ¾Š¦òš¹;Ja@zyîÌy±|RÞN¯Û¬êÖ÷¥õ|Sì®kÞï lÚˆ¨Zþ§5kDHª¨–eׯ‚)®\‹rdqú–Ñ÷y‡ófo<ÿe|M78hAó ¯ú»sÖË6LßýõûHcÊ´¢Å7pŽÁyâÎL8˜Æ…{ÐTJþêk Ò¿¥ȼ;¬2ˆÍ[?8Ëѳù&¼®Îf æg)8QÖ(^!*·ÊŽàGìDrC@Z‘Ï·¡„z]!ò˜}ÜFšñ—8Efž0™Ú•p±z@—ÊÏ`4õÙ3¢H›ðŒ•°­Ñ‘Ô”.ˈd'ø¬~Ý´ (8DbJ*Žü»¥X4ñ¤˜)¶?ÞS—úöäq@Ò¤ý$ÈŸ›ÅrpKÒ€bÿe¿o¼‚+M7|ÿîÕ 5“dr,!{‰©[ðT„:ƒ>ðÙü~‚'ÛjG°ž…iãbmÔkY8…©¢Ào Þ# ôÒ8‹€~kùâœ±ÄæÇOÑs¥³MÆD\L˜9¤$k 6%B;K22ÚØcb´jp~wÍ QÃé›)sã½dcÃò‚Ó\„ØgWÕPQâg;S̟¨ðö dÔn5 =2”f•Áj›ºK®È˜³á#—ÖIÞåYPíK"¦b˜{º;ßqâ ‘´ÊÿW¬1É´!-Ë’\Óߥ\ðzAáTÊ,5–É2ÒZ`ƒú¢æŠ?òæä)í.3Ù,&ÞuŽèz¿ØÞ*kçç,¯eøØÀ ÿ™"ìã³ÿ¬ñôº3¸™‰1†ñôvÞO6+ó“žRÖWŽKñŽßºs’k¤)®go3¼69IÕ$öšòs¦Ñ[I¶Y„¢XnˆÞ4(žÒ@ž‰éÅme%솢Ãg?Ûùª{¼ ±~õ}­Ò^{d©±¼Ž¡˜3N«ÆŒÛâaÛÔØã›ú_Š|MððP"&fD•‹àÐ"O1 ¡›ãØ£’t^Ãy 2˜Ó×ÁuAæø:Tn“+ÞYÝgÅׯ‘ž§uÛŸœ‰ø}9?[>z<ˆÃÒu "ÇÌÒO©¡CH1í˜k‡àßÓ({Vþbr£m•÷µÙÁG‚}¤‹Ý]¨™ ‚Veúm‰Z<ãEé{õkd•q-uS1ÛÈê8“¦`ô…6Ê…b«¢Lÿ’Œ|×N6P'伯5nñõ6q'z%äDyˆ‘A5îÀYQöDÁØ1¨Ô5@m2_\לæù§€”¼T Ó#vwMîNG!KÙþ«Ø> „úÄôÙ>o³à§®—òòª:x£f'B,’j ÞŠ% Ãæ+J‚‚{J¸æÙ݃ÿØgõœ8 Y-Éà¢EÔ6³hÍ­ÁC¹X9ø±ƒNmÒ³àWùão#^.M¿ôJO‰AU,Èg"¬9±ó§®1šƒvG+,F5€p`ê=Ð&E1“&ùÉ•º^cð§›§§ _‘Ïáá†(÷/_Y_?'¯=f´ÆÒŸ·Mtÿå°5aѾٛÀ^DÂо¥äÝNË\›¡\ÐßÔœ O {[ȯ”ÎW‘Ú^GHÙlà¡!#õöBû ©gõéú_»-`ÿxËiáåuñ“óï žsÐA o´5_·‰Ô£Ñ†ÞJ)6Å=žµÍdÄ4áîçº]¢Bd¼šV¦hî‚R›zSMêpÙ¼…ƒm;‹›!®L¾«O, Ž«ËßÁ¤\ûÃÖ[†v¦WÈRÊ꧶׬¬ïÐÅ·k/ÔŽÉ´ôùY–Š•@@õ`eÁóÏ€:øôcª^ÞW°•]8Ÿü Ö_%Õ²]êí½í*ÃN¤I–‹#r| 7ê›…~ {|ñâZ~Ä´ËD±çoŠj‚ ‡%S C¥-ôµÌ‰µì*\„ UÊ@Üù¡ìÃe#ÃôN̤ܞe×âÇVBÇE*/46ÇèÀTýç‚7ðÉuøÊèß*¤ÊmnÖ7 (D£¨ŒU‰|£ÄȾhZÌ[ÉËb \XõeÙ‚²úåv†Z½‡ÚE=ù¸Gƒ¸XD¬hôÀ¸'ñÅc°çíA.š®qª‘Zô•ŸåÙçDóÒe=»ñ>Õ” Çì6BÉ,ú<[Bgàý%qÅ/îð»ß) Y€ëŽË9¿6…`‹›Mä¹Ó¸krñ;y•g«†Ó"èÆ lÉtÕÌÊ1Dø³Åõô þÜœ|ïc»wS†B×LÉ8‰”åÝ?jêè?9£×?†ŽÚ*‘´AC‰î)¦RWŠ%˜âA©  ñRئ}8ðK¾ÇFáÌ1\¡ãÊa^ «ºœÒrL¼.ÎïðOê8‰èŸvص&|"âèÿñ†9\`Á'ás«Ÿ€&V™9º;7F_Càpäé}Z1.ÇMѧ¦APÕ,Ð1†àòŠ ¨±\ÈÍÏ<fÚÌT1Ô!9+9¹«"û²‡å¡QMØ{êI¸f[xqjO¹Ï]©=ë±[ͪtûÁ.h™¥òÛæ?ºZBað³þ¢Aÿq³^•ÅÏÄDŸšSëܼºÏnp/ÜôüYWDñÊ ¢d ¼ë5/|½NþqêSž‘#³Œå ´ýÑ œjxº»ñù«DîI¬p=®ÚŽÛ”UIÝUFHN8|Ù™Òà‘ý(WOMp½~ÀÒ‡ùЄĀó’²ÞÒ֚˛b¤~`Q+?â0¥è¶P+¡vµ´´D!Øv——]"œ·™Ä?#¶p¾;úÙµ»fµ¹-?Û"„~¸¹wèTKû !îè“a£Gq±/ºó0UUˆyN[qí2Tÿ—/³Êæ Ü|ݪÕU‘.ÕøÖgB8J ¤R,EkXD¤Ôæ6,Ò1Þ)ÆÜ‚íq&‚eçÖdŒEü&$Î~Ô\ù ¡ÎãZ –#;+oM;³ß&ࣖÜÍ62xвð³²TŽ22ˆ%ñ€­ú~Å|Ε5`.¸•„%TëcÍFŠÀUÉ7]¾'Ä%šÅ+L«´9[A²±oǶ.s<¢Œ¿Àx?ÑIûß]êB«’PQÆÏt³h»|`ç;Üt;Ÿ’ïªjÍ“•Å%YMkþý½!°YOÝ?Í´6¸“‰ÛÜö’á×lºtÈ€íûÔë­ÅÌ]+ÖØ³tmZ}A­‚¹þiÕ—¾;îˆ1>´5ºW8GÜ6å2Û³¨£m4¦|雹ÛM.ü&ùVàI?+Õ< ¸n¹ ÓÀ³Éc¾QÖR¬|È6%ð¼LðîÜhx/«@À¦} ýÚWüÄ™[o(tÖ?Í—Zñp†Z˜ÕÃjÎm'ø°ˆD ©[üqÇzB+á]ƒFœ š '@ E`Ü„âšGå$ÛJ‘ü>Þ—¥¸ßE7§üN¸»:n„gÑæC±‡­¯ðšm¸)‘K¶IZÁ6„Ú¸š’¡,•ʸù`xuº†Ë¨ºÓÊ”$øC:*0§ßAö2‹ñ¿0r%pß7ô¯Kmx0òç.U¤ Tx<.³Y‚g<}=·ñÍSׯ*éMû.K¨Xáâ•@W¬í4ÄÙ9‹¦xïéº>·h¿¨Jc “dçø4Õ~ ѳW§"té×t˜£“آ ~ñ¨|$W­©'?#t•iàA¯`8s5 ›ú¤Õðkæ¬0TOÃslõb÷eG,æün“küJ.4„ë¦÷âõqœ8Î"qÞ=Ê{VJü0”8 Áj]]ªi58Þ{»¢ÃËì’jc½£lH’MBâ¬x¨)WmMX/ƒ(©Nçbþï•¶l¿ÏoÿÑRSr6O8>^òþ 4T{ñ -*35°M¼=ôêy¬™³VIâ7*;Îg¢ÜàbþšÏÊ1ö¯Ó¦¤»aIPøRö;ñÍ©úÏi˜Ï©ÔnÓ.íÒ—K5Z@c ”ò<ȶB‡¤}ü?æ\gÞcÂ1±Î¶Yd+øWPâiåO©üz1u3‚(õoçN¦ÿ ¼A¸)‰'25‹–;57Ý)ÑêŒÜoPh6íì>1ÿœÐ &_û1tN«ß cyömˆÂS-rp¨É_‚G|ET¡3ܼû]d,E5Co/žóA•,¢HÍ}.æ+=§üUfVi™<\Iò†?jÍJsf=lrmUãø|F,)·ÿ¥Jˆ#ç¿sC€·7,…™¡²ß¶s¿ù1Ò ’v7.ÇŽÔ OǯVÉñÿ‚ƒœ÷ï—Ö*ë'ÁR…Á.hÅE0(¹$[䥮Ö.e@±Œ "V“do[i à£>ÉcÝò_餔/R‹3àjÆÞ}‚âçâ#ʮӶz’\L±Ò=T;“Û$‘AŠžZ¡8y”ƒî&¾‘f¼4îÂ%Á†3 NDy¦   ª®ßÜK‚ÀâXtèÏ@˜ñ\0€F–ŸàÝËw‚¶vwoWZA59™¥Hó±G±Ä¾µZp%ÀFVõ¶‡ÍÖ½Aw T4ºá0Žb„££ÖË‹€Í[X’¿° èñ3MrïÅË“óé<Ú¬Q­Á"€ïâÁóhzçËiS~Yþ.kÖ¡"šj æ#üÒwˆ4áÜùì[eDi€#s>§aެ8ö›JµÚO2k4ôšgQ6|ê½7 yŵ¼ÎE³ìF€¯ )ú]§ø#²©¢ÏJË÷Œ]T²ìTšhòjáÌýôè^dÙ&g>O¯û ͯª³Ê2û‘‰bM¿¨ßjäzIÌ3ƒB­k;}Kl@8G!í=a˜QÍul8„l¾ 2 ø–õvŸ%J3"vºÙišjÉþÐV7r ,7ÈäúTš]§û~\W¡Ük‹*„%œf8ÏžÔ a©0åý:ùœænϰ(!ÎéA™ôKƒãS™[º9 v/à¹Mj[Н°L×­¤ç©" ‚wªŸ˜ñ5¯¨'m¢µD#t™»°´Jä¡…cèÉ>e;eÝÍù“ìÆØö.?~:°7˜àzoLiÐ9`äÙ$ö“«Üj;„+ßçÍ ˆºñ·©›í5NŽª¢öìÜPÙ°ºSì(+n*‚ßÕfПuÚ#Á'ý— $Íl²Z׌Ì&­®}Z±´$È<±~Ð!’¾fGðFR7>2KþËT+¾6ë†bÊڈ̬¾ ŽÛNÕ¸_ô”LŸ¶×¬2’9,˜ÑRËþ¶"•Ù³„ŒLƒ¦ªÑoSŠsž‚f[ (ÜÅ HÂ8J¤z§ªEænúÜ#?Ñœ²…6p$ ÓÇ#ø6çÕjȵ-ìB›Ïszƒelžñû¹N ¿€¦«Wü_ýà=B¶±—ì›Q®pãê"¶ñÆŸ!Û?U ©ù2ÉpRKéî]剠NVš“FWK}‘}“ŠqøÀ-°xçLëš:G¥_u+ÃÆëiȬÕ*ò(x=~#·à5·½–mŒ™ãhqÊÄŽr¥¼ÜÁ±5¹‘xXónµ¤ž_æZÍ/pz“àMìÕÜYð‡÷¬ç¡Œñs“1oÈÐ €ÓdÐÁ`j «ƒ¡VƳ8=#=ÆÕºì/þ³åz¾"óðÔA˜`©›#z ÂÃáÓ™´oÚ9>F#¹ïà¤ôÓ̈ï¦ÓjwÑ(¿ÈÎÎå0ßÌ*" ?ˆNfy?v¼mÒ(ò0›[gÄÇtÿŠ"ø.S:mŠÓÐ=Ù ¾å fYµHdælŸ†Å üŒùpÉÙ† ß÷âgpÜS/%aë·)~sIfíµÎ¥bzÂqP!yœOÉÔÕÅ^cÔ´ÄïÎFRR vÉÓ7v›Gˆ5ÚsE`\ËD¢gô`–Ýõ}t[uà’/×.UCm™>9¸á»;sšsýí=}ZÛ¶ g­:­‰˜S€%©‹ñüç6ÿ2 ‹=¦Ì-Óðæœ–Q: }Í0eo›Ò¯O¼ØÛÍYgç$•ª] ³Êö ¥ÔáåŽZ-‰(—oQ*ervá»&J‘€[špO—û>ö¯ •©‘Á±sPï¿1uEên¹$mÓ?T½x¯ä,xP¤Mví_W-<ß~B&á)±Éâd¦GƒmÓ]æŸ`8îë¯Tù»¿ßb˜÷KKM­'_Ž:þ‘¯˜n¤ðCJð˜µ_¶âöcî1²^ìÓú"ذ€¿±ïšE 1tgoœ¸l e÷æ¸!uس9¯…cï—J¡?ÑÄ;pS]Ìq'.à2G xgòl[Ulû«ŸÇZlHcÑ#è?ð_:¤£ p˜øäR²Ê/-ed&]ÄüÀQc5ÁøœÅ{ò¼‘S=f\eñÜYÊ[ñŽÌÎ&2pOg){ÇÏídÈY[ù–çbíÅ…]úÃɤå yuÆ© ³ %î“7}/oÅúžäö´m?}«?áÇá 5Çȼb —¸1ͬ£b3*®‹B毉P,!YÜ]’9òÒÞ@ù©#éb9=iÆ÷Ò áÇ\=¦:¦ÎÂ@q††æy¡ý&@«ªdOÔdyÿ\S±)߸°ó…uÁœ¿§\ ‘_Vø¥J?in%@œ¦Ë6Í8ŠªS³ áy‚ÈZ«1Öo‰׈ºäKÔgYYÅ}1e×uÕWƒb¶†Ò‹ƒµuç¸ËÊN)ƒúk®áÈN ³¹Uõ‰,JÁUE ) ~€ñ@]Õ%m4¶ýcPȬTÓ8 ¢#vYÿJ!É DE;nðê_G¶GÃÕ¿ ‡ta–u½$Ë|¨nv¯ÛTß\"íí5ÉM7-‰ð߬m(Íq\WË­hÈø¾ÇÕtxóVj ò~ôù†Ü²k²â‘,y°Éø3ˆøÙyäWRh‹z<íù¹Tmâí¨÷é3Ûç(‘Ñ­„é‡áÏ6Æ¿Â@Í’pªºR;‰p÷ËÚrÇéö-¯-rÚ½ÖÂÆÝ”»"á{ ù+BÌ' ŠŒÞùò5©©’VäDñ/º5»?B2ú Èe“´þý¸…FÁƒµ¦’G» Ľd0©üäë¼”P) æø ªÃ¦Ú柃a •§H®baýá‡?­AÊÅÜ4:æP\Páx C®Aò2ø8+nÆ‚ÂÉ3¥'/I·*8¼ë¾S ˜aqK!ý× $ãIþ Hð‚Ô’Ñm‹»!¥Ñ¬Îô§ä”ÅWJ'#íƒ#w„èbV ·Ž¿ TÇ ÞÌNŒÕ8WüÁ¨PÈv+¤F+vP±H÷»N›8²€ç¶ü´Ð$!}Šާ”PbØÀ•”A^>`@Nº/ø|Ž…£Tu¼x…ã__òÄ>)_ãù$#¼-`R  IÊ[µÁó|Í¡@ƒ@¤®s3/{_Œ«h˜¶Ž8þ±§¡5ß4å¾Ý&OÏV8Í>’@åà¾n Í+Qù^âæöd@»úQN¾d쌵öuŽÔ;R¤»±­ åªuÌLðÓ&ôtwˆ¡Høyv þ›[w·É‡ªÅaAÎ0§“á·¼hüx?FÉ€*ÈlÛÿ—mf¤£Š¥¨À5¢ô*a |³`ƒ«\ã’Y¯læ•7™U'TäSðæ–hÌJ²…ŽQBršâÿök¤§ðäj\øË}÷ÃN!†²'Q¨9wÊj|~(ÛÃ]L&.(ôL¨œËqÞFÀª“q"KsZÞ#1+}á1È+ š3]¦Å“¡uSªþͦê1{¤ì‡qw+rŽ&4ùÁÿT Kô{—»¿Ônèˆ+Ó!hYî¼+#›RŽŒËüòàcîBE”Ϙö€ó^Ÿ©ŽfÉ35i|¯PzpÎ f†|'ë¸7^ê|U LmkJûÓ¸>ãƒMH÷ÛÑcÉÝýf]•TqÂ^&9ŸhYÏ‘„W–L!xàÇ>ù-ÛËk`CÌ-‹•Ÿp‘–þl›ýdÊ©68œÒ¶>+ü"ïêˆÿÏGýë%»ôGûØ(ÿšÚì’èݺì”Råôòyd€-úÁ‡*rwóTJ6ü™ÂMHt<Í»”²ô.¦qà‘`Z×lf‹¨¦…$ǹ\ŽD“¯Æêß|+Ö%(ççÍš¦vú'ý½†¾†!òÊÿÌÁB„Gˆ•‘šVIZY3@ƒ¶³ª )œ[eú´|f*ù®Ç*×MQýoê G5M[€Ìo¯"Än°[wXåÃKG3Ùî4Ø©àÉGË\=Bh!3¶é& 0´@g¼;Ðó†™CúR ȶl;5Êyƒ´»‡œ PyÁY†$kß%],Ù¼,ñÆ€…Œô?ôÃsüw¹,#¨=DØOMlaPÞC™Î~§8G@™Œ.ØÒ˜ú±+­„T…äv=Uòg)æÌ€´E­ôøD¼o¨ÐYNV/Ù.Ï·)t‰ºçMžkH¸ºƒ›u=¶¸ÈÂO\¶!eÐùmÁÞ6 Û¸ Ü>6Ýþü®Õš•ã?g´w‹ $2 Êÿ…¸Gè…-TœÕq :…%Oº×:8Ï‚Ý4ž0^ƒ‘àl`kÓOÃ>Tå aPð/æ_IðG?fXñÙÍû£Üꜷ®!¼|(ãŒÛ­1s3Eû¬ðîH¿fu2=ë°_κ"/y•/? ^z3zQ$³À*š¾Új¼&ÉzD^[])†N!C-h:k£Ÿö>?ƒˆBExAÄ@f¬ë3¢º«ƒÂþôêpËV’‡*âÁ±ÂpŠôÞ>竟ä‚;uø6ðám‚C³=Ò(ý.:C"[ä˜6Fg¦ÌÊùV»I*ÿÔ05_ëä\Rï9crÝ>ꤟ¥lcÃᎬº\VÒ[ô–i­GIªþ§õ‘‘Dz¸ŠrÓ,£*¢Ø¹ÒP‰YµÁ ?ÐÇîhÛÅeK.žQÓ–9#ßÝYƒZŸ¬ÄÏ~/Qôš`cð³d(^mKem&‚v+þ°/*pÂ'c³†®ØzùQú2t[t† oOŽt)C[KVR­v›ùmp3Îwå>´‹éà’°çE­ážxjôi —ˆ§é\)ßâߟ£Ãúg-x™1 Ÿsäž~n†*ñ/ +wèèAN¡l»5»˜›ìSuÂ? ½¾ÀõÜ=¹×n&‚É&¥#ÙåIÜ¢áÅ¥–’¥Þ8e”€Ü°š`2Z£ï÷qWrŽÁÍð˜‰AÃ`‡‚~VæÚMŒ^ÇM±kÖ*®’ÉwÈ#P|{è"í¹d]ô`¸\+@BLøÅõbˆUs?äR©\£O$›9ñkÏ õs¶ÓêY†DmØ•'²‰Ä&.Á¡{€M‰YC*ôãC&]0íH² uêš®Ha!Šî£0]üM®"Ƶüm̱›è›×€„‡©p|íoŠ#¯·Êê½0L/ݺŽõ{Ô>ð¦0ÂÁþ¥Ç+…P²B‚|t4k€d¥ZYHÚºÞ‡’0K7.àííWù™Ï="ÆZ`YÝeÑ»$Æ$b‰V©««âßì¥c+Î{î®6Scäi ¦ÔoO¢oÛÖ#õد0£OŠ}~Æš7Õ™"wš)·<Â÷>@:6}ïëˆÛXAp>ÿ·µ¥J”þ“˜é'Üc—ŽS¶kAé{š¬¾$#¾¿ýHþp¹ô„©`˜…ÀÃb gÅë}MçÙ[¢[‘ USÅÌùKã"mìuÔœ¼þVxLbd e£u:).#(?I!¸ß h]þ‚Œl ’&?—vÛ i}ÃÚºQ*¯†qþüú¼"VÞ™&¤»8è?¼n¥%Áp3Õž_Ôë’¾H‹¢MµòüHž–ÐÑMÃQ0{ws©'€D.`l2%üˆ¨Ð™¤Û«€î€™7Ë´óPÀoÛ¢ °!F&i}æ¬Qœ4Ö¯Zn‘×Uì“›wƒ³,.¹4maxh ‚!l´f{màLf35Ÿ{2åDª.NeÂió«ÃàÙÌ ç æ”š <¯ùLäÙ:Á0¹vŽð*H$Gnódtÿ@µ8ã{`ïXÜ®¥bÉé4ý[4F:Ì>tµMŸ Q„»xß÷R Òù›…ÄŸµ…ÍØ]/½Y²óÿXì,÷îÇÝ!VQ¹ÛM4•ñS'¨lDå€wñÛ†ušáLWüH #]nÂ_F~˜Å¨ŠŠ‡¡8áGMæÎ(Gµ6‚‡Lˆ~6⎈È)‹‹×þzR¢¨–ËüÙ0ãâgí׿ŒÉ#Þ1Ú³‘ÀZ$Zåµ[ÀÎá*F÷Úš³ÁÑ&~ü뎙l±v̳ÍÃö~Ó¸¦÷Lr†·ºs ë=XȸP¬}§Õ÷ÊU+k´rç/P{a/‰ÓÙá8dúƦ9Çgù¾Þ ×ÌùŽx»bDL™Å%ÀÃ+w¹N DÊUHÕ“DŽéœ’¾~ÈÔ ež„z×£æýXÙ½ë·Ã Ê“¬jä==V–øåfÔ°óž1µ{]MK÷'™>3Wâz«ù†„‘q]QÈrX4B·õ7„~¯¨aU)«1XˆZnhSCîØcÞxT±£ØËÂp…DÓ?FÛl\Èé˜ ÑyUê­¬¾ÁpÎ÷{-Eùàµó‡„ȉJTn£<49# -º‘Ðû84¤ñÒ{IšIóI<$„uãUj§‰æŒ§a†›‚QÄ\–ð£Fª‚S3ø1,â+úådA†íý§1;„ì-Λ"™Ë¿/ž‡C› "ü”Æk]"±Ê|~²ñ¼O,nøK͇l–æÍÇ6CTLˆÀ²„'°G_cÈj÷Ã$ Êö潈⷗¸cíUÀª=K[ßÜý1]kút–™…µwŠÏ´ömÇŸõ9õi‚˜r¦àõñ Çcßýý€Â¦¸:öæÝk×B¹1ô'§ÙôæšR6Gl³k8_Î]V„8Wä=4Ž %÷ §1äw]£g¸nE¤^^8»ìã1óÁªšUj,3lñ¨d¤þÜ™í} ¸ê¦æ 9È B_W ¥oé‹> D(ïy•5ÎKá°/9ëIo±Ž;Ü)B»n/@èxcHE®†ñæÃP Êrj,2{PÎÆ$¾ó“FAåÚð7¸ ñ«‰n»é-?˜Ü×ù³:·7ô=Q5ÙXʜ׈HnÔü{‹Gš åo–ð»ð° [®tr2›ÜþFÚðßãMŽÿÌÍs†Þÿ>Ù~:Ëëad¼Òàê`™K|$P'v ¸@ £‘ ¨ƒrÑKàK¼pîÎ7J0½„Çcr1¢·@…oùw*x˜ÅEh•ÃÀµ °é_åP«ñ„NkhyIÓY~a²è£ÿÀìáQY0°»ä|×Fš«òÊ+å•‘#SȲåö+É'IzßÛž6_y¿§>}/ö’רSÕu ½ ¶Uú c"±5/g†Œ :›*?͸l0¿É"pöe—Ê|Nz8Õ¦€¹P:Îü½ ™ø%(7Þü ²é];ëÿˆtY4wÊJ»lO•´··ìïšÃ« .é\Мšþ/£=V‘ŸEà®éú@J“È”WGð2£ K.•³$ꕊy´B?£Ös_ÒfénGscö¸ˆqú vÄ!æíÕÈ%„2ÊÝl¾Æ€å­¹"G¾L«Ci Ê †Í7ïÒuhmL†ŸKöñÚ˜È$ÚÙ[þCÍu£­`ª@}Kq‚䧈ÔM[®øç¬PøY ݬßïÒnݰú,ê¡!Íðd+ÇGíB*ª¶ïɌי§Öäæ*Bào‹§­Í0b#"®su"h^÷ÚѤ?cŒØß›#¸Vãi¤|=Äû`'aý'l™K)uŸ¿/ÊåìcTÁ«ô–þ7køÒõrkáÿÍβíÓ!wy%#ø©}3æ=Rô7Áã+V¸PO”'=ÇC¬š.î[ò3†Ÿ!Ę›œÿ¢‚õRIÈfáQQ˜áMþþ;s<”†ó©o`IÆÀc`°Å’6èV<ôvÉ' ^¯±¡b&æÙñ†<#£/ù†å°RMMî á\áÖPƒí`†ð\uqÓŪ_ÝIb?)Möº3 DZ¸%®$pÍ&ëßu˜ÿ_µ·¨×]jx%ÉT8ÑfT•(IgöN´·¢Ae$C¼ ‘ÕSW¥>¨:Åv{BU3¹X°‘-mÕg!:s]`äÖ5"¢ a4Ó'¶lSe (SàfÓf¾”@ØŠ·+ä¾F±|ÂaΫ™ý¹*Á˜6ª”J–’H>À¬ZPûcòiùšíÁ;Ë gsäòûrÔ;¯ÔKë‰Ë–lËUÅàÃn1NÇ–|½m€¯EÎ<^…qüÌçb(t5¨ïžŒèr£¿+4ŽIÁ÷Â$j'ÓCRżáãµ§qéÍ­ú}`Åj‚á¼¢Mµ[¤©°}/pLó ‰:Yk ž%O/%+,)yó2Æ£¬õÀØG—!_%Õ»~mšï9܉H²’*«ŒGëfáûo2j:)Ó÷0‰\œ.vÖl¢ÿZ#T×ýª:Õ×—¨VÛéž•­aI›œJ­UÖDèåÿqE ìÈ¿4¯Ã ²ŒV±]YÏ.R8Ýa-Ž)žo¸×0ÄGÁtn°Y¦Í#ÃtË¡ Ou…XÿÄ!‹?º»ÑaºOõ§Ú›©ÃmŠ"b›_dÕw§Œ-%èS Á-?rÁ\â®&ytሹ—­™tA»Dv²=UuÉÚ„?¶EóÃà-#Œ‘Œ Á¸3>ÇžÇ $"èh!TI¦öî?8¹o¨pª¦ú&ö`ø}´ãÇNë,jÑDZQé;A0>RáxROÙÞ ;×÷¼¬Œ"8£ÀY§Ž¹Á°Z^Þ™pµ`¤ïëbƒ…̲'ÞΡ㻉s‚¸­¿ii| “õ ºê dwç]2iÓœ%u#3·Ÿ¶md$–E²/?]v)| $F(~ ì÷œ˜Û¿X‚SÑ£pïòÙuõ'¦œâìo@/ÓÔÃÆMÅ/‰¹JêÕ»®ùö,àX¸QÔÀüsÁ¨¨Ãi$A¬Y-ŽªÞ~SÁÌÞÿš¼šk0ý û8–…Í)¥k·–¤^ÐÄ0 A°ÌJAù?+ÿ6‹©{Âûßo~òê£îÂo‰Ql¯þè3‘ Ò *šW錖ÇJÐ!õ¹~®¥G3"×àØÓ¿›¦s #hƒ;…í xCÒØÄl3íÓ¡wàǦwÀáæ§£ù‡MýŸÄ»Ùd‹Ÿø9U\¹QPY„ª€.Q7‡cœa¤œX¼Áª$êÑlÿ % {˜ÔÍmÚ,ÓØ›Z°@].ÙÎV? {oý½sG;E|ízÄë“‚UVÜÚíHÜܲh°¹iº,ä­oÇ1%Í,ÉzeЇ}íô1-+záIœf"ô=‘# dnnä¼ òS]5 CU 8%ŸX9'°Jx^ȃÌG®_¨1Þ ,^´ÈŠ€X×þ¥xJu£N‰,øùØaèÅt#™¤Ý6ÙôLÍËk“(0aAU”Ö•ø‘›y“©WöNÙ+ÂBþÒ"îïƒoçL¯Q¸F bw^eߨ˜]²¤¯ÅÛÓPT ÕE\àž˜ä±ðSá[\òõœôœ‰Až$r¶DÅÕ€4°)Ï 4Ããéƒ)Ç¢#Û¡—€«v/€¢ à2HJ¥s2êed«*Iå3UWñdº–”þ‡Ú9œ´ð$^¹0Aƒ²š¤0¶C—\`†mŽkÙè‡xáŠàµx@<O£ ¢èí¹f¶î Κ!Øj¡äJïû]8žÊ“åvŽ?ÿì‰ ^g[éFK’»îCÑ`©T·]û+i» š­;#’W™ê.C£üã8ÚC©Á µ•Jw±ûïÚl˜¥ÂÁ`ógbá¸P½€‡F‡œVkS1ÐÇïK?áîý. œÀg…âö¢:ÁNd;‘Þ (Yµÿƒ ¢^©B´²‰–Ò½ÇXþ´»é޵Jóùe¯âŸnôí3ÿ>Øv<•H-øSiçâ¾7•?Xnî•E§ŽzY/Ål¥¡ÖaWDEf–µsW—B·–ÜÓ g|°ÜŸßaÜq™Â´sÇøVìÄ ®Ü3)ue+d°ê½InU!rZ¨dt”.0°ËLŠﻞñº²4âc.Eþ@~î8&¨quãü<1¼%†ÓÖÿ>Çwò©öZ¿‹¤x"ÊPÈ"F=*ÚÁ‘2°C„]÷ç&œÀ‰ t´•¾þP·ãŸ®0^+Hg´1#iä­eÄ,”·«t4Ÿ’”ß’¹úµ!Ò©!2-©žp½j[ô™J¹Û¸ª4™.šÒcmôÉùì9ºÖ`46•´Î ž+ìS·Äw°-¡„»Ë±béõç~ p$§áÝ$¢ U{ng‰%ï곺¾2Z\Ä °ŽÃ?¾=¸<Ëì%9i#OÀÍÖù£jϰ̷Ku§Úœ£­ä¶Vuø|g_¡¬;/ÖÈgïŠàì²Öºa|KGúÃ?™DxJ/¨c~¿1ýÇÑ‹y­üò¸µV <‡Rûڙ¦Ûhc]Ú²D*Œ½sùX®×iSQ¡Ÿû™ ô‡–y"ûE{}@‘l–gX}ª2ÕÅ%…ÿ‰ ä:É4(‚gÒ5 )WKì=ªÂ"ž¸ÕT¢s%ùô_ƒ± aÀßã°Õxÿk}pës{`Ê'.£ýÌ«¸&~ð¥ÿ(ÄÒ m„¯iÓ±gh"ÓŒÅÞ£©)âÄK³=XÀ½(Vy[Úöñ¹<÷^ZÖ\‘3Ï)wM% ÎþŸ¾”>uÄ‚Þ+-›»“ ÑN¾õ4 Ê~C7p þŸeÊT+{¯¥# Uçv.ÉljÈ3c!½é)[C9£@ÿh©0 8'çrpÞü%”UWÙz„·' Q¶“˜_ „â’`Ž=D&5ÛAyT=R%Ä¿ÕÌ×NLÖ‘jÑê°¸û?vÚ;ï*2²ÇÆÛ lß+„–m"ÀµŽ–0JeY •û r`,-"Ô6Ÿ£ù ¸´ñhÅÐP Ά¶}BµÞ´©c„¢MR£9ÿÔ‡Ôé-WBdg:×~‚Þñ(³`ÆìÔ¥0=¤Bu•AÜòöÇþ®ÆÎ|‘Ö3 PçVvpŠävMò*{Hv;_ì¶øUàÿa¦€I¼ªÑg¡Á¸H´²÷(50»aÑÎÖøà.‡óçÌ£uèĶ„$×Rô³dÿI¤õµ‚õÕ|d¥ø¦4°Ú/ˆærÿw4iø]ǧ`»IïSÂÛÊe‰ø½Ã<*ûÌ5ÕVޱåã·{]¨´ÛÙõw@u/ìãÉhm*ÜÛ& ßÉEœùùªò QNéæÔ£Eñj&!x­6W 츬z9þ`ƒB<Ðë$ÞîzC;\>…÷,¡õ¬ D&Oæ‡×Ê%°%zHåæ~·&nïM­[¿Ömµ+©äEM¸üü™ü ó$6o—VžûLù齜s¥Ëà<׃¨¶Ogß…€gt¥ké¬|üE-”2FW*G‡,ΰŸ˜oFs¶¥Ì}¦NoWÀí¾w58 ®ÏSáv´ïÍ ¤ob‚éHßnk{¥—€~F” :8ÃÉéÅy˜Pbôñ˜^û¯hWvÓ‘w½Ma·þù¶B˜íd½i5Ã’Wìl úlÃhu° Ö©Žƒ5? ›=ÿx'r1ä (]u^jÝ?ÙSpYm>ç_ªq+«•~LU¤¤k¢ë®_7ÆH_u‚ªµ[ÓÃÓ,zú²"oÔÔbz2*1ÞݯJÃÓ#^€¼T×ú\úæ3¡8 1±^ê(¡]«@ä“Ât7‚R½O¾(è¶ÇƒnkkGãZ×H/¸oŸ`µ¤/GT=¸ c-§jmEMS–ÐèÈÙ@´§.d9(Š{+½+ÆQ…ÄiÄ.¸@ƒ®7z{^ÁÒÎêŽzUÈ2Öã—N?º ¡Ý!ö÷¯¼Pé<ÍÛ¡[6,1FØ&ùP–0†’öå‹¡Ø[^ø™4º|Ý=“Ý¡”4ÒßÝC£„ˆÕ¬-©NÊìi`Úê’óv2QÀ–ØYƒ”ˆÛcÛ®q/>Ž`+¸e••ÃÊ0S±þq€ûKIÃiqË¢]ɬÅnêSÅ£vúQ_8Á¤ê_Ûf§7júíXC2IÛ~½ÓiKÊ­.Q_þ$?ô³¼v*œ( ¹ 2µjÀXÿugD¹o¢Ec\]ühOOã¶cõ¤Te8Þ^×ûåâ%ûYx¨âLf4¢‚PùÔÌe¹êK^ׂ®8N‹óM..©·é¡i á={õ`“5 ~9¨·±B·&õîØß›Äy³Œ»<%0À¼‘Ïž>`P™<@ÒêÌ«²5™3f”/$Lá„ç#qèäo¾dÀwУºÕ[e_ h~ÂkíË…k‘T[—Û§´»¯ËRá"³åž/ o$ÿ˜Ûw7Øšzu9Ð}ÂuTAZyö´é€vO ›…•û½òÐŽr\§DŸ¡‰YH žþ¿iÕ¦‚|LêÇ­,u)Ò]ظU¹ D?‰N´Pzmd„îsô3gìߨ½âï ¶g¡d'uÄÜå2`{—0†y³”&û„À𱄫…3——jè‚* Ö)¦â(œ>ŽøïGzç ! ä¹î|~dWs•®€¶¡!^ЉºQySPÍC~“ênS˜?ï;_x¡Úܧ‘¼'`ÿBê-ÕoòIˆˆ`Õ[:ñ©g<3q8Ö'G&:¬Ñ¼~Þâ(øäM¡0­f2× s¬Xùc>Ý›{ ÛüÑ0Çã(ßÔZ"ÂÒG‘Cõ²zØŠïæv–Èlá†õ hÂ!Gvù;?Þ¿©‚™ó;Êjz2š@õèa©ÂŽSΉ`¢ùQX¿€DúD"ìpÛкølK‚wMȘOc‰A9–ñNf/»Vê}f'0éW{Zom·Í÷gì»ÛÆ;Y{m´œgR’VǘҚ™Y|¯½`zÝ>£†ôøÌþóêbÈ„†Ö†¶pXÏ$zc”OHEû‘ßÉ%´?¶Ôtñ8N$ÌË]¼ Ì"¾îeÆ ‚Cî6g½Å´úÉÕèI;µŒJ¾^‹´¿Mê3™{sš^,CJq(i1µ? O³VÄIµvTÓtæb´¢P4só•ÓÿEƒ-Qu©‚,ö@!ÛoáÄœœ/î:Ê3ÉûÑæ¶ßˆÔ›ŠKç0¿,ŠAÏ'LÃ0ü1#›N¦TÕÑEæÎD(Úö”Jª`¤OY]z61bí[€>åÖ¿¾/¹(ïQúÏ'‚ld^5M¹ŒD¢±p¼9ë͆¡Ëo6’h­Z0ÐoÌ_öûÝ?{ìIo,[{–bÈ8X[±²OÚÃoÞ ‚-9©¨!ÒöI"2$ÐdLó%H¤ˆC\¬]䬥Åï ļA:x€™±::ÐÊ¿@µEÁÓI4[zܲÉ@Î’O lWöó«d‹®Ì _›á¤u°‡Xä*¸'÷þ¸åjFƒŠ|1•n”MYa·\ǹI½»óLR%YUÃlfÎu-0HwUu*:—O·ý^RKSL3n/AÑ—¢ƒPÃ7ÀyX²”y\ñWúqõÏœDSê#ê¤Iâ)ÙÄ‘ úøp6y\–Á6/Y,²EÔŠGI¹.T©÷P7Øä†Í ½#×0Vb9æË ±›O #Zß"v“ÉyTðÎA|`Ý> Z¡öéèßž] w«+ç³>³«½Ö–†Îcè„ä¿.×Jº¶«#PÜã1‡—ާ{È$šB~$¿â‘‚ þ;thdõÎÂäSÐk€âZJÙlÝA³0TŒÓ!õøÁ†ˆëï6|†Mç4€ò٠ưBê1ãæm õ]  èi½ã®!ër|I›Ž5=# ÏŸÿcBªþ˜)¡4DzlòçÏñ(æU)§0NÙ’† þÙß u+Ïø‹lAíß\ÎúdÝ {ݼùà vú?)jÜQ…É®Yô“7|ìsP+L1&%)²¾±b4% ŸÇåþ’ Nà³–åuŽ#AåWK*«éP†c]Ï‘¬Ï‡ì÷¨8k‡™ûŸí-ÆÝ™z “ÿ†'úÞj¼zª.AÂŽ%XÒÏ8»uó¥6/½ #h¼Îf_"`礻9ä›8~ÕûKl¢òáùIŒÁL±Õg¤`ï(LS»4Ç×oÚì±²¹·‰LV\5¦­ *ý †nT¶ª1BJdFäS_ÌîÀ›ì˜¬*aÏ-ï\ž ò™•öc±ôISM¥û%„#ŒúEq †dPL›ìw=Aî(¢€‡ÛÒ’>~Iž_ÌHv7ce÷/šÄu96Ü.F[¡üiâL[_•1dz\fÚó÷ -÷ëM9¡_@­ÇÀî5 Bˆ æäÚšå¥þÉÕVuž>B_ÑõÏsi ÚˆðRÉåTŠ[ΊÚ=¸Ì*2u>F]]®3ÃÌ¡¦SG› ï¨méÃŒµŠÅ» ˆ’¦/QA*´›W™±p‹<òeÿ#†}Ü2r¶”x‡ÇÖjã]1—w‹CοH†ŒU\ÕÇTW9Ÿ`¤mžsõÞ¸4úpsŽ5J±º_1â0¿¿nJý]5ð›cîµµ–”3Ø\Í„âÿòÓdüÇ<µ0›ͧ›| Í•|>œX—EXü|•³x~Q~ì] ÏQÕw˜ç,§>ÿ¬èRîù‰Ø€Liµ¦þ2þ(ÅÊjÅ']6ÎQ*+.´_´«©7Ât<©¶\Ey}؃±½72¯<Δ’)×.›Ã¥>È~²™er ¨ž)Ý‚´º½û¥$¤B3e¹êš¥ãœM#h—IûÀGÍûçêå7owÉ!£%âTªÐ}š?&pÖ6M:P¯¤hØ®8q¨ý»ï úSô©Îü æ8!™ ¸D)ÞÙ¦1€ÃÆû3_SýØ»Ë#¯;éFg ½­2xKwú P9Ï8&í“2*8Èà ‘–Á¡>'³fëuÕÂSY1S'6Z*;q' ˜‘HqúЛ†ÎÔcs<©%¢ ¾jÍ†â¥øyîªz…®k—o87&|Ɉ´®énÐOw@qƒY¢WJÙB; æ´'Í, ¹eø ÎvLooÝ åZöSYîšiÿÉ´?)-™‘¾ÆÎü {CksX 9‚‘6Ât:ͦJÃH0[¤ƒ™_Î’þg“uBš¬åK‡ *v·½—¹*jð'üAJ#?ïΨ6N×°a_mìÁh*P "‚zº³æ#Y*´¨¯ ù /ä› Özèw¤þBÁi-¹ÉÈ«GaWw|mÙL‚y¢âÓÇz†Ú ¬7>‡?šý´ÝXEwºÈ>9ss²úxäÞtÀïœÿVÎè§õ†ÛÝÅÅÖVÄ,ÉW·§n%UD.À¨»Ã̧ZƒQ¥Ë¸Á’Öæö¦MN裂¡%ÆÏ뾜6Uüh=Ré*Ô žx&MûQ[H‚^¡ÝOB:^ ³ê¨õÓƒ`ÿ$}õ!«`ܤs¸KP2.|Å”aYŒÑÉ_ir˜;äÉQób¹¤K­ëНUX ˜¸òÛÆ7•󣋥ýµ »k£¸ï¦›å:íö‰Á½†"…bïÍ’Þåþâ”äÿÏÖ˱‹'BÙq%ÕnV»­ öºõÍðî{”z`ünÞ°ÿÏ>I4^Åø/q"B]ÈWl¡oÔ>}zVÑ;6­q"Æ7Zš# _\Ó|`GHp>s fò>Ÿ‹È"èpo.·'œâÖ®í.ǹ7°í-•öÙûuÌŠFsÒ˜¨¦JÊg?ÒÑþQ3†.KJ\¤ð¬pjÙ¸0½óáZWŒ”ÊïW&¯¶¤fZچ߭+‚|@KÞûbþ PhKF>]YoœV½Ë0Aˆ˜ƒÞlZìZÑò:¶¼zL®©Gy2^Õ… ž3ËÕÀ(çm–•*—FD»«Ç••ƒŽ3‘tfüf抆‘1ü^8 d2¥¹0ɾƒúæÐ¢‰C-îd©s,ã¾8¯=ް3òÕ½²Ÿ&*·õ±%Ü öî Žº¢*'-7¡ÆÖ$T廕©¢ÿ²ûš÷±­ù‡èßžO:/= —R¨ÙŠi¿"¤O«v1OõÔ›<¬ÉáôïAC§:x¸Ä· Æ_ð€Ãd¦Jí4ÌÆ¤›ÅÒÑ÷ôJÇ„œIVí…È2Š/P®7Ó‚KúqG‚ªIú#h‘ÏF 3 ³k\ä—g¡eFÌqÖ…œù&º4 áW¨Ç)û¤Ü | LPŒÜ«{¡ùã² ÎhËˉ78‘h§÷¬*>]Òâ¸÷¤€—Æ(g“vÁAð2i±…M+@êQ*JìÌdWLôÍBºìRë8j¾ýŠÇSN0IÂþWÞà\«4½nŒêÈÕ|3š&%i„ :†öÎã¸*1¿Ÿ|Îd0ÝŒbÑd¦ð¹bZÑ/ÅL·6lʦqS¥ùãa SùîpÜÔìY=ÊùÓyd?cÖÊŒiþz?çP§O7Á\ÞxˆÞ( )NîPÁ 0ø0º¶ >ÍÂC‰9\ývOe±‚Cu÷üyåšÕû‘”ã|×@ÙÄŸHÌßðqU¦¼þ²Ö_nú Þm‡vš›l¨HbºLΡÎв ;ùü »dˆ4,@’¤³c¢¶N@ŽD€IÿÚR9'S÷¾QàOT)_½þ·®¢\K“­p¨ÓòÌV°÷9`ý¦iP}ßBõ¹U½‚òU)Øm84kÒ&kPçÁ!Ákü‰¿± 9Ála±·Ý¼Ñâ7ô=-}ÂEo¿ ÜvdÁ<øQVQaè±QV67qø["L¬¯6–åçÀY?‡ÿmèѤ9ôüãÍš0ê¡M0›‹P”äÌÜØ7¦OÛ9ç¨5 nn ‰‰Gñðh…Ù&%9„},öué¾=ð¸ª~ÏC ÇQõY±5~CúæIǺè*DQZ[»Ý±’«ésdOφÊ`Ÿ9P+"HÇH*âM4t%½&S]3§Öý4Æ••ÍŠàôÕ6Ьò5怃-sfM}‹•¢%jè'ìÛ0Ì A’LpIâmj<ä•¿É(VEïæì™X~**6XJÄbhØŒ2'Ȳ2T€³±ÈÃà,h/r<¤ÚN2ÓáH)Ô¥T6(0Áµ¨bÔ=ñ|EülйáE‹Áž'ELrE;1aX‘—ö1Ñ­ˆñF’9ÍX”“¡8Q„¦Ú¢ºËWäNø´hxj¡ÜY÷G÷·ýi2G‹ÕYbÇl šUÑFÉßÓ-gÍ&é3£$ ÐíœÈ×Û™ ÂÏûK7¿mÿñì­A‹Y<¡!wOoÉ_34¥½X 8˜nI_ r(ÍŒZZ¾DàÇ=>™—,|†ð%ØÛ«t Ÿ×QKªnö!É·‹@^éÞÍ»“ÊÁƒ66êv=ñPi,dVêo3M Øtß&V°)Òiö_É‘<ŒÖ­´Zº˜4 q¢ª¬q˜‰xç9t­©Î1"’ˆ[Œe#EùBª2VÔ$EßIjrX(êk¬#¦c–£ [†B86pÒ4‹÷XFF ”·îûÅTø.K×܆™þ€Î§ÚGgÝ4óH‚ýHýª¸'ñÔÔü¹¿«Z2~¹zLcþGffàiGù¿ž«çB'sDÕôZ°¹s2ãÉ)¡¡ íÕ± ;Õ‹±ÈÕ¼—T$ÚÕVs°^ãQ¢nÜ) f¬ß0©Š¤çÀªýb#è]®)Ácè*B@b8ºvnOø•§K«1ÝR5LY:z„ƒÈ‹Ða óÇý—ͺZMÚÉp£íD™ØÇxÖŒQ$öœÚ²áÄw¼öwú×¹ßR‹À-'ðߢ€9Ž ¨ý=n&<ºø»G99§`=æòѤn_-ø³‡šZUJ{( œ¾‹‰3Ž'F3.äŠn, 8¥vù)¤tÊrd<@A˜D¶ýòÏ"ݹ:¥ÿG¾¤ Ûô¹ÆåV‚ÆÐÆ¥ õ¥„°½ZPRoˆf°¿c™±Á£zšXö^P·êÐÙwËu|72&ëbÞ²³ÇÉ“°À¾a_ä¨APE4×Êeúéɦ"î:޼~×ážÙØyBb—‘=؃0õⵂð¾¸FuÏélvø’Â+ ,‚ï¼^‰xc©H-‘dšG ŸàÊÂ?[~ئdt=:»‰u$à°M^hóíÅ: ÈŸÜpÖ~8øï(10öšQ&[ÙÁIýÌ¢²”,ɬ-Ch}ûÇ¥Êgù*ìZ rô¹l ËCOÚTà›ZJ”‰œØ!3?[?à¶Ò ®eˆ}oZ” ™PåºÄi¤cY—pvÑÌu³°è¤Ú ží«_asÛ#w¯Se£6f\œÃ-çÿ@ÃpqôX’O¥X—ã·ÝlëÎ+ÊŸCê³пoÉT]Ì øç8}îsЃs#‘Ç”œÐ\œÏ÷z>~,íµ ŠÃJ„ã6Gú—!HÚ‚åŸ_8HÄBÞ) ·fk?xÕCÈÆ[ §ï@¦"\¥5…H_väm‡ó{Ý”fñ«ðIÑv±–ßׄÊÔ ¦«À²Î²ÊYO ‰Ý#é´zõ?AòðºòãZÖÏ‘9Ätslõ­Ðí_‡x)šé;— âÍå½ÉćËÛ$XÛ,]¶<\]Ls?ð6ÈØª[XŽ,÷…]ŒÙŒ—‚fdºJÙ¯ÅhR(ô²UøÃËV~ËAðO iPëR£Î$Øyf«áYФ!K76þdj1·]yL|û‚:€ƒ<>öW’|(nðZBi½`u÷ f]y8DupF±ó´ÇËÑ€t»ÁÞÂs!VÈ$Ÿ„9è(/„ê£9ƵÎàAO’ ìo·~øQ\Ps\DJ䣕iañ 4dÒ¸TÎäy›/Õ¥!3¤ê­Þœü—::¸}ŸÚ ù^KâÕXQ‡WˆZ3’¨ýg~­€m×€“ôLà)™5<² ÷V}ÃÞMß/n­^Í–bHɵ¦ÈíbÕÚ%ŒŽ œóÇ*“ï–H`ªq'zvónü´ÚÉ^• ×âi¶a¨cµº£a æuõ¸‹õÐ' F7¨1(ó¾ºS­)~â=ËåÐŸÒæÖ`X¥¤þ¼µÐü®ÚãÌ@ *¶È† ÊmVùÁrêz@Q6¥Ö¿þ…Ä®.óÎ/d«A¶U¥ãšõ[+úl}4®;Ú¨×.k*Í[÷µˆÖF°Z‘¢ ÜMS¶|(øúvœ¦î_ÀõIÒ œ4÷Ë–5W¯C×é$ ¦€P½ Æ&"j’¶'¥3¿•IŒû¼Rû-jk Œ¼rÿ»åÇ踇bÆMÞuº·¨@(qU¦7ýQËŽHwL¦³ âAeßm _M* .¢V_Ô¥4'ËqTt·ŸAÝ×È–Ÿ 7¦Žê+ý˜Œ¼`û ÇnMš1Ïêf’4ǯàÑKß gv…bÞÚÆÚÙÄ1Þs¿ëìBÆ–J¦Ö¼ºÿœbu ‰üŠYŠ¢ó­2_¿¢µ"ÏAÙý—Q%ĸ0=õÊr¥#ô¥a7{EÉžŠ¼±QtºÝ}ñ–X2ô0 àešß|ãÒ'•Dò!‘lauʆfxe&©L Ïv_uQÔwL¨ñk‚8­|ÅòtÉð¥•ô\”Ï[¢ðAyšGÀ¥©éŒ™¾ñMN+i>àг¯àçdòáj†z¦‰1pùjwÆu-Ú~A΢…ÐÙÆâ•zK\ãiÿN‹üKE.äd^4 Á©š¦Švžxi“Ær¨YˆîTò§+s;wÔüzµ°ÈZA§§n~@ž(.øç<œ‰Šg²iÉ7»ÊÙ¹våµ™%C¼Äý+²V~ÇïuãÌ4rjѨàüÌÀs­ÿ,À¹þ_Ʋª§Ö©¼D‚W^JïêêX0[á÷út)ªUglÙÜ”p1 Ùrau>s"lÔI^¦³­ç—Z]â3Çù&5 ‘©båCµsÑþM“i/*/ÛJ{â]§ÎüúM(¶Í9‹<.míµaR—ËH?#žú—ù -£‹U‘|7è!düß÷Dd¶sRåäà*]=‡Ò€•†ÿûÌMÉç)äf[Òϯ߅¯JÒÁXš g¯tš€UÂ"í{où1ýºãVuk;ˆ%ggY—rzHí Íi‚‚a˜›™?üí›H…Jaf*иwlóàÄÔ~íõΦv‚K¦¦s\¿FÄËôÏdÄ^M+¯vü¶vµB qGñ3Àsdø]S`´Ú”b‡PQ *•(’~Œ2MñÿaE>ã-¢ Üݬvid"qm’]0mc"—ÀÍ·x™œ òn&ª TÖ[>µºzSþ½n4Ö¨Ë]¾läl¢D⺶ÙT;ÑšìŠzT„ÔœK¨ñ–6q;-ðjó’°™¨lSÃ…à¿KohÖðþ"Ÿ|Ï‚¢FCQ ®ŸþêUóB£_±oÀõ±í”Ìçæ­Æ £6z¹ë†‰ô”Ä:p=ê*«•ÔÅŽåÃ^p¦Âs3Ÿá³«v÷ÈŠ›ÆÛJcŽ™•áèàSâïõ*l¡ ¤çÒ›>¾ p(€ªŠÂH#¼2^D üŠŒˆ>†jH—?±õ¯Â÷™„éLÞ8ÈÛ‹\¶—e iÄ31ºéÈÜùï!M-ïè)m+¥yîÙKãÁ©ô=Á(V`ÎPþ¢—;øÎCÒÒša˜”aGŠZö;=ìÉÚÈÊæ;… óŸw êÕšú|Ö"žxvOÁñ ¦dhD¬ú—$WQ.ÊM­ ! à‰ë®¿Æò¬Å‚?|Ç( ˆQÊÅ5Jp¸´‰Aïom. Ápeʱ\Z˜pªþv–}•vsÌ®iÄ„(')²Š€¤p/`—o5m““òƒ‹Íû}eï,ÐBÖ[µ1kH´Œ}äRýeëxÑÚÙöƒ.ouC¢‹ñ›x€…ˆP;Y*ƒ }®ãdjE¹²ÅšE%*gn&\ŒÚn³2ãÓ-ÑÿŸMʆ , ¶Ù¿×½ zꞸ—ª¿x”}ZV¯RDotÊ'Ë2‚EÎæ:Øù>o„ñ7Rœ°3Æ%I7Z×5 „%NÕeøÍ<ÜV´8s G’ñk"Û«iLì0„‘1æ—Õ„[ß:³—½¶>ˆya¾“d߯Âyê‹÷ú¯ß4Qôiõ™¢Ä#)bAðßÄàò"E”Tr#º㸠 wœþUd›È kuí™ìâdv373Î@Ë3µè©ÂCQ(T÷°Åбл¥ÔIY__×J`¢'ƒ=fÜ g:þjÍ¢a2‹òoÅF³:v+Í^m|õêBé:7áWB¨Ç:ë/”~¥ÄìªðnÇÊB‚•*¨%Ywss˜­‘!U]Ò¥92•[Û`¥M×ÑHÚ„€|¢ëµ>úë¦f13G¹mBŠÅðèl#î4˜Oèa6̦™ìdMµÄŸ ˜¬Ìã,®KÝÇõ6Úû:‡~Ç/ûÇ˲’Óƒd}Ñ—IéÉUBr“  ¤8_*䉂I=Š@óyìi—0²¹ø‘*Aå×Wd3=:Æ?–Xƒ‡B6Ù†nPÝ+g ׺u*UÚÓ6>3©½¥Þ¨åoø ¥þMà¤0_²Kúú]ÞÕæég¹K6¿³ÚmS¾—þ;#S\v,]Nû›4ï¶PRÍ*ë Î ‡úÚºcðÂi¬KŽÅbaüÿ™Mgaoþ2”jÍcô:Kßìv'7ÊDâ2‡iÑ·R¼Zö‰ZxªŠ´‚ÿé1'5i¤ÿâ̼÷Š BºJù’nùϺkè½Z>z¾ØYè­E -s,õÝ…ëøN—ü@5€,XEÝÊõ÷v–c¬Ó{–¹Œ„ب‹;Q†ÈbÌÔ¾ÿj·ïg t]:é9DÓÕ'¢—î3IÔ¦ìšÇ^ãívsÏ*½Ù€6Zk¼$žOk™]!{£ïtù–>O‰Y|5ò§õõR5·KÊš¥*#a½P<ˆšdsEı-P^;aжz›ÈveèÉqtä M,¼MSùÓ²Xök‰dÕëËTé¬Ý¥2«ßÄÄõ–êËV­ÈñÆû: •ëæU‰QÐ_žÉ&¥™T ì‚S²{I #ŒÒ¿C—(#´,wæ$ó3=Ô«ïÖ?°³È¡ÎÏó-æÔ}BÇÇ |‘ÆY…4•ÂB‹ô¯~< ”˜Úã41þ~v¸·T¸ x'j÷;Âí:¸—Ç­ºwúñûþœÅJ G¦äÐ4”5„¡§Žýí™èùDTŠ3‡b6£¶h0X1Ýïæ`í2ÄžA©ý{LS·¤zêZi“7¼þ;=FÈ3Ió˜ Kbr,òEî Å¿ápUvÐbÉÔ|N)1Ù®h°Aø“¾Ï]¨±ü–¤|g°·å|4¤ÇÒ¥šÖ7z0¦š¬HËG®mÃ+KG×Ñüº -b®·<4ñ_ ¿WÏëSm‡sut¹œlŸ$˜'8loÿÛÙ‡É×çØk' éâ%¼ê‰Ý×û*eà]É…Iì¼3oöš€¼€ ê³RÀö“ M•pØ×á³­ÝCVZ«˜µð¢1Š»øž5öŒ¿tV\G¢RO¿+Î/o#DÓbÔF+¤4«²Ç¤ñ`Ø8'ˆöÿÑûö÷Œì`ia?jw}n8?“ºï@å]XWÇ8Òãšb>X+Úu–xËqlšŒM ì’ŸÀô-KâÝ9uÆéÚˆHJGé9™ïÞ¦×NÎ…@ó¡¯Ea!ÞgŠl•еÊf%ç´¹[_)Í¿?ëKÞÕ 5Ø_Z½”;ò¯Óº—÷ä…D.ÌÂþÕ_‡»2É£aÆõÖô_m‰º}Iz é²üˆ$AúÀ»OŠ*-ÑM†cvmÉtN8 y„s'nñ²ó-=º."ºÎA6Rt§uhè ê™Smd)o|ûtf×å³bòœì¿û–}—½Àja¯xXW‰>-ë¿Y?©S/"q=k·‰=À~cË'ÂÝ´ä’ÅÏg"0 ã7§bŽr¤ùŸ=üÙ(x †ê%]çÈ sä'bÃĈ‚Í· J>¨8hó!AÀÍîÆ8áŒf´¡ùó튘cícƹfƒú3œ;¤ Yõµõ¾¬îe°à(Áê1¨ÿ‹j[ ¦Œçijnúm6A_ƒ“†6ÿéÍcèz<«CÄ¡E8u¨) @¾Ó”À ”¥gÅw.|ÿ6ý~VéÑÔd•Ëeüêèôƒ·WÁgRÒ#ØÛ5‘ªDÓNkÚ°p÷õáˆ][÷$RÑ·B¤‚¼¶æM8?÷^¶§ÖAÂã_;2ãxLÄû'"þS è0Ãj²yôyæžJ^Ìø? zÚÌ[Nÿ?å}Þ¡ükÎÀ‚BY½£E=JxõS%˜Â¸ f&Àû-’5oqónF'™%gJ¹yâºÆñÑ•‘2Heÿ \&®Ðî ’=?rÝøùЬo[·D¢eÂúrüæ̇Ï¡@%ÓZìpï+¬¶X€“$íÀìöµ%ëêÀlg ×4ª]ïÑš.§Øâfƒß™½«N5†ý[Z?ŠÕF„<™®Óójg[;Pí ›r±€B gÆÿFÝD¯¸e ß_½qú;;fÈ ´”õÉÞß®Bê ä¤U0̘œÐ‰*Óì{»}·÷âOq<œ¿— ¿[b!kÅQˆb)½gÈÔ§9™Ýeu:üè—Øpé­ß@qx5€ HÖÔûœ'¿œHI\%Ínáæ>PØOSÂtq z'Oøþ4ì‡Ó=ï’÷?1=3ÆÇgUX—)#ñ)„–\¯y#’ͅϳWÃÃ1ßž23ÍM“8ñÄ(\âúÉå”ZºNÔ9\+pëób19àŸ<óM%ƒ°6={·ò†¨^»ZµOeÁ¤5›)Wº÷:Þ°zˆô^$›#oé&nnµ 9z›Ö! £tü‰>ñ!rj;ï#tåÕp¡Ä \íïëqý›°¶Ëcí$L&‘Z-T·Ü¿U¢Ñî+€%Sö̵Ry6覀߮W4öDÓ€iä]we G³z¸ñ¡}𬶇qr«8Î mûÑ»°®Aß¡ˆEø 蛌Üo ö¿Ó”éWs’€2b…W cümÙÕT G‘]º´P¤[¨,c\TGØç7„TAï*°ç>V•¦[ ¨§§H/vwŠžRØ¢ûkô‹Œž².÷h/®ô¤£«U‰#Âk €nû°@+ù¨„ߌ7“°Sø ‚È'VQ椆©¬`1¬^Žr2T‘©Ô‹ü²ñ™Ý¿¹ÿ$ÔÚ­•Ø’2CjS²Ò8o¶ÚEÊ'ÇóÏ^4ÃñŒPñLêÓØj/‡Çî¤ë¹sµJ§1Öe75¸N @ÒÙjÐ,º±–ÛÓ¸d²n_I‰‰‚}+›õ,a·%soï>¼ßX\Äí—=ÝqËäÌÝŽÊNŸžXßcl¬Ò ¥úËV„ªL¶B#„Q瑱ÄÄë_±c1Ä>9žW"ƒKî¤ÿ¬‹_|Tƒµ´Âªˆš™N›;¶A†ÚåÈ:-œ¥vÖaÍZú{’Ù€O2M-©kŪ²“¸¥¹3‡¨}†l.£¢Üuâ™(›4æpÅ‘¶ƒM.ž†%:Gž ¥h+˜°2iCö[§L]îÆâpmÉ?Õ<áKmk»@Þ\¶)¾dÙZ.K>yYé"5Ê[ÝC8¥–¯»_p„;Î$]4F®!óGËTc´¹#œ&!äܲ×OX’݃¹øÐÊq\ÿpËÉÌ|;”î(ÛWåð†ÌíháÌÿ ð­þIáaæ9<6æ#ÂF‹“æßP¼Û Áä¨&D/®Žk› ³ñÀQÿþÒú¸a ³‹…É—_¥Cµmus¡ÏAׄ®tT'Çe•þVðܔ憲z gR‚Pjݯ+® |ëV25d#MÐK1ŠÌÐDdÌÉt¯Úý\ûf6”âÜ&~ ß¡Ïåh_Dr²õÙÍ&¾„ÍØþÆŸ%Hôn¡ËÎé w°!þ,Rt5 ‹ilÕ­?“$,žä,œý¬‚ Áù¥ºÅÑv¹¦GÑX£¨FÒü„±þéý·ç?™’Ép"³´¦˜''±íÛcñKÀéÞ¼Vùäêeù¸{Àà(š¶˜ ÎTsYÍØ¥ær †­ºP‡ï ÃV.out`i°Ü+¤×/ ËG‘Bž/ñn™ÑE1¯´‚D~µ—–…À¶¨#`oÆšä °´ Gå-í8œ´k¹€åþür'k3lRíXnX–±{fJáóÓåyD;rÖ¨…èõ“Yk3+6H5›D|ƒYÁ¥¹î÷ƒZÆ ¸ªjÉósñp\Õn‚`‰ê²SÔNH1Ôþh¤š~nºŒ³ƒ2`ƒNÆÈŒ·$Ñ3ƒµ"%k0³2EÁ±ÍQŒUù´RèÃmy&º²•IÝs9¹yØKæ=ÿÍãº~eÖ+}ˆ, +tþõO†yˆ‰¿ÅÝyÍr œ…õÝêÀ…‡òŒÚyWgfËÇ"Ê\û$"ÅI&²†{šØtYß!ôîçòú8”ù~ âÍ•#¨'èÚÖûŠ‚9™1?[­AÆX¦P¦ ÃAúYÃ8™\íR¦.mbbåõ|¶J WÒ]ÊwÊh>²ë9ø3—uÊ"óËÅuU\ tâ ´û.—<æ,|¦÷Ú}<Žxi,$P:“ÞïgOôÓ¬|1þóõc1'ASRø[;[¬ç/¶:û±”Æ«°\´zsV:ò¸/‚ÂáOÌð$¢’N]¹6¿/7èRj±®ºlû“ê•\pcÎû3ÃŒ¬«Ë®ÑÔ=[´ö&¦Íë ·W.€H:K½ña»UA´¦G· $Á»\¸jºáX_äЪ]+W ’OȤ®EËŽ'[ƒÓÐ=·1Òˆv ~öiðë¿7kùvTÚ<1àúÁk8ý‡¬hs;“hÚIgS¦st¦,8§âÅ© -ÊùXÂ…7ï Xî96™Ä½–ô§ ˜ãÿ•œ3‚|Œi梌h§¢¸Ú¨QH¿fïŽz:Ô¥/Þ¨~8vLlþÖã3 8/ÿT5EÐÂ÷7Rßħƒ‹$Ò¦÷8]q]ŠåÇCù”%–çbRWSe9<{Æê‰}Fìâí âΠ¸¯bÁƒÏƒóÁ[F³“æb™8ì2œ)T·û¨¬N¸9QÉ6e.ºHØŠ6Y3©Þ—=œUèÞ,ï…3màøÇÕ}~¦¦(±®¶^ç¤dp'YN´w„%/˜ØÝ7÷Ãd@‰6Hí,ÎØÕ|œ½(ǹãÔq2éw‘[C<«Îå$ ÚÜãÇ6Cyî)Lº,Ï£`9ŸÄ`7tê÷žp1.ôºÍ*Àp"¾¿w¦¦„gâШƟSÝI>"²FˆÔ±Ø$cy’¶ñ¢¾¸²É…Ó}ÉŠ‹Ü|DË· ]~½*qX“0ÿ§õ7ÌÒZù ®Ýìò7ã`v0Îb~›oœ…õòû'¼rTè?añÇJ|7DL)ÝEô3ЖŸžíÓ€‰OJdÑ>)™×¨:1ÿcÝ S7B3pb (‡[±ÃûØ8PÖ´ÁñEäh5@Ò†y¶“çzž- ¹bõ¨ ÿ(kÂdÊ9¯é¬€®‰(h4°Ìž†”)U.àÒIä•F0؃ÿO¡1¨§µ<œY0-‘9ÂÅØ-M”òå¿<½›ä­yÜ×zv;ÔsbÓ< |ðÿ"„˜˜›|f"VFƒ  ªÕ³FÊÇ“Üíe¶fw–œŠ š »Ð{Û…ò¹›Ú¸|oE½òì1°†°g¨¶Ó¼X¡Üã}Œuîø›œ"ÏO¹ÇL+¡Ð¦9µòHEgœÄ`Nü]]ýMÐ;b‘ÕKR²° u£mÌÏ^)f?ÿ9Í„¤b¢¢«æE»c“ý›F QÏ: ðbCßyOˆ²;Ú,»…@yé%ÖŒk°Kç׆(TÍs mlU¡»ib¤è’Ö77ï"œLèdâŠ+y¿èÌ´8Yú›ò ]/Cã,ùf- œ•…ÆÙ /€_M7)6¢ëé0bpWÁx¾I¥ˆ4JMÑ„*t¾×aò﬜Wå¶æêÃd)åÉ”ÿK‘0‡¢ÏÀBhœÃdFè6ö:–(OûºLGøô°åxŽL}v“D…ÍðA.|W,_qUA³…Rö·œ-ŒÛü18¾O(¼ñÓNù€~b­_ƒHËO´7öÙ—CoÔHaŠ –‹¼Š@v±SO÷úY‰ìKbV͉ÞfÊŠ±á³¥M*Ö;aÉûÖO3sÔ:—À^pÀmICQíe¥•—ël/ú€>0 ‹YZsurveillance/data/hagelloch.RData0000644000175100001440000010602412625315364016552 0ustar hornikusersý7zXZi"Þ6!ÏXÌÿÿ{L])TW"änRÊŸãXdGŸã>@j½õtA©°¢Œ¾ðÙà6 ý9ÄzßøïÂŒô^´n› Gä·¾ æìV‹Ý8oÛ¼ü)ëÆJ?(]Šaî$¬%É!Oª»¨ìK§ÌÑiVˆ‰¦u´@d=  <š+$Õ†ÏiŸ ¹‹tç#„²BU¸<þãá TïÚãÉ·•mv=ÏÞ`ºü.χhÕncH°¤p;-yó¤Î×m ²ã]>?™ÒõàÛQÃe‚øsr‘þ­M¿U‰í%" ÁðêuÜviŽ.ž®î7* 7¡çù0ú¿&oÀ•CÉ0ez‚£3Ìü’2P_9¯É©6cåYºˆ—òÊV¦x8bC«( zL®¤ À%—¢÷ÚTIXl‰%Ì i‰Ân†HâèÔŸyÜD„1‰ŠO ¦O†ü™™eª»¹Üm˜Ÿ®]bÜ»GM¯ïÂz5󠹃f>¢`üŠéæˆß¤*/ª_Uþýž*ê ÜæÞ„¸¸L;xsgpý²äã‡ÿR ^àa1Àl!œäª3-¨Ó€Úš1 Jfñ<â²KL}Þâ)ÏßЬÆwß“üÃ\­úÇ6xÁí‰&pÁ°eŠ¿Hé†lýQ#>ð#÷6Yká)aIdÙŽ¾•ò±9ý»˜áïâR…3ø|Œ\š¬¯oe7 ^%+«¸4i—H=z“Æ^ûhñ &›¾6ӉͶ}áÜWx˜ÉõqŠqÊÏ #Ã]¯·XR·×˜ªÿÏ ¦dµ³¶}•àâÿã°­*-‡¥M S2ƒ'çÙÈ_½P8zþ7:\LÓÈö].\:‡qkzOöªŠEXŽGu¹Çi‡èr›ÁÞ7Ǥg2m‘&XÍL®"Æ­º:Ó[n|ÅóÉÌf#m÷ ‰Aµˆ(ê²ùègXÙ‡-YR|]°UJø‹mÛ×õvéÈ>ZJ²;—m‡! ]ûHS?@®^¤y5P•¹OŸ;ÕÌ €2é땾ÄfD/ŒÜ«Ç"ùc†w(ñ»z1Ìþü]ùù ¯6]Â«ë[X ¢{Ý ø'»p/ͼ¾(·˜ý6'êkX::õãM1¡3"¯—» ·¿í>°Ž¤í”ä +Hì6lÔEé–ñ¤øgا"‡=NÆ›hç;Bþã%¿”. à”!Û¯1ÒGû†ðŸ²êÒ÷álíÊ{Èr§Ä‡­²Ú&Ú²¥ŠPÈFÍóÂU iŸûÅÚ»/·%¶a'Ù`ÿ+[úyrK×Ëfûîëæ,ÚSþLpj'ÅË#uåxk‚‡n攕l¶?’éê@R8/Û• & Ëc¢B‹ÅÇ4ç^¼%ÌeµuG¹qíÐõ›Ž~ih=eŒêª€Aý(Hçû‘¯L÷•/êç0;„øIså"V¤ã!%»õ ‘|‰˜dø{F¾¡LŠ`ȵäf¨„Íù&¯Ôq…¹wô÷ó˜® ?žI. †Ò¦n.¦ ˆ ÷º×ªYx©°oÐ pCJŽ5}Ãø%»ùF~­ù¶gQ5{‚»n7·…Ç4ІW˜J÷¥~¡4iFƒ>q”ÎuS½õ L˜ äÒÛ­áAH8Zh±œÿIkL=˶¹Ø †Ž^ |Œø’EB¾^*wÈ©ˆŒeµ½Âòk³ÑpRêÀåÆùB£—aV¾ZŸrïKdšþ‡ë¿eøÅyëø3©%kÜ. í¨æ¤Õ À*_ßS« ¹ð%¹¨êÇ\Ú(©¸;«í+VG÷ÇïÛüÎmi‘AÒ‘ãò€°ê d~_ïn@fÊŠNí‰íÖ¨¨â.|œ7e I Ւȉš´ùº,XV/Üiq&ºðÈ#Ø4–*ÄÅG¼óyé½õ-] 8«¿®„±zÄ_bFýe¥ˆ>ß“z‚”@»Ô$_ðêBÄ€¯¨ñƒ)(0¡9||gæ=H©AҿŸNÀ¥Úÿ`6±¼ñ׫Ä;»§sË,õU~!JGÊ%1ƒ°àmÿ™Ïu§aØuàű¶­0×Öÿ¿Ðˆ¡vüsyeAºÁ’Ç/Òs1L· Ϊ|˜SŒV:®{YË©Š$NÑJ>ây|TH³îü¸‹»¡`¹\CÛnö£†èç.ãä×Pœà$#ü?LÍ+g×voàº5ž+ž€‡éäÞe›˜=?FûJ–9ÊØº§Ð³J ½´·þ˽3ß.Èûo4%Õký0L,Ù”IOhõÝ¥ÃÈan6²ðìK}Üg‰ïIdѦ*«ø¤~Æ ¿ Úûh |þK4Õƒ©R†çí&Óm]\^Ü…°Pß¹/ƒp?ay¥81 X™g½_ù z ljþeâÜ¥—Mu–ϸ¿~!°¨’¹Cݵщ¤ú¥¿Ûc¦¢ÇÖ1üg¥é†ÂøAy–Ã^§?c]ùkžA}nì+˜/øF´ýÁz¬'öÞÖC©3ˆÑs¾n ÆSÉ\Yûz—ʼ@äJ7ò‰®t=Ûá*âc™ZVü³µ¼Øõ´ÊmuÉËï 7ŒP9/•ÞÈ!9ÌÅø{çeõ©¯ye&$#ËM¦¾› ¡U[gÏDÀô¿µµ•— +“n -jb"YÛg7×R-e¿?]ÉT°Ñ…¨Ø£+1ùëž»í¾—WÀÕ ï^¿5“}o¦ªŒÎüúÈìœUoWaY…#“ÀȽôä×j…Gfö:ꦱzgþw·ØÏM š*‰5$M˜Üä° Júrp~µñ/ æÁ›\¸©¸ðÓ*~s|ŽÐÁÁI£Ÿz~Àrïùä Dã•1ì[»8¼ Sá@ möÚašÉC³ï6sÿ뮄õ¢?×ÈD^ˆßÆéç¤ji¾ÓèðÔkÓ;6æÙT“ Ü‚ó:¾¿Òƒ”ôImt€ãÆ×„+@áÁ^S¥û*5ºóïÎ||ÍVˆ|/ÞÂèQ\'ŽLVWÇÒ 7z1‹ÚOq™0@gÒ–‰&¢„ç]5‘ÇÆîN´ÕwDŽÿ{‘¤ùcÃ_4BË^eç1‘r‚úKcV7ÿ. 27vNjéQŽÊ÷äÌå÷G?¦áìÙPÜd*¿§ÀûÔ¤[®gàˆÝRi3ßïFDõ˜z-œ 4¯7Y>  â^¢ 9\§V³»qwÙÌS¯( äÅ¥‰ÏCKÑk6`Ù¬« pöÓï ŽxÖÔô{¬5èmÀž;bBö=¿GÚ.õãÞ} ”£æ¬T+(.ëw!sfôÂƒŠ£FÍ9¨¹Ð¤1!¥©=KB oRæÀ«ÒR¬2Û–-UÌ=ÈŠC`yM¼tè^B½(3KoI¼niLê(%ádMä}2!ƒY‚ÛÆk}Â'0ÿÚOTÒáµ^ìE‹ú èåÏ侃",Ø«¼Ô6CËwÌÅkþïÄk þ^±A@Æh—ªçþõv´Áw\×Wâ»ä,ør\ÏwuvB´íI1pTä+¿³»ÙÈWÓ¾Ëõ?ðµ,[´Ö¶cîRTÙÅøŸjã(¹ß%¾Ö9á4) §%E;™õõ>Èü0ú—|`9`¨tt…°ª.u<6ö˜d½èШéCÁÔ.+ùhqX=Sríôï¢rðTï&Þœ ~ù@{EúE«IÞå‚––•:’8¾â)…ßÙ£»¿ þLÀ&“Št´iç‚äêaeß²üTátøb§⮥mªg"Ä{JIÈMB|Õ€"î©93ô3qž.„Þ¦ÇQÜØošª pÓ³hÞ¡ò°b×øQƒ}ѽ÷ í¦)ÚÉŸ^o¢v;ÃMæA}.I‡ý¡(vcäŸN<µ¤!øgĨeFtð îÈî'ÿžÈY@£|ÿÇt-æjc€s°ßËà‰ÏP û]p3øþÞðúñ ZWˆN÷øc«X ¥Ö]ñs$mãèßçÉÕ¢)iLm†Y/¶ˆ1ž°l[Oo[‹Zo §ÔçÀ2·ºs=Lð8ŸàIZKie< )ÈöÀA>6‹M Mð&=tK¢<,—ÃF­j]ÒHŽIN;9ö_aÒ0uûò|\–A‘ÀèïÚ¥|_C)ÉÆtËíù†*PnYp‚@}8>œÒfÙ¹].qSÜP’Œ¾iȲ¹øÜéoÎ#`‰9ˆ7q¨“Õ’nÜt7?¶w定ãñKæçp^zÁ;L$”Tc•/Ç6Ïðî}žûÀ§‹k\Ñ鿝cxøÇj¬æWØç‚y¹G%ùqN¸*Àt5‰9Dƒ¨Ü¤â6¤ªryŸ&”?´ÞQüêÍ5èÍM¼VApï¸YÙ¯?¢u ïÍ*ÒŒT¨ü`§ç㕉ZÏb#±Ÿú›]y i»ŽÐÜ5ßÂ÷þ,~}QØ  ·–*4^5ùü´¯à·T"IÞç:©´g«S¬àÅ B0m1u"…rùÚ ›+|µJ Ëc`´WiÏìÄú8¯éØËRÏT§)×üD¿…òΩa§ƒBåmÒ›žlÏö›ÿK`¡qÓRVŒneoˆv,:žgBÛô6ÔVí̈ñzn–qk~óùëÔz:¬Â¹=B•¢‰Œõ±Òl‚’­°È"Â(j)¥5‹[Ú¥ã¤Q”FŸ6ŒØ¨ÖdóÚ˜Íú2½äf4¢ ÏZŸÿ¬¡ïE ¿…÷D¦zóñ±=Wo®óñAJIAQïY— \ Æ>&ȵ~ç|é˹.Û`{þËØ•³jÍôUöX3òáØnØL¯‘èœB{¶î„­ îH@Ì32XßÀŒ áüE?ÆáÒœœÜ[¥!dÑ®šd mvGŒóôëÛwn ÞNU)lû20„˜RwÙ Õyžû´ô$2 ¶ŸPÍŸÑÉÅÌÖË?Ù ¸$Ÿ¤4ŸÍúÇÂØ©J¬Z:¥ëáôúLV[#Ž]}vp£FÑRë5’[+bÒc<;m|çþV®÷7hù)Ð^Ù[}Å–«]zÌÅÆÙ-š5ƒÞí¨acÈ(¿«ðRÔ[ZÚß‚äLêÌxÊä/”‹1þúËÍÃÖU R×·špš¬SàÉ;¥üEÊ_`|êãÀ¥÷u2Èßí¹ín7tl{…³´æ£°‹¨y¦ë@©ýÌ÷š “&Ž˜Ï ÌX 3@œŠo08ïôX­þSÑ>ì&V¸8.°>í¹úX%”’]6NHëÒ¿S¡ï'¾]HÔØã˜y®|…Á*1M+ñ™(…‘ßCL¨³TB+ªpw%Üí„B·µÌ”1Tÿúñ¼TDÆ&… V¦˜ èGÏ~ìèQ±ì »sùCªëo)5QÒ¸õ¬Ôî-™5Ü­õ3AwújfÈí/ù÷hÂ>~ùRàEj‰ÓbŠSãÆòó÷éxŽt“<—"–>åÂólŒºŒ æ A [_ê,:ã-sG9üè4U¦E˜ÎÄ즀ï¢ökRÏ=ÙØuŽc䀹&KïÍv+¡'ŸêÜD ó™hÌC°ôoÛ¦wQÊqfÜ J·ß,ìÆwTxáóCB'õ?!Eb‘qܤ„µÓî°@̤ÕAŠIZuœŽGR¾Ñ@Ù¶Å:s¡Ü:÷Ewg2‰÷x¹ü¨žfsÇW\6·±o- Û«"Øé¡·1øïf•ü1DœhþéÃh»uîΘ¾Š5ݤD`˜,Ì­]X³çrhmW>l@–ˆÛ£\£XWWÝnµ¶­¸ÒÆYì§ ¦ßG\OV§s_i½s<îVYfÌù3s÷87ú†'¬|ÉIä¦wÔŽQm^‰ìNn¾«ö¢;ßeð=掮]‰7vÆtÇaSTù²úè¬R·Æw™ýõ3ƒõ@O<’þ¾4kR‹²ó<ªp¥GaA&€< Òc< ¥É’1þÓÈDüFö±'"¹9Ú€ÎË•½ £Íë§¶jBgô¦l>÷|ntW%ÃzSïÛè ÖtŠI r7r¦: °h¦Ÿ] $˜ÞW‘cÔ¬<5@^ø‰'¢F^ç&YµÓ/ŒQ‰Ù"zÉ·p­8R$i×QwßZ7‘‡ ?+ækæ=!i®åøóNˆk“NOnšeñ›RIÅDô¼²KÐË›±Ce8Guð‚ÿúLØüåÀ|!¯Usnñf¸q7GÜäcDÔMG‡ñ]ª–Å'ÞÍ‹gˆîï·[›–b~8Ø›1ØœJá6½ymá3ÙHÒ™êEÌ–ð^ª©GÊ¡ŸäùêÃø1hͱpë/Uv웣éÄj«{­W Kh­ÏšKëþ†Áì¤ Ù¼Ø ˜arrVïa¿všw<‚Ö_ÿWG ŒåI{ô2Bxõ.‚\ï£1ãÉ–üpÄKí"ïö Ø÷þ¦%û-K+âÂi »¶2Õd¥¾øš’äGÕ7{ô²v~¾îÕWh8ôN„†êé-aêUoÁæ Fîõ«Þ¯C•;÷¶Kyð1üU¼×"wÝXÀÈë†û]*‹éÜÆ^4E#n-û%ü궨arI õc¢-_³Š<ƒø%æÙB(1/s_b™ wË¥b »…g—¥´ëÆ»¿â8 Ná+&ªÿ&õ4ŒDtš¡Èmï–qßùÐTgùQˆôöØIAôÐŒ‹~ñ¾œ,þ´DoºÀ™Ãÿ¢ŒŽã×míHÀë(S½R{x#°UlþM”Ø#w+6Ž¥‚S¾Ã™c¤»ÿÜŠ£l›]¶ ¸jÿk™§Y¬ÁyZ(ß—¨A£Þç—†œ5èËž¯ŽêK‡%º'ÔŽ³æŽ¥ì ©açRî=ÕØA ¢½8O‰ÙÜ)FYÈÛ+VÓÒí–{çc=Rd›ûX`T‰Ùße1¡+~äÆNÒZ ÛŸðÐc£ ®.×Vól¨³ÿCŽOW„´xøKR[^«5.*½´}«ì¨yû¦Kè4Hmð4à©Ï3p™Æt, ~á\·K´ÿmÖõåp_þ{ú¤>Æè–ļ #¸ŽbV=ÌÕ¶€ÔÄQÀã}|»~ØÅô¬ÌGëPÂA󬿡[ù¼¯rRʱ÷X:—Ó/xRP fO½R¯c~…ÌxÎnd›&[ç•€C_{z?‹ºûÔ‰I×ÀÍR‘º¥è£ *ìªÿZ&¬r ’§¾9$ápž§#_ì(Ë…Ñ•˜Š~*‘ò'u÷À˜M˜ýدÕÄ%Søô/ªžöÛªyûÄݰ‡à4Èl|°òq3´ÙQzªqRúpõëì šek&wîÐÑx [#*‘Û"ÀPˆEïëÓŠË:5;{zX8×ʾµyÐÁ3¬”ú*¿.Øô4,6³H+Zëhíû>i?à¬Ä÷x„êþÞ$´\_ûí™èYç&GX¢<ƒlOp¾@Ðaâ†æØÞù´3J (#{óDÝ„{„Š6~Fô§4j÷“qâs¸·œ“ûOç±C½Ä`Q‚—ÆÏn¸1èVgKµY·°«¢iƒãÀ??{c¨ì͈äÖó¾_Ép;À27˜¥¥è£ *ìªÿZ$çNŸÿDìsS§ý¾®|1Ÿ·1npž§#_ì(Ë…Ñ•˜Š~*‘ò'u÷À˜M˜ýدÕ(ÿA*,Mw¼uªðN‰ÃfƒŸ(ÝXFJ넎kQÿECÂ,'.±hA{øtNg:sÕ’¯úY­} üm¨j±«ˆÕpJ0Í_™ñF-ÑqRžZ¯ÿ¤ZÕùÇÚ­üûR+tÍ[ BùÝS=ø)d ;€Ë*lßµ8åQ¯K*ïw”«´½Ð ¸Ú”dB΃PJn„NhW(Ý߬¶]E:›p,ŽÝÞUcQ˜+‡ó?RµaØ?å Ç~Ûþš·^õ¦@­ùŠ“ †•£)_Ú…ÅÛ÷éN±$@ÚÝ7Ò¯˜F¨3†Nñ) 6ÁŽ-ÏÞ<7"È€¨F?Œrbß1Tü‡Ç….գͬ@ͳÈܰÕoãxþV@àüq£Sbv¬Yäå[ùÇÚ­üûR+tÍ[ BùÝS=ø)d ;€Ë*lßµ;ð÷WéÜÅ Êeh"ɦlªíÖQ±ß[àb#„×\ÀFþ °¼&……k¸Ö#WIdîlâ?> ¾‚Ϙ9;ñ Ì£RzÊó ¡‡^‘vZ´u;+^§’§¾9$ápž§#_ì(Ë…Ñ•˜Š~*‘ò'u÷v¾ßv%C£¿&JÐí²ßL ¿S] }wÿ¥$4€Ô¨<% *Ëùr†Áj¥KÀ–¡…FÀIUÈo¹L•Îûú«åAl?,öþÎÁåyC¬jOoTSL€©O‰ å2û­ßcn"QÏzL4ÝA…|R@4jß8ì)ùüÁøÔᎠ¾?­¥¦›H‡3ó&a(¿»ÙGQsóçvá‡~îUtÄÉä-áLìgl„¸¯QÐzÇ…¸”jó”fÑf*Å‹Ä@šp®,ä&~àwÐ?8)ïŽÞÖÝÙÀL˜$\,fÌÞ–F÷ê”<×ðó=á½éiýØ’’â#ù±I¥wÆ$¨¹AòçÀ{«°Ó¥³¯{J¼tµB«O¾Ží¼€m”ëJ¤Ï¸¾n„&|Χ?¯=)Lg¹ö;³"ñ¯aâ—£˜P›ãËŸO6PÎTIHÌ)îøU*ðÍYaZ̲ʜ&Üœ õØO¥ô¥ñi8˜ßlˆÃÇÓÈ æq ¥HãHçAÝôA-• ÷^‚ïãCÌÀGù÷ÇÛ[G[­h7úðQ¥U}™ E 78“¸í¶Mróܳ¯A2Mn¨Ø"Ä:Íî-¿qx†,/;ßœÀƒÅ€¹Ì@ˆ˜õäÆÀ³Èôþ„˜ñí6š–šssÌò#X=)‚/ܳ5­ŸÑ,¹N5fSǨʫîûD:Á<Ù4z£Û:롽Ÿ)ŸÓÛ¬KÏ‹L*½`g¶)qÛCô¥'›r•ñIµ†hÈ'»pÔkaëÉPf'9rõÈ|ŽP{]qäøgN8½·f×:^vÊ0Ôž`7¿b™Šj­$kIüƒ8Y›Û\UÎÆÏܪ§šwú}ðp“šW°°ñJ‚ žó•v³>Ó¤|x#ÏÌä7 ÎOx˜nx:úDNôå¤ é8#heóJ”·Å2ƒµ{µœëÛg°K}™r­Åá eŽ`r-ËØã1Q¯µG:èŒjø¿lYÞš‡þ`šÂ”â~¶™zj*¡â½Sþ’(Œáô15³F§dQ'7oîÔùòT(c›¡•õýÞÁÇ#ŽIL¼a3˜õ¥í—˜KÈgÛ<ôc,ϲ£ê+ÅÿÐìlo¬™IHI7m‡¼cc¾×TÍŽpp¡Švß±Ûd¹HÔ>TV NÈ/.>ù£ïq~Œæã¬Ö½J-BéÒ&ú{hÞ•‚Þ-U5wi M!#˜7ÚïÿÛ×”³¹6·Ó¾v‡l }ätÂñ3eú›cÌ:}\CÛ‡p֓ņÒpù¬¶ £%Ð n.œ*‚¬æÓgWn¯­£˜cäLãmE);n(øô¯fý¾냽w Â¸·'óêÛ²ÖÖòUÂi…ò>Bß:#³¸ŽÔÓÞï¨Ãý=%Ôpˆ’² »6…E‡ãû€‹lÂÆ h}ÔýHF«ÿ"f–ÁTËÑB>N˜y¹‹ò“sGçÔ³Ô:ôÀ ˆlŠNû'ÏÑžóÕöTVP}–a/U²Ðrµû PGS­MÇ/Ä((ÄqDÞ8ü³Ú6° î7­ˆ+Ô¶d!ç´µóÞ»A *]G•(Dçó`ûM#ýõdžΑ”Q¥/8îTõªÔìYθйš´Ìor^~Ríe¦¾÷k‘j†^ÅÃ7ð§U4µ¨ø úÜM^š\àlVËAÔ¯aÄËW‚ «Že¥‚ÇêŽ!ˆÉï¸9ZhlûwâWÇ=‚Ø“ZB£Ý`ÿ×Ãu.ZSJ#1¹óa¦\›¿™[Q€hÉ `{&HÛn¶´ïÆ7‚|öˆN˜þßé¡6ñb5-•(\*òš¥gÆ÷ÜGÞ-]…{ëä7JÞEÇ.pBGm­ôonT¤¾µé¦>Æçe¬YÐWÚˆå¸;w» 5êÓ’i:ÕGF©Ã4daŠ+‡ÿI¶ð¥/™«àà7†Îû¯cªðГÐK€vÔ©Uî—±s\©8òôB‘ó2àÄaÖö5ï’í*hõU -ϸ`V“eYÎdS‘Í­ÉvµÄ $BŸ¦é6òಷ––ά©Ötÿ÷”ûÏ ­ÜvR ®Ââù¸zj˜¤ýýÛ [£º6ü¹a¿wîOVã»±»´zDKP4“GØp¥^ºï‡9\…Ì;›sF6G•좟މå°lr. 6E–„ÓÞaq‚vûã£ÊÂgÙÚÝÒ¼Ž²9³àn¬0z ,$á¿‘tR÷°™‹tX:}%¾GSÀÅyy¦sѧ|«‚{ÖTŽ ìŽmwleë~`^ µ­fe5E‹å0`hU©îövÛuR$gÆhHäµFL~¹òáZÔß™dÚFsr…Ùx_zÎõ@\£=¥ XbaEý’§ɾwòQ~AV[OâÓéê6G©ÇÈæW–ßÔœ(%NÑ73¯‹Á–Evï±lÌ+.þ”mñ¬=BÝ´ «B\¨ïŸŠ€™-†ÙÍ­²IÔ_ ‰ÎkÉ9,‹‘#"=Áà°ª„Þ• ;Ð<-ŸÝu­zÌ8~,†ÎSáäžó“"Tm¡cX©>rAÖÀâ˜ð¿N¥RQò9}RLó{rî}YæˆÍ‘Çç>Êá:›Ì0ŽóçÑõ…ã®ãC¨ƒð“ôÓÙ~¢¹ù]xx~»»u)ºr/àÇèž8 ’™Ë‹õŠW|§:Âå+<áa0?#tÍ1nÂ_€©¾ q?KµæyÚ‹T¥Z®U«T›…"^ÔÔ+zÑÚ{KÅÇÉ;r‚²QS²e ›ý`óúõ™2ÿPð탭%µp‡>}%GÑž!è éŽÝ,Ï(R„{j[MU©I½"£ôˆ@hö<Þlã-ŽK§ä?!~±ŒÑ'×b‡·…´:ãꃙïM ŸØ­…†Y€Tß…‚ä.2vNÐÔ¤Ê] CÈF雈iÏñžLoaª a‘£"mðÒ-難Ròœ9vÇEDSã±Ç€¦g3¤Š«_šUøkz¨?_Ù?‘bƘŽy[âñhÊw¢úQ!Vm3ò!ÆÃ6ó5.¥ kÔ•C+VUiyÌ2ÐyfÕžð@î›Û€ îXi·O`ìÙKýlÊn/u‡+®è‘ªƒÿÀ 46„,¬@m(´ý×KÌ)Ýv÷ç'•Ïl–¹”ÃÙ$©1ä´Z›ž†rס¤qìÑF§'n#PÃi¤ùFøÚ ®jÃCÿLff™4 åqô[¸€Ž;ñk´õFÛUØ‹zCilwã:ÙÔr2Ö~Šìq?ªPcä¼½$݇Ôìä#?<Ô·xÌ)í¸¸_4‰S7Ó¾Å×­wØÝ ›>½^¦™|ÙiޝdUŒMq¢y|Ø·:8³Û÷K·èû÷ŠAö&‰vÿ6ïáK' ¹Ë,À4¡IëßO½ªÂÈËXÞãqé“—Wæõ[ è6`·ýø¢úð3jNeœÔ§?i ìöVmC^Gñí|”áãÞÝQWF⇚»L¾Ø'‰¿d2 DÛ£HëµÉAQŒPhræ*%€Ÿ‘-騸Ы-¶ïÖ€3öǰÚUõ(šîzGkŠ‡Ð¦3ÖéÒ¥å@4|j%5Pª,´tjÇÜ·ßÔFíH!fqgá½ö, Qj[`­Lìúý’¨Ø£×Ú—V¸oL¹øP´ž°þè”bt- &Ÿ‘ ÔMšŽ2——UC—Vï’Ô¹©©î÷ 9à3éUù¿º2¯`íî é\v%İK0H¨±%ºi¿I Aú”k‡tn/0µñˆÑP“äcPA'óTc“Ôüo •@¬ȯ£' }Ù|pö™g²ãÜ!”}8«ÌoœâÅ|÷ÁmU5.­‹›á-ë1pÁ$}í[Ágc'V¤Á·¿ªš0èBT¼p{í$"™`ì‘ãq»Ð§¶Õ¶+S<7xvâŸåJø_¬µ¸#ôÙbá%…†FÅSUàŸ.ÐEQãôÇYîoàÅíË]€°âƒ˜L[¾R?‘²ªîˆïÿObê„{U@Ò±þ°çèIªsõ~Ë zÜÐoO ·Is±7æ–õn,F› ön€)÷\-·Z…Ð(ÅÝçßãÃK•(ËßD¨`M2)·ö°5]·ú&®¥‡îˆÇÛ1-9ÙØG¸=p%F‚þ“qª¶?sDc+0y¶JoÜÄ.«na'8íQ@ѸÖˆ~#‘ÖÜŸjéû¡~L(œqM"/N®ÆÄ…Ьk€ŠÿJ;f·ÄŸCAå†cuž¹ó¼2ØûXÊ×Vƒ™óa1¸jš’Æc˜4lì¸wðãþ<ж𸄇¨íZ¿pší–Ò4;Z8#@ê)ü¸‹sýÍA €òªp_û¼ƒ=kb´ù²] ‚$妗RzÌVÓ‹nòU“PgV:…ý{Y„†+`´/„ØñUU¸!Ž=r€ç(ã/ñ!ƒÄR-‘£Óš MÒ¶Z…ö¬ñ`exNÁr Œ8dœž&2˜l±Æö¸5J<@>ØçöÎwö$Þ.õ+'Ñ9À´ÄØwŸOÂÕ€œgb×Ä,\#»ú\*ãI·bòˆªžµ"¢08É6|‡QÌE ]æ-/¦Ãõ…oÚU.Ö²dLã°%Ví¶¦ÎßL>À‹ËH¥Yï²&`´‹äF¸{±Z,èQùmÒÎ,¬Žq¼UÿïȸۑO·¡Ï.¥Ë53ŠX#û3&&ùºw9aÛ9k½´¹õóeó0ôTĈGÒÑô*`v»¶ßÑála¯YÎÂ}óuûù„´Ò®£Òzå¼–`‡áTœšg­o a§û öϬ ‹›!K‘p‚çÂüÞ{Q$bl¼W Ô”ïÈ!ÒënÖýW¯±æOîó^mýêÝ‘>íô‡¨t×Lè '§BŸð•ñ© ×7 +ûÀ°1«ò Fb¼¹‰Áë ô>‹j5øÔíò5Ra„½Sž„þÀŸž/¿ÒèÞzÜ ‹˜5¶¤ÌÑà/ŠtéU¤É¢çt,Ýñ×X™ w[²ðζNe÷L«sIÔUÄáñšp øª™js|aÌRâF¯`º¢Òû¼ßÅeÍÄ,l¨U)h„uVϯdôé”*ÖæÇò%-¹ɇlÌ|Œ A ü¡È"Û mã8ÿžDQ([j”ÕÏJ¤NòšW "çÊF¶qÊhJ"úvU`IÕ hÁ–Š2€îB’&˜½u}hR Der=‹_x`)¹‰vÍëW/ý‘Up5Ž«q+:¯]/:4Î;3›¥1e™TÛ¯ ›&¿Ä}´D¨?ülGà”<'„pCíu°ÈI¹›"tÓ°ë”\|dGýg³6Ùa('é6–Hš[ œ ?Œä-γä½@RË Împþ掑€Ñ`?ÙDä·ú ‹®â„[›ew­ñ‹Íì„`ؼÝK9LƒHå¾ÎÀ,Šƒ9ž¥Ìj¾ºâ"¡vå˜íwIï؀ŽmÄ[KJö½ü''g)Ïj@³ÂŠ j1_li„Æâð^ª¥^-ÅKþ‘yœs–¨ 5Ï=ÞßVeu2\¦?$¼ÊL!ˆx<ÉŠÆÀ0£A÷ ˆËUHùb¢© Ûì˜>mÝÞ:cR/X]˜óêm@l>PÒyrtb¾¯÷¸¥ªõ³¼Ñû>Í`šÿwç'D)u'„ô¿«[‘wÉÌy# ÆBø Jd|¹®Ö$Û*3Êj,Á»7:” ±-™$Âf°j¾ƒIz|q“¦ÝèDÔ»"=Ocê´b?î»àG82˜hÿóØå›ˆdÃ,E¸G;`|ß!i² V‹îó$,p~9GÆ,y»Ô]µŠ!ýþ ŒQCŒ|ÎϦ®´Dfõtá#¡Ø\½¸Ž ¥:µ'iŽØÿfžËýNs$4v,²éÈP„e™lzyD§F(=väüS ¸É]ù9CÕ®75Û2m¢ÂZ<ÅÒ‹Ü(gP0 Yg•ÝCfó¾y:gdŸi_–Š9 @g[ޝ¸êÚ!Ë¢õGöƒÆÍ¶¢#9–rÌ 6Ô©ª:da¦ëKüžó& n©3k±Ub‹-Ü‹qŒ9â~äÜ^}¿y;º“Y“,;“q¡/Î;Æe*ºµ;Q4AÐÞ Qo¤É¾Ÿä3âÓÉú;)óÖ‹+(¾ Û›¢^ß~êÄèJ‰7]ùÏ*zt8º'uò›üËJ¹ óõ‰½,…ö³ÁE›ŽÉ®Iªñ#5÷q›Åyh ¦xsÐî!±jæ!ô[©Â€Z)îæï;hd§Å ÜáøÁ%›$ dðfÞª xFí’h˜"2"ƒë /èËùB¾óQJñ›'ˆ$Ýȳ* `ŽÁY+:x9‚æÔýªC⦪¨øô81n"° `”iÙÅoöÑO©!›OmŸ¢¶˜xEôÇßËø\ìÍ3íP½jå½NŽ ÷qlé}árãpŽ’þÞ15 #AÓy³}ÃH¡Û“‹€]ÈЪs¸ÜÓ#áÍÖ±!xŸ`˜6.)QQЯÀ+Æ„ÚjÇç·{ù`P¥=tØ—µÒ]¹Œ‡´Ø+ÆYpš(€FÔeÒ¥w§¤ÍkA‘çq‹\?áCÚ‚ºóÂ;oÞîokÉ ÊzIÚ¯µ‰8ÿ±•u]SB•ò¯­¼þD¦¹(3¿úùtù,Ö'¿1nQŠW ÓèÿR*‹KT´þo¤ªÍ‚u ÑÃ'x@ò$b– ¦{ Tç\¿ù¦ê =4ÔæÔ¬3;C¢óa©·e[½óÄzDì‡Kq³1˜4÷p`VFñì%Áª ?kµ†KßÞT§AH÷§¶Ç¤XÖóÆß/`£,•àÉ¡þ·,G[o9ŠœŒíR¯\u¤˜AHJ ,…nÿŒ;Ú2MêqÁ–üÍÓÉh PÒí´"akía»§vó¬c²ëþ8Ò¯AG0äŸ5A/IPº}‚©_‡ XbïÑBn9¿KhÅžë*p•³,í*[k‚#¶ $Ã(?Yî6h?`Ç$ó¬{pƒ§}4°¶öà€`âÜ!Ÿ®¨ ëªóè…F4eßЪ@uF4nN¬ê§¦•zy`‚§ç(3ÊLX”%²l/Øx¦I†C.uvCÍ€€¶ÎƒÀÇG¦ÿ©&{O»‘’R¥•ä„èÁͼBÕŒSÛ¸,ëækyܪs3}´Bf‡Ú/À»ªdD÷ EbæIÙ9³ ¾Î]ˆúž†)Žr%ù²Äj pûÛnǺê÷6X€´¤‰ÏìxÃdë\g"E¦—A&¾+5’Oéô âÚ›(l\vV<5.·Q‰èˆM{®‘”„µy.ðZ>(M ¿l¿)5áÒ‹~”- ¨º(} ÇÌÓ$‰‘ÐöS“rP‡ÃG£'‹Œ ,xºðîvãÚ*5õ|—›Ð+òOô2 ,+¸˜à…ÚÉkÑÙig§çû®Œ4ýpü©àÎÿŒMaEÏ .!‰Ç"™²Æ9+óö@mÌK&¹ª¡ƒ]q¹Œ¼ìßþHéï\ÁïGª¬éÆU³'Ç4:U”å!¢‰¿F–6óHKrhOˆþÔóM—\¬oÊ[®«^ •íõ-þxI·æFíKÜÉóÖ,-5å 9±@$þO3îݦj°‚"oâ8 ýïËž ‚&½—HW°ö’ûФ´á*¯õ¢fk™¦¿_±å=þ$>àþÎ ,‡ä¦±ÜHT”¨$ 6××¹‡ZâÚ9hùÀ¬ÚyÑ—ÞÒAs¢*êµÈÕ™òyMÙ?_2u4¹¢ÃúÕ™¢¥æ©ÏhwyÕÕ!».̓¦ÇãßeTžæëY <9Ιý(;ø”Ýù¢³Áüë¼Û A=$­í'VµÔmôX®ïŒ¾Ì³2U¾âð”¬(i¡1‡XÎN Û®íè{ãÝ“»e Å^Š ¹T.q^[Ã=¾*9&ÞLªHê^×ÊõÛ­ (^Í“¼B—e—¬Â½¹MYö·ßæQÕ£q+quô ’Ob¤u&ü‚èHú#GÒmŸŽËç2wß«œéo}Õ‡1x´á?¦ávN`)ê9•{ džîûîqϸ˜ªŒwùˆúõ„àTõï1'F'¶áH¢ªÀê«R)0~ž¶ÔIo¨'ôó)%GŒàF–Èädf%«à]±«Í^)½_Õƒáž$œ 5ªÏÑ˾±'¨´Ó*Ìe ¢#¹Ú´·<;)¼e¡p±ÛèCxo“ÿèñœN´\ˆ™h¢,,•/Ü L¢¥oùÙ4CŽšwÒ_IBµl¸áëá`…ã!ц°’)¹ (ó¾—ÛÏNUwy¨C§æ'Íþ ‹ÆÈA$ºÒ¬ wp¸Ößã o`i†ÈFs5=”ô/5½W"9ÔÇ8"\éO³˜òU'ƾ¯Óþ^uo†ámª§PÙéåó9²{¾ïÔ „ëÇ”U‘·X(ÏÁ$‚ÂÐÄŸô“x"ˆÉ$DJ¯8Í ~Qh¹ÏyŠèduvz^…÷šÕÞepô®†Vé)ØürÄ)ØœJà4»c0ÒiQŸ=—ÇM-C”òdÈ‹C‰/BC Q$2N›Ñ`N{‹Ø VíLvß—¢ÈŽôë@nz,“#Æš^é©ÔQk/ŸúÌñÄiš9?Ïx2¬Ïq“7W¿~u#g®e‘>kÁö~E°çvdè6ÍìÂ7ÉTÖ~zеIÏí/\—‹-Ï4vÇçh•Ö'; ËöTEüÐÈæ×SÃ+Ø¥øX˜O÷¯„¾é3Àh>µks/ccáVoImƶ¾7( ‘Uáåì-URøÑÕX2Ösõä-NÓ™ëg†;•Ów-V¾ˆ„5dE²N¬b.hja_&ûPLÌßšÈÀÅò²¤A"½Ë,J± سÿ:@_¢U×o·E®õ(' N;ä™[‚êà¦x¨½êtR3Tó#WNE·•ÆF û­F8µ«‚*^º×³)'$Í7·Æ‘19˜°L‘sx‰—»¢2ÿ ñÅ B*×|A˜,m×ùËa,NêiÂýfå3|±Í½Ì}aØ–ˆé½áòí–VYbàç/VÅíG2DÛ\Nw%šÜÞê$ßÀ/éö¼²áT¿C€y¼ð“è^Ä[Hk“ç†W“:$Åûà ‡Þö[•ü7š‚íKÄ€Ž÷îiIF8•'Fí,@&0[Ëŧ†¦² ‘ßaêÎ¥F$Ê-»òŸË¢ÒT––ÖG%BQ¿*#±Ôzyq‰™+¡Ê$‹S_ñHeð¥ˆÃk- ÿ–ꂎ9•2ƒ9Ïì°Ò[x£6öv^Ž'¡-à I1d}ô¥3¨ŽË,Uà:³®2šõOj «ø–6»TKµFQ¹I¥¦< $pj€;×v›?LÀ§ B})aލ*MfsÃ^h¬—>ÚXž…NîWB¨=ogmƒ2¯ÛO »Ø“X÷9ð+ €T“|ëËYñøÿ³öéb‰¯™‚ MÑdööé‹åO«½sVá©c.å׉!­ï~'ŒÖlœg7t‡¡ª0›,Úø±Ðp®ZG×Õ4ÈFì †Œ{‡\©RV¬D”Bªý~·ðnª2d0¡f“SoÀÎggåÙI¥sG¾½õG;Sx(â¶ÎÕ)~eá³|æ)O!"1G h˜˜LÙEªC¤ýM/77ÿö´ù¥éNàØ}X³¾½kŽŲ=yüêAð¿¢yÏ‚ƒ£)Œ‡lè è ¼Ã¹8öGi[¼M¿ü3*ߪ©Øµàá¡Èè8[–ïÊYrÜ6f‹“ÞŒèôäÚVþh<°Lܯâsæá·‹”zv ay…ŒJÕOJKàb çº}¹„Ïó4Õ¾¨@9p´KVZœ8†¿K€ jo©çv)Bì36ò?ÐÀBØ6q«–z­í„þ[ö\¿µ”=«¹-ÈÇ¡}tÒ-ÅóÓú”}¨ é/MÿäKD_‘1 ¤…ÿn¥«@<¼ÕC*‡Yg2:¸ðWý@HO%ý~‡ƒba—ß³çJýïVÖãPHÅy&)·×ÍÎéáq!U%AK ÇkøÔ㬪«šà°EŽ#†ÓÄs<çñkÕ¾\6˱ΠF8 æ‡I8ñóººÇKns›þªÕ$Dï¿UXzn7î:Œ@D•!ëbˆÔꨱ¿z³ñæÉ>œ~4IE8||p7¬>ÂqChZo5 9`fT¸LFHY3óºŽ ©mgîA€ŽìYÜF7^Æ“£"W†Lj=ýÍ5HˆWó@.Ü£T%ž×eḔ­‹±ÍjRÏ=rÿ¹¥c˜Fö*äfyb£Ê ÈÑ÷ÜIMý(dXDN6kï+£lWM†êäÈÍ–Õ^ßœ{uIptMëÙ—·rï ÍãaP2@ɳ/˜°Fo!ëè#ÃvÄýKÑD /B"ÄÄô%Ý'=<ŽeÝs§A>É“$½ûd¥nêÞ# wg¨Ü×D°1Ž`¯/CTtNNríZÙ¹cpa3÷öJl8!—¢O¶¨wpwÑÖ^ -¶¥£dÚAæÃfêK0 8­ÍË gÙÁ+ïüžñ wÃüoUÇ36ìêö)oZÚîÐ6R¢ô”nŽw€F›ó3®iòîÁ{Càø4jóC w ÕC–½”¢{Eù6tÎjÝI>ƒýjÖ¡öñLÙʱ<,ò#|Ùz›u&Æ<°Øj”9Í­ô‘iE¶ÑË‹Ã^ÿË ð³9¸äŸÄL΋,à¿IOÀ¡iÈ÷1vxºYÇ>²F.Ô‡~H-†UL§+~9gïÈÛRĨÐf^Fá9&´_F5?™‚W,Ä—Æ_P 8 5”Ó~Äâ\¬lAÐf¦üS½¼¾Q´Ÿ½ÍÜèDï#õã³y@^$PÌ*»Ÿ(¹Ëºqઃ¶×L,¦RBqÏ¢^[ %üOh¦ç•ú™Éà¬äß¡h\ýÔV3ØôjËœŠØÈ—Cðxn`"sQó^žøqSëØq`éÚVu¼†,›X|妨ðUŠÐ=q÷UQ$=¾ Y kôXÓr ›Sþ D×K¶ \•UidVß`7yNçh’CÖ~øé’]Й'oÆ—ªšgzTöIZêO«;®7—û3âåÑiþu›æ¥— BXEmuØÒo¥T2‚òölGÔ˜À@kï 0æA„Ær ±ÌªR«‚…~Qµ7 ‹ìÞŸ&ι߹çj¸‚½DÔªä E L¦={M}¶òÄ–jýI‚ƒÝ1AÌÓÍj[Musf-¬o;·,\ý¢a’"w¹MÊS‰7étBb—p+@;"½>}³zy"´}I7àÝ‚¦¬ÈpcÇŠ)Èm3ÁTÇ`G"1½O‡û©…n5ԄƳïòÜ:ÂwÀâ‰4qýŒ`øS¤RÄü+øBÍ[,h6=3Vä¡X©=¥`·7V:ç0˜™àòæ& TrwȬBîÕ·æÀBNqÇe†´?$¹¬J%áŽKËâ6êE"=h"ñáO*ï«kNkUï—"¾¹ Ù‡½Ä|:¾zŒæo±´2xò Í¡¬¼†Åœ5>+GoEËü{7°ж£“ÿ Ì€Œ¸ˆ3/n:¥ª¬žÒKô¶f ‹ ekM¢ P4›" –ÇÊ#§—è.ž¼çeôKX~½wêP”É[±Ë\Ë^!К"ByYqM„q÷9Gáã<­áÝðα›³IÌqñ­Ÿ©гi/Ïî[êk®tšñ°T"ÂéÿüÑØ„y¦øÂ)OÁî>¦ÿôÚœr19äé ÎÕš¨P|½ŸñOI"°´ãÒ̇o9›)ºýxÉW`šFÊ] Jö^³ÒLü·ô}&ñí?ª¤Â¿ð!Hʬ?“¾Vmû¬ù;Æ$®1À”ðÕsÿ¯¹®š»‰'OO7?7ò4«g€³Ó´3]HÝòAHÍ¡nn¨w’õKˆá‹KÅÇÄ^ÜLöÜ3?c:_Ù¢BüÁDGm¡y¡A¥;uJgèÌÉàÅd”õnæd ˜8.ûpsZ‰Æ6 øâP¯#úå\¡éQŠ!XÜk¨9àA›B¼¯ÝyXK³Þ‹§‡¯Ø²ñ¤¢é?þ¢ªg19±sŽøøƒ -“ «ÂÇ.ÅñcÈ¥®ÍáÓí?êa´ô·¹!í층»›åsí|7¡ñ’¯Ü( ÀÛðÚºû…@4óqÒßñÛø:ؼ–Æ)á8›c·Ž¡p*EÒAæD Rf)©%e•ÂÝuAÿ†€ûœ·5ª÷ñÏˬýõªÙMû]èuÊ“S™€û®ÀV/—€ÑHK÷°^¡®–ÞpmúnòBF§pg,æôúwö¤i†ÄØ7aQ0ÜÉã)KÖþÙsu/åÛi‡°ý¯À¹Wy_ƒA‰ 2ðÕ«¦'ÜÐèÃÁ†¦õÂÜ)Cw<*yñp¥77H,³Å ¼äôqÏòZGPCjÞcšÄñ¾Üsi%òÙ<¥ˆ²ëa$Ó‘x쵃å‚öE ÷xdÉ*ÊM·†…å M˜AE 5;b) e†:òý¹g[òBÂþx1 [RÁÌǰíá4Ÿ+JÝBŽ®íp? {§`¹ä@þN%g×}(ÒwÅæ #º¢m¹b;„§”´ß–.¼¾æcÚ»v#´éÍרZ84J4/$W“å ݳ>©ƒH‡yŸ ½€}_[¢]Kä¡gKæp;1ãÞOh"ým)k9ç6L¾Á.Aí’Š¸“¤)q—å ~P:n•Þ“#ôËùa¯Y, ¯Ì¥áFš¥š_•²<Œð·,¤ÑÉR‘ïQ‚0âðËQ¶$/ÒA½?ÇVK,Ô…NÈÈÚëdQ×áï8–pÊÉ·¿0ªzÉV‡(¥4lD@ x-uEÂ4×§®¿•ÏÞ‰È t¼µG«£ui)FP˜s +¥z@ãË+ù•Ôõ‰Ã‡–ÉÂE𜴠•/(….)DÅë%Û6Y&›%ÚÄ%ìÄ# òÔ1¼õåbW’ϯ†o¶A–W¾ÕNH?c†3ÏBIJé7 Àèo <ö+ÕèكϑO‡ •lÕªÜ_¾Ã~•pÚûß*í‚‚¹y,æ4$ ø]ÇòxŠ©ÙæHÓÆS?éf–‹>mA³“Y26yBɉ¾GœØŽÆê,»¼.ýhÆרµ2™šoÐßÚI)ú•ì,Kâ˜âIzÔÝû¶¡Q…¼v¢Õßûõ ÎzFƒbSÞ$ž'XôpQ€ËÕ˜BCTr­ òéAX—Ê·ÍFÛh‡Þ‘3†ÍbcÝ ŸW¬œÓeg­Ejs&¢’ÖÓ¢}ð,|Òc‘m_¡Jþ XÍæ<¨>¸G)жRÐFñø˜ÚŽâ‘и6l£õùýè° 4Ú„Š×˜SR#ԧм‹7:¨8Ì÷uÙãk 4M›Ø¹¹µ¿ižIþƒˆ[kº$;VµoÁ£oAr•È1ñа1ü´˜š&%‘+†˜¡‹8kg”DLóø—á€J‰ríU¸n¾ &ËÇ,ê®å½¸ùï7ô5Žq-…övßÄM;ÿ·~ü…3Y͵‹£K ê¶GÏýå™yyašãš§D)_YÕl¸Ì¬—KEÄ´|¾ÊßyqÀÿM¿"h%ªº[ ª¯ +¨ÅBò2_kcðO ã{puÚ‡6c‡]m•D?®‹y‰ ]ò©”ûÙ_˜ÉÅ\LÅioƒÿ¿Ð1ÞÖûÿwÑï÷w¬ñcƒã‡ï©ÊF…•{!¯½w“^…Ø yêF#Ï&9#ŒæÏ!†»2¢&0»’Mzq*êC·¥KNZ— ‘f´ä½fF*ÅÒ!—y[S…Û×øñÍðê—6ŽØüÓàLæ,I8â«Ý^ÑIOÞ•åÍonÀ=Ž%•5»¿r†ÐýÞþö4òÔñT³ÂÄõÞêIi’ê­MüÞ}ú{û³ÂJkñÞ¯„[Ñ6Ñ—Ó1Q?)ãš™äþ„­[.œg<4”64Īš¤†¨…Õ´~P½Léß’eæu¼q?àO“ ž1bS½Œ]V°m²NECÒ°-¦3Ñq·M§ØÐ}9]°œ—‰ÇM<1gLD¹{>`Vƒ•¬~°ÊBÛùE£jŒ-ƒ£+ØA3©æÈLX¡F|ý±”­÷[ÌŽÜf•ôíS |µùiX|ùäejÁ¿Äj»áŒÌ3ò‰ 3k}¯±•ÇäÚrÜ´ÁÕˆr«2GwÐNûϤãâ3àŽûÁ0Fvé¹Ï>>Ô¿ð샵Ïg·}¼Ñ.‚˜ƒ?“¾êû[_„Ym=ÖõRŸ4ÐC¼@-B%z,{ðæ™­©Æ—ºÊL ŠÔÊÙ•Gæ?ù¿" Ýd#2sÌ#ç§aÒ4ËõÇíD›XQþyt€¨9àÒ‚_$©³rÅãµAZq× Ý¤°¤vùŸºkˇ‘$a€[TZ²aË‘ä¿.œ˜€ÔY¼Ýnê ÅeoªªÌA SPl.Á“yIÁ- :—÷/ÁÉ`!u?¤c,QéµêQÌͼ!}Žr[Àä= p¸¶J(¶¦w¿oV_àŠ{k­ hòÞwa¾Ð?vÞ'D6gµH9æ¨S_Pã•ÃåjÎÄF0šäGU§†-i'uøY¯jÜù‡ >µ lÁVÆ›¿‰Y\åª(¬Ƙ—…ßUÞþ½:vMé—Z8qs¹ú‹ß4i D0ˆëã ©.‰p÷NöûHTšH— ˜šS½ʓ؆Äu3–=MI@!Ó.¤ƒ£Úc©7ЖÌBm YÞœh¬¢0®”Â3äýá›¶BHÿ™‰\ñ^ãü©Pù´ÌgÑ;“OÆ÷ûcç5ŠÖÙ3›6U·QH¿(†åÛ€EÌiWB§ù€hȤ€Î~XWVß7·a8Šž—P&X ÍÇ{n¥#ˆfP×F–þ9ù¼&s¬ðã¾-˜‘›y™„±%~2œ$‰ûÑ|ÖÖ$vOT½žŽ/ÑVæfOÀ…Ÿ*F-iš)Wªb¯¶± íbf5õÕþ ¿¿·S'Þ`€ïY-+Qdƒ‡/¤ôTÊŒf UEŠÖGÏëñ|»QÿÖ¦D%äôàü”ˆC#qqÇãu§Ý³$g(+à ‹·Ëðlí±úÑ\ñ…r'‰rž}¾ßlhçŸåÅ )ü€-…0ÿyáÉZð¢–ÉjÀŒ¥Ù}ÌÛ&†ú&ƒY’òÂME ¾М—½n‹RæOçà?)œ¦-óX¹RÜ4å’ÚDc ‡ ß ¦oûo._"ØÝׄìêh¸f®©!’) SÒ ´ùŽäZá`ƒËèm3Ç»ê{#Ô/·Ì†T ©ñS< y¦žÎŒTVˆ¤ü³4Æ´Z²m¥‡ŒǺH{öY…„N‹.àÏ­ÃT6_þï^Щ^Ñžì´fμqOŸ*wãçó1CZAÒ ú²*ª ë #=,hH«“lj"ëÌ o`¼÷UÍšLqþ-,qÕ°}Þ$­ìL[=€UCó¬·‹3˜.ð òpü>ï°kz-°™ú³u½Ël&{>ŒÉ6?Butϼ\)Ý»ÁÐ5p3ëvF ÐEðæ‹0àß½ì U8ő˽¹¾êÌ]á‚\A+‰ k‹= }°dMÍ\o 1OÆT™\˜KJZ˜;gÕ›$–&6, QÎbÂÊ|&ˆMæc”¾-œu§0¤{:zOw’jCnþ°¯WÄ8ÏH>-õ^¡5L0ßH¾ð ÆE®ÿbÖ y˜Pèi†G ,|r 3â:åÛ­âRƒÏÅt$rUº6ëúұ쮛°Ä@1ÞNÓe*¨¬‚m{(ð vJx\t©UÒÛê掽.w AшTîºm02ðöfùhšÆ*J)½2gÿÒŒóÆï‡¾¶\„”DL”0”ÎI}X¹èpÛ|01éÎÑ•Óc3ÓΚbƒyhZæbÔ¨à~dOÿÂÞ®ñËú!û³M¬¥fO7yËqØ!ìpùosj/_N¹Nûqu aRØÛ\BÕK|5‰Ù¦{ÃùÜ¥JlÓ#W]®7³¤ ÙpÌádÎ|Äê ¯ãè<¹ÃN$ 0ðòm™-öN:BÞ¨½ÇâJ*¡”¤š/´˜•íxËݬ–¾];7% >+y!K^¿—¨Ÿ3åˆ<²@`Så¤e±n¾Ãp1n/G·¬c1ÄUeVàI fͱ©T²Ó5+m£wˆú!Îùåîç$¯’’@”ëà¤#ãi 8ôc‰»È€!eæoœrØ ô;{f°M£øÔÌ « Ÿ{} 0·‘È2ŒPŸX<µ.ÿ§pмÌéÑ‘©WèϤwÓD¦m¸«NÁdчæ‡@™+‘y]ów8PbážJW˜à†«3¨ü°QVÝIÌo”Ž÷'sÖˆ˜²L²T‹m­ìó8žÏ,CÉ6_…ˆ3Ç¢~²o&.@‚5%“4‹ëψœŽmÞ‹¸ë+¡t7bÖ‘çHk_ÙL߈]õ¹?uäûÆ„à˜ˆõóW gˆX0¶½lwKSè÷ºgX’…±ƒý¾äæ¡ó¥®¨5ÎaT" ¹«µ àÖÑÔ2X3Xy÷«ÅüC· ~¡÷,ÌIù’ÞÔÉUybTÑ8Dãc©.å+}™$£4ÍÖQß¼)–Û~Lry¶C¶Î%{«åÈÊécçïÄ›øÓNéì #³†ÝÅT~‡bk…ž«~•¥y –@ÿ“­¾‚ƒì63ØL-ÓƒŒ±É1’ñ"Kñ¹wPn^ðfq”c€ÝÌ’ŒE.3œc5Ü Ù‡6ØÁA>F]þK™`Ÿ9®~wÍEM_®è¶cKÏ C€Lði„êdÙ³Gˆɵ+##ÕM]aiÍá§iá µÿ›°Õ3¬QMk‰_1ùãÖ©³2wšøÖŽªâ¡Sä¢ô¾Ø’/$by—íöœøÑ@R0a¢i0Æç¦ájÓ˜öU*¯dÏm5Â!¾½îÍ“’q8« ?ä¯d®uäyÞd'e3üñ|BðÞÐS«ÎÏD{èš®EÉ)¡‰sÕjJ³ÕÆ[݇jº™#ÃÛ'âi@TÞÁ¿…Œ»Ã:zoÅçñ{g•Æ%Ò;MJ+Ñ*²a=æ—ËPë‹?Ý•¾rˆ±ó†s°[ýßMDd5º°,®NHmˆÇ¡â…삯΂„»u1ðg1 ›Í¼Oø…l[OÓŽÀÝŸ/+g>ìþœS“<çÃÂÆÕÃë¦ïâÓ’0Vެ€¬Æ›È3__S5ìVíÄéò·ª]‰ÃÕóU©h”Yé ØÚ™ÞÁ)ÈéˆG/íÛ$td¾¬ÔãàÒ2ÐO_^!n »[wšÂsÿpL°àš¤í%‡¹äó­áä9ba0òyRÒ‘ø`ÛE¹¢IBJã4ÚýÂKâ¹Ø#À†]%¨öÖƒ-þ©ÿçåw€iºxŸíñ½iÌC¸•èJ<«{ç*pV¶•ÝÇ$`_|UMÓb³«œ.Ù½äã”i‚lˆ~ÀÅf„^‰Õ°lÖkí\(¦ÿŸ >Çt&E§[ç=hw©1¤Ü[‹öÀd™ lŸóÂtüÝ]àà0_Y,h…nS´Ý=N³Í—M@7o|Ž‚ÊƒŒÐÁhèò=¯á©ÌAbA¦ˆÕãª\­¡›YæéÃ6µ]„”c<¥5êTrµy…a5‘š€ÛH*‚QV-ù×s)4Ø; ãêXRyPÄ=ëÄ‚¾eSý,uX¡÷V’!OˆžJëùu2Ý3‚u~ -ýñêÚ ¿‘‡ØÑû 7R·Ã÷¨ ƒß§{ü,LN-nðp³¼¹¢Z°þÄ$mÁº&ÉÛºfá1cV®Ç&ª…W@_»½Ë^]mÚ7m·0ã/Uj[ÏÓ ýe(ª$ãÎÛ»¡wηÈV_rš~ưTÎëSÖƒ dnM;çvX\áJlv±Ã©Š‚gvÕý6}\eëXÖ8žÚG¼×ënÊÝeßHܲ_† +¡}¢¾¦7™ÇJÜ~î“òÁ°¤2ñ‡ë¤ýE”#ý«]ƒ‚ŠYDˆ‡Ò ÚŒñÞÈ-Ä’ßé>dpç'XHË|<¡ +Ábùßø‘H_›ó^Z %Ë?*–ÖšX0oq.ùL”15×;¯yãË¢=¥2i—6·\"`ÂaZï ¾’¥¼@ÅËE–AU¨Š L>IåÂ,ƒ;Æ °²e±isCf2F±Y´`ÕêtøãÎÖÄEBVx6‹ý EÑb5/ ÖˆèÕ~·üñš±¬!RZwMÂL–j$J`›¤œõ~ŠÂ*w>g‡!{3[üåÕnÂO¼îÊžÇ, ¡ø™;sðª {Û-õÜ„ýÿdÆË@¦¦ *T^àÏT­ví¦ ÈÊí#·Šõ!™㓟Ω©ã,MÃ|ˆqŠ’†E™K¸C/Âß¿÷ÂÛÏ‘1ÈöOß1 ãÄ^ˆeÕ‡ cqêQÐ>œ"¶Zo.ë¹—[Í|VÈ,8!/ü]A IÑæŠ3áôêSœiÑI ¤îÖ" ïÕ PÞM╃§ËèÄÓÿÅÃX?e“D^°eÙÕ‘ŠÞ:Z†Ñ¶N‡X$Ñ´:ü…àÑJµ¹!f9z•Aï9õñlÂÔ1Væ]ªphQ`n¡Ø²ssAkƒzf ÃuzÞÙïâÖ<ÈmÓ£!ãLŽrk½ã›u÷“ERæ…Ïï¨8o”‚•™Ý+Îñ&‚¦jü‰8¶B´r›5ƒD… ¿ƒ¶É‘ŸM«êeK¼XjâÔ<ƳU©ú¢!Š@îrÖeŠèÑç~³w¸ê㊚äÒuQôE®´gš›báEæ]Îû‚Iæ½7µ™µy,¦ÏÍÃtÍù¼´4({IæôÔàx S’àäÈY´›Y pØï~ÚÿA<â…„ø[4eþÝ$ô¤ãb쯗ªø©òÚÛ’f±á¨ ÅÒËŒGšÄÑ‹¾™…%¼¨×ÛDšzv½`ÊFÑ?«¨)MêÁˆ¡ º•&ÅÍ-:jË©Û(5¶u‚qþ†Ú k«ª dm#6ÝŽûÅÊÕ¾¦vBÙ|9;¢JÉ–µ§›¼x5³%[-T)¯߃Ì3é¼]ésõîdlªÌ !U³ºò¾*@bÍàØû©Ò¼Õ]e€.r<¡kö);ÑÏ8†)Å’PŸØÐdŽ¡xÓ|Ð÷P‹HMx~ηp2‹ˆ®ãÉï·÷lÏŸ|øìfëƒÄ¹,Íê£)ÑdŒR<[>z¾•jù(qßZÆ/¼þ(D<¤G4KÝ‘ o^Oûú… ˜uÏÈžyQäÂÒ›9êØ+Yµ'Åäð¿.yvxhœŠ >8˜øÁYDå*”Ý “„¶0¤Ü߸:‚Im¢‰]L_lÉtÀ¥']“2 G2ý•#wååjòtj÷{Ã{iÁÄ5z¥X(ÈM Œ•®-;¼üfÇÎãúV7BY˜Ê;LT×?nÆR®}uèÎÒíÆ&NÊD˜6ñÔ|dÒÉ`åÒ `ü˪àŸ‘Rˆ(¡^‘ñ3m¹ÃpCwuŽ1‘[u57Éý#iD-5„ì_ÎÓ9IÐJ«©Ý¯"‚C³Ö€„³»+ ÔP 13ïu¯Ò]Ð|¯Õ3¼±ö–ÌsægHƒ¢e÷[&ô󵙯” Z~½_“Kÿxhë†B=g Dø7-`Ýër²äFöTðˆu,0ÛÂPT‘"—]ú*ñLj"Z:IÈ-³>³¾Q¥Þ¸ƒ§êÓ ½û¯%™ÈÍóМQó X `Ë?¥I>Ž ŸØV1¬E¥³”§;Ähí°®Ôø:5÷÷Aš®$C¨ÎnŸÒ‰=ãâü“l6TÛ¨Ù´u«e@Dqï3c›Pwm÷ÂMÎîBÇ©‹Xû— –˜"…J àõ¾¿šýS‘Ž/‰÷Qõ H-s#lZÓTš ¥4qVÉÕõ d¤ÉÄ…åYÓkh1iW£ò¥o¿4 KÛƒ,l§‹¢‡¯å‰æÙ7µ?×½ÆYÑG‘„ü–ÏuÏ{éô-{ÆÝÒ¸G†ºHdçEÔr="oMy©yÚ>µ W>§»xjýÓª®†_°ªiò­ý"œ¿•ë3®OÙ… Ôži©¦”ß—VôïM– šø=úX–y×^ à XWû Ƙ†5†T¬ (üÌá'Z>bQhVJù0YÞ0#zy<óœ5[E#À#€PÒ³ Ž‚üMr*Çé¨oŸÔOèÔ}::GdïbT@Ÿv~¹aÉ¥ÕñzúÖav»|ÒÎS³ä‹É÷ZÖ$¨D‹ /ÔOžÈÇzj åŽ=¤# F_Y•ÈP­¯=¯cµVdæ€92.Ò#±é¿f¬›<ÏOþ#úâ1Nƒ 4[„&BŽiºÄ]èaðeâºÈ Ž+ â÷»á1lÈQ>vw[X“ÊŽë+  YGÄh‰ŸÞ˜~û˜°’gB¨»r^GªHHÊ»<8Š}¡{qò’WÑAXby¥)Ç%g¹ÄÞ‹X%„GæGœÛÌ]Èÿ¤Å:zÅRpšØ0f¾@€†Ý¥o‘Œ’´±Mô´|¸ î|74…)íÌø°>s ÂuÈ$7÷*&~¾ºtïô!Ïùú‰j¶öŸ‚­”Ñ5Ÿ,® ?Ö3QØ2> Ãøi¿€GüŒÑY1¦NdŠNs½"°#‚‡b Ý/ì½Ø’/¯½ÍHR_ùÞÔé¯þŸ/1ηD°¥9Ã_¿SIí ¤éhBS³ æ·&–ÿ(QØz…èTæ’Û '6F8c‚áÞIªÆyO Þ×&ì§·²À©]ö¼W\q|}ˆÝ2šš’7{N«k:š5W@ÙøÙæŽ¨°8@ Ýh ‡Ípv‹u/B.iÈS-HXý(±?'$»Šú¨ñÝJîœ|ÕK5Ï¡Ö*ñ…4Q’ðüÇÈú Na¿kü Ö”ÓÔ•ú¥Å'VA})Ù! žþ]@–ŽŽ‘£$óÃS>{Yl’ ”IXÎü)¬w‰ùp¬}‘~±q ,wC}™®›¥&:¶C®Î­˜é5÷t™%gÓë˜ÉåH‘ õK!GK½Hí'“)C½á «ÚDf¢Aᣳ5r Á(Ý%P醌ëƒ=ˆFA8Kª8Øõë¢/À7ÝÙ†âûÔÛÿw`DœRÚö>ð–7$6^¡…|™ñuhÖÏA¦‡S7 /‚Ãv-•"ìš/2ÏV¶v“®ÎªáÖ=)é¨vµ²œ“".Áá/¸ÀÄ—÷í# G_Ì`Ó-,Z¿Ô4‘b¬1˜CöIµ_¶‚Ž#­îr…¼¯#Ö\º0‹Ä+/S­˜z2­oÚ°ûJóñ$XçB05éðïÊïn!å§¥¯XÞ'ž†}·mhvÙ²‚­ØÆîM°Ýµ›­ºZ´õ.>ˆ"w sUè²y¤š—#»cw>ë[iCÛ…ídø<ÂÊæ$9Õ¸åTæ”væƒî$8âY}`8%øÃCÉùâÕ:ßÿ^‘„änÌÍš]ÂÇô³ì5{¼ò£M8;rJÏA*`Õâ7Iž]Û61]2Ê+ç>á83iS˴룓,fìq´ŠÀ COo•‡d4_7ÛöëŒN]öjΣx›‚²ÆtRsBªoÓ„Ó¡)B— —!ŽÅýö]?šx&¯KÌ¡«–™¦J  µy²W•Ê¥Ÿhl!ªMu_±ÓEÙ…ënM? TvyñÓ¿µà Ù¦äBÇšÚ¢Id™K‹ïL4~±¾VìæáóCØ«¶ Ƶ¿¶ŠBË)=Ççõ^•A]0? I¯ÆíÅ×Ђ7©8Ç$fãÃt?R“‘úQs$14L- nG9zW5›=\d3ˆ÷BíP9ô_-sû¿m( GBÛ''Rľ¸wâ.ݲ(å)®Õ½çCšP”%<º)xªÈšÐŸn² dÌíIíc*«ÏH‡ò.j~šoŒö°Ó¿åo=K÷^7Bñð .°Ôrµ mìu‚ÿ>œºlyeÓžd6ÚñbïÌL;2™8$C&ÈoàûDþàMýüÔÃUlüƒât©Í‘çÑe¦ +ÿ¨(#ÓB15èfn Ú— GþI+e¹Ä».Š5v»ttlj„c‰Ù^ ºr F`*doÛb!ŒÍÊ_ùœÓ¨–'€*Ø´Ì÷-àécŠÖéWLR‡žÍcoãÙÈ£«Éeh,pz*†üÇýXù¬Ñ6¹ËL1:aô¤‡íÉE\Áì›M3RÊIí·B¶ÖõÁWm ¬ ÍÝûÇËïø4_E‚ÅC¨ì”WæÍ-wlŠ%ØÍíz»-DšR´À*Œú]"¸ý9z¶\Š6Ïñ˜o}Þd“´Únnò§a£T´ô´úqÊR€²Ž÷WGùÔC…Éïs=±öoüŸ’›$ˆ¤jaEõHÔ“èÈqd¿Íž3ñ¢QËÞEk‹gÕ6.>"å¦÷EªB«ËÎõ´­*2ê<ެ†çÖÕ«Áî%l¨¬×äÛ‘â€ã(`<ø°GßÊL3sî÷«Í  ¸–‹ê-X»¤Ö]«t/¯Fg¼1Ö©©'eyå}Í’íVl 43wZîCòÄwý*Þz×ufçiZžeê‚a}½–†Uó@˜pïÞݽ%Xd­¯M‰Gbð¢S¢¬Ð‹"{ô–Ùm „ùKôÎ^}d5Ÿi‚†ËuÔ×QÈÄ[,ô˜~ úü ΊY €¯¬’ô¯ýFE˜žÜø’ZL¬Õ}­Ššô'E<êÎ^Ú½·>­iñ:Á"a¾jôÔ@ÏT^ì”h¸ÈßGÀ<^3¬yB`ûV¯åöWÅ>·Q§…ûÞkŒ4JðŸ§àc¢ýtë…Ø†.ÁÀÑ R§œh[ÕüŽ«ïIég¶%úžDPø9 —²´¼–q´l"ªÆÜ½ßbOÜ ³7‘d(pÙ+Ûÿš³…‚ÝÈbLÜëÒ§£1ADÖ6=šF¢ß€;û-s(KÚUÒq&p¢›Ç]a' ¸G(tM9d>R$ˆJd^n%l›¸Äs]÷x»õ˜œ]¶ë§Mœlú>»mž>Õp @óð¥òŠ7¶.‡b¡.¬ñúáhÈߘ.íA×Ñ; ”#[k;ãbˆíØX+x«Ë)º{¡ºìì#Е ¯ùÓ¹[á‡VG›k´»]í *?`Òl§È²#©ïò,(Í!8‹Ìå¾'¶²¬œî‡­‹’ë o»w7tFÎüDÖ«bu™ tîxD%ñî%€4$F+#‘$Ê€˜sŠª¡£Ï6–öüÔMÉwPtºr;ÓvÓôö4W $w­nZ ¶fµmgÕsNnȯ ®×“³Ž·ñ¼Ké.õð›m¢ÍM!…;l˜Í¸×cìÈ Ù•îÉöÓÞò"àÒDÙ¡éh ždú¸zjšš©ËXKÊ•Þ~2T¹tÅIÉHÑê»:á/Vÿ³æe©–iaΜËqœŒÁr³uMºœhj8‘DÆGÑA£÷[¶ÈIK¥{Üê i»çƒÆ$ʧÒÞa«'ƒCJ:krÕ{©Ÿ;Jv¢$Ó®YWeBɾèïƒÓ¶8p$V²¦/‚-qW7Ÿ[?WNÙuºª¼>ø!BÚ~»*4GQEÔ‡³¾&’P4j࡞®¨*(ýN-¶Môu¨Ç%CQ’iÊ'HC™}Aøa£#2s¡ìÂ3Z²Ï‘Wš™Ê¸Ý(5VrBê¤2û*Ç~3ŽkÖk‡1rn^múÕWè;””{ýÕ8³CVžþžu<6<°Ž.C°^ÏR<¨fUS&×°´éßE8.°8&«HXèzMüÝÎ.&7ÿõds~8/Dl™õ‰­Êž#Äæý0oáðRÙ Bƒ´4Šü8L>¹QxÛQM è@¦ŸÔ @e£‘½“ú~”å÷dWû!žáj‡¬×‰øùC¨‹ØÉ6z€íœh£–œƒ.2¬½Ä¸UQš¯Uk!ØS#fŒL„=¥§\šV;¹Žó6Ö’«Ç©B6@Høèãú3Õ°É!šÐý4ïåB²kO|é:nN‘CrÁEÆó{g—7Üe„1.´Ì=bp}Òo/ïì`üi/6äÂè̯„òŽu«d}!-þ”›a’?øêÛŽJ˜ÃME/;;åØñ›ÎôÛ£ µVâb¨©8üÏ].5þPÙý”Ûô O3†¡ +qTM¿núH™ƒ F"ŸKv§šaH;‡þKËËURu‰˜ïUÿ4œÜêĆNŸõ¨òÊQIqp#t>Î~CC–ñæ€ê·Îµw^a¶ Ÿ%Òl:ÉÀ…ž¼;G$/öÉ©ð×I_ ii×µøÑŽæ… QtI]Ó¤Jr-^Ëçó5µM¼1º1¼î« ÃT®—zØP?[ÖÓ¦í <V¶íu×× pÄ·ÇÄlá*QD½ý]—Q‘÷Ú(ÃÅŽØÌLò ¼h0E«ãñ?£æ.€0Ðlcʳë6^Ï%¶wüUêsŒq‚íNHÅ÷U™=Ø8㪄LcQ”˜¬ÖI¼êç‚ÀxCNäÈn*¥~öè¿-¢ÈQ•z{F~ŽU{(ð¨Å¡º!Ò¹ç2ÔºA£#œsÊF(—fÇ`]="I%Ãähã|¼ugΰa,Tãiœ¯™Ã~þåy‘@³Û[¸’x®‚#æÖqâ'­¨:â}u;æsÅMRl/_˜FbþPãÇCO<~3)Ò´áýäòX’²RHT¤Ðüóuð1ت” o'i±Âu;ÒþÙlw4‡(^áøÔÏPõúøÌË?ºˆìÁøž.„äN0Ñ6 Úzâ†*]¶7÷Þ›œÆB“¾|† ¶Ôß ¬ˆk¯Y°³“ªùˆ—pK(v‚$~zcWBP¾Ý4mäátá‹n°x+3ádø8b@Ïÿšì×í%éV`”WŸù¶÷ i¸rN˜Ë´ßÛú3â€rã1Õt¦è—˨Ty#5üðÚl¥oŒOöd`oàÕ:nýù³^jã°€×”×gO ¸Ë«­’œ‚ÆLá׈ij«¶lô¼?3׬„Òû5šd±9bÅ<“ñ3«¥fÅ—Í›þœßâ³®ÎÌC™{øk*™=þZ½yç–! @u¯‘a#`9®ÍÜu90Hcó ¦h‰µ°§níîΦJOˆN/Q4$ rT>NDxb3Œ÷äõÛ‚ú îõjyøØý‡Øá™p›ùÿ½â-ºn£b¤ ´ÀHaRË£y³­¦Îç–M?wö×üçÁj¤(;©—G˜A‰çjäi˜)$‡ ø¯?]¾Î?€ß*ŸI8«²pççN靿£6ѽVºÅŽ›/E€ss´]Ój| ¡>œQC'7ü@Ùó,ðCYÍN€rI¦G‹lŒ$Á}˜Í@S™!!b£ƒªL´U§ˆö'P˜Õ–’QÂ{²0Í„gè¾sÜóç¥5›áôºÓCwOØ?›OE6Üñžgª8¯“ÀŠFG¹#§»(°[›Å”)¢Q²’Ò-~M­îX1|KòSña=eÏíæ ó¯£[¼˜dD{e¡éÁótõÿ+¿”~±¹6'O6°×±Ô™%Ò0!"nï¾ ³jovž,&øÄ ¬ûÞ`ó'²†N{ÐØ»ÝBb¨"'pzÊ™ú• ì ÂÀÓÇ­‡²¿ cö^ÊKá¿?Ÿ¼_A/]*_¹cÆÀ¡gÕÛŒ—÷‚)ÔÓ,µñaž²O1µ#é4p­LKé0 ÓvÜï†÷H¸hàâg-TŽøÍ¯¾xŠ[p °:\²D×Б&¤´‚¡ßüµ@• pèGìv:IâëpŒû`tG$–ÞqãûEãSržhVkƒ‹$†töµ*颿ÿÈn\´;Ç„„pP°Båý¥ ÖŒL\•fýÂÛŽDF þp²v>OwåÏÞî½ã{umË09Óæì‰5ýŽéj”ÓÇXÖ7óµÅÓ×4™J7;½F[Ž—¯p'7––?²0¿¬ÿíñ°0Ö—{Pf°“)¸êIòâo >qŒV‡;‚S>-Ê]¿Ëo•EÎC5u$<ë($‹ < ÞÓVØw¬–v“×/ÿí7H¼eøìçö98í=};¥N4Ö#¾t²ðpRVî r›š:ËÄ<”OÇ'ÝqfêUÌc–µIؤ›)Q~ùˆ0w¸^>V^ !&›@¤¡ ý¾ŽÆÙ™>ë½y›K¿Ò1òå¾å¨iQX¦<ã“Ì´Olâõ¼ˆ3|úz= ¸(é²Ì©µs@9‹œ}¿I+,éfÄåö;YFã‚§FŠÃ’Íàœoïw1óÌG"@‹§’«99ËùðX§’ÀÐFùíaÜ©œ\ÿþ@ÂdÔzÄ¡™pŽliP®ÿă腞¼Ôö—íß/'þªBXC#‚ÀE¾BúÂÓ™ï0¼Jãî Ñ¥j]xÞ(AlÑT“³!ûV`'Ë:¨ü/ÚB £œ!Ê\è™­r¸ C@V¨µ€Ñú1"ÄhܺBAÛ3|Ҋ㪺ŽÀº»£O•¶ÁID¦¦´dÎsǹØ×ÆWYœNʱ >Â_V¦y_ßu8æÂªó 4µG€¼ :stŸbhÌx'êÓÍ¢|«–2ãÓ¶Ï àxÒÄüú¼È~̇5ð~ À;§ü8`nEv;ì:¼4Æý× ]`ŽÉ2ÿ«XŸJ[çrn>«`:í¢œ'(É#NЭónòŠÑ/2ZYN?—ÚáKRÂ4ï)¦š#fl»ðCJ~r#5áMà,]zßmÙ *VþȰxUˆý*¬Õ¼Ótûöˆù-x“J•þܾp¼uAss& jñÓˆ}´Ä:vÁ[`„äSúd¤ûqÊNÞ°Þ‘Õû9/[ƒ>ez¬QZ^ª¨e“õrÕ XHÚD{ˆþe‹/úÀÖº»¶Ã?BéÚNü„KÝßsŒFGdõ+ór1ÎÀQ1åi³é¹Û–È'§¡8Œêªæt˜yƬžÅ2g¹ð`ȉó~L³ÿ2ÙK ƒùކ„ Q3§ç Ú‰)_2 qlíÔ¬‹õ©XÉGÇux A¼u.š“ì„ðùÞ&:…Y»å%dõ Y›!~Åfz¹ý·‚ãÉÿé©÷7xóû ýðÆX‘(q©L4VœhÃhÓîg˜ê©À®«ÉÇCcÏð¤`_ýOsLH<íª­ß½è¶þ“Hˆ=ž´l SsÁê¿Ù¯Z»ïI®Ë‰<Î<ùô[/† %V÷P¹A.Ffù,‰_çŠíÒkÈ*™Á0FuÕôÐAXÞ1w-º7Kv\Ód°#û éÆL>Œrá!Aíuz5ýAøè¼ùuêÏÈŠ)Y´…:å:ñÔì$Ù{ˆ)(`䍨 ¸i¬N-ÈôŽ…=¤é)q¾ôÄ»³÷PG-ó:H °í[ÏÌÉqIŽ›W‰¡d:êzÍbºCå䳨‹÷z!û)<û¿€ä‘Nè33‹æéh7æœ"j:εâçr<Ów¯6´yYÔwäYÄT ,“Uw¢Sê#½.} Üò-¢K0%3.B,ºGäÎÔ¸ú®Óœ ;ã3yæW¨ñ+ÝžT±KØ‘^`‡ˆè{4µ”œO܉hÁ¶A\§iÈŠ„ØÈL.säc 1Ýäù“k^ê þçá¾7*>îÜ€Ÿ¡4‰ºd&s”ãU4„}Z„wÿ2Xkò]þ”èÂÉOK¥hÒˆ˜p"ž5½pýªwÔ;Á¼<ÿUîåF˜P:ªÍVÔF”D´‡Cnv®(:öªÎ@ɜϊ]Mÿ]¡Œ`*àFdKDÌ7sKÆ™ß6½´'Ü/wç&“’YßœsXrf=È•ø\øwP›h× YÒanŒ: Ÿ¿ˆËZê|*0 G`þέ¡Ñž'“\HÏ4æØhŸ¸¥Ïa£j|òV É´E è#;sp]Ø* —äÜé ùm=úW'85ê/¹œüe&ô•·1•útšréòv]vtWYíào†d´ècî\Ûò2ü~ß'–ãE3f P6¶É'«£83ä dšNJî¤À¶ûzÃ?E—¿ƒkûˆ/ü³[:Û2 (ž˜É`˜å”, ŸÊý/åxO°ÿ®B<ü¸Z&ïw û増ÕùpK3ÞÕg!·› Ì(gãyÅî}Š/Æ~ƒ«ßŽÆYs-,žÄÆ|ü¤›ó-…Ñr΋Xî«ÖY‹,¢Q`©Àtï­ØƒÛ¾l,(4oÇYSÅ”ô½(¨S½¤Lðn‡ý5ÁдSØôt¤²‚fmDçj\v™œ—ªå€bëy鯗*CӻĽÌå×Ýþe2E›ç}<57§ÅÖ~ɡےÏxºZ™TÉî12î$ oàž»~£J}ÄÏù¤{ŽÈ–¥§5<úÀÞ8Òó­ûÛL —°Æ`mf–:qÃ`­—kÿŸáÀß:ðTbØ»]$ìX0S×4”ÌÞµPz÷‚‚÷2¶ný³+ ù«ÈRfþHÚÔ*ň‹ÃAeÌ©áím¶Ñf»DŒWl7ÿüÉFN«/o] C$ÂQ3öï^'Uú¯S/|«=eTÙ¢’O¨{6Ïj~«œ³5šÚÛé½ÞÓôæý÷  &Àh(2.(n˜+…é Q¥LÁìÎ,[§Å©*wðÖ+Å„bI2&’¶É©[6».V0;vš:çšEžáÜ’›©lÔͧ»®Û5ØéZr7úm³9j#)†"q—òE ¸$¹B:Bje6röÙýÁM‚íß³ÕqRüIë@w¤wPÔÝ°Õ 4ë6ÉJz–V¿[ÇÙÌ÷gi~‡c[ÝÉz[]KEGhmüòìõSóI¯9¤KÓ÷×ÿª¤]Úɵ²›eùÆ}èÖtSÙz‚—¡ÝwvËîÞéT±µÇÄ®ò;ä<ž²ž:?ÿÜn—A(c.ˆ3ëvz.š¼ò|µÕ9ïýK|´ˆ ñÍŸ;šÌåÛË&77„߉׋•cS3BÚu–ÒtÔ±ŒÅ¼fЀç•$ÿ²T>–>._£uM‹l–ÿL¶2Êvõ¹Ö{çòójŽՃNæí¤#G І™×Z9D€»ÇxÒc*ÜÈ¿§‰>Ó§ÉbÁç¹å“IŸÕ-—ÍÍ›€R• 4±5ó;×´c‰›š+%‡È¶‰»×ZåÃînøš_ŸmU¨®±ãÈ,Só„Ó|R[Y—D”ŠJk˜‚Pëí‹à“?v\xÞ¸B{ G¨Äj*šù¦þFÚÉJH¡ h!F²!Œ~¸•Šý׊23¢{„¨ÂÀ¦³H_~î宄£'¾|¼0À×—z­wáG„‹óSZS#$KÒ˜ÛgAYÏ^ЄPFxºÂgx•oõ¨n>ýK?Áæ}õT#ƒ]^ßµ²×žšdãîqÀ =ÿi?š9o®ÇîA ®Yêi~у°Æ™§è–ÑmõI“ùANúô´}½Bä”Ù¥R«¦§›ŽnO9Eè¦ÐÛéxl8«ÌÌÁßÁÓaŸú=ž¬üåFv£ýu†oÞi…ùq©åý3'òó¹Ûïlç©ãÅŸÔˆöÕ‚Iq¦ášT"œÊ@Å´ÅB‹ìy œý€®9 Œæµ®kFzÑdà‚¬¡×-B²‹*þÉFêÞkZb½©(pM¶pÝ_]…XªL‰Ö1¾3·ì=œxcËßEaö D²a‰j)ÑI'_f`¾)žEo/Î ‰4Ù˘k~®æ4è5ˆŸâŠeGºm}píOæƒe©šYßÁ©î¢œê˜ÞÃß`»1GyüÇÀç:ÎÚª‚êr„¼S=ë@Èœ=‡; EŒ(5—iî% Œ«Æ2ÔPIÔYÛÇ@Ç:7ÆåfÔ½…Ä!ÙÁãì.ž‚*â°×ëæj¯êíá:í™ködi,K´8 LûÔ®Öwª,œc_'{dÏÛñ°ç{Fœ3`LvÍ(/v ¸‡ñrõÙ dérMºÀYÞQeš|u^q$˜ýÇ£òº<!v™´öóBBƒÒ¸1±oóš×QžR<ØÎå­^}01¨LxÛÒ‰#…_ ûe.AÀ–·- g¬¤ˆâÓcœ¥¿’ð‘£êgÊâ†w iÆíí d^€7±¥Là¡&>Ó®ò:ù OÏ ²„ñ1"ÉÉÒÄK„CWa[&ê—¤‘ä÷PuÜ›ãQ@YZsurveillance/data/q1_nrwh.RData0000644000175100001440000000040710636320360016171 0ustar hornikusers‹ r‰0âŠàb```b`bad`b2Y˜€#ƒ'f/4ŒÏ+*Ï```É1/_dÀ¬PšÊi‡²Ù F‚iV$šl5DŽ *Æ„„™¡fÂÔ0b± V-±æ‘¢—*ÇÁq?#”f£—ùèê)q/µ,^@qò#ËÀ: ˆ §Áv耈/Ú€p†*= FÁ(£`ÈP}Äèà…Âgr˜ïæ Ê{”&"k^bnj1¤ÁÇäÈO*N-*KM)*.I,I…rXÒŠR ‘$ŠJÐLÎI,† ª·ÁMє̕üt ó½†w½ surveillance/data/influMen.RData0000644000175100001440000000274312376633551016410 0ustar hornikusersBZh91AY&SY¶#÷ÃÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿоêSÃÇ€zÂ¥Fši“ 12i¦š2dhÀ˜&CM440†C0Œ£Èˆi 0&¦‘44i†ˆÈôM4ƒ4bjyG¦ª¡=1&¦i…i¥ /dZÒ“B …PQ¤ž¦x¨¨ª¬®)dðÑh Úâêòû3 #(Fn¦ˆ“à Mm­È„­à€pqÖsèêìPï¾òˆôöòøúùþÆB ï U ø‡ˆ‰ŠüÐÆF¡Ç)&ÇÈHÉIÊJËIËÌLÍ›œžŸ ™¡'¢£¤¥¦§¨©ª«¬­®¯°ã²ú6ÙÚZÛ[Ü\È]]Þ^ß_à`áaâbãcädå7eæfçÏÐÑÒÓÔÕÖ×½úð~Æ.¾ÿƒ7eFÞÂü–mÊýÍÿ/¯ÞN'!Áš:xþ$ ŸÔ*(¿ßôxpÅB$HÖ—¢Œ“10ˆÈžQR,QQC‘(E†ËŽ”¦Ë€–ØÑà`N€ì$‹€„3ìå­Doìî>%oºr†Uùô|Õøþ4ÓÔ²$?ÅÐð¡c²èBz¯E©ñW-„5 /íµayèPIË0Å@àHfŒ tÌÂ2’f^²$0û¦sÝ©ÛÝ<ãÖ¹€Hkj" 1ˆA! !0I jú‰H°RE’õ’¦*\ƒc¶2KYh2(µSÂU¸{!Ä–$†"ó½°q \d ²’@¤$‹>”€VwP… $Y¸ME¤eUP @j‰Ix’’,AEQEŠ˜š¥TXª(ªä4Rª¢Š*‹SE"È¡ì]$„|ÚÚUT3wÚKrj—=ú“8eÍ‚¦NØÃ^ý¨'®{wÆGߊ##â`WC]wâŸ?>‹×Ë0 ÁFãLX80ñð(œ„•ÔFCÈ8zÏ8Á+A @1•¤„¡à8‚0cÙ˺ò8bxpÚ !Er‹¸‰AÍjU7 (,IP) }¾Lx@Á") ¦dŒ¬-BêI’±@¿Bã$±€ÿ2S$ eµsÿrE8P¶#÷Ãsurveillance/data/m5.RData0000644000175100001440000000032210636320360015127 0ustar hornikusers‹ r‰0âŠàb```b`bad`b2Y˜€#ƒ'H<×”Y$ ļ@|‘ú€‘fg€^ >4Öà˜ˆ¥Pš ªŽJ2—™zNh€6yiŒ‚aì?F‚Q0 È úˆÑÁ …Ïä0ßÌAä/”Ö!k^bnj1¤ÁäÈO*N-*KM)*.I,I…rXÒŠR ‘$ŠJÐLÎI,† j€ÙS2‹ŠòÓÌ òpŒ4¸ surveillance/data/s2.RData0000644000175100001440000000032610636320360015136 0ustar hornikusers‹ r‰0âŠàb```b`bad`b2Y˜€#ƒ'H¼ØˆY$ ļ@|‘aðÆA`­Ý3;pŒ®†‰Í U£°èeÁ¡Ÿ»ˆõ?±æ wÀÇ08óÒ(ý‡Qz(У` @õ£ƒ ŸÉa¾ ˜ƒHO(­CÖ¼ÄÜÔb C€Ü rä'§•¥¦À—$–¤B9,iE©…HE%èF&ç$ÃŒµ@‚ì)™ÅEùé@æ?å¥!¸ surveillance/data/imdepi.RData0000644000175100001440000223622412625315364016103 0ustar hornikusersý7zXZi"Þ6!ÏXÌâ Æïÿ])TW"änRÊŸãXdGŸã>@j½õtA©°”'ݨ$vî}pI&{µÄ–×¥e—ëUñõC¦ºl bØÅ‰EŒ˜÷ÆŸ³ì¯w‡õ¤Â¶³a”™‚/ïîÜýîÓãã\§8­Ò§"m‚}H¢cÉܦ#Bg*ìXá,äÀaV¬CÜžù8p~Í“{9,/6‚2í>ZÑZîïª]íПåÚ Ó,z¤Ú&»ñå>]ÖßϧDzÂÿõr0XÐ'«$& >iå&eaÌ>(‡ÿp«ÂÞ§‹ #¦¬Mîñv `¯žÜ ¼xèÕKZ°;!ï½¢T_èP¦ Ù[ž­}j«wpÚ¥vãÍH©uÆŸ0{v’Òç¼47øY±Z¥¡÷–M„ùÞ#UoTx0‰f à >¬|UÛî¬×gôu†ýg‚AS»u‚3ñ˜'pü Äב±‰_'1çËåPtã©OG?qè`PnªÁÈÜù˜iùˆ;¡±T”:JŸð¡¦xËጂ³uØ{‘År(´‰¶ÇNnu“®1& ãú2Á?¢è€lèί!ä†YFèfG iQ Ú艠ûzTÑžÉUšÃè1ý+X3w”¯ì\‡’0ÏT©­nª]„GÉÖí3L÷÷ó˜ÏP'*ð¸xVÓ´O’ŒÒå;Ÿ¹çÎçÁ´Zfµ;$ÌiáB¨#’ß èÌa0Žf²R®¡Ðß)tp!¦™3 CîdÄ m)ö“‹ë„ÝSß&«q'+%ý¯@S=ô%ªå¶å©D™»»¾‹»Kmö²'žØ­‰¥&³wñè¡6$ë‹Ú€ ‚ßè-ðf¨alY逞Uó;ôŽóâ$€]ë;m*¢ŽMÓ¤Œ˜ Û¨Þs_'/«‡ƒM>ÉüÒðÙxOLV#¥r?‚ÉÝ¢Ñö8•ÛÃð/]ü>áe#¬xí× £*Ù¡Þ|$Þ2Îh1à h ¹†}uO†]»ãaBÌî7£ž&^l<]Æ™ £k¡(¡ñQ“¸ˆ‚Ë衺¦èDGÕ]Eü@ž=Šê+GõÔätÒ®täYá<"’Qæ¶ùh+ŒY(KåäÝ âí¶éB÷EÝ:5z¬«S4PcÖÝ|Q(0»­“Ds×nˆãÆwD@ø ÕêDÓ¬Ðʽ473ÊÞŠØåçÕ@ùe§Di î¹£ŠÂaA†=už§ÅLr ÅøñÁIùÝùúbîÒ¹Qáf+|³ëqÝc# ×–³=e÷Õ†çÜäV¤i¥ñô“Ð ¼TŒŒ<µ¸5¯çR ¢W¾£q >öÙÄG]´Mfª ÎV¿~Ôº¾ ä ŒxCR-UâDêkÀo:LˆKqµ5µ¼…µ6É|•Ípb`bVVùé5åŽp]ÊÎ';6;Öw[Üql·ðo >7”)vž ÿÿ·ÇÛ.A| ¬ñ“¹ïZ(XÕÔqÌØÊóò!Æí‡¼·(« z³»nÌ»&æ>ABø&ñAƒƒhùL¾ù'íú¥a¯Ð'Ãyì| çdñsJ¡¹ûì²°`,V4­%u†œŒjD[lz·Â,æ\ Î?åJ®‰j¿H7‚ï¡Âhæ¾ â?ƒñG@bdë©îvGx»§†’ãbýþ©Òö´+b Ê«Jpy¶ngv±Þ'w”º!u Gßè Bà¢þ—½µe|%INùâÆön2©ëâß’a†j…·îV¨XàYŠ`±ÞKzûê…fCmÓá±/’Ô*6 jÑ9QÚå®*¶q¹¥É½þ÷Lu…ÞÚC¸ó_øöï¹[sàÓð伋cQAĤÇÎ<Ë~5™®'^¬`«÷nbtõÊìcm¹ mš­¡9–ý¯'©}^‰u¢·”ÝâÑÙ·}¦óIqŒç>hÆ:ñB•k'l¸ÛÔIqâtãË7 ¿"˜MùI`K ¾dŒD¤ˆeFÜp!ö;q›âkÕHdŽ­!R³×õžK@Î ^¢2ÿz˜ªÜ|ѧíÍ%{§_¿Â‚¬PkOñ΀߷ðùÔ4+lj,Ð0ÆC}âYð~³#ÙÎ#,4ÄqqiŒ%5ž“|~-Ø’»ü…_ÜOØÍz-Õ¿Íc¦;ÜÝ»ü<Ú1qåP¥ä$»…ë Òpc2 Ĥ@ìZJõã\éáÒmÈ[‘· Ì+M•m½Ê*·¶£ ˜Z¹æC­EðÐýz;êåÔäÜzïNl ‰Ì7%’Ò¦Õ(À,RL¦pʬ`(¹r‡O”0Ûa68ß‹¤M¹/efÆÐcH2¥öãßöÔ }¡²2 ¬­¿6<ŠzÛ6±¤«x$œßýÕÅ/¬ddŠŽ)ü__†ÌP¬jpÞb®kÖÑ®&¯qå´¶ÝÃ?°¦‰ã#áIjð0Å<%ùðÓ©P¨ŸRµÉ¤­a̧}>=4W˜’‘Mo+à¶±á…qŽ€NVÈ%H Y|ïöZnÛE»1΋“68f3ÉÏžeyCÀždUmÁÔñÇœbRc&ªïÏS84Íàv{€†}˜Ë'yüC»Œ–£œmGrËò Ú¾kËÚ/Ç€n€®Œ¯o)–$âÇúÓåÔÙ#×Õ12ÆÍñÀwµ9¹€:Òz›HÐ1“Âê*ºÊ‹Í•>Å1íÂ-—´B Í‘1§)K[ò1W÷¢˜Ý¾»²vÊt¬U2ifa™Š]ªÞuŠ *¾P‰|£–¦t³ñ@xP´)cfh°jͦÚ+ÜWê2_{§3Òò@:ÜÒ>.Çá»ma -ì,ŒoÊÎ ·G,—$•&·Ç§‹‡V7»TÄf,‘ø¶®Eª†ÛòR¶¬aÝ >®e;šIÙוRƒö©Çé5 ¶eßl™ëÃT "{GaÏ„^Úoÿ‹–Œ¹ • ‘q…†wÚ>0Y¶NÑ!]tmN^šlç'f¶%æÂ%Ǩ•uë¶Šø ¤‡Cš—ú»$>ø.´³`ÄÄ!£°9KWÞ"³É‚¹Ûû#j-¦+Š„ûÎ ÁUc}•E_œó×kóæ˜uÏú.õˆ˜¥æ•ãwšÇJm¬ÙϽü) íµ×¢TNòßÒ&¤ôq´Ô‚†n8ü§}±õ CLfAĤbå‹óp¶¦6Žƒ+äó¬r1}H;ýЗGfÏŒl¦CÒßš鿢løEj¸\þ(s\Å… <ÅácxŸÄ#üÓz‹¦€÷ÊÑÕ‹ªlþ©Òº®[ÏNÉÊõ·³òuV,4aLçPò{ÈÄé6Æð¥Á^¼€Ö3“½cç›™5×ùï,i()uç$Þ±Ÿ Ë1¬¤2¦áô%Ïàvº“På4"óý™Æ¥t›=ó.¸y€EHÜëTˆ£Ëï3>þñw»»I5ÒDÖž|Y6j«‡=êug¼;ì#TFövï§cÒÉûhfcx%ŽQÕ&½¢)ûõ[:XŠÊÄzJD†òÝBåxžOþ†z}ÊÅ’tGw0‰˜C€ÌØí$¬«´ò=QÙß{î¶–,ë%Y¸kk,l[HNDOÍæk‡|~LP‹\~Ë2”ºƒ ðË›WBDgƒÂ^Èl…&Óü—[îJ ªá0ÊPDާýëî“t¾KÕ k$‚u~+ΰÔ©;¹3Çýd¡ñm;&´ò™l’ª-±¬þ± YK\,+š¨%k,ƒ#qßGnnFÓU‘ïRâ˜Î;X\Tå\ΈÚkA‘oUð~V9lëØ~5­ñ°%Ëk솓{`RÚ‡ŽD˹t4ßÕiŸ. £RFÍE^ëâS³ûá^•hÞU?Œc‡å¥ÞËÝÕ.¤ Æ2áÞ5Õg”Ôw>Ïq˜Jü ŽÏþþý K…Àxÿ ‹Ãbdw«—¶ÏÝT¶EbjHd…w[á6ìœfÜÏÞJhRŒ9£‰¼Aü/lD´¦õøõ çÀcò`OaãZ3¥«jShM9ºW:þfÜêèì*Jß>U‡æ™@éþ|¨b³ž=º´ùtT ùF`߹ʅàÌÛMùýJUOÅì1†‘¯$`醴ˆ§Ùþévý¶y®…ÐéÒ¾ö~­Û¿öykB ¿ßõ/S©â²w¦ÎJˆ“‘ZQ÷„GùØ †èv+P®8& :ÌzPùk¼XúP>¦q²…‘ìnsL€[·ÍÿÁF­ã“˯Hx][”ž $c-§AYD#»K‹Fs×i‡¿ý$Û_䤫rÑÅo0ÃîÌßlë6#o±É¶çášéÑBš²ÅÓ¹xìcúÇœKä?ƒÂn€îHÂg˜W“oáXGºì‚Ç5=zolh ;AϳQÑE¾¹¨¸c³ºÛ‰X¥Ž]W÷ÒŽX¥×€h€ ÐAãÁ>Å-Ëg|wia¤à”Û òèÌ÷3gݳ˜¦KÖê0²Ï<°¡A'á`Å ðÒþHyÉ*ZÓq»Õ±=5ŸQT y¬cp[œ`ä«åúòì!£HAù adéáD~þ«Ç¢œ,S´ÞT žáÞi¢7tÙbŠö‘™š²Ê1¶­±í¢l]l'»†h¹Ž §y槨„;Ew,ªÝ3͘n ÷•uLJeÆF›²‰^¹…zƒí“¤Ò¨s¥( 2O@; ßÄÐ4¬Jú›W]~A#Ôôø¡²EØ6íjû¾ébþëUœ¨jÞ_­¹í|½q–)ðP· oÑcT‚x`–J ;: èÍ,Ýÿ¥‡ õÍKâ ym¬Ùü~£Ã¢0ïŽ& ¡–Gûçò2C÷=MŸo+4E2n—üèXGÑ¿ªÇ%¾L™a êèšZ£˜ðÿ0Ó m´#÷0L¡c1¼ˆJœµ9Ó%‡Œò@eÑ °Ò¡ A^ ¼†j¨9= |~ÊÑÒTißüß–Z¢ÛtTR´Óúk+ÓÙL‰íѤ)býr nFÐûmƒª ½y=“ÌL¯s +Dħ¬ÁÁìYB bç¸$ oÛ»“.×’äâß´1LXígƒëT°ˆ?¸L›#˜Éœ²êÊ{ÄmÕeÙ´€mòµVÇ?Ýÿe »ºø®_kÏQG¡.ÉeÂìHbliS5¦¢w˜vdЂ¤"w áôCØ^½aB‹YvËñøsÍ2½ÈcËLvÜØ.é¹åw⌚}è-49[K¤Ô&VFÕù9’²»ÈcweÞfÀhOº@Eßþ„ÒÔ ³Méá‡+Ǹ®à•Œ»5Üâ¬)üüGbð»;Zפ/æž{˜YC¶;cî6ÙfŠ7¡Ð1ëkèýK¹¤~êí ánf7;•'¿lâ‰8¨ÿÒ˜†‰®¦öÎÕ̶fsKZ2¿N™Lžµv$".Ч•íVov³üM…IýièÍ/Ðù§ÁO%{í¿Âs-+n9±±þï"Árí­²‹wIX`ühbK˜Oã™Yç‘Ý¢YOp*²’Îßµ$‘éðØ/<‚¾äÅ•#7-€à!ôÂÚÏÅû° |ä`æò¿uÇŽ¾Õ©õÎúü—k£ž8Ý¿I¥ˆçGZRžVmMiQ@Ã\ÞzML›ÇÍÔ·¿€î%ù ·ŠúÇÃ.ÙP”I’ï›…´Âž"wzjÊ  È/«xís³­™mxÔQæ_\öŽ“€ï‘,¡÷”·ÈQd•\¢æÁÕ@JQÜè)Ë@žž©L|ç•€LÎ÷27¢ÞQÖ1€_ð×|ŽÈ´f€ >ÃÄ“ïÓÉ:«m»$A­¨âö eᦞéƒÈ9,Gž„®Ð¢©/i8ô·î׎Iø›âAœ€¥Ÿ®Æ5PNâXµÀ_ºhq‚æÑ-ldä."m@PLº¶¢£ù1xÄ7É™ºÈBÌqÙ¢ƒÂ½h{Æçy`Áõî b鲃RlAÓ¨îÛƒásN ¤ú|1¼gZ½Pûè¼€Ó"¸™”S!4¤•€lGÎQüDaÓ¼Ø3Èéµ Læ•8ŠRìïKôÁmÈZ8¼a7[T5§né-JXê ¯„èîÏ&ð±ŠvVôOþ¸Â’f”¦ZcD­ š;+ uᣋr ÔÑê>€†¼SZW‹yÛøŸ•m = ß,I³á"<;Ü&@OîðŠNž?Ž€N¿ë†—DJoðQé&ä]ö4 m piª›-ˆÜÜð’j€‚õu weþø‰ß¶uÅßbÑÚ3ÿ4)/åx:ÇÍb„¤f”ôFTבݠržü°¶Ž6 –\  £o“ޏõ‡¯°Á¼¬œ”…uØd&LàD±‹KbõÇS”ë&et×§íûµNµ0Ýi­u¤@žÊY¹þ‚†É~ܯÃfyHAjØU“AV¤åÌ;ü¢ÑEcƒP–d¡3qù}KôƒÑÅE7Ä:„G kßz”ø×˸MªVš¿ÁttQµzûÑw-UÒÀÞ]'‘vOßň L|Ó¼«à#‰ ¾«L½þ-›áïø—Ù›džeÁzì‡\ :ƒ²Q’Â3o×*›³9}cä…ã‰'ÙòxC` *;sõšV£$Í~µ5çA²ÕØþáG'ý÷þꄨqüýŒf-9z_x¥§“œÑf#éxåx^ZÆÓ¬Å7,Uè2L×  ñÚy¸ƒu`’/bo„ÙªŒä鄨WŽL#Mùnt*K‘ömk›#¿Š(õ7 ²z…åX­µä Td&Cá7!?º™¯‰ËMô‹üߢÿ“¿±h,ìkÓNhYJ-,$:PÕ½sA™Åýo«öŠƒlb)pó»tÇ~ôÈ;]<§ãüЬ[¨4!qç^2`ÍeoæÅôŠð=™ªýÙŠæ¦ ƒÉ„¾i[¯Xó²DW*F‹E<㹪f»J C´ zÕþðúFc¼r^^âøT”—™Ÿ[‹/úÀ¡»Š¤;Á©}ttÒjüˆºJ·ÁççhÀ¨³ÃÇõÔ“ÝŸ{²&—yÌ6\º‚Ûlƒë‰Ìç[(¹í²úuaÎÓÃÜÏeã~*KFÂÈ—ƒï‰8h¥ùØLp4o )ƒU†3ÞÆ·¢ï;/î`Ã.êaöÈTý1"ÛÖ›2†# F@x^ºÙ3eÜØYÜ”>)•)»\w‰,m€÷ýìòìGñ1ÚÊÁå±£UÏm]‘$eˆazG¥¢wÓr owç·¼+ß]"M“É‚VjB€=U¶n)Õ(úBW= \u˜·7VÔ¢:­×ûü0Y?¿ê–¡>°:Yðî!ÿîë;¿÷·¡{Õ×úݧÃr‚ÆaZ&^¬Ã²³›Î:_¾.0‘ç—(NZžç&éã 0¿ËClïèÿ£Y ;+©Î·d§á\)ÔR]~ôÍK“LØ­8Žq DÇϸ&›í3mÛǺ`æ Z¡>D-úánÍ£ªd!ðÀ•¬“/íSá(ÿóëâËÍˈ¡ •N«ýnÊ—®£Pî&\ð÷Sæ#¯uõÇ@£Ó;ß I^,L#íÄ¡ÍtßðJÃM›òoü­:ÖöfKiƒÙJ`pð" {\Ó@,Ó/æça`e ¨ý9´{OØ6q1¿ÿUÚ;²ÀÈ  ½†x3ÂÊiP3&$:7‘‡÷ú`‰¤ïaŽãžDÙÔE7ì×=u裻[W¼¶>+kÒTÃwå¯B»ûòáÆ¤É}ziîÄ ÿÓyÄ,”•“M ¾ §Cq~®±_TUY$*¥öH½«ðÕÚma NYä4#Ǻ3£[1$€TbxŠù°ŠV¤y3µÖV2f6`j]àotY-yБ±%3 ðç¦<õjòtFécbõ¶·Ñ©«ÓBÐÍIºé¡`#£7‹õ@ZÝç±RŽüº/É'KXz5¥^Ít«ƒ¦„2†ýqIŠæE™\ã­y²ö·ji©Ý™à#uèž3ãé½®“«™2€â‡Íîð\Ý¡Åu±’Þ géQX’WQ’ÏVã}H웴뇦!’ÍÅ­&ΠΛ®øÝÜ—‡o{Ä}¡;’g å3Y¥CLxÔn¶þ<+*srÐú]Êç¢óP³«þ*G·m¸GM¦Éyï•i&›ïéKO6ŽÌf©–^êè‚¿j@ N0ô`—¬æ ã:¢%Â>ŠÞ;ÌÙù”H·ƒeHü2³ÝÔý3°Q)Ü)ì™2Pž=SwØFÄÎÔ)Mt4”¢Š–¤peŸ2ÂÇ™! óÞøïØöi³Øãþúà[˜¯Æmô/"+j¨ R‰Áf¹õ×¢ aš ï¸K–/÷a˜xuü#õo8¼µ8’½˜—¦´IDA€HS˜QÝù]ãÇ®+uî ïò(–«Î»ê,…^¢ M}G;y©ÇOõ˜²Á¶Öë Ø#ý­bûÓ,Cû©—uvŒv¨a:χ†'‰‰¤ÐU$x€‹dM®"ÇâQCô¿Á2!^bÎʲ@ºê'VëïUªxø“ß3ùMF0ÄLù2Y§›U_ħÄánÈ.ý=ˆ,"ìë#±] ½Þ g*ßµç¹<ë…Ý}ò™Ÿao{z¾4·HÎ~˜ŽºÑ¼L„BÔ…Étþw° ±ÙZ×±‚à•,¡Ìø‰†Ÿý ’fëÐKwt;ƒñÒü{Ç ‹H©µ9“†ÍñEb4¯……õM‚ÐÙHƒ* OË›¢°£·Ö“ºýN-ÉQ…&¯>c¾xCÿûîH =éw?0àÊñMƒ ÿÿØ<5>iA[¥Áoààš52Ó K+G®Ï–N½5ˆÜÓ¶g9·€[“I‚î÷´›˜ e<‘Ú@Ôœ¤Ã6¡6ñ,*f5ž'ÄZ uãr•¾÷;ž÷´½Áô<Ä&YPqølºgÞØ=Ï ‰¦íáëûK×âXC¦ýÔè(ÅŸ¸{Âá™=Ú¸þbWûåU&ú lšRW ³mQM5ülè$í°1-2š¡ÈýÆOô=‚£uÒR"ð;w êW-ÞLúNî*…aíµd’È ÷TVÀ_°ážüìï3–º¼@õWÑ£M/Iî+™‡y,—ûF·\,»÷OŸ2 Äc‹}2 ¡±òÊëX|04ô_¸õ/XÔ¶û’†¥o£MÛïûÒÕ Ô9uvL×% °™)O—5©ŽùÁX~{r!m2ÉÔ3ºœ¶‰4Ivç¶ ¤k³âF”ÿE$b…(cXv=" žï'©W÷Æ~h‰^Uæ:ÝÂrùG\뚈Pl¢ôÁ g;of!•½}z @‡˜¸^O»¹&0xÓ™_}Ñ“[v´@…;ø*±ï-*·¯[*׳2 |ë}ÚŽã?5ÕÃw eà”o‹ójDc5Øb˜×HŒ±ïé_÷±EUBeð xåìdtQ¦¬;/PÉÀÅsÃÙ@UJ€ÑŸ5q€©Cá-íõɉ…_Z\"}}Ë ë3ï¬O½}M ÚÕF™ñÆñˆíÕQŒ¯ùv˜Á|~$~BfoäcäÕ¤%vl“ S!,1œìßÌØŠieqÿÒŸ[Ë~Ï£bÊH 7úýóSõ”vs«.Iœ§9›^]ˆØvnDS¼Ž]D"o^’Ï‘ UÈA{TïׯõðmÕù*Ѥ£ëÀ\¨ÂŠ®ý25E“á9~ÃÅ\öOr8ñ i´«ïk†f-„ƒ-9,^a:*P2s#R‡)шR$/ŒõYË‹ w{b!'®žäê¯îïä#ð|4p¶½rŸ%Û;ÙmΡ:UåO wÜ'?è¸SsA™N:™v-ÿö¬¯/ Sh¡Ø1Ùߌ ÈâUøàEr5G4éó]ý=#¼×è-é>‚®=€m!º}0qÁì¦æ + 7 dÄz2e,‚ôþÞº…)™ÙT€#?wçÐá­F­z¶-˜ÅuKì‘ÔR2ÃÉœž]ÓГwR¾TþKè²P´} L%5C¯z^òè(ÏlOó}î!jJºFVx¢(³ѹY!ÈàxK×C<ù*“Ò‘‚4‹¢Ä±BŠâÔtí‰ð-[æùý;ºßÔþd[ ««Už’o?,ûÂð¥ƒæÝÍgó‡³W “½®í•¢ynÄã|©e³´ Œæ…bØð²e`Á¹jœ<ê;G<\I/äöŠo˜j[eFrËÞ†‡DtŸú6¼—à Z(þ™FÏwJÚâٛͫ­”¼p¾±¹0¯4öAÎ9:Ô©P4I¦™a¿>Œ©üÚ¨6˜»vÝ1h³I±“ÉÓåF–ó,M¼ñG žMÞÙîrõX`·$0³ÉÃù.Ÿ¢qNÏ#ü£öxM”Ÿ<æ23Qæím[ˆPÓ'; ki[_(þ‘æÏQ·Ž*J»gHÖvœ½ÿs^³ý2«K.Qlz=e¨¼«Ð ½ÖËCÿòAÏܼQÿ̇`‹gcÞ–xyÐQ´Âéœ)B;À‹2«ÍÞ½JsËÄœþÁÀ–̘cñ$9Sa:=ö^yèÜ9Ï3€»œjiðuãýùLQÁR·¾1 ‡ ñk­ ýeyë ~‰¨TD”¡MX7çqÛR0ºo §…(ÂÚV‹Äg^÷㟠~´‚äMåêÀ†!¨BŠå¶N»×¤nó€üèžÌ\EÇsw µÀb-5¾T¦Ï FiwƒïªH?$&Ët )<ÝáB‚‡©šJžxhj³o~M߇(ñ:%¼ªß¦H¥!(X¼ÊŒ‘þ¶¢Zo—RÅùÃR†;E²‹zÔNˆ›Ô@â.\N_ö˜¡Ð#)ˆ“Z“ƒ*êܲ'@bnl€ÌbjØbô9ý~µaWÞG>ÂÄzKÒ ÑI|xº ñsþdõËá•|«{ë=/ÌÓN¡zÑ lI­5 }ôLW´˜à´ñ—uv*áÎØÆ€–V§¡r£?²KßBWíÓaTQ‹1½–ØÏ*þgS*ÒUyIÚÛ€%Ÿ‘ÊDD™0«ìQX;\LF¶sóY·´NÚ¢³‰|3^Y‡Ü#ŒÂ[îl¦(oÁ~²ŽìbºŒís%rаþ4¨>܇Ù„"šM?>ÜÈ«yî^^Ìë㯀ùñ›;ýÅ~ÅSFŒ.5Ž2¤½™²511â–t|<¡ÿöú&‘¯æZ^]¦m” „Ú®.úñ·!øÇñßéB܆š[ Uì~­-eÖŠ1ûç!rc>ö*Q&§ª»ÑÌ 6¡ fh òEƒ#–!Èx¹‰¨uM­ûÿf,v†º3KÙÍ\ÔS¥-Š¡**`؈F]ät‚½zzô¶Û.mûµ;=ï€/78F=س¹”øV­4FÚNU»¨­ÀçÕå‚}Ïï`¹%žât67Ù¯?pCÐ&Ø¥¥Íÿéë¦ÙH œuÕhO±+ðkZÂï¼Ö)ºA^³lר™}øp@·%“&“æÂ0I™E’+òš–ke×½eu4ß Ÿ‘*ê,‘xó¬GM~æ:š)Îó:Go¨®ØZÙ4ŠôÕ»vk]š4wÏin#õ5øî™erÎ]±‡¾_…:3ÎÅB­Î²¿MvÀ£ø ÍÆÈ súXÑÕ³E˜Î©³tÈ´ cw‡›ªB)£¤×ñ`óÙÇušâºš«§C³q½Ü+4IH= MÜ)#…c67&±ú”\‹Ã-‡žzÜÕGŠŽ6°$G:ÌÆ“ X§”|0Ð4kò^–ïµÂƒ+Θ8²g(îI6:® 0D0ÅÌy›êúu~š°Æu!×.Ù°=_Ó ƒA­Mä|$©kή“xBt…‚XCèÿJâ1¾¼\A™¬Lg0¸VQ«ÉGÃJ.ŠÕ­6þùæ ZÏó§ËÚ!vÈ>Ê–1#b#ìúzÛÔË»¾cö“ÏBkVé,Ø ûk²GðÑ?‡Å 5Ïzñ1 .™!šÛkh²–XâÄ Õ©°R]ÊFB^‘•2ž e’d”/ˆg׊]Ϥ•ˆn<ý¯¯7N"RÉ º¤ŒÆnó™Ø |žàZÒ¥O_·u+f£pí$®ÎCXÅΉª´Ú†e£ba5Ãö„¥.rí¸L<|ëdÖ .7ûoç,–yU8>è¼eª@Šþù‚Á/P8Þj…3WéPÂ%F¥d–›­,ŽDÈþ$ ž'²ˆ¼ à,UôìNyNaµ™ZnÆEå,$cyô¢zfí9]Y’•~7´ý»ˆ¶^ª·Lé™p¿»ø€ŸBOùIfÄ™•~áé8•¥ŽLNS+-$ƒÍpüô6®°: Óê…^°„$ü6 s”ê€ %ï68ô_Šè]*íòâVvH@)XMSJ´ª¡ƒmŸ˜–cÅ-c+Éâp]`Ì“Õå#ïz¢äøQ²¡Ó2Y5H©u½ùŽ­€V¤˜Ræí¤ËŒ,H·‘µ©›B‚çôý§–Ü ýÛ‹¾è·ÕÈ}‹B¾S‚ïjlJ' >fè¤ÂÊž¹SÃâ&ê¼s4åÝU[E »¼wÑe잘ç­ÑN|[Õmœ2ƒžÔÌ\ e-†€ÜA^ó9]Ð0ÉjèkSmkww|Û)«¬¬c³škÅ\‰Cw/"C»ñÍ|hm*ÅÄËŠ‚ß|$º V,. XýlSd½$×pB“!*Rà;ü[àØñJ[…¹~wCÐ0HÐ »KÿEmÌðJ…+ÿÙwÌcç_ó|2iÝ*@Þr †Ä¤$¼Aöª7\…¨§üÛ¦66â.S„o¥d—´X½ôÜÓÈu–û1ü>ûMc‡6O+.•H5s=\*[èdçP›²’5#mªÉö®‚pÓûfÎÅ7 |Ó”3KÌîH¼FÝŸôõÄ∩®†c¬ÁÌÒ°ÈPˆ°Ë3l‡H5¡Éi1ÈŸœPdñWN«Ê6“VBN´¼…ƒñÓ†àÌì+cŠõXéâ²"ýþúåîOð‚ši¢R­E‰\æÒK`rø°Q²çbiÆ‚ˆMžÍYÀ¶¥1?Pe©µ·e–XßÚ$Á½¢z¦K!\es /е8LˆbûA$útL„èÒl/™]ý®uQiüÐÒž•0¶õäŠÒX,ù‘ pƒY!Ç@±°ÁþÈrA%‚Ù•·^+ÈêXÖf9hº€ÎóÔÐé æöƒ®^û˜ÿsÈjD^º—LöïYk¾w¶Gx5O*…ù.ÒÂlç>i‚ªQ˜ºÌ€G?ZûÎUøxJ§©‡peÇ}o•±çžY†8XBzuÏÊô×Ã.¥>ÄU©«À<Ã]~Á¨œÅ…ÚbBôZ"tgjµt5(‰½ŸçýÃÁeó€ŠÓŽ<>U{íB~¤ ¨êìk\¤•gÂâÎf y Š.Nd ‘^Ø¢¬zxSRöI+Mù_ ù’¨|«d*³ b µ”Ð~»É³æ{¯\Ë à¬Y¨âP °:þ© åV"ŠGýAö‰ àÿQ¤>_¥ðR¶æÁêüm™!Ê2èC%ýå ª…Ö$en§Å5 ´oZWv _)¿D bÅÝ ÛµDç§;”‡ÙGˆÅ››(W=6UVSö›Kš FCÁ«&[$U­œ.dÍI2˜P2öÙQRËQ~["m»]FxBÊÏ̆ã_Ç¥¦àiùnà¡fe¡/™>O‡fð OLä¯T+ö?þÙüL‹ÕUÖ"þ¸ +g›ÑªÿD L¤Iéÿ^0e_Ô° ! ÏF²Û ö%´ÝP¯Û —/,)w'ÍE;dót\ˆ4Úw‚»DúÌUHÞƒWbêU-¿ó#à·làáív·Æ»·}_!‚ó«†8~¹#ï°Ý‰á£gbæ=J¨¬êû¡;úlݼ[«4¸IÆåä· m·–ó>ÜX}ûI½PÖß§ÇñØÅ«ú%•H}ÐÊôö—s ½·½…Œ©rðøÞºs&(ËAÛï"ø ¨7Lü˜)…_5NNƒ{_>þ‰‡·­:Sñ1?¼z®êã-Ma4ûo#ñ_ÚðwIJûƒ—ÑuÃÔ–CCXÂõˆa+µÉ…±ÿ¨²D.$zÓi'îeËB^]3©'4x«yªs;_)è¿He„¾L?s)†ÌK¾’;1ܱ&7Ày­$'õIS²ö5e™$¨Ž×ê ¹‚)ýCÂ|zIÆÃ“i;èü%V3=îáðVGÓš·z\Î{ã 6Çó>'šmÇ Swæu{š;úËDÉè@xIa¡+ó—^`ëªguEßX|yE×-+wÒá–-É1ÏÃ%‘þ„4÷°ù¯w é‚Í»a› ›æÉ ŠÛ‡ áá¢]ü¼wI§UÈ+(c›g/+VÙȬ°äV+üò@Œ…sÒ`zù¹Ã¯u»L©½d¢¿£÷y„–=™—ÂñµÌIÆÃú/C ¶ûÒ>gP¦ ¬€Ð Í‹fµ ñ'©wsâÇÖ¯Äú æ6‰W$'Ö'Ž1`!:ü7rœ¤Œ}×ÑÒwo•wUÿ]±{¥M¹<šë4tº+énÞÚÑ,0ŒrÆ:׊¹–”ž*£0 Ií6 =£j € y!|}{E®±è«IdfB䱩ðO¯&ÂLÈ{0IãÖÊÎu+ÝfhNî’ýP5ÖP©Š|4 ŽÄIƒÕ]¹ÄA¿Kg sP -S˜Sƒ¤#ûõÛ-ßF€É/P3N÷t§E€Dø#»Ö·ÊçÌq¬ñ+ K†üÅ3pöc ÒüÕ'PÐk—¶h¼œc¼ÞYÚa›³Ûú*éÿ_£t#3çWå0 ”œœ5üz‡4Ṅé‰\–‘ꉨ—ÈLÌ"®\!ÈïC÷¶¶9iÌåDY?«––Z5õÊy+ãêÇ­e%úÀ€!žãÙës;;ž¦Ñ¹Ô²>MZõÔù"6@¥MŽ]8->X‹ÙY±™¤ýßg®±ÌB\Wȶ*Ö?Uµæ¾=lÄÞ~og ‹Ê^íùƒAÅzÇqj¬¥'Á”3­!€Vmfå+­_O³E¤a™õ>¦MfÁŸG3˶#ªy… ÷ä±Ç%v€w>ñ­RxÁµk£8 ÃÝ%'yþ!jÀÛø±ZÒ"ngç-kÁxfbºbØñÞ~M^e¤Ù.bd’lˆ»Ýcx«KÔ v3ÿ8 \ÊUM¨jÇï½q¶Ãúæšp´Á _¯ºò³2zà¤Õ'=V\Ä8÷ÇŒ 9c3ý /þÀõœØ®ˆ_U¡!š€Bt‚`òojÝ—³ë‚‘B¯–òˆ€"^éMÔÔ{x²©äLŒUèc]PVÕÊ?Cbù?g³Áá1’•L¿À' 3ËV¹á5|`Æ' ;Æló>ßcžŠ;>zèѰçä©ìÔS4k6©-SøÊþæÂpU(˜Sl#íý|úf½ÚZÌ3‘‚5ÔC½=,X‰10e+ 6O£l[j¥IÐý¾Íh¿2U’nCªë® Ïã.<õSqNøž˜† ëüá^´$𗤼B ‘ Á?Õyßà!ûð_ýû¿†2dãH<á^–=œ{¹Óq»Þbuy\üç–I$ÝNd¶içªÛΘóˆz'Á‰F¯œù­Ï˜|½k»¸ ór„ÍìžÙH-Ã1ðl\?§récùξB§ÀÈÿÝd ¬o~åƒd>$ÉúÇê‰k3…!=ß~Kð:1d͹DÅ'@Y’×'¡jFnIï§{›÷0mèKŠÑtg¤W÷b8ï”..nËÝ'â’²Ô蹨ù·÷Ïâ($¢?é¸ì©XÚÕŃw_± Ê—Œ8 )Vø~&› ˜Þ:)Íë5RÿæÂª€'XÑó·RˆµXøâ?ÁÈlö$_Á†R¡6z«X)†¨ù`µ³÷Ï´ûÏ€/á8~/Q ÉZ€÷Y¸Wö¿’_k´6…Q ¬*Qnò…qšSW¾øfPŽŠ—»Ð‡¡×$ǵÃ{s2$œËgÕBÇÿïD¾VpaÑÉŠýÿûû=ìCÙkŒÁóA?P0tmü‚$A¡UóV7 %óëZ…«|\ÎÚÝÁn-×yWUÊ`ÃLÂßJ±ðí&¥·pDÔö%^г¯ ["¨3Ò3Е4$„ðJíAm3!¸ÒsÍÄ Óÿ7Ü›V6Aæ5Ì#ä}ë"\àvAxδ猬Ð;ô€%êÀ]n7Ì)–¡FlG¥&ÔCå‹Ca{ñ¦]ƒ‘+ôV:Û˜ëìÎC†:ý%ã rcìzE$|ç3 Cm™[/g”ZÊ; …ÅuÕSÛ:ûƒS¥‰ ‘2ÏèžRüE`šâ)鯔@6b‰Äù¨â=@ýgnÑŒ›Æ³| û|¾BÉŸ6"xÏpÑÄ6‘–”^H¬saîjÕú'ép+^ut‘ê[Íqìž+ Ö:'' ïñ,t[Y‰Æ™ðsd\0"‘ࣧ*uô!Ë’O¹©yç[EçKRJJ豜 _C”ã¤Lïëݯ[+æÓ½ïJ€¿Þs²®›ÅŽî¦=qާW8/]iÙW~KVmT/GÛ'ÁBÑNuõ¡Çó;™~ÃÚ ãÆsƒÈ­gû¾£Õ 2ð#:¹¶òúnÒäŸ6íû#Ó-†\½Káím¯56»òímÜ·jx©:a'Ä›æ[ã‘Q¿ µü“<Š$ ÿÖìO5û”í[ÔXÂõ¯Æ$Ž˜)X/#wtâIÒyû.ºÚuîÖÇM†€fß_ÅÕW›GGHN7MòÈU©§‚˰\ :C—Á/„ÖŒäq:}´Ç¹Z)â_s 5¢Ÿ7И'ðFxÌñ6Êç“0òƒÁ/F1·¯çÃq@¸µˆ‘™ãè£# 8&ÛEqâ× cÍÙÂR½¯µ·^s'¥Qßß.,Özwȓܩæ-¹l¿8&\×½¨.¶Kj†€¼>;³¬ý¢z4NÙ®ípÿf°‰5½ ¤~Cv}’°˜A RàÃÓ$;!¡>™äŸÑwBR?DÖQ¯ªŠÙýsuìH•M@•Á23ù¿ö§óèúõˆ­âÀ#7ßd©s1Þÿ&ü²9x‘T./—K)`$^^‹•ú1†.F„(¬ô"¤$ Òä×ëî&‘ê¨{!‡§’ÃéÉjÙ H05~ ‘˜*ûÕmðlÑqqö~°w +uYLYª#´;ŽÐAòäg:]=3‘»¦D‡“ (%œ“.áøð‚âŒÏd©•VB4™ëp‰7T˧ò&¬Þf.~ž[Ïà‹å¥ðÜmÄn9U® †ŽÃ$™™FÁ¼ ÜÙCóA˜X]¦w뮣Éà¡4Õ%¼N‘ƒ‚\#8‘¾ã"D þ%§”Æ­a!@º‹-D‹ý¹NË[ÇòÑ &! 'ÆiÀ-7ÙÀ=®èha;t ñ`pš6à——oçäã{Åšˆ¨5Ýž.n¾„ìÊc«_øSØeI±ù¯«Í¡¨mŵÕŸ×ñ_®!èi‡ ð¯$œ|øCOHg-¿h`ä°¥ 0·ÉÝ6WG2ìÐÙA‚yXòBx"¼nW–o“&ØS¾>é7…zoæø³ #+‘S‹.ÄÝÒóÂÚéÔan`ïÀ2‹Ó= ®[žÓs…TˆÐ»Ô޹+S¬“ÎpŽè¸4°oŸ„ð ¥?÷çåI®QÔÜËFoê¼ÄàvÛ$¾;´>?“a¯ Û±D]¹ÚFú.w~zs}Ï/2OQ™ r7Ú<Ý…,3ðÅ,‡}ÎzÇ#ÎÏ‹tT`d6ÙG1 ¹¨n"²Ý)Æ×Ëj'w¸2¬Ç:¤ëÂ%kqÅÓöu…ªa]ÏÑ4)=±×ÀYüµnÕ€¥ Ý¢?mÊ üY vë!¹^.%À'°½Ð~ŸálQO3×\ p´o™8DÏgºˆµõþò¨†sB<ªgn÷9àÈ£×^ìE"Ã3X[Ý<¸zÁJ&\ø3æ_?Ku÷¨x§­Æ!—f#ÕnMˆÑþ¨Ôëå&ÛœbJ‚tnæ3¤\kÊÜþC©¸á‡L0p¨7Fã;sÀþ‡­"ãò?cSOœG =Nt5š(D*ÁdÂ{«p¬ÃÏË·´*¦…Pàâþ+@³TËÑÐþIÚºY&R{v°‘¬‰9{’ÃÚ£öt GG ”y\iÅoMÅöm)NõNQ¶#ØûÛâÝ/Ïë(Êç€ 8ï^ÕqÃO‹EiüúÚÜ ÒT-Ôù57¨ä=Û`Ÿ{Œ·ët^fI“’ƒès+ZµÒ\ÄIûeÌFér¶ôs‰31FÓBö°pªZvRºÜ6ôEO»P´{Ñóùc^ü±CyžhPu¸GÍ(0†ÿn› \ßK_Z@=¨UÆ(#¤Š“ÉN€èS·3Fú¸_¬ªšoñ±.\x¿ÍYî 9 4¼ÆÿÅä¾6ZeB¢n°ß®{ѹË}G£wiFÈK,{¦ö·×‚7nöAÖÏ9X8¡Ä@!‡UÜQòÙ¾ž6g(@ F)íõRð‘ƒB 8ä”— ºF8óç~ýQF›N_Ó€µP^:!Ý­®¨YÖw\£#ÑÆ™½&b8û7Â1†ó×çÚûïQB¼]t7Güà˜“úêÝ ]ÈHlfTÅ ÄÎÙfެú3gq:Kýê䟄Û9¬§Tnw\U.õ2í*ÓÏæó.Á6·Çg-N6kI;õˆ—”ŽGµ«Ä[éØv‹"4Á‰CýòYÊŠÝç+ä‹^Ú!óá0^?©÷]™¹‰Ô6>¤)êÏ#çT|T% {`‹óäeS!ú+ µ3¢“£iÍBŸÔvÖ¯µsÍ3š(½¨» ÷¬æî q‚It+F˜_8ob!(ÿ½0¡UϹ¾š¨<¥áè'Ÿ7!ßm®Ù³ÜšReÈ*n ioN«ÙבQö‡ƒ*ö 0Ð:çï¡9E£.ï/A>Ï$myTvÌ A?ÄÔÓ`ö'÷@éîûR¦q"Ö5#)ÙV{ ã¦yÁ÷N/’,D¹4áÅŽ4¯^„šÎbÐêð°baò<…Ø4–qWA÷}É´¿àª•Õ¦•ÇY©o)žôËŠ9Æ®KÞNìÛ‘«à܈¸ZëôcÊw#ÉßFÏa[P ðu‹ŒCЗ¨oçoë“uÃ%‹=»“ú­c®jÕ#È;öÁˆ?ìs¿[ÓÑB*K*GL?yîl L~¡•™Î=ýšDuÎ(Ùn‡¤IáÄ9FÖšÛRÆpv¡áôÏ­É2¿]fÃÁ¶~J{ïÝ–+1EÓ­¼#Ù@$Ëüì5¢~T?é£ìÀCÇvèždu½±ÈG&YØhµðf4*÷l` âæî˜¹d¡w¡É½F0Q‰AsK¾È'†¦ÃÅסV£LQýÉìÄ/"¼+SœóiÕ'¸šxu^Ðîˆ8ÀÄ;ÉuEla»™¸5ûõ“áûø®‰§4‘HXÞM¥ 7ã[ÀÏL !¨ömrÂTÈ[22­[ë™X¥ô`‹ÉìŸÑhÌœ4ÎÙCä]ÀÅdu³{_׺øÐÌçêRNÈH)©'d n‡¹¢?†eÇpx½!YÌ‘›0óžâ/r;»v§£.bÅpŸs„¬ ”2È¡=(«ýµ½×¢î—RÿôÖ³#v„±Ö'(Ù,Z÷0[l  º®Z=6Y©¢Zc4ÃgQ–{õÿè'M?öÕ)º5Ø.€ñ@¨‚éUK…€=†ŽêÛ&aÖ!³ÿ½žý‘ Á®ÂZè)x´éMqç½7íSóéÔ@eŸ9 ç-ûf¬Wør[ôôs»’Iñí‘KFg)å -e6X:UÞt§wÜuÓ^оnmöÂÔX½%2i†U£ÒÜ,>>]ª¿VVP]¡’bà@Ò¡-«-!bÇo_°›5ŸøLÏoWæKÜ;PÀ"ûxf%º¸!+2‘+‘J4¿Æ^..Šå¹%ÞX:1ýõ,’Ñ0h³é±¹ž9½ïL‹ùïÜ0ÕŽ Yo¸ö8 æWÁGOˆeLvFP÷Žö¯0ê -V=œèŸ£ØKšŒØÒÜr°%ôhŠéŠœ>p“‡u/àÕ‘ 9Àæ¤Ý»C}àUY@’Æ..ÀBÏ>¥…®ß´ ¢&µ´¦!w@v#pNl<^-#q‰qÌù©œ%5ÓP/ûJǸ{™ ™‚ÂE¢÷É)¹¶ xXâžg\ÊÁh[ýáƒÿ×5§‰¯"·O€m"‘àƒDO #ÇÁ ÇY<\]ÎjKÜÄHkT ŠŒ Ñž D䧸ǑoÐ^GsNë\i§y îç=Â*eàv^ohûUSŒ<ôÄû²ŸÍïs^ ÏÞQ ,•PF -þ¢›ð)WètÜÉà«ð ¶ª1׊×zA»”Ý\SS5›§€ qNñ†Ž<àuß+^J¯ýA0 Ú`™m½¯FÒ¬o¤Ä´EH›Y+y`À¹Ì©Yå6)[gVdÂ/ÿɾwcrŠ`- ›UìáÓêqå¿€ònkE˜ 2>õµÈùc›^+‹*¨JL}ùÕèèê§©ð ?|¿ÁOð’m…!rD<eä²ÒD˜oàðblûúÒc•E¥Pˆ\&›=ñú²Ú© |X¾‹8Wq@ÕD…É YöYJuÐFÎózÖwþŽ{Êðz„ó9m–x?-w¹§ï!w†¼¸ÁÇtÉLÅ~e²&æo~‡-vǺg Í*«ÓCåÊIC½‚nAþ ‹ÈàÊ,oõ\>p»Ý”ª*`ÃäS¬ÜviÌ8 š)m<½1mµM—žp²gm–Ó|Ä6Háë••œ@N'p#Ê^¸£¬ïŽsràVÈí©ÌçCÜÙ 5jÿ¸ŸJ\Î=Wi•`á„Ó´ÅÅQÞÀÀNѼ½Â¡ª­}OT¬66acb/€©Š À¼1| 7`¼Ã<õµ¿UfŽÙXütwáA7l)àà÷ÇÚð¬•Ç‘Ø`©ê (v(Hà„c3 ðrÔK5µeRg¼‰È)3D+ |ñ{/9 ¿Cýr4Ó^Æ…”k£5¥‡@õÆ]ê‘™ÁOö` ©|éäeÅ0N]˜££°m¡VfâÃSj…É‚æ½}¬¿¬õÑV ù·ž[±t˜ÒW¾¤¾ =:5Ÿ”>w\EÞs(^^ÙIñOÜ!®p?jGÒÛ[%9ÍDî žÜB®=©SÖ»¶(c´ÊÖ×ðêul5)&µåÔ•q' W+öWXò6ŽW2i¹ Z ý²s©§mü"@ð,‚»ñEäJV¹²ºB~Þµ°dôËC~>*žŸXs ¤à%â|ÐNfb[¯œ×”ð¸u Ìù3iímÐ+597aڜݣ`&Yíùd=ÜM²…ys„ ´8èh¿2ü›z¶šr/ Ji¦"4®ÅÏ”\ / a‘¿‚ŸDÙŠy–'KèáL=rÄHáwÍÀOL°ãÅÔ|y|í zi¦óJ8ľž*ïHNñ‰Bþ DVü& «jú‘tv—"gDæoœ5î%ƒN”`@‹í>rÔÇoÍ ¥ï‚ïÑ®§äå %M*¬˜¬¡7¿Ã‹q ØJ±©Á îÖîî*j}ùâm<…!2­= +‰Œs}mÞ¹Â_9l¨/^w¸x áy}+[Ô.F¿¤ùðlÙúåoS,ѤK¢·Ñq·lÔyVzĬ©”†Ž ¤áäR¹Hm¿E¹E¸¬àu¢vxêzý´ß7{*läýW$·AV£U+öêA¯@U·Ohn„ô¾hËÚ÷jý·Ù¹ekò‡–ðXY¢çnÊG‰²•£ÔSeS#‹\Æ] éõƒÁè¸@# †åsðƒ¾O­¹ iæ„lm$DŽ&·`{'ïK9 +ÿ¿ó‡‚QÄÝêÄ›Œóc?À¹æïŽA:1j ¡ñL€ZÛp:´Š¢=îî½ü¿\vY>qž®¥À‹g6C¸cóÇÜdoh‹‹ ÜßÃËzÂF}ƒˆcnÛÁ“u¯içâÆ 9áq¦ok¼X;Í$ùZ"йtã~Âë£ü8cX‚R…ÿuŽåÛOÅÓ»Jy2™ÓªÎ'ÚåYG#Öæ&¨o eü÷‚&pí†2GP?4Ç`™.šR1!t7¨èem Œñ‡ gâQòqOXk:v{?QÑΣ¡»?‡ÅTÐŽó"nJÏ£î“ßþ¡¸•~Ö„A¶ˆ~wñ¨ÆÊöGËg™eë%=3Ï/eAaf?ù#cƒ½WœRïb½NY7U³Ë›)3¡×{àR©¸q¤Éê­iwZﳌ‚&\h1Œ.˜ ‰¬û œÿ;Ѹ8—êlÉÎC]œåñ‡ë×1ëÈ/eP·•½›eÇ®}u[^RÏŽ˜J–» ™¦ö€óíÕ5±¥Ës”6 ÄÉ€&ŠÍ®æ}e+IcÓщDr4•ed¼;6x’æ4‘ïH[}u†]}ÑoŒA=…j= ~‚øÕ|nÿ gž¤A©rôðÛó6êQpò¾‘<üÙ¬Ð&&ëÓy_ {Œ{egçh^–cËOî¡¶¬E‡MiADäT–eçˆÃÊÍÔíB…e`«q®ª“ÓÌ; uJLíoøO’ Øø…ÆU­è½%ïØSÞørûHŸAfÀ`)¼»u[pÄë—¡²3ú÷Èr½µÄBLüqz•óí3¿.ˆ‰"¡žÇ¬NNe™p³Eêì)ÛjDùð½Û|èÖ8Õ‹Q剜y.c›ÃÚtË!ÞöO47ýÀZp6)7o”à .âü:IŠãid®}ý‹8‚È€öœQÆ4é››{ã-¨6ÑZ²CÚÚ­tâ2Ŭ:ûÉbÏE –*žõ«ßýˆ™Y“‘›FÔ¯ÀA4亞~ñRºfðŒþ½Îh<:CÞæI3¹ ë~Èêéc¿á*úšIê'‹B8lnoq:§ÞØ—>néIòð‘w»‹"ïÆ6Ô¨+æõ^)”qr8‚BïÛл¢íZñ*4øÍ¢L!Ç „ÿaHo©ç•´¾ö9RqÛ!cW4'h(üryüùd1l"x” o²wïkݼ¸ÀBE¯>[®qËú:Ä–$ìtyG;,#dzkÍiPƯ¾Üv˜YïB![ÕN$_?wR·ïLª×ÙÁÙì`Ð$^"=Mûr»7í‘ÉR÷ëÂù"0„&è× „p2«ŒA-Û†§ÓQa\¿ºƒ½«æ8ÉQŽíosß?ÂûŸÜËW”Ë=‡ÐYÎÉuçûàbÄ=Ò†z)j –¸âmù|®A8’Koè°âñd”.07,Lè¬Äó»ý#M¡ÖŠ]_‘¯J!‘߉3ÎØD»Û$ž¹Úä¾ ~% çOÝöA°õLÄú˜>I ³8“àjS‘ÃÔ”úZcU¬”©f¤UäD ’̺"<>ÈS\¹þÛƒ,ФNÄÄȳBª‡—ºÔ¼®ŸØ¸¥OÜ«wYÒ`l3šÌaHøz¥Æ(ÍÃGL L˧•0|Ô¯»=&u À¹Ž•Na¿LÃåÀ£8Žù,[”¾ƒi™°aåÿÝ&ç¼Å^‘ipª<ËžÕ€OAÌA2m;N*W: À̊Ƨ_G¨3NU4á¶>Nˆ_e¨šõI-G>ÝV³ø¯Ñ1$g|šY0à#ÃÔ¨,䬮Ž<⤷•:’u?TŒ1šÖÃQ‹Å…¾Æ‰>óûpÛ´µh#еq,Q6ýP»Vá²E HÃ6J’ý#Ï\OñøÝ\L¥,ÂÈ©É^&Pÿ³Ù:…Üü`ÕÆßã„¶iYë¤ýtíC4¡™(È~HXvBz“&AêšfÐYqõkZÿûò«ÍjOµÍIáQ_’Ð||×±œJ.° ûw¯ÇÔ§|z|"_)ßOþÒ]Ù™»ŽžŒWA¿ÐCx –ä ‚¿©=È>`+tèbÁ¹óßÕP™~ÎlS5dÂåª' mP0?½©ÈL®¶G"]U àî=ÁÎä-üÀ'…IÇÛÍ=Þ97Ú®¶’èв= uŬ©O鿍‘ þâg ¤=xð:˜HÖA”Æ{9ìQf^&Räœ9C‹ ÐÒ<¾x·€ûuÆÁˆåpq¹˜åv–þ»ÜºÌµT¶ –™wãÔ–Ê9²Ï¯BÐP&:–Â7D“ÿZk¾9šQ8‘ub<,»gÅr.R}Y3ïM0?ôAW½RÓ%èB¶_ã¢ë*"0õ¿Š#ÚÚny‹…Òb„š]Ñ›û"Í¢‚ZyØ¿­ƒ°pñTê`ØzpJ„Ö‰»]¨„}é:–³a?¿þɈ†KÝ('÷¯·™Ízìˆ8”<äÌá ¢¯Ë©6‘4Dbó,Œ8cĸª…,wx­?^6Œp‡Ëïõ=îˆV]J‘7ÔŽ_«äÜ#tÞ'7(¬=ŠoÕU&–§6 ã Éý7Ýl­+–{­Z«×­”ïÌPSöd²äfômÓ¸ƒd¨ÚG)x0ô솆!ä‹Ñ½Ù*x“ÒaÓRužQë+ûÞžéê-~O‚ÜMû&˜Py†7‰v²¸V»Ä×eòdÖÍ.)+ŠËb‘ŵ±(¸¢ÍNjÕôûDK)}b“Ñþ @O%ФÐ}û52á:Í$¯¦µö]#]|âtjhÞß¼9 ›^訄ørS•è*Çjs,~ZB°Š–hǶcΤ\$jè‘«9;Ü6¿öù¥iwÉÆ`#‰éM=~ú¡O‡²e­ˆƒ°>‹?FŽa D‡ÐÉÃ=Ô(§–%|5–tš·‚ÍØ:GÚZrK4f´“ê€Õè‹#Ì7I÷zœõ}ØdåâÎÆÔ”¶Šy]$\t–í5–Èo¤„ú¨N^&Wž¶Ð_š×S~qZþ~`Ïÿ²taLó« ‚ªýÞ¾Û"–½ÔÄSДâinÖp$®âQî”×5†#»Ñù¢LÖÍÆ2Cœÿ–š$ò_ˆïZ°¶^yÁj, †¥·g†;ìÄVމux‘+$æ¼ÙUNç@g‡Î¾º3$*Ôb­ ãk€ùPm§¨ªþÿ=i…–­Â04Ú#vç, }É´µyŒÞ’Ç*ÂÑðCrèÌíòIºdVó¬£Ë¤1Kjî·qc>Úð¸Õ MŽÌ¤Eø5N9cAë" âÂ3ˆð÷ûq€ä9M°($"rŸÍÛ„gì|„5ŽþIC:C †%©… M4úZä‰m­·W"C²”lˆ'Ý*m>ÞÓ›Õ˜á'õ°9œ0¸.7Þw¸ÏÂ8FVÒ¶uåÉI>›-U½ÿŽ\WD¨xõ;ÆÅº_®UvÀ“c¸¼½_½&­*;nÜUŸ„ÏÁ¬wÝЪAãän ÃÌoSÏBmV'èøè<8„¼†Y1ް’õR ÷­^?ÒÔõCS#(!?ÿßsIC®æ{¯GÐ…hÏ`pÌ-þP³6o¼ƒI&Ì€µxg¶ θ­'œŒüž³½‡VI²kŠsée÷Ÿ›®H4;þ²Z¡ÞBJ‰.ú6Sß^Ï_ÁBZ7§(‘‘¸–ÅÝ•¼ò ôÄ¥¶$úìñÑ, nch°l^õg¤e0D ±õŒ%¯B„!TóŽ›ãKºmì·;³ù¢Aü{ø|Z¥1`›byÇà ÀQJ–ö" Á®”{;„Ú %0ƒaàÿÈ`MEït[š ŽÆ¥²pÕ’öÌWÇÞ¹xüaUð뜊ÜëHNø›‰Në_†n£Ð—3-‘\¦2¶1Å”u6̓}~JáÔ^¨×HÙL ¡²5ÐqHŠlÙ.D3ƒ´½6rŽGAd9 r„å(UG‡ö× ƒ`šÑÅ&¿x˜ÿ0 A¹zÒ¬}Ž¡ûdÒR/±´è5ÓÙËÊ?äPÍõ·Ž!Š€7u¿6S,S'¯u&`„ùKXü’¬@ÃíK™ÅÁýñ@|R“ &¸œ#"¨¦þ³e Öÿw Þ¤wxV0#Ûë´ûNðŠ›ŒÐ÷!^rŽåÑÐÜ›h‹%‰u\ì†Ü±@e¨!,‰ÊÅ <ÜL¾àϾ÷÷WÔí(]æXÑc3­O¸èÚZÊ”HÑ»‡^9òHº[m#–ÝûU›<[xK­7W÷E‰ûß± ÛÇÂËÈqÔí΂†„/QFA—ñt[œBê+7$~QAã¿¥I/[ùš Æûî¿Êÿß ¾“o´„c°»z”Ðsü 5òqãMZÏõ⌨+‚hˆOæo>l>eydsÈ,ÏäšW£N+ÏÂOúùÌgÑ©Ä6³(“صY¢M†Iöu‚Ñ2Î^Î`’gã:ìd•‚}Ì$ÁàÕ­ßMË”Þü?&úÉ"ÈLznÐ< jpôm–ÜBcåü-ÖÀb1}ÕóÎ3" ¥Üå ¡ÿV8‡•A}‚«x£„ ˬ s=ñÁru¦P·`k€Ä_ ¿:0ÝhÎYOë£ù>Oé‚3fhÐ&øFƒ¸%iп¤dö¢hCdT°N\ÉAe(Ùm-!R9}%Õg2Ÿüò˜[¹¼»D$è¬ÓmÙІnœº_šÂÎ2³YfŠþ½M‘ks¦Ø˜Ã›bûa4)Ü¥eb¸Pb`­µÆÔRÉqkz–|P51SŒèR³ƒöÕweºP1'«‘{)e¹bU™sü˜ßP\ï ËÑaˆ ɖ𺧘ñO]eN¥îÑ€8O¥åŠþ4eq]Kº§¶lØÃvÖhäe£z_®Ï&¾êgºl›¼ €¦µß2+ææiæ s¿ˆ}±Þ9‘n˜a_9½E )†é¤ÚÄ#Eú7¬$.¨é‘+lßTó\D†PÖ54oqE@.Ë’¶É×]浺R³—#²<ªÑ‰­¢QµfxÖ6°3Is _$cõª<:ñ™Ø¤ ø2­œîé²(Tô AÍäÅãœf öu!g ¨\­Ê&MDŒð"rkžc ˾‚’Çåçªx`dóš|pñ3ˆnô&AÁZ¯%ȧ÷©ö¿¨Æ*ÎîÂ’íò½ OT>“¢Õ¢Û GÓ.7¦÷@u/ù¾7l ü™ÄTŒÆµël-Wd%Æ-ï%Y'¶Ïî¼Upܧƒ*Ý÷Y¹žz^®@©äÔkêxU¥i‘…¤FŠç¥'ƒ€–º¹LÑ¢ï¹<ì૸LI¸ŒæîQÜa°»^œbœõ¥vÀDCçO0I¦è º}TYÓ×û÷­ž¸N˜Ê¦6$L£›d0ºŒu,¢.«ž&´7‚ß-ÖKšÙ³`e ý+ªvˆÛÚ‚À¢§g_•1Né^,ëô{”½Bj .+heLçf¼,;„bðìöR\0D5’HbAM ÕkS lëì8%$>ÊÚ'gfjωäë÷"Æc_Áµ-eÕ¿‹XBPͦ‡sv9û¤Åé “¾H¡d°fíDyRl‘й—u˜uKæíÖÔ£‡*ònïd1£+ï;$¢T.)~SîÒÀ<(Áõš ¬ßjyoã§øØQyhýã1ì>È7| ¿ÐÔvP9´lÖ't>¼úVÓI»•¿Í½1½¢¹-µË2%ÌÊ«5Ù¹%iô(Š—¤w¬ïòög†‚ûÍ›2?¬½‰ž¾\ËGq)Š9qîIçÆ«ÃÂPhô0S¡µW„Ú‡ "'À}Vhà²kUh'%ÃUÃ)úòvŠ/=wW 鉀‰6Dø¥ë·'uS‘v}@ ÌÜKWú „ ^W'òäy]  «?B©HD ‚xG¤ù9XsÈR©Ó;ˆ;7Ûâl€Ëú£Œyí*HͼT£Eoð‹©–J2ê áA—{Ö–ÎÛ?å\¬èáQ8çp­'–ïáÚ¬¤÷û5sÅAþù!˜EЃ™–2’(ãæä{"ÆÓÐ/qÉÛ=ã—€Lô7UIoE±¨1£UöÜÛ\õÒü¨UV}Ò…« +Œ(?µ‹í5È&]h¦GÚÚòWIzYÁ o(¯a>¥¡tÂ;H(~W (¿F¿¸ÖåRú4y³æ©Bpá“n{¼±€‚³m;æbúºÄuá Äojp,MˆN±[X„<ƒ%÷¾ lW‡»Ú¼À¢h~ ôPRŸIÙ• çRìÉ'f3¼ÛC%š¡ ×2‡j.éöÇw%6gyC¶‘΄°_Æ0!¯À‹øwû[-ný! ŒÝqó…rÈ!=€ «¨y*<Á¾aÀïù|G)3!°ØÈgÖIx„“3JÔ§ÁÁÁúþ¼ƒ;·Ÿ©›ëU­qKé‹Ê?v·«Ûìš…ëæÕ ™Š¸JM(QYo*8=æ3ù0œZÆy§#ÂOe.1jÜÞ68¥¸#ÏI5“T‘sdз¢¹ ¢_…Sk¬÷Šÿ0ÃßTÚNÛ*“›Ó¡ïp_"Kùx)×¢D>c¨ÎŸÒuV^#F|±««5g˜ŒFUïXûø!±éŠ£GB‡uéÃU ê©™ ]ù¤w@º¯:.a&kÏ~ã2¡Q‰*Yˆy¨¸ezw¢ á ‘¡ß ! ®lxᮎ ÀwÁPÔ¥æóÕÆæÚ¾òØë?ÈÝ«µ•™5~¸Lgn¦µÑòs SÛö"<²E¸Nìµt:Ò¦{ZmUECØüs ÏüF-GØoηì Z5 Rª YP›¼±É¢²ÒkD87f÷â;N0Î϶7Å –ÞuÇpJ’pG7¼Õ»’Wô>`£šmm,G#JÓ<°"„ä¾gîkIáGÊÝܯs`H»“7Ý7š!a]¦$»{'SHªÏkt³¨åO’)¼â(-smµ´c¹ÎVr-¿x78Šëk€‡±•Ék€‡Yñ䛬â?Ró|â]Sf-‹PÕ2ƒÄm¸5ÉCîàÙTw~²†ÕîHQñˆxQ|q!ÿì)®:?©‚þܲCq: u3£€Û ò_Z˳»¸W0Ož…dzë„qŨ¥•‡™¸†Ë´¶ìÂO®–‚´ïeÌ·Œ¡.i`;#e‰·ñXQîòÞvpù7zßÊó‚úY ᤿B ªÛ°/CuÏÜ –š)&Œþ½Ž”ºÓÆÐ… R.Roë<µ ³B6 LN Æz¦mø'™ -ƒÚBe1E•“ÃîAwƱ$ƒ ›/cÜv[ßRJ›¤ißl#DʳðnbGå»gxƺ>p-¶~%µWâXÑÌ+õˆ¶Ú NÞB†ñûGGüw³©óU'÷Ôè ç*(e%ð)j~Ñrí•nh[ÞŒÃùW¶¬A¶çÒ眓ïúÛÈnC]‘Ö¨˜+ع…?äZÑPµ¶²Âç«=²âøm5ïÒ1WFšE£¥ŒÁr^s,Tþ»¼e©ŒúØ›œOjY,K±83ªZ”ù^_Þ‰¡I}s@b0’Ç])!ï™á6󠒰܇z*ºÆQõrÖgƒ»zÇ{.Au§r­-û:„ôÜu³ö9×ÀRx4`j¿‹b;-µ !ú麧7œÞW"Ž›§MÄ kðƒxà …zX¸+@gÉd åÊ·áÁÙIß sƒ’+úT6äTµ#ÌÜÇÌSt99Ö©!l4‘·r¿à‚Ì}Èýi¸{šÙ ·¶‰¤Ëq1ꬼ¼e›¬Û­;œú†ƒ”Ûû餩,IÚ]ÛK\Åp*¦Qü²û3㊳Ýà~©8ƒ‚ÊS*K¦åõÇ ÃØ¸œëñ@½ÿÉ®ïsåö’ÛüÉVßuÌ„ Ôî=ß‚~ÄAàjì¬o¯›ŽÉí®Ë}þq èò,ȳ¡ä^’ªqÿñ`ùÂ89Ù3±ú»Î)ÃMØh«õï—Œ8Z9Óg=~¨ˆðZГ9/5æPh,X¡¢X¢±ânÞbü¢ìÓâøÄsN›oÀg5Ðÿ;ÖTzñ<#|‰=½Ñûød(ªR¢a^9ö×üh¸–[~†Ê”øŠœS™´'Bò&ŒCxg÷ë[“u‰ý%Ö2ÓDŸ€Pˆ^¸Þ²By"x™øP\SIÖ«ºˆÇ­S…ô‹Óãqk±£ÏDtÃ#ÈçvÞ?ŸÒo¢ë6ã'ë%U-¨*&±ìïj–c– •ykpÍ@òY¹JSáÞ«onYwfØÆš)$ë½<\,ëeÙ<” <B~ñ·÷vò[Ûù…?¡˜ì$7bz‰16téšó¦eQÓ™kÀÍyã}Âjå <:¡cq«ù!vSÌ’xI ?¾4šÔ|›˜ŠRuY›…U"„å7_BŸOgä´¿EHrÞ[Õ f¶×u‘ki¥èHÝ™gË’hY^ŠÁ \6ÞqœB(nÃáå¯!vÅ:zt’$,ÇÓ^&s…¶{ÈùT‹½Æ{ãwŒ šÒÚ'@Ñ€ºFöwrøå‡³s-ßLzd°Ú'œÀ†þÎvÙ}£¨g+Ù4ýŸ³ÏéÌ“š0x ½àîmmnïÁ«zƒy6Ðoœ1Îgüººξ J[\9Z‡€¡ü(~æ&mp”/PŠwè3Ýœuów¨C>ìõzQ6¨L,Uï•SmÌO%£¢Ë™f$©T *(ÕXKUz´™£îà;YL~m„ãƒ|v¾‚‰Ê¸W›ºÜ²T¶ßW~Ϥɿ/ȨÄ;9<3DøÍâ´¬N—¥"Uõqof„å`m³½~„*X Ez¼9£dÝ[°dWBÜE\b§û:¨Âåê”\×Ï«Ö&ئ¹0Ò)¾Qïh·än¥zÆÛKMªà±s‰¨Õ*=îm•Ð;*#mQºe–²þìÂÈfGÛ5@º:‚ðÃËòJos¬NþŒ(~Kb ‚Á$Ã9Å¡…ªL Ñ=è»cPx‚‘½y½ªèðŠŸzuÊŽ' máþf'ï}lŠ)…RÞÚÖRœ‡Î¤ÜVÒˆÒ¹b1$8@ʨ,$¡jÈÿÈÇØt “ÜXä-²‘*‰5M  „¨—©²–„ ¥¤î5‰w,†ÁfëXêF30¦&(d“Mp8NèµDÉï›x5i‘»\n§’ë;âT•§ƒ"’K®mwÿS¢õóÍѣɷs*?øôaþ^X(ã'Ñ@dGm²ETAmµ5Çð0zë³T/ANƒŽ u:ßw'æÝ'8·þùða”):Øúõü¿GÏ™*¬gˆÅ³²Æ5úºüÙ¥ LÏFÓ«³œ.•pá:}.Ñ*yb¿Œ¸-ÆôèPÈkCÄ'§çºßï"`cÈLóÐ)µÞï«JîºßPUÖÅU,÷è§É0ÐÏçM$?!cx%°¨VèUkîütKÌË×ÂgXH)5s."T¹éçõ À3',˜('ïÁ,&tT' ^ú‡ @¢’´©µZÑuÙlíbÿ¬Ðê@¹(Cè¯ãUÕÌ+Ó\¶¬:¬Å“3ªÂua¾iº±:pò‹ýT@&æN•f üQ¼Œ*LÆ ó·€,m*}T.5ê=3Ὧ Q”# $ïîI̲h¢ .\}s)âm&•/xÉ5j'#\ÔÌN/¤e$ʹº_rÈK·QfI÷ ¾Ãt"+YÙÊ=z„.Nì#Oém2À8DÊwA“i`ÎÙMäfZ™Û[ @˜ÅQÿHÂö9úŒSül†â¦Õ€Ã*Á3/¯t=ý ¬ù—¡hÁXcETÞãѵEÓo½TñдÄ6À‘D{•á ç´ó»Ø+Wÿa#¹q%¶³3¤uLéËv‘_ƒu6‹ƒ°fíL•Ù‘Àó‡ýLcÀ%`ÇœE~£ÑÁDS¦ €”Æó`“±i“ªøjl|æÀ¾ÿSOŒ"픀sñš5 7·ÚŒ&€RjdYœ “¤4ðF´i°’¬œ¹@©Çß6øŽf?!ภ³j¢K|G©$Œ¸ü¡M(s°È'Ê"ôE£z§öΊ2Þ\•†UgÞÔú´^Ø|oZ¤ÌßTç`ÿ_Zº—·ö…ö%ôµøMSÊ¥¨!*·úØÀÎUc% ê[VmÞ/‰FtžgvzT­QaÕ²`¶¶½gêYÊx¦Q«³I8¦ñü›9«Þb‡s;uÍü¦º¢E/õGæ\ †­‹>YŒÀý[łזëÝæ”“ïùCoðsñÙE\>5QÒ•v¨2¨OÜÜý‡„’åæÑ® FÊŽŠ8^J¡Qi¨UBÒSzáïÒõ{Åïºé÷óÃ0.ö‘ú7`ï6€Ã uÁÛºfœ×…Ã…ýãˆü奅·@ˆ^h÷Êî‡ –ôŒ¼ С2è,eciE˜° t <¶3d|"ÞHAC£­SÐmÛ/¬Ò÷°Õ¶¯˜ÎòîŸbðq;yü{”µ°Yûa|c¸[!Õòw{t•‡ÖVRÄ] *• R‰qË¡#è¹£W 0ÄÓ€¥ÙDØX ¡íaA»{óX"O6Òf]äå ³”Ïú›)+Áqêʤq9›`iCÎ~‘(qv¦ï¿3ià‹á1<Γ3ÙTñF–äö$~TVÅ oá‹¿M,@z[4U?g!ZU\ =(„4 w¹2wBQc 2* " ‡äÔ¢m p:zÄÂq` 5ìÞ5Ιùv¹0Žݦ–cØ‹ ¦w‘jžÓ(9²Ñ 2ŠP³Z ~qñT›÷­§÷z(Lä;ï DãÜ4 pì;¢rL†¢Ì9•f àþ‹¹›ÖÍ\O¿¡ŸÓ^® ):±¥œžŠ´ÇNY…Ê€‘'ÞgÉÖî §%,SüKlŠ…92 ”„&G‚†Ý¨•o GM¸[!†ßø³ ¢ã ,gg=LBY8¥öº®ÜOÄÒ”_óí2_Q‹×égn”¿Ðj®ªiÿúrñÂŒ„Ytˆjª.P­îM‘»Ýo1¼¡_ îƒåö´í#(Ú¨w¿cµ× €}T°¬ ðC²/šý¹Ž ß·­¼zFÇð—™×ÞgïõC•fo(æ_ë¹ÕÃ>”uè¤+€¨©#zœRž&pdA«#@+nŽY©mÏü |¹ã¦o6b‘‹œ(\« #- mxÛ„0½ï]\7ÕÂù¡CT‡ý‘ª«[ _kÒ6sÐ[QtŠ©Ý´LŠ´CVIÛ¤NTÇ­ÎÌzõúj[œˆC |¬ ÞP¿þóì@ø_KO/ ‡®ƒRFŽ7»qÂÒÝŸÊœ¤l9ùÖ®Vn=&¥u· ]97þdÛSÃ?8 -5„^3J¾ô±âOÓ½Ÿ:Íî'ƒ5ç>±øÙ2qQ«ÃC¤·¡ÁÒÚö-!QpÛ‡NºÿHãàðM‚$¼‘ë£f9M©åuÛ0SÂLLkâQgLiFŸµ|ÓåúG3û%f&0qïÈ­²ð†— zåÖãs”xPÖBΗ;^®_rò״ͳtÜ•›¿õâGxqß1èUZ7Ƃǡk-¢úì1~·Õ¬èþ1æ½t »¬€g„²ëÜŠÅ௜‡˜u1þ™`ºû’9b t:åìÅêÍ·¸Éi8¯p1GùíçÐX˜óžÛ„7ÍD~ˆ ‘à´ù˜/#ë(º}ÚàÑ¢¢Ã½ +<Ð6n@ÉöM¤U±”¬q`€XÑ¢øB÷¤µ~Ò¦?8{U" ­ó—\›þ)0ÚÕÑ,jZ‚¢0Òr°>¼ŒÚ93.­;|sˆÀ¾ àÎy'‰AŒº(úÙˆ"ucü ¤»©LËõÁ½1Ø¥ÿˆyGÝmmÞwÓòg$ Ë(f„Ý=Ëëѽ~‘ÊsȨzVyÎjh¢°ÌéS,³yI)øØ_ªórQ^3ô©E™>›°_P˜ç1+F"ñÂFÀP^‚ÓL.p¾gx3üÀò?jNщ~M@BDpkÐû41KŽCÿ)É>‚}ä÷^ª+öD±ßSú:[þ¯U´’g<*¸ÔÝk^êÁ­#ß zÅà—övZ—«æ¿/0ìme‚ÊSæäßx1'Þ¡œ×²öHÈö8°Û¢ªÓfoˆBµ]Á7È€ƒí*¦‹Å¸ht|íAþéÁx/€Ï\ØLÌû€r{RT(:öÁðÚ*3GžÝ÷ÈRDZ2GJ‰e‰­rcÙ„Éì xw>@J3.G8FC!6ÉiQ ¬tm!v?Uq7–@hÁ‹²ÿŽ-æ[ifš=10}õÆuüÅQ²©¬kJ§½w;½k6 °´Òt€ã²w‹ÄP¾Y'¹Ð|hFJâ·û(â'˜øÐ}”'ÝR÷5Gö`Û[k™T– "JoÍÝèìxh²Ìê?‚\X×­¬âF+jŠSþ;øž Y ö‘éÛª\?Ẏr‰dòé-%#åé­{J’¥jk¹®,ÐÉ•V«1u¼‡ªP‡æùn¸®NÝð]ª(¯å±v½YäOþ|!Ýß`k2~ˆoÈNv·‹ïi>m¦îA8†¬¡L‚ÛÇM ¤‘3~½Ô´ŒJ _9&Ÿû_q›—W^µ}\bx:‰ŠïªRNi“z€T5Î@\õAóœµL-ÎX}¨s?9B!²T¤æSâçl+œô>+4vö@¼cqGïL˜ èÀŸqƒ5ý=5riòªäŸríe™T RÀ‰P%JŸÓ¦À¦å›|8Ãtø&Ýß[êV˜ Ågq.[È‚Ÿ$={e]L²nQKë! ³±,G}¦^è‚ñÖ¯P ýÉ_.éÓ@®iz8ZWÞ”NgØ`¸ô(èSÑßt•”úÖ@¬ñ.“ÉÀ.=±æBÊÈŠ²úæAÛVdÇCµÞÛ”Ž’Ðëgt hùÝxõÎu ïãÝÑ u´[÷`@Òàˆ»+>>’–eać¼IÛó÷FºLø'PÞûšTµLäˆÙà Wrâ•ÖM†ßÑÎ]ÞòñèÁí+g ÁBxiŽú›kÇ¡tÚ ðÅ|/LFÃn"ÉÚ¶üè_yW@\À¯t’¼PCbÛj/xÒBœÄtXÌ)ÆÝ'*¸pBkà­£æÿï]¨Ÿ¶t#áyEª«ê zÀ4/ðîd5ÄÞø³f¢îÄþ)t¬y²ùb4=Ï Mc:m'­<åI®}^”Â5UdÚg˜Ú%ÑLŠ?m*½Óeú%èÃ~ciªßƒ{Òìn©–õ¹–)¬þ”àã!wáÏ/²j¨m"C Þa UÑ×ÛÃ)h¶ñgÃ0RúÂÒDƒømâ9Õ¬ô2ÛY~þæ{kV KmìP”Ø_üÄÿmŒX>ÔŽI&cÜ¥(ŽÛ­lpPŽ Ó,.ÊR˳Üz¤á2®WM9Vr“ „ÔbÎxƒoZp[á½Â‚‘ß«Àx¶ýµ,©n¯5ªËÊ¢û¸9Xþäyðã¹ø¯¸óãÖÿ è=Ic¾7ƒQ² ÷xç·Ê.šˆ\…tι…MÚýaÙ3«7J+MŽ6_³%…ôWÖD$FHž×ʉ’‹!{®º)2†˜5ÒÌþ*§aæ~åI]†Öe ЀëÕpmÏ:§ô¾ûò'Þ‚îÌõÍÄÁáÛGø‰ÑlÓÖ 6­Ëä’´æwGEµMÜLÑÂã±PÛ]à~{”Ö7ÈXÛo¥3Þ,¶ÅªÊ=këJ;L‡5” ù„ù\ÞÖáºT+õ>â>Áü„ÃîLÎ<!‡ƒBòÈç_¥òyˆÞkLÀ÷”>Œ×ë¥ó¥$RtÖ&-ò1èͬ…Ù?ÛK‹MNÚ»Í4÷Xx»´‘C¸sâè±'ŠDNo—\Œo\D.TÙºD®]Éy,€ AÆZÓtY@”Òqýæ´­=Š<ž½‰qQÑädäuzSd]§Ív«8¨ÇI4WžÕ£-†Ž‘+1èUE.ëÒ"S’#Dà™šœkaÙцž/Àñ§Êû…ÛYtäyv8¿(wðôâs`¢Ò ïÇÖáS¯%jÉ9œEjw±Kwè÷„Eëx{öLZ‰Zß“àç*²’ìÝ|6Ábî¶"ÌY]þ]j–ÿÕØVpK/Ñúfó6ü-³T¾=aöN¨âÙÇ„UBBÙNÒöT:ÅÉæ±Ý¨Ûö/HÇ"Ý?V6’M[çØ}6.%ÖŸ‰ Eΰ1PÀ][nåÈ×¥æýn€Ì,­ùžÙ~úY¸ ¼'é~[©ÔmKG0Õo£Ãvü~øßæ—ôEk±ß /§”5n'ÌêÖ_s³ŽTE#¿(.9ˆu'?FëÃ2jèþHû\T=ú7¦bèö ]Qö„BîáÂÇBöa–E›¼˜£MIë”?´ÀõSïR(}Œõ8Ì`ëªF21ž˜“{éè³+<Áf‡÷©ëYT3“fÈ9,Z²lP¢` ý™ôïVg9ÐUþµÝç Îl•å)ŒõäGÿ¿FØ‚Þ[«ø0‹nDKʳŽ~—ùÞQêï¦XìgnÞ~ï™v¦¦‰Sñ‡Ñ¶fõe\UçÝ©NŒ†ô—!˜$ä•Bbé!8 gmÅ`:2`‚ŒW0ñÇe¯¬šWKÀ³G=*&í_2ÒåQ"Ts~}–ãþ ü«náà,®8£ÞõÛ€Ôw›+²‰—¶XÍX±Ÿ$eõ—‘‡†} MWfÿÒA Þe·eØŒõ~#¸ZA÷ÛÂZÝÁV¸ ÑÊäˉÎóõÞ5ˆ= »;_eÞk¾c†ì ÷aäj¾^iùç[öôZ'#@üõ@!âž9#p:ÒL¡˜ã?¬0î*÷´už…iL`©ÛõÚ§_’7XúvN|X!„À|¡-~¸vÅÕŽ¸NvuhCÒ÷ˆÛzº‡f â&(¶Ñ˜%zŒã§p:ª‰BI;õæ½Æg˜³ˆ»ÏFBÐeóÐK^ù Þž)ö8ʈÁóÏ"ÛÞDÓ8tu¢oáúvP%êBüJ´5«ÖOÉï¸U\„/h¹à÷ç‡dYøM­v¦$¤5Áús- ßg„“r 4Õ}dó„”mqFÏYöã°*Ñ„‰\K°ÒPÌÏú çÒd*Æ«tvMBÖí6C¶´_QqLžª?x9¬C¶|÷Ìù\^ÃhÛýe.lÉ]L Gšœ™ÖCÄùòáèš<­æ'ÄEPáPW¬*ñ†ÿžyÿü£‘*¸pʱ–§6±Lö@ˆ¶ë‡î£ss¦ZðÑXÄÀ{GÕ+˜îD>b_;Pé¼âµ ÜŒ,ÇOÛáb‰–µ$‰ñÚqBšnMB˜Q=Áb0…aŽCb¼P õSzåî}‹WHÙ³¾!³Ák¬á=áÐÕCœ“´=û|݉³]µí“¤Àíþ¡¼ k;óÙ ~üÊ,PÚŽoóB™FBÐ#L1›=êᥦ•>ª¹¾™Z­êÊTküzvoˆ/f† ~ÃráÙ@FTN¤/AVôOe'¿x sŽ‚îS41¼p¢÷¯¾6&Ç'ïN¡‡÷ˆÊßApÄEÕPÕ+dÙèªïÌ4?fÿÑä­ÁÜ%pævÉtúäØëýØJ…:ù ^Ó÷Ÿ¼FFš˜+Bãº,(¬3C~¾':ÿw’F± Dq&¨ØZ~Ê„_ÍøÑ/–äè|¤«ßášÆM=ø»ì£7ëM“Œn„ëdƒP™½ñã(Å%%Hdèv!tƒaà*˜ÓJ—Íélðéíõ"³ßŒVùùd2̳=®Ws‹I}5K“z½¿'ßfAF3¨hêØ‚Àñ˜ž¯T\ù‰+óJžÞ! D>5”)9Y êI¬¡ ´Xbˆ¿¯)€xä;áñ‚ÂõŽ$W\ƒ ­&Ø nƒ±R_kUcŸï6{U~G:yÂÑ$–ñÒ‚>¹¡œÿügSÒ ®.ʨa¸áW80“=i $8xSë{W*ÀÄ_ ÜE2]ïô¹ä†¢c O:, 4>‹DG¿éóýpûêíñŸz<)-XÒ%; «$†Ü¤'uÚŽnº½øœOcÀ{%‰Ò{ÏæNðÁB::¡ _d“¨Ù>nJv®Ô÷,SE^aïóy/7²óéIw­šãÉ_|žE7uànŠ\#¡}UÁÝñü~5b©œRt8=bôˆW#©ó"~³'­5Ãé“Ç)`ûáÜÃ6Ó8¦SàÇÙxÒñØFh.{Z]qdD¨K›ÀÁN*‰«˜°B)ÓÕåáœ~5dºñ{Ñ]sß~‘PÈÎÃVäÓ£ …]&Ü,ÚmZ¨Fî6êGƒ@¾l¾1´!xÙÌ!n®Z> ˆ˜¾\ÇÚ#Ù³'~¢-Ø÷­t~„è ‡zciÚ>@8 Oj–dˆÆ¬°QnŒõ”©1Q9쉫x·ayj`$âäêÕ±mÌ›ÐN›\¥Yürè¦7@½EQ‰ í<ˆC阩S&£Ð{V‰ÏSÈiÖ=ŒO0Õ~xHÅV²úª¸]è½ÏËéd÷|dw4%…Ï®t«ôGdµ±'I‰T¾ýQj㨫Ñ»CvŠÞÕíÍÑiá‡.§ªâ- vˆ·Goý–²—~ÈI²¡öµ6…r¾hƒ*T}æ-¼A</£dþÂo,ìo\&L©?ñZÓK¾òº ݤH:ZÍ '€+Ò±¸/œ†‘Kåi“èb0Ñ5ÏÑSPIsï?Ü4UÅý¿á´Þ2}¦×xiaÈ:¼[0ø÷³’í¨m· ŒB(æö§UÓht·,«÷-wC!kì Æã¶\‚å¼·ídƒå#¤aËž@ð"Ú :»8Fdr±“»I-Ÿ"—flÒ!œ<þDVùP¶kýµ}$yÊ.ö™”á–B­«+dâ‹ÝÑPڤрé¨SãJXá ;¿È55eÁ§“âÜGyÙOÇr"+ Oœ9+QøCõàgC ©ê®÷Ó,ÚunztUÝü²vÏÆ°ÿõ6ab»¢¬ãËX!^jcªë;ûY¿ÎÞ·­˜&ìäs‹›oÕ=:6t7ÊIã|L)%þ¶h¢Þ¹ö;óœ8ñx>áÅRf%$ûó4ôl.xc™¬A6A’ã©ñÛC-…‰ô–¨ì ìÎËÿÙ¨f!zÑ+’‰÷ëÑäň‚$×Ï;þÏÅöðFÄãŽÏò7¬°]Ißés="Õðï!eb[t‘qwKS¯×Ì¿œ+¶²xæåK˜Yð6M—¯+#?•úî×¥¨8kÄw²3‘~ûdüƒ>»YƒfÖB®ÇŸ ý¾lY6 î•»ÖÂQÉ9x„·ŽÌ€ñeÆy-æJtÊmጯItj62ä°7{UëˆéÖu¾Ž¡Ê=;°Öߎ«K}. Ïj¢QìϵÜDèé]å塜 ׉ê¶'²œîdúëy4ÉYŠÄõSþ@wq/9…ICJˆÍÖ§\RèØOõždº:çoN£oî#4jei×Z¬àÙØaçút Õß)\i#㺑&D é!…‹àôúæ4´-‘ü‘ÖvŽìòŽ>s<Äéé§ À~r<¸*çβž`<ÊÆ0ì•Ð!}â¾Úp«8‚s)n0—º©Í%²³¯=ÜsטUB«¾½7¥âœ“+΢ÜãçÎ !/è ŒðC£Žú*…È9~›£õ±±÷dƒýN˜7Sºk‹G¶î2üíÕ ßJŒ,pž.3 ”6Ì´À$,Mòže·Ý= iLçPuT¦7²s)¼=æýö…°7ð8#”^Ï&·ž#î9Ì›NësÅ>«¿~‚Uz tð fÉ\³j/1¶c®BÂdy¸¬í§Ök冶d€ãrŒ|HíX#2š XÕú«J›o°+Z,Ä2uèÑ?!ÉíÔÒÅL²23‹K&û꾟žuÉò;›½¸.àö²þ/°œ4ò¤°màÆ9ÿ…CÂA3/†ŸC†¡‡Rô u#Jhq÷57,Ňó¤¦Ë¿‹Tø&a®léSÀ[#û)y™hpu©0 ²ôù=xiluIá"¢!áqAõõQ ð7ìî$O=M¶jYLŠD Œ"„HŽP¥“{ tûðÜÆÎ>arià!óWÿzÊV NoµÜþ# ÄøoýˆX¢½_`éиƔÿí×¥¼v*’%Ëw^–‚QƉ¯ÝœeœjÌÙìê[’[f`wÏ¡.9ÀŸ.€oû-ò£‰¨$–(­C³qp4V”q§ÖWêèÛ«s›äbWo逴ÄH³<>µªëøÂ…ÔqÄ£%²ÜNQ0R¸ ìѪYkL¯URˆ"¶º%²ˆe1"ÔØj¤»ú2JŒ8–;e)ÃשXŸ7O;–ó§š|ÈâaaAª>ô;ä´Ç ŸŽ>íð­ªJ^° ¬îÇ~,j/­Ð’]R_ ÓBÇjÇí;={Ã~2Ú>싚¤£ j S—[Ó»Äa‹!Û8tË8\jfyñTt¤ àá3{µA—*gÁ}‡j‰nˆ‡}+QÜÖÒmù·×™T¹TîvÊNǺQéÛãûú²Œ'½Í¬ à¶2Ãí˨›‘Çv¢¬‰¡G=þç$€'é#Ø>}J5R#¥ÿËCâ}ú*ïÜ v>=|¿û;B0û-¹g?Š ‘ßµO‹;C=FÕA_äs–ŠÄ’Xø;ØZ/zV;,@ÂŽT`¬ Ñ}«‹k7:ûç½Â]3QŸ_2ºÓj“ªµ¶ö;ÛÛÊ)‹u†ÕjSÁÌØ€O^pu¾Zx!¯¨iï.„\[…9—pTd±ø&œÐGXŒI‹ŠwBlX™¢«áÈ.Àø2„ÕüoM"Dײ¶€°)±Æ€ã´($¥dP gÇw_C—%m‘Œ}¢eÁ¤˜ºÐ€‰Ä3oÞˆo“?ð®ïwI=³#dü©ëœ>9Ø„ëcÀ=°ê„£ýÆNÔI\‚¯žzÞŸú>*[³ï',¸\jsp²;ó²´}"j9m«Å»lÖ9)À#ÅrmÑïû÷ ×6÷ÊôV`©Ä(ßB\b´‹]~£ü:ßÁ²ºP#ÅÒ1(ž?›ƒb‡†²0•xÅBmÔˆWQåˆ6*¹LÞç/>Œð߉·­u;îõÓ»L]ìë‘êj4øö¦2Þ“J@¥¦Ÿd_p‘q¸""ðY¦R°Ðþ&/E„€#6 O<2ªŒ#?"A"&«þÞJÖõŠS ì‡ÿîtÅ‘ç£Ôwü!¹Ð›U%½ {ÍZçϘ e¬`Ã)JÇU áÎ<íu»œ4|ƒDXR„ÚP»¢@}„}‡ˆ{+ë(¯´ûÁõ¶Txƾ&êí‡Rïë!Ç.ÆW?)©æÎÆG^2&¼gÕþ}–)A_ ´ 2Q‚‡ù}ÒBˆw¶Ãk¼ÉE' û­d0©ØÒÔ¦Òò4{æ˜;$ø×ó/® Ds OýeÐÒ¢%S¸m»`´§©í¾˜Ô AxÐ]ƒ±5ÍhùËX$O]¦[MeõÌ+ÿ¤Œ^ {fMa¹ì’¯ ­U¿W£hx1l‰¢göÑ?Y—ˆV=mZ´ÇŽ¢»Íø›ÌŽ1з&= ÙL¦é! :š¶þ¸xί.¢ö+ðàB¼Âáã\Òä`(›f:ù¨\”IÜR'ŽRVe¾‚ôçWÐø ÚöX¤èb˜¿÷ˆ±·­ÁXOgvö±I㟠m0øÛé$Z_™šÐÖ\s‘`«ImÙj·SgãÆì†­Ä^¶Nñ´ÚdY)Œ 7þ¥üŒî›´×ð`wù™j}ÁêÝâ˜Ã|d ÔËÈ9í!ý„®O——‘Gœ}‰öq—·ØÜÆþP> a껯‚I”ÄW±éfzmTÕ!½6Þ< zˆU‘©ð%Oï|v«¯ô^Uõˆ¯,ܽA´ŽãIyŽÁ•NrÈD9^xÛØÜ !ƒÊîK“Ï$ôŒQctfÓ=½)°èÚø‹/¡›á‡› ¶ù®ßR!5b·ž/iÜQ:­…!‘qq‹È£ñ¡Õ©&³ápxìû1e+ËŠ‹†”§ÎH¿¯Û·ÐÒB¸KðŸð7 t>çÞ~¯ñAº_Ûö<`èGa×yL4.¨°Hñg|þGô7;ŠôÞ¶éJ?ƒ]{R·’dż¬Õ†øäºŠ/.¼+ðê2Š¡>?ÃÖñ+6sýbQ¼Dòë,+R§ÅÙ 7FÀÖæÈõ¶Àð.˜Š5 ’u\+̧Šv…ÝÚÂ;æû´;j ¸Î¶û¸K’ßöÐá¡Á;¿[äM~€WËbåþÓ§¨M¤51³E«rê öÎL™{>`¦­ߟ{bMÔ½Š(,v`B%›ëZ2vØÛb¼ð„ FQgõ××ÚJâBZ'Vj>”aB7yø®D¤8k”)¬¿¤ã‘Æzd=˜¬¥”\W£Œ73eFâ,w Ц”¥•¥A‹ÎºÙk‹z™¬ªIkò!Í/ÀªlzË*€Ó®GÈe5ÍØmsIښĄŒ½1çð«?´N\øJáH¨ACç?@ócf\O¹æ+‰O&½´Ž» b¢‹ ‹e$ºc©\ÈÔ2ø„…/ã´Fùö‚µ-xéJ~±r’+~ë§‹Uµëí'íFy$Ô…R¤Û§-1gx7=­èëÏgÃ4Rõ×ñ;›fmM±ö²¨e¢Pô„òÔ@‰ðBpO~Ä¡ §w¸k1ޮ¿âílXäÌù$Ƙ譓Mÿ/˨+}dûW+PŽ‘A3ø&J]gÂ*“|}‰•+Y$4ÁN©;j*2-0Gˉþ;‹¬³Ó²0žƒ =D-2YK0§¶Ó\ fùn`©ª0CTÑú•”f¡`:çC—ºÞä¸þöðYÿBéFwäÿ!&U<4ziùßA¤ü)à(•`‰íž^ÞýåÒè9Øtû-Í2îWb”vÇöè4WêŽÌì³àÌý历jÜ_Ls¥j"FÅDˆ¿ã¾zâŒáŸbJa’oeùˆN(íäv/Õ ÒGÓF]µó“¥P€ŸÛù 9aQ=ä9ÛQòPP¤Yµ}+Ïk߉\V"Q¿ä½@ˆƒO»’ t 皤ÊʹkY|ˆÑKs?jœÿ> {<_*™ã»nÆï¸¥âÚ ¥·Áÿ4øÆ©õe0Ntµ4^ÿWšÌ›œúL·_¿½Ó¬Õ¡+Ç×€^Ì:Ä3ç«>æ@¬©SŒ/ê³OÓÎxHï!_]@~‹ú4;#ä\l¹·1•öÈàB )§¸8´f>Çâ“0VÕ9.7C)Ú“Á%è­- ¼ºJó£ÖZÐ\¹-KûÁØh5Y _°±_àn‚µbHÙÝ­|ìY¨×’¿¡ìÊ`"µ)bi;¿·Ä\ë.Á„âóБw4TŒ¾{Ý––Y£·¼xµÍ >ògëbSp¦´!;º¾I­QºÜií·3u¨Tws^ž{Ž÷Úç+(¹’± z4á¨f*›G¸ellªjj#=éYÁTZû !: ïµ>À®ä‹U2ÙCþóNêb^MM- d{qùY&tb|iâb!MSSwøØ€õåÊTDÚþéí§³½²m,6‚Œ\¬šjV7¹Aæ„WáøÛ+=§wψ[®Ö6oÔzïÄNh$µ·ž¾»è6XF¯-Äæµ-T¼ áÉ)íxO‘¼xØNBìѽ¦ð€¡x0Á@»hÛçXOèuËÆ B2ˆK¸Å› ï|.Za‰ù»¾ë²æ™w ýT•rý{9¤ÃôZ [ÇnmL ±Dÿ óéË÷ ã„/­>Ø@×wÊyø1ªõûÄ#Ð#ûçc¤bD”ô`têrJ)ÛI°‡†P,\ªïiƒÍµRÙô}Cíåj›§£s.`O­Â/iÍM ¬Ê‹#Y~݇½Ÿ£Ýìñoc]GZKÖh‘3˧“r2nG†9¿ºy”î­zÜ¥òXPä«Z“¡Žï/EþŽÖ}çH¢Ðlâ?þä‚ôqì5ªò‹åä÷“ᢦU?’•lÉVYÈÈŠ\Ftó}Íæ£mYH Úæ;ÙQ±<~yöí?å ÿLpûz1¤í‹UÉõ&a‘kI…s¬õ Š­ô¨‡ž Q•ô#4®¢¥}X Û’ô­ãÚ‡¼ßÔÕª#þö,Ï€þù°gDŽ´ÝˆRÌÆôл‰ð•0¡®÷^­ qÿ{_b“Ð7öÅoƒùŸNɧï²Cû‰éÞŠ³@Л/þ6[ <'=¸¸ä@¥Xz¥Ãè/ìj¥ÚšLv8…­Jµ)ùk) ©¾j‡tÚbl=?¦¾q×k¦öß¼!cË­°šèŠLÍØq÷ò¬©ùY³›<G½ ÉyAÀ”iõTøR((†fÓC—¦¢*!;ªÅ6¹ó˜vØîËaÄYñuP8‘=ij殞ݼ„ ºÞŸÑù}ƒP‹°âU–5Ùö{‡mó0b3áì.) )® ´nuÿÞ3Vp(ö–“7Za`6Xq\Xžyß`­o[=xêLžì0ßu°½Jr—ÀÐjé‡}ƒÁ.éäZRjä~A&ç~ _ÑlÌÔú¶Ÿ"ey]v/Q•ýßJ86Aô–[Ñ:YSTSPMxõª¼´NÀý°VªªÓ‘îtå¤Qµ»<PH,NºÁС0uƒ„ð<uúˆ5Œ*~Âãi²u)“ÞDq&pFuÐCiAÏPç/Ë—Ó¬‰-/âÍ&jt± Ñr žÕõV¦0Þh%ûš£d/Z£¿´™Þ´³¨ÊñËæè߇ZJ Ì`^äeWX£@Á;P4äÂXPn?<½o6ro;yÃgÈÅ€ ‚ÈK³ê,Q §¯(½R&¬™FœÇ6$Ê“ØJðòç§CÛ={7%ËÜè­IJy^Ôï`­Z÷,›i‰öC;RÖí®üÙÿJ‚(è[É~–]ò-´›§"q|5Οô²fIL^A(ú£Æ“Ÿ=Yí±Õ—Ýæ©À'¶3ž{ÇY°¬Õ¹pøÍœ yA~ŒLÏuæ¸î³¹›^ŒÇÜZXª_Ö¿É™ÀyëdÔšÄùå¿Hù»wB5­jÖÖà6³'Q4—`dÿh%`pâ­G½üøÛË@Öá¡YÎÒVE#¤¸rà;^Ò à%$9œpouo” ²$†ö·È\]·Wtnn”n•5W×ÏB ¸µ­9ŠRñh\0C™¬æ#´-MDë7ÒëöôQüˆ}”LèhIØâ¢ŒËQ|ZWk?ÆÁ(•/m¤`@¢Vƒµ¤B9!ϯ9嬱]ôftDù]yýOÕI„Ã÷ð/ǽ ÙW5jÖwbÏÝ ós°õ[¯×óêtø3Úô\¶NÙïd«x ×L§b$ïUc2ÿ,g¨c•òi|-8“âã¬NÎãl÷T9j’ÎE²i,Dä³åšjãØ®‰v}ûÇb:EûZP Œ•…”ލ{[Ch§h°ÿ ùðdÕd=ŠïÒ[NYo †œÐñ°xÚЧ3ö¾È=Àäz]RVlU}èé»în©¶ †Mvp¹= ûøË¹æeú ¦ …½FƒÙ§cëiƒþD>ð%ÿ/svú/÷ÁÝk0{¤,X&Hð·k?õ)‹„רDíù!ä'€¥O9UèÂÞ;3WòCü®™Lÿü-°[àkBÊ““³Aà3[OŒ“48ÐÞ}\šºœŽ/>¦¯›åØäQmó̰Slr< Ú~Ì –E°ªâEí"pÿã¥\íê« £]4þvÕ®ÛmÆ€åž O¼Š^ê®$NK•ô\SeÐÍqRÖÿœ!©y-“zé2,ýó»ü_vÃ@ä-üG;ÖRgjýí”z6|t)2VÓç΄áíþ |Ú£m m¦CÞ‘˜‰ýo¹ê´TSº>]¾ãK?$EQãß[ ;vSEµ¼@A¤–xDÞ3 d»V¬Òù\ŽÁg<ù ðneÂÒðÈþz  ÇüCñ5g\ f\‚Êi/Ðî+G_Že“Ÿ¹ì˜,ˆØ”Wiˆ÷¦ûj¶iHe™á‹L9²—œ@äë¥q¤¶­bÂ,#l{yÓeÊÇî€Ð!±j†î°TFLÏ Ëš 0]0òêQð(m˜I`”ð.ìÌh…˜á­m ]¤[­N"Ȩ¢ãX;•æ’€ÓÏ@FGL¯ªz£êöѾ„>º¢ô.£ÝB4(ÐÏ+±ëdBÃ?!m'+ì03—/>¿³aq!çÖù¢éÈ€fýêG/è3îozQ÷?›¡]Ø’½<,ò(¿6SÛ”˜¡ØYÖ•¿ w⧆ÿÒÇŽ;'qŒÔaÈ‹y™—€}ÔR!DR©|ÄèºxàþøÒB|DK B¹•5ð!cN ‰ˆCìÜoïè÷ÌÒão.·]Ť² ѱ 5ÅÖˆ›’©ìâ(²ç˜§Éÿ)ˆWïØ˜”p=¸ó ®Î¼ìuq’CŽ@ŠAßÀfΕËcä ¥•ºNòŒÚ‰rŠQ¦¬.ÇøX7øU,R½9$—s!Pˆˆ·pßMêX±tOô=ôqÈþ”–¨!áñC.kâêEºÎ\‚ CÌ|Tú\’ýÃOê9ªnŽ®¦øÅÚ­a=[—èÉtïŞ5‰‚³×âéÍêWG0ÆUŒ0Ï8Â7"b6ÚjyDj¥›HÚŸš®-‘üF©Ê´Å‰#»¡…Wá#>0ƒÊ†ýéCç'g>Yl‹yÉ(“#9ø}«ÔpЋ€Uº‡º„N΀M—•œe•s0íçoE膢+ìXÀ}™ÿg1§5â'²*¼¨Â1ïMFm³|á^•va¾,&‚ŽÜY zi4àjŽÙýB–´ƒa9¶2Kj0m”bïK:Dý§®Nk‘ ©‘5ä˜'Y N #óö°ÀD¥â©¢B+D?î’΋¢av'cÎd—dî?1ÌOšÉ©;u^Íí×ñ*9œ‰Ræ/¯JKûN,ê-4@Öƒ«¿(Â=’t¬F³õŸ3ss# Ô‰lvO.5þk- UèÞ7 Næ´ÛGÒè†4¯–tÔý%äweàí«3‚hKz‹´/,Cáh 5©èc²/ô£r)žÏÝŸçù¥Wí§/¨ 5͆@Óå‹ÇÔ5˜?J ,CúÃÂJÃøý8º‘4á+ìsRÇŒRŒ€9ï®ée%û–ˆÆlÐáép¥imì!Ì.MºñYJÌŽLh!Ž9Àâ;\»t©F~ã/÷’på¯qÉ4w&ãXFt¤hl)ñ% *wD„µ,92Ähäe1m$6ÝKû`¾3§ì×¶*! @kñ1lýÉóoW¾áÏ­Z€Àšž¶GÀ”Ü´Y1Y!³yþK‚“V|ø—Ü‚:Mâüi`Eö›¦ªþw2 n÷ƒØ¯™¡”k¡¸%³Ï;öZ¢ ò­ä´Eðÿ#ßñCÆôM\ãyú›7Q”;8½±cÙÔ~JY¹@TÏ °„™FBsÝ õà›¬ÊE¿Ö;Y>m ñåê¹ÀgCzA¢¬¾aˆwÉYŠu¶ÐÉ“’ºFˆÁO›•³•ƒNöþôØmq\÷Ò¼·ÐÅþŸÖ±b\•|ásúm‹'ÙG£JÈ¿Þ/ûXM]«ÈëdBTI”ÊŽœÆ¯?A}/TLJް €œ1žé?r\Qzö…†Qñípè,+м‚ÿº7âg ÒÉ>õ¥}¡Kƒ’’_ý "-+›br½IAä]ª—€?+ðÇ«ßè3¶ÍÞž/ÀeaÙ!ê™Ç¢œu¥yàýËEp|“Šëý¥\çñ.ù‹ezáW{® áejJs_ ôZê9àÆÄ %|$õ­„»›#èµt˜&1ÈqÐöGöÐ’½\`[Óg“ ³áFJŸ÷×£à2IDQç pÈh‚™òO.°óú?”õ Ÿÿ<áÿ+1(*”&ÞÌ"å‚xÔÓµG’8é‰ tiú5i§øKY’§8Ó™©.±RÒìëô›¦adߟÂ’’iò”\!Ý,µoÙßÔ½XŸ^½†ê­©ö·+¤Xr<«~ÚØ_à@ WÖ•¾M,½¤ùÔ¸c—¾« ÒF‚0>PÚ¬ËÒÊøH¡þnùVE">ˆ–ûUÐ=Å<8sr©`Í-j·Êïÿºa¨Ø­Î¯ôæ…¶kK{a¢±iRèd ÍçDÊi̱Më;òî20$uÆo”ÁtÿBìë‘––F{ 8Ätv'h &0ÐGQ³ÆìʳºÑ“ËÄÜÎ{ÚÎ0ïäìSÕ4¢ ÌNó®(Ö‰«4iJ¹((ïa"Ù¾¸êV¾Õ3ìh"Þ¢Ï7‡¢}ÙLXvRÁ5ÓÓׂ§íÇÓÂã@OÕaÀ^ºè:ŧW]ŸoLÉgº”’«ñì uá­bŠ8¿,l›žƒCTyÜ ± >UxŽ?*iº¾ý¨»s`‘¨]ŠB èpH6Á%ör°œMS@tV$2jð?ˆ]`µ_!.q.?T,]íªnÂ)¼°ËM—6ñ;)ǶQVDë§îÐQÏnŒ*«ŒöåRjÌÀl—‹†ßZf+Èû‚¡&T¾åÖ˸‰—¨„€¾ L$xï›,½”M1é$½òy(ƒµ"í›Yî`¸£ÎbøÚRºØž1¡èˆ”^cÛ*?Ú²é+•GÖ3·N[ONò³…½1õëw®#æø Sc.{+‡¬!X#¶QS°Ò*(xÌaYÐÖÎl½5PÏ&M$y*xB±?Åûã>óêY›«½¸R[p(šQwc¥ëWWcÃÕŠ±|A-¨[4¯C7!Z„3l†§WãZËB—é˶ùhJà©2OÝÝÐÃF§¨TP@59fÆWò‚¤.öd€%í¹CÂÃt—ßöÊ¿bÕ³d¹à`¿¿å{ù&’Üø•ÐVBó!{a}$eõùêç¯ë¡… sÜ,*y¯1÷ç}Ô4AÚŽM ÉT 6!³õFi,ª€@ƒXݱ»•È,1_PlÂEÍȱ5¾{´2“{?ï²ø]KuâP«?4r¾“{;#3†Y& þÇÿ@„!ñ‘Œ‚&²7:ý«ë³>¯ânåv諪[Þ¦1j3†Ý}x…oævl,ß"BõÆE÷g‹ìÒàÙåÍàíðËtÊÁ| ì¦ÀÛµ:9 $É  ®þY 4§ÒŒ¹ƒBL RÆ?Æò²­²ˆmÜÑ׬T!WsÊ“±H9Öq{·sâ¢,cÒÙdAŸ˜ï‚?i<\ýb/*ãÄ·¹XHu¬âg®;êÉ“¦±h*±cÎâMLÏÿ‡‡þ MJ¤§ å—Q´ÌVÝÅTô¡Žø:» F`ˆñ:¼þ¼³ïeßø3m#]§Ìðó¿l›óÙ´ÒžÀ' +úìEåŸ ÎXÔH±©ï²î/â `¾õ}à(s”í`A @`¥M"ûcÚ€HˆÕZ¨Å”8¢f¥°ßA­ô ë´,«Œþ@Ã`ûZ¾E5Ȉ *bý2•/ÈM[ùZkü/×Q|58í•Ü×|‡Ý"¼{õÚ+ú%îXÉú‚­k©Ys4 <•Þîm`e/:¨Ì­¸HÜë—õºõ7¨Iäv8ËŸæ*-ý]X&Š$ù:@+œ%³ý¥¼-ü_-ßÔŠ6Œ Ñ•±á'Ó«Ô#€¡zvl_¦ø$W |m•Ÿçêý©rѨ™`¸là EÔN®eû»ÚB*,]ãÉõj¡0¨p¯.n•]ëãõì. 6úë^ûJ_«Wòt¬Öݺ{Ã@ ‚{tß»‹|(ÈUC~* ŠöšïØ™?êL¹]Õü5džËN—íÛøWT !oÔ'6€ƒ)à³…1ïGéÕ‹ý{4‘ð±J¥/à’Á„ }×J?-™ÿ‰Ø&‡ÿ¡Hlé®wM»úcªkȦ½5;øuL'´•ôø7BÁþá†[@;LÚ“¿Èv-*h&¥ŒFOø`Z^þ‡=;ÉH›ö36ñaÈ›f¯Ãû\­XþhB›©ÿ=¾€ù““s|!¾7TÐ>tžò/²9´Ì½û˜oàä³W@µ¸Uùö ¡)Ô¡îƒØº{gú.ÍÕ«˜±¹>ޝÊj %­2óðk~ËNÐsHS¦?ùV…,á"Nxˆ“<ÉFGƒ&k(ƒõ sZ¯Ó¨‘ìØJö­uƒ|÷üøçyom¾i—1¶¿znùŒ\|}F«ô" Îï³à½EXtñ‰ÜAJ±ÝË #뀦£„8ÕÅþ¶èÉF2]¢¸|6—x;óÚ"¥•¬¡Ì§ìI¨¦VJ³&HØÌÊŒ~ê ÛSË쇧.¢Z>SÃ’Ä œ ­Ö•÷Ê7Ÿ‰DüƒƒG#Ò¤øS—-žû£N_Là«ÐAk]A›¹Z©sÛ¨äÎä­úÙˆl¯<|êýxó2®‰¾–iÊÏ~¯ª´\rX"“ÐP*ßÂ/½ d[¾M‡¦óÒÚûVZP’‡ {Ì|Gøw!hòêV,—R€BÎ]ƒ¾Ê¬@ÐA5|h&ʾ°ÐM³±Íé4] "›Æ’ªp×ça¨ql¶°©]ÄÊf‚57óˆVu–`éì—ý(Èd—ØH¶ï|èáûÝ×Ⱦ/þ×£õßESé}Ÿ†!Œ–C;Æ5WÛÂBßdüŽf!mšJÁS?‰ù³èéÃPa’p”g‹ÔÜ ŠëAx³G&uZÅSÌefã[2Šü ð°1¶„NÖë;ñþtÖgÂ…¾¬†„Ê_<;KC’ŽŽÅ¡(ò·Eœx–ø fñ"ùÀ–aÎõ* ö8Mc=“;;›Š«ô&¨µü×s/µrŸ¼‰D dû$o—ÝU¯Rßeæ!WÍž¸ÙY2—J_«à¾ÎëÄÅóÿU0Bw¤¡wÀpó¿ˆ?ÙàÞ§V“½ð Ô‡´æFã^Û¤èñMœÈe­ð§éé¤Öm¼Ù(ùÁZº¯Ñ½¿è`DøÅ“Œ—Ú|.jþz´~ç[Zsè˜BéȵdîM þèw¯o§”dÑ ›¤×¦.pMŒuÎQº°} íºQ‰ªÊ‰j\…Š7uµ_7ß*вLâ²9¸ÜÏ ª2¶¬ì¦A‹¬oø?Ô€ 2½ÈûY³hzçÈ\º¶sNö+¥(ô1áÙ…ýÕ%öŒAwŠ’UFTó9^¿6A‡©ýÀ.àNl:5ì.ßæÑ3i„¿.]«,bÂÌ’È(~WK}…{û½"h"fE®=àOGýó°V¦U9Jû¼Ú<¼ñ÷7©Â«ŽO'QYÖã?>OLðLêq•ZêC„€Ýû}è¦ùÞj=[Ìfd- œEl°€4rQ/1Uü·¼‹îæÖËTÐòâÝà@›%N´Oت“`Z†É¾¸}¤ß„½^ ²D;m„Ýrrp&mÐC¶‡0>õ®ï@´\®'‘¤>x‹»i;JÔ=k[ÁwÆÆ*ª)<¨Aù-—sïÝlG@>ÙSsÄÞÊ8€eÂBëÇqÁ2–âb¦ªq´%ݯthŠOž]û]âgwö†]]PÌ}ß~”S~¤+͹Àª¿™¶‡V«¤? ,ãEÃÉnd)½AR¢Q BŠŠÇÔiMaIa–ÏŠ’EÒ)3„òÄð9wÀñdüÂz‚4Ùb FRS1=ÉÞ9qCpJÀ(QXUµÚÐ÷~ƒ°Ø‹þ2Ô¨«~îìÎDÜç£L½»vàaæ#Âö§Jé`0׺f^ŒŒq«Â.ÍáŒj—¶ˆ“pt²«·¢Zk‘s¨LyÄ<üÿ&©òph¥©å&ñƒsTjÈP\C{MÏZbÁC)ïÄèb¼È_R¦JäOo>$YôØ çP &!ÝÆ»½;j@Òh“j¸gÎlBæn.ØN²®Aê-}'¡f¼Á䈘Ïu6ÛC´ÎÞp³Î8á ÈHãó…>¯­ØÎ–jï ƒ% ÈAàcKà”Ë6xpAAƒFE!g*ꥣ:*ÿJº©cÌ—KUÁ¿yÓ¦e*äë’¾ÊYíg.Fº™ Pý ¡&å¾Ð" i“¨u"u£÷#âúXʨ°3ë~ íbzÐsÕ¢63²KÁ*ÉVFÜr«Á d0‰u‚ÅØ‹–ïð/€g¥„ò© h\hM¡<ÀÂ¥>‡U¤*‰º$íÓæh¦×Ÿ.Vó³2{ Mõ6Ù,Êt¸H¢Á½˜!é-Êã·šqZ»-Æa éç¡Ø\Šší’VB×´LëYŸáì(µ+MrDx"‡z =†i;~§¢9!ËðE´xš þ°@{ˆVó°q€é@õq©s}@Iꢒ)ä,1d#‰%ÁÆIÝlâý(šCÄY¨íšú¶ˆ½¾áG{µÅ• 4}OÔè8¨•Ò©q€½­ a†!†º³ÓCf ÌðÌ$b}â´à~høBi\eHÀ?Ýq3+ªKH›·Ë²öƒ±ØÖ6Æ}[jʬÖÄÑF–)oEöÐð*É TJšc1²fQÊzÖDÁlgÍo˜@ ÖCK[ŸJ^âùâíªmXŸ×SâôLìöÛbÒ9þ²«Íþ°·,&R§2GSeèFMÐý2máÏ#z‰ bî½e"¯‹L™¿F¤U "îÄsDkM¤2 i ±+ù>îOóbž5b/â±~…HhydÓ®Ž/…oüýH»TL¦ç¼>[ІN0൵Dúkà ö–Å wá8JF¿öUÕ“ñ«íØz+ëfÒ3¤Øwpù–ðgn®wEyýó®'æ 57Þ4J ¥i@>Þ†HþS½ ¨Î#ì4™aIA/VÉ|çjIë»Î:–ÁZze¹mZk~!¦#pþ“ÊÍ/Ô{ynœQ62áÌãºujÄrÆ ÎË)…NR3±9²´ Ê]þ$DÞ¡†Évèô £?YêEuhbƒí¯ä^–:Œ§†ïŠR¦¿8t­bD͸í¿YU[¦Oaóæ")`ñ“eºÏ ¡Ü*(ŠÙ—‡GÖtÖI9„±±j÷¢êMÐØîtÀ‡ôIe~«?Ú7g¿M.$AŠ¡yÛŸ=VPÓ•„£°Ê;ø:pÒ:‹k/_® f@ˆt±ûj “ Å6¾W-ƒ|3Ò6@ÔlÏДÞ_4óOúÑcµ1Y‘ñMµyd¶ör-'`¹5Ñ–rÀ¡E+!~< âƒç+ÉNXEÏJˆÑ‹Ô 憫9t›ÌŒm¹6P»åóñÄOÂ{á¶æli`LÚÖJZÀçYij%/qŒü~žse8x}ûCMê‹Ô=¿S»ÑâJ%-€3U ªðŠ˜h›š‡SnÏÐ7 4j7kóš|ûx˜·gcÌ«øä¬Ȳ£gUßÔ£˜­ Œÿ«¦Æ /%¶ÚÀNï<^8ÃVæûâ·!3½…±O-Qô$;Ðjø‘cQ{ü-î·n›4$p‹Â¿'}€©¹˜äd€Û€KOÐæd5ÜDUéÄЊðâoÝš™3Bã¢Ð‰Ùý=`ù‰{¿9kžÏTljP{]µ³êO^4¹–÷#HÔäñ^æOíð¿ ˜2\=zPõì-êNzŽ ?>Ô)¬ií+Þþ•›É(Õð[تÏZqðr)Ð?NÖòSÀ_öí˜éÉÐÞ•°{a$FͯÛí¨(«™8"´f»ÞWŸ©ý.¿‹)ù¢Ùžë˜é 1R4ûvTžºT + *(ÁkN­ü½mûKÕU23ŠY–PâLÐO‡>‰e'æ¼hl"õ¿ð–²Ø &pGÉCA˜+Ú&Fl ½*éË=©[~DÃΤyPß/²…±]ò·ø”o4”b`«ç1Û»JQCû´t±üZp9%M­½%÷–h{3§žª[wðuiÓL˜ü•HxÆ£1ÌŽC>’ã¬éî ÜŠ‰1HGPBšsrU}ëCÙLŸ\‹ÿ¿í ˜œŠ7Ù»ÍE‡Zx˜Î!Ȥ=ò°u`Mî-ÆüAóY$Q!ž¢•‚®Ú$‹¥.©E†BT¦!Ȭ.K7y¹fÐ †Y€ñ5¸›ÉøÞ°òlæáDÛĺúeÀG9ê:Y¥$’.×=ÿ–ì&.˜ÎNVgAº—*H…P\c÷Ù?/>é¬X¢ÆeÀäµÖP 55=.g¨€zEúu|–B¢î‚â->y¦P'ß¿ ©Ìiðk£¼qì;»{ÑÏ•Zxþ÷ƒ´ö3µµ&w•[™ðœÛs8±#·ÜâôN3š19+×µw‘V¯0¤"¿Ytˆ9ºˆûxeE;QN éGäMç-³•Òýxž§mÀ¬+'´0–¾Æ3A^ª+ \bø¼zgTt––õi‘±{옦k[x_“¤“ž6…*«¹ÐM—-†ªä“9_ï×[ñ Šw)²|í“q¨¹4 QÚ¢ò€·‚ þ©ðL#µf<1|Hy÷ëÀIˆE/„JšºøDTî>4[«XŽ·6&B,;O¥É~‚çXqÊz7À,Ã9"!l²#>$§ì‹Ã¹ZÓrÚ?ì6¹Üà¿ØDg•õZúÚ Z«§W=‰¤ÖVý“ˆýés¬Až¨~"Ú5JŸþÇ’<êÐy92zv [Bá¯5¬ÓÆÀ¸*9ÚŒS ‚’5˜3íiBÕFœ^¸CL|§ROâ˜:yöŒXä ¦.z< ‡¤Æa-}öu®]Pý„²uúQÒµGxÕLW%BغýU¶™®šS•,·•Û„”U.¼¤ÉŠÖOAÊÔ3GOáõ)1X‰H‹$`•^P™‘RšºÁþuˆH£A£ ¨ú%øf8KÝ64^ƒØËG¯ÄkƒFžY…·×Èññ'w¼¯ºLnInc?kH憅§FþÙJÆ¥ B§äéÆÕ4¦Lnb•á’PPõNúTªü~Û#;z|ŽÏ˜BDÔÔ¦´j»ëé(ºZuaÿy3ì¼F2YQ\ΙޠB–áÄtM:h7# Úb³(Èz_¹©U$ñ†’­7FÜGÅ•è{÷MPw•|aÍ_K¡¦$?hãK$2" dPBS¢¥4ç£8Â,VKM ¯qÑŢ_nc´-.ù1­ c1×o¢äZ†Í‘¸óŸKRNIWršƒÚYýÖ93P¤J8Øoz<¬Ëu¿6ÑÌR̘=Ð…TâE¨yÈÆleGÑOÛgYÓ^9†0Hê:¹¢~úõµ¬ÄsˆÑ &Š<¿mpˆ•–c¾ÙwßÔ("`RjÃYSžtÙÂÚü%ÀDØÃÒ;¿ñôvZŸ_>ÍÉ™UùÂŒÊCoLꎅ›~µ· û¶l¼aw·<œÛHÄ„q}EŒdCå™%œ–(\vKzi@³ôwlðÏ—KÝ»Ÿ¥¬‰×.˜lDÜ8?yéúÌÚƒŸ=uaÝ^ë®2’ßâ¶eo%T]q»¶Á‚ºy¿Ô” >¾‚TZÁÞuÿqf!æÅ•@q$È !8„i~ú“ï{ã˜ØÜ' Ç’ö=FAMZâë$Ê0»z©Ì$Ï÷ bŽ3XW51÷x–;±KjãÇ‹2KIT$­¡ºúæ|mJ-‚H&1m:aÄéa°I˜ŠQÅ¥ài^ Ȇή’ìC(P"6s&ìf²€“~„ÀŸ‹Ü2'™VÖ1øú¬W|Aè¶ rLM½cíFÚÜ\O–(UÔ› 81à„v»<öTx‰€«¯ó&åÒô‰,hXו*wÃäÆ+Ör’Déx¹ÔÍE™4×3©òºFy–ÕD¬cŽíˆY™jƒ_çq‹Ï08ô~ò¬o›^™ x2®¬´Çw•ÌNû ²ÂR™Šù"ÔílZ5.†à©ª\%Iÿš€˔`uÿ+V#¨ìh«„€K8ŸöeÔÍ»müÌ hËõ,c3ØhtE¡ƒRŠP\(ü;ºÚp5¯Ý$mLôßg.&–HY1°€ó-Ý£Ì\°k< ËÚ0u¢à?…ï36 © ¼kÈ3OQg› *°º:ÓÎ[# ©j´#ªnê"yóêL–ØN¨f~þ‚ -3¢û§ q)$äÁ›F7eÖ2±èt‚ª²Ç\k.hg¨– º„<[Oðqk»;¸aW—žd\yDK.i‹Th·e¤•PZ•˜¡/¸««Ÿ»­1u·|ocÁ)oÿNÛ–Ê ºbà0 €#%Nwûoþ²Y„éý§šn¦Ô'Èë"r ¬ØcK“Ë]B¯†¤E ‡×4 ,Z—ϱð(aÌÄv=uʳÙ_H{Z™ÁÁȃ-h»ïbÓÍŠ›žmf^ò½rò‰Èú´V€ èƒÉÈ£¾@ƒ+ õÔ‘¨”ìyµ¡„|2WÁ8CJ˜YcIVø’£ ÿŒ(¯ó½(7Ko.m›¢$±„Í’ïŒÅÿÕUs*.¹bK72BþÐU+)ac„‚òc'ê¿w ¬x©Û²o¥¹ú¦4’ «s?Ô¹ j ‰ÄWÚ9з`á³§Ö5¢¢Îù{ÒEE‰žVÿº÷Ìîèv³¬\iwÓîÒ‰õš(ãr¬^€±YáFb ÖI#.¼GžôÇÊyp‡+}›‹;õ*ëžïøbX‰ÏXåÍq¡ ÏZ¤^Žó×5š±º­¿z÷] Ág~‡NÎ\À4°{¹ŸÈÀÏõ|V8BÆ!êPCY‚¿7{€ÉÆ23|JZE°˜T  /µó‚xáq[ò4Øÿ"¡ $¢D¶06®ð ÄÏP8¡Ù˜d«hPâÃÄCo!±'µâ§­‡f‚Xõ\\­s±Uâ©ínŠ›d>õPªEÊÄ’‘Õš“¯ò冠KYue¹[¡7·§ü6ü®9¹HÁ¡_$m Žfòÿæú¿8×TŠü€±rΗ#‘ùé^òƒ]éÜÇÖ#AãM‘)KJ}+-|ÎÌœM)säu75Þ ¶Q} d«Âgè ZR  ­¯†Àö}ªúy$™±M(J¬(‰'¾øÕm Ó¸ËZ `¦˜Q1öM3õ+ îŠõž^«*P ôXg|øy|5ÜSHmAõ9œåídç%ä?t×¢eûx¶­Üái¯cŸ_E_Pƒ#tÒ›rH<í|šŠ78Ÿ¥3%cÙF¨»w‡KÏrvÿË)«Q* Å:œ­PbVíF^´Þ9ˆži¦gROë@ªE‡FF9²åV¼"^ÍNãóAE^n²4/^!µJét|¡tã¬Ò]IŸ{ºD"nüª44z‡G¿°Õ¬ÏGÝÂ'Ö¸£P–.úã8ßTÂDè(žÐwTÇÜü }Y>Eáýø\ÎÛ4„ϱ&SÍ25î7†wûÞþŽúL>'›Eó,1Ðf©×'OÂ&Káæ“=ªá ( ã'ù®i󸂈DAn@o8ãw( ƒ±¸,¬µ!çI”t4õLÂfF%ëÜÛ)™ñ€9kýU &øÅîëê°ËYÉ0›>ÑUž¢. ûèÁ5.±ƒ#&c, DÜ+ öýhÑõÄž·,mˆ+! Cõ!åþÑ1à”eh÷cèh1pGx¦¢øB+½`ëà³Àý™á¢EôM1:³`.íî¨âx=/‡ªn òŽPá‡ÛJ 2àpÚñ,XUì¿jË"+²9ú“fFQígës/vÆÕŸù»iØÛàÁM4uo·¯ö<Ÿ‚ø"à¼ä.&¯8x‰Ðµ­Ò̈́Ź9d‡JSþÊùããº6-9ÉšSÔµ1Šš¶!©@ÈôÛ ]Füìú\nôÏ+_"„T»óÂ=I{p$§ê9›î™è’}«IÐàšUÚ^ão)[Y–ªËâl ô×^A :‚×WЄÝ\³ƒ„±Òò,Y©a:}î¨BÁýa1næ^A‚ žžz{ŸŸë@“!‹:’'êQ I_j+Žßü<Ð|à¢Í$p˜"‚YÍØ¹ÍVÏ( ƒc•9^¬{WèN…®¿€¾HÉ!l±·÷ŠW™ÊL{VWZÏ“$ ^W»¡Ï㎰ ãvÇÅK}/0µ^ˆ¬3®X[Oõ¾lí\Xø]¥\¨½b@«‡¹Ÿ • ˜¨ÒY[ËZTÖÒ·€‰ÿ¿¼ñÃäZ{ï -Ô,5PqçŒGC#1•D\Û hèÎù'ÈÓ‹ÈV"vÒ¨Ù!Ií^~òÖ#‰sU2³ /žŽ]¸ÎCvà·àEb·¨"%$}?Kvð²×¬©V·Z®éwÜ9³DÄÆFó¼Ù<Î?”|Šf"›°['¦äñ¼ÏÓ2–yÞÌt®E_¿ž—i<;¾‡nbSìášp]àä—¤t–7naƹÅTþªÎ nÖ¼M+~îï¡&NÌÔLM[Lc8ý¦zZèSp,£¤2[F܉§=E”:â@r½UGàK­š­W<Ìg­Î¸£vC”uøÂêŒ>~™(è ±–ôïfiiý“Ö›°MЏ~kßaí«ÐOf'V?tž°Ô̾fÜ ¨ª@?r’8B™¹2"?z!ž0À/(Ò½Tˆ>óYyó¦“è¶ûjTqp¤zD»±OiRx–™ ÔãŸã%Ø_C7úspû:Yˆ)Ú¶t'×Óçk˜ƒbá/ø oÚAÎ𠤯`ÏÈäµn5ã}å!*\ÖÀ/ä…“FãTØ,ï¤<ÇxÒí·²Ô8Œ#†i>P–…µÀcc€'ä m{¯óé…¼“Çùù÷Kk!æ½Vϱ—Aqî¨I+Â{¹R‰0W±oÏü(UlzPj­þLyË#]ÉÊ&\¨[«áæ'¿õB. ¸ޤ,Š•ÔƒàÀ°eÊÆÏ°™Ó»“Ê66¦‹ä¦ÎgÄÒ½'bF£8Œ [‰SÛ¤®€RÐDømiCÐÕkûÀœƒåBÝ—輊OÏœÍú¹H@»ô è§Åüä‡(É<%ü`/à*„ƒ’xŠ¿{ˆO­r®fÔ“6²g ÛOÔë)ù0¨¢>±ZÌúq¬Ç—tÌDŽzƒècžKn¤ÈË9 ºà•+hMš/~%lƒÝJlJ+á¹oâ;ߊ{þŠ-¹õ‹/£}ø¡ì_Ç ,&b»ƒŽˆÔ¹Ö5G¾Ã¸¥ë®ßzF;@ˆ´åjîws=´-šäÑn0»esÿÌ4Ö¶Þ>í§þˆï¥NRÚ¹Òb]Ÿ}á$œ²òô.™»8âq€Ý³î-Ïf.ÌT«€ÖþåHC&ñ ?/(›|&r]*ΫŠ0­;¥Î¯WžÖ¤›(!¹%mlÊÓ‚cÜ.q ¯ 0y·É2„â±ÁÛtt]bjÉî^P¨Æ7ž”tÁòÜWJë*þÄ%n´XTèIML´7É)%L,ñµ°1åý\à×Á€Ú£6k[É zªã+ {©U<½CÒõôI‡¬š# ¼°­Å;)ƒÝ¤[åLN'±º-áŠwׯ¡^ûõKBƒ·Ä½·eÅ¡½O}•k›¬w†’bÃ+ö?$Í¥Ü3ú•©žIjZÅm‹Eè­|:÷`ˆ <Ó/ê Ér.SH™/ž{‘‘¦I¸av(n“Ïx°áw0ÇÆb€óJø7 ü,u¢˜£öŠfµ+別¦5‚ßDNª'âÀ­é–ÞÁ?ÍaùÇ‚ág*ßM ÙC–R³³†±ÁØöœ—´DË—o3ÄíŒ7 ïÍh"9ä(ø§"6ã/‹ÏÂo¸YGÄ\^¿›uf¢1¬>†ãfž¿déCÞág-"]wÞ+Â1ø4±©v,Nã)Õ„vÒ ^ æ±0Žq2ôV’€¨`ûdÕVˆžÌ¥m¥·¦À&ôƒ¦Bj‚òÇ ÔûR½ÕÍ9Vc-\¨9¥ÒGò>á©,ÙkïIHá>›Ýî%¿…Ù}ÈTŒY>]©ÅV†}·ò™2b4 Ų^+5vŒ^1þ€Â8ÐÛ?t_)Ÿ§Á‚¾hŸž°‰q[øù÷µ2_„ßQo$V>îÎüGêÞž±±¼/¶ì¨CÊÇ=´4Ijø»(ðþÈÀ¾ u²Jé¥@Ê»"QfÒg>js” tçÓ'Z˜A¿—ÔªgŸ~]=œ.÷È¡8‰•;"0 sx…#¶ ¨6†#nÈâwh7ýê"„:íZ{±è #úÚ‡îÛNs‡-Í¿_#µ¥Õ±5.ÅÅS5çŒ'â‹rsÎÅã÷Ç[u~1HÞ¼Pý›|ãîk?€`0Uah¢HÁì V§+¸«M =®tÁ³Œ r3Î'õ鎈xËYxEªC“ìËC[à•­¬î²_ºú{TÍ1$S¹C¹ßò ªV&ˆsr7ˆ%%Ö´»¨jWHâÞq·Rõ/üEX‹—+å-nïíÄMû޾ÉÖÞµfAîÔ0ÄP,⌤;ϧ äÝ®ˆéÑTvÆvV¯{vj¶¾c|ˆÅ™óe¤7çÆ«€†´Š»_§f_å"èîsFæyï´?º‡¢S3#lÒSІ.ºŸÇBQ‰Pº)0ü,Ä##ÚB ýnŠLŒ‡LØhU@ÝÙÕü! ‚lÀ›Ç .–ö(÷¼zŸü<½­? ")¶«bù yq@i%P,ÚR‰+qÎ*xH4é>Òan-R¥t¢ÖtÅ®„B‚™ËåzZ2«IÙv= ìÊ;P0‹úÆë~ç®ò_']mÉüpÙ¦@‡©kß6ÛR,ç‚׆dTmqù¼Ò¹aOçmR:¨‡ ©ª„©ðCvûÊášÇ‹5Q€„ç+u2VM®œ% ¡¯±ï0OÔ°\¬îÒ>ÒW‰•g¶)Ãú¢`i0º¹.`õϪ+ÃY‚ =ozÊ@ë…¯cU †fb_3=³€ó± ¡ÅqãÓ,§Tl·JC-(I‰â†”ÕG_$“S$¥ïpž÷(ÁõIÏ©°8ñQ’#È­¶Ò×Úî¼|«|ÑÏDa›qæYs®@54ëèGÖòþ®1ïòàßÒ8?:Šõ§!»Þ”ª:qÉ2dZÜfÓV×ü9‰;~WÀ­âá“iÚU `Ì‘Vjº;­–B˜uQ««joL’WÖ{õ–Êy[ˆ±SÁšqòxñy$ª’ Ñ€AòFzxÀ‰[¨7 «, i ûÍ<¸C¸â….„ÇñЉ»O!㯪ã_ó¦ `£ô³-½jsè\úœWLâ›Füø«]æŠÑ}ÎÏk«[H¯x_ÈNêM%ž2h)ëT–T=ðÅ,шÎP“׫RRêâß'ûaËo™Áüa7Œý€B?“C’€ë)Òô³ÞuêÜ,tvˆë%à¢@ÁÓê‡\ÿ 6GC4cÊ=ä5ò󀜛e&«zòe‰‡E™“„Ï)´ —ËíJýç)p›ÇJþ1¼œßá‘ „Ïš°é”­ÌœÜìq¾þ²«•G"ñ½lŽÌxÌ4‰„ÄãxÏCÖ•%…ár7»l‘i*›½wì˜yÑ׉ŸÖ­¦ÒŒ3Ö”ø[Àþ‚z„¼Å s¥PöBâ%N¸„8Mbjò¦¬ VkCZÊŠÂSðÈÕKÀ=ð\°×a+ :\t*„<ÈÄWÅû»°à 1eC` eDŽVäÀ‚ *ÎUþk‘fç)Ù›£Ue8µo 6P;x,ªÍ kz¹»OÕq½ sBxµvûks9ÀIÁÌ$þ’\(ë[ŸVuR±Šèaɇà½õ<{Ad£§$<íW÷>6É5_ï!}v”oºN»k¡là¤[ @}s Úuº^þ\ådððúrÆ\Ìxõü7éïÍ µö]ë#{ù” ÖnÙNÙ}‰¨ñ(ÅŠõâà*‹rØ.…€­‰ri,vÇ¢<ñkñtf=pp0ô7v·Ô†SaMða‘7Øf¯/£þ¹Ay.Bí ‘˜2øŠà x;:uõ"yGêgdO_3ú¬ fÕ}=?ÄtUPÁݾ?ŽkªðWåäV°„xb³½$j¤|¨öpûÒ™7fc1 ü¤53¾Ð‘ªèŒ4­j/1ÖÒ&M Ù§p)^ùÎw[}7"wWŠpu.òJ©bÒ'Ï8*úË›*F…ZëOYiÉíÇŸÌúJ•H¨C îjærYkÇJáЕ‚ÛáLçǹS=¼@d¼]•)§uÂSÖå•WöpW„‰s¤åAcÛk¿@ž … lÄê¾<€< •ík¸Uœr1}C!p¬<­EÇ—Ó+ go–\O`ªkyªŠèX”Qw0ìPÒ¬¯¿ý;èš¼EìÏ?©£Ó±”ö(N‡Ñü8ñõ¯-ÅÂ)ŸeoÝèurÆ_ °ù$mýIÕe”VóÙpˆúJ¯ÒbÞÚÄÝI°0=àÖ3ÎiNa={Š=jTŸœ_ø[ëê‰IÃlíî¹[sfŒ±½LšäÍÓhB7¿ý’´Þ°_ä>]à·ÙòCy8²`íZ¾ž`Œ`ª˜zvq4âó¼P¿6rß2³ô5±|¼VŽær.ž§üÒ_ ™2‚@Gn^_, Ìu¶@Ç.'i‚R Ñ<º%4ëÄ$Øôñã`n¨ºQôB'í‘v±VàkÔæÔ8ƒvâ Öbž7ç»W—xž.˜ ½ýä\ËZ¹ù÷ˆÆdúHŒ¿ FrMØÌqƒ+ùA±M©/¯%íÁ5\vLà.ºß缿i)„8M˯O¿÷k¢ã>$&û+XôÚˆ*æ¹âay]´urˆÏv•ÝÄéÇåû¶öU ;RO8‡$¸RÃ%`½~ËPta$9¼b2.X§’’–Ù÷pm,µìÊÚг=+Bõ‚3‰`¨,«Iæ› ‡«~5ÂãʸžÇRzzŒI¢Œ®«h=„y8\¸Tp;›_Ù»\ìÍŠ?mצýmp+S„-+Ã_!BÛ ºWÙ‡[ÌcV‹ž2NB«³ÁاH/$ï už@Ƥí$‚¿ [¼8ÅDj [\[cý‘Á ¶á«à‹f‚>ƒòIu[QQÇ[7¨ åÐEë:cS0`|…\5Vòâfœ@‘^çi²ÝF ÅxÕ¢¹¢zuþÌl««cLD÷׸ …oð üåxøÃ¢äÖòjìÃ!,ÓQ„ –ÎY}+&8ÓD†Œ:­=Æï¨àY¸>˜¸ÄÅzmf¼T*û‰+ Êg¶=ÅŽS¦,@T{˜›C›¶iOBˆkT©ì‡ÞìeÂDŸ£0JÅå¶Cp ë’þÍqˆ_5V€È=†}"ž=ݤÀ Ì¿%0€^ÌÃøÊͦŽ’Tœ½§!¼-ÜÿH‚€ú„Îr*¼$ßøH#î7ê7i¶5˜j y½>‡Éu¿õl²,îi–Æéq¦ÛPk¡Áô1uÓ{VVCš7]rŠJú q½Ob°ŸÜ³º»/ÄêmH[æ¶ æhì‘É^!§»«ß&É6“düΤs˜`Æ„ Ž¿{;8rs-ÚÍ”iÛkv9ÒÕo)&HqOgŽAì0þKý̇œnÊÐgtk£$ì@8Ik-›¤ôêZiaÓŠEÑ;†3}0}ëȾg£ÉêXˆÙyZnä3©±’%è–¿šÑÐætuYǹü^Ó¿X0–y½@Xú®HœèiyÙnC”k©sRÉÏuÀúó9¤"¼áß. ú|–+*ޝS8ºw¹Gý£yP£þˆý}ÃN=:ó…‚N]ñ$°,[ 躺ÕIöŸ¤¨.o¾£ÖbÏ{ZVŠíkc­WÚö š[?Ép1îŸSkM^NiFh¥^«K6Aº¬ÆLóü:¸ÄUïOàÓží¸¯Sˆ‡ÇÄzrˆ‡›)Êl8u#¹H2d’¿Ž›jã*?ÙqÓœ¢Hœõ`B‚j[{Lêh˜òk¨›—|µÇsÞçrˆ- ¹E$>ˆM'eí¿j£¬–°\‡þBW"®ÂlÒ}áBÏx@Ÿ«ìÏq°¥Çr¢”)*;Z Ù€Œ/-¤¨ wÛè×]—¾ñكΌWŽîýü¶Ÿ«ÎYhÕ6£²hàŒ9mº›ZGƒç¢ÑW$qF{t»gNfu‰Ü¡¥Pi\žkþ¾Çוki>•,9’.'¹gcŸPu_Ë?h°“ZJÿ¡õ(`HcÿµÃa÷O%:€ÚÙ _Vrn\IZœµÄò™88¨ï>T ^c)áOÜRžˆx'U:o¸¬û|cÿØkø`å$òCO(šoFUté¹Ë†Þ‚~Ô´já’î‰Çßõc U¿âeLÇ@<kçM5¬<Ñ×÷jÿý…úë&e€W*ô”/&òbïNFš5ã媲ï»jŸž|6û¿ÚåÄp J³¥rñ´òKm–Ü¥Dñ¼ð*Öæïáx§ (mÑõ'ì:œè¨¡yÐÝ8`å¾E™\2*“çmÉô]ZR Õ\4ÜV’ùà7Ø¡WhýX]]mÐm1œwu—·H…ç´¯[|m{ƽ•PFíŸU ½ö×&5©ms^$¼+W‚µî·Ãïd8ma¶åt£þIᯕpªº@3÷÷aæ– °CµýZ½O™_ÑÀ0A7‘ž×ýȶ i8bÞ»ncíãFÉ‚ñý˜¹EŸÂ[ùmÔß;•Üu<ÿ?ô‹|5‹Ý…ì»™ Û jËý,Üq6Þ<È;<ªå÷¨¡+Š¿‰Q@7^/lÊ[éãÿÜÕŸÚ~Iù>>;2;T; ²x©\A"&s‚NX˲)ŸG›kW_‰é³¯3b3°Ð¦9]S§©å:0uŒXG/‰kºãjÀu=·w´€wë`a‚‹3•"ò&þ¡ÞŒµ6¼-œ&8|Òp†$ÿRÓâiÓgó8@´8K¬åcß^ˆËGÛjÍ’W9‚BBhlFÝW] uô ŒZÉî¼T÷æÝæPdâzgP»U3éeqDh_Ì’³  æ–ý¨tæž÷®-_7ÕN"Õ.؈r%ƒï^œÁí|¦×›éð 0ê» ØœÔŒxsx\e)Í,XB3úÌ€ EϤH<ü–B4€Tȧ±t癓Ɠpû{\à7³h„·ƒÃߌKªÏÆ›´W%@®¸eXüÓµ ÑäïÙÜOn+Û¾ÄSÍó4¬;`´^ÚòàܸJÓ_F_-å¢2P¤5ø\;ÆçÜ´ÝG÷Ö ÓÿÒ$F”ëæe¢ø¦<ÂÞ·Åßç¥-[“ñ vâ_@ž'4{‡¬{-Žü¹44 4ØZŒ®ü¯{ÊÚpä‰d)#{ k²Š‡­ÚëdºWvÙ¯?\rõx-WOí£r`’„ï 0„“‚þ Ý5‘OÅ„ŒÉIs¤{PD;&¨w$'ß­v#&½A¶±}ß{P)üÄxo>)znØ‹õÄ(Š†Òæúö6Sº ÷Z0Èà>úàl‰«.àáØ²ò¨4NŽ­‘Kx…,ü& šïþ‡;ÚLQ-ÿ^æn.†s2«=Ö©ñ‚µéÏû $üT+eÚ·Ç¡¯@¬5K‘î3“ºCšˆèúÎk¡3w€ÿƒšÌB†rôDãÐ9@ÇL‹žÑ_‰MÛx„´…OPòZ'ƒŸŸ@÷€· ×l‹°J)ÓÖÿ„¶‚'ñ-+-$ïA°}à0ü•Uñڦó¹ƒFï7œç]±Å(Wf2¦ô6˜w-<:Æ–JÇ2•^Z‰%ˆØ¸8CÓ­ŒqüûTÜ+¿Ö' ™ÈM•5eàÃ8©ŸVжæýýK"-FÕ7BË™ª$¾]^ˆly&#Ü? z‹ r"ªô'öÉ$3‡oq'…Víä'áË¢•QÂ죕æú5ѧ‰å%Á”n²š¡µtà$÷ç”fáI);U[9øúåbHçé€ä›Q»Û²áå‡À¢>%½Æœ¡Õ±P0f%YjgÃfîj>Žðóê:Î}d@¢¼fžðmp1î9èJkR¢œs6#pg0ܬDS–; ø;oG3CÙ¡çtѧËX\É¿:ÄVÒO<™H ÓÖ 8`•™·z‚},+× V|$Î’£A¦îjÒ [$ªCòý àõÿÈ ÖPT¬Ì(úþÉ#K‹ÑÄ =žÔˆ~5ô#Ça c.ÑÈp‘wJAÙ4Ù•l/š#hoªÝ8üŽ%L䘶±˜„ b°Çû‰”ÿØ!!ÁàkPÝ‚oÀÛ¶Ú³eŸ–îñ©°¾šU)hZÃ)ªï£eãdÞ8ó˜ÙÕ“Úð"šŸÇÝ\e®þW1NüåÇðiŸ:Ý•UAØØlQB§¬ wxR\{8Â/P~dÒG¢vBnk”¡ož:’%" ÃXYÄn ›¾]%Ì t”säJ©A©\‚´¿×o“œI™Ã›º†@'­ÁY`çEÏôAÔQ~3iföñ /:Ë1yÆÞy*Pœ5x6§ÏM’Kd¶@ãúàvýâšR¨ µAð vME®LKz—›íü“ÍU¹ëãzaš¯Fl½$öª" óS¦ôy/ajÚ@µŠbîŽS)/Ö"cC «üžrÿŸá:ÿ©é¼ ƒûSœ×!„<”ŸËnr-ño7•M#=†äj«u<ǘ$¯n Ëïÿ5¬£ÛJ§dI#chëªI®ÂvC_î¿É¡žˆ¦¤us-¹Ä_Îä>»½È+D®pÍF“Þlp@AÜœ4/³ gƒ‰æÁ¹NM¼Ð͸÷©îWÂBiw„Ï}Ä|q4+«DÇp7›;†ïÅz»Š2ò.’…Mê4 ÜM¹vÿ|;0úÐáð>éÓyh1vtN»¸™r—ÊGXu'gsæÕDˆ_–Ûð Þ/r·97…«˜oú·q¸&D=ž úç‰j:7OÆÝÔ§ù°3ú줙»—ŸD¿2Sîm:6 eŒ J2;G¹¥ˆ[£¶Ä˜i|'ÌF9˜708D ¼ØŠuÇ-ªä{ÑÔJ ÏÌd+íøW§±|YWÚµÿ~¼ð±]ý«ne;Äçè`þJKçõ5qˆ„ ª)'‚Ú€ó^e‚iVÞ”L|´üOt"ê·^Ѫ›)‚CqÜA;ðtðÙ„Ú‡zWÇ'‡Å-á‹åcæº>†“î&Ã>\*µå>æd-«´M‚[Ý›»âï]ô‚ Úä>Ž$(8:8eæœÅöO®šÛÅH±oÀŠÁaÅX·-Üöà›¯sc€Ã|;ü<§ø~r¥s„ëé/S¯ªªD„GŠ#ËŽõHûEÒ®"„¼™Žaå}Ú£RZQd¨a~÷’Y¸ëôäÇFéÈzÿãø °+Ž9En?½ è“åRûTK ·êÓeÖ…ýõl-ëÆ2öÇá¢h…ÌPޏ÷S»_Å <òD¡5-‚Ç\º" 'Úÿ¯qS»,&-Aªp¨(pú])ÝŒC¦we&Ê^бÉúbÔy)ÖúPëæ‚Ћ®<•Œà$€l1@l®¿š¡p[‰ knz˜F—µÒûÇÉ$ ¬ÉtD¯GE{b†j‘±ŽúÁ.*¾ßm—Ñ^É耠å<ÄŒ†àá:§^ö•Ãí9.”h m_[Ü¿{n×1ºl¡ë¢TUZäPú´É’"¾Bó‰àDcªÈ`ÆE­"9í<·^ˆVkç©ÑÃo¾jåm‘È]!iùÍ3mCÃÏΡj!u´V¡¸ÊSjý=/<í~0z3-yt-wR¥÷”Ÿ³¶ ó¸®ï*Иڻ „»¨Œ÷DW!Çÿž9"Oÿpö'lnï$uÃÇ“a84÷DÐ+u•Ü+ŽM.!‚U˜3fÎz³ì*#LßÝ3Ân6µ)4YWr–d,ØZ…ßÞ0 â±rÿ Ç(nŽ_ÈÚÌÌüþlrù‘dYCRÓ’Ã_ûØjï`õ̤Ùû³. ÂåSfà¥Ñô'#…ï×%øOi°\Ùu5±|NÁ›*Ùs’0~¶M]zÓ:dH`Ãï0,¡pþÖÌÚËA$·8h‘ø2¾J¨`À{Ö(‚5ðxÁmõ™èdpî5Üõq_’ R²OTgæs: ¼_‚hШ`äÍÜàåÑ.È©D€‰Í"’ èR«T(UÓÀ©nŽäàþñtšüþ!ýšâŠ ² rìqõßÒ¡1¼ŽÆ{~–q“¾$I…n…;sTñW#ªvx£P:Å·½1[p½Â†'¹nI®È‰E!9Ùùùñîcxv/AÇÁ«~†ïÃÉT^šD8|Ô± -Å“£¨^q`üÍòs‡ûhUÄb‡¾?EõÉÞä†zgR|O°x}G*­€$e~®®„}o»Ýça”.¹BŠ¥ºAF' !?„3­Þ³í+tµ·¬ ¬…qäœE?ï*ØÛë·°.Íö¬EùPZ=sêHˆ.lÊæu§Hÿá0d⣰æ¨Ü}˜*¸[ƒÎ²¨ þIð’縡Ý;¿âÑêE)) å¬?qh%H=D9Ä,7.”&œ4ƒX8u+2ãUÈÁäÅS þð&º-ü¬/O©ª¾Y°vC¯f<â2%ã—©üu5­;V–OŽê<ðf¥@Û“ö 批@X@4áþßÒ]l€dò U­ŽóN%¢ÕïMº¢sôk¡éëÒ [—TZþ9ƒ³—€NÿøYÿ‘­k®4‡Ê ˲ûÄKŒ¾`Ênבº¥‡ }Tã‚ûÐþ&[ˆ·sÀ¦šôˆ~PF¿Ÿ ñï2å*¡vi¨äßÀJäÄ/0 ˜ÅëÚj8µÇãÖ»–ëµýÆR¥¥‚îÜ„/qˆ ødô"e„M•~þ'àÎz$Õ‚ò¶QÆCå“1TÉUÖÉžßáÿËÛæí¤Ç7+‹L’¨tV:ÊïÚ4ûFþ˜Ù­?—UFæ0C8EØ·÷:lä(VRGÿÒïûØNfió L_øÕT oÃòÝs‡–ðí“­¥¢Œ©kJM©`@ƒ«þ”ðÉŸ´ÿÞT¡¾1$½ÆÅBŠøÄ)1÷º·µ/œJÏõ 5–¿œGà)rÅ­Å®µïcÕ°x5meÐM_¾3.^‘úÈ 6úY­å,ªÎZœçlÀ¹hkbŽYhðb˹ˆ)š5 Ú @rõ©1?ø‡ÞC:­™n½Ù•+MnÏå%”QÚÀG‹xDbÝxYgqÌw–E¥ 8 :@æ7A­íÆh€ìq¹ñÏJæêþv-w wKÃÖ9þ¼ $ ¡f©ÓÖš?ûÀ±0`N0'-«úC1âYŠíÂkî|În  Ìc÷UTuìä¸Tõüó¢Yb$›ç7èC‚ç¡®N— ®{ú«áMä~Y3†ÿºÂü8wÁ– ½Ó×nÒ2!û6fÕÕŸ™!Õo¸Â¬Õ© ‹:Ü8Ç|güe“vx÷ä2`7IëæÚZåÕn*^dBÙ°F°¼´ÉKv´ˆË™/0¬ïtqå±"4u›ol´ûn–÷ìùýóNx'U…+;ÎßëJÀ¿½«VY0]w“LëÖsµ…J7ïŠJöø¢ôk,·'K-¨'ŸÁ€×–§$Ìá9ˆ%+!¾oõ˜o5ŠB1Pjˆz±Wm_ʤS»¦T¤ˆÞ¥#` #8¶f¯øÎ6¹z^ä•0%<é;n(Êyc,W_çð·?qMÚËØîØºn\¾,¥Dþczñ¬F†|×iM%|0[VÑuÞ˜ÉÈባåee$‹]w\—/áU9¿î£Ò%ÿû€ÖÌ^UrkÚ{] é¾Ó\ÿU=@ó «‚Ë³Ó:œCžu¢ ONð½õ_SHvJÿrÎvWTúÓª€*fœÛÛ€Z%éÓç pA¤;¶Ë ±£Ü=¿Y%Μ”ùwþ¼üñ¶¾3Û~ˆ0–ú´KU²9ßAU6»ŸÉÖ×ê àá0³¶°ÐfúeXØ“*¦~!ÿt@aç³rü{`ÑN%£¡êÉEú÷ ¿7ß:uŽ?Ó,‰óÀd¹¥_ˆL›9qðŠ”ŒzÔœðá²[O9G7žV1’TŒbÅ$)™cæ¿wåë.qI §¨! ¤ÞLÎfŽ Qvt;” Öv®gAæXÊ|òŽõ.4_Q´p5^=*„yÍ' PAuí&Ž¥tå­rŒ¶á)D΢"Tb¼Ú ÍKm.Æè4ÉÉ–÷ØK™]¥c‰¸‰€öh7³ÇµÚ–ßê |€Žö•p4,5b’ˆ:‰•f(Þ”íU*HEð%] >݉©U*ù3“ÍÌ)0Gäo¡£êé!Î÷NŸ8_ˆeˆo#É€©9âñˆDÀ4Œ×ÙæÐAÖ,ýîUy¼ëOBç¤6Š˜ÿX<躾 ä¥êOÛ ww#PÐÉ6WòÆÀ¹¡Yq6Š6}­õ•ÕØÈ½Û^ƒq,slu;9öD”²¶/®¸¿½ê5ÞZ×?n•‚]°H®yTmoLhuî½n€ˆùW­½Y¿‹Ú_´Tûfªã×ýí)œša‰¼Oçß¹6¶®&ãÆ—ÿ„)ÏÉ=D¬¸Nüó†ƒ -Ǿ¸ƒ ñ›¾‘îèê@;ŽQ©$cï Ò-]kÁçp‘ª­érXú¼SÚ#qYGb÷Êä2VÆ‘ô‰KÜú5½Ðy>j™ 9Èæï¬ÃhÖq=ÿÇàd/2W„eÜ- d¬}g>{PÜàpcÄúpdÔMªÜüظ÷gm=vó¸wù['ÙÈ‹p¿ÎÞ XÖ<¿ÏŒÄ>rÜ„ÞÂB&ê.ù±§rÍ-]ÎÙx­CøsL[õÍu¢ò£D8ð*:Fð[¯òœ~+v-ÎÄ'Qg‡ÝÂøþR¿¨?¥Ù‹øÅH ŽãiPq/5Y@.Ðÿw^{„·[M5ŠŸ[¾Ò Á¬nñ@g£\"ÂOE12Öt"Й ò»¢~Ø÷Ç®ê „8x\›;€Îù`µ3#ÂËäG]@Òäø”™jkFŽõmÂá°-¾x ÑIöˆŽñßÅÆبÑ—\gÉLŽßn¸‚\CéÃQk^¦"pùn]yʧj…¢öIî?]°‰; {‹»Þ? J^*#Ïi|BÎèp£QiR?Ôùö½ -¢Üî«J4µåûn¥TÇ=…YkØñ ]ã´GyúˆsÂ\ý}UpÚ/cÈÏõn),ãõKœFõ8Ð(ksšÞìà 1T‚éã„@ìNé¦û1R<ä5ÌïÑàÏYÊ¿ ž E´ÀZªZ5qÔÄE©ß4,ÜtÃõñ髚¹’Z×+ í¼0è€Éš?–;+ëu%gCŠ4n÷HÿûÀ÷§@U»£˜SÜy(“-£k5‘¥"óØm%ºG4xsŽÒfµ>.’YÆ…ä1붬>¬¯“·a'Ô=·bJZph_´Y¡èùW0'áqúÏ1Bt¹æ¬ µÔ÷..ˆØvCÊrÜ÷õâÖÙæ§RŸ&å”oT6z¼ÝûB Õ1ªZÁ›”ü‡Œúò 9­nS wí¯HOé?[7¢@ºæDÕç¶0t¢ãqÔ‡Å&‘wh.ÍYw­y¬ r-³Ý²Á­“ùx, Qn׉­­F CÓ8¤k§ŠM]j‰ðùEbèF;p¬±Úy›‚ô ä†hÿäcã]K‹Öè”5)ÖHMc¬Eã4vRå½>‘½Ò?“~ÇvLÉÇ4üúvûæŸÆ)eVvš n-¢72~mþ»:Êè¯*ÇÔåNL°l1ÁA®ýëÈ…=¡i s™h>vISʇÊ2BÂ)(|!0¤7⺦r»™ÞerŒæGÑ‚rˆÐÍȺá†IüJ¡š3&^¢B2ꆈÌNß`)òmåúopJK¿€¯¥Ï0Ùê¾ÉZnOèCä’íŒ7 Nó2Cþfh}å£xÓ©îE…X|c¸G€e2J â¿âB爚xŸ󌿽ñ€R–C÷‘W¯ŒyV?A`ŠÁÎÂÛ]wÃ̺TŸM1.‰$X{¡†Ñ®ë™Â%ýz ˜hùg dÉoLlŒZŸÔZQ]sÉs½—†ë˜BaÍ`f¢<15—¤Ão ¯ÀF©¬*ÛÙ³ŒÂâé^ÙÐ.Æ6°î2¡¹"õ Ào·ƒ,p¿š‹6 Òþ<œw©ò_ú)q!÷Lµ°'íA#]ê_ebIvú“ ƒoß@ÊãÒ.dXá}#>lì ¯§ „1ÜQgꂦ+nz²<³g=m¶¨FÐIÇä9ì^_ÿÙë˜àÔ·+ W,(‰nß×°›"œ¤­JM(˾—=™±x:µÄ);'ßé™l·Üße‹ŸôÇw¤;÷YydÈ`(15Ó'Ĉ¨âáüÅ<"„nõÁ‚¢¤Ÿ%Úñ[ÎãxÕˆ^Þ/aúýEÜ‘ 0rN4yvÀRqdž»l¥ŽÚd!Shà',!*C·G›ï „âgå/»0£3RlÖ·ZÓyÏöŠ^Ÿiꉖ¦T’–gûÞ\KÐ-…âUV¡öØk ˆùQšlq,ýõ-„b'].|À\ðÅê±UQ4ÅAõ[҃݊…]ñ µ´†(MnDHætÌ~œôšþ¹mÈŸ°ÞÛ,"I¯Â-ÕÞ't‘ö^#^ç“£ ®Xù€òÃeW:LoIùg5†÷(Éñmvãoâ¤Ý$†5tbåš"fv^6ÚBˆZE*õ:riŒü“&N3 SµRÿ㘗 a!N`‰©¤ÅÃrˆ=¢ ÁGÎòüä¥ÎpµiºÀ±DÔÓ£¦¼Šè Õ9<ÔU™lfyª•Ü­]ž%–ÕfI»ôafó6Ú%X÷ôgº·¢ŒHbÍ/ímqˆ)BfýI6“-ê(%­ìÀ„®€I;5¯]”›F8ú²çv+–­Ô)òÃÅj5Apñb€zÅ-Òe™$Ú~Å“9h ôóePÞϦ˜Ñ£Ÿ–5b ¦£B;ÙnZ_®<\™§<@ËW¿QÑ3ŒrúµÁ®#ä}Ó7žãªk7ÝðC‰Œícâ¥x 3àâtV¿‹¤µaÞj@ÛÃÐ+9 0vì0tÚÔlæØÓ-öû4•Ký…41' °—È™•K¼Sé³B\j6‚ͬ ô=º†¿aNî"¯WŸ•ÈO\Ô#­ˆEÓÖ6N¢µo÷ó"´ö‘Ѻº"&þF²K.MŒ73 £($g±mQ"EߊÖ××Î@9¬3'ƒË&ŠÀ)Ò7HSél'–]ˆûps†_ncwNë÷*×e‹æ®ggëüã@IØ~íomd&~T&ÿ_"{¹î7Ð៕ê`YѰïß¡:¹oÒÙ< ›I©£î“Bzð¥ü㾋ÉÔ›ŒÛˆ³#ö©žÒ‰$¢DÁ\Äu š0ÿ ÑòD '9§dý~c’ŽŽIUªIhøQ^ךþݽXŒå+@ l¼T/5¶†ï¢NÂâÿy½ì·™qéK‰”îÕ…³ËªaPö 5é)&¼„TÒ¦õbŠpH$á*¿…9žÚB± 7¢`(G,R ¸l#´LŸr§‘-d:ÇMìö)‰WŽ¢œ8`8êEr !¼u^ÅÑ>„KWרP®ìºk-Y*œÃ¶Áu+§%_ñ)ú¹P©YXà ¸®šn$z¹Â»`•ƒîÑU§ó¡=@k€Í“e£Vr§ÄØ%ê‚àbCu‰ÉµHê/t?×M aÐ3£G45¼Ã¸,1ÔKóy‚hO‘e¶Ä7Hú. ”=ðü»¤Ð ?£¡vÅ4X>„ׯ+6òŸd¨ü²If…L\r¨óì±ß{ÅæR$JÃÀW†“f¾RÀAd±”éMì±Xçzœ<¥ÍþñÓ¼'ý8žÈ[Ï7_³»":T;S7•h85(«4Ýë‚~tèêÏL]ï`ŒµŽO›Ê ùî„Þ×ጴr¡¥–ÜgXC=Ì€á¨~œsGölE¥¥Š”»;EÙŸùbŽËà@|÷\n[ŽÕªA¼+ãûcÂÀÔð_ÔÚ8KlÍ_S¦ÀoPÏ–|Sýì·Uº~ëÀã|îÜ Ç“[|§%ãE|÷ênüGuŸ*±—(J5ÊñðŠ÷–©2bÔ!ÌéÛ¡¯²Ê%]áðC§qj¯@¸ê“Pºl©ÐzònØi¦AçÞ´®Ɖ"žÌÀ}ó2{½wm2œöc_Ï +×SÞ1ëßZÆÃ3\´Ñ»&¿ Þ&­…Wî–n Ý¿! I’Ñ÷=㕘TnjßOà —ùJ94¦Ë|/µ cÎ0ú Á!‡ÛxI&Œ) Tæ—cÂ[YR/Ò3’9ô´eÿ˜Å‹F¶jiÌ‘bpß_vê%ŠG[”Hÿ×{"G®"3uˆóŒUE…ãï\5IT¼ÿŽø¶Y¤°adØúÚí=ü2ÍÙUfç—ÜÙù~5±ÌÂ9¾sù¤Y1¾8,Eƒ¼ŸôòñÅ€=E¯íWÖ«ùã¿Ô¥Ñ.UÿËRí¤þѧŽÃbø‡Ò@qÞŽm¶:A s‡ç³W?ͯÚDͬŠUzänfuÁJùED»”wZ%Õ1€\NÎÝŽHiÓìï¯+aëW¯ÖžÜÚj󦃤(/Q´Úáþ¢¶…Ën¥×¬å!Çîò[ÙPbxÑZAWäÔ¡'þMtóc+_|ÿ0Xj9¤€>öZ9á‚ ªôj`|±·=•¼CںʭšKÙxÜãJ—Txx¬L]bH2åµ –¦Ûõ{ÞɆÐm©?wÄúöý}> c»L#xò›ï>Æz!w{£Ëh·Åpóúys•ƒÚ©å0C”ýäK¨âb-㥃˜F®ž‹µ[†ß ìaÑU),–c4ÀXÃRÔ,Üôé¬HxTP¹ÕÖ ž0"\Ë"Ñ ­©óÌQ}!¦r’ÄåW_ñŽ£S\‡‹Á‚XóNIÁétοn} žwRì07±7 &¬ØÜ‹ïkÓgEÐõ¿Î{¬ªÓ¢îKR¿ŒNæ¬Í·Yùüp_‘š<&›Æð1¯c¼•N‰Ä›a­¿¨€øælmð*ùxížd”@Ž›GÒ!ºCÄ«1þæ…îF–Ãb™¹æîÙ|ŒVá -^ý îëW’èñŒLó¤ÿ”ê×÷ƒº¾}5>|€7ꇰ4Í+U#÷_öYz¸#§7ì§JœÒÇ^Ç}D)®HÜücÔAóG¿~é)ÐŽ´zjQÑš-ÒŽ)¬ßš8qlŽ/~3!=ñk™°]Š á¿Ä¿£¯­ ¥ø9ùcw+µ!*žà a´NêÈÚI1¯`Ê’ „v›ÚÊEǦX(óÜNqÞ€ãî&]K4 ¦¯^b­KköÉ^IË¢”lááUñ_جâv…s<)£-÷Æ+E‰¥‡@^2ð­äUᙦõ9Ž2áj¶€úK+_)÷vϼ®žâµŽ{`’éíTÜIÌÇÅDöÞ[K;>;=|ßÐXûÒ›f=ÜÂ?$œãøPs*}ùvèQ4N.Aúg’ÏXLy¬^cH~Z¤ª¨¸Ç¯¥¯®ÑlâªmŽÍ6BÓºÀµr„Ý}ÍŒ?ßïÉÙÚ5dwa›—&ÇöŽÊü)»Ñ·ÛÐA݇×îÍ{ÌS汤žÔÓi†øËüû_½‡eá%»"R‰ÃMÁ›öOk=÷DhkϹF7}?ùò*µT¥¸5ášR kDÁÁ£•Õó™›fŽéJ¡׌@ÅQ p'ä»H\݆ÁÝÿ¬u£s¶®ÀO}ÖÔ×µŒDñ/Aÿâ¦FVg³h挕þ»iòªm01¿¿?Eàiß`"bÇIæ.ÕqÓ¯F®V2‘åó…– €¥´*!OªÕ÷‹9¢hª¤¼ðîÁïÀM6H&=›¢î줆žMN¸š÷E¦ï–épn,âtï-/îçòÂÀœ GfžŠK²GD J>$¡jØÃçî ¶'ú²±ý¡S–š£ë¨ý£F¾ß>…Ø1;xzfé…èЭ7+±IÇéìd䮹°4ÎWˆŒf†• ñèÞ&h`ú_[ÙJ™ŠP p=aL蚥mZe«õj³w0Ã,à@t°˜°áhÄRøôÆš0É~ÎUÛƒw_7jæL¡Ù°{­}«\÷J={Z;‡·§É©ïZ¢ë“DéÇ.ä×X¿ºCcn,z ŒÂ`%³ÎÁë’Èè7å´súÃf6lþR§hº) )d-rvΑ1%V¤ß¦ µÈŸpi{.ÒqÕæø•¾­ÞyVG‰ÄêÔP—;Þθ´¹@›-¥ðÊjå³ «wBWÚÃKWììa¹Â"¬ê::º×®²0Ôí6¨ ÅcᯔóLþç‹sØã·ï’ï~ã&5?‘ܪ5ý;á`„"˜½F˜fX”¬xÇÒü]ÓÖ¥q4½µÏh™çœŽvÖ±^’»‚`cÀÊHGJCo.ð«£Ø-Aë‹ëÍw‹kðÇMF¢Ä7X2«¤` P+b‹E.âÍ9çí·üJËBO‘YÙ G/ #¾—Bk¡Ç©ŸŸë•75BñYØn!2ÿ5mñÆL˜„p ¦ 5:3nMÑW›[ZûyúÊm",kLT¥ úªˆò³RЇž¢—îÞÅr†7KKÏ×+ºÕ¯›ø,¦mgïÂêÙpS{7¡þ‘ u3D4R¨š|_ÂÎ|äžÍ»µrí‘çï“<(E;e(ü:Ôœ¿J^ *Í'ž×c~½ÁkÊ|þn×2é×@·£Ã¨ë¹|3L: šÿút,‡chHššò˜zãRÒ12¨A¬¶¡lâÁÛÕö])­.cI%øìÅÁÊ£ùÆÐ©¢.4 ,VÈèÁ»/U›ÐÒ’ºç “K§eƒ¬? ]µÆ†ƒüÒôû§Úr&QP%j‰Œ=¦oÝëͺ MX›õç®¶èîô©mÐÜcžT¢Þt”*àÁ `ų¡û}Q ù¹Ú9\!Ea8d?Öµxôœar;NKt¯ÑÚÙÍ<áà±ON £‡_å,ö°p*Š-­$éQÔhL}îp‹œCÊA?Á‘eó»kN»a0É4ÅBȈœãûÈú|+A Z÷%_5Q$ØÈÈ »öM¹Ko%/ü*yð­;Jqx”†ˆG{€ꢞcøˆóÌ+"qéOIâ K…—¹õ,Ÿæ›»Ã;µ±.3ÑÞþt•BcË×L14¡ÿÐFžÏÆUfñ\¡Z—eÇí Â4¿q©äÖûC%z¦²ÃÛ߬™TS€€]͆LiÖûº^ÃTfZ¯ÎÝFꢶ]LTr+˜½]ºs£óœØ`ÞØÜ &-‘ ¾Km ­›þGå7‚ž¤¯³7¨áý¢¡áÒÒÅç‘:ý_iƒ°)¨Šª rVQ«@Q@iI¬tl¸²é4c™sš")„•-ô´KpIÅİ‘iƒw¨šBÿ`S®ž`ÒŸo@Ò`>Ym{{~Í™¾U¹­È  o˜› í<›Á"§mÄ@øänÂJTÙµWÖˆ‹'!@›A9ÿ¥;PéªI„€>oÔÝ?…»­ìÝ,»ÈpóÈiTgÏŠÁX_>|¡€½RO¸wxsiBØ /úV`¸”RFñNÜïêõzwõduÇñ%ýôødˆY(û`¬+=G[ÜM$c_{X xðÄÆo—–+8Áï'jŒ’¹ð»u|Ý£Õð×ÊÑV"޵=¡k’ú­O:Ýa–‡ˆ%G¾a¿udÊá˜ö(û Dë1µ­T˜Bw Jç¤C ü%ÊñµyùJËþ·‘.5œB½è³¹¥ < ÂûÈÉV@Qƒö[A¤ 7å ÀÁƒ6kíÃí!©]ܵô°· ÒÚ±¨‹ý°dUHvL#x²03Ödð?ã?‘:Ü2-6dˆâ?×þKR‚ÃøbÄ_:Ùßç>‘Zžæé¼Wmùï*˜3J÷uæ,ŽÕÜ S&Èø¹q¢Ä‰3YMlþ–®êWŽ@£¨3Òãzç yEcƒQÀèËg¢«Ä6 ¥.7õÈÜÓ·#5‘û¢—NÔ¶…œb°€%3¢¹D+ån!0(ñÆ-Å0ÙqpÖ¸-09Pþ´?r#‰"YI~C* W#AÓ|¹…)26­ú‘ú"ÍDØ(Jˆ@ÿX6˜2è¶3¾ªöÙ•©fS#ÏçÏ!­ž åj¡3Þo `ŽæÑ¢ý,ÀS¹ÙÓ•è8}yfr‡^šXoƒI€[׆U¬6ÊûüÜAÙÖsjÉÒwÔú½ˆãÐu;PÔ®ñ1ŽØÉÒ çíéHÁHåé"yœšCËt…€¿a©°ð&{EÖ’öZšk7@°XNþ‰¡-½}÷†Ã3jS/àí’¯Ü4a ¡Êç«ÚÝñ«dH…!:nC–¿A"RŽ/Äì¿ÄÑÖݺõmÅzÔ~.dùgÐ÷?yäò&çæ"µÄèYœZ¥zE²/,ò@ß·†Xßå?áŠj ?´h$á}Á«÷—½trP[È tr·žKZZb*ŸAËT,&ðêCå§Èr‰à4´äü¬€ž.Q+âþÝÓŽîÝ&3dÊ0סÎÚ˜È$ (¢bÙÚv lI›¬…Qý„!{^­ÇR‚¹ûyñ™†Šò­1.’i±æÿeM;–9³Rw8Y9‡â„Öç-bÏ¥¥*¼dY][ˆÀ“¤ð’ô}èy¯cBôt žøåy$†»vóˆ*ïûÛ¨w=kùAõbðó¬öm¿ø#Þ$“Òc´s+«•ÝŒüált4ÊS†‚Wl…6ú>ƒE´ÕC嚣Ê޽´kt‰jÈ‘l&» Ùúja^N½–š.mB𵉋DcÜ ¡ÞØçq÷Üùur«£¯KGBiî5ŽÞ\M ñ$:Y)°å—˜‹­M Á—_ã-ŽÛƒCFÔJ‹ôt\ƒ?Óïé1ÛµðÝ×Gü=Ÿ+vþ:·ˆÖÜ|+¶v¯7¶æFÍ>Û~¾wû¯š06ù¦ŸÊ ›aæ8ñMÈ[¹šB@&è.‡·n–ÌLÒžZ^Ä“˜<@øýç¼e ¿®g;~duúJ –„ãýк^4IKȃàN¨·;ßò¼Ê¸Ú%l Ý24]3®òêkf÷¯³ËI—¿nZÍUcVÃ5aH•†¿[zyo2ˆb©^ê#9öÖ8¦¤B®R2vIiÔt5Ób 4Í8i¿ñ#­™2$69†Í*ÓáãèU]‚!DLb Œ=_‚ŠFGAMú¼ºÓ®b8lhÐâ}ÈTÊq®áe¡ïßJ•DÓÖ머™vQÄD’bøÊ šú$"êÁ'‘CÁˆxøë [·;w»÷Q3ŸTô ƒU!-ê:ÿo&ƒNì8ìD›öoº•q»“D¹THûʱ¢dT×’Lµðä<–À‰Á÷6# oñ×.Kr–Ò`9ÜòÒÍKJܺ÷W+1órö7Ø›7÷*/8½†#y Îr`¹Q±c‡ÕGPŽ>>d£¥íä¢U¤NºRÞ@W^p_1:™õ˜ªCÌáþðeÀ¾Fæ}ÉŠZ”NS8FàÌ’¶ª{©ä¦º¦¯cå ,NXÎÝ}Yä%éåMåËÏÞaš%ÐÖ}cMĘߔ™V9̧½1Jµͤ¬Þ¯¬þ.^ë©Ì}Í9ÏÏôã½yí‚ݶº(6hP›0všyÕqgš'à³ú–˜€¦Ø£Zf+?3 D›¹³ÎðãÇcÒ;ÃÿT°|n¬) ±0u—5´>RÌœstv«¼5l&8 NG?ÇyÿlÙ†î΢O#žŠó4…z‘ (z-½æ¸s]ñÛy)ÕC—×?Èü쪄S;0Zòüwó"¢$ªê{!jß°p“/s“ñlšTD¦°nþÄv-±‚#†&7‘¹fÎzSV\ßL™«/À©ùÉâêl\JŽlŠ¢†[ÂЄ;gÕíLz:쥰D(Ý-+üŃ¿*Ý«õŠ*ß© ç©åkm\„âÊAe ÕdÎéÜ» x°Û ^Ö¤õH}ìçWë;b Q{HØom.f ºbâ2òm`?ü¯]ÎÓH?ì*¦ÞÙF?!ÊiP†KÈ$L|‰£i<»oo‘»C©8—Û˜NuËÎ(qfµ”˜šŠp³Ü+ÌÌ,* xaúß~¿:šjÖFd=9C³¾Ì…»(ñp¶Aôr×åúGœ\[6Ö'&“×ßú‚Ò*Ü “=üXMï- Ì鄾–{[A+ +$öo%¢öªk D…ˆ_wV¤Íf}w¹®õGsýÉ÷^§cFM –Ìÿ¯I©O:ž/·û¾¹bKq©nµª×„šëç|[¶ò+z¯&Ü\!±p@½#Y!7ëoæñ2»»˜¹–•?K[:Ø }E!¬ô—LCŽ0@J-ðì£1„ùH_è(M ¾÷ü´ËþdÐC6¼º²ËU›N‚%Ï™X$«ì¹jwO ÑCìwÔ·wuëf ûõ‡|N°÷'uÜäå*ÞGª B*Áõ]›GLqoëÃ?Ùo‚…HO«‰ÔqñTú}=ºÿø_$²ÂzZ€U<«h³™1ùsᎱÝ0鑞Гæ]‡Œ£¤"Ø:‡;fò¦‡°NÈ_¾O5Œ&µy’’Ñ+–A¿Í¢>—#‡“ºÐ>]¥w¾—é¶Þ†‡åðNäP®±â(ç#ãƒ9Âói –[àT­tü&%4’ØÉSj½¼WÀtøFÎÛå=˜•Òô!É@I°Ln–ƒÂ¢¬¬©•;Åý¦o±20kÈf³«KnBƒê:R‘YýêkàܦC@è>9ÄäûJ'FO±Ý\Âð*c¬n¥T!-×v©Ó Çc›šü3Ž6Q’[ÙR]L”óØ8F­œpÙ ?Ñ¿U,Ä*Òø¾„ñÓ›wYÏùñÌ›M¦6QàÆC·Åüõ[ï¥KÊu8¬  rƒÓð–tý˜Éd==|Vðæ^êB]ð¼á=3àG"Õ7*{ÛT³É¾˜ 5“LÄ¿Õ_;jhV±oÃHÉмS´Š”Mäò7y+÷–nòahj?êÿ¤Tš˜(wŸq G#þ»’ÍÅW¯U3 [æ Fõ[k¤ëi€p&ü/{!¥ZëL˜îNß3¹¸Åk¬À1e;Äò4Ѭ±ÜII0Uú8ø+ÃÆN\,“e>BZ¸®ïàfOÃÞ6eB ©Ç®o ªR˜œ-;þÎ á§ zˆÙî‡yD¼¤yXÝ„MðüdVC¤MÈüÏAùÂòäþÙ` ‹ÍIˆ+# ëU:E®¬µ²ÌþΨî)¦†ƒ¯Â#ˆ[… SxG@GUù@%¤±.FBc:Q&ýp Y­þkŒ÷€Ý2æÓ§Ï%•;«Þ3Ö¹ëAï’ 0ë‹Ü6¿´Û7,ÈryŒü?:!ô£Ã°]p‚ñØ óQùë•\Ï––,p±˜‰ïšs>­ÒïlÈêŠáë«öHM2äýº¨²~›V¿¬Àó ' #Â)ý^‚œ¼i„ñ&IˆB½’’°¼x9(f1>V*#|½,Ë8¤ú%ŒzKÅ•[6Æ€Sï5uÑÿª´,¼;©¢±3ç³F†ÁÑDg+Á¦³}{ìú6ÔAóœ(n`f,[÷?YÜÇ¥U ¦Wi‹ý°!ͯWÅV3bв²ÂªS%ñÆçfé2–/\mÓØ§ÑH×`nÿabƒÊPHñiIY¯‚™ù_ì°C˜eºúz¨‹½Ø+áYŽq®”Ý·b9h÷$“]«e•)[÷T+lx‘NçÉ´,ŽV3Ó¿ìõ혈®ùX¨Å¤™ÎôΧuG)/¶ù`}ø#ì"@ó<L3¢VÄõÆf> 8o˜ø¯óô?å?_ßNñ“ÓsØœ.¡%±f¥|v|‚ü•‹pŸ€ÇrX=nÅ“9Ö­h¢V{8TdÚ¯:¢×éÚÁ,Ÿm£¹!¹ˆ1ÛžpúîÊ\y:Zâ‰RF41$¶µÎª¾ VÚï@Çg,Tg8Ò2å›,ä~R+;‚›˜ßröŸG¥ˆÁfñ… ½ÁÑ\b{Óåü!JU¨ˆ±'eUë²(q˰×ÔœiÚ¹LÚ— ûŽÃDôòßÅûù´×‹X[¡%#å¶vý ~ÆÇ;¯nœŸ Êð­å¢X äý+„²&ò·lª…«ur™r“Ô­;íkí ÞŒ6涉$¯Œ/ŒI<.gþ™]÷9êùüQ¯Ûkš ñ{$°šˆFž5&û[ƒég‘(ëJ[ˆú9`’çÄ¡£5øà•¦P­¬#iÀø¢_r!éÔ/³¶uÍ'G0Çx¢ÔZ‚<†Ç¤!}·ùöTí&Çj+'‹ y%*µ`¿¤ð¥Å®2£6™ýŸïH0¢f°’¤'ya6~1¤ÚÄuGètòÆG½¶½_¯³W _ ž”üœrÖîk~¡‡ÒtÐdr-Ý¡º¶ñ r¾$n¿Æè¤•åÀ>Íp쾉}}¬HöÝ™ÇÚÒ¶dÇ™¹Á¢Ý£3™T½~M)®Ñtž3›GÕ¼á-r³?\ ª£c˽þãLU>Öë}H7,ýA8t•1õ`P¢ŸARP7ƒÍó‘»ð® Œm‰œ~Šs8RÉÙ¬‘(!*ͰZn#Öí‡Û›Õp×íš'2÷%ƒ~£FœøzØLÞ½Ç å‰wÿlõzvÆrýl‘+&»’ TŽäC\žYŽNÏaò($«q˜B¶`.“Áœìl†#T®4ø„b‹Ÿˆà… OGáJÝ4ZNŽ>%Ça$á$HÁ}o—¹·2KËpÅ.—óæÉwš·ñ­Y¿-Ñ~å¶y?hùÌdxßܺ¨#±ÍŒŠý“Õè¾­X @;ÇåB5q¡Eo)ñ%æ9XÙ¤WÏ«²îxNÞ¿wæ[ž2O;ÕAÀú Âšà D7”·Îøsl~2À?#•ß cQ€$n}£JŒ_t«2ú3zQ/.2~éà&Vm†s |¶[n,Ý3£­‡<¸C[C(»œ© B½bÚzÛỖ°¥Vu[»j_4í¥^ræ·±™¡šÆ "ÖžOœ[³Poé ÜG°¶ ·cž³FJÿ²m·0àÓ ¦¦»á…­× ø¤X:LþDÕí7ºâZ›Ø4Ÿe…f¾.îÃodÞ±+žÞ´´“/ªÍ™`¾k‘:hD)ÁdÅ¿åƒùæíòõØß9TüÁ}õ$¬d(V·#AÞ'¢[mD#†­djìñ•-¥b;Ú†Ô¸köË$_ξú=è æ¤1gGqƒ×^öEIÙgÁ/ÝÈ튮t³‹Óš·?h3Q_[È@έ]L?ü—È?—‡¨æÄ 9âÙ‹Ó…‚epNÛD=^bÌ;Î1YÂ#×m „|^¹¡t–×êÆ¸ û YghÓ2­Ê|5ǹ™$AîG<Ë’O'x’BŸ[Zw† ÐIö>(´|^›éÞÀ@vfíUˆ#g§»¦8XµÃ¦r7Kº\ûõÕäfþ,9ÝSƒ‹Ò¡qŒ•i¯…J^µêaˆû}»ÊÇȽÎî-¤±¯|·Ö¢‘ï»\Ú`*òK²L ìbŽ-5ù»æÁá„yþÉKXà$¾¿Ñ¢’Ðî󚬗3§7ïEúgjݤ8|-h„»t1#`žñ %8Z6¨zÁYÌ™›sävâ5‡û¬ÎÂOpjL#rL‘î™ÎŸ‰“TPCƲ?viyÆ,–©Î)y¿Ž™£Œ~küGîÏÞlÇPvêèHf|WºŠHÓ¬=ÿØYÉdƒ…èUyï¦UÍKíÅ4AÞs / Ýc´#ãÙ#áÍÕlòH—pþ‚`퀻ê[pü,$¢bo•žÅï²=ÿ“DïÏè’›®ŽµÞ„Ó͇M`Z=™P’G‚’¶–9ÅäÑÀ“²¾•Ú6a±8àã©òF-0œlÀÐç³ÿöù¥1ÌñÉF;›ã9QE™þc¾<„+ú†½Äd½–FÏll›ƒjߪÈ6Lj}¼çh}ËGÏøÛjÏøy½îDÊ­ˆ Ç7’ªYjõdUš©b:ÿ-Bx{™;^¯©›ÈlÅÈZŽoq´¯jE µ3ºÊ@ÿüÀËi êi˜îY§°"7êFž¼:k¾7EîVi»†0R½¯ï=‚µúŽ›²•ÄR‡7çÂμkò\àG@º?Ø_÷uÇ~wŸz,ƒ5ª ¯Ú)4G–€ØìÒµµ»òª¶Mi 2)·L¹³F â&Þ^õ…د9ßùGÕ9§þ¿ÒͰušëø %àr+n•À´RÖ÷Â×K)+%Å^Ô0ã€ûeýh³ `Ó?HKÊ‹P«˜…ýŽy° ­ ììÈ+ÿû ¡ùàIׯžÆtãàÙ¨o,Ç®fXd( ôã&<ܯŸ¾ÎÄòÏT}I«w"Î×±xà·ƒë×ÖïäÆŠÆüÅ?’¾SÞxÆ7´|®—Ψ¼q™Ìö؛íµ2øúvº¯“vÃ-b)R&õa+Í$a8àqâ³dÿ0¡¶>úS…•Óh¦Ò„.ÃÆÔäƒ<ªEÒ©õ'´Y¬A~g{µx%Ñn‰0áB¾"iœ8Á ÁôN™„a½æjyÄSÖA|ó‚'üºÅH5œÈà阴AužN+{—úªÃ>—ÃË,ӌ߶à[ïãP·ÒSÚ;,bgÑX bOælê½¹…OÏn“ìrÙnvü°ðñ!DÖ,Qðñû >¤è‹µëÝÿÌBpˆ±ÙX`Â)Ĥ5Ÿ©–H@Ês·v‰#'1x¦_pÄŸMâÔzP[ååv!ØG¹EŽº¶§Ç&vV<&š‰_þwyâ×»iê#‰pStsx» ‚ôl!âH¬pq÷Zœ,Š´œ¡]¨á–çeéߥeXEwŽÒ”Q4RÉòìÍFÑÞz`²¹¿þὡÓP[œ†‰r£ ûÐwè¨O4€§‰î^ãÔöœE-zåý±'ÞÑ=˜FžºH®;Ö›†u­~Áˆû„ ºcc7‹½Ä ÈeÓçO´·ºA·êa‡9>mšfvèê8x!-×}mF½ D㺦H:~NFÀ7’åeÛ-Z²¥>U%nÚU¶àÔ"HžF‰ß|¬ü§“¿ÀWÙ\µ¾–ùꋈ’}¶â7÷zýdê§\ò[ÍÛMÜt öœ¸€¥íßíøüô`†ts>bÚ¿»¢àx‰ùUHR«[CÕæ¾ßèEyLÔ:иÑ+˜+ó¡ÕR £pA?œç<PBœfu«¬EýEÕ~ èHaÝó}£ìš™ï£|Ç*wöaþÄ2Õ ©šbcuøŸ“X>½‚5lVòÉ2dAuÉ ¿€ËÇóNÏIˆ­’jÒ#+%ËWù„pvÌ– lµm·•ÀÝô T¯O_cöB¡÷‚ýÌCÆ·{i÷4„t ¤É^oMáxÁ£¯,”„‡ÄÓ÷s»5lÁ·¼¨ÖWC‚ ÎL³ØÁ®†w(ǽãáw¾á½ kššvøbÔ¶=äI”L›MÔóïÕ!˜Þ4 8UtÁùæ*®™-“J³Ï%˜ù,CûŽ6n!Žé6 U Ðq]‹­§×PÓ›,ÀåÖv/‡ùq¥B6O°¶?Žì8|$» €q¬–2k6èk–êÄPöÍ¡ƒ6ò¹¶ÛŒ§ •ê3ÐGêŒ\Õ f rãp"5[±ÔݾÙÜK‘Ó3¼¹ÞÏ9•¼ºj€]çµ4PÞÎ^í'YÔöš1;Þ;ƒ¡Íbî± ªió kZ×ÓÀ\ ÐŽßBKBÄõ˜³¡ìÒcC98o¦!éƒ ÿŽÎî‹2†üS9‹È Î_ÅŠXá€#¹  #ô=ˆéÅ>äT ™åE·ÐE)H˜‚,&Ÿ%5ã=ý©µ1±B³òöì*Ãl«§hB~ûL¥«dVDé¿(*FÆÖQ‰Í¸"¸ZM4Óá=úæ~K+ç]C¢Àöv¹'sÅ8°sÂ}7À-›æ<ŠÍ^Åû‰.2oPªpsÖõµµ*£Ø¤4HÞ¦šÀ»çHí5^%_hº§±Næ†׬Àk Òݦñõ‹þù±üåHŸ^•õnº?^ „3eçIA57ú›Ù=ˆ¬4Ôï±—;h%&X[B3Y2Ø¿]J½á8³´ ‘¯•ª?ô׫À÷ó¨E— €ŠÈ±?7E½Ôoqð§APê4©!tžÖ/Rˆ›Ëg¥ízœŽÐ¤z]B8$¢EmeäÅOØ ¢§ ÿÂÅ.n¦ëœÝx¹jÈÆÚÅÄ £*¾pÍ4~-æ÷fxÓ6•Ðë¶T¸áeôK+¾¬Å´ëi2Zb·‹Ùä….îÎ\Zø7‘Lía¸b oVPÕT$}m±ën±ïÙ†S\KYJ„»ž¦9yæ)ù ëÃ7PUvWÅCˆ££*’ࣲ´ÿhÇ&K„³Ç*í¡o¸wRqÁÆ)mÏ2*@Šé® ?A[5"aKKªm(ü_N'úìøë¤0pq~A+¸@y­b3£gÄlÓ˜˜‚ÎH¹ywÖ¯”Óƒ}èa}m¸àÙ ýßrÌõoDb”¡¶ý+Ü4jè7ímh;ÌÅWªý€¦&lúžU|ê!™ô ¬pþìU?Ž ¯D‡RÐlJbw®¥:'3˜5LßlûÙú#ÖËA¢ÏS"}>‘(Û¯¾¹ð5 n¤‚qC5 ˜¨ÿ0žñ2 ©]›s1Ríhï±½è×ß¿à»arè³’ë?Ag½5¾°n-ÉC´UÖ¥L«^uÞÆRRþV»±ŸrØ'8l¼ø³TQ59`(´ø ³Á«ÖI‚hÑD¿éJ~J :¿ C¥6}±äXÄ::Yú&+Üv¬åÅm™GLD²"ûW'goµÓ^±k‹…Fòõn†v’Í1öƒDnREFQ»IÅ4t+òê¦ÑÂrÅ·:IªÒéVÛ5¿„Ø ‹à÷¡DÍÝË"CC´9Ú¢¥—ATôåïèÉoêçê«m VíìáBI é9~ÎWô¾®FGTîPÕkj)û X|9 Ê$SÊé°Yç!Zð¯kÒF)Pç°‚{ÄÐÔߌº­‡Ì„ÑrÓ¼EíÒBü©,"`K©C9ûÜ T~láð®?¥{ó9ÏÅ>Ý}ašÏüЦ†ßPCmMt¯!9¦¬šœcœÎÔ#wy½„íºaø’óõªBsMÃ(nšÇ¥JúJS扮£Y´ÏÔž^ÚiƒeÔþÀ+ ‘|(Ys"œ‹r©Xýefð<?þáÞù™5ÈZ*‰¨»P–Àªº]O‹(!H¹¡û^-\0Εö+¹…§—Al$*2ÜiÈytˆ5íÿD·d «:ƒ[™á1÷®Ý¥6™TI6v¿ž’ÜÌâg…|Þ’¿z“DqÝDærµÔ@2OØ8U’ìü`5O8Òêœ *ºÎ ]@{™à91‚òwxfã¨owy×Þ,ƒMe|"´Øîûîè!cX±GuÞý ±k,ñ'‚ˆ ¶Ú ùá‹;…¥:L×´ô§º òy}ô.®¯ûiFž^Q£##òŸíû‘LáÖ É¨âêøý/9OèA"­+r½Ó½ëÎ2t[tOÁ›Q98°šûºÝ7íc”kx¥eqgÇÔ¿5ÑŒùî&Ü[‹ÕÂÜÃ;Ë/Œ‚xGr8.uåògͪQŒ˜›úù¹0ˆÂùÉMçÁžãÌu ¿Î2;Âî`VÈ*é È|É 6 VMeOôGÓì(±”‚IÚ&{me$ù¤’rêmÈ9¤µ ™ªÑ¯uîX8ë³'.ß~[P 6ÜþI;d 5·ÉYÙy¸×' ‡£¹Ð!˜Ls½=dŸŠÕZ\¼+<ƒj÷r™ã’É”~Ö|?ˆ"ZFŽÛ}RúÓ·’«5J™Û¥P&rsi­€¨ ˜ž™È=ƒ =²f9EÙ+Ô£– ÙàGoÛàóŸƒNwmºö“¶¸±ù;Ó5ÚŒÕ+=œâJ¬ô·øíbk%–rSqÉnsÉ/]f«[ª9P"}ñ©½ÄÝ”ô·¼»°ÒÍðòÒPÞ Îà,è [Ñ’=×MËq* ¬ž~ãí~,1?X‰HÝÒY‰c;mAä$5‚ #w]šüÏEt•‹Òºi€OòÐúZ OteIJ² ÑŽ,È÷°krè`ÛÈjQ‚ã7ÐðÕ¯mü¨–6¹¼ëeÏŸ'&C«@þÔ,ÉðU{Ö\P%õ.›rU³UÞVñ¶·9¥á]&¶„*Diƒ³,x_zEU]ÇJ]_šêüaÿ·/2¥} K0wÓœYÝ&ß+òBgZ¥c&¥V³Z*^‰èÝ kºé…2˜‰t¸âá=sÔ;ŸªñþÖ©©Îe¸li'pÛ̦H[hç¡-¾¤šóû“à”¢p¿¥Ìýì»áp¨Hf„µ‡)ÿ__:Áí~€N†]ÕçÙØ‡ëz#ú˜š.ØG0Y›Ì•-ÝD¨ZññvAĦy–Þkà´:Þe`­ Œ¿PrJ÷Š˜MllPîÝwŠßùLʽõªûØGÓ¿ÿÛ^RCžç«T#;Î@À ëq1¼&*7R)‡‚2Fû—é¢ÍÕqCâåŠ|„l~*s°`ˆšìE}=Ú·æQ®™\Øy=… —v8¿‚ÎÌMjóâ¹:ZPÇ]†¤hÖÙtÙ²w¾í‹ÀʞÒ–}ß{7ñ[°ü„bInÓœÐQ²º6Þ©W:óT=rаA ÅÓHã=6µ·Yæ@²“¬; ¼@ìh©4¼Ö~¿?ڻמD¼]HþhZ3»ÃóMfìÇÿ1¢pÞÑâ×£ÅtÜãˆÚ2=$e•Rú·M¤GŸÆ›D-Á~æáäE,pk§ª49O]Hˆ‹Â"wDüºO)$ux1D"¦¸ÕDÛãòч´DİSœ8–5ˆí)ÙêBSÙTRMÅC‚u&/IMõ°[xÝŽ—“ìí‡bŒšŠßnÕùöfüWy:öD‰¢Âšzxÿ¶wfí‰ÝásTúŠ?é“?8ÍXÁ¶šÆÚ’ì<“þTº bzàšºP.fìð6âS4ô,qé U79O!<–~¨–jF·£â Ûš2R`æ“Ì-°”ø(µ•³Sº4²ÂyLlCÄd“*Þ¸!{9ÛPl.Ø?(Ú#Âà«™rDÝf‰† BAý·|'w|jÊsvíÉ=œ6&O£‘s¥É!$@¤tQ! ,GÍÂùÿÖ0?ò­S¡p£†ûÂúHú—ª€ä}ÌÐùÌæÒe%ŸîŠ?Þ{øXEcË®”uÂ`èZ˦ûÏÃþlnn~R<`û˜“h›b-U‹˜ƒ­ÓXôç^Ý2×ÎÂîuðžy8k¸ÞÒäE–p-ÎÔÊÔÛ°çq'ÌÞWS B( •¹=F˜¢\«>’?cU)PÐN•ªíLŸU‹•jQ ¼þnTºç¢‹3¸-ºh’§í€ù$3̰©«» ¢ý$â}Vx½µ‹É;.+èûBkñüÌÞuÂ|¨'ê 5º9íô¯EtFô£(2™óm%óËBf9Dªqz `ßuÝÞ]ÅE1vÎ(5¿Ý\Pj?<'Ú‡GÿBgE~îS€àð¬R§×Ña¶©.~6wLìi… ¼0j$'kP2»…"àQ4–[Û@Ý¥¶jØÚÁßãBäøms`븿RꥦqzS±]#Ó·šlY¢m?*ôG©–Jé›å™_«ë_¸£öníá­à«Ñ¯u)®:ï7ÊpjÆÈ>”)Ñwµ83ì‚—’·èÁ3ºç¤ÎÀ09Ë.½§¯p®QâSk&.®c'KÙø²¿¹Êp+ç%˜œë¡mó$jvÕeöúš#$ð>—hÉõóƒ $M7œ‚ó=ó $´meºÿi‡ ›þßÛ‹\*Äð3ëX6“)ÂÆ“¤kà]=ZÇŠWR{R…ñésQÉ¡Óü½ˆ¿£i,B+PÈE†0D&0Y‰nê-cý+Õ€’y&Ç6M$Ó~añdJK(¥u2)€ÊÓ-r}"Жù¡°y¡ˆ-cûÀrgÉ—^Do~ø÷Âu3IŒZ‡¯qÍNµyÐYÒ–8T£—…”á£÷)K3¾1P4PŒïeÑqn˜ÓeÍ&㦇ί_T’i„ØÉ˺u?jß6{èÇf”~ývóš¢:–LýzÛüHáª&’|W•”q®mŠ–xm“vTQˆˆ0:_šÜ^Ä^m?[iøFÂí̶YAð„—°׊þLjºãðâ¬×ÊšÈ(ÒÙ2µÔÿñ`'©ò Ù‡‡XAmâR²Ó¦ì© 2›&ÆàÙŽ~§)uMö-^~àeï8íl$ÉÍETäŠQènåÍ} D0³ÈJ&@&ˆ^ÆÀmÛÃ@$+ócÿªTšfRüÇZ¾+µÀxàiŠ1t]"˜2ð"“†=×.U¨¶|æ¢úÖ% ·ý9qvBN@¹˜vú:®-ÁŸÚúAAR*6¾îÈý:Ÿµs<+†•hæÄ+ˆñþ0Ù6ê)D$D¼–tdyÅ*,u ¨æ‡ø”ƒÞ_KÀ{3çÆ¨Jý †ZÄE,‹o•áðÓöœcX+¥iG’vÒc%}Û>៻{[$Z×Õ¿Y&ôB2YÌ6õš·à›)†³zÂò•*wQÿÿ£3÷¯ƒ÷_ÄÈ ÑB.–;aÃ?þÓ Yi'“‹¼:"@'1g w³õÓ:dŸb(:Mðúk±oÖj#§†Ÿ ¢’f¤Ú…Diޅ瘬8´v¼É›È:c¦2ºq¾*'¼À[åS‹õ¹Ý’·.زy~ tQYð—ò¼#Ðñ7ॿÞ%Ÿ° •™‰[a$ú‰¸sÃU|:7[u'Y¥£Eqᘆè$Ómò¶ãìf‡E]]óÛçXpÅ«g ±µªrì¶þ¹eQ‡GÛô­L+Ô8Ý>É8†è‹gÜj&ˆp\Ë–åÞÝ)Ú'"Qgþ]]˜òY@Äϼ±ze yAñG–X*¸Á%÷%?û×:»‚«_¨Z¥Ej«|(×WÌII¯['´‚ËwBÄ,ao'<©£¹;Ÿb»+Ó¾àˆK3F.ìÌ­ ïË4¹‚r^3<½»TA§Çî ;‡WÜNO_J#)#ªá‚(Å‚ãìø­=ˆA°œ°¾‹&l‚ØoìI)cGQTg0Œ¯ë™†O%4âxbìL›ÞÎ0/§ø±ë—‰pÃßg¦ÞƒUpŸþË¡Ði=`|™ múÌÞš˜Ÿˆ~4ãcn½9¦‡!Êpý» éæaµï²¥Íå}/§¸tdBùÒt›‡+|>G¦`Á«Öš!Ú˜û¼ƒÿBMR¯¤‡q<J:i€ŒUéDzʸ­Mg»U7ìIí!¥Rn"ìÇñ_ŠäÍüè»PÝ?µñêðÿ7Ô “½šÅNšä/GòDŒ$ï WX(”ó÷îQ«awÁ$¦!øž ³&Iíã¡åê5Îtº=Õ>×fÏ9æ×œñª:ˆ½ú~¶–!^1óMJÙ3[íFTŸ‹sÄ9Ö¶ƒ;3A;W»X’öøpˆÇv›Uedq©½%èMÝ@;ñzûÊãö/Ÿ:¶_Jó˜BNŒÍ‡ø°½‰åÙ?, CƒtÐë§ßÁ†‰’ÛѨ쵌ë„1›¾ù#î+ñýŸÿYï`[^ˆmRË\°_™@Z¯ ŠR’iZíODl ]CŠâëQ•”²ky¥ë̵îÑ:J]S׿B”ÊÈcº·ØεlBh±81?Í[Ÿ×fJE'¨Ì˜¸”z‡p´ÂTµ}y½šM—|·àäb9K-7;^ Ãe`’ñ™¨çKeÜoU.HØOeÔDjHúókqœaªgß“23p>ê†BhÉŠQ•u|·—Nó[Vž¥$fäÅh ø¾¨Ç´¿Á¯¾CÝ’ù.0fn´™G]Ä(rÆØ²eš~šÄÆSœ/ËžONf œÞS_‚ a/É©n½¼K¢Ú¾ÁË]$Uõå¥î/UÝpᥟYƃàý“•Ü.ŽTòª+ºµØaÓceØæœj¹|„5Iy~jaL«™Vû{DÙâ,‡i?C£8õïvËãfu« Ùe¡Ü>ô3J'ßÚ¹°ås–¨Ÿñ÷]8&ω,3ºÄ€2¸c›ŽXö^äó*É7 »ÙÇm¢õ›B±;/×¶„¼ g@{­ÙÕTBч +Î\X‘|'ܨìœèQcÓg”ÛbÄ™Ûܺò(c.f8Þú€nSþ¦ûë¸<¡³@Rˆ’öáŸÒ™[{gï1FÅöŸ$ 1Aƒß|Ù:?Ls.&{éÙuž9ñøfäÕh ;¾dt IÌÖ†zQÌñ½{üÌ_?"»ûÕÉ)$M–—5D2vÐÙ&ê—½lÊ‹tr›œØ¯§ïü‘”¾œŒ¢Šé¸/Õ÷.mìÛ …¾CÔO!£™3Ä@Øœ.<\¨¿fÒ~¶7Ý™®˜¯æðZøùÊMRB$ÑöKëÝlô&»ß]îÎÉï$ýªL޳†ƒC]@Ýk7!̃Ó=‚ÓyjÎýÌ«±¸º¶qŠ\àfÊî6Î@s?ü³‹‚ê¢vX1Š8Ã.Ü?+ÝȳâaâmÎ ž·µ¾¿ç4Êã» ã[p’‚Á䯖îTF 5,øÔ $æUÏM}<ÿô2ð°¦^¢›Ÿ&ì8‡®P+ŸÁfÐ ‹^ïZÍfirããQN¶_“1ëºU}‰õ÷~SÖÀ¢˜ë{1H±/1þÀ°PØd†ßéX²„ÕÀI0b±LWXþËä·Ú îim7’­˜ÿ!Û­ú=x3ÂKñ¨ ¤ÐúFÀ~èyã} îô5ÀÉ&üìDhö]P ¶Woú+ÔFòÐ0 ×>„5üÊñkËÖ FÕSR8üé¦Í½çbH”Ínf*Ö ƒ³GPBá(6"âèhéb›»3­a”•gˆìM„ÅIJ®¶qE Zoªï3 Èwá£óíë%ÝléºMÙÚýl§­ãDӧĤqQY³Ð ¸žÀQÏÓz×4Ñw µpb®–#X˜ÔÇlN-æ§}fJÏçtŠ‘sÁÈò°1(^³š¥Q4» }’ân»»àÜTgÇÿÚf>2˜Ù_¦Ê‹Ùg›iR½ð…‘ºtQÂŽ°-ùïC˜¦w–wP3˜ö#¸Uî¼üœç*ŠdçEÎp̸n[ãkÔÓþ/Ñ~*’ \±9†[ E >çq¤ß5Gê-Ї&oœºö| Ë…1›><˜:¤Mà ™ ”iÂÛÙŸF'p^Tï°úD•¼‹!VmÖû‡xê0œÇ¨ƒ6gñžGwpÌyŠƒï&Èžû5îb]qÛúAoùìúŽû:ô)ñT¹—*{B.vÉœhÜ@©وëäpþbå óHä„FhQ$Øó"Ò¬‘ḶF u¢â€'•§;ìWpæô¥r"µ’{«)¸L¼J„±’nøev'øVϪ>ª‡ä~Ê"Œóì´4YY E˜Ø_Oñ¨_8Í:Û™†~¶Øzc†sjç}´½ Íd¸Ù¸s¬Xe)Ú¸*m>b¨¡OÏ–^ÏGˆ‚Šÿ€­„ÓŒœ/J&ðÀ apÎ žmB€VáVçÒ•ê"+oæ³?—#0zK’HüƒfAdù¹ž@Øu™ÄÒ’ñ©&¡éº3¾–äBZŸØ¼±¢´"SÆ`_Mæs¹ã:¸4†XJEÛ퇷yé¶"¡¸ð˜Á[å¶Àèß’;çê⚬³FŸÁõ¨¥àݹÙ-’æ,¦n›³ŸÒ ƒâ«)÷¸°Ùb¡§‚´å  L!ÓÚCŸ§o†Z”Qø³¯€z_QSpÇP.´ÍOà}Ë¢P¢øPåuHTGÛ?iØeýAتXr‰àéíå#ÐJ ï‡âñ:ðAxRn–Oêã}8¥ZÔ=|ÐC¯YåõVâ ˆ‚MÑ­2›ã!;á¨ãb¹ _z…vbó?æv€ÙjØ®‚;Û=Ë Ö烟HkÃqMä$ñׯ Vöñ¸Ÿ‚V‘SýxŽêõ20ÁÑÖµ¼3 Å 5SŽbHâIJA¾¦â2|ìàòoÛ'{’´>x»d¡CHÍX:\âçH†Ó£•í.–ƒ‹XbáPËFã&¡m¯îÝü°žU#‚5Ä„òÓèÿp Ÿ|HۧݵÌW§Êø›³sÕ‹½rñ%ŽÕsHÉglèÝGè—>1/²Ö§ Ö´öq* da!þÀÑÍÁ Œ(“˜ÅAí§ô¥4øšäÜÈyðú?IþoX¡;'’¦§ÙÛX ‡¢7_ ò³ý Ö¸ |gæÌÉ0ϳžs¨ÇêÁxÆ‘¨ŒÛ§tE6‹[Ò÷Þ·ƒ2g•ÌqÓ }´\ÆæpµÌK~ ÒÓÊÐEd#É ³®êÌÃP”™aز`ÜFìêT1•öÙÆ A–¾µŠî;ê(ÂÒa‹ÔÀrWγ ¸€pÚh£û“žÃ.Ïu FlÏ´—«—É:@LD²©˜0IªˆD<¡28^äÆfÕy-T–!ê£ñ“1<¯gäÓþé4ôowÙá¦y†‘ pÎüŽ@¢ÅÚ9„cN'OîÂAô¤eOb÷Áµ†Éæh«QÔ‰…Ùªÿø°©knP°%ªª¶4TÉÝŽÂH!]/›;ñ‚lЧy¡d4\ûÔ8å˜Mõ`Í ª F«(á âTÇvŒ X¼¬HÉá1Þ_Æq î(îmÄK 8€>Þ+÷nˆ¼²×š¸¡x£è({ÑÆM6Űʔ h€l£6OEŒ|R¢1#òÆš×ì|†1·æ­ûPD\•q[ÅÀzÓ笧 X×(8L:Q›Æ´CÇ÷™l(l-Òj¬ö/u'+WŒ/€g&‹ -ŽŒ[5þùßNÝ#*s*C6[xÎOàì‰+˜P?é`hiÈ(È.ô³ÝáÿÙšÛº%á= ýª¨Ó27T*=Šno˜ÆàßËå·¸õ†Çû_»Äît‡9;iÙŒà ²"'6¿Í(ª ¨ºOœgàDŽ"§úA ºìûü0µB­Tmÿü?P^ÛòyãhñÅÎYÜ~¯Ú…•e¢LÑ`ˣȗDé“¥©I.Ñ£]äa<™`¸×êüÔíËÖ…ïeúvËØít ør %“s‚ÎݧÀ9>F™Q—“Ù𤧳æó¿Y_»u¼¦ö>ÙVz˜z$ˆx1 ï1”ï×Ô¿îh²ƒxvœ‹SW¢*-…z“Ñ—Äéö¥¡ oJÆG/Å|bÊ1¶Ò'ªWoÁTgćØaxdÊk-5•o-ü£®m·Š8ã°qè+œ×é Ð-›G7*·Å 9u4 ìþZ`• ýÍEÄó<¿< ß‚˜m“€yÛ;KÞŸŒ#Jf•vÅB9µ–RüÅõ^ƒÊãÁ± -g²N‚â²,ÐCÅX2At2†¡cýùG1•#Õ(²‘µ¸å‡x#*\øIÔvƒò>oy½€»t,þÔ ™'{+ŒU »C¥üVyVª{€“£„‘YÆ«1ªÞDšý‹»3Üü/}îw’ AAúÔ§ò’{ÈbÍÏ-’.à~l|Ý&ÅðØw_¾%â4î¼ 4ò9ý¤Ñv¯,Ôx#¥€ô²¢]ǯj„òéìk5 ¯z³i8Îh2Ñes×gÍ¿ÄÀ³O7KL·Ì˜­¢¦ýç.Üm¡šç„/q[*$cÕd­§Ô˧ëX¸i£Ÿ:2üE¾Ø­†‰—³µíÛh&_vrú˨MðLÿ Ö(÷%‚ùÁc “"³XˆÌŽ™â¸FH b™Až‘é^)-S™Nv˜:^•CƒCÉô»¬­#Åe½š†ƒsˆmì€6-.V-ïµsC-àËìÕšŽ ÅM-8Î…l9õtîæ,V&àÉ•uuæ¯8©Cdå‚ØÛ·uÝlr{C¶Jí¹®˜Na„<æ}¶îþBBXF<¹¬ì<žÄAZ pRÎïìö¾Á¼û‡Þ/¼œÈ¾Ãpw=W“E-ŸïžÒ9i3¢Â°Žè'Cx5Úž›Ò„ þ”Þ7ö–i¤ýºá©yç¥|/¬|2…ÖŸ©Ìë'…ºj}*n¡YfI‹®÷kþÅ#Shݨú•@z<Ú­ÛI-åßEÀïß=ï°NúÿOêå¬ÂÅVµÖ0)ÄùL©SÖd?Ì_Ëiz˜ÓBÐÀ³ÅÔ±nù3æßTõ¦.©!Òüg_bÅì\·;GyÞ_$Ïêb}%͵>ŸÈ«.û7°.)°ÔÐ2üDÆ¢¨ÔdŽ%3Ô½(¢vå½E×ãNÇÚ3?-‚ –l[ÉðDnãV:˜£cæÒ3óžj`Ðä—±±» ®×ŠF-Ç}MŽTT­Ž’w)9¾–ñtŸÍT'>%ë0c1dëÐÓÂà ­óµéô6ÉhöêNWfëÖõfnzc90à¶«iCÉxç]·é´¡Ù´GðwƈýО|m®¦Zöv\3Žømúï=)¶³ˆÜf)¸Qv¤¨t±ªÒ!¨Ø—¦x~+ ª®ØkŠrpl4æO0ŸÔöÜŠæÌ·á²*'Mñ›ÄKÿ‚³,‚úeÿqò dó «f\:óÖ“À"4ÈE' *æÓʬ2Ÿñè:nEw3y¸þö?ì­T ³ìËh£9ô‹#‡^²Mùx—Oâ|vòÒL¦ÛïÍ‚@ECH$5o§–_¨¡]8Ì R~mº{b¤>X+¶MD4|ø–ª]ŸßPaàМ°Q~ y­›(£ƒÁˆÃQ™:åݢݾâë ¯Èyï*åÐeYÿG'œ§ágzØ@Æ›Àð=ÊÞŽŸT^?ÆÁ–¤"Jã«„£'èrBcÃĘ[UOoÛe™Ë|B9º`±s5£‚ÚTri¡ÛWB¢®¿i„Óû Ë[9“MÇë ÐݹiÒA­/í«Â‘DÞÓÖÇ4'ÈF|ÕÅBœQ "¸»ä4ÅŒÝ"’¾VU *0é^©éäEÃNòe+±MÓUL­øùjÏŽ@D‰xô—¶®S¬5W¸É«øqúaǧ¼?£€,+çë•à‡n¾¼Ã—ú\½NÎâ(1…ï3ɨ]5G‡q÷P9`TÔcÎÊ#ý—~[‘Ž<îº?0dÌÙᣞÓ- Ej[Ô|í¾Ä€ÓM—S¨²«cÊyi~’ÝR‡Ë†ÚVî_äo· þÆÈ†µ·…vŸü{jQ{§¨—æÚï¿’³ïøÅ®G!S?mX;–@>"«gß„ç?Ô'{…—Œ!7 ë“&+ÿ3¸ç6nú¤ ¹†›Ñ¸¯"pcF˜™þ¿{7ŒÊgNtþÍ/z.óÒZ}-²9ÞqÝe¥ÿ 7É—i‚nåèOÎmŠ0c™øB±‡æÅ?aÜJœíðȱ—¨Âÿ?û]ƒå]LÞZö®øó‰Ü¶cR˜ÏYp#ä Aù„Wd-K)%N¹ƒ‡>tjœj/¸V‰QZŽ?\«®åÚƒCÀ‹ÌÜu—Ó=ö¹  ù…ÿõÀΧý=wÓ a‡ï .:á’9Á'ÁJ‰EŒÃ7Gœæ Ñ-Å »Øk(Ç&œŸÁ—âîB:µFÅBËöÿ*£ ‹­4€MËNs¥1:òÀ“§‘î®k‹”öÒm¦Œ—í·{ÝÚ.ÓW°¼G†|ëfé'‹*Ó^ÇÕë˜H42ôäE7ôùÆÊÓÁlfLt±—®ž’ï .n[vIÂÛËÓ7Ôz!]Ù&ÑÖ¶,¸à1B¾¥çåGÒ&|¤™ ³ycQ¿T9ÁÓlÖç­äÚqð½v@w…ØÔr˒ΨâŽ1’ô¡ëíp;?‚ùI%€Ý™Ï­X9fÌ$ ñd¸TØègWþÔ´¦(ÅÿotÈÐB¥Žô·²?¸H%Þ}¶çÿÕ¸EC)'K’'HÃîÞþä1ÛQŽ ó¥¢‘Çp‰‰8%ëjU—³vÍeÊ>ñ*œ*ôË˪lVûýº5#”²ÎT<óÈø÷ÛGÒÜn¡½O{UÁ$ßÐ }cYãžb—ÿ¤G Åc­/§:N½Šzï*n±¡‰™®#Øýn7 g¸Øð@‰¤&à}",jB ð#&f‘›È Úm(2³IA»{rŽ{,ÊÚZAÖéÎU ¡Ž}d“îpÃvð…¶«€HhëÁªæ2·â®dÝ~¨b4á·^ËÅù¸'¼nª'ð`‰žY§mm4LÕ"™ÀÀ†¬éLÞ–ýâcªÚrjåù¬aZŒ"_‘pñ ¡ ôŸl(G™e ÷¢Sð ¡/£øæO‚‰•‡¹kà4½õ¶ð¯:›IÛ1ÁŒ A…³>#È»”Êÿ-¤)Û –‚íÖÀ½ ”“Œ¼=“ò,—Äê½³ .·}w =>ºút˜¿oqA2S-²$Ì[à@O-Ýüü>dÍw]§ˆ‡~^×÷ä@W—2×ý~BȤÙ×QïÂd*Ìl¢m•‚ö2Œ{T»›ë25€Ï$¦Á‘{¶H†Ø–ÆBv„0Ž#Õ+À¨H#H)‡¢¸¿h€œHåI’•PŸÜ•9…ô\ñÛJ4ÇͱäÜȘUÁÝ^ˆ]lïqUñM@×U‡¿n’Èêðz$©Z·ÁŒ4¡ÓÇ@““`Íð¸Bá†Û¢´…ÒJDï$znɶSû[0(â©ÀûË:D‘§™Ç÷k…SÚпšÞÁßzôR›(- ïuè˜.Ñ™ûÆ‘ç™^}7Âl ÈþÔâüÂáFÜÎùmußó,ôab}ŠÇãWÝ^ï\†n„gÏÃ÷øE¯R 2õ/& âȼyp:Ÿ %™m4tl¯x :hJFEÃæj5ÆDJç£#Θʋ,[Í ôGŸÇ!ñMOôÍåtÉ8¾Ž•1tA)òéV· Ø”i°éaËùàhÎ_CAE&@ÍLÖâi'ˆo†&´$ۨβ}O=þ:Ç·Í’ùÔ½€ÜB¯ÉÇ.ÿœi8¤ê$"öÝdcl¾ 9vؾW†a©š3  Åá?)àaŠ­P£‘\È.DE7èì4gNq¶¹S<Ü@½|á[Xö÷ƶ ½bW¦&ÆC1)E¡eÏÀlš!,f`š8Ö ü’$È%1 AsNÖÝ·4sP6ÐØ÷庄ßÚú\ˆŸ$ËÎq®T÷´‹l›Ú·—€Ì½êd î³êUÂðdZ:•ðëûA`:WŸp/líDÝy³Œzdœê 7ÙwÇe²îîE/²T¨ã7X5ÙþD‡îx–z*ÎÇ• Ä„¢ÑØœ÷»_w>ÈÚþxUTl( (@²Õ}õÈh(&)³«ñ#Æ|‡ÚœÂ8ƒÏ dz9¥Ùãü ”%_³UQA ׌-a8¡òBÑ2=Ò…8RJñi°àF„¦ÿÆ$ÊéJÝçÕþ†|Gá—Rø:JM¶¿ê!ÌÎWR ,tVôP(Î:#TtVÆÐ̸õ¿€ÝÚ fÝLpU]:!ý6hòdÚÿT-Zò²ÔŒõ–¶N§*X%‚ó aX ¿GØ]ìÊí9ÿlhÛ]ÊügçFÊœpήÄÇ<“{¼Ë0ú ¬ÿ‹_¥˜¼š8ÇŒ<`s,O)QôæÂ™[¢¦(¶:ûpxvoW(u6EíÀ´ÿ!æeéôÊ8C·)7·>›ì“@ ðN«]ÛˆXþVºÝ&C—ňõ6Ôü‹¢éK<äÉwe:γ4GI §êryWa[RšH·©×ШÃ1‹=k‰SÚY!ëbâíz_¹b8çâ$\ÐÏ¡vóGœ @<ïOŒñ÷K89;iiÕ5™Ìõ4yÍ|0´bÉî%J(·¿œ !¤%ƒv(•bé+h…ÞZ•²]®ïÖ×î-’ņOK†jšúëù=|xf¶üÂðJ‹ÂÍ%ûÃWçõ±†“QmìpZcM‚¶ÈCyNþ­Tw8Ê«Ÿ'25 —ìæVn´¥‡^5)z”:R¯ä¬Ä÷p¸3°D]iY9ìÁæ-øCž¦Ü&[¢BãåüR7{Ð/Y/È1”ñ½ A©Â .î;ð?‡ç6I‡ÕƉ²Z»È +3#_ã¨%6ÿ´ÛiRú»k0'ŒŒšRßà¨ÌâÇå"–¦~ãú¦þkRá½põBX ¢1ê*ú§&pR?‡—‘ê869¬ êæMÓëBqÀ¤:v÷)AÕ?‹9úù·“¸)7-·p²Ý;FÒˆò \*NɹÃ\›ÍkàYغ3W¾eJÿ3³ UtÚ­$Õ¼«ôö"ÍÀ-æ}›av­˜a%~8•NÍ),Öp8×Ì7 ÖƒÇ@|o`ø“ر©H2œæ¾-Ô…ðØÝ…‰-•¥h&)+±R¯Ylt꫽Ï$ägj¾*µ‘Ž¢@ÑC@½âA>ÀSô߀€º*8_Ê^ž¼ÐA#> Ö\¢&ëê«·âÜ#•°&WïÜ–º×ÉêjV€*0~_sÉ£Bd¯iàx5`Åt.|}ŠUÜz?ÔržSÂÀ¦0grÇq͵ ™®¼ŒJi=GÂ.–ºÝὟùçh~ÑDáqöÛá¤ÖMY)2e¦Óošù oûúPÆkèÈI5¬üÖÞÑ™Ӽɚfy|XÇK»’„b8GM¬–Ê•8}…(7Oƽ¤ ¦XðîDP[,ºà6}ûdKÿHœñ]Íu1Ù#"šèV@rŸö»ŽFHÓ’‚êìǺiVåÉPM×Ðu9[RwyþùúKÝ UkÛ$ ¢ü"ópq°Q¢{j€õâ_½a"è9“ÁAñs¡æ* iØfàP®¿1`Ö HwÊúG3¹Û®Ú(׋k8èrDWÄ•O€5ñC¶h¡„ððú4Y›„bøŽ™÷Ê-ª!'P‚²Î5`’[(ã|õ¿'ó½';—¡vª‡|B† ì ‹vW˜Iw| B¤ŽfÂ<Î3‘²åwû@Vg.c]m ×Èó—ÒËz ´xÓ/z `8Z†&coÓé»c‹jdvñ,$ÕÓd€"EÿQBv¤p«’}9Îúѧ·eée{áõS3<*Œ~ívMy]9[çúŸ+\ ™¯@ÚR¼@JµŽi0ÅJ6Š¡÷˜>>Õæ…¶%J7™0Í@ÓfšmG‘–0ƒ`äG%&Pø±ñX[7PïØ÷ä|½r@ŽcŒÜÑJN·¡&¨!Ð\)c²+‚ŒûQ¥Y )ïb~|­d†?pPU¿^ºë9ù6}‚÷#%k[ÏU¦ä(ùþÈ©%°uËò3ULVRñß•ŽÇrºßõ­ó´ñ³9k”¨ÙÚ#å4éa#ÕxI+¢°ºùqmÚ¾>6¬þË2ùlÙ:v>mTÝP2¹B‹‹d`'”x&%„.‡Œµˆ<â‡Ë•x1WÑ럄R§dR,C%æÁRó²EM˱‰ ÇC‹ Þm1½Y¥¾/þDõ)^xpë9yº_·c"ðTKÞÊØ‚«HíLqK= æIÎÆ0P°z0ÆoÖ(µvœKÔ ®QÁkS{÷Òj¼*—yîGš¼þ€otA´-sËN‚·X¨‹è{çÕ²£O±‘“¾w9 ük`@Íœ¥q÷•©ÇèQ–À:žiP"ÍÕµ~ÇCÇ=_Ðö:Õï†aÿ)sV@¢2¢ÿ–¤UÓ©/¬ðÁ©ÃG4 a5¶¹µÈ·÷2Ó=…ò¨¬ÐMkj§ï„±ðUEY¾<Š<ÂV(d¥7cŽ[¿E£÷Ï0Êüð"r_ñ±+‹6•ÊÁÁûeü´ížÿ÷k g,²®)±9®° þdB½Fsiú ru¹Ýl7SÈÔüî4I×-6²Mïå¹Î¼ØbÖó —>¦ÿyür‰œ6ræÔ+\jÐîUSyõM˨×J謸aip?¿›BJúñûº´é”ü«ÒSöÑ6§À‘ì6Ÿm8‹ý¢@f¥s3û$®—†ü¿¸è±1ëGJÍ'¤\½²Ük…؈õ[¿ ãÇlÍ(\Du‘8]} ђȨ0¶^îoN‘/ Œ @¢,¾ùµöEƲ¦>„âÐë?Õ/>IW×M›ß9‹óŒ©åí­s¬ÆýnÌñØí‘|”ÃΫ.€ä´IÒæD“Üß=½pÌ—£ž×æHÄPº7®éÏ´È{eÄœÔÞ[3ÇTÉnr|˜qZãgØ Î›’Ž¥ò"¿x5fê1*7¦…Þ= Ì{#–L˜õr«?»Þÿc1˜¿ëvÖb„K-fƒŽN–§elë˜ÀbgÏZ™CÏ>‰™²í€5¾É û™nñðYÃùÂiªr|,ö€Gα|›.zJa‚ç”·Þa¨2™ô‘7éGÆO½ˆiBQ%]{ÄšV0(aãºÞ¸>TV…Ô‹ñ5,Æ<ä?¾â¯ªÌ4Rj/(#×Ló%fÌê/ÄC¡ÁsdKþ5dø°Â«xD_ñg‚pó|ÈA…g·P¢RÕWjØâª2´‡‘ûåèb“Îú„µ­ÆC“´æouÙÍù§kG¥D‚Û³™[wœçS_J^PbkŒ<àæ*ƒ)'M‹ûÎe?xBãÓ RPöçkK¬­[jÔÀá=ah,¯M €©›~B­P6µ úõŽöϘuXò:Ø·¬o¦¢Ï¨3òý’TfÒGj:JÔã§8=RHÅx¢ÌŸ8ÜåÜFtË=@ŽA´*i+‚W§ÄmáM'è¼A9‡­P`tÇ÷¶m“!¡™G kmN£8Ë-úæVåDº†‚‰©h:‚†I-{­\Õê·>Ñ0Â45K{Œ¶ŠMÿUÍiôr ë,¡‘!”í7®Eùåù5¨X¥=ïC*˜§Þ̾ظ€¢N”A›V\­•éÏbšFÍŽ³0ÑÜœCtè¨qµî£"}ÔÉAæ¶r7ã›]ÕÛ—ÑÍS%›‰#rœóeÚù°k,"€¸É”²LÜ ÈÞ^œLÂbÇnn߬/v²fÝK‘P9ÚGâcUh«>ŒÇR‚KáJ]¶naÆîd6|¬)"Ý> _Ž2Ìv™y Œ]÷SœÛÖîðIÄOÞvDžppCá–Ëó|¾¤-#>wl/ºp¡8¸—”E)—‰ô12‹ŠcÆ7˜Öoüð¦?œ!"b«œ5â '‘h"ö¡I€hXcî®+ Ã1*nv)>MJFÿïŠÚŸKõ¤vZXà×_¾Ï9ÅJ¾ŸÁ-ÁŸœ¯ G_¬^Îoï{IŠ|¸Ë >ׇ:¶PÃxŠD˜Ã)D2ƒ$‰.Jvlod ¢õ †i|#bò¬œD%÷ù3ó¸`Ù_œc` ž†’ å‹è}Rt¥ôUv”ÈO 8QªZY ÇE °Øêšy7ðÛ!.¼q }€3+1 âIëÐA  ß[º¥µ 6etp‘»°€KµŒ}ý_®Ô¬8S&ç\kûUÂM{™~?Ëïß(Ýgh1™è–Ï EP?mÈ0ûRk¼²üÖ@¡¼¯`kޱš3Ê›üʲK$@I˜Ü>sæ¥ÍT‚ª»ô¨¼úÛ(%Gr<ÁÈòŠéɶš /teç¿ 0Ó$-xTC ™ð)Ì)J÷†FÂ4ˆ×…ÅÃûþùo÷?^­_½¹­9}lhe†’Ex¾î¤«XÖdâyòm2s$¿!è{GUK ¡<†Ki‚s~–ò^(G£¡øk­6â3Ißü’’‘ª&|4y£¯þôŒʯà,ÛEpÿ‘¿©— {5«·a–ôÛí2Ó žP/|Á2HgØ/•ÐܰŠ_ÖŸzÒ ‰™c“ÒtüºìïV¦k·?}ùÔô–®0ÇN Á¡LqpR¥i'|Eß·2„Wž ÔæiÔK¶¾CÂŽ^±Øƒ¾a„„L+ ¹ur² žFQšå´PO„a0ÀÝ9áÇšJ‘–0ùØ:%^jô1‘†ð0W¯¥UXQh^pPYF&éÌãe<Úä ò>¾k?Àþµw›(ò°ˆÜf‰™`þ¹0`nzùÈTaè†PR—É’sF¢ÄöICÑ0Óc³÷ –NŽ€èÿÓú쵺ùEˆÁhrsK¶ß׃‚ÁNiZõx†þ}ê ´TÃößQC.x½®É¦M6nkÒ‘ÿ÷%>ñæp^ºL Q4: ¸@:úAÝ_tºv©Ú»Ù¯}bP7|a¾€ZRˆQG¬íRäåéóël¬…Pµ·ÒƒÛ95ÏkƒûÍÐX Y—¼pœˆ)zÔN2~•ã-çØ½®o @¶bC^ÛÕøIwPû¸àKÙ<îB&©PWõòû[áMEs:‹úóbåúáZºzŠ3Ni ·×ˆV,ÃÓ?þù5Áúø«ðMvƒ I­xEG¡[ó c’?70ò—ÝÑôÊGÿF’}‘8B¿]ºi¶6özs¢moPœ¾³-j-8$Ó©¼ØÃ˜by&€œ12K ¡øÃ“#ÈÚ@~éñÌ­2<"ý¤µn4¯6'A}õ\ÓîdÑ nü³wx^}1zÛ®[ÿàÏÙj´2á焱 »RR²w‰å}òòŽƒ¿òÈhâ~˜¥ð ·-ù—ö±¥š ›ßw$Ni× "U;0S©®@ô‘óô2Ãð ¿ø%ÖUƒ60éÁ¨o™çÖ3c}nyRg‘ʼnëoí¥¿BØÈ®³°Úy“”AaŒ¸ŽŸc{Kä8Õ¦íàÚÞ×QŒ²'§ó7#ŠÖbÿµÒX†r<É!p’YtÖ”äýóg‘ =ÉçGÈ(ÓŸök²‡¶'G†,¼Š¼ÔàÚ(NRõÒÏ®Öô"|6b¨\kNÇXƒÜCÝ!åFWS¨Õsÿ|Ç ÓìÛùK«L{@&³©†oêêNj7ñO?¥ÖõGvcìóÕ;½Ïø!¢')wÑ&$µRR %²¡|bvimP%Æ5®:“e̺ô#Ðd@Á±q oçÜz•w±Î¸,Æí{éME«›¸Pדàúø¯]«nò.öœ 1ÈA„DI·-az€1Hü²Þd«í`cñºHØñó”‹U8=òIJËHwç$R›%m’Rþæ³sýKˆ oVSÅi¸Ûha5·$ iöÛ:è ——lHD©Ò?x‡bùc˜5! 84‰%oï(‰SË”øS?osõD¹m`žÔ|¤ “±¿ ,ksÔRz RÿÂXæü”t°\Ð:fÓ~¸>Jr’Úº òuøjM¢¼Kâ{0t¡yÞ!ÓÇ:nÆ÷/¥¥Ò—{W-~ÂΔ° RG>JìP-;PªaÕ² i“ظ“YÝY+£+ÓË7Éå)&‹³4›"ß12źV]âRž«òºYÉ9å‰ÇÃJp ÑK‚By ܽ"ƒ&Ç:™œ<66›>ùß9!§0;˜M9 ÉgQùýÿl‰}ä 1^•²À|¤ ^¦Æ0gžÑ½±{¿qŠ?õdžSUB!+(J<®yÉU•]‚6Þκ 0O© åÜ9‚P(¾™ÀK1ôm¥*"N\šÞå,™¿sµ’pqeâÇßÇLds@5Ö=jõ¸zLH¬=%°É“eÅ®šä&¯¹†é{+ùÉâ“ʼnr'{ïW‡ø†Ùb—%l>M_e“u±fÀùv¬Hµ|iƒ‡rÎA0Y..ðµ=¾C`.å%.ÃVL‘>öž%ùy¿FŠ;ÔF3X‚n•6+i ™nŽu%WTjïªñFŽiøi®”βÆÁ‹ûDü¾Œ ‘t’£kP£Ûÿw‡?Õ$ª{ ¯ô±Øè¯°bQT¼k/¯ X”i¯ÚU×Þ³k|þ:‚Ç/€o¤¾{ù<ÇÔ+{ÉÊzLVˆÑï/÷3'ÇóŒÇ\lÏÀŸêâÞ¨£PјèÉaz“äÿBtIÌìuÁ#¤€Û5!nÏÁ=ð±Ïc¨žˆorÖG^]{ÜÜÂp¿´øA™„¦xÆ+ôL¸¤æÅHïž«ÐJ7ë‰(8o÷•$ øþ¦jžÏÝ÷3~•¿Ó ‘ÄY Ë@Xh7è÷]ˆGëªìNȃT› Eý,kØf#G*ŒAÔ1~ÌŠyL/}o2¦RèÂw”5KhŠ™BÓ02ê¤T«‰*± í_¾Âaœú^ó‘ç|Q?è‹æãáÖ|š´&§ìXþ;Lì}‘O8úki'Çñ­TÒ°ШÈõaJ¡Ó–Ò™º²XÈñLxÒ ¡!øVÕzŒ—c/€z?ìX–.-†oŽÊOûî§CD´| ÑM1–on«?¸°aˆÅöœ«æ)0pŒwqlC³oë|ápbËr„/ž'¹¬Mˆ­õ‘§‰Þ ‰D”£U[A粌-Kv &Æô¥S€‹X£öD°ÓÎ vf«I¦Omf‘º‰À5 8f½‘`~Õãòã×Fz ™ Ét×/Ñ•?G•Ôcd7v¯Ôìÿž)Úi €>D/ù¥:E‚8äS†mEe°¿³î’›1]²J4ƒzY ãŒj ]z­ý™ß‹‰ÃG¡é¹ä@! Y/ÞSO¦jº6@]s±+vã‚[Ù7.\ôò e«ŽdQEiašäRçWÇP-=&K¦§-mß¿§ì›¿0ˆ|¶dŒ–)²QÏ2ýž¨'H†Çw¥â¡Ê䚥Þü<+S¸¼Å#âæƒ^ÒûN­~D«ä»Zy¾’ ¡að‚÷»°¨nÚjžñ¼üÕj<²OˆØšpÔrrÈÅ…*®1{>m¦k]á¡ ßælÙ»ƒxÊLæç2dº4ç+î&¯gãôºZ.Š.ªôZ@úA4ll>!Ÿ@ºÞ¨°ît®!4QýxK¹c/+ÝþÙvã×=áqEÙb !Ê8ï×&FÕ&ôØ­O¤a#Ôjvo©ãv¶i‚0WÎ7ÿË ¾&®¼ÈÅÍ+€Gg`oÌ€ÞÉx§Xq˜¾3›1ÿcÅ&fI:pøÜE^ü¶¿¹ÇåCb¶’Mš’Ñ÷i÷ÕDH®Ë¥û»wHgÔXP„2fêéÊÛû°TÔ©ç* ³u%ʼn¿†Î4‹äí[@€aÊÑOGQç0xécà‚ ?ÊšÉ\j0mÆvæÐ¼Ç”‚iÉPð6ó“Ô<þÌûŠ:ôÿ|}t_ƒ$ZV'õ££ùcËÊðQÆÑ_™—Ý !9gÞŸo*„ý’1^dú”ÕVZ†<áóä_ö«¿ ô«B%Çd1A…ŽèÛ¼ ß3Òê¢4Asþ))áxzì2öë¾›íó1ºBšc bG*ŒªÑ?Þ·ØM(¨} ßîŠK½AÀ›ÊŠðô”ˆg„äèupXaùÂÉ ü1Ñ|“ðšÓ}E;í'×ÊÌ)¯Œ—õ¼$xˆ…ä"UŒÉŠHŸ:ÒYØŒJŽ´œ™ÇÉyŒSOÏÃl×eŽOwpËðÕ¾:ž;Wþ?õEì¸à9š*.àÆÚ ÿuèÕô&•ÉÌÈ'N|‘Ÿ¶ú‹Ù°57ù  Ókú®å ½3©&ÒþtÏiŽub3 ¤Ê‘[îD_’ŽôIM·$²‡±0Àpm¨{W {ó™°¶Éi+Τm©¶Ó°L(¬Suþ€tzö aDV~=1²3)‡„Îò_#ÄÜ¥Ô'q³†&Èo£¤5‚“3Þb¶ð¸§<ŸA7Y&ÞŒ½ì hyŽ7(NCûm˲?s üʵeÃFÉ'“ÓüD%Œ6÷Øt`ßA9`˜6ØÌ‰ šg(ìlNeË({j~^Â[ßî˜0Ú rn»ýݾ¼Tok‡/Ö@œñ|«–ν'NHQË`¨û%AKº æî%‡ü sg* ±ù üFa²Þ]¹ )Ÿ#  ½lSg…Ä9Ð>Àœ×v·=C·iî‘·òGÖq%õ¨9O÷šR&açt[z^ïÅÅ[z5›6LÖØ£9f$ ©{x‰=4&#k@v¦²L§b?óä@HZÏ çDž3VÈŒY²,Zu¿Âw5|rEä&Of&ø¼çT ª•Ð<¨sÛîÖZcnÜI vëØm#¬%]Ç2A%HR(Uˆ˜Îµï؇Ò<À0¨KÉñ> ì©Ø×'-åõFä6#ÂC¶ >ÙA‘‘cû£.ÄÝó•Ð 3»ÿ¯áµhNõÅ~Yp6l¼0ÖR¶FÊX*üíÇÇ‚RÏ,?6ÐâÚÍb_“>€5Ê{dÞg82Ìiiî& ù•6Qø•JÁ‘ár•1ë¢+Åzº ‹ÚÖHw;iÅ€f-x¬{1ù &¾i¸[cB¡ÍçSF°s-?Œ.7#6ÔgÉR9È< ».o‚„¥:PHhr3…o0‰V/d¢Ø—ÇÆ²m›æ‰ö9úoñTo°7á¦Ð¤Š A¡¢9ÓñlÝáÕŠ †ÐréÎÈ5êu"{äj|µÏ3Ñ‘'àùý1o•µp²>LÔÈävm– ˆ#0ñm]˜Î<öô¨Kóë’üÏo¸…S þ™WÅàoÛ­ø±z$T¨š`þQNg„7ŠEì{U;>Š‘?ø_>ˆñCi±ÙÙHk&©9 ýAPÖ„û¢ ò8wÒŽü¥ÌÍà„Ú Ït?åÏeÂqÕ1ýì|¶Ð0…²VãÛ˜3QÔ0Q1SïÍS£èíHÂ|܆=¯©ýmú8FÇõr…$ŠÆÿ‘b77oŒFlu´™ çû“9~>d[ã[dþN= ›~™ cÓ$2õ6c2_ñÈæ/±4¾¬ŠŽ¥m hŽCxV\5Û†Q®lþÊ-ȅ7%}ÔÅ?ÆìjVcí©~/`aÎ;Û·wï½#cgÎí·Ò³&Ö{’º-m)Dänì8®êã»ÅÇïd9µ²êûþ»8ðôsÅ܇Ò\?а°Ç?qü@’þËÀ6èéî3Á·„À959£ŽŽÔ.Vž,!Óúð]G$'¥ñÍÕXYJ°n‚À<4å‹§×'¾ÇbBƒÒCw‰a÷ÏžHØ—Æ× N(mÛÉÆ=c¼É!@¸/Æ™BÉÅx©“L{ÄŠè2FÌŠµMS,|™Ö9$ý™®V)džB· ÆÐbÿl~h,eô¢§Vr®œ|H´ÃÌÆ@/¦F«GhQÔbñ¹q*%ýÅçD{D5ªýïà<”탦Q¡šr·—*c¢»>>üˆã0zìè65V%qt$<ÞÁó{ð3oïXÄ]T>Š/-­¯JtÄ…×CÄMv«µ²|‘@°Ù´ O6'ŒÐçq÷]+Ó@euYë·ïþb~ir3²s‹ §9Ì6o‹°~—p ŠYVÇ fi9«îöŸÀ6Oȕҵކý©"Ê|¨F}‘¯¥31¶3Ÿá ÷Óë}„¡ž³ŸÊëLnáu¥˜a9£Hõ‘ˆeö&d}¡ƒbÜê 5«vÄËÓªiHAÿÕõFC¬Œ:8³3°í•¢W4~Ž9÷,²›ií\¶_)ZwÏ_„.SMY]‡b_¡Š4ÝÿoX” ?­~TŸŠ3é\ÖûØÌ{P®˜«ä¦Î æêŒ/x½{®,âÀÛ…¥7ð…“üfmk5fýâ=@HÐèyÀ«S`ÒIR›2ÆÆWç|A šÚxgÞyYÂýÓ‰RãÍ/’í «vt;>»#3rå3[7µh,š$Yc&›^5ˆM&9׿MÀt;Õƒ5jÃÉ­œÉ©‰MU dUº‘Ž&a»Ø™Î*1­a›œöAáe(Žf›G€U(H°?ýÄkäÒ*~ï¨ù€ä;="}1J)±äŽ/²—û*ïÉO"ÎI|ú|Êb.RT]b0¬Œ€&Îã^Ónª6ðo&ök(vƹ˜pN"p1|)Îï‹ Dß Ø%ÞžY¹§ôa¬4ì4O(uya vÄõâÅ4 DÔ6%^>C•íêe-#}bñ>C0}µ 7ÇLGžI;ÜåŒs)+œÂzn”D–ÀrüÄÊê5¹D”JPÿZ9á_jµCâw¥ ¥†(ÒdŸ¹'uRÉØ:ùE…x:ÙI æó®6Ôo¶‘çùoÕ$óS>z¶2(ºŠÓB1xG@ű÷ÕiÃÃåñ*¨À¤tŒ0ûâÑU°&,»û‰ýà¡Åâ‡mù´¸î<‡S®tÐÓÁÞ…]Ëš%ƒ›H­( jaª‡Ðij²›TÈé&ÆqUœîׄ¾Ïõlã½7scT”iK? W?ž³aj…ß?Ó¯Þ·79ÑBÊâ{5©LîÅ#÷ï×yˆ‹tL4Ý…T²LA™¨ÕgO¬©‰¥—«bÕlþâb©Øí0^p©Óp(p”}itÛ;¼½÷JÍÛ‡Y¹¸ð.ÙózE @‹ÔhË£µ E=ù¹q©Ëåx ]®›\­<»ã#ø¼—ä®ï¢°WYZ %N4õ‹ò²œZe¾Ë¹a°™§»1!Õ\l옼ž«åm(ÒC²y/ŽãÔŽp!<ÖLñ«ÏCe[ÆI›ÉGxþ¸aWŠ¿]ƒß“ÁE™[JQø0¥Þa… €cíäãÔ[áÐÁÃ*ðõ\²õE×ÃÑB7ž¡h>¾”,DÎ!¢Ìo-°w!dô ˆ2V[y»mˆ¥ML&¶j};HnœU´·Æå“À™S¬w†9OZ~»ˆÉ Óh¹)X¼ (Á—"_>˜ús\üé럖Nº™[8©ÿ¿LÓº‡£=¿¸ûèî›@æö¯­™5$j‰X·yàMl¡rÛR´4§¿¤´µÆOZ¦/ì”ð8KÅZŽø€2?¥Èn÷p‹Pw”|G³¢.£,¯BëHY@ÓLÅ\'¯„¿ ;Ü*P\FåÜM/—’èFð_Š}?ô7~;áî6\sÜú†‘d‘ž±÷ƒ.ÙˆTÚ¶sRyÈý=TÑ}8bÛÑØ'Ò¦Ñ@Æ™×/ z–ìÒ@SáÖª‚¾øf…Uö5W(9ä ¿=8ª~öF×/kË`]a¥°q•ÎlU En»¥Ö¶Hî= ¿…W)Ñ|i Þ®ðx4ÆX5o½\Iˆ}‚(£ükØ„³¡¿Èl3E[9PA¦I¥¸SŸ#A¦"å^ÿmº¹±"ÀV™}Ëþ¸ù¬å‘ý…“Ú®CQ”hø”´(Ŭ}L¼!Óm “œ°‚Q\?IoïÏYJ4¶ Õ 5WaùížZÿòˆLJg¦/=èØ}œ^”¡"Ä(4²eîðª<Ú \ïxâukÉK’n/¤–вî©fwñu¥EćA‚«cÈX?*ø¼51xü´2“yÑ_g¶=󮻯¾1vK¼|«úý;Á—ºªK„*åÄ£J× I﩯= —ÏA ÕbÕ‹—#tW¹MÇd?Dß\`SŠ0 S‡Eë âîµL ÈkìH-ÒÔò(¥ˆû÷{. `ûCWú‹Ts¹Á±pòphNm¹ÍÆ‚A½{AãÀ7¢ç#}¡O&Ö4"jJ©¼7 —¢È¼¥RTG—0©ÎÐÎ}úhñ¬Õk][^G”±=\~3+Ûð:-µD5¯$’s±y4˜u}EýÇ{¯žûž‘WóDŸ´+¢v7ù §Ð³F¡ 8¤¸XQdvê*ò\šr-{Ck¶?nåS±’$p˜G©n ”ˆÓ£¾àÈqº O gÆÙ±õ¾`køÕ\êçly”:¡7^ž«É»êòáÃ-~¦‡9‚5ð¹+êiÓÕ ³ ^~ȪwE6®bfü{>B Ü [ó?Qø¾‡¿ºsÇÄQîüuaE{2Äo4küQ/Ë€#ÑÂzÏ MŠcÑËèüáLÁÊ˼ µÿÏÌ(îqRÝñÌþbnWºô ¢Áªkq ÅG2¸YG®úbÌk—$N½öbED›…*ì¹! ¬Ümvb'0uø¥u k&VÒ/Pê81ܹ Ÿžvá‹÷¤âгâZþ²€ŸÄIµ§HaJYXò«©Š[ÌxI?çd‡ì[§^ýà&‡'Nb¡lQºà‘Fd$¾–Ò­ùÔýí.X2tŒ˜òD6[>XÑ(‰XÐ>õh?ç¹Ü®ƒÂRöA´ÖÊa-]=?5—~uuÜgp²4`¶÷B±í´5:MÕ ½Ko¹4¸£L6†`X?´p¿®ØK¦_Ž£‡ˆúša-¨Åi¼ö©z$ÏÐü\ÎR"LÁ“ž–3¦\ÂÌúX©Pê×õclÀLnK±Å–ˆM`˜Í}€Ü—`ÂW5g·fO%RàаG'Û/3i™TwµÍ^Bße’ï6@篾¹Óœ¨Î)‹­€H±9Á˜†“ha€ôî­ ¦0+¬à=œ§›ºÿ¬»Ývïm·Hê_ÿoºÍ‰PÀ¹}ˆ±~@ƒˆ)ý1-xKsöæLŒp;YKÊìx `¾ËÎ5(€Î`-;*Æ3tz¦ÑÃ5—]Ôb3ôiÃvñæÎ@frè†cmW$‹^YÇ}…ˆmØ–NvëàûGNP"¨ $tzgA³lº1TRá"êÕ ¾G]xŠ…}i&L@ç9ƒæãÕìÿs— Ã/ädˆ”Ö,^)rœKoÞ[*D£^Q.´üã–EÆ`sã¤ñ§(žQeFž§ÖfoeØùcëîBûÚ£kTZ¤›Osa[ÃÔǺ7·cï/§”¹éãŸæPçÞšYtð‚"YAÑn±³x©NŠ#13Ÿ- 2žÍ‹]¤ƒZ;°€&1P¬·aï^2<Òéµá‰šWêõ-4z§MôR’R²?òM—hàÒ§ÊÌ”ð… Ý–òVé4‘VkBWÎÒÑóñ®a¾ÃU< èg"á…@n‚ò8«®ocÊj3ê½c0ø‚?±\;‡j C"³w ¼D E²¢3Ò„¥ðÈ–ÔN[b@þl´zÈq;6Ü8éøFáÅKúöÔÿ±×D÷&›ÚlWר`Þ–SQV!PÇâìÞ£ÿÚ…}v©åIMVVæyb­‹s=w÷M=¨E—¬|{(*Ö4üÇJŸu6ø™^>"0áU§õzÀl]Sà ÕàT€òOØé~ëöVƒ±VtÁì"_LÀåŒÀL8°³Èlg¢Â¦Èº ;‰çT/¨AGô¥û’¸uËØè] Ô\Ð^¨„‰Wäw#0²¼&“ ‘d„¨1Ï*CÚãÓÖ[ðD(ñöÙØåu¿’é…¸ë$ôÇL¹nAKq¹rCo-Ê 1°ŸÒñÄa¢gdŒ/`¨UMuÐÄä³ä1< 8hŽjˆ›‹(˜QÀƒÞÙ–€§Ø“Ç#Á-DG/Áاâ}•p5™¡yWÖ¥ÆMuûìùv¿¼«jV/áGÞƒñpDÛóÀ3¡÷È… ~—¸x^Í ’Á,À5íæ}ÕŽDH£êcéýÍ‘«€óøs ôƒdˆ› ¦)_—PFLñ"”^XO¢¿ZBÁ\O{%!«ô‘t?3WþœXœâ6—w.jIÛºm7ÏÍÁ~7¥ßøÚ1å}Ú¼!Ø v­·lòû5,;¯4´Wá™3T£å1;ÓdÛ(q¨í›dIò–¸ïeo›N¶jôN“lvMúó&%bÔ»PÑu|зPOB²˜É3~Äv«»ä᪚—j3ú^½C9×Xn©3ËI†kýÁ ÎJEo‰M½¦½·+HÀ=èxmÄíš4¿+j’E~Ó t5˜’1}‰ý_o÷f»ÜD÷Ëz÷Ÿ|ZEEW`Tûû³£ø«“Xò%³ û 5 ÕX_aÔ[ùQkHî!`„V’MJ> [3½µ;µNª9þ» í8S×f0ïå÷âöY|6]C8Äȼì61;ÿ«t…\9‰Tc¢ÉØY_lI›s²ÍòµrmÀÖKÔJ¹ø×œs¡Ui×±ñ"ºZ lä9P¯ÍS>±]·t¨@ß ûâ¡§Ãæ•äû;êŸ(T½\ö2¼kxN~™g3‘B’UUÿo¦ë€ÓóÅ¿­èFÉZmã12ḰAœ©˜Â·™áçÓŸ[È<›Ì´•£¸±rXö½\;/&urŒTnh¥…ÛÁ!ðòÇ 7@ÿàóiY:ŠŒÛ¡B%Ëlø)ÍêýÚ bƒJRÖ½!e_ )d7VsbÐÞ;ª}¹æTÙGÈ)×fr¨¡'‘ÄH+/ªNpr!E_DXò¼Zgâi íŠ nÌ›9²î6gÊŠË}v†|UbÂÎä¯ÐÆXêÒì10^zêl„íÒá}/Ö@­ûž®Ü(Ûš×Òô˜0)‰üØýL×Ú"_òÏö‡5’¹ÝizœK$ÛÂ&ü|ÙÙÚd*_òhQÙŸÐo7³üMЮN[tÞäÓŒ_Ÿ_À¢ìH›)/uŠÜ"”ßX¶YdžñG!=uî6aP#³n4}Y†¨kKìb¸×dM ƒ;|C‹´41ûÂ]§Åª´6Ux[éü?Iœû@\sË9Šôg(—Bu¨¦Z»Šl?˜oÒÀo QUa:¸-oÆ¿ªxÉ.ÃåÊ µó²â/ €¸×ìÒõE£ÃžË:jj:A²ÿ›™ ÆE©ÜJq*²ÌB ´¢µíРYr¨¯2å}k½ Óµ}Ýö‚¿#ÑMä,ÿ#+›“^nø3lOQVAßcûÆÜb³å^]Á΢'…X“˜½Væ`ÑV¬%l„)öí$ÃákU­­ Ǫ¯þº9‹AÖÙç‡dÔý§&öXd×\«Ô¡ö $«+sÎ*>>ͱ)u(iœ2b»}Ôì8 Á=‰¸;{׺ØÌÅï±ög~>­NµŽWëâ”y o³X _ðH&…Tås<±™Æ®Óߊg§É|ß#¾™ÂS¥á. ª]‘n#êFäÜdKžG®€¬¢}ðLãÑZ:Óx~Å£ =k_¥*xnŸcÇ“A´tÀZÃÎEˬõÃ¥£Eý¢/Ï«ª Ñy’%àFÙ¤.:ø&B!ö¸¢X㛋²Óë7;ÊN‰˜+©ºXÍÏWËW±ý–ÌßËÚ:Cß¿(þ6ûUaJÖóø,”lóµœÁã"³ãªÆû¯oj|˜Ô‡¯Ãj‰jÑ,¾BylÕ§¢Ÿ›¥ Ð Ä#ôø³õyží9Ø?ÜÛ]‘ÑJ=šåÎŒßÂÊ ™íˆŠµ®~=z1H”]ÐË^Ìýi? ½¿Ñ¢H,Ür4BnŽƒÕU‚3-w‰ŽºqÏ;‡Õ—Þæº’æc¯Ý*¡ q³ïb®ÑÅÖëàÊ- µW0Æã´twC" C€d½óÀ(~öA=ݶ¶ÿ)Ô°ªý+¼§M¡­t&#e„þ3&B¢P¸ü•€°“ÐüHí#f4´JÔ褼N:?®U§W¬6íüST{±ÂˆX}OvÂCÆ{V^½Ò[¦­çƨeΧÁ.Þ´î~þ2ƒçº᫪.ú”ô)¹ëÎòeµ–•?âü™É<•“P‚õ´rÄd³ \› ö=¡X‹^üü(9øó`(kêÔø¿ëM aŒíö Ös±ÀêqG$3¦°i!Zÿ)VX| ÖE‰ÉÄ44î˜VÆ’¯Í?¼d&£ÏPd ÖX†º&ûUH¿Ñ1( `I)]®„P°¼hmCw¤qüé<äm·“nbüTáWÅ™ÀS£ jËÎ81%ÖÁËó«¶.,½4oo ߆l§l¡_ÏhCÞ UÄi¯=¡sôë®[{)9·2-ߟ¥t… óšä´Ý¸PA°NT17‚ÔU¡#þtÓ`yóó¼nT˜@NÒ¼JÎf¿M­€õVÈøùü_r™Êé‹Çí=ݳsñ6~”vê¢ÜILáͤfz;fEeÏfoZz1PŽüVÅÏ¡MY®Œ \ý\«ªMAE™w§më¡ëåS«€¡­µ`Ÿ[²WƒÏš¬£Í6óΆYÔY‘Ç~Z}頹ƻü²O¬Ç ¡[ âä’›H²@K4ŒÜ—xø7»6Z¼«\€>§m¢Ž‰u×;?«&K9ÌéOD¥à¦°…™êç¶»±ôDççK÷UFåJ{ЧÅ}€¢kíJhÇ'Y;¼@mÖ–rmxŸ,ªLÝ{ Fë(³dðntAŸþ=àï£û ¿¸‚¢ã[+*nÑ®ŠçEË£y‰{T"tO´‘ ±±Ú0@ó“d.Ó÷RøÕÔì–`ŸD"8)¯#ƒ·Wœ~ÛáŠ<ŠÑhÓÑ–šv¦˜ñê» ñ,´A —·éä[ ebÐzPÛJþ’fþA届0 76Kþb¿ÄrŒ&#ÞýÙ,`H$›o„ÐÛ¼”ëâ*þZ;§2W)§ÞUå‚‘¿i‘4&Ôëk,îõ¨ð…¢eQVNÜ!áï8¾|—ðKî»+{ͬž&ËùŸ{¡ÖÝ›gw²ó¬ 5:s¢Ma(ê,Xe_âÏ~TNÑuÔAe ÞÆš¬cË@¿Ô:ñ{‚î79ç§=˜æ8 pZÌÙ§þq“H±èþþ„d0êvL(Õ g›/ɘסùÛ¾ *ª&Âbm1§ÐIiœé€ëÄ-ÿ½éŽ™?ãÓ£O.5í&ÍŽ¨«Óö-ThtzÖ²e-é_'OqÝÜ@ÓÎd^—P*v÷Ѵ˹ØÿJ¨ Óˆín(̈BáÉ=¢(Òê0>ùAî'=BñÇ0Bå#Sºîl5t9à›þ <}1ÚPÈ$kÔ’^Ÿ¦ýž•½ó=g.Ÿûv’K'˜=·ËظâL ùÁ3/ùqÜÜp¤Ø3ü­ð©®deû¹ÕCxè¦BÝt½ƒA¨£¯›ŒeœÞÕr¹¥Ä QŸ½íE(&:O4Ý–[…êêŠ(?ç]ÕžGaŸùi¾¢v.Ÿ£ZûµTÞ ‚•8ô<ÅÂa°ëZ©J6E~Ϫï‚ýá€x™1§Ž§…†Ó‰È%÷½»QQ6ïèŠÃÄi¡ÙCuoUIDdK‹ T› *€uÝõ²¹œG—ºÁ\€¤ôiu¯¶÷ w˜TÞ«—±imÇ#·é)‚Ñiùc‘NMqWϸÑcký8’EÑ6öçfñ¿%à²NÛ9U\D øžçÒ±‡ Rñƒ6Y±÷äbðZÞH’¾þU ŒÓ©–ù£R† U«P‹Ï\—$°RÔt&§„¿.p߉—€ÓvQß:Ó´³ó¤a?^C½9iÕz[NÌŒgî°`C:ô éº=Æ[KˆFª ðQ¬IíëÄîBX§ñ×E{ÒŸèhʥ˞í¢lw»«ª‘±Þr¼¹lí¢…„ºªJ­÷.ûa66à’~I9Ƈ•‹’†YŒY§i!Lvžxí?ûUv‡HX(¼ò‰å,Ó›>‘VÊ6+èÎzmý?±¢¦zr±Raî ë«ø$3ÌòªJŠPÒ&Çm9_åRã™ÏùÕÜÃÕ»ìtB: “Ëáúb­Q¨;3B\°¼^ïÄ%Á©*ºõ¾ZTEmÂ-ã8à@ 9”©Ì82ÿ€qBÓ/*|[;™…&ÎÏÜ íjñçÖ¨¡OØ8kJS"pQˆ>aúu϶ˆìV Šâbfà!X”bW]ï¶(ðsÞp„Œ!æ ˜2píåm 2ýÕã©8e_*eœØê1ò:âN¾%„&ÏhóâH¨‘ZìØÊ7ï\Ø…‘2 ZÖJa~P©„uZª4GŠæb{Í ’G%‡E¸¬=‘l>[ûí…3g-yTzþ(¯¸æ¬³öçB=`Zþð3‰NÊî#Fh¢É(c¼@€å”±®oy1yk~+.ì^ðÓPXhÅàB'XDvͯmy‰ô «rÿøÛ(x§c<ÅỦ ,2¹Þc`ÕÖÕGˆñÎè%×cŽ¿×)±r ® ˆ¬ÀRšÕÎdhÁýg´+©êÙƒT’´Œ¹!»yÍÖ.c=Â\ÊMÁX÷pûÖN%NÏ·ðW¡К‰E/ lDÅÙzÙ|&v¡`úQy/R›_Î8ã¹ÃßïƒÜ4±f –cîA¡¢ÄŠ /•®˜0ïÞI¸+¾Ò-<ßë)¬-6ê¿s¬«"€Æi«CN¢["¯Dk=s÷ÔˆbIºóÊáÏúO.ÂN+U]µØœ§¤¯býÓ(Ós§ „íÈYeYEjy¾~ÓëÂï^ŠdAi†iòçk낟²fæ" £‡ÙS=D>}¹H0*P'Çä . Ù2®HÛßxø/…Ò›°=7Ùþ#ÎWíÁ`oùÌ;2*®”r¹Ú¾ÎÁ…òÊç˜R‘¦‘RÄ1Á¿y;BN¼°!¥BÙÏÇœ¿…Õ£Z\$Õø@u-½?±zâpc±[Þw®|ƒÉƒ‰O\:þ¨w±YDËB_@¦/3Ïãkg¯I„ËÊ(ü2-ÁÔnÅÚEÏ£Lî:C‘âb3à+¸òöZV¾YÓžÏÝy'ny¦Ë¾|êÓ>âΡæxg곫før÷@î}l}‰t)a­¼\ñ0?ãÑé80Í/.ލˆÓ:![ÜÛ&@û7Ŷà‘ q’èã%KØ7r`pÀZ‘ÿC‡Qª½„Úœfr/Ê‘¶ Ëù9T¿ÇÙÈש¾êï:OFCh“c)lk™ÐèÍT5„ ¶?Êòàmy5•ïH°"»*ë §ï,äéä¡}ºØü÷V Y€ÜöÆ/ÑG8r*¥²Ž÷„]Îô†Ý¹S ÚaðUh.r<§âž2u¸Õ„%K;A–‹R%?r‘C¹/ ‘T¿Ïᮦ½/¹¬dÕ½˜ná%±‚±(Žp-¿¦À—Þçš„Ç%>®$¾¢Í c/ ŠÍBâ¸úR$ å;Í;´VuѤÄFebΩ˜gë+»‰ IS²íè÷#ˆN|UoÔ·¶?8*¹># –hO5 Ôí¤á#Ϙ44bBý_­®§Â ÐrmâÕù·ã\’ÒfÚVb"28|ô³—Úe¨6(Ís§ªVHJ¿ññ<¬~rdË-²÷ì2/j©PbÉýt?öXû,Å©Ñ ?ÖÏoÙ!G¯º3lf®£Rž§>'ê#Z¶ôø4´¬êèºkÞ'ÂUX™g®¤ÃþF¡îqrȇlŠ¡— e c='@ñ,! ÚêSšGY8à›Âz— ìã6аRFo+f§üx¥—X¢PzÃè‹}ge…ÑNq B·“å¯|ì¸ñ\”[€Šw‰ÅXjg'óÀu™±nfböñUòýºa¯rØŠ‡\›wû„küp³ðÁ…šQ”V]çB¦`«0u,.™]L4E¤‡»7¥"²8Áø¸Äê)×ÊÑ„¹ÄÛ1ÕäÈœU²‰„‚%¸`·x¡ªrâf8ÄËýï5¨/:µ¦_ƒsŸ¦Ó&惒b]p“w-Bù’\bÌ^îæA‘ª’Õ:=À2b¥4eº'Tû‡dÚ¥=t¶ÛˆÝ?ja ¨©sK×XŸ™ð®Œ}ÅÂ&l¦‚ ¬±\ÿõ#„¹bÿ1¤úýÒa3SÜŸÞî/6Àrn⎘Y5[³BÚ2³scZÎY‚hÓÑû<Þƒ˜ ¦šLÊa¤Qz<Ñ¿ð,!LkcÑÜÍ1¬’K‹K >êBâx>™ƒÝ7(œfïÌo&•ýrza2°ž¦ÞMµjŒ[ˆ¥ó sk'­ëIÜ,§Ø£æí„¢%¡ã$IWÇ'ŸÇ¡øú–°Õ8;Ù¤èC6é¬ú9´0ZÙtM“Ë.²µÜµÒO_=QÓ¸(Û8#Rfü€?6»LPFçˆnÙ:.k{xªzSºßLI>OéEAÓ ‚¦<‰S÷ËBÕLÉÀ9í,(˜¨ß¯µòT[°Øý ®IE¹á ¶Ø&Ξ3F8àç ¹$i‰·ÖGÞ.£n¯.íõû¿ÊA”¬ìZéïmäÉLzõ÷C®b ?àWÚ+E×2OèÎalo;RO_7;ü“^²èL4‚VúüôÛ«_gm‘¡õyÍt} d‘»õ¨,úÇu^V~uPû:¾yÇ Lž@H‚Q‰ ‹‡®u™,»ÅéÞ#ïúJ;99D<#•øÁÍÚI¶`³Á] }”TýL(Eäeð‡ýò¢n¤3äЭ>GnBtY’Ë âHÉBã]Ýû¤ºÓ͇a“ÁyÛÊE&«Áɧ®°W‰êúãîµ£Áví’*g–ók¹yÓ9=îš»CêÈŸr>ÎO,ŠÉ^Žl®°ºH\ñ§ì0 ¡$”åTS¯?ÄÓvVlÇÖyŒ5•̨üµÖmù†Ý¡&Þ÷¢³Û‚é—#‰vHþäAj=o6ëbÕŠH±Kšmº«Œï …×kÇHI¸){—âRëþñ2I;ÜmOïÙ¥›ËHv¢KkñQØWØ·ø¡j"¿©ÎˆÃÀ˜;DDªPËóöÏN’ÕzS·0Õßb¦ÎuíÞ2ðxä«W ZDh`е|+òþã¦QÖb–€L ߯]z¾Þ«Ëßqòÿ5p‚HO®ïWYÀ¯C!†…‡*à½:®!”Ð.dž»×ׯ•µHuÕQU«,•û ´¯éüõ –ºgq2®Û©d®Çi½ ÈTÊÅ+ cÜ+Mâë÷5µhNa*á,á}ðW‰‰ ¸}´÷õ>mž çüþ«3þåž%Ã02rùø-Š5Ô:ñ×)¿¨«='r4óóK1‰CÿFí|j~¾™ÕêÄÿo­è‘ØM9è”-í½èøÿÕNã!šèKLqú¡œ5îB9ØÉBûþÁ !h³›ä˜<ð¶ Prµ-êÑêùø9^˜}ùÆÂØDS[Š_ÝaÉnbó07¬ïÍÞq6öƒû|ˆ3 i8ÛÈ»ÏÂKz9jÄÄp»ÆBkÙKíjeÂÎá;œÞ;FÄè ƒ8XÆšÂΩVì@W·rööÊT“õlÈ<ÊN˜x zlG¬C£úíBú¹+aGîúJMstPŠ_-nó‡(W¶<•»&þÄ_k×ðWK¸<£µ¦ýF‹¿í³k=µ4-x:ÆðÒó•B9Øuã©(T »ÁÌð*è±ï;,>n\[*”ÈXd¤Y&VØõà×q·³’½k˜Ã½04‘ÎE¥w«ÜHJ¯Þl§ cb:ZÉœžÍ‘ >ùÙ¨“ŸCH„=œ=a>ÔD ;DKv,§ç‹yCä •FÕf ?‚ÿ ´1àÖCe˜FÉÇ•Éb%Ù¢WÜj†`ÀéÛëi´¢¿‰Y ÷ô¯ ØNm:°ŒQÛÈÂSFNŽxòC#Ô‰%d¡Žȧ/e(¥€‹Ì‰Gc›Ux÷ÝîÝ‚’B™Tº GµPæ`wÿ×£M—@¯cÆ@ñMݼ 5 …)¢zêØ55Þ«DÜÁ;wûKƒZj²¯w¡!‹É`¥<ú&¿Þn®J´#GªM~ ,t: ?2eÐ@ø{iMÐÿš3K¿Á`Ôü¢4éìBÙ÷?Ž;­wìñØ—›|î@å÷âÙŠi«)ÂEßkcŒd%Œˆ[M«D]è²wx·ñåÜt9 ס9=\¤eŽbÃ*ë†Ö`ã÷öXR{Œ¨Æem)CƒIãeµ|ëX’lŠöìˆÌ»9ц“®ãå/WÖþ6o:¦ä¢wò„ï~¼ä"=ió6WY¥«wçòOL÷þ\ÄB(Ùȹgnti)ÞJüÃ…_ß"Sµ‰Ê$³›{ òÕ²Z5%T9oêIW³€Ïî¾ +Éø‰2ö¾ÐÆ£§—–Jn0õ/;•rsßõç'r™ÏN¿•3É+RPj“ºËÌðÔÜì¶q,«a)Z£*‚S¡Aä<Ø ²`Åtyý3‡¸U¿$'Xö(¨¡ ='Jµ ºÉ‚ÃË´À;‡ƒDÍGÚúD]$B˜)zÅZ—§JTñK°Õ€íÙ ë¶K™˜S/ç‰a|ýËú—ñ|æLP×)ƒØW„ÝÈÞ÷-ŸÛ9ŸV¨pøt[]1_K W0gtŽJB_Âã÷Û, O¡Û¾1³] .f¡tÇ^ì¼ã|=všåžT„ÆÐ–k¼öL¿‘æu=PãðdzL¦>%Ú97ŠÐ7À7¬ O\ÅUöÃ.¼Ü¡Î&O Ì Ï8Tµ¢NznÕ(¥ûuQJCÎúH¸(g)[gØ‘X½Í4ªS„oºDäé´€· Lõøý"yÿDÂÝãðëšð§dôd´j¡íeO“ËéHÚÎUSmOªC<]e}Ŧk¶Îñ6 "^Z!Å#˜ lÑŽi÷z.±Ø>¸m^æë¢z Îz5²›²w¶ðÂãøÃJJ=úDt"Qá>G>ÂȽjäJ~÷ÈAuÀ3™>”˜zÎûˆcBIá†Ç'"P¹†¢Zöi»îO´¢ cžbH‰¤iÎZ‚¾ð ÌŒ­væÀ,ýšks÷„*ûË|̾Èp®æFb÷¾ö°†}·=§JÖM,\¸,‚p¬Ê·â.¼ÂŸTªD‹t2¹]‚C ¤Dó¥Û–KýÂgKô›mAw†œçö~`™‰¨ÄŽüìøa@ñ˪= ˜8µrÍ ÝØ`n®}߃ÝÎÉÂ…šö <™jÅ$Ø÷G݉4\Ù~RY ÊSYòsn0 4vFû ›Ý× "HÑž’Þ5`UÖϰ®…x1Ái!áÌ ¨e‚N黟í®WZ!<4ò­~uÙß3²ívOçµús¥v½ -@>E1Ñ»¥}Þä̦ä}ÉÂa8µ-¢’+HÜ;µ{ËK_îM‘ceÒ4U{ËJ©½B ©‡!ÕÂ,÷ÅÿѱäæÊ?Bƒé!L|œµÖ3#¸¢ mH´;<¹ „nÇû S•n Ù7‹2žõ<ÁûC‡ b "æ”V_øŒLÏ)µÔX"ÑqοTGïž>ÆÈ0K5{£ŠGí3£©ÇHøÀfWŒ‹ ºKòRÄQ?‡\ 3–r3ªWg:k%—Ì4a Ô]ðú ­iˆp¾«jAÔº*˜¶»j¡…èB¨’ÌhQµà¢Gw;/ç€oÜ9ÓRêª_^ËréT;9‘1"Šõ»±ús^±ú/Ú§ÝÓ¡Ì”ÔÿX¬¹Ì$b‡"¬hãâÐÄ Àÿ_ô‡V$ñ•’ê[,.‘&QôI\âmwë ?Aê¬"ý/¿¡ÈfbÆ’^ â_†©×”oïWÒž²B©|N®,ÓÎ2‘xøÂðäiyˆ$‚ r t‰W ÿ1IÑŠè1û”ô Üp¦%=!ì_Z£ ¿U"iµ — ZóÔÅ:œa+À3Qf=ybVYf’F Hñ§l`¦¥´Ä"Ò;ÚpËïÙ&¼˜gÖô½w[û§ÈdN"Æ4]óõÐùI¦ û¨î.ñ5=®ð@eyïbs‹)¢ÅrDU`4jCܨ°‰—ýTp>œËlEíµP ª?ø¡“‘~6c[šH­ÒD€§ÑCÓ©":£UÊß‹žÙßßèøëð1l¢âkÆ"qâ=Ó%(ÙÄ)vÔßôç;¤)eRÔ+$¾ã'%¼a²ÑTt­ ˜©ú2ÄRí––uØÛEº`IVñň2î0Â<œ|M^OyÄ[¢²“ÜHIõ9Õ?OÌêèák­¯Ñïì–Ä?ó3–áöÊqõÓƒL8„sj†V"ùÑ"óÏÂhùBÞíïµé®§qÄ@ú“ZÉôå[‡Ã³1ïïÀ=:¿Á;#K¿ŠòYéxÄ܇o:ËR ­~æô›lpºý¹³çàIȟ½Zëgwwé°³'þ]q!ë2†¨LæòÿYNê³æS©[|Û-TÛ²Ï92——„³ïÅÚ@V÷IKÙ=y˜9s”ŸQðŽ’¬7]k6%¶¶ {b-ëÆÆvðyÒ†–þ[Š$b rÇTÑEô¦ Ê•tÙbY‰÷ÄÅÒ&3šxH:k¡}zÍß: 2¦ÈCÎFÁ~÷Îsc4e¬4Qöb ¯Ws(ö/ªú Æe/~˜yGEXÌ pk¦võùniSfíÝ6J™=žö‚òmH ¹Ì¢3°Ò¯[j@­¶ÜêâWqZ»{SÚ·ñç®á6ÿL:upä}ùA†…=køð i~lK ¿>¾Ä¹úf¹<Û˜µ\ñ:bÙ9bÝ›!$¿×uÁƒrÒ‡NŠiX5xÈoMg(gn'iKˆ,¾â·$+kh>À’!>r⾯bwüMWCcïÓ:=ðm"ÛHŒRˆÒÒü‘ÿ…M1 Ò7ð °ú§»8dêX”l”»Ä°Æ1l„÷‘zůn¤3þ ;“ú®e*oÑPNoNcÂMÌÄ€cÛœ`ü¥YyÝî4³! sSÑE[®cšŸ»´‘¼°bnHH{Ÿu°9¶¬@bóCÊéÈ×.èæïftÂBŒD9µ»]Û+‘—¨À«):L õÃ`St¡Ú85ʦ߮x|Íè”3!™ œÙz»%tc˜èl¾Èì¨S‚–´øØçê®p„°èbäDá«ß$QþfW<Âý^F÷­¯›Iñs |x»ŽPÜ;—6ÓjE«1ë-^žìÏ3õ>‹#Öþ^õÏËÕ ½"D()‹ÆÖæ•Z¿¿í“Àñ÷OÀ)‘ÙlñƒûÚ €×ÌsÞS ì†Ô[ÁñÿÇ”ÿQ(hŸµcÜÌ­ønü¯ßWésT@ŸS>kDS0v({¥†PçèþFfÏþyð6´=·ˆdÿŠ.Moù,;fÜ?NK²ïÛŒ hwº7%†ií}oÒ›Y8¡ÞVrô%M¦¬e%ó[•ˆj޹ü²ÏýßœÈcÌKò ‚dºˆ‰8ïϳÑ2¢h|µ!~¼r®®ž VÜ·ôÙ…4Óó% 2ãol²ÈñãeŽŠÇ¹²Í|Ê* †'ú¹Òm˜¹Å-.os·2 äÌÎ\’%èI}°:ˆ“}½#n—º‘¸Lá•¶×xNûÒP©GQÐïó€D =t\ýädnÕÏ8}]çEò6´0]š^|ö÷âü>dÉØ.`Kx4ØuÑðô‘žý£à[ÌCîœ3j¥žYó×íèW–;óމƈ­º›ƒR "ú‰‘¸âªh/ÛH÷ì… PRs×'½øõA³i®öB± E¢PEJÚ%e<Úö[÷žuÂQÁßEX1ÛreJä>Mpj7ïª í·e6ûwެϼîëc™"%›œhƒ„pg¹VYÕ«’èà÷©éŠ Á[ ê‚$$§ÒŸŠ¿ópãg¦ý‘[‘¤“_Q!"Ó1¾½ÞI9gåt¶¶¯¡Š …- Q[ã8õ-Ñ¢ô›Üä1gn*mW’%bgÄšw€¸—c\ è×rèâ=S‰ru*=~ϯZßn˹ž-’ÌWRkŠ eQù)Æ@P ÚM2ô$ÅA”ª„ Üf¸PJokÎyéYj&µ*6u"¡9:ä/jßâ’åj²Š ëSlþmmêK%­Q±s?<®—u)¶tšè¢Œn-'ÛjïM0bˆŽ¥œ,Í™j6zƒØž²/à7bmŠ4²ÚðÝšr÷¹f`¦uÒî—˼ûÏj´¯·¯#pâGËS™…;Ð(*¬0ÃT¹JŒž†»”qöœöbåø½ ×®<˜Ï.ïx Ý_Ž”Æ_Q„z•®k¸$~ÆNÿêì×iúÐc~_MùÕ1açòwÔ 4”qð0 [|C» 0ü§¾lÂ\tñ´~1¾?d5x…SçäèÅ“ßtý%³5 Ï`3zS‡iìg›Ñ±<öÓíGF½ZrÖŠNø]=zЛ! %“Mþ ê®`Zf õ3šüÛX&jï¬ú¯¹æ°9Ÿ°£IZñ¤sà,¥zTÝáZ}Òè¦Öwèm”Õ­ç\߸?}X BôySöÓäã qs3)üÇäêáÇí­û^ôðL<§„ýÝð³(ö\ÎßšRâ`†h@hjR´«ÞV3æ\ôÊ„ê£Fé&6iß8ñ—*5ÿô¥–T‘ã¿>ç[ͭΖ彋L¶ðÁ9@ ¥Ÿxp!…åQšƒ¡×I Ã][? Ɔ³êLð¤:«v†å ‰ØÉhŒ1hßž0PiÇnèw'Ž¢ÚOxÖÈ,dÑRH¤ôø‰pVEÍC׌½ÌUÖ—¬E`ßÂh2:ä$ÈoЪw .ì|’P`˜8_«$®ÿeD,БàyœÑ %îÒÿ–‡*áïé*é­YçÈŒX¨òŠa%|9%M2qꌱ4k)m:å½á»Îýª²d WK‚–=åS7|kà œnÜA*äNÙÈ3Md\Ø;úœõ­gct+§¢ÍJàMŸ¤e¹G[=ão•‹—x1ƒ¾¿çWb$r_or:† òRk/eXýÓ¾~¿«²5q¯ÛR¸¹z4²l‹Dk¯/Qt­·K VL ö~ÜM+Y°¾ÆM2x›Ër£Vž”}Zé2ø£jtd‚6Ü;t‚‘a ¬³.eN62øÌÔ}ºÐÚª7¤û3áŠ\þ/—†]ú„AW°O=¦b·”ÐÝÎPN¹î7't;†+«ØÅB„õ ÝæÒ\É1]ÅK š~ÎêÁ…°}ç—Æ–Ù$Â=y²àâÇ‘‹ÍFf(àóÕ|¥õêócÆÐè 1sAñ¼ÿ«¢ðtÒSOF!¿¥ÐGqÓÓü·¹ÛÃYÐÅ¡ÞPÃtŠóN¼ÒÜu[{  ýu“×–SàUŸ}·56\þY~?UÞ.ã:”õèÇ~ ‚ fÙÍ*<ìûW¶jàp ¦†ý'Æ4Ùƒ{)$]©Yî¸P»¸5p„Ñç%R¢2žìíø2ׇYi˜>¾GQ™‚°–t¬d½ÞÏâ ' ÝeíkR”OK»_–L¥¢­¾/qä@MŒ}(¥­9ô… ¥ˆX²âÿ5ùˆ´w9rk:²—5‡Ä!š°;˜ZÉo+à®ú³UIàå|.íÆÇ¹XI5N8áý %ËÉî„,t|)¯D€äò’€ªØô·`iIiÒ½ô-9öAÌG #êPæ‹·Ï< ¡nGY”xræy}üè'`Éð¡2rZ­ŒNÜ )›$¨fÞzÓ°!“-µ.µ‰>\¼×4{‚Ý¥ÔáÍà9’M‚|NŠƒ¤8^Œî§înA}[q^ê‡á^£‘¡9ÓœmÈX½`ÚR'7é^€ '#‡Â…œ:˜W{ܰn´^°T9¡2—ÕŸ=mݘ .e¿¨ìíy|~©ì>B*¹x/ùlzõ$ø (ó84e™ÖþéÞ®õs4U4 4¿Œ/SPT>w›yæÄ#ìMö˜Z!?«ñ(¹.À©ŒšANˆFÆ_!¼Ï´Y VHîžÏ21ŽÍP0p¼zå H-ßC™a_B5i¾®øjNd5~)Äl²ø& ó=O'+ž#€k"[ë7_õÌ-Ò‡·*vØ\º”"óÆ ª•qYÑüS¡¨½?ÞëýǾ¡àbM-äDg\Gøén0ä|€µË‘Eiiyî>–*ñ†EÔxfFÞȽÊDe êzØÜ"¾Žöx™^F¤´–Æyyu¸'‘®¡ßƒËà ͼX¢lÏ/X÷ˆÔEtÏPvµɧ.íÊ캦®ôD?låZ5E‡Qq‰ÿIœ¸sÅó+ÌÝm-Z¹O;o8Ši社)äôØLb¥!Çákuéï^ï€V´UƒnˆÅÞÏWFn׫±“ÿ€³ú®Ò#Èá‰ñ„(wH ¼I †“ᬟæþ†«Äî#ümÏÝ`å“—ƒùÖѽÊqL"$UËöa¤,Î>Y q""àbÉ6ç—£R ôÎøŒÔ;Ù­¨Ÿ{-õ‡Â0l>óf9/Zá³Ë /Ø„_…lÚP—0ÝZ›J+ºla”¹ÚR)ï5ÅHbíÅ(1ö%éÝÁE’­!‘”¥‚êîY›Nœç¹î¤Rø„ ÕL3ÇÐö2'®/X4™o"â›WjÁSûfE±^Í‚cÄéǹÄrZP²·@¡ªá Kùw³#ÐfSìÉ¥é¦KgÌk]ÃkéyŽáVü5;åÆ=Fu"*¸¨xA`}ÚµK؆+clÊão bñž† * î>,|¿sh ÛÄ#€:ê$®tÂyü!5’g[Äö·ÛÇ #–PÆTïmG‰´ÒÞ¬(3î§ Âat/s,›Uœ^Üš:¸ÕÓÅ*c—6J|~+¤õjx|cO•åÛx+äÀÔÂþ­RÊÃÐ&ϼ½Ö /ÒÿáœÐ?íq³«9PçŽ|îÐÙÉ:‰ÓN‰ÿ.;zÃϤ*ÆlƒÚ+-[ç<ªÝk JŘ¾’³#n'ƒ'ó]ôXÛq™RpƒóAËõ„79t ÂQxFÞÞœ²Š“mÓ=‘“eìyjAÇÈÊeJË*õ¨°íðAR!”ÿ„±5$ð»K„Û’«b6ÿC¼û ·¤2~ðÀtömÌØµS @úñ×úNémv1.ÑÃÊ5€5«¢>V%p–¦1žò½…–\óWÖg̤ή×h€»¦£-µšrr…¼9Ð¥òa{™ +‹MÌÚÒË׸©Ð‹il%Í9„™R ÅM•볃EþºD|mþÄ!¸Îü¹I„µXšºdˆÈ&ƒ¯ Ûg–ZæÉüwjTÓw‹ÅÐA#E$7üeí vCì¡'D.PÀ‹¹:N{€.w6¨¬m„>ôÃK$àŸrAÎ`×nçõ€ÀŠñ;Žb9&,}d;¾~SаW4%ê€kÔ…ºÎ'À 0±,寑ÂˤŒèMg*ÖE¯h]9}lž^h%ÌòE݈Ð#>º›Š ë},[·Äh®_:v½]*ñ‚í)Ld hYlF†J+ C~Í£çê$T$ÞÆM^I*ç¤Æ Ó®(§[¾?í{ÌNX‚è%±;JÆžã R|Õö°C ;­K{4–î®cœ¡4ÅäÍ—ØL5¤)“•Pœ MyzO wl&ICo"±H:瑽u§±¼â’å›^̲zÁm±x&™Bš7`3&ˆ™T&É÷/"0b…)(²•t@¿Äl›ŠiÖw?§n;Ñ• ßðÚ/t Â"qÏ+ÆÝ Y#– ¸Û~ؘD–_BÒ*‡lÛ9òøí®Ñh ^<¯¥ú~ZGƪA£÷Ð-×Ãý‡Kp… YñL+u¼°ívá˜3¼] ~’°]ò1ˆÆ|O7V´Ä<–òŸÃ,ô[² ‹X5;ä'j7až—”® âf®­Ë —­­Ó <͆# z®Õ¼¤º ºò}.ÊîË=2Ÿi%sÂY»¹Ó œíÖ‰Œ>ÌeîN£X3Œø°·­ïÔñ1ÍüL]!ÕQ?ÓP꾕‡66xgÿä°Æòð¼ᓸÀQ¤ÐéêUàÛ†…×fn@œk•°Û"µ7,ŒÜ,’έÿHG„ûfÀ1ÎÙqVrËW¹\U©¸›Ý™üÁÕ¨c’3qü (•#WšËyÒ[gȼ'ëØ/U9IÚŒŒŸ´ÝÕ_áÁ‚Laˆ þ¿ O)ýü)Ô­Ó²Š³G‚…Y½¡y/àøƒ›Þk bËáWhýÛH¦ìSQÿgH»”ÎrË„´5/¿Ð›Í™ÕXO"ù>y=RŽ­Zu…Û3pˆiüRÝmfÅ'™@]û)v«ÆÿÑ;ñp=&Ìñ€å~‡]æò³Ø¬b†°¶ÏÏcz²42/väŽDŸC?=½2ñÐÍR®høâ?¼§K¦¸š åÿr˜ÍEYÚQnÛÄåiNû‡M¹°i¼G4%t ƒ%;X ¸Z–"ˆÓ#‹ˆ÷˜õÝ šì:‰ŽéøâkjËüøTÌÅ2Wj[tw G)¦™*"7ÓŠk>ÛÊr!oŠs(…ۯϰH Ãyºß—/í‰s’ºu·÷^ÔD|r ªØ™^÷g^¶äVÖÌ”sI;ƒ»Â'ÐúÉÙÂyŠªýêZ¾†$Ò²HÚ 95vš¦ ˆˆ,kF°C 3Ü!–‘~\$çÿ¦ÂÜ)(šMUµ.÷÷ñŒs>v ã¬ïéi³µ ’wÌû¿;ÛùwR™É"Ô«Æ8³è‹×¹4 󒯾n;Pnø°±fî…͘ÞRCBuËÛ¥{tS˜¦þ^Ü#0ó—%´w°ʼnŸ€o *¢O¨õàëLÊ[êã§VR8>ú$%&¹zÅò“º'—ÅïÉhçç:šWÇõ Í£^c 6Ÿ„ÁŠÈ+yê.¤—çE‚RäàÅÎ]€ gú˜$$“E¯“;b»â^þØ ·`Qt¾y½[ëÝ~y‘õþäçÐÀœåèðëPšvˆ—éÀX ™C†ûÏ_·Ü½|·mv8{3§;eçÆŒ±ü˜²J§Ü%m3£íºµ?‰i«¡›Æ–¢ÀÈEðgŇù]¯…j•©hW¢f8¶Ï÷­ãsþrŒì"k8YIÚc9´:Z«žO7AÃYì¶*¯-¥ž]A‰@4þ^@ /÷v?uÄØ·âÈLÒÍDîd:ïSï lV»”Vö¥XúŽf>î 3 x#‘$ƒUC mé™z¸tÔtѺÝSé[Wbç‘cW8ñ -iš˜^—Õ}ÖÇ.Á: ºà¹j·¢¶`›4Ç:¡^ÐòYò|©éu×—º¥ú¤ö3usڬ͡ ç¶–ü>÷wjòz.‡ &ˆ^sMœßç)6óÏõÝßÂûÉ;I¹S{ñlà•[±V¦]^âýÔ ³½šÀ“»hÕ•ѧ‚¨ ·½¶í2O€2Ú‚:Ö{bãIùS¢îÿ%gÿhÊr\ûÜ–˜?B^Hh³Òp%óŒú'ZþYIyL3hÏâ­Pü¹ø™3¶„ÅÛ"-oáàD¯X ýÖŒ–¯”µ£v!À¡LCVK²„Ÿ‡=&)0±â¨ ¨å¿ñš!$0ޏ”i1æl †Ùõ¢Qc\ÎÄ¿HoŒSݺ÷è,¯½i~¥ÆXÙ¼„úS§±LÉè3É;Â:DH;Ƙ2}hgŸ÷6ÊcŸ:f/ð¦YT÷5Ã_*,Þ=ÖyD¾ãÕùaª«ˆLõ¬]š =B£¨|Š9ê^¦±Š7"¸s݈3\²–CÀæÌhh×d€è“K…JüNêû$}¤nh¢ä8µªò×¼¨¨u–U·'ÐNB 3×ÓWMâ‘Õ,fÝúUÒÛn¿a¤è! ˆ p’ ÔLvgY®OFi¼„~‡àOn•âÍÜ»#>Œ^oÖU Üoù·•®~¥©Åýg,KwŽ:4Jó;Åp Ù ru“0”íº‘‘ÝWîŸø™yAÅ'ÕkšSº§Tî|Ò¾w¯ÚŽr3À-„†¿j„80NmÒÍýY>í©¨X@ŒcÝë V-ÈŠõ˪gwZŠâwwÕ¼6(ZŠU)HNšMuø -“¦y:îØ·ˆS’…“ö^–“ÌÛ_Bj¨üöÜ€†Þ/j§oô‹Äºp5Ñ+·7<âUe4kZ\ÜÆhßWÞ”n:ͱʥÚmÆTæèÛê®×ä‚Mk™j²»3 Ík ÌÄ{¡ñ¦Gï²–TS¦œýŽÁßsçvöù¸½»D â⇈„kw_êCûxh®Æ·¦“C Që3’ϺnÉãìè;˜×R½¾>ã)8Ú(vÇDoÆó$K?5Í ZwÒ➀÷*\8fÅݨÍë—4¡§Õ”JY¬¼{sL j¯ÃãM̈k>»wùx^k7&“9¢l~Ù'ƒíL¦Ñ¦Rº L„˜M*8ö(Tg¢c1­€mA¼|J¢ãC»9ÜœGd—K—v=)ÉýTäVaA渜Cbã3@|?š&˜Ú'§^£×jÿé7Ò{c• EfÂWÒûpQFÚÙC‰\rðŒD&°¡»hB0/|„t‡\ìN‰(œ}€ü±7•r™)½ `kDU=´e`†)µˆ×¹guµ|‡7Œ·´øœ‡Ä应t¹hpic±ZS:zãÙ~ï¨ñ‰’lgÃÏIWa=«ùÌ? Þ\’7 à YlyÓýôÁB'âÆl0iI•^)¯ æ6k°@)‚¹Óõ‚ ]K ú9Ó¨…Þwì=û¬:$ÄWW…Ρ‘}ìX')Ì9nZ"H®Wfëž5Ká&à)áéTùԆߋj\V­Þ¥±j¨D…IB»¸l8z¡ãÀJ¾:ÃFì¶ðj`ÏF;é`EM:¨ôDFȉKhÒÕàDÅ”ºòÖ–j´Mó¿4ZºRø‚p‡ƒÉœ\U1Øx¢‚ÜO_’÷ytH˜*È©/\ºC#/ë?¦|Eq"?º+Ò3t49 5Eì뺊K£·H¯±«XN#ü”Iu+|BŠsÿZNº:Þ6Óhžžsyl?Gæ.;åA.¥ô!¯Äïì`.¹òh¿Ïù!ÔsÞ¯>…Sì§|¤.zgïî‘–4~lµFQ[¼¹2'4¸w†£Mõsv?é[a¼ÓFŽÿ.”Ñ“¼‡û™WéÞøÑç”ñؽK‘¼n6™¹¬Ödánÿùž# dq¥{/årú’=:ðN8yñiº¶)eŽJŒòÀhõöåA{œÉ'–°‰›é”,¹ÖÏç5F°ëœ ý VÒe‹°ßÀqsº—R¶¼ñ–.õB”NìŠUÆ­o4<Cï062Ì”^q;; °=Ë„æ"} e>…Ôæ7tþîCEe+aÒ;FjAqÅ ªY³*ÅÃо§+j¬õ+ øÑˆÿ†×ûyL„¤îVI ù= %Y匷†ÀBSéF 6›o2S´ý«9âÖF©Œç÷è”åÅ¥#‡?Z·¹xYÔ}¦­ÒíþËÁðRªŽ”ßån'M®ÐšÝ„©¶ “Íì§e[G[_Ì]ù1—«¾íHCÛÀ.bϹÈ9³rª;çð̓­`ó¼6-–6<‰òž¡C}Þ–DX§dÌÉa¶(ÔÀ¼S¾¼Q¯õÜ ÐTHF=¾ð‚9š‘>c†dÌ9ž æÇzkl'ÏòZÀÌ7ˆÂ¼"$ìãΘ Oèî‚{ìȯ> ÑÞÁÒÿ° ‘Ñe}Ô…Jýó¿û´ŠMs¨ÁøZ~Åá’:õª)S7þK+.—°}Á“ae`Ô”TäôG‰z üHþO= µæn÷E¥påhÝ-Î3´y…ƒ‡ù ú†Xå3¶×ËX½Ãn ßÖ+âý¬2XèÝ“q+ërÝ)9* _Žð×è–"œ#i†zRJG" ‚oீ°Dr þá3;Ú„ïþÆ=l­…ÚG¨j‹õ‘õk¥wI“åÏïkŽO¿P§@X0‰†/8S‚±R<*©×àXNê¬e™Q>ƒ-yŒ,M| ÉA°Œ;σž¬êú¨ÃßpœeEBøH I&G2lÝ Ë¤ˆ2’ÙVbÀ?½~©æZà݉)ZI¸UL$Ê­Ö¨ž×qÍO€ÇÓì5RZ°ˆKÓñ!ˆÂK©÷>m½áÏ VºÕîŽÑöÓâaNò~L‰tW%w¿dÌ87=šÌ®|‰vÁEƒ–ª =åíÇ×RB“B1‹¥%׫ÑqŽ:¥ œ~1«y/dâà°{XF(`Ú<œ‡È>­Å7è«ìÿ‹&«òø¼´×âÈbì4û¥ ø“Ð)Êß à ò67Øõ?½(d"’Â:€¢zÇÚ ¥ ëÖÏ"Ü‹o¼Xó-Fö ×\ª{@xLkç²Àö&îÔ˜\ê³ñûݦmé!ÐË+4æÖ8팿S\÷_£DÛÿ»ügs· ÖVÇÂFTSÎPr«>Fº@: $QÒç¬IX¯ì–€›G½õBÃÇ@³o¹…ð!,âʳ™ìð™Ð\9¯dÿÁ–¸xÁá®f8Ûpî{j…K˜â²/GVªíŒÜ$‘}×ÑÓκ5ÍCÁÏ0,] gßWìQÄî!¦gN¯»6¯}ìmY:ŽéÔ½#q3ç`¥n³ß6Ú•à8¢—o+0Ò5ÝÐP Ë}åíÎq‰î†’Kø´ÂnÝî¯;‹¥Þ q`*ý»h#QËlÝ¿E@W-’Pÿ ’JØÍ´ ‡ØjCoš!©¤W–eHW;Í㔹ž0ãç&?´_ëõ]†tðº;ù± ›fÈàþ¿cÏAN8æah¼ÀÚ1aÞâaVE'"Mñ?ÛRÊ/éqïþKëUbÒVn‹35)=ª•IŸÚ^†” ´÷G“8–ðÖC‘ÎQöîF¯™ïõ“Tº•š"Ë(Sun H´pÏ’aºeM’E’_õ›}ñ×¼qvD BÃLLJPZƒçH#:|LlÑNð88šÇë²ô3L=eW@·ËO÷ý-l•jÐ <(RLE½ïïn9³L“Üþfo׬õ .*dl$|V…[WæÎ¹ù­šŸæËKIÆ&”ÛVšö43?R‹ÿk`À5ÖÉØLXko¶…-ÃÉúÛzªÂZ§¯ÖA$­­ó ø0}ÀÓáÿÂ]©¢*+ Zó’¢ß>D2mó~ýrCòÅú ÖÌEü·'"7yè˜)J·/N¬aøÌ5Òp[z¬.ËQž4à˜çdXÿäûüxSÇ»0})Œ£´å‡ <9…³2]pJãÇðX»7=53µÖ½|)‡Íg)™Õâ¦æ«ÆÜ¬iùÛn»+QJç¤4j³p¨§‚?Šq3¹¢fäZõé@y0jëß«ç„c/`@+ƒâx•ÿ—À€2²3Áظ@<ò3.^IŽ9âý|Îú×¢Ä[ºîÑA7ì¥L… ÒS²¤4ׯm—ŒVq:äе•Ue‰r’ò*Ao˜Ôµìåy‚Gƒ¢ëÛµæó¿Èu@F}s$CêyÝz¿ò.ÊîDåó^>#¡T°{ý¯‡FÂ\³´G{÷ˆ»AÔ±|&bÔ Ëšy<Ý3È»í¯Ía+]âIWtU™ÍmGº Ë})ë² ŽÆ ×½bÏ;¢¿u“ƒ$#õób†ãúϦ+Õ¿BxwζS1ÂÓ.›1žï@ùjÓ“¿ƒyÇ :”Âo„ñ l²•ºéeýÖ¾­G¬þb!r7 ¸sïŽ5¿¹oM­Jõˆ?püÀ˜mLoUŸ{v¿=ƒ?V|ØdÀ–8êÇ×&ì1~J]ZÏà ýb«Ö\ØM°ó™šƒmNgI)AFÊìÔ”1†É>ÂmåPëÿµ(œ{Á@ «ƒ˜¿¿·äWÿu.Ov$³0Aæ |¾eN÷1†ÅŸ:)°;8¯1Ÿ,‡¸¦ôD˜› lŠõŸR‹“Nþ8ï³rg‰‡ôÆÐ`ê‚êùÔ]ìþÕáÒŵ4ôìY /‰W©­\ ‹‡bâ[™@”m¨dqý$«ìÿŒ)«ãâBó#õíM„†™˜$dø–1ÆÑÐ*ò÷|—… ?oes ì‚öÉ”\Ž—í™¬oýgË3Nt4®¤%$’Çó æ¿…Ø$çhtœM›“>ßäAñão—Û5(˜ƒcKRºÁ<·ØH– Á7LiÌé¦Í›` JŠšÿxU ܤ¸î&Ëš§Â3 ïë{¼dìc ‘ÔJ5 ½§&˜V6ÐØÛ… Ó>•bñ&~šñ·tWþö·ö†ß!vÓƒy½$vz&)ãýŸ¢ü•”m‡ ™ ZÎ…åÈEZª_úðxLEVl§¢,>H䛚ékNô1êèáÄLÝ]ž\×±Ö*²è·è• 2s˜NBsËݾ1f¸bìÌ‘BM*Q…ê¡ñ¡~vr— ,G0 6>*h0ªðÁ÷·çGÔþÜñXš#Œ­±¶|…K¢ãÄɺB]ù¯ÆÊþ«x!˜iÁE³¤„ß ‹u¡’]kô§Ç;ê„ £¿$¤ÅíO6¦1|·<‡'\üMÅèm‘ °!œÔÕ½Zê_Øëò±R`Z4»ÑöÛæ!wBZ>¬0J8Ÿ­YuÅîpÔº,ôÓ¯ .SöýIÏD+âraÉ6ÀR[8~½åÆkf›À}é$EhGåC:z1O•ÄgòÔÄ '0¡àŽÀüÓG=yQÓËöѳ"ì{+·À¯ ùÕ/`çý­Þä\M‹ûj@º+ßcM>Bð½*ìS#K×÷ò"µ,ó©ý®Ø½ÉK“ „K“€7p°?Þÿ9ui“„?ÍwÍ›Üü(<A]õ/ž„I6î¿2ho–¢¯‘/ǾGÂt£ºˆÉº¾æg…l®#¡RÉB¥[;¶_òí>ê÷PR’²ÉKæðÓ†M¬™š5 THx³›R}ømŠT¾W'Õ7Rvº }T%ÂAÆþ%¢piœTZ„«·[v€[|¯3A³µ%Þõ<{JðwtE´ÉP(ù²ÿh>ÙrŒ‚fŸþ˜~‰JŽ%[BQ¡R5ìÑ8mwWd©5b9‚‘¥0 «àï¼Ïëkå3û  FEù<1/-ý#ÿ«ŠEäo³—’E;ºÇç6þükíÖg‹þT°J%r—J‹Ú}ª$×Kͳ›Ä(ÿÐ3 Eôú@š1+ ðÊræ'{J|ÿÞÈ=Š5wßymeÎñ#8Vâcw8Áý.é?Y‡¸ÉWð'”ÀÌÛÀ¥Z„Ò…4ª5'áUoÃ,6aD¦B'çˆu×(ev¸"÷LÊçàÞO—Ið$#…g!Tý7. â‹Ý¸¢3k ]¥ŽÿG[ϴ刯ôñZÆxÒÎaL!¾\Ïk‚¥å„âe v>³ ŽêàÛU‘K`Òœù“-<Æìpÿ ûµîã|Ç tÊMÄÃëáÀšÂ›¦Š ù5¶[ÛJÂpB‹ñJ°¿ØÐWaΫýC&µHdÖ¹Ën§•Üpé¨X ¦³–ç ‹7Y®rk…9Ùæ0Øð‚Ì6ûíÔz'âI G€¨ ኡ*û¦§hÙ4zˆÿ/'€Þ.»ÍSܵüK} JX¨žÞò©mÇ´ÁB›´B›%ð œðT—î”r¢M©øº8¸H İòÅøQc$¡íù¦úTŽSAzì%UÕ‹6ÑÉ:fIhˆ´žì7â.y–,2“…3¾rm>™§!–OƒùþÎäÌZæMÞ(NÙö= ]ð%i“æóXØ ôe§†ß#ëêLaUÜ…ä±½ÜJ<|ï­ú¸Â>‰8F VþBkúÇàUS Ÿ€BS${DRÜÏ´Lh¼À<¦p—µ9Åø­¥gw†—ÔáåR€Á]Ñp’ùÈzÊ]äß×ZKg묙‹ˆ˜4ÏÿÏQŽzW½uWæÒÈMz’ñâl" µ›_–»éO1-Å0ê×VáJic'ýÓ||#H1Ã&Ü ©è(˜ˆ~«¿ü¶!4(°xìêo0!’˜Ñn÷[7Ï´)uÓÊ„!5æz‰…ãŠ×n©(•öoVw\(W¸1·¥ÎÙ÷<44ìc!ÞÚ¦­&ã/«¼ö±þõ®Ê”³‹ó©#™_u~§ÃTE“±M?¸T³Ékáîþb~^Bp·Á°áñ5ç5àH]õ%M-@V>ïjùCý Ó]šŽìœç`åßE“¹àÿšp©Å¿¸*G„‘ßÁlFÔ¬Ùõïgx¾è‰ Ö5kq d9Þ“X-ÇA,îxé/<…TÛ€lHÙ~ý>.2Xkë·Â딉!C?ZFIu¶OB”Ÿ Ë¡y4ÂÚXɈö"ëæl¢&{‘ö‰ñtS§0ïf{[–¨i-Rzr4–HTÑ5 IJ{ šHÜ$Hw —* ˇe¬dØÜªÅÐñaîìa» 5hq»æÎúù†tæ‹¶1!ǶÜ S¦õ[‘qÈ%>8‹wôXD$aa©[eÎ;Ž­¯èP0<­ªñ`”p²/®þïü> W6©Â>,U“,ïSGÝd°¿g5¿ |Ö6âѶîéºX«ýl²*÷k^ÕærbØœ¾¶Û¾È¤Ë{ò÷P¼ÃÇñœ᦮ÞäúQ/A>Ø5e,ÃÝó`œR®Ž¾4ÂÏ•»îúPbò#M¤=”_|AQE4e6î»Çì4Žz‡E8 ¼–ó´Šù€qcþ‰r†<öU¢¹¹CGÒg?¥·-g±Í3}º(å#•-ìŒàä€(ñ ‘üäê½z ]Þ Ê ~Ü‹©DdóÖRÜØCº?ÓKµçÝ ýb}žºÝãéȳºõÖ2©U kF*GÓCuz²i5I;,vvà Zú Qç¿B(–άÁ·F:‘¯ˆá/ «(P!«|«¥Ž(}K»Û§%ûBoþT³ÿüFëÇs4>0Õïê)-o0;.´)³h{OIʘ˜gmBOoÿäUµX«{B6çê  [é@Ðáñj~Ž)x¸„‚'ç§7IRΚˆ'¾]×ÊŽeÁ¨’0ÒÝm® H¤‡p.ìç J¸à.IR*¼h˜Í•8Á„Èì½A •>w}~õƒVñæTlëà±ðj1ÊòASŒ«íà~äÈ´5ÍšZCÒÚO’ªp|`*(Æ'ùæŠ=H@ ‘Å/o­íu͵Aa6Ö.4_£Ù°óí¦ü„ÅjóF¬D†/‡8†î?º@+µkÐ'Z| Ì|«ù ]D~ÄVûêA-`“{t«QWz-?W™ú¶œñÇú­þˆÚ2±QÐwv^ÿ›RÅY@8 kãâg;: SĨjë’{ãÔ¯u1ÿnÕp©4ÂõUkDè/1Z奜=íÍLåòÓʺOÇrŽ?-Óté\1ƒ²cꎶšÞËň>Bñ‚½’;: •_ŽDÝu +×cÂR[#yŸË „ñíS yy¬(ðLúÉÓ¾µUªÛÌËÍÔ%7rMâ—!nf>¦0a í¾ø=_×]¢ìV^Ç}5@?ösÖ_AÍ<*…û>h’Kfº“H»:ôÑ6ÜŒŸF4È—¯×7án5•rR‰êv -¿Ú`οýO[ß=æõît”ÔÈÇ%^îþœ!¹|>[íÅDãÅÍ ™œ—àØñh/“(³èç„ÃÞoŸÊF¶+´5Dr $PW»äÜ32 :m+êë~ Å}(m|a&ÒÖÊ’ÿZ1vÃo½ûš:WG‚?öîÑ_¹z‹è,Y¯ (ÈŒôg¶û9ÃhúÐë;¢¯Ë ÍÎw¦ÇÐíø7DÛ:hñ-«Éª×Û¹¥sÿΰÿ‡y²@þÞB‹ÆqbŸê`eÐì¨b^¨MÙ –/V­D½2‹Ðv ÒK` Öá$ÂL.«ŒpŠ3  ÄK˜&ÒÉYͻŭn9oâ’Þ¥ÉTŒgÚ@Ÿ½ãO³óƒÊ!65†¦Í^ÄgÖ«ŸB9Ç,=¿Å{“*¤l“N$íÄŠýB££|¹PŒ·‡Ÿ]oC×kê†Wy1AºÐïx¶ œé4‹#3¥@o»(Ö›Ð|N"Ø K#H‘ª`7áè—vãì±^¶‘ýzáy\uT1}5ê‡ öÁ•«R‰çæð32Akúš›B7æ¦Fv–ÂäR·rÔ”@˜7ÔYÁô#X6¦Ãîèwô'~ÔÈv¦<’Ø*á3Q­'¡‰Ì­!°/¾ˆhøžýÌrX÷5g³Ð¦}ôÕ ôæ576Å+ÚKh~y87Kã µîe]è)áø˜5¬\ãð ­[ç‹öFÂPû"_TËY æz+ P88©”`¤Çü”ö?–BÔ•@[,E$´PWâÛË>›”pj0$²ÿáç^2礯|8‘ê)5ÛIqIl‘B,ˆÍ/’ýáÏ^XëíƒÌ6.&ìZˆ‘“ÌH=ñòiÊ\×BÖ¼–s2û˜<¡'Þh«¸¬"~Š9%5ÃIЊÄÉ-óp´V"ED¥žÀ) ·”0R§;ï{blyÂvÔ"Ž‹ó2ŠòùJ*ìzi¿»É¬GV®¥( ê|ê ‚ dYðÅ/ð›Ox'ͲÞ%ÐÕQA4ýŽþßøû#Ó^|ü{üµyuÊ–#~}?Ä ©üv䢄r»Ù‚B(Uƒ¶c~·d_¥J…æLè†ÒÄ[#X@”{«°o+Ù!„BÚÎüÖk+¡€+åDqW—Kòè_Ø«rgÑ¥ÝZèZDñµÄó‚%má Ò¸…؉2 6©Ę©Q?›êô åiž#Ù¹Îý“¹>•ô©á§E©’ïþÙX‚%c˜JS*”ÊúDFnöãõÛ‰…OÔ3¶q‚ÅÏ£ãº@gˆ¡vd•m 9YEíŸ4¬ 9[géâu¾G£¶œB\lså×’d5‰9øT2X‘ã׳:æ3p܇ÖJßêf Œ+j6€¡¯8à+ÓÑ45p¯BQî©X ®W ‘±÷lêE½cïª{ITá1.°Ó†6%Îça:7¬£#2VVõL\"UÌó8­½|Š£†Mnú,›%)(…·ä ¿Ox¿ût@N ŒþJshUѳD^ﺬòjŠpºØç&§Ã⪠ Ü»×ÇÿÆ*iÕ)‘EïyxÆbÏÍÜT·Ò³¸ïK_E ¨ôw~§«Üâ_€¼(«áùûßósèY,ß3À©‰ÎŒ-·¹Ãábg‡')¤Î_ÁW»Ù•Ò;ß? ¨lÙCé%ã†ä>‘ªh8¦ »v(?Ñv—<íy„Ù"Iê9TýsMþW²GŸy¹ ãË nìíÓOÙp±„}è[’Ä5[ 9Žê²ñ¾Õ.àOÆÛ)·m˯“l(ÍÕˆé 3 ŠÞö—Å@K—¢D±Iq4þ=ivO&ˆ2·¹$;RÁóQc6BÄJúuR'äè^=Þ ’; =±ºN‡iO†æ÷²5&ÌŽÙ52«uD«PþÉß„KõÌèVšH.5\ ÄâJ­>áE-ààìJß‘[d-Tåȯ°ÇÊòàƒµ9eá +7Å?˜’æhþý¯Mß‹ÿ—bGú§vqóro*‡Æœ;RU}uVõ‡fÏfcã¢4– ª(ý¢^l§—+¢M”6äƒÔ˜'¿Å° Ú…Ðt;, /ëñì¸'BnÐg‚w-UšáÉŠ¿”+ZŒ y0øPLoÛଙ«{F膀^¡glWp« y©©Ÿw"x)…'G´MÇÑ¢‚úç*p<Ø(ý;«uŸRïBI+ÄèΔs¹®=wøÈ‘†·DØœ©ÖhAÉWàÕ‘m›àÚb¸#J®pâd±é]T'»¿éÃ$ “xÚÑdZ¹‰ëL‘X„,põ<ªR;᱓›\7Ò‰o%îëÙ÷¯Â0x݇Ðû—mû¢âYAjÜKm__?#Ñßçlï½¶ Œ_--3QÖ¶2ÇùÅå {aŠ÷O™©¹V…ÚŒ_X·Û”õˆwtMA}ñÞ1ݬƒÎJÛl `’xq¥X?R®Tß`¶OhµÅç:k~á³À øÙ(úé?^Z!ã¨å_ˆ;Ž/¿]cD”ƒþÀˆš¾ Án”Ù±"Õ¬è³ñ=ÌÂ#Œ'¥ÔF;'rújÏ‘Ü>Þ1…<*AF ¶òP›Y¾PH¶+‚†[(ªƒçÀÑÀÓ`ô ÙbŽ•k°Ä\D³YGÚ¢ÐnÕ$ NÕ®L’\üSû8Ñ#ù ¬!x©¤Æ‡|Šà&€Ì…¢‹ˆ¾9Mørr³öŽñÊ÷ª`›MŽÛ!ÇÊ=?1*ãb¥á(^3ÈSýùÉOì¤ußÌAêòã &O?93ÎÒôÐ ´t”0@7EÏt:eëw2©Ü}ì¬5ݽÿWô‰q_jPª¦ÁêÈ<."¥AkŠ^=P¼X0e™Órô†yU îÚGžúÎ Á$ ; ¼3Èø0ÎãÐZ€o3V]Íp/€í€wë YYeåŽ+•ÆÎ¤8 ¾FÙ`æÄÜPpx´¤ü¿ø›yq#ÃItâý£^>D×”'Ñc+gëÁz‚ùà½H¹ŽâäÄ}¯½âƒ}*ž‘€^¬ÿ&”0Éj.W n·¯ µeF0ý÷›¥MîìàjØøþí:¿¦îDV7¶Ÿûð*cx¾'>ášc r¸XpÛ}îTì;²›}R9ŠæÿÓY¿Šõ70ñ•¤Ífë $2<8ž#£Ê»ð]œ‡+'›íjHøÅ­Œ?©jb A¶Ò¾™¼í2%‚ RI~éLäÅ?µT0²6ýÕ—ÍÓ‡±+(¡½¨JØyE?!nl ¦ãô×îîõkMFŸ÷K£‡nÀY¬É”;õ¤ÕÛå e™?dÉÚj0ã£Êý¾­'5÷cË?*»1YÛÿ{}.#‹3;SÀ³ôZl¨ðö5²düuÝŸé#«VÑ£ÒOþøQw×q€D]äÊ,·CŽÅ’%awîrq’ôîUszæ¨(_bÅõê%ëÿ(^€„iñ'èüï}ÓýŒ8—“Ë?òÓv”ˆÆÑLV³.ùÓÏâoªµþó±éV‘´µŠ[œSRƯ«Ò¹úã«T‹¢6 Ì%É!5”‚çã¤AžY °: Òmq"2pWíÁ$eEÒfÝà¯@ÖÖwX£lô`¦|>Šsº™R4.ߊ¯áŒ"»zg[…=÷ÿlµ é$T0fð'ûF68ù²ú8ž§¯²3“à¿êuÏÁëN%³AÁi„2êényr‰+_T.žLZÖó@i§Kc‹’´u}^M²¿¡ ¥Ï%×oËú«€ú†aÌÄ,Ë´_ÆÑH–×W Êý›`£mc¦]üÁ­Î.õ4멽zø,c°‹@ï’¦aªÎ áæÞàìmŠúRPü+wV)3zPÇêïÂAâ.DãΙUWöƒZ¨üV†|Æä(çÂp“d¶¢~Ó@B!©×¨¾Kü›Y?½¬V2´Î¦O®B§ßY9wóBŽç:Z…‘ÅÈË•«}‰¤{`˜¾äÚÀºßy»ÝÌøÎüÅGf^€h»Æ-RÒ¢ua§÷{rñpä‘֩Ǫˆ(jãeã-ž;ƒFRcFɦèGE“tѤ§œHðï|Î3 ˰ݴ· /-U’‹Æ+é—4!ºÕ¯'˜PôúÝB3ÍG-5æFh•4zG›ÌÈ'Ý´” ë!ÿƒÛðÌœ°EwW·›‘}Ç8C^ ÏM±É^³&«Þ®¿vàœj•Õª´.R;³ô³ÅoL_g€I¶öYµh!†è2)eßÇMï˜؃¿äŽõÿ¥øB€Dt#œN?Ÿþ¯ʶú#ó« GPDPóEÛÃÀ#³Å€¶7&Ã…ÈÊU|¾Y‚^|BTû(ªûK)ÄWÊtYo¯rÜÿ `dL€ACøc6àclÉ¢¿I¯eÑm--lƒ æý<Ïu!w/N×rw£DäØo†Œ½z.=Æ0”-CxÔÕ”PÍì`m›WæªM\*ÓõàÇÔl )þè6±U&‹A¯?0)í §‘¤d“&CxÒÆÁ2—&`˜„—6D¹a»¤-5°çŠrŸ°Vo)Õ³¾™Çf©ˆa4á”åp9r4!Ãó‘~Ÿ’ò6 ãŸá7êÛ¿RÞb†%2±K ¬.H©ç¤0l;Z5çp‰ 8g%§r€²~ÑçƒoÁPFL×Óä‘IádBÜTº%f^s/"]Ž$Ð0ñ?n´ yøâ•C¨ìÅ]4¿^龨W3(^¥.ŸŒùuIö‹†Õ«RŒ ·´ß†j–:Ž‘ÁeϾ6àë$§#Ä’]s]ñ¢§ÕáI© Áþˆ A8ûÙiÎùÝþ½ß[®—?N€>M®øb‘à‡÷úGîBi• x[dלÉ2Ûô 8à’yB@R—oöëž-DØYܨSŒ`P¹Ÿ%ÃÚ…ŽÄGHv—––cŽç³l(LŸô&ÊwmAÕÔ…XÍ_<Y–•”X½|7Âÿ4J? -¬‡„ÁÁ®Sü=ŸZ}Ç7NkeÔ3h€"i!•#ŒˆîS][¦øº”ÙìdЬ2MÖRJ¦-ï€~詟œ_Ę ™ÑÆêûê‡ñí©"‹ã jJ€S;bM Ǿfj²ëo.”$foèõÃ%z|}Acø1!€µ³•þâþTp Mð×Mþ\+é‘àøgÁ lœ”ЛIííËû¡áâék¾W#’„Wœ‘`\SbÑù‡Z‘[ty¥û÷F芶Öù2m±æë&îK‘&v¹Õù}uhñ8TÚ)L|Va»*±ˆ»¿VZdó‡‰ ¦fs„ùy…Ýo|BEø…)Š0MM<¥ž®¡I£6hêía­s·ºåù®]™3„ùØÎïTOËÏOszíüÊNB,¤ÄÒø¼1Ù(hÿzö½–¨A¡‚”™*öCþÀE¼.Ï »€‡hS.Fìl“–bd1i#5Òj·_MK}ñAϯܟö#Ù³¬‘®iuLÈñá©’Ò ipŒÌºÌ!b2\”ŠaÈkÉ”¸8ê¥èÎ8æ–wË…q/A"ÃŽ@oùzZÅSeÀ*0s³N¿z> ð'#b <_]M/-¤ÚÇ}úLǃQÎW”9lÁNúŶ5Qb8îó œö;Dt ‡ýébsUÊF!¢¾Á*>·‘×ðàŸ‡QM`Î;=„]'¤sFHÍ©c«æ"g²Ð©“ATª¾…f(ØÙ¹Êþ<6ôàWLÌä=®~Ðã”hý0^!Ñù㙢ã|äÂö·_'°Îc˜Èd³Ã#Aå‰×&ò¶éÊ-ÖL"Þ MRæÓÖyâ®ëo®ôæ!<”NvO%Fr!d4ƈ ÂIwUj/6߸õÖðýv·ÒÒG¯Ó¸j3f6 I7­Ç} Ûæ˜ê>Š;;×w•”®5þ¼Qª¸5mÓoÄŸCŠh=UlãÁâ àVÕ:Eø BP:v1„Šõ£QÅD£/ÃTLS–Þ É ¬zè¾¼sÓ sÞ§/•W@oœid.ð‘jEëòR]É6À¦Ö}x3”ºâ1 ¸ç_üÏ7íF$k _jÁ<3ýìIçÑ#¿ßçÅ·ÞH$Üž«[ÂÒXâN©‡˜R5¯¢!11ßô÷àªÜË—±˜a¸º'}%öwªË‘¾ÿñY*v¡ÀÓõaâQ'ûà9й: µå.Q‘5‘`³jL™‹”‚îññazEm\9AãÊÌÁï@bAB÷¹Â÷©Dÿ¾æ(¨€ò²Â64|jõÆóTFhý @=éuðk‘íúJ£!¼¤´Ybæ}ÆPéGâ« ³>8©7^F=`Œ”Sˆ¼Ó4,op‡)aqõ„i“rÕzºK"^Û³Ä9³Öß °€FÝ@õ­™ò²:V·^+ȃ¡Ÿ¬KsNóGðZ¢ o÷o(q{^qßnN’PŒm_Ó}@‹ ñ÷cý#lôîQø²ó¥äMÅ.ªfáŬñr†·—îñ`#ÄB¦ ý mõl™|%¡Ç $w 3÷»jùËOéŸùó[ÜéjÆN-Å ¾NH ô£Œ•ÌM†rgÀD(ý&(*‚üÓÁ¾-þ[µ-" „½ÂÒé/÷œül »à$¨Õâ¥Ãu÷îö3ÁF”5ã†NÜ¥ —¸ºB ¨Êƒ§tª8‡ílÉÏçKÉÚr±žR<÷z2ªÓJn"1üVt«‹TÊφl ÷;Û|BhP˜d2üÔ€™Õd2Žù”zÃUЇ½jí¿Ô$(tçœõÊË«Ü{íÚ W«î(ú:°Ä“†¾Q´!ÑãP8ðTN †xbDMÍ@ú1xŒàf(æQ¶Ñ,Z Äa˧DÉnÂíì–ï™c¥•M]°@eON¬Š•Èf¿(€dÑîw…qp•ñCÚ/w…¯;$Éø –SꌨÁ0šiÚ&¤Qª,àv=Én©Äç³I-¥¤þT—[O6@°­ÄÃ~ ¾ ²¿…‘Ðîxa1Þ®†®Ít¡ñ”Ò·Qæ;¨4î¢ûø dÔßwt2.3/Ô ëRé)DÞeÛsZšHz[×ûê_l`ÏiQ<Æ4s“šÔ&Žgá›ôj"4/Aÿ D½ð»u2Åo%ÓÎ;ÏËpS×­m#PRZÇ£‚Ÿ á°˜]â˜2Rç]ÑE‚§z€ÒRËõò3°p €h ïÆs‹û¡\ ‘&õ[ཞt?=#PŠ D‰ï;öê¾§<À“Z‡ä.0›H¯š+ TWKle(x”5 Ó\=UB„º×ôa2M™ë’‰ú×è£Pè’ÌÜÒkΩß!Hí .r Ýs’<ÿ¯µÝ;IŽÌÅRä7².Mqw²'–|WkÎC«˜ÇþÅŽ,Îì µê¡é¦8z£û+oøOß3Øs3'Í4úm¬@~ŽYâwgCÓÜäÕ(@á/Bwþ~B²ÀÏæäùÆÑ·éH‹™#V'Êu+îèWýN½¾i$èšRû³À¦·d¦[>Q’ñ9ö,£¨"ù+K„~jDDp¤ºŽÛ³ã BGFfqÁ«¬†h[¿®·Ï7 Š© Œ‹ uÛª1öž˜IQ^âø!ûî«wœÂVaì ð®%,‚ÄÌCøÏßíŽó"X³û³ñ„SÅ€•töHûögÈ–UíbmDÃj|έº—IŠðÓl ’_½&iTÚWÃÄ‹ø›.N“Ìš«ÌIK $Ü/ž¨5õþ~3í‘¶F<51B„¹ÃŽz,ï÷–ab9èÐ1U>Ü $‡2Hì‹$Ú æKyÔŽ:qö&@Pàá2´&‹”2Mê âèEŠ?é”òŽÉËøÕ\©°Á“f½Èe4MrÙtËòW,±P‚½™!ìÖæMßK7ÈP”öãåºÌØ®)®jÞZ6Î&ÒL¶E>Ñ#í†áž1ùÇðsÑÏ„Oß½pšÕ`Ð[Áì„‹OõÃþ_Øûü@ïÉí§IÎæ\òŒ=‹ý—ÏÏ««Ü,„$Xv*ê|UàmdXKe¢Ñ'¾o1îÉ­JFxÊ>-Ì$eVÔáHáä¿G§VbÙ1b^´ø2'b&«XŠÅ’o õ›k¼&ýýÁÈ9>°ßJ2‚N(Ò:IÏˉLê TE14c²þ$Ö§ÅãÆÞýŒýu,'zš}Ñådç7AÜÝÄ]´€òÞ™ý*Èã,¸Lbny¨ã÷ ³¾ô‰z® û„³ô}Q{NÁ)pâ¶3;NêœpAY\Å_t± °qKì5˜2ðƒ‚˜2¨>¬MlQöKÜöcݾnsceG£',¦é~Aš7©r!wP·yºŠcD •iWrÇ< \çØ5¿—‰Ï094•ˆ}ÑŒÄ÷·´¼žøíŒ¤9t@]S#ÎBÆ] A>ªÚËfÝB¨4³¦,#a½°6d„Q¦ò´êÎK׫<7¤`ýǃ¤€ŠÙÛÎ\Acmy}NŒß¹éuo[)8qý Œ§s Ý«l*¯qÍõÐon³””ý‘h üÝ•rᨷ¦ÞÐZʨOXEuÚ§àüu.ãl¸ÓÔ•­ú¬þ“T½ -¯ÇíOö9Dá^Lþq¦RgåýjYàjP¸ ‘›.vQ—(k`†O†I\"Gì-U—)•ñáíˆÉâQ­…Átl Kú ²Â‘2)àè,·* 0Uã•`ñZ¥Ãû´Š‚s|ž=ÏÀjñ7©Éö Ðñàb„w M MxO4NFúe¸4dÓØ¦NFZ–Ç [.;ÉÌG†YZH¶ÿ¹¾å¯¦K{Á#¥Î:…g&$ï¹§´õ­¡—•ÀQ™s|ò¥„&ÚIþ]I–9«Á;ôi|˜apL­i³ 0rtpuŽø(û’ðð`ðèÆØpt-‡$Á’=•Ù ¸ÕˆŸ;A| À¦±"¥¡¨‚Y+~agò[š3«Œ±Ô‹×H2g¶bö—CÍó/ÇÛó§s h-BÖewÿÆö˵DÕ}PH@Û6@ôpYËANõ*ÂñׯðÙ¬¤Až%7«È÷Idg¢º7B™$Öz°QthQ±+èй¯ištH\è-ÀCi@(‘ =²*lRÀ•Äoý¡ WíÒÍíC4Ë5fÑGßk¶¯;ßa°)>T!ÕAßTyŽŸw]£B§ן¤c(ð®­ ò¥Xk–׳H§Å+†N’ä \±Ã)ƒ^’VM]¸ZgÁÒûínðgÝ ·ÀãìÆ‹ÕgG¾Ì‚< Ïl÷yºh-ócf=µk¥ü» Sà‡»¢€ªùpȯ4Ý1E¨/_ïþ}SÄÄb[¨”<‡µúð_X§æÍ‹cÂ;à€Hn©>õrál=Æï²;Àê'. ¡4®„+¥Ç8`ˆ¿†OׯtܽÜÙ(Vo‡€×'~Î=ïÜðÔÊÛ–ô«ê÷ë…s:²l©MŽZðîf¬- YoðR»¶4 h´Ñ¹÷,$)‹Ó¡ì›2Ù@·ÎÊ0׿qm°7äWÍgß já16!útÿ=Øý„ƒ[ý^:œ°E¾Ôõ7–ˆýRl{àJÚùjì‰*|1g ßUf»v•e•“27Ö‹ßgÄhŽœW QŸS ¿¯2'6gJK ‹Å§‡QŽßø™%Põ'GnÛÀ–êÃw¿@^2íXm}<‹¿IñG´GQcÔ?[¸;ÿqÓê,¢°jow$ÿH"ø¢¿ñÇ5C²Þ’h‘xØÀV¶çøÃÌÁÍÅ)^óÎË?ÄǵÊÝnÁïƒ&E±Zá]Ük4”¡kï7 k“Ê»/R¾æÌ0Ù¨€$jÙ#p²rKñÇûëX„ŽÓˆç0¹Ì‘þ`ÇvÂ^Ùnn„oëºÍ䕦äf’s›»a›l9Ü`|\ê>h¬æ÷ðôeLàêAžå¾pæâ¿0ÍDöl&o¾\X”šõ÷?Ûæ&±/ QUlÎt8˜T×B8Öáòåøôp³õfoÔByG ÏLk"Ì“  þá§3Vóbn^î´D¹.×±]È~™6`MÚ_õÉûí¿ °bk’;|ðÝ„ =Tß±l¶ÚÐÖU˜'vÑ»NF†õ1½Ãš¨îÊGè;·çD`&;í€ò ÜÁŒ¸4‡ÙÏi‚ƒË¤J7oôÿ„uÄœZØT¹ƒ8ÖÆô¾8§D•ïÁ޽B̳ñÌ ùÇ#¤³2óý¥ó°ü» ø ¼­O×VdïÊÝû½/2h™.Ý~bܳԨˆ}¹¼•ü;&jáDL­J ïÖ(± ‘•Q`ÒnG-’¾ .ê©hœÆ±]-é•L^ÇA ¾äÀùõaëqêèk  »œ-Ь^£‚ÚÙPÏâÖvCÍâļMèxu”¸&@yª—Ø^gf"‰eÊ7Ÿ渷d:–²ÑX*è^净ô&|%€ê™/sJ'G 0q°Ì}zdù¼l{f‘5ðVTWXQC‚±šiïß6Çæ’ óp Levcƒ)R„•Õ> cý¢¹f%!í¦F4–oxô·#¼]e^q’vw µŠîı8x0rͯm #´:”¶ØŽÐÕ5àƒ0SØ £`|úš07ʪ4ô·NFhÇViµK…§Úh¸†]E^f»Õ–an©aM&l,§±ê‰+V€Â´kÕÇbP[¬\ÃF˜‡€Ò-{Ì n]ÑÏ%œsñ2º«SìÚ•ï•u„1¿cãªíz °?˜Ž}/ƒDÌxvôÆGkøÚ¨è¤Ñm´à_ÿp{Ðñ¨Ïx-ï¸ÊÃ{K*l0 bÔò¡}ª›ý™ÍŽñikÌ –ÿ‹÷—h¥\ön;,-®\ÜQS¹6C¥ê ”0(•5êQèinØõXŠãå0Úo°Ae¼NU_ãçˆö‘ÁÆ ¢ “TP¼ºËVðüÇBÚíÊs ŠîEóú?‘ Ùh¯’ÆÀ$ú¡éì[â–dpA|ÐZŽÚ;›âÖñu† cìåuÛ¯x¢”Æþ½ÿ½}oUo?"=(¼Ø‹i ÈZ¤™~nƒÇú1@^Ð-taêÜ/ÚgÃj.cÉ£‚ËÏç­×ÒóW&lƒxÙ±˜*÷Ì.cU!ÙUî„] ±î) …G÷‘¥J~þ±åß|­FÊÌ·Ño_«j˜ðõž=ÑmcRú…<œ¿ë)„‚ïû¡ÑF"îÙ2’à¡¥Œ¼ò¿V‡Úœ†+õ£‰‘nAÂ¥!›'Äà>BƒpF ã{|jd>í½fÒãÙs"=Þê¹èBË}-.  A𺧪ðøµHè•®òüLj>p·;%¾Ç ÇÐb&R7‹LÊýAªŽ/Öɇ8¯ØªÝÓv:Y;Bb*NÇ”íúçóS×* ßžE§<4t÷›Þß¡ŒœøhãÛ±nZ•±~)ØÇRø d¢,NTr‚0*"Tú4áÌ^‡®¬×çZQ$VBþS¤ÐG¼û¶Qi<âd†@B2è1ö}µÎP/[èžIK%¸|Ó<ÕšSÌÅ¢Áþ‰[{jSà/H~é!m~a<_Ü~| ¥ õ¢X³‘?¢dòo=_×M‚5±o»þïCÃÀ) íå7ÂÉùÙ-1åƒï|ÕØó>º€øÀÝ"ÆGmŒX…¸zòÐ=r¨“"Wžä$êOðà}A¬,h‡fåø´¯/æ–?M žLi6°½iNŸƒ6­ÞEéú¨ç¸M®5üU‹L3”M–†f¹j•Â; ¡«cè@>ÜŠ=Á %ážýÈŸLÜäòÓ7áæ…$*GFY1´k+Gu±Ó¬¯,ŒÈÄŒ(óÎÖ˜yb{i™½ÚA>VÜËC¼ää—ÓZU¦4â}ÎXKÁ2ÉdjjÕ½ñ»¢a¸|¿x Þêc~ïsG°ª„7~I¨jæd ý1U1‹Q!¿¯kîìúV&(Ç]z;ûÌUíá?6óƒçoy$5€ÆTö~Uáàñ¨¥f^Ž¥ ºu¤E|ëêkìË~ «ˆ,ÿ1•D,Šø¶Îd²ú|571߯C¤Ðc¼åƒ ×2¶ ñùëbOÀz¸~4’aŠî+·ˆ‘N‡”â?æ)kÚËÉ·R »s(ÔÀ°pÛ+yþæÅÕ?/WKÏâÜ8¾ŠÅ¤èa!¼MSY\ñ` ü½)‹ÿ<ð(>X‰+Ø|çÞ¢C˜Pjà Îv Yx‚ Ç×HÿÏo3—†Ù¶ÚýjœÞÔ-i>äoÀã5EE«ÈÁ©´>ëÚÈ3[)’ð©g१öaáÍ.O äIoßÓ*5+ƒNßãkæc™tÙŇ&PŒžûpÊmr™fóƒùæ•à~èÀìð0‰˜${Y¹ß¶kªmÿ<3KØ€ R·“lŒP9Þ«š ÞÅäÔCî¶I…5÷žO9µÝÅ‘-¬Ù2¦<è‚)h‰H¤]“ȶà23H±¼$$™ë¶Ø ªuÌQ!w/•/Ô ŒõÄ/‰ë“£XÛŸë.|³wÑà_ÔçÓXG.(Þ•n€˜øÀî† Þ¥—Š‹FqÜþœ˜üh#‘Óó æe–ZH²Úd‹Öԉ䧽@‡Z§Kä–à×—'ÛÝÁáµæ!'ã5U$üŽ_+”¶Ü7J‡rŸ€„ë%U-ζ¤J77æ{Y"jwÅ’ŒÙw r‹&G`s”P*ÚÏú}¹ÚÖþ‡Éq¨½/¯nÐÐÏ}y¦`§¨¤Í¸üþóJÏ„Á¶¤Æ¸˜îNÀb—æ3¼R'8cà (I¶ùW&H†íÁ|ÍÛ™J,ÑEj÷:a-Ö(¯<½¾­\þèæÎ¤ R ÆçÔñî”ö:©ä,$çbc2DûŽŠïÎOGYæÛã¹|X/y?Fá‹•mL*±Ù<§SJ¸êY¢¥ÌõB q>W|Õ\¥(bAÈC€‡(/ÉúFÑþOû—-žkHšŒÕ/pTV=ß‘ãÁÇloÜwtõg“³cf&o[k¦yzôTù"IéndÛˆ_IŒºÑŠûADbèõŒ‡ð§W(´!%úXRT+SÝ3nfRÚw´‡u>[·›>|–à:¸nÔ§fïú¹â>UEÎâÝÜW“ãpä«XE¹Qmr¢È’ù¨.F‹¡Í0i8Œ¥2¶·®»—œl½…r&zÊ 7V˜¥8ÀÁá·î#RÃÈFžŽdLXY–ÂVÙúLú£ÄoœSŒýå+ûáé½èù³ßVŠá£4«FW‘"3nãMD?-<\t·Ûg4nLby«û,/é•Q ²W;r¿7þ)õFE²i9¨çeºµ}¼‹ýé¼sP}·êòýaɲóÖúCKï“ç| z&XpqhÊÍ1²ÕA”Ïon€›º™è¶;"áÞk¬ì P†•VÈx$1áˆ: V ZÂúlo«â„€øùRÎÐl,÷GT¥ôÝÔñ ¹§'+ÈÐ8*¤¿V–§Ù‚¡Þñ”ÌMdž_úêHœÿÚ]c¿ ƒ1‡‚?Àó¦ tíÊ-íê(k›’Ù/Mܥ݌­ÖâüóFk:¹Z:gûa°›N?MÊñécš\k¡xÚ9 ßõä×kmTšÁ¬lã{·F”yû ¼ÎîìÙ‡½°‘Ð_ß¡Æ/@T˜á[çßÕ‰dÚÿ3­#·éà«¥¢Gˆc:í] eí)N:Nî”Äk ÐeðÊ©ßNTýŽ+dêâ¼QÛòcXèsÕ @NÝkI(+gç±’¿Œ3~S)ä))Ϭðw¶hëKÑWQ Ñ¡ð·îui¯_KA.¯>?/Nè¿bt_[ýŒìðªG_~¾geÇÖèÄwŠïMkŠ›ðöç¥P6²{ʼn§u”²G#WúäBè¢R”Ȭóò2»ÿNhP>ÿ|[<û" cl3W.s^áKµÙ7Eˆì+·«² ÃTj;Þðšé .Ùìe€ÖŽ}($ü:·Ì­Ï\ ¢H¯ÙSë›X:á-dM/ ˜üÏD;Ú˜‰'ÄëÙnøå³1 J²-LY7¥…f&í~a7[QtJ§Êæ>§Ïžt‚¿¤‰ñvÿðT¨m>'íùEìDü5ö¹'£™NaàO=ÈdF/sàfįqµzsdaì˜`¬FUfŽ4½ åEiu3Õ;ñw3ãK˜Ù×»µA¼×ˆŒmP×W²·‹ôÞ\þíË(+Ü8x½l«‡.ý¶Ö.É€ï {h á <‡œ¹í3³ëÚâöÑ$JsÇö²èmÙ`QêX…_4Ñm”³ßKý¼ò2Þ4c*šç” »Àw¾ Oü?àJ_»È 0’àÊÿW½ Pº4²Õ•ó>ÆEEnäô‘QM^Åã˸Ϋ­t_Úør'Ø@ætÓ°qØÙüаÄ÷¼"FqïG‚T‰ó®ÃY ü‹,v¹Jæ6O5ml^ VÞ¹4×A¿ÄyfŒŸ‘–šz௠„'÷£`°Ùz'—g¶»üêâ¶Þôï‰{ÌË6y¾UL½+uøUŠ™ …Ä—Œ|Áă˜†u¥KÜ òÿ$Páâ‚GR.´ê…¢DNÐ{Á{s€±Ål$–226îÄIml¥VŸ{­Ûa{Ъۻ:o‘Yd…â𑿬 (í’ZÁ R°04.=—ûyJQó¬ÙåW´]Y…ýëz6ªtájÛYÏ,ø¯i”'lpp‚Å vgâõáëÙÅ”ÐáFÒµnùê9N˜M¬ÙëÓŒŒ§ wmØ?Ï ´;Ь¨÷õÌÕØºÚJ§×îË>ÜõÛd–ÅÂ1ëòÛlñ›2{ÑWÒNñ)ÖM>Þ‹h—ÿEY?å µáÈÏ$ã´Æ2ÒÚiÏžw–øéÙj£ñ{‰H+k¾„ÅqlvÜ“ÇC<ßÒ\Ƚv/¥–1ˆæÆ$H<"Õsa±™±¨PÅm]ÁÿßÚ¿=&ƒæÍ/¥¸æs]9ªÍí„çá‘Á`_âsª¡$-IJ6çrG­™¸Z7_àBˆ9Ÿ#Å‘UÀ½B6à‚eE2']%'g/ÿ¨2) ‚ñ¡NZ!ňЉ‡ê¬ Ñ …5ìS=dKõþ1é+E{Ü¡O9˜,_;®Ðšô{’˜ k¸™p‹^ƒcÇ­]¼¥2‘ï£U¥¿5ô'–Jþz†ZlWNüüar­]˜ÚFÓ"- ^žÝNM¡ì–‚‘d7tu|¶­Þë»ñCUŸ˜tv=¹æ‡º©›qcëWÄ=¿½rR®BTy\˜ñÙ—ˆ»¼Íï-kÁØÞŒ[:V³œE; È€Mò ›%þNå”÷a²‘7)o Rô õ·I¯×Eê` ORS;sí²‡‡Àûi–‡åÒ LSaé ìÙ² B(Ñxé Ê)ŒÁ§¤w„r§ì¾ùÂc¢íà„`E `Ú5±‘ë±5^—² ò+ Ë kž?”ö˜ëuÒk’ÙH«H˜®îȉnwÒùį¡ˆý8P°µ{`pŒÑÒ€‹¡Úy¿.`[¤Ñ 1o ¯TBñW§Ò…ÿpi.‹ ï|âu1k;‹ÅQ¯c.ônPzå!q¹ãIoõÄý˜ÈŽõº¨±$†h˜(ÖC ¦å0:æ™mó§Xüác¢AÁ‘½ÁdŒ¨Ä ¢ñ×dyÕ(…Á‹rð_J(t5Šj zßÛñr~œ¼±;µêA-X³od³ tR§Oy ¾cm¯'p£¯­r0£¸)`Lß̼' ð7dk-Kêà7Öx$¸Sõ±ÿDø°÷ÎY ^ûÿíá¦(j~ÙYJ;Ûò hê"á•ÜAÓm‡þR¥hdu Q=‹arȉr´‘­½¬ƒPDò.wÖ”IåÁÜͱÛþWª€ ™jÁWÆ”žQÝÚ’‹çMv¼ÜùGA4w6ŶeòWp6Gœ@(åäùjë)=R°îƒ88³’O˜{e£5Þ÷fmå%fiÚ#Ì[”$AÀ>ùéøMT±4³»Ã\\zt9¤„“„«l•2EµÇbs×-W©ÐhÎЋaÖ²ƒP¢'K_T OÈMúg(ÄtØåµdù$îƒÖ¾ŽššãDÖ‚'‰êÆ,~|Êä Ùí`BÇ`C´:¥£ÎÃv«wö$WµRx£3Žº°¸GÚÇZåj;¨ðˆsæ{n×RQím«4›¤„‚Ò|Qr9‚Ø× âV=ÂC?ºoЖÇfÁÏA°²œ¦É0ÁÇ·ý~Ãèƒ^J 󣑢í­Ñ ¬ã©^¬èÙA¢|Ÿb$-k Ù’€’ã[GÄ]ñ$ÐLµä,ËC|¿„øóTÆnerÏ.à ¹Eåyb$LK´½¬-E¯¶Öð“Ôvyån±0œŸúÁWây­`k¥LDÏÜ®£-,‡£†k%¶© C¯¹}/º:°QÅ›¢Õd§ƒÒÅBñ%¨ ©hå”Xº Ë5 í6ÃÝb º!™ê¹p^FgdypœÜÉ(˺3øÊY4 (·«„V@Yü«RÙÚ&ê,Æ\Ñ—€ >‹2ç÷¹Bƒ˜ ñžRqV«(Kqý+ðœ× °`BOkPDK4º·½áX4æÝ:\Bâ¶m© ‚¢ˆš®m›érc°yŠ¥‡"áèPÒM}ªkçF~œžŠkrtIÒÌÓJQY•ûÂÆôCgT[õߘʻ`4ÜCר×Í@!`ð€*3xt6-%ŸGHŸóÆÌä°¨ŠüÀ7AïŒ'õÐhÜ Ä02±^÷ëgi¨ÿ»²Ž—D“>ó{…3wê^•šMJÊKÂ7%»Ö¦à³ÑÖ š ˆÿtJ<ó-ͯÚcKÜÚ€rœÇí¼]ýùÕÿôŠðbR‘5d¿ýfò5! ¶­©HXåWtb „ ½—v™ ŒJ QÒIõ‘W.¤áxÎbíÙÞUpXô³§ÚO|þ¤ X± Öá-Û<÷ÐGhsÏÚ|ƒHŠÜh` äþ)&Hêb4hH ¶¾«‡3÷wð6ÝçªF\{ÔbQ‚F—þª+vAk¥Ç³m¥ÇÅ8=!ÐyŸqW-‘+X\¨,÷>Œñý³´?Å×û{ë²C.ÆçöD‘t.4¢Eî;ߢÅû¾¡º7oKø`¿a=÷úúÚçƒðùÁàŽý²3 ûI7ßZ!1~ø 4åMVɺ£ù-J[ƥѱ¡óÝ6ÑÄxÂóHÝBø~êßÒ¦Ñk•Ƴ¤¼“8^|®¨ŒŸ½Cpü7ÿ—µ¥íÑ2iø’Î2—÷7*tÄõù¹—Ä{Ì|êAD„ùLEœ/K.á %>¡æ^M2ö wr– ˜>ì6ýbìÙ¡vŸ}6Çeh©8·.¬œè¡ HèÉ‚%o€JýéÌ~ĉ=XÖsÒOœ0ÕóZä ¹ìÊA“Ÿ³tÜýU™1ÆX3»-ïìËëô~î¥ÿÖ¸³ÚÄÊ}|,\ùØd_™ÁMIZ•ô— CR†œà¡-rS†´ß{Æ9dk/dc°‹B5ÌNBÆb© -Ý…¦SîëçÌl‚!¶’bèÃUÑátNÌEΰ$›'¤ì 6¸Ò.D‹`3/ʱm¤ šXí=À|2DÕ¡~u²@ÞÍIÎ0c)²uH¶Á“¶©Wö1ãÂQïÀÁ¡Lº}8ëœÎ¦o±É+jb‘ÖF¦ŒÀÞzéÓUºÁÆŸJÖ¡Ýj9ñ/Œ ‡Dí¬ƒR}@€ WÅ×+§dz•§Ò­9&œù_¨ ÂbÅHi¡ñòð#Bض8Ê—h‰½?Z0 Ó ËÌXOY‘9›¦g[`[85Y¡–°Ä–£>Ì-ÒZ&­JíÉ÷Êèp$Çžèû¾uùd.N<¿M®Ú’ðóúZRS¶2• ^­Î;³$àD8›$77{KŠÐ‚"Ä•á\ Bá£Û¯á°ú¨ \K: \ãÎÎÞ”My›È ©ÝõÈÕv7’mš­Ý÷Vf‚< nN{žS§N©«l9~Îp8å7Ž„¢]ÁŠØ"C‹‘ú+{ž‡õâ¡_þåÛÃýE:Ï£›ÔĹBBmÍÔOTÇŒöv.A)T;âÅsá`ßÅe°6ç?½÷GHÅ6XòQûÚžÌTC YÃÐc1À5Œ“KÊYÖÈ…öb¾ôÐ{u¡,εš³b nϘpÒç‰ÞÉÄ¿Á¥õìmØ\^]Ö ºù"ݧ hG êËâpd/tŽ{YÙ0bïm—ESoíjy!jwnN}Ø7OýÄ”¦ô*s<ÄŠ½ÁÚPJzÿ·òX6d·ÑÆ¡£ÄÅ0¤[Û®Ö1âÞ*(n/¢¸kÞ¨¸{áxÜžöôM)€‹”ðMÃ\ÜDØF¸)–×h{[ªhœ#”ÊMì²Ý¨Kf`sraX\rÃ;[³ŠšYTö@\[ù]ζŒtOV^aÊ—ñntct J&ý/F#4™ÁìÅ)åÒ]Ì9Úó& öçn—yT:}Võ <[QÞUù½Ø¢%tu–|Pé˜û²-üœþ3³3ߨ“L:Ô—å¯áE‚“VÜo}MƒNpÄqØŒ2`V×á[u¬fŒ4³éµîqOoxÌÇ6£@ ÉÞ{gs̵‰é–™q«#"}½8·4Rt6÷Œýt†¨Zäê‚ɼ·»eß1âœÁ"»n­ß_“CÝg¿NVûN•;©,dý¯´%§î‚n¢†V;­>ŠÚ „J¬Oáúhzm¤l G/ZÕ+ím—Pe¤J#Ú:`SJo´ÿSÑ(©–ÉÀ!ac!\«ÜË‘\r2ô°£âéõÏÈ=ŒZqƒñ‘£iØÉ@‡Z¨4¨Ý¦!¢ñŸZ¾ÓØ:&ƒ;OW†}_bC{]YÜ®˜$âQТ–ãÂó2Ó”ï–×ø\cÐÚ>â—wÄ'\€Æûd j"¹vSõ±[­—"'êWÆA¡ Ì}éÞý–Z]¬Â»éÝH'Ðê;‚Þ¢„R.þ%.×N ó™ˆU44Ìå&iõáÜ[üî)ÿ³àË߃²ÀJ–ýN>'Te¡ ukŸº‘§ô š÷ŸoÙE4ó]/³À}_ðñ•<îKíí¾æíÏŸÜMÄä ó/ˆù5Cë·kLÀµ~,ga!GtM*ó²8ÒTö¶Xud ¸“‡Í×q+×+"‹©ª¨¼ÝÈ—\²ü+73\&ø~Mêã[B·+¹ƒVCM{÷[9»ï}2Øzó±¨R9¼µ64þ3’Íø!Ç?pEJcÜ¿ë&·Ì‹?;Ú W÷ÉÃ3jï„é+TKŒc‚pÉÖBGJá:*DwÏ'JDr?®•2höü›ŽEÉœ .eK£†0ëTüú¶”naݬ¦Âx«'>ÜØ²{Å";;ùòBí·¢MþNnÜù§§ðl÷7WûÚXºC£hZǵã’ç72Iž9‹—sÙ‹••ΟÇõÁŽh@zîß4/êi ö¬p> Äþ7ÅT¼Ë ›$uL©0o„1åíüAÅØ’‹˜ÑÊ^·%tï†T#1eŒ»Ó*Î2Èú ,ТšÈ¶Ïò”À"v«ïŽI-Úà×?‚ÍxDËÖË-Ý¢Ð=ÿ€7öÄlk˜OÅ®C®#ñÊ\°žwM ¥=S€c:lL8;xŠŒZÛ•à• ‚GÀ¦åßóõ6G½嬎«ÆŒ*eÔW­päŽç &X÷Õ8+Å,LšwÇm~yÌXe\©o{’°l 8+}+@JÀ‰½T]özEì4¦k?µ•9Ëés+¼±fmíZ‹çqbè­?oñÓEý­ƒGVš­dñ å®"3È]£¿ñ±ü’ 3 –ÇvòbÐÈ)ίÄþ‘ù¤gWrû×+ëáYC™r©ã§W^RB¥{$s©ñËÊòjøsNO}ð’ËžP1Å¥eñgZ´Èk“™^1‰4x %bªúø‰q{—"Ot[4ö;4 4µáî¹Ü©P¯`±mªŸðÀ_öõ)C‘{jð='O†¡À?Fe¸±Â–9EØ_¹BÈ”­Š³UËð3QCè¢åºµ˜Ø•¡UcØpã³MT™'ºŸ9XDE¨ï— s9¦p±rŸÖÆ^‡±¶&µ±9HÓ,{»Öòdw Â:ÊK¾…™§h®ÎÊË cÅg­8!•Šü%gø~ª¤”ƒ ýi” ôÜ׆LÅeoûÏVQ¢ê{ Îà˜~)԰¨;ãÊ2MÞ¼ukáå0ÓTÆa»˜¶mÕâÙ7$ -Š¥@¶ƒ2jÛŽ$¨×§/Ì L׎ Dˆ,­X§Xq¬[†jà2Pó)'祥ް@/®’…Ös“GÄ:iÔiç_·6jž“½þÛ¸ÕÙÍoÒ“§óæ*ÁÝ÷¿¨àÇ4 ¿'N #ÈÁÀ¿?w„µç³Ëê‹ý7Š}mϲM`–V€üãñ™•„h/¸t°Ä»b•JÉ©fÊ«•ÔäÔ°¾Mb¯øìS©&M}–Î,®ôê5ÃîUáÑbÙ€–‚v_îy¿vëü4.ñÿÖ(€,¸<<ïô<_‘ Vd4Ó#ï¾^¼UX1Ša‘ëû[2u$±"¢<Þdìt¥Bu1Ûˆ´†UTÚ×ó)ïH¶;$‘Ÿ§çhë¬ÉQy¬pÏš·£Vš}I‚Ôÿ­É[㱤Oöy ìkI¹ØÓ„Ã;5C³ΗãWw‚N™³„\Ô~™¤Þqß BƒK†úû𠱋¨D³^Ê~u±¨nh‘•íëNWp’5<æÍu¯Üà$ÛuB`DɽZpi¨™W¼¶´è?š výRPóýœÈrPÒ ŠGWQ/F¬ª)ÒæÓ·¬5Ã}ɯJß×™®÷cbÄho3áÉÈQøWK™OP¢€j Š[›úQK6 #fMÒúAšhëç« ~UÓqÄ»xçt^ [v‚òCÑïXMè­’Pr€;TõœiÖÈÒiýÚðq`9XÏ"ãyr Œ°lNDQD*=œ»Qúøü0þäüð>w:tw¤=ÛRÃØuv¾Í]˲МºÉ32í'ØfVùšg$}×ç{ìFÌ->¼€³WØ{yV$cgJÜ€&‘õ"*hOúÊšn¸ô v5ŸûkÓõŠÿö×^ìp3LIáà[ôxP¶M·Žq!Üv‹åxxéb-;ÚLRr=ŽDÄÛúgšg^§`ÂÈèü¡¾s«X ŸžÙÒÄTbJ‚®ëÀ“ª>I gcŸ”}YcX3ØÝM7ÆcaØì¥Êa> Ù(Ai,c÷(ÔZãp=Âo:¸dÝøþ„Ìh—uØÈ¸›¯œÊжØùºQ19L .B³`#HC–ýÜLí0¹©iÛŒ\.GË8½¸, ¿>4_z阷}œ¥a1‹Êb‘Ú§MZ:¾14æUêD)Ñ ²ÂH|Ùù×wqý`׉5 á0ßLÇý94«½2Í_ 2—p…ÙቡÒ"ÜœŠþö¢ƒlÆ ž§h\Z@€¨ësˆ‹¡˜™ˆáïø§ÇŒT»Õëød‘¿ÿ¨ÀÅúexÎ,>æü´}kWEÇ3Y<&v ™ëO"ñ68ô‘çDHÀ¢šð— °j'aKé‚KÞ#ðƒ9æ€T’uŽP’b¯Øè±k'mê$±¯×”åQ@oeë€Ç··¯-OÌÓ‹ÈclQ®«E;LÕíeá¸[Ö}Á~ˆÆCaèhè8EulÜ8—£K…• »¹"!…zѳøB"–}6NêhÀ¼Îõ®²tUSDNb&t ñþ‹ç]Lщ4B[}‰Ñu‡HÐÜÉs:Äjå^þ)²‰Î7UQu 6P’£Ÿ›Ù[?5úcm”;wFLPÏO¢)„ÄzÒŠ]¼JeÙ @o8VÔ,Ä•Èëb¶±?6²úõÍ}6›xnµê–°ö˧ꢶ3xxñΰø Áøâü‹Éñ]^¦äYjÌXÊuVç82QGVS¥³›é¢À6Nª*OÆ›£É4/ÔN¢‹ÑU¢äé0ËCkQ"‘Ѥïòª]SÓÆ›¹òùþ>:Ô%¬‡2PóÍ•b¤üw½àè¡ÝÎ.\§àïªNÍôª@q‚ט4¡l¬<‘Ñ“YúÌúæ|ž.ÎhNï37ðšrÓ¥o«1t¡ü˜…e5¶õhPá6Ò±Íqylœ0¦¦­æÎû±T¢vq¿&_hdŸm/^£žlIWÐýTû™%ä'yåU•±;FcËð(µ ”)øÇͤüþL^¡dà.ẫ¼‰×üêà ‚G0¹p˼bžlŠ´—œº}p«þ5.ˆ‘€¯ä$îH+0°ÎkÎÕΉ“Æ8§˜BÄêM+ ºg¼‡» zÒ=ŠEßaNcíê,tVؽ/zq{ÐDøª­ •~€ò•±±• rs$zå`.&ëÂϼɆ³µN†¶o)Žì -³ÜB–|8ŠƒÃ-ñcsqœ–JHfu#Ñ5(`_+@â$¦·¨¢1¬$CXh l¿@før¡%`*ôâæb!ËÊ\È=Ÿ—8PÅaXÌq;ÀHòÑ>n/…ø–ÎÚ-¸}øY«°Ý–TÌÄÌöÀ•©ïuËÏî—ä ˆúÍÂçSÎ=¸x0 ?3=ÇD„™¡œ_T/PY÷„¯ò0ˆ^,ñb~Ý7úf8®Ô mGaêgªÍá8‹%øCNÈ1 ‚ œâÿÉ3økLß§}$$„¢b}ÌZšà™ø˜@¡T¿¢1 4“£g†r²Ÿ\×à‡@e$×ÁµX†ž ¸×žš˜ž—ã›­6Õn å(xUt‰ŠQÌN1­JVò± fcN[ŠÞ ŒÒ–‹#Ä´xJgD)qí¯<%ëÏ0è?Äff~à¨WrÙ]AÄkZ ©Åâ1Î#úpAj±J&À0!݈^”â‹6.ôÐÿ·ƒ¾w7 áœæ{ÉäDäŠì«^maU6ÍÈPp¤Xò ’‡!켕ÔgNî LyX¾¤¤V}gN}¹¡¬¾^,W÷©÷Œ¢r)¯¡G|1¹@v΀`Ͻб²Ðú3÷WiNK‡~.3"nÕr¥Cü–TGtûQ—GÓÔ-dè¶8å=÷tÏscÝBiLÏE¬¯´® 7²îZÈQWô1}Às"Ñh~–É;VPÀ÷QÅÚªŸW]%gS:árø“Zôhë,pRü´‹ç«%Âðˆï¦|w_K ´MÇ̳ÛÓ§IAJhÌ2¿ÀªÒ±€uüeñ× SePÜÜÇ5 œ.•üà a0P¹¾OA"œëQ1¸×@þvp9?À²^o\ß1³û¥wt%R‘ó»'ÿP^3óFŽeZúáÌV¿|{‘°åˆ-G.vï75ÀL¥ž_„F -Ï9¥gylûƨÉÚÅð\¶žÅkÎ4¤þHœu²±C¯öÀpxRrôý¤ÅÀá;òvàwÇ~Jzë­Ú~¯Ê[´7n8°º¾oï¯(Çò·ÐãúQêmä¿z5Ö®j®¥b$A&!m¿ð¦ãô%!Øa2tä4®á¦Y™D=§H:akikg‘ur;%&á„Iý‚)Át+$Áfñ E8ʦ°¥9H¼ß¶q¡q´»+óÜŽµL£äÞiÈudâš»ÕØX„èÛ ¦®yaÒgÚnZžW)sµúZZÆÊ®uǺóÐ|SdN%þüÔqâx€Ñç‰aÕ‚AØj†?MsQYiýćËQÁÛ4;ùÖC4ê¾íâ”QkØ¥,D¦¬Sh ]j¿Êü’3ħ`7`œÅ.<†ƒèvÉðÇå9†µ •›ì†åü&²€%ÓÂMÁ°¾Ý”`áµë…þéøß‚y¥ÃûôEœ^Éa·¬õΛהÃ&„•qͤW§Ë|U=Ö¡M¶Uœ*œ€ŒÍe°…G·f©óY-µÃ`܈`NÁÓ‰!«0K"HS5 ”ǾQ^ê…X4¨tïÃî„W²LFÉ–_SÉ GÄAÃ_+¢lgcTÄÌ¼Ðøâ°Þ¶’ú ¥ñ÷Œ¿mÄ ñ*ð¿+]»sÌKGND¹Ã} äñ"ZlkΟ^- ‹ªqYB³È\6U9X¦lA~ô†YKE+ •À¢ˆè)ůëoçÜ•@¿@nŸƒ vfÖðr /ÏÁ‰dÁ² à•ÆÕÓn@ŧaïiÇ™ü0Pd¸î©í~W†+)iŒ€ã†:×þõ&ŸÈ ú©Xqñ@±e§¹q4ƒõ+bÐÔÑ3€àz´8kï NM©ð‚Pæ®òy;Ÿ©Iáu¨:ÈM@A§Ø3:ªãatÜg@(¡g·ý\‘ùB”ÆV"ÀÍ^#ŠÌT¢ß•I'Ô ãpÚ¤‘«‡Ý 8‰Ô*÷s¤*ƒÝ—ˆšª;±*mÔ4[;`/ÑÊÿ78&švúhÈË’d¿×§Ú|}SE¤C&d SmŠô~køW@Ê©5'O2™¦X]¨ÖáÁDúiO±çï VìÁT¦†t¡T‘’eæK$2T°_¦Óׇ©uŠ{_‚¨ ÇÍ=èìX&³—g9 ËQ^€sm ¥¤9 +û£%;ü ¦À[Ú)‰lLV‹V˜îÍg¬e|ü«€¸ªØbÝ"Üšq3oøB5½Q|- (†iÚ<ÖEŠÝTG­::ØÖ-ËZ'½+äSÆ‹‘àåû䕾aç´6Á5S®ß3­ññ$õdLñ~ZÒ,€ôL½‡ ›2à‡ƒnïD—¶Ñ'“üÖÄË1àz{d7ǹHPyÀr¬/ßo¸Bʘµ@Þy ê{Ëb4ê† ÅÎ=Ý[ž!¥†³Ûù<•Ô,¨sž7q¡½Ø™%º¤x'@dE͉“DWâóvÄÜåøìÖZ`÷ ®¿JÑðE6xã?œ]w£ã™ wg$+¼%ä‹gEç£w¶Y”¦¶{¤Òoï©#àQŽauì?åûâ—B{pÂî×)3í’;“È£—N|»UC¤U‘=ŽxCÃ-µ¬GþH휭»c/Õ’f™$D ãHÃ`qòÆõŽ)Îß©%eú‹˜t8ïß±féÎ󳪈lZß'áãÚ~ÛÄBÔÙ#àY¬¨di²dà»6m¤RxþÔL%¼æ˜åYg›, –ë î·ÎÙÛÿ\1hŒ?¿‡Ô]gˆØò^P”X¶ ßÑ‚÷nö 5–øÓIö¶,M²3M¹pÛÎ (7*k;c’Y=L›»ißoeƒ:å‡oÛá¤ÏšÁQEÿ‹ާ–­€E±õµTVÒøz“Á5SB‡šÒˆýÓÚâ5@$@ÂW¸!,þ>Œƒì¨e"òY2ùØBN¬zÚ=¾v‚ü6u³Ü‡è¶ìNŠ»°Hˆ|—¨›!7 óUTòî~CÉ>´ß|m8Ð>(gÒ‰ufrÕÌ+ÁmbU4֜ت¶òVœ ÌI+Øú1ì>“”˜H*‡lü‘Ël d½¢†>ŸS@DõÑ =õ¤çã‘3µ]Ò ,$×§Wh|¼…úˆ‘T"&’¹ë¯rÁb2h¤=¾ú‡Ú»Ã w†Ã1Üy¤©tÝâæö·LÔ\Q›'RŠ÷5j¡s_3ìÿ¸:é6 Æ #K’$Õþ)³–ã ‰ØØêy“Ø&Ez‚OTØ-n¬H¸~BÞ™‰E“|MsÍŽ8Iõ ¹U  ÌnŽÝ:ÿ 0YE!ã=߉¬wÈ* ‹ Å.ùz TY`ÃP«8À n.£ˆüßî8h @Jcö‚îü˜<÷i è§òsÏõÁÖ*Ëߞ˶ñBù}?€h ¨`C—FÜþ³©`Õ{#Xa9îg47+P{¨ÁMÏ=lÙÀJq¤›„Ü;_beú/º•¼pôoLm‘XaÁ{Tˆge a,ј7>5¨îŒ¥?L{P dò»Þÿ¤ñ«beªÙR=ŠŒu˜êéJÚõDê¯^¬²çÕ·ç"Nrr.g‚¡Ï,@? ¼·•Žqþv…6Û4‘pS÷ਟ1OxèÒª(¬} Z(^väP\¾`o!Pdß9.Hõ[Q›`ÇÏߌU‰;ë¤záI~ÁT`IÛaÙêãŠEÄÁP“+E¾>N ¸³ÿsâìF•E ÿ%¹4øœº»éCôÒ<Á# Æ  jg×ø"»D}ä®ÜÙßì/M–vŒ)¨  à qfú(œm}]Uפs™Vó2jà—Üi¤ i.MX´4ãKpô“§arC¨cAl%Ül•TV.”ÑŒŸ#räóXBÆ,€3ûa_½k*þëO…côŒ´šN¶Y#2¸Û'pPÀ÷MØö[‘Lµæ±Á£!Wh©eöjòCt¾øä°-Áe%Ø2Û aºÒi²a]a²É)s<üñHv²9Ñçê¡ä^ÔóÆX#<_£æº1X”Ñ ‘ß­ÌXH³ê7.HªÂFdEê2>çð]~u7§Ï¿1PÒb+®ë¼žÙ™æM†´ß³¡'ö'âM ÿý솪˜ø3VµšŒ‡BaÂ-5ʃ»¨XäùºbQBÁìç`6 $c3þÿïSñ’K ’$Âê­q%ƪi:' |~«‘óáÖ¦’9ÁÓ[Úü[>‚®n™ëÍuÑõ–ëÚS¤Íß¿»m^‡ñ·_Y³ªz¢‚T%’™Ì3Û[¡›E¾s[ë‘qÒÌ”Á…÷)2H³"̇³Îí!OÞ@\à=â]ÃÔ¤ÄçÃ×í«}vžægÏj‚QÒïõ)Kµ›Cìüb BLááóg¢\G šù-ÒþˆÏIp”'wyÊKˆLýTÒÚ MµãpžåUm÷} 6€tÂëïÂ|—w]n÷tè&ú!+H“ À5ÂÚ^>­â4^ Ç3¦ˆ‚6Œ¬ùàFM¥'–Ne“%+÷_¬*Nž Ùèã?kç ¯ `¹Ž|[°îÇ9ȧ%.ÓA±ÎùèVUF&Ƭè»é(^ÑvZh¾:,…Þ]Ï•ònÔ~-Eì0¬¯2ÃÄ”æÝ–®!–¾ÖoË–õý§I¬ItëEž±æz†YÉ1ŸÜ/·| –Ø yIãó4˜Áüd ï.IÝ-È€JêpÏrzBX|[G„܇ϛešs úe阔…MAÍöÓ'ú“òø9ÔŸ[±W°mW¨‡¡Ÿ£ãSi6»W³t¿_ “t>“•ªî£Ì áÚÚ3—$„Ëië¥_‡ð²õ–eµØ¸ÚT¤{NV:'tZ®¡‡2h-(º·½ÌÞÉ-x@Ö,h·$°³y>+ÀÚû"^ -Ëñ8×Q“WëIïnm|]îölV^‚± 'ÄžÁÖ”—âÑÔͨ~¶â€ídÜp:$öN½šrT Ê»6˜„®bðˆó´i8]ƒþ¦°ùÞc9Ü\)A`š¶ov,çüòCK$Ã|×ðå½´ Çbáß²Æ6·GŽ}ÔÓçH‹ÆM*WÀöV’á»”a{kÎÄàfÝ'¯ŠHç9 öMÍñ Ž`ûT4íðs”‡ñ‰Á©Ä­’ÿk°Än¸gX»¬Fc¬9G²`£œûŒé% Šâ,HŽß7“RXÌᎳ’f<÷©PšòOñ/=&%#ŠŸÍ»‚1ìºuË© Cµý¦ »âS«Dh¹öš[†ê#ëý¹;H7´ÔyŸ¢Hº5a(ËMŽÖrP;ÀÀž1«‚%NÎ,%n8KäDã›N®_·û”º3©'sHøó‚/2…vF'هʽ”z¥'è>žj}·PÕ»ëoëÐÖj ¡»¶é¬€©>*yGç…æ°ìÔ.:翹¼)ž•æVªv¾>õ-°„Ó ,™~2>jÞQöxAÿõHò‘sö.–pOɦçoPa}´ž’X;âdýù{<:x ‡‰IýÔû6ÓJ/]6®¤‡¨B ¤µYuI b#¾‡ûÒÍ÷Ùb7¬ªWLòµqƒ·¾Aʼnºô(S3ê”`É3_¢sÅçFåE'c¹÷851”î–½²}†GeD|t^Ԟ½’ÜÿøCUh½gïŽdVÖ³6¬uå(±n x¥îú©ì× ´î îµ]Ï" ¯}޹ýZéA’úI.óÕ/<¸SþÒä¹4³”†É6­;C9 (rŠ1ô¥NË27f´wèlàeÅrW e~ôF¨yÊ•Š6oAìÖJgÿpùnÊ.Ã?½ðŒM«‘”éqMÎ éõ¾ž9DÊ2X”†¹:@†„K´ÁÒÕ™’.öjѪ3¶ÒÌüÙz„n³R«¯hŸ¶íì¾µ&iÄôÏœª"¤ª±lé7Ž£Ú•“¼·­9ù” QÊ@=F1ÈèìWu÷Jd)õ9¼¤…{ºç Kf9úˆù9Ã{æzTŒ¨åÍB¢0u@_4a±0:‚é*ãT?§²NPºÄ°ü.ö€á][™£¹iö£‡™`žÐ|ÙcÖâªÙ±ºh›z¦Œ+#«:íoš¿ p}+9€ýq9vwI_BYüF2RÍð½U¹ô4™’"ÝÓ’]–\|ÙvJÔž<^Ãû”âÅ>k#Ðø.ß©°LÛe/ät{sÞ¡åI÷”6þpÖu¬ %õ sÖ±rÌÛ€2…g]¯~ÛÇú z ½ &ðÍ'ýèD` ™TòyZž˜z #vsVi`]õ•m´]eZž€Œª"8šmVçD…ê °¿Cº\@dȰkjͱäb†›«vÜ-yɾVØ1=þ.J:`â(W¶åƒeµ÷å”;µnÄÑY{÷ý5aÍ`ÿî¿ÝK˜çÒAåâZ™c†È—øUØ:¨ž¼ic±¹øË¦@.3tݺO6¾¢{Ž—…Sdk x†Õª™#4Xw|Åÿ2oõPØï˜¯‘+ò-kf•6Uþà<& åo.#=޳vçîàfzu‡o_hBËeÅçà_óxì¢ è•Éíy¹µXH7‚9Ce¿üÈÂcå™x;ß­&%˜Ëm;^)_4^BDȼ¯k#m·Ò"»Ùüðà`×ÊZ]3O$±ž ²#-„EŸÏaŸw¡4ŽÌZô'G½éÀ¥ƒõ´Y¨äÒFÿŽäçÕµ¼7‰ ÷TQ‚³*Šö –eJè.?}€ÆI5u³Gˆ5SÌÙNœÞêÍgGxäæ%fŽÒd¹45aL‹êhIón6¥5í]µ.Å…œJNH‚”®LQÅºŽˆA¦¢ÄiAd“ë”Ú»^iç—ÌÛ$pózIußb±æ#홲´'ÿDX¹9®S¡y T¡2JIÇp¨²/%OÐZ– Ö‰^$ãÑ­ Ì9ólðã]”0³˜þÃüæÓîI ßVŠÃàˆÞ²ÕoþýÉY`ÒÈü€.Ñan‘é÷„ûBrbÎ,š f`Sâ‡cMCÈJ5ý‚Ô¾â˜y|ûd.Y OÕ@6Sþ±Ý7&‡f[ q|G´à ´t]2íù’XCMYuDÛA¢ÏJÉMhiôÁ¯Nx¨¿ 9ò£—CãmQÖûô¤å)¹$ÀWeî·,™EMëþì¤w„§ÌXuMH#îøÉeDlZîĶc²?˜0K“ßÔçTu³Kaòo¿<àIš9íÆÍåXEψ¸æ·÷³[Og—#½¨†Á|éÜè/6h9.e­+hÊn£ÉDÒ,[­Éa§ ;«È~Ið„‡•DÛ&Dè&|Ï‹7­ Œ,QQ‚sYU–BRÌ„°;B%­+Eâ”ãÅÓNf)~ &qÎ •šKîœ.¹-šá.îì¢È?¾´­òûó¤5K­2¸øWð:?!KŸd²ÚÑÄ_÷ß?»š@|‰Ûû:B‘¹i†\ý–KP´÷uáÀ•¤àŽ'GÒ ´aöžÙ/‰Äi¶Z¬#æÏõ~Çwб1ŸÜ1I‹ÂŽe°§ ·U(,O&›RЉé3ŽÐ/°e>¢_cz#Rk¹˜)f¨K¼š†<÷/½Šîp´‹Å÷§¯·Ø»Õµí'Dè“Lõ×üšPY=¸PäKH´–ýßñb02Ä9×NY»Ê`ÕY¿Ïá’úÐB²¢3å²RÈ™tæ «§á?ù ¨ôÏÁg+y«X _zÉÜÈ÷刲I|ŽÉš: ÝŒ•šÄ›BëNæUB^õz·÷ Ë7Å^ZP8ÍôêoÃ>³!Õ›ÁèyƳ$*¬P3¢Œ%ãÒ&z!3¡!7ióÖ¾ö¸^\WÕr›Ùbë@´£œÈ¾*)w'ãã\y†Æ¿™' J§5 |XT_1±ãΣ"r¼_ñ§[õØÓÓùÉ'¥n< Åë×ÛfE\Ž—8g,»z5ðøë§Ž\Æ|ùÁð]ÓŒÏ û;Ù£!øÊ„ÁB­ÈUŠÜ£N¤û/Ì΃°õºw¶ýEºT×|ùGèŠοK›aÖ–m¶ôÁºt®ÉPÞHóaéNt¾žýÿäT<ÞÄšªx‰J*PùeAÆòcàBÍÒÉÞÍóA ~¡£E™HtF\×juN¢²¤ ˜ÙNcÕ®¼Éæ'(οjžóúƒóŸ%Sê7ý?JÇôñDmdÂÙÊÞõëû"jOú+ó#K7²´À“¤]määíYy¢ÒdG¤€Üß5Í QÔ×/Ç !DºZÔ“8ks r°þUG¹ x=’÷õ@DŽËüÉú,çÇ¡È.›/GÜg8Õ ¯Û-ä7Ñ@0;øÿü¸N檾¨&åw¿Nsë¾NÜï7œw©ã¹*I†ÛLÌØPe 9‰MAøÒ7Ao¤PØùš–ØØx_ö@ H2àþF5¼p˜Ï$ëÒ I6Rž—ÄÓÀ— ¬¥“;»'ã<^QÚ”@'[I²<ù´(ðÖÓ3ùbø8@LNpïkçY«™ÃEŽÀ}Ÿ‡}̓9©[äåì[ ®îöeÙú¥°wusê©¿4认ÝÌNáØü”Z'è'œ$Õb²žÑÀ$ý5l ½"ù$Zà+±ÛíEòm…‰—%ÑYîY^ÀûÂ•Û ¦ü¢Géna®Ü ”WIÇ‹dœì ®Õþ3íÑ^Ðm&¡ÎmýðVA Z×î¯ÌU*8tÐv#âùsàuÿI tû_¼.¯ÆÝûÓÍ”8&_aòF‚8€à`¼ÊUXÎâ©´nm­°ªbPí–¯1­vU‰oLx¿é„j£…$7UÒñÑ„ìcÅ–Ï™`לëß0Ø/Û\±9L#ÚúûäîvÅä °¤¶NÁþ;Õµ(g.i«Ödœ{ µ³»´äÞK Îb Ìg¯ÀgkXçVp8¨ŸðUti5r¥quWÌ·PQÝD¶ ªÁö5ýÇÄ„7ü6µþ³5"ļ¼±Šœ¼0F¥£a¦LãX^]¤I˜p—R&ÈT·ú6)¤Ì­ûÞ{œ#&inÁ[Þþ9ÛÊ.w&ZºnËõÑý=?Ä%.7¿.L§6›~(á³i(´Ê_`ÜQ®Ô |)Pƒê¡+’ùFf;"+Ý»ûÖJ?âµôaý¼ûu´Ü4LÙ±NMŽÁ»–ò,e‡ñ:…Þ<öcÕÕfœ|º0=?=yëЋ̹“Ì™\óõÃ$ZÞŒ¹Ù8 Íì­x*Þd"póŽéF—HÛü²ê0YzU‹Ø‡ˆÔàÊgòÛ®¡à)ê¥ä‡Oªƒ¡ŒÊ:¶ô—Fþ`±´%[^z‡Yu> ªÚ¢¸ÿ^ÖÐîü7êH_“£ÎÞxý¯„‚gN¼ß (Þü³³Œ!w‚jÜVÝ`/ŠZÕŠ¢† à@¤@â/7®v¿è@ÐuVY÷oX ÔY1ý¦mäû§-ã·(8‘%\€òÐêG«^ÓWvòUäÊ¿m{È¢ø¾CÇ0Ý#¢"b«º÷ÙiW;6—Æñ§?âƒ5[ÇoD,T—ê_ Sì1â}y%q¡¨¾õO('Uñ$€‘(Eh5^Ksb[úÍa>ý&R€xÉP=Ý!s³Á7õÏw_’O„ÅppÈÌDH{oæø ÊŒhúU\‘¦&°ëv »2Œ/9§i=8®0›iªÉ` ‰îP·%̰Œ7aOl › Qº€Ø¾@!ü ç˜)!š²&cÊÂ7º›QÅuù°HŒë uálÇ ¤\Ó@êÎÝL]ÖZ’ Ø»(ªP[8žþ$ÃÑí˜wÜt“ȃ áû ‹*mØ2 û·|Â÷­hš–FÇ)/lû '±òmÔÒf´òÌ+ê p']zeO^ÛTNP%¤X³_–Û¦F›l©¼’‰Ã¦äLîŽM2 0òŒGÿ<üOÚ™Ã,b9gºø5‰½]¿×â“„L·ñœPoàUªAõáAìà£2î>’1ôg¾ÎÑŽÐ¥¥´u¨æ &SN'ÜçÏE ‰£¼©HÙ:פ%PIBwéó Þ†¿¢‹¡÷ù* Ø)ä&ñºž¨^Eˆ6¯ƒ³*Ó#H~~çM…œ›ÿ¨À¤.naçnË@Ùþ¼s2rO¿´Ñ'­Ñöž¨õX¡/jOÓK‘ÉWv®$Bn…Žƒ³œwf°)2ÑØ€`ŠÑuø]ÚT´Ð#稵–lJ[ÇôÆߟpázf2 |¿¦i€@÷<Îhi#ËÆÇÕÕ³¼¡b£bÊJIœ*íê׿üq©-¼2ÆïØÃKJ€‰›ši]aÃÁÒ1˜¨úY(—™äØÿøâäâº(½Ô‡Âq+R”)‘øes+G“¸jnmMá,×IRh0áíD«Zôm¦žL[#à@ãšæç¢§ºñ øç=ù¸äˆûcZä3:j»±"É§äžæ3KÍ”­Ç”¦Õ‚Üv«_×îá„~v&Âzâå}Ùíªòü:óËá\⦳&d¯³å22 ŠÌ B và “o–ßD@înkRÙrN¶¾þÔ¬šªšH ;ha~§-îº$ê ; ;‘K®…ÓBefªôˆ£msJÀ^Î^P?žh“œ´&­ÒüÉS./©£K‰æoZrŽLÿ´²ÉÄÊÕCæë‹î®·< ùåqØ*¯<­  ª¡î„F³`ѨjEå ¶Ž‚Y³åó èEœÝ)óDù+`Ouï éÝ ´À„t!À4Ÿ"Óæ/F°=ƒç¸ÙÞ(ï9ð©b 2ô,®'lô;“S…{üËÔèݶ)Iã¼®¸ü-¾dçw[œHcœ šp³ªyv¶+n1$C¥ô»•ÜêDÅcm[R¡géÔ¡8ùB9Ôa¦¹‰Èq`¤ÙàI zŸ¨>¨VÕ¸05E$onZÑÛeñÞí¾þãªkؾ:š*°°9ù·Í£j¨ò)h/Àš7j(¢ÇÅÿN‡B¹î‡…ªK[ ïÕ†2fqñBhô€—T¸DŒ7xh2+Ðóõ~Tª æ¡—-Ôîp€;2IÅ")V»-3·ø¢°Ÿ–f \gwàM†º.#ÑÐÝ«qãoTðCžG¶Ï×n çÔ>[FiNÖxˆ:8íj¼Eæ;[€ïæ¹+$ðlœÙÖø)*ðÐê‚è>ÜÙåZ¥À~¨ß]W$S$Þu9ÒyôËÏû^.·îûÊ1U(²å…ÒW$~™âj>d£þ˜H^@ßr÷UÀG Q¬“õò”ó’½boÐb=E!ÁRÚÄT]{rPÍ„ '¥¸ú@¶ä-xÖvrã æmö¹–íâG1Zäz[Æ&2ÞBÊÂz«e2n~ÐÃZ¿[ôo’šªÓ¤1žfŒÂrŒ…yG¤ƒìźÇCc—»•rn©4UÀRš%F¯‚‰‡Àaó¯Œ{®³‰cÓO¹1SvèÛNŸ<]”}ð=º i­ŠPvU½ãpkÆŠï׉쉩¨äûýp( u>.óÝàâŒ;·2—ýÃÍ1lÆ«{Ðzõê BÅ…hÿe® ¡èŒáŸ7–¸Qœ{¢D„!´®UKÜ) O±–dþé 1 ,†hô„-,8d?Ñ•„ONŽ5ãàÚØ’ZŒ:…Œ‰wúOÖmAôO#/š‹^½réqo$Ï’.°YŒ–=ZI$÷ı¡$€§"[d}h+óGñ2ˆnüADGNç Ë2>l?,¦”2HM&´J^$¥|Ûºlx£ü¨Œ“I݃y†üÏðÉ=]n&z F@Ñòá$¶o¼»Ã)×q†‹†±o£–®ÆØlŽ{wXa’þ"Ó=«’ÅlŠ-ùâÏ€•Ån¯óAÑŒŽÎá?iÕ?:POóç¾ô¾A>l…‘îÇ’&·øK‰À’/Žh©ÅƒŸÀ+Ü:w›Ÿ*Ÿ*'Ì:¨øóPÆÉvú/;\$ªúÄl`¦,/É``õø=ØËöÔ®,y”«]¤K|ç{ß4)YM§Þ`š”rYä€õÒâ[+XmÚB53ߟœ¯hïí¨„œìÁ@q¬—'DQ¶ ¨]ø”Œ\000 pU}~H×)¡e*k,×ùÝü|Õ8`mžÈ±\xîwc?ü°?÷MÙÕ{iÞþëlßo'Bkw¸=¬ìc &¾˜½¼Kº—™KÜßf ÿK‡À…B#*+Ù?/Ç j8TÈž¹;è"ØÜDRæ¬ø@µÇ+‹ši>’ÅØâ“‰¾téaý/›õ@jÓøe2Iql+ÓçàñWGìöþP°¸–VqvÅÌ„@¨'×#§«†¤µ†šj´ùa¦³Gwƒ%€y¡A¯b¬Êx«ÜVÊîbõ¯ªk¼AðjðÕø<+ §Ä•÷û+Ye}àÞðªí"·JxO´æn =ŠíCL Ѭ ¢Í3ìÚöž¬M+Ðqé§Úèîf%ÍŽð:§§O,q Ï š—‚^«X•í,Ÿ\oŒî×(H«X¯øU[~Ð’U£™8ä4½}ˆšá—»½Š÷ÿa¶^ÊHlàaÍÆeÂÊrȹiV™~Ю¡h°’ mõgg oÉŸ€^¸W›ìhjªŠh§$”ŠÍúrÓ ªîÑ8µ ¯ç7ËM ˜tyËM‚dfü‡‡)rfòƒ9hÅ@~”REֵτSÙ w]¹3\™ò¡>~-JÁC3Q‡cIíF,@³« ü⺱íßUÓ“ò6LñÝ«óëÉý!×€8gG[–ô•I´™Ò­;Ðäµ:“+me4gš^–SXß!'øÿ¦XÚ8¾–PæšÉAžÑUÒëá }_‰1;¹UÏ!Ú6l€sVGg0¨Bt'W">-:å:gh1o³±1ך"QŽLÏ–˜èûIsvóË/úîÄe‡Å­•±Ìú¾››‡'¤Ôltöà‹Cë ( \»Â…[ã,¨+ÈÂdll—©]GŸ®0è; ýd’„f K渜3ðÑ£¬ÑiÑ ¶éd ·¹>µõ€PQž*…ây½LOY'?HX0 ‡FóÑ+ÚçÍ)5ÇØö­¬ V-œŒðz̃•†Û¿VkYuñ‚À-ï“”ôŸ\½ëƒotï%‹7'€-·cêjWê´dçøZînŸ;ù¦,ôÝM_nòƒ B&;Hh¡õÄd¾€†A;Ê@*(0P }4Á× ¡n‰^OY)áÓGø¯Ñý¼RpKuÔÄæ¸*xVßgŽ¢TÁ×Å‘Be´Ì÷ówÅÇþ³e%ü^G~ÆIŽF<ÙïDÐ]cœãMÏÞYÁxf‡±\¹•r†O¥á“;~ïÖJ_ˆÆÇª­®»^qæü¢C 8 V¡Ðr2ü ØÆ{\±E<‡V‚7Hm:تíœ{æìÆé0Ã6¯'‘]«$P¢w/"Ê[Ôº_Ë®ÒåT uþ'/£+ d­MŠÉ¾lJ¼à¬©CÞ˜‘nð‹_¨¥N,&à GÔþ…ж»H]o>XnUqß@Ñ–bjµBØèØy¬M›š‹¡MÃeœðU»%ïÏ'Òǵ«!Ô? z¤E:ŒJB›³aŠáGQÔ¼™rÎøÆÅ"jßÕ 93†^[7ML÷bœùz3™I°îáÖ ¾‰U³\™FáQz*A…» ÓDW[…/(¤èD y÷kLj°ÐãÎù à[à* {¡ºtúÑÚRí_L)Ñ8¶'‡ûµ.ï¨y–¬"ŠQÎ ú|…Ò ÚÑd ­¿11äÓÉ?©€ ÿû. 5~ ª‚˜Z¯œ!Y$C[Ÿ£úJ¡ö>Ö Öq*ã{cýßhê™$„ç+™yñFæéÉ|3–¤lÿ#n†hzKN¿95ªù£½…UÅÍó£SW€ð»Íì壊¡(Û? ¸w];°ÅX¯+r^ÉÕ™º[¥Ô0·.òsàw½F€'Iw[çbÕ»:³6ƒ)Œ§-@]xYž- Q¬®/—;ªî*)ž›ì¢q4ðËqS@ ª¼Î•œy>v1ŽÔ@>œoú×nò‰B6 <Ž3±,K<92«m&«ÑºàÑõÌaÚ9È0`NX9ñ€C.‚,ÙÆÛ­º'Lù(\þžoÍÝæèØhÖÔ½ÛW¿rÅ‹îŠûƒßyûŽU¤ Öô0]èDy8æâé#Ñœ‘cbAJy”°ØíÀ¸@ hÊË=§^H=š @¡¡Î ÄಃUoë‹[‹øÙ\¨)ó„øÜAubùD¶ëôì ÔzLq*åÆ¿Ù]ý‚"=’j‰Ÿ:.ðTðÖ éïð¦¶k+‡ÀE ƒž›~0‘±5©¬Š4¥å±ý…€Ž`LÏñ±Å×Á¶7ÛæÓìöžÌœ[nqBpÓÃP F˜z«Ó®‚ð™ÜP|tÿÖäï]險 “Škþ¢±Ê ˜â;zÊ0½°Í¬…} 1Ìîéz°z>%^%1 ùºÈVаUÛDð%¤Ï·/•ò–'wȧbé¶ÁíJôKyBçþ)¾œ—~ØêGÇŒ]®äY"¥Ú}b}e vA⇱욆#V£`”÷½½ñV*ºÊ2"R¢bŠZ·j·ÛWQ¿„ÀjôÄ9Ÿß®I3õ_II¼B}|üÉÕ–úZüÿ2î$Üü CaÖ)flãÅS¡ŸzšÙeÃ6™"÷p†•’g=¸Ù`´¯›uì•ôÚ»¬èÿUíaÿÈæK¼‡î–¯zùDjˆLš-ìRø*\¯A·LHìYÊŒy Ao…ïÌž~0Í&‡Æ“²>Á Z$c‘= ^â³Bˆ%Xñ2…íÒ:qmN̼›7¥ Éþ¿d ¯^K¼½…ÜM/ǦÚÖW Äž£däEN[™ÙŸ[œK¨V!>ú8ª#¬H-‰h›ÁýPò'亴—Ïc»ûíÿ¥¡ƒøš¨f©ÞX.Û­VòÌÐ}jâ5M€ºÀ•à ‡3–• h?Âö@ú‡@/¸?è„ÐKT°MR\§ô/σ\f(ÒÐ…Ånôˆ£±lDÞ§š¾ÏÝò Ìf\D@#Òµþ Ž Ô@ÁÊ3³rË5~;[‘g$oƒ,A-²y2+À»F 4I Ü8•[1¼`…KM¾¼Ý›Éç¨õºNv|Äí¥×šlìñ)8ë×þ Ë£¥")iŠáµ÷lLÿãÆ›Ó»ðå¤IY•,4Ì‹›Nåø+º§Ö<ˆd öö\å´“—ƒX¢·ŒU Ã’9cH tæ7z&SÔ×ôúEåï>+:Þë/›ò8ýCú·ÒnÂÚ„›ü+5ü0’}3˜üÕŒ#‹QÐFºUO¿}{žnI D7¼¨””Ñÿ½Ûås!6[èðwT›:T:³w¾ûì†G«BÝeQìö%é¬äõôœð퉎Þ$[‘¦ÝWEv¼©ÕDþ>ëoQÌU쾈ÝÅ›®8;mRÂ˰½­NE›©ç7ŠnFQ'E£‹ºd€Ú% D¤†Ê˽4<4†¢ÞKéÖî(°À· íA·®í;h’y>tŠ$•¤ø¸ ޲ôrˆd ü˜,bcñ8}":À ÈÈ˜ê«æs~ÝŠêÑÃ2¸Ã9ȶœ¨ïÙ²$éǘ­éòŽ`jÚ\ é<¦ûº‡ó#¿ZRP1‚²Wk²f(Yd/ìW_3`¹ü—2¿·yZÝ骎ëdwäýõªÄÞhaÉ ä‡#š“dÂF;×È¿3ݰ•iBgø*W¬ö߬œ¤ÈÕ)p”H®‘óIÏt›´<ïÎÙ œ)Øé±ê-ÅðFB;Ž0^€»I¥ÅPözphµbåL…ÂäØ%hê0ߦ*að‡J¶ÚÜ®v¼ÍCî’Ç¡J#$Ö€ó“FPâex‚fU1 qòÌçÑ\)iX«©—ñx. øÜ‚ÕjØÜ´ ¼ ˆÄ‡ÔeÒ#ÈÖ!äh$’ºçÚá°±ô0”™G__‹ôIQ­¸eƒ¡sÛ¦Gy^åD‚O“’ªeÈG¨½ à£ÄÂùÀáÌY,‹Ò_Êœ›TÄÎ. ¼öÝfD4ÎwAäwxæÇYòI(=œhÒÈ Ëª`S5³":œt¬ƒ«U¬CŠ{w—Óƒ×2hø[ц8 ÔÿJyá;Å-4Ñí•c•« $ðhKú)ŠÑIB.¤`¥ÕÁÞã³ ¼†ñ3 ‹ÿQÆœV]¿½o 5¦}.,’ÆÆ þЬÛsúÿ•Öa¦4HÂz&j,I›¯¥X C¹’³³Ù“Z|éþOïд˜IÂ">|ðfù Ä4Ó½Áº7çzUÇy xxäÿª–éèÁ5†–Ø /óaܼû‰¬Çú˜¸OAÓÙæáÉSÎËA‘KÄJ{Ù¹¸ ü𼯻¸-jÙZ±„¤¨ýUCö vVÙr!_à©í£&kvY.jR±‡Ú&먩ӭ@‡úÅĸ© tC—Þäq½®†?°Oq&rüVàLÔ7ù¢™ yýl©þ5q¤ÆÍ©³}m5®(ÛU\eÇˆÏø)«ϰrxzœýŠÑZ·3®‰„é3Áy£gûuÎ?äÑÀ9”»’¸F3þèû[»t²/¬Œ-ä3¥ê“jB–rõ„˜óIžÚ«‰÷Üÿ~öΜÂÀ´·’+w úé©&i‹rË™ÀFz3!0¯ ¯ç”þà.Éó¥@ÀU6p„îܽ`†o[ íÌxx”’ 9ff!É®*Rüåä^v²óZñáÚ Í£*’/òDÿ£Ø·Ùš9.ãbßåúä•Á“—ì¥Q‘yÚ>akÙ¥Þ«þ 'y$ ŠfÁŒK6–-ã‘ó­mÕÒÝ?»…¦5Û±‘f̆ßųŽÒÍÈÎ~[Z@gTDOâ×Mع֌²íN fòÿ¨ŒÜB;úég.ßÌ9p4P½cCïê žùÝ픾Â4ŽÙ¹×Ƨôcû÷{ž$ºë  !)ŸäÔ0bÖ°¼Šä{U–g§¦Éþ—r£ÒžëR®ÿ»(}üN‚õb|õ’(Mà|ŽøQ´ÇÙÕBº Œ¨†¤P8•u‹ØžmKPÂó&O¹Áïg!B„ú=¦~{ÉPÎÏxÉȵÙ6'ÈiFï:P…¡*€bN1q ¼ªHø†Z#¾LI0•ÚB¢=§Ñ«M€ÓÙ¥DÈé¨Ò;Ê£¢Æõ%);èmT¢ô×Ù? 4¨\û¬!@ºj •oTìüWÖܨ¨¶·³~&¸Ë~ü R3cë&ð—Ó>K7Ý_óU¬ƒççù£è¡S!e`ÚI#½#Ïd)Í÷òܪ„qC@æg·&kF'L‘Tü_!Œ7{ ‰Bì{@ 7@G“Êç>l9MÑ 6•ûßýBÞëDIH…@*]_ÐÆA!‹µxc¥ë€’4`pQÅÁ€)[ÌïhÒööjۘ˅ÐR*Ïov¨‘fJi—ÙÌþò2?ðJœ|¯>î/ÕiN*½/EÔüg™³RÿTaî˰4™¢‘5þ.ƒñ¹LMºJ6Uƒç1ê±Õˆ{Wé¶¿`Uos½„Mûh5¬Ôÿ ?’A8aaóýbï¯.Ò3¾º_ãà´Ò8ìâ'IîUÎÆm¿‹®íÂèTqù´U,'•aºN(EÄïÎÃr¡ÀšmÔ€ÿ“Xlݨ:Ù<ØÏ[ ~©ï§´Hœ²ÁÁrsrRŒÚßI³ÔÜzqÿ;Ôù¤›üÁ[HÙ2ˆF"…ŠîCU[Å#š„âYIäI ÝA!ßVáSi™"Çs¤²à˜ ÆÞÜ¥Ž8\°ÜI >Òð¥–þ—°]0 .UŒìQK›¸¶*ì©U‹†ìê‘Se®gºïA裥‹ÆëÈ•bS)¦]·PQÉnS>ªà Ü(Rë_ý£€ÿ±[,’Êi‚~õ$í ‰¥«í ¼²"Ø ˆ÷K‚áÒ¬°Ñâ¡ï}wˆ;£ =vdß³C»Ê×»|?øÑBÂ=iþ55[åw“¹uÚm ˆ‹P|æ’{%^ÚWÑÒšP §ÿ¦.B½2—nKB–l&b^»,^H¤1©ËÆ=ºÎœÜÕ¢±ƒÞ‡æJEÿb\MAZ°)XlÓ}rŽù¶¾ ›]GÐQ`ÊÚ Nk´u:ž{Ë×iñr2©´ùŸ*¬ŸüLO ËƆ‹-´ò¥9rî¹tM§8Êi×®ÅÈ#Áö©:v¯©ç¸ÝP•ÑÕy™n8¢€â–‰‚²™LIm®ð«ZÁ,Ô6ÔtIWÔp…>e(”’!H²ªôá :ˆ tË’eN2ÎÀòÎá@ór*½êDìŒe¬êM…¹QÈžanì_4‘б“2á{6ЛtC|ï£fŸbÂæ¤±¾°Ï›Ãç&.@²ÌI”½•åù£¯"€è(=;ù¼CX϶ÏÅŒ¯‰}¬õŽ;?7»ÏÆäÖsubdÈáÉŠL¥í7A>è™ÅHŒv/I(q§ã->·êõÑË®{š¨ÝÃøÁÞó¥Œ R¬ZG˜Åû'ñ:̖߯N„^Çé9FËU-BügÓ~ŸÙ.ÈÜŠ­ç¯t^Ä10r¦”ÝKÌwÍô<©×V¶ H¨òFéÛ»Gàz îºhâ¹ÁÇ3&×÷`ïȪ1¯FgŽ’ø¬Ï¯Û:}åDÛ°&‘ Ás£ž ˤ‘ZdŽæÔkvjÃm¬rn1*}º;dc†p¤ j·CøÍyp‰Åùe)Bª¹E­ýté.lÓµÑÐGìÔlWg=§üÀ»I½n™»ÈJ–¾p×C‚§ý=ÄseŽyNßôÏM·kþ?e³ðí’çz9âI£‰‡Ä×,67a0Hõ¼uÖF Ä*üÅ.ãorŰ³+!½¹f¶ÏNü¾1µ'¡ÊÏD÷& Þ%s4rºü©í3 n|x0‹Z’O«y«md‡•ñþê®6þ­ü$æ¹â® =1;&K;;ÀD…=iâÞL?z´ÿœƒfèënÀŒùÂÅYퟺAÝKé??ôz çë‰?‹¨t0½oÚ}ÂÛX˜&Ï­4µôòo’œû90"þ!­D#ÆáÍŠ¼C¬þlbÉGÐäõµŒÖ±Û àªc®ÑK)1²Õ¸Â—¶7+R°V°1àP"Ô9~Zýûôå|J 9n„9êU9Áðvú§°{Љ™ìÞ¿F:þYJv¾\n³cS§)®>`H—Áæ¹ç¯  ;'’>P –ê–&Ê`9>‘CtósöÃký‡á{~øšGoUxãÁ²½âã™2}¤š³ ¹6"5\Õ[?ž˜lô‚®ù¥6#cáâ9?êØJ~âpõŠ6{’eu$‘izW#T#ƒ–é÷á÷Ê?æÌ¦OWãŠá\«¥³±Ÿ·¢Ó~wѦ7©°Âƒ†"Ø•  ][Éõ7SÑ:±zÅêjÃ]¨® Kœ&T*Ø–8«(8±°<ßúnÏV^/襣Â~‰i›O¹ÎR lð… :ì¹–â§²åÇ_$Y°8²Å¹šŒäÓÊÞiëhæ)•)¨F¶0:†XMÛ\ÿʳB7e1iÞÂp8ðèL–$Û†y ©•…ìV¶ƒŸÇ‘­BZ#›EaF¿¥X¥¬bZÊ©<ˆ=ÛN\Æõ‡ˆÀéFö‰|s¾Õné)‘ìÊ,dê“¡â5ŸŠÞ(ۡýßÏ/øžò¢﹇ô™s¥õó3Ë•¾þK0ˆ›³™m¶€»›óæ¤nó†Šk.»pl†h @ ¸¾b3J³ŸÇDZO‚öé(X.?¢¢º÷†·‡5bëZwŸßpO‘H&L%ÁxfA±¥I¤Í`Zè5Ѳ úŸ<ãÔ26dS—v™)ÓˆCEu&/»Šï,Á!ÉrN±4!@•Œ_YI:Í×Ee'·Ã7ßW¼tÌäoå ºNáÉ úë™­t›HJ štô9\jnŽð¦û!Ÿ\<Úã¥iÑXÇó`ûG–¦!{T ÅÞéØd¡Wa8#A>&‰|Óß ]™Ðä1c7ì呼óïEß¿,¸,Òª y§•ý%¨AªYêʼ¬áÍmäí¹|g¶DÕ˜šÒ·Êè¿óyÉÕð² Þßú-HRd¤8vɯ+H?O®ÿ÷¨âq¾ox¤=«¦XiéC³Ñ5y.ŸÜÐU‘ޝä?«+å¨Öy†¾b²íI­®~_]oE ¶6 ‚-"+f²ÎéyúŸž¬¢ÔÒª/¥~œª]Ï6‰Yò¶¤ªJ¦<­ÀîYhKÖ²ýçs`ª18,±¾õGB¿ Œˆó˸ø½¹Êo»“Õ3åZÚÁNøÌÓ"‘Mñ$~€)ùeBeu³¬7M”¹NõBéÃP÷yô@¬ü_ ߾ɻƒ¢jsòøö{ÉIogpOGÓñ$(_›Ë¬-·¼ eg¿Vqè:bdúOã.ìéš¾iFŸKV^ËÆæä£}-¾(Á~ £ìße¢´\#WîÀ®•b?RM·%¸HRõ„ììU7* X$ ‹ËÉ<ÖÀñ4niŒð´ÏÏRí¨Ú¸¦0¬‘6­0IW¹÷>‘Q‹‚k"•ùX3ýÛ 7:Z÷·’ÍȉpXÚBäÚ9ל¿\mK {/ØäïK<•¶ù 8aA,¹fl§Û' QµW.UóAé¹rÆUÀ,/Ë¢¤ÒÉ0¨±T¬+ ÿsH?× Cvu%ôø›Èn0„ebˆ’JÆcÇÀæÂ‘óZèã“v@²€w—H&”uP«±{O§„Ê;b¨XÖüÕ':*yï±(¤pÜO{p:¼„§!¨zŸÕ£rzº×šÓŠeKiq1!vífÖÂꞆÀ;¥Ï$îc±˜rùá̰RKe…¯¾†§ßÔjI¦pÅ™ò¸w,;ÏWÿji•3¹#´#e6gjD˜¼žoOêâ²_={Œ×ÎhÞæúÿzŠ?€& ü—Ó<Ô”ÙìŽâLphÂẒ/Ît2|·¹É#áì;QFÕè®#h¸¡Ìš¯û‹!—‡sš˜¥ד\Å8òm(eÁÑH]ÐÝ 3¶+^Ùÿ}ânøTYÍÆ™C9¾=IûŠïG¦«¶ÍÍ¥&ص0Tð{ÖT¾ôÍ hÙ•XòÝaz—1În=žÑñ_+ä”`½‰*Žjlðí¤Ðqò:ßìò(ÔSìrj—®ªÅz‘µƒêl£*ñ½rþâ©+'–ñ,ÌüJMQ2 g9ìk!B¨Ï7ôÌ*4<Ü’dJ´¦]‹P 1 ÁRÜ(¶fè™ Ò×{‚ëÿ#!"(ãö#Bÿ:澉I¬Ï–I[ËœŽ1.¥-ö‹•EsätŠ5€$LW}ÄZ¿‰Í—ðûbž$ßNë¬:o@¾>c,GO^Q9N›•éÓÕú”õ7kTñ>½ÃOo XÐÁEë°ˆ!ÜNþ¦rŒµÍ."òRzíQR ¡ÐG¨Úøi8àF­Œéc_oU›##—é½baŽA%P)ñÿ +DÙï}:ÇsòÆm¶¢càJ¡‰è‹šÎ,խ؇{‚Ñ )M6 œ7£ìÍÅ ËböxóK™ofëB™'-ºO‘ð&³ ÓMÉNî>6;œ—g@6ÀH­êùB<–\~¼äA@\ ¸óoÃçéQ÷RÛLU;!ð7c#-(m³Ék«+…ÙIÎ+´É¨yU;®âöíóQIÝÄÀÙRao;£ØW蹃îæ>Ä–üÝyGÙ©ý ÜË'’z?É‹Umól¼“®E²Ã6÷ÂTR"OЇBs"Éf3¾P*U‡ªe;ì¶]¯† †ÆypthùöδÚÄÄ}áá¢QTìPßNÚoíFÊCÞ(Ð@Øv”a……ñf(î9Ûðf§!Bm'…›×X{àh ÕjA9ˆ¨ŒDw½¢\ÂäYqiÖ…Èmò#¥Rî1ÔÛxàd¦I#Šñ"䈫wsU¦'˜á,Å¥Rˆ¤§÷‚½-6ÎÍ¢bŸ.ŸÄµ>çiZÛ&xf<\¾õ@œ2 4·VSv}£›E£¯ÐîT¡b¥­ðÒ+AâÓ7Ø_vñ¢…¦0“f›qfýõvK— ´³•;Àè Q³bÕ@ärÿޒĬØí+ju\ÿÿq4+FÅ1´lPÑØm¦¹4³ÑŽOã ª—ÍEæšÚ÷7‚¬¥(1~>"~«•HÙÆ7¥yî+OHpÚMØžPÈSCapwÃwК¸vÁ¶O"CV¤vÈØdczy[ò€3 næ&â\Õpݱí-ì80­M}#¯2nù¢U%C ÙFj^8‹FÇ¿Áqgû¼C:eÿkáä¡ÓÛV ¬ðŸ~Ê ¥¸BÛãwX„†`q–ëj°fô>ÕäðD=-ÀÌ@®tâ=óìb–ÎëãxàWð [m Ö ©¬È=òüÌ…ÎL­ªëê—'(£¦6ü’™KµˆG£CþPʨoßv\yz}©VÀä4‘öÁŽoVÎN9ºâ‡»SÓo’À1Na¯œ7ø‚q` ™W÷·%ŽY=m¢/FÚ¸? žÝ–LÊ@€†@bQT 6|L.HiüzÄ([…Õw3‘Ö8ßœ£}² ÇDÂ6äX!r•wH!Q£3ý¬°PÜt@¯ ›/ÅÄL¾2EX£¡² Ô O‘Kóò†¸¯·£Ž!¥Õ®õ—ñ毤Øä¯‡N6ü–Û¼ï5 u?ºò'Ë@·Ç«²qǹ2ë´X£v«ë®ç]ÙîN¬O×tä<ŒÌ?nQЈ)ÁO¬Ã´[9í`JzÆ\êe¯¦U”ÏëãNà{æRápoíí€sOzïc·›ÄdžL÷kß¶ÈËÆô?#žØm ¨”±Z[ ¹ôKç?g//åïýÜî쨋S똠ú-”qBÈŒ#BKêèíg\:Ç“@O}”Ì m¸È2M‘b†dÿÌ÷3Û%ÛãioÁ¢‹R=p#Šs]-à®–{(n…Ó³Õ®°‰2-øñ&8X*DîV?„výŸæ×ãï~·ü¯ÎÄóð-v¢™öÕçþu#WºûZöAº>LnõN®œOc¹–%â&mÅcA³ã°þÊ’.—÷ãG…œ2ú8r_xä°­³rY!‘·ërûÞjÈÌʰgû& ´XÊ8ÞB3Oý\¦ÏæHýEß[œÍVØßç Pí7'6%hý0iütÀ– ƒå0×H%þ•ñhÓyº{›½ïÐégwå• ñƒÝ¡èg%ƒ•¸¾Òªd0ؼ¡tÕç>¿D²NŠ QPøKÀa'¹uÃ_Œ'm)ô‘}G§”[×6šë;Ý©#z$"8B‰™0xÊïš…m"ê)Fò‡e·ˆ–€Twe”$£œÛ‚²¡|9&ŽMXµ‚·®ýC~ú˜¤æ}xÃoýjWrEySî×¹ü.o–že£zòÞ™D)^¦·Ÿ¢süT¼2-µh¼P(€§ˆ€Ãœ/«¸Oxåø‡YŒTš b0N•ÒèÆ¥¦ð ¤=‰ZiûìÑ9c ÉN èP<þ!Q¼&ßÉ€¿U?ŠxGh8û²)QG+˜3º¢XaO"Z<øÓ|µ¸Ô¸‰ôXµmi!óR¾fÉžíjd éžqéU†2 Uub¼J†Q<ÑÜ…µQÈÛÅ‚6ÑÌFŒ7±ì¦ÕŒë g³8XÈ9ÒØKL+C“ê ¶xÂ`£NØe™èÙB'J†2µGS¸j|GæÒ蘒|ꞈóO5™Þß=ª—ŠYµPþŸ*#·•sîbôÜ6¤l5Uæû¢˜ Gá7ƽ„’hƒVD8—†ë[®­ÑzÁey±‚°æ UîY „G¼…õ‡”< ٺߔþÿ]¿3LÕàWÉÀrM/eBggÖ§ ˆ·ˆà/šyÙÏ2HmVH Ýß•7-•˜© ïWUt•¥æVŸcQŸa g€=Nž»Š{‘Ì/ïE8þSÅýZ€½©§¥Qç)–N¿\òùM$€¶ókSÈ#ϧ(«r}<ϱ¼ A÷_ÿ±Þ§dx]5ò%¸g 3ŽM7•d™p4ð–úÒ\µ­+q‰|ª’þø&•F*d˜po…=`·eê<ÜŠ‰c—ï%_°èñíÙ´y"Cöï éJöe샀Œ Ržv|–—l3`8oé'‹OÃÇtu•{÷B›êª¡R±ŒŸÀ´…§rs<ùQÔ·ÖMUß ê*N­dn³ãäbŽÝä Þ»…å†"[£Kn–)R>B‰mÏmÍÚ·9Zï–àfŽ[ßž‚‡Úûà13õ_©M|[ã³8&$¥fï+Û`@ˆ‡WSØïgœîeYˆolçÏø\… £Pº6Å– MüÞ†-ÂÉ|lOýÜߟ±N–ýœ}¾ ÞAQ«“ÙÈs|}ñJ³ï ƒžóªÝdÀžVPN8¾F—gáã¶CóÕ ƒ†Q¾"íü m¶ÏÅ!Ž‚®|·û);¹ÀUÿá´4Ù^‚Ä>\”âÜðóãõ>@H+k@$OÂäE÷9óÁÁ[Êæ¿¢Ù%‘)Þ)±é\´—^™, K{h‡†1] ®TâÕ&±¹”ÿÀfCk C€UÿóZàjSÝâ|@j^c¦5XêwO¸p iZ tªâÁNÄ%ßõ ËP™?à¯Í1øqñS+n±(R’ô‡®iׯªŸ€ÿU0ô®­!r9ÔŠG_t…‚Ž†Ñƒ¨Îc:ÑaWl¬dFã ŽŽ—¡—¶½Óö”æá!jœìµ24µ‘eW o¥ÿv.«n¿0<óEìÞ s4Ú¾¶Ђ‹€È{‘ÓÚÒ„f9 äAÞûH_hâ^[Ý Á±ßŠ=nî‰U-õhND äè ¾lF¡‹â!2—ª¾Uã ‘í…}–ãû#O}œ¿éÓÄœÆû²Ž·ØšªúÔ È»ù‚ÔT  0xž¥dÆ0Õ«0[7G “À;Á䟋š³r\ß^€Ôª¸#]“Çu0P°m~Ç5ºA8É÷EÔTi#s~°ÂÿÂCl\|/ëUÝGˆ‚œ’N\VÂŽuwIš<­vq.*B×ÝÈo|ȿ숗Yj” M|FGä¼Õµ€ÀDkñ¥ÃÔ ¤[ÔVÆ hc\ÎuÖÅ=ûåûBONÀÕ(oÎu)èÍO9‘ÔÑÎ×<É„€eê2‰Ýͬ Ggü]Š;´5òLP±¢Rݼ´Úî¾ Ï2:®Àh¨áhºÆzw%5Ç»XPŠ•oðua«¡q*³‡ ü¿S˽;8‚Q~#³ñrºxT•öÿ6qÄÔ YsŠRþ%•)6Fƒî2|6¼œ²É¨ÿ’‹à$—ÿ¹?+3Ôƒæ¸ÇNÇ£¤<¬÷öÊ'Ðâ‘wÏ¿=u(¹©–oýÝY¦¢° ++ T¬ìnÆšŽáUQ bйK1˜¨;åèÉ2Jõ¢ñq&pÒµ˜Ô:hǬ!¯]ØAë–*Ymäòó— a'•EMû¨È´íÁ âæ¨V£M˜ó‡Bޤ$äø¤_ßü‡¬m¸’b  ‘(B,†â¼]¥Þê`5Û{—_~#JÄÉ­²QÀ h´¯6ÙªÏý½^…ÖY®•:xùýŸVË„Ú/F›°%TîŹÝîK&1üaê2U'­}Ëj¸ˆ²ó4\=„[Š€MÏ/í†Á:¬„xé¹£¡':Ý܆I¢´Aª_ƒ Nú``‡ùÛžkGžº»¹„²C?n$ 'l€€ýr›Q¥du ¾ÍÃf`‹Y¶÷â0¯÷óìJH ·Kk¬)a¢Dƒ&ŒO„%Àγ(2ßôwÆ4ffåpîÔûݒñ‡@a–3¦1¨Ÿ>QZ²»ôŠî%xŒ\¦|´¸ûш"_º†w·hÉAH¿ÖÃíd{÷¤DºÌ蜞ðë×øt¬åAý¼jØmyjDübž ºÑ:\‚ÿÇëÿ! ñ])@݆†ÓWc•¹0¨%p(âü‘ȸaZi¹Ý<8$Aª k+¿báóÎlÄXk°Ÿ)Îkœ<ô¬•!ª7áÕRÜë~…øÜ%,î}¹D•g‹‰_X‹ƒ%Ê®o0ÕÇ~ë€(ÕþáXq)zC¨‰#6Î-ÿÃwè9÷麗ºÔ5¶÷ÚAàOëÃûeß^)”h¬“%&¶5lñ¯éÞ ‚SÄmb DÜÇ9m è®Ÿ:¬~Ñ’9¾å´ØˆmzDŒ˜ƒS?ݼ‹göt% »p.@Øb«¥?²}Þ|rJFžý4n¢Mt-u¶p›©¡îþ}&Ýz”N^C$ŽŽÁ¢lE&íl$QÖVÁ§7㎣“ïAGT@qÍ»½­Y¼¬žò$]VÆ#ÎÁæt[ÿíº„ÕžJ==ÓW‹¸ä±cgkh^ qœnðx ’’ÁHV1ÍÊë:cûñ‹ªœ`%bé¼}j^0­‰*"ë-;|½§¯+ð~õ<~O;¯NÉ>µ¢!‡ÀŸªv½Åß'zD0q*D"̨ÿ<\˜çªHäŸÕ Kbç³Üþ¤ti†I) ÚÔÓÅqrѵ\tòx¦=ÜAú´‰M ¦…t*¸䉴Ž=Ù¢éªÌQ¿È®:¸C¬c«÷yt«íB+yB Ü£i­‚‹û³‹gþŸù«ÚŽ ¼¢z‡ºN"UŠx{[§ÊŒâÙÌi¥>0U·›³òALç\úß¼hHÝãõg["jÏ XÒߺ¶ÏɃD"ѹm‰|Ÿ¯-i!Ýñ?Nÿ[XN´Vj€rV¥Çßì4ñ,§Ë¿2d–CŒv¬Uî/¡;’ų:Yx¯ýÖâ‡âéö9l:óÒ)ß@„þ¿M¡å˵K ¹ &R0TªÀ\$ @ u}éü}>Ì»9´¡“‡üŸ†®EB”ÚJˆÎï°Íáûö9±åz#¾Hž#û¡õúƒ Úëg·x!CTÆÜ¨Œå+ÂNŸÊ©‡k](Ϊf›!IB^­}¬tÏon¡ÓGr_ˆ+¢í[Ád¿ãḧpF8“((ïóØtK‚“ ÷ÝGL½[ÈZŒi˜yé¾nLuÛ~ OãÑŠ†Â( ŸhN†¼ éÆE*ËxN÷ËMàö-¶¤†X£Á§‘Å´Ñx6*Úø;f9¯ñÜXÑçI¼•fN5¸\ÕR¬æUå×Ö’±Ç´T¸C¸$ÁåCþããY÷–èzðeïÅ5V܈zý¶ ûŽ¼Ñ†¢ïÏÅXË…ÁÁ‰:”ƒwê‘*Ç£º³ &Öù×ýLD P)‹Ï¡ÙTYfÉi$a……'̇YŠKžTLœ黸ú߄Ȣ h"©W¢m?·"QÃŽ¿ }kùéÇß×XõºjRT4©êÀ¶³Á ­3ˆ«ÉH¾æŸ'œb5—?š>¾{6[Ã'lp«-$Ë´ºzdOXÌ›È9ŽaÑÙ«Sڽ˘Ë2çò[öŸ6Ü_™eJÛÏ ¢‘|þ¦ÚBƒïS9šÜŽjw«)Ò^‰¸GÛ#M±)üê^–°2š8õ1/KÅÄŒòkÅîrùç¹™pÞiòHšîà–}ÎÞ{ž‡‘’©«-tbÛåÛ¢¹1ñÌ_ž]%~-9¡“³+£W©è Ž;ýâÛŒ¾„á}ÜŽ‘ áA”Â{×ÿd¯7··¾W¼\@ª#«%áAtÅù¦æž¡¥À%vÝ÷ˆ€¿[O«a› ‡[+5`wî­ 3É ­Üœ“u!®h´*wPÿhaŠz0|ØÖ[èþJù¢ªói½MÔÃ䇫´y¨…±Uéw¹*ëª6}Ãóa“ ?ˆÕÔyß_KÊ–3§±ì9ßAp)„SiAóª}Ò×÷á&pÀˆÙZnn=Ü>Ç©z³b]B &“Òéçò3¶Ý‘„’ü•{ àÈÚ”8A‘kµ#x“­bm%C¸ÿšÉe{º¾/ò>¼¤köè}&ß³Ï ±2Ø£¼Ÿbš²ÄDF®4*'lÏ5[çU…L½ÄúÆ20¹‹%à÷†»µ& ñ„¾yñHý\ÅÍ&ŸÞ¬åâXºYRP=Ž„”Mu %-a(ø÷ïc0eh©ì±@…×3Ïô¶˜îÊÔ“$ç;Él^¯mŒIƒ øyëÉ15‘´ 4r„½³gŠbH§ÏÑ¡™ÙsÑ©šw{¯Y*)ܽšXºjyãˆ&ý—ͳaº.•ìüÊm$Y½z³q ¹®Û³ŽöÄù5õd/Fv)pP®Ï0AõkßÝ0õ§C}¸¿óçjD·­sã¹è”ÏPÐæIF‡¿²‹9§ò­q““rðè4áÀž1žw¶.\ÒYö§É?ÓNÀX5UÑ@¤½=jrÿïõdJ YŽâ5aG"zPœ ë4bÍmZ¾„®D ´Oõw:™S)Uךa-üqž¶l¯¨ž¢Nü|(BR±c# ¾aM`¾(;솭 DXÖí÷§(ñ@òáfg[¥Ù&56æ13yÔÝQã>{À†ì†~vª½gcɯ~!P‡ãÃEô]¸ïO™$êÑ\ä¯$3&‘&  ,B+.Kš;T‡ÿ¢©«?“#ÐZäßûÙ¶ŠÛMmúŽù4e[íÅ7Ìh7C ¢ž#gÍš¿s¾*½¸Ä¿ó…€!/(ÜÜ ÁŸqÉÌøý¹™7¡ýæ­!ëÚøðssÁ%Z§î[xç°·XœÖ¹¢×……àÝÝÀk $ms¦ Ìšeç7»Lâ¦ú5Ï©ßÞÅ_›¹‰ÿL=‡S‰2Lònà.,YÍ@g&"_2ú‹‚GyÎ ÀöY^ ¸˜Ÿ¶KXÏ{'ù‹¿FZˆY"­æjÑö'4@¿)±Þ`äš³Þî Xß'2­¬–_¶R;ˆÓA¾¹”#Æbxõp»)tä±´ýÛÓѪ]-Âö®IŠ…Ëz ³Èó—è´úÜ2&XÓïúÆï¦ïYmxqØKÏ#'Ô;ºÇÉÀ¬õOÅè9ÌlӺܯ÷ýrü©1«ÍÝ뙺?]|l ½1ð«÷°â‘ÜN~9Ôí L²pŠV4žt¸d·i÷%͆Q¡#Ò»fp×ÐiMU<dîbz؀Ā øõ³ß|gÚÑ,“Hf™1N'˜!n*6Ñc^y/ÕÀ®ZÒ¯zÑhAŠhﬢ¡é iªqU“럸YŸë=þb‡«)šsîA?¢UR¸…—ÂF«†~êèÆú¤ÂךxgI/z±ò𾓣Ö‡ OªA°úÑ[îè)E“UEÿ"öBwÿܺhíaçÚ°À.õ9Dìiuwßÿƒ®Pô»ŸV÷kªñwç’GYEГß Z…?{7+eÒV·ìçøÈ .Ò;Uaóœ¥úÂQ­þ>TZ4x"{:×Êde #‚©ËÝ4I•±ínþ8Wc¼‘fÅÕŠáh8ì†YÒè±ýÅ# ÀNhRçÔx•@"ò%F|Ž·‘Z¦Ûi,¯Ÿ®ßÄ…‘êóñÎrcÈÉ9œÌ»!pãWèÓ?6 íÿŒýœ …Ý‚Š­Aëý]'åÿ<‘¨¡»˜†`È ìÇ3ŽÜÆzOã9)ÇÕà9hxZíƒÀt🜿¶1¯ßQÏ»Ê3×ÂÙùþßU«bÄ/KÞ*ì)Žˆåmó_ÉÇãtŽûä#h‘³^Â"6Ü,fg¬ý $õ˜yÉ( òf«½k‰@> läæ°rR,°ÆûÊÑÛCˆ•_‹àžÜך÷&òyYç@éˆðëŒbàøŒMûäɯÝ&Y€îÞµóÞŒ/z ²ÙæÉÛ!èj¨„}a«š€þÑ/ øZw‹ë‚Ð5¥bšáº_ ]½>*êG·Z5ÈJv¾s;Ý~è³M•é|ƈÑJpŒ>FDÜ?Å:O`ù0ºôè#lܹüm8Àoàñ¬ôî“à±Þ2®Nö̤ šfÊMG[gʇôi}¿?ÖòCd?ØaR¶9ôQÔ(-»~Hf‰"æÎ!YŒÄË4(:ö¤í:àd°â†' d ‘©¡«*$þß­ Séþ±± Ú'kås|CU3×zVÅöEG×Èþë*E #Óu؉¼| ŸÁX'AËì >÷lУ½ÑzKvfY”y­Tϲ©¿›EèATZ‡_hûmÃãçï¨üca7`å&HF 2`+C”Þ4û¾ˆ#Ò½Š£Uö$¾áz ÂaÖo~®qê:-³òòGÈhôH=·f4w>ã¶OP‹'Ïî´„zÁ“[ûiƒ×$=ðtûèÝæ Œê`à9ñæ@&ÊuÜÁŸ9›ŸòŒe(lmó‹‡ùïGóØ*>ëüîzÂ8ÞLÁì—$þ±¶ B~ad„ц5¸}Í#—~ê,¹ƒ÷H.}M¸0›Ãüg¼îÝ6†’xÕ¸Vçer¾_ø Ý[@§½›iV ³ðOl^n?ѳjœ zYÆDž'îY‘´²ËК²[QÛ§ëž#ÀÐsS`ɱK²N=F xù8‘z&•eÁlŽ&B<¥G†1Qµž5ëš«ié( ên#´ã“#(d[\›Íÿžµø›pa£JüÒð¸‘RéªJ2l¿_ÚUnÝ×0»$ár\¬È›+f°pÌ^«Þ]3ú%)B`Ó]oFš×k0̱^À~HÅ~Àî6k½5´Àã‚Í/®;4þÅš¿’—ÿ²FFÙËVäïF\óéYÛ ¾{Ù ˜`u-?×ûÿ3„ÒÄTwKXæ„´@8±¥dSUÜM ®0 N€)-ø[¼(ÿ„2 Ý>£w–ÙOâxF_y¹$ “€Áãþ…õq%v2)~jõåˆ Üté?óúÔT¼ÍCzûáàx´ Q<š)sçöåd³ga©4¶á3Ã" ¿íÙœU@%£ù‡c®€Ž ˜æÃ¹M¬— «B <0ŸZF%ÜBfîÏJÚ¢ÑPU–ƒl¨ÑRél|™LfRƼôeB!A/Kä±éÒ'þÀå3“ˆ}Î¥º¾ÿŠàÒ]û!5‘Wr-«*ÿ¬̗om€ãÆ«hšOA,L«óà¨Z¥º˜iìÕ[ñ[ìÔc°­T.´Pš–kžËæ”^IHöàúH QzL½û‚í?ö"DL)xmÞŠJ\,'ßWþU2:ãŠäJ.Ñ)Ó x«ñKƒ=^¼S ;Ü¿ln`ÔV¦Q˷냭OÖÃýöÈ­”á6F7!†›MU„ű©éypâ"Í“ë‘Í +csÆ]ùµ•Ç ø£×š8f~s' û×çV ©µü‚ X××Ãt(L?Ù¸šAþ¬”·îO¼»ÍËjp`5_±†_“pŽsiq3Wp¡+ùO¾ƒæ˜• ÷æ,ÐY7½ –")é-Û¶¥~×x¸ö#ZM³/|¿\DÔW»Ù*˜›MçYÐI½.Qo T%gޏkƒ'j¬@\4¢°0— +–¢2gÎ/eqp…?ìy­2O–ÛÇH¼Å3¸ŸJñ[üº%+N'þ úO­¼¿£Œxé‘l¥iÁì[3œ—ÁþwK44Æ~»a’×þþ»ˆÃ¯8€§ýlTJN‡jXœCöQw‘MÕIÔ+Z÷â¹ë¾nÛîÞYlåšWõ8íɶ -¼!eBaƒ<¨õ‡S[å`j S6ˆˆÎÃŽ#úE9 i ¥¿Y[bÿIŠwRWvŒ‰;§ÖžY8õ¿üŸHwx‰(¥¯abÝ Ššóá¯Â7Dåªji¶ÿª§°†d­„ÏŒÌ6ýûâŒ9Ûïo˜„¬³“è4„ñS”œˆà!¡Ç;Q.ðÜXeÖž‰µ:A´·ý±×bÎ=ä Ü6l*ºùé*—e4Êщr0R*ʸ` xq7i­ˆÖ„íWÔ{$KìºJ‰Iðêû¾Fqs¿9Cô@­ÂíÇSŽ'µMâÁ§£þtÄH''‚ÆHr!á-©†©é«)àü<®´L¢ƒGj!S|–p‹ëÚ¼•òEë‚ÿcc`ãsSxR‘Ö5\ - ’‘ê~èÀ¾¨wß*oÜKpÊᇞßJa$êc~mÚÞs ®ûŒj‘Ù³Ž{à›ª‡F£ “ËëÜCÉ ŠíÇÌ,Ý4ñåyV?]Æ|@¤„°ç8ŸV¢ËxàEgcÔù”@(‘æPùÛ®ž"eÁ¾^ ´SÀiB$ˆ`’î÷ðEÛë¿"æá•Á°.Ójå©ýšñ}["Ô™xS«²upagÔ-6fÍXbObpgLzd/dÜŒ¸0E+»q!çÜ]°7Rj Ò¡9Da¬ƒj·cãÚñwãUe¶­ý %ë6h³- Ëlüí°èA³ƒ_3mPNd=Þ’ðꣴèPÞTh'è:f©~ÑØ{oy%‹žªtSV¾,æ.â÷˜zfbÒ´®Y@¼ÉÃjÉ-Y„ólüT8íÂC²1‚|,,_F¢w‚“´8Äî%5à‘ç~œYh‚ç´[w‚™Õ>À`惸Äó[ò‘†dÑ7îoæÞÈÛ3 wì\)Çþ_³ô=¤6…Fÿ²Â‰<碈Œ,D-É®Üì¼55´Òhp§iâÐqÈaÚu”>EÜô‚2èþ×Ïߎ©mÇ`’`Uܧ~Y¿ùÒØ÷†‚ÊŸœòüjS¹ã]d´OäˆêቻèäâÄkŸYÞ2W5´²ãJï(™Nâ˜èesÔa-ÇqEG€vè6[¾ÀP¼DŒÕWonE"<2ΘhV3!˜iZ1B[O•«–Ï„ü{™OM?Áciíðb4~]¹°Öi£Õ€‡¬uvŠÓo­è%trêlYK”‡ßRHÛ×d÷áÃOçüQªeº c¨ŸÓx:åm>U·õEëö²ÎO€™ƒž³gæ} Á7fêú;þEzDÃ.Ë<ŠFªå "½3#•Á¼šZÚQl*LŒMSd‡hƒõ½aP7üpÑëSôvxº§¼ã÷橱ìA$œÅÜ[´.or­AnæQ¨al –zË#ÝVí?Ô®Bqññ[mó„¶Æƒ”_êz¤ÅEC &lØww?.`MsSj¢STY£U‡øüå!sSÐ2¬,¦}(ÉݶZÀ1÷& +/¼aÙl€°2¾b9Š¡æ©Ç<=Y†_’íˆûzËnŸð@Ø„wKö§7ØáTÏm)Üs•í}‰9&ó߯é$> …˜½’â!ßã>zëj‚8êÏpê„:q³a¢•·*Šø\´î†a¢x09“(ÿx¼:ŒyOù27û¸éhih²§+¨™zÛÄ!µn"Þ¦´QÃi¬#?›c¬X3 öþa¯‹™çÓ‰7­¢Q±x¾¸ Çø!Ã[í8$>Ü(0}ý­Áìc {‰òÄâdî4O@Aó•ç:Ø/¤û¥hå©ÿp TÀ–¥Üž#çÒsî0ÁzÒž€ý ŽVb-æ'¹ ]æî?>ÆÔÕ£{+¨— ÃìÖÛÇã[ÂÛ£à<Á‹·Uï ªï— pQªæð@(…‡3Ͱ}<2ünpˆÛ§Q fÁÚZS-ro|Òþx£þVѳ5Àçü÷¿vš¶‹F#8ö•¥Qt_ë=× ÿjƒÖIü/«‚üFàÛýLäp¢ \ÐÇ9ï¨ë õݱ’fžŠ*B’çÂ0¿@¼Ëß/ç‡:þ4c”äTv£ã‹‚×”a1Þˆ qp¿{LG8UE’ÓzçL¢æ>%̵5{×s°é‡½q&¼/u%+‰@¶wjÒ¸/"¾}.ÅcMq¢r:/¿Ëºíg®¢@Å» ž¤7féƒ"¯?…– ÍqÌSªØQx9»ª—çq;YØ4å³ß–t€zßYm«î¨åü/P2É[’…è|å`dEÕŒ'˜Ž7y Y v ¶€‚oeAíÈØž÷y=üWÁ2é˜<¦ü8ÀÚ¾÷f1^÷ÃÌ9¤ž|$õg‡`ÇÃx7 -=pä¼O¥üW¥„%éUѾžTåÏVh °j–E(©°äÌò#E‹Ì Þ^š¸˜‹„wÝ) |\nC¶ÎÏeÞ}Ò!ó¾,{ápíõ¿Ù"ˆÇ=žƒKP@ž—Iƒx‘éË?û˹Ç—]9”«mM(";Ñã„LðõN´oÃÑBsø®AŸ{A—>äN,™ë·D¿\ îæ`S­Ñ-ä(õ"®ý iìYï\ˆ¦F²$¦=ˆ˜1οº=×é¤í‰èmH|@ ×pçÈÒ%?4çï£&ºòRóL¨©HÔwÓáÜšE3Ûìݰõ?ùíZ`ÄL¦$j¨–rð³ÄŒ} cx´£§!*À¬¨{Üúܘ‰öðå •'ún¼L 8ÒþCÕáå®È;ÞezlnŽ˜ø14ífUÐó¬|ü.®+ B±œÍå¾Ë³³¶ØÐÒ ž ë®–£pÄP»Þ±¨FÙ²(‘¢CwÅ—S ÕoÖÔÓØ’¢·þÄ2B½óî˜ß$í6c:¼W–È+’3[T¥2AÍU#rõ®SÚH~(}¬%ˆ¶«5zeä-Š,õQ*±§ä^¯#a]ô›uÉ‹B”ær8¥#S艠W—2ÈM+À÷tGêfð‹(òÓÙ ßðqtæA?MN‘—Å´ùòG×2åõ…á»ÊÆÌL+?æN͵ÜÀÍ{¼rïmˆ¯’Nã¼8°‘õiœ&À*„|+8ÏDªöÞö,1&€$ôHah qÐkˆ|»* ±d´\U÷bEfúØEë:¶¼Ô6÷WO§’Ç2†rÈBP¿*2Óc†R—ßVô»ÿ¸Û§û*gG±UÀs¥ú${ÛöéÛxôaD£¢(¯¶$EVéÃrÕÏkkã*N¼‹²B<¤Ò{ü¦9;†Mä€Q£»>?¢¹WXDˆd|æÖE4n™’î”'SdeÓ¸¬£ê3‚=Þ§¸´æƒR=š º{KÑÁ…òî¹–O¡G­zÄ Yg¹¶ KŽxPcîC Ó] cºŽ¶_' ÐÈø©yë^°1z*s}×.ù;‹¸6Pm¨³`7uÏAøOà2âžc{çÛëD?>wü±ÝUo6–žm2á^K›É5tº[ÏÅÚÛÙPÅãÛAq8öB™áðr쉮¨Ì¦ f²•òqܯ#ju!=>”›2) ¿ZÊêØ4¸éºpK:·-7õ&.~몂K†¯QIâµ%ìÞ$>Om(ýH¹NQb:ÁH²Îð¼…7Ô w[Ú ÀبŽT Œ•Gp2¢¡ñV «2þvVÅ^\¯¸K’ÙÒ(¼sX…Å Ç6«]ÎŒYT”Žš©Âý{5a·XÖ"«òÈ(žŠ¤Ç‹úÁSl`=è:ÐJ±Ê_&q‡™²¡Tì^ŽÁÞ…ºANiË£ÍVÓ[HîÇHMæ`!Í7‹X*GÚïùÂͳ7 ªáñ¿!?Ê—]”[Ü+€[²«¥|·/Œùs$y—mí{DŸÁ¦Ô ÓcsŒ KVl”VËty\Nl¹u|aåÌo¨egCkö¦-lŽ7tOZLÄ-qû‘OØ·þ×ïi³Ë•ïËÄQÒÐÏní Žµª·þ8ù„]l7 å7v̙ђ$7~¿b}ܿłUH9‡:´I–k ñã×@›M¤ ìÊrÀÐ+…Ɉ@Û\t!I8N‡Hç%#QPÎF²ªñ«ÉGï.nòëwçjF¦1®£÷vÊnÄk‹óC¬¡PG ÞH‹ ºÑ],¬Þ!ÿVe'Ī­ÈÿSŸjÌ&YÄc3–}¯~‡ÎQqòân>Ží<‰jk<( cý;Ñy sþz}g¿‡†H¡j9M…ÔÆ¶Óæ&n3[ZFlSÙxìË¿ê0ÓíyK•˜R F=je ÂÒ‹ÿ<'€ÍQüßgäæ.7ú†ß ˜%}¬°63TPê9ÏV4;¿]µ‡îÍ!ÞÎ$žm5tê ¹}¯²Ñx³²c~]-˜'Ï89qð–.óï% Õôë¾#ü’MѶtÉcCJ¢çüKRàC`ÔÝà‡ÁJ)P½À˜_³¦ g@”21GWãÍÂ7˜wüilÉð£÷Æ=ž{;5p½ÆTÔEœ÷Sg I)*VZ%Ùç²}Ÿ%QI+.LdM„d·¿¾ Kð£Wˆ—ÿCÙ]†`µ#Gêà×ñ%UèÞˆuø<z$  áwLþw¿ìŽÒwSŠl7’“Êè|G{¨¹@šY½ÈŠèú æO”…¼~¸(ŽQ»²xÿ¥b?œ^xüÑêy!}Y¤qzqì%Óés-WG½Õ>:$(hÑ-ô’È+|I`ëf (Ž[ÊXU«j1úši%¶ÃPhV§8ýÐçOƒô߬+ͼ —¢pÝÏ{;8˜n=s@™sYÓ½‘—þ„Œ«#ËÑØaæ¿y$ÆJJt´1ÑW"]Ä]†¯`ÏÊ¢ª$çÎàd_Eü‹4¶Í2 !”Ï*àÀ×Ua-ê¹î“îIäË]zßMZ\Ê|OÐfÃæDqróÂiáÎJC§wYBþ¹”ÃDË)D=-„;´±ò8âϾ?„YOqccŠ&oÜW޳œÖO…2Ô ŸVÁB¡ê7±ðC¨%õo/^*ÍnC?‰¶7ÓBŠÌV9?ê'¬‰Îê T*«[æ¡®2#òH]’EìdÂøP­ã}JGö.‘üvïìÄëºñâ×DfUðg[Oáxk®*%ô¿ÑܽLžgã}À\0iÙö|t·®Ùà.ï…ÁïŠeNÔ:( ߪ^ŒWO°YC"µ–²3½=Ê(ˆr\ÁMݰñ•8¨í–õîYVQHº"ô«R[¾a,=H [a› ­7…¸ë ¡!•±ŠÖ4~Ýëê&ù"9m¢ÃUU”¢gQÌÂ(…*ž…fvJ kup!µ¢ÍÂaþ›é‡¸[Š> œŸ•p¤g4ÌæÂ|½_V6ˆ‚ëCK^’ˆZåùhüµ}»ßujž¶7âÂ; ŠîýHRÎàBºßèjgÃuÅ©¢ÐżìÛ‡ÉðgÐÔÂô!4뇅Íw°šËÝãrƒHž¯ž‡²:Ë«Ó>!c°'·JPÑ¡2“=®UÎù¤ ?ÁÞδSYÝpe†¥ĦsAGöTã)Æ-Âàkv_5Í4x§¸*Énm‡Ü2ý+Ølª ûƒá&È\DfN—w§ç=k¬•¢bXÔ‘ê¦Áø1–<<½úb‘»pùزE ó$æ91>^ Xò! ¯Ê•ˆ—Áéì%NBTª¤Ÿ>3Ê~Ó 2›Z-¾‰cšeZçÊ™gÂa}¬Cn‹u}üa$ŒiÈŒúaÖ¯Pøú$•®º„˜†î”ÜôÄNH§G‡~ÔEɺßQ <k£m²£o/Ö“‘gÀN”Ds¢•ÂVl+‡N‘söîzTú“'òÿÀ«;<¦1èèÛÆÏkl/¨§1-ÕVTý°(VcJ ªZþÙ²¹¶ºG¶s±L:s-­m ¯êü£b.RИð –:(?n iƒy­¸}‰‡à9½‘'A€màÌÆ£hŠØê4&c+¥°#ÞO×­È]¼Ã“ü# Š˜ÃÿYð0BQŸmRâiRÅNËÒâ<¦•zXe–ô?šÀâ´N³l¶þ”ˆ4BÎ5¶Êêå]ït~ϮĔóÍïö¿‚8–ƒo]R¢†ßÞlÄœ½…é# ¯\yK ȬÛekg¹N¨Év­pío?Û¡$Ç1F²ÜuPêô?ø•N!ÿ~ñbæwxµ)Û¼Îóè‰h ýà2ÜS—Ëß1õë K›Ä‘òëeºí÷'F§O¸Ì-ÿöyö6¢¾»Ó¢thÐmŒBp$иo·á‰ô]Svuõ‰É$3öBJ~Ì¡þ¢Œ„ÈHBé¡=¢\výd WŠ w½«-ÄTMÇç”T’Bƒ‹xŠ4Pg;‚Ä|z×Ðc8„!:Óá1h  ä`‡~!ë8Œ”{–.ê@¯l3˜úƒ|ˆrLƒ:Öœláûô§=›MTÞòp] >,!O»oùuž8æá-y?êšÓ¿‚sæ€.ŸøºÓÙ°‡mˆ+aòZ69¶Ð´ÜzRÐ ß~ ·Áæ_¶ÛbNZŠMt_Î Ž°[Ñ£[Xq&ÊöY•GJ—Š'I¿¶é+< JÌi•øÛûí¤š©ìÒÓ šhaNeÆÄKû4º½IØ(ÝëýŠ«‹%’b÷”ƒ¤´MÌ(Œ›ð"XUŠ$7`èÜš†ëëHÕ>^¨s¹xÎa8ÿ8!™.–È— WóŠ}@$ýXœs~þhÄ©´7z‡7óE„ ‰{úÜTá6Í{ì¿Q1#øÝŽßщõtþ©0sà)‰{°Ú:ƒXMÁÚn×w6õÀÍ),]™@£ÁͲN_V¤X¡.\/¨û2]ù!rD5¨4¥n5ËíN‰$î'G#vVj$¢û;¹ZÕ—MÜU‰p=:XÕØÌ 6˜4’²÷}~f+1’É4ÿÿç¥×?+„g›Å:²Hg9Š–˜:ÓXÄ9tbŒ= ÷µ¹É#b×(Yä ì{;¢[ÊKA¢n|ƯžÑÓM†Õ&¬ªQFþ¨ñŸ»íg4#¦¥ÁÕö m£YÇó:†YK.ÍôÐb¼Xzùõ_ÍV¨ì¹+>i¦*±úƒüáuè§¶žá4½øžÝ;çªÌ½r<eŽ÷âÒM>¿7—È{µ†"Úº@ÜÓäzUl *ð‰P©Ö×VÀÅY}ÆNY Õæ¾BÕöç~"³r ñÀ_¦SÝŽeLÖ‡h÷~ryLEøn”NÙ´Xš•ªpï^-~³îîK‰èñIŸ8‡ü™!œO´GÓ¼XÙ¹dTÌØ¯LùC›ú…£lA™Ì­vïKë¾Ê€ÕjÓ¥¥"ȸå¯ÎÅn2Vú\‚ôpªI´Æµ`CíRsu5]gcIayèzöœG âü Ø!ìjôcÑ›÷ëdV¥e*Š8Zv“Çà×k9Áº“:¿)Ô#**ÁYnšÜØÌS˯”…¸]¹}lë—ê!“0p¿““\ÓŠˆvíâÚm¢ù²?Ý3æÿN2JY$ß¼a´÷TëZß(Ö.^Wopãus=ÃH!Ž!R˜ç†$’T4.è0¨¢ ý³|ÆHåë]¨Ì±­ôÿi8‚;J“"±ïû'ÏplèÐ3ÇÞØ<˜n`$¶®ŸÓ`b¥î­0‰^{ȱ³ÚýÕF•½å­[ã’VŠ%gKgß©g Ù³-àÝàÖ¯¬á‹@:CI¤/ôÏ"¯ÓWdKN¹¶ö)i”Á›ÎrùæÞ•Jd½JÓÌZ|&ƒ›$—8'{;Až' #ÂƽÛlTsîœÒ-©‡uîµ[]s;ë0 ôᾑŠ1¥û×o´3>Øïþ:B[Cv&{݆´óòƒv8¿LÏph<ÑÏú\×<󛺢µà½40c¨0¾–/+ôŸûea€^7íK‚IÈËTóZnºˆF†@™…ùÆÛ2~)°XnMÿz&bNÊ&Só¼ßîñެדæ”Æ =ט añtk{Ú9bW0‡¢>¢Ö¿,2 ôkMÔy†scÇliºé ¨ «•É^%IÒPw ´ëc^>Ù¯ƒè;Ѹÿ@2‹ÿé½eÒ~Ï•Øîü½ÛÂ,oò–*Ðoz5Ï*C¢Ÿp¯Q$SQ1ä 3óæwBSäŒÁ·|E{2J†ayh"9mt7¼×xú’\•žÜä–Ì)ot+³$å¤1|©xQh*A·Š#3B© Ó6&ðíÒ²Kï+sì^Ï)4.…‹åɨÄpÐPtNxñøÓtä „ƒp,¡_E,ë÷°W¢€-äÚ(ꪚ?O—¶:Ô¿óé‰òÛ…¢°W‚í‘£'µG½ ¬„ ¤P¸è…u}ÞÙQ¿üló—)›ùkÆ1×Bû¤ðlaœ¼*u…â¨h°áš;XN¿Í›KK<çŸÃa# â?×$¦Jnƒ¡TF6Å®pHpµÔr‘ワ¯ÄÆ”UßY¶FÝÍî}_œ>žóS¯¡¤ÃˆäY‘9B`„ºƒAÖ¥äÿ2Š·åŽnTˆüÙØD‚€ ŒK¸ÊË%.]X™ œ$¸j\ÙЙÎõ !Qq\Ç t²òï^9‚p$Î)aûòªV]ÊÞ¤ñ—ª—Ÿ¨x HtÊ CӤɞ«NºµªtÉCß‚¾ßp ÊwMÍ ž—j×]ƒ@Ý ÝÓõ­Þéä ê*©¸_û<(gäŠN|ïÿ³{¾“µJ™®Ü…]gþϼÔ\±vbxg$–¯ý‚ÿnìWî– ‡Ž,TÇí=®Î«´û9d{¶j¥’ˆq¬6-¾øË{‰en]tº£(+ã`Ëç+5ÆG&ܾ÷iD+ë~ÁS žÌhsIiO’úvú3»|6ŽcF€DpÄ<‰fÛàA{Î%žƒk§Í‚q¾òNP` \^—Sd~ÀGzòF¯¨î}×ÐKéÄÄ‹bùwëŽÂÇ£PÎ*?1@ñ¿|4¥”Vüçe`–ñ¼ùxaÊI”{x"ëvPgup¨g§‡šqü¬Ȕ­¸éýž«Ëi°ÛœÁD…¾£[#DÃZŒ_²ÄåVÄ…éœ2R=ÅÌ0Ý aŽÆÉ1$…–%9ed çw‚Øá¡Y™®ÓÙ­¿TƒÄÚ[fC$/Žë£g1‘̆_ëÿe£û¢_‹ 'Gô5Ãv£(K‚¾AÉÈCa0©àBhT^_^À3´t?åÞÀ²tÙ/ñ‡þ™kwËõÄ‚‚.Ñ—CïåÿFì!*ÉW==X7Õv W߃b¾pRy?¥R‰’©ÅÔS=2ä2·'«ë$M[âßE®\<“Ù3ÔtÖ.?|D†ËŠZ´pþµ³L_¤Ã?ã)ƒ$‰(‡€µMѬ`pã¢þeCÓïR\ìVV7ÒÙ&došý»ÝÒ¡±ið„ßÀî²$üðßr|¥DnV }o=¿í=¢]\ ~ÀdQ±.¤kI 8b\þÅú/$™åýÄõ¥«ÄÚ:(Y"µùOÄšõˆ£¥äœú† dã­¡Ú®Ç&U1¶ô³ÈYgKb­‚< Ä{ áRš&XϽÏ5¨ªýo6VlÔëvÉ$²^¾‚˜Zœ9¿KÅö£'Á½†ÃâGVM§âÃ4ºA¶Ú'¥õÔI,‹ƒêÔGû`Ô=·àÜxZd/çU>ûYf –ÂgwŒˆÑòü(:aã•¶­w;plOú®_Õ•ÞÏïk¶çºá£F\ûb¢l%òzý.8¤·è™L%µô¼’ýð)¥}Ä“yýÑÍ›À$| ^ü'wß8 m «×·´|qsƒæÿ ?wˆ×~+ÀÒUC2~ùVëÕÎ4þ Ù[@,•¹»ÿxë3ûàKsaNyaæÊõ,iPozïÛ3‘ ž é©éŽÀÔò ÏÔu{œ€D>ĘþAø¶¬)‘íšoø”^* 8é…s˜2 (QNëpëCû0S„?Hò¡§’]+býíRÁŠ•ö'gZd© xV·ÖÀô§8î«}CÙ•ñz¹´íR–~}ѕԨ$¬q•ó¶ % ×±>S£òç;Ú²4ËöqžP²ðû°ÀSÛ­ÍãŽ|•ío¾¹¶uÜÇô¢›àõsCÞÝfbõù‚f}£ S+iО`‡ð]‹ƒdC_·Ìþ¦‰4Á,jg í6›•ÛêÝo{khÓVLÓk±½d`!”iªrû2ÈgÕï¹mêÒ¯UðÜîxÏèx=•½Îên#¯oð ˜S™w‹y&œíOkheY z`ª1aí—ì+Q˜& 'Û:™áêJG-ƒ,G±™’-c…y­‹MF<7ýÖJ0o¶žyþ”Ó-´%Gj´>F^U`ÁµŒç#Ê|àÞ™úûɃ£ì ]D…¹$j§Ké4¶@íî‡Ý ªLΑƒ0¨=œ#² ó ­Ço¾²œWQ¥GF¤m°·ð<8jðP¥(ÎÑ}Qâ~¶ºÝO ’ÄN$ˆ N’g@1ˆŠKv“÷½¸ÒàËy½½1Çd0Y¸= Rùµ>ǯ òmàÁ¾9oBæŽâ;Qa¡&÷CëŸa⽘u™~+é§îµÌæ.˜£¬Ç,B  ,H°Ú×0“tÓ±|.¤ÅëedáH=ݸÔ¶ªd ³™‡¼›5.œ·¼•üãMݽ^H‹C\bàóÝW…±{mAµHálTI{¬$g„ð¼;ë%z j!ÝèPзŸ‰OÓÇÔÝ«(€ëh#ªC±Ây°%%êÑ{¸z)²¿?ìÁ±}P>¨ø‘7ik)[ã´nqëúž1ž‘Ä„ 1LSö$Ì5þIˆÄ³éqŒ>÷É ÞPeQ½0á=¹þØD FBÅ“?ey,<©8s¯éÕw§û"æUÃ`Òuů¸HÐuóZ0æYzâk­pY¸ûL²ÌHŽ”¢®îÚL´â‹ âúrÝ©y˜dv¹íy1.1“ Š%*Ä/@æî2 _²§Àت¹øœÂËæ%Ò»——Þ-U?ýÝ/—÷S’º¥ì«Ä°nºO†_Fê}?1èšm@Š{µ4Û½[°<µ±NbÜR Òýž¼,äÛ‡<&I\%FЇ’Dís Qr6Ø× ð&½OYÑ™¶k³à™Ôñv§ùEuÞŸöJâ÷å•ò“ÆæyÓ|gi¬iÖâc³ñÒkIñSëð~)×Ïé„Fœ/?©ãøÌ Æ”Ðô×Ùþß` ŽVíú5`îîšæœ`ó (* Á®©[¶+~äêßîæs7eQµ![Ö!éÿ,êsžUwÇl(Q)!Ûá’¹âwóø.Ù[>>®Åt#<ƒ8? ë‡ãEºœÀS·_Î~] ÌwYâØfMÊg gD>ÿùYœ¢ÍüÙ²GZ%ø 3"-ã¸×óT3H°Æzï4šÃµiI ËÍèœH5Öã£o*dd¬ýô¦|nþ9Q›ñ×èÞï¡4…YËm“óº%Û ¨oZ€‰ºÁŠ>ÂM$ë…Ó»sÍš•qñá{ðóLœ¬üçâ®f©¤i6Qg]yò fþ>“p\3Mô‚µ ̉؄¿òÑó¢†W‚rÓ7ÙŽôE%}ÊâU+ظÎAω1”á± .Ð ÊU÷p®#Ñ]ø¨«%_¯h>ï1ý’­v½ÎÄbAÛ\ÎÉñjûÊç$ËÌJÇÒÙv¾íV£¥8Á‘”)Ú=$–ˆ®¢`y˜ELY­ñÍŽ@gÅÓׯäÊãr’ÚóÕ̺­-G†Nh{UÔzZ߃”Óq:äø¹\¢¤QîCYzlsí)†Ì;%3aø÷!øDšb.IÙ Ö>zι ®ˆö H°µ¬ã¥Ú¢Jgʾqçö@¢|ÐÀr¬1 DÑ-«‰ŠÁ BNö¶6ëaˆ¯uÚšÊn¦ïº‚žÜâ-–3¢ûÊ~Ü ÙˆsgÇaõVå™-ZUæ(0À|ºÁ ÌÐojíüÖÀ[nCB|Ýi]§á}~÷#p¼‚? Ñ>Ó„YÈ+¶ júpàd—ÍÉHVAFÎõ’‹…Ñ’ù: %9± |MÅÙíÞH”½}Úøèg_'ñŸY¦Aém¨åÈHÃBÍ(Ë;Jk¥ÂÊŽG™ÍGó¢ 2·)–Ÿ/JRÙ3æë«¥¼±ä/¤†ŒXK¿‚ÏP™!#²)`È€Ïxß*Obþ{DËâ¢Dˆ‹üp›çbQAå#[¬þ3¢ 6ÊÂpyK=<…‡¬Žnm [÷5bÏ$±®'Ñ_Vq83lÑDˆœzðáê¾ÃìÔK=üAÅ}¥i®³¨Hd"ú·«Õfúo1µ ä¨cQÿÚÍÿðìCõ´öÏ(®t, §ž@ˆ‹d¸ \-kÂT½ÅúÂ]«þûÏžº¦â ½Ro´ó½_wV›ñ.¥ÌKhÄÊff"‚³Ú´Y}ú–X—¶pT«a·_Y8øŰ2XçïMžØ_:v1˜Òˆ’ç^‚k…™Õ›ûÙ’Å4lqaQÀ2£–'ëÝ•NêðH™&H,®ˆ»5ªlJméðÔ–œäü«õ1Ô—cbIQ BLȼbJ”û’Ô3?"ÄÛĤAVÔÞƒ=Ó¨Y×Tv QP$‚Òòןõìæ'vGT W!qúl¸‰bI|”9‹eª"¾é æ“ù*µºy¹gæ0P¼Ö£ùŠ_^åð§ž•ÕWÇØÐ^T×Qöå¼9Å]ó×§ño,köPJ’èó1ô\MùÎYö(´‘٤Ȫc9B  zÂͶ–ò ޼¡°åÂ2°ð× ¬¢aXM÷è$…v¯ÿÀ¨ÑrÚ E.O·’³ÍPé ½ƒØ × ¡UØ-g‰·8QøZÞ³±¹!a­Ñppq’`:¢í‰èl0<Ï`È6Qw2ùè/xc™GœçÏÒÔ¼‘Qê?MEXn¼œ¿yH½¥Øº{ê)³ø³y”A\Ó¾#oIšþ·ÉžWÈ(¬þ}ùŸÍw$1¿ä¤ŽD¥ƒ@9ΰ-–lÄÆ`Í‚j*¿æ¥8ÉÀu&-KëMT¤OÖ½ lþ|sš;ÆÚåU¯Ž÷¾ÈÜÄ3ÅÝLs°¿Ø`³ç]D$ `gò.?mœ–´yr¥B;âÃÉN‰ûñ ë2 6ƒÙuuŸè‹ßõ2î´bÅí¹Ž/¯‹»”ls  q¤˜yƒîtðãBœy¦¼HIè}Z‘¼ETIbÇ¿áצ›]Ò­““A&ÜF£ãŒ¨ŠÊ þL5C¾Ÿ?ƒŒÆe²Ò8ö,š<˜ âU:JÇFJÊÄ;Ú^>;óèM¨éØå™•ôŸ }Œ…ç'ÇÉ·ú(lšÚ¿v"¡nüWÛq¤UÒu14KÖQ½à²E%0ÒãðªÛÁ„LÌÜ /IKÏ–ËÜbšŽªÂ’À$÷:EJî܆Æ\‰ŽþÂ5]Vvz½h¶w|-w ï½›ÄÎ'Æ5Ö;ÔVÐ)‹_5@– <#,8ÄTDPXù8{Zw-QvE'¼J¦ÓSQ´Va˜Û(«mÔg°¥¶½9æ´E2 $Klc<áÅ)ðºÀÛXäÎg–h­‹ôaúÞ±‹=V&©‹^UIÿñY‹6¿¢ºÌ¬Iž*ä éÆ8Püý¦Š«•˜ñé"5NØÎf9ˆÿ(cïuÊ8 ²ýÏ-”>–4¿ñ×wŠU‰NQï:“þE¾éԠɨ¿vA\;ø.ø“ =™Ô3k¨›]ÁÈé/PÙžŸÜß}Jëòø±e«5Àœm*Å|XÉÜš`½]ƒ´Ò´-›¬¾ªåm ƒ‰+#gÞ¨ÚI—´>³û!sÓs¬Þ?¯Åkl8eñÆbª\˜í¬Jõ,FP¥„  [2·\ÕiDG \ôVÂ!Å\ª+ jn_رáž|'â4æhjÛ¥šK>äƒþÊŵâå«:ù´o[™fiéhÓÈ0ÄÏáaÊO£ÙóÔ²vĄو¬pÛ‹j°ÊðV }þ²Ü¼ìˆgTt°ïßfiõ3!¶aÏd±¸¼‡UB£¤ ?nSª&ÿ L1'ˆgC··ƒOvÍW ›ÆÁzrG—›îfÛè7¿v„!~Kœš@:ý¥³v Z´…+8jC<:éèÊ Š+Žå7ækC^ /j/ÅøÓR7Ǥ$®l ¶pî˜VÔ{6E¼­ûªQò;¹ Á¡¾ôÏzÜ‘ïÚ…‘@r$Œ¤Ú:˜ä’ÝòR•OZ²…V|êS̽0¥öâ˜\4 iÓ# 7¥TTÖ™wÞákP<½ØLìS5¢Všq¸©ú©¼}[)0¹à¼÷êç°7î4SfSïÙ/äa”³3^ú_{ÕxAA¦•ÔTœøó•T´·.G š¬‹Wˆ|§Ô62‰­›(ÞáÂȤ<ôdvîk e‰lõÕåçÊ=„"çä K²iüÊêšÄ>ª•ÒK³+Sc 6øÖ³Ùûžý³Ôÿ’ÀV ½~_Ù¶`E¡SnïrðÈÐ qmi÷Îþ0H,FÐÊ7ª²¥Y_¹t«cþN]ËGAœ*\Ð'G]UBÞbITý§mc_ÿû½20ùÖ@;Ó‚ M|ùθêω®±i'µò­r¬á³§g!B¼Ô~ßE©œ{^»ƒ†X>íL7n ÷ïXþQX•Úï}T^©oH”ÐghlíÝÇo¥"-(j MM‹l$Mìì}é±¼:Û5t»pØˆÈ 1›`žLöF¿Û o! †ì{GŒ È; øo»øþš˜Ý ‘VGÞŠ«^•´hV‰ Éë’‹Ïïù­HUye§iž°ŒUëWÖäÑyEQšöŸIæ|>)‡Moé3(leÃ^ûس!MQš´Š™9=R[ i«Ð-WtŠÔÛ#×Ù »¼>Yád^óR6N¶nÇJH˜¾ãžÉ9d1zýRC|øRæ 67À :8¬#]á>üÀÿ“ {«$rاˆQæfkÒG÷G8t¿&ÌIú¬Îæ´9©Ü甈Maˆæ 3ãÙY¾Æ C¥6R¾]yáÔžw«‡i-u8¾0ê5oŸ"fo?¥"7 "SÀ¸"§>SÌöä÷­f€Z¡™|½b¹ž”èCw¿Æšpáy/›n”´ÝN£<Š%mRR |ËD øÕõ:DW~|ê4ãu3««Að-l|'"Fô±·¥«õé;,1¨¢""ö–9–ñÑ6ýu'³J aŽ€­ÉµüZ),LŸÐ„®‘hàQAI r‚nÒQ§|uD†7›*/ý«r»üä÷v×ÍÝ{Jé¯T/Ë·¤‹…±áAf®ŒÉõßš6¼:3ùÃ]©ÛйYŸ—¤(»eÛb‹Êû¥¡%åøÔ–¡>l¿¡ãã±Xúù—{âã­“¾ó†°À‹™,{±¥nx˜p­qXúèçØì/UÌIòLu¹'$¯ ÓåHõ—!º:Vd/ÆHÊ‚UCNûùËéF¥îNÚU4³yÂ\.Ë­\k¸XmêÛÔ™Žb7”Â0Ωsž›§*ÏÇÒ–—m«5_m^?ûù(g\L±VÅ(-6‹nØÉ? ðc'ºˆÓ¼ã Ïg\uXC?o¨Ç8Êäæ9=ÀŸ’i!6 Œh\»NÍ!P\ßÕs¶Xd(;1ÍÜq6"žGÕ<˜ ã —ð¾Ô”ÍÒšRZ²ÀÞRüÌŒ<ʪƒÓ„DnÿúôÎ)æx×d>ÊŠkzƒàÉyié/¡½&Ê ( µΟÏ{³æ}¨V‘ë,»s±¶yuf³? '‚±$š®u…7ô¢#é=ÿ"”pþh‚®²¶ch&ÈT}éöjr¥þ;îGïþÇøaÑ ½4–´öy·fÇ¿ª ?Z¯ÞÑúÁÝíÔ®w{ŠüHŸº“ÉQ½ÎIß/ó¸×2×ËöòdؽÙáJI°ÉÇM™îÒYù)1vzƒ»”bWµ±Æy¥ý*_jµr¼4쯓sáš`ŽB%=zòù€œpjˆêöMý*ìrliÀ\[ßgõë`¦ªÏ+[é¸Ã»;á<Á÷Ué×wMæÑáÚÔŠ3ÁqziBICTšŒëÈx¥Æ=¯Íæšn³p°^:Î`´:§éZ³ ­p ³ «õåû8dj¼¢ÆŠëuð+*ÝáPȃÙÇ;…c›ù]Á5Ujƒ*T¢’>K‘¼ÉÝî% E®ˆX0m䎢@An>`ónEê\ÛóЬ`š-XQ½í™‡ê„N”|t?àþ½§D¿âxó„@ŸË· ¼¸¡]ZØMûÌî@VG;RÜõ·!å)úÚLå¤|B…0 µ‡`›©í¸„=sóç» ¹µl\XI;xõçðËÛbØõg€‚ªÀç,†[¢yC;CÅȤ÷›L”pªÌ†)íôíТ3¦ É°EžG:(DHûÛ˜ ÒAs‡ 9 Ïóì]œ¼<ðõ²ºб§­¿”²ûCf¶ß’ü‹(s„Lܪ£ç¨l¿zúf»}~n–wä8«¿énúÉœC€¿N廽?±¸Æ$4èvÑпOß$}¡;àÍ>ìI—,bDòÌazhäÌdí…¨À_}¸'‚±tœh‚ !»%Qm²AÀA½,sÍ~:}ƒÎþ ÐRlçí­'¬7$€Gþ%pº#Ëñ/Ù<»z@Çp¦<§8wjÏyðJÝ8“[Ø{±nÉ’íw"»_œ%èÐApÐ'Íš<èP¯k?°ž“sÛ¤Tá‚~ÏÃd»Í>"ú¥àniY* ¼/íÖd“`(Á;ZÝê*¸((°¥täû¤‚1·Í›§ñ9:º;i¤8SP6Ñ'cíú(ãÚÎ’;¯Nö>`ã}0R>–M«³€ŽešŽéˆI-¡¥ëÆ’y×9͇.‘ìP÷H%v.ƒ»ãÓ‡ñ¬xÚ+ÐV@¶ôŽt làF\,êEfVeÏ¢ÐX™=>¼)>µaŽ«Ž¿4nš2<Ög0ª.pe§Q/oî½ÕÓ)¥âCüx6‹ûš!2Õ?TÝIPÄ©MçîÌTí!VZ—}Äîæ*ßé“Oš½´"MˆÆ¤3 7'hUÖËç‹Ãp!e„–º%BGjÅv é飂ïÏ™INvÙ6í}™5‘CPFh߯+Yl¤e¤ “³Wß+ÏÝÖ”\= âDµ§1 ´€ »>ìö«%yTÌ@q7ƒkw”sÛëF<<%µ ³háµå\K9¤S­B+ãVº;w©–l!Wy|¶´.Ñ ñOÍ‹TrФQ=‘Ã?ž¿{ î¾êT¿ÊÇ#Áh¸+™bß‘´Ã3í9ü¦ÈQ½Pä.\9ÝÁ“ m*ÿ˜©’~’"±àHîöeÝ;5Kë M€ñK±ñ6Œ€åf.ÔÕßír†¬5×}¿í ììQ:ƒ¹sÒÛ|®(µtõÈùÍ‹ãØ« ÿÊÕ@eµuJQ³ˆ!¶ dωpöv6‚ÃUCó§3øgÞÇ¥/´&⥉:·X½{œå#^¢:àÇ,·5üÍöÿJ|ºDGž:;—=Á°˜°ùw7*g l¸"· hÁ8Ç?é•®‡s'ò|uX¢lÂïbI¢&¦Ú_ ¥#ÈJ€Cö9·ûÓðš½îwS}ì|Ad/\{¿ôùWJƒt‡JRN¼4f¶¯tº¯•òo7.e篜Âó!‘¨çK·£E´·àb'[ʱa"l È ôj¯½Ü0Süaµ`DÛVJÅG˹(`äTº(•Á÷¬05l0·íAY‚ŸçÊQ*i#"¹pe5 ÎðÓ‚‹˜ ™­z +>Ë¿þøªNßÑ7C|Ïõ3lŸ@º™Lί®:W*íÍÂiÀÖGAÂïcµp–*“ÉWÚØœ­O™ƒ"w!2 \j?aÕþDZ[WWy@hq…íÒ¨X1¯Öñ 6eÇ2ðÏÑÈ%mù¿—*K:éS7ðNŒÑpéedë„Aûãs¬Žeýl8íÌ‹(Í9Èa÷õõÚmLS•nhê¼ýñãL˜y$qô"ÓyµÆ!jAu(4Ü/‡œ[vºÕ­Ën,šùÄ9^à9ßÏu%iŽ©kã|ÝȾ@½;¦{÷Iè_n°âLï„vÚiAsçâ!x®3Ð…åðqC”>˜B!¨‚[z¸óey{àë-ZÍT™œPì,a§qüÌ ƒq~Q¼à)19$.tûNσâ$•§išF䘈qÞrÓ$MKlÑæ¹JÏQÒ{C¼=Ìñh€í>°¹SóŽæÞO3á• Âé JÐã¼A)ÈïÝtP1,šy„Ò?jæ23`êPÚýÎAZÆxTâ˜Ïð“¼_$w;€C̆Ëu^ÍÇI`GfÌoó”>l‹T;”%—óOº{!!a6Q©֖Λ}e¡~›Ô ((M¢U²ÞÛÚ µ‚·Øç æWCåVŒ¹Lä"Z|/™™vÕ¨ê<·~;>©ž+e„µÜ(b*5pZy¼pÙµ·oJA³BÑ`"®]¾¶õf¢²°mq3´NÄR÷:’&½¹¢ºÀ®\D d-þÎÛ%ÑL¢ö¥kð¦V/t<+Øm¡Ãyß:Ty-#Åšv5Û©qÏ {ð ÊÙªJºM2£È¶Á¥žò-Dœ›Õùê”)ieXJù{Z®ø–O\ë=–sVÎ=}3•LÞÜ*^ÕÓ¿ïe‚auMÛZ‹ú Á]Ø}»ÏÝOSå ˜³UÒ©:5$#ÿ«Oú{½´«ßFwáM8·}•“#u?Ôç”#é«$¤•frwâæ&3À ÎŒ<¾‘0“—´,WÕk=¸zñæ÷¼¯åªE@:nåL÷ã²²h¿Èö¿×Mª(U)‘©kNrŒ_w¡8"ƒ4ҰÝî8ˆs18%˜qUîÚ‹¹³[þL4Ú3Á¯q¦È×õF€ùæ„#v¦© f/’*âeä±>G=v ¥$û*|ªÅûžñ-}“=œR\šAs~ÿ6 hïIò0 „¬óŒù¥.·z£l%ófS­‚‰èz )Ð8MLòìíV˜ YpÿÝ'×m"©5ð“2þ„~øVO ¡î ‰uIè|§âžc8àÊ4ÁôW¶õH5-³¤´E1eèê^^œR{Ç@_ø÷[Ç¡÷øUtY‘<%:t¡R?ËçÂîP¤T§kRîí-@ñ¾·§ bxj®ú†LÅVÉ\„1W Ý¼¯ù¬ø©`„K^ÀÓ2Þ½¯`RDy`Õ~è5ê;h¼Ÿ¸Ÿœ>Õv¹£æoå;h0-(ß´Äñ”u\ÁT{ Üp– ŸïOiôqÂÅÄm}]³áˆw%¤ó¦"t-†›Z>NT”¦:˜ß¦Á]ºJ bâšîù¦¯~:]‰cS7õßj{2还àÍ4PÑBþËEÈGSk·yÓ˜^—üv±BÕi­–r‡Vð[²‡…\‰"Uÿ:ý¶^˜˜úwG1}/oáŹ/ ö„À3>hAÇ;Åél)à°å‚ÜÁÓQØJºŽG9uÖ„6tðCKûc¢¦ÂÐ…ƒÁšD|ñÖ«‹Ú‰:èJë +þŒ+>àÆxS¸9ìhbœïÁ½Jý0ùrè'!cÜ'jÈ|N€‰óÇðl’ʾuVC_™¯ÏÙyù½éŽ|9(ù/TÜy˜­€°,s{ê±ù¹ËžÕÅñ:áé,u0ÑÿÑ&KÊøhë·ŒûK?’\–+N£æ‰ Òp¹Ô°Ë)Q&ª{|UÁHéE‰hB®òSÖûcIdÙÐ?ßÀðèÔGlÿÀ‚¼4ÛåT*ÙuÊ×hÕ°¨`ãóðhoÙL'=þårÙRñ ÷`  494&Zç^~æÝj¨uH˜&ÃP-ºàh(ÒáaÅœYK^oµßp!Þ©Ó1¸Sñ{ÖÖÿ#-ã<‹¬J( Þýl¦¢R8%GŽWŸÖ_9U㘩Σµ™«Èë–Ùä‹§•Œ@ÂzþeßT{›’ 5o’´=Ü»¢¸SXª?O‘ 2÷‚p:…«lƒôjö`°³í,u‡–¤Î*$+éó3ÊÄÐ×.v¤ÄÒöÕ–ÜË×p!>'´¼XbCÌØ§ÏfvÎñóŽÛm*nµÒa¡êgÅe¿Ú+ÉšçVj­@_ŠI±8_®@åƒ:ør°ÛÿuúzÏe[…áñß—›rL …êfÍŸÅÆgšm ÖíöM¼kb̧MD¹i÷Æ*¨ZëDpàbï…´îÏå%(¢[ð’ä°ø ¨»iê_ŠþŸ‹Þß§Ùg쮲úå„éý ¶;¢Þ°´^hŠ]¥“éºÁ+a[÷€º¤uÙ¦‚ÇߊI<ã.ÇêóóC©LÑAÕ‘ý Õ¤þvûê £q~æe«ŠK bç0 —í•æhÆ`;ùæiQQæWî3Ñz¾z`ù™àÊ,—–hzP™U]ãµáEí)~GqHTJò4ÃÙkp5tß»4*æõ®ûºËüíñYëc%ŠVºhl™î§)'Wí)ŠÜa+0•šT¯|$‚äƒPþ³Þº<'Ç‹ª2ÝxÄz.,Þo¶H )C˜Ý/1ìa*èY÷ ûŸa§º6÷c’µdÇ2ý!?ð~¨‚iÒ ´Äü¯V&`ŠÄðÊ!’ðÞoÖٕ׉ƒ1ô69£ ¬`}’{–&l‘˜0xýObppªá뿟÷Ö”ó¨ý¶æŽÿUr´I0Öü,'€ ßÚ¡©v’Ü>r¡ˆŒô?±OÿiüZî@%°€%/þ9Ce_}e~Ôü­©—ïå}”&ñù0/m:Ú žñ5‹éøJ,S–¸ßÞXœhÓB {.)óq–Yùˆ¦¬g8útdñ¿V³öß¿G¹ÛÅ™C‹¤hÈꨴ~kº cl­êÛÃE Ý® 9W_å!„_„áyÄgE> û;…*çÿñ,TìÞi¯ OdöÈF„Å™d‘‹ýY#œ¹™Ø"`9É$”µŽgs`ˆé+¢x9ñúuŸ[4×- ®É³ ™˜îI­°@$µ(RMþ}§ÁùV òöë<ÈhözE2Ÿ¿ù›Û¸fËFÞÖ$JÔˆ0„éðÒÇ®Øï ý¹DøÖêbP€··Õ–¬Ç@ü#°$oÅl7Áèì±B,] ææoÝüD؃™~¾˜ª‡øD[7`z¡¢qVþÝôÏe/\±¥C.w·-”°TA¢¥Žœ%¾z&,öL>`MReËŠ±ÝuÎ÷tf™»ÌsBŽJ‘¨eñ·‰‘¿­—­Ãdm2‰ØW=zM;I§ÄM¢Ò€_…çøf"Ø÷~üƒ±bXN0°¶:I~[M­,e[w`VC*âßÜELh‚ÿ ‡udÙڤ麤ì8[•­‚ «Àb¢½É«ôìbÐó[ã¡ý÷ù¬®Ï¿—‚/=¦šˆá˜^ÀÈ«‹É1lPí¹Y—âÉŸChQÎ d嬮ôOJç¯ #~ðÏàò©÷=T«4:½ø“_‹­GÔõ“0s œJBÇ»NhÇ44\ÍüÖë£:Ô¤gÜvä»óÜËMþÝØ3ú3»QÕô2=9Ȫ2ß'WžÎ’éóI˜H§®lþ<Æä—%cHœî«)—œ4ž­|\ˆB6]8Í`rH£T ­¨1d/ô¤&î3÷ÎuØRõ»¾õ@µé˜ÿý3E£„·¥í¦W¡;|oýoµ£zÑÎÔ‘N4–í`AYÍ k|`‰N½E".¾ØýoR²ð°ÒªÀ±&~QiÞx1º%:ÂŽl@nÛºôL¾{;€´O¿yÊ/~SþB¤cö!òô¤;ÊütÆ~ü{WJ`¶)rÝ£Tö[Tã¿®AªRýÆ#_8Û$3?sC­Ã íÈžAi‹-ä¸Ö¨èƒ|”zö/'o\\Ä€è8íH\14ÖVȼ,-¼]yåâ.€©Ã§wÇýLP Ci¾å#®ÿj£èåÑZù‡ºH áƒ(OÒZ~œñ¸øTˆK±}ì³ûu…¶}¿]X˜PTb"b2Y¥2"#•Á•ÌóÎÜÄñÌ"Ãë]ˆ=­ 8=wA¶BéJ§ê@‡sÊ„ñ>Ñ+÷ÞîùÁM/>öK¡/ ©ûÌ (Ñj¹Ñ)óPzkÕºƒAÍþ:öùòî—…W_\Fj”Ì‹ñn0ž‰¶r‡œ°¶ÏŒ5ÿ'ßÍÈÓqú3*K¥Nº:£ûÝöþû—‡h-œ±grÂ-½YžI¡v1èÜÚá¿'UÙAkgGÀ6ç!í¸í\r+Þ +“ÎÑù!1ކ  Å~T.ÖÌÓ=ñûµÂqî·¡ÂòV³*ÒøUžQFŒÂnÞbŠú‘±¢%ˆ±´€X²‰`ÉLƒ$5ôâkÙßY¹%,¦+œü˜Ôv¿ãó(½'Iß_ä§Ü"¨~¢bPg€JaÒUÁÚî IïH­­àû+äTÐû°ð%»ˆ?oôÝ3 ŒÀa°;dÄ¿jÊCæ'¬©°‚{®I^óòø0Í÷³>˜ž:¯ãííA2âavÈøÝ©‚¼,ûáŽÒ7I¤½{hmŽZ|š»ŠTÊ •‚J“­ ³™L f¢ÚûÁЉœ!º3…Ãg¸Ï1ûb/e†$y²ùèÍÝóÉ]úg˜_rí–·”££¤†ÎùWDð"ÍnrýtÓ̾ ~æ¥S|R.|G/ºäªüsfðÉÈÂë2\£NâŠk€ÑûÃ+U˜Øœ$\cC•5Ó› ç(• ß÷×BeÞ­0\Æá®> ío…NEùê"4~­3Û$‰wå9¼’÷s@©h8Næ”ïvr×lýÉ÷CÀ©NœKu .û¹%•N[*[¦3[w_ÌÌxhò‚7shXäÍýf± 5ÙotVzGÀD¬ãG®¾½~Ûbp²ýc&+ÐÝjbc}½¶ ×­‹@P1pÊŸ®öXÂ}v"4åßc_I—ôÈYêÅt¿Ê/ÑÔÐÞª¿Oå„W;í•QÀ¸êÆ4§í°¾—XnŸ I6´Rûõúy]OyV~“(¢RÀi‚pQhÍì9goXÂųŸ ¼pw`6ë‡z#ÿJíÌ5ù‘Šîð_|LQçÕaJ0g‰¤õ<'e@ÙåÐùΓßïM`#oiÆ 7@Û¢ 0GPnN B¨œ'arYlrØ(:‡™ì° Ió>%[ʉ$wïUðU/.¹LíY%ÊnÓ–x­áu¶Í±¶öFNø^v˃ë¹s¬žþ÷œF7k p挊0ûêÿ„³1RÕh{¬"u—Ç/ò'‡§k\*ÄÝ~6wrøº€`ûíÁñ(ª¥Q‘Éo´væ¹ÓðÏ:ÞÛßÃ)° Œ³5‚Þ`ÔŽN$% ‹^/ì;–æF¡“—Ûpî%~AŠfž SwÑݪ‚Ï,.…ö´j¢ÜÁíÕ a|´Ûœ—dM[é‰3ÕÃ!œ]?úѺíÞÒ£VŸß”Që‚”?ÜÝÙ~þŸæÕ`é*Ö›·Òn çRòvô¶<ˆNË„A¬Ý242Ú`È}QÓ¿ëþÄòÛŽ#ЉÈRVñ93«Nhíc¦oÞÐð•©=n\È Ù”ÍÜýz³Oº^4h–ý"%8@ Þ°~ƒí8™“°sŸ>þ¥ \Ї «¾çËqᶯr‘ñ5CU„!e}ÙŠí¤Ãα-!4ƹ{ŠG•gX>?Á2™äRpް1àå!ç¼¶ü_æ}¸¾ñ©mâê‘ ¹êÖÍ« ?^s‘D/+Ûœ:ñ÷N4÷L¯wT°Þ+«–¤Su j6Ss̪=Еw‰òPl2ìR~$¼HG-ÍdîZ ¼p±~8­›mG±¨bý0ó³jãËÄâ_†qª…r­ùRD$§bªñ¾ñ¢à51ýJGÕÞ&yV8-‚Œ)N°emÙõ3FÓ¦¿?fžÊ·J*jf»úgùËÿßÉÏNŠHö²´Û1ÀÌ5xµ£ÆJbgWÊKOeøQoå…ánJ2á•mÎ2½oŒô‘¡5uüѽ«ýsa@qeì±Å›© `Jü0rqï5 9Í2&w‹:$áØ9Q=ì;ì*I½y¤B#}7üù¶¯·ƒâ5"Bd‹,°60 ØÓ\-s]-ƒ–¥¼Z¬”wytÿ‘°†]¢ïCä'ã×uÕ°ë:{=îHÌŠ‚ô0 ÌÆGRüL ¹|ÕT¬¯o:ƒ=E£¯ËÁàŠîOÀäwË™­Ó¿c+”ü¹Cã ãߺaí8…Ûw}¯ìíCÊC]u}—¯NØ´±{jÒWˆùH˜Ž7è/9;RÌÒ¨”¨W'Eíán t’`ôlb'2‰«J{ŸA±(zC³èÊRÝ0$åûâ ßc†­Ö}‹Ñ¡Í#:ü=§];kt1ï:ød¦Ry™&Qvõ`Ã,§Áá-ƒ-üñüÅÙ„W_1tâoê2*mRä9ðy™ÊÍ`M&TWEÄ1ìG »Á˜£é€p¸œãs¬Au‰9¤ÿH'NñR^úƒÓþϱZ¨÷‹ûþ°ÆR49™íM”ÒíøkêN d<^¡’µŠþE6¶ÍšœÇ0¥ÇræH·Œ”)î`ú’ìÃ<¤Â_[`ÀÛð¬c}ÐwF鋨@I¡+Ê>Ìp/ZEÍ’ê_Íñ¬cdq=U¤‘ÖÄ qвRqMTÈ0­t\¿¦xºÈ-7­5k]]Êm>Ã7ÉPº‹l çC2ëGãðD ²Î„äÁ$!¡$ÓÅÚÎúdÊ/±œ ðßžoª_7Ó‹Ó5}‰Æ ‡x·„f›ºŒ•ª*}ÙÀ•~‘Z¹P„{{(PäØg"Ú…§Õ˜ET)o®s¦`ôÑs7Œ«š*Ð%UÎÖ­Rð½ÒDÏn‰ €ûôÁC9åáCí4kö&û+Âh'»ðØðhSË—)¹6VJFTCÒ÷®_ør/îuø­(¤¦ñ[é Ÿl’a•€BÈwä.ö…¥wöè¯ö$´Ê §QK±¿^„dš;÷ vÃ1wS>PŒ16t¢ÅïÚ!-˜ù”ù^Tà‹Æãhƒß‘D‰ ò’¹x_ ©Nõ„ÎpÀRH´=ÖDvbÇŽT'÷B%pÁŒ×wXÍÅêz×…TK…ÖáªY÷lx1’vXü=w©*é”Pïó?|ìÅS›ãw^ªz B/u—ÆÄ¡¶âlQÒµ7;_íõ(¼âŠ¿uùóë˜.nçT>…¨ç¯|(üÀÎ0jBmïZä—îŠLwÝ_t’–€­LÞí3]˺eL#Wfu%s!»K„:œcVSø’øœoùQ¨òõ|µó!àº55šì;å5mŒFçͱ5ÇçЇ"õol‚C“EkѤ}Ò'Ð ßãY_bj™Ê¡‡fU)ÚÍ ¼‘vÞhBçUê<ðT*àó× ƒF2ÙîªU››gn% žƒ“:‘·ºäz?׋ÚcÜuF;<êÄ™°l&ZBz²9£šD$¬¢ƒ^«oÎ ‹™¼­ÖÉ2NQV@×báB·™2¬3·qé‚x`Ù¬»ƒð.ÃZ¯kÚ$©Ìª3¨E³°xúIõ(Ú'ÎÑké$¾Vé§­u]›d®pË­hÛ ÿÎÈRå•å«R«ê ÷Ö¬>ð(×CH®ª ‚©Cïeb¯»ä,*ôqz‹«œÜäž Ñ„VÌ'ȬšXqIæŒ.Ôö ª÷s\¹ä‘ÁGd@ílÏ4ýÃÅ¢í¶/S+ ¹}}äàÕÃ9|ÂÞâªãÍa7K•ýN,Üì9áôÀz…,’Šútr|º <ÕáÑ‹6‹ÁAr÷ÚôMI±¢š½&‡a)9) A6EɱsYÃﯟ?®I[Àï–m„µUŒy•\=y` ’­VÒ†IAN|z7ñ Ý"Œõž ;ÿÞr1ËÖªªÍÿU˜d¥4¤£ÓöÎTT2¥˜ðÊ@"Ã҄R‘íƒQ?o.hÄÏ£|¯ßrhuÔs/ß@á:6PÌ09³Åj™n¶ QkÝè-°ºvãN®Uš^ZË­Â>¬–‘-ŽÞêjú°LçÏÀC˜"v¬zjµ½‚µK‚¥7÷b‹‹?õ€)X>÷÷ß(ÛÕài-ïT &Ê.žf Ë‘¹IJi%'ÌÁŠƒ66½õ‹¢ˆ5÷ ÇAjEï7Êó°×á…(Σ-¶º­ÚkË <‰ùsÛ‹ÀvDãgWNWŸN4á=j;ˤ˜ºg‹ÉSE þHÍJœc˶<»¥÷ZŸüV«0ˆk„(`òJ%8‡/W ‰W4òJûµ›³˜H¨(þÞMQUû]v$Ã[ú“Æ‹ÞÆ'ÔÁ4ªõwODÊü}ô¨ƒ‚6ªèqôÀ"ºÚŠâ°¡°ÑÙ*ÔÕÁK ù…¨Õ<5_>“–ß@C.;<ìϬktétÜ*Ú\™M8d ¬Šg^Îô½ˆ²á”Yl¨}‘°ZÒ3’·C²9ZÒr¸[ABýõ A…¤Á!ÖƒÆV¾wL“¹@Êî´”øÆ«\ý _ËS⪠bÌåľ9’RMvÚ ÒçiãVx>âþÌ' —Þ¯0.vnÑœk>³pÏ©ö!Ž©#ºEuúÚ¦AΩBRWÒmz”~‰«âW¬²%Íây?UxJU¥)Y šç,@š¹…µ¥{ÉΖµ@µÆQ[ «éû²Ém‚@ÛM›¶ ÐM &ª¶VK’LD˜i‘WbAM ŠAÜ»1¨ÒáÎPü±•Œ»‚ÅJ[Þ³ü£´Î²Þ+F㊞ßò­†¬ ÈGò‚Ýlßó³IÂ:ngdݸäÜü¸·¬ŸI¦«„UPvmþHóUÚþ‘½Cq@3P™è—¨PNqë)*c‚µÓûÊ¥*møzj¡ß ´°³Stšü[` E%m~åÇ_`h‘å0<°£Œ*Cï"Z Sî$á– Tá,!|©~®Æßó XWì“åÝ %/¤;oáqܘ ªƒ%–ó/'‚À4UexЧÓËqØ$:ñA<0TüJ}¶ç›1?˜)³ƒS‰ç\uTp'>YØ º9K7jD›Ÿ RBìz$Ì7=‰X «ðræÞv:^é£VnοtR1ýð‡D¨gUz€¬DŠ„’7›U­ÌÄQ•L\v’–ÑpÖDL¸a«ÑÇHæ‹KŠ×jÆ{4Ö‚.¬ö„ÅV3ð¥§Ó…Eìc»¿ÕcVJ¿úëÈVø¡o¯=%Âå…ÁóãWxÔô ºmžw¶Vo#WJ#¢Nß蘇z¼lÛ=D~Knq3·)<4§ëßYŸ[^L¯Z¦ûqÎláˆå«Ø¡ö·ËPôEz¡°îÿïÎsÎEóKNÔ™~ žßd¼ú)ŸxW'­ö"ú­úŠ“ƒƒ€Ì%œAÖ¢—2-Ex Ç=_^Ò¯=ðä¹V Nk0® «8篂”ç`E9”¦ ±·{)p–v/¸ÚkdÑLž±›ò4O.*¶db©íÃIÄ>_h(Š/ÓºðâëÝí·×½óÏt÷PãÆ$æ3ÿõŠHX=¿×ÒC¼\‘a‘;íg5ZtÑŒþS4WPQy…ÿƒYw¦{¯5/^}pTlQ19J:7PÙ¤WMž °v‘@+ŽÒÎòcI5fŽœL{ùl&.½Â꥘lÚ—Í”. ˆ­ß‡Ÿ‡b^Ô©£ì„yüV®:m6`”h3jué€ól§M²KɈöÈл¤:öÔPá –$m¡ľ^×ê›pŒ÷¸`¦óc–¦á•Í] OƒlsÇfV@{?L*ᘜuU%1W»™‡”d»¹Í»…QµœùpX‚*ÑD žfùØúe$ùkóy|«§*ܦ8‡ÐS@Wîó!íÈæú­"U5 Í-»ˆlŸÀ©w÷´[BÎÕk‰ÍVä}ÁBYíZ–kþ¨|^YÓ P:i~œ Jv?€”i¢üicYcRÑbÔšá7ïôýƒÀ°ó(6 +†8M2ïÐÄ/Á•ã2ÂõDî%GJìê‹>ðZ(R¼#Ê>=ÿ »Åh¯­ß‹d¦»‹Yè¼1,±<Ï–™âÏ|ŒýnÍÞÉìþ?4€ä ¨…£@ ˆÐ&.Kƒcž#í°9çÑ݆² Z¼øÑ„^ô¥Í¤I´áC*Ðóþã?sefb.fð>É‹­ý×l“1NšhØKÅa ò‰©:•¼ˆ×›gÇdü#'špÏ6/Åi¥oó2@m cBÏThD,ÊÂ"ÞZUäÈ­—Îëòö~w3––f[ò—<hI%1Kxß@Ô§æí[°f0 Uø¾?Lu,*Y‹iå­Ã ð£‹,*>à›»r½ïHÝàÂ1xÌéñt5#)Á0Œ¬‘¥)NÙÑL¶€‰1xzñêÉñ§$]¤M¯Øñrõ!€p¶>¡Š&¨í înÙ} “~×Öj9F)kDä3ÃZu¬ÏwÍy¢vg)•ÄUƒ¶=(îJ¯Ã{‡¹àw:/œùº@ºé²ö—ˆ~ªhMmþöID*Æ–>Ûäã>š±™ÊírŸW¿)YÙe•Ä@o@×€Mzr”•!L’»éîšÂá2ßÉø™2m˜9(Òq KnŸ¥‚õ~i›iÄåÆß߆@ó¯%^k,šcyiúÀ›rl›À!$æ™øbO=v>*UÕÎßSB³zÞ> ȲDÃbˆ(ÌðùÎ7ÜxW¡,4³ðØ=qRhYrP³9ܬ 6€ïp¦ƒ+Bø’4‰b/ ˆîBe¦Æå¿˜ÒpØ+BƒV-ÿDÓXú‰Ö‡NÈSqÀ¢ŒdAm?ÄoSçë-„dÝ É¼QC#kýàdÈê8#¢úë²r`)ŽžÙ&ãìk×SÑ¢¶nQŸ#—¥y3›p™œ{t¾'ªOmaðíp³á)rY5}–]×&P­íY)ÍËLÉüä.«Ì¯frU)&“"î=£=ªÞ A‹BB¶{KðÚÈ$¸°Êa.&O³µc¬s½'¬v hrŸR)§çÚé®ýcÆá I±XfÛÝó³ZWY!ûez:âZ¹¨£îíIn¥Ò$‹ÌÙ‹M‘–iþŠÜÒymi-fW½NPâX!–³=7TÇc¢ZÍâ64h ËAÖ¦pD.ˆïGõ5ùШòù|~½‘ÓóÅ¥‡ùÿT_ã³™•—5Å|pRk ± [œþnïx§Ð¹b~’Ì"žókð´q¼!’Wo†TùŒb¶wLYòX©´0€bç& YI‚Iv%ïW·i]…ÝZ‘sô]øòôí®k=‡ùÍŒ"wpn¸ÜVeCªþÙ6a5À¡Û¸½øwÖèÞÝ].$#+îùKFÞöýM¡…Ÿ;¼áaÜ…Š‘*CÇX7ÒÚÿ1}ÒãS\fá¾–ÀoüñY;Ô}‹ˆ‘´ÄvNE—6›Tà „³±Ø8¬èù‰Ç­qó—ºÔ°}*¨Þ¨1xóQìûgJB QÔ±ç_«ÇTC ®ãe¯6œýßÙÅf*sTþIeÍx'PP]Šw*`Ÿ9„Õ"õMħ0×É*3ŠòJ ¼þ¿fH ñ™†‹2µ1Y ¢ïûrŠÞúTÊÊk4Ë`-pùä”:½bF5j‰MÁ¼ûNž;œŸÕMBðùÿ·äfö|§ìÛ¥ñ+aˆN"MÑk ‘Ùõ`$ÝXeÜ^Sôã;¾lÒø@ïãlóz* D#Ák¢ x¯,Ç{äò‹0Æ*éÜk»_÷2 „Þ“o–B uî¦3ù¬Àžùiì#±FS‹Ó²/3“ƃŒ±SÏ òaݶµÇ €ÁªÓj6øQu—&ƒÓpJØâ˜,ñR÷wŽ8É­ KÇï= Ñ®SNîO2­•›³\´¶¥GqsÌK>@c¡ÁJ(6¢yeÇu²I¼ÉSw´Š1n¼éJ1µhˆâ׿ÆhÁcŠZaMÇÿ e§¿µOÅÉstF>âˆîUÒvî88¿'» DOð‚Ûq¸<[U8õ¹³,…Wc’­ý™Š\xט¼\lv·àÚkžâòÌjKÜ–i þùÒ.©o*”| wµƒ­™?ÎW²ŠÝœÚ 3ÛÓ–…ÀÁ“³n\žgÞ£öcÁÛmxg `0öªä·•½gTñ<ŽÍZp!Ô 2ÇôÓHS´ê¹ìÜãkðÇ8óD2­G1sÈ(›!nÿ?«¡- õš;àÜãñ$kt¿/À–WhrŠÝn·…Œ,oÏT:ÙPßYX,´ÖSˆ ™Žl†ïñˆ ”vRúVãTu""寴Ä_ÒYÀh  WÜS\,™N蔯 õ)ï6+ RçdLcOzÀ‘ñ>«‡ò¯”È*D­‚º^ÐÙ–8?vIŠÇÓ² |õetúmN³„Üi‚u.ºïD~¶ŽEw0ú:)+JR"G~æEk'¤onÃ5{ ÂÄPé*8`Ú‚»öÚ# Rú‚?¤„†‡É:®˜‰p¹ž—Ñ/^=ª*„¡:Å£2©`"äy‡3$)ÌžÊ"A!ŸÄP»½YŠ>þ†ÛŒÂ¿a¼Õ¤þ°DVƒ"À‡¹Ï¡w/ø¾ZÖ3óg®ØJïbµrZÜÔK@Gq@:E`©SæÑãb·¤š;£LBeŠ5æÚÔ‡m9 m^Ôv†ªCår.1³–±²Qðvu†çð€¦†`ÞtK˜£‡z'PbˆU6Ýrgé“—&à%`´°õq~[øÝÙ~´f‘¬Lce×hŠêÈoÑjIg£ÎÃÿˆÐk“Mf¼Í¾Ë.aÝõ§X¾?TÁ³D¼DZT¸ØVÑz-ˆêd¯Ù=ÓŠU;+ŽE!ý ír•#‚+¥ÿÀ¹ ö¡I¨÷/{댈}FÐg¾úh(œ#™¯¿äoÞîó°Ÿ^…æ—µlƒWNgýãÑXþ%ë=4oSÚ²¾ L•ˆ{] è©äA} ›çÂpÊ€¶]¼¬§6–jò¦^ÈÖÎ9š•lDY¹H£Â‘Æûä+›â×â(C¨ÌÅ+¥‹³Ô%(>%O¨ú`úêÁÅŸsšFáA÷ J‡2Dó;'‚ƒØÃ׸¬ˆö‰|èzòE¼®h®§¾_ÅmçP®´ñ…¹–wrP+îA™+!9a÷ã/Ù#Ú…BKÇI/Ó¨•ç-b$ò`l‚›’ƒDÙ¹ æß³ŸzŒí¹{WRŠkj¥£h!»u¯2ŽÙ/ÜPM;•}s¹—k“§/"'ŽŠ¿RMUóµŒrYb؇Ņ¢í2“8eƒÏü–Zþ£fÉ”¬»ÂÀ‚+óx 7»”+›J«s*F„è‚c¶‹ª_·L¥Ù†Ð£7”ŠhÚzJbq¹Û¹dCœ¢©É@Rl³ëœª‚u®¥¿ "Ý«ñq(nÅvAÂeÊgÛâ.¯~þR2ÁqÕäz—©ÎD'k³m·ÞôøÕÖŸÍÖÀ&=4EsÒ×'ê´o*Kã·"ÈfÓT«˜ô÷8ËÖR¼[ͨ\=d#qß`5õÖ|2®žo®Ý@iW¢E”Ï ¥z–ϰ¤€Éáwë© ,dÙçfúm¯h†§ÈS'ž¾Ïë¡1S’…“cî•‘ÛŒ#¦gàц¨ÐÄ©“Ö󉣙¼šè_¸¯Î vÞ©óP c®j~¾K`È&؉È>ÕºÏðÐ Xá«í÷ÀÈ)‘ÐàÐ0ƒ¼²»îm¬¹œ0'S [ñó‡ejà×ÂáZeÆ#q»½©0~¢B5ÁjÚÓ©Ñû2wÞ Ì»L¤xHÞ‡uX½o¶¬²l´»ë©ùÜÈ»ö’\´5@╵Ð6 ñ¾àw® `þ#õ. =àÎ0 ”*³ÐÒÅÀAö¼Ãê´'FÖ0@¿tÕá‰uýɃlèúbþÖfY8œ$yÏ +Õ_`¼=ª-E•¬uĆþöNøÜÊ6—>•Òœ«uC ûíE‰2ìHJº;F¸Ø·ié$õÛ®Ó|-¸·m)ù*Àï1Ø* ‹”« ED@–ÿØì™žÉzmAO ê5ф腖mzZxWQ.£ºBL7ìLø£ ‚Ž»-u<{"ºY³]¼‘yN-?Eì$0é’9®¹ƒkg"Fñ AG¨çI¤§•²ÜöÈŸG7ø‹ìs¨—/Ñ»d™”Ew?ƒÄ¼‰¸. Y4EÞ©Nß«0²¢s.r°è tfDáCb6Ã/*¨ MÏ{„'&xÁ(ǘÎ&ñZ¿` ÊšÏu.–¨ƒ,“AÙó¨ÈÉî—oŽË÷]CRé[b˜@bÚZŒ·üo`í,·F¼¹ŠýQÐÓ´¢JCQMƒ®_£!`þTK´Ì#|=GÏMã³â)…óî[Õ8Õ¢£•|$ð"dé¶¥UñïÎïWXÅyuÐ?ÊRêîç„/rLŠB2‘.®ÐŽd·â)/,Šð¹ø[o—ΤÇ%}¿V¥§ÿº¤åCx£{|Øä­Þa°oœ€ª įï^ý*^ÛãâìT–„J úÛZ‹•o"ýMŒà9½ ZÿD@TšXçÅûœ»ª^ø8fÌ>=•h< ¤îêÛ¥6ÚøŒy ‘‹× Ž­?Wâte; jÅg*ƒ’ê†ߌÇqÀ≻C3â¬!¦­òc‰T.l§åM¾Žˆ¬0$Ö~üdÓÿkíB·9DK™Ep{Ìï¨Q» ,«®ôµ×®Å^ÐX¥NàC© OÉ{E,øˆ—74Ûö8’Ä9íù4êÍ £@?;¯¡y%\ž9è`ÃØ¥X,rêG"F^—sì‹‚ø¬ïîÄtÂZ 4îšÌ½ÿ§HÕ%‹£N´‡Má |àRË÷{îÉÀJÍù›Û»Ðh”´§Qî鉂UŽ¢À¼UÌN¶Ëͪ÷bŒÜ™åw@¨e1‹¿³y{RKò,Ÿápõb"ßtR2L×ø$i}ªÆB)[Cù°$çW€óy<ŽBæRmÉÕ'ƒt§  íÏìêÖ÷a¢ ¿]ÿŽÕ¸ò¼ü*g[[*†ëf­bâ'ñ›ŽÎìà,vàI¿¼[óTOëá£évIˆBÕZ(·Šÿ%*¦w° ¶JŠÝM %ÓgIQ¯,Y— EºU¸#*Ü—Ä{¹jÝíã=Avj*[EMx]|ï÷i§F¨ìòcÐêŠæ–¸£vµî+;>ЛtV”jòCM(„]@eaÛ§;j˜i.—s"¹rLûKäfB¥0Áßr߬©QÓ“<˜¶ñÀb—ÂeЖ§G`{1Ç\yIª1¥Ó©«Ó±yS8Ϫ#e@²‚-æDP.Sü—ÎÀ·p0?Y™–"ã’°Æ®Û:lŠMÞ ­÷¹BJéZ¿sBÁÂäxù¹ë¤®n ‚ÝÉF+ùŒ®Jj ½0e^²¾Eyg:¦ :Þ‡Àމm7_<²f °0~iŠÂ`äw7™™'-µ¤éQ6jróÚòî8v.‡."žrÇA½a5™ë½Iü:ÛÏÂUL¾+¯¿gˆA8ÃÜNæ]SbX ?JSQ yh¦Â{ÜZÆdm~Ôn¸%7Ú…Jƒ2*¡X[vE-“žU¹–ÐØ;xµä²-]bmss³Ôß yö‘Ú‰ÁúrÈV,hóýñXQ7-Ì|pJv.-‹|xÈß/Ÿ¿¬XŽk{¯)k´Ý€{CfÑ@·pöư’g%œo›õϲ|X’÷uCÑ·¡gÊ€6bÛ“/%vP­z«Ã³¥2?y]t>ðWêx\5hÖf1;­)áoÃ'eùî°õ);™v˜jKù‡œÌ&6_¹ÿÇ»5ÆÄRA¹@…˜!އáûjIÙ ƒ9™,§ xÑd££ªØý”eØèŸ`ŒåÔ”½&7À„çõ*Lu—T.4:v9ï©FÚ„§8MÃY EWPú¥@\®|6ˆ>ïhš«Ššqû8¥É_£9ÇÞV7öa{"Ó”,À,¼°“ ®9ͦò!û /OåM‡Þ¢+\¤-N8Õ…Fµu7+F¹O<"íRHê˜K´txéq©ð¸ûp  ?ÎóŠÑѪ-­KŒŽ—ý꜃U›MÓÔ¬>§S(_Q!""iRÝîiÞ;L,[Í¢Ãyu(d´û1(Sƒ¶9Û,\»â²¦^>}ë]{—¾Ç)µZÆGˆYÐ`úZ³nùÆf¦wòË6ê»Á±¤Pä@“1Ü„ÌçÛnYÊ E„¾%Šû(?VÙŒ6Lžo”´&¡«>èɟЇ;Ñ0NvfƒIÌ#ò(5^ϱºÇ¬<ßí߉Þà·N²ð¤z¯äZ‰Ú@O+©”»IïÕÿºÓ­å-Sµ ¼«Ž×â¤(ÎæäuɺÏ"b°pÍa`¼Atd|}…6ú³v^§¼¨w®Ú#õ411¬®ò’ µ‘î+Ò‹CëDF†Á "iE¥bhRÌù—ŸP ¾Yc?9žã±>&ÁóFPä€5L+ÚHe$pz ?;'2ZÊÿF!¡©dŽƒÈÉŠþ…¦½Žf™ânA#¼†¨éˆÑå`+Â5“/Óï§K'ª@)zC”ùov+©Ë͹fÒfíæbPË£Ó8› æ¾ÖŒ ÷*u~»/-øvEMVBÒyä°ÕŽu)±y“õ¸+ì:íè 6°ß¼]ÜüPÕ0ìvJáæ3çtÄ_ò\5èGÅ@Ø\çƒOgı´lp›¦]O’gãb!mÒÜØ”"J "]ô"«P÷­&¡žK|jNdáÕ Ñ¾ Xå,žúƒ2•Y\¾H˜œI?»t9‰qkk*740tw<·üÄð×Äà’o3ûT,§Á²W¡ˆV|„Ý1¦!\[ø(†‚ ÒX¯4+×HQجßuÕ­Çý§’äóޝ'Ë&†§d «‰ÓÉñÓò”¦¯Z)æÅÍ¥&‚¡ÍÓ,ùñkg-rƒˆ}hYÓ ’‘‹^†‡s­#RžóÐX Ãu!V7©¿yº³{³Š vóÃ.)èuã@>/³€$ÞG…Âô8óV5Ž>úê‚ÛeçÇž•] -fé_½ × ¥•E‘̶Ð(ˆ/ékwqBÔô®÷p-ÀõË ì%$™Î i+•$rzÖK– 4 yä&gæxIp:[@$üÖ1zVµ“+TŒ ¶öƆ÷CÃ%X$–h<(ÀV’û¯òÂ\aa×Üá$eNMÿ"ÔroëˆB,ÝÂÀrcP‘¢_Yéð lÏ€Ö4‰‹qM^âÅ `ß L*ŒeÉžg–bƒÛC{1yAj"’ã†TMP6‡Õ–Ê-„“ú©Üì‹óYJùu .¥|2ïÃkyº!¸+AÖ_Ò ·àƒÛ±B›Ù^>ï(ºë½¾9Žûí¦á…Û’,µªQyÈõEMvö„ñ8þ€²«U–XÚBjIͼ(\*JºRuífÂwq3`uÌUQƒQ*ípsè;-žÏÿ>B‚‰ñ’!ßRSƒûÿœ‰¬½ÊH] »ìÖ±ù²¶VÉÓä\Û»*‹©=IÒ9R—&‚òæ¿¶bfKîv£<×zF's©3g΢U–´Iïhâɬ<êŸÂO»=˜ó@ôãχÓvÄͱGjË®¥“w$wøv öldaN‘ƒ‰{7 “œØ¤ÊêÍ=ZEÓÏUB% ÃÏ_ûŠ¡}™Ú-¥’ô™Zpcœùç–re¼Ý"{" ?È÷›u«>d+¾ð¤l Wwâ–ë¼ÑÒµÐù1à ùÞBþV‰è„ªZ B»H ‰¶)"(¶»Ò *‘È—ˆ’̇'ZË¥ÐÎhGkgÿ¼Î¶c6"˜‘S7.H4Ëk'!!Ξ²}þ“À·ÇüÃþù<§ùoX£‘Ï¥¥5Ñ9î‘:7¯   ŒáÌRЧþ‰úW2ê$<¬4ÑSe…¦ëÌ4ˆ#PRQÐlFô åÂÊn‰IÕøªS™UæyóC=EÎKZÒtÕÿ8pÅöýó~*~ìµ~+@PE%$Á·{|ULWsz¢‚0'ЪÚJ¤wÉ^@±7»T‰g+ý÷…û^ûJ"d°¬r„ï=Aê•´„+R¥ÏQÅIMîd¶ðCKÔ‹ŽAÀLö‡ê!¼ÁHf¡!›m É鎹§Â‡6á§¢xýÎB²ÈßìdºPß‚¬þKWÅBÙK|Ø{&i5A%~±ÝÊœÍëA³ Ùâdbe¦"%„«ôƒ(à,•Ëj¸@GA6Ê‹…{¯m1<>Z¤—ã¨Ùï…?á;qÆy–j—­Ûžäì)¥ Up²í÷ꦙJJ²Ðõxë={C) ëéS™2#*H¥ñÆaØc¢,µX<‹šê¬ì¸C”ü@‡cØ–½90Èd+ÛˆÜ_õn›àóYb[`ÔZZVÇ.Ö½!£ HÞ fxÀ«§ýï ’MZÏ®øäE•eóŽkç%ôù¯•.©'Ì1Pi¸ã ƒj잌[.ÁÊÿÌV•ØêEá%ÇÅ\¸/%>-×3€ÜÉHs;Fƒç˹¬K÷uw¾^5ÌL ÿüvEuá,°–}|6Àµ"_¾Å#/‹g•à 4€Ð ZK‚éU†Gö˜o.Mçº3Ÿ°Æó&ǧ.[_¾¡‹ „Dwžu$iëb” '{H!`ê‡iË™èMd#•UŠœª.V,ƒ–ÙUNQšTKm¾\=¢Ña«ì&­«" Zbž C/$£SVM°í‰g‹ÕÔµíQ_â§âˆHÒq/I•ŸFÈæf?ö˜êž‚ïËxK*pkÖ®“Ø–Š3(¹Hð%}âó·Ée² ΀L"æe@Ö3•ÛD²°ÒyÞùvó.D‰"ÀqûJŒ[6qÇp±†PØ—¤ô çØæ*2*-”B<¡7nbh)ÒÙi¨»|ŠÙ»£gÞ̶¶}8üi•]Wxü5aݱ ú©UÔ»èѺEJ9ÿï#’8ºig’2øt Öá(€ñ`Œž—N¾ù>AÃl㔑‡,ÀWuºXó{DÕgffFfí!gúPð‡t‰&£T¶38k?AÖ[6ó¼±n ó^7ΧÛJó(e=³ ]È ôýèæÚM;ñœRÄŽB Y0r..HŸœÈl¨Í`D+± Ù.^ïwï1¿¨^ N¥‚GÌÿ™¿&õí>·}›P;,:Ã1*¸Y› ƒ&XgÅ·’êµU+’ÎÇ>^;;uHo|¨ д3åµ^•!IÖAªœY»¦Æ’¼Q™MuÍé-ú4·Ñ=)s©Œ=ë%ZeÉ÷þ°l¸HŒX´½À“ø‚ê»Ø<ÆKáQÖ„lhRµõ¸é“qwžUG~3c(f³Ujš^LLÄäœ&Z©ÎPû_}pôþZì É&>Ú +®e± =T½ØÇ¨”x+#ôL9"þn6„­Tf„oŒç äó7ŸÊžæœÇ¢±R‰F=þFyÑÍjôЮ4*ÑZ<ážÖX´µû.¼éꘒzþ•Ö€Rã‹D¶jðÀM<ë¡”àjR’Þ9óÐt°/… Fõ_È»ßþõÞêÂ_L[Hé#j-EéÕÃaÛôÆ(éìÙ·ý½ô?rï2Û™×*x%á`HT¶ \è †U§}¢Ü èº6á"Ê©´|çïüPÛë³¹e9ækç´WH4!Ù@è¸ õmî9Yù¼ugHæZÍÖúˆÝ&â‘‚®ùQQåáY bÞ%•&,1¥*XX â^éÊ/ƒ”A”¿þ1Ã3èƒÀ¸ñJÚÔJŸ`³¶ $Dé0ëߨ$y$Ëgäös7ÔŒe,ï˂̯”à l`ë^o‹ý87ìi~wmþl3¹¼uni>‡asû"ă¯‡FñÆ:õ]Â6`d»àNY-ApF~Å®ˆŠMZÇ´Uy’á¿H+³çÍâ¯oÆV,YÕ÷í×R®Èúãœ×{fb¯}óïÕ2G»Õ˜y†èEÒPç&m‡®„­úlÉ;ÝÅÿYø¾œâÔ—0Ûq ÜdÀË¥·ÙTÓw¡ ‚ ÌV!ôñy{’ð޼„ŸÝ„€ üÁ.)ÑʆT_’—8ÛU¼¿3g¿ÅóU¦xP¦sã7÷ éVx1ò*ÚíÏ|€)×s, ¿ÁQ3aE„stßbŽ$ÃfœŠZœ<; À¼,¨,è‚• ¢^ÜOZZÁuÚ®~}‰ÿsµU62©ñ9/r}ˆåàw=S|€{Á1?x5)²ÍÕÀ½o6PúÓB8®Éo“»§÷‘ÿšsèëÖ7ÌÆÿ]mP¡L¼@Ñ𼎫µ¿RðU þÿ©+¬pVI‡<ÚP*ãé¨F;µ5Ëã‰*E‚”)’ ~¯•Š‚áŠq¡Å~É,g8àùÇÄ^4ZîR÷1ë·K¯ž–Íp¹nJÿ˜+bõªBs™—‰ü*o¬k.Á¤FÃ¥…¡qD¹he½þªˆ, 6›–ŽðÈ+Ñ8|.p¿3÷†¤ù1!­EGvR»Ü¹}ú¥)t ùõ=!u³?.'1ŠñýeÐäÀ³ È^~:-@"‰Ýå]F–Ny,^w2sÇÈ ©”"³¿¸˜4Å‘<-DÒžÎÙÜ—›ªòÃéç! '´°]a€“]ImOS?Ð+SÈzÞIœt²ÌðN°Sò- “¡€wÿ.gPˆã>ø²ùOCž´Ññ³5 “[LŽ©î¶„S&6édòq™° 7­©Œ3Ìù¡VD"4pf]$¸|]™ÜiIb¤³„Û‘ªŽù»ÙŠç7Czªù¨ QÕ6DµL@˜Õ¸Šâî¼43?©ï ôˆ{­%Ü+ÿþBBïN7×ÛªKÒÁ‡¸sP‘‰­íÀ,, è^†ãËßj;xDz^Îi'«úÝ‚Þû‚KTð/6á˜FdzI™ãí’h ¦½d$‡Nvˆ©–ÅA@@<­áöà°=˨:|4Þ¢Qg( L"›Å*õL5 r;‡ãúŸ¾sõ,aÛSÕÕyîGð¬…Ï|:arD˜s ÅXE!’ý87-`)m~Z®¡âáLnÔ^.íµOF”"A–ŽÐNW£g7Äõƒ·Rñ ¨&(FØ­j’Tl¨ùV ±ÏPájnUC®íy{À½Ù(ÉL˦b{\5Ô¯ÄØ7®$Ni· ‡@ ~#]üí2th/tʰ¼ÓV2sV09]RÒ¼ê©@›Ü8/zÑþ‡\fÝÏ)êÒ #ן™Ð¬¡g²I×å¸KûKå/üÀ——ñMEŽ´µÛëi 쑵b5ù Y|aÞ[’Šƒƒ‡VlìRñJÝàîh¢¡u}ñÊVî¨*rá6âÁⵆ È2©>³`1СéÀ±%ê·›— ð6š‹êº ‘ÜyMŠàþáëág #JmG÷j‡×Ó úe}g˜BNô´•üTéT(n,#T÷³cº!ZKnó‡ÃrlqsvyhǼ=Éßc¯ÙT½!ßíQ³¸JÅl½˜¯áì´i[üά*Lj™@tÆŽžt Í^xe÷ƒœÈ"æ>,÷á«ó%:·‹D9f‘m-‡Ÿ’&Üwf+ì%‹2ªšÐr[5BŽÞ$:uÈLG•—‹Þu‡Ï°–¹éz¨ÌŒî¿™Q]C ñ Ÿžn[Ó‰|Ô|ÙD§ïmî{ =±] ¹ïCØiÕn¾N‡„Ä_4h•?ÄNzÏzv²‘Ï4ÔóõjLÅŸM…¿üW³Þ†PÍhJ‡cRˆ¨ô†¶Ø×»=$¬dxC3x² wnúsÞ_2xªQ‹*¯°aön4ÃÐæ;§•©_9¤ÞÙæà,Ü-n¿w3_Æ„j_>x˜û:êV€L§½í¥cGgÜF·!‘;èu§–­Ô%ên)VžiôÐìqó‰’nZÄ Þ|sYe óî|ýí.&eŽZÐx ¬(»‘KP›^Üâ"Ή®Ýö+ö 3¹5\5Sò3ýäC4ç.}ˆþøf6¬jIÉȱEpÚݶ$³¦.@[\âЂnI’:‡àÅ m4£úYÑ„¡{ÛbH¢~÷ñë+*Ä›ŒMÑdy¶¹øA£ ýð3X/ÓEå…[qÈ·1©³¡ŠÊª™ÉÊpµyÙQM tûÅþÝ‚¼æ–ÞB ¡-å!3îpFÄæ“û»û´Œ¸†&±^5ÌM?¬î¬Ÿ±Ù(&”t”< %i0PN¦^A³F%úx¸PÉȪ"šAÊ!Îþ„›'®r® |žˆAÐ!*u=œËe:Ì6x{TŒU4ºÈÄ·¬¤°‰¤6ê#2ü¾/à›Hçìÿ).ºœ?LèD»Ó¢[YÃüBÓ!£?Ë 7ú:ëÊoÛôXÿëëG«Mƒåk*í‰I両ÚŒ3µQ©­âFTYõûÞ«}Q¢£5""ÁµQs,y€ëÖ˜ÑwÃÔöóAc&Eóòᵇ‹žd4ž5)vc;\þ’¹•ph-h ¡·Ûßø PÿéPÌÊ*JA…Ù ïå¢ÿì!Ï\Fpã‡Lt3È.ÛdŠrv;…Û"*ämø@ sc°ìžµv;WøTk§e%*taNlï0ÿr+)´ÇM™_-vq¼YdéÓ?£KØê•“u%„ó14À 3¯…*cË¡å,Ú¶Y=˜ŸË%¿”À?BÏš?•¤§áY—»5>¾ØœIšÈDQ´X<ÒŒ2-¼½¯êÃ1C-÷¤xœˆ0(ÄÚ£X­aa[ML:dOÐǽ€ü×kú8f… EÆíéõ;êµBv¦‡áEaH9ÿ‰æTªÙŒ\g•Qlk¸TI«Óg¹·M$ ì˜Ù,;¸u0jD’NDé5ˆÚBZßeSÆt¢Ÿ<+겊_LÓ*‰Þ+u7º“¢?ä®UŽ;¨•×¾#jƒ;æ1”ErŸa¾Gæç\žd ‚ưéŸÍÜH>/í‚*…¡ ;Ú©Ìëe¾&õ ¹l¶î(| «Á‰9ªs¥ï½Uz”@z@CüÕóËsâØšTpR"¿|çŽðÍG}E¢2¾!Èl›çõâØû¤f~¸â°9oã>&µÐD”.ÓOƒ…îŠHÈ^é6Mm"LUòXÁ­úH|¾<ÖKB]4›ßÌòŒ…ï÷ê¹’Y$Õvh×ÉC…ý¡[ul*Že˾¸jí]Ýò´ÎÞô"½@”b†Û6ÈM@G¡2ç†éƒÿŠÎ&œ(²Ì@¾oï ™= ÕáÙî¯Ì^*ºrŠ~^áÒëg÷y–Úó³½8kl¢Ç V’9¥ùvÈÜužQ2‰GP’ão>^héL „¥ç>‹…¡üÄ\Ÿ2ÀÑv¤èØ5ǔʠæ½ëð~§¨’Rm¡6ÂKä b*žR…`Ò)V¸wèN!À½û2szv.4@Jù“‚F'®êW„¬^|x®5˜°Ï#ïE|÷ò2²™Ÿ·T'tà ? x‘™Â|eþDdVëé)A¥¥WŸË “#¶ÎñÉàš#Ýþ,Ò)ŒG¾/%ħԆ2ötŸfV—‚Jï$}ö®Ñ¦:ï8çëûW@S9@Ù»I²½®u­uQ¢;øÀXU¤i©Û È&M7‘F‘Íþ»Ú%HZr ãMËýЙ«‰ ¦ݸݯ‰h%+ à±ÖšZe¬ ‹ÖEšGÞ=l[þçd'M’׫XGÀ˜Û5°Û:湎ëΗûbñxÉ ‡xxñþeK¾m›ªŽ`2ŠEKÿ›ø0õ˜ž½D–é+ä„ÇæŠýÍѳ°œÉ ? ý‚2¢Jx³ò~ÔŽäï2PàþèÅuEÍ„r$¦!>~ö¼Gð >c^{C¹´ÝO½â­þÙS©÷×³Ú eË#xe¿1*àTÓëÃOÎC“{Üer¦ª.•Uáì/PÊ”£‚Û#-¿ÌÅ~’ª0Á<4M·ŸÊC˜üM›¢¤®ÍeÓçÊÞYµÏº“Qé#¢À¼Û¤‘&ÜÞOjØšq{g{½ú¢Ik×Dn=Jw=ùq$Qs¿;²ºxµbà3 »AÁ„aRÑ“H¤Pþ“Ô ¡`LcˆåŒöSÚ!'Ÿk~&G»È0„FX@t¦g6ùÙ¯¯½gµ¾„$'÷Å$t™,¾QÀ¢Á‚/t…ùá5Å¿²N¯A¿ØC¡Âj—1ÔIQ{22‘W X‹FÊûºÎŸ³©Ã' G‰íÛ†í‚s.w누m)Ý–JkûWh‹IT!­Ÿð# Fn½–.¹&>Ø× β@ùÐ Á´äŒúi’mk­&Óc¼"c±Ó„J»ä@R¶=ö)âòS ÓL®D«:ýž\MgÆÁÍ•Ë B,54 ‰ð-P§1 6 ދŬLéA×Z5!¶Ì‘¬ˆÏÕìøóøÈÖ‡ú Ì,@Be´ Ì ‡ÿ°›ÅøKDzÛGûlÆÛ-e\&dÄúÚ¡‡`ò_ç&î3A­Ý}wÚ ¾¶Ò2€(ºeQ²ºÞ‹w®ƒ¬T§VG66ŸôúèÅÇ™>’S/þY„qSÛGº ¾FªŒ%óúÇZÌÞþ{ùÒ}Ù!·t!Ñt}tƒ¶Bâ>µ¡q4»Pä7æØPVÔ½òå3¦m¯ Þóœv~Nø‡zòˆ*.Ôz­qsNd‡B"|(Q«îÔ´ò ¹Má¤EzÕ“ÖÀ(-Cu¸aoc€• Pª&Oñ']X(‰å˜þE³ s´ÛÃ̪ ®šósWEgmÛyЇ¬Xík¡ÜäªûÐՄ΢KW¼ªnsvÓ7_ž¨ÐøëH!BÞ}:B,ª—öi2— ýæƒ"A®© ï|¥]¶÷`>(û³ïu§E×À ‰¯É!KãÇmÀ±Íœ ’K•Ïõ¢‰üФ7Ϙ¿c.‚‚Zúü'à*ƒ÷'˜£ÎÀž`Ö¤ÏDw*»œÓ±*¼ÇÉxš‹· ¹I‰ÛdÐ~àP¦ä‘Åa oC :¥ÊÄv•ûNL’pÊÙ&+)Mb£EÒcªM²qúW‹ÒCÙSQÙŠt:í/ÚÕ½;"i’Ù%ó6Š”‹…¯Á4ÌϬÿ å_ú«ü |®·]¡l4$s·XéP>}à'—íÃ~+¹¯ám¸ >ÎÑ|4É#D h¦Ã\æ)‰å•»R\þØPdõü5ç÷Ò”‘MmuEùš}±¡Š[æT¿›Q±=‚`í¹°yPû–[””½dã:ĬuŽÄVY¬ —,{÷ü¡‡(v¡weîp]XkÝl 4¾M uß.Ÿ…öGµ'G²ùdMpΦ1ßõ9L‡ûN•°™ÌEóÛñ6%›‹&ø _4‹-C?µ=~’\T/ çÃR1áú[¸½­ÁØC×|Þó"ÐÉI!ˆhyÀ ÃÝËš“”ˆpÈ—ÌQ·Ú{é¸Y8Ó’Ï%$õ0A¶O…pFwJ_zÝ_ßcé³|’§ È)·.Vö øAÏËÃ]*V»¼/ûHEaû&µá¨2Oëè"ÑÁ׋°1ѽsO,ÛÌÊýì tàEe(ó׎±¸{9{º[ÉÛÞvô‹#¦Ì†EÿGŠù/XJœí[(غܵë:5‘ Ë›œÅï°"YÕ•‹‡’Ï­î™ãÇ£w1N+Ù”c±hÁÁ´±0.‰QH ¦mäo¼u¯PÂŒÝú5…OìÑ¿λ¸-àu~Éïä {Ü5 ÿs$$£iÀz¨x}ú©-ëÞ­Ùf®h¹÷áC?ƒlõD… ï¤egópE£ƒœx{ˆláOÈÁ[Â_ê)kŒ'l ü™²ï´Nb+¡ —ô©_•lñÄÌ×§<ÚN¶í»J¸½Yƒyµ t«´Tö¢¿I²Ÿ03¾i*Eq½ƒ€Ð5Œèc~fN%Q|ÆriŽ µ[z#ÌÊìN,ö÷tG\,O…p‘:[a»(lÈ­³ãöWt’c%ïæ ä7ãÖôô½ßAâs¦Ày¥Í 2N©XIKï³` vøULJ ¹S¦3âJ°FÐ… P|1÷'Ö?È*.‹æ“ÎëâTC5À*¤g3,¤ìÃbJg°ìxXZ‘¶fø—ÐŽ} -!Ø ë=ýë ¼fdß7m‚¢äHTÃAƒ˜ŒÏ3*”F’±QÂÂüÛƒPÜ»'oœKù÷.–5]i1™oì÷þ¬e6(GK0Ýþ 4"ШZØÒ_Õ2·Z0 ]ØY…¤Ì ¬B'÷9^Fzq3Ö9ÛC88‡‹@Ní—d\‹"^RïnF?Š8œ_I'sJZÑ #*ÖýÌ’àÖï-À¤S˜¥6ò/ÆaCv‘>Š5bã+Þ× ™VáOýÃÀmo¤}©'â(/x ¢…#ú„P³ÛéÎiD®¿)°ÜIJ7Ñ ¢ùDÄEûâ#dD§¯Fº±øX#òÙ‡ÔôÇßárKRyªÐ7Ô2Íÿ‚.Ë)}.£>×ݳÌ÷þ[$R¿í.ØQ1ŽžÅ7§øein*Ú ]?xnã«kƒ"uJ2_I¹pÎH²ûÀ¿r(âõì ðl¿Ö³\Ê?ШnÆ‚ÎlA3ÛÿÓbÙ|…ü.J¹€â«±ÍnéHH ö!˜´IVÌÌw}¹G’vz€¸ÓfhMýfö | kº/«Ÿêì=•aH†òï.Òø²zôÖr@žK™ª8JŸ±8 Ä }ýæQ %{ç_(^¼ y¿u’,#CØtu¾ñ:GP²œq]\¦´8C¼ÆL‘ÈôTD2è€"ï,µƒ1NE9#0§jj®–FËÜ«tEX€à`Ð{‘ÄPzÑ%ïbñæo‡mwòtñÎtJØ\TÃÝ4 NN&ÃYHJÂ' S×e5å=Ö´AE2åQ‚×·ƒÍ<Œ¥G¬W2^FMÍÄëI1Šýuv¨X©Tx[ê(›KÀúNnJ­!˜"Фj¦u3ª$üß9ç ˆÀòîááÓr€´m„Æu1Àuø<½½Ä‘É©U¿¡¶ü×]t³-)“G¹ü&sÔ†e Œ&›²Ÿ51€¢+‰Lšó‰m ÇïYY™°g²—šæ|$ãÀ''§]9û‡ÔúW÷åÀÐ ‡T=ÿv€M<†Ó‚ B%½æà ýGÙ=¸¯LŠÿB’<&ïVþN*Êz†CžÖpš'¯¥ ¦…>­±‰ \X“‡Æ²°AföÏÞÎŹô)¹1Ëx¦Á²G=œð[\`Ñ"š"äl 5YóDÙ\÷ÈÑ~ç)ÇmÂÄÕÿTÁ=¤…}dQœÏÂÙ-a_b³ÜJ|¯º´âO]…F2Ôÿ’u›?µælq4Ž/ Õ.^æÒqФÄmÞø¥Á”m{^9‡ƒ\Û+n“_×O oi ÂXËì`ÞÏÈÉq½î´½éò¿é¼:%¯ *ÆÂPûý9n´™(È~”]üb8[;æ cãÀ½ìËuÈx`s›aµ`×ç}Æ,‡D•>H)3ͼ |¨ bÓ‚Eç×Z&Ã@Õ>,E¢«ÃÞ,ilú˜°ºô ¯q 93òŠaô3mëß=/ñu¾.?Œµqıž£ú1ÞD²Ô·VÄ¿M"~Ì(ùœuã4QcUX&õ:DÆ‹´)!L±÷Ÿ°¢$ðÿci¶pÓÜ2⬮ÍcÙ’»rɉã²x¦\’2“¢á'­€¼æ;-´¦öå0„tQŠ)0}r_mØò%'ŸàóáDeFþÀþXåõ7ÝÑ:ùšåØ@§/× Œ;¹5 :uõ*~¹³L7Ç9?©ßbη,«ôÚf:S|a¡]Ç£¬S§Üís‰ýœ„ 3§Oo† "à0;»'ã­Çù.š¯3÷Î[À!$¾SÐÙÓ»0mÜà 'a޾H47:?ŠW·’x& ¡Lë†Ïµ/MÎC û}¼X6jü°k[æk ƒ³„aGMpiäH–©•"„>¨qÑ—Ï6ÐîüêòqGå²à¢n-AÖw+¶p‚-ÖFwbV50pV„¦¥r¶—º±s¼À^nM”@WJªœ+xŽEìzœØŸŸ¥›3¸¯qÍ6ï1–O;ÈVñ]–î¨ðd™ý²K&fø׳@'á!³C '©+ìN’¯b:ÿ\Ö.0eC*=&Ôì©ñ2W݉|va…\mÔŠ™’˜œu½®Gºk`aîÄ×â…ÏfÙÕ¯AÛõÔë¤îE¾P“ŸäûÚ¨pX²û KûhôR5kÿ X߃Ý9Ÿq40¯F½Î}šGR¬V6>OðqÚËWòŸ[%Dw‡åT ;d/âEdÄ‚©40­·ls—Ü#üqfD"Zù”x¸ØÔX«{Ua‹Æ<üÛr"¿ññáAúj/·ÌgÈçŸî™ èÇÝ  ‘)6ë¶¥ûÂa«j]Ö+¯éņE¦uëZá΂®h÷Â,_ê:ˆð„„A2VORpâtq'†<϶(S$Ùùu¢â³H§*ƒ13üaxŸ¹‰=µ™‰ww 04n¹C<ƒ)§`Š'RîNƒRg…Öª¬lýjaü§¤jý«l°cúNƒsÙ@ qf1õpüK¹CôOÊ;ÇRÛÒ‹®à=(Œy+ŸüЫ ëÛÃ…X!-C÷ëkåo¬oqPQ#eæéDŸ¬p"Ó‰Q•Všg¹ZÇçpæ‚Lª@"—„ä_ O‰¼rJ^ÁXüŽƒ@=®ª÷ËeHJîaB1ÀÙ€”¦°È|Åà+ñ‘г²aqˆxÞ·ÓR 5åÒhÚ s¯¯ùçƒäOSïÖµ±âf¦p{†`/—ÍÐôÛ4œzG•¬ß@ØQIãÁ'nèZïæˆáÞ# ·"Á k IhÁî1B/³¯@&Š¥!ÊÓJÜDC×Cø¹ŒdøxË€ÃúÍø¥Â%ÌŠÞ_‚5¥'öwGÂh¾4¬Î¢¸ùƺãR &ÛŠqVý´r„ €dM©¡áÔ˜[K1¨¼‡ÌßM ¦¬áNæÇsULÑ|·´69R{…9VÌìÓÄÞ‚ÛT®ç“`D£Žqá¡´°¥—ŒLA)éáùf³$Õ± t¸fÔçªUJXà*§›®ƒ §·è@¸m =0˜Ð¯ÀšH¥j³b2Á@½áÎpË©É*zG¢d÷tKÏ+&‚mF&«/X&FfGôk¾;Y-Ÿ°RåHâvXôSÍÆ"ËrÕ¥IÈ׃"'ÚÓOXî9mà¦<á1Y|5\L°?‚M3Wx½i&Á[51𪜓+Â=wš"!þ[ð4†§xÈÈ ‡U”q… ePäÃQr^-~ „k³!lͳJ|æùuç!ã.¡“uxß PmO•ö½Þ~š±‘âӻˆ²Û¬™•žæ~H 3É¡4‹;4ü¢x…zÝÅN‡èïT;(úëI•®^cÄ`)2²?®@º#ý›£cv—øó]´3UÒëaAW'q-þò‰Ü *ÈF!é•;©Ç^›´€‘@cK;§SùÆïH(M"ÆMãåíÆ5g,TƉOøÈ™p+ùýƒáÚÅÞL‘ã{ÖAõDfL¿cÒré5ݺ¿FŽ ©¹¸ks(.È£ý%˜Æçß%T4„MÅ õDÀ<9Àôöë[DÎ_?ˆà”§`­Yï»píØ Lh3 ²ÌGÔŠÏ㇟ÈBù Ü8ᵑ¸Jˆ‹FQ¿Ÿ‚ä¤ÜWA©-“šTÅÑgGå’ù ò‘‚+Þ5ÌtgMå¸]Ÿ²8IrxÛ×eM^ä°¢jî2˜ùQìÉÑ¥„ÀpïNU¾Zdù„üÉíu‡Ï 7ÏÀî]SH–º@ZÅÿ”_CЙG}#€i ¼ %L‘¤sI˜˜ÏSÎSŠ3ÛÿñºÉ”,f±¡¤S®wáºÊ%˜ðO OTÒ naçÛ_Zóú¿ÄññB-e#æÉjc$Gÿ?üZpjãѽAæ<ÓíáO•{Fú¤%È—î2ÆÐÎÅoï‹áß‹S ™êÓò4Ž`ë¶öeèÍôäH_ém‚Ç ®ë`ù‹¥˜®ƒ^ÌdÞæèÇì?º†Àô“ðè'£™Ã4ÞOö^ÔE}ó@J:ò]Õ«‘#qˆ'öÖ5q»:žg–‚ù¢—å¸'}–î5¢×LX ÆF"Ú>å:uÉÉ÷ÐIþŸ€üKëųTûlv"@.øp}>‡çj@†¹Œª3ö1õ !c®‘rrs7EGpppú ¶~ò6p6ÿyôÏ =Q¼­ü¸t¿ @KF×QþTú§µ»ú-|Ìè8&¾÷1lê²Fäl) Æ¥%Óf¼ü×õ·ÁuwîÅËúæ¡ÞÂ>À’’ti|E žÝ!ë ÕΠ i£.o Á(¾ð¼pa¨ch&%(~.¡a2 ô-Šu®Ùœ"ö‘\B_¨CéÅá)@W¥‡Õ,*æ]ßéñ¼pàNçûs‡$˜‘©x»c÷ÖAõF‡írÑ?9Ç=ýŰâ¶~mωJÎ7ƒ€ÇªÓÁ¯¨[δžâŠ&òlfÃJë9åUšü,I–,5 Ö·×`6%žÌôÙÄŠÃÛžè¾ïÿj÷œ{cÎ.7¡F´z.t-õ ýAíOŽºÇéõaë±i¶- Ï[(‡‹¯L¾Â;s7n™ƒ^NÔ‚mÏ(oüµ1¢wüW¦îÜA½éƒ1!Iv¬‡z¼¸8ö»,äc®Ì7øžä›gŽÜÆ¥HÕ3Ì úøá'öà…‡K>›o,1 ­#ÀíÅÁi ìõÑb¾…_%ÿ‹}ýnÑߟYÂIlÚ„ôŠCçA—ÎÓ±ÇãióreÙÅǯ^h—¦4.œì#¦=#µå<óÚ™Ä ŠõñÀOÈýÒ‹}¬+hæVëïo%HÏq®Ä& Á®Õ ¸Üxf#&åûkÏÔÄ|$¢‘oøYä]jÕ}£ÈhÔY,ìeÕñ„¸ 7T@®o‹>¸»˜O©†UØZ¶2 Ý †(BÓAT5Vz]Û}úh%itl̨]¹ËoOn½'OéÖ¡å&¤ÿ¸ûÒ3Øp‡º‹7i:Lp¹wq¡©upþª¿.3{æ[ˆ‹Çç¡Úµßv!{“ÿæ'q°~ˆiª!Òg·ó„% jJ]… 'Ú[( «ƒ¡ïÌÈ7¤ì©³l.»³Ð·VK¦Üy7rWÿªuý‰ù<¢–ÔH+% ƒug3Øö‘›°ŽÉ:]N(¿ ›|R±ák>QjIdcR¾þÅ"øÆ®VÐsôÓ@.!ÕR+…°UÁ¾÷–½È¡B¨© õ…Àœ|‹jÿ”@,›aZúºÍù+iZ%–±þ ŽUm*aÂêÂËuÜSR#-¢Ýo¯< Él@Ý.ÌglOkž” iâ˜)öÊr-át`a‹³êì@½‘CË­Ñä¼ÀÖþh£Íø¶5/ôA’µgàsé›Ïø¼Ö,BÑ Èþ*e [’-³®Ô–¾'|Ôñ%"› D™}fÛhá©Øo: MXîÌ8ØŒˆˆgR¯¡Ñ³I0‡’ÒÁ&S[þ¾äÎëõ‰¿‹®DFS½än와”«ˆG1µ|~õ …þ8\º­@ÅdŠ‹oA@r§M!b¼zwwž©ðL[4×4Šâ*ñ›+8õøÒݹža{Ím˜?ÿÏT¼ß·'Ñ2.¥-Bî´ý¡[%¢Y,1ÐfÒ¶ÇŒââÓƒ ʼÚ0¡R·ãÍ6‹—êÓÚö_âuŸnh†£Å"3ú9´Î m¹pHL‰½ôc¸ËÍü{ýô¾ù9#—ÔB”‰ð— ÀBÃÉ\ ®=CèÞÐïEKK·$ïú@$›_÷¼*#|ÀÐõ­?ãú“^‘Ñ»«Û>·E½H„ÁEFO¶_Ýǽ`yúcØõ0†& qÓd‚w¢C¦5e:«"Â&.5°PàTû:\ÙÛ05ée\=g­@c¦°r¾ŒÒuöãJˆæo·’&,DZçîRÛf5……„Ôݱœd`¼Ê“\žA¹HH~SõÊHçÛü˜¥9>óÌi¯jæõ(©JSfÉaiFÃ4+v*L2oЂ÷Am`qÛ½‚Y>AUUä°ç‡ Û!ÝÜkß8ù`⤶FhûnÑBü}†&lR-•lâjý÷ÿÉžO¥Ð¨¥2Ë1¥eC@‡·›â¾11üÊ_’¡¤˜u fû|ôGž’ÃRxû¤CZþö½¹1qwloOë3±ªäOŒìv„B®Anf­[½SQ[ó—C^ؘPÚ§ñ‹9ÝëqŽy7¹Üî­™K ˜³.+ë㪿“°;Y ·ø1…É(^ ‰3Àí ˜Ë€ €²ºYè½@#H#÷s•ËIZ5£€¡UåW'H¹Ù»¼Žô+˜Ú{úôRUïÂ¥<)ÊÙåTÃ"ªmþ Æ)JŽˆmÿó]bwU¼B>,Œù<ò—«,wæ?öŽ<¬q•º/æ[ òf“ø‹[š¦Š5Ôø>d¯E½iAWA•ú;/ 8À£¼¸ô;$ÈÈÆ|ueš¨_Ù‚´õË£­bìg·Â óî@Ê„©‘s?ÿ - ²{ˆ.µñbR ”®ÊT‹ŒÅušæÓ=ÒéÔ5“Þ¿]G³ ‹®‡ÀGÔé`å¯;úAØRwPö;ßâ½Ö&öDøXa·:7Í5 -wºeî¾BdÏä)ÂW¤t{üÆÇ=óÔÚEyKÒiv"¤I…vó‹áˆfÙ»Ó’SÊâ(~{ø£‚™ï1š0ÿ¦¼>³¢ƒú¨«È]ˆ)FU¢:Ÿp×n#â¦`úÆ'=Ô™é¼S˜CO wb`ú5l֎yÄŠ±d š Y°nm%&™ÃðV! –ïº%£åò”3Ý ÍÕBõºá†c–†$ÂD#]P;Òfs jȆ‘ááëTWÔ,…„/ l7–êó)=õ5¼QÔmó¼*7YæWMÐYÙžÊ`Ýó[ ÄÖÚ8’KÉ ’Uoášbžf$Ö7Å!epí»/:5’Òà>Àª¥›ìˆN6÷¯éñ ?óŽ&ƒ$³­’3„Ã2è#KXÂç˜ÔZ’šØLÁ~¤Hšd3‰m„¦ž`L_l3ëÄÈÌoOUKx¹a€Î,9ò˜%"žáAøbzvõ1fg—¬©…÷4´AN„gx ¤ç»Çe¬P(ÔÊóì±ÖþÂl‹KgòÛ¥|ŒM4zx$?¾óÂTp¼ EùÃQÍ-º¬׌Âé5:“Yæg¶&‰@,S“W(>€Ft ôCL‚/Åõ¸¬+n©¾@ƒwþ¢/Ý÷Š–©f'"Ï„eqoðòƒ%3/ º-}î´•-$Ê%ÝR)ÿÕF‹#ü÷dbß\éwî -ŠaÃ`¢6‹¤In‰¡’ˆ[Ò¿Øowû&×W>Oü±QS€pM*Ñdæ wSá%ßú:(  ÇÙD±¬a€…ÍS³…õ¦ðà¾^Ç81?àu~—É[äuð ¥PëãÏd´–½Íª‚1—¹59ìÐ=¥?}½2Ø\?ú-q߃}_áñ¿ÕÊ VÀ xSY+i¦2iB"CÅ;Š'ÏL!çÕ¢öПybyˬڊó’W X<ÑpîÝß$=­RÏçœÍYS>Àæ_ì{ðO*R¢2Š“œûµ÷†3žXËð8ݯØÑË8nH–ç±s×ô lÑøàfwy“omä ¼›7Œ}ãA.4Ý»|^ÿ-ˆÏp^ÿ¸ËU¤…k?RôºÉlËGhÚ?9!D[Z·M#uµZgnmY_9žk'WÞ¢ŸF¬¹‰oÌÜ]hdŸ¥éXÄÊ`{tAªÅ?f§²ÓZB@–FâôÀøxÉîîRjóÓ5ÿž‚K«R!Fc•IPü\íD÷=häõ8Øñ"â^_Z"zÊ‹xàsOÐ6‰ ñp»«Ç[³”9?œðtíeö´ßÐÈ —Þ¿Çÿº°lR"3×[JdÊå7(ð&‡çr3â>‡º 8¡Šâe¤%˜`ˆB-ƒ[7B›Š°µ,D*ÇÅtÇ#àÉè(ÕÔ‘û[Ì5æ0ÌP1#˜D°vÖœV TƱ­Ö }½) ¦W7ö¸3ºËN9CO¸b~*uäží`kW¤‰:ÀZM¾Ùûn;E rhÿ4ÃAÁR-ò­˜¹5 sK˜·7y·O¾Ú µÁ‡L3ûî€mÚ÷4AÏjEbÛž@Ú}4(6ƒ‰[Èõ}àø""ÝvR‰©DÞùÇQX•UàÏÃÁv½4Zµo<(ìqZü)&¢a‚Æšª¸U„o½1ªš»7âpÞ–©,ƒæ¨ÂQ*óÜs1XÂ+‚Ñ–?0•3Md{[þŒLNïeÅ‚>î¬è+·ônrðÏ–·ºc£®M'­#]Jn¨æ5ÉA³.æ¥Èݬ+Ü]‡ˆØ Ò]Óv”Ù¹Ô±ۓ@~ÚSëºgBà 3 ˜†pÉøåÛ󭢫û¶Ù'ËîÔ@…q TR%8ÊïdÓŸÙ­µ+‹tTt†Å’´ˆ«¡ùyóØ¢ÕÓk™D§äÛQX;‘³íd.U7Õã¢ñÀ@ÂÌÇDµ!!êŒ(¾"§J–D©¢7{|8°ÅIôQqÐó”("P”¢ ÔW%`Yws·áˆ IMƒI¨)0¸ƒòÂj¢ÝpÍ:!ä‹è{>Ù˜¸T{šùH~Ü!ØzQYRËÀôÇ\0¶"j®O¼hwi<®Ëp– ÖBÚq÷ºQQslzI‘£šª‰…q':@úúMßS œºÈSŠý¹âAªžš6ižëÂ4²@¬3°þç‰Còëú‡Þ¹[Òå’´ôÍX¬„©Ó4‘ñyI*%©×uy¨ª5-³€Ìª\ãI˜#E@£yÉ9'$›‹öKÉï”m—±½@Ne•àEu Ð×ý¶Ù›ëúüÎ+ÈÄðq ¼7±~»&1F7 œP¯s7Õ|¿mSëTê=žÈ÷}nÔØ™Ê(à×E9jïfƒÂNžX­Eªø†×æµS'ž('kß+Ÿkš°`4Â˵[»´Å÷\S.ß©øsÕÖë9±ÄæA%AÄ:tú戒x¢M"ó,©Íxä¢<I?|2–Ç:龬MG‹Š¾ÝøÒ¿ÿ¦¼ŠéK_‚ÓnÓÈR®LìÒæÑ8Âù *¼Gúí• 7]æk‰œÆ {ãà£RHUî”ö¶®Gժ׵ֽ© YI×%ýÍ0àD]œ m6OO6WZž‹%$Æ>¢Vb¥r].æNZìF ?îº×#q‹ÉçÄf';ù}¥ßŒêÜ1ZŠmlÙvÀƒäÃU§ ×Fd!e¶þýU~#³dº›/ÎÉRõÜ¿vÖRìë-„-þq×DZqƒ,Ÿ8ïÿ×ÝM¦,„[}ìgÿ&»J•¾tXw}»šÇînÞtëÛgƒ‚¸ì„› ‘øqî´èŽ*ãg[µØ![¬ºø`QjÂlüNÞëÃøÊ©ûÎg6wwÚS¢ ìhO\.Ί­j%˜ðÀAm&~ ~ò§-ƒâ¾(›Ò€~Äp¿p¤·…ÊÂý^´Pü>>•ûKŸHo^2m0˜¨ºü:(…•ÞŠCU&¿÷u{’M‹éP÷÷ú9@‹mzv‡"æ/}eùoÉ¿¡ª’ã0eSÃ÷@Ý>eª¹8óã(ëaôØ›¹ œø7ÍЉüäl3‰}ÉãÓ³ÉTón¥ÚY4˜ tù‰¥ifìA1ò{ºä¬W7±wV!½0/Sô¡Æ°¥ypl£Í(Û˜¢!¨°•ðgþÁÙŽ„B¯3Lö–üü¬üêë@GCºD'™ˆch-榷÷½bÎÕó,®tâG¾œú`j”Dû&êUê®ÖG«•tFÍË&Äoò†³ 2c§ky–²¬žŽ|Õ5Íâ\Ì5džkŽ÷!Ä=‡î5]œé4®†‚•DýèIàÎtËÊö‚Z‚’ š.†’è¤J™°WÛ£UhÏŸTh¡PÊÿ „¢ÃŠ+ˆ/EóÖ#É‹ôÜPaå䪜)ù 9„M0OØ$UÛßxú9»äÊR+ …TÅíYäü´Gé ûÇNšþøMsÝHHpTz‰¯‹9x@žüdI¹}ßmý¥`uE›Ç|î„‘*žÃç¹xÕ›*?H#ÀÉÅÄ’Ú#e|ñX6ž¹‚¬Ä[GK?{¢Ç¤âÁ `ã­K¬é»)=¿eòÒVíb¸–Mê‚‹~Ž€-XB#¾ÝJ ÀÜÒËÔ[¶µ—o8«:ßGUgÝSJHLoŒöjÑ™?æ©–R3km!Õso±–½-'mèæ©5#وȀ* äbö«h³*”Ÿ•“­ráœÁ0³]Y¡“ßwª¬ŽM³êß^âƒÊ9¨¾¤<=û>>ºãã„ìFâ›ü—nß;f]6¡ÜXnQP8¤ýNßJâÑ PLpqèMN÷*õeбšâ}”ï=^[Æ É› ÅtÈX$›-$‚a(ªùw,³% ,/º·¿<Á8C R-$ß“î 5£äRÈh=‹ÄOñs8ˆ´A0Ò˜pɼ7ëÐàA^ï#Õ¹pý±Föµƒò%η (ù§¢øáûê¢|«Œêf®Ý7è㦈I ¥ ¥KÂÌ-’`µg×ȪęïšÂŽQ jõ­6ÓøtUùFœcÁcæ²¢z|eEálƒ¥þ Õ]kE{úŒ"S,Î{ƒh^H_Ô¹ä]M+šL¹Þ± •}¶¯µßVj‡×?ïÔ`º¤Hw÷dl0 œ’ÛÏßãßä#¨›aqf—_ÃDpòç¼ïQÖè|¦ýGš!Ç•1‚¿ÂYÓ:0þïϧ¶Âú!åB¶1ÏF(Ô,b»ëÎ\ñeû\~%8ð Ø­,¯ë`Uõ$Óø¸w-Íýþ¶—½wô u÷±ôѼÛ>ϸʲx ?³Þýw§|¯é™m_à`H#‚ j𔋲+LüÔ†S›óŠî%˜;ŠÖ„lW)`F·÷­Å–<ê‘oþbGÞÕ(ˆ&ù"HqmaýÀvÙšÅðÞWKÛYF{ž ˆUê lѧ”ŒQBul÷¼…#]á=Ç<Õ«Ö}Ò|v“ºŽÖ.ÿÒ½  ³{B“Þœ…(_Ë–i*°ó2THÙ®®)»ïœ`)uÆŸÑTv~´Ý}óæMñ6…z¤ˆi¥íüxShpqGaµª#Äý{¼ÈÐ ÷ WK2ê"…xÁu‚XRªgTXU¦äk`w/bL…‘"¬™µ¯(qžkú„ƒVNó–Rð€@Ùžãd¤Ã=p›šýëÀ}vJR”5xm¹O?º¥›XðYÚã? ««;D]Á´Zó0Ë8“Æ[ßdjøÐúøð÷Ó8œ\L9å8Í($2Ð }ey ØšŠÀYˆöÜ{.”‰Ì­þ¿ó•‚WrÔƒÛ/"÷)N\öÚøÒ,ëîÆþø—ÖÕõuZ7¡¡ÉÀ…\ØP/úKJk( ¸|Óuƒf yŠFή·¼†ht~Gˆ„ŒS #Á 𨺎~RgHš½o]Hˆ;&^ý*ämÂÃdšŸ× U„P2ƒ‰æb¥—ô)}Ä+Vd¹§_1ˆ’?#%±‘o`€¬aÏâKÜ2]vYq‰"[ÃãàËü ƒó(¼‹PˆRÔ™nž‡Wá>h4…Ü%\ º¢÷K%™ÚªJ^’›3×Jw‰7è,[z]ÌÆ\ÐUÏ-nÏIíÙ÷º²sþü„t˜ÕtMEù[êÍ*Cš4ñ´³â%q E•SUðJ¶ò2Ïõe5ðež´_‚´q›v'+^Bfç7NÿWGªJîq.ûøjvT b8ßjH0Èóœó´¤ŽL0ò®¶*éŒD“³µÅɯÓT© í”DC/õ®¤LÀ“º­¬&:D©e+ÜPö':L)1€£ö9±hådçTç´?{ësá&¸B]RÈ/»]ØKÆÕõ^ëãv`c¿à&©*9[XÅ¥˜S4+3“€×|o²Çå§V€QcǾðv9@ÒªZФcºýå3;YŒc=˜ç¥Ø„ š]¤¨æ»á>¦þèUÄóžÙ÷rNarÔ¬5·u-$ð5—–‰?§¬%7š¤Žrî[Buesxöñ±9ŠžŠü)ñõ®^ÖËÇÊÎD"v—AévOóéÏàµajY³ýÆ@†‹Þ5œâÖhó6ïúfÝ…5´¡9Ã÷C6Ì|fs¯ k?`ÁEÁ¿¹±ýÝ6Zç|³Tog­µ{žúRñNͬÖ䦟ÌÐó IóG„µ®pņ¼rÊÅÃáÐÅá°/( ,gTê%6ìk@Õ4 iÞgóqÍíVêAFj"OLR̃$ÝôƒCY c®^S¸É“'‰ì›BÈñÄnn4†ÿu|ý`ÆæÃYÜx6·y²4ÛÞ¯m¸–ù!Ÿ!.‚ì"®`ÔyžÖ3Âæm—ìDŠ‚x<’ìG0Ã'”¹ˆô ömÔâøowøfØmânÖ¾óÇÀWG}RA6]ø[<9̆9ö¨ƒçz-Ü×ùˆ:ƒq”гÃfŠÿ^ž³r€ÓÚŒZt22^/ë—×¾"¬¶ ¶µ:Aø§8Læ^²=^þ2íB|ÒÁÒ§ªI°œF„m;ØUYY›ÝÔÑZcB(²¼ê#wÄ1n󄘞ûJï·aÆëLRˆ®ˆV[-y¯w|Ná¤Iߨ֫ƒËÏ‚˜Ä_i“ƒ¼3ºtfð\Ü#4såËLòšnS•À†/. Ô§îVxò¤ 6m0/Ypdó©¢Ò棓G‹„ÛEÍ4/½2ã2”°GŠ¢Ó¥O¤2}År‚N[Ìææd@`i«]R>zƘ±Ê`…´n_ýJ·Ûƒ$è@{WÒéüYÞÿ6~ö՗̶»NèñM¼˜>/®AšL©SrêÉVÚ "µÆgOdYá8Þ Fu*§ÍË’@ëðœú)Rd÷©\Ç·Š±ÄëOyP"Èó7åÊÁ=LÜ| á_¡Å¡UÄì,¾vë_f&Ï!>¯@D ê›`ö1Ørý¾›‘Rb.ÐÀ%Á0Eº¶93Ñ£€Šåµ.ß^ÏYA¾Ág«|W˜'Ù›wÊ% -Ã)E ½@1ŒÓåÐÔñž/©îܬ†>íÆ7ÛP%Y [ç=o9‚ ~ÆË3À±§°]¬[¥Ç™Î+æß{´œ·@ ìãÇ ú­=~Py&‚ýZŒ¤-)/D‰ÎÕ^§â—7U,üÕTŒ´¼Ž«”cR~ÎMzKîE¬Ï€Ç&œ8.OËÏ€ø9 ,“:dj >êb•láÆVP˜ú² äTxµ)UmÌ…¿Y‹bÜC^¢Ð¤Î-+Æ­O¥€õÉù6äÒeéˆÆ”IB“å 9f:&F¢IÿBÑ7î„úø®J!Ùæwäh6óëw»bFxyQÊІî¢ÍVMÑœC¾G‡…¢„ø=îaou‘³'»RLXåñÞ¶fÇä;TWŸÓ2BöŸ¸Q½Æ¼ù3γe`˜H@ýub#Lwd¦iÚ#èª J3ï–Qc¨RŸY_8FI‘e#aO¢ E™±Ü^êÛò¢ÐsшvMÍ‘')CìbvÕ Üùa¬up?hëˆcãm9{v¼Î*²ú[’§l¦Œú÷Ø{!Œg8/­¥¯é¤û­øõ~¶i&i›a5«'º]‹×áÛÞñMÞG+Rä­ä¥îååÂ|n‚T`§FîÁFDÇØµ´gnßôO£\,®gõüÒMI¤hApÇÍÿxì7ÞÕ26-1ÚÕm•+ð>ŠËußÐïÔaM y‚\d„q<Wc²BW±µÓô€ßů©‰(V®ÂáC?íš}ËÌ ^œ{eHž]E½š‹‘®Eäèé|•´့¤Ñ-ÝÂ\¬|k }gÈÎ ™™ 0ëÛ#׃N°‰[««Ý-•øxCÏqÞ†UD©yš’­á«.1­)ñd},œŒá‰½;(‘Fþ(À>s–’#£ž^&½óÛ•„/º¼c<[ü>â7üâÅ`l›£²ØtŸ¿lüî.åÃÀ°Ò&ý¬Ch5:‚Ü¢Ò—K3¾—Ìû_G‡¾bƒVaát´3ßèÈ´‰àš²×Kôãû–¹±:ûES£Ó+³œµ, y,ð§‘9þKLv­(S¥•4îJ§…ãr²ê #b_ZY3Œõ'»F°Rí½ãO+Sôf/ísõT€y £a°„éc`ÎãÒ›uµX,““¨üóŸÒ,ÝH¨;1ôV³«xO3“{@°X}‡o] WV³9–ʾ3–¢!²læªâK‹— í[^CN¨ ×òé†m?bŽ~M¶HÃu¿æIwJæÄJü±œ0A7gN9èÁQàXúœ ÐÔ¨ËÐ¥¸³DЀ‹åÄòhç鶸Y˜—û‘3xÿÒ–¥þÐHÒ¹Iõe¡Ï¯oÇî8©˜¼*îÒ·bŒÅ•½ñ×ðùc‘‹êq“%¯#×H¯«a° .FS:òeœ"'ßþGD^8O%úD̘R(p¬‹åXöhtÓu¦—ÁÖÔ5œoþb…HÌ4š8À&ãjmJƒ¬­Œ'`ÃBŸ¦#0c ¤3#%­:Ô?“‹ÚË¿í‡n-~vz7ÍûÖüô\GWغ­ÜhÍ)“Ö@§ÎßpÉwÈözA¿»ò°áxñËÃ$å 80Zî‹ë-= 9xïºL߇w¦bz¢«¯K Žƒ|aº/Ûg¤¼6±ÈH‹¨õQˆŽA„XÊ^–q$9½€*õD!pvg+c)œNiÊâ*DnÖÆ ßÛûº¸kmûœ;¦°7î>ΠhyÄ=¥_+RáÞ:dZ¹=‘zw®$ü±ŸÕN^÷ Á¬&¬”ÝŽ†€-õ¨ÐÎèùS‚>aIB öÊœþSé¼8嬩œ!•c*¼ñid_Yt“qŽr–òóëL~µgn¶Óš¹Æí¼äª*EMäÍ2Ö ï’DpW+0ÿãJ¼QОoÖ0.Ø©ž l–‰ö„AÓt›@;½2!âc]uAr—f€„6Ar„c+žÐHKƪe ·ú3×°zü'ÏêÕaŽõ*Ðæ/æ•27d”Ì›nˆMÈ}ŠºZ%²)žÒ^èn'd'˪­ÜÉN˪β”!Ø€v€v'šÃé cÑB×!ã4Ô®ö8'í{ >ËGi òêN%±n™‚Cµgì˜oê§RWÖc;á¸DÞ![þ‰6õºo%tIXµÊ{êÅk/ÜÌ?ûd¸˜Må½2ÝbøKø¶­ß|B‡Ø³¢±ì~JŽp«(QÙBâ—ƒŠ< wK‹H ùSÝÑ¢,Ân¢ðN1zu¨X…?`•„ûa¸ÛP{š‹t(vİ)(€áö«v©Úbüí´Í%Í67_Ðõ¬|ã¡<©ÚÕZóË ø¯^ ½5ËÓ›«—Ñc†!ÿ€¸²Ük7iUï«Í‚Â!ªoƒlS¦y‰ë‡ üÉ›¹ÅH©7&¶ê4Ò\EbggãóâÌÅÙhÙá¹(f+Y'Ȫ’Ìiþ¾ÙS|»'Kô sxº‡-V/uh¼¦ä9Y*`¿%5Ø÷…$èÜ£æ½LD?[¸v䛵߳q–ôµ wæ.+O.?%ÅÔñAæøoAµk^ýFcãm(©çÊ]:”yg`Âp?ÂýÁ‰ycŠ«n vd•â†à¸ÁØ&%Y(¥új’ÓÎÖþ‘Ãnýÿ8‚c<àÕÓñS vCµ÷o#=Éa¦€IÌnæTÈÀ™²nÌÅѳ œžIìÓZÃHOïà¿pÚá­ÉØ÷Õ‰ e ˜Ç1ûºìÅ“Ü2PŠV]¿³îL%a“3áì „0Dœ\…©<:`ä‹×+åÈ`‘´/vÞ€h¢ýœËóG“iLU#NØÈeq0‘?Ý„$ó¿"ÃÖ¡0Ý%/²ØÒoì:·q@uÆ.êo}AÚÃWÌ!v!…MjÜh¸ö&żË_‘×17…úsI¨ßG¢úí\ì]ÀžMÛ6M‹?aÏ·û¾s}Ì¿ŠOøºÃ2©% ½Ï‹ïбûŒb=Îye¨ñõ>P)m©Ö¢œlL5=,ÈÖðíq:7§åÅæ0âò*J}$3 hôÖÚLÙÁôKåró‹­cmV 9õ½%¯B·AÛ}vM4e÷H5O8 ¦ßðñ§éf6¨=ØÑ™RóPä×Næ4ʸìj*;žqÄ=ôézÿ‡m¡Ë¾þ‰bõ[ΨFÆEÕèäâ#É&£†e"äÅvŠîŸ·õ9µôÜNA¡è¥ 8¿t%ß+ò7,y7 rŽ¥$=±,û¿o‚‘f6ï_@é5Rl ›0reZ­˜’\éÙ÷pÒÉ=p)¸ò²Ôãò6éø¿n#€Û@N@Þ&r1OtuJ3ù' ™³iØ_pâ)9o…Ú²5\j0v—=8-玲™Êµ*q§eýíù¨."¾  S±÷Gÿk µ ^2OwIM»%<&¢ä EáÃ$ ‚lòKg#AÚªÕ¸z*O¾B¦yྎv˜@(¨èþåBöÞ rL#/òáɨö‚½¼¿IDˆ£y’êÓwI‚%çÖˆˆZ¾ Œ•ኯ‘y±]ÇKïŽÚ§¡N•– ‹ ¯ÿ|¸MTü·²ïíå­¹Ûˆȴ߆2n"9ʲ«€ù1O| ìNFMùIàÆà„éŠñâøÅºÏ®j ‚ RÝ:T-­N†0DeåÑÀRFÿ­2/o~>éæ4ùgP£éAàƒ>¢6»bçJ,¹äì-—:¤+ØÇ /¯¬3%•Æ(!- o(›#O^ß§GgòkÓÛŽ Ø¿O1ØÃWí›Mðëtœz·´òÝ‹÷–s3e'Ä&ˆÔb*×Ý›mÞ½œ:ù0‡XšÄ ðóûX$pRן¨&& ²Ú¥¦›ñ‰1ÿlŒKö®…Àùù”A‹Æhõ¦-±‰)Œ£ÀÕ»!âM¡Ü˜˜€ˆ¿3%ºž¤ˆ;Ib +ê­ñGD}±Vo؉À$`Ù…þ‡(Áî½=i×TF :±¡ëÄ…föÓãÄ}=§ì¸Â<.n°wÖµé0F÷C©Ä-AfyJ¤ ›,VâŸ~èfÒ0%ê¦iÎ[§WŽ“—âÜï1û¬¸g¾Ô¿òQD‚¨É¡QU9¢Æ»š}mçMêºBÖBT(-/Oå—ŽM„êµÜÙ¢rÚWEn®ÏR©kNkG”Øt¹=Ÿí÷É¢Z‰§Ò¨øÛ)”–4zò‹è†ÍB•® þ×ëŽ U)´Ÿ öɦ´EsÔü v±­.h¡ÐÖ¢Mž³èOÆàC]'óɩ舚] µ×x–eo%5;@ÝþlºÃüªõÔ:e¾NîpîvvÒѨÍâˆyíQeø@ØØ¹iïÑ€°†d44¦ÇôkëK†4û¹~õJbÅnîW˜ñÇç¶~Ô‡0Ì-Àr¿èïÌÜ ó&—‡OÛ(¿Æï|†jjÍÞûB2ÜNà dº^;¶±zõ2Ï+ê^³Úˆ¹°Èªd¬“§¹W´ ÒPr›ö­çßË,ô€qCÀ% ¼[‚6 £Š•†:“'ðt¼•Ž"„ý} }3£\¤i+Û±þé´Rs):}ÔBðŒ³3èÿc/šÛ“H8eÞ늱d*÷´§Û¶{†„·SPO®__-~WЩ¾NÕF N¶!©s´7A ³*…ÜäžÖ ýö‹.vêf@kLK ÎQ›Äˆ=ÄÝ™TûÛ{Â]‡«záÚtÂVL>HÃ@ ˆm°öBsùЖƒüâÜÔ "±¦¶åÿóê§Hd¿·!”ýÉ«§[ÈU§i”ØFšú-42ѵ[©ñ\M>œQMÒ@6^uþn‰Xá\O8­ËZr¿5²2 âï`J9éú7î—ë0…)$˜¼rXPß&’P¾ ‚Ö>ù†(7\­>8F’ZþX°ßGeÎÓH°¨'ÞýŽð'Ðã¶AGi­ª|Üêzò÷-Zs2èæ€öª‡`ü© Ó›¢Dًر õdâ‰I»„7Âzø“þÊ›t«í©ZY¢‚qY‰€n_Ù† WÆý™r$(÷CÄ÷®2É¢B£Dê …?:Î>•p T§W”áã1 %¢_aQRJ®2v '.!áå Ðè”äz½ýäLŸ‹Æm뿟×zÍs)sg~#_2N'@Ü‚ âJA×NµRýx½_2fDt¥eFð t ð :£t]8NÀíC]ÑïB塹ñ¬à,Öªúˆn³yÈV!ÃñÁX*îùób®Uàã7?y›…9ãmiaG‰|¢=k÷ëZÂ'Û|qJà,uvÄ%¬y—6 Mc½·œåM [«I#%XfÞWCE68Û™ô‰ïEšÉPU3œVÅ_!ÃV„äÌ'q¨n²Ò–»÷% Û“ŒŠZ‰<‚…´EÅ*ifC‚~&/°û¸ÿ>Ì Û98÷c)꺒üì`‘|ºÅ粿¶Çmµ±N³ÚaS|H}š ³Ðs“* ëö2´dŠwÄõ u…Ì‹ì Ø²Í¦AŠ©¸Ò¸ü¿ÂQ˜I³þ!äx¯ôZ£|ecv ,1<½˜Ä~Οþii(ÞòN]«ûF:Ä×hü®Õ§P…¾ˆÚ3)¢fLv¢Y®„_x!åBByé(jqÓ^UÊc ÒD+K.µ¾Và8›¾LÒVÔˆÅ^¿â‚Ÿ›²ƒ_þ6^ñ6ÇZ'›¶) |÷ –ü$n˜1T ƒÀˆ¼çTíh?–N…:¢Ñó‹~€nÇٰ݄nÖ/µ|pwŸ¶©{|ËW×c yZσÍ´À[Ý ͹´¨7¼vû!zê†ûYž{,ÀŸ „@ÑÚÉqf<aG$‚‘ pÉ« X“>#×Þd«Õ þ,IÉ>>‡bÓášm©P (ÿ é¹ìV¿Nsc§m+Ø¥‹™²ó’[^éÒUûó_ ç®ø+A¯,…ýJoÓ{‹åñ <×"ŸàøþŒÙ(Bñàm•P±º6šÛ\dºÑ‡z€Ñ¸­œQwÙ\õÁZú—{ ÝÀý|’Dnu©Í*Ë2`r†rO“åd:"£ dÛ^vâsž9µ·X.oúöfï±ö1:"s_ ·3|ÑŸ)Xvi^—²zÂñ(Ä$"Dc1§î1 ”¥<Ÿç“Ÿ*ê¾C>áRqDôÜ]µ-XE»± 8`Ó¡“L¼&Á+‰pÕFŒ­hàhw®zÓ}²g>'ÛžÉe@¯ˆìæÞ[ÿ¶˜X¾ˆæ9À6›×{F«õäÍ`}ïó£ÙÊM¬È¡ªíÐpò‰îõu¨cfÄ„E¸Qç$v|®°"”OI°G8K»{i&,Ξ+éb/Œ·ÔÙEðÌ…¬i.GCµÐLÆ€±®,uÉʇ™@3ÑCt³¥l4–?ÏG×nãæV¢æª¿çöOpkI€à>ªŸ„™Ð+±T›{”äò(‡ö*Jå÷'B =†òÓ ‡.ØÏ%rö㊤‹_dþîÃn»Nsèüscû»’Éﻓ‚­$¯ã\{ÄxÙ¦mbbHÄØŠYQæÎîðངÝêlø»RžíT A9Q. Ÿ‡ôPNRhÌÌß23).F' a–ýá{Z"ÂüxŸDy4Iõ¢lí(Å®žásÆàãªî X ú{*¨÷"@jñý»—†¦ãójœÏ$à€åÑy@hçN°2¬j]¯• ¡[ŒoYLBpÐR‰²eEHä?ÄZ ¦€Óû‘#Ž…¹?]xÍàÅËÄf ˆô—ÌDÓf*]ª*=¥ÎLº„±Ä÷¼ÕAASÊ«]ù±Ÿ|jpfÊ_fɯO ýàS@vŸåt“³ aU·Û}gƒø€KêuÏ@vNU¡ü| ÚŸç¦ 0°à>¡³¿‘'º¸ßʱj:@áÌñ­½͆Â|¹ºtm•-GHJÔírFG rLÜ6vËÒ$¯^Äõˆø©¤‘&OžGtµ’p&6¥±:n¹DóŽRåãcù¼ ©äD€NT‡»\HõtÞàŽ(8ŸÔÚ9ø™\¿w:OG¡YÐISéÎý’¹É ì"ØÔÝ£épúb pD Yhé€/x\dv_é;ÎB[þe%lÔ“à5M˘Æ:¡W{2^êßÑ_q-UDËbÉ'ø±HÈÄü‰i54Û˜\ë„Øfèý‹zÕ¢Ò‰ Ë9ٔœâHdzS?c¬“õïlcù”6ZlnϨԊ6‹EóÈos˜ æ“Åw±˜¨Ý?&*±úéÿK}LÖ]þYWÖ®ÿÖ©¿6ÞªçQÌb:Óë¬Ë›€[úŸhbÉÂécö>j©hAdw?¸bÔc?LÙÚƒï#¸ó£³QGC*Ä-¨i&‹í/I„u¥R¼y5+ÿøYo“òç” qSšÅ@íäõéRþ-èÓ„«“‰Í](W)8_%wÎâ‚?–y&쌳ÿ±ˆ™étò‹ÖQî: ïç-7<àé7–˜‡|¬?¢y ©6dÕ¡nÎ:ÏWTAHKJmîŽz$l¦¥ûuî^)ÇuMfŠËmSÃ2•E BÒç à «¼GOÔß+óa“" ûl'ñÒÖÐ)Òý“  Œ+-84¿¼`è²82¸²"ãçZP%÷à- —laÀ«_,^ûUF°ÿËÖ³GçÀæ°Žc[c[ayÅKýËl ìRýËÞ"Z ¾BÁ Tšµ°ï/ØåZå’g{ø ’R.û@Àd“iè­cÚ. È…:"Y׺©àõ´Ë8øÔA…wF %‰>ø†´p%ØÈ°ül‚F±8[à¯0NDŸ¯cRŠ­úhb¡}q˪]ÙéЬåx:XŽ{Éò 9…å¨}Š`ºþ¼Õ (žèj-5qqº‘çPÁ1î˜Rˆ X/©{±¤Š¤kDt jö_Åñþ?ùú®%°C&â³%¢eÊ­t>mÞ1\ÑF„#OýþN„ÖD¹*$ü€m… aâÛÈ&¥ ù´ð 'Ãm õ©×ëqÜqÇ6†¾"ÃÇ?+›Fáø¼Æ­ü‹±zdû´Ïƒ»lõpJ»:–¯ò®¥à!µ“×¹$5}àk^ªKª¶×ßû¨LF·æÇl˜*4Nh7Ø GÅÏËp!þ´·ñ?PÚ'M‰ß6Æî欒¡ø$’¡·Ñ²©O†ïBWjæˆÑpÜ_qq¹Õ>Ø âÇñ·¥x‹œc¤<êw1ˆU Ò—¯ƒÛÞØèu@{¶;“XSl2ûOºˆ{’‡»©VÚ}´¿Úß—”×p$=.7t¿ùJP’Am®*ÁJPps1±®PänÆñQ;V Ξ´d´aŸ…PlRÁX¾xö‚©„ÏÚN³£—hŽ_¸x€i‚¬§Ð4Þ;¹GŒDè‡\g¡^œ±‹eÕGaÚ{Š¡Ælg*~HÒ4rÅ’™Ý ¨^(¯rCe`{* ÆÇõº›ækã½Û±@Ò'$T O¥ùJøŒrlalݰçþ1 sÑï*ÁZh»PÓ/‹´H…öe‰5±ãäÌè„{ŸòÌ|>–Ž{$6ïãaGežˆÈ‰mt{Ú@ Þêéç§X¿‡VÎírp³ØðìRaÖŧ!ñ; „»…}¨±v“;¦}HØNÄ%;ýáØ C~­ó÷ýU²ˆ¿!.ßÈÄÆ÷¦®@Å",Tž‰.1(Íc¼#µ|Ì ±k÷×PiÎXó#.y$¼ e§~oœÝTåØ#ôqÓ,f?ã\¸ Ÿxmè Ћl$dŸ×$ø˜Ä‡# h©–+ëâMWëK’͸h–¾,¡Œ$³”š½4ÝÈýÕLdò§<ÅzXç2øHl¶ù@+ ±yV<É]y!šM®|¥Y)NN*SÝÒØz%?/û>Ø0RÙKF¾ƒåV©c~â[Ój=\îªÆïT—K傾"¦mÖ sÂ#ŸtN[ÑŒUªËͼ¨þÎ,èO^æ£Ào›Ýß]`æ-‚c¤eå[÷Îôû;…‰a¤Œö5f˜ìJ¶‹rõoi °x#„Öæ‰ádò”òÇp«Ë¡ëã>ŸXÙx£Âß×ü¡“è–ÜéânæÀ-'D­/5œ8ÝÒ·STºï_”dz#wÈíË+™º¬0I¿$ÉS/’E—Ö†µævà ØXÓ!Y;ê3©‘dËF\Æl6´ôs˜„N[IXvŽ“ì¦à6ÙEñ0CŠ”{¿Éö3ç`ÿ ÷ qÙõkjC¬DDëI“G…÷‹Kl[ÌÝлòoו:ж–WüQ‡­>t<Šo$=Ðw+‚Íå×ÈUª™ç¸Ö«š‰·™"ñô3’~«j‘ûf!|è_x3’å Ìl6öm¨Ñ.* À&&‹ÿ(uÁX9G·=û SÙzíâ™+Î7põÜF1B`ŸÄÞï^=†”á—£¢ã7 @²•Ÿ;a¶40ù±£¿Žwx•M¤Õö5oŒÈ²Ñ ûeú×OY&@Ù\±*O`ê€g¦—÷„ΖKdŽ9%¸|@ƒ©i.Ç„SúbxwÉ–ûñP­Š¡½;‘V‹m`Z·1AØié¥~£ÃIÀá“£ ËíJþ¶áŽJv¨9ö;8E±¦Ws—Š5ÓåýeßòFCX9í[Œ 7—OÖCÖõfv|«M¿X§½ôâPØÑWÄ@D¡w¶oΑúèvø`+jW|ïãu>¬3º×xÑX3!/»x:¡Åqæõ?žªÕÎCl,eÍŠN¸™þiâÎ#$lËPÒbnêr¨0‚ãFÿ¶ÛÖ—ˆÙQõ°‹é z™Zî½´…,jÎeͰRÖ¬›hÍ"Xs<õÛ[åš·é/<*NFÏŒˆ}ýû|Q“áàp¤Â{²vÅÀ£„”W˜–‹ç`ƒîEHo}®/Þ”'ÀÑ€v¦X|Bó¨h N«¾Œç´µ,ƒ„CÕ ÷kÜGW!^;ÚýeäKÙK!ð.I„š`ÒŠt,ýjÀ¬²&ÈcIŒó}5ÿŽþ¨w 㥦Π¦ºäxëæyåTðºWn62- (W«t1r/lµë¤sŒ³­Žž•,ÃÀ¢nlìÂ&qۢܣš9%Ûøª—GE ‹J0gR峎GâüIö‡ÃÞßÍy9ÀoóŒæRýÒ&¬“¯² ¡w­ù²·î†Q,ÍÛÞ´*ˆ•ËHÖˆ9² _´qåΉ³AÍZ‰¡P§8¨¥klÊó2Mï\Y™ÚÆ«d2û¸…; h‹Ä¡ÜÒÐä,ŸJ»è;éºÍ9UüŸWŸ+†]•Xjê1$ÙH¬çã÷=XÙ뛘ö¦?PŠ“—Ñq— n¼^çøS]jþ&c&ÛýÌÆåÊ{߮̓syI-/”Hý¡ÛHŸÚÌãRøôçëe¡tw œ˜ DDÄ-‡—‚øˆo³Îq8Xò|D’Ò^6ܦ!ó —*‹+Ì'}"ÄÁjÿ·ˆSÔ5“ö©¯X7¸ú¸Ç\<+ù®E¿LÄ'çG$ §°{Ô}øoî4ù(‘¯™O~9 Sóº *Z­ï ©ó ê`ŒV²109<^¼%¯sY%Ï++7Qþ³_‚Âkö­{™ÂжÌÍUvêÂR…«2ä©é:o‘´W¦á©¿i©¾:çõ¦ .ª•½¾œ¹vYT¾Þ&A6ïª×"«žX~:lôï½&$SUCO-ÁP%÷¯Üôo(Äxzþ5Õè?Gé…ùŸÑSÑüª`C¯¦aÍÖ¾ˆ1Êǘ›œEfYTC Bÿ=‡/nàpäŠLRÇŸ¾_1¬æÚ2UƒoN;œsMôî,^øÿ'‡¾Ç¦Fω¡–?ísX0øËÒªl˜ä–GâÎ4ã+Ì‚ÑÛÖVå§•ÌD<ŽêI —öÆ D†šF ðV¡Úê={$wxC›ÃÅóŒJ ©rtå,zvp¸EÚ«1ÝΫxº, fwQ¸Ê;›¶°gÙ­©d×±Íå—Pœ$¯\•©TÓ%ð¥Ë=š&÷ -Ûȳ*XþæÙyÄ îvW²§×ÃÉMþ›5»ö‰,ò+#Ϙ®¢9 e Z"Wñaó+ɧ,åÓaµÃ0’áã_ETqn#MY.Fy¶òJÞpEuÎÍ*Òäh¾?q0 ùÁã˃óàca>[gj­FœÜåæUñ¯á±rpã„Îdoü91Çvœ€ë®mT÷·áP["¢½ÆäÿiŒ€ëU/‘“FÍã$Ͻí㜑×yùñäôbçJ³¬Ó3L^Aéš(¨”Ò þ3;Ô{¼ˆ©Ï8âynòóý0 yÞúZ¤˜Ñå&O.êýAè,µÐ‚óÂÓZª’_ê,"²+5å/RÂ2ñë*ÃÝ4mº­9”j凉sbC×WÔ'ç#ŸÂ)s4eÞ¬Ám¡ÁjÐÜŸ¦Q»Í¡bqàžWá ­;.HË3Miºw‚Úl¥¢+2ýTL¹FÌgN@ƒqTbøPÎé´èÄE6¡¹ ÿ¥Ð/䨀skê3ÿ?FÈZ‡tõøþãÉYÚ§º1eâ=‘|492*qÝW ãÕz¾m…—+xÑC*}×oÖVº(}Œd^ÌVüs±PÂgÕ\ˆH#êÙê yu½[–ü{ÝÐÃMRš–‰Ê©‰Èúx¯¦÷ûw*ý({¾àí  n7¦>ì% vÖlˆk¢WW&'hQŠOSßf›Ð3Ý ?[°Ý²F…ËpsØ)ù‰ˆS³mŠƒðƒJ”z9 ¦õBU 8£"]0…5 (–~É 0@PpeÕŠ–Õ"–gÐ6Ž õ21)‡ÒNÑA/ËàhÏó}ìÃ9™zÇvwº$ÀL™¨YXb:ÁLgÃ~åLbPm™kDÉõGn[ÜÜå¾Óú¥=´uRÒK=—Ö“9zw¡øÿ«<ÑFKÞ§Ÿð E^×ÁïÎØí.jƒ*=¸GßP`túKïÿ´­6†U ÃG R·{öðm-çoïhTJ§¹D8,š±clz£›"u:¼èÅ_ÒÆ‡8·ÅQø‹ŽâaÓ‚ƒÝŒ{“ãßx;*2;lÔ£†óH–f²0ø÷î~J½ß„¥™ÞŽéíÑ0Ÿ²©¡Ì×^ k£™†]›äBÜ_õ=öŒ8„îL1zÏrUr‹sXŸOú¹óOÏÊL`@¨ôáž›Z!½6?&:‰Ú詯§eŸÕìÞÊ´ï¶!—sjð@ü©ýñqNu©Eòðl~MTrнô–ÐÊ€ƒbÖˆ¦âY0z¥Ü/tý” ¥D»Ko„gkúÙÀ|(äòC‹)myAV=Kʰ4Þ¥‹ËÍÈcßõñ„ÿÛ<Çø7Øoù‡GQi{æ®ùÝÁ!zñ+œ ‹ð’ÓžüÖ{›‘J>Ï#€œ ·q^À$ä¢Ê¢B¶_æÓärå—X¶Dˆðþ™Žm^%ð_dkŪQÒE ëAx'ËV‚öþýÄ ò˜ÒÅ_.ðæ\¹Kß3igÀÇ›Gcû9_=#~)þ"Ì!“ä÷½¾)N¬dK+tWù¯ó`oï4&eE[ (q÷”yÑ‘@÷›¢÷ãjÄ=FìÉñ‘¶=ñ+ÐPU–½:ñ\6ТcÒ•òÐD?,dÐ&õŒ)ꮈ—?Þ;ãŽj¼éq¡ÀyÓ™áñäÄ-¬¹>l¸Xîx^/DVZs}›©‡iƒÔ*Â]êpv:Iªe‡¢¨¤qZïùb¥T]ÊéÝ z\LÀÀætÊFó-,]-£ÝöØÔI üxv/9-w‚-«+\ nlK©qž},ë¦ÓöÌlzì‹ßl9h~“Ð)?>$ÑrÖràˆzóáŒw“†É‰STºLß¿œTk”„fΉArú!©“˜W&CxÚ9… [bœ²“rÉœS«ìÊ`SÔ¼ÖÛu¨Mb#´‹ƒA>ASØP*µ¸\ÁµÜPr"ŸÒ/Ûæì3gDá½ V©m0Êðª @^78>–'½üÖ#Xç(gM}_!™Â2>v” êvWA x"¢É¥Û¤¨Åh2úÛ‡ÉÔðbú [G?¸ºäH³ŒIÂr“ñ鵫ªÚ ðêJ¿Žý4Ӊʿ¢–'{LÉaæÑ‰£ù¼n?ê>‘ßôÙˆzný¡]ÃËj¥dëõVÉÊzN Hˆf†ŸŽRí+@v]ûõ½ipø`õú¡ã”¦Ž; õXIJ~E íˆèñûžX «–Fgqÿóûúm ‚ªÆ%ßb=Ž?å¥7£ÒÈ.Z’ 0žæ¢ƒ’kc&ª@´çÆɢ²£ÅõÚ§N&Ë‚Y·}£RÖ5•ÖÚ{2GY‹dY?öÂÝýAùðݪ°†ü)p³7½Þ‘¼³ÀJfð©D8¢»cxWŽË~D÷ ÔŒ}ó‘ÈøåÐZš °WQºaZŽ)†œ¤QŒ‘}I™ÑÆç¸ôrî2tZüRµõÒ†3¤­Nøv¼G5º"óò™w¼;RKµ8{ô±Äl¿6%›bT©ÿÌ»Aw ‚Ÿ‚…ùÝ‰Ö GÑAFÞ.XÚ—Üp‹3·-Æ®b¼ÀW“êÈR‘¾j.ñŒKZçCO2gÑÁ€Cæ VöHñ#ŸI2b/Á¿žœá‚WsØ­›T^ðl &·Öᦀð=檲™ûGÐ¥IH½JŸgq`ȼÌ÷wºB1ó… 3}ÓíøŠyÖôÝœ¼è~¾Èôãæ¨úþ×fÙ*×6º}úâý¬¾Ó‡ ’6È ù¶†ê•Ž ,Åöá‰8›9ßIr ÛjÉE ñ&f(åÜAÖâm§4J&•›‘Vù0ò®oÃ[“#gUŒ«R®rSø½ÿ šqRPéÇh&¥k–mNž-•¹Úù4ŒP«ë•GѼ+þ Sd X¬Zíª>d¸ßùéFÎ$¼9ù:9˜»Oº3od{¢ŽÊ²UÏù(ÍBŒ@[nû“³»0òI2o#Fåòä8êh6çÕ"%®ðdç^³Ðb™g OÌÂöç[FßûœÇ„cúÎàJâiâÙœhW)»pc‰4m¼ÁU7Y¦'÷±tF2ø×ÅGç«ÖæýÉ–ô¢‰hûi»ýÝö-ç€kiƲ̼ƒHÂý·Kºúõf+L¤ÅÌŠñn̆NÒìUŸ•uÚÿìƒÛ߃[L{Ôµ¬¹ö¸‰b¢YtÍ W ¸,îâjx(>foí(¯׫ý Ò~µ®'.ùí"ü–¼¶‰w4óé'][ý-YÝFèÇ÷Ú4¢›ÝË£lwï[ZõX~ïü¤Ùì y¾ÜG)­Ôãîúwxö Ò³”¸½ÃÆñ¾|„h¦\ê¼B_E‡ð&öh4•’Ná°9ׯªÏ$Œé2Nâ’«ó˜‹ÿ…Þ*¢÷O:Ú!f˦ULÁwOð”&bn¨à(Æ?Gk¹ ÉPþmæÃ¨N ¶<íTõ6À8=Ò!N&ªÔc今„rhîcµ}Xl%áç¦ïIð.ÞÐéVv—ÿ¶K…?ãï>ÒÔVõÁ—BT±áâY5¦yÉ.E†¸(KÂRÝð—#î}$F`ª}Â}ž§|^î3ÁX·ì6?ärŒ6ô*C©ðˆÿœ4LXˆ-ðWé&[yæÄ GÔgcì?–\‰ *îtTòë,B.FÎ"¤ o=dÿKäºJhŒt>Úœ÷ak|û‰®hyÙ±wŸ;jñˆQ[à"Ì9!73q²Í‹Ä¸/q¾6œ3 ê¶ƒŠ}­¾N*\Ý0—"°zÓ¾è >¥ËP<¹¥ *@Q)ÐPmp¼#Ú!”|¯ÜÇ@A[“óéø\ÑÈIn8ú=œK%ƒ ¿I Ó…Ü⸨[O¸ÐÞj¤ª›$@øèëð5>8X„9ù¹ËÅ8è¾Ú´ƒ¹b­¥³a³ñ¥(ÑÙQÇk–ˆŒ¯™P˜…Á]Ë•ꫯIt! Á2¬[Õ¸ÖZ<€gAÓD½w´¿U|‡Ü©õÐiöÊ{Î@É[^·INõ÷ÅróQûÞB_n,p„´7€ž™ÚKÎË~õÕPúìó „6}+›É¬™¼ø¥_ïâÁ w‘;´H‡sîÙª0k|U7µ‹%M4éü¦ö^ò¨/±ÞeäEé|ÔúHçëÁósÛÕ? ƒ`Uu¥}Êe$“ö$u’“󀕄`ûe&!¶~ÀÉ/ç—º°˜è̈‰ã²º~zš‹è·½å(ª®@­CÞ÷¤§õ/ÓBnÁ þ2U¦Àö ØÖ§O'¢}ó¬¶<¼‹é9­w$#S¡ŒœP4þéG¡6Ïç§ùÚ{Ç ‰¶`>+íê¡XOv÷ØRþ§²ïK‡|Ü9mÞ¡SHåjüôCñËÄ®r^W'ÄDÁxôÝ?°:éÌå1|û ­øo[ÿ£BP;Èã¦_;.¦5Ù‘tΫ¨¬«0¡1ê¥å–Œ Óúñ˜jÙ~QáG¨ãÖ‰›î ^òÃÁ·û±Í#á/hVöÝ®Îw<˜Ø¼‰×ñÉXÞÀ ï³(ZŠƒ¤Â f†×``Çã±`§P)t7ðyIÅU„9îsžœ½L`U "“hL,d H? IKg÷§C¶±Â5"Q¬~Ô¹ƒîÎû–Þ)úŸ cF2)•]vúê)G5odò¯8âJO=`”R A¯U6>9¤e“`G1u´ŠõÌæ°z`øCäÓA˜™.€±!2\32-'¸¹zKÈ)KV \Ž™å¾BùZîdHã'9àØÞŒQ¯Æw+ÇÛJVA–X¯7ÂYCu*6×û„ Y±;_N[ ³|™F’ˆ¥?¸S↑««$¾é¯/­6ˆ OÕŒè!ÇS=ç|E˜¶’P(Y“Ùb°/Ò6¬QüãÖlþ@DºP‚4ì4JIpWèZ$)iìÊlÏ˦øNªÉ·bLÎà–[ܾöUužoêE]M!ýC¨ê÷,5¶Ôÿ|KuS7~zßÖ9x¦ì~­ EÝ”7ßÂz½´÷{f¡» I¢îìdeüµW6§ ž³kBCf— ÒƒÏcaªà— j#o]idÿƒw|TÙ¾øó¬ŸÓmÉöÕ\0LÇÅÖ g´ösjä€RwI5Ñg]è}Õ"«-O_Á9¨E–ú»0˜ˆ¦‹âý€q æáO´þâæï¶Èn¤ŒG?úîÏ8êdmðkÓ-yE@ŒOèXë[¼þÑues gð.VŸJµÉ÷çfãŠ,Á…Rë*üéágthPv‚'ƒŠôG [,æª$c=6(»¼—Vˆö¿‰¸)àCÒ…ÿ°¬j1=.¡ÙïVõIÔ+fª Ü2rk¸0‘dapšž³PÆÀé4#ZkŠ ˆÂHJ¦gJ{×"ò ‹—HÊy ú䮹¥ðŽÞ¤^˜óUP&‹7D,YúŽäc©'q0´a7×Òï_ëÈoaxËr²þÊ-yJWöîÚl‡§ê<Þ"tì•F xO ^ðò®í7HKËýÞœ6EŠÄ":qFY®.ûvЈþ‡Š²AL”—4äDöÕÿ¶‹¸ýøYÅ™7læÔÏÑĶ+:mYJ›Êu…ñ|ƒ«ñ L¢Þ,UÁ² ¹RN›º‰U’Fßl<®Q—Âê24ææs”?òc¯Ü¸ì¬}áu²±¤Øÿð–í’êO»f‹¼ÉôekKsC’E>ýyo’xG€ Tè ²ÕgŸ¿¡—rÉ÷”]™Qz.{šáì8vŽí`j)vÏAYâ‘K‡sÉ2Š??è1àOšAìßñ³‰£y]bóörœIF:f;£Qd~ði˜–ˆuHg]ï›Ç&ôLâèVÆn€.߆° æQâ°5Fãòþùìâ¡›-9ö ð©4QÉ1Õt'MÓ^ Óñrº¦SlÂ7…ã$6Ú‰ (c0½I¨ žHÀGn}ë¿ú<12òòã7ø“Ùº‚×ø¾XíÒ‹\±gÊP–¦1¤‚ß.-ÞI¬*^ç±@D--ža‘¤Ï´×G‹¥’ùÑŽ*à¶ëžüb°ÔT Ü ^A+èT;“¿ •±¿ß`_Ç\oÊâo×ä,„w@Pi¶Ÿ¾œ ¨^°(c(î!‡£àig,±œÞ‡!W!@Æ|XîG$sD»<)öëÌö éÝB±}ÞµĪSÖ)d¢2í ›¤¶nÝŠ» ýœÀ¬iI^a¹OáÉÝâe2¯?ÇgšªM"l‰×+ #3O#]´ýéàz>˜|mí.OáŸð%ºõå {–°&òÒ\)À ΄ Ž.KE3²jÃ|¢Ñ£vayùx6|2-èÉw׃E6( fàb³q?ÙLF4qF¨­s×”±ŠZÑ“*ŽÐþþ¾ußyxWJ9Êt´ó~òK« ã2¤¡T§J FÌá~{MªkdMXÖ–Šo.¿ƒË¨‰v&ò-2ûD÷G“d¦š4ÌaHÈËšïM/‹B—δ'’ÆÊi¿v×my°hß·{ìNưufcqdÚtB4±}'­°Î]Ü"Sƒoþ ¡4XTT¬/DQ…‡Èð_!h6NèEç’âÕ¯15#ü#ƒ\HÐ1–±·×¾Ýj¨¨ {}VÌ”mÚº¡ˆ`ôº²Mp™´4ÚO])¤bv-*š ãÁÏ&ED"zÎ]ð¨=ëìBúÿЭüqPµ9*&úý¹ù¹ ¦„ûg×=p›„XEy½¡…uÅI³ <ØáN×iì0š´Râl ɆþîH|é*çd¯yËrHÑ9Ùé?/²N¥Âp³éãd“瞥vóãr2öXÃ&Tàño‘ïË€ãhýùQ÷]' Ç@õçÝNRTçMÙ¦œµµ–¦!z±aòep›Óï–ª¤„T4˜i,úÄ’vQWͱà_7Â;ð¥Fèü—IõªH<Ã5DÎm>ù²žtP?Iý$GÛ¢ûàÌbü.]môï2ðÁÃB©{¯gî?‘D¨ª 8H*Þn¹Ñ®¥ÑdÖ@‡Ò%j•8›’œaF6Pw:ÓÃæ›$É‹7šP0a²j7’™”ÚÂ4z 2Û¬^Hc6Ÿ7Î0(œfðw€äË®øÕ7uCä·ˆYÊOS×ËI׉1ƒ7®Ú&•¡§ÄУXiÁÙ‰®ð(D|Clò|YöÃOn•[6µ ‘OœF Œü6Õ:ÍÚòŸÁÈ „„Ž¥ZˆÕ®Ñü™ìçê4[¢RòqŒ™#¬^šjù@ñ‹ßèr‡0¬Åè&P/3¾%¥Ø±Í£#ÎHÖlLñ2çbBó-Î^mfxSŽØK\B'ûÈ  ÿk¨1ç³KÌçÝÏÏð‰áßq£n†+Ú]¨õõ[•Ø5·Ó¢ÿJôáÍLqw„Åʶ‰ÍÊE5àQ,祅öàèEË#TC’ÅEp¨gÁÒƒ"÷%©ÃH$ÃY$œR¶#*Œ­Æ‚°Ú@/9P<])bBíb‹¶i¡)^k“‚¸ ‡0¯ScçiS¼qéÝŽê¤$’ó†zÓçÕb]›9þ¿‰XÄß.²=ì†8^Ì“áÔ™^ZvÛÝ@ ³Å’Ør]{¤ëôÖLçéwP“®lÃ6Ÿ@é÷ÊþaçÛ/ëð÷@ƒwϧ-óÊmšœ¨ »€\t΄Ó᳓tò÷×H÷û¡aÁ#¤ãßÔ‘­qq㌟ðž—lôÀFÌ“‡ ëýPì“Ò ÄßÊ&“Îâ'à›¤g¿µÁ½ ¨ÿgŸ0’]\’[‡’Dª6Ï ×¨,„ùÌÐxVYG—BPx` *—I«¹0hÓ ÷/ t®SùÞO“jŒúÂào‹WAðGÿëšûèG±(ô$T™QšµA÷ú‰Žçw%JqØ)éim&„Ï4NìðVwËØçg„2/QìѹZFÒA…ÐÁﱉcq´‘ÀC´Žóv)² dÎÌö¤mÚÖiÈœï^¥Ñc¥ÜÞ:ã$–ãßÓv!°Hã]b\ ®½ÔîÐì-€ªÖ2f·RD—4°oáPDsº’ƒnÃ%aüÛ‘›c:, úe?æû÷¥ tbXàî·Á¥+©óëNùå™–0ÕOÞ÷]¥=oyi×"˜ïÈ>‚O)Têt[\N”DÇ0À‹¦1›³Š&33µÅªýj½ A”²ÓN1 ³¡;`›vÑsᜣ“ŠW´Pkö¨Cq›³S„j=%D3ú‡¨§ÉæÀáP²ò–³¹º:_J»}&é; è øý²“ÇÄ 2‚ÄÍ™ «>ç÷dr4<3FN5|jÍ‘\Ñm€Þ–Y*:v6-\élÕdÁoZ!/×MVEŒ™[gÐ¥Š0øýðñ…†‡m>Æ:ä*·ZÁ3rÞ/(RAiDĈY¦ÝµÖЗ¬ÑÐK>™ª¾ï<`êÃNZ1**¢ï®ÖO_ŠhUÙì::÷ë’ ¶e“ûÖHõ/þ…jCÿ1uÿ‡$DV²'•É¡`b\‚Ë é RvqÃDξÔÖj2u×OÚš°»õ:^ë}üôn†þ´ý¼ð]ã'ÃVŒ«šÀÖ¹g7½=¶ßv‰ËyT¤4’  ñ˜ñ L<½Ù—LrTƒV3¢’,a(A›Ò)jnñ–F^ÈÙNÅ=’J%H»ƒª¸ãdl}bƒoÓMºI‰ûª4MŸã´ÙÉr-%G ¨±‡ÙœÑ¸  ÐÉ’í˜Æ°'K@v$q”#Ž7´ ªïC.ÚÀ–ò¹Œ±Ø|íŸXÞ`Äqãyqäüõ«’#–õá¨SyÎÄæeýŠ’rœcjïM¹Äå9ù«ñÿ˜aŸÀŽ¥iYªys%_ä:]ȔŋGᘄn…TØì¶™jñ×ͼåž{Ú!ïù+l2`¤ø†IþšbS¥eýŸ=§”ÂC«&ä_½“ßhm!цUå¹,qUMšfkÚ'æ¡`½½¢n—@{à‹“€~Øp"¯%{œ!Ÿ¸Œˆ!ŸÑu89¿<GÙyšrÖð) ÀE"ªCÝöƒ?ì—*ÂZl8¾@º[ž}li¹uAžò³9 ó6q¼|ƒ6Õ>ÿ:Ê«‘Ê(Já r5Úð¸Ã ÎZ°”¿Ël.£r/‡<#Ý€ û=ÉŽ'Ê­êumH~+{œè8¡ú|CÒk#y“kG1žq-nUAtÖ©ÜÈþøçb.­^@ñ£Æ¬71äs6̬ {‹á1¢’÷7jv`Ú³éõ]—ê…Ñ$õèÀÙ²èÚò+U·ÿ0<Ç®þ7ù·ƒ…~%·KÍÄo=lUøÎÛf÷~j÷—î8 ½:ÙO›2?”e‚DïÖX±Löuf’•¹}»˜¦¼d‰Ù“¸ÿèj í2fÒ WÍ ÿ.QÑ– ¬fµ6óMªe§Žuœ‘® lö±µ¨”vê>MŒ *c;Їå”퓘ÜDƥ˃*ž!Rسª'Ó2íñ·ðB¦øA€uгÉμàY›sþŠBÍ鯅úLÍÔÌ-¨ügÔNRB¢Ýo7â|KaõêÌ›¾&÷öaØl#€`ËÑÐgÑë'mí¥µ]„¾*¢‡Ç‡®Ô©Ô0-Ë®”ˆ¢t¹,OyèB“ÆE×èý›–Ä™"—œ7ŒÀæ&ZÞóRÙÁí£ ^…Å᯻óôNé¼½2xŽóέà©ç†«Ü½Q`ý ¡SG¶§_îØ80J̪>âÎÕ„ç[& -×å)‘#S4Pퟜ7†;®i©ù‹H½¿á&oåw¿rLµ¼zëSiQš„¿ Þ‡?ïå³Ý„[£‡âU.-5ŽWthšP#ÈW ÚOÁbAš:{: Áùü] 5€Ó¸±Õ&Kgü@ˆU:I¢ÌÅWÎôH§Ä+ÈÁÌ:þ>‰9õ.–°+àÌ—%^>HVµTÞ°=¤â””ôS›I“‚§8ØH+æ½§Ø•ihSÒ’®ÙŸP‹`ñ ËÂõ2–›cq´Â:öqêšÇ5å.àSFMö èšß.¯Ô™ÿ_DFc>ii©ñ©ò'Ѷ !‹d¨,WxwÏÉ 6ŒÊ â¶ l2ÞóÓ$ a7Å·¡ø ¼ ˜#æ…pQÙø3%ÔYÇ¡ŽÃ±íF\é·•‹±t\ZéºDUÊe!å©5—ÿý'¬OnâyDOÍ®þp ½=hÄ”7ð8Â#Ç*ÆmÞ„ÝB+,¸ÎôÒ…ð.b ®ÿ&t€Ö…}G8ß„ãªdsµ2Ò„Éæ¤ Qtñà;órMÆÜ À4Â@®Ù@p{]“=p#pž9°ð/†£­±Ûâ‚áãf ¶!£oGq°ø.ÁÒ ¯m3Mó×xËüíT{ *¦£Ö4Cî\É)%"&­ä] ¦Õ¢i¶gþë*M»ÀÄ!;†Ž•ò· Ã¥(îZ¤ÂWü„%€Ð ïR?ZôYÏOW,z¿îç#o%ºôØøûMÎ$R'k‰i¯ÑCMxg^e¼¾ïw©ž$ÿ…°iOz¿hï¡X]?:ÙR™XCª67 Fÿùa¯“ûwï2 ˆ}æNpÔ@a«K ­;ÎôÑ« uàø(Ù‡«(o¿%¾4¹6èy_ÀdÆtúÎïA7ÉC ¹ºÔÀ¥»ù_i¼äÌ2zþM^I@/ •H¨PÝî¥*‘™ýJÙ±‡©ãâsâÛÞCtH€:î+Kz•ÕµpôÉŸf‰ùû\´ n â€t%¹¶y fÜ»°Ð1x÷4Rþ âbÜ %î‹å"J ¼JM©OìAÙˆÉF¬&ãÍVxè(M Qd¦Ü}IWº[ÎôNóC¢¸[ñÏD¸LŸX€Ž* P½ê¤HôÙ—­’Ü\Ó&tÍÑ£±žA*ü5‡ L5OÁ"-ûCÍéh(öƒ:™áº=8Ç 2Ü¢ÃMx"q$ðUŸ¾D…Ai…mÑQêaŒqàµÂ˜Ú·ZI¹|8•¨N¤ø¿!eRjX QO ÆZ«ªHæCüd·ä4€_nã6E[¢Õì(Ãï“ù Ì ÃršçOXœŒø‚oLNfÛ¸|„C Ä¯áÁs°u¯ÁiŒo”å7H]>Ρú³¯˜@³¨íoÚaþ£4·E듃-Ü8—Q•gþVWŽ‹ ·Ÿ,~g†QN(!½——[&MøïÙhB„½b¾kç ½²»¥¸L9iÚÕŸßeÑ;Ó~¨{t>aN,§ßž1¡±!£ÿ;ŽhÃíþ‰#w&b@hã\ ¸½;€%Ú"¾û8ب]õ›û²‘áæ xã5Ï8|)¼ã?½–T8¿à :­x± š¾èÒ0Ï yÜGÜç t™A\„JœUÖèå8Ö+»y¥7wEM#ºj¥µ$ÀûPl‹¬•O[vüG› ¯ÃàÁ[ÊpGD™„ú¬rYÒÃv@Aý39²Öl•\û±‚ÁçKiÂåÖÉß3±/Okö,´`ÎpÚ“Ÿ¹IÈ…¨Š²%«Võ?|÷Âlý1ɨîµùbj|ž’y|i°*§íÇþzYUŒ¢%3ãQ ^ ÝšÌÈõ‡„Ê5âg~ûl‰8èä.Oo'ñçèJ¤½qZN+›5a+P¿Ï=â;<^d“óÞ+¯ën/ÉhÎS™o4\ °¿ý%ÁÞ±Ž!å!ŽuTâà Ÿ·ˆ(åz¥5îoíaVU_‰ß7¬' Z}r ú}ËÓfÍd Uù! Ý$CÀ}b(ÎöSì]½€õÜ”“¿ &Ö•Cuݧ8Äà±öåß½Yh5#3ˆçWrÒ`ÑÅú%2 ꟦„ žÙ²nh9qwõN*ÅÛ÷ˆ¸F¤†–‹„àñO¶ª%x—ª„¿©Z„¬­"wzïbÐ.«ñ'£^:áÝ !H"Žb¶ÃB×bôeÍ0³G- "c'C[kQe^øïÓ W›°Þ<•§x ð,± M>.]ÒËùâí?ÇMÌú3nϰë¯q‚¢%PjÃ׺»jMO™a™Üv†L(ú¢¨[wÖâU­*îúòñQu´*Û~âÅLûg¿­øºÜxàœd©2KMþ 2‘ì|¨‰Ÿ™.•2ô¨\nÓikè¡) ǪUœÁÂW`eÀì_ȱ_‡—’ÃPq‹òÿ W†²+ïs†.¦h¥PðU¨Gd’¡—°ƒá¼™å§O:‚>:Tžžf(è?ŽqO–_ª®â°¦ô»ÚÔ^*§r†kjÿÁaÄKŠÙ19:]”dühg|™ýõtÃK«Ç/ð휒\;ioãÞ7꾚+SqøO—}«1ž~;)Ýâ5yO͘dþõyòË1M€ñ®³¼%*e3l5SÜaÏŒ€(5¨ñCÓ$Ž?²JDŸª0v.¸R%<Á‹$,[ _B`%!à_*n‡#óc$Qe@Ž‚^ì)˜\x‚-(³ h]åÚ¡›Ú»V"Çó£ùU`/gþÛIdz2$eüJî·j­,ðÅm4'+û¹D¾·‹dƒóÜŠ?K·àænÒû[ÆWœ±f â‰~¤Ïù¡Ä”¬Ø6ã@½.ð;kÄŽOõž ¯eFy­ê¸ë@ïC?½¤PûÙag£Ñ0&üBl€¯°ÀÊJäJÐö¤ „'³"“G¢–sø)pNŸ 0úªo·ØVôZœ/¢ýlL&")™¾;z¾zSÓW2`¥”óŒk7Œ6>"‘ ;¬Ûp„*#ï®ó€Æ>PŠ7J‡ç÷‰ˆYô‹Ã&Í ºTˆü ‹bœ{.ßù ~Ýz’jûs2'ö†UÌ­ó5¿áÙÀUÜ*E~N·Ii:òã?—?ʵȗ~–효•{¹ø3OÛk×zás–T¿¡ä²<b­8_élèiÏ/ž×Ó¦ ŒIGÓ¿.)póWWBS‚ú³=[Hú#ÛZ²PAHJÏ Æxóó Œç\`Ê ¥ çÚ{ ›š2J-tç® FZ«g¥Ò¼ð[cÐ(=%ŽŠä€-ÜlŠšiM3·ÝºdÊÌ· •qoIˉFàôêäU–8­ŠÃ–íÊÊÈ¢ØÙÄØ¬ƒé R³v0Ï¥©ÌZàþ‰gKð¶Âhš±¶­˜î}{eõ¤xHYÔͧýD(§Rgu_H¦µ]cÁ3ãuEË‘{‹•B™^,;™ö³5à±ê÷Œ°&s °ŠÿUÓo:fãÒÎ ™gv΃ÄC¥Î(àÓb T´qÄM É­(ÁÁ#Mw‚ì‰sÀ>âËäÖpÝ ¼È¶E×ÛíòDb…•-ß4]fo`‡Ž RB4å{¤[žˆÃ¯ÏíW‡\2j•׃[Þ¼ÄáeõDݾçèïþÓ¢5ÔÞLæþÉXoéì;á€kÒ¿áW'ZT…{$“O¬ïCíb Éqoò"i5\Þ/5·ÖVïZ@ÿQcŒ_}9Eõ—Eo7ÉæÐ N‚ô(_0ë;ìƒ6hÙ+†ÔGΕÛš8¦[‰0rWÙªF ”Éá£qwEa™&÷·ÆJ›…o—î›Yv‘ .ÙÀ„´iuBìí¨¹ÄVÁ>ŸZתAñ§²–¶×²-îöjƒsm(† ¨nŠ:›3§'žX6Û2ÒéV"U±y9ÂR˜à¢õ óô!*lalM´ßýer æƒÄ ‘3Îïö'Ó•º‚©VÕËŽZª¯4(tõ¹¯£N¾ÍEÀ+î¢Ê…ßXÁ,HŽÏTÃ1&Z!‘™Ö§2 EJtSƒ*î’h_YmE+ÿÒŸ™äé ÏÓƒ·Äë°0lÎpl}äMBÌ ®ß£ñú“—xNŽ÷BüÀßšãçªfÃ-š Êx·à¢Kg»1¯”z Fvßlc_ò´:¾„Ý;EŒ-Ûžxñçè¼ HÕ‘ž¡¹TÀxcüÔî¿C µ}I QØþÄÁkÞc±Wê‘÷RmR¸£1ÀCz±5Ãu½âkúíãë÷<€ÈènŠÿhÃÐ9é7†(r„˜d±çìmågÝh“óÓôåæ›}6ο a -"Ùê@" 1%».užÖ¢(×tØvˆc{y<ð÷uèí "‰9ê ¦íÉâÓ æ)Ÿ¸7=6Dl´Ag(5È•­ÅÈ»xþí„ =kãÔÖûãÆ3àuŸÔkh(m"U¢Â8”ì˜ñ†êÜ}ãW¤4SŒÖN\.f“º¨ -¯Qp¹ˆã½D #bô\2µLÈšiyÑpœ•¯‹É u¬ÑÀ‘Ý(z¾KˆEMž¨¡4€­| }‰_üà T›zËóh©Ô‚Õøaº“Ù §÷¬½þÛ¤ïÀY°¼Ðf ¥peܦóEÃÑÉb¿Z*ÆK´ºdüš/O…ó­—‹ÜŸ]°Gá6ÁfAãœh®àò” ¿¯$Ïß-%ÿdÛ‰fâõÊàf2dÄ57MHëåö4„¢×™¯Ž©¢ $±(Ð>ºUúb²u²Ü»—7–²väøíŸp œ„m`Ý’+À÷º/B‡tJR«åANyªb*…äÞè¤&îÑÀ o«”ü„º¸ƒpœsx7…wèÃÖT‚ý±T‡kÐú’oOXé¬ÒW¤ȧu™„˜–eeaφ™0}±ŸÏ ü)9bŠƒ ÿMüߘ¼ô6ø Òkm½8/?‹‚’»9OQ*‘tdûJ6··ÆÎ)ÂÉß„F{Ü~¾´Ô1EŒ*KÒŠŒ u5Þ^ýZÚž~MÃ<ùdgs!²È“qãö÷ŒôÐöÙ—£«$ý…7ŽðÁÂY*Û©<'”D±y%=cµÚJ´Ý`ûäW°ä/•šïk¤÷߬Æç1Ãs5•,‰1Éóʵ¶ºZÄ<`4ÀÍøÃ¦ 1¼:À®ršJ¹Ú~‹|²¡ _ƒA·–|hƒ7^¯M" ì—+ÌUóWû“þy%åeyŸvL âØ:”QKàfÈ*GóËl™È~—9UÕI7<è›íî¢w¿W%¿kH«…brÜá4¢FÊÇEg¦¢ûŠ­. £bÙD®ùLkòW¨ïòUT;ùIÛ^éoè7 5Ól‚HŒ±6Çç™Æ¾-]k]!ÏmâzkÂ~ˆJï¾NjWXUdêÒUdÌ(•i‹;¿X ó¬WÕ颺N—²¨¹¯ð©l#9¬dœP{¤Mõ>ø$gƒJŽÿ›§¼4†Zb .Û`Å–†~AZ‰Íãädp~ìåÇoÝ#ÂÅÐŽ/mæD#ïd•¹µã°^­'Ÿ·"ßÎîQxEóß"ÝŽü*´Æ’›×Ä“°ÝèÝ7n+‚•Ý[Ž3¤-f2Ö~µ‡æ™‡éTÀÄ™ÑÀ¡8*žf"¼T›íù*Â\vëôEµ)œØoä[\˘&þÇ¿9Ó£g6Ü5eÔ4S@ªG8¸• ]í>_;Ôå·^*á0¾mÝ€X-s|ñXF£š\Ís“Ô·‡XfšÕ­ÍpÓ…íí#GVÅQ/ïÈàhõ3¯ Î@¶M厫°Z=Èü'~&¥RgÊß~¿¯&¬CæŽ<\ªæÏ›£‹nl=J꺂XT`|uãrB=¤Ýº$ÝaÞÐ¥[úvÇ×]ÈfÊúú­Pü²ûKÔO3Ûט…aÂPjÍ×Úä±òÄöÛ<—¸Ph¬¹& ´cïéÌÌieùâÞïçÍŒªªÜ]×Ö+2žy;¿£(>`/KÚæßÿü~¨ñ¼µ"'&¼7>[ ÜY0¬眇‡­Q˜M‰_V2œõ¢€,mw7+"çÞ–ÍÙä)õ¦—‡B½<¬kÍ4û"¢Ãeþ0ÿS…³W*Õñ%= °!IŽÒ2˜Æ>õ6Pr)só8¦ã\!p”PúT™gÕÉ ã/ºV³ÜQldÌá“È V#q}î2~¢‡)|¿¼·9M)œd܇&­f–ÕžÔvÿq>òKcë«Vvæ‹­Á³k>ýíWYCÃé;¤Å<ö&c4g_žŸ™HvÎÎn Ÿ.Ø;¬‘@+íÚlSË^#eX®§ß‚_ð&›|Ô‚R ûþ4–à26S[s q^Œmß^ÎJq›Î j¬ÿ“Ö Ç/Yt0ÞXÀ4:Šè‰>lÉáM‡X½þíÕ?¤fkÝDã,FÃá×G°‹öâú, Úç*`-|µ¶/xyÏVMWèQ·Ô>Ú#ïp¢¨¾ìÖÖWDW¤G±ÙIÍÝèwaŒÆÓÈojÜŨï)‹±k!×¼Gàïöo\€ sëýéÍ’Mëþ;) !è!}•xÃ"O}mñÒŽ°¿[s.µ§Ä¾¢âß ¯ÄÊ»¯Zf:' Är¥ ¡÷Ìs‚síâÖOOÙ¼»Ý¸²­ÛëÀ`ÕÁì÷nòe²ß¨w[ܱ‰+ÁGrâüRðlž"'èÑ\²D}M`Ò³ÐM¤{‡¥'ÐY)­=¼F¦eú¼ŠyÓ(—äï@ýŠ·A–Ÿ›úž‹Bdz„(Fb𼳊&J̪ҫ°)àËçK1ixr£•®h<%õõhxv¦È]WèNל°‹§dZÛó¹Ñ.“¼ø"qýn>ß§ô‰}á÷„R¹‹.Ù¡°2,o>ÕéÌE#øíç~Obm-²†ôç§ëNaôEŒÐr»`ªªó„œ0ÐdgÍw8IëƒÖ ÝbX¾BÁþ±é²?oEB‡£-Š ‘ Pgâ>jYü¢oiÀ kÀY*éáâúFà Ì[4J¢ZÚ¹~ 3Ö)°;·óõ—˜&È“zðÃ`è¦Xmòwq!¡…Øv=pT‰5L šå>déì‘ ÿ é|ö¶3Ý"+5gÒƒ+ªù³¦LYEDÂí–oîÀb«6X¨j)| ~RtFª$å#…BÔSßKUÚ—´x-™30Å],‰ÙÈý×Τœb,ȯê´RÏçé¡‘ÒMÀðÏ‹d܇î&^­Ð†^GW)‹í¡ÓE0‘›W*ÞšúÕ>døM;¡'Í«få÷‰¨ H—iN'fY¢pÒNİóÄí¶‘;¦s­ñ›¡y\i`ë|È7Ï‚¾²¢å3’Éü^£ñ¯. ^@Ú¶3è † ʰivBíÓ#!Ëg—ëL·¯ZiÆívÌT.Òf¹¥ŒŒ%ÛrŽ‚+5‰èöº)é‹ÃÚ¬Cò˜óïrë¤è}aM§êæçÒç=Øg}œS þñ£nu³ÏßÒôï^§VE¼Ôk¤éÙŽ‹+–Ь(`HE¥X? {ER^yHX®<ÐvÌý”嘑¹Ä%f“©–Öâeê^~ªû1×÷Åò#=ÂÉÊMÃ1— nsëü9 jb¡ä˜ùmÒ˜2¯CÕ_$@¡tIgbãtpBûð½:ù?ݲ±Hèêy3°Öõõ±ÊpQX¸°ÑÞ¦û§ét~T£'ª8ÎŒºÁ³Š˜Ðó0¶¸aÕÐôº—pnÕD[ª'@û"½Ð]ô)Â-þ¤ 2[?2ÖF׸Vh‚Êý«Å/*­SûÝ8UEª+„è$)X<‡ý¯ ³ó 6âQ°üoIµ‹ t,îqåñš…‚C·áÔ˜èð…ž±;«A^6ü’ ¹¼a9\C®>ŠÞ4çŠm¦/r—nDz I²íÙŽ¯ÒO<9fúð±‘HÚù÷Bhø‹Þ!…qÇÀ™Íq$Âz VÛÎ˧ª¶þ­µK¹—Úö&9P…ññÁ,lülnñ¨ ÷"=!‰A9´Ž¦&þ¶ç¼®Tø*káÎV ]WZ Ê_.@-ÂÿÿŠX$ö#}‡wÏÆ£ê âº)€H¥°}ˆ‰ÎIVur££ü¬÷K†ã\xïD!,šNˆ4/ëá0ÅH9¾a¿‘$Û¾8UžÎ«(kÔ-¸º˜á¾AD’ +®‰Yò.hiîÎs£KÀ Ïéæµp¿ÚqF#= U¼€Êí.Î[\ïrlùSÀ²è®!V()=Mà M†±?~Â¥…ñHpMÆ—ÂÞ ¤íÏÒuF:Ì»*†9¡XÔÇ}\hû¼D†;ŽžNy3¤‚…6sˆë\l¼õ¶”SD9;7þÑŸÄõ"˜Ë3$BC•©mÚ u+å ´Ý5ð¸÷ÙJ×ÃÆ#5[jáoòIõH ¡3':®«Bê˜EÞÆÜ'ýœ^Œóþa´ð÷4Œ­¼ôJƒ8qÈ?v)Ç8UÐY—ü!òg'FÑ,KS(inþÌ@„›×CŽXƒ ˜ÿ¢‹ÈàD˜pR:kCœApÉ,2ë@È ™ÝÝ…`ýåú½qŸxó݈5]‡0·ÌÁ̧cšŸG/Ñ ì=ã":Ð`íµ˜˜ö.¤å›©+­Ê1üG‘%¨JÞI*pJ*Ve0,†W_ßktXÈ‹?žµÉ±ˆ @c–ÀÉk^›Ó¨çöÁCØ52VþÞA½GÎ $¿]#v'¨·ªŽn«`À%f;Fs®|Ì\bÎØ.ì5œÄa¼Õ º¬ÔËVŒ ¤±–Q޶ƒ}—°ÒjNWÃêÕCž=ÐÔò£_Vˆb޲s09ª ï(òƒ.Þ•?Ó€Á­ÕyŸ…<€"⣯ߧƒ)n ˜íÈêÞÌA’îTBo<èi!匶f¼'8ëçäàèÌáeÊBOk¤¶HÛyiûÞ'0mœ‘~›Û«ÄWʯ0ƒDe}Dì?(ßÉ`ZÇÛ)©ÿ@?¨µ¯áʉ¹’2’c1.æ.øZ!!•!¢` ¹ý_ Ô´ÿúRM™¥®ê¶MÚÐ4,…—ÍQOR4Å€wMp_Ò0/ÔúË2.®\NFrf#5¶†ð²ÉåSSã­— ìgÌJGs|Ö]f¥‰ÐÎÜOº#TŒ¯[SãH¸~jGBRÂáž\_aR©ýð6G S«ô–—ï¼×Zv—®f#nA2 <Ã`§ %‘e”­Ý £6}§:ÍÓ‰–PC‰Óè%* °äßÝ%€)ç2(øºe’RG^ÏÈ6„’Í«‘÷­+vq¢…ñߣã;[Ûè&–¶5u–U#ö(â[i†¯fשz•*ñK£Ð\QÕnÓÍhhö «ûéõ¢4øbNÐã×e’ÓÅmjLŠ`á¶¿ü0$ð9øôÔ²ìRY±cØîÞ "ýwïócœ+¤G `þFó©×4QJcgh–G˜j…fFÓÏ'Ä3S‡Fó1T̳µ}Î/„³«ÖzƒK7E–£³²:¹0#`=¤’öz èÕN,yLY e&;2GGÕgœ#°ºŠÕ_¤ì@Z!:(Ÿƒ&¶}}4‰–„ù¿­ãµGq˜²sÀ¸=͵£˜ŽG/¦¡¹Ð…ge¦l"Ϋb›rx&¹ž)+ FvLl[ªH{ú3P¾É^K¤6—¹‰cŒká|× Ts Í %|Žù:Xn܉)\ù"?¯Ä·ÞûD«Eédp¼,Ê4­é°Çh‚ê¡tN€ô²£oÃybÜ;FÇðÄⓟ¦¯fÏB˜C0º¯¡k¬){6¦µç./ƒ.‰Œ…Ü2ÐG‘8‘VÄê ȓɣP”3°UôÞìß+_|["ÉÎ:\#ñ’¡;Þ6€MÎ]bu)ÆgÈÛýxæçÔ‡¾‘Ó+)ª"nR“OZŒ¾éábÜúÁ2Ö/øm„7fAUóz?ôëµQ.âS)ÝÍø™9؟İw>÷C¤¢u…BÑŸ€P+µØÐß:«5‚Ø?ê(êé eNS ЦXZ¤ÕÑÐÀ˜¾ô¨qê. ¨…Y/n6d9µʇÇÔz‚7,™wŸ ¼†e`S¬ÄèW£×˜ãô-„µ¹yˆÚ?¾úˆ Ñrr.â Ø§ºáü[ŸqÔ¨IÙ†Ò7kç<rÝÎÿqPÅV6ÛX!€2|i‡lÑG›‹îÂ5ñfoï%OúɽÇ/$¡:]û.2%Êq¬ W8¼yŒ`™±Y VÖÓæ·ïœ²­ EÂü¹ÂV>ò96Q.|k–9nõÊ“¶-j¹~èèÔRÖûLê?ßt©±rŒZÙr$h-‹Ý‰j(ÅLÅ×>†þÁç©´@Rçy±,…uDE1}W=T^vHó Ò>ã|E†_TÎ-¶I ¤/Jå¦Í~N–á¹®VvÔÅ00TdТÕ]²òÞÿéI·õ6†y’¡ôÓ&¦‚̬-¥W þôöàÀ”m¥HZ5|nÄA* ¢eÑñ[&>$©‘â÷E*}Á@ˆSÔk ˆfó}Ý”`–%fùXÍ¡©‚êvçú'óB9µgÒ#:*ŽíõhæøŸGßßF w‡´ØÕWF,±ÛŽ®µ÷"ó3Þ7ui ãléþïnLÎ",/@$zGÄm°Ó-cÏØ”éó>ýh)~¡tR\Ä j¿:ú¥¦ö °ü• þÆ¡’Ü¿W:øš¥Ï‘™‡¶ ¬!„[i%Ÿ¤6’ɹ6SXTwê]ç’–&%ãµ R̘Âuï'WE‰Ø«Úý=Ü×—ÝÍY$¡jn j; ìµúH9,•/† Òè! Q,+ ×]Y*­l›|ð›~y—N~‡»¤ «?q÷-8’½œ]äû· žç›üð4dižÎä)v(y©‹ºÛ무•¬:ŠhT³”qýè™Uð1†·Vx¶8$9׿ü[U:ᢿÛ÷ذ¹ º7I,µéÐîJ¹fW80ùn4“÷§ÅA¾AÏò&ÀH@ÙðÅ`  ÅÝHÜ}/Pâ™wÄnYO€0J“öó1År±x“ð×b䎽ڃŒç³è†4ç¥Gà°ßc[iP†ê¦näý¬M–vÅ"Ʀ¿)à.=T½©Ÿ>RR³ç’×öœ.då¶}_( z«éŒ?në¸ýôsz9út]FÛ_Û«õ™qi¤99Æ‚÷õŠbB‘Œ¹-ÅÉ­vi¬T/s qLSl¸¡—WC`£²ï íÇA†Ãw×žÙØRt¿r«¾§>|q¾kÅ$½§NÿUãñì÷WZ`Pd5Å;þ–k`Vˆ·ó5Öº"¾ÊSaž'ä4¬Ö)ûAµ›+öÃPŒ|Æ0˜c^”*µñ#¾Ĉ¼G·¯Í À†®*(bF2þîڹדçÇÂ_ÁËùÅkPËæÐG<+7Ž¿n-qj¼ãM‰™"|N÷…=œa„í}Mvìüq”)á Þ,o·€kt;Òð<.+ ‡ o˜L æ¹<‹ØÉÞ¤Ä[½ÞšÔÈž?Ìâû?}G×êÆ¼ÒŒ$ªRŒG'^iºUõ«‹›‡™1Òg®ÝÝôg8Bä üû׃0eCœì Õ_Æs,.ûÁ)Ì ׸š¾~þ"ólHÀ«;Î!Jr†ÄÓÇ l¯në4Ä"Y†ZÞ»ñ;Ä´'0sH#I³g§A൲5uyÇÊÓ¥‡¹–ú·?tFàp)çeŒì`KŨÈ"ò¬¯µY%•ùš˜=}!¼³Ó¡åwA\2¦TiÊ 1mA2}Q5éK÷õgZ,nœ>ÅÉÕ¥»…~ˆ½ó™náæ[:É‘¶ŒT¼t±Aâ½ORU%–®Shþã-ü®-˾u૎Ýù²³«m+Yʱübb1>Òâ6XgÒ”NMò‰$——#k6ͨíûkúº^y)¼ !l‡jöß\CüîýÔ Þ€}öƒW¥y£ñ=×ëd¶q Óçáë†^ a%F¶­ˆt±CióHcî:  †4k“‘udˆ¿íJ¿ûm*”Ãý¯Á±ÔœÎºƒ§Âi{|?Â0¦n‡EÁ´C@UÍñ4HŸ/YÄ-oš±øÚXÛvwKø½ŒÎçšÆ«D¶!‹»ØZž£9“÷ý&îÂU­(íæ©?c ¨öæ{D7¤fz Áh¥·>QËfPnªt9¥Q’ɾùÉkA&º’Îø)ÿHú,Â8ŒÇ–r¡ž•}kW[À ds¾±/Ú·LƒqkGO•”ðp;õÒðhŠ ÁÁHú/a­ƒG5}4Xû%ò)ká)ymó¢•6?:–4.H¬&ºÉ$»»Zsü%•Ì‘>jQÇ"@¹œ—'…ÃÄ-²«fÉuÞ*ɹG\÷æŒqõn"’†ãÕË©¥-CEíTºlqJ§ôç<¬¨@—Á¾™Ös<¦Oqàäóˆ‘'œØšc½{3ËÚ}øëèøT*à© \’µ@¡îü½ïªÊP=ÈK œ+ùwÆÍ›Rl‡ @¯XÁu|p©–mÿºÅ|üGÉ¥åg-ÈŸúN!áÆîŠ®-ò¾ÏpÇöUР1 î=v?zð€b²héí`PiàÆ ¶W]­áÜ{jû~ EËE£ºCs`’Ãø¶˜d([ ‘Êía-;=¢âºpÙQÊC \cæQWêNmëôÍ ÏM’EA>?\—d7õR2m?#Ú £ê(#]ù1Pd—ðNh U=ãZ*ÝÛÒ(§G`Pô *¬5e¨ZÕ‰,F-'µ¼õ>Œ±èÿA[õp½}QC™Œ”ÎïVƒãžD÷P ‰,XÛ§§a–nóN;zÌùûˆ 9è°ê’]áÈjñn $z™£â‚«Ñ/žx¤¯Ù¸Ar•Ÿ~Še4 $)i­xÊQ¸µ”ýõãfEµ³¡r!éá(@ο[óÏÕ#ƈ®Q§ýa;éæü7º‹Ÿ'Fœª—/4€q2Î J@?»­^%é›üà&†îLü¢KµãJîoM´ àxÏm+ƒ0bY(mïäΫhñ³Øfù´ó`}^±-©Àñš—X°tù.¦‹ià9Dh;(±¹_Þ®õœP‘—+€^€6™ß@ã@˜-¯+¤\‰¸iWÔÔmm«x˜ü‚(]”É]‡ œ¥ jœõMµÖÙ·YÃý¤2~ÕëõE~³à§âr¸3BiÐò ,9W6ÔÂ;4!™§ÁoÙGÝïù”Éä)þâ^3JÙX«b¯É¿Ú˜x+¨Åóá %ûìqþ._mÚ{t¬¨…™©gÀ.&€1¶{Xwð×–‹Û»8$•WÇÆ%JDöM9̦i±H¦ÓLj‡®]zØ\ù}ËaÅð)È·gÌ^€ÜPòG‡£©¥¦4øXdŽI¢œ êÊFiÕ}ÊQf•@hx­d7Ê0øêÛsOàŽ/þMZò0¡£Þ³´{³t›<Åû†4tdí­ÌÁOüA\Xm¡™1Ù«¿" ¦2_Ë{UtÀ±Æ‘+®Wx:®'ñÎPŒ><Õÿã÷¾“ƒÈ¨[œlþ!^EÐØÔxé4­ ¿-ª!âòÉG%NÞFJ呜afÎlÓP-JØâÌp(1‡ÀUøìuëñOÕÍ d[<;³BÁÜ‘©äÀ¯‡9˜ÃNLDÐ)Æ~º*ÃDoë¹ã‘º›P§q¨Ây E¶”ð{énÜÀœþw%í~£Oh¹V¥ý³3—HæØZ±÷"üŒÙ©åwñŒ%sÿ§zî¯IrÂb|y«ÉîW'Ç]‹¬,9Êæ—Ûù‡ýC¬Þ…„á7A¨§MÕù'­ƒhÿ$Êc,p#ûÛgVO“’ßGð«B× ðÂÂk9.çã±d­JåAìãLÜu“(Å 3zA+ ’¸”¤¨ ÑÏ4>ÿõ¹îjòá>žÝ‚©‘cý€c£¯[;°+Í‚BK¾½Ò+ý¶Uwº²mß7n.6ÏIÜßö‰s¯‚eé=ßhäT앱²©°+¶Ê=¶ùæâ«C÷Ó[´Œ@Ÿ;mIiD”‡Užp4ðpµ'ÿu¦£ÖÆW%T_hu¥†F£úÅ+.÷|òLÑ. ¹øôâéÜ96*ºcLá.¸«è k$ê ç„rŸÍ ¨¾vŠ×"(x+8Í•mxpøpn¥x.n̘#£­*^…gƒoÖ€ž+æ«v¡®{ŠiàÇÆâé6ì[ÆÐä¬ìüÁd5Vû:6«e€õ$ÓÖÏçâÞ˜x±óù¥õ~¾ˆ2äCéÓË~·O¥É¦xa !»Ã‰–EÎøû‘çiÚvQÐL¯ ™¥#f‹˜TÌIš€Ãë¸îÓóJÉâÁlz*ó t›ÿRc¬Ã:B ÷<¸cï³4ý²Ó€ Z! Ô«(;Ÿ-òF”v]^+[L.3è"=Ú……EÚl€èÁío\#«Gé;K$GÃ@Ù!/í²ü‘â=ìhžÝ»ªðîw7k}§œD¦xÆåòý7NLQõì`jT ž_B•žÙ€D„¡ìU÷…u¿RqH+wkREœÀ„íù±Õ9ƒ:säWWü;R0iš À–æ*ÂýÂ>Êc hVn¯sRðX|à"¬âÊ?;íïšù4d·a)Šº}vÀD™8¯…Pm*Ð-ÝÝjfS¢ÍiÖ]jïmE9½&‡Eڦן}ñ?÷5S¡¤š•Ò—ô“^ûH|D‹HÊ£Œ¸¿à4 ‰ÁÑêaîì©•áƒ­Ü F+®ýþ¢ƒÂ?fH°aLI4ÁϤ©¥iDÃ*ª¥üÀU u}KßL@¼?ë¼:4TýER³ÿ„ÎTÚTø7o]ûSKU©ÞÚ’­þ-ªæ\²AIý™¢ñφY<] -NZ½®K[²UëÎvõ$y ¨Ö×2ÕSÙBþø³ZBÎ_.øe<àŠ]Àýdvx“Æ,¦ä¯›ìÌoŽyLòïbxjxYäœ9[Œ Bˉv_Ø ·®ÕÏêŠÜ0 ð¡uèe€§›h }@ùgYÚÀó “g}È_9uÎV›QôÂÚ+{X¬c¡:±qfÌo&Vê¨Í',Ts¸BRV×aK¥Qʳî¸I×OqÅÂôq«Öðµ@%zü#Oš=°°b%9\$ŠsO®>3»·Â%ׂh#ë{»ør³aœ;ƒ_é–d@€ !ÕVöœ_aÀRûû£®éÐ×!­’)pZè–Æ±Š`ËÌH‚·gÙ5CPVåc>{/¹Œþ 7P¼ßˆîiµR›¦æ ýí6Ô’Ó£¹3;;~ÐßK[BõªƒÑ€©vÆ@iêR»ö+2-Î?È“«Œs)ßNm·ÿ=.rÕgÙÇ|MðCÜËPùÄÆþà.~:ðV VMqÔX\Q%ŒéÂ7FWXÿá´' Ƹà“ BÊ´¯» PȽýC‘Iˆ´ÑþÖ: Õ-b¨XÜó‰Z^žF ©¬c|šXugˆÑ¼ç!€`}ÚÝ• Púè|¿;UïòÊÄUþÏ ia´ª1ë,MˆœIåÖÚ‰—>ý‰ú†$TvUàß[`x4ξ¶Zþ¸˜üÈ`Wœ=(ѶӌÇ8HHÝçþ­e‡ ýQz½Ì‹/kOå_é,\×~a+'õÛ+â ùo÷ < ºÒâûü9o–ÔóCenämgƒ“ëí‰Ç#A_jJ“ñHúÄ}˜ø,曡H¥F)­y¤Î1Á¸’‰ ÑµxuƒÅ: kNt³oÒ2õ•%Kþ¢«ºAP€ΰVÛÈjâûkë_ƒ­Êή /‡YR‰û¤öáô¯gAó‹J½=o±PðØ×giÌÏ×tPaëö¶ :}{òäËÜæì§ÿ½ ÜçnvhG öÊYžGqU„ÑÕ¼"›‹ ¬iq@xÔÖïÀXz {~ß’‚6‚Øžc8ü_`q½ÂGi†((kòî«(–® ö¬º¨jº„[M Ï”‚>)üÿBÏcó—ûNÿL/#àúZcfƒÉ¨ØÅ‡¡­%ÿàÞšF,|šãÍRðGùW w®ëlTÏ›«mìcÏ `@/ ˦û9ay±ÕúT®ýkõ‚žô`†‡ôÈAvòB:š¢Õg¼ê¦QNO8– žÑÉï¤îÎøŽK“Vl›{ŽŠ0ìfe?²‹etÇ=‚oá¬- }"ý ™¹£É±²_*WÙ;o… Øjô?BþæÞ2ʾqc$9^¦ªzú† k—ÙÈN¤íW(µYÑäÄXˆægŠõUÁï¡%€9§xÑ÷L @ #ÆqE´q‡Í0ärh,dÑ‹Shþk‘fÇú}O¥…¾èW1L ûëTF\=q\4ÿ¡ÞÎÏ ý¼3DË[04ð#­ ûˆ÷­;’»æÄG•(°tUC­ D ºb¨s¼}F(ÿ™7ã7àhx›ïHAÌ#±ñwhaärˆzöTæ˜Zx€r½ß¹9#IÝ%=ÎôF6­dô]ž‹+t«$Xÿ×Qtï"Eàñ>¨î¤A±‹ô[žgVé ÌFá‘Ã",ê/¸sH~e¯ôëÄ?Yƒc×À‹RXžpYO»FWžƒüÀ0v·"fdºd•T’Òÿš?…Ä8•±[Ÿ®©P°ÂþÁç›]Áyaåí´×OÓŒp{—Âo²ŸØSVrUeÔÕ]ÃHÑÀvZ¾ÿnð|Ú䆆¨€¿cA5Ü3?‘ÁÔü:¯Ã,ÞDµÔ…õY cª¼#J4Ò úÏd¡èÅ¿ŽÏfV­ß³F,ð]ÿPºc¸?¶0òS»9t-ö¢Ák3üŸle» ¿Ô{j”î_4v]B ˺07a™kËØ¾ ‘Zˆµê*ÿïèJƒ¬qX§P;¨Ka»ƒ·€tj7SJ…ÉC7p» 3Ëâ9å÷(ªD»¦N‹µ5}³»ò‡;`#ÈËüÿ~üª¶`'Ö<²ñ° ±š…"†ÐĮуé ÿbÔ÷"‡9Vuð¼A”¿0¹ve´oÍ26þ%¦À½ÒŠphxPNÛ_5/GøA=1]î1eëÝ;½¹”öóS,Ux•ió%ºpÕ±béÿ½þbRa0Ó%°UH­PÛø.ÏRß #K¥ŠæùX‡©5'f•šº·rQïý³ :¦ÊµNWmÃ{Fš±Ý´?Æ1¼;ž†aš$¿‰oZH ..2Œxëh®¸Q…ž c§ZÀi=%0T÷ŒÆé†y_!Ç¿Î̇¿£ÆgAaæiaÄ~Ÿ†ªä DÄw;ÿ¶O”@d1þÍç\é”»ú•7®è*Y–åCo×uÇMM÷· Wéìa…Hj‡åí,Í‚N0 Y÷ýWp÷a Öº¼ÔÛÐWÙß!J¹‘nB*óy‘4Ýe®]I…(…X°¢~2ã*þ@·¥OMN/ü0ù¦ý£YÙ12¡©ýîÀß{§(ç Ã1Ð%X^ÃFÊb „ʃqeºQdØ€ÉÅIë[¶.ùiUY¹ë½ˆ˜®%wh]Cù  ½+(¬²¹$˜j‰vw›ò\my¥gïÅŽñ <Úð;óp[>Õˆ3ÕÖd` ¿\èãŒÐS«¸¥xd g«ïËÛ—utºËd5]=ê·!À£‚^©Ô -§P£7ëdˆ'YäùÕè7*ÇO£0^ú SQ¤éˆ}‚¼“òF!Ø (“ûÅ6ÇKA Üä—§4¢YðåÞƵ,-)”W€Jøoz!€µ6FåW †ÒÓäÕž—_åAÊü¨Ú¾É—ø Ü#ç«2¨C|¸Ã$ݳX‹ò >ŽŒ"MÚ…‰ RQ cÕDm’9Z—Q™w¦F t ¼œ—ÌÕ÷ô‚»ÞùÊzG\ Çh¸±UË𨀨a^êõ©9w¡?¯Ñ mÍÈd†XrñÌ€ÁœC6×ãÏanº"¸õä¯úi3‰PàÉ‹WV¸XÓk^¡Ø°Gövð…JÚ¤!ƒÅº,Öÿ àj- ?ñ=X¤¤ßÕAˆ ᔄè : ó£¹ùë _Û{L@”üL|‡ðغß}÷€+¯0ã‘1ØÉžÒ¼Y±2V5·Xî ¹›œ‰ã9Ká£óaZïY cXG9òA¥`µzX$× FLš9÷´ÀùÐ[A§¶3¼†hüz©¥GBRD®·ûô…Èúµ ¹ åJ­3a¥¸ÊS¨®ö{ê¢ >ZñvÉM)0òl±¨šÎvX÷Á#‹fļXöåÎ4Òd±‹ Ù‰Ÿ?2ŽÍÒ–Ù#¹,ÛëR´î»†2 Pf¡òÙâÞqxZß dHBnG§:WPP׫÷Rä X:Y[½%ZQ~¤ÆZ­ FÍ£â8´¨OÿùÏuàž3½ íå1tÂ}0&=‡¨J~iuÅmQýgì(ð4:-Yðë[Œ]=½  ”iÖcÆì‚¼… 'ŸPaºþ6>1cð6÷™S HññüºƒM¦×AYÆSçb‚úÞÀ5„Zm_æ[S ±;äß%9äµ/„«UÚ- í6 J²Û^Á$ì/ëX@½þ«R°à¶3„Ↄ09fhg¡`î3V…Œ5X½e€í ¬]ˆUFB "H·^ÂZ—¸2㪈‡·ø'™EÿÍ!6®1¡ÎÿߣXt6¥æ™˜"—j"*q—ᦇ _(6W™~iÏÙSÒ×jÆý逞Uác‹!ªµ‡ñ‘Â@c¤dæðÿ¬…˜lÒ^<Ž(é¶óFîõ|0Áˆ íÜyîM~§¿Lí d-;]†6Ž€‚7-lL?N«¡åÜAý>?2Û½\n„ÌvؤÅpŸò],5…à¨üsLÞâyÌaû@)´ö7+uG!—Söâš#’€a¤‚Ï#Ù/¡öÈ·À¥EæZ° Dã_ÉÖß ¬M×eR³ðœu:Êâ(}ÞÉf_uÝ´¾—!—Àé€bØ¢9Ý:Šd€†[P: 1i'HBy¶éì a”&Ê+ç6¾2¢qU5‰FvÊmf„Ëû¦iÄ[ºåµTn6uþ`ÙÔs LÃA9úÆJ88úfHÇ‹åtŽ)T³ñéö ›e!Õ.Ä®øõpt°ô°¬`kÒ¨õ*Poe˜Þ©‡Õi²I¸†Ù0»jj%ØÛbq½¹÷V@"þ1^¡âîfî}¹LCAñ„@9bUò^-’׉Co!l½c”kyíw’qB®";š0‘ißn¹îld"¾‡É°?D×›J|Ù†¤ôkàÅ<ÏþËìœÍRç×á´3ëdSÅÇE¶è»${ÔaœVóÀƒÝúô—ZG^J2–¤û%ëpHHþÒ¦ä˜E(³×½¯’E·Noë³´T3ž‚àÀª*¸ÞLÍLj:j™•ÝæÏ&s¸¹U•S¯êÂR:;Éã?ÿÅ;Æ1[BÎÃÙƒµª+gU ­–ð{0µO‹›vœ!²´Y_ÿØ€Y§š’¼ƒ¡®äè=C!_Åï~VÝát¡Î.˜ëJ Çp3Šx=¤x«$C#~#ö[·ßYÔ\èiÓ$gW<ù:ÝÁ»6 CIP$k,9ðàZú…ä<&èåVçYkp´³Lùpc6ê88qŒىɈB’ÿxµ&(ò~²ÒÆ2®™ºM©ÊÚÓêÌ.ëê„êέś@ë©ÉEW=Pa:ùp8õXÊW’¢F2g¨L}¾%â¤"ŸzÖÇУ˜¼QПOy{_̤eCµÕ7BÌj»xOMQŸ¯OWÊF bÕü©ññšrF48Gô¨W#Ý¢Q *ý&L'í™úæŽÀ›¿@‰At„Χ”úd’/‹‰Ê'dÖ¢•‘ …zõG*­ý¦mÆ™¼‚Až^p•4h!¸,øC‰‡öœôgeKÇ£,qõ´ønä^y@dûtY€ 85 T?Ö`ã“EVwt뀇•w%]ç1Brx› Lr‰ñ,/äD&<\þó¥öÝC !‚­ððûWZ6z_ß À_'nø;{5§få·ʽ­Ð8žÉsqxŽ» |A*]0&¸Ù6Àd²Ùh©KÆ*å#ׇóêÕêzþͦdýTVbíR5ðwȪǺÉLࢥB¼,vS˜‘©È*¡fð/Ð p,…m*ç­Ëµ˜WfÃоþÓÖh6Ò0œ˜{ê0O !!›lì BßY+&-S»4«—œ³Ëî5z»—Ãï,%3$²R¾‚,UUr¿¹ÕàÖ-H_0]fEÖW§ÀŸ…0Â8БÓx—Ò—Ç5¢P&:üwuÄ€…¢îæêÎÌ*ÐD¦z·Ææ˜ÇŸàMb2I}ý#—/*|ƒd…ÝÞ‚0$¬I(I ¿ ôðrŸðºDʤ퉡å«J<ùr¢Ÿžú"™é^f*qF›œF`z‘mì¾1ï'Áèÿ0ó£½óXDÖö›——Æ ¿,0¥\˦iã:0)Ã^ý®x’]¯’C1y‡A­D°,sS?—OßZ™ü€:­ÈÌ–¬ûxãôOú4ÄÙ­XíäfrSn,(H!xâO¯|lÀ–ÇŒâÛÒ,R%†¸Â²4uSËe1¢áHGúæÝì´ìiã­'€¦øO³0»Æ¿°wÁ 4xÛ0á€DÊ_aFô\'꘵³¸@=ÒµYñBÔr¶HE¨6)¡Íý NhŒ ”¯‚Îü˪?Gw>öH—ZŒª1®+6T.ké…ãTÔ( «mœ©+-¡;“Ë´mÖß„2gn¤Wò6:v„_Á¬88jpu°²rŠæ;›×¶Ú<-YRò+•À™{Œø\ GÒÐX‹|²Yû (J7¦öéO í^mËÔ 2B§5·ˆô"޼OðÁˆ“‘¼i×”‚®€ Ž>vhY0‡ÿ7lØ£RãäW×SlÉ&ìS¹j ‰ VH÷*#ÜÆ€º^I,ßËV[…¬ZµäÉM1åJ,è£× b,RÐ…N aïÔ²Rš3WGpÌ50ó%w›AyÌ Ôõ2)½—Œ§ÌɇØ~S¾3Oô_t©¾Ós"–ǶŸÙrÓFkWÇ›¶+M<û”$‹{óŒÉ³FŠqªVíªcËS`l ´µÁQ_ÿ8«ÛÏÄI§AÜW£&Š™7á]Ùr +×'8ðzÐmº+ÌŠªé¨zaL*u¢¡ÉZô.ÊJ»ÞtGfº„î2¥6ýéõ¼JÏãºgSšlºXìF—?cô¾€N0”úÏÚgõž³i9ÅÞ®äg&8¿×uõÓFÓwD_zÛ!ÚÔVÞD%V‹•Bß8"Ò–ìAáïäJ¿[¨ò¤¾ô}ùºÎB™8‡nSuGëÃô£d'p"—l }:k¶žM‡ße‹žÅÉ“1¤A*IËiôƒÐyË5ÿYûŠøòR;c7«rÄ”eZú˜b‚™¿3¹&ªŒÑ»¿({Ädã¾Âìž9s$x7Ò \˜ç] ¿š‚¼ãÙ¬ù9ŸˆPÐÞ„E½°dàÇPÝ8i·“Yï;¿Axý¤Ñ@L>.:)ØÕåŠâÊ Û•´Úû0|)@3‡Þñõå­ø¤°= R;[/cp ùIwjÚŠƒfÌÙnO^<ÑB`„cÎJP».³Êÿ±Ù·@“ÝIo˜ƒñ:4ñN]ĨHIöª:Œp™ç0u6ŒË·µç°©¡ÌêÝìûòÑ(€¾Õv@®VuшØÍÏÜ4¦¦ÂíÔPrÕ£ÕDZ…x‡ÙQýÊ®÷Õª$qd^œëèc°»¸ë4Ô‘©ÚpEþ [§Ü i˜ï¹©)ºb‚/äÁ—‰;Ó—¹® .N fVâ²Ëö_æh7Tßw}0«‰®jŒÄ ŠW®ÛsðžÃp"„®§ÿа5]cÚ‘égx%—åYŽÁB›7dkÁïM3VXÊàeQWPÔ˜‚@hÏl•é2ü·lÔôÀ?ÔI…:‰°2—ÉŸ ÎÂ…L½ÇRÏæ°3ÂÅh;{Œ í’FNÿcyéÎ'%TBçb×\"þاÆ7Ñ>TÁPM÷Ì0-–ªÝQûN 7†ù}Ô*Ì+4Ë)OÍJÝ©PCWß“…vÊꈨ»CûˆF/Ù¯¶ÞhQ¹³Â={Å”Îíô%ºÝ?ºÈ–´F"±}¶)«Ÿ»[uM”Uf>½9Ñwܩ޴„†—½¬ÑAý«Á[óÙKÑB²ùê_X8¦ÖÎ} C¿ü,Úõ˜{|9?ÈVK{PÞ)«Øýõ¶qïuqÎ4GôÆHxxþ÷?BÄy ÑAX'¤] ;Èu<­þœ Ýfÿ]›Ò0lK³ÁX€¶öÀ3§ó䨂TÆ%Sú0W±É´¿è„ J2¾õô€ìƒ³ü4â#X;tc®¨CFœŽ uféÖ˜ÊlÉ÷òx‹Ýy­g›#æƒÁ^ô”æ(‹2o•Œá‡ùŒ\ˆ—s‘Z«£QcÆÉ·Ž‚Ç3·Ã•S‹iÜ…(®/s§z¥4“ÓêfA1U»™Ü8 k¹iu†`@7U[½:Ø#ŽÜãmYhëÖÉmXö=Í$r<Ã¥ûHheÔðj±¼ÜQ¸ÿÜs­$®þ˜áòk©ß¾ª`â¢Ù.@ñ—øzc™Èæ7Ú÷€Œ.¯|÷Q‹ÕaÒ2q‚ÁEé%ëœÙüax Òpm_ÕX8ØWä$ÿ8òïB´¸  Š¥Ohªþe¬€X>€ÔÂ1 ʕ¼LbÀÍ’p¯Nü*·õÓèó¯N’ÜÆ –¼#8·)(!ƒ qÄ<Œƒp×8×s=ÈÜû³±G²±0o¡À÷Ÿ-u(™ð5ÊüìܘްpàÎ0¡ãcú¡Q=¹,R@‘&ÒÎá$COÍ÷RÚ¹>´ğ*á鎄´S»»ká@µ#ÉËC6 B>×@""VØã†ª„3Š÷ÉY¹O0Äô«¥'À4_1nõˆˆNë›±áA¾¹É¢ºw×~üŠô°o¯âBµíúæ‘ ±ÜÇ‹ÑqÓ)–e&‡æÕG Áá`8Pßõ'Áe~.ëdcæ`–æf›j"çmOb v4=ÇÇ,e tÐy æM#ë"ãû'Ø`pFŽ0ÙWÐ5³oÂ;´AR¼.â¾ßc¨\óý¦GššÚ HqvvËç~ö‡ë¦u1‡“Ñ÷#óA'µ"oÌ säfq¨'ob…¸êèr¡†´léo⚎֓vRï\¦ 9ãOg“\DäR×<ųoZRÒqÉî«'‚¥…±ÔJ‹ ˜)ÍnÿKi³oÐ EmeÛp®ÓŠ|m5?ÑX€ ñ5HÝYÀY'íHØÅ-¢\E L…2£’Œ•hÈvQ‚òW"ä³µÏÇ×ß2,ëÑqW§j¡+ÖÅÒ3ÐÓÇè¹_±Ë~:'9!Ì…J¦÷/=Мè&]ÿ]Äi&¾•\‘ÕÕG ­²¦IxÑ“6¸‰hú Ví¨4†šuû9{{@Ÿ|E§)TØŒ‹|„rx"ª O}wë¦@ÑKºSäÛ°(DÛÖQ¸«²ZüáÌ0ì̵þžxwKLAZަ‚µ¼y…«…ú#Lí9&¹2k «cTN°h $Ï?ÉaýGZVÐ(¬BVÀ@Ó§tÙ&›æµ5Ì îEJß„3_ü=ÏÙ:ܼȌdR2 ß1`LTa+—¿eêyãI1–+ZªXØ÷†ÇhIœõet÷÷‹c¦ØhÀÙM…rÞO“2Õ¯¯¶°#’S2 wчâ5YÇç—š”é[N²›ÍKj2xÈo†ÖmЬlÃ[€fª‰.r1¯·Ý hˆ­æJB·É§¦Á$Ï-“WÚ2zû.:Tð`…3µÃª…þŸ»ÂÇy“æç}J—ÛB¹ëSãàîí6ÃWÁ€6®T§Ÿž7Å4Ó¸Y¨c·¬`ÝÅ“3œ4·PäØGiiMÞ˜m¨,2œ ¥ëv5Šß^»8jh–æMq€4‰\ˆÄk<‘ÏÄ‹|ʆ›}ÏO¦Ík ŽÉ ˜[0Õk‰²âæÔ áøïðt På"Ga{>ᬓó€mÜhô¹.#Ü·ñ}¨¦Ô‡Â+E†Ôà€”õ_*Á­ ŽÃqR2«UoPpÇ—¼,@à´7²Þ©dž‚4¼d°ÔÆêØ¡NÿÇ.Å~⟒Œ‚þT@ˆ€rÛûrW²¬x¬—µÍbÆOÅöÏóy…zä)­ ¾â«Àìiö™¥ÅíX[íËUæ ²ø‘ “ÙZ± Ñ*1¢ví³NÀ¡ÎµN®ã8‘§”@]ŽKqnéœ }5“$,}€!3™ZÛ»ùÝ#%†*%*PTÕ'‚ Mެdò|½±fvÒeJA·¹µýùoøÞA6fálc¿?o¬èÂr¶ ¨0ëá`Mã¡‚Š))E”~`¾Y†~[«ÿ¾Ëý.Å“xs£]È(ãŸe4ÉÝ{Fàw`—=Î ©ûLæ°Evç"uè3CÂ&Ø'žÈðÜ–a¡ñ¥käD³Ô…'+8@”VîEÒY0|d°æØUâ†ì¸Ó;£ºÛu»êÇ¢RãÆµ?-æõtÛÑÕÉ7.ï̘eÆ*w9aÉ8Bp‡uçÔF)³ì¹ÌµGu7›RùªgËÌ?YŠl8~vï9¥_ò†£fË[— ‹vká0@†oçÈS»!¹Z"B”÷Þ’“òê@€!…Ë—•Êá}#q:¼~ô¬š­ ¾‹.MäÝWÃÈ5ˆRù,À˜fb4Œ‰ ·ð~‹Ÿ™×ªaË¥…ÛBË œô¿ˆÝ=ï[H­J´MKEaX-ʮ҇Ƞ‰g¸Fb)!—œÓhTº"±¾±Vk¢ÊÅΩ”îÇ$å2`¥¾¯ZÒ‚mR/Db``Zcþ?nÁ³gÁ›CF œÑì^︧§†QÇÿÚ4 ùlCŒÈÉEÕí(™ÀÓäþp>F‚-À} #¥\ìò®Nx„fAL^3F‚EH§î—y!öH•c;à»6“^‘•C.í…)/ŸµÌ«úÅÛ•_Aèc7©ÃûS–‡´aBãkR ­ Dæ3ž©{}4%ŽÂE ‚çÕ †Ij¾ø?}‰ÍTr@:lÕT²º2ØÌZz‰ââÙV.§ÚU“ÍCzÓ2ZQd8…·> ™]œËãOÉ]Þö²{%ÏÆ¸u0ƒ'¥IwüÙð½U ‹xvð«$_Ü›>§sES¯D¶AñÑÛ똩¯JhB^©’e‹?UisUèsœ[¹yËŸé9 ÝXm … :>öÑÞxå57p‚qû¯s^³ûK«²%§¹±% ΗhÏ@+ ÄmtëI®Õ:Ç8ÙÃU"âgÝåΉOòë‡ ±ª˜“ô"ö3\Ú‘Kn äGPç‘íø…ønóàœXƒÞBW9{[ñËñ0vô\ŒøQxˆ%¯c-\¯\DXÍ®ÌxÊSDçr–ra9îG¦™uZ `|,¸¬žG€uñiþÓz^Ѓ…a˜¹!;›âÓ^' 6œ"6uï'i7+pZŸÎå*üJÏ1þ‡q,t…‹¯BÄö/þHÙ*Æý€ë‡\Ù¸¶ãDéŽÈvoÀw/˜d½€É›—â¡=ž¡Ï{G.hþa‰ùyð¶&"®Ì ËÆ)£Š^XØ;Z½ÍGþ Ò×O’ã‡ÂšýyŠŸK€ò¶±#×iÁ³òß‘ƒ9`f˜ÐñQò‹6 Ú^¡3n¥ˆœèØþSNlDæ–Ûª™ž÷ÉÃv¡]µ Ów¦Ã¢ ꯈ%Â< sk /òêÉIˆZƒÎ*W|?Ëûsà CDIíkøI´á£|ão¾- hÞ)ÃÒ(„©ÿÿ˜³>eÏö·B¯ÂN¾ÚŸÁWL¯‰Ró%x ï‚3²8Ãd¬_Ë(G{Ñ›Ëföé@èÝÀÙ_pþŒõÆ…›Þ,Þ k€d+Ц Õ]eï }ê}tü¼ê>\@P„„ÌüÆ /Žq‹œ†]G ‚4HjfØbE¹ÍB0iG"åFÖfBd¤¦Ê—o êC\)‚]û`öî).€_¯J‹»,ûÙ£(1´÷ã‘–BŒ¨@UGk¦PŠÅÒœ «_Ë*ýIxÛÀ¨ƒphBƒ„ Ò0ÄúÜ$m¶>O‘Ê1sz)(‘gÚƒžk‘²*6„CSŒ´¬%I甎!Á»Šÿ“ŠûFÓ6ê<ÏŽ®¡®—ý)\ÃB¡yá ëó¤èg@÷m(M-ê…ï¸íCÚ9‡Zj-9é§V2…î?õ™ ­ì\¤ý¤‹ÉC.œIŽ4‘Z<î±ç ¦Om©hg-G¶|Zè¾&ôÖ+7þ³ÚUý{<ìRSA3&ÇŠ—}kÔrÝ¡ü)%ïK<¬±ÚXߥò×1”=wqe )ØÞº½ƒ¨x}tm¤áñÉdæ2Þö?¼çpBý¹¯| ºö4>©bîmˆ@¦Œ›³›·³ë©ÐÉÚ¡’³£¶¤ØÎÍ.õÏÍì6§,öDwBg¶yÄÕuì„À2µé-ÇÂV?߫ʅ,O—è;TРœúÌežgõRůÂjŽ¥uNÞª•¶±ÊkމӲš}'…wè‚;'òú­ÃÉB7²âù¢`B;båw¯ñ½[#LAjÊNôº(»…žÙ—¶ç{•;uë¸ÿþÀݳ’//ÜEÛ©ýVoܤxÍÖã9}8–Ïþù©\8íc/€­ÐqÓHmv`Ï¢Á¶ ¼_Ø7›U°Ò\œJm6˜ôŸðg¸Ì*#33 #ÕTâ‡Ðòh;ìp¿¡uq7{õÕߣ(Àªô¡ž‡üW¿ò¾s‘kº^V]³Ø$Añ>ÄÒ–½O[¡0®á3~ T­rŠž/}S Ôž ÉøIˆqÃ#7Zª«ÚM±Ö _ j·Ö=)6«óϼ{`ÛÓiÈ–ï>ûkBPœÊÿÄßüãjɺ·?8(­:‚B–Xïi+åësLÿµHÜÿ"üÁNFþ– ØuJ‹u)#vЀ /ZQ“pê@²!êìi 5èf€$}ÄÀ(5|Gi7ëÌû” ÇÞÈQú†”Àû¾*hPs¸hòGßë<ØÉ¥ÿr,©7c%ànŽŒÓŒIÒ¢ B¯RîÎØFqa€.G•’ÄìZ^tjö&™ºV6D×Í9ÁÝÁgg3ñgÌÿr¡<Ÿi'ÃZúØ {@|߇Wã¡1£¸÷ªû2#¢Zæ•ËN5{&ÄÔÂZÏ{#·*M`åÇT×[%»ªPE,[nÅ.i‘k63zG¬1½²²¯_nÉÌCŽy÷@¹X÷ID‡Ø bº#{ç2Ò+¥|CÞ%tW𽚢¼j'mtoé¢YÇ J« =Ø9K=” Õ|~ŽÀïò°|0ÄÞ²MuBÍ$¯g ØÇºÇdˆƒ´#ÞF6T,ëÿîÁ#ªòØ"§¾ +ASÙí–ìjî>~`A¢Ô7ÔY2)ËTåFžž‚Øg¹´…7Ëá D%Dc›“3y5C;ŸNšþ²ÈÙ6Q½/߉ϕ&&\ò)3 ð{ÔpÅ?õǼîO»Ö¿¶Ðh‘ƳxAý_•B¹#÷pØ#âa_›Ì‚ª²æZš~ÞËÑí‚}ȋř¶¿d©(õ°ÝÂsì̱eu Ýbi”ˆÚòòl6 äší˜±H%ôsãòš(V–w/¶Ý°ÂýW(RâF>!ÅX…½Û¢¿¾¤v|¥4êo’…Š¥uÓŸCˆÂ±?ÞO‘Ù0®Q«Ÿ ÝL Ì‚Ÿ5Ðjx)Ö?¡RÒé­Ùå®4þgaá*G }OÝj*{rS†TæŸÉp)ÃG¢~~âQXçdnº"÷v‰Îg»oR]fÛZŽ›_YÜ„M¤Ò¯ÆIž6„lo"óÃVößH—S€’šã]ü™Ʋ_¬Y‹Ç£×ÚOÂ} ­ À×&" †5³ue!Ô-’G«½DV²˜Lp4&›™Ñ„Òí "í¦™®:“b[÷°­Žmnî%䯡Èñì+I¾4M»} ¶M–‰þ„µ¾Òžî:µxÙ,“Â"L²'vŸ—Û“MbY˜– õ_Þ¢¼×Ìfe3v+|ývf…ADoièBô¯8=@Ò±5nß¼Tb@mŒ@Ö]©†Eê ×”Ö}ÚûÜ'N¿I˜zêôÞGòÅœ»G½šÏKs$Å|eÐ=P|):gP\é¤äμî’x+¾¹<Ñ!2ôÛ;à-­ÆáYÕ§f³AÖº2Ë{?rÏæóÔþ#F&(¿*F+ :q÷^-ÉHF t­qøÌJÑõ8Fö«›çs¦ÅòÒëî~—dÀA›÷ÖœP†%® `zÞ¸ÞelH© £{+П,‹Eþ"2“F<ϧ¦­«JàW rOÔúH‘Üb/¿‚Z&S 8 <µ7£‡\‹„«Ç¡`TŽJ§ËT&2¨#îƒEzy´Ð-Ïôâe‹TEj<ú ø¨¥ÁâAQ°¹*YÀU¯[«s_¬ÚHH‘(„h}\;vŠ‘Š0œó¥«ÅŠLÿ¨Ø]ÙvWŸÒ0¥±0KoÀ4§ PÊ=÷æÒBÅ•Âs +N7%Ö›C~nt¸ökñV›BDÊӇ5]Vu9 ·mÓº÷sÌ,¤/>·Ÿ:N£gMMt,Ö9Ó¤XÖ< _\Ĩ 6«!Sç¸/ÚÆL‰ºlÝ5ØQì¬Î`Ïm¼ú芒ÇäCO¾@9ø=ˆà<ÔÄŒýŸDø=ŠàRÍöfÒ‡%µw”þ!ï–*9)1ù!ñ-OÔ¨lq]½þâÏ}v=¤Úw‡^Ïd›ÌµüD*“táã\ëÔQÁî?ÎZ­;0ö 1 Fb5d^ªž–ú¬ó:Ç8ü—Av86ãjÁèS}DWffN¥ObòÍTœÂFåô”n":ÒOZQº9Ÿþö™‘|ª°º¤¸]l0h"=ù‡uò‚×2:ÅÒÝ"P[$A²¿W(hÝxého¤©Tìé—V̶:È匰AJ Îu ÍGZã²Â]$ö"OŽ8Œ“S¦¾èß缾;fñ7ñ×0´ôÝû¶°ˆiÌâÕVŽ9E4m>¿–™…HËñ^b R4Ñݲa)yÖl)1¿ãžmÀÎñìn¿3O(qç¼~Sý™gðWLTƒu‰-›ðF ÌÙºƒ¯ À!{-ÇdAÔNÝC޵:Üì­^åŅ̃½ŸÀ3!„mÊýÅg›Js<ˆÚï¯àÆ#X«pŽØ&‰ûÎô¿å¶Rw|ûœúkúPƱ¯ÔŒí™Ö¥6뱑EíXR9'^FÍe}"l„³Á¸‡ÙZ6á¯eà™™×Æ] ÀyowtŽùÌ¢º»MÁ‰ì&J!tT%:6ðA»Â·?'7QQM¨Îa"c—ùÝôß(n¬UÓoɧiµWR }:¯é¤ßVsÎ>'³ô/ý¶ì@+ôÿ‹;A7BFn‚ù.ä5æú„Z âËdZhªÜeÂQxöê:u£î}K2$ Õ PÌ'%ˆ%üNÃX³|QšðLX¾ÒƒG¥i6Ä…NŒ±@93rLÓþȳ{Š$@rÛVû“ }†×oz¿Š9˜ËêÜ —÷¤Àûô§|qD¯ÿü«‘ÇRiChE–‰Å—w—/iƱá‰âŸºœ3Búç‘ûÅ^uyèl%É…3$Z Ü EžÒ÷bÒ§êRÎS°$ù¥h,––#½;PC'½úÝ.ô`—2èã7@)Ó#ž2ÝÍœ1Ö½_\rÉ',߇ë?¼rÝç­iONË6ø/(ð&Ó--Ì{«SîàŒ¦ÍÚæ¹ºg×ëfì70 ¶âø[ýÑ•Ítôõ¸4+K¨P’0tÓ©->¹ùÍEàªfík:÷I¢q‰–å+rÿ÷Lµ]®É„."K;!#C—ö•§Ã¤OÕ|³³Ò³÷õ O•EAE«Dž9jO?§Zø˜ ª)XˆwË9mÖCéùL Ž…xB?§]G$e;~íAÚÿxßlœc(Á¦Îî} ÍÞ*Yeþ;”˾€‹\e'ôµ«ü‘òê ®<»Åöjæ:_°&f^ÁO(;£ÂWk^}ùË{¶Þb%Ú¼¤'YÛ”àuúge Èõ §ù ¹«u”9¡àø5‡q‡5+§&ÇÑq×mž`0¨îô|)Z¾×¹3àdõVb?õ³sË3çM{à§Òªíä°2›s+I?ñ\|ÎÚ¡è‚ÙœÛP¹¿úvæ‹mˆÞŒ›þÙ’B×Ý`j*+©‰{)q«¿ 4•}àƒùÒÄÓt9çsYšÉmX^¼ VŒ¢Òëàò’™5Á·Ý·–øˆ·/ bvXv¦š×AßxΡÖ%ý .DçY‘é½Ú ÆÑc\Ï;P8/Ùî„ GƒÛó@vvw^•ë÷éXQ†NGœœK(ÊÔóR‹€)OÏœ7 îXPŒ»Ü»Ý„€¼úÄ|U!µAr¼•°NBÓÀ;àÑùUuXÈá7ˆñ”$ÉUãºÃHÐpVõX”á·lÆéS·a2 Fr-—µàê,8ŒÁM22'ãÔebzTg{i„ß¹å©YásÈkNß̧­­ê öíÝPŠªñÖ;Ï!Ø'ñE­gj]ˆ‹R3á³öMã쳖׌ÀLË«ûJëëWÅ‘% 5ʱ©Û‰Àèÿº»‰¹`¹gà9-qá¬Î^kH!=Årõxf#P‘°»~5jä mXgs  †éþ>³Že]Žº7ø¬€K_ ‹ÛÞ5”¹2EæJ@ÞË„\¢Õè.‡fyÄÔMÖú¬Æ*ÓmôþÛêWz¤Eù›ïv¦^’žñ–—O‡C˜ISQgé×ð¨=ˆùæ>½Š®œHg¸fቢôç°÷Ý»:'Å÷J‘/jÞÛdN*Ä2PiQó‘u|v†Ì¤”lÊôóï × A~ñp® ¼ùôÄþ°1»Ö TIrçëäÞÄ5ßB¨âB8vòŒËi¶yÞüZç2ækp7¼Õ6#J" æògÚ€B²ÊæG9*{F ý’Ä5‘Ô™*DIâÞÐÃïG´ûùUaTËçßKˆO%Ê›o¨ƒÒŒ!„ÿè_ÖTöW_¾2"R•W|4ЭÆ1è!Þ¤H…·LÜÉ1•Ü‘6.ÿAì¯Ò—}\=¤ÞC@ODÜ ÀC\ÖÓM…ëoùÐ<*R€¨oWSÅ´óÃÅÍÕ·6ñõE¢Í³3C_L‡ó“!»ø‚¡Æ˜§Zä@=¯t ã«•C»{Ë ãOëcÉtXJŒÒO›ômõö„Cê4ch—~0DWÂ"Æ¿Ú «Õ?z8H³ûý*jÿ|ÆDíàt”XW0è·K:ÃãÅWÌ'Õjm5óêã—ûõoÕ䬅 x\Öv ^Bx –¢X¯Qžkì6SÚ ¤A«ü©9bà@œ.úñk|õ@]‹— È'rÄèª úÅ¥ƒCüm£:¾Ôóö(49{w·¨MJº¢r!UªŠLWéƒ2=qÅk3t1=¸•±ØP…uìugÜ%P1ðpXE­LK|Åò ënMÏÚ»·HC]51od•£Fƒ­TÙxÖx›N1Âi^l &½Çë ÜÈ IЦâçgÐO6åaJI¸Þ q éÉfE‰ÚN÷?ϦÎm¥ÈÀúèâ0ü=F¢ ηRx±¨NÞ[4¨'ŬÁM£Ä:ÎçJ²!y]¨#¿߯#“]&Hz\ïÌ+ŽÃtQÔèH“íŽ}${Jƽñ$ÜxãrcÂêi$õø_SYìrgìßê™X ?iê§)£e ¹¥±–å-Ö}B8RGîŸÿwó¦i3{‘þ÷t­ëÁJÕ ñ îºB…­Íg½m:$ÁVË?ŒÈºå$ÆvA?Æ–÷¹ƒDå¬ýÜ/k=§™TEkÈtóø×,²ÊGy0þ¸Ì”AyT:ëê3š£ipK++g^ô¬$s§̷̓d°fŠaÖXp‰žìÓIÒwX!(舶\,$ÜÁ+yŠ˜ÁpeÒÉea…ñ>¸ön5€xË⦪õ^zƒµ¨PÖ1{!è%õ‚ø³{DY&a·NŠ2ÍÚ¥_ŒmŒ«›Úzú.:Ôð8< À}TÞPœ¼~‰rXQ}`ßH ºÉ²Sk~8o¨MöóŒ¤qºWÐÇRþÄ '¹3“Âqqä…Íjfo{õîMM‰p ïN"¡1 ‚==&Ùˆ,#Oÿ$¼V¯'’‚&½µ ì½<1KKkÏ!NM1©`9Ú¼¿lWŸ>ÿ•㯳ӊ\µ€ï¡Þe8u0g‡õ^>.>¹‹°ùÓ>Fãaq0蘢.ýÉ.j"œŽƒ¦X˺jŸªÏcIT‡&Û{¸’›ñÁŒÂ9ÝŸ¹fœn5+àmôRÅlèO:ø‘$^DfTÓõ8œÂZ¥i^S U‹ÿËkvo%¿+cðônÛ8ɰŒ!%ÙF8²ÈdÎCdû $»oZ¿Zr2Î ¦g.œįÜ+z4ºž”;l€ˆÌÛÝN£”pÛª‹BMå/8úÕþ³kÎê±uç„iD<ó¦z5ãs ˆ,cùÚ¡PÃëáÙÙOz zƒOKëÒ䩯Yy¶5ÜÎÑ^ɾl}•à¡LÑÔÅFæ·-%ú;œÐ7 Üàôoöã”ôË“fÔׇE R»ˆyf-’Ë ›PNÒókÃXxˆÊ0¥@¹¿?Œ$ÿ»´XþÓžYÏçÆ{ 1²êÅ€ˆ®UÁ âä$I@ë8Ÿ!‘0Õ&ð‡Æ_—¨‹$‚Ä¿Mñ`Ëÿœ^XÉAòe¸©ú}12Jµ1ãå™òKJø5„9ÈëZTW&þuÿnw… Ÿ]ôzÓ?Õ¸¦IC›É×åÀî>iöè?L\õ8Ôoßu%r†…#¿lqŽ!â­Ë°þLXÎ|™jì&/ŸtØX‰»"|fð¬š3»„Žc$˜a¾f* N\qygúi`ÞVÌVô‹=Уq¸GSø¢}Ú÷HèMåê 9@Å…B‡ÏbGÄ rÞØÆn#È~­À¹¾x'ÀìÈ4Òˆî,Û¿Îg3ROúÎtÿ¯ÇVà^GŒ}Ò¹†ÄoŸš€{. é{•¨Uñ(ÓÂBÏ-‘°B¢MÔyÀEè,Aó‹*o÷Yسû(ì> ½Šˆ/>*JÁöÂÉpÆØTá÷éR¤orEn@‹,³KÿB¥| )_¸veLþ§y~éO©/tJeØ¿w—ú¢Æ8È? Lïò÷ú[.ˆÁ]½”'AÉÞÚQ`-jºÅ ’:'K·ð€êÜÆÝ¤»^óÍt†®'>:ø(¨¹Ó| t¾Ÿ¿ªbÑ ¯º {„²ÙORÒë^Å?¨^ÂgÓYÓ½H3P¶vžEW*çì'?RÞP]ïs9Œ¦Ž²'½;„‹[E-˜g†Ž¶plÊð¥±Ê‰)ÿìy€*ŒÔ¨g{‘¼@Rè-_rÌÝÆ‘-!-t×öØ4‚\†ù‰yJ5•tÅãe¡´AÂÅ kzsËÞø'«CD>Ä£–BvÉ05¤—O…„úvÃ<TX.®s‰ÈŠ›¯44Âè£PÏŒYüB‚d)ξüvšÅLúa£ÍàC &¡gtüô3Æ\m¹?lm…êAØPÜ'ÇÑ}Z—¿àªG{×#ÕoŒ6+pR;=.ÿ5Hûœ°jŽ6ƒ„AÁ%ïLÏš „UÓ ˆ‰  ~f}ðgHûµÏÒœæÀt$ú)TÝ2V ðäzÿÃ``lõ{E,¶~“G~å‹ðDì%EÀZ§>#RmÀ½KHBzµs}òWû«ŽKX‘ô߆o¶ˆ`¢ÒùßL\°šl6ÏÝÉI'” $%V2ÙÑŠÜ‹ûf?D–c£¡6ÀL©æbæ-;–Õ6v ­s4‡(@ùͰúo¯ã €Œ%”ÓU·Ü¿©õ7ãë!Áñ×-«R}Ìä»2wën°(œ9Å+™f:jîCôdpŸù3Ó’ƒ¯í¨üé¼Èd¢—¬>R÷ÍèÜa&K Î86•<ój‚éÛ·OTýõJÄ—áÈ€% ÍÚûoŒ>#cуügqÑkg‹nÝa]/*RÁ«‰ ÿB¢2“µiKÃ<`.’3‘V”ü<¨Jð¼âÑÜ)_o8jðn;âº{W§éLŠæ‹öMóo:”›É–YN[RýÿÄÆ×š£¡ës{=ÈuÖ˜mÕÕ+æc[ß´ L8 >{<*t—a‡·]×ß4ßóÕÏÜcóã0ô“y®¢þl »wì'™›"3™ì ºYŽ"›ES@ê³|]‰ÐNӘܪ¾¨zw;힀xvn ¬éÃöVåª)ˆØ³h bîŒ p ó.±ÁYÄ?bÈÙÉtƒ}p„ÚÿÕ–KTl·——JÆZO)“m_kЏA”Ýt4ùæ §Ak$Èšúæik —6 ‰•öÛ])µ)ºµý˜eá\A¼”vˆðõ—4û¶db„ÏÂÿKÝË0•ä¸É³iîBê}åu8€Ë-D$*èõtBÉx¶7­Ðë§]kI¿¢³M;ŸØÇû笋’®AùIÑk² 4Y2I®9ç7‰?z)BõîoStÊsöå4º`œ¿Êøtê9‹€þý—ÄãÎÙ¶Þâ»î앆Ÿ$K$”ÉœkÇp ŠÅ±|»ÛÓ¢3rÎ÷5Nç:âK†ö>ñ÷žl ŸÎ½JÛuR€Æ‡²§úŠ‘zúÃ@ʆÊáaè¯_ØE8aúôuR´%_Lšm"[ C19ܸ\ÛÚýIŸ!Òa‰óc3·Û?¾©’¶âÎaIMãÃöÐb;¯'ÁòÖ†Æ×ÜG¬Î…:7¤ÒFéËJ’ -“ZLvžâ‰•wNX ™ð½‚䇅Æ]´ý5ÐÇÎh:¡FXîpÔ»¤êi‹ý"½-nÄ/OB.Ñ*&GèOg{dA89ÖžóQçÛ_Ћ¢øÜ ±_ò™îz~¤ØKªjAÚvL÷~úŒêã‚ü‚0IZí‘9%è~R1Œ&¹ Ç·Œ?’`ù¾$bN¼–4ô)­‘?M3]²Z ëÃð§R”L5énn´ÚÜçÌ]¢pc=¿5³Äƒ<”<{p7ý¿&çWmŽ… ò´™–±Bñh`b:«W‹™e ¶ˆ)«¶—{ÕGî`ºñz\ªk½Ýõ-£2ŒŒ6Ó†¹Ñ^ŠAYè=ph"Èù¾nªÆý¹ýŠŠ‚i²<¼ø¡½El­@~I5:\1¯)}°Sry¶kìñ¹’V„¡Müe‹¹WË ‘k3 ÕlºW͇˜Õi3”»û'˹m]w.~òµ  Àù#]ökªsÃìÒ"’YpìY!”ÿiHÍ#š¾-vlx2÷á2è›~ô;¦UêPdòÔ‡ÚjaBµpbÖL©aÊÆ –L‰0·çµGƒùâ¨ìâ¤Ç¥ŒÂã`[Ç‹~úøÇXa¼Çík@8ÙŽeí˜,¦êhZbªtxÚRàÏä0>šµu]ˆH‹®¾~µ!ãQy¿|´…ƃíZÞìKýŸ 7àÿ,Ô®#Ì]TH5ŸHMÒð÷îGÓ§yì•e;ÏÇ`»òf€~>tï-œÝ*ß#];-'Š”oJ€7ÓÅ{§qƒ·¤ï÷·íãí²Hµˆ•ÿÜÛlq®‰«òiO«Õ¯yLctêB`Õ5ÇJIñüxÉ2EºìXí‚°ýiªÀyÀ R¥Öƒ³Ê ËøœŸ¢u@$hÒõòIwdÃl{a¬|… t4*»x‰Æ$÷°3p}Û‹ã¯âþÐg8FÊ^·rýŸÓ&Ôê\ëüH–Q›ÕØÌ ¢ ¾ÆÖÔßý¥Õ’EO7 qu+¿%°¡ÐVý7£vŽÿ¼GX«›Ÿ å‹ ¯…¡ "€ó¯&QÞ'úŽˆT#3ù¢TNª"~k§j®l«Î4â$}£Æ­ý»:”5|´æ†OÞ:x´eî{4¹È›Öü²n~¦ÔI»_+\?JÐÚZ-“Ž LâøxFE²­hì!玑õ¬ FX­ÆvD ²˜ú¥"íàRè†]û亞$ѯýŒ«k ‡W—ØÄzIÎÉ®˜?¾ÅîY•™–é ±{݃V×VU¡d¯ûGA{2£*)Ií;Š£vÛÑÁf9…e¯à„³׳foµšpH£—nUä¡”aÍ>ýn²d8šP²s¶Ð¬…ÓÐQ(¼aó]Ñà_¡$m WwQ¡¹?õca)lòg»Ç‘ÉÉc‚ÍÚ7 Ÿå& ö…ä‚çëŠÞÕefˠ𽘄ØtíÅï.G,TŠ>.dŒ£-¦Ò(/%®Ô1íãà­$W¹'|`Á9Éi‘³º3¦ëŽqÔÚÛœhJãþ‰lU9Á+G×(Ó4ïëN.w.ÿú"Y†ËqjûŽÓú2’#0Z®¤™í× ­½Ïéþ\B3Í͸ý” uW =vkºi8%ÇŽxfÆ^Ü}i|:¯U”’s²‰^`•Ü>ÐmR¨Î7,ß>\ÛK¶ÑN Ø1ãV×l¢Â¯ùe.Ñ!Cy¤ð‡%AôªLƒº9ó½6nd‘õAk¨ÊîJ{w{~?%1©-7^ƒ· ÚLCÝ=ÆM¯—²"dr-Æ =^>8Ÿ$Êÿªl„ DXnüþ?ÉÆ¬´|<ÀÅC“äÏ×¤Ö ÅZúnr¼~ms‘–®?ë¨TE†ÿ†Ƒ̾ ÎPÞñSD¾.æA»V¢œ— íbå%}ÉG€á÷̘+Ø4CqÆrfýhûïlþi+‘D7gy_)Ò Ih»ÿ0<~¤=Jêú“{´,æÀçf¢ÀoA¿i"q@+”êuºËF‚¨,OS-y…@œ‹ãYÜò 942y‚`SȦ)ðïfÿË8âè}ùZÚS°Aðny„ø|K5Já~¹pÙ$оÕ9”½*i–Tˆ7” Ô ~'lAXpS=ÒzQ÷¤ å B~MLµó3˜ê°S{ç»ûŒ}µÆ@†¢B\@ð£S/1;Ù0¹Kªß¾¿`öVOÚg¨zf®ÚL¿uZ "áÂu4>Ń${r'i´¸‹Fh” ,ž±÷)L »ë/”xë›jÒöôêÆþ^½§¢EìXñùWHøT‘Ùk;SQ]oìPÀc:^mbî±ÿž‘j7&m€  #¿Ò9à/¥/ÁCêw‰ø‚z~¯¼2áäÑRùÒÐRi–¯BCË)ÙY¥˜¢vËÞ[=õXûa'Ò«$ìÒ/Z3Ô¸ý”¥÷Õä1çòå™v¹Šu²™æŠô˜ ¿ö) önêEÊPqÃáü…€ $~וÓq#•bŠ¢"òž4XâSyõ´„?zÞ1icR ž³Ôuë•UÜÃĪD†B C>8Üã$?LºÞîC{¼Þ£ˆTK¿S%'& GÕ5û~ð'¨éøOK¶(eÚÝæpµvÑð_ípnÍÁa°#@<‰«- ÓšIø.{ätK»-¾x•cÆ×?B¿;–sU×¥‰ r\Ї§Ì’&¤©µò–u¼ëëdˆæŸðÆfÝíi · ËbÑEÚF¶ =\ç)Å5Ã}Õ“L¼#ÇÞ«´RQ[Ÿ„Æà>¼½b»|_P““šÀ— ‹Žth:K GP€ºT‡~,ÄYÃñ |Řö’ÓêصÛ”z5Nj'­¨gA9ì6e’"¸m)àÄ^ÒÇëÁËD¥aÕˆkz¾oOeY†vudOÈjçÕÊ$¿P‹UQ¨YÅ'ÈÍØÓu2¿#ørt9OÐ"Ïlp`’HõVô?8ûˆNªKJB¢Û^f&g¿\½ËËe§»ÖZÛb*7ƒz02ÔWYíÊïˆÕ¨0u÷L;ñrQmK½ÜªGʯÎj ¿Ýeg•¾¹œ»›¤‹©—Egcݶߥ!¸Ùª<‰vhn&2Ÿwÿ¶Òïu¾ÜÖˆÑU¥8ý!ª5„)C;0# æ¼³éîÛ?D¹cä›"ë iT£¡¾²ŠY°·å€ܺÌX6Š8>rØóbB,ßòª sõ©ÁÏ=ðºbêåIÁ>`ÞqûSÉ0Ìl¨Ÿª•´2'ß÷”JÈÂ:ÆÊß ‰g3«Ž’dŸ»s+¡\BŸ2v‚J·Ûbì=ùThÐ ©&êó.h+æv¶Üƒ1áû´v?žwÞB‘¨?ì(“&5dRo…A°¾“Jå®;{°è¥GE-݈‡§:Å«ãS ÛzâU$Á¾§µÁ€¦ƒ¸ zC=§¤qù’¾²è˜µ¥ýiÛªê G^ J+Ƕ֘ŽÞ§Ò‰›Êà‘v‹ýK!j4‘ýtë©ÃÍľi±»Ç뙦¯gÌ¡zb=Rý(Sõ×Ðb%Äm§rè9úÚ7FÓN§rMÓïìYsd·!ß>i ´¤ïðáqu÷Š sŽƒ‚.í•Alt¬Mß‚Öoýº B‰BÚ(±JûSP&¸¯u%ÐÔlÜ×S¸Ùøå¨Mvá ÏÐÄmDû ®³ÇT0(š{–q­4Gw‘똈’œK)gl}ptÐoÅퟀ§q¤ÏÊ}‚€–AñÁ¥þž6ìs–³Ã AžE”XáøÀX9»»nÛƒGRdÓIŠÓŸâÈ¡=Ü>ã’ó"Ô<¸å€ëˆ'?Ë-_„Pã9Kƒ+ÔüÂ&lChêk¯dX¿AãfŠò ¨»¯”‰‰°¿8G‡”^š:5èíWëz$7…ÁhT•Åá\Hû'f¬õTò¦8cnîEFY}àçréêy­ÉzÔµiVªw—yê]"Øò‚¾û‹9Ž Øüi%08@VTOhx4ORË UêUà4 (ß `{ÂqòÕKȵtÐgü$lã@‰ Ú-ÈgúäWú$¬Y"Få{.I°§ãÂu™”òøçzöѹÆÝcþŒ8ºýno‘ÊÆàEYuÞ¶¥Rì-1ÿõ1ëäü ‚ù… µë—ùÙ-ϼb4ïÉžOS‡ŠšîÛCå á›>¸üëqÞ‹â§E˜/…‰2Ä›+ ¦q†D5°ætZ÷L=ÑÔèšÚ  K_^¼ö`ÜŸSëŒg+#P†ßú>ŸQ•ÑÎcJþ;ô·ž{=j€ò„ÖÃö5áìªÉL”)ÂÁ(ÍrÏ16hoÕvòƒ1òcFC9˜Dˆ[ûg¢ÐûL̇*?Nšho²ìi ¬àÕÙ¸\nQ Ý'âC|µô‡)=c·r¨Ø%Þ´[È Ð²¯ Ùƒ–ZrO^:ÿbí­ph˯%ûR)v^B*4ÊÕ“tÝ2.iVÇŽ¯«€Ûè]³ët>’%›Kܵ²;2G ‘VkêálA8ÕÛ_¶@Yzè¡Ï¿ h6x1PˆÎ}×X híÍ]äqÙ‹Áç`$ŒvåÜP/'Õtä°Xq¦;j.È3·´à,NLõšƒ,!¢b¢9³÷¬è‹µ¯]™Óv·~è/þî›/§À»sá’Ì…à]êÔ€—3jNâ®EiÑÊ÷ìme]v “ 4‰QH1[$6ághiØÁVÌR¼TK%iò,›_òIÚ|‹½­ t`øiÛ.-zÂRætgÛýÁK¡Ž9WW³Õ¼¢Zòê[«×›tí–ò?æ] W¬õØ(l'ùPA/x {çŽüÅTrDY îÀÛ|”ŽøÀÓ<}ü:û˜ì3ÊFšì’tBï3b(ÛM({áù:¦çÅ(×ãuÓ  zr4Î`ÔC+Uuðé1iZõaœV¼;FÅÑë¤ö³:µŸ.²Ëó°q¨*»Á>ÓžW4}¿Xúë$WÜ3wRÓ¶‚~’Üø×=œbe„/¨çøg@ x9P¼g`å‘á.˯2º¦¨ÿž?ït“úçÄö„ÕýI·.½9!àB8¨Í‚ÝàêX×™÷䨛ìrH¿³9é©Y”0ˆ¥­zuJÁ_dbmÏýýÓ}E7–[ŸÞ—ÎJïüe@Öë U¹ú§ìbšÃ®å´ë!x½KȹÜÙçÊáÍù¥B`¡™;$ÈöتœÂFÝ×c éìénî¥?="êࣔû#ïjPò" «af“NG÷KÙŸú~™²ü8X§Álï‹E¶$q„ ê :ÁÀÜ"£f¦1ú‘ q«ùÅ•¦zÃ+/\Æ\eVVb^¸Í‡`¨IYÿÙ̽û6-)Ø}Ÿ›è¡ÝΙg#QìCÑŠÏWkrÒ=—©ÞÖKÊœW]åzI̹5ÆwãWâH\& ¹ÔòDÏ HšæÈÒYá#ñ©ªLîU^çÞm‚ƒ"µ÷Ð;ÁªÖ›ºtž{3;kbí-®D¸ŒòñëûH®iK ™¨ q&5çGXVcr>V_“ɳ#»™ÆgOZlÿ”—kBRrìugÌ‚žgÕ¿3H´<ûÒ„W=ÙŽ¢^0±Á|“ƒ;åË]¤2ƒ1Ä}ã0Vï’«Ñlí{ìkýÜÝÕB”è=ãº(‚gP™|îOªj’ƒ»|-SAñËù0$MZ…Aí~pCÿïe2kIwš„%— ¦ÝYw“—mShfmYÀ¤Í´&ª¯ÿ¡$@ƒßûiõEgJ.„fwUާ:0Fn§‚DAšM×Úª-›«|ÂDPÔõº«D+éeð11f„ãhbÃb%7ø;ñ2;;Â+/xj¡Næ_ôϪ)˜Ó¹î8lFÕëÓ6 *¼ùÉ8­éCúÙS ˜#4͈ä\¤Ë–M$ÔNtï6ü0ÒØf5ÃÉ«•e˜ÏDQ许ø}±X–½-Ÿô“õK»€=öÕTÿûÛý-G*_^àp³xÙKP4ª¶ndfa> Xüÿ„pí¢kEˆ Ôˆf²ÂM¢—ë*þ\)“uf"FðÝ «ÀÛ”ÏiNK©˜a+5.r®Ž5®³LbÝ5F0l_ï™eŒ>¬9-ˆ[×之<ɾ˜ŒÃØÐD>vc棭:| dÙƒEfÁüñYñ¥˜Há=ùõg•Ò4Íf;ñ»•ž³äŠ<ÔüÇîâ)°ì0¨˜BBlF¿0GÿgÕc>»V@š.©‹O!Nõ™±j%[‘¿Æy›Œ-›A*›Fs„tƒŠØûÜH½´ó¦b³½¨>_ÄyV ø†kˆqÈ”ß{‰â”aùj \³ÌD‹—p{±L=ØBÃM²áßèCû ¾ Âö“ªév<þ¯-6ãëÃûYÌ×–ÄʾQtzÜ‘J$ÐØ÷|i5'ç%yùg¨“Ó«”‘R4Â\·|TnÿÉ’jãÈñ0DÎÊ ¢3Ók׿äOïŸÈïÀàéâ+Q­¡mÆo‚LH 'Û•_²4ù•o]$Ø ~g|©o»¡@6î)\‚Ú!4×Åh¡ï ûÚEFvÜVÒNÒFFÌÞévŸ@ þà#o¢xš™¶î<§Í†•ÆV7Nø]7¼í€É è‡"—¹dáÞ ÚeuÚ ×7ýÞ5³8„ÑçÿŠ`ßdí§|‡ÿõXòÞ>!íšIS‚~ËYï4|ß,ÅôìÑÛ ¢;‰x7ÍvUš’Ö?ùBÓRM•úÍå½µú‹.,Y˜I@1AE+¤Ò–î›Å‚Bˆ )l>q;#ºëf1ØÍwŠßaoÀr•š‡sw)œ˜â|p §m©ø½±Žš.\òä§‹Èi϶),s ”ÕaVA°Pu÷ÎòÔê®Óa;©iš*‡æhVÓ4Ó!¹RÑ&„„7òFì·ûûqH$<äí§$øXœÆ?½ÒÖ}’hBáº& ËåÞÑ«ýa¤­&™.±™MTI3vP¢%–£@l/~…Ûå&¤{Ï_öç1A ª`9PÏJf× çO;y!>]àq9n\#~pq씞U^9 Ñ•@J`~$¶ðU”Õ+y!xívj[~E¶Ág溳W¿:»¢3âðTM¡Âm–MU1Bui¥ë WE8²Èy!ª.ìrÒ™uS¶’—Fe`sÔŒÌà‰áŸ~>Àl©UMÇñ2Eìá.¤pgˆGÁÂÌÔ ¡,¥aßœm6Ý©¦å%æ&ãÕ¡¿yzšõͳž-h.K[Rihr-Yˆ»/ â×ÉÆvT` ´ŒÓÎt›ù†ªšöBèíld÷ÀVelÖna~ØÝŠäð6kä÷tedÏVü¨æmX»ÙÖ8¥%β§lÂßHf]‰¯ê^zÔ±y¢ƒÕö O—Y„-ûå—Y”ìaî[•©{ÀÓ<ãuÍ$®øžYícr˜±êû“R­fŸE¿˜ʆûzâÉgÅ­F³šÆƒ{®dÆšñ˜Ž·è¸* Í ýÞÊãÈ e[cnehè#$Äö1¸“d& µ[pèÖö7dT^BÛ/ äç3“gw“ÒÄ{M01í¹hú¯Œ6`‡3n!A Œ×CB¡˜}&I‡‚–dÆŽI¶ Ô–D8ÙÞ ù5àÜôß)r›LæVPMé–µ7¨³$~FÇÉbóZ­¶à½E´sÓ Î.­€Ý3²lŠÝdËë DæjÑ LSÇœYý!iÎP°þŒFQ“E^†$ÞÃ='Y=ŠGÎð±lïC±$iÿU:­U^®É¸V ÄÆñ.ÕÝÖwåÈ ¾âd«`…Q7±Ž¹ŸšzÒÜ6ÉGúÄÛåeâq;îGÃÝÞa—"…qÑßLp1ÙÊöD-@å{Ë—>P‹Rˊú@]6¢®lX7 éž“ÂgÙ`›—ñÞæ&tR•v T/‚ßO „»¶“MZŽ`¬gIg´ ©¶ï?„@VüZñÉNJñ[n0É“Á›zUÈ)1c3`GHË|ävaçsB/CÄoÏ>ÙŽJºÃ!d ¢îÁº+7ü½7éòÅ“dZã4"ÉÞºhö‘`¹´:$€ZÄ9¥¬?(%Wza«|âØNÛ„]ôO¡1ü*ʿǴ~÷=ÛÑö•¬â(=À§ÕPª¤Î¦2«cÅãõê»7Q³ù`,­ciXs,îÞêH.Ò‹8 ½ÌâH'…GsjÂXUXÅ_D;g„ÿ[A„ß,ªMsÀÿ ÞW_ÍÙ½ÚîÅâ8•L9|Hè͗μ¹äø‘-è?I“G) ۳ƚ”¯&"¶Ú~(ªÂg9%ÈþE…½Ÿv0¼ð[Í.ãZýGC0ZV“åãnÑ>Ô`'%ÏDîòšŸÅ'×÷ÓŽ„““Èœþá‰hðÊ]€bÄ®aŒäö‹è`÷‰h%Ÿ»#¢»߬^F Ú0Š( Ѹa78ÙQ¹20’4Š™f}ë»MÄ@¦,Š8¢ Ýy›…¦óxŠÝÄ‹Žxš;¶ÕJ—hN» —jL¨œS¤ËdçægÛ_zâÝúˆ)•0K?ý²’Ýœ;P*y‰zmϼÕê*ÚfóðíW›°ÅÅˉ)Ÿ H§ÿË».rÍ4Ä,Vjû‘¸pŒÆwØ“ƒ©Ôäf\õr‰6KžÖ¹²¬ˆò kÀWEf=ªË‰ 7tæa¶¿uñƒÀ“&ÎÒÙ%ë/Õ§›ÔAéO¹ ר]¢½"I4DkÎSjC3½Êê0€‡&•÷‹43³ñ—7“ß<>·1‡u›·6„î Ó3oGK¹†rlît§n±#žÑUg»Ÿ[F{CJåèZü_f®%ô2„äáÀ'ò±¤˜ò“ÒPZ‰¦*Öîa‹Nv ^3 ›ËÍ› {«¤<=ÂE]í£þ ìÀ‰øñG}Æ`¥=ˆŒ×Z¦QšÆã§ë´çRMó©£Ý080÷$¯"Ëyð[&jdª'Ç%ñÆ 4ÝØÒB ˆEï¢ÜŠeKˆö*aÜ6-h°?ÂYHâ¨ér'¶ü(‹½Ó£«Y\bÑñÉ ñE¦2TåþÛúe…s—ª±¢¥,åP:(Sv0ŽP½V ,ÄðŠnÿ|iy$î>=½û°ÝRü"Ãiü¤z]JhbçâwÄÍD*‡xÒTâ9x}h… çÐA˜ÆéñI£±àw~§ƒã^‘g8WäØÀöáÕz¬E—üõߢ™þ ¼¼É=f%Ô  /¸p|ÂÔÑç{à°<¨žÁó±jAƒ{ÚÀ  ¡$]ü4f`Ê2K_23çÊP©æ;oŒ{üÖ„&maòÞ3ÐX¯ûYÛQ½&ø£pmÆÙ•|þ3q‘DNC“VJ²@niWÊ=s ÆâMÉEËgn©ófgéÄJ‰Ì=úéÁoÓ+* £‹îÞ$Q}ó:ݲùT5mŸØžûT¦¯ò?¸é0·¿Œå£Ð¨³ç#¿ÃQŽ¿ò¯%h½”#Íá…Uùƒ°òVrQ¨.¥šûæЬiyç MTÌêoa+ä pRe\/gºÑK¾’ûÀ9|ô‡hÊx«I¼Ça1ZÓdjºx0ó«Õ¡PÁO'¹ähMy¾Í{$Ã`Ê;\‰fqT¬ÚÈŠLöŸj|¨ÑëÍçgÞf‚ÁâP:ÃÓ÷ïS{Á^h»CP&d+(ŒEõ\8“8›ëÍðº0D½ßØ;Ѫbáã~ ©Ê®v¡%ÙUöº¤!Žw÷Ö›lÝ×kÓòIö-˜ ‘l3– æ7ïå|Dà—=5íã[FÓƒåÔ;±Øð©‚ )úõ‡—U™º™¥‡ŒùOI#§ˆuŸ%)àd—}3¨’¶}™K©T§T:4Såî¶ú©_ᓟ>_hƒG¡~5Â\¡q;_}à²)¤û›Ã¿WiU ’æþ0Qúú¸5õå”È Ãþ;Ïk ˜ ê @íõ<%2EÓ™»2cÒwL“±Üœ&hèãó£Pbªä™‚"-Q‡ý©Û†™Ü€YzO˜ÐÆ›¨i=“§«q%„4è”ßÒvÜw‘"{6¡‘‘´öaHjè">rµÙó`¥>×3LÞQh¸Tßò*ù[Åô²{|K¬ûд•¯–Žs¹“Î H¾´<;¾÷Åž²!C*‘ÜvþÒLŒr~ªî5Õìsên0ZÒÍl­§›+Ôíó8½>¨Ç§ýnkжQ'ƒ.QPê$SoDžTë夙êäº{ð_ârN¿fË^?ò`uÈ{ ©¶ åáb+±1QNR²?T~ï£{x•7Ö}ASÖÙî“ߦ„ièk†7ø˜½ÁÔÖWoAî§0‚R¡›O&=Nró½zP!Üv’ ,h8Æ{©ŸÉ £ÅËó›§Eujþ}RÝ[Ó蹄7aIú;¿,~ø˜NoÔÜÕõô¿‹ßHâþÀ¢²+K­œ§±ºZþ¶ã9\æ´ªCö2 ±¥8 5¯XpÔvÿ§˜úª”²Q¿ µIðwS5æäЉæx—^%»´Süh5J~¦abQ?׋ÞΤ8—ªdBÄuW{º`ˆ3é¾!=`ysΰ²¶Õ¬7/(öð/9²sLKÀ<^Œ’0wó%ÿ¹°4çÅ´þ»è{Y]s3ØÂ‚Ë í¼vßÊ7]*‘•/&úá슊󉭰XIŒgiíKÿ9F?Ò¨ª6Ü{\=`Cò»î=Ÿêú29qš¢ Çx ûm¦˜çBHûySÆ9ªÒ!÷•9]yœÌC·‡à7“-(2tHÖë_Xs3Ôk?úöÊ\©Òé+Àêå}±|ä+Â9^I»æŽízS©>Hhn`uxÐWÙÙ½c÷Èú²2ÒCÀIŠªÉi´}Wå–!SAd#4¿ÓW|.õ;"C—HJ6æ²»½7˜[ÞN‹ké+rËŒ;Èw)}ãcI-)² ª'Èp Þt5ý}[ø (ˆg‘¶y S€Hqпæ~:°s ‚2I¼®ÑçnD³ªšØÝÛÛÞ%#p` ¬òÙσþÛΨ7S¸ˆb3ÛND‰añ%æ(ò¡¥¤Ù8˜‹/Ò†_†>-&< °¾ŒÂà„l…òa¾Ú„‡ôp…8-ïÛ͘w¥[÷…§„1àybÝøf‚M{„…ÊRTª›ö}FõÕ™™Årm+îTi } [¢ÿ³5ÂöiAÏ3öŠ&·ú}ý6»váÇåApºÝPõtŠÃç)G_fWk#Í(æƒà×ò£×ðÍÖŽ\¬tH;Õôx˜èZHöŠ-ÔÆsóÅÝ\×)0A°2Ï΋ا²õÏcu£Þ¯Øô7¡)¿(å/ A›¶('ì‘:O4£Ô™X‹¬ ßõ03Cƒ¶IKn×E‡Ý51!‘ë L²EHCÎ|ÖX$SC¡‚쪠¶2a1 ü-KYNj%Òåt0S˜ éx³îV¢·È)V¹rÑ ß’Þ!çn4¹J(¶`Îû“8fo{gO#3(ýŒ«éìK&¹Æ!Oa÷£æèѼ{yÂõ›ðÒÿSÙî¿Àºpøæ¤Éµ6õ77Î\wk3á‚l€û– •üoGAFù '̃] måžÈyªÓ•NqÔäð'×å߯ M˜‹.K' p$òNãtÓÀÄßöñuˆg"OoIÄyèûPmoÆ*Ça®Cžsâ³2hNóDO{å*HR<ÈùŒ‘>‡ºþ7Càf¹ eáKµÍWmnR` Ncæ*4ã÷ÎýæDÅ}&ÂÔÐbkˆFVÒA4Ý&ФŠªç32ôia“">åÂŒ¼¸à$¯np¹ÃÂà3.yt[0U䍿Á±ôÚNÅÂ3ŠsÓ[A×ϲ0픯ü7³½¥ºOˆÔ[—²~›:ž7qjH4ò½âm|W9óŽgÈL¢gŸ ¿®ì“Rñ2P¤²°™!ÇŸˆíõI˜%•íŠ\JaÁGCrî‘Ê;©| ÈXw d‰jÖ(‡Ç·ûÑ$Ww ò{ë#¸\Qø“8êö´¨ZI!׬"Î!@’÷|õ&…&"'@ Г¯ã·’~8\hÃr>2´v¡„¾LÚ'}];äcbVB‚€_­§40ŽÇ}Ž:L „V‚¡[­ò‹çäÞèÆBYRÂzBÀ- S¥µ5AËÛ^‘ñ¡' ýÚ¹ÙgZÔ$kÔ—»nÛÊLŒoáeôCŽf4a† A’á€bÿð«då¿äœÏr²(R¢k;z–‹ÊÝÏ¢Å1V™ûmÑpÃå‡ÿ†)?¤WèÍÄ•kÔó~i ~ –”[ë ©8oÄ~ö~ ¹W9VÝû½,¼÷•üÏP|5!ÿË ¯]Àñr üè•ã_PšQùO¯’‹Ûó c7b„m/ÓYôõOð£Ïè2D³„o§Û¨Ÿ”Aï3ŽQ3‚†ÄÙÌyq@ `¥¡o¥“E°¸—L/ݵ»2 󞧉`NMË"Ñ.¤ê Íâ ,,¢¹÷ž=º„ïØoâúñò/A¿&§Šám0ÇŲ“J9Ç Úfã¦XÞ”LRï1UJs„W*{J”܃PG˺¢LAÙš¼+;ôQ/Ù )naˆ+…<‘®w$Bä'‘”5—³â¡ÄæÕvá…üÓ¾„Ûp“UµºüµŒ­ÿ}kãÊæ0 jyz‹NyxÞ9¯£¤2r˜÷ÙÖ+yÉsT=P›)AoÁпP6Ýo«,ažâeJ†ÖÙùÃÛ:õ`à&æÙéJ·5éñ¶¡þ88nõ™âMŒC$;Ò–vƒµ2“x3°uAáÇO#%dÞ&W»G,B0C1>dÏØâÔ ‘î˜Ï¨}<{Èœ"ED(¨>†"‰¶œA@ìÍMÜ‹îð:*ˆÏcuk´#¡òV¯mM/1#i?áCO/´­Q㈷ œ%‚1v¡ù½ñj¯Ý'&o¹ÎºÞú¹ JfÝÈ¢¼\;"˰±3Ÿ5iv3M"8¢¨S&±ìÚŽ}˸Nq.Ó÷L„”Ê(€ç5»øû§êÎÇÝNZSAnÆl#¢-ƒá/î¿Ö¡Wxè Àj¤/ª$*жvêÑN—D‡ð'RÚåoƦ(f°vÈ2Êd-$Ýï+æ½ò<0voæc½ª¶ÀŽS4;öë^nM35yi}U“³…EEì€üoö'z&HÅToqéN¯Ãróªð)Â<¹F˜Ü‚uã`ÀØøx¹¯ÉµKô(;•ÀUÅm+™ÐE³%\Y(žêì”ÐéY²fÎWÞ0p_8ˆø‡8ùk©xDp;§hûˆÈ¨âxþô˜ÅJ!BÒ¾.XXI-C¥þt»E¡Na³àLs…„ª«ëvpûÇÕ|”K¾~WCëÏçøIÁíðd1ߨcWÐÆÚ S¿æØc:³‘’$Œ+M·¸4¦ž¢ w_Äß¹3W¾Ýãˆæ,!Ñ쨄GÎQ¢—“¤°\=¦ЄÄôEn ²©ÊÖJx‹/º/ÑûºKÛy2ª‘ õ'gÑúëwo W†ækG×bb¬ “"¦Rfãÿ‘RR~7è.xg)ÜNFdÜ&ña«VŽ ;ÉŒKÜ[“|“Aº2Œ‹WUcWë´@¨`%Á‚xØÈ×,¾b¢¨¢| ë‹Â’Ͷ¢2³Ã9b÷v¯WyLtkã¯×°þ`Pxó0jB×ëfZ”äœÈ㌔¿LHfY„~°( ÛM?|—ßç¬NÛyÓ ‡!ž&“ÇC# V $œâqGÎyèdìÛr¶OР¢,fÌHe„ë5»ãéÖoPôÐ[ª™éûje.\©$sËq»Ô··î† „ zF‰N+ÅšÜ0囋ÎÝŽÿ«‹WyR‹ûpÊÄe}¤úF#¡¹J0ÝÂç¿Dº|2l<Ç"K+ÜîDe¬S\k}Ÿ"ˆ?Þë6ÐØ4tã˜Tw’”]ݰYÓgœŸï þÖ/ókî1iǾ mn@‘yâ°À”$Ζ•yå'KGyg‘ÂòíZ_ŠÆQÐb…{}Íð¾‹;BÜB*Mè:¥vò±®\­JQÝ €w™¼³Ýhê*¶X‡q/©¾¦5h°±<HU9k9Ȫü°r®ËÔ8ÄIæ³^Ü þ5ƒýŒi²qa0¨ÐÅ_GÕ"‘¨ÙÔè ð±Bë˜ÚùÜdFÛ¨íê¬R±¢6a¶ž†|ÙP¢s'@¢GÍÏmU鼸¾°˜IÑøŽ4`ä™Ju é Òr×ò8*›‡3*ÿ·ävb÷òÕÆ›9ÞÍT5;Oºýç’¯i–µSÔæKÏ>+0@hd)†­0ü—¬ëzNOêJž2°cÏZ8àlä¸f”ªXPà”„YäI㥲÷ކ'Ë"aû•…'¡©»…×`LEK ãŒD°™Êš[ˆÑ‚Ÿ»jUº¶!}e‘=òÊ©Á?~¼ ÎúH·”HµÒ^CœóÖÍIéW²uB‘â{Ö`¯çú4‰/ÉÒ¡ ݳµdRwO½%ÒÊ^÷êG§Žë*Þf£„rÒ%üÐò‚ý?†ëݮ冘Ðh“þÿFÇJrŒ°<†lq¤¹ËYé,Fƈ~6€ð!ý{ê5¯äZ?n`zÛˆ;Ö×IÛ]g3Üm•we¸Pb˜pCš)WW[¸»†žÌŸ»‘yØ>º­Ó&§Åþz†j=®MEˆgüFŠÏë‘e6:¿ÿt¦âM^õc ;òñ‰xϺ§$by1Ž‚*R4t¡“¯4¢€’2 'PäiTÚ°+ÐÖ_p|þ'ÈÒK뽬¼æiµ­ãtÒQ4Wsó…ݧDe ÝØ£QÆ.ìÉô¹¬­ ~ ,Å"9€³R²úàå Ôw³*ÿ†‡ÕÀÍÖ¹ÀüðÄ2gòAƒ]yàH‰ÄØsbÈÿdZâR©X7 ã1ÌÌÊäü_¹ 1ø .Bf¨ãúH«Ð/A¨üF—G@áUV šß‘ªùä=¡ÆZ6|I_2c„T Ø`%µ°™·ÆzuX[öDªÔûª@¡ç?QÛ«diÌ$oè˜Ä? D†æzœ°ƒÙ:*ÓöÛ—¹mC û ƒÀ -e*e¬Þ×W"OP-¦èv8HU©Ž¥4þ$/*¿TÇAÛ}ÒxI0‡¨ü¾5›c_œ÷sc–rÆ@-ÚÃ(/dÿ×ÁÒŸ¹d‹Œfk0û•z*¢z–ÞZ´{–´tÊ.`½4õçó½Û®ã§½ô¸k够jð=T¬9†›?â4–+û†5ŒK ²ÂFýHâë ÐÍÞËê’ݰ‚G7ßiPÕË$NŠ4ÓåõlĦ^cƃ"nm„ìùV\$ˆcÄý€j+¤¦ü ôGKû„ý-¼”ð&»/iE†÷äà]ÈQŒr#M4«C3­Úƒ+®iªßó³¨3<H@¹˜vÅiåZÞfëQLœTL¤$„çng¸£‰zX».*t𒢋ì@¾¯8`H%TMÔÄ ÙÀˆ}–Ö7‰³àч»º·h‹´ý«n©•€šyä@ûŒyλ+y{&!ÀPÁpƒ* ›;-o'§ažA¦IMíáLˆ-¡&™ÌÊ8Äÿ?sKúø¡Ø ÌŒ«K¼ïvx3jâl7õŸÄHÄ9Öt~@£l@3U.Ÿ@h¿hN"nM ®¸£[êôš³Ò¹¤íü D²Ìº) Ómt§|)düƒXŒé@Þ5`½ys1çH¦Ú*ˆêƒm†k•ÇóYPà39˜ÐpÂ'X²tÈnæ ¤îof>Ê188nyPôk/`d¹:ºÛ‰ 8OSÛÞ–69˜Y£Ø…«¤"Z³³€íb"×v¯¨W ü‘V½A@³‡Àª 6+„ã†xðò¤åòÞ{ ,0f¦×:M±…‚ÇC$µ’D9ŽÑìºÌÛ¹|´äúÀ’´<)슔$µ#¿7#£[^à r¬þõä³í0ýSEÙuÖ†E^ƒ&Äø„æïþLv¿:løíŸ˜vQ©Aò¿?\d5vz²È\]«Ùfcíƒ{ÞŸŒ‡ÕÌ}™½;”â:në%DZÚ @ÑY\\¦£?œ+Ñ˪TèZ?ožŠT~eù¿Ír_] ý>Ž«¢\^ßcÆAëFÞqØ;i£ (S6¸R“yÙXN*[ÉÖÃÂÆƒOiÿ¾ˆÎ ƒ0´ë¶žÐÜPžØ–H¸0"ÐY0‹4÷bI?{V#•ßmPŠ3°„§¦ÿ–F¤´A&à¥Áär{¡&RèõÐW vǦгa‹:ˆ _’jIqÏ\d9ªiÿb©¨å»ÚÖW·~ Ê·˜t?«liñ¢/ÕÇö)«)Ú_µU=Ý’Æ6Lcv^Œ<„ô®Vy«æÌ_$/ànA®Ÿõ€w'MMLÑ<›’Tt¶åùÂÈXsOÚ öë…¬“ÓðiŽçÖ‘ÝŸ_¢ÎÀ¿:‚\—¶) ÕO³6 «˜{„bœ‘9I€ 0ØŧÿqèG)U%(ð<6õË×/MæÐ’+ü,q¦¸Æó(ZkC_+ 18ßÒ Î¼AëØÐ• /u)¯&žc:kÁÐ+uI®‹ÏãEÀP—„ç}^óu¼dmdƱPµ#Uaä‰Hÿ¬3—f{øÔƒ“f±a}¡s¢ùù[{ÑÃ]iŠºÇ˜ñ„®õÃÃ[Ì4üH®+)–Ö¸)Ê+Ã{cÞ,Ií †“Ü÷ï*]ÞÒC ŠÞ›+S“@D¸gEË@ß2¡—¥Y(5E¨žªp pïÛijÅ]í똪 Burc\GÀ„ômˆŒ?ÄpžÿÏ™ð—ñ`Ûs,ÞzUŸ÷á­íƒ/f½É:‡¡´”Ã0GsjŸ Ö¡ñe$7¹RX€¦=ú¸!UÞHªq²=d±$BS¡36鄨Ӹ³¦e?H­[ÛBOضÄYÐÅ·y½t,~é#\œWàvJýµe’ç콿Àêž-QlÓAÏv¬lý±ePW…¼™ìfGOqÊ\ܲq]–­í:{ß(J6Ïs«ü â 8#ÖG˜ŠЖMÏcÀðTBÆ6(j%¤£t8»?aó' 8ÆÕ¼ÜœëStAr†wo.,w“),”#°`LúGM‚©ˆæOrÅB߯Ð`þ›% Ø&åªï·XZüÁ„x&“=:òúmŒD*´ Q]-¨Ò¸ÝÑÚ÷qBû€æoIÑ™'œE„Ïiö‚š›^†3BPNô‹Žöf;rÅ)cˆ[W¶ü¶8><îè÷Ýâöž¶oÚÖ/ÒW¤ dýbcÀŠÝ¡kl'F|ûq£ßaN7Ð ¨èdJ,ù|$Žž08’æÛG½•¬j~‰¯ï|Ú^_ùGCpåüßfã˹Ä<5ä¼ÌnrÐ|}‰í¦‰w“à¿c{Me¦Ë^Á1sí6¥ûÐ ÐËWZø†>ÆÑêûŽ<€wôÒF £Äí ?…ŒÎÉŒ1ÿD…Ç’P[‘¾è=: ‹êŒç^osü3~zïJ{ ó³”_-Uš>©)(¦m3tÚ£A«BZ¦/Npý0›'Ÿß^Êøóæ;?ˆ¬½êºV¹&ÌòW7Ÿ•†6ZëDØ£êÿ7u"&›ÈˆÂZŒKAïÿß»Qã-^/8>c{¾â˜QÝÓäˆQð,Ö3)_ã iÔxO[{PGiYyãPTkhÑ‹²\§à÷º&¢I=" þÚ|½›¨Ëjc³ÃYµX‡Åȱù¸¤Ô¦~òöKY¾{Y~#!Ú,Mëç7.>>øæß6A‚Žò 8Ã73S^ÄYtjèê?øàx#)–[6ªª@{º¯¬s[õj„”ƒÁÁOÍM鵘ôÖ±æ"¤¹ˆÿ­¥Öô£vÀÎN¿:ä6NüFXnÆ¢×÷Ðw~n~´8ê¾Óq 'ÑbùlË^V6®æHv°š$Í»œ%\ˆž‚Fz‰Öý2í.ÝÖÖJÁL–áãøMâÒ!±ýŠ ±3Ì3î-¾Tœ²Û,üÍØaÍp.À]L 'ðfi¥êâkMÞ9mˆé~E~ õ¿t"}ÑŽ¡!dKÊ5BãVƒ´è5T#ß·I.Äe71ôxÁ®AîbBºlº"Vª¹ïô1Eñ!^.póëAÅs™ÝUÊ{+þ¨Û½EªÃºbAµ—ì”aln€7.ÿUl˜|géóãb<—uH2íZó}âþå6àµ%ÇQ:w¿éàv¶J/Á&㾯ø°.|~-=BV¢MÙjê ¦v{•Á€‚®tôÕT%T~‡MÂ`aÙ4̵úÔÌL~è|°µnzð*(ðø9¬€;°Àhz÷æ^¢ ·LŽþß¼x:©w?k狽ô,Ê<›¶ªV·Ã\¥†ÁDå•|ÜÎñüËF;€Dvž4*þÅ1®hÏ$8†.<½á$˜λªÛ¯Y7_D™Ìqõóø©gš3ÃF·å½RÂ×~˜fš¬‡õÀ3LÔÐÅ–ú@#Üt‰„=Ö½ÝN Fêv4‘Ç¡_éJ@0ÒK­„ÍI]DfµðÑ›òQÞW¤1æ5‰X ‘”þ!+ç×!åBH|€‰ƒDè4š‘¹÷¾þxІž5Þ¯!j„e?ë¹yt~0SÃáEÒ]™b5t‰Ü·êúF•yóÕ+uÖZA¶r]£¹RyrÚ×¼¼4&™®¨QšøB´CD{½ï.g©sóÍbÈ¡ôL>Õ­ô¡û‡dñ|ïÉ-eËÚ›Á<UÄüc)n{J%C|£J¢‹9æÇäžÒ¦×E« êEû7«0œ\¦°baˆOš¨áÍ·å$žò—öÐ{)9p’KN@¢‹]^×µ¶ èÚµaþ@v÷gÜœu— ¥Þüc¹šö”:ü\çüJ³h­¡5VoÇ8›¶ø›dÍÝ/Õ½:Ö•Ç„}Кc¯êÛ‹>Ã!+7›ÕaøµD÷#÷[²¿’c*+ÃŒsþ=+%“•úá@Èί ;Ì‹e.»Å¦lê~»…™”˜Ûb?¥jÅSÑÕygn)5"Ÿ-.Õíffü¤|™º«qkžªFÃÙS?¹(uëš<ü"ÔøÓIIõÔñƒÁÀ ¤¥®„i—×q…öQá[£ˆÄG^Óî¨Å…_]Ú“¤¾o²'^O,1Øéf:šLãWƒc ´¨éÉŒËqõ7X M÷@Ç®ì‘ÏwôZ:Ф*:š&A…+ÏaÔ‘iØ×íc FIí+g€7Ib'JɤYíYÜPéÜ-ñº8qš[Ú ~{fZËÊ!ªd艤æ`ãZF&¬›™Z1S­–"ò¢öþpÞXϯI䲿+Wø… v8ƒÒ¨Öĉ¬ŽáØHÂBÁ9z>V„Ü#àÇ#3ý§Ñb¾¿>ÓxzG@¢^tº”oivÞ¡í¸ûp23{Ü#f˜ÚUxA»ŒçâÎÛÝ%ª€eàðâí•Eaö/ÍØ¯ÜÓ ª¸w?šFÁÊ1úkA’®˜â°â4{!ªš·%Çj„+Q~­Ë5¯N­.µSC6¥¹r14€ fEç•ɈÂÇUåMz k%»ôiÞgIê–išÈÏwÁÜJ¢µÙék#ØÆOŽÈ£nVáC÷ ® ó¬ØßOaófo5X3 žR|Ò4‚—tLªÓÇvüsÕ Å ¾ýœ>‘>˜µ¤6UH80 ЛW8K\ZSë Q”)«¨’ªø›—‹\º, à Jé; µÑXXqFÆ›G‚—ž4l¥û²—u%?€\킞ê»]=‡–ýíÑýfbhʨŽAq­$ÍøƒT[t$wf"¹‰›¨E™p÷¬ïþ/=Iåþ´n±E›ù>ØŸQU þw¨a·:¡N ÿè† “x… Ž= 'úÉÆS¶,ñd°­ðzÈz$pm]ºsi€UA€shå6YlƒÐ4N€2Ëë´ ¬Cµw^RMw“„9$·wˆ`tAÝVJ=–´+N-PM6ŠÞÁÀÍnmUÇM‚DÏ8Šàƒ}u™Õ;åA¹ˆ'+Ga8ßÙôÉ>æu“z¡Âa0Q•ö÷ è  )5; a”BÂýQL’zìðãºo”XÍ\Ëû‰¶R©§0:rÇ]l³òÈ‹M÷s5¿YÔáÀi÷eëë:f8¶ëâìébCØGC÷]¢~S±ŒÀ{×XQ¥9^IÙvâV\*€Ü¡Lµ‘«:Q+ГBµž(é>BÈ TúM‡¬P¡»ßõq\Ó?™Lzˆ¤²xmz˜ünq!ˆ¾¹é5Fe‹Â뜥mœ$Nª_l·Z`nFáÔ˜·B`éýìaZUÅ@G?Z¸cwô“†¹(/ÄÕtµ²À¯¶“‹•–[ÛtY}ÐÀ clƬ'M䨂ºfj×Ò¼mM%3j±&Lß2”ópM!fa!FßÖË–l vr`ôkŽ×Ê®t˜îÛî «‚;ƒ1eÌœ¢oîéF@¨š ,¡ö¤ID%ÛÏdꊨî5V‰º¥[sÛf¹2Œ®£NQÔÀÛÂ6ú¼…ð [âfâ'” | NX²cÌË­¨l7ËG»T¢Åùgc‚6ަ ’€y”…”U8ù%—%Å1²±w› [Mæz=µ!ë°¨§CÎtDÚoã¢aÔ=óœþ°’» €OU°ƒ\H jůäŽ}¡èq˜Å¾W.ß‘âÝr'P$¼ðée«ñ=>æ~ŸÃ¤ sèðÒ¯xDÆ×Ì;¡âOZKö ›Žç_J- ¼4ßeK:¦{$»μ;Ęä‘Ç <§žp·–éÖ0Jô\zå$Cš?lWé±EÙÒøÑ6I$-ávü}¸¡ |çÚYªú-„“%HÎ$­ƒàª¼5ĽixÀߦòáà²ä ˆDË/øeg w•ñp{\‚V0ˆd=`’A†$xûózí£”né0JO(„$âe»¶G–­Ð™S×»`´œ[2q[A‰¶n˺ˆî¹Í+yOhEpéwà§J¨«F°i/Ýâ†+B]¡5iur¢RC7àötÛ‹™JJòÌ ì\ŒÎÕèÙ†ùÄè}Õ,jµwëSš‚¡.ü ÌºPöôåÆkÈçæR® 9Ë=©üèµAŽÓMˆwf|nQ¼D‰ a×™³§é{YÊËÒ‰ì#ö€ ÆLtá.ÑõùŒ'ŠqnÓ /GÕæÄ{\€jýí+{õ¤xêé ö—ïæ;>r¸âI3Mb´ß¼¢ëñLÿX^ÀrÁûí¢ÐÌ×ý£7¹^>ùHE_™­«8#eïOäRç°6:nýy˜¡þäÌh<#Øuè;°1c1Ý#€¡—s(ýßÛÙ}(³vØóf·œ•[D=ÈÓØ/:¯ŸÇæz:†]lÑÁÒ+ضŒó+&AÂ^øN²þ HBUiÆå°9ÐÕ1‘“Ο_„{Ç…Ì£áõUppiʦ¨^« \'F8Y:™W©†HÒkÞ ¶»ýðà.)Ê_õ]U¿XÑ~üRVÝüaÏ`H^·=‚· Ž<ÄOA‚FÜ®¨¹úeuö› [€8¯ÇÆð“xTÜw9¶˜|3{W( ÿ>Ã+;>¸ßí¬N¯È윯-`LR1‹ùÐ_Oy€ã^+Ù§™u€;Ÿ¾‰:+¢°Ðñ›BÞlã"‹és!—ÍšUv&Qn锚NÁ½ËÖ×2Îöƒ|rdßã^ÖÂT•ì« >¾+Œ}X-GïnúïÚÒ-h†ÖJ¯œö5f¨Až9OüMM~$3l„vR#èɶ‚ß^ÌzWÉöçÊô©T².îNCÛ 6¬ÿ_“žgT\ÛÔ¶EGYºV´t&}¼=¶Ú}µâP saê1&®’ F`óƒØ™ïÝžž‹¯Z©n¤þÀFß–Ñe¢øhóK zz†¢nÁ<ûa€³rñ/öw$=ÄÊü˜;.»úÁw'מ´JÊï×eu9‹o5À@ädY«û¹AI'ÖßOˆ ˆ™éK¯züˆAN\½æ…|ô3[[ºö_/Œß°ÆáVÛ»«Ï)&pùJi«9°ˆ²n„#*OÚ$àè I²~2ö…ÆAÆ5Å’±ñz)*1Þé8¢põV¶¦y€~® ªú~Lž!¿°¯×”µ.Èâ^ AK IBû¿›Ôø– ‹ž7¯ä±ŽˆÄWAãŸK`­M?šâ€Në•~WZf‹÷%\ ñ<ìãƒÀ>„X•ŽßT¶Yibªn¯†'v°é\ð¬Cn—â 9]š›š«àìè ·öô?Êñi+17þêä\ÇXYì·=UÔù‰!âl¯üŠÃ|„uÊø÷r‘:±©"+7 BœžG餮"ôö ¾ôxfM未OÌneZsRØõxýfzµZpa V“°ç+¥™º¢íŸ1üåáÊ•e“ýgŠ ÿŠd]ý)°üïsÓ ©‚"!׬O£`s]Ù)œ>}Qö#˜Y%Kˆ{b$‹p4³»|t6Ñ÷¸†÷Ç€í°óáK¦nŸ˜JŽkœñ˧ñõFêgì‰ÆƒÔŸ °ZŠy7—çê= `ÀSQÓ 1È*?}* ;DÅâT°‘ƒrzß×ûþ¨¿_ŽåçÆe{^ÇÕN B·Kxn¹Nÿ@ m®fXíU»iX ªI"PKJjœ0s4£M=C{ùáG>îŠ\”Ñá?‹”¼üÐ't%ºx8­L;‡¬/ Ê}®Íûàßbç<ÿìýZ¥Ç›ƒ³{iÚ¥ŽŸ·h_d ibuá[8v¡uBŸéwLM¾6Uí–±¬Ÿïý‡tºZËnLÉv e¿ýpÛöp=4!ÜCŸt¨œ‚š›)LʺÁ`‰Z’=åˆ/b³$à:` sÓ´#P¬ˆKéä=B3§øî,d(€žá~ qµ×E¯óFÓú‚̳:æ4²§Qê…ʺ ]—éßæI¶‚M³ý¨jֽ͕ùRºXÏy’ø8ÕÅXÇMbÕñ5OÅc´dê`Y©5îfJ”Óò•þôÛ·µš|÷ÁɉÏËû(SÊòOïkàºZ¿‚!ƒT“tþNnþô VnO¿}¯vwIa1êÐ`…‰Ãµs :ÕÕÚ¥ži€{wÚ¦ ¥ … ” p‹¢F[Ý"’xšT=ëž]µÂ]ô§QÌæÇdÆêyÓ­æm{ú²9³Ã7ÖO®šªQ€]¹‹oZ0bÚEòTN¸ôLõ&à'=1?E˜T¡Â™JíIOŸsw6ãlðÀÁžæ®B_7uŸ.ÜÖê0Afš›¡H÷€ÿxò·sUQuAr„R&¡î¹4[?ÏÕž!ÞüNÑ£y.—=½€®üÃyýáK<=Võ`’u\5Ë)ù«ºµé‰„‡–ÑHÊbϘúgˆv^²›Û´C’á¤d LøüiZ“ûšg'_,|¡”ANfÄ6ÜuŒàÊ…È6“[åJ,¶X×êïÈòž ÃY3iÆ‹'ظø%p"ò°ÉÛOËZ ›÷€¸ÄËpMXz@ˆ¥ ~¨–ø’«­£Z+ËuŽlu~½  w±¶ËÉIÖÜ/¿Vxå´Švpýé] p+þFɦÒ+?œ¬(†Ù ÀBOdÕ/NB^F`ä|KlŒ4^~¢5© Ž0`Þ”vð[ç>Ñ ¦/&}Ú6N­Æ’¸â€:ßÕÈC5DŠ.g’¾;ÀÎ[ž¶Á«xö‡+Ô´Z†à_Nýk½ !½Úboƒ:ùolu·þLÒ¾—Z‘ð‚KG¤‘XrÀ64‹¬Ù=´n TÄ¡¾[¯/œoûä¡ý ¸{‹¿€i2ȵˆàbƒå·(@á?ë ÍØ‘bÜ–Z–=žÁoqÙ|€Æ éR °íY‡Ò£þô ÊWr(¸'´a-*O3 ¥ƒ-ú„-žu;&Ø|[’çLN£Ó—/8K¬Rk%<»© ùæZo®c ÛˆM²+#—ínNm€RIž5MZº»Ί½ûO»N€1úËÔGÞUy¬Uñɵ_í]æ…{mÆFKmõ6à–^Aæ÷¬ƒ ­B-R©—#Ñ>Ù *Ž:=öóh7û-,üÍDá=¾6&KGeEÐY`9™«²*V‚?9E®2ä¾÷Ôˆ"á&à÷0qiÿ[ÖɈ޽*–(ºÄ *‰=AÅZY˜qMª"¦ñ,¬ÇÁVˆÝ•—#¡M¢ÀE"¢ÉǼzÑj¬qŸ¤ž?c-=*«0s®‚—Ð$ë]ìmåiµôÚêVÏÈ?•¸Ž4å’ tˆiž×‡¹ÏÿêÓIÓ_H(vš@8Å- gL9j)($‘7×i”Ò~‹[Ê6ÅP|q;bQ»c­TVH§ >Ò]zctœýìVá}¤$$cz Y}ø>œ•?EJ>ge]!qotäEëð¶˜Ë›ä—˜…ŽñšlJ…ìdz*/)Õ·Áµ¬¨¸Îë_ðìÄÖ'â›Dë«Øáír£Ãç]gµç£ Lö®( úòµÔS[ˆ]Úý?ÖÁÂ;yÿ×ûеÚjKäË{Šø—Å1Óéøµ y Þ µ•ô ³b@5_7æW dâÕÎÉp¢ Õ`»sÞ.Úb |ë±4Mâè„£IíÒþUpíÿ¹·+Ù¤ÎÌ!‹«†úôB«Í"¼Œ;94#ˆp…ÌTþ±4É ö7Ɖ)üO•öà9w†'[ULÇ"ÒTÅNoÅðlÚøÍ9J¼¢Ë#ÇâH6õ¢iÈ~Içå¼:roá±Ç¨§˜ìœ’¤Úå0ç òRÂO€5II9^5eXýXŸæ÷E|iq1£ ¶’cîr¼C\n^ü-ßi_¸m]Ï–ê¹®‰S§Â¸Õ/ÑmAÛ~«‘[¼j>Öˆ'|Ê#ÄGªüQMÝ$wéå…KÚIä'=©¦BåÏ*@S«‚sB€Rç)<ó`•óÿµ¾ÑÛR¡+&Yš9}_hÈg!ò Ÿ~…çßdöAŒ8w¾ ^ËϪ?Od…S<š´Kqg*¹aªý+Ö¥þXÁ4¬Í1‚Ù+&2ôœØLÜvꯡø¢é§S2%ú84ÃzeÅWüi aóe(£Ç1ò”»³"Ú ™²x8Ð7F7ÚÆ áã·j‹ÊbÀ‹lÒØ eSo0i/ÙØ4 …>qq¿³ì꘽©§óÔ€Œó¥B¸Ì›õäu÷‹K Ö°ÜYg·fü„Îtq|â©ð.s&Î鸬¾?œdêy\4¸³?ÆÒÀx#xÏãþm©‹h[n±Sý²·\°Oç.;y‹?C«öwR> ƒ$=pJ¹%¯ìZr%„n[QƒEéoòˆ@w ž¸†>L%›˜»ÖŠ6w‹‚_É”þ£¥"°ˆÍ=Ê5^ÎÿU -Š?¿;kàæª8?Ê•¢ÝúXvýTÈÓÿÜf¯¬ç?\¾_íT4-‡åôê‚"o%c*ÞpÁ¬Ìk¶Ðªâb‚{?#ÜSâAš½Ry,Â¤Ö–Ý àΫÖLÁëé+Þì\Ž‘@e¬”Luª¹ú£z0>Öù”0MsíZÈ×Èõ‰ŠFY4ðö¸Sý²a7«o?Ž7¶û`)”|Û¡ÕQ}.»dÙ%SÛ·¦©ÞÆÑä¯iÑ„£uÃãÄãuó+#b€GñŠõ@z}©ôgügAy¹(Ú1ÛsûKÛN-¢?bÍÖ«ÈY¢‚ŽrÁ¢tÆ~¨ÈðÒ;xQ1É¡PXŽÊ±לš â3ÈÿçÀQ~¸´”¥Ä8¨=ü™·Ç¦’KW@ܺBbìDà§ì9ÑÈŪS#Þ˜¨7E°ôO9AöbÂÒ[)QHô|Yøçµh¸kwCP.€4éTèž: ~Oî{ëõ{%£Êå>£ª-{íRñïÑuÓWЦG 8VÏ?™Ä×ðÌ k•í£ú#íÙWÍ[^“ÿŒõ^0ªòƒØ^«Z•‘‹^ Ð+4!ù°‚ò§‚ÒMä~nl²>ٞѡmY/êã¯Ö· ÅCW›dYŽô”¤8l_ÿ7Q“½ì]ëàA½ª= ÷Ê[;I8u±zC2ˆçS 2% »+Nt?MéØ}|Pi?f`O ‡º õ'Ç>Ë5”W̃A£³‚ ºw^l ¥x+ËÆêá$ÞÆW·äm(⡜« ±w\uq¥¨Ë§vHOÎhQcƒ Vû'9Ø÷æ)S>§‰cëåˆu7zᜟZV›LvßR$vY´ó¸8tOZ=jsZØø2aÖ*ïëG©YßåÚÇ´)Ρi =‰lkBhÖŒ"®V&ë8Šc‰”µ¬Í1$¾ë_à|™ O‰5Æ|¸=QÕJ‹}z ”žDmµÌúÀŒCù%ß{~Ãt.él>(WW-8NØkïÒ«+Á–„ößžIÒq˜¡k~–Þqÿ§.•5Ǫ«‚FÏ_¿Uļ˜£ ›bæB&ë ‰ªHH9"ýÅFbÓîi<;8`Õ Uh%BåŠHóú=Çï åÓ® ÿ óØ ä!¦ kc²lT/P=ZÐ5õÖú8ý˜Ÿdg©¸l +ïN’èD"®Ç“œŽõ& •dœ[¼t„«êµ¥&o¥8‰^|*WèNW6J´9Ÿ'€Ê\iÖJѦy¼Ã¬ü³¢á`W¾„‰ŸTïœÌ²6´ƒ)Ï&¤²nux:ŽÏçAFÕŠxëìÇÙŸk~­˜a½×Mpýœûð­ÝÓÑt˜êòpN I @ræYÈ8g¸ÃjwÉÃòAÛd§tÿZ~ß‚o²ª«¤•ü¦ÍI#n…YFyI³Dü6û<¬·ŽÜy¼ ÜÉ ï5oìD ƒžìÓú9Š»ùblFÄøŸ÷g+Ab4²ƒ{welâgñç9kü•™ÚŸQ¢uqÝàÊ2ç¡$8­[»ãÇ›}ªù<í1‘ú¸XëQ74‚H5ñ&YÉû»ÛẠN~­ ™¿o”¶¦Pˆ¨r5ò…Å<ƒ¶–c!«ý¿î+Oщ1åÃ|nªÊ¢-mlvD7$æ}F¤}Ôy‘ìÍΤÀœ¨L _CZ„˜§Jp#°x ð Mq FXXt¤"wÆ0w‘+ ‘–âÒ ã»Ö¤~ùk6:uu>~²<W«Icu(ë/%RΡg™×ãKè=†]°Ù<ãÜYø:A¥ò\6?î#Ukvãaö9o-ö'ùØŒQ~Ÿ zÚðIÈ¡4ÿftìG¡‡œ):Ãú&Šå…c@{Û Ô@qÍ8jË#ëBM0öÀ.A0>øýI²=ù¥¯|Þ SÒl¡Ÿôëe'ExW6n dh²Éîi‰cò`>GjÏdz’<¶ØS•#IúÊ-5ÿJ·€ÛÀÖ2èÞK{•zª›­O#±“ò„õD@æð„ íph)²EÖ‘û•=Ió¢G¿šäty÷•358ðC ¢xc§á~åF’Z ˆÇóqIÂ8*®£2íÛ€BøUQþO[ýVànÞ“ˆÈ‹sßýë¯ÏìñÂàÀ…• .÷ >æVo>ǵÒNæ _¤‰/0†ðˆjÎ"4Ä ‰3^/¥åÑ\¬“d…|ü²A·ºDÞGÚI€ið©½^n…Ù•«Ëm¾sÌ/NJÇ"ÝYÆL¦á¼Äê¥ô¿èO˜ÎÿÜYOlböÅqKÒ­ š&]Š!gg+µùÄõàŸâ­'/d²¹g€ÏÈ4ƒ['ÒºqÛŽ –0µ|ÿOàwÍPAeÔ{µ'¦¤ŸeP«cnµÖQJuZJ=àÛ6w¸§ `S6†|ͬåAœ&•³NÖõ•ízú·Wj3˜{xSñO£žÒpdýºÿŒy4ú‹ÿàW×q6›GǪ‰RõM‡"TJr(˜ïÝ}£¼ˆéÛÌáÄb N‡‹¿>Ø¡Š×-°ß»ýCN7bæûùd€·ìªªÏ¸…,ÏíÍ&›ßOyB™VwýrÈÒ»yõžHè?…JçÃàJ'jýs½Ö ÁŠýרÈ%ÜÚ²½´’'xª™hë:ʶf²‹àA8/͆.ÐZ#©@ßM öÿ7<÷©³FÕ´BÁã7Oë´.Jcâ­Sòß»â~$iàI”ÈCŒÝülYÌt™O¸ù¿¨5w® Y|5i9\I‘5 y½eœ‹‹iì5¾d©ž ×L^*ÄHúBâØ]vKŽ,íZ½c\à›a¢hOBo¨ûÖæq»±gÅ+¥êfÞåtsßÞSªðì“(Ú€Q¬lô¨1fÅÌt ù8ëuhÜ‘,¬Pá< :›”Þx`£ž]?z=E½àpå»×M¬šK¡VsQ ÒÐ3Iv‰rYÉsZº|ЄRÑ”ÒiÉ…à»Ö5íìE5]0;ãªrÍ7æ¿]ËÞÉšxå2‰.Ëúû‰!옳ΒЉ…®DÒݘŒ]Ã8oÆ6EÒ’‚|}4´‡¸.ÍñÀH2Ú(ÐÁ³9âe~ìÝŠ<`—A†OæWòVk©¼¹e¢Œð×·l—… ¦X úz;!÷)@î”Lïh?Ϫoœv‘ÆyEŠ•2ù8 d(ÏVé—qyEüp¢ò}‘¢+ï>P¥Å\’˨%¤Œþ™45ýÚ2¢GŒë„·CÌu„åÐ>m¤w0€,Z»¢»ŸHâùiÁ˜2îéÿ<˜,ˆ÷^ì*4EébÕúÜLa£Àz·g®ˆv¿«ª!st1…° 9‘¨VÃF–~:xŸ<ïÈC¸f ™Žëë½EXé'žlf(<¬sîHûîŽg|ÛÎÅ&fw+CnêÈØ½1^UùÙ/\†â.^ÉÔ ¢AdäŒa” •ïš…Ã>ܱõ*KVé‘|ÔÔ ÅÈÔ €ÒüÄ·ÓÅâݰ跣ùüÁ\F£µ‘|AZwl´ÂþßtSeåëÆ%ž …+W…WiSD™ªèë ¨2®%Ø'¹›ß:˜¦Y®Å|ÂÀøqêNúbñkì´Ö§9àQNÏ\>d­áÒ-WK7©ÆØÆ4¹éfnõ´¤{‹¡´,f2­;EµÊv%䣅’¶Ux3E¥r´Í Ð†W(™¼1ê†ïÐö˜V$ †Ê¸]#ƒ2Ê!Û!:F{¢éQ¯À£öÌjê™”׫GÃd(ºÆr ôZªà…*ÒEµÆ¬twcƒh~1œ_Dƒ"/ÚQÖ¡;šYxGG_M5©¸—!Çè\$±'žE!Úªn¡"úJ!uS 8R=„ ­î¸þ¾OºÄVŸŽ’_Kó†,ÄϿź›®KÚlã“)Ú›†Ü”̨ÍçÙü«õ[Ã?î,‡ÆØo¨;)õ©\LÒ³ô×"+’’DB¾ínÞýŒ¿vS죓o®Ñ’Ìõ|Ù»’Œpè÷cŒOÖy³ðM¶²ædžé²𹹇­h~•%¯ì+bJífþŸìíØxîhÐü"”[¢hWåTØõ4ßTÁ2›Â¼³ãé3¦ÔFºŒ«¥•Ï3… Ží‰Û¶%Dí{–+¨TT¾¯·^—K1'k ˆù4|ýYæ&L~V+xÄãˆnÂPßPàqÕî¢ÛZ ù%ÊG¢Òw//¬’%áM¦æé™ Ó ÙÍ3Ela1TÛoƒ.³t¢€0u(x|Ÿš®¾×¾!8ÉÅ·¥ ¿ª“Î!Ùú>CKcÀ €Âý¾™ïü2 xcæ5y™¶EÌ¢»d=M]‘œ¨¢x3 Ÿ¦éP½6pñ‘¿4W¡šVq’FCáhº;|Uþa½Šæ‘ÜÁX ŒbŽàEXT Ì"×è[AƒŽlÂÆlYŠÆùÛ]Íâ6$ߔ֛—a‡¨IlL¢…lâ÷²ú]DK›I8ÅV¤Î«†/©öÆx †ÏMÏPìTÕŽ{÷tÝkrÒE¦7D™÷d¼cÐìpﺖì³3äZ—pÍõA¤1“n[ðÙ˜ÿ¦©Úêîx½ÅG6Œ[IXN4U¢XH»˜Î/ ò+Ò˸±»ÅÄ=*i×göÊ–¤Òº³#Ú¸‘ЇÚ> ¾¶aÝ%I̘wôŒwœJ…2ä€;yuCÙŸbÙI"‚µVGÉ‚Ð3ÿŒ€°YBÙ*û~á[˜ø7VŒÔÿ‘-Õƒ ,œ„µÍÿî^ð^rRi™¡1L·È[öca¹nܧãωCzxIЀĈ`kæ8?ìŸ/ÄSòìØIÌ4ÄÆ(Û)ù¦MÄоtzôÄvêï™DpKÓ~Ì ÕP*Xd¦Á7B4r¹þÚ32Ì7Óf655>–Œ‘¤é)¤M+ùÈÚ÷îAk–ò˜GÌ­ÝsãÂMøHGƒf3ÕËÛi~LJ°˜rLî~¸75!õœÑicYþÖy(Þ-±Ð©k ?O÷—l|{TRæ ª|IC¿}Òx÷uY(ßUýÂßS¢y|B¬gÍ­"”~÷K“ÕGƒ<$ýû´tñcœ±=´x5¨Õeîê§ð?€u¨r/;ËÝr¥Yú²¶¦ù˜;ùW8”%F„;é’nKµŽqúɆŠ8c®£x^åÒÉ¥1 {ã´~§`0µ±ÿ «/ñp)ÿÌ_jýÌÀw~ÍÚ˜^Ë%?ìÍ¢Ó'Ý“œí¤_;ÌNvßõô1Ì`;«ø£žñM¤¨Ô>ãq˜¸<ˆ²!-«†Ž¼1D >QãbûbŠƒ\Š?´4™ž“æî(]àeæÏÙé“¥3à°C™` ­¢"ùü³'N, ƒÿË¡ 5PÂÃ^¹Ê=ŸÈ^Y›½ÆºYkæß;Tìk † ËBeh[剫9­ÞÇñv±µ|™išÅ†&*°ü§MñFIïภžÃ%¼>ùõ‡a“³Â­;W|³:—ìÜ ˜³¸[€³´I™Þ;v"êz¯º_‚Èj®;*$a*YúrÏÉb?åÓ墷ï% A•#Ä3OýÌT9LnŸz›ø Ñ×ÃP®œig½„fÎ`@]Ú&¹ê<‘IQT¿‘•këq¬õlx=e †®­uÃËCëCüeäèH—4ôšƒÂ¯ÔñꃳńB²˜„>X4O%Ú稞øÎ®¨@—R¥ZB¢¼ž‹[ãjÕsÝEU’‹Áú§è:©Ô®üŽSklqH•C¼JÍÇ¿nòÈ/e•Ü×÷±•ªÃwp÷åÉ¿áX–ã&qÒ9Žh/½ò|o¹ó“s°káY’Á©jHä£s@¼m"²‰ïˆqãCÅåäÂG4~lÛMЗÖ˪{Ò„öz}¤sg WË«PÛryòÚ£8“ÕÒØÏ=kt~IqVí‰E/¡Î\„yBAÃr{þjÔ=/¢¬_Îÿêh¾¹,âK¶îYÈŽò±Í¤ àwÁöÑ·ÁÊ£ÎíïݧY¡ºkLíLY5D.YÏ?ú_"ÊÔU(Qå“…ýBcßDw‚“üxéU‚êÏLCêý$mØ7™Â_êhWtÏ‹›WVJh­ˆ@V SÙâv_çÝ£½éÌ XBÒA,o›‚9¨Ì?¦@ÅR0¢Àþ¥î%T² v‘‰bÇ—²Œ¸(¯Hô° ”¤G”f40ȨÊ< Ï&Œj6së)È„øé þ2­Åë¬z‰¬5†³6úË™ÆnsdÉ‘v¾!ó^avkØgÅç]ñû^öøG“pÍÕ£Qíu;ÂP§î—ôH-Ã_«ÃCg¬'ÞLÙ°A‹IнòzË‚ö>ºŒ³oDª"³<J`újÿséнÚAÁUJ¡Ó ©®s¦ÏVšÝ}7 Ýbò-{ÔiÕæ7‹œ1`Õu’.-ƒÉz—õKß}‰Ð¼SûîìbTfÊ=Sm¨ÂräþžCÕks ~U2o¾:Óà'W¢€ ˆÞM,Ô& ÝýSfC‘¨Ìê5u¦\i_G tbiLµîvï¯J"}“¦ªñŒà¨¨iÿ¤4=®8@ü7ðš¢F­¢ãØ›ƒœÂÛÙ&K€Ï:±7¹“tò&1¹—ÖßvÉÎÑ,ÓaõË›2^7þ`¤=.ïªEeIŠAÈOG¥)¤z¾))Ò|éà8‡‹æ>Ò‘§‡u°Ô«Æ:DXù"”2X4ãÑFPÒ!Là°²Zá”óê"¼ÛမëŸÐ½XÌ} l^ R&v6µÇ?΃ÝÓšùx³Á7QkýrŒ°QŒÜ¹Ù‚ɦ(‘œvk™.jhÖèÊzr¼t±ÈºØ–¼0”u¥¾Î"7Ó±ŽNmÁó¡½ó"韃óiÎIøK+¡ï<“¦h±óÉ¡²)'À“9ïG[›g<ßÑHJÄ‘}›‰JËfƒ"$56­ô=Ù4æ¸jGü#'À¯L‚’u~èšvÓøAkÐ…Ÿsãß|KÄ^h«¥Sn6Aa§åcp#âÒŽ·÷)– éÙ;‘ÙP{É^¥ ‚£œ7ý…ØÕ*¾Ã¤}¬ƒ %×’3Çð»t„²ºÍV’Z8Yê"t×ó“+PèUZÔ=éûCá?ƒA¥ú>g¹£Ò{T páìDB\œCˆ "›Ç_: h…¤Œ‘×+è#w¤·””Hïh.ä “ýÐ.•WK¥Ëx&2ê® %Hrú!7yi2~+Ÿ—ÓXlfÁn~‰!eP£ñH nîõ…úË;¨#e¦,O™à$ókøø×&iÍeL;¶ÅI¦ˆ]«¤)sq):Ñ^( ’ßQ^$–8s <5¤î@ð¬7SÊŽQÓJ¾uÌ}úOn¢X¢ÿ¨!=xw;d-b'm`EÙxV8úà¥ðΨ ¡Ÿ7åž}×94o#F“­Óâ«$ubm–4ÍúL“Dæ:‹G“3,À3ÿia/Û±*è„Ë—ÒL«›ô]fŸÁYºÃT …òIw(¼zžVlsPöË¥dŸ¬~òK« ÆSœÿ”ye¼²Ï('›ìncxË£ëò58¶(q¼ÛºC‘³«ž¦N|’RQ9˜ý—øÖµ6XÍ|'ˆŒ=”ú?^BŸ0‰+qÿ®jð™fÁDZ ?D²÷u³K’\Û”qŒóxS×îË*£…Í2ò¼[•nH,_—?DŸ“Bñ¸žÄqän; RœÏa÷|º!Žœ„ tÜéÈ=21^AeÒ3Ñ}~H2±fЧ,ÛUtܬ¦xÔ©ŒT†k¸$õpL Wz MA ¶o‰Nw#¸)þ~cè¡W³3bq£®wú£÷Z!VÞïû¿É3þ¸Ò´\ ßÐP"ºøÀÍZœÙ‰~îæv鿸}äÂv‘³m=„uö®Ðs¾¨wˇÂ0ó¼.øï˜Êä+Óò¸¡=¥,öeà™: F‚Õ^äž8ÿdYe™&Ÿyb¬ÀdD¾ž8ò[„Ś ÆÒÞÝþ0BüŸN{ÿøhöÍ´ŸÀ#æ“¶)ï}þ‘ÑDš_Ò‹ù‹ýÖ%V4~Øp’ïq:eµ>oSTJý(,Zwl‡Y_yú`×½¿Z>û2Ò?ÛëìA!ð³²ü+Ð:Y±ð¸¢uõ‘Š´1ÿIlZdèDçzª\bÕ<,E„ê àoì°"³œî2_ WÌàw&$­>ËÙs4G€ºè¶x}aÇ!6i y Ìj;¯Õ;4vʃÿƒ]è(ר" Nê¯hÆè•Û¬êVø2²=¿ ¢Z4äS«öÜNÆ«Us×Ìoh˜2¿DYHÎ3«ždK*$óíÈYÅ51r'4ªß©CÄYÛÏÕ<!Ô$r¥Ò£&E?د˜‰Æƒq >¨æt6ÃLÍ¿úÔ›º(Årì;O^Q{«âe‹É%W®dUÎ!ä‚ñ¤#¢ÜÆ¡DÞ7bK7pb=ÝG²? 2h4¾„ 5‘ ÌTÙ,ÞmzÏ¿Oh:6ýüÍtÒfgDÒo›;e=FíçÖŽ^³S§Øò"ì0µÄ9 ¿X)f[Õξ{B2ß 8þ+!ª9Ì…XF"8s®e¸ÎSê1 î#ÆL¶L‡µŠjÜ<þØöj¥Ùà‘=rRfL®]°:9ãtËëéÈðo¥g-’€<;!`:zÎ [Çü?\8÷ÌaKõüüŒK‰ðnް¥q\ãI„¦,­$ÀZI.°.P¤@€9ˆ“Ò®'ÅüPþLeïô'Ó‘P¨íRCçl—Æ8þ2ºx-È&öZzן*&™UE[;)‹îOÄ4æP“‡,Áð¸Ý0æ8Î+3 ¬1rð³Ý_Þ‰“î-P÷)3ËO •F˜2ø=¦œ4Ð ,V8ÚÀMµï ^ýj`i¯ï½1yãm–ãj߇^„MvŇ B¨Ðƒ,ö~öÊVBì³Õ‘®™rdmРp=8^ÄﱂG­ë­uC$ ñ‘>Þ}õ•6à*¦8!|7Cóµj’Àd%óuBŽG¬W"t‚⢠¸ó;qU‚Ä$-ìéö˜êjM8¨³ }õ¶*#rÜähDfÖuQÀõ`È~JMøÏ ²!ú¨þÛ’q —¾Po=B…«9±À'ô±òŠÒ’(wö[Àõ&ˆ´°ÒE-ï6dG1m„? <öŒ˜Ñ {-Ôùç+£?_IÊlv›~¿ÉƇ㴀’ÕT[ýnd†SÏÍO%’þ•ÔX'Ft£ã;ƒ²¿Ú±‘¾}âꇙTÈ&ÿ޹7­S+Yä=ï/ºÈÉeˤ5Œß»ÿ…†sxü—#À¶)…þsjÆ’,͹jz£%Èy4ƒÓ™:&¡eþØ6¾’9e;ïd”Ó¸_·c‡É(ï€päÓkT!Ãc; Sv DhÂQO KÀyRüXB-ŸmDhî’à ŒqÉvT1M0&ÿJ*O­têÇÚßQ[¡$ÆS9¼áêºSêlb¯µ6ƒˆÅóÑoëŒz{ÿ5îÄtظÓhâm²W¸ÌVœSojJ¹íZŠÎðëÁÓj¹­˜â6úOòuÿK+jKÖš­"_ý¥Ò€,dªÑÔP=ªÊ”«‰6ÑJJe/ªmÉÐpCÅ4/R 7…Ý?§ý ÀÃÁ x ä(:úA2åWp‘ÝŽÌigü<úëY‡"9Bc뫌¾,†5-ñø U)@Ùp…DE¹š‰_ÌdXþøMwÝ+!\L¡Þ„±u«Fõ(ù:æt…Œ}d/f/ϵ„F½¦….^ÆÿÀs ã“òο±q›¨"/”`huQ\Q/•é¢iì3¼ùûúЧ·¨bgs6 CÿjßNìô¯„ܪÌ1΢ک3ŸfOâ,?peuP@O|cƒŒ7/ïŽ~M: 2ôƒ‚±vCäæuš›‘-¦}ïáÒq²÷¡_`ŠCZ”>ƒcb<ÚPobp¹œ³“•Ú«E?# áu°êgj æÌ¯’~}j¨Ÿâ[Ë”Ö$ìñ ÅsUØ_Þ»›VÝ?dRj¬4›\6ñn‘e_ä•àÕ7ø\«©é”öÚm9­¸Ø×_ÂAsc€ØXz…¡gòŸÃxc”’_DÔÄFø†·T•%~?ÍØ¬}"‡Ïï¼Jï ÿ¦âcÈr ïnä5e‘QûëýºP‹PŠ´ ïVDJ¢Vβ†ÅáÂé›îSo¬À)4ò~y% ÈHõßÌä †cžžûý Ü?MæÚ°˜‘Q¡Ôa…‘ÏìoÁ7I¢ÿíu(Hãwx^Ìök’Ÿ“«ÞŒìÃvbm‹{}-›I9ª?ÝQzºÑäÍ+d¬R)’zþÿXîÀV¸±ys™: ûa4…í³ñ ¹.Z<=fÁh— sØ­äÌØ7ÍVmGöF:èŽ ßpó`»þnG°nóý¡Hz½Ô,ùƒ%Ný0/©¾]ÅŒÿLjœùãünX2ñ˜Ë%™öøkîD®· @®c„#ÊéQ?At1ápUlÜäéÔ;ÞÙÏqUÇ£ˆì¯ŠnZiP]sbA¸‡CÏåŒÊøzáÂŽ¶hZE°ŒñѳÞχ¤ö¸2¬èTúu察Ï+AgÁÌéãÜa“^ŸÅ}àAŸá¡o1'•µ#6|ëç«FÊϣưàE°\̃™#ØXÄ )´ëI%x[ ™‘ꤗ³ åùjlþ…â°\­•)^HìVˆG7 ú´hª/*Ù4i/:_›…˜üi¢ð”î°0ŽÛg6ÃPš0f{'C—M#Oj4bŸä•µì6E¬ïr`ð„æro`¥>³¼_qÿè4),'r.à<²m6Âj ¯Á;.y…Jå8•˜ÅèwD?ìªCR:P‹È”oÐ÷Ô–.ù-OF³~õ¤<äL¸m®&p’+Ø­äÿÙ„££ÿB»º×g•>1Øÿ”…r¡nQõú^4~ Ü£« ÏtþúXMoÀ·è§ur—ò»ÕÖ9kíˆ=Q%N¬O±?ë»×ÍçïΞ$riÛj‚D}¨k>­qæ^‰ª{é>Tw$oŒúžÎ£ú޵ÚÓ@±ŸèŸÖ¯Fe¦T¬íÐMÔÁ_3#öU{eU®Ö¥ëmº ”ÂÌúº¥º /¤¶ëù«*kDzºE9Ý”¤ëI ) yŸf†‡]`’—¿3¦Âfº~Ž–£@Èü¬‰(“žëòÚXÒãeñ}þ7ŸR ýmÊ‚)®"Ñ€É]£Œ°D?bÖN»‰¿“4!Ìú‹Ìß0Ãì¨)ÍON S '’¡T¶ 'púÄ„59¯K!&C1Ág¤ž&f ¶E)û$±šL•v&íè­—ZÄq’ÔE9‡•ŒÜúâJ„_g "Ø–Áh•LZ Á¶a§ÈjÀPŸÛX$ëxð˜Ê’nŠ¿fh +3mãd` ´±aDMÒæïe®ÞÀ’}Ó»wh ©:-q zõí5ˆÄÐ,³ðoÒtbêðZïLQ?¿÷ƒîûV$xùX—ößQoö f^ÿµ4øQCu?—iåCíÿôà.XyF¯dʵÉxéû„$¯íYC=6¢äG£6ÖËï¹”MžÚA Êcm"ë1ÀºJkýL|ÖÉEIީӓîqgÔ%b?§)S”ƒ5 úçO¼ú*’£îVÈ„ÅÓ{` ¨-Á¡N긞GÑŠ}‹/=ÜMoέL“á¨)xˆ= ÊoP‡Žˆß'-³J]ç% ;íúG&˜~0¼¶Mtò.i¥3çÞvÉúÚ]íÙö„×ó ]ÐáŸ$ú/.§<ÎÙ’Ç\)¶¤2jÝ–Ľ¦†­%¦ª<•Ž,Ni¯dã>ÚÔ¸¶IÔpH> P?g ÕÉËÖA„QÅeýyz§×[ˆ©Û’߀@¨fÞ:¬íH³O=W•¨fAi#ûâØW¡å<™Öæ#fÒF­ü×Ä-SY¹÷v3JѮȂì)¶C0æ#îÔÀõL²ã¡Š2ÒâsVsMEÅxµùH# fˆn)…o©m¦ú;#:X« ³ :S”€,ðC¬R(Ë û-QÖM¿|p‚÷ãu Sز¹æåg™Ki%a£Ô0°BªÒ›ô@xµzöï(0Ni»mÍãï±õ?«òÅ#”îjšt/[å1¢Ø3(ÁA߬ˆ"ÀŽDLÜ>KÝñl™,¦/Á­USKË…y¢þêËr§-—+Žœ¾ªn^·(àóúQÿ쓲Iß\júŸ~óJÜUÚε­Æx£wÛ-E¼”¡ü²?ê¼] Õr<(&1E¹”دêJµTH TU*OäABG¡ÖÀ?CñõaSÔ·ìK¤¿öŒ’ 7á/Óàaá½õ†[ÅàQ²Â ²C½ D}E9<œwŸ´GšôÞF8‡Ææ¶6Ž·Ž£ÔÊ–`ÔY{ê õj˜x^œ“äñF5S‘:JlæÿšÛ°ÄåxB«g)ê†Í+ši-دz¥³a4|­X‘üjZœmŠ™z>¿™T½åÈõ¯Ç£•3V„¡“›‘`n¡Ï´Õÿf¯"Mu5ÇJRDÎúÄ\‡1qó1ç‰oð­ã $Öïø5ð­æDo½ñ·§ä¿•Œv…N±L‰8ñ^÷? d\Iñˆ‚§ò}¹9ki½Tlê|š£{-uE¿Ö‹Xò `‰ñªyŠ™¿}àÀ‹ >eay8ÜšüõCPb—¶ý|ϵÄ'h¶{‰‹ÉðJŒj´ö;ü’WÓ-ìË Æ½zãr?w ×ìfªZ™­Õ#¯ ª<ø]D¯Çaäòq$Ðd¦(ý’pe®èóZŠoG¥\Ü+i•,ü…XJr‡ªnך3W80dP],4Àwìuþ åfŽxNîõð] ]ÏR&iMø¸Ú£­o¸Qeh¢'¾‰<ä×7`m³EgÎw(wÛá‚J½Ýâiq·GöÈ._©cîÃö€+–âL²1~îtfæÄÙm¬¦BZ1ïl÷ÔìKÆÒUÆ2:‰´G9…rSÿÏX!ñîGAØg¨¯76MÍÝáï¹m*ˆ-Ž;¿Q‚á’´™†„±6¨Ñ¢Fû¤%uyÎFÅÞ%d;¹1¤_¨´ÞöøÇލÂTIËM;%èO]Œ*#Ì‘²z6ª$} Ìkð+ -é½ê¬$v&МZ­ºÀ‚Vö...+7Fo–Šúd­Óσ:‡:Â4‚FÈìeú[,øU¸…~oÔm¼#hÁ²ªð~‹˜Rž´0È84_õñ7NcÒ¯¯:ÇžÿÉv2ÓKFχSá “YQ;KFõBø9C1\w]Ýìk»A[AÖ4ºª®ï§*AmšÇ¥ÞÅ 2,MâY•UüþëòÙÝ*±ÕЫ%µr×sÿ ԯ鳽r¼&j¨Òy¶"¾(lç7fFíÖØPÈ x3@WBçLD–j©ç®s»6G7Í\9qCã½– ‡}Uû‡Ï6!vÊâwQs…œô¯šc­£2QËGܧü!„n®Ñ„$ÕeöT—·µ¡´<Æoèõpevx…®ÎYõÂde£ˆÒ}µO4&»÷“RÑÖh&†ë6~ˆLOz~Ž Vì[»*­Æ"Öw©Zù1œ[ëåAw|Æc¬ Ä^Èù:êU›€>±©wK¼`†Î…áÓÝ"¡’v9u{xd'|ðƒ­MïŒwr ™Ž«‚Ì´³æâ’=@"ýÙD}êÀ!ÔyäÝ$8Äï•òâ.ÚŠ3°m´7 $}n9ƒ°ÅÔ—ìfI 0"ÆQ¾qÍ~A·é«Ç‚)XÊÆÙ@a6jl{¿h¡£GCpb(ä&Vò«áá:…™ºè’A³W§M5K™€üt$)!‹°GùæT[eï} ¨¯SõcP¾ Žû3gÂ/¶Â¬§é‘ý;ÂáÞ;ÙÞâUŸÄãÂD­Õ%ñ8îöfÛ뇓3¡dÊFpNhÃJŒN½zIÌ€.91˜–rd~lWÿ½aæ1×õŽÂ‚µF(--AX •­J"§MOΛ_ÙÚŠ¤Œ³¾‰¹E[U3ó‡]@×KÓ–~6TËìùñC°k…ÇúŠ ¼À}á¯>©ë06&‡:Jzz…ìIN×ÒìÜ£ž R+^ýý–@ÆÎ¤¾ÇXþ¨-ÈGŒÎaò³Š>‚SZã,÷(䯀PÇ8],¦ª^²Wàf6LRA¢VÀý~4ÅŸs’OqÒßy *VÎÊ~gÏvûþ5dã÷Œæt‘_$J)ÜÒø«Ð‡jg½+‘nª¹zyªb£Û3|éé>Š‘ìè‚ͧê9°4 —g˜ɵrŒrËuïX_нésæû:¶sZçh3dÈf–ãHæñ̶Áû'ÝD\Õ˜ÚSŸ ‡×e1wÿÝ‚ C‰ízP®ËVòõâ h),»Hê”gQä‰Çx'ÐN†´<Í%Ï¿{ZÔÒBZ3Œ¨(Óg·ùò/ªW3é²öuŽ Äw©–ebÍY²ˆñrSÅ¿î ]”ÒšU=™3‘Eñ¦Qò-x¦hة¡±Ö¾9Ñ9’Ú(ä>:—Y®Ž3ÙÀr"µÛQƒ.iÃà°†ƒpN¢ø_¬Ó{YR)2_ü'ÏØ*óQ̰bÊ…{ó}Ë"ŠvÜò¿:®õ é‹òõm³¢ {Ž€‘ÙJ þå*ÎÎë:ƒ‘¢ú9 2›I£¾3ÊÒ¿Y7Ö™ˆœ8.0D¿ë¹f˜òTšÔ‚íîòb²+›ân•©•[ÂÑCàýE,,W•—Ù¼¡¼³©XTéY’ ä©~„Õµôx›§Ë«8¥áÍKmƒ}ô#keS³ý¹€‘Ð’Iç“¶xôqš#kNŸ¾§ÂÔÌWM” èÝÕI`i9\Ü?¥ ÔjÎë’!ü®öHr©M^ÿg§…íƒ'Dï*æw‘ ÿT£!³BæÙíºÙ´ Ü»øDˆiÎçÒ—ü‹éGøÁYÇÇÆ Ø7 jÄ ù`ØÒçø¤=À¸ö¶ËùV÷øKhDs<5æ»È„"¯áñæE*-b<¥)Ãôa&+…’.ºÊ^†Çqq!!ì"i"4Ï_“;ÆÊ“ ¦WöNÑÂu4RrN#;é*“SíÕÔîª^AÁqHW7×06¿ ü`õí‹ ÂÉåNcƒŠ¡Vc"žµááù” #¯j$5›‘?ƒ`Ó+éܶ„\rßc$fйÈ] ZÓ„e½ð$³ó D…l}‰‡iW÷Ê´mUÜV€5sœç²Ëê®Ýâk}j>ß #Ót9 ÈAú‡€Œ'©.BŠëÞHŽÒ °ð9Ûi'ö—€¿vÓ4E|Ÿ‚ ¾œ8ã¿jCÜ,«ï½sì¬É'ÀþÈU¹:ƃ$ü„ôl‚7Y¢ãm÷+MœaqÒøYÞuþ_y‰mP2²Êá93oOdžãMMbË‘…ôìï)u Ža®Ä ™(¥…øCvµ gHÀ3âG)Pö±èmì&ËA¸)’ùS2/Fò qhøQ¡G ØH+X+7=Ôî"¸Æw‚â<ô<Œ±éXË~~['„°KBù ?,qà#aINy¾T6¼Y›^'^iý¡ŠÍŠ7™îonðBÃþd£~­±-cLJHßeAÜ"H W”µ©uÝË^\Ъ°G‹"D“ˆ•a(÷x‘§Æ«KÐÕÄüê' t¯!|hˆ˜O é;dü÷¦›B×÷ÜKo¡nl‹+—êT©F-a–K- šaK‹êBˆ3ä/% ýŠ}‹xiœ«Ä)Çì1½Hü[² m Þ]*š·]äS üâB3VJ/à…b á’I(~ªvbô‡óŸÇÕ]€,ï1I‡ôÁ"ª8Q攪áŸh[«ƒ¨{æß”¨Q¢Çqðˆ„uï6oí”Ø„™«rt8ÁšsSål&¡ê¡ÁÁô÷Ë{OdZ8*’‡Çõ·éßÔZ&«x 䀥¸[¥!«¬¾åÚ»Ov_áSTòHöŠRìÕËñ|+E_sÍϘÛV^Ù-[2Ö ÑO—ÿ®šÑ¤[?$"Þ=ÜMUGy³Ç/¬ôÐcйã4v íhŸ\t—y˜ëÔªÛΠ “á‘j ?’Î5:…ÕÀñµfÊR#™ Û»o¯lù÷°{ÝåK´¤¢B5i½Ù!Q ð–"¥yNÏfð!:"­®zC¶TÍBN}n>'´Û!vqky«.„T•¨|Jö¯ˆËàáÿ”z±Sl;•hƒBè×g’Õ-í‚2Ø£@ÕuÂ3Fþ<½[‰D1õ¶·(3Ÿ;¾»w‚6g®²æa›!¡ñŽ$Ûf\ÛÞ¸³ –btŽg‡ÎÍf%ft?§­ÕjÄÝT®¥ŒÈ‘oÃó ËéÁhxJ÷üíu4VSxÒÚ¨’Þ£@Å2úØiCrÑÇéM^ÔƒŠ¼$f ÕÕØ§a/ \óô„ž6îkÅ,!dBJ[g,þ(?[¸ô¿nµQ™3žÇ€<^ôÚaK#NÅ_!¹KZÝm}$:Å’õ]¾ãPü°Nøþ{((aÉ•6.þl2k§×¼x’m®géG¬‡=y‹Óí?Ÿ$šWxMD¢;ª’aùsÚjô±›[ÇÊ3`Åý1ØFûŒ×sºkZ‡ ^1!¤¼ªÂTë5ؤhaö‘95ÓÑ .0 NšÌŽ·€8憂6d%Z­N‹zóÅËÖ·/S,G}K—N[ö’4.â&r6•‰€ Î`IQK„ê9U¢¢‘¿§ ;3¸¬õƒe0²[X{Ðí±ðŸµÿÕÀúßE £ú/ƒ2˜Nq_$­guAÿòG–[¦'’)¿Ûh“vLö>œ[ëb¡ºíDvþc—\DëUÂQÇ/„Ûž`‰=«ÎDÚ”l¥÷ã¶ÚãØƒlؼ¢:‘«û‚úOݘý>ÊQùÖo#$ ò­üd¼›¹:u{ŸÉT˜úÜ À…è& øY iIý¹IÆ\#ÚÂKt¦JÂŒYƒ¬<Û¿²Lj9ã¥×eøxÇæ‡¨õœ¯¤#“ŠÚcÜÕÏOI“Ä"WLSÕÁ¨W¥ÓäáÝžíõ ô­õÍ—ÿd¯~ñ­3±qr¬²CË/óÍÑÓ`&Ó9hÉ€FÄRظ£ha2ÙB­1™•óóª|]¢›·´r!žµN S݆ä:5Øm¹GÁÝî2ÚÎÄ£s·?fªn¡¥nvß¹–µ‡øPX»»2ýnÏaúìYT®À†9ädÖ rWŠ‚>§'C°OaDöG2fÇ}G ™ÃzÐ- ªQGßëÄ ë@v&=Ö2G®9)|7ö¡K¶a€c3>ÕÍfÐÝÿ=[Ïâ8œ·mÅYj&VD»t2¦øeyï*ê%ûR6I!I—‡úŒÀJÌÊ5;@H‚sE”üÅIcŠkª„é–‚Ž@ï¡8HŽÐóm³¹š êÛ›’·‰žu¿p˸"… ríœs›Çå˜7ºËH«xß^v­ß§ï[gݼ™ŸŸˆ‹`ˆÑ/„;â¼=…RVP@Ý~ï;{ÿŽø4î»I§³™7å­3ðˆ±›ûPEù¯ø†Ð¬öÏççàÄ솻²|D±Ã&Ø^Íe%£ç°+°R5fã@àçýènl õeÊ\Áå[#€§” ùÊR–_={-àX¶h„‡•§ö¢Åå]zK÷IA"ÜC¥ÁƒýÐmgËØ‰—ÓžWÊ3–œ\ôîÁÁqSÌòÊÆ æÇI¥à¶ýVù<¸“ÄéÂèÈu½ßŽiŽ{ëJ@ÈÚ–Ê¡¦JãIMB”©]Tz„+}Ù‚wün+[(++:²ì5»qš°;z~c6eõƒGw?I ˸ZÝÿÓŒoZd£•76¡O&ƒß16¢ÍÉíàíè"Xºq†¦¨¯AEß«O=÷”©2Å_g!¼†¸â=Ä ÞŠ(¥éâ¯9qâÚPÊ €KùÒÞ7¦Àpzô\ ´ð Ká(À …ý€Æ×íÁ°S`@¨3@?]QÁ*rFÑÔUÂ~Ÿ_í™MM欖Ìïp ¬k#OTm.šãö%Æüàçù¤[?oŒ µ¥8\ƒï½Fšj¦ÅW°_¦UŠ}îȘÀþ‘çÉE,•ÖJ’z[Ú_f”éŽêÿûÊôÖ,ɬp¶^S„ìi7äé]!êR´åu—Źiœ¢ø4](Ê€i²«ù:‚}ÄZL³¬M˜kp†dyôXM4kCÓ¿{ÉøqDš)ë²3» P4pFÙ›ç{³™KÓv¡Í÷±J‰LGÍi¬=ˆ˜ÍÉ \ò2+ê~dî,ör«jAuÑÅõpï;‡(*¸ÎÖ™ÃÆ5 °i¹æ¡éÞy¬ O7N¢|¨?âïZRÈ»fülmKÍ*ÒøA_1ô¡Å—+$rÿ‹JnNÍéȧ¹ÖúŸz"|Ű‘›&gf‚•ÀÖhË{Û÷Õþmì¡Hz7‚dÍ”íPËPЉ 뮼íœó‡‘Áe) •$z¿ˆðí>*žsáB8ZW\K-o+ÿk-×^Ùçü7àtåã¤ð‡¡@‡q(&¦Pct\e]n·Øfáx9¿ $Û‹à"7Vñâ:,Ù>TÆtL‡ $»%ècƒÑËúÞØf"òwcSûÑ—tÝŽBSw&A¾ŠJ6+ýÈÞ8$s5—ÓD{Ãþ”™>èà ¸!ž„„¤l–4`¥ÐÄñ>Y:)–¯?ŒBpš8¡ %¨§¤|Ú+‡è0 ‘ ̺L,œtì‹SÐ8)؃Á^óÁëyO,«»á [v\n¢«ãÔǸ% mFY×?§_ÜäVÿü Qå-Çñç+ºb ò 's_3ðNÍÉQË!²S`]VãÜE´ƒ ¢¿×Þ‡´¹q/_8•m?¿¢a­–¸-%4Ú}8ÍuÈhžJŸat‚:i7ÒÀ@²"^«Ü6À[ãùŸ„¬'{¢e›Ã¦îEa;:´¸ƒ“`ݾÿh‰ñÙ:#Þs°écT “Ì3ÈÇÏnÜ.»K$ë…)ú¢u¶H0§o†ú@-t® i’T%uâý!‚ì,ÈúYÞ/ÅKkyF*)%±} Ý$ìMI1=µùWÚ–‘þÃŒ\Z;÷%ð4yŽãLj,À^ ÝÀþ•ÂçIN êòvøNù“Ï;úÉBçãvœ3$[rzMOxЧ—cû:OáÝ Ý Ã( ª½Ó£¡ÿÕ•fWÄ‹ˆttø¨ú„˜SC]ÉR—dÎËÙHŠê¤‡¥}¦Jã€ï^¸U4â±U[ùá;—¨±[YÕ[ %¶(ž BB^§^Qå» £nM×O‚;Ѓ°tÙjÓ4Lѯ©$\¥ðÝf÷¾Ó–IþÜfõÆ~f´/˜J*¼Ó^ŠgYßû@Úxs¢ádâmŠþ2³™—Kéƒt³3y˜ ûà×á ·V?òU‡¥”5}zøc @Úµ×?y(¼*)\SDj5ú,Æå( #1½2¬†1ÚÈrrdÛ1#šÓò§ f¨m&iÕ,»Ýêµ mLK×ׯÏäÍqŒ×ƒõ\¯ÂB8$ôµ|ćõ™Æba1¿>Ót~KLVP]„ýÛo¼µÈ1Þ“ýwØ×-ßÙZE'~ÖÀ"†¶÷<ÙA¯/#¯(v@\W¹‹7¾#¥ù-Îè9txl4þaïc½¿†[Y¯#é}i§’N¹%‘rFZ½Da†;XžeääÕ`÷4C:ã!zm<æxmݹº“KcmèP °}43{§¦Ô(>XˆIy¹¨¨nWŠç‹ô‘1ª‹éf48w£¸*h[È_¯ù¯ú|uâ—PVêPG†ž½EBzA*»³0¥_t1†Tãk3^"2¢KǾÝPSÖp¬ý—{#±Iè)0Ë^PSZºL}´Õis°7ö-‡ˆÖ$u‘#z®ŸŸ8ÿH1>Q㦊 ØÁ^üe8÷½¦Iæ·Å,§u£:Vr}cd¿ýË]ƒ–¦Â–‰åœß Ü(¯3ä¿Üb³(Ôq*o<Ÿ)Óñ^FM=-GÏWÊ~Z­èô“d{ à!t «Øå:Íkv6¨`(aÁÑ"4a×Ç«n©=ž² -¤ƒ¶»V}ÛHÛÝrX¢d| ÅëM°u]£,«15g(·ÈK[žµcGš)‚û¢.˜Ì ˜c¿®cR÷yÉ9¹ÿ4à2È͹,u]€ÁÌ}•´!7JŸ@Óò Žc†pºª°~g\)º :ÔÊÏõ#'O²,¬ÎáI:ˆÏº9D@y=ó‚È%ÎØxÈßrpÏ>i…«|¼W|ƒ–Ì“!cc‹ÒaÙ¯5Z(‘5pÿøÛð<]5¹øF;+“&R[aÖzXø½ðTɺdS]‡nZhãoþŒ{ü-ÂØcfŸžïÃ$ KÓNxš<‹&çLmÍpøÏŒÇ+Zåädúaüû–è9V,a½‰ƒåoxöÏe ‹eYõžikǘÂC”’UàADüCÌÑŒ(%ž·•”!lнȊÁï-_p#·M[¢k²š¡¢S¥–l–ÇÂs"®Ós8…´"Mü·‘Å"ÜßFMÿ›[I[h}µùÇ”\;– ì¬g†>ÍÒûökKÚ”)Û_Ò)€o×E¦å¿ <¢Ú‰Àp¥{É(›äíƒ+q÷Áµ¹ÎvU5Ÿ,=§Z·kÛãsnد¤#“§þÐü)‚0hÕL*ƒ@Û`™†ƒuÄÅHcÞ‘â ðIΆàµ_q³¹${5pD²Â¤Ìç´®ÊGrK"» ɵþó€wméeËÀúÀþ#Ð=¯c’s¦Å0·ù-³S;c*€3<ëÒ¢s<Ègyá!ÝY§È¦Òëç+'Ei”JLÝPÓ’j µÕ>…ä“ÎyºoônÝ%OâŒpŒ¡"Üã\Ï®á»5°¶¹;’û W üÈZƒT'« Ÿ9Ry–„ÛnI:7RÙH‡y âK¼PT“OÅM³þNòGFíù6cøînÎýAú"2þöÐÌ&UùBÜLZUŸƒ¨tR@kˆ¼“%:  &OÚ/NÝZí „.ôële<š¹šS¯8où ךšeÿÝómú¶xµ)o iCßqF\³öÔi ¦ êÒXfªªD{TJwSHçe­UZä/*F\ñÆYý¾]PiÒ˜Æ5Uît'¡Žâ·ù·Õ^ KµëM8|¡ŸÃ+'í_aFˆ¨x ÃW4"<þ‘B5¤Þ‚’JWFÕþ±cû±–Rà÷rˆÁG©°ñN’¸õíj<òLøñ©PšE ¡6«W:£ApáÿìB9Ienk91—½É˜Þ'=5¸‹ég·‚ï'U9Ë+þÔ@óÀ7À$ò.ˆSN ¦œÅ n Š« óãcãóàþ²Vi´«"¯V’HøÍ`BYE”ó6l ìçþ_eކHÒe·ÆU’Z º`t“‰Jª™=¦ŒvŽòÊÔÒþYשRv‰ ´šõNò»ˆmØáoæ ÁÊ´ 7k,Ì•Ú ŒºAÅí‹AÔD§ÄtÓ9××=Ñ>³8ÌÅ–•µy©–zB:ô£¦›ÔHaŽUêX–¤æ¥w[ÞR»Q@”Ýuðbã¹.Èk>±$ŶIØëL*( ÔÞ7þi¸rz€S|8åiìíSœ(ûŸ¸¸[ûÕ'>°óMOùŠ¥9Œë1C’j)YiCÏÇL»ý€ÃÔïêCqSê]3'Ι_¶tÓÄùè· /å¨0-í@±Ã3,â¨À8‚' |…çé‡È)ƒ…¹ÞoO Ã}d«éÁ›¥ s¦ošHr$ÈÆ”JƒBq¡§åÙIg°j.‹í<Ðùnǰ×Ä’ŠÏ·þ#W´¢yêœ>]¡Ór¯-­«Ÿå 0°(7•ŽW`ÝÚ›‰ÂÊ›ºùÃJ*÷1W_ýIÿ%@N Q9Š #6|?­´—*wŽç ’ÍlvZŒ S¥»J}eMÙ¡~} Eè§iNi(#[OMãUfÁÒüX’=¸0p|!ns˜’’ÕýÉ'Tº?¾¿ä—V(H®–~ŽÔH¾hY¡zçAÿCjr¤qùlëá’á“wQâ¼z#ë­mË^ÑjÞ~†oÑ®ž1:Ç?õó,€û¥î^T/€«ž}.ÐwÕý -ÿ]Ûv&‘À™Èmâ\Ëþ®~û¤Úç„ ëæ¯úòÒCbX©øRCöÿ–~Ãä ÐJÀE¶ùßX0@™‚ÿ"àã9ÿ ±‡iCÇvýì?ßö'é„HüHѼu‰¤1ìm °‡µ_%¥é½vë–1“Þ"³ø†ŒGØJ ²v†1Vlx×› Qe!nŸ>±8‹[U“YÙÍ"F•Sï’“5ò3fkq]j œ»ñiW9®”ÃZÉû,¤Q›M“ûÁ–à a’šE8 ë’q©ü,áýråñqÈîªÕ¶<ª|ÑO HFèTË|º‹ÔÛà÷`³IÚ©´*G‘˜ž¦Ëg†=Ò=¯6é‰43 äž›p@Cé.ç·t)wÎÓ¦µtã>=èÖÝ!GÍÀ@Ïu}9Ù¾)ŒaÖîõ]¹A¤R^T ‘¥’r—¡*iѳA ÿ*’Áœ¥ÑSQý¢Âut/3Õæž›CD¼ŽeÞWRà¸1K©5fž¦\&šžFü‚Ùl©‰ êÑ/ÇIF^ïWÊ¡YV›v&Ñéÿh™N`̲jy·!'‡DÆTÉ®ûGaü|aÃ[ÀèÕqÌö”ýä\Ô3 Û§`ýç‰Pb.($d‚\³PzÙëlü:åIÂQ«¹­TNÉ"8­Ñu ²Œ#àºß=ÃNhÆÏ x@ú1ÈFý}t~Ï }FÂ|Õ+±HYnÎyØ`LÍÒÈ-"Óòر ¨&‹É+’¿TaþÑ¿Â^¸Úg@cI˜<‚ìSÑNœ·v»ó•íÍáþŠ×_öÓ]¬jÀ~‰ÎêR_ŠrgKžÑò„!“@ÅñêvUÀƒE+Åe5þ¸öNY’¦ˆWkÕùDfZKMð7û{MÇ$¨-å¸IäЉÊ1Wó颌IiÚäw%°Û\AiϤ&.ÙN”ô¢(Ù¤ï@ «t—qHÄT)>1[1É囋 ãTâš.™¡Ï%F×.'_×Xb¹%]*€•dú»-ý@Ð'µSáq –å#:µW{~{5´8¼æLÍósD2k;¤’í-ÙNþî—!/Upgù½çˆ$‡iy1sÃ%Ñë;^èvðw â´t/JW—ÂlúTÖQ´Ž‚‹ª§›èH Þ&û÷8\ÔšÌÕÜÒY©P‘ÉŸ•.Úeêõó$î âwE<ƒüM³e¨ì+ý>¢p ’Ô¶pSÓ¢®¤ÊKžÓO^ŠÐxºŽá\ðB$Y&Žjð”—&¨(jÞ´¥I¬8¨º.>˜­Únȉ³ôê#öLkÁõ­|#hÖÆ“ E!ÃDÊêkPò§N©‹…]Aã>/Î2­ç5x¦Ü¼Õº>ù0ö.bó2hº–g–Púü9tãJ]FÙ\ðk84|ûoïTÃöFkˆJ˜È\én ¼e·ó¼³TxÍn—ëƒÅhŠ?á~ÏÕ‘ÞD†I`æ¸Õi°` ‘‘ó)¦ÈcË2¦5BD|\¹SæêžQ^èº4ÊÛõ,k@ñ ÀuI¢H'Ue,Ž)Ø%ïohËÁ¼`qL͆5µ…IjÚš¸oþ’iŸÉ‘[övS=Òò™Ñk°[^ÔB«ÏœVÊTsú(_t_õVn 7³—.ÍÉQÙ<ÖdL1E8=æ|‹6aøeÞ¨²?«›MºGÙ2áÝ’w/6‹»2RljØIäô¢®BF ©^uìÚm*›¨0wß31â RDÅ@QQxg÷­x¡x ¹"]5¤¬JÖÙ•@ƒB¬È¡Ítñ=|‹dÐX‡È.½±x´´™›vã lþ~S„òd¬6¼èŒÒ̇„e-)ö¹ûé©»|ÊМy“Sã#‘Ià0 &;öÞ0Ñ^³w=º…N¡]5é½$âa D0Èâov×÷/ÚéÎ2OM`Pšê'ëgSóöùõë¼Æm'ër„ÎëJßipnÙvéo]aÕécS¿eÓ7}­Ô"æ‰áC´Åàú&®…>‰Ô^Ä–_s‡ pF yûñœmëÓ,~¡òœ,;3ÈÉd¸vÉÅg^6{„qÇhÍT1p›_Á!€>(CøÒÖ26Éü=TÖ¨x®åœállegùêSá¥T¬^Ñÿ´ãDSÌúdgºÞÆúÌ{û5l£F¹„ËIhEŽ û¼-÷=w%ú&¸•áÐqXË©$³ÈͳŸ~HÌøÓ­3í§å ›—Ñüí$m’8óhxšÊ!ÃÇ‘*†¶–²ï©ïóÌ=mÿ¯fÀÂg§qƒ®Aßw¹¯…•ƒŽ¬";¨O¢Fp÷£³àµ’Èðœf¨-ìZp‰ ìS"Hä/H/Ûh¨Eýð™]¢s„!J»í²‘ôj˜xUWàkaÒ[ Fçæ\µÏŸ¹éH¤NȪÏuª^éŠ3wŸ×oåŒy;›ïí(AEŽz‚ƈÝîÃЄB„Þkö£%ÏÖ™&ÝbµæpòQí{Å›°óÓKØ0>¸~Ö¦úí pw!jµÂUÜ-;Ë ¤BõLKÆ Q«‘GMî‰Q×=lxmšÃÜWǹÏvŒmY àb~´C=d‚ÿBA¹|fC SCf Õg›l  m2Xÿ/eëÂí¯-×bà«ujŠÎ Ð|1ò ±¬rjþKÎKîSOÚ¸!ôÜR¶´]ùûlà¤Q†òÐŽPôWˆ,›ˆô¤°êÐn̆w¶ì\·žõIªÐš™ze›©¡Ž­Þo:`YI¶Öf”©ÂïÔ³é%==µ;îK!°È'4l͟Ђ› †¡?4‰¸1ù˜HÚ?L-X*>o§ & ‡{dˆ‡[¾•éuÕn2˜ÉÅö+“Lzb¯†âŽUÀµõ¦YÄ©ö­‚´ÂÍ8ãEøßº§…?K ´˜p2˜¡ŸÆrÝ„znc´M³}‡Ë†D;›œ3Ø1ÀõÒG€ök5ÅàPõ$Õ*Šð2äfd ÷'‚À¬íäV”ômì×-æÂ/'žcûFQ„XKy]hÅÕ|P–]òÊXà= „sÿø*„ðË8Ç=VÓ¥Mr¢k'3Œ¬°ÛSÛ[O±}êCÁ¡÷Ö<¢’Âг¥+¬*wìÊš6¯ŒåyH؉hBº"¼³pÛ&¤A›§gèË„>²ó”„Äîp|ƒV±>(˜à-ì„(A&MÖ‡JYW{©7„žjjš˜hh—[¿Ê,Pê½õ, =nÜ"X°#ŽÏ&$xª´Yد•{X-ÌÂèôߨXÜÅÁoaë=ÄÊÞ$±²s³è=v2O\'TŽ™‰v:ñ~U*Íj±¤ÅÑ9Ë>ôOðÑt­ òêh³¼O5^í%+l7D‚¦ß™‡•ñn ¬>­–e;ÄùÝ-çªÍ´5Ýa‚Çø‘< ÀXh­?ùr']²·í"Åæÿê…•g¾Ïä ¹ía³J ƒ V•´äûpdZ8h?OïLM›ò„ÀdXqŒ³õlVf~—ÎL=As0$ñ®ûÃuÆ ‘G¬ñWËׂߎçôõ1–ê³`ÚjôÙ':µÏYÄÇwò)ØÄ$¸£%M«lËÔ© å Šµ§ô±Ûà nƧk]6 šb¾ö"f?dÙÒn„ÊéàÀ·€{ÃoJ~Üi×ü¬æ¬ ÕñL0e îòEO€Ö3jüîµ”Hs¸uׯåÛjOë×ûúÕ¡J¡À «ÅÕ&Á79tSkè¼{lñðܸ›È¨NP)T{g\é¤nEå@cþü5”·.ZÁ„æ®Ú]ƒëè¿§äÍÛ_l‡²‡Çãø›¸ #ÍK!&"ÅñŸYÙÐÙP;½t`IšË¨á´*Îý™…|]$V=Ÿ»I¢‡R t šäâµÚ_úÊB 9„ï¬;åÝoWéšàE}»PÃL㜒z”S(ò}ÁrLÀð{‘D³1µÎVãÞ}6­+ ¡Ëÿ‹#$ÚÑé#À‹½2Ô™Íõ³‘W3ó[ .òKg’y„'0¶@ lzЩîð=¬JX†P8é> §Ç”7à<|á-´Ž@[st¥= j´F#ÙÒe¬Ôúa?R™Ïѧ°ÌäÉâ$‘e)¤,dúJhD ¸vF9#‘Aþ)†j%'åtŒÛÞ¤éUئñÖAy’àjŽM7YÐÅ€ŸuŒÖÔ"¿¥Œ‚! ŽxŽe†³²ëÌê‘ ÊB4îÊJ«WájaÏ,©3Gô[€Ëí—°å™s¡?ª—ž•1óag|âeFÅÉÿ|»0¸¤, Píö/LQiÚ²-“]ràç{Ävÿ§Ð3–ånD#P&îQ-Ê“™Øcø{y=Ãú¢oÞƒG#ÖT›œ§ãr: (Ÿ×ÛERz7”@¯à˜x×f]Yй)1gd~ ¬+¥LWŽŽP¥eOºJއ‘³A-ª_sAc…œ¤%&Ÿì—²n!8t¯ §üùžw‹T¹Œç/â[ìk™}ròÿп÷|°£8&Ý¥7‚¡ZMsß²·,]âU=â þœÕ`85¶^ºƒªOqÙ•Ô9>S(°lÒĹŠwAÌÌ )$j ds§ÎSeáv—®ìðA±[f¿Ve}Mp„0T ),šûË’–—ÞA™Zr!¾½¶&®6¿l@{v,†vN¶ ¨Tññžbxpg—¸Gf•—õ|Y-ˆ9ÈD¿¤3ÿútæÙÉfYn×Ò…LéiOñ0ÎÚªé©Àèo7õ™ï“ÐþZ„º˜}g9õÚrÜßq9 |¹zh–¸³'cwN¸Â8*J}¡ï£[$BJŒCBo”BU+ÔIËd•.ZDQÜÑipÓ"GœÇ£Az >ÍóD'†ÝÚAë@âuç  DVõM’I+JP|›GQýü玞SA:@©›çOn!ô°(…ž0ÇÌÁªLèÑ·Ëb¿m‚-Ð=&E ß:sNfUÔøzùݪòeWaêþëÜ¡)ûp¹fðŒ[]~*hŒÉŠ”¯*AO."×ã~~-å_·Kî Åå(Ó¢äíž«a} P ß=j•€óM›-ž«Ð2ë²1gG«@Ñ»ƒ Å³•Jr,À짺g—øÈ¼Å`p°—:z¥•ÿÀ·î«¬Ç* ølòl:Ú6Pr˜Ú0wƒ4[†"mn\þŠÒ‚W™æc!ŽgÇòâyÜ}_kòɤˆ-ûÀÐ= [¦¾så+ }¦}¤ìhtŽßãw@\ÜÉxv³™¾Ú9ñÊ}BnÏuŠ.ºR´Aº:ÀDH…—o¬@Á4£„w›™ÙÉëç奄Áü„1ÈM™«ô› *d~· Ø×åáÉÁÚ4á“u_¿Gµ|¸l^ƒj(V¿kEÉáá2øéqkÜ t~‚(‡ãÌì¸5XUÐÿhÏÙP(v¨·ö-¤ˆ…’Ê2èœÑ½3 b0&Iu4F—<Ž\Œ„yuÓƒH­Øãæóhs%¦FGeÜÀ"ILÓ¥}óH¨i‘–_N2wÁ%ü©|¬iûg´h©‰Xëd%ݰ:æÆ°\(œl×”¿ÙF‡/k××SáŒÓt†îsIÛé{Xô Ê h\Û'ûäÜÇ’LDã#ô^ÒŽ•4Šøà—ÍWa€ÐUÕ*¤J¹µ!OeND[õ˜`ÓYb†Á~)U-Ý?ŸXbq”$  Ð!RÛÛòñày*åTЄR¿à÷xO«û†zzî¬}~#Mb¢ý¿a3fGfáª}™Ê `Réu(x¨“­>³Hèîó-/~Y“Ʀ½~qþ'Ưm‰}ºnW-¢¨¥Ž'œINÒµD.Ìãð Æh‰þÞ™î;ié°e㼈©Ô¨²FÁxôÔiVÞÖZ©AÞ“öñ(X.c¡DUR Ù9Ž‘Äàr|Nñ:áŽ?ò›|Š+9µøØ§” Péô/šD4í¡hœ‚*>c¬üÈà.n\ûg€RÒö×-ïÎ>(0W€E Ï|èäHØäˆiT}ž$OÚ{Ú¢c$ùoÉÀr¦ 7¿ñ[Å`j²ì‡‘›fBñBsÔy(¢»„’à´ƒóö`ý4AØ}hNëk/òp£¼!òïÕ2‘çÕ6ð§4Æû¬ˆù´x­q耜œžý)ejóæ“(pMÿN™ðgÝPÖ³ðÆãÿ Ä+øï°AƵÕ×W7#¹“І ¶G¶ÜH}p×Ó/-Ð*Ôm{U#6KÒ.#Vꋵƒð'!ºjžèAÇÅN°t“p¡w°ƒIJk ŸQ=vvgÝ벋GgZó²Ñ\%áa…ô&ÑbÅ+¦Ì–§k.·‹"!£’ix]ÐTõÁMÐÎÖߟ]”»pxÑ7ˆéÌÖ«žK °ºVÆh£$̽Œ§{wàÉ^%SËåOì}˜ í"úeï‘öH$‘¶„ÛÙòÄ{´“§ÈÄìú£¬ðµg¾š@æÞWbÿD'Ì)¦Î_€UiE˱¹# Œ|jú„ó"£ê&°øÍޝb2ó›„0Fv‚ï)1M’‹hŽª˜=™$1í©á‚b5œ8ö†¯ò«'ÊçCè]Uvû¾™öÿÙ—Q°ñ̽ýý4"XyÅwŠ÷ik•ÊA@èÊ?„.ëñ1JƒóMº>îဨ›šÑß…\‡uxµÏ¾ 'P|eÔ`†7ŽÌ|×3øUmwêö?%¢&Y«Wõh.üê)äQóe’›káI£¯*Æ]¡ê¿ÞTŸ4ÒdP sç'£vÓUZy cR’àœ6Êd/ñ…ùˆâ%Ã.Òѵ͢»?´Lù[M÷ÀòK1 8Idrõê°fÀuÑÈŽ’¸ÏÙT©ø¡‡0Û¯ zôÝ_âÎ '–åì#‰F ˜É»Fžª]#i§FèûR/K_f«V ¿{¶r0¯Z¤ ò'èüÈäé~ñlUžFMáÉii»8œ$•¼”. òq6Ì/³›V~¥0ä Flý\è© zÑ·ùëÕLÏ®ÐLÐ ¨rXÎÏ4rÙ5šÇÏ‚ÔTçÛƒ·çL+y‡Ý ©D3®$\`¯ÕqÿÒߺÐ^™”mèÄBZo>e‚¸@ù6€& Æ5DÕ(£»¡Æß àõTÅÖ!—@æAN¨†-È1Є&Ü÷D¾Ê¿+lÄ¥^œ=-N­Z?øm¾úánÔ_J‰/œ·&,‚—™-=¿én*Ù«÷¬Í÷ÜÎÕÍÙõ®ƒÚºÊ²cŸãž! ¾‘xY»Þ× x ¸ªð†$A÷ˆìÒìi6ýÝ´¶Œi­“d}!­ÇôQ\–«¡˜Ï’7H»±zú?ªpszšÈtc4„û¾qÿ'üHRBêªrÔÈøµƒ6)+wMð7ò¯Ï´ºÜnG¸)°©GWuC‘]rö¡§Í”4¿Ó½n?¶Î™õûî©Ûî°ír[8‚DWð>Ô—²‹‡kŠdÞ0®®ØÁëaµŽx‹nàQ8tg2r°ùã°É“nñ¼1öà´«kiLqþo.˜Í/ЇƒÏêiæ,Çs^mEJ:‹¬˜ä(@š{v1!£KSg…½hªÊ$Jji¥|*2³|”ÝÚDb«mINO!™ù­*½uÃi>Tj•7Îf0/»ŸÌÃôïhZgkÀàûŸ|c}Ž©¡ &ܝɨTûõGݵ¥cé»B>-oO%å¨d÷/)3LzúÆ´'ü’@iðË`‚(3ß‘XÝóÙ>åTð'ÕN’`IÎÍ“t\l ^ˆÔvšhy-ÙlqèX‚>ëÓ T„øí\zØ3Τ|&¿g¶<‚Ê–WŒÚ¼ ÐAìÜ”#£’ú$`Ö‚8¨=äÌœ ­ÿ0z§äÖ´ROoI+•÷›d±$ÁˆÔê¸ _:ÎÑC7xTHŽ“Ú¬¡%8bš4JàËK·S›ñÛŠOhªÙM}Nù7S¬JÏÄ-85ÊxªŽRP*>Jϯ $èÔ›¾¨…*—ylJYÑKJŒš=¨Û>?çq-ç»N‡± J±Bºÿ†Ìª‹M¿ûü²H71æN¿^Ǥ+² *âbjÚGUÙ,E–u¢\ëÒî Lºóô¨µä[5;&æjÞ„UäèHF$ÌHÚ¸ŒAÔvp"Fà°»{xb²ICÓÉäµbe*Z®0Iß'Šr-4dž¡Lí€ÜÁŬµ.ªÒO]ù•¥p‹Ø Í)hqe"Ãsа”4'ø ~"NOm¸ª›}ÍgCN:;͇N”¬N–`Ðrà°| -Áz+ie“7”,<ÀµÃª.)èOCÑ…Y}•1E·‚Voz²N ^Ÿ»Nâãeù+ýìq>‚yoíÆusq‚ð¯ý§­dšù¬š“t.ÁºpÃGyXAÜÛ¼<»l¥ï‰±>B©¿¥úÒÛ ^†¾? ‰è§pßbÍú{9i+4F©úk:<±¦Â) \^`âÄcY NZÜ?¥ Z–q”ªÞ›XL«ÀØP{ZàHò¶UsMØí}TÐä3 Ÿ}²ÃDÒU°Ä o•YeJÂÕkoå“àpéÐ\,³T¢ûà—0“·5(6Ôn|€±DÄÂÚ;\Ä!Çö4Bgíƒõ˜ÿî~è K‡¨ÔéŽàÅâ¿­€œ}³TL™ïpÅO#H6½e6°f»¦N¨[Ìþ+!‰™,´dª»ßˆ2̳ڤe´u=ðua®ÆsÎ()ÿÊ1µ(ÖaóÉW6ƒþüÅFÞ’Ò)w#ŒH<6bü]örºæ[¡½ Φòâ‡}'‡×’ÆPp á¤uÀÀ!sN"hPcûÔ­ùƒŒ/‹‘“3ˆnÕÎ)È~¢0¹ý×…Î5_ÐnÁmö˜R1j«ß´F‰^8²Ý•õ@Ìa²}É7°£Ûw‰ƒæì-ƒ¢@|’ŽhÎ0‡Ä úÝ¿ÜwŠCq™¬øArv¿þîI¶Ts¥½‹,ë+Êo4 £`‰‹*ƒ7æýb ;¥Ø~eMõ±ä‡Ùï²FÞ>¢9ö a4—ýŽ)Q¾Æøó:ÒüÖâ[Ý s@rÙð:\dêò »ŽJ;Åÿm$ :|E ŽWÊ®Yµ[s›~Ͱª0"œûÙN£hÍþâA5÷IŸÌý÷³' 2w˜ì?Èadô)I{÷ º»ë q'íÍDy»6‹ÓËOHç•Ö5Úc±'ÎÖÝ@”Û(nÿb¡ƒö EÍa|³kšÐÌD…:õÁ?ù¼…Y {Ô½Ürø…©¥Rð Nɶ’½4ã6î6Î8=ÏßÅîØG–€•ŒïnCï ½e€ãÏC¤6;`gFU1¿‘½‘芘þÒ‰Q¿/úêEº—ö¯¬6€(£Dú«˜ëºn©¿1]28”ù%—5À´~_ì?H¹ é1º?ÔN)`÷-V€Žá‰Ò¡Y¢#õÒ†f ·}S1“Ñ«Ž!¦ßZ*ÏÂð`Ï’]"owŽ"Ž<%ÿÅ€x›^%j˶8Î ± †ÂÃ߀ÄÀÓª¨¦KÉ °´¶õ°9¨7øÕÍWH]É8RJŒÄk¤×6ZiÑûžÅÝÐ$ŠôR €a‹­&»àYV½ÊH\^ÑS܃¡‡ª·Ã‡Ô³_²pR†G5²¤G/ud]=员CG³þªØMLÍÅ­+ïÉZ„Ê‘ãYÁs ~¡æDü{hú·.•öxúÒô9òÞîíVšÂ-AE8ѨÃzI©6FúQh»rÕ3K¤ µ7J‡1^Uâ‘?8±†H¯ã›©ííhl~µæE]XóNŒÒÿCU¦ü?$ýrT: Q§ä„ zÞ‡”G¯t0®_oÝHʤ<û@V`†Ö˦žÉv@cö¢§›u›‚-e¦kZñ}tRˆÁ'ƒz1™Oê?#Ž»¹³üx`„Am$`íß5àØ#VÓ9Ø+l4H¿„©i>ëTÔÁÖÞÄœ>Br‰îµ.ʹú»¢hNh¹’¥²I?&Hºu?¯‰K…„ƒ”9µ]ö<² IÖr­ù>4V)ðÿÛ>©-hŠÍ¼Í÷J5sÌAiº*‹ý$ˆÀl pƒ>¬ó§¦ý/…ÈV­§`‡ê¢òg¿ïÓGMiM5ˆã ?‚6Ìü!ý¢èÃøxŸ9C²£›ýþáÒˆ‚þyzm=sŠ´ÎCß­9k¤Áë[àöS§‡æ×çX"ßÙU‘pm­Lê²±Qú4€×iášÇ-?óƒû@ïõÿ;é”-%=:AùÉ'©ÎÕÔ|’OÚâNllÓ~d8êÿ”ï¡¥ I–ad÷wygQ#±€ïŸXÊÑãÜèÉ#ÐÒq„“§EɯR£1Ö^Fì_'ñ` ¯'×A=à/ý§$".n&ØTk<õj‘ámnÏ¡8ò„¢ V[20l†€åÙ:ÌäTîGy¢¸³Ù¼4c{kÀ85ÜŒs§ä6Æ&ZJéèÀÎÞ|œ;Ø'+xZØ@œ”ãI‹†že¡*^ü2Ñٌ乾ãÐt«!…=QòRŒqgôÑçðv?F‘’÷§bQõu96W³32™“Aøó8!aÙÞàïq® ¾g*~¼½êcYû7x‡ÙLÁÕŒt¤ìÀåIŠ„ºø@ÞÄ¥®£­Ì’Ež‘€<È{xfTdAieö_sâI ðOIØIë6/ûˆMtÇâ {ƒ9î1 *J8Ã¥·Ô4c_•^¦'€ñÈV[ºðYÁÍYáç…gž‡˜©µ³2»Ó×£Þ†Ï ÍÅB|!*Í”d¦VÄd©:y»EÉÂüÒøX,×/õbä†~YtÇLñU#7Ç^dÓÌ¥w´V*°ÚÖÌ®s]Ü«¨Ï¯—ycfòƒvÚ{´÷zËÃý>ý!âîIEV¦yÚR[ÆF×O­NØ ITœCQD$ÝðÖ‡FÀ¯©Ì_yœ£é5¶ëÃñ þEÑÈ7å¨ßØ­¼ýmßXû­òžþ_"„•YvsÉ`>鼯äÎx9Ø·Îü 3Á]²Ð­k°–»$/¾(¹EFŸœ3Š-»+£CZ?ï´ &ÍÀ’$Ÿm«ÔÌXÉ¥ŸEô•# ‰fïñàIÉÃÄ¥qÖTÀ{µÃÒ ´ö z ñVaJÓòÉ[[‘Ï@4^&µveð‰äº}Ïzƒ_›`pÂèz¡ C£áBúC·4€7ùï¤êÀ©Z·ï¡;Ýl„w°Ë*’—?,ˆñ®/µ ÊÛ)(4ú þš‚ysäiêinìð ouR7‚‚`¸±?Å¥1~ÇJ-â‹m4=~6ûZO'Ïr:@nþ\étÉèÁd$‘ŸRl¨·ƒ»ðD¿ÀÀ+¾½ÚCŠTTÇݺu -X*ÙÅ­x(ÿ”£6à·õÁbÑŸÃf\Á9×G"¯JñdeHV»¤ï~^¤rH`IL¸Z Æuf!k#{Rd0ÑÏX»4ÀºPoodV„å»Ù€`¶J+ŒÃGÐðXÖ8cƒ„¢ž´s£ó’ÂbvFŽ&·÷ÚÑ|ÚKCŽ…EÊ+a~ßÔB«@ô¯"GÚ_&´ä‚¢¾«æ˜ê""“ðàQð|AÝÙ,Î7{Ì«Z$ˆ¯™ÑY‚¥mdg5wÅÕ/…a=«r.àCB<…¤f­I楦3òu©Œ¦+Àx”¬°.%j3Þ³3ü;Íš½76 ¯6¦Ywú^<€“e•Æ®cF1¼ùbÅáiì¹éš{è ò. kðŽB‡¨øf´ÒÃØÅI½fÜéN"%Š)RØò<ŒÊ fùëTîbŽ”mbXÿ›Ssf‡Ð#‰l6ºâÌY-_nG©f¯Ýí³Â,»M6Q««LÑÞà”M†ó¢ésµ®§«Í›k,&΃ïï×(¡»Ý§X÷h•Ä%äcá¿^ŽÑÌ0èÀÉ”ãÕ+›H:Qmi±³›ÄLx©úLúug²G+݃Uöª®kŽË½gvÄ·h>{«îUÈD™Ù…#ò´èly…3‡h[ñ‘=ä_°äzg\ü€œYÄâ aaF¨»”ÓƒSÞ Ëë‡}šuO»ª¡Ã~1SH³šÁZBÌWtâ²H"„·x‘dμýàâ^sÀÆüdƒ=L¼2Ñ0RÜ.„ÍÅJ¬C‚fØŠ ÊăJXDÊ%«”]O|ÌGˆy&²ÇÌŒNñ£ØJŸRÏr+âþ|СK^­Ã‹‰ínhÛëÍ­ù zšÂ pŽ¥Ë#éæ?Z^ÙQ»s¯jgöÅ¥ ¢ˆ™éyâÈ[ñþ×M¤¯i€ÌWOÃÉó;Mr­`*=ÍœMP÷öžýÿˆÞ;boéN-"þŽ»¯‰ž¬‹®ùyy•_‰Êe»=N…œ-™¹uU9;é2FÝ:í€áöÈrÿ=-Š¢DëûøµôqF)Uœ·ö.IÕÚèûLYo {Ì͵è÷u&ù±Dï“hvj‡#fhÕ`¯¯cž­?«•£àºƒìÔcê…hÒã(‹R1;朧p~ÞC÷ìÙC)ªEþÖ+,'TeX5‡¥ëxÌAË'nK¥í¼`õϪ&º¼ƒy :Ü­d¼Ù@nNª¼ÇƼe6%\w¬5Íň(¹²ß3«3Qó£|{.Ñ,¿¶ Fv°þÉ3`¼ï¾¾zF|èÓEåo•´ýI <¸+™ó–-÷¼Aµ‰V5¯thèuGcÍÈëð£RHÈ£ZȽ»r»P5õíý@tØbÙ增Q k&£î€dtDÜø3 PIÙ“Ë¥*ŒÊ­©ÿµ$¡Æ!«Ú6Pº9г·qš„/3˜›L„¸5WL䇀‚æ¥ns68l“\6±žíá. Õ^™‰ßü±×õ ³¬ý9ÞHsK‹8~S!lzd†6_anŸŸ©x×_tòS½¾3éúx¤£#ç †4|"tP¬Õp¥øÚŒ89­\”c¬6õ n{·Ž GÀéÅö‘“…Fq]¢jv>·¶*Û[Nf¤Üé²y]ˆL»!ܸ7÷€Ž5î¬ÇŒ¦PQ¡u(`2S‹à\¶VÞ/ö7 ÂR>æº'ØPø1eÇK‡K_ÆuàR+ hwÑ›y¹¼©8–”Ý}èƒ(Ú5ïË%§Mé¶Ë ¥E6šÇJq[Ñ= k¯hhû'n:l·ËrѪu=IsÝŸAö¿ÛîL¾aôon½ÄäN~MLúˆï`›@ÌúIˆ€±ãJñqü£ÇöèýÝ¡«éø¥5¥pÖ&:k¤.¡J0HIªœ`ïW%âŸÀR>ŸÆ2¯P»Žÿ!ÓÆÎ&H(çSÔ¦ää(½êz–L@·G᎗.$¡”Pkl´Y{?á…5&«_+n(/7_}•AÛÏ1˜ñk.!º'ªšaüŒ~÷ë|Ü¡ÂAQ¯‚Ù \ _2j–Ó°ðÚ)d"¸ò£.sçµü\Œù§áû>¯~möš­"¡_{á´*"·~x¬²ë–O‚wŒ‚̪$ÅÞ(#$¬Ýè–Úú ÓÓ2–)ýòç˃(!@ ±ÃX}IÜò\2¼Y(PöiQýng·$?jëQ~2Z.Ï Í@¹(ÑVº0|WÓºÎfèðtú™Wys„ {|åþö|è;iÇÿ€„?,äñ/÷¤°°ø÷¡ :ØËJuFlîÓ¼(Ë/¯ò£×%)÷³Ä«–r÷U{Žè Äæ”j÷DE”Ì{2ß~Öeêaá^~ç¾@s3CtrðªìÚONbâéõYÉ2Ï?GRuP+òõiÑx×YÈ`#Å«4FÛàì“áM|y‚,µ‰rQ{òQ€,P ­V·^M¿½ €vË#LHÄ;Fé'å„MQâŠÿ¶APý¶RŠ£#ªwþÐP(qíNÆ7Y¡«@Ès0K[ÇR\6zƒ¤Ë¥K>Á±Úˆê=¡}©nX7£{’U‚nÈô=mÔâè$7­mXÉY†Ë KŒËBîBÞÆ ~»l(·1¦z³Fçrf¿ŸŠ^÷ûlÎypûÎßW¸Ã_“Óx?ŽâЬ«¾ËëüáY,O_èù™ ›0æ|bWO ó$‰¥Äü™-ª¹é«[3ëà‹˜Bø¹<&çEÎjclu ƒ¸ƒ;zß%Âi%˶yÂÕóñ·ðùõ'9Ø `ô)Ï|å#%ÿÛL|^ÝT•ØâÉÉùìw൬µüÕ²ÙçcßÈ¿n’ aͼ©ÕÀFé<²K# Ó¥ûš¿òjò Zõ; Vï7zØk¦»K7W”kql¯¿z ‚gv®Ýå5\"úGœAŒÞšn»×Ë2‰„Ã6—¿tmX(Os Fø+9}F‡)Oï–']S~lÿÛLl5K;ôø¥WÑè>J‡ÐËøšq] Ž¦?ÔédRü.ÐÞÚWÕÒhF¶p{±N†³5¦e#€_­uU“î6ZsVŠ^hp,ïêÎÎPP‹2sT¥5w‹[µÐ{| 2úFú¢š–%ŸdøŒçÜv*ŸBkúQRKËj`Q³8®tóUˆWA*Ïâ„›'kÈÚHŸ‰Æ?BM“z#M©í óiÒòÔ{eáú]“•tZ_˜Ø—uS ÂL~ò$ «_2èåsÖž"7¶û³NîDm Œ4ë1oS¬íºh™LÚ•Àí\§ŽÎ#Æ§Æ ­}á~ mÕÚ‘ËÐÉòEŸJ¥@øO±¼çG Oò¨;ÕÕì nó…ýYðÃ"›l3hcê \áý=tGw#ïÕŒ=îCGµ`÷^ä3ÓQÆÇõ~Mí_+ÇšeC#iÿ”m‰^–$ìFè„tV |†±Ù?+,w †É>cì•äa«‰’â-Lý¤“'«RŽD3i•W%CR\˜úÀTêþßãøpŸWVJ2VhSÂñ¼· º®¡Pú›ŸLY,-}š¸c8ý/”®Aöàtµ÷Z£œ]ZÒ †3dy­Ï”`›LEL¯UÇv)k œß$dã`%oj›‚t30ÁA¡ÆfpŸv€®2ç¤/¾¶Ç¢da¶Ú ˆö˜Ü]°£·èþAßÄ´›ædp–qhvmyÌ‘0‘Šiž -üau¿J!¾›NT²wµî@«¡ÅEÖ”|tå;—ò,0˰7NæŠ\ç«vÆÐȰ“ì}ȸE›é•*£ú áiÙw\‘Ãu"í¢…&˜Ü?€NAìg5o‘pi¸ÉM®á…ðÙî“2ºŸœI]N³ &,D¯¤”-Á Ô/øÿaL ×Á šÃ)¾[£ó/¶üØ>¡[ kˆ+xŸl­ñØ7J?6Å (÷MQiq w/VýðþhBŸ§p:0P¾ø2cŠ­´»_?=ʱ¯¾C’ªI/´Ð]ðUiñ…•¼•6·'þÔåØ ›$©ÐlÜN¢È›£´ Ã¡w<Ò»‚€9k@ð3È𕃡`3ˆº8“%sùQ¦wÚv[`”f_—ÙÝ›&ôlAÖ¤kሢ>(ØZ\†RqeQàжÒ[瓌ôOðlM>Çq¯ýM-¯žVC’Uk,@…ì±2þ̬îCáŠ3[4hÒ ² emí¡+xQ¡À` —QØ¥H€;ÝÎ9å¤ IÎWè@q¤k"àæÚºk@soò›_Šuëy—Áqƒ›õžý½¶ BÒ£aAðEêE€»ô‹Â”kßp‘$B¥—¥Þ&z–íéü$øƒ$Ʀ=¸Ð±ÈÔÀ½Ê1Wo­…PBiç©U§-»´ŽÛìŽ.³æÌvLÚ ÓòˆK›WXú•ð“r«VwŸêD6jâ0¹¨ÁÚ¾|•ø£  ½ÆMõtSÛ5a "Ãbæ! „·å™÷‹p ²šŒ4ùOañ}é%'x˜Ð¡øÔþ¶':ò¿q±EWð"í9­Îœ>¡Ë—Ûƒà ÿè lþ_>ì¹L¾ß‘6 ŽÌ×êuØê ¶b­TââòWúj*âryÐÖa½û„yÆZ®þŠ<¬w±É\ùÃÊÈy–6úþÈ‹çpj 2c6ÒRžï%väB­´Æ‘\ƒf“™ô…ÁƒaVK§„†T ’ãxíAæ V<)O} à5;"Nl Ý°¸À{IEN^Ï+øÌtNOS/B—áˆ2nH¼‚»×-Ï&(ÏÄûM¤èÎê …½&¾/Â+óñòåÔëA5üT:Ø¿šž'*X±.ç<ÐjG z%W8wš°ÃÈ¥»`­¡ƒµ]Ö[Ìì kø+€Ñ¨Ãl†@yª$dúK^_ñ§‹|ËQ ×-M‹Í~¦SCÃd©ÝPv^¸0:ìžP«4â#Ì“fÂ]ˆSt¿Ï<jɾÌùÂæ„H)ÔTëdîØí¦ÒÀ‰``{û—­™`–¡CYÖ“Ð{`üL1 ¸`‚ƒoòhvÓ‘þ’ó†;ìqƒ"EïÀägi%P¡åÇ—­R¦7çÖµÒúû‘v‘SaêO•9Ñ0N]3×;{à$´B&_%Û oh­£à«J‚«j/ ®˜ÔXúŠNêi±kÀTC£âV<Ë-Ãή +É=÷¾C*BŒ¡jÅÅ_=ôeçZ­áµ÷Éß.—&Žù[ôÛº¬ÑÎo&Stgë@~Ç·(ϲ*8¤Eig:JR­¸ÓºÌ¼(® ë8*/ôˆÙV”ˆf„}?QF¾p{[Y>b ¾ÑFƒ˜ý¼Œâño´}%µ´UTÓöš¥e‡‡f$¬?åüÙxªúüµ¤‚•ýý=Tj¦Á“t¦tìL$£ÍDÇçÖ„°q&ôQ¢íäÇEæó@IT—èÀw]’e5è°Ø¬A‘WO_hM‰ LYkËuåÎu~qñ 3#ÙˆÓloœ¸Þ´hŒw°s»ŒE? ÝêœÖØ?ÍŽƒ5²„|§/T²‰‚!µÎË2Åžô7$õu½ V§'?bú¦Å/^"9tùä¿ ?çÍõ“Žçñ¯RÖN ¥€P›nû„ã˜Ëiÿì× Òd '=x+ñ^ÛDÁ…ù0áTH4È¡”Ë8]¿{Qƒ­l¬`kã‚àÙ³‹!RZ—޼Û'¶pÅEO¥—M98 PÁE&r ¥Dcœ†bNÿJ’ÄL —¼.ÏÜ'Ô`ä6…p„Eu4¡g.…ü“È‹úƉàPâé®Jµ]um 5'‘…«o]øë¯„¢A¥Â æ´5>¯û)‘Íîá—ÎÔfÞ¿û`“ªKocÛ#Z©€€Mž+™J8rH›ÇcP :rA; m[¾æZ …$H%ÒÁl ©*toÒ†c0m¢ÌÀžTð—{C ­×êË¥¸ ¥FÝBK …¢(c8 vÿsCð‘ y“–y‘m7Ø^—°éXT^_- ⩯p·’•ÅM1ÄABœ$T¯§é°ðþ®t³l#çlœw„D†¶…ó½â˜} Ó°()»Y¹WŒì¢ˆSéÇ)—3jòϰSŠ=s£×”qœ‘¯íÀSœgþãLúƒrhDj RëÝ2‡ó9xGŠd¢ÜžnSY…è&ØzpXó èF|\+a´©»>Â7rÝkX5V­b¥§’j}טvî,·â{Q‘‡®÷ᩌ_`êWÏ" «Q»WÿnËýÀ¸†|dÕb0–ã²´|£*õÜj`¿h¡úw• `%俲).ª1–å[íC¡H˜©Õ\aû~À éàm¸QbSiŠÌŠÁ8&´*ÝFDª“€B"ØU¥RðYR¿Åˆà¢`çÈ'œTP寸úv•qªsŸ—W׬D¼¿€m汄¾½á¯c( NèWÿžt7² *\ˆe÷=µ $ïLv‰Å(@µ_OgáÊGìùºÖ)Ó;K}:ºŽoZä‚h½V¦ÂðU·ê£YeôǸº")_Qrœ>Í'Ë‹¼#sµ|ÌǦ 4!R£fº¨¯JÝîäé–qÉû·ý/Q@×éÎ@:~@9‹ý=˜˜­Ãçy†92‡Ò%,zÄj [TºàøyyLŸ6?Ú†R‹S#$A$‘[d…|[Òu×j £¸Im|Ð]ù•kà%…jµ8å¡¢›´ÕS=è´=ïГìáS=Cã’Wc–dÊè¶z“Ü º]¡“%ÍvÇ,³ng-lZ•ß0‘vÉ“¶r;ÇE'Î󃮪àB)vqWÇÔjÔÙ¯šÆTLü¼A]’jÖ{¹ù"fIÆÉ÷Ù|aqæÀþ¨Hµ=Å–ßz{tÑ)_LîWÅ“Yü@Ü  rrþ‡U 3 ïù³ådêç+'ÀžX¦úil§§Á6ÛǬf&–Rîßn’ªó›#fфؖ#µá¹¹÷Æ»ö?Q ¢´³S!âÙoÖñ&°¯²fìšh V%íü“ë¯ѳ DëÍ,Î3vÓ£ÂMYwlF‚S"RÕžóðý%áÍ–T/O!ïú DѹÍSa›±k4¢$ÀÛ¥”€|.èz·n„ zjÆ*ê½a-Î)cÝHòÁï™SL†X?'óþ‰²rÈ™ ª~jò3î 6Š“bVèÆ'P"ü®ã\VÓæ!l?¤Âõ’ÉBá¼,Bj!Éy YŒÚÝÄ© @ôXûb°aa=Å´uï[Õ&ž£„ÅO’7l{-ÆHõE‚v/ü‰E4*„ŽØžú‹Ž˜•tžW']Þ©I͈,@®ÃXæEíÈ&µýCZ~ §®`<Ø–®äA’?ß`#¨úÜŽ·:‚g˜Ýd~]Ç~Ë^ØiåP)åÁ2«¡eí%J2öf„|`ß|ÍŸeovŽKÜNkoÊÜkG{“Y~>v5›¡CÊϰ ÙŠ‘¨ ˜xTz ¥“„Ž®ÒÁGŠ>ËòGIg»×lŠ- nlž®kUˆéL±BŽ z2P„x þ½ˆ".#iÔ0»d. 1/˜b*F>¤ôQçȶ é"²ÐÆ+ÿ‡²”ÔB°ßj—³di·ù!½lÍdª#1/îÆ¼.Я„ùW€_Ó]nbNˆÂ­ã'oòZ>{ɹæ§]áìb¤<\õÊO¼çJõ^™ÔT¶ý«ì{ke;S\SKŒJí¼Á»Y Aax~E\󀌌œ™ ™ÙXLÙͽ‰HY-#‚ºR¤„Ž… i•Õˆ23Ô–ÚLþ­OP¾Jy‚ñÿž¹€þf—àáæ«‹ùPHlzm(ê'Aá[HJ‡ã}Ú•éŒʱpp2ÒT"*‰—xµ1Uo4‘³&4ÕâUV…u Ì‘K5F êÛÕ#?¹8…n¬GÍ4I[ÆÙeßÓØ×Xch–#Pb½¢y É!&â}ë|0µD¦ÞyÌ¥ÉONÃäBJq1UkÒ âz¯.^Í E:LË»N±ÐêmlRI ¬ô|ý|¦ø|IkjÝù«ÐYèVuƆG5 Œ¥Õ€û:1(Å‹^<4§ùuh=‚ÌÈ8u¹ f©tòPˆO ˆëÿ2b9Ð Ãȸ_ýø‰ŸÈÝë²ÎííµÚK#ØæNÆâÞË”ÙäL¡GHÞú´ìÙ×^+ zè"Ø¿›UÍÒj•Rrÿ-mç"9 Ã÷FÛè@M´Òn¨K¦NóìÌ„^ªé€Æt@Cɉƒ‘§t÷è—¥M;“Í^‡DÜ50³Î(·7VI³,ÑD¬•qáx°iÇÃöòx3–þG—-Tê,Bú9ó¤<œ¦\—Ÿ÷E Ž1*ô'„{W¡+¢žOŠ›¥¨Ugƒ öæL…qÍb¼2*9QLØ”º…D“Ðgƒñ§va'Ò  Ã!"EØk£¾Òo{¤&Ã`°´¢3©µðíDñî{ Âå3›÷|¢6Šv3v±ò’•ù[ÂÏツ9Q|7ÅX*TV›Ÿ :8ky&F=ª.P…fâ”X²Ùf)‘…iÍVÖǽî‚ù©3wUQ<Ú¿ðRq< *z]á':Dt‹ÔF­9z Þ»ïàXújƒ6ÔŒ[ÀX nj´¢Fõ³RRÇ„«íˆ{Kk`»ß#ñQ÷¾ Üú^fèºh¶¿¾l’¥`5WËë†uíçk¬«_ÍMìqã¼mcÐAg^ë¾\‚¦™íÓÒ+Ê¥Xt›ÇàY…Ï|“î"Â9¿¶ñHkÈ]rxƒèÝÌýíq*&»Æê÷ÿà¬'î—ô„ÝÕøÚåI£ ¸ZF'ö<ánND +I¥8ŒØÎ6<ÉÛWøÄxJb„ÓŸ§ÈuDQ›1:)×ötůµc ÀO¡–$ÐXÀbôÛÏä¯åÃʨÍm\ˆ¸Á‘àó/”p”<÷uññ¯ÍK7ò‰Õr*|Ž;Sؘ¯HwÉÝ ãr´CîƸH$8Hõè† áU±Óü÷IëGñÛG='†IÍA`x8Fé°®ƒ>©ì‹@a9óFPAX2Ry„“ "IÎI)êó—ESÑY'ý;Y&oYfÇ!ïÿH:°ú*vDœRa¼ÈŠ~ˆ)—ÑþÐ üX| «4\±¼ˆâÿs!ÕRÑÞxcâñ¦ŽÚÊ Ô6”ÜD^$“À­ÿƒi_F?î ˆ©hÀÅêÖê—¨Ë[Âe7I'À˜Ùjí®pŸÿ¦¾¹»­cå|tV ú7a¸‰ÿXß÷w róÊÕ)IW!GÀŽÉ5h¬«áÔ¶V7:LÑöª”ñWãøõO¥üpP ê†œÕñMv«Š -t½4²V¥/ÈA,l‚‰Âà`>Æ©J§°ŸÑeB¯Yù­k-9>ãÜÊ|áeu:”nòAé ¦ü&hdÅöŠÎs÷È"‰13–„®ã…dEÒNƒbì&5’ÜYdr8¦Õ2¬™I¼™SÈF4ÃÁÙ%™Éü×¥§Ì3©‘ó(À"óD©íVÛ_äuÏ©AðÜÓ£Åï" -0\Žæ}}âï ¨Ÿ'ºúžÓïä_ÔÖ¨¼ƒ¸9S±'8x×"ѼÆR«Ó<_Þ°ñÔåæÝg®Mt4¢„½{?°ssXÅ S8ˆ¨@8“ Àvi-¿ Y£¤ÎßçÔ¡ðóZ][”)Ɉ²õ7…oïÀŒþÍxä7žœí‚ÊÄia·€z`­Ä2Ûuwa:|ýÒ.œB5ÌòV°ómÃKëA¾³üï"Ñ\èK™Ü;­ม@=µ‚ N î½E³\·¸ômf¢äN ÓºžkeJ’Ç\"–ˆŠ ñr…PòQëZ:ÌOº¶J× ƒgмwyüq¯‹ÌÀ"¸ýïÐÕëå}{×àŠCɧ9͉<=_áz{ØgËmòåþ•˜=%–¹oÍ«QròZŒk WÐX¯Üæé9oXv„©„¸G!8£wG׫¬ ©¸aõ!N”¢ik[5“»Éã{€È±ÑIˆ°Wó6àÀbDHÄ›ærê”i»YeÉL ˜]Vù¿‡·Kâ—B¦4?< ïH@§±½UBŒfZá6[6‰yF±*„8Q´æÂ±âÉ´jsÓìkˆä•¯4Lg¨¤é}-¨¢@šnØ‚)X$ωt+ (ëÙæÎ œÑ©WÍd¼˜ÂœÒ"}û¼;qòè8:gû?§é8© ²¾ jhCçr©©‡0Æç8€É*ìcÃR;Ÿ~ï鈷€^Yœ(æÉ"²œØ~sª8JOŽñšmt,ÔÍ22™>ª‹Í^W[Å]1YB&P>«Ëà)-(‘Âü1©8zaâ2~5ЬÜ ¹IIk,¿ÊTjCNµl@PÏ‚„%Ù± ÊØÑ:k•?˜wl3/û‰èÇ­uü^T²ÿß\áç½4V-ÁXeÚêSàdƒ™L{»õq·J:ùЃæêaDÛgé›þ±¦æw±ÎNVVú🞆ÁÑé.»E~f6é_í=k½–hRëO`Ó÷¦ÏÒoÜ–6<¨@ÖÿóVÞü-  Ë‘W˜Vaneõª7|SŠ\û¨ÜhšÑ:àZSÉžŠSHݯŠÎ=è´³k½3\ºM5œý/&KHãÌ!šLUð—^·ÃѤý9"{å~[Ú­ÕîA]°ªGͤǵ¬còÂõ£¶ôõÍXÑHçB~ÁQh¸ÉOÚ¨ÉË”»û‡CËÌ÷aª!`¨xW¦< •ú'“W9È\D‰÷Œ‰,ªMábÛèFjöÉT2ÈôÚ ÙÌiÔǶý_´ $Áà|ÓÀ5¶/ÉÐ~1%… ÙƒF@”i¦3W¾ ˆÈÛ»8^Ú1séÇ•¡Ð¼ʉ%°.xS¢s°éÆ$‘.“ó¢û9ºbÂb›Z+¹g ÁÄ[ÏÕ¿H%¸´’õžû+X>%çl!±{`z¿ÞÛ¦½—ᬧÍiÌ›õxfâ¾Ã§â|îàBûˆÿ“þ…ƒØ3´iá»2ErPz7™Œè,y< ^ÑsÆT„è/FMÝîoúý3²ÀkÆï“ãúb±JÁ>ËdHöÊPJh ΪáãKÛ!Š#^1ú‘ô'|õ/>¹:ÞvïÝ×+‘hº·y#˜â&M•öÏâ)ö‘þSì¦Ì½îË)úû#÷ýºJ¯èþGõµ/#R dsHªƒôµ3çÖEváõ’ìþÚ ´6ñ†í<#rfÚη¡ª[÷î¨5­Ôòz¸‡?zë ?ù_k ÖÐ…>0íq5R×m¸ù +³Xħ‡ëØ ù((Ù»Ÿ¢õö^ J#ê¡A¤nw$_&Û­>@ùi‚ü#ÔÁ¼Øø÷`÷qF  gŒÐ×35>1ÏÆwŸú²Ó:– A@âB~ù«äü“t+ÌrÉ‘e«¼ý…•†OÈn­ª“L‡‰‰Y¿-Ç7{èé ʤ+§ºã~y¸¸˜›þ\§\ĆѡüL²ü tžš•o“¤§Œ-V>˜Ï/fþ£èÄŸý`p6]W©(â;]±p3jS{¿ï¢.ø†#7€‡6ï&SªîèåXLxKÉ„(ªóM(”•ïÑEß`ÄU¾iò8«þšiX¨„7«§/²4yñÏ#Pk†¶E¼Òªue]b¶7ÕGÓ=bϰ²NÔå)Z&RÜN/…a$Î-¾4vÔÔÇd¥]2*Kœ÷øÊ¿L%d‡n§J‰d‰»)ˆXx‡ûv²Ñ– WúÓXvŒ¹âuqÇ ÁP›w¿4ë(F\AÞu@hAµRxÉéN€GrÁÌèk²Æ]ôä»Â ò¼xˆp¦¡{mçf4””EÍG\ý "àôK¥·3dÀ3ô .rÊÆAÜt¸V0"Œø\©Y”¯8vÕù&5 Q>{U-â0ªvéÊ›'&äÒJC i¨º¥á€@Óé¹bË^ÌV¦S|êÿà &wÍâœ=î7Wº36äRŸ òO¸G)=d©Yã¶G.μҊ ¦…’ Lùk‹ .@ý%ïxälùíŸÕ´i SºØ>Ôùò¡°CIE­§ òQëPí.‘·Ý%Ù]>àýwf%½Èwþ?æsU¨ÍNÊîd>ßÞ8ÄðbÕ±i'L™zÑè6~‚Ä—;;°C{Ê©têÎ㟤ZTÀ:×ÛP 9+¹ZÈÄ5õÎÜØé»°r¨mVÛý²œi ¶²-î†C6&^*V%¨Òi©Ý:Gs%/Ÿ ýíHٔͺÝþËÊ»ÄFU ØÍÊK_Œ@WÁáòÏxƱ)17éâäwê¾TYÓ‡çZÝHu,70ÄÕž¾:~ûG‹¸´€Z15$"vš‹Ÿå€86ó R+b—’'ªÌ\rÍŽôCÄœn6ŽØþ¸+¶„zÿ+*' ãñÀ7ÙÄMg¸ÖwÚÏùádŒTÊ'/£ÚRøÞjöN‘¢Vä¿‘ ÿ`ßgêí/xY ªÆl;Ó_.ŽK¬û°«L®~0B)ÌIá0*x²•å¾o5Wž³L+¨R&qˆðy°L]žŠvA[æ1hjå Ÿ@"D5Ïè•; y¡4•Î!ØþóÕà>a—3-oõ3©®Œ •šÀ{X Ø GL rîf Üý*ûŽ…híøÞÉÛ&š5ѽTßeÿ°9ò %%|zl©DËv5¦§½ðüÁCíÎêåc¸¢O#{è4pS zH›}1ÈUk¬>ž!ù€§,k·Ñb{}øþÞH'øúJÝd͉µ ;*’aJžÛH¼_ýÎ'a’"µyA׊À\ɋׄÄF´«Ü™IDùÞP‘>¹wÞÑSþê^KT´=øŠ0ãr÷¼¼šf øñsätöëC^>×r¹¸±³¤Ÿ¡Æß~€¢§|‡¥ñ;pT7­ ƒJS㱜 ÷Õª—v() ™âoβqŽ2rKPÌúÚW㢒KÃzACª_Ie6T`ç—z}g¬t,‚£¸©p§êÆ‚Ÿ—o¡"<ŒRåQ­ýdPÓUÚ¦¯Vü¾ÂÑ ÌШh:׆ ‚’„ƒ•OŠD¢Uû7Ö†›ñ½Ó»â‘"š¦m A˜S­Ì<ŠóJ{Os\äp„éÒ–LàJG&"T¯Dùàsø×î2Ð}‡sw¦™>:70·%^Ƥ! eœ@þ†¯>,WŒ9Ÿ0£Êü¸Oƒô™š,¤šWs|e*P•þ£¹EžD«Ü ê3§qjê5ñf­!‰€>@£êXŽC}(®'XÍ–?ÄPžu<@ !€›d¬£‰Ï·¬ &ú³Xšè Üu+e–­þpè •&]<ÔèskÉAŒ'¢®bxð.¿#ìó6cø“› ì‚o×U"Ûd@ÿ†à±gã·ÊWŽ4—;É·W2nõbQÏA¤CG?öÁ‰ší<õfÛnVFiþ(²×'uÐ+ë… gÛ–ì¡ÌÃU÷Ý9è-ô¬ó‹tº`ˆ€Ž’ÔÊ‹ñhQ¡m?å“q%k5–IG¦…ýô„·éÛx²ú é¯)*‹f/ñÉ¡)Ë-lW¥[)rIˆêgÊÂ>ö¶¨h4¤c".,³?ªÚô%}øÃËâc:ð¾Í ZÇ MôRõ?@³Öîý$LnV ÛóŠ[Â9…”®¹Ê 3² ¦±ÔØäfj: w"–‚ËnÆòÒCoÄ…òWƒw0=ãz+¡Js‚E˜y¯î«$KÒ¥? ±Ùÿùèúƒï±8}÷2?C\ܱQy¨5ÒPh9=ò¡ú¢´È*ÓËEfz\t„áå &.p/PV©ÓÜ,? â}·ž5ÿ‘Ž}wз,kP‹Å¾S|$èÓØý²i´ÛÑ&b÷î!¹Æ&^®§¦Îén|kœ@Ò};‹‚ÝnöEß;·* MO¦_€CˆØ@Ù©i¼ Ǥ¬¥€ÿD€·Œh"=nôô ×.†n{b´sÕÉ‚í›0ÚZomÕìîlœ‰á+õ(4•TÇJóù·ÅQOËR‰½ÃÆÉ*-0“‚UÊy‘}ÚhNQ÷qÅù—k§,ƒóÅônÒ;¨‚ÿ¤ÏÉï,'“½* Onºâ˨}{æQ|oÀèuÀŸ`Ü ¿ QùTÉ^:’´÷ ™=\«{í­êA£¹),ŸyÖ"ð5hQZþåÑÓŸ‚ÂÍ„‡m÷‹]ü¸êá;$^å`Oíö›Ð³‡ñPÌï'ÀAT0þI^ÁåU› ¿cÓä±<ÉaYQ µ·¸L3—Ù«ÌÚXÈNÅßî¢ M+ÜN.®È* ;ÊGç³6Ýs^…Öíqöóƒ«0õZ‡™'Ôüc¿94|äS¡š8œ¹q3Š$,Á¥(|á e5Í€Ô±0€ìè6 ‚\CGU-žZÍKx0\û"†êö%u…ñ!yG’šÂ¦•Źq—º‰0› ”"èù}ñ¢åâ¯ÞÛ_;! BXŽÀød‘+ Âo±¾ß„Ó4Tlv§ôk‹Y ÒQGГג 4lŽ8\8øGùæ¤ÆPÙIº×ÅŒì“UUeÚÚo 'ƒŒèg6óškÝÅc,2ò£í{uÔcdoÈ šV²l¡‰M[NjL$µ„]޵åpóQkÊ\ÙÈ–ìîå7ØëûC[Fé›pê2XÆN–Îm‰¤ 6„ìHô”ßf'ãGWë ;Ì¢¿ßÊ–Œ.ô¤ï ù–_Š;p2óqýl_uœÎ¼ÌÉÐ Â#Ûçå}s¨¾~´÷MS·0æŽkgiœòß G){ÝÎ;w´òèóì(Øp—°L¨“-#žÃj¾ þáá D1‚òÃÜ&~œÚ±Š«‡/7ÈùÝA mlUŒЕ‘Õ€›Ý‡F]0ìÎaE9a4ÿuÅŒ‰n@ÂîÕ–T©îh—/öÑš_I2F(ÖªŒó®NW»°úv+B{(›ÕðEï»Ïd:ÏHV¸5 o‚^ t P íž“s&ÍrPç @ŸW\J!Sߪì þ\n¬òÀ,CëWJˆ¯ª”+"ć„Üs‡SÅãžhó‘iê»ôñî¬üéœïS­úE!XKîÓèŒ4å×»ÐlàÁÌbæÚè¸>.6µ˜G´874ÈIv¬Yb”ÁDïÂÒe¦& ‚<ÃóÙ4Mê¦*ÀñÒé±DÐ(ØnÓÞ;Â6Lmõ%SÔÐG›šãì´­G Hà#Å>µ []Șô›1"ý̃t‘e ÎfHm Û``dÔèð²å®®JVXG¥#H.ªõC,1®†ûû>£ÓÞÿÝÆ¶¶R |Z5ï þî⊠»Ö  Jʉ!)qr«ˆ&Ì6?CQ<„2RìÚ7†záòSÅýÏ_x+H4¢.é¨^aŸj.È’*+>Ì*7ìvÀpˆBy,Ìšª×¿Që¸ñŠ©ù¸kOÈú¢°Ä>%…*–„u”û”d]]z¤§,SBlb-á!—P?¶ûXs6Xã\yBÁ]˜U­S,¸êè¦HX—É`+2 KŽtqZá"•œÍp¼7U{cª‰¾|,Á'•Úõ×âØ´VP7¯7Š{g@EÆÅnÀX”f '-(÷o€˜S2t‚Ò/~Ë•ñ,Þ=N˜(Ëð²¼ñ¿?ð4<³’•VË‚VaÓ èç°»¹BTƒ’öó“S·ˆ'½#Õ×Mj/¯ÇM)¦x´I¨d™£–Ù‘{‡N¯5%B¢ÂOF]ñd©úQä{KäÜ]Û»€×nŽ{~\_ŠØc{öøj0a RN5TÇÙËôÔ>“`!·"Ü!"ÙÄÍÚ™Wƪ^8éðµômoÞÜÜÕÞ퀭'¯ÊødZv_¡¬—ÿ5s5ÝyÁ “a·¡1D[3e)3äæÂíU$lä/â*µ8^Œj5äÙvÍ×kHÌhvÂ5îÅ÷‹l ñsp‚Y9Ö²n°ZBÌöTÍ[är ZÎK>»ØRMq},Õ•²..šÎipZôNfÀ»FÙp¬ÔuúijQ·Ë@—׬Ý× ÷pÓžŠ›Žø˜hÇ?ñ¢<…è¿]yƒ}¸½¡¢Íû¤¾¢Œ+˨CÌF“Ð~+'“dÝew Cßrzþg§%45­ʼÿ›³Ør,Ü¥áÞ{¨³9ßÍn\çGT;>p Ì„¾à8ˆYx福Þ-×äÔþƒh€ôºÈç øÞ!b&Ë~+Ûõ…Ö…é=;k£Ñ¹ÿ`Uûó.Üœr ž}m"“ɘö`eeÐ<’4È"TµÃ•ïì[w­Æ„ŒµXfM¶jK…=fÚÖ«¤jŒö29öðÄ Þ­‰™¾ø[uÌY$ ³Á²·ì‚º¸çÐ=9=å–] v?¼s¨×§ÎÁ§ÆÏÞ&j+Œ-÷8n%PÓA õ›k+-ôòecˆêsRÕ묯|ò„lšIÉ4d9çŠäDîû³€µŽÀ­gÅÊI5ÅéOŽåyÜ~šÃTû8¢ë2Ú‹—¯0±A³i„¼¡©a=ï1yI.½uÌW3¥(SJÞ]±‹ÝÊ8òÑ>ozËd4Z}b.'Óœ-=ƒ SÃ]9û‡Ò„£„R1 J]×k©Í1Í–yÄÃVGàj¦VˆçUä ¿ÑíÆÐ 9–ÀléôzÒ/É2êæ‘t8ÊOáoq­û^"eMÿÑîöjÇ1FdZ* úç>Ç­`(œ 5yÛpH•¯›ôÐ?Óó-%WÏã6,—_¸¢­·Ø|[íFxB«+¤=Šáòµ§A9k”HM_ À¤tEÆtÙv0ÍÛj]œØ­ËR5«Ž?kÆ€¸8°¼ù¥5i9oиãR½„¤†·ž»u cŸ±@µH½©ã{\íf‰Ó­±þ*ÖBs(Å\–ŒIsÐQ ÂQ ™LÞۑ؉ǞÿÍ_pÀAþLî¢è.W5«;PIÈäsQ`Wó„br°_mG T ˜ÿ åÀÄ^¾ÔÕ„·=§ KIØ~óÍÝÓQÜ;Uo6@Ô±n"}Þd«$G.@JÏ8ÃjúúÜ'?šÃä5²ð™—mâ—›f8߬awy_?1åà—ç\n›^œÈQ¶–ºª”Ïä_ï‘ µkç…Ù[çK‰ŒQàg×ÕχI¢wJ…úK¦zvÀõ¾5"0·X£ >4Bà¬tÜkÒ‡úúÝ Ëù àqØÙé£vÁÊYÄGºF2O7í$´UråÑ`¤: ÝCßUTÊxšٗ»Ü¹¡íÊí4é@kppÈ[o„¶×â1²Œ¢oô«bâ×3rïïZ"´å; ¦$SwŸ2kðÿŤoß(~4\×{¹m$6ù˜Ž„çeyþ©Èž~>ø0v .5—½Öò]®µHÍî—4ˆÎs3‡wKA"£µ­[Ðõ‘ ´#§ž§?™ç¿hi’ËgÏÿé⃪¡( Y}W¹½Õ‡vL#q½¸ß#Àbü25öÛ¿ÅJJ?2),;ÅMx’Ëæûí_¹VŸ/€®lãBZ'Œê Õöírië}‹5 ¢ÿ Ú“¬ò<‡ˆúœ]ßÿå¡ð5óönSªw0(%Ú›“èô·QÇ(WÐâ÷øfBOàVJƒ9¤îêSzËX¶ÁË…¶…ê7«cTYeÅyÒÒ>©¢²ÈNpPkޱŸX6k–BEàv¥ˆÔy2Ú§€z•Yš§?UeÅA7ụ¡zºI–Kj“ÇÙ=­„ß– 7 ò×’µôöšˆÐ‚}ÉýaNYS2RØŠ‘Cž)Ê(0ñ_US£:êàü‰°nDª î©ùkb$K3”’â‰4Ž›ïÖ¸áªà‹  ßßc]\ô%ª¥’Þ j©'ÙfÜhbŒ;8ö×B?}¸µ6)nbTZä²­ðÖ®3øYßäÒ4Û¥Â2ƒÁJÅ Lïã41“DP{ 4ŠclÕq p¹çõð$ÛÎ4Ý8ÌÆµõ´ú M¹yªc g†Ð*¬Y`Vj}ÁâN‡:îÙ]qR-ð`7–Îse——]œL×®³ q«?*÷Þ‚9èBVÑ,“Ï-}kä¢ÿÌ=Á7'W"EsØ÷–¨A1E“t:S­iòÒ8”Ò.¸~ ¬îk±‹¿ ón]8Çкã…\”®ãûtAèo¶ª®Ì„*Ì+i»ž=wcÁj¶ öïJ@éâ~HÜtoGöòTd/½‡ÆÓO5¶ÛsµÂîh¯ešÄ#w/AÀšü˜$ç#Á|Ó€UÌÇx“ÿÿyËá×f‰ ±üʈЮ˜vilÚ³ÒY¶+:§“@%î…ÖÖxcŸßèªãî*ÑóbÔª@Ýb }ÔRVë· îÕ™¸Éf™‰ívÚlYHïEY9§Ä‰=q®y[sh;"VNÐZk­ô’p%0·†O†‹üÅÑšåH>¥Õ¼éÑ#7¤øj§P ÿú/RAY°ýwhšÁ;* \eHò%êÖòÃûõCåö ÆóW{:íÛÜ:;Êg‘ÿ^$)´´-/¼«¡?ãꊗ Ú•pjÉž§(Óx¤…{k·´%“?iÒôNþ@=#WL¤X$× L±ìñþI-²ë<“Ëè'Ýs~]Yž7ydÌÞCU{ö,°´‘YUenfÌÞä'RY1\˵‡ø‘K;^˜ ÛÝ€5õètÅÈ+¬ÙæMsÝÑŽ(؃ӱwDïäô ‘t4ÞÏ'çã­Ò¼êLHñêþàþ- kL¼ƒˆøÈ_Ü%ßu^4sÇôÎX¨w€|nvĬå mÂà”Æ5行NXåÆÌB·,;ÁþšdvlëöÆ6ÉN6•€|äþô¢\ÂR N8ÚÿYe³áD×kü_Q!Iò@Áô°joL2}ž× Õ­è8Ï:»¥æ3†õÈ Bˆ(jK5Ù¨otyT;P.šÊ­A ¤‹@ù²#(™a'ÒÀàƒ¦:‡òBék7(š„WÉH¯ Œ¤;i2n1£ôÊ5:Çèùå¾* ‡¡5¿»úh‚'Àøå– Ò3už0&mÍ%qgû‰ Ý8=Sl8ŒŠ7‚½r[KÒ²%„s6n$äƒï¬Ú8æâ‘Uaä:A)kÕ5kKl‘ýÃˬÿW¹6.5O/'ÿårf6M[+éHD`Á`vÓŽŠ8ßFÚúv*S]÷Ãsª#©Ì”êž_t=®&ÕŠqE‚SÊ€8Ü¢»º|èwˆMâ)K‘üºvÖõ×´‡ t‡žåŠ€ÙT³Ä£:3mñ>Œª¨n·Ø•–}P6´ˆv·†rCc—¡Ùe–óŽ9m%¡+ª)£AZžÄÁŒÎÍH÷fs€c¹;H8¸V,b7gÈñ×øɘB+¯¬vÙa¯À­´5"Àv‡¡×£ ÓVå3ª]“ö² ºÎû)'^RÕ1Ø^–ö*ÉOЖ¼àD ðÞK°¯ùýÀ«Yž°M‹cŦx1+½ <ü6µ(N©E~DÔÊÔ"î¿çì+$å¬|¼/„Kê¢Æ*&›À>3TÛÎÑ!††­ÈR¥£nqÜ#p“¼Á•Úhe9¹¤ B`jÒF°`¬¶Ý’=Ó{*] ‘Ö¾œ™mdâ&ë`§´ ›çuÖêd‘*I”ÿœ~Љ]jaÎU$CN, ÿÎ= Àõ‡ú>@% JKî“a%»hpùS&Ȩ[<‘oê^›²÷bÆ·æå{A\$6"R„h¬à±V±wÂÌŠ¡ük¹„¥S÷ãÿ\¼-Çô{NÖúƒÊ„ÓåæîIàü÷U¡çœð$4â°)·ÚÞÐ9jlÉXv×”ß÷II KŒ¹ƒM—„ð`Äùc7R2’²á^ùÊœX»ìF­CdòÃW…bã;È^ˆ^†Šz”¤X»9Ô¼än yâ&´wUäwžŸ1—1qQt_W‹P>}÷P$¦BÒ}˜AÛL÷¯,}aŒj §XÙ Gì|Š#zˆñ Ö 3!^vµQ*^ƒÂ|0¯<(ìö‰<=_‡—>Á†IG¦:ÂÈ *Ì ûôÞ´¨§L²[`@ϯóÁ9¸I¬?Û[ÅÖô¤R/q·x±hO„AZÊ£ Ý Fö´-Ca:Ï:(þ<™´“'Ÿ¹>ð¿ür’žV«”< NXóû÷>¤5¾=U­G³BÅ•VÓ>àsÒÁ·=Þ*B¶ˆû^W$6Ç3[^ŠpY>×êe'f†¢Ï,ˆtæ6.ïQ[÷AZR?© Xöëò ·$¥û}¬ÛÖpÂðé ]™ß¿ÛróÐZ&O´›/‡ï2&Tù6Ã|íÀÍ{Ø‘åØ—F4œ¿s†³ÕtãVï·j™”rìÆOO0Pé¯Vg¤vmOO˜ùX¾po|”VU0؃u/ª»à²ÉÒï´Õž%p¥Å»òóÁž§µâ–2¬“·¨‹SB»?•[GP-Hþ›iÉ]–̈,º.œ&$XzõëûáËnlx9Ô:r Ëme¬T±ûÚ0z jœ‹C‹ {QFºñ¡#ó«#{ñ3woð†º½w–…g1Г‰nY¬m$˜»-ljVÇíV%r³èx£Ý{nëô :Ìÿž‘vì?Ì @.˜› ƪUcTÔb ]LO;ÆùâR ¦/ÇR¢ä˜Wª-»é—QµÄ¢;Öýð;3´å$/”ØÕ?$½Rƒz:Ê“–ÅWéu‘Ç<Ø@»¤m´ÓGs¿zœÀåçJ…iù_^ÔK:™;åÜÐ/K1ÓMº zÞt½šŸ¥HZ㱜}IƒæêFŸd2ºæDRðgÈ"é‡Ò åªö :Р´¹Ev{ÎØ«ûJ€”«—e*fýrMJ©¶%&i)ë©Ü/çûU^øè­ˆçBRƒêÈŠD+ß§ TÜŒàL'ûèl#Å ô@ûÒ1¾:‚ò÷¨¾cB‰ ¿ræ6Dllì1[—G¿#cb`„èÞ¥% ÒkÛ¨’Ìóz£ø»»e6p+Й*LÙ ¤ðTjb),òðÄÓ—üïÏzȳGcÜ‹L¬p"X½Âý vÖN&ÎG kX½¿ŠËûù{`œ^;›X68®R–fZcF‘Æ¢ÜÝœ‚Ÿœ %äë€@ÄIÖÛpÅi ˜6ðžIbÞ„¯;hÁØxñwhHyÙØ Èãlªíãl†ÏãndA1Ÿ*Å‘ÂÎìˆÕ8\²d2þ€É|äisÇ}—ƒÕJ›cn{™ ÷ÒIlûH>€uŸ,@Êçf™M‘óŠ¯ø´é(/‘cV|æú‘ð½éQÿ–è;öjO_8É)êÛ§ŽG…9.® ½-u\oXóÿ½)“áä]ÜXOPïIü É#DÙz*ŠÍÊÕ†~§y!fO¥Œë6a¿¯¹Æìi£RµæT‘·SöXÍAif5ˆÅ<‹C¨ôáŸ_ù¬§e»ŒqmM‡é}<–æøÒWÑÍ´ä‰dyjw[¤ä•—¡r“↷SºZ7´C)]¡‰m¢}Ã6õy&]F|kþS ñÈM-¦?Ž5J±Æ+bZŠ?"ð±wt BdGÆ*¤È佨®Ærùó&pBÖoÉ»Ãù©^A]Ã-µ«½LpuàHãwþ³æ¶22sû~}[,ðÐg[ˆz–ç]“`E6ð'Ò¦@=Juƒ:Þ(hìgFf÷UMd<2´xì0£˜ï¡ˆ!Í9˜WÀÈ“ºyoÌ‘ó®DLÏ–5öå‰b‰•™Ç6zmœùܑLjmùÓã(0ûvC7õ5 g ˜ )à ûý 8ã4Þ(0É=]u.À¼.)a͉çÙX™™ jDUC0ÈàôN£³ÛÙSÄA²z1?ÎèŽèc0öúzÿY žN’®¡ 3¨9÷\ŧ•ÏÝW%7 Ø 9ßÏ9¦f¾Rù_¹ˆ¾ÚÑ7xˆ‹êè:z)@ˆs³>F?ÂkÉç±¼|~7˜üy%kÌD¦i|<ÍTÁ$Íã l0¾¥ÐJ²¬Vµ.,?|Ùò@ñN¿¹¿¨×?¶ÃLJéŽUj9ÕÿOŽj;‚èà©,×LÚª¤ªŸ®¿aÜ^ñ¨Êr†¸4Á:+ÝEE…zä5ïËá¨9çŠtÎíaB³iDk•æÅ ¡’”ˆ­¾õ )„N6a†n–‹qùN¾“¨¤N¤¯³"· KÕôé`gà0“1Ë€jCÞa½3„Ͳ æVAÍ£x!©¬¿·»ˆAtm(q70S{^ZènbÏå.ÿKp£òKDðäx¦áE™úWBy¿bú˜Âîƒï–~¡dúÆçuåR7­ñI뿎1Çᕽ°>`>Á˜~XCã.¥p"ñ’8JÀ©»ÿHF‹ÎȪ{Inb¹~½¹LaÎ9 ¨Šr½{‡Z‹*Ú ‘˜½”Yn·G^H¨ g¨y'ÙöcôJ®êÎ篼‡Þã+‹eþ,ÒFát GÈÍû6;qm*¿„¥aö±gŸÅüÑá Pòw(Ê‘²lš¬0cÅb¢ö4 ?Q8BàS¯×vìqR…òøQr£ï‹ÖÖý'ö;rÚ_gûViùË¡Ù@ŸóeE>ÍÌËÐßï°ö¤4 ¶&ÉÆ|äÆ}:QŽív3,üç0‡›ŽâÊ“H9É hƒîŸ3DÒ[T¨ óؾ3•ŸñXë>ñ£mžÉ»«{çÅ;…„¬òêí;~¢tc¨…Ýo `h”ÿ!Þ [lº'Þö1jê Áž¼ð·‰Y¾y*!9y*)O»lhVþ û›‰àäãÚÄj¥h¹yØ/ÑM¦@¸ßÓóÄ¿¡¡ \§nLâë^äN;ÛUÑ©†ÚoìÊó@Wðæ´¬Ù=J•—š1NEš#³Òh¬ÂÎM7BÆ‘–×[¦ÙvÛÈ·ÓF·ªðÝ€Yî=wí}m›Ì'‹˜M¬_5ü›ÇlxIEzÑtøv§®;`Ð~*|±ºTrTT,ÏÜî•?5·£ ï¦¥»+J¡qÏ™ªb&û‘[G èÌm²ØšrhýÆšÂÞ ·ÂÂÌMÑù­uŽ„ &MòÌggÕh5ä© ¹s.¼`b&zïÁ&vÀP (Î`Ms]Xw˜/š536ºLêß8µ{3»§$Í­©PB×xƒVš+WèuS]Âõi%¹ƒk~¦þa^²zˆW(4Éæ¡Táçyy-åÉ…6%O#éªÆÆö+#UŒr$ÿ'ë"kŸ=y·ƒøY/¯iÃ4Ã;ž²Q:µ°œ®èïštåŽ`ö»Â:Ü©?Ñɨ¯„I! BŸg˜½ ÃÖ&Ä ÌzMµ ¸ÚTLàSq6¼ý±DÅ#%ÕV°C¾ªf›\ÐÁØ*6FŒ¡Ka@"ÁO f!é?ªÀ8ë{ÐØÖ„¦aÒxüA-%A “SƾdI|å©— blBO5OL”AžM¾$†‡ÁFÜú,1ìÍxBã²½þ­ê·êCl¬ËÝn„F¾wÁhÝÛ”·øN¤=ŠðKfyDÞoÚä2ÕVx~¶ªèJ@ÍX†ì~B{:r„߈õ*¤û6“,GÝm‰‚¾ÿùöª0$ï†Çtsd»qÀ~•U,òç†Û¡_°ëX€r]Ë™ö¨+`q@†´G«õ„¦|nxI¾Ñ›'?éÈË¥ ùoÓÌ‹%ÊÓA%68ŒÑGÇ?¦mU"::˜ôäï]¢‘ÎÍÔÕÀ¶M$ .]™ä íÀÈ\@xˆoüëÑøà©æו2wmæˆÕ³‰jæú/:øœÚ°üáÆŸˆµÁ#-ž}¥7 'a=Ñ» Oôh? ÂI—‡‹µ‰yÜIÀ’C9‰@bW ŠfçBŸ›"G‹háÓf¢+Ï€?ÚÇ·óCÍNå»uSò€º(Ãî%N¨ö@r›\{-£¥È4ø°Šo…bù#[{¢k+=™¤à:¹¶ŽÉõ‘™S;X2o äI 1Âp=Ôx JÿRêýW鉧ÌÁI¥yù+ÖµI¼ …4‡ØÿøÌžf~ ‹‹9†Þ¯Ž.6'VØ&p¤VcË{À(T|##Y&¤gÌs‰OXðÅwSç·Â\C˱›s&|I  W\•BåQ«M‰±äÎØþ§=>æ°Jì/é&Ç bÇ,3õ˜.¤êü³û~R™ÂýÑoßßàn´–F_ÒˆÁš¸ï|!«û¯÷êvK…•I(¥¤™ç|¯´Ä•n•áë¨ï~ÐèÃãb®ÛÛº&E*“%Ÿû°ºÇàÃÓðM@,ƒÀötÚDI&~]˜¥}²K¢êR‡×ÃLèTYð9š(}‚ˆ+Ùk„ïÕ¨óïo µ¡aÉÝÁ•Å H˜ùõa}ó•Ó§… —.Š-ØB_Ih¶÷~Õ}OJa5Î,CÐJìüF:1k8[SÑáéã»ñrV C ×Q-XX4ÒÏŠ÷ýÉ®XnITê߆ÿN‡Ò‚)ÅwšÅÿQÁ*«“üÕ§uEÅ83u7±`‚2Ê‘Þ\eófjmß:9š´ô†Mi]_ëãä±–1™Û—˜¯7ç¸fn[”DÕ•Ìã™áØA¨~k…×õ[:£Y?Y«y'›¹¥ÔꪦÓ'¿…°4Õ|mXK÷¼ ¨3‡É1˜KQ™ŽX"ÀæüT€#k ¥õ/¡¿(#¾™¾t½umƒk…µÅÏ‚Aïþ8n|t!’³³ãSí‹÷Êã%šø9UYñåeõ¸‘×á"“#ØEð¯,3¥ñØÓ4w7ô8{uBÌ>4ô/Vç£3ï›¶ñÞò(ŒQà{æÆd’—\<ÆIÕA¡cÇDíÒ)K)œâÓâ ŸíšÜµÌè}ZÄà®äqš_ãÚçÌ pp‘´ëIGr*ä§î‰R4!·Ð<„:R6µSx‘…9.²xã*-ÄÍd φ å³*³4ѧOÇLEzÛP*Iâ)ý¥ù²þ˜;Z|úͪ‡²hJ‹˜&2ÏYÎÚÕv gLvhËæÇwò±ÐÄ~x=Ÿ€*ØÙÔK-rjApp¬¡Ð;ÖKìšhÙ­±GÕY€Q휮ĉB«%dûHTílYäh§dÁX²Iw@é©ÿÔË}Ø)JF>K£ÏnÕÇæ­0ÄUõ¨R„ñ¯x°ÌEÓ`Ù·AÂæ¬ß0A,0(#.³cHVê…NÝ'ˆ?â¯ïVǧ¹±þ=ª;6™„']É”@wëH"ÊÏíî b&¥[maI$X4¶ÅU[ídÛtÑU®>bùq¼Âýz{L®’ÀM£"µ°Òd•xÄ’¬0þ7ÕíWÒ•<¾ì>(pÙF²‘DߛϖòuÜ$JÛ¼‘Úñ=gÁ´…PÕQvaÿâ¯ãþÑZYÄz.Q+$xS . €yžrÉÿÈ!’å;/¬©Åºf×?¯V>N’PzL~$ÓÅ1[ž^ VÂ÷ÂL(¸ð, ]ﴖầ`uŠL6vî¶vš›ÇW5€ñaºS‡ö‚£îlö»’/¾~Ë”1ÿÑtúg“¾I3Pˆ<Œ娲x¤û´oÒŽ¡›ùôlSÏŒ(ÞZO\Õ ¢§i‰ÀM= E‘úoOÄ á-{ÔòÚnÊ™…$¶o6ª<8˜z©Xk¿î´G9xòëŽZ‹=HucÕg¦d’Í›cJ´®q<Íø2MÙÄ;ºÉG$å‚Á}¿d`Ùð×»Û³Œ‘†|ÄvÝÁCA$®³Ó°Ô¶Œâ úå¶j¦Ê·# –aÌ€÷ ê>(¹zš®Î4¥#(Yÿl¿ñÌ~.tbпj%Üù¹pÓËhÓ“šþ^•~vÞ@aêÄ·_J$)khµÖ¶£žqØ ²HˆGWÇÜükàn¨¸ ÉŽ– ![gIÄÞcá:ŸŸ˜;Bu-!Š1¾ðuü éݨÙ/%±a&CÞÄÍíÃö1“¹v"‰²˜²ôÖ4¢G}{k?B©Qž­æEG©ç6X-Ö)q®øÈnŒÊSæòÊõu!él47bZà«Óˆ!±;<Â÷2ùKe©±»M«–z¡ÿ¾—!uOLe©¦UbÂl¶þÆ™ÔÖ±~0Æ®ËûCr‘ŠvNEà´Ž¬ûjŸñ˜—i°{ä.H½›|9pQ<¥À1Õ㦥9;^Í;f}²ßôµ&¹{MÜ©—G”Uµª6põÈÁ&6&™˜ÈýzÖ£§Fo¨cÌ ¶;b÷¯ˆ¦3ùœÖ€uæ‡Ãéº}•î}Zkw²eCÓ0ñ̽10–©Ø†øä|·¿§~»cJ,Ëükêy#ˆ`Ï×8ÀÐïñц º4¡ixåj C•p?F¼ƒ¸­.!ÚÂÇ{|oF¼ås^8FüP*½ÛíŸ'WcL®œ!qÙ…yÆtS‰øžF³Î2ìo¯ÐR,¹-mh—ÚJ’Ðò̆Šåèl r3üðÄ“SõÇ0Å?=Pžúl‰ÿ÷n¸¸Ó¡© A|ÃÏJ ™s «Î¬¦šŠÊãPöëúd<~î½ã·¿³ÒJÚ”†¥ÏWE ª3*ô…r#eOÚbzæÏì((‘Ðú•Í7vMç§z ƒ¥;õŽtù#R»_íS–¢ú×9Äü¯Iþ7Ï®žb(tYPÍ=×L¼ü¡ûv£È2©3ö=`ͶetŒ.E§oüÐÆò@ûÁƒ$K4—ß UË^M¡öFþ½—7ßjR¨t!p 5ª?Z¦œOÈ8œ’6]±;‡éŸÆœ‘L~èõSŠ:²N=¹õÏêR–R,é¶‘•ËhP÷Ñ(À2®Î&2%¸“ç…IÑÑ[D9Àùbå<ÎÏé»vÀÅQµm¦Ê+é…~ˆMêöèY¨½lÑÖ<¥¿Ê™:C»J9îP„¢ HšB6åÒ³U¤>µ#þ ’˜&¬.ÆŸ;ˆÅ’V+‡B§òD•R+­íYH”Þ&ìTS¾þtR,®óÜAƒ›ðšfºl`T)|+@ó¬¥Î¬þò—S-´ðê~J‰Ò64CãWQÁ.XÌî ¿ï9-XÍBçˆÂ¢èª0÷K$ˆ±™O˜çrVBvZÚ ÁURäËM}ÆÖ†Y&õÚÞTÐ\¢HøUáÞªR&©‰ ÷@ £Z¦æà’³Epa¨½d¾ÝjÔ€DÎå#—‘Ìø“¸¥/Öl—3·¹ŠN&>_ÏÞ 0å€XÉ­ÜvÇŠ3Æ8üLn×çÿ$È8,ƒbÄ¿ž¦³ƒ¹ÿ´Ä¿_µ2*š–•jƒŸrÖæF§,7aÀxî'£ŸÖpâ#Ê:!ÊsHPQDás¦wö™›Ìˆ‰Øñ Ã9_ñA?"b_VކÍs«çtâ›É™CóÐü÷SeÈzz?þøD ×»¤¾ ¼Õ<äÓ_6´{™ßŨô:ÄpD©%eØæy´ äì‡J„P™fngÓžp.×ÚÌgk¹„Ìã %?\wsÞ>Ÿty \+) [å‡9c2SmÙæ´ê›™„}T_!—¢ÑÍר6ÕýK'+VbóÌg=bN:mÛvËz›Ñ › 3ˆnˆ21æÑZ[õù$>nDû#ÜûŸ@) ‰‹|Û î¸d‚ifÓÙÞežñwsCËø"TU\c ¶SË×î@_ÌY]ŠÞDœL±¥;õos‡MþÂÍÌškƒ)œÔ×SÊÒc°Æˆ·=š¼å_¦WÐäˆ$j™FþÚ%ðì- ¢…Úïxèϵ†BÖÇÌTçLŸî£9F—°§­Ôž<‡+õrc"œîSîmhsOð‹Uø²¶äoUŽ-¸Ó‡s10Æx^nœ“à¿¿Qª×¯æÛÁ2b4t,á;ÂË´5½6ó-âЛ¯rˆÊñ3©E1 s€}µ‡M°T£Ñ‹PXç6ìQ÷Àâó/·q·Ð§_ÔÏX©Yü°ÒÒ½z?»°…ÊJtVaÌ”8>ß8 ÿ:¤Þ{ž±‹ª‘ÁÒVû(9UÒw'}¤ÍïkYþÿp„¨ï^•tíåz¥C¦¸f™qt‹¦ò¦vù»üă¾–S•¸8Ï–ÕX$“éÝ‘¦ô!†w5çOÓ€ípûh™úÒ“Ì}Ít¹Ûû7G³Â9 -¾ì‡TÉJ pø>›~;2W4òp‚(EÏŽ-=:Žˆ,Ú3Àoþd·ã½ÂÚiÿ{ض#ßZSÌä]þ>Ó¹<,6_:?ü:VÏËc ” èæFC nñ%7§x³D«ök3TÚåݧîxƒPhÎTjiUþש .k|ïAüçÅ!CÐu—Ô™?(Ñû=¼ÌÞ Qv±8ÁKôŒ¯üdQs'œ·$±T‚Ÿ`äèŽÙ˜wï³ûÉŒgÝé2P2±’èe…Tæ¸_ÀÄýõ”€…%wBžXiB“¹ë Œf€–Ä}Ò“]Á Mú“Û u)7?Þ¿Æ™ç r>P†Ê5Þ ì¹Ã1—ú®…¼èÛ<¯~®âh³¾C²D´;$ 匷3 r*Ž­w$Nš6VæA‚?Þp\Ów©péò™­hÅ„¤´ñ1<„W_‡Bý´uÉšÓDÄÕoa-À(ËW÷‰Œ,ÝdYÜÈš®˜¶Õ ͳÐ+mq{…ýšô½ÖA0ƒßŸÎ¬Ž—–¸ÖWŠà0"66J¤AnÊ ç^fì‰[»gJ•Sð™ËùýT ý¸fü{í% @&ÉÙï¥OR].»ä‡€5K\L ýžveß´Ú+µÖÔwy¿J)NsÕÛk 4ÙÅÐb‰)p©À¤R³gø’²d[Y-JB<&åÊ.vðÁ¸O*~v'4ÑXœo3¾2l®õÝ|äü2!Y{L8¿ª¡,ù§dÏu–Y ÷ƒ4)6ŠíoÙÀ€)VϲìV—IÖ=çfžN™úq|­……ØÂj쟜žpÜ–`jÑŸEœ–6‰Ükÿ³—:ž´Ø©3àgÅäÓ^žg÷P¹å¾$†Z ÿqÙrR<0ádü.^[`è sMÌS§¢{“œ‘?o|c‰tëApÇûÝ7p‡…ç'ŸZS0ÚÓ*µŽ>»4évóóZ¢K¼l³»vJ»SÊÂð^¶§8|¨ŒºM”ÛeY·²¾‹*>æi zë ²@uɯp-¾­@0)³à ù„;S…ý ›ô7ʤlûjT.ÿÕèñ"L4o@î—–,¦­³r÷û6êôO[&’ɲ’õe):òŽG{WÝ„Å'³hdxm‹»4‚¶û‚~î°ugAÖcdþÖ¢'úe6ëæ†óÜߍЋº˜T¹/÷ä7›TÜ•ÇÌå F™JZ«¼¾òpdúa|ëÖ¹Ýׂ³EåÊ÷„°Î.0†žb‚cô´äñ)»'(¥V¼Ð÷°ÄÞíñ¥’ĵ²n“FëKÂo,„â䑜iºÂî›ç°UaV°¼ÚK[Qp£â{ŠX³ÚO‰©°iæÛŽ!\ÕÂåÙM³m‰j+÷ómñH™€Ñx•sãÏŒQ";l"Ó+”œŸ¹µrN/,ýs„ÔÝŸëq# Ì&zúGsož\Šœ|n¸ªáê”¶d_}g¿š?—¡®j¾0Ibï Ám¥ä5$ýž¼ñN}ßuBÛ®MyÐXbt7`qNs[©A×iöÇ{e"ްF!ø„ÅSñå4lvÁÃÛKfÙÇv¡¯Àæsë¾ùÑY;´êéAç§¹>ø=Úb^ŠðsmûT¾˜l!GWÌ>—¹ÎkU‘¶C ²UÑŒª]uó®9n} O4„t dxHÞã0ñQ»´ÁY «³éë.Š“ÉO \|?ñNtó&:Ó'g€FÅ,€{_Â>)§êÀ‚Ì-/‡^UÔ7dX/Ô{$™wñ®%ƒJ÷¥ÌaÅÃoOˆÝ¿Ÿü¨îüƧé{ÉÎО⠽Ýð:7±/4Á ÊJghù0]÷·¨©ð2®I9¨GŽz½òûS3ËbB*¢*¤«ËŸ >¼7Óº×vj>ä7œýcÊä)ZÞã×ø¶ ‚[[ùLÕ‚!Õ°ç–PŽÏšx‘/Bêyž^ìÍÄÒ ô`"X—Ò`áªÁÁaÆhß§¢Ñi‡õg6<ØÇsä!¢¢¡©21cȾÕ|#¾Ò†6¥Eß ¶L^œÀs@1?Ð-Cö¤ k3ay›³¸æÎ[õ£0ÀùHÑb£šÞR¼ÚÎ¥e˜?æSø’ùš̺òÙ©·œ,æNGŒ!Ù­@IÜ €rÐTÈ¡¾o좿€%¡ÙÂÀ†}¦¹&ÿ^EBÑވȫBºsÝØ\æ§ôcè~d|B-ûX.ï»ÆJñÓUŽgÊ™<¿DQ©…r+-r‡ IóÚ$È>Ý÷,mH?; µF€N-N5«K”\£ã>³Äª(îÐõŠùGÄcÞûLÚa(dnë s@Al˜É—ÅNpLÑ·›k³,Ëš”¼ŒÃ0YdNqŸÚv즡SñÃö² H]é ÇÏT¢£ÿ«v·š¡ÌÅx6ÂäÎòÓíÅSáZ>á^[¤¸ DfyK¹€‚¤úk4ðÅ&v a˜ìÌ^Øl“ó\øD©àÂ(önX¬:޹ªý­1 ÓTZè’=»çúCÛÝdüfÌ‘õޤàðv[$ÇqX½eµXFM |SA)²RõÇóŽ­!’m¿[-^¬qQ¥7_^³K†V!ê߯boïÅw¸ïb”<¼Ã*ÝÕnüZR „j.ãÿîom/ “À2hâË•ÀokÇ‚a6œ¬“k¤c™ëèZŠöÒë*Ž ­›…\&¹•p…£•¨×Ö´ðÑÕöu’é"L ]B6yVj€ËkÓÂôýÿf¶•àÚž;ª j[šbO\ &°síÆF¸X²¼Þ¬”, ãï¸Ô/{ãÐC=2HsjÜ*X èc‡í¨0IàÌQˆ™4ì‡È€~ À u¬^ N‡-ÆviI²ñÐ]9g°¤ ¹Î~Û$4+øªÓŽÁW½/Ж,ámÄ5apOœÜïÚ›ŒmïSÀïìPóÚ)îz?>Nô±]õ ÌMå¬R¨C ¾ºJ5(0 Èý³—ZÁþ-ÏTû<Á:¼Ÿ~C„pˆåìùI[E]­„Ï-Ð'œ_ wZ5þ=Ö# W™ ÊŽÀˆw…;„X”TûÛ7®¬{¾´½vöêŽÐBÚ°þÉT|l ƒqPüV” Êíø€Ã4=èx-ÕË‘±2upSÇZùf¢¢87Ì⃞ñ4âlâpðfk,?;gv›ï꾈bÍA)…J.o_´¹¥‹Ñ0ƒ@qNÕ¥’wýF_¯EñØâ\Z/ BÀÝâOEÒîP]EÝ ¾_oÛjPÓ}v¤t úûd4Ý.®óÐt¦Z ŸþaK;ÄùÀKl£³"Þ€á1`\Ë·c– --·ÎQ“žp²óÖ+¸Œ­­NPA&÷—û@Cž),¶Ê!°´jÆ ö­®V[Ä^`0éÿq–h³ýÿ®n +‰ÿÕZ5Ö`âå-Ü~êÕõYn¦BÿUµ<Ÿpƒ¶üf„Ðªå¯ «h—ôÞñ©xåÓ:LÃŽŽ+> ɾT_¿W»M]ƒÈY\ÉšÁèÓå¢~à àïëúsm ÚÎHÁ™Ê M‰öÀˆÀƒ7ÞÚiˆY<›:V|Ê%Ö§‰§™?ûw¤Èd»æßœ ÙS­8Á‹‚ûD»`_ö¯"øR#ØzpIÐÐ;ÿLò?ƒÝå:Ò±Ÿ?UC»Ù"k··’J-ÿøY¿O1 Èà*3ª&¾îÎBÐ`đןÄåEiœ,éS[}ãXðdUF 2³9#z÷²Î—W'•m4ŒÐ k(×M’=¶ÙÄÖŒ ŒõyBÿNž~g7SÚPšÓh[ͪ²R0Ò®Ôiv‡ÒïmÞ—Ýã}ç"DAÒ_=+>ÓRгÈL?%íèáẈ.€§|s©ÜuÎ v·4Yç—¹Â&çñþ"ל‡Ô%¶ ßƒ›tNæCÛ3f¸*ì‰ó®»;ß|×Ä7”ÈM&ý÷ääk’MBn–¸þþkÞ”îŸz§#É +‡6äj€cs7[ ¬[t‘t$tšc¤ùÎþ÷ÌÏ «V ºN.øúc,ÈÐà /âX–‚ öjÁ¬¦ú/uµ  ™pÁ£H%šˆ|8!ößc6±¹öà˰W«Û†’áüàûÝ^=¢bÀŽÆÇ简:ó©‘ÉO•·”£pjo¥²jH±@´œ3Q#ºLàõÌeò²Öq=– óõ^¼ÊFîÏt)IîpxÞëØIÙÇé4D˜ kßð 7Œ÷ÿƒÃ×øÏÚ-±ƒQÂÀÇ[”Ö[²«Áh5 UÖ¥‘Vq *=l?™¿“­WÃý„aÄ7)‹èOY2€ü¼éUƨ¢Rå…œŽÏ¤˜_Ô]²KúýÍò&â;Ì–á4J¢`€ýL߯çGgXÌy|Ɇ&ß³9®à;§Ñ,F©LÏì%SßüiL;åwdò3…mnâgñ$!ýš³ïÏ•AcmÀjt¥ <Ÿ05î­]øý³¤¬¼¬–!"®þHÔ—‡ –]R9Ïûw¼n˜Þih»÷õ«cÁÑÏ颚â,e™H…/{]Q¾3·Rˆzm—,q&µûµQD‚õ‡lg©ŸÛP¹0 U³ú¡É–ŽIîøböAÔ^Ï `ù}u`5Q0…þÔX.-•ÀYE=hýïdõßwÃý’–Ryå{9F¨ß³D.ýŽilî©"È<ìÜ"´'ÛR«õ.&‰.šñš56¤$ºìy^¶\91¥ âù¹ïB€ˆ’½Ãý 6êh·¬oéUeüh»hZ7'¼²hàºÑ$‡x4v'n…y‚ÇïFQû¸X±ûit4nêB”/Ùôá¢%è̤E`Bý?BOeR+¢PXHðNþ;Éz’r„Ù,V *ß´7´œš'Æ&=ª ÍFf[cÊoʳaÑÌ!ä;$[þÕE6@¦7ù\}ü_VºË ÒF4¤¡í„wC,ºAr/}tÜÈ-‚Ÿ+äýÀÞǹ°7ãWNfA± &ÀÄö{—ýò‹;öCìù͹*ŒéõµËE­2S«-#} AÐ,z7ìWB+ð\ TXrŠFˆ&ˆ"ë¼ó‹Óí…Z-ùAš4Óœpå1mˆ Ðr…úÉU`•îî—’Û‰”à°Jä'Æ`Öøèš˜F¯BäQš^STQVÝú®f¢¤+‡ˆ¤&'aLJüYÇ2ü„^r™óÅ|êèÖhMšV‘†Gü07ñ²¸dšy¸ |cñ‘»†ÌÏäªp÷²pÇ‹F5ÕIr3£ó.(—~×O;W4‘žWÔßwwÊ™•P_ªÁÎi²¦-ÚG<~®Ñ-mëÜ|éô„ɈV¬V+oƒMyÒuã†äò%ïi1025çãW¦5šF4%1q|<ýÚD=º Y²k²‰ç£'´ßœqS¦iËêž<òì„úf>8<íþD{ ÷!yÝHþº‚-ÇÛø5ý\S¹7¾íSÈð¿ï½=KTüçÓkͤÄ“™ ‹[õQij®Ý©N‰ Þé-¨ƒô>„Èü$kSમœ˜Tî.Ü Í²4 €U}°]HŦ—ZÌfŒ»ôË¿“U…OŒeBþ=™bÈ<1Ç -Ñ¢¾qTâ©a®SÏb'jŠ=”„RÜ¡÷¦]nS,ÂòBó¿Š7æ‰ÇÝbP‹Bµ¯¸G±˜„!!ÆåÛ-Q9ßkˆV1¦ÝšÈå'nè0n³ôžÏ³7ÐÅM«)à «6u®À¤¡6DÁHÒF@x­DY³: ˆV‰e”gèAÑ1¥Ì¶œ(ÇEç + ‰pÝÆÐ¬!ànÞ¼ÓrÁ­¾9Z<àÏ;éº ß}Øîí+ =ÑÒÚJo3ìçRŸ¥¢ñ$I}x+Ì\Øáq„‰LŠëõÛrq_m6dð0'¨õ|H¼ÏŠkvM@¾ž®é¹Pm4²v¯ÚÑm¼|(íeƒ)MçyóÔR˜‹¡Hz„Çl@qIÉ_é*ÍòÃ4æV´ m>¹~ Ôo'vé‡ÓL|‚oTëC$Gè”RVñ{N×;°šÈý\®ã›ÍSÛ½¿X« 9–Õy!¹k؆æ¼U8Œªu }„ežT—‰%ªT˜Ze㾿¢G°l©£[’Yn練ow|›ã£š³5Æz¶$üFÌ]™i‘ôðØß#plt…ã-†¾?È“œ»ÇöiÃf…£FWOB;|¦iö«_¥*XF8`ºr;¹{Žcè¹¥¥ÅÄyØàìN%P}¡Ì&Hžuö:^ŸöåK˜]¦O@è™@²ùOzHUÊÓML=(j™ÿžKe©i}Z¹q¬d¯“16À¨o¬ÛÏ—Ï"·:5 <Þø0:¶¼@C¯•zk†ë_¦O'ð£Ù9=œBº'm‘ºšTŒóM©¤}–œÚ[²#oKl)½¬Å!Ød &/$dzm»¨°´à*¹VDt™ê㲊éøÊúÀBb«I$‰ ¶$totj´ʇ{£~¯€¨’…ßØÑ½ÿø©‚F–¹—*À¼S(öb O'°7”U¤–ÝåÇ©Q‹mÉÙ}x<þ“ ꜃µyTmû‚z5ohFP*‰I¬GçJHHµû“sgÿT¼‰óέK̶{{ Ú^‚¸û%nðOºeZT¬jô7H›±ÄBˆ ÇVç&«c}˜FK÷ƒEË)êªÃñïZ¡ëkÕ ’Ø*ˆ‘Ï@‹®ÆGå/A(Ñ$ŽeÍnSÅõÀº¿Ô{Y·ne£½ìN ¢ÿ°PŹxôz[\Âþ4(!\Ž]”0§}6gO5¦ëÿÜ“þÓeÑ=4®F`7ç÷9 qí_þ±Õm`SG°ö‰Àí¼U{W«”Ƴ/àòðS hÒgXV™j…å¬ [%f„JÊ;KT›/¹ "–‡¤^©ô t¨6÷°.z4NÛ1í j –™[ËŸ×^ét- åÈuQÔub[‹†Áÿ©V˜«Ô’ÂÁÀ^D ƒÂ'¿Æ‡ÅµóL];JeÆUMb‹l•Ÿ¦ÞKc{,¬ž.€§™ð¢Ø%󰿀H²wKzÙõ²—šõ•ò×ÜŽ#E(>F6æ {† œ²qÏ>°ÎŒU‰EOï6]„Æ+¡Dô#;þ”~Z‡Ÿõ^Ú¶gÒÎ{é,vâ4+#-©w”Jì‹É2ÝÍÞ5ÞsÚ*µØ5¼c@´·|úk½1r·§'rß1A+dQÕµÔä0£ÚÞØ NÕJ¸m€ÇwÛØø nè4¸î·³¾ëo=‘Ýèqu»?®†[ž¿CÔ  ûKÖ6m†±‡5l||4ÅîîÇ`8³œ×Œ¿ÄÑJcmÇöWǼ‚†!¤@íû3ìÖ¬î×!%º'é4SL?†J `u DYˆ‚\m‹i°ÀPÏdàõ¼9e P¯s>>I¿/@­·"+†ýßЃZhÆì¥ì|wÛ©nþϲ”í]Ïk?iû-,ném±0³EGô´·9®¦ìiFbÑYôçrƒšVGÐEt%ª¾s*cªKé­»‘äíôú¿†ÁØ“ uÿ¼£ªœù曥-¯ŠÉ;,vÈL*Ö_ì%@À./ Ü”µ2è6¡ [l)xÀÆ~ým}(¯ô\Òkã>xŽ ×ˆ*M„ÚJý-^PÛ@"®ˆ¦˜Šk6ÙÎ}ð|;þ«÷Q~Ü%ýy‘~ö ß‘¡1>°¼ÊÖî)¨ï . ¯déz°J/;AvÌ4 ûÅĪÑÞÈݾ›Å°qË++¼V$(÷ ˜ËÑ(0Rp fOùµ%qN9›¨…(‘µÖ6 –³ãÎq ÚîD{*&ïu¸t,,)GW^À ¤Ù"Ç«ná£`õ²ªô%*% ãÆp_ &Ïø¾µN2Ý~ÍoT@¡˜ßZÜ<‡÷Ÿ)/|•býãi.`Io~ð&ÓÐÌz[͵[¹}Ï\¨ìàb¥c¨¾OÂD¬¡¹Ü7>¦²åï¥>öh i: :oÁ¦ ˜&U>…WÂJÀ}=jîJË5b*}\·ÚÆÀ`ÌÐ ëŠP?ªœ+EßøDZ·˜Ÿ² ,ƒ ߟáþõ‰'æ€þº/‡bßZq@w‰;fÏ s<}À“z æËî¡jva_ÔQÚ´¼‹®¤‹ïS[n²_A¦L…‡3ÀÅé'ÞrûqAS²Osj@ά‰Â¦õ§ÃfVþ¡±Ï¹=ób]>î‘@Ýijõð«à¼KoòÍ®ÇP~X 8ÒivNéfçÚêsÞ+ªkOðºá4Φ|Ðôîó.(âkñ´Z’o=ÖNY7"®‘j™†èÞÖXÜMSý‰<-Õ]b’JH%UK“É‹åÓ×îgZTpwâYù±‰’±ÿ+¸×@²ì5ÓÎÔçÀ¬HQ³ô*ß’Ù…ÊÄ-ë’ÄÖ7ûƒdëà3ÞŒ¹šÑÜgÿ<ãÎ g,7’q½Þî"Ò!|Õ¿2 Ae/4Ënó=º rmœ-à_]©ÛË©Õ.¡ÂÓlÿÌîÆ®f&é~BÑþh>«íþíg!²o@MäÕCQ渄ü‘Ò5è †™dxއn³Ž.\É£ dî m?Mù*wßL¾6 b@Ó§ú0=ÙeP\‚æz¦Ã1ÚÂÁv¾JêŹšö>e;KOðº ÃdGÌwäöÒK^šÙ<äÖ€ JVÁ§$‹Si¸bè(q|qâ_«ٵ=¨÷ÎïðÑK·½m÷i‰ex%¦å†2ÔîïK*%7ùô¡/yþ‡úÖkÔ94£ CABÆ÷BmQñ«ˆTðä•dò€Ó5½86LxÁÀ ?‡±#u ð?]Äc¤RP½ <'×Ôó¬4•’Æß‚¦©( 1wôí¥>õ-÷!÷ü½nÙ`dß™a$:Wm·+®î<è¿P&œwàê«+ÝUN@º!í§Õõ€º6­±ÇÃ?r:÷ºý.D!ž­ÊøWn“´[õ%†¢e.óÉO+ݩٺŠC±²“âš‘ÍQg7…J9“ÐD¯·]!WÌC¬²´° Îf ÜûíµôrßÁ195xñ”GýÑ#ª¼YôF/¾DRC3`Wê¹JZ¥@ê5‚±éÔÆ#¶šïl2G9›þŒæÞ¡°ÁWT3ìšžôN‘1à!’ýÒ@þ‡äÕ6â<-ˆ`Ö‹î˜dc º)¤ ¦¬ý´‹S§Õ+y‰ƱpŒäÇ­¢Ï˼[!ßvï%! ÞÑJ¥šã9Dj£*uùÿ1ž åmªäQÖ@—ÖS‚L§7T3xƒÉ÷hòAJÚg{wa›gšföoR…æ»;2ŸŽ‚´ÙJý’5‘Ý© 2­¥[ö“DE³C¨Þœ\žáÙ¸e½)€ÃúÝ÷KËTþ‚ëï:£ßÁÚ©Cq8¸AE)™Ï VÀùÐB.€m̺6 7‹ùµ¢8 ª®3z‘É»žíÓYu6 ¹ä?ЧÕÇ­Ì sdB¨¿]qO}3/‹Y–e?½dŒü2f%ü|ÀÔ¶q.ýùªÚZÌ"êôbù2ÁÖ¿§ü¸WÐ=¿6 ±þ8Q!Ú„zÇïEjïMH„³Ûë›Nþ=Á€'€àõí±‰Wè^Â`«® 6@R6®Š#¡ï;˜/âó *ÅåŒpåŸJð¨T£É¾Coüß)¶ÿõÕXÞFÌŸd¤ üeÊv•“OºdéVíZà´Ø¢¾eKòª-önÞÁ €„é9z2wà }è5ÆmÔ¹ƒ7¡@k”Ái1“ô¥ƒ¶½³c¼ng[¹â§DÙŠ~ ×4…Ýà"…ûzˆwy¬\T'¹Ðf.vyÄ7BVÍ–Ãk“Å…™ÚÔNpòÝ„xÌ|6»Šé’(jqÞGÃ?ùô½„Ï2€²Ù`ã%uÿ7óéjíÉÌ6 Ÿ¨ ÊâFYE ‘@Ð/ïéa¹ÙfSîM^J¹t"U ½ãÂ>ã຋— Ã% Ÿaë“x@î#• ÏË\«74ßy††«=>ÔïohDyäüÚlŒ6et+t´Ù‹'Ôƒ a>Û„Á¼'vŸÎKÆ€‡TúNáK´ñléyS›¿›Ù×t]ñÉÙ*»¢8ZéåÀxpoýâE(£"PÇžé S­öœ²Ú\|¹€AÓÍ–¨­F‹®Ž¶æ3†È"<„&JÐJD]kN£l‰^$ºgÔß …£öDå#m‰Œ¯‡®É·¡l„/Y¤¼à™˜ÍmU®¶¾:¯íñº‚+*@Ù’œ€áÌ·‹ðbÈíYÃÊÒq{âx½#­Ñ|¤AeâŽò.f¤Î= ¯ò©üpîe -x˜²TÍÁ 7Da×coU.TéÖ4÷C×­—1NH_6p¾23Ùrb¥ÑâB“ðêb3û Ô¼êõqaÌ%‰&qùÁ3 ¨»·nF±¹ìgŸ7Þkí÷âjp¶fU~}ÿ…§èô ygÉMð/ âHÄŽMjZã9{Ÿ¨!)’J1!ÊN=/€À (ùÊj÷úÄ‹MÈ LÉTšf*ÊíhÓƒºPÏr h»Ðüi>Á!kä ÃâUƒLMª ¤^ä×w8áÖœìjmj%£Û°ŒŽ$Q7¦“ ÑI4-jÏõàG14 ¶£M7&õÇÚ)™å±ô\éëlˆèˆ:IÓÕì·~³iòÒ_ì'1”ß‚ÀÿC+§nr°L–øÃh €KíÇb%…@Z@`tÁÀ”Ïu>«±¸ú”ÛÏ‚Ã\žTÙéù×è³Õ8vÐÈ9Ö›íG€€¶ýq…äÔ2ßA¬Ž%I€µ0·x~ò* Äßëq?œoâ:M" Pçõ°Â!¬äÁ»<áî¶mƹQTs|N×þj'!s71œ5î´ìÎBã!߿̞Q3ä¹BŠvÌ"Ŧ~ñ×¥TÂ(óÑXùéë®-öqª’ÐÏSÇÂͲàÍcuzCgâ‰nI´ X¦HÒ˜"åеÒJb;yN@¿èŽìO{À«j|Ãîüã¹ÆáMÃåƒât(bÀ÷/ny?‡Aœ(4“l‘۪ȶn»|2QÇÎó·üìë$äV?åñ¢o<Ãôã®'L®Áʸl8ìjwU!`{ûHìÕϰ~ºI±àw:›Ó’Ô8x°·m."JÇ iV·Ë.醿-…h+»£ÎŸçLWzž‘/<ÿe¯3Ìpö\ ËÇ…’¨näÛ 8)³œ˜Ï«§ßd zÍå…C³2Nár€;¸×Fjÿ\lÒÿÊÅ‹}ã”Ë+Ø9‰ÊjÁœ·ºí&õhþÌj,õ•0,…F:çšlxsmù‹qMmÔaxÏÐéEjCóÚY¦ºnkÁ{L¦ž_‹a«uÎW$¯3Ûœ¨k‹ y `I⎠ð¸ZZv¹n£œòÝOX†!1l*&IÐ2µ¯`"ù ϳ -]Aˆ­^©¡¨VZdIpÀOÄ[2sëH—ö³¦réoÙÊ#EÖ÷±Zk/f8‘R=‘/°Ë£áà™k~œ‹ò·&Îç&ûi=K¾¶cÈS"†_wM„¤w^ Ö7<‚—ÅûÿÙ¢HÁ”Ç:wa¯Æ‚3¢€‡;föµz³`1ø•äGà¾DÒÆÒ òú Ž’ŠÑHLjˆÏûniST·!_e°¿çÅ(Ö‹>3ƒgCvCtÓ‹!ë«¡œ¥Lãdœ ²žc9á Ÿý9®|šˆa!wáá‰Bä1€|Ó\p©ö߰ɰÃäй3~,Ì* ÷r_‹Þ…I°^D¨ÂHòį  lf“@iìEºÚìsè|$¯¶qÖf݉fnošÃ‰Î$Ü'ïß­ÌÃ⃣’‡YεPðSöØÞ–q¾êÒ;-µkîqsUÐwBÇM!}pãûûU$¨A ɽù'PØEÀ'¶M3žäãdv j û¨<8\î W-)gú ÏšÒëã"Ö]Ï{ÊJ« }U¿æ¸·bþ-!æŽÞ+ú §Oê¢_± )`¤#ÙB†iKLd«5*ZOªv,b›®¥…ÿ,â{}в9Ó‰CUÎ\È)žFVö¯E‡¥¦3å,FN=ƒVÖd#”œ›=‚°köIé!td8:0 ˆmœªò zJ©I94‹gËØÔ³ær¡5C°_wª…~+´Ý#„™) ^>4ôŽkP“A–ÊÃå·p>…p 5ÿ·ux •éåŽež1ŸBli.Ø!’ž¼e°6ýó®nþœc †#™(ÂdS5¶ãÏŠkrØ™^ <Î!—2ë(Úò{9DÙ”ëÿùÙöWô)ì©\M¦ÁKqŠO¢ƒ|—­rŸ‡qÇf” Ë*@·~ㅦª1 ¨€0 óÙ%¥F:BüŠî÷©º¯@K°ü+@í:¼ç€XÁ>U`LÏ"ªãÅ#ØmêR@¢!ßKN9ÂãB.bÓýí©½ÊP“ÈA{ €!”À¾ÎFEÆ8Î èw¥™ ¥ë \,k3h]ÝÔï_åçzs5I=¼ÑêÓÚ…‹8Íñó)e¦ñ…”0Ș¯ÃN8À³ß¿hítE$“e+“ˆev@G§n82Þ…Å—úbt–Zª¡(‚ÙÊ9m§+‰ëGeš¼ÃÑ:Ly&"¥cæy^&ÙüîšhT_Í‘p!Ñ‘ä~rÈ5Õ#]|Š,Ř=ÊØCž•¯ø+‡uz©@囎è—7^QÍÔÚ¯¥¶(@bDwJŸ+×ÓcczÖÑe5P{µe°uqû©èQD‘/)¤jŠýKŵ7nŒü6õ®døCÂÍgCÁAPÀæ÷—?³nÉÙ¨‘Ipá—4S4±dˆ9Äþ­Äóf»ÆUfo[¼ ×°ÉÀF%Õwˆc˜Ò€¶ûYò˜Â|UóET/©{-§Mu|®AΦ?$ _ÇFS÷aròD¹"¹§…í*Ÿ1©Vçl÷ŸÂ9ýJl3ú×ðStºõ%Æ 8:*àF÷ñcóïP¼ÿfcå>/sí‚ÀÓ¹éä“.I•ºú ƒYûÞÉêXôÙ™GÆ>j-fzµ°¢}3‰rd¤å‹Ñ&î½Q¯ ŠM_ÍÅ¥&I¶„wª`Ef3@ÌÊ›sJRžª±öhKÞÙyiQ—yM-èiM„_¯1‘ikšùšhvóÆT’ÚÊó1çË\lë6[Ì€½¢ó Žm9XÝë5( àaþy2nbÿ›É­üôµ|á^×í÷“"º.«9Eüºg~]––̆_åõðÀp7݈ˆD«³ÄgY8X°w`ŒŸôGéÚ'™þæ¿•¾‹ÂÈeSTÂŒr®}á@ydçúë<$÷©Ïò9Aæ™b3"ÜÛˆe»‘á•·•,­½<£_Ûi<òwïàüÜ.¸F«£”Ž{Š};-¥A÷ÀØ ®gÄî8-šÚÁr9Äß!ºOÔ—çéÒdš9¬¼¿ˆ‰<;C eÑõ2~À“©h^Rä5ö ÛÓ畨ª¶ c mwøiMÁˆËU*)T.€Ejׯúò}<º¸uL°¥5®‰gséµ$F•E+ÓX‰ÚO缓íPNÞda*™[|->/ÿ`Ú?¦ûˆÚ‡ÿã= Ù­J1÷7Â9õåV&eñ©ŽüPQÈ{s| n -'°üׯ=íٔЧŸ¢jb*T›Òå/æY'Ë!ˆÁÏ/wS™Â­äÁA ¼¡Æ5ú¬uZ¸%~ò¿ƒ7‡k)2vå”äõñd¯-¦ç¯à™yµÍj>†UI6'ÀˆËÌØØüv†m?i] 5V-ÿ±,¡§®¨ÃÞÌiuýS²/|$i$Ê”Õ6=juçÿŶx¶~Oá°ŽÐ[éù#ÕKåÒš“±*â4ØÜó•Pªc¶Ã¯|E*6}< r%*ЖÜ$¦âÝŸ;èn’?Ÿ7˜Ÿ™¿ÍžV#{]Œ4Xm!¾"Œ ³(£@æò#`ëoÒ²0w¦ÿß$ä\9õɵ† Y† Gt´ǾXôܹء.‰öè§y!ÁÖK'Lî|FT¼¦·ì˜!8 AÈ«Ú)s*VÅJÄ5—n°a´ž2µõRiÑvÍ«mƒÇÊ!x©&'ë ùÿn÷ò˜ ¬®b@HTÝì^êÓÜ‘õy:Úê<9Aª29ù‡,è2LhÀ­K ‰ë€vhÃ,@{Ã飯˜ÇáÁÓáw<„r3Kî<áv#”§*!Ø*L0‰ˆ›OY‹œØÿ;P­‚Rç‹^9³+¦Ì½¥z#$(¸àŒoÙ«:â´ƒ Ošc’( âÊèG’p¬+vêm}Ô%ò1µ{Züg†(²á[ Ç{O _£½L~ÕfQ4sÙøª&qáKanÛ¦­î ¶©m’º]’ˆ™È‹½Î,ë¶”ùF½²Gßâš?€Ó¼^Qbªl·mvWôjø÷'CIà´§b.\`øÚ•}ѵr}’fa¬¿b"aûÎ ¶ZFýà‡˜YR¾JÃ*ù`Ù†, tͬà1¶ÜòBäg\“_ J™“¨°µLš/jp•ÿîĸqq­_ÚÓÍÆ¡G\Ër³érGEDJT£Eà#@šv ÀãúÕàEÕ !c(ý0 -ޱ ¬»±ÈŸˆ·þJ›¬æßq8\àé[÷*ÝíB]¥xZ¥”›šPÍÜç_²¥DheL|¨8lÝ—ß°qb±£—"?I³ŽþÝꩺD‰ C ¹¡/ð_$ ÿÙܲÂߟß#IþŸ4 Ã؉í'Oi8¿ŽPp«úuÁ¸'¡„Aè;"æ6¾‡ºî¾î3üÐ|ÇÛò¿ÓQx ¡+¢7Ú¹Á\ç2§x¿ ÓÛ9w=>¥^¥¶ÈÅ‚=îã ú)«c•aÑɧÝõƒEjòŸšL•€¥ù‰¥:IÜ©3¦zƸÝÍ÷̼Çl‘ó¢¿À1pŒPÏäx€Uv7Ôî1-UF·ÈœѰÄÑ‚â9Eÿ©°Ö â,+W¬¸<ÚÄÏçš—qJb©ûAûÇ?:Mt‰“¸ŽŒ§‡$|Us²¯‹…ËTøE[â:9ˆvÊt<`z »Ã åØ|BÔ÷to0‡x×ÒOAwtÉÇñ£™ sG–3/Š‹–`ƒ^ÁLKÊ4<ç*û™F^ä2„–ä#yzç!/%6ý’a]`Çq8=>èVÖ)ÔâúÄê£hÖÏnÐ:Ý\ǸrèîÂR™ ¸ØrK[I¡ ËûɰütÙ¦{pƳü –p÷>NA΢þwF“˜eÌçà >Ó²+ÛÚECR[ÓçÃìgPl‚L¼ðRebï<‡¦Ó[Ûrb^ZŠÀ¾÷R„è_$P]‚¦õœ¹½G“êÃB••žO»‹bÙ^(ð[…a¥€>¿àiÅÁmìh<¾EºR”¡Ñ>ó(môj8ÝÉ«øã„Û·'¤2åÝ«/á*à÷QפÒqV·‡fvèµcA“CÍb rNʹè}7è$‚ƒ‚Hˆä"ÆžÌ$¥v½b,Š‘}”ûÝø×„2nžG“ì|Ùé°Å$¡"ǃ(àÔ˜¼\LÙ·.מ_ÕaÌ-í¨þ;H†ÈÊïmèO5f¶SÞÁ7Õǒص(Ï-¹†kθÔM’è>Iêù PeØRZæ©[ºäÉ6ÂM—‘Tsy0¶IÇÖ<„…ù·pÉSìA³§*;X¼X[ÀZo®̸èŠìÞQPâ Í\yÍÿ èâºöÎaÈÊtN0bhBC;UKÒJ­¶8 )ƒ.[íüÔD±@!±¾°–Zã]F]Ó ù’êÏ¿§ÎØ.ž8ŸŒ»+,òÂ]OmïÊ=ƒâ¥a[£•iÝ2–´ -.ܬ$NôŽ!?¯yc°ºŒÂß—ƒ_Í®m>6(Ì7Õ:E­ Eú~XíVå—õR¼„ªËÇžñŸÿòb¸:ׯ³3âŠhT ”½¯‡ª¥¸Sªð=à“k¼vý9yz ŒÌšÑQÔå!bôÑ”ÖrÀͽ¹l•)¡Sp*ÁgNâR!®£äY[ÜSbÉVéSR4ÝËZÖú<.›V…â¯.ÙšL™ÿ¡t޹zè—EÔJHM;9–ö´“PaR¸ÍÖ¥xAY!10nr_b¾Ž2石'(Rp`Þ¾¥<ÓÓÏGCªÀ™Ö…o¼<† 27¯…c"* É;*x<Ö0¼‹û/¬ ÊNToÉÈÃ:A˜¤82SR‡(Ëq¬]§w‰¦‰C)k/-dzÆË…õ3öÁ òĹî×…j3òÊ€´u+–1ù–0.LÅþV4¿è{5i=²)í›gæ=‚+=Rà8N§Ç°*h¾}$wŽ{ªÓw%qëƒm67Ô ~¢ýZÖdŸÙLêkô2+{-òµrWAG÷ŽìMD ö˜}€‰\µãÐAÕXÿ1RÖ"y©C{Níøi-¼šßñöp…»äæ¾ðuMóQ¹ñQ¿’1Ûn¤/hPâ¬V=ä9ÃCŒQ˜ÅéãÔߪZ"-·Tïi<ˆjÖá¾|¬vÜÐ¥û`3‰>âôñ×pNÞŒ¬à~[ÏSOý¥ ½ ;y¼,ì2)Õ‰ÓPQ7:Ó8Ñ¥s‡vÛ½ŸÜ¥é«I•ok<¦Zj/ ¸åƒ(¸Ÿ1bf ÿ`ë{.þÝMî g†à"öx*˜SËvP\é/“d|ž­ø)× ½þnÿÐ)-º£È¢+–«+ó•1µžå軪·¬…Çë8s-©Û4P³gB'nåý˜IãÄÍIÁ—#¸£/Ë2ËNë·r)é¬Í?Ž$×k{åíÃcU™ÅGeo¿Öi,ðë±FðóXš°51'@[1—iz™Cæl›Cl¿»@Ô4êj”öΨ6;ÍËÂHøF“ý»à^僻K1)U¢°ìé yÿ º}ÆñÙ\œŽ(–è4#}Ô›Bv3¨Øç’ÄÌœÖsÑñéÝ.á[K÷y°ñË4­˜tžtŒ8k¡¤+v:+IpÕ{½Ã*¨î½X%qü'sseéø‘‹ËuöôQÑZ9o—š[¨U-­³ÐmÔÊ,ByÊbb"¨¯tÛ§“tnx¿ôíì­ÿˆ{pœÔœž‹*FI>¹BÍÑ,”h$ƒ]Y>Õ’|2]ÏEÝšÞškÎ&ˆX?x0¡ <‰¨/sÄ.¿áoUCüF×øÖŽkÊp·=¡ ¤å|SC¿€Fß߇*Ž æèþÍÓû0jÈãÚ1°Êo"•0ù=Î^Žû©èëú—ÜMÄ~·»OÕ èS.¬ËZ<ªÝ1)ï—4ÛÉö‚C›&Å`oZ«Nè€ëOjl/Ç9BL”lOº2¸{vë‰í(ˢܧ¾'²:•[R²øUX!ËܤöHµ0+²:$’ä{ZsûjTMÜ0ªzŠä_Ð]  Ryåæ zd r>³pùãˆÜCV£PHD‘vNGÆñK‚ÂSKì=«câ djyaöÜõôÊZ«§:ÅAI”Éõr„¦jª©'šñ'øëiÐì',ß“;µgËFÚV4:‹®ÎØ@=½òGƒ!ú6¼†H=ïˆ]^]Ñ´—Ð%vq̲O`võ4nç· t÷ˈMv«ÄTï‚Á%¼9&yQ‹ÁîŽdy +ß}{aƒ Ža/…}Þ-˜ ñaG—:' e•žØtª~n©Ç]*‚x®âCyŒ† O; ûÅF84Ï"‹á¶âÐçU®š²Œi¶]7´|~€cŽ¥–ø²™‚.c‘€ùÑL©¼§p:¼Hh‹rè±Rv¹BÜMAg_O£mØ/R ×fñùpv pY§%T¹¥wŒ©? ½H–jòÛ¦«$ µ‰z‘g‡Ç‰s+"üêM%޼€-`Ÿ“€öš¦k?˘.“ë2 ÷Ì俳!Ô°µ3}ó#áý( Šò·2Ðð>¤ Bãv6ôap)gøƒö¸’Ý÷2üs#<Œ‘¤P¹ƒ KFC÷ƒr?«í¹AÖ&™HV⻦“'[SªÚÌÊñš^("$û¦ÊÒ’K‡m˜ê8£©¢M!ͳ†¤kµ¹RÓ'81©—ûU‹<¥%Ÿ¼Miê®à/»uÀæõ†»ÐôؘôGÁÌɤpTzé‘©úòמ×x5ƒo+~ä£Ýxæ‘åïå-ü‚®¡IÛA—à°Ö ý»sq Lêž®}—ÀR¡ÈÉ[¨ˆ>œp 'Ê‚hš³Œà2iƒ½°Žëý¥!—ÜEœª«#¾P±¸{“!©ëTý€Þ½àlDÊŸË‹¬Ù¦ô¡ÚþIͨKO ç‹•WÞùozc¬ÇŠå¨ŽA÷{U~BÔ•X$î.J®=ŽéDýÁÒ¢D½ó¾rA÷ÃWO¦Y,¨¦¶°ÚâÂçºÄ&` zA,âžÌâq$Ä’Züã„BùítáÚ…Ø´WŠ»šíÒcì|3t±ük.šñɆ.ékÖ¬ÿXd"z¿ò[Þ'ºCg%éÏ?@¡[üâ#iÏÊ“žô -¦y¬¹‹8Ç{ §ÖrÛpA#÷r80çÚ“"à$â×[ Ú é„ì¢j½(ô.M®[{69ó—í¨›: 4ÍEpÔcªŸD„©nÔØ «ã%_; ïW' QJ½›2 ˆݪÎ9¦tÊûy…»½Z=Ž´¼ú%‘HçÚ‚!½MüO'5\ \·ÆÞDÂåûuДTúËÆ+âÅ1ÿ@ÛÑÌÔZùzJ³`bTõLÞ}^W8êTy´U´ºa®tÑeµ77 ¬VÚ‘ª¡­g¨£qb ®e™µJ†Å|‹åitjr©ú¿Ñxã›-S=Pðî7w}Ñ >B›p§[Šfæ÷)/|ç\Æ•­“ºŽ\Rã^­Ò®Î#XtàW×ùÂK!ªVã†QÇïbp“v"ÌÒl¶ø…q^ÏÚ³ê Ö´¨:3]ù„-12~AO& lýÝOÇšÆ)=æxëBØÇôLUÊCjh“ˆ¨ÃM­}Á†™÷Îx¶µ¥´k½%Ê€÷jÝAh¨oœ”=wN÷ßmy8~hFÔ”öYE¿2=+écb BèÌv/Qj}­(¡!;S\ëû™)©PÏ»ñËd˜f³0ó_9­ÈS«‡ïØ=˜¼ÒV«‰ÊÒÎnåv]óJ…ÌàÝ×Ò©ÅðÞ·œ¼d÷쬃zbÏ¡Éáà³|&§®z‚ J0dÿ¸,ý‘#£,ËOïÑÇy°¬&eÉZfìˆú\ëÇú•u«ðé׿Ã{Í6,$Æy/¥á’íÉ®K(w@~ÍŠ ”#9þxf‰ÊÉé\Y½^5íä°UTóŸIÜÊÁÏQvòeý%sKö“"«ª€eMа'.øw@Ù›­#z9?á˜ZàpÝ|~ÛÇ’ `0¨ÊÌ|¨VÚâ×D æ++Xv2cªá¨öÌ•ôÔìëßLMß.m[€ÇtïÛ`;(²p®÷ÂGgë2HÆáaãIwj6ÀzåÆ@zEŬXnÔ)TUl¸À.¦=5j¸]º3°Y¼ÚÃsK¦Û(ýºxXşߨY9Ó9 Ùw•gÕF­’3’ ³!š/§#€»eÍuù²“å¬G`x·AÔî!Å aB½´Vè f—NI³+‰JÆýmGÖ ,±]߫̔àóvíiÆë=]5hÒiì6·ôöVâ3»(4‰7š7½CLÈ–¼uù‡¥Gÿ¢c·t+§IíÜì[¿C±6pS®ÄdLuK!‚”7ÚÄNÚLw‹4DÑ%uÆ {4aG&*™¢£.ÉÒ›c7}j¿E‡Úë,]¡¢´…ZíɨÑ^.˜V©5œþ"ú  šLkâÛO©õU¶èG#6‡×¹ÂÖF¶ríyõH³;)g†×œ‰ô6Y~—†ýñç?Àã¥s’krä%.AÜÚdš3Žlf×IÙMQÙª/QkÙxHß$Qof8ej°°šÓ½_#µŠå‡üɥѡŸ7Ë_…$É ‡§åW: Ð)rI¿ZúŽ¢…óVÎJäîXYà`® U_pÒ¯Ýgã÷žÖÇaNùË 8][¥ã#Ë$ØŽFÒÿ䘢|‚OìZL)ö x©¹š,õúÿßv\\k[.‡‹í¯I¾ô¬I5­IÇiuø7Kç0Ó3‚K@Œ\IÕ$t÷µ3¤ˆíº( LâFngõ†yÉíøüÒëóbŸ¢™`‡ÇÀ•êµb=;[­/Šs9–ZÙ[¡ŽqÃçäQœFï:lëýB}l«Ç;Ÿv¶11ÎÛÝeŸ´á-¯Y Û :ã¶•ÚVˆ¨ Þ²åEŸ&°²#`7èÒ;Ò]¼¼|ÿ^Ÿ1‘„ÀÊY’CÙwóD¡Ad#*Ç ¾ÀÖ.–ç}Zù›*ž‡ Úôs2íÐËû+aƒÝjÏàì\ZÈZ!”6 )QÒ¶”„ˆ(’H…­­ëƒc·‚?…Þ×^ÔÓ•*c1¿„û\f”ÛP&´—µ8æ|ÖäbàŒ´@{æâù'«¢>lBÔä@^^Þ‡HTK!ʆ|úàÉ[v1C” >Ôàѹ œ¢`[x×§Ê|ºùwXÞð,¼ø1`Š&Kã<• ÿÙõW)ÂÖóW^}™£ê¬gC{U{Fµ?ËÒ8éŽbHëD¶0üEKÇd‹%]`$r’¼µŽžö‡‰MÚLL‚5šoRnòi¦ëg:Ϫխ×0úT9r ½¹ãä g÷æ¼_i‚ôØ@ÎïÏ(cB!I´>à[fjÐQ8±O/[ šædàѱË?ÆTc9‰xy¡'ÌÌof¤0íÏ„ÆìÄ–ãýø¢¸ýVš¸µ·V@Òœ¶ØEÁÎñS³òm!‰„N{¸,^»íÈ„²TqE¾O;á:sð`chµ!ÂþÒF¥b=y¹m|ß\´[ç´ºqÙÓr"¬éß`Ô㘌:ƒV“y?“ë" ÚÙ|ÍóO\21Rf˜ þ3ïÇO­µ4UݳE¥§êØŠÔe}†[z'<ìËY:è“Tò¢£zòd§žŽM}1 ÙsÎÝçmò•.1î¶žuôAî5fÄi• ÿ@5¦¶ã­ýÂy`=¾µýay…6Âð\Y»~Œ„Ówý‘4…÷¹Üë®zÏ…™¯FYm»z 4ö—Ùýujô›¯¥¯éH‚ó²J}í 6Ys|þ(hí¸âP«%ü\¸FðR{·ù¡ìcŠAˆœŠÓm¶zXÍ­úvňÝ?£uÃå7û¯^àw[Žæ‰1óDZ-™píâdkηPÞ-sщ¼Ãxêqàö7—úÄh]å~´ßqêc¯r>üÉÖý=?µBI³úÞwæ„N!tñ±ÎPâM5E¦Rn&·Ôvu0”jPÎj¥½|éíèd¼µ·éf]F†^“®™_; 8­DzÈ.ü%m~cqó ÈX& ØiùX$42xàÄCŠ1Ã,§)ˆe³–¶KsùG $š‹ÈE8,„@úEÕ¹¾x:ŒÅq %å´ÖÇ«‚û7@ü°²Õ¸»½Õ¼àËËÂ`·ã¢ üRg=vµ.q'ñøUªtÝþÛ:ßyLWsdhqÿetÙvÀ_WÜ®‹œÅù!Q?Ü©&qv}ÁQfÍèm!œˆ_ ÙÍóeÚã­V‰ß†®ãÀêë\&–NR’ ï²ÜIøS|ÑÃï… Æ–‡I2xÂL <´§ÕІ¿î†Y¶› õà2AA£p¢õYÍN¬ÇúúæµlôÔŒæ™"bØÖ}ÿ© œu?`6t&¥a"Þ W2«PÌ Sý1i]ÉÁa]~9ˆï&W>Çø%‚¯[›y‡‚ ­7ôFP»0¬æŠh³Ï4%^JcÏE×3C+ôå—mÝA­Ã®|ÙxX¤[í©½'M7óƒr¿Ð]] m–$5üì£-‹gÎIÃ~ódÈÌGÆŠ>ο³aë™™ý2(¯ÁqC@“sª“l†=“T]mi«ÀŠ­±S='V>[jÿíÿè¾FS’eô+Âìîw÷“BËì1,M¾óC4„?1¢ã.Ø€1Í ÑÚþJš &º¦›.î.J4¥Âî$HàÁe°|±a=ÅuÈHŒB#0ì/Ÿ½nw™ Ÿ¶Uš·[âs/OÄ “2û˜¿ùo9öÉîºßš<þ¶lIÅÓo?sV 2Ûü°f¶H=ó¢þ§í…á¸A¹v£¾£Â¿/çzÚ@ÞÒ€r(.XW»#g@6„@#ý÷¯\ñ ™1ÈÆRêÀ‘þLƒV °Œ°¯Ò:¦IB <æÏðÈ«Óyö1ëÔ ( X¾’z<ËãTjºL—ÊÃ%Þ·˜òóð#MÎòm4w“´stwP[óòÜ7–¶ëဇ˜v*0e#TÃc†›"ÌæPþ•ëb$¯;}u!sàâ„WÈã˜c¹Û¦\Ô‹ç[}_@ä@z§1{¤Ž‰':_Á›u°V½oC wñ¬ejõÁ»—¸×§uŒž šÜŒŽ£½|é-ô?£Ø€¡ËÆ.^ìÈŽ9BV7Ê¥:I¨F#R n#¿³/Þu¾Ë›ìuTÜj¯uj$B‚µª|M0ÏqðÅŒÊÝŒ’þvXÓ¸Ó…¼ÍàOSs7~º‚^_¼›JL|bˆõ\.wºÛ¸‹E„¡™¬iûÈHN%9¢“Ǿ_Õ’Ì×Yªr°Ê…Ö“ge‡(à,«Yé{'“ëã¡záx¶ jÕÃÊ–ãŠôåÅte ¯ O œ-KXCCÙŒÑ+â0ìŽBÄ›è¿I˜)ìR«Òœ^®?—åÖzïi-Ÿ„Ò¸>-^é-”m®å:ãO4tª1‚Ñ .”õCï %-¼–FFÁS37¥HÌÈ2×ÈÐò¢M]ÿ¨©ÂèQ:LŒÃúL»€ù®7°uá]¹Â.³4x C1l·(¢BapT–4b•™&ÑÒfòn÷”u@;Ÿô–Û¦Ð*1º"#È€‡¬OÀ5Aõ¦*c°r=;ü (™!^ZcMüVW]$ñ8±O÷Ôõi.áÔ‡²ÙU_¹ºn¼§%ŒªdŒ»+Qû¶=O`J¡cÊÍÔžAÈŠ¼9½Ac¯Šøë‡Wwte$pì8è1ëwx”iµï›äuõ+¦€ ÒkÍÃg“¼ ?•4;žB"’ô% ¸ÞC‘Xï˜øØÚ`¹GÛ$@ïÌÂc€àz±Ð,L?ÌšØô xš. ä¦,ÁÆÕ>‡¸Ž@ Õ`›» ý¼"iý1nUP¢pàŠÂw¤¤Ï¸Æ˜F˜Ð$D(E¬Bd¿3({v¶0žJVŽW_ßã<-’šN ½4_,‡±F ö¨D©8›…Q¤™~þB€ Ìté‹o ›ò»m¸fí©`£ÈnŸ¡h¤>§ßE닯ÊÑ*MQÞì±!Q |DdŽ‹3 ‚Ó %6j\ÙA¯<8×ÎJÎëϨz_’n=$Mêo£óáÆ (›½§dh\5&y?¤ì:«¹¸Ç}"Eåq/šÞ,Ü—Çq$ dáÚ[_Ú…z²éíþåo¤³þÜÄefN{™€ë¨e”®”Õ–²Q+:ÿ©F×^Xÿ !-N¹ |ž}&<…„-ôPžÜhŒ ½÷¹¢¼¦ÐT‚œW»)cLÇî½1±=» ÅhÁ$~vÃÜxÇñ¼ˆÐ]ÅScÑvvdÝÕÍÀ¯A*ÞåA“wr‡¯¤Yá>‰Æ#­/qš¡Ç(Üžq¥,àõ/Þ¨´l#/#1®GÔÈhR}£NuÁHâ®”gì¿×8ªM» ŒŠÿ“ż†8Üzúæü]¸‰œIµоŽÈríá3×çûcÂ\˜X§œôº!*-ºª&œ ç4¥?›QßËœþŒÅe€X/M|Ó~ è¶žb#æI`ê€ÒËŸ ËÛÈ{ùŠV mé±ÝBC‰G4V×?A¢C0…Á“y,ç?A¯ƒ­2Ü*ËW5ãÓàîA2$CØXÒÞã ¦ ›Äê….~æ¿?5,3r¨ƒ†ÄVo]'D6‚“b Y‘{PCÒ£Ò•Ú—6ê•ä¿îeÖ³¬x‡<‘VÕCeƼšv|£a?“=mŒo•ô­vÄó¼ü©ƒi•³åwi&+|Ó¬ÉI¥ Jd|õ¿3v!JѾ„+!Ñ̓¨:AGªÊPçC)]‰z6Úsa*1Œ0¶ÁKö“$òÙÈý(¿¦M«ñ,92_'_a•{)úÓ4é_‚ªo ±¶î¼¢ƒ~¸^cü½)UÓ)Ö阡Sr$÷º'Uï_”?¡-Ë–‡zÝÈ®yL>f£U@ñ 9Ò®ðÛá ÿÂÇ}ðP…¨O~ge¾µnÁa5Á¬eó»£:JµÀ€¨ %ë“´åÇ>wßhI¹£¹ÌU…øV2¡²ùä>¤0ß\0‡Úëb÷ Õíâ›ÌÞ¹³”ˆï^]ÉO´+ÌXó0ÆŸ'ðTÄU¬óy£›ŸRö{ÄäD¦É™˜¯BQлCöúÃè<¥QB–šm»—)¹ƒÔõC‚üG5 6e¤…ýe5ìÆ¾·¬ @€ÑEÍÀvØÃ>È”ùÒ}ßD_é‹slëí1Ø„¶¬ß‹âkxHÖ. ç½ý¦<-éÎo°27 MÖ-"Õ© qØ‚&ú®äp²d¡ø²åºK·a8ê/v£-ŒEÏÖÍ* Ç®|PÓ/»:ÞN(™Ÿcb0ðÔœ[Ýøvñ¹rR0¾séj° 9“åQÕŸrÝ(¢ö ¦ç¹ó‚Ý4$Kb _Ü µEÌ~…*†»ZRfu/ig4—m"– Tϧ ö%M³™¦î»ƒmWâ§a‡õ(w¬Äßýlˆ¶îX—ÇZ.â˧d )qÖ‹!H±ÃâDz kÉžX·±ó„l·¦ ìA6#P ÇEFLy»´2A}pqÛy6èü;ßÕ°iÌš÷7†Ûõ—¥gañI¯mÆ"ö¢c½ŽÒЉ2‘ü;ô'B>Ö«<ç>¾ÔÞÂej°"çµC/\P1ÑÏí– %¾3jºÁ5^ GúßHLgªßΓsqi±²;R&mætrùÍ.ÕL'ªÌO$Ðyêð@÷šÆù÷„t¬Ë¿¦äC‚ôe™÷ºÓT@ùUHaÖôeHäÿäM ˆ*Ð&¹räÊRuc¶&ý"wLÈaiU}”f‚ðK¡ìûŒ/pÎ=z©‰ÑoZ]×u«Ÿ…¬%˜à´~ ¦å.¿ãÛ¬àÝĹê_òMæè4ô¨/DVa ÁÎÈ çಛ³×;<Ö™fëý·+XG¾e¬Daðà¶&7–Þs’ÉŽŽn•(ά-î€À©R}¯Qÿ¨S, =ík—r"ä­ó —PÑA¯rG¬=½éÆb·I¢—d‰ûí°•|T´æMI~8áô¤ÆõöN—ù±~yHÑù}äjp‰4†<‰ù>ìÀ¯Ó_À {ypž0½ŽPŒèæ è§  2Íij‚óÀ0Óšœvû‘ÜŽ)™u ¸…¾Ü ïåzÖmÊõ6P’ï Oõô!Á¾Naöpé,¦d•ž¥øKÛšaD añýŽ;ÕôxAwù0䋪1ÖôEfάwuBW6ºr¥ŽÈ!>A¦é @ÿì\¥¼ƒù½\2ÑÅ ¨^!ü2E­+¤Çc«ôXªnê5¾ìø[o×.0/¿j3C­?%£¡å×LéQUÏ'nÚ/RÍÇF¨HåG6æ+«YKüî¦æ—ÜòiÈ*f ùúMª<$âW+ðµåcÕ\oÕð‚IžÛ-ôB—+7Gþ:ŽŽ|kùÈ)‘iñ²¥ãër*ÏR7ùfÓì²Û×Dâ³ã€=šÔ’rúÓ°9—¦•·ÒœÒ¡7@Nm­_cµÀP‚t×b+ò\ÃH>ð1YbG"±6bgiÍA)$°ÍèüUÅàdܛʿm³þñÊe¯ÌÉgÍ[£bWÂ0¨p33FÞ£Ì ©)ø!“QDyéæk.@#tL²GN}Ré¼>ë›Øå›ïœ.wŒë¨RfA u'¨± ð ~)ÓÚklUNÝN¤Ï+ë;ÇÙWíX~‹¡MÐRÝÓëÎXϤÃŃGÅ{õãšcÙ‘E®r^w¢ÌhŠvá)Sx<¨Â2šÑ…}&S2f)<]?¼Ÿ×LÒZ£½RMÔÿ¥ë!Фì óÓn-ü»z’éÞ7²Q”¬PÙ:´fÈF¥ëƒOAqT:™¾p¯ÿrœœ~^A0!Bçgrˆ0fw£‰‚êDÁÂ:òSz$“ôSá(:œä’¨Ç}WPÆÉ´<À0ãh* ŸÈþ¶ÈcKè3(+8¼réÕdן䢈,š+©¯xÚ,ÆÚwÙ—–™•è7ß[Ì9©x€>HÆE{ªÛˆ¤3w?¹O5çÒl}šÅ¤ƾQX­ËEfÑÝu;ð†©åÔÙæ‚vŽ”—Eõ»Œ€WT ¡'g‰«%V~oÄȾþ¶_cØ>qã´ <7&kοö»Ib`ЇߨOqë\|Q1®Oä_Ÿ>ŒIz@V¢áƒtBÛM=/ÞZ[ø}„2„ßëWeºâ_+V9¨õضÄt‘¦¼ò8mLw#EE_xVÄlJUú[G+n»õ¶Í@ÝÐðô·µ*’½b^ÌF††dê©2%u¬ê‡¸¸c9±"&q°/‡M7C¢¾ƒâ˾ÃFÇ `’ÓBoÅ„É.-­.‘Êù{KZ²ÿØ}'ú«ß¦Ðÿ9c^:®7Õ-Êo™ÕÎ9Ûen +Ѽ'Ò êÚ( †ð¹Ÿ<Ð’Y„Åœ,¼€yÎ"๳5nj;u…fku$áàõ7V¬)´>ØZ ËPâ'˺ «Vqç*.úž/Nê–¥”Žt]“X&TdjT:ÊdÁ…©Ìø®ï —D!ÍÇ&d. :Ü©áh±S;*°µ“©F£ÊNŽËÈuç‡W©AíÌ*bP`<ËÊ •É–~Ç3Ôí$FÿÞ€˜FI%þX{ÏIL^Ÿü|Û´ÖVCn‡øgi#Œ(ñ°Îƒu¯¯|u‡xÜBÚ4è"5ÞÀè”·±D@zñÍD¯Ë}i2S(ö…i}æî9•$0BcAÉ´>ÐÏDZþ"ó©]=üš sGæÓÔ }"õ2­¾l…ì*µ²™|å›òU±Hýµp2²SrÓítP|KýÍÒÏ~ªªóè:»Âë?û£ªXÇ’yÒA3(0Ñ<Ư°f BlRfúÒDî¨³Òø×Ä&R¹ÕŨ©ªv²A5ã®|ïmÂö®£Ïî7äÜ+øÈ…¦ùg‡\Ö,§S‡QÇk6æ~I¶²NY‚OÇE·×iºSnö W~=pzW¬%ED) `²U¬Ê¬°ÚžœºÒ†`¨b™‡úž-Gj¬J‡i[€ªÞSçYO ‰úÙ“´Ÿì 4a§2úþÀ7F×ò¯WÈ^»ô(/Wù}‚ˆ2ª’äq˜d{MFVô˜ ‚èPOÄvÛÖÜõ3~Ó}cxIOâI0–ú›w¯–k}ñ‚.Köû.dvªkJœn²ÒÄ*é GcÌdÉ' ìThš6oŒixZÉ„-JX9[§É-ò(á¢å‰òö”x6½Hðjq’p½ºÃíÒ*Ð3” IøöæpÇxpù¹;ïÚÐTgsÂi8ÛúÅxiCÜ/ *Ê%ç…©w¦‹i×ì¹âõ×Ä»¾+·  ¶Hzª"꟫‘¢çÛÂi«ìågÕ ¶´kð”ýTVI‹ÚО0&aÉ[J¤Qm~5àNrÏïó¯Õñçù,*LµEµ;µÊ.–8‘YXhX)þÀÒýdTxÒ$ݯ¤Ÿô×B&ïÕ@Äÿ¶é_òíªÏ%À¼]€:ûâG©Ëý¥¦Y$@c”̼-úv(4<™ÆDÔ"—hœIÍ$xÃ#BrE>·Íè¹0ÕR&ÐêZ’'ú¼“ј¢É}‡ùè¤Ù ̵£°œŽóš2ÒF ̀ʨcT´ÞâÞ*˜]™k¹wµí)È ­ÙÅn½w²¢¿6A‚J¬%#¯#pÿ8ë L†"×:…Ú´[»¾#sªúÿ¨ö$ëòóüË@4Üp[É”Y%žÔQÑ/j?¯¨ÆyºvÒ·{#RìxVuYkºx]Fò€8úU$FN8{à™ØáwR Ú¯•ìzQêØ_ÊÓÍL^š%¥Û,55ž—³Ô'RIp‰ŽÃ’iÎ\¼†oTµjó +g_×õ]Pƒ[Pø9cñÑQ2ÏÒ¶ŠãqŠ-7ߌ|uPxHÞÿ¯CPýü°«š|ô%‘j¿Ú2ýyŠuxƒ‘E³ ŽÙÈ^(× ø¯lF.~Ì ¬nVçJdÜÎ[`º¯µÐQì&f+ÝÀ‘6 p…Aô­û7iOíVõf¦q,ê9ÄÔù”¢$Öé çns³öj ۀ̩8¨(Ü/=÷v™š5g§„†ÞÆÉ¤ëÄtúácÀÙÀ8{ÆU¡I0»€ŠJò=½ÉIÊ›€tÀ]ßõƒ°%>”7êMi±3#"-è1×Íý¼¢Û¶ÿVLýú_òÁÞŠþjð¨LúQ2 -q«ð€ùÂjôÜ™×™Jbæûñ>½ˆP@t‹ò¢ Ð-²øD{‰r‡üGÞêve!þ`°Î"á´¾‘!Û«ÐA¢ÆÚ –oeÎ@Õ‰²k´ãö ˜K³õ¹¶H4v|„pÉjzµšÈ&8U¤Åölø`RЛwıˆ2KkV¹é_¼péðí­A1 ‚¡§…*ækø°d­•ÆAŸ~\¿Pc:",”¥ÿ½Åo½¥‰$™ù±~`¢Q dþ þ ÷b{¤OÚêýØç¸šn‰QZaF[ÕM­rMÖÈs•hî­Ð9_°ŽûÓ9î"-uù\îDêÊ[验ùŸÎ“ðâ|úUg^XàÌk‚y³9ðiø<ÁÓ2 ²¨Æå—†rÓQİ žLß8l…LT¹c¤S× ΟasÊ|·RÄx7Ìø»¿(¼"_¨àIÈ^‡¥G­SViPð5ßùku*m¨ú°ú}ü³øie Øù¿§ón>;³~ðqmÛ¾sˆ³ -aL¿OáýQ² ÙœW\©‡ñÎνÙxùcw}ù*ä~.ŽÐÖOª j»¡tQ¹Õ,hŸÝ‘â<^OÒË[æË[ œ0&ì­¼ûpZ•²gù[dö€!É)ô°ä=ÆÌ§ËÕq·–î>ËÀu·ÇßTO£&¾3'Ywµ†à°ÀŒÂUÈKòì³ÝTÊûžÇ8Ö ì£­¡t·†ç­ Åâ邯òÈÓ*9¾Vþeùý´ÉMº\ù¡ð@î]Ö{©]B ü—´¼Ùj1ú`E½©âMq3Ï¦Øæ‹Óö§ÔëdôRo@$23‹uÄv÷‚ÏÂVN“êdUÿúÃ3 ù×SÛ¦Y;H3cÇ…x†ÆW!“÷>.™°SÀAƒá´Ôíà˜Ù¥Ï¨-¯BwÃ.ƒBÊü±üGpÑ»dSùJ¯ï£8IßQ¿mm5´Kóù,ò”¸å7é³ô( i| p¢õ¶—Ù˜UðXQ²ÒHq'©m,¡©UvÀ­†G#¬¾¨HdyhíÏ(_z¢$—Ò Zø•Æiš%ÄÎwÓxîºV†2l©|è_þETÔ’ë)Z¯L—Œ5×X[o“zB¼Øiÿ=¯»™,0•ù§à~Nzžûëôé+¢b"·ÏMèÀÙÚ¾Gmb±<3Zº;›+k&$‘öȤ% ÅÄüÛÖ6š=fÇ*ŸÏðbj‡ÝÑnbkQ:®y Íh‰¿•3?|ŠNŽXƒ˜‘Ÿ ™ƒcÍ8õ$^`†=m»Ù-ò?ÉA¹ô›}ë€(˜Nª âA,JQí†V€›¼Äƒáb X<~ÆÖt9Î2HæÑ PÖå‰Â“ÂQá +FÖ+‰Jͧ3p›WEíÿ^B’vq7ŸÔÜF ¶Ý± ’xÀrl òIg½ˆ ¡ÖöÐk53žœ¥e" ¦ût"[œ,Äóü[›3 Š˜Ä¦ .6‹™Æ(´Ý^+GôÓsºV¸gÆæÜôZ»Èî£üF[œ†Éâû˜ÕvK%‹¹‘”V!€eÔ•…Þ³îËÏj&ùˆ¥u ûirHT{¿)€ ÷¹E=|› s ÌqZ,EåcÄ”o…«~tm£ôÉë¡5F'Û?WÂ…<±|pMo'cÃÃ%`Ï™mTl4z÷Lk™Ø7Ïë>dE,É0?(P(¼$§ŸÉ%èîG8e€Øâ¬eÐæ$ªVUɪ÷è£ÖÖö Ô³%ކqv8̤+FáSÂñ#¼ÒkŽî´óŽjÚ·à͇Š1=š¿‰N´¦ÂL¸³qŠâ&”r•€ÃÌHö³Ø¤a¼; t;¼©ÀEŠ8¡Sî"Lztƒ•?d\‹÷´4{ä£YK×П–“óAÀíhîiÃ$>K×È$ë_ì0¦w½‹;ü µ¨^ÙuÀ§šÁÿd+ä‰cä€7¨)QÐ>ï·Èd x‹l.> Œjü ,B‰ˆ»d6ñ ÇwÑ€Ÿf ŸLW¤!ÀfóЈž4]²ü†Ç W}Õ=v.²*QxzMÍÇÑÓ”úüûîü +©ØxU•H‡ø@Ê#³1³ßdW;Òg3˜÷C‰ÏÒ‰WeðÝ© Ãõét™ÌºaO"årë›ØƒGÚ&è|¤윢Èì°²¾f¸Š¿­G>*•6cÀRÒï#¼­8B—>A~¯HõÁ2OU]çô f²zŰæsªøö¤Ø†`ý£sÚ ó!–=IEè¢ànü81©—)È›ûÁõ>”ðYG–~OŸ/î[æ¶Èòˆ>¸°Ð¨˜ÍùS ´úC Z¼l‚ cAM½®êÂW!Z;‡b"À°ô%èÿr³ 0Š¥v7ÀåaÕ]=wïkœEombØ/)È$‡Èª=y&cã¹€r 6‚ñq4Ñd,IQƒñ ·Ïn2BÛðˆ<]ÉÑDØṎÿiüžæN&³ˆ=¿ª !{™à+n³g€ ž+Thå Ü «?¬³Þ%UA`¡äÌö‡4¦¹Êsœº»äƒ1ø¼‘ÀŦéÞKjR†¾Þ 8*Ÿ Ÿkš¬1 GçDiL_|©7Ä;cOX/!:=‹7ûI*¯Ù®8Âý=^[åÉæ@Eßøö¨ê„«[²'Úãpâ4™ìŒTdxó\ªÀr£¨‰×ǼÂV‚¬Ñ„EÎ ¦ŠÄcNì:!5û…ì`ÿ÷JmÁ3¹²SûmÃ3~¿íÜd/X®â®øAÀ+dC,oÁõ©ÚsØÕğϹ¶XZ·ƒ®8«~ôœ¿;Õzià¸ÔökËçk®^+ýÃ*gœv¾dKÂ_,©–, ʼrsn—ýj”=[öKEfqe9D»eʸ%×ûT¶’K½ˆ^â`ÈmxyÍŽ:uôÞ“(„~+˜9”œØÀRk\ ž&þÿX¬JªÇqX  )ã;óûH¼1/¤ ½0¹ûîâ­ºŸÔa OöT³d8“7ò ºŠV¼t}‘ng†õ˜cÃQÎt· e$)9ÐSÔN ¬»$?ÍWOT,RZ˜C(y¶oP~í‰JT¶Íi®V ƒÕˆ™³Â‘VÇ€…{z‹Y?¢Én¬j¥ ~‹¢NDIÕqŠV»R%œÊro­ÿgæ‘ušñ*ºð~™Iü dbc~Ç!±ðØvòŒáì ÏEkm~zCs×D²p[ƒœ±U XäkóÞ†5þ½§sŠð RÐóÌ´P.UFÂл¼<09¸'6¢/M¨5ÑÔ0dCO`@ÞÚúÜÈè…nW{V”M¦=xïÐ^j²¡Y:#Ÿ%{W¸z¬ø¸]ä÷:Ök±*éçBˆY“ýœÁRjõÈÕ0˜Ú>ßža, 퉮[·±' 7™µ´ŸGy˜º¥ˆV>żO9Ú Q™Wk£ÍÄóþ˜q½îKTƒÉêRÎÙÉW ó§ÀØ£_É&mø…^çÄŸ6úÐüL³go”ë×,¯ØöBfAÂÖm´2Ì- –ª1”Ý“—â;A‡é“§ozâ+›&é–Âr¬Ý ¡§Vºç´/´'_ör7¢÷te«l¶ãû»ŠBR!qQ‡äÈ:CžÉÇu½êØÇˆØõÕHå›ýÑó‘TNo¬ýz‚ÇÛzmu‡y’ ’ˆÊÊW”FÙ9ñ+>Qµ ûŠGê pUÚoæ^œ>xb©À?jÙü6žü§ ‚WdÈÉ‹qaí«žcV¬N}N¶eX'½ZŸueöòçãoSʵ)QD KqªNlaÆ -èM÷óñ5}ÅM,%Ím9¢‘Än?gÁî'ì^}ŸTÎfÔ˜k@åiE]ï8,„ìˆg…ý$׸„&A8xÿ7›‚ß t(#|(Y”¼µƒ5¯àÀ‹¾0í€û„5ª‡P¢ˆYþ˜/²E½{·©lrK݇MïÌÀi™ŠPOÐpâ8™‹ÃŸQ™ õ&1¨”?  £üW·ÕÓÈÂú¶³\g‹³ç ùI Ô”¯krœ‡Å‡7HåR&ìÖv¥ÁÙ˜‹¡DÁÌž;lé‰. ¼ÌY,—•‚ý¨Êÿiå9*Mj18XÜz†Ý·Í±`÷a_ÚK)ð¥¯Ó3€Á_¡ucFÆ²Ž©’ÁT¼_]yØ]²·2â«Á8ØÓLÆ%j¶º'ÀŽ&ñ:•P]„^ìßö¨ Ï€°ÆÆ-ÚÍü€áábÉø¿"\'<¬_RT=J™÷ßýaìTÁƒ`‹]“Åþ}òÞÇ'M=ß* }o |ÝYBeõãf‹—~òö¿’<œÊ& ô^)è:¦÷'ò;A³èÚꨘ.[„rä ǯr¥ú“ŽœüäR$Q?Š˜n(ZclveÚ샴äTíMb@¬PÈžRpÂÉ ôè½ÜãÛã篽Ÿ€–e« d¡¨ž‰$ù€ ¿Ÿü­TlQƒÜ¬5|þ÷Dv1÷/IÍÌ妽Q ^˜b[dH9“(ÝÊ;T8¬50q–ØŸ%Þˆ÷Wílè_…báÜþž–¡Éck¯0Ì{Ñ(qÒ¾NW 1zÍõ*´jÜ÷€QlÖž‡¡ïÙQ}ÓÅ=%Ø ÞM _k÷3ª8,óßYãÖ’X£W/íºç!A ¬œ™ßŸVžÙO¦z~RKˆÅ;6´zÓYN ÕèÍ©¡…X ¦—±»$!® 2DUuOÝ=ákú2òA†®•ê/Œhhy„­¾·,Òd¨¦˜D¯´™Ä¿  £R2ÔÇŠÓçÒ×ÞL~yK÷Ãã»tåÒ*{`Ý8Áõ€Gà<…Ù&;Ã5 §Yý¢ádÔýj»Ôåt¢`/ü‡<×è­ð 6Ø|é©¢›êžþ,·£HÃå[€~6ûðud¿ëàv i©V`–Ï“º$R« !‚‘`)t¦¶®Ú©@åÐPÛ.îF͸šrèæs›0‚Bç{¥Uæ;ÇA0«HÝ콌eL©u~ú&Xáé †C¸Ïo V.nµ]¤>0>þQýÞÝ)9u{ÿ’ ƒZı q»Û{W–%ÈxcvæiÅBΔK?O~ÇAb®Î*úÞ_ãý¥BÕ¤C¥VTc?jЋ˜ë=vdýÅ Ç~ÿ=¤Ü˜†™ëb¨çº@d|R|Nx×Á³¨Q+IÍ÷Ì)EÒ/œ|Â…–‘®šìc­.»- …ÒKJë¬p.PÔßCÒb3@y†ê £¯,’+Æ Ï^Äâ´G×LóÙ"y¬þ:Ð¥'1ÿC˜—$ >”øør˜wa¯s2¥ JS¶€ïxÛ)¢ ¶ª²ÍóWn±%û¶ŸžkC1›—Ç·Ls”Ý˳Oo¸·”‹ø|BG䢯ÀR›tßÿ‘otËB4ý3£QÙüéןzÀÅ5Åo9ëÝ)¬7¯Mit°Âà  û& ´rAFéˆØŠî®J!&¼Éœ•4(V©]W6þxÓ‰õg2ÛÙóÝRˆ<ë@™wMƒ/þF¿¿¯ŠVç-Œ~N‘kž=4€Hg;Ó€ð´ýÌí½‘éÔ*¡x,>»ÒzW¶‚ …vPóŸšP6±_-b…¸Ÿ¦°5ëBwïϧ†àÚIâ .~õ°¶ü`\é–Ñ2”Y`ÐÓG;ÉIh`~{ŒÜÅ#¢EË-•Øù†œ : ªÏ ¿7@W´""¶P§Á;UMÔò¸ûÑs– ôJ?Ç`­¤<ô–'ÝëÐð|%üMˆZVbà8Úq«'éÚ˜ÿ6-VØqÓKL†æs*sr†%cC6ÏðFÅš¤–c\¤¿Ç³˜õª_‡óÞž",sWÈ`¦ùf^ •X²â ¿\ˆ•>%•Žá¶ØŽE»ÒÞ¾eÃOýòG Å$ÍÆ[özóé ÐaЙ,¦ rK§ñŠIïiîÈ÷·„*Ÿ1芴7ªà‰i—­f>•uÔn•ØFdÚª321Ÿn œÑ";šp–¿iœVk]M”G·iž0U-žLq-·¨S~žÔ(À¶4¼V. † á~ÛV‰cر7hº_q¢vZ$þml•…¢˜Öö,æÛIÞ‡“àßß”F¡2¸‘n_«pâ ì½–šƧÈAˆÆÛBÜ ðÖÓ„x/'MÚôŽdåëÛ›dvFÃq/8ð3 ê0еO'øPD±K*aü¸,Ê­ž óÔ:ªË[*ÓÒ±½Ž½ÎCJÊQšùôhÝKèµÂ†ˆpfý÷CÑôNiˆüWL8µ³c#8ÇgpÅÝôGyž47–oªN4¶/Ùì“5¬çed”;Lk 7á3ñ©t¼tOtˆ}Z÷‰u‹PÍ­XÞ1fýž"-ú W¹,W€UAÉÞ^2®ò³ÆG7-:#ÈH<¶´Æ]ê x<¨zQ·œ¼“Þ HÒþvr˃sð °6Ö,uæ0lA*¼¥4Ž;³%ðÐëZ b— ñ_2sÛB Û|ÒÔ]©Ê·CÝéŽçޏ‚¹à[Ö‡ÍJ.Ú”i¶Ò‡ÚéÖÇ„.Ð8–ó%{á[MªR`Ò‘ñÙ^—cöú„WC€¶ lGÜÿ¾Ÿ¨äÖ†\æ>̹a£øBuŸÔ_T^ôÝa˜†ò•r¬̔֠(Ý¡I´ùô e©¯‹škü´sЄ˜÷#þL Z ÓÏš/êQõª'Sk9rÇAÁëy\;™9`˜wÕ̓ó\ŽmøT¨¢×«ÁVxàÚî–]Õí*2ðo•Özcö¡7Ic)B¸‚m1rŠK"ïZHÚÝøýbguzAØ&NöŠÉE%Þ¿1(ÔŒ!#–ßyf ´àúVðZ_ü¤gꑽÁ‹iîö=áã¸~Bošô›#OÏÕ Ó¬à&¬Ê`ênXìú**:¾BÓ(_1XJºh$׋’QŒnq;Gúÿ•Â`|_ÂUP!_ª!jÚ¿sýåŽ~a¯§5òEÆšýŽÙ!°©³±fWš’Öy÷þ®ý–‚uÿÖÅyŒôUuNäÂZê *›gOW>“ò±¢ŽiöýŽÕΖï"|Ä€#Ó?íÿŠÃðßÜN7 LÍðjÈÑ9³zMš@ÔwÔä{d‹Üd$]ž¸iµXØßÝ`T%úãöÍ’s¢;Ö÷sÝÂëÿ†klèg±+²%úTͰ]&(VÔïuGо!ÇÈS6†§|r­j[Üu©¶eŒôc¦¿Ù¤ñªRÎß¿ž÷“:hHÃÙé7vÂö!vÕ€YV¶¤„xI¢oåRe4ÂýVI”â~`XÊȸ À_"/”| ×@6à` s»l;=Øv\Ç:/Gøu 'HLG·îL“ÆõªQÓïNÆh9„ºHKTŸ»Ø†¶—ß8³öqŒ¦„±!Š ˆÒ9ž«ä”/à§qy£ô[}.4æž¹Ôœ¤WTuº”¹Ø$O‚[°nšn"˜’b`ÄZÒ³ëÙõóâÞÞªOÙH¿,]_hƒ»!†gùyèáZïj•¬ßCþF§æîˆòÙ JÜÑÈ8Ì“é;ÛZ\– ¾Ä¬—Å~g T¼‘Æî§Ô?¨¡µ Ýu¢&ºëÛ€wXìº>…±ÎröçŽ/'þs#»o5ŽÀF¨^/0qOéxùå…Ä‚cà™vµ#Y§Hýjª(úUètå»ÿýÎÆÇ‘¼òwÏê[‹HªkQ˜€YÚYø4&š’QÒ2Àù/íE“¼î¾®Ÿ¯Ùçuìµ†£ƒýÛ±ãbÖ^{`yŸ× º®GånTL"з疡"›Ebã”ØïáP/M iëËàƒ¦a–ÙL^!θée«úTßì›XìÜ:¼µzµÊ _R²~XX¼¨^ †ß€oš2ˆbJÔf!ðË w©Sô«!k¡ö*â–D›ÖàÐfKx`lH©x AÖ²ñzÕ\Ì6Âj&î\¼I~ÿé(€oІ¨oÈ^Ë;>8÷[³Ö[DqçÎ{~„ç@6ÈA=×¾âm”’MG£™ª.[‰<+£šØ¼´ºïÉûÿ̺Ykº¦,tw°…c ‹Äöç¶ÄþtwTn÷®Q¨~Þ1zë\QÞ†ê ä²á<÷“-JøKÅ´¾^óÈhÔÏØOÝxÈäK@ÊÈN@Aºø7;/VËVœ5DW˜øïÜ}ß©zþ=¨áMÏeD$®JýxøÒ0”yôZ!\àfý gý¶UÐ]N»ß-8ß}µ’`ô$Bs× ö!keï¨ÊýN¦¨«bÛ2¸Mߊ0‘t2% ;|tuZüeÃý• ,3PÍs,iö1×öü‰Å5оža)ÃçY>]mîÐLˆ,¾çrh™Ã}Ÿ¦ÒÆã+3°ð»Ä«d݃ê‚Ïü 2‰¸¾½ü9íÁlcœÿiÕ°Ñ`Ùy]²eŠnoV¾g› ZÉý×@mY 1e<Ä X0—ÛÚ§û …ù]¯T$ Ó;9:Æ8‘ÿîÐ?À2 §­U»?§¯YÖƒ÷—Ê¿r[•þ,ÝÔrUfæuûòñŸÅJ½ïõ‰ø.y.祥’$¦[#:µ°$þ_Îb/ïô<—šŒ>A‹Ù¤O®ŸúÚÍn7WàïÊ•Cµ(%[HN0ÁƒÓãdÐÚu‘Þ²†.F$ÿŽ‰Ç‡¸ßïéßú`±·´GÏðª&¼¹Àvšp%àËO¸Æ¤ºÌÚ›ƒÍþ®€¤ònø¥3À²=´´^ÆèÝòŒSž iVÌÎbj—¹5ÜQåItîãø˜&Q/öùòÚÄ^‰¸TrIÙc×Ó¨­ã4žÝG?ù‚ ŒíÞùwmòRåµAM÷F|œÈôA$ ÈÀórƒBH Œr5™¡­ÌƒX!kÚ~ˆ1ÜåŽ&¬.–2j"¾Û³Qà>n-·¿Éœ¹ƒ ÷#ÖYŒÅ´AàV§õ?&¢ðÎØœŽ“yV‘ÀÔï ôÅù%²qaÐØUõ¥XA;á{…›Ú‚áJ üã)Ñ V®ÖõÕ­bÃýVóèžr…¦ÕDW1H››P"‘*@±>]óÉQd¶Ecy’²ÃDßË8 MÏ8)‚°BèÃÙ5nb÷b<Á,ÄÓá²°)x‰èã‘}q“%Z«ð±Ñ;^.Þ O)Œºn«½Ì›´òÊ)“è•ù9[š v&éÐ#Ì#¹‹cÅ Ff·h^!r«ƒ·­ l7rUšj'kçj -þw=xµ•}3èCÉzÈÞPΩfÖ¨Ô=Ô·‘` ÿçsl«3±k -JšŸ,•.œ µ©æ³z#¢ˆïöe_Ž£èv›çÂåÙ,LÙS°T™9 ªZhWÔ u9¸:ÜÈ?qéÆÌË)ÆQÙ‚þêËB¡K*°%tÇŠ[kuþa[• åŒÁå«IŒ ^±Q%üh2aåýg£&w\ ó` Ëó™*cj… K¸ø5õ¸Ú Kz3vÙì)áy¶¢¥í Øæò €¯Ô!uè©ùãþáÆ-¯šÊ0°S]`™%{ýÊà…-H¯¦†ŸUSûê"É)îìê½D¦Ûm‚!ÿ°”ÑmûkŸ×µØh@—ýRkåg2ô-ÛÖnõöÒüUètöè0\3ž¨¦ŽwË2Ÿƒë”S– Ïoná ú”|€ráMt°"òm© ;‘eCU©3 ZïÇ YdD'¹×“ G"/c$ôæÐ$¥¼1r¨S~ {…ŒÅ}TS8¤.Z|›¦)üaë³f'=P,mz:Ç“Ea¯ôMUòÚî‘«t¾ Qúß"rµ•UìL1Ç5 Eš7‡eÍDMp3k¬C`§¢?ßø½:ÐìwÄÎ= ·™.ÍtÍ¡m"Ûª (æ£3«›A©ÝAlÅÇï/ä ®Â9%š§yE›NÉÝÉ[ØÔ¬ømD´:>ÆÅ6Dã붇ÒMì_ÅÐb+ŠÎw$uÁÝ#Ï/Z®ª_89¬Ú´Œ)íñ€¨Ò¤Q¬Žµ<¾a¬cî˦a+¯¦!1í&w)I¤Î¶ñ… „†‰w®¨R•°Ìž¹xÕÆ¸ä†éëB$.³±óGð[}[Âû"´)ûÉ|“y…3,sÖ5AëÞ£¦[Úí'†^ÊD`µÛ?[$÷œTó¦ %DÂSòX“ñrå‚mÆ×ž:»R‡?ö<›_× *U}„RÁî^Q7P±Ú§Œ2w5¥®Aµ˸ˆSÕ"…c/Ïk[ªÉ©©ûõØÌ >¯¡–bô[ÔËDYã /=ÌOÔ^.õ8ýéA·äÝÊbQîøO1döZv›ÑçHÉÎÎ {aéW%]ÉÚ&åG ÃÔŸ]]8#9º/–Ûø©çeu®9µŠýyRúËs-GK!o#«Õ¯æk€üQqSäөΛ‚ ž¿£É' 5òµì¶m§ªý–Hñ÷¡ ùñÃïa‰!d àY 'ɬª˜¦åŽJßKŸ|x¿_;|¢ìZÕƒ{|. ßVÿÖ«ùtåj ODÖ´D÷Íñ­\{^¥² k3¢¸ƒ5ä[q{Ôº¬¢AŽöã€<ÇY¥Ý±@þ|φ[ãâ€ý(29†oÜÕ½!%2Ùv„^äFêâ•ÝÚThαñ/ òEˆI_^nì÷¿² ^¹Í¸G:iJöolçÒ§rrƒwÿ ‚]4”Úä…Ÿp– 1 pˆ›&íöåXú ÌHIñƒ9€wôaáþ±ÿt(T Q‡/¹â/Œ¦µéMk¶ý¹zzÖ¶FfãÐĸ£ñ¼Gy*Wj$Å óA÷Cæ(*] ¶óQÝÕ1Gæ(ØÈfÍîà£+Î÷ÌüvÇì%ßúrŒÐ h6UÓPŸpI1sb›îw1AÓê$,§¨tŒÀ(ùi&GQA®4Ü%;õ­VI¿ÆÀ[Òb®•tÉê¬ïÜüµ_+jó8RfŒŸKÏ&'M·`;ãćAÃd¢£5ÇcóæSC阣Ւ–8ü0í¾òó0sfù¡˜Ü™-ÈÀ§:"Øž)^ÁÜœ^*ƒ|qÄQ#ûG2ϯÐs9tq<ÌžÆIru~…µ¦çr9FÄÃãô¸×Íiú&ú³Në‘ =ýn8]nŠ3óNÐ|X›Bß–æ‹9«° àŒyK– — ‚Kç¶ûsl·¬Ò†ÜÄÑ–ŽŠ74ú´R¾Ë÷­G¼âRÓÄúî9(ý¯·±Ç9tCim»&òëìRS“rAÊnáê o*Í6 ¨"ùÿ#¶2ûAVJlRúçAêí^sÁƒ6¿ú@KÁ€nƒØ çI ?˜ /V®á«ï¯õÆ,pÆ¥ƒ_òÿ¢W±\Ji6|3žßD!6ánC÷J²F÷•² GRõ¸¯é•1FN TR¨¼¦rßžÐ|äìæÚÚŸKeÔQ8ú*›Ê½d‰¨ƒó˜Ž†6¬êR m2úGa…!+I´öܘê6¢jñÏ›Ä_)è¼o­"k”Xí@WçÔ«Úâeý½É4f‘ò /B}¥'ÂÖڙޗ˜ßþر¯ž94îêÚTh¸".LÃL°9ýèyþ÷Cy¾$˽çÈÐLWÆÖJ¦{F8eJ7 .#xŒ¯í*ü¼î:ÔʈusRÛ¾”Á8 æ …6©Ü[h.*ü«Gž<ͰQ˜!&fÑ5˨šçT‚S”Þ_xļÏÌâ¯'´ %Q ÷·¨4¨T—dÛ3¨§¨Ý©û„¯»f5Yb†£uéÙeòy1ŠÄ6}ø¤…C5%Эe- "3]”9•3èÕç°yN(§Ì|\ÑùñBˆ|ƒ„†EǦBv+‰èÅêO¼€S[PÙ9 U¾§_õ€ôõÎuk‰=úô½ÂÃуÏUTrÇœ¤h›<§›ƒS™:Ñ75[y±Ú%fÕÇ; GŠ/Xw¦ÚŽ–ë]"ZôC€D|®Èãc¼ÚÔ„!›RKòkΡXÙDñŽ„€×//¦ T.¦XÔ…´§ûù‹'O1½øeBôØõtäÛfÏOÔvø÷ÑPïBØÎyqŠÎ˜z–Ìëõ!!¦:Ï·¨¾` T²®Aäžmñ>Âè=K` ³-ëœðJ åOÛwâö:}âÛ:nQŒ‰¼+ÈHÀ"I!„ÌÄ}ÁYÖ䎗ÑâP÷'â‘Û,J!£jò䣽èÚ&–ÛVÉ]zÄn»W¸œÞU­RA›ó!$ú}8ÅÞq•×Z5—ã]j¦ÔäBñ<Ŀī1—ˆ*–ˆ›xõR‘.ñ~£–Ö“f°íþÉSÿßÃùŽPÉÑêñ®^;·Eû¹àÁMcQ˜ÊXpa¨Ii¾Ecf3Ò:â ¸‰$•ø 'k3IÍ1W÷j‘ëÿ~næµ8›ã $lQXYEVzb‘¡ Üóv̧|w‹mý–ûc0'!6þ'ÊÓîgTi"„R¢(q¹c;—Û­A+psó.$$¯7Q¢‘Þ˜@é‹R$é:ÈІ:š³zœ j<ñÜ‘ÔBÖC¤æœlúáSˆçNFy¢y”U üàÒÉž &ÏTȵàP*ÐgÝ>Xžž–ŒÔ“ù°â‚ê˜%eÒÈha¯ìÿãØ^‹ºðWWrËSŸX™º[ÞrSP¡;– MOƒÍ`¢@‚–‰«j—?Q`›3KyH€_ä@ƒšf@Á—2ßYõÜËXÕ¾b¢¡}ƒ¼å±¼ÇìîΣ_V'ÑO0Ã÷OÿgøåYê«kk'cq–»÷›Îy)И–ë‚¿GÚt˜“RnÍáa îiÎõZ|kŒ«K´v×: Q¥¹ì'¼aÓ(•4NoŸà[¢­jŒŒ…¶$‘Nqq ‘È5Ÿ<űV飼êþ ã*îË¿±õùå”.¿º…Þ8Ûe€ŠSã·þÍœQ5rÝoTüÈ\°çaP­`‘‡E; plÛ°úƒ“ ¼A7%~ÝR¬M·&÷¡|DaîT˜GTb_Ù¿™×N_|ˆWfè½A˜ñ¤ÒÅ/@÷m›48ÅxÜ[‘‘µïë¯&ùfç2ì0ó`Ø3$°‰ô°±ƒ*YqÇ¿¹u¾* ‹¡(5™i¡Ã‹À”¦­¥Êvð®Î]EKOïOKŒ O –|{è¨úkž!\í{,ëY–À‰›Ô’çY[†ˆ4 Ò%­ÏÚsÿÛ½c Ò¹üÙÙm®z|/¦q†ÖQ_s¥÷twt|þ[Œ˜Ï ïÆúuøøÍCÇq<[Ñmíð¾†èÂËQýÐ5‚©ß–zò©å©g{H¬>‰¤ =€Ëàµ^rlùAü°r•×xo »ï󚺯ܹ .ø¢/ â†xÒ•_x¼T‰j\§7¿ÁK¦/9ÕæÑ,Hê­XiZ¹8½fÞÜSnD­²àýnÚË@k«dhó'îju‚1OóeîÛèË _pê”-Pv§¤žèAõl:°«:=ÁlN¢ž©Òþ>“Þ‡„NúÊüå`‚¡á(2¥M[§ÊR²ÌwÁm8Tà|PùÞ½¬XðW1ÐÛùÚU<½–»o6à˜p(Fÿø[¤#ÖŸhñ>a@۠ŸA8á"@q&ïA‚À_­dEÿÐ{ShÃ#L8â¼mžÀáÑj¿¯Æ¬Á(*a¢¡úcÏ»“ý·åÄÂ\tN_érÐ| —²ï ¥ºnös¢hÅ< Ç="Xãx&~ˆ#%HýÝuŸÃägæÈ•l*_ï©­Óv'ãÀŽG¦Ÿü^|¦úV¿”O[€yr»ÚÜݰLøØWj• Ò¤WΠC$53z!EHg ä•h—»­X&Æ‹"I¿C„'#‘ÛM)Ä Òm;u¤þì29=2îîh’!¹¯ áž$•æÌgûS'BßI=$ŒÚü©ƒé¬‡ÕW—§0{cw·…¬ '<Ùd‡œŸ·]Æ|††¦Úô”më ™[Ôôê¨È2ãØ©7«lŸå<è »Siÿ)2s ì½·èýZç¯D³oê~‡®xœTåZ¦pz Ä.‚·ÀµkO}߯IÃÊ©òNß»ÔFMê2oúÕÀòà3›@œ†§‘I~ ªx»äQªÛ£0s›&\+q ?âué™}¨)¡UzçÕ1º3Ä ŒO»|> O~Ü=UUyíð”u£qLßgÐza Q»;bq¿ŠüÀã©Qó>wvû> î™O?ÈÏzðÁç„_„|Õ`(E±¨µp" u àÆ½²/u¤YÉT·Þë1Oï[‚b<'Ì *î¹ÈNÒÞv c,BK"jOÎÂ…3§íð>ްûP êý†…g…ñDfÿTõ㌢º …+öå?ˆÛ£o‘a¡)\/gyb ²ÕT…¡‡ ÌJÔÜÿßÇ¥v‚} 8¥/;ùöNXšð¸ñÒqOÖê“Ò®IÑx‰á]…M¡ð¹MtôÜðv#z|$JÖ·-€~<”³bÀFÂ×óœþÁn;@;ÒPì((‰䃔òFZâc05w\\ÃêÒü>+$Ž5Øù¢ )ØYUvR¸ ·2Ï84«=¸Ü{>àªß =»ðÇ{&š<5¨^Ðæ¯úNàv¬ò óîšœslgŸÈAAä+¡½BÙ€A³IaÃa&~¬ž#"cªÆ7CT«Aõ‹œ)@Zq´è)ØHEÙj™Šm ‚y”rQ«uŠ®…>ƒ¿fÐû"_iƒOŠ*„™qM Æ8³ *ƒ1®àù²j°ô<\3ˆƒ!†D0À³X—Wš¶™7 } ˜Khq™Ò~ o|*Ö#¤D,îÎ~™´ç§Û'¥¤%0R Yðì6é˜e›‡°çñxà–ÿã¾dƒÆ®®j^¢#Us{ÓªêGÚäˆsÿS]/;˜£L£]8sBã® e#Á KBóý[ XŠ^ ²Æ!%jt¡ÄK¥ý_ô;ˆ“¸¥fAßÿ9ätÙQj¯¦m£6›Ça,½-’ÇK”—C8›¨×iÑXû½ý…Çþ,QÇ+±"Ïf$Çã;V ø{þr¨\(h懗M)7“¶Ük‰+,þ¡?jXš³FÛE?á’ºF|‹ª<]‹!¶O>Ü(‘³SèMKæLù• Ü i_¤âlæ¡[[¡¦A°ƒ0YOãµ—ûWA&«vùüýÂʉC'Z5–A¶¬Ú‘òÉ}¢¥Ô÷¶oÆ•aõJ¢²ŠûÍ[êHq)Ò–Èæ>Í&è«Ö?ÿ)ÓVÁíVÙœ1–«éÔ±Ö§!lØ ´v³WQ^œxæ¿ý,Å5 ò2/²X8¥ØnUàb*\)·#u<;œK‰ËlþãDi¼·Ãï[:<›]+CÑβT¥Uh“3@«—šŠ^ ríí®qyÁü=úË­ƒ"H[ãºÁ¦©§Rw&jéÌ€®èã§Ÿ\¢=h>üƒ)æ,ŒÙyt#€l3cÉý£~„ÿ#Y8;4àUü¾nyÆ´îÖ\ïúSൄ‚=ÌìÏžN<ì[Nh;ž5ÇÆÔIÞÓç2ŒÇªøž‡ùv5ó›‹f†{¢ØHÀŠüu˜ü¼F&°ÿÞ÷ëÄþc ÌüìIÒh;ôŧ런í’]K¼)VùqÐJ™ØßA Â¸.+„‘33øÕµÄµùþmŠãõ?:èþªø" Š‘ht( IÙºÝú 饵ãyvãkBUA]³[e®> qsyÊÆ·UÞ0˜×¹çÑÄ›AWvƒþêZ™:›êß·§ ½s¸›W(gß.ë¬HRö‡x‹ø¸d ƒÂBêÿ yɧz›è8Áö*³ÄG•€îãUwH$+ù¢&u¤¸—¬×0Ò 9:+‰˜Ð(|Ö¬•lɨï­m _¬ ;¾º+,?hô×jŠ,?C:Á[_W îÄ>±/ÛD܉¸¿¯ÿ¢¥bKfŸ) $?ë#Jº™›Óvƒ´!‰*†ã 6]^ÏÄ¿ús¿ØDºÌ«ÑæGc\,O)·®Ñó™i?D‡±ª-O¡Dç ‰~m]MÀÂøSB‡Å¿*¶±x>u¢©E.P>»c¯‹déŠíì´ lõËþ¹j‹sˆ w Üh½ÛŒâñR$Çw¿ÌB¢°œ‚Ðv %cËÃG:Œm|n?4‹|1ÙNɾû@GHã¤>åi@s-~ÄC©vÎ6o hÝ­w~y_ׯgàÏò­þÑ?*ðØûu†xh1{ÿM’& ìM{ê—û‹Ú_zy•;âFþSØ72±°ª/f8ðBÌ8ܨ·Ê.;{D=Ó®Åùnä=žØ…1}uåâ\H´Êê®Í–£ÿИ„B%–ÐrëÙje†»†ÎËù.ÓÐHí•+JEXä<(t%É0PpGŸÇ5Ê ©°% ›oòâ¿g±Î6ØÄŠ¡Ä5ÛÊæ\F„Ú¡•ÈÍ?1ú‚LÝ-^ÃöåªqN0ßiŸ9ùR«[m–­eªLrW¿©†.ʼRö:+žM³¼hºu¾IÔæ”5U–þÛ%xà+˜j׊éõÞ…Kú8Ï!Œ\g2Ö‹|lø«÷ òKîœ æX|[ØË¾‰›Ö E|ä,&WÐüŒ}…wpÛ#«{œ³2  þBÛ®[˜æÉ…³¸ôñ&Æ+vÒûf>ˆ…ÖSnóÎÈí¦Ké1°BŸ2„Pó¥é)þоÈÝRkB¸ç=¿ªö\µ¿á¨±j$\A˜“#YRAi2 ³¨_BM‡ -8ÆØ{(@¼ƒ4ü™–ÕlŽÊz³KQƒˆž\t 9ÇÃ2œµ"ÜÀhu-WdM_à<‚±aʵ8™bqG7voQO·Àn‘Iìê2$HpcÿÍ›ú]j!VÞ OŸµ³_QË% ¢&ÍJ*ùÁ3¿ NÚ”ÑL~ñDƒ­s["F\¾Ñ\‚rl€îtÝ´¾¨¯3²ãLÆñóÐímV)Æ9$ÖÁ+ø~ßtþ8yݦ³ì&Ô¸¥ê”·n7¥|rI½3¾×á ” ƒ“ò€Ýj|õÏæ‚÷ŒiC Ô(eàUÿfQ6ÅÓÚ•Í-ðèþ€æ þBƒ™ÈìýK¨1å¡A€áê\KA…f1g)…;æûÇþ¹‹ƒ03:Ô#Ñd•–(½ß“Hõ°sùò±)ê©DÌ97uDÂH IQÖ—Ü€¿¢…Íýÿ­=-î9å4“úèüëzû?O)‡F®.õJO³ÿGúþýù´§o°Z)æ½w»/í` Àƾ´'ãz‡¾Óõ^šC×?“?¹~Q1&$”T2=¸v€À$žmÐÞä¿Bã!Þc-xÁ¬‰äå§÷ûyϬ“e^-+'l×Ð??¦?]eÌBÿ( ùÆrÚù )&~×fE¡ÿDX8 ´ê ®ìÀc y&F*öîËĬ‰cÕÍès¯¤IU£|¦k‚è{Íëg˜²"#Ý<$±ÿcÉhGM§)Z5ÓjÏQR“alö9ÚsÜ%£‹+ú¥ÛÃ/œ÷ñ­¶'¯E?a lò’€º87Ë­5wÜ/\Sè½­_¡&{gç‰`2MŒB7.ÒQhŽ4\Ÿ~G@hæÈC1ß «Ñ7¾! #ÐR©Ý”BxN¼2 g1%JáYd=QΦ&Õ€›(g„NÖ\ú˜m„ÃëÛr'ñrûÿ½~gNp¿d4«s²òË02b¥ÑÐ ÑÍ£ú×!wJú¦m1Åã£([‹¿óOÁ©ÛQbË_G¥t.;5m†YV•K&3fÈT’é U7mg¤¢ñ­o5£°;zyÀ®x¥"«^uE4#)ŠŠ©â»n‚¹óþ ¨ä·–A€è„_5¹|2KÞÄI$Z(±W¬*ŸÚU †ÔLáCP9ZæJvC¯ ej~§µNßkMh–3ˆ‰zyÞõcsêuÀ‡\,?-|EÂJaÂv‡dþèÿÚ‘_3­»* ý{¯Ìü‡Î{DZØ?é(®h2ØßØÉšGû¸”X6·!—Í!ĵYˆc=ü¤Œ{ê]¨ó•¶ªË…åûˆ¸ýÆ|.^•‡TX›`ŽUQ´ãé2 &}2æud+HÙÓ6ãÈ”®F)4̘fÚm4´þ7–›Röql‹(x]Èçb! ,¹ ±¨À0ã[‚Ñ_#å FtV4ϵ™»„‚Çþ±¬33z‘ •ŸäÒðóN@·€DXóÎIia¸–fBýVÖM¦Ïö£¿Å"Æ×¢Ôùµ`e";i)¯)h(p5 xHó¢¶#àn’0²ßm}É`4Å æ•Îù7o°”ÛBk+îWU­è [´<åu¦Ä|,°ì^g6Ùs­k¤ýVq½Ø-Y¸‚SZŒ¹… ”ç¶kë ZïýÖEéƒÉ¹ ÿk¯EÈT‘Ó j¾L ìÕ–s’–°”Œ½ ûÅœ•ëƒÚ…Í‹âRõ$·ÿDŸ˜Að: FÅãVÝŒ¤Ë-?‚brÁ•a´df~|Ò§Í#EˆjÙ“ƒt¡®ìÝÀß¡7óß2£ðI(ž¤»‘JÜ®nFô/ }AUqøÿ[ÞmˆT/ÔEID«#ÑÙOÒü«wŽmpyÝk@T”•3ñZ*xNž>™“ÑsF¦)7^¦½q–ýìs O¨Åü–¦4’~Sk+Znñ™eÚ'âFàÁC2.]ÈD,â­¬çÝcZ?ïø§®Ñ¼Á‘•(úòÈa§@Fé³²›-ë(ÉŸky,g¥ä†70ÊÆÙ!’2}Ä|4 ‰õ3Ñú*u¬è°Ójz?säüUm†…I\w·ª$³}¹p„H5$!üÝH>ÎÛ €Fq,´gœVåÃÿŸûÀ¿^t ~߯ÅʯÝAR»jRdZ<×yŒüwBwd9¶“rwd Bpñ{rv›Ó[ä’Ÿ G·]txª$ë‘”[Šû±‹e2oyµ2ã»æËu#dÚ{¼*=cW­X†V7JȾ´hU{ŠÑ Ît,íÐW;ë»Âº—èÚ2»áÞâ×Ák«“ |µR’RmTs.w"Ó’)’k¤ß/ôuØw<Ôvbñ×UÖö‹ØÚĤù¢«uÃ#ê ¥dÕ"IAD-RÖzYô9úÔOʆŽÂšž5'×KíõÔxÜØ êôz$÷iA­ùD´é,ñ‰\ŽƒuvΈUÁ..Å{¶í}¡ÞÉãbíx,Ë'¨­Æ¨Dª˜¸ØÏ/d%l·ùïcØþ Kf‡ÿ=`OAbJ ƒ'Á{[¯z"j+:¾Á>§bmïü”ËûXù- ‰|£P[®>(‚¿ïþFÊNs¢òlëeN£†_„}Ç>µIݧµv¤ÕY}yµZ t–@ƒl”ïÃǘ—_Ôe²œô«V†Ö >‰úrŸþÑ*”«?õNbrî'×~†éÞžñû‡$¾Àô+/Á€Î‚ÖÁþíg«²ç^s5!nyD‡ZØ·©pÄ¡NþrøJΤ±ëügjfê—>tm{™i‘̽íZ)s^pƼGî7ĺ§F_0|Q7Ö{LŸ¸LOÃIƒž-4Ô\_¤¯šÙqÉU¼0÷õÅ%0à’£Á²ÿdí!ºñkoý–‹¼Zm ™º‹ÿÆ!ü«S¢ëhÿÕÂiÏ%a-Ñó‹i‡%Ýã1\vèÍ‚V¯™mÚCúí±õºõ£åÏAÑŒ¦3ÌýlØnŠ.ŒùÓð¤R]æŠß>«fô;]Gë|e«ÀÓ"€:ˆ'½íÈ ÛÚ8q—ÜÂLu› ßG¿¼„ì(yx‹9.* ún„òß±2¦$f x’w ²Þ³ÃF4°CBA7ëqLPhއ׼“¥ãàŽ†‘´»òèTœDR“1ËG»/û’ í #R¨§9c™ö˜?ÿ»‘‡û6ãiÏнý =+ÍÌkÀ} wÕdèù C\úø­)/†]ìã)š¬q—0`A?x›¿qÍ1ð„~ØtºØnñ-gkÈ$ý61@ôMö¡ ¼W¡S»ž?ÚŸ]F´j““âh°—´&¡âGðY®¡«VÖí× Ïó¹œ Ø:Òy«pnQû €—ù~H´àÃÈRŒD¸D;£g&aSCb°Þ’»ÿLíN§ÝY©ïlz‰éö¢f¿#”ŸhCŠz+Ç|±AŒ}m Ì>}ŠTÀ‘’ðïåxuÇúëÕ«ÃbZ·ð‚^@N_P‹s<Š4°¥$–­¼Ì=Û)€ÚßÓsðXÁ³èN·TÕ½£@%‘VKÑäï…t3ÈÁüh%¦mRS7 †xX±!ÛN&ÝóÁïS5ÚŽžòºf¾L–€ 6‡b3m¢ëò™……êÌÍ»OÂ8:³°£¦¹­Îéðãµ#árrúGŽE¤­#ţ¤ZÇÃTTÓ#ÛNšN›ß† ;óHe=Ó 6&ž‹L`ê‘Cµü‚˜UÀ³ 'í›ÑK}æéywá™ã [X-t*s ò ÑSwåF:¾á7B;Ò k&ýDšíg¨ß¨0{SõâDHô †ý'¸ÔM‰ØÝë.T z½@èj)Ö¿?ñ6%éÕzXzHß}½î|ˆÚ7@ž«+ö‡fëF̺¨„Z:_óý²?;„ôêÁêá÷rQ?†cÛÛ+Ë«Ä4ÅDœãïÉs7¶¼gkÞ^ÎÚUM+Ûù)ž+7¥ÅC}€úa¸4tDh‹‰!:ñiƒI¿:ç FðÚˆ9Ñs;aã pª×Ú騉~mºj‚àÖŸå@,±u;kt{,RG¿?p¾bùÿ?Ü£”©…iø˜&±»(ÿwᮼóçp4ƒFÔD:ç[&¥aƒ\•(Ëò0'5Ï‚·¸ŸT~;nõ;ø|"yyÜ) Eü¿Q0mâóµ ú/7`¤ªèÑFtŽ™ŒÚQ§Šz¦;ÉÁò ýà¤1@˜~tžHHzq&ÀO¾ýH¿ÀÒÑ¢ÀðØDP´È™¼Ž/û[¸°þ¾~¸…Aë‰[|Éjª > þ„5x²°Õö¥óê/¹Ðýá¹þ?!w„²¹£™ÿB–ÍÇxÌ1.5ܽ:²5šg¶Dø9ýé«|õº NShßÁõ$P‡Iÿ«L÷Õp@Ý_ 7½Tõ+v¼Û h¸Wí~ããjnéEò½‡’å=ÄQHGÜ2Üš‰"¶“ÚkšåÇŸ¶ ‰œ=˜[T¨§,±ñÖ£bu~õ[d t­ÄÿezäKr9õåX « š 0ù¯=+:b_7ÍHÀºG4Üh‹ÃVž¨iˆe/„°áÿ¾¼Z¸àù¦Sc ýémY!v¶u#†4ËgÉsíê.?sFQ¦>²<Ü6q54¶œ™åó]$M&Æ‹ùŠ0B.à &aØ£7ê’D#‡ëzÏ!ïË_Ú?Ϊ“©/W绤&wµÕD4 ¶‰\ÅxWm*ÿNRþ–ÊQ§zÐ[gˆæà?cF¥KaÔ’9ªƒvéêbIΕd:“ŽŠñŸ|E#“+ŸÖ1¢~ÜgýäZà2ØEÛoKVš^?9c–¨ÙïšGYoUÍk Ó9§{ÛÙž!öc›õéÄúøÁnª~ÓˆûoÆê·æ}Àgd#®¨ûsP4öÄ빆"AŒÒC tU½ùóËè½n:W¹â8üG,uêPgpÃo¿¢o q`ëOÖ“R¤¯³ V»wx°ëBƒƒÈ{3b »;y-yŒBÉm±Hwlzq!ðø=&ªÈmåuvN=¾ 8t®ènͽçR{o5UZA›3 }§Rês„FD—é Y†£ íƒçìB9¥/!Hô=À üÄ´h#`_ÄYO”ÊÝÎJ¯øú‹ÁÀ?ȨB%&Ä“-ü²¡IÖœnÝØbM³9w¸V¡Ï•¿«¢ЊN_ Tˆ»~wâ])®EŒoC§ÀgÕÿÖ†gЦy‚E© ûÎÅ5&íì¹!®­àÅ*(ahƒÒûrtû0YÐÑ…!ÁL7öì)ȨL» v‡¹$MC ]jjO,Fj›†‘éå︈ÍGyv( êY;[ËnS§ŽAòŽ5Šá´¾B—¶Še¸J*‘„ —z/yTå¸Nå´!ÉHãû­ ª¹ZÌÞN7¿¦\˜:rF±¢’ÝóêjàœBUŒ\!T›ôt¥M ç §Øª©‚ÝíOƒ÷¢p_"&bB¶òVˆÊGl]ÝîÅã‘Ço9lSå to ŠVÚ „tc¶aõA1x”ï:ýð¶ìÓÒîègÁ¤®,̺F"¦ÜéeX¹?v5/MPÞÒéºnOÑwåB}“‰’p䦸y­”Hyù°[ŽîÄú«E±{· (þ"7€úvItEV–‚®) [÷Í¢‘ŽåœRØÊ´Vdß…"UxÚÌÌLNÇøëM¤ÐÚpC;7c-´ý¨*+G(%8˜”°¦» ”KÌÅ®÷«h¼&Ò÷ÕÆT»K¡?j±R£Þù]*À10,Û¨§5zsžy,zÚK2ò, Þ!9ᘃîc†hÀòè·ŠLj)¿3ÃR¸zhq¤_&ZqÏ(šWÝwŒÙÏå¦Dì´~îÚ#iöý†CEO~Ô4œ®žžgAôXV4‚ê?{½!‹=‹bC¨+v,/ò„s7½£{³KÑ-›€+ÒPýÁÙðI0ø=õhp“£Ú2œ‹w‚†›ãòî—¹÷ôãÝÎ!]`ÔK„¢ÏÆÜкt*cÆÆô“J¯ÿµ®9…O¡ÂN©æk”°Yõ»½Ž§¨ÎvJ ìÖ<š]Am1˜gç sÇ¥Äl¶›ê‹el|Ôä)| Bï¶eÿ3ÞoˆÖë  ÐIÅm>¦EsÜÁ…gÝF ásHc©††€p„UæÐ¶0ß3q]ó= +vQ8hÿ&×ßÀk mï-RÇ  2¼ºµ˜òË Kœüžú8ÿãb"f-°Ãbë&E.å*Q™ •r7&A}àÉéÎß&tÈäç¸Ù¿—K3…ï1ÂãiGn#ÛyÒa,Cf{÷*#vÍg_¿@K¬ÇÚü¢)Tòàî˜ì #𤌾è!};Ýúwiž<†0€*lèù«?^]:¸ Ý¹R^I¶GÞÀŒq¶I¥?·5,N0à,\ûÒÕÐú{é¸ò}QQýg²ebnÙkT!³$܆¡"I]¦òD¨Þ„ɱ]™.uÙ7¬}It¦DÔìp²âÖ~ùá{úôc’S¨O;¹~}®-Ð<µoÔYߘ˜ºLÿµMÍU­ôA¼ÉN—Z–+Çò®žÅç%º/ 4ol¹áRAá«¶š €œ?¶F¥ÓâÿœnÎýò]DÉN½ãåjö:J ,B›P9@jdpòE£ÛæúL<¿ÑÑXqy`£rcLJ.¸jU+¸§·£imOa¸'ü=ë3ï­ÊöÀâ†)6WpÜÌ“ƒ»xn:sܺê¼vô-7ðäÕ’/kF5]ÕGÇoSwb8JßÁqéz/¢{dÙâs ß]îýBø é ©‘™‰IÉ“ Ñphg Ï›ÏöªWì)ñ_¤&¥Úòj€ƒÚ±WÛz|k•óv ¸íÖR¯–™ ìÒ¹œÎÆL`Pù %p@]†+ täÏÓ?ŽO{%;ù“ÐG£¾i˜éãîñNÇhVÏ®» ^½Ž«~HÅ,M&̽E²ölõÜSô$…꣓Ö{ñáÞòØ:>‹jKZZù|á™Ã¬hÁ­0ÄÝÏNR^[ J)’Hò·VÚã‹aËîu îo_…OZ°Á”Χ׌Ì!£:ãbËSbØëCpÕP&Óm¨šh6§o: Ïæ3ÿ=m¡¢§+‚¼ñ½^V[Ö×ãî/jûƒ¬i§˜S`8zÕÖ!wbYª!‡É/{|çòøMú˜K7Ui­²í{ú'%ÿ˜£#fœ$ù ™aŸ- é]Ë `ìŠ;ÎøL˜ÏnnÈÀׇ.>”^Mh¥•NaÅ×­R‘±1'ÕŽÉV+WÒÙS%|w*dëh/»ÞõÐáÖKr陕$•½“È)©Ð5û™¦5µIs~øúŠßÎêäûüE²EQŒÅyßµ$™ÚçlKþp˜ò8%J–Qdƒ©/Ïé_¶ûµd¬”¢üý¯O‡.Ï,o«Àš|Ò©ÓfŽ~ÑÁ }OþTDߨ¡T#䉜9*ð±B/¯¥ÍK­(hn¢y$SRVÃæÕÉçýj<ŠÄpw·?!oêƒbë¿Y*6‘â}¥âœá˜z³lL‘#™*GÌ·¥Û0V³Ã¢§…Ïâ–Z>c6‡ âá#ËÂîÈIYY>~×è8ûæ¹eÌ•O7[޾;.;+(¼ŠÛo©•hŠyäõ3.AAs15R‘—JÍ-!`ÑgóA¹ þýz6Š£Úx|ìV¤ÂWÙY!*DÃNVï4H¿"‡ÇÝŽ³Á4‚îg`œ²ý•,õòÙä2Ñšü"ԥΣWÙUö\ùÊܲըÈÒþèD¢h!Älà:ûòìÔ·|ä£ ÃŸö¼Šº:ÄOlÀ¤>’0¨Yö$G ¤mÖÄŒ´AF¥—6[”شٯsŽ8^ˆ ‘8X÷22ñmÌ 'Þ*¼Q|…¡RD5~ Ãññ˜‡ö£™ì¨n#Îxhë£`dLæHÇ<ø€7ñÍç½)—×-:b½NÏuÚ 6œ¯´e¾uê^¢)†®iÓ÷¤šQŒÍ¸¼Ù“8oÕÑt³"Aš©3´ ²µöl•ü˜Ä )óæ­1¨íÃòœ/?‡MXm¸c‘WÃS!ï'W´RßYýCÝddvXTœŠ{ükîqÅ(“µ*ô•™O1•…Ê3KÒnÙ¡Z®ê€5^­pòZùŠ™§¶P%Róç1EÜÝ‘TÜ#B-Õ1½©÷r£8Ú,Jsmµ b„’N‚ŽE†u”BB‰×Ðñóþ°Ñüî’û­–‚„fÛdþªOp{-ò®AFQëe‚^½þ,w÷¥€ÍÔ|ÚÊ hIó4U¥šÍ'‹j—ºjHso7z*4†Zí(ùÛȈýÊsGoê9^ÚiÕI3*Q‹œ³?:{‡KD1%35Y~kK<ÛyÃÒ'ö>L–ol÷ÂÚþr}m5ÄœW›L°ô¢ù—ÍA¦¯Gš¬Ü’´£üYTj@b¯J Ý^$˜ù<#e•Z‹±dÂÙ«÷Ž4Ú0Žž*eÝŽÔFç F„-âîöö{+í6—²ATÝè<@aª4f¢æ*âB€¯c/ ÑäÍD.<~ÅÔ­§Ïføè”ÂYçƒK·öí¡C„©“{’1Ù衉Œ%£h7Êððl1Ķñù+xé4×)¤y–j5 £§ß³û¶²PþÅtì…oÄÅ3ÖÚ;CÚÍ9o•-r7sl (M¤|¥Ødu×nôØŸdFÒf6æcc^pø6Ý!k×–(»Ìâëq:E¶|Ë'ÂÕË(hjD@‰KÍwÿåP"¤áþOÆ“+\2‰ ƒM¦…rÄtŸÓ|YÝåæ¡“d&Q”˜Gûù¨¥ðì­ve%}Te~®zk( xËä%±«Y‹¸Û —þøgža ×ûx²§¿DÈ­äg¿¨.¤tÊaø$Í0BFýüžFœ…Ò­¥gíþW½ù†â)üy0Ž<°)I+~þã¡¥Ë;O¬jÒóÜÞò ÿO&D=!´mdé(ê’“„øìC©.ͱž¼|òr_#,`ÞmÓ£wú`ê袤Ÿröwn•NΘHòú§ PãóG²‘;Ü¿þðÞ_7˲1‡A#i9XfPBRv8H~î³iæl±qJbœxúŸÌOQÜw^5–‘¿ ŠzÐÚ0îÇê-ý™Ù¿ÀäËÿ€ ×Ö7Êm¨â4"Ì{ÉÎX÷g‰·ná¼µC ô{»Uú‘ÎO+ÜŒÎÀâ}T೓Ñß±"Š\#Û#>Þ¹µ-«ÀÙW5erÄ3¸ãÉÇ·vD:äüiü:ÝC‡ø½Öá;½×öâ Lˆ‡j;È>$öZüš…¿¦@`’[ Ešt1ȠɈ²!î”YÆé÷QXYmx †ÔOe¾TÈX‹°?|aˆKdèÒ`º­ÕU»Ã´n2ûòDNÛƒ©tS_ù˦"9µu£ÑÁ‚N7ܨ­Å c^ûn ‚Á¿ŒjÍ’°éZ·þÝ?°¤ˆ¯‡ISÚîý\þ†Æ1dzQî^ô Œ€“Æi.ö{;íD±ÙuX40‹ö`©‡·JÍñ5ÈÈWl$šµùÅZž•Øê²öÂû⮑;êeMMÕòb;ç~á¹ë|ø?&yä%G!³NJH7˪²WÁéq‰’ .0$–I‚ÚçíɽF™‡k¦×¾ é7~ÂdìcJuw(®¬ÅŸ–ÿJz‘<¸9l™²n²Öç\ ‰è~¢Ž€Ó›‰ Ú~À°¼ÍµÍvAæw wÜ@‘SÉHèÕ,ñÔá ÈêÄ“Á´|i7ë­m LJðj®± ¡ nWÒ&yú¡¼rÜ#»¼ã¢÷àЇ°-£C³¾m8º´Ä\«ú\Ôæ*ªu1±S¨$ø-Â=¸M½BœÕ€6 /ø¥ gbý¿Wå±ÛsÖhKei µfYºCÑPÎa?ØÎ¼OÑÿ[‘X©eAX[OšdÿW¢+8‡ 9|ý&êæ×Ú/”ówìP3yЮÌG×Tνþ"c;_˜–QPJMÚÔ—m`ÞàßÀ’^Ü…ŽòŠÂç½P¢¢ÂeiX(5 TP*%pæ­t M‚#áÏ%Èý0—0 ¥äI[2š áQ”¿åüÐmܶê*¨‹q€ªeZ¢'‡%ºÞ8›òÁ_ÄJžuê9µ‹œ¯™99HW$ð‚4ZØäÎ9^C€ßÓqúe– Û`ùêëg37Iâón‡Ÿó-zž ’ÃV²˜ôéojrÞZ³NÈ}”«]?^Ôè9ž(8TŒ`Ú ?´YÆ3AÔÿ“Œ%¡r†ˆIãƒÀŒ.Ú¿Ý"ûÇUAу d­²6E ·~ð¾èY`¬·j ²¹©Í¡ø*èÛp/ïÓsDºt´:*Û•ÛüÝŸ”>ªf}¨¢×©`eV]ŒÆ?HU" »„òvßX¸ºËU:ÐCEy„W ¿‹Õ»©zfžnOØÐ_VS»¤èa)—ÃÉñXœ"smª[pˆº\?¨Ï{™]ýp‡-ð§Õ2ªXü¸ÌñVôœÚ1ÔîFrF ­$dÀ”O·£j˜£.º41…MêÙ”†]L†ô$í¹q6~«2ˆâ<ÓˆPÏmÕ¥aüMñaMPª«Ÿ ¿î†0‡±Õx(8£ÿú¶=ªÉ3tÅê+G³WÞ³æ&APÈ—ûð»õc…#5×EDË=SÉ0»ÏÒÙ·R>§¯ûvP›+Â7êi‰^ËÔ!â>pÙmã% r›n„Gs7ª¬}I²çk„¹hŸ>8…PHé’GfÞ‡¨Ô¡ÛKo¡ø'ÿû–ÃÑ&)|áŽËñÒ‚ýþ@Ê}| ÎŒ<º"ºg‘†4¬LkFÉ!É‚KÁ‚†¬CUeøº9<ƒ÷æ6¶±/ÔéH}ü¡5\[Äý??’àiWác)ˆÔ;Riò=vÞÎ[?ôÃî[?[¢ÎÎ:¡–¡¾k+íÁ™N À$YÕ1î{-Û¹ÔZ³÷YåQêp¶gœÁ °ÛÂ; E·ðŽè\ã^d=}ïÆÒuÚF¦É³†¼Ôl_™ûÝÁá1 %Ó¬®åS—¶uîx’`*@åØÑ¬È¥­qÇô¨P1@¨¿³Û†š¬îL›—ï`ÝoŽ©P«yÓsÏa |}oÝ'Ǿ¢ƒ 1uù g` üšn¥Æ}j×4EÊ3haüæËQµÁûi…‘b’ÆX7úµ]À& yÜ$ ð%²zÄÓ˜Ò ¤‹À²uHRÕ?üX‡A2]aæ§Ï'ýF™¾ˆÝ M[?wþ/·¹v-œîE©òÙ‡A«ãý’S$–fÚïnè^}$1ÏÓê(ý÷î A…BH¹HŠ)ö^ý'^ `À6ßLCÏE®ó¬n8]2è>Ý7PY ôƒêoŽJcgŸ¥²¢–ë_—µ4‚ 8y!¸=ÁÄ‘÷º3Öã8 ÇDÁsQ¦CEæÞŒ—ýió¸.Ћ2ÈÜÇÜÊYäMbZ4>ŽÞ£Ð…žl³µ:B@J4ÛH;X2ÿŠ]ŸýÉïdŠ¥Êó¶6Žmä_„oõÍÊ¥iÚd/cÚ1¢«’ékXÓ¾öºçN æšÔÅŠ ±„<¼:KÊ‚ÜÓ /ý®^†w€öññ1¿½¨Võa™6ØhãvíK?(=m Øé‘_A†þ⊠ÛLÎ<ÍdßgQTÚ²ªÜAnב?„g`kS£ô~êcÜ ]Óð@>*À.A˜óoWVVô¬ ©¼! "JpA ›&Í ò½LвÆaëÂ¥O‡^»Uuk@sÞáðÖ9%ÛüG[u»ò7´£¨®f¥2mqƒ”8j¡?Z÷¸‘m¨ÌD¬1Äd“7GO‰Q᜷×ZIq¥àƒ›ÃíΈêÒpïz¼_£‘(j …aS?ÀV×-Й±Ÿ·‚§Ÿļ~¡®eô¯ ì!\_íçÃøY›ÄYׯչºÞ†ø¡æmãpé˜àyŒö ÷D;p‘K€Ý?ÓÞ5Ñw@Å—0Ñöd/ŽGÜ(1ˆà’-_´§û·^‹ ¸"]eŽ`~ò¢5½cÜ[hÓi0#¶d,ôÞôÌ„*A×CY{±«wd©e0B=^¹ØE™6ò†M‘¹Zp¿(‚/—ûñ³ðGWÚ;¶¨ËúXW &r×Ok™]UNøÀ5Õ} ØÒ½ XÒZ¹Õ Êù¦Ø)¶ ô}Y´Fµ°þ·ŽÚi Ùiy z¹°·åc’Uo(j,ªŽï‚2ÛK+ú¦ ŽA›¹ìdÇ«I$bœTC¿korFJæZèµîòJ}`¢Ë¥0 üŸMú,È x@ïʹnú½^Þ¬ÙV‡¨ã?e§c ›ý _–ÄF¡Qt%¾ž ¸iñ& µgF"n:IíSÐÂè§µ‰šqZvÿ¾qW%1Cúú¶0ʬ¬¼Í :¿µáá^¯¡-ÝÇ:ÎéMǘ(!Ü«]£’ú°«ê ¯à(¶ºŸÛèqï)Ç«ºuø&I1–«šNÿ¼„Ѿ‡bESñÀD&£øÝ®æ½3vUI÷ȯzb „ÁH)’a™ Ì£_ÃhÜå„V$Ò¨z°XuÝèrئ¬§zEƒBˆNÇgèÝ ð™ÞT}îðÃÄ:C¡Ú§R©|ò^Òõ:Ûè:tìcìÎMu„;"±}‰ÆN~³îÁV5PÈŸ4%¾Ò¾"¡ º‡±*—D«ß[Ckrp™~À2Ù òõCÈðÕ­*¹¼ugATÜL•¼ó‹QýÓ–— ”¥î¢Õ;u^¶\ËzdÈ ¹¹€Ôºú ã´“!1> ¿i#Nkëo˜«Raåî¾ ÿé<·~JC†/À×:øÔfYw{űw¸Ü‡°ž9¾r–.¶ñœóö8ìñ¶Û·ær¤¶7¢ê œódÿîD£?  Qá)d›K”%™BI5hÞ0Õ¨ŠJ±Ý”_]rÃG¢ë"vq!ò/À¸tuÊÔiÒï;¤ñ>& :¦Ñw¶ýûU$F]þ}WiâEäÿ-¦}uÎC¾p«=•/ÿW©ˆÀÉè[Ñ åFè­»¹çÙªµ†“á`{>9Ä;½ÉÃÄ1,>.˜#Ì/%Y‹ŒŸ¹#òÌ–€«t,37q®§ðDZ¬ˆÛ&úX±Ô°b˜%:ëÑV­?Ëch3Ñ"8@_ÝÉ(y¬Ê<Ϫ\µ=-“|(Èâq8/˰] ¶Ëªå—\Î_I®¤~“ì2)d‹³ÑÛ¯"©W~vÎÉdI›gKw÷—d†ÈtPãÓ¥ˆóuæ m@h éXÛ%ÈdWg´#°t9^±·>„¸;|U-¸QW9ˆ–¿b­z{œ–Ú]¼vžéÜÅêo”ˆ÷5‚óéáÚc­·y˜£]ªÑW–…NŸÌñsMÌ“k„rT&ó÷ x²œa<ÈJý¦ùègSªdwO¨" ¥ šýœXÁUè:ï×aÆ[S¡57b)x» ¯^FébøõJ¡>Þu3„yá׫$˜¯C—_S²Ü}OŸÿ)‚RI•ünÿ…ƒ5ô,9¹O룠å\ç’œ:0“¨ˆÒ¶‘± 'Ù2Í¡v‚ k‰|Â…/y Á|Þ4z庋ÿª~¤K”ilPBIÈýÔÉUK“H!MSn-¹§˜Vp óì¼ãŽªŸx8–ðx¤-%©çväGïσëH墴>‹Ã–F­l’Õš‹Ú»e p/¤–ÔsÇ®‰ŠxóJJ9¢'ÿµH 7½V-زӢ¿ßäë“È{îpåhý¢Èú;\`Ø4ïþš¦õຶd&#¢µe¾âh6¾‰ôTZ•‘˜„ÁWw57æ&Mµ4._»Fþ—! oÇ™Ù@ZŒjRárϰ¦-Ö7d÷Hßüà¿]i9‡›uÌ ÅÁ¤Õ´°¦”¿Á 2°MBZœÔ€—ph´ºë·ªP® 0ÌÈYo»/c7j!6aªz9+®‘–”¹IÜÚê»Rhã¿'\΄ÉDj²} û·Iµ Cº8qðdsÍÑúˆØÚ’ŠÇAŸ¨nýŸ` ÓÉýÛéÇQçk<.Q“Wë†ùÀmnI…Œ@Á×ÙÍL¯Gâ¯Aø‡ŸMæ$d½œÚ“5AÛ ø" Ô†š6é™Ê–qxBZ8e*ÇRó5¾;–}aàí /̾½ZMÏ•B§©‘ãUø†ùL±%;JšJœñ— ¦ØñåôËÓ¦H/Lö 7Fj‚»ðôÛÑ5”áPéó–Ï!èÙ'-Ïwlä\_¬ñŽvÂ4©¤†f;Zeß%šÛp»ƒO}Kç¹Æ–bQ~“†3©°Á9b\,§l|ý—`“,¡Œœ}8û|^GÛYê·ZÏâT¶UóÏ@ìKó‘û?íÏ¡¥]±dÇ‹»Uï²RÀÁQ­Æ Qíö› ]jƆâõvÅæÃ]Pº®ö¨Ç€=è{‡uëH«jd¯\sLz,¦(ÛÞÌ Öä4¿5!ÀtÏí~L”t†î¬Þ ¬Ôd Qp#ÑtÓßÃâÿ¦ çßA y$Ì?ÄKû´ÖB2¶´Ò^®˜ï†3ÐÎOÅ·RovÞ”iޱР†ä¡#=Žfª)SV)èÅ—=w)€ßK‡p Ù#0eÖ±ñˆÚ{ÙoÊX}Z‰/†Ò©Ì,†^ž€þ­2@KÞØT‰¬ˆˆiEF[>jÁÉ VZë7O/Â×.ÍÆ|À"г+E°K¤1¿qrX(G›•ú®ùR~ÄìMˆÏLcb’äÜ©–¶àKž¸„¥½(LÀª ‘Òi]Çô $re>¾%_‡œSwx>Q³e3§qÂã‰sjèÛ1À&;ûX@4Ü[³®Ugo(§Ðûd]V†"Gt/šÔö ßàûiGGÖG^ÍØ{…ýi}‘®oÁÝBòs·4™ˆá =Bï+¿¥Ÿ„B9p¥ÿ)C<•@ùûøF†T5‚òÇÑwÂ% ß¾t¤D1¾Ü¨|Í»ßOÀÕEf3À]Š]¥Éȸƒ”­#_çë[%ä7ªàìfòÕ°?ryÌfÖP2<ódD‡´·Ê •ê)Eq·9„O7 ùª¿Ã)6 -€}7‚Ö YÔIë™’)òWN{Ç¡´Ñ3W6‹,è¨xïÎH¾F)îPUá¬ÐãÆfšæ—ý"Ù©Y³©ì’EÔØ\Ÿ]p’fÈâÚ>.ì°¯Êߣ ÷%sÇ@;D‹qHw¹Pã eÁù˜51Q°)·R)¨ÈØ_¿þJ2G4Û3È>×[<¤„-ùÚ™õȉ©¹É™^Wÿg¿Më2®Y¦£úÏ{þ[xdâöÏšž·RVŠÉø ù¼¼ o‘ÈUt§m h Mކÿ.ÜÌp>+G”ˆDÊr¼ÕAc¾½­±ê4}Ìum^D¦ìt3Ðr%…máî ké´ˆ:…•´h3‚5°m|Si®Èî8ÂN@ØéÄoLlÏycÑú ?>… eÞT:þS¿+ûˆ`¬ïC ¸‚PôUã˜j-er/‡OÕd­ƒ^4fýq™8‰:9.ÃGA¾ÅÁZ¢\aΓƒ.¾ ÉÑ“Êô̰8ž\\úbÕ¯`Z`Z@)#ÁÀf ~ùŸ fª@W².ß‚>¶*´$ÅÌA,¯A…9 зœÊvŽååÔnõ ø°òÄhèE)SÓ @¤³8_EéYh3¾v­CªÐ&Õ÷Z•6ÄçéÚ>vÚïÞ¬¹…ø!ñm­I¬€î·V+¶ÿ®²eÐÛÛ@}kR|3b$ç-« ð4±˜°ò¥IͰJàî/ñ¸uÁúù!Z£; ^†§ ¸Ýì`îôp¨ûÞcZ©w°N*ÉÙñsö•S6çM|U.h£ü_ÁFxð?•ïX ý†V½ï‘mo¶â0NN÷°ï=OÁ@¹2uý$€pf,Ä–ŠM!}mG=²ŸOr¦T‰+V·üüHK¤œ0Qbõhw ß÷X…y,³p<ØOþeÅ̇|¹;B½o“Ï©+Ù‘·ý]Xüm5¿ÞæÞ”XT+*Mò"BG­¯Îeêù±ƒ…a Eœ“ÚÞf”ϹF 8_ÜIõôµv+ éw›xž1ïži%ìȆ¾É"9#7{±î¹`  µv8$ªîÁ¯B³ºÝ1ça|%½ÅWÁ«z_ñÒ7”¦¤ŠñŠ^­¤üUx¿t³¸AÉûteþ÷xÌÌžÂùJ× > „˜|âïXâÇl7þÅYð,ßÎOô»}§`‹jzëB(œˆó_2‚Šaqî"ÇhÆX z³Ÿ¤Àë‚òÈ{[­2{ÃGIx°C-t†þ¬sRÄ€‚Vñ¶Ç "EB‡× HU@zA<çþ?øO­vëòœ`š|³7fçòµ&µ½,SeZ_ñÏê;};· š™"0‹1_˜>6’éä3ŸŽ+h@í~ÓmcÈõ@X‘Ö×y•D©£«„ÎìâK¯ûJÓ¡Ø¢YFN–ôÌRtÒ¾ KÜß9f*[B~‘ ²¥”}¶–ð\£¢ãÊ¥YWQ6äÜFP¾LÌß®ˆv- £mtaKYJ:(ÅØ9Ö†R¼€–üÚŒãO§}rU8L0µÏïÎ…€@V7†zpdcñ«„½ÜŸÛÜ)øWèKªæ< ­ÚåbبXË8$ßÍ^ÏÉÒ¤[rŒí²amïÀáÎc õùB$ˆU5 }Vnîå‰<¦*ÔûN¬¯Dâe¤~|‚ª_ú/ZÐí’ è37’oq¸þvIòD÷“ µyPŠ[g‡Óæ-q©&RÈ¿†|<¾U:ÁAîÁƈ±,ˆ#¾k”y‰"„b3d€¿ʲ‹Á$˜=K!ffu­c›-ýqÿëÑúÓÅ´“À¥xáÓ²iZßÀÔÿ‚«&ó9’®çA›‹Õþ$Æ£Ùvøo™R›M½&8EÙŠ‹"Ûp/`µvÛ.Í>Ðýü@ΞâºÛ"|‚ÃmÌ:±„gå_lU®Y†DµÃr ðöÊ(@ä(t+ùzTOX&ð$\(ï,˜RQiöba&W`ÕI.÷pÈýv—êÓ>‰ä3hV$ôkybˆ¤¶!6ž5IÑÀÇ¡ÿ·¨ƒÖ¬è¨ÚòÁVÍßµ¸[¸@üš_ôS÷§9ï°½%§ßÕšªLg²hp… Ûæºk¸‰ #Pê4Õ—ÀÉ2‡Ïé?L gHG7O7›ë‰žr ïB*X7Kn4Ô¹óqO—ö¯Êßù=zKjw¾…á¤àmÀÁÉÔ©òƒÇâ“S9^å€e&1*Ù¬¬ìC\ˆiIyÆM¤z¼Nü_ #Fu{ù¤‹ ñ™1>wp+ÛœžÓ=pÛZu:Uf €Î‹˜­6²jÈ*7ù ÿÒ;¾Îá’ÕX¿gþCâ#ùsÐ*ž˜Yf:1gä&º= (ÆetèšøSpÄŒz<çzÆz˜©7ôfÕi1û¡‰èßï&@뀤›$1LócÛÑRçÖÄÛIAvl%æi Î}£ßªJ¶¢f%ÓÐýøÛœ·SÔ-V¹L€}e=~Ëá·üeš¤ ǃòŒÃËvJB–âÒ„š ˜¡Ÿá¥Éoòåk«¦ ŒmÖkLæcí? ßï<¥¦H›ï£þå–ŽñöbïÒ-n¹q¶ -…ï¤èîÿvpµõñm3¦·³œÐá+“0ÛH’/7r.¥éÐ*K)JÁ%ÛS©4­qŸn­z Wº×Qâºþ¿N„´Ûy*~u1I\"Á~¡¢0j.sË;ÉÁy ¥`â`œ%E‹FfèQâºæwM¾B&£uÜ ¥›ÀÜC¨Uù˜ )¼ÊœÜ“Ul9ž’w/ë—ŒýMûJTNjç`¯ŽÒ©Ä‡·VÍüG~€ÈÓ«ÉBmð­‘d+}­ÃT: ïùI† TZ=.‘m:5+\™\AFí/mNl=pS+o*¬&J¬˜÷P\]Ã\t?c™G›è~•jUµeñ—sUVÒþ 882çý\×GÕNp¨”Üž‰+iKÓv£‰)eâkÀnì\ÚûÖ §Ü:¢”{ßlF³ðß=âôÞŸ°–Ö†'…ËH„”³(¿?ÌÈmü–öwh£8™‹‚£¬¤Ébç™6­µIoÕT°z“]¡×À ¹] X_ hm÷÷) Ç™·?ûtkøÁòÏ‚ãÔ*É0[Rª Â"»eá¡C¸7iÀÁ7ªD·AõúÖ–µ GÉd÷Јÿøf´äÞÍO²DÏSºT³+¶4ühOŽŸ)e¬]QÊ8ÏÇ\wÚ૸+íl d“–|á5‡k¼tìS¸Ó¶*ÐgŽÌ~ZI9Šf‚_¬æ=¦¥' %µÑÍpl¥³§£ :ÕºÌöˆ?!âàKd ú‹8d‹:gÃÆkc iâ­.ì²BˆÊp£T2)ïbÚ— ¥7œuûÙPiÛË Þc¨'­àíZX²æuþ'SF"ï`_]¼»0òCä¤ÉXà0_ÿgk¾Ùd8ï\òÕ÷ÀZ K¶®6‚Â'­…ÐènãËjÇ8»tš%@v¤CÖ7óEãnlaòÚ ŒáöÚ©õ|¥T±“\ÙWIÓ–ЄL£v“Dâ@$’ñúѸ9Ãñ=h ð[A0ó¿:â7Ý?8@„,OL ú³sŠ ©ÈŒna«$xØcéú¡–*ó’ç&|½Æ­æÆ>y39mBEk0”XçÞQhFhàòž¨ÖàüSì!î®r_±J†5GÃþe›NYƒß]Œñ Yàíšd«kí¾›B¢Eñí WJ' M\áÇjÕ–zT—öAûêÂÊ€ÈO2{"dp«Õ_X!c9š‘Ä*Í‚¤„:²v"Eyµ@LŸóf~"ö/»t´‹?GYªY2‹ß½löw\ ÿžkÉ× /jTˑʑYüô$˜,ôæY¨ sˆ›BȺ÷¾˜'wKý&E)ÿÁJX4â‚ ‰ÝR¦ˆ‹¤°”%–¡–z樫>Ö«j¢©:aÀìa_R[V:[Ødq‹˜™zEû¥l}&‹&˜‡!é‡PZá… ´Ø5† .Ó6F˜‚¬],[&¾·Öè!ßòBãS‹M2×úÊÿ®ƒ]CÆ&˜×<4ù’ÙlO_&üñs¹÷ÿ¥Â–´¬·Öq5RªØM|,“7úÅ>4„a€o÷™‰`øã=ŸÊ¤nTá!SÿÞü·Šâ¯µ•T+£_ú.ø^xH®Âœ{qt;bf ^¬¶å>&s¥r•úíŠ×f5ß ¤Îu´Ñ²iŒ-˜z ºÀfQx¾Ï˜½®˜ñ‹o]âÆi'EùÉ€œ¹k¼ÌýñsàCôë¤*a¶Û—=t ÒxÛ}¢I~$}ùq±k±¥æ¨z PMw†fZ•“×ø¥÷R’ *.a ‰‘–g¨TÌÁCbe\K $õ˜–oÿ8‘i–Òʹ"%IÆÓUrq—õ§{:λW<\TЃ¸}õèN™lá»kÊ Q® •›Ž®[ºJ¬áÕì6Àš©¨ËB76(!°é“ÑBnƬÚ1‡“frèV“”g§)=¶b”¾)p¼ŒRL<3úÌù Ö^ö›ú¨{uÀµ ç’Õ–Æ+ZÑ¿Ø5´=y„òM´qjºx.Ь™_HƵÇM,r§·7ïãO»ÕÝW ™’´Grc¶ahÒ"è º+óMìßñp0Òi;¯s`Rdªì­÷vn\wÉ’Í`az:¥JD0[ŠOl݃•zµY0B룚R¢MàÇé-¤qdVÖ6[êŠyqÃdFÓÀG`àÑ‹'hs; ífÆ€Z´ô¶‰æ¥m:TU’Õ*R°{ óUñeí2½ÓÆÖƒýy8:Ч*G7|º;}$œêi[ï_°‡ò*WO‘ª;š—Ñi6pqÄz𠹩èèqYõ'HüÔfËmãF;G’©*:!ÊÙÆ­]½ýÍÀ¨SL©­ÎuVÚþm4l“ÐB‹ØF÷Ý£Z©K{€[sZØAPl·>Ì•œK¿6Wv§ã²dXÈÄKbH¦ëà"˜a¥ì„8Š;¶«ŒCɸÃ+µ@Œ7+XÑ`¢I`,f0;G†®‘öµËÜf]s áR˜CDšC\Éš>à.Nk¦tžÄC™Fj 3V£Î aÍ^›\ÊÖDª}Ñ¡­Õ¼˜6p%œšeb$“¯8àÅT3œ–lª›õѳ(¡ &xЇÍ?aP‡c'y/ˆŽr:²Ä$]f»ä‹¢',Þ¾ÿ3L/è…ÈW*~b”ÂŒ’jGoN÷Wöe’/¼íü×Ä{KÍ\`™MÜvôþAr¡dA®…ÌóFD²ùäß¿¿HU¼bH¤h þWHåá¾*Ž'‹pÆù jFRˆx}=²ÚB»ýô$-›•xš`Dp»';¨9 v4>ó6ÈɯÅ2´Í´Å½1ƒ$gß\NtÉ©iܵ-ÔÃnòçF-¹¿·Dq/è¿Þ ¤Køm•¶w€îsÖ«ðLÝ@1ˆcÈ hâBR×Mñ(ÏÕçÝС¿RO"Y›5ü»*–x˜ž}Â, 7Bô=¿±„Õ³/ˆ+Ñ©ÓÐßDO…£ÅÀÐÿË2wQ¨Œ 4ßó”ÀÈ?‹'‰¹ÊŸŸÈCZÑÝ·†ÝºT¤â/‡ÛN¢¶ÓÉ®‹FD"7`Ù0!±)Á-…ùÌF|V-ŒpVó{-dL±ÈÄœ WM&ãµRRÊŽÚEž¤BšØàðsWH7z¨Ù PvZO€ºæ.[0Â[RÓg]Š‹øE‚ñ‚z±ˆƒÞ7ý\¸Ýò„û‚Y¸Z¤:ê!eW}Ѱh8Õ­©2âgsô˜^$%·jðK1R‹Ÿ"ó8F!ƒèx’ýüXžRÉÃ~P&ø-³_)6îå<‹Äµqj£¡ïA/wF—t“®³\ˆÐùÛ âÚÙ­‹Xøþóµ—öx .jïuŒœeK¾ûö¸†Í72.õÃŽš8ÿ= ¶Tn¡»ùLú@«ÓöWIvR÷|;G‘¢é%§*Æó‡>g>4ìtÈúæoßNVfš0"¸!° »Q·h1PÖUµŸûj|Aa¨6c¿tÏO¶˜²QÏÀ¥¤!^‰%V‰Œ”d |Ž7t«³B=ïÕb•_3%q@b˯Ï#?9|ŸIiÍ7IÝ—Q^ÉæÚ4ý:¦ïLK"ÑM’ZÐ9“ã›Øcv¼ž+6´“®ª0p¹¡Ç,Äe‰DzD8Û+.ŸIÄy˜Òw7Œ s>vÔ8Åq¾6sÉÔâÆ?±vŸƒC¶k4rВ™bxnœ)@±9–íMë=(ŸÜí”V²ˆQ5}©GN‰“F£­(àÜ"x\7PóTA††qr­$2œF'H{ð`~„_h_ã E„„Nò)yá*ÃÀfÿ$”Y=9-Ú‚þŠã¿å¹É˜‹bO;×Â’ ð9KÁiéCܹ™ ¢‰b”g ΂wÞí¡îËÛ;Ò'Œ·™³V Ø¥MÇÓ5˜LÕÏqÃhíl?èTp‚Àh#€œ£Ê¢±Ái½Û¢ôkȨö‘ýG1Ö:oQ¢¼·Ÿ° N¯dùœõ“t†9ëkð9‚ÝÕyGú=_&šDÚï¾JMÀAáÑY[¦ÔV~XNýv<¹/Fò›¼ˆueZ'NÁÐ\EU{- !¥¥±êàq[¬y| un$­]±¹å™BÇÅ +б»6^~¹W•u`ÿÞ±å›cçr}§êtÖHkgx\’Åú¥pàæU¯ú›3)U_”*’=¸×-i;Ú²'¾’“÷‹´°Šéh³ÑÌCR:‚¨|q?¥˜ !3=å Æ:Φ—61ͨ¥Qg0=ôðá>c­v=+þA®®Ó/Lž ¾—ü¿5§ÒÇÖ†KcØ|³ÙºÞõaëP’~tK2@¨ 7f•ôsqƒY²íëéhâWÒŸ,þZ5Z&¢L+Faˆ ‚[Ú¤F)f¿ËŽ“˜$A~b>å™U¿À–ˆø`ò –…­AP¬(˜S“%ao–I¡•™ üëùÙ‡e {ªA ’%ëèüo§×ÁhªÇSá~ª§jÉü{?×]s¢&¼Ñ˾a%ù Ž!@¥ÛIÅ|¾Ã'ülªðBŽ˜%u0P&;íR°5ä AÇ¡ ûJÆÜkà¦ki5 !í—Üv‘,wŸp„Wù½äJ¼ÌÇ¥ë éZÇ¢ÔN·Ìãvd¢Î3ºàñ=ÕeÉ‹Ä-‚ÏÎ(…I¯~,¿†TÓ.«£›FZ5Év#ÞX‚¾#Þ¸+8Óg"›¯îp.èžšúõþH‹Š5›lܯB7à•¶ibÜæàÒ ͑߫Ï-15ÝøJ5]žŒü¿2Õä šûE"yžÈÔ¸ ÔÚ"‰?ÿ¤z£êNBv]ý^– xñw‘1ì»›MÆØ+2 tãd& á®óWvþÈBa–5ü:>!+Ò·­PCbÌtY˜OD‹Y¶àPãÆ¾cÁØÌê?øHAëA›aJJ? >½H’ƒÀ§…˜=/mÐ̹û„¡µ«ÜÄNƒ9òæÖ¨‰c3•Ë·®ëì:ï áçô N³š¦‹œñÕãD…r}À €ÀÈõÞô<誣E 6{‘o`à³Ö„!—]¡¶v)0A ˤDT/Öcö¨ Ü«°Xaˆu auŸ†‘€~V¡ÂÜ6ˆ]¡AS•ñOÅ©ìyÌI þl” ?|bŠrHñfS s–9细`æpk2œ©NÔ¿ìñóŸÛ¦dØ‘ Ä#ÄQÓ‘Ì[‡!a ‰“|~€æ#&d\ž2„jDµ·— ÛßÜl£„„ÆÍùD¹u|•Qœê) ]¡üw²ée&â-a¡£|ãöc® Kšåq.rõÊ$ÿ.ØÕIoYý´¼}0Q¾hè³'ÂZÞ³¨`&ÚBŸcæÄÙ6ÂU†[ó ŒòãÈ™° -…k w«¢ôbÃ;øŒG¬†Í8r64­õlÒâ&æ-—–ýçûOýîØ9ÔR‡#tu…XdY§˜_銆³Ÿ°.ÃŒ¨ֶ׃žM ýOz, c@@+%h鈪°mœä¬¡Ã0ÀŒ÷ŠÒ k³ÓÝxÆÖÿ'D“9Ê`ÎEßÍÌ;Üž´Ž·¾#¸¥A üªÇð7Ø~!ÞŒRðσ›ºQ¡=•Q|dHÙXõyÀ ²ÉýÑe])‹|.c»I­vÅÛ¬Èû¬ÂÓ•aWáÕ¬ÓºÏSMðü ËÛ…ð)ý‰ñöðv¾ÙI`M‚Õ Ï×µã­q¥ú …y|® ÌPvõ2¨sˆÊRòeà »™u}† bN²ãÓµ.š½ÕV=„¸3~8ûÄi†ÌËñ?Œ†ˆ—8h>÷ÕjjbaeëÏÊ+JgZÛcj«»ÉlXÎlæØð­9—6½pnkÖË—ºcK3éµaKÚKJÆ£x2¾ÖͦɄ6o0üðmS;Ê"®ïÒ˜ðÕ} ÌõÊýÇ˨§zÐr$à:tó¦a¤`‘A-jçÍ\>‡ï¹¦1@r¾©ôˆ–_hórÛŒ„y„˜ö|"2Ï!Ý1—§Xéo徨s‘€Â%FxœÓìx%¥F.@’5{ˆ÷wˆ«W«%å—JÛ‡=[~zÅh”½îießûH¾p•bá¹’늾‰o¼ÃìñÇ¡ãr²ûù¿yíé©xÉÈ_/k1¢F~´šÓ9ÛòÅJŠ8D7íM³zÝ®äåÌØÆVFZõg“ =)Èu#õ?‰‹9!‚y »ÊD5(÷ì>ww‰ÐAñn,?/ÅÌõ3Œ³ŽËm8Fö.å…^Ï¢ä%[ Aíd'¿\”ßh þ^ø-ƒ6iM‹u/\U5ª¢Hß`‚s ËâÞZ–öi}ËóŽîäq#X^M•&†'ÅúGŠgŽvõ@8ÅlЖú9«UϯR-†ÙÏ:zzêœò¡ëÓç;jº}Lƒþ?û~Ë&XÎé“Mv]®ˆ5vÐíxÃýšÜVõ3©Ê·‡ŽKjU´~"½ÉEAèͬÞ}ûcãâØ"Äݬ ÓåPúVq›7&;²µÝòWÇíß̉Axz!µ²àváüîî Gž0WID 9¶±½w Çè^3!POcE‰]Ö»„G‹1£ÚÅÙýyïU§øí`‰ßËÄŸÛUÿ÷=ˆÛ¹Ÿ„ƒŸn‚0Ö«I¾Š4À¨ÁB€o¿`®¬úÇ@‘Y,…n-ý#fÊ À+·gˆé¥“Ñœa´Áf)³¦Ï Â[½š(#s‰Á‚\Ü}ÍýÉôwQ ‰µ-îϼæFõë #¨NÚLÜñn×éŠÀXiþ8è”6¤ô#“ÒX]¬~\@˜fSõ*­ÖCªÚFÜátÒrb•ppRÖ˜9[°4~ÕèÏQk¬øòFS’¹:Ÿ˜Ÿ¶¤”6˜œ)Þ—àÿ.|!lˆH!À¥¦×uë&BçaobŠ1g©¥£‚Ñ”«K3ÈùpJÁÑ NœRrZŸ·d…ºXDº‡Ye£JçŒ]ÿÏV>°²m Öˆ…5献JZkD‡’ûqŸÝ³ü$SP)¯7>F¸}Pl¿â+Õ9~˜wLï{g¢-£ø‚R›x@Ö<Ö ·¶WÕ¬/Ä` ©%›s3Õè7°ä5Ì"iÈe_PÅi×DkâéËbS†ù,ÿ3¥’À³=Ö]XvG¿Wü×"ÎlEÂÎ`ÔÈÀ†aàyž•>G„s3µ™¾&2¯W‰(í£ÉXƒ÷†­I¯ƒ33ë ¼K«JÖª“[Q*¤†vgþ‡ ÝYˆc žæ[â:›8è^¬~h+0™$ïÏÌéμHê½ ÜègéßÊY^«8‰:}3©…:X§pï,ªÿ‚pô@Ýg+JÜvÀ¹˜Ê¬l*/ÿĽ-7Ò­%Š;®Fò%î*Ã…(êL%£¾è’?¨l£]¨ 8Hýû²çÅî ñ=åTƒü¶5Êÿå%\ t È·Ûäÿº{N:מôx¡ž!1ŠKÁ®Å}½ äˆþhÍ'1¬=“)Ñç<¦æÌ€—Iù`h—ݘ)¸™Žß0¨mx ‰ü­D¢Ãϰ4+?ö{ 4ò×Ë)"¢ý7ô‹àÑ+D“à ¼êí £MyvIz7žã»›±vëÚ3‘ƒ^“‚O䙃ÂÇ_•‚Á¡Ÿ,nëPÀ’œšæTO^2ï©á!>Ì eTõ@B3ö{zð²xDO*r¿¥³žÝ>àm§ dÔ”ÏMðX¾Ñùkü“sÐoc}È«âRç œ9­,Ä~‡ÏÒ°{¿Í*½ÈÓ,×û×­q3éÂ÷MìÉú;ö1Ÿ³ÖRrÑn[^¥JfænƒÓÙ,äÑ3ïÚ_=0I´RqµÔv`êob`É­Y4]¯“•˜/„ºaÝŠ¾FµªD5íˆa CL¬Ê’Α®`&Ó‘^ ûQíª&$ïi‹œÛÕ¸ëöu…tÊßA‘‹Ì™ß÷(FvDc'Æß£Õ žÑRfAÕ 6[ÍÖv®'~c.¼©á‡xH:#:{ß˶£Î#t\郘ÔõèøC~=²(ïh($Ä\4î–0åC´f)³Ï'£¥°–ÈÝK„5ñ||]©Ãœj·ÝàËÿ„µöô~ž!ž…E2˜¤bUªÏ3* ,^ ‹zµ-ž«ËTb-ÏŽÁ“Àþ;RËâYþi"n¥?îz^âZªŠ‚“¢ÐÏ5dÆP5í0ôù‡~}´Ð®BÙ†7>˜æÍßïíöƒ{•=Ò!ZuDªå— FÿVëš4º”; ˆ9[lâfÇQÌ=gjAÌDñ)o+µqÒ<мc·¢Eï\tÆçß÷Šƒ’ P¿Ÿél¯@ÔÅj-鈩a%³ðŠ/®&¢Ôú$k"ªØ/йWN)°“žåÕ!¬ ;ü¦ Yz`¡ƒó˜4Í:΄¢ü¢} ÙÅPpso—'–FÖ¤ @?§{†¨Mù9±¥mæãé–Oq*5‘>ðͦ“ÑøÄvÌ[½9Œ»©´=ƒøUöYi:mKLÑáEH¶MÞNcB$r$ކ1ÞsJdý¯~#ÛÁx›$ÓÔÿg.à?d%ß»øªÊø4¨PiMÄU6Ù·0ÝÔùò¤œ7g—… :—þ •ÃccXRƒ7&ߦŒÚÒN7× \A¯)‚"›>]ÇÈÆ¤psФOµ¡B†6©ÁëÔ¦î·IjÄ Œ*%“nÒZëø¼„zŽÁR°’í¤óµSÝ'Îٗٵ¢›FBO ðXÛÏ âŠ &­¢¡ÿæ¶ÊXõžƒ 1—¯8Y]%4(ŠlÈ ª•„¹VÓY€¥j„» }o¹^œn?C,BaÅÓÝÙý}2ýfÌv)9çÈ·ÖôIâÎ}\ßJþ©ñŸrùÏ€½œ+Áó,@ž™KGbSYÿãÁZ®ŸBõ ö(E`M¯ï:Çxo«¤hõ·nc'x÷娮‹ùü¼_)Éé]GTùt„qÝØõ4Ç[ê= êД˜†öB¦*µþ¶”pàÖ·nÁ<èné'kHȦBT‹` ’¶†œ}É!‰ŒH¯\éÚ¨Eë…nZ^Ü‹$º@D¼Då®t‚Œó‰‚ËP!y®¦º@F+.õª¶†¦^¼¹˜ü¸‹Ÿ‡±Ø°vBPb4ô¾Ûy¹ÜTúë†ëâ¨T¥“…Er*!vÀ -Ñ©dñG»2™v›Ë:”»ºÃž‘â …ÇÀY€R}+‹CFΖUtcöC"J7J±Ø1^CÆ-×m¿0LxÿÙ %C;ƒ•Â|q•O×ÇÒpÏ`­ä'+Ñ7÷°H¸;æÔª m¹ïŸA¡C%?Á‹nÐÀõZ{jCÔ²- f°ªåéÈò=šZ]€‡Än;xTK¡Š¸Ûþl6Í9”œ<-PèZ$8Aãáf¼a!’d#€ÎiþD(j7³„Gskê«+î×s0ÑȧKã-õ§ä¢;áŽ}é04hˆÐ«òDÚ ýÄýŒµ› ~8bê((íe3ev3$ª~‘@óO†ûºÝD›ÍßÜE“ÐVüwXÌþû  ‹…ðõü…¿Xí¢„· ~Ø&L6åYÃ2­Q¬’%yEÕc©öÉ`Zزbiª8wÂL+  ĦÒ?2©s %5ŸG专lÍÄUö[+4g^ìz”ט5í”jl2ýYÙñÔ|ãÞð·­ÞÊeá¹Ò¬~ROÎRB¤6£Jj«U¯laöÃö+›¶Ì$„1ÐŒÉ0LNHo¶•×OuHõ\ã!¹è²´•˜§?oª ¨”Â~×pß#µ!›EŸ&i.ž9y4—M@éÍSŒ”‡˜'†åïO8r£FÚËÆt8èèåüpò Ž…M‘¨:êÉ­ü2xšE%cê*©,97ôG––Þ9ÔÈæ(Ñ@¾ÿÿ® `¯}®x:änè•=ßÛès¦ МO¯ylZúÒ©&,Nå,ã:ÎoïyŸÖ÷mL(ƒ+_9ŒÝúwßJr2þ„™Ìãª3ΰvûEì•WP5Gz7í¹°”òºDEç1ƒú»-¡"÷¶ƒO,·tºpsö¨€"Áñ9}b\¢™Eã4Ì5þB~ ¦Ì/kiCÅ_ëTÄÚ¤ýþppˆ÷æ78˜ËE"ޱQÀHò† `·Ã\0å0D¡µãdC*‚sFÏ¿™7M‡!X,éÜÏÿÅ‚_£Ò«£ƒÆÅz¹¸MbýŒ£ 57ì"dFA¨:y»’¨\+i缨ö{*E»ö­)ÈW¾I˜մä¾*û¯ˆßÕÓ­è‡#r˜ûâÇû8–Þs}áLù 6-|(¹<Œ ÜçëÅÙP Û ho]kOù¾:6Œ¹ÃyÃ0Ú]Að{tßaî’\=tŸyŠK5hÍîu©ê¯F_L®•½­„CÀ4}Ee×ç>rÀÔÇ1|¿ )¿TXj @ð¢Z«¶bn¶ŒØþµkóÓfíÆ>EÁŸ¬ù᥵Üâ~(†t[äOlÕvŽƒáp4 ¼‘N´5®ApA˜vÒ23ç0ûd?–s˜dᎨ5Ç#?,Fó‚<çOzÖ`phßeˆ\ÃËÊšŸüö€ “pÔNýJÉ=¢é‹(¸øG…ÆNªÃoWD9öš½í²‹L݆òaõíæ@ÙêÁæ/ 4‘>¨—µBº©¦äñÏZBä,~9«|¯Â›çžu »î0€çóÖ¥ñ¦}Òõ«#¼V»L¸hñ[6/¨A°2ÿ;¹Æëßž‚~›zϰ§ÌêŒmª•·Ä¬(+ESª²h*}uš€Cúýù¤®PÄ7ø_qÇlÐüŠb«%ƒ’¢1¬Y”ª½¦Ô;ÐÅ…dL¥‚¡b`½2*u—ÂY©¯ÕËž|§[+ PºNœŽü–|žÆøF9 «ßª€ƒþ•â¶Î«}’$m˜ê/”‹HõÃPpa }6óQu£Âïp¼€ãaY¼Z%\dŒ·S7…÷!ÇœiÓy†Õƒ ÙQ¯#FÄ«È;Þaª*Ó_ ™®ÛŸ1ˆñúð)mÌc?Dÿª;nǂ刻)ù\¯ҹ„MÆ3—ausÖkë#UNÈ}2ëy6¨á ÊÀûÃ(ùÉ©Saöe¯O‹/7@O.“öj÷†uôßà ³¦ Ëù2Òjî¹;_Ÿó9VUðu"«ÖdU840Pp–´qTŸqžp ­É˜! i‡úž iÆÿI(šlC¹YB8›U€¸{×X5Áíª#YX46¸è↷JD=˜‰÷yoÆ`P3ùEº!ïŒé-½Ãé–Eþe´' —˜õy‚!4¾‘ìPÊQ ½-°é]= /µ$6;ö 3—/¶™+Š7jŽÚP•©pÒ†ƒ¶§žsc&ëî< 3°@À> dÀlU¡&‹fú?/ŸŸã¿q»ÿ%•ço©Æ9+O÷×ûHAkµ«|Ó½›QüÈHë}¼NsJµ™ æ¤[íHQÐI&h‰ùÂNyÜÀ"¦fGÅX[ò8ZYÙ¨­cÓ•bEû¿&”È—x`Ë{Ya¦sÝj ÷“¡ÀqáÍžôƒmêz¬8#µ²YÕr ª÷ nö¬qÀºT|‘wŠç{žú¾?x÷ó’ÚŠì¶üÌšK4|ª;äù´H¿:eNô~!J3vnêªÙ UR£,ú¡‹Ãê?“îît‹¹Ú\KòJ Yµ ÔKX ÷x]odÇô·œÔ5­$¦&¼w‡#ÕÝ4,þÇòôy;©9'ÃélYÇ{wìÝ/ƒž|–)¤z¥Óÿ{'ÉGþû<ÈN+qάëIí¨ñPÌ í&ümÝ[CõÁš‰Âº+<ó‰!±¤ßõšC³GŒ¾‘×ýÕ>Šÿ¤ß*;Cñ›ýÉ‹³ºÎOæ#ÀÈ‘)ÖlV´ÿ›•e𠃀óAw´í„î:ñßûú8lë<žÂÏy "¤Ô‚øúãqòõžÙÕŘ–¨Ð–B£†~T¢ÛêнH)°óí@ b*úD¤<¿Ä¾rÏÍž†Q¶hØA2 £"þxMxSƒÔ}RB;"†ÎñÍíQzEõŸË`œ¦T;û2µï£p|Ò X½”¬žã´é}™÷{Ì t¡ù˰¬ãN[^ ¬à÷Ii×…@Ž£6§6® à5r„")„iÏôXS€Sz­Iòëv Eá±Àõ… (©ð‡‘mRKÊÒ+ÿFkÀÚ´ÿªáUŸ´´6î r›¦d– NÜ¡^-8Ÿ5´k“o—eÔ“Z@zs+™(̵ï¡~Ž”Ú†€K3ä§<Ô×?ø7ê>ÊMç»c¤‹[ˆêóË>—Zʳ* 4û…:÷8ÀGâ£\Õ9\ŒÇÃgµÇ½÷ ê`l·ÌÐh2¢'¡ð@]±ÞLåÖ yÚÝ Vžƒ7xåK¨ÞDó¨¸ч»wbIS<èšt¬Lkó]B :­Q†½@@PBEÑ.¼í9höæ±*bÝyk¤?]Á:ÃÅJM÷ºáœÒö2B;pò‚s¿Ð®ÞФîü¼.\4¯ Iq¯Ã ÍKò]c‰Œ<€Ü ¤v“:Xë<øôöyCE±Wé™ÅÜL'ͨ´¸µ·ÏYÛlX®Õï8ÝbÈÈ:N¿‹†VÙïyÓ!›íc«°’‡W_[× Ô í8Á¨1rÁŒŽP½ôO¸²w@ ê·G ¤aÇaU+. 2í[ÞÿŠÕÏ)·õ„oè5#2ßÒ±¸GŸK]ùMͳ:€ßB# ùѬê=Ôfô¡õ¼ç.Ý0‹)BôGiXˆƒVw`´úÛñrXFGŸ¼N‚j Ö„06‚Ç!“KIý åÂ(ÓƒOÊ‚\||D½‹g—s‰v)Óã›dqBŠ™€Y¸OþFâÈ%“±¾Úé Ï@ôõ)¼ÖŽvP,°‚ÜÅëPÕ•‰`¿Ò£*LSðâÝíÏŽ¯‚ aÛPi‡ÔîsécÖûæ¯ù†¾<‰úyüÖ8¼o[ü†o2©½Mr¤d‰=S‘vQ¬î•ÊL÷”Rý5€gc0ÐÁw¥†Úݶ°ÒGÄ!.ñÜ'õ¶¯ÿ¾\®‘¾yºRplªÿÍô3 p¨¶N]b=€ÛÖç¢T1Þ< iûZ¨.¡ ‘‹ µÔ! *³†DÜô܆ZyÔJgEÀèuù”‚wêxÞ$±–e“‡fàÁÌws> JÔáÊu'Aá)ˆºoÏQu-öš ðâµQ¹×µå´ý#дc›Ô«6}§kCU÷žoI¿ËC¥ÝW'mL…Dõ¤îã‡.Oœ†¹eû°Ò|ï-—±X=›XÝÌà>/Ú©§!§&,Ÿ¶y˜©bE„aÅ¿3e_*›ûëÛ‚—% ÐtŸ>‹¸_y:ØÉ<œsdFÞ8Ñȶ¹Ém¶M€½l$óóŸæäîû;-¿Ï ò)ú—kK{˜»—ya(§ˆ?üaE(Jd„ ‹^aãÍ ÍFOÛá‰[¯ð*¼Ùï0šÆ èA´ƒ Vˆýo¦sµcðz@+ëóÅì#gÒ-q«²/O™6~à ¸„µÓDRV–O­¥”ÉÛ¯š¾í•7+Ÿ‘T 92:—It^ÀøÖDêÉ«ïoýGUùP ýGŒ§õ90ñ©ò× «0Ÿ tvGp­GB”÷ü8¤ /›°½¡$Û@w]¨J»åw\Øïš0EÚõÍFZ>OY,^ÜCé$§x ±ùBDß(T÷’ב¶â›Å™º>Iðe‹¥›ø‘Ø]©/åkŸ™#‘%ç@|lWüÚY­ðŸÙËñ‰ BG }©«Cà‘¿‚ä“r®ïv×]è|8éõc烥Ð5£J{?õ/|¶#$¸‹=÷vÛ‚¸Îw`_·‘G1ÙÿbL6lß<¹ òË2G—èã©.{¨§Ó“4ÂÍ" nÌO—6ÏE#ùß6gÔJFbRˆŒ9í9¥H«X~›Q§³¾[káGÜPÊ$ZP ¤ßô"çÛ,Eš¶Ñ™›€šóöMè¥#X\8¤)yŸ M;3¤z帳û®æX‡’Æ}×Uoó$UÒ+M½æƒ¼nsü® •Ü}fõõ.¿1g+çù/ëH6rÔ¯eXàŠ•ÉäI#ÕÆ‹!µ%.o‰˸ﵤöè´ØÚ¦¨ ì3•#+æ¹ëknD––7Õ_ƒ1b9†ê,NúVpY©HûKŸƒ-Hk¦0|Ǫwê„‚¶&FÙͨ `§b-Xd7#à$g,íácPÚ ëäÂ~ÂTdãß鋸14?@‰ÑîH ¦„QŒ KñÏ€øô$qÆâäP¼ž!„Ïq0óõõ&¦œ_Ú=‹Ð‰wla*æÈß° ¯0β-˜'w‹ØoWëºë)IËòQ/Ð šØÏ8S5îÌS@¤oLq$ÐɈ«eáìÁ@€L$ÿO*ôÝDZ³”ã?©,å3üiZˆEæ<¢…â¶]°³#üÐ Õ±ó'”AåÆú½ˆÆ#Ðé [¹¬!²2B¢Y18ìžz7èmÈ]§˜i5_+µ*ZqGÇê;Õ|éo~Û"»UÚR~ ˆ¹´KŠç7ë^/×WëB0‹ìMòƵ ;Åyz‘¸ÊdŸgߎèvéýtW~»UÄåïäßÂZ·7]Û.…|8Z“°ê3l §:IF‘ Œ¢#ÄEºNw‰²ÞÊŽ!ÄÁD¿Œ}PŠ»ìËbëþ™ü-xË#Á£§rC5ö„¾}yP)s(D“þ ä×%PÉÈ;wÔ8~t¬½»€-õDz - 'tKc”Á5p/?4>ÖpWL‰.ƒ0Ŧ£¸@¦:Þ Î˜„gN[†D*è_5nÿÿ¯åñÜN Æ&‘;¤n…Ò¡ÑøWáàaãÅ63 žýÎOãéä·Ñ$Í´ºÇÿÄ Çœ ³ßډ߄åÃÁä3:\ʈ»_áf?¿Ùé9ÖÍW$Yž ž9¢äê™–q\2¡âG⪿@‘JØ3þ‚ÍðppeÉj8pˆÁWñëŠ\\†43D.E[˜Ë˜‹ °•)uÚýV½„ƒÎšøÑ~é ç3“D±û ¤q|£…ÎñÞ€2‘gé²:„Û?+6äaEþ¸=}¢‰¨äçT¦Û5CqŒÎRµy'¿ô„¯¡Pan–?J0 ¦Ùé¦ î‡=²æ2X`Á$¡Æ5èV¥$ç•+<±EúÀaÆÀ¹2Ö-ˆ#nhg*VG„&áâóªËŒüÚûSÕ^€æ›ç:ŒI’·4®ísS¶­Í:+?~¢ï,ôzÖkÈwý¡úok'Id[ž‰q¾W~|+”/÷k®;Ð'1.:ܤê÷T"˜ü×ñ.ƒå+Í>®m­Š)Ì0~ßþ6ê)6eò(Âyì6uÈJœP%ŒÓ¬á“AJë–_ž¬ÊwÑ ³ry½}_a³Õ•ܺÝúcâñ7ZM”a£ý Á à*!Nxåù§Æ…Ë(Õ<É>tkÏ לHÑÓÏ…¼ózê¢Y K) Ùò´F‹ú3RÕÐ<æî¡ «ã5Øp €ûÃíøžtéwɱt®@Öô—×–àêa¥G¦_¨ûÈ ˆù]šEaY“<´É›‹ª´GNš)ÍÜwçÉÄ|ÉàyœE{ ¡±« g™|Tbc–¼PFâÇ6—ùl‡£Q°¥ƒ.À‘ôz9…†j°ÙQEÐÓØ¶rCHU5Ã=5u¦nqW~ùÙz`±×x÷ŠÑl%=ê€&~ kO)zUp1ˆ»ïÚ÷k Àd*,ñáŠ@Òƒ‰dÀ³DÁ­ÅÅÚMKÞðÞ¼&¾{¹R;†zëX¡x6?:wBrS3~t±Þ9Ã0GQ2êæ"2¹)ƒ·÷1±pÂõÿnähÌûôøDz}jË÷DŒ¢MÝŠè~€¾D}¯FÑe;ÉÕ þ7f»¥«ïnx7 >¨ÙBsd&$PP)KœâYT%è%ü9€)%\7r¹«çm@ MÇÊGý’º$~Û[©=w¸z”ý€gÀ<š¬s™Q–œÂLÚ­¡y4g µþk B*ûßÙ.é×^î*] ÐH-&{ÎÈèGÖƒì IJê7¯qŽ’pnþ®ÜW$oO2ƒÀ?:“!åãwaÞÍ-?ºè&|jjÕN†ÃÛ¯¹Ðë(º“M2 ž½½®Ó¯ùZ–%€¼E¼:ÌþÊ™€nDª&“Ùiaz#É„ÖGªÈÏE™Lö¹çYÓ¼7PP‹÷M€ÇFõSÛÏÁáQ1ñc蟜e<• ‰ó|.«A€-©=NÃ2ÆÎ/Qy¢Öì¥Ršˆ #3É}±ì ’>RMãŽùÑç©¢7Ú*ûy†Ü›Ïë6SàÌÝkt‰EÍŒ’xyë·(ð[*:Bgn¦· ëYn{:¨”&ÐÓL÷Æ5ðð¥­ÈÝ…_aj}¯%§K3ƒ7mµ†ù†XHG߆×sü_ñ›edoû#OÒ`¦$+düNØÐÀÈÎHyÖ¹ÈÌâ}Ç¥[ Ù{»²ÎÇ„›ã1G(yÿß‹ZÎØ§Àí:7G1$wR5xžh^±Òaß6Ü#—žK÷É¡!cŽšÌ§á:$%~À9Ç®”5<‚¼¿ŸÈ÷öhÇ2=+§!Ê8œoa¯  Œëìj:hw3¹´™D1-Ä¿hÀÌ2=ì‡VfmÛßhøßd°Hèß°ºoßéˆ<É ©ÔVXš˜ðjH:)åÓ¿¼“}H´-|¯ITnfÐ=ÎMÄʳ¸²,`{ìç.s攺~-`ͬՉjµxsNs[$õ{¡‡ØÖqsW»Ù“ã|`gDîRÓÜd«KkÍ©I|B°ýbz7&pį3÷·1O’ö¥ÕtÍ:ÓžÊ ¥y`åru°ÚqE36®NQ=4N'¸']¾Öÿup>ùþ70ªï)ܼƒ^„ \Ûð‘¢ÕJªÈé’‡žöóß6ßj/z¶ð¶¤Z‘’3d”^¢D-3°–¾Í¢Ø{)Tç\÷!ºV“wÈZª…†bÖÜ«¢_ãÂ(«åØC q¶‡ŽŠø8Œê})WQ?*ÉI%úõ~a€ÁÙªiÈΠ“\¤ Ã|H"¶AfUÝD6Ô†kl £/;C]¶WRv‡fŲ́r^BÑÀ´ÓêÛâq+é‰`ˆl³Q±DK]®áþn±öt]”/:iËí(ˆ³“´s\tHOžT»dÓw±"KÂkÝëN”Y‹VVñ“òsjž'ÙU¨‹¸FàûSD] ¸ÜA!,s°ñ¹d>—ýrû¹¾öIÕƒ]\rN˜uî‡ Oín9MrîÉq7ªµp£¢¹—¾"³‰×©ä¯¬›¼”`»áè–… 2~àî¥^ûô8$f9± <!‰*OÐË8¡KŒä4îBd\¿þ™èlÂÿ¡67–—:• µGhi,¿f ?ެ×y‚4`ÂnRSbØiÇæt'îÒÄLœø+Rh)Rʵ3c±V¶¶l¦„-ö?Á&SÓ©r[3ð+ÈÛªòþ´O–îŠAÛÝ fNíìɘQ†‰Fè]îkÿ#-]’ õÿÝ;5ñhbËþhÈ—±­²ž³iä׃{zíí–žtA–Ol£†>óJ®1CŸ{O²ÕÏä‰,áóß;’ ¼m©µ:œ^ŸJ…,ãF¹@àXB”«bÆW­ÒÇ{¨ù;Tgè6ÖÜ.¢Í0ùéFß¡cTB3MBÊó2ÄÈé'¤NÞšE´«&÷yYeO ÉÀñhÐ?'ìÀ¿œñ><õÏœ°è{Ž‹…270xD±Qm(g32/3ƒZ×QÁVâëh™¾ùÎ ÇŒÌ@xdÓy.ù¦Àö dÄg¬³ÆÍoùÛÅ©¦‰X½_—š¡ž^'þØ.=C®!G•8=,+¦Qæ'jÖÆÂÄtÿ #¹¬ >0î‚FqE+)‘˜¤9‰žl×3^ ÔF†Wþâ6–,ˆX µIqµÛN׿k: ྲťXdå¹ýðî5°@7†qüŠ:cñ÷¡k]G Š+ÏEÜp~ C÷ðC§\«ûgeÄZgP–j¤MøHuP츊âƒF›:£}ä·EZã§ŽH xj•yŽ_„;`(¹÷ç±8 þI¥lž`¯! ‰¡Ãà?ÊH]×^‹»…«kja~B:öß x´3©*Å%½qsãs»å¤^¯“iz–L³Å5,OFËüØŽûÀh0ÅGà³í«Ž$ƒó½_¥*7TåšíLð”¬S+±qái<Õ8bUr+ËÉÝG…G„Ÿæ¯Ø`—ýôI¦ú²„SU"iÞ%Á*èÍ¢ ŸŽuþ}$!O‡J“nòTK<-?_ˆÄÈKúCâ“ig¬Ù?/Äÿ@×xøD`4ˆûÛ@;tß´ÈgîävU¿’ÅÍw† dU[ÂSòÝÃ66ÕœR¸¤$6–‘GÑz­H"˜©Ü™Ï> .ù]5{Íø.…Q¥[Kr‘¿§À6pô³°4ƒD®*§ë)) ¸ 0 ,ýMpø®um”­ì¹uwQ$<îÍ÷ù%'úƒn¢Þs”î­þDEî_F&Z}[]̳&Dèécãu HCZ/ó,»íœc—ÉŽ%l¨¼Ó]%_ ËçžS†å½´çñR¸ÆsˆLzlq«/œý9!“c%Y¥I¼[–³Ñ­Ì&­X\[+¸’Mõ°¬œ­ÈËÎ ëöêÄëw&Íó6´PNäx¶OžNþh5LŒõ–ÇÍ>û]žt¤ÙÞÑñ꨷/ T›ºf™Ð„­ ±3Øï¡;<.[•ª K4QY…²ÝOE…•ÉDÿÁ”ô«ƒ0áGå¾a¥ avõWC˜®Dœ@>éäâî:eIdwOR¬©ë!¿<Æà\´î©ªùÚ^èSšJÐ ÆÐ¸I¶ÄKÌ>ghë@â­¨ò—Â_ŸÆ·ð+X0Ò™{³DÖ&>lm‹èãK&X'Z‰yöŸô'®êç\x@ˆfTçÃkÌBTÙncýDÞôÂýÁT•”µo…d#›`uÕ(©oã(X+þpsqrA»¬Í¬†ž zBr 4Ô·wÕœáL=C2U£~l£âßþ ÈŸÇÜŒÒÀ<ÆC“ø±$Ö„pߘ\aïZ’ÀUª±¿Ìß0?':A]ªå õŠt .yø²Ýp'«Ç†ôy»†GU4lJéÏMùÝyß1ôЬ:"`>ëÜ!±÷i°1EG{ºV5Ùý/â,Ä`þÿ€ˆÏõÖÔ;ÍŠïNÖ¤ñÑ‚Sf¦Î uüèuå….ý`ö Bsا9™f(ÒÆdÏY׌IŽ»åEq9ûýä7wý†Ž¥ÿätz^ªëîÓ¬Z±³n¹›Ä½«±_6e/0ÛÑù™Ê·2{»ætÈÍãªÆš¢Ý$¬#øò/Šeò–lc¯5+Åô¶»”öBX˜ß§ü¹áñðZ¯ çïGp}žÔd ˜²€GW†!>AÉ:Î%9­2„6U¤Ìèf|&|¦‘l&Eàç“Je†NF 7¨ØCXäd¶Þ‰îû«½Äî¼úbDôždŒ&⢈:.r“Ò‹ï˜âÀ‚ti¶. 0çάµˆ˜·ç­\\xÈ«†ß!oYuG3ëË­eó¥êÄv =R°4´%lÕ# ¥¢i³®>63.m—œj'·>yB懑Jø(¡:Áà»õícäÈá®s ¿ÑxéˆVÐzeú|¼5É÷ž€I–Dç>›6:¬mè³W „í}¯à²lámeZY€â,·½P¦lòa ‹RVË¥­Ü° £yVqGЦh¡×í†]ׯº>h°ÓOV´Õ¡NÖ)Æ Ì!p`뙢1˜•¢Öw>Øë¶ÍR3?0S|À¨qR}Ué8`˳;%|Š{¶a®Hzبi:k¯ÇÝVŠ’]%Юk‹–Ð\מéí® ZÊ/Ð3R¸a_<ªÞ±@¸T¾£ÍtMªRñPFxa)òw>ëñQÈÓ?Um±"­Ch¤¼öÕ-Ü’-ö]Xu%dR "ý0BN³ß«CȘxÒI²]ÿŸr¶¼»­e%í³åÜ@Òp²$$vk¤”/tElI 騺Ü@'Çüv9wŽ:Ä„7áH€“uêö*,¢Õ}¥Û[CæÝ8ݮÜT¿P|WÇz|¿ZS#ìHî%ä#a4*9ÑI*þ^kiâJDkÅáfð`”ðÈýi°xëÐeœ ÿùdÂUxÜxiRFY?8D -l\ËÜÅ›…túÌ%¹$“* {Ìã>Ïj ¡ã¢ŽH!­ Jjæ% 6iécñš¬‰y݇ÒjR‹Ã‚T–ëˆDÙ¦–&¦h‡äªážçB~SøÜÝêËv;ñÍ?W6ƒa¿Á|I‘ÐI&{æJ)©°¢ÙãjåSAVGÓ<› S4ӯ߳˜Ë;PRí²Œñf§kr‰µWm¦ælüJ-:Ì0Œuš!øŸz”úÜ”­BêÈ.ï-bOsY?„VÙ^¿2FW Õ.JêRXª1Ò¢ç.ЈÔKe¡õªÉ°ÇÌñï"r/‡ª–¶"ĉˆTêé0|ƒF‘Ó# ÏIçÐÖ÷ùn™z+ýuëü=•ƒ¹Æ)÷žÎ¶œÁ™ýdª-³hk‚+$sQ1V6û×LÁ$€ô¢*iôrì­°çS=KºW¥æñ%lš¶ÅÛ¿™—À—¾SÔ¯g‹a¡OȺHâ“@GH òS'~ÍCêßfʳEù“Ñ “Œ~Š c˜·ÍË´¶#†Û-!’ËVù?E6ö(}•U,×ß­uÒ£0 d){,§lTfÉ bzOï½T®@¹Z¨›Gú¤Îw9¤Ùé@»ª qH4ÍÉ[å,¨™ën{¡¹’ËX_¡5h}å&ÀJ9•¸ÏΧƒ—6ÿìd7Œ}ËÉõ‰›EŒŽ2£«Zv“WL¯iüÍðž²ò.ì·žˆ¨é@T&ÚL›íMÊPOûÈx[yõ~%!²»‘Ü<×-݇5nøeq9,6aÚ-µ!Àzè‹Òf¯Ôa7Êå«ÚˆïK4|x oBê ŸÃ˜¸%¯¹öœ7'6•£ èY·¥¢þB´— 8üW^ÿc‡†êq¯‘iE ¸\¼aÉ>*pî»b s!ìjÖ!rÕQSO^sŸ§t$üˆw`ßøPwÞ•n­£fëK7M³ýÖ:à‡RPY\UUw>Ø—3È»Ÿ£äEbfŠ7ð]­ÌqÌg7)³ÁlÒš`Y¶}†ô¸A°ýà€Êã2lÿ€ùüæ”G͈Xtáf?P?sgQšÎš4Y1F¹køžK F–”>Ro—<ônm]¿rå„®àø¯{Ál„GÚkåÝN}I,ºH`Hêdçb|\ -üáˆ6²¦P¸´8êÜkAálÌ3G{a4¯"m^W,•ƒKíjñ-Ãg yÑw7ÜI°I± mäµnº-æl§~±,t-~‚žx1d[4\†Í=ßù^χ«Æƒ#­—ÔªíX!ùð(7jÙÎt¥V꺾ڄ0øÂ¨(Ýq|°2¥x£­ç#¸Ó€¥ÞAÚ p]b”èãâõ_|5¢Ï¸7’sKÀ0ü£â{9þƒŽÂY ˆ àÌöFÝ’Ú‚²xi÷›“6AŽÀÿ€a¶·K&nRJlj§û°ú÷Ò§¶Ï—%£®"œÑÁ:ìJ-ÚÚoÛ33:*ª€âFo–Öy¡SÃﱇæDÒˆLsûX±"ÄTÙß»nê âalýxΙjnQÖ&×ãSÁ›gŠ¡)°ŸaÌÌý±Jb '¯[»ÕL€hÑŒÑU½ ½â†‚¶½dó~6´õ†Dç­Øž¶ƒø©Ãa1ýYU±ó+h?=bËÌTÔê'H‡Í¾#‰oHvXµv9b ì}w]Sš¡cõŒÖws€‡öwy5æ€ßSЖԙ]u-–¢Ø¹ÔPêÜ7 |\LzZ@ëþª¡qf’ˆtá1¿¨º1,8Oµe‘Dèñù³ÅkurN—3Am¿0Þpð7ÈWŒý<–§4¶‹%fë–V°|¡d]äé„LoÝèä#°ªòùáýRÙýص\ÐÆ>êõßtÆG§­{T’B±Ï•šÄàïcG²Ü圸^k[Ÿ¼dâä|ß77¹ç,Ú&.¸:N:WgÚlcê¶7Yaïç±õï…~#¾Yi’Àª'§0-½ÎY›­ײÇÎ;¯^sXQˆ_+žÃ./P¨„„C¤¯;©- tA¨LÇŠ ý¼nøŒéòø”SB® Ñï˜ï¿ÉFÚ+$Ï2G<òk $Z@Ji{™š+²üQ -Ò)²ß·0ôAynPÀ» òE‰ð½°ˆ¶wBvp^ñï7 3UÜŠFi}.t‰gBT¹•ÞEýõ™.Bpâ9²$ó ‰ˆÈÿ'"/T/M™L§Núû9&Ërþ¿D8#5褪Âú?>ó9!Øj@¬NØ,‘ ðUú_Ï%$ä¼:n%$¥¾î«h•™ù¥·h»úX~|ê²(QŒ°´ÇŸ›Î+(ãß]61d÷JFþ­ž8ÌMàì…F»çKfJ8üEÒ5sBÚ°J\¬ÜËCW"àcåH®×ÙvÐIA$¾QÒ/‡bï ¨X²Éò åòU‰êC—ÞgNàÊTýêŽï©ìkTP·tÊJÕéaÆÙâXo¡‹……‘³ÞæŸ{0+ lü¨9k: pŠ{‚„›5õà˜cEPÒ,MÞœ¸ÔÆ#À&nßɽÒâ,{Ôh cq–fÈKžZ˜î19Ýáˆ+ØC2A5<ÅûŒË¶Œ­®=i—ò ^”Â$Õ‹Ø$ñ»7å4¦Jl+*sõb8ôÁn±ÕÉ §°Õä”rw'ñ~=#ñ•³‹—teá¡H£z í¨Åˆgx®¾ÕוÀFWÓ:«µ¯¤’€Ëò(1⢧&Þ=øÎVîÒâ¼[N­Hì½qz`öÚ ûPÏú9£«? /–?I¼ÈCmì©>\‘|/8wbóFê-Bq‡¥¸95b4ºc@ñ׈ü[l+ò zâ}†_÷7ûÜ›Y[  *žÁ1§G9”W¡Ò¤£c–]Û‡í„ÒçÍ¿?œˆˆùîú @fFfKNóAï¯põb¹I”Ü/_ƒVh ¾,O깬¾,6`…¥OÈÌ3“ÅÓ” 6qBÆÅ•!ÖL¯Lf)† Fhæ²s×qŒå’có½º:€'Úû°C˜ Û|w áá¼ý_iÖ8æ€qzFº—j0&À‰—=é/þòí‚-<£á©"hm˱V?œ‰¢,;ª—aæ£_þ~¹ÁÂI1;ÖW­ÃçøúV¦zV?Ø&.´¾¤Ö*†,=ó¹çáIÒÙÐÖ6ÏXdÅ9"ŠñCs$½ZÝrÿ€§+ËM»%ñÔÉ4ϸÅ*z…ýlÃ'}‡Ïo¿9‰Œ†­­Ã£ö7¬ôœãÐuTeh~u‚/ÿÚ׃Ãïƒ Ïê Z ®ƒ§* <(@l\ðìö÷B Ë@ÊLà~’î WTÎ{ö°êÓ¼¦žÖ† ØœêÓM¯²aÍ!5Vƒ2ÐÂ>zŽÖÄu!Ä•ìgbÜ\]O`Q‹]ùÛ¾g™‡a ˆU}‡I‡ ‰eßÀH)'‹¯mœ¥Ej=!¤9 Wé Éñêáœè溪Ò÷«·Ôx0l‡¸`áš4ÄêlÜy0½ w(ù—™’W¨ÝÎŽ{K¼?pžØÇ>ÎYåÖcD®Â¦§ºJ~JŽ£å” ¾9)þÚc}zûźÜÑ3·d¦Â#o×mòOÝU´\°ÇéfóMNsÒ9¨—d„Ñ¿CÿP5&¹¯}SSJºìÑW_©3#æ,nW”çpÝç¸P?Ñź2ˆ!ýˆÅ³ŽU"Hš†¥ãå×Ò‚ËÅpbx„á7NžÕ1½o6ýÓÑcŽäR–À`]¹%ÙÈÎ_‹6ä£f™_È`&qø¶{Içõ 6„:½‚ÃP—d=%<¹‡|rMŽÛ¼ÒïN¬÷ýÁ¦±‡Á%FHþ«ñ6r5ƒUf¡ä)üX™ ‰ ….®öW[Ò~‘›éd °’Ñ€fÑ+ô…¼WÓ”iZ=½Ž¢-‘r³0×aú-8Ãß«x¯º®âDai¥âÌqDÑP\Å[Ò¥N‰´J¤ ¯Õ‚ Ô⟖×#rwo©¯Í*ŽŽõÉ?ðïúœñp¼¢-›—ö½^¹³„^7²‰Ùã³ð¶]#§Ú-¥¼T+mÌ*oÏ_YI×µr§ ¶¬½9RŽzÞG¶ô˜îKð—Ã^‘òëœA&ÁÁBªsan‰Æ$yä[J<ÀF戋•ðó:ô€ÿ¼P×fu—’ÞŒ$§6®OÐ ߢ—äY:Q¿âFˆ}e.¼ üF—Žýòæ†Lo:¯ =jÛãÙ¹äµÙ+w ÁYx&×ú”&±Ô´âÓö “>£zŒF‹œ€I8¼%XưŻuPƪÁ]Ý!dâì5t¸¬]r$íV.@3Ç䟀Яû•r9î Ÿðßk`»²#˜ëás‚ ¨ý–‹"ãšÝôý£¬…L=_E­]ÊûïžótÊÆƒS7#ðí›·šÑú‹xàšaŒYòÆ5!õrQ£ÒçUô+ݘo×[–nòÇ; ܤ¡iòõr5§N\ Õÿö}¢žÄEðöù(ÏyËó(“u»Æ57Z¢™Ê¬—ûéç.Ø*þEľêéÒ‡ tÐd)‚¤e# ÛìÀÔkó¡‰EŸ²âúõä½ g0n™ø¢æb‰€fqT0M»ÙÛ©"œåv¸ókM—üâ¼å»Ñ¤7|C‘??ñvù±‹*€Ã^×MÞ³áö¹³`½Zð¾zûÞ†»AËSˆ `M|…U¯ZýDÿž07u?κZçõl^dÅ~ÍžßX>¶„i<`¿.¶†0̃÷]÷㳤QØS«Í|ÁKÎ?c|h*LŸ]úx&t@IJÒmËë¸òç«aÕ ~CkVK§Zû“½Çìÿ"I¥LÓ§àÑ™‘ÊÐP€_¼ÕŽ¡ùž9©ßþoŒƒŸð-KàZ$X¦X{x<£P"E-ëýG¾µGâV-A«üä„gInjÍðZå˜T•y¤E‚ìÀ{Șq^bW»©ë!öBÂLòGªžulˆ(^5’sÇ" U¤xQÿµXÂêj± ÂrE‰.ç¿||Ýñ ³kX~@Y…¢ÝéÂAž­ÐbÐO,€ÁÊÂ\â³8o„×íß`¼Ñм¹Ã(Ÿ/ˆ’_ë£h:Û—cà‘ç.kæp«ý³Cd‡QˆËÄDÂöÞ™3B“GЈWØ[Íb~.3,ÞÎ>ó«Ø÷Ä«H¢Åá-—/H÷-ösõÀ‰C>Áäj·r Éáƒ-DŽÉv”ã©K¯‚ZA-á쌖"˜ÿ¡ÝWˆ )\jT1(~Öœ^7{úÙ6I¶jUÖ ¹vš1­AØÁH§y{â•.QE|V@(.Œºëb7¬±eÅÞ¯Çë¶|7è©å–wÓ~ér‘/o›úA‚›ƒZ¶ƒ I(é{Ü$üÜ`š:à¨ÿûMXÂ`cPÛ½B íiÈnç“\M ¸i¡\ìò¥<<÷6À:Óª·6>è·šŠ3xÊÜÓkÏ]N_¡±rYù·—íóuÉOA†ì/C«cp½– ~FªÁà›Øó]œA'—ê¯TKëéO~p˜.à6¾P5ÕE¼k'°Jk´–iK±›q*M\8ûCä÷­N'ZÏaI\û[+¯4ÁÝñ\ç¾óý*R§KwÿÈïÀ ã´¡™žöKŠusÁCJ‡Z©8‹ÆœàÄþÙ>v¼›V1Zá·4¡‰?æLñmütãÊk;× ú`µBÒÍ›¦æ–hÀ¾ÚBÓÀ”§Y"cOC<16Ñ¡1Mü´í*-Ù­á³¥÷°‹ô!¿zþ_u{€ÎsöJ…EïéŒTòǜݼ̹ýBäÐg*;mù3“È]ä¦~¢µ69ÇJ¯éAH C ¾¬—œaöìUï{R^}ãüÂÙ}QU¿ò£Þ ûžßÛPÀÜ+€¥H^þ°R±ƒÌ‹Dù’m /§ùo57 Ô¦ó;]¶¢ÌeD÷&µlX›nTu9Ïð)ºkå™JMfïß¹ñ¯ÇU¿Ê²>YˆmÉ”v9® ß<¸¡y”‰byQØx§è? ·ÓÛS ÷Xn³ïF³3ÇŸçV‹Uþ§Ò•_þfU¤^>ÿ’Lœ«šÃ”ô8ýÎÂ-¶U9µ,@ Í8§­áûÙêmº2ÚböÊ©Lõ‚XAcG ¦–uQ^Ø®ò™äs¢çFÉÛíö %–k'xÐ12=µÏGAÄ9RiC,¿&JÖýz¡vöת˺hóô¯º/›|K0óQôf¾…²O '®·É úwg§È/·ÃÓM' 5@º¢½ô÷',‰Ãw-ò¸ÕÝŸ£yði—o0Rü?¸jó}<cv,½ò:1V!µ²ÿ5¥§4—m$iuŽi¶÷Y•»¸ßA¥D—L¡{O)Sm_3^CC6¯›%Öë”&RÆo»"f–¥ÕÜ1Èû¾· LéC~túUÿksàn®päˆâ…oÃ.K=ˆà-YþJe’/ÐÖ©T’›sòø¿‚§nŽnD”ͧNûÆ|%Ó—¦Ÿíá1®[åKA¶šÆŠv­ÐbÑÏXÑëûбT}6#1à°,=¬¡ ÛýÉúåÈâ:ΕbŸ,Ö>n|ƒm= ‚ÙB2EOëW ®[7Cä¾y!äËð@Àûh'ž¡ß§éî<œb¿TQëB><;™ƒù4¾GC-Ð6xó¡$ùz¹jŸË?/ÑôŽá]†*ÜDû~tìFØhÏéGâ|]回É‰ÌæX\Êë!ó7À¸ã6&SRˆw³ þ“쥣LÓâ  »ï’œ€&j0ô•™€ *[~ô‰’þÉäú½¯ÃE¸˜^³Ç Ó¬e|¡Øª2™ªË©ØÃ!í¹\[ã!i¬‹Ÿ•x†kNÄRcˆOz¤¤¾cŸáwL*Œl¥q8ÂIŒÎL"Y… -¸Í Çœñš<Àõ1Mˆ¾k™'47Æ Ã¿¢ÿì˳ Ù”Ò ÌÙ_ €œÐÞ²á¥IÓF>û!4Ë%ëó95J²°C h›w¦ÖZ†~Wn:t,\PÞ³Š]Lv~¡¥Ò.‰U{… ez5œ ½²k‚¹Æäƒ0z&\ÔcwìÁJŸf›ì½Só^¾È‡¬L¸Öñ&UH‚Ìxˆ»½ô\ý³µ5îÝʨšC\P¦é6aÖ:Ý Ú ÉH¿¼vò]{\ñÖÊ]½ÿ ‹8ªwÛuè|É_ý¿lÏ6Õª—gŠƒ–/h…€•tRÑ+FcÈG\S6 Óu~Í7zíŸȼ2e„`E‡%mZ4—dÇþ2ñàïu¨Š^Ö ŒtŒþ(Zµí0¯‘˜Fž†k$a¼G6ÿÑŽœ±¤wDC«ù5v¦Î__/M³òñ’vÈ6}Ì屡×ïÞ¶ÊÃa,à"s‚3M³§]¥‰Z–$¯eMUFkiåt]¥½„=èc9öeãÈy¸T:Xx¼+0x†þ8­Ï÷]͇ÛímDRcB}¿ „Øh”‘7fx,BÖ¸¤‰‘KØÌI|Tž+èÝíÿ„cÞý7Ÿ`˜` ÐȪ¤‘HOT^]uɃ–'àÜ&”$˜¯ðŠ(q0îÞ®ùK¯5Öv\ÁÕö3ƒW¿ZQ•ý„¥1Ap×_§ûYð®˜|Y~ï¸h?ÛÕ?rj@à1dßµa!ù¹²ÅkÑYŒ5€ŠJ(Œ@¥EÀöZÔ`ðIBeÇ8m™Xp„M€cçý¯ö±~QJFÙŸ}³£Ócê k(]ªAœu’øœ ÔÜ]n!WÐÏ«áTç,oËqß‘;Gö'$${S&IÉúd!„€\`œÑËØÙTÇ{µ]aìÝ|3€žÝÀú).·)ÊÈ›ïtJSØÀD-ó@zïò˜ï‹q/.¢ÙÅIvå@ÒÕ¨º-°ˆêÙÉmî5XHØ_R꤅]+jç[ÃÐfùA6«lIõµÐ®ƒ±d/»›Vë¶gܬ OóV£ÀfƒÜN¼iŠé¤2™×Ë™ôù8S‰ 9=«[mñ-Î1šº®\w©*$UHSDz/1âx0ièç/¡…(…qÛü‡Ô‚h¨QÙµXh‰#BxxÝ©|_Û#-q°!)ÙO)¸Q§ŽyÚל^ë_xlmÔ¥^E–²æÚ®¨rõ-’˜£FÐ} d)Åç²ì³>ZôEÈ¥ rËpRû/Ì{Õ0#Â÷ŒÝ£ðèÙÔ>Oב&DÁ°-;Bˆ­þG(}R*wQnp‹^µîÄ?`À)QãÍ“ü ~)°*Îd­­¢ymnD½’›.ë‹+¢F£ÐÕ{ÿ¢.>©>9sŹÉ\~,5ч³„ѽ  o0Ê}îÉS¬ŠëµNv€ÁÁ5š_›7ºj·&ëÀ˜iòÅOŒíR*é÷( +Ì©šçÒcôÌ”`ö¬ƒ¤Ó’¼ûÍ= n©×jïæ“Ø4‚©Ñ3 ÑÈTæ<¯ù$«’L&ÁådR$‚6| pG΀õ¿'x˜ü€ü˜_h­Ú Þ?ÜŽŠû_—§ëL ”Z›«z9°Ýˆ¨l¿¯Jbp {¸;e#‡D%Ç_F‡ÐÉD{ãzUý±¢Qõ݇ö<™©,BîT|êt+˜W#~\Æ=® H ·`8æ/ky>f-öÞ&'% —ª »b;Ý÷>³HÀÜ@›aÍùJÌ–ª8xò'<*ôoâ΋‡ˆ½ŸÖþ»Ó¼ö–jô¨Îb¬97Ô麯¯”}Ù“)ܳ4¯!ruÙ`)öáKÓè K¥‘ïý™6„û®ŠnŸPñªÁ§­Çã!VŸÏâAîiµQ0s›t£ÞUùåw†­|­ñ'¹³/ixa|›t‰PûŽV¸gÚúxe¼±™¥ÜøçµèîVC [4{P¤s°ø8T/¿†—ѱ*3Mã@ج€¾¹J`@3>öÿŒÑD£ƒ‡Ä¶ô*¤^ªkÓ5X廑w„.»ÛKu[É#€Š÷“TºÊÄv¯Ï‘ aÐtÓÞ·+oú/åOÕˆpeÝd°éfšúòÙ. [þàbïV»P©LÐVÿróºX²QÎp 3p0>ªû­þ;hZ96úN;R0›R,$&¼w쨕Å3eBâÛ¢Pë™D¬ñãl¯´æò—`ö0+V6±‹Mœï㹪“äüoÞ÷mþ³É‰uȯjV¹ UDžÌ%îë± Î»£yY€4ö=~ò¦§v!QTHtÍ‹±â‰"µ¢Ug˱ØÇÇæÇÐ씞}·¾NsŽ hâî²€[ ,±O‘z‚Ô¡Q±j+{SäÒ9pÞà}çÇ+üS%³Ú5"O+c´[Lðó´b5%CÀc-.!8ô®x¦q8&›kÂMzÉ ÕÇ%6Û y@ÕÐôÀaˆíý¸Üí¸ÝÄ9{*Éø´zêÈ?}˜“Òµ ,¾Ý÷uetá€k31’·i/:´Éàòû |ª´Oz”¿. Võ '1D­tç1 #¸ÀøDˆþGç¨D‘ø®÷Ä1Ç!XŠm>Ö7Á'F:õùÚ0ƒ7Üž¼è\¯,Ì‚_–„·« ‰tÛ?&ןI%„ðsÀu9ÑO›¼Í} ÂVyi/MðýŠ™ !iPŸ‘´çÉ×Ï™µ~»ye½ÃˆÞ&}kŒr€û§ÖÆ$Õî€La¥K¦5ê–BØŽTÿ%¢‡yø3<¦ªG–ÿ}øÑ³C1mP“£2%Ö¢èž\ª¶—ýN_dÐé·µŒKŽy›´i=ò«ä‹*mMæ'gpÇl¸–Œü4Ž£+y“2&ÝqûÏ8×NXY‹<çnÌ{˰jÂêô+Ù]÷îñ)FÞ‚€ ½äŒÕ€1óï·íЊÇ+¯>ŸÂôj_8"ü¸¼æÙò,ɳç«7õk½ÿɈëµF`ÌÚ+|ƒ¦qŠE‚©Óƒ µžºùñn¤õ«²"³¥#2vÁo¹¡K-ðÙ¢tèzA-úácË4êë1XÃhk:uµÒ4‹–¨é–´‹£Ÿž­W楖}>ŒD°å‰NI\¥º)+êñ#]ûÀàŽ›Ý?[›€‰ç;§ûë¯0õ—®Ö øØâ­¤îu–aЛ²Á_P<ýënê_½îÕ? ƒ([1’€4ah‘ÿ§k„¯w¯Ý¶Ñz S2¤7\‡L"X™{z,K·Æ;cæ]Y‡êIž[¸ŒÚ F4nv„®€c~y!^S—@g‰]P`;AgôØÏQ0®} Iìx<àžž VŸÍÅãOàïówáRÓ׿+°ïäW6P ‚Â…Nºð‰è^O)¨}"ín´Nh¤²i+65ÑçÉíHe«ÕŒÄ?å‘‹…Àm3£êR@°+dÁãU5¶½TN¸äy ™9èXÙ_¥Kq_õÍVwàðE?ZgçPd¿Tsö4Ì$¡ôtÓ(U}ÀûIÊi™›DúÇK)ÜšÈ Ä:ÕƒcO¯½Ÿ¤ªX–~H ;ð¿sÒT/qC¯hDŒ°óJ+6.É”Æ.èYª—¯ËÏKÐ<™Kƒ ù>–ÎŽa!»Ïä¿ëœÌ ½ƒ´\såÇÖV¨'•|–©aVÆ?!¹º£Ÿo2íRæ˜àqÍ÷Ýtï•o*qš;[Ó„YaÃWQõ5Áz%0 ò4væ¨UE¬ïAÎ=]§âoøë I¨ }[¼RI'ÈÎá6©¢1kN*«uýΰ L#%L?å~¦>¬)€‘|­¹w:O'«QØ‚ˆÃY°G‘í<—0(½µÚÔü ¹Ö¯wÇÑ”A(÷È%hyûÈDÑîTªWçaOp‹{²˜kÕN³4»rœ¢YP—U¦½è:‚ Ãù§þvu ››¤éËõð~PËí¶½+z„Ö‘J_ˆ,IÝ…ß猡o"îË*O›`Ú×úí¬Ÿ!ƒJ2‹:ò;ÞBºÇG¡æÀ /æÇ[¸KÇä ™ÀK$°¨ˆO­È¶jé]åªÁ0™ë4†+=mƒ9ƒG Y×@àe¼Åö:®Þ²t™©)îV½ß{£É´ýN^LEIûé­Á/M#à=ã¤7a 7Öe¹”ŽÚ_êÑk¢`ÎŒªO"§l²oJ²zœc·‰ ¿+ÅáUÿ7P›” ÊWRó¬ôôìÒ z—;Dתж„äÓ¤æÁLI”éÀ Ú§ ÇXça0;òt?¿åYáa§2ÕÛÅñTßVp‹4E‘ai³ˆ´¦,Isv º1UŽ]A<‡Ts å„§ü„U‘6DIm_žpªÅùÇZ{¢.*o1äpâT¯"Ú@üP⻄UÐçCm3Tßf6VtøìwY‡3á²ê/ ¢U=A6ºD§Yâ0¸…J)'ÒyQ¼:ì=© Ä ãt¹«žA |‘ËßI=.øYßË_ùšþÙJ¡Ù­Úéö•=æA—­ÞÍ_³´ŒÕW‘!Û¾„úœŸÂËR`/St£ê¦„$k­+ äwNy¸iF6b·8òƒÆq™ÉѤÃ,{Pp@ÆoÞ–b4û²×X¡´cÞàR¹jw˜öBt‹—Ïä1¼·ØÝ+bx­­ÄgI 7:sÒ,äÕE}Õeš×:TÚ¯ªýý7ÉpƒñúMFä ì¤æîÄŽ#z ³Ñ—ŠS|P´«üžÀf“ðîä¢=Ò¢}nJBE‰&Bú§Ê×ⲫˬÃC‡|XŸŸñ'Fm Á‹‘’´>@OWŽ8qzh¦ô?ÞÙæ ptN@÷”®»Ã_Ù¼|аB0,‘ÞSíFä:úiZ­o]ò YÚ-æw2þ‹]¢}–~ÒÎØpš·ûËÖ÷u 3ü-®x£~±\³˜ï´T^€ùgÓÆðT¡r¦»y˰òûewµj3Ë­‰­fÝ•¼íºÞ­ŠivÿŒy‡Yb7¨^oÓì¥c( w9wk;€° !š]ÏVÁ¡b·ã¶òæQÑ |2:áZ¹”£9tùÚ)D©(b¥=èMæ#oV=ícXÚŸHdä$ís­ì^牄êm€‹Úß΋ñ¡—ŸäcÐÞ1JfHvù óÙú0 -Í“ ’{:\¼þ^²Ž*0ÒÎ?~ži„rÏ££ ´fÞ—º²§×òﯞÜWÓ~®‚J‡ t|Ë"÷Eeüçää~xѸ=ÕxŽùU´ ÙøŠ÷0ĬiÍ›”›„ä;õc`@ݪÜäAµf”ëÁ(Õpî“°$á_‹°{‚©l²…@h6Y$ ÷ç^ XîC«b1`|× òK–>$%FäòuhMulصö& H(Y+}Ò·#`R3hbåiõ^!D‡fýJ4Ð5{ÝCÝÝ(4áKpµJŒj­ñ¾ëbLºÄPEl¼„¡Ý>=V²··J[›aøÏݸžIv<|è™!J‡ÑøFŸ°x/ÌÕ\ÊOˆ 7H…O_Ò}p8¾\Z½&ëNÔãß9«Rgtˆ*¡Ì…Ç%¿Á¼¿´/s˜ÍT© dQE—Z;Ëi =©! Ò6ä•Fá¦ÂŸÒzݺXÝg‘r·ó?ÀšÎZæ<=ÒÍÉÚœ9%öœFüTl´:Ÿ>_Ëë{·*¶«m3xõÏÙ…'s€»¦‘ãe¡˜2Ò¾äxþg^­4£$Tƒª2´­Pi¿ÙÞãL×PãônXt¼©ÇRh øè @àµf¹"?Åù°äZ݇¿ƒ»nêjΔ¯ÔÙ s…ã¡Þv¾vÑ è.j#QHY͇Êã ÈÝê*h"ÌÑÓÖ›ääÛNj™ähdݼk†›úDû—cìfB¼?°cá¯L/óÌDµ{줅”Ue·ÿCMTÉïë,z_ýü7¬öž#¡¼Ìam{sŽU'´íÎýàhͼƒˆ¡[l©Àð›€ã= ×ú©‹¸î‡G„+ÿŸ†lÈ%i¯ç!JŽâOl`zŒöÄ’R£”opýú}ÑÏfõbLMž„`¼º»£ž‘À`l>Õ"~¥©×ôSU­(N·Ò¿ ™,NøÞÄ„×d‹ÄùšN0ÄÐZ¿E¼o>7DZs*¤r]ñ)ÔŸIߡ 4­õºÆóÚñTÅöwá£ØK­@Uj2¿2=5´ß4wk áÏv¸)ÁÏ.ä znfŸ²à”wpÓ—Ì ÿýsœbKZŠx)óäÞL^žPóÑö»zý’ѽëTA¿ºùo|â$´G–þý{]üI‡°CöÚ?Ÿ-{­A¼µbó¦Óé=][L;‰êÉ7Iãƒrº‚½v¸þ¬U)ñ’ ·¯f1V®¡M¤ÓÁð´³êè‹=Ô^¦q XµQ²?¬N‘ zCIìX+9g6aî„Y•Å#î}a_{õ tz®mRI½ãìfØÅhGqŽ8'Ȇb=x‰õê9— $À4þ¹ÿÕ%dÎü(½úØOÝ1¹èFfªi䣜IÕ*FÌöšvq¸d®˜o– Á] àUa%œ@¥4 XDd-?4öÚeþ~8S¤¸ €Gü›‹YcdèÝž¬ê>ùÞˆë3)¬å|ñgœžA–sl¥Õ8v‘›öÑ:2Z‡_Nûï1¾q˜ŸÏ-"ƒE6<¥Ëp6ÿvc I”}¾…}Ð}ÎKL‘t™íXéz¦ƒ«'+z3‹8hPÝöÆeód6y#Ë) HÛ¶_œše=ìCø—³šÌÊëH'gΉ-ˆ'*þ JÙDmÝÚ<ƒÚÿ"(wŠÑ{/È)à]/ýÍaÿŒ<:}½ÐT?Ý'Œvàª8} uøêòXñõE©ªø;‡X_€3/rzÒ·-ÖM5y½(iÈLTÊy"Bì½tËåCEbÒr±˜Î<ÒNVúºÃì!Ù½|.xê Òc#k«Ël˘ô_ó÷ê( u²0))µÔä<¬¹âÇé»Kô¬!1N0¾PÓ”Hj§+Q³ß!—ÿJnz*Eà[¿Ö DžR‹®}.bÙÙ”GDŽÛ]uÊ8AÆ /:1)`¶¤ÝŸ,sÙ·$Øç)ÒÒÍÌY Îgêààø·Rª@²d¥éÒ(y{™T\©ë¹ÎvSüQu<â<ãX“oˆçö½>ÜÚÜ•‘æÈø\è>¡ðŽ2nüg‰¯e:c]ã vó¯ØQ ÒäHe²iìÈ28 Á/Ölªm×$TpfîCVIUPh#£Ôb ›¨ÑÈ3J¿9 ã‡Ò÷zJ•!ùåø Ú W*!].Áƒãµìpˆ‚º0PfDt#¨Ý/ìµ+7cZ`´q“ˆ|–ùûhªàÚÓU¨“(Ôš`v—i*…”} V2®e˜Hܨ6¢Ђé%°pºÎu\ENÿÜ;éÌhá2”ö1®¬íæ*½ê–íÈö:wM‹¶íØÎ¸@p‘‰u+î׫æˆ7G*š=ŠYe>ÝQgâ\–Ðrï*JÑŽ…¯…8’Ç mÛ”yÇvJyã¼Ã e©K[Y¢2ÎÃN¯ÿmg¬ø= ~%F6”æ”˜Þ –Ë"û78ÔÝë[wšümÐlQRYÝö´M…¿Å hÅ-”ÁÕºQ“iÁSoÈ'ìòA”H0|§W ÑÊuSç7î3o–fê•À¤'»µ‹¬F‹fÎiµß\9í1¨óéÏØ9ƒÓš=Nd+\="ú1â&K¹¸LBAM­O ¦# žº€&‘¢ö ÔÐí‘K®åH%õªú•gCšR°BB2™¢l$çQ5Ïé;=Nc\±ôj ‰gÕ©neÅäò#2º.á›ZÚâb(l>AtÇ&’7{EÍ›VÊñ%JŠœq§‰þ[q²?ëd]Î8ò|‹Ô]:pÜÑ¥©)f1GȈãŽïu.˜ÌõµÔZÁ0ýrL{÷ð2^w#Äþ}‹×ñ0™k‡èºÃ?_ŒÛ±Å€‚¾›™Ndè–Û‡Ð0Ä2÷ƒt ø« –¸i¹‡ð‰nŠßÕ:ÆÄ†r@HÝʦtY{^,C˜ÂQ¤,<1ˆAeZh;L%{  .<9GŠ­°²p#†J¢íR%<>FöäÉI¢,­„E4T¾A`*ÊP™ä ”ìêªÌ¿ €¬!ªÆÄ?ù®ÂI w,g¸”SÒ;T£‘ÁAçeÇÉjô­6É£qâIó•H^Åäx‡NQÒ«M2o“0—wÈêâIû.ŠÝ¡¬ p¸§Ucw}\âð<׳¤‘€Sÿͳ¸­uÅ+z§Õ§±pò"öÑE‘™ñÓ:J¹)!ô¤¤€qQ¶î¾Õ†Û×ÞÉÇ+º1^c0CG‰_nÌÆZ°~8“´3B؃ñòñv€µ>7SW— ˆ BàÛ©¥R·¼G=n™ØCr†“ÓÐ3c%.kÇÝá<–Zî5vú@ÅÊB&uWB½ÓxÖ¦…-™äïHÚö³ú} xžç2táeÎæJuäøp ìÅ7(ÉÁ⫾äô±ÆÀx=y)3ïÚ»à[u§ê»ÖæÜB9‹€jpSúø7­šŠN! za]âçirýÛNèR<ásl€ÈÅ{,IÅ/%T«Û”âc½vɽ\.ÅQÕz5uC•"Šh…' @Øvî/?{?”—4wQÈØ©®¯€a'¸'û5¦Bðï3¬e¨ ÆÍ—ý¯_ÛƒY…f¦ªÚÿQµˆBBnê»ífˆ‡¿Ÿ¹õø#°v®±€Í?©£† ÁT—t`}°fš 鱪–Ç]I\îÒµú0öEÍ® §ïìã P•n°d aC9J‡Ï:°‡gœHIñÉ'µ1vAßuíÍõöÇŒŸïjÊökÌV9fS›šžK›þÚ_e­'eSrö;™ˆÍ Ú[n Ð öô]ÙúÄaÆÌt9˜ˆÜ65R€Ê™1ìªm/D˜É a!"èA€¸y*uEÞêXKŤ?4 8Õt!’+æ…A·½7Üêæ÷ŸMÀ\t‹‡¨ˆ`.‘ó]¬Ëÿá¸Àx"•Ù+¡æÚ×ÂLÌ&äs•¼[/8/i4ZéÒô‰;{`Š.Záê–¡¿‹é¡é*E“ן‡«OªpzlvdžúOg.%¥Q5w{í6ϵÿæb*ºZóGõƒÑ·)ügQÃâ·ÿ ;Þ˜´TÇ$÷Ó{¶]U¤ ­Z¨“˜‚^ùtª¬>"§ÖÀ|SªVXÀFC"Z6¸% 07!?o&Òƒ=2È®E2’óˆ/².Ôa]’‚q%²¨ølj{ä)Š!ă}‹sxŽ> …Û‚ÓG{_`4è·òB g`2Ì:3“ÝâY² 4q#²o3­Áyë3$jóo÷ûÇ;ü0v¸µ6ƒÚÔ=†£Ê¥Î FÝÊd;nå]aô¡—c´0w ¶wîÍ]”Øi`u'‚®†5&¬ÒÏr8ÃØ~VÁCÏÂu@è<¡–£pù^|¹vD¯sþgÆc´€MêÅä(ø´š‡²œÓmÀ5ÙÐ.ê Ðüž@2Ah*Êk3EÁ3¥ ½$9×âÎ7bq;WÒÒÙ©¤7¶ÀJ·(¯â,eÓS»Vµ;ØOÞbÍ L³ëÖ-† 5ÂÞšU_rñD'Nýü Ä)î é\ ‰9á'GP˃6£‘’YŒfÊ%ŒÒíô~Ož9\ÆQÝÚ>w*üHÞÓéØÄß-þ¯¹¦£:nvý°oÖJøQ±œ(ü¢ºÊN°,ªtëæÜdªU;YT¤-'<òŒ*ö­';ÌÿsFwÒʰ†9aÇVû&}î$IŸUÐþØhÙ›§Ëêš—~ÌML&®43b¶‘."¨`o1;pK?´ØÏžŸ²4!Œ\Ýü!Ôg5;ôØ[$gRvrýÊz—ÝREˆà(ˆf!íϙ߽zqÙžœ÷y¸.N{:×`ûž•™;ªìqˆsÕyÖ›ƒàû8,tQ롈cöú¬.»óôÿù¾(%T²(Ý[`ñIRt ø÷S.¼t„nÊ$=(À¸ÏÓ5ääü…ZÀ;"¼óR¾´!¹ÜTÈÅ´¯MOG¥‰ü²2âÂ6‚Fç<{4©>“4{4ÄkA©ŸúQqX9I-ý]àN'"¨e ½½6t›&(]CIV ޗȬrŸ¹)ìtå׆Ín Ž¾ >_$|RòÅïûBB_Mvpowפ•ÞÚM’o¤fé¾tQi³}^"×É}ýYêóD…n çÿ¯Zó턨֬Ðk˜š«ýu¿‡ÕÈÚûØ”éëµ…á!¦îS†åžà›†gä  ô»H¹íǺt ]Éê³@×þµL\_¿b,oÎ -³žÌ‚Èw:Þú'7yÎ%Aˆš¡×#ñ²–Õaäl˜:ïoÖ%ÿ‡ÆD³3¬4i ÚÑÂ@ݺ;«V–aŠÃìÓ–°…êS‘³K ¿“HÔÎRºÕ›/Šj":™ô„ dºµÀË.¡ë2›¸˜òº³ò3¤ÿY4Ž_W¸º_>rÅÁj·†öŸÅÚw¾ûŽg˜ Š5Ö¾ã NG;ß!BêjÉCϾeZô{Â9P0Sd‰fåB0Œ¢¤¬ ZšPÓÄè/ÅÝxá¡C!­‡' ·h?ãŽõUÁ© 0?e…#äÿ(Ò‘õÎUËOAÁŒ1©vçµ[õÌ/+Æ€UÅý§'èó$Ù‚6 /¼5ú Œy ž=PcÅáë«v áä}¾Iý5¬9÷z…¹á°Ý=ª—R^—ëßÇ »IéÄÜ pò7” ꣸¦æ-Ôn͉ÆëD××h«ÌÐòúH š•R…B*1ZÆtH“ƾë/ÍD1vÞ§ìòsh–[‘ðŒˆF†éàœ(&éŽÄQ»æq$òSžÄÓ‰˜&ÊsßË€GàÖFË-‡¡%X@¶Ž}ä¯cèÂ!ú˜ùæù{g>_=dIñßêè³¼'o?É#B•Š]¦j\Áž›¬Oïv¬°P¸öÎåEè]ƒ¯ps‹†5&ò†¾Ÿâ<$@î#yi—££2{ó°©°Y…YjâF» äìär"4|]èmí1P£5kA7É.gCÞÀájÈ¿^2²_þäZé¶@ã¶‹ÜíîÏ^H0$ÁŽEfjÝ ¤ì ¼#‰ì ` mýVˆ:òèŸê-¿ák‚Û&@:V€´à˜?Œ˜|®¥Äމ#¯¶ Òÿ² Õ++bu·~Ô¶Ÿºª|CëüäÅ#^Gvè;Wz§Ï­È™¤J¸mÏ<³Ž‰~®³æôþ$W‰³ëå.MÛð+±Ñ ¤^VªrÚkƒwúÇ™©Y¾íŠ'JV³Zðžt±'yÍ<šS9p™Àî[Âú¯1{Q>ù±]¨çƒÈe_jž³3øñšââO™Û&hð+ušf)6‘)õTžŠzª™ÔÐÑJ>¹ÌÂðœ·Ê¦§Áé:bú¾é·:1¡ô¯âÚþÀõgj°f†|BY§špê/Ýkõ{“3fÞý:4ê>@„PlÑÉi ¸‘E»öJj2,o2m÷%ÍÀ²–ÛÄ\¾,H&ªtiiãÐ_Bhíf1!Ázbf¨©cN)‘›jl,þõ¯‘¤À,N»ñ&¸3ò_™Á³ÏÍBì 0ÕÆìï8ÛG;ù2Èߣ-7iRÒqç Þ©±(n»~êC;ØŽ¿M{èxÀ ¼B6¬?$°pUUÎ"v-ç7ów `«_mGŽ29ëŒïï+úáSI)!ë“5ä8Fý–ÞNmfÈþšQßçáêëâÕŽ<` ,¢y~ N ÙáÑ‘Õ8K|Ü+5ò—dé†ÿÂ7â KF¼ ösëªÖqͳ9WÖüKÐ$GÉfà%Y® žë©†‰»±˜t¨En¶Z)_<ª0‰kP"H‰÷Ù ¤å¦S* ¨P-§îß`WšŠáVØ'nàò¬Ø¶”~)ðˆR?ÚQH—#VÙT\£‰™¬ó¡‡ëÞØcgrÙùúooUÀ#>™% 4}Ë+üý9AÓ.È-¼‡ÐÍ`xJ½ðÚ/sˆ*R€ïW8}bЏ2.òãADý3ȯœ²úâÜö}÷Ås5Û{üÅ:ôã ¾ÂÒ#½œÔ‘Ä8+\‚‘¼hŸ·¿rm'¥)31”…›šBƒÏºQä ôP‰LÿÚ·P•î¢Æï£=ÒJÇ,ãÀ™»ðnzíìäÊoÒÚêĬ6vºj¤;Â͇ҿ´…NU¤¹&°Õ¨¼ÿÉ“ãs@ûl6é3b·7{J–ÐyU^ rãqWjZ-B7Ç zú†ƒŠ äuJ£§ ? íUcµùùG–dzeZÌ–º‡—oU²‰¬ Çõײ¢ŽT(;—xš ÅA²èÔ|ÄÒ]"9á:_ÒýE¾Ë¸kœ8)-¡©ö¦eª¤ýu1€ÒÛËmN|ÓwßBøÀú¤ùÿ†|ûþÉõ>Ð7ª9Þðà¯Çƒ“g§dá8òÝée(ö6ñ€M$%NH7kÓR~ëâ»'#iLRÄV-ãêü 11ÞF*ZÞ]×› –ó(QLêñ¶9Qä÷„ËÒù±é1ˆ–+'Èžgo)“šh3 Ý–\õT|‚ ©Ñƒ¤7YÀõÚK͹’¨'|\ßËD¡We|ЯèÞyïj³ŠlËë%Zö?¯µx÷ªVζˆ$Ëp˹‡·Ý@»Ãá]Ôtø•- £ZÿÐ1µ÷°»¤»|•v ¹‹q–±‚Í~•Þ4^Î˸£ª‡$ñ5Ͼ„¢Ëž~å5K%;«¤î™¸;ûa@TÁF©º6}!¯?D!4Ù÷o»i§5ÉãïMœñÆ’+ª¡*:. $ñ¼“û¸ZÂ{xå„FjÊÔ|椇;¿Y¦©Á‹CSÏÚ½øèÓª£à^›hñæ¿ ôì¯g?D/¼:1Q•a*×pÜ4…*[^ ¬Â@ÿú]øteɼ9׈§s¦*ªÑ?³k{HëŸ&¯7÷Ë`šp‡Âì!'ê  “ÍWB° Ht€ñv’Þ qùh8åùlb€t!pú:uR…[†w;Ÿ)y»WBõäU„aØ›N%¤býôŠt1 éÜ1eŽÿ'²I-èV•Ã9«&×À5>æ'ëvæ€&òÔQÇþöƒcÉ‚àô%®Š—´Ÿ: I£"(sMLy+AFþÝ{7Bv“0o9en«Æ*3“r↺¾’¼t¥@qblPê” ¾KHR'Ômò‹+53Õ&{ЇC-L(ÔÇÛúBZI"œ5N¹!Õä:÷ Û©™ƒ…TàÏÅY !ÛãCAwý.EVþRÌÑŒöBV70“Þb¸G3QªdOH¼Šñ‰ÄZr\ ‹u7íªRR—UÄ}GDzNœL˜xWÚ´ XR]E0ý@ %:‚¿^Ð̈@™â$| bÚ{Ì*PÝ…ZXlyZXá¸4]¥Û“²áheŸ¹ÆÊn¬Â³u féýqKØ´Çxr9ÕegœNt öà»È;ÛEºÚ‹fž„ê1ö•Hç'ô¢{ó¹„:ªéã·F°“aXùü-*¤ˆ£/5}ÇlRÕÒï)bƒjÅ©ÎÞ6qê!üÁÛM`Œêã/È2êt‰GòQ¢!æÄSœÌb^|¦m—/)†]¹ƒÒœ„ÐljÀ(€Cu Ð«%=/3©ÎoU==“âf¸“IÝÈÛö‘¸DñgÝÖi>îtzvj¾?–³XÍ4¡y§;ù{[a>µ5æL=σ¾×Øj§ÎÿG7¹¤¢û¶lÙå¬ãˆOgˆk*l06mFÉÊ3®¶.RטOàÑÆØ†JÝú¦èÒ㕊.ýþ@èjsÁ–øÆEx$Þ¬1ÍÈàü½À<˜Ž1k‹˜R=RÃ+w°ÈµæVwqKþžòý»hŒ¥yšóÝB3tNWˆTÇ2g?Ízü1[H±gÉ–7<ùTt-¸[üڥÿqn¹r—Vt[—ËŒêü:~*ŽvYhæËË$̹ÙÂÜa+DR¾ª3ùs¹â) Ðl½È˜Ö4‹¢n¾_3.œK=C…/ ô×€mö6Kmã¥ø)ܹ5¶ï½¯ÃÃ] º‹‰´þ©eî/Žøÿ TþÞŽa­V tÃöëÚ·1‡ ˜ù[Gt%5 5™[Ô¤SÄ€dþ7{ìÒ9ç‰f Óu2€ËÚ 1ù~øTj¾Ý·`&¸Þ`iþû´^³´ñÑåµÕ]`wÛ%ž£° v¥PI?ÞnrºŒH£]‘6†Ïhw2æ–jAð¸ääœÄ^$‰Â¥‚Å£=ä…÷ ¬÷xÖ¥^¥ó騆úþå)¶½ú¥sÄR2!ž\@}çbM_W¡å^JDsÒªÎ$«Z^uú¬ƒzôоe¦Â ¨AóEŽ:Wµþÿ,S Æ>hIô}ÁæÝš˜i`w[³èêÓPzpüÃÏU¢³#JIÖÐîI¹ú0WÐÜ¡ a¡y‹’l?ìo€ÝVá*{ð¸+î þ Úª¼äRˆ3†;ªo(Íwû—ûeã-øMK…­L <Ü‘AµJk4ÕX7>»iï7¡x,8º0?qšc·‚ ŸŠuêâ¼JD`Idi3ò×— â]½–´»‹Æ;±?0*û#.KìØ.€©bHŽNƒ_‘iO\i ’=ðŠQ°\£íÈÈñÓ&}7Ò%x“Ôn-Ŧ3òNmÂï¼zxÕTÉIÒãó0L^+$ $n^¯FµÛÌ-Øy»êóS·€œb½žÆÆL¼.#Ù ¥3G±6}LUOõÚúõO‚‰‡©þÔñÓúàªC8 W³¹ÖÒ#M¹ÏE4 ¥|`óbšq¡[~ŠÏîÕv¢õ[ø2^$Èž<ʤý¤ ¨zèfï%ìá´ÇPÓÃ"ávB°)%¡ÂõgžÁÀá%‰A8år3´¥´6ݧ¶×Õý4‰±Íc4‡§›^WFu¤¢6>kYusöƒ•6=÷F¶oyX1~X%OÙTšëy $jœ/ÊÒf¤Åúœƒ›*8´fÀyZÎ|Þ(“†^žnµÕ஥ivا\× âaZD}ßf®»v5ÚF¯¤ßºûäz¤ÁUø•Â[Š*„·¶$ïB0”îÕ| Ž˜h¿úlÚu¿ËpãrÅ\×´bgÈhId:*·m¸’>Uy>>¥G šRWëx­Ëd¶Š®0ž³I“0R »n¥lül3”ÍÑüU5šë&*„Å© r6Ö…±é¥(µPßðÆX„ïóì®7aéðÝy†‰™bŸgŠWJ‘jÙˆ¡o*¨TÇzÄv€žÑ륉¿Š'TCÏjI#[f&8vÂ6·D²:ç¥;ªUDÂDØd¢âó˜JÙþó¥SVÚ}¬Qìµ^3ìĶìfÝ´hØ/X–sï‡Ý'öpÓ>sÓ¡{ÃÿìS—5:toäõ„§ÜªãjM’ë”ÙX•Žª[øÖ­ç"ž{}åö¸iղ˅ä©à¤ÛðAšÝaævÕ“€›UÌé™ä~¾Ê¾z>é±JÚ³?ÄÅf% Csø@g>>Ea¶yx„¬T¸% YëD˜è´¶Øùpí’ ™nBÝišÚ¸ú†jÇ*àQ ÙóLÉÛñÓߟíclÐC=-U?ô©‰Á±¢\4œ £îQÎ 7·‘BÚá6=“ØXY‹#Èš¤‡ß©ÔO‰“N]†ZG—cÛàÑ¡¥èЀvAÎéµ7>«: ËÙì]%ͧq¹·XWú¨n—ÙƒA/™75¨þ\ïCïµÅ®„ÛÁlk, ïcóó§v‚¨^þ™ðKtghZýÇÀMŒd¢Ö&uI‰*çÇY3…ü“§<sd%Ç±Ò ôÊwàžC^Yl˜ÆÚü)c^¨V-p6å*OœðèVÐÐÛÞYO±;©z=!ƒŸ™á<ãøI•¢bµc°²gF …Y’ìÒ}{yŽ ŽýP·qÙà´Éˆå„º·ùÌÃ~¡T8÷U'¢ÊLí ŽcšvNš]~ÖTôs5T4JòöÍP¾ì§+K‘ ®‡¾Ï]èÝh½QrÍ¥ƒ¸«z.*ï7=uiðn Ljh­Ãi  ±¿?²m r˜TW#h?s˜s| æ³\»ád–ê¯R•>Yú9;fÈ€ãɆ û­ïôN'ýâ5âd’™fƒí6‰š×w­®²8hpÕl-µþg §ÉÖÙ9cÁ¿ÓZ 901v±ÐÅD™…Œdš «ßDZn~ž;*üµó Øÿ÷2.=³jcX‹Û‚²mMëL缕Ur¿pv}vë]èІM\ åna÷¸¬–{3”IXBˆ”Ì[Ñ䬉Ü5ùi¬úÉïA“½ ]¡òNè?“ĘäôûFZ Kðbl]™Ã…ËWØ'•C¾³XŸsçP•_Rè©*sŠŽ(},\ÌM}+ @l­|È‚r”»æ4¯ÞÃKV¹Ï+µë’Átr-ú:k¨þo6RÊòÍ36:·œRùvüÒ™†ì?E„{ƒáDŒÄ}ÒöÄÁï{PÐe`ùt¸k<ZÑþ‹MaðηõÔ5FíÍX|‰û=ë_"‚ż ²ÝD©Òç›uÁ“†È±ynꫳ(ã*Kíç`QS íÇ¿ù¢HJÑ<ú˜‹·7Z+ñ<ÇRB®5¯­öeÝìêœçA>^èâÂæ°Ó?A FѱæŽCÄmÅüZ¾)•AlX=˜ =‡ Œ>±\:Œ¼ëcçÌä¬pNzœWx‚ÊÇHR ŒäšÛ« 7žç:_ì¯ÂÔýÊ׬œ¸ÇYóÌ\@¥úp¹Qf×¢$5ðU#û/¢s1ÒÁÉ—íðÏçs1#Ð} Ü¥d¶fKå³w¾Èu’å÷¤¯K‡±«InÈøñ*»^ð\>&•_™Iø)á‰GNDÖ›Oøv¼/{×ä3ôä”kË“¸ åe{º‹vÁ(N„4ÊgƒŠÞƒZ@lL›ÁÓ`G…oæœ ñú÷[ôa¯¯ŽI޶*k4Ëu—wœÔf‹þ™ý1颅¹*u™Eø¶Ä˜C:‹lºU0Êõ÷¿8ó4ûóû'\§‚fI†™ »¿jÌK°X›·mÉ%£°µôj~W•Ÿ»©X×#Ö“¦$¤•BØ4J× -T*×ðàù,…¦qµ—Å×ÂU©šóJªÕÍLCwbwn$œ”Œ-Þ\ÀÃf1ï²±!Õû¿€ÙT3¥€Ÿ•Fe͸I‡TK"—qðrN/­,ÅÎÝYœºÕ Û¼¡eŸ õNݳ%ÁDÔ¢Ëű´¡—Œ„"¨¤ÊÊMßc7ÎsT.…™ÑìeŽæ‘hœH*\–Z°á7“« b—í ŠñÜÓÙ8¶BHÌsÆ€³FÒÖï z—¦¹ö2·púW´—a ª-å\h††›ö ÿ‹Í°ö5aýŒ)˜õÈzn’,(ˆï8h“Ô,õ[™–G‹¶^ ~÷šd¥*¾$Å€A<ލr£¦ˆ²d|ׯnN7½r÷[úã6} äGÁ4ñGº÷T5žâñõÛi=‚–t°Æ>é•¿§³Xö’¥ ‹.áY "ÐTé2yò³”§­VRòŒ¨o¤&}2n‚5uD0K°Œµ¸!gXbÑ×-k/Q»ñáå* €ãÉÏÿJ3|Á|àšçLõå&zÖwàÑR .Fb‘Iñ à6©¢Þ¬ÏÚâý‡ÇW÷NÄJ¸†øÖ˜Wúl?œå¿ òov>¤ç:¨4ƒ~…ÅFqì_£²f…Äx¿Þå¾%nU>0«&lIuú¦gG}µFë Y("ˆ]ó1竵=Ãñ^ôÂX¬»°'îÎEñI0DÐj°^œ+_¶§òVù¨eŠ@£0X»}ˆjcÛôù 7|€\“ögÛ¹”ê øhóüÿ×’Ä៕FOz8ºCðD˜)Ç>ë2³QÃ1@~T£ÊÄE¨Ï¿âoa†#£ýí›C ÚKyÞµQ6‡)3zél=÷ãýù›*^'dƒgÅåà‰’/ÑôtéR˜¦$FÆÆ]Ê<$é½læ¼<»’g’' §àLÄ›·¼G>Ávé «Îýl ´¦€Å~“hW,7Kþ&‰É­©1-†d ˜¦ÌHΕ§Z3£)PŽŠËÁ ½s¶—èí1Üô¹ûÙuçxMŸP+ŠR¹iÙq…ÈÑ«F#<—ýË“틽LôjSÐ$&pv "·g)%7 Šæ ›5Z#b$ÝÛ2rMΆŸ›F©ŽA¥r#œz¯ðžÀ¹“¡ƒü„ñfw ÿè&AŒÿ_©±‹MßÊÊ1B×@5ûë¡Á»8SÒ”fƒ­úÉ™MrGlú 8l<&_xUÁ()ÃÈï⎼àÕ‹»0ÄÙä¿é†0(_bsQÏ@›ßGÁvy¤ëT<Û&h @Í+èÄïP5‡°’p› €IÒo«e´ÊÑvÆ©=Qûƒ‘ÎSô„;õ~ie‹ª.ºŸÊtâ*`ï x{© MÝuC€¯âøá¸j¤Kf˯™*ÉqGLa-åÌ»UHv]‡UÌdò’¬Ô*¸Öõ©]°¤6‘v°ò7úx#ídú*c ?ôÙ´shiÎ0f¦‘AÉ(𥒩8æßÚ2§šJ=þ]‰õ/×:¢ djTòc(¯{do¾!âh4$CÜâÃ9(6ן|[“t {Šù03e]&܈ÅQGPiÏeºØiž'©Ÿ6C5©ESÚí ¥Ð"®X~p[Ì‘Q(e®7ˆ¿"(ÍT€æ„›­„‡z³ÎUn}em"û|ôˆÒÌJ6”yÚrniFT‰÷@ò4¨ÎymH i7¯Ü^â¬'Æna€‰u9jæv? Õã‘{Y…ñ(úÐP¯SŽ>¶z2‚šÏÓ† »²n€ôJu¨ìW6;Ûd¤fä¯2ÁXói²^»j9¸âtOÆj|“3[Yþ¨®¯"­§¼ˆ“š/¾nUÈà/†{ŸÁÎîú¸.rf¡OŠÓ!ÈJ^”OZÕÅZJÐTð°ÄðF¯ohýKàg|7Á^Ø ý_o¨ÿ[]éèÈÅ ì;uÔ î²Fnz D«ÊŽ[/, v›RÏ€Õ>ðRÈ´°$Ä9¢æ%YôÑÈ©FH¶õëôqqÝ×WþðJ‘ïè2†Zåì+ÿ‡ßÁ”P#*oì"þiëh@õ¸nÀ©èØl:*%ñúÒI`..ô™“jüð6;0þï9“®ªŸ­ï³Ìä>‚—{ŠL¯cœž5&ÃÔ_j+z…/;×?¯ÕS¢DgW¤ÓŠ,(Ί\é.vf O$ ¡ Bá'ùŸ~=ÕFnfI³|u¾2øS¨¤w« DâI¶G”{å'#‹¹@Ÿ’ëÈúÏ2Dò";| 6›+\JKßî?½¡'¦¹÷¦àûSvŽ·ïÈ –$NórÚþ+µÖó—¶öFJ‹&2È)&tW(íDWªÄâ˽”ŠhëQóT•µ ¯bÙ¸D|ÊKëYG7¦™­,}@©ë®^6ßè6ór{pÍ!ººcóø/ù¡¤‹jS Û¡É|áÒr†È€±§6cQº7 ÎF_fUÀ6’ó÷žò~fV¼lc%½$®Zôà×–Óʾ=Íøg`´êT³Ã$«kº ¬ZUvEºOE8l[žº`1®g %Ù¥)gYCêK[v ­Uëü‰ä§2òÑ ^Òì è6‹0³%q;˜öMÄÛ>­Æ§%ŽyÑœLŽ „~~þv‡áPëB [|>3£“†ŽP A[ŽM‚†kJ%\W9fBÅ2®Ðò»å%#Û¯xÝàAj>ÃPå h•Tý“û’¡;%Oæz¬ªo/çî¢k \üVì*Ì.#b \îC©tŒêÖ9çH"'ëòOûŠNêçÖJ]MèD\Ú:ÇÅ'EÂÆz¬äªX‘h={êÎ…Û †JîŒ@¹1g%‰C–²\jX¯£BH©œitFA–ØÒ÷õÖX m'ƒ¶×m†õטMˆ^àQZÖ¢6^€Ô#øåíùÀ… © Ì„±È‡“ðÈÍìDÌ6oe•X7¨vAòPifßg  °°x¯^̨˜Ìˆ¡ª_öh3ÛÔþ1çœQ™çÇó²}×4™nÙy\2Pz6‡I9Aw‡2Ÿ†÷eœšÆ *´ò2˜ª—K…‚7G "½½\ºÙr™¤ˆvM žhËuµã†~ÏHÑË»š.Y—Øç%Ò±Ü;Y¡7ªs·Á.ª«mà¹lM¡ã……N œK P.þdTzëˆt¡‚Ô}”¹Œ™•¾!Œ(§ª¡êïé—D GN#°WI{U¼¥jVŽÆ! bqP‡±ß´–§Õ9üœ¬1Vxf”<„i9\É2L*¾…¦¶ñ­ ÎzǤ®v6‹„žk(ÄÉê ”°¢Š³¥ÔÍìjñmïFKT[‰í™ƒE/ëÉä.¯žâ± ŠÐÂ19h?H”€MÉà3á^•ô°ûþ"*µˆ 1-±¯õ£uÃ9L’··Ï˜Eê3÷Š\5ü‚)6ª;¶¸¯Ê{Aš× ‰Û£¡ê–á£Àdž »zGBœç Æ¥™üÈÎe6ÑJ hŒysŸ×®­oE¨|¥Å5Pïüí†ì× êñ’<¸záŠ5R®q¿m½nësÙáXÛ„?EqÆ’]ï—^-O|ŠF&‡ŒÀ%Ê\c•áñ•Š‘$Y´rx‰ŠHîªâÄ ¿ß) Aì=”D2«ŒîQ3·µÚ£ž&ÃYÐë4ðþR‚pðÓôéWôœ„]æ:(áó]Ô ßÖÑØÖ÷éŸôdÉB[ic‡äžŠÒ{ÂW籃B×!­‹²úú+Í[cþ…b…g¼Î%&ýšÔ|ÕEéñgÜäÝ«ÿ f§¹Šú_F`­Ñ@*y:2öMa²Æu³xHÞ9¬µJ‡Ä¥º`ˆ§ÜžsøhPe²”µÃ€¯›y‡´è‡@Ç“B TNAñµ ãÓÓó±(]è×¥ŽWH±L¢‹µ¼>ÔßOéK±èŽçR»·yÙ+c…¿Ï›^l¯4dí 1v'¡ªD ^3±m3 œÌމ“w¸ûEÅI-•cp´öZ"<Ó©Z:E¥é ”ºüì\Ý\'C?èüòÖh›óÿøY#a —²Þ[Bù%Y3Tn÷à¨tj²p®x°ƒèÎÛ#o¥äöWÆ×as…ªÿ±Ð¶‚¾élª×g&Î%8âF0g|zÔôí>3'Á<‰k:ÿgÄ6e4ìE>] ®Ð 0J+¶€ïXÐö^®ók£ˆ®Bzâ´×8ʰÎä+µ àgDI[Ù¾ ´;è4*;”h5Îæ¦}k%Bkç¬6áa=4!gë€àÌwR·ù©{(~1”ðÇ3Æ+…8¤W÷pßrx@êYº´Y\ÌüU»%í4]t¶â¶t™ÚÖnßTÁ;øñ{oîÌ;Dƒ›ît–’ôCu´Ö¾j׸FRsÙ­3¸ÏÛž<ëJ›0ÕèaŸz$n{£¦ [,JðßÊ’€T¿Qv ‘ÎV,¹šÝ[Ö_ah̺«¼¹kÒ±ßÅHH÷5y\e`8¾”Sm{CÕŽ¸S—(Î'íF)ÛÒFÄTL(*ºµF%dåÝI8VΡå! Ç/ œÝ|ì±ITA Oƒdr=ÁFÏÞŽýüa8öãs‰Ùë€Î©ÊÙyúœL¥Cå±ú¹§Ù{:•B¯t¶`ÅåQˆÌîcnÃv4ïÜJ0H®&éË8’éfw­èJ6± â’ÊËú¦y¡:éô ¶¡ôUõFH¶é¨õ¢`K¶Õ/?ÿ¥p6ô€Ã3˜äD‹ ‰?ø{Ï÷ØàbGWÊÇô°H5à˜{ñÂåyºb:/ºðç§qí~žž²^ÓÞ^À¢Š_Ž{„Ð~/ñj£ÜN +èBÁâw²õ'þ¿M­ÛF',|Q¾=|†P_+4êuÎvØÆ¨¢££}؉œ×¤uQ[9† èý;x[­f‹a4b¶(?~¢zÜ*Wyjˆ3²,ŸN¤¼6‘ õÛ;Ú/î£1A—µè2HzHkxÊrrœüJpΩÆó<s &¸T°×˜’MgÛø(ÙFñ3ä¾ÛØ:Ì)!C‚*ž"Å^b ÇàÚ:€Ö‹-½`‚ö#â³§Îa V§©í NK¸üXžÕlƒÁ· Ú1tØë¼¯UuÌy}é84f®8›-zÕLÉ“°C·fr¹öM‚1¤ÃÒë{­„‘âm\í™à+öÖ=9²&gÌÖ@œ˜Ô…ømÛî·k[³!œŠÊ¹ãÀcXÀǤÕà <ŸÊ»¿Ð•?©lþh]ÔºEj›,Ó¦£ÎiÒ°Íw„yí¥&Lû.AÔØ½Ùq±é æ|]T©õS\-GKÙ|ο¹Z-úƒCsѶŒØ–‹ÆO*"[©Tî$Aä§C»~Ç_Iq–J~>t×Ìà5yÌÉ_ß½žî™)0¹8Že ä '¾7œut _ b.-‡ BF´ñÇÖ¨ðÇfŒßœŸ«-‘SŸOýÅéj§ÌùÍa//¼r#zÙƒ½NRØ”ÉÒT¾V÷íþò‘Göжãñà†[ø¤ù.Âá_;8.åð£ÚÎC€ K‚Š—±PF:{ZƒÃ7•|±ÌûAÄ$Kþ)0ôa‡ Á:¿¤Å¥ÏQ+lÌéMð|ÝæÈÏ@ûØÍû/åkD—ã¯oãñùªä§az£IQT,@°Ü I›|/M$2—rk*e®¡{g\'ìþ².˜(Fßüù6^4š¤i€ÄòÜÜ™ö‚+ãæã‘¹„¯¯ärÌÏp° Õµ­ýX¿ÌêtB)’§Ñ“Zœú¨xŽþ`¼n9ïPhµrØØ…6ôGì ı‡u#²•|ôïEˆBüô©Žü‘0>ÆÚûí]N:ï7˜clï/­'é-6Z9?8çýÀÚÊ^Å”Evg$\û jR&|y§—9rgZxÁÒùžqÒ '(Ëy]†A+©ëf¦£ƒÕ;ÜC3m)©ÅnåæÛ˸4'†³Ì.q8,økétl M-‡»Gíø…6qÞ¸MÃ*ºL­)'eZvœ É”;ÖõQÉwÇ]7ŪÜZGó=%°†¨(½\ Ç7n#µW„IØSyïÄYøY㸗Oèß¶WÖOïÇ5ö?üˆDP°á¨ŽÂ†(ìÇLs%”.CÈ]‰¹%mLÜØ­Á \Þ; Òò7¤ì¨F!‹k+ÿg^Rý¸nÏÚ²i‚R*ǘPóý’$dú§ú¦¿¹²ÜÄ”-F6P©m%h™îuí `?ª÷Žˆ§ø¹œì$ôÕ ¾['ó%†Eá´F‹ø˜ÇH€B#·öb«R†M…ÅÞÜBÿP»!ãÙ–Âæù!59ÖD*æE͵ٕŠÏÜ™ÌÅcu8Sw´Ñëë=/j|5X»U!O­‘Ѿz{uoÍ”_‚NSN-˜+ŒS±ßjvnì¾/œ¾Cíeþ¤êX‰æ$øJXZPD&H‚7?;þ¬'ÜT~UeñTæFÖÑ뀥£:´ê¸Èû†ªOCîëÀ< é†&}ÔÖ¡xêÖÅÞ³…³9ÔmrÒTǰg@¬e"‰ßsîIf¡#‹D:´wµé•­6a‹îD>ktHë\QE˜¹®oÇW9ŸS$áœVäf&cdvr½f²Ò¥„ÙÁQM+%:ÒeN1½¦”€^]éÍ\SV„„*¯wÿze5C€6+-ý=„ï–ó¥·³ØóÅMRk0 í¬ú7ñ%Ñ&>©4F~N|xKHtî\tO­õלäE«^гQk|ý;äŸ÷É£!™±éy*ã›y*»B™n¹NðÃ]¦=šÂ»OªtrtþæþÆ$v`¸u|“N;«ÛÈM%J«¶}´¦iߨ-û€er~ÎÛDÞhÛWk•¶–‹Ú£O.:8¢Äȹ‡CJûÅ ¢ÈZµ{Rãó ¾ï§ŸÒ×¶¹œ'n]¿¬=Jäp¶—ÓCJQ€xW„¾ßZ¾>ë;BF¸!áFÁàŸVBá„sëžÒ?¶’-¬Ÿ•w÷µ 6ô+˜>†¾"[w]›GGDìc—Xw.€â†Roß í éo¹#Íaæþ¶ØÄñ¡B¸3²jt®âÙ§×óGB)'1b¢ŒžI&w¼-ÙüûRœ>RÌ<ñyõ½:!"‡‡ ®9ˆªy°z=@'uÐnÆú“úýXr\‘†‰¹ÛiZnjë|…ÄìWqÖ–¾°¬Ëw5ƒÉ‰vjÏó ù²á⺅!ê¾:€áí¿KÉ™Ñói_< ˜L#[eÊ'Q]C­?²¾±6’éÅfr—•ßýPYÓ,­ð4Ä&]|vQæÐ I…Wë2!™“/:jUø#òhž”YS,!"÷^U:àÍ…Û:¸CŒÛ7oƒ´Ô"­Þ|æ‚p9õÛo9ê·Œ#écnÖ¥ö nHÚL‰ÀbìÎã]eZ'Îl‡þìÙ;(D‚ýŠÝë ¨Oâl¸uù88„àÏÑ¡Ûö M-øõw(ø´þ)èÍ7½l/ ‚ÂOL,(ÌŽv4÷†C»%þÉ•Ol¿«þ{g :®è“ä9±iûú•ã¦(ÈÜåñmG•i–!íë©0p¤ýVj¡Î¦Qãú½”¦à0}òÌ©ÚPà\Ö3ewkbR[Êc¹êþÇ–¯ÅÆ_oÍ5v]ç䑃hýÖÔΆ »Æò^Å÷ ÿÆÌ‘¯;ÄÕ?øØÐŒVfã™?zà¼LHdRÂô—ÐZ \:ÄÃvx¿.($¸3ÔM›l]ã!ŠÅ§,} ýz> k)3ü'»b>‹È'™}Ñ„dwQÑì¬iñQA¢éjÏ\†8?²ÎS-ÌKOªV®µˆ/§Jí«Z¬Ió­_Õh¤äeÆÿO=k‰Äá-2Õó틽 »Î==Ã1I`äÌéÍn2VG°°!ÀÌÖ•}}˜m¼¤æ3uP%{Aå,èa·(ìåSuÍû¾$e2xF¯ý-d49T6síj EíëŒMªzR¸Œ‹"œ,áøÿ]µi¸°ónÊë³=u¡3Ñs|Ò.Ï"µGÂu–`þ êV‘"Nû€ ¿pGð‹ƒ˜±—Oi®ÏÂöY‰xÄ‹Cãm;ÆÛ…Û²-$Šc=ååǯž #b\—QT.& &?9µÒ܉hÛVm“œÓ¡Õ¢Ž ŽK>ëæH€$Y§GŒ¤vŒb“ñàÿêNüUªYŠk¦kã5ûì.Ž7÷4N×vþ:MØßÿ3Jâ4TÛ¸Z€¨!E,0%n¹‚ÒÂi‘'w¤ãe(?á9çyŸÂ ,¥šº:~g}loc)‚÷þÖü}ˆºÙR3WП¹0%ÙÓÿ(–75W?«Ï“ŠÎ¥|FsÀI¯÷ƒ“ÇVmVnÔQ@÷ÛڳCé™ñ­e°BÑšÒ:½?ºäϸ3Å&ñ8<ñ®õ„íÃ,&—u Ya‡óQ[á×t<°(æ'ùÉ„UãÃgçº8 sÈ kË^3ѦU€5GwùÛè£èZÁÍY·ÙÓVìGë…Øü?áSɾѹoÑ3a¸ž _kÕ’j>Ï´P;4P¶ö÷IÖ(]®Ñ²XxÅè»­éD$4À“0ï%!á¿-a”«¼DöWc C½.®t ×6¸$ÿË›§þKØò00ʲbzØSØ5n R3òÉUáÄ^²¾H²tø¸VÌ%HÆ…Ç™š“º o‚ÂïÓF+$aÿïd#Ó3ÌCCì21FÃ&,/_j@ûDÜm;ãÚ|÷;ŒöD!ÖëR"£‚­K7Ω‘(n¶ÕNyÙÕÅùk_Bçx´ÃÂÝrÛø^¤ëS%Ù}ï ±o¾ôcƒ¿‹’Ô®èa|0…zÚ{=àü[sœÁξ_E%ÞSãíη„:B‘Sã(«Ûª-UcàÏDý ¾f–zö Kv¬¬¼Ó"}x»„<J¾2ÒÛ¢sAYª,½Å{l0ë9B&Ԁ黕~+u3 (“°ÿ?_‚`µâ}†sñAšñAˆMÜ®Û*üóìUÆ)8Ô[ÄÔ¥ÚtIÎ’QŸ‘Þ3ÀîôþGNeVý§Na™î‡¥›ÂäƒZ°£Ò/àW 1)ÒÇ~%Ô~­òÑcUÁ2êbh"³7©J†mÂû/6:ŒîŠz¶Ú•å¤ê«æIJÏå½ûô®ÙXõºž¤ 1Oe^­[FeZ¾«,s|V \ÙeÝÞàÕªk8Y[e{3)&&\{_[ŽH¿)×¢»#Wrì±™ßõk¤W¶8]|G0´TÞlSn*<ÞÅ^EdÁÿzy^nouò¾ås3ßõ—†g©©6ø òZ”"ÔÎokD…k>í* ¯.;Z7US^œâ ¸[b™Õ2= .ÿº!:ž³ˆvƒjX"šp]ÊpŸù”Õ›¬oà‘#_¸·»?2k§aë2­‘©æ¤¹Œ®ˆüÞð "<œçü¯šN~ݼÑâtÓׯÆD³rF|(úh‡wvÝïñ(ž&ŠÈãú x­ ý¼›¯@ YŒÍLŠßÓ4:—GuÛ¹Ë)ïxÍÌ} i…å9¥øb†rq¼ò†¢‹ÌÎBñI§£fÓõÙ€÷^†É'ëh™L¯-“ìÔa¤ SRª’ÏZߺ½DÛÁ…P)Ê’o@ÅS)e t›wbžfïˆt³ï `þšç¯AwÌÅŸ¢a¹ÇŠt'ò‚Ãà „öÒ+âBgyŸË7»‘‹©…ûn”®˜•uÁ¡õñ#N_“ú¹jÝy.ÇŸ4ñ|ëÚˆÞù¦L.+pr òÙL/>ÑðažÂ0Oðœ¸É aĸQ,+ ?=£fƒWæbð™Ö²óÉïâ®ÕáÆ-Öû^*¡4c’Ã$V úMT™‚CçÜ›ÈNΘån»Ù5ÙCõCɪCÓÕ¯ˆÄ{¯”UÃ{¹NëƒÍö…*9Ú^rt0o\P°„M¬8+'K#Î/Þ|:1 &²^’tÈ¡J9 PJ®ÝšqM•õ8Àâ2NÅðÇ<|zI)鍊÷UP—?ÖoǹF‡&)¥Z‹*ÿ_JÜLʬèÃö<|hn¶…†;Õ Ÿ$ BÉ•`Œ¿]úxµ3î‹ÅY¸ÚŽÂ»7¤ðDä6’âsŠÂÅ"Ø“Xb‹vC° ¼¤N9¥‰F5¶m‹»¯RY³«ÉC.‘~ðWùWa£ÙÆÃ%»Ñ°ÍF¤ðý[v—Òu¾0íÆãCë–ÒŽ@MLÄ ”a­ÔÐ’¨ˆï\—Ž|A¨y{øvZ“©9 í£.íæ"P—d~»áXF N æ²jL=’F¼/,EàyêO“wO_j‚¨DþÙ4ó>qEˆ³|hÙ8?>Iëv^K•VVZÎoK;)æ¶Æàg¬z¾Ý‡E|•lìS޶faÅ1Á£ÞØÔa.ÐÜSÎÖºUߦNW”þç¿ØP·¾®Â„EŒÃJºÂàh üê¾·“[ÎÕb¯Ò\Y{s‡LÈÂѼ¶Y„ê§þ<€/øá©F2U´ù 2´Ÿüg¶9pe1^ãµ¥X¶–$ë5”-Sºø u;^¹`#ÛY'YÕ 4…MzâøGZ£N)e•.°ÌaMä ä®ÿŽF@Œ‰–äÅî>ðòùq‡èñxªo™óòÑaÌuúxÎJ)Ä•Æè¨ÀÃ|^âg¦¶K&uG›þìòÄ“#„9>²MÕe¯oîR!}±(KÑ]Pàtå‡kjˆÔ¶XBVšü8½j>æVþôÿÂÀ$ùž nEw‰.¡ýS0Ãp(X VÖÕ•¤°„‚˜Az[átã*ÈÑÿ âG5êV°E1ürÆÔ¯TÓpÔ|<˜¡Æw^•BÝ-r;¤ïÚM+M× 1gøôÓ¾N $"? Èš}΋îbÐnniqYPÊ¢ £¿txÚƒí»ˆ)aoL<ÌÈQW:醭Ñwá^ž‰‘,»èœkè–pb»¹Ìüqµ€ÑºNSˆ1¤ ø\6&³|'V¸s!šV#ä]‹SMÅwø«ö”\ày[ÈàAý=Jðž%ޏJ•©TÇQÜ4ïQF\C¼Ú3¡äŒ3ùó’/ÚCR-‚!“¥`öf ü#yÓÛÇ”ÁÌ´ ÏîKÌ´Gf+¤dôË p9~°l0§,³ åÉÃtõ×i{6w§©Ã2IlÁ5±Îž¥0ÞkI;tö|QP#âAséúÑ,ì|ýG+kœ";DI‹·](pÑ+Íå¨iŸDƒ;#—-5ãüjóSÀ.¨$¼PTþ·9çRŽŸc8sÏ•à3OnfªFÓ™¤¯Gd&¶.–öêUM6óYAïqø²Â ®%N]IEeÑÛK6òßüàñïMXWîäâg?¬¼RMÌ\6¼èi!>E^|MKÁ†×“ c•‚ׯÐG"Ûø7îçá{×5UÂ;NݦìcxæXâ\cï|nlÊF.*¯R½ëJ+†y}çjÑ®.TôÓ§”‹uÝØ]™œ£M%ü : -?ÞâB\ŠÙ²ìs±ˆ-­xoÛx—·V京A¼lEŸZ¡!L|M~9?†ˆCD®L¬Å¬€šh$ %;„ì$hÿ !ýÈÍrí~Ž]ŒÅè˜ Ù;€2ÆÄú4„I¬›qRaüYí’51ñ«j¤ß|í8@ˆ1!µ\]#6Ñ!í›™Mø:M¾›9›vzU&?8¥}qRÈ <„ßs¶îà V^¥|œÅ"A\1‹ô¼1<¾¨ÓGklc6Y",¥°­{6q£ô<®3Í!ÕS¡q\Ó&ËJ°‚Äå~r•Ùæš©Žˆr‘v~’|œ„Ì%YüxòtTH¤Š]µM?Rì¡e0ü±X÷šÏ7eïNò[ô` Ú#¶é™ [ቅÐ÷Tåíñ]Èæpó·Oñ’± ç,-cødk\gâ&…Cô¸&eYÈÑ-[†\õ%jT;=mE m<Ùh¾Ç õ½÷zÌδõ ±C]ð i~±Âh}Þ†¯þõQ,<>’P¥«±!hTζñpÆ‘k;k#9Í)Q-]‚åæº~z¼=Í•›Läô‰íê0b´£øÛ+ïzûìÌõ:Ãw˜ÈóÕöŽ¿œ7›¬¸¸¬Ñã ±cá3‚«|DŸKÄ>—¶_WªRc,ñç­4ǯŽ|„4ØÀ!;M¸çÑùwÞá ¾B‰@\ÀRl‡ÑKõmÑqHÔ²p]|x2H~“o]Rê™ ŒëÈ|€.²ßÞ‰%ûÏW1br~Î`†Í@Íô¢]v ,éûß}žW½ ¸‹AÞv›oÚâÒâmî‡>g­HVb¬g§‰Mbnï1F˜û—¸®&߯Ž?‡‚Ig ¡äc U4ç\l¿Á9šeeëôxºÿ¶R K²Â3ÄÌ?ÜS›ÉZ”ÿx2cœâ=Ç”³ÕŠñ͸õj ¨!£8Ó©häd|'!–9wÊKù¤_Íir´á,™,áíÈÑv£ÉrjÇØ"ß}êðìã·‹t%eFÐz‡Uˆ‹Î‡œêÉaÞÌ‘ ÑAšý»ì°…ô¬ÁŠÄíª(bšË{Š]€\7²G±ã5h)É‚ªGÏÓ莊ÚuŸÀKh³ÙUê#TÃjj`(C„M:ŸÂduùïp¡ùà• 6¹„êl 8‚‰fô6Bm:–×8éžY§U5Ž V°aun²Bðüü“ësÞÀiGIsg,špgI2ñ:¨´^¬Ñ*Zê* µ.Zlñ|£ÙD+•±¢ÇÞ0¹ì€6.vAþ!E>Ö Ñ «8ì­cÖ÷ŽôÙýŒáâ¾Ú¦Ù b1&¹÷=¨öÞx«”WX›[<«ª‚Qåwl~£Ðb˜þè+60x|©SÀ‘ÿ<ùø””èQô=¡`1Á¯Yw}oF§èÊRdKé'\Z!’Îð¡k–—½!1ð3†™7­ûÕÞüiÞsÈúC¥Ö‰P8ܶ‹:d ç.âò¨«¬ ï‹íÆPb¨C´Uþtë³vmd 947~Fz„GtÜðÉãIžÐj”zæ2¨¡øŒ¦© ß;rË N<†@îjuð^¹v] «oƒ¸~‰;ß]/oÖµñ† b5Å ÏO†_{ Zo¾Rv b3¦$¼) C¬`aii¦”úv6™èà&ÄëÌ“DÜî ) F¹NÀ\©Oa`n^±†ùÚöQ.— Ìù¼¾îªQ]<îâýï…%9€Ö¶Àubr"\•Ñé„¶ Ókš*­³ŽÀ6Ž”ß=|IÉÂ.t…——nAž™{ðir¥£Œí€¾òDäç JØDÃdµˆPDÌÂxçQ˜ª¯jE—iÈtÊ.ô>`¢g‰QxÐã¶PÛHø7ÃU×H¶¢{E|7·‰É^pK€÷²R1X]ˆ„âj?<\f®Æ´O‚›v¯©¹Ag¯>t&–Ò¾³Æ­]xdPG‚›0Œ§|e¦æ8~Æ>; „’.}7àNÄw·2’舎ÒJ:§"v`W[gÕs&8I«kzèȵ9Ï‘†ª 1ÿ¹Ýæ©|*ù6hZ§ôl3M Ú¬²¼ê»iß­òseé?Âã±}½älÈŒš\;-Ì£sÃX7giÈÿø ~âþÍÈ|ún‘Ü=ù4ôåðeº„’üO*^Ƴ&fþØu»ö… ª²eòõ8ú8õpÅžWuz4ðgu¿¨és[k‚LÞB¥Õ‘%czh"x—-ÜDBP: §AúGÃõQô”¤¦×Á­±šÑ©üÉq%ïZ–×狎§›o7S`ÂMK5y&µËêÒ•ShˆÁPLQØù®¬+fï܆,”s±ýežÈ<ÿÖL/× 'B|÷øŒE_”|éƒ:b¦úߥµv+îLÐ1ƦlÅB1߉Çé¥Ö&FÃ&Åû¿fÅn/–1I;…F3,Ü„Œ·jþèG— üökÀ 9tVI^§ Ç!Ö‰ïIHëÞ¤ýŒÛNz†}{ ¶ n÷½l›šÌiQƒÐ&`æ92 §ü-Ð0w’lù/ËÇÛÀŽÑø®ò.^<Ãi}DBàÒ0º?:ÓyäX´#¸¡6Ôˆœ?%šW g”ÌH°rßÜÞ‚š’É…ˆjfÐfCã›’Ôi :‹ŠW.øªáb´¢Øøç<*cðW¬FHëÚ¯ö£±‹„kOH¡nÜÏŸû¸ñLŒ…Ð>lû""g"éÚ—ÀõÈäØÚµûÖ7èž:Ñ+Gÿº¦§·¿ b˜9‰Dæ­ñ¡ ußÑíl^&øʱÁ@寗ƒß´$ Þ• ƒŠt†Šú4~ófHàZp8 Ô]*Jv6†GÊêôŠÊ'Šó Â>¡ C+æ´Yæ®Kr·:šR~Y]tt'QãæÂý°Já?½/¾s‰Q¡^ ?¤¦–óh¨Ê®ßS>‰¨í–ÂãIŸœ3ù_sHp`Ãv2A|(ÚÏ„WçM(„# 9„cwåCWÜL§¢äûØxyƒÌ» 2M¥%Gã#S(ƈ†Jh¶ÛbaˆÉz3Ã8/׆#O€ŠªðZ¶ü‰9¦ñõ }41)üqkˆüò«¶¾?§ûÎÓžõÖ0pòy½¨¦.iô¯ áý !óɛ׿€ŸF¿e!zÑgq‡QÀéN«!sÕ°«$ã)ìD¾cíV Â µ-±UÑ“µx-ÎÔ~£k³N(ùhC¢9rÍxKCÄ=ù§Á;w§ƒÞë$V·w¼wˆ´€œö8ðæ~70@aÄCé_¥ºÄûÒLÓ{£gh¹°¢˜s`Y«Ý ¾g’ºÇ"—þ©ŽÄâwÒe8šž«áœÿ¢iܤÑOgÜ2V FCr«nQ ·¦Fµ ™zECÒÔk Iš q3xx‡”¯l4 ßß'\ ‰B‡Ì*4îu±DÇÙÎé˜íMM@)È©“Bˆ©Ô©¢õ÷pŽŒmœ ^튩£Tk²¦ÄDZ‘©c–C4q›ôš û<á¬ZËU]˜ˆØšsvòøS¸ˆÞéJ2¼–þ¯iþ* HRÄŸÌà9M°–ÒCÜ·6çœÙ`K“ˬÁàÊËš6—»( P ݲ‡¶é¼àa??<Û ¬qqoÌ…x=Ó‘¨Ñ|ÙœÀÍÌ6JÞ(~„ÅðßU:oü'p-ÝÌYõ²³oë·HŠÁSVŽâxÔz`:žœxaÈzPxºÆ'“C„fÃRškK›`QMAe’žRL/ßIAõ&b$ù;ëb0ŸY@/Ñhã#5f€"ªÖ`Äç^Ïa]¼U‡ûiXŽñµ$ ŽS¬žŠN#Èì ô×Z¯ü°Î»‹¨Ìb q‘ÍÅC¯ñŒânÀ^M1|&Ý! h\²ŠªÚ2·™:Dž…µH¿ÛÄ3QÇ^=ÍJÏ,x¸—À€7 op¬÷ÀlÖjï¾ Cf¸ÆYé†Eå>#ÕûQUdå¹ú òröð1|••g !Õ£±2ªôû%{#£#ZyYÔ†ëJaÒÉ04FþnÎY —.Ea_ÊS9«9X-::Þ)E·~µÚˆD׈ˆ•ê¢={åx“Kâ¹Ó'gÈÐ;áõW͆áqz<üp–°Z–p7+ð´ó~à=Ö‡Mp}å¤um0îö²¤("¬“ÒùX…ÿ€½ˆ˜T¡~ÊÓ³/*‚çº×¶½l~§ßM‘}5œµØ_Žç(²’Ьî+ôöc8b„‚‰(Œ]®ùdpƶ‚LK½Â?*\˜;­gÂDd?02Q°’0 w¢„ß¹SîY]³áÓ1OÕ•§!ª 7ïCš&h~çoÝD“ƒ6JmßW%׺“ÇõtȆ?ѲP}a´Âm~…¤·.wÁ]}»!Uîo=…T "°¥EžŠ]ñÓ ÷6ê|ì¹Ä¡–Uä4Ô SºŽoÿo1nc+œÂ)‹Þóß>m‚ISAi¸›É#”°Žqá©™Û×#ÙÇ?ýøÅ/Ó-ÛØ¹ ׿’|í³Ø:°=ƒÎïÔ–2X£(3ßÔœÉçÚx€×8d›"÷šˆ¸¬ÐÞ¿c( R»µ2I]ÖË1“0Ù¹kÅG²%/ ÉNN Íae¹:y3¨wÅsë=m.R_Á$†´vgÔ<+&ØOšÐ‰þÛ.ê÷FaC0o}¶RÍÈN…ÍÚpG:Ö®Þ BR9ˆ )Íè"D€†À67,öZ/óPל|¬ÖÃ4—@àÖ…l±ü2Ó,ª…=õ[5yÃìÑÈ<–HԭΉÿ–c—´‡,=×d•+jrÎ ´)¿iÍBTv¯ J[05ôeóRÚœÐÛl˜²¡~™$k 8Ò”5ûh–Ž¿]§2w i ê¿5<‹•êY}•ƒçµ™T.Û¤ñíÅ¢:J <°FØÌ;Ý£¢?ô´®OÂõ4vÜÄÊ…ªSŸ‹!y“•Øa\ y“Šä’”ÈÛ¹ *ÏÑZ7K™W,DàûŒ|2]gΠ…>øøAEи>±€8:‡WÏÀx,¼¬ ¶ØŽøDünþ,ÂûÛQÀÝžSéÕ K ¦¯×IÁ¿¯õ%©Éÿ¡žR'S†Ù @RXx‹(­y¦Ê-É‹? vñS€+Âj0"“âDÚÈÞD£ÓS˜«I²ÃFMÖ jüý•ß:Va†›í`¥µ¸P¦œ@îVvNmædµ‚«äwœÇÔÖ,¾¬UñJ‘vñ¿|W-i’B›´''<vi¤×&ÿ’ùU T…„ ªÌ‡ÂJxgË„`Ÿÿ ÙL R:m:$B"‡|,âlÈû,c— ™¨‡+ªo=PD‰ý'-ÛsSci÷GÆyäÃÒo|ï²Ñ#øoº"E£¾šàúü<ê—E‹Œ~C(k‡~Y‚ú)J{ ²Ì„ÎÉPú˜ÂÐe·c?üŸŽ`þHmÊÎa24J%tü s%êLýÏŸ³û#†á VÄ•Ôߦ3Œ!däµÖÅ—ÍòþéÇ ßïUû [V…Œtd‰ö°‚̇=±ZwèÞŒÆûƒ¥àõ¡öo\˜ï¡tÌwc®åO£îd´MH+Â8ÏB« µ[Ô¥x,ÒdîzÂj¢a¼dzýÏ?ïÜÄ $nc÷ÀçÎzêºg1ý _ÊŠœ/Ì‚ÍËãÿó•w‰¼ØÔÜÔÚeRJÁÁRгö¸ÈKGÓ¸Öêk‰ŒN~ ¬#ùqQÖ ŒÎç. š¯Nh4T÷§nEB9BKƒN扦ö}Êð´ßŒ!ùòõ^!‹æ-q)‹»äOΓ¥Òwv§’š¸Ì[…Fm'УÄÕ­×ßtŠL/„ð.ÈQJæ÷½Qs0¯éÆÖ!áþÝ)ÑtÿÔ…²ÄŸÙÜíôHØ.4#òvÀŽ\Ì?0Ú ¾áp;=w³ì6x!ù˜ñÌ{æ¼íÂ_žëTû7GðX†¹Twz ÷ȱw惸iþFèÀã@ ’ÏÒ« øêBÀ}¥“,?˜º´£ñ÷6j…ÿ\ÿõlqxx9,øS2®/a×"¢r¦'5vá ^¤;š t2ÞŒWˆè}C„å©TTG"¼æpŒÁ| ¿fðŸô4m)ï ɳ”uñ¹’x¾"y[å0»«CнťUÔÏ­GÜÀ¹³Œò’û"C'ÊsûH¯(͵¯3ZÛ73n½qãúíFÝ™[¶/Š)èUq¹¦‹ìºZNÔÖþ{’s\SŒg›+=ð/åF/Ųè´Á8^Zeí¢M×"G-F³Y-f‡’«œLF­-Ôù?¼ê=­‰ãÇ„~œMDh°Jlu›4½™ÝiÖÎ]Üô¼æ…ÈñmåH³l_,sÓ÷Ê"•r¬w»¸x²9cmtâS´Ù©1øD|½Z–!ØÇ¦$í¯M z¾ÞÿþO`äÆ˜´¹×0>~ÆÐzè"ýGÂ)ÈRDßå*{Šþ"ëQƒaþcdYtEó_!1®àdñä–ôìcH¾ž³–“`ãDü‚w£Ì-·ƒ„ø'¯ÖƧOpC¼rÜäfà€Ã–Õ¹ä|Å.xɈ;jS¬Q™ŸMZ½™nšÈqKáÎF81èµý:üç/‰õ—çȆ{â\*Gz‡‚Žòº½˜sFÖS–±ç³zìy†úp'e±³#Î]¼ßƒµKù{|ÝæÕ‰K_²3Gc6Ö7ID?´LçP©ébe„„p•[7WN£ÐÜâ9ÑåÔ¸{Õ•¶Ìs”éy4ˆ`vwCe l ·o2ÚíÊf•~[ÁèÖɲ<±oˆHUïnפ[˜ w¹7vè"`ι N ‹¡Â¡ÕM@§ëåuCñ!eu׉dß¿^-¼ü'!<Òyð»Ÿ×P¾§!4p“]|ðìÔ½‡m¸§1ÿ…(Èy Xý(¤&ŽF²Ó¼Î =TŸ‚|ÏRÛ’´t­Ç…„wmçÛ>Q¸ž’Ø% -’Ñ\|C×îýFÌ'ÄZ¦A™‡²„5ŸÂ@¿þ/Þx„nÀÁ<Ìâ—Ž…~Æ÷Ü9O Çv)ªQhà­è;eô÷7 ßÊÍ;Wb²ÿÉ-†y—›:Q„¿½Y–ò¸š*Îá4™.úK?v¹¸:â4dCѯ¯#^ æñ·ªûo›bɬڿ½Ã~'¨Á¹ò!í”,ûª§Q¦.( pÝ™CÜUëCÏéBKʰåÔmF ©ìÂ?8³¸“±ñÀT ‚<¹*2Ø…ÁSrŸ™(óщßmø¢Á­o–ȯÓz+—+]쉞ÊiØ:ƒ4¼x&]îcw|{šœNT] É‹…ÂGŽ¿»nœÀ´OæŸQê&€DøUF=iSàqÓ¯ml¨9Ut>h¬Ê³HÒƒÅå!ñâͨ˜˜;»¼ø“Ù<Év‚•A/+Û8'ßï$R’bï위O!g1Øú–Ne­¢‚Ÿ'…”V•8Úãów»®@ÑË[xnySÈ“~{ë~A0R³µÌ]¾+Ü/A*Ëѽøçâ=ªðÜDx¬vÍL–È[΄³žep|XY%R6Ü›¹VÐ<•Y4PÝ—öãjÌŠÖõ©¢ZIÚ€ÃEûÑœøÍo-âläÖ¿&¢jà‡~F ý:8%¼(5ìeÒNZd”¼ç60 h¯ZÒYÂ_N2äƒøHu¿Æhc©¢‰ØÑµÑžóy¶ëyt²Ó;GK-:I7µp¸øž*›Cwƒ`ÊH¶‚.bô½í ž²îà Éº?åáÈS¬êœÐéîQÜ –ºõ×^ö6çHô_•pV…)¢¿dÅÙÊö`18UrÄûÓk³í)7#%è°ÅPæ¦ôvÿЫ§×›ÜÕ*r 8Ã Ü ò&2Ý»ó³AKÁÈ»€“³ÜÅCÕï!ãøÅ9HžWcJÙç2ÒŽLÙ¹®˜–HµŠ8É;ççâã„/zY'£È²²äú€„l´[Í`Ž—8¡Ö"ËH½Ä¯¥p8Qiiƒåfsº@ïÄíu©Ãb¥ìØiÃ)S Ñ’íº\ï{’´*ûÀßþ°“>Å™jâü¾{ñƒC.âûq—O¹é!øéø°13â« t¾æT–M¹ò¶ݵŽK' 'R~³^Üâ1>}ZYt´¯ªh”u!f"!‘W¥N6`ú6LáV¸˜/èDõ?nó }Åð–¤–œ— ¿sàÛÈGÔÄTá8ºSÇ ;È)óßúó«MÞ_”'®S;íÆ„†R{i4†n¨º³ÙX*Ë<R§½å D*¿|Þ‘ « š1Û«ŽÇëôÍ“äÎge/TŸÕS~j†'Ñ!Ÿqx|Ô]ë®3 [s#S@²W1͸ûÚë§òÃ#÷ΨűZ=ŽºrSeC)ç F»ù™ÜÆÐµ)¥Fç¯V6lä3Ö'sŠ N»/þ]9üJ؆Fò?6J=2Èîum2‘F0¬“ÇÆTuÐXn&týX>w¸ôÛEžë­w .Reÿ‘+~È_Y¯ðŸ}ëÊg^74Ò^ÆÝ?^A5êe€B¹´É@Öa¿µ»~æóõ hð"ã€]F´Ò,§×zºù¾Ë¬ÏÈ%¤…+Ô·ÏS÷ÎkðîRÍ«Õüe±žÇÑÑ8Aዃ•Ñ5;¼Êf-,Sl.‚Ù Ènýôn²,Dè§²òôÍ‘¢Ç¯=4©È)AìÇñ¡Ãe †Û´:0Í]ÄÂ'+Þµ¢—‡W£`ç ªr4YüÝJ,ô ‚ÑŸq—׺9ÔèiÇÒÕo¶éR¿ò›7ߣñ«›‡üñêÞÿø.¾¨Ç5ˆåuã1A>¿šwr–0Uš¾ñ‰ëd !AHÇEø¾ðèÙ$ûø¾`3ÄÆ!æèÿ° ˜Qt7sò óíbÁ ÇÃu™G;bÕV+¹7ßÞ±¢¢³Ø÷éÎh†âDBFþ4o)ȯËÊ–£UËgÙ­Äg6véšBGêÑ=àzÓ1ÊY`oŠùep홋A®ÆynÝ?Sa«©<ÇBÔFë_sÜo>{ô%È“L³r~ê©’zÒ»{ÊVRVÈHÕp­|ƒrAGxƒ+› ]Üœ…3<ôt`é)„޹WˆOÅUá<¸ý¶÷ êõ)šNwhí¶Ì Ë݃(Dˆ˜Ý%eTàë&[c!¶¯ƒÕ‘Jåþ’Vºy×>—£ç½Ò#øœÔÀˆæ÷ÿ9“þ”( ¬š `°|Ó𔤚$¶Aˆ·ÝC¥%L?D[¤GVÅó©[ïÇêl€3޼kK•?31zizÚó¾—,oùzf°‡S^%X çåýñþ¦Éø¨îKÿRûÇÞAµ×yÛ„ô[Ý–yÞ’¼ ÚCø ®Lx;§R"rz:×:ëô(èìã\£³mDqýó2ëжBFQåqJxÌڨćp»¢)þ¥mûL‚Véw†3C¼R¼öa€20þ±í_™ˆF>¢öjÁýþ7ñ]´wËÜã\0×O|Ô¶áÍœ¾‰ÙTû3AÖ U0¤÷oÁ]fæú´±£=©g‚Äñ0ag¤„5j6ßÓfàäôdd"’,`µ…ñ$Ø;Eœ’ëEZm=ãÒ[ù¼á]YèÞ–•'åP©÷n›Œt» ÓÄ2fô8¼Ù) „\Óx}ðl)Äàr‡ûq;W¬YÆç¾zZ`(Lœð‡_^/©¾bævTã^¢ §‘üÁ>0­%¸©ª÷AæN>ˆLQ0⮟_¡Í0+<_)Ó,9‘vž¿x­ãœÒæ߆nñÖÓ· GJ0ßï2ŽeÿßF¹÷%êAdæD]T3úÚzµv„t ÃäÛE‡ì6)‰9dè‡7„h0È=DJ3Îd¨W÷éÞ´ïJF÷½!+‘eß„ê&7Îei-ôø¿”ËévÊ5”‚Á ÇËÏã-ÐâÉÛuÃ2ö%5ß¼Ý7<2“í·Ï&üÈŒ:é({h¶y“Ï’:0ügýÎ{š´ßû³3.4á!cX’#ŸZ1Û§ ò7å"¹¦VšU×6 ´@ææËòSÙrõèx{ÅQ€ÌA©©7Êë}ê6ÍŸÞyÙ2c™·ÔÃQI¼ðoF9‰6¯kšà®‘°Ù#$£U-„6Wzä&»ptËïm‹÷i@ý|ä³L?ªWïõÚe2ºé4ÂbQM¡²„Ââ[ (¤*1µ‚²¹QŒYüuM=—<™×¯Ŷ£½CÁ±§¯nÖŽïÏëâl‰ŸÅ–Ê­<ÓJ—6-• Î"š7F{ƒ9®ù€ +Ÿ6Ùl‹×ð0¬°”£›uüìÝÝtïÒú`è+²­†Åñ;/‡Äcyc%ÑÉŒ/ò˜Œ€€êjÁâø‡¥päB+*79íü⑊¼jR†— ëE9¸Œ/Ü‹ó®Êê,®~¥ úF¤UòSÿõíÛ°¢_Ò:`ˆ4¥O;*SÈMîè¸Ær!…xl I}õèK~EèÚ‘¸ª°^¨Hk ¾†™yIw“t¾ÅtçOea¾lª¹à™«9@ì¬×PŠÑà·¾ú…êK9ރ暤GÜì€Øˆ–Àí˜Ë'zë­”23¡”|¬råÛÁ.oyšœ3J½*‚1 ÑØ#&èØ†,ýv]kú [ƒÆÃYÎ?v?jñU‚ýòasuHþ#S,É f Я§eäË//Ä#Z¹C ±\éšu¢š2QîÍ)/?~ )XaSÈÃ3 DN J§(lýÁ•¦©0õ ™\B++lø‡{N†¨¨ÎTàM‹–aG¡Øeíq?+€x2+Ê BÜ©t $ÄÜÎá4a2„n›0(8Fnbìî9§q}Ak¼LØA½(ñ®œìx¬€äÙ©øP¸@Ðã2øïÂéË@· µñF‚Š é°6|—ƒu‡®zäW &êü…bȧ[ÄÇÙM,•Í*èéÇ¢f|füœ¶+Íhx›µAÒ—6}“–B)9Ýw§ÚK&ÀÿÇØÏkwfª§x—¯1‚ .7Õu0ò›AIÅkÄØÉBýO=º×9Á«g¹²Zãž?âa"ýQMlïT¢ܧ„E•áIÞ»cå¢È§8ʯxÔƒó&Ànuÿ2v/- v›h‘$LµS„^®õKü™Är*¦’Ó-¬â¨B¿nšØc65ÙÆí*±à¦{kCÖH6øo`Y¸ü䳸„öÆÿ«“;À&gÖeòò¸.¿5‡V¯³ˆ«z›Ö/#aYÚöû ˆ2xÓ%X‰¹Q/w1$íjÛž”t ©Z·ÃÈ?+͈Qfl­½µ–ä­ú„]]‚Sù5X`/ÚÊ+4ßÔÍÕg"D”—µŒDM©Hí¯FÇŽ§¾Ÿ€iñ(8…râ¢èÛi˜cOVîp‹p’‡¨†õ:œŸ‹ñ@Ä›4‹ÙhË…ô;Ùþ±1" Ð{ÙJËF¯Êt?®ñk— oŸ…‰Þ‹ð4A£$à&[–#qNùœ23è×TzZ†0döîiÙš9tÆ—³`–—芀z™.¤þýÿÖ==Æ=­’²JGÛ¢BºÏvØQÏËde <.éÖç¡·Sÿ«Ó¯| R!U5ÖÅ”Jú‡’—‘âÆ–ZðCzÅ·gîÈŽ=0©9á÷ˆýƾOë¡màƒKo¼l e?ÍÑï‹`N*ÜÞו“ßTib¶î6±×¨Çw‚ôv vÐ^»üm8Ú”gØæÛô¤ Š‚3qâ>f`,¾Ô"ŒŽã ÖöAÌUTëRTY u¨ðøš_1Óï·µV|’¨­øÈê«Ë©¿.wcà…GvD"H­B¢ _ÂÝ€ˆ¼Ä\"ú )œ(ÐöÜãÜQó'ìK9Y¾pXrN»\Ë$õu°p¡rW±‡¦R€ã¸ü Pºž±A2Ã+`ö¿Âé›A}OM/‚ºK¦J<ù\“çTØK‚Y`h%º•Û ‡p]zlHPÀ’Þ{ê¥vÂNAàŽ£l#±{8ðëÅ€‹°ECßlGd{3ÕrÐ$¶©æ»ÅÓ:ŽÙIœöŠßRB¨Ã-aÉ—‡‘úg"DkZ°¢?×s0K§„/kDÉšBçG6¤f(Ö£üeŒ²Í%vÍÉaÃfpù™–2¯{Át—ƒ §tÌ@dûÇò›q=ª÷’Œ 9Ïö”7V¥-¢? ®ÀØK[úåM±£†oÒNV 4äÎìh^sÆÍ‡»üÊpƒ"Ñb#—\?v¤ªD%ô¾1 opcèˆà”d.bô"MÜÃ÷Ãw-:YšÀ"Ñü‰0¥Þ¹K]Æ îf×v–´Aì7Ää)Œ¹%²TR X2Ì‚´ý/ƒQ}KÑ’Æ*2gQ)í^E¤h:ÊÆÄ$±¼Ÿ'¸•½T\àÀÀ[l\¤lÚÕkm‹·ØûžBh+Ð?0˜ b’ÕrÀ^½'N¬N‰Á™c=Xü5rp F™m#¾ØªÃ–åá¿–CÚ/íD+ȇ úk̲žô‹‡Ô?áˈ»ÄÓBÜÍ ü[ûoGñP£GX›îrÛÌüŒ r>_š 1ž/䘗·,6&)=JDm/ÏÎ_{‘v) ßR­^…ìû4a'óx®ýÜdùåw×»¢åWáÛB°ê AþÚà€’Þ,ø8”#RqЩÜd¼ã¶ÿ=Ã*§¾áÓÅ5÷mvNFRT*ô®Á<ÚóòA5ƒ0¡Ø½|Æ]jùÕsj@\q;\ºn’ ý ,ñYÝçOn…$7Üç3—É\JôÒ¥ñRâ‘÷¦C-Z“‚°ècl¨Ú2¯ï6'œÑAIE Ï?~ó¯û*Ǩf•y•?-¢ì!þü–f?Kò{ €ÜT’¸¬V­)®ó‚øµ“x'lJeº[×½ÃÐÓêMÒþéù.+lÜòÉ_¾ÊÇåa…ø½F÷¦LædÈû­R d„¾Ä,ç|ZwC‘ uu^£]tq-Êò?À¥UÈs ¯/%SV‰àz³^©@¬GͰÚ{Y—{‚Ô¥cA' rЉO¾ë}íâl>9†9ײنð^Bl*2ÍJØ.naáÆ·´£©+/“'ÃŽ´[·|›T^žÎå¡&Viëâ©!ê¾ÿ$]gJ/u6UŽ_ņ¶¥jÐdÅËg»8߆t¹Äñv)°QÎQlcŠ~ÐÈÏŸ¯;UJÛG/v–úçŠ¬Ø m€³ÀÔ^ÑóU½µý¯­ê¦Ø9š°†0ÄåàŠŠKÑX¢LTîÊû›·ûtFÊ;ˆö=QJm‡)Áx5V$HÞBæÃßá‘ЯO("×378eÄÒ;M‚6‘Óß(]LÄ ¶á£C&úàý.t<#¥ÈGIŒG ]h÷@q¦°ZÇäý ¢gr4Ñ{ž°EãêÎÊÛêJkü*¬þýö+áqPƒÛfMÕíçú„½¾q„» JîL‘"Ú9ã~·4»†Ozn e÷_`ÿx0vOÈneÛ{ñÂïŒk½ŽW3„ÇHZæ‰ÎS&†#Žñìá^y$A˜.fˆÜ´}ËÀ»ÆU´ê¯B²ÉLfõý“£Woï äÌÂ-Jt@,Ï`Êí”ÌW£„Gàk`’‡Ñ@ÈßÚ(»[ø1±äM‡±jç× ItÑH˜É‚ÉØ17(ÀSÛEáQ@_ÃI›jë* 6²À4eÿ $Ûš‰‘žŒ™B#̧kÞ‰/‡Iƒç»Ò¯-ħüsÊ=²<šßÎÓgËJßñ;Bp™Oq\ ‰™égsÙ‚Ò`X | ¢ÇŽà¡ÂŸìïdú‡Ûƒ6E¨i‹J!Ñ©\‚ü6?w'Þ6ÏŸTUì‡ùb]z‰[ò¨Ûeªdµý+³gÛPîS`M¢êàbûKÍè|“‰¶&,ƒ“CÉ`M;jöÕ»‰)°WìfzŽøÜ pH.ºiêŠ?8F£Îö°”5n”ù·ñQ°†¢¹IÑC™‰ØL2O™j¤ahÈþÛ‚I:ZÂwáÓ¨òXJXt‡rÞï*5a™†Sª¯a/vò?–éú¶²§×ߎUŠeÇhFCòב½Ÿ2ëÒóçø–™Yîæ»;kíJIt‘ýî@§28§Ó·…‡$oˆŸ¨9P ؽñ½«„ž¦NÓ f¥3Ò¤æÑr‹x7qD}*²Z¶5²+A MÙ¾õŠ–ýÉŽÉá…0Q™ivY—öîAƒ:DÐé7rMGƒùòÖh“(ú!‡íÖ˸( Óé°iRëà–—d¢Ãë²¼½ì_¸Œj5¡Î654êaò =82T\Ðçk7¾)‚UÄz»þ @\só‚' U¹mÞá1y¹j`m°ºþà!€üYCš¨‚yÒ¦¯ÓeñÓ ¦ÌÕ&ÖbÀZ²œ‰zK’1]L[kj(iæ\N àùÕÔiî·Á#£ªïÌò%ñí7aÃ’ä3ï•…ÞØÕïqõtÒÉ_]W“«¶ä¯•#£›÷A b³jN›RžßJW,ìõmøëÀN´G-±ob±Ý _—PNoãÔÅi “~µ4 xBÚŠBæ"V_Õ$ëû6¸:ôÏ%¥Y§„fÁ¾› ªj%?›2£”%Nê¡ Ö: †Y6ÅN ¦¡É J™Ð~Ve…QhÊ6tø¢ðnCX+–,<– âìë—óHJ¹Bg*‹:ÄÞˆS¥L‚ÑÉE5lUòH:À~øù>T•¡¾À®×ô# Ù¥—á˜1e§«TfÒpÚœ„ÐÇÀ. YSIwE8¾òiâeò$ƒöÆ ÜT[?…,OÚ>H_ƒžnr^|\Eñ½r«`âðØ¾ŠÎÝ)ïŒý ’дÔÂÕÛ$›fø¤èÁT‹ÜãqmæªûGrCˆzØpeÐÊY•"ÿo§"Ãmý÷ K×Vù¾–YæËÑ‚©ù½nÄPUȪI`'ç§[ŠOsµœg‘¤ÅI54-gûÀœ»Zß{º¨›H® ö*EJæjTwìl^˜ŽŸ!’û,Âê¼|;ldýyƒ»‰ˆ Õa¢ýæÌ*´ÎŠljë«Sà)Ì2q ;jÚd¥ÌºÉþ€¶cÚ6lbÂó÷qx˜|è Á•qßHŸ]¹¥‘ÃpUø¨#Ò#†DÇgçð›«8‹]¢öÙãÛzg²ib©RËfÉŠ¢Õ ¾uà (×9¢€˜´˜ ë^n§xsU‹ٚK¯Úk­fé÷?¶+¨3Û`6ú"/Óƒä,EÞGE{†Ê_ÿ¡‹!Íç['‰+ *ôV,ée`g:ü¿Ý™ Å߸tÚ~®` øF¶/t\VÊ{@‚-Õ.—rƒæåµÏ°éh5ýzI]3û†fV„çäÐ9ÄrR $Vçþ?:Gòü¸X`¨™×̦J,õ&Ë“×óU«¬”PıÇôªŽÛW)“-½8VdÇÛGà0< ŽŠÚ|øf‘4TMa^äÞ®Ó?XóÙu\–B“±Ô/ /ðÍúÔ§ÙËh¿õCKF 5þùʲÃûh·ÅIF•úxztúƒ:Ü\$ú“ŽšÂ]h…ºï‡Q/µS‡JÌyȶ‹dÞ¦ÖæÙÆžô?Áxã6ºêÉàFDßr²¥˜áËdÐá–5;;çõŸŒS¡’Ä¿ƒ*z0*bJ ÃúûÒtÎy³¥Æbè ø‘ÒT&¨ÁîÖxüpÓ§½_•åó¤3‚‰|p`LÐÞ÷"î‰M|«:GpEÑœïíóRyYn©ÁóóiÑÔJ"2Áê.o&ðzÈuÿK:ŽG8L ïm Ôâ‰>@qúœð ¢ž“÷HùÈAƒaUÀf½àÀÒ¿Ù•”¢ ÈÚ€¹œ¿¥ÂOw]•&Fn"¯TYL€õÃÏÚ£ªb ¶À®Ε•G‘ä•~=¦,®,gÑŸ&nNsºÑò·^6-ôÏÓHÓ±\Ÿ×°4ñ/J’ϱó'áÚó†?6=CrÚßÂåÞyÂ~ßv,þ‡'%!×fýD wÝ0’û>‚hôôê­¯r®8Á’‚°PyN1¼ª:•aê@Û¢RA`ˆ{£iiŸg2S³„rE~aŸ|#5¢äŸß;އ8›éý¼õ"BRµ E¥)S0òP)‡êkhOk¯ùI­*«+yØÙPçX}®øËYÃdŒ¹ˆ|ñ¿*Qà‰dË—ô¸oð›rìœÎ®5 06A"{…eý°Ö˜¿'[—…`qù–;²lÙK„ ïûZý»Ê‘^ Ws›oÚÅL , †bº§„€ë7j} ÷EˆÿÁÏô ãMÓÔÃT£·¤ªm)YûdåôYÕÞƒh÷ "c !ïŸÆ2øK¤*;R”§ùúáªúÂtúühÂ$1o8ψ]@šªž|]ý_ŽÉ55¾Œ’ì‹“’Ò$š·{€÷É?Ë™ÖÉ2#3ºž/<æW¥Ø‚¥Âíâ=#„C›¶z•q?Ì”'^Xý ÔÕòþÑ= ±HЉ¬ÞÕaG4óœûª4uþÜÅáÕ;ÙÜ éÌ-ˆe‹<ñd­™ÈïkƒÉüV“ÄHìz·»VoýóÏbjÊÉ[4ó‹æ'¢lÄxùŽã^•[e:uå. ÷ÓQô­„k⯮Gκ¢™ð#ð™“Ù¢·Žkfp®ó1Þåh:”Œè@âëÓlTxמ؈3[÷Ú'?ÙõˆŸpǯûN}¶zT^óûU öŠÆÑ·Låõ1Ùš§S£È[`aq ¾¾×š‹$Ù`ǺqJJ¾ó[.ÕdÁPAºm…ZUŸQÍü7Ôí‰YV¦g‹oG2!ù£½ 9t¤¨ßæ‡ëÿ¢!š\½l×Ja´ƒIëtd¹ì‹—ì¯Ö—M¿Z¾“H‰øúà÷OG)r ÔˆiTòoŸ]/í—õ¯Õxâ+ù½¤ ˆ³VȳÓë·èTC]\y!Kœ'·åŠ ç´@DyÑR_D´¤)mÓ™Ê;)¤ù›bF]Eéˆsâ¡àËú~ÝÌ a¥1ÔÖ²ÆÙH»÷éw9™\ ãçˆvfï²<ÅH=ýãdñ‡˜¾ñ4N0S°@êšR.*KSB]CͲej¦2°A›¾¶´Ñv†¯÷;ôõßò#ð‹í6¡ n߉ ïA9/ °*3èÄS<èÅÁÛÏôàÉO9,Ø;ÊÜHW?pxåûœžø¯3)"öRœ[•Oe«]üq-êΡ5ZÃIïÝêá§G.Ô]=H3ÖÇUK7·ÞûÉ”el¬T9`rÁ_l^!Ò¦Z# ±ƒuk¿–Ê·ò +(Ä{ #&Y ƒ:µå‰]Â8³Á'ÒíÞÏaÑHÌ{›34üJ<²ü3§G8·ë<•7&S£0Pá:Ę ÌÃzæ·b0r/çù[êÌ•ž¹åé¿PÉ={ZÇ/ß·º€Âƒ?#ÉþüBàÏc¢ÆÛ/tÒ/ó<½ë:Ï«b_]@¨A—ôäÿÂÞÝ£¼È™ÌbTº@‚ñ™ cŽCØcT[þܾ#ÌôKàú3´àv㮠þL7mÇÔ˜„ÇA”9ÇWzè‹Mü:Bk—¶‡ØAüã:æUl¯_ؤÏP ¬îØÑ(Dsú“.r0Š$lks»6*Ò´7tŸ‰<þÉðÏb¾.ë?qO7]¾8êÖIÉ|e;ªàyÚç͇2W¬ $®¯‹vT’Œ¢ÜGáÄÕ[/Û´5¢þáCàÀšš®m† uœI?惜üh¯µ†_i±|`œ’|q£ vø‹ÊU¶œ –ÍBï-‡Ùu$ãùàé ¹›ëÓ¤¨?ŒØÀ»!·òIä„u!R„ŒÒä”\ˆ¨õ˜ü“×/€ˆìÐT¨ñ¤’»“ãtlK÷Ú]©ÁR"$o=peÞòqxº¥ÛÍÅúfº8=‡3·ÌsJÚUòg0P ö*ý¾d8–psED®W:Hu~éHÕè,Vñ‹v‘!„uØÜGºa#†ò Æ[§mT뢥9XhÜÇ®ebÜæïìèS¶ôðUs)=|‹·ÝøUÿþ¡(± „ç#(ÐçôD±Ã(бq¨d\òÉ»¹Ü Ïnrf^3tñÒU;2ؾ5¶B…ÈýóUEJS'v—!0#‡¶³”áì¬ô©xé’§‰yt$„üÊŸ^#s m½ýpê]ÆÞ¢ Ø…1¡~=¦›¤Ô"ÓõŸ¬?tD$®T¾µH%eúß`xn|8ëÈ0$[{«dÍéÃz І èâÙÿ`‹ W's/V/¾Œ»TåßЯ”sÓjŸƒW;ÕQ—§ìðW\&̟ĆïÞ,}°XÆÔÎ+šþ+.{¶©²2Ù.aòû—¢`ÆÆy>ªï*’Q6–ö6žS7WdnGíaòN+‡½:D>5’¿YðG2µ4¸¶%÷PŠq©7@¢žOÅ´XÉŒt`è k‚¿ôV|¼Ñ Ç$^¥µƒ:úf¦ÐDV˜ó€Í]~ô±¾ÏêFF´ ³C/JÜ}Ëz{Xô ­óŠ=.j¸ëzTÅâ*ÿã TtH†I {@vÉlM+#£U ”ºÔn¼¼Û‘1ghšã›ÿÒ »*KFVT5dü•c½ü*ÁÃJbß‚dø‘Ä\bn¬ÝO·š.ü Ä·A%ZÂ.ŽJU–+· ™#p€•8Ý5tÛÐÁ ¨g =»fÈÛΪ."[D\;½ï*]–ØA‹³²ÛPüÌ¢mü­H—#æ{8ãËàªä‚Ê]É!KdX à ôwl‡»ð5σ°ú‹)VH-…Á¨z›å5™“ôSñÏc6 YÝàFaŒ[ó×h½X a é °fu:‹}×MMnOEèk˜–ú“¸‹aø—Å\kІ‘2J\sJU˺å·T0’E¯P9Ðxi$lãóU÷ >A¢pØÀ³«É² 4IÊÁPúý {^©Lz ãÕ¦Á¿7ýÕNIV¡Ð»Èö¤ó/ç¥ECÁcóõªõ_6þœIûŸÝ £QžßÌo*K¦Õë¾×µn„i 5¿w´é¼\.mµN‰¾ñ¢âÈЮ ›ßkÎB"P'@†±±TÌ•VIì¼ý{¿ÖvY¡cÑVaKbïÕÆFä%ÅδɼšŒÂÄc…Ûíýij§Ø† S­¤P°šÑ{ ØMb#=Õò;ãܘïD™¦äŸ0jA4ÎŽ ¸§UíœTÏL”‰¦0Uó¸>X!¥L{°ø E°©yt+ßDöÀæ“¢Ux» \.G@«Ÿæµö¡ÊľÕ9÷@ŽŠ‚äâí¦9±è™¢ú0ƒUÈd=$ÿ×M†ÏYp¡ô´×žÿ`-³  $bbŠu…tÂkÐŬÑ$_H4Û^æ_à_[ûû<Èây[IÞo5H>Í¿­ŽOn¹åoxMáÞ‡ìØaËùZÅ6Ý^âèçµZššMrA|€*£½± CÂE&GÚ£Øòn'É 5»¿øÞª´\q†)Fêvyfú'‰,x9ØåwûQѱüÖ,Ê#°R‚®J€•ÖÁÏÔRÀÏjª.ÈÉ&¯EÍãvÚÆvÔ’ý~Ž.Ý0ÆÀm•iƒ‹AgR£–æ ªÀl|l ‚ §Ñ')kìn¹p°×{ÖâÈü%°Æ'U _1i=æ(f«Ù$džcE× p÷mªª˜—&‚L(,³‘j>QwL2ÑŠÊ›W(¢rºnˆÝ ßçV%ß·Y¤µhçŽOÏö}ÌFٺ뺃ݽwŸ ñ¸5ž^Ÿ‡jFŸ Ç?r~üÿmöâ°k÷_u4L9 [S;$5ƒê[zöZ؆&JÐWõO ˜Ä¸â9OôèÅ6´T…pý‹auJ«-*¤kü„“Ê0‚‹ï™ÿµµ@møˆŠÒDÜyL¿KQ¢.Zèõ=5á~;†…ùXÅW@JOeñEL§UÄ¢c–´o+ØÎˆD$‚õ%L_3‡q0ytýMöɰ¢²¥‹58²,7l×ʹò5£e8P’L zPD+¿ÈÚnBÐJþÑòª,{`ÇnÉŽìí¾­Å²iZºk`wÇœè9mI“ÂŒK¸6£«~©-h×”Ebzp_ê?1ñ° "¯d-ll9&­‹çïÂïHЂ¶ä*7Cu]‚ê‚9¼ €Ä5t•9«ÿ’ @€ -E ”èÁ>Gß IûŠ;H·—9ö«¬Wîc5C5ÌNœÏIµg(UDô¶äÜ—_d_'îíØx<ËÞ¨*‡¿È8výBñYU†ÊÙƒ.No“~ØQäaüjkN ²«žÞ¢¼¶_ýdÿEhÅLȘ˜2s5ým…Œ‰7¼ZPŽäK°×ÐÇŸ¦ÑùéúŸÅzž ÑúÍJåå›H¡ÀW…)äÄéNýe&~¶\p î‘ÞDþÔübE8ê>‰ ÈÕ²úÞü{í¬¹§-õî»Å’€‡ƒ>Kì±ìð@âµk³{BõSh²bl8_šÍNW=…ÈåsS‡ÝþõLÍZŸäºdgR!“Ή±šÆ¦„ÿ“ ä>ŒèŠ`ähÿ< d´]‰0Æ P飠nLÞ×·ïç9Di•Úî$뽑OF2­"OëxŒWcHÛóiÇF¶kg¹½;Ÿ^`Ó^§áN$ÿC;°>ñÜëªÎL®Š è2z·HJkd¾»Þ®Dh›¡©E¯=8J¿^x¾ø-fܹ€™þHÍ5ßÿ1Bà"'<£™M?•˼u5ö[½Ï˪w¶çhÞE® ³~\J£=®Úì¥8 jLI§}¶åMvñ´u›ì§TaêsÇKIzËã¡m«ÊçÃæ1cÏsì7n†«$®›,ó×`Àûéä~ݧV‘%¬Õ¢¹œKWÆ_¢+Üÿq†ÁFÌ¥"P¸/bvüÎ*9úƒÓf‚©O’ʤBŠ˜y, 3v!Lx+,։ޖ¯¹¨Õ‰6ºkµWkPL\Êwšð|9•¯¡Nqçu*P>õ(ת _±©¦`Šàm›Xà|NÊÀ¿dþ+ch÷†Šûm÷.è:™;;¿íÑNžª$Ñß×ìy ž²§iUŸ­Óì½Ù‰Ï4ç6˜T]Â_ž¨Ë«iv3¤ÂZ„E’Òºýñÿf"è+ÌTEgÙŒíQ66¤’fñF° n…{j[”ùâ€Ðω¯  C<’‹ìÙïeíÆ®|À¦:&,{?â(óî Ÿœs^ß„*°¢˜Tv‡ ¶ðë±ÝÓ"5'¹º‹hÞ¦ÄíHÌÚùn®Ý[R»ƒó9×àÀ) ]^QΙ'n¹˜Žkeþ¾€!~Ñ¢ R4°«E+:û¶™Œf+ç¢Èx~ˆ½&_ž¯GñêcûrÅ*D¶™jØ aOéZ»*`Î\³X†‚×6wø‰<é°uB…MÁ9ùvhdLœSI]³ÑUJ]=KO«)N7Fu¯`¶Vq™Q ©RŸóIâBàîôuaJ`âÞªrý÷(Jœ¥3PæVÃ$\6»ºÊâ‚bŠZNÏRóûžl^¸ZJ£( ½Æ¬HÅ:Õ%—uVLøi÷5¦‚¬3ÉÓ¥eÞºð'òƲÙ=¿0' ½çõ$LØú ŽæYÍ2¨«MMjí$E¬¯íNºY¢ÈÂ]™ÿ¥)èˆÔN÷÷ÝQñQŽ`JBÂ~Œ8ož à¨‘hª…{ŒýH@}#m[¬Ç­'&i38áèã –ù‚æé„X}g‘ÃàÜ…xlnçlµN¹²óY ]*=7X¶fì;K 4EŒ?ÓÚE‹tüp††wñg€¶»çýüâÈôVLmÃf:Ѱ6 Ö¬¹UW³R°JÒ2ïöKDP’ó”ÇWkð þf"XçǾ$™À/Ú&®ÅqÑšúMÑ7†H˜­_q[Ôìë'é²õi=GÑÖ ì+Aw2,`8Ç"«JØü)l€„ Oî]G„› ðÍMašh|xMÖ.#èŸ ªUÔ!‡ «.Ø?2¹×Á¶ŠEM2’#7߆CfFCÖÔG(±›X cî> ‘ûdL¦¸€Õ!ÿ‚ +• ƒ¼P%>£Ë |"Ü L6‹Vä,ïéFuÛóp?eMÀ4 kœ­–ðxé‡uoÈÔ©ŠQqÐÆ-F¦ÜËQ&%Üœ"·ö^ßEàÌwzÑŸlðO‚c àwÅ™ŽX8‚»€> ·F»}‘ †ÛC5Ä×9Ì ŠÚ’ýE:]/¤'—ŽÀÆ® *òè0ØÊfeW–çj(ëÿp§,¬·¨º¡/õAûréÖÔ*þçÞ<þ‹åø¹Àøõ)Á¼"š€@ôR8þ—î†sGB•î £×jÛkòuH’3…ëGG9°²HYoGž«Ú¹µ &zâ%ÙÇ%–£n¾íçë7½0®Ñ[«»Ð‡¼êÈåé¢Lf‰x·îë5+érEþ«­e;ãjçb]hƒ6$ YÖÐXˆßôÊ aäÎØÎ1„4™=q”ŠS~î5çB`æsjôØjÕ¶0;š/¾Øÿ +ÍçÎÌ»Éu¥²”òø2|[T9G°õçÛÂàÒ4Ûp×[Ý´ Å‡Ò³n¬äAšs÷öKøMH‚à0' `€?-X½¨З}²M¯ê< §ºÒ©”f§?Ì™g!2¤*ÍD²4ÖˆÅ{«Ð›ÇÀiØŠ-S²È•{€éPÐ)o Ü>ŒºÂNRs”JQ’¸.ÄrÊ,|y˜b‚{!¾Z[YóÓ¿Oœt¶“ÜÁ0=lË›žš×W-KõþÓÌSÌN¯ü B´¼Ê1®œ<.}å_h7 uì‡}«øwSküá¬xz ÎeÆ“EÎOàn¾—¢\‘-_Mœ®xˆv}:H;MµÒ±g¼øÄ72`Ÿ6žë….$Çá» únâßt:µѼýô²O“ ó¹¨4ÇÊeœ¢˜h¯õµsgÂÇAxI%p• 묦pÓÊ—[¦¨´VÚµDäVQPùÿŠÁë˜í‡¹c€ƒ aýïÆ1Š>Ù² TB¸aͲJèŒA‡cå—Õ;4bàfÇVk˜wKµþm±e~†pÆ3Lý“àD]¡¬ ö„øZúœÆá+Ôó6§‡nQ}"¿åh¢"éïSpWⱑÎUüÕ<\âvæCI©w÷ç ±¯`åÏJ×wI•ÕQº0¬Œ}ÑWvr>ŸŽ䈙‰¸BŠþåÿßÅ(/4Úñ—+†Õž(Ó¥˜ª!«¯·m{øCF²q³üx!Ç/NPpG=}RäÆD̽ìïqvœ›»—P WÑqèßðÕªªpçu\äPœX´‘5-:±TcòæAŠ´œV‹ÝB²m R~5‡Ëv"š“µ"☱S†ùR¡:îpâêž  Õm²âïnxÔE«|±0XI™T†›®?5V}3,ùNdèOM2¼ƒï ‰íj’> É“É4Å>VüÂòzhض3'h‰4? SpPMjžŒw¥éz€A?˜fN‚N Õ¸ôÃ6•ZÒN-x/_³#a7ÏJŸ%¿ "—`òHÉYP¯Ñ?¿îÁÁžÁ–ãèh‡dX²ñÍíh>ì$Rý´¾b„e›®n~УQ¿‹'µn.zQäÃÌ™Çt$‡ c]ÖŒÝZB‡ 'ÍÀ¢Kqðh0B+˜zc:c¼S4ï dºÀ“ŠWÁ¦ƒ)Ñ“7fÎë KòFýƒ½aúJŽê€ ”VÖ9ôÆõp£Mw­/ZoKh«åpAªë¦V" ›éR2­Ç-àܬeK»„ß¡s?„î•«.À࿬‡¢”Y `šw¾ô¯WêЈ>þYni™H É'C%çâÉaó@Lnéà 7°mPDôæl9Î`Ñ RÜÆè.ïø±)¥™=XœŽ€DUöŠ©<ð4ï‹/iy1χDk&R&‘²j¸ùQñZo·$Û˳~&–'¥4ØΕ¼ÎZlü_jîO8KmP.ø°ˆ!E@AÑÿÃ_ZÑ›;ƒÏÚ±<¹À–n/Âìx5ö9QÌ"ÀSb·£ÿYÿl*$L+-Mñ¤d¬ë<ú0ÝÝX§T)@§mR3Wà%6O‹ºÂ«Âå:ÁÁ1÷Ët§ëªí=”¨MhÞã÷ô_j1ß]Û³Ç$ì&ûa 9À{ÿ úÝè¼ñXâêLÑeoZe jÙ·X¡¿ÞÃ}—_™ší0±ˆÚk ·|#Î˶²ÿ¹ë¼,{1­˜–[¯VРsݚũ#<Ôb´Âl´±£V0«ã,W¯9LÝ ~½jT›§´7àóîó$môìlÛ×úÀIš-§‹¡œ­;Ä{ ì¸ÜáÑÛr½™Ý•¥Ø)“¿ Ý(kgÝj ßþà`º¸îö3æzÊû4´.xÍZP^àÔCóŒ“!= Ü ð;)Ǥr>[2aéŽÚ¡Öt­ç“JÖ¿Íkžnß¶N/jçY{l&è0oby¼Igu4¿R_šm¹â‚4ÍV² r…2ŽºE‹Tô܇’ÁyñV}VyÍŸÔrùF–â.çû~òT„¼|ëE*UXÉMÛ¯ƒíÒ8'ów_oöòb_ †ž/K.Û#¿Wf€Y æbÃ~^î@Jß¡™™DF—yT×÷—ÛVV©ˆVg+¤K‹3O^Y’´{¡8­ á³y÷‡'r°b !&©Âgc:„Ô+Hjtß÷.m&ȼ­# VÏ&|r´¦j*&MÝê W=ü¶\n{¢}eÇ;<ƒ¦‚N#€‘(uXèoÞ´o›Š{à·ŒÙ+E×¼¤9KçáBfæ„רFç|°ØiA®ëÍdwKðžáü9s€s[BA­ŽÎpu”Ʋ%Ø!#°XÅá9úUå 2˜sYFYD¬ý-Jl☭5QÞ¹¬f¾S%Ð ?ŸŒjÂ[=˜:›èÂ4 ôoòʾ\ãÄs'Fýó$%a½2'²†ébŽqþÍéE=AyŽý&Ôán“zpóO±NË”8÷ŒÂjlvÁX—5õ“m~¨%›P€¤·}~IγàËÕÖw²H”^„&jno Ga:ÐÐÑ2âø´ŠXÊäŒîæ¥GBK´5Ç{¡Nƒtg Ú jêžDv-ÅÏê×Ù´!â‘ õ9S[ÏT(ùVØÏÉãò¶p ^õ˜¨Ø½:È^ÿKxºt~oô\ĬT@l},Ì6vŒàB§nÀ"8,p_Ïfm¿O«åj[þêÚßGUjã©kPôªª!.Çê¥v€-´ d1‡äîx8ü–‡_®Õ“Gjw–õýŠTa‘ƒî°)×霈xCÅ#ºöO½zéM+0½½ò“ïNüß˃¨ŒûLiI·xˆRzG*ËõÕ(ë¯R¦ídy·Â€¬sA~N½-v’ðôMñnÏ®:ý5‡=ªÂ§M¿ªo/î QK°–·µìš?}jSœã€DÔ.k$ú‡_,Êi³¦SS J»ÓáÂŒÝõÚp¬0C`&ú‰GÉô´‡>Ää-°@ìõrOô À°ú5ÛX±³'½©ðk̵;èñ:´o*Ë€GѲúJ§(¿—ârˆ~Ø®½b xÛiÒŸ~€m—ÁHÆ:¢y`iÄÿè©“릭/vÄ× Y˜ å2L—ð¶3”à zÏÓÑ’ÔèÍ5ä” ˜ŸIU‹ÁÕ4€‚1+.¨2ÁÛ‚›×ço`§vìÛŒ ò›]¬ðUz¼,›z…"Xî•4Rã±âõ&dÉy:™Ó>ÉÒKÐ!oÑ '$ë^¤ ¸;lrmŠ8ÚH…y]²þg±Ù È“ìƒyP«FDÊ>½`†»âó»½³ëZñDä¤ÿeKçûŠÐ÷05£ÌØËfq\”¿¯*ÉDˆõöCÇjx~pP8Lm¬,fR“¤Y¬9ηÍTS¦ë’ §ÈΨÉÛªäÖ)/µ9£·ÿ®öœ€ìºI¢£:<Ðf†0 ­"Žé¬ìÕ³Tù¯H¦îP•ÆÇï%u ‹Ç´oÙ8xK‡ô¨Mi$æë:áíÁ\²‰êº ]Í ç8¼×ÊpÂè#¤,¾÷|ÍÛ{ ä[`O.Ø;KÈ1ýyÝ3O7Ò=5“¾q±"¿æîy›‚“ß5›„ˆ1©ôú (îK¿³MÒîD°ÀÂHkAwUbBf×}Ô!*ÜC5êH¨Qz¸ƒ½v1®MVÑËÖ™“) °åm:à¥Q¼Mb·Ø¸: ŸÔß~‰[Ñó©ò…/› ²x†iïÒ£¯W'½qc„j¶3MÇ"‹l ü’óSl•ŠO‹µ"®¼}–{ÒTNpÃÔ$CwŽr&¿Þöí%ÛINw§Ef-B ‚…<#7íÈl¢JÄ]„¾¡ouÎZ 3;écƒö²ÉÊg¾›×ìvY…†”ô}Ød™šz¼¬•LªúQÒžG Dö‘âñ¾ÈÄŠY€/j]ïq3ä-ð‘iÌ7¸]Ò­á8Á.4ýH‘ÙÎv×—,7äÐôzâÏ2­ÚXÖª=5vï›Eˆ¦Zß A–¨€H§©Šç‚IóÿCê­•( | Ö(~D⎾kPDdEc—ˆxÈ”·’’LèO¸K.ºÿù>~÷Ó5§³µ|ÔN>J˜€ˆ]j4¥œåJÁ9œ{÷u––¸mù‡rƒàÝu Gl{]ß’»jkbmçßz{ÜóÿpÎmžîx ÙxJï ™eö0‰:L›?*í}}˜ÙÁ„.èbtQX!lôré¿aQãìA÷Qæ¯õexõâôP0‡7—žþ@ÖÍþÍÐŽ£t)¶õ¿Ÿï „ISûÙY3ŽïVfhDvU$¼¯aA¥ÈãZ!U@_öÿÄÜ+P az°ÑH—oÙÞï+„˜¬oÆee˜¿ñsjèNfÐv6‚×À¼WrO÷ÐNóiϘ~ã1†.7¢Oy4þý8ž([¼’ö¹K×ùE^ëÖ:s“íÛ S:M ‹Âßé&±‚·äáÙ_îtœ*pa‡©»ýÍXjâ~Üš¯ü…àü;RyXEæÍžµrdŠyd]¨+\Ÿ°o}e(ô»ˆ‡Ñõ­‚ÝfÂÚÿִùAOšåQ û–½€¥« ,ÿôõ©÷+™w8KÏáÔ†zùÏÛ/)ÃÑìÿÙÐ~nO<ÈÚ$¼`8Wn¹šçX ·^:µËG8°ôÒ±ñ–:l—!úJS]¦–ìΟ Ø“tã‘¡¤šñ=SݤÜž6¾Ç»rêü‹´'­Ù¿[ü^'ËcÃ÷õÔØeJãyt’uÏj\CÖË䈚߸¨½# á#ýJÿú{õa‘ž&ÏÔ3^ 8Ýuÿzíž<„šv”nb¾?Yæ5.Û¦ô¹…y…JÔD1*ÒÃOÏjypá*?d‡ˆða¬žá*ΠfûZNBæ•°Ül»HòYWVm½:9W? ¸~Íd²  Xñ‹aÂÇÆ/ƒÿ&H@ ¦{Ì`$óÔ Å©­Åk6BgÌ̲"Z[äÒ0 ³"!!õFú¼È*1²{nÄ£$\¸ˆŒ›S‹dû^c¾\ƒyt×/Oÿã2GNêªqñ8óãG1Óþ+®UÅœˆ’^Z±#*œµô ¦mœ-ayÜoöõØn'€Qn¨Öçi‰K7÷^"yjUÂå)ÙÇ.ßÖ;u)ö#%¬ÅÂwøXDöÉ ø@žöÛLŽiƒd?MªG|Û„«Ëf1ŠÉ« žÁ\'Ѻ(\ŸÕÝ;mÍõ*V­ÀßH›0N¢pib;FE+ŸÎ޶*ø¤é*}!ÈQ/22ïñ?‹ sˆ4Úg—:•'J£ýHnìAðÖ£±ˆôë“b,(~¡ž1ÉKãXw¢u Uz¯Y4¢’‹è·–À&*fc¯{÷³‚¡%æ¹c}L(Ôÿ½‚wLÊLù¡,Xät‡ïGZ©'#fÁç“e¦û`}äü7h.F\æìˆü `âqZ5?Ó%\þͱĬÙÀ0\èáâFž4õi÷+zYB«8Mås'»£B© Ưû§c<[›êE€ïýšÝZ 'šÜsóA¦†—Ýg;0L2ž×:¬ÓÑO£³uÄ.¶h°£–<’'㑚.Z+5WÏ „9gŒkah1RÜ$0–B°^Œ˜ÆÏÀJP*Ià %¯ZLßáû +‚Xpxê_ðK? u\¯¬ÑK8†£¦òàeÊ@¿åägµáÞu55bðmo÷ nnÈ‚æ{½TÇÏïÛdø+Ædzˆs½;á>Z¬LYƈÉ\Å·\¡ Óß‘vPã‹Öf0ÀŒhä9´fU¢öi­aÊäl_Ž1ÀñRò‹ö[›ù¦€ú‰óÇÿ> õf*Ú9»QA|ñª“VÇ,MNfC¼…ó‰) ž%ýø ÀÁ‹á÷•´3ðŠZ• '¨”l@ÙîJšÞy´Lqwg†%ÕV”[}æ­~陇Q¯þÖëò!òIØ G䇳Fǵ`ç­ô/ý‹stTù­‘9Xéõ o¾«\qJÏ †( òˆÕ;}–nø æ¢ ’XãÒaÖg)«/DŸ¼.8sSÂ# SÀÅ‹Z¦‘ärõ«æ)òžIê::ÄUº™šð«,d.Ê»(¸JnRÞÆdþò¹‰ 1pPŒÈ0䦄aPlåš$#pØ»v x@¹i@Þ{‹èd´âª´$,—µ}F:Šg·ÀÁºw6Éð¨Ú4Ù19n…޾|e\ûî^¡Ë(Q ›ZÞßô>#W܇j’Ô–Ìtç ×øn‡Ë ¬˜!õäU`àÉþßj z\t-þÒ-c™ÍCvä®§‘]K»ßXc^/Q#F|/,•… qôüp©±½¹Ï‘=¤ ó(w ËÛ±ÂéÄúöá&57C}“ÖDWŸcñTYÄ/FÑ…”üJq\g[ð…Ÿé<ÁoÈɃ瑼\CØÌºê݇9Üͪ‘g 8Dìä&Öv-çèÇÁãÄn#®ñÅë;kÇ€€²|7)p,‰…¡?§#(ª1·nÕ*’§]~¦ud¡§z"~s%\KˆÎk-‘˜zK&Xbî¤ö¾¾6åBÉsúÙ|uÆúYðýuŽŸ³ÙqõoXû¿îe†ç¦›p±‘ÚÓX$çâRHõ-€66Zaœ²åP\ÿCÃzxùø4™Þïs§eá.FF`˜ˆ²Æz’³ª šóÇ„‘ØCR‚Ùƒ#Jv“ÌÃGÔôÞWì°RÖm,(ö˜ 1dáj´J >ÙÞÏÏ^ôÐuÅçöL`5Gç¸OÊ?#V¨ã»¸Â©:¨˜VÞ(–›_[P’i†¿š‘°A2ò¨5£ŠQ½ŒÇè‰ð…s«ñ]¡„\ΆÀÖ/9^¼VsÜß7dʮł\†+ {-~­Ë>úqpIÏ鼿¥ZÐ&ðÌáÔ^Žà_·UÎv“‹È|/—Ü×QÛzßt›ù~y$ZØJÊÞ§{Ó¢Øds*±<º/[„›¾àAd¹íDÜlWâåÊ‹âï Ð*øq  ‰úÅb½56õËĦ8gH‹ÂÑOž€ uŒÈÃq ®ŸIoLÐØ°°úšûêú¶ªeß‘Ž AÌfòí’ÖQÊš£3ûx¼¡ÙFœ¡\ŒŽ§uÇp@²åÚÉÁ§4}‡4ú8t•¸Ç /[^ãœuÂ,-‰±1úÀÄ\š }eö½Ez1£gÀ­˜ÕõðJ·êŒÃzì)Žû 3ÍAã”t}|í6%,;tð²kÞ{Ç ²¸ƒ}|•‡AôÇã¯ÍÑØb5‘WbrGi®sÅ Oaøùˆ›¿˜¤)ÐiAP2®E;x¤ïD‘@—d²€NZ^ïwÔ^Ýš*|‹íEw *ºÎ†°@Âp$ξ¬;h6r~˜ïz':G-Õ/–žú·(”tw€P:ë `^ ¡xózI‡”NÞ Q¬N‰A¢Ñ¨ç~Å€ƒîØ>Õ4]]ý½ëðÀÃÀ¹Øóèò„œåšƒãÑ„Ôö ‡—BCd­\¥‚¤’o¿k4{4ÚnåmØ ¹>«cùs2“ƒíJÎ2v`ˆõ–O+H´¥TI ´$2'¶ .µ^ÊFhéÈÙÆlnç¿‹oÖ›7p¥4jÀÀÑ蚔܂š|SgÄé cí?]E9Ü(&‹hW؇ÖEöQ‘@ñô¶å'ØÖ™ÝÁ;™i|§éÅ@i¥“‰ø„œ$›ù?ðåO8Þ‡ÿˆ˜ÃsðŸ?À÷¾›ÇãÏx”M®ò6oÔMÏ<üC64¤vóo”µ©åUiè=ÀfUí=yæJž|—lãým¬HF‡o.ˆ@œ³Õ_ÉU†¡3&K®«è9&F}kmšÒ>ñ8müM¦lãìÛÌe™ªúŠUÌ~ƒîŒBË~!0ñ§q„¡ŠJ1ƒ+~NÝjË%>3›+…Öü?6WÀ~TÀO6ØÆzìIíó[•,Ã}ž áGZxlèÖuêÓ¼¸¹ÎÍøØwê ÛûiôZ˜ªF£}ÀoxNFÔ ô#…^ôk•¶flô dé®±–‰ÎãgÊìÃx!ã'Ÿ˜1´2§.Ƹ×=K›êD}&¡tômêêÊ,–8Ó9Úgš+×Ìr¹ ×]ͱ8“Âóâ›s}©ª'»Þ[S³˜F€ß2´GDøÎÉ ï ï`í†{"ØÓ‘loЇ awù²‘ð€/Œ+ûý h=ÒàÁ /Crµyϼñ ;þ ãBq¦sIw9å žÇ/Æm!ŒïÁg×èX#g2ײyսǞœ¨Çu’ÒŽïNd=4ÿ¤ÄÛl‹( Ta@ Ï/äh*<8¥š?šh¤»e½ µÓ¹DXvU”t}ØÕã4r†¿³ Š Á]ža°J0n‰”¦ ذÌ#-_À^c˜K"²Ÿ£ÈuŸqà¥zû9Rt—…q­¬­Ûñí2þpЮªØËùÒóó˜@ø¨¦ÕJ@yãM"A»s;„>Ùƒ¸~½ SÝ#ã¾!øšy5Sˆ’MJ…/E©o#;8E;±¶€D~÷Ǩ}üFôT WhP ‰ã¡&(bSÆüWiŒ üº ,ª]Ü!J–!N.ŸÃô•¦Ât`Dêó§KÓ A2Üw[Mrg¶gqDšÔL°þÖ»ÿûxåûRñS羞ð}—¢ì›ŠÇ„̤cW,çZO¿ª«™ÌÍ£’7Yé¢_KF/2ŽÇrìÙí`šymEbIl€üòK½·ÒxYá[MT ¯ëe²çö'f“ê.±14§áîÄCZª â-bÆ:‹êÛë&Ýæ©ê2—ÜÜ|”™ZÞJ[§ 4"ð`bÌq—Àìµ¼¯žœ Œ£X쨜El‘w(¨ÊG©#]ûs›ÑXÔ¨e¸*È’úœG©ÏdõªˆÛþ`IA*€ ]ú+•¤ˆÑfX˜òß‚ Ž tV%7ºÊV3®Xl¤>%ì$þTïÓe†ÍŠ™$ µDh ê•K0…ïeøÔÃbP«W'ù]Ð4áëç'è92DUê1u’Á¢X¨­8 qZa;!¾+îü?4ðûëVt-(ù¯ ‰m†£Ú.úö0úÞžSiV³>½áË:  ¸ÞD Û{];<ãLHÔõT~U Ÿâ:óë,ʯiÀ'yX3#µ9n!.ÎÒèK<¾õÈyu…™õß7pŸ×Ii˜îÀj¼|9¬n5!°³;Bý¢déà}UÇφ±þHÅÌe¶ Æs:qÂ¥¥Dxæ«4áÂZ¥‡ö¨kßew{˜3×ÑûÓµ=~{ÊžéšÉzâ‹*%.çCü`ö6HàÇÆI±:eÂÖoôH`²–¤TiĬÌü<ò¢˜ûÍÙï–Ì­èN,rÉêh‡ööV´-B¨=ƒ™2¡®‰ü¡BfµBeö¢âÜœ}nÏ~ÜR¾&c­(-ï›â/¤nòÐÝ>—·òÊ!H³òû™ÊÔé^ìëÊÄórÉñŸê«~, a.E[â+soƉ²“ý²|Gš‡.ÎmÉ›cÑTÕn87#ÏTÞc \×þØ®÷%ÞËÉ–H!.‰¬J‹|Q¼hõ¿ÔœÅ÷… ðÿ…Ô%äî(´; ,™¥/…ú,d-ÖPB²¾½Bd9E±p§ÚñÌEGƒ,¨Ã_ÿÊ䯝úëâ‡`ïhJÃ5ú¤Ð8l„úü?÷Þ²«€Jô`-^ù‚ ÕÀN¸ÌG¡ˆ!âZ[44ë,›;®1\$—îemÁ•®ê¼FtHeBh—ðP%1‘(ÉÏ=ÀÏáÚÉwŠƒu1êA:ðEÉÃÜ$ú#©`¹Àq£ËY85 &Û§X‚¢g÷ëx&©½O˜91Ç$ F @!×Ïd»s§Û@hÞe Ï™C0G‹ÍD¥*³Ávwo) ͵~üÈâi\À&¸±è¨Óæí1‰xOßûð\w`™òN)µa™y¸é2­`Z¥cÝ`|Ù>¨ù†±ÄBbKµÎ!óú-GëÏòl\ÊÆQbÉá1!ïÜE2dÌ­¬·Â–b«¦°bŽ’ O)¶PÙØ¸©ò Äô®zzÓVÖ9K>S–?Í2Ç…ž}§šEª]N÷®YSÄËaiMÖ;Ž‘vvsÅ"ýì½ÖCFRßL–çö¤—/xE‘Äîålà …¥2^”ô€£±È¦zí»º[€°©«Ó1~ÜÄ®ßÖö,!Ëx"©¯†Ç\?XÖì¥äœ+¬•7¿üÅ‚OZ;‹û[×hHÌQÇTÒ#ö Jíìdâ?[ÖŒCŽLDzô»lßžo/;;¶‰]Y^›å˜ˆl? \ þô@:o9­±TÜ‘¯Ž_Ü}±¢?AX2ë‹ùEÅLËc³`/¼s vg‚~G’ oÈè*Ñ¿Qh*|V}$ SðoÞs³è6gk1«—UìŠÀVUö­O?8­Î#?‹ v0«OÚ&TïuÑzA]9†"ßÕáwçÄ|Zgƒú0…òÝAp½É& ð}ž;ÅÁÐÜØ#K&ÊüÕxBjDûÈtÄ)`â´£Z\cø!ìW¹B ÑnØ @tç ~.а6CÊb^`r4á«“+>²^²—WG^&>3aOlLÿfÏ™D–àH‚<ë4ÌB½Ã¾9ˆ\³eÆ!U†tÑášÃÎ0ž\K>®8dKÿ¹²›-{½ ݬ47ÆÐLè"ÈöäÄ%CKôIJ6k-%+ó½ý‹ E<š_EH¡›ÉAͤïœëL QÞË¥Ã2LaÓûQë}übèÓ¬¢œv8•×[ç: †Qt7þÙ°™NF¤ÑÄ~éd~sÒg4Hþ”Ð@vÕMíç¢Zð<;p+X¢wð »OdasJÙY)›ëß—µ¨åÞÚ 1ȺÍ[Â)úâÓÍpSþÔ-WO™©`”‰. d\Âú«†{æ£ ÕŽ¨¥“1¬~Oõ~Cw-ójçÇ ÊS&`¶Øþqrˆ~Xj`I/HæéúæJÒôæ“êáÖD«³c‚Ýw‰ —b„0Äÿ‹¼ùÙùSUI¬W~昨n·˜£ƒ¿­¢qNçœ" î†g~––ŒZ‰pì(µ›F\ršJ»@ÖÆ˜¹7‹©…µ³Ê}¨QÂ&]ÿfdƒûªÝ3]Ãýðqn²dëŠ%Lÿ…Ý¥)§ý½‚«uëº4—­áâ4çCPà÷h5ÞRcó˜­SªSf¬bõ÷tªrÆ)¡‹§ŒÕm´*sz'Ñà?lL®£áÚ&sæu¬IÅKj²“é‡tkèEMO –„cq·àú–ÇÞÚ^d‰Ç­ó› ™AÝ-„o’?ªES£‹-¶y] >Ty~íB¤0`":D;¨ç'ÁÝ«ÊÓÒáÂ<6 !¡k<ôÕÒªßÁܽ¦ÀÏ ˜D<‚6ˆh„ˆNªI>É]ÍrEä3Fgv¸­fù/]ä qÐ?p±–NwTŽ.ÌðZB©3Ê+”B¡™ ò+ž¿Óôè)*·Ÿr-œº‹f*ÝïÕ±ù${ZY¢@u!!\)¬á¹™ ‚·,5v5À[¢„^V¾äu5 ,̹^wj{Æ´Óª}“ÏQTàŒ¢—û\¯£ÔAk‚qÑòkc¯©’bšg>55&Ëbyí[Žõÿe „ÏÍùCD‡ÇF,#&š*:¼}/üŸŸµ¥q2ü'΂õ à };{XE ¨ Š÷ê.IËyAçX˜Xæ<ˆÂBh6ø`µy=ÒSubéŒuØ‚1ÇB¬>Î(ù£¬ Q˜yÛ¨ŒJ­4°KÖ2t릓ËíUmÀ·ugÏh)'´UNY#3¶ïüFªÌ£¹ca;”)']Ü›²SÃÍÉqb÷ “¦ùðtôvÇ F@px[6G=f¦¸Ž|` ŽÙ/\’€º‹ ^úéúW¥9É• ùW‰3îS1%G>ÈÛèÌ;G8ÕÔ/jŒ:$ÃvÇ$ÝäigàSfélB›ÙjÊ^æ³g“ß^¯Ca^üY’È-î@ö)ìhIEM¬^KAeªp1TO’EÊÍøŸw'Є4Ε÷ ¦ÖSo¢nlÖI€ù§%ì‘fíÇÎE9å®JTâiB‡aü!ΰG“~ªâÓÏx†°iÛæV=£ 2É®k…‹)l£çg|×è#9'âÔˆãʼn:,Tmá}‚€VG„s«GGÒŸÑ.u)r†€íß5€·tÌD |/†õ÷=)³¬Yi×"ÎàÒb¸|_Ÿå€6“|¶ÁÌ^†uŠø_ì4t….[` «û¾A{i§ß©N°á8òo;VÊ{û4 –¶Pcv 1Çðƒð¬ø¼?óT˜¾*J3…®[û ¸¸Ì“`’Fuvl#0O€_ü‰9P%mGÆøà²¾¦.G\}Ç׸žü(tŽÀz³26? ‘¿Š ¦a Àî…ZS|Œ~Æ>ëA*öª©èØ GÀsͶs6ÂñÉjâG˜éE7]»`K–å›Ng\ØSºÁÞ‡ìî‚;ñ&š Ö¢³ ¸’¸Æ›" }©\ü5¥ÿ‚"¯Œ¬à-* HÌVQk݆Yç7ÿ~Ùu^ w†W'E:2»,™ãi?¦·îÓüÞÍÉ'LQûe¡0¸h Ǽ,˜âZý§Œü@$èt"˜J‹z1]?ÁðÚ×K,PMš´Ðh¢Ì¢Ur×.̪Gs]¹fÒÝÜÖÀö5«ôé„zÔx í.ê¡¶]žò±ÌTüpÓûY}Ia"ñ}á<š†Q ë÷Éæ›•Å”%à®QT´&®`ÉÅ׬‡€ŒD¿a/Ѝm®ÅÖTÕ·Ùý²¯H*ž´Ý¸)ÛIY¤ó~kUÚâóY à?ÛÈïúµßáÞ™gÇ`›àª1 ðj¢(žó˜ò|R/Ea¾(*cFXË ?ƒá¶úGñ ^”Ówš„…ðpÁxËpÅ«?ýXÖkº›,7¨ûjÍ|ØŸûÊÔž·=#bRjRø8½-l¢ŠPi¯BVÐÈBŠRk@õÑëhP‹2ö¢É g|–‚¶ò«ômE#£,¯¸ '’(æµ5Ú*8†Ý"sH–ôèh3w—ôßì²æ½1j÷AŸ»Â©·9æ#ë‘EÆZ¾¡&äg,ùþ…[¶¾#¿1 Ò4ò&|ÓwÅ–—ÿÅm§wú³b¼É‹IÄ·«Ñ@ivWƒü ge: íw“ÖÏÇømVB/}ò`w¸÷=~Ó0#½/ô"2âˆÁ†±®UþŒx}ld’öú´ò¦z$ƒÎ´§DÕê0—Cò:¢ü½x…WƒÐî¶Ã‘9éjZ‹Ð±{D;âcí€ T‘Ei*gººå¨‰¦ÖgÖ•MŠÜà ž­;óY­ ³>²ÞD‘ËJüáv&)†ã(+ –Œ½…ÜH¨?®$…à…ûû2½•¬s–*¤`ÌSuB|¥vZw»n8Ífüãƒ4÷Ëx‹üOPÇrT³,!ºÀÙGGTâÍé7.1`ÏØvÈŸ'f<@ÔAirZç,½Dz§Þ£sã–f ©¯8)6þŸjôäºlZ3\Ÿ¾å åGHÖü~‘7/s¤íÐ|ßcCÕ€Ïú¨]}ÀÄC¢t«¾Öp£†S¡þäÞRoÈþÒ¬¬¦†*Q="'Id¯ƒ¯Rä=pUöŽ£b'45¼KPè壿àÀÆTU€EXÆË2'ã\!æÇ6'L‡Ì'Ø”ù;µÁýB×öÛÞJäM»/ì1®ôõ_¯µž]Å£{çg~yb¡.¦goÐ)'€M°• ›9!‡í^.B ªÝ’;©µ†úœ|x2Åì²¹‹ Õ|o8(àÞ}†…UD½¯cIŠ€¥C¿q»{~ÓoïÿÕ $“éºÈË&F%K\&yHMOlÍÝMT=‘§˜W¼‡[QÖÖäÎ’ž¡cŠû'úEi#ØàŽÏRÒºà×*û®Ù¹Œ3v{\‘;k %ÏDšz`¶ÎÛ×Ôñ”Gh\ïÉ×Ýð¤DQzYª?1?>:Ü»z{IMkà¾{•Àœ¨l Ñ7ïCM_qö~nþNúåZž†éêï7ÓÉ+r¯ÎÊ™{é,dÖ9k sÄ¿/ÓŽ èɹ`ŽB_#ŠÄç* K<‡#LLù­^¡Óa¸£›Ó§dÞ,Vù[wÑîžvŽZJpÍà9U½^Û7Û÷59u%öëøIòwP9!‚4åUJèÉ…w†ÍÁ¨d§H.Œ<®JÊIâÿœ%5A”~1Vª ´–ù%ÙʼnûWÊVäX<Ž,¿å“rèë,7TTú]“lq(W|ÏþÝ/°¸<ó×ÿë±R5atb¥qlÁߙޱH)~Qô1[‚ÆsMÇØphn’°¾¡jeP}„Ý4ó Í‹&‡Aa>ºgг:Õnz.ýÍÝ÷X6hŠI)н·{#"üpý¹¿în4ª(ã«4¯cÖ6©Ã]×”4§¡Kb#P~ŠÌ\Êò¤¾R¡+/x¦µ)9sýu¦4"%P?XléFUûø$ýËG÷þëOÜÈvdæâ´íÚ„_ƒ%ìñ}1hÄç«ÀS`ú׬›N¶5Ž0zK” ¿iBÌÂv–²ôwµ<†ásãŠRˆ»GØŒ ‚mœGÑ¥ñ\i½‚§~?¢P'?&•ï¬NDw޵í´Ö¬Ýk+àµÿ¡aò3‹tYæZ‰¬ —š³„tG÷þ au_«Æ ô0õÜÿC‘Œ¨ÿÍC=¬t±¾ÂÏlý¾` š§JØãîä|Ì5^ÑàW¦†~d0c´‚6¿ˆówðM‘}ó@µÊˆ»˜ÁËë œQ7°ä“¶0©Ó‡më÷Ó^XçÌoÁ @¾é-–ÇY“'¼6›Õc¸lvòë,m{;’Édôfà˜pHAáÖÛBrfél*8Ÿ¶ÌÏè8÷Ý£ùNf‹­MVÍäŠCÊ»ACùÃþùsB#ù8û½ÞUu9ŸÕ&M›ÆºÔð.~¢öÌô¬”Öü Žð®ñÁeÕ‚ù+Q>üò]=±àøå×>ÿ‰îbcÀ;£‹xªÎ7·ÙÞ|ÐÒVöÏYÕ‡ú¯îR‡_xüLÄËD(ÞÖħÒë§³Ëf70ƒFe^.q5¤ƒur:»rœ޼74ÜO–wO(bjÈÇr4ᢃùïñ:ÍA¥¨44&Ã7i´´s³ÅhŠ(<6™!wO<Œ®goO„öMv%š®è_&5s«ýé‹Ó/9Ï/£Ð82@(o‰§ù•=àª;Ãþ›Ç:Cô÷yÂþ” š˜€q–WëbƼðS„ˆ=]3CÏ`ˆÿ«mG‘†…‘™ª?žå¤1ËD# +<äÛ¾JÆ)3‘XQE ­aM¡n}/ü.ÎÐàæ½Í¬ZR5޼ï}º-œÍE)†dfþ¶—˜£=ÿyÃ+il¢E–Y÷Ÿ½eÆÏs¨Œaÿh'_["ßÊdLci˜ˆ0þ§ Z§#14Æ•r³Ô¢äQ"/¨sËòÁþ‡ÒÒ³À(n™UìÊsúmÒ8oUÛçu®ù ~k£^) HÛgƒ¶¤|<;uÎZZ1ɦ*sØøÍÁLˆE+ð7:džÙ9ÆŒ[Ršeƒ]|ނײïßRçWÔ˜‹ hêej{³&sbÂ9ÍñôÎLl£ÔDR,jzœ]gã%ƒ-óap5¤0!©×·h$z_4·V~dqöt¥hC²w|iv]>Ñvš®9W\M0b¿·w€66w}> À" ÂŽHvF|,˜1ÿ–ÿ$„MvžÚ¶IòªÇÁ1˜¶àÚZ4t$v7â“^bIÂs—¾/®p°½.J—åò5¦ÀÆ9qЫ.ôt²V8ÍÖRaDüeÓœ@–›þ'‹Lá!\=Î|hY¿ÚòŲh³³’v&jºf4ìUë)D[Œ|‰ö»?ãÂZ4½@7÷K0‡Ì.Œ«f…0“žl’$áUD®l-PÃÙ|6€æŒ2ÐM®ÚËÏg¦æðêQºñNÂV:b“Óó0:ÄX0Zc‘×LÙì”Þ::ÄÜz·ª$cQÌոȢ©€ˆ{†IŠš¢l#ÞKc'ÎÉšZýás©bä ÈvO¸0l3j×èDj7È9Ù£yj"Úì´C+#%:ª”ŠF,q`Šö–†EÝ1«} †®ÈrÚæ½mù©ô3ÓæÈ¹è¾âÒ@¹Š&-r2GÞn¸N0Ãu[Œ¬æä’¿O!/,@îHÅ(D3œû‡ òùç†ke«@t­KKÓü}«!+7%ûV;‰ïGëàó‰<œ"é½ 'ÝÒfàjì °šfu™ïA¦t_¶sÊàùò" [ÛÀ޲±(Àp b1ó”Q=ŽpÎ!É’h³­ÂpXŠE½ÒOMm°zîÜ®þ[-r›(ß~m¦¯þS›î¸¨S«P£ÓÆWaˆ{5.Q²4æ®þºCüÈäÑM¥]÷.ÄýO*+\Š’JQÃÓ€â£v$é«ê‰-K(âÊp’™gÕéÚ|¥$WüÖ\÷£N¡·ÕÈÊÙ €Q÷ö`N†f‡ã JŽ/pÑæq®#„ÅB‹MŸù.3OŒùÕÕkþ4@d'Ú;!™<³/“¥;Ó¿7Eéöúä“KûdÖâ˱zp;"?Í@„Sg¶R\’úþÔà îIóà_Kmc 6'¶•öªÍÇHš’+æ/½àÒ?uÁϰ‘Qîuwâ—v/ séÊ Ò•W•PoÏ8ò¦’Õõ¶#7‡!ý¶3'´0Tr7 ÚôB„…Àw¬)V+ýUrÆÌÿ\Èж7_f¨C'ÑIç„ûÐBV]/N²)6åBT¢“»½%$èZAÈèðýqŠàrwwНã*6Vf¾¢YU¹ÜɦÀ,ȃ«OP°®8 $‘.¢Ø{‰šNMRç·°œ€Z†Å«¼ÒöS¨ ¢Ô>÷NÇ?´éÛŽ lÐûÅ:ðgŸ™­®® Í¾P°“ñÇDA?Ì'gp?÷Æo^ïË„Š’ô—›š¬ËA¹=B#áî¢ôQã®¶váù<Ü¥bÂ,mi-£ÑЦž2›½ÃfM‡qHñü„‰Þ¹ÅõVã(0põqÀ·àÝ£>²á¦ÍáŽ^ê[=FÆ*VÿAK~[V3¡‰=zZÈùûNŽÀð”#ly.Ô}+·g3ºl”{µ š}r’"4ñ,95F$ÿÕ¥õ|×Ìÿ.Ì¥/EnØÄ­=|ÿÖàœåDÙ¸Áy¬…aجÇÜ7€NØ sÞø£ `;`ž]ÛrI(Q!‘<å¶}{sÆ`/ãb²0–„ÊÙée³„îbÏZ·4fšÂtÛ\¦jçb=OÛõé[HjÀìf¤ 2"—¤Œ@8üÂ(4Àñ)Ìů6Ø>NYj›þ4Cv^mÑ*"@¬fZ¿äÃÆÄW}¶•y:þ‰~¡ÔJeäθß½Å+,ÙËòÛÕRéé­öÎu )s2j \qð -`s•)ÉbùïŽè/F‘…¦F_ëÓ‚€\Ç95ôd¸ÖZX®DÇ#ø,à^ׯ=ý3Ø.=¥kù)sÍÅ+Ä1¿ç„)äÈEûì 0\iÚÐ2T}¿å~¨ÄDeHqòÎ2ê?ÑÓØƒÅQ-€üS=F”žèGTÇŠ"–°ÿØÕ ¯e§¦-S }S‚ÊD›-¬Žÿvl!Üóœ\Á"°SFPMÀp!ဧ••Ýèè›—T)¨€ãåèJD”ij»*mÂpçc¡U¶FD ždm,™Q¹+ÚúK ŸwvI°©¥Bv b´­ §g·W+Î:Š4sä¼° ô¡‹¤Å^¶‘»÷ijsWhC¡œyNþÚKDJ¬á|”ùÃÐ#ÿ¸›ÕC™¯¼Ý³K<š´ì:hômBLõÉJb ÖL¦‰Cí6Õ-Ø×Å…—BБBÊ•€íÃÐã\søûO/+Éz³¶"ËþÅ!l)/ɬ°ý‘žç-3Àr1ËXe¨Q!gIlèË1k­µ*‰_÷ ˆSsrƒôˆÕ‘Âv@ÊZqªbã`^“EâØ‘—E&,â6†`ÄsùéûƒÀ¸™õ㈧)‹R*WÈÂøzÛ9)*&‰zL¹+*ä™=Á¥Iñ}-uœ^*ÒEÅœc L§ìs£g`æ‡ ÿÞÙÞôjÖâq†4r%`œ!O¹} ~ŒŠå¼þSMûZ8 ãgäK3†€p–:2œb:h¬o¹ZúW9ÁXð„*Ë<ã,LˆKý­ø)ËJJ3d¹¿ÈVq¢ûèBôaÉ0Žƒl6m¾ÜÌÍZpFž›Y@‡ÄîÕ²¹Šò»Û…ŽâÞ~­zÛfºÜh ýHôœûäݹxWó bȰQ½çÙ¯Ÿ:0Ы1¡|?Æ™œ-;‘áGÖŸ‹Gvc¹ldj´¹îÄE–ÖìTÓ¬· ŽOd¯Y¯ÈÜ›{£ÂˆÀä ¨Å¯ýƒø¨ˆðlô©®¢Ÿ!èñiÜ:ÕV ¿‚d+°ÿ²§¼ú·å8^7H‘‚s©a*w uI!¼ºÔÙæ &áãÕþ{ÝfŠùÛ@bõŒÃõàYaˆ¬2ümÑ’òw“ló]—›¬”àÖK¾më$$ä)jèMì~òóÖ):Sj‹Ä3m–gš^Tu§°LÇUY~y.Dt‰ã¸ó5a Àÿ03ùZ ¿F,?l2»9ñÓ莨¡’}@<ˆh”:D§…¦Õ…¤ ¤ô²éå–>1ެ:#×ð÷­G§µ›Ðín”Ð(öϯ÷ϽZ]*èOn·À,4 ­é$ÿ]òöì3ö­£§cûº´[ ÊL@XiP´ñ²G¾¾Üg.Xž›0F_ŸÏ¦Ó³ÿ´ÎVÓ*Ï}ÇFŒº¢÷ì ‘,’†K)ŸÎÿéqçŒ4âPõ%vóYÔd ÚM´l4„‚Daé—™ÒX×ÞÄŸ#C‘%þ–·{ï Ѥï6•Aø\ ßeÅ)ñEÈÀ$"ýçþqŸz~žÛ(›^.H/RIøóCyìÐq¢]Ðæ®ö‡ïc3EÿÚÆW©uú{©Ì]ËOØŒ¾›m­þ­%N1Üô ;B’ƒÈïú ÏL6ÖšòÏóÝ©38Qøv1æ@©Bæ˜s½®ð•`߶𮔮ƣ#Ýx‡Ââ|‘âé6ÏÚ†õ×oMÞ¾!gÒ: ×-•ž„ܧ?̱h¦õlÿöVz¸°-æÉÆ’R¢W„éh¯ÞTfiÝ;O“\©\€4¯PÒ·³…ÊqÞ@¹9XÅ÷€élž',o¨rÐ8SÑiý˜#½v\S£È$]ÃMQN’TŽy. µP}ôØáÀ9º/¾qŒ<ËI"øLQ²?êoa¼ÑöŒ+3ùž¹!Кe%\^¼ÝÂaÁ–BøÏ$¸"3á`ö;¿)¢ïò‚†-ä@{}F=åñ7X¢×îá›Ç©5¨ûËUp!•¦Iþ{ªoÇ’F"ºéX‹ç½ò× ùÌL]ŒCtÞ TqïŸ ?Ÿ¸3û»(¾Cós*l„EÎcù.ÒåÙyíkw™D³„äÐAfKÓ;À‰Þ"ú¾½&âcêí+8 hËǼ˜ÉÔ­b`T½©±‡èûÏ $–¡ãöçBŽXA¦0Ç­‘‰WßLM%„-ú1e/¨«šéBÔ¸ã!ÊË|0“Ni¢/&ƒÙR îJa‹3WÁÃ3ªÛ_u¬Ó^<¯ØlåË}kM(:2%ZHÅeì6sÉÄw4Fº(²úOÆnü ÓcÕ¢`?”u^>sþ5.ÀÁöÎeµwaò1y’àä®­5ƃy%Ð;–ÏD!9Ds÷ë&UÌ·ˆ<ÞÝ.ùM÷2—þD¥:bz}U áÝ×j49úC%ñªk‚v¸=Çzj<Ï~'Fn|«>ZƒÒ°VÎ> TÑn„µ¡È3N9ÊÜ¢Ó k·að“Z±,‘[g"»WÝ!zØúùÈwG^<¿HZÜM#½ ZlåkÇ?1ßíÜö Àp¹a»W¢° ÝuO\yó›Áb‚ýßlŽtÌ] SìÅ'pŸ?€íöeEr¶7¿ââ?*‘:E‡ÇÒÉv <)ŒÚ°¯­  HnÚ„R‡å‰Ý丑” žå:«%–DðI2ß¶¬äÎÆb8dvÈ þkÔ¤GIOp`©è­% ä5¨Ë24‹ÌŒú\½ËûÒ‰xÕöm›•ë¾}‹ZÅ¡ÿ2ÖâcﲇÈ@|*ó«s5ÊC6IþFP:šzMf,“}‚"¥>:öÞï¨wûÓ­Ûð/‡õÔΰ<ØA×e>Ód‡¬1÷yÀ6¥†œJ÷f̦‚ÝQ‹ ù„—ÍHSƒ@5@9¯¾Ñ‘~¦N»©¡yæz<½’'œNÉë‡*ìþHr`a® â9V·Ò2©k809 ®\d»™0—òãkÍ}Ý`ù•ÞqXÀøÇ ~_kñưt~×5;8˜9ýr_¯ >1WmÍF ×t‰úOKD¿îŽÏ˜Ï²}@u!›ÌüÐÓÕÈ ŠŒVócô¯E9"Yb.Èk ³1I„ã0Ïa´p²¥ïâ÷~Ò¢é×)ž; S‹jgÜíoÈ´Qg­€Â`üý¬1NÅ'æåbâñÏ'àuƒ8‡‚@@­aÐÝ’·¬Õ€ŸyÓ!–‰dbo²^±ªçvÕ‘ê)Ô¤¦ÿj8‹ªüht·žmÍÄó‰”ÓÀŸK¿Òãû ö -Ø rcãÚTV3(š§ "ãku[’Úg–ÈýgC²Q࢒Ôïæ®³æWý-<½ ñ3(:ëª6çÏP3ÛGtÁ¥î1úAŒìË-Œ1ñ¿¯g2Ì ä4¦8m^NÛÀ%/£{ðŠfž<‰£Ìzµ#_I~ò(å³ÇÍ»)Þ¼~^2¶1¨·¼F!0õøEƒnQ%œk\Ù^z/VϪÈXû¹ñ± ¤×Í~¨éäôšþ’è¨ÃþBxk&V¹$û^“*¹kz­§É›µñõèÚj¦’})µ<ÔñøÈµ#% .ðy/ò@"±3 ¨8§@h>ÐÞhv¶hÓ«‡ “ˆÍO*e~83P5/! }ÍÙÉ?G`×.g#°e."éõËãuÌ8Nô‰N/Eöãn²=î‹hOÁÒ2×Ã/{¨$ÉðÚʡޱÓö¢-+‘ 5±€NBè7Ÿ`“ÎÒyHJ¦âW×§v“:ÿip–ç¶r€ñ¿õ@Á¨QúêßÕ#Ã%’V@¹EÿÿòðóUÃO£{Ä…yà𵨩^³nscNÁ à %sÏn2veÚËf,<™´[ôµ|aWY2y&uo]SNÀÑ8È ¨w¸ÔÙ‡ŠŽ>»ÉÂíK‰8V¸|K9Ьâïö%MW2ê}qeZ*ZVÊ„`í Ja®ñsHÌÀÍR·ð›8”9¬èè†m}Ü0½—d]Ñt©v–§eÕW5€¢»¥9*‰sœZ}Àÿ@9U_RjtBߢ2‹ ó^Ì4ðYŠOmxö›£Qö˜Ý¦éÑ“E¿°ŸÅ]¸’~è­K5F_ôéýq¯ ‚;“5€0Rr¿Ýh‚ý7ñ¯*§&0”{Aƒƒüf„ÅQL~\û'×&` °v„Ç{u†ŒeC‰gµêB?—º|‰h3FdU–6x…ším:¼¶‰×õ7¢Énß’°Œ'´Œ™œ»a}œ¹‘Ø¾ÊØ}”ù+ ¸m]Aü}ý™ vâ ä!ÆsŽj+W¸. %åùS„¬È°‹!†ßÎrxG-Ì”BO+c¿ìö;­MSû7»rÔ_º˜~qÞpéo÷<ûã“ç×ð§ÈÙªæ ï'Ê2 ¾’óÏzÒeƒu NxUC0ÒåNµƒxïݤFÀ 3k(í=Ä6™ynlÙ Ç` |«m-ñHF’9êƒ|< E ‚¹‡Ù XK/õÙ-¬a×c×Ìqušû– CÚB-,îpÑÕš§3ǶöE¨ Æ´@7þ<'s“É+Ã]8zêÆ«dû} 0Ê»ˆðgÿ.Ôè×ÔT»˜-£òÁŠ8“³;äMY¿#Ò–2¼Ä=¯ü&«Xhë<Ôæë?aeiÙÝP±î<äxl7Äl ͹?†eu1RÚÀwuÃÝÖ7;Õ¥‚ ÙÓQ®ÇÐk> ÐŽ·Ë´þj©xŸä“²³Žs’v¤‘Ý™Ùp{ðPE—ϯEfU©­7Ödˆ¹A;¿…ÏÌÂu¨ÛÈãñÙp÷×ÙE‰ ä UÚ Ë½þ?¬AÙµ((w߯„2Ò>Füqx ´üv6ž|•©?ˆ’äû†-"äņ³*~ÖCßÜ ×r¤Ó£*éøÀб,«Ó¼ª'Ná@i$À#Çí^¯†î D xŸ2AªØ1ü.øßcb£*dƒ¬ÉµÕTmkYÔ²­¡(mËîä=ÆšL°¦Ï]h.k$I'¢>· ;˜þm½{íàTªÒêzÁloÛÙ€MóÖì¤-2÷ÊgnÁ/KWÁ=ø+ˆlcûwñç6§”.CžêïúK¾E7ŒY$}-![g“ÅZeÞ/`ØÐ‡MÍkšMÐÝà ¥/Žš%žgHI*ÙðîÖFsÖ&jºŒ¥~?¸ž$Î øO€¥«$¾4`¹’•ŽxFt Å’îUÅXurÛÓ÷M g4m±äà‹ÒaÇ€^Ñ-w€,ÇãM,•"§<Í<òš|8%)Fiò)³|:+ëÆÁ¦SÀ\æC‹Çœ…$œi²PÄü¦Ö¦=uÇ«ýìè#S„WÒÍãA'ͦLÂf»Æ#¼' §Üò›Ó¤J!ïÁ#—¬‹¤µ€Q¶9ò¸æ YkGºMë.]ÓA1ÂmàÎùFy_¡Ô¡:Àv>AEÝâoë´T¿‚¬ÑKBkYFO|ÎòN­W¶õz"%?é¢Ë'ß΀ ü§èƒÑ> ~Í_ÐढãZhÙ~gšzw‚7ÕŠ=‚êª&©ÛB<Fí¿OÁ_ò`G±ez׎VZÆß/5Î4<+lvª€ßgòö\±ò”×¹Õ0mq‚@ôì¼®qǽ§lÈã#^Ê|£‰Z"ÿ2dt''cJݶ]8¦Š=C#Šø¨ú-ðrl×Å­ë_%”¿_|Axö·ø N‹èI!DVZ(ð4r“Ÿ4Z>5•3T%yäTÓ#0ZnÝ´à««àP-¤2XÛ›E³†)»ïzz\>…û°<Ü—¥lÂòÓ-k¶ }|»t{¥r‰_8 ¬¡BFõ€Ú3öÔ—òÉO wSYÄÒ¼¨¨ƒ…ÐMÎÀÖäyxZ\yz]d–×=¦‹Ëèè ƒáY‰Ù§K¶3Bœˆ…ÉVO X—>;ÕÍxöþ¡¦ŒÄUmWüùލ26Â0To´Ÿ¤rbCØ„‚r3Çz>kõgÏ£­ÓÔ‹½–¾Åõ_YF5VÃ/¬­Ë 57 à$P´=>¡FªáÓIˆ9¡VÙî?™ÝãÊ ¤ÌÁŽÏ_þå³?¿‡¼$“Šv/Âç«üzç?'1h¢z´‡¤?ã 9™šŸ¯,Û“ÖÓãó´Ë†®õßóÓ„ÂåØ¿ ¸ÊÊ ½¥Ü RP80×Ìè«%ËA-xk¢@Ü2›ïC•q>ö`*Ø Û–³ÂG[ 13Æ}èî_^I³+eRe¾àñj2FÖ”S&ì ™ƒN…Â2* 9˜4æD3æaÀ]¿¼ÞQÆ<¾Ä¦Æá¡*XôÎØR‰3åÃk%ö’žüο²ûŽBÏažT¨U#5ÄØÐ!nA¡{qÊ~$8Z?V€¨jÓ—È€ ÔòEB÷Iq¢€#ÇâªQ‰3¶.„^ÂÁÑJ)ÿ®c$¢Æ&}O ÔÓf0g{“€7™ù?ñ̈-/…tQû±ˆœN©v~"gvbƒyáIÈ·!>gw< G~ƒkwÐX`àékÃ_>ãF•WÅ6U¥íƒÌF×LF­úY¾è˜‘}Þª¦žå¨çjY{ÐÃé>ýùæü ÆÌY¤COIâˈ¤dnJç7_óHu# ïBšREoE{˜¼ée8¯ñ—PÂD¥)ÕàˆªŠ‹|óœ‘3iµ¥yFF 9éÃ%¨@Àño]OŸb@’N:²CXßMÕGS©^%e'^FîªÉ‹Ö<®C¡ÉÎq½ùd’Oâ¡f›õ+:ïûÔÛX]Ùû<,?+í +ª›¯rýtYå*/P…Šæ$ì0Ú 2§E*Ni‘I×ÁÔ܇žkŽ]›«Êå2KhfDt'Á#¯ÁúA?ù,­Ö †´.UÅ8lx½‡±_JXŸsjÛèD#8Â[gÀ뎖™°áYR¼Dp©ŽºèøÀý; ú×ÖçÆ_éO‹¼—ßH*þ5õÈž»…°ö~º:Ø@dûÂÌÁfI”'ì\‚!]¹”ÈM3Á= >di“žã<ª™ÌÃT( ÿJñã®ß¦#=Ήv ÛàçVN’/m»¢f-ɬÀ'1ü3È\‚‚s¯Upp­z™TU5‘éã%¹óQB– ž«gex»e¶¨|BY͸³>cª*Ïžp{‚HÊöëè ¢ÂE‡x"6f'GliV‰T˜‹ m¾¨;l fOa×åàÒ¼­–§7-ÎÆyN‘á¦üá¿Uœ­~›¼d¥û©ááÂQJ¬Þ SwO*Þ’Àz_{š<¬•i_V^ëéº ÝmõÀFÿ6ê†Ï !“#:*d ;?¥õ0±V«½yŠØ"VÊ®éYob.2š„³f°Âøu2üs›àQRªÑ™ì²ëBH#bØá*Q$"‘øgœËfTêVeñ!1SŸˆ¡G©‡Ä»Éø "ë.§Ù ú/ʼn×#iR$}1y\ŸÙ‰«ÁÞ¥Ù#ð‰ºÌ½–›gFúôžÉY¡Pæ{<ÒTN÷Vnr4\øwWx Æ:«ßÔöTÌc¢K”Itÿ7Á§¯Ä*Yi€÷qQ'Cð ¹µP¯Ä?¦Ï\×®À)"y2 y>Ü©|œf¸KÎazâ8&PXÂvËH©2ÄiSªuóxA°FLË X• «Ä¤ÅÝjËÔ«ó»òxl3¿…@wèj…è­½w¨Ó‚±î¬ïª ›~óÆ|¾–ŠŸªiL8î0(žãR}¤šs7ƒºÓ˜@ŸlóÆeÜè`bùŸI 3؉dqéÀET.­‚Á~YäZJ¢Q»Ü¯%YÁ4@bØ»±¢dÀzê¯|ïŠ*Žóè©÷¦ÑVš;Í÷’ÒZòoP›¾Ë¾y†I¹“ô0V}~ü¤¶ÙìyxÐ;Bu›Ñðªœq\±_MÕ‘ª¿O€Ú„qöJ¹ŒÇãT}¾f7ôgSɰímÒ~›ÎºIhU¶w=÷'V5¢7‚ås0HF>ôlfÀäV¾3Î1z¨Ö3¬ø«î¤ð«Ø‘JžëçÑ9ZPÿé6ú.áC}¢zê%êr¶—Ö wt5ò7sëf+ž®#]HÎéÁ]ú@*™qµXГ=PÓ¾ýfºÆ§ùa¼F6VŽ÷TæOG{2¥ƒÿÑAPL„A鋜YéÀò›$>tˆnPŠ/– í›<÷êÜ8€÷‚a‹ùx䥗þgŒÓóé:2 g »ê“:²B¦ÜQ1; o‚4ŸÍÌÕ[R}3+íûô#B~jx>gn/Ö–!‘ÔrCCZPøœ9‹âES‰$6¡Úéé´˜‘ÂÏÜ̇Nf>°¯ð×þoø&f5’èC\+Øù1IÑO½ d:ïE£:ˆh4¥ç?J2§IÙ²$Ý]GFyF·/T²oô ¦ª»Ì9¿6¯žú÷èn]'ÓÁ똚«­!î+LžØÉ:;î-ɨ…×Ä…ƒI‡ˆÉ^³«z èPÞ!{e1Àœú‡ ZvaªÑ“ô‘M5;œ›Xœ°Fcj†0þ_šUDŽê fþÖmá±ðbµÁÀ¶š¿aîøg]zj‡kLVÙP9÷ë!t½ðF¬¬‚ƒz i{x´@óðм3?:"ÛˆR”ì‡DGhR½ ÐÙ3®xIýaŽ:bOÕ>“!õ>’U×"Ú¥‘¸Ç@NÔvxÓ2Ï[4ÂF¼$VË߯Èg‹Ãfúq¡ë·ûj˜[áÀú$Dêvk·ç OÍóÌü'U?>0º'úTµ–ŸØWX$Q5aàcÕv;ô) r„öØï9 z‡Ö¨ñwñìhOWsÏOíÑ”'ìÙò®Y—.dÂU¶½/q0_I¬ÿUõÆUÑþµI¾>MqµàÂõŸ“ S™ÊD³†z¨+LæßAæ<°T½s¼]q%´eáqRFåÍoq{ÃÜ­~oú<å‡D'õ*|Žs9(R`wïéMuÞ®‹9 [¨©/®3p£¸ýûkveyÁ¾Z£ 'FìUe-‰²ÛlŽª(¤u Z4ìðyØv˜‹ÏK¸¢ã©ÑјÊ…8XÔv®½a R9“—Ÿ¢û—jXS˹ ê¥-Ô }Ù†K.Ï‹íŽ%ÞzæSTÓæe eÊBŠ¥k¸Æå\üf‚µ>lK™#ÊÚx¦çB-ò¨ž>wêqIãv}PBÇxÄ—°ÊŠy*îSŠ©Q£’€¿Šù£5ežwmjìuÚëPq¢ð5ã:“óX)Y'x<„©¾“!àÓK°gá·}D²FhøVåÁåuAVš^A•K"$à HM›°¿(Ïét+«çÄ6“gØÄ \^ AAéws5îMÿ¤(ûoÍ ŽÏ’~vý¤C-£CΙ*ïÏÒÙvX¤fäLOÆÈ.Ø=¸µ›û=ò''w©«/.as0û–¹S`h×ÞH0E`óïέ•®ðGIüã÷˜•\\ZÚ¬¼ÿ¶1EóY`¶ÑÁ&Ãë§ Zö²”Ç€g§r&Ž{g¹Ô<ŸWNu…7jÅE›}— ù×£w§ö5ëü<´%4Y ð ?T)÷3;.ç™Íaxÿî '#`a=0«çP ,"²‰t±Ú¤‡þÁ½C)ƒrAkÛ>A„¦mW¸B?˜je€¤­¶Sy£¬éРijÒ]ËB­ÿ\o¸kmLÃ|$ß:¶³”Û D4©±sÀÄ8íb(b½’RF"­Ss‹®×ùZógTªòÇ}¸WÿõÒR¤´dV!ñ½“k€+N í Ⱦ;O+½ìI÷R â ÷ý²[RQ£&°…tb&õT˜¢é}ú´øQYY™ä–¤ìô ìÅ>f”;d°Û¼²Ý·%@°áÿ*O%Æ3ªœÂXblW¡õÉ€ Äy4’’:†/Ιó“7 1²èûϵ$I6¦d–tIJVšP×NN‚ .xƒœÖ€d|@ìá£WëgÆàq³–ãqÏ<µ¿Õ›°ÚÅÏ€DïøÂíѵaq^éûÑÄŽ ½E•èªD¦†.ôZEãÙýchñ¹œ¾¸üM…›êOC* &ž4Ž'WAgE|” ÙÎp:‡­žñ§yüImFôgÐ̪dÈK8%5V.R°¦ ¼[4ߢA˜Áº¢]™œ¡œl´¶G~!·éP?{ì×¹8¿:$mÜß­Õ}’ëÁµ{ü,<í’Ú ÍuK°QLªÃ胤¶—Þ2½nawÆU²¤Óo L…éyÀF-,-ð.ðWxãúO-b£¸4ŽJλ÷SË]Z)ýÓ|’ȈšñyVèúc[žÚ ¬«õÕ¹O‘¹®‰Jæd ‡ß…;ÍÞãè¥9-ûÙŒZ¶q AH‚ÃÉÿî Ê›@[’ Q¡(îÅܦõ·•x¿ ~$ëYwÆXbÌ Xé8Ï=‰È]²Ì”·q+ÿHM•[’Ž)¬,›¤AÊfº¥ít9zC<ÕÊèk?ä’$L(_>ä¢ÅçÈþ¡±ë1¦qÒ´­g?Ö° ¤™°_“yég¯ÅÉÁÛ¾¾:5eýÏ…IÚšëÁ,tØ%ácÏÛó=ÄË;ˆš:6w°ƒ•ƒ9,è¤ V^.¨NTXžŒéÚdà í0.YÛ´´¹ÓÝ;JÚ9ù8þ𖇺¦-Ì)=eÄÄœVñì""<±vgªÌ×µäÁÚ'†ü“Ä ‡J›Ä1Ò1¤ÈŸP`Ñí¹îzñW¼/já›EÞìvû=y "»&äÍkõš‘,¹²ÝŒ Îê…Å  u=¸ƒäJŽïCŽ‹$¥ ;†ø#ª“ Rjzs•ؼ=»;.@Ú¤¤8„…Oœ¦° irû߉N¤”Ÿëcä–‚ù“ËáaÑ`YΕœ¿%¼ž·+A{¬mœW!çÖ tƒøü<ÄÚˆãKJÝÉ8YæÚ¯OÉùCî69ä˜yäž3DU¯b=Q'Ý÷¿†Q» ¹Õ¨•¾öý’Û5D®â¨ÍùÒ#lcÿ|ë‹pºß{¦iòäN¤=<žDÿnÀK+…Àøœ@õB…ñ”ì©hdÏ Ñä%´ʲV|çßs£á…lê{ÁȈ†˜>]Èߊ 5Ùþ^;/Œi¹ÀQ“âÇÖðø¿Vay6ÓLù×QòNO„®(Rz–äc§¢š]‹OõL[+ˆ#\Í€(B°}úUöaBmT0\±ÝEw#—mø‡#%•AšX`r—÷_Ä„;”B4³yÆ£™¢ŽÿVqïž¶vÖönì{iéõ†GbcÖròNbõÜç…¹¼4d"u0<©±%y+÷õ]ÆE¥k}Ö™Å$åbX[ÃHŽ«:ß uφ!ê„o2‰Û´|ó¶(X4T¬=è|Ä™ ‹J"­zÿ©Æi-‚¢ŸÔ˜Ý2.=WF«K(êrRœ £UÔ ©I€‚”Ïb5‘Ø}qyÊÀÁVåÒ‡ Ö•þ#´שÐ>6)ã:_,Zqï6|“@àsD‚JVÿ…ì&¿–ñq”hÔ¯+y¨4M*¿B58XzÉkbgƒ×OG3Ø-Œ­€ ý1@µÿJ ”•0šY÷ZròÒ¾µ lK‘ÛëW¸vS2‡òT¸–Ò£Çȧ8?B#XðÀtM…€­¤-–{Ÿù‰ ùhVerCdRtŠÆtZG}˜bóqÄÌOsîw5ÃëB¾qÀÃæ ‹ps¥©ŠôNt”ˆ‘Œ.ðزÁ›J`“ñ8cif’FæW8ÃL‘h äíˆS™z¤VŸäD‹&v¡é²¬!û Pˆµ=:ÛNE@ë‘ÛŽã¦ö©á |CP½xpè !u[*`¾r7B´•Õ_|_kèµæø^ÇiÓ {#iMhiDoSË.…Sç̤}÷î²~|£ð¬S"½ì/NýÔ”ØDîi)ÀÛ¦=G•-FÿæsÿÜs±ܵQ]Éc.>‡9õÂú†ÇÑ­×.&9aïM†ù$ô G24‡³Ã­«ß"¢nŽÅ.-bŠ˜‡¸¤„‰à¦ ñ´.™n³z8±aÐNÜáfªÍ„ãa³ÊÑH¸¹lkæ6Í&& v¼´˜VÏ«*ÑpûÜã-Çà¿9‚ˆïl¶ÖÒ´ð“uD\Ûïà:L)Õ/›Óå“e€òзÀ3“qxåöÒTd—KêÄŒ ÞïܪÔ–Eäµ$ieàåj¡äQ÷=Jœ‹ èRƒ‚»îbÒx|FðãK1¦Yµÿ4ªH=¸2TqÍrBÐý;¹Kò±Êëy_…Yò¯ÕÖ9Kµ½Ãg…óÒ—Ï#ÿ)O¾K·±biÂÓÝ’|žeМ[ÂIØ‘£zþ®µ•2H]HKï‚|+„Êàý*q#…ç²;b‘æè†ž ¥ûk‰_ß0åÅj[8úmŠ©¡“ù¨«:% ÞFqƒà›ˆÌ“‰!1åô—þ§¹]¹Ôº¾1wRmB$±±¼ùõ8X|-&fzÔ`qPƒr¤ã‹ ss£ûˆ2CÁØÉí÷šÖÛ2s ˜ø”Ï,Iå à)¤,5ñ´ÅwqŸŠ¸sûs☠ˆxŽkj6½›#Þ|WV€ÉéÞ¹Ã×m료×臃“Ö¾U– X…u'(Ø"þVŒà©ó,}Ì\OóõëÔáèP Âg¦:ÒI¾/¸5DeÓRà‚\?ã~®:Oóí@@ ÿñm=U;+¦ô4 ÞGní¾KAPz¡Ë×Dr‚A1°'m×íTà¼lèü“ŒÜáÉóÀ>4@¸ŽÅTÓA_– ‹×¥²Æ¡n?‘Kq,çä”#±Æ´·œ g³Â®–Ü‘8üHF‚˜ÿô8’yj–$œúòJíÌã¹Ò¦EÐŽ+q»û;¯*JA¬v½Z!ž‚k×Eؗ꬘ü¬i>”Å­Žvàüô£ë{FSí½¡Ê/l¤±œ‰4:+Iµæ @íH0ã´ÁZ‰„вIÔ,SYó~꫎½òwÖÑb_¨ù_L\ånßNY9^Œ–‹»ÞÇ…CüÌlËÄl_(ÄTMijÐ=Ç&;ïñ?Øç¶™…Q»ÉÁ×ôHš¿<È@5§èâ÷LÏ„mGc0NöL ÙCW£M¦ùüŠjÂUä0‹Xà'jýÒÖ¯‹ Ë[Âàè²ç¹£Üùú·ö¤»ÛuT§d hä]\ãU ?ßí%1Fú—ñÉ…ÉNßÇÛÛ5’ö]oÑcØ5™‹‘B+´ i²´3 â-¦˜s4€uƒêE¹KˆŸ„|¼›õW!rÑZ9’ç´ÎÊ#àSˆüĸÚ^ªŸÚ)?ÞïL —à̳a1Å0«™ö!‹‹÷ ­È À:²¯k,O×èÐhé çIÌõ9lß–¡Ï8M°gø.æ›F±ŸPúŠaé Æf•L z®æSWgçm«`›±d›Õ RLl¦ªÊ/‚{S’Mà=?Q¤OàH²-EìÑÏkÐé-`Î篔+Ñsw$\ÁÛhƒhSn„A߬êaH^6ÿK)‹ŒçÙ5€èà °¸Ö·t30=æ¦òñMIégÝv¦Û4¨¦5ttƒ+3eYùàÀ©]\§ipàgRì2V…¢l„b.µH¬¼Ÿ$øñ[Y­¡DŸ2Ófgˆ/ò*÷²³êíúï.ås®¡-¨„w4Gí£Ø™ ºx1ħȗ™ò˜×\½Öα÷¼pÆjPg#€]|gßÿR·#ë2_-¿÷îä«•€§¶º ‘ÕGÁR VcöjÐ^+na’T~€‹-¾-#qŽfp_ Ä¥¼WG6—óI@áÆÐ’2º•FÙLÈÉêfÔï“a#%EŽËç·`J ºà9GLpÁ¾Ø\’ûùöñ]U/¥=뉊D¤–Ÿ»R´^=êµóe×yî·>KÔsÄÅ€qJŠÀ¹Ú5®Æ×ü8¹Î;¸ÙJÖfæ»N´ÖA Þ-¦¼¸ï~ÞÃ1} æXÄf,dÛšYw쨟@FhO­F¨ HéË??ÃJƼ­ÛÉ oìnÕ²lQ9Þqi}¨¦Øõ[о?Ú—†-¯Ð-Ä(—I¤V9¾2œý\ðÅšì ņ®j¢¡¶8³J"Ÿ‡Ng÷®jÆ€E61{áfñþ°!“<*ð½Gý üÁÝjñº³-0 mE‰û¯õËÉJø7‡âý~QÓø×9…™g«Ã'…Ÿ{VKt¹™®ºx£àÏcs« Ó†)S¦[i{e–õ£?6Zg/¬iÖµqRãBÐïh$­—M$¨º¼×<Î@Þ„œÀä xÊÒ$Úp…JW~ÿ– _¢¡Ê,\?O¾AgèPª ZÏë-‘ü-IE\8E$ çCÍò_w‡,Sf毖\<‚j0ƒÄéß0ü¬ãN¿ì#-;ÍvQó†º*Grã­O4Íþ¼$iö»ÿ‘²¯™¥&ï$¨·ì#Î(z·XS+€äì(°>se¤/¬㬒\ûªk3¡¬öûL¤×›Œz@!2¨Fç¦Ç®}Á¡ùdÿuŽTÎ81|j†’åI>=!ƒÍépWÂ`Vˆ§k¢òìûý8ç§&ÍûPº¿A|RðS´Ë8>èf²JOF¶!Í符ª ñkI x¼žrcœrT :æê¸„Lèåv¿Y³O¡cxAñWeÚñt Xò­O%¯ÞÜ⯣L;\™Èx™B ç.ϲ÷¹>Å•ï;º¦oÁ±Œän¹Gg,Òf÷ð‰¡ ¿€¢ÞÖ¬ ¿×*J¹ê'aƒîÖSÀíS°-ì=®õ̯ˆO¡&Éây¢×ø~ikW—ø˜“\:ù0¤÷ŠvŽ}LõÈ/—Ú-­à¿Cˆ+ÕŸI¡©;f×T0ñ¢†MÈ¥~…xAå=ÈÅu™xyOìa2mP¿^Õ}ÂþœôÑôÚ YuÌ—`µIóäBЏPH³¥[sÔNlŸ4}ÈÀ“În'ù…áʼnG-Wà6ó¬v͹,¸ÕM(«påZUÝ—ÿ¬WíÔ°¶·YÀM¹‚J'/ZðÞM>³ÖXsøXÊm …ù_¥{Êi9øêFh¶ö׫2ôÙCÄZ{A4ªÀWÁ“×r]åÝÓÝ5W™Ýc¸œ¦|ÄSòJd&W gúT6Fà ù;è£ÖJœ]ôEO³b:FÖH›¡Š*^AþÂB˜ŸÜXpƒ ö‘ÊG¬©@›=TÇøÂ²;ä@o“%Ä•C·Nðìî{/Ü´9ÞNJ¦*p˜À±#MÊœŒ´­Ö´"ö.¨¼Úû~ª…T¼BbšViùìÃÆ^)ᜫœí_·:ÁX÷™èoÃ¥÷W µAé ɪCçö¿uرžår"ΩTÕAÞ¨žªXx#HÉcœP9H2ûý dU âþ¨ZK:}-ŒÏÈ“’/ ?ÂtÕ j­×¦ŠèŸvš²™Àé S)¦*p¹,7s©(›ÍbÃñ2 )}g[÷`¼ˆ£ˆNn 2<ü¨Uç³,…UX¥AGš"=dôŸ«>ÕáøÀøÕá)\™{¸'HU§Ã´OýÅiήß*ϱ‹é3;ôºÿ S”¬Å\Øè]ZËš½¨±µ¥~ƒTµ*·a2÷çDnxý¬å[è™EùÀgüx!߃²ËÒ= >»Qf’yw!ôYT ‚Âè<0 64 ‘ï·¹ˆÄÎznõeèýD t@MáŽ÷r é+×vh_¬ÐŒT€yk„Þ†{µG÷´Å죷ÙN#q šH¦¡u§ãÖ`‰òu¿ì}Û•·yp®ªÓze2± ©Ò³e9hƒFÙ5¡XÁ>} 'åGCœt±u Ïo¡¦<«G>ëCw3‘K¶¤FÚaËBPä…{ž ¹{[Ô¤ywËã‡"ÍHÕ½w´ÔLùñX„Ëlaˆšï|«ú¸¿v¡³™<æ.€­†³Pì” È&ôLSüLC*K}öÖ¨•jB^ÜØ×%ãFBDë•ýVæ2PÇŽ(÷·,t’…-L:Ýê áMÛý‰'Äàal.Žå·ní-Àã€PAµÈ[™›2ÉU¥ò_5g§ìU2´“KtU²Î#ù8€»ŒbÕ-ÚéRR›^b,’ÿ7()t¢c#E“­êUm©ì•b_$qݾÒ,žj:w‘|qŖϰuk^J¸S&> Y w›Bð¹’#] 7̘`/Xã³KãÓuˆ~L|ˆ¢æ ÍMZ#±)6bÞ•‰%}NËe:U%oáál2Bè@”Â6TNœºšQÍœ‹‹M€Bêå˜Sx?¢FK1½Z¡U ÒßÐ&#JˆUZš¯‚ˆv“Ö¾ÈçDB|å]+•Ý7œ£E[vÉå>sËxýû@L#Š :ëüQ`æêêŸ'ó(°¤| j8}“½^\„ ܽ¬ûÙ“ðC›@T¬rnÛÓ Á}kA'7 þ·º°è9Ú`xN÷½Ðƒ¢õ(€¢š·ºEJé×Y¡~ÁÒ ¯3Woãc´bÄ \"ºgPU}ݦõ¬1ã}¶¥¾7f…3!é{`o†¿è«¸xÌX(áa3­²z?i¿`_I)KÜ0˜˜t€ä~ñu8Y”Šd3¾õ'µg×·O¨’×¹IþÐô÷OXÞÊ«øÁTäøhŽú#G ¿óÂUßtÚ§0}µƒ àœPò­¸Brk<´õ³f­¾µ›ƒ;¢ xK_,hGž‰ß“fý (Õ‡øyLGáäˆf Ð:óuTÝZCdAö ȯó½±,ç‹«~#³žR%€ 7•Ô‰bìtLŒNìm~µSM§ÞgûQѸ±ŸQ×|ý?ç«lž’mŠ€·ÜJ3bãg8Õ…Øõ$,žI¢i¹àǶv,è’GÞ[@ ))žA0ø–ïH•¥…®¼š¼¸°ÌSý‰°XÞ=^±Œ¬ÃÛ9ä—cáQ®!ª]~ÚK-Ft¥šú¾@GCÆ}ÞC°k[jI:,ò„,#€êî[Ê©K|a”ɽ؆@(Õôœõ8´<ö°GçÎèžz"M„`ÑǬÏhe½8¨eÆDlà“NMÞŠ›û¶¬ª7ý¸]þMëšwdÞbøZk7³‹›&­o’WDŸ)è=Eýž=p¶Ò Tá¦r¶o|n‚‰Ÿv)üû°±d°©-DBœž{QÇ?¬‚×Ξ€Ï 1…r0‹'á:gLQúŽ‚Mê}î÷CbΈÕJÜÿuÖðJÌ£w¨¤[É\ ÷òæìú˜-7<Ý cÒzM‚9œ »…éàþ§ \ÿÎŒ‰7#Y,C‚nlÚ ÕÆ®6/ÓëöòfyˆÑc_/ÛÜæR(&˜ûP¶w¹ðjúŽ+ér öæ=Y?ˆä \Ým•øÏÓF&¬,?0BgŸe‚.wp+·Æ½E3åY >ÀæcûágÁ{LÇ –¼[y*¦ï¼KÉ~B›RÂæ:/;3ß+ŠG/\5ÄYxQ"÷Ø^}0Ôò¸E™¥1´o o‘PìƒÞ{eÆè|g$Ää»ú+Ÿ˜LÂcëùʰ§P^Æ']‰î¶Ý°+»^ èa{Ç+ƒÔOBi céØ.†J7\¤;Å{OÆ_ëa Í+æO°lr·j=Û½'¡–«ûõW˜àª÷orуz%F T¢_Æh¼{Š»…ËAëî Y§˜î8kÄL¸Ó­¼¢Ú[ü™&)lȹPß‚2Gïø£³³˜>=_N´ œ!{S³KÛËÏvêX ç¬G=‰ài潑ش#¬k‡kScM‚îªTyñO„ì¢àR§]󥀚TZño1àñU]‚¢dDññfà÷°Þë‹ÃýQ/cê×ÏV X{Èw9®.è~s%R;ì_Žlä¾á¼Éj<³¿(ÔÜEÿ‡rPJ~˜Y3°’øX³ÝžX½[³¶¢vFÜîáŸß—¢p#Œ„²C¼9s(ùí.@µ.q*h M±ŠŸKý$„©'éʤÂs¤ý þã–ñuþÛ€ƒ-ˆ»÷f_EêUöú†‚<yÿ½Ý¢ûÂtá{¯!ªp.Ë\+±qÄá vÅï+pý^!öyHzPƒ“ðÉÛƒVÈV@§:þò‚¶¼H3Rü`~ ÏëÞ¡ o,-þÿ~**)W€‘´À~ùRÖŒrfì§êˆÅ~:S#6!òAÇíO©Ê1Ê$еB5·*üe‚„9Ã>9ÊY?E-ùµøa´O—ש{»3N²i=´&„ƒY·"¦6ø‘.p¾'Ó.,ØSOÍÖeþ qˆ@Ë?-„dÉfËJý D¦™ np„H¥®íw¬(ÊÔf¶ï[‹"ŒEXÿs"œ¯ ß "·§4À÷“+²ÐgËñMüYA¬Ë¯Z%\cîË¢ÚY€Øõ‡å^-ÛH:¸ÝD,Wíéw’ö;ˆœ%¨väOpšÞM °QîØ “Ð@‘á{ÖµHˆ¶Q»œ¬3Ì3?ädžü4:¥ž‡I[1.š¢Zá·öjô QÓCŽôR «,ô¤"‘À•¿Ô£°øË¼‡›u^ìOˆá@ÑâDV``/Ñõ7X'¦;à åäCV·¡ %R@ÁíX¡NÁ5 4Žb%¦ Û× SU±¦5@‘" WL ª ÔìÞ`¶¹Eo Wl\í>ªû¡ ºçîtHö£„F•dúQÈm—f«Í[ìF>&<Ñ#V#1È¿¥çp+@,àM0+  4S•`g~±È~ól졵®n†ò¦èF«ˆ!ª€‚Î’Á„`!Ý….ìëŠÛ1A:`ë&xöpKÄ+ÐÚ»<éa±{´OÊ”J€hF² î„1ÀNm8ì<.Ê&ïâÏõE÷)aø1£S!Õ ! ¯ BŠx^kî¿§–„ ,¶äk/­O—[A^XøÙ¨«Ôc§“nÀ» 6Nûë͘ø¾`©ß·þ1# ïÆ[Ò» ŠâïoœŠ,½‰_èÚÚ*†û¾`Cn:9>È þu.脊€…ÆJÃw‚ÓtêåãÐLó¢û¬ôö‘ôüãQ%~‘{wÒÓ,#«tøµ¼bìtÃxÎÜ7 p2ÂdæeŸ`hD& ]Ovh†=¯w{Â`!‰HAkù½¬ü2ÙÚ?×3w{’hÃlö(ï°ÎÃbæðÿÕ↳2Yû1r={ îk½>C‰¦NÊF³Àa¬ÊˆDëӗGKé3“kÕ!qhKÏœ°Øå#ˆƒ @Ï¥g øËwE¤úYÕ{Bî®[Ârl—#I4CCÉãf¯_|ƒCô<íˆÌ¸+\KPòS¸¿üq+ºî–…Ͻ3á=Èÿ~þävÊœhMÚ m` 4=O\|n¸ÉüÒ¾tØÈºÍ¸E™Zx2‡\i¾Õ¸fňU¡ÔZ(K –mÁiÝ®QO£³¥Õ³®^žAn‡,gæû`D†/1¯?]§©¤ç)V<Ë)ìˆ>$]ˆtßr¯³ï=ª˜D±9Ï"ÛÂÑЃÊÙ@º…Áↆ"Þ„g€ùúëŒUºÕS!…?É¢æý)þ,ßû¥ÐlËuU Ø |§=m:,Ùú=ŠÎ^àTÌÇÈ{&œâÎ; Nú÷õ@}`@èÕu™—F]1Áyé·óˆêóÒKNÑØÿâs­ yB@º?Xæwá1ˆuÁó¼ðÈ©–ØFCëÜ¥«fžØ”5Äv›v©äé Œ2”A~Õ&uÞʉÙ@§ÇÊÂr¼èLŒ¤6´‘ÕÉ»áäB“Ÿ-MêïÕØ»(åHZeV…Âb¸”!þ+\º7 d‘‚¼Ç¾WŸ%r×/oC{3€3Ø#P-Ÿ·_…i6úЬ¨DðJU w%îx ª}ˆò¼&#Ïñ¡Ô[ŤŠEHÂsÆsj~šqå`-[þÊN¼Ä)w^Óì)¡(ÿ ¾\"›Ø»(•ÜA“mEû'“³`“ˆ>ÊîÆ%™šZ^fè¸ñ/;1©¬™ä—ŸÝ#|Ц»³Ùü&°ýëµ´n—Ï…ö `I1oê—~]ƒ{Ùƒ%z-MÍËF§,âÅJ\ Ns, ºÌìÖ0ŸÃÁÊÔ¹¢…‚‘žQCr÷D~‘M­}ù °ò=À@‹H¼°·™Á|K`(öJô¤Æ½g”Ä)EÞ‚)\#oQGÕ2ÀŨX»%»=Æe…+M¯é½mâA¼&hYùüu~__ ÷]Æ¡‘q¥DýÛI}îµ|Dý¤mÙ¨7cäö†ªžP+$d’‹^Nx‹´F[EP4x@×q¹f MšÔ³c/p¡øÜ®ùwð/0“‹N2_ r•SœÚ9>f{òµ˜G-V2¨ÇGÕJì ˆ¶«~“¥3ðÞ@tz}Ýhlªüb>¨R;¯6¡I§–èRYI¥ÿs/ä` /bb‹n¾Ç6‡Vµ¼m8#±-’HY|% Ò4òJ —0C•a£ýØn\´¸ca¶õòj Ïð-^ñ²ë|(V–¸û WKÿÇJ>á¬8†TF-ùšðZÏϺIØÄ4b-èy§ÿ×}Øæ®›ü­º{ðÎ#ÈÓš–„ ©ØÃ˜ü}jÔBÕ³¿rUs7¶§§/:„«,óâVÙnøÂ3ÅÄ ÃfCb¿,Ï;™pñ‘Ÿ²PU¶,UˆôxèÎ#6éxЮ˜TOœ½ŽŸñ’å¾ZŸK(~× ³›fv#]á8éTKrpÔM~jHUôäXãjîFƒÿð,‘iGÜG„ÿÉðÉ‚Hé_Ó×^híd°fÛÄåÎX¸µ¿²îv»@™Ô÷<†õÚ‰~F%‰´kÉã¢qx…Qªˆ8!¶ó&¯ºU\u¼/(ZwxÿA΋z2ƒ,®Ómí?­Oµ¹ Æ¨DBpý.K̉üž\x¤Gd6´øA4l”<‚ÄÍ™÷Â{G&þßÙæGܾ5mYš{«-`!.*knæT3›å$ZÞÓ4`(´çÖâÏž4‰QU›[sq¸ž~³ðS Ú+GWƒÅjgÛõÚ“Aç2R©píNµG^þšŽE°nj³³³OED° 4@Œß¦‚‹ªÇî¶Ö W² %6˽¡ƒS¸«Txúwx†M:Q\Ì ßÅÇ4Ô‹äï56·éº5lŠ 5„˜îþÁ0–½îwùCk²ÖòwïÀï…*EþÁÔuNž!P¥ šØqÐýøùÈŒ€ò &›ð«2œNnÓV^Z%ÙåJJü{\e@·úF† ¼].æ5w¶¯`ÛÞ½NoIâÇÌlœÝÀD‡-¥ÊØtD*w- ˜z;>úɉºi*S™´>¡ãÝÏPÂP“":?ÌÀä¤a?+?fgý‚a–œ5ûr|Tzó€tx+ÿ ÄR²âòGcãàõ‘}”œ#îó¨×Ædx$c 7ñR'ÒÊ:"L]D"v·³)­x®üšµTéXyT‚5Þ„¨A¡î~°c,5ŽpÕø™mü…‰¡ Ð Žú¶`¢L%¥ûÓllÚ¬6µð”Õ NZ?±MìÝà ÞP»þ6¥»Jò’‡G²î4µ"qhõKi{q,Ï’<”ÒúZ‘bF¼È'^H ™…TA¦ÓqðQýL8zôPÛ Ê4UpR‘ÑèUѹ¥MïXò²q`6Ø‘Ã#±6ÏÕÂÞeÉ<îlKÞÌœµPµ—O¼¤%ÍX²-[ûB©b IòÊO];ÚJˆÖÑ"Œñ~8–$è¸å' M”ÉÛT*ÐÒ«”À¤þÖÙŠ¸ðpKM¾×¬¨o°}ìײÎÊoÓM·Ú9<º•{o5ŒñHø=›uæ”ò& é1ÇJ™…Å~Añ'½QãD/4ãßF(} 6#VÊî©ÉÉe ñÇ ÔG1ZÐLjgÓò4Ë•H|s#ðãùí`ì¬`ÈC— „ˆFßV|Æ+2e§µ8}Òc={D®a/ÓŽö<{ðë¹*¼íÜ—v»ñƒ{s•áAQi´õ©]€à¦^ŸòÞc]ݾ¢’hÒL0Òã,ù;ÞqSmzöw z xäw3 =iNhôÃÆêÑ MÚͪ楴Ðì4?%i ö¡K›¦‡Õ¡ {Œ/7ò¯¿­ô‡*fòÀR‹ÆÓ~†ñ¬fê~’m2qÈüt.Ï*„±r1Œ 1å[„ú鎂ì*‡Ëvž8Ê`¨rlo§ýŒ¾Óf0ú78MøÑÏެĢ{ºŸ)´{‹%º <§æ¼9ï˜8è}˜èiÀŽYµøÆÚχªÑ>ÞŒ¿€¬|•ç£E°á5Z–"ÛË7#ãÿÝ¥_ÆXˆ„x€x-ÁgZ)É~F%´Øz× C¾ÁkÞÀÐø#-„¶÷I Â#ê®§œy«ˆkÃâ«›ÐzÚÂFE$:ÃûM¢÷$a¹: ŒL»‡ûÔO…ºÙ´ÚáJņÀh]k%!–°O Ù2òVîOÝr–tæþj­”t‹wê]4‰‘jCÔûZØ5õ«,!(v ó›øçœ {ÄB¡ˆÎOŒ ×e"mܱ®3æÚ,ËZ….àšFÂÄ^›‚+bEõºšøÓÎju@ªþj~i0ÛÊ{ØEi¼-LŠéä—s,ö…}÷—™Å°"ÿGU™Háì2r·4ðEò“¢u¯'>6Ý,AH[“ÿo «­Þ.€·Ê‚ÀžÍjÃÂßà#FðBÕ_À¹Û„ ")L%ÃA="ãU†q/H‰CžšØŠ Eë¶Ñ{;4šú"o¨×Ĕ΅q#<Щ' ˆëñúîÄf}f±:—áìç\>ëñU“Ç/^”v £ZŽ޼¸Öß!К1!P•;;w޻̧Ó35øë¾ßåYãhw凞O1Ÿ<‰ÎmшJ¥Ò•,£Þ3ǃ›ú]›>EYjqFÕ*Ë6ÒÚL9Š_ŸÛÑ·sæùî·H÷öùîOéež›KÈu±„ä$ïûœ DVªÁåžâéÝ(ö¡€Àæ fvÊñ,mà²Á5¥Ýó¹¼d,úº¨°g xz¾jä¤1Àã‚ñ¯£ïªH^ác꞉î612²~¦ë3<…¬uG"“¹ý®<æ]¥Ðíëw7hãî;mœ®T.Q¤·…å|ð n·ªØƒoáF2eÉžfsGsØR¿×,énŸjÙ ]é.a¥SåPÆà’_(Päÿ’õj-B)¬.4j&*É?ßÿ]0 «9>b¥i—Êämf÷Ê_ù[ÏÏ€¥[›Ì¡DD©ã±íçP©w¦ÐÁ[Q_ ÿ︼v ?7aÍ¥›äýIÐUdšˆpMÝ×Áx&Î UiÒd±‡¶VÒ÷”À'ß w€.Õë¿1àì…/ ÁðsºW9øÊÿéê(€áèö¢MrŽm7±åCFuÍj®‘0½4tвýƉ)õL2£IÜ!&Ðé é EuV¡K œÂušDøy&B3¤E3[äùõ  `*óïTp!³†øÃ¨¶©ˆ94­bÑ¥#9ŸÒÿ§ÅZDÝßU™?Þ°û©5c1ðÄ*NL ±Ž‰ääÙ@Z^ŸKê¹^±<›$ %aó8ÁàÃ!€“„¯¹NùÛ¿ªd¹,¯O¾•$o—JqÁT–ŽæÓf‰(¬¾E²ü³™)"±Œ²Wcô(Ä7VgA6=ç`C92":Ð4ÖÄ'P:š„„7½A~G@GDO°l‚ÉþÚ‘!ŠJÍNhC…Ú KªØ½D@OŒ>ÖÂýá#ÖMÈc=U†.âêz‚/”˜”ß(Úucƒq°µAìvÒ>ÜÔY:c>Ž í·àŸ›”]^¿âÁIr»#´QK+ÞcsrÒÒ“`­[ø.gÕÅ:íÊŽ>„=`dׂ„ÌÀ>,)šèu@(âÂðyn®rüM·îŽ×c¾s=eõ“LZêt“¿)ù÷)‘nG°V—‹­3¥‰$Ùâýyav“ÑŽÌ€±_ðx8˜=—õ؆"e—¶ @v~Æao8?jä%O 1üt§°&Áʳ{ÑVÓ³¤ìù{yž!úY¸¤·$Sò—™~{Oc1ÅaÑ%¤òœo÷omdEñb¶ÒŒ¾QuOWò=8C} uôdbÀ‹+ÍYâ)Ét(Ï®um¯|K‹0SdL'V™wãL‰~²Ù•õ&‘íU £°Bb­>’ìWÛö„‰9Síf™â}îäSæ|báû0êV…Zö®9Ô­6š»Ò£,‚«†¿7QÐø RGC=µÀö'’Êx34´ðnÛ¥U#›õ¶æ+™ ½Œ 9>¼â)y²=¨eÒ­òÖ‰ÿ‘Á°Òº[¦V]ìWZ=¤®7žqN= [#Æôårí­c8“º_EiTIäìÔ_¡ÛŠ2TÿUÞJÁ‹‡¢ˆëÌ‘WÜ}…ˆ·ÍÉÙ‹ã×ðÝ›~¥¤Ç]58ÂYÆ£Y6>Z)%¬`‰Ã¢¢ 0ºïl×VĤ98Á1)ß^œip [pØ9æJI9Ho¹2À eÉ¢ ð²h懒nùI|ð³1 ¨yã¶m@2ß¼ÛU¤X'Ûj&Ñxáúö4X”ÉÌ`éå~tgCÁ¬=j¡t…l¨‡ÿ°aQöç´ éúú¶–ux‹ œ­­’>-ÿ0³ÌRC©9 J—ؘnXM1rÊP‰ 3â;U×åžù¬ùj}Ä¢Iÿ·’C<¿(ô¨4EfV?@ƒ‰£E“#5½¸L8½6çŽü !K íQlâa‡®!*U)½žö ýe*þ(KeÇš€û††cg¼“`ë(A ?Z~w–M¾lü–P•‚{¿·ÞC6@}HÕÃ'5{K3ê³Æ.5úÀaäI¦ÛNjvÐø¢^hjggj¥>ÊŒ ƾS…¶‡s“¥ëÌ]ú†à¡Ð‡Ú‡õŽÜ‰×ŒIo.ºÓ=S]#þ½˜áÇQ¨:æ9‰ ŠNsï3Þ0äûE5+CÏ» B è¨@ bÓ0ÿ{(—_Æ@”®Ü2 ´ýÈòªíNT·^À&…‘[ÝÒ¤¸Œô ÉQz¸ar‹h0ÜQkXÀÌ¡´VÝ' 0ÕR^Œ¡  ŸÎ :z5NÉ(“6Ú*2/n“²2r8álÿÞ²Šˆc.žT3±6ºüðúƒqQìÉWˆ4tɵ5--¯yêó4!èæªx"üaC³è=?ÜxO:¹‚$·]ÛÕÃ|e®ls{ÀÎrQ¼‚ާ‹,‰š8A£GI­jvd}¦l Zo<|ë™bÎZ?)F_7Ì-awޝ_ŸÉ§Ï0¶×2Þ ‹Œ¼žekÄxÆTô Á_.ÑØ)–Dc¹Ûb]e/=¡°-ŸÓš£‡O1[ïê†ÃÊ=7JÛ^¦6ž¸*¹Þghcãv{—ÔÏ:OÒí× ¬:ÿÓ%ôÜ&Ej¾\@®Ðë:> 1ï;`!ƒ»Þ]·K`ð@@`lÇDJw5û8Q½†µÖJg¢ {¹pã½äh…ó¶´øbp;#¦“‹¬¿àèwµß–ì4î*'™zÖˆ+~@lbº²Í¸têV%˯A0Ÿ¨wƒì¡©áI"Ní9 ’ò—œ3(l2¬m A:˜«H îW§³Ÿ’4t…’¿ûößwG×£öÃþ+Ž_2GÜæ&’<ëwœn!jLT/,§‘g=aqºb„¹qYKzØ'¤M¼4(¯Š“KR4°X©Àvá  D’F¥íyͳš8¿t_Ol¸È¼4If`¬hÕŠæj¨¦IÞI\“Z*„Bg$¼Šz€zÃEå´ É Ôî½õCt`!‚U—>%EÓóKÀÐåðÔ}Œx+@]4MÜîf‰Ãæ=žtîm‰L’úírÞžxèÝK&ÒÊɺvgyhG tEÞX_‘¤ÒŽÞEEÇÃèÈqñ/ Á8­—”ØÆK5Qâ(ÞW=“þ `z °±¦ÏãåMCH‹#˜X“AP^{¼ïæ·"Zß;׳JyqÙû ú¹XòrI;y6+hÄ•.·ô×E¼¬‡·r6Õ ¼‡(f¸Áï]RaÙèKxC;P2€n ¹aˆjŒVˆ‡C0NNוK)ƒ³æßˆání4¤,E)Q:L<•“1ðïRg[ÎÆ–¢Ÿ…u¸×´b0MÏÓ1,­:À»Ô$¦l Ù±Í;V;˜>Ž{!làîö01 “ß½Aä“w Wô¦æíç:¡ðgìgêLIá—†°Û½a-Ì3]7N`ˆŒ’ô\o¶;³@G¾.i&\å‘Uš~¬T¹PÀX%â?PÛaödBKpŋꚮµ ç–tlÏ ´lÒÄŒSQ7E"ò Ú.qõr .(·Ï>Ÿ7ÓÕù¾ì4xJÍ |º¶±?(Š_êúô2üʰy*†„ ©ç:HAV^ªÚ%î2û‰ã:UáÚ|šŸ •r.³“{´euá½è¦X?iìd@#\Fû1ƒV±bò¶Îs_÷6oÚ§…\ÁLË3ÍpaDFŠ^œT>×ôТق÷aÑ¥Ÿ›XÈɫѥ¤æŸxeFð4.\-Q|2ÌX·¼¯þsVyî° ˆ¡†Ÿê^ãö[ ÖPÌNN²¡g„¤ŠæfÉìh…‰ Výõq%­v~qg`졇'GšÂIú<÷1Ãc±dÅd¸Ç쌓oÊzQÄOC[«)È€à£:I,ÓBË;¿½6ċޖcѧ À]†Ø§˜jÎS¿…º"-¶ ÞΦøH— Œìñ)eðàe+²æÈ›àGŠå_" a#hdgÚëBMW²Gº ÂÍáëŒØ—PÊ´)µ |ÿ=g¡¤£] ¢½G`f¥TëõÊô^,?Â2‚[$Û½t婵wÚµlÚ¸p—†'C=ÚÞ°›1„ˆ.pûrBÍ^d E ©ÃQL°¦w~%LlAMmPx–ÝyÌ*N–½ñcý’­†Ð#ncg͆t!èrdi÷ß³å¡;j²OóÙÐ^{dâUŒòVZØ¥rÔ¦3X²U{ø Ü1-¯ôú¨°¬¶H‚Ï©p'Zº¨ü°J‡ͽ¤B‡ÈPtuþ³ÏZ8ºduÒ§æÄèãïjvš³®¼7ïçì~¿ñW¤¡SUò®\Ý4aªíØU#‹™Aï¾$ïèØÍ­9Á“¶LW;ÇëŒÖuOVðlßx 4UGiûô‚껆 «|B £ŸÔSËDú°µT®S—£æpªÀHE+ñ»|<*k®)}z]-ÁÎð¢., #í< r%þ{‹œ-°ðU­@ætÓÇï„]QSs×ÀIÅ{BX¨¯“CJë¹Óó²SÙl7…Å-³7Àˆcã:¸±Å«ôµ¥‡ëHtSOø=\w¯¨\îÊ*•A–°=¼VÞ¦ÇȸŽâô«bŽ8y ï6yK2‹˜ù}vñÃÒVÈIØbØÄAµß«7„\}mbMÿ¡Wž]ñÓìôÂjêO퉬PÚÚ \Â}¯¬G4»ÚYœB*ŽZ|¹-ïºÎkdž•âX=“ø³êËóÎIœF½¢ŽèÌÆÀôÚˆfî`r»lßMÖ¥û´-–Ç#ªAÏ€&¡¿Í €ÅÏrl×õ¯¼ZØ—MŒöi-ƒ¯”yî‰)¡Fñom¾ÃŠ‹€HP)¼DSËË¿³È]*KÜÿüöæ+t·gv”㙼cJù.Î^ºlËL'ëo LRß«iÏ'áÿܽgèLo¯Çcó÷ öV*Ò IJK}(Tå‰iO³dB¬M™äÐÝ’GMÍëÌaóĽFeƒÒNj¥~—ó_R•Ö™eeúÑ`CìÖ ý1…×è"Y=ÙeŠÜ&Ø“m¾¼ÿó|9>NC“j‹¦^køY‹ƒU…¹Õ­18GoŠù·7—hÑÚ¶VæÕ÷૘c#Áj–8rB>‚ÿ5ƒê]ž&‡ÎfîG†þüªÍx -•°¸¬Ê‹È¾¡ ÁÁˆïG„Ñ ñzeì‹q9Ì]aãáë‹3¹mvœ VÀI)ÛÎv„€´Ñ!ˆ–[… ‚ÿ¾ \Å…¦…Ç/ƶÒÛÔ8ª€öÝbÇ!8Œõ(ã÷Ï„ ¹¦ÚÑ8© XÖpÛ)º‘·s¼UÑÿ×3ïÊÓ›°¨éÄ1žl}/—Ð}0(D†•,r³VËèÀ±¼s—ìoFa;´0¥-ðÖ–ÒyâTÛi§ù`íôÕ·ÐúBey×ó“‚ \­)Õ8V¼›OÕv"'œ÷‹{ñœ-A9ñ8  –ÜÓCQq^PÜý% Š\N†tSé|ÉíœNF5gpòp®Û°wNÑûZg|)ÚT.xí®p×àáI6'ô}µ³jò*ùª=bŒ+¢áóÿczyøñ¿#ýdéêÃ;·2Å2ÕKT&q 9ˆ­9?>G0J³m,?R"à¢V¬¼?jM,ÝTzF]Hö,E‡­`ëÚÉbèÍZOU‡æ÷óOJ´YMáf±›Óõœ”ÎEç„“ÿÏß6õƒ\fšô–Úo½’×"/n‹Ì¼3{ô~¨c3ï¢ÎÝê°ÎÙ C5§Ì£Ø›¥nú›t¹Íšc!ÅÄd®6ß¹»š([iÿ­)ìhz eÙhˆñÚ¥Õ®F5â±Ç%ì]½Πæö×Ò焬=W-ÄG×r¢§l4ZIfδ™Õ46ÁÀ éiéÕmZïwÀO˜:ÌûÃIÆÔÝC¶* 2 diÛ0•CnܨmgÉh!§aö©ÏØ®^×j½¯‘óg?LÍçe%nØfE!<(],zø¼¼üÂd†_õ@9Á`éIýxU:áÍ<Ùè2¯º$˜a#J©\ëŒÚEV-»L¸åø/ó³O¥IõÏÙÆ‰¢­„™yÜ’Àñ*'ß0D1%1Wö@Õÿ:+\v —~åSMb©d,@l¾í¤ûÿéÙ~$HfûŽì]”·ŠTöƒEÞr¯ò ¦ª¨ f ÞqŠ­Ž^F7ÄD½«Ô¥ý¡È®¦¬K„žáܯ¼‹á4RL/#£ÛÓçSÆU°Tø¨Åt'Yph—¥”­_\ëõT¡­ÃcöÆ`@2ó&¸%³Ï€äø;€~ÀZCBîw»k%ªãÁbZSRIÍ •©sHkõÚÙi)Õa¶¸”+Ócl8”Ʊ¨Å‹ø:MEù WB uÈñ„MášñGj5i]Ôç[ØîpFÐI‰4‚Š#¬El‰ΘNÆEø˜½ÕáZ.ùO†€sÈ鑸 m|É€i ñ>ºÔªSk­m~db舼Ç=á8¹Ùš°P2Ðø#¾Ñ5a[Y±oèÿ©…Üe᪗uãrCg)­§Z8nTôÂnŽÊ Êžçܵ%!J›ÕØ! Q n÷-Öõ)»ü}™n@N‰rÀôt;à28 c± H XFO§ÀL%Ž]¹ŒT®âHÖnmÿðjô·êœLÌñ#= êVY®íˆ-M¨È2\ØSè\?^8(Õb·> Ѕ‡¿¡s†RN¿|ôèïìÉ›ÿ%yI‚<¥Ì¸W%èd·Æ^”EÕÍôêÄäSl4]›®¦Úf§âÏ<;0þ"Íy¶n©VïLžíNZÜ7áÞrTÁª‘~Þ(­ìÿ¬]F4©«Å§¢¯lkÐ[ú(¡WÂs¥2y"ÐzF–Œ¿ø ¼CüŸ5W3»X=¶»Æ,ƒ„•8GÓuŸ5OžXyùŽÑ,Öe„³*CíV<»èUãÃIRpV˜„ŽòYÎ_ª#‚æú<’:•<&Õò×Ïåd#æÃóËrø@®=jßuúh¾ôòáÜDCõN¤gøDPø©é6|7Îa>Ï„‹Ñ-›6ëÈ\(Ïüè÷¬ÊíAÝóõŒbë‰áY¹ØPx"L¬ûVÄ&ög^¦ƒœñ¥1²ø{GÉ+šTGú ¥,/ÏÐ3µSêõI„Áÿ:âäÐg°Þa0xÙÖ¨êÈâ|8Üâe(Ï-ê–ŽGlÕÄ:ú§h‰(l”û›hÞý»¯™¼9SìïÖÒJ°Þ’8¼ts!¼ogKiµ#~75úÏeHE9¼ÿ¥|-¡Ÿsܳ™ÃÙ‰vÅàYp„õ©MgDÕ\´6จ¿°ßL³%wá5‚ÕŒ¿ ïøüµˆ(k16xü“O† k‹ë#QtÏ€åÖÑ«eýReåš6’¨Êe]l½ŒoÆ‘Fœ6.È¥?ê$“»ð%ém~7¦º­Í»°.Ó³õA†xžb›nÈIœ2h»éÈFúÄ?‘°|¾ÉRcÕÜg]nÈm¨ÌÇ/”K ï»gÛ.àcœ¼Ã÷eçn—G–·LK<ŒXì%M¶Éyãˆ2‚ÏØŒTfÉòýGP\ÁT¡D«6â´ ÓîýIpA!eÍ< ŒjwëÓR=³ì³QË™Z€Ò3Õ%wŽòÀؾ¯D¸Ò‚äJ{â=‡åÜÑ´aKï9~Û¦1¸2«UÅôwêoæx¯²Y÷_ªŠžº+jË'º@Æ'd }ˆ¶Ê¸«{¾Hµý‹ÈV5ÒöõNmÁv ÄärGûc®°e†yÜ€b£‘ÞÏËŠ¶½ì·)ÌMâ‘£ ïüM[<¾ù«d¶€¾ÿ):]}t¹x@>žuCò¡ª¤¢mÑÊi O¦ÈïÿÛìá¶üî=ËŽæ¾YœrúY6׎ÜJ°â"G!¢."–[†ýDì°ùEÚ7 yS°t°ôúå e“#Ø\¢–½ÀÝNÁ»ö×ΠÇ眻Pº#! ú‹f÷Ùw•tÐˇ*Ì‚‚{¶Š©oÏ»~nÉk ;g^mÃÜ0÷6Æ «4ª [ÁZaÕµµIýÃ"E[´«m¹‘Àш²V¨ˆ=GhÓñ¹èº÷ÿñ¾Y›¨õü,QzˆœOΰGüÂ{> ÛŒN5ã7¿Ž›*\–{öþÂ9\Z—`ä¹ ^š'?é.›=ɲŽêeo…Šúä»›ø@ŠHÊÓ¬† ŒØšéM£ñø¨³T £<6å@ˆ{'xŒu¤=›‰\ûò7i3sI¡Œº€ågH® }ƉüpÙ9þ`YÓhV îòß4‘š`=êÏLk؃A§×Õë8Ü¿˜ÜâJY±\*ÖÀóÁLs'O )-,–»‚B˜òcÜj;2š˜‚°êÄÄ%sÔZÍÇ ˆñG˜ØŽÜœöœ–FsÖÅ m¢ï½'‘@‹Ö¬w_[ߨ ›E|V·ÖÁ±Ú0@/¶ãdZè [§¡RÂÕ›=m@°E²øÖ«e>/îùþ=Ï‹›´!¾Í&Ë€A¾˜v\2Ö¬|J Áeº¦ã.º³=£Òst¦1/¦tðÑ´êêÚóãÁ˜L†ñ °œX_„I‚tÅÞ T×Lmlœ¢0\Ó±bPù6¡.`ï—LrxÁ™Æµ¢Ujw.5rµ/“RƹL2c­Œ¼j ¿@¡t5Fjü=ÁÍbã¼èoâæXÎÄ0ð@’²(¦*òŽÒxbŠ€)Ê‹ ½é%PáƒJŠR ¶^©qˆOíŸ èö8l¡7²-þ¸–yZdSþU¸û)Oέ÷=|ѵ¤ýr–Æ ÝÆ·Ü"š+ªjYe=jƒY°@DÈÓ?Š/-¢éÍmÂÀ“ò2(EðDÑRà1ƼŠ(&â1YcÆ¥7朶C¡ÒP­7üÚÉÊ4rd9iåžclEqVo¨/J_à‹NÓ¼Î×i8}x"eÂ]ÍÇ乿2fd©jÜ¿à4gHk½°æ9{ü¥‰-¯0a™˜ wÖÏWXq“.ÚF3LÿæÆÚÍíŽñÂe“€Új"3}üï»K¹žÀƘº‰ñDû¿åîÿUtßæƒ%t:Ø{†ö5ì,<òS»Úî#ÆC¹ Ñ´ËGð–¬WÇËgH !lZä<¿ô%ðÛ‡‘®nr_£›dgÜàø PõàhÙd`}òÏÆÈÞ®-¯W~„#©f‰·}f+ôîÜ)¹€ßäu„ÒÁlOšu’³rW1“—÷ÐôUÀÔѼä;kög ôÆ£3ÎE£•t“vÝMOþ—Hé4ÓCZ0-j  šwx¬Ê¼Ž«Ì*€ÿÓ°î:Sü´ôý¬Jœ ……É’h©QËJr zÊü¶ÂÑwðí飨1(=§'>ñlipW ð\ÙÊüp°.(ùPVbþk¾±æÿœm¾ÐŽW¨®Bª Wißw¡§þŒ£0ÆÛŽ£oWõžk¼1 ÔÏIúB¡ÛœQi€<ôeigd÷ß3ìAtÚ™¼X¯iÑ&k1ôQ¢¸—¨Aô-üI%jÁÆî¸ÂŒß &z¸-• ~FZb Ѧ¬ù$Æ‹«éc„\“jÏ?àë\×ß0þ<´ú¢¦3ÚÖnæÑ­Ž×4i!M-Ás«žAÎfYD]@ÎÆSÀþÚçH&©7Ì0Z’ÆïëÚMm›˜Êo®³Ñƒ™×ëKnÍ‘@fHþ•6¡ÏÿD`ÊÈGñj1½îŒXF†c‡¬ðÖ#Óc(â¹³Ï:»öSÇwë¢É'b¡gÀÏóõ$3\T¿"ÃEn%n0FÐ &P0£1¹°ë>u`ö€7¹Ú&ÐŽíEU”–ª)Ltˆo¬&xÓ 1Že=)̯xRRûÑc8™ŽÖú8]yJöË­¡ÙДiq](`Ñ!úê(p=ôN}êþnxÁ„jÆ öé—ÒëÊ”ÇÃƾÚ«Æd=¢a0÷<ƒÛV¼9Ž@P`µîïTd« fô²’qÕø’ºÕ¼‡Ö¢Ó ±á†:òù*áþ¼¢EG3Yàq³¬Ýwå•LÑÇÂí*Ùf¸x1´?˜3Aî&-S'‹w´UKœ¡C4¸|ú)¦äF§´F$2i¦•L\0£ß—c:§NèÀûfÚ~+0ÔøÃoóô[eÌ ˆÈ‘‡ÉÊžà–ð¥Ÿ,&°öÖ|¥× º{! ~b¼¡ëh©6Çè]° æû aηÁ¬YÆŠ¹*+ï¸WfÁ¬DlŒ³Èö«mç÷”qû/Ù߃l rŒw$óÇæµ¦, „ЧmS=ë¬8©~î IøÂ@¾2Ùö7ªv‘ãÌ`b+ëÔKOŸTû.Ð#iÐáªìöÑ_l*l˜û Šy²;ÁÃ7¹sƒ#ÔI H9•>wåhë·¾µhIÎåÐc⌳dß×ê¼ÿ=ã« (¯Û®ª%îÞý ·Àæûðeø3ü®¡*5º~mT—av’µy°_2>`:¢Â°Ï'am00Ðêé,Ðó[B›ÂžÁºH-|õ·Dsɽ9•ã“ÑñÖ!RŽô—°ýÒ«µ‡ÀC\í4=õx åÑ;cÅÁÒþ<È+úcôÓ!®ŽTùtÒ¼6ÅS5±4hQ|ípÀÍžs™·ÇMŸúÂæÍmƒîƒß¨‰týötÆë…;ÂÑŽvöÔ i°ÎîïÉ…”‚ðOñ§êàFÙ9qK‚®ˆïæç rnÎýŽ6ÃÞ nŽja1ÍBñÉØ·ðÜ#|+“ëu¿UˆÑ¤ùvöJFMifµÈj­ÅˆnÈMùÄЫ>ü®">Ô*}q:ñ 8˜Ö#=Gv‰ä€"^…”E’à‡ÂA ªÞ»ñŒbKÊ»zÊr•HÇÙf Ž¿bO§ƒÂFÖCe„rõº|ßÌ«¾´¹:{ ~Œ,Á‹‹ LÝЦ­ø,$&Ò Pñ F-(»Ìy áCdŠ”uÆîÂ)u/ü¿ç1×—h+ïo”0‹¬*"GÓõ‚³ÙÄàRãš÷Þî¨Äà Úc•0ú–^ƒTÞ‚¬¾Ó•5éjꜢ®|G*æ)œsˆé)ÃjW ƒ”e²ý-ÆùB8»ž T‰dû”ùBØPáÌŠÔdx¼Aøµßw‚B¾þͽå­6óðõs%Ú³ˆ[!:Üôr‚ûú cTáÂRÁˤ8V ßìt8 ÝM\l@È7|-{ þö9V3`ÃIŒ’à…l!çVÙ;èÆHóE+ú—ÂQÒšX b`€íðk8‘,­Kä¤Ì®ttW˜*#®ðïzãcìÂ[»y°=vÌ«ú=ŸúÚÁ™^v¦##¢qëãŸl’,`ð ¢WRWE·ü¦õ9¤[€¹)¦°ºs“‘ âcŸ‡yÙóþIÎD0¡/Ÿ~Î=(œÙt‘BtkÁñx‹‚§D–Pxÿyµµ‚ã¤äYåIâìeß&¸])„§bãýÕåŸð~Þ1xJ•u?«W@hýùçR]c•6{©N—ÃÊx#?ûVõ¼%ˆ!Œ,›’þëÔξ’ ¨åo6ÔM…læOQTû\ˆ­¼<Ë—9QÃÿ,YÉ•G%ô(µ'Ô¦‚û¼Wå§MçïrS¡dF…ýoj dÊgZéÂäFËZáEK1Kºc76[ý d0Ú°Í,$Ez‰ìÇ2§4³u‰d‚$&PÍx×Ôs†5N¶{«‡)§Fþ­‘‘G­¿OzËXŸ§ 0¿%}€ÀˆšcÈÿCW¹pÂ÷5Å8PNX‰¶¥¾ûŽ9æe“HÏĬëøzå9$ÈO5q‡¤|O%ÞîCû$W£^âwØFd°ú…u¡|#Î'Ð[ÖÈ9Ø*B¾àѪ4’žðl“~1e¸Ñnd@kIñˆ‡‘• ÿ2O†ÌÃn–Ï"ë/@­Ðߨ`¯Š<£n‘·nˆõ)Ù6#µU>¸wŇà#è|÷N®…WàJl{Íj…N{Âq·ÆQoe TÀBÈfŽ"Àxp’jCm=»&HžÝv©< Óá¤/XºÉ…›¨;_Ÿ” 6<3¤…àùÄè?wÇ^´Öš'ŸòFy$b% ×5³‚+¯@¥ÿЖ¥ha¾t2ÈJ¼6u aBÚcÉòÍ[ ‡>ö^eŠ–,¦×Ƚd¬*œƒRZ7¾ƒÑ Ø ¯Œl¦Ht?,CO*»9ròýi$Šçgœs1l!Sb~°kV…éV¿Ø[|NŸí_Þ*2Çè[ ¹cˆè•îâgi8Ðòl'BE+I)IÝk`•ÿÏ¥îUà2¾až®[âñV£”䇗¥PicAÓNH‚‡¨ t\Á±ÄóŽ-;ŠÙÛf SK3\:õhûóæ+8ñrŸ×i‰?ÍÄÛ2¼‹srS5×{)ë¿8­›ü囹^š@¬`¿éN8ÜèM±rýµ£qÝBú• )iHpÕù¬š´™z?þrXõG…¤úÃh,4+êpí½³Ÿ‚’'YPëSß^-{:ÄE’G@nu›Å›xP˜úÞ.$„>Påºq^6m'†óID<"‹j‡6Ù}Î_BºGx×g\Œš®ÔI×FËÀÊrb#™‹„.ý©ÖÜ•Í u/ºw{cóvCÒ®7V›AƒÌrÎg<‰=r¼f¥ȉ~‹/’œ9˜¼ø¼ƒu¡boIÆ7såÖ9a§‰³¸¯¼Ò…‚Ó€Ò }¨¿1"Y<ãæ5Î÷!ME\øFäùê‹’é× VòÇ_èD“*Fm¤wC{üŠS@m¯^‰E ¡Œyeó†ÿMìÈ0zuéÞ®_“,Þß¾IàÞY6“žýH}*{ÞU ?>â)ø[åÚ1ÄaðgGG9ÂxÜ($G F ?Œ´Šñõ¾ÔÞw«!ßt±Äï;AA3Â݉þEÄfa#2@ßÔmÆk{`·5*^>æ)™èþ´³“Üv®v¢}ëósÍ€gQûÿYRTHÓ07ÊÒÃXp«Ê)~øM_¨l„ø.ø¶šBÚÌZq¶Oñ\Ûš=j6ìÏÌŒ‘l†ÒfËrKƒ§ì¹r´ÏC ”:ðÓ>A^çi â§xx‚(~ÖÆ»ˆ’hä˜[j‰vY“ö?o£F‚iñÜì@e±;ü%rŒ^Ÿ=£ãALj**Õ ƒipÿÔR•W›S(zrÍ¥'Vÿv ²!{¡PªŽ¾%Iq»*†ÒŒœŠèÃôvÄ¢Wçoeá0y¤÷?Í’ùp qïâTRé'qÞÿÃ"$EGÑ1ö§‹Òoç¡ÒÇ]¦ÃŽ ºåIù3ÄPxØ?^ÑWfî ¹.G• , Ýn)ˆ"HÍðUã=xŸh'Ie'¤7ñú Ãò“§§¨«Õ,s®´µÃ>ì쎖‘n$ÁafÔtÐ&Kòªu¡ÄØ‘nq‘–¬ä½ãFnv¥@g…Õë{ãø.YÒ«¸7º«æ_hðlÛ'ˆÚá`רëßÚJþyxÒê-ìÔÁÁx©=THîeËÒÍÆáô•ƒëu¬UºSuå’›%1"{ÿ§wž&;ºøb>Ü›!—”#ßÄICï‡Fh5÷`·À w„p¡Û±?:±´b$oôÌTˆ²L!ÇMÅvÆ©=C¹·ìEO¨…­]AElbÂÕ©Þ® ﹚½å•rÕjí…M+§GñHܧ< 6wàöWïX_S÷ ½|krI…É’—sÇWJýHºE㌚Ò5cisÇ@IF2B‰àUÔ[ñfÏL_{ÐÛŠ²³-HÁ: a‹°d¼óÁc÷Q.D”Ù Œ÷3A QYüEíô +a,ù5 †9FßC·bhÎ]ÍLœ;?êAÖz[(?û,î/\Ñ2OéT´Úcod¼IèÎáüi-ß¼?þ±,òøeRÔà†Û‚É—F~Mf,õi­Ü… 8±@ºŽ?oP.ÑÓOñÔ ñç{J¾³p ?Ú­Ëu/‡&ÎW@Q[ä¯^ð!è{•šRuwB ‘¶åd\Ñg#ñK:’—”œ‘§0i ´Jø'Ë–ht lý=&\¿¶Ò@è&h'´[÷â5% çUQoUà-´³©N¿¢¦: Ë6fˆ í“´Ø?Û£(¦Å¸¾~D¼›U³t6bÈ9„LÈÄÆçÍÈ[‡£¬)ù=4寄~´Px0pç@+èLÀ«&KY&¨)*)-û!`JWjcžªTõq™/Žìê°Öt‰Ÿâ™×„>"c¤æèÙ_¬ÁU/f´óãš J uj˜mëK8ªÉùñ96xÇÊT—HYÙ]øYV„ˆÝè_ýþôÁN{' ~:®ŒhëáX ±qž‰ãÚ³MÒ7!y*Ë»®æ‹Èg"´ v–¶-ã­Y–UyøP˦֞áPR†&Ôáâk}¡"ËñÇ äÉŽ Ut0ÆêT ×7oÞ%zG”Âm›6/ ÂÜ“P'Œ(æÎ1YÀ†G4·åÕÙaŸü4à6ɉ†µùó3%NQ/Z‡UC{áÝpÖVÉ«vW½™ãO!À „Ó¿˜ßèE·:Kd¬1Viçí^ú莱I¬9ÞRG(\‘€¬âeé½ÃE¹çî/ø›¹ƒÄ9`H p™KåýDx puÏÉ‹õætÄÈ´Ñ2ûˆŒŽ FɰU΃ӕ¯Š¥áîš`hobÓóõg£k¸oK"p»áà»M=GÆOKG=pÏ/4»iNâ¾°Ó}n Ïi‚ê:Í!žRK‘»‘cKö±*]ý<¤Hay;ó¾ûÓ&d-ãB®FñôTŸýÓ#Çò+ö¤–g‘õ/ù›‘ ª»Š9ÇßÀw¬€9õv‰n{?¾£]†qµk¤NÐÓ ò/˜YgrWu,¶(iZðhË¿ÍïcàL¥9Dî?½”'ù,pÊìñÈ]°@`2‰Çç‘rý¨i~ËY¼ÆÅ±êÜΤ¡ÁÀ4Ÿ Í9Þ—ô1XùÜ]9¸ÐsêZjD´¤/%|mKçÈöØF`¢ sŠ*f‘{sÈžXJh5§Í»ò¶¾M­)uw$þÕõRþ›e]bÙ7a£¡¿]% òå{þè©ÕI¢X|ì?9A7šÈõØYõå•x©ÿ9j… ¤ë²0†ûXÛ¬¥¼¼_ˆRÌ:û;‹\ÁRµ%'“Ïnä¾)´­ Vñ¬‘<Ýp¯½Ñ'o8\žHèF¿~«ØÎWÉøÒMy3G€WK9ÈÐ]ÏgQì’vÉ úø€„ ˆþºC³ ga)˜ñHeíè"‹/kLÅ":’KW80‘$L”—ÐV¤ú÷yA¯qøå>ÛúПzhf÷écØÝ«Y#–óº‰úÜ¡oܾØc:Ó˜3×ßÖæH’…órM¡)E¢¼SÙo³Ìh¯…|‘ntøA×Z1X­Hƒ/‰‰ævIƒGªr“kìœGÚµézáæ×VøžÚ‹£ —Yh%yWÄéK ò±­W²OÍpŠý^q…‡1½Š;L‡¶0†¿ÚÔ^¾uRŒz@Ø8éæ‚Y ÂŽ[Rå3 yÃo`Ö-©!xRâ& 뮺bD7Ð)…î<|¿y̺«L‘“ }É }bÇõä7¥wJAí0bÉðJ[ÞìÃQì÷0‡ö•dø¿Ñ©uœð­|àÚ*© HÄ?±Þñî-ÆÞ¬÷h Ìã¥ô—Λ$.W m>²ËóhudEƒID¿PþQ°®ú3\F‡Íqµ<äUN#¨ù5÷xzu&*TGîh»õÜNž°[KýÒA·–Ò¥|Î ‡Ñ岯u}¯ßÎ2 Y×Fõ3稳?_²Õ„G˜0¼áž?šKvÈÉ u¬ ^EË7…@Œ#kX!…fÖŠjˆºÍŒ§Õ²¢ ±Zy¸ Y4<‡‡.#ð'ÐRÉboíWÄž{ Öµè~q¥Ð¯¿Åã«ÐÒüÑNUp¥Öíë‘F×Ò„Ÿ DðI_8§\>£–xK G˜þ[6^6iMR½@nÿÓˆ¢vvnÜfµåƒM•™† ÌÞØDÜ ü ªZödç÷=£áàJ‹Ø¸9éwÿêj°ðþ*ç9 qóÐNúàkF\ÅàטoãyOK”ÇT"aØyÈÀ×öx¹àDšb£Ð…¼Ew55S´Í ^iŽ¡iœÑ•»®úØçbð<Ö­´è˜’âûz°óh‰èÁÒ+Ä'’}©v¦ú6:çU·õ€=”ì«ìjËÌqff&6êõö»Kà$-î×»ÿ‡¬}D÷ÍX•é18½³Û:¦\À¯[¯È¡Cè‚r¶`ä QÖ˜J+©ð2Ä詬4^‘¯³-t ¹%wbù¤+d·²%f’šÃ®»û±¯³/¾¥á’!1DÌ”KÛcW¡”íõó"9t?0-ÄbPEPîîH4üîHPÒîñ4w|\åé tùc€“ÝžF”gEW´ÒÈØRp6ðJ{ô§Nî€2a €+q.Æ6 ж3œµR˜¢å.LøÚŽ8v—[—õþ×¼ð*9Ñn@PZ¿$ºþÈÃüåkêðÉDŒ\y]Î^ËpæÁ_| 'ñˆƒÆ×ד0Os!ÙåU”Šhy´î=öÑárÐa Ióùoн­Ü«×šm[~W ‘!up)¾'°¦‹Ë!‡ö‰A;¿kpu#Œñ}Lœ¢C~]µˆMÍ¿TÑX ÈÐÓ‚Øí‘ïJuž"§OxýÿEyë¸ ”^ ¦—€F焃&¬?TMz¢ÿeoºŽØá˜G*‹ºÄÞ‚’i¦¬ÔïVäÝÄ–•"^<‰;Mć–E¡pæM-^3>‰´yàdŽÞEÊtµ4ë¶Ùƒ Þ.S‘û}Pª møm8’Z~ äԞɉ„YbRÿ >#¥wÛ™ËõAe·Ú³|Ǥ ªUIɰ„6⢛­a CÙÎq–ò®BcWfÎs$íǾ¹Ÿ@•¾M{1¿4²ßŃ"á6œ‚ès|eàWÃ&ã| DA¹Ä)ÏŒƒä›èíeÌf].å÷º(úÀqÉ©Q¹QOÅ?ᇜª ß=@=E6^õý`¬uÄM[j„rs5¿~~F7U(Ò1+à Zvv õØèä€4íí±à¥8ïÏŠ›Ï÷À.6jtrpqø€ä« ôà…0( bqëÚ}Ô ?\Åw;ï‘ÊÔxׇþ`0¢ºWïy©Qœs]F9H0ç'åþÁµü¾U™Îö\Œhƒ:›ñh×Òo¦±UŠ¡b’ËÌætuM–u%ü'sÑ­àÌBü!6鯺OÐtÌ¥ÅF¾gï ;œØÀO¼Æ•% gäö‰1–ó€mý3aÀÚiÉ{tƒoÂ5Fne‚m´r_O„ßû¬ÏÂ-©•Íçv°H(±êG·}¦!ÙKoñ§]‚#ÃûõͧÒćޣþŽín¯k sõ°-®®°ž.b©Ñ87í¢ùK}ûÙ&02ÎÊ<ÅÂFÿ¤ýdûMnJ$Ü ×}Ígו û9¿=Ç ŸÕô/‚môªçùåÚ:Ù^>°èûÇ$½ T+ [ð¡oî<½ùs•±óðÃÎhcÅcª¿¡ Èì\á¦_†dPWKÞ,ÿLÅ2¦•®éJ¹Ð¹çn!6Ø ÎûæO¹`óª¸øìîÒ æÖ•`¾ô°ÌÕIq Ÿ^õªéW+^ñlX„§ûÖ¦ïÃïˆÑˆÒÕÚ±Xžñqó#À ÅÀÆÑðˆòdFtúÖ{ý„iñŲÓÝ&„5ñ¼*"¶ƒô¸£GON-†ëq›(±è—÷ìÈ3 Ôƒë¤YÈ©±d¨®(™¡-ÿ?å ,z4;ñ+ˆJBhy5ú¿[æúûóW6±ðŒ‰·ÊÑ™ò^¤>ŠÔq €l ›G;èƒj æP›om€ßͼŠÖÇð7_ÿÒBÖDÇ3ì0<Ž<ÕÇÄ㌅ìëŽØ“Ç_ .θ¬Œ¹ïAÛÆAª? Û&áV>lž×Ái‚P4ôÂõ.täê³È¯€Æ¨Íl”ÝK3¶„“$"¿G†Þ¤Q. ÄÔ/^EW±CÚxf‘½l »Þ§ô&ú”C²§iJk«(ýYw¨ tæø«\¦‚©³®hZ²;ëÆèRRØŠW©k~f\ lB$B‹½w˜ÂQƒ-7g«Rbl;äó <‡Bò/ ,kh$ܱ:§²N׈Tñ"L¥OïßÍ´›ìǪHæáçpW›‹—A£2ízU05ÜŸB}œ€½¾?4£~Ì\ =9¡'4€¡ázM S§`C‰ÁªùÖ™²çÝékݸ«OƒieÍRÞÁÎÎõ9øN²Pž7vj! Já[8¡[5òÈšÊØýä¼'9Ë®o pOTèæ“:®‰¦ùÆ©à‹pVJV">ÚV8¼6 Á#f¾ŽW’–£”¨')òE •LÚoeÞb='íMQÝ–sé?­“30Tâ&äPùT:׆|qÞÁY¶¿Þ—‰œdHXN^‚j˜êVø‰ª°ÒnxÔŠ1ŠŠh5{¡|çr~Åwr@ÎÒÇbt¡æî¦^Kù.ý&Dó&¢­áã¸øBwðÓsÁÕÄÌÇƒÖ Ëø/±5œÆê_šø|¾<ÓÁ0}OñÅò¸/Dr ê”Â~7KY1ú»0'Þ³·?ÍÁdÕÊbý?bP11¤EÃþ²;Ho2}’ˆŽ› ªk 7AÆšo$°/J”œh<¹Ç%¾f¯étÚsKú†Œãé‡0HÖžD)¹N2hãðËAr™ ¥ðš2v'å+ú›K¬¡[>¨­lœ²g•Û®÷t g€uÝÚ6¯•‰}žø *Ê{n~VdË…ƒ¤>F:O–_­üÌÉvT„œÚb+=3î³Û4"VuŽlÈ4å™*Š8jˆÀ§ÿÚ ¼ ÏaNú"Íc —áÙÆø¶‰ÑÃaf¾ì^!âݶ‰`µõy,`µþŠ´ôÅ´øÅ- Yh!L ˆÞ)×®¯»/V}æõÝÞ¹‚=õ¢•_~ŒXžb‡ïüfÝà “—]Æœ«ÜÁ5{"išWº©“EæÿŒÿX@T ÚÇeÏ‚À–(›K]Ž–ýuÉþZXüùϱcSÊÀ‡û±ø3#õTѨÌ8KÈBÛ!lXÀ·lB¯J8z»czi-ÜA$£Mòc豩)M“¡ôtïì›ù0þY’ƒŒZþÒ÷A´FÆGêŒð(ê(W ŸÞ’.6‘kÙ«‹o|àQ“LüûÊÉaÒXÀ •Ô¥"ú¯]z¬„÷s3&Á ÒÕ\âíÝ»%Ü=Áø^yY›¼pÇ0¿¸Ìܶn¯9T€¾Sýn€öÐó•Á—›g•q«s—ï=zMÊ!e=®’/ºZ•H•ü.Fq˜MP·—HDIÛ´M—®¢ÄÞ»’YôÒu/øßf|;œC—¥Ÿ|þ¹Û¤ÝT*68 ba ÝyøòDgª†Û ™~MFt‡nê«T*­—fö•òú=")'÷W‡à=Mí­· Ð0Àb¦xÞ“{)ÝÍùÕDœ·-àôž]¹&VY_ÌKyEG×{ᛯêËô˜5ì6”ã†k˨­V&HÔæ2Þ˲åm^jZ=@¾ï©»_UÌšúªeS¥ƒ¹03PYˆ ›3¶.’EZem{õŽA@®RæþŽ ¡¯{þºx‚‹ÉM&×-_ŸE$%ÅûL;W½ªTòñA}ÏuæÂ≮[»žP=2“óëÅ R8kCJz{ÚÓ7n4=Z.>µ²ñQ¥¢‡ÞñÇG!ü°£BÊL5^ òb}Â~¼Æîo ìÕ¯y*^—Þ*iŠÜ)¥oe] úd÷àqøcûý—ÿÆ©«ü¡Üð¡LþHt&½ s£™ »N(ƒïïâ0üû¥*Zè“3¯š ,.’ÝÜÀâÓ8"ÎÿÙÉ¡_(…Å7,; ´9Ó’ØQs—Ó3µx‡Þ‰Bµ‘v§B3•—Yi<¶€f‡»,s[Ï¡Œ> «d½Kjæ:Ø£/å3`ÁJ /d¸/~Ô§"9º6QTuºå‘¶zrש{+ª´÷mœÂ¿®¥'{²aô ¬SŽ_éâG#éQAÀ½ŽŽ¯½BÖQ0¿ÜCb¼j ÷_þí¬üasºš½ÑÈПªƒ‡XåÕ;eº!¯uÏcþ«‰À5nWò¦ ö¿Kí§A6ýPÕB€%?õ/÷¼\>çÏûÏÂúH¾œZU¯Z>ˆÿ†é¡ÇüRJMFvõÊ V9Çi¨äçQG¤6ß«4?ÚÊeµÙ×àqc°ÿB’^Ž&™a×q—)ka‹)žTZn…°Ö‰“kAªV:ˆ‡0U*Ÿ¹½tžE?)—§ügm8hƒ õZiå¹K»Y2[`·m­ýKoJÞžÆËÙr*$²ÊIvM°ÌÀ7ˆ.ÊøZÐ!ø${rF#/öä©O/³%žj °Úv¹Mñ:¿Ü»yàÞsÄ€ý}Çšâí|j8ô“5F½¢³nçy˜„F:I„µ‚oÖãgóìï?Ã"[ºíNÏCŠEÐqî•[jðÆóÎï±yXf´Ó]{e:l úˆ²á ‹R¼µã :Pg¢oW²´Ð1ÍÃkðnGu§Y‡/èÒŸ‰K2 xnó‰èg †Ã0ç…ËçË¢Ö©„‹GOêJ¨Øùòð§ÙTó*¸I7l=Üù}jÒæ1öËÿi€©`È©…‹|Ú¿­Öß äü9%:YÎþŒzƒq¤§€âm#DrǪ|éi¨6÷(jê¬OCèƒURœ7bÉÂ-vû…ª‡JGyâ,qD1ì21LÝôŠ<¯¹rô¾;`—֌̒¯øgÚ ú㺾æö¢ÐIå_'!ÎÉœ¼”Vô@4ÞKï±VÉ4$·£Ì·š¬5ž±ÃMögwò‹ÆÐ±aòg­ÁrC˜¹æã*¥Ñ1ÞŽS„ì[aPmãnœýü—+‘ÙŽûëgÕÆ0ÚIWÔfªó2¤@<«|‹Ù©{À‡ÓîzÀZ^à•±ð–\"ø,‚¬ÙÂ4P)-/SÄ{˜…VÄ?IÅ-00¾M4‹­¶ã;Úðu“VR©8 óQõsGTgÓ ×› º`PŠËò¹Â^uš›ûƒƒ/òS¿þOyWhuB¦µ|yzä. •#Öö‘Ɉ‘‰ MñT ,5nöbôMLl‡3‰nÝÖæŸC=ÂÊeÛ2œƒÊ “Í¡\rš >°æÊÁÛT16ý4a‹jðøÚ+`bpÍÅM¤ïŽoˆ ŒX¡ï•Þ;w´=dé|æD‰¥ ´¼øÆåö“ô›bðõß;ΗFrZüÙ–ô(Ï:ÿaÏ»·bPˆŠ„¢Â}ël”\tQóôŠlª–«Å· &7î"wðaÐÚ…1×#FÖýG‘!çv¨¸|Söõuu[y²eaqÇ쿜“é-_&¿æEFá+ÎJÆüïKà徬ùg–¤Ú7¡š&Ï\'wET´=‰à°븃ô5¿¡ÇÕ_ùqPmèj®}{Ármg.Òø=t-Xä:ÎŽÛF/ÀwS›G Õ{7—"ÝòW‡¤»€)5f‡ä+È:J¨Ømi$âVá7QøÒ1|±ÌéxqæÊ‰/ í³Wo„¤%%9±= ‡öjE d+¿sðHîX]‡·7W»ÅhäÐ"•ÿâãX>(ìng,—È÷Ý-óÙ¢É ´@/‚<¢<\ýW;×ø%…WKüâÞ­ ·˜2hšDâ3(]&‰ÓˆC6`2â`Õñ´ rM.bTiZŽÝ@Å­¤ë«¢­k\¨À!¢cG %ØYüƵRÉȆéoUv_yz^Œ¨vðÄ’Fu©¡`Až;Z> © ÅjüçW¢ˆË¾º­B¼­ä= :~o©ÐCUõ ‚ð¬Ûa„ÏýË«d8bܹÐîÏ`® »ÿÏ¿ÅDŸÖßöÈæòó?ÕQ .vÃʘ!æ°ªÛ²øÍž©›Tر’òxß yÛh9kK>}ÃGSj—Ë~K@LŽñ"§idñ1¼…6¹+D?Vf$°ª“h$ÖÔ-Ûf´üd¼Ÿ³gû±Bºªò§›$®A{-Ú¥ÿ®$àAž íþ«ñãŠüõÈ?2TfW]—,]Ù KõAd®'G Wœ¬Ÿ¤(š½ß`šÍŽÝ‘ÄòL²Åñ·öËÑX1SôóŽØý¬óâÌ.‹9>P¤µ&ôò‡NS1Ï{ø@ð:„xU’"¯CÃA}ú®@gÂÚ°”‡^:â- ©XgÞÉ 0Gç€ÎQˆH·M(í=ड़.sZ›—Äl;öÌóò£ža+ß‘3Ê>MLôóü±¶3a`RØgœ–Ûd"ò=ó*ȈHè~bW ´ŽÒ³N /Å€Q²¹ÙjJÉ¿.¼!0«3ÌIš[Oð©†Nâ‚ÎÜŠô=ñ¾ÀÉt“ÔÝO½{†€·QlrL.Ù«5™P›Fm¶øûiv ˆ *¯!XÅCí™NaeŒ)¨8tÚ~ ¦Ö9N» 1´§Cœs•o_ÿ±ï)-²"T8ˆF‰¤~Løq²ÁV‚¿òªÇ©É\zïnb MÏtìƒiМ¥‚D>ô°ðB+¹[`–ävÉ  ,ì*Z²apún[:·‰“C…[ùÁIÏ‘ &l«8žè4ÓÔô°d"xÚ¥ÔNëÔ£Þ"’™9Ë>]þSv'É[¦.›¶uË<)ÿØôÅŠ3qˆmó•liº†ŸÖ¨„Ù|qŒRƒÈ’“ìò µ“‡{ôÝÆÝô&Õ„&™¶Âj[¶)çs¬Ïœ¬j÷|r$€bÆ·<äŒ=ìM…‹I…à®íØÛ  °Ð½êJšçŸýßÀ&Òo.ó€€Z}*¶Àc. z™ŠØÚÉž)í’i׈›ôÙ¸}˜îÌ™­O)*Ñe…Ïž½”I–_à%9ô+n‹UGÛ Z5åP»ÚÌí 7…ÄeÉÛû[æÔsÑËYOõ"ós9·ë šýgSl¬y¼HÕšïò{Å›¥c«€ð[;’`ÈÄZˆ–?‘Á#¶r-$qk/XÂð¸°æ‘³Íåt椭%ú ‹ ÐÉÄ2SØe£ä²Â+ónNïü:ÿF­¿!eÁ! ºú ÝM/j…ÑÊR''™Ê'‹˜ê@¹ßk]úš“m…ÚÓŽ]jh]¤!NDP* Þž|K9üü}a•Ç @¯L÷ [:¼LÜ×Y}œ#ߤojÉ—P:©rõ¢ŽZ#Eþ²‹Rênþ–oâB°†hVé_[}ºi&±îî³{Už(•y©êΗè~=$°{²V ^žÞè©ê¦©?òBÌ˺þ)§öÈÛXƒ®ä /1Æ)=³äîbj‚å2h3Ž@˜u#­2±ÃØfMD·ªØ2»4ôð æ.Ù±»kâöOŠáµNf“ŽSˆ3ù„Žè¯æ9)n9þÒ &Kã¶KK¶ªH‘ÆiÝãÓ\×; >²8˜¢NGŒPAPRÑDô­È¢%˪ø'ÿ&¾ q“¥z7ž£³Äíy#âXƒ.cýPãì™ÇÄ sÐGÀ`$iÿᶤ×Iƒ]>|•ÞZ+ÄnR!Üîj›®=ÿ_Zâè!kdM6.”fèzk° Ó¥—}Eüp°‚ÖæçXJ‡H>~¿ß\¦HN¬¾”À/;5ó©óÛæb]/q%™?ÑE£Z}tÈ–/Ú¾Øþ®Î¯ÿã^”écÿ¾ ®.Ô±—?SÜrCñ&º‰˜ëLªx•¶eNÄKÐÖULhÔô ¨ˆ¡‹µ[È\=ÖÙag¥6X»Çdõ)0&¶,-öS<ëaB4ëÀ€à­Vã,cJdºwD‰ó&{ñ¬ƒü5Ã<‘?u…ä3-¹­Ço_h „Ì©gk ›®ûg©A_ëÜ a BÁ¼û Ì“j6';e35mR¶vv#Å#9rÒu¸Äv3ëk³jÚj‹Ø’o\ï²I® ßîLRÐøD¡Ý•˜²ù$Á‚ ·*®ûŠ ä_óîvØîª`0ãã"ûëÊy"úx ÉL5üíîYë·\›¨E‘ë‘7vÓ‘f#³á-/½wQNu¡9è~Ãa}mö -Šþ¯I/› ;r·€‚°ë‰q&¤7$M9YÚ%àß9€Ëߢ’Ð%UÉß…sÎm©(üø»~õnb•’³õœÞ;K]UâIkzéd'¥àÔd…:V¡w/+;dµ¢ù“kt< ¿@"ÿëhÙŸèúaÂ&­HÙž£‚=Îý<§lôI2ÃxyïDd€ä.Ä3€º8ªg'išrï¢(4Ø‹ÚèŠÚ:]l€†êE7~¸ŽßôK‹WcðtÀÇÓbžìo†Îu£‰K8FAðK •]Öà\–€8 {ý|In–R°ñ?Ê9ßâz ¼¢-¬c‚®M"7l8úÊ*²,4ÊÓ±æR¡ŽÍc¸´RNòéËß̳äC|á]Žfh¥ìÓq(†Ÿä¯ ‰|'°.wLø¹Õ%‰vÞ‚»¬[bпت·^ŸJ ¤¥°‚ƒƒ#5nØ¡ÒÞOϦW‚A¿&ô+û$Â`ÿ“;¿4VÒí Xécy°0¤Ç•zrîEF #Ûl`¸ ‹™±˜Ö€0Çã2ï ½×£ˆ¿·Oã\éξƒ ‰TZ‹‡oa=Ñ'i03îÃ,…¾t·2åæ²G~ç6œ¦åMws°ö´³ƒ¼3uk‘y´µñØã³¨å˜Yë|ÙqQôØ´AÌc±úàš€¡°Ô†”jc Šén1x˜òmÜvŸ‚rÔ·÷VLAT—v5i1Í‚ÛRô=&jR2º¤ÃîÖ uÝÄ™ .ènùFqŸ¶îA »óŠZ´ç«ÏSÖÅgUàãê·cWÜŽø™½â0éúR˜R”¿º²j‡~Gã 0b/û´béòÁˆÝ³A½ ¶ÓYà¨l`É^3qŸ„m„¶JÈΤW@œæ ë¿@(£çw¨aÄê?è…ÀT{.Sñ­ò“:WxNÙT%õÜwXg01@û7P0¨9pÝ"]Z?~¢Fé‰òšºt©£ïÜý‰þ}“m§¶` Wt2Á©q$’MÉ"-åñÑ‘ô#€, åÕSJ9 7Á)l’€…VÅwú#°¿Úß´÷.Aa@ï(è&nýÝä•ùÐGßž°KŠÈ8~0[}<|mcò¹ïJqÞBeÕ¢*Ö"´qSMµê8¿i>i£Äɇñ¾VëjðåʘšµþÚ ë‰š” ÃÀ2:¤4aÓZÄk–r‡.õ° Id‡ÑžVüG>ëíÑýÒJP¼ÅOëà@3”v™›¦Ð¿åp§Ÿ¹Ó†iVÈß¾hMÈŽ’œ> RæßXÐc¡"šê”Î6 <Ž<"²P˜Ý£{ç(›žÁ©\¶š‡¸TIºEJ(Za}XHsÕ3{²·fp­Y@a0Ѝ%Ó×íÃ8ä)÷M°ZœÂšÒ ›g·Û»ÖýcÃã®&Ïlc}\ïþî选‚ɳw_ršF¢»íáEàϵ«LBR‚X¢ ݵöò;Žw ©JcªÀTP<öùÁ@SøÌÂÁ®­p›Pçr4'XAb€Ú]Œúl®fÇ‚ËÏ<¤Dª0—ió¾d͸+¡¼t@òÖãÙ笞HáQblžq ŽõáÑôèå°`Ö"•û\$…çY&¦ñÐ<“ÝNš—ØŠ[ô<0›Õ1oæ!¹E~\c—µI£»›0ù$–D²8'ª8¹aUVJ§õ5ñý^)–° ¾…{79kó0© •Ó£@÷nŽŒ+·lÎÄbM@\ÒrzZ¨´UžßŠ>à~8–˜‰å`ƒ¢¤TÈúE ùdÃί_ŒC~m™¤8¹‚÷T†nâ?pP]ÒJNåYBì\i–v :‡™ê,(sê22³!}í„Å>L‹^ˆMm¥ÉÊyZSõwNq, =2 qï¬R…ü`[=kë´ˆ7î ä·€“€,¥¬™T& ßžz?¢!%æ¼0oÅÓ6É8Úì =¼o›ûk›8´û2Yƈ ×ñ>~°ò@ð×6ç~²ÍÌtÉÔÉIÇåŸ Pc Uïufùä­ÏÐM¶€R4Ðïß3¨Ô¹1't=?'ìPÖïkj½ÒÙœS}Î9FÄ_ƒI8¦/[9ñ|ëH! ’[y°%*ÔEà^Úúéukï²XÝ—™œ¦Â-ViC­¸ç5•ªèÂå³išÖ¼ƒ£³¨Ht‹y Åeº’ß ê\™Öïû~5 MZ‡/@,7þˆM&^ÒÙÎXz!R^Ù– ûÿÏ\)PK;PÔ¬¶Õ”g}d~rRp”½m†Ë.ÂôæK5–›D4,®ŽÆöœ^'çx%î¶1ZŽõªO¶‰ÏçÖš~+£ÿ¤¿û2ˆE¢m lèía·Z ¹‰s€±²§ò„'PÓ¢¾)ÌôU¤Ö³%5ìèÙl¯m”:t$X¹tH2š@_3è%HÑû«+›⬻Àañ3Ÿ4Ù ÈÛ¡™éM“ Á,7_úa°1oë‘mê9›@t6^SŒŽ‘õû˜"Å@BÙ£eKO F­t-Ÿäh–‹¢ŽÃ÷:šJw†dõW4AÛiÙôÆ!îl©²‹ç³`Ÿ?!Þ4_ôµGN«3m®g×0åÌúº»6taõ  ,ò%e@#ÔDæ’‘ؽÔÛLL÷ë Å¸V®BsÁ³¯½BÓÄÈ7h­- $GðB±æ?áâ+÷Œ{>·W" ŒÞ‚.¶à×ß›]ÂÃAèø— ù¼å,í=xxσ½oƒ#ãªàBRJ@׋ú¨tAMòrtž DÅ瓃—Ícr:,Uÿ{Ïóþrã_ÐŽAÎS'qÂ|h}r2¢Îb„ID·ËΜ±§ÕZÊd”]¥ÄB@= 0ä\ÙÞÄÖ ·­õVímpn3÷wQú#‰ØVðçÊCT¸`WHɸ6xž­\ÃÆ%õ«¨`mŽZF¡Nr¥‚n6Ïã53v87©AWµKN_9÷—|^MîßOvÂ%°û^›“' öH î‚>jò'D…DB½$ËÑÙäµ^ç rqZÌ_€›ÀãUø%=åÕ‰WùA1üÕôJä%75¢#Û|ƒ3P_—\¶Þ‰¾ðQÑåXoŠL/*S°VÝ ¼^£Úrí &qYé7ÃÎöF⬽}7`ó*  ©ªâh«þÀ6vco9 #(:pR=Ì»pÀËë•<4Î “ø„SꦚB0ÅŠ öcê|™%BBh¤Çôÿ¹ßôè î–Ñ*€ñż";\NÐGÃLþÌõ1Ùö EŒê²*?±:õ‘í«h¿mX?û¦ 2«ËžÉâÊ„+eãÎv…{«{d¡ù¯KlG-ÛB:tuGêÔ|4°¾;β;ý+„mõÞ2<™Kø\‚·à‘Þ0)`ÔçÕI[Ž×534 Æi Zs³ÇDRÃÓ34|9ì|µöwòz(ê~Ä$“»½EfÛ€øêcE ðä}®÷j â°fõ¼ •x±¦mÑMèœÌÃSÖKAòZ†1«ûôúASZÍíîéÒݤºeÜÛå2µñ\Æžpœññ,j”£^¥:G6‰¶ëÄr©_Û"Od:ÄF²¾µ%,òob»‡‰›ûŽ",—ÃÑ{È4Æ—_uÁáw¼ÖD!¼ÕF¹d"¥NÆûñ%yæØò^h)HDÓ'⚺„)ã´°ò L¼D…ÖâäâÛMl¼¾·8cÍ>%"Êtå–‰2‰`ê½xÕ°ñ5ù~Ïy^UñM¶gC¢·×¹uÑy÷Fúùó¥çÚãØÕ‚¹=Ü|è0‚Þã‘%Õ`Âpß¾ÄR—×½’ÖYôÓ—F×BV)¸ŠÀcáM~G-á¾ ”êS»‹6´B± ŸÄL½ƒ£•Uk½/ ëÆrÅM0öxHŸoâ$ÎS¼äkêêQÅ« `p`…º]®èa•šƒfõ¿Õg†r`˪·‚ ¾/Òö6xŽB#ósgÎ{´oÏxÌ&¥šV)v…˜¦/ES€Hµ‰Ý 7XÓJ&¢¯-.•õØGs°ÇG}³«>¸ñ‚C„ÎXm|z:—·Pa{’XG’ø|h8l&ÿÁ®îœ_Éhêµ»aYxžƒÀXb¿£»ŒëlwÅb¸#Ù˜8µú8Ï¡¤Rʸüÿ"d$…²¦0¼ª·ÝY…W‚ hE›¶ó·TB(•£ôþðd‚Œ_½|ˆûïºÛ6D´m0JÓ/i4¿<þîoó:< ßf"ÓV˹ïyè<ßÃ…Tâœ%ãSåtùQ ¥+”34vå¨^̇ãFa?íù—Ïã ÉP‹¸©HfA‹Ä•Ö„ÏûØ“h‚WðcôÏ Žý¢K‚×H˜‘sUÅÀA°yWøËõôü¯s9ÁpøÄ­2§Ž†\‹ÖlX’V3‚ûàciö´RÚw•¦ÿô`*ÿË­Š¦‰Ì¢^.¶[µ.ªHœ°Ø|s%¦ƒßÏ.•´ÈØkmÓõ7ÛæX>ËÓÑÀmITYwu!&é-ÞÚ?”ucž¸¬~ \"*AÅp4 Ñ>x«hs¢ë!78ÊAÏ&—`dÏÂ=ø$ ¶È~2Õ+“ÖÓ]0R~ÖŸny¿]œJ\Ì7–$%vA´nÇvû U”g®¾Œ,”ØÜ >+ßé(´㩵Úð΄Š{ o \·O¦’®¾µé¢NX Çq#'sç ÈÿFGC¨ƒ“ =fW‚ÛŠm‚×öuÅÞ“€0õìí [θ9„hN‹]ÍÝÍÕXG:ÈÚKö:ž©ÅÀ@Ë^ß0N–üDßÊ*ì¯w ýµ¥+a»Í[1·(½I ˆŒyªðDÍ>œÏ_‹žm79eÀ¹éþz¦Z} NîÂü}Lz©»@5 îüú¹_¦º gî´•í~O¿W´„öEŸ(Š?ßþ¾ÄIò²H/å;DúŠÖÏ#o \ÄÒõú»˜®ˆäøÕu[(ÅÇ<ˆ„ù!î2êàýW€Ë9a"4bw#­„Òž^ï£D>íËÍV„BÅzƒü×c0 8޽#¤J4èvì@à" hMpäв¤("Úæÿ̱&›ÎôØÏ/¨°ËÁÆ"·“üÞJ—I[C§ÎmþHª@Ä¥8.MˆšÐú£“g ÉXÔR¦\ @Þ‰ûHn9Þ˜ÿÒ„kBøõOô²:ÑëéÙÇï-õ/ccˆJѵ´rf=ñBQŠúË5!áÌ.â%T~»kú-<¯(ˆØÇ OÇïeHòÆ~SLÕ*X«"çÍ·³wMÅÙ,®»š”Zl·Á9IÒ  œÿfýæ_Ôÿ®•1·‘Ò@„¸¨è6lêÉ/àðKã”Ìû$´OìÛ|VyÛ‚€÷¹Ïd²w”m ÆMª­f­= ñ#D:â¸\4•éÙYÉ)làzß6SLãóÒ´XZNºÐÔJ+¼¶º´]‘Ù¸âb¿ˆu ^gé~›BªÑ–cäæþ4Ÿ Ép؈‰m.”,„vI6–¶Ã:ºŠW–“Oý¯1–KwBˆKåŠê똳¾¥¦ãÙp<éÌé"Ê6Fè bf\/³Û'_+ãqé¿NƒýLH·çFj[_-=q[ ¨ídÍ‘¬³ùV©óü“IïÄ ¥*Cè*ü O9ư¥±º>×+œ¯ óÐÓR:Uñü>ÂAÝ}ðª­X ú€t3î­?b9Wڵä$\^fyúЏ 9nÒP!ç8‹7à*_Ê˃d'qOÐß“ÊM~øþj^ÿGíD€ñ”šSü„sJ¢ãvˆŸ°áq‡ºÇ9’<æqÕ³M|Œƒò¤j^Ácƒ}ùšbOõ¿óº«0£5#ƒ)Ÿ#m¶Vö0Ñ‚ÜW°S#ý_¢Gï΢ÁͰ”»m½¨Ï[sÊ0J‹Oñ!×U‚4 ³Êí±‰÷.—2‚IoÙ+~€ý*]%@;ù6F7u};Þ/Ñ˨¬)GH±ôiìÓeT‹8T &ÐIN‰÷y®ð—Û·œýVi&ÅX*tµ´f’hç†èì'-ª©:ÀÌwe rŘ8wZï‚K¸B/‘ÚÜüuuÍ‰î §´Àû)ú ×JY ·¢­²v ¨y¤—×Q›è3’íÿo¯1ÝÃ_–Â=­-ö£%Þˆ°!Öâ!-lχٕ–µBË€²ŒÎ üÚ'°DDÀWƒ^¯ ðLJTÀ {ÈRÿGOiÌG_ð§s«7Z9¯þÇÃÞ¡÷ ’¸›NÉ'+ˆjÈæŽuÙ¸†°xqÅÙó”Ä¢çåo#à“æ°Áê:êW-‹ê ëIåùNŒ ’Ž‚‘¾F ¯E•¶…¾ÔA` üHÙ4›ÜfMŸËUÜ— ·O˜©¾8(¶»¦Æ„±Mø´qµ¨0!ͨ l6§ì‰Z1 ˜Ù_VvmúGNrRz="žkDz…0S#.µSkM¶èV£G³ VÒ[—¶Q’2—xÁÀRµ•“ƒËúí ` 8ž_?g…™KÁq°²Ò‚1(VL æ<˜å´roí¹#¯ÕøÍôÛ²@œæA‘¼~à"µw+2¬+KHˆ$Iõ^àÝè^/d9¥´K_ûôþ‚{fÉ=‹Mæ}߉ ÓËç–R„â¯oÆO¨Å+Eµ{`éû³ýgP\ª± ô¯íŠð ‘ZdµXaû¦!ì:x&©]DebŒÞ”²¡UßÖ¦]m&LÑÞYnýKvBÓIN\`w>æXR€»9딋‚ý[~+’—n:ööªœp6w홚 eI«/} ":©Ï¾)UoŸˆúØAA`?n/º¿oþ©3#_™íYõ†Ž>^'“o´’KS"üD={u;à º=(‘õf&wÄY\8LpS©WJ9’º…žrfz—Q>ÜWÞ­í¬+ð‹ú”öŽ@RUCL±À¬Ï©³,†%Û¦Yõψ]ƒ¤‚^„a«J ÐÊIÿ,'ïÕÐeý=Ýå?X¨zªq…@WAm‡#ѽ—C³ï™ ੈ×o<=NÙÜAãã¥É’9?önߟÕe·-@—¾ …•Kÿ™¿êçvÀ¨Í'­·÷ÄÜ9”t~X¯5¤¶®‹ X+BÁ|V‹5qÀ>¬:ÉñŠòo*¡«,MÛµÜSGu˜öÌzPäXVÚzèÝO†Èÿü‡¹Æ'ö²©£ËWï*Þ—Óãò.˜ðÍÀ⑸F?\Ç6?}¦yAy7yN–'Ï7¤ÛÀ³øèèø‘!„¼F}ˆÉ1"qwa¥·ó…CÕêèìk¢oHÎ ÿd F)>'ÊÇÜCÖ·¿Û™b\º¿dÓG?Qá¹±)¶äØëáŠë.ûy|ßVÄ<ù7<Rlÿc±ý!‹½÷eúlÐþ3»tª,wŽÅ5ó‹ ç7ý ›>hCr~’L`Þ{ž#Jíswbh2O˜ÆŒiðÎÁJžc×Çw#"N°ø|~]I[oÛSà  åÐ8â z°%}â+ˆnÆ¥K¯¤åÛ¥sWÝæJ-ßb1èfôÔñTJ’’ÑÓ¬÷ŸxÇ…z>¿·CC˜å…}æ˜p°Ž=^#^…GýhÏÜ;¡fÙQM"D2µøÜ©]¯Ä–”Æä¡“¬@×mx@|ðO{Ñ h{t¼I¿U!°…"tã’›Ÿüpš*CÐÒ¤§žç®k³ Y7Ɉ vºãºŽMR‹ Ðñ¥Ù’fÓ­pW5¾d¬?Óâ6mÑ{y51cµæŠS‡ÝÉ‹Çñ›G߆|M1'îÅIP¿=IyÒ6f•X…ï³fÒC8²ìbô&J»MΔyÉ;Oƒr)™œŒÒpµ0ñÐ<ž¨Ýë&!ìì† ž#/±ž©fÊQPi$uRWÖQçáÞW©C[„L˜?(­ØMóM,Mõè‘@\ÆZÿž8ÅõbWe#ä©{˜ÓóÏšC·ÕOä f*|úh’c{"램OC^×H+´5|ÜuöÆÉpPƒçÆuqX…å>aÙ;Äv¢‘,`†ÂSÿŸðË—%7dˆF—¾ð«êßzP?ÒÕ{Vá#á.ÙÞšùfªocs­í¬dþÈjc…˜®˜áŸb.­s{ÝE -¬aŠåÿÎ@xFBÃÐTE…]uAC&â|êÃ`´u3IaØ; 6ŒëF†P=ܼÜ`ø^®@Ô[oPRí4‰ê\f>*9¤‚uª%èøBWÌÊB݇;‚¯ Û)È×!¨Ó"i h©:¿fŠz³×óRüOÄc°¸¦SgUß©ÕÀ1‰Ò;B‰ãû¯ô\é"µvŠž¾wuƒœ(ä.Ðf扲9£æ‡P>eÆ?6èRØ ònâ%2w¾¾ ‰“Ç×GÀ}4–¬`Ói±eµgØÆß©'ˆ×¿R—aß~ÒV[GNMŸÚ¨n<üÔ^ÅÈà®DÞÄ~·Heþ=_þ¼÷1¶‰ÞÄuÈbh{%qܧ›z{&"ËHµâZhaÿnƶ ÓªÄëœê]WQÙÓívóµ‡~ Ó¬-ì*˜ûžn¸8ûíÑm|î´Ru˜ªá'Š(¬–'ž€iYSùÞ¸Œß émê6HÚ6*2¢ç~,C¿*Mÿ+!Ê‘uÃxCè5SÅg—‘†ß*’†Ÿ`þEE3¬mý$UK]¥¼]%Yœ‚ì¶\›ò ~Õ’Y\>±,ißa‹pCAw(}‘AYõ¦ uÅáÍšò<‘]b$zYP·Loéõ«DïÈŸíýG)Ùjþ,t¦a+È8_q¤¶MÐO(Æ Q£‚¹¸y·2·ÿB¼#Ô£Ídõ5ÇÈ[ýÅ$¹±N473nTØVADgVY°»“ÊÿûõîeºV›Ì˜™ÕÐÿqn•8 r#ve£l {¼˜,X¬ J9î—Û&ƒb‹8Íáº!{LÓ]þŠÁxf §Xaâ¿•¹Ìøú翵HÍSøHÅr!bÞh²àw÷]ü ~eçpŒOÝp»Æ­0ìÎ íóšò|Ùý„̧pùÕÐ+NqGÉõÊ Ý¸ìa'!…Q¹/ÁfÚ“³KFÇÒ'C¦WãF¿¤D±ŠÂCu‘댵ä ê&j wUþ”1Ý*àÁá°n· ½<¶dw4g¤%Þ ÿ—j€˜€&v˜Ãývi'nWbˆøu“Q.k© …Üüu^BM©ÎÔK×sÅœCDE;:6†¸0¶Î=°£Šš6µÖ!QU>ŠöœŸ†HôJHê;²®^ŸÖòšdHíXèq6ÞðzOeQÖJ!Ó‹qù}¡X@ z­"UZWÁß}J9YÛÙlþÝ>ðKo&ÖSµ) 'b €Å˜~éÀTCsqYá©}DE¶> †x Ø—ç>X‚Afý0võUPÝV›«* z¥ÅR\ÁòMög8â“òÎ(ÃøE +dÕ·£n…»—ê‚Õ•-[}BSc²2U%œTW`)Èÿ=ü“ÁÏ|åjâ̺¨ÂLh¤Ö Jä"IªF‹fA·,æ/sl®«B"“ÑÃf6Ö0 ¬<0}öPóï™L¯)"¼“àf⇘­x‘¯ ¢!—x\Qö KäQ†¬¤¯yõ™ée¡þi”v¸æ@þˆ¶B“ пj€T84%&œ6t:¹‹ßð-µœcƒ+]&¹?¹œ1££#û±qWØÃs=-©îÛv+úD† æ²±¬Š§Uª]Rž±û™tºŸS®µPÍj>Ù&gÖ†¤|C›º–©B;#óИ˜ÈÉ\ æPÌGaeé±Ü£ESnÃT¸o`nŸ U°23%Š_ÙÆ¹V»!¦·0ZÈÜzèL^ÄBF”AÏ“æ…$1þvÆ“t¼ï}nK/Ñs©ÄLMEÙAØ×ñàòPÞš]êxªù9:…TȾŦô+¼e/´‚àÛÍ µo•MUÌ ØM¢Ôö¡Ø„Œ( zaVˆcök—“e~ýÔ¤F Ó½RÄ’…•›7TD{óª»`·7R-ÓBÛ¶(äè¢Sá‡ÌI¢;¢u÷µa땱cÉ` ®Ýšâ—¸Õ:19•)ÚÜÕLC Ü* +ãÖœW«K1:^@ЂK› â2û¬h¥óX­îÈÒø‘ïHó F‹è¶±‰|àç{­À'Tåx…ŠóÁ>„…²§ZÄ–2^s¨±9! ›ÄAÐÛ§\kPôîÑ<Ó½>ÁÔÒž<GÉ<óGš4(<.o;¼£Ï%˜Tb䯍W©ªUy,/V6A4vOƒ°ö²¤¹Ÿþ[Oß:3çŒq^$=%¸#v]ãÆëö5h%<(lA¤ÀÝù;ý¦ :NÈ­?Ä:{Ò*Ú*ÊæRm&àïïp>Û™!ÅÁº´²EeškKöœNÛnø;üýE"ïeƒSû󵥦ùò©=p”³«JØYWájï”&žU+Àg~üî,Ê2ÄtaÞÈ`DwË“M{XE<~Ât4Iä©‚óxä¿Vªý)1ùêê5p¨ÝÛÓa•SGþ×§ì~Ìw‘4(íTXgùT{óЈM?‡’Fhå“(ÞÂP¹ OàË%‰J“#2¥ë“™´ª[s€„™|&RêFhÙoqæÙ‰kÎÇùè0@ùá©Vr±?½ª0\rúXfâÁÐc)‹Ãòf¨çÊÌΑÏ‹ôŠ.àƒ$…Ú:X.8ÃÚÁûn†¯RmàU˜c6o<¸ùÖÈœýPÃøü€a€7˜½äGUý¹ÍN„d4eAÏJÓƒ8d$Vø5 ‚e°ß+= ÍšË÷ë'ÅvËrwÌϿ톭_kÏÉ}.£*®åƶ٧)I£û¼Ä²O€£8¢c`Ï­ª‘Eek&2«Gy·*“ø–*âYÐÉP‹š!Çud2µ®žUÖ@ayÝ\—°¹¾õnJ—àâ³üB'Ì.Èl¡Çâ/´8)#«˜ «Ÿš5Ïû=Ñw®ƒà—°*³¢àô«Âé]Á£Ã&åv@ Ú@5î鶈’NdnƘ~Èqz±ªs²Ž~ž§Eh‡*µ€Üžì0`º,µÕ¬Ô·ê&XŠk+ ‚|Ý@±ÇÝð"ìÄqwKÀájž “+¦Kl¾qÈ/ [Ô<„yHŽ–Þ£Å|}Î5†[Ñ£˜p'¿ŽaÙÚ—PTx(`ðuùnk]ñ^©R¥»¯Ð!ÞCÚït€šÂ!ïW£³ÂCJÚÀgJ BHä•K»?§Ë\*3ªÙksY<êµÔò—òx7Ѭ*¡ LCp»cL;F›† ^cßZøüŸà†Ÿørô>ûÒµ.½@)Û–(§2GI<>R®°÷쥷 ZšŸ(*ÝÓÁ“fÛªÉùö'KVDÁËú7é wˆ|H“d÷8G Æi¤DN˜ŒUóZÂxÈ ü ¥+¨¨}o«œÐdv–(Yœ1´Y©Qíâå0aoÓ„ä)‘J¡™í|TrÞ.7+= ꃷbð$‡_à¼ú¿bÔæê$ìÆ8~§öIsØÕù8Ëts†¨V,LáÙ„µs=ò_ÉßúXòH(‘©“~¥«ŸÚ µØÎ§ö¦UQ¯™é´#4‹í@eÆ!vš˜ V`rM Ü /¾Y…Ài¯M"¨²l“Y¼Ñ虳’×ÇÊÂÙµS‹û¾­`¨x![7*¿a+«¿æ›´Ú:ôJVš"ëÇœt½ÙàÄ^ðÓ%êÌqvü·WýÇ’G*ˆŒ!Þzr'-!ªP&Q=^YÈ’k–}¯ù:Èþ÷£P?%”Œ²Øœ•TÙG(&(1²!Wê—a)^…EÒä3aR+2¨¸•BøU??Ê·>ßx¹?à«…ÍeŽÌ-†ýµ•~Y/…˜ B×bLaЇHøë®m’yNp¼ROe3ÀÈþ*'½æÄaÎL¦4õQ2 ÷Zµ,Ð倿ƒyâWõc‰”<\ƒ”ÖËP´×l¸ŠÑÑíQî=βÒÅ>ˆÌ´æìN€?ZaÙÌv[Š•Þ"~¤ð|(^«:By½Œ8Ü:­°éÏ.ˆ®J-zYUHVG–ö®vm€:zè£6o›¤vùï)qÍ%‰>%n©ç¹KöãHU99:íÌÍC²z/¥"ª¼‰“‘$Wt™FÞÉý0I‹wn)_ͦÉvöwµEœWŠÖé'y7ù±ˆ|à\ä=éÄZƒe7G1¥zÚ¶”5vý81àÎî©(€%ŒŽ7‰^O}ê|[ÀR%¬OK10‚jKLâjºT3£KcL‹ã8'a+ðt˜‚ÖîZØ”ç—ÒO^®šQS `a”4K,cá £Ø°©¸¯|‰O!‰‰Z[ ‘…^â=šßϧgn¾w+Ik¤õ*äÍGÕJ´Fž,Ðf¹ý‡Åç´9*ÙéÐÆKlâÀ«Ð ‘©ŸJ¹xö—N¶ñOH&º‰= ìwd‡¶ƒF‡È„6ƒÀò#UN(æ¦Õ QEÁ¤¶í­›!b}¦„—t9—ôϲn\Á%—¶<ý³1ÕëÆ½“õ%/0> iJÕ/t¶s‹ó½—ä½T|8ŽL¢c¨b¶žÞÄ’`Ó¦†FÚ—dÂÎs"d²K@™7é¸vTZ4]%´mS'º‰…mj/Ãóß~hÞ«Àiå o@ÌŒêàÜCv[ þ×ú.mò"ü"èV°†ÈáøÙ…¥Iˆµ- 2Ùýru.—£?¤Å41¡ð8Êà§ +ùÉF{ç»DêwE£>aê*>K9\yÃüöݬ˜&d2Ô˜Uþ78Àí`&šf+îRŒÄ1Åîâû 6µ¿'©Eè æ/šOŸê ø£ בS¨¤aÙk c€;OŠáãK»Lô]¬<Ç/ôUo8ójA²ßç¿‘ÐïÏ‹ø"gõñ“²öë‚)²µvªÏÙy7ÐiMþ’×,™²f~LY˜¹¬¿NîSü)"´-Óö™Cu–;ĵ^òKLµ¬ò¿ Ð¯Yu/‘÷ÙÿÏš$„ôsã…Îýßýö §oè(¯Q,Ä|(]õfƒ[÷Ö ½ƒ©¥“ôú"‰ïÝâæ £•ê3‚µÜ´´8/H•íÀ&å’­û ¹î«Å™í7ø·µy¤Á!>TÕœÅc¡KD»TY©g»¦4 ìί}žº8§¦w´ªÜC·÷áäñÕÑà(Ùâá˜$ÆìÏ?ÎáÆ¿ï›ÚagÈü‹NÛkJVûZ—ã{ƒ?}w Žá6ì0í¿'ê¥NÇæ0§§ /šã4›æ'9¹x›Ý)¿²+õPÌÝVkÈkñǬ’Œ ¥°wöAp€£P¢ ýtèÎŽvkþ§ñBèN†Ñ’Åzܵ䚥¨ ¡½b…‹Ïpã¾ôxä§?^‘g™¥8÷-þÇVvùó[QùÝ«Ò9,%wG’[Ÿü {øk_“[lì:¿!l,5E|7Î*뽩ĥ“å{’ŽÃ}†AóTLÏrc.baêN= ?ýíŠV>oB,á÷Ai 7 R¸ÏÍëûø°æG ˆ—=t–˜= ¢óO;ÌÈdž£æqÞ‚€6i•ò@qB¥;¦ÍMÔèaG@„cA›§v@(îí­yP¹É6kÝÓ0gž»o2` U97áð×qíøÏ„És5.Ÿ3Š„ Ñ»òpc-ÇéŸO²:º]M2‡~½`4íÀ¸Šû°×Ø)k ø«æOƒ¯4lÝ•v?Ú]9 Ù/RwerÖÅ¡ùи»Ÿ04Ç.ýpÙ®¿s´>‘ªÍ¶Ô@¢!•HG л†]×ë‚‹‘ýô·“èíAjd*5 *‰JÛ\.HGZXY=o óæÄ NGöö¸+—·á^‘0Òwuéü¡!Ö’>'Î?¢¨£Õ¿:>>§ï-CñŽð7ðÊRðTrr}y§†]_"©T%Øî½¶BäYñ{"2ßø4¹ÀëIo¨‰·ªÐ A„àÕŒìOeKiWÁ4Äj 9„b6™¿Qä-§âÉ0­ëGx=ÒŒ½OžJr¬x„kîа˃; *å|G¦“³s Œ Ì¥œŒáhR®HV{q*Ͱ‚RùeÛùŸ]Çf…iMÝÞqH ¤t Õó F|P „ËjzÄÜŽMe<¬Îv/·7acSŠe–-Á©|IÌ#GÅÍ4w Á0øö@þ¨KôD¸|,þíÅåSIƒ0n‘é,Äw¼Š7P`%yÍr’Û°E{µÑœ¹ÀÎå[l¹þA²¹fzž‘®¶×õ}»ëᯀ>ÝÁäí1+C¿³n‚*scq7´¡ ±÷g\v.IàüÜC ÇÜç"lõø(,בô8ÄJÓ‘L8œšÐʪCÞì=#Ž"¢éB3L–ôB>–”èLÒ@…vÇ;F¯8vËr¸š][Ñ0Äœv êEðáÚ> Bä2ÍçF㮸ƒ$ù¦¤f¥]n!^9·Ûöò;Õ<­oÏ–:o}ݲ͹šœ¤)røf_ K”è˜Aç=¶lžè]t¬ñéóøýçp€Ÿü(mƒæ™ÖUöæ˜"Îir sÕÙ› Tá¾E2X}ß Ãh¥q—üE¨Q˜ÞñПÛÜ™HkÏǶ¨™Ë}½ÕETc(|YÕâP=Çk 1ôÓߘ—ÓÈ´µ±Ã|Ú9Ž‘Uƒù7u†%8ÍæÌW²Õ¶:”°™MNЇF‡Ù­©e\­äÇ“ÙÔ®Ÿj4£œšƒtçíýfеÉIµÎ¬Cmîÿ–ÖL›kî`8Ó”ÞãŠ5ì ð}8Ï›äÙØ]Œl¾µß«ò:Çô¨k"t*I¤Yƒ?SmµŠÒ¡s¸QÆ£ÎðÓ#]7bwØÇAßúî‰Y¶ùlöw½]C3ËÄ}ŠÉÒó?PSk§©äÒßòAAÜ]ý*æ>šÕd~ÇK@ë¤ÄÅP°ûÅ-)ίLé.:?»3l©‰ö(Š{LÄ©V*„µ3£ õÿ8Ëôhs·ž,nH c\Åe&Ó#’€p•VPG;…&ïsŒ/Y¤\Š­§2ä¦úë‹)…­zT[wó®R2¡ßà€eªÁßfú*ôÓœø¢'A“àlξ[ L´ÈÞ#r—uؘëk(8c› ›@ú5HžS›õ}žÛÄYöT´EùK‚ ‚Úû¤ŸüäÇ-£$ ý«vš’¡)´W™·Œ§Ýsy^WéÚ:õ„¢jK‘OgÔwzãôw/ý̺ÖÕE[Rµ+NÜ›·£ÝmÃM½þ¼¡Ö0¡ädd´*½Cpè½sHt‹Š}•¦«^DF[߯Ku©Ó›K±î:.b(Y/œ”›ÜUvÒHš)$¹ÌèªËl·3µéÖSep’–6·ÍŽ*só‡ƒèAÍRŽqÅâ‹É›Ųþª« ½)v¾ŽŸ& tú¼ÒÀcúºÅ,\1âJ£*¹š;Áöy~f*[gɨV+I"v€Ë9p³ ¦[â‚õ×)ÍGoEÖ_F§Ê7¹ÛÊ#|©ðžHv[»÷6¥\ÄÛFRÃ:eŸÛßpüj].˜qùgC)Gø“}ggä?ÊB_ÎÈÚÇö'e§h>¶9¹-a<0Öi|“vzæ xbK+8 ¢5׬øP²T¥Kt–ÔjL$5kƒÂÍåæ‚›{'ÙFÂÊýEðÚÿNp\"jN˜xN&ËåF3r6ÒQ}¢Ä{«'x7õÞâHÏ–ê@áÊ~»õóíÐ_éÍ%`p½^¯O/ü.Œ$ªç¼Ñÿ9ÿ!ÑeA ‘ן÷àëÜG|m¼»þ‹'ç#Dϵ…×JŠ¿†õ¨£I] î&`ïXÙo'Ëb öêë ¬™¤ä0$çO›÷_º#UK:ž´þ ¹†U›˜IH°‡ç·këX¯ \úK¬-¾3Å饮×H  3þÀGiƒ…“ðô:÷m0ØHÞ,ÒøþuvGe,Ñ=›²=••´ØYÄýÌ0`Y]tRÜàæˆ”Ó^\¡¢—…’Î-”f»“'„,ͱå1 —”’²ÙŠ·™Ã.EÂÆñét·LݰÒÁH5øÌ ís7 Â8µlÈ»U’ÝhwjÃÈCªe ±»@Zaˆè*Zàºû!J>&áu2|®CßÀ‹7‘AÌ›š¾ÑFzI wkíMÆsT¿_¸—®’µv‚dGá›ëóòÔ…“³4v«„ä)ÆÎº‰*^}Âj÷öbféé’ŠÈí%žª¡æ¼©&cÃ)k_é'Žî)÷ Xô–ŸöË;7­>³K‘N¶þÞG¡=ú­ß§KÄz dG[Â#$ö8ã>“çeþ÷æ RfrŸ#1ÍHñ s}0ÞÐpˆDGøõuLœ½ Bí/y~~ÏÅ¿K\¡`–' ¤Ûð¥éA ô+xp””Õ4OÝ|„çç‹î!äH çyÊŒƒ?îo^™>ìõô 3@l%Q³Ùê£aÿu=(·ånç áY9yEÞgèµOá™”kØL¯¹ÚÄG‚Œ†å£ »u"΀ă–i?‹¾B/´I“b¼ù$e*k-iJH@k³þ # @ëãýÃøî*¸­|–¢(¦'Áe€>VÊo߆Ù*¡H£!Ð^âqMmÏ ¦‚5+«Ã©³šû’)È•Z%zõ_Ž¥CĦ¢¸_Ódx_ú%Â$o4Ù N1’R™ÔÇÁlÑU$@,C±¯|B`aþØbæ×£&롈ӔcûÈÑ‚7<)–zKVµ0È®ÔY x‹¥pVÌе?p“Mwjkç7Ō٣ٽEj4ÏQ &Ð2{ÍÞÄ ànf³ªù’*ÈߨÍ=†R‰Õx…uÕÍÅ;›Ä³¾$ý29è¶ðHß¤Ý e”Æã^¯#n6©=Ú „Ù²ñÞ¢Yà{ìÅ'psûÞ·ÿl[óþ’5øúÊŠšõÃÄóH0­P¼=Â0Áa§q°ïë7tÌ«ÂYw«Å,%k1ˆ $¸ßZG›¿ ¨Ò-íj0HC…´)†Yð+¼¥A:“øÒpT¸9Šûiü¢k æ>mýAS?âvywÍÍÞõƒ¶Dw‰GWéc2$Ú„7@O¼ÎÒ€I¬@+èb’IöChï†ç"›;@8œ%ã‚­°+¸B¶Ú*P߯ÐÑ3w  ¡œñ¡ÿ[! ÖFɺ¿zXÙdbµÆåše.‹¶>@~jDðßtˆ¯J#yðG¯ð d” g4ä^\ÓÐ*L |ZwüÆ–nNëï1À³${ï\s(9ÉÞ¶Ü÷µÃ‹K²E/—p)_‡ó4B”¤)ˆ­Š¤>(ÓÆ¨—^KÞÎg3Ëpï«¡A§—®Ö!{Ä)VIôÉþ*è'HšÅyœî!ÀþMqä6rh@,Ý ”B(ËH=cœ]^åŽ2³z‰:£’sÂ’ôÛL?(SCÁ÷;ý¶¼xÈZa.ZÚ& =.ÁÚ!»à½HêÕDeæ°À¡*6¾ª\¯wž¿o 2-n-1ߤ,a¦N¿í‡ïÑåKßÁãÆoùIÎÍÉÍžN‘Áƒ Ífô=%4}Õè9¹ÚDÝ"ƒ“ââk½="rÛ½B_oK 5³ôþ7JkM” JBïÒ¢i@.PÓ¹A0ÇR|g’ÝŠ) ²£³2(fÎO ç6ÿSSÆì¡À“¶öÓ²67 ÿ¢¹:>©ÊrüîSâ©!%JºÁÌQ-3/7 ØÅœ¦ë·Ñ}k5ÿû-DÅ…É—bÈ=o+Wj·ú ">¡Ø„»ÿ”¶Ó#ÌXؘ¿3ãsàŸ×wغ¼ÔuÖßÖ½Àó“ “7g:)| Hùl~ÝH•Z²I¡@¯ïù*)Tö$ž«uóôu¡•ò®ü$£sŒÅ/={u©•Ûž§vÔ1§MÚ•B®Ý’÷¯`F.Òï6¯‰ÐRŠ®,!¹–ë+!gWé Ù-³ƒ-󲑩êÊæ¥µsd‡ ¦ã«¯Ø·á¥/¬5øÚÓ‹‡ë"¶0™¥FL÷Ì¸í­¨M߬ѷ.<1Ãc¬M1]¶ J–•]˜§»3>lÏ6hâ vµ£RÈ«5cZßs ã;$~P®l+U'ðTÈÞ>¯T%œbS¦*.M±ØÍS7í5¿P‘Ù_8âFÈì£ÉsÖÿÎo`¼øÝ‚iâ¼qåê(‡&Û̶“/¶g›"kc¿¸›Ôý ™)”’óÆd¾ ³¸¬4lðÙ?; ¾ÇQ¸m9&\¦\cšnf¶ ~áÙÞXPév{dÃÇÇÌëõL%nß³¸­@G<Ç8Pþ±#0èVÃôe^¦ÇÕÚAÔ»$yf<5À,xGp£™Ü;·F…º¢g}oŸsGz/ÜÍÇSÝœÉ ­W{ñgz¹1B„–Ž7w(¸~‡§ªJoÀ™ §A¶R-•z]³{Œªº-eK$™¦PäbÄ\dÈeÚMÒ™ŠÜð1É͹’ënÊô¬|HÊñÂÇSáB´#v÷±™°'¹\úa.{h÷[r,桇®ËÚ2{îGNr3[ÿŸÓHB~:ã¨ÊnH }|… Ž2_4Â7²OìÕ±bdjhµš´Pqt9ëÕAØÝ¹ ê¡×vy¦Ö”XKY_PœÄñIÐ`58~`ÖY©‰v< ieÓwåͦTCù‘¥êrq“WËöŸNßKÜÚ>°­Ä·eäs4º`(3@ÜÕM¦ƒüÁd€œzøÇ œ²(é‘ؼgC­‚W´ó…«‡ã™0'•Ößpå¾B¨d­®Z¦h¨lüÛ#¤h?f]´@šMøèb‹ÈÎx_‡Îò·°nFzÅvQµ¢Í”*d"C}ï\‡tŒ~)†,%ëƒåǤ#|Áo²ÔêŒH/¦;@¦“_raKôEåiü·pá\}q;¾ÏÝŸžõx¦_4ÏŒ‘œ¸ÆF>þ“Õ'e •.îUíãÐÁõ¦±ˆÑʼnj í†èõ3¦2T>ó¤/Aƒå盫ÙhêT( AÉ»åX®\†~¢ê3ÜŽÅŸÐiRÆ ;Þq_ókïËÜO‹<• …Ù}(š l¤½Ù¢MÈÀ™Ü† 1Vj¾Ðdíÿó…ilGòiF3c ›r¡¤ @à (ŽŠØY'Û›Q¶‘Iq^K¤`ñó[ ÐPKù-àìå„ι:H1ƒáãF žf¬˜ë9>Y’tí§Ñ~£Ö*¶PÙq\Àº8ÎaŠ»Цè|ºhä qeÀW¨iàx®˜åTK—«QW|ºaÆNôÃÅ©_œ6Í{µwû¹9Ôm1N1¼Þ¼ˆ:hœ~ÉÍsö¦è!`5 fµfy)¨þ ›-´æÁjtR7´G“uv´çaƒ5,ÐÁ^ús+‘Æ•9 ñmníõZoëâ½ÌЕÜH°Šµ`±ý7ÅĹ¢ås¬‰éRƒ‹t9l-“j¼‰ &JEË(xRˆ»ú±8Álœ%Ëë¡ÀÜújºb/uT¬¦½! -¨G7))Š«í².l]úêôk¯×Q_Z}÷c{Õ½«¹Ñ’3)BpÞüúÛÕãó˜ÂÌT×s#|²ˆ©ìòaaŒ…™Ê9*æj…¼ÞŒ¹„©)ë ‰â‹×î€åûGŠùuQ>#Q ÞÜ„é Äž&j‡Ñ7G|L•¬Ö'IÒïŒ\˜f²Ô0ö[,Ï’'2 bàKáàFôÞpûôS•-\[jêå% Ïc¥¾«8̓¯k@ÇB«Ð“©Ô=Þè•]¦ˆ“ôçwU¯ªŽü"ÚgÓÙ>ó l"!~ ³¶¥+È™ºòê‹2…/ÚnðY#ûDVèd4²'–ÃAÏ­OÒbÈ?xŸÖÕ€oòngÈ4†gqA¿s¹99#˜±‹îíÁ#–j):•IR˜ÓñXÎq‰^  n֣Ή&1IWÙ€Zq ë <á}À[K¥ÕPÁ{˜ÔàsÈ` oF“µööñeÎŽ­XÄ È`ç‹k°²ÒFydÑ´´ô˜üU:¤!Ù'ÚšðÂÀ¼Ý½LTTŽ3D_Ó€UZÙò›?tÿ}»bÎ_7QGÝßÜ…›˜Ól¶ñÓaôçF3h De·’ÙÍOƸ»Ž ö0·…œ¢«‰fŒ`èõ 2³bœž}ù…øm¬Þ›¹a[§­þ:›"»nvŒcˆùƒ·} %†¥Ôh£ÐweèŒù´:2Жuk:‰ê-Тhðb— èÜZĸ¸*ÛNºì$Àn_[ZiKq´GÍmÿ[ŸQïãÉL”bâ3E ¯Ú†ïÔ«“Lð!…®D^y=VÜ7•ëÁ~sm·á˸î‹Õѯ|%€Ùg(¿ö«FœÌblqÚ2Ô%#Q˜+ZJA°M/ Ÿ$°íéfžtñÛ‰*×@Û¡}£ÜYUï¶ÿ›1W#=qÑy0,\…÷]•*9™Ý/ ‚P;r‚Êù“ mmïœA¸Ù‡š¹þJ&(Sñ®› 9ž9I/Ù~“†ZÏ2t)o|°³ã̸œb„}ZQb’tI\Äm²’ç ÈÎîŸÞ¥Bˈ?\`a7QDðŠÈEÝóD0Oé[¹#Ïæöº1Š0ŸWì–à›·]MÌæ?…ðw]*ýl­;nó)^  ­XvÏN 1ðsØq¼³?ºÜbŸm%6]Ç#HÊ\b_Xjøÿ®¦ÀªIaJ¤T¥ ,gjÓòŽ[´+ ìkäþîóªý¡Óû÷»úeÖ¹¬Ó5P1O¥/þÏ]ŒNðlÚÃ'e6 ËžªOV^8T<1åO†¿#œ˜=È™çÖ79+Õ‚åã« OÐð’çs>¨A‡¯v¶ùJ9á ¡îëwž1q׌AL Am…éYö0h‡Ïëf֮йÇÙ¸—mDÅD·wŽU÷ Qgm¬~¹²ÀVˆÂLã¿”+íµ©{5j:‡óM9*ó/äÿ¥EÈY½cV–3×ðì(A(Š-ÚEƒèÞ§;E3.ˆšGvmø˜šm~–´ ìíôÄ›”±ì[¡~Æ¢öNœ¯H$2eèò÷ÞDÊõ+_Iâ~z“}³±£kS›lÀ’ðÅÒñQ?^’Ñ«õ`t÷PÅIm`†¦¥l¿væÆjZÞÕµñb2t‡ 0eýV˜¡39âïÁ&n¹ó~b}\U"¢ùV'ÒÇRb,ò¾ìu‡óȨƒW4¡[}„þ¯èný^so¿Œ¿tŒðSƒ¬¬JÎ}gySÙo3Ee+ ñÁúkLZ1’—À Þ‰JØ eXÕLŸ"¹ø´›Ó^Suâ )u ,\Žj¿“Ó½î—" RítM9¤±æ(™ÚÈØ÷J Å Î]NZg KƒùF3bƒVÛFG-öw‰ó•ˆjèÑZæýÃÏmçïyªvDvn PŒÙÙù"‘øjãX;üü­óúK_ùÙˆxæ®MÁ¾šaD8T?vî¢bªHÏM´uÇvŽ;xÙ»?È ÚTÂÊÇ{ÌÈXÄßèæ«#¡TZ mó©ryŽÀ™F‘Œ£3*!æ%…‘žœÃ’‡¡½bl@S5{Çʃ­µ0 4']ÖÅkO,E Ï+Ì k÷„H{wç–þWÎ.fQâÈOä8`ôzË¢—ŽÍ°Ðƒ¸Šzê—Ov”T› mb6ŽRèÔþ/¼˜Ð%£T y[åDó]·G:t™ZÿtØšI¨‡·~œfEæƒCŒ;+‘í˜~½43tÝZ”o“àË"M°ïKʈÛt‡L  H»sçÊBÊ)’dV/ßì_ážÜ£X{êOù<µžú®%šJ®Wö[îñ0ß BÚ:AwóÇ: sÀ3MY•e¸&ùòâ[ž] ‰ lÀ}—]žë°md·ÙÞ™z¥èDgêyX›¸ot¶ŽA˜»Ô)Í~õOÿý‰á¸ƒÉ_[&ñþñWXwãi!Ë ¬Jz©ô|÷”õÎê@°AF-ÃgÔ¾{ùá«4Í\¾ÖØöBH†U8utm0 TùÜX ‚ñc~šc+\˜J²²ʯ‚úõ—¼DjM¥?Y„F¯d¯Ï¤þ¢Ç"wÝ‹Á±0¸vÐ3í(à øŠœ£ýÛèÀ™QR‘¿„Ó³IâYù0D ižxî$ÔKÍ9*ÙÿlaM}hÏÊÕ£\Ëd™öÉäß.éE1€ß5„UI°q¯ãø{ŒîŽbô½û¦¬««U£x_xs´Î”:ògýˆd­©:%×ÛÝéˆôsiù†U70Qöƒ(¡KRyéÇ›Kñ^¸º…vKìÇ×K&5õ‰¢’ÝÙF3♆&}`UÁEf…©š÷ùͨxÑc÷pè½ñœØëd|>Ç™PñŽyie£ûU¨ÁÿŠÊ ùR8 v‘(XµÓÒ‹££–!WÎyVKid  Çjsw,_2IùöÅâ-9ß,Cx™ 1Y÷ÕFaßö ŒÈH¸B;é(×ýJW‹û•?RŸA:Ìm¦\u2„bµœ“¢wm®Â(4î2?תJ—ÛíAeò‰'?$såÜá´HÍñG®Ãòñ¼ý'¯´–‰kÖo4¸ ¾5a9.¢½#×ü%~°™¿nèvqùŽ\Åœämû`gϽx‘·L;šˆWa'YXWÁ çó0ʯÌåå±”§’qÑÌUñ:úy—UÌ9s9øÇq»õRV䮓~õ¼Ï'ä„F"~ˆ¦KðùÁÆ­É YfÕx´«‘í³gFÏÜ*G_y3)U1Y‚ÆR©Êu€I4oV¼m56ë>Z@QÌ ºØ´UæKCx4Y(Îy „ØZë$ˆïö/JçÁ:rÎ}ÌݺP{`Íš hW7ŠFØ;Šå]âu@]¹}ˆÈ7p¨ã»UN™£ ”Ú æ¥÷ûÑçËÙ@n¿£ø]˜ŸçL±noq»›—0±™‚ÈÿÐnÀ–f-¤Ý‘ðüûA˜k²mq\[!i~j¹L}´ÕÙ€{TPdh|_mŸýú|þE\¯X;FV ¿ ‹/:{çIu&#‘ìÛz¯“v:äJ2<©D—D9!\Ü̈äk†’7f øYŠá •6ö4®¦sÏM!àÕ 8uàÝý¤³B¶¢ ·e‘´,¥AG&Q&|ž[eÙ ƒ[‹åƒy…®{¹yL²‹pz`&GvÊO¸™¥Þ&AvõÁ94"ˆ—6¢¨CÊ.9Q tµ8'¡¾éž°Þ8žp?Tº2@ô¸‘Ý€Em\6öGT¼Ñæ`9¡?æ{?æ/5× beÞ'µ×SËO1B¸“þàë÷ŒéX/?ûuá­ ,tʱ¤ªÇ”8÷O¸‚ÿd‚C€zýÙKpf>rþ¹œBËÑÅP§[Á”íO 2 ùñV{@ÔA‰úý!Wl©·Þ÷9gþÁ Œ„’‰{°s±Ú³–>dË/±qÝÉ`Rá!ˆ´ îÎzë©m ç‚ô¡qVçÔ Xˆpg^Rùñƒè»S¯å°Ì«E‰iE8EÀªv ÓÃ=[øÓJx»Û£i>"~ÜåoB.z´Þçc˜#r gíûs¬)»gµ\+”iþ?D¡êìÃŒT°â²OsFî%íÎU©oü}ͯîylÝYt|*Û‘ö ¨À* ÔŸ ÏIÅ8zDèŒJyk¹õ–%^£ç ÆM÷zNµê…A-…¸ñ4xʆŠ=[©¡Ù#ó;–’0–ƒ5N³c¬ÀÁ”­ÉFšìc ð€sM-VÿC¡Æ„"kD4R½úå"9™ü•t½‡%V¦ñ˜RU(ð^TÁ,/ãJ´†!™äÑÝ’’8`qÿ¬l{×ß]Dœ¹ßûQlçí 'õˆà£ŸÃ(Äúýšÿ3OûðEňj‚Ã…û¸\5¨—îÎÞg SaûG~<ž6ÀŽrLjþú'ººÈ¼*Ä‹m» RÜ%…:4™eŸx(Hû9éü–ËŠ ~Ö+ĉüÔïd›%z<‰ø¿»Ä PËÐ?] ž#eêטQлøÑÏÀ§ËY£ú…;\GÛ¹:ì/–ªì¡¤_gm%¦Ji>À®ãZljHã=&l÷–šA^:ÔÛnzè„›x?ŸËñn¨T߈·‹äè '?îªÊ±Îž¢¤ˆ“î‹Q·Ã#^þdäÏÈ,“'´Ÿ«r„v2N}:Dc¿ Õ0TÚÛ¯†uXVÞÃç׉™8¶BÒ˜Þd,/ÄT+á‡Ë 'n§'jA Ñ`¡Pê9ëD‰‚Æ2Ln%£ æc™áòÛ™ª/ïš›øÍ„àÝhœ¿³Y1ÚM†òMæxI ”ÂÝZcce»D’Vm|‰«™Ä\”ÏQ nñiËirßp·˜Y!Å!åf*„bè©^GDhB*C:WEÊç+ÉÁk' ?b‡»z~‚—sÔþu>­²¶ý…9é¬×¾®?(Ë—ÐÜè”Ê0{ËFpí‘!õZïíbŸ¾¶È5çwG<ã÷ÓÛOßâ—Çn;Þ2Ü ß>14Z–ÊÐÑVZ ¬loB¬üXˇÏ@˜z‚-² ©AòC‚þ̇üC?¶h´ ‰eÒT&»ƒ!Cà˜ºa|ÅŒ“¹&9øùêgÍcþ È‘ö]¡WÏñxDûèø(ª§˜ùÜ€²ÉBT/h‰cK‰³3á?Þ`ORªñÍ£_Ò“&Á”0«›f §Ä¬›Þ Ð…Ó>;FÒZI¸ì¥ÞÓM#j˜T•«­KLG ÜÕƒ¼ÈþJPñýzÔöÊê±Mš¬SÈ5·„ÕôFÝû+={êf³j¯¹¼[ŠT¤XžÁ–ô}­q:±€‹£Ø¹)JÊÞ')L¨àU‡î@Ñ´­Rocø»ê7‹PìCJ[ü+œæ;B„Æû4õc¡JÞ\„Q8ÅîÏrÂbT%YÛû€·tpÝ:*«–sÚa¨ßC-tyK[­‘­ä¤©÷c°žŸnû«% j$ï3‚át„³ý7î¸HG,1ñ¶)Šª·á.­—|…”™°w7ÿ^†„a¶*CùÂ7 h6‡ÛõÇ϶‰û$€YHEp¼*µ{g54;~Ͱ;p¾"¬òZa}¢ùW•ˆáœ‰ß¶ .@S‹BºrPè0¶|B„{`m…¡ºé6?êk–¡yW™ŸŸ5p¾Ì†Ý:Q `½Áæ "ðt}K|ùZ5×Ë2÷M?¢LNë«•Ä6¡x`ò~3Ë'ÈÑ/dßO ÓÂêKikÚ¯0™nÌjvìÛ [ùOÓ¾‰'ykÏæÈ›oxtsÄÏâfxM+ßýTJPû!¬/¹JØ!œmq@uË¥ü1¬FJîßÄörìEÖ ‹–&¥ælÞtÎçã•pL†8ˆg·­gM¥/þWÉËž%b¤+ ˆë©»7—#ìKõz~‰è³ —;¨Ã×ç`Bqá¾NEË÷õNÊZñ-ä†V#`Èg¯@W .S\¿†CÒeÓ΀:É_¥ZBëþ÷ÛáØJkÑjϰCs+*Ú ÷|ƒ¨¶”Ü•"?Öb»5i›³Ï<¬‰„ÞéIm¹Q!ÄoÄj%e7$N,»ŒXo$ ‘ðXl‘Ø&3@C}à»Ô4é¨áˆ6ÏäVM÷‹‹ÅĪÉ9F½—KaÍoÜHOs\÷`$î~Éó=èM/WÃë>ø ŠÇ™¼Ô¸¾ï[i²:e¥Å˜^aÕ}öè 8˦1eÿñ +e!«w? ÌÏ!Wšå‰¢‚r&"?æ –ámêÆ"U½ŒÞpÚõl×®´èŒëÄ&ô½çàt Ÿ.¾É•T> ŸÙ—7†qDÿØ©()£‚êõjjé߃ncLÑyÈûád8É<ˆ ŸÜ:eƒk#eÓj0ƒŠ3†ì©¹òOWáñ”mîâdBŠ¢„ðg9$õJÚ‘|™7ÈfL³¼R ßάA>(¤6 t´¶c.ÑÆ…tù† ¸K »š’Òö-'E 3Qó L©z KdnG»¾[CsDé˜ÝŽÞ¿3ÝC`|}#NùèRK> ai Ç".ž¼†I€ÚñÀ«‘àäLZ©VrÒ å ýt/FƒòP(GÔƒiy¹Ù‰«ä{S}sZƒªÇí7D¿¯¿°t¡÷ýjZŽÅåþ;5c1´rTbÜÊK×)ÓYÒ¬„Gqp:i}M%±® ϼv’Þ1÷à× ¬TÜÅ®§vÙ*Õ¸àNj +`Aýʇ|~ÖpqlZ/ºVzxj°ÈE&äßOG9$šŽ2m]@ †ªzEx{¤±ˆë!È4Tß>³…‘}Ó–%.­º±m?º«ÅïåCËÁ2˜m ɪߠǴI©T®•`NºÈò,Zở£©YNŠ%²|± 7 »T[•·;:x(ÒL#•0Ü«T½—ÍúlhR,büÇ(Î+N€PÂ{ª;ØÊǤÓ‚¤££–=HIóÞ2vÂE­/+:aXcûÞ@F=ÇmˆП3¯ñð½^”E®U¡.PóO''4I T’ÙÝKmÉßõÚ5ÓC3ÆTØ$-1)qÔX~ ð» b^.U³ÿ÷üëÚqá–9ï¯{Ëëñi;f³|Æðqsãh…_Â[˜ÍÍmó÷ž~*éojï;Oôƒ.BÚC¢ÑË Åéí½òQú²×ÉŒÜïî«8?ƒt&QW}åQbø/Ð\·l®0š£0É]ä/q½hâ= DõÕ7Š3ÿÅ›ê—~#™‹¾A1¸ !˜ëRç[©ÍŒmÑ‚qaLšÜ}è¯7aÏÂ×jT7‹À¥¡„@ƒg´ÎÅ+r(âr]aÕs à¶Ýn¼:Ô®g€Ô(WèwN–Ú+Z²º.€„ftĘ †gz;\ËÍe@»œÝMUÝ‹hޠݥÀÍcÞy,iöõJ£ªÃbj-£¿”LTæ×¾míðíX<Ãè}p|„K7(Àþ~x ¢oˆÚØ¿ Ú°§‹f×](•¦ë{hº“¿kçpÎ26ºMβÓÜŠ@°Yú*tá¼v*£JIÀp| T÷CÏm² ¿å@µˆ¦ºà¯NÛÞá5¥:Jöã!H¨â£R-óðÜgˆŸ þ×uÚçÁ­<ÚIt½%Wü¢9D¹ó30Nû¶úªáv¹êièñÊ•ƒgòÉÍ2›Ƀ3K)º€PêqøevDXqÇ3´r€‘(mÖ`.†ÑÇõ8™Ú´ Bœ³[ýœ$ÄîmÅw€Žbþ}Ç,Ò xVñ—û¨c_úcþ´GßíÝíW=¿ÉÉÌ*šª_»™¼sˆäû…ï9{ÊûÀ.âÓúšHâlãy”I‹ h_ë§Õ› Í>À~T8û¥LsË«÷'LÑj#Û"’’>jf4R›6—ˆ°U¥µ×lmk-r>4<‹‰nâ8Tûº“î-Œc=Ž7Âæ^±x¤5™A·àa˜E+è‚1ÞÞ³²¥*’ì§LAâò½ˆ}dHÍÆäEcÅæ¾´ÿãôåÄ-bgRQ5Rb).•W ° ÎÓºòaWJ¾®Ô]f B#vâ8Û"–Â#S˜¢Z™­ØÅƒ.Ã䑱€OP {õ¥¨º¹,Ç2­Ks7n x1ÀÍ a5kñ‹þî¾Òˆ»‹ú4C‘ˆ ÷æù«FMH?ª‰²Ë]‘KƵ+s°¥üÆy¶Ezðwfš`õ2½EöÀ½J£†mYøtïá^rR l³žIM#u7Ã6·ý»µY„ƒÑ€ˆÁP_$* ‹ÆÑ!“½ëR浉¨e=™ÏÌýãSÔRæÐ…K ëJ $ki¶oê\øŠzÞGìh5TÃóRñÛ¿1š:D϶¸wDõx¡ÞNâ%ˆ5¸Ï€/¿ÚÜ™§œ|×Ê’K¦ÏÃö¼â-e®§2JxEL*•i9^v… EUé¸{jR²röìvŠçÚSŒW(£Ñî”ÏiÉÓ‘µžžS½aBÓQÕÙeØÿšjJ6f®eC³5s³¶tŒ¨‡z0wSú»(íCkfâØÉ¥jAW¦dl{ X4qšrê;ixë˜Ú1çëùßH + «pŒü¦Û½‰½o†„œiªÉݱE"‰‘u-š7|âz³¯ýÆóOªÃŠòÀWìëh5r€bíÇ:M%57X²CܦÓD®ñ*ê†lÖ JþßD›UÜukýåyh.Œö§`ÏBIqdbÊ)n¿ÇŠú–ï蘨U‹y¥Â®}µ^{amë5žk4œ®‹XÕÜñ2ÛÑ3\³c€8ù¨¾8~Çÿ‰ç íñ€eâ”OWøeíÐE> 4²G'@»A #ÝÒùª+÷e5-)ÔŠMi_lFzWzMx†4åD  FÍt/=™Ý&Wvƒ \u«¡Ž@ݪªZ×0š ½tjlIeȪ$›«q|ì¹Å²ò+•}ây‡Tmà‰»ªbŽ”øUáÚ…g<-£§$v¹.?c¸V3®ý2°_ MÚ™ž¦â8lŽ"@2r#>IâXƒ–…e6Òý-ÝMc‚Ìp©aŸž>­TH×}ò‚vDÓ‹áÔküÆ …#Ÿìu¿‹^;ñù¦©–ÔVí‡Ñ8;MV”öp%C`È`ÚÍ£ï‚6ô‡îæ@rò’¹tÆZx÷„ OΗb¸¹mÜD 2³ÕŸu1& ˆÝ7ü÷¨~g»º9µÉÑM÷æ[Æ•kPF-ËÚæ•BFVoZÀBPh–9åïn¾Þ x8}¼Ž¬å-8Ë\ÞGæÈã€NÕÔ“Þ¯e0¼J‡õju]<û]µ°%æê›ðŽÿø$½yg5¯ôÓ®ßð*ýÇT9°|=W+àÁ}ôŠL)SP¤Ò¸ ®F½/¶(›ên®´9ÏÝî›j¢V·ÛÖôjò ЮâÓj(øcSWúƒREÞ$ R’)“w$áóýõBTè¯ADä—ÑïÌ©|U2¥ÌüM0Ôg1÷ëÄÍFc¹ÁÕõÕYÔKѸa´_­Æë¾ qÖÂÞ}Rœà ‡…-»šæ¸½•!NUä fu*ŽÜÑÿCõÆ=Ææ±Zç›{É[’Sµ”$O“†¿\î},»ÉÓ ‡€nšèÑè§õ!“„[8ˆŽân  Åbç ºÉØœ5J¬B#ØùH¯R 8~ï7"ç.Í;ç¯F±ûh}ð°qíl*tK&È‚®P+t¬d^$”‚4»f‰¾.õ‘Ünª˜Œwzi,^Ñ8Pù—ígà¡éVÇòÊ6œêpÍ|­ j¾ee·‘úWm?Ael©‡õW®æìkÞܳ:D+×?Û€ÝöNÜ÷C¢o…÷'¬ê!((Œ÷MÁv» Ô…À¤/VBTe£š*ê™J.n€ð(ë1‰„1X ›GD8¾ôYªÕ‹Ä¬¢MÈ<Ùø’-Žžs'÷À\ÉZ»B%UTyjf‰Zé3,n›céây¿Á cRÿ u8¿Øå]¬ºᬇð,ðqEåQ:‚¬5£ ]™RLÑ®GzŽ ‰ñ0ÍÜÁ+X{ &ÏhËâÎf1 ¶6µÐêÞ’&œŽ:¨Z„Žû¹Ÿd¯¥S¢s 0ß÷Z‰L'{™ª+jo_´[6•W+òƱïzwÉ{jš ÙP~%Ü®TxßêÙº!Ì®“µé‹¡'? Í™‰ãŠŸÞ½ŸTô?}­Ä°bW½ €Ù+øÖÃÊÔyuÅç‡\vÌ ”;ÂÕ-Ù’’±oå—@-©4À\‰¼Våâò&‰l’1¡ŸÌ@ÎxGeñmL }[‰ Ž· ?Âeö‹¶‘~Øó­&1rOHÚjìúª¢Çü{k`-ñ²E{yéDë/äèâΣ·å Ì¢Ò{¶ ¾ælY:’†ðýìHÑŠœ¥{¨;épËN2–M ›»3PXE¼a°>8YºŒas9E¡yb9îÀÎ{2üáÌüÑA—Ë÷醭Έ fS—vq7†K“Õ‰ c‰Y9&ú<åV_z½ó”#Ôf¸æîãÂDï­îVì \&· â—,4zUóMbšøeÇL(uE‘dùÒ­=î÷ä!+Û.ÏÚ½<¨¹Ý?ie´LMÕ.'Ð „˜ˆp£‚ƒ/™åX‡z­›sÚdîâLÿ ]°ìgKËê¾f·%$;ÔƒXŒÍ„:½Þ€óDíjøï{<è±xÖŒköÈ€µ%kB;í¡C7õÛϾ;Ýå‘V-–8ƒ—tXøQ75fx{E ·¸ë¸…Úk‹—$O€ L[Jé—[u⸋"j’&’Xê?^¾ÑTMÿpALÛeæ°GˆözÝoqל }Ž_êŠæI€ê¼)›þ @=MEI´:Šã!8‚,Ækû€Í‹›„ÏܺU’ƒìØO‰%J´è…ÑËš/b²$=Ð S¢ߪm¯Q.ÈË )¹ÒÒ;ùõf…õ‚â®Õo ÑïÇc¡\«;æ–ñ«ŸÎÀ×¾ ]n³ˆå‹Ã¡›¿5UA—ЧnÅÔu•£öXšV Œ$îŽVÛÔ•£‘ø[Ôjÿ“<áÓ¦ê78ÐNîžz¸(§¾;qS€¤g²éåp§tÀ¨ «% Ô2-±-Äà *ݾ¤EçPÐZºžl)Þ6.+Ð=|Ëðm¦ö•ˆüÖ¯H4©{Ì˳eÈÃT‡}®]ÞêÜI±Àf¸’Eõ Ä/¦–3½åsÌï3ûâ×,Ûe"8B·ë&š”g+Õî>½”>Yö¸¹Ä4»`VŠí Sé[E‹54”—ÄU%Péø$õî¡õŒMΛãQ@YZsurveillance/data/k1.RData0000644000175100001440000000051610636320360015126 0ustar hornikusers‹íVKNÃ0;NZJAEHÜ.@]±B¬º 4 ħ"ޏ×aËM8ÂÓΨÏ&í‰ ~Ò«=ÿ»mr5›Ÿæ#"²d![„­³áÃMöXÿpJT³:ð ðƒ60B‰XÁŠ/ËU]eõ- æ4’ÇBü@VŽá®ßežrÇÃÀ±øòºX 1·ÖÆžÒØ'ÚÅs§³QOL!´ cýJtôè«ûR|\RëìÓy¨G6ôè‹õõLô޵—âÆÂ#ZßC}§w‚}n›vÈzN}v³…©]{Ç9‰â3ÇïÍopHñoé_ãü3^32222þ ü<2Ó‹H¶Ó·ÙJØü/Go‡åsýÔxZ¿€9Q—×¾i_›…:ù®îÜmÛ¼€¡íÒ”7µ×”üÌeå`qï/Ûå]Ø~1¿MÊp ¸ surveillance/data/campyDE.RData0000644000175100001440000002031012625315364016137 0ustar hornikusers‹íwPYÛ·9Ý=3$ 9ƒd3n#Š9GÌYŒ˜ÁfÅœ×,¦³®bÀ„+`T èšVÝÅœPy³so}ϳõ½õ>ß_•oUŸªßÎ\ìÐÓÝç\§Ï¹Ëu[F·0oonbb"™Èˆ$ã­"áÂD11ë®gÜàø±ÑõLLd`)¼ZâÓætîZØ„Îå›_o3ßc~Àü˜ùóKæ"æ·Ì˜¿03r–0r–ÂlÊlÁlÅ\–َّمÙÙ›Ù¹Ä|„ù8s&óYæóÌ9Ì—˜¯1ç1ßf¾Ëü€ùó3æÌEÌo˜?0fþfäó&F>¯0ë˜-˜-™Ë2—cvdvfvgöböcdag®Ä\•¹:s-æºÌõ™37enÁÜš¹=s'ænÌ=˜û0÷gÌÏ<’9y<ó$æ)ÌÉÌ3™ç0§2/b^Ƽ’ù'æõÌ›™·2ïdNgÞÇ|ùó1æLæ3Ì癳™/1_eÎc¾Å|—¹ùóSæÌ2¿a~Ïü™ù«‘51ò¯2³ŽÙœÙ’¹ s9ffgf7f/f_æ@æ`æpæŠÌU™£˜k1×a®Ï܈¹)ssæÖÌí˜;1weîÁÜ›¹?ó æxæÌ Ìã˜'1OfNfžÁ<‡y>ó"æ¥Ì+™×0¯gÞļ•ys:ó^æƒÌ¿0c>É|†9‹9›ù"óUæÌ·˜ï02ÿÆü”ù9óŸÌ¯™ß3bþÊ\bä ²‘/h™Í™K3—a¶ev`Ö3»1{2û203‡1Wd®ÂÅ\“¹s=æFÌM˜›3·bnÇÜ‘¹+ssoæ~̃˜‡2`Í<Žy"ódæiÌ3˜g3Ïg^ȼ”yóæuÌ›˜Ó˜w0ïbÞË|€ùæ æ“̧™³˜/0_d¾Â|ƒù&óæûÌ¿1?a~ÎüókæwÌŸ˜‹™KŒœ-9[ËlÆ\šÙšÙ–ÙžYÏìÊìÉìÃÀÄÆ\¹ s$sMæÚÌõ˜27anÆÜй-sGæ.Ìq̽˜û1dÊ<œy4óXæ‰ÌIÌÓ˜§3ÏfžÇ¼y ó æÕÌë˜72§1ogÞż‡ùóaæ æ̧™Ï1_`Îe¾Â|ù&só}æ‡ÌO˜gþƒùó;æÌÅÌßœ#9GÃlÆ\ŠÙšÙ†ÙžÙ‰Ù•كهٟ9ˆ9”¹seæHæ̵™£™2Ç07cnÉÜ–¹sæî̽˜û2dÂ<œyóXæ ÌIÌS™§3ÏbžÇ¼€y óræÕÌk™72oaÞÎü3óæý̇™2Ÿ`>Å|ŽùWæ\æËÌ×™ó™ ˜ï1?d~Ìü;óKæWÌo™?2aþnä\aä\ ³)s)f+ff;f'fffofæòÌ¡ÌÌ•™«1×`&æhæÌ1̱Ì-™Û0w`îÌܹ's_æÌC˜‡1bÃ<9‘y*s ó,æ¹Ì ˜3/g^ż–yóæmÌ?3ïfÞÏ|ˆù(óqæSÌg™eÎa¾ÌÌûÿ\Þÿçòþ?—÷ÿ¹¼ÿÏåý.ïÿsyÿŸËûÿ\ãþÿeMÏAq# +ëù¡7Ò°š0Œ°Ò†"‚_’q‡d<e¬DeŒ+$«j;3 W+a!aÖ•^±˜%<¥e<¹dGvã.ÊØiÉ8¾‚IÁ*Uƒ‘£Wk4¸ î†=¬Å.N‹±O-vÌZ¬*µqÆÏhqάr¬4ü\)D° R:ðϰBVÚà»pLy¦ñ; ç+°32H#á»eÌ"ff »c ÆK8 OiâŽ`–Ø™HxÚJX!Ic %ü ×%•G ÇÅNVÖ!÷D0òd¼Wð½ÊCãµh ç¼”¯3³‚cj°"Òà8ì 4°C9‰à)¤`¥©`6V ׆U£Œž—±ûT°£Q°K–ñä’ñ´“1£ÊØ…Üs݃tÆxíf }%a„K‡\¯„ï°‚—pnL‘0{K»S*gü+X«J3·Œ§‹ŒÏËØå)ØYkÀ̰ìŠ4XIiðtÔ`ŤÁSN‹™E Ûµ¸ÿZ¬âµÙZÌÖZ¬H4¯ðûø¬‚Ý +l³†Òˆ_a˜biì#Å0&0Ã)˜…d\·8m,„ipo …Ã&PÆ5ÊX%I8'«y;6 ç aå)uF0$ì ¿Žñ÷ô“lø9ŒÒ`–Öâ½}¯ÅXÖa¦C胱bÔbÌk±SÒâžjqLm>_Ï$“ǦŽ‡Ý†¦½ñ½‚û!cu à)XåÉXÉÈ ìäîHmvý¦`×£àš$Œ ÷N®IÂN[ÂêZšÈã.ÇŽ%…á^`ç-ð´‘0¦¥ß-c6”0VdÌÒ2û¢dûIÁÊVƒ§·+< v Ú²F¯´;ZÜ f v§š#H9㸓¯r¿ 6:$ã:\ƒ2fkÏŒcACR%ã3|§²Úøû2îŒ]¨làºÈzãdóW¿^1ÞeKÆ{¥‚¡lÿ˜G<}5ë|§÷Y‡¾ÔaǧÃùëpº¹î«.¯cG‹ñ«…ZÃ{|NsY†àÉ¢`¶×`¬A*è;ó‡‚>ÒøóõƇŸ7fn{! }ˆyJ1ôæ9Šï5!†ÂlˆqΓ^ 8¾äÊž /eÃxޱkVBy|`|j°‹ÐÃyc^ÕŽÆUª¡Ü‹ _´è[m_/Î[‹sÐa^ÔY!ø-~OsÌ8Æ ó†c@ƒ±ªàÞk"ŒsžÆ¯¸ïŠásd˜¾qn+ŒcFƬÁJ[Æx—0IXÅHßxŽ8gœ·dŒ1é÷›an¯6\|•ñYÅð}¸ÿ2æG%ßø^ÁîZ‹y^‡ùS‹9Fµ˜Gµ¸·Z¸®Åj_‡{¯Ã.S‡9T¯µðZ[ŠÇ%vx©LA ý…{¢l`gqn)Æï—1^%O`¼(Æ9_6ÌÅE<§-3Îåž2V52îŒß— aþ‘à†<—çÿn<¯u3^Ÿ‚óÑâ³Úu8GüL‡9P‡’óŠ˜ÂSœ“ß¡Ã=Ñá|tðD‹þÕæEÜáãù§Á˜Ö`U©¼Á+VËÊkc_ið|UÐïJs«4+ »_ ý)ã§<0Þû¿ú×.w6Ž9 Ç‘ñ >KpAúd|ÿ×¼’ÈÏŒ-ùñ§úÏXS<Ì0vL1ÿ›âÞša'j†ùÅ ó¬)î‡)ž/:ŒEȘ˜ÿLqOMãñ3C?â÷µ†1†¹VÁsCƒ9K‹9Z³ÊøL5ÌÿJ¦ñY$c$ßF°S”‡×&–ƹNmjS›ÚÔ¦6µ©MmjS›ÚÔ¦6µ©íÿ¹ÿ0dé“ëM_"Ûg…­§”ö'»S·ë­Dîk¶¾ýy¼~Öø!y¯2‰y’XŸ¼÷kÚ­pˆ.ÏýôÀl;L·(~“žFqŽ·ëwžü:}֢Ȃ‚Ûw+½3á…„œ­ÕôœE|Z·Þ:߆üßÎ^Û ‚z\‹Ž¹zˆÂ–dLØ»`&…uN[N³¾RÈn·´Œñ=)âL5iHî: _72ãØ¸›~¹¤Òá|ðW÷ùÃ{ޤzn=÷Î) îÜqgýôÞTþð…Ø¤‚‘ä_8ôìºÞÅä]vSÃî·\ÉÏǶ٘ǣÈí—·›êVN$¯uK›mêò•¼>Ωºnyº0ŵ œÌÏ<²ü yf¶¯LýÉÝêNÅÈ›éäñðLö§V·É±a^ççß+P©7ŸO™o˜L+[ëœG.D³§„“ãÕ†õLý&’éwO›ìdAŽsµþ#J"½ÝÉ+ß<ƒÈ.§úO†M r+5ij> Rù£w´ê³ƒ¬ûþ´yYq$ÙEWßpkré3V¯ª•·—œî]˜ué Ù®Ý4Ô=ã¹w©nV;y:9”´œs•Èfqƒ]^®ÏÉ9é'¯§«.’çÜÇy©QÃȧÏwß-fä¿â«Å^òÞ]ëKÆÊê𬓿õ rô TËêÖ#(|ÛÓfÂ'Rèñø¥ÛÝR©|áƒÄÈ3û(xé³ø¸3)$ÊašõñÛTîsãÊÁúpA—Ýó¿á¾OªÐ­úY oÕÃ.8r*…qíß~^[ *ö¸u2ZG¡&/7TôêEÏö®o±–üb†i΄DR &¨ê©ÉîxßF¯˜Ÿ&Ÿ‰M÷vtî@~ÚÚm{~"¯’;¿Av¤¯þù§ëçÒ0·½k1m9¹N±*:’çIîú§ü1¸ 9¨=¨í‡­äÕñù÷¶µ²ÉãNÿ¦Ò…1äÜ¡míŒÊd?õÕq}n)rRî$TkNvQýÇ›„½¡²¯ö÷°\’FNÛïZêk’¾¯—íî=¤²)ú ´'Tn½c^ß&¥ÈcWŸµ_¹‘cllí9·“íµ:ý’wzQ™œíÎ:M6W"“þ˜†~Xô¤o§òróg¡ Ù?»¸¾.¹*!1ŸÓ¯“ËÞ;µ²\Ž’{“®¥%‘—Ö$p¦Mòé½!M߬˜|~Ý?z³+ùÌü®æ§?ȻϑäI«É³Í ÁA³~¥€qîíS Íö¤?HþGL>Î+úÆŽž1åÞl Xu{ôèJTþê«×W¢wPh-÷ýï4¦»™-éÊÉÓÌ|@a%‰û_¼ØHaöÔ¹]¢°M҇àGŠžñ’‚^§þü>“{”.žÛv0ù˜ï?fOsòÓ¥ôøp‚†ývfð´×ä—a34Õ®¹Ÿ¼6 îIòݰݷj½¥ä§éñç— òœÞñæ˜A¤o•=Ð:f9gŒItÙ–œÏìçVÛŸœ šlçQž>‡¾«“hFö#–õÜ–LyUÐò)9+Y×X²#×¶šˆxÛ)¤¿°äë­¤­ä蚘ڹvYoÚí6n·%Ùí­¼5gñp²_P~FÊ;²Y¹g’ÝxK*3+¡ û2w.²ûx*×^S±j‹Rä¶Ïr’©)yÚÏ›:«F/r)åC-¦&·‚+þÑ‘SÈ«KÇe„L!×¢{Ní½I>Ní\>Ô‚|-jÞ;T÷y,Û¿öu#?ò©=wwŽç ¶N,7*>‚ü'úXÝèyù ÈM>KAm®ÜZÃŽÂÆé†ë÷~£Ð;”µåQðF½M¦{:…µµ]Öù\K Ö9î èú’"êõëØâ½?•}‘Ý©AE œôvèä>æ?þÏ–ÞÑé …u”[MŠÙNaI1}gúPàÎÊ÷ý‚—“ßùä J¿$ÿGûnuóœJ7?öŽ_G>erÎ6(KÞ{Ÿ…UZ8—üÝ;Å[¿L!Ÿ»ÃL辑çÔ®î jEúvÞï/½XEå Ÿ¿Ûd Ù뫾¯4ý19Å;•^œ,ï\s,L }â ‰c—üL69»ë,Þ?ŸÊÏM?ÚœÊd‡yW´ÙCå"»ŸþzÞ‚L«¼ý_TDeNywY³ŽÈît÷/O×,%ÇôßÞmµ•lÇ;ž´£&•íóÑ®íÌÉd;ù|i¹$…ÊÒµ·ë*¿'§™Y­¦¾Œ#¯Ì#½æÖ»GN®ß.½ù֞ܵ£F ÏÜéÒíR]ÉëÏë3Ã<ê‘—çÞŒ!É{VÿšÚ¯"ÿ'ªùï‹#ß"ëÕ^Oæ“W£uUs'<&_“Ì7“kQÈé¡1Uë6£°ƒSÒo‡í¦ÐÎëGí³›Fá ÏÌ3-_–Ââ-?l9p†ÂÒ¬s¦ê§RÄ«SJŽ>¡Ð´‚º£Fµ¤ J´sÌm ]ðKà¶Ý'(ø°éS}½0kü¹·-o éöµÆ Ijøiäº Þ?O!["œ#û\¤€¿9%xµ ×’ØŠÛ¿ï¿Ò7/¦€Ìü~&?¯%w뛯Z-&÷?‡Ä–u û“£’¼ȳʇ 3²:‘Çðø«Ç7W$ßÇ,êÞ¥"¹ZO,ÚŒù2æR‹“>“¹»­Òô ¹Ï,ŒêÕZǃ#·&/!÷Œ°9íߣ²fóf×ëN®5BïÜóŠÞÞ*& #ç‡æÏÄ]ÌW-=ß«_‹ÜÆ{ؾjz”Üêêñé-¹÷*ŠÕˆœæU±lu‰\Lzì‹ìÙŒ\º†Øå¥N&¯æÙun¯éO®ëÇ(Ÿr†|úÝp;ùñ+¹}–mÇã¹ä·¸ŠþÒZ Ì'æ™»'5§°”vkµXHQ›×Ü£ðI¡m\RØÔ•™Í;SX÷™ ûëLåmÓ3je¿¦ ÉY5ÇI¡žuî'uÉ ðA¿lŒµ¶¤ÿ–Ée*-£ÀvÊå>K(¼ejQ½{)´a»îË+_§° Çz-Ȧ€û{΄½‘Èé¼WÓo’¿.êiT^k'­Ü¹3üç/zÜʦœÑ3×Óí¨ýÁ>äQò$³Û;ÌwneY\[E^-öw¬6¹UOéæ9J%­ºëÒ/¬Ñâ|ªLú™/¶ŒzIî[‡ôþåò(r˜·5`yK*³sYêÑŒad÷(aò™ªc¨œ¾¡ÎäŠ é׉λ¼¬È½ÿ¨]' î’sâ‡Öϱn˜¼MôK §eÑŽ{מ#Û£ ÚkÍ‘ËÑÆ¹#+&‘{ãD]+O_rÌ/Ÿº5,‹Üêo)Ùðe(ÙÝ»k9°ÓMr¨7:½G`!ž—cÎÝ<7œ\ƒË´¾Nn#3Vv¼@ž}¿øm¬Ù…¼öçÌã‡õÁ„™3O_HAû‰û_’÷¦ù6SÈ­{V)N‹)xÅΨs Èïò‡!sO­ À·¶ßæ¥à”±KöPHdÐöާý(xœk祩c(è\Īmòf u¬¿õDž…¯¼U¡piW D1VS.P°UÉõ¯nk(8ê¶G¯æQHö¯}"S4êÔäGÝ6T¾‡ã°¦ŸogžÙꬮÇÈ×\™£Dm"¯í÷*ïkt‰,¾};V2Ž|‡ÅÐÜ_G^S½ªÍ‹ý@îŕζ>ô…¼ÿˆØç3Öuusö|Î&Çvýßy¥{‘ýò 3æ$$½mç¦?{f’ƒõâ€!¢59ÛUÞÞ՞ƿ®ìsÝ”¬ošçú_É&ó*ÏG:·!Û˜¬e×ã¬È!9569·?ÙDW²žž7€ì;nÍÿ8›l“œ‡<ÒgQ¹+Ag6Góž•´¿x¹4™yáÛirõH­ݼ49tûyÆü÷¤¿ÞbtQ È£rVÞ­3òn¿Ù9gÔ ò²;ݲˣqäÑ1ëÐã'æXMs/í·|šÝ¹X³o$ùöXñ,<½9\­zz‚Ù$òæ½;:î#ù˜ß·~ýö>ùw¨˜’ÐóÌÅù™¿Ç…l•Ù¾è¡Ù"²<ù¹FáÖ²™V!Rê=—ôîæ&Ô¡²‘]޹…}%åÈeç %äî¤+YâM3'¹îs,CN[ö(Éöä’7û•d÷Š\-j]=¼DKúž1G¯©J>•®ˆá·ÉÓÂ*¿ í6y>þ>ãܸ_ȷϰ IæÃÈïKÖÂÚo:P@@QÔ‹?)ÌÙÔªvØzò«ãºà@Á ØümÖÎx®Ÿ^§=ÿˆÂ*M˜ã½r3…¿}=ÇßéO ­QzÔ¥Kc(ø}ẛMz`J¿åÍ(,ów«SëÊSXLâb›Óû)dhóÂç—îß•êÉåÎê(pV•þúÉoA3¹ß²v0ªyÚô¨[äÛsj÷îË›’¿½ãä´ð,òè9ö{w™\/E_:Û™Ü7\‰¾˜@>õRßvQ|Éã±s»úxr·-\µužÙ]¹ú¾]»wdYÉþn¦„ìÍãß¿¬žD–‡ O~½ˆÊn¬oº}Ò;*ñ{^ønrÈþµ½ø1¹Wþ:ÒîèBrhóùÄÓ²ïÈÖ¤èz©=»É!ãRŸ•VËÉÉçAóá)1ÏY/ìWœJV{þHµª[D6G=ä³÷BÉþ`ÏÒǶ¹“ëjÖd“Þ±o³ÞU-È˶С笉ä¹âEÓiÅÑO¶>¶Nż=µu=ß©ä…G¯'—.¥ýŠÏ÷#Ÿ(ûèz; ˜ÕÆáÜð]ä½£ÇÌõT¾ùÐåsž ò§&í¸:'•‚*ÏÍþyà^ ‘ÙyEÖ JËjÒp²žÂ”ìQ3˜Pðí‰U|Ë ¦òïk-Z?üÍ:éòSx~Ùó<*Pp–Ë?K^aqx }x,E´ì•¶èÐ Êüý•åô1:}iDH£ƒ˜ãWsö‰Ãä?GI?\\DÁÇ|‹/cÜÜøz¾¿sy›E‹ØïÉ-«Úœê㦑wÍäR1¥ãÉ;ÙQ·¼J¹Õ˶üi=é-½÷Í_¼žœó÷o_s¹Mxš8tÕ rZÒ6åIéw™[§»Õ"çâûß|äÄW†’‚nÃßu…¿Y­/¨õµ¾ ÖÔú‚Z_Pë j}A­/¨õµ¾ ÖÔú‚Z_Pë j}á?­/ü³® ÖÔú‚Z_Pë j}A­/¨õµ¾ ÖÔú‚Z_Pë j}A­/¨õµ¾ðŸÖþ»º‚Z_Pë j}A­/¨õµ¾ ÖÔú‚Z_Pë j}A­/¨õµ¾ ÖÔúÂÿT_øŸê j}A­/¨õµ¾ ÖÔú‚Z_Pë j}A­/¨õµ¾ ÖÔú‚Z_Pë ÿ]}á?­+¨õµ¾ ÖÔú‚Z_Pë j}A­/¨õµ¾ ÖÔú‚Z_Pë j}A­/ü³¾`òÿÏd­Wÿþª¶«©ýóc7µ~ì¦öÏÝÔþù±›Ú?ÿ;šÚO?vSûçÇnjÿüØM퟾ýUWPûçÇlª??vSûçÇnjÿüØMퟻ©ý󿣩ýôc7µ~ì¦öÏÝÔþù±Ûÿ¥ÌÿõÏ+¨MmjS›ÚÔ¦¶²‰ÿ0ÿŸš"ýu|ÅÄ ¯fÇ&„ ‰Ü{ 4/$*!•‘*HU¤‰D!Õ‘HMÄð—FR©ƒÔE¢‘zH}¤Òi„4Fb&HS$i†4GZ -‘VHk¤ Òi‡´G: ‘NHg¤ Òé†tGâHO¤ÒéƒôEú!ý‘È@Äð<#C¡H<2 ŽîÁHd2I@Æ c‘qÈxd2™„$"IÈdd 2™†$#)ÈtÄðªÎDf!³‘9È\d2IE ‘EÈbd ²Y†,GV +‘UÈjd ò²Y‡¬G ÿÃñÈ&d3²IC¶"ÛíÈd'ò3² IGv#{½È>d?r9ˆB#¿ G£Hr 9Žœ@N"™È)ä4r9‹œC²óȯÈ$ÉAr‘‹È%ä2r¹Š\C®#7Ã_–ÜDn!·‘är¹‡ÜG ‘ÈCä7äòy‚âï5NÏ~Ãû98îï˜7 «ß{xÿ¡½ŒW!•ð‰ÿ}5æ8ñ¸>ÃqM<×ÿ/Ç×bvh½surveillance/data/fluBYBW.RData0000644000175100001440000007403412672237564016112 0ustar hornikusersý7zXZi"Þ6!ÏXÌüwÀwÞ])TW"änRÊŸ’Øáíbl$SÝJ ô!5?Ì;ìø±Š'–²nY B¼j’™zƒRìÃ.h9œVO{xʱ?Gs©o§°ÄŠHçé`2ž€„kŽuR)­Ýu¶×õ„æ¢NLÚañjà`#1¼1­2{Ý~¬¦ä†WR¨j4>'9JYYÁ?Ø¢³«„@¹ÔQ]³F!Úˆ»ŠÇ¶”I]=–/¾˜UŽÄÐvºY÷ÇCt·ö‡°,ÅP2ÿÝ)¸(^0mÖ(âHnŸ÷›z¥ÛY5_)ÖVH¡ü^bÀІ†$AjƒŸMJ0'/Ž‹½~méB^‚¥|pš/[EÇUÝ@å·²\Gàý™ÂÂ’ÝIÚÞúøÑ¥§vo¹â>TE/&?´•_ Ú !îvà…@¶H¥ùdw =U¢jÎK. ߈|¾0=²øÆÙ5é‘O|Fag¿­|5PÌø‡Û~]ð RgÔ "ø.ì¼xŸᑬDSH£@‹²–{R9Kœ·±¢Dñs¼éé7µ½áPuZ#ŒÉJ(b/«áËèÑ›%}K;JÙ·²‚^cÂ÷cä!nƒš)ãømßJîG#J~5Rë)&&N¸E+;mlѾ0»¢hcø˜^»¤a挻Âd>T–ÄñPBi¢?ZRá!¤jPvã;[NY1»œº³Ö€š©M¤AVqé2¸À•ª÷æK÷ùEÞù›ó”â×T”b•¶ká ²Ó«4(†Ø2O²eÓ“d>ãpoÙ÷,Å>Zt¿þà]£:9ÝYGë"b<Ò²QÑ´£_TNÀãvF„ô @6²3nRÅópt–~ OÌO{顎†Óцbnç÷È«ä`»‹‰—ÓCày»éßÀøÁKߘŸF…©D­ð®*6&'OUþÍýLjœþÓW“%çÁÙêwcÉË­Ti%º°kqñÃëŠÃ7"× Qsz„%Ì· (lzmËP ý¯† ±$×î%?Hg¼Ð¯‹‡DK O ’A%÷HÑlÅçjuµÅ±2G¶¬š×¡NrÚ áo9˜ZClªq›Êq—ìÁIˆ*αº@]øëX‰þ俼„OÂÄù+éQáÐz£ÕÇm]0l…Ö´ì4 Öþq³töQaV‚8cÒ±ÈRêêÑbM’¼Ê;ã=EG±Ô Øk1Ë”moQÄy½ÀFjŠÑ§ÈÚj¡í%®xƒØÁ8p-Šöi¼e;¡ÐQœ=U[ló ° ƒ¥~~¼Yr„CÓU¨޽t4o9¹;¨ûeû…&&9ã¡cá£ØÚ£5>•9Ñø¿éÍwšöV¯ëlh`_R\âKÇd þN‡ygÌFnž‘¼±©²”‡ÑúÙO£’tÄ !gÀEŸß'se°kÁt¼ YôMg¾×ÂÊ#6Íâ¹:kRòSuGõ>­óÆ!œW»ˆ\6j“O¤^ß‘mƒ×8„fµû¦×_ö‰T 3BššS˜ò„åúï±Û‹4H¡á€ ì5B!ú‘õ1¤|ŽÓ"˜iâ¢3p­ ˜.ðPó &­ýŽv;ì ¬ï„Æ4ž*iµéX\³øßCô¥žSÖÚ5‰Ž¤ÒM ¥u”þÏ9†G€Á¸Ù^Àü±¸ŒKIbû(ÇÐñç*Øãˆ§IËÜXê¬ÄÑLúãsGwy‘*O® 1壞I†‘&ìÌ73Œo6ÒÜÀ„¬:y×å·‹M–çþrÔ1Fða€+¡v´^WŽo~A‚ë-ø†`¯|øÛdÅ÷˜M@ƒÊjµ’,¸¯÷‡…YÌyà–9ÉP.+ÀI«ŸBÊjÿm!Ÿ? œ4Ï…:m!'PB]«”úö³þíÚho!ë5s„e›*%]Öí¹=vY±§MåÉØ÷¾wPÅ3ö൙tÈ øüYŽq*µ½u@ë â ­+÷¬Þ\î#sDR$GE¤­Ísâe5ÿ ¥¡_âP’¡%d®´gï0k™çtwl›‚¯Æ­Ô1ÏYkŽ ó´Øï(ÛB}˜ ›©AÁ[9~ühF EfPƒ¾«J~èJdÃôaøFCûØ1¶°ã(Šà¾ìçÛVb{æó ÝñÄ» ÌF?:Ó,Ññƒš¢x ü,„;¨å&½ç\ØÐ·ÂŒ ^>Ù?ó˜”0VEÏß; :¾Cx SêêÓ^Àë”GM¨·ÁèALL®E‰Ë¦kžšt™Ô¥a‚¹%âÏAç´’DëésF±¾÷¶Ú ¼wXæÙò¹½Z`Ãû4¡ZkÙ_k¨qjr‘;›ÑO,=¾ÔQšçiVv)RB¢×î‚.ÄŠ¶gyWífÏ"Æö _W*œw6¥l=ŸÝc‡Õ9$sŸ FmQÌéMcS|«ãÉOÉ0kÜÁí/÷š{—™Õ÷Fš˜ð?ÿ îý=Jï¿*£þ0?`ƒ¦'ö$†ü[¹‰üχìwµ-Œ ‹w›hS´½·ðþ}ËÒH¿=5ñ¾••Awœ_éž‚¬‚GBf ²`’ff€¢©jÁãqe4¨ cæ×›mp±„ J¦+ù'è¿èh—ÏGVªêtw:[Zc´­zn&èß$ ¦lµåJýôaæô”¤_µc½7ì~®1Û£êÅó YÑViØï†ìîÅ­m*Ö…[êe–Œ¢4c› uèÏß]â“ú‰Y\wþ…‘µÁÙ°+³µ¤•ž¿NP‰Î|fï% g­¯Êfʼå‚Ûn:#ÇÒ½ÅÿÊä¿â¥€;ÛØYqåŸG¥Bú1DÂQÁ¼vz•©¼ÛåÄŸ]0ÀnR¾“ú3¼ÑBͯ5¡e‚Âõp¾%L å¶+÷2È®éZËÛ¶©lú¼ù:Ï«HAæ=¢‡ÖÄkRô*ìg…¤è§Íó³&›‘!ÈØáò:[ô‹“г/.qíš Ââ>=·ò15˜å/ŽEýCõ¶>11yOÚ0s.C÷ŠÖh®zlqª°—sìIÕŠ€˜œk þƒE>”^›$‘é‚ÐCôÃá/Xâ9ؽ‰Aõ¶(Ì[è¬×`ƒ­ç¾ØøzÙüù -Ýÿšsh_fw/ëQñPSÕ¡[µbÞÇ_ðOšn%, ñÆíÕú¹œ•!0(×xJ}Z"_àAvÄdÿ‡"ëÖ £.°a¤TEh}}ÐS­]¢ŒÐ‚”®T‰w~‹zà ÙcvmˆÛwOò8CªJé§2SeàG|!3˜ï\+™„`MÎ?=R-d±xÁT…¡Öû®Bf» ~à߯4©)£­ðGŸ( KÙ_!eî¼Æ‰±[s-<:¯¦ö(uè>b­§ì ÔKšç䲚µ1ýF¿©n“g·vÒe²Ì({vVÏS±ïMÜÒaJ'CYżU—}ðDÜøâ1*üñ;:½¸üÔα8 B”BcÏD‚•%¡ÒÐà:À£Å{Ëhò´&Í·dœ¥œ?éÉ(CÆc/@Ç& §†lG* àÏ =-(ÕèGúÛ8©Å¦ …;áh {„Ü ÔN,²ãAî”=Ôõ”ìÞÛX±õsB[^ÊÀéßXú4ª·¬2 ¿Úb$:iÖe[Œœ×÷V†ÛÅp(w–D B/ÛÏþƒ£òS†bœs«„¼¤gÕM©¤&Õ7Ÿp êpâÀm¶}@5èhpÕ)¤’ÿ©ý }ˆôs–ÿ»M¤£lýMâ´Kdø&ˆ\Â)£ñ|Åÿ ßÛšátáž{k‹Ö]†ñÃÔ`WލlØN96E†¥¼E ‡–‡'5…îHjæ}*v …ËæA»;-Ðn}Sh¶-``ÄŵL_›àONGœe"wözíŽ ÕeÜ©‚ÇÈ·Ôâ*J1Ì ‹­ÿçß4‰1‹ÉðÂĶZPƒMBe¾°‡:Sôá!zAWý:˜j岈h6ò޽µÔÀîºêh”_àQ5ëÓú 1J^Æî»S ãª8ùw‚î¼–âË2|&ú¹’Ňž|K¤"ϲA²&¼w×Ò:¿æå3 1ôöæã¤SVÓõ´Ÿÿg£¡g1Ô;ký[á#=˜‹oÀV_â¥úø–%Ý} kò>r‘Í¿q‚˜®#‹ ”_=Æ‘â6Æ'Ó1MÓVcèp_Nb†ÒUK6»öOHÍç%^7åvq«Fìy‚E¡â>ܓ̪XT•¡Q#HÄÞ¥=ƒS… Ì äØ·ß,oWHãömn¯8›@#š {HEiÜÕOדWÇ7öÃÇ}g)B9iˆ»âSQƒHÈ W ¼Do`Ó :¢=>Š¢RåDß¼Mþ©Ž·äúM+©±$RÃÒ!©™snK=WÍ·ÝÑš}¥Û•†ÓaxgŽ˜¥)g¯Ó»ß> k©À¤ä)‹M‹}óh,:¬B3÷SÂ@\v‚ޝõï«?øˆ¨Ì—Ó;ÀðŒ–­"uš9#”=—&»¤²ñ§õ)¯çGÆ?Š˜%ëp—tRƒBÁ"7\)’`Êà§ )T¶^xºqó»ÒdþïG6Û,3ùrF˸€\”±%Ø×¤‰c1~…b1莋+°< ®4|ʃ}Ïœr[¶â1ÃÑY.Õ) Ôâ‹Êq‰ÂÊ凜K"°zfpðd›g¼YÓÚc'é¾M'ÀÒmù ƈð¨kÞ:Gäûy­˜gðq¸!Ãz¼£Éµ@D‹ÖËä1_*rȸ:X‰.åvpÈ_‚\nõ¦Òì§G La €"Ùÿý(þÖ€Úø¹Ä£µ;TkE?ÒOLQCHCCÌ@s³Ú ~T]ûŒ‚2²ó·‚œ*·æÆ[?Çǧ/?(…pHppìø•@†h  sé¬ýO†î1M¾n³`ˆ!-fh— óM2™š{ô®ÆáÂÃz_F~èv¤+ú[¦-AÌÀM¯ùmÂÛûÒ äïO'å¢Ü•ÒFkÜ-ºÅü@6Ì£–žg™Ñï'ú‡ª¥Gb­ƒÉ’Âm÷V\b³Q‹6HLònÕø«™×9ê­_¶÷v ,¹ïAñÀö*K63{ Œ–aJè½øßRøZ™4%îJ!ct Sy¿J~Þ.¿oBœ@ë°ï\«å}턊¦ª2É01Ôú•£ÊÅðGn\¸ ºoýÁ˜1qzÀ…GÚLH aã˜ÖË;}xgÆ~C⛌A/í¦¢[¢Ï ŒŽZß4åI„Lny>fÀ­Qì FË Q–¨Ê0ÃQHCÄnÑ‹¸o- JñæFQ¦§ þ¹ÅñÁR;§ ‘Ýšh …ˆ”žq ØZy ¼å÷\Œv@u<ÂDÈàä«(‰RÁû¹þi¤„þ»À¢ÌoÿJal‰H Vnk~íÝäãäæë{éî’õuÔ¬ÿùž°Úÿ¢ €×~a¸î°¶6OÁ ª>,±—Ç82 5k®>æW Ò5çÝbµpsNý½ÁýœÌjõ•p$¬¥CA¢¯I )&h9*¢]ªðªÃÉ 'ûâ-@²bÓE>Q ‚ ?"5|Ñ|àdúu§F‹õníãNe]0Çñ•EvìVnaŒä ˆãþ˜•&+\v™»2-b¾çs¿Ö%¯®}kªyÁ“Äõ~Û<ÿ­û©hh =GÛ ¦*K9\ÝÏ.]©?¸óÖbËÑ_¦µ}À;×yŸ´©©RKŸ©Š'Ä=ù`T_°:Kg¤µÉ'SÐ zLoUñ®Y¤3 §bÆÞɰiïî'ÌèP$M„žŸ¡0°#X;ŠùoÙ* UZeO耎±tÍ` ßwkTc&›4AX÷'}º}v{ž‚‡þ»íuʼn~Ä*›;Îŧ÷ËŒçÙ#–¢s»¹Ã’p´k!ýw)€I þxîçz]›=ýÓ±Í[ë§~ê.Å2€o2 >?ÿ™êzJ'TÞùÆÖ½ ÔU¿?`ü¨XT'­9̨¤ªì93~}\ IB E’ÿ/&r;¹–!z9éÃ~<œÑCo+¬7ÓÙr<Õ­Oo|¹Æû{˜ Ù¬1T¼gÑe•âa¶.>¬p¨ä7Ò9 7pVjåI¸Gwwe½$/zx£úN1ŒM~\$N‹iÉÔ¼5ë Í ‘^ÿ:Â&2ñ£BI¯º¡šš\gˆûmǸñŠB+Ùì¸Að¶²ô4š€:Ï-ÜêÛ,DLßÜ;Ìmµ–é_†÷Oé w¦šæ8ûÌŽdx•qÜLª¿ëç\GÙM•.Ú7•€µkº±ˆ¾ãŽ"Ä5µ‹µq•R]/ `uôÁÅ{ùó¹ò„ù§ZHt>ýƒ^Ù`Hõ¸üôð”7ÂòNï8±™ [½Ü.aã§4¹|çOƒ Æ{¼ûG0oéâ z¢b‡Æl²¼(¨/»»íy)Ì ïìƒ1©¶¶G3§>29wÿ¤°E»”—ÆWü§”ãð¿Æ%Äs@Ïøñ°%ãŠýЖ8C'¹ŽÚfàô *Ö?Ó`sèYÔõ®¡›Ÿ‹˜ºgVh›ptå„•Àè(œ´øeRD5(fuαç&#¨ø‹ÙõÖ Õ1‘‘Jåt½DS—åÆÈ6¨ûÎùÚ‚ú¡lˆ!L<àÎdT+ܨrPê8̽Ù芭—-ÿ.뚺α'\Y†éfRX¾év¬Yäå[ùÇÚ­üûR+tÍ[ BùÝS=ø!å¯t9W¨KØHuæ´zzï‚ý“‡BGÑ1 ™HC‘?”z#âê!UU½ç­Þ?Éc³â·‡çk,Z\ ½ôèæ·Ü>—ûQw³‚úÔM…¼ýÇ|ŽGS Mv&öë<¼>w:Úpn šN|Œ|ñ3U6á!Úârù™"Gmúµ,äºCæ+u+’×dµÒˆÎÛÉàGÙøJÙAòÖ¯z BѾƆÂ×r¬OF%vR‡ŸŸXWÈXåb-¼y3µc†.3“ªbè·{83~ÌhÈщëè°Àn5-Öt|³¤|¡~Žj=] àZ–h‚5“ŠšH Þ´¬xƒÙH)žY«‘³‹"ÝOÅôx¹˜W=A‰Ý ":\=´?y ŒØPQ zúûwnË ëiëeYyƒ„£·:iù¶¬÷’¯À97âq!u¼Økû„Õø‹§&sÅ7i‚¨*¿v˦½ÁŸ3æR³êºOzU·;8ó6õðÉøQ€=]2Ð8Š‚¯ï³Á{­ÉMŠÍñJ×—óÈâVyÆë{#;ÀÚ0”;‡Užßïþб‚»Ê!RÝJø”8¯}ܤ1ˆ8\¿o–ø¼ßz>Áó'v¿òP°%lÂ÷zºÆ,QÙîM˜ÃÛµÛå ú8]KÑùËQ”-–M®–½ª`råÜÍÊï‰Ãæ¤ÐŸ§ßÅéÁN°2à¯ds‡ÞiÄ~sÿÖÇpîãä(ÒDVHú‚ O.r½ãšâšË̬šRøÃÍ\5‘½¯~[04KŽYT{T8Ô¯8 ŽöF…@;a¿«Ëé><]~¥Õô³9—5©ç$•(Šá²ÓŽN«›?Ý‚pñÉÁµßÉáQôV3ÀÖÆŸþ¸pU•ÂN‘ðÅ2yš…\ˆB€ó^ooäÒj'ƒ‡S=ªZ!p¥c#£Æºk£‚Äöâ{ÉÄo¡§d˜Ì]JBcpMψñ= ®Šn/ÍE°µ—×KrîÒrp‰.ƒÍbà*+à cÔºŽ°4ƒ.B­PÆsƒ%f…QN}pïÏX:Åq<ŸC9RßÜa“/ù¬äŽ|#ø[”€C‹°ÛR¶NFg)ð–Ò ”Ê…†ß^I•˜Q[“8PsVaÍ+ ýˆ–®“D d]ÆÈUz½³‚ Íý±ïQ¸ÓGÒm¤…KÎ4l(ûSö¡AüV°?”u&<Ù>‹"6)Õ—e˜mŪƒeãNËEïË ÕÂÛL8;8÷”ø@<-½è/#X.§>2&þËò²§€|®«lmF'IŸÞ*”×Ääy:æD*wô¹UX q-4·Ëò Êé…Uª©ÑÄ£`™'OG!P±’\è`Kv]²Ü[D:ã˜JÚ¢^aWžxQsYM^z“™M›ã÷C'÷jhy*ÎØ ²~Cž$Ýx]ìÍj@W±Ý+̲ک‚÷˜óõÓ^ü¦ëØØ`Fý-K3ꞣ°½|e¡m~VÕŒ+7{D檛¹v9 ¼ñƒ|i¼µDJQݰ¶qv3©vŸõ£A (8n‘â¤> ªeWMp ÿsBÆô`ÐÅuHõï[Õ<ü8Ò% ‚7Y*r›jÏÈ}eCÅÂçÿXj[ƽ ¿· ;þØp2˜È °yœ Ûe-û ësî•€‰¢…õƒœôí+¼ËH’z*ÇiŠrÞ’sÆ,©lß–VÑna×ËÐ_…ÐÞÜ œŽ…>]ò.hÚ¨Þ+¨¡§[!þÑÍ;ù€“°ëF¨ ¹>7™…ær.L/sFšVŠegâ}„ÝÙÏë šop± h»B6ÅÉ…:ÓuÂ=ó,„¼^5H dd3©“ëAT;ˆ4‘ ÀÁzð˺+P×ÎluËú›}M›Å~=­ªE»Zâa<©3]›«ö‘ücï0“[¤1¹5[¹H8=Œûµ[_·DuRÆöSÖžN€Îû\@ðt´þäî—ó±< Ôâb–ÞñjGïˆ*b€£âöåRÇ‹<æœÿ‹¨ü+åܰí|õŠV;{;Jei#ÕàÉIš9Þãšê´¨Rüßö×û1ÁT—‹XÖ+CÎî‘íƒÝîSÈ@Ê šꮉQ—ø:Š‘§¥†¾ö:Ö¡$0G¨Ä†åïûf 𩥯$Ûúz–÷»\U*ª\¢Ð쩳]W|bFÚÙÝRøÞÇíÀ‚¯(míSXê®Põ©˜ ÷ü­Å®Rg›íÿ°K§Kû|8Э»nœº|µ±+ãlÇ_e/TŠ&½•›æ@Z úf":#×±;)jLò—í¸€vÁ"V˜œøDZ×0 þÀºQŽ]ÕWûDÁ…#jt Ra®¹ì%ï%³ šoåÁg¯øyâ`k4)L[«ì:©iD}JÂÁGp¹•ãÌýŽW5fgØÒ©//©t»MÆ4üoCf=xØêž.Bí#”,¹ê2íëo·U|µˆé¥ü´ï¾ªYªs°Z'*Á5×|CœC¦Âªl˜#zügr±?ˆw“GD¨4Rˆ¡B÷Ø;´×ÛµRŸ3è¥n‚g¤ÖÇR i/8R\|®ô$æiØØ²rA䑨}߉J©>O¡î»¶Ë] Íìº ”͓ǡ–€1èi,Ò}è0T"r1¢HtXe¢¹QLãR?¾Ð„ØNG,ʽ ¤+:þÓa>8/Y³µ±R@¤‹éÈn²§NY%/áÝ®sŽó¼OvZ)š¤W2ÚÑÊ2ôÓä›û#¡âj¯òëíH€VW¶÷SÅ´¤°§[xSµÛ”•u7ö"\fk.Ž·úSÿz#ÛÔoRÐêÍÚkË,GN€û2j?dÉÙrŽýLaI7h&Y6ñyŒD¤V9 sl ¡±¯#n~³kæËÃàkÏšõé`>—È€þ:lã+¤®Úï`JWdÇ$í¡þÌæ~Pu?1E™ñòìýà@*ß 5J€ˆÓ"{nœµ¯òƒFIMŒaé/-(ØÁµ5(¿0Þ‡Ÿ~<Û(ëÑVÙ\N.ª¦«áw!ž¶? *«8,?ÓJm¿Tm6Td 6V¨Bžµ¸.†k_ºPÄ«eÇ©Ü2sBùôÀÖN½&lªÀØ„íx 1ˆÚ\Mø<+$VÖñNÛmpLóYiÔªà‹«ƒQOpáwl!Ù6tU BvãQëÊ~Ô~ú'Œà·èñeÃyÕi-{ºŒ ^ {´Ž“ÀÞ¯XÊcX ¡ÿ *ßý|8,6±-7VH,Š­©½kb Qà <1¤»ƒðŸ¢¢¾ ÄàýÐ&õ­ï&¥õSz·Yug³ºEMý9û!Öñï?¹¼á+iŽ« ë¬Úþϳ8k#\´´»ë3¤D4Ô E(hŒ8H°TPpÐïtãæ| #›×l]ªÃ„»E6Xš¼ '¬vt°+ÚpÉ>Òì5d“p:›}¿y'”Òºv„ËOº‡m ÊäWÌIÓ#èœAI”*§•1-qêytƒÑ¨øu2Z·Rú;"|ì|±Ý'¦Y}¬_´¶]übÖ^ëiºa³£ýÿòZw_ ï˜Â‹3DxÚÍèËÝ­Ï4Kº42׿‹–]fizÕ_‚ñ¾Æwï"H @dQ(Máæ(l(gÎ/·sÆûþñýcÇ€Åüß E%öÐ…N·`Úÿz3|–ø¡GM¹^ì H˜ºM@b)òÐBS¨‰ˆ±Æ¬åáÔ áy3™¾š£mWÕUP¹|™^°)7ƒøHí˜óª¶ºª¢f”«dˆ47‘?èpe%“.VPe°#½Î(qÛë{œDà5=uA$šÙ éRñò¥7Å}”†÷uϯ„ßû5‚G¹=ß©{#dŽâ³Ñ€-Áh¸NGÞg¬(¼w—7κ¦º¡g¿´AGµr£ÂÅÔó{6hà£?/`´ÃßL9½uýØ£å]hdó~Í/}̃yMÜÃr ±«‰ÐBW»Ü>æžJµ£Ïö îv=0…9qài¹ürK#aøk?Ó»ÈýRÃ%‹éø¢:_Dªê¾j4ÚӰ΄F2¶ F&ÅgÒ’ty’n––C¬>È.”þ[ù®„šQDg½ëdžFéñ—pñû¸yü…&æâý'Æs;@bê!Ö-Ñý]˜"@öuŠþ'8ºµ7ã™ÁE—NTÀ-¥ÜYQ­ß¬*‚¯_À?g<7|%JªT¶°gXóä;à®¶Å ^½!ÑÈ_ Öa,zœ_ÞÀ‘­^XÌŒ®ARtÇÃëÿÚŸ;/)–"ÒXY£›ðJlkU¤%šÏ‘ÿ-Ó~± gœd*ׂ]³»KwiJ¥É/œ]š€Ìå ÜÁµ‰æ®ôÒöÌ,©€Þ¡Ï –5P}L:R¥½9ö%`)½S©;ç“Z)Ò½…ÉÅ_TÖAã =xf Æ( ŸÅ”«B›)Â|JqÒõþð‹KÓ;,&íðË ‡¹ÙªÂGçgª€Nçœ ìò1ß|ŸåLù'8³ áx»qÚ>k-Å/þ­¨Ö›O/J`6#¹?¥ºW³âÆ%d®“PMS(/š Dø‘µo^r¸~ >t¨çÊ.î¿*¯îhÁ³óاPågq”xÕ+3„DáÄ#ÜaÉû€øÛVÛcêä§LÖ&†•>r·w=®¤üO±ItCŸþ⼟÷ bñ°†ršð"ê"=dÐFšéuµÐãÅxŒÅ φåQƒÔ×)Áp<€‰8j%´&ÑÜ8[•¬0yòÏJ’š%o"eK‰eFbºÿ{‚`p AhaÞL¼Z’ ¾tfœ5XÜšŸ™rçxÃÓÜ̘RŽ3Àƒµ§á{ ­Œk#U–/3g`),?¸«»Z«Ïd Üé–Ÿ2g‰m{ ˜‚òû×±ºvv¹Àãvp@3ÞCd.¸²‡Íò &&1x ó›k§ Ò½—<ƒO‡÷w’ão0 qŠ!¤ú«[' ÝYÔAüb„ÖpE¿à|gï¶âMçºwÃ<Ò‰k>-™dÑhiÚÃw¨¤»™ÐKê«É^Ç“Ý9Ú–ä qHJø‚T{Ô‘U%鎸 ¹ˆ Ž&°;_éK éG{u¿(¡ãYmr³&S!¼1¥1Ð\ÂRFæ,Þ“:ÈMÂuŸ}·#z`~îÖƒ:þF„Ø «å`¥Þe©KQ})>Š®GJ eî0Þçd5Eéøuð-ÐøWмS[¢€c¢¶ŸØ©Iè©JÆ]ºS5Ý4®Á¶9&#-Ç crK\Z^aûu}çΪ©§Æ†dd´§iª=ÓÂÙksa9?­šZµ%P„òixßÐ,Æ‚**'iåâL êvF)C²IØ¡ŠÅNŠ[DVå±ý >PèDÚ ;#ñOM).[ZÝØèQKCo†#b)«‚OŠÎ(1Á¼ñ(íþØ Fo«Úcñ4¾máyUoÞËe®,Ž&÷2… ±±nÔ’Wð1Á!#æõÕžLSÅú÷xKFÖêJ¢…”Öå`i M]I€zBžN w¢ÅÊì_tß^Èw«ò0I°©W ¤–ìw™¶ÉY\µQ8TAó°Cµ‹Á &ÖTܒص9KCZ›=P†’x'VÚÇàä ¾öéG¹¶.·x ù ô»»énO¬}Utˆ4ªÓqçÿzüÄ÷Šè=gW{N[ÿ9¹ëòïŠÊ¿­žÉPõ%îò.Bùa^%.Ëɬ´Õ+Qšæߎá¤&P tGlH|—Ë…¦ÆÏ&öÖQ¬ãÐÚDåþp¬GA;aŒ6V³ÜôóÔ˜Ž—ýˆ#”;ª'ú¥™ïdBHÁ,$NÀïÿtËê˜;'0²„Îb¨+½má¹Ñ뤷€ëP¦o,.‹ØÂqC7€E“SÛ9\¼æÃÎy)È'7ØxežW-Ù£- ¼.øì;,ÊØÕã1£”‡õ÷Ñ{Þ@¨œR>Àp.‹4&Û“z"•? ßZÖ9&F‹ò¨¯–Ìüy;Ä ‰ŽÒ*^—ŽÆ)—6Çù0ÙR®‘Å91ÝÜöè:7C¸&³wÁ‹µû|¦Œó5»%NX-›¾c§%÷­¤I¿•z¾ŽRcÕéueuIôb.2:Ãþr€hŒD áûHp©®˜ÏòÕoFª2⨾€¤ñ¨üS¢ù‰Xø9ܾimaG#viá}*^¿Ð퀔&!>÷’3âÈOä07ÿŽQnh@Ã{L€ýy÷Ã=oäƒßYœY‘|ΉÌ~ä×ám¸#±›„Q ¡ki|þÐþÆ2ל¤•ù…ëB…Ê ^Ä’êô DöàÉm1­%bw4z}{ÁÅkCޏÌ'ÝoWk&}0™ñ1eÌfˆ©‡Âvhéï0¼¥ÇðÞQˆ%FhAQ m´F®ïÈ„d*p’‚bêmãî¯A\&†6ðQv­S!èjV¨ÁKWà~5ˆ<W70€—Ç‚XDí.Cœÿ'ÑžÕ.ºÛ^÷[ö vªoÒR=ä*¼ ½’zärƒ¸ûdü¬O5B,цµ²šÜ¡í£ïžuÀ(¸]ÜÆÙ°õÄÄÃÚçÔÐæ4ah’\²ñ!~.”S’™÷ßé;_2 „ƒ ´L£‘È»ƒQ¢_x·Hò:Dƒ²1'Öžóúìˆ7»Ôóõßsß2ûÉrmå"JÚ)à©åø˜>€Ÿ·´c¹¤'¸Ç¶˜Cuë  K›š\ °†Âò]‹ûUyKlÝ_ §„¯á%ÆËð<4°,dU³¨ŸH~ó5Š-+lÒÝü1Tâ©GçÔ Ó‰X~|v“0šO…F8ŒCžç¥ó–{rAYž÷.7 :”RŠÿÓÇ-$xëß¾ÉT€”Ý87ƒ®´Ïû½˜×µÛ3vÚ•PеItv_ß±Â%ð,SD}稶!ºÞJ;’ð>˜Áˆ4÷FIꮜâ6tî›.}ä{fFG² Äó'µ†:ÿ˜¼m&Hr¥æÝ%P ëqË\­õ^‹Ke…Ž nØxõ9 e«‚»~äç²~=?J6äf1Â7ˆÖh‚¯ˆ1\'æu†¡Y"òç8ÛéÊ?´"Kˤ³ü$dùÜôtYiÖ€¦¤ÕF ûa¢[·™]H˜-N™Hqó8@®ö=ÒcUœýܺýshŠéÆä·@9œªØGÏ"7Ðç\NêD¨ó+…Þîð(¿ µÈ8à„ötû©<‘$–§éWÖU½ “嶇(›%½qft¹3àœO–(#Ä«‹’ÏW/Žÿ·vvok.ê0g€Ä"Ùk­ìõÊ-­ÿ®J^¢ë]…ÿñ‚Æ œ#¢f7.úÛÈÚH¿Á°KQø¡Ì 7õ2Õ>¿kÑŽ.ÿëÞËÛ¸ùvþ£“ûÒ‹°G?>Ö›"Kk¦#ÄÜ-ÓId1ãêÕì õØ«“)…“ĉSF5Ô¬sÈYú³ùHîÚ;nÕ” ìæÿ¯³å£¾N;œŽðÎÇO!†ær0þKf¨Î»í^Sf˜–Öøâ¼­Ï§wÿæòÝš6´Û¸”s“•²"6’àa³xjÖ‡u%¹ v2|n«¦u©å×.4- õÂgWËLÿââ5{.£7Î í ü-'÷ÞÊŽ}{'VÞ…®xD§F§¬±UŠÁ' ¦ñéxX -î,¤§3/ìûñpN3( :ŽùVå¶µ—·–¾)HËœ¯3ÃèëUA# ûw¦VÝä¡€³Rö\ø†7í+IX£±ý%ŠÃƒâJÌã0w¾&ÔäRÔ_YØnÙ:* áUB·JƆ <«f¯ëYÜÅI9ůŽÞ<™|Šòq §s¼–X²CƒŸ³€Þ…ï*˜ÔéòWRDLù\L†%ÒFTRìÚ&…˜ê´¬Ü+{)¿ÓúÊ/·Ù¹†S¬F/h¢$bbX±;à{K%÷= RS†{ ¯äã'wZC„ì)Þe¢ò^g׋âtêD˜ß„3»y*G<"’×ÓåèÅK †ÿÖaØrrrü¨ŽçËpÆ£7Hrs=±“O„˜7§·Ï‰{×B1Ä‚›L+Ù©×+ªžù¥™ºw ÒÙ•Lg›fÔKÁþU9ÉBÓ|¢:9û„ûõ¹Ý¹¨3°Ó9 ®ý»’bÏÏOoE³ÆlÓ'††ÈMC—ÕªŒ‡ˆ.(°Ûêâü‡Z(}hÇÑ; ¿Ð^L…™3/7Vñ¦1°\$•Išë7l­{¼':“‹ú–þ;¼Mèè°^*EC;2:7û~³'tIº¬ãIkd:sˆse‚˜²½ŒT$TqCL¶@ ÷M¨2^+‚Ã_‹U°™isd‰ÿ¹NеMò`…Gf;ªœÅIt©AÀ‰³÷ú=É/ïXç}ϼÛéåf=ƒr[z ’ ˜=m9Þל&]L µ¤ýêboóL§vkÝy$ÎqEÈ@ÛÀª'³Än9МV^pqb³ª‰”ê`Q­§Ä2E$:“í#aÃBDèú±®Teå ¸á7‘êPÁ²¤èÆg,Ø8Ps›‹Â¢€fqÜgM(<Å&“ïÍÒA0N$q˜r4VÿøuUGgÆïƒúuA[ÖðΉå†É@µò±ù–G­‘c*´q[`h°›€L×¥*qT4>§¹¥LsÀG5Ä*.¹/v;†V¶@ÄEíZ°auݾCI[g›Ð¡ ŒBîìòÿW¬´<%4ž$.-ivMæmùÉðÕ<Õü«BS†Ý’f T~Û‘®Ù³cÄ£HêõFxޤù§Î0«•׌Ãë¥ümØøÑÇ7§5="B²ƒêË©:ÉŠŸã ¡X+—µ2ˬóÓ3™8,~ Rþ?C™¸T¾ÀG¬Ç#¾eÕ÷8f ÑrÂâhâåþþ¶±3šf¬$ÒßÄj©3áÁÏ\èjÙª=GI'£Ù—"wGÉ (h-|"šùðç?Í yñ=ÏÄÅ͈è\Ì¢ýô ­ãl6šà:ºÏ?Š¡üã÷‹&Ü›×lÎk˜c*¶b²²w¹¼-ýŒbÑ„-údhÏr+v„ӣƢ—CÚ?'PŸ{Þoz é¹ò’UbÃ6ùëi&“š·RÖMÅ‚ãoîK¡Ç£gã¸| ;³¬ËíÒÈ"£ž­ýWR’ôêÐPH¡?2¾ö"$_oš´?Äp­gð«ÎÓ§¥e¸î¸ŒÚp¸yÅlÅ Âr[ÁÜg»$=˯ÛÞ¨B6µôçÞ;VöTV÷õÈ™ÊÐ>¢ZuË—}.ë-Š_UçJO‹ÇDÏÎ;_¿ ë«× TyŸÚö_>:£˜,‡È­MÓE W¹RTZª5¶p,ø½ ÐÕwv/}‹–5’þnõÜMw[z>_É„’óáÍ—óùÛæT¿žÈ}Ût€?àlk+¾êýŠ1Syx‡“€áì8 ¸S„PûŠû÷2xƒÅ#âìaÊÀûi?|Ÿ©m q}c:ÓÓgÿÓx|µzŠužu Ë&Ä8ú­ÖeL®ÜíË ¤o·} ¢ñ²¾8Mý¢ï5iá½j¹¨T/dƒI¼$DÕÄ-‹Ó ýŠSn`\a7.ýŒýu—E‚€¤~Åÿþ?ÒWÄ<ó>•=>ì㺌×ÿКډ×Z}_¨ŠÁ ù®6“ú¿÷ iŸû€}…¯óþTRŒáž'Õýnïá •å9€€%L"¡­M·µRdDð—žèýí—È_²|åBakQs¾ùsD=@á6¹‘YºÛ‰Úëä§Ec?ïÀ ÁxB«êߊÆuKÞí‡Í Qx£A6¹n ãóÉI9²¨œz×fü‰w,UuO" Êd-VvÓ3fS¾å7_¼9g<Ç€m ¦ ¦d…®ML äRÑ àÄ ‹]ÏÛ;jiãG‰ëcCÝEN=ØÜƒ÷Gy–çwüÃì†Óº²â«’,ìÎi1?f~.‡OZÁh ‘“µ×ò&XØzHí—ÝØAù®ßZwòbéPã’¦üoøðQ–ž/¤›êþçH:ш rœ†oáT|°ÃÁË?ÓØâGöK©Ö¥m’Š+…þÉ :‡W§ñ<¤Ô$Ø^çcMpWøÈ‰eôΑzp<ØBÝ‘:3Ÿ«‚raºèù¢c˜C¼£’ð8ò®5J…9Ž€T$|£’ß“ØÚ{žûc¿v¿'c¨M'-ž©d}ääM‚Ž}<º^hNE]‹élL$—aa 0ÍSåÓ!>öëaŒ·‡¤õïäåŸdo4b/;Xņ±¿æ•r ðUíüq«¶ô! Ì:îóüÌÐ,‰œ;{ÐÙ<ÕŸ}†ÿ[dº`ïéSüºñÛ®ÅZôjý1ÊãÜŒ”9ÔJŠD~{¹µš"yÀ\¡?MÚ~4>$t¨xôÍ 8ß_§”‡w:†û vd$‹bò‡Hñø3z6åúÜQdÖÇÃpkGÇ/ŠîÛ¦BÉîR’X´ý°ÃÚ;Õ̪'Êã%ßE5YF9M+ÞĹ‹ª³?Vdx«{ ¹îî5ýNÖq$`Àö1û—ý²±¸e|—ÈXzÀ\vw¥–dÅ7‰Iž~W5_[oØõ&W–wÂÍy©ÜÇf´ëŽ*©T«ù/ý9&h¹õÑþ¼Þ>o&̹{ÏbÕV=^/uÖg‡ÆõQÕh(ñhãÌ_sû·"·$"¼Y1”ò4߯-ió„nféûT±ÁdVë*þÿ*€TÓžE ëHô:WÞB–`•:yéþ´z,my4ë›^!H8p“qÖZÍþH£-/zÙVÄéYèˆË¶sV Pl€âLÒîŠÝ«ä‘@¦hœïPÄ_¬ÆÒÁ×û®U!å€ìÐŽìÐÌR…ñbÚ( Ô v·Ì*j3ÞÊÜXèÕÍ‚ÄJ÷ý`<„:ãõ:ìf~Ì‹B!È—5xµ.±‰ì×õu¡ö;ÏN|_PÙxÖ/þíÁf+·’z\èÝ5cD—ƒb»"#·Ô0»8›´¤V(rù0¿0›\š€KÁíÔ7«øà­Ó}Pk‚å;k#…?Ý1«5ËÕñÞzwØS_ß<8}èò=ä4ƪï_„Ä-m-Ú­¦æq•O~Ú¦&&t+®'T-¤žX“¶Ñ Ìtð€Á†ü3ûÃHç/MlZª›3·³8ß™€¡'²áÌÛÙ ogÕSU~Ñ´¶%Î!üuÜîA‡Õõg †EE[÷ùX¸SXàЦ„Í|‡M>@´‹Á¤U—/‘l ºÈìû¿.v”Óíâ÷'¶³fŒVMÔPV÷-£•‡^Rè cÒ6_›z† “&:÷Z\dâ⣡عŒ!y^_Tû9æRˆ¾ˆ{-Y? ¸õÓ4Jxq¿ë+ª›k‘)~=j¢ľ.×£¢•a-®ô4,ûÜ{_´·Þþ\xå–‰é3Ú#…¼Ì‘A½ðËÕ­Yë?ù?ôû~º£'¨\¡2:ìäð¬ŸÁZ'E”cBÙtž Þ:hº¸2?—£½ ,'KœD¸Ä–te¨?ÞÎO˜‡ÈÑ_ Îߎî“ôÓØ„ÅpòVóŒTüñÊ¿Ú÷³šMá(&.ÝÇõ†ñà¡û¹3X{t8—Ī»w5J` fz]x¯àã¢~Æõñ<•^ÅωOw¡’–j·áGodýoèˆiàKñ0¾ Åk§¡HG؈Ù8¨ d™ßkâ-q¹ë·šþE?O4òCÞ0Úü§ÅC: ~IT"%ë²×¥cr²; + ÂU"ýÆfiB”;!‡ÆêävÝ ©#`Ë £Mûðž®Ã6lþ°“DçÕÑîûËËÎ $hawÒ°ŠEƳ$¹cÃÑúMÒ‰ÝïÆ„þ°½¾i/CV­UɽGíÆÓ•¾Ú2á¬V–)U¥Z€¥¬†»Ø^Q‡ÿjèΩÇCßS\—º†oMñ8Ñ@œ†Þò¯ê…À&]×o»faE 7”ɸâ}÷OÆÑ5+¨Ã©5îX¼-a¹ÈÄ\x²X0À³4™#…Oév¢[v'+‹ !$ ™±q®Гj®0£}-Ôä8ì›y‡™Gá5•t!›VvÉ®¸‚ÐMK9ºof~×=ù¡8ˆÌ}ÔŒ}½r17„  QüqÊ¢³ó=ð6@ž3T2´c÷?©œ¾ó–ØG« ñ¼ã–€¿!@_¡uža"ßœH륩f§<'_3ynúÞ¢#pªtÎ _ï~:Zg|'T` ¦~¹»‹Ì»½ ÷fÕðdÇ{¢ýH­Í¼F£u1ñOI.Nâè‰ÍÙ†¤ÈóÉ©¢FѶ”§YÌc9ŽmóýÆwçÒ¸áƒ)4ßf ~:+Ë‘p\ˆ5ù¦ì¾#^ž:ÒÞ‹ö7‡,bSh§iq0Ç",ºÿBÔªü8É¥-ûfiþa*^UÔ™,¥Ég€ÿ¤èOy¾ä_v‚N n;ïȲò“p¹†r§µ ßÅ%a­ƒ—4v%¶|d;D¾g,.:­|¥¦å¹ÕÿSĤÀùzöÿ£ž„Ød`£©Y(ÀÍØo¶j&ó3+Dz}n£ô.:ÓO­ÒóB.õ`,>A_-Q§YÔ>Ï„üŽ€ÐPT×E¾†¡?iº]ìÓq¯ðq¬‘w:gùY}$ßÃ–Š­?'œ€ ëN ±äÏïöé%³R:]+‰V¶ÀŽÑ§ì­©«mÞXÔKî*ܪ‘·V†¤ÆðÎ2’sÇš?Õžaaørïû¡K<‹†\ξÚx÷ÄÞ!‡÷Å×H«ÅÌTìÅŒàÉxÙ7áˆ_Ñœ’®8èøùyzB›Ö÷mçrk“õ ´ß lóIk¶ÏìØ²wÎ<ô üIî}ƒ­BÚy{xª‰¦U¿q3úä¦-óóI`š#¨ ¶½ž.°½¬õÁÄTfŠ>¨Ø²ÉŒ÷oÏF)3Ð¥YÉ·X‹¾teäd&:ò†ËÅ34ê _W}ðSe,ù#ðQóÄöV¹ElĆ› lZ×÷dk«ò¾³;WîÔ ²Ä°ŠÍ^ÝÅÀ‰Ó¬Iáú[qó“pŸ±6;†.¨Whæ‹Wì5å_ûry¼jɪ#ÿÄ ƒˆ„í§‰mGJÖÖòQv-O“>Û¬e~E|yK³n¡Òê'?’å]Q¨fòM6ŽË‡[åî{惆DïøóëžµªÑyѱ­ë)·ÜB­Du‘µc@¯%†ÑýRª†ɬw.†æ€¦ÿ°ßý+®ßÖ30@ÁvTw¤>n–áÛæ%¡Ž©pÃù-½ÏŽàšÞ 2Œ@ÿù§×Ìëœ™Ž®é¢ xB•h ÑÅ®ý:ðc{²åi8VňI¯-,1Ž¥KËdC×vúª¶¡(ù(û_Ø…"‡oçcæGºïå4ó¾ÆgêµD” +ÁóYEÞf1¦9,åÛOàȆLg!w"à¥]4yþžª·ð2Œ)o+kh6iYÓ{ÃÇdÍ#]n„e²ëÔè ŠN‡Äºö¶2á¥*lÉò) CßÔG¨¢£€Ö˜ 8DáñAÛÍ)}Qž½“J<« Q×ÅÒRÁEþýþEAPÛ‹æOýËâ…Ô0U×JÍÅìrÐ4 ùÛþ |»µ+/ µÜÅz?+„aüÈ¨Ý =<åøoº0mË>=\Ø»†w€šCþïPZòDzžd ^ŠlMá9Ø’’jÔ&W®Sƒc›ÇQJ¥öfãF/€¦"ãÉv?k®EìtP±:bsÖ½ nåÚœÇ!>õ¬p°‰AÆ„næ xÜWc™ÂËZÏì!~fôñê†×ƒ—RFyÃ#~O³ÆªphÓ|ÒÖÔ‡EÕîüL8OÉÕšæÚÁdIo0v•¶—ÝH7RE×Ãüãuê]ÑDöGŒXa¦a0b10ÝÌííÉH½=Öø†¤ÌßßD‡ÚiXdÆÌ_5cÒˆÕ{»$CŽºwü¦ù}Ç ‹eÛ{¢!{‚‰”ñ’\»&áܸ½QÀÞÖÎAÈŸ£4'‘Æþ0ï’$þÅ” U©êù=Óµ¿o‰U5fkYCØÔsãø]©cúJÿ‹‘­~eÜ^\WdãµK$aÁ /‚fƒX”œé´Îßóæ^鿣1LBÀ25¤Ñ·,Ók§ç!¦S.¾Mz Oyœ’]¹º‡;3掣I”ÂÃñf¥¶–ÞóÁòy +ïi›áM F7Îçú…Ê·b#p•¯Æ•Š „Ók&u¤ævÌ3LH#É]'ÑÐŒ`n’äë®3•¤.ËpF5`‹ s\A´É^ìÒÇnÌÿ¤O™*ÐEi…YK0¬~‘Þ™¬¹6Ü,mö %ž|‘7UуcæÛ}2ºZ1 ­ÿrðÁ1_JB •ñŸ@î •‚ Ø÷‹Wh%iù1Õ·õsmæ„þ^ñÿåB#Ü *þ1oŽÌ"ÖQ’údlô+áúd›6’u¤jÅüÙŽEbgùF¼y«0æÇ׌Œ0ršW Ðú¡Œx}¸¯fXrÊt¥Ì C¦£t߇úþ2woAKÆÊµŠ3ÐUìM·çP¥WùAΚ£Ÿ+ä 2í·šÀFkÜZR MwdöínF I:Ì)wß}^þìþ»<’/ýx’uŸ±sèg “/%≂`ë"zˆñ„M™Eþª/—Mög6ãÀ=o±ê}U‡CB6 à&0ybqîÓwÎW»c ‘ªõp@Ñ›¸tº÷ºö-(Ë=âg+ï"ÚÈÞE뙯vŸ§Î{õÒúÏ€›´1ȈÁ£TYÀR¸ô\‡ò÷ùg–ç.[¹Pºœ•%é)š&ÈV}®›–s·û]‰#´_0Ô^A –†ìI³œÏm[Œ+_!«Sœ"È2àfµQfˆB0¦PÍeÒá5ÅÑŸb /d³X(å[U,ÖÖg%°êþäé÷ÓÐél­â¦»R[/|Œ?¤|]”Ò[dæª1”§‚ª ¤Ü{,-nŸRÏø`BqF•xþ’Ô§~EwU~q<7h$„·»=ê5ØÐߌ¹ Òž”’ùàï‘Ä%u”Ã>j§)ãæ¨Aµ_ÌááßžÚfg5ýp#@ă¿øeSo—µ¤Áç4E—%¿ ÙgH…Z—Ab=h« „&$Ò½MÎõÏÒš?¿Sxm¹¼Ý  ´´x{}~;]eD$ß`ì®$à¦âÿÛûæñÿ3Äbêå=r¤&à#̵yšÝöÝxsaCŠ&ú#óªeV_¹WHR.95 ¦mo?7NÜ)>N.›ç ȳ¶aŒZû¶Å齯*uC>ÄýK&PÀ?)Š1VŸ :žVv$döVÅŸ[ªnCÏ~—õY‡û3ÃsŽr­æ}Œ\èü±‹CœˆG;§=ŠD$\{Ÿµˆ¶mêé¶Ÿ±šDÜlKÞüÔ(zgÀ6þ¯ÁÓMîl=ÃÓOu´¨E_³dÄf’kh@'&€äLÎܲù—Ú¦gà·-¶úÀkYƒD¾ ±°ÓfbNìt¡ŒÜ7¬d„'WDˆ§¶½è¦~žBkgõB&CžMæ¡þ«þRmyQ. Ü™ÛÍU®“àÛFY#LúĪM{¨I'^—uª½-똾ZÈwòbU Óª¨Ùj³ÒϘ Sµ£æ2Pªþþ>µ†O¦ ïÈGØÜÙB“}‰V–†m«€ËÀÓPø+ÀHFÊ 7¼š$…Zí]¥XÆõd±ÃIN}•›q)î‰ja[¥òiO˜Ömí ¬º3IL@YÁ]q_ïB€à¨Ù&6šºŽˆWðÙ© m`¤PKs|òöº)Æ‘7zœŒm@›½Ž“h ö‚ø!h›[NENõ¤ý_Ì}¢maõN­ÞW¢rM¾;Í>r áŠvýÍ:êC–D{\þê+~VBƆhƒùú‹" zÔ‹S5\—zë“i?‚F?Eðbòô>ãã)Þ^ü1œþý¨†5¯é`îHÇ6dæåµ±Cs8Ô ¤@Ñ h€õ%誱DÕ)0¶.Òž²))µ·Ãÿz nˆ×(ô†cœ”ßÚÙ>:—ɉƒè¡q­úÃÐŽõãWt¬%šÄozmˆ'GÚk~ó¥¼ACˆ¿¯ˆ»wñSÃñ1‡È(š6(¶Óòîxò—c&”¥µ‹¶Ó3Ÿm}Ï¡hßfV…Eäz9 © ›·O(¿MW¹«,›ž^½”­àðØÒn"Y b¯ËÝÇ@­¬Š‹|vs`“=ž5 Aj±E2tà݃•ÐZ¹ b%ÍÕ©ùbS7w‡3(q{‡¶môÊPŸ³ó÷@~YÊuhàa”áXñLF½ÏЃ«šæÄŠ›©-œ %ÑÆU@š/MÚöñÄ‹ÞE$*lbbRší‡tlÒñ<ûL¯“>þ>NiÓ蛸H(ßœð…Gâ¬Ú3¨dEþ™ Só•oÛ#¶ R†íå²úŠžAδKïLm€g(=Ÿ¨óm½¤$C„—ƒñ(Û&vHNÚçˆ3‡&æÀ…ÀÓ=¯e¼åÛƒ†ûË ÏÍWªugyÓ½l2¢bʸU‰|ú÷—¼¶6G¬ÕSt3tbŽ)Ú¶öZCˆx¼Ÿ´ž½ÿ3ÕÅe4u¬ŠÒ´õÉXŽYÞÚÛ˜×è)›ü¤x|†60„M—!ÑG(¨­ôZð0ü›E#lÒà×MI¿%ý¶]ÿ Ö@çðÐRNŸ”ôÞc-sœ® Y„r ÏÄ¶Ö s³d,éºvµt ²üVf{Ú™½oÅ5+êX;Û™Û I@ºÎ¢—ü„\§ª|*’ð­þgÈzºèLâšz?ñ ­Ì† hF•óu¿¬ì)ü ,Ä l¢§ŽÍóÂx¬óœº ¼bQëÞ¹%öXäbÃ]J@Bþõ¹K²>…~Þ)@ðNwlåòmö}(Ÿí¿ì€cÒŠÍ ¥ µ¹!J‰e ÛÖ,6øý­Ü-Z.s8ÜåºÄÚ¥ÃY%Ñ”˜"x½ØD_`X^·¾øÜäÅóþ”W@)ó„ë#n­:’hÛµ6®ªmGWH}ÔŠáz|`ým CßF½iŽmìmš­ñnð…„¥Wss'cq%N©©úéâ5süÀ™EMl#ŒöŸÍ­]Jd†¨e'Ú„ÞrêrïÁQø¥¤[Ø0c( <ò&Ä­A¸‰›öùmô‰‡KÌœËF"Ù®‹ö8/ ðÔ÷ùª£ §)àm6%M;"ÁçXMÓ§üË;šä³Ô=ª3e– Ñýe°ŠÓTžv,·;¦ïY÷N¸¨gˆgÍ;÷R Žê<ÐNG0öxb”ݰ´WkÃ$°ë@vFìÜŒ|ïºÉ1œÓ/HW÷¦Ùà†°t?Iq’mAMË£ýMrŒ=ÏxW éXáEô@V˜e"UCã÷«”(*‡™ u•èIS‘Gç@P†rx jÍæâ³}¾ Ϩ~þTÄÜÖ¿ÉŠÒáÞ«"V ÂÇ2'É¢P‡ŒˆÕ¤A–’:ïµãÃAu¹¦¸§DZüÈÂráùú–Þû6¦–ðï¥OÎ =(õ‘7£08s‘w…&úÉ~´qÙìä‹NjUéˆ/ëv²ÆÃ ‰–V¥˜B©î´j’kZ°£^céYà³40?ö1ô,4Ê=‡AÈX«¿ C~öºí ä2bÓE›ÐøÐªê–!Ëû¢5î>VS+}»ûÊí‘AÀüo‰’5`½zŠæÄÂıº £Ë·ï16Í5ÆsþÛ1«]És¥—ž#’ãg7l´8??Ý-ºØZ§ÄP ˜‰ «ÿ¯·NÃì«$…Ghéa&S_à¹Á8}O‹¢ëÛøÆÊÏs& Ë2j‹['‰xKöDq»º3ko4ãEÞïây¤¥új¹mÏpG}4œ®¼€"ÎYË+˜g™†¯XõÐ!9`“@+jØAß ˜Å†=3Œ6”Ο<µ¢òU£@žÆX¾©œú˦ÒÉòû6}H û¤gºz±­é÷ü,®}âýTGXÒ!Cæ’ÏÛsöð±I\_Ø r7ªýòzôÄØYé™ÃVŠõ8JŠ^{ä3K×+=ÞE|Pv“9™]zr!•£%dÀÒTj»²rwŒê¦—y¶v½ª€LY­× Ç5BàÂ]ÂäÛ ZæeÞ¸ðƒqs{¡©)éÏë:5ðÄ"ëŠN®Â¨³éHM5îQ4iíe˜„´öÛváçóR)È<*íëEÜkßî[°îÖõëN‘õÝwOüÝ~”NB„4aº¬JÁ #éÛ'º²BÉH§5è0‡<ÛÍßý{¹S&>¼®­œ>Çÿðº«pŸNj˜OˆËÀ~W"ßµ¢y- '6i|xmékƒŠ^1§®äiE:íÕQÙÙÎÅäøfY:fBÕŒÇÊo¿£0ç2€÷Å_ôÿ¢’ÃY‘oPðS?X›ºfoÐ@õ#¿ÇºœƒmhýËn1ŒÎÏÊÒ7Ê"‰o¼2qeG´“Ü?øaòB”‹ö]ÛíŠYoÈ./_ÃÈðG&åź‘n¼Y67NÈN‘ˆÙ}[tΗ©CëöÞ“¾PA˜…w(†,×7.Ì{ìϨÔï?¥,Eñ e<ŒzöP/"·”ÀßcÅË ÄàƒTªDKSJsñM`6m”PËÃO‘4 Pº¥äàfé6f _}‚òç`zõÌÑßÃXí#JB:ÅjVìØü{B4Ôõæ×= L<žPz×¹îRýÀ>ÓûQ1h0ƒláabEÉ;UWOm~N r[ïÚ Þ!2‘“‚ÕA_÷úH®ýdY}LeÎÓ €†¶zž\v¥ªÕŒ bÚCt^=piÒGÁ½ªº± ;Üm«Ú±¸çµ{`B}®‡=ª‹”{TG*b<éCá“Õ§úûY‹ÆÆ3„Ûót`E)A'rùðªm†auk«à^€¥òzZ¹³ÑZ©»&§Ù$ÂÒ¥Ãe5«Í¦³}NÁ–û1ô \vÔ‘`Yr¨ÙËÍŸ?þ­ÔA]™ÄÜààëZ§V æÌ Ù¤Nòˆ„ò0VB²ÀÍšK#A¼ÐìÖžíàqì\5 nr0ÛwâíIÄLêH ä©Ó½šŸ­~Éŧ-çVQ-fH9ãxîY˜7ìâèC˜9ï…w¦•=îÀ¶÷áàbôm“ËÀÈTžn¢Ø÷K=~tŒáÉx݆ÓTš_ú/ÈŽh=bLß¹elŸ!Z8k¡åH±'Ó;Ó&æ…[òNN@f»ô ÁxëšÅ{§$èþØ1+æ7onǰ‰h¼r¾¶ØÔ©¿è²ö‹ÚÊ„)Ó x/mº½Ç9Ù!ƒ‰¼ÛÅ”n™ðà¥ÊïkÑŸè¬Ýã?N§`ß**ܱN﮽è¥@Acd(sfw¤y"Éí–çåeßÿç4ÔŸŒÒUªZlÝÝ8‡ÏÀ±"âû+µ)uÑ·Nø!k.ôÑI‰@"—Èò ³J†9s4Òêę˔w×Òà!Gâ‡S¸²6f)¬õV¿3 ÛŽeë^»Ë‰s¢ØéYsÖЫ]öcŠ^üOÎ4_[ß9Næ¿ ’ªó°ôBüØ'.ƒ±?ô:eXX×Ó.°;ÍÛl†Ùl”n^›R ôöö¶Û/š…¿úÁÝdn¡ÝbžšµLÙkR1:šw@ˆæ6pÈM–ÍSŸ.«?/ü2®jK0†+:Pµa³ýÌJ»”)]ÉöÓšz­Ë\õ*¶ª‘:®swQÇÑW,üŽ$pH½Ð02>€×Iæi+n;þã'oâ5àø.òœ× l_ðä§È nG ˜´ïùXÙ•ä)Á§h=gAȾâ Ûg®éÌý9£_zdknñÀ¶Ø¾ÊŠ×+tƒƒ˜íëÑ»sá^„Ø·ª‰ÚÈêíݶÓpct•Ž›zš¯/ÒMYñ2_ò/{-iI*ùe/âßðS?‘Q¾çL½']ÉYQä$çaɯnЋçÿ‹‡û•3üð›Ö<^»UàR«Þ°ŸvU6=V½Àl"ˆr=»´>®´þ°“¶Pj'¸œ $†%;ÿæ &]œ üŽ@Ý*¼ì­1ª+¥=iÄŸÅ};ͪ?Dëóª¹õ€²d¡Eµa½×`R$þ?yù;ZɈ½™l÷9{bê³ÉÈ’ß#k† Šº¡ª×yCHÚ¡ ý|fÖjw¶?Zmd„{£¯S"Us7 Ô~tyi  ÀÒ#ÂO­ gEÁbJï2:‘;#€4+;bwºSçç,9ã€&¾Å•ÏÅbé).…q!¾±N-,“&o6Æú9®•Õ`@lËh‰*úåªKZ7Ó®>›¯ÔuŽ·_›Iìò}Þ?KÊëôð‡Åå# ‘¡VàiŸ®U .°˜oAëEX8ÝÃhƤÚÃúh1^ ¥Äƒ¸éåZ,öÇ›ª„Ñ„Ô,ÙyÔûP餪å=Ö/¯•?Ú‘È´Õh­Î\ ˆaåMTäM‘GÈ>p±ÿ%-›ØzØ&™Htåö^,ÌQºÒ¯Í‚h’òŒsþûâ=kØ¡Wb`gåÇëéý6·nÕ3³N½êÞꡎùP÷ÿÌýªÚB.þ•ë rÚ›ê¿;DÁ‡»îKt ¢êZå똤ñŸx¯ „±ö†Q95zw §…nY¥x­~añé˜B~rÏŸr”L+4Tê±uýý¡eìk^Fy— ¯ ³âÿ­²IQ_UÍÀý¾¼×”!kr>9 °ELåâêB7Ý&f§×Z0)yà ÑõÛÕ§Ì^"Û õz¾Èœî †qˆFj”™ç˹;©ûä9oñĶ)Є˙̲æðÍXuÅÂâiø¦)±þeu¯»X5ã¶±`ùö ×ÀH:g0h$Û’Þ«ü 4ÂÞ&Ô­ønEw™ÁHb ‡´RàÅÎU<¬X»7Ú ø ö¨Ñ%§1ÑÞ›”äÄ'ULqT–S %áž<¨?à óWt'NBB8?ÛlÑ ®â|¼9÷œæ-eœõO é°îá|X|‘z8(\´„N*ÈA5ŒlN ™ºE$¡ °MfCµòvPÐXsÍÚWC4àâHÖÚ9uæšg ¿`aDrº$çx„E‹YVäìõ†\°ôáA)Xp+*À:Ož-à%+mKˆ¿^ØÉ»þfe¹É›0ËÅÁÇÑ×KLöçÓbOröWât²|ÀÎÊÍ;"<Ýí)6õ3˜iÊrüØïCcm>óÌDÝfý¨§&48 ú].Y"Óö¬@„ùër.Àû›òsôõgÕDL&ð(Çς׊1"t9ìî âìn¼èàþÖ³ªÛCUósi3ÅŽÐaç¶ãðñGeB ¦}]œµ~V¨,ÖÂIÛBñ+˜I-¥Ô t²Ú¿B”=¨&~ƒ-óº‡S¼t¸Í«ñˆPö›¨ú(wn”ö`Å[¸ ¼€LzÛÔ!bö¦µŽÞ8b‡Œ¥Týdà1¯¬öex§SÛ"¶ªeA· ¦@a‡!¯þò¦¤£YPÐ òeanDµõÐk »ÎMÞá&¢IõíÆàÞÝ_X× Öà ô`ü®Z¢¢™â8å²Â(*$öU½_e‰ (HÆÐ~ çn]-=®}Lƒ³î¨ËJ¢`‰Z_a©cîóÓ}dÀdõî:I^¡á2Õ ¾V•ot !ü‰¾Æ¬”¨§a.Q§ÀËI¯ëÿùIæJa@¹cµé ¬¼Jùp ÌQt˜š;è)æ“ÞÎ+BÝ,‰³@8'!„V×øíØGHd§}шCö¤êußÎ|7 ÿ³8Áø_ÙRáî®òÐ “¬Ù럂>êLž¾æö>Oÿ‹Ñíùˆø ³8ણ è_ä~!c®ëá«+&‹\~"eØ í¤¹Oª‚±B‰IÁؾh ßNtÍ6=1‘€#™Zˆ?§0àoå.úy™ºÜ ;w‡w¼7ØX‡>%½ÏëdÃäªù¡Á=£ÚH.>ö¹ôÒ&ÜF²-цò—^‘’‹Ìvºžž‘/„>Á¯iy?Ið ë,˜æV}qù8ÿ³'ëeáZ53Ô›'.^S¾©£Ÿ½wñ5r_žÔDËa7K,m¥TNrꕆ…œÂP¹ÕƒÚq:W ».9eO":yÈ šÀ>S$HQnüw=Là´¥m(OùÅÿC²JùVQÞ9ãü0}ÛÒÖQhÎ%ºFí™ñùù­•JBu¸Û»*ƒ©³x)Xh§~½óì c˜ÚØ«6´æ„JÁ„8mxêmƒòV"å „ê3¯p¾šÉzácQà… ×A†)óûÇÿõ6xôlÊ"¡‘¢õ“'ŠzÝQUwó{ϲ”À¹ÖøÅô;wÕ+Ÿ™Ô?ÞÛ«ÙbTþY¯¸Æý°ý˶¶£Üñ„½WŠh^Î:kÂ,€À«ËcéöçyƒfZ×™¶µŒ—’±Z%Iê*AádRQ&§†#×#¶ÈCÇæÆhirƶ,hÚÚNúÑ?Æ»ZHŽ^f’“ˆ3ç…9iÓ®šX\°NÁ@ÍA D1H‹p.EÄ¡—ªŽɰÌÕ° ]Èܜ̷ÏÑÃóšÂŽ}ô_]ã!K¡qfXæqˆR¼’¶«Ã „gÛ%ÏD áP B9ºïz}í°€¥ùnam¶7Ynµ!rãÉí¦Ï¾EòÇ,ÚTËF¢GÆŠ—„/57,ŽŽ•8ÊOŸóù"ük¤‰HìÚš‰7ÉÜÖ^Çžøf¾É$½>š­mUþ=’¾·‹Õ)}ú)_ õŽÌâûÆóKuÁNVëElRD~FÇòùR‹25mê^o·\ÀÁŸ`^`T ‰?eºp?P‚ øAÁ¿qén5­í¯ùÇok-x9œ§ùW:ó䛇b¦E ø(–™Ðö 5ÙfE Wמ´”ÙóØ•åœFÉVNÉAyÉ,ˆæ»r|/=Ú¹:\k;ˆN¼U{i¥[Ìþ6 xן°<çÍPBüïêÜi¥­fÜÇ?‰xš“}x‡2™ù { ¿@Œû¤7 ñUQü¤‘"½žÆW;‰&Ï\„Zïá¼êÐS.›ÚþVåTÙ®UMÊô£Š·Xò\©ˆæøÇ3ÏôÂ⣠à Úÿc/x~3àƒš\?Y‹,ê6©«½ Ï,§ª—8ðÍÃi_=÷Arº.á9¢§…¢ Æö‚ßÍ{×d†s08ü´ìøY¸½x$»ê…·¼Ž¶Ì+Q?¦ØáÓ¦Øv¬®¼uŒ–àï…>”éöõaî›c+Ã>û½º}{Ö)v~©7M5˜n0|Dï&6å6Ú,4 Â#¦ó•UùäMþàò²Ú- }ÈÃ[#ùSTréßûbèx(ÍPJÇ.ü)äÙÙ‰c-­Õ°WUƒ¸B’t†Ð³>qÊJ¼ Jla‰chh$ õ03€Ô#ÎÛÆ¥¹]šç7íO¬©Ñ‡ô“'J`i>´ϱ;¤¹´3Vô€`&KUgO¯+¢ò”P;â[Ô1PqþöúcEmž(èCôX, äølþÊ&‹u®³Xü†ø)¢öïÁïqLK/|>0 ‹YZsurveillance/data/measlesDE.RData0000644000175100001440000000442511532744762016474 0ustar hornikusers‹í[lWÆg/¾_ÈÅM[ %åNˆ-m¹”æâºÁ@Û„Ø t¼žx7ÙÝÙÎîÆ )Ô-ôÆB¸´U«UÜžZ Á U ‚'xàUU_*ñPA(áûïžcÏήã½}Ÿôó7—3ç6gΜ93Z?rCÿ‘~Çq’Nr0á$SXL'ñ'ú„‚ç–ó^yüv'‘ºÚÚÙå•üL Cà)µCÔ¢‘ ô€^u¤6ÕqÃà `Ø ¶€­`\¶+ÁUpÞÞÞ ®ׂ·€íà:ðVð6ðvððNð.ðnð°¼ì£`xx?¸Ü>n7›ÁÁ‡À‡ÁGÀ-à£àV°ì{Á>0nãàv°| L€ƒO€O‚;Àà.pŸ‡À$˜ŸŸ‡ÁðYp|Ü >¾¾î.˜0